

MICROCONTROLLER
HANDBOOK

1985

About Our Cover:"
The design on our front cover is an abstract portrayal of the basic microcontrol/er function.

The center sphere, symbolic of a microcontroller, contains a molecular orbital diagram of the
architectural construction of a cubic unit of silicon. The red pathways lead!ng from the central

sphere, are symbolic of distant or remote controlled applications.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in
this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications CIt any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, 'f. ICE, iCS, iDBP,
iDIS, 121CE, iLBX, im, iMMX, Insite, Intel, intel, inIeIBOS, Intelevision, inteligent
Identifier, inleligent Programming, Intellec, Intellink, iOSP, iPDS, iSBC, iSBX,
iSDM, iSXM, Library Manager, MCS, Megachassis, MICROMAINFRAME, MUL
TlBUS, MULTICHANNEL, MULTIMODULE, Plug-A-Bubble, PROMPT,
Promware, QUEST, QUEX, Ripplemode, RMX/80, RUPI, Seamless, SOLO,
SYSTEM 2000, and UPI, and the combination of ICE, iCS, iRMX, iSBC, MCS, or
UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk Data
Sciences Corporation .

• MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

.Intel Corporation
literature Department
3065 Bowers Av.enue
Santa Clara, CA ~5()51

@INTEL CORPORATION 1984

Table of Contents

ALPHANUMERIC INDEX ... iii

MCS®-96 FAMILY
CHAPTER 1

Introduction To MCSII!>-96 '" . 1-1
CHAPTER 2

Architectural Overview ... 2-1
CHAPTER 3

MCSII!>-96 Software Design Information " ; 3-1
CHAPTER 4

MCSII!>-96 Hardware Design Information 4-1
CHAPTER 5

MCSII!>-96 Data Sheet. ... 5-1
CHAPTER 6

MCS®-96 Article Reprint
AR-321: High Performance Event Interface For A Microcomputer .6-1

MCS®-S1 FAMILY
CHAPTER 7

MCS®-51 Architecture•............ 7-1
CHAPTER 8 .

MCSII!>-51 Instruction Set ..•.. S-1
CHAPTER 9

MCS®-51 Data Sheets
S031/S051 S031AH/S051AH S032AH/S052AH S751 H/S751 H-12 9·1
S052AH-Basic. 9-15
SOC51BH/SOC51BH-2 SOC31 BH/SOC31 BH-2 9-24
S031 AH/S051 AH S032AH/S052AH S751 H/S751 H Express.;. • ·9-39

CHAPTER 10 '
MCS®-51 Application Notes

AP-69: An Introduction To The Intel MCS®·51
Single-Chip Microcomputer Family. 10-1
AP-70: Using The Intel MCS®-51 Boolean
Processing Capabilities : '' ; ... 10;3~
AP-223: S051 Based CRTlTerminal Controller 10-65

CHAPTER 11 .
MCS®-51 Article Reprint·

AR-224: Controller Chip Takes On Many
Industrial, Computer Uses. 11-1

MCS®-48 FAMILY
CHAPTER 12

MCS®-4S Single Component System'12-1
CHAPTER 13

MCSII!>-4S Expanded System ... 13·1
CHAPTER 14

MCS®-4S Instruction Set. 14·1
CHAPTER 15

MCS®-48 Data Sheets
S243 : 15·1
S048AH/S035AHUS049AH/S039AHUS050AH/S040AHL . 15·7
S748H/S035H/S749H/S039H .. 15·17
MCS®·48 Express . 15·30
SOC39·9/S0C49-7. 15-34

THE RUPI'M FAMILY: MICROCONTROLLER
WITH ON-CHIP COMMUNICATION CONTROLLER

CHAPTER 16
The RUPI'"·44 Family .. 16·1

CHAPTER 17
8044 Architecture . 17·1

CHAPTER 18
8044 Serial Interface .. -.18·1

CHAPTER 19
8044 Application Examples . 19-1

CHAPTER 20
RUPI'" Data Sheets

8044AH/8344AH . 20-1
8744 .. 20-20

CHAPTER 21
RUPI'· Article Reprint .. '21-1

DESIGN CONSIDERATIONS
CHAPTER 22

Application Notes
AP-125: Designing Microcontroller Systems
For Electrically Noisy Environments . 22-1
AP-155: Oscillators For Microcontrollers 22-23

DESIGN CONSIDERATIONS
WHEN USING CHMOS

CHAPTER 23 , . 23-1
Article Reprints

AR-302. , 23-6
AR-332 , ... 23-17

ADVANCED PACKAGING INFORMATION
CHAPTER 24 .. '.' 24-1

ii

ALPHANUMERICAL INDEX

8031 Data Sheet .. 9·1
8031AH Data Sheet .. 9·1
8031AH Express Data Sheet ; 9·39
8032AH Data Sheet .' ... 9·1
8032AH Data Sheet . 9·39
8035H Data Sheet . 15·7
8035AHL Data Sheet. ..'. 15·7
8039H Data Sheet . 15·7
8039AHL Data Sheet. .. 15·7
8040AHL Data Sheet. 15·7
8044 Application Example. 19·1
8044 Architecture... '. . 17·1
8044 Serial Interface. , 18·1
8044AH Data Sheet . 20·1
8048AH Data Sheet . 15·7
8049AH Data Sheet . 15·7
8050AH Data Sheet 15·7
8051 Data Sheet , ' ; 9·1
8051AH . Data Sheet : , , .. 9·1
8051AH Express Data Sheet .. 9~39
8052AH Data Sheet ' ... ' ... 9·1
8052AH Basic Data Sheet. 9·15
8052AH Express Data Sheet . 9·39
8243 Data Sheet . 15·1
8344AH Data Sheet . 20-1
8744 Data Sheet .. 20·20
8748H Data Sheet ' ... 15·17
8749H Data Sheet .. 15-7
8751 H Data Sheet .9-1
8751 H Express Data Sheet. 9·39
8751H·12 Data Sheet ... 9·1
80C31BH Data Sheet .. 9-24
80C31BH-2 Data Sheet , ,9·24
8OC39·9 Data Sheet. '.' . 15·34
80C51 BH Data Sheet . 9·24
80C51 BH·2 Data Sheet 9·24
ADVANCED Packaging Information ... 24-1
Design Considerations. 22-1

iii

ALPHANUMERICAL INDEX

Design Considerations Application Notes. .22-2, 22-24
Design Considerations When Using CHMOS 23-1
Design Considerations When Using CHMOS Article Reprints ' .23-6, 23'17
MCS-48 Data Sheets , 15-1,15-7,15-17,15,-30,15-34
MCS-48 Expanded System . 13-1
MCS-48 Instruction Set . 14·1
MCS-48 Single Component System .. 12-1
MCS-51 Application Notes 10-1,10-31,10-65
MCS-51 Architecture .. 7"1
MCS-51 Article Reprint .. 11 ~ 1
MCS-51 Data Sheets 9-1, 9-15, 9-24, 9-39
MCS-51 Instruction Set .. 8-1
MCS-96 ArchitecturalOverview ; ... 2-1
MCS-96 Article Reprint .6·1
MCS'96 Data Sheet .. 5-1
MCS-96 Hardware Information4-1
MCS-96 Introduction.. ..1-1
MSC-96 Software Design Information .. 3-1
RUPI Data Sheets : ' ... 20-1,20·20
RUPI Article Reprints .. 21-1
RUPI-44 Family .. · 16-1

iv

Introduction to MCS®,96 1

CHAPTER 1
INTRODUCTION TO MCS®·96

1.0 CONTINUING MICROCONTROLLER
EVOLUTION

Beginning with the introduction of the world standard
8048 (MCS®-48) Microcontroller in 1976, Intel has con
tinued to drive the evolution of single chip microcontroll
eTS. In 1980, Intel introduced the 8051 (MeS-51) offering
performance levels significantly higher than the' 8048.
With the advent of the 8051, the microcontroller appli
cations base took a marked vertical leap. These versatile
chips are used in applications· from keyboards and ter
minals to controlling automobile engines. The 8051
quickly gained the position of the second generatiOIi world
standard microcontroller.

Now that the semiconductor process technologies are

8048

8049
8050

MCS~-48

.8 BITqPU
• 1/214K ROM

8051
8052

• 64/1281256 BYTE RAM
• TIMER/COUNTER

8021 • PARALLEL 110
8022 • 8 BIT AID

1976

being pushed to new limits, it has become possible to
integrate more than 100,000 transistors onto a single sil
Icon chip. Microcontroller designers at Intel have taken
today's process technology achievements and forged a
new genention of single chip microcontrollers called the
MCS-96. The 8096 (generic part nUinber for MCS-96)
offers the highest level of system integration ever achieved
on a single chip microcontroller. It uses over 120,000
transistors to implement a high performance 16-bit CPU,
8K bytes of progTam memory, 232 bytes of data memory
and both\analog and digital types of 110 features. Figure
I-I shows the evolution of single chip microcontroller at
Intel.

8394
, 8395

8396
8397

.8 BIT CPU

• 4/8K ROM
• 1281256 BYTE RAM
• TIMER/COUNTER
• PARALLEL I/O
• SERIAL I/O

1980

• 16 BIT CPU
.8KROM

• 232 BYTE RAM
• TIMER/COUNTER'
• PARALLEL I/O
• SERIAL ~O
• 10 BIT AID
• HIGH SPEED ~O

• PWM
• WATCH DOG TIMER

1983

Figure 1·1. Evolution of Microcontrollers at Intel

1-1

INTRODUC:TIO,. TO MCS®·96

, '~ ;

1.1 INTRODUCTION TO THE MCS®·96

The 8096 consists of a 16-bit powerful CPU tightly cou
pled with program and data memory along with several
I/O features all integrated onto a single piece of silicon.
The CPU supports bit, byte, and word operations. 32-bit
dou.ble words are also supported for a subset of the ..in
struction set. With· a 12 MHz il!-put frequency, the 80fl6
can perform a 16-bit addition in 1.0 I!-s and 16 x 16
multiply or 32/.16 divide in 6.5 iJ-s.

16-bit software timers can be in operation at once in ad
dition :to the two 16-bit hardware timers.

An optional on-chip AID converter converts up to four
(in the 48-pin version) or 8 (in the 68-pin version) analog
input channels into lO-bit digital values. Also provided
on-chip, is a serial port, a watchdog timer, and a pulse
width modulated output signal. Table 1.1 shows the fea
tures and benefits :rummary for the MCS-96.

Four high-speed trigger inputs are provided to record the
times,at which external eV!!nts oc.cur with a resolution of
2 iJ-S (at 12 MHz crystal frequency). Up to six high-speed
pulse generator outputS are provided to trigger external
events at preset, times. The high speed output unit can
simultaneously perform timer functions, up to four such

The'8096.with its 16-bit CPU and all the I/O features and
interface resources on a ,single piece of silicon represents
the highest level of system integration in the world of
micr~ontrollers. It will open up new applications which
had to use multiple chip solutions in the past.

Table 1·1 MCS~·96 Features and Benefits Summary

FEATURES BENEFITS
16-BitCPU Efficient machine with higher throughput

8K Bytes ROM Large program space for more complex, larger programs.

232 Bytes RAM· Large on-board register file.

Hardware MUUDIV Provides good math capability 16 by 16 multiply or 32 by 16 divide
in 6.5 iJ-S @ 12 MHz ..

6 Addressing Modes Provides greater flexibility of programming and data manipulation.

High Speed I/O Uriit Can measure and generate pulses with high resolution (2 iJ-S @
4 dedicated I/O lines 12 MHz).
4 programmable 110 lines

10-Bit ND Converter Reads the' external analog inp\lts.

Full Duplex Serial Port Provides asynchronous serial link to other processors or systems.

Up to 40 110 Ports Provides TTL compatible digital data I/O including system expansion
with standard 8 or 16-,bit peripherals.

Programmable 8 Source Priority Respond to asynchronous events.
Interrupt System

Pulse Width Modulated Output Provides a programmable pulse train with variable duty cycle. Also
used to generate analog output.

Watchdog Timer Provides ability to recover from software malfunction or hardware
upset.

48 Pin (DIP) & 68 Pin (Flatpack, Pin Offers a variety of package types to choose from to better fit a specific
Grid Array) Versions application need for number of 1I0's and package size.

1-2

INTRODUCTION TO MOS®.96

1.2. MCSall-96 APPLICATIONS

'The MCS-96 products are stand-alone high performance
>single chip mili:rocontrollers designed for use in sophis
ticated real-time demanding applications such as industrial
control, instrumentation and intelligent computer periph
erals. The wide base of applications cut across all industry
segments' (see table 1.2). With the 16-bit CPU horse
power, hlgh-speed math processing and high-speed 1/0,
the 8096 is ideal for complex motor control and axis con
trol systems. Examples include three phase, large horse
'power AC motors and robotics.

With its 100bit AID converter option, the device finds
usage in data acquisition systems and closed-loop analog
controllers. It permits considerable system integration by

Table 1·2 MCS@·96 Broad Base of Applications

INDUSTRIAL
> Motor Control
Robotics
Discrete and Continuous Process Control
,Numerical Control
Intelligent Transducers

INStRUMENTATION
Medical Instrumentation
Liquid and Gas Chromat6graphs
Oscillioscopes

CONSUMER
Video Recorder
Laser Disk Drive
High-end Video Games

GUIDANCE & CONTROL
Missile Control
Torpedo Guidance Control
Intelligent Ammunition
Aerospace Guidance Systems

DATA PROCESSING
Plotters
Color and B& W Copiers
Winchester Disk Drive
Tape Drives
Impact and Non-Impact Printers

TELECOMMUNICATIONS
Modems
Intelligent Line Card Control

AUTOMOTIVE
Ignition Control
Transmission Control
Anti Skid Braking
Emission Control

1-3

combining analog and digital 110 processing in the single
chip.

This chip is ideally suited in the area of instrumentation
products such as gas chromatographs, which combine an
alog processing with high speed number crunching. The
same features make it a desirable component for aerospace
applications like missile guidance and control.

1.3. MCSiIl-96 FAMILY DEVELOPMENT
SUPPORT TOOLS

The product family is supported by a range of Intel soft
ware and hardware development tools. These tools shorten

,the product development cycle, thus bringing the product
to the market sooner.

1.3.1. MCS®-96 Software Development
Package ,

The 8096 software development package provides devel
opment system support specifically designed for the MCS-
96 family of single chip microcontrollers. The package
consists of a'symbolic macro assembler ASM-96, Linkerl
Relocator RL-96 and the librarian LIB-96. Among the
high level languages, PLM-96 is offered along with a
floating point math package. Additional high level lan
guages are being developed for the MCS-96 product
family.

1.3.2. ASM-96 MACRO Assembler
The 8096 macro assembler translates the symbolic assem
bly language instructions into the machine executable ob
ject code. ASM-96 enables the programmer to write the
program in a modular fashion. The modular programs
divide a rather complex program into smalltr functional
uriits, thllt are easier to code, to debug, and to change.
The separate modules can then be linked and located into
one program module using the RL-96 utility, This utility
combines the selected input object modules into a single
output object module. It also allocates memory to input
segments and binds the relocatable addresses to absolute
addresses. It then produces a print file that consists of a
link summary, a symbol table listing and an intermediate
cross-reference listing. LlB-96, another utility helps to
create, modify, and examine library files. The ASM-96
runs on Intellec Series III or IV.

1.3.3. PLlM-96
The PUM-96 compiler translates the PUM-96 language
into 8096 relocatable object modules, This allows im
proved programmer productivity and application reliabil
ity. This high level language has been efficiently designed
to map into the machine architecture, so as not to trade
off higher programmer productivity with inefficient code.
Since the language and the compiler are optimized for the
8096 and its application environment, developing software
with PUM-96 is a 'low-risk' project.

INTRODUCTION TO. MCS<1ll~96

1.3.4. Hardware Development Support:
iSBE·96

The iSBE-96 is a hardware executiDn and debug tDDI fDr

the MCS-96 products. It,cDnsistsDf a mDnitDr/debugger
resident in an 8096 system. This develDpment system in
terfaces with the user's 8096 system via tWD ribbDn cables,
.one fDr the 8096 I/O PDrts, and the .other fDr the memDry
bus. The iSBE-96 is cDntrDliedby an Intellec Series III
Dr .other cDmputer system .over a serial link. PDwer fDr the
iSBE-96 can be supplied by plugging it intD the MUL
TIBUS® card slDt, Dr by an external pDwer supply. The
iSBE-96 is cDntained .on .one standard MULTIBUS bDard.

The iSBE-96 prDvides the mDst .often used features fDr
real-time hardware emulatiDn. The user. can display and
mDdify memDry, set up break pDints, execute with Dr

withDut breakpDints and change the memDry map. In ad
ditiDn, the user can single step thrDugh the system
prDgram.

1.3.5. MCS®-96 Workshop
The wDrkshDp provides the design engineer Dr system
designer hands-Dn experience with the MCS-96 family .of
products. The course includes an explanatiDn .of the Intel
8096 architecture, system timing, input/Dutput desigri.
The lab sessiDns allDw the attendees tD gain in-depth
knDwledge .of the MCS-96 product family and SUpPDrt
tDDls.

1.3.6. Insite ™ Library
The Intel Insite'Library cDntains several applicatiDn p~D
grams. A very useful program cDntained in the Insite is
SIM-96, the sDftware" simulatDr fDr 8096. It allDws SDft
ware simulatiDns .of user's system. The 'simulatDr prDvides
the ability tD set'breakpDints, examine'and mDdify mem
Dry, disassemble the Dbje,ct cDde and single step thrDugh
the cDde.

1-4

1.4. MCS®-96 'FAMILY .OF PRODUCTS·

AlthDUgh 8096 is the generic part number .often, used.for
the MCS-96 prDducts throughout this. manual, the product
family cDnsists .of eight cDnfiguratiDns with eight part
numbers including the 8096. This wide variety of products
is offered tD best meet user's application requirements in
terms of number .of 1I0's and package size,. The Dpti.ons
include Dn-bDard 8K bytes .of mask programmed memDry,
lO-bit A/D cDnverter, and 48 Dr 68 pin package type.

Table 1-3 summarizes all the current products in the
MCS®-96 product family.

Table 1·3 MCS®·96 Family. of Products

OPTIONS 68 PIN 48 PIN

ROMLESS 8096 8094
DlGITAL
I/O

ROM 8396 8394

.
ANALOG ROMLESS 8097 8095
AND
DIGITAL
110 ROM 8397 8395

The 48 pin versiDn is available in a DIP (dual inline)
package.

The 68 pin versiDn CDmes in two packages, the .Plastic
Flatpack and the Pin Grid Array. .

Architectural Overview 2

CHAPTER 2
ARCHITECTURAL OVERVIEW

2.0. INTRODUCTION

The 8096 can be separated into several sections for the
purpose of describing its operation. There is a CPU, a
programmable High Speed I/O Unit, an analog to digital
converter, a serial port, and a Pulse Width Modulated
(PWM) output for digital to analog conversion. In addition
to these functional units, there are some sections which
support overall operation of the chip such as the clock
generator and the back-bias generator. The CPU and the
programmable I/O make the 8096 very different from any
other microcontroller, let us first examine the CPU.

2.1. CPU OPERATION

The major components of the CPU on the 8096 are the
Register File and the RALU. Communication with the
outside world is done through either the Special Function
Registers (SFRs) or the Memory Controller. The RALU
(Register/Arithmetic Logic Unit) does not use an accu
mulator, it operates directly on the 256-byte register space
made up of the Register File and the SFRs. Efficient 110

VREF

ANGND
I
I
I
I
I
I
I
I
I
I
I
I

VSS

L __________ _

VBB

operations are possible by directly controlling the
110 through the SFRs. The main benefits of this structure
are the ability to quickly change context, the absence of
accumulator bottleneck, and fast throughput ,and 110
times.

2.1.1. CPU Buses
A "Control Unit" and two buses connect the Register
File and RALU. Figure 2-1 shows the CPU with its major
bus connections. The two buses are the "A-Bus" which
is 8-bits wide, and the "D-Bus" which is 16-bits wide.
The D-Bus transfers data only between the RALU and the
Register File or Special Function Registers (SFRs). The
A-Bus is used as the address bus for the above transfers
or as a multiplexed address/data bus connecting to the
"Memory Controller". Any accesses of either the internal
ROM or external memory are done through the Memory
Controller.

Within the memory controller is a slave program counter
(Slave PC) which keeps track of the PC in the CPU. By
having most program fetches from memory referenced to

EA
ALE
BHi
AD
ViR
READY

~~::;::==I=:"~ RESET

P3l ADDRIDATA
BUS

P4

PO/ACH P1 P2lALT. FUNCTIONS HS1 HSO

Figure 2-1. Block Diagram (For simplicity, lines connecting port registers to port buffers are not shown.)

2-1

ARCHITECTURAL OVERVIEW

the slave PC, the processor saves time as addresses seldom
have to be sent to the memory controller. If the address
jumps sequence !!ten the slave PC is loaded with a new
value and processing continues. Data fetches from mem
ory are also done through the memory controller, but the
slave PC is bypassed for this operation.

2.1.2. CPU Register File
The Register File contains 232 bytes of RAM which cart
be accessed as bytes, words, or double-words. Since each
of these locations can be used by the RALU, there are
essentially 232 "accumulators". The first word in the
Register File is reserved for use as the stack pointer so
it can not be used for data when stack manipulations are
taking place. Addresses for accessing the Register File
and SFRs are temporarily stored in two 8-bit address reg
isters by the CPU. hardware.

2.1.3. RALU Control
Instructions to the RALU are taken from the A-Bus and
stored temporarily in the instruction register. The Control

UPPER WORD REGISTER/SHIFTER

LOWER WORD REGISTER/SHIFTER

Unit decodes the instructions and generates the correct
sequence of signals to have the RALU perform the desired
function. Figure 2-1 shows the instruction register and the
control unit.

2.1.4. RALU
Most calculations performed by the 8096 take place in the
RALU. The RALU, shown in Figure 2-2, contains a 17-
bit ALU, the Program Status Word (PSW), the Program
Counter (PC), a loop counter, and three temporary reg
isters. All of the registers are 16-bits or 17-bits (16+ sign
extension) wide. Some of the registers have the ability to
perform simple operations to off-load the ALU.

A separate incrementer is used for the PC; however, jumps
must be handled through the ALU. Two of the temporary
registers have their own shift logic. These registers are
used for the operations which require logical shifts, in
cluding Normalize, Multiply, and Divide. The "Lower
Word" register is used only when double-word quantities
are being shifted, the "Upper Word" register is used

8-BIT
A·BUS

1-_____ ""7'..:.1::.6 ____ -+~ TEMPORARY REGISTER _.p.8!----/

CONSTANTS (0,1,2)

16 8 LOWER

Figure 2·2. RALU Block D.lagram

2-2

ARCHITECTURAL OVERVIEW'

wheneveJ a shift is perfonned ot as a temporary register
for many instructions, Repetitive shifts are counted by the
5-bit "Loop Counter".

A temporary .register is used to store the second operand
of two operand instructions. This includes !he multiplier
during, multiplications and the divisor during divisions.
To perfonn.subtractions, the output of this register can be
c<!mplemented before being placed into the "B" input of
theALU.

The DELAY sholNn in Figure 2-2 is used to convert the
16-bit bus into an 8-bit bus. This is required as all ad
dresses and instructions are carried on the 8-bit A bus.
Several constants, such as 0, t· and 2 are stored in the
RALU for use in speeding up certain calcUlations. These
come m handy when the RALU needs to make a 2's
complement number or perfonn an increment or decre
ment instruction.

2.2. BASIC TIMING

The 8096 requires an input clock frequency of between
6.0'MHz and 12 MHz to function. This frequency can be
applied directly to XTALI. Alternatively, since XTAI.;1
and XTAL2 are inputs and outputs of an inverter, it is also
possible to use a crystal to generate'the'Clock. A block
diagram bf the oscillator section is shown in Figure 2"3.
Details of the circuit and suggestions for'lts use can' be
found in section 4. I.

2.2.1. Internal Timings
:The crystal 'or external oscillator frequency is divided by

XTAL 1

PHASE A
(CLOCKOUT)

PHASE B

PHASE'C

n
I n

INTERNAL
CIRCUITRY

8096

XTAL 1 XTAL2
t----IDt----+

Figure 2·3. Block Diagram of Oscillator

3 to generate the three internal timing phases as shown
in Figure 2-4. Each of the internal phases repeat every 3
oscillator periods: 3 'oscillator periods are referred to as
one "state time'.', the basic time measurement for-f!096
operations. Most internal operations are synchronized to
either Phase A, B orC, each of which have a 33% duty
cycle. Phase A is represented externally by CLKOUT, a
signal available on the 68-pin part. ,Phases B, and C are
not available externally. The relationships of XTALl,
CLKOUT, and Phases A, B, and C are shown in Figure
2-4. It should be noted that propagation delays have not

n r
n

Figure 2-4. Internal Timings Relative to XTAL 1

ARCHITECTURAL OVERVIEW

been taken into account in tnis diagram. Details on tliese
and other timing relationships can I:!e found in sections
4.1,4.4 and 4.6.

The RESET line can be used to start the 8096 at an exact
. time to provide tor synchroniz~tion of test equipment and

. multiple chip. systems. Use of this feature is fully ex,
plained under RESET, sections 2~15 and 4.1.

2.3. MEMQRY SPACE

The addressable memOry space on the 8096 consists of
64K bytes, most' of which is available to the user for
program or data memory. Locations which have special
purposes are OOOOH through OOFFH and IFFEH through
201OH. All other locations can be used for either program
or data storage or for memory mapped peripherals. A
memory n,tap is shown in figure 2-5.

2.3.1. Register File
Locations OOH through OFFH contain the Register File
andSFRs. Complete information on ,this section of mem
ory space can be found in section 2.4. No code can be
executed, from this internal RAM section.' If an attempt
to' execute ,i!1structiol\S.from 10cations·OOOl:l through OFFH
i,s made, the instructions will be fetched from external
memory .. This section ·of external memory is reserved for
use by Intel development tools. Ex~cutionof a nonmask
able interrupt (NMI) will fOllle a call to external location

65535

16364

8320

8210

8192

8190

256
255

00

EXTERNAL MEMORY
OR
YO,

INTERNAL PROGRAM
STORAGE ROM

FACTORY TEST CODE

8
INTERRUPT t
VECTORS 0

PORT 4
PORT 3

EXTERNAL MEMORY.
OR
VO

INTERNAL RAM
REGISTER FILE

STACK POINT-ER
SPECIAL FUNCTION REGISTERS

(WHEN ACCESSED AS
DATA MEMORy)

OOOOH. therefore, the NMI instruction is also reserved for
Intel development tools.

2.3.2. Reserved Memory Spaces
'Locations IFFEHand IFFFH are reserved for Ports 3 and
4 respectively. This is to allow easy,reconstruction of these
ports if external memory is used in the system. An example
of recon~tructing the 110 ports is given ill section 4.6.7.
If ports 3 and 4 are not going to be reconstructed th~n
these locations can be treated as any other external mem"
ory location.

The 9 intenupt vectors are stored in . locations 2000H
through 20 II H. The 9th vector is used by Intel devel
opment systems, as explained in section 2.5. Internal 10-
cations 2012H through 207FH are reserved for Intel's
factory test code. To ensure compatibility with. future parts
external locations 2012H through 207FH must 'Contain the
hex value FFH.

Resetting the 8096 causes instructions to be fetched start,.
ing from location 2080H. This location was chosen to
allow a system to have up to 8K of RAM continuous with
the register file. Further information on reset can be found
in section 2.15.

2.3.3. Internal ROM " .
When a ROM part is ordered, the internal memory,lo
cations 2080H through 3FFFH are user specified as, are
the interrupt vectors in locations 2000Hthrough 2011H.

FFFFH

4000H

20801:i <- RESET

2012H

2000H

1FFEH

0100H
OOFFH r----------------------,255

EXTERNAL MEMORY RESERVED
FOR USE BY INTEL DEVELOPMENT
SYSTEMS' . .'

(WHEN ACCESSED AS PROGRAM
MEMORy)

OOOOH 00

Figure 2·5; Mernory Map

2-4

ARCHITECTURAL. OVERVIEW

Instruction and data fetches from the internal ROM occur
only if the part has a ROM, EA is tied' high, and the
address is between 2000H and 3FFFH. At all other times
data is accessed from either the internal RAM space or
external memory and instructions are fetched from exter
nal memory.

2.3.4. Memory Controller
The RALU talks to the 'memory (except for the locations
in the register file and SFR space) through the memory
controller which is connected to the RALU by the A-bus
and several control lines. Sin"e the A-bus is eight bits
'wide, the memory controller uses a Slave Program
Counter to avoid having to always get the instruction lo
cation from the RALU. This slave PC is incremented after
each fetch. When a jump or call occurs, the slave PC must
be loaded from the A-bus before instruction fetches can
continue.

In addition to holding a slave PC, the memory controller
contains a 3 byte queue to help speed execution. This

'queue is transparent to the RALU and to the user unless
wait states are forced during external bus cycles. The
instruction execution times shown in Tables 3-3 and 3-4
show the normal execUtion times with no wait states

PHASE A
(CLKOUT)

PHASE B

PHASEC

added. Reloading ,the· slave PC and fetching the first byte
of the new instruction stream takes 4 state times. This is
reflected in the jump taken/not-taken times shown in Table
3-4.

2.3.5: System Bus
Exteinal memory is addressed through lines ADO through
ADI5 which form a 16-bit multiplexed (address/data) data
bus. These lines share pins with 110 ports 3 and 4. The
falling edge of the Address Latch Enable (ALE) line is
used to -provide a clock to' a transparent latch (74LS373)
ill otder to demultiplex the bus. A typical circuit and the
required timings are shown in section 4.6. Since the
8096' s external memory can be addressed as either bytes
or wotds,the decoding is controlled with two lines, Bus
High Enable (BHE) and Addresss/Data Line 0 (ADO).
The Biffi line must be transparently latched, just as the
addresses are. '

To avoid confusion during the explanation of the memory
system it is reasonable to give names to the demultiplexed
address/data signals. The address signals will be called
MAO through MAI5 (Memory Address), and the data
signals will be called MDO through MD15. (Memory
Pata).

READY ~~ ________________ __

ALE --F\ n , I

'\-__ ..JI DATA IN

ADDRESS/DATA (ADDRESSX DATA OUT I ~

iiiiE, INST ==x VALID X INVAliD X ,VALID' C
'IF ALE IS HIGH

Figure 2-6. External Memory Timings

2-5-

AACHITECTUAALOVEAVlEW'

When SHE is a(;tive (low), the memory connected to the
high byte of the data bus should be selected. When MAO
is low the ·meI1l0ry connected to the low byte of the data
bus should be selected. In this way accesses to a 16-bit
wide memory can be to the low (even) byte only (MAO
=0, BHE=l), to the high (odd) byte only (MAO=t,
BHE=O), or to both bytes (MAO=O, BHE=O). When
a memory block is being used only for reads,. BHE and
MAO need not be decodtld. .

. .'
Figure 2-6 shows the idealized waveforms rehited to the
following description of external melllory manipulations.
For exact timing specifications please refer to the latest
data sheet. When an external memory feich begins, the
address latch enable (ALE) line rises, the address is put
on ADO-AD15and BHE is set to the required state. ALE
then falls, the address is taken, off the. pins, and the RD
(Read) signal goes low. The READY line can be pulled
low to hold the processor in this condition for a few extra
state times. .

2.3.6. Bus Control Lines
The READY line can be used to hold the processor in the
above condition in order to allow access to slow memories
or for DMA purposes. Sampling of the READY line oc
curs il'lternally duting Phase A, which is the signal that
generates CLKOUT. There is a minimum time in which
READY must be stable before CLKOUT goe& low. If this
set-up time is violated while the part is going to 'the not
ready state, the part may fail to operate predictably.

Since READY is synchtonized with CLKOUT, the 8096
will be in a not-ready condition for a period equal to some
multiple of CLKOUT, although the READY line can be
brought high at any time. There is a maximum time for
holding the 8096 in the nOHeady condition, typically on
the order of I J,LS. The exact'time is specified in the data
sheet forthe particular part and temperature range desired.

The data from the external memory must be on the bus
and stable for a minimum ~ the. specified set-up time
before the rising edge of RD. The rising edge of RD
latches the information ..into the 8096. If the read is for
data, the INST pin will be low when the address is valid,
if it is for an instruction the INST pin will be high during
this time .. The 48-lead part does not have the INST pin.

Writing to external memory requires timings that are sim
ifar to those. required when reading from it. The main
diff~ce is that the write (WR) signal is used instead of
the RD signal. The timings are the same until the falling
edge of the WR line. At this point the 8096 removes the
address and places the data on th~bus.The READY line
must be held in the desired state at thaftime as described
above. When the WR line goes high the data should be
latched to the external memory. INST is always low during
a write, as inslrUcti6ns cannot be written. The exact timing
specifications for memory accesses can be found in the
data sheet.

2·6

OFFH . 255

~OWER.DOWN
RAM

OFOH 240
OEFH 239

INTERNAL'
h REGISTER FILE

lAHL'

(RAM)

I6

19H
STACK POINTER STACK POINTER

25
18H 24

17H PWM-CONTROL '23

16H 10Sl 10Cl 22

15H 10SO lOCO 21

14H 20
13H RESERVED RESERVED 19
12H 18

'llH SP_STAT SP_CON 17

10H 10 PORT 2 10 PORT'2 16

OFH 10 PORT 1 10 PORT 1 15

OEH 10 PORTO BA.UD_RATE 14

ODH ' TIMER2 (HI) 13

OCH TIMER2 (LO) RESERVED 12

OBH . TlMERl (HI) 11

OAH TIMER1 (LO) WATCHDOG 10

09H INT_PENDING INT_PENDING 9

'08H INT_MASK INT_MASK 8

07H SBUF(RX) SBUF (TX) 7

• 06H HSLSTATUS HSO_COMMAND 6

05H HSLTIME (HI) HSO_TIME (HI) 5

04H HSLTIME (LO) HSO_TIME (LO) 4

03H AILRESULT (HI) HSLMODE 3

02H AD_RESULT (LO) AD_COMMAND 2

01H RO (HI) RO(HI) 1

OOH RO (LO) RO(LO) 0

(WHEN READ) (WHEN WRITTEN)

Figure 2·7. Register File Memory Map

2.4. RAM SPACE
The internal register lQcations on the 8096 are divided into
two groups, a register file and a set of Special Function
Registers (SFRs). The RALU can operate on any of these'
256 int.ernal register locations. Locations OOH through:
17H are used to access the SFRs. Locations 18H and 19H
contain the stack pointer. The stack pointer must be ini
tialized by the user program and can point anywhere in
·the 64K memory·space. The stack buildsdown.·There are
no restrictions on the use of the. remaining 230 locations
except thiltcode'cannot be executed from them. '

ARCHITECTURAL OVERVIEW

2.4.1. Special Function Registers are read from, the other if they are written to. Figure 2-7
shows the locations and names of these registers. A sum
mary of the capabilities of each of these registers is shown

All ofthe 110 on the 8096 is controlled through the SFRs.
Many of these registers serve two functions; one if they

Register Description
RO Zero Register - Always reads as a zero, useful for a base when

indexing and as a constant for calculations and compares.

AD_RESULT AID Result HilLow - Low and high order Results of the AID
converter (byte read only)

AD_COMMAND AID Command Register - Controls the AID

HSI_MODE HSI Mode Register - Sets the mode of the High Speed Input unit.

HSI_ TIME HSI Time HilLo - Contains the time at which the High Speed Input
unit was triggered. (word read only)

HSO_TIME HSO Time HilLo - Sets the time for the High Speed Output to
execute the command in the Command Register. (word write only)

HSO _ COMMAND HSO Command Register - Determines What will happen at the time
loaded into the HSO Time registers.

HSI_STATUS HSI Status Registers - Indicates which USI pins were detected at the
time in the HSI Time registers.

SBUF (TX) Transmit buffer for the serial port, holds contents to be outputed.

SBUF (RX) Receive buffer for the serial port, holds the byte just received by the
serial port.

INT _MASK Interrupt Mask Register '- Enables or disables the individual
interrupts.

INT _ PENDING Interrupt Pending Register - Indicates when an interrupt signal has
occurred on one of the sources.

WATCHDOG Watchdog Timer Register - Written to periodically to hold off
automatic reset every 64K state times.

TIMER I Timer I HilLo - Timer I high and low bytes. (word read only)

TIMER2 Timer 2 HilLo - Timer 2 high and low bytes. (word read only)

10PORTO PortO Register - Levels on pins of port O.

BAUD_RATE Register which contains the baud rate, this register is loaded
sequentially.

10PORTl Port 1 Register - Used to read or write to Port 1.

IOPORT2 Port 2 Register - Used to read or write to Port 2.

SP_STAT Serial Port Status - Indicates the status of the serial port.

SP_CON Serial port control - Used to set the mode of the serial port.

10SO 110 status Register 0 - Contains information on the HSO status.

10SI 1/0 Status Register I - Contains information on the status of the
timers and of the HSI.

lOCO 1/0 Control Register 0 - Controls alternate functions of HSI pins,
Timer 2 reset source~ and Timer 2 clock sources.

lOCI 110 Control Register 1 - Controls alternate functions of Port 2 pins,
timer interrupts and HSI interrupts.

PWM _ CONTROL Pulse Width Modulatiop. Control Register - Sets the duration of the
PWM pulse.

OPORT2 Port 2 Register - Used to read or write to Port 2.

Figure 2-8. SFR Summary

2-7

Chapter
3.2.7

2.9.3

2.9.2

2.7.1

2.7.4

2.8.3

2.8.2

2.7.4

2.11

2.11

2.5.2
3.6.2

2.5.2
3.6.2

2.14

2.6.1
2.7-8

2.6.2
2.7-8

2.12.1

2.11.4

2.12.2

2.12.3

2.11.3

2.11.1

2.13.4

2.13.5
3.7.2

2.13.2

2.13.3

2.10
4.3.2

2.12.3

ARCHITECTURAL OVERVIEW

in Figur~ 2-8,. with complete descriptipns reserved for later
chapters. Note that these registers can be accessed only
as bytes uqless otherwise)ndicatec;l.

Within the SFR space are several registers labeled as "RE
SERVED". These registers are reserved for future ex
pansion or test purposes. Reads or writes of these registers
may produce unexpected results. For example, writing to
location OOOCH will set both timers to OFFFXH, this fea
ture is for use in testing the part and should not be used
in programs.

2.4.2. Power Down
The upper 16 RAM locations (OFOH through OFFH) re
ceive their power from both the VCC pin and the VPD
pin. If it is desired to keep the memory in these locations
alive during a power down situation, one need only keep
voltage on the VPD pin. The current required to keep the
RAM alive is approximately 1 milliamp (refer to the data
sheet for the exact specification).

To place the 8096 into a power down mode, the RESET
pin is pulled low. Two state times later the part will be
in reset. This is necessary to prev.ent the part from writing
into RAM as the power goes down. The power may now
be removed from the VCC pin, the VPD pin must remain
within specifications. The 8096 can remain in this state
for any amount of time and the 16 RAM bytes will retain
their values.

To bring the 8096 out of power down, RESET is held
low while vce is applied. Two state times after the os
cillator and the back bias generator have stabilized (-·1
millisecond), the RESET pin can be pulled high. The 8096
will begin to execute code at location 02080H 10 state
times after RESET is pulled high. Figure 2-9 shows a
timing diagram of the power down sequence. To ensure
that the 2 state time minimum reset time (synchronous

cycles be use4 .. Suggestions for actual hardware cOlmec
tions are given in section 4.1. Resetis discussed in section
2.15.

2.5. INTERRUPT STRUCTURE

2.5.1. Interrupt Sources
Eight interrupt sources are available on the 8096. When
enabled, an interrupt occurring on any of these sources
will force a call to the location stored in the vector location
for that source. The interrupt sources and their respective
vector locations are listed in Figure 2-10. In addition to
the 8 standard interrupts, there is a TRAP instruction
which acts as a software generated interrupt. This instruc
tion is not currently supported by the MCS-96 Assembler
and is reserved for use by Intel development systems.
Many of the interrupt sources can be activated by several
methods, Figure 2-11 shows all of the possible sources
for interrupts.

Source Vector Location Priority

(High (Low
Byte) Byte)

Software 2011H 20lOH Not Applicable
Extint 200FH 200EH 7 (Highest)
Serial Port 200DH 200CH 6 .

Software Timers 200BH 200AH 5
HSI.O 2009H 2008H 4
High Speed 2007H 2006H 3

Outputs
HSI Data 2005H 2004H 2

Available
AID Conversion 2003H 2002H I

Complete
Timer Overflow 200lH 2000H o (Lowest)

'With CLKOUT) is met, it is recommended that 10 XTALI Figure 2-10. Interrupt Vector Locations

VCC POWER DOWN

VPD----------------------+-----~~----~~~---------------
= 5:1;.5V

RESET -----""""

XTAL1· 1nnnnnnnnnnn
LJLJ LJ LJ lJ LJ LJ LJ LJ LJ LJ L

10 XTAL 1 CYCLES CLOCK NOT NECESSARY 10 XTAL 1 CYCLES
AFTER CLOCK IS STABLE

Figure 2·9. Power Down TimIng

2-8

ARCHITECTUR~L OVERVIEW

2.5.2. Interrupt Control
A block diagram of the intelTUpt system is shown in Figure
2-12. Each of the intelTUpt sources is tested for a 0 to 1
transition. If this transition occurs, the corresponding bit
in the IntelTUpt Pending Register, located at 0009H, is
set. The bit is cleared when the vector is taken to the

, intelTUpt routine. Since this register can be written to, it
is possible to generate software intelTUpts by setting bits
within the register, or remove pending intelTUpts by clear

, ing the bits in this register. The pending register can be
set even if the intelTUpt is disabled.

Caution must be used when writing to the pending register
to clear intelTUpts. If the intelTUpt has already been ac
knowledged when the bit is cleared, a 4 state time "par
tial" intelTUpt cycle will occur. This is because the 8096
will have to fetch the next instruction of the normal in
struction flow, instead of proceeding with the intelTUpt
processing as it was going to. The effect on the program
will be essentially that of an extra NOP. This can be

, prevented by clearing the bits using a 2 operand immediate
logical, as the 8096 holds off acknowledging intelTUpts
during these "read/modify/write" instructions.

SOURCE

,..---IOC1.l

Enabling and disabling of individual intelTUpts is done
through the IntelTUpt Mask Register, located at 0OO8H. If
the bit in the mask register is a 1 then the intelTUpt is
enabled, otherwise it is disabled. Even if an intelTUpt is
masked it may still become pending. It may, therefore,
be desirable to clear the pending bit before unmasking an
intelTUpt.

The IntelTUpt Mask Register is also the low byte of the
PSW. All of the intelTUpts may be enabled and disabled
simultaneously by using the "EI" (Enable intelTUpt) and

, "DI" (Disable IntelTUpt) instructions. EI and DI set and
clear PSW. 9, the intelTUpt enable bit, they do not effect
the contents of the mask register.

2.5.3. Interrupt Priority Programming
The priority encoder looks at all of the intelTUpts which
are both pending and enabled, and selects the one with
the highest priority. The priorities are shown in Figure
2-10 (7 is highest, 0 is lowest.) The intelTUpt generator
then forces a call to the location in the indicated vector
location. This location would be the starting location of
the IntelTUpt Service Routine (ISR).

INTERRUPT

EXTINT ~o-------- EXTINT
ACH.7 ----0

TI FLAG --..,----------- SERIAL PORT

RI FLAG ~ ,.. ___ HSO_COMMAND.4

SOFTWARE TIMER O~~
SOFTWARE TIMER 1
SOFTWARE TIMER 2
SOFTWARE TIMER 3

RESET TIMER 2'

START AID CONVERSION'

SOFTWARE TIMER

HSI.O------------ HSI.O

,..--- HS<U:OMMAND.4

ANY HSO OPERATION ---0 ~o-------- HIGH SPEED OUTPUTS

.----IOC1.7
FIFO IS FULL ----<l~o-·------ HSI DATA AVAILABLE

HOLDING REGISTER LOADED ----0

AID CONVERSION COMPLETE ------------ AID CONVERSION COMPLETE

r---IOC1.2
I

TIMERl OVERFLOW __ "00-----.-- TIMER OVERFLOW

TlMER2 OVERFLOW __ ')0
I
L_--IOC1.3

'Only when Initiated by the HSO unit.

Figure 2-11. All Possible Interrupt Sources

2-&

ARCHITECTURAL OVERViEW

ElmNT

SOFTWARE

SERIAL PORT TIMERS HSI.O

1--........
(PSW.9)

TRANSITION
DETECTOR

HSO HSI AlDCONV.
TIMER

OVERFLOW

o

INTERRUPT MASK REG.

PRIORITY ENCODER

INTERRUPT
GENERATOR

D-BUS CONTROL
UNI,T

Figure 2·12. Block Diagram of Interrupt System

At least one instruction in the ISR will always be executed
before another interruPt can be acknowledged. Usually
this instruction is "DI," or "PUSliF" (push flags). The
PUSHF instruction pushes the PSW onto the stack and
then clears it.

Clearing the PSW disables all interrupts in two ways; by
clearing PSW.9, the interrupt enable bit and because the
Interrupt Mask Register is located in bits 0 through 7 of
the PSW. The interrupts which, should be permitted to
interrupt this ~SR can tht;n be set in the mask register and
an "EI" instruction executed.

2-10

By selectively determining which.interrupts are enabled
or disabled within which interrupt service routines, it is
possible to configure the interrupt system in any way one
would desire. More information on programming the in
terrupts can be found under software programming of in
terrupts, section 3.6.

The last two instructions in an ISR are normally a "POPF"
(pop flags), which restores the PSW. and, therefore, the
interrupt mask register, followed by a 'RET', which, re~
stores the Program Counter. Execution will then continue
from the point at Which the call was forced.

ARCHITECTURAL OVERVIEW

:2.5.4. Interrupt Timing
Interrupts are not always acknowledged immediately. If
the interrupt signal does. not occur prior to 4 state-times
before the end of an 'instruction, the interrupt will not be
acknowledged until after the next instruction has been
executed. This is because an instruction is fetched and
prepared for execution a few state times before it is ac
'tuall y executed.

There are 6 instructions which always inhibit interrupts
from being acknowledged until' after the next instruction
'has been executed. These instructions are:

EI, DI - Enable and Disable Interrupts
POPF, PUSHF - Pop and Push Flags
SIGNO - Prefix to perform signed multiply

and divide (Note that this is not an
ASM-96 Mnemonic, but is'used for
signed multiply and divide)

TRAP ,- Software .interrupt

When an interrupt is acknowledged, a call is forced to the
location indicated by the specified interrupt vector. This
call occurs after the completion of the instruction in pro
cess, except as noted above. The procedure of getting the
vector and forcing the call requires 21 state times. If the
stack is in external RAM an additional 3 state times are
required.

The maximum number of state times required from the
time an interrupt is generated (not acknowledged) until
the 8096 begins executing code at the desired location is
the time of the longest instruction, NORML (Normalize
- 43 state times), plus the 4 state times prior to the end
of the previous instruction, plus the response time (21 to
24 state times). Therefore, the maximum response time
is 71 (43+4+24) state times. This does not include the
'12 state times required for PUSHF if it is used as the first
instruction in the interrupt routine or additional latency
caused by having the interrupt masked or disabled.

,Interrupt latency time can be reduced by careful selection
:of instructioris in areas of code where interrupts are ex
,pected. Using 'EI' followed immediately by a long in
:struction (e.g . .f\1UL, NORML, etc,) will increase the
maximum latency by 4 state times, as an interrupt cannot
'occur between EI and the instruction following EI. The
"DI", "PUSHF", "POPF" 'and "TRAP" instructions
will also cause the same situation. Typically the PUSHF,
POPF arid TRAP instructions would only effect latency
when one interrupt routine is already in process, as these
instructions are seldom used at other times.

2.6. TIMERS

Two 16-bittimers are available for use on the 8096. The
first is designated "Timer I", the second, "Timer 2".
Timer 1 is used to synchronize events to real time, while
Timer 2 can be clocked externally and synchronizes events
to ~ernaloccurences.

2-1·1

2.6.1. Timer 1
Timer I is clocked once every eight state times and can
be cleared only by executing a reset. The only other way
to change its value is by writing to OOOCH but this is Ii
'test mode which sets both timers to OFFFXH and should
not be used in programs.

2.6.2. Timer 2
Timer 2 can be incremented by transitions (one count each
transition, rising and falling) on either T2CLK or HSl.l.
The multiple functionality of the timer is determined by
the state of 110 Control Register 0,' bit 7 (IOCO.7). To
ensure that all CAM entries are checked e~ch count of
Timer 2, the maximum transition speed is limited to once
per eight state times. Timer 2 can be cleared by: executing
a reset, by settinglOCO.I, :by triggering HSO channel
OEH~ or by pulling T2RST or HSI.O high. The HSO and

IOCO.3 ----f

Figure 2-13. Timer 2 Clock and Reset Options

CAM are described in section 2.8. IOCO,3 and IOCO.5
control the resetting of Timer 2. Figure 2-13 shows the
different ways of manipulating Timer 2.

2.6.3. Timer Interrupts
Both Timer I and Timer 2 can be used to trigger a timer
overflow interrupt and set a flag in the 110 Status Register
I (lOS 1). The interrupts are controlled by IOC1.2 and
IOC1.3 respectively. The flags are set in IOS1.5 and
lOS 1.4, respectively.

Caution must be used when examining the flags, as ariy
access (including Compare and Jump on Bit) of lOS I
clears the whole byte, including the software timer flags~
It is, therefore, recommended towrite the byte to a tem
porary register before testing' bits. The general enabling
and disabling of the timer interrupts are coittrolled by the
Interrupt Mask Register bit O. In all cases, setting a bit
enables a function, while Clearing a bit disables'it.

ARCHITECTURAL OVERVIEW

HSI TRIGGER OPTIONS .

LHITOLO

___ -..Ir LO TO HI

HSI.O
HSI.1
HSI.2
HSI.3

CHANGE
DETECTOR

2.0 ,..s CLOCK

TRIGGERED
INPUT(S)

16 .

...n..n..n.n..n
EVERY EIGHTH POSITIVE

TRANSITION .

8 CURRENT
STATUS

4

----20----r FIFO ?

~

• PULSE MEASUREMENT WITH 2.0 pSEC RESOLUTION
• INPUT TRANSITIONS TRIGGER THE RECORDING OF THE REFERENCE

TIMER (16-BIT) AND mlGGERED INPUT(S) (4-BIT)

Figure 2·14. High Speed Input Unit

2.6.4. Timer Related Sections
The High Speed I/O unit is coupled to the timers in that
the HSI records the value on Timer I when transitions
occur and the HSO causes transitions to occur based on
values of either Timer I or Timer 2. The Baud rate gen
erator can use the T2CLK pin as input to its counter. A
complete listing of the functions of lOS I, lOCO, and IOC 1
are in section 2.13.

2.7. HIGH SPEED INPUTS

The High Speed Input Unit (HSI), can be used to record
the time at which an event occurs with respect to Timer
1. There are 4 lines (HSI.O through HSI.3) which can be
used in this mode and up to a total of 8 events can be
reporded. HSI.2 and HSI.3 share pins with HSOAand
HSQ.5. The I/O Control Registers (lOCO andIOCI) are
used to determine the ful1ctions of these pins. A block
diagram of the HSI unit is shown in Figure 2-14.

2.7.1. HSI Modes
There. are 4 possible modes of operation for each of the
HSI. The HSI mode register is used to control which pins
will look for what type of events. The 8-bit register is set
up as shown in Figure 2-15.
H~gh and low levels each need to be held fpr at least I
state time~o ensure proper operation. The maxiillUIII input
speedis . .1event every 8 state times except when the 8
transition mode is used, in which case it is I transition
per state time.

2-12

HSI MODE REGISTER (HSI_MODE)

LOCATION 03H

17161514131211101

T LHSI.OMODE

HSI.1 MO.DE

HSI.2MODE

HSI.3MODE:

WHERE EACH 2-BIT MODE CONTROL FIELD
DEFINES ONE OF 4 POSSIBLE MODES:

00 8 POSITIVE TRANSITIONS
01 EACH POSITIVE TRANSITION
10 EACH NEGATIVE TRANSITION
11 EVERY TRANSITION (POSITIVE: AND NEGATIVE)

Figure 2·15. HSI Mode Register Diagram

I • .'

The HSI lines can be individually enabled and disabled
using.bits in lOCO, at location 0015H. Figure 2-16 shows
the bit locations which control the HSI pins. If the pin is
disabled, transitions will not be entered in the FIFO.

ARCHITECTURAL QVERVIEW

ro----· IOC0.3, 10CO.S

'-'.0 ' T2RESET

r r---- 1000.0

MSI.O ~ "i..g tlSI .

,.....---. IOCO.2

'lo MSI ,r r---- IOCO.7

MSI.1 ~ "'0' TlMER2
CLOCK

ro----· IOCO.4
MSI.2 _ 'l.o HSI

r--- IOCO•6
HSI.3 _ '<..0 . HSI

Figure 2-16. lOCO Control of HSI Pin Functions

'"' '~

2~7.2. HSI FIFO
When an HSI event occurs, a 7x20 FIFO stores' the 16
bits of Timer 1 and the 4 bits indicating the state of the
4JISI li\les at the time the statu.s is read .• ~ can take up
to;~ state times for.this il).fonnation' to reacl~ the hol~ing
register. When the FIFO is full, one additional ~vent can
be stored by considering the holding register part of the
FIFO. If the FIFO and holding register are full any ad·
ditional events wili not btl recorded.

. 2.7.3. HSllnterrupts •
Interrupts can be generated from the H;SI unit in one of
two ways, detennined,.by IOCl.7. If the bit is a 0, then
an.interruptwill be generated every time a value is loaded
into the holding register. If it is aI, an interrupt will only
be generated when the FIFO. (independent of the h!>lding
register). has six entries in it. Since all interrupts are rising
edge triggered. ifIOCl. 7 = 1, the processor will l).ot be
re-interrupted until the FIFO first contains 5 or less rec·
ords. then contains six or more. Interrupts can also
be generated by pin HSI.O. which has its own interrupt
vector.

2.7.4. HSI Status
Bits 6 and 7 of the 1/0 Status register 1 (lOS 1) indicate
the status of the HSI FIFO. If bit 6 is a 1 •. the FIFO '
contains at least six entries. If bit 7 is a 1.· the FIFO
contains at least 1 entry and the holding registet,has been
loaded. The FIFO may be read after verifyillg that it con
tains valid data. Caution must be used ,when reading or
testing bits in IOSI, as this action dears,the entire byte.
including the software and hardware timer overflow flags:
It is best to store the byte and .then test the stored value.
See Section 3.7.2.

Reading the HSI is done in two steps. First,the HSI Status

register is read to obtain the current state of the HSI pins
and which pins had changed at the recorded time. The
format of the HSI _ STATUS Register is shown in Figure
2-17. Second. the HSI Time register is read. Reading the
Time register unloads one word of the FIFO. so if the
Time register is read before the Status register • the infor
mation in the Status register will be lost. The HSI Status
register is at location O6H and the HSI Time registers !If!:
in locations O4H and OSH.

If the HSr~ tIME and Status register are read without
the holding register being loaded. the values read will be
undeterminate.

It should be noted that many of the Status register con·
ditions are changed by a reset. see section 2.15.2. A
complete listing of the functiolls ofIO~O. 10SI. and lOCI
can be found in section 2.13.

2.8. HIGH. SPEED OUTPUTS

The High Speed Output unit (HSO) is used to trigger
events at specific times with minimal CPU overhead.
These events include: starting an A to D conversion. reo
setting Timer 2. setting 4 software flags. and. switching
up to 6 output.1ines. Interrupts can be generated whenever
one of these events is triggered. Up to 8 events can be
pending at anyone time.

2.8.1. HSIO Shared Pins ,
Two of the (; output lines (HSO.O through HSO.S) are
shared with the High Speed Input (HSI) lines. HSO.4 and
HSO.5 are shared with HSI.2 and HSI.3. respectively.
Bits 4 and 6 of the 110 Control Register 1 (IOC 1) are used
to en~ble J;lSO.4 and HSO.5 as outputs .

2.8.2 .. !iSIO CAM .
A block diagram of the HSO unit is shown in Fig\lfe 2-
18 .. The Content Addressable Memory (CAM) file is the
center of control. One CAM regi,Ster is, compared with a
time value ~very state time. Theref9re. it takes 8 state
times to cOlJlpare all CAM registers with a timer.

HSI STATUS REGISTER (HSI_STATUS)

LOCATION 08H

HSI,o STATUS

..... --- HSI.1 STATUS
L.. _____ HSI.2 STATUS

..... -------HSI.3 STATUS

WHERE FOR EACH 2-alT STATUS FIELD THE LOWER
alT INDICATES WHETHER OR NOT AN EVENT HAS 0c
CURRED ON THIS PIN AND THE UPPER BIT INDICATES
THE CURRENT STATUS OF THE PIN.

"Figure 2·17.HSI Status Register Diagram

2-13,

ARCHITECT.URALOVERVIEW

CONTROL
LOGIC

. 2.0 ,..S CLOCK

HIGH SPEED OUTPUT CONTROLS
6 PINS
4 SOFTWARE TIMERS
2 INTERRUPTS
INITIATE AID CONVERSION
RESET "FIMER 2'

Figure 2"18. High Speed Output Unit

Each CAM register is 23 bits wide. Sixteen bits specify
the time at which the action is to be carried tiut and 7 bits
specify both the nature of the action 'and whether Timer
1 or Timer 2 is the reference, The format of the comm;md
to the HS9 unit is shown iriFigure 2-19:

To enter a command into the CAM file, write the 7cbit
"Command Tag" into location 0006H followed by the
time at which the action is to be carried out into word
address 0004H. Writing the time value loads the HSO
Holding Register with both the time and the last written
command tag. The comiI]and does not actually enter the
CAM file until an empty CAM register becomes available.
It can take 'up to 8 state times for a command to enter the
CAM. For this reason, if Timer 1 is being used.as the,

reference; the minimum time that can be'loadedisTimer
I +" 1. A' similar restriction applies if Timer 2 is used as
the reference. "

Care must:be taken when writing the command tag for
the HSO. If an interrupt occurs during the time between
writing the command tag and loading t.l~e,time value, and
the interrupt service routine writes to the HSO time reg
ister, the command tag used in the interrupt routine will
be written to the CAM at both the time specified by the
interrupt routine and the time specified by the main 'pro
gram. The command tag from the main program will not
be executed. One way of avoiding this problem would be
to disable interrupts when writing co~ands and times
to the HSO unit. See also Section 3: 7,3. '

'76'S 4 3 2 0

I x I TID I I I CHANNEL I

CHANNEL O-S HSO.O - HSO.S
6 HSO.oAND HSO.1 ,
7 HSO.2 AND HSO.3
8-a SOFTWARE'TIMERS
E RESElTIMER 2
F START AlD'CONVERSION

....... -...;;,.--;--- INTERRUPT/NO,INTERRUPT,

...... -------SET/CLEAR,
...... ------...... ----- T1~ER 2/T1MER 1 ,

'Figure 2-1c9. HSO Command Tag Format

2-14

ARCHITECTURAL OVERVIEW

2.8.3. HSO Status
Before writing to the HSO, it is desirable to ensure that
the Holding Register is empty. If it is not, writing to the
HSO will overwrite the value in the Holding Register.
110 Status Register 0 (10S0) bits 6 and 7 indicate the
status of the HSO unit. This register is described in section
2.13.4. If IOSO.6 equals 0, the holding register is empty

. and at least one CAM register is empty. If IOSO.7 equals
0, the holding tegister is empty.

One location in the CAM file is checked each state-time.
Thus, it takes 8 state-times for the Holding Register to
have had access to all 8 CAM registers. Similarly, it takes
8 state-times for the comparator to have had access to all
8 CAM registers. This defines the time-resolution of the
HSO unit to be 8 state-times (2.0 JJ-sec, if the oscillator
frequency is 12 MHz1 Note that the comparator does not
look at the holding register, so instructions in the Iiblding
register do not execute.

2.8.4. Clearing The HSO
All 8 CAM locations of the HSO are compared before
any action is taken. This allows a pending external event
to be cancelled by simply writing the opposite event to
the CAM. However, once an entry. is placed in the CAM,
it cannot be removed until either the specified timer
matches the written value or the chip is reset. Internal
even~ are not synchronized to Timer 1, and therefore
cannot be cleared. This includes events, on HSO channels
8 through F and all interrupts. Since interrupis are not
synchronized it is possible to have multiple interrupts at
the same.time value.

2.8.5. Using Timer 2 With The HSO
Timer 1 is incremented only once every 8 state-times.
When it is being used as the reference timer for an HSO
action" the comparator has a chaqce to look at all 8 CAM
registers before Timer 1 changes its value. Following the
same reasoning, Timer 2 has been synchronized to allow
it to change at a maximum rate of once per 8 state-times.
Timer 2 increments on both edges of the input signal.

When using Timer 2 as the HSO reference, caution must
be taken that Timer 2 is not reset prior to the highest value
for a Timer 2 match in the CAM. This is because the
HSO CAM will hold an event pending until a time match
occurs, if that match is to a time vlllue on Timer 2 which
is never reached, the event will remain pending in the
CAM until the part is reset.

Additional caution must be used when Timer 2 is being
reset using the HSO unit, since resetting Timer 2 using
the HSO is an internal event and can therefore happen at
,any time within the eight-state-time window. For this rea
son, any events scheduled to occur at the same time as a
Timer 2 reset should be logged into the CAM with a Timer
2 value of zero. When using this method to make a pro
grammable modulo counter, the count will stay at the
maximum Timer 2 value only until the,Reset T2 command
is recognized. The count will stay at zero for the transition
which would have changed the count from "N" to zero,
and then change to a one on the next transition.

2.8.6. Software Timers
The HSO can be programmed to generate interrupts at
preset times. Up to four such "Software Timers" can be
in operation at a time. As each preprogrammed time is
reached, the HSO unit sets a Software Timer Flag. If the
interrupt bit in the command tag was set then a Software
Timer Interrupt will also be generated. The interrupt ser
vice routine can then examine 110 Status register 1 (10S 1)
to determine which software timer expired and caused the
interrupt. 'When the HSO resets Timer 2 or starts an A to
D conversion, it can also be programmed to generate a
software timer interrupt but there is no flag to indicate that
this has occurred. See also Section 3.7.4.

If more than one software timer interrupt occurs in the
same time frame it is possible t4at multiple software timer
interrupts will be generated.

Each read or test of any bit in lOS 1 will clear the whole
byte. Be certain to save the byte before testing it unless
you are only concerned with 1 bit. See also Section 3.2.2.

A complete listing of the functions of 10SO, 10SI, and
lOCI can be found in section 2.13. The Timers are de
scribed in section 2.6 and the HSI is described in section
2.7.

2.9. ANALOG INPUTS

The A to D converter on the 8096 provides a lO-bit result
on one of 8 input channels. Conversion is done using
successive approximation with a result equal to the ratio
of the input voltage divided by the analog supply voltage.

. If the ratio is 1.00, then the result will be all ones. The
AID converter is available on the 8097, 8397, 8095 and
8395 members of the MCS®-96 family.

2-15

2.9.1. AID Accuracy
Each conversion requires 168 state-times (42jJ.S at 12
MHz) i1'ldependent of the accuracy desired or value of
input voltage. The input voltage must' be in the range of
o to VREF, the analog reference and s~pply voltage. Fpr
proper operation, VREF (the reference voltage and analog
power supply) must be held at VCC ± 0.3V with
VREF = 5.0 ± 0.5V. The ND result is calculated from the
formula: .

1023)((input voltage-ANGND) / (VREF-ANGND~

It can be seen from this formula that changes in VREF or
ANGND effect the output Of the corverter. This can be
advantageous if a ratiometric sensor is used since these
sensors have an output that can be measured as a pro
portion of VREF.

If high absolute accuracy is needed it may be desirable to
use a separate power supply, or power traces, to operate
the ND converter. There is no sample and hold circuit
internal to the chip, so the input voltage must be held
constant for the entire 168 state times. Examples of con
necting the ND converter to various devices are given in
section 4.3.

ARCHITECTURAL OVERVIEW

AID COMMAND REGISTER

(LOCATION 02H)

CHANNEL # SELECTS WHICH OF THE 8 ANALOG INPUT
CHANNELS IS TO BE CONVERTED TO DIGITAL FORM;

'-------GO INDICATES WHEN THE CONVERSION IS TO BE
INITIATED (GO=1 MEANS START NOW, GO=O
MEANS THE CONVERSION IS TO BE INITIATED
BY THE HSO UNIT AT A SPECIFIED TIME).

Figure 2·20. AID Command Register

2.9.2. AID Commands
Analog signals can' be sampled by anyone of the 8 analog
input pins (ACHO through ACH7) which are shared with
Port O. ACH7 can also be used as anextemal interrupt if
IOCLl is set (see section 2.5). The ND Command Reg
ister, at location 02H, selects which channel is to be con
verted and whether the conversion should start immedi
ately or when the HSO (Channel #OFH) triggers it. A to
D commands are formatted as shown in Figure 2-20.

The command register is double buffered so it is possible
to write a command to start a conversion triggered by the
HSO while one is still in progress. Care must be taken
when' this is done since if a new conversion is started
while one is already in progress, the conversion in progress
is cancelled and the new one is started. When a conversion
is started, the result register is cleared. For this reason the
result register must be read before a new conversion is
started or data will be lost.

2.9.3. AID Results
Results of the arialog conversions are read from the ND

AID RESULT REGISTER

Result Register at locations 02H and 03H. Although these
addresses are on a word boundary, they must be read as
individual bytes. Information in the ND Result register
is formatted as shown in Figure 2-21. Note that the status
bit may not be-set until 8 state times after the go command.
Information on using the HSO is in section 2.8.

2.10. PULSE WIDTH MODULATION OUT-
PUT (D/A)

Digital to analog conversion can be done with the pulse
width modulation output; a block diagram of the circuit
is shown in Figure 2-22. The 8-bit counter is incremented
every state time. When it equals 0, the PWM output is
set to a one: When the counter matches the value in the
PWM register,' the output is switched low. When the
counter overflows, the output is once again switched high.
A typical output waveform is shown in Figure 2-23. Note
that when the PWM register equals 00, the output is always
low.

The output waveform is a variable duty cycle pulse which
repeats every 256 state times (64 p,S at l2MHz). Changes

AID CHANNEL NUMBER

'----- STATUS
o = AID CURRENTLY IDLE
1 = CONVERSION IN PROCESS

AID RESULT:
'--------- LEAST SIGNIFICANT 2 BITS

MOST SIGNIFICANT BYTE

Figure 2·21. AID Result Register

2-16

ARCHITECTURAL OVERVIEW

STATE TIME CLOCK
(F(XTAL 1)/3)

PWM
OUTPUT

• PERIOD = 64 "S, FREQUENCY = 15.625 KHz
• DUTY FACTOR PROGRAMMABLE IN 256 STEPS

Figure 2·22. Pulse Width Modulated (D/A) Output

in the duty cycle are made by writing to the PWM register
at location 17H. There are several types of motors which
require a PWM waveform for most efficient operation.
Additionally, if this waveform is integrated it will produce
a DC level which can be changed in 256 steps by varying
the duty cycle.

Details about the hardware required for smooth, accurate
D/ A conversion can be found in section 4.3.2. Typically,

DUTY
CYCLE

0%

PWM CONTROL
REGISTER VALUE

00
HI
LO

some form of buffer and integrator are needed to obtain
the most usefulness from this feature.

The PWM output shares a pin with Port 2, pin 5 so that
these two features cannot be used at the same time. 10CI.0
equal to I selects the PWM function instead of the standard
port function. More information on lOCI is in section
2.13.3.

2.11. SERIAL PORT

The.serial port is compatible with the MCS-Sl serial port.
It is full duplex, meaning it can transmit and receive si
multaneously. It is also receive-buffered, meaning it can
commence reception of a second byte before a previously
received byte has been read from the receive register. The
serial port registers (SBUF) are both accessed at location
07H. A write to this location accesses the transmit register,
and a read accesses a physically separate receive register.

The serial port can operate in 4 modes (explained below).
Selection of these modes is done through the Serial Port
Status/Control register at location IIH, shown in Figure
2-27.

2.11.1. Serial Port Modes

MODE 0
Mode 0 is a shift register mode. The 8096 outputs a train
of 8 shift pulses to an external shift register to clock 8
bits of data into or out of the register from or to the 8096.
Serial data enters and exits the 8096 through RXD. TXD
outputs the shift clock. 8 bits are transmitted or received,
LSB first. A timing diagram of this mode is shown in
Figure 2-24. This mode is useful as an 110 expander in
which application external shift registers can be used as
additional parallel 110 ports. An example of using the port
in this mode is given in section 4.5.

OUTPUT WAVEFORM

10% 25 ~~Jl ~ ____ ~n~ ____ ~n~ ____ _

50% 128 HI .-J
LO

230 HI .-J
LO

90% u u
99.6% 255 .HI-TI------,------r------

LO .

Figure 2·23. Typical PWM Outputs

2-17

ARCHITECTURAL OVERVIEW

TXO

, OUT

RXO

.. IN

Figure 2-24. Serial Port Mode 0 Timing

STOP

Figure 2-25. Serial Port Frame - Mode 1

STOP STOP

PROGRAMMABLE 9TH BIT --_

11-BIT FRAME -I
Figure 2-26. Serial Port Frame Modes 2 and 3

MODE 1
IO-bit frames are transmitted through TXD, and received
through RXD: a start bit (0), 8 data bits (LSB first), and
a stop bit (1). If PEN = 1 then an even parity bit is
transmitted instead of the eighth data bit. This mode is
the one commonly used for CRT terminals. The data frame
for Mode 1 is shown in Figure 2-25.

MODE 2
ll-bit frames are transmitted through TXD and received
through RXD: a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On transmit,
the 9th data bit can be assigned the value of 0 or 1 using
the TB8 bit. This bit is cleared on each transmission. On
receive, the serial port intenupt is not activated unless the
received 9th data bit is 1. Parity cannot be enabled in this
mode. This mode is commonly used along with mode 3
in a multi processor environment.

MODE 3
II-bit frames are transmitted through TXD and received
through RXD: a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On transmit,

2-18

the 9th data bit can be assigned the value of 0 or 1 using
the TB8 bit. If PEN = 1 the 9th bit will be parity. On
receive, the received 91h data bit is stored and the serial
port intenupt is activated regardless of its value. The data
frame for Modes 2 and 3 is shown in Figure 2-26.

2.11.2. Multiprocessor Communications
Mode 2 and 3 are provided for multiprocessor commu
nications. In mode 2 if the received 9th data bit is not I,
the serial port intenupt is not activated. The way to use
this feature in multiprocessor systems is described below.

When the master processor wants to transmit II block of
data to one of several slaves, it first sends out an address
frame which identifies the target slave. An address frame
will differ from a data frame in that the 9th data bit is 1
in an address frame and 0 in a data frame. No slave in
mode 2 will be intenupted by a data frame. An address
frame, however, will intenupt all slaves so that e~ch slave
can examine the received byte and see if it is being ad~
dressed. The addressed slave switches to mode 3 to receive
the coming data frames, while the slaves that were not
addressed stay in mode 2 and go on about their business.

ARCHITECTURAL OVERVIEW

2.11.3. Controlling the Serial Port
Control of the Serial Port is done through the Serial Port
Control/Status register. The fonnat for the control word
is shown in Figure 2-27. Note that reads access only part
of the byte, as do writes, and that TB8 is cleared after
each byte is transmitted.

In Mode 0, if REN = 0, writing to SBUF will start a
transmission. Causing a rising edge on REN, or clearing
RI with REN = I, will start a reception. Setting REN = 0
will stop a reception in progress, and inhibit further re
ceptions. To avoid a partial or complete undesired recep
tion, REN must be set to zero before clearing Rl. This
can be handled in an interrupt environment by using soft
ware flags, or in a straight-line code environment by using
the Interrupt Pending register to signal the completion of
a receive. In any mode, it is necessary to set IOCI.5 to
a I to enable the TXD pin. Some examples of the software
involved in using the serial port can be found in section
3.8. More infonnation on lOCI is in section 2.13.3.

2.11.4. Determining Baud Rates
Baud rates in all modes are detennined by the contents of
a 16-bit register at location OOOEH. This register must be
loaded sequentially with 2 bytes (least significant byte
first). The MSB of this register selects one of two sources
for the input frequency to the baud rate generator. If it is
a I, the frequency on the XTALI pin is selected, if not,
the extemal frequency from the T2CLK pin is used. It
should be noted that the maximum speed of T2CLK is
one transition every 2 state times, with a minimum period
of 16 XTALl cycles.

LOCATION 11H

SP_STAT
(READ ONLy)

I RB8~RPE I 6 I 5 4 3 1 RI n 188 REN

I ~

The unsigned integer represented by the lower 15 bits of
the baud rate register defines a number B, where B has a
maximum value of 32767. The baud rate for the four serial
modes using either XT AL I or T2CLK as the clock source
is givenby:

Using XTALI:

Mode 0: Baud
Rate

Others: Baud
Rate

Using T2CLK:

Mode 0: Baud
Rate

XT ALI frequency. B oF 0
4*(B + I) ,

XT ALI frequency

64*(B + I)

T2CLK frequency . B oF 0
B '

Others: Baud T2CLK frequency. B oF 0
Rate 16*B'

Note that B cannot equal 0, except when using XTALI
in other than mode O.

Common baud rate values, using XTALI at 12MHz, are
shown below.

Baud Rate

9600
4800
2400
1200
300

Baud Register
Mode 0

8137H
8270H
84E1H
89C3H
A70FH

Value
Others

8013H
8026H
804DH
809BH
8270H

The maximum asynchronous baud rate is 187.5 Kbaud,
with a 12MHz clock.

SP_CON
(WRITE ONLY)

2 1 1 J 0 J PEN M2 M1

I 1 J

L-'~ SPECIFIES THE MOD
0,0 = MODE 0
0,1 = MODE 1
1,0= MODE 2
1,1 = MODE 3

PEN ENABLE THE PARITY

E:

FUNCTION (EVEN PARITY):

REN

TB8

TI

RI

RB8,

ENABLES THE RECEI VE FUNCTION:

PROGRAMS THE 9TH
TRANSMISSION: (CLE

DATA BIT (IF NOT PARITy) ON
ARS AFTER TRANSMISSION)
ERRUPT FLAG: IS THE TRANSMIT INT

IS THE RECEIVE INTE RRUPTFLAG:

IS THE 9TH DATA BIT RECEIVED (IF NOT PARITy),
RPE IS THE PARITY ERROR INDICATOR (IF PARITY ACTIVE).

NOTE: n AND RI ARE CLEARED WHEN SP _ STAT IS READ.

Figure 2-27. Serial Port Control/Status Register

2·19

ARCHITECTURAL OVERVIEW,

2.12. 1/0 PORTS 0, 1, 2, 3, AND 4

There are five 8-bit 110 ports on the 8096. Some of these
ports are input only, some output only, some bidirectional
and some have alternate functions. Input ports connect to
the internal bus through an input buffer. Output ports
connect through an output buffer to an intemal register
that holds the output bits. Bidirectional ports consist of
an internal register, an output buffer, and an input buffer.

When an instruction accesses a bidirectional port as a
source register, the question often arises as to whether the
value that is brought into the CPU comes from the internal
port register or from the port pins through the input buffer.
In the 8096, the value always comes from the port pins,
never from the internal register.

2.12.1. Port 0
Port 0 is an input only port which shares its pins with the
analog inputs to the AID Converter. One can read Port 0
digitally, and/or, by writing the appropriate control bits
to the AID Command Register, select one of the lines of
this port to be the input to the AID Converter. While a
conversion is in process, the impedance of the selected
line is lower than normal. See the data sheet for the specific
values.

2.12.2. Port 1
Port I is a quasi-bidirectional 1/0 port. "Quasi-bidirec
tional" means the port pin has a weak internal pullup that
is always active and an internal pulldown which can either
be on (to output a 0) or off (to output a 1). If the internal
pulldown is left off (by writing a 1 to the pin), the pin's
logic level can be controlled by an external pulldown
'which can either be on (to input a 0) or off (to input a 1).
From the user's point of view the main distinction is that
a quasi-bidirectional input will source current while being
externally held low and will pull itself high if left alone.

In parallel with the weak internal pullup, is a' much
stronger internal pullup that is activated for one state time
when the pin is internally driven from 0 to J. This is done

to speed up the O-to-l transition time. See also Sections
3.7.1 and 4.2.2.

2.12.3. Port 2

Port 2 is a multi-functional port. Six of its pins are shared
with other functions in the 8096, as shown below.

AHernate
Port Function Function Controlled by
P2.0 output TXD (serial port 10CI.S

transmit)
P2.1 input RXD (serial port N/A

receive)
P2.2 input EXTINT 10Cl.I

(external interrupt)
P2.3 input T2CLK (Timer lOCO. 7

2 input)
P2.4 input T2RST (Timer 10CO.S

2 reset)
P2.S output PWM 10CI.O

(pulse-width
modulation)

P2.6 quasi-bidirectional
P2.7 quasi-bidirectional

2.12.4. Ports 3 and 4
Ports 3 and 4 have two functions. They are either bidi
rectional ports with open-drain outputs or System Bus pins
which the memory controller uses when it is accessing
off-chip memory. If the EA line is. low, the pins always
act as the System Bus. Otherwise they act as bus pins,
only during a memory access. If these pins are being used
as ports and bus pins, ones must be written to them prior
to bus operations.

Strong internal pullups are used during external memory
read or write cycles when the pins are used as address or
data outputs. At any other time, the internal pullups are

HSI.O INPUT ENABLE/DiSABLE

TIMER 2 RESET EACH WRITE

~--- HSI.1 INPUT ENABLE/DISABLE

,1.-____ TIMER'2 EXTERNAL RESET ENABLE/DiSABLE

~----- HSI.2 INPUT ENABLE/DiSABLE

'-------- TIMER 2 RESET SOURCE HSI.orT2FiSf

'-----'----"----- HSI.3 INPUT ENABLE/DISABLE

'----------- 'TIMER 2 CLOCK SOURCE HSI.1tT2CLK

Figure, 2-28. 1/0 Control Register o (lOCO)

2-20

ARCHITECTURAL OVERVIEW

disabled. The port pins and their system bus functions are
shown below:

Port Pin System Bus Function
P3.0 ADO
P3.1 ADI
P3.2 AD2
P3.3 AD3
P3.4 AD4
P3.5 AD5
P3.6 AD6
P3.7 AD7
P4.0 AD8
P4.1 AD9
P4.2 AD 10
P4.3 ADll
P4.4 ADl2
P4.5 ADl3
P4.6 ADI4
P4.7 ADI5

2.13. STATUS AND CONTROL REGISTERS

2.13.1. I/O Control Registers
There are two 110 Control registers, lOCO and lOCI.
lOCO controls Timer 2 and the HSI lines. lOCI controls
some pin functions, interrupt sources and 2 HSO pins.

Whenever input lines are switched between two sources,
or enabled, it is possible to generate transitions on these
lines. This could cause problems with respect to edge
sensitive lines such as the HSI lines, Interrupt line, and
Timer 2 control lines.

2.13.2. I/O Control Register 0 (lOCO)
lOCO is located at 0015H. The four HSI lines can be
enabled or disabled to the HSI unit by setting or clearing
bits in lOCO. Timer 2 functions including clock and reset
sources are also determined by lOCO. The control bit
locations are shown in Figure 2-28.

LOCATION 16H

17161s141312111 0 1

2.13.3. 1/0 Control Register 1 (IOC1)
10C I is used to select some pin functions and enable or
disable some interrupt sources. Its location is 0016H. Port
pin P2.5 can be selected to be the PWM output instead
of a standard output. The external interrupt source can be
selected to be either EXTINT (same pin as P2. 2) or Analog
Channel 7 (ACH7, same pin as PO.7). Timer I and Timer
2 overflow interrupts can be individually enabled or dis
abled. The HSI interrupt can be selected to activate either
when there is I FIFO entry or 7. Port pin P2.0 can be
selected to be the TXD output. HSO.4 and HSO.5 can be
enabled or disabled to the HSO unit. More information
on interrupts is availabldn section 2.5. The positions of
the lOCI control bits are shown in Figure 2-29.

2.13.4. 1/0 Status Register 0 (1050)
There are two I/O status registers, 10SO and lOS I. 10SO,
located at 0015H, holds the current status of the HSO
lines and CAM. The status bits of 10SO are shown in
Figure 2-30.

- 2.13.5. 1/0 Status Register 1 (IOS1)
10SI is located at 0016H. It contains status bits for the
timers and the HSI. Every access of this register clears
all of the timer overflow and timer expired bits. It is,
therefore, important to first store the byte in a temporary
location before attempting to test any bit unless only one
bit will ever be of importance to the program. The status
bits of 10SI are shown" in Figure 2-31.

2.14. WATCHDOG TIMER (WDT)

This feature is provided as a means of graceful recovery
from a software upset. Once the watchdog is initialized,
if the software fails to reset the watchdog at least every
64K state times, a hardware reset will be initiated.

The watchdog is initialized by the first write of the clear
WDT code to the WDT register. Once the watchdog is
initialized it cannot be disabied by software. On reset the
watchdog is not active.

l:= SELECT PWMlSELECT P2.5

EXTERNAL INTERRUPT - ACH7/EXTINT

TIMER 1 OVERFLOW INTERRUPT ENABLE/DISABLE

TIMER 2 OVERFLOW INTERRUPT ENABLE/DISABLE

HSO.4 OUTPUT ENABLEIDISABLE

SELECT TXO/SELECT P2.0

HSO.S OUTPUT ENABLE/DiSABLE

HSI INTERRUPT - FIFO FULLI;:;:HO;::;;L;-;D;;;IN;;;G RE;;;G"'I;:;;ST .. E;;;R"L-;:O~A-;;D=ED

Figure 2-29.1/0 Control Register 1 (IOC1)

2-21

ARCHITECTURAL OVERVIEW

LOCATION 1SH

17161S141312111 0 1

L-:= IHSO•O CURRENT STATE
HSO.1 CURRENT STATE

HSO.2 CURRENT STATE

HSO.3 CURRENT STATE

HSO.4 CURRENT STATE

HSO.S CURRENT STATE

CAM IS FULL OR HOLDING REGISTER IS FULL

HSO HOLDING REGISTER IS FULL

Figure 2-30. 1/0 Status Register 0 (IOSO)

,
LOCATION 16H

17161~14131211101

L-:= SOFTWARE TIMER 0 EXPIRED

SOFTWARE TIMER 1 EXPIRED

SOFTWARE TIMER 2 EXPIRED

SOFTWARE TIMER 3 EXPIRED

TIMER 2 HAS OVERFLOW

TIMER 1 HAS OVERFLOW

HSI FIFO IS FULL

HSI HOLDING REGISTER DATA AVAILABLE

Figure 2-31. HSIO Status Register 1 (IOS1)

The software can be designed so that the watchdog times
out if the program does not progress properly. The watch
dog will also time-out if the software error was due to
ESD (Electrostatic Discharge) or other hardware related
problems. This prevents the controller from having a mal
function for longer than 16 mS if a 12 MHz oscillator is
used.

The watchdog timer is a 16-bit counter which is incre
mented every state time. When it overflows it pulls down
the RESET pin for at least two state times, resetting the
8096 and any other chips connected to the reset line. To
prevent the timer from overflowing and resetting the sys
tem, it must be cleared periodically. Clearing the timer is
done by writing a "OIEH" followed by an "OElH" to
the WDT register at location OOOAH.

Use of a large reset capacitor on the RESET pin will
increase the length of time required for a 'watchdog ini
tiated reset. This is because the capacitor will keep the
RESET pin ,from responding immediately to the internal
pull-ups and pull-downs. A large capacitor on the RESET
pin may also interfere with the reset of other parts con
nected to the RESET pin. Under some circumstances, it
may be desirable to use an open collector circuit. See
section 4.4.

2-22

2.14.1. Disabling The Watchdog
The watchdog should be disabled by software not initial
izing it. If this is not possible, such as during program
development, the watchdog can be disabled by holding
the RESET pin at 2.0 to 2.5 volts. Voltages over 2.5 volts
on the pin could quickly damage the part. Even at 2.5
volts, using this technique for other than debugging pur
poses is not recommended, as it may effect long term
reliability. It is further recommended that any part used
in this way for more than several seconds, not be used in
production versions of products.

2.15. RESET

2.15.1. Reset Signal
As with all processors, the 8096 must be reset each time
the power is turned on. To complete a reset, the RESET
pin must be held active (low) for at least 2 state times
after VCC, the oscillator, and the back bias generator have,
stabilized (-1.0 milliseconds). Then when RESET is
brought high again, the 8096 executes a reset sequence
that takes 10 state times. (It initializes some registers,
clears the PSW and jumps to address 2080H.)

The 8096 can be reset using a capacitor, I-shot, or any
other method capable of providing a pulse of at least 2

ARCHITECTURAL OVERVIEW

state times longer than required for VCC and the oscillator
to stabilize.

For best functionality, it is suggested that the reset pin pe
pulled low with an open collector device. In this way,
several reset sources can be wire ored together. Remem
ber, the RESET pin itself can be a reset source (see section
2.14). Details of hardware suggestions for reset can be
found in section 4.4.

2.15.2. Reset Status
The I/O lines and control of the 8096 will be in their reset
state within 2 state times after reset is low, with VCC and
the oscillator stabilized. Prior to that time, the status of
the 110 lines is indeterminate. After the 10 state time reset
sequence, lite Special Function Registers will be set as
follows:

SFR reset-value
Port I llllllllB
Port 2 1l0XXXXIB
Port 3 llllllllB
Port 4 1111111IB
PWM Control OOH
Serial Port (Transmit) undefined
Serial Port (Receive) undefined
Baud Rate Register undefined
Serial ControVStatus undefined
AID Command undefined
AID Result undefined
Interrupt Pending undefined
Interrupt Mask OOOOOOOOB
Timer 1 OOOOH
Timer 2 OOOOH
Watchdog Timer OOOOH
HSI Mode 11 11 11 llB
HSI Status undefined
10SO OOOOOOOOB
lOS 1 OOOOOOOOB
lOCO XOXOXOXOB
lOCI XOXOXXXIB

Other conditions following a reset are:

Register reset value
HSI FIFO empty
HSOCAM empty
HSO lines OOOOOOB
PSW OOOOH
Stack Pointer undefined
Program Counter 2080H
RD high
WR high
ALE low
BHE low
INST high

2·23

NMI
A low to high transition causes a vector to external mem
ory location OOOOH. Reserved for use in Intel Develop
ment systems.

It is important to note that the Stack Pointer and Interrupt
Pending Register are undefined, and need to be initialized
in software. The Interrupts are disabled by both the mask
register and pSW. 9 after a reset.

2.15.3. Reset Sync Mod,
The RESET line can be used to Starnhe 8096 at an exact
state time to provide for synchronization of test equipment
and multiple chip systems. RESET is active low. To syn
chronize parts, RESET is brought high on the rising edge
of XTALI. Complete details on synchronizing parts can
be found in section 4.1. 5.

It is very possible that parts which start in sync may not
stay that way. The best example of this would be when
a "jump on 110 bit" is being used to hold the processor
in a loop. If the line changes during the time it is being
tested, one processor may see it as a one, while the other
sees it as a zero. The result is that one processor will do
an extra loop, thus putting it several states out of sync
with the other.

2.16. PIN DESCRIPTION

vee
Main supply voltage (5V).

VSS
Digital circuit ground (OV).There are two VSS pins, both
must be tied to ground.

VPD
RAM standby supply voltage (5V). This Voltage must be
present during normal operation. See section 2.4.2 and 4.

VREF
Reference voltage and power supply for the analog portion
of the AID converter. Nominally at 5 volts. See section
2.9.1 and 4.

ANGNO
Reference ground for the AID converter. Should be held
at nominally the same potential as VSS. See section 2.9.1
and 4.

vaa
Substrate voltage from the on-chip back-bias generator.
This pin should be connected to ANGND through a 0.01
uf capacitor (and not connected to anything else). The
capacitor is not required if the AID converter is not being
used. '

XTALl
Input of the oscillator inverter and input to the internal
clock generator. See sections 2.2 and 4.

ARCHITECTURAL OVERVIEW

XTAL2
Output of the oscillator inverter. See section 2.2.

CLKOUT
Output of the internal clock generator. The frequency of
CLKOUT is y, the oscillatorfrequency. It has a 33% duty
cycle. CLKOUT can drive' one TTL input. See section
2.2.

RESET
Reset input to the chip, also output to other circuits. Input
low for at least 2 state times to reset the chip. RESET has
a strong internal pullup. See section 2.15 and 4.1.

TEST
Input low enables a factory test mode. The user should
tie this pin to VCC for llormal operation.

NMI
A low to high transition causes a vector to external mem
ory location OOOOH. Reserved for use in Intel Develop
ment systems.

INST
Output high while the address is valid during an external
read indicates the read is an instruction fetch. See section
2.3.6 and 4.6.

EA
Input for memory select (External Access). EA = 1 causes
memory accesses to locations 2000H through 3FFFH to
be directed to on-chip ROM. EA = 0 causes accesses to
these locations to be directed to off-chip memory. EA has
an internal puUdown, so it goes to 0 unless driven to 1.
See section 2.3,3.

ALE
Address Latch Enable output. ALE is activated only dur
ing external memory accesses. It is used to latch the ad
dress from the multiplexed address/data bus. See section
2.3.5 and 4.6. .

RD
Read signal output to external memory. RD is activated
only during external memory reads. See section 2.3.5 and
4.6.

WR
Write signal output to external memory. WR is activated
only during external memory writes. See section 2.3.6
and 4,6.

SHE
Bus High Enable signal output to external memory. BHE
(O/l) selects/deselects the bank of memory that is con
nected to the high byte of the data bus. See section 2.3.5
and 4.6.

READY
The READY input is used to lengthen external memory
bus cycles up to the time specified in the data sheet. It
has a weak internal pullup. See section 2.3.6 and 4.6.

HSI
High impedance inputs to HSI Unit. Four HSI pins are
available: HSI.O, HSl.l, HSI.2, and HSI.3. Two of them
(HSI.2 and HSI.3) are shared with the HSO Unit. See
section 2.7.

HSO
Outputs from HSO Unit. Six HSO pins are available:
HSO.O, HSO.l, HSO.2, HSO.3, HSOA, and HSO.5.
Two of them (HSOA and HSO.5) are shared with the HSI
Unit. All HSO pins are capable of driving one TTL input.
See section 2.8.

PORT O/ANALOG CHANNEL
High impedance input-only port. These pins can be,used
as digital inputs and/or as analog inputs to the on-chip
AID converter. See sections 2.9 and 2.12.1.

PORT 1
Quasi-bidirectional I/O port, All pins of PI are capable
of driving one LS TTL input. See section 2.12.2.

PORT 2
Multi-functional port. Six of its pins are shared with other
functions in the 8096, as shown below.

Port Function Alternate Function Reference
sectic;m

P2.0 output TXD (serial port transmit) 2.11.3
P2.1 input RXD (serial port receive) 2.11.3
P2.2 illput EXTINT (external interrupt) 2.5
P2.3 inI1ut T2CLK (Timer 2 input) 2.6.2
P2A input, T2R~T (Timer 2 reset) 2.6.2
P2.5 output PWM (pulse-width modulator) 2,10
P2.6 quasi-bidirectional
P2.7 quasi-bidirectional

2-24

ARCHITECTURAL OVERVIEW

The multi-functional inputs are high impedance. See sec
tion 2.12.3.

PORTS 3 AND 4
8-bit bidirectional 110 ports. These pins are shared the
multiplexed address/data bus when accessing external
memory, with the Port 3 pins accessing the low byte and
Port 4 pins accessing the high byte. They are open drain
except when being used as system bus pins. See section
2.3.5.

2.17. PIN LIST

The following is a list of pins in alphabetical order. Where
a pin has two names it has been listed under both names,
except for the system bus pins, ADO-ADI5, which are
listed under Port 3 and Port 4.

Name 68-Pln 48-Pln

ACHO/PO.O 4 -

ACHIIPO.1 5 -
ACH2/PO.2 3 -
ACH3/PO.3 6 -
ACH4/PO.4 67 43
ACH5/PO.5 68 42
ACH6/PO.6 2 40
ACH7/PO.7 1 41
ALE 16 34
ANGND 66 44
BHE 37 15
CLKOUT 13 -
EA 7 39
EXTINT/P2.2 63 47
HSI.O 54 3
HSI.1 53 4
HS1.2/HSO.4 52 5
HSI.3/HSO.5 51 6
HSO.O 50 7
HSO.l 49 8
HSO.2 44 9
HSO.3 43 10
HSO .4/HSI. 2 52 5
HSO.5/HSI.3 51 6
INST 15 -
NMI 7 -
PWM/P2.5 39 13
PO.O/ACHO 4 -
PO.IIACHl 5 -
PO.'2/ACH2 3 -
PO.3/ACH3 6 -
PO.4/ACH4 67 43
PO.5/ACH5 68 42 ,
PO.6/ACH6 2 40
PO.7/ACH7 1 41
Pl.O 59 -

Name 68-Pln 48-Pln

Pl.1 58 -
Pl.2 57 -
P1.3 56 -
Pl.4 55 -
Pl.5 48 -
Pl.6 47 -
Pl.7 46 -
P2.0/TXD 60 2
P2.IIRXD 61 I
P2.2/EXTINT 63 47
P2.3/T2CLK 34 -
P2.4!T2RST 36 -
P2.5/PWM 39 13
P2.6 45 -
P2.7 40 -

P3.0/ADO 18 32
P3.IIADl 19 31
P3.2/AD2 20 30
P3.3/AD3 21 29
P3.4/AD4 22 28
P3.5/AD5 23 27
P3.6/AD6 24 26
P3.7/AD7 25 25
P4.0/AD8 26 24
P4.IIAD9 27 23
P4.2/ADIO 28 22
P4.3/AD11 29 21
P4.4/ADI2 30 20
P4.5/AD13 31 19
P4.6/ADI4 32 18
P4.7/ADl5 33 17
RD 17 33
READY 35 16
RESET 62 48
RXD/P2.1 61 1
TEST 14 -

TXD/P2.0 60 2
T2CLKlP2.3 34 -
T2RST/P2.4 36 -
VBB 41 12
VCC 9 38
VPD 64 46
VREF 65 45
VSS 10 11
VSS 42 37
WR 38 14
XTALl 11 36
XTAL2 12 35

The Following pins are not bonded out in the 48-pin pack
age:

2-25

PLO through P1.7, PO.O through PO.3, P2.3, P2.4, P2.6,
P2.7 CLKOUT, INST, NMI, TEST, T2CLK(P2.3),
T2RST(P2.4).

MCS®,96 Software
Design Information

3

CHAPTER 3
MCS®-96 SOFTWARE DESIGN INFORMATION

3.0. INTRODUCTION

This section provides information which will primarily
interest those who must write programs to execute in the
8096. Several other sources of information are currently
available which will also be of interest:

MCS@·96 MACRO ASSEMBLER USER'S GUIDE
Order Number 122048-001

MCS·96 UTILITIES USER'S GUIDE
Order Number 12204'l-001

MCS·96 MACRO ASSEMBLER AND UTILITIES
POCKET REFERENCE

. Order Number 122050-001

Throughout this chapter short segments of code are used
to illustrate the operation of the device. For these sections
it has been assumed that a set of temporary registers have
been predeclared. The names of these registers have been
chosen as follows:

AX, BX, CX, and DX are 16 bit registers.

AL is the low byte of AX, AH. is the high byte.

.BL is the low byte of BX

CL is the low byte of CX

DL is the low byte of DX

These are the same as the names for the general data
~gisters used in 8086. It is important to note, however,
that in the 8096, these are not dedicated registers but
merely the symbolic names assigned by the programmer
to an eight byte region within onboard register file.

3.1. OPERAND TYPES

The MCS@-96 architecture provides support for a variety
of data types which are likely to be useful in a control
application. In the discussion of these operand types that
follows, the names adopted by the PLM-96 programming
language will be used where appropriate. To avoid con
fusion the name of an operand type will be capitalized.
A "BYTE" is an unsigned eight bit variable; a "byte"
is an eight bit unit of data of any type.

3.1.1. Bytes
BYTES are unsigned 8-bit variables which can take on
the values between 0 and 255. Arithmetic and relational
operators can be applied to BYTE operands but the result
must be interpreted in modulo 256 arithmetic. Logical
operations on BYTES are applied bitwise. Bits within
BYTES are labeled from 0 to 7 with 0 being the least
significant bit. There are no alignment restrictions for
BYTES so they may be placed anywhere in the MCS-96
address space.

3.1.2. Words
WORDS are unsigned 16-bit variables which can take on
the values between 0 and 65535. Arithmetic and relational

3·1,

operators can be applied to WORD operands but the result
must be interpreted modulo 65536. Logical operations on
WORDS are applied bitwise. Bits within words are labeled
from 0 to 15 with 0 being the least significant bit. WORDS
must be aligned at even byte boundaries in the MCS-96
address space. The least significant byte of the WORD
is in the even byte address and the most significant byte
is in the next higher (odd) address. The address of a word
is the address of its least significant byte.

3.1.3. Short-Integers
SHORT-INTEGERS are 8-bit signed variables which can
take on the values between - 128 and + 127. Arithmetic
operations which generate results outside of the range of
a SHORT-INTEGER will set the overflow indicators in
the program status word. The actual numeric result re
turned will be the same as the equivalent operation on
BYTE variables. There are no alignment restrictions on
SHORT-INTEGERS so they may be placed anywhere in
the MCS-96 address space.

3.1.4. Integers
INTEGERS are 16-bit signed variables which can take on
the values between - 32,768 and 32,767. Arithmetic op
erations which generate results outside of t~e range of an
INTEGER will set the overflow indicators in the program
status word. The actual numeric result returned will be
the same as the equivalent operation on WORD variables.
INTEGERS conform to the same alignment and address
ing rules as do WORDS.

3.1.5. Bits
BITS are single-bit operands which can take on the Boo
lean'values of true and false. In addition to the normal
support for bits as components of BYTE and WORD op
erands, the 8096 provides for the direct testing of any bit
in the internal register file. The MCS-96 architecture re
quires that bits be addressed as components of BYTES
or WORDS, it does not support the direct addressing of
bits that can occur in the MCS-51 architecture.

3.1.6. Double-Words
DOUBLE-WORDS are unsigned 32-bit variables which
can take on the values between 0 and 4,294,967,295. The
MCS-96 architecture provides direct support for this op
erand type only for shifts and as the dividend in a 32 by
16 divide and the product of a 16 by 16 mUltiply. For
these operations a DOUBLE-WORD variable must reside
in the on-board register file of the 8096 and be aligned
at an address which is evenly divisible by 4. A DOUBLE
WORD operand is addressed by the address of its least
significant byte. DOUBLE-WORD operations which are
not directly supported can be easily implemented with two
WORD operations. For consistency with INTEL provided
software the user should adopt the conventions for ad
dressing DOUBLE-WORD operands w/lich are discussed
in section 3.5.

MCS®·96 SOFTWARE DESIGN INFORMATION

3.1.7. Long-Integers
LONG-INTEGERS are 32-bit signed variables which can
take on the values between -2,147,483,648 and
2,147,483,647. The MCS-96 architecture provides direct
support for this data type only for shifts and as the dividend
in a 32 by 16 divide and the product of a 16 by 16 mUltiply.

LONG-INTEGERS can also be normalized. For these
operations a LONG-INTEGER variable must reside in the
onboard register file of the 8096 and be aligned at an

3.2. OPERAND ADDRESSING

Operands are accessed within the address space of the
8096 with one of six basic addressing modes. Some of
the details of how these addressing modes work are hidden
by the assembly language. If the programmer is to take
full advantage of the architecture, it is important that these
details be understood. This section will describe the ad
dressing modes as they are handled by the hardware. At
the end of this section the addressing modes will be de-

3.2.1. Register-direct References
The register-direct mode is used to directly access a reg
ister from the 256 byte on-board register file. The register
is selected by an 8-bit field within the instruction and

address which is evenly divisible by 4. A LONG-INTEGER
is addressed by the address of its least significant byte.

LONG-INTEGER operations which are not directly sup
ported can be easily implemented with two INTEGER
operations. For consistency with Intel provided software,
the user should adopt the conventions for addressing
LONG operands which are discussed in section 3.5.

scribed as they are seen through the assembly language.
The six basic addressing modes which will be described
are termed register-direct, indirect, indirect with auto-in
crement, immediate, short-indexed, and long-indexed.
Several other useful addressing operations can be achieved
by combining these basic addressing modes with specific
registers such as the ZERO register or the stack pointer.

register address must conform to the alignment rules for
the operand type. Depending on the instruction, up to
three registers can take part in the calculation. .

Examples
ADD
MUL
INCB

AX,BX,CX
AX,BX

; AX:=BX+CX
; AX:=AX*BX

CL : CL'=CL+ I

3.2.2. Indirect References
The indirect mode is used to access an operand by placing
its address in a WORD variable in the register file. The
calculated address must conform to the alignment rules
for the operand type. Note that the indirect address can
refer to an operand anywhere within the address space of

the 8096, including the register file. The register which
contains the indirect address is selected by an eight bit
field within the instruction. An instruction can contain
only one indirect reference and th.e remaining operands
of the instruction (if any) must be register-direct references.

Examples
LD
ADDB
POP

AX,[AX] ; AX: = MEM _ WORD(AX)
AL,BL,[CX] ; AL: = BL + MEM _ BYTE(CX)
[AX] ; MEM _ WORD(AX) : = MEM _ WORD(SP), SP. = SP + 2

3.2.3. Indirect with Auto-increment References
This addressing mode is the same as the indirect mode
except that the WORD variable which contains the indirect
address is incremented after it is used to address the op
erand. If the instruction operates on BYTES or SHORT-

INTEGERS the indirect address variable will be incre
mented by one, if the instruction operates on WORDS or
INTEGERS the indirect address able will be incremented
by two.

Examples
LD
ADD
PUSH

AX,[BX]+
AL,BL,[CX] +
[AX] +

: AX: = MEM _ WORD(BX); BX: = BX + 2
AL:=AL+BL+MEM _ BYTE(CX); CX:=CX+ I
SP: =SP-2;

MEM _ WORD(SP): = MEM _ WORD(AX)
AX:=AX+2

3·2

MCS~.96 SOFTWARE DESIGN INFORMATION

3.2.4. Immediate References
This addressing mode allows an operand to be taken di
rectly from a field in the instruction. For operations on
BYTE or SHORT-INTEGER operands this field is eight
bits wide, for operations on WORD or INTEGER oper-

Examples
ADD AX,#340; AX:=AX+340

ands the field is 16 bits wide. An instruction can contain
only one immediate reference and the remaining oper
and(s) must be register-direct references.

PUSH #1234H ; SP· =SP-2; MEM _ WORD(SP):= 1234H
DIVB AX,#l0 . AL:=AXIlO; AH:=AX MOD \0

3.2.5. Short-indexed References
In this addressing mode an eight bit field in the instruction
selects a WORD variable in the register file which is
assumed to contain an address. A second eight bit field
in the instruction stream is sign-extended and summed
with the WORD variable to .form the address of the op
erand which will take part in the calculation. Since the

Examples

eight bit field is sign-extended the effective address can
be up to 128 bytes before the address in the WORD var
iable and up to 127 bytes after it. An instruction cpn
contain only one short-indexed reference and the rem "'1'

ing operand(s) must be register-direct references

LD AX,12[BX] . AX: = MEM _ WORD(BX + 12)
MULB AX,BL,3[CX] . AX. = BL *MEM _ BYTE(CX + 3)

3.2.6. Long-indexed References
This addressing mode is like the short-indexed mode ex
cept that a 16-bit field is taken from the instruction and
added to the WORD variable to form the address of the

Examples

operand. No sign extension is necessary. An instruction
can contain only one long-indexed reference and the reo
maining operand(s) must to register-direct references,

AND AX,BX,TABLE[CX] . AX: = BX AND MEM _ WORD(TABLE + CX)
ST AX,TABLE[BX] , MEM _ WORD(TABLE + BX) . = AX
ADDB AL,BL,LOOKUP[CX] .. AL' = BL + MEM _ BYTE(LOOKUP + CX)

3.2.7. ZERO Register Addressing
The first two bytes in the register file are fixed at zero by
the 8096 hardware. In addition to providing a fixed source
of the constant zero for calculations and comparisons, this
register can be used as the WORD variable in a long-

Examples

indexed reference. This combination of register selection
and address mode allows any location ID memory to be
addressed directly.

ADD AX, 1234[0] ; AX: = AX + MEM _ WORD(l234)
POP 5678[0] , MEM _ WORD(5678): = MEM _ WORD(SP)

; SP:=SP+2

3.2~8. Stack Pointer Register Addressing
The system stack pointer in the 8096 can be accessed as
register 18H of the internal register file. In addition to
providing for convenient manipulation of the stack pointer,
this also facilitates the accessing of operands in the stack.
The top of the stack, for example, can be accessed by

using the stack pointer as the WORD variable in an indirect
reference. In a similar fashion, the stack pointer can be
used in the short-indexed mode to access data within the
stack.

Examples
PUSH
LD

[SP] ; DUPLICATE TOP _ OF _ STACK
AX,2[SP] ; AX: = NEXT _ TO _ TOP

3-3

MCS®·96 SOFTWARE DESIGN INFORMATION

3.2.9. Assembly Language Addressing Modes
The 8096 assembly language simplifies the choice of ad
dressing modes to be used in several respects:

Direct Addressing.The assembly language will choose
between register-direct addressing and long-indexed with
the ZERO register depending on where the operand is in
memory. The user can simply refer to an pperand by its
symbolic name; if the operand is in the register file, a
register-direct reference will be used, if the operand is
elsewhere in memory, a long-indexed reference will be
generated.

3.3 PROGRAM STATUS WORD

The program status word (PSW) is a collection of Boolean
flags which retain information concerning the state of the
user's program. The format of the PSW is shown in figure
3-1. The information in the PSW can be broken down into

Indexed Addressing. The assembly language will choose
between short and long indexing depending on the value
of the index expression. If the value can be expressed in
eight bits then short indexing will be used, if it cannot be
expressed in eight bits then long indexing will be used.

The use of these features of the assembly language sim
plifies the programming task and should be used wherever
possible.

two basic categories; interrupt control and condition flags.
The PSW can be saved in the system stack with a single
operation (PUSHF) and restored in a like manner (POPF).

Figure 3-1. PSW Register

3.3.1. Interrupt Flags
The lower eight bits of the PSW are used to individually
mask the various sources of interrupt to the 8096. A logical
'I' in these bit positions enables the servicing of the cor
responding interrupt. These mask bits can be accessed as
an eight bit byte (lNT -MASK - address 8) in the on
board register file. Bit 9 in the PSW is the global interrupt
enable. If this bit is cleared then all interrupts will be
locked out except for the Non Maskable Interrupt (NMI).
Note that the various interrupts are collected in the
INT _ PENDING register even if they are locked out.
Execution of the corresponding service routines will
procede according to their priority when they become en
abled. Further information on the interrupt structure of the
8096 can be found in sections 2.5 and 3.6.

3.3.2. Condition Flags
The remaining bits in the PSW are set as side effects of
instruction execution and can be tested by the conditional
jump instructions.

Z. The Z (Zero) flag is set to indicate that the operation
generated a result equal to zero. For the add-with-carry
(ADDC) and subtract-with-borrow (SUBC) operations the
Z flag is cleared if the result is non-zero but is never set.
These two instructions are normally used in conjunction
with the ADD and SUB instructions to perform multiple
precision arithmetic. The operation of the Z flag for these
instructions leaves it indicating the proper result for the
entire multiple predsion calculation.

N. The N (Negativ~) flag is set to indicate that the op-

3-4

eration generated a' negative result. Note that the N flag
will be set to the algebraically correct state even if the
calculation overflows.

V. The V (oVerflow) flag is set to indicate that the op
eration generated a result which is outside the range that
can be expressed in the destination data type.

VT. The VT (oVerflow Trap) flag is set whenever the V
flag is set but can only be cleared by an instruction which
explicitly operates on it such as the CLRVT or IVT in
structions. The operation of the VT flag allows for the
testing for a possible overflow condition at the end of a
sequence of related arithmetic operations. This is normally
more efficient than testing the V flag after each instruction.

C. The C (Carry) flag is set to indicate the state of the
arithmetic carry from the most significant bit of the ALU
for an arithmetic operation or the state of the last bit shifted
out of the operand for a shift. Arithmetic Borrow after a
subtract operation is the complement of the C flag (i.e. if
the operation generated a borrow then C=O).

ST. The S1 (STicky bit) set to indicate that during a right
shift a I has been shifted first into the C flag and then
been shifted out. The ST flag is undefined after a multiply
operation. The ST flag can be used along with the C flag
to control rounding after a right shift. Consider multiply
ing two eight bit quantities and then scaling the result'
down to 12 bits:

MULUB
SHR

AX,CL,DL
AX,#4

: AX:=CL*DL
; Shift right 4 places

,
MCS®-96 SOFTWARE DESIGN INFORMATION

If the C flag is set after the shift it indicates that the bits
shifted off the end of o~rand were greater-than or equal
to one half the least signi,ficant bit (LSB) of the result. If
the C flag is clear after the shift it indicates that the bits
shifted off the end of the operand were less than half the
LSB of the result. Without the ST flag, the rounding
decision must be made on the basis of this information
alone. (Normally the result would be rounded up if the
C ,flag is set.) The ST flag allows a finer resolution in the
rounding decision:

CST Value of the bits shifted off

00 Value = 0

o 1 o < Value 'S Y2 LSB

1 0 Value = Y2 LSB

1 1 Value > Y2 LSB

Figure 3-2. Rounding Alternatives

Imprecise rounding can be a major source of error in a
numerical calculation; use of the ST flag improves the
options available to the programmer.

3.4 INSTRUCTION SET

The MCS-96 instruction set contains a full set of arithmetic
and logical operations for the 8-bit data types BYTE and
SHORT INTEGER and for the 16-bit data types WORD
and INTEGER. The DOUBLE-WORD and LONG data
types (32 bits) are supported for the products of 16 by 16
mUltiplies and the dividends of 32 by 16 divides and for
shift operations. The remaining operations on 32 bit var
iables can be implemented by combinations of 16 bit op
erations. As an example the sequence:

ADO
ADOC

AX,CX
BX,DX

3-5

performs a 32 bit addition, and the sequence

SUB
SUBC

AX,CX
BX,OX

performs a 32 bit subtraction. Operations on REAL (i.e.
floating point) variables are not supported directly by the
hardware but are supported by the floating point library
for the 8096 (FPAL-96) which implements a single pre
cision subset of the proposed IEEE standard for floating
p6int operations. The performance of this software is sig
nificantly improved by the 8096 NORML instruction
which normalizes a 32-bit variable and by the existence
of the ST flag in the PSW.

In addition to the operations on the various data types,
the 8096 supports conversions between these types.
LDBZE (load byte zero extended) converts a BYTE to a
WORD and LDBSE (load byte sign extended) converts a
SHORT-INTEGER into an INTEGER. WORDS can be
converted to DOUBLE-WORDS by simply clearing the
upper WORD of the DOUBLE-WORD (CLR) and IN
TEGERS can be converted to LONGS with 1he EXT (sign
extend) instruction.,

The MCS-96 instructions for addition, subtraction, and
comparison do not distinguish between unsigned words
and signed integers. Conditional jumps are provided to
allow the user to treat the results of these operations as
either signed or unsigned quantities. As an example, the
CMPB (compare byte) instruction is used to compare both
signed and unsigned eight bit quantities. A JH (jump if
higher) could be used following the compare if unsigned
operands were involved or a JGT (jump if greater-than)
if signed operands were involved.

Tables 3-1 and 3-2 summarize the operation of each of
the instructions and Tables 3-3 and 3-4 give the opcode,
byte count, and timing information for each of the instruc
tions.

MCSI8l·96S0F'TWARE DESIGN INFORMATION

Table 3-1. Instruction SLlmmary

Oper- Flags
Mnemonic ands Operation (Note 1) . Z N C V VT ST Notes

ADD/ADDB 2 D +-D+A / / / / t -
ADD/ADDB 3 D +- B+A / / / / t -
ADDC/ADDeB 2 D +-D+A+C ~ / / / t -
SUB/SUBB 2 D+-D-A / / / / t -
SUB/SUBB 3 D+-B-A / / / / t -
SUBC/SUBCB 2 D+-D-A+C-I ~ / / / t -
CMP/CMPB 2 D-A / / j / t -
MUUMULU 2 0, D + 2 +- D * A - - - - - ? 2

MUUMULU 3 0, D + 2 +- B * A - - - - - ? 2

MULB/MULUB 2 0,0+ I+- D * A - - - - - ? 3

MULB/MULUB 3 0, D + I+- B * A - - - - - ? 3

DIV/DIVU 2 D +- (0, D + 2)/A 2
0+2 remainder - - - / t -

DIVBIDIVUB 2 o +- (0,0 + I)/A
D+I remainder - - - / t - 3

AND/ANDB 2 D<-DandA / / 0 0 - -
AND/ANDB 3 D<-BandA / / 0 0 - -
ORiORB 2 D <- Dor A / / 0 0 - -
XORIXORB 2 o <- D (excl. or) A / / 0 0 - -
LD/LDB 2 D+-A - - - - - -
ST/STB 2 A+-D - - - - - -
LDBSE 2 o +-A; D + I +- SIGN(A) - - - - - - 3,4

LDBZE 2 D+-A;D+ 1+-0 - - - - - - 3,4

PUSH I . SP <-- SP - 2; (SP) A - - - - - -
POP I A +- (SP); SP <-- SP + 2 - - - - - -
PUSHF 0 SP <-- SP - 2; (SP) <-- PSW; 0 0 0 0 0 0

PSW <-- ooooH 1+-0

POPF 0 PSW <-- (SP); SP +- SP + 2 1<--/ / / / / / /
SJMP I PC+-PC+ II-bit offset - - - - - - 5

UMP I PC +- PC + 16-bit offset - - - - - - 5

BR(indirect) I PC +- (A) - - - - - -
SCALL I SP <- SP - 2; (SP) +- PC; - - - - - - 5

PC +- PC + II-bit offset

LCALL I SP +- SP - 2; (SP) +- PC; - - - - - - 5
PC +- PC + 16-bit offset

RET 0 PC +- (SP); SP +- SP + 2 - - - - - -
J(conditional) 1 PC +- PC + 8-bit offset - - - - - - 5
JC I Jump if C = I - - - - - - 5
JNC I Jump if C = 0 - - - - - - 5

Note
1. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done Operands D, B. and A must conform

to the alignment rules for the required operand type. D and B are locations in the register file; A Can be located anywhere in memory.
2. D, D + 2 are consecutive WORDS in memory; D is DOUBLE·WORD aligned.
3. D. D + 1 are consecutive BYTES in memory; D is WORD aligned.
4. Changes a byte to a word.
5. Offset is a 2' s complement numbe.r.

3-6

MCS®·96 SOFTWARE DESIGN INFORMATION

Table 3-2. Instruction Summary

Oper- Flaas
Mnemonic ands Operation (Note 1) Z N C V VT ST Notes

JE 1 Jump if Z = 1 - - - - - - 5

JNE 1 Jump if Z = 0 - - - - - - 5

JOE 1 Jump if N = 0 - - - ~ - - 5

JLT 1 Jump ifN = 1 - - - - - - 5

JOT I Jump if N = 0 and Z = 0 - - - - - - 5

JLE 1 Jump if N = I or Z = 1 - - - - - - 5

JH 1 Jum~ if C = 1 and Z = 0 - - - - - - 5

JNH 1 Jump if C = 0 or Z = 1 - - - - - - 5

JV 1 Jump if V = I - - - - - - 5
JNV 1 Jum~ifV = 0 - - - - - - 5

JVT 1 Jump if VT = I; Clear VT - - - - 0 - 5

JNVT 1 Jump if VT = 0; Clear VT - - - - 0 - 5

JST 1 Jump if ST = 1 - - - - - - 5

JNST I Jump if ST = 0 - - - - - - 5
JBS 3 Jump if Specified Bit = 1 - - - - - - 5,6

JBC 3 Jump if Specified Bit = 0 - - - - - - 5,6

DJNZ 1 D +- D - I; if D*"O then
PC +- PC + 8-bit offset - - - ~ - - 5

DECIDECB I D+-D-l / / / / t -
NEG/NEGB 1 D<-O-D / / / / t -
INCIlNCB 1 D+-D+I / / / / t -
EXT 1 D +- D; D+ 2 +- Sign (D) / / 0 0 - - 2

EXTB 1 D +- D; D + 1 +- Sign (D) / / 0 .0 - - 3

NOT/NOTB 1 D <- Logical Not (D) / / 0 0 - -
CLRlCLRB I D+-O 1 0 0 0 - -
SRUSHLB/SHLL 2 C +- msb -----Isb +-0 / ? / / t - 7

SHRlSHRBISHRL 2 o ~ msb - - - - - Isb ~ C / 0 / 0 - / 7

SHRAISHRAB/SHRAL 2 msb~ msb-----Isb~ C / / / 0 - / 7

SETC 0 C +-'1 - - 1 - - -
CLRC 0 C+-O - - 0 - - -
CLRVT 0 VT<-O - - - - 0 ~

RST 0 PC +- 2080H 0 0 0 '0 0 0 8

DI 0 Disable All Interrupts (I +- 0) - - - - - -
EI 0 Enable All Interrupts (I +- I) - - - - - -
NOP 0 PC+-PC+I - - - - - -
SKIP 0 PC+-PC+2 - - - - - -
NORML 2 Normalize (See sec 3.13.66) / I 0 - - - 7

TRAP 0 SP +- SP - 2; (SP) +- PC; PC +-
(2010R) - - - - - - 9

Note
I. If the mnemonic ends in "B", a byte operation is ,performed, otherwise a word operation is done. Operands 0, B and A must conform

to the alignment rules for the required operand type. 0 and B are locations in the register file; A can be located anywhere in memory.
5. Offset is a 2' s complement number. .
6. Specified bit is one of the 2048 bits in the register file.
7. The "L" (Long) suffix indicates double-word operation.
8, Initiates a Reset by pulling RESET low. Software should re-initialize all th~ necessary registers with code starting at 2080H.
9. The assembler will not accept this mnemonic.

3-7

MCS(!!l·96 SOFTWARE DESIGN INFORMATION

Table 3~3. Opcode and State Time Listing

DIRECT
INDIRECT@ INDEXED@

IMMEDIATE
NORMAl:. AUTO-INC. SHORT LONG

S:! f/)
Q Z Z W W W

Elf/) Elf/)
W

Elf/) Elf/) 0 0(Q f/) 1IJf/) Q f/) Wf/) Q f/) f/) Q f/) f/) :E 0 0 0 IIJIIJ Ww 0 Ww Ww
W II: W !;(W IIJ !;(W W !;(:E W !;(:E W !;(:E W !;(:E W (,)

~
(,) ~ ~ ~ ~

(,) I- ~ Z Q. Q. I-'! Q. I-'! 1-'- ~i= Q. > ~i= 1-'-
:E 0 .0 m f/)I- 0 m f/)I- 0 m f/)I- m 0 m m f/)I-

ARITHMETIC INSTRUCTIONS
ADD 2 64 3 4 65 4 5 66 3 6/11 3 7/12 67 4 6/11 5 7/12

ADD 3 44 4 5 45 5 6 46 4 7/12 4 8/13 47 5 7/12 6 8/13

ADDB 2 74 3 4 75 3 4 76 3 6/11 3 7/12 77 4 6/11 5 7/12

ADDB 3 54 4 5 55 4 5 56 4 7/12 4 8/13 57 5 7/12 6 8/13

ADDe 2 A4 3 4 A5 4 5 A6 3 6/11 3 7/12 A7 4 6/11 5 7/12

ADDeB 2 B4 3 .4 B5 3 4 B6 3 6/11 3 7/12 B7 4 6/11 5 '1112

SUB 2 68 3 4 69 4 5 6A 3 6/11 3 7/12 6B 4 6/11 5 7/12

SUB 3 48 4 5 49 5 6 4A 4 7/12 4 8/13 4B 5 7/12 6 8/B

SUBB 2 78 3 4 79 3 4 7A 3 6/11 3 7/12 7B 4 6/11 5 7/12

SUBB 3 58 4 5 59 4 5 5A 4 7/12 4 8/13 5B 5 7/12 6 8/13

SUBC 2 A8 3 4 A9 4 5 AA 3 6/11 3 7/12 AB 4 6/11 5 7/12

SUBCB 2 B8 3 4 B9 3 4 BA 3 6/11 3 7/12 BB 4 6/il 5 7/12

CMP 2 88 3 4 89 4 5 8A 3 6/11 3 7/12 8B 4 6/11 5 7/12

CMPB 2 98 3 4 99 3 4 9A 3 6/11 3 7/12 9B 4 6/11 5 7/12

MULU 2 6C 3 25 6D 4 26 6E J 27/32 3 28/33 6F 4 27/32 5 28/33

MULU 3 4C 4 26 4D 5 27 4E 4 28/33 4 29/34 4F 5 28/33 6 29/34

MU(,UB 2 7C 3 17 7D 3 17 7E 3 19/24 3 20/25 7F 4 19/24 5 20/25

MULUB 3 5C 4 18 5D 4 18 5E 4 20/25 4 21126 5F 5 20/25 6 21/26

MUL 2 ® 4 29 ® 5 30 ® 4 31/36 4 32/37 ® 5 31136 6 32137

MUL 3 ® 5 30 ® 6 31 ® 5 32/37 5 33/38 ® 6 32/37 7 33/38

MULB 2 ® 4 21 ® 4 21 ® 4 23/28 4 24/29 ® 5 23/28 6 24129

MULB 3 ® 5 22. ® 5 22 ® 5 24/29 5 25/30 ® 6 24/29 7 25/30

DIVU 2 8C 3 25 8D 4 26 8E 3 28/32 3 29/33 8F 4 28/32 5 29/33

DIVUB 2 9C 3 17 9D 3 17 9E 3 20/24 3 21/25 9F 4 20/24 5 21/25

DIV 2 ® 4 29 ® 5 30 ® 4 32/36 4 33/37 ® 5 32/36 6 33/37

DIVB 2 ® 4 21 ® 4 21 ® 4 24/28 4 25/29 ® 5 24/28 6 25/29

Notes:
@ Long indexed and Indirect + instructions have identical opocodes with Short mdexed and Indirect modes, respectively. The second byte

of instructions using any indirect or indexed addressing mode specifies the exact mode used. If the second byte is even, use Indirect
or Short Indexed, If it is odd, use Indirect + or Long indexed. In all cases the second byte of the instruction always specifies an even
(word) location for the address referenced. .

<D Number of state times shown for internal/external operands.
(2) The opcodes for signed mUltiply and divide are the opcodes for the unsigned functions with an "FE" appended as a prefix.

3-8

MCS®·96 SOFTWARE DESIGN INFORMATION

Table 3-3. Continued

DIRECT IMMEDIATE
INDIRECT@ INDEXED@

NORMAL AUTO-INC. SHORT 'LONG

(J U)

Z Q
W Z W W W 0 oil(Q U) Q U) wu) Q U) IOU) U) IOU) Q U) IOU) U) IOU)

::IE a:: 0 w wU) 0 w 0 w Ww w Ww 0 w Ww w Ww
w w (J t: tc w (J t: tc w (J t: tc::IE t: tc::IE (J t: tc::IE t: tc::IE z 0. 0. 1-'1 0. 1-'1 0. 1-'- 1-'- 0. ~~ 1-'-
::IE 0 0 m u).- 0 m u)1o- 0 m u).- m u).- 0 m m u).-

LOGICAL INSTRUCTIONS
AND 2 60 3 4 61 4 5 62 3 6/11 3 7/12 63 4 6/11 5 7/12

AND 3 40 4 5 41 5 6 42 4 7/12 4 8/13 43 5 7/12 6 8113

ANDB 2 70 3 4 71 3 4 72 3 6/11 3 7/12 73 4 6/11 5 7/12

ANDB 3 50 4 5 51 4 5 52 4 7/12 4 8/13 53 5 7/12 6 8/13

OR 2 80 3 4 81 4 5 82 3 6/i 1 3 7112 83 4 6/11 5 7/12

ORB 2 90 3 4 91 3 4 92 3 6/11 3 7/12 93 4 6/11 5 7/12

XOR 2 84 3 4 85 4 5 86 3 6/11 3 7/12 87 4 6/11 5 7/12

XORB 2 94 3 4 95 3 4 96 3 6/11 3 7/12 97 4 6/11 5 7/12

DATA TRANSFER INSTRUCTIONS
LD 2 AO 3 4 Al 4 5 A2 3 6/11 3 7/12 A3 4 6/11 5 7/12

LDB 2 BO 3 4 B1 3 4 B2 3 6/11 3 7/12 B3 4 6/11 5 7/12

ST 2 CO 3 4 - - - C2 3 7/11 3 8/12 C3 4 7/11 5 8/12

STB 2 C4 3 4 - - - C6 3 7/11 3 8/12 C7 4 7/11 5 8/12

LDBSE 2 BC 3 4 BD 3 4 BE 3 6/11 3 7/12 BF 4 6/11 5 7/12

LDBZE 2 AC 3 4 AD 3 4 AE 3 6/11 3 7/12 AF 4 6/11 5 7/12

STACK OPERATIONS (internal stack)
PUSH I C8 2 8 C9 3 8 CA 2 11115 2 12/16 CB 3 11/15 4 12/16
pop I CC 2 12 - - - CE 2 14118 2 14/18 CF 3 14/18 4 14/18

PUSHF 0 F2 I 8 "

POPF 0 F3 I 9

STACK OPERATIONS (external stack)

PUSH I C8 2 12 C9 3 12 CA 2 15/19 2 16/20 CB 3 15/19 4 16/20

PoP I CC 2 14 - - - CE 2 16/20 2 16/20 CF 3 16/20 4 16/20

PUSHF 0 F2 I 12

POPF 0 F3 I 13

JUMPS, AND CALLS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES
UMP E7 3 8 LCALL EF 3 13/16@

SJMP 20-27® 2 8 SCALL 28-2F® 2 13/16@

BR[] E3 2 8 RET FO 1 12116@

Notes: TRAP@ F7 1
1 CD Number of state t.mes shown for mternal/external operands,

@ The assembler does not accept this mnemonic,
@ The least significant 3 bits of the opcode are concatenated with the following 8 bits to form an II-bit, 2's complement, offset for the

relative call or jump. .
'@ State times for stack located internal/external.
® The assembler uses the generic jump mnemonic (BR) to generate th.s instruction.

3-9

MCS®..96 SOFTWARE DESIGN INFORMATION

Table 3-4. COIIIDITIONAL JUMPS

All conditional jumps are 2 byte instructions. They require 8 state times if the jump is taken, 4 if it is not.

MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE

IC DB IE DF IGE D6 IGT D2

INC D3 INE D7 ILT DE ILE, DA

JH D9 IV DD JVT DC JST D8

INH DI INV D5 JNVT D4 JNST DO

JUMP ON BIT CLEAR OR BIT SET

These instructions are 3-byte instructions. They require 9 state times if the Jump is taken', 5 if it is not.

BIT NUMBER

MNEMONIC 0 1 2 3 4 5 6 7
JBC 30 31 32 33 34 35 36 37

IBS 38 39 3A 3B 3C 3D 3E 3F

LOOP CONTROL

DJNZ OPCODE EO; 3 BYTES; 5/9 STATE TIMES (NOT TAKENITAKEN)

SINGLE REGISTER INSTRUCTIONS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES

DEC 05 2 4 EXT 06 2 4

DECB 15 2 4 EXTB 16 2 4

NEG 03 2 4 NOT 02 2 4

NEGB 13 2 4 NOTB 12 2 4

INC 07 2 4 CLR 01 2 4

INCB 17 2 4 CLRB II 2 4

SHIFT INSTRUCTIONS

INSTR WORD INSTR BYTE INSTR DBl WD
MNEMONIC OP B MNEMONIC OP B MNEMONIC OP B STATE TIMES

SHL 09 3 SHLB 19 3 SHLL OD 3 7 + I PER SHIFT(!)

SHR 08 3 SHRB 18 3 SHRL OC 3 7 + 1 PER SHIFT(!)

SHRA OA 3 SHRAB lA 3 SHRAL OE 3 '7 + I PER SHIFT(!)

SPECIAL CONTROL INSTRUCTIONS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES
SETC F9 1 4 DI FA I 4

CLRC F8 1 4 EI FB I 4

CLRVT FC I 4 NOP FD I 4

RST FF I 16 SKIP 00 2 4

NORMALIZE

NORML 'OF 3 II + I PER SHIFT

Notes: .
® This instruction takes 2 states to pull RST low, then holds it low for 2 states to mitiate a reset The reset takes 12 states, at which

time the program restarts at locatIOn 2080H.
C[) Execution will take at least 8 states, even for 0 shift.

3-10

MCS®·96 SOFTWARE DESIGN INFORMATION

3.5. SOFTWARE STANDARDS AND
CONVENTIONS

For a software project of any size it is a good idea to
modularize the program and to establish standards which
control the communication between these modules. The
nature of these standards will vary with the needs of the
final application. A common component of all of these
standards, however, must be the mechanism for passing
parameters to procedures and returning results from pro
cedures. In the absence of some overriding consideration
which prevents their use, it is suggested that the user
conform to the conventions adopted by the PLM-96 pro
graming language for procedure linkage. It is a very usable
standard for both the assembly language and PLM-96 en
vironment and it offers compatibility between these en
vironments. Another advantage is that it allows the user
access to the same floating point arithmetics library that
PLM-96 uses to operate on REAL variables.

3.5.1. Register Utilization
The MCS-96 architecture provides a 256 byte register file.
Some of these registers are used to control register-mapped
1/0 devices and for other special functions such as the
ZERO register and the stack pointer. The remaining bytes
in the register file, some 230 of them, are available for
allocation by the prograthmer. If these registers are to be
used effectively some overall strategy for their allocation
must be adopted. PLM-96 adopts the simple and effective
strategy of allocating the eight bytes between addresses
I CH and 23H as temporary storage. The starting address
of this region is called PLMREG. The remaining area in
the register file is treated as a segment of memory which
is allocated as required.

3.5.2. Addressing 32·bit Operands
These operands are formed from two adjacent 16-bit words
in memory. The least significant word of the double word
is always in lower address, even when the data is in the
stack (which means that the most significant word must
be pushed into the stack first). A double word is addressed
by the address of its least significant byte. Note that the
hardware supports some operations on double words (e.g.
normalize and divide). For these operations the double
word must be in the internal register file and must have
an address which is evenly divisible by four.

3.S.3. Subroutine Linkage
Parameters are passed to subroutines it! the stack. Param
eters are pushed into the stack in the order that they are
encountered in the scanning of the source text. Eight-bit
parameters (BYTES or SIi:ORT-INTEGERS) are pushed
into the stack with the high order byte undefined. Thirty
two bit parameters (LONG-INTEGERS, DOUBLE
WORDS, and REALS) are pushed into the stack as two
16 bit values; the most significant half of the parameter
is pushed into the stack first.

3-11

As an example, consider the following PLM-96 procedure:

example-procedure: PROCEDURE (paraml,param2,param3);
DECLARE paraml BYTE,

param2 DWORD,
param3 WORD;

When this procedure is entered at run time the stack will
contain the parameters in the following order:

??1111 : paraml

high word of param2

low word ~f param2

param3

return address <- Stack-pointer

Figure 3-3. Stack Image

If a procedure returns a value to the calling code (as
opposed to modifying more global variables) then the re
sult is returned in the variable PLMREG. PLMREG is
viewed as either an 8, 16 or 32 bit variable depending on
the type of the procedure.

The startdard calling converttion adopted by PLM-96 has
several key features:

a). Procedures can always assume that the eight bytes
of register file memory starting at PLMREG can be
used as temporaries within the body of the procedure.

b). Code which calls a procedure must assume that
the eight bytes of register file memory starting at
PLMREG are modified by the .procedure.

c). The Program Status Word (pSW-see section 3.3)
is not saved and restored by procedures so the calling
code mllst assumed that the condition flags
(Z,N,V,VT,C, and ST) are modified by the procedure.

d). Functlon results from procedures are always re
turned in the variable PLMREG.

PLM-96 allows the definition of INTERRUPT procedures
which are executed when a predefined interrupt occurs.
These procedures do not conform to the rules of a normal
procedure. Parameters cannot be passed to these proce
dures and they cannot return results. Since they can ex
ecute essentially at any time (hence the term interrupt),
these procedures must save the PSW and PLMREG when
they are entered and restore these values before they exit.

3.6. USING THE INTERRUPt SYSTEM

Processing interrupts is an integral part of almost any
control application. The 8096 allows the program to man
age interrupt servicing in an efficient and flexible manner.
Software runnipg in the 8096 exerts control ove~ the in
terrupt hardware at several levels.

MCS®~96,SOFTWARE DESIGN 'INFORMATION

3.6.1. Global Lockout
The processing of interrupts can be enabled or disabled
by setting or clearing the I bit in the PSW. This is accom
plished by the EI (Enable Interrupts) and DI (Disable
Interrupts) instructions. Note that the I bit only controls
the actual servicing of interrupts; interrupts that occur
during periods of lockout will be held in the pending
register and serviced on a prioritized basi~ when the lock
out period ends.

3.6.2. Pending Interrupt Register
When the hardware detects one of the eight interrupts it
sets the corresponding bit in the pending interrupt register
(INT-PENDING-register 09H). This register, which has
the same bit layout as the interrupt mask register (see next
section)" can be read or modified as a byte register. This
register can be read to determine which of the interrupts
are pending at any given time or modified to either clear
pending interrupts or generate interrupts under soft
ware control. Any software which modifies the
INTJENDING register should ensure that the entire
operation is indivisible. The easiest way of doing this is
to use the logical instructions in the two or three operand
format, as examples:

ANDB INTJENDING,#llIlIIOIB
ORB ; Clears the AID interrupt

INTJENDING,#OOOOOOIOB
Sets the AID interrupt

If the required modification to INT -PENDING cannot be
accomplished with, one instruction then a critical region
should be established and the INT-PENDING register
modified from within this region (see section 3.6.5).

3.6.3. Interrupt Mask Register
Individual interrupts can be enabled or disabled by setting
or clearing bits in the interrupt mask register (INT_
MASK-register 08H). The format of this register is shown
in figure 3-4.

I 7 I 6 I 5 I 4lL§' 3~1 2~111 o~ TIMER OVERFLOW

L:= AID COMPLETION
HSI DATA AVAILABLE
HSO EVENT
HSI BIT 0

L-________ SOFTWARE TIMERS

~--------- SERIAL 1/0
L-____________ EXTERNAL INTERRUPT

Figure 3-4. Interrupt Mask Register

The INT-MASK register can be read or written as a byte
register. A one in any bit position w.ill enable the corre
sponding interrupt source and a zero will disable the
source. The individual masks act like the global lockout
in that they only control the servicing of the interrupt; the
hardware will save any interrupts that occur in the pending
register even if the interrupt mask bit· is cleared. The
INT-MASK register also can be accessed as the lower

3-12

eight bits of the PSW so the ,PUSHF and POPF instructions
save and restore the INT -MASK register as well as the
global interrupt lockout and the arithmetic flags.

3.6.4. Interrupt Vectors
The 8096 has eight sources of hardware interrupt, each
with its own priority and interrupt vector location. Table
3-5 shows .the interrupt sources, their priority, and their
vector locations. See section 2.5 for a discussion of the
various interrupt sources.

Table 3-5. Interrupt Vector Information

Source Priority Vector

Timer Overflow O-Lowest 2000H

AID Completion 1 2002H

HSI Data Available 2 2004H

HSO Execution 3 2006H

HSI.O 4 2008H

Software timers 5 200AH

Serial 110 Q 200CH

External Interrupt 7-Highest 200EH

The programmer must initialize the interrupt vector table
with the starting addresses of the appropriate interrupt
service routine. It would be a good idea to vector any
interrupts that are not used in the system to an error han
dling routine.

The priorities given in the table give the hardware en
forced priorities for these interrupts. This priority controls
the order in which pending interrupts are passed to the
software via interrupt-calls. The software can implement
its own priority structure by controlling the mask register
(INT _ MASK-register 08H). To see how this is done
consider the case of a serial 110 service routine which
must run at a priority level which is lower than the HSI
data available interrupt but higher than any other source.
The "preamble" and exit code for this interrupt service
routine would look like this:

serial _ io _ isr:
PUSHF ; Save the PSW

(Includes INT _ MASK)
LDB INT-MASK,#OOOOOIOOB
EI ; Enable interrupts again

}~~~~.
POPF ; Restore the PSW
RET

Note that location 200CH in the interrupt vector table
would have to be loaded with the value of the label
serial_ io _ isr and the interrupt be enabled for this rou
tine to execute.

MCS®-96 SOFTWARE DESIGN INFORMATION

There .is an interesting chain of instruction side-effects
which makes this (or any other) 8096 interrupt service
routine execute properly:

a). After the hardware decides to process an interrupt
it generates and executes a special interrupt-call in
struction which pushes the current program counter
onto the stack and then loads the program counter with
the contents of the vector table entry corresponding
to the interrupt. The hardware will not allow another
interrupt to be serviced immediately following the
interrupt-call. This guarantees that once the interrupt
call starts the first instruction of the interrupt service
routine will execute.

b). The PUSHF instruction, which is now guaranteed
to execute, saves the PSW in the stack and then clears
the PSW. The PSW contains, in addition to the arith
metic flags, the INT-MASK register and the global
enable flag (I). The hardware will not allow an inter
rupt following a PUSHF instruction and by the time
the LD instruction starts all of the interrupt enable
flags will be cleared. Now there is guaranteed exe
cution of the LD INT-MASK instruction.

c). The LD INT-MASK- instruction enables those
interrupts that the programmer chooses to allow to
interrupt the serial 1/0 interrupt service routine. In this
example only the HSI data available interrupt will be
allowed to do this but any interrupt or combination of
interrupts could be enabled at this point, even the serial
interrupt. It is the loading of the INT _ MASK register
which allows the software to establish its own prior
ities for interrupt servicing independently from those
that the hardware enforces.

d). The EI instruction reenables the processing of
interrupts.

e). The actual interrupt service routine executes
within the priority structure established by the software.

f). At the end of the service routine the POPF instruc
tion restores the PSW to its state when the interrupt
call occurred. The hardware will not allow interrupts
to be processed following a POPF instruction so the
execution of the last instruction (RET) is guaranteed
before further interrupts can occur. The reason that
this RET instruction must be protected in this fashion
is that it is quite likely that the POPF instruction will
reenable an interrupt which is already pending. If this
interrupt were serviced before the RET instruction,
then the return address to the code that was executing
when the original interrupt occurred would be left on
the stack. While this does not present a problem to
the program flow, it could result in a stack overflow
if interrupts are occurring at a high frequency. The
POPF instruction also pops the INT _ MASK register
(part of the PSW), so any changes made to this register
during a routine which ends with a POPF will be lost.

3-13

Notice that the "preamble" and exit code for the interrupt
service routine does not include any code for saving or
restoring registers. This is because -it has been assumed
that the interrupt service routine has been allocated its
own private set of registers from the on-board register file.
The availability of some 230 bytes of register storage
makes this quite practical.

3.6.5. Critical Regions
Interrupt service routines must share some data with other
routines. Whenever the programmer is coding those sec
tions of code which access these shared pieces of data,
great care must be taken to ensure that the integrity of the
data is maintained. Consider clearing a bit in the interrupt
pending register as part of a non-interrupt routine:

LOB
ANOB
STB

AL,INT-PENDING
AL,#biLmask -
AL,INT-PENDING

This code works if no other routines are operating con
currently, but will cause occasional but serious problems
if used in a concurrent environment. (All programs which
make use of interrupts must be considered to be part of a
concurrent environment.) To demonstrate this problem,
assume that the INT_PENDING register contains
000011 liB and bit 3 (HSO event interrupt pending) is to
be reset. The code does work for this data pattern but
what happens if an HSI interrupt occurs somewhere be
tween the LDB and the STB instructions? Before the LDB
instruction INT_PENDING contains OOOOllllB and
after the LDB instruction so does AL. IF the HSI interrupt
service routine executes at this point then INT -PENDING
will change to OOOOlOllB. The ANDB changes AL to
OOOOOlllB and the STB changes INTJENDING to
OOOOOlllB. It should be 0000001 lB. This code sequence
has managed to generate a false HShnterrupt! The same
basic process can generate ali amazing assortment of prob
lems and- headaches. These problems can be avoided by
assuring mutual exclusion which basically means that if
more than one routine can change a variable, then the
programmer must ensure exclusive access to the variable
during the entire operation on the variable.

In many cases the instruction set of the 8096 allows the
variable to be modified with a single instruction. The code
in the above example can be implemented with a single
instruction:

ANOB INT-PENDING,#bit _ mask

Instructions are indivisible so mutual exclusion is ensured
in this case. For more complex situations, such a simple
solution is not available and the programmer must create
what is termed a critical region in which it is safe to
modify the variable. One way to do this is to simply
disable interrupts with a DI instruction, perform the mod
ification, and then re-enable interrupts with an EI instruc
tion. The problem with this approach is that it leaves the
interrupts enabled even if they were not enabled at the
start. A better solution is to enter the critical region with
a PUSHF instruction which saves the PSW and also clears

MCS®~96 SOFTWARE DESIGN INFORMATION

the interrupt enable flags. The region can thell be tenni
nated with a POPF instruction which returns the interrupt
enable to the state it was in before the code seq!Ience. It
should be noted that some system configurations might
require more protection to fonn a critical region. An ex
ample is a system in which more than one processor has
access to a common resource such as memory or external
110 devices.

3.7. I/O PROGRAMMING
CONSIDERATIONS

The on-board 110 devices are, for the most part, simple
to program. TlIere are some areas of potential confusion
which need to be addressed:

3.7.1. Programming the I/O Ports
Some of the on-board 110 ports can be used as both input
and output pins (e.g. Port 1). When the processor writes
to the pins of these ports it actually writes into a register
which in turn drives the port pin. When the processor
reads these ports, it senses the status of the pin directly.
If a port pin is to be used as an input then the software
should write a one to that pin, this will cause the low
impedance pull-down device to turn off and leave the pin
pulled up with a relatively high impedance pull-up device
which can be easily driven down by the device driving
the input. If some pins of a port are to be used as inputs
and some are to be used as outputs the programmer should
be careful when writing to the port. Consider using PI.O
as an input and then trying to toggle P 1.1 as an output:

ORB 10PORTl,#OOOOOOOlB
XORB 10PORTj,#OOOOOOIOB

; Set PI.O for input
; Complement Pl.l

The first instruction will work as expected but two prob
lems can occur when the second instruction executes. The
first is that even though p 1.1 is being driven high by the
8096 it is possible that it is being held low externally.
This typically happens when the port pin is used to drive
the base of an NPN transistor which in turn drives what
ever there is in the outside world which needs to be tog
gled. The base of the transistor will clamp the port pin to
the transistor's Vbe above ground, typically 0.7 volts.
The 8096 will input this value as a zero even if a one has
been written to the port pin. When this happens the XORB
instruction will always write a one to the port pin and it
will not toggle. The second problem, which is related to
the first one, is that if P1.0 happens to be driven to a zero
when Port I is read by tile XORB instruction then the
XORB will write a zero to PI.O and it will no longer be
useable as an input. The 1j.rst problem can best be solved
by the external driver design. A series resistor between
the port pin and the base of the transistor often works.
The second problem can be solved in the software fairly
easily:

LDB
XORB
ORB
STB

AL,IOPORTl
AL,#OlOB
AL,#OOIB
AL,IOPORTl

A software solution to both problems is to keep a byte in
RAM as an image of the data to be output to the port; any
time the software wants to modify the data on the port it
can then modify the image byte and then copy it to the
port.

3.7.2. Reading the 1/0 Status Register 1
This status register contains a collection of status flags
which relate to the timer and high speed 1/0 functions
(see section 2.12.S). It can be accessed as register 16H
in the on-board register file. The layout of this register is
shown in figure 3-S.

171&1514131211101

IIII L ~OFTWARE TIMER 0 EXPIRED SOFTWARE TIMER 1 EXPIRED
SOFTWARE TIMER 2 EXPIRED
SOFTWARE TIMER 3 EXPIRED
TIMER 2 OVERFLOW FLAG
TIMER 1 OVERFLOW FLAG

'-------- HSI FIFO IS FULL
'---------- HSI DATA AVAILABLE

Figure 3-5. 1/0 Status Register 1

Whenever the processor reads this register all of the time
related flags (bits S through 0) are cleared. This applies
not only to explicit reads such as:

LDB AL,IOSI

but also to implicit reads such as:

JB IOSl.3,somewhere _ else

which jumps to somewhere _ else if bit 3 ofIOS I is set.
In most cases this situation can best be handled by having
a byte in the register file which is used to maintain an
image of lower five bits of the register. Any time a hard
ware timer interrupt or a HSO software timer interrupt
occurs the byte can be updated:

3-14

ORB 10SI _ image,lOSl

leaving IQSI _ image containing all the flags that were
set before plus all the new flags that were read and cleared
from 10SI. Any other routine which needs to sample the
flags can safely check 10SI _ image. Note that if these
routines need to clear the flags that they have acted on
then the modification of lOS 1_ image must be done from
inside a critical region (see section 3.6.S).

3.7.3. Sending Commands to the HSO Unit
Commands are sent to the HSO unit via a byte and then
a word write operatkm:

LDB flSO _ COMMAND,#what _ to _ do
APD HSO _ TIME, TIMERl,#when _ to _ do _ it

MCS®-96 SOFTWARE DESIGN INFORMATION

The command is actually accepted when the HSO_ TIME
register is written. It is important to ensure that this code
piece is not interrupted by any interrupt service routine
which might also send a command to the HSO unit. If
this happens the HSO will know when to do it but not
know what to do when it's time to do it. In many systems
this becomes a null problem because HSO commands are
only issued from one place in the code. If this is not the
case then a critical region must be established and the two
instructions executed from within this region (see section
3.6.5).

Commands in the holding register will not execute even
if their time tag is reached. Commands must be in the
CAM for this to occur. Flags are available in roso which
indicate the holding register is empty (roSO. 7) or that
both the holding register is empty and the CAM is not
full (IOSO.6). The programmer should carefully decide
which of these twp flags is the best to use for each
application.

It is possible to enter commands into the CAM which
never execute. This occurs if TIMER2 has been set up as
a variable modulo counter and a command is entered with
a time tag referenced to TIMER2 which has a value that
TIMER2 never reaches. The inaccessible command will
never exec.ute and continue to take up room in the CAM
until either the system is reset or the program allows
TIMER2 increment up to the value stored inlhe time tag.
Note that commands cannot be flushed from the CAM
without being executed but that they can be cancelled.
This is accomplished by setting the opposite command in
the CAM to execute at the same time tag as the command
to be cancelled. Since internal events are not synchronized
to Timer I. it is not possible to cancel them. If, as an
example, a command has been issued to set HSO.I when
TIMER I = 1234 then entering a second command which
clears HSO.I when TIMER I = 1234 will result in a no
operation on HSO.1. Both commands will remain in the
CAM until TIMER I = 1234.

3.7.4. High Speed 1/0 Interrupts
The HSO unit can generate two types of interrupts. The
HSO execution interrupt (vec.tor= (2006H)) is generated
(if enabled) for HSO commands which operate on one of
the six HSO pins. The other HSO interrupt is the Software
Timer interrupt (vector = (200AH)) which is generated (if
enabled) for any other HSO command (e.g. triggering the
AID, resetting Timer2 or generating a software time de
lay).

There are also two interrupts associated with the HSI unit.
The HSI data available interrupt (vector = (2004H)) is
generated if there is data in the HSI FIFO that the program
should read. The other HSI related interrupt is the HSI.O
interrupt which occurs whenever High Speed Input pin 0
makes a zero-to-one transition. This interrupt will become
pending in the INTJENDING register even if the HSI
unit is programmed to ignore changes on HSLO or look
for a one-to-zero transition.

3.7.5. Accessing Register Mapped 1/0
The on-board I/O devices such as the serial port or the
AID converter are controlled as register mapped I/O. This
allows convenient and efficient I/O processing. The im
plementation of the current members of the MCS-96 fam
ily place some restrictions on how these registers can be
accessed. While these restrictions are not severe, the pro
grammer must be aware of them. A complete listing of
these registers is shown in figure 2-7 and 2-8. The re
strictions are as follows:

a). TIMER I, TIMER2 and HSI_ TIME are word read
only. They cannot be read as bytes or written to in any
format.

b). HSO _ TIME is word write only. It cannot be
written to as individual bytes or read in any format.

3-15

c). RO (the ZERO register) is byte or word read or
write but writing to it will not change its value.

d). Ail of the other I/O registers can be accessed only
as bytes. This applies even to the AD_RESULT
which i~ logically a word operand.

MCS®-96 SOFTWARE DESIGN INFORMATION

3.B. EXAMPLE-1 PROGRAMMING THE
SERIAL 1/0 CHANNEL

MCS-96 MACRO ASSEMBLER SERIAL PORT DEMO PROGRAM

SERIES-III MCS-96 MACRO ASSEMBLER, ·Vl.O

SOURCE FILE: :Fl: SPX.SRC
OBJECT FILE: :Fl:SPX.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB DEBUG

ERR LOC OBJECT

OOOE
0011
0011
0016
0015
0007
0009
0018

0000

0000
0001
0002
0003

0000

0000 A1B00018

0004 B12016

0027

0080
0026

0007 B1260E
OOOA B1800E

DODD B14911

0010 C40007
0013 B12001

0016 3609FD
0019 7lBF09

ODIC 901101

001F
001F 360109
0022 C40007
0025 7lBFOl
0028 BIFF03

002B
002B 30030C
002E 350109
d03l B00007
0034 7lDFOl
0037 BI0003

003A
OOlA 27DA

R
R

R

R
R
R
R

R
R'
R
R
R

LINE
1
2
3
4
5
6
7
8 _
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

SOURCE STATEMENT
$TITLE('SERIAL PORT DEMO PROGRAM')
$PAGELENGTH (95)

This program initializes the serial port and echos any
character sent to it.

BAUD REG
SPCON
SPSTAT
lOCI
IOCO
SBUF
INT PENDING
SP -

rseg

equ
equ
equ
equ
equ
equ
equ
equ

OEH
llH
llH
16H
ISH
07H
09H
18H

CHR: dsb
TEMPO: dsb

1
1

TEMPI: dsb 1
dsb ReV_FLAG:

cseg

LD

LDB

baud_val

BAUD HIGH
BAUD=:LOW

LDB
LDB

LOB

STB
LOB

wait: JBC
ANDB

ORB

get byte:
- JBC

STB
ANDB
LOB

put byte:
- JBC

JBC
LOB
ANDB
LOB

contlnue:
BR

SP, #OBOH

lOCI, *00100000B i Set P2.0 to TXD

; Baud rate input frequency / (64*baud val)
: baud_val (input frequency/64) / baud rate

equ 39 ~ 2400 bau~ at 6.0 MHz

equ
equ

«baud val-l)/256) OR aOH ,Set MSB to 1
(baud_val-l) MOD 256

BAUD REG, 'BAUD LOW
BAUO:=REG, #BAlro=:HIGH

SPCON, 101001001B Enable receiver, Mode I

The serial port is now initialized

SBUF, CHR
TEMPO, #00100000B

Clear serial Port
Set TI-temp

INT PENDING, 6, wait Wait for pending bit to be set
tNT-PENDING, #10111111B Clear pending bit

TEMPO, S PC ON

TEMPO, 6, pu t byte
SBUF, CHR -
TEMPO, nOll1111B
RCV_FLAG, #OFFH

RCV FLAG, 0, con tinue
TEMPO, 5, con tlnue
SBUF, CHR
TEMPO, #110111118
RCV_FLAG, #00

wait

Put SPCON into temp register
This is necessary becase reading
SPCON clears TI and RI

If RI-temp is not set
Store byte
CLR RI-temp
Set bit-received flag

If receive flag is cleared
If TI was not set
Send byte
CLR TI-temp
Clear bit-received flag

ASSEMBLY COMPLETED. NO ERROR(S) FOUND.

3·16

MCS®·96 SOFTWARE DESIGN· INFORMATION

3.9. EXAMPLE·2 GENERATING A PWM
WITH THE HSO UNIT

MCS-96 MACRO ASSEMBLER HSO EXAMPLE PROGRAM FOR PWM OUTPUTS

SERIES-III MCS-96 MACRO ASSEMBLER, Vl.O

SOURCE FILE: :Fl:HS02X.SRC
OBJECT FILE: :F!:HS02X.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSe DEBUG

EJitR LOC OBJECT

0000

0000

0000

0000
0001

0000

0000 3EOOFO
0003 FO
0004 FD
0005 C701000000

DODA
DaDA 510FOOOI
OOOE 980100
OOll OFED
0013 940100

0016
0016 300017
0019 380108

001C
001C B13000
001F 470100000000
0025 200.

0027
0027 BllOOO
002A 470100000000

0030
0030 310017
0033 390108

0036
0036 813100
0039 470100000000
003F 2009

0041
0041 all100
0044 470100000000

E

E
R

R

R
R

E
E

E
E

R
R

E
E

SOURCE STATEMENT
$TI TLE (I HSO EXAMPLE PROGRAM FOR PWM OUTPUTS I)
$PAGELENGTH (95)

LINE
1
2
3
4
5
6
7
8
9

This program will prov ide 4 PWM outputs on HSO plns 0-3
The lnput parameters passed to the program are:

HSO ON N HSO on time for pin N
HSO:OFF_N HSO off tlme for pin N

where: Times are in timerl cycles
N takes values from 0 to 3

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

iii;;;iii;;;

dseg

o STAT: DSB
extrn HSO ON a :word
extrn HSO-ON-1 :word
extrn HSO-ON-2 :word
extrn HSO-ON-3 :word
extrn HSO-TIME :word
extrn TIMERl :word
extrn SP :word

rseg

public OLD STAT
OLD STAT: - dsb
NEW=STAT: dsb

cseg

PUBLIC wait

wait: JBS 1050, 6, wait
NOP
NOP
STB

1
HSO OFF 0 :word
HSO-OFF-l :word
HSO-OFF-2 :word
HSO-OFP-3 :word
HSO-COOMAND.' :byte
10S0 :byte

Loop until HSO holding register
is empty

~~d byte to external RAM

i For opperation with interrupts 'store stat: I would be the
entry point of the routine. -

store stat:
- ANDB

CMPB

52 JE
53 XORB
54
55
56 check _ 0:
57 JBC
58 JBS
59
60 set on 0:
61 - - LOB
62 ADD
63 BR
6'
65 set_off 0:
66 -LOB
67 ADD
68
69
70 cheCK_I:
71 JBC
72 JBS
73
74 set on 1:
75 - - LDB
76 ADD
77 BR
78
79 set off 1:
80 - -LDB
81 ADD
82
83
84 $EJECT

Note that a Dl or PUSHF might have to be added.

NEW STAT, IOSO, 10FR
OLO::)TAT, NEW_STAT
walt
OLD_STAT • NEW_STAT

OLD STAT. O. check 1
NEW:STAT, 0, set_olf 0

HSO COOMAND. 100110000B
HSO-TIME, TIMERl, HSO_OFF
check_l

HSO COMMAND. #00010000B
HSO:TIME. TIMER1, HSO_ON_O

OLD STAT. 1. check 2
NEW:STAT. 1. set_a1f

HSO COMMAND. #00110001B
HSO-TIME, TIMERl, HSO _OFF 1
check_2

HSO COMMAND, #00010001B
HSO:TIME, TIMERl, HSO_ON_l

3-17

Store new status of HSO

If status hasn't changed

Set HSO for timer1, set pin 0
Time to set pin = Timerl value

+ Time for pin to be low

Set HSO for timerl, clear pin 0
Time to clear pin ::c Timerl value

+ Time for pin to be high

Set HSO for timerl, set pin 1
Time to set pln = Timerl value

+ Time for pin to be low

Set HSO for timerl, cle!3r pin
Tlme to clear pin :II Timerl value

+ Time for pin to be high

MCS-96 MACRO ASSEMBLER

ERR we OBJECT

004A
004A 320017
0040 3A010B

0050
0050 B13200
0053 470100000000
0059 2009

0058
005e B11200
005E 470100000000

0064
0064 330017
0067 38010B

006A
006A B13300
0060 470100000000
0073 2009

0075
0075 811300
0078 470100000000

007£
007E BOOI00

0081 FO

0082

MCS®-96 SOFTWARE DESIGN INFORMATION

HSO EXAMPLE PROGRAM FOR PWM OUTPUTS

R
R

E
E

R
R

E
E

R

LINE
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

SOURCE STATEMENT

check 2t
- JBC

JBS

set on 2:
- - LDB

ADD
BR

set off 2:
- -LD8

ADD

check 3:
- JBC

JBS

set_on_3:
LOB
ADD
BR

set_off 3:
-LOB

ADD

check done:
- LDB

RET

END

OLD STAT, 2, check 3
NEW:STAT, 2, set_oIf_2

HSO COMMAND, *001100108
HSOTIME, TIMERl, HSO_OFF_2
check_3

HSO COMMAND, #000100108
HSO~)IME, TIMERl, HSO_ON_2

OLD STAT, 3, check done
NEW:STAT, 3, set_otf 3

HSO COMMAND, i001100118
HSO-TIME, TIMERl, HSO OFF 3
check_done - -

HSO COMMAND, iOOOl0011B
HSO:TIME, TIMERl, HSO_ON_3

Set HSO for timerl, set pin 2
Time to set pin = Timerl value

+ Time for pin to be low

Set HSO for tlmerl, clear pin
Time to clear pin = Timerl value

+ Time for pin to be high

Set HSO for tlmerl, set pin 3
Time to set pin = Timerl value

+ Tlme for pin to be low

Set HSO for tunerl, clear pin 3
Time to clear pin = Timerl value

+ Time for pln to be high

Store current status and
wait for interrupt flag

ASSEMBLY C(:MPLETED, NO ERROR (5) FOUND.

3·18

MCS®-96 SOFTWARE DESIGN INFORMATION

3.10. EXAMPI-E-3 MEASURING PULSES
WITH THE HSI UNIT

MCS-96 MACRO ASSEMBLER MEASURING PULSES USING THE HSI UNIT

SERIES-III MCS-96 MACRO ASSEMBLER, V!.O

SOURCE FILE •• Fl.PULSEX.SRC
OBJECT FILE •• Fl.PULSEX.OBJ
CONTROLS SPECIFIED IN INVOCATION C(!.lMAND: NOSS DEBUG

ERR we OBJECT LINE SOURCE STATEMENT
1 $TITLE (' MEASURING PULSES USING
2 $PAGELENGTH (95)
3

THE H51 UNIT')

4 This program measures pulsewidths in TIMERl cycles

0018
0003
0006
0004
OOOA
0015
0016

0000

0000
0002
0004
0006
0008

OOOA
OOOA
OOOB

OOOC
OOOC
0000

0000

0000 A1C00018
0004 Bl0115
0007 Bl0F03

OOOA 44020004 R

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

, 37
38
39
40
41
42
43
44

and retuns the values in external RAM.

SP equ 18H
as! MODE equ 03H
R5I-STATUS equ 06H
HSI-TIME equ 04H
TIMERl equ OAH
lOCO egu 15H
IOSl equ 16H

rseg

HIGH TIME: dsw
LOW TIME. dsw
PERIOD: dsw
HI EDGE: dsw
LO=:EDGE: dsw

AX. dsw 1
AL equ AX :byte
AM egu (AX+l) :byte

BX; dsw 1
BL equ BX .8yte
BU equ (BX+l) :byte Note that '8HI is an,opcode

can't be used as a label

cseg

LD SP, iOCOH
LOB lOCO, tDOOOOO01B , Enable R5I 0
LOB RSI_MODE, t 00001111B , HSI o look for either edge

wait: ADD PERIOD, HIGH_TIME, LOW_TIME

JBC IOSl, 7, wait Wait while no pulse is entered

so

OOOE 3716F9

0011 B0060A R 45 LOB AL, HSI _STATUS Load status; Note tha.t reading

0014 A0040C

0017 390A09

OOlA C0080C
0010 48060800
0021 27E7

0023 C0060C
0026 48080602
002A 270E

002C

R

R

R
R

R
R

46
47
48
49
50
51
52
53

hSl_lo:

54
55
56
57 hsi _hi:
58
59
60
61

ASSEMBLY C(l.iPLETED, NO ERROR(S) FOUND.

LO

JBS

ST
SUB
BR

ST
SUB
BR

END

RSI_TIME clears RSI _~TATUS

BX, H5I_TIME Load the R5I_TIME

AL, 1, hsi -hi Jump if HSI.O is high

BX, LO EDGE
HIGH_TIME,
wait

LO_EDGE, HI EDGE

BX, HI EDGE
LOW TIME,
wait

HI_EDGE, LO_EDGE

3-19

it

MCS@I·96S0FTWARE DESIGN INFORMATION

3.11. EXAMPLE·4 SCANNING THE AID
CHANNELS

foICS-96 foIACRO ASSEfoIBLER SCANNING THE A TO D CHANNELS

SERIES-III MCS-96 MACRO ASSEMBLER, Vl.O

SOURCE FILE: :Fl:ATOOXoSRC
OBJECT FILE: :Fl:ATOOX.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB DEBUG

ERR we OBJECT LINE SOURCE STATEMENT

0002
0003
0002
0018

0000

0000
0000
0002
0004
0006

0000

0000
0000
0001

0002
0002
0003

0004
0004
0005

0000

0000 A1C00018
0004 A00002

0007 910802
OOOA B00202
0000 710702

0010 FO

0011 3B02FO

0014 B00200
0017 B00301

OOlA 54020204
OOlE AC0404
0021 C304000000

0026 1702
0028 710302

002B 270A

0020

ASSEMBLY COMPLETED, NO

1 $TI TLE (I SCANNING THE A TO D CHANNELS')
2 $PAGEL'ENGTll (95)
3
4 This prog ram scans A to D lines 0 through 3 and stores the
5 results in RESULT_N
6
7 AD RESULT LO equ 02
8 AD-RESULT-HI equ 03
9 AO=CC!o1MAND equ 02

10 SP equ 18H
11
12
13 dseg
14
15 RESULT_TABLE:
16 RESULT 1: dsw -17 RESULT 2: dsw
18 RESULT - 3: dsw -19 RESULT 4: dsw -20
2l rseg
22
23 AX: dsw 1
24 AL equ AX :byte
25 AH equ (AX+l) :byte
26
27 BX: dsw 1
28 BL equ BX :byte
29 BO equ (BX+l) :byte Note that '8H' is an opcode
30 can I t be used as a label
31
32
33 ox: dsw 1
34 OL equ ox :byte
35 OH equ (OX+l) :byte
36
37
38 cseg
39
40
41 start: LO SP, toCOH Set Stack Pointer

R 42 LO BX, OOR Use the zero register
43

R 44 next: ORB BL, HOOOB Start conversion on channel
R 45 LOB AD COMMAND, BL indicated by BL reg ister
R 46 ANDB BL-; #Ol11B

47
48 NOP , Wait for conversion to start
49
50 check: JBS AD_RESULTyO, 3, check , Wait while A to D is busy
51

R 52 LOB AL, AD RESULT LO Load low order tesult
R 53 LOB AH, AD = RESU L'() I Load high order result

54
R 55 ADDB OL, BL, BL DL=BL*2
R 56 LOBZE ox, OL
R 57 ST AX, RESULT_TABLE [OX] Store result indexed by BL*2

58
R 59 INCB BL
R 60 ANOB BLr to3H

61
62 BR next
63
64 END

ERROR (S) FOUND.

3-20

so it

MCS®-96 SOFTWARE DESIGN INFORMATION

3.12. EXAMPLE-5 TABLE LOOKUP-AND
INTERPOLATION

MCS-96 MACRO ASSEMBLER TABLE LOOKUP AND INTERPOLATION

SERIES-III MCS-96 MACRO ASSEMBLER, Vl.O

SOURCE FILE: :FI:INTERX.SRC
OBJECT FILE: :F1:INTERX.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSS DEBUG

ERR LOC OBJECT

0018

0000

0000
0000

0000

0000
0000
0001

0002
0002
0003

0004
0006
0008
OOOA

OOOA
OOOC
OOOE
0010

0000

0000 A1COOO18

0004 B00400
0007 180300
OOOA 7lFEOO
0000 ACOOOO

0010 A300420006

0015 A300440008

OOlA 4806080C

OOlE 510F 040A
0022 BCOAOA

0025 F,E4COC0A10
002A FE80100010

002F 4406100E

0033 08040J!!

R
R
R
R

R

R

R

a
R

a
R

R

a

LINE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

SOURCE STATEMENT
$TITLE('TABLE LOOKUP AND INTERPOLATION 1)

$PAGELENGTH (95)

SP

dseg

This program uses a lookup table to generate 12-bit function values
uSlng 8-bit input values. The table is 16 bytes long and 16 bits wide.
A linear interpolation i-s made using the following fomula:

TABLE_HIGH - TABLE_LOW OUT - TABLE_LOW

16 IN_DIF

TAB_DlF OUT_DIF

Cross Multiplication is used to solve for OUT_DIF

equ lBB

RESULT TABLE:

rseg

cseg

start:

look:

1abl:

- RESULT:

AX:
AL
AH

BX:
BL
BU

IN VAL:

dsw
equ
equ

dsw
equ
equ

dsw

1
AX :byte
(AX+1) :byte

1
BX :byte
(BX+1) :byte Note that 'BH' is an opcode so it

can't;. be used as a label

TABLE LOW:
dsb
dsw
dsw
dsw
equ
dsw
dsw
dsl

1
1
1
1

TABLEHIGB:
IN nIF:
IN-DIFB
TAB DIF:
OUT:
OUT_DIF:

LD

LOB
SHRB
ANOB
LOBZE

LO

LO

SUB

ANOB
LOBSE

MUL
OIV

ADD

sua

SP, JOCOB

AL, IN VAL
AL, n-
AL, t 11111110B
AX, AL

IN DIF :byte
1 -
1
1

Set Stack Pointer

Place 2 times the upper nibble in byte
Insure AI. 15 a word address

TABLE_LOW, TABLE [AX] TABLE LOW is table output value
of IN-VAL rounded dOWfl to the
nearest multiple of lOR.

TABLE_HIGH, (TABLE+2) [AX1 ; TABLE RIGH is the table output
, value of IN VAL rounded up to the
; nearest multiple of lOB.

TAB_DIF, TABLE_BIGB, TABLE_LOW

IN DIFB, IN VAL, tOFB
IN:DIF, IN_DIFB

OUT DIF, ~N DIF, TAB_DIF
OUT:OIF, U~

OUT, OUT_DIF, TABLE_LOW

OUT, 14

3-21

Make input difference into a word

Add output difference to output
generated with truncated IN Vl\L
as input -
Round to 12-bit answer

MCS!!I~$6 SOFTWAFt.E DESIGN INFORMATION

IICS-96 IlAeRO ASSEMBLER TABLE LOOKUP AND INTERPOLATION

ERR we OBJECT
0036 D307
0038 070E R
OOlA C30100000B R

0031' 27C3

0041

0042 000000200034004C
004A 005D006A00720078
0052 007B007000760060
005A 005D004B00340022
0062 0010

0064

LINE
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

Lab2:

cseg

table:

ASSEMBLY CCMPLETEO. NO ERROR(S) FOUND.

SOURCE STATEMENT
mc lab2
INC· OUT
ST OUT, RBSULT

DR look

DeW OOOOH, 2000H,
DCW 5DOOR, 6AODK,
DCW 7BOOH, '7000H,
DeW 5000H r 4800H,
DCW lQOOH

END

3-22

.LO/ll/83

, Round up if carry -

3400H. 4COOH A random non-monotonic
7200H, 7800B function
7600B, 6DOOH
3400H, 2200H

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13. DETAILED INSTRUCTION SET
DESCRIPTION

This section gives a description of each instruction rec
ognized by the 8096 sorted alphabetically by the mne
monic used in the assembly language for the 8096. Note
that the effect on the program counter (PC) is not always
shown in the instruction descriptions. All instructions in
crement the PC by the number of bytes in the instruction.
Several acronynms are used in the instruction set descrip
tions which are defined here:

aa. A two bit field within an opcode which selects the
basic addressing mode user. This field is only present in
those opcodes which allow address mode options. The
encoding of the field is as follows:

aa Addressing mode

00 Register direct

01 Immediate

10 Indirect

11 Indexed

The selection between indirect and indirect with auto-in
crement or betweep short and long indexing is done based
on the least significant bit of the instruction byte which
follows the opcode. This type selects the 16-bit register
which is to take part in the address calculation. Since the
8096 requires that words be aligned on even byte bound
aties this bit would be otherwise unused.

breg. A byte register in the internal register file. When
confusion could exist as to whether this field refers to a
source or a destination register it will be prefixed with an
"S" or a "D."

baop. A byte operand which is addressed by any of the
address modes discussed in section 3.2.

bitDO. A three bit field within an instruction op-code which
selects one of the eight bits in a byte.

wreg. A word register in the internal register file. When
confusion could exist as to whether this field refers to a
source register or a destination register it will be prefixed
with an "S" or a "D."

waop. A word operand which is addressed by any of the
address modes discussed in section 3.2.

Lreg. A 32-bit register in the internal register file.

BEA. Extra bytes of code required for the address mode
selected.

CEA. Extra state times (cycles) required for the address
mode selected.

cadd An address in the program code.

Flag Settings. The modification to the flag setting is
shown for each instruction. A checkmark (j) means that
the flag is set or cleared as appropriate. A hyphen means
that the flag is not modified. A one or zero (l) or (0)
indicates that the flag will be in that state after the instruc
tion. An up arrow (i) indicates that the instruction may
set the flag if it is appropriate but will not clear the flag.
A down arrow (~) indicates that the flag can be cleared
but not set by the instruction. A question mark (?) indicates
that the flag will be left in an indeterminant state after the
operation.

, Generic Jumps and Calls. The assembler for the 8096
provides for generic jumps and calls. For all of the con
ditional jump instructions a "B" can be substituted for
the "J" and the'assembler will generate a code sequence
which is logically equivalent but can reach anywhere in
the memory. A JH can only jump about 128 locations
from the current program counter; a BH can jump any
where in memory. In a like manner, a BR will cause a
SJMP or LIMP to be generated as appropriate and a CALL
will cause a SCALL or LCALL to be generated. The
assembler user guide (see section 3.0) should be consulted
for the algorithms used by the assembler to convert these
generic instructions into actual machine instructions.

3-23

MCS®·96 SOFTWARE DE:SIGN INFORMATION

3.13.1. ADD (Two Operands) - ADD WORDS

Operation: The sum of the two word operands is stored into the destination
(leftmost) operand ..

(DEST) ~ (DEST) + (SRC)

Assembly Language Format: DST SRC
ADD wreg, waop

Object Code Format: [011001 aa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4+CEA

3.13.2. ADD (Three Operands) --:- ADO WORDS

Operation: The sum of the second and third word operands is stored into the
destination (leftmost) operand.'

(DEST) ~ (SRC1) + (SRC2)

Assembly Language Format: DST SRC1 SRC2
ADD Dwreg, Swreg, waop

Object Code Format: [010001aa][waop][Swreg][Dwreg 1

Bytes: 3 + BEA
States: 5 + CEA

3-24

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.3. ADDB (Two Operands) - ADD BYTES'

Operation: The sum of the two byte operands is stored into the destination
(leftmost) operand.

(DEST) +- (DEST) + (SAC)

Assembly Language Format: DST SAC
ADDB breg,baop

Object Code Format: [0111 01 aa 1 [baop] [breg· 1

Bytes: 2 + BEA
States: 4+CEA

3.13.4. ADDB (Three Operands) - ADD BYTES

Operation: The sum of the second and third byte operands is stored into the
destination (leftmost) operand.

(DEST) +- (SAC1) + (SAC2)

Assembly Language Format: DST SAC1 SAC2
ADDB Dbreg, Sbreg, baop

Object Code Format: [010101 aa] [baop] [Sbreg 1 [Dbreg]

Bytes: 3 + BEA
States: 5+CEA

3-25

MCS®~96 SOFTWARE DESIGN INFORMATION

3.13.5. ADDC - ADD WORDS WITH CARRY

Operation: The sum of the two word operands and the carry flag (0 or 1) is
stored into the destination (leftmost) operand.

(DEST) ~ (DEST) + (SRC) + C

Assembly Language Format: DST SRC
ADDC wreg, waop

Object Code Format: [.101001 a.a] [waop] [wreg]

Bytes: 2+BEA
States: 4+BEA

ST

3.13.6. ADDCB - ADD BYTES WITH CARRY

Operation: The sum of the two byte operands and the carry flag (0 or 1) is
stored into the destination (leftmost) operand.

(DEST) ~ (DEST) + (SRC) + C

Assembly Language Format: DST SRC
ADDCB breg, baop

Object Code Format: [101101 aa] [baop] [breg]

Bytes: 2 + BEA
States: 4 + CEA

3·26

ST

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.7. AND (Two Operands) - LOGICAL AND WQ.RDS

Operation: The two word operands are ANDed, the result having a 1 only in
those bit positions where both operands had a 1, with zeroes in
all other bit positions. The result is stored into the destination
(leftmost) operand.

(DEST) - (DEST) AND (SRC)

Assembly Language Format: DST SRC
AND wreg, waop

Object Code Format: [011oo0aa 1 [waop] [wreg]

Bytes: 2 + BEA
States: 4+CEA

, 3.13.8. AND (Three Operands) - LOGICAL AND WORDS

Operation: The second and third word operands are ANDed;the result having
a 1 only in those bit positions where both operands had a 1, with
zeroes in all other bit positions. The result is stored into the des
tination (leftmost) operand.

, (DEST) - (SRC1) AND (SRC2)

Assembly Language Format: DST SRC1 SRC2
AND Dwreg, Swreg, waop

Object Code Format: [010000aa] [waop] [Swreg] [Dwreg 1

Bytes: 3 + BEA
States: 5 + CEA

3-27

, MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.9. ANDB (Two Operands) - LOGICAL AND BYTES

Operation: The two byte operands are ANDed, the result having a 1 only in
, those bit positions where both operands had a 1 , with zeroes in

all other bit positions. The result is stored into the destination
(leftmost) operand.

(DEST) - (DEST) AND (SRC)

Assembly Language Format: DST SRC
ANDB breg, baop

Object Code Format:, [011100,aa] [baop] [breg]

Bytes: 2 + BEA
. States: 4 + CEA

3.13.10. AN DB (Three Operands) - LOGICAL AND BYTES

Operation: The second and third byte operands are ANDed, the result having
a 1 only in those bit positions where both operands had a 1, with
zeroes in all other bit positions, The result is stored into the des
tination (leftmost) operand.

(DEST) - (SRC1) AND (SRC2)

Assembly Language Format: DST SRC1 SRC2
AN DB Dbreg, Sbreg, baop

Object Code Format: [010100aa] [baop] [Sbreg] [Dbreg 1

Bytes: 3+BEA
States: 5 + CEA

3-28

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.11. BR (Indirect) - BRANCH INDIRECT

Operation: The execution continues at the address specified in the operand
word register.

PC ~ (DEST)

Assembly Language Format: BR wreg

Object Code Format: [11100011] [wreg]

Bytes: 2
States: 8

3.13.12. CLR - CLEAR WORD

Operation: The value of the word operand is set to zero.

(DEST) ~O

Assembly Language Format: CLR wreg

Object Code Format: [00000001] [wreg]

Bytes: 2
States: 4

3-29

MCS(8)·96 SOFTWARE DESIGN INFORMATION

3.13.13. CLRB - CLEAR BYTE

Operation: The value of the byte operand is set to zero.

(DEST) -0

Assembly Language Format: CLRB breg

Object Code Format: [00010001 1 [breg

Bytes: 2
States: 4

3.13.14. CLRC - CLEAR CARRY FLAG

Operation: The value of the carry flag is set to zero.

C-O

Assembly Language Format: CLRC

Object Code Format: [11111000

Bytes: 1
States: 4

3-30

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.15. CLRVT - CLEAR OVERFLOW TRAP

Operation: The value of the overflow-trap flag is set to zero.

VT~O

Assembly Language Format: CLRVT

Object Code Format: [11111100

Bytes: 1
States: 4

3.13.16. CMP - COMPARE WORDS

Operation: The source (rightmost) word operand is subtracted from the des
tination (leftmost) word operand. The flags are altered but the
operands remain unaffected. The carry flag is set as complement
of borrow.

(DEST) - (SRC)

Assembly Language Format: DST SRC
CMP wreg, waop

Object Code Format: [10001 Oaa 1 [waop 1 [wreg 1

Bytes: 2 + BEA
States: 4 + CEA

3-31

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.17. CMPB - COMPARE BYTES

Operation: The source (rightmost) byte operand is subtracted from the des
tination (leftmost) byte operand. The flags are altered but the
operands remain unaffected. The carry flag is set as complement
of borrow.

(DEST) - (SRC)

Assembly Language Format: DST SRC
CMPB breg, baop

Object Code Format: [10011 Oaa J [baop 1 [bre~

Bytes: 2+BEA
States: 4 + CEA

~RagsA~

tml~I~I£G

3.13.18. DEC - DECREMENT WORD

Operation: The value of the word operand is decremented by one.

(DEST) - (DEST) - 1

Assembly Language Format: . DEC wreg

Object Code Format: [00000101 1 [wreg 1

Bytes: 2
States: 4

3-.32

, MCS®·96, SOFlWAREDESIGN INFORMATION

3.13.19. DECB - DECREMENT BYTE

Operation: The value of the byte:operand is decremented by one.

(DEST)-(OEST) -1

Assembly Language Format: ,OEC~ breg

Object Code Format: [00010101 1 [brag 1

l3ytes: 2
States: 4

z ST

I

3.13.20. DI- DISABLE INTERRUPTS

Operation: Interrupts are disabled. Interrupt-calls will not occur after this
instruction.

Interrupt Enable (PSW.9) - 0

Assembly Language Format: 01

Object Code Format: [11111010 1 ..

Bytes: '1
States: 4

3-33

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.21. DIV - DIVIDE INTEGERS

Operation: . This instruction divide.s the contents of the destination LONG
INTEGER operand by the contents of the INTEGER word oper
and, using signed arithmetic. The low order word of the destination
(Le., the word with the lower address) will contain the quotient;
the high order word will contain the remainder.

(low word DEST) - (DEST) I (SRC)
(high word DEST) - (DEST) MOD (SRC)
The above two statements are performed concurrently.

Assembly Language Format: DST SRC
DIV Ireg, waop

Object Code Format: [11111110 1 [100011aa 1 [waop 1 [Ireq 1

Bytes: 2 + BEA
States: 29 + CEA

3.13.22. DiVe - DIVIDE SHORT-INTEGERS

Operation: This instruction divides the contents of the destination INTEGER
operand by the contents of the source SHORT-INTEGER oper
and, using signed arithmetic. The low order byte of the destination
(Le. the byte with the lower address) will contain the quotient; the
high order byte will contain the remainder.

(low byte DEST) - (DEST) I (SRC)
(high byte DEST) - (DEST) MOD (SRC)
The above two statements are performed concurrently.

Assembly Language Format: DST SRC
DIVB wreg, baop

Object Code Format: [11111110][100111 aa][baop][wreg 1

Bytes: 2+BEA
States: 21 + CEA

3-34

MCS~-96 SOFTWARE DESIGN INFORMATION

3.13.23. DIVU - DIVIDE WORDS

Operation: This instruction divides the contents of the destination DOUBLE
WORD op~rand by the contents of the source WORD operand,
using unsigned arithmetic. The low order word will contain the
quotient; the high order byte will contain the remainder.

(lOW word DEST) - (DEST) / (SRC)
(high word DEST) - MOD (SRC)
The above two statements are performed concurrently.

Assembly Language Format: DST SRC
DIVU Ireg, waop

Object Code Format: [100011 aa 1 [waop 1 [Ireq 1

Bytes: 2 + BEA
States: 25 + CEA

3.13.24. DIVUB - DIVIDE BYTES

Operation: This instruction divides the contents of the destination WORD
operand by the contents of the source BYTE operand, using un
signed arithmetic. The low order byte of the destination (I.e., the
byte with the lower address) will contain the quotient; the high
order byte will contain the remainder.

(low byte DEST) - (DEST) / (SRC)
(high byte DEST) - (DEST) MOD (SRC)
The above two statements are performed concurrently.

Assembly Language Format: DST SRC
DIVUB wreg, baop

Object Code Format: [100111 aa 1 [baop 1 [wreg 1

Bytes: 2 + BEA
. States: 17 + CEA

3-35

MCS®"96S0FTWA;RE DESIGI'IINFORMATION

3.13.25. DJNZ - DECREMENT AND JUMP IF NOT ZERO ..

Operation: The value of the byte operand is decr.emented by 1. If the result
is not equal to 0, the.distance from the end of this instruction to
the target label is added to the program counter, effecting the
jump. The offset from the end of this instruction to the target label
must be in the range of -128 to + 127. If the result of the dec
rement is zero. then control passes to the next sequential
instruction.

(COUNT) ~ (COUNi) - 1
if (COUNT) < > 0 then

PC ~ PC + disp (sign-extended to 16 bits)
end_if

A$sembly Language Format: DJNZ breg,cadd

Object Code Format: [11100000 1 [breg 1 [disp 1

Bytes: 3
States: Jump Not Taken: 5

Jump Taken: 9

3.13.26. EI- ENABLE INTERRUPTS

Operation: Interrupts are enabled following the execution of the next state
ment. Interrupt-calls cannot occur immediately following this
instruction. .

Interrupt Enable (PSW.9) ~ 1

Assembly Language Format: EI

Object Code Format: [11111011

Bytes: 1
States: 4

3-36

· MCS®-96 SOFTWARE ,DESIGN INFORMATION

3.13.27. EXT - SIGN EXTEND INTEGER INTO LONG-INTEGER·

Operation: The low order word of the operand is sign-extended throughout
the high order word of the operand.

if (low word DEST)<8000H then
(high word DEST) ~ 0

else
(high word DEST) ~ OFFFFH

end_if

Assembly Language Format: EXT Ireg

Object Code Format: [00000110 1 [Ireg

Bytes: 2
States: 4

3.13.28. EXTB - SIGN EXTEND SHORT-INTEGER INTO INTEGER

Operation: The low order byte of the operand is sign-extended throughout
the high order byte of the operand. .

if (low byte DEST)<80H then
(high byte DEST) ~ 0

else
(high byte DEST) ~ OFFH

end_if

Assembly Language Format: EXTB wreg

Object Code Format: [00010110 1 [wreg 1

Bytes: 2
States: 4

.3-37

MCSI!>·96 SOFTWARE DESIGN INFORMATION

3.13.29. INC -INCREMENT WORD

Operation: The value of the word operand is incremented by 1.

(DEST) +- (DEST) + 1

Assembly Language Format: INC wreg.

Object Code Format: [00000111 1 [wreg 1

Bytes: 2
States: 4

3.13.30. INCB -INCREMENT BYTE

Operation: The value of the byte operand is incremented by 1.

(DEST) +- (DEST) + 1

Assembly Language Format: INCB breg

Object COde Format: [00010111 1 [breg 1

Bytes: 2
States: 4

3-38

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.31. JBC - JUMP IF BIT CLEAR

Operation: The specified bit is tested. If it is clear (Le., 0), the distance from
the end of this instruction to the target label is added to the pro
gram counter, effecting the jump. The offset from the end of this
instruction to the target label must be in the range of - 128 to
+ 127. Ifthe bit is set(Le., 1), control passes to the next sequential
instruction.

if (specified bit) = 0 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JBC breg,bitno,cadd

Object COde Format: [00110bbb 1 [breg 1 [disp 1

where bbb is the bit number within the specified register.

Bytes: 3
States: Jump Not Taken: 5

Jump Taken: 9

3-39

'MCS~96 SO.FTWARIi.iiDESIGN'I,NFORMATION

3.13.32. JBS - JUMP IF BIT SeT

Operation: The specified bit is tested. If it is set (i.e.;, .. 1), the distance from
. the end of this instruction .totJile target label is added to the pro
gram counter,effecting th~ jump, The offset from the end of this
instruction to the target label must be in the range of - 128 to
+ 127. If the bit is clear (i.e., 0), control passes to the next se
quential instruction.

if (specified bit) = 1 then
.. PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JBS breg,bitno,cadd

Object Code Format: [00111 bbb 1 [breg 1 [disp 1

where bbb is the bit number within the specified register.

Bytes: 3
States: Jump Not Taken: 5 .

Jump Taken: 9

3.13.33. JC - JUMP IF CARRY FLAG IS SeT

Operation: If the carry flag is set (i.e., 1), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of -128 to + 127. If the
carry flag is clear (i.e" 0), control passes to the next sequential
instruction,

ifC = 1 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JC cadd

Object Code Format: [11011011 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

,Jump Taken: 8

3-40

,MCS®·96.S0FTWARE DESIGN INF,ORMATION

3.13.34. JE - JUMP IF EQUAL

Operation: If the zero flag is set ,(Le., 1), the distance from the end of this
. instruction to the target label is added to the program counter,
effecting .the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the zero
flag is clear (Le., 0), control passes to the next sequential
instruction.

ifZ = 1 then
PC +- PC + disp (sign-extended te:> 16 bits)

Assembly Language Format: JE cadd

Object Code Format: [11011111 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.35. JGE - JUMP IF SIGNED GREATER THAN: OR EQUAL

Operation: If the negative flag is clear (Le., 0), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of -128 to + 127. If the
negative flag is set (i.e., 1), control passes to the next sequential
instruction.

if N = o then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JGE cadd

Object Code Format: [11010110 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3-41

MCS~.096 SOFTWARE'DESIGN INFORMATION

3:13.36. JGT - JUMP IF SIGNED GREATER THAN

Operation: If both the negative flag and the zero flag are clear (Le., 0), the
distance from the end of this instruction to the target label is added
to the program counter, effecting the jump. The offset from the
end of this' instruction to,the target label must be in the range of
-128 to + 127. If either the ,negative flag or the zero flag are set
(Le., 1,) control passes to the next sequential instruction.

if N = 0 AND Z = 0 then
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JGT cadd
,
Object Code Format: [11010010] [disp]

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.37. JH - JUMP IF HIGHER (UNSIGNED)

, Operation: If the carry flag is set (i.e., 1), but the zero flag is not, the distance
from the end of this instruction to the target label is added to the
program counter, effecting the jump. The offset from the end of
this instruction to the target label must be in the range of - 128
to + 127. If either ,the carry flag is clear or the zero flag is set,
control passes to the next sequential instruction.

ifC = 1 andZ = o then '
PC +- PC + disp (sign-extended to 16 bits)

Assembly Language Format: JH cadd

. Object Code Format: [11011001] [disp

Bytes: , 2
States: Jump Not Taken: 4

Jump Taken: 8

Z ST

3-42

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.38. JLE - JUMP IF SIGNED LESS THAN OR EQUAL

Operation: If either the negative flag or the zero flag are set (Le., 1), the
distance from the end of this instruction to the target label is added
to the program counter, effecting the jump. The offset from the
end of this instruction to the target label must be in the range of
- 128 to + 127. If both the negative flag and the zero flag are
clear (Le, 0), control passes to the next sequential instruction.

if N = 1 OR Z = 1 then
PC? PC + disp (sign-extended to 16 bits)

Assembly Language Format: JLE cadd

Object Code Format: [11011010 I [disp I

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.39. JLT - JUMP IF SIGNED LESS THAN

Operation: If the negative flag is set (Le., 1), the distance from the end of
thiS instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the
negative flag is clear (i.e., 0), control passes to the next sequential
instruction.

if N = 1 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JL t cadd

Object Code Format: [11011110] [disp I

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3-43

MCS®~96 SOFTWARE DESIGN INFORMATION

3.13.40. JNC - JUMP IF CARRY FLAG IS CLEAR

Operation: If the carry flag is clear (i.e., 0), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the
carry flag is set (i.e., 1), control passes to the next sequential
instruction.

if C = 0 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNC cadd

Object Code Format: [11010011] [disp]

Bytes: 2
States: Jump Not Taken: 4

Jump Taken:. 8

3.13.41. JNE - JUMP IF NOT EQUAL

Operation: If the zero flag is clear (i.e., 0); the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the zero
flag is set (i.e., 1), control passes to the next sequential instruction.

if Z = 0 then
PC~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNE cadd

Object Code Format: [11010111] [disp]

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3-44

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.42. JNH - JUMP IF NOT HIGHER (UNSIGNED)

Operation: If either the carry flag is clear (i.e., 0), or the zero flag is set (i.e.,
1), the distance from the end of this instruction to the target label
is added to program counter, effecting the jump. The offset from
the end of this instruction to the target label must be in the range
of -128 to + 127. If the carry flag is set (i.e., 1), or the zero flag
is not, control passes to the next sequential instruction.

if C = 0 OR Z = 1 then.
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNH cadd

Object Code Format: [11010001 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.43. JNST - JUMP IF STICKY BIT IS CLEAR

Operation: If the sticky bit flag is clear (i.e., O), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the
sticky bit flag is set (i.e., 1), control passes to the next sequential
instruction.

if ST = 0 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNST cadd

Object Code Format: [11010000][disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3-45

MCS®·96 SOfTWARE DESIGN INFORMATION

3.13.44. JNV - JUMP IF OVERFLOW FLAG IS CLEAR

Operation: If the overflow flag is clear (Le., 0), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the
overflow flag is set (Le., 1), control passes to next sequential
instruction.

ifV=Othen
PC ~ PC + di$p (sign-extended to 16 bits)

Assembly Language Format: JNV cadd

Object Code Format: [11010101][disp 1

B~es: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.45. JNVT - JUMP IF OVERFLOW TRAP IS CLEAR

Operation: If the overflow trap flag is clear (Le., 0), the distance from the end
of this instruction to the target label is added to the program
counter, effecting the jump. The offset from the end of this in
struction to the target label must be in the range of -128 to
+ 127. If the overflow trap flag is set (Le., 1), control passes to
the next sequential instruction.

if VT = 0 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JNVT cadd

Object Code Format: [11010100 1 [disp 1

B~es: 2
States: Jump Not Taken: 4

Jumps Taken: 8

3-46

MCS®~96. SOFTWARI: DESIGN INFORMATION

3.13.46. JST - JUMP IF STICKY BIT IS SET

Operation: If the sticky bit flag is set (i.e., 1), the distance from the end of
this instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of -128 to + 127. If the
sticky bit flag is clear (i.e., 0), control passes to the next sequential
instruction.

if ST = 1 then
PC PC + disp (sign-extended to 16 bits)

Assembly Language Format: JST cadd

Object Code Format: [11011000 1 [disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.47. JV - JUMP IF OVERFLOW FLAG IS SET

Operation: If the overflow flag is set (i.e., 1), the distance from the end of this
instruction to· the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the
overflow flag is clear (i.e., 0), control passes to the next sequential
instruction.

if V = 1 then
PC PC + disp (sign-extended to 16 bits)

Assembly Language Format: JV cadd

ObjectCodeFormat: [11011101][disp 1

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3-47

MCS®·96SoFrWARE DESIGN ~INFORMATION

3.13.48. JVT - JUMP IF OVERFLOW TRAP IS SET

Operation: If the overflow flag is set (Le., 1), the distance from the end of this
instruction to the target label is added to the program counter,
effecting the jump. The offset from the end of this instruction to
the target label must be in the range of - 128 to + 127. If the
overflow trap flag is clear (Le., 0), control passes to the next
sequential instruction.

if VT = 1 then
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: JVT cadd

Object Code Format: [11011100] [disp]

Bytes: 2
States: Jump Not Taken: 4

Jump Taken: 8

3.13.49. LCALL - LONG CALL

Operation: The contents of the program counter (the return address) is
pushed onto the stack. Then the distance from the end of this
instruction to the target label is added to the program counter,
effecting the call. The operand may be any address in the entire
address space.

SP~SP-2

(SP) ~ PC
PC ~PC + disp

Assembly Language Format: LCALL cadd

Object Code Format: [11101111] [disp-Iow] [disp-hi]

Bytes: 3
States: Onchip stack: 13

Offchip stack: 16

3-48

· MCS~-96 SOFTWARE DESIGN INFORMATION

3.13.50. LD - LOAD WORD

Operation:. The value of the source (rightmost) word operand is stored into
the destination (leftmost) operand.

(DEST) - (SRC)

Assembly Language Format: DST SRC
LD wreg, waop

Object Code ForJ;nat: [101 OOOaa 1 [waop 1 [wreg 1

Bytes: 2+BEA
States: 4+CEA

3.13.51. LDB - LOAD BYTE.

Operation: The value of the source (rightmost) byte operand is stored into
the destination (leftmost) operand.

(DEST) - (SRC)

Assembly Lang~age Format: DST SRC
LDB .. breg, baop

Object Code Format: [1011 OOaa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

3-49

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.52. LDBSE - LOAD INTEGER WITH SHORT·INTEGER

Operation: The value of the source (rightmost) byte operand is sign-extended
and stored into the destination (leftmost) word operand.

(low byte DEST) ~ (SRC)
if (SRC) < 80H'then

(high byte DEST) ~ 0
else

(high byte DEST) ~ OFFH
end_if .

Assembly Language Format: DST SRC
LDBSE wreg, baop

Object Code Format: [101111 aa 1 [baop 1 [wreg 1

Bytes: 2 + BEA
States: 4+CEA

3.13.53. LDBZE - LOAD WORD WITH BYTE

Operation: The value of the source (rightmost) byte operand is zero-extended
and stored into the destination (leftmost) word operand.

Assembly Language Format:

(low byte DEST) ~ (SRC)
(high byte DEST) ~ 0

DST SRC
lDBZE wreg, baop

Object Code Format: [101011 aa 1 [baop 1 [wreg 1

Bytes: 2 + SEA
States: 4+CEA

3-50

MC.S®"96 SOFTWARE DESIGN INf.ORMATION

3.13.54. LJMP - LONG JUMP

Operation: The distance from the end of this instruction to the target label
is added to the program counter, effecting the jump. The operand
may be any address in the entire address space.

PC ~PC + disp

Assembly Language Format: LJMP cadd

Object Code Format: [11100111] [disp-Iow] [disp-hi]

Bytes: 3
States: 8

3.13.55. MUL (Two Operands) - MULTIPLY INTEGERS

Operation: The two INTEGER operands are multiplied using signed arith
metic and the 32-bit result is stored into the destination (leftmost)
LONG-INTEGER operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) ~ (DEST) • (SRC)

Assembly Language Format: DST SRC
MUL Ireg, waop

Object Code Format: [11111110][011011 aa][waop][Ireg]

Bytes: 3 + BEA
States: 29 + CEA

3-51

P.i'lCS®~96,S'OFTWARI: DESIGN INFORMATION

3.13.56. MUL (Three Operands) - MULTIPLY INTEGERS

Operation: ' The second and third INTEGER operands are multiplied using
signed arithmetic and the 32-bit result is stored into the destination
(leftmost) INTEGER operand. The sticky bit flag is undefined after
the instruction is executed.

(PEST) +- (SRC1) * (SRC2)

Assembly Language Format: DST SRC1 SRC2
MUL Ireg, wreg, waop

Object Code Format: [11111110 1 [010011aa 1 [waop 1 [wreg 1 [Ireg 1

Bytes: 4 + BEA
States: 30 + CEA

3.13.57. MULB (Two Operands) MULTIPLY SHORHNTEGERS

Operation: The two SHORT-INTEGER operands are multiplied using signed
arithmetic and the i 6-bit result is stored into the destination (left
most) INTEGER operand. The sticky bit flag is undefined after the
instruction is executed.

(DEST) +- (DEST) * (SRC)

Assembly Language Format: DST SRC
MULB wreg, baop

Object Code Format: [11111110 1 [011111 aa 1 [baop 1 [wreg 1

Bytes: 3+BEA
States: 21 + CEA

3-52

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.58. MULB (Three Operands) - MULTIPLY SHORt~INTEGERS'

Operation: The second and third SHORT·INTEGER operands are multiplied
using signed arithmetic and the 16·bit result Is stored into the
destination (leftmost) INTEGER operand. The sticky bit flag is
undefined after the instruction is executed.

(DEST) ~ (SRC1) • (SRC2)

Assembly Language Format: DST SRC1 SRC2
MUlB Wreg, breg baop

Object Code Format: [11111110 1 [010111aa 1 [baop 1 [breg 1 [wreg 1

Bytes: 4 + BEA
States: 22 + CEA

3.13.59. MULU (Two Operands) - MULTIPLY WORDS

Operation: The two WORD operands are multiplied using unsigned arithmetic
and the 32·bit result is stored into the destination (leftmost) DOU·

, BlE·WORD operand. The sticky bit flag is undefined after the
instruction is executed.

(DEST) ~ (DEST) • (SRC)

Assembly ~anguage Format: DST SRC
MUlU· Ireg, waop

Object Code Format: [011011 aa 1 [waop 1 [Ireg 1

Bytes: 2 + BEA'
States: 25 + CEA

3-53

,; MCS:IRl·96·S0FTWARl: Dl:SI,GN INFORMATION

3.13.60. MULU (Three Ope~nds)-MULTIPLY WORDS

• ·Operatlon:The second an,d third WORP operands are multiplied using un
signed arithmetic and the 32-bit result is stored into the destination
(leftmost) DOUBLE-WORD operand. The sticky bit flag is unde
fined after the instruction is executed.

(DEST)< - (SRC1) * (SRC2)

Assembly Language Format: DST SRC1 SRC2
MULU Ireg, wreg, waop

Object Code Format: [010011 aa 1 [waop 1 [wreg 1 [Ireg 1

Bytes: 3 + BEA
States: 26 + CEA

3.13.61. MULUB (Two Operands) - MULTIPLY BYTES

Operation: The two BYTE operands are multiplied using unsigned arithmetic
and the WORD result is stored into the destination (leftmost) op
erand. The sticky bit flag is undefined after the instruction is
executed.

(DEST) +- (DEST) * (SRC)

Assembly Language Format: DST SRC
MULUB wreg, baop

Object Code Format: [011111 aa 1 [baop 1 [wreg 1

Bytes: 2+BEA
States: 17 + CEA

3-54

MCS®·96 SOFTWARE DESIGN JNFORMATION

3.13.62. MULUB (Three Operands) - MULTIPLY BYTES

Operation: The second and third BYTE operands are multiplied using un
Signed arithmetic and the WORD result is stored into the desti
nation (leftmost) operand. The sticky bit flag is undefined after the
instruction is executed. /

(DEST) +- (SRC1) • (SRC2)

Assembly Language Format: DST SRC1 SRC2
MULUB wreg, breg, baop

Object Code Format: [010111 aa J [baop J [breg J [wreg J

Bytes: 3+BEA
States: 18 + CEA

3.13.63. NEG - NEGATE INTEGER

Operation: The value of the INTEGER operand is negated.

(DEST) +- - (DEST)

Assembly Language Format: NEG wreg

Object Code Format: [00000011. J [wreg J

Bytes: 2
States: 4

3-.55

'MCSI!<-96 SOFTWARE ,DESIGN INFORMATION

3.13.64. NEGB - NEGATE SHORT-INTEGER'

Operation: The va.lu~ ofthe SHORT-INTEGER operand is negated.

(DEST) - - (DEST)

Assembly Language Format: NEGB breg

Object Code Format: [00010011 1 [breg 1

Bytes: 2
States: 4

3.13.65. NOP - NO OPERATION

Operation: Nothing is done. Control passes to the next sequential instruction.

Assembly Language Format: NOP

Object Code. Format:.[11111101

Bytes: 1
States: 4

3·56

MCS®-96 SOFTWARE DESIGN INFORMA110N

3.13.66. NORML - NORMALIZE LONG-INTEGER

Operation: The LONG-INTEGER operand is normalized; Le., it is shifted to
the left until its most significant bit is 1. If the most significant bit
is still 0 after 31 shifts, the process stops and the zero flag is set.
The number of shifts actually performed is stored in the second
operand.

(COUNT) -0
do while (MSB(DEST) = 0) AND «COUNT) < 31)

(PEST) - (DEST) * 2
(COUNT) - (COUNT) + 1

end_while

Assembly Language Format: NORML Ireg,breg

Object Code Format: [00001111] [breg] [Ireg]

Bytes: 3
States: 8 + No. of shifts performed

3.13.67. NOT - COMPLEMENT WORD

Operation: The value of the WORD operand is complemented: each 1 is
,replaced with a 0, and each 0 with a 1.

(DEST) - NOT(DEST)

Assembly Language Format: NOT wreg

Object Code Format: [00000010] [wreg]

Bytes: 2
States: 4

3-57

1MCS®-SS 'SOFTWARE.DESIGN INFORMATION

3.13.S8. NOTB - COMPLEMENT BYTE .' " '

Opet:atiQn: The. value of the. BYTE oper~nd i$·complemented: each 1 is re
placed with a 0, and each 0 .with a 1.

,(DEST) - NOT .(DE~:r)

Assembly Language Format: NOTB breg

Object Code Format: [. 0001Q010 1 [~reg

Bytes: 2
States:' 4

3.13.S9. OR - LOGICAL OR WORDS.

Operation: The source (rightmost) WORD is ORed with the destination (left
most) WORD operand. Each bit is set to 1 if the corresponding
bit in either the source operand or the destination operand is 1.
The result replaces the original destination operand.

(DEST) - (DEST) OR (SRC)

As~em~ly La~g~age Format.:. DST SRC
OR wreg~' waop

Object Code Format: [100000aa 1 [waop 1 [wreg

Bytes: 2+BEA
States: 4+CEA

3-58

· MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.70. ORB - LOGICAL OR BYTES

Operation: The source (rightmost) BYTE operand is ORed with the desti
nation (leftmost) BYTE operand. Each bit is set to 1 if the cor
responding bit in either the source operand or the destination
operand was 1. The result replaces the original destination
operand.

(DEST) +- (DEST) OR (SRC)

Assembly Language Format: ORB breg,baop

Object Code Format: [1001 OOaa] [baop] [breg 1

Bytes: 2 + BEA
States: 4+CEA

3.13.71. POP - POP WORD

Operation: The word on top of the stack is popped and placed at the desti
nation operand.

(DEST) +- (SP)
SP +-SP + 2

Assembly Language Format: POP waop

Object Code For",a~: [110011 aa] [waop]

Bytes: 1 + BEA
States: Onchip Stack: 12+CEA

Offchip Stack 14 + CEA

§F~S~
rrl:I~ITI

3-59

MCS®·96SGIITWARE DESIGN INFORMATION

3.13.72. POPF - POP FLAGS

Operation: The word on top of the stack is popped and placed in the PSW.
Interrupt calls cannot occur immediately following this instruction.

(PSW) -(SP)
SP -SP + 2

Assembly Language Format: POPF

Object Code Format: [11110011

Bytes: 1
States: Onchip Stack: 9

Offchip Stack: 13

z ST

j j

3.13.73. PUSH - PUSH WORD

Operation: The specified operand is pushed onto the stack.

SP-SP - 2
(SP) - (DEST)

Assembly Language Format: PUSH waop

Object Code Format: [11001 Oaa 1 [waop 1

Bytes: 1+BEA
States: Onchip Stack: 8 + CEA

Offchip Stack: 12 + CEA

§FI8Q' Affect?
rrl:I~ITI

3-60

MCS®·96 SOFTWARE DESI~N INFORMATION

3.13.74. PUSHF - PUSH FLAGS

Operation: The PSW is pushed on top of the stack, and then set to all zeroes.
This implies that all interrupts are disabled. Interrupt-calls cannot
occur immediately following this instruction.

SP~SP - 2
(SP) ~PSW
PSW~O

Assembly Language Format: PUSHF

Object Code Format: [11110010

Bytes: 1
States: Onchip Stack: 8

Offchip Stack: 12

z ST

o o

3.13.75. RET -:-" RETURN FROM SUBROUTINE

Operation: The PC is popped off the top of the stack.

PC ~(SP)
SP~SP + 2

Assembly Language Format: RET

Object Code Format: [1111 0000

Bytes:
States: Onchip Stack: 12

Offchip Stack: 16

C0A~ Affect~

rrl~I~ITI

MCS®·96 SOFTWARE .. DESIGN INFORMATION

3.13.76. RST - RESET SYSTEM

Operation: The PSW is initialized to zero, and the PC is initialized to 2080H.
The 1/0 registers are set to their initial value (see section 2.15.2,
"Reset Status"). Executing this instruction will cause a pulse to
appear on the reset pin of the 8096.

PSW~O
PC~2080H

Assembly Language Format: RST

Object Code Format: [11111111

Bytes: 1
States: 16

z ST

o o

3.13.n. SCALL - SHORT CALL

Operation: The contents of the program counter (the return address) is
pushed onto the stack. Then the distance from the end of this
instruction to the target label is added to the program cQunter,
effecting the call. The offset from the end of this instruction to the
target label must be in the range of -1024 to + 1023 inclusive.

SP~SP-2

(SP) ~PC
PC ~ PC + disp (sign-extended to 16 bits)

Assembly Language Format: SCALL cadd

Object Code Format: [00101 xxx 1 [disp-Iow, 1

where xxx holds the three high-order bits of displacement.

Bytes: 2
States: Onchip Stack: 13

Offchip Stack: 16

3-62

,MCS®..gs SOFTWAAE.D.ESIGN INFORMATroN

3.13.78. SETC - SET CARRY FLAG

Operation: The carry flag is set.

C +-1

Assembly Language Format: SETC

Object Code Format: [11111001

Bytes: 1
St~tes: 4

3.13.79. SHL - SHIFT WORD LEFT

Operation: The destination (leftmost) word operand is shifted left as many
times as specified by the count (rightmost) operand. The count
may be specified eit):ler as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of
which is 16. to 255. The right bits of the result are filled with zeroes.
The last bit shifted out is saved in the carry flag.

Assembly Language Format:

Temp +- (COUNT)
do while Temp <>0

C +- High order bit of (DEST)
(DEST) +- (DEST)*2
Temp +- Temp - 1

end_while

SHL wreg,#count
or

SHL wreg,breg

Object Code Format: [00001001 1 [cnt/breg 1 [wreg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

3-63

MCS®·96 SOFTWARE <O"ESIGN INFORMATION

3.13.80. SHLB - SHI" BYTE LEFT

O~ratlon: The destination (leftmost) byte operand is shifted left as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of
which is 16 to 255. The right bits ofthe result are filled with zeroes.
The last bit shifted out is saved in the carry flag.

A81embly Language Format:

Temp +- (COUNT)
do while Temp <> 0

C +- High order bit of (DEST)
(DES1) +- (DEST)*2
Temp +- Temp - 1

end_while

SHLB breg,#count
or

SHLB breg,breg

Object Code Format: [00011001] [cnt/breg] [breg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

3·64

MCS® .. ge,SOFTWARE DESIGN INFORMATION

3.13.81. SHLL - SHIFT DOUBLE-WORD LEFT

Operation: The destination (leftmost) double-word operand is shifted left as
many times as specified by the count (rightmost) operand. The
count may be specified either as an immediate value in the range
of 0 to 15 inclusive, or as the content of any register, the address
of which is 16 to 255. The right bits of the result are filled with
zeroes. The last bit shifted out is saved in the carry flag.

Assembly Language Format:

Temp - (COI,JNT)
do while TemP <> 0 .

C - High order bit of (DEST)
(OEST) - (OEST)*2
Temp - Temp - 1

end_while

SHLL I reg ,#count
or

SHLL Ireg,breg

Object Code Format: [00001101] [cnt/breg] [Ireg

Bytes: 3
States: 7 + No. of shifts performed

nate: 0 place shifts take a, states.

z ST

/

3-65

· MOS®·96 SOF1WARE·OESIGN INFORMATION

3.13.82. SHR - LOGICAL RIGHT SHIFT WOAD

Operation: The destination (leftmost) word operand is shifted right as many
times as specified by tM count (rightmost) operand. The count
maybe specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register,_ the address of
which is 16 to 255. The left bits of the result are filled with zeroes.
The last bit shifted out is saved to the carry. The sticky bit flag
is cleared atthe beginning of the Instruction, and set if at any time
during the shift a 1 is shifted first into the carry flag, and a further
shift cycle occurs.

Assembly Language Format:

Temp +- (COUNT)
do while Temp <> 0

C +- Low order bit of (DEST)
(DEST) +- (DEST) / 2 where / is unsigned division
Temp +- Temp - 1

end_while

SHR wreg,#Count
or

SHR wreg,breg_

Object Code Format: [00001000 I [cnt/breg 1 [wreg

Bytes: 3
States: 7 + No. of shifts performed'

note: 0 place shifts take 8 states.

3-66

MCS<!>-96 SOFTWARE DESIGN INFORMATldN

3.13.83. SHRA - ARITHMETIC RIGHT SHIFT WORI)

Operation: The destination (leftmost) word operand is shifted right as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of
which is 16 to 255. If the original high order bit value was 0, zeroes
are shifted in. If the value was 1, ones are shifted in. The last bit
shifted out is saved in the carry. The sticky bit flag is cleared at
the beginning of the instruction, and set if at any time during the
shift a 1 is shifted first into the carry flag, and a further shift cycle
occurs.

Assembly Language Format:

Temp - (COUNT)
do while Temp <> 0

C - Low order bit of (DEST)
(DEST) - (DEST) / 2 where / is Signed division
Temp - Temp - 1

end_while

SHRA wreg,#count
or

SHRA wreg,breg

Object Code Format: [00001010 1 [cnVbreg 1 [wreg

Bytes: 3
States: '7 + No. of shifts performed

note: 0 place shifts take 8 states.

3-67

3.13.84. SHRAB - ARITHMETIC RIGHT SHIFT BYTE

O\,eratlon:

Assembly Language Format:

The. destination (leftmost) byte operand .is shifted right as many
times.as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of O.
to 15 inclusive, or as the content of any register, the address of
which is 16 to 255. If the original high order bit value was 0, zeroes
are shifted in. If that value was 1, ones are shifted In. The last bit
shifted out is saved in the carry. The sticky bit flag is cleared at
the beginning of the instruction, and set if at any time during the
shift a 1 is shifted first into the carry flag, and a further shift cycle
occurs.

Temp ~ (COUNT)
do while Temp <> 0

C, = Low order bit of (DEST)
(DEST) ~ (DEST) I 2 where lis signed division
Temp ~ Temp - 1

end_while

SHRAB breg,#count
or

SHRAB breg,breg

Object Code Format: [00011010 1 [cntlbreg 1 [breg

Bytes: 3 .
States: 7 + No. of shifts performed

. note: 0 place shifts take 8 states.

z ST

j j

3-68

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.85. SHRAL - ARITHMETIC RIGHT SHIFT DOUBLE-WORD

Operation: The destination (leftmost) double-word operand is shifted right as
many times as specified by the count (rightmost) operand. The
count may be specified either as an immediate value in the range
of 0 to 15 inclusive, or as the content of any register, the address
of which is 16 to 255. If the original high order bit value was 0,
zeroes are shifted in. If the value was 1, ones are shifted in. The
sticky bit is cleared at the beginning of the instruction, and set if
at any time during the shift a 1 is shifted first into the carry flag,
and a further shift cycle occurs.

Assembly Language Format:

Temp - (COUNT)
do while Temp < > 0

C - Low order bit of (DEST)
(DEST) - (DEST) / 2 where/is signed division
Temp - Temp - 1

end_while

SHRAL Ireg,#count
or

SHRAL Ireg,breg

Object Code Format: [OQ001110 1 [cnt/breg 1 [Ireg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

3-69

MCS®-96· SOFTWARE· DESIGN INFORMATION

3.13.86. SHRB - LOGICAL RIGHT SHIFT BYTE

Operation: The destination (leftmost) bYte operand is shifted right as many
times as specified by the count (rightmost) operand. The count
may be specified either as an immediate value in the range of 0
to 15 inclusive, or as the content of any register, the address of
which is 16 to 255. The left bits of the result are filled with zeroes.
The last bit shifted out is saved in the carry. The sticky bit flag is
cleared at the beginning of the instruction, and set if at any time
during the shift a 1 is shifted first into the carry flag, and a further
shift cycle occurs.

Assembly Language Format:

Temp +- (COUNT)
do while Temp < > 0

C +- Low order bit of (DEST)
(DEST) +- (DEST) / 2 where/is unsigned division
Temp +- Temp - 1

end_while

SHRB breg,#count
or

SHRB breg,breg

Object Code Format: [00011000 1 [cnt/breg 1 [breg

Bytes: 3
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

3-70

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.87. SHRL - LOGICAL RIGHT SHIFT DOUBLE·WORD

Operation: The destination (leftmost) double-word operand is shifted right as
many times as specified by the count (rightmost) operand. The
count may be specified either as an immediate value in the range
of 0 to 15 inclusive, or as the content of any register, the address
of which is 16 to 255. The left bits of the result are filled with
zeroes. The last bit shifted out is saved in the carry. The sticky
bit flag is cleared at the beginning of the instruction, and set if at
any time during the shift a 1 is shifted first into the carry flag, and
a further shift cycle occurs.

Assembly Language Format:

Temp - (COUNT)
do while Temp < > 0

C - Low order bit of (DEST)
(DEST) - (DEST) / 2 where/is unsigned division
Temp - Temp - 1

end_while

SHRL Ireg,#count
or

SHRL Ireg,breg

Object Code Format: [00001100 1 [cnt/breg 1 [Ireg

Bytes: 3 '
States: 7 + No. of shifts performed

note: 0 place shifts take 8 states.

3-71

MCS®·96 SOFTWARE DESIGN INf:ORMATION

3.13.88. SJMP - SHORT JUMP

Operation: The distance from the end of this instruction to the target label
is added to the program counter, effecting the jump. The offset
from the end of this instruction to the target label must be in the
range of - 1024 to + 1023 inclusive.

PC - PC + disp (sign-extended to 16 bits)

Assembly Language Format: SJMP cadd

Object Code Format: [00100xxx 1 [disp-Iow 1

where xxx holds the three high order bits of the displacement.

Bytes: 2
States: 8

3.13.89. SKIP - TWO BYTE NO·OPERATION

Operation: Nothing is done. This is actually a two-byte NOP where the second
byte can be any value, and is simply ignored. Control passes to
the next sequential instruction.

Assembly Language Format: SKIP breg

Object Code Format: [00000000 1 [breg 1

Bytes: 2
States: 4

3·72

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.90. ST - STORE WORD

Operation: The value of the leftmost word operand is stOred into the rightmost
operand.

(DEST) ~ (SRC)

Assembly Language Format: SRC DST
ST wreg, waop

Object Code Format: [110000aa] [waop] [wreg]

3.13.91. STB - STORE BYTE

Bytes: 2+BEA
States: 4 + CEA

z ST

Operation: The value of the leftmost byte operand is stored into the rightmost
operand.

(DEST) ~ (SRC)

Assembly Language Format: SRC OST
STB breg, baop

Object Code Format: [110001aa] [baop] [breg]

Bytes: 2 + BEA
States: 4+CEA

3-73

MCS®·96 SOFl'WARE DESIGN. INFORMATION

3.13.92. SUB (Two Operands) - SUBTRACT WORDS

O.peratlon: The source (rightmost) word operand is subtracted from the des
tination (leftmost) word .operand, and the result is stored in the
destination. The carry flaQ is set as complement of borrow.

(DEST) ~ (DEST) - (SRC)

Assembly Language Format: DST SRC
SUB wreg, waop

Object Code Format: [01101 Oaa I [waop I [wreg I.

Bytes: 2+BEA
States: 4+CEA

z
j

ST

3.13.93. SUB (Thre$ Operands) - SUBTRACT WORDS . '

Operation: The source (rightmost) won:! operand is subtracted from the sec
ond word operand, and the result is stored in the destination (the
leftmost operand). The carry flag is set as complement of borrow.

(DEST) ~ (SRC1) - (SRC2)

Assembly Language Format: DST SRC1 SRC2,
SUB wreg, wreg, waop

Object Code Format: [01001 Oaa I [waop I [Swreg I [Dwreg

Bytes: 3+ BEA
States: 5+CEA

3-74

MCS®·96S()FTWARE DESIGN INFORMATION

3.13.94. SUBB (Two Operands) - SUBTRACT BYTES

OperatIon: The source (rightmost) byte is subtracted from the destination
(leftmost) byte operand, and the result is stored in the destination.
The carry flag is set 'as complement of borrow.

(DEST) +- (DEST) - (SRC)

Assembly Language Format: DSTSRC
SUBB breg, baop

Object Code Format: [011110aa 1 [baop 1 [breg 1

Bytes: 2 + BEA
States: 4 + CEA

3.13.95. SUBB (Three Operands) - SUBTRACT BYTES

Operation: The source (rightmost) byte operand is subtracted from the des
tination (leftmost) byte operand, and the result is stored in the
destination. The carry flag is set as complement of borrow.

(DEST) +- (SRC1) - (SRC2)

Assembly Language Format: DST SRC1 SRC2
SUBB breg, Sbreg baop

Object Code Format: [01011 Oaa 1 [Mop 1 [Sbreg) [Dbreg

Bytes: 3 + BEA
States: 5+CEA

3-75

MC~~-96$OF:lWARE. DeSIGN INfPRMATION ,

3.13.96. SUBC - SUBTRACT WORDS ,WITH a.ORROW

Operation: The source (rightmost) word operandi.s subtracted from the des-
. tin~tion (I~ftmost) word oper~nd. If the carry flag was clear, 1 is

subtracted from .thE! abt;>ve result. The result replaces the original·
destination operand. The carry flag is set as complement of
borrow.

(DEST) ~ (DEST) - (SRC) - (1-C)

Assembly Language Format: DST SRC
SUBC wreg; weop

Object Code Format: [10101 Oaa 1 [. waop 1 { wreg 1

Bytes: 2 + BEA
States: 4 + CEA

3.13.97. SUBCB- SUBTRACT BYTES WITH BORROW

Operation: The source (rightmost) byte operand is subtracted from the des
tination (leftmost) byte operand. If the carry flag was clear, 1 is
subtracted from the above result. The result replaces the original
destination operand. The carry flag is set as complement of
borrow.

(DEST) ~ (DEST) - (SRC) - (1-C)

Assembly Language Format: DST SRC
SU8CB breg, baop

Object Code Format: [10111 Oaa 1 [baop 1 [breg 1

Bytes: 2+BEA
States: 4 + CEA .

ST

3-7q

MCS®·96 SOFTWARE DESIGN INFORMATION

3.13.98. TRAP - SOFTWARE TRAP

Operation: This instruction causes an interrupt-call which is vectored through
locatioh 2010H. The operation of this instruction is not effected
by the state of the interrupt enable flag in the PSW (I). Interrupt
calls cannot occur immediately following this instruction. This in
struction is intended for use by Intel provided development tools.
These tools will not support user-application of this instruction.

SP~SP - 2
(SP) ~PC
PC ~(2010H)

Assembly Language Format: This instruction is not supported by revision 1.0 of the 8096 as·
sembly language.

Object Code Format: [11110111]

Bytes:
States: Onchip Sta.ck: 21

Offchip Stack: 24

3.13.99. XOR - LOGICAL EXCLUSIVE·OR WORDS

Operation: The source (rightmost) word operand is XORed with the desti·
nation (leftmost) word operand. Each bit is set to 1 if the corre·
sponding bit in either the source operand or the destination op·
erand was 1, but not both. The result replaces the original
destination operand.

(DEST) ~ (DEST) XOR (SRC)

Assembly Language Format: DST SRC
XOR wreg, waop

Object Code Format: [100001 aa] [waop] [wreg]

Bytes: 2 + BEA
States: 4 + CEA

[ili~9S Affected1TI Z N I C I V I VT ST
j j 0 0 - - ,

3-77

MCS®-96 SOFTWARE DESIGN INFORMATION

3.13.100. XORB - LOGICAL EXCLUSIVE-OR BYTES

Operation: The source (rightmost) byte operand is XOAed with the desti
nation (leftmost) byte operlind. Each bit is set to 1 if the corre
sponding bit in either the source operand or the destination op
erand was 1, but not both. The result replaces the original
destination operand.

(DEST) +- (DEST) XOA (SAC)

Assembly Language Format: DST SAC
XOAB breg, baop

Object Code Format: [100101aa][baop][breg 1

Bytes: 2 + BEA
States: 4+CEA

3-78

MCS®,96 Hardware
Design Information 4

CHAPTER 4 ,
MCS®·96 HARDWARE DESIGN INFORMATION

4.0. HARDWARE INTERFACING
OVERVIEW

This ~on of the manual is devoted to the hardware
engineer. All of the information you need to connect the
coaect pin to the coaect external circuit is provided. Many
of the special function pins have different characteristics
which are under software control, therefore, it is necessary
to define the system completely before the hardware is
wired-up.

Frequently within this section a specification for a current,
voltage, or time period is referred to; the values provided
are to be used as an approximation only. Th~ exact spc:c
ification can be found in the latest data sheet for the par
ticular part and temperature range that is being used.

4.1. REQUIRED HARDWARE
CONNECTIONS

Although the 8096 is a single-chip microcontroller, it still
requires several external connections to make it work.
Power must be applied, a clock source provided, and some
form of reset circuitry must be present. We will look at
each of these areas of circuitry separately. Figure 4-5
shows the connectionS that, are needed for a single-chip
system.

4.1.1. Power Supply Information
Power for 8096 flows through 6 pins; one vee pin, two
VSS pins, one VREF (analog Vee), one ANGND (An
alog VSS), and one VPD (V Power Down) pin. All six
of these pins must be connected to the 8096 for normal
operation. The vee pin, VREF pin and VPD pin should

TO DIVIDER CIRCUITRY vee

be tied to 5 volts. When the analog to' digital converter
is being used it may be desirable to connect the VREF
pin to a separate power supply, ,or at least a separate power
supply line.

The two VSS pins should be connected together with as
short a lead as possible to avoid problems due to voltage
drops across the wiring. There should be no measurable
voltage difference betWeen VSSI and VSS2. The 2 VSS
pins and the ANGND pin should all be nominally at 0
volts. The maximum current drain of the 8096 is around
200mA, with all lines unloaded. '

When the analog converter is being used, clean, stable
power must be provided to the analog' section of the chip
to assure highest accuracy. To achieve this, it may be
desirable to separate the analog power supply from the
digital power supply. The VREF pin supplies 5 volts to
the analog circuitry and the ANGND pin is the ground for
this section of the chip. More information on the analog
power supply is in section 4.3.1.

4.1.2. Other Needed Connections
Several of the pins on the 80% are used to configure the
,mode of operation. In normal operation the following pins
should be tied directly to the indicated power supply.

PIN POWER SUPPLY
NMI vee

TEST vee

EX vee (to allow internal execution)
VSS (to force external execution)

, ptVlDER CIRCUITRY

vee Q3

Q1

~ ~u
SUBSTRATE

XTAL1 30 pf ..,. 3Qpf

Figure 4-1. 8096 Oscillator ClrcuH Flgur~ 4-2. Crystal Oscillator Circuit

4-1

MCS~·96 HARDWARE DESIGN INFORMATION

Although the £A' pin' ha~ an" i~~~al pulldO\\lll, it is ~si
to tie this pin to the desired level if it is not left completely
disconnected. This will prevent induced noise from dis
turbing the system. ,

4.1.3. Oscillator Information
The 8096 requires a clock source to operate. This clock
can be provided to the chip through the XTALl input or
the on-chip oscillator can ~ used. The frequency of op
eration is, froIll 6.0 MHz to 12 MHz.

The on-Chip circuitry for the 8096 oscillator is a single
stage linear inverter as shown in Figure 4-1. It is intended
for use as a crystal-controll!Xi, po,sitive reactance oscillator
with external connections as shown in Figure 4-2. In this
application, the crystal is being operated in its fundamental

DIVIOER CIRCUITRY

vec

...
VCC

XTAL1

5K

74804

XTAU

FLOAT

Figure 4-3. External Clock Drive

XTAL1

PHASE A
(CLKOUT)

PHASES

PHASEC

PHASEK

responsci mode as an iIiduc;ive read~cei~' parallel res
onance with capacitance external to the crystal.

The crystal specifications, and capacitance, values (C 1 and
C2 in Figure 4-2) are not critical. 301'1" can be used in
these positions at any frequency with good quality crys
tals. For 0.5% frequency accuracy, the crystal frequency
can be specified at series resonance or for parallel reso
nance with any load capacitance. (In other words, for that
degree of frequency accuracy, the load capacitance si!Dply
doesn't matter.) For 0.05% frequency accl!racy the crystal
frequency should be specified for parallel resonance with
25 pF load capacitance, if Cl and C2 are 30 pF.

A more in-depth discussion of crystal specifications and
the selection of values for Cl and C2 can be found in the
Intel Application Note, AP-155, "Oscillators for
Microcontrollers. ",

To drive the 8096 with an external clock source, apply
the external clock signal to XTALl and let XTAL2 float.
An example of this circuit is shown in Figure 4-3. The
required voltage levels on XTALl are specified in the data
sheet. The signal on XTALI must be clean with good
solid levels. It is important that the minimum high and
low times are met.

There is no specification on rise and fall times, but they
should be reasonably fast (on the order of 30 nanoseconds)
to avoid having the XTALI pin in the transition range for
long periods of time. The longer the signal is in the tran
sition region, the higher the probability that an external

, noise glitch could be seen by the clock generator circuitry.
Nois!l glitches on the 8096 internal clock lines will cause
unreliable operation.

The clock generator provides a 3 phase clock output from
the XTALI pin input. Figure 4-4 shows the waveforms
of the major internal timing signals.

Flg~re 4-4. Internal Timings

4-2

MCS®-96 HARDWARE DESIGN INFORMATION

4.1.4. Reset Information
In order for the 8096 to function properly it must be reset.
This is done by holding the reset pin low for at least 2
state times after the power supply is within tolerance, the
oscillator has stabilized, and the back-bias generator has
stabilized. Typically, the back-bias generator requires bne
millisecond to stabilize.

There are several ways of doing this, the simplest being
just to connect a capacitor from the reset pin to ground.
The capacitor should be on the order of 1 to 2 microfarads
for every millisecond of reset time required. This method
will only work if the rise time of VCC is fast and the total
reset time is less than around 50 milliseconds. It also may
not work if the reset pin is to be used to reset other parts
on the board. An 8096 with the minimum required con
nections is shown in Figure 4-5.

The 8096 RESET pin can be used to allow other chips on
the board to make use of the watchdog timer or the RST
instruction. When this is done the reset hardware should
be a one-shot with an open-collector output. The reset
pulse going to the other parts may have to be buffered and
lengthened with a one-shot, since the RESET low duration

is only two state times. If this is done, it is possible that
the 8096 will be reset and start running before the other
parts on the board are out of reset. The software must
account for this possible problem.

A capacitor directly connected to RESET cannot be used
to reset the part if the pin is to be used as an output. If
a large capacitor is used, the pin will pull down more
slowly than normal. It will continue to pull down until the
8096 is reset. It could fall so slowly that it never goes
below the internal switch point of the reset signal (I to
1.5 volts), a voltage which may be above the guaranteed
switch point of external circuitry connected to the pin.
Several circuit examples are shown in Figure 4-6.

4.1.5. Sync Mode
If RESET is brought high at the same time as or just after
the rising edge of XT ALl, the part will start executing
the 10 state time RST instruction exactly 6'12 XT ALl
cycles later. This feature can be used to synchronize sev
eral MCS-96 devices. A diagram of a typical connection
is shown in Figure 4-7. It should be noted that parts that
start in sync may not stay that way, due to propagation
delays which may cause the synchronized parts to receive
signals at slightly different times.

+5 VOLTS

SEPARATE vee TRACE (2)

VPD

VREF NMI
(1)

TEST 0.1 ,.f

ANGND EA

VCC

0.1 TO 1.0 ,.f

VSS1

VSS2

RESET

10,.f +
TO

25,.f C,=C.=30pf

XTAL2

SEPARATE GROUND TRACE (2)
":'

NOTES: 1. THESE CAPACITORS ARE NEEDED ONLY IF A TO D IS USED.
2. VREF & ANGND MAY BE CONNECTED TO THE SAME TRACES AS THE DIGITAL POWER SUPPLY IF THE

A TO D IS NOT USED.

FIgure 4·5. MInimum Hardwa~e Connections

4-3

· MCS®·96 HARDWARE DESIGNINFORMA:r:ION

I. 1.0,.f
....

8096

1000

OTHER
CIRCUITRY

OTHER
CIRCUITRY

NOTE: 1. THE DIODE WILL PROVIDE A FASTER CYCLE TIME REPETITIVE POWER-ON-RESETS

Figure 4·6, Multiple Chip Reset Circuits

XTAL1 XTAL1

B096

RESET

Figure 4·7. Reset Sync Mode

4.1.6. Disabling the Watchdog Timer
The watchdog timer will pull the RESET pin low when
it overflows. If the pin is being externally held above the
low going threshold, the pull-down transistor will remain
on indefinitely. This means that once the watchdog ov
erflows, the part must be reset or RESET mlist be held

4-4

high indefillitely. Just resetting the .Wlltchdog timer will
not clear the flip-flop which keeps the RESET pull-down
on.

The pull-down is capable of sinking on the order of 30
milliamps if it is held at 2.0 volts. This amount of current

MCS®~96 HARDWARE DESIGN INFORMATION

may cauSe some long term reliability problems due to
localized chip heating. For this reason, parts that will be

,used in production should, never have had the watchdog
timer over-ridden for more than a second or two.

Whenever the reset pin is being pulled high while the pull
down is on, it should be through a resistor that will limit
the voltage on RESET to 2.5 volts and the current through
the pin to 40 milliamps. Figure 4-8 shows a circuit which
will provide the desired results. Using the LED will pro
vide the additional benefit of having a visual indicator that
the part is trying to reset itself, although this circuit only
works at room temperature and vee = 5 Volts.

If it is necessary to disable the watchdog timer for more
than a brief test the software solution of never initiating
the times should be used. See Section 2.14.

4.1.7. Power Down Circuitry
Battery backup can be provided on the 8096 with a I rnA
current drain at 5 volts. This mode will hold locations
OFOH through OFFH valid as long as the power to the
VPD pin remains on. The required timings to put the part
into power-down and an overview of this mode are given
in section 2.4.2.

A 'key' can be written into power-down RAM while the
part is running. This key can be checked on reset to de
termine if it is a start-up from power-down or a complete
cold start. In this way the validity of the power-down
RAM can be verified. The length of this key determines
the probability that this procedure will work, however,
there is always a statistical' chance that the RAM will
power up witl1 a replica of the key.

Under most circumstances, the power-fljil indicator which
is used to initiljte a power-down condition must come from
the unfiltered, unregulated section of the power supply~
The power supply must have sufficient storage capacity

MY5020

TO OTHER
CIRCUITS

22 fi

o--VCC

IN4001

OR
8096

to operate the 8096 until it has completed its reset
operation.

4.2. DRIVE AND INTERFACE LEVELS

There are 5 types of 1/0 lines on the 8096. Of these, 2
are inputs and 3 are outputs. All of the pins of the same
type have the same current/voltage characteristics. Some
of the control input pins, such as XTALI and RESET,
may have slightly different characteristics. These pins are
discussed in section 4. I. '

While discussing the characteristics of the 110 pins some
approximate current or voltage specifications will be
given. The exact specifications are available in the latest
version of the 8096 Data Sheet.

4.2.1. Quasi-Bidirectional Ports

The quasi-bidirectional port is both an input and an output
port. It has, three states, low impedance current sink, low
impedance current source, and high impedance current
source. As a low impedance current sink, the pin has a
specification of sinking up'to around .4 milliamps, while
staying below 0.45 volts. The pin is placed in this con
dition by writing a '0' to the SFR (Special Function Reg
ister) controlling the pin.

When a 'I' is written to the SFR location controlling the
pin, a low impedance current source is turned on for one
state time, then it is turned off and the depletion pull-up
holds the line at a logical '" state. The low-impedance
pull-up is used to shorten the rise time of the pin, and has
current source capability on the order of '00 times that
of the depletion pull-up. The configuration of a quasi
bidirectional port pin is shown in Figure 4-9.

While the depletion mode pull-up is the only device on,
the pin may be used as an input with a leakage of around

LM313

1N4001

330fi

r----1~---- VCC

39fi

NOTE: SEE CAUTIONS IN SECTION 4.1.6.

, Figure 4-et. Disabling the WDT

4-5

MCS®·96 HARDWARE DESIGN INFORMATIQN

INPUT

LOW IMPEDANCE
PULL UP

HIGH IMPEDANCE
PULL UP - ALWAYS ON

I
1

,I

LOW IMPEDANCE HIGH IMPEDANCE LOW IMPEDANCE
PULL UP PULL UP PULL DOWN

-SOmA -160,.A SOmA

tt~' TYPICAL

-30mA -90 ,.A 30mA
.9 .9 .9

-30/LA 10mA

4V OV 2V 4V
VOH VOL

NOTE: THESE GRAPHS SHOW TYPICAL PIN CAPABILITIES, THEY, ARE NOT GUARANTEED SPECIFICATIONS

Figure 4-9. Quasi-Bidirectional Port

100 microamps from 0.45 volts to VCe. It is ideal for
use with TIL or CMOS chips and may even be used
directly with switches, however if the switch option is
used certain precautions should be taken. It is important
to note that any time the pin is read, the value returned
will be the value on the pin, not the value placed in the
control register. This could prevent logical operations on
these pins while they are being used as inputs.

4.2.2. Quasi-Bidirectional Hardware
Connections

When using the quasi-bidirectional ports as inputs tied to
switches, series resistors should pe used if the ports will
be written to internally after the part is initialized. Every
time any quasi-bidirectional pin is written from a zero to
a one, the low impedance pull-up is turned on. If many
of the pins are tied directly to ground, a large current·
spike will be generated when all of these low impedance
devices are turned on at once.

For this reason, a series resistor is recommended to limit

4-6

the current to a maximum of 0.2 milliamps per pin. If
several pins are connected to a common ground through
switches, it should be sufficient to limit the current through
the common ground to 0.2 milliamps times the maximum
number of pins that could be switched to ground. Many
switches require a minimum amount of current flow
through them to keep them clean. This could cause prob
lems in long term reliability if it is not considered when
designing a system.

If a switch is used on a long line connected to a quasi
bidirectional pin, a pull-up resistor is recommended to
reduce the possibility of noise glitches and to decrease the
rise time of the line. On extremely long lines that are
handling slow signals a capacitor may be helpful in ad
dition to the resistor to reduce noise.

4.2.3. Input Ports, Analog and Digital
.The high impedance input ports on tjte 8096 have an input
leakage of a few microamps and are predominantly ca
pacitive loads on the order of 10 pf. The Port 0 pins have

MeS HARDWARE DESIGN INFORMATION

an ad9itional function when the A to D converter is being
used. These pins are the input to the A to D converter,
and as such, are requiIed to provide current to the com
parator when a conversion is in process. This means that
the input characteristics of a pin will change if a conversion
is being done on that pin. See section 4.3.1.

4.2.4. Open Drain PortB '
Ports 3 and 4 on the 8096 are open drain ports. There is
no pull-up when these pins are used as 110 ports. These
pins have different qharacteristics when used as bus pins
as desprib!:d in the next section. A diagram of the output
buffers connected to ports 3 and 4 and the Bus pins is
shown i,n Figure 4·10.

When Ports 3 and 4 are to be used as inputs, or as Bus
pins, they must first be written with a '1', this will put
the ports in a higb impedance mode. When they are used
as outputs, 1\ pull-Up resistor must be used externally. The
sink capability of these pins is on the order of ~.4 mil
liamps so the total pull-up current to the pin must be less

than this. A ISk pull-up resistor will source a maximum
of 0.33 milliamps, so it would be a reasonable value to
choose if no other circuits with pullups were connected
to the pin.

4.2.5. HSO Plna, Contro, Outputs and BUI
Plna

The control outputs and HSO pins have output buffers
with the same output characteristics as those of the bus
pins. Included in the category of control outputs are: TXD,
RXD(in mode 0), PWM, CLKOUT, ALE, BHE, RD.

,and Wi. The bus pins have 3 states: output higb. output
low. and high impedance input. As a higb output. the pins
are specified to source around 200 pA to 2.4 volts. but
the pins can llOurce on the order of ten times that value
in order to provide fast rise times. When used as a low
output. the pins can sink around 2 mA at .4S volts. and
considerably more as the voltage increases. When in the
higb impedance state. the pin acts as a capacitive load
with a few microamps of leakage. Figure 4-10 shows the
internal configuration of a bus pin.

vee
DATA

IN

JUS OUTPUT
ENAeLE

8u8DATA

PORTENAeLE

j

POfITDATA

-30mA

-10mA

aus PULL UP

BUS

ov 2V 4V
VOlt

aus PULL DOWN

IUS. P1. P2

10mA e
OV 2V 4V

VOl.

-4-PORT 3,4 OPEN DRAIN
DRIVER

PORT PULL DOWN

IUS. P1. P2
2SmA

e ~ 1SmA

SmA

OV 2V 4V
VOl.

NOTE: ntESE GRAPHS SHOW TYPICAL PIN CAPAIIUTIES. ntEl ARE NOT GUARANTEED SPECIFICATIONS

Figure 4-10. Bus and Port 3 and 4 Pins

4-7

,>MCS@l-96iHARDWARE'DESIGN'1NFORMA'tION

4.3. ANALOG INTERFACE

Intetfacing tire 8096 to analog signal can be done in several
ways. If the 8096 needs to measure an analog signal the
A to pco~verter can ~ used. Creation of analog outputs
can be done with either the PWM output or theHSb unit.

4.3.1. Analog Inputs'
The 8096 can have 8 analog inputs and can convert one
input at a time. into a digital value. Each conversion takes
42 microseconds with a 12 MHz signai on XTALI. The
input signal is applied to one'ofthe Port O/Analog Channel
inputs. Since there is no sample and hold on the A to D,
the input signal must remain constant over: the sampling
period, ' ' , '

When a conversion takes place, the 8096 compares the
external signal to that of its internal D to A. Based on'the
i:esult ofthe comparison it adjusts the D to A and compares
again. Each comparison takes 8 state times and requires
the input to the comparator to be charged up. 20 com
parisons are made during a conversion, two times for each
bit of resolution. An additional 8 states are used to load
and store values. The total number of state times required
is 168 fora lO-bit conversion. Attempting to do other
than a 10-bit conversion is not recommended.

Since the capacitance of the comparator input is around
O.Spf, the sample and hold circuit must be able to charge,
a IOpf (20*0.Spt) capacitor without a significant voltage
change. To keep the effect of the sample and hold circuit
blliow ± Y2 Isb on a 10-bit converter, the voltage on the

8096 BUFFER
TO MAKE

HSO OUTPUT
OR -- SWING

PWM RAIL

sample and' hold circuit rtlliy vary no more than O.OS%
(1/2048).'" " '" ' ,

The effectiv~ capacitance of the sample and' hold must,
therefore ,be'at least20000pf or 0:02 ufo If there'is external
leakage on the capacitor, its value must be' increased to
compensate for the leakage. At IO~A leakage, 2.S mV
(S/2048) will be lost from a 0.17 ilf capacitor in 42 ~S,
The 'capa"citor connected externally 10 the pin should,
therefore,'be at least 0.2 uffor best reSults. If the external
signal' changes' slowly relative to 42 p,s',' thert a larger
capacitor will work well and also filter out unwanted noise.

The converter is a 10-bit, successive approXimation', 'ra~
tiometric converter, so the numerical value obtained from
the conversion will be: '

1023 * (VINcANGND) 1 (VREF-ANOND)

It can be seen that' the 'power 'supply levels'strongly influ
ence' !he' abs6lute accuracy' of the conversion. For this
reason, it is recommended that the ANGND pin be tied
to a clean ground, as close to the power supply as possible.
VREF should be well regulated and used only for the A
to- D converter. If ratiometric information, is desired,
VREF can be connected to VCC, but this should be done
at the power supply not at the chip. It needs to be able to
source around IS milliamps. Bypass capacitors should be
used between VREF and ANOND.ANGND should be
within about a tenth of a volt of VSS and VREF should
be within a few tenths of a volt of VCC. A 0.01 uf
capacitor.should·be-connected between the ANGND and

FILT~R
(PASSIVE

OR f----ACTIVE)

POWER
AMP

(OPTIONAL)

" ,1~

' ,

f----"- ANALOG
OUTPUT

TO (OPTIONAL)
RAIL

SUGGESTED CIRCUIT FOR NON-CRITicAL APPLICATIONS

8096
HSO
OR

PWM

R HIGH
IMPEDANCE 'lL._~ ANALOG X~--"""""""---_-----I OUTPUT

CD4049

RAND C ARE CHOSEN FOR BEST
FILTERING AT THE USER'S FREQUENCY

AMP

Figure 4-11. D/ABuffer Block Diagram

4-8

MCS®-96 HARDWARE DESIGN INFORMATION

VBB pins to reduce the noise on VBB and provide the
highest possible accuracy. Figure 4-5 shows all of these
connections.

4.3.2. Analog Output Suggestions
Analog outputs can be generated by two methods, either
by using the PWM output or the HSO. Either device will
generate a rectangular pulse train that varies in duty cycle
and (for the HSO only} period. If a smooth analog signal
is desired as an output, the rectangular waveform must be
filtered.

In most cases this filtering is best done after the signal is
buffered to make it swing from 0 to 5 volts since both of
the outputs are guaranteed only to TTL levels. A block
diagram of the type of circuit needed is shown in Figure
4-11. By proper selection of components, accounting for
temperature and power supply drift, a highly accurate 8-
bit D to A converter can be made using either the HSO
or the PWM output. If the HSO is used the accuracy could
be theoretically extended to 16-bits, however the temper
ature and noise related problems would be extremely hard
to handle.

When driving some circuits it may be desirable to use
unfiltered Pulse Width Modulation. This is particularly
true for motor drive circuits. The PWM output can be
used to generate these waveforms if a fixed ,period on the
order of 64 uS is acceptable. If this is not the case then
the HSO unit can be used. The HSO can generate a var
iable waveform with a duty cycle variable in up to 65536
steps and a period of up to 131 milliseconds. Both of these
outputs produce TTL levels.

4.4. 1/0 TIMINGS

The 1/0 pins on the 8096 are sampled and changed at
specific times within an instruction cycle. The timings
shown in this section are idealized; no propagation delay
factors have been taken into account. Designing a system
that depends on an 110 pin to change within a window of
less than 50 nanoseconds using the information in this
section is not recommended.

4.4.1. HSO Outputs
Changes in the HSO lines are synchronized to Timer 1.
All of the external HSO lines due to change at a certain
value of a timer will change just prior to the incrementing
of Timer 1. This corresponds to an internal change during
Phase C, every eight state times. From an external per
spective the HSO pin should change around the rising
edge ofCLKOUT and be stable by its falling edge. Internal
events can occur anytime during the 8 state time window.

Timer 2 is synchronized to increment no faster than Timer
J, so there will always be at least one incrementing of
Timer 1 while Timer 2 is at a specific value.

,4.4.2. HSI Input Sampling
The HSI pins are sampled internally once each state time.
Any value on these pins must remain stable for at least 1

4-9

full state time to guarantee that it is recognized. This
restriction applies even if the divide by eight mode is being
used. If two events occur on the same pin within the same
8 state time window, only one of the events will be
recorded. If the events occur on different pins they will
always be recorded, regardless of the time difference. The
8 state time window, (ie. the amount of time during which
Timer 1 remains constant), is stable to within about 20
nanoseconds. The window starts roughly around the rising
edge of CLKOUT, however this timing is very approxi
mate due to the amount of internal circuitry, involved.

4.4.3. Standard 110 Port Pins
Port 0 is different from the other digital ports in that it is
actually part of the A to D converter. The port is sampled
once every 8 state times, the same frequency at which the
comparator is charged-up during an A to D conversion.
This 8 state times counter is not synchronized with Timer
1. If this port is used the input signal on the pin must be
stable 8 state times prior to reading the SFR.

Port 1 and Port 2 have quasi-bidirectional 110 pins. When
used as inputs the data on these pins must be stable one
state time prior to reading the SFR. This timing is also
valid for the input-only pins of Port 2. When used as
outputs, the quasi-bidirectional pins will change state
shortly after CLKOUT falls. If the change was from '0'
to a '1' the low impedance pull-up will remain on for one
state time after the change.

Ports 3 and 4 are addressed as off-chip memory-mapped
110. The port pins will change state shortly after the rising
edge of CLKOUT. When these pins are used as Ports 3
and 4 they are open drain, their structure is different when
they are used as part of the bus. See Section 2.12A.

4.5. SERIAL PORT TIMINGS

The serial port on the 8096 was designed to be compatible
with the 8051 serial port. Since the 8051 uses a divide by
2 clock and the 8096 uses a divide by 3, the serial port
on the 8096 had to be provided with its own clock circuit
to maximize its compatibility with the 8051 at high baud
rates. This means that the serial port itself does not know
about state times. There is circuitry which is synchronized
to the serial port and to the rest of the 8096 so that in
formation can be' passed back and forth.

The baud rate generator is clocked by either XT ALl or
T2CLK, because T2CLK needs to be synchronized to the
XT ALl signal its speed must be limited to 1/16 that of
XT AL 1. The serial port will not function during the time
between the consecutive writes to the baud rate register.
Section 2.11 A discusses programming the baud rate gen
erator.

4.5.1. Mode 0
Mode 0 is the shift register mode. The TXD pin sends
out a clock train, while the RXD pin transmits or receives
the data. Figure 4-12 shows the waveforms and timing.
Note that the port starts functioning when a 'I' is written

MCS®·96 HARDWARE DESIGN INFORMATION

to the REN (Receiver Enable) bit in the serial port control
register. If REN is already high, clearing the RI flag will
start a reception.

A schematic of a typical circuit is shpwn in Figure 4-13.
This circuit inverts the data coming in; so it must be re
inverted in software. The enable and latch connections to
the shift registers can be driven by decoders, rather than
directly fromllie low speed 110 ports, if the software and
hardware are properly designed.

In this mode the serial port can be used to expand the
110 capability of the 8096 by simply adding shift registers.

RXO(O'iiT)\ DO X 01 X 02 X 03 X D4 X 05 X 06 X 07 ,

DO 01 02 03 04 05 06 07

RXO(IN)

EXPANDED:

RXO(OUT) ''-__ ,.....:;DO~_---'C,...: __:;.0;...1 -----''C 02

DO 01

RXO (IN) ---Q----I'~---IDI-----Htl'---

Figure 4.12. Serial Port Timings in Mode 0

CLOCK INHIBIT

Figure 4-13. Mode 0 Serial Port Example

4·10

MCS<I!>-96 HARDWARE· DESIGN INFORMATION

4.5.2. Mode 1 Timings
Mode 1 operation of the serial port makes use of IO-bit
data packages, a start bit, 8 data bits and a stop bit. The
transmit and receive functions are controlled by separate
shift clocks. The transmit shift clock starts when the baud
rate generator is initialized, the receive shift clock is reset

when a 'I to 0' transition (start bit) is received. The trans
mit clock may therefore not be in sync with the receive
clock, although they will both be at the same frequency.

CLK OUT --
REA DY

ALE

AD

AD

,INST

The TI (Transmit Interrupt) and RI (Receive Interrupt)
flags are set to indicate when operations are complete. TI

~n!HCH
I
I I I I

~
I

V I
J

TCHCL

TCLLH - !-TCLYX

) VALID K J

TLLCH
TLHLL TYLYH

/~ !-TLLYV'"
,-

II TLLYH""';"'" J \
TLLRL TRLRH TRHLH

TAVLL TRXDZ

~ TLLAX l-
f- !-TRLDV_

-~ I_TRLAZ - ADDR OUT .~ DATA IN
,

1

TAVDV

TLLRL

~
!-TWLWH TWXLH_ ,

TAVLL

I-- TLLAX

f- TWXQX
~TQVWX

----4 ADDR OUT DATA OUT

,
VALID /

Figure 4-14, Bus Sig~al Timings

4-11

MCS®·96 HARDWARE DESI~N INFORMATrON

is set when the last data bit of the message has been sent,
not when the stop bit is sent. If an attempt to send another
byte is made before the stop bit is sent the port will hold
off transmission until the stop bit is complete. RI is set
when 8 data bits are received, not when the stog bit is
received. Note that when the serial port status register is
read both TI and RI are cleared.

Caution should be used when using the serial port to con
nect more than two devices in half-duplex, (ie. one wire
for transmit and receive). If the receiving processor does

Tosc - Oscillator Period, one cycle time on XTALI.

Timings The Memory System Must Meet

TLL YH - ALE low to READY high: Maximum time
after ALE falls until READY is brought high to ensure
no more wait states. If this time is exceeded unexpected
wait states may result. Nominally I Tosc + 3 Tosc*
number of wait states desired.

TLL YV - ALE low to READY VALID: Maximum time
after ALE falls until READY must be valid. If this time
is exceded the part could malfunction necessitating a chip
reset. Nominally 2 Tosc periods.

TYLYH - READY low to READY high: Maximum time
the part can be in the not-ready state. If it is exceeded,
the 8'096 dynamic nodes which hold the current instruction
may 'forget' how to finish the instruction.

TAVDV - ADDRESS valid to DATA valid: Maximum
time that the memory has to output valid data after the
8096 outputs a valid address. Nominally, a maximum of
5 Tosc periods.

TRLDV - READ low to DATA valid: Maximum time
that the memory has to output data after READ goes low.
Nominally, a maximum of 3 Tosc periods.

TRXDZ - READ not low to DATA float: Time after
READ is no longer low until the memory must float the
bus. The memory signal can be removed as soon as READ
is not low, and must be removed within thespecif\ed
maximum time.
Nominally, a maximum of I Tosc period.

Timings the 8096 Will Provide

TCHCH - CLKOUT high to CLKOUT high: The period
of CLKOUT and the duration of one state time. Always
3 Tosc average, but individual periods could vary by a
few nanoseconds. .

TCHCL - CLKOUT high to CLKOUT low: Nominally
I Tosc period.

not wait for one bit time after RI is set before starting to
transmit, the stop bit on the link could be squashed .. This
could Gause a problem for other devices listening on the
link.

4.5.3. Mode 2 and 3 Timings
Modes 2 and 3 operate in a manner similar to that of mode
I. The only difference is that the data is now made up of
9 bits, so ll-bit packages are transmitted and received.
This means that TI and RI will be set on the 9th data bit

TCLLH - CLKOUT low to ALE high: A help in deriving
other timings, typically plus or minus 5 to 10 ns.

TLLCH - ALE low to CLKOUT high: Used to derive
other timings, nominally I Tosc period.

TLHLL - ALE high to ALE low: ALE pulse width.
Useful in determining ALE rising edge to ADDRESS valid
time. Nominally I Tosc period.

TAVLL"- ADDRESS valid to ALE low: Length of time
ADDRESS is valid before ALE falls. Important timing
for address latch circuitry. Nominally I Tosc period.

TLLAX - ALE low to ADDRESS invalid: Length of
time ADDRESS is valid after ALE falls. Important timing
for address latch circuitry. Nominally I Tosc period.

TLLRL - ALE low to READ or WRITE low: Length
of time after ALE falls before RD or WR fall. Could be
needed to ensure that proper memory decoding takes place
before it is output enabled. Nominally I Tosc period.

TRLRH - READ low to READ high: RD pulse width,
nominally I Tosc period.

TRHLH - READ high to ALE high: Time between RD
going inactive and next ALE, also used to calculate time
between RD inactive and next ADDRESS valid. Nom
inally I Tosc period.

TWLWH - WRITE low to WRITE high: Write pulse
width', nominally 2 Tosc periods.

TQVWX - OUTPUT valid to WRITE not low: time that
the OUTPUT data is valid before WR starts to go high.
Nominally 2 Tosc periods. .

TWXQX - WRITE not low to OUTPUT not valid: Time
that the OUTPUT data is valid after WR starts to rise.
Nominally I Tosc period.

TWXLH - WRITE not low to ALE high: Time between
write starting to rise and next ALE, also used to calculate
the time between WR .starting to rise and next ADDRESS
valid. Nominally 2 Tosc periods.

Figure 4-15. Timing Specification. Explanations

4-12

MCS®·96 HARDWARE DESIGN INFORMATION

rather than the 8th. The 9th bit can be used for parity or
mUltiple processor communications (see section 2.11).

4.6. BUS TIMING AND MEMORY
INTERFACE

4.6.1. Bus Functionality
The 8096 has a multiplexed (address/data) 16 bit bus.
There are control lines provided to demultiplex the bus
(ALE), indicate reads or writes (RD, WR), indicate if the
access is for an instruction (lNST), and separate the bus
into high and low bytes (BHE, ADO). 'Section 2.3.5 con
tains an overview of the bus operation.

4.6.2. Timing Specifications
Figure 4-14 shows the timing of the bus signals and data
lines. Since this is a new part, the exact timing specifi
cations are subject to change, please refer to the latest
8096 data sheet to ensure that your system is designed to
the proper specifications. The major timing specifications
are described in Figure 4-15.

4.6.3. READY Line Usage
When the processor has to address a memory location that
cannot respond within the standard specifications it is nec
essary to use the READY line to generate wait states.
When the READY line is held low the processor waits
in a loop for the line to come high. There is a maximum
time that the READY line can be held low without risking
a processor malfunction due to dynamic nodes that have
not been refreshed during the wait states. This time is
shown as TYLYH in the data sheet.

In most cases the READY line is brought low after the
address is decoded and it is determined ,that a wait state
is needed. It is very likely that some addresses, such as
those addressing memory mappe4 peripherals, would need
wait states, and others would not. The READY line must
be stable within the TLLYV specification after ALE falls
(or the TYVCL before CLKOUT falls) or the processor

ALE

~ AD8-AD15

~
8096 r£l ADO-AD7

373

RD

could lock-up. There is no requirement as to when
READY may go high, as long as the maximum READY
low time (TYL YH) is not violated. To ensure that only
one wait state is inserted it is necessary to bring READY
high TLL YH after the falling edge of ALE.

4.6.4. INST Line Usage
The INST (Instruction) line is high during the output of
an address that is for an instruction stream fetch. It is low
during the same time for any other memory access. At
any other time it is not valid. This pin is not present on
the 48-pin versions. The INST signal can be used with
a logic analyzer to debug a system. In this way it is
possible to determine if the fetch was for instrUctions or
data, making the task of tracing the program much easier.

4.6.5. Address Decoding
The multiplexed bus of the 8096 must be demultiplexed
before it can be used. This ca be done with 2 74LS373
transparent latches. As explained, in section 2.3,5, the
latched address signal will be referred to as MAO through
MAI5. (Memory Address), and the data lines will be
called MOO through MDI5, (Memory Data).

Since the 8096 can make accesses to memory for either
bytes or words it is necessary to have a way of determining
the type of access desired. The BHE and MAO lines are
used for this purpose. BHE must be latched, as it is valid
only when the address is valid. The memory system is
typically set up as 32K by 16, instead of 64K by 8. When
the BHE line is low, the upper byte is enabled. When
MAO is low, the lower byte is enabled when MAO is high
BHE will be low, and the upper byte is enabled.

When external RAM and EPROM are both used in the
system the control logic can be simplified a little to some
of the addresses. The 8096 will always output BHE to
indicate if a read is of the high byte or the low byte, but
it discards the byte it is not going to use. It is therefore
possible to use the BHE and MAO lines only to control

MA8-MA15 1 8 A7-A14
I

MAO-MA7 J 7 AO-A6

MAO, I, I I I
N.C.

2764 2764
UPPER

8
LOWER

I I J 8 I

I
I

I RD

Figure 4·16. Memory Wiring Example-EPROM Only System

4-13

MCS®-96 HARDWARE DESIGN INFORMATION

memory writes, arid to ignore these liQes during me~ory
reads. Figure 4-16 and 4-17 show block diagrams'of two
memory systems, an external EPROM only system and
a RAM/ROM system. '

4.6.6. System Verification Example
To verify that a system such as the one in Figure 4-17 will
work with the 8096, it is necessary to check 'all of the
timing parameters. Let us examine this system one pa
rameter at a time using the proposed 8096 specifications.
These specifications are subject to change, refer to the
latest 8096 data sheet for the current specifications.

The timings of signals that the processor and memory use
are effected by the latch and buffer circuitry. The timings
of the signal provided by the processor are delayed by
various amounts of time. S imilarl y, the signals coming
back from the memory are also delayed. The calculations
involved in verifying this system follow:

Address Valid Delay - 20 nanoseconds

The address lines are delayed by passing them through
the 74LS373s, this delay is specified at 18ns after
Address is valid or 30ns after ALE is high. Since the

ALE

AD8-AD15 8

8096

ADO-AD7 8

VCC

PR D

. signal may be limited by either the ALE timing or the
Address timing, these two cases must be considered.

If Limited by ALE:

Minimum ALE pulse width = rosc-l0
. (TLHLL)

Minimum Addr set-up to ALE falling = Tosc-20
(TAVLL)

Therefore ALE could occur 10 ns before Address valid.

Total delay from 8096 Address stable to MA (Memory
Address) stable would be:

ALE delay from address - 10
74LS373 clock to output 30

20 nanoseconds

If Limited by Address Valid:

74LS373 Data Valid to Data Output = 18 nanoseconds

In the worst case, the delay in Address valid is
controlled by ALE and has a value of 20 nano
seconds.

MA8-MA15 8

MA8-MA15

MDO-MD7

A7-
A14

AO- A7-
A6 A14

LOWER
BYTE OF
MEMORY

(EVEN
LOCATIONS)

MAO CLR Q Ht---=,.-----=---,
74LS UiHE (LATCHED BHE)

WRLOW

74
'---+--I--~>CK

Figure 4-17. RAM/ROM Memory System

4-14

MCS®·96 HARDWARE DESIGN INFORMATION

Delay of Data Transfer to/from Processor - 12
nanoseconds

The RD low to Data valid specification (TRLDV) is
3 Tosc-50, (200 ns at 12 MHz). The 74LS245 is en
abled by RD and has a delay of 40 ns from enable.
The enable delay is clearly not a problem.

The 74LS245 is enabled except during a read, so there
is no enable delay to consider for write operaions.

The Data In to Data Out delay of the 74LS245 is
12 ns.

Delay of WR signal to memory - 15 nanoseconds

Latched BHE is delayed by the inverter on ALE and
the 74LS74.

74LS04 delay (Output low to high) = 22
74LS74 delay (Clock to Output) = 40

Delay of Latched BHE from ALE falling = 62
nanoseconds

The 74LS74 requires data valid for 20 ns prior to the
clock, the 8096 will have BHE stable Tosc-20 ns
(TAVLL, 63 ns at 12 MHz) prior to ALE falling. There
is no problem here.

MAO is valid prior to ALE falling, since the 20 ns
Address Delay is less than TAVLL.

WR will fall no sooner than Tosc-20 ns (TLLRL, 63
ns at 12 MHz) after ALE goes low. It will therefore
be valid just after the Latched BHE is valid, so it is
the controlling signal.

WR High and WR Low are valid 15 ns after MAO,
Latched BHE and WR are valid. Since WR is the last
signal to go valid, the delay of WR (High and Low)
to memory is 15 ns.

Delay Summary - Address Delay
Data Delay
WRDelay

= 20 ns
12 ns
15 ns
o ns RD Delay

.Characteristics of a 12 MHz 8096 system
with latches:

Required by system:

Address valid to Data in;

TAVDV
Address Delay
Data Delay

386.6 ns maximum
- 20.0 ns maximum
--' 12.0 ns maximum

354.6 ns maximum

Read low to Data in;

TRLDV
RD Delay
Data Delay

Provided by System:

200.0 ns maximum
'. - 00.0 ns maximum

- 12.0 ns maximum

188.0 ns maximum

Address valid to Control;
TLLRL 63.3 ns minimum

63.3 ns minimum
20.0 ns maximum

TAVLL
Address Delay

. WR Delay 00.0 ns minimum (no spec)

101.6 ns minimum

Write Pulse Width;
TWLWH 151.6 ns minimum
Rising WR Delay: - 15.0 ns maximum
Falling WR Delay: 00.0 ns minimum (no spec)

146.6 ns minimum

Data Setup to WR rising;

TQVWX
Data Delay
WRDelay

Data Hold after WR;

TWXQX
Data Delay
WRDelay·

136.6 ns minimum
- 12.0 ns maximum

00.0 ns minimum (no spec)

124.6 ns minimum

58.3 ns minimum
0.0 ns minimum (no spec)

15.0 ns maximum .

43.3 ns minimum

The two memory devices which are expected to be used
most often with the 8096 are the 2764 EPROM and the
2128 RAM. The system verification for the 2764 is simple.

2764 \fac

(Address valid to Output) < Address valid to Data in
250 ns < 354 ns O.K.

2764 Toe

(Output Enable to Output) < Read low to Data in
100 ns < 188 ns O.K.

These calculations assume no address decoder delays and
'no delays on the RD (OE) line. If there are delays in these
signals the delays must be added to the ,2764's timing.

4-15

The read calculations for the 2128 are similar to those for
the 2764.

2128-20 Tac < Address valid to Data in
200 ns < 354 ns O.K,

2128-20 Toe < Read low to Data in
65 ns < 188 ns O.K.

MCS®.96 HARDWARE DESIGN INFORMATION

The write calculations are a little more involved, but'still
straight-forward.

2128 Twp (Write Pulse) < Write Pulse Width
100 ns < il46 ns O.K.

2128 Tds (Data Setup) < Data Setup to WR rising
65 ns < 124 ns O,K.

2128 Tdh (Data Hold) < Data Hold after WR
o ns < 43 ns

All of the above calculations have been done assuming
that no components are in the circuit except for' those
shown in Figure 4-17. If additional components are added,
as may be needed for address decoding or memory bank
switching, the calcul)ltions must be updated to reflect the
actual circuit.

4.6.7. 1/0 Port Reconstruction
When a single-chip system is being designed using a mul
tiple chip system as a prototype, it may be necessary to
reconstruct I/O ports 3 and 4 using a memory-mapped
I/O technique. The circuit shown in Figure 4-18 provides

this function on the iSBE-96 emulator board. It can be
attached to any 8096 system which has the required ad
dress decoding and bus demultiplexing.

The output circuitry is basically just a latch that operates
when IFFEH or IFFFH are placed on the MA lines. The
inverters surrounding the latch create an open-collector
output to emulate the open-drain output found on the 8096.
The 'reset' line is used to set the ports to all l's when the
8096 is reset. It should be noted that the voltage and
current characteristics of this port will differ from those
of the 8096, but the basic functionality will be the same.,

The input circuitry is just a bus transceiver that is ad
dressed at IFFEH or IFFFH. If the ports are going to be
used for either input or output, but not both, some of the
circuitry can be eliminated.

4.7. NOISE PROTECTION TIPS

Designing controllers differs from designing other com
puter equipment in the area of noise protection. A micro
controller circuit under the hood of a car, in a photo
copier, CRT terminal, or a high speed printer is subject

WRLOW----------~~~~--------------_, OUTPUT

MDO-MD7------+--~~~

~---------r~

MD&-MD15---------r--~~8~

RElfEIT------~~----------------------~--~
ADDR = P3, P4 -------+-(lI

AD ---------~ 8
ADO-AD7

AD8-AD15 8

Figure 4-18. 110 Port Reconstruction

4-16

74LS
05

(x11f.!)
P3

P4

MCS@-96 HARDWARE DESIGN INFORMATION

to many types of electrical nois~. Noise can get to the
processor directly through the power supply, or it can be
induced onto the board by electromagnetic fields. It is also
possible for the pc board to find itself in the path of
electrostatic discharges. Glitches and noise on the pc board
can cause the processor to act unpredictably, usually by
changing either the memory locations or the program
counter.

There are both hardware and software solutions to noise
problems, but the best solution is good design practice
and a few ounces' of prevention. The 8096 has a watchdog
timer which will reset the part if it fails to execute the
software properly. The software should be set up to take
advantage of this feature.

It is also recommended that unused areas of code be filled
with Naps and periodiC jumps to an error routine or RST
(reset chip) instructions. This is particularly important in
the code around lookup tables, since if lookup tables are
executed all sorts of bad things can happen. Wherever
space allows, each table should be surrounded by 7 Naps
(the longest 8096 instruction has 7 bytes) and a RST or
jump to error routine instruction. This will help to ensure
a speedy recovery should the processor have a glitch in
the program flow.

Many hardware solutions exist for keeping pc board noise
to a minimum. Ground planes, gridded ground and VCC

structures, bypass capacitors, transient absorbers and
power busses with built-in capacitors can all be of great
help. It is much easier to design a board with these features
than to try to 'retrofit them later. Proper pc board layout
is probably the single most important and, unfortunately,
least understood aspect of project design. Minimizing loop
areas and inductance, as well as providing clean grounds
are very important. More information on protecting
against noise can be found in the Intd Application Note
AP-125, "Designing Microcontroller Systems For Noisy
Environments. "

4.8. PACKAGING PINOUTS AND
ENVIRONMENT

The MCS-96 family of products is offered in many ver
sions. They are available in 48-pin or 68-pin packages,
with or without ROM, and with or without an A to D
converter. A summary of the available options is shown
in Figure 4-19.

The 48-pin versions are available in a 48-pin DIP (Dual
In-Line) package, in either ceramic or plastic.

The 68-pin versions are available in a ceramic pin grid
array, and a plastic flatpack. A plastic pin grid array will
be available in the near future.

ROM LESS WITH ROM

68-pln 48-pln 68-pin 48-pin

Without A to D 8096 8094 8396 8394

With A to D 8097 8095 8397 8395

Figure 4-19. The MCS®-96 Family of Products

4-17

MCS®~96 Data Sheets 5

8094/8095/8096/8097
8394/8395/8396/8397

16·81T MIC.ROCONTROLLERS
- 839X: an 809X with 8K Bytes of On-chip ROM

- High Speed Pulse 1/0 - 232 Byte Register File
- 10-bit AID Converter - Memory-to-Memory Architecture
- S Interrupt Sources - Full Duplex Serial Port
• Pulse-Width Modulated Output _ Five S-bit 1/0 Ports
- Four 16-bitSoftware Timers - Watchdog Timer

The MCS~96 family of 16-bit microcontrollers consists of 8 members, all of which are d~signed for high-speed
control functions.

The CPU supports bit, byte, and word operations. 32-bit double-words are supported for a subset of the instruction
set. With a 12 MHz Input frequency the 8096 can do a 16-bit addition in 1.0 p,Sec and a 16 x 16-bit multiply or 321
16-bit divide in 6.5 /Lsec. Instruction execution times average 1 to 2 /Lsec in typical applications.

Four high-speed trigger inputs are provided to record the times at which external events occur. Six high-speed
pulse generator outputs are provided to trigger external events at preset times. The high-speed output unit can
simultaneously perform timer functions. Up to four such 16-bit Software Timers can be in operation at once.

An on-chip AID Converter converts up to 4 (in the 48-pin version) or 8 (in the 68-pin version) analog input channels
to 10-bitdigital values. This feature is only available on the 8095, 8395, 8097 and 8397 .

. Also provided on-chip are a serial port, a watchdog timer, and a pulse-width modulated output signal.

POWER FREQUENCV
DOWN REFERENCE

r------- ----~::K-~----:B~E-:
GEN O~~~IP I

(83961 I
I
I
I

I

CONTROL
SIGNALS

}

ADDR
DATA
BUS

HIGH
SPEED

110

I PORT 4

PORT 0 PORT 1 PORT 2
ALT FUNCTIONS

I
I
I ____ ---l

HSI HSO

Figure 1. Block Diagram (For simplicity, lines connecting port registers to port buffers are not shown.)

5-1

inter

RXD P2.1 1 48
TXD P2.0 2· 47

HSIO 46
HSI1 45

HSI2 HS04 44
H~13 HS05 43

HSOO 42
HS01 41
HS02 40
HS03 10 39

VSS 11 38
vee 12 37

PWM P2.5 13 36
wI! 14 .35

SHE 15 34
READY 16 33

AD15 P4.7 17 32
AD14 P4.6 18 31
AD13 P4.5 19 30
AD12 P4.4 20 29
AD11 P4.3 21 28
AD10 P4.2 22 27
AD9 P4.1 23 26
AD8 P4 0 24 25

RESET
EXTINT P2.2
VPD
VREF
ANGND
ACH4 PO 4
ACH5 PO 5
ACH7 PO 7
ACH6 PO.6
EA
VCC
V$S
XTAL1
XTAL2
ALE
RD
ADO P3 0
AD1 P31
AD2 P3 2
AD3 P3 3
A04 P3 4
ADS P3 5
AD6 P3 6
AD7 P3 7

8096

Figure 1 shows. a block diagram of the MCS-96 parts,
generally referred to as the 8096. The 8096 is available
in 48-pin and 68-pin packages, with and without AID,
and with and witho!J1 on.chip ROM. The MCS-96 nUm
bering system is shown below:

OPTIONS 68 PIN 48 PIN

ROMLESS 8096 8094
DIGITAL .. ----
I/O

ROM 8396 8394

ANALOG ROMLESS 8097 8095
AND
DIGITAL
I/O ROM 8397 8395

Figure 2. 48-Pin Package

Figures 2, 3 & 4 show the pinouts for the 48- and
68-pin packages. The 48-pin version is offered in
Dual-In-Line package while the 68-pin version
comes in a Flat-pack and a Pin Grid Array.

ACH5 PO 5
ACH4 PO 4

ANGND
VREF

VPD
EXTINT P2.2

RESET
RXD P21·
TXD P20

P10
P11
P12
P1.3
P14
HSIO
HSI1

HSI2 HS04

~
1 2345678 91011121314151617

68 18
67 19
66 20
65 21
64 22 1---=
63 23
62 8096 24
61 8396 25
60 26
59 8097 27
58 8397 28 1----------,
57 29
56 30
55 31 1===
54 32
53 33
52 34
~W~~~%eMgQ~~~~D~e

I

,

~ IL

Figure 3. S8-Pin Package (Flat Pack·Top View)

5-2

ADO P3.0
AD1 P31
AD2 P3.2
AD3 P3 3
AD4 P3 4
ADS P3 5
AD6 P3.6
AD7 P3.7
AD8 P40
AD9 P4.1
AP10 P4 2
AD11 P4.3
AD12 P4.4

.AD13 P4.5
AD14 P4.6
AD15 P4.7
T2CLK P2.3

inter 8096 1jil1Rl~[bJ Iil:jj)~ INlfo\lRl'1f

Pins Facing Up Pins Facing Down

/1 3 5 7 9 11 13 15 17 17 15)3 11 9 7 5 3 1 "'-68 2 .. 6 8 10 12 14 16 19 18 18 19 16 14 12 10 8 6 4 2 68

68 67 21 20 20 21 67 68

64 65 23 22 22 23 65 64

62 63 MCS®-96 25 24 24 25 MCS®-96 63 62
68 PIN 68 PIN

80 61 GRID ARRAY 27 26 26 27 GRID ARRAY 61 80

58 59 29 28 28 29 59 5&

56 57 31 30 30 31 57 56

54 55 33 32 32 33 55 54

52, 53 50 48 46 44 42 40 38 36 34 34 36 38 40 42 44 46 48 50 53 52
51 49 47 45 43 41 39 37 35 35 37 39 41 43 45 47' 49 51

Figure 4. Pin Grid Array

Note
I '. When the pin grid array package is mourtted on the PC board, the pins are numbered counterclockwise as seen from the component

side of the board, just like the nat pack when it's mounted in the contactor. Consequently, the PC board layout for pin grid array is
compatible with the nat pack in a contactor except for the footprint size. The pin functions (from -1 to -68) on both packages are
identical. Refer to Intel's Microcontroller handbook for mechanical dimensions on these packages.

5-3

inter ,8096

Table 3-1. InstructIon Summary

Oper- Flags
MnemonIc ands OperatIon (Note 1) Z N C V VT ST Notes:

ADD/ADDB 2 D~D+A j j j j i -'
ADD/ADDB 3, D~B+A j j j j i -
ADDC/ADDCB 2 o +-D+A+C t j j j i -
SUB/SUBB 2 D~D-A j j j j i -
SUB/StJBS' 3 D+-B-A j j j j i -
SUBC/SUBCB 2' D+-O-A+C- I t .; j j i -
CMP/CMPB :2

"
D-A J J j j i -

MUUMULU 2 0,0+ 2 +- 0 * A - - - - - ? 2

MUUMULU 3 0,0 + 2 ~ B * A - - - - - ? 2

MULB/MULUB 2 0,0+ 1+-0 * A - - - - - ? 3

MULB/MULUB 3 0,0+ I+- B * A - - - - - ? 3

DIV/DIVU 2 o +- (0,0 + 2)/A 2
0+2 remainder - - - j i -

DIVB/DIVUB 2 o +- (0, 0 + I)/A
0+1 remainder - - - j i - 3

AND/ANDB 2 D OandA j j 0 0 - -
AND/ANDB 3 o +- B and A .. j j 0 0 - -
OR/ORB 2 D+-DorA j j 0 0 - -
XOR/XORB 2 0+-0 (excl. or) A j j 0 0 " - -
LD/LDB 2 D+-A - - - - -
ST/STB 2 A<-D - - - - - -
LDBSE 2 o +-A; 0 + I <- SIGN(A) - - - - - - 3,4

LDBZE 2 o <-A; 0 + I+-O - - - - - - 3,4

PUSH I SP +- SP - 2; (SP) A - - - - - -
pop I A +- (SP); SP +- SP + 2 - - - - - -
PUSHF 0 SP +- SP - 2; (SP) +- PSW; 0 0 0 0 0 0

PSW +- OOOOH 1+-0

POPF 0 PSW +- (SP); SP +- SP + 2 I+-j j j j j j j

SJMP I PC+-PC+ II-bit offset - - - - - - 5

UMP I PC +- PC + 16-bit offset - - - - - - 5

BR(indirect) I PC +- (A) - - - - - -
SCALL I SP +- SP - 2; (SP) +- PC; - - - - - - 5

PC +- PC + II-bit offset

LCALL I SP +- SP - 2; (SP) +- PC; - - - - - - 5
PC +- PC + 16-bit offset

RET 0 PC <- (SP); SP <- SP + 2 - - - - - -
J(conditional) I PC <- PC + 8"bit offset - - - - - - 5

JC I Jump ifC = I - - - - - - 5

JNC I Jump ifC = 0 - - - - - - 5
Note
I. If the mnemonic ends in "B", a byte operation is perfonned. otherwise a word operation is done. Operands D, B. and A must conform

to the alignment rules for the required operand type. D and B are locations in the register file; A can be located anywhere in memory.
2. D. D + 2 are consecutive WORDS in memory; D is DOUBLE-WORD aligned.
3. 0, D + I are consecutive BYTES in memory; D is WORD aligned.
4. Changes a byte to a word.
S. Offset is a 2' s complement number.

8096

Table 3-2. Instruction Summary

Oper- Flags
Mnemonic ands Operation (Note 1) Z N C V VT ST Notes

JE 1 JumpifZ = 1 - - - - - - 5
JNE 1 Jump ifZ = 0 - - - - - - 5
JOE 1 Jump ifN = 0 - - - - - - 5
JLT 1 Jump ifN = 1 - - - - - - 5
JOT 1 Jump if N = 0 and Z = 0 - - - - - ~ 5
JLE 1 Jump if N = 1 or Z = 1 - - - - - - 5
JH 1 Jump if C = 1 and Z = 0 - - - - - - 5
JNH 1 JumpifC = OorZ = 1 - - - - - - 5
JV 1 Jump if V = 1 - - - - - - 5
JNV 1 Jump if V = 0 - - - - - - 5
JVT 1 Jump if VT = 1; Clear VT - - - - 0 - 5
JNVT 1 Jump if VT = 0; Clear VT - - - - 0 - 5
JST 1 Jump if ST = 1 - - - - - - 5
JNST 1 Jump if ST = 0 - - - - - - 5
JBS 3 Jump if Specified Bit = 1 - - - - - - 5,6

JBC 3 Jump if Specified Bit = 0 - - - - - - 5,6

DJNZ 1 D +- D - 1; if D*-O then
PC +- PC + 8-bit offset - - - - - - 5

DEC/DECB 1 D+-D-l ./ ./ ./ ./ t -
NEG/NEGB 1 D O-D ./ ./ ./ ./ t -
INC/INCB 1 D+-D+l ./ ./ ./ ./ t -
EXt 1 D <- D; D + 2 +- Sign (D) ./ ./ 0 0 - - 2

EXTB 1. D <- D; D + 1 <- Sign (D) ./ ./ 0 0 - - 3

NOT/NOTB 1 D <- Logical Not (D) ./ ./ 0 0 - -
CLRlCLRB 1 D <-0 1 0 0 0 - -
SHLlSHLB/SHLL 2 C msb-----lsb <-0 ./ ? ./ ./ t - 7

SHRlSHRB/SHRL 2 O~msb-----lsb~ C ./ 0 ./ 0 - ./ 7

SHRNSHRAB/SHRAL 2 msb~ msb-----lsb~ C ./ ./ ./ 0 - ./ 7

SETC 0 C <-1 - - 1 - - -
CLRC 0 C+-O - - 0 - -. -
CLRVT 0 VT O - - - - 0 -
RST 0 PC <- 2080H 0 0 0 (j 0 0 8

DI 0 Disable All Interrupts (I <- 0) - - - - - -
EI 0 Enable ·All Interrupts '(I 1) - - - - - -
NOP 0 PC <-PC + 1 - - - - - -
SKIP. 0 PC <-PC + 2 - - - - - -
NORML 2 Normalize (See sec 3.13.66) ./ 1 0 - - - 7

TRAP 0 SP <- SP - 2; (SP) <- PC; PC +-
(201OH) - - - - - - 9

Note
1. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is.done. Operands D, B and A must conform

to the alignment rules for the required operand type. D and B are locations in the register file; A can be located anywhere in memory.
5. Offset is a 2' s complement number.
6. Specified bit is one of the 2048 bits in the register file.
7. The "L" (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at 2080H.
9. The assembler will not accept this mnemonic.

5-5

8096

Table 3-3. Opcode and State Time Listing

DIRECT IMMEDIATE
INDIRECT@ INDEXED@

NORMAL AUTO·INC. SHORT LONG

I..) I/)

Z Q

i z UJ UJ UJ
!BI/) el/) UJ el/) el/) c Q .1/) UJI/) Q I/) UJI/) Q I/) I/) Q I/) I/) a: 8 UJ

!cc UJ
0 UJ

!cc UJ
0 UJ UJUJ UJ UJUJ 0 UJ WIIJ UJ UJUJ

UJ UJ l- I..) l- I..) I- !cc:e ~ !cc:e I..)
~ !cc:E ~ !cc:e z D.. D.. >- ! D.. >- ! D.. >- ~i= ~i= D.. - ~i= :E 0 0 m 1/)1- 0 m 1/)1- 0 m. m 0 m 1/)1- m _.

ARITHMETIC INSTRUCTIONS

ADD 2 64 3 4 65 4 5 66 3 6/11 3 7/12 67 4 6/11 5 7/12

ADD 3 44 4 5 45 5 6 46 4 7/12 4 8/13 47 5 7/12 6 8/13

ADDB 2 74 3 4 75 3 4 76 3 6/11 3 7/12 77 4 6/11 5 7/12

ADDB 3 54 4 5 55 4 5 56 4 7/12 4 8/13 57 5 7/12 6 8/13

ADDC 2 A4 3 4 A5 4 5 A6 3 6/11 3 7/12 A7 4 6/11 5 7/12

ADDCB 2 B4 3 4 B5 3 4 B6 3 6/11 3 7/12 B7 4 6/11 5 7/12

SUB 2 68 3 4 69 4 5 6A 3 6/11 3 7/12 6B 4 6/11 5 7/12

SUB 3 48 4 5 49 5 6 4A 4 7/12 4 8/13 4B 5 7/12 6 8/13

SUBB 2 78 3 4 79 3 4 7A 3 6/11 3 7/12 7B 4 6/11 5 7/12

SUBB 3 58 4 5 59 4 5 5A 4 7/12 4 8/13 5B 5 7/12 6 8/13

SUBC 2 A8 3 4 A9 4 5 AA 3 6!ll 3 7/12 AB 4 6/11 5 7/12

SUBCB 2 B8 3 4 B9 3 4 BA 3 6/11 3 7/12 BB 4 6/11 5 7/12

CMP 2 88 3 4 89 4 5 8A 3 6!ll 3 7/12 8B 4 6/11 5 7/12

CMPB 2 98 3 4 99 3 4 9A 3 6/11 3 7/12 9B 4 6/11 5 7/12

MULU 2 6C 3 25 6D 4 26 6E 3 27/32 3 28/33 6F 4 27132 5 28/33

MULU 3 4C 4 26 4D 5 27 4E 4 28/33 4 29/34 4F 5 28/33 6 29/34

MULUB 2 7C 3 17 7D 3 17 7E 3 19/24 3 20/25 7F 4 19/24 5 20/25

MULUB 3 5C 4 18 5D 4 18 5E 4 20/25 4 21126 5F 5 20125 6 21126

MUL 2 ® 4 29 ® 5 30 ® 4 31136 4 32/37 ® 5 31/36 6 32/37

MUL 3 ® 5 30 ® 6 31 ® 5 32/37 5 33/38 ® 6 32/37 7 33/38

MULB 2 ® 4 21 ® 4 21 ® 4 23/28 4 24/29 ® 5 23128 6 24/29

MULB 3 ® 5 22 ® 5 22 ® 5 24/29 5 25/30 ® 6 24/29 7 25/30

DIVU 2 8C 3 25 8D 4 26 8E 3 28/32 3 29/33 8F 4 28/32 5 29/33

DIVUB 2 9C 3 17 9D 3 17 9E 3 20/24 3 21125 9F 4 20/24 5 21125

DIV. 2 ® 4 29 ® 5 30 ® 4 32/36 4 33/37 ® 5 32/36 6 33/37

DIVB 2 ® 4 21 ® 4 21 ® 4 24/28 4 25/29 ® 5 24128 6 25/29

Notes:
® Long indexed and Indirect + instructions have identical opocodes with Short indexed and Indirect modes, respectively. The second byte

of instructions using any indirect or indexed addressing mode specifies the exact mode used. If the second byte is even, use Indirect
or Short Indexed. If it is odd, use Indirect + or Long indexed. In all cases the second byte of the instruction always specifies an even
(word) location for the address referenced.

<\) Number of state times shown for internal/external operands.
@ The opcodes for signed multiply and divide are the opcodes for the unsigned functIOns with an "FE" appended as a prefix.

5·6

inter .8096

Table 303. Continued

DIRECT IMMEDIATE
INDIRECT@ INDEXED@

NORMAL AUTO-INC. SHORT LONG

u U) ,
Z Q

Z w w w w 0 CC Q U) Q U) WU) Q U) 8U) U) 8U) Q U) 8U) U) 8U)
::E II: 0 w ~f3 0 w tel 0 w Ww w Ww 0 w Ww

~
Ww

w w f t: i!1 f t: f t: !c::E t: !c::E U t: !c::E !c::E z A. ~I= .:n 1= :nl= A. :nl= :nl= ::E 0 0 ID U)t- 0 ID 0 ID ID 0 ID ID

LOGICAL INSTRUCTIONS
AND 2 60 3 4 61 4 5 62 3 6/11 3' 7/12 63 4 6/11 5 7/12

AND 3 40 4 5 41 5 6 42 4 7/12 4 8/13 43 5 7/12 6 8/13

ANDB 2 70 3 4 71 3 4 72 3 6/ll 3 7/12 73 4 6/11 5 7/12

ANnB 3 50 4 5 51 4 5 52 4 7/12 4 8/13 53 5 7/12 6 .8/13

OR 2 80 3 4 81 4· 5 82 3 6111 3 7/12 83 4 6/11 5 7/12

ORB 2 90 3 4 91 3 4 92 3 6/11 3 7/12 93 4 6/11 5 7/12

XOR 2 84 3 4 85 4 5 86 3 6/11 3 7/12 87 4 6/11 5 7/12

XORB 2 94 3 4 95 3 4 96 3 6/11 3 7/12 97 4 6/11 5 7/12

DATA TRANSF!ER !N~T~UCTION!3
LD 2 AO 3 4 Al 4. 5 A2. 3 6/11 3 7/12 A3 4 6111 5 7/12

LOB 2 BO j 4 BI 3 4 B2 3 6/11 3 7/12 B3 4 6/11 5 7/12

ST 2 CO 3 4 - - - C2 3 7/11 3 8/12 C3 4 7/11 5 8/12

STB 2 C4 3 4 - - - C6 3 7/11 3 8/12 C7 4 7/ll 5 8/12

LDBSE 2 BC 3 4 BD 3 4 BE 3 6/11 3 7/12 BF 4 6/ll 5 7/12

LDBZE 2 AC 3 4 AD 3 4 AE 3 6/11 3 7/12 AF 4 6/11 5 7/12

STACK OPERATIONS (Internal stack)
PUSH I C8 2 8 C9 3 S' CA 2 11115 2 12116 CB 3 IIIi5 4 12/16

POP I CC 2 12 - - -- CE 2 14/18 2 14/18 CF 3 14/1S 4 14/18

PUSHF 0 F2 I 8
POPF 0 F3 I 9

STACK OPERATIONS (external stack)

PUSH I C8 2 12 C9 3 12 CA 2 15/19 2 16/20 CB 3 15/19. 4 16/20

POP I CC 2 14 - - -- CE 2 16/20 2 16/20 CF j 16/20 4 16120
PUSHF 0 F2 I 12
POPF 0 F3 I 13

JUMPS AND CALLS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES
UMP E7 3 8 LCALL EF 3 13/16@

SIMP 20-27@ 2 8 SCALL 28-2F@ 2 13/16@

BR[] E3 2 8 RET FO I I2II6@

Notes: TRAP@ F7 I
(j) Number of Slate times shown for mtemal/extemal operands.
~ The assembler does not accept this mnemonic. ,
@ The least significant 3 bits of the opc!lde are concatenated with the following 8 bits to form an II-bit, 2's complement, offset for the

relative call or jump. .
@ Slate times for stack located intemallextemal.
!B> The assembler uses the generic jump mnemonic (BR) to generate this instruction.

5-7

inter 8096

Table 3-4. CONDITIONAL JUMPS

All condi,ional Jumps are 2 1;lyte instructions. They require 8 state' ilmes if the Jump is taken, 4 if it is not.

MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE
JC 'OB JE OF JOE 06 JOT 02
JNC 03 JNE 07 JLT .DE JLE OA
JH 09 JV 00 JVT OC JS:r 08
JNH 01 ' JNV 05 JNVT 04 JNST 00

JUMP ON BIT CLEAR OR BIT Si!T
These instructions are 3-byte instructions. They require 9 state times If the Jump is taken, 5 if it is not

BIT NUMBER
MNEMONIC 0 1 2 3 4 5 6 7

JBC 30 31 32 33 34 35 36 37
JBS 38 39 3A 3B 3C 30 3E 3F

lOOP CONTROL

DJNZ OP~OOE EO; 3 BYTES; 5/9 STATE TIMES (NOT TAKEN/TAKEN)

SINGLE REGISTER INSTRUCTIONS

MNEMONIC OPCODE BYTES STATES MNEMONIC OPCODE BYTES STATES
OEC . 05 2 4 EXT 06 2 4
OECB 15 2 4 EXTB 16 2 4
NEG 03 2 4 NOT 02 2 4
NEGB 13 2 4 NOTB 12 2 4
INC 07 2 4 CLR 01 '2 4
INCB 17 2 4 CLRB , 11 2 4

SHIFT INSTRUCTIONS

INSTR WORD INSTR BYTE INSTR DBl 'WD
MNEMONIC OP B MNEMONIC OP B MNEMONiC OP B STATE TIMES
SHL 09 3 SHLB 19 3 SHLL 00 3 7 + 1 PE~ SHIFT(£)
SHR 08 3 SHRB 18 3 SHRL OC 3 7 + 1 PER SHIFT(£) ,
SHRA OA 3 SHRAB 1A 3 SHRAL OE 3 7 + 1 PER SHIFT(£)

SPECIAL CONTROL INSTRUCTIONS

MNEMONIC OPCODE BYTES STATES MNEMONIC 'OPCODE BYTES STATES
SETC F9 1 4 Dl FA 1 4
CLRC F8 1 4 EI FB 1 4
CLRVT FC 1 4 NOP FO 1 4
RST FF \ 1 16 SKIP 00 2 4

NORMALIZE

NORML OF 3 11 + 1 PER SHIFT

No~:
® This instruction takes 2 states to pull RST low, then holds it low for 2 states to initiate a reset. The reset takes 12 states, at whIch

time the program restarts at location 2080H.
cr> Execution will take at least 8 states. even for 0 shift.

'5·8

inter 8096

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS,

Ambient Temperature Under Bias O°C to +70°C
Storage Temperature ... , -40°C to +150°C
Voltage from Any Pin to V$S or ANGND ... -0 3V to + 7 OV
Average Output Current from Any Pin 10 mA
Power Dlsslpa,tlon 1 5 Watts

OPERATING CONDITIONS
Symbol Parameter

TA Ambient Temperature Under Bias

VCC Digital Supply Voltage

VREF Analog Supply Voltage I

I

fOSC OSCillator Frequency

VPD Power-Down Supply Voltage

'NOTICE Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device, ThiS IS a'stress rating only and functional operation of
the device at these or any other conditions above those
indicated In the operational sections of thiS specificatIOn IS

not Implied Exposure to absolute maximum rating condi
tions for extended periods may affect deVice reliability

Min I Max Units

0 +70 C

450 550 V

45 55 V
VCC-O,3 VCC+03 V

60 12 MHz

450 550 V

VBS Should be connected to ANGND through a 0 01 pF capacitor ANGND and VSS should be nominally at the same potential

DC CHARACTERISTICS

Symbol Parameter Min Max Units Test Conditions

VIL Input Low Voltage -0.3 +0.8 V

VIH Input High Voltage (Except RESET) 2.0 VCC+0.5 V

VIH1 Input High Voltage, Ri:ID Rising 2.4 VCC+0.5 V

VIH2 Input High Voltage, ~ Falling 2.0 VCC+0.5 V

VOL Output Low Voltage 0.45 V See Note 1.

VOH Output High Voltage 2.4 V See Note 2.

ICC VCC Supply Current 200 mA All outputs
disconnected.

IPD VPD Supply Current 1 mA Normal operation
and Power-Down.

IREF VREF Supply Current 15 mA

III Input Leakage Current to all pins of HSI, PO, P3, ±10 p.A Vin=O to VCC
-

P4, and to P2.1. See Note 3

IIH Input High Current to EA 100 p.A VIH=2.4V

ilL Input Low Current to all pins of P1, and to P2.6, -100 p.A VIL=0.45V
P2.7.

IIL1 Input Low Current to ~ -2 mA VIL=0.45V

IIL2 Input Low Current P2.2, P2.3, P2.4, READY -50, p.A VIL=0.45V

Cs Pin Capacitance (Any Pin to VSS) 10 pF fTEST=1MHz

NOTES:

IOl ~ 036 rnA for all PinS of P1, for P2 6 an'd P2 7, and for all pins of P3 and P4 when used as ports

IOl ~ 20 rnA for TXD, RXD (In senal port mode 0), PWM, ClKOUT, ALE. SHE. RD, WR, and all pins of HSO and P3 and P4 when used
as external memory bus (ADO-AD1S)

2 IOH ~ -20 p.A for all pins of P1, for P26 ad P2 7

IOH ~ - 200 p.A for TXD, RXD (In senal port mode 0), PWM, CLKOUT, ALE, SHE, WR, and all pins of HSO and P3 and P4 when used
as external memory bus (ADO-AD1S)

P3 and P4, when used as ports, have open·draln outputs

3 Analog Conversion not In process

5-9

inter 8096

AID CONVERTER SPECIFICATIONS
AID Converter operation is verified only on the 8097,
8397, 8095, 8395.

. Resolution .. :!: 0.001 VREF
Accuracy , " :!: 0.004 VREF

The absolute conversion accuracy is dependent on the
accuracy of VREF. The specifications given below as
sume adherence to the Operating Conditions section
of these data sheets. Testing is done at VREF = 5.120

Differential nonlinearity :!: 0.002 VREF max
Integral nonlinearity :!: 0.004 VREF max
Channel-to-chanel matching " :!: 1 LSS
Crosstalk (DC to 100kHz) - 60dS max

volts. . .

AC CHARACTERISTICS

Test Conditions: Load capacitance on output pins = 80pf
Oscillator Frequency = 12.00 MHz
4.50 Volts, = VCC ,= 5.50 Volts; 0 C ,= Temperature, = 70 C

Timing Requirements (other system components must meet these specs)

Symbol Parameter Min Max

TCLYX READY Hold after CLKOUT falling edge o (1)

TLLYV End of ALE to READY Setup 2Tosc-60

TLLYH End of ALE to READY high 4Tosc-60 (2)

TYLYH Non-ready time 1000

TAVDV Address Valid to Input Data Valid 5Tosc-80

TRLDV RDf Active to Input Data Valid 3Tosc-60

TRXDZ End of RDf to Input Data Float 0 Tosc-20

Timing Responses (MCS®-96 parts meet these specs)

Symbol Parameter Min Max

FXTAL Oscillator Frequency 6.00 12.00

Tosc Oscillator Period 83 166

TCHCH CLKOUT Period 3Tosc (3) 3Tosc (3)

TCHCL CLKOUT High Time Tosc-20 Tosc+20

TCLLH CLKOUT Low to ALE High -5 20

TLLCH ALE Low to CLKOUT High Tosc-20 Tosc+40

TLHLL ALE Pulse Width Tosc-25 Tosc+ 15

TAVLL Address Setup to End of AI-E Tosc-50

TLLRL End of ALE to RDf or WRf activE1 Tosc-20

TLLAX. Address hold after End of ALE Tosc-20

TWLWH WRf Pulse Width 2Tosc-35

TQVWX Output Data Setup to End of WRf 2Tosc-60

TWXQX Output Data Hold after End of WRf Tosc-25

TWXLH End of WRf to next ALE 2Tosc-30

TRLRH RDf Pulse Width 3Tosc-30

TRHLH End of RDf to next ALE Tosc-25

NOTES:

Units

nsec

nsec

nsec

nsec

nsec

nsec

nsec

Units

MHz

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

,!lsec

1. If the 48-pin part is being used then this timing can be generated by assuming that the CLKOUT falling edge has occurred
at 2Tose + 55 (TLLCH(max) + TCHCL(max)) after the falling edge of ALE.

2. If more than one wait state is deSired, add 3Tosc for ~aeh additional wait state.

3. ,CLKOUT is directly generated as a divide by 3 of the oscillator. The period will be 3Tosc :!: 5 nsec if rose is constant and
!he rise and fall times on XTAL 1 are less than 1 0 n~e. '

5-10

inter 8096

CLK

_TCHCH
I , I ,

I
---"\

,
OUT

"
I

---J J
TCHCL

TYVCL

TCLLH I--- _TCLYX

REA DY) VALID K
TLLCH

TLHtL TYLYH

I~ _TLLYV-" \ ALE

TLLRL TRLRH TRHLH

TAVLL TRXDZ

I- TLLAX -- !-TRLDV_

AO - ADDR OUT DATA IN
,

TAVDV

TlLRL

f-
!-TWLWH ,TW)'LH_

WR ,
TAVLL

~
TLLAX

f- TWXQX
_TQVWX

AD ~ ADDR OUT DATA OUT

,INST

\ VALID /

5-11

MCS®,96 Article Reprint. 6

'.'" '

,'I' ,
~' . '

\'

ARTICLE
iREPRINT ~

" ,
AR~321

February 1984

Reprinted from DIGITAL DESIGN © February 1984, Morgan.Grampian Publishing Company . Order Number. 231040.001

6-1

COMPONENTS

High-Performance Event
Interface For A Microcomputer

As silicon technology advances to provide
denser geometries, timer structures have
become mOre elegant and powerful.

Microcontrollers are microprocessors
specially configured to monitor and con
trol mechanisms and processes rather
than manipulate data. The systelljs they
are imbedded in are often called real
time control systems; microcontrollers
always incorporate some form·of timer
structure to allow synchroniza\ion .with
the outside or 'real' world .. As silicon
technology advances to provide denser
geometries, these structures have become
more elegant and powerful.

This trend can be seen in the Intel
8048, the Motorola 6801, and the Intel
8051 which were introduced at approx
Imately two and a half year intervals
starting in 1976. The 8048 has a single
8-bit timer; the 680 I has a 16-bit timer,
and the 8051 has two 16-bit timers. The
new 16-bit microcontroll~r from Intel,
the 8096, has an independent High
Speed I/O subsystem which provides
the functionality of four to eight 16-pit
timers. While this subsystem is designed
to provide an integrated approach to
measuring and controlling time mod
ulated signals, -it is easier to describe as
separate input and output units.

High Speed Input Unit
The purpose of the High Speed Input
unit is to allow the measurement of the
periods of incoming pulse or frequency
modulated inputs with high resolution
and minimal software overhead. A block
diagram of the hardware used to
accomplish this goal is shown in Figure
l. the heart of this unit is a program
mable change detector which monitors
. the four I/O pins of the 8096 which are
ctesignated as "High Speed Inputs"

_ (HSI.O-HS1.3).
The operatIng mode of the change

detector IS controlled by a byte register
which can be written as register 3 of the
onboard register file. This register has
the prededare9 mIme HSLMODE in
the 8096 assembly language. The regis
ter contaInS a separate field for each of

HSIO

HSI1
HSI2

Changes (4)

Control

the four HSI pins. There are two bits in
each of these fields and they are encoded
as follows:

• 00 Capture every eighth positive
transition

• 0 I Capture positive transitions
only
10 Capture negative transitions
only
II Capture both positive and
negative transitions

It is also possible to disconnect one or
more of the HSI pins from the change
detector by writing into one of the two
I 10 control registers. This register,
known to the assembly language as
lOCO is addressed as register 15H of
the on-board register file. HSI pins th~t

Event
FIFO

,(8x.20)

Figure 1: Diagram shows the HIgh-Speed Input Unit which is used to measure incoming pulse
or frequency modulated InputS.

6-2

Microcompule(

RESET

HSOO
HSOl
HS02
HS03
HS04
HS05

~----------~------------~~DBUS

Figure 2: Block diagram of the High Speed Output hardware.

have to be disconnected from the change
detector are available for use as normal
digital inputs and two of them (HSI.2
and HSI.3) can be used by the High
Speed Output unit.

When a change (or changes) of the
required type occurs, four bits of change
information, along with the current
value of T1MERI, are loaded .into
a FIFO (first-in, first-out memory).
Each set bit in this field indicates that a
change occurred on the corresponding
input pin.

The time reference for the HSI unit is
T1MERI, a sixteen bit counter which is
incremented every eight state times by
the CPU clock. With a 12 M Hz crystal
this gives a resolution of 2.0 microsec-

o

onds. TI M ER I is cleared by reset and
then starts incrementing. It cannot be

, written to by the software but can be
. read as a sixteen bit word at any time.

When its count goes from all ones to
zero a flag is set and an interrupt gener
ated. The software can use this flag
and/ or interrrupt to extend the meas

, urement range of the HSI unit.
The FIFO that is used to store the

change and time information is eight
levels deep (including the holding regis
ter) and 20 bits wide. The oldest entry in
the FIFO is placed in the holding regis
ter. When the holding register is read
then the next oldest entry will drop into
it and another cell of the FIFO will
become available for input data. An

I TID I I I Channel Code I

0-5 HSO.O - HSO 5
6 HSOOAnd HSO 1
7 HSO 2 And HSO 3

8-8 Software Timers

E Reset Timer 2
F Start AID Conversion

'-----lnterruptlNo Interrupt

T2RST

,
,

L... ______ 110 Data For HSO X
IOC05

L... ___________ Tlmer 2!Tlmer 1

interrupt can be generated either when
one or more entries exist in the FI FO or
when seven or more entries exist. The
choice is made by the software by setting
a bit in I/O control register I (lOCI).

The 8096 only &UPports byte and
word operands for most operations.
The holding register is 20 bits wide
hence the holding register is broken
down into two registers. The 16-bit time
field is read as a word register and is
known as HSLTlME to the assembler.
The change informati'on is read as an
eight-bit byte known as HSLSTATUS.
The four extra bits in this byte are used
to report the state of the HSI pins at the
time the register is read (not at the time
the reported change occurred). The
holding register is cleared after the HSL
TIMEis read so that HSLSTATUScan
be read at any time to monitor the
actual state of the HSI pins without
losing data from the FIFO.

High Speed Output Unit
The High Speed Output unit serves the
output reqUirements of the system in the
same way as the HSI unit serves the
mput. It allows the generation of pulse
and frequency modulated Signals with
high resolutIOn and mmimal software
overhead. It can also be used to generate
time delays for the operating software
and to trigger the AI 0 converter at pre
cise time intervals for signal processing
algonthms. A block diagram of the
HSO hardware IS shown in Figure 2.

The HSO unit is dnven by a Content
Addressable Memory (CAM) which is
23 bits wide and eight levels deep The

(contmued on page 120)

T2 ClK - HSll
- - - - -lOCO?

Figure 3: DIagram showsformat of Command Tag . . The lower four
bits specify the basic operation and the remaimng three bits are
options 10 the basIC operation.

FI!(ure4 Figure ,hOH \ tJw c!t)cA. and re\el 0P(/On.\ of TIM ER2 used
hI' the Htl(h Speed Ourpurl/nil

6-3

Microcomputer

23 bits are broken into a 16 bit time tag
and a seven bit command tag. The
command tag tells it when to do it. The
format of the command tag is shown in
Figure 3. The lower four bits of the tag
specify theba~ic, operation and the
remaining three bits specify options to
the basic operation. The ba~ic opera
tions supported are:

Write to one of the six pins con
trolled by the HSO unit (HSO.O
HSO.5).
Write to HSO.O and usa. I with
a single command.
Write to HSO.2 and HSO.3 with
a single command.
Set one of four software timer
flags.
Reset Timer 2.

• Trigger an AI D conversion.

If an operation on an HSO pin is
specified. then the value to be written to
the pin is taken from bit five of the
'command tag. Note that if two HSO
pins are to be modified with the same
command then both will be set to the
same state. Bit five of the command tag
is ignored for the other HSO opera
tions. Bit four of the command tag en
ables the generation of an interrupt
which occurs when the command is
executed.

There are two interrupts generated by
the HSO unit. One of them indicates
that an operation involving a HSO pin
has occurred. and the other is used to
signal that one of the internal HSO
functions (such as setting a software
timer flag) has been completed. Bit six
of the command tag controls which {lne
of the two timers available to the HSO
unit will be used as a time base for the
command. If bit six is a zero then the
command tag will be executed when
TIMERI becomes equal to the time tag
stored in the CAM. If bit six is a one
then the command tag is executed based
on TIMER2. In either case the com
mand is flushed from the CAM as soon
as it is executed.

One of the timers (TIMERI) used by
the HSO unit is the same timer that is
used by the HSI unit. The other
(TIMER2) is used only by the HSO
unit. TIMER2 allows HSO events to be
generated on a time base that is different
from that ofthe CPU. Like TIMERI it
is a 16 bit counter that can be read but
not written to by the software. It also

has an overflow flag and interrupt to
indicate that it has incremented from a
source external to the 8096 and can be
reset by a number of paths in addition to
system reset. The options available are
shown in Figure 4.

The clock input can come either from
a specific pin designated as the T2CLK
or it can come from HSI.l depending
on the state of lOCO.; which is set by the
software. In either case the counter is
incremented on both edges of the clock
signal. TIMER2 can be reset by a spe
cific pin designated as T2RST or it can
be reset by HSO.O. It is also possible for
the software to lock out external sources
of reset (by clearing IOCO.3) andlor
reset TIMER2 directly (via lOCO. I) or
indirectly via a command stored in the
CAM. Note that this last possibility
allows TIMER2 to be configured as a
modulatjon counter since the software
can command the HSO unit to clear
TIMER2 when it reaches a given value.

Commands are loaded into the CA M
from the 23 bit wide holding register·
which. like the holding register for the
HSI unit, is actually made up of a byte
register (HSO_COMMAND) which
stores the command tag and a word
register is considered loaded after HSO_
TIME is loaded so the software must
always load HSO_COMMAND and
then load HSO_TIME.

]be software must also ensure that
the loading of the two registers is not
interrupted by an interrupt service rou
tine which uses the HSO unit. If such an
interrupt occurs immediately following
the loading of HSO_COMMAND then
the subsequent loading of HSO_TIME
will reload the command tag written
into the holding register by the interrupt
service routine. The safest procedure is
to lockout interrupts during the loading
of the holding registers, however a care-

ful examination of the control flow of
the program may show this to be
unnecessary.

If there is an empty cell in the CAM
when the holding register is loaded then
the command and its time tag will be
loaded into the CA M within seven state
times (1.75 microseconds at 12 MHz). It
is important to note that a command
will not execute from th~ holding regis
ter, it must be loaded into the CAM. If
the CAM is full then the command will'
remain in the holding register until one
of the commands already in the CAM is
executed and flushed.

Two status flags are available to help
the software manage the CAM. One of
them indicates that the holding register
is full or the CAM is full. Once a com
mand is loaded into the CAM it cannot
be read or overwritten, it can only be
flushed after it is executed. To support
those situations where the software
wishes to cancel a command after it has
been loaded, the HSO unit is configured
so that two operations to a HSO pin
which cancel each other will not effect
the setting of the pin if they are executed
with identical time tags.

Application Example
Since the 8096 incorporates a full duplex
asynchronous serial port in its hardware
it may seem strange that one would
want to implement a software driven
serial port using the high speed 110 fea
tures. There are, however, many useful
configurations of microcontroller sys
tems which in fact require more than a
single serial port. An obvious example
would be a network of 8096 controllers
which use the hardware serial port for
interprocessor communications. One (or
more) of these controllers might also be
required to communicate with a CRT
terminal used to supervise or monitor

1 10<02:03:0<05:06:07:081 ~

Figure 5: FIgure shows
standard /O-bit asyn
chronous frame.

~~J
:)

T"0
+1 (
+3 (
+5 (
+7 (

+9 (
+11 (
+13' (T
+15 (T
+17 (
+19 (,

!)
~)
')
')
n
')

1

6-4

The serial output
process is simpler
than the receive
process because

there is no need to
synchronize with
the outside world.

the system. Another example would be
a simple CRT terminal design based on
an 8096 which needs one $erial port for
communication and another for driving
a slave printer. It l!1lI.y also be true that
this is, in fact, a strange requirement. In
any case it is an excellent example to
show how the high speed 110 features of
the 8096 might be used.

The objective is to add a software
driven asynchronous $erial port to the
8096 that provides full duplex $eriai
communication at 2400 baud. A stand
ard frame consisting of a START bit,
eight data bits and a STOP bit will be
assumed. A high speed input pin
(HSI.O) will be used for received data
and a high speed output pin (HSI.O) for
transmit data.

A standard to-bit asynchronous frame
is shown in Figure 5. The figure also
shows the points in time where the
receive process must sample the incom-

ing data stream and take some action.
The first timing point (labeled T.o) is the
leading edge of the start bit, the accurate
sensing of this edge is important becau$e
all subsequent sample times are relative
to this edge. This event also places the
highest burden on the sampling algo
rithm because it can occur at any point
in time. The rest of the sampling events
occur at some multiple of one-half a bit
period relative to the edge of the start bit.
The diagram uses the symbol B to
represent a bit period.

At the second sample, which occurs
half way through the start bit, the data
must be checked to make sure it is still a
SPACE. If it is not. a noise pulse has
caused a false start and the receive pro
cess must be reinitiali7ed. The next eight
samples are used to shift in the serial
data stream. The last sample. which
occurs 19 one-half bit times after the
leading edge of the start bit. is used to
verify that the stop bit is valid (Le. it is in
the MARK state). If it is not thea fram
ing error must be reported since it is _
likely that the' receiver is not properly
synchronized with the transmitter.

The HSI unit is an ideal mechanism
for detecting the leading edge of the start
bit. All that needs to be done is to set the
mode register to detect negative going
edges on HSI.O.

The software timer interrupt service
routine implements a simple state
machine based on the variable count.
The routine also arranges for the next
sample by issuing a command to the
HSO unit to generate another software

6-5

Micro! omputer

timer interrupt at the appropriate time.
This is done in all states unless the recep
tion of the character is complete or a
false START bit has been detected.
Under these conditions the receive pro
cess must be reinitialized by enabling
HSJ.O into the event FIFO (by setting
IOCO.O) instead ofretriggering the soft
ware timer.

The serial output process is simpler
than the receive process because there is
no need to synchronize with the outside
world. A transmission can be started at
any time by setting the TxD line to a
space for one bit time to form the
START bit. Following the START bit
are the eight data bits and the STOP bit.
The HSO interrupt service routine can
be used to transmit the data and the stop
bit but the transmit process must be
initialized.

The only real complication in the HSO
interrupt service routine is that there are
no flags available in the 8096 which
indicate which of the HSO outputs
caused the interrupt. In many systems
this does not represent a problem
because the HSO unit can be treated as
a write only device. It is given com
mands which are to be executed at the
proper time but no feedback is required
to indicate when the proper time has
been reached. In this case, however, the
feedback is required since the CAM isn't
deep enough to hold all of the transi
tions required for a character. Even if it
were big enough it is unlikely that so

,many CAM locations would be dedi-
cated to serial output. 0

MCS®~51 Architecture 7

CHAPTER 7
MCS®-S1 ARCHITECTURE

7.0 INTRODUCTION

The MCS®-51 family of S-bit microcontrollers consists of
the devices listed in Table I, all of which are based on
the MCS-51 architecture shown in Figure 7-1. The original
S051 was built in HMOS I technology. The HMOS II
version, which is the device currently in production, is
called the S05IAH. The te~ "S051," however, is still

PO.O-PO.7

,- - - - - - - -1:ll!::H.:~

~
~
-= I

PSEN

ALE

Ell
RST

I
I
I
I
I
I
I
I
I
I ,..---=---,

I ,-,,=::.:..=::..J

I
I
I
I
I r-----.----,

often used to generically refer to all of the MCS-51 family
members. This is the case throughout this manual, except
where specifically stated otherwise. Also for brevity, the
term "S052" is used to refer to both the S052 and the
S032, unless otherwise noted.

....... -L-L.L..L..L..t,- - - - - -- - -- --,

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 7-1. MCS-51 Architectural Block Diagram

7-.1

MCS®-51 ARCHITECTURE

The newest MCS·51 members, the 8032 and 8052, have
more on-chip memory and an additional 16·bit timer/
counter. The new timer can be used as a timer, a counter,
or to generate baud rates for the serial port. As a timerl
counter, it operates in either a 16·bit auto· reload mode or
a 16-bit "capture" mode. 'This new feature is described
in Section 7.6.2.

Pinouts are shown in the individual data sheets and on the
inside back cover of this handbook.

Table 1. MCS®-S1 Family Members

ON-CHIP ON-CHIP
PROGRAM DATA

PART TECHNOLOGY MEMORY MEMORY

8051 HMOS 4K-ROM 128

8031 HMOS NONE 128

875lH HMOS I 4K-EPROM 128

80C51 CHMOS 4K-ROM 128

80C3! CHMOS NONE 128

8052 HMOS 8K-ROM 256

8032 HMOS NONE 256

The major MCS@·51 features are:
• 8·Bit CPU
• On·Chip oscillator and clock circuitry
• 32 110 lines
• 64K address space for external data memory
• 64K address space for external program memory
• Two 16·bit timer/counters (three on 8032/8052)
• A five·source interrupt structure (six sources on

8032/8052) with two priority levels
• Full duplex serial port
• Boolean processor

7.1 MEMORY ORGANIZATION

The 8051 has separate address spaces for Program Mem·
ory and Data Memory. The Program Memory can be up
. to 64K bytes long. The lower 4K (8K for 8052) may reside
on·chip. The Data Memory can consist of up to 64K bytes
of off·chip RAM, in addition to which it includes 128
bytes of on·chip RAM (256 bytes for the 8052), plus a
number of "SFRs" (Special Function Registers) as listed
below.

Symbol Name Address
"ACC Accumulator OEOH
*B B Register OFOH
*PSW Program Status Word ODOH
SP Stack Pointer 81H
DPTR Data Pointer (con- 83H

slsting of DPH and DPL 82H
"PO Port 0 80H
"P1 Port 1 90H

Symbol Name Address

"P2 Port 2 OAOH
"P3 Port 3 OBOH
"IP Interrupt Priority Control OB8H
"IE Interrupt Enable Control OA8H
TMOD Timer/Counter Mode

Control 89H
"TCON Timer/Counter Control B8H
+ "T2CON Timer/Counter 2 Control OC8H
THO Timer/Counter 0

(high byte) 8CH
TLO Timer/Counter 0

(lOW byte) BAH
TH1 Timer/Counter 1

(high byte) BDH
TL1 Timer/Counter 1

(lOW byte) BBH
+TH2 Timer/Counter 2

(high byte) OCDH
+TL2 Timer/Counter 2

(lOW byte) OCCH
+ RCAP2H Timer/Counter 2 Capture

Register (high byte) OCBH
+ RCAP2L Timer/CoI,mter 2 Capture

Register (low byte) OCAH
"SCON Serial Control 98H
SBUF Serial Data Buff 99H
PCON Power Control 87H

The SFRs marked with an asterisk (*) are both bit· and
byte·addressable. The SFRs marked with a plus sign
(+) are present in the 8052 only. The functions of the
SFRs are described as follows.

ACCUMULATOR

ACC is the Accumulator register. The mnemonics for ac·
cumulator·specific instructions, however, refer to the ac·
cumulator simply as A .

B REGISTER

The B register is used during multiply and divide opera·
tions. For other instructions it can be treated as another
scratch pad register.

PROGRAM STATUS WORD

The PSW register contflins program status information as
detailed in Figure 7·2.

STACK POINTER

The Stack Pointer register is 8 bits wide. It is incremented
before data is stored during PUSH and CALL executions.
While the stack may reside anywhere in on·chip RAM,

MCS<Rl-51 ARCHITECTURE

the Stack Pointer is initialized to 07H after a reset. This
causes the stack to begin at location OSH.

DATA POINTER

The Data Pointer (DPTR) consists of a high byte (DPH)
and a low byte (DPL). Its intended function is to hold a
16-bit address. It may be manipulated as a l6-bit register
or as two independent S-bit registers.

. PORTS 0 to 3

PO, PI, P2 and P3 are the SFR latches of Ports 0, 1, 2
·and 3., respectively.

SERIAL DATA BUFFER

The Serial Data Buffer is actually two separate registers,
a transmit buffer and a receive buffer register. When data
is moved to SBUF, it goes to the transmit buffer where
it is held for serial transmission. (Moving a byte to SBUF
.is what initiates the transmission.) When data is moved
from SBUF, it comes from the receive buffer.

TIMER REGISTERS

Register pairs (THO, TLO), (THI, TLl), and (TH2, TL2)
are the 16-bit counting registers for Timer/Counters 0, 1,
and 2, respectively.

CAPTURE REGISTERS

The register pair (RCAP2H, RCAP2L) are the capture
registers for the Timer 2 "capture mode." In this mode,
in response to a transition at the S052's T2EX pin, TH2
and TL2 are copied into RCAP2H and RCAP2L. Timer

(MSB)

I CY AC FO RSl

Symbol Position Name and Significance

CY PSW.7 Csrryflag.

AC PSW.6 Auxiliary Carry flag.
(For BCD operations.)

FO PSW.S Flag 0
(Available to the user for general
purposes.)

RSl PSW.4 Register bank Select control bits 1 & O.
Sel/cleared by software 10 determine

RSO PSW.3 working register bank (see Note).

2 also has a 16-bit auto-reload mode, and RCAP2H and
RCAP2L hold the reload value for this mode. More about
Timer 2's features in Section 7.6.2.

CONTROL REGISTERS

Special Function Registers IP, IE, TMOD, TCON,
T2CON, SCON, and PCON contain control and status
bits for the interrupt system, the timer/counters, and the
seljal port. They are described in later sections .

7.2 OSCILLATOR AND CLOCK CIRCUIT

XTALl and XTAL2 are the input and output of a single
stage on-chip inverter, which can be configured with off
chip components as a Pierce oscillator, as shown in Figure
7-3. The on-chip circuitry, and selection of off-chip com
ponents to configure the oscillator are discussed in Section

30 pI ' 10 pI FOR CRYSTALS
40 pI ' 10 pI FOR CERAMIC RESONATORS

18
r-----i~------1r---------1XTAl2

E----~I~------~x~ll 19
30 pI • 10 pI FOR CRYSTALS
40 pI . 10 pf FOR CERAMIC RESONATORS

Figure 7-3. Crystal/Ceramic Resonator Oscillator

(lSB)

RSO OV P I

Symbol Position Name and Significance

OV PSW.2 Overflow flag.

PSW.l (reserved)

P PSW.O Parity flag.
Sel/cleared by hardware each instruc-
tion cycle to indicate an oddleven
number of "one" bits in the accumu-
lator, i.e., even parity.

Note- the contents of (RS1. RSO) enable the working register
banks as follows:

(O.O)-Bank 0 (00H-07H)
(0.1)-Bank 1 (OBH-OFH)
(1.0)-Bank 2 (10H-17H)
(1.1)-Bank 3 (lBH-1FH)

Figure 7·2; PSW: Program Status Word Register

7-3

MCS®·51 ARCHITECTURE

7.13. A !)lore detailed discussion will be found in Appli
cation Note AP-155, "Oscillators for Microcontrollers,"
which is included in this manual.

The oscillator, in any case, drives the internal clock gen
erator. The clock generator provides the internal clocking
signals to the chip. The internal clocking signals are at
half the oscillator frequency, and define the internal

OSC.
(XTAL2)

ALE

READ OPCODE.

phases, states, and machine cycles, which are described
in the next section.

7.3 CPU TIMING

A machine cycle consists of 6 states (12 oscillator pe
riods). Each state is divided into a Phase 1 half, during
which the Phase 1 clock is .active, and a Phase 2 half,

______ ,-..l--,---,--,--'--r--,--..,- [_R:~D NEXT OPCODE AGAIN.

______ '----'----'----'---'---'---'-
(A) 1-byte, 1-cycle instruction, e.g., INC A.

I
I READ OPCODE.

I

________ r: -'-..... --r--..,--'-...... --,---,- [_R:~ NEXT OPCODE.

________ L-_-'-_-'-_--' __ .1-._-'-_~- _____ .

(B) 2-byte, 1-cycle instruction, e.g., ADD A, #data

READ OPCODE.
READ NEXT
OPCODE (DISCARD).

- - - - - __ .-..L.......,-_-.-_--,,-'--..--_..,-_-,--L.._.-_.,-_ -'--,-__ ,--_..,

_______ '-_-'-_-'-_--''--_.1-._-'-_-'-__ '--_-'-_-'-_--'-__ '--_ _____ _

(e) 1-byte, 2-cycle insluction, e.g., INC DPTR.
I

READOPCODE
(MOVX).

READ NEXT OPCODE AGAIN. J
NO FETCH. I

l I ____ _

------'---'--~~---'---L--'-~-'--~-~-7--~--'~~------l ADDR DATA
(D) MOVX (l-byte, 2-cycle)

ACCESS EXTERNAL MEMORY

Figure 7-4. 8051 ,Fetch/Execute Sequence$

7-4

MCS®-51 ARCHITECTURE

during which the Phase 2 clock is active. Thus, a machine
cycle consists of 12 oscillator periods, numbered SIP I
'(State I, Phase I), through S6P2 (State 6, Phase 2). Each
phase lasts for one oscillator period. Each state lasts for
two oscillator periods. Typically, arithmetic and logical
operations take place during Phase I and internal register
to-register transfers take place during Phase 2.

The diagrams in Figure 7-4 show the fetch/execute timing
referenced to the internal states and phases. Since these
internal clock signals are not user accessible, the XT AL2
oscillator signal and the ALE (Addrt\ss Latch Enable) sig
nal are shown for external reference. ALE is normally
activated twice during each machine cycle: once during
SIP2 and S2PI, and again during S4P2 and SSP!.

Execution of a one-cycle instruction begins at S IP2, when
the opcode is latched into the Instruction Register. If it is
a two-byte instruction, the second byte is read during S4
of the same machine cycle. If it is a one-byte instruction,
there is still a fetch at S4, but the byte read (which would
be the next opcode), is ignored, and the Program Counter
is not incremented. In any case, execution is complete at

WRITE
TO
LATCH

PIN

READ
LATCH

INT BUS

WRITE
TO
LATCH

ADDR/DATA

(A) PORT 0 BIT

ADDR

CONTROL

(C) PORT 2 BIT

VCC

the end of S6P2. Figures 7-4A and 7-4B show the timing
for a I-byte, I-cycle instruction and for a 2-byte, I-cycle
.instruction.

Most 8051 instructions execute in one cycle. MUL (mul
tiply) and DIV (divide) are the only instructions that take
more than two cycles to complete. They take four cycles.

Normally, two code bytes are fetched from Program Mem
ory during every machine cycle. The only exception to
this is when a MOVX instruction is executed. MOVX is
a I-byte 2-cycle instruction that accesses external Data
Memory. During a MOVX, two fetches are skipped while
the external Data Memory is being addressed and strobed.
Figures 7 -4C and 7-40 show the timing for a normal 1-
byte, 2-cycle instruction and for a MOVX instruction.

7.4 PORT STRUCTURES AND OPERATION

All four ports in the 8051 are bidirectional. Each consists
of a latch (Special Function Registers PO through P3), an
output driver, and an input buffer.

READ
LATCH

INT B:.,:U:.,:S=--...... -I
WRITE
TO
LATCH

READ
PIN

(B) PORT 1 BIT

ALTERNATE
OUTPUT

FUNCTION

ALTERNATE
INPUT

FUNCTION

(0) PORT381T

Figure 7-5. 80.51 Port.Blt Latches and 1/0 Buffers

'See Figure 7-6 for details of the internal pullup.

7-5

MCS®-S1 ARCHITECTURE

The output drivers of Ports 0 and 2, and the input buffers
of Port 0, are u~ed in accesSeS to external memory. In this
application, Port 0 output-s the low byte of the external
memory address, time· multiplexed with the byte being
written or read. PortZ outputs the high byte of the external
memory address when the address is 16 bits wide. Oth·
erwise the Port 2 pins continue to emit the P2 SFKcontent.

All the ,Port 3 pins, and (in the 8052) two Port I pins are
multifunctional. They are not only port pins, but also serve
the functions of various special features as listed below:

PORT PIN ALTERNATE FUNCTION
*Pi.0

*Pi.i

P3.0
P3.i
P3.2
P3.3
P3.4

P3.S

P3.6

P3.7

T2 (Timer/Counter 2
external input)
T2EX (Timer/Counter 2
capture/reload trigger)
RXD (serial input port)
TXD (serial output port)
INTO (external interrupt)
INTi (external interrupt)
TO (Timer/Counter 0 external
input)
T1 (Timer/Counter 1 external
input)
WR (external Data memory
write strobe)
RD (external Data memory
read strobe)

*PI.O and PI.I serve these alternate functions orily on the
8052.

The alternate functions can only be activated if the cor·
responding bit latch in the port SFR contains a I. Oth·
erwise the port pin is stuck at O.

7.4.1 I/O Configurations

Figure 7·5 shows a functional diagram of a typical bit
latch and 1I0 buffer in each of the four ports. The bit latch
(one bit in the port's SFR) is represented as a Type D
flip· flop , which will clock in a value from the internal bus
in response,to a "write to latch" signal from the CPU.
The Q output of the flip· flop is placed on the internal bus
in response to a "read latch" signl\l from the CPU. The
level of the port pin 'itself is placed on the internal bus in
response to a "read pin" signal from the CPU. Some
instructions that read a port activate'the "read latch"
signal, and others, activate the '''read pin" signal. More
about that in Section 7 .4.4.

As shown in Figure 7·5, the output drivers of Ports 0 and
2 are switchableto an internal ADDR and ADDR/DATA
bus by an internal CONTROL signal for use in external
memory accesses. During external memory accesses, the
P2 SFR remains unchanged, but the PO SFR gets Is written
mho ~

7·6

Also shown in Figure 7·5, is that if a P3 bit latch contains
ai, then the output level is controlled by the signal labeled
"alternate output function." The actual P3.X pin level is
always ,available to the pin's alternate input function, if
any.

Ports I, 2, and 3 have internal pull·ups. Port 0 has open·
drain outputs. Each 1/0 line can be independently used as
an input or an output. (Ports 0 and 2 may not be used as
general purpose 1I0 when being used as the ADDRIDATA
BUS). To be used as an input, the port bit hitch must
contain a 1, which turns off the output driver FET. Then,
for Ports 1, 2, and 3, the pin is pulled high by the internal
pull·up, but can be pulled low by an external source.

Port 0 differs in not having internal pullups. The pullup
FET in the PO output driver (see Figure 7·5A) is used only
when the Port is emitting 1 s during external memory ac·
cesses. Otherwise thepullup FET is off. Consequently PO
lines that are being used as output port lines are open
drain. Writing a !-to the bit latch leaves both output FETs
off, so the pin floats. In that condition it can be used as
a high· impedance' input.

Because Ports I, 2, and 3 have fixed internal pullups they
are sometimes called "quasi·bidirectional" ports. When
configured as inputs they pull high and will source current
(ilL, in the data sheets) when'externally pulled low. Port
0, on the other hand, is considered "true",bidirectional,
because when configured as an input it floats.

All the port latches in the 8051 have I s written to them
by the reset function. If a 0 is subsequently written to a
port latch, h can be reconfigured as an input by writing
a 1 to it.

7.4.2 Writing to a Port

In the execution of an instruction that' changes the value
in a port latch, the new value arrives at the latch during
S6P2 of the final cycle of the instruction. However, port
latches are in fact sampled by their output buffers only
during Phase I of any clock period. (During Phase 2 the
output buffer holds the value it saw, during the previous
Phase I). Consequently, the new value in the port latch
won't actually appear at the output pin until the next Phase
1, which will be at SIPI of the next machine cycle.

'Ifthe chaqge requires a O·to·1 transition in Port I, 2, or
3, an additional pull·up is turned on during SIPI and
SIP2 of the cycle in which the tranS'ition occurs. This is
done to increase the transition speed., The extra pull·up
can source about 100 times the current that the normal
pull·up can. It should be noted that the internal pull·ups
are field·effect transistors, not linear resistors. The pull·
up arrangements are shown in Figure 7·6.

In HMOS versions of the 8051, the fixed part of the pull·
up is a depletion·mode transistor with the gate wired to
th~ source. This, transistor will allow the pin to source

MCSI!!l-51 ARCHITECTURE

ENHANCEMENT MOOE,FET

QC>~~------------~~--------~

,',

A. HMOS Configuration. The enhancement mode transistor is turned
on, for 2 os<:. periods after Q makes a 1-to-0 transition.

Q
FROM PORT

LATCH' , '

",

INPUT o-~-oC
DATA

READ
PORT PIN

B. :OHMOS, Conflguraiion. pFET 1 is turned on for 2 osc.
periods after Q ~akes a1-to-0 transitlon.,During this.

, time, pFET;1 also turns on pFET 3 throughthe inverter
" to for,m a latch which holds the 1. pFE,T,2!s also on.,'

: . ~ .

, "Fig~re 7:6. Por:ts 1 and 3 HMos and CHMOS Interrllil PlIII·up Configurations.
Port 2 is similar except that It,holds the strong pullup' on 'while emitting 1s that are address bits.

, ,(See text, "Accessing External Memory."): " " ,,,

about 0.25 rnA when shorted to. ground. In patallel with
the fixed pull-up is an enhancement-mode transistor,
whieh is' activated during SI' whenever the port' bit does
a O-to~ 1 transition. During this interval, if'the port pin is
shorted'th ground, 'this extra transistor' will allow the pin
to source an additional 30 rnA. :

In 'the CHMOS, versions; the pull-up consists of three
pFETs: It should be noted that an n-cl!annel FET (nFET)
~s turned on when a ,logical '1 is applied to its ghte, and '
is 'tubieg qff whim a logical 0 is applied to its gate. A p
chanriel FET: (pFET) is the opposite: it is on when its gate
s~e~ a O,:and off ~hen its gate Sees a,l.

-7-7

pFET 1 in Hgure 7-68 is ,the transistor,that.isturned on
for 2 oscillator periods af1;er a,6-to-l transition in the, port
latch. While it's on, it ruins on pFET 3' (a weak pull-up),
through the inverter. This inverter and pFET form a latch
which hold the 1. ' '

Note that if the pin is emitting aI, a negative glitch on
the pin from some external source can tum off pFET 3,
cal,lsing the pip to gointo a fio,at state" pFET 2 is a very
weak pull-up which is on. wheneve~ the 'nFET is off, in
tradiiional CMOS style. !t's ~nlyabout 1110 the stren~th
of pFET3. Its function is to restore a' I to the pin in the
~vel,lt the pin had a I ,and lost i~ to a glitch.

Mcs·~1ARCHrrECTURE

7.4.3 Port loading and Interfacing

The output buffers of Ports I, 2, and 3 can each drive 4
LS 1TL inputs. These ports on HMOS versiOlls can be
driven in a nonnal manner by any 1TL or NMOS circuit.
Both HMOS and CHMOS pins can be driven by open
collector and open-drain outputs, but note that O-to-I tran
sitions will not be fast. In the HMOS device, if the pin
is driven by an open collector output, a O-to-I transition
will have to be driven by the relatively weak depletion
mode F£T in Figure 7-6(A). In the CHMOS device, an
input 0 turns off pull-up pFET3, leaving only the very
weak pull-up pFET2 to drive the transition.

Port 0 output buffers can each drive 8 LS 1TL inputs.
They do, however, require external pull-ups to drive
NMOS inputs, except when being used as the ADDRESSI
DATA bus.

7.4.4 Read-Modlfy-Wrlte Feature

Some instructions that read a port read the latch and others
read the pin. Which ones do which? The instructiolls that
read the latch rather than the pin are the ones that read
a value, possibly change it, and then rewrite it to the latch.
These are called "rea!1-modify-write" instructions. The
mstructions listed below are read-modify-write instruc
tions. When the destination operand is a port, or a port
bit, these instructions read the latch rather than the pin:

ANL
ORL
XRL

JBC

CPL

INC ,.
DEC
DJNZ

(logical AND. e.g., ANL P1,A)
(logical OR, e.g., ORL P2,A)
(logical EX-oR, •. g., XRL
P3,A)
Oump If bit = 1 and clear bit,
e.g., JBC P1.1, LABEL) .
(complement bit, •• g., CPL
P3.0)
(Increment, •. g., INC P2)
(decrement, •. g., DEC P2)
(decrement and Jump If not
zero, e.g., DJNZ P3, LABEL)

MOV PX.Y,C(move carry bit to bit Y of
Port X)

CLR PX.Y (clear bit Y of Port X)
SET PX. Y (set bit Y of Port X)

It is not obvious that the last three instructions in this list
are read-modify-write instructions, but they are. They read
the port byte, all 8 bits, modify the addressed bit, then
write the new byte back to the latch.

The reason that read-modify-write instructions are directed
to the· latch rather than the pin is to avoid a· possible
misinterpretation of the 'voltage level at the pin. For ex
ample, a port bit might be .used to drive the base of a
transistor. When a 1 is written to the bit, the transistor is

. turned on. If the CPU then reads the same port bit at the ,
pin rather than the latch, it will read the base -voltage of
the transistor and interpret it as a O. Reading th~ latch
rather than the pin will return the correct value of 1.

7-8

7.5 ACCESSING EXTERNAL MEMORY

Accesses to external memory are of two types: accesses
to external Program Memory and accesses to external Data
Me~Accesses to external Program Memory use sig
nal PSEN (program store enable) as the read strobe. Ac
cesses to external Data Memory U$e RD or WR (alternate
functions of PJ. 7 and P3.6) to strobe the memory.

Fetches from external Program Memory always use a 16-
bit address. Accesses to external Data Memory can use
either a 16-bit address (MOVX @DPTR) or an 8-bit ad
dress (MOVX @Ri).

Whenever a 16-bit address is used, the high byte of the
address comes out on Port 2, where it is held for the
duration o{ the read or write cycle. Note that the Port 2
drivers use the strong puUups during the entire time that
they are emitting address bits that are 1 s. This is during
the execution of a MOVX @DPTR instruction. During
this time the Port 2 latch (the Special Function Register)
does not have to contain Is, and the contents of the Port
2 SFR are not modified. If the external memory cycle is
not immediarely followed by another external memory
cycle, the undisturbed contents of the Port 2 SFR will
reappear in the next cycle.

If an 8-bit address is ~ing used (MOVX @Ri), the con
tents of the Port 2 SFR remairt at the Port 2 pins throughout
the external memory cycle. This will facilitate paging.

In any case, the low byte of the address is time-multiplexed
with the data byte on Port O. The ADDRIDATA signal
drives both FETs in the Port 0 output buffers. Thus, in
this application the Port 0 pins are not open-drain outputs,
and do not require external pull-ups. Signal ALE (address
latch enable) should be used to capture the address byte
into an externaflatch. The address byte is valid at the
negative transition of ALE. Then, in a write cycle, the
data byte to be written appears on Port 0 just before WR
is activated, and remains there until after WR is deacti
vated. In a read cycle, the incoming byte is accepted at
Port 0 just before the read strobe is deactivated.

During any access to external memory, the CPU writeS
OFFH to the. Port 0 latch (the Special Function Register),
thus obliterating whatever information the Port 0 SFR may
have been holding.

External Program Memory is accessed under two conditions;

1) Whenever signal EA is active; or
2) Whenever the program counter (PC) contains a number

that is larger than OFFFH (lFFFH for the 8052),

This requires that the ROMless versions have EA wired

MCS(ftl·51 ARCHITECTURE

low to enable the lower 4K (8K for the 8032) program
bytes to be fetched from external memory.

When the CPU is executing out of external Program Mem
ory, all 8 bits of Port 2 are dedicated to an output function
and may not be used for general purpose 110. During
external program fetches they output the high byte of the
PC. During this time the Port 2 drivers use the strong
pullups to emit PC bits that are Is.

7.5.1 PSEN

The read strobe for external fetches is PSEN. PSEN is
not activated for internal fetches. When the CPU is ac
cessing external Program Memory, PSEN is activated
twice every cycle (except during a MOVX instruction)
whether or not the byte fetched is actually needed for the
current instruction. When PSEN is activated its timing is
not the same as RD. A complete RD cycle, including
activation and deactivation of ALE and RD, takes 12

ALE

PSEN

oscillator periods. A complete PSEN cycle, including ac
tivation and deactivation of ALE and PSEN, takes 6
oscillator periods. The execution sequence for these two
types of read cycles are shown in Figure 7 -7 for
comparison.

7.5.2 ALE
The main function of ALE is to provide a properly timed
signal to latch the low byte of an address from PO to an
external latch during fetches from external Program Mem
ory. For that purpose ALE is activated twice every ma
chine cycle. This activation takes place even when the
cycle involves no external fetch. The only time an .ALE
pulse doesn't come out is during ari access to external
Data Memory. The first ALE of the second cycle of a
MOVX instruction is missing (see Figure 7-7). Conse
quently, in any· system that does not use external Data
Memory, ALE is activated at a constant rate of 116 the
oscillalor frequency, and can be used for external clocking
or timing purposes.

AD --------r------------------------+------------~----------,_---- (A)
WITHOUT A

MOVX.

PO

ALE

PSEN

,
tPCLOUT

VALID

I
I

tPCLOUT
VALID

55 I T 56 Sl

RD -------+----------~--__,

PO -

t PCL OUT
VALID

I ,
tPCLOUT

VALID

I S2

I
I

tPCLOUT
VALID

Figure 7-7. External Program Memory Execution

7-9

(8)
WITH A
MOVX.

MCS®·51 ARCHITECTURE

7.5.3 Overlapping External Program and
Data Memory Spaces

In some applications it is desirable to execute a program
from the same physical memory that is being used to store
data. In the 8051, the external Program and Data Memory
spaces can be combined by ANDingPSEN and RD. A
positive-logic AND of these two signals produces an ac
tive-low read strobe that can be used for the combined
E!!xsical memory. Since the PSEN cycle is faster than the
RD cycle, the external memory needs to be fast enough
to accommodate the PSEN cycle.

7.6 TIMER/COUNTERS

The 8051 has two 16-bit timer!counter registers: Timer
o and Timer 1. The 8052 has these two plus one more:
Timer 2. All three can be configured to operate either as
timers or event counters.

In the "timer" function, the register is incremented every
I11achine cycle. Thus, one can think of it as counting
machine cycles. Since a machine cycle consists of 12
oscillator periods, the count rate is 1112 of the oscillator
frequency.

In the "counter" function, the register is incremented in
response to a I-to-O transition at its corresponding external
input pin, TO, TI or (in the 8052) T2. In this function,
the external input is sampled during S5P2 of every ma
chine cycle. When the samples ~how a high in one cycle
and a low in the next cycle, the count is incremented. The
new count value appears in the register during S3Pl of
the cycle following the one in which the transition was
detected. Since it takes 2 machine cycles (24 oscillator
periods) to recognize a I-to-O transition, the maximum
count rate is 1124 of the oscillator frequency. There are

no restrictions on the duty cycle of the external input
'signal, but to ensure that a given level is sampled at least
once before it changes, it should be held for at least one
full machine cycle.

In addition to the "timer" or "counter" selection, Timer
o and Timer I have four operating modes from which to
select. Timer 2, in the 8052, has three modes of operation:
"capture," "auto-reload" and "baud rate generator."

7.6.1 Timer 0 and Timer 1

These timer! counters are present in both the 8051 and the
8052. The "timer" or "counter" function is selected by
control bits CiT in the Special Function Register TMOD
(Figure 6-8). These two timer!counters have four operating
modes, which are selected by bit-pairs (Ml, MO) in
TMOD. Modes 0, 1, and 2 are the same for both timer!
counters. Mode 3 is different. The four operating modes
are described below.

MODE 0

Putting either Timer into mode 0 makes it look like an
8048 Timer, which is an 8-bit counter with a divide-by-
32 prescaler. Figure 7-9 shows the mode 0 operation as
it applies to Timer 1.

In this mode, the timer register is configured as a 13-bit
register. As the count rolls over from all Is to all Os, it
sets the timer interrupt flag TFI. The counted input is
enabled to the Timer when TRI = 1 and either GATE
= 0 orlNTl= 1. (Setting GATE = 1 allows the Timer
to be controlled by external input INTI, to facilitate pulse
width measurements.) TRI is a control bit in the Special
Function Register TeON (Figure 7-10). GATE is in
TMOD.

(MSB) (LSB)

GATE

CIT

~' ________ ~~ _________ J~' ________ ~~ _________ ~/

TIMER 1 TIMER 0

Gating control When set....I!.!:!!!!Icounter
"x" is enabled only while "INTx" pin is
high and "TRx" control pin is sel When
cleared Tlmer"x" Is enabled
whenever "TRx" control bit is set
Timer or Counter Selector Cleared for
Timer operation (input from internal
system clock). Set for Counter opera
tion (input from "Tx" input pin).

M1
o

o

MO
o

Operating Mode
MC5-48 Timer "TLx"' serves a8 live-bit
prescsler.
16 bit Timer/Counter "THx" and
"TLx"are cascaded; there is no presealer
a-bit auto-reload timer-counter "THx"
holds a value,which is to be reloaded
into "TLx" each time it overflows.

(Timer 0) TLO is an eight-bit timer
counter-c,ontrolled by the
standard Timer 0 control bits
THO is an eight-bit timer
only controlled by Timer 1
control bit •.

(Timer 1) Timer-counter 1 stopped.

Figure 7·8. TMOD: TlmerfCo~nter Mode Control Register

7-10

MCS(8)·51 ARCHITECTURE

The 13-bit register consists of all 8 bits of TH 1 and the
lower 5 bits of TLi. The upper 3 bits of TLi are inde
tenninate and should be ingored. Setting the run flag (TR 1)
does not clear the registers.

Mode 0 operation is the same for Timer 0 as for Timer
1. Substitute TRO, TFO and INTO for the corresponding
Timer 1 signals in Figure 7-9. There are two different
GATE bits, one for Timer 1 (TMOD.7) and one for Timer
o (TMOD.3).

MODE 1

Mode 1 is the same as Mode 0, except that the Timer
register is being run with all 16 bits.

clf = 0

MODE 2

Mode 2 configures the timer register.as an 8-bit counter
(TL 1) with automatic reload, as shown in Figure 7-11.
Overflow from TLI not only sets TFI, but also reloads
TL 1 with the contents of TH I, which is preset by software.
The reload leaves THI unchanged.

Mode 2 operation is the same for Timer/Counter O.

MODE 3

Timer 1 in Mode 3 simply holds its count. The effect is
the same as, setting TRI = O.

INTERRUPT

______ -'1 cif = 1 CONTROL
Tl PIN -

TR1------f

GATE

Figure 7-9. Timer/Counter 1 Mode 0: 13-bit Counter

(MSB)

TFl TRl TFO TRO

Symbol Posilion Name and Slgnlllcance

TFl TCON.7 'Timer 1 overflow Flag. Sel by hardware
on tlmerlcounter overflow. Cleared
by hardware _ processor

vector. to Interrupt routlns.
TRl TCON.6 Timer 1 Run conlrol bit. Set/cleared

by software to tum timericounter
on/olt.

TFO TCON.5 Timer 0 overflow, Flag. Set by hardware
on Umer/counter overflow. Cleared
by hardware when processor
vectore to Interrupt routlns.

TRO TCON.4 Timer 0 Run conlrol bit. Set/cleared by
software to lurn timer/counter on/off.

(LSB)

IEl ITl lEO I ITO I

Symbol Posllion Name and Slgnllicance

IEl tCON.3 Interrupt 1 Edge lIag. Set by hardware
when extemallnlerrupt edge detecled.
Cleared when Interrupt processed.

ITl TCON.2 Inler~pt 1 Type conlrol bit. Set/cleared
by soltware 10 specify lalling edgeflow
level triggered externallnterrupta.

lEO TCON.l Interrupt 0 Edge lIag. Set by hardware
when external interrupt edge detected.
Cleared when Interrupt processed.

ItO TCON.O Interrupt 0 Type control bit. Set/cleared
by soltware to specify lalling edgeflow level
Irlggered external interrupts.

Figure 7-10. TCON: Timer/Counter Control Register

7-11

MCS~·51 ARCHITECTURE

Timer 0 in Mode 3 establishes TLO and THO as two sep
arate counters. The logic for Mode 3 on Timer 0 is shown
in Figure 7-12. TLO uses the Timer 0 control bits: cif,
GATE, TRO, INTO, and TFO. THO is locked into a timer
function (counting machine cycles) and takes over the use
of TRI and TFI from Timer I. Thus, T.HO now controls
the "Timer I" interrupt.

Mode 3 is provided for applications requiring an extra 8-
bit timer or counter. With Timer 0 in Mode 3, an 8051
can look like it has three timer/counters, and an 8052, lik~
it has four. When Timer 0 is in Mode 3, Timer I can be

ciT =0

______ .J CiT = 1

T1 PIN

TFI1------I

GATE

INTO PIN

turned on and off by switching it out of and into its own
Mode 3, or can still be used by the serial port as a baud
rate generator, or in fact, in any application not requiring
an interrupt.

7.6.2 Timer 2

Timer 2 is a 16-bit timer/counter which is present only in
the 8052. Like Timers 0 and I, it can operate either as a
timer or as an event counter. This is selected by bit
ClT2 in the Special Function Register T2CON (Figure
7-13). It has three operating modes: "capture;" "auto-

INTERRUPT

Figure 7-11. Timer/Counter 1 Mode 2: 8·bit Auto·reload

osc ~B- 1/1210SC

1/12 IOSC --------,

TO PIN --------'

TRO------I

GATE

1--- INTERRUPT

CONTROL

1/1210SC----~-------I t. 1 .. I THO H TF1 L. INTERRUPT l (8 bl,-) .. __ r--
_____________ ~CONTROL

TR1 -

Figure 7·12. Timer/Counter 0 Mode 3: Two 8·bit Counters

7-12

(MSB)

TF2

Symbol

TF2

EXF2

RCLK

TCLK

EXEN2

TR2

cif2

CP/m

EXF2

' Pooltton

T2CON.7

T2CON.6

T2CON.S

T2CON.4

T2CON.3

T2CON.2

T2CON.1

T2CON.O

MCSIRl-51 ARCHITECTURE

(LSB)

RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

Name and Significance

Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by soft
ware. TF2 will not be aat when either RCLK = 1 or TCLK = 1.

Timer 2 external flag let when either a capture or reload Is caused by a negative
tranlltlon on T2 EX and EXEN2 = 1. When Timer 2 Interrupt Is enabled, EXF2 = 1
will cause the CPU to vector to the Timer 2 Interrupt routine. EXF2 mUlt be
cleared by IOltware.

Receive clock Ilag. When .et, causes the lerial port to use Timer 2 overflow
pull.llor It. receive clock In model 1 and 3. RCLK = 0 causes Timer 1 overflow
to be used lor the receive clock.

Transmit clock flag. When aat, cause. the ,erial port to use Timer 2 overflow
pulses lor Its transmit clock In modes 1 and 3. TCLK = 0 causes Time, 1 over
flows to be used lor the t,anlmlt clock.

Timer 2 external enable Ilag. When ,et, aliowl a capture or reload to occur a, e
result ola negative transition on T2EX II Timer 21s not being usad to clock the
sarlal port. EXEN2 = 0 caus .. Timer 2 to Ignore events at T2EX.

Start/stop control lor Timer 2. A logic 1 starts the timer.

Timer or counter select. (Timer 2)
0= Intemal timer (OSC/12)
1 = External event counter (Ialling edge triggered).

Capture/Reload Ilag. When set, captures will occur on negative transitions at
T2EX if EXEN2 = 1. When cleared, auto reloads will occur either with Timer 2
overflows or negative tranllllons at T2EX when EXEN2 = 1. When either RCLK
= 1 or TCLK = 1, this bit is Ignored and the timer Is lorced to auto-reload on
Timer 2 overflow.

Figure 7-13. T2CON: Timer/Counter 2 Control Register

load" and "baud rate generator," which are selected by
,bits in T2CON as shown in Table 2.

In the auto-reload mode there are again two options, which
are selected by bit EXEN2 in T2CON. If EXEN2 = 0,
then when Timer 2 rolls over it not only sets TF2 but also
causes the Timer 2 registers to be reloaded with the 16-
bit value in registers RCAP2L and RCAP2H, Which are
preset by software. If EXEN2 = 1, then Timer 2 still
does the above, but with the added feature that a I-to-O
transition at external i1iput T2EX will also trigger the 16-
bit reload and set EXF2.

Table 2. Timer 2 Operating Modes

RCLK+TCLK cpiiK2 TR2 MODe
0 0 I 16-bit auto-reload
0 1 1 16-bit capture
1 X 1 baud rate generator
X X 0 (oft)

In the captllre mode there are two options which are se
lected by bit EXEN2 in T2CON. If EXEN2 = 0, then
Timer 2 is a 16-bit timer or counter which upon over
flowing sets bit TF2, the Timer 2 overflow bit, which can
be used to generate an interrupt. If EXEN2 = I, then
Timer 2 still does the above, but with the added feature
that a I-to-O transition at external input T2EX causes the
current value in the Timer 2 registers, TL2 and TH2, to
be captured into registers RCAP2L and RCAP2H,re
spectively. (RCAP2L and RCAP2H are new Special Func
tion Registers in the 8052.) In addition, the transition at
T2EX causes bit EXF2 in T2CON to be set, and EXF2,
like TF2, can generate an interrupt.

The capture mode is illustrated in Figure 7-14.

7-13

The auto-reload mode is illustrated in Figure 7-15.

The baud rate generator mode is selected by RCLK = 1
andlor TCLK = 1. It will be described in conjunction
With the serial port.

7.7 SERIAL INTERFACE

The serial port is full duplex, meaning it can transmit and
receive simUltaneously. It is also receive-buffered, mean
ing it can commence teception of a second byte before
a previously received byte has been read from the receive
register. (However, if the first byte still hasn't been read
by the time reception of the second byte is complete, one
of the bytes will be lost). The serial port receive and
transmit registers are both accessed at Special Function
Register SBUF. Writing to SBUF lo~ds the transmit reg-

MCS®-5t ARCHITECTURE

EXEN2

TIMER 2
INTERRUPT

Figure 7-14. Timer 2 In Capture Mode

ister, and reading SBUF accesses a physically separate
receive register." ,

The serial port can operate in 4 modes:

Mode 0: Serial data enters and exits through RXD. TXD
outputs the shift clock. 8 bits are transmitted/received: 8
data bits (LSB first). The baud rate is fixed at 1112 the
oscillator frequency.

Mode 1: 10 bits aretransn1itted (through TXD) or received
(through RXD): a start bit (0), 8 data bits (LSB first), and
a stop bit (1). On receive, the stop pit goes into RB8 in
Special Function Register SCON. The baud rate is
variable.

Mode 2: 11 bits are tr~nsmitted (tIirough TXD) or received
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (I). On transmit,
the 9th data bit CI:B8 in SeON) can be assigned the value
of 0 or i. Or, for example, the parity bit (P, in the PSW)
could be moved into TB8. On receive, the 9th data bit
goes into RB8 in Special Function Register secm, while
ihe stop bit is ignored. The baud rate is prograriunable to
either 1132 or 1164 the oscillator frequency.

Mode 3: 11 bits are transmitted (tfirough TXD) d~ ~eceived
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable 9th'data bit and a stop bit (1). In fact,
Mode 3 is the same as MOde 2 In all 'respects except the
baud rate. The baud rate in Mode 3 is variable:

In 'all four modes; 'transmission is'initiated by' any instruc
tion that .uses SBUF as a destination register. Reception
is initiated in Mode 0 by the condition RI = 0 and REN ~ 'I.
Reception is initiated in the other modes by the incoming
start bit if REN = L' .

. 7-14

7.7.1 Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor
communications. In these modes, 9,data bits are received.
The 9th one goes into RB8. Then comes a stop bit. The
port can be programmed such that when the stop bit is
received, the serial port interrupt will be activated only
If RB8 = 1. This feature is enabled by setting bit SM2
in SeON. A way to use this feature in multiprocessor
systems is as follows.

When the master processor wants to transmit a block of
data to one of several slaves, it first sends out an address
byte which identifies t1"\e target slave. An address byte
differs from a data byte in that the 9th bit is I in an address
byte and 0 in a data byte.' With SM2 = 1, no slave will
be interrupted by a data byte. An address byte, however,
will interrupt all slaves, so that each slave can examine.
the received byte and see, if it is being addressed. The'
addressed. slave will clear its SM2 bit and prepare to re
ceive the data bytes that will be coming. The slaves that
weren't being addressed ,leave their SM2s set and go on
about their business, ignoring the coming data bytes. '

SM2 has no,effect in Mode 0, and in Mode I can be used
to check the validity of the stop bit. In a Mode I reception,
if.SM2=' 1, the receive interrupt will not be activated
unless a valid stop b,it, is .received ..

7.7.2 Serial Port Control Register'

The'serial.port' control 'and istatus register is, the Special
Function Register SeON,. shown in Figure 7-16. This
register contains not only the mode selectiop bits, but also
the 9th data bit for transmit and receive (TB8 and RB8),
and the serial port interrupt ijitsf'fl and· RIJ .

MCS®-51 ARCHITECTURE

____Jt em=1
T2 PIN -

T2EX PIN

EXEN2

TIMER 2
INTERRUPT

Figure 7 .. 15. Timer 2 in Auto-Reload Mode

(MSB) (LSB)

I SMO SMI SM2 REN TB8 RB8 TI RI I
~ where SMO, SMI specify the serial port mode, as follows:

SMO SMI Mode Descripllon Baud Rate

0 0 0 shift register losc.l12
0 1 1 8·bilUART variable
1 0 2 9-bitUART losc./64

or
fosc./32

3 9-blt UART variable

• 5M2 enables the mulliprocessor com
munication feature in modes 2 and
3. In mode 2 or 3, if SM2 is set to 1
then RI will not be activated if the
received 9th data bit (RB8) Is O. In
mode 1, if SM2 = 1 then RI will
not be aCllvated if a valid stop bit
was not received. In mode 0, 5M2
shouldbeO.

oREN enables serial reception. Set by
software to enable reception. Clear
by software to disable reception.

- TB8 is the 9th data bit that will be
transmitted in modes 2 and 3. Set
or clear by sottware as desired.

o RB8 in modes 2 and 3, is the 9th data bit
that was received. In mode 1, If
SM2 = 0, RB8 is the stop bit that
was received. In mode 0, RB8 is
not used.

o TI Is transmit interrupt flag. Set by
hardware at the end of the 8th bit
time in mode 0, or at the beginning
of the stop bit In the other modes,
in any serial transmission. Must.be
cleared by soltware.

o RI is receive interrupt flag. Set by
hardware at the end of the 8th bit
time In mode 0, or haltway through
the stop bit time In the other
modes, in any serial reception (ex~
cept see SM2). Must be cleared
by sottware.

Figure 7-16. SCON: Serial Port Control Register

7.7.3 Baud Rates

The baud rate in Mode 0 is fixed:

Mode 0 Baud Rate
Oscillator Frequency

12

7-15

The baud rate in Mode 2 depends on the value of bit
SMOD in Special Function Register PCON. If SMOD
= 0 (which is its value on reset), the baud rate is 1164
the oscillator frequency. If SMOD = 1, the baud rate is
1132 the oscillator frequency.

2SMOD ' .
Mode 2 Baud Rate = ~ x (Oscillator Frequency)

MCS®·51 ARCHITECTURE

In the 8051, the baud rates in Modes 1 and 3 are deter
mined by the Timer 1 overflow rate. In the 8052, these
baud rates can be determined by Timer I, or by Timer 2,
or by both (one for transmit and the other for receive).

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the baud
rates in Modes 1 and 3 ~e determined by the Timer 1
overflow rate and the value of SMOD as follows:

Modes I, 3 2SMOD

Baud Rate = 32 x (Timer 1 Overflow Rate)

The Timer 1 interrupt should be disabled in this appli
cation. The Timer itself can be configured for either
"timer" or "counterHoperation, and in any of its 3 run
ning modes. In the most typical applications, it is confi
gured for "timer" operation, in the auto-reload mode
(high nibble ofTMOD = ooIOB). In that case, the baud
rate is given by the formula

2SMOD Oscillator Frequency
Modes I, 3 Baud Rate = 32 x 12x[256-(THI)]

One can achieve very low baud rates with Timer 1 by
leaving the Timer 1 interrupt enabled, and configuring the
Timer to run as a 16-bit timer (high nibble of TMOD

NOTE: OSC. FREQ. IS DIVIDED BY 2, NOT 12.

T2EX PIN

EXEN2

= oooIB), and using the Timer 1 interrupt to do a 16-bit
software reload.

Figure 7-17 lists various .commonly used bauq rates and
how they can be obtained from Timer I.

TIMER 1
BAUD RATE fosc SMOD CIT MODE Ri~~~D

MODE 0 MAX: lMHZ 12MHZ X X X X
MODE 2 M'AX: 375K 12MHZ 1 X X X
MODES 1,3: 62.5K 12MHZ 1 0 2 FFH

19.2K 11.059 MHZ 1 0 2 FDH
9.6K 11.059 MHZ 0 0 2 FDH
4.8K 11.059 Mtfz 0 0 2 FAH
2.4K 11.059 MHZ 0 0 2 F4H
1.2K 11.059 MHZ 0 0 2 E8H
137.5 11.986 MHZ 0 0 2 lDH
110 6MHZ 0 0 2 72H
110 12MHZ 0 0 1 FEEBH

Figure 7-17. Timer 1 Generated Commonly
Used Baud Rates

Using Timer 2 to Generate Baud Rates

In the 8052, Timer 2 is selected as the baud rate generator
by setting TCLK and/or RCLK in T2CON (Figure 7-13).
Note then the baud rates for transmit and receive can be
simultaneously different. Setting RCLK and/or TCLK
puts Timer 2 into its baud rate generator mode, as shown
in Figure 7-18. '

"TIMER 2"
INTERRUPT

TIM-ER 1

OVERFLOW

RX CLOCK

TX CLOCK

L NOTE AVAILABILITY OF ADDITIONAL EXTERNAL INTERRUPT

Figure 7-18. Timer 2 In Baud Rate Generator Mode ,

7-16

MCS~·51 ARCHITECTURE'

The baud rate generator mode is similar to the auto-reload
mode, in that a rollover in TH2 causes the Timer 2 reg
isters to be reloaded with the 16-bit value in registers
RCAP2H and RCAP2L, which are preset by software.

Now, the baud rates in Modes I and 3 are determined by
Timer 2's overflow rate as follows:

. Timer 2 Overflow Rate
Modes I, 3 Baud Rate = 16

,The Timer can be configured for either "timer" or·
"counter" operation. In the most typical applications, it
is configured for "timer" operation (C/T2 = 0). "Timer"
operation is a little different for Timer 2 when it's being
used as a baud rate generator. Normally asa timer it would
increment every machine cycle (thUS at 1112 the oscillator
frequency). As a baud rate generator, however, it incre
ments every state time (thUS at 112 the· oscillator fre
quency). In that case the baud rate is given by the formula

Modes I, 3 Oscillator Frequency
Baud Rate = ---------'---"----

32x[65536 - (RCAP2H, RCAP2L)J

where (RCAP2H, RCAP2L) is the content of RCAP2H
and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 7-18.
This Figure is valid only if RCLK + TCLK = I in
T2tON. Note that a rollover in TH2 does not set TEi,
and will not generate an interrupt. Therefore, the Timer
2 interrupt does not have to be disabled when Timer 2 is
in the baud rate generator mode. Note too, that if EXEN2
is set', a I-to-O transition in T2EX will set EXF2 but will
not cause a reload from (RCAP2H, RCAP2L) to (TH2,
TL2). Thus when Timer 2 is in use as a' baud rate gen
erator, T2EX can be used as an extra external interrupt,
if desired.

It should be noted that when Timer 2 is running (TR2 =
I) in "timer" function in the baud rate generator mode,
one should not try to read or write TH2 or TL2. Under
these conditions the Timer is being incremented every
state time, and the results of a read or write may not be
accurate. The RCAP registers may be read, but shouldn't
be written to, because a write might overlap a reload and
cause write and/or reload errors, Tum the Timer off (clear
TR2) before accessing the Timer 2 or RCAP registers, in
this case.

7.7.4 More About Mode 0

Serial data enters and exits through RXD. TXD outputs
the shift clock, 8 bits are transmitted/received: 8 data bits
(LSB first). The baud rate is fixed at 1112 the oscillator
frequency.

Figure 7-19 shows a simplified functional diagram of the
serial port in mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF
as a destination register. The "write to SBVF" signal at
S6P2 also loads a I into the 9th bit position of the transmit
shift register and tells the TX Control block to commence
a transmission. The internal timing is such that one full
machine cycle will elapse between "write to SBVF," and
activation of SEND.

SEND enables the output of the shift register to the al
ttlrnate output function line of P3.0, and also enables
SHIFT CLOCK to the alternate output function line of
P3.1. SHIFT CLOCK is low during S3, S4, and S5 of
every machine cycle, and high during S6, SI and S2. At
S6P2 of e~ery machine cycle in which SEND is active,
the contents of the transmit shift register are shifted to the
right one position.

As data bits shift out to the right, zeros come in from the
left. When the MSB of the data byte is at the output

. position of the shift register, then the I that was initially
loaded into the 9th position, is just to the left of the MSB,
and all positions to the left of that contain zeros. This
condition flags the TX Control block to do one last shift
and then deactivate SEND and set Tl. Both of these ac
tions occur at SIPI ofthe 10th machine cycle after "write
to SBVE"

Reception is initiated by the condition REN = I and RI
= O. At S6P2 of the next machine cycle, the RX Control
unit write.s. the bits 11111110 to the receive shift register,
and in the next clock phase activates RECEIVE,

RECEIVE enables SHIFT CLOCK to the alternate output
function line of P3.I. SHIFT CLOCK makes transitions
at'S3PI and S6PI of every machine cycle. At S6P2 of
every machine cycle in which RECEIVE is active, the
contents of the receive shift register are shifted to the left
one position. The value that comes in from the right is
the value that was sampled at the P3.0 pin at S5P2 of the
same machine cycle.

As data bits come in from the right, Is shift out to the
left. When the 0 that was initially loaded into the rightmost
position arrives at the leftmost position in the shift register,
it flags the RX Control block to do one last shift and load
SBVE At SIPI of the 10th machine cycle after the write
to SCaN that cleared RI, RECEIVE is cleared and RI is
set.

7.7.5 More About Mode 1

Ten bits are transmitted (through TXD) , or received
(through RXD): a start bit (0), 8 data bits (LSB first), and
a stop bit (I). On receive, the stop bit goes into RB8 in
SCaN. In the 8051 the baud rate is determined by the
Timer I overflow rate. In the 8052 it is determined either
by the Timer I overflow rate, or the Timer 2 overflow
tate, or both (one for transmit and the other for receive).

Figure 7-20 shows a simplified functional diagram of the
serial port in Mode I, and associated timings for transmit
and receive.

7-17

MCSIBl-51 ARCHITECTURE

WRITE
TO --.---wI'----'

SBUF r---~~----~-------{~

S6-...._---..

SERIAL
PORT

INTERRUPT

'----_ .. RXCLOCK RI

RX CONTROL SHIFT
REN __ .. START

Ai --I .oJ L----+-i--i-.;--T-ir-i...,..-J

RXD
P3.0ALT
OUTPUT

FUNCTION

TXD
P31 ALT
OUTPUT

FUNCTION

F;!XO
r-.l-l....l...t...I....l-,.--.:~ ____ P3.0 ALT

INPUT
FUNCTION

READ
SBUF

51521>3'>4 <;5561 ;,! 52Sj 54 ~~'j61 51 ~2 SJS4 S', s61 0.1 ~2 51S4 S~<;b I 51 52 Sl~" ""'>61 51 ~2 Sl S~ 5'>561 51 ~2S1 54 S~S615'

ALE

~OSBUF

SENOi:S6P2 . I

SHIFT

RXD (DATA OUT) \

TXD(SHIFTCLOCK) t l
T~I~ _______ S3_P_1_S_6_~ __ ~,-----

--11 WRITE TO SCON (CLEAR RI)

R:~~~====Jr==~'----I!ECEIV.E L--
SHIFT

RXD(DATAIN).--~~~-~~--~~--n~--~~--n~--~~-~~----

TXD (SHIFT CLOCK)

Figure 7-19. Serial Port Mode 0

7-18

TRANSMIT

RECEIVE

TIMER 1
OVERFLOW

. TCLK-

TIMER2
OVERFLOW

WRITE

MCS®·51. ARCHITECTURE

TO --~r---===J~~~~--~~:-----~---f--'-__ ~~' SBUF
TXD

TXCONTROL

TXCLOCK TI SEND

RI LOAD
SBUF
SHIFT 1--------.

RXD

TRANSMIT

~16RESET

00 D7 STOP BIT

~ ______________________ ~ ________________________________ ~r----

Figure 7-20. Serial Port Mode 1
TCLK,RCLK, and Timer 2 are present In the 805218032 only.

7·19 (

IIIICS®·51 ARCHITECTUflE

Transmission is initiated by any instrUction that uses SBUF
as a destination register. The "write to SBUF" signal also
loads a I into the 9th bit position of the transmit shift
register and flags the TX Control unit that a transmission
is requested. Transmission actually commences at SIPI
of the machine cycle following the next rollover in the
divide-by-16 counter. (Thus, the bit times aresynchro
nized to the divide-by-16 c01,lnter, not to the "write to
SBUF" signal).

The transmission begins with activation of SEND, which
puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit
shift register to TXD. The first shift pulse occurs one bit
time after that.

As data bits shift out to the right, zeros are clocked in
from the left. When the MSB of the data byte is at the
output position of the shift register, then the I that was
initially loaded into the 9th position is just to the left of
the MSB, and all positions to the left of that contain
zeroes. This condition flags the TX Control unit to do one
last shift and then deactivate SEND and set TI. This occurs
at the 10th divide-by-16 rollover after "write to SBUF."

Reception is initiated by a detected I-to-O'transition at
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-by-16 counter is imme
diately reset, and I FFH is written into the input shift
register. Resetting the divide-by-16 counter aligns its
rollovers with the boundaries of the incoming bit times.

The 16 states of the counter divide each bit time into
16ths. At the 7th,.Sth, and 9th counter states of each bit
time, the bit detector samples the value of RXD. The value
accepted is the value that was seen in at least 2 of the 3
samples. This is done for noise rejection. If the value '
accepted during the first bit time is not 0, the receive
circuits are reset and the unit goes back to looking for
another I-to-O transition. This is to provide rejection of
false start bits. If the start bit proves valid, it is shifted
into the input shift register, and reception of the rest of
the frame will proceed.

As data bits come in from the right, Is shift out to the
left. When the start bit arrives at the leftmost position in
the shift register, (which in mode I is a 9-bit register), it
flags the RX Control block to do one last shift, load SBUF
and RBS, and set RI. The signal to load SBUF and RBS,
and to set RI, will be generated if, and only if, the fol
lowing conditions are met at the time the final shift pulse
is generated ..

I) RI = 0, and
2) Either SM2 = 0, or the received stop bit =' I

If either of these two conditions is not met, the received
frame is irretrievably lost. If both conditions are met, the
stop bit goes into RBS, the S data bits go into SBUF, and .
RI is activated. At this time, whether the above conditions

'are met or not, the unit goes 'back to looking for a I-td
o transition in RXD.

7.7.6 More About Modes 2 and 3

Eleven bits are transmitted (through TXD), or. received
(through RXD): a start bit (0), S data bits (LSB ,first), a
programmable 9th data bit, and a stop bit (1). On transmit,
the 9th data bit (TBS) can be assigned the value of 0 or
1. On receive, the 9th data bit goes into RBS in SCON.
The baud rate is programmable to either 1132 or 1164 the
oscillator frequency in mode 2. Mode 3 may have a var,
iable baud rate generated from either Timer I or 2 de
pending on the state of TCLK and RCLK.

Figures 7-21 A and B show a functional diagram of the
'serial port in modes 2 and 3. The receive portion is exactly
the Same as in mode I. The transmit portion differs from
mode I only in the 9th bit of the transmit shift register.

Transmission is initiated by any instruction that uses SBUF
as a destination register: The "write to SBUF" signal also
loads TBS into the 9th bit position of the transmit shift
register and flags the TX Control unit that a transmissiol1
is requested. Transmission commences at S IPI of the
machine cycle following the next rollover in the divide
by-16 counter. (Thus, the bit times are synchronized to
the divide-by-16 counter, not to the "write to SBUF"
signal.)

The transmission begins with activation of SEND, which
puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit
shift register to TXD. The first shift pulse occurs one bit
time after that. The first shift clocks a I (the stop bit) into
the 9th bit position of the shift register. Thereafter, only
zeroes are clocked in. Thus, as data bits shift out to the
right, zeroes are clocked in from the left. When TBS is
at the output position of the shift register, then the stop
bit is just to the left of TBS, and all positions to the left
of thatcontain zeroes. This condition flags the TX Control
unit to do one last shift and then deactivate SEND and
set n. This occurs at the 11th divide-by-16rollover after
"write to SBUF."

Reception is initiated by a det~cted I-to-O transition at,
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-by-16 counter is imme
diately reset, and'IFFH is written to the input shift register.

At the 7th, Sth and 9th counter states of each bit time, the
bit detector samples the value of RXD. The value accepted
is the value that was seen in at least 2 of the 3 samples.
If the value accepted during the first bit time is not 0, the
receive circuits are reset and the unit goes back to looking
for another I-to-O transition. If the start bit proves valid,
it is shifted into the input shift register, and reception of
the rest of the, frame will proceed.

7-20

MCS®-51 ARCHITECTURE

WRITE
TO --~~----~~~---'
S~UF r--......:a"---L-_J-.....

PHASE2CLOCK
(Y" fose)

MODE2

SMOD =,

SMOD=O

SERIAL
PORT

INTERRUPT

(SMOD IS PCON 7) L.._------J

RXD

SEND

LOAD
SBUF

TX
jCLOCKj
~.WRI~T~E~T~O~S~~B~U~F--JL_~L __ JL_~l~_JL_~IL_~L----.JIL~~L ___ IL __ _

---1 SEND
DATA L S1P1 I

STOP BIT

STOP BIT GEN I
CL'6XCK -16 RESET

DO

RECEIVE SAMPLE TIMES

TXD

TRANSMIT

I. RXD BIT DETECTORI STA.T BIT {

SHIFT· -L __ IL __ IL_--.JL~--.JL_--.JIL_-..-JI __ -..-JI __ ~L __ ~ __ _
·~R~I __ ~r-----

Figure 7·21A. Serial Port Mode 2

7·21

TIMER1
OVERFLOW

TIMER2
OVERFLOW

WRITE

MCS®-S1 ARCHITECTURE

TO --~r---===J~~~~--~~:-----~~-{--,-__ ~~, SBUF

TCLK - TXCONTROL

TXCLOCK TI SEND

RI LOAD
SBUF
SHIFT 1--------,

RXD

TX
_~LOC~~~!~=-~L __ ~L __ ~L __ ~IL-__ JL-__ ~L __ ~L __ ~L __ ~IL-__ IL-___
_ 8 WRITE TO SBUF
-----, SEND

DATA C S1P1 I

STOP BIT

STOP BIT GEN --------,':== ________________________________ --'
~T

RXD BIT DETECTORI START BIT , DO 01

RECEIVE SAMPLE TIMES

TXD

TRANSMIT

SHIFT ~ __ ~I ____ ~L ____ JL-__ ~l ____ ~L ____ IL-__ -"l ____ ~L __ ~IL-__ __
~R~I __ -"r-----

Figu~e 7.21 B. Serial Port Mode 3
TCLK, RCLK, and Timer 2 are present in the 8052/8032 only.

·7-22

MCS®;;S1,'ARCHITECTURE

As ,data bits come'in from the right, 1 s shift out to the
left. When the start bit arrives at the leftmost posiUon in
the shift register (which in modes 2 and 3 is a 9-bit reg

, ister),' it flags the RX Control block to do one last shift,
, load SBUFand RBS', and set RI, The signal to 10ad'SBUF
and RB8, anti to set RI, wiU be generated if, imd only,if,
the following conditions are met at' the time the final shift
pulse is generated:
1) RI'= b,'and '
2) Either SM2 "±:! 0 or the received 9th d~ta bit = 1

If either of these conditions is not met, the received frame
is irretrievably lost, and RI is not set, IF both conditions
are met, the received 9th data bit goes into RB8, and the

/ first 8 data bits go into SBUF, One bit time later, whether
,the above, conditions were met or not" the unit goes back
to loqking for a I-to-O transjt,ion at the RXD input.

Note that the value of the received stop bit is. irrelevant
to SBUF, RB8, or IH.

7.8 INTERRUPTS

• The 805 I provides 5 inteITupt sources, The 8052 provides
'6. These are show'n in'FigUre 7-22/ ":' ,

. ,

The Exttrnal Interrupts'fNTO and INTI can each be eiti1er
level-activated or transition-activated, depending on bits

TFO-~~~~~~~~-~",

TF1----------.

TF2~
EXF2~

INTERRUPT
SOURCES

Figure 7-22. MCS-S1 Int'~ruptSoure""',

7-23

ITO and ITI in Register TCON. The flags that actually
generate these interrUpts are bits lEO and lEI in TCON.
When an external interrupt is generated, the flag that gen
erated it is cleared by the hardware when the service rou
tine is vectored to only if the interrupt was transition
activated. If the interrupt was level-activated, then the
external requesting'source is what controls the request
flag, rather than the on-chip hardware,

The Timer 0 and Timer 1 Interrupts are generated by TFO
and TFI, which are set by a rollover in their respective
timer/counter registers (except see Section 7. 6.trfor Timer
o in mode 3): When a timer interrupt is generated, the
flag that genenited it'is cleared by the on-chip hardware
when the service routine is vectored to.

The Serial Pon Interrupt is generated by the .logical OR
of RI and TI. Neither of,these flags is cleared by hardware
when the service routine is vectored to. In fact, the service
routine will normally have to determine whether it .was
RI or TI that generated the interrupt, and the, bit will have
to be cleared in software.

In .!he 8052, the Timer 2 Interrupt is generated by the
logical OR of TF2 and EXF2. Neither of these flags is
tle,ared ~y Iwrdware 'Yhen the serv~e routine is vectored
roo In liact, , the service ,routine may have to determine
~hether it was TF2 or EXF2 thargenerated the interrupt,
imd the ,bit will have to be cleared in software.

All of the bits that generat~ interrupts can be set or cleared
by softJiVare:.with the,silJne r~su~~ as though it had been
set or cleared by hardware. That is, interrupts can be
generated or pending interrupts can be canceled in
software ..

SYlrbo;>1
EA

ET2

ES

ET1

EX1 '

ETO

EXO

(MSB) (LSB)

1 EA I xl ml ES 1 En 1 EX1 1 ETO 1 EXO I'
Position Function

IE.7 disables ali Interrupts. If EA = 0, no Interrupt
will be acknowledged. IlEA = 1, each Inter-
rupt source Is Individually enabled or dis-
abled by setting or clearing its enable bit.

IE.6 reserved
IE.5 enables or disables the Tln"ir 2 overflow'

or capture Interrupt. II ET2 = 0, the Timer 2
Interrupt Is dis,abled.

IE.4 enables or disables the Serial Port Inter-
rupt. lIES" 0, t~e Serial Port Interrupt Is

, disabled.
IE'.3 enables or disables the Timer 1 Overllow

, interrupt. II En = 0, the Tlm.r 1 Interrupt
is disabled. '

, IE.2 enables or disables External Interrupt 1.
II EX1 = 0, Extetnal, Interrupt 1 Is dl,sabled.

IE.1 enables or disables the Timer 0 Overflow
Interrupt. II ETO = 0, the Timer 0 Interrupt
Is disabled.

IE.O enables or disables External Interrupt O. II
EXO = 0, External Interrupt 0 I. disabled.

, Flgllre 7-23", IE: Interrupt Enable Register

MCS®-51 ARCHITECTURE

Each of these interrupt sources can be individually enabled
or disabled by slltting or clearing a bit in Special Function
Register IE (Figure 7-23). Note that IE contains also a
global disable bit, EA, which disables all interrupts at
once.

7.8.1 Priority Level Structure

Each interrupt source can also be individually programmed
to' one of two priority levels by setting or clearing a bit
in Special Function Register IP (Figure 7-24). A low
priority interrupt can itself be interrupted by a high-priority
interrupt, but not by another low-priority interrupt. A
high-prillrity. interrupt can't be interrupted by any other
interrupt source.

Symbol

PT2

PS

PT1

PX1

PTO

PXO

(MSB) (LSB)

I X I X I PT2lpsl PTl I pXll PTO I PXO I
Position FuncUon

IP.7 reserved

IP.6 reserved

IP.5 defines the Timer 2 Int,rrupt priority
level. PT2 = 1 programs It to the higher
priority level.

IP.4 defines the Serial Port In, .. rupt priority
level. PS = 1 program. It to the higher
priority level.

IP.3 defines the Timer 1 Interrupt priority .
level. PT1 = 1 programs It to the higher
priority level.

IP.2 defines the External Interrupt 1 priority
level. PX1 = 1 programs It to the higher
priority level.

IP.1 defines the Timer 0 Interrupt priority
level. PTO = 1 programs It to the higher
priority level.

IP.O defines the External Interrupt 0 priority
level. PXO = 1 programs It to the higher
priority level.

Figure 7-24. IP: Interrupt Priority Register

If two requests of different priority levels are received
simultaneously, the request of higher priority level is ser
viced. Ifrequests of the same priority level are received
siplUltaneously,. an internal polling sequence determines
which request is serviced. Thus within each priority level
there is a second priority structure determined by the poll
ing sequence, as follows:

SOURCE

1. lEO
2. TFO
3. IE1
4. TFl
5. AI+TI
6. TF2 + EXF2

PRIORITY WITHIN LEVEL

(hlgheat)

(low •• ')

Note that the "priority within level" structure is only used
to resolve simultaneous requests of the same priority level.

7.8.2 How Interrupts Are Handled

The interrupt flags are sampled at S5P2 of every machine
cycle. The samples are polled during the following ma
chine cycle. If one of the flags was in a set condition at
S5P2 of 'the preceding cycle, the polling cycle will find
it and the interrupt syste~ will generate an LCALL to the
appropriate service routine, provided this hardware-gen
erated LCALL is not blocked by any of the following
conditions:

I. An interrupt of equal or higher priori,ty level is already
in progress.

2. The current (polling) cycle is not the final cycle in the
execution of ,the instruction in progress.

3. The instruction in progress is RETI or any access to
the IE or IP registers.

Any of these three conditions will block the generation
of the LCALL to the interrupt service routine. Condition
-2 ensUf!lS that the instruction in progress will be completed

...... ~·---C1-_ .. -tI_. --C2--.... -I ---C3 • I .. C4--" 1 •• --C5--.. • ..

ISSP21 S6 I

........ ~'\-, --..L.-~1'\r--..L-.--....,1l'..~ ---'-----

h1
INTERRUPT INTERRUPT

GOES LATCHED
ACTIVE

INTERRUPTS
ARE POLLED

LONG CALL TO
INTERRUPT

VECTOR ADDRESS

This is the last"t possible "sponse when C2 is the final cycle 01
an Instruction other than RETI or an access to IE or IP.

Figure 7-25. Interrupt Response Timing Diagram

7-24

INTERRUPT ROUTINE

MCS®-S1 ARCHITECTURE

before vectoring to any service routine. Condition 3 en
sures that if the instruction in progress is RETI or any
access to IE or IP, then at least one more instruction will
be executed before any interrupt is vectored to.

The polling cycle is repeated with each machine cycle,
and the values polled are the values that were present at
S5P2 of the previous machine cycle. Note then that if an
interrupt flag is active but not being responded to for one
of the above conditions, if the flag is not still active wh,en
the blocking condition is removed, the denied interrupt
will not be serviced. In other words, the fact that the
interrupt flag was once active but not serviced is not re
m~mbered. Every polling cycle is new.

The polling cycle/LCALL sequence is illustrated in Figure
7-25.

Note that if an interrupt of higher priority level goes active
prior to S5P2 of the machine cycle labeled C3 in Figure
7-25, then in accordance with the above rules it will be
vectored to during C5 and C6, without any instruction of
the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by
executing a hardware-generated LCALL to the appropriate
servicing routine. In some cases it also clears the flag that
generated the interrupt, and in other cases it doesn't. It
never clears the Serial Port or Timer 2 flags. This has to
be done in the user's software. It clears an external in
terrupt flag (lEO or lEI) only if it was transition-activated.
The hardware-generated LCALL pushes the contents of
the Program Counter onto the stack (but it does not save
the PSW) and reloads the PC with an address that depends
on the source of the interrupt being vectored to, as shown
below.

SOURCE

lEO
TFO
IE1
TF1

RI+TI
TF2+EXF2

VECTOR
ADDRESS

0003H
OOOBH
0013H
001BH
0023H
002BH

Execution proceeds from that location until the RETI in
struction is encountered. The RETI instruction informs
the processor that this interrupt routine is no longer in
progress, then pops the top two bytes from the stack and
reloads the Program Counter. Execution of the interrupted
program continues from where it left off.

Note that a simple RET instruction would also have re
turned execution to the interrupted program, but it would
have left the interrupt control system thinking an interrupt
was still in progress.

7.8.3 External Interrupts

The external sources can be programmed to be level
activated or transition-activated by setting or clearing bit
IT! or ITO in Register TCON. If ITx = 0, external in
terrupt x is triggered by a detected low at the INTx pin.
If ITx = I, external interrupt x is edge-triggered. In this
mode if successive samples of the INTx pin show a high
in one cycle and a low in the next cycle, interrupt request
flag lEx in TCON is set. Flag bit lEx then requests the
interrupt.

Since the external interrupt pins are sampled once each
machine cycle, an input high or low should hold for at
least 12 oscillatorperiods .. to ensure sampling. If the ex
ternal interrupt is transition-activated, the external source
has to hold the request pin high for at least one cycle, and
then hold it low for at least one cycle to ensure that the
transition is seen so that interrupt request flag lEx will be
set. lEx will be automatically cleared by the CPU when
the service routine is called.

If the external interrupt is level-activated, the external
source has to hold the request active until the requested
interrupt is actually generated. Then it has to deactivate
the request before the interrupt service routine is com
pleted, or else another interrupt will be generated.

7.8.4 Response Time

7-25

The INTO and INTI levels are inverted and latched into
lEO and lEI at S5P2 of every machine cycle. The values
are not actually polled by the circuitry until the next ma
chine cycle. If a request is active and conditions are right
for it to be acknowledged, a hardware subroutine call to
the requested service routine will be the next instruction
to be executed. The call itself takes two cycles. Thus, a
minimum of three complete machine cycles elapse be
tween activation of an external interrupt request and the
beginning of execution of the first instruction of the service
routine. Figure 7-25 shows interrupt response timings.

A longer response time would result if the request is
blocked by one of the 3 previously listed conditions. If
an interrupt of equal or higher priority level is already in
progress, the additional wait time obviously depends on
the nature of the other interrupt's service routine. If the
instruction in progress is not in its final cycle, the addi
tional wait time cannot be more than 3 cycles, since the
longest instructions (MUL and DIY) are only 4 cycles
long, and if the instruction in progress is RETI or an
access to IE or IP, the additional wait time cannot be more
than 5 cycles (a maximum of one more cycle to complete
the instruction in progress, plus 4 cycles to complete the
next instruction if the instruction is MUL or DIY).

Thus, in a single-interrupt system, the response time is
always more than 3 cycles and less than 8 cycles.

MCS®-51 ARCHITECTURF1

7.9 SINGLE-STEP OPERATION

The 8051 intenupt structure allows single-step execution
,with very little software overhead. As previously noted,
an intenupt request will not be responded to while an
intenupt of equal priority level is still in progress, nor
will it be responded to after RETI until at least one other
instruction has been executed. Thus, once an intenupt
routine has been entered, it cannot be re-entered until at
least once instruction of the intenupted program is exe
cuted. One way to use this feature for single-step operation
is to program one of the external intenupts (say, INTO)
to be level-activated. The service routine for the intenupt
will terminate with the following code:

JNB P3.2,$;WAIT HERE TILL INTO
GOES HIGH

JB P3.2,$;NOW WAIT HERE TILL
IT GOES LOW

RETI :GO BACK AND
EXECUTE ONE
INSTRUCTION

Now if the INTO pin, which is also the P3.2 pin, is held
normally low, the epu will go right into the External
Intenupt 0 routine and stay there until INTO is pulsed
(from low to high to low). Then it will execute RETI, go
back to the task program, execute one instruction, and
immediately re-enter the External Intenupt 0 routine to
await the next pulsing of P3.2. One step of the task pro
gram is executed each time P3. 2 is pulsed.

7.10 RESET

The reset input is the RST pin, which is the input to a
Schmitt Trigger.

A reset is accomplished by holding the RST pin high for
at least two machine cycles (24 oscillator periods), while
the oscillator is running. The epu responds by executing

vee

+
10,<1 ='=

vee -

8051

. RST

8.2Kn

V.SS

"'":::'"

Figure 7·26. Power on Reset Circuit

an internal reset. It also configures the ALE and PSEN
pins as inputs. (They are quasi-bidirectional). The internal
reset is executed during the second cycle in which RST
is high and is repeated every cycle until RST goes low.
It leaves the internal registers as follows:

REGISTER CONTENT
PC OOOOH
ACC OOH
B OOH
PSW OOH
SP 07H
DPTR OOOOH
PO-P3 OFFH
IP (8051) XXXOOOOOB
IP (8052) XXOOOOOOB
IE (8051) OXXOOOOOB
IE (8052) OXOOOOOOB
TMOD OOH
TCON OOH
T2CON (8052 only) OOH
THO OOH

7-26

TLO OOH
TH1 OOH
TL1 OOH
TH2 OOH
TL2 OOH
RCAP2H (8052 only) OOH
RCAP2L (8052 only) OOH
SCON OOH
SBUF Indeterminate
PCON(HMOS)OXXXXXXXB
PCON (CHMOS) OXXXOOOOB

The internal RAM is not affected by reset. When vee is
turned on, the RAM content is indeterminate unless the
part is returning from a reduced power mode of operation.

POWER·ON RESET

An automatic reset can be obtained when vee is turned
on by connecting the RST pin to vee through a 10 J-tf
capacitor and to VSS through an 8. 2Kll resistor, provid
ing the vee risetime does not exceed a millisecond and
the oscillator start-up time does not exceed 10 milli
seconds. This power-on reset circuit is shown in Figure
7-26. When power comes on, the current drawn by RST
commences to charge the capacitor. The voltage at RST
is the difference between vee and the capacitor voltage,
and decreases from vee as the cap charges. :The larger
the capacitor, the more slowly VRST decreases. VRST
must remain above the lower threshhold of the Schmitt
Trigger long enough to effect a complete reset. The time
required is the oscillator start-up time, plus 2 machine
cycles.

7.11 POWER-SAVING MODES OF
OPERATION

For applications where power consumption is a critical
factor, both the HMOS and eHMOS versions provide
reduced power modes of operation. For the eHMOS ver-

MCS®·51 ARCHITECTURE

sion of tbe 8051 tbe reduced power modes, Idle and Power
Down, are standard features. In the HMOS versions a
reduced power mode is available, but not as a standard
fe~ture. The local sales office will provide ordering in
formation for users requiring this feature.

7.11.1 HMOS Power Down Mode

The power down mode in the HMOS devices allows one
to reduce vee to zero while saving the on-chip RAM
through a backup supply connected to the RST pin. To
use the feature, the user's system, upon detecting that a
power failure is imminent, would interrupt the processor
in some manner to. transfer relevant data to the on-chip
RAM and enable the backup power supply to the RST pin
before vee falls below its operating limit. When power
returns, the backup supply needs. to stay On long enough
to accomplish a reset, and then can be removed Sl) that
normal operation can be resumed.

7.11.2 CHMOS Power Reduction Modes

CHMOS ,versions have two power-reducing modes, Idle
and Power Down. The input through which backup power
is supplied d\lring these operations is vee. F,igure 7-27'
shows the internal circuitry which implements these fea
tures. In the Idle mode (IDL = I), the oscillator continues
to run and the Interrupt, Serial Port, and Timer blocks
continue to be clocked, but the clock signal is gated off
to the. CPU. In Power Down (PD = 1), the oscillator is
frozen. Tbe Idle and Power Down modes are activated by
setting bits in Special Function Register PeQN. The ad
dress of this register is 87H. Figure 7-28 details its
contents.

IDLE MODE

An instruction that sets PeON.O causes that to be the last
instruction executed before going into the Idle mode. In

~~
XTAL 2 = XTAL 1

(MSB)

ISMool I GFl GFO PO

Symbol Position Name and Function

SMOO PCON.7 Double BaUd rate bit. When set to a
1, the baud rate Is doubled when
the serial port Is being used In
either modes 1, 2 or 3.

PCON.& (Reserved)
PCON.S (Reserved)
PCON.4 (Reserved)

GFl PCON.3 General-purpose flag bit.
GFO PCON.2 General-purpose flag bit.
PD PCON.l Power Down bit. Setting this bit

activates power down operation.
IDL PCON.O Idle mode bit. Setting thlsliit ac-

tivates Idle mode operation.

If 1s are written to PD and IDL at the same time, PD
takes precedence. The resel value 01 PCON Is
(OXXXOOOO).

(LSB)

IOL

Figure 7-28. PCON: Power Control Register

the Idle mode, the internal clock signal is gated off to the
CPU, but not to the Interrupt, Timer, and Serial Port
functions. The CPU status is preserved in its entirety: the
Stack Pointer, Program Counter, Program Status Word,
Accumulator, and all other registers maintain their data
during Idle. The port pins hold the logical states they had
at the time Idle was activated. ALE and PSEN hold at

. logic high levels.

There are two ways to terminate the Idle. Activation of
any enabled interrupt will cause PeON. 0 to be cleared by
hardware, terminating the Idle mode. The interrupt will
be serviced, and following RET! the next instruction to
be executed will be the one following the instruction that
put the device into Idle.

The flag bits GFO and GFl can be used to give an indi
cation if an interrupt occurred during normal operation or

INTERRUPT,
I-_--C>. SERIAL PORT,

TIMER BLOCKS

CPU

Figure 7-27. Idle and Power Down Hardware

7-27

MCS®·51 ARCHITECTURE

during an Idle. For example, an instruction that activates
Idle can also set one or both flag bits. When Idle is ter
minated by an interrupt, the interrupt service routine can
examine the flag bits.

The other way of terminating the Idle mode is with a
hardware reset. Since the clock oscillator is still running,
the hardware reset needs to be held active for only two
machine cycles (24 oscillator periods) to complete the
reset.

POWER DOWN MODE

An instruction that sets PCON.I causes that to be the last
instruction executed before going into the Power Down
mode. In the Power Down mode, the on-chip oscillator
is stopped. With the clock frozen, all functions are
stopped, but the on-chip RAM and Special Function Reg
isters are held. The port pins output the values held by
their respective SFRs. ALE and PSEN output lows.

'The only exit from Power Down is a hardware reset. Reset
redefines all the SFRs, but does not change the on-chip
RAM.

In the Power dow\l mode of operation, VCC can be re
duced to minimize power consumption. Care must be
taken, however, to ensure that VCC is not reduced before
the Power Down mode is invoked, and that vce is re
stored to its normal operating level, before the Power
Down mode is terminated. The reset that terminates Power
Down also frees the oscillator. The reset should not be
activated before VCC is restored to its normal operating
level, and must be held active long enough to allow the
oscillator to restart and stabilize (normally less than 10
msec).

ADDR.
OOOOH-

Pl

OFFFH
P2.0-
P2.3

P2.4
P2.5

P2.&
TTL HIGH P2.7

XTAL2

XTALl
VSS

-=-

7.12 8751H

The 8751H is the EPROM member of the MCS-51 family.
This means that the on-chip Program Memory can be
electrically programmed, and can be erased by exposure
to ultraviolet light. The 8751H also has a provision for
denying external access to the on-chip Program Memory ,
in order to protect its contents against software piracy.

7.12.1 Programming the EPROM

To be programmed, the 8751H must be running with a 4
to 6 MHz oscillator. (The reason the oscillator needs to
be running is that the internal bus is being used to transfer
address and program data to appropriate internal registers.)
The address of an EPROM location to be programmed is
applied to Port 1 and pins P2.0-P2.3 of Port 2, while the
data byte is applied to Port O. Pins P2.4--P2.6 and PSEN
should be held low, and P2.7 and RST high. (These are
all TTL levels except RST, which requires 2.5V for a
logic high.) EAlVPP is held normally high, and is pulsed
to +2IV. While EAlVPP is at 21V, the ALE/PROG pin,
which is normally being held high, is pulsed low for 50
msec. Then EAlVPP is returned to high. This setup is
shown in Figure 7.29. Detailed timing specifications are
provided in the 875lH data sheet.

Note: The EA pin must not be allowed to go above the
maximum specified VPP level of 21.5V for any amount
of time. Even a narrow glitch above that voltage level can
cause permanent damage to the device. The VPP source
should be well regulated and free of glitches.

7.12.2 Program Verification

If the program security bit has not been programmed, the
on-chip Program Memory can be read out for verification

+5V

vee

8751H

ALE/PROG

EAlVPP

-=-

Figure 7-29. Programming the 8751 H

7-28

MCS®-51 ARCHITECTURE

purposes, if desired, either during or after the program
ming operation. The required setup, which is shown in
Figure 7.30, is the same as for programming the EPROM
except that pin P2.7 is held at TTL low (or used as an
active-low read strobe). The address of the Program Mem
ory location to be read is applied to Port I and pins
P2.O""P2.3. The other Port 2 pins and PSEN are held low.
ALE, EA, and RST are held high. The contents of the
addiessed location will come out on Port O. External pull
ups are required on Port 0 for this operation.

7.12.3 Program Memory Security

The 8751H contains a security bit, which, once pro
grammed, denies electrical access by any external means
to the on-chip Program Memory. The setup and procedure
for programming the security bit are the same as for normal

ADDR. --~---,,....,.,
OOOOH
OFFFH

.".

P1

P2.0-
P2.3 8751H

8051
P2.4
P2.5

P2.6
P2.7

XTAL2

XTAL1

VSS

programming, except that pin P2.6 is held at TTL high.
The setup is shown in Figure 7.31. Port 0, Port 1, and
pins P2.O""P2.3 of Port 2 may be in any state.

Once the security bit has been programmed, it can be
deactivated only by full erasure of the Program Memory.
While it is programmed, the internal Program Memory
cannot be read out, the device cannot be further pro
grammed, and it cannot execute external program mem
ory. Erasing the EPROM, thus deactivating the security
bit, restores the device's full functionality. It can then be
re-programmed.

7.12.4 Erasure Characteristics

Erasure of the 8751H Program Memory begins to occur
when the chip is exposed to light with wavelengths shorter

+5V

vcc

PO
PGM DATA
(USE 10K PULLUPS)

ALe TTL HIGH

RST VIH1

PSEN

.".

Figure 7-30. Program Verification In the 8751 Hand 8051

+5V

'I
vcc x = "DON'T ·CARE"

P1

P2.o- PO X

P2.3

8751H
P2.4
P2.5 ALE/PFiOG 50 ms PULSE TO GND

P2.6
TTL HIGH P2.7

XTAL2 EAlVPP + 21V PULSE

XTAL1 RST VIH1

VSS PSEN

.". .".

Figure 7-31. Programming the Security Bit in the 8751H

7-29

MCS®·51 ARCHITECTURE

than approximately 4,000 Angstroms. Since sunlight and
fluorescent lighting have wavelengths in this range, ex
posure to these light sources over an extended time (about
I week in sunlight, or 3 years in room-level fluorescent ,
lighting) could cause inadvertent erasure. If an application
subjects the 8751H to this type of exposure, it is suggested
that an opaque label be placed over the window.

The recommended erasure procedure is exposure to ultra
violet light (at 2537 Angstroms) to an integrated dose of
at least 15 W/cm2 . Exposing the 8751H to an ultraviolet
lamp of 12,000 /LW/cm2 rating for 20 to 30 minutes, at
a distance of about 1 inch, should be sufficient.

XTAL1

if
SUBST.

Erasure leaves the array in an all Is state.

7.13 MORE ABOUT THE ON·CHIP
OSCILLATOR

7.13.1 HMOS Versions

The on-chip oscillator circuitry for the HMOS (HMOS-I
and HMOS-II) members of the MCS-51 family is a single
stage linear inverter (Figure 7-32), intended for use as a
crystal-controlled, positive reactance oscillator (Figure
7-33). In this application the crystal is operated in its
fundamental response mode as an inductive reactance in
parallel resonance with capacitance external to the crystal.

Vee

TO INTERNAL
TIMING CKTS

XTAL2

Figure 7-32. On-Chip Oscillator Circuitry in the HMOS Versions of the MCS-51 Family

VSS

8051

Q2

XTAL1----

TO INTERNAL
TIMING CKTS

XTAL2------

_--1"-- QUARTZ CRYSTAL
OR CERAMIC ReSONATOR

Figure 7-33. Using tile HMOS On-Chip OSCillator

7-30

MCS®-S1 ARCHITECTURE

The crystal specifications and capacitance values (CI and
C2 in Figure 7-33) are not critical. 30 pF can be used in
these positions at any frequency with good quality crys
tals. A ceramic resonator can be used in place of the crystal
in cost-sensitive applications. When a ceramic resonator
is used, CI and C2 are normally selected to be of some
what higher values, typically, 47 pF. The manufacturer
of the ceramic resonator should be consulted for recom
mendations on the values of these capacitors.

A more in-depth discussion of crystal specifications, ce-

Vcc -
8051

EXTERNAL
.;.c>--+---i XTAL2

OSCILLATOR t
SIGNAL

TTL
GATE
WITH

TOTEM-POLE
OUTPUT

- XTAL1

>-- VSS

Figure 7-34. Driving the HMOS MCS-51 Parts
with an External Clock Source

XTAL1

TO INTERNAL
TIMING cKrs

4000

r
01

02

ramic resonators, and the selection of values for CI and
C2 can be found in Application Note AP-155, "Oscillators
for Microcontrollers," which is included in this manual.

To drive the HMOS parts with an external clock source,
apply the external clock signal to XTAL2, and ground
XTALl, as shown in Figure 7-34. A pull-up resistor may
be used (to increase noise margin), but is optional if VOH
of the driving gate exceeds the VIHMIN specification of
XTAL2.

7.13.2 CHMOS

The on-chip oscillator circuitry for the 80C51, shown in
Figure 7-35, consists of a single stage linear inverter in
tended for use as a crystal-controlled, positive reactance
oscillator in the same manner as the HMOS parts. How
ever, there are some important differences.

One difference is that the SOC51 is able to turn off its
oscillator under software control (by writing a I to the PD
bit in PeON). Another difference is that in the SOC5l the
internal clocking circuitry is driven by the signal at
XT ALl, whereas in the HMOS versions it is by the signal
at XTAL2.

The feedback resistor Rf in Figure 7-35 consists of par
alleled n- and p-channel FETs controlled by the PD bit,
such that Rf is opened when 'PD = I. The diodes D I and
D2, which act as clamps to VCC and VSS, are parasitic
to the Rf FETs.

Vcc

R,
XTAL2

PO

Figure 7-35. On-Chip Oscillator Circuitry in the CHMOS Versions of the MCS-51 Family

7-31

MCS®-51 ARCHITECTURE

TO INTERNAL
TIMING CKTS

VSS

VCC

RI

-------- XTAL1----- XTAL2------
80C51

~-r-- QUARTZ CRYSTAL

C~ I ~
OR CERAMIC
RESONATOR

FIgure 7-36. Using the CHMOS On-Chip Oscillator

The oscillator can be used with the same external com
ponents !IS the HMOS versions, as shown in Figure 7-36.
Typically, CI = C2 = ·30 pF when the feedback element
is a quartz crystal, and Cl = C2 = 47 pF when a ceramic
resonator is used.

To drive the.CHMOS parts with an external clock source,
apply the external clock signal to XT ALl, and leave
XTAL2 float, as shown in Figure 7-37.

The reason for this change from the way the HMOS part
is driven can be seen by comparing Figures 7-32 and 7-35.
In the HMOS devices the internal timing circuits are driven
by the signal at XT AL2. In the CHMOS devices the in
ternal timing circuits are driven by the signal at XTALI.

80C51

XTAL2

EXTERNAL
:>0----1 XTAL1

OSCILLATOR t
SIGNAL

CMOS GATE
)Iss

Figure 7-37. DrIvIng the CHMOS MCS-51 Parts
wIth an External Clock Source·

7.14 INTERNAL TIMING

Figures 7-38 through 7-41 show when the various strobe
and port signals are clocked internally. The figures do not
show rise and fall times of the signals, nor do they show
propagation delays between the XT AL2 signal and events
at other pins.

Rise and fall times are dependent on the external loading
that each pin must drive. They are often taken to be some:
thing in the neighborhood of 10 nsec, measured between
0.8V and 2.0V.

Propagation delays are different for different pins. For a
given pin they vary with pin loading, temperature, VCC,
and manufayturing lot. If the XTAL2 waveform is taken
as the timing reference, prop delays may vary from 25 to
125 nsec.

the AC Timings section of the data sheets do not reference
any timing to the XTAL2 waveform. Rather, they relate
the critical edges of control and input signals to each other.
The timings published in the data sheets include the effects
of propagation delays under the specified test conditions.

7.15 MCS-51 PIN DESCRIPTIONS

VCC: Supply voltage.

VSS: Circuit ground potential.

P9rt 0: Port 0 is an 8-bit open drain bidirectional 1/0 port.
As an open drain output port it can sink 8 LS TTL loads.
Port 0 pins that have 1 s written to them float, and in that
state will function as high-impedance inputs. Port 0 is also

7-32

MCS®-51 ARCHITECTURE

the multiplexed low-order address and data bus during
accesses to external memory. In this application it uses
strong internal pullups when emitting Is. Port 0 also emits
code bytes during program verification. In that applica
tion, external pullups are required.

Port 1: Port I is an 8-bit bidirectional I/O port with in
ternal pullups. The port I output buffers can sink/source
4 LS TTL loads. Port I pins that have I s written to them
are pulled high by the internal pullups, and in that state
can be used as inputs. As inputs, Port I pins that are
externally being pulled low will source current (IlL, on
the data sheet) because of the internal pullups.

In the 8052, pins Pl.O and PI.I also serve the alternate
functions of T2 and T2EX. T2 is the Timer 2 external
input. T2EX is the input through which a Timer 2 "cap-
ture" is triggered. .

Port 2: Port 2 is an 8-bit bidirectional 1/0 port with in
ternal pullups. The Port 2 output buffers can sink/source
4 LS TTL loads. Port 2 emits the high-order address byte
during accesses to external memory that use 16-bit ad
dresses. In this application it uses the strong internal pul
lups when emitting Is. Port 2 also receives the high-order
address and control bits during 8751H programming and
verification, and during program verification in the 8051AH.

Port 3: Port 3 is an 8-bit bidirectional I/O port with in
ternal pullups. It also serves the functions of various spe
cial features of the MCS-51 Family, as listed below:

PORT PIN
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6

P3.7

ALTERNATE FUNCTION
RXD (serial Input port)
TXD (serial putput port)
iNTO (external Interrupt 0)
INT1 (external. Interrupt 1)
TO (Timer 0 external Input)
!!JTlmer 1 ext,rnal input)
WR (external data memory
write strobe)
RD (external data memory
read str9i:!e)

The Port 3 output buffers can sourcelsink 4 LS TTL loads.

RST: Reset input. A high on this pin for two machine
cycles while the oscillator is running resets the device.

ALEJPI«)G: Address Latch Enable output pulse for
latching the low byte of the address during accesses to
external memory. ALE is emitted at a constant rate of
116 of the oscillator frequency, for external timing or
clocking purposes, even when there are no accesses to
external memory. (However, one ALE pulse is skipped
during each acces to external Data Memory) This pin is
also the program pulse input (PROG) during EPROM
programming.

PSEN: Program Store Enable is the read strobe to external
Program Memory. When the device is executing out of
external Program Memory, PSEN is activated twice each
machine cycle (except that two PSEN activations are
skipped during accesses to external Data Memory). PSEN
is not activated when the device is executing out of internal
Program Memory.

7-33

EAlVPP: When EA is held high the CPU executes out
of internal Program Memory (unless the Program Counter
exceeds OFFFH in the 8051AH, or lFFFH in the 8052).
Holding EA low forces the CPU to execute out of external
memory regardless of the Program Counter value. In the
803IAH and 8032, EA must be externally wired low. In
the 8751H, this pin also receives the 21V programming
supply voltage (VPP) during EPROM programming.

XTALl: Input to the inverting oscillator amplifier.

XTAL2: Output from the inverting oscillator amplifier.

XTAL2:

ALE:

MCS®-51 ARCHITECTURE

I STATE 11 STATE 21 STATE 31 STATE 41 STATE 51 STATE 61 STATE 1.1 STATE 21

~I~ ~I~ ~I~ ~I~ ~I~ ~I~ ~I~ ~I~

PSEN: ~ DATA
. ,---I -----' L

po:

P2:

XTAl2:

ALE:

RD:

PO:

P2:

-+I k-SAMPLED

PCH OUT PCH OUT PCH OUT

Figure 7-38. External Program Memory Fetches

I STATE 41 ~TATE 51 STATE 61 STATE 1 I STATE 21 STATE 31 STATE 41 STATE 51
~I~ ~I~ ~I~ ~I~ ~I~ ~I~ ~I~ ~I~

PCH OR

P2SFR

DATA SAMPLED

FLOAT

DPH OR P2 SFR OUT

Figure 7-39. External Data Memory Read Cycle

7-34

PCL OUT IF

PCH OR

P2SFR

MCS®-S1 ARCHITECTURE

I STATE 41 STATE 51 STATE 81 STATE 1 I STATE 31 STATE 21 STATE 41 STATE 51
~I~ ~I~ ~I~ ~I~ ~I~ ~I~ ~I~ ~I~

XTAL2:

ALE:

WR:

po:

P2 PCH OR
P2SFR

DATA OUT

DPH OR P2 SFR OUT

PCL OUT IF
PROGRAM MEMORY

IS EXTERNAL

PCH OR
P2SFR

Figure 7-40. External Data Memory Write c:ycle

I STATE 41 STATE 51 STATE 61 STATE 1 I STATE 21 STATE 31 STATE 41 STATE 51

~I~ ~I~ ~I~ ~I~ ~I~ ~I~ ~I~ ~I~

XTAL2:

INPUTS SAMPLED: ~J~--,PO, Pl

=:r!-P2, P3, RST

MOV PORT, SRC: OLD DATA NEW DATA

SERIAL PORT
SHIFT CLOCK
(MODE 0)

-.j ~ RXD PIN SAMPLED

Figure 7·41. Port Operation

7-35

po, P1-Lt
P2, P3, RST=:r!-

RXD SAMPLED ---l j.c-

MCS®~51lnstruction Set 8

CHAPTER 8
MCS®-S1 INSTRUCTION SET

8.0 INTRODUCTION

The MCS@-51 instruction set includes III instructions,
49 of which are single-byte, 45 two-byte and 17 three
byte. The instruction op code format consists of a func
tion mnemonic followed by a "destination, source"
operand field. This field specifies the data type and
addressing methodes) to be used.

8.1 FUNCTIONAL OVERVIEW

The MCS-51 instruction set is divided into four func
tional groups:

• Data Transfer
• Arithmetic
• Logic
• Control Transfer

8.1.1 Data Transfer

Data transfer operations are divided into three classes:

• General Purpose
• Accumulator-Specific
• Address-Object

None of these operations affect the PSW flag settings
except a pap or MOV directly to the PSW.

GENERAL-PURPOSE TRANSFERS

• MOV performs a bit or a byte transfer from the
source operand to ,the destination operand.

• PUSH increments the SP register and then transfers
a byte from the source operand to the stack location
currently addressed by SP.

• POP transfer a byte operand from the stack location
addressed by SP to the destination operand and then
decrements SP.

ACCUMULATOR SPECIFIC TRANSFER~

• XCH exchanges the byte source operand with regis
ter A (accumulator).

• XCHD exchanges the low-order nibble of the byte
source operand with the low-order nibble of A.

8-1

• MOVX performs a byte move between the External
Data Memory and the accumulator. The external
address can be specified by the 0 PTR register (16-
bit) or the R I or RO register (8-bit).

• MOVC moves a byte from Program memory to the
accumulator. The operand in A is used as an index
into a 256-byte table pointed to by the base register
(DPTR or PC). The byte operand accessed is trans
ferred to the accumulator.

ADDRESS-OBJECT TRANSFER

• MOV DPTR, #data loads 16-bits of immediate data
into a pair of destination re~isters, DPH and DPL.

8.1.2 Arithmetic

The 8051 has four basic mathematical operations. Only
8-bit operations using unsigned arithmetic are sup
ported directly. The overflow flag, however, permits the
addition and subtraction operation to serve for both
unsigned and signed binary integers. Arithmetic can
also be performed directly on packed decimal (BCD)
representations.

ADDITION

• INC (increment) adds one to the source operand and
puts the result in the operand.

• ADD adds A to the source operand and returns the
result to A.

• ADDC (add with Carry) adds A and the source
operand, then adds one (I) if CY is set, and puts the
result in A.

• DA (decimal-add-adjust for BCD addition) corrects
the sum which results from the binary addition of
two two-digit decimal operands. The packed decimal
sum formed by DA is returned to A. CY is set if the
BCD result is greater than 99; otherwise, it is cleared.

SUBTRACTION

• SUBB (subtract with borrow) subtracts the second
source operand from the first operand (the accumu
lator), subtracts one (I) if CY is set and returns the
result to A.

• DEC (decrement) subtracts one (I) from the source
operand and returns the result to the operand.

MCS®·51 INSTRUCTION SET

MULTIPLICATION

• M U L performs an unsigned multiplication of the A
register by the B register, returning a double-byte
result. A receives the low-order byte, B receives 'the
high-order byte. OV is cleared if the top half of the
result is zero and is set if it is non-zero. CY is cleared.
AC is unaffected.

DIVISION

• DIV performs an unsigned division of the A register by
the B register and returns the integer quotient to A and
returns the fractional remainder to the B register.
Division by zero leaves indeterminate data in registers
A and B and sets OV; otherwise OV is cleared. CY is
cleared. AC is unaffected.

Unless otherwise stated in the above descriptions, the
flags of PSW are affected as follows:

• CY is set if the operation causes a carry to or from the
resulting high-order bit. Otherwise CY is cleared.

• AC is set if the operation results in a carry from the
low-order four bits of the result (during addition), or
a borrow from the high-order bits to the low-order
bits (during subtraction); otherwise AC is cleared.

• OV is set if the operation results in a carry to the
high-order bit of the result but not a carry from the
high-order bit, or vice versa; otherwise 0\1 is cleared.
OV is used in two's-complement arithmetic, because
it is set when the signed result cannot be represented
in 8 bits.

• P is set if the mod ulo 2 sum of the eight bits in the
accumulator is I (odd parity); otherwise P is cleared
(even parity). When a value is written to the PSW
register, the P bit remains unchanged, as it always
reflects the parity of A.

8.1.3 Logic

The 8051 performs basic logic operations on both bit
and byte operands.

SINGLE-OPERAND OPERATIONS

• CLR sets A or any directly addressable bit to zero (0).

• SETB sets any directly addressable bit to one (I).

• CPL is used to compliment the contents of the A
register without affecting any flags, or any directly
addressable bit location.

8-2

• RL, RLC, RR, RRC, SWAP are the five rotate
operations that can be performed on A. RL, rotate left,
RR, rotate right, RLC, rotate left through C, RRC,
rotate right through C, and SWAP, rotate left four.
For RLC and RRC the CY flag becomes equal to the
last bit rotated out. SWAP rotates A left four places to
exchange bits 3 through 0 with bits 7 through 4.

TWO-OPERAND OPERATIONS

• ANL performs bitwise logical and of with two source
operands (for both bit and byte operands) and returns
the result to the location of the first operand.

• 0 R L performs bitwise logical or of two source oper
ands (for both bit and byte operands) and returns the
result of the location of the first operand.

• XRL performs bitwise logical or of two source oper
ands (byte operands) and returns the result to the loca
tion of the first operand.

8.1.4 Control Transfer

There are three classes of control transfer operations:
unconditional calls, returns and jumps; conditional
jumps; and interrupts. All control transfer operations
cause, some upon a specific condition, the program
execution to continue at a non-sequential location in
program memory.

UNCONDITIONAL CALLS, RETURNS
AND JUMPS

Unconditional calls, returns and jumps transfer control
from the current value of the Program Counter to the
target address. Both direct and indirect transfers are
supported.

• ACALL and LCALL push the address of the next
instruction onto the stack and then transfer control
to the target address. ACALL is a 2-byte instruction
used when the ,target address is in the current 2K
page. LCALL is a 3-byte instruction that addresses
the full 64K program space. In ACALL, immediate
data (i.e. an II bit address field) is concatenated to
the five most significant bits of the PC (which is
pointing to the next instruction). If ACALL is in the
last 2 bytes of a 2K page then the call will be made to
the next page since the PC will have been incre
mented to the next instruction prior to execution.

MCS$-S1INSTRUCTION SET

• RET transfers control to the return address saved on
the stack by a previous call operation and decre
ments the SP register by two (2) ,to adjust the SP for
the popped address.

• AJM p, U M P'and SJ M P transfer controlto the target
operand. The operation of AJMP and UMP are
analogous to ACALL and LCALL. The SJMP (short
jump) instruction provides for transfe.rs within a 256
byte range centered a,bout the starting address of the
next instruction (-128 to + 127).

• JMP @A+DPTR performs a jump relative to the
DPTR register. The operand in A is used as the offset
(0-255) to the address in the DPTR register. Thus, the
effective destination for ajump can be anywhere in the
Program Memory space.

CONDITIONAL JUMPS

,Conditional jumps perform a jump contingent upon a
specific condition. The destination will be within a 256-

'byte range centered about the starting address of the
next instruction (-128 to +127).

• JZ performs a jump if the accumulator is zero.

'. J NZ performs a jump if the accumulator is not zero.

• JC performs a jump if the carry flag is set.

• JNC performs a jump if the carry flag is not set.

• JB performs ajump if the Direct Addressed bit is set.

• JNB performs a jump if the Direct Addressed bit is
not set.

• JBC performs a jump if the Direct Addressed bit is
set and then clears the Direct Addressed bit.

• CJNE compares the first operand to the second ope
rand and performs ajump if they are not equal. CY is
set if the first operand is less than the second ope
rand; otherwise it is cleared. Comparisons can be

8-3

made between A directly addressable bytes in Internal
Data Memory or between an immediate value and
either A, a register in the selected Register Bank, or a
Register-Indirect addressed byte of Internal RAM.

• DJNZ dec;rements the source operand and returns the
result to the operand. Ajump is performed if the result
is not zero. The source operand of the DJNZ instruc
tion may be any byte in the Internal Data Memory.
Either Direct or Register Addressing may be used to
address the source operand.

INTERRUPT RETURNS

• RET! transfers control as does RET, but addition
ally enables interrupts of the current priority level.

1

8.2 INSTRUCTION DEFINITIONS

Each of the 51 basic MCS-51 operations, ordered
alphabetically according to the operation mnemonic
are described beginning page 8-8.

A brief example of how the instruction might be used is
given as well as its effect on the PSW flags. The number
of bytes and machine cycles required,the binary machine~
,language encoding, and a symbolic description or restate
m~nt of the function is also provided.

Note: Only the carry, auxiliary-carry, and overflow flags
are discussed. The parity bit is computed after every in
struction cycle that alters the accumulator. Similarly,
instructions which alter directly addressed registers could
affect the other status flags if the instruction is applied to
the PSW. Status flap can also be modified by bit
manipUlation.

For details on the MCS-SI assembler, ASM51, refer to
the MCS-51 Macro Assembler User's Guide, publication
number 9800937,

Table 8-1 summarized the M ':-51 instruction set.
- ~ '--..............

MCSI!!>-51 INSTR!JCrION SEr

, Table 8-1. 8051 Instruction Set Summary

Interrupt Response Time: To fimsh execution of current in
struction, respond to the interrupt request, push the PC and to
vector to the first instruction of the interrupt service program
requires 38 to 81 oscillator periods (3 to 7 IlS @ 12 MHz).

INSTRUCTIONS THAT AFFECT FLAG SETTINGS'

INSTRUCTION

ADD
ADDC
SUBB
MUL
DIY
DA
RRC
RLC
SETBC

FLAG INSTRUCTION

C OYAC
X X X CLRC
X X X CPLC
X X, X ANLC,bit
o X ANL C,/bit
o X ORLC,bit
X ORLC,bit
X MOYC,bit

,X CJNE
I

FLAG

C OYAC o .
X
X
X
X
X
X
?'

'Note that operations on SFR byte address 208 or bi! ad
dresses 209-215 (Le., the PSW or bits in the,PSW) will also
affect flag settIngs.

ARITHMETIC OPERATIONS

Mnemonic

ADD A,Rn

ADD A,direct

ADD A,@Ri

ADD A,#data

ADDC A,Rn

ADDC A,dlrect

ADDC A,@Ri

ADDC A,#data

SUBB A,Rn

SUBB A,direct

Oscillator
Description Byte Period

Add register to
Accumulator
Add direct byte to' 2
Accumulator
Add indirect RAM
to Accumulator
Add immediate 2
data to
Accumulator
Add register to
Accumulator
with Carry
Add direct byte to
Accumulator
with Carry
Add indirect
RAM to
Accumulator
with Carry
Add immediate
data to Acc
with Carry
Subtract register
from Acc with
borrow
Subtract d.rect
byte from Acc
with borrow

2

2

2

12

12

12

12

12

12

12

12

12

12

8-4

Notes on instruction'set and addressing modes:
Rn -Register R 7-RO of the currently selected Register

Bank.
direct -8obit internal data location's address. This cduld be

an Internal Data RAM location (0-127) or'a SFR
[Le., I/O port, control register, status register, etc.
(128-255)]. , ,

@Ri -8obit internal data RAM location (0-255) addressed
indirectly through register R I or RO.

#data -8-bit constant included in instruction.
#data 16 -16-b.t constant included in instruction
addr 16 -16-bit destination address. Used by LCALL &

LJ M P. A branch can be anywhere within \he 64K
byte Program Memory address space. ,

addr II -II-bit destination address. Used by ACALL &
AJMP. The branch will be within the same 2K-byte
page of program memory as' the first byte of the
following instruction.

reI -Signed (two's complement) 8-bit offset byte. Used
by SJMP and all conditional jumps. Range is -128
to + 127 bytes relative to first byte of the following
instructiol1.

bit -Direct. Addressed bit in Internal Data RAM or
Special Function Register.

:"'New operation 110t provided by 8048AH/8049AH.

ARITHMETIC QPERATIONS Cont.

Osclllato~
Mnemonic Deseription Byte Period

SUBB A,@Ri S'ubtract indirect f 12
RAM fromAcc
with borrow

SUBB A,#data Subtract 2 12
immediate data
from Acc with
borrow

INC A Increment 12
Accumulator

INC Rn Increment register I 12
INC direct Increment direct 2 12

byte
INC @Ri Increment indirect 12

RAM
DEC A Decrement .12

Accumulator
DEC Rn Decrement 12

Register
DEC direct Decrement direct 2 12

byte
DEC @Ri Decrement 12

indirect RAM
INC DPTR Increment Data 24

Pointer
MUL AD Multiply A & B 48
DIY AB Divide A byB 48
DA A Decimal Adjust 12

Accumulator

All mnemoniCs copYrighted @lotelCorporation 1980

MCS~-51INSTRUCTION SET

Table 8-1. 8051 Instruction Set Summary (Continued)

LOGICAL OPERATIONS LOGICAL OPERATIONS Coni.

Oscillator Oscillator
Mnemonic Description Byte Period Mnemonic Description Byte Period

ANL A,Rn AND register to I 12 XRL A,@Ri Exclusive-OR 12
Accumulator indirect RA M to

ANL A,direct AND direct byte 2 12 Accumulator
to Accumulator XRL A,#data Exclusive-OR 2 12

ANL A,@Ri AND indirect 12 immediate data to
RAM to Atcumulator
Accumulator XRL direct,A Exclusive-OR 2 12

ANL A,#data AND immediate 2 12 Accumulator to
data to direct byte
Accumulator XRL direct,#data Exclusive-OR 3 24

ANL dlrect,A AND Accumulator 2 12 immediate data
to direct byte to direct byte

ANL direct,#data AND immediate 24 CLR A Clear 12
data to direct byte Accumulator

ORL A,Rn OR register to 12 CPL A Complement 12
Accumulator Accumulator

ORL A,direct OR direct byte to 2 12 RL A Rotate 12
Accumulator Accumulator Left

ORL A,@Ri OR indirect RAM 12 RLC A Rotate 12
to Accumulator Accumulator Left

ORL A,#data OR immediate 2 12 through the Carry
data to RR A Rotate 12
Accumulator Accumulator

ORL direct,A OR Accumulator 2 12 Right
to direct byte RRC A Rotate 12

ORL direct,#data OR immediate 3 24 Accumulator
data to direct byte Right through

XRL A,Rn ExclUSive-OR 12 the Carry
register to SWAP A Swap nibbles 12
Accumulator Within the

XRL A,direct Exclusive-OR 2 12 Accumulator
direct byte to
Accumulator

All mnemonics copynghted @Intel CorporatIOn 1980

8-5

MOS@·S1INSTRUOTION SET

Table 8-1. 8051 Instruction Set Summary (Continued)

DATA TRANSFER DATA TRANSFER Cont.

Oscillator Oscillator
Mnemonic Description Byte Period Mnemonic Description Byte Period

MOY A,Rn Move 12 MOY DPTR,#dataI6 Load Data 3 24
register to Pointer with a
Accumulator l6-bit constant

MOY A,direct Move direct 2 12 MOYC A,@A+DPTR Move Code 24
byte to byte relative fo
Accumulator DPTR to Ace

MOY A,@Ri Move indirect 12 MOYC A,@A+PC Move Code 24
RAMto byte relative to
Accumulator PC to Ace

MOY A,#data Move 2. 12 MOYX A,@Ri Move 24
immediate External
data to RAM (8-bit
Accumulator addr) to Acc

MOY Rn,A Move 12 MOYX A,@DPTR Move 24
Accumulator External
to register RAM (l6-bit

MOY Rn,direct Move direct 2 24 addr) to Ace
byte to MOYX @Ri,A Move Aceto 24
register External-RAM

MOY Rn,#data Move 12 (8-bit addr)
immediate data MOYX @DPTR,A Move Aceto 24
to register External RAM

MOY direct,A Move 12 (l6-bit addr)
Accumul"tor PUSH direct Push direct 2 24
to direct byte byte onto

MOY direct,Rn Move register 2 24 stack
to direct byte POP direct Pop direct 2 24

MOY direct,direct Move direct 24 byte from
byte to direct stack

MOY direct,@Ri Move indirect 2 24 XCH A,Rn Exchange 12
RAMto register with
direct byte Accumulator

MOY direct,#data Move 24 XCH A,direct Exchange 2 12
immediate data direct I>yte
to direct byte with

MOY @Ri,A Move 12 Accumulator
Accumulator to XCH A,@Ri Exchange 12
indirect RAM indired RAM

MOY @Ri,dtrect Move direct 2 24 with
byte to Accumulator
indirect RAM XCHD A,@Ri Exchange low- 12

MOY @Ri,#data Move 2 12 order Digit
immediate indirect RA M
data to with Ace
mtlirect RAM

All mnemoniC!> copYrighted ©Intel Corporation 1980

8-6

MCS®-51 INSTRUCTION SET

Table 8-1. 8051 Instruction Set Summary (Continued)

BOOLEAN VARIABLE MANIPULATION PROGRAM BRANCHING Conl

Oscillator O~.cillator

Mnemonic Description Byte Period Mnemonic Do:scription Byte Period

CLR C Clear Carry I 12 RETI Return from 24
CLR bit Clear direct bit 2 12 interrupt
SETB C Set Carry I 12 AJMP addrll Absolute' 2 24
SETB bit Set direct bit 2 12 Jump
CPL C Complement 12 LJMP addrl6 Long Jump 3 24

Carry SJMP rei Short Jump 2 24
CPL bit Complement 2 12 (relative addr)

direct bit JMP @A+DPTR Jump indirect 24
ANL C.bit AND direct bit 2 24 relative to the

to Carry DPTR
ANL C,/bit AND compleme~t 2 24 JZ rei Jump if 2 24

of direct bit Accumulator
to Carry is Zero

ORL C.bit OR direct bit 2 24 JNZ rei Jump if 2 24
to Carry Accumulator

ORL C,/bit OR complement 2 24 . is Not Zero
of direct bit CJNE A,direct,rel Compare 24
to Carry direct byte to

MOV C,bit Move direct bit 2 12 Ace and Jump
to Carry if Not Equal

MOV bit,C Move Carry to 2 24 CJNE A,#data,rel Compare 3 24
direct bit immediate to

JC rei Jump if Carry 2 24 Acc.and Jump
is set iLNot Equal

JNC rei Jump if Carry 2 24 CJNE Rn,#data,rel Compare 24
not set immediate to

JB bit, rei JljffiP if direct 24 register and
Bit is set Jump If Not

JNB bit, rei Jump if direct 24 Equal
Bit is Not set CJNE @Ri,#data,rel Compare 24

JBC bit,rel Jump if direct 24 immediate to
Bit is set & indirect and
clear bit Jump if Not

Equal
DJNZ Rn,rel Decrement 24

PROGRAM BRANCHING register and

Oscillator Jump if Not

Mnemonic Description Byte Period Zero
DJNZ direct, rei Decrement 3 24

ACALL addrll - Absolute 2 24 direct byte
Subroutine and Jump if
Call Not Zero

LCALL addrl6 Long 3 24 NOP No Operation 12
Subroutine
Call All mnemonics copYrighted ©Intel Corporation 1980

RET Return from 24
Subroutine

8-7

MCS@·S1 INSTRUCTION SET

ACALL addr11

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Absolute Call

ACALL unconditionally calls a subroutine located at the indicated address.
The instruction increments the PC twice to obtain the address of the following
instruction, then pushes the 16-bit result onto the stack (low-order byte first)
and increments the stack pointer twice. The destination address is obtained by
successively concatenating the five high-order bits of the incremented PC, op
code bits 7-5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2K block of the program memory as the first
byte of the instruction following ACALL. No flags are affected.
Initially SP equals 07H. The label "SUBRTN" is at program memory location
0345H. After executing the instruction,

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM locations OSH and O9H
will contain 25H and OIH, respectively, and the PC will contain 0345H.
2
2

I aIO a9 as I I 0 0 0 1 I I a7 a6 as a41 a3 a2 al aO I
ACALL
(PC)---(PC) + 2
(SP) ~ (S]» + 1

«SP»-(PC7-0)
(SP) ---- (SP) + I

«SP» -(PCI5-S)
(PClO-O)-page address

8-8

MCS®·51 INSTRUCTION SET'

ADD A, <src·byte>

Function:
Description:

Example:

ADD A,Rn
Bytes:

Cycles:

Encoding:

Operation:

ADD A,direct
Bytes:

Cycles:

Encoding:

Operation:

Add
ADD adds the byte variable indicated to the accumulator, leaving the result in
the accumulator. The carry and auxiliary-carry flags are set, respectively, if
there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding un
signed integers, the carry flag indicates an overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit
7 but not bit 6; otherwise OV is cleared. When adding signed integers, OV in
dicates a negative number produced as the sum of two positive operands, or a
positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register
indirect, or immediate.
The accumulator holds OC3H (llOOOOllB) and register 0 holds OAAH
(lOlOlOlOB). The instruction,

ADD A,RO

will leave 6DH (01 101 lOlB) in the accumulator with the AC flag cleared and
both the carry flag and OV set to 1.

1 0 0 o 11 r r r I
ADD
(A)_ (A) + (Rn)

2
1

10 0 01 0 1 0 11 I direct a,ddress I

ADD
(A)- (A) + (direct)

8-9

MCS®~51 INSTRUCTION S~T

ADD A,@RI
Bytes:

Cycles:

Encoding: 10 0 01 0 1 1 i 1
Operation: ADD

(A)- (A) + «Ri»

ADD A,#data
Bytes: 2

Cycles:

Encoding: 10 0 01 0 1 0 01 I immediate data I
Operation: ADD

(A)_ (A) + #data

8-10

MCS@-51 INSTRUCTION SET·

ADDC A, <src-byte>

Function:
Description:

Example:

ADDC A,Rn
Bytes:

Cycles:

Encoding:

Operation:

AD DC A,direct

Add with Carry
ADDC simultaneously adds the byte variable indicated, the carry flag and the
accumulator contents, leaving the result in the accumulator. The carry and
auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit
3, and cleared otherwise. When adding unsigned integers, the carry flag in
dicates an overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carryout of bit 7
but not out of bit 6; otherwise OV is cleared. When adding signed integers, OV
indicates a negative number produced as the sum of two positive operands or a
positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register
indirect, or immediate.
The accumulator holds OC3H (llOOOOllB) and register 0 holds OAAH
(lOlOlOlOB) with the carry flag set. The instruction,

ADDC A,RO

will leave 6EH (OllOlllOB) in the accumulator with AC cleared and both the
carry flag and OV set to 1.

10 0 1 11 It r rl
ADDC
(A)_(A) + (q + (Rn)

Bytes: 2
Cycles: 1

Encoding:

Operation:

I 0 0 I I I 0 I 0 11 I direct address I
ADDC
(A)-(A) + (q + (direct)

8-11

ADDC A,@Ri
Bytes:

Cycles:

Encoding:

Operation:

ADDC A,#data

MCS®-51 INSTRUCTION SET

100111011 il

ADDC
(A)- (A) + (C) + «RU)

Bytes: 2
Cycles:

Encoding: I 0 0 1 1 I 0 1 0 0 I I immediate data I
Operation: ADDC

(A)"-: (A) + (C) + #data

AJMP addr11

. Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Absolute Jump
AJMP transfers program execution to the indicated address, which is formed at
run-time by concatenating the high-order five bits of the PC (after incrementing
the PC twice), opcode bits 7-5, and the second byte of the instruction. The
destination must therefore be within the same 2K block of program memory as
the first byte of the instruction following AJMP.
The label "JMPADR" is at program memory location 0123H. The instru<.:tion,

AJMP JMPADR

is at location 0345H and will load the PC with 0123H.
2
2

I alO a9 as 0 I 0 0 0 1 I I a7 a6 a5 a41 a3 a2 a1 aO I
AJMP
(PC)- (PC) + 2
(PClO-O)_ page address

8-12

MCS®-51 INSTRUCTION SET

ANL <dest·byte> , <src·byte>

Function:
Description:

Example:

ANL A,Rn
Bytes:

Cycles:

Encoding:

Operation:

Logical-AND for byte variables
ANL performs the bitwise logical·AND operation between the variables in
dicated and stores the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destina
tion is the accumulator, the source can use register, direct, register-indirect, or
immediate addressing; when the destination is a direct address, the source can
be the accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.
If the accumulator holds OC3H (llOOOOllB) and register 0 holds OAAH
(lOlOlOlOB) then the instruction,

ANL A,RO

will leave 41H (OlOOOOOlB) in the accumulator.

When the destination is a directly addressed byte, this ,instruction will clear
cOIl}binations of bits in any RAM location or hardware register. The mask byte
determining the pattern of bits to be cleared would either be a constant con
tained in the instruction or a value computed in the accumulator at run-time.
The instruction,

ANL Pl,#OlllOOllB

will clear bits 7, 3, and 1 of output port l.

10
ANL
(A)_ (A) 1\ (Rn)

8-13

MCS®-51 INSTRUCTION SJET

ANL A,~irect
Bytes: 2

Cycles:

Encoding: 10 0 1 10 1 0 1 I I direct address I

Operatjpn: ANL
(A)- (A) 1\ (direct)

ANL A,@RI
Bytes:

Cycles:

Encoding: 10 1 0 1 1 0 1 1 i 1

Operation: ANL
(A) _ (A) 1\ «Ri»

ANL A,#data
Bytes: 2

Cycles: 1

Encoding: lii 0 11 0 1 0 01 I immedillte data I

Operation: ANL
(A)_(A) 1\ #data

ANL direct,A
Bytes: 2

Cycles: 1

Encoding:
1 0 0 11 0 0 1 01 direct address

Operation: ANL
(direct)-(cJirect) 1\ (A)

ANL . direct,#data
Bytes: 3

Cycles: 2

Encoding: 10 0 11 0 o 1 1 I direct address I immediate data I

Operation: ANL
(direct) _ (direct) 1\ #data

8-14

MCS@-51 INSTRUCTION SET

ANL C, <src·bit>

Function:
Description:

Example:

ANL C,bit
Bytes:

Cycles:

Encoding:

Operation:

ANL C,/bit
Bytes:

Cycles:

Encoding:

Operation:

Logical-AND for bit variables
If the Boolean value of the source bit is a logical 0 then clear the carry flag;
otherwise leave the carry flag in its current state. A slash ("I") preceding the
operand in the assembly language indicates that the logical complement of the
addressed bit is used as the source value, but the source bit itself is not affected.
No other flags are affected.

Only direct bit addressing is allowed for the source operand.
Set the carry flag if, and only if, P 1.0 = 1, ACC. 7 = 1, and OV = 0:

MOV C,Pl.O ;LOAD CARRY WITH INPUT PIN STATE
ANL C,ACC.7 ;AND CARRY WITH ACCUM. BIT 7
ANL C,IOV ;AND WITH INVERSE OF OVERFLOW

FLAG

2
2

11 0 0 01 0 0 1 01 I bit address I
ANL
(C}-(C) II (bit)

2
2

11 0 11 0 0 0 01 I bit address 1

ANL
(C) <t- (C) 1\ I (bit)

CJNE <dest·byte>,<src·byte>, rei

Function:
Description:

Compare and Jump if Not Equal.
CJNE compares the magnitudes<>f the first two operands, and branches if their
values are not equal. The branch destination is computed by adding the signed
relative-displacement in the last instruction byte to the PC, after incrementing
the PC to the start of the next instruction. The carry flag is set if the unsigned
integer value of <dest-byte> is less than the unsigned integer value of <src-byte>;
otherwise, the carry is cleared. Neither operand is affected.

8-15

. Example:

MCS®-51 INSTRUCTION SET

The first two operands allow four addressing mode combinations: the ac
cumulator may be compared with any directly addre~sed byte or immediate
data, and any indirect RAM location or working register can be compared with
an immediate constant.
The accumulator contains 34H. Register 7 contains 56H. The first instruction in
the sequence,

CJNE

NOTJQ: JC

R7,#60H, NOTJQ
R7 = 60H.
IF R7 <60H.
R7>60H.

sets the carry flag and branches to the instruction at label NOTJQ. By testing
the carry flag, this instruction determines whether R7 is greater or less than
60H.

If the data being presented to port I is also 34H, then the instruction,

WAIT: CJNE A,P1,WAIT

clears the carry flag and continues with the next instruction in sequence, since
the accumulator does equal the data read from Pl. (If some other value was be
ing input on PI, the program will loop at this point until the PI data changes to
34H.)

CJNE A,direct,rel
Bytes: 3

Cycles: 2

Encoding:

Operation:

11 0 1 1 I 0 1 0 1 I I direct address I I reI. address I
(PC) ~ (PC) + 3

IF (A) <> (direct)
THEN

(PC) ~ (PC) + relative offset

IF (A) < (direct)
THEN

(C) ~ 1

ELSE
(C) ~O

8-16

MCS®-51 INSTRUCTION SET

CJNE A,#data,rel
Bytes: 3

Cycles: r:2 ___ -.-___ --,
Encoding: I 1 0 1 1 I ° 1 0 ° I I immediate datal I reI. address I
Operation: (PC) - (PC) + 3

IF (A) <> data

THEN

IF (A) < data

THEN

ELSE

(PC) - (PC) + relative offset

(C) -1

(C) -0
CJNE Rn,#data,rel

Bytes: 3
Cycles: 2

Encoding: 11 0 1 1 11 r r r I I immediate data I I rei. address I
Operation: (PC) - (PC) + 3

IF (Rn) <> data

THEN
(PC) - (PC) + relative offset

IF (Rn) < data
THEN

(C) -1
ELSE

(C) -0

CJNE @Ri,#data,rel
Bytes: 3

Cycles: 2

Encoding:

Operation:

I '-I_O __ I_I-LI_O ___ --'i I I immediate data I I reI. address I
(PC) - (PC) + 3
IF «Ri» <> data
THEN

(PC) - (PC) + relative offset

IF «Ri» < data
THEN

(C) -1

ELSE
(C) - 0 8-17

CLR A

Function:
Description:

Example:

Bytes:
Cycles:

MCS®·51INSTRUCTION,SET

Clear Accumulator
The accumulator is cleared (all bits set to zero) .. No flags are affected.
The accumulator contains 5CH (OlOIlIOOB). The instruction,

CLR A

will leave the accumulator set to OOH (OOOOOOOOB).
I

Encoding: I '-_I ___ 0 -,-I o_1_0----'0 I
Operation:

CLR bit

Function:
Description:

Example:

CLR C
Bytes:

Cycles:

Encoding:

Operation:

CLR bit
Bytes:

Cycles:

Encoding:

Operation:

CLR
(A)-O

Clear bit
The indicated bit is cleared (reset to zero). No other flags are affected. CLR can
operate on the carry flag or any directly addressable bit~
Port I has previously been written with 5DH (OlOlllOIB). The instruction,

CLR P1.2

will leave the port set to 59H (OlOllOOIB).

II 0 01 ° 0 I 1 1
CLR
(C)-O

2

11 ° 01 ° ° 1 01 I bit address I
CLR
(bit)-O

8-18

CPL A

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

CPL bit

Function:
Description:

Example:

CPL C
Bytes:

Cycles:

, MCS®·51 INSTRUCTION SET

Complement Accumulator
Each bit of the accumulator is logically complemented (one's complement). Bits
which previously contained a one are changed to zero and vice-versa. No flags
are affected.
The accumulator contains SCH (010111ooB). The instruction,

CPL A

will leave the accumulator set to OA3H (101oooUB).
1
1

11 0

CPL
'(A)_, (A)

'Complement bit

O--y]

The bit variable specified is complemented. A bit which had been a one is
changed to zero and vice-versa. No other flags are affected. CLR can operate
on the carry or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as
the original data: will be read from the output data latch, not the input pin.
Port 1 has previously been written with SBH (01011101B). The instruction se
quence,

CPL Pl.l
CPL P1.2

will-leave the port set to SBH (01011011B). '

Encoding: 1 '-1_0_----'1 1,-0_0_1---11 1

Operation: CPL
(q---,(q

MCS®~51 INSTRUCTION SET

CPL bit
Bytes: 2

Cycles: 1

Encoding:

Operation:

DA A

Function:
Description:

1 I 0 0 1 0 I I bit address I
CPL
(bit)----, (bit)

Decimal-adjust Accumulator for Addition
DA A adjusts the eight-bit value in the accumulator resulting from the earlier
addition of two variables (each in packed-BCD format), producing two four-bit
digits. Any ADD or ADDC instruction may have been used to perform the ad
dition.
If accumulator bits 3-0 are greater than nine <xxxxlOlO-xxxxll11), or if the AC
flag is one, six is added to the accumulator producing the proper BCD digit in
the low-order nibble. This internal addition would set the carry flag if a carry
out of the low-order four-bit field propagated through all high-order bits, but it
would not clear the carry flag otherwise ..

If the carry flag is now set, or if the four high-order bits now exceed nine
(lOlOxxxx-ll11xxxx), these high-order bits are incremented by six, producing
the proper BCD digit in the high-order nibble. Again, this would set the carry
flilg if there was a carry-out of the high-order bits, but wouldn't clear the carry.
The carry nag thus indicates if the sum of the original two BCD variables is
greater than 100, allowing mUltiple precision decimal addition. OV is not af
fected.

All of this occurs during the one instruction cycle. Essentially, this instruction
performs the decimal conversion by adding OOH, 06H, 6OH, or 66H to the ac
cumulator, depending on initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator
to BCD notation, nor does DA A apply to decimal subtraction.

8-20

Example:

Bytes:
Cycles:

Encoding:

MCS®-S1 INStRUCTION SET

The accumulator holds the value 56H (OlOlOllOB) representing the packed
BCD digits of the decimal number 56. Register 3 contains the value 67H
(01100111 B) representing the packed BCD digits of the decimal number 67. The
carry flag is set. The instruction sequence,

ADDC A,R3
DA A

will first perform a.standard twos-complement binary addition, resulting in the
value OBEH (10111110) in the accumulator. The carry and auxiliary carry flags
will be cleared.

The Decimal Adjust instruction will then alter the accumulator to the value 24H
(OOI00I00B), indicating the packed BCD digits of the decimal number 24, the
low-order two digits of the decimal sum of 56, 67, and the carry-in. The carry
flag will be set by the Decimal Adjust instruction" indicating that a decimal
overflow occurred. The true sum 56, 67, and 1 is 124.

BCD variables can be incremented or decremented byadCling 01H or 99H. If
the accumulator initially holds 30H (representing the digits of 30 decimal), then
the instruction sequence,

ADD A,#99H
DA A

will leave the carry set and 29H in the accumulator, since 30 + 99 = 129. The
low-order byte of the sum can be interpreted to mean 30 - 1 = 29.
1
J

~ 01101001

Operation: DA
-contents of Accumulator are BCD
IF [[(A3-0) > 9] v [(AC) = 1]]

THEN (A3-0)_(A3-0) + 6
AND

IF [[(A7.4) >9] v [(C) = 1]]
THEN (A7-4)- (A7-4) + 6

8-21

DEC byte

Function:
Description:

Example:

DEC' A
Bytes:

Cycles:

Decrement ' I

The variable indica~ed i$, decremented by 1. An original value of OOH will
underflow to OFFH. No flags are affected. Four operanc! ad~ressing modes are
allowed: accumulator, register, direct, or register~indirect.

Note: When this instruction is used to modify an output port, the value used as
the, original port data will be read from the output data latch, not the input
pins.
Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH
contain OOH and 4OH, respectively. The instrnction sequence,

DEC @RO
DEC RO
DEC @RO

will leave register 0 set to 7EH and internal RAM locations 7EH and 7FH set to
OFFH and 3FH.

Encoding: 1 0 0 0 1 1 0 1 0 0 1

Operation:

DEC Rn
Bytes:

Cycles:

Encoding:

Operation:

DEC
(A)_(A) -' 1

1000111rrr

DEC
(Rn)_ (Rn) - 1

8-22

MCS®-S1 INSTRUCTION SET

DEC direct
Bytes: 2

Cycles:

Encoding: !O 0 0 1!0 1 0 I! !directaddress!

Operation: DEC

DEC @Ri
Bytes:

Cycles:

Encoding:

Operation:

DIV AB

Function:
Description:

Example:

Bytes:
Cycles:

. Encoding:

Operation:

(direct)_ (direct) - 1

10001101 1

DEC
«Ri»- «Ri» - 1

Divide
DIV AB divides the unsigned eight-bit integer in the accumulator by the un
signed eight-bit integer in register B. The accumulator receives the integer part
of the quotient; register B receives the integer remainder. The carry and OV
flags will be cleared.

Exception: if B had originally contained OOH, the values returned in the ac
cumulator and B-register will be undefined and the overflow flag will be set.
The carry flag is cleared in any case.
The accumulator contains 251 (OFBH or l1111011B) and B contains 18 (12H or
000100lOB). The instruction,

DIV AB

will leave 13 in the accumulator (ODH or 0000llOlB) and the value 17 (11 H or
0OOI000IB) in B, since 251 = (13 x 18) + 17. Carry and OV will both be
cleared.
1
4

1100010100

DIV

(A)15-8 _ (A) / (B)
(B)7-0

8-23

MCS®-S1 INSTRUCTION SET

DJNZ· <byte>, <rel·addr>

Function:
Description:

Example:

Decrement and Jump if Not Zero
DJNZ decrements the location indicated by 1, and branches to the address in
dicated by the second operand if the resulting value is not zero. An original
value of OOH will underflow to OFFH. No flags are affected. The branch
destination would be computed by· adding the signed relative-displacement
value in the last instruction byte to the PC, after incrementing the PC to the
first byte Of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to ~odjfy an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.
Internal RAM locations 4OH, 50H, and 60H contain the values OIH, 70H, and
I5H, respectively. The instruction sequence,

DJNZ
DJNZ
DJNZ

40H,LABEL_I
50H,LABEL~

60H,LABEL_3

will cause a jump to the instruction at label LABEL~ with the values OOH,
·6FH, and I5H in the three RAM locations. The first jump was not taken
because the result was zero.

This instruction provides a simple way of executing a progmm loop a given
number of times, or for adding a moderate time delay (from 2 to 512 machine
cycles) with a single instruction. The instruction sequence,

MOV R2,#8
TOGGLE: CPL Pl.7

DJNZ R2, TOGGLE

will toggle Pl.7 eight times, causing four output pulses to appear at bit 7 of out
put port 1. Each pulse will last three machine cycles; two for DJNZ and one to
alter the pin.

8-24

MCS®-S1 INSTRUCTION SET

DJNZ Rn,rel
Bytes: 2

Cycles: 2

Encoding:

Operation:

11 o 1 11 r r r I I direct address I
DJNZ
(PC)- (PC) + 2
(Rn)_ (Rn) - 1
IF (Rn) > 0 or (Rn) < 0

THEN
(PC)- (PC) + rei

DJNZ direct,rel
Bytes: 3

Cycles: 2

Encoding:

Operation:

INC <byte>

Function:
Description:

o 1 I 0 1 0 1 I I direct address I I reI. address

DJNZ
(PC)- (PC) + 2
(direct)_ (direct) - 1
IF (direct) > 0 or (direct) < '0

THEN
(PC)- (PC) + reI

Increment
INC increments the indicated variable by 1. An original value of OFFH will
overflow to OOH. No flags are affected. Three addressing modes are allowed:
register. direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as
the original port data wili be read from the output data latch, not the input
pins.

8-25

Example:

INC A
Bytes:

Cycles:

MCS®·51INSTFlUCTION SET

Register 0 contains 7EH (011J.11l1OB). Internal RAM locations 7EH and 7FH
contain OFFH and 40H, respectively. The instruction sequence,

INC @RO
INC RO
INC @RO

will leave register 0 set to 7FH and internal RAM loc:ations 7EH and 7FH
holding (respectively) OOH and 41H.

Encoding: I 0 0 0 0 I 0 1 o-y]
Operation: INC

(A)_ (A) +

INC Rn
Bytes:

Cycles:

Encoding: I 0 0 0 0 li_r _ r iJ
Operation: INC

(Rn)-(Rn) +
INC direct

Bytes: 2
Cycles:

Encoding: I 0 0 0 0 I 0 1 0 1 I I direct address I
Operation: INC

(direct),-'- (direct) +

8-26

INC @Ri
Bytes:

Cycles:

Encoding:

Operation:

INC DPTR

Function:
Description:

Example:

Bytes:
Cycles:

MCS®-51 INSTRUCTION SET

\0 ° ° 0\01 1

INC
«Ri»_ «Ri» + 1

Increment Data Pointer
Increment the 16-bit data pointer by I. A 16-bit increment (modulo 216) is per
formed; an overflow of the low-order byte of the data pointer (DPL) from
OFFH to OOH will increment the high-order byte (DPH). No flags are affected.

This is the only 16-bit register which can be incremented.
Registers DPH and DPL contain 12H and OFEH, respectively. The instruction
sequence,

INC DPTR
INC DPTR
INC DPTR

will change DPH and DPL to 13H and OIH.

1
2

Encoding: <-I _1_0 __ 0-,--1 0 __ 0_1_1-,

Operation: INC
(DPTR)_ (DPTR) + 1

8-27

JB bit,rel

Func::tion:
Description:

Example:

Bytes:
Cycles:

MCS@-51 INSTRUCTION SET

Jump if Bit set
If the indicated bit is a one, jump to the address indicated; otherwise proceed
with the next instruction. The branch destination is computed by adding the
signed relative-displacement in the third instruction byte to the PC" after in
crementing the PC to the first byte of the next instruction. The bit tested is not
modified. No flags are affected.
The data present at input port 1 is llOOlOlOB. The accumulator holds 56
(010101 lOB). The instruction sequence,

JB P1.2,LABELl
JB ACC.2,LABEL2

will cause program execution to branch to the instruction at label LABEL2.
3
,2

Encoding: I 0 0 1 0 I 0 0 0 0 I I bit address I I reI. address I
Operation:

JBC bit,rel

Function:
Description:

Example:

JB
(PC) - (PC) + 3
IF (bit) = 1

THEN
(PC) -(PC) + reI

Jump if Bit is set and Clear bit
If the indicated bit is one, branch to the address indicated; otherwise proceed
with the next instruction. In either case, clear the designated bit. The branch
destination is computed by adding the signed relative-displacement in the third
instruction byte to the PC, after incrementing the PC to the first byte of the
next instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the
original data will be read from the output data latch, not the input pin.
The accumulator holds 56H (010101 lOB). The instruction sequence,

JBC ACC.3,LABELl
JBC ACC.2,LABEL2

will cause program execution to continue at the instruction identified by the
label LABEL2, with the accumulator modified to 52H (OlOlOOlOB).

8-28

MC$@-511.NSTRUCTION SET

Bytes: 3
Cycles: 2

Encoding:. I ° 0 0 1 I ° 0 0 ° I I bit address I I reI. address I
Operation:

JC rei

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

JBC
(PC) - (PC) + 3
IF (bit) = 1

THEN
(bit)_O
(PC)- (PC) + reI

Jump if Carry is set
If the carry flag is set, branch to the address indicated; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed
relative-displacement in the second instruction byte to the PC, after incremen
ting the PC twice. No flags are affected.
The carry flag is cleared. The instruction sequence,

JC LABELl
CPL C
JC LABEL2

will set the carry and cause program execution to continue at the instruction
identified by the label LABEL2.
2
2

I ° 1 0 ° I ° 0 0 ° I I reI. address I
JC
(PC)-(PC) + 2
IF (C) = 1

THEN
(PC) 4- (PC) + reI

8-29

MCS®-S1 INSTRUCTION SET

JMP @A+DPTR

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Jump indirect
Add the eight-bit unsigned contents of the accumulator with thlr sixteen-bit data
pointer, and load the resulting sum to the program counter. This will be the ad
dress for subsequent instruction fetches. Sixteen-bit addition is performed
(modulo 216): a carry-out from the low-order eight bits propagates through the
higher-order bits. Neither the accumulator nor the data pointer is altered. No
flags are affected.
An even number from 0 to 6 is in the accumulator. The following sequence of
instructions will branch to one of four AJMP instructions in a jump table start
ing at JMP _ TBL:

MOV
JMP

JMP _ TBL: AJMP
AJMP
AJMP
AJMP

DPTR,#JMP _TBL
@A+DPTR
LABELO
LABELl
LABEL2
LABEL3

If the accumulator equals 04H when starting this sequence, execution will jump
. to label LABEL2. Remember that AJMP is a two-byte instruction, so the jump
instructions start at every other address.
1
2

1 0

JMP
(PC)~(A) + (DPTR)

8-30

JNB blt,rel

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

JNC rei

Function:
Description:

Example:

MCS®-S1 INSTRUCTION SET

Jump if Bit Not set
If the indicated bit is a zero, branch to the indicated address; otherwise proceed
with the next instruction. The branch destination is computed by adding the
signed relative-displacement in the third instruction byte to the PC, after in
crementing the PC to the first byte of the next instruction. The bit tested is not
modified. No flags are affected.
The data present at input port 1 is 11 0010 lOB. The accumulator holds 56H
(010101IOB). The instruction sequence,

JNB P1.3,LABELl
JNB ACC.3,LABEL2

will cause program execution to continue at the instruction at label LABEL2.
3
2

10 0 1 I 0 0 0 0 I I bit actdress I I reI. addres!l

JNB
(PC)- (PC) + 3
IF (bit) = 0

THEN (PC) - (PC) + reI.

Jump if Carry not set
, If the carry flag is a zero, branch to the address indicated; otherwise proceed

with the next instruction. The branch destination is computed by adding the
signed relative-displacement in the second instruction byte to the PC, after in
crementing the 'PC twice to point to the next instruction. Tlie carry flag is not
modified.
The carry flag is set. The instruction sequence,

JNC LABELl
CPL C
JNC LABEL2

will clear the carry and cause program execution to continue at the instruction
identified by the label LABEL2.

8-,31

MCS®·S1 INSTRUCTION SET

Bytes: 2
Cycles: 2

Encoding:

Operation:

JNZ rei

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

[<CT 0 1 I 0 0 0 0 I I reI. address I
JNC
(PC)- (PC) + 2
IF (C) = 0

THEN (PC) -(PC) + rei

Jump if accumulator Not Zero
If any bit of the accumulator is a one, branch to the indicated address; other
wise proceed with the next instruction. The branch destination is computed by
adding the signed relative-displacement in the second instruction byte to the
PC, after incrementing the PC twice. The accumulator is not modified. No
flags are affected.
The accumulator originally holds OOH. The instruction sequence,

JNZ LABELl
INC A
JNZ LABEL2

will set the accumulator to OlH and continue at label LABEL2.
2
2

10 1 1 0 0 0 0 1 I reI. address 1

JNZ
(PC) - (PC) + 2
IF (A);60

THEN (PC)- (PC) + reI

8-32

JZ rei

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

MCS®·S1INSTRUCTION SET

Jump if Accumulator Zero
If a11-bits of the accumulator are zero, branch to the address indicated; other
wise -proceed with the next instruction. The branch destination is computed by
adding the signed relative-displacement in the second instruction byte to the
PC, after incrementing the PC twice. The accumulator is not· modified. No
flags are affected.
The accumulator originally contains OlH. The instruction sequence,

JZ LABELl
DEC A
JZ LABEL2

will change the accumulator to OOH and cause program execution to continue at
the instruction identified by the label LABEL2.
2
2

I 0 1 1 0 I 0 0 0 0 I I reI. address I
JZ
(PC)-(PC) + 2
IF (A) = 0

THEN (PC)-(PC) + rei
\ ,I,

\.

LCALL addr16

Function:
Description:

Long Call
LCALL calls a subroutine located at the indicated address. The instruction
adds three to the program counter to generate the address of the next instruc
tion and then pushes the 16-bit result onto the stack (low byte first), increment
ing the stack pointer by two. The high-order and low-order bytes of the PC are
then loaded, respectively, with the second and third bytes of the LCALL in
struction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the full 64K-byte program memory
address space. No flags are affected.

8-33

Example:

Bytes:
Cycles:

MCS®-~1 INSTRUCTI.ON SET

Initially the stack pointer equals 07H. The label "SUBRTN" is assigned to pro
gram memC)ry location 1234H. After executing the instruction,

LCALL SUBRTN

at location 0123H, the stack pointer will contain 09H, internal RAM locations
OSH and 09H will contain 26H and 01H, and the PC will contain 1235H.
3
2

Encoding: I 0 0 0 1 I 0 0 1 oJ I addr 15 - addrS I I addr7 - addrO I
Operation: LCALL

(PC) --- (PC) + 3
(SP) - (SP) + 1
«SP»_ (PC7"0)
(SP)-(SP) + 1

«SP)) - (PC 15-S)
(PC) ---addf15-0

LJMP addr16

Function:
Description:

Example:

Bytes:
Cycles:

Long Jump
LJMP causes an unconditional branch to the indicated address, by loading the
high-order and low-order bytes of the PC (respectively) with the second and
third instruction bytes. The destination may therefore be anywhere in the full
64K program memory address space. No flags are affected.
The label "JMPADR" is assigned to the instruction at program memory loca
tion 1234H. The instruction,

LJMP JMPADR

at location 0123H will load the program counter with 1234H.
3
2

Encoding: I 0 0 0 0 I 0 0 I}>] I addr15 - addrsl I addr7 - addrO I

Operation: LJMP
(PC) - addf15-0

8-34

Mcse-51 INSTRUCTION SET

MOV <dest·byte> ,<src·byte>

Function:
Description:

Example:

MOV A,Rn
Bytes:

Cycles:

Encoding:

Operation:

*MOV A,dlrect
Bytes:

Cycles:

Encoding:

Operation:

Move byte variable
The byte variable indicated by the second operand is copied into the location
specified by the first operand. The source byte is not affected. No other register
or flag is affected.

This is by far tHe most flexible operation. Fifteen combinations of source and
destination addressing rpodes are allowed.
Internal RAM location 30H holds 4OH. The value of RAM location. 40H is
lOR. The data present at input port 1 is ll00IOIOB (OCAH).

MOV RO,#30H ;RO<= 30H
MOV A,@RO ;A <. = 40H
MOV· Rl,A ;Rl < = 40H
MOV R,@Rl ;B < = IOH
MOV @Rl,Pl ;RAM (40H) < = OCAH
MOV ,P2, PI ;P2 #OCAH

leaves the value 30H in register 0, 40H in both the accumulator and register 1,
lOH in register B, and OCAH (1IOO1010B) both in RAM location 40H and out·
put on port 2.

1
1

11 011 r r r I
MOV
(A)_(Rn)

2
1

11 01 0 I 0 11 I direct address I
MOV
(A)- (direct) .

*II/IOV A,ACC Is not a valid Instruction.

8-35

MCS~-51INSTRUCTION SEr

MOV A,@Ri
Bytes:

Cycles:

Encoding: 11 01 0 1 1
Operation: MOV

(A)_ «Ri»

MOV A,#data
Bytes: 2

Cycles:

Encoding:
10 1 10 oj] I immediate data I

Operation: MOV
(A)-#data

MOV Rn,A
Bytes: 1

Cycles: 1
Encoding: 11 1 11 r r r

Operation: MOV
(Rn)_(A)

MOV Rn,direct
Bytes: 2

Cycles: 2

Encoding: 11 0 011 r r r I direct addr. I
Operation: MOV

(Rn)_(direct)

MOV, Rn,#data
Bytes: 2

Cycles:

Encoding: 10 1 11 r r r I immediate data I
Operation: MOV

(Rn)_#data

8-36

MCS@·51INSTRUCTION SET

MOV dlrect,A
Bytes: 2

Cycles: 1

Encoding: 11 1 I 0 1 0 11 I direct address I
Operation: MOV

(direct)_ (A)

MOV dlrect,Rn
Bytes: 2

Cycles: 2

Encoding: 11 0 0 01 1 r r r I I direct address I

Operation: MOV
(direct)-(Rn)

MOV dlrect,dlrect
Bytes: 3

Cycles: 2

Encoding: 11 0 0 01 0 1 0 1 I I dir. addr. (src) I I dir. addr. (dest)I

Operation: MOV
(direct) - (direct)

MOV direct,@Ri
Bytes: 2

Cycles: 2

Encoding: 11 0 0 01 0 1 1 i , I direct addr.'

Operation: MOV
(direct) -«Ri»

MOV direct,#data
Bytes: 3

Cycles: 2

Encoding:
10 1 10 1 0 1 I I direct address I I immediate data I

Operation: MOV
(direct)_#data

8-37

MCSI8l-S1 INSTRUCTION SET

MOV @Ri,A
Bytes:

Cycles:

Encoding: 11 1 1
10 1 1 i I

Operation: MOV
«Ri»_(A) ,

MOV @Ri,direct
Bytes: 2

Cycles: 2

Encoding: 11 0 01 0 1 1 i I I direct addr ·1

. Operation: MOV
«Ri»_(direct)

MOV @Ri,#data
Bytes: 2

Cycles:

Encoding:
1 0 1. 1 1

10 1 1 i 1 1 immediate data 1

Operation: MOV
«RI» _ #data

MOV <dest-bit>,<src-bit>

Function:
Description:

Example:

Move bit data
The Boolean variable indicated by the second operand is copied into the loca
tion specified by the first operand. One of the operands must be the carry flag;
the other may be any directly addressable bit. No other register or flag is af
fected.
The carry flag is originally set. The data present at input port 3 is llOOO101B.
The data previously written to output port 1 is 35H (OOl10101B).

MOV P1.3,C
MOV C,P3.3
MOV P1.2,C

will leave the carry cleared and change port 1 to 39H (OOll1001B).

8-381

MC$@·51INSTRUCT,ON SeT

MOV C,blt
Bytes: 2

Cycles: 1

Encoding: 11 0 01 0 0 1 01 I· bit address

Operation: MOY
(C)-(bit)

MOV bit,C
Bytes: 2

Cycles: 2

Encoding: 11 0 0 1 10 0 1 01 I bit ~ddress I
Operation: MOY

(bit)-(C)

MOV DPTR,#data16

Function:.
Description:

Example:

Bytes:
Cycles:

Encoding:

Load Data Pointer with a 16-bit constant
The data pointer is loaded with the 16-bit constant indicated. The 16-bit con
stant is loaded into the second and third bytes of the instruction. The second
byte (DPH) is the high~order byte, while the third byte (DPL) holds the low
order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.
The instruction,

MOY DPTR,#1234H

will load the value 1234H into the data pointer: DPH will hold 12H and DPL
will hold 34H.
3
2

fT 0 0 1 I 0 0 0 0 I I immed. data15 • 81 I immed. data7 - 0 I
Operation: MOY

(DPTR)_ #dataI5-0

DPH 0 DPL-.-.-.#dataI5_8 0 #data7_0

8-39

MOS®·S1INSTRUCTIONse:r.

MOVC A,@A+ <base-reg>

Function:
Description:

Example:

Move Code byte
The MOVC instructions load the accumulator with a code byte, or constant
from program memory. The address of the byte fetched is the sum of the
original unsigned eight-bit accumulator contents and the contents of a sixteen
bit base register, which may be either the data pointer or th~ PC. In the latter
case, the PC is incremented to tlie address of the following instruction before
being added with the accumulator: otherwise the base register is not altered.
Sixteen-bit addition is performed so a carry-out from the low-order eight bits
may propagate through higher-order bits. No flags are affected. .
A value between 0 and 3 is in the accumulator. The following instructions will
translate the value in the accumulator to one of four values defined by the DB
(define byte) directive.

REL_PC: INC A
MOVC A,@A+PC
RET
DB 66H
DB 77H
DB 88H
DB 99H

, If the subroutine is called with the accumulator equal to 01 H, 'it will return with
77H in the accumulator. The INC A-before the MOVC instruction is needed to
"get around" the RET instruction above the table. If several bytes of code
separated the MOVC from the table; the corresponding number would be add
ed to the accumulator instead.

MOVC A,@A+ DPTR
Bytes: 1

Cycles: 2

Encoding:

Operation: MOVC
(A)-«A) + (DPTR»

8-40

MCS®·51 INSTRUCTION SET

MOVC A,@A + PC
Bytes: 1

Cycles: 2

Encoding:

Operation:

11000100111

Move
(PC)-(PC) + 1
(A)- «A) + (PC»

MOVX (dest·byte>, <src·byte>

Function:
Description:

Move External
The MOVX instructions transfer data between the accumulator and a byte of
external data memory, hence the "X" appended to MOV. There are two types of
instructions, differing in whether they provide an eight-bit or sixteen-bit in
direct address to the external data RAM.

In the first type, the contents of RO or RI in the current register bank provide an
eight-bit address multiplexed with data on PO. Eight bits are sufficient for exter
nal I/O expansion decoding Of a relatively small RAM array. For somewhat
larger arrays, any output port pins can be used to output higher-order address
bits. These pins would be controlled by an output instruction preceding the
MOVX.

In the second type of MOVX instruction, the data pointer generates a sixteen
bit address. P2 outputs the high-order eight address bits (the contents of DPH)
while PO multiplexes the low-order eight bits (DPL) with data. The P2 Special
Function Register retains its previous contents while the P2 'output buffers are
emitting the contents of DPH. This form is faster and more efficient when ac
cessing very large data arrays (up to 64K bytes), since no additional instructions
are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM ar
ray with its high-order address lines driven by P2 can be addressed via the data
pointer, or with code to output high-order address bits to P2 followed by a
MOVX instruction using RO or RI.

8-41

Example:

MOVX A,@Ri
Bytes:

Cycles:

Encoding:

Operation:

MCS®·51 INSTRUCTION SET

An external 256 byte RAM using multiplexed address/data lines (e.g., an Inte1®
8155 RAM/I/O/Timer) is connected to the 8051 Port O. Port 3 provides control
lines for the external RAM. Ports 1 and 2 are used for normal I/O. Registers 0
and 1 contain 12H and 34H. Location 34H of the external RAM holds the value
56H. The instruction sequence,

MOVX
MOVX

A,@Rl
@RO,A

copies the value 56H into both the accumulator and external RAM location
12H.

2

11 1 1 01 0 0 1

MOVX
(A)_«Ri»

MOVX A,@DPTR
Bytes: 1

Cycles: 2

Encoding: 11 1 1 01 0 0 0 01

Operation: MOVX
(A)_«DPTR»

MOVX @Ri,A
Bytes: 1

Cycles: 2

Encoding: 11 1 1 1 I 0 0 1

Operation: . MOVX·
«Ri»- (A)

MOVX @DPTR,A
Bytes: 1

Cycles: 2

Encoding: 11 1 1 0 0 0 01

Operation: MOVX
(DPTR)_(A)

8-42

MUL AB

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

\

MCS@·51 INSTRUCTION SET

Multiply
MUL AB multiplies the unsigned eight-bit integers in the accumulator and
register B. The low-order byte of the sixteen-bit product is left in the ac
cumulator, and the high-order byte in B. If the product is greater than 255
(OFFH) the overflow flag is set; otherwise it is cleared. The carry flag is always
cleared.
Originally the accumulator holds the value 80 (50H). Register B holds the value
160 (OAOH). The instruction,

MUL AB

will give the product 12,800 (3200H), so B is changed to 32H (OOII00IOB) and
the accumulator is cleared. The overflow flag is set, carry is cleared.
I
4

01 0 I 0 0 1
MUL
(A)7-0-(A) X (8)
(B)15-8

8-43

NOP

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

MC$@:-51INSt:RUCTION SE;T

No Operation
Execution continues at the following instruction. Other than the PC, no
registers or flags .are affected.
It is desired to produce a low-going output pulse on bit 7 of port 2 lasting exact
ly 5 cycles. A simple SETB/CLR sequence would generate a one-cycle pulse, so
four additional cycles must be inserted. This may be done (assuming no inter
rupts are enabled) with the instruction sequence,

CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7

10 0 0 010 0 0 01

NOP
(PC)- (PC) + 1

8-44

MCS®-51 INSTRUCTION SET

ORL <dest·byte> (src·byte>

Function:
Description:

Example:

ORL A,Rn
Bytes:

Cycles:

Encoding:

Operation:

Logical-OR for byte variables
ORL performs the bitwise logical-OR operation between the indicated
variables, storing the results in the destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When: thedestina
tion is the accumulator, the source can use register, direct, register-indirect, or
immediate addressing; when the destination is a direct address, the source can
be the accumulator or immediate data. -

Note: When this instruction is used to modify an output port, the value used as
the original port data will be read from the output data latch, not the input
pins.
If the accumulator holds OC3H (IlOOOOIlB) and RO hol<is 55H (010101OlB)
then the instruction,

ORL A,RO

will leave the accumulator holding the vall!e OD7H (11010111 B).

When the destination is a directly addressed byte, the instruction can set com·
binations of bits in any RAM location or hardware register. The pattern of bits
to be set is determined by a mask byte, which may be either a constant data
value in the instruction or a variable computed in the accumulator at run-time.
The instruction,

ORL PI,#0011001OB

will set bits 5, 4, and I of output port 1.

o oil r r r

ORL
(A)_(A) v (Rn)

8-45

MCS~,"51·INSTRUCTION' SET

ORL A,direct
Bytes: 2

Cycles:

Encoding:
1 0 1 0 01 0 1 0 1 I 1 direct address I

Operation: ORL
(A)_ (A) v (direct)

ORL A,@Ri
Bytes:

Cycles:

Encoding:
1 0 0 01 0 1 1 i I

Operation: ORL
(A)_(A) v «Ri»

ORL A,#data
Bytes: 2

Cycles:

Encoding:
10 0 01 0 . 1 0 01 I immediate data 1

Operation: ORL
(A)_ (A) v #data

ORL direct,A
Bytes: 2

Cycles: 1

Encoding:
10 o 0 I 0 0 1 ""OJ I direct address I

Operation: ORL
(direct)_(direct) v (A)

ORL direct,#data
Bytes: 3

Cycles: 2

Encl...Jing:
1 0 o 0 I 0 0 1 1 I I direct addr·1 1 immediate data 1

Operation: ORL
(direct)-(direct) v #data

8-46

MCS®-S1 INSTRUCTION SET

ORL C, <src·bit>

Function:
Description

Example:

ORL C,bit
Bytes:

Cycles:

Encoding:

Operation:

ORL C,/bit
Bytes:

Cycles:

Encoding:

Operation:

POP. direct

Function:
Description:

Logical-OR for bit variables
Set the carry flag if the Boolean value is a logical I; leave the carry in its current
state otherwise. A slash ("I") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is·used as the 1J0urce
value, but the source bit itself is not affected. No other flags are affected.
Set the carry flag if and only if Pl.O :; 1, ACC.7 = 1, or OV = 0:

MOV C,Pl.O
ORL C,ACC.7
ORL C,IOV

2
2

10 1 I 0

ORL

0

(C)-(C) v (bit)

2
2

11 0 01 0 0

ORL
(C)- (C) v (bit)

1 01

0 01

;LOAD CARRY WITH INPUT PIN PlO
;OR CARRY WITH THE ACC. BIT 7
:OR CARRY WITH THE INVERSE OF OV

I bit address I

I bit address 1

Pop from stack. . .
The contents of the internal RAM location addressed by the stack pointer is
read, and the stack pointer is decremented by one. The value read is the transfer
to the directly addressed byte indicated. No flags are affected.

8-47

Example:

Bytes:
Cycles:

Encoding:

MCS®-51 INSTRUCTION SET

The stack pointer originally contains the value 32H, and internal RAM loca
tions 30H through 32H contain the values 20H, 23H, and OlH, respectively.
The instruction sequence,

POP DPH
POP DPL

will leave the stack pointer equal to the value 30H and the data pointer set to
0123H. At this point the instruction,

POP SP

will leave the stack pointer set to 20H. Note that in this special case the stack
pointer was decremented to 2FH. before being loaded with the value popped
(20H).
2
2

o 1 I 0 O· 0 0 I I direct address

Operation: POP

PUSH direct

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

(direct) ____ «SP»
(SP)_(SP) - 1

Push onto stack
The stack pointer is incremented by one. The contents of the indicated variable
is then copied into the internal RAM location addressed by the stack pointer.
Otherwise no flags are affected.
On entering an interrupt routine the stack pointer contains 09H. The data
pointer holds the value 0123H. The instruction sequence,

PUSH DPL
PUSH DPH

will leave the stack pointer set to OBH and store 23Hand OlH in internal RAM
locations OAH apd OBH, respectively.
2
2

o 0 I 0 0 0 0 I I direct address I
PUSH
(SP)-(SP) +
«SP»_ (direct)

8 .. 48

RET

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

RETI

Function:
Description:

MCS®·S1 INSTRUCTION SET

Return from subroutine,
RET pops the high- and low-order bytes of the PC successively from the stack,
decrementing the stack pointer by two. Program execution continues at the
resulting address, generally the instruction immediately following an ACALL
or LCALL. No flags are affected.
The stack pointer originally contains the value OBH. Internal RAM locations
OAH and OBH contain the values 23H and OlH, respectively. The insttuction,

RET

will leave the stack pointer equal to the value 09H. Program execution will con
tinue at location 0123H.
1
2

10 0 010 0 1 0

RET
(PC 15-8)-«SP»
(SP)-(SP) - 1
(PC7-0)_«SP» ,
(SP) __ (SP) - 1

Return from interrupt
RETI pops the high- and low-order bytes of the PC successively from the stack,
and restores the interrupt logic to accept additional interrupts at the same
priority level as the one just processed. The stack pointer is left decremented by
two. No other registers are affected; the PSW is not automatically restored to
its pre-interrupt status. Program execution continues at the resuIting address,
which is generally the instruction immediately after the point at which the inter
rupt request was detected. If a lower- or same-level interrupt had been pending
when the RETI instruction is executed, that one instruction will be executed
before the pending interrupt is processed.

8-49

Example:

Bytes:
Cycles:

Encoding:

Operation:

MCS®·5.1INSTRUCTION SeT

The stack pointer originally contains the value OBH. An interrupt was detected
during the instruction ending at location 0122H. Internal RAM locations OAH
and OBH contain the values 23H and OlH, respectively. The instruction,

RET!

will leave the stack pointer equal to 09H and return program execution to loca
tion 0123H.
1
2

10 0
RET!
(PC 15.8)-«SP»
(SP)- (SP) - 1
(PC7-0) _«SP»
(SP)- (SP) - 1

8-50

RL A

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

· MCS®-S1 INSTRUCTION SET

Rotate accumulator Left
The eight bits in the accumulator are rotated one bit to the left. Bit 7is rotated
into the bit 0 position. No flags are affected.
The accumulator holds the value OC5H (1IoooI01B). The instruction,

RL A

leaves the accumulator holding the value 8BH (IOOOI011B) with the carry unaf
fected.
1
1

100101001 11

Operation: RL

RLC A

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Opera'tion:

(An + })_ (An)
(AO)-(A7)

n=0-6

Rotate accumulator Left through the Carry flag
The eight bits in the accumulator and the carry flag are together rotated one bit .
to the left. Bit 7 moves into the carry flag; the original state of the carry flag
moves into the bit 0 position. No other flags are affected.
The accumulator holds the value OC5H (11000101 B),and the carry is zero. The
instruction,

RLC A

leaves the accumulator holding the value 8BH (loooI0IOB) with the carry set.
1
1

10 0 11001 11

RLC
(An + 1)- (An)
(AO)--(C)
(C)--(A7)

n=0-6

8-51

RR A

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

RRC A

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

MCS®-S1 INSTRUCTION SeT

Rotate accumulator Right
The eight bits iri'the accumulator are rotated one bit to the right. Bit 0 is rotated
into the bit 7 position. No flags are affected.
The accumulator holds the value OC5H (llOOOlOlB). The instruction,

RR A

leaves the accumulator holding the value OE2H (lll000lOB) with the carry
unaffected.
1
1

10 0 0 010 0 1 1 I
RR
(An)_ (An + t)
(A7)_(AO)

n=O-6

Rotate accumulator Right through Carry flag
The eight bits in the accumulator and the carry flag are together rotated one bit .
to the right. Bit 0 moves into the carry flag; the original value of the carry flag
moves into the bit 7 position: No other flags are affected.
The accumulator holds the value OC5H (1100010lB), the carry is zero. The in
struction,

RRC A

leaves the accumulator holding the value 62 (0110001OB) with the carry set.
1
1

10001100111

RRC
(An)_ (An + 1)
(A7)_(C)
(C)_(AO)

n=0-6

8-52

SETB <bit>

Function:
Description:

Example:

SETB C
Bytes:

Cycles:

Encoding:

Operation:

SETB bit
Bytes:

Cycles:

Encoding:

Operation:

SJMP rei

Function:
Description~

MCS®-S1 INSTRUCTION SET

Set Bit
SETB sets the indicated bit to one. SETB can operate on the carry flag or any
directly addressable bit. No other flags are affected.
The carry flag is cleared. Output port 1 has been written with the value 34H
(00110100B). The instructions,

SETB . C
SETB. Pl.O

will leave the carry flag set to 1 and change the data output on port 1 to 35H
(00110101 B).

11 0 1
1 0 0 1 1 1

SETB
(C)--1

2

11 0 1 10 0 1 01 I bit address I
SETB
(bit)~1

Short Jump
Program control branches unconditionally to the address indicated. The branch
destination is computed by adding the signed displacement in the second in
struction byte to the PC, after incrementing the PC twice. Therefore, the range
of destinations allowed is from 128 bytes preceding this instruction to 127 bytes
following it.

8-53

Example:

Bytes:
Cycles:

Encoding:

Operation:

MCS®'·51 INSTRUC:rIONSET

The label "RELADR" is assigned to an instruction at program memory location
0123H. The instruction,

SJMP RELADR

will assemble into location OlOOH. After the instruction is executed, the PC will
contain the value 0123H.

(Note: Under the above conditions the instruction following SJMP will be at
102H. Therefore, the displacement byte of the instruction will be the relative
offset (0123H-0102H) = 21H. Put another way, an SJMP with a displacement
of OFEH would be a one-instruction infinite loop.)
2
2

11 0 0 0 I 0 0 y-DJ I reI. address I
SJMP
(PC)- (PC) + 2
(PC) -- (PC) + rei

8-54

MCS®·51 INSTRUCTION SET

SUBB A, (src·byte>

Function:
Description:

Example:

SUBB A,Rn
Bytes:

Cycles:

Encoding:

Operation:

Subtract with borrow
SUBB subtracts the indicated variable and the carry flag together from the ac
cumulator, leaving the result in the accumulator. SUBB sets the carry (borrow)
flag if a borrow is needed for bit 7, and clears C otherwise. (If C was set be/ore
executing a SUBB instruction, this indicates that a borrow was needed for the
previous step in a multiple precision subtraction, so the carry is subtracted from
the accumulator along with the source operand.) AC is set if a borrow is needed
for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6, but
not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers OV indicates a negative number produced
when a negative value is subtracted from a positive value, or a positive result
when a positive number is subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-
indirect, or immediate. '
The accumulator holds OC9H (11001001B), register 2 holds 54H (01010100B),
and the carry flag is set. The instruction,

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and
AC cleared but OV set.

Notice that OC9H minus 54H is 75H. The difference between this and the above
result is due to the carry (borrow) flag being set before the operation. If the
state of the carry is not known before starting a single or multiple-precision sub
traction, it should be explicitly deared by a CLR C instruction.

1 r r r I
SUBB
(A)_ (A) - (C) - (Rn)

8-55

MCS@)-51INSTRUCTION SET

SUBB A,direct
Bytes: 2

Cycles:

Encoding: 11 ° 0 1, I ° 1 0 1 I I dire~t address I
Operation: SUBB

SUBB A,@RI
Bytes:

Oycles:

Encoding:

(A)-- (A) - (C) - (direct)

1100 tlo 1 1

Operation: SUBB
(A).-.- (A.) - (C) - «Ri»

SUBB A,#data'
Bytes: 2

'Cycles: 1

Encoding:

Operation:

SWAP A

Function:
Description:

Example:

Bytes:
Cycles:

11 ° ° 1 I ° '1 0 ° I I immediate data I
SUBB
(A)--:'-(A) - (C) - #data

Swap nibbles within the Accumulator,
SWAP A interchanges the low- and high.order nibbles (four-bit fields) of the
acc~mulator (bits 3-0 and bits 7-4). The operation can also be thought of as a
four-bit rotate instruction. No flags are affected.
The accumulator holds the value OCSH (11000101B). The instruction,

SWAP A

leaves the accumulator holding the value 5CH (01011100B).
1
L

Encoding: 1L...,..1 ____ 0 _0-,1,-0_, _1_0 _0--,1

Operation: SWAP
(A3-0)~(A7.4), (A7-4)_(A3-0)

8-&6

MCS®-S1 INSTRUCTlo.N SET

XCH A, <byte>

Function:
Description:

Example:

XCH A,Rn
Bytes:

Cycles:

Encoding:

Exchange Accumulator with byte variable
XCH loads the accumulator with the contents of the indicated variable, at the
same time writing the original accumulator contents to the indicated variable.
The source/destination operand can use register, direct, or register-indirect ad
dressing.
RO contains the address 20H. The accumulator holds the value 3FH
(001111118). Internal RAM location 20H holds the 'value 75H (01110101B).
The instruction,

XCH A,@RO

will leave RAM location 20H holding the values 3FH (001111118) and 75H
(011101018) in the accumulator.

OOl lrrr l

o.peration: XCH
(A)~(Rn)

XCH A,direct
Bytes: 2

Cycles:

Encoding: o 0 I 0 1 0 11 I direct address I

Operation: XCH

XCH A,@Ri
Bytes:

Cycles:

Encoding:

Operation:

(A)~(direct)

o 0 10

XCH
(A)~«Ri»

8-57

MCS®-51 INSTRUCTION SET

XCHD A,@Ri

Function: Exchange Digit
Description: XCHD exchanges the low-order nibble of the accumulator (bits 3-0), generally

representing a hexadecimal or BCD digit), with that of the internal RAM loca~
tion indirectly addressed by the specified register. The high-order nibbles (bits
7-4) of each register are not affected. No flags are affected.

Example: . RO contains the address 20H. The accumulator holds the value 36H

Bytes:
Cycles:

Encoding:

Operation:

(001101 lOB). Internal RAM location 20H holds the value 75H (01110101B).
The instruction,

XCHD A,@RO

will leave RAM location 20H holding the value 76H (OlllOllOB) and 35H
(001 10101 B) in the accumulator.
1

11 101 1 0

XCHD
(A3-0)~«Ri3-0»

8-58

MCS@-S1INSTRUCTION SET

XRL <dest-byte>, (src-byte>

Functi(»n:
Description:

Example:

XRL A,Rn
Bytes:

Cycles:

Encoding:

Opera~ion:

XRL A,direct
Bytes:

Cycles:
I

Encoding:

Operation:

Logical Exclusive·OR for byte variables
XRL performs the bitwise logical Exclusive-OR operation between the in
dicated variablj::s, storing the results in the destination. No flags are affected.

The two operands allow six addressing mode combinations; When the destina
tion is theaccumuJator, the source can use register, direct, register·indirect, Of

immediate addressing; when the destination is a direct address, the source can
be the accumulator or immediate data.

(Note: When this instruction is used to· modify an output port, the value used as
the original port' data will be read from the output data latch, not the input
pins.)
If the accumulator holds OC3H (llOOOOllB) and register 0 holds OAAH
(1OIOIOIOB) 'then the instruction,

XRL A,RO

will leave the accumulator holding the value 69H (OllOIOOIB).

When the destination is a directly addressed byte, this instruction can comple
ment combinations of bits in any RAM location or hardware register. The pat
tern of bits to be complemented is then d'etermined by a mask byte, either a con
stant contained in the instruction or a variable computed in the accumulator at
run-time. The instruction,

XRL PI,#OOllOOOIB

. will complement bits 5, 4, and 0 of output port l.

10 011 r r r

XRL
(A)_ (A) "t (Rn)

2
1

1'-0 ____ 0 1_0 __ ~ I direct address I
XRL
(A)_(A) "t (direct)

8·59

XRL A,@RI
Bytes: 1

Cycles: 1

Encoding: 10 1 -I ,°1- 0 1 1 ' i I, '::
Operation: XRL '.

(A)-(A) 'V «It»
XRL A,#data

Bytes: 2
Cycles: 1

Encoding: 10 01 0 1 ° 01
Operation: XRL

(A)_(A) 'V #data
XRL direct,A

Bytes: 2
Cycles: 1

Encoding: 10 1 1 01 0 ° 1 01
Operation: XRL

(direct)_ (direct) 'V (A)
XRL dlrect,#data

Bytes: 3
Cycles: 2

"

.,
",'

"

'\! !,
"

:';-;' ,

1 'immediate data 1

1 direct address 1

Encoding: 1 0 ____ 0-'1_0_0 ___ 1....,1 1 direct address I 1 immediate data I

Operation: XRL
(direct)_ (direct) 'tf #data

8-60

" '

MCS®~51 Data Sheets 9

MCS®-S1
a-BIT CONTROL-ORIENTED MICROCOMPUTERS

• High Performance HMOS Process
• Internal Timers/Event Counters
• 2-level Interrupt Priority Structure
• 32 I/O lines (Four S-Bit Ports)
• 64K Program Memory Space

S031/S051
S031 AH/S051 AH
S032AH/S052AH
S751H/S751H-12

• Boolean Processor
• Bit-Addressable RAM
• Programmable Full Duplex Serial Channel
• 111 Instructions (64 Single-Cycle)
• 64K Data Memory Space

• Security Feature Protects EPROM Parts Against Software Piracy

The MCS®-51 products are optimized for control applications. Byte-processing and numerical operations on
small data structures are facilitated by a variety of fast addressing modes for accessing the internal RAM. The
instruction set provides a convenient menu of 8-bit arithmetic instructions, including multiply and divide in
structions. Extensive on-chip support is provided for one-bit variables as a separate data type, allowing direct
bit manipulation and testing in control and logic systems that require Boolean processing.

Internal Memory

Timersl
Device Program Data Event Counters Interrupts

8052AH 8K x 8 ROM 256 x 8 RAM 3 x 16-Bit 6
8051AH 4K x 8 ROM 128 x 8 RAM 2 x 16-Bit 5

8051 4K x 8 ROM 128 x 8 RAM 2 x 16-Bit 5
8032AH none 256 x 8 RAM 3 x 16-Bit 6
8031AH none 128 x 8 RAM 2 x 16-Bit 5

8031 none 128x8RAM 2 x 16-Bit 5
8751H 4K x 8 EPROM 128 x 8 RAM 2 x 16-Bit 5'

8751H-12 4K x 8 EPROM 128 x 8 RAM 2 x 16-Bit 5

The 8751 H is an EPROM version of the 8051 AH; that is, the on-Chip Program Memory can be electrically
programmed, and can be erased by exposure to ultraviolet light. It is fully compatible with its predecessor, the
8751-8, but incorporates two new features: a Program Memory Security bit that can be used to protect the
EPROM against unauthorized read-Qut, and a programmable baud rate modification bit (SMOD). SMOD is not
present in the 8751 H-12. . .

9-1

803118051 • 8031 AH/8051 AH
8032AH/8052AH • 8751 H/8751 H·12

...... ,
Vcc r ------'-----;.tl~~:;_
~ p

'~Wti-----------'--l

Figure 1. MCS®-51 Block Diagram

PIN DESCRIPTIONS

VCC

Supply voltage.

VSS

Circuit ground.

PortO

Port 0 is an a-bit open drain bidirectional lID port. As
an output port each pin can sink a LS TTL inputs.
Port 0 pins that have 1 s written to them float, and in
that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and
data bus during accesses to external Program and
Data Memory. In this application it uses strong inter
nal pullups when emitting 1 s, and can source and
sink a LS TTL inputs.

9-2

Port 0 also receives the code bytes during program
mirig of the EPROM parts, and outputs the code bytes
during program verification of the ROM and EPROM
parts. External pullups. are required during program
verification.

Port 1

Port 1 is an a-bit bidirectional lID port with Internal
pullups. The Port 1 output buffers can sink/source 4
LS TTL inputs. Port 1 pins that have 1 s written to
them are pulled high by the internal pullups, and in
that state can be used as inputs. As inputs, Port 1
pins that are externally being pulled low will source
current (ilL, on the data sheet) because of the internal
pullups.

Port 1 also receives the low-order address bytes dur
ing programming of the EPROM parts and during
program verification of the ROM and EPROM parts.

803118051 • 8031AHI8OS1AH
8032AH/80S2AH • 8751H/8761H·12

r-[-{ -12 -1'1'0- _ONLY

T2I!X 1'1.1
1'1.2
1'1.3
P1A
1'1.&
P1.s
1'1.7
R8T

RXDP3.0
lXD 1'3.1
IIi'I'ti P3.2
iR'fi Pu

topu
T1PU

W!lpu
.PU

XTAL2
XTALI

VS8

vee
PO.OADO
PO.l AlII
1'0.2 AlIa
PO.3 AlIa
POAAD4
PO.I ADs
PO.lADe
PO.7,ArR
UMIo
ALIi/IIIfilII
IIftii
pUAU _,.
1'2.5 A13
PtAA12
PUAl1
P2.2Al0
1'2.1 Q
P2,oQ

=:... ~~,~,,...,.=~,..~ '~"":["'oA-i.fi.~~i..,..,.i,.....,lli~i!;,...........
L·J. LSJ L~ LJJ LiJ L'J ~J ~ ~ ~~ ~

p,. :() r:!t: N.

P1"):] r:!-: POS

111.7 :€] ~~: flOl

..., ~!]

• PU JiJ
Ne J~]

Pl1]!:]

PI.2 :1!:]

PU :,~]

nc 1!]

Pad

[~: ".7
r-- I'l d'_

~~: He

[~: ALE

f~: mR

r!~ Pl7

{:!f 1'21

Figure 2. MCS~-51 Pin Connections

In the 8032AH and 8052AH, Port 1 pins P1.0 and
P1.1 also serve the T2 and T2EX functions, respec
tively.

Port 2

/ Port 2 is an 8-bit bidirectional I/O port with internal
pullups. The Port 2 output buffers can sink/sOurce 4
LS TTL inputs. Port 2 pins that have 1 s written to
them are pulled high by the Intemal pullups, and In
that state can be used as inputs. As inputs, Port 2
pins that are externally being' pulled low will source
current (ilL, on the data sheet) because of the internal
pullups.

Port 2 emits the high-order address byte during
fetches from external Program Memory and during
accesses to external Data Memory that use 16-bit
addresses (MOV>< @DPTR). In this application it
uses strong internal pullups when emitting 1 s. During
'accesses to external Data Memory that use a·bit ad
dresses (MOVX @Ri), Port 2 emits the contents of
the P2 SpeciEiI Function Register.

Port 2 also receives the high-order address bits dur
ing programming of the EPROM parts and during
program verification of the ROM and EPROM parts.

Port 3

Port 3 is an 8-bit bidirectional I/O port with internal
pullups. The Port 3 output buffers can sink/source 4
LS TTL inputs. Port 3 pins that have 1 s written to
them are pulled high by the internal pullups, and in
that state can be used as inputs. As inputs, Port 3
pins that are externally being pulled low will source
current (ilL, on the data sheet) because of the pullups.

Port :3 also serves the functions of various special
features of the MeS-51 Family, as listed below:

Port Pin Alternative Function

P3.0 RXO (serial input p()rt)
P3.1 TXD {Serial output port)
P3.2 1m'O (external interrupt 0)
P3.3 jJij'ff (external interrupt 1)
P3.4 TO, (Timer 0 external input)
P3.5 T1 (Timer 1 external input)
P3.6 WR (external data memory write

strobe)
P3.7 Jm (external data memory read

strobe) .

.8031/S051 • S031AH/S051AH
S0324H/S052AH • 8751·H/S751H-12

RST

Reset input. A high on this pin for two machine cycles
while the oscillator is running resets the device.

ALE/PROG

Address Latch Enable output pulse for latching the
low byte of the address during accesses to external
memory. ALE can drive 8 LS TTL il6utS. This pin is
also the program pulse input (PR G) during pro
gramming of the EPROM parts'.

In normal operation ALE is emitted at a constant rate
of '/6 the oscillator frequency, and may be used for
external timing or clocking purposes. Note, however,
that one ALE pulse is skipped during each access to
external Data Memory.

Program Store Enable is the read strobe to external
Program Memory. PSEN can drive 8 LS TTL inputs.

When the device is executing code from external Pro
gram Memory, PSEN is activated twice each machine
cycle, except that two PSEN activations are skipped
during each access to external Data Memory.

EANPP

External Access enable EA must be externally held
low in order to enable any MCS-51 device to fetch
code from external Program Memory locations 0 to
OFFFH (0 to 1 FFFH, in the 8032AH and 8052AH).

C2

,......--tl~-+---t XTAL2

o

t---tl~--e---t XTALl

Cl

t----~---tvss

Cl, C2 = 30 pF ",10 pF FOR CRYSTALS
= 40 pF "'10.pF FOR CERAMIC RESONATORS

Figure 3,. Oscillator Connections

9-4

Note, hOwever, that if the Security Bit in the EPROM
devices is programmed, the device will not fetch code
from any location in external Program Memory.

This pin also receives the 21 V programming supply
voltage (VPP) durir;lg programming of the EPROM
parts.

XTAL1

Input to the inverting oscillator amplifier.

XTAL2

Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL 1 and XTAL2 are the input and output, respec
tively, of an inverting amplifier which can be confi
gured for use as an on-chip oscillator, as shown in
Figure 3. Either a quartz crystal or ceramic resonator
may be used. More detailed information concerning
the use of the on-chip oscillator is available in
Application Note AP-155, "Oscillators for Micro
controllers."

To drive the device from an external clock source,
XTAL 1 should be grounded, while XTAL2 is driven,
as shown in Figure 4. There are no requirements on
the duty cycle of the external clock signal, since the
input to the internal clocking circuitry is through a
divide-by-two flip-flop, but minimum and maximum
high and low timesspecified on the Data Sheet must
be observed.

EXTERNAL
OSCILLATOR ----t XTAL2

SIGNAL

- XTALl

.... --t vss

Figure 4. External Drive Configuration

inter 8031/8051 e8031 AH/8051 AH
8032AH/8052AH e 8751H/8751H-12

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias ... O·C to 70·C
Storage Temperature . , ... -65·C to + 150·C

Voltage on EANPP Pin to VSS . - 0.5V to + 21.5V
Voltage on Any Other Pin to VSS. - 0.5V to + 7V
Power Dissipation 1 .5W

-NOTICE: Stresses above those listed under "Ab
solute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or any
other conditions above those indicated in the oper
ational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.

D.C. CHARACTERISTICS: (T A = O·C to 70°C; VCC = 5V ± 10%; VSS = OV)

Symbol Parameter Min Max Unit Test Conditions

VIL Input· Low Voltage (Except EA Pin of -0.5 0.8 V
8751H,8751H-12)

V/.L1 Input Low Voltage to EA Pin of 0 0.7 V
8751 H, 8751 H-12

VIH Input High Voltage (Except XTAL2, 2.0 VCC+0.5 V
RST)

VIH1 Input High Voltage to XTAL2, RST 2.5 VCC+0.5 V XTAL1 = VSS

VOL Output Low Voltage (Ports 1, 2, ~)* 0.45 V IOL = 1.6 mA

VOL1
Output Low Voltage (Port 0, ALE,

PSEN)-

0.60 V IOL = 3.2 mA
8751H,8751H-12 0.45 V IOL = 2.4 mA

All Others 0.45 V IOL = 3.2 mA

VOH Output High Voltage (Ports 1, 2, 3) 2.4 V IOH = -80/LA

VOH1 Output High Voltage (Port 0 in 2.4 V IOH = - 400 /LA
External Bus Mode, ALE, PSEN)

ilL Logical 0 Input Current (Ports 1, 2, 3)
8032AH, 8052AH -800 !LA Vin = 0.45 V
All Others -500 /LA Vin = 0.45 V

1IL1 Logical 0 Input Current to EA Pin of -15 mA
8751H, 8751H-12 Only

1IL2 Logical 0 Input Current (XTAL2) -3.2 mA Vin = 0.45 V

III Input Leakage Current (Port 0)
. 8751H, 8751H-12 ±100 /LA 0.45 < Vin < VCC

All Others ±10 !LA 0.45 < Vin < VCC

IIH Logical 1 Input Current to EA Pin of 500 /LA
8751H,8751H-12

IIH1 Input Current to RST to Activate Reset 500 !LA Vln < (VCC - 1.5V)

ICC Power Supply Current: 8031/8051 160 mA All Outputs Discon-
8031 AH/8051 AH 125 mA nected; EA = VCC
8032AH/8052AH 175 mA
8751H/8751 H-12 250 mAo

CIO Pin Capacitance 10 pF test freq = 1 MHz

-Note: Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLs of .ALE and
Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make
1-to-0 transitions during bus operations. In the worst cases.(capacitive loading> 100 pF), the noise pulse on the ALE line
may exceed O.BV. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a
Schmitt Trigger STROBE input.

9-5

inter 803118051 • 803:1 AHf80S1AH
8002AH/8052AH • 8751Ml8751H-12

A.C. CHARACTERISTICS: (TA = () °C to. +70 °C, VCC = 5V ±100/0; VSS=;i OV,
Load Capacitance for Port 0, ALE, and PSEN = 100 pF,
Load Capacitance for All Other Outputs '" 80 pF)

12MHz Osc Variable Oscillator
Symbol Parameter Min Max Min Max
1fTCLCL Oscillator Frequency 3.5 12.

TLHLL ALE Pulse Width 127 2TCLCL-40

TAVLL Address Valid to ALE Low 43 TCLCL-40

TLLAX Address Hold After ALE Low 48 TCLCL-35

TLLlV ALE Low to Valid Instr In
8751H,8751H-12 183 4TCLCL-150
All Others 233 . 4TCLCL-100

TLLPL ALE Low to PSEN Low 58 TCLCL-25

TPLPH PSEN Pulse Width
8751H,8751H-12 190 3TCLCL-60
All Others 215 3TCLCL-35

TPLIV PSEN Low to Valid Instrln
8751H,8751H-12 100 3TCLCL-150
All Others 125 3TCLCL:.-125

TPXIX Input Instr Hold After PSEN O' 0

TPXIZ Input Instr Float After PSEN 63 TCLCL-20

TPXAV PSEN to Address Valid 75 TCLCL-8

TAVIV Address to Valid Instr In
8751H,8751H-12 267 5TCLCL-150
All Others 302 5TCLCL-115

TPLAZ PSEN Low to Address Float TBD TBD

TRLRH RD Pulse Width 400 6TCLCL,100

TWLWH WR Pulse Width 400 6TCLCL-100

TRLDV RD Low to Valid Data In 252 5TCLCL-165

TRHDX Data Hold After RD 0 0

TRHDZ Data Float After RD 97 2TCLCL-70

TLLDV ALE Low to Valid Data In 517 8TCLCL-150

TAVDV Address to Valid Data In 585 9TCLCL-165

TLLWL ALE Low to RD or WR Low 200 300 3TCLCL-50 3TCLCL+50

TAVWL Address to RD or WR Low 203 4TCLCL-130

TOVWX Data Valid to WR Transition
8751H,8751H-12 13 TCLCL-70
All Others 23 TCLCL-60

TOVWH Data Valid to WR High 433 7T~LCL-150

TWHOX Data Held After WR' 33 TCLCL-50

TRLAZ RD .Low to Address Float TBD TBD'

TWHLH RD or WR High to ALE High
8751H,8751H-12 33 133 TCLCL-50 TCLCL+50
All Others 43 123 TCLCL-40. TCLCL+40'"

9-S

Units
MHz

ns

ns

ns

ns·

ns

ns
ns

ns
.ns

ns

ns

ns

ns
ns

ns

ns

ns

ns

ns I

ns

ns

ns

ns

ns

ns
ns

ns

ns

ns

ns
ns

8031/8051 • 8031AH/8051AH
8032AH/8052AH • 8751H/8751H·12

EXTERNAL PROGRAM MEMORY READ CYCLE

ALE

·PORTO

PORT 2

I-TLLPL

j--TPLPH

TLLIV

.... --+-1 TPLIV

14---TAVIV ---+-I

A8-A15

9-7

A8-A15

803118051 e8031AH/8051AH
8032AH/8052AHe 8751Ht8751H":12

EXTERNAL DATA MEMORY READ CYCLE

I----~ TLHLL

ALE

t-----TLLDV----Pl

_~---TRLRH -r----t

PORTO

~-----TAVDV-----_+i

PORT 2 P2.0-P2.7 OR A8-A15 FROM DPH

9-8

A8-A15 FROM PCH

inter 8031/8051 .' 8031 AH/8051 AH
8032AH/8052AH • 8751H/8751H-12

EXTERNAL DATA MEMORY WRITE CYCLE

"'-_~TLHLL TWHLH

ALE

TLLWL--+""----TWLWH ----+-I

TOVWX

... ~~-~~-i----TOVWH--------~

PORTO DATA OUT

PORT 2 P2.0-P2.7 OR AB-A15 fRO!/! DPH

9~9

INSTR
IN

AB-A 15 fROM PCH

inter B031/B051.·., B031AH/8051AH
8032AH/8052AH. 8751 H18751 H-12

SERIAL PORT TIMING - SHIFT REGISTER MODE
Test Cpnditions: T A = O·C to 70 ·C; VCC = 5V ± 10%; VSS = OV; Load Capacitance = 80 pF

12MHz Osc Variable Oscillator

Symbol Parameter Min Max Min Max

TXLXL Serial Port Clock Cycle Time 1.0 12TCLCL

TQVXH Output Data Setup to Clock Rising 700 10TCLCL-133
Edge

TXHQX Output Data Hold After Clock 50 2TCLCL-117
Rising Edge

TXHDX Input Data Hold After Clock Rising 0 0
Edge

TXHDV Clock Rising Edge to Input Data 700 10TCLCL-133
Valid

SHIFT REGISTER TIMING WAVEFORMS

INSTRUCTION

ALE

CLOCK

Units

JLS
ns

ns

ns

ns

OUT1'lIT OATA \ X X X'-~-..JX'-_-..JX'-_-..JX'-_-.JX'-_-.JI

I j t
sun

".0' --..j 1-".0. '--t
WRITE 1'0 seUF

f
S£TRi

9-10

EXTERNAL CLOCK DRIVE

Symbol

8031/8051 • 8031 AH/8051 AH
8032AH/8052AH • 8751H/8751H-12

Paramet,r Min

1fTClCl Oscillator Frequency 3.5

TCHCX High Time 20

TClCX low TIme 20

TClCH Rise Time

TCHCl Fall Time

EXTERNAL CLOCK DRIVE WAVEFORMS

Max

12

20

20

t-------TCLCL ------001

A.C. TESTING INPUT, OUTPUT WAVEFORM

24=X x= 2.0 20 ? TEST POINTS < .
0.8 0.8 \

0.45

A C TESTING INPUTS ARE DRIVEN AT 2 4 v FOR A lOGIC 1 ANO 045 V FOR
A. lOGIC' 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1
AND 0 BV FOR A lOGIC O'

9-11

Units

MHz

ns

ns

ns

ns

TCHCL

intel· S031/S051 • S031AH/8051AH
S032AH/S052AH • S751H/S751H~12

EPROM CHARACTERISTICS:

Table 3. EPROM Programming Modes

Mode RST PSEN ALE EA P2.7 P2.6 P2.5 P2.4

Program 1 0 0' VPP 1 0 X X

Inhibit 1 0 1 X 1 0 X X

Verify 1 0 1 1 0 0 X X

Security Set 1 0 0' VPP 1 1 X X
Note: "1" = logic high for that pin

"0" = logic low for that pin
"X" = "don't care"

'ALE is pulsed low for 50 msec.

"VPP" = + 21 V ± 0.5V

Programming the EPROM

To be programmed, the part must be running with a
4 to 6 MHz oscillator. (The reason the oscillator needs
to be running is that the internal bus is being used to
transfer address and program data to appropriate in
ternal registers.) The address of an EPROM location
to be programmed is applied to Port 1 and pins
P2.0-P2.3 of Port 2, while the code byte to be pro
grammed into that location is ~d to Port O. The
other Port 2 pins, and RST, PSEN, and EA should
be held at the "Program" levels indicated in Table 3.
ALE is pulsed low for SO msec to program the code
byte into the addressed EPROM location. The setup
is shown in Figure S.

- Normally EA is held at a !2gic high until just before
ALE is to be pulsed. Then EA is raised to + 21 V, ALE
is pulsed, and then EA is returned to a logic high.
Waveforms and detailed timing specifications are
shown in later sections of this data sheet.

+5V

Figure 5. Programming Configuration

9-12

Note that the EAlVPP pin must not be allowed to go
above the maximum specified VPP level of 21.5V for
any amount of time. Even a narrow glitch above that
voltage level can cause permanent damage to the
device. The VPP source should be well regulated and
free of glitches.

Program Verification

If the Security Bit has not been programmed, the on
chip Program Memory can be read out for verification
purposes, if desired, either during or after the pro
gramming operation. The address of the Program
Memory location to be read is applied to Port 1 and
pins P2.0-P2.3. The other pins should be held at the
"Verify" levels indicated in Table 3. The contents of
the addressed location will come out on Port O. Ex
ternal pullups are required on Port 0 for this operation.

The setup, which is shown in Figure 6, is the same
as for programming the EPROM except that pin P2.7
is held at a logic low, or may be used as an active
low read strobe.

L-.... HXTAl1

vss

+5V

Figure 6. Program Verification

inter S031/S051 • S031AH/S051AH
S032AH/S052AH • S751H/S751H·12

EPROM Security

The security feature consists of a "locking" bit which
when programmed denies electrical access by any
external means to the on-chip Program Memory. The
bit is programmed as shown in Figure 7. The setup
and procedure are the same as for normal EPROM
programming, except that P2.6 is held at a logic high.
Port 0, Port 1, and pins P2.0~P2.3 may be in any
state. The other pins should be held at the "Security"
levels indicated in Table 3.

Once the Security Bit has been programmed, it can
be cleared only by full erasure of the Program Mem
ory. While it is programmed, the internal Program
Memory can not be' read out, the device can not be
further programmed, and it can not execute out of
external program memory. Erasing the EPROM,
thus clearing the Security Bit, restores the device's
full functionality. It can then be reprogrammed.

Erasure Characteristics

Erasure of the EPROM begins to occur when the chip
. is exposed to light with wavelengths shorter than ap
proximately 4,000 Angstroms. Since sunlight and
flourescent lighting have wavelengths in this range,
exposure to these light sources over an extended
time (about 1 week in sunlight, or 3 years in room
level flourescent lighting) could cause inadvertent
erasure. If an application subjects the device to this
type of exposure, it is suggested that an .opaque label
be placed over the window.

x = ··DON·T CARE··
+5V

P20-
P2.3

8751H

P24 ALEIPROG

P2.5

P26

P2.7 E4'VPP

XTAL2

VIH1

XTALl

VSS

Figure 7. Programming the Security Bit

The recommended erasure procedure is exposure to
ultraviolet light (at 2537 Angstroms) to an integrated
dose of at least 15 W-sec/cm2. Exposing the EPROM
to an ultraviolet lamp of 12,000 p.W/cm2 rating for 20
to 30 minutes, at a distance of about 1 inch, should
be sufficient.

Erasure leaves the array in an all 1 s state .

. EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS:
(T A = 21°C to 27 °C, VCC = 5V ±1 0%, VSS = OV)

Symbol Parameter Min Max Units

VPP Programming Supply Voltage 20.5 21.5 V

IPP Programming Supply Current 30 mA

1tTCLCL Oscillator Frequency 4 6 MHz

TAVGL Address Setup to PROG Low 48TCLCL.

TGHAX Address Hold After PROG 48TCLCL

TDVGL Data Setup to PROG Low 48TCLCL

TGHDX Data Hold After PROG 48TCLCL

TEHSH P2.7 (ENABLE) High to VPP 48TCLCL

TSHGL VPP Setup to PROG Low 10 p,Sec

TGHSL VPP Hold After PROG 10 p.sec

TGLGH PROG Width 45 55 msec

TAVQV Address to Data Valid 48TCLCL

TELQV ENABLE Low to Data Valid 48TCLCL

TEHQZ Data Float After ENABLE 0 48TCLCL

9-13

S0311S051 .. S031AH/S051AH
S032AH/S052AH • S751H/S75.1H-12

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

PROGRAMMING VERIFICATION

P1.0-P1.7
ADDRESS ADDRESS " P2.0-P2.3 /

- ~TAVQV

PORTO DATA IN DATA OUT

TDVGL - 4!--TGHDX

TAVGL! I- TGHAX
LE/PROG

\~
A

TSHGL
TGLGH

TGHSL

21V :I: .SV

Td
\

Ei./VPP
TTL HIGH TTL HIGH TTL HIGH

TEHSH

r-- TELQV---to: ~- !--TEHQZ

P2.7 ,
(ENABLE) J I

FOR PROGRAMMING CONDITIONS SEE FIGURE 5. FOR VERIFICATION CONDITIONS SEE FIGURE 6.

9-14

8052AH-BASIC

• Full BASIC Interpreter in ROM on a
Single Chip

• BCD Floating Point Math
• Generates All Timing Necessary to

Program EPROMS and E2PROMS
• Fast Tokenlzed Interpreter
• "Stand Alone" Software Development
• All Arithmetic and Utility Routines Can

Be Called From Assembly Language

• Interrupts Can Be Handled By BASIC or
Assembly Language

• Built-In Accurate REAL TIME CLOCK

• Multiple User Programs

• Programs May Reside In RAM, EPROM
or E2PROM,

• Built In Radix Conversion - Hex to
Decimal and Decimal to Hex

8052AH-BASIC is an 8052AH microcontroller with a complete full-featured BASIC interpreter, MCS® BASIC-
52, resident in the 8K of available ROM. This Software-On-Silicon product is specifically designed to address
the needs of process control, measurement, and instrumentation applications. MCS BASIC-52 allows 8052AH
users to write programs in the popular BASIC language, which is much simpler to write and easier to understand
than assembly language.

In addition tothe standard BASIC commands and functions, such as floating point arithmetic and transcendental
operations, MCS BASIC-52 contains many unique features that allow the user to perform tasks that usually
require assembly language. Bit-wise logical operators, such as AND, OR, and EXCLUSIVE-OR are supported
as well as hexadecimal arithmetic.

A minimum amount of hardware is required to support MCS BASIC-52. Small systems can be constructed with
only a latch, 1 K bytes of external memory, and the appropriate serial port drivers. With the addition of a
transistor, a gate, and a couple of passive components, MCS BASIC-52 can program EPROM or E2PROM
devices with the users application program. Both the standard and the inteligent Programming'· algorithms
are supported. '

MCS BASIC-52 is an interpreted language. This aliows the user to develop a program interactively without the
cumbersome and repetitive process of editing, assembling, loading, and running which is required by assemblers
and compilers. MCS BASIC-52 was designed to permit the programmer to develop resident high level language
software using the high performance 8052AH device.

+ 5 VOLTS---l

JC~
LINE PRINTER OUTPUT

CONSOLE OUTPUT

CONSOLE INPUT

t
LEVEL

SHIFTERS

RESET

XTAL1

XTAL2

PULSEr----------------------------,
ENABLEr--------------------------,
PSENr-----------------~

~~--------------~~

~r------------'

--------,
LEVEL SHIFTERS I

__ M':~':E~~_.1

M

System Block Diagram

9-15

inter 8052AH-BASIC

FEATURES'

COMMAND SET .

MCS BASIC-52 contains all standard BASIC
commands, statements, and operators. Figure 1 list
the software feature set of MCS BASIC-52.

DATA FORMAT

The range of numbers, that can be represented in
MCS BASIC-52 is:

±1E':'127 to ±.99999999E + 127

CONTROL ORIENTED FEATURES

MCS BASIC-52 contains many unique features to
perform task that usually require assembly language
programming. The XBY and DBY operators can read
and/or write external and internal memory
respectively. The CBY operator is used to read
program memory. Additionally, virtually all of the
special function registers on the 8052AH can be
accessed with MCS BASIC-52. This allows the user
to set the timer or interrupt modes within the
constructs of a BASIC program. An accurate interrupt
driven REAL TIME CLOCK that has a 5 millisecond
resolution is also implemented in MCS BASIC-52.
This clock can be enabled, disabled, and used to
generate interrupts. Finally, a CALL statement that
allows the programmer to CALL assembly language
routines is available in MCS BASIC-52. Parameters
can be passed in a number of different ways.

EPROM/E2PROM FILE

Most Basic interpreters allow only one program to be
resident in memory, and many require that the
program reside in RAM. MCS BASIC-52 allows
programs to reside in both RAM and EPROMI
E2PROM. Additionally, up to 255 programs may
reside in EPROM/E2PROM. Programs may also be
transfered (XFER) from EPROM/E2PROM to RAM
for editing purposes.

EPROM/E2PROM PROGRAMMING

A powerful feature of MCS BASIC-52 is that it
generates all of the timing necessary to program any
standard EPROM or E2PROM device with the users'
program (PROG/FPROG). Additionally, very little
external hardware is required .to implement this
feature. Saving programs in EPROM/E2PROM is
much more,attractive and reliable than other
alternatives, such as cassette tape, especially in
control and/or other noisy environments.

\ AUTOSTART

After the user programs an,EPROM o~ E2PROM ;"ith
the desired BASIC program. The PROG2 or FPROG2
commands may be used to enable the unique
AUTOSTART feature of MCSBASIC-52. When
AUTOSTART is enabled, MeS BASIC-52 will execute
the user program after RESET or a power-up
condition. This permits the user to RUN a program
without connecting the MCS BASIC-52 device ,to a
console - a powerful feature for control
environments.

USER ACCESSABLE FUNCTION LIBRARY

Another unique feature of MCS BASIC-52 is that it
contains a complete library of functions that can be
accessed with assembly language. All floating point,
radix conversion, and 1/0 routines contained in MCS
BASIC-52 can be accessed with assembly language
CALL instructions. These complex arithmetic routines
can be used by the programmer in applications
requiring the speed of assembly language, but also
the complex arithmetics offered by BASIC.

8052AH-BASIC PIN DESCRIPTION
(FIGURE 2)

8052AH-BASIC is an 8052AH device, however, MCS
BASIC-52 assumes a particular hardware
configuration. The following pin description outlines
the pin functions defined by MCS BASIC-52.

VSS

Circuit ground potential.

VCC

Circuit supply voltage. 5 volts ± 10% relative to VSS.

ADO-AD7

The multiplexed low-order address and data bus used
during accesses to external memory: External pullup
devices (- 10K 0) are required on these pins if the
MCS BASIC-52 EPROM/E2PROM programming
feature is used.

9-16

AS"':A15

"Fhe high order address bus used during accesses to
external memory.

8052AH-BASIC

~ommands Statements Operators
RUN BAUD ADD (+)
LIST CALL DIVIDE (I)
L1ST# CLEAR EXPONENTIATION (**)
NEW CLEARS MULTIPLY (*)
NULL CLEARI SUBTRACT(-)
RAM CLOCKO LOGICAL AND (.AND.)
ROM CLOCKl LOGICAL OR (.OR.)
XFER DATA LOGICAL X-QR (.xOR.)
PROG READ LOGICAL NOT
PROGl RESTORE ABS()
PROG2 DIM INT()
FPROG DO-WHILE SGN ()
FPROGl DO-UNTIL SOR ()
FPROG2 END RND

FOR-TO-STEP LOG ()
NEXT EXP ()
GOSUB SIN ()
RETURN COS ()
GOTO TAN ()
ON-GOTO ATN ()
ON-GOSUB =, >, >=,

<, <=, <>
IF-THEN-ELSE ASC()

INPUT CHR ()
LET CBY()
ONERR DBY()
ONEXTl XBY()
ONTIME GET
PRINT IE
PRINT# IP
PHO. PORTl
PHO.# PCON
PH1. RCAP2
PH1.# T2CON
PUSH TCON
POP' TMOD
PWM TIME
REM TIMERO
RETl TIMERl
STOP TIMER2
STRING TIME
UIO XTAL
Ull MTOP
UOO LEN
UOl FREE

PI

Figure 1. MCS® BASIC-52 Software Feature Set

PORT 1

A general purpose quasi-bidirectional 8-bit input!
output port. The individual pins on PORT 1 all have
alternate functions which mayor may not be
implemented by the user. The alternate functions are
as follows:

PORT 1.0 (T2)

Can be used as the trigger input to TIMER/COUNTER
2. A one (1) must be written to this port pin output
latch in order for this function to operate. Details of

T2/Pl.0
T2EX/P1.l

PWM OUTPUT I Pl.2
ALE DISABLE I Pl.3

PROGRAM PULSE I Pl.4
PROGRAM ENABLE I Pl.5

DMA ACKNOWLEDGE I Pl.&
UNE PRINTER OUTPUT I Pl.7

RESET
CONSOLE SERIAL INPUT

CONSOLE SERIAL OUTPUT
INTO I DMA REQUEST

INTl
TO
Tl

WR
RD

XTAL2
XTALl

VSS

Figure 2. Configuration

VCC
ADO
ADl
AD2
AD3
AD4
AD5
AD&
AD7
+5 VOLTS
ALE
PSEN
A15
A14
A13
A12
All
Al0
A9
AS

the T2 trigger function are covered in the
Microcontrollers Handbook. Order Number 210918-
002.

9-17

PORT 1.1 (T2EX)

Can be used as the external input to TIMER/
COUNTER 2. A one (1) must be written to this port
pin output latch in order for this function to operate.
Details of the T2 trigger function are covered in the
Microcontroller Users Manual.

PORT 1.2 (PWM OUTPUT)

This pin is used as the PWM output port when the
PWM statement is executed. PWM stands for Pulse
Width Modulation and is used to generate pulses of
varying duty cycle and frequency.

PORT 1.3 (ALE orSABLE)

This pin is used to disable the ALE signal to the
external address latch when the EP.ROM/E2PROM
programming feature is used. In a system, this pin is
logically anded with ALE.

POR,T 1.4 (PROGRAMMING PULSE)

When the EPROM/E2PROM programming feature is
used, this pin provides the proper programming pulse
width to program EPROM and INTElligent EPROM@>
devices. MCS BASIC-52 actually calculates the
proper programming pulse width from the system
crystal value (XTAL) to assure the proper timing of
this pulse. When used to program E2PROM devices,
the length of this pulse is not critical. This pin is active
in the logical zero (0) state.

inter . 8052AH~SASIC

PORT 1.5 (PROGRAMMING ENABLE)

When the EPROM/E2PROM pro!ilramming feature
is implemented, this pin is used to enable the
EPROM programming voltage. This pin remains
active (logically low (0» during the entire EPROM
programming process. On E2PROM devices. that do
not require any special programming voltage, this pin
is not used.

PORT 1.6 (DMA ACKNOWLEDGE)

When the DMA feature is implemented as described
in the MCS® BASIC-52 users manual, this pin func
tions as an active low DMA ACKNOWLEDGE output.

PORT 1.7 (LINE PRINTER OUTPUT)

This pin functions as a serial output port when the
LlST# or PRINT# command and/or statement is
used. This enables the user to make a "hard copy"
of a program or to print out results of a calculation.

RESET

A high (2.5 volts) on this pin for two machine cycles
while the oscillator is running resets the device. An
external pulldown resistor (-8.2K) from RESET to
VSS permits power-on reset when a capacitdr (-10
uf) is connected from this pin to VCC.

ALE

ALE (address latch enable) is an output pin that is
used to latch the low order address byte during Read,
Write, or program fetch operations to external
memory.

This pin (Program Store ENable) is a control signal
that is used to enable external program memory. In
MCS® BASIC-52, this pin will always remain inactive
(logically high (1» unless the user is running an as
sembly language program in external memory.

XTAL1

Input to the inverting amplifier that forms the
oscillator.

XTAL2

Output of the.inverting amplifier that forms the oscil
lator, and input to the internal clock generator. Re
ceives the external oscillator signal when an external
oscillator is used.

9-18

A control Signal that is used to enable READ opera
tions to external data memory. This pin is active low
(0).

WR

A control signal that is used to enable WRITE oper
ations to external data memory. This pin is active low
(0).

T1

This pin can be programmed to be an external input
to TIMER/COUNTER 1.

TO

This pin can be programmed to be an external input
to TIMER/COUNTER O.

INT1

This pin is the external interrupt 1 pin. It is active low
and interrupts on this pin may be handled in either
BASIC or in assembly language.

INTO/DMA REQUEST

This is the external interrupt 0 pin. It is active low and
may be optionally programmed to function as a DMA
request input pin. The DMA REQUEST pin is used
by E2PROM devices during programming.

CONSOLE SERIAL OUTPUT

This is the serial output pin to the console device.
Standard ASCII codes are used as "'Iell as a standard
asynchronous frame.

CONSOLE SERIAL INPUT

This is th!'! serial input pin that receives data f~om the
console device. Standard ASCII codes are assumed
to be the input and the data is assumed to be trans
mitted using a standard asynchronous frame.

NOTES

If pin 31 is grounded the'8052AH-BASIC will operate
as a standard 8032AH. The tolerances on this pin
are described under DC characteristics.

For detailed information concerning this product
please refer to the MCS BASIC-52 Users Manual
(Order Number 210918-002). .

8052AH-BASIC

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias ... O°C to 70°C

Storage Temperature - 65°C to + 150·C

Voltage on Any' Pin With
Respect to Ground (VSS) -0.5Y to + 7V

Power Dissipation 2 Watts

"NOTICE: Stresses above those listed under
.. Absolute Maximum Ratings" may cause
permanimt damage to the device. This is a stress
rating only and functional operation of the device at
these or any other conditions above those indic{Jted
in the operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

DC CHARACTERISTICS (T A = O°C to 70°C, VCC = 4.5V to 5.5V, VSS = OV)

Symbol Parameter Min Max 'Unit Test Conditions

VIL Input Low Voltage -0.5 O.S V

VIH Input High Voltage
(Except RST and XTAL2)

2.0 VCC+ 0.5 V

VIHl Input High Voltage to 2.5 VCC + 0.5 V XTALl to VSS
RST for Reset, XTAL2

VOL Output Low Voltage Port 1, AS-15, 0.45 .V IOL = 1.6mA
Control Functions

VOLl Output Low Voltage ALE, PSEN 0.45 V IOL = 3.2mA
(Note 1)

VOH Output High Voltage Port 1, AS-15, 2.4 V IOH == -SOIlA
Control Functions

VOHl Output High Voltage ADO-7, ALE, PSEN 2.4 V IOH = -4001lA
ilL Logical 0 Input Current Port 1, AS-15 -SOO IlA Vin = 0.45V

Control Functions

1IL2 Logical 0 Input Current XTAL2 ~2.5 mA XTAL 1 at VSS,
Vin=0.45V

III Input Leakage Current To ADO-7 EA ±10 /LA 0.45V<Vin<VCC

IIHl Input High Current to RSTNPD For 500 /LA Yin = VCC - 1.5V
Reset

ICC Power Supply Current 175 mA All outputs disconnected

CIO Capacitance of 1/0 Buffer 10 pF tc = 1MHz, TA = 25°C

See page 6 for Notes.

9-19

8052AH-BASIC

Note 1: Vol is degraded when the S032AH/S052AH rapidly discharges external capacitanc:e. Thi$ AC noise is most pronounced
, during emission of address data. When using external memory, locate the latch or buffer as close to the S032AH/S052AH as
possible.

VOL
Emitting Degraded (peak)

Datum Ports 1/0 Lines (max)

Address AS-15, ADO-7 P1, Control 0.8V
Functions

Write Data ADO-7 P1, Control O.Sv
Functions, ALE

EXTERNAL CLOCK DRIVE CHARACTERISTICS (XTAL2)
Variable Clock

f = 3.5 MHz to 12 MHz

Symbol Parameter Min Max Unit

TClCl Oscillator Period 83.3 286 ns

TCHCX High Time 20 ns

TClCX Low Time 20 ns

TClCH Rise Time 20 ns

TCHCl Fall Time 20 ns

9-20

8052AH-BASIC

AC CHARACTERISTICS T A = O°C to 70°C, VCC = 5V ± 10%, VSS = OV, CL for ADO-7, ALE and
PSEN Outputs = 100 pF, CL for all other outputs = 80 pF)

PROGRAM MEMORY CHARACTERISTICS

Variable Clock
12 MHz Clock 1ITCLCL = 3.5 MHz to 12 MHz

Symbol Parameter Min Max Unit Min Max Unit

TLHLJ.. ALE Pulse Width 127 ns 2TCLCL-40 ns

TAVLL Address Setup to ALE 43 ns TCLCL-40 ns

TLLAX Address,Hold After ALE 48 ns TCLCL-35 ns

TLLlV ALE to Valid Instr In 233 ns 4TCLCL-100 ns

TLLPL ' ALE To PSEN 58 ns TCLCL-25 ns

TPLPH PSEN Pulse Width 215 ns 3TCLCL-35 ns

TPLIV PSEN To Valid Instr In 125 ns 3TCLCL-125 ns

TPXIX Input Instr Hold After PSEN .0 ns 0 ns

TPXIZ Input Instr Float After PSEN 63 ns TCLCL-20 ns

TPXAV Address Valid After PSEN 75 ns TCLCL-8 ns

TAVIV Address To Valid Instr In 302 ns 5TCLCL-115 ns

TAZPL Address flOat :to PSEN 0 ns 0 ns

EXTERNAL DATA' MEMORY CHARACTERISTICS

Variable Clock
12 MHz Clock 1ITCLCL = 3.5 MHz to 12 MHz

Symbol Parameter Min Max Unit Min Max Unit

TRLRH AD Pulse Width 400 ns- 6TCLCL-100 ns

TWLWH WR Pulse Width 400 ns 6TCLCL-100 ns

TLLAX Address Hold After ALE 48 ns TCLCL-35

TRLDV AD To Valid Data In 250 ns 5TCLCL-165 ns

TRHDX Data Hold After RD 0 ns 0 ns

TRHDZ Data-Float After RD 97 ns 2TCLCL-70 ns

TlLDV ALE To Valid Data In 517 ns 8TCLCL-150 ns

TAVDV Address To Valid Data In 585 ns 9TCLCL-165 ns

TLLWL ALE To WR or RD 200 300 ns 3TCLCL-50 3TCLCL + 50 ns

TAVWL Address To SR or RD 203 ns 4TCLCL-130
-'

ns

TWHLH WR or RD High To ALE High 43 123 ns TCLCL-40 TCLCL + 40 ns

TDVWX ' Data Valid To WR Transition 23 ns TCLCL-60 ns

TOVWH Data Setup Before WR 433 ns 7TCLCL-150 ns

TWHOX Data, Hold After WR 33 ns TCLCL-50 ns

TRLAZ Address Float After RD 0 ns 0 ns

9-21-

8052AH·SASIC

AC TIMING DIAGRAMS

EXTERNAL PROGRAM MEMORY READ CYCLE

!--------.....:.----12 TCLCL-----------...... -I

ALE

ADO-7 INSTR IN

AS-1S

EXTERNAL DATA MEMORY READ CYCLE

TWHLH
ALE

_...:.. ____ -+-____ ""'II------rTRLRH-----j,.. __ _

ADO-7 DATA IN

AS-1S

EXTERNAL DATA MEMORY WRITE CYCLE ' TWHLH

ALE

--------+------.1. I+----TWLWH....;-----:I.-_~ __

TDYWX
TQVWH

AOO-7 DATA OUT

ADS-1S ADDRESS AS-A1S OR SFR·P2

AC TESTING INPUT/OUTPUT, ,FLOAT WAVEFORMS

INPUT/OUTPUT

2.4=>(2.0 2.oX=
TEST POINTS .

OAS " ..,;0;,;;.8.....;. ____;0;,;;;...8 _

FLOAT

2.4

0.45

i-----FLOAT ---+I

2.0 2.0

0.8 0.8

2.4

0.45

AC inputs during testing are driven at 2.4V for a logic "1" and 0.45V for a logic "0", Timing measurements are made at 2.0V
for a logic "1" and O.BV for a logic "0". For timing purposes, the float state is defined as the pOint at which an ADO-7 pin sinks
2.4mA or sources 400JLA at the voltage test levels.

9-22

inter 8052AH-BASIC

CLOCK WAVEFORMS

INTERNAL
CLOCK

XTAL2

ALE

1
STATE 4 I' 'STATE 5 1 STATE 6

P11P2 P11P2 P11P2

STATE 1

P1 I P2

STATE 2,

P1 I P2

STATE 3

P1 I P2

STATE 4

P1 I P2

~------------~. ~I--------------~
ACTIVATED DURING THE

STATE 5

P1 I P2

EXTERNAL PROGRAM MEMORY FETCH
~THESE SIGNALS ARE NOT

. EXECUTION OF A MOVX INSTRUCTION

~ __ ' I~' L

ADO-7

A6-15

READ CYCLE

RD

________ ·.,ND,CATES ADDRESS TRANSIONSI ~ ___________________ -'

AOO-7

A6-15

WRITE CYCLE

WR ---------------------,
~--------------~

PCL OUT (IF PROGRAM
MEMORY IS EXTERNAL)

·AOO'-7· DPLOR RI
OUT

PCL OUT (EVEN IF PROGRAM
MEMORY IS INTERNAL)

~:. ---DA1:--A O--UT=--=--=--:"'~"*,,: • ..t--tL i f L
PCl OUT (IF PROGRAM

A6-15 ...-_____________________________ -,MEMORY IS EXTERNAL)

I
PORT OPERATION

MOV PORT, SRC

MOVDEST, P1

OLD DATA I NEW DATA

(INCLUDES INTO, INT1, TO, T1) ~

SERIAL PORT S-H-,FT-C-L-OC--K----, P1, PIN SAMPLED

~E 0) ~RXD SAMPLED

P1,

PIN SAMPLED Y
RXDSAMPLED

This diagram indicates when Signals are clocked intemally. The time it takes the signals to propagate to the pins, however,
ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading, Propagation
also varies from output to output and component to component. Typically though, (T A = 25°C, fully loaded) RD and WR
propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the
AC specificlltions.

9·23

-n+ .-I®
I •• ,~

80C51 BH/80C51BH-2
CHMOS SINGLE COMPONENT 8'-BIT MICROCONTROLLER

with Factory Mask-Programmable ROM

, . 80C31 BH/80C31BH-2
CHMOS SINGLE COMPONENT 8-BIT CONTROL-ORIENTED

CPU WITH RAM AND I/O
80C51BH/80C31BH- 3.5 to 12 MHz VCC = 5V ± 20%
80C51BH-2/80C31BH-2 - 0.5 to 12 MHz VCC ::;:: 5V ± 20%

• 128 X 8 RAM • Boolean Processor
• 32 Programmable 110 Lines • 5 Interrupt Sources
• Two 16-Bit Timer/Counters • Programmable Serial Port
• 64K Program Memory Space • 64K Data Memory Space

The MCS®-51 CHMOS products are fabricated on Intel's advanced CHMOS III process and are functionally
compatible with the standard MCS-51 HMOS and EPROM products, CHMOS III is a technology which combines
the high speed and density characteristics of HMOS with the low power attributes of CMOS, This combination
expands the effectiveness of the powerful MCS-51 ,architecture and instruction set

Like the MCS-51 EPROM and HMOS, the MCS~51 CHMOS products have the following features: 4K of ROM '
(80G51BH/80C51BH-2,only); 128 bytes of RAM; 32 I/O lines; two 16-bit timer/counters; a five-source two-level
interrupt structure; a full duplex serial port; and on-chip oscillator and clock circuitry, In addition, the MCS-51
CHMOS products have two software selectable modes of reduced activity for further' power reduction -.:... Idle
and Power Down.

Idle mode freezes the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue
functioning. Power Down mode saves the RAM contents but freezes the oscillator causing all other chip functions
to be inoperative.

Figure 1. Block Diagram

9-24

inter aoC51 BH/80C51 BH-2
80C31 BH/80C31 BH-2

INDEX .. "! N '" U
U

~ ~ ~ t CORNER Ii: Ii: ~ ~ Ii: z ~

LSJ LSJ L4J : 31 t 21 '1' ~J ~~ ~~ t41[~ L....J L....J I I L.J I I

Pl.0 VCC
P1.5 ~J PO.4

Pl.l PO.O Pl.S PO.S
Pl.2 PO.l
Pl.3 PO.2
Pl.4 PO.3 Pl.7 PO.S

Pl.S PO.4 RST
Pl.6 PO.S

PO.7

Pl.7 PO.6 Ei
RST PO.7 P3.0

BOC51BH
P3.0/RXD EA BOC51BH-2
P3.1/TXD NC Ne

ALE BOC31BH
P3.21INTO PSEN
P3.31NT1 P2.7 P3.1 aOC31BH-2 ALE

P3.4/TO P2.6
P3.S/Tl P2.S P3.2 iiftN

P3.6/WR P2.4
P3.7/RD P2.3 P3.3 P2.7

XTAL2 P2.2
XTALI P2.1 P3.4 P2.&

VSS ,P2.0
P3.S P2.S ,..., r, r, rl r, ,...., -, ,..., r' r.., r,

Pin ;18: :19: :20: ;21: ;22: :23: 124: ;251 1261 ;271 :28: I I

~ ~
N

~
UI U

~ ~
N ~ ~

~ ~ ~ z !i. !i ~

" "
DIagrams are for Pin reference only Pad
Package sizes are not 10 scale

,Figure 2. Configurations

IDLE AND POWER DOWN OPERATION

Figure 3 shows the jnternal Idle and Power Down
clock configuration. As illustrated, Power Down
operation freezes the oscillator. Idle mode operation
allows the interrupt, serial port, and timer blocks to
continue to function while the clock to the CPU is
halted.

XTAL2 XTALI

INTERRUPT.
~~-{:::> SERIAL PORT.

TIMER BLOCKS

CPU

Figure 3. Idle and Power Down Hardware

9-25

These special modes are activated by software via
the Special Function Register, PCON. Its hardware
address is 87H. PCON is not bit addressable.

PCON: Power Control Register

(MSB) (LSB)

ISMODI - I - I - I GF1 I GFO I PO I IDL I

Symbol Position Name and Function

SMOD

GF1
GFO
PO

IDL

PCON.7

PCON.6
PCON.5
PCON.4
PCON.3
PCON.2
PCON.1

PCON.O

Double Baud rate bit. When set to a 1.
the baud rate is doubled when the serial
port is being used in either modes 1. 2
or 3.
(Reserved)
(Reserved)
(Reserved)
General-purpose flag bit.
General-purpose flag bit.
Power Down bit. Setting this bit
activates power down operation.
Idle mode bit. Setting Ihis bit activates
idle mode operation.

If 1 's are written to PD and IDL at the same time, PD
takes precedence. The reset value of PCON is
(OXXXOOOO).

80C51 BH/80C51 BH~2
80C31 BH/80C31 BH .. 2

'Idle Mode

The instruction that sets PCON.O is the last instruction
executed in ,the normal operating mode before Idle
mode is activated. Once in the Idle mode, the CPU

, status is preserved in its entirety: the Stack Pointer,
Program Counter, Program Status Werd, Accumu-

. lator, RAM, and all other registers maintain their data
during Idle. Table 1 describes the status of the ex
ternal pins during Idle mode.

There are two ways to terminate the Idle mode.
Activation of any enabled interrupt will cause PCON.O
to be cleared by hardware, terminating Idle mode.
The interrupt is serviced, and following RETI, the next
instruction to be executed will be the one following
the instruction that wrote a 1 to PCON.O.

The flag bits GFO and GF1 may be used to determine
whether the interrupt was received during normal
execution or during the Idle mode. For example, the
instruction that writes to PCON.O can also set or clear
one or both flag bits., When Idle mode is terminated
by an enabled interrupt, the service routine can
examine the status of the flag bits.

The second way of terminating the Idle mode is with
. a hardware reset. S(nce the oscillator is still running,

the hardware reset needs to be active for only 2
machine cycles (24 oscillator periods) to complete the
reset operation.

Power Down Mode

The instruction that sets PCON.1 is the last executed
prior to going into power down. Once in power down,
the oscillator is stopped. Only the contents of the on
chip RAM is preserved. The Special Function Reg
isters are not saved. A hardware reset is the only way
of exiting the power down mode.

In the Power Down mode, VCC may be lowered to
minimize circuit power consumption. Care must be
taken to ensure the voltage is not reduced until the

power down mode is entered, and that the voltage is
restored before the hardware reset is applied which
fr,ees the oscillator. Reset should not be released until
the oscillator has restarted and stabilized.

Table 1 describes the status of the external pins while
in the power down mode. It should be noted that if
the power down mode is activated while in external
program memory, the port data that is held in the
Special Function Register P2 is restored to Port 2. If

. the data is a 1, the port pin is held high during the
power down mode by the strong pullup, p1, shown
in figure 4.

80C51 BH I/O Ports

The I/O port drive of the 80C51BH is similar to the
8051. The I/O buffers for Ports 1, 2, and 3 are im
plemented as shown in figure 4.

When the port latch contains a 0, all pFETS in figure
4 are off while the nFET is turned on. When the port
latch makes a 0-to-1 transition, the nFET turns off.
The strong pullup pFET, p1, turns on for two oscillator
periods, pulling the output high very rapidly. As the
output line is drawn high, pFET p3 turns on through
the inverter to supply the IOH source current. This
inverter and p3 form a latch which holds the 1 and is
supported by p2.

When Port 2 is used as an address port, for access
to external program of data memory, any address bit
that contains a 1 will have its strong pullup turned on
for the entire duration of the external memory access.

When an I/O pin on Ports 1, 2, or 3is used as an
input, the user should be aware that the external cir
cuit must sink current during the logical 1-to-0 tran
sition. The maximum sink current is specified as ITL
under the D.C. Specifications. When the input goes
below approximately 2V, p3 turns off to save ICC
current. Note, when returning to a logical 1, p2 is the
only internal pullup that is on. This will result in a slow
rise time if the. user's circuit does n~t force the input

Table 1. Status of the external pins during Idle and Power Down modes

Mode Program Memory ALE PSEN PORTO PORT1 PORT2 . PORT3

Idle: Internal 1 1 Port Data Port Data. Port Data Port Data

Idle External 1 1 Floating Port Data Address Port Data

Power
Down Int~rhal 0 0 Port Data Port Data Port Data Port Data

Power
Down External 0 0 Floating Port Data Port Data Port Data

9-26

SOC51 BH/SOC51 BH~2
SOC31 BH/SOC31 BH~2

Q
FROM PORT

LATCH

READ
PORT PIN

vee VCC VCC

Figure 4. 1/0 Buffers in the 8OC51 BH (Ports 1, 2, 3)

line high. For additional information, refer to the chap
ter entitled "Design Considerations When Using
CHMOS" in the 1984 Intel Microcontroller Handbook.

PIN DESCRIPTIONS

VCC

Supply voltage during normal, Idle, and Power Down
operations.

VSS

Circuit ground.

Port 0

Port 0 is an 8-bit open drain bi-directional I/O port.
Port 0 pins that have 1's written to them float, and in
that state can be used as high-impedance inputs.

Porf 0 is also the multiplexed low-order address and
data bus during accesses to external Program and
Data Memory. In this application it uses strong inter
nal pullups when emitting 1's. Port 0 also outputs the
code bytes during program verification in the
80C51 BH. External pullups are required during pro
gram verification.

Port 1

Port 1 is an 8-bit bi-directional I/O port with internal
pullups. Port 1 pins that have 1's written to them are

9-27

pulled high by the internal pullups, and in that state
can be used as inputs. As inputs, Port 1 pins that are
externally being pulled low will source current (ilL, on
the data sheet) because of the internal pullups.

'Port 1 also receives the low-order address bytes dur-'
ing program verification.

Port 2

Port 2 is an 8-bit bi-directional I/O port with internal
pullups. Port 2 pins that have 1's written to them are
pulled high by the internal pullups, and in that state
can be used as inputs. As inputs, Port 2 pins that are
externally being pulled low will source current (ilL, on
the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during
fetches from external Program Memory and during
accesses to external Data Memory that use 16-bit
addresses (MOVX @DPTR). In this application it
uses strong internal pullups when emitting 1's. During
accesses to external Data Memory that use 8-bit ad
dresses (MOVX @Ri), Port 2 emits the contents of
the P2 Special Function Register.

Port 3

Port 3 is an 8-bit bi-directional I/O port with internal
pullups. Port 3 pins that have 1's written to them are
pulled high by the internal pullups, and in that state
can be used as inputs. As inputs, Port 3 pins that are
externally being pulled low will source current (ilL, on
the data sheet) because of the pullups.

inter 80C51 BH/80C51 BH-2
80C31 BH/80C31 BH~2

Port 3 also serves the functions of various special
features of the MCS-51 Family, as. listed below:

Port Pin Alternate Function

,P3.0 RXD (serial input port)

P3.1 TXD (serial output port)

P3.2 INTO (external interrupt 0)

P3.3 INT1 (external Interrupt 1)

P3.4 TO (Timer 0 external input)

P3.5 T1 (Timer 1 external input)

P3.6 WR (external data memory write
strobe)

P3.7 RD (external data memory read
strobe)

RST

Reset input. A high on this pin for two machine cycles
while the oscillator is running resets the device, An
internal diffused resistor to VSS permits Power-On
reset using only an external capacitor to Vcc.

ALE

Address Latch Enable output pulse for latching the
low byte of the address during accesses to external
memory.

In normal operation ALE is emitted at a constant rate
of '/6 the oscillator frequency, and may be used for
external timing or clocking purposes. Note, however,
that one ALE pulse is skipped during each access to
external Data Memory.

I I L ~- XTAL2

Ii 9 r- XTAL 1

1- VSS

-

Figure 5. Crystal O.$clllator

9-28

Program Store Enable is the read strobe to external
Program Memory,

When the 80C51BH is executing code from external
Program Memory, PSEN is activated twice each ma
chine cycle, except that two PSEN activations are
skipped during each access to external Data Memory.

EA

External Access enable. EA must be externally held
low in order to enable the device to fetch code from
external Program Memory locations OOOOH to
OFFFH.

XTAL1

Input to the inverting oscillator amplifier and input to
the internal clock generator circuits.

XTAL2

Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL 1 and XTAL2 are the input and output respec
tively, of an inverting amplifier which is corifigured for
use as an on-chip oscillator, as shown in Figure 5.
Either a quartz crystal or ceramic resonator may be
used. More detailed information concerning the use
of the on-chip oscillator is available in Application
Note AP-155, "Oscillators for Microcontrollers."

To drive the device from an external clock source,
XTAL 1 should be driven while XTAL2 is left uncon
nected as shown in figure 6. There are no require
ments on the duty cycle of the external clock signal,
since the input to the internal clocking circuitry is
through a divide-by-two flip-flop, but minimum and
maximum high and low times specified on the Data
Sheet must be observed.

NC
- XTAL2

EXTERNAL
OSCILLATOR -----------1 XTAL 1
SIGNAL

Figure 6. External Drive Configuration

inter 80C51 ~H/80C51 BH-2
80C31 f3H/SOC31 BH-2

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias . . . O°C to 70°C
Storage Temperature - 65°C to + 150°C
Voltage on Any Pin to VSS ... -O.SV to VCC+ 1V
Voltage on VCC to VSS. - 0.5V to + 7V
Power Dissipation LOW

'NOTICE: Stresses above those listed under "Ab
solute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or any
other conditions above those indicated in the oper
ational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.

D.C. CHARACTERISTICS: (T A = O°C to 70°C; VSS = OV; VCC = SV ± 20%)

Symbol Parameter Min Max Unit Test Conditions

VIL Input Low Voltage -0.5 0.2VCC-·1 V

VIH Input High Voltage 0.2VCC+·9 VCC+0.5 V
(Except XTAL 1, RST)

VIH1 Input High Voltage to 0.7VCC VCC+0.5 V
XTAL1, RST

VOL Output Low Voltage O.4S V IOL = 1.6 mA
(Ports 1, 2, 3)

VOL1 Output Low Voltage 0.45 V IOL = 3.2 mA (Note 1)
(Port 0, ALE, PSEN)

VOH Output High Voltage 2.4 V IOH = - 80J,LA VCC = SV ± 10%
(Ports 1, 2, 3)

O.7SVCC V IOH= - 3OILA

0.9VCC V IOH = -1 OJ,LA

VOH1 Output High Voltage 2.4 V IOH= -400J,LA VCC=SV±10%
(Port 0 in External Bus 0.7SVCC V IOH = -150J,LA
Mode, ALE, PSEN)

0.9VCC V IOH = - 40J,LA (Note 2)

IlL Logical 0 Input Current -50 J,LA Yin = 0.4SV
(Ports 1, 2, 3)

ITL Logical 1 to 0 transition -SOO J,LA Yin = 2.0V
Current (Ports 1, 2, 3)

III Input Leakage Current ±10 ILA . 0.45 < Yin < VCC
(Port 0, EA)

RRST RST Pulldown Resistor 40 12S Kohm

CIO Pin Capacitance 10 pF tast freq = 1 MHz, T A = 2SoC

IpD Power Down Current 50 J,LA VCC = 2 to 6V (Note 3)

Maximum Operating ICC (mA) (note 4) Maximum Idle ICC (mA) (note 5)

VCC 4V 5V 6V VCC 4V 5V 6V

Freq. Freq.
0.5 MHz 1.6 2.2 3 O.S MHz 0.6 0.9 . 1.2
3.S MHz 4.3 5.7 7.5 3.S MHz 1.1 1.6 2.2
8 MHz 8.3 11 14 8 MHz 1.8 2.7 3.7
12 MHz 12 16 20 12 MHz 2.5 3.7 S

9-29

80C51 BH/SOC51 BH-2
I 80C31BH/80C31BH.2

Note 1: Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimpt>sed on the' VOLS of ALE, and
Ports 1 and 3. The noise is due to the external bus capacitance discharging into the Port 0 and Port 2 pins when
these pins make a 1-to-0 transition during bus operations. In the worst case (capacitive loading> 100 pF), the nOise
pulse on ALE line may exceed o.av. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use
an ,address latch with a Schmitt Trigger STROBE input.

Note 2: Capacitive loading on Ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the .9VCC
specification when the address bits are stabilizing. '

Note 3: Power Down ICC is measured with all output pins disconnected; EA=PORTO=VCC; XTAL2 N.C.; RST=VSS.

Note 4: ICC is measured with all output pins disconnected; XTAL 1 driven with TCLCH, TCHCL = 10 ns, Vii = VSS + .5v,
Vih=VCC-.5v; XTAL2 N.C.; EA= RST= PORTO=VCC.

Note 5: Idle ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 10 ns, ViI=VSS+ .5v,
Vih=VCC-·5v; XTAL2 N.C.; EA= PORTO = VCC; RST=VSS.

A.C. CHARACTERISTICS (T A = O°C to 70°C; VSS = OV; VCC = 5V ± 20%;
Load Capacitance for Port 0, ALE, and PSEN = 100 pF, Load Capacitance for
All Other Outputs = 80 pF)

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS

Symbol Parameter Min Max Units

lfTCLCL Oscillator Freq (80C51 BH) 3.5 12 MHz

Oscillator Freq (80C51BH-2) 0.5 12 MHz

TLHLL ALE Pulse Width 2TCLCL-40 ns

TAVLL Address Valid to ALE Low TCLCL-40 ns

TLLAX Address Hold After ALE Low TCLCL-35 ns

TLLlV ALE Low to Valid Instr In 4TCLCL-150 ns

TLLPL ALE Low to PSEN Low TCLCL-25 ns

TPLPH PSEN Pulse Width 3TCLCL-35 ns

TPLIV PSEN Low to Valid Instr In ,3TCLCL - 150 ns

TPXIX Input Instr Hold After PSEN 0 ns

TPXIZ Input Instr Float After PSEN TCLCL-20 ns

TPXAV PSEN to Address Valid TCLCL-8 ns

TAVIV Address to Valid Instr In 5TCLCL-150 ns

TPLAZ PSEN Low to Address Float 0 ns ,

TRLRH RD Pulse Width 6TCLCL - 1.00 ns

TWLWH WR Pulse Width 6TCLCL-l00 ns

TRLDV RD Low to Valid Data In 5TCLCL-165 ns

TRHDX Data Hold After RD 0 ns

TRHDZ Data Float After RD 2TCLCL-70 ns

'TLLDV ALE Low to Valid Data In 8TCLCL-150 ns

9·30

inter 80\;:)1 tst1/6UC515t1-2

SOC31 BH/SOC31 BH-2

EXTERNAL PROGRAM MEMORY READ CYCLE

I·--T~HLL--

ALE \
-TAVLL- - ---TPLPH---

TLLPL

TLLIV

\ 1'Pi:iV

PSEN j
'I. TPXAV

TLLAX TPXIZI--
TAZPL

TPXIX- 1-- -

~"J
"'i >Jl\ AO-A7 INSTR

IN
J

TAVIV

PORT 2 X AB-A15 X
EXTERNAL DATA MEMORY READ CYCLE

TWHlH

ALE

I-----TLLDV-----I

--TlLWL--I-----TRLRH-+----1

- -TRlAZ

PORTO

I------TAVDV------I

PORT2 P2 O·P2 7 OR A8~A15 FROM DPH

9-31

AO-A7

A8-A15

A8·A15 FROM PCH

inter VV"';' l'gn/!II'u",;, I'gn-,r;

80C31 BI1/S0C31 BH-2

A.C. CHARACTERISTICS

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS (Continued)

Symbol Parameter

TAVDV Address to Valid Data In

TLLWL ALE Low to RD or WR Low

TAVWL Address to RD or WR Low

TQVWX Data Valid to WR Transition

TQVWH Data Valid to WR High

TWHQX Data Held After WR

TRLAZ RD Low to Address Float

TWHLH RD or WR High to ALE High

EXTERNAL CLOCK DRIVE

Symbol Parameter

1tTCLCL Oscillator Freq (80CS1 BH)

Oscillator Freq (80C51 BH-2)

TCHCX High Time

TCLCX Low Time

TCLCH Rise Time

TCHCL Fall Time

EXTERNAL CLOCK DRIVE

EXTERNAL
OSCILLATOR
SIGNAL

Min

3TCLCL-SO

4TCLCL-130

TCLCL-60

7TCLCL-1S0

TCLCL-SO

TCLCL-40

Min

3.S

0.5

20

20

I---TCLCL----

NC
XTAL,2

EXTERNAL
OSCILLATOR XTAL 1
SIGNAL

VSS

-::.-

9-32

Max Units

9TCLCL-16S ns

3TCLCL+SO ns

ns

ns

ns

ns

0 ns

TCLCL+SO ns

Max Units

12 MHz

12 MHz

ns

ns

20 ns

20 ns

SOC51 BH/SOC51 BH-2
SOC31 BH/SOC31 BH-2

EXTERNAL DATA MEMORY WRITE CYCLE

ALE -0~_---+--'lh,--------,/
PSEN ~ I I \,-----,1

PORTO

PORT 2

-TllWL-I---TWlWH----!

rQVWx

~ TWHQX

I~+----TQVWH----' • ..L

DATA OUT

P20- P27 OR A8 - A15 FROM DPH

SERIAL PORT TIMING - SHIFT REGISTER MODE

AS - A15 FROM PCH

A.C. CHARACTERISTICS: (T A = O°C to 70°C; VSS = OV; VCC = 5V ± 20%;
Load Capacitance = 80 pF)

Symbol Parameter Min Max

TXLXL Serial Port Clock Cycle Time 12TCLCL

TQVXH Output Data Setup tQ Clock Rising Edge 1 OTCLCL - 133

TXHQX Output Data Hold After Clock Rising Edge 2TCLCL-117

TXHDX Input Data Hold After Clock Rising Edge 0

TXHDV Clock Rising Edge to Input Data Valid 10TCLCL-133

SHIFT REGISTER TIMING WAVEFORMS

i-11ILXL-j ----...,
1-="'-I1--11IHO'

Units

J-LS

ns

ns

ns

ns

I

\ X X X'-_---JX'-_---JX, X'-_---JX'-_---J1

11IHD'~ j I--"HO' In ~
WfIlTE TO SBUF

~
t

SETRI

CLEAR Fli

9-33

inter 80C51 BH/80C51 BH·2
80C31 BH/80C31 BH·2 &[[j)W&[t8~~ ~[t8[?@Iffi[KIJ&un@1J:il

Table 2. MCS®·51 Instruction Set Description

ARITHMETIC OPERATIONS LOGICAL OPERATIONS (CONTINUED)

Mnemonic Description Byte Cyc Mnemonic Destination Byte Cyc
ADD A,Rn Add register to ORL A,@RI OR indirect RAM to

Accumulator Accumulator
ADD A,direct Add direct byte to ORL A,#data OR immediate data to

Accumulator 2 Accumulator 2
ADD A,@Ri Add indirect RAM to ORL direct,A OR Accumulator to

Accumulator 1 direct byte 2
ADD A,#data Add immediate data to ORL direct,#data OR immediate data to

Accumulator 2 direct byte 3 2
AD DC A,Rn Add register to XRL A,Rn Exclusive-OR register to

Accu mu lator with Carry Accumulator
ADDC A,direct Add direct byte to A XRL A,direct Exclusive-OR direct

with Carry flag 2 byte to Accumulator 2
AD DC A,@RI Add indirect RAM to A XRL A,@RI Exclusive-OR Indirect

with Carry flag RAMtoA
ADDC A,#data Add Immediate data to XRL A,#data Exclusive-OR

A with Carry flag 2 immediate data to A 2
SUBB A,Rn Subtract register from A XRL direct,A Exclusive-OR Accumu-

with Borrow lator to direct byte 2
SUBB A,direct Subtract direct byte XRL direct, #data Exclusive-OR im-

from A With Borrow 2 mediate data to direct 3 2
SUBB A,@Ri Subtract Indirect RAM CLR A Clear Accumulator 1

from A with Borrow CPL A Complemeht
SUBB A,#data Subtract immed data Accumulator

from A With Borrow 2 1 RL A Rotate Accumulator Left
INC A Increment Accum ulator 1 1 RLC A Rotate A Left through
INC' Rn I ncrement register 1 1 the Carry flag
INC direct Increment direct byte 2 1 RR A Rotate Accumulator
INC @RI Increment indirect RAM 1 1 Right
INC DPTR I ncrement Data POinter 1 2 RRC A Rotate A Right through
DEC A Decrement Accumulator 1 1 Carry flag
DEC Rn Decrement register 1 1 SWAP A Swap nibbles within the
DEC direct Decrement direct byte 2 1 Accumulator
DEC @RI Decrement indirect

RAM 1 DATA TRANSFER
MUL AB Multiply A & B 4 Mnemonic Description Byte Cyc
DIV AB Divide A by B 4 MOV A,Rn Move register to
DA A Decimal Adjust Accumulator

Accumulator MOV A,dlrect Move direct byte to

LOGICAL OPERATIONS Accumulator 2
MOV A,@Ri Move indirect RAM to

Mnemonic Destination Byte Cyc Accumulator
ANL A,Rn AND register to MOV A,#data Mov immediate data to

Accumulator Accumulator 2
ANL A,dlrect AND direct byte to MOV Rn,A Move Accumulator to

Accumulator 2 register
ANL A,@RI AND indirect RAM to MOV Rn,direct Move direct byte to

Accumulator register 2 2
ANL A,#data AND Immediate data to MOV Rn,#data Move immediate data to

Accumulator 2 register 2
ANL direct,A AND Accumulator to MOV direct,A Move Accumulator to

direct byte 2 direct byte 2
ANL direct,#data AND immediate data to MOV direct,Rn Move register to direct

direct byte 3 2 byte 2 2
ORL A,Rn OR register to MOV direct, direct Move direct byte to

Accumulator direct 3 2
ORL A,direct OR direct byte to MOV direct,@Ri Move indirect RAM to

Accumulator 2 direct byte 2 2

9·34

8OC51 BH/80C51 BH·2
80C31 BH/80C31 BH·2

Table 2. MCS<8>·51 Instruction Set Description (Continued)

DATA TRANSFER (CONTINUED) PROGRAM AND MACHINE CONTROL

Mnemonic Description Byte Cyc Mnemonic Description Byte Cyc
MOV direct,#data Move immediate data tb ACALL addrll Absolute Subroutine

direct byte 3 2 Call 2 2
MOV @Ri,A Move Accumulator to LCALL addr16 Long Subroutine Call 3 2

indirect RAM RET Return from subroutine 1 2
MOV @Ri,direct Move direct byte to RETI Return from ihterrupt 1 2

indirect RAM 2 2 AJMP addrll Absolute Jump 2 2
MOV @RI,#data Move immediate data to LJMP addr16 Long Jump 3 2

indirect RAM 2 SJMP rei Short Jump (relative
MOV DPTR,#data16 Load Data Pointer with addr) 2 2

a 16-bit constant 3 2 JMP @A+DPTR Jump indirect relative to
MOVC A,@A+DPTR Move Code byte relative the DPTR 2

to DPTRtoA 2 JZ rei Jump if Accumulator is
MOVC A,@A+PC Move Code byte relative Zero 2 2

to PCtoA 2 JNZ rei Jump if Accumulator IS
MOVX A,@Ri Move External RAM (6- Not Zero 2 2

bit addr) to A 2 JC rei Jump if Carry flag is set 2 2
MOVX A,@DPTR Move External RAM (16- JNC rei Jump if No Carry flag 2 2

bit addr) to A 2 JB bit, rei Jump if direct Bit set 3 2
MOVX @Ri.A Move A to External RAM JNB blt,rel Jump If direct Bit Not

(6-bit addr) 2 set 3 2
MOVX @DPTR,A Move A to External RAM JBC bit, rei Jump if direct Bit is set

(l6-bit addr) 2 & Clear bit 3 2
PUSH direct Push direct byte onto CJNE A,dlrect,rel Compare direct to A &

stack 2 2 Jump if Not Equal 3 2
POP direct Pop direct byte from CJNE A,#data,rel Comp, immed, to A &

stack 2 2 Jump If Not Equal 3 2
XCH A,Rn Exchange register with CJNE Rn,#data,rel Comp, immed, to reg &

Accumulator Jump If Not Equal 3 2
XCH A,direct Exchange direct byte CJNE @Ri,#data,rel Comp, Immed, to ind, &

with Accumulator 2 Jump if Not Equal 3 ;1
XCH A,@Ri Exchange Indirect RAM DJNZ Rn,rel Decrement register &

with A Jump If Not Zero 2 2
XCHD A,@Ri Exchange low-order DJNZ direct, rei Decrement direct &

Digit ind RAM w A Jump If Not Zero 3 2
NOP No operation 1 1

BOOLEAN VARIABLE MANIPULATION Notes on data addressing modes:
Mnemonic Description Byte eyc Rn -Working register RO-R7

CLR C Clear Carry fl1l9 1 1 direct -128 Internal RAM locations, any I/O port,

CLR bit Clear direct bit 2 1
control or status register

SETB C Set Carry flag 1 1
@RI -Indirect internal RAM location addressed by

register RO or Rl
SETB bit Set direct Bit 2 1 #data -8-blt constant included ,in instruction
CPL C Complement Carry flag 1 1 #datal6 -16-bit constant Included as bytes 2 & 3 of
CPL bit Complement direct bit 2 1 instruction
ANL C,bit AND direct bit to Carry bit -128 software flags, any 1/0 pin, control or

flag 2 2 status bit

ANL C,/bit AND complement of Notes on program addressing modes:
direct bit to Carry 2 2 addr16 -Destination address for LCALL & LJMP may

ORL C/bit OR direct bit to Carry be anywhere within the 64-K program
memory address space

flag 2 2 Addrl1 -Destination address for ACALL & AJMP will be
OAL C.lblt OR complement of within the same 2-K page of program

direct bit to Carry 2 2 memory as the first byte of the following
MOV C,/blt Move direct bit to Carry instruction

flag 2 rei -SJMP and all conditional jumps include an 8-
MOV blt,C Move Carry flag to bit offset byte, Range is +127-128 bytes relative

direct bit 2 2
to first byte of the following instruction

All mnemonics copyrighted © Intel Corporation 1979

inter

Hex Nun:tber
Code of Bytes

00 1
01 2
02 3
03 1
04 1
05 2
06 1
07 1
08 1
09 1
OA 1
08 1
OC 1
00 1
OE 1
OF 1
10 3
11 2
12 3
13 1
14 1
15 2
16 1
17 1
18 1
19 1
1A 1
18 1
1C 1
10 1
1E 1
IF 1
20 3
21 2
22 1
23 1
24 2
25 2
26 1
27 1
28 1
29 1
2A 1
28 1
2C 1
20 1
2E 1
2F 1
30 3
31 2
32 1

8OC51 BHJ80C51 BH~2
80C31 BH/80C31 BH~2

Table 3. Instruction Op~odes !n Hexldeclmal Order

Mnemonic Operands" Hex Number Mnemonic
Code of Byles

NOP 33 1 RLC
AJMP code addr 34 2 ADDC
LJMP code addr 35 2 ADDC
RR A 36 1 ADDC
INC A 37 1 AD DC
INC data addr 38 1 ADDC
INC @RO 39 1 ADDC
INC @R1 3A 1 AD DC
INC RO 38 1 ADDC
INC R1 3C 1 ADDC
INC R2 3D 1 ADDC
INC R3 3E 1 ADDC
INC R4 3F 1 AD DC
INC R5 40 2 JC
INC R6 41 2 AJMP
INC R7 42 2 ORL
J8C bit addr, code addr 43 3 ORL
ACALL code addr 44 2 ORL
LCALL code addr 45 2 ORL
RRC A 46 1 ORL
DEC A 47 1 ORL
DEC data aridr 48 1 ORL
DEC @RO 49 1 ORL
DEC @R1 4A 1 ORL
DEC RO 4B 1 GRL
DEC R1 4C 1 GRL
DEC R2 40 1 GRL
DEC R3 4E 1 ORL
DEC R4 4F 1 ORL
DEC R5 50 2 JNC
DEC R6 51 2 ACALL
DEC R7 52 2 ANL
J8 bit addr, code addr 53 3 ANL
AJMP code addr 54 2 ANL
RET 55 2 ANL
RL A 56 1 ANL
ADD A,#data 57 1 ANL
ADD A,data addr 58 1 ANL
ADD A,@RO 59 1 ANL
ADD A,@R1 5A 1 ANL
ADD A,RO 58 1 ANL
ADD A,R1 5C 1 ANL
ADD A,R2 50 1 ANL
ADD' A,R3 5E 1 ANL
ADD A,R4 5F 1 ANL
ADD A,R5 60 2 JZ
ADD A,R6 61 2 AJMP
ADD A,R7 62 2 XRL
JN8 bit addr, code addr 63 3 XRL
ACALL code addr 64 2 XRL
RETI 65 2 XRL

9-36

Operands"

A
A,#data
A,data addr
A,@RO
A,@R1
A,RO
A,R1
A,R2
A,R3
A,R4
A,R5
A,R6
A,R7
code"addr
code addr
dataaddr,A
data addr,#data
A,#data
A,data addr
A,@RO
A,@R1
A,RO
A,R1
A,R2
A,R3
A,R4
A,R5
A,R6
A,R7
code addr
codeaddr
dataaddr,A
data addr,#data
A,#data
A,data addr
A,@RO
A@R1
A,RO
A,R1
A,R2
A,R3
A,R4
A,R5
A,R6
A,R7
codeaddr
code addr
dataaddr,A
data addr,#data
A,#data
A,data addr

Hex Number
Code 01 Bytes

66 1
67 1
68 1
69 1
SA 1
6B 1
6C 1
60 1
6E 1
6F 1
70 2
71 2
72 2
73 1
74 2
75 3
76 2
77 2
78 2
79 2
7A 2
7B 2
7C 2
7D 2
7E 2
7F 2
80 2
81 2
82 2
83 1
84 1
85 3
86 2
87 2
88 2
89 2
SA 2
8B 2
8C 2
80 2
8E 2
8F 2
90 3
91 2
92 2
93 1
94 2
95 2
96 1
97 1
98 1

80C51 BH/80C51 BH~2.
80C31iBH/80C31 BH-2

'Table 3. Instruction Opcodes In Hexldeclmal Order (Continued)

Mnemonic Operands Hex Number Mnemonic Operands
Code 01 Bytes

XAL A,@AO 99 1 SUBB A,A1
XAL A,@A1 9A 1 SUBB A,A2
XAL A,AO 9B 1 SUBB A,A3
XAL A,A1 9C 1 SUBB A,A4
XAL A,A2 90 ' 1 SUBB A,A5
XAL A,A3 9E 1 SUBB A,A6
XAL A,A4 9F 1 SUBB A,A7
XAL A,A~ AD 2 OAL CJblt addr
XAL A,A6 A1 2 AJMP codeaddr
XAL A,A7 A2 2 MOV C,blt addr
JNZ code addr A3 1 INC OPTR
ACALL code addr A4 1 MUL AB
OAL C,bI! addr AS reserved
JMP @A+OPTA A6 2 MOV @AO,data adr
MOV A,#data A7 2 Moll @R1,data addr
MOV data addr,#data A8 2 MOV AO,data addr
MOV @AO,#data A9 2 MOV A1,data addr
MOV @A1,#data AA 2 MOV A2,data addr
MOV AO,#data AB 2 MOV A3,data addr
MOV A1,#data AC 2 MOV A4,data addr
MOV A2,#dah:l AO 2 MOV A5,data addr
MOV A3,#data AE 2 MOV A6,data addr
MOV A4,#data AF 2 MOV A7,data addr
MOV A5,#data BO 2 ANL C.lbI! addr
MOV A6,#data B1 2 ACALL code addr
MOV A7,#data B2 2 CPL bl't addr
SJMP code addr B3 1 CPL C
AJMP code addr B4 3 CJNE A,#data,code addr
ANL C,blt addr B5 3 . CJNE A,data addr,code addr
MOVC A,@A+PC B6 3 CJNE @AO,#data,code addr
OIV AB B7 3 CJNE @A1,#data,code addr
MOV data addr, data addr B8 3 CJNE AO,#data,code addr
MOV data addr,@AO B9 3 CJNE A1,#data,code addr
MOV data addr,@A1 BA 3 CJNE A2,#data,code addr
MOV data addr,AO BB 3 CJNE A3,#data,code addr
MOV data addr,A 1 BC 3 CJNE A4,#data,code addr
MOV data addr,A2 BO 3 CJNE A5,#data,code addr
MOV data addr,A3 BE 3 CJNE A6,#data,code addr
MOV data addr,A4 BF 3 CJNE A7,#data,code addr
MOV data addr,A5 CO 2 PUSH data addr
MOV data addr,A6 C1 2 AJMP code addr
MOV data addr,A7 C2 2 CLA bit addr
MOV OPTA,#data C3 1 CLA C
ACALL code addr C4 1 SWAP A
MOV bit addr,C C5 2 XCH A,data addr
MOVC A,@A+OPTA C6 1 XCH A,@AO
SUBB A,#data C7 1 XCH A,@Al
SUBB A,data addr C8 1 XCH A,AD
SUBB A,@AO C9 1 XCH A,A1
SUBB A,@A1 CA 1 XCH A,A2
SUBB A,AO CB 1 XCH A,A3

9-37

Hex Number
Code of Bytes

CC 1
CD 1
CE 1
CF 1
DO 2
01 2
02 2
,03 1
04 1
05 3
06 1
07 1
08 2
09 2
DA 2
OS 2
DC 2
DO 2
DE 2
OF 2
EO 1
E1 2
E2 1
E3 1
E4 1
E5 2

8q0518ti/80C518H-2
80C31a!"l/8,OC3~BH-2

Table 3. Instruction Opc~es III Hexldeclmal O,der(Cqntlllued)

Mnemonic Operal1ds Hex Number Mnemonic Operands
Code of Bytes

XCH A,R4 E6 1 MOV A,@RO
XCH A,R5 E7 1 MOV A,@R1
XCH A,R6 E8 1 MOV A,RO
XCH A,R7 E9 1 MOV A,R1
POP data addr EA 1 MOV A,R2
ACALL code addr ES 1 MOV A,R3
SETS bit addr EC 1 MOV A,R4
SETS C ED 1 MOV A,R5
DA A EE 1 MOV A,R6
DJNZ data addr,code addr EF 1 MOV A,R7
XCHD A,@RO FO 1 MOVX @DPTR,A
XCHD A,@R1 F1 2 ACALL code addr
DJNZ RO,code addr F2 1 MOVX @RO,A
DJNZ R1,codeaddr F3 1 MOVX @R1,A
DJNZ R2,code addr F4 1 CPL A
DJNZ R3,code addr F5 2 MOV data addr,A
DJNZ R4,code addr F6 1 MOV @RO,A
DJNZ R5,code addr F7 1 MOV @R1,A
DJNZ R6,code addr F8 1 MOV RO,A
DJNZ R7,code addr F9 1 MOV R1,A
MOVX A,@DPTR FA 1 MOV R2,A
AJMP code addr FS 1 MOV R3,A
MOVX A,@RO FC 1 MOV R4,A
MOVX A,@R1 FD 1 MOV R5,A
CLR A FE 1 MOV R6,A
MOV A,data addr FF 1 MOV R7,A

9-38

S031 AH/S051 AH
S032AH/S052AH

S751 H/S751 H

EXPRESS

• Extended Temperature Range
• Burn-In

The Intel EXPRESS system offers enhancements to the operational specifications of the MCS®-51 family of
microcontrollers. These EXPRESS products are designed to meet the needs of those applications whose
operating requirements exceed commercial standards.

The EXPRESS program includes the commercial standard temperature range with burn-in, and an extended
temperature range with or without burn-in.

With the commercial standard temperature range operational characteristics are guaranteed over the temper
ature range of O°C to 70°C. With the extended temperature range option, operational characteristics are
guaranteed over the range of -40°C to + 85°C.

The optional burn-in is dynamic, for a minimum time of 160 hours at 125°C with VCC = 5.5V ±0.5V, following
guidelines in MIL-STD-883, Method 1015.

Package types and EXPRESS versions are identified by a one- or two-letter prefix to the part number. The
prefixes are listed in Table 1.

For the extended temperature range option, this data sheet specifies the parameters which deviate from their
commercial temperature range limits. The commercial temperature range data sheets are applicable for all
parameters not listed here.

Electrical Deviations from Commercial
Specifications for Extended Temperature
Rahge
D.C. and A.C. parameters not included here are the
same as in the commercial temperature range data
sheets.

D.C. CHARACTERISTICS: (TA = -40°C to +85°C; VCC = 5V ±10%; VSS = OV)

Symbol Parameter Min Max Unit Test Conditions

V,L Input Low Voltage -0.5 0.75 V

V,H Input High Voltage (Except 2.1 VCC+0.5 V
XTAL2, RST)

ICC Power Supply Current:
8051 AH,8031 AH 135 ma All Outputs
8052AH,8032AH 175 ma Disconnected;
8751 H,8751 H 265 ma EA =VCC

9-39

MCS(!)·51 EXPRESS [?>1Rl~ulMil~IM~IRlW
'c

Table 1 - Prefix Identification
Prefix Package .Type Temper~ture Range Burn-In

P plastic . commercial no

D cerdip commercial no

C ceramic commercial no

TP plastic extended no

TO cerdip extended no

TC ceramic extended no

QP plastic commercial yes

QD cerdip commercial yes

QC ceramic commercial yes

LP plastic extended yes

LD cerdip extended yes

LC ceramic extended yes

Please note:

• Corpmercial temperature range is 0° to. 70°C. Extended temperature range is - 40° to + 85°C.

• Burn-in is dynamic, for a minimum time of 160 hours at 125°C, VCC = 5.5V ±0.5V, following guidelines in MIL-STO-883
Method 1015 (Test Condition OJ.

• The following devices are not available in plastic packages:
8751 H,8751 H

• The following devices are not available in ceramic packages:
8051AH,8031AH .
8052AH,8032AH

Examples: P8031AH indicates 8031AH in a plastic package and specified for commercial temperature range,
without burn-in. LD8751 H indicates 8751 H in a cerdip package and specified for extended temperature range
with burn-in.

9-40

MCS®~51 Application Notes 10

An Introduction
to the Intel MCS®-S1

Single-Chip
Microcomputer

Family

Contents

1. INTRODUCTION. 10-2
Family Overview . 10-2
Microcomputer Background Concepts. 10-3

2. ARCHITECTURE AND ORGANIZATION 10-5
Central Processing Unit' 10-6
Memory Spaces . 10-9
Input/Output Ports . 1 0-1 0
Special Peripheral Functions '.' ... 10-11

3. INSTRUCTION SET AND
ADDRESSING MODES 10-15

Data Addressing Modes. 10-15
Addressing Mode Combinations 10-18
Advantages of Symbolic Addressing. 10-18
Arithmetic Instruction Usage 10-19
Multiplication and Division 10-20
Logical Byte Operations. 10-20
Program Control .. ' 10-21
Operate-and-Branch Instructions. . . . ~ 10-22
Stack Operations. 10-22
Table Look-Up Instructions 10-23

4 •. BOOLEAN PROCESSING INSTRUCTIONS 10-25
Direct Bit Addressing. \ 1 0-~5
Bit Manipulation Instructions 10-25
Solving Combinatorial Logic Equations '10-26

5. ON-CHIP PERIPHERAL FUNCTIONS 10-28
VO Ports. : 10-28
Serial' Port and Timer • .. 10-29

6. SUMMARY .•............... , 10-30

10-1

P1.0 vee

P1.1 po.o
P1.2 PO.1

P1.3 PO.2

P1.4 PO.3

P1.S PM
P1.6 PO.S

P1.7 PO.6

VPD/RST PO.7

P3.0/RXD VDD/EA

P3.1/TXD PiiOG/ALE

P3.2/iMi'O PSEN
P2.7

P3.4/TO P2.6
P3.S/T1 P2.S

P3.6/WR P2.4

P3.71Ro P2.3

XTAL2 P2.2
XTAL1 P2.1

VSS P2.0

Figure 1a. 8051 Microcomputer Pinout Diagram

1. INTRODUCTION

In 1976 Intel introduced the MCS-48'· family, consisting
of the 8048, 8748, and 8035 microcomputers. These parts
marked the first time a complete microcomputer system.
including an eight-bit CPU, 1024 8-bit words of ROM
or EPROM program memory, 64 words .of data memory,
I/O ports and an eight-bit timer/counter could be inte
grated onto a single silicon chip. Depending only on the
program memory contents, one chip could control a
limitless variety of products, ranging from appliances or
automobile engines to text or data processing equipment.
Follow-on products stretched the MCS-48'· architecture
in several directions: the 8049 and 8039 doubled the
amount of on-chip memory and ran 83% faster; the 8021
reduced costs by executing a subset of the 8048 instruc
tions with a somewhat slower clock; and the 8022 put a
unique two-channel 8-bit analog-to-digital converter on
the same NMOS chip as the computer. letting the chip
interface directly with analog transducers.

Now three new high-performance single-chip microcom
puters--the Intel® 8051, 8751, and 8031-extend the
advantages of Integrated Electronics to whole new prod
uct areas. Thanks to Intel's new HMOS technology. the
MCS-51'· family provides four tlnes the program
memory and twice the data memory as the 8048 on a
single chip. New I/O and peripheral capabilities both
increase the range of applicability and reduce total system
cost. Depending on the use. processing throughput
increases by two and one-half to ten times.

This Application Note is intended to introduce the reader
to the MCS-51'· architecture and features. While it does
not assume intimacy with the MCS-48'· product line on
the part of the reader, he/she should be familiar with

10-2

t
RXD

TXD

INTO

PORT 3 IN~;
T1

\Vii
AD

vSs vee RST /vPD

Figure 1b. 8051 Microcomputer Logic Symbol

some microprocessor (preferably Intel's. of course) or
have a background in computer programming and digital
logic.

Family Overview

Pinout diagrams for the 8051. 8751. and 8031 are shown
in Figure I. The devices include the following features:

• Single-supply 5 volt operation using HMOS tech-
nology.

• 4096 bytes program memory on-chip (not on 8031).
• 128 bytes data memory on-chip.
• Four register banks.
• 128 User-defined software flags.
• 64 Kilobytes each program and external RAM

addressabifity.
• One microsecond instruction cycle with 12 MHz

crystal.
• 32 bidirectional I/O lines organized as four 8-bit

ports (16 lines on 8031).
• Multiple mode. high-speed programmable Serial

Port.
• Two mUltiple mode. 16-bit Timer/Counters.
• Two-level prioritized interrupt structure.
• Full depth stack for subroutine return linkage and

data storage.
• Augmented MCS-48'· instruction set.
• Direct Byte and Bit addressability.
• Binary or Decimal arithmetic.
• Signed-overflow detection and parity computation.
• Hardware Multiple and Divide in 4 usec.
• Integrated Boolean Processor for control applica

tions.
• Upwardly compatible with existing 8048 software.

AFN-01502A-04

All three devices come in a standard 40-pin Dual In
Line Package, with the same pin-out, the same timing,
and the same electrical characteristics. The primary
difference between the three is the on-chip program
memory-different types are offered to satisfy differing
user reqUirements.

The 87S1 provides 4K bytes of ultraviolet-Erasable,
Programmable Read Only Memory (EPROM) for
program development, prototyping, and limited pro
duction runs. (By convention, I K means 2'0 = 1024.
Ik-with a lower case "k"-equals 10.1 = 1000.) This part
may be individually programmed for a specific applica
tion using Intel's Universal PROM Programmer (UPP).
If software bugs are detected or design specifications
change the same part may be "erased" in a matter of
minutes by exposure to ultraviolet light and repro
grammed with the modified code. This cycle may be
repeated indefinitely during the design and development
phase.

The final version of the software must be programmed
into a large number of production parts. The 80S1 has
4K bytes of ROM which are mask-programmed with the
customer's order when the chip is built. This part is con
siderably less expensive, but cannot be erased or altered
after fabrication.

The 8031 does not have any program memory on-chip,
but may be used with up to 64K bytes of external standard
or multiplexed ROMs, PROMs, or EPROMs. The 8031
fits well in applications requiring significantly larger or
smaller amounts of memory than the 4K bytes provided
by its two siblings.

(The 80S I and 87S1 automatically access external pro
gram memory for all addresses greater than the 4096 bytes
on-chip. The External Access input is an override for
all internal program memory-the 80S1 and 87S1 will
each emulate an 8031 when pin 31 is low.)

Throughout this Note, "80SI" is used as a generic term.
Unless specifically stated otherwise, the point applies
equally to all three components. Table I summarizes the
quantitative differences between the members of the
MCS-48'· and MCS-Sl'" famifies.

The remainder of this Note discusses the various M CS-Sl'"
features and how they can be used. Software and/or hard-

ware application examples illustrate many of the concepts.
Several isolated tasks (rather than one complete system
design example) are presented in the hope that some of
them will apply to the reader's experiences or needs.

A document this short cannot detail all of a computer
system's capabilities. By no means will all the 80S I instruc
tions be demonstrated; the' intent is to stress new or
unique M CS-Sl '" operations and instructions generally
used in conjunction with each other. For additional hard
ware information refer to the Intel MCS-51'· Family
User's Manual, publication number 121517. The assembly
language and use of ASM51, the MCS-51'" assembler,
are further described iii the MCS-51'· Macro Assembler
User's Guide, publication number 9800937.

The next section reviews some of the basic concepts
of microcomputer design and use. Readers familiar
with the 8048 may wish to skim through this section
or skip directly to the next, "ARCHITECTURE AND
ORGANIZATION."

Microcomputer Background Concepts

Most digital computers use the binary (base 2) number
system internally. All variables, constants, alphanumeric
characters, program statements, etc., are represented by
groups of binary digits ("bits"), each of which has. the
value 0 or I. Computers are classified by how many bits
they can move or process at a time.

The MCS-51'" microcomputers contain an eight-bit
central processing unit (CPU). Most operations process
variables eight bits wide. All internal RAM and ROM,
and virtually all other registers are also eight bits wide.
An eight-bit ("byte") variable (shown in Figure 2) may
assume one of 28 = 256 distinct values, which usually
represent integers between 0 and '2SS. Other types of
numbers, instructions, and so forth are represented by
one or more bytes using certain conventions.

For example, to represent positive and negative values,
the most significant bit (D7) indicates the sign of the other
seven bits-O if positive, I if negative-allowing integer
variables. between -128 and +127. For integers with
extremely large magnitudes, several bytes are manipu
lated together as "multiple precision" signed or unsigned
integers-16, 24, or more bits wide.

Table 1. Features of Intel's Single-Chip Microcomputers

EPROM ROM External Program Data Instr. Inputl
Program Program Program Memory Memory Cycle Output Interrupt Reg.
Memory Memory Memory (Int/Max) (Bytes) Time Pins Sources Banks

- 8021 - IKjlK 64 8.4I'Sec 21 0 I
- 8022 - 2K/2K 64 8.41'Sec 28 2 I

8748 8048 8035 IK/4K 64 2.51'Sec 27 2 2
- 8049 8039 2K/4K 128 1.361'Sec 27 2 2

8751 8051 8031 4K/64K 128 1.0 "Sec 32 5 4
AFN-01S02A-05

10-3

The letters "MCS" have traditionally indicated
a system or family of compatible Intel® micro
computer components, including CPUs, mem
ories, clock generators, I/O expanders, and so
forth. The numerical suffix indicates the micro
processor or microcomputer which serves as
the cornerstone of the family .. Microcomputers
in the MCS-48'· family currently include the
8048-series (8035,8048, & 8748), the 8049-series
(8039 & 8049), and the 8021 and 8022; the
family also includes the 8243, an I/O expander
compatible with each of the microcomputers.
Each computer's CPU is derived from the 8048,
with essentially the same architecture, address
ing modes, and instruction set, and a single
assembler (ASM48) serves each.

The first members of the MCS-51'· family are
the 8051, 8751, and 8031. The architecture of
the 8051-series, while derived from the 8048,
is not strictly compatible; there are more
addressing modes, more instructions, larger
address spaces, and a few other hardware dif
ferences. In this Application Note the letters
"MCS-51" are used when referring to archi
tectural features of the 8051-series-features
which would be included on possible future
microcomputers based on the 8051 CPU. Such
products could have different ,amounts of
memory (as in the 8048/8049) or different
peripheral functions (as in the 8021 and 8022)
while leaving the CPU and instruction set
intact. ASM51 is the assembler used' by all
micr,ocomputers in the 8051 family,

Two digit decimal numbers may be "packed" in an eight
bit value, using four bits for the binary code of each digit.
This is called Binary-Coded Decimal (BCD) representa
tion, and is often used internally in programs which
interact heavily with human beings,

Alphanumeric characters (letters, numbers, punctuation
marks, etc.) are often represented using the American
Standard Code for Information Interchange (ASCII)
convention, Each character is associated with a unique
seven-bit binary number. Thus one byte may represent

07 06 ,05 04 03 02 01 DO

Figure 2. Representation of Bits Within an Eight-Bit
"Byte" (Value shown = 01010001 Binary =
81 decimal).

10-4

a single character, and a word or sequence of letters may
be represented by a series (or "string") of bytes, Since the
ASCII code only uses 128 characters, the most significant
bit of the byte is not needed to distinguish between char
acters. Often 07 is set to 0 for all characters. In some
coding schemes, 07 is used to indicate the "parity" of the
other seven bits-set or cleared as necessary to ensure
that the total number of "I" bits in the eight-bit code is
even ("even parity") or odd ("odd parity"). The 8051
includes hardware to compute parity when it is needed,

A computer program consists of an ordered sequence of
specific, simple steps to be executed by the CPU one-at
a-time, The method or sequence of steps used collectively
to solve the user's application is called an "algorithm,"

The program is stored inside the computer as a sequence
of binary numbers, where each number corresponds to
one of the basic operations ("opcodes") which the CPU
is capable of executing, In the 8051, each program
memory location is one byte. A complete instruction
consists of a sequence of one or more bytes, where the
first defines the operation to be executed and additional
bytes (if needed) hold additional information, such as
data values or variable addresses. No instruction is longer
than three bytes.

The way in which binary opcodes and modifier bytes are
assigned to the CPU's operations is called the computer's
"machine language," Writing a program directly in
machine language is time-consuming and tedious, Human
beings think in words and concepts rather than encoded
numbers, so each CPU operation and resource is given a
name and standard abbreviation ("mnemonic"), Programs
are more easily discussed using these standard mnemonics,
or "assembly language," and may be typed into an Intel®
Intellec® 800 or Series II® microcomputer development
system in this form. The development system can mechan
ically translate the program from assembly language
"source" form to machine language "object" code using a
program called an "assembler." The MCS-5I'· assembler
is called ASM51.

There are several important differences between a com- -
puter's machine language and the assembly language used
as a tool to represent it. The machine language or instruc
tion set is the set of operations which the CPU can
perform while a program is executing ("at run-time"), and
is strictly determined by the microcomputer hardware
design.

The assembly language is a standard (though more-or
less arbitrary) set of symbols including the instruction set
mnemonics. but with additional features which further
simplify the program design process, For example.
ASM51 has controls for creating and formatting a pro
gram listing, and a number of directives for allocating
variable storage and inserting arbitrary bytes of data into
the object code for creating tables of constants.

AFN-01502A-06

In addition, ASM51 can perform sophisticated mathe
matical operations, computing addresses or evaluating
arithmetic expressions to relieve the programmer from
this drudgery. However, these calculations can only use
information known at "assembly time."

For example, the 8051 performs arithmetic calculations
at run-time, eight bits at a time. ASM51 can do similar
operations 16 bits at a time. The 8051 can only do one
simple step per instruction, while ASM51 can perform
complex calculations in each line of source code. How~
ever, the operations performed by the assembler may only
use parameter values fixed at assembly-time, not variables
whose values are unknown until program execution
begins.

For example, when the assembly language source line,

ADD A,#(LOOP_COUNT + I) * 3

is assembled, AS M51 will find the value of the pre
viously-defined constant "LOOP_COUNT" in an internal
symbol table, increment the value, mUltiply the sum by
three, and (assuming it is between -256 and 255 inclusive)
truncate the product to eight bits. When this instruction
is executed, the 8051 ALU will just add that resulting
constant to the accumulator.

Some similar differences exist to distinguish number
system ("radix") specifications. The 8051 does all com
putations in binary (though there are provisions for then
converting the result to decimal form). In the course of
writing a program, though, it may be more convenient
to specify constants using some other radix, such as base
Hr. On other occasions, it is desirable to specify the ASCII
code for some character or string of c'haracters without
refering to tables. ASM51 allows several representations
for constants, which are converted to binary as each
instruction is assembled.

For example, binary numbers are represented in the

assembly language by a series of ones and zeros
(naturally), followed by the letter "B" (for Biflary); octal
numbers as a series of octal digits (0-7) followed by th'e
letter "0" (for Octal) or "Q" (which doesn't stand for any
thing, but looks sort of like an "0" and is less likely
to be confused with'a zero).

Hexadecimal numbers are represented by a series of hexa
decimal digits (O-9,A-F), followed by (you guessed it) the
letter "H." A "hex" number must begin with a decimal
digit; otherwise it would look like a user-defined symbol
(to be discussed later). A "dummy" leading zero may be
inserted before the first digit to meet this constraint. The
character string "BACH" could be a legal label for a
Baroque music synthesis routine; the string "OBACH" is
the hexadecimal constant BAC'6' This is a case where
adding 0 makes a big difference.

Decimal numbers are represented by a sequence of decimal
digits, optionally followed by a "D." If a number has no
suffix, it is assumed to be decimal-so it had better not
contain any non-decimal digits. "OBAC" is not a legal
representation for anything.

When an ASCII code is needed in a program, enclose the
desired character between two apostrophes (as in 'W) and
the assembler will convert it to the appropriate code (in
this case 23H). A string of characters between apos
trophes is translated into a series of constants; 'BACH'
becomes 42H, 41H, 43H, 48H.

These same conventions are used throughout the asso
ciated Intel documentation. Table 2 illustrates some of the
different number formats.

2. ARCHITECTURE AND ORGANIZATION
Figure 3 blocks out the MCS-51'· internal organization.
Each microcomputer combines a Central Processing
Unit, two kinds of memory (data RAM plus program
ROM or EPROM), Input/Output ports"and the mode,

Table 2. Notations Used to Represent Numbers

Hexa- 'Signed
Bit Pattern Binary Octal Decimal Decimal Decimal

00000000 OB OQ OOH 0 ,0
00000001 IB ·IQ OIH I +1
...............
00000111 IIIB 7Q 07H 7 +7
00001000 10008 IOQ 08H 8 +8
00001001 100IB IIQ 09H 9 +9
00001010 10 lOB 12Q OAH 10 +10
...............
00 0 0 1 1 1 1 II liB 17Q OFH 15 +15
00010000 10000B 20Q IOH 16 +16
...............
o 1 1 1 1 1 1 1 IIIIIIIB I77Q 7FH 127 +127
10000000 100000008 200Q 80H 128 -128
10000001 1000000lB 20lQ 81H 129 -127
...............
1 1 1 1 I 1 I 0 111111 lOB 376Q OFEH 254 -2
1 1 1 II 1 1 1 IIIIIIIIB 377Q OFFH 255 -I

AFN-01S02A-07

10-5

TMOD IP

TlO INTERRUPT

SERIAL THO CONTROL

PORT Tll

THI

TIMER
~ CONTROL

Figure 3. BI.ock Diagram of 8051 Internal Structure

status, and data registers and random logic needed for
a variety of peripheral functions. These elements com
municate through an eight-bit data bus which runs
throughout the chip, somewhat akin to indoor plumbing.
This bus is buffered to the outside world through an I/O
port when memory or I/O expansion is desired.

Let's summarize what each block does; later chapters dig
into the <;:PU's instruction set and the peripheral registers
in much greater detail.

Central Processing Unit
The CPU is the "brains" of the microcomputer, reading
the user's program and executing the instructions stored
therein. Its primary elements are an eight-bit Arithmetic/
Logic Unit with associated registers A, B, PSW, and SP,
and the sixteen-bit Program Counter and "Data PointerM

registers.

10-.6

PORT 3

AFN-01502A~08

Arithmetic Logic Unit

The ALU can perform (as the name implies) arithmetic
and logic functions on eight-bit variables. The former
include basic addition, subtraction, mUltiplication, and
division; the latter include the logical operations AND,
OR, and Exclusive-OR, as well as rotate, clear, comple
ment, and so forth. The ALU also makes conditional
branching decisions, and provides data paths and tem
porary registers used for data transfers within the system.
Other instructions are built up from these primitive fUnc
tions: the addition capability can increment registers or
automatically compute program. destination addresses;
subtraction is also used in decrementing or comparing the
magnitude of two variables.

Thes'e primitive operations are automatically cascaded
and combined with dedicated logic to build complex
instructions such as incrementing a sixteen-bit register
pair. To execute one form of the compare instruction, for
example, the 8051 increments the program counter three
times, reads three bytes of program memory, computes a
register address with logical operations, reads internal
data memory twice, makes an arithmetic comparison of
two variables, computes a sixteen-bit destination address,
and decides whether or not to make a branch-all in two
microseconds!

An important and unique feature of the MCS-51 archi
tecture is that the ALU can also manipulate one-bit as
well as eight-bit data types. Individual bits may be set,
cleared, or complemented, moved, tested, and used in
logic computations. While support for a more primitive
data type may initially seem a 'step backwards in an era
of increasing word length, it makes the 8051 especially
well suited for controller-type applications. Such algo
rithms inherent~1" involve Boolean (true/false) input
and output variables, which were heretofore difficult to
implement with standard microprocessors. These features
are collectively referred to as the MCS_5ITM "Boolean
Processor," and are described in the so-named chapter

,to come.

Thanks to this ,powerful ALU, the 8051 instruction set
fares well at both real-time control and data intensive
algorithms. A total of 51 separate operations move and
manipulate three data types: Boolean (I-bit), byte (8-bit),
and address (l6-bit). All told, there are eleven addressing
modes-seven for data, four for program sequence con
trol (though only eight are used by more than just a few
specialized instructions), Most operations allow several
addressing modes, bringing the total number of instruc
tions (operation/addressing mode combinations) to Ill,
encompassing 255 of the 256 possible eight-bit instruc
tion opcodes.

Instruction Set Overview

Table 4 lists these III instructions classified into five
groups:

1,0-7

• Arithmetic Operations
• Logical Operations for Byte Variables
• Data Transfer Instructions
• Boolean Variable ManipUlation
• Program Branching and Machine Control

MCS_48™ programmers perusing Table 4 will notice the
absence of special categories for Input/Output, Timer/
Counter, or Control instructions, These functions are all
still provided (and indeed many new functions are added),
but as special cases of more generalized operations in
other categories. To explicitly list all the useful instruc
tions involving I/O and peripheral registers would require
a table approximately four times as long,

Observant readers will also notice that all of the 8048's
page-oriented instructions (conditional jumps, JMPP,
MOVP, MOVP3) have been replaced with corresponding
but non-paged instructions. The 8051 instruction set is
entirely non-page-oriented. The MCS_48™ "MOVP"
instruction replacement and all conditional jump instruc
tions operate relative to the program counter, with the
actual jump address computed by the CPU during instruc
tion execution, The "MOVP3" and "JMPP" replacements
are now made relative to another sixteen-bit register,
which allows the effective destination to be anywhere in
the program memory space, regardless of where, the
instruction itself is located, There are even three-byte
jump and call instructions allowing the destination to be
anywhere in the 64K program address space.

The instruction set is designed to make programs efficient
both in terms of code size and execution speed. No
instruction requires more than three bytes of program
memory, with the majority requiring only one or two
bytes. Virtually all instructions execute in either one or
two instruction cycles-one or two microseconds with
a 12-MHz crystal-with the sole exceptions (multiply
and divide) completing in four cycles.

Many instructions such as arithmetic and logical func
tions or program control, provide both a short and a long
form for the same operation, allowing the programmer
to optimize the code produced for a sp~cific application.
The 8051 usually fetches two instruction bytes per instruc
tion cycle, so using a shorter form can lead to faster
execution as welL

For example, any byte of RAM may be loaded with a
const~nt with a three-byte, two-cycle instruction, but the
commonly used "working regi~ters" in RAM may be
initialized in One cycle with a two-byte form. Any bit
anywhere on the chip may be set, cleared, or comple
mented by a single three-byte logical instruction using
two cycles. But critical control bits, I/O pins, and soft
ware flags may be controlled by two-byte, single cycle
Instructions. While three-byte jumps and calls can "go
anywhere" in program memory, nearby sections of code
may be reached by.shorter relative or absolute versions.

AFN-01S02A-09

(MSB) (LSB)

Symbol Position Name and Significance
CY PSW.7 Carry flag.

AC PSW.6

FO PSw.s

RSI PSW.4

RS PSW.3

Set/cleared by hardware or software
during certain arithmetic and logical
instructions. "

Auxiliary Carry flag.
Set/cleared by hardware during addition
or subtraction instructions to indicate
carry or borrow ~ut of bit 3.

Flag 0
Set/cleared/tested by software as a
user-defined status flag. '

Register bank Select control bits I & O.
Set/cleared by software to determine
working register bank (see Note).

Symbol Position Name and Significance
OV PSW.2' Overflow flag.

PSW.I

P psw,o

Note-

Set/cleared by hardware dunng arith
metic instructions to indicate overflow
conditions.

(reserved)

Parity flag.
Set/cleared by hardware each instruc
tion cycle to indicate an odd / even
number of "one" bits in the accumu
lator. i.e .• even parity.

the contents of (RSI. RSO) enable the
working register banks as follows:

(O.O)~ Bank 0
(O.I)~Bank I
(1.0)~Bank 2
(I.I)~Bank 3

(OOH-07H)
(OSH-OFH)
(lOH-I7H)
(lSH-IFH)

Figure 4. PSW-Program Status Word Organization

A significant side benefit of an instruction set more
powerful than those of previous single-chip microcom
puters is that it is easier to generate applications-oriented
software. Generalized addressing modes for byte and bit
instruction8 reduce the number of source code lines
written and debugged for a given application. This leads
in turn to proportionately lower software costs, greater
reliability, and faster design cycles.

Accumulator and PSW

The 8051, like its 8048 predecessor, is primarily an
accumulator-based architecture: an eight-bit register
called the accumulator ("A") holds a source operand and
receives 'the result of the arithmetic instructions (addition,
subtraction, multiplication, and division). The accumula
tor can be the source or destinationJor logical operations
and a number of special data movement, instructions,
including table look-ups and external RAM expansion.
Several functions apply exclusively to the accumulator:
rotates, parity computation, testing for zero, and so on.

Many instructions implicitly or explicitly affect (or are
affected by) several status flags, which are grouped
together to form the Program Status Word shown in
Figure 4.

(The period within entries under the Position column is
called the "dot operator," and indicates a particular bit
position within an eight-bit byte. "PSW.5" specifies bit 5
of the PSW. Both the, documentation and ASM51 use
this notation.)

The most "active" status bit is called the carry flag (abbre
viated "C"). This bit makes possible mUltiple precision
arithmetic operations including addition, subtraction,

10-8

and rotates. The carry also serves as a "Boolean accumu
lator" for one-bit logical operations and bit manipulation.
instructions. The overflow flag (OV) detects when arith
metic overflow occurs on signed integer operands. making
two's complement arithmetic possible. The parity flag
(P) is updated after every instruction cycle with the even
parity of the accumulator contents.

The, CPU does not control the two register-bank select
bits, RSI and RSO. Rather, they are manipulated by
software to enable one of the four register banks. The
usage of-the PSW flags is demonstrated in the Instruc
tion Set chapter of.this Note.

Even though the architecture is accumulator-based, pro
visions have been made to bypass the accumulator in
common instruction situations. Data may be moved from
any location 6n-chip to any register, address, or indirect
address (and vice versa), any register may be loaded with
a constant, etc., all without affecting the accumulator.
Logical operations may be performed against registers or
variables to aIler fields of bits-without using or affecting
the accumulator. Variables may be incremented, decre
mented, or tested without using the accumulator. Flags
and control bits may be manipulated and tested without
affecting anything else.

Other CPU Registers

Aspecial eight-bit register ("B") serves in the execution of
the multiply and divide instructions. This register is used
in conjunction with the accumulator as the second input
operand and to return eight-bits of the result.

The MCS-51 family processors include a hardware stack
within internal RAM, useful for subroutine linkage.

AFN-01502A-10

passing parameters between routines, temporary variable
storage, or saving status during interrupt service routines.
The Stack Pointer (SP) is an eight-bit pointer register
which indicates the address of the last byte pushed onto
the stack. The stack pointer is automatically i~crelJlented
or decremented on all push or pop instructions and all
subroutine calls and returns. In theory, the stack in the
8051 may be up to a full 128 bytes deep. (In practice, even
simple programs would use a handful of RAM locations
for pointers, variables, and so forth-reducing the stack
depth by that number.) The stack pointer defaults to 7 on
reset, so that the stack will start growing up from location
8, just like in the 8048. By altering the pointer contents the
stack may be relocated anywhere within internal RAM.

Finally, a l6-bit register called the data pointer (OPTR)
serves as a base register in indirect jumps, table look-up
instructions, and external data transfers. The high- and
low-order halves of the data pointer may be manipulated
as separate registers (OPH and OPL, respectively) or
together using special instructions to load or increment
all sixteen bits. Unlike the 8048,look.up tables can there·
fore start anywhere in program memory and be of
arbitrary length.

Memory Spaces

Program memory is separate and distinct from data
memory. Each memory type has a different addressing
mechanism, different control signals, 'and a different
function. '

The program memory array (ROM or EPROM), like an
elephant, is extremely large and never forgets informa
tion, even when power is removed. Program memory is
used for information needed each time power is applied:
initialization values, calibration constants, keyboard
layout tables; etc., as well as the program itself. The pro
gram memory has a sixteen-bit address bus; its elements

fO-9

are addressed using the Program Counter or instructions
which generate a sixteen-bit address.

To stretch our analogy just a bit, data memory is like a
mouse: it is smaller and therefore quicker than program
memory, and it goes into a random state when electrical
power is applied. On-chip data RAM is used for variables
which are determined or may change while the program
is ruiming.

A 'computer spends most of its time manipulating vari
ables, not constants, and a relatively small number of
variables at that. Since eight-bits is more than sufficient
to uniquely address 128 RAM locations, the on-chip
RAM address register is only one byte wide. In contrast
to the program memory, data memory accesses need a
single eight-bit value-a constant or another variable
to specify a unique location. Since this is the basic width
of the ALU and the different memory' types, those
resources can be used by the addressing mechanisms,
contributing greatly to the computer's operating efficiency.

The partitioning of program and data memory is extended
to off-chip memory expansion. Each, may be added
independently, and each uses the same address and data
busses, but with different control signals.' External pro
gram memory is gated onto the external data bus by the
PSm (Program Store Enable) control output, pin 29.
External data memory is read onto the bus by the RO
output, pin 17, and written with data supplied from. the
microcomputer by the WR output" pin 16. (There is no
control pin to write external program ROM, whichJs by
definition Read Only.) While both types may be expanded
to up to 64K bytes, the external data memory may
optionally be expanded in 256 byte "pages" to preserve
the use of P2 as an I/O port. This is useful with a relatively
small expansion RAM (such as the Intel@ 8155) or for
addressing external peripherals.

Single-chip controller programs are finalized during the
project design cycle, and ar~ not modified after produc
tion. Intel's single-chip microcomputers are not ''von
Neumann" architectures common among main-frame
and mini:.computer systems: the MCS-51Tt1 processor
data memory-on-chip and external-may not be used
for program code. Just as there is no write-control signal
for program memory, there is no way for the CPU to
execute instructions out of RAM. In return, this con
cession allows an architecture optimized for efficient
controller applications: a large, fixed program located in
ROM; a hundred or so variables in RAM, and different
methods for efficiently addressing each.

(Von Neumann machines are helpful for software develop
ment and debug. An 8051 system .could be modified to
have a single off-chip memory space by gating together
the two memory-read controls (PSEN and RO) with a
two-input ANO gate (Figure 5). The CPU could then
write data into the common memory array using WIt and

AFN-OI502A-ll

I '1051 till ~' ImAII} ~~MORY
lID IIIIII"IID ARRAY 1IRRt--__

~----'

Figure 5. Combining External Program and Data
Memory Arrays

external data transfer instructions, and read instructions
or data with the AND gate output and data transfer or
program memory look-up instructions.)

In addition to the memory arrays, t~re is (yet) another
(albeit sparsely populated) physical address space. Con
nected to the internal data bus are a score of special~
purpose eight-bit registers scattered throughout the chip.
Some of these-B, sp, PSW, DPH, and DPL-have
been discussed above. Others-I/O ports lind peripheral
functiori registers-will be introduced in the following
sections. Collectively, these registers are designated as the
~special-functjon register" addres~ space. Even the accu
mulator is assigned a spot in the special-function register
address space for additional flexibility and uniformity. '

Thus, the MCS-Slno'architecture supports ~everal distinct
"physical", address spaces, functionally separated at the
hardware level ,by different addressing mechanisms, read
and write control signals, or both:

• On-chip program memory;
'. On-chip data memory;
• Off-chip program memory;
• Off-chip data memory;
• On-chip specfal-function registers.,

What the programmer sees, though, are "logical" address
spaces. For example, as ,far ,as the programmer is
concerned, there is only one type of program memory,
64K bytes in length. :The fact that it is formed by com
bining on- and off-chip arrays (split 4K/60K on the,80Sl
and 8751) is "invisible" to the programmer; the, CPU
automatically fetches each byte from the appropriate
array, based on its address.

(Presumably, future microcomputers based on' the
MCS-SI'· architecture may have a different physical split, ,
with more or less of the 64K total implemented on-chip.
Using the MCS48'· family as a precedent, the 8048's 4K
potential program address space was split I K/3K betweep
on- and off-chip arrays; the 8049's was split 2K/2K.) ,

Why go into such tedious details a\>out address spaces?
The logical addressing modes are described iri the Instruc
tion Set chapter, in terms of. physical. address spaces.
Understanding their differences now will payoff in under
standing and using the chips later. '

Input/Output Ports

The MCS-SI'· I/O port structure is extremely versatile.
The 8051 and 8751 each have 32 I/O pins configured as
four eight-bit parallel ports (PO, PI, P2, and P3). Each pin
will input or output data (or both) under software con
trol, and each may be referenced by a wide repertoire of
byte and bit operations.

In various operating,or expansion modes, some of these
I/O pins are also used for special input or output func
tions. Instructions which access external memory use
Port 0 as a multiplexed address/data bus: at the beginning
of an external memory cycle eight bits of the address are
output on PO; later data is transferred on the same eight
pins. External data transfer instructions which supply
a sixteen-bit address, and any instruction accessing
external program memory, output the high-order eight
bits on P2 during the access cycle. (The 8031 always uses
the pins of PO and P2 for external addressing, but PI and
P3 are available for standard I/O.)

The eight pins of Port 3 (P3) each have a special function.
Two external interrupts. two counter inputs, two serial
data lines, and two timing control strobes use pins of P3
as de~cribed in Figure 6. Port 3 pins corresponding' to
functions not used are available for conventional I/O.

Even within a si~gle port, I/O functions may be. combined
in many ways: input and output may be performed using
different pins at the same time', or the ~ame pins at different
times; in parallel in some cases, and in serial in others;'as
test pins, or (in the case of Port 3) as additional special
functions.

AFN-01S02A-12

(LSB)

TO 'INT1 ,'NTO , TXO , RXO I
Symbol Position Name and Significance
RD P3.7 Read data control output. Active low

pulse generated by hardware when
external data memory is read.

WR P3.6 Write data control output. Active low
pulse generated by hardware when
external data memory is written.

TI P3.5 Timer/counter I external input or test
pin.

TO P3.4 Timer/counter 0 external input or test
pin.

Symbol Position Name and Significance
INTI P3.3 Interrupt I input pin. Low-level or

falling-edge triggered.

INTO P3.2 Interrupt 0 input pin. Low-level or
falling-edge triggered.

TXD P3.1 Transmit Data pin for serial port in
U ART mode. Clock output in shift
register mode.

RXD P3.0 Receive Data pin for serial port in
UART mode. Data I/O pin in shift
register mode.

Figure 6. P3-Alternate Special Functions of Port 3

Special Peripheral Functions

There are a few special needs common among control
oriented computer systems:

• keeping track of elapsed real-time;
• maintaining a count of signal transitions;
• measuring the precise width of input pulses;
• communicating with other systems or people;
• closely monitoring asynchronous external events.

Until now, microprocessor systems needed peripheral
chips such as timer/counters, USARTs, or interrupt con
trollers to meet these needs. The 8051 integrates all of
these capabilities on-chip!

Timer/Counters

There are two sixteen-bit multiple-mode Timer/Counters
on the 8051, each consisting of a "High" byte (correspond
ing to the 8048 "T" register) and a low byte (similar to the
8048 prescaler, with the additional flexibility of being

software-accessible). These registers are called, naturally
. enough, THO, TLO, THI, and TLI. Each pair may be

independently software programmed to any of a dozen
modes with a mode register designated TMOD (Figure
7), and controlled with register TCON (Figure 8).

The timer modes can be used to measure time intervals,
determine pulse widths, or initiate events, witl) one-micro
second resolution, UP. to a maximum interval of 65,536
instruction cycles (over 65 milliseconds). Longer delays
may easily be accumulated through software. Configured
as a counter, the same hardware will accumulate external
events at frequencies from D.C. to 500 KHz, with up to
sixteen bits of precision.

Serial Port Interface

Each microcomputer contains a high-speed, full-duplex,
serial port which is software programmable to function
in four basic modes: shift-register I/O expander, 8-bit
UART, 9-bit UART, or interprocessor communications
link. The UART modes will interface with standard I/O
devices (e.g. CRTs, teletypewriters, or modems) at data
rates from 122 baud to 31 kilobaud. Replacing the
standard 12 MHz crystal with a 10.7 MHz crystal allows
110 baud. Even or odd ,parity (if desired) can be included
with simple bit-handling software routines. Inter-processor
communications in distributed systems takes place at 187
kilobaud with hardware for automatic address/data
message recognition. Simple TTL or CMOS shift registers
provide low-cost I/O expansion at a super-fast I Mega
baud. The serial port operating modes are controlled by
the contents of register SCON (Figure 9).

lriterrupt Capability and Control

(Interrupt capability is generally considered a CPU
function. It is being introduced here since, from an appli
cations point of view, interrupts relate more closely to
peripheral and system interfacing.)

AFN-01502A-13

10-11

(MSB)

I GATE I CIT I Ml

TIMER 1

GATE

CjT

(LSB)

MO I GATE I CIT I Ml MO I
J\,..

TIMER 0

Gating control. When set, Timer/counter
"x" is enabled only while "INTx" pin is
high and "TRx" control bit is set. When
cleared, timer/counter is enabled '
whenever "TRx" control bit is set.

Timer or Counter Selector. Cleared for
Timer operation (input from internal
system clock). Set for Counter opera
tion (input from "Tx" input pin).

M1
o

o

MO
o

o

Operating Mode
M CS-48 Timer. "TLx" serves as five
bit prescaler.

16-bit timer/counter. "THx" and "TLx"
are cascaded; there is no prescaler.

8-bit auto-reload timer/counter. "THx"
holds a value which is to be reloaded
into "TLx" each time it overflows.

(Timer 0) TLO is an eight-bit timer/
counter controlled by the
standard Timer 0 control
bits.
THO is an eight-bit timer
only controlled by Timer I
control bits.

(Timer 1) Timer/counter I stopped.

Figure 7. TMOD-Timer/Counter Mode Register

(MSB) (LSB)

I Tl'1 I TRI I TFO I TRO I lEI 1T1 lEO, I ITO I
Symbol Position Name and Significance
TFI TCON.7 Timer I overflow Flag. Set by hardware

TRI TCON.6

TFO TCON.5

TRO TCON.4

on timer/counter overflow. Cleared
when interrupt processed.

Timer I Run control bit. Set/cleared
by software to turn timer/counter
on/off.

Timer 0 overflow Flag. Set by hardware
on timer/counter overflow. Cleared
when interrupt processed.

Timer 0 Run control bit. Set/cleared by
software to turn timer/counter on/off.

Symbol Position Name and Significance
lEI TCON.3 Interrupt I Edge flag. Set by hardware

ITI TCON.2

lEO TCON.I

ITO TCON.O

when external interrupt edge detected.
Cleared when interrupt processed.

Interrupt I Type control bit. Set/cleared
by software to specify falling edge/low
level triggered external interrupts.

Interrupt 0 Edge flag. Set by hardware
when external interrupt edge detected.
Cleared when interrupt processed.

Interrupt 0 Type control bit. Set/cleared
by software to specify falling edge/low
level triggered external interrupts.

Figure 8. TCON-Tlmer/Counter Control/Status Register

AFN-01502A-14

10·12

(MSB)

Symbol Position Name and Significance
SMO SCON.7 Serial port Mode control bit O.

Set/cieared by software (see note).

SMI SCON.6 Serial port Mode control bit I.
Set/cieared by software (see note).

SM2 SCON.5 Serial port Mode control bit 2. Set by
software to disable reception of frames
for which bit 8 is zero.

REN SCON.4 Receiver Enable control bit. Set/cieared
by software to enable/disable serial
data reception.

TB8 SCON.3 Transmit Bit 8. Set/cieared by hard-
ware to determine state of ninth data
bit transmitted in 9-bit UART mode.

Symbol Position Name and Significance
RB8 SCON.2 Receive Bit 8. Set/cieared by hardware

to indicate state of ninth data bit
received.

TI SCON.I Transmit Interrupt flag. Set by hard-
ware when byte transmitted. Cleared
by soft ware after servici ng. .

RI SCON.O Received Interrupt flag. Set by hard-

Note-

ware when byte received. Cleared by
software after servicing.

the state of (SMO,SM I) selects:
(O,O)-Shlft regIster 1/0 expansion.
(0,1)-8 bIt UART, variable data rate.
(1,0)-9 bIt UART. fixed data rate.
(1,1)·-9 bIt UART, vanable data rate.

Figure 9. SCON-Serial Port Control/Status Register

These peripheral functions allow special hardware to
monitor real-time signal interfacing without bothering
the CPU. For example, imagine serial data is arriving from
one CRT while being transmitted to another, and one
timer/counter is tallying high-speed input transitions
while the other measures input pulse widths. During all
of this the CPU is thinking about something else.

But how does the CPU know when a reception, transmis
sion, count, or pulse is finished? The 8051 programmer
can choose from three approaches.

TCON and SCON contain status bits set by the hardware
when a timer overtlows or a serial port operation is com
pleted. The first technique reads the control register into
the accumulator, tests the appropriate bit, and does a
conditional branch based on the result. This "polling"
scheme (typically a three-instruction sequence though
additional instructions to save and restore the accu
mulator may sometimes be needed) will surely be
familiar to programmers used to multi-chip microcom
puter systems and peripheral controller chips. This
process is rather cumbersome, especially when monitoring
multiple peripherals.

As a second approach, the 8051 can perform a conditional
branch. based on the state of any control or status bit or
input pin in a single instruction; a four instruction
sequence could poll the four simultaneous happenings
mentioned above in just eight microseconds.

Unfortunately, the CPU must still drop what it's doing
to test these bits. A manager cannot do his own work
well if he is continuously monitoring his subordinates;
they should interrupt him (or her) only when they need
attention or guidance. So it is with machines: ideally, the
CPU would not have to worry about the peripherals until
they require servicing. At that time, it would postpone the

10-13

background task long enough to handle the appropriate
device, then return to the point where it left off.

This is the basis of the third and generally optimal solu
tion, hardware interrupts. The 8051 has five interrupt
sources: one from the serial port when a transmission or
reception is complete; two from the timers when over
flows occur, and two from input pins INTO and INTI.
Each source may be independently enabled or disabled
to allow polling on some sources or at some times, and
each may be classified as high or low priority. A high
priority source can Interrupt a low priority service
routine; the manager's boss can interrupt conferences
with subordinates. These options are selected by the inter
rupt enable and priority control registers, IE and IP
(Figures 10 and II).

Each source has a particular program memory address
associated with it (Table 3), starting at 0003H (as in the
8048) and continuing at -eight-byte intervals. When an
event enabled for interrupts occurs the CPU automatically
executes an internal subroutine call to the corresponding
address . .A user subroutine starting at this location (or
jumped to from this location) then performs the instruc
tions to service that particular source. After completing
the interrupt service routine, execution returns to the
background program.

Table 3. 8051 Interrupt Sources and Service Vectors

Interrupt Service Routine
Source Starting Address

(Reset) OOOOH
External 0 0003H
Timer/ Counter 0 OOOBH
External I OOI3H
Timer/ Counter I OOIBH
Serial Port 0023H

AFN-01502A-15

(LSB)

ES ET1 EX1 I ETO I EXO I
Symbol Position Name and Significance
EA IE.7 Enable All control bit. Cleared by

software to disable all interrupts,
independent of the state of IE.4-IE.O.

ES

ETl

IE.6
IE.5

IE.4

IE.3

(reserved)
(reserved)

Enable Serial port control bit.
Set/cleared by software to enable/
disable interrupts from TI or RI flags.

Enable TImer I control bit. Set/cleared
by software to enable/disable interrupts
'from timer/counter l.

Symbol Position Name and Significance
EX I IE.2 Enable External interrupt I control bit.

ETO lE.I

EXO IE.O

Set/cleared by software to enable/
disable interrupts from INTl.

Enable Timer 0 control bit. Set/cleared
by software to enable/disable interrupts
from timer/counter 0

Enable External interrupt 0 control bit.
Set/cleared by software to enable/
disable interrupts from INTO.

Figure 10. IE-Interrupt Enable Register

(MSB) (LSB)

I - I PS PT1 PX1 I PTO I PXO I
Symbol Position Name and Significance

PS

PTI

IP.7 (reserved)
IP.6 (reserved)
IP.5 (reserved)

IP.4

IP.3

Serial- port Priority control bit.
Set/cleared by software to specify
high/low priority interrupts for Serial
port.

Timer I Priority control bit.
Set/cleared by software to specify
high/low priority interrupts for
timer/counter l.

Symbol Position Name and Significance
PX I IP.2 Externl\1 interrupt I Priority control

bit. Set/cleared by software to specify
high/low priority interrupts for INTl.

PTO IP.I

PXO IP.O

Timer 0 Priority control bit.
Set/cleared by software to specify
high/low priority interrupts for
timer/counter O.

External interrupt 0 Priority control
bit. Set/cleared by software to specify
high/low priority interrupts for INTO.

Figure 11. IP-Interrupt Priority Control Register

AFN-01502A-16

10-14

Table 4. MCS-S1 T. Instruction Set Description

ARITHMETIC OPERATIONS

Mnemonic Description Byt. Cy<
ADD A.Rn Add register to Accumll'l.ator I I
ADD A.dlrect Add direct byte to Accumulator 2 I
ADD A.@R, Add indirect RAM to Accumulator I I
ADD A.#data Add Immediate data to Accumulator 2 I
ADDC A.Rn Add register to Accumulator with Carry I I
ADDC A,dlrect Add direct byte to A with Carry nag 2 I
ADDC A.@R, Add mdlrect RAM to A with Carry flag I I
ADDC A,#data Add Immediate data to A with Carry nag 2 I
SUSS A.Rn Subtract register from A with Borrow I I
SUSS A.dlrect Subtract direct byte from A with Borrow 2 I
SUBS A.@R, Subtract IOdlrect RAM from A w, Borrow I I
SUSS A.#data Subtract Immed data from A W Borrow 2 I
INC A Increment Accumulator I I
INC Rn Increment register I I
I~C direct Increment direct byte 2 I
INC @R, Increment mdlrect RAM. I I
DEC A Decrement Accumulator I I
DEC Rn Decrement register I I
DEC direct Decrement direct byte 2 I
DEC @R, Decrement mdlrect RAM I I
I'IIC DPTR Increment Data POlOter I 2
MUL AB Multiply A & S I 4
DlV AS DIvide A by B I 4
DA A Decimal Adjust Accumulator I I

LOGICAL OPERATIONS

Mnemonic Destination Byte Cy<
A~L A.Rn AND register to Accumulator I I
A~L A.dlrect AND direct byte to Accumulator 2 I
ANL A.@R, AND mdlrect RAM to Accumulator I I
A~L A.#data AND Immediate data tn Accumulator 2 I
A~L dlrect.A AND Accumula,tor to direct byte 2 I
MIL dlrect.#data AND Immediate data to direct byte 3 2
ORL A.Rn OR register to Accumuiato-r I I
ORL A.dlrect OR dIrect byte to Accumulator 2 I
ORL A.@R, OR indirect RAM to-Accumulator I I
ORL A.#data OR Immediate data to Accumulator 2 I
ORL dlrect.A OR Accumulator to direct byte 2 I
ORI. dlrect.#data OR Immediate data to direct byte 3 2
XRI. A.Rn Excluslve~OR register to Accumulator I I
XRL A.direct ExclUSive-OR direct byte to Accumulator 2 I
XRI. A.@R, Exciuslve¥OR mdlrect RAM to A I I
XRI. A.#data Excluslve~OR Immedl3te data to A 2 I
XRL dlrect,A Excluslve~OR Accumulator to direct bvte 2 I
XRL direct. #da ta ExclUSive-OR unmedtate data to direct 3 2
CLR A Clear Accumulator I I
CPI. A Complement Accumulator I I
RL A Rotate Accumulator Left I I
RLC A Rotate A Left through the Carry flag I I
RR A Rotate Accumulator Right I I
RRC A Rotate A Right through Carry flag I I
SWAP A Swap mbbles withm the Accumulator I I

DATA TRANSFER

Mnemonic Description Byte Cyc
MOV A.Rn Move register to Accumulator I
MOY A.dlrect Move direct byte to Accumulator 2
MOV A.@R, Move mdlrect RAM to Accumulator I
MOV A.#data Move Immediate data to Accumulator 2
MOV Rn.A Move Accumulator to register I
MOV Rn.dlrect Move direct byte to register 2
MOV Rn.#data Move Immediate data to register 2
MOV dlrect.A Move Accumulator to direct byte 2
MOV dlrect,Rn Move register to direct byte 2
MOV dlre~t.dlrect Move direct byte to direct 3
MOV dlrect.@RI Move tndlrect RAM to direct byte 2
MOV dlrect.#data Move Immediate data to direct byte 3
MOV @R,.A Move Accumulator to indirect RAM I
MOV @RI.dlrect Move direct byte to indirect RAM 2
MOV @RI,#data Move Immediate data to Induect RAM 2
MOV DPTR.#dataI6 Load Data Pomter with a 16~blt constant 3

3. INSTRUCTION SET AND ADDRESSING MODES

The 8051 instruction set is extremely regular. in the sensl'
that most instructions can operate with variables from
several different physical or logical address spaces. Before
getting deeply enmeshed in the instruction set proper, it
is important to understand the details of the most
common data addressing modes. Whereas Table 4 sum
marizes the instructions set broken down by functional

I
I
I
I
I
2
I
I
2
2
2
2
I
2
I
2

DATA TRANSFER «ont.)

Mnemonic Description Byt. Cy<
MOVC A.@A+DPTR Move Code byte relative to DPTR to A I 2
MOVC A.@A+PC Move Code byte relative to PC to A I 2
MOVX A.@R, Move External RAM (8-bat addr) to A I 2
MOVX A.@DPTR Move External RAM (I6-bit addr) to A I 2
MOVX @Ri.A Move A to External RA M (8-hlt addrl I 2
MOVX @DPTR.A Move A to External RAM (16-blt addr) I 2
PUSH direct Push direct byte onto stack 2 2
POP direct Pop direct byte from stack 2 2
XCH A.Rn Exchange register with Accumulator I I
~CH A.direct Exchange direct byte with Accumulator 2 I
XCH A.@R, Exchange mdlrect RAM with A I I
XCHD A.@R, Exchange low-order Digit IOd RAM w/A I I

BOOLEAN VARIABLE MANIPlILATION

Mnemonic Description Byte eyc
CLR C Clear Carry flag I I
CLR " bit Clear direct bit 2 I
SETS C Set Carry flag I I
SETB b,t Set direct Bit 2 I
CPL C Complement Carry flag I I
CPL bit Complement direct bit 2 I
A~L Cblt AND direct bit to Carry nag 2 2
ANL C. bit AND complement of direct bit to Carry 2 2
ORL C.hlt OR direct bit to Carry flag 2 2
ORL C bit OR complement of direct bit to Carry 2 2
MOV Cblt Move direct bit to Carry flag 2 I
MOV blt.C Move Carry flag to direct bit 2 2

PROGRAM AND MACHINE CONTROL

Mnemonic Description Byte Cyc
ACALL addrll Absolute Subroutine Call 2 2
LCALL addrl6 Long Subroutme Call 3 2
RET Return from subroutme I 2
RET! Return from mterrupt I 2
AJMP addrll Absolute Jump 2 2
LJMP addrl6 Long Jump 3 2
SJMP rei Short Jump (relative addr) 2 2
JMP @A+DPTR Jump indirect relative to the DPTR I 2
JZ rei Jump If Accumulator IS Zero 2 2
JNZ rei Jump If Accumulator IS Not Zero 2 2
JC rei Jump If Carry flag IS set 2 2
J~C rei Jump If No Carry flag 2 2
JQ blt.rel Jump If direct Bit set 3 2
J~S blt.rel Jump If direct Bit Not set 3 2
JSC blt.rel Jump If direct Bit IS set & Clear bit 3 2
CJNE A.dlrect.rel Compare direct to A & Jump If Not Equal 3 2
CJNE A'./fdata.rel Comp Immed to A & Jump If Not Equal 3 2
CJNE Rn.#data.rel ,Comp Immed to reg & Jump If Not Equal 3 2
CJNE @RI.#data.rel Comp lmmed to md. & Jump If Not Equal 3 2
DJNZ Rn.rel Decrement register & Jump If Not Zero 2 2
DJ'IIZ dlrect.rel Decrement direct & Jump If Not Zero 3 2
~OP No operation I I

Note~ on data addressing modes:
Rn Working regl.,ter RO-R 7
direct 128 Internal RAM locatIOns. any I '0 port. control or status register
@R, Indirect mternal RAM locatIOn addressed by register RO or RI
#data -8-bJt constant mcluded In In!'>tructlOn
#data 16 16~blt constant mcluded as byte!'> 2 & 3 of lOst ruction
bit 128 <;,oftware flag!'>. any I 0 pm. control or !'>tatus bit

Note~ on program addressing modes:
addrl6 De!'>tmatton addreo;,s for LCAlL & LJMP may be anywhere wlthm

the M-Kllobyte program memory address space.
addrll De!oJtmatlOn addres~ for ACALL & AJMP will be wtthtn the same

2-Kllobyte page of program memory a<;, the first byte of the follOWing
In!'>tructlOn

rei SJMP and all conditional Jumps tnclude an 8-blt offset byte Range IS
+ 127 -128 by teo;, relative to ftrst byte of the follOWing lOst ructIOn

All mnemOniC., copynghted © Intel Corporation 1979

group, this chapter starts with the addressing mode
classes and builds to include the related instructions.

Data Addressing Modes

MCS-51 assembly language instructions consist of an
operation mnemonic and zero to three operands separated
by commas. In two operand instructions the destination
is specified first. then the source. Many byte-wide data

AFN-01502A-17

10-15

operations (such as ADD or MOY) inherently use the
accum~lator as a source operand and/or to receive the
result. For the sake of clarity the letter "A" is specified in
the source or destination field in all such instructions.
For example, the instruction,

ADD A,<source>

will add the variable<source>to the accumulator, leaving
the sum in the accumulator.

The operand designated ''<source>'' above may use any
of four common logical addressing modes:

,. Register-one of the working registers in the cur
rently enabled bank.

• Direct-an internal RAM location, I/O port, or
special-function register.

• Register-indirect-an internal RAM location,
pointed to by a working register.

• Immediate data-an eight .. bit constant incorporated
into the instruction.

The first three modes provide access to the internal RA M
and Hardware Register address spaces, and may therefore
be used as source or destination operands; the last mode
accesses program memory and may be a source operand
only. _

(It is hard to show a "typical application" of any instruc
tion without involving instructions not yet described. The
following description:; use only the self-explanatory ADD
and MOY instructions to demonstrate how the four
addressing modes are specified and used. Subsequent
examples will become increasingly complex.)

Register Addressing

The 8051 programmer has access to eight "working regis
ters," numbered RO-R7. The least-significant three-bits of
the instruction opcode indicate one register within this
logical address space. Thus, a function code and operand
address can be combined to form a short (one byte)
instruction (Figure 12.a).

The 805 I assembly language indicates register addressing
with the symbol Rn (where n is from 0 to 7) or with a
symbolic name previously defined as a register by the
EQUate or SET directives. (For more information on
assembler directives see the Macro Assembler Reference
Manual.)

Example I-Adding Two Registers Together

,REGAOR ADD CONTENTS OF REGISTER 1
TO CONTENTS OF REGISTER 0

REGADR MOV A. AO
ADD A.Rt
MOV RO. fit,

There are four such banks of working registers, only one
of which is active at a time. Physically, they occupy the
first 32 bytes of on-chip data RAM (addresses 0-1 FH).
PSW bits 4 and 3, determine which bank is active. A

, 10-16

hardware reset enables register bank 0; to select a
different bank the programmer modifies PSW bits 4 and
3 accordingly. '

Example 2-Selecting Alternate Memory Banks

I'IOV psw, .000100008 SELECT BAM'. 2

Register addressing in the 8051 is the same as in the 8048
family, with two enhancements: there are four banks
rather than one or two, and 16 instructions (rather than
12) can access them.

Direct Byte Addressing

Direct addressing can access anyon-chip variable or
hardware register. An additional byte appended to the
opcode specifies the location to be used (Figure 12.b).

Depending on the highest order bit of the direct address
byte, one of two physical memory spaces is selected.
When the direct address is between 0 and 127 (OOH-7FH)
one of the 128 low-order on-chip RAM locations is used.
(Future microcomputers based on the MCS-5I'· archi
tecture may incorporate more than 128 bytes of on-chip
RAM. Even if this is the case, only the low-order 128
bytes will be directly addressable. The remainder would
be accessed indirectly or via the stack pointer.)

Example 3-Adding RAM Location Contents

,DrRADR ADD CONTENTS OF RA" LOCATIQN 4'lH
TO CONTENTS OF RAM I-OCATION 40H

DIRADR 1"I0V At 40H
ADD A,4tH
!'tov 40H. fit,

All I/O ports and special function, control, or status
registers are assigned addresses between 128 and 255
(80H-OFFH). When the direct address byte is between
these limits the corresponding hardware register is
accessed. For example, Ports 0 and I are assigned direct
addresses 80H and 90H, respectively. A complete list is
presented in Table 5. Don't waste your time trying to
memorize the addresses in Table 5. Since programs using
absolute addresses for function registers would be difficult
to write or understand, ASM51 allows and understands
the abbreviations listed instead.

Example 4 - Adding Input Port Data to Output Port
Data

• PRTADR ADD DATA INPUT ON PORT 1
TO DATA PREVIOUSLY OUTPUT
ON PORT 0

PRTADR f10V A. PO
ADD IA. Pi ..ov PO. A

Direct ,addressing allows all special-function registers in
the 805 I to be read, written, or used as instruction
operands. In general, this is the only method used for
accessing I/O ports and special-function registers. If direct
addressing is used with special-function register addresses
other than those listed, the result of the instruction is
undefined.

AFN-015D2A-18

The 8048 does not have or need any generalized direct
addressing mode, since there are only five special registers
(BUS, PI, P2, PSW, & T) rather than twenty. Instead, 16
special 8048 opcodes control output bits or read or write
each register to the accumulator. These functions are all
subsumed by four of the 27 direct addressing instructions
of the 8051.

Table 5. 8051 Hardware Register Direct Addresses

Register Address Function

PO 80H" Port 0
SP 81H Stack Pointer
DPL 82H Data Pointer (Low)
DPH 83H Data Pointer (High)
TCON 88H' Timer register
TMOD 89H Timer Mode register
TLO 8AH Timer 0 Low byte
TLI 8BH Timer I Low byte
THO 8CH Timer 0 High byte
THI 8DH Timer I High byte
PI 90H* Port I
SCON 98H* Serial Port Control register
SBUF 99H Serial Port data Buffer
P2 OAOH' Port 2
IE OA8H' Interrupt Enable register
P3 OBOH' Port 3
IP OB8H" Interrupt Priority register
PSW ODOH* Program Status Word
ACC OEOH* Accumulator (direct address)
B OFOH* B register

.. = bit addressable register.

Register-Indirect Addressing

How can you handle variables whose locations in RAM
are determined, computed, or modified while the program
is running? This situation arises when manipulating
sequential memory locations, indexed entries within tables
in RAM, and multiple precision or string operations.
Register or Direct addressing cannot be used, since their
operand addresses are fixed at assembly time.

The 8051 solution is "register-indirect RAM addressing."
RO and R I of each register bank may operate as index
or pointer registers, their contents indicating an address
into RAM. The internal RAM location so addressed is
the actual operand used. The least significant bit of the
instruction opcode determines which register is used as
the "pointer" (Figure 12.c).

In the 8051 assembly language, register-indirect addressing
is represented by a commercial "at" sign ("@") preceding
RO, R I, or a symbol defined by the user to be equal to
ROorR!.

Example 5 - Indirect Addressing
, JNOADR ADD CONTENTS OF MEMORY LOCATION

ADDRESSED BY REGISTER 1
TO CONTENTS OF RAM LOCATION
ADDRESSED BY REG I srER 0

I NOAOR MOY
ADD
MOV

A,@RO
A.@R1
@RO.A

10-17

Indirect addressing on the 8051 is the same as in the
8048 family, except that all eight bits of the pointer register
contents are significant; if the contents point to a non
existent memory location (i.e., an address greater than
7FH on the 8051) the result of the instruction is undefined.
(Future microcomputers based on the MCS-51'" archi
tecture could implement additional memory in the
on-chip RAM logical address space at locations above
7FH.) The 8051 uses register-indirect addressing for five
new instructions plus the 13 on the 8048.

Immediate Addressing

When a source operand is a constant rather than a vari
able (i.e.-the instruction uses a value known at assembly
time), then the constant can be incorporated into the
instruction. An additional instruction byte specifies the
value used (Figure 12.d).

The value used is fixed at the time of ROM manufacture
or EPROM programming and may not be altered during
program execution. In the assembly language immediate
operands are preceded by a number sign ("#"). The
operand may be either a numeric string, a symbolic
variable, or an arithmetic expression using constants.

Example 6-Adding Constants Using Immediate
Addressing

,IMMAOR ADO THE CONSTANT 12 (DECIMAL)
TO THE CONSTANT 34 (DECIMAL)
LEAVE SUM IN ACCUMULATOR

IMMAOR MOV A. tU2
ADD A, .34

The preceding example was included for consistency; it
has little practical value. Instead, ASM51 could compute
the sum of two constants at assembly time.

Example 7 - Adding Constants Using AS M 51
Capabilities

• ASMSUM LOAD Ace WITH THE SUM OF
THE CONSTANT 12 (DEC IMAL) AND
THE CONSTANT 34 (DEC IMAL)

ASMSUM MDV A •• (12+34)

a.) Register Addressing:

ADD A,R

b.) Direct Addressing:

ADD A, direct

c.) Register-Indirect AddreSSing:

I : : +e+ : : I, I
ADD A,@R

d.) Immediate Addressing:

ADD A,# data

Figure 12. Data Addressing Machine Code Formats
AFN-01502A-19

Addressing Mode Combinations

The above examples all demonstrated the use of the four
data-addressing modes in two-operand instructions
(MOY, ADD) which use the accumulator as one
operand. The operations ADDC, SUBB, ANL, ORL,
and XRL (all to be discussed later) could be substituted
for ADD in each example. The first three modes may be
also be used for the XCH operation or, in combination
with the Immediate Addressing mode (and an additional
byte), loaded with a constant. The one-operand
instructions INC and DEC, DJNZ, and CJNE may all
operate on the accumulator, or may specify the Register,
Direct, and Register-indirect addressing modes.

. Exception: as in the 8048, DJNZ cannot use the
accumulator or indirect addressing. (The PUSH and
POP operations cannot inherently address the
accumulator as a special register either. However, all
three can directly address the accumulator as one of the
twenty special-function registers by putting the symbol
"ACC" in the operand field.)

Advantages of Symbolic Addressing

Like most assembly or higher-hivel programming
languages, AS MSI allows instructions or variables to be
given appropriate, user~defined symbolic names. This is
done for instruction lines by putting a label followed by a
colon (":") before the instruction proper, as in the above
examples. Such symbols must start with an alphabetic
character (remember what distinguished BACH from
OBACH?), and may include any combination of letters.
numbers. question marks ("?") and underscores ("":'). For
very long names only the first 31 characters are relevant.

Assembly language programs may intermix upper- and
lower-case letters arbitrarily, but ASMSI converts both
to upper-case. For example. ASM51 will internally
process an "I" for an "i" and. of course. "A_TOOTH" for
"a_tooth."

The underscore character makes symbols easier to read
and can eliminate potential ambiguity (as in the label for
a subroutine to switch two entires on a stack,
"S_EXCHANGE"). The underscore is significant. and

would distinguish between otherwise-identical character
strings.

ASM51 allows all var,iables (registers. ports. internal! or
external RAM addresses, constants. etc.) to be assigned
labels according to these rules with the EQUate or SET
directives.

Example 8 -Symbolic Addressing of Yariables
Defined as RAM Locations

VAR 0 SET 20H
VA() SET 21H

: SYMB t ADD CONTENTS OF VAR 1
- TO CONTENTS OF VAR _ 0

SYMB_l MOV
ADD
MOV

A, VAR_O
A. VAR_l
VAR_O. A

10-18

Notice from Table 4 that the M CS-Sl ,. instruction set has
relatively few instruction mnemonics (abbreviations) for
the programmer to memorize. Different data types or
addressing modes are determined by the operands
specified, rather than variations on the mnemonic. For
example, the mnemonic "MOY" is used by 18 different
instructions to operate on three data types (bit. byte, and
address). The fifteen versions which move byte variables
between the logical address spaces are diagrammed in
Figure 13. Each arrow shows the' direction of transfer
from source to destination.

Notice also that for most instructions allowing register
addressing there is a corresponding direct addressing
instruction and vice versa. This lets the programmer
begin writing 80S I programs as if (s)he has access to 128
different registers. When the program has evolved to the
point where the programmer has a fairly accurate idea
how often each variable is used. he/she may allocate the
working registers in each bank to the most "popular"
variables. (The assembly cross-reference option will show
exactly how often and where each symbol IS referenced.)
If symbolic addressing is used in writing the source
program only the lines containing the symbol definition
will need to be changed; the assembler will produce the
appropriate instructions even though the rest of the
program is left untouched. Editing only the first two lines

. of Example 8 will shrink the six-byte' code segment
produced in half.

How are instruction sets "counted"? There is
no standard practice; different people assess
ing the same CPU using different conventions
may arrive at different totals,

Each operation is then broken down according
to the different addressing modes (or com
binations of addressing modes) it can accom
modate. The "CLR" mnemonic is used by two
instructions with respect to bit variables ("CLR
C" and "CLR bit") and once ("CLR A") with
regards to bytes. This expansion yields the 111
separate instructions of Table 4.

The method used for the MCS-51 ® instruction
set first breaks it down into "operations": a
basic function applied to a single data type. For
example, the four versions of the ADD instruc
tion are grouped to form one operation -.
addition of eight-bit variables. The six forms of
the ANL instruction for byte variables make up
a different operation; the two forms of ANL
which operate on bits are considered still
another, The MOV mnemonic is used by three
different operation classes, depending on
whether bit, byte, or 16-bit values are affected.
Using this terminology the 8051 can perform
51 different operations.

AFN-01502A-20

Figure 13. Road map for moving data bytes

Example 9 - Redeclaring Example 8 Symbols as
Registers

VAR_O SET RO
VAR_l SET Ri

.SVP'1B_2 ADD CONTENTS OF VAR_l
TO CONTENTS OF VAR _ 0

A. VAR_O
A. VAR_l
VAR_O. A

Arithmetic Instruction Usage - ADD, ADDe, SUBB
and DA

The' ADD instruction adds a byte variable with the
accumulator, leaving the result i~ the accumulator. The
carry flag is set if there is an overflow from bit 7 and
cleared otherwise. The AC flag is set to the carry-out
from bit 3 for use by the DA instruction described later.
ADDC adds the previous contents of the carry flag with
the two byte variables, but otherwise is the same as ADD.

The SUBB (subtract with borrow) instruction subtracts
the byte variable indicated and the contents of the carry
flag together from the accumulator, and puts the result
back in the accumulator. The carry flag serves as a
"Borrow Required" flag during subtraction operations;
when a greater value is subtracted from a lesser value (as
in subtracting S from I) requiring a borrow into the
highest order bit, the carry flag is set; otherwise it is
cleared.

When performing signed binary arithmetic, certain
combinations of input variables can produce results
which seem to violate the Laws of Mathematics. For
example, adding 7FH (127) to itself produces a sum of
OFEH, which is the two's complement representation of
-2 (refer back to Table 2j! In "normal" arithmetic, two
positive values can't have a negative sum. Similarly, it js
normally impossible to subtract a positive value from a
negative value and leave a positive result - but in two's
complement there are instances where this. too may
happen. Fundamentally, such anomolies occur when the
magnitude of the resulting value is too great to "fit" into
the.seven bits allowed for it; there is no one-byte two's
complement representation for 254, the true sum of 127
and 127.

10-19

The MCS-SI'· processors detect whether these situations
occur and indicate such errors with the OV flag. (OV may
be tested with the conditional jump instructions JB and
JNB, described under the Boolean Processor chapter.)

At a hardware level, OV is set if there is a carry out of bit 6
but not out of bit 7, or a carry out of bit 7 but not out of
bit 6. When adding signed integers this indicates a
negative number produced as the sum of two positive
operands, or a positive sum from two negative operands;
on S U BB this indicates a negative result after subtracting
a negative number from a positive number, or' a positive
result when a positive number is subtracted from a
negative number.

The ADDC and SUBB instructions incorporate the
previous state of the carry (borrow) flag to allow mUltiple
precision calculations by repeating the operation with
successively higher-order operand bytes. In either case,
the carry must be cleared before the first iteration.

If the input data for a multiple pre-cision operation is an
unsigned string of integers, upon completion the carry
flag will be set if an overflow (for ADDC) ,or underflow
(for SUBB) occurs. With two's complement s.igned data
(i.e., if the most significant bit of the original input data
indicates the sign of the string), the overflow flag will be
set if overflow or underflow occurred.

Example IO-String Subtraction with Signed Overflow
Detection

,sueSTR SUBTRACT STRING INDICATED BV Ri
FROM STRING INDICATED BY RO TO
PRECISION INDICATED BY R2
CHECK FOR SIONED UNDERFL.OW WHEN DONE

SUB5TR CLR C • BORRDWu 0
SUBSI MOV A. (tRO

susa A.I!Rl ,SUBTRACT NEXT PLACE
MOV IRO. fit
INC RO ,BUMP POINTERS
INC Rl
DJNZ Ri2. SUBS1 ,LOOP AS NEEDED

WHEN DONE. TEST IF OVERFLOW OCCURED
ON LAST ITERATION OF LOOP

IN. aV.OV_OK
(OVERFLOW RECOVERY ROUTINE)

Oil_OK RET . RETURN

Decimal addition is possible by using'the DA instruction
in conjunction with ADD and/or ADDC. The eight-bit
binary value in the accumulator resulting from an earlier
addition of two variables (each a packed BCD digit-pair)
is adjusted to form two BCD digits of four bits each. If the
contents of accumulator bits 3-0 are greater than nine
(xxxx 101 O-xxxx I III), or if the AC flag had been set, six
is added to the accumulator producing the proper BCD
digit in the low-order nibble. (This addition might itself
set - but would not clear - the carry flag.) If the carry
flag is set, or if the four high-order bits now exceed nine
(10 10xxxx-1111 xxxx), these bits are incremented by six.
The carry flag is left set if originally set or if either
addition of six produces a carry out of the highest-order
bit, indicating the sum of the original two BCD variables,
is greater than or equal to decimal 100.

AFN~O'502A-21

Example II - Two Byte Decimal Add with Registers
and Constants

,DCDADO ADD THE CONSTANT 1,234 (DECIMAL) TO THE
CONTENTS OF REGISTER PAIR <:R3><R2)
(AL.READY Ito 4 BCD-DIGIT VARIABLE)

seDAnO MQV
ADD
DA
MOV
MOV
ADDe
DA
MOV
RET

A. R<
A, ... 34H
A
R2, A
A. R3
A, ttl.;;!H
A
R3. Ito

Multiplication and Division

The instruction "MUL AB" multiplies the unsigned
eight-bit integer values held in the accumulator and B
registers. The low-order byte of the sixteen-bit product is
left in the accumulator, the higher-order byte in B. If the
high-order eight-bits of the product are all zero the
overflow flag is cleared; otherwise it is set. The
programmer can poll OV to determine when the B
register is non-zero and must be processed.

"DIV AB" divides the unsigned eight-bit integer in the
accumulator by the unsigned eight-bit integer in the B
register. The integer part of the quotient is returned in the
accumulator; the remainder in the B-register. If the B
register originiilly contained OOH then the overflow flag
will be set to indicate a division error, and the values
returned will be undefined. Otherwise OV is cleared.

The divide instruction is also useful for purposes such as
radix conversion or separating bit fields of the
accumulator. A short subroutine can convert an eight-bit
unsigned binary integer in the accumulator (between 0 &
255) to a three-digit (two byte) BCD representation. The
hundred's digit is returned in one register (H UNO) and
the ten's and one's digits returned as packed BCD in
another (TENONE).

Example l2-Use of DIV Instruction for Radix
Conversion

,BINBCD CONVERT a-BIT BINARY VARIABLE IN Ace
TO 3-0IGIT PACKED BCD FORMAT
HUNDREDS' PLACE LEFT IN VARIABLE 'HUND / •
TENS' AND ONES' PLACES IN 'rENONE'

HUND EGU 21M
TENONE EGU 22H

BINBCD MOV
DIV
MOV
MOV
XCH
DIV

B. tHOO
AB
HUND. A
110 •• 10
A.B
AB

SWAP A

• DIVIDE BY 100 TO
,DETERMINE NUMBER OF HUNDREDS

,DIVIDE REMAINDER BY 10 TO
,DETERMINE" OF TENS LEFT
• TENS DIGIT IN Ace. REMAINDER IS ONE5
• DIGIT

ADD A, B ,PACK BCD DIGITS IN ACC
MOV TENONE, A
RET

The divide instruction can also separate eight bits of data
in the accumulator into sub-fields. For example, pack.ed
BCD data may be separated into two nibbles by dividing
the data by 16, leaving the high-nibble in the accumulator
and the low-order nibble (remainder) in B. The two digits
may then be operated on individually or in conjunction
with each other. This example receives two packed, BCD

digits in the accumulator and returns the product of the
two individual digits in packed BCD format in the
accumulator.

Example l3-lmplementing a BCD Multiply Using
MPY and DIV

,MULDeD UNPACK TWO BCD DIGITS RECEIVED IN ACC,
FIND THEIR PRODUCT, AND RETURN PRODUCT
IN PACKED BCD FORMAT IN ACC

HULBCD MOV
DIV

MUL

MOV
DIV
SWAP
ORL
RET

A.
B, *10
A.
A
A ••

,DIVIDE INPUT BY 16
,A ~ D HOLD SEPARo!\TED DIGI rs
,(EACH RIGHT .JUSTIFIED IN REGISTER)
,A HOLDS PRODUCT IN BINARY FORMAT (0 -
,Q9(DECIMAL> ,.. 0 - b3H)
,DIVIDE PRODUCT BY 10
,A HOLDS" OF TENS, B HOLDS REMAJNpER

,PACK DIGITS

logical Byte Operations - ANl, ORl, XRl

The instructions ANl, ORL, and XRl perform the
logical functions AND, OR, and 1 or Exclusive-OR on the
two byte variables indicated, leaving the results in the
first. No flags are affected. (A word to the wise - do not
vocalize the first two mnemonics in mixed company.)

These operations may use all the same addressing modes
as the arithmetics (ADD, etc.) but unlike the arithmetics,
they are not restricted to operating on the accumulator.
Directly addressed byt~s may be used as the destination
with either the accumulator or a constant as the source.
These instructions are useful f,or clearing (ANl), setting
(ORl), or complementing (XRl) one or more bits in a
RAM, output ports, or control registers. The pattern of
bits to be affected is indicated by a suitable mask byte.
Use immediate addressing when the pattern to be affected
is known at assembly time (Figure 14); use the
accumulator versions when the pattern is computed at
run-time.

10-20

1/0 ports are often used for parallel data in formats other
than simple eight-bit bytes. For example, (he low-order
five bits of port I may output an alphabetic character
code (hopefully) without disturbing bits 7-5. This can be a
simple two-step proces~. First, clear the low-order five
pins with an ANl instruction; then set those pins corres
ponding to ones in the accumulator. (This example
assumes the three high-order bits of the accumulator are
originally zero.)

Example 14 - Reconfiguring Port Size with Logical
Byte Instructions

DUT]X ANL Pl,ll1iOOOOOB ,CLEAR BITS,Pl 4 - PI 0
ORL PI. A ,SET P,l PINS CQRRESONDING TO SET Ace

, BITS
RET

,-__ op_co_d_e_--,II dIrect address 11L. __ m_a_Sk __ ...J

ANL P1 ndata

Figure 14. Instruction Pattern for logical, Operation
Special Addressing Modes

In this example, low-order bits remammg high may
"glitch" low for one machine cycle, If this is undesirable,
use a slightly different approach, First, set all pins
corres'ponding to accumulator one bits, then clear the
pins corresponding to zeroes in low-o.rder accumulator
bits. Not all bits will change from original to final state at
the same instant, but no bit makes an intermediate
transition.

Example 15 - Reconfiguring I I 0 Port Size without
Glitching

AL T _px ORL
ORL
ANL
RET

Pl. A
A •• U 1100000a
PI, A

Program Control - Jumps, Calls, Returns

Whereas the 8048 only has a singi.e form of the simple
jump instruction, the 8051 has three. Each causes the
program to unconditionally jump to some other address.
They differ in how the machine code represents the
d-estination address.

LJMP (Long Jump) encodes a sixteen-bit address in the
second and third instruction bytes (Figure IS.a); the
destination may be anywhere in the 64 Kilobyte program
memory address space.

The two-byte AJMP (Absolute Jump) instruction
encodes its destination using the same format as the 8048:
addless bits 10 through 8'form a three bit field in the
opcode and address bits 7 through 0 form the second byte
(Figure 15.b). Address bits 15-12 are unchanged from the
(incremented) contents of the P.C, so AJMPcan only be
used when the destination is known to be within the same
2K memory block. (Otherwise ASMSI will point out the
erroL)

A different two-byte jump instruction is legal with any
nearby destination, regardless of memory block
boundaries or "pages." SJMP (Short Jump) encodes the
destination with a program counter-relative address in
the second byte (Figure 15.c). The CPU calculates the

I a) long Jump (lJMP addr16)

opcode 11'--"-.-"-5---.-.-d'-8 --'11 addr? - addrO

b) Absolule Jump (AJMP addr11):

c) Short Jump (SJMP rei)

I : : >+0: : : ilL--' _,'_0'."'0_011'0.-------1

Figure 15. Jump Instruction Machine Code
Formats

10-21

destination at run-time by adding the signed eight-bit
displacement value to the incremented P.C Negative
offset values will cause jumps up to 128 bytes backwards;
positive values up to 127 bytes forwards. (SJMP with
OOH in the machine code offset byte will proceed with th '
following instruction).

In keeping with the 8051 assembly language goal of
minimizing the number of instruction mnemonics, there
is a "generic" form of the three jump instructions.
AS M 51 recognizes the mnemonic J M P as a '~pseudo
instruction." translating it into the machine instructions
LJMP. AJMP, or SJMP, depending on the destination
address.

Like SJ M P. all conditional jump instructions use relative
addressing. JZ (Jump if Zero) and JNZ (Jump if Not
Zero) monitor the state of the accumulator as implied by
their names. while JC (Jump on Carry) and JNC (Jump
on No Carry) test whether or not the carry flag is set. All
four are two-byte instructions. with the same format as
Figure 15.c. JB (Jump on Bit), JNB (Jump on No Bit)and
JBC (Jump on Bit then Clear Bit) can test any status bit
or input pin with a three byte instruction; the second byte
specifies which bit to test and the third gives the relative
offset value.

There are two subroutine-call instructidns. LC ALL
(Long Call) and ACALL (Absolute Call). Each
increments the P.C to the first byte of the following
instruction. then pushes it onto the stack (low byte first).
Saving both bytes increments the stack pointer by two.
The subroutine's starting address is encoded in the same
ways as LJ M P and AJ M P. The generic form of the call
operation is the mnemonic CALL, which ASM51 will
translate into LCALL or ACALL as appropriate.

The return instruction RET pops the high- and low-order
bytes of the program counter successively from the stack.
decrementing the stack pointer by two. Program
execution continues at the address previously pushed: the
first byte of the instruction immediately following the
call.

When an interrupt request is recognized by the 8051
hardware. two things happen. Program control is
automatically "vectored" toone of the interrupt service
routine starting addresses by. in effect. forcing the CPU
to process an LCALL instead of the next instruction.
This automatically stores the return address on the stack.
(Unlike the 8048. no status information is automatically
saved.)

Secondly. the interrupt logic is disabled from accepting
any other interrupts from the same or lower priority.
After completing the interrupt service routine. executing
an RETI (Return from Interrupt) instruction will return
execution to the point where the background program
was interrupted - just like RET - while restoring the
interrupt logic to its previous state.

Operate-and-branchinstructions - CJNE, DJNZ

Two groups of instructions combine a byte operation
with a conditional jump based on the results.

CJNE (Compare and Jump if Not Equal) compares two
byte operands and executes a jump if they disagree. The
carry flag is set following the rules for subtraction: if the
unsigned integer value of the first operand is less than
that of the second it is set; otherwise, it is cleared.
However, neither operand is modified.

The CJNE instruction provides, in effect, a one
instruction "case" statement. This instruction may be
executed repeatedly, comparing the code variable to a list
of "special case" value: the code segment following the
instruction (up to the destination label) will be executed
only if the operands match. Comparing the accumulator
or a register to a series of constants is a convenient way to
check for special handling or error conditions; if none of
the cases match the program will continue with "normal"
processing.

A typical example might be a word processing device
which receives ASCII characters through the serial port
and drives a thermal hard-copy printer. A standard
routine translates "printing" characters to bit patterns,
but control characters «DEL>' <CR>. <LF>. <BEL>.
<ESC>. or <SP» must invoke corresponding special
routines. Any other character with an ASCII code less
than 20H should be translated into the<NUL>value,
OOH, and processed with the printing characters.

Example 16-Case Statements Using CJNE
CHAR EOU R1 • CHARACTER CODE VARIABLE ,
INTERP CJNE CHAR, 17FH. I HlP 1

(SPECIAL ROUTINE FOR RUDOUT CODE)
RET

INTP _1 CJNE CHAR •• 07H. INTP .• 2
(SPECIAL ROUTINE FOR BELL CODE)

RET
INTP _2 CJNE CHAR •• OAH. INTP~.3

(SPECIAL ROUTINE FOR LFCED CODE)
RET

INTP _3 C.JNE CHAR •• ODH. INTP_4
(SPECIAL RO~TINE FOR RETURN CODE)

RET
INTP _4 CJNE CHAR •• 1BH. INTP_5

(SPECIAL ROUTINE FOR ESCAPE CODE)
RET

INTP _5 CJNE CHAR •• 20H. INTP_6
(SPECIAL ROUTINE FOR SPACE CODE)

RET
INTP _b JC PRINTC , JUMP IF CODE> 20H

MOV CHAR •• O ,REPLACE CONTROL CHA'RACTERS WITH
NULL CODE

PRINTC ,PROCESS STANDARD PRINTING
CHARACTER

RET

DJNZ (Decrement and Jump if Not Zero) decrements
the register or direct address indicated and jumps if the
result is not zero, without affecting any flags. This
provides a simple means for executing a program loop a
given numper of times, or for adding a moderate time'
delay (from 2 to 512 machine cycles) with a single
instruction. For example, a 99-usec. software delay loop
can be added to code forcing an 110 pin low with only
two instructions.

Example l7'-lnserting a Software Delay with DJNZ
CLR WR
MOV R2 •• 4~
DVNZ R2."
SETB WR

10-22

The dollar sign in this example is a special character
meaning "the address of this instruction." It is useful'in
eliminating instruction labels on the same 'or adjacent
source lines. CJNE and DJNZ (like all conditional
jumps) use program-counter relative addressing for the
destination address.

Stack Operations - PUSH, POP

The PUSH instruction increments the stack pointer by
one, then transfers the contents of the single byte variable
indicated (direct'addressing only) into the internal RAM
location addressed by the stack pointer. Conversely,
POP copies the contents of the internal RAM location
addressed by the stack pointer to the byte variable
indicated, then decrements the stack pointer by one.

(Stack Addressing follows the, same rules, and addresses
the same locations as Register-indirect. Future micro
computers based on the MCS-51'· CPU could have up to
256 bytes of RAM for the stack.)

Interrupt service routines must not change any variable
or hardware registers modified by the main program, or
else the program may not resume correctly. (Such a
change might look like a spontaneous random error.)
Resources used or altered by the service routine
(Accumulator, PSW, etc.) must be saved and restored to
their previous value before returning from the service
routine. PUSH and POP provide an efficient and
convenient way to save register states on the stack.

Example 18-Use of the Stack for Status Saving on
Interrupts

LOC_TMP EGU ,REMEMBER LOCATION COUNTER

ORG 0003M, STARTING ADDRESS FOR INTERRUPT ROUTINE
L.JMP SERVER, -JUMP TO ACTUAL SERVICE RoqTINE LOCATED

ORO
SERVER PUSM

PUSH

PUSH
PUSH
PUSH
MOV

POP
POP
POP
POP
POP

RETI

, ELSEWHERE

LOC_TI'IP • RESTORE LOCATION COUNTER
psw
ACC ,SAVE ACCUMULATOR (NOTE' DIRECT ADDRESSING

, NOTATION)
B ,SAVE B REGISTER
DPL ,SAVE DATA POINTER
DPH i
psw, .000010008 . SELE:CT REGISTER BANK 1

OPH
OPL
B
ACC
psw

I RESTORE REGISTERS IN REVERSE ORnER

· RESTORE PSW AND RE-SELECT ORIGINAL
, REGISTER BANK
• RETURN TO MAIN PROGRAM,'AND RESTORE
• INTERRUPT LOGIC

If the SP register held I FH when the interrupt was
detected, then while the service routine was in progress
the stack would hold the registers shown in Figure 16; SP
would contain 26H.

The example shows the most general situation; if the
service routine doesn't alter the B-register and data
pointer, 'for example, the instructions saving and
restoring those registers would not be necessary.

The stack may also pass parameters to and from
subroutines: The subroutine can indirectly address the
parameters derived frilm the contents' of the, stack
pointer.

AFN-01502A~24

RAM
AOOR

7FH

26H

25H

24H

23H

22H

2'H

20H

'FH

OOH

OPH _(SP)

OPL

B

ACC

PSW

PC (HIGH)

PC (LOW)

Figure 16. Stack contents during interrupt

One advantage here is simplicity. Variables need not be
allocated for specific parameters, a potentially large
number of parameters may be passed, and different
calling programs may use different techniques for
determining or handling the variables.

For example, the following subroutine reads out a
parameter stored on the stack by the calling program,
uses the low order bits to access a local look-up table
holding bit patterns for driving the coils of a four phase
stepper motor, and stores the appropriate bit pattern
back in the same position on the stack before returning.
The accumulator contents are left unchanged.

Example I 'f- Passing Variable Parameters to Sub
routines Using the Stack

NXTPOS MOV
DEC
DEC
XCH

ANL
ADO
Move
XCH

RET
STPTBL DB

DB
DB
DB

RO, SP
RO ,ACCESS LOCATION PARAMETER PUSHED INTO
RO
A, @FW ,READ INPUT PARAMETER AND SAVE

• ACCUI'1ULATO~
A, .03H ,MASK ALL BUT LOW-ORDER TWO B I T5
A, *2 ,ALLOW FOR OFFSET FROM Move TO TABLE
A, @A+PC ,READ LOOK-UP TABLE ENTRY
A, @RO ,PASS BACII. TRANSLATED VALUE AND RESTORE

, Ace
,RETURN TO BACKGROUND PROGRAM

011011118 ,POSITION 0
010111118 ,POSITION 1
10011111B ,POSITION 2
101011118 ,POSITION 3

The background program may reach this subroutine with
several different calling sequences, all of which PUSH a
value before calling the routine and POP the result after.
A motor on Port' I may be initialized by placing the
desired position (zero) on the stack before calling the
subroutine and outputing the results directly to a port
afterwards.

Example 20-Sending and Receiving Data Parameters
Via the Stack

CLR A
PUSH Ace
CALL NXTPQS
POP PI

If the position of the motor is determined by the contents
of variable POSM I (a byte in internal RAM) and the
position of a second motor on Port 2 is determined by the
data input to the low-order nibble of Port 2, a six
instruction sequence could update them both.

Example 21- Loading and Unloading Stack Direct
from 1;0 Ports

POSMt EGU 51

PUSH PDSMI
CALL NXTPQS
POP PI
PUSH P2
CALL NXTPOS
POP P2

Data Pointer and Table Look-up instructions -
MOV, INC, MOVC, JMP

The data pointer can be loaded with a 16-bit value using
the instruction MOV DPTR, #dataI6. The data used is
stored in the second and third instruction bytes, high
order byte first. The data pointer is incremented by INC
DPTR. A 16-bit increment is performed; an overflow
from the low byte will carry into the high-order byte.
Neither instruction affects any flags.

The MOVC (Move Constant) instructions (MOVC
A,@A+DPTR and MOVC A.@A+PC) read into the
accumulator bytes of data from the program memory
logical address space. Both use a form of indexed
addressing: the former adds the unsigned eight-bit
accumulator contents with the sixteen-bit data pointer
register, and uses the resulting sum as the address from
which the byte is fetched. A sixteen-bit addition IS

performed; a carry-out from the low-order eight bits may
propagate through higher-order bits, but the contents of
the DPTR are not altered. The latter form uses the incre
mented program counter as the "base" value instead of
the DPTR (figure 17). Again, neither version affects the
flags.

10-23

a) Move A @ A + PC
(LOCAL TABLE
LOOK-UP)

b) Move A @ A+ OPTR
(GLOBAL TABLE
LOOK-UP)

c) JMP @ A+ OPTR
(GLOBAL INDIRECT
JUMP)

1-6-BIT I PC

~ACC

L.. ___ '_S-_BI_T..JI ~~~;~'~~RESS

16- BIT I DPTR

~ACC

L.. ___ '_6-_BI_T..J1 ~~~i~'~~RESS

16-BIT I DPTR

~ACC

L.. ___ '_6-_BI_T.l1 LOADED INTO PC

Figure 17. Operation of MOVC instructions
AFN-01S02A-25

Each can be part of a three step sequence to access look
up tables in ROM. To use the DPTR-relative version.
load the Data Pointer with the starting address of a look
up table; load the accumull!tor with (or compute) the
index of the entry desired; and execute MOVC
A,@A+DPTR. Unlike the similar MOVP3 instructions
in the 8048. the table may be located anywhere in
program memory. The data pointer may be loaded with a
constant for short tables. Or to allow more complicated
data structures. or tables with more than 256 entries. the
values for DPH and DPL may be computed or modified
with the standard arithmetic instruction set.

The PC-relative version has the advantage of not
affecting the data pointer. Again. a look-up sequence
takes three steps: load the accumulator with the index;
compensate for the offset from the look-up instruction to
the start of the table by adding the number of bytes
separating them to the accumulator; then execute the
MOVC A.@A+PC instruction.

Let's look at a non-trivial situation where this instruction
would be used. Some applications store large multi
dimensional look-up tables of dot matrix patterns. non
linear calibration parameters. and so on in a linear (one
dimensionali) vector in program memory. To retrieve
data from the tables. variables representing matrix
indices must be converted to the desired entry's memory
address. For a matrix of dimensions (MDIMEN x
NDIMEN) starting at address BASE and respective
indices INDEXI and INDEXJ. the address of element
(lNDEXI. INDEXJ) is determined by the formula.

Entry Address = BASE + (NDIMEN x INDEX!),+
INDEXJ

The code shown below can access any array with less than
255 entrIes (i.e .. an I I x21 array with 23 I elements). The
table entries are defined using the Data Byte ("DB")
dire~tive. and will be contained in the assembly object
code as part of the accessing subroutine itself.

Example 22 - Use of MPY and Data Pointer Instruc-
tions to Access Entries from a Multi
dimensional Look-Up Table in ROM

,MATRX1 LOAD CONSTANT READ FROM TWO DIMENSIONAL LOOK-UP
TABLE IN PROGRAM MEMORY INTO ACCUMULATOR '
USING LOCAL TABLE LOO!('-UP I,NSTRUCl ION, 'Move A, i!A+PC
THE TOTAL NUMBER OF TABLE ENTRIES IS ASSUMEO TO
BE SMALL, I E LESS THAN ABOUT 2:')0 ENTRIES)
TABLE USED IN THIS EXAMPLE IS (11)(21)
DESIRED ENTRY ADDRESS 15 GIVEN BY THE FORMULA,
r (BASE ADDRESS) + (21 X INDEXI) ... 1 (INDEXJJ 1

INDEXI ECiU
INDEXJ E(lU

Rb
OJH

MAlRXl MOV A,INDEXJ
Move, *21
I'M. AB
ADD A, I NDEX,J

• FIRST COORDINATE OF ENTRY (a-to)
• SECOND COORDINATE OF ENTRY (P-;!O)

ALLOW FOR I NSTRUCT ION BYTE BETWEEN "Move" AND
ENTRY (0.0)
INe~ A
Move' A. C!A+PC
RET

BASEl DB • (entrll 0.0)
DB • tl!ntrll 0.1)

DB
DB

DB

DB

21
22

42

231

• (entry 0,20)
• tentrll 1. 0)

• (entry 1,20)

• (entrll 10.20)

There are several different means for ,branching to
sections of code determined or selected at run time. (The

'single destination addresses incorporated into
conditional and unconditional jumps are. of course.
determined at assembly time). Each has advantages for
different applications.

The most common is an N-way conditional jump based
on some variable. with all of the potential destinations
known at assembly time. One of a number of small
routines is selected according to the value of an index
variable determined while the program is running. The
most efficient way to solve this problem is with the
MOVC and an indirect jump instruction. using a short
table of one byte offset values in ROM to indicate the
relative starting addresses of the several routines.

JMP @A+DPTR is an instruction which performs an
indirect jump to an address determined during program
execution. The instruction adds the eight-bit unsigned
accumulator contents with the contents of the sixteen-bit
data pointer. just like MOVC A.@A+DPTR. The
resulting sum is loaded into the program counter and IS

used as the address for subsequent instruction fetches.
Again. a sixteen-bit addition is performed; a carry out
from the low-order eight bits may propagate through the
higher-order bits. In this case. neither the accumulator
contents nor the data pointer is altered.

The example subroutine below reads a byte of RA Minto
the accumulator from one of four alternate address
spaces. as selected by the contents of the variable
MEMSEL. The address of the byte to be read is
determined by the contents of RO (and optionally R 1). It
might find use in a printing terminal application. where
four different model printers all use the same ROM code
but use different types and sizes of buffer memory for
different speeds and options.

Example 23 - N-Way Branch and Computed Jump
Instructions via JMP @ ADPTR

MEMSEL EQU R3

,JUMP _4 MOV A. MEMSEL
Mav OPTR •• .JMPTBL
Move A. ftA+DPTR
,JMP @A+DPTR

,JMPTBL DB MEMSPO-JHPTBL
DB MEMSP l-.JMPTBL
DB HEMSP2-JHPTBL
DB HEMSP3-JMPTBL

MEM5PO MoV A. @RO ,READ FROM INTERNAL RAM
RET

MEMSP 1 MOVX A. eRo • READ FROM 256 BYTES OF EXTERNAL RAM
RET

I'1EMSP2 MOV DPL. RO
MOV DPH, RI
MQVX A, ItOPTR • READ FROM 64K BYTES OF EXTERNAL RAM
RET

HEH,SP3 MoV A, R 1
ANL 1>" .07H
ANL Pl •• 11111000B
ORL Pl. A
MOVX A. @RO • READ FROM 4K BYTES OF EXTERNAL RAM
RET

NoJe that this approach is suitable whenever the size of
jump table plus the length of the alternate routines is less
than 256 bytes. The jump table and routines may be
located anywhere in program memory. 'independent of
256-byte program memory pages.

AFN-01502A-26

10-24

For applications where up to 128 destinations must be
selected. all of which reside in the same 2K page of
program memory which may be reached by the two-byte
absolute jump instructions. the following technique may
be usel In the above mentioned printing terminal
example. this sequence could "parse" 128 different codes
for ASCII characters arriving via the 8051 serial port.

Example 24-N-Way Branch with 128 Optional
Destinations '

OPTION EQU R3

Jf'IP129 NOV
RL

""" ",..

A. OPTION
A • PWL TlPL v 8'1' 2 FOR 2 BYTE JUfIIP TAIILE
DPTP. _INSTIL • FIRST ENTRY IN JUf'tP TAHI E
IA"'DPTR • .IlR'IP INTO .lU'1P TABLE

INSTIL AJKP PRDCOO. 128 CONSECUTIVE
A.JI'IP PRDCOl. AJttF INST~ucl10NS
AJt'tP pAOC02

~ PRDC]E /It'" PRDC7F

The destinations in the jump table (PROCOO
PROC7F) are not all necessarily unique routines. A large
number of special control codes could each be processed
with their own unique routine. with the remaining
printing characters all causing a branch to a common
routine for entering the character into the output queue.

In those rare situations where even 128 options are
insufficient. or where the destination routines may cross a
2K page boundary, the above approach may be modified
slightly as shown below.

Example 25-256-Way Branch Using Address Look
Up Tables

RTEHP EOU R7

...... P256 PlDY DPTR. _AORTBl • FIRST ENTRY IN TABLE OF ADDRESSES
1'10\1 A.OPTION
CLR C
RLe Pi .MULTIPLY BY 2 FOR 2 BVTE .JVI"IP fAYLE
.INC LOWl2B
INC OPH

LOW12B MQY RTE", A • SAVE ACe FOR HIGH BYTE READ
MOVe A.I,,+OPT" • READ LOW 8VTE FROI'! ..JUMP TABLE
lICH.. A. RTEMP
INC •
I'IOVC A.I""OPTR • gET LOW-ORDER BYTE FRDI'! TABL£
PUSH Ace
I'tOv A. RTEMP
nQ\IC A.I"+DPTR • OET HIC~H-DRDER BYTE FRctI TABLE
PUSH Ace
THE TWO ACe PUSHES HAVE PRODUCED
/It "RETURN ADDRESS" ON THE STACK WHICH CORRESPONDS
TO THE DESIRED STARTiNQ ADDRESS
IT PlAV 8E REACHED BV POPpi ING fHE STACK
INTO THE PC
RET

AnRt8L DW PRocao • UP TO 256 CONSECUTIVE DATA
ow PROCOI • WORDS INDICATINQ STARTINQ ADDRESSES

ow PROCFF

0Vf'II'I'f' CDDE ADDRESS DEFINITIONS N!EDEO BV ABOVE
TWO EXAl'lPLES

PROCOO NOP
PRotOl NOP
PROC02 NOP
PRobE HOP
PRQC1F NOP
PR'PCFF NaP

4. BOOLEAN PROCESSING INSTRUCTIONS

The commonly accepted terms for tasks at either end of
the computational vs. control application spectrum are.
respe~tively. "number-crunching" and "bit-banging".

Prior to the introduction of the MCS-5I'M family. nice
number-crunchers made bad bit-bangers and vice versa.
The 8051 is the industry's first single-chip micro
computer designed to crunch and bang. (In some circles.
the latter technique is also referred to as "bit-twiddling".
Either is correct.)

Direct Bit AddressIng

A number of instructions operate on Boolean (one-bit)
variables. using a direct bit addressing mode comparable
to direct byte addressing. An additional byte appended to
the opcode specifies the Boolean variable. I/O pin. or
control bit used. The state of any of these, bits may be
tested for "true" or "false" with the conditional branch
instructions JB (Jump on Bit) and JNB (Jump on Not
Bit). The JBC (Jump on Bit/ and Clear) instruction
corpbines a test-for-true with an unconditional clear.

As in direct byte addressing, bit 7 of the address byte
switches between two physical address spaces. Values
between 0 and 127 (00H-7FH) define bits in internal
RAM locations 20H to 2FH (Figure 18a); address bytes
between 128 and 255 (80H-OFFH) define bits in the 2 x
"speciaH"unction" register address space (Figure 18b). If
no 2 x "&pecial-function" register corresponds to the
direct bit address used the result of the instruction is
undefined.

Bits so addressed have many wondrous properties. They
may be set, cleared, or complemented with the two byte
instructions SETB. CLR. or CPL. Bits may be moved to
and from the carry flag with MOV. The logical ANL and
ORL functions may be performed between the carry and
ei~her the addressed bit or its complement.

Bit Manipulation Instructions - MOV

The "MOV" mnemonic can be used to load an
addressable bit into the carry flag ("MOV C, bit") or to
copy the state of the carry to such a bit ("MOV bit. C").
These instructions are often used for implementing serial
I/O algorithms via software or to adapt the standard I/O
port structure ..

It is sometime~ desirable to "re-arrimge" the orderofI/O
pins because of considerations in laying out printed
circuit boards. When interfacing the 8051 to an
immediately adjacent device with "weighted" input pins,
such as .keyboard column decoder, the corresponding
pins are likely to be not aligned (Figure 19).

There is a trade-off in "scrambling" the interconnections -
with either interwoven circuit board traces or through
software. This' is extremely cumbersome (if not
impossible) to do with byte-oriented computer
architectures. The 8051's unique ~et of ,Boolean
instructions makes it simple to move individual bits
between arbitrary locations.

AFN-01502A-27

10·25

a.) RAM Bit AddresteS.

RAM
BYTE

7l'H

2FH

2EH

2DH

2CH

2BH

2AH

29H

28H

27H

26H

25H

24H

23H

22H

21H

20H

lFH

18H
17H

10H

OFH

08H
07H

OOH

Figure

(MSB)

1
7F

77

6F

67

SF

57

4F

47

3F

37

2F

27

IF

17

OF

07

8351
8751

19.

7E 70

16 15

6E 60

66 65

5E 50

68 55

4E 41!

46 45

3E 3D

36 35

2E 20

26 25

IE 1'0

16 15

DE OD

06 05

ALE

PSEN

P2.7

P26

P2.5

P2.4

P2.3

P2.2

P2.1

P2.0

"Mismatch"
Decoder

1C 7B 7A

14 73 72

6C 6B 6A

64 63 62

5C 5B SA

54 53 52

4C 4B 4A

44 43 42

3C 3B 3A

34 33 32

2C 2B 2A

24 23 22

lC lB lA

14 13 12

DC os OA

04 03 02

Bank 3

Bank 2

Bank 1

Bank 0

(LSB)
AD

Al

A2

A3

A4
(MSB)

Between

(LSB)

1
79 78

71 70

69 88

61 60

59 58

51 50

49 48

41 40

39 38

31 30

29 28

21 20

I. 18

11 10

09 08

01 00

b.) Hardware Regl,ter Bit Addre, .. ,.

01_

~.:... (MbB)

OFfH

OFOH F7 1 F6 1 F51 F41 F3 1 F21 Fl 1

OEOH E1J E61 E5 I E41 E31 E21 Ell

(LSB)

FO

EO

ODOH 071061051041031021011 DO

OB8H -1-1-1 Bcl BBJBA.I B91 'B8

OSOH B7 I B61 B51 B41 B31 B21 Bll BO

OABH AF 1 -1-1 AC I AB1AA1 A91 A8

OAOH A7 I A6 I AS I A4 I A3 I A2 I Al I AD

98H 9F I 9E laolsclaa 19AI .. '1 98

90H 97196195194193192J 91 J 90

88H 8F I 8E I 80 I 8C I 8B I 8A 1 89 1 88

80H 87 166 I 85 184183182181180

Hardware
Register
Symbol

B

ACC

PSW

IP

P3

IE

P2

SCON

Pl

TCON

PO

Figure 18. Bit Address Maps

DECODER

1/0 port

Example 26 - Re-ordering I/O Port Configuration

OUT]Z RRC A • MOVE ORIGINAL. ACC 0 INTO CV
MOV P2 b,·C I STORE CARRY TO PIN P2b
RRC A .110VE ORIGINAL. ACC 1 INTO CY
MOV P2, "C • STORE CARRY TO PIN P25
RRC • ,MOVE ORIGINAL. ·ACC 2 INTO CY
MOV P2 4. C ,STORE CARRY TO PIN P24
RRC • ,MOVE ORIGINAL. AC,C 3 INn:: cv
MOV P2 3. C ,STORE CARRY TO PIN P23
RRC • ,MOVE ORIGINAL. Ace 4 INTO CY
MOV P2 2. C ,STORE CARRY TO PIN P22
RET

Solving Combinatorial Logic Equations - ANL, ORL

Virtually all hardware designers are familiar with the
problem of solving complex' functions using
combinatorial logic. The technologies involved may vary
greatly. from multiple contact relay logic. vacuum tubes.
TTL. or CMOS to more esoteric approaches like fluidics.
but in each case the goal is the same: a Boolean

and (true/false) function is computed on a number of
Boolean variables.

10-26

b.) Relay logic .

•.) TTL

CR.

CR2
Q:o (U .(V+W)+(XeY)+Z

z

Figure 20. Implementations of Boolean functions

Figure 20 shows the logic diagram for an arbitrary
function of six variables named U through Z using
standard logic and relay logic symbols. Each is a solution
of the equation.

Q :: (U • (V + W)) + (X • Y) + Z

(While this equation could be reduced using Karnaugh
Maps or algebraic techniques. that is not the purpose of
this example. Even a minor change to the function
equation would require re-reducing from scratch.)

Most digital computers can solve equations of this type
with standard word-wide logical instructions and
conditional jumps. Still. such software solutions seem
somewhat sloppy because of the many paths through the
program the computation can take. .

Assume U and V are input pins being read by different
input ports. Wand X are status bits for two peripheral
controllers (read as I/O ports). and Y and Z are software
flags set or cleared earlier in the program. The end result
must be written to an output pin on some third port.

For the sake of comparison we will implement this
function with software drawn from three proper subsets
of the MCS-51'· instruction set. The first two
implementations follow the flow chart shown in Figure
21. Program flow would embark on a route down a test
and-branch tree and leaves either the "True" or "Not
True" exh ASAP. These exits then write the output port
with the data previously written to the same port with the
result bit respectively one or zero.

In the first case. we assume there are no instructions for
addressing individual bits other than special flags like the
carry. This is typical of many older microprocessors and
mainframe computers designed for number-crunching.
MCS-51'· mnemonics are used here. though for most
other maGhines the issue would be even further clouded
by their· lise of operation-specific mnemonics like

10-27

INPUT. OUTPUT. LOAD. STORE. etc" instead of the
universal MOV.

(CONTINUE)

Figure 21. Flow chart for tree-branching logic'
implementation

AFN-01502A-29

Example 27 -Software Solution to Logic Function of
Figure 20, Using only Byte-Wide Logical
Instructions

,BFUNC 1 SOLVE A RANDOM LOGIC FUNCTION OF 6
VARIABLES BY LOADING AND MASKING THE APPROPRIATE
BITS IN THE ACCUMULATOR, THEN EXECUTING CONDITIONAL
JUMPS BASED 'ON ZERO CONDITION
<APPROACH USED BY BYTE-ORIENTED ARCHITECTURES)
BVTE AND MASK VALUES CORRESPOND TO RESPECTIVE
BYTE ADDRESS AND BIT POSITION

OUTBUF EOU 22H ,OUTPUT PIN STATE MAP

TESTV MOV A, P2
ANL A •• 000001008
"N' TESTU
MOV A. TeON
ANL A, .0010000013

"' TEsn
TES1U MOV A, PI

ANL A, 1000000100

"N' SErG
TEST X MOV A. TeON

ANL A •• 000010000

"' TESTZ
MOV A,20H
ANL A •• 0000000 1 B

"' SETO
TESTZ MOV A,21H

ANL A •• 000000108

"' SETO
CLRO MOV A,OUTBUF

ANL A,..111101110
"MP ourG

SEra MOV A,DUTBUF
ORL A, *00001000B

OVTO MOV OUTBUF. A
MOV P3. A

Cumbersome, to say the least, and error prone. It would
be hard to prove the above example worked in all cases
without an exhaustive test.

Each movel mask I conditional jump instruction
sequence may be replaced by a single bit-test instruction
thanks to direct bit addressing. But the algorithm would
be equally convoluted.

Example 28 -Software Solution to Logic Function of
Figure 20, Using only Bit-Test
Instructions

,BFUNC2 SOLVE A RANDOM LOGIC FUNCTION OF 6
VARIABLES BY DIf'tECTLV POLLING EACH BIT
(APPROACH USING MCS-:!il UNIQUE BIT-TEST
INSTRUCTION CAPABILITY)

TEST _v

TEST _U
TEST _x

TEST _Z
CLR_G

SET_G
NXTTST

SYMBOLS USED IN LOGIC DIAGRAM ASSIGNED TO
CORRESPONDING 80:51 ~1T ADDRESSES

BIT PI 1
BIT P2 2
BIT TFO
BIT lEI
BIT 20H 0
BIT 21M 1
BIT P3 3

"B V, TEST_U
"NB W, TEST_X
JB u, SET_Q
"NB X, TEST_Z
"NB V,SET_Q
"NB Z, SET_G
CLR 0
"MP NXTTST
SETB 0

• (CONTINUATION OF PROGRAM)

A more elegant and efficient 8051 implementation uses
the Boolean ANL and ORL functions to generate the
output function using straight-line code. These
instructions perform the corresponding logical
operations between the carry flag ("Boolean
Accumulator") and the addressed bit, leaving the result in
the carry. Alternate forms of each instruction (specified
in the assembly language by placing a slash before the bit
name) \I~e the compl~ment of the bi,t's Slate as the input
operand:

These instructions may be "strung together~' to simulate a
multiple input logic gate. When finished, the carry flag
contains the result, which may be moved directly to the
destination or output pin. No flow chart is needed - it is
simple to code directly from the logic diagrams in Figure
20.

Example 29 - Software Solution (0 Logic Function of
Figure 20, Using the MCS-51 (TM)
Unique Logical Instructions on Boolean
Variables

,BFUNC3 SOLVE A RANDOM LOGIC FUNCTION OF b
VARIABLES USING STf'tAIGHT-LINE LOGICAL INSTRUCTIONS
ON MCS-51 BOOLEAN VARIABLES

MOV
ORL
ANL
MOV

ANL
ORL
ORL
MOV

C. v
C. w
C. U
FO. C
C. x
C. IV
C. FO
C./Z
Q. C

,OUTPUT OF OR GATE
,OUTPUT OF TOP AND GATE
• SAVE INTERMEDIATE STATE

,OUTPUT OF BOTTOM AND GATE
, INCLUDE VALUE SAVED ABOVE
, INCLUDE LAST INPUT VARIABLE
,OUTPUT COMPUTED RESULT

Simplicity itself. Fast, flexible, reliable. easy to design.
and easy to debug.

The Boolean features are useful and unique enough to
warrant a complete Application Note of their own.
Additional uses and ideas are presented in Application
Note AP-70, Using the Intel® MCS-51® Boolean
Processing Capabilities, publication number 121519.

5. ON-CHIP PERIPHERAL FUNCTION
OPERATION AND INTERFACING

I/O Ports

The I/O port versatility results from the "quasi
bidirectional" output structure depicted in Figure 22.
(This is effectively the structure of ports 1.2, and 3 for
normal 110 operations. On port 0 resistor R2 is disabled
except during multiplexed bus operations. providing

INT'ERNAL
BUS

WRITE
PULSE

BUS
CYCLE
TIMING

READ/MODIFY/
WRITE

D

D
FLIP
FLOP

ClK

READ

Q

aH---l

INPUT
BUFFER

+5V +5V

RI
110
PIN

PORT 1,2
AND3

Figure 22. Pseudo-bidirectional I/O port circuitry
AFN-01502A-30

10-28

essentially open-collector outputs. For full electrical
characteristics see the User's Manual.)

An output latch bit associated with each pin is updated by
direct addressing instructions when that port is the
destination. The latch state is buffered to the outside
world by R I and Q I, which may drive a standard TTL
input. (In TTL terms, Q I and R I resemble an open
collector output with a pull-up resistor to Vcc.)

R2 and Q2 represent an "active pull-up" device enabled
momentarily when a 0 previously output changes to a I.
This '''jerks'' the output pin to a I level more quickly than
the passive pull-up, improving rise-time significantly if
the pin is driving a capacitive load. Note that the active
pull-up is only activated on O-to-I transitions at the
output latch (unlike the 8048, in which Q2 is activated
whenever a I is written out).

Operations using an input port or pin as the source
operand use the logic level ofthe pin itself, rather than the
output latch contents, This level is affected by both the
microcomputer itself and whatever device the pin is
connected to externally. The value read is essentially the
"OR-tied" function of QI and the external device. If the
external device is high-impedence, such as a logic gate
input or a three state output in the third state, then
reading a pin will reflect the logic level previously output.
To use a pin for input, the corresponding output latch
must be set. The external device may then drive the pin

with either a high or low logic signal. Thus the same port
may be used as both input and output by writing ones to
all pins used as inputs on output operations, and ignoring
'all pins used as output on an ihput operation.

In one operand instructions (INC, DEC, DJNZ and the
Boolean CPL) the output latch rather than the input pin
level is used as the source data. Similarly, two operand
instructions using the port as both one source and the
destination (ANL, ORL, XRL) use the output latches.
This ensures that latch bits corresponding to pins used as
inputs will not be cleared in the process of executing these
instructions.

The Boolean operation J BC tests the output latch bit,
rather than the input pin, in deciding whether or not to
jump. Like the byte-wise logical operations, Boolean
operations which modify individual pins of a port leave
the other bits of the output latch unchanged.

A good example of how these modes may play together
may be taken from the host-processor interface expected
by an 8243 I/O expander. Even though the 8051 does' not
include 8048-type instructions for interfacing with an
8243, the parts can be interconnected (Figure 23) and the
protocol may be emulated with simple software.

10-Z9

Example 30 - Mixing Parallel Output, Input, and
Control Strobes on Port 2

, IN8243 INPUT DATA FROM AN 8<:::43 [10 F"l(PANDE:R
CQNNECTEn TO P2~~-P20

P.!5 ., P;;!4 MIMIC CS I ~ PRDG
P;'.'7-P!2o USED AS INPUTS
Pr>R r TI) Sf REAO 1 N Ace

IN8243 OP f\, .. 110100000
Ml1'.' 1';"', A ,OUTPUT iNSTRl)CTION CODE
CLR p,~ 4 ,FAL LING EDGE OF PROG
0111 1-';!,t.oOOOllllB ,SI;T FOIo/ INPur
MO'. ,', P2 ,R~AJ) INPUT OATA
SEn f';' 4 ,RETURN PROG HI~.H

SE re P;-> 5 . CE'-SEl EeT CHIP

Serial Port and Timer applications

Configuring the 8051's Serial Port for a given data rate
and protocol requires essentially three short sections of
software. On power-up or hardware reset the serial port
and timer control words must be initialized to the
appropriate values. Additional software is also needed in
the transmit routine to load the serial port data register
and in the receive routine to unload the data as it arrives.

This is best illustrated through an arbitrary example.
Assume the 8051 will communicate with a CRT
operating at 2400 baud (bits per second). Each character
is transmitted as seven data bits, odd parity, and one stop
bit., This results in a character rate of 2400/10=240
characters per second.

For the sake of clarity, the transmit and receive
subroutines are driven by simple-minded software status
polling code rather than interrupts. (It might help to refer
back to Figures 7-9 showing the control word formats.)
The serial port must be initialized to 8-bit UART mode
(MO, MI=OI), enabled to receive all messages (M2=O,
REN= I). The flag indicating that the transmit register is
free for more data will be artificially set in order to let the
output software know the output register is available.
This can all be set up with one instruction.

Example 31 - Serial Port Mode and Control Bits

..51
8751

• SPINIT INITIALIZE SERIAL PORT
FOR 8-BIT UART MODF
, SET TRANS" I T READV FLAG

SPINlT MOV SCON •• 010100108

8243

P2.7
} INPUTS

PU

P2 .• cs
P2.4 PROG

P2.3 P23

P2.2 P22
P2.1 P21
P2.0 P20

P4

P.

P6

Figure 23. Connecting an 8051 with an 8243
I/O Expander

AFN-01502A-31

Timer I will be used in auto-reload mode as a data rate
generator. To achieve a data rate of 2400 baud, the timer
must divide the I MHz internal clock by 32 x (desired
data rate):

I x 1()6
(32) (2400)

which equals 13.02 rounded down to 13 instruction
cycles. The timer must reload the value -13, or OF3H.
(ASMSI will accept both the signed decimal or hexa
decimal representations.)

Example 32 -'Initializing Timer Mode and Control Bits
,TltNIT INITIALIZE TIMER 1 FOR

AUTO-RELOAD AT 32*2400 HZ
(TO USED AS OATED U.-B IT COUNTER)

T1 INIT MOV TCON. *110100109
MOV THI.I-13
SETB TRI

. A simple subroutine to transmit the character passed to it
in the accumulator must first compute the parity bit,
insert it into the data byte, wait untilthe transmitter is
available, output the character, and return. This is nearly
as easy said as done.

Example 33 -Code for UART Output, Adding Parity,
Transmitter Loading

• sp OUT ADD ODD PAR lTV TO Ace AND
- TRANSMIT WHEN SERIAL PORT READY

SP _OUT 1"101,1
ePL
MOV
JNB
eLR
MOV
RET

e. P
e
Ace 7. C
TI. $

TI
SOUF. A

A simple minded routine to wait until a character is
received, set the carry flag if there is an odd-parity error,
and return the masked seven-bit code in the accumulator
is equally short.

Example 34-Code for UART Reception and Parity
Verification

,SP _IN INPUT NEXT CHARACTER FROM SERIAL PORT
SET CARRY IFF ODD-PARITY ERROR

SP _IN ')NB RI. $

eLA RI
HOV A. SOUF
MOV C. P
CPL C
ANL A.17FH
RET

6. SUMMARY

This Application Note has described the architecture,
instruction set, and on-chip peripheral features of the
first three members of the MCS-51'· microcomputer
family. The examples used throughout were admittedly
(and necessarily) very simple. Additional examples and
techniques may be found in the MCS-SI'· User's Manual
and other application notes written for the MCS-48'· and
MCS-SI'· families.

Since its introduction in 1977, the MCS-48'· family has
become the industry standard single-chip
microcomputer. The MCS-SI ,. architecture expands the
addressing capabilities and instr,uction set of its
predecessor while ensuring flexibility for the future, and
maintaining basic software compatability with the past.

Designers already f<;lmiliar with the 8048 or 8049 will be
able to take with them the education and experience
gained from past designs as ever-increasing system
performance demands force them to move on to state-of
the-art products, Newcomers will find the power and
regularity of the. 80S I instruction set an advantage ·in
streamlining both the learning and design processes.

Microcomputer system designers will appreciate the 80S I
as basically a single-chip solution to many problems
which previously required board-level computers.
Designers of real-time control systems will find the high
execution speed, on-chip periphj!rals, and interrupt
capabilities vital in meeting the timing constraints of
products previously requiring discrete logic pesigns. And
designers of industrial controllers. will be able to convert
ladder diagrams directly from testeq-and-true TTL or
relay-logic designs to microcomputer software. thanks to
the unique Boolean processing capabilities.

It has not been the intent of this note to gloss over the
difficulty of designing microcomputer-based systems. To
be sure. the hardware and software design aspects of any
new computer system are nontrivial tasks. However. the
system speed,and level of integration of the MCS-SI'·
microcomputers; the power and flexibility of the
instruction set. and the sophisticated assembler and other
support products combine to give both the hardware and
software designer as much of a head start on the problem
as possible.

AFN-01502A-32

10-30

Using the
Intel MCS®-51

Boolean Processing
Capabilities

Contents

1. INTRODUCTION. 10-32

2. BOOLEAN PROCESSOR OPERATION 10-32

Processing Elements. 10-33
Direct Bit Addressing 10-34
Instruction Set. 10-39
Simple Instruction Combinations. 10-40

3. BOOLEAN PROCESSOR APPLICATIONS 10-41

Design Example #1 - Bit Permutation. 10-42
Design Example '/12 - Software Serial 110. 10-45
Design Example #3 -

Combinatorial Logic Equations. 10-46
Design Example #4 -

Automotive Dashboard Functions. 10-49
Design Example #5 -

Complex Control Functions 10-54
Additional Functions and Uses. 10-59

4. SUMMARY ... 10-60

APPENDIX A 10-61

10-31

1. INTRODUCTION

The Intel microcontroller family now has th~ee new.
memhcr, the Intel® XOJ I. X051. and X751 ,ingle-chip
microcomputer,. These devices. shown in Figure I.. will
allow whole new classes of pr~ducts to benefit from rec~nt .
advances in Integrated Electronics. Thanks to Intel'sne\\!'
HMOS'" technology. they prO\ ide larger pi'(lgram' and
data memory spaces. more flexible I 0 and peripheral
capahilitie,. greater 'peed. and lower system cost than any
previou~-generatlon single-chip microcomputer.

P1 0 - C 1 ,\J 4Q:J'-vcc

P11 - C 2 39::1-POO

P12- t 3 38::::J -POl

P13- [4 37 J -P02

PH-CS 36 :J - P03

,.15-[• 35 J -P04

Pl.6 - C 7 34 J -P05

P17 - C 8 33 J,P06

VPOIRST - [9 32 J -P07

P3 O/RXD - C 10 31 ::J - VDOIEA

P311TXD - [11 30 J - PROG/ALE

P321iN'TO - [12 6031 29 J - PSeN
P3.~iNTi - [13

6051
28 J -P27 8751

P34/TO - [14 27:::J -P26

P35/TI - C 15 26::1-·25

P36/WR - [16 25::]-P24

P37/iiD - [11 24::J -P23

XTAL2 - t 18 23:::J -P22

XTAll - C 19 22::::J- P21

VSS-[20 21 J -P20

Figure 1. 8051 Family Pinout Diagram.

Table I summari7es the quantitative differences between
the members of the MCS_48™ and 8051 families. The 8751
contains 4K bytes of EPROM program memory fabri
cated on-chip. while the 8051 replaces the EPROM with
4K bytes of lower-cost mask-programmed ROM. The
8031 has no program memory on-chip; instead. it accesses
up to 64K bytes of program memory from external
memory. Otherwise. the three new family members are
identical. Throughout this Note. the term "8051" will
represent all members of the'805! Family. unless specifi
cally stated otherwise.

The CPU in each microcomputer is one of the industry's
fas.test and most efficient fo~ 'numerical. calculations on

. byte operands. But controllers often deal with bits. n()t
bytes: in the reaI'worid. sWitch contacts can only be open
or closed. indicators should be ei.ther lit or dark. motors
are either turned on or off. and so forth. For such control
situations the most significant aspect of the MCS_5ITM
architecture is its complete hardware support for one-bit.
or Boolean variables (named in honor of Mathematician
George Boole) a,. a separate data type.

The 805,1 inco'rporates a number of special features which
support the direct manipulation and testing of individual
bits and allow the use of single-bit variables in performing
logical operations. Taken together. these features are
referred to as the MCS_5I™ Boolean Processor. While the
bit-processing capabilities alone would be adequate. to
solve many control applications. their true power comes
when they are used in conjunction with the microcompu
ter's byte-processing and numerical capabilities,

Man~ concep" embodied by the Boolean Procc"or will
. certainly be new even to experienced microcomputer sys

tem designers. The purpose of this Applicatio'n Note is to
explain these concepts and show how theyare used. It is
assumed the reader has read Application Note AP-69. An
Introduction to the Intel® MCS-5J™ Single-Chip Micro
computer Family, publication number 121518. or has
been exposed to Intel's single-chip microcomputer pro
duct line"

For detailed information on these parts refer to the Intel
MCS-5pM Family User's Manual. publication number
121517, The instruction set. assembly language. and use of
the 8051 assembler (ASM51) are further described in the
MCS·5pM Macro Assembler User's Guide. publication
number 9800937.

2. BOOLEAN PROCESSOR OPERATION
The Boolean Processing capabilities of the 8051 are based
on concepts which have been around for some time. Dig
ital computer systems of widely varying designs all have
four functional elements in common (Figure 2):

Table 1. Features of Intel's Single·chipMicrocomputers.

EPROM ROM External Program Data Instr. Input/' Interrupt Reg.
Program Program Program Memory Memory Cycle Output Sources Banks
Memory Memory Memory (Int/Max) (Bytes) Time Pins

8021 - IK IK 64 10 ~Sec 21 0 I
_. 8022 .. 2K 2K 64 10 ~Sec 28 2 I

8748 8048 8035 IK 4K 64 2.5 ~Sec 27 2 2
- 8049 8039 2K 4K 128 1.36~Sec 27 2 2

8751 8051 8031 . 4K 64K 128 1.0 ~Sec 32 5 4

01489A-03

10·32

• a central processor (CPU) with the control, timing.
and logic circuits needed to execute stored
instructions;

• a memory to store the sequence of instructions
making up a program or algorithm;

• data memory to store variables used by the program;
and

• some means of communicating with the outside
world.

PROGRAM
MEMORY

DATA
MEMORY

INPUTI
OUTPUT
PORTS

LAL
fORLO

Figure 2. Block Diagram for Abstract Digital
Computer. .

The CPU usually includes one or more accumulators or
special registers for computing or storing values during
program execution. The instruction set of such a proces
sor generally includes. at a minimum. operation classes to
perform arithmetic or logical functions on program vari
ables. move variable, from one place to another. cau~e
program execution to jump or conditionally branch based
on register or variable states. and instructions to call and
return from subroutines. The program and data memory
functions sometimes share a single memory space. but this
is not always the case. When the address spaces are separ
ated. program and data memory'need not even have the
same basic word width.

A digital computer's flexibility comes in part from com
bining simple fast operations \0 produce more complex
(albeit slower) ones, which in turn link together eventually
solving the problem at hand. A four-bit CPU executing
mUltiple precision subroutines can. for example. perform
M-bit addition and subtraction. The subroutines could in
turn be building blocks for floating-point multiplication
and division routines. Eventually. the four-bit CPU can
simulate a far more complex "virtual" machine. '

In fact. any digital computer with the above four func
tional elements can (given time) complete any algorithm
(though the proverbial room full of chimpanzees at word

10-33

proce,\or, might fir,t IT-create Shake'peure\ c1a,,,c,
and this Application Note)! Thi, fact offer, little consola
tion to product designers who want program, to run a,
quickly as possible. By definition, a real-time control algo
rithm must proceed quickly enough to meet the preor
dained speed constraints of other equipment.

One of the factors determining how long it will take a
microcomputer to complete a given chore is the number of
instructions It must execute. What makes a given compu
ter architecture particularly well-or poorly-,uitcd for a
class of problems is how well its instruction set matches
the tasks to be performed. The better the "primative"
operations correspond to the steps taken by the control
algorithm. the lower the number of instructions needed.
and the quicker the program will run. All else being equal,
a CPU supporting M-bit arithmetic directly could clearly
perform floating-point math faster than a machine
bogged-down by mUltiple-precision subroutines. In the
same way: direct support for bit manipulation n'aturally
leads to more efficient programs handling the binary input
and output conditions inherent in digital control problems.

Processing Elements
The introductIOn stated that the 8051's bit-handling capa
bilities alone would be sufficient to !>olve some control
applications. Let's see how the four basic elements of a
digital computer - a CPU with associated registers. pro
gram memory. addressable data RAM. and 110 capab,il
ity - relate to Boolean variables.

cpu. The 8051 ('PU incorporates special logic devoted to
executing several bit-wide operations. All told. there are
17 such instructions. all listed in Table 2. Not shown are 94
other (mostly byte-oriented) 8051 instructions.

Pro~ram Memory. Bit-processing instructions are fetched
from the same program memory as other arithmetic and
logical operations. In addition to the instructions of Table
2. several sophisticated program control features like mul
tiple addressing modes. subroutine nesting. and a two
level interrupt structure are useful in structuring Boolean
Processor-based programs.

Boolean instructions are one. two. or three bytes long.
depending on what function they perform. Those involv
ing only the carry flag have either a single-byte opcode or
an opcode followed by a conditional-branch destination
byte (Figure 3.a). The more general instructions add a
"direct address" byte after the opcode to specify the bit
affected. yielding two or three byte encodings (Figure 3. b).
Though this format allows potentially 256 directly addres
sable bit locations. not all of them are implemented in the
8051 family.

01489A-Q4

Table 2. MCS-S1TM Boolean Processing Instruction
Subset.

Mnemonic Description Byte Cyc

SETB C Set Carry flag I
SETS bit Set direct Bit 2
ClR C Clear Carry flag I
CLR bit Clear direct bIt
CPI C Complement Carry flag I
CPL hit Complement direct hit 2

MOY Chit Mme direct hIt to Carry flag 2 I
MOY bit.C Move Carry flag to direct bit 2 2

A"IL Chit A "I D direct bit to Carry nag
A"II Chit A"ID complement of direct hit to

Carry 'flag
ORL Cbit OR direct hit to Carry flag
ORL C bit OR complement of direct bit to

Carry nag

JC rei Jump If Carry I' flag i, ,et 2
J"IC rei Jump if \io Carry flag 2
JB blue! Jump If direct Bit ,et 3 2
J"IB hiLrd Jump If direct Bit "lot 'et 3 2
JBC hiLrel Jump If direct Bit IS ,et & Clear bit 3 2

Address mode abbreviations:

C - Carry flag.

bit 128 software flags. any I 0 pin. control or stalus
bit

rei All conditional jumps include an 8-bit offset byte.
Range is + 127 -128 bytes relative to first byte of
the following instruction. '

All mnemonics copyrighted© Inlel Corporation 1980

DolO Memorr. The instructions in Figure 3.b can operate
directly upon 144 general purpose bits forming the Boo
lean processor "RAM." Thew bih can be used as sofware
flag' or to store program variables. Two operand instruc
tiom use the CPU's carry flag (HC") as a special one-bit
register: in a sem,c. the carry is a "Boolean accumulator"
for logical operations and data transfers.

InflW/OUlflUI. All 32 I' 0 pins can be addressed as indi
vidual inputs. outputs. or both. in any combihation. Any
pin can be a control strobe output. status (Test) input. or
serial I 0 link implemented via software. An additional
33 individually addressable bits reconfigure. control. and
monitor the status of the CPU and all on-chip peripheral
functions (timer counters. serial port modes. interrupt
logic. and so forth).

10-34

I opcode I
SETB C
CLR C
CPL C

I opcode II displacement I
JC rei
JNC rei

a.) Carry Control and Test Instructions.

I opcode II bit address I
SETB bit
CLR bit
CPL bit
ANLC, bit
ANL C,I bit
ORLC, bit
ORL C,I bit
MOVC, bit
MaV bit,C

I opcode II bit address II displacement I
JB bit, rei
JNB bit, rei
JBC bit. rei

b.) Bit Manipulation and Test Instructions.

Figure 3; Bit Addressing Instruction Formats.

Direct Bit Addressing
The most significant bit of the direct address byte selects
one of two groups of bits. Values between 0 and 127 (OOH
and 7FH) define bits in a block of 32 bytes of on-chip
RAM. between RAM addresses 20H and 2FH (Figure
4.a). They are numbered consecutively from the lowest
order byte's lowest-order bit through the highest-order
byte's highest-order bit.

Bit addresses between 128 and 255(80H and OFFH) cor
respond to bits in a number of special registers. mostly
used for I 0 or peripheral control. These positions are
numbered with a different scheme than RAM: the five
high-order address bits match those of the register's own
address. while the three low-order bits identify the bit
position within that register (Figure 4.b).

01489A-05

RAM
Byte (MSB)

7FH~
2FH

2EH

20H

2CH

2BH

2AH

29H

28H

27H

26H

25H'

24H

23H

22H

21H

20H

1FH

18H
17H

10H
OFH

08H
07H

00

1"--

7F

77

6F

67

SF

57

4F

47

3F

37

2F

27

1F

17

OF

07

7E

76

6E

66

5E

56

4E

46

3E

36

2E

26

1E

16

OE

06

70 7C 711

75 74 73

60 6C 6B

65 64 63

50 5C 5B

55 54 53

40 4C 4B

45 44 43

3D 3C 3B

35 34 33

20 2C 2B

25 24 23

10 1C 1B

15 14 13

00 OC OB

05 04 03

Bank 3

Bank 2

,Bank 1

BankO

a.) RAM Bit Addresses.

7A

72

6A

62

5A

52

4A

42

3A

32

2A

22

1A

12

llA

02

Direct Bit Addresses HaTdw.re

(lSB)
Byte Register
Address (MSB) (lSB) Symbol

OFFH

1'- OFOH F7 FO B

79 78

71 70 OEOH E7 EO ACC

69 68

61 60 OOOH 07 DO PSW

59 58

51 50 OB8H B8 IP

49 48

41 40 OBOH B7 BO P3

39 38

31 30 OA8H AF A8 IE

29 28

21 20 OAOH A7 AO P~

19 18

11 10 98H 9F 98 SCON

09 08

01 00 90H 97 90 P1

88H 8F 88 TCON

80H 87 80 PO

b.) Special Function Register Bit Addresses.

Figure 4. Bit Address Maps.

,Notice the column labeled "Symbol"in Figure 5, Bit, with
special meaning' in the PSW and other regiqers have
corresponding ,ymbolic names, General-purpo~e (as
opposed to carry-specific) instructiom may acce,s the
carry like any other bit byusing the mnemonic CY in place
of CPO. PI. P2. and P3 are the 8051's four 110 ports;
secondary functions assigned to each of the eight pins of
P3 are shown in Figure 6,

10-35

Figure 7 ~hows the la,t four bit addre"able regiqers,
TCON (Timer Control) and SCOI\: (Serial port Control)
control and monitor the corresponding peripherab. while
IE (Interrupt Enable) and IP (Interrupt Priority) enable
and prioriti7e the five hardware interrupt ,ource~, Like the
reserved hardware register addres,e,. the five bib not
implemented in I E and \P ,hould not be acces,ed; they can
not be used as software flag',

01489A-06

(MSB) (LSB)

I Cy I AC I FO I RS1 I RSO I OV P

Symbol Position Name and significance
CY PSW.7 Carry flag.

AC

FO

RS1
RSO

Set/cleared by hardware or soft
waredwing certain arithmetic and
logical instructions.

PSW.6 Auxiliary Carry flag.
Set/cleared by hardware during
addition or subtraction instruc
tions to indicate carry or borrow
out of bit 3.

PSW.S Flag O.
Set/cleared/tested by software as
a user-defined status flag.

PSW.4 Register bank Select control bits
PSW.3 1 & O. Set/cleared by software to

determine working register bank
(see Note)

OV

P

PSW.2 Overflow flag.
. Set/cleared by hardware during

arithmetic instructi0ns to indicate
overflow conditions.

PSW.1 (reserved)

PSW:O Parity flag.
Set/cleared by hardware each in
struction cycle to indicate an odd/
even number of "one" bits in the
accumulator, i.e., even parity.

Note - the contents of (RS1, RSO) enable
the working register banks as
follows:

(0,0) - Bank 0
(0;1)-Bank1
(1,0) c Bank 2
(1,1)~Bank3

(00H-07H)
(08H-OFH)
(10H-17H)
(18H-1 FH)

Figure 5. PSW - Program Status Word organization.

(MSB) (LSB)

I RD I WR I T1 TO IINT1 1lNTO I TXD I RXD I
Symbol Position Name and significance
RD P3.7 Read data control output.

Active low pulse generated by
hardware when external data
memory is read.

WR P3.6 Write data control output.
Active low pulse generated by
hardware when external data
memory is written.

T1 P3.S Timer/counter 1 external input or
test pin.

TO P3.4 Timer/counter 0 external input or
test pin.

INT1

INTO

TXD

RXD

P3.3

P32

P3.1

P3.0

Interrupt 1 Input pin.
Low-level or falling-edge
triggered.

Interrupt 0 input pi"1.
Low-level or falling-edge
triggered.

Transmit Data pin for serial port
in UART mode. Clock output in
shift register mode

R.eceive Data pin for serial port in
UART mode. Data I/O pin in shift
register mode.

Figure 6. P3 - Alternate 110 Functions of Port 3.

01489A-07

10-36

(MSB) (LSB)

I TF1 I TR1 I TFO I TRO IIE1 IT1 lEO ITO

Symbol Position Name and significance
TF1 TCON.? Timer 1 overflow Flag.

Set by hardware on
timer/counter overflow. Cleared
when interrupt processed.

TR1 TCON.6 Timer 1 Run control bit.
Set/cleared by software to turn
timer/counter on/off.

TFO TCON.5 Timer 0 overflow Flag.
Set by hardware on
timer/counter overflow. Cleared
when interrupt processed.

TRO TCONA Timer 0 Run control bit.
Set/cleared by software to turn
timer/counter on/off.

a.) TCON - Timer/Counter Control/status register.

(MSB) (LSB)

I SMO I SM1 I SM21 REN I TBsl RBsl TI I RI ·1
Symbol Position Name and significance
SMO SCON.? Serial port Mode control bit O.

Set/cleared by software (see
note).

SM1 SCON.6 Serial port Mode control bit 1.
Set/cleared by software (see
note).

SM2 SCON.5 Serial port Mode control bit 2.
Set by software to disable recep
tion of frames for which bit 8 is
zero.

REN SCONA Receiver Enable control bit.
Set/cleared by software to
enable/disable serial data
reception.

TB8 SCON.3 Transmit Bit 8.
Set/cleared by hardware to deter
mine state of ninth data bit trans
mitted in 9-bit UART mode.

b.) SCON - Serial Port Control/status register.

IE1

IT1

lEO

ITO

TCON.3 Interrupt 1 Edge flag.
Set by hardware when external
interrupt edge detected. Cleared
when interrupt processed.

TCON.2 Interrupt 1 Type control bit.
Set/cleared by software to
specify falling edge/low level
triggered external interwpts.

TCON.1 Interrupt 0 Edge flag.
Set by hardware when external
interrupt edge detected. Cleared
when interrupt processed.

TCON.O Interrupt 0 Type control bit.
Set/cleared by softrware to
specify falling edge/low level
triggered external interrupts.

RB8 SCON.2 Receive Bit 8.
Set/cleared by hardware to indi
cate state of ninth data bit
received.

TI SCON.1 Transmit Interrupt flag.
Set by hardware when byte
transmitted. Cleared by software
after servicing.

RI SCON.O Receive Interrupt flag.
Set by hardware when byte re
ceived. Cleared by software after
servicing.

Note - the state of (SMO,SM1) selects:
(0,0) - Shift register I/O expansion.
(0,1) - 8 bit UART, variable data rate.
(1,0) - 9 bit UART, fixed data rate.
(1,1) - 9 bit UART, variable data rate.

Figure 7. Peripheral Configuration Registers.

014S9A-08

10-37

(MSB) (LSB)

I ES I ET1 I EX1 I ET1 I EXO I
Symbol Position Name and significance
EA IE 7 Enable All control bit.

ES

ET1

1E.6
1E.5

IE4

IE3

Cleared by software to disable all
interrupts, independent of the
state of IE.4 - IE.O.

(reserved)

Enable Serial port control bit
Set/cleared by software to
enable/ disable Interrupts from
TI or RI flags.

Enable Timer 1 control bit
Set/cleared by software to
enable/ disable interrupts from
timer/counter 1

c.) IE - Interrupt Enable Register.

(MSB) (LSB)

PS I PT1 I PX1 I PTO I PXO I
Symbol Position Name and significance

PS

IP.7 (reserved)
IP.6 (reserved)
IP.5 (reserved)

IP4 Serial port Priority control bit.
Set/cleared ,by software to
specify high/low priority
interrupts for Serial port.

EX1 IE.2

ETa IE.1

EXO lEO

PX1 IP.2

PTO IP 1

Enable External interrupt 1
control bit. Set/cleared by
software to ~mable/disable
interrupts from INT1.

Enable Tjmer 0 control bit.
Set/cleared by software to
enable/ disable interrupts from
timer/counter O.

Enable External Interrupt a
control bit. Set/cleared by
software to enable/disable
Interrupts from INTO.

External interrupt 1 Priority
control bit. Set/cleared by
software to specify high/low
priority interrupts for INT1.

Timer 0 Priority control bit.
Set/cleared by software to
specify highiIO"'! priority
interrupts for timdr/counter O.

PT1 IP.3 Timer 1 Priority control bit. PXO IP.O External interrupt a Priority
control bit. Set/cleared by
software to specify high/low
priority interrupts for INTO.

, Set/cleared by software to
specify high/low priority
interrupts for timer/counter 1.

d.) IP - Interrupt Priority Control Register.

Figure 7. (continued)

Addressable Register Set. There are 20 special function
registers in the 8051, but the advantages of bit addressing
only relate to the II described below. Five potentially
bit-addressable register addresses (OCOH, OCSH, 008H.
OESH, & OF8H) are being reserved for possible future
expansion in microcomputers based on the MCS-5I'M
architecture. Reading or writing non-existent registers in
the 8051 series is pointless, and may cause unpredictable
results. Byteowide logical operations can be used to
manipulate bits in all non-bit addressable registers and
RAM.

The accumulator and B registers (A and B) are normally
involved in byte-wide arithmetic. but their individual bits
can also be used as 16 general software flags. Added with
the 128 flags in RAM, this gives 144 general purpose
variables for· bit-intensive programs. The program status
word (PSW) in Figure 5 is a collection of flags and,
machine statuS bits including the carry flag itself. Byte
operations acting on the PSW can therefore affect the
carry.

10-3a

Instruction Set
Having looked at the bit variables available to the Boolean
Processor. we will now look at the four classes of instructions
that manipulate these bits. It may be helpful to refer back to
Table 2 while reading this section.

State Control. Addressable bits or flags may be set. cleared.
or logically complemented in one instruction cycle with the
two-byte instructions SETB. CLR. and CPL. (The "B"
affixed to SETB distinguishes it from the assembler "SET"
directive used for symbol definition.) SETB and CLR are
analogous to loading a bit with a constant: I ot O. Single
byte versions perform the same three operations on the
carry.

The MCS-5l'· assembly language specifies a bit address in
any of three ways:

• bya number or expression corresponding to the direct
bit address (0-255);

• by the name or address of the register containing the
bit, the dot operator symbol (a period: ". "). and the
bit's position in the register (7.{);

• in the case of control and status registers. by the prede
fined assembler symbols listed in the first columns
of Figures 5-7.

Bits may also be given user-defined names with the assembler
"BIT" directive and any of the above techniques. For exam
ple. bit 5 of the PSW may be cleared by any of the four
instructions.

USLFLG BIT PSW.5 User Symbol Definition

CLR OD5H Absolute Addressing
CLR PSW.5 Use of Dot Operator
CLR FO Pre-Defined Assembler

Symbol
CLR USILFLG User-Defined Symbol

Data Transfers. The two-byte'MOV instructions can trans
port any addressable bit to the carry in one cycle. or copy the
carry to the bit in two cycles. A bit can be moved between
two arbitrary locations vIa the carry by combining the two
instructions. (If necessary. push and pop the PSW to preserve
the previous contents of the carry.) These instructions can
replace the multi-instruction sequence of Figure 8. a program
structure appearing in controller applications whenever flags
or outputs are conditionally switched on or off.

Logical Operations. Four instructions perform the logical
AND and logical-OR operations between the carry and
another bit. and leave the results in the carry. The instruction
mnemonics are ANL and ORL; the absence or presence ofa

10-39

Figure 8. Bit Transfer Instruction Operation.

slash mark ("/ ") before the source operand indicates whether
to use the positive-logic value or the logical complement of
the addressed bit. (The source operand itself is never
affected.)

Bit-test Instructions. The conditionaljump instructions "JC
reI" (Jump on Carry) and" JNC reI" (Jump on Not Carry)
test the state of the carry flag. branching if it is a one or zero.
respectively. (The letters "reI" denote relative code address
ing.) The three-byte instructions "JB bit. reI" and "JNB
bit.rel" (Jump on Bit and Jump on Not Bit) test the state of
any addressable bit in a similar manner. A fifth instruction
combines the Jump on Bit and Clear operations. "JBC
bit.rel"conditionally branches to the indicated address. then
clears the bit in the same two cycle instruction. This opera
tion is the same as the MCS-48'· "JTF" instructions.

All 8051 conditional jump instructions use program
counter-relative addressing. and all execute in two cycles.
The last instruction byte encodes a signed displacement
ranging from - L28 to + 127. During execution. the CPU adds
this value to the incremented program counter to produce
the jump destination. Put another way. a conditional jump
to the immediately following instruction would encode OOH
in the offset byte.

A section of program or subroutine written using only rela
tive jumps to nearby addresses will have the same machine
code independent of the code's location. An assembled rou
tine may be repositioned anywhere in memory, even crossing
memory page boundaries, without having to modify the
program or recompute destination addresses. To facilitate
this flexibility, there is an unconditional "Short Jump"
(SJMP) which uses relative addressing as well. Since a pro-

01489A-l0

grammer would have quite a chore trying to compute rela
tive offset values from one instruction to another, ASM51
automatically computes the displacement needed given only
the destination address or label. An error message will alert
the programmer if the destination is "out of range."

(The so-called "Bit Test" instructions implemented on many
other microprocessors simply perform the logical-AND
operation between a byte varia ble and a constant mask. and
set or clear a 7ero flag depending on the result. This is
essentially equiyalent to the 8051 "MOY C.bit" instruction.
A second instruction is then needed to conditionally branch
based on the state of the zero flag. This does not constitute
abstract bit-addressing in the MCS-51'· sense. A flag exists
only as a field within a register; to reference a bit the pro
grammer must know and specify both the encompassing
register and the bit's position therein. This constraint
severely limits the flexibility of symbolic bit addressing and
reduces the machine's code-efficiency and speed.)

Interaction with Other Instructions. The carry flag is also
affected by the instructions listed in Table 3. It can be rotated
through the accumulator. and altered as a side effect of
arithmetic instructions. Refer to the User's Manual for
details on how these instructions operate.

Simple Instruction Combinations
By combining general purpose bit operations with certain
addressable bits. one can "custom build" seveml hundred
useful instructions. All eight bits of the PS W can be tested
directly with conditional jump instructions to monitor
(among other things) parity and overflow status. Pro
grammers can take advantage of 128 software flags to keep
track of operating modes. resource usage. and so forth.

The Boolean instructions are also the most efficient way to
control or reconfigure peripheral and I 0 registers. All 32
I' 0 lines become "test pins." for example. tested by condi
tional jump instructions. Any output pin can be toggled
(complemented) ina single instruction cycle. Setting or c1ear
ing the Timer Run flags (TRO and TR I) turn the timer
/ counters on or off; polling the same flags elsewhere lets the
program determine if a timer is running. The respective
overflow flags (TFO and TFI) can be tested to determine
when the desired period or count has elapsed. then cleared in
preparation for the next repetition. (For the record. these
bits are all part of the TCON register. Figure 7.a. ThGnks to
symbolic bit addressing. the programmer only needs to
remember the mnemonic associated with each function. In
other words. don't bother memori7ingcontrol word layouts.)

In the MCS-48® family. instructions corresponding to some
of the above functions require specific opcodes. Ten different
opcodes serve to clear! complement the software flags FO
and FI. enable / disable each interrupt. and start' stop the
timer. In the 8051 instruction set. just three opcodes (SETB.

10~40

Table 3. Other Instructions Affecting the Carry
Flag.

Mnemonic Description Byte eyc

ADD A.Rn Add regiqer to
Accumulator

ADD A.dlfect Add direct byte to
Accumulator

ADD A.@Ri Add indlfect RAM to
Accumulator

ADD A.#data Add immediate data to
Accumulator 2

ADDC A.Rn Add regi,ter to
Accumulator with Carry
nag

ADDC A. dlfect Add direct byte to
Accumulator with Carry
flag

ADDCA.@RI Add indirect RAM to
Accumulator with Carry
nag

ADDC A.#data Add Immedl3te data to
Ace with Carn' nag

SURR A.Rn Subtract regl\ler from
Accumulator with
borrow

SURR A.dlrect Subtract direct byte
from Ace with borrow

SURR A.@RI Subtract indirect RAM
from Acc with borrow

SURR A.#data Subtract Immedl3te data
from Acc with borrow I

Ml'l. AR Multlpl) A & R 4
DIY AR Dl\idc A by R 4
DA A Decimal Adiu,t

Accumulator

RLC A Rotate Accumulator
Left through the Carry
flag:

RRC A Rotate Accumulator
Right through Carry flag

C.I"E A.dlfect.rel Compare dlfect byte to
Acc & Jump if :-;ot
Equal 3 2

C.I"E A.#data.rel Compare Immediate to
Acc & Jump if "ot
Equal 3 2

C.I"E R n.#d~ta.rel Compare immed to
regi,ter & .I ump if "at
Equal

CJ"E @RI.#data.rclCompare immed to
Indirect & .lump If "ot
Equal'

All mnemonic, copYflghtcd © Intel Corporation 19HO

01489A-11

CLR, CPL) with a direct bit address appended perform the
same functions. Two test instructions UB and JNB) can be
combined with bit addresses to test the software flags, the
8048 I/O pins TO, TI, and INT, and the eight accumulator
bits, replacing 15 more different instructions.

Table 4.a shows how 8051 programs implement software
flag and machine control functions associated with special

using awkward sequences of other basic operations. As
mentioned earlier, any CPU can solve any problem given
enough time. .

Quantitatively, the differences between a solution allowed
by the 8051 and those required by previous architectures
are numerous. What the 80S I Family buys you is a faster,
cleaner, lower-cost solution to microcontroller
applications.

The opcode space freed by condensing many specific 8048

Table 4.a. Contrasting 8048 and 8051 Bit Control and Testing Instructions.

8048 8x51
Instruction Bytes Cycles uSec Instruction Bytes Cycles & uSec

Flag Control
CLR C I I 2.5 CLR C I I
CPL FO I I 2.5 CPL FO 2 I

Flag Testing
JNC offset 2 2 5.0 JNC rei 2 2
JFO offset 2 2 5.0 JB FO.rel 3 2
JB7 offset 2 2 5.0 JB ACC.7.rel 3 2

Peripheral Polling
JTO offset 2 2 5.0 JB TO.rel 3 2
JNI offset 2 2 5.0 JNB INTO.rel 3 2
JTF offset 2 2 5.0 JBC TFO.rel 3 2

Machine and Peripheral Control
STRT T I I 2.5 SETB TRO 2 I
EN I I I 2.5 SETB EXO 2 I
DIS TCNTI I I 2.5 CLR ETO 2 I

Table 4.b. Replacing 8048 Instruction sequences with single 8x51 Instructions.

8048
Instructions Bytes Cycles uSec

Flag Control
Set carry:

CLR C
CPL C = 2 2 5.0

Set Software Flag:
CLR FO
CPL FO = 2 2 5.0

opcodes in the 8048. In every case the MCS-51'·solution
requires the same number of machine cycles, and executes
2.5 times faster.

3. B.OOLEAN PROCESSOR APPLICATIONS
So what? Then what does all this buy you?

QualiJatively, nothing. All the same capabilities could be
(and often 'have been) implemen~ed on other machines

10-41

8051 -

Instructions Bytes Cycles & uSee

SETB C I I

SETB FO 2 I

instructions into a few general operations has been used to
add new functionality to the M CS-S 1'· architecture - both
for byte and bit operations. 144 software flags replace the
8048's two. These flags (and the carry) may be directly set,
not just cleared and complemented, and all can be tested
for either state, not just one. Operating mode bits pre
viously inaccessible may be read, tested, or saved. Situa
tions where the 8051 instruction set provides new capabili
ties are contrasted with 8048 instructiQn sequences
in Table-4.b. Here the 8051 speed advantage ranges from
5x to 15x!

01489A-12

Table 4b (Continued)
8048
Instructions Bytes Cycles uSec

Turn Off Output Pin:
ANL PI.#OFBH = 2 2 5.0

Complement Output Pin:
IN A.PI
XRL A.#04H
OUTL PI.A = 4 6 15.0

Clear Flag in RAM:
MOY RO.#FLGADR
MOY A.@RO
ANL A.#FLGMASK
MOY @RO.A = 6 6 15.0

Flag Testing
Jump if Software Flag is 0:

JFO $+4
JMP offset = 4 4 10.0

Jump if Accumulator bit is 0:
CPL A
JB7 offset
CPL A = 4 4 10.0

Peripheral Polling
Test if Input Pin is Grounded:

IN A.PI
CPL A
183 offset = 4 5 12.5

Test if Interrupt Pin is High:
JNI $+4
JMP offset = 4 4 10'.0

Combining Boolean and byte"wide instructions can pro
duce great synergy. An MCS-5I'· based application will
prove to be:

• simpler to write since the architecture correlates more
closely with the problems being solved;

• easier to debug because more individual instru~tions
have no unexpected or undesirable side-effects;

• more byte efficient due to direct bit addressing and
program counter relative branching;

• faster running because fewer bytes of instruction need
to be fetched and fewer conditional jumps are
processed;

• lower cost because of the high level of system
intergration within one component.

These rather unabashed claims of excellence shall not go
unsubstantiated. The ~est of this chapter examines less
trivial tasks simplified by the Boolean processor: The first

8x51
Instructions Bytes Cycles Be uSt!c

CLR PI.2 2 I

CPL PI.2 2 I

CLR USER_FLG 2 I

JNB FO.rel 3 2

JNB ACC.7.rel 3 2

JNB PI.3.rel 3 2

JB INTO.rel 3 2

three compare the 8051 with other microprocessors; the last
two go into 8051-based system designs in much greater
depth.

Design Example #1 - Bit Permutation
First off. we'll use the bit-transfer instructions to permute
a lengthy pattern of bits.

A steadily increasing number of data communication
products use encoding methods to protect the security of
sensitive information. By law, interstate financial transac
tions involving the Federal banking system must be
transmitted using the Federal Information Processing
Data EncryptioI'J Standard (DES).

Basically, the DES combines eight bytes of "plaintext"
data (in binary, ASCII, or any other format) with a 56-bit
"key", prod!lcing a .64-bit encrypted value for transmis
sion. Atthe receiving end the same algorithm is applied to
the incoming data using the .same key, reproducing the
original eight byte message. The algorithm used for these
permutations is fixed; different user-defined keys ensure
data privacy.

01489A-13

It is not the purpose of this note to describe the DES in any
detail. Suffice it to say that encryption/ decryption is a
long. iterative process consisting of rotations. exclusive
-OR operations. function table look-ups. and an extensive
(and quite bizarre) sequence of bit permutation. packing.
and unpacking steps. (For further details refer to the June
21. 1979 issue of Electronics magazine.) The bit manipula
tion steps are included. it is rumored. to impede a general
purpose digital supercomputer trying to "break" the code.
Any algorithm implementing the DES with previous gen
eration microprocessors would spend virtually all of its
time diddling bits.

The bit manipulation performed is typified by the Key
Schedule Calculation represented in Figure 9. This step is
repeated 16 times for each key used in the course of a
transmission. In essence. a seven-byte. 56-bit "Shifted Key
Buffer" is transformed into <In eight-byte. "Permutation
Buffer" without altering the shifted Key. The arrows in
Figure 9 indicate a few of the translation steps. Only six
bits of each byte of the Permutation Buffer are used; the
two high-order bits of each byte are cleared. This means
only 48 of the 56 Shifted Key Buffer bits are used in anyone
iteration.

PERMUTED AND SHIFTED 56-81T KEY BUFFER

.~ ~

--------------~--~------------------ ------------------~------------------

PERMUTATION BYTE 1

SET PERMUTATION
BUFFER 81T

PC2(1)

PERM BYTE 2 PERM BYTE 3 PERM BYTE 4 BYTE 5 BYTES P~RM BYTE 7 PERM BYTE 8

4&BIT KEY KI

Figure 9. DES Key Schedule Transformation.

(LEAVe PEAMUTATtON
BUFFER 81T
CLEARED)

REPEAT
FOR EACH
81TOF
SHIFTED
KEY
BUFFER
(48 TIMES)

Different microprocessor architectures would best imple
ment this type of permutation in different ways. Most
approaches would share (he steps of Figure lO.a:

• Initialize the Permutation Buffer to default state
(ones or zeroes);

• Isolate the state of a bit of a byte from the Key Buffer.
Depending on the CPU. this might be accomplished
by rotating a word of the Key Buffer through a carry
flag or testing a bit in memory or an accumulator
against a mask byte;

• Perform a conditional jump based on the carry or
zero flag if the Permutation Buffer default state is
correct;

• Otherwise reverse the corresponding bit in the permu
tation buffer with logical operations and mask bytes.

Each step above may require several instructions. The last
three steps must be repeated for all 48 bits. Most micropro
cessors would spend 300 to 3.000 microseconds on each of
the 16 iterations.

Figure 10.a. Flowchart for Key permutation attemp
ted with a byte processor ..

Notice, though, that. this flowchart looks a lot like Figure 8.
The Boolean Processor, can permute bits by simply moving

them from the source to the carry to the destination-a
total of two instructions taking four bytes and three
microseconds per bit. Assume the Shifted Key Buffer and
Permutation Buffer both reside in bit-addressable RAM,
with the bits of the former assigned symbolic names SKB_I,
SKIL2, ... SKB-56, and that the bytes of the latter are
named PB_I, ... PB-B. Then working from Figure 9, the
software for the permutation algorithm would be that of
Example I.a. The total routine length would be 192 bytes,
requiring 144 microseconds.

The algorithm of Figure 10. b is just slightly more efficient
,in this time-critical application and illustrates the synergy
of an integrated byte and bit processor. The bits needed for
each byte of the Permutation Buffer are assimilated by
loading each bit into the carry (I usec.) and shifting it into
the accumulator (I usec.). Each byte is stored in RAM
when completed. Forty-eight bits thus need a total of 112
instructions, some of which are listed in Example I.b.

t

REPEAT
FOR EACH
BYTE OF
PERMUTATION
BUFFER
(8 TIMES)

Figure 10.b.DES Key Permutation
with Boolean Processor.

Worst-case execution time would be 112 microseconds,
since each instruction takes a single cycle. Routine length
would also-decrease, to 168 bytes. (Acfually, in the context'
of the complete encryption algorithm, each permuted byte
would be processed as soon as it is assimilated-saving
memory and cutting execution time by another 8 usec.)

10-44

Example I. DES Key Permutation Software.

a.) "Brute Force" technique.

MOY c'SKB_1
MOY PB_I.I,C
MOY C,SKB-2
MOY PB_4.0,C
MOY C,SKB_3
MOY PB-2.5,C
MOY c'SKB_4
MOY PB_I.D,C

MOY C,SKB-55
MOY PB-5.0,C
MOY C,SKB-56
MOY PB_7.2,C

b.) Using Accumulator to Collect Bits.

CLR A
MOY c'SKB_14
RLC A
MOY c'SKB_17
RLC A
MOY c'SKB_II
RLC A
MOY C,SKB-24
RLC A
MOY c'SKB_1
RLC A
MOY c'SKB_5
RLC A
MOY PB_I,A

MOY C,SKB-29
RLC A
MOY C,SKB_32
RLC A
MOY PB_8,A

To date, most banking terminals and other systems using
th,e DES have needed special boards or peripheral con
troller chips just for the encryption decryption process,
and still more hardware to form a serial bit stream for
transmission (Figure I La). An 8051 solution could pack
most of the elltire system onto the one chip (Figure Il.b):
The whole DES algorithm 'would require less than one-

01489A-15

fourth of the on-chip program memory, with the remaining
bytes free for operating the banking terminal (or whatever)
itself.

Moreover, since transmission and reception of data is
performed through the on.;board U ART, the unencrypted
data (plaintext) never even exists outside the micro
computer! Naturally, this would afford a high degree of
security from data interception.

~-------

1,0
~ MODEM

a.) Using MOltH::hip processor technology.

8051 hO ! 10 .,", ..
RxO-'-"-

b.) Using one Single-chip Microcomputer.

Figure 11. Secure Banking Terminal Block Diagram.

Design Example #2 - Software Serial 1/0
An exercise often imposed on beginning microcomputer
students is to write a prograin simulating a UART. (See,
for example. Application Notes AP24, AP29, and AP49.)
Though doing this with the 8051 Family may appear to be
a moot point (given that the hardware for a full UART is
on-chip), it is still instructive to see how it would be done,
and maintains a product line tradition.

As it turns out, the 8051 microcomputers can receive or
transmit serial data via software very efficiently using the
Boolean instruction set. Since any I/O pin may be a serial
input or output, several serial links couid be maintained at
once.

Figures 1,2.a· and 12.b show algorithms for receiving or
transmitting a byte of data. (Another section of program
would invoke this algorithm' eight times, synchronizing it
with a start bit, dock, signal, software delay, or timer

10-45

interrupt.) Data is rece.ived by testing an input pin, setting
the carry to the same state, shifting the carry into a data buffer,
and saving the partial frame in internal RAM. Data is'
transmitted by shifting an output buffer through the carry,
and generating each bit on an output pin.

a.) Reception.

CARRY = 1
TEST CARRY

b.) Transmission.

Figure 12. Serial 110 Algorithms.

A side-by-side comparison of the software for this common
"bit-ba nging" application with three different micro
processor architectures is shown in Table 5.a and 5.b. The
8051 solution is more efficien~ than the others on every
count!

014S9A-16

Table 5. Serial I/O Programs
for Various Microproc;essors.

a.) Input Routine.

8085 8048 8051

IN SERPORT MOY e.SERPIN
ANI MASK CLR C
JZ LO JNTO LO
CMC CPL C

LO: LXI HL,SERBUF MOY RO.#SERBUF
MOY A.M MOY A.@RO MOY A.SERBUF
RR RRC A RRC A
MOY M.A MOY @RO.A MOY SERBUF.A

RESULTS:

8 INSTRUCTIONS 7 INSTRUCTIONS 4 INSTRUCTIONS
14 BYTES 9 BYTES 7 BYTES
56 STATES 9 CYCLES 4 CYCLES
19 uSEe. 22.5 uSEe. 4 uSEe.

b.) Output Routine.

8085 8048 8051

LXI HL.SERBUF MOY RO.#SERBUF
MOY AM MOY A.@RO MOY A'sE~BUF
RR RRC A RRC A
MOY M.A MOY @RO.A MOY SERBUF.A
IN SERPORT
JC HI JC HI

LO: ANI NOT MASK ANL SERPRT.#NOT MASK MOY SERPIN.C
JMP CNT JMP CNT

HI: ORI MASK HI: ORL SERPRT.#MASK
CNT:OUT SERPORT CNT:

RESULTS:

10 INSTRUCTIONS 8 INSTRUCTIONS 4 INSTRUCTIONS
20 BYTES 13 BYTES 7 BYTES
72 STATES II CYCLES 5 CYCLES
24 uSEe. 27.5 uSEe. 5 uSEe.

Design Example #3 - Combinatorial Logic
Equations
Next we'lllook at some simple uses for bit-test instructions
and logical operations. (This example is also presented in
Application Note AP-69.)

Figure 13 shows TTL and relay logic diagrams for a
function of the six variables U through Z. Each is a
solution of the equation.

Virtually all hardware designers have solved complex
functions using combinatorial logic. While the hardware
involved may vary from relay logic. vacuum tubes. or TTL
or to more esoteric technologies like fluidics. in each case
the goal is the same: to solve a problem represented by a
logical function of several Boolean variables.

Q = (U . (V + W)) + (X, Yl + Z

Equations of this sort might be reduced using Karnaugh
Maps or algebraic techniques. but that is not the purpose
of this example. As the logic complexity increases. so does

• the difficulty of the reduction process. Even a. minor
change. to the function equations as the desi·gnevo.lves
would require tedious· re-reduction from scratch.

01489A-17

10-46

Figure 13. Hardware Implementations, of Boolean functions.

& '" (U-(V + W) + (X- 'Y) + 2

a.) Using TTL:

Forthe sake of comparison'we will implement this function
three ways.- restricting the saftwarMo three proper subsets
of the MCS-51'" instruction set. We will also assume that
U and Yare input pins from different input ports. Wand X
are status bits for two peripheral controllers. and Y and Z
are software flags set up earlier in the program. The end
result must be WrItten to an output pin on some third port.
The first two implementations follow the flow-chart shown
in Figure 14, Program flow would embark on a route down
a test-and-branch tree and leaves either the "True" or"Not
True" exit ASAP - as soon as the proper result has been
determined, These exits then rewrite the output port with
the result bl! respectively one or 7ero.

Other digital computers must solve equations of this type
with standard word-wide logical instructions and condi
tionaljumps. So for the first implementation. we won't use
any generali7ed bit-addressing instructions. As we shall
soon see. being constrained to such an instruction subset
produces somewhat sloppy software solutions, M CS-SI'"
mnemonics are used in Example 2.a; other machines might
further cloud the situatIOn by requiring operation-specific
mnemonics like INPUT. OUTPUT, LOAD. STORE,etc ..
instead of the MOY mnemonic used for all variable trans
fers in the 8051 instruction set.

The code which results is. cumbersome and error prone, it
would be difficult toprove whether the sofiware worked for
all input combinations in programs of this sort. Further~
more. execution time will vary widely with input data.

Thanks to the direct bit-test operations. a single instruc
tion ca n replace each move! mask / cond itional jump
sequence in Example 2.a .• but the algorithm would be
equally convoluted (see Example 2:B). To lessen the con
fusion "a bit;' each input variable is assigned a symbolic
name.

A moreelega'nt and efficient implementation(Example2,c)
strin'gs together the Boolean ANL and ORL functions to
generate the output function with straight-line code.

v

'~'

CRl

CR'

b.) using Relay Logic:

TEST V

TEST Z

FUNCTION
IS TRUE

Figure 14. Flow chart for tree-branching algorithm.

01489A-18

When finished. the carry flag contains th~result'. which"is
simply copied out to the destination pin. No flow chart is
needed~code can be written directly from the logic dia
grams in Figure 14. The result is simplicity itself: fast.
flexible. reliable. easy to design. and easy to debug.

, 'CLRQ: MOV A,OUTBUF

An 8051 program can simulate an N-input AND or OR
gate with at most N+ I lines of source program-one for
each input and one line to store the results. To simulate
NAND and NOR gates. complement the carry after com
puting,the function. When some inputs to the gate have
"inversion bubbles."perform the ANL orORL operation
on inverted operands. When the first input is inverted.
either load the operand into the carry and then complement
it. or use DeMorgan's Theorem to convert the gate to a
different form.

Example 2. Software Solut'ions to Logic Function of Fig
ure 13.

a.) Using only byte-wide logical instructions.

;BFUNCI SOLVE RANDOM LOGIC FUNCTION
OF6 VARIABLES BY LOADING AND
MASKING THE APPROPRIATE BITS
IN THE ACCUMULATOR. THEN
EXECUTING CONDITIONAL JUMPS
BASED ON ZERO CONDITION.

. ; (APPROACH USED BY BYTE
ORIENTED ARCHITECTURES.)
BYTE AND MASK VALUES
CORRESPOND TO RESPECTIVE BYTE
ADDRESS AND BIT POSITIONS.

OUTBUF DATA22H ;OUTPUT PIN STATE MAP

TESTV;

TESTU:

TESTX:

TESTZ:

MOV A.P2
ANL A.#OOOOOIOOB
JNZ TESTU
MOV'A.TCON
ANI. A.#OOIOOOOOB
.IZ TESTX
MOV
ANI.
.INZ
MOV

A.PI
A.#OOOOOOIOB
SETQ
A.TCON

AN\, A.#OOOOIOOOB
.IZ TESTZ
MOV A.20H
AN\,
.IZ
MOV
AN\,

, .IZ

A.#OOOOOOO I B
SETQ
A.2IH
A.#OOOOOOIOB

'SHQe

10-48

ANL A.#IIII.oIIIB
.IMP OUTQ

SETQ: MOV A,OUTBUF
ORL A,#OOOOIOOOB

OUTQ: MOV OUTBUF,A
MOV P3,A

b.) Using only bit-test instructions.

;BFUNC2 SOLVE A RANDOM LOGIC FUNCTION
OF6VARIABLES BY DIRECTLY
POLLING EACH BIT.
(APPROACH USING MCS-51 UNIQUE
BIT-TEST INSTRUCTION CAPABILITY.)
SYMBOLS USED IN LOGIC DIAGRAM
ASSIGNED TO CORRESPONDING 8x51
BIT ADDRESSES.

U BIT PI.I
V BIT • P2.2
W BIT
X BIT
Y BIT
Z BIT
Q BIT

TESLV: .IB
.INB

TESLU: .IB
ifESLX: .INB

.INB
TESLZ: .INB
CLR_Q: CI.R

.IMP

TFO
lEI
201-1.0
21H.1
P3.3

SELQ: SETB

V.TESLU
W.TESLX
U.SELQ
X.TESLZ
y.sE'LQ
Z.SELQ
Q
NXTTST
Q

NXTTST: :(CONTINUATION OF
:PROGRAM)

c.) U~ing logical operations on Boolean variables.

:FUNC3 SO\.VE A RANDOM LOGIC FUNCTION
OF 6 VARIABLES USING
STRAIGHLI.INE LOGICAL
INSTRUCTIONS ON MCS-51 BOO\.EAN
VARIABLES.

MOV C.V
OR\. . C.W
AN\. C.U
MOV FO.C
MOV C.X
ANI. C. Y
OR\. C.FO
ORt C. Z
MQV Q.C

:OUTPUT OF OR GATE
:OUPUT OF TOP AND GATE

, :SAVE INTERMEDIATE STATE

:OUTPUT OF BOTTOM AND GATE
:I NC"\JJDE VALUE SAVED,ABOVE
:INCLlJDE I .. AST INPUT VARIABLE
:OUTPUT COMPUTED RESULT

01489A·19

An upper-limit can be placed on the complexity of software
to simulate a large number of gates by summing the total
number of inputs and outputs. The actual total should be
somewhat shorter, since calculations can be "chained," as
shown above. The output of one gate is often the first
input to another, bypassing the· intermediate variable to
eliminate two lines of source.

Design Example #4 - .Automotive Dash
board Functions

Now let's apply these techniques to designing the software
for a complete controller system. This application is
patterned after a familiar real-world application which
isn't nearly as trivial as it might first appear: automobile
turn signals.

Imagine the three posl\lon turn lever on the steering
column as a single-pole. triple-throw toggle switch. In its
central position all contacts are open. I n the up or down
positions contacts close causing corresponding lights in
the rear of the car to blink. So far very simple.

Two more turn signals blink in the front of the car, and
two others in the dashboard. All six bUlbs flash when an
emergency switch is closed. A thermo-mechanical relay
(accessible under the dashboard in case it wears out)
causes the blinking.

Applying the brake pedal turns the taillight filaments on
constantly ... unless a turn is in progress, in which case the
blinking taillight is not affected. (Of course. the front turn
signals and dashboard indicators are not affected by the
brake pedal.) Table 6 summarins these operating modes.

But we're not done yet. Each of the exterior turn signal
(but not the dashboard! bulbs has a second, somewhat
dimmer filament for the parking lights. Figure 15 shows
TTL circuitry which could control all six bulbs. The
signals labeled "High Freq." and "Low Freq." represent
two square-wave inputs. Basically, when one of the turn
switches is closed or the emergency switch is activated the
low frequency signal (about I H7) is gated through to the
appropriate dashboard indicator(s) and turn signal(s).
The rear signals are also activated when the brake pedal is
depressed provided a turn is not being made in the same
direction. When the parking light switch is closed the
higher frequency oscillator is gated to each front and rear
turn signal. sustaining a low-intensity background level.
(This is to eliminate the need for additional parking light
filaments.)

L TURN ===+=;::=::[:>----:=1)-,----EMERa L DASH

81IAKE

II TURN --itt ==r:>--l='}--1+---

PARK ---------j--..,.-1'

LO
FREQ

OSCILLATOR

HI
FREO.
OSCILLATOR

Figure 15. TTL logic implementation of
automotive turn signals.

l FRNT

L

.... H

R REAR

Table 6. Truth table for turn-signal operation.

INPUT SIGNALS OUTPUT SIGNALS
BRAKE EMERG. LEFT RIGHT LEFT RIGHT LEFT RIGHT

SWITCH SWITCH TURN TURN FRONT FRONT REAR .REAR
SWITCH SWITCH & DASH & DASH

0 0 0 0 OFF OFF OFF OFF
0 0 0 I OFF BII"K OFF RI I"K
0 0 I 0 BLI"'K OFF RLI"K OFF
0 I 0 0 RLI"K BLI"'K RLI"K RII"K
0 I 0 I BII"K RII"K RII"'K RII"K
0 I I 0 RII"K BLI"K RI.J"K RI I"K
I 0 0 0 OFF OFF 0"1 0"1
I () 0 I OFF RI.J"IK 0"1 RI.J"JK
I 0 I 0 BI.J"K OFF RI I"IK 0"
I I 0 0 RLINK RI.J"IK 0'1,1 ON
I I 0 I BliNK RII"K 0"1 BLINK
I I I 0 BLI'\iK BII"JK BLINK 0'"

01489A·20

10-49

I n most cars, the switching logic to generate these func
tions requires a number of multiple-throw contacts. As
manyas 18 conductors thread the steering column of some
automobIles solely for turn-sIgnal and emergency blinker
functions. (The author discovered this recently to his
,I'tonishment and dismay when replacing the whole
assembly because of one burned contact.)

A multiple-conductor wiring harness runs to each corner
of the car, behind the dash. up the steering column, and
down to the blinker relay below. Connectors at each ter
mination for each filament lead tp extra cost and labor
during construction, lower reliability and safety, and more
costly repairs. And considering the system's present com
plexity, increasing its reliability or detectingJailures
would be quite difficult.

There are two reasons for going into such painful detail
describing this example. First, to show that the messi!!st
part of many system designs is determining what the
controller should do. Writing the software to solve these
functions will be comparatively easy. Secondly, to show
the many potential failure points in the system. Later we'll
see how the peripheral functions and intelligence built into
a microcomputer (with a little creativity) can greatly
reduce external interconnections and mechanical part
count.

The Single-chip Solution
The circuit shown in Figure 16 indicates five input pins to
the five input variables~--Ieft-turn select, right-turn select,
brake pedal down, emergency SWItch on. and parking
lights on. Six output pins turn on the front, rear. and
dashboard indicators for each side. The microcomputer
implements all logical functions through software, which
periodically updates the output signals as time elapses and
input conditions change.

Figure 16. Microcomputer Turn-signal Connections.

.,'"

805.

:~::B""+H+l>"""""P"
UGHlS

TURN l",E"!-_+-iH->o-"'-1

SWITCH R1G="''''-----<~ r>O---i

RIO.' '/1"-"""'...,. 10 ...

.oDE
SENSORS

COH"'QlLER OUTPUT SIGNAl
IUPFEQ lULU

10-50

Design Example #3 demonstrated that symbolic address
ing with user-defined bit names makes code and documen
tation easier to write and maintain .. Accordingly, we'll
assign these I 0 pins names for use throughout the pro
gram. (The format of this example· will differ somewhat
from the others. Segments of the overall program will be
presented in sequence as each is described.)

INPUT PIN DECLARATIONS:
(ALL INPUTS ARE POSITIVE-TRUE LOGIC)

BRAKE HIT PLO : BRAKE PEDAL DEPRESSED
EMERG HIT PI. I : EMERGENCY BI.INKER

ACTIVATED
PARK HIT PI.2 : PARKING I.IGHTS ON
LTURN AIT PI.3 : TURN LEVER DOWN
R TURN AIT PI.4 : TURN LEVER UP

OUTPUT PIN DECLARATIONS'

LFRNT HIT P 1.5 : FRONT I.EFT-TURN
INDICATOR

R FRNT HIT PI.6 : FRONT RIGHT-TURN
INDICATOR

LDASH HIT PI.7 : DASHBOARD LEFT-TURN
INDICATOR

R DASH HIT P2.0 : DASHBOARD RIGHT-TURN
INDICATOR

L:"REAR HIT P2.1 : REAR LEFT-TURN
INDICATOR

R REAR HIT P2.2 : REAR RIGHT-TURN
INDICATOR

Another key advantage of symbolic addressing will
appear further on in the design cycle. The locations of
cable connectors, signal conditioning circuitry, voltage
regulators, heat sinks, and the like all affect P.c. board
layout. It's quite likely that the somewhat arbitrary pin
assignment defined early in the software design cycle will
prove to be less than optimum: rearranging the I/O pin
assignment could well allow a more compact module, or
eliminate costly jumpers on a single-sided board. (These
considerations apply especially to automotive and other
cost-sensitive applications needing single-chip con
trollers.) Since other architectures mask bytes or use
"clever" algorithms to isolate bits by rotating them into
the carry, re-routing an input signal (from bit I of port I,
for example, to bit 4 of port 3) could require extensive
modifications throughout the software.

The Boolean Processor's direct bit addressing makes such
changes absolutely trivial. The number ofthe port contain
ing the pin is irrelevent, and masks and complex program
structures are not needed. Only the il)itial Boolean varia-

01489A-21

; INTERRUPT RATE SUBDIVIDER
SUB_PIV DATA 20H
; HIGH-FREQUENCY OSCILLATOR BIT
HLFREQ BIT SUB_DIV.O
; LOW-FREQUENCY OSCILLATOR BIT
LO_FREQ BIT SUB_DlV.7

ORG OOOOH
JMP INIT

ORG 100H
; PUT TIMER 0 IN MODE I
INIT: MOV TMOD.#OOOOOOOIB
; INITIALIZE TIMER REGISTERS

MOV TLO.#O
MOV THO.#-16

; SUBDIVIDE INTERRUPT RATE BY 244
MOV SUB_DIV.#244

; ENABLE TIMER INTERRUPTS
SETB ETO

: GLOBALLY ENABLE ALL INTERRUPTS
SETB EA

; START TIMER
SETB TRO

: (CONTINUE WITH BACKGROUND PROGRAM)

: PUT TIMER 0 IN MODE I
: INITIALIZE TIMER REGISTERS

: SUBDIVIDE INTERRUPT RATE BY 244
: ENABLE TIMER INTERRUPTS
: GLOBALLY ENABLE ALL INTERRUPTS
:STARTTIMER

ble declarations need to be changed: AS M51 automati
cally adjusts all addresses and symbolic references to the
reassigned variables. The user is assured that no addi
tional debugging or software verification will be required.

Timer 0 (one of the two on-chip timer/ counters) replaces
the thermo-mechanical blin~er relay in the dashboard
controller. During system initialization it is configured as
a timer in mode I by setting the least significant bit of the
timer mode register (TMOD). In this configuration the
low-order byte (TLO) is incremented every machine cycle.
overflowing and incrementing the high-order byte (THO)
every 256 ~Sec. Timer interrupt 0 is enabled so that a
hardware interrupt will occur each time THO overflows.
(For details of the numerous timer operating modes see
the MCS-51'· User's Manual.)

An eight-bit variable in the bit-addressable RAM array
will be needed to further subdivide the interrupts via
software. The lowest-order bit ofthis counter toggles very

fast to modulate the parking lights; bit 7 will be "tuned "to
approximately I H7 for the turn- and emergency
indicator blinking rate.

Loading THO with -16 will cause an interrupt after 4.096
msec. The interrupt service routine reloads the high-order
byte of timer 0 for the next interval. saves the CPU regis
ters likely to be affected on the stack. and then decrements
SUB_DIY. Loading SUB_DIV. with 244 initially and
each. time it decrements to zero will produce a 0.999
second period for the highest-order bit.

ORG OOOBH : TIMER 0 SERVICE VECTOR
. MOV THO.#-16

PUSH PSW
PUSH ACC
PUSH B
DJNZ SUB_DIV.TOSERV
MOV SUB_DIV.#244

The code to sample inputs. perform calculations. and
update outputs-the real "meat" of the signal controller
algorithm-may be performed either as part of the inter
rupt service routine or as part of a background program
loop. The only concern is that it must be executed at least
several dozen times per second to prevent parking light
flickering. We will assume the former case. and insert the
code into the timer 0 service routine.

10-51

First. notice from the logic diagram (Figure 15) that the
subterm (PARK' H_FREQ). asserted when the parking
lights are to be on dimly. figures into four of the six output
functions. Accordingly. we will first compute that term
and save it in a temporary location named "DIM". The
PSW contains two general purpose flags: FO. which cor
responds to the 8048 flag of the same name. and PSW.I.
Since The PSW has been saved and will be restored to its
previous state after servicing the interrupt. we can use
either bit for temporary storage.

DIM BIT PSW.I : DECLARE TEMP.
STORAGE FLAG

MOV C.PARK : GATE PARKING
LIGHT SWITCH

AN!. HLFREQ : WITH HIGH
FREQUENCY
SIGNA!.

MOV DlM.C : AND SAVE IN
TEMP. VARIABLE.

This simple three-line section of code illustrates a remark
able point. The software indicates in very abstract terms
exactly what function is being performed. independeni of

01489A-22

the hardware configuration. The fact that these three bits
include an input pin, a bit within a program variable, and
a software flag in the PSW is totally invisible to the
programmer.

Now generate and output the dashboard left turn signal.

MOV CLTURN

ORI. CEMERG

MOV LDASH.C

: SET CARRY IF
TURN

: OR EMERGENCY
SELECTED.

:GATE IN I HZ
SIGNAL

: AND OUTPUT TO
DASHBOARD.

To generate the left front turn signal we only need to add
the parking light function in FO. But notice that the func
tion in the carry will also be needed for the rear signal. We
can save effort later by saving its current state in FO.

MOV FO.C

ORL CDIM

MOV LFRNT.C

: SAVE FUNCTION
SO FAR.

: ADD IN PARKING
LIGHT FU!\:CTION

: A"D OUTPUT TO
TURN SIG:\,AL.

Finally. the rear left turn signal should also be on when the
brake pedal is depressed, provided a left turn is not In
progress:

MOV CBRAKE : GATE BRAKE
PEDAL SWITCH

ANI. C LTURN : WITH TURN
LEVER.

ORL CFO : INCI.UDE TEMP.
VARIABLE FROM
DASH

ORI. CDIM : AND PARKI!\:G
LIGHT FU!'<CTIO!'<

MOV LREAR.C : AND OUTPUT TO
TURN SIG!'<AL

Now we have to go through a ;,imilar sequenc;e for the
right-hand equivalents to all the left-turn lights. This aho
give;, us a chance to see how the code segments above look
when combined.

MOf CR_TURN : SET CARRY II-
TURN

ORI. CEMERG : OR EMERGENCY
SEI.ECTED.

ANI. CI.O§REQ : IF SO. GATE IN I
HZ SIG!'<AI.

MOV R_DASH.C : AND OUTPUT TO
DASHBOARD.

MOV mc : SAVE FUNCTION
SO FAR.

ORL CDIM : ADD IN PARKING
LIGHT FUNCTION

MOV R_FRNT.C : AND OUTPUT TO
TURN SIGNAL.

MOV CBRAKE : GATE BRAKE
PEDAL SWITCH

ANI. C R_TURN : WITH TURN
I.EVER.

ORL CFO : INCLUDE TEMP.
VARIABLE FROM
DASH

ORL CDIM : AND PARKING
LIGHT FUNCTION

MOV R_REAR.C : AND OUTPUT TO
TURN SIGNAL.

(The perceptive reader may notice that simply rearranging
the steps could eliminate one instruction from each
sequence.)

Now that all six bulbs are in the proper states, we can
return from the interrupt routine. and the program is
finished. ThiS code essentially needs to reverse the status
saving steps at the beginning of the inte'rrupt.

POP B

POP ACC
POP PSW
RETI

: RESTORE epc
REGISTERS.

Pro!(ram Refinements. The luminescence of an incan
de;,cent light bulb filament is generally non-linear: the 50o/c
duty cycle of HLFREQ may not produce the desired
intensity. If the application requires. duty cycles of 25o/c,
75t;;. etc. are easily achieved by AN Ding and ORing in
additional low-order bits of SUB_DIV. For example. 30
H7 signals of seven different duty cycle;, could be pro
duced by considering bits 2-0 as shown in Table 7. The
only software change required would be to the code which
sets-up variable DIM:

MOV CSUB_DIV.I

ANI. CSUB_DIV.O

MOV DIM.C

10-52

: START WITH 50
PERCENT

: MASK DOWN TO 25
PERCENT

: AND BUILD BACK TO
62 PERCENT

: DUTY CYCI.E FOR
'PARKING LIGHTS.

01489A-23

Table 7. Non-trivial Duty Cycles.

SUB_DIV BITS
7 6 5 4 3 2 1 0 12.5%
X X X X X 0 0 0 OFF
X X X X X 0 0 I OFF
X X X X X 0 I 0 OFF
X X X X X 0 I I OFF
X X X X X I 0 0 OFF
X X X X X I 0 I OFF

X X X X X I I 0 OFF
X X X X X I I I ON

Interconnections increase cost and decrease reliability.
The simple buffered pin-per-function circuit in Figure 16
is insufficient when many outputs require higher-than
TTL drive levels. A lower-cost solution uses the 8051
serial port in the shift-register mode to augment I! O. In
mode O. writing a byte to the serial port data buffer
(SBU F) causes the data to be output sequentially through
the "RXD" pin while a burst of eight clock pulses is
generated on the "TXD" pin. A shift register connected to
these pins (Figure 17) will load the data byte as it is shifted
out. A number of special peripheral driver circuits com
bining shift-register inputs wIth high drive level outputs
have been introduced recently.

Cascading multiple shift registers end-to-end will expand
the number of outputs even further. The data rate in the
I! 0 expansion mode is one mega baud. or 8 usec. per byte.
This is the mode which the serial port defaults to following
a reset. so no initialization is required.

The software for this technique uses the B register as a
"map" corresponding to the different output functions.
The program manipulates these bits mstead of the output
pins. After all functions have been calculated the B register
is shifted by the serial port to the shift-register driver.
(While some outputs may glitch as data is shifted through
them. at I Megabaud most people wouldn't notice. Some
shift registers provide an "enable" bit to hold the output
states while new data is bemg shifted in.)

This is where the earlier decision to address bits symbol
ically throughout the program is gomg to payoff. This
major I 0 restructuring is nearly as simple to Implement
as rearranging the input pins. Again. only the bit declara
tions need to be changed.

LFRNT BIT B.O ; FRONT I.EFT-TURN
INDICATOR

R_FRNT BIT 8.1 ; FRONT RIGHT-TURN
INDICATOR

LDASH BIT 8.2 ; DASHBOARD I.EFT-TURN
INDICATOR

R.,..DASH BIT B.3 ; DASHBOARD RIGHT-TURN
INDICATOR

DUTY CYCLES
25.0% 37.5% 50.0% 62.5% 75.0% 87.5%
OFF OFF OFF Of-!- OFF OFF

OFF OFF OFF OFF OFF ON
OFF OFF OFF OFF ON ON
OFF OFF OFF ON ON ON
OFF OFF ON ON ON ON
OFF ON ON ON ON ON
ON ON ON ON ON O!'i
ON ON ON ON ON 01'\

+12V

'051

P31 "--_~ eLK

Figure 17. Output expansion using serial port.

LREAR BIT B.4 ; REAR LEFT-TURN
; INDICATOR

R_REAR BIT 8.5 ; REAR RIGHT-TURN
; INDICATOR

The origmal program to compute the functions need not
change. After computing the output variables. the control
map is transmitted to the buffered shift register through
the serial port:

MOV SBUF.B ; LOAD BUFFER ANDTRA!'iSMIT

The Boolean Processor solution holds a number of advan
tages over older methods. Fewer switches are required.
Each is simpler. requiring fewer poles and lower current
contacts. The flasher relay is eliminated entirely. Only six
filaments are driven. rather than 10. The wiring harness is
therefore simpler and less expensive-one conductor for
each of the six lamps and each of the five sensor switches.
The fewer conductors use far fewer connectors. The whole
system is more reliable.

And since the system is much simpler it would be feasible
to Implement redundancy and or fault detection on the
four main turn indicators. Each could stilI be a standard
double filament bulb. but with the filaments driven in
parallel to tolerate single-element failures.

10-53

Even with redundancy. the lights will eventually fail. To
handle this inescapable fact current or voltage sensing

01489A-24

circuits on each main drive wire can verify that each bulb
and 'its high-current driver is functioning properly. Figure
18 show, one such circuit.

WIRING +12V
HARNESS

I

TO 1---4.._

Figure 18.

A,sume all of the lights are turned on except one: i.e., all
but one of the collectors are grounded. For the bulb which
is turned off. if there is continuity from + 12 V through the
bulb base and filament. the control wire. all connectors.
and the P.c. board traces. and if the transistor is indeed
not shorted to ground. then the collector will be pulled to
+ 12 V. This turns on the base of 08 through the corres
ponding resistor. and grounds the input pin. verifying that
the bulb circuit is operational. The continuity of each
circuit can be checked by software in this way.

Now turn allthe bulbs on. grounding all the collectors. 07
should be turned off. and the Test pin should be high.
However. a control wire shorted to + 12 V or an open
circuited drive transistor would leave one of the collectors
at the higher voltage even now. This too would turn on 07.
indicating a different type of failure. Software could per
form these checks once per second by executing the rou
tine every time the software counter SU B_DIVis reloaded
by the interrupt routine.

D.lNZ SUB_DIV.TOSERV
MOV SUB_DIV.#244
ORL PI.#IIIOOOOOB

ORL P2.#00000111 B
CLR LFRNT

JB TO.FAULT

SETB LFRNT

: RELOAD COUNTER
: SET CONTROL

OUTPUTS HiGH

: FLOAT DRIVE
COLLECTOR

: TO SHOUl.D BE
PULLED LOW

: PULL COLLECTOR
BACK DOWN

CLR I._DASH
.IB TO.FAULT
SETB LDASH
CLR LREAR
.IB TO.FAULT
SETB LREAR
CLR R-FR:,\T
.IB TO.FAULT
SETB R_FR:'\T
CLR R_DASH
.IB TO.FAULT
SETB R_DASH
CLR R_REAR
.IB TO.FAULT
SETB R_REAR

: WITH ALI. C.OLLECTORS GROUNDED. TO
SHOULD BE HIGH

: IF SO. CO:'\TI:'\UE WITH I:'\TERRlIPT ROUTI:,\E .
.IB TO.TOSERV

FAULT:

TOSERV:

: ELECTRICAL FAILURE
:PROCESSI:'\G ROUTI:,\E
: (LEFT TO READER'S
: IMAGI:,\ATIO:'\)
: CO:,\TI:'\UE WITH
:1:'\TERRlIPT PROCESSING

The complete assembled program listing is printed in
Appendix A. The resulting code consists of 67 program
statements. not counting declarations and comments.
which assemble into 150 bytes of object code. Each pass
through the service routine requires (coincidently) 67 usee .

. plus 32 usee once per second for the electrical test. If
executed every 4 msec as suggested this software would
typically reduce the throughput of the background pro
gram by less than 2o/c.

Once a microcomputer has been designed into a system.
new features suddenly become virtually free. Software
could make the emergency blinkers flash alternately or at
a rate faster than the turn signals. Turn signals could
override the emergency blinkers. Adding more bulbs
would allow multiple tail light sequencing and
syncopation - true flash factor. so to speak.

Design Example #5 - Complex Control
Functions
Finally. we'll mix byte and bit operations to extend the use
of 8051 into extremely complex applications.

10-54

Programmers can arbitrarily assign I/O pins to input and
output functions only if the total does not exceed 32.
which is insufficient for applications with a very large
number ofinpi.tt variables. One way to expand the number
of inputs is with a technique similar to multiplexed
keyboard scanning.

01489A-25

Figure 19 shows a block diagram for a moderately com
plex programmable industrial controller with the follow
ing characteristics:

• 64 input variable sensors;
• 12 output signals;
• Combinational and sequential logic computations;,
• Remote operation with communications to a host

processor via a high-speed full-duplex serial link;
• Two priariti7ed external interrupts;
• Internal real-time and time-of-day clocks.

While many microprocessors could be programmed to
provide these capabilities with assorted peripheral sup
port chips. an 8051 microcomputer needs no other inte
grated circuits!

The 64 input sensors are logically arranged as an 8x8
matrix. The pins of Port I sequentially enable each
column of the sensor matrix; as each is enabled Port 0
reads in the state of each sensor in that column. An
eight-byte block in bit-addressable RA M remembers the
data as it is read in so that after each complete scan cycle
there is an internal map of the current state of all sensors.
Logic functions can then directly address the elements of
the bit map.

The computer's serial port is configured as a nine-bit
UART. transferring data at 17.000 bytes-per-second. The
ninth hit may distinguish between address and data bytes.

0 ,
2

3 .
5 .
1

12MIIZ~

SERIAL I
LINK ,

RETURN
LINES

\ . 16243240 .. 50 - f--,,- ""-
I I I 58_ =: ... ,,-

SENSOR 60- -'jATRIX I
81- -,,- -152331 "41 5563 - -IfL r-

/
SCAN
LINES

h,,,,
XTAL1 vee FIST

XTAL2

AXO iNTo
TXC iNii

80"

POO
P3.

POl
P35

PH
P02

P37
P03

PO'
P20

P05
P21

PO<

P01
P22

"3

P2.

". P25

P11 P26

P12 P21

,,3

P14

P15 ALE !--NC
P16 PSeN :-- NC
P11

VSS EA

~
.

I ASVNCHFIONANS
I INTERRUPTS

MACHINE
ACTUATORS

Figure 19. Block diagram of 64-inpuf machine
controller.

10-55

The 8051 serial port can be configured to detect bytes with
the address bit set. automatically ignoring all others. Pins
INTO and INTI are interrupts configured respectively as
high-priority. falling-edge triggered and low-priority. low
level triggered. The remaining 12 I' 0 pin~ output TTL.
level control signals to 12 actuators.

There are several ways to implement the sensor matrix
circuitry. all logically similar. Figure 20.a shows one possi
bility. Each of the 64 sensors consists of a pair of simple
switch contacts in series with a diode to permit multiple
contact closures throughout the matrix.

The scan lines from Port I provide eight un-encoded
actiye-high scan signals for enabling columns of the
matrix. The return lines on rows where a contact is closed
are pulled high and read as logic ones. Open return lines
are pu~led to ground by one of the 40 kohm resistors and
are read as 7eroes. (The resistor values must be chosen to
ensure all return lines are pulled above the 2.0 V logic
threshold. even in the worst-case, where all contacts in an
enabled column are closed.) Since PO is provided open
collector outputs and high-impedance MOS inputs its
input loading may be considered negligible.

The circuits in Figures 20.b-20.d are variations on this
theme. When input signals must be electrically isolated
from the computer circuitry as in noisy industrial environ
ments. phototransistors can replace the switch diode
pairs and provide optical isolation as in Figure 20.b. Addi
tional opto-isolators could also be used on the control
output and special signal lines.

The other circuits assume that input signals are already at
TTL. levels. Figure 20.c uses octal three-state buffers
enabled by active-low scan signals to gate eight signals
onto Port O. Port 0 is available for memory expansion or
peripheral chip interfacing between sensor matrix scans.
Eight-to-one multiplexers in Figure 20.d select one of
eight inputs for each return line as determined by encoded
address bits output on three pins of Port I. (Five more
output pins are thus freed for more control functions.)
Each output can drive at least one standard TTL or up to
10 low-power TTL. loads without additional buffering.

Going back to the original matrix circuit. Figure 21 shows
the method used to scan the sensor matrix. Two complete
bit maps are maintained in the bit-addressable region of
the RAM:'one for the current state and one for the pre
vious state read for each sensor. If the need arises. the
program could then sense input transitions and 'or
debounce contact closures by comparing each bit with its
earlier value.

01489A-26

::~ ::: I
'"56" RETURN

f--'-:":l...: , U""
~+-~~-H-~-~~'

-1---+-1-1 1,-+--:---tt---,1it--l'"

~'i--: --+1 t=-rt ~:
-1--- 1+.'-+ I :::

. " " .
--'-~ ~-'-"::L

+---t--~-+----i-t-<rttt-t-ttt-I '" ... ," ·t
L~==ij====4:::

'----------tt---- '"
'------tt----- '"

'----------1-t-----j'"
'---------+1----1'"

'----------t+--------j".
'-------------+t---- '"

SCAN ~
LINES

a.) Using switch contact/diode matrix.

iiljilll liilllU
18051

'--t+-t-t-+-+t---*-t-+t-t-+-t-rt----+--t-H-t-t--t-- '"
'++-++-I-+---+--i-t-+-+t--+--+-+-t-t-t-+~ eo,

,++-++-t--......,-t-t-+-t---+-+-t-t-t-- '"
'++++----+---j-t-t--t----+--t--i-t-----, ,os
'+++---......,-t-----1----+-+-t~~,
'+t----......,--t-----<---t-- eo.
'+---~~-+-----<-~~,

I I I /I

III~===~ 1''-------
c.) Using TTUhree-state buffers.

'"
'" '"
'"
'"
'"
'" '--

~,~.,

~"~'

-
~ ... RETIJRN

r-T~_'_"_""tT"""'_'"'_S -'t'-J~O

-t--j-~-+-~-'~~"'-'"tT"""-~rt-1'''

'----tT"""-----I " ,

I --===+1=====1'" L-- P12

~------t1r----j'"
~-----tt------j'"

~----------tt--------j'"
~--------tt-------I'"

'----------------1rt-----j'"
SCArI
LINES

b.) Using optically-coupled isolators.

rJrriijj -ii/iii! nrnru
1
,00 01 D2 03 0" 05 06 0, 1100 0\ °2 0 3 0<\ 05 Os OJ

74151 14151

C 8 A or S C' 8 A Y S

[

000,020304050607

7 .. ,51

C BAY S

l

I"" l~ IT
~--t-+t---t-------t-H--+----~'

~----t-t---t--t---- ""
'+rr~-++-t-r----'"
'1-H--t-t---t--t---- '"
'+t------t+-tr----t--~ 'os
'+--T+--t--t---- '"

'-------t+-t--jr------ ".
'----'"

d.) Using TTL data selectors.

Figure 20. Sensor Matrix Implementation Methods.

The code in Example ~ implement~ the .,canning algo
rithm for the circuih in Figure 20.a, Each column i.,
enabled by ;,ctting a ;,ingle bit in a field of 7CrOC.,. The bit
map;, are positive logic: one;, repre;,ent contach thatllrc
closed or i.,olator, turned on, .

10-56

Example ~,

I'\PlILSCA'\: : SliBROllTI:"iF TO READ
ClIRRE:"iT STATE
: OF M SE"\SORS A,\D
SAVE 1'\ RAM 20H-27H,

MOV RO.#20H : I'\ITIAI.IZE
: POINTERS

MOV RI.#2XH : FOR BIT MAP
: BASES.

01489A-?7

MOV A,#ROH

SCAN: MOV PI,A

RR A

MOV R2,A

MOV A.PO

XCH A.@RO

MOV @RLA

INC ,RO
INC RI
MOV A.R2

JNB ACC7.SCAN

RET

: SET FIRST BIT IN
ACT.

: OUTPUT TO SCAN
, LINES.

: SHIFT TO ENABLE
NEXT COLUMN
NEXT.

: REMEMBER CUR
RENTSC'AN
POSITION.

: READ RETURN
LINES.

: SWITCH WITH
PREVIOUS MAP
BITS. ,

: SAVE PREVIOUS
STATE,AS WELl ..

: BUMP POINTERS.

: REI.OAD SCAN LINE
MASK

: LOOP UNTIL ALI.
EIGHT COLUMNS
READ.

Figure 21. Flowchart for reading In sensor matrix.

What happens after the sensors have heen scanned
depends on the individual application. Rather than
inventing some artificial design problem, software corres
ponding to commonplace logic elements will bediscussed.

ComhinatorialOutput Variahln; An output variable
which is a simpJ.: (or not so simple) combinational func
tion of several input variables is computed in the spirit of
Design Example 3. All 64 inputs are represented in the bit
maps: in fact, the sensor numbers in Figure 20 correspond
to the absolute bit addresses in RAM! The code in Exam
ple 4 activates an actuator connected to P2.2 when sensors
12,23, and 34 are closed and sensors 45 and 5/i are open.

Example 4.

Simple Combinatorial Output Variable>.

: SET P2.2 = (12) (23) (34) (45) (5/i)
MOV CI2
1NL 03
ANI. C34
ANI. C 45
A:,\I. C 5/i
MOV P2.2,C

Intermediate Variah/es. The examination of a typical
relay-logic ladder diagram will show that many of the
rungs control not outputs but rather relays whose con
tacts figu're into the computation of other functions. In
effect, these relays indicate the state of intermediate varia
bles of a computation.

The MCS-S/'M solution can use any directly addressable
bit for the storage of such intermediate variables. Even
when all 128 bits of the RAM array are dedicated (to input
bit maps in this example), the accumulator, 'PSW, and B
register provide 18 additional flags for intermediate
variables.

For example, suppose switches 0 through 3 control a
safety interlock system. Closing any of them should deac
tivate certain outputs. Figure 22 is a ladder diagram for
this situation. The interlock function could be'recomputed
for every output affected, or it may be computed once and
saved (as implied by the diagram). As the program pro
ceeds this bit can qualify each output.

Exaniple 5. Incorpdr~ting Override signal into actuator
, outputs.

1 ()'·57

CALL INPUT~'iCAN
MOV CO
ORL CI
ORL C2
ORL C3
MOV FO~C

01489A·28

COMPUTE FUNCTION 0

ANI. C. FO
MOY PI.O.C

C01v1PlJTE FUNCTION I

.ANI. C. FO
MOY PI.I.C

COMPUTE FUNCTION 2 . .

ANI. .c. FO
MOY PI.2.C

"0"

"2"

"3" I
I
I

Figure 22. Ladder diagram 'or output override
circuitry.

Latching Relays. A latching relay can be forced into either
the ON or OFF state by two corresponding input signals.
wl:1ere it will remain until forced ontp the opposite state
analogous to a TTL Setl Reset flip-flop. The relay is used
as an intermediate variable for other calculations. In the
previous example, the emergency conditiom could be
remembered and remain active until an "emergency
cleared" button is pressed.

Any flag or addressable bit may repre~ent a l!ltching relay
with a few lines of code (see Example 6).

Example 6: Simulating a latchinltrelay.

:L~SET ·SET FI.AG.O IF C=I
LSET: ORt C.FO

. MOY -FO.C

:LRSET RESET FLAG 0 IFC=I
LRSET: CPS C,

ANI. c.PO
MOY FO.C

: t

Time Delay R;"ars. A time delay relay does not respond
to an input signal until it has been present (or absent) for
some 'predefined time. For example. a ballast or load
resisior may be switched in series with a D.C. motor when
it is first turned on. and shunted from the circuit after one
second. This sort, of time delay may be simulated by an
'interrupt routine driven by one of the two 8051 timer!
counters .. The procedure followed by the routine depends
heavily on the details of tHe'exa'ct function needed: time
outs or time delays .withresettable or non-resettable inputs
are possible. If the interrupt routine is executed every 10
milliseconds the code in Example 7 will clear an inter
mediate variable set by the background program after it
has been active for two seconds.

Example 7. Code to clear USRFLG aftera fixed time delay .

.INB USR~FLG.NXTTST

D.lNZ DI.A Y _C'OUNT.NXTTST
CLR USR-FLG
MOY DI.A Y _COUNT.#200

NXTTST: ...

Serial Interface to Remote Processor. When it detects
emergency conditions repr'esented by certain input com
binations (such as the earlier Ell]ergency Override). the
controller could shutdqwn the machine immediately
and/ or alert the host processor via the serial port. Code
bytes indicating the nature of the problem could be trans
mitted to a central computer. I n fact. at 17.000 bytes-per
second. the entire contents of both bit maps could be sent

· to the host processor for further analysis in less than a
millisecond! If the host decides that conditions warrant, it
could alert other remote processors in the system that a
problem exists and specify:which snut-down sequence
each should initiate. For more information on using the
serial port; consult the MCS-SI'· User's Manual.

Response Timing.
One difference between relay and programmed industrial

· controllers (when each is considered as a "black box") i~
· their respective reaction times t~ input changes. As

reflected" by a ladder. diagram, relay systems' contaIn a

01489A-29

. to-$8

large number of "rungs" operating in parallel. A change in
input conditions will begin propagating through the sys
tem immediately. possibly affecting the output state
within milliseconds.

Software. on the other hand. operates sequentially. A
change in input states will not be detected until the next
time an input scan is performed, and will not affect the
outputs until that section of the program is reached. For
that reason the raw speed of computing the logical func
tions is of extreme importance.

H~re the Boolean processor pays off. Eve~1' instruction
'mentioned in this Note completes in one or two micro
seconds-the minimum instruction execution time for
ma'ny other microcontrollers! A ladder diagram contain
ing a hundred rungs. with an average of four contacts per
rung can be replaced by approximately five hundred lines
of software. A complete pass through the entire matrix
scanning routine and all computations would require
about a millisecond: less'than the time it takes for most
relays to change state.

A programmed controller which simulates each Boolean
function with a subroutine would be less efficient by at
least an order of magnitude. Extra software is needed for
the simulation routines. and each step takes longer to
execute for three reasons: several byte-wide logical
instructions are executed per user program step (rather
than one Boolean operation):_most of those instructions
take longe'r to execute with microprocessors perfor,ming
multiple off-chip accesses: and calling and returning from
the various subroutines requires overhead for stack
operations.

In fact: the speed of the Boolean Processor solution is
likely to be much faster than the system requires. The
CPU might use the time left over to compute feedback
parameters. collect and analY7e execution statistics. per
form system diagnostics. and so forth.

Additional functions and uses.

With the building-block basics mentioned above many
more operations may be synthesized by short instruction
sequences.

Exclusive-OR. There are no common mechanical devices
or relays analogous to the Exclusive-OR operation. so this
instruction was omitted from the Boolean Processor.
However. the Exclusive-OR or Exclusive-NOR operation
may be performed in two instructions by conditionally
complementing the carry or a Boolean variable based on
the state of any other testable bit.

: EXCLUSIVE-OR FUNCTION IMPOSEDON CARRY
: USING FO IS INPUT VARIABI.E.
XOR_FO: JNB FO.XORCNT : (".IB" FOR X-NOR)

CPI. C
XORCNT: ...

XCH. Thecontents ofth'ecarryand some other bit may be
exchanged (switched) by using the accumulator a& tempo
rary storage. Bits can be moved into and out of the accu
mulator simultaneously using the Rotate-through-carry
instructions. though this would alter the accumulator
data.

: EXCHANGE CARRY WITH USRPLG
XCHBIT: RLC A

MOV C.USR_FLG
RRC A
MOV USR_FLG.C
RLC A

Extended Bit Addressing. The 8051 can directly address
144 general-purpose bits for all instructions in figure 3.b.
Similar operations'may be extended to any bit anywhere
on the chip with some loss of efficiency.

The logical operations AND. OR. and Exclusive-OR are
performed on byte variables using six different addressing
modes. one of which lets the source be an immediate
mask. and the destination any directly addressable byte.
Any bit may thus be set. cleared. or complemented with a
three-byte. two-cycle instruction if the mask has all bits
but one set or cleared.

Byte variables. registers. and indirectly addressed RA M
may be moved to a bit addressable register (usually the
accumulator) in one instruction. Once transferred. the bits
may be tested with a conditional jump. allowing any bit to
be polled in 3 microseconds-still much faster than most
architectures-or used for logical calculations. (This
technique can also simulate additional bit addressing
modes with byte operations.)

Parill' ofbl'tes or bits. The parity of the current accumu
lato~ c~nients is always available'in the PSW. from
whence it may be moved to the carry and further pro
cessed. Error-correcting Hamming codes and similar
applications require computing parity on groups of iso
lated bits. This can be done by conditionally complement
ing the carry flag based on those bits or by gathering the
bits into the accumulator (as shown in the DES example)
and then testing the parallel parity flag.

Multiple byte shift and CRC codes.

Though the 8051 serial port can accommodate eight- or
nine-bit data transmissions, some protocols involve much

10-59

longer bit streams. The algorithms presented in Design
Example 2 can be extended quite readjly to 16 or more bits
by using multi-byte input and output buffers.

Many mass data storage peripherals and serial communi
cations protocols include Cyclic Redundancy (eRC)
codes to verify data integrity. The function is generally
computed serially by hardware using shift registers and
Exclusive-OR gates. but it can be done with software. As
each bit is received into the carry. appropriate bits in the
multi-byte data buffer are conditionally complemented
based on the incoming data bit. When finished. the CRC
register contents may be checked for 7ero by ~Ring the
two bytes In the accumulator.

4. SUMMARY
A truly unique facet of the Intel MCS-5I T• microcomputer
family design is the collection offeature, optimi7ed for the
one-bit operations so often de,ired in real-world. real-time
control applications. Included are 17 special instructions.
a Boolean accumulator. implicit and direct addre"ing
modes. program and mass data storage. and many I 0
options. These are the world's fir,t single-chip micro
computers able to efficiently manipulate. operate on. and
transfer either bytes or indi~idual bits as dat'!.

This Application Note has detailed the informat.ion
needed by a microcomputer system designer to make full
use of these capabilities. Five design examples Were useq
to contrast the solutions allowed by the 8051 and those
required by previous architectures. Depending on the
individual application. the 8051 solution will be eas·ier to
design. more reliable to implement. debug .. and verify. use
less program memory. and run up to a.n order of magni
tude faster than the same function imp'lemented on pre
vious digital computer architectures.

Combining byte- and bit-handling capabilities in a single
micro,omputer has a strong synergistic ,effect: the power
of the result exceeds the power of byte- and bit-processors
laboring individually. Virtually all user applications will
benefit in some ways from this duality. Data intemive
applications will use bit afJdressing for test pin monitori,ng
or program control flags: control applications will u,e
byte manipUlation for parallel I 0 expansion or arith-
metic calculations. .

It is hoped that these de,ign examples give the reader an
appreciation of these unique features and suggest ways to
exploit them in ni, or her own application. '

01489A-31

10-60

.....
I?
~

ISIS-II MCS-51 MACRO ASSEMBLER Vl.0
OB'JECT MODULE PLACED IN FO AP70 HEX
ASSEMBLER INVOKED BY: : 1'1: asm51 ap70 src date(328)

LOC OBJ

0090
0091
0092
0093
00'l'4

0095
0096
0097
OOAO
OOAl
00A2

00A3

0020
0000
0007

00D1

LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 +1

SOURCE

$XREF TITLE(AP'-70 APPENDIX)
t**

THE FOLLOWING PROGRAM USES THE BOOLEAN INSTRUCTION SET
OF THE INTEL e051 MICROCOMPUTER TO PERFORM A NUMBER OF
AUTOMOTIVE DASHBOARD CONTROL FUNCTIONS RELATING TO
TURN SIGNAL CONTROL, EMERGENCY BLINKERS, BRAKE LIGHT
CONTROL, AND PARKING LIGHT OPERATION.

o THE ALGORITHMS AND HARDWARE ARE DESCRIBED IN DESIGN
EXAMPLE #4 OF INTEL APPLICATION NOTE AP-70,

"USING THE INTEL MCS-51<TM)
BOOLEAN PROCESSING CAPABILITIES"

;***

BRAKE
EMERG
PARK
L_TURN
R_TURN

LIRNT
R_FRNT
L_DASH
R_DASH
L_REAR
R_REAR

S_FAIL

INPUT PIN DECLARATIONS:
(ALL INPUTS ARE POSITIVE-TRUE LOGIC.

INPUTS ARE HIGH WHEN RESPECTIVE SWITCH CONTACT IS CLOSED)

BIT PI. 0
BIT PI 1
BIT PI. 2
BIT PI 3
BIT P1.4

BRAKE PEDAL DEPRESSED
EMERGENCY BLINKER ACTIVATED
PARKING LIGHTS ON
TURN LEVER DOWN
TURN LEVER UP

OUTPUT PIN DECLARATIONS:
(ALL OUTPUTS ARE POSITIVE TRUE LOGIC
BULB IS TURNEU ON WHEN OUTPUT PIN IS HIGH.o)

BIT PI 5 FRONT LEFT-TURN INDICATOR
BIT PI 6 FRONT RIGHT-TURN INDICATOR
BIT PI 7 DASHBOARD LEFT-TURN INDICATOR
BIT P2 0 DASHBOARD RIGHT-TURN INDICATOR
BIT P2. 1 i REAR LEFT-TURN INDICATOR
BIT P2 2 REAR RIGHT-TURN INDICATOR

BIT P2.3 ELECTRICAL SYSTEM FAULT INDICATOR

INTERNAL VARIABLE DEFINITIONS'

SUB DIV DATA 20H i INTERRUPT RATE SUBDIVIDER
HI_FREG BIT SUB_DIV 0 HIGH-FREGUENCY OSCILLATOR BIT
LO_FREG BIT SUB_DIV.7 LOW-FREGUENCY OSCILLATOR BIT

DIM BIT PSW 1 PARKING LIGHTS ON FLAG

;===
$EJECT

r~
~i
ID ~
39: ,..M ...
!;.
• c:

g

~
!l
iD

~
3
S-a.
~
~

1 a
i ..

LOC DB,) LINE SOURCE

49 ORG OOOOH RESET VECTOR
0000 020040 :10 L')MP INIT

:11
OOOB :12 ORG OOOBH TIMER 0 SERVICE VECTOR
OOOB 7:18CFO :53 MOV THO, 11-16 HIGH TIMER BYTE AD,)USTED TO CONTROL INT RATE
OOOE CODO :54 PUSH PSW ; EXECUTE CODE TO SAVE ANY REGISTERS USED BELOW
0010 01:14 :1:1 A')MP UPDATE (CONTINUE WITH REST OF ROUTINE)

:56
0040, :17 ORG 0040H
0040 7:18AOO :18 INIT MOV TLO, 110 ZERO LOADED INTO LOW-ORDER BYTE AND
0043 7:18CFO :59 MOV THO, 11-16 , -16 IN HIGH-ORDER BYTE GIVES 4 MSEC PERIOD
0046 7:18961 60 MOV TMOD,1I0110000lB' , 8-BIT AUTO RELOAD COUNTER MODE FOR TIMER 1,

61 16-BIT TIMER MODE FOR TIMER ° SELECTED
0049 7:520F4 62 ,MOV SUB_DIV, 11244 ,SUBDIVIDE INTERRUPT RATE BY 244 FOR 1 HZ
004C D2A9 63 SEn ETO- USE TIMER 0 OVERFLOWS TO INTERRUPT PROGRAM
004E D2AF 64 SETB EA CONFIGURE IE TO GLOBALLY ENABLE INTERRUPTS
00:50 D28C 6:5 SETB TRO KEEP INSTRUCTION CYCLE COUNT UNTIL OVERFLOW
00:12 80FE 66 SJMP $ START BACKGROUND PROGRAM EXECUTION

67
68

00:14 0:12038 69 UPDATE DJNZ SUB_DIV, TOSERV , EXECUTE SYSTEM TEST ONLY ONCE PER SECOND
00:17 7:120F4 70 MOV SUB_DIV, 11244 GET VALUE FOR NEXT ONE SECOND DELAY AND

71 GO THROUGH ELECTRICAL SYSTEM TEST CODE.
..... OO:1A 4390EO 72 ORL Pl,lI11l00000B SET CONTROL OUTPUTS HIGH b

Rl 00:10 43A007 73 ORL P2,1I00000l11B
0060 C295 74 CLR L_FRNT ; FLOAT DRIVE COLLECTOR
0062 20B428 7:1 JB TO, FAULT TO SHOULD BE PULLED LOW
006:1 029:1 76 SETB L_FRNT. PULL COLLECTOR BACK DOWN
0067 C297 77 CLR L_DASH REPEAT SE~UENCE FOR L_DASH,
0069 20B421 78 JB TO, FAULT
006C 0297 79 SETB L_DASH
006E C2Al 80 CLR L_REAR L REAR,
0070 20B41A 81 JB TO, FAULT
0073 D2Al 82 SETB L_REAR
007:1 C296 83 CLR R_FRNT R_FRNT,
0077 20B413 84 JB TO,FAULT
007A 0296 8:1 SETB R_FRNT
007C C2AO 86 CLR R_DASH R_DASH,
007E 20B40C 87 JB TO, FAULT
0081 D2AO 88 SETB R_DASH
0083 C2A2 89 CLR R_REAR AND R __ REAR
008:1 20B40:1 90 JB TO, FAULT
0088 D2A2 91 SETB R_REAR

92
93 WITH ALL COLLECTORS GROUNDED, TO SHOULD BE HIGH
94 IF SO, CONTINUE WITH INTERRUPT ROUTINE,
9:5

008A 20B402 96 JB TO,TOSERV
008D B2A3 97 FAULT. CPL S_FAIL ELECTRICAL FAILURE PROCESSING ROUTINE

98 (TOGGLE INDICATOR ONCE PER SECOND)
99 +1 $EjECT

LOC OBJ LINE SOURCE

100 CONTINUE WITH INTERRUPT PROCESSING:
101
102 1) COMPUTE LOW ,BULB INTENSITY WHEN PARKING LIGHTS ARE ON.
103

008F A201 104 TOSERV: MOV C.SUB_DIV 1 START WITH 50 PERCENT.
0091 8200 105 ANL C. SUB_DIV 0 MASK DOWN TO 25 PERCENT.
0093 7202 106 ORL C.SUB_DIV 2 · BUILD BACK TO 62. 5 PERCENT.
0095 8292 107 ANL C.PARK GATE WITH PARKING LIGHT SWITCH.
0097 92D1 108 MOV DIM.C AND SAVE IN TEMP. VARIABLE.

109
110 2) COMPUTE AND OUTPUT LEFT-HAND DASHBOARD INDICATOR
111

0099 A293 112 MOV C. L_TURN ; SET CARRY IF TURN
009B 7291 113 ORL C.EMERG OR EMERGENCY SELECTED.
009D 8207 114 ANL. C.LO_FRE<i · IF SO. GATE IN 1 HZ SIGNAL
009F 9297 115 MOV L_DASH.C AND OUTPUT TO DASHBOARD.

116
117 3) COMPUTE AND OUTPUT LEFT'-HAND FRONT TURN SIGNAL.
118

OOAI 92D5 119 MOV FO.C SAVE FUNCTION SO FAR.
00A3 72Dl 120 ORL C.DIM ; ADD IN PARKING LIGHT FUNCTION
00A5 9295 121 MOV L~FRNT. C ; AND OUTPUT TO TURN SIGNAL.

122
123 4) COMPUTE AND OUTPUT LEFT-HAND REAR TURN SIGNAL . ..,..
124 0

~ 00A7 A290 125 MOV C.BRAKE GATE BRAKE PEDAL SWITCH
00A9 B093 126 ANL C./L_TURN WITH TURN LEVER
OOAB 7205 127 ORL C.FO ; INCLUDE TEMP. VARIABLE FROM DASH
OOAD 7201 128 ORL C.DIM AND PARKING LIGHT FUNCTION
OOAF 92Al 129 MOV L_REAR.C AND OUTPUT TO TURN SIGNAL.

130
131 5) REPEAT ALL OF ABOVE FOR RIGHT-HAND COUNTERPARTS.
132

OOBI A294 133 MOV C.R_TURN SET CARRY IF TURN
00B3 7291 134 ORL C.EMERG OR EMERGENCY SELECTED.
00B5 8207 135 ANL C.LO_FREG IF SO. GATE IN 1 HZ SIGNAL
00B7 92AO 136 MOV R DASH.C · AND OUTPUT TO DASHBOARD.
00B9 92D5 137 MOV FO. C SAVE FUNCTION SO FAR.
OOBB 72Dl 138 ORL C.DIM ADD IN PARKING LIGHT FUNCTION
OOBD 9296 139 MOV RjRNT.C AND OUTPUT TO TURN SIGNAL.
OOBF A290 140 MOV C.BRAKE GATE BRAKE PEDAL SWITCH
OOCI B094 141 ANL C./R_TURN WITH TURN LEVER.
00C3 72D5 142 ORL C.FO INCLUDE TEMP. VARIABLE FROM DASH
OOC5 7201 143 ORL C.DIM AND PARKING LIGHT FUNCTION
00C7 92A2 144 MOV R_REAR. C AND OUTPUT TO TURN SIGNAL.

145
146 RESTORE STATUS REGISTER AND RETURN.
147

OOC9 DODO 148 POP PSW RESTORE PSW
OOCB 32 149 RETI AND RETURN FROM INTERRUPT ROUTINE

150
!51 END

XREF SYMBOL TABLE LISTING

NAME TYPE VALUE AND REFERENCES

BRAKE N BSEG 0090H 2011 125 140
DIM, N BSEG OODIH 4511 108 120 128 138 143
EA, N BSEG OOAFH 64
EI'IERG N BSEG 0091H 2111' 113 134
ETO N BSEG 00A9H 63
FO, N BSEG 00D5H 119 127 137 142
FAULT L CSEG 008DH 75 78 81 84 87 90 9711
HI_FREG N BSEG OOOOH 4211
INlT, L CSEG 0040H 50 5811
L_DASH, N BSEG 0097H 3211 77 79 115
L_FRNT, N BSEG 0095H 3011 74 76 121
L_REAR, N BSEG 00A1H 3411 80 82 129 ... L_TURK N BSEG 0093H 2311 112 126

~
LO_FREG N BSEG 0007H 4311 114 135
PL N DSEG 0090H 20 21 22 23 24 30 31 32 72
P2, N DSEG OOAOH 33 34 35 37 73
PARK N BSEG 0092H 2211 107
PSW , N DSEG OODOH 45 54 148
R_DASH, N BSEG OOAOH 3311 86 88 136
R1RNT, N BSEG 0096H 3111 83 85 139
R REAR, N BSEG 00A2H 3511 89 91 144
R::::TURN, N BSEG 0094H 2411 133 141
S_FAIL. N BSEG 00A3H 3711 97
SUB_DIV N DSEG 0020H 4111 42 43 62 69 70 104 105 106
TO. N BSEG 00B4H 75 78 81 84 87 90 96
TOSERV. L CSEG 008FH 69 96 10411
THO N DSEG 008CH 53 59
TLO , N DSEG OOBAH 58
TMOD, N DSEG 0089H 60
TRO N BSEG 008CH 65
UPDATE. L CSEG 0054H 55 6911

ASSEMBLY COMPLETE, NO ERRORS FOUND

"INTEL CORPORATION, 1984

APPLICATION
NOTE

AP-223

October 1984

ORDER NUMBER: 270032-001

1.0 INTRODUCTION

This is the third application note that Intel has produced
on CRT terminal controllers. The first Ap Note (ref. 1),
written in 1977, used the 8080 as the CPU and required
41 packages including II LSI devices. In 1979, another
application note (ref. 2) using the 8085 as the controller
was produced and the chip count decreased to 20 with 11
LSI devices.

Advancing technology has integrated a complete system
onto a single device that contains a CPU, program mem
ory, data memory, serial communication, interrupt con
.t1'911e~, ,and 110. These "computer-on-a-chip" devices are
known"as'microcontrollers. Intel's MCS@-51 microcon
troller was chosen for this application because of its highly
integrated functions. This CRT terminal design uses 12
packages with only 4 LSI devices.

This application note has been divided into five general
sections:

1) CRT Terminal Basics
2) 8051 Description
3) 8276 Description
4) Design Background
5) System Description

2.0 CRT TERMINAL BASICS

A terminal provides a means for humans to'communicate
with a computer. Terminals may be as simple a,s a LED
display and a couple of push buttons, or it may be an

,elaborate graphics system that contains a full function
keyboard with user programmable keys, color CRT and
several processors controlling its functions. This appli
cation note describes a basic low cost terminal containing
a black and white CRT display, full Junction keyboard

. and a serial interface.

2.1 CRT Description

A raster scan CRT displays its images by generating a
series of lines (raster) across the face of the tube. The

'electron beam usually starts' lit the top left hand corner
,moves left to right, back to the left of the screen, moves
down one row and continues on to the right. This is re
peated until the lower right hand of the screen is reached,
Then the beam returns to the top lefe hand corner and
refreshes the screen. The beam forms a zigzag pattern as
shown in Figure 2.1.0.

,Two independent operating circuit$ control this movement
',across the screen. The horizontal\ oscillator controls the
left to right motion of the beam while the vertical c;ontrols
the top to bottom movement. The vertical oscillator also
'tells the beam when to return to the upper left hand corner
'or "home" position.

s.E"'------:-
-..5,~t----,

- - RETRACE LINES
DISPLAYED LINES

Figure 2.1.0 Raster Scan

As the electron beam moves across the screen under the
control of the horizontal oscillator, a third circuit controls
the current entering the electron gun. By varying the cur
rent, the image may be made as bright or as dim as the
user desires. This control is also used to turn the beam
off or "blank the screen".

When the beam reaches the right hand side of the screen,
the beam is blanked so it does not appear on the screen
as it returns to the left side. This "retrace" of the beam
is at a much faster rate than it traveled across the screen
to generate the image.

The time it takes to scan the whole screen and return to
the home position is referred to as a "frame". In the
United States, commercial television broadcast uses a hor
izonal sweep frequency of 15, 750Hz which calculates out
to 63 .,5 microseconds per line. The frame time is equal
to 16.67 milliseconds or 60Hz vertical sweep frequency.

Although this is the commercial standard, many CRT dis
plays operate from 18KHz to 30KHz horizonatal fre
quency. As the horizontal frequency increases, the number
of lines per frame increases. This increase in lines or
resolution is needed for graphic displays and on special
text editors that display many more linesi of text than the
standard 24 or 25 character lines.

Since the United States operates on a 60Hz A.C. power
line frequency, most CRT monitors use 60Hz as the ver
tical frequency. The use of 60Hz as the vertical frequency
allows the magnetic and electrical variations that can mod
ulate the electron beam to be synchronized with the dis
play, thus they go unnoticed. If a frequency other than
60Hz is used, special shielding and power supply regu-

10-66

AP-223

lating is usually required. Very few CRTs operate on a
vertical frequency other than 60Hz due to the increase in
the overall system cost.

The CRT controller must generate the pulses that define
the horizontal and vertical timings. On most raster scan
CRTs the horizontal frequency may vary as much as
500Hz without any noticeable effect on the quality of the
display. This variation can change the number of hori
zontallines from 256 to 270 per frame.

The CRT controller must also shift out the information to
be displayed serially to the circuit that controls the electron
beam's intensity as it scans across the screen. The circuits
that control the timing associated with the shifting of the
information are known as the dot clock and the character
clock. The character clock frequency is equal to the dot
clock frequency divided by the number of dots it takes to
form a character in the horizontal axis. The dot clock
frequency is calculated by the following equation:

Dot Clcok (Hz) = (N + R)*D*L *F

where

N is th~ number of displayed characters per row,
R is the number of character times for the retrace,

1> is the number of dots per character in the hori-
zontal axis,

L is the number of horizontal lines per frame,
F is the frame rate in Hz.

In this design N = 80, R = 20, D = 7, L = 270, and
F = 60Hz. Plugging in the numbers results in a dot clock
frequency of I 1. 34MHz.

The retrace number may vary on each design because it
is used to set the left and right hand margins on the CRT.
The number of dots per character is chosen by the designer
to meet the system needs. In this design, a 5 x 7 dot matrix
and 2 blank dots between each character (see Figure 2.1.1)
makes D equal to 5+2=7.

Figure 2.1.1 5 x 7 Dot Matrix

The following equation can be used to figure the number
of lines per frame:

L=(H*Z)+V

where
H is the number of horizontal lines per character,
Z is the number of character lines per frame,
V is the number of horizontal line times during the

vertical retrace

In this design H is equal to the 7 horizontal dots per
character plus 3 blank dots between each row which adds
up to 10. Also 25 lines of characters are displayed, so
Z = 25. The vertical retrace time is variable to set the top
and bottom margins on the CRT and in this design is equal
to 20. Plugging in the numbers gives L=270 lines per
frame.

2.2 Keyboard

A keyboard is the common way a human enters commands
and data to a computer. A keyboard consists of a matrix
of switches that are scanned every couple of milliseconds
by a keyboard controller to determine if one of the keys
has been pressed. Since the keyboard is made up of me
chanical switches that tend to bounce or "make and
break" contact every time they are pressed, debouncing
of ' the switches must also be a function of the keyboard
controller. There are dedicated keyboard controllers
available that do everything from scanning the keyboard,
debouncing the keys, decoding the ASCII code for that
key closure to flagging the CPU that a valid key has been
depressed. The keyboard controller may present the in
formation to the CPU in parallel form or in a serial data
stream.

This Application Note integrates the function of the key
board controller into the 8051 which is also the terminal
controller. Provisions have been made to interface the
8051 to a keyboard that uses a dedicated keyboard con
troller. The 8051 can accept data from the keyboard con
troller in either parallel or serial format.

2.3 Serial Communications

Communication between a host computer and the CRT
terminal can be in either parallel or serial data format.
Parallel data transmission is needed in high end graphic
terminals where great amounts of information must be
transferred.

One can rarely type faster than 120 words per minute,
which corresponds to 12 characters per second or I char
acter per 83 milliseconds. The utilization of a parallel port
cannot justify the cost associated with the drivers and the
amount of wire needed to perform this transmission. Full
duplex serial data transmission requires 3 wires and two

10-67

AP-223

,-----------
'<x I

-------------,
i,;-I n - I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pl0;-P17,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pl.0

Pl.l

Pl.2

P1.3

Pl.4

Pl.S

P1.6

Pl.7

RST

P3.0/RXD

P3.1ITXD

P3.21W

P3.3/1NTl
P3.41TD

P3.S/T1

P3.61Wii

P3.7/RD

XTAL2
XTALl

VSS

Vee
PO.O/ADD

PO.l/ADl

PO.21AD2

PO.3/AD3

PO.4/AD4

PO.5IADS

PO.6IAD6

PO.7/AD7
EAlvPP

ALEIPROO
!'SEN
P2.7/A1S

P2.6IA14

P2.5IA13

P2.41A12

P2.31All

P2.21Al0

P2.l/AS

P2.0/AB

Figure 3.0.0 8051 Block Diagram

drivers to implement the communication channel between
the host computer and the terminal. The data rate can be
as high as 19200 BAUD in the asynchronous serial format.
BAUD rate is the number of bits per second received or
transmitted. In the asynchronous serial format, 10 bits of
information is required to transmit one character. One
character per 500 microseconds or 1,920 characters per
second would then be trasmitted using 19.2 KBAUD.

This application note uses the 8051 serial port configured
for full duplex asynchronous serial data transmission. The
software for the 8051 has been written to support variable
BAUD rates from 150 BAUD up to 9.6 KBAUD.

3.0 8051 DESCRIPTION

The 8051 is a single chip high-performance microcon
troller. A block diagram is shown in figure 3.0.0. The'
8051 combines CPU; Boolean processor; 4K x 8 ROM:
128 x 8 RAM; 32 1/0 lines; two 16-bit timerl event
counters; a five-source, two-priority-level, nested inter
rupt structure; serial 110 port for either multiprocessor
communications, 110 expansion, or full duplex UART;
and on-chip oscillator and clock circuits.

3.1 CPU

Efficient use of program memory results from an instruc
tion set consisting of 49 single-byte, 45 two-byte and 17
three-byte instructions. Most arithmetic, logical and
branching operations can be performed using an instruc
tion that appends either a short address or a long address.
For example, branches may use either an offset that is
relative to the program counter which takes two bytes or
a direct 16-bit address which takes three bytes to perform.
As a result, 64 instructions operate in one machine cycle,
45 in two machine cycles, and the multiply and divide
instruction execute in 4 machine cycles.

The 8051 has five addressing modes for source operands:
Register, Direct, Register-Indirect, Immediate, and
Based-Register-plus Index-Register-Indirect Addressing.

The Boolean Processor can be thought of as a separate
one-bit CPU. It has its own accumulator (the carry bit),
instruction set for data moves, logic, and control transfer,
and its own bit addressable RAM and 110. The. bit
manipulating instructions provide optimum code and
speed efficiency for handling on chip peripherals. The

10-68

AP-223

Boolean processor also provides a straight forward means
of converting logic equations directly into software. Com
plex combinational logic functions can be resolved without
extensive data movement, byte masking, and test-and
branch trees.

3.2 On-Chip Ram

The CPU manipulates operands in four memory spaces.
These are the 64K-byte Program Memory, 64K-byte Ex
ternal Data Memory, I 28-byte Internal Data Memory, and
128-byte Special Function Registers tSFRs). Four Reg
ister Banks (each with 8 registers), 128 addressable bits,
and the Stack reside in the internal Data RAM. The Stack
size is limited only by the available Internal Data RAM
and its location is determined by the 8-bit Stack Pointer.
All registers except for the Program Counter and the four
8-Register Banks reside in the SFR address space. These
memory mapped registers include arithmetic registers,
pointers, I/O ports, and registers for the interrupt system,
timers, and serial channel.

Registers in the four 8-Register Banks can be addressed
by Register, Direct, or Register-Indirect Addressing
modes. The 128 bytes of internal Data Memory can be
addressed by Direct or Register-Indirect modes while the
SFRs are only addressed directly.

3.3 1/0 Ports

The 8051 has instructions that can treat the 32 110 lines
as 32 individually addressable bits or as 4 parallel 8-bit
ports addressable as Ports 0, 1, 2, and 3.

Resetting the 8051 writes a logical 1 to each pin on port 0
which places the output drivers into a high-impedance
mode. Writing a logical 0 to a pin forces the pin to ground
and sinks current. Re-writing the pin high will place the
pin in either an open drain output or high-impedance input
mode. '

Ports I, 2, and 3 are known as quasi-bidirectional 110
pins. Resetting the device writes a logical one to each pin.
Writing a logical 0 to the pin will force the pin to ground
and sink current. Re-writing the pin high will place the
pin in an output mode with a weak depletion pullup FET
or in the input mode. The weak pullup FET is easily
overcome by a TIL output.

Ports 0 and 2 can also be used for off-chip peripheral
expansioll . Port 0 provides a multiplexed low-order ad
dress and data bus while Port 2 contains the high-order
address when using external Program Memory or more
than 256 byte external Data Memory.

Port 3 pins can also be used to provide external interrupt
request inputs, event counter inputs, the serial port TXD

10-69

and RXD pins and to generate control signals used for
writing and reading external peripherals.

3.4 Interrupt System

External events and the real-time-driven on-chip periph
erals require service by the CPU asynchronous to the ex
ecution of any particular section of code. A five-source,
two-level, nested interrupt system ties the real time events
to the normal program execution.

The 8051 has two external interrupt sources, one interrupt
from each of the two timer/counters, and an interrupt from
the serial port. Each interrupt vectors the program exe
cution to its own unique memory location for servicing
the interrupt. In addition, each of the five sources can be
individually enabled or disabled as well as assigned to
one of the two interrupt priority levels available on the
8051.

Up to two additional external interrupts can be created by
configuring a timerlcounter to the event counter mode. In
this mode the timer/counter increments on command by
either the TO or Tl ,pin. An interrupt is generated when
the timer/counter overflows. Thus if the timer/counter is
loaded with the maximum count, the next high-to-Iow
transition of the event counter input will cause an interrupt
to be generated,

3.5 Serial Port

The 8051' s serial port is useful for linking peripheral de
vices as well as multiple 8051s through standard asyn
chronous protocols with full duplex operation. The serial
port also has a synchronous mode for expansion of 110
lines using shift registers. This hardware serial port saves
ROM code and permits a much higher transmission rate
than could be achieved through software. The processor
merely needs to read or write the, serial buffer in response
to an interrupt. The receiver is double buffered to eliminate
the possibility of overrun if the ,processor failed to read
the buffer before the beginning of the next frame.

The full duplex asynchronous serial port provides the
means of communication with standard UART devices
such as CRT terminals and printers.

The reader should refer to the microcontroller handbook
for a complete discussion of the 8051 and its various
modes of operation.

4.0 8276 DESCRIPTION

The 8276's block diagram and pin configuration are shown
in Figure 4.0.0. The following sections describe the gen
eral capabilities of the 8276.

Ap·223

LC3 VCC
LC2 NL

LCl NC

LCo LTEN

DATA
BDRY RVV

BUS BS VSP

BUFFER HRTC GPAl
VRTC GPAo

1m HLGT
WR INT

UNE
NC CCLK

COUNTER
DBO CC6
DBl CCs

ROW
DB2 CC4

COUNTER DB3 CC3
DB4 CC2
DBS CCl

MRTC DB6 CCo
VRTC DB7 ~

RASTER TIMING MLGT GND C/IS
AND RVV

VIDeo CONTROL LTE14
VSP

Figure 4.0.0 8276 Block Diagram

4.1 CRT Display Refreshing

The 8276, having been programmed by the system de·
signer for a specific screen format, generates a series of
Buffer Ready signals. A row of characters is then trans·
ferred by the system controller from the display memory
to the 8276's row buffers. The row buffers are filled by
deselecting the 8276 CS and asserting the BS and WR
signals. The 8276 presents the character codes to an ex·
ternal character generator ROM by using outputs
CC~C6. The parallel data from the outputs ofthe char·
acter generator is converted to serial information that is
clocked by external dot timing logic into the video input
of the CRT.

The character rows are displayed on the CRT one line at
a time. Line count outputs LCO-LC3 select the current
line information from the character generator ROM. The
display process is illustrated in Figure 4.1.0. This process
is repeated for each display character row. At the begin
ning of the last display row the 8276 generates an interrupt
request by raising its INT output line. The interrupt request

is used by the 8051 system controller to reinitialize its
load buffer pointers for the next display refresh cycle.

Proper CRT refreshing requires that certain 8276 param·
eters be programmed at system initialization time. The
8276 has two types of internal registers; the write only
Command (CREG) and Parameter (PREG) Registers, and
the read only Status Register (SREG). The 8276 expects
to receive a command followed by 0 to 4 parameter bytes
depending on the command. A summary' of the 8276's
instruction set is shown in Figure 4.1.1. To access the
registers, CS must be asserted along with WR or RD. The
status of the C/P pin determines whether the command or
parameter registers are selected.

The 8276 allows the designer flexibility in the display
format. The display may "be from 1 to 80 characters per
row, 1 to 64 rows per screen, and 1 to 16 horizontal lines
per character row. In addition, four curser formats are
available; blinking, non·blinking, underline, and reverse
video. The curser position is programmable to anywhere
on the screen via the Load Curser command.

10·70

1.,
Character

1.,
Character· "

1st
Character

1st
Chafacter

2nd 3rd
Character Character

2nd 3rd
Character Chafacter

2nd 3rd
Character Character

2nd 3rd
Character Character

AP-223

41h
Character

First Line of a Character Row

4th
Character

Slti
Character

5th'
Cha,acter

Second Line of a Character Row

41h
Character

Third Line of a Character Row

• • •
41h

Character

51h
Character

51h
Character

61h
Character

61h
'Character

61h
Character

61h
Character

7th
Character

7th
Character

7th
Character

7th
Character

~~~~~~~ 

00 ••• 000.000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 
0.000.00 •• 00.00.0000000000000.000.00.000.00.000.0 
0.000.00.000.00.0000000000000.000.00.000.00.000.0 
O.OOO.OO.O.O.OO •••• DOOOOOOOOO •••• OOO.OOO.OO.O.O.O 
0.000.00.000.00.0000000000000.0.0000.000.00.0.0.0 
O.DOO.OO.OO •• OO.OOOOOOOOOOOOO.OO.OOO.OOO.OO.O.O.O 
00.' •• 000.000.00 ••••• 000000000.000.000 ••• 0000.0.00 

Seventh Line of a,Character Row 

Figure 4.1.0 8276 Row Display 

4.2 CRT Timing 

The 8276 provides two timing outputs for controlling the 
CRT. The Horizontal Retrace Timing and Control (HRTC) 
and Vertical Retrace Timing and Control (VRTC) signals 
are used for synchronizing the CRT horizontal and vertical 
oscillators'. A third output, VSP (Video Suppress), pro
vides a signal to the dot timing logic to blank. the video 
signal during the horizontaL and vertical retraces. L TEN 
(Light Enable) is used to provide the ability to force the 

10-71 

video output high regardless of the state of the VSP signal. 
This feature is used to place the cursor on .the screen and 
to control attribute functions. 

RVV (Reverse Video) output, ,if enabled, will cause the 
system to invert its video output. The fifth timing signal 
output, HLGT (highlight) allows the flexibility to increase 
the CRT beam intensity to a greater than normal level. 



AP~223 

NO. OF 
PARAMETER 

COMMAND BYTES NOTES 

RESET 4 Display format 
parameterS'required 

START 0 DMA operation 
DISPLAY parameters included in 

command 

STOP 0 -
DISPLAY 

RED LIGHT 2 -
PEN 

LOAD 2 Cursor X, Y position 
CURSOR parameters required 

ENABLE 0 -
INTERRUPT 

DISABLE 0 -
INTERRUPT 

PRESET 0 Clears all internal 
COUNTERS counters 

Figure 4.1.1 8276 Instruction Set 

4.3 Speclal.Functlons 

4.3.1 Special Codes 

The 8276 recognize~ four special codes that may be used 
to reduce memory, software, or system controller over
head. These characters are placed within the display mem
ory by the system controller. The 8276 performs certain 
tasks when these codes are received in its row buffer 
memory. 

1) End of Row Code - Activates VSP. VSP remains 
active until the end of the line is reached. While VSP 
is active the screen is blanked. 

2) End Of Row'Stop.BufferLoading Code - Causes the 
Buffer Ready control logic to stop requesting buffer 
transfers for the rest of the row. It affects the display 
the same as End of Row Code. 

3) End Of Screen Code - Activates VSP. VSP remains 
active ~til the end of the frame is reached. 

4) End Of Screen~Stop Buffer Loading Code - Causes 
the Buffer Ready control logic to stop requesting buffer 
transfers until the end of the frame is reached. It affects 
the display the same way as the End of Screen code: 

4.3.4 Programmable Buffer Loading. 
Control 

The 8276 can be programmed to request I, 2, 4, or 8 
characters per Buffer load. The interval between loads is 
also programmable. This allows the designer the flexibility 
to tailor the buffer transfer overhead to fit the system 
needs. 

Each scan line requires 63.5 microseconds. A character 
line consists of 10 scan lines and takes 635 microseconds 
to form. The 8276 row buffer must be filled within the 
635 microseconds or an under run condition will occur 
within the 8276 .. causing the screen to be blanked until the 
next vertical retrace. This blanking will be seen as a flicker 
in the display. 

5.0 DESIGN BACKGROUND 

A fully functional, microcontroller-based CRT terminal 
was designed and constructed using the 8051 and the 8276. 
The terminal has many of the functions that are found in 
commercially available low cost terminals. Sophisticated 
features such as programmable keys can be added easily 
with modest amounts of software. 

The 8051 's functions in this application note include: up 
to 9.6K BAUD full duplex serial transmission; decoding 
special messages sent from the host computer; scanning, 
debouncing, and decoding a full function keyboard; writ
ing to the 8276 row buffer from the display RAM without 
the need for a DMA controller; and scrolling the display. 

The 8276 CRT controller's functions include: presenting 
the data to the character generator; providing the timing 
signals needed for horizontal and vertical retrace; and pro-
viding blanking and video information. . 

5.1 Design Philosophy 

Since the device count relates to costs, size, and reliability 
of a system, arriving at a minimum device count without 
degrading the performance was a driving force for this 
application note. LSI devices were used where possible 
to maintain a low chip count and to make the design cycle 
!1S short· as possible. . 

PUM-5I was chosen to generate the majority of the soft
ware for this . application because it models the human 
thought process more closely than assembly language. 
Consequently it is easier and faster to write programs using 
PUM-5I and the code is more likely to be correct because 
less chance exists to introduce errors. 

10-72 



AP-223 

PUM-51 programs are easier to reaCI and follow than 
assembly language programs, and thus are easier to mod
ify and customize to the end user's application. PUM-51 
also offers lower development and maintenance costs than 
assembly language programming. 

PUM-51 does have a few drawbacks. It is not as efficient 
in code generation relative to assembly language and thus 
may also run slower. 

This application note uses the 8051' s interrupts to control 
the servicing of the various peripherals. The speed of the 
main program is less critical if interrupts are used. In the 
last two application notes on terminal controllers, a cri
terion of the system was the time required for receiving 
an incoming seri;li byte, decoding it, performing the func
tion requested, scanning the keyboard, debouncing the 
keys, and transmitting the decoded ASCII code must be 
less than the vertical refresh time. Using the 8p51 and its 
interrupts makes this time constraint irrelevant. 

5.2 System Target Specifications 

The design specifications for the CRT terminal design is 
as follows: 

Display Format 

". 80 characters/display row 
• 25 display lines, 

Character Format 
.5 x 7 character contained within: a 7 x IO frame 
• First and seventh columns blanked 
• Ninth line curser position 
• Programmable delay blinking underline curser 

Control Characters Recognized 

• Backspace 
• Linefeed 
• Carriage Return 
• Form Feed 

Escape Sequencae Recognized 

• ESC A, Curser up 
• ESC B, Curser down 
• ESC C, Curser right 
• ESC D, Curser left 
• ESC E, Clear screen 
• ESC F, Move addressable curser 
• ESC H, Home curser 
• ESC J, Erase from curser to the end the screen 
• ESC K, Erase the current line 

Characters Displayed 
• 96 ASCII Alphanumeric Characters 

10·73 

Characters Transmitted 
• 96 ASCII Alphanumeric Characters 
• ASCII Control Character Set 
• ASCII Escape Sequence Set 
• Auto Repeat 

Display Memory 

• 2K x 8 static RAM 

Data Rate 
• Variable rate from ISO to 9600 BAUD 

, , ' 

CRT Monitor 
• Ball Bros TV-12. 12MHZBlack and White 

Keyboard 
• Any standard undecoded keyboard (2 key lock-out) 
• Any standard decoded keyboard with output enable pin 
• Any standard decoded serial keyboard up to 150 BAUD 

Scrolling Capability 

Compatible With Wordstar 

6.0 SYSTEM DESCRIPTION 

A block diagram of the CRT terminal is shown in figure 
6~0.O. The diagram shows only the essential system fea
tures. A detailed schematic of the CRT terminal is con· 
tained in the Appendix 7.1. 

The "brains" of the CRT terminal is the 8051 microcon
troller. The 8276 is the CRT controller in the system, and 
a 2716 EPROM is used as the· character generator. To 
handle the high speed portion of the CRT, the 8276 is 
surrounded by a handful of TTL devices. A 2K x 8 static 
RAM was used as the display memory. 

Following the system reset, the 8276 is initialized for 
curser type, number of characters per line, number of 
lines, and character size. The display RAM is initialized 
to all "spaces" (ASCII 20H). The 8051 then writes the 
"start display" command to the 8276. The locallline input 
is sampled to determine the terminal mode. If the terminal 
is on-line, the BAUD rate switches are read and the serial 
port is set up for full duplex UART mode. The processor 
then is put into a loop waiting to service the' serial port 
fifo or the 8276. 

The serial port is programmed to have the highest priority 
interrupt. If the serial port generates an interrupt, the pro
cessor reads the buffer, puts the character in a generated 
fifo that resides in the 8051' s internal RAM, increments 
the fifo pointer, sets the serial interrupt flag and returns. 



AP-223 

, ,,~ 

SERIAL 
COMMUNICATIONS ' 

CHANNEL 

Figure 6.0:0 CRT Terminal Controller Block Diagram 

The main program determines if it is a displayable char
acter, a Control word or an ESC sequence and either puts 
the character in the display buffer or executes the appro
priate command sent from the host computer, 

If the 8276 needs servicing, the 8051 fills the row buffer 
for the CRT display's next line, If the 8276 generates a 
vertical retrace interrupt, the buffer pointers are reloaded 
with the display memory location that corresponds to the 
first character of the first display line on the CRT, The 
vertical retrace also signals the processor to read the key
board for a key closure, 

6.1 Hardware Description 

The fellowing section describes the unique characteristics 
of this design, . 

6.1.1 Peripheral Address Map 

The display RAM, 8276 registers; and the 8276 row buff
ers are memory mapped into the external data'RAM ad
dress area. The addresses are as follows: 

Read and Write External 
Di~play RAM - Address l000H to 17CFH 
Write to 8276 row buffers 
from Display RAM - Address 1800H to IFCFH 
Write to 8276 Command 
Regis~r)(CREG) - Address ooolH 
WIi~ to 8276 Parameter 
Regis~r (PREG) - Address OOOOH 
Read, from 8276. Status 
Register (SREG) -:-. Address ooolH 

Three general cases can be explored; reading and writing 
the display RAM, writing to the 8276 row buffers, and 
reading and writing the 8276's control registers, ' 

As mentioned previously the 8051 fills the 8276 row buffer 
without the need of a DMAcontrolier, This is accom
plished by using a Quad 2-input multiplexor (Figure 6, I ,0) 
as the transfer logic shown in the block diagram. The 
address line, P2.3, is used to select either or'the 'two 
inputs. When the address line is low the RD and WR lines 
perform their normal functions, that is read and write the 

8051 P2.3 

8051 WA 1A SEL 
Y1 8276WR 

8051 iii) 1B 

+5V 2A Y2 8276 BS 

2B 

3A Y3 8276 AD 

3B 

i:6CS
. . 

P2.4~DISPLAYAAM CS 

Figure 6.1.0 
Simplified Version Of The Transfer Logic . 

10-74 



8276 or the external display RAM de~nding on the states 
of their re~<;tive chip selects. If the address line is high, 
the 8051 RD line is transformed into BS and WR signals 
for the 82~6. While holding .the address line high, the 
8051 executes an external data 11l0ve (MOVX) from the 
display RAM to the accumulator which causes the display 
RAM to output the addressed byte onto the data bus. Since 
the multiplexoi turns the same 8051 RD pulses into BS 
and WR pulses to the 8276, the data bus is thus read into 
the 8276 as a Buffer transfer. This scheme allows 80 
characters to be .traIlsfe1l'ed from the display RAM into 
the 8276 within the required character line time of 635 
microseconds. The 80S I easily ·meets this requirement by 
accomplishing the task within 350 microseconds. 

6.1.2 Scanning The Keyboard 

Throughout this project, provision have been made to 
make the overali system flexible. The software has been 
written for various keyboards and the user simply needs 
to link different program modules together to suit their 
needs. 

5V 

r 10kfi 

FROM 
8051 

8051 
DATA 
BUS 

P2.0 

P2.1 

P2.2 

PO.7 

PO.O 

'-

-
-

L 
r 

1N4305~ 
.~ 

74156 

A 2YO 

B 2Y1 

1C 2Y2 

2C 2Y3 

1G 1YO 

2G 1Y1 

1Y2 

1Y3 

6.1.2 .. 1 Undecoded Keyboard 

Incorporating an undecoded keyboard controller into the 
other functions of the 8051 shows the flexibility and over 
all CPU poweF that is available. The keyboard in this case 
is a full function, non-buffered 8 x 8 matrix of switches 
for a total of 64 possible keys. The 8 send lines are con
nected to a 3-to-8 open-collector decoder as shown in 
Figure 6.1.1. Three high order address lines from the 8051 
are the decoder inputs. The enabling of the decoder is 
accomplished through the use of the PSEN signal from 
the 8051 which makes the architecture of the separate 
address space for the program memory and the external 
data RAM work for us to eliminate the need to decode 
addresses externally. The move code (MOVe) instruction 
allows each scan line of the keyboard to be read with one 
instruction. 

The keyboard is read by bringing one of the eight scan 
lines low sequentially while reading the return lines which 
are pulled high by an external resistor. If a switch is 

I 

,.. , 
" 

, 

'< '< '< '< '< '< '< '< 

i'< '< '< '< '< '< '< '< 

'< '< '< '< '< '< '< '< 

'< '< '< '< '< '< '< '< 

'< '< '< '< '< '< '< '< 

'< '< '< '< '< '< '< '< 

'< '< 1,< '< '< '< '< '< 

'< '< '< '< '< '< '< '< 

SWITCH MATRIX 

: Flg"re 6.1.1 Keyboard 

10-75 



AP·223 

closed, the data bus line is connected through the switch 
to the low output of the decoder and one of the data bus 
lines will be read as a O. By knowing which scan line 
detected a' key closure and which data bus line "was low, 
the ASCII code for that key can easily be looked up in a 
matrix of constants. PUM-51 has the ability to handle 
arrays and structured arrays, which makes the decoding 
of the keyboard a trivial task. 

Since the Shift, Cap Lock, and Control keys may change 
the ASCII code for a particular key closure, it is essential 
to know the status of these pins while decoding the key
board. The Shift, Cap Lock, and Control keys are there
fore not scanned but are connected to the 8051 port pins 
where they can be tested for closure directly" 

The 8 receive lines are connected to the data bus through 
germanium diodes which chosen for their low forward 
voltage drop. The diodes keep the keyboard from inter
fering with the data bus during the times the keyboard is 
not being read. The circuit consisting of the 3-to-8 decoder 

, and the diodes also offers some protection to the 8051 
from possible Electrostatic Discharge (ESD) damage that 
could be transmitted through the keyboard. 

6.1.2.2 Decoded Keyboard 

A decoded keyboard can easily be connected to the system 
as shown in Figure 6.1.2. Reading the keyboard can be 
evoked either by interrupts or by software polling. 

The software to periodically read a decoded keyboard was 
not written for this application note but can be accom
plished with one or two PUM-51 statements in the 
READER routine. 

A much more interesting approach wQuld be to have the 
servicing of the keyboard be interrupt driven. An addi
tional external interrupt is created by configuring timer/ 
counter 0' into an event counter. The event counter is 

initialized with,the maximum couliL The keyboard con
troller would inform the 8051 that a valid key has been 
depressed by pulling the input pin TO low.' This would 
overflow the event counter, thus causing an i\ltemipt. The 
interrupt routine would simply use a MOVC ,(PSEN is 
connected to the output enable pin of the keyboard con
troller) to read the contents of the keyboard controller onto 
the data bus, reinitializethe counter to the inaidmum count 
and return from the interrupt. 

6.1.2.3' Serial Decoded Keyboard 

The use of detachable keyboar.cts has become popular 
among the manufacturers of keyboards and personaLcom
puters. This terminal has provisions to use such a key
board. 

The keyboard controller would scan the keyboard, de
bounce the key and send back the ASCII code for that 
key closure. The message would be in an asynchronous 
serial formaL ' 

The flowchart for a software serial port is shown in Figure 
6.1.3. An additional external interrupt is created as dis
cussed for the decoded keyboard but the 'use in this case 
would be to detect a start bit. Once the beginning of the 
start bit has been detected, the timer/counter 0 is config
ured to become a timer. The timer is initialized to cause 
an interrupt one-half bit time after the beginning of the 
start bit. This is to validate the start bit. Once the start bit 
is validated, the timer is initialized with a value to cause 
an interrupt one bit time later to read the first data biL 
This process of interrupting to read a data bit is repeated 
until all eight data bits have been received. After all 8 
,data bits are read, the software serial port is read once 
more to detect if a stop bit is presenL If the stop bit is 
not present, an error flag is set, all pointers and flags are 
reset to their initial values, and the timer/counter is re
configured to an event counter to detect the next start biL 
If the stop bit is present, a valid flag is set and the flags 
and counter are reset as previously discussed. 

KEYBOARD 8051 
CONTROLLER A --" 

I r~ 
SCAN BUS 

~ 
PORTO 

KEYBOARD 

DATA 

I " READY TO 

RECEIVE v CS PSEN 

Figure 6.1.2 Using A;DeCoded Keyboard 

10-76 



AP·223 

RETURN 

RETURN 

Figure 6.1.3 Flowchart for the Software Serial Port 

6.1.4 System Timings 

The requirements for the BALL BROTHERS. TV-12 
monitor's operation is shown in table 6.1.0. From the 
monitor's parameters, the 8276 specifications and the sys
tem target specifications the system timing is easily cal
culated., 

The 8276 allows the vertical retrace to be only an integer 
multiple of the horizontal character lines. Twenty-five dis
play lines and a character frame of 7 x 10 are required 
from the target specification which will require 250 hor
izontal lines. If the horizontal frequency is to be within 

500 Hz of 15,750 Hz, we must choose either one or two 
character line times for horizontal retrace. To allow for a 

. little more margin at the top and bottom of the screen, 
two character line times was chosen for the vertical re
trace. This choice yields 250 + 20 = 270 total character 
lines per frame. Assuming 60 Hz vertical retrace fre
quency: 

60 Hz * 270 = 16,200 Hz horizontal frequency 
and 

1116,200 Hz * 20 horizontal sync times = 1.2345 mil
liseconds 

10-77 



AP-223 

Table 6.1.0 CRT Monitor's Operational Requirements 

PARAMETER 

Vertical Blanking Time 
(VRTC) 

Vertical Drive Pulsewidt4 

Horizontal Blanking Time 
(HRTC) 

Horizontal Drive Pulsewidth 

Horizontal Repetition Rate 

The 1.2345 milliseconds of retrace time meets the nominal 
VRTC and vertical drive pulse width time of .3mSec to 
1.4mSec for the Ball monitor. 

The next parameter to find is the horizontal retrace time 
which is wholly dependent on the monitor used. Usually 
it lies between 15 and 30 percent of the total horizontal 
line time. 

Since most designs display :;t fixed number of characters 
per line it is useful to express the horizontal retrace time 
as a given number of character times. In this design, 80 
characters are displayed, and it was experimentally found 
that 20 character times for the horizontal retrace gave the 
best results. It should be noted if too much time was given 
for retrace, there would be less time to display the char
acters and the display would not fill out the screen. Con
versely, if not enough time is given for retrace, the char-
acters would seem to run off the screen. ' 

One hundred character times per complete horizontal line 
means that each character needs: 

(1116,200 Hz) /100 character times = 617.3 nartoseconds 

If we multiply the 20 character times needed to retrace 
by 617.3 nanoseconds needed for each character, we find 
12.345 microseconds are allocated for retrace. This value 
falls short of the 25 to 30 microseconds required by the 
horizontal drive of the Ball monitor. To correct for this, 
a 74LSI23 onecshot was used to extend the horizontal 
drive pulse width. 

The dot clock frequency is easy'to calculate now that we 
know the horizontal frequency, Since each character is 
formed by seven dots in the horizontal axis, the dot clock 
period would be the character clock (617.3 nanoseconds) 
divided by the 7 which is equal to 11.34 MHz. The basic 
dot timing and CRT timing are shown in the Appendix. 

RANGE 

800 JLsec nominal 

300 J.LSec "" PW "" 1. 4 ms 

II JLsec nominal 

25 JLsec "" PW "" 30 JLsec 

15,750 + 500 pps 

6.2 Software Description 

6.2.1 Software Overview 

The software for this application was written in a "fore
ground-background" format. The background programs 
are all interrupt driven and are written in assembly lan
guage due to time constraints. The foreground programs 
are for the most part written in PUM-51 to ease the pro-' 
gramming effort. A number of subroutines are written in 
assembly language due to time constraints during exe
cution. Subroutines such as clearing display lines, clearing 
the screen, and scanning the keyboard require a great deal 
of 16 bit adds and compares and would execute much 
slower and would require more code space if written in 
PUM-51. The background and foreground programs talk 
to each other through a set of flags. For example, the 
PUM-51 foreground program tests "SERIAL$INT" to 
determine if a serial port interrupt had occurred and a 
character is waiting to be processed. 

6.2.2 The Background Program 

Two interrupt driven routines, VERT and BUFFER, (see 
Fig. 6.2.0) request service every 16.67 milliseconds and 
617 microseconds respectively. VERT's request comes 
during the last character row of the display screen. This 
routine resets the buffer pointers to the first CRT display 
line in the display memory. VERT is also used as a time 
base for the foreground program. VERT sets the flag, 
SCAN, to'teU the foreground program (PUM-51) that it 
is time to scan the Keyboard. VERT also increment,s a 
counter used for the delay between trans~itting characters 
in the AUTO$REPEAT routine. ' 

The BUFFER routine is executed once per character row, 
BUFFER uses the mul~iplexor discussed earlier tolill the 
8276's row buffer by,executing 80 external \lata moves 
l\IIdincrementing the, Data Poin,ter between each move. 

10-78 



AP-223 

RETURN 

RETURN 

Figure 6.2.0 Flowcharts For 
VERT and BUFFER Routine 

The MOVX reads the disPlay RAM and writes the char
acter into the row buffer during the same instruction. 

SERBUF is an interrupt driven routine that is executed 
each time a character is received or transmitted through 
the on-chip serial port. The routine first checks if the 
interrupt was caused by the transmit side of the serial port, 
signaling that the transmitter is ready to accept another 
character. If the transmitter caused the interrupt, the flag 
"TRANSMIT$INT" is set which is checked by the fore
ground program before putting a character in the buffer 
for transmission. 

If the receiver caused the interrupt, the input buffer on 
the serial port is read and fed into the fifo that has been 
manufactured in the internal RAM and increments the fifo 
pointer "FIFO." The flag "SERIAL$INT" is then set, 
telling the foreground program that there is a character in 
the fifo to be processed. If the read character is an ESC 
character, the flag "ESCSEQ" is set to tell the foreground 
program that an escape sequence is in the process of being 
received. 

6.2.3 The Foreground Program 

The foreground program is documented in the Appendix. 
The foreground program starts off by initializing the 8276 

as discussed earlier. After all variables and flags are ini
tialized, the processor is put into a loop waiting for either 
VERT to set SCAN so the program can scan the keyboard, 
or for the serial port to set SERIAL$INT so the program 
can process the incoming character. 

The vertical retrace is used to time the delay between 
keyboard scans. When VERT gets set, the assembly lan
guage routine READER is called. READER scans the 
keyboard, writing each scan into RAM to be processed 
later. READER controls two fl,ags, KEYO and SAME. 
KEYO is set when all 8 scans determine that no key is 
pressed. SAME is set when the same key that was pressed 
last time the keyboard was read is still pressed. 

After READER returns execution to the main program. 
the flags are tested. If the KEYO flag is set the main 
program goes back to the loop waiting for the vertical 
retrace or a serial port interrupt to occur. If the SAME 
flag is set the main program knows that the closed key 
has been debounced and decoded so it sends the already 
known ASCII code to the A UTO$REPEA T routine which 
determines if that character shoul4 be transmitted or not. 

If KEYO and SAME are not set, signifying that a key is 
pressed but it is not the same key as before, the foreground 
program determines if the results from the scan are valid. 
First all eight scans are checked to see if only one key 
was closed. If only one key is closed, the ASCII code is 
determined, modified if necessary by the Shift. Cap Lock, 
or Control keys. The NEW$KEY and VALID flags are 
then set. The next time READER is called. if the same 
key is still pressed, the SAME flag will be set. causing 
the AUTO$REPEAT subroutine to be called as just dis
cussed. Since the keyboard is read during the vertical 
retrace, 16.67 milliseconds has elapsed between the de
tection of the pressed key and reverifying that the key is 
still pressed before transmitting it, thus effectively de
bouncing the key. 

The AUTO$REPEAT routine is written to transmit any 
key that the NEW$KEY flag is set for. The counter that 
is incremented each time the vertical refresh interrupt is 
serviced causes a programmable delay between the first 
transmission and subsequent auto repeat transmission. 
Once the NEW$KEY character is sent. the counter is 
initialized. Each time the AUTO$REPEATroutine is 
called, the counter is checked. Only when the counter 
overflows will the next character be transmitted. After the 
initial delay, a character will be transmitted every other 
time the routine is called as long as the key remains 
pressed. 

6.2.3.1 Handling Incoming Serial Data 

One of the criteria for this application note was to make 
the software less time dependent. By creating a fifo to 
store incoming characters until the 8051 has time to pro-

10-79 



AP·223 

cess them, software timing becomes less critical. This 
application note uses up to 8 levels of the fifo at 
9.2KBAUD, and I level at 4.8KBAUD and lower. As 
discussed earlier, the interrupt service routine for the serial 
port uses the fifo to store incoming data, increments the 
fifo pointer, "FIFO", and sets SERIAL$INT to tell the 
main program that the fifo needs servicing. Once the main 
program detects that SERIAL$INT is set the routine 
DECIPHER is executed. 

DECIPHER has three separate blocks; a block for decod
ing displayable characters, a block for processing Escape 
sequences, and a block for processing Control codes. Each 
block works on the fifo independently. Before exiting a 
block, the contents of the fifo are shifted up by the amount 
of characters that were processed in that particular block. 
The shifting of the characters insures that the beginning 
of the fifo contains the next character to be processed. 
FIFO is then decremented by the number of characters 
processed. 

Let's look at this process more closely. Figure 6.2.I-A 
shows a representation of a fifo containing 5 characters. 
The first three characters in the fifo contain displayable 
characters, A, B, and C respectively with the last two 
characters. being an ESC sequence for moving the curser 
up one line (ESC A) and FIFO points to the next available 
location to be filled by the serial port interrupt routine, in 
this case, 5. 

TOP~ 41H(A) 41H(A) 

42H (B) 42H (B) 

43H (C) 43H(C) 

1BH (ESC) TOP~ 1BH (ESC) 

41H(A) 41H(A) 

FIFO-. FIFO-.. 

(A) (8) 

TOP~ 1BH (ESC) 

41H(A) 

FIFO-.. 

(e) 

FIGURE 6.2.1 FIFO 

When DECIPHER is executed, the first block begins look
ing at the first character of the fifo for a displayable char~ 
acter. If the character is displayable, it is placed into the 
display RAM and the software pointer' 'TOP" that points 
to the character that is being processed is incremented to 
the next character. The character is then looked at to see 
if it too is displayable and if it is, it's placed in the display 
RAM. The process of checking for displayable characters 
is continued until either the fifo is empty or a non-dis
playable character is detected. In our example, three char
acters are placed into the display RAM before a non
displayable character is detected. At this point the fifo 
looks like figure 6.2.I-B. 

Before entering the next block, the remaining contents of 
the fifo between TOP, that is now pointing to IBH and 
(FIFO-I) are moved up in the fifo by the amount of char
acters processed, in this example three. TOP is reset to 0 
and FIFO is decremented by 3. The serial port interrupt 
is inhibited during the time the contents of the fifo and 
the pointers are being manipulated. The fifo now looks 
like figure 6.2.1-C. 

The execution is now passed to the next block that pro
cesses ESC sequences. The first location of the fifo is 
examined to see if it is an ESC character (lBH). If not, 
the execution is passed to the next block of DECIPHER 
that processes Control codes. In this case the fifo does 
contain an ESC code. The flag ESC$SEQ is checked to 
see if the 8051 is in the process of receiving an ESC 
sequence thus signifying that the next byte of the sequence 
has not been received yet. If the ESC$SEQ is not set, the 
next character in the fifo is checked for a valid escape 
code and the proper subroutine is then called. The fifo 
contents are then shifted as discussed for the previous 
block. Due to the length of time that is needed to execute 
an ESC code sequence or a Control code, only one ESC 
code and/or Control code can be processed each time 
DECIPHER is executed. 

If at the end of the DECIPHER routine, FIFO contains a 
0, the flag SER$INT is reset. If SER$INT remains set, 
DECIPHER will be executed immediately after returning 
to the main program if SCAN had not been set during the 
execution of the DECIPHER routine, otherwise DECI
PHER will be called after the keyboard is read. 

6.2.4 Memory Pointers and Scrolling 

The curser always points to the next location in display 
memory to be filled. Each time a character is placed in 
the display memory, the curser position needs to be tested 
to determine if the curser should be incremented to the 
beginning of the next line of the display or simply moved 
to the next position on the current display line. The curser 
position pointers are then updated in both the 8276 and 
tbe internal registers in the 8051. 

10-80 



AP-223 

When the 2000th character is entered into the display 
memory, a full display page has been reached signaling 
the need for the' display to scroll. The memory pointer 
that points to the display memory that contains the first 
character of the first display line, LINEO, prior to scrolling 
contains 1800H which is the starting address of the display 
memory. Each scrolling operation adds 80 (50H) to LINEO 
which will now point to the following row in memory as 
shown in figure 6.2.2-B. LINEO is used during the vertical 

MEMORY LOCATION 
1800H 

LlNEO 

DURING FIRST 
PAGE 

MEMORY 
LOCATION 

lF80M 

MEMORY 
LOCATION 

184FH 

A) BEFORE SCROLLING 

-LlNEO 

MEMOR 
LOCATIO 

18AOH 

Y-
N 

I 
j 

--NEW TEXT 
INSERTED HERE 

C) AFTER 2ND SCROLLING OPERATION 

refresh routine to re-initialize the pointers associated with 
filling the 8276 row buffers. 

The display memory locations that were the first line of 
the CRT display now become~ the last line of the CRT 
display. Incoming characters are now entered into the 
display memory starting with l800H, which is now the 
first character of the last line of the display screen. 

MEMORY LOCATION 
1800H 

LlNEO 

MEMORY 
LOCATION 

18S0H 

NEW TEXT 
INSERTED HERE 

B) AFTER 1ST SCROLLING OPERATION 

LINEO 

MEMORY 
LOCATION 

18FOH 

-- J 
j 

~ 
NEW TEXT 
INSERTED HERE 

D) AFTER 3RD SCROLLING OPERATION 

MEMORY LOCATION 
1800H 

LlNEO 

NEW TEXT 
INSERTED HERE 

t:) AFTER 24TH SCROLLING OPERATION 

LlNEO 

NEW TEXT 
INSERTED HERE 

F) AFTER 25TH SCROLLING OPERATION 

Figure 6.2.2 Pointer Manipulation During Scrolling 

10-81 



AP-223 

6.2.5 Software Timing 

The use of interrupts to tie the operation of the foreground 
program t9 the real-time events of the background program 
has made the software timing non-critical for this system. 

6 .. 3 System Operation 

Following the system reset, the 8051 initializes all on
chip peripherals along with the 8276 and display ram. 
After initialization, the processor waits until the fifo has 
a character to process or is flagged that it is time to scan 
the keyboard. This foreground program is interrupted once 
every 617 microseconds to service the 8276 row buffers. 
The 8051 is also interrupted each 16.67 milliseconds to 
re-initialize LINEO and to flag the foreground program to 
read the keyboard. 

As discussed earlier, a special technique of rapidly moving 
the conte~s of the display RAM to the 8276 row buffers 
without the .need of a OMA device was employed. The 
cl\aracters are then synchronously transferred to the char
acter generator via CCO-CC6 and LCO-LC2 which are 
used to display one line ,at a time. Following the transfer 
,of the first lin~ to the dot timing logic, the line count is 
incremented and the second line is selected. This process 
continues until the last line of the character is transferred. 

The dot timing logic latches the ouput of the character 
ROM in a parallel in, serial out synchronous shift register. 
The shift register's output constitutes the video informa
tion to the CRT. 

10-82 



AP-223 

APPE;ND,X A ............. 19 
APPENDIX B ........... ~ . 77 

10-83 



AP-22S 

Appendix 7.1 CRT Schematics 

~; . DB7 _ 5V MONms 

181 .0'1,:,.059 MHz T .. ,of9j 1.,~ 
~x~,------~~~----~~a~ __ ~_i_+_+-r~~--~3 vee GND~2~l-__ ~I~;-~vv«ee~---oGN~D~ 

PO.0 38 4 5 7AO 

+5V -p-- vee 37 7 I 8 

'r 36 8 ~ • 5 
35 13 L 12 4 

~ RST t;;:34;---H_i-'_+-r~~---:,::1. S '5 3 

~ GND 

5V~ EA 
~ INTO 

~ INT' 
SERIAL IN ~ RXO 

SERIAL OUT --.g TXD 

TO 74'58 ~ PiEii 
BAUO- P10 

BAUD- P11 

BAUD- P'2 
CAP LOCK- P13 

eLEARTOSEND- P,. 
READV- P,. 

80S' 

33 17 3 16 2 

PO.7 F32'-.-<H-t-t-t+++---""i1 ~ ~';:;9,-__ .,' 1<7 

ALE t-=30'---~_i_+_+-r~~---""-l' E 

'\I' 
L-________ ~,~: 00 

11 

'3 

'4 
'5 
16 

L-_________ ~ ____ ~~--~~-------'~7 D7 

2K x • 
STATIC 

RAM 

'9 
A'O~ 
A9~ 
AS 

SHFT- P,. 
eONTROL- P'7 

- TO 
LOCAL- T1 

~ tc;;;;,...-----------------------------------------i-,·--' 20 J 21 

P2.0 P2.4 26 

l 

SV 

];-. 
vee SEC 

'A 
~1B 

5 
112~Wii8216 

+SV -,...--1----1 2A 
74157 • r-- 2B 

11 
~ 3A 

'0 
~3B 

.A 

~- . 
1/2 I·· .. -~ BS 8276 

'13 fL--.- iiii ms 

40 STB GNO 

'S~ 

10-84 



'" '" 
~ 

~ 
" 

L 

A . ,. 
'" 

,. , .. 

T.. 
vce , . 

'" 
" '" 
" '" 7 " 4 2Y3 

1 • '" 
, 

• · ... 
· m 

· '" .... 
9 

'< '< '< '< '< '< '< '< 

'< '< '< '< '< '< '< '< 

'< '< '< '< '< '< '< '< 

'< '< '< '< '< '< '< '< 

'< '< '< '< '< '< '< '< 

'< '< '< '< '< '< '< '< 

'< '< '< '< '< '< '< '< 

'< '< '< '< '< '< '< 

00 

a, 

AP-223 

'" 
_T 

11( T°'" IV ), T T T T T 

~t, 
cco A • , , , vee 

CLK '" 
D ' 

... ' 
" DA DC QD . "Q "K ~~,t- 13 2 1 

" 
19 " 17 16 IS I .. 1312 T .. " LD7 " vee GNOCi 

"VCC eco " .. 
ili .. " 

, 
--.!!.AO " 

, 
CLK ,,' .. , 

I': ~: " ---.!Rri " , 
2 

" · 7 ~ 7 ,,- s ceo n · 1 ~ 4 -w. 
2 • 1 

hv 

~ eH 
~Ci 7 , · " . • ... • "' , , r---i • 

" --'-ii " 
. · pL--! vee 

t- -~ 
co 

v" A10 aH n 

J... ~ -· ~11 .. T': 
Ql~82 tt 'm 

.. 
is 11' 12 3D 7 a, VERTICAL 

Il' 04 13 40 4 

# 
1 7 Q3 

12 10 5 9 II< 

Iffr2 INTO Q4 i-- 10" VIDEO 

'-V 
' eLK cr;~, :" ,," ... , 

025,.., / 10K 

'OK .V 

~ .. I "~ IK 
,. fll "' vee , C> HORIZ?"TAL 

II CEXTI , CLR 11 DR., 
-----f CEXT 2 CLK 

AO 

Ql~ $Y -To- " 
74123 

" ., . ., GHO . 

10-85 



Appendix 7.2 Dot Timing 

CHARACTI!R h----~~ll1n.------+l 
COUNTER 

STATE 8Uno 

DOT 
CLOCK 

148113 
COUNTER 
OUTPUTS 

QC 

CHAAACTI!R 
CLOCK 

CHARACTER 
CLOCK~TO 

8211 

AP-223 

8211 
CHARACTI!R~~----~I,------~~------~----~~----~~--------~--~~----~-----
OUTPUT 
(cco.cce) 

FIRST CHAAACTI!R SECOND CHARACTER THIRD CHAAACTI!R 

RE~~R~----------------~--------~.Ir------Fl-RST--C-H-'-D-'C-TE~R-V-'DE--O-OUT------il,--S-ECON---D-----·-D·-CTE--R~VI~D-O--OU---
~~~ -; ________________ ~--------~'I~----__ -------RA--_r----------_f ~nAnA E T 

~ ,::1~"'0pF+-__1
330 330

D
A
T
A

B
U
S

112 74123

+V

lK

112 74123

lK

vtOEOOUT

CRT

HORIZONTAL
MONITOR

DRIVE

VERTICAL
DRIVE

AP·223

Appendix 7.3 CRT System Timing

m. 1 r.=1 ' 1 3. 1 4 1 •..•.. 1 80 1 H~C I HR,TC I

-=l-DiJiJi!f1i.K1i1
I· .
I 1

HATC
20

HRTC
(8278) I ~~~r~+4

CHAR CODE
(8276)

LINE C~~:a~ -+-t-+~t--t-t--+-t--+---+-t---1---t-+---t"if-t---t,

SHIFT -+-I-+-I--!--...... -+-.j....-+---+--f---.j....-+-+--+-ff+--+J \.1-+-1-+-1--+-+-+-+--+-
REGISTER LOAD LOAD LOAD :; T _. -,

CHAR

VIDEO
FOR BOTH

CHAR

10-87

AP·223

Appendix 7.4 Escape/Control/Display Character Summary

BIT

IJOIJO

0001 .

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

CONTROL
CHARACTERS

000 001

@
NUL OLE

Ii
SOH OCI

B
STX OC2

C
ETX OC3

0
EOT DC4

E
ENQ NAK

F
ACK SYN

• ... ETB

1\
.'ll CAN

I
HT EM

J
LF SUB

K
VT D9

L
FF FS .' ,Q'I, GS

N
SO RS

0

SI us

010

P
SP

Q I

R

S
=

T
$

U
%

V
&

W

x
(

Y
)

Z

I
+

-
\

- I

011

•
I

2

3

4

5

6

7

8

9

:

;

=

?

OISPLAYABLE
CHARACTER

100 101

@ P

A Q

B R

C S

0 T

E U

F V

G W

H X

I Y

J Z

K [

L

M I

N /I

0 -

110 111 010 011

P

A Q

B R

C S

0 T

E U

F V

G W

H X

I Y

J Z'

K

L

M

N

0

ESCAPE
SEQUENCE

100

+ A

+ B

-..C

"--0

CLR E

HOME H

EOS I

EL J

NOTE: 811_ block. - lunctlonolermlnol will react to. 0tI1.,. can bo __ but are ignored upon receipt.

10-88

101 110 111

AP·223

Appendix 7.5 Character Generator

As previously mentioned, the character generator used in
this terminal is a 2716 EPROM. A IK by 8 device would
have' been sufficient since a 'I 28 character 5 by 7 dot matrix
only requires 8K of memory. A custom character set could
have been stored in the second 1K bytes of the 2716. Any
of the free 110 pins on the 8051 could have been used to
switch between the character sets.

The three low-order line count outputs (LCO--LC2) from
the 8276 are connected to the three low-order address lines
of the character generator. The CCO--CC6 output lines are
connected to the A3-A9 lines of the charac~er generator.

The output of the character generator is loaded into the
shift register. The serial output of the shift register is the
video output to the CRT.

Let's assume that the letter "E" is to be displayed. The
ASCII code for '.' E" (45H) is presented to the address
lines A2-A9 of the character generator. The scan lines
(LCO--LC2) will now count from 0 to seven to form the
character as shown in Figure 7.5.0. The same procedure
is used to form all 128 possible characters. For reference
Appendix 7.6 contains the HEX dump of the character
generator used in this terminal.

45H = 01000101
Address to Prom = 01000101

Character generator output

Rom Address
228H
229H
22AH
22BH
22CH
22DH
22EH
22FH

= 228H - 22FH
Depending on state of Scan
lines.

Rom Hex Output
3E 0

02
02
OE
02
02
3E
00

Bit Output"
1234567

.A.AA.A

Bits 0, 6 and 7 are not used.
'note bit output is backward from convention.

Figure 7.5.0 CharaCter Generator

10-89

AP-223

10·90

Ap·223

Appendix 7.7 Composite Video

In this design it was assumed that the CRT monitor re
quired a separate horizontal drive, vertical drive, and
video input. Many monitors require a composite video
signal. The schematic shown in Figure 7.7.0 illustrate how
to generate a composite video from the output of the 8276.

The dual one-shots are used to provide a small delay and
the proper horizontal and vertical pulse to the composite
video monitor. The delay introduced in the horizontal and
vertical timing is used to center the display. The 7486 is
used to mix the vertical and horizontal retrace. Q 1 mix
the'video and retrace signals along with .providing the
proper D.C. levels.

SOK 4.7K 10K SOK
74LS221

2 2Q
HRTC B,

A,

2.2K

470pF 14

CX CX
lS

- RXCX-
4

74LS221

S S
2Q

3 3
SV SV

6
.001/LF .11'F

7

10

6800

1KO
+S ----..J\IVIr-...

1KO
VIDEO >-___ -"''VV-_..J

Figure 7.7.0 Composite Video

10-91

B, 2
VRTC

2.2K

.OS

COMPOSITE
VIDEO

lS00 OUT

AP-223

Appendix 7.8 Software Documentation

/****.***********************************~.*.'!t**.********.*.*******.***.*******
••••• **********.**** •••• ******* •• ****************** •• ******************.*******
••••••• *.*****
******* *--••• -
*.****.

OOF'lWllRE IJOClH;NI'ATIl"N FOR TIlE 8051
TEIfIDIAL CXNl'9JILER APFLICATICN Wl'E

*****.*
*.*****

•• *.*.********.********** •• ********************* ••• ****************************
*********** •• **.********************************.*****.**.*~.**********.*.*****

MEM)R'! MAP ASSOCIATal WITH FERJPHERI\L DEVICES (USING MJIIX) :

8051 WR lIND READ DISPLAY RAM- ADDRESS 10000 oro 17CFH
8051 WR DISPLAY RAM TO TIlE 8276- ADDRESS 180011 TO lFCP1I
6276 CXMWm ADDRESS- AOORESS OOOlH
8276 PARl\MEl'ER AOORESs- AOORESS 000011
8276 srATUS RmISl'ER- AOORESS OOOlH

MEM)R'{ MAP FOR READIm TIlE KEi~ (USING M:M:) :

AOORESS 10FF11 TO 17FF11

/******************** srARl' MAIN PIOGRNot ********-*******'*******··***1

/* BEGIN Irl Pl1l'1'ING TIlE AOCII CODE FOR BLAM(IN TIlE DISPLAY RAM* /

INIT:
{~'ILL 2000 UX!ATICNS IN TIlE DISPLAY RAM WITH SPl\CES (AOCII 20H)}

/* INITIALIZE FOINl'ERS, RAM BITS, El'C.

IINITIALIZE FOlNl'ERS lIND FLAGS}
INITIALIZE orop OF TIlE em' 'DISPLAY "LINEO"=1800ll}
INITIALIZE 8276 BUFFER FOINl'ER "RASTER" =180OH}
INITIALIZE DISPLAYRAMFOlNTER=OOOOO}

/* INITIALIZE TIlE 8276 */

RESEll' TIlE 8276}
INITIALIZE 8276 oro 80 CHARI\CTElIIKM I
INITIALIZE 8276 oro 25 lOiS PER I1'R!\ME
INITIALIZE 8276 oro 10 LINES PER KM}

*/

INITIALIZE 8276 oro ~-BLIR<ING UNIERLINE ClJRSER}
INITIALIZE ClJRsER TO IDlE FOSITICN (00,00) (UPPER LEFT III\ND roIlIER)}
srARl' DISPLAY} .
ENABLE 8276 INTERRJPr}

/* SEll' UP 8051 INTERRJPrS lIND PRIORITIES */

'ISERIAL FORl' lIAS HIGHESl' INTERRJPr PRIORI'lY}
EK'l'ERW. ::N1'ERRJPl'S ARE EOOE smSITIVE}
ENABLE ~ INl'ERRJPl.'S}

10-92

I*PJO:EDJRE s::l\NNER: THIS PR:JCEruRE OCANS THE KEYOOI\RD lIND DEl'EIMINES IF A
SINGLE VALID KEY HAS BEEN PUSHED. IF TRJE 'I.'IIEN THE AOCII ~IVALENl'
WILL BE TRAN90IITTID ro THE IIlBl' a:MPUTER.*1

OCJ\NNER:

{ENABLE 8051 GIDBAL Im'ERRIPI' BIT}

1* ~ DELAY FOR THE (lJRSER BLI!I< *1

IF {30 VERl'IC1IL RSl'Rl\CE IN'l'EIUVPl'S HAVE OCCURRED (aJRSER$O:UNl'=lFII)} 'I.'IIEN
00;

{<X:MPLEMENT (lJRSER$<:N)
{CLEAR CURSBR$CXXlNl'}
IF {CURSER IS ro BE OFF (<IlRSER$Ql=O)} 'I.'IIEN {!OlE (lJRSER OFF THE ECREEN)
CALL UlI\D$aJRSER;

EHl;

IF {'llIE IO;AL$LINE SWITCH HAS CiIAl'QD Sl'ATE} ~
00;

IF {IN IO;AL M:lIE} ~ {DISABIE SERIAL !'ORr Im'ERRIPI'}
ElSE CALL CIIBl($BAUD$RATEI

EHl;

00 WHILE {INBE'l'WIi:m VERl'IC1IL RI!:FRESHES}
IF {'llIE FIFO HAS A CIIARI'IC'mR ro PRlCIi2lS (SERIJ\L$mr=I)} 'I.'IIEN CALL IB:II'HERI

EHl;

IF {'l1!E PRESI!Nl' PRESSED KEY IS ~ ro THE u.sr KEY PRESSED lIND VALID=l} 'I.'IIEN
CALL AI1lO$REPEAT;

ElSE .

00'
'IF {A KEY IS PRFSSED lIJl' 00l' THE SAME am AS THE u.sr KEYOOARD OCAN} ~
00; ,

IF {QII;{ am KEY IS PRESSED} ~

t'GET 'llIE AOCII caE FOR IT}
SET NEW$I<Elr lIND VALID FLAGS}

ElSE RESET VALID lIND NJM$KElC FLAGS}
~: '

ElSE {THE KEYOOARD MlIBl' NOr HAVE A KEY PRESSED SO RESET VALID$KEIC lIND NEJi$KE't' FLAGS}
amI

1* PRJCEIlJRE AU'ro$REPEAT: THIS PR:JCEruRE WILL PERFOR1 AN AU'ro REPEAT ruNCTICJi
Hi TRANSMITl'ING A CIIAR!\C'lER EVERt' 0l'IIER TIME THIS RVrINE IS CALLED.
THE AU'ro REPEAT ruNCTICJi IS l\C'l'IVATEO AFl'ER A FIXED DELAY PERIOD AFl'ER 'llIE
FIRS!' CIIARl\CTER IS SENT* 1

AU'ro$REPEAT :

IF {'llIE KEY PRESSED IS NEW (NEW$KEt=i} 'I.'IIEN
00; .

{CLEAR THE DIVIDE Hi Ti«) COONl'ER "TRAN9oIIT~'}
{INITIALIZE THE DELAY COONl'ER "TRAN9oIIT$OXJNl'" ro ODOO}
CALL TRAN9oIIT; 1* FIRS!' CIIARI'IC'mR *1
{CLFAR~}

EHl;

10-93

ELSE
·001

IF {TRlIN!MT$CXllNl' IS oor lQJAL ro o} '!'HEN
001

AP·223

{IOCRIHNl' TRlIN!MT$CXllNl'}
IF TRlIN!MT$CXllNl'=OFFIi '!'HEN
DOl
~ TRlIN!MTl
lCIEAR TRlIN!MT$CXllNl'}

1*r:JEU>i BEl'WIiDI FIRSl' CIIlIRl\CTER lIND THE SIDH) *1

I*SIDJtID CHl\RIlCl'ER *1

ENDI
END;
ELSE
001 ,

{TURN THE aJRmR Cl'I IXJRnr; THE III1RYREPFATmcrICl'I}
IF TRlIN!MT$TOOOIE = 1 '!'HEN

CALL TRlIN!MTl
{CXMPLIMiNr TRlIN!MT$'J,'OOO[B}

1* 2 VERl' FlWIES BEl'WIiDI 311) 'ro Nl'H CHl\RIlCl'ER "I
1* 3R> THlOJGH tmI CIIlIRl\CTER. *1

ENDI
ENDI

1* PIO:EIlJRE TRlINl'MlT- CN:E THE IKlSl' <XMRlTER SIGNALS THE 805lH Bi BRlNG~
THE CLEAR-'ID-SEND LINE IJ:M, THE !\SCI! CHl\RACTER IS PUT INro THE SERIl\L PORI.'. *1

TR!\N94IT:
PIO:EIlJRE;
IF {THE 'l'EIMINl\L IS Cl'I-LINE} '!'HEN
00; IWlIIT UNl'IL THE CLEl\R$'lQ$SEND LINE IS IJ:M AND UNl'IL THE 8051 SERI. AL PORI' TX IS oor I1J~

TRlIN!MT THE !\scII COlE}
CLEAR THE FLAG "TRlIN!MT$IN1'". THE SERIAL PORI.' SERVICE InJ'l'INE WILL SEr THE FLAG
WIlEN THE SERIl\L PORI' IS FINISIIID TRlIN94rrr~}

HID;
ELSE {THE 'l'EIMINl\L IS IN THE LOCAL MJDE}
00;

{
PUT THE !\scII COlE IN THE fIFO}
IOCRIHNl' THE FIFO POINl'ER}
SEr SERIl\L$IN1'}

HID;
HID TRlIN!MT';

10-94

(TRlIN!MT$INT=l) }

AP-223

/* PRlCEllJRE Da::IPIIER: THIS PRlCEllJRE DEXDDEE TIlE IIlBI' CCMRlTEa's MESSAGIiS AND llEl'ERoUNFS
WIIEIl'IlER IT IS A DISPLAYABLE CHARl\CTER, <XN1'RJL ~, OR AN ESCAPE SEOOJ;N::E ,
TIlE PRlCEllJRE THEN ACTS l\CXXlRDINGL'l * /

DEX::IPIIER:
SI'ARl'$DEX::IPIIER:

VALID$RECEPTION=O;
DO WHILE {'mE FIFU IS oor EMPlY AND TIlE CHARl\CTER IS DISPLAYABLE}

REX:EIVE={ASCII alDE}
CALL DISPLAY;
{NEXT CHARl\CTER}

END;

IF CHARl\CTERS WERE DISPLAYED} TIIEN
DlSABU;~ SERIAL 00Rl' INTERRlPl'}
K>VE 'mE REMAINING CXNl'I!Nl'S OF 'mE FIFO UP TO 'mE BmINNIM3 OF TIlE FIFO}
ENABLE SERIAL RlRl' INTERRlPl'}
SET TIlE VALID$RECEPTICN FLAG}

IF {'mE FIFU IS EMPlY} TIIEN {CLEAR 'mE 'SERIAL$INT FLAG AND RIilJ.Ulti}

IF {'mE NEXT CIIARl\CTER IS AN "ESC' COlE } TIIEN
DO:

{IDCI(AT TIlE CHARl\CTER IN TIlE FIFO AFl'ER '!liE ESC COlE AND CALL TIlE CX>RRIim' SUBI01l'INE}

b.u. UP$aJRSER;
CALL· OOWN$CIJRSER;
CALL RIGHl'$CIJRSER;
CALL LEFT$aJRSER;
CALL CIEAR$SCRJ;2;N;
CALL MJV$ClJRSER;

.

/* ESC A */
/* ESC B */
/* ESC c */
/* ESC D */
/* ESC E */
/* ESC F */

,/* ESC H */

CALL ERASE$~$<F$SCREIlN; /* ESC J */
CALL BLINE; /* ESC K */

IDISABLE 'mE SERIAL 00Rl' INTERRlPl'} .
K>VE 'mE REMAINING CXNl'I!Nl'S OF 'mE FIFO UP TO 'mE BmINNIM:; OF TIlE FIFO}
ENABLE 'mE SERIAL 00Rl' INTERRlPl'}
SET TIlE "VALID$RECEPTICN" FLAG}

IF {'mE FIFU IS EMPlY} TIIEN {ClEAR 'mE SERIAL$INT FLAG AND RIilJ.Ulti}
END;

10-95

AP:'223
, ,

IF {'DIB NEXT CHI\RI\C'l.'ER IS A CXlNl'OOL CXlIE} THEN , '
00, '

{CALL 'DIB RIGill'SUBR:Vl'INE}

/* en:. H */

/* en:. J */

/* CTL L */
/* en:. M */

K)VE'DIB RD4AINING CDfRNl'S OF 'DIB PIro UP TO 'DIB BmINNIR; OF 'DIB FU-o}
ENABLE 'DIB SERIAL PORi' IRl'ERHJPr} IDISABlE 'DIB SERIAL iiOR1' INl'ERRlPl'}

SBl' 'DIB "VAt.ID$ma:PrICII" PLI'IG}
BllDI

IP {ID VALID CXlIE WAS RB:EIVD> ("VAt.ID$la::EP'l'ICII" IS O)} THEN

1'l'HlOf 'DIB aww:::'l'ER oor lIND ItJUE 'DIB RI!JoIAIN[lI; CDfRNl'S OF 'DIB PIro}
UP TO _ 8IilGII«'IING}

IF {'DIB PIro IS SIPlY} THEN {CIBM TIm SBRIAL$INT PLI'IG lIND BB.l'IJaI}

/* PRlCEilJRE DISPLAY: THIS PKlCEWRE WILL TAKE 'DIB Bl1TE IN RAM IABELED
REX:BIVE lIND P!1l' IT Imo THE DISPLAY Rl\M. * /

DISPLIIY:

{P!1l' IIflO THE DISPLAY RAM UJC:M'ICII 1'OINl'm TO Bl1 "DISPLAY$RI\M$POINrER
'DIB CDfRNl'S OF RB:EIVE} ,

IP ITHE BIID OF 'DIB DISPLI\Y MlM)RC HIlS ~ RPACHm\ THEN
RESEr "DISPLIIY$RI\M$POINrER" TO THE BmINNIR; OF THE RAM}

ELSE
{no&IIiNl' "DISPLAYlWIPOIN'l'BR"}

IF {THE C1JRSER IS IN THE LA9l' ~ OF THE CRl' DISPLIIY} THEN
00,

{HlYB THE aJJISER JWl(ro THE BmINNIR;OF THE LINE}
IF t'DIB NEW DISPLAY Rl\M :u:oaICli HAS A BIID-OP-LINE CHARI'Cl'ER IN IT} THEN

CALL PILLI

IP {TSE C1JRSER IS CII THE LA9l' LINE OF 'DIB CRl' DISPLAY} THEN
CALL SCKlLL,

ELSE' ,
{1tJUE THE <mSER TO THE NEXT LINE}

1Hl, '.

ELBf~ THE <mSER TO THE NEXT UlCATICII}

{'lUlII 'DIB <mSER CII }
CALL UlI\IlCI1RSBRJ
JH) DISPLAY,

10-96

AP-223

/* PRX:EIlJRE LINE$FEEO */

LINE$FEED:

IF {TIlE aJRSER IS IN TIlE LAST LINE OF TIlE eRr DISPlAY} THEN
CALL SCJOLL;

ElSE
00; !MJI/E TIlE aJRSER TO TIlE NEXT LINE}

'l'UR>I TIlE OJRSER ON}
CALL IJJi\D$CXJRSER;

END;

IF !TIIE DISPlAY$Rl\M$POINTER IS ON TIlE LAST LINE IN "TIlE DISPlAY Rl\M} THEN
MJI/E TIlE DISPLAY$Rl\M$POINTER ro TIlE FIRSI' LINE IN TIlE DISPlAY Rl\M}

ElSE
{MJI/E TIlE DISPLAY$Rl\M$POINTER TO TIlE NEXT LINE IN, TIlE DISPlAY Rl\M}

IF {TIlE FIRSI' CHARl'ICTER IN TIlE NEJi LINE CXlNl'AINS AN END-OF-LINE CHARl'ICTER } THEN
CALL FILL;

/*

SCJOLL:

*/

~~vkrICAL REl'RltCE INl'ERRlPr}

IF {TIlE FIRSI' LINE OF TIlE CRl' CXlNl'AINS TIlE LAST LINE OF TIlE DISPlAY MlM)R{} THEN
{ MJI/E TIlE POINTER "LINEO· ro TIlE BJ;X;I:NNIN;; OF TIlE DISPlAY MlM)R{} "

ElSE
(MJI/E "LINEO· ro TIlE NEXT LINE IN TIlE DISPlAY MlM)R{ I

{ENABIE VERl'ICAL REll'IW::E INl'ERRJPr}

/* */

10-97

AP·223

/" PR:lCE!lJRE IJ:ME: 'ffiIS PIO:EIXJRE M)VES '1'HE aJRSER TO '1'HE 0,0 POSITICII ,,/

IJ:ME:

!foIJIIE TIlE aJRSER ~ITIClii TO TIlE UPPER LEFl' Hl\ND CORNER OF '1'HE eRr}
TUm '1'HE ClJRSER CIiI t

CALL LOI\D$aJllSER1
, {foIJIIE '1'HE DISPlAY$Rl\M$POINTER TO '1'HE OORRB:'r I£CATIClii IN '1'HE DISPlAY Rl\M}

END IDIEI

/* PRlCEIIJRE ERASE FR:M ClJRSER TO END OF ~: ,,/

ERASE$FR:M$aJRSE~END(F$SCREE}I:
, .

CALL BLINEI /* ERASE aJRRI!Nl' LINE ,,/

IF {'1'HE aJRSER IS oor CIiI TIlE LASl' LiNE OF TIlE eRr DISPlAY} 'l'IIEN
srARl'ING wrm TIlE NEKT LINE,PUT lIN END-OJi'-LINE CIIAR1C1'ER (OFlH)
IN '1'HE DISPlAY Rl\M I£CATICliiS THAT OORRESEQIl) TO '1'HE I!Iil;INNIW OF }
'1'HE CRr DISPlAY LINES tNl'IL TIlE 00l'l'CM OF '1'HE eRr 9:REEN lIAS BElEN REI\CHED

END"

/"PRX:EIlJRE MJV$CURSER: THIS PIO:EIXJRE IS USED IN CCIiIJIJICl'IOO WITH I«)RDSl'AR
IF A ESC F IS REX:EIVED FlO! '1'HE HOsr CXMF!1IER, TIlE TElMINAL CCNl'roLLER WILL
READ '1'HE, NEKT 'J:W) If{TE TO DEl'EIMINE WHERE TO mIlE TIlE aJRSER. '1'HE FIRSI' mTE
IS TIlE R:M INFOIt1ATIClii roI.IaiED m THE OOUMI INFOIt1ATIOO * /

M:JV$CURSER:

lWAIT UNl'IL '1'HE FIro lIAS REX:EIVED '1'HE NEKT 'J:W) CIIAR!\CTERS}
foIJIIE TIlE aJRSER TO TIlE I£CATIClii SPECIFIED IN '1'HE ES:APE ~}
foIJIIE '1'HE DISPlAY $R1IM$POINTER TO TIlE CX>RI!IiX:'l' I£CATICIiI}

IF TIlE FIRSI' CIIARl\CTER IN TIlE ~ LINE lIAS lIN EN:H:lF-LINE CIIARl\CTER} THEN
CALLF~I -

ENDI

IDISABLE '1'HE SERIAL PORr INl'ERRJPl'}
foIJIIE '1'HE REMAIN CCNl'ENl'S OF TIlE FI, ro UP 'J:W) I£CATICliiS IN MHlRl}
oa::REMENl' '1'HE FIro m 'J:W)}
ENABLE '1'HE SERIAL PORI' INl'ERRJPl'}

END I«>V$ClJRSERI

/" PIO:EIXJRE LEFl' aJRSER: THIS PIO:EIXJRE M)VES '1'HE aJRSER LEFl' CNE roUMI
m SUBl'R!ICTING 1 OF '1'HE aJRSER COUIfi Rl\M I£CATICII 'l'IIEN CALL LON> aJRSER * /

LEFl'$aJllSER:

IF {'!HE ClJRSER IS oor IN '1'HE FIRSI' I£CATIClii OF A LINE} 'l'IIEN .
DOl

{foIJIIE TIlE aJRSER LEFl' m CNE I£CATICII}
{TURN '1'HE aJRSER CIiI}
CALL LOI\D$aJRSERI
{oa::REMENl' '!HE DISPlAY$Rl\M$POINTER m CNE}

HolDI

END LEFl'$aJRSER,

10·98

AP·223

/. PRlCEIXJRE RIGRl' CURSER: THIS PRlCEIXJRE MJIIES TIlE CURSER RIGRl' CNE COLl.tolN
If{ AIDING 1 oro TIlE CURSER COIDlN RAM LOCATICN THEN CALL I£lN) CURSER */

RIGHl'$CURSER:

IF {TIlE CURSER IS NOr IN TIlE LAS!' RlSITICN OF TIlE eRr LINE} THEN
00;

{MJIIE TIlE OJRSER RIGRl' If{ CNE LOCATICN}
{~ TIlE OJRSER CN}
CALL I£lI\D$CURSER;
{INCREMIiNr TIlE DISPLAY$RIIM$FOINTER If{ CNE}

END;

END RIGHl'$OJRSER;

/* ,PRlCEIXJRE UP OJRSER: THIS PRJC:E:IXJRi! MJ\IES TIlE CURSER UP CNE lOi
If{ SUBl'Rl\C'l'IN3 1 ro 1m: CURSER lOi RAM LOCATICN TIIEN CALL I£lN) CURSER * /

UP$CURSER:

IF {TIlE CURSER IS NOr CN TIlE FIRS'!' LINE OF TIlE CRr DISPLAY}TIIEN
00; .

{MJIIE TIlE OJRSER UP CtIE LINE}
{~ 00 TIlE OJRSER}
CALL I£lN)$CURSER;

IF ITIIE DISPLAY$RIIM$FOINTER IS IN TIlE FIRBl' LINE OF DISPLAY MlHlRi} THEN
MJIIE TIlE DISPLAY$RJ\M$FOINTER ro TIlE LAS!' LINE OF DISPLAY MlHlRi}

ELSE
{MJIIE TIlE DI5PLAY$RIIM$FOINTER UP CtIE LINE IN DISPLAY MlM>Ri}

IF {TIlE FIRS'!' LOCATICN oF TIlE Ni;w LINE aE'AINS AN mIH>F-LINE CHARI\C'l'ER} TIIEN
CALL FILL;

/* PRlCEIXJRE lXJWN OJRSER: THIS PRlCEIXJRE MJIIES TIlE OJRSER lXJWN CNE lOi
If{ AIDING 1 oro TIlE OJRSER lOi RAM LOCATICN TIIEN CALL I£lN) CURSER * /

lXJWN$CURSER:

IF {TIlE CURSER IS NOr CN TIlE LAS!' 'LINE OF TIlE CRr DISPLAY} THEN
00;

{'!URN TIlE OJRSER OO}
{MJIIE TIlE CURSER ro TIlE NEKT LINE}
CALL LOAD$OJRSER;

IF ITIIE DI5PIAY$RJ\M$FOINTER IS oor CN TIlE LAS!' LINE OF TIlE DISPLAY MlHlRi} TIIEN
K>VE TIlE DISPLAY$RIIM$FOINTER ro TIlE NEKT LINE IN TIlE DISPLAY MlM>Ri}

ELSE
{K>VE TIlE DISPLAYlwtFOINTER ro TIlE FIRS'!' LINE IN TIlE DISPLAY MlHlRi}

IF {TIlE FIRS'!' CHARI\C'l'ER IN TIlE Nat LINE IS AN mIH>F-LINE CHARI\C'l'ER} TIIEN
CALL FILL;

10-99

/* */

CARRIl\GE$REl.'!lm :

lMJIIE TIlE DISPLAY$RI\M$POIm'ER 'ID TIlE Bm~ OF TIlE CURREN!' LINE IN 'mf: DISPLAY MEK>R!}
MJIIE TIlE CURSER 'ID TIlE BmINNIN3 OF TIlE CURRliNr LINE OF TIlE eRl' DISPLI\Y}
'rum TIlE CURSER a.}

CALL I.OI\D$CURSER;

END CARRIAGE$REl.'!lm;

/* PRX:EWRE LON> CURSER. LON> CURSER TAKES TIlE VAUJE HELD IN Rl\M AND
LCW>S IT nm:> TIlE 8276 CURSER RIDISTER. * /

I.OI\D$CURSER:
PRX:EWREI
IF {TIlE CURSER IS a.} 'l'HEN

{MJIIE TIlE CURSER Bl'.CK CNro TIlE CRl' DISPLI\Y}

{
DISABLE B.lFFER INl'ERHlPr}
WRITE 'ID TIlE 8276 CURSER RIDISTERS TIlE X,Y u:x::ATIooS}
FlIABLE B.lFFER INl'ERHlPr} .

/* PRJCEJlJRE CfIEXl{ Bl\UD RATE: THIS PRX:EWRE READS THE TIffiEE PORI' PINS 00 PI AND SET:;! U.p
TIlE SERIAL PORI' roR TIlE SPEX:IFIED BI\UD RATE * /. .. <'

CfIEXl{ $BI\UD$RATE:

I SET TIMER 1 'ID MJDE 1 AND Al1JX) RELCWlj
'rum TIMER 001 •
FlIABLE SERIAL PORl' :mrERRlPr}
REI\)) Bl\UD RATE SWI'l'CHES AND SET UP RELCWl VAUJE}

;
THl=040H;
THl=OAOH;
THl=ODOH;
THl=OEBH;
THl=OF4H;
THl=OFAII;
THl=OFIlI;

/* 00 IS NC1l' AI.IaiED • /
/* 150 BI\UD * /
/* 300 BI\UD * /
/* 600 BI\UD * /
/* 1200 BI\UD * /
/* 2400 BI\UD * /
/* 4800 BI\UD * /
/* 9600 BI\UD */

10-100

Ap·223

1* PRXnlJRE REI\DER: TIllS PRXnlJRE IS WRI'1'1'9I IS ASSEJoIBIH ~. 'l'HE
EKTERW. l'RXmJRE OCIINS THE 8 LINES OF 'l'HE KE'i~ AND RE1IDS 'l'HE REl'UltI
LINES. 'l'HE Sl'ATUS OF 'l'HE 8 IlEI.'!Jm LINES ARE 'l'IIm 9roRQ) IN INl'ERNAL
MlH)R{ ARRAY CALLED 0JRRENl'$KE'{ *1

REI\DER:

{INITIALIZE FIAGS "KRl0" .. 0, "SIIME"zl, 0 CXlJN1'ER=0}

00 l}Nl'IL {ALL 8 KE'i~ 0ClIN LINES ARE RFAD}
\RFAD KE'i~ 0ClIN}
IF {m KE'i WAS PRESSED} 'l'IIm

I INCRIHNl' 0 CXXlN1'ER} .
ELSE
IF {'l'HE KE'i PRESSED WAS IVl' THE SlIME KE'i '!HAT WAS PRESSED 'l'HE Li\Sl' TIME

'l'HE KE'i~ WAS RFAD} 'l'IIm
{CIEAR·"SliME" AND WRITE NEW 0ClIN REsuLT TO aJRRENl'$KEY Ri\M ARRAY}

IF {ALL 8 ms .DIOO'T HAVE A KE'i PmSSED(O roiNrER=B)} 'l'IIm
{8m' KEl(0, AND CIEAR SlIME}

1* PRJCE[XJRE BLAII<: TIllS ElCI'ERIAL PRJCE[XJRE FILlS LINEO WITH SPACES {20H AOCII)
WRING THE scroLL IUlTlNES. *1

BU\NK:

00 1= {BEX>INNING OF THE CRl' DISPLAY (LINED)} TO {LINED + SOH}
{DISPLAY Ri\M POINTED ro Ff{ "I" = SPlICE (AOCII 20H)}
NEXT I

am;

am BU\NK;

1* PRJCEWRE BLINE: TIllS' EXTEmAt. PRJCEWRE BLAII<S FKM THE aJRSER ro THE am OF
THE DISPLAY LINE *1

BLINE:

00 f= {aJRRENl' aJ~R PQSITIOO CN CRr DISPLAY} TO {ENp OF 1Of}
DISPLAY Ri\M l'OINTED ro Ff{ "I" = SPl'CE (ASCII 20H) J

NEXT I
am;

am BLINE;

1* PRXnlJRE FILL: TIllS EKTERW. PRXnlJRE FILLS A DISPLAY LINE Wl'ftI SPl\CES*1

FILL:

00 1= {BmImING OF 'l'HE LINE THAT 'l'HE aJRSER IS OO} TO {am OF THE 1Of}
{DISPLAY Ri\M 1'OINl'ED ro Ff{ "I" = SPl'CE (ASCII 208)}
NEXT I

am;

am FILL;

10-101

Appendix 7.9 Software Listings

PL/M-51 CCMPILER

ISIS-II PL;M-51 Vl.l
CCMPILER J:NV(I{ED Hi: PLM51 :Fl:CRl'PLM.SR::

SOPl'IMIZE (1)
$OOINl'IIECroR
$R:M (I.AIQ!)

AP·223

/**.***** •• *******.*** •••• ** •••••• **.** ••• **.**.*** .•• ." ••••••••••••••••••••••••••
••• 'It •• 'It •••••••••••••••••••••

•••••••
•••••••
•••••••

PIM51 SOF'lWl\RE FOR TIlE 8051 TEIMINAL
CXlNl'R)LLER APPLICATIcti NOl'E

.
• ••• It •••
• ****** •

••
•• It •••

MEMJRl MAP ASSXIATEIl WlTH PERlPIlERAL DE.VICFS (USING 1oDIIX) :

8051 WR AND RFAD DISPLAY IW+- ADDRESS 10000 ro 17Cm
8051 WR DISPLAY RAM ro TIlE 827 6-ADDRESS 18000 ro lECFH
8276 <:XMoII\ND ADDRESS- ADDRESS OOOlH
8276 PARIIMEl'ER ADDRESS- ADDRESS 00000
8276 srAWS REXiISl'ER- ADDRESS OOOlH

KE'lBO!\RD . ADDRESS- ADDRESS lOFFH ro 17FFH

TIlE FOLI£MIOO SClFlWARE swrn:::HE9 MJsr BE SET .NXOR>ING ro TIlE WEi: OF
KEllBO!\RD THAT IS (DING ro BE USED.

*/

SWl- SET WIlEN USING AN UNDa:XlDED KE'lBO!\RD IS ro BE USED
SW2- SET WIlEN USING A DEXXlDED OR A SERIAL WEi: OF KE'lBO!\RD

UNDEXXlDED KE'lBOl\RD- CRl'PLM.OBJ ,CRrASM.OBJ ,KE'lBD.OBJ ,PIM51.LIB
DEX))[lE[) KE'lBOl\RD-CRl'PLM.OBJ ,CRrASM.OBJ ,DElXOE.OBJ ,PLM51.LIB
DETl\CIIED KE'lBOl\RD-CRl'PLM.OBJ ,CRrASM.OBJ ,DETl\CII.OBJ ;PIM51.LIB .

$SET (SW1)
$RESET (SW2)

10·102

AP-223

PL/M- 51 CDlPlLER

CRl'$OJN'l'R)LLER:
1 1 00;

2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10 1
11 1
12 1

13 1

/************* •••• DECLARE LITERALS .***********************/

DECIARE UC LlTERALI.:l 'I£X:AL$LlNE$CIfAN:;E';
DECIARE am LlTERALI.:l 'amISl'ER';
DECIARE aJRRENl'$KE:f LITERALI.:l 'aJH<Ei';
DECLARE SERIAL$SERI/ICE LITERALIH 'SERBJF';
DECIARE DISPLAYRAMPOINl'ER LITERALIH 'POINr';
DECIARE SERIAL$INr LlTERALI.:l 'SER!Nr';
DECIARE TRl\NSoIIT$INr LITERALI.:l 'TRnNr';
DECIARE aJRSER$O)UI4N LITERALIH 'aJRSER';
DECIARE LA91'$KE:f LITERALI.:l 'LSnCE'i';
DECIARE aJRSER$CalNI' LITERALI.:l 'COONl";
DECLARE OCl\N$INr LITERALIH 'OCl\N';

/********* amISl'ER ~IONS FOR THE 8051 *****************/

/********* ~TE REGISTERS ********/

DECIARE
PO HiTE AT (80H) am,
PI HiTE AT (90H) am,
P2 HiTE AT(OAOH) am,
P3 HiTE AT(OBOH) am,
PSW HiTE AT(OOOH) am,
NJ:. HiTE AT (OEOH) am,
B HiTE AT(OFOH) am,
SP HiTE AT (81H) am,
DPL HiTE AT (82H) am,
OPII HiTE AT (83H) am,
IU:N HiTE AT (87H) am,
'J.CCN HiTE AT (88H) am,
TMOD HiTE AT (89H) am,
TLO HiTE AT (BAH) am,
TLI HiTE AT (8BH) am,
THO HiTE AT (SCH) am,
THI HiTE AT(8DH) am,
IE HiTE AT(OASH) am,
IP HiTE AT (OBSH) am,
SOON HiTE AT (98H) am,
SBUF HiTE AT (99H) am;

10-103

'AP-223

PL/M-51 <D4PILER

$E'.JB::T
/********* BIT REXiISl'ERS, ******** /

14 1
/********* PSW BITS ******** /

OB::IARE
Cl BIT
PC BIT
FO BIT
RS1 BIT
RSO BIT
av BIT
P BIT

AT (00711)
AT (OD6II)
AT (OD5H)
AT (Oo4H)
AT (OD3H)
AT (OD2H)
AT (OOOH)

/********* 'lUlN BITS ******** /
TF1 BIT AT (8FH) REXi,
TRl BIT AT (8E1l) REXi,
TFO BIT AT(SOO) REXi,
TRO BIT AT(8CH) REXi,
1E1 BIT AT (8BH) REXi,
IT1 BIT AT (BAH) REXi,
lEO BIT AT (89H) REXi,
ITO BIT AT (8SH) REXi,

/********* IE BITS ******** /
EA BIT AT(OAFH) REXi,
ES BIT AT(OPCH) REXi,
ET1 BIT AT(OABH) REXi,
EK1 BIT AT(OAAH) REXi,
ETO BIT AT(OA9H) REXi,
EKO BIT AT (OASH) REXi,

/ ••• *****. IP BITS ******** /
PS BIT AT (01Oi) REXi,
PT1 BIT AT(OBBH) REXi,
PX1 BIT AT(OIWl) REXi,
PTO BIT AT (OB9H) REXi,
PXO BIT AT(OBSH) REXi,

/********* P3 BITS ******** /
RD BIT AT (OB7II) REXi,
WR BIT AT (OB6II) REXi,
TI BIT AT (OB5H) REXi,
TO BIT AT(OB4H) REXi,
INT1 BIT AT(OB3H) REXi,
INTO BIT AT(OB2H) REXi,
'1'XD BIT AT(OBlH) REXi,
RKD BIT AT (OBOH) REXi,

/********* SOON BITS ********/
fMO BIT AT (9FH) REXi,
Q4l BIT AT(9EH) REXi,
::M2 BIT AT(9m) REXi,
!lEN BIT AT(9CH) REXi,
TB8 BIT AT (9BH) REXi,
RB8 BIT AT(9AH) REXi,
TI BIT AT (99H) REXi,
RI BIT AT (98H) REXi;

10-104

AP·223

PL;M-51 CGlPILER

15 1

$EJEX:T
$IF SW1

/**************** DEX::IARE OJNSTANrS**~*****·*****··*·***** /

IJEX:U\RE ~SCAN (16) srRX:'I.URE
(KE'{ (8) RlTE) CCNsrANr

('890-' ,5CH,5EH,OBH,OOH,
1* SCAN 0, SHIFf K~ =0; 8,9,O,-,\,~, BAa< SPACE *1

• uiop' ,SBII, I@I ,OAH, 7FH,
1* SCAN 1, SHIFf =0; u,i ,o,p, [,@, LINE FEED, DELETE *1

'jk.l:: ',008,01:11, '7',
1* SCAN 2, SHIFf =0; j,k,1.;,:, REll'URI, 7 *1

'm' ,2CH,' .' ,OOH,' I' ,OOH,OOH,OOH,
1* SCAN 3, SHIFf =0; m,CXMoIA,.,1 */

OOH, , azxcvbn' ,
1* SCAN 4, SHIFT =0; a,z,x,c,v,b,n *1

'y' ,OOH,OOH,' dfgh',
1* SCAN 5, SHIFf =0; y, SPACE, d,f,g,h */

09H, 'qwsert' ,OOH,
1* SCAN 6, SHIFf =0; TAB,q,w,s,e,r,t *1

lBH,' 123456'-,OOH,
1* SCAN 7, SHIFf =0;ESC,1,2,3,4,S,6 *1

2BH,29H,OOH,'=',1CH,7EHrOBH,OOH,
1* SCAN 0, SHIFf =1; (,),=, ,-, BAa< SPACE *1

'UIOP',OOH,OOH,OAH,7FH,
1* SCAN 1, SHIFf =1; U,I,O,P, LINE FEED, DELETE *1

'JKLI-*' ,OOH,0IJl,27H,
1* SCAN 2, SHIFf =1; J,K,L,+,*, REll'URI, , *1

'M<>:' ,OOH,3FH,OOH,OOH,OOH,
/* SCAN 3, SHIFf =1; M,<,>,1 *1

OOH, 'AZXCVBN' ,
1* SCAN 4, SHIFf =1; A,Z,X"C,V,B,N */

'Y' ,008,OOH,' DFGH',
1* SCAN 5, SHIFf =1; Y, SPACE, O,F ,G,H */

09H, '(JiSERl" ,OOH,
1* SCAN 6, SHIFf =1; TAB, O,W,S,E,R,T */

lBH,' 1"'$%&' ,OOH);
/* SCAN 7, SHIFf =1;ESC,I,·,',$,%,& *1
$ENDIF

10·105

AP·223

PL/M-Sl CQ.!PILER CRro:Nl'lVLLER

16 1

INRlT

17 1

$E'..1OCT
j.*****·***·.******DEX:IARE VARIABLES····················/

DI!CIARE

$IF SW2

BIT M(OB4H)
$ENDIF
$IF SW1

CAP$I.CQt
SHIP'l'$KE'{
c:x:Nl'R>L$KE'{

$ENDIF
LCCAL$LINE
CU'ARTOSaiD

RElG,

BIT M (09511)
BIT M(096H)
BIT M(097H)

BIT M(OB5H)
BIT M (09311)

D.\TA$TERUNAL$RE1II7i BIT M (094H)

DI!CIARE (

$IF SWl
SlIME,
VALID$KE'{ ,
KE:{O,
LIIST$SHIP'l'$KE'{ ,
LAS'l'$CXNrR)L$KE'{ ,
LIISTCAPI.CQt ,.

$ENDIF

$IF SW2
lCVFLG,
snc,
MFlN,
KBDIN!',
ERR>R,

$ENDIF

N&I$I(E:{ ,
TRl\NSUT$'rCXlGlB ,
ClJRSER$QI ,
SERIALSIN!' ,
&:AN$IN!',
TRAN!MIT$J;m' ,
EOCSEQ,
VALID$ROCEPl'ICN ,
uc,
I!NSP) BIT RlBLICl

RElG,
RElG,
RElG,'

RElG,
RElG,
RElGl

10·106

PL/M-51 CCMPILER

18 1

19 1

20 1

DEl:U\RE

I,
J,
K,
ASCII$KEY' ,
TRAN9UT$COONI' ,
TEMP,
SHIFT,
ClJRSER$COL,
ClJRSER$COIDIN ,
ClJRSER$R:M ,
ClJRSER$CaJNl' ,
FIm,
REr:EIVE) BlCTE PUBLIC;

$IF SWl
DFO.ARE LASl'$KEY' (8) BlCTE RlBLIC;
$EH)IF

$IF SW2
DEl:U\RE LASl'$KEY' (2) BlCTE PUBLIC;
$EH)IF

DFO.ARE SERIAL(16) BlCTE PUBLIC;

AP-223

21 1 DEl:U\RE DISPLAY$RAM (7CPH) BlCTE AT (10000) AllXILIJIR{;

22 1

23 1 DEl:U\RE (

DISPIAYRAMPOINl'ER,
RASTER,
LINEO,
L) ~ PUBLIC;

AT (00000) AllXILIJIR{,
AT (OOOlH) AlJXILIJIR{;

10-107

Ap"223

PL/M-S1 <XMPlLER CRl'CXNl'R)LLER

24 2
2S 1

26 2
27 '1

28 2
29 1

30 1

31 1

/* PRJCEIlJRE READER: THIS PRJCEIlJRE IS WRI'l'l'EN IS ASSEMBLY LAIGJAGE. TIlE
EK'I.'ElfiAL PRlCEnJRE OCANS THE 8 LINES OF TIlE KE:!BOMD AND READS THE REruRii
LINES. TIlE Sl'A'lUS OF TIlE 8 REl'URN LINES ARE THEN S'roRED IN INl'ERNAL
MIKlRl ARRAY CALLED aJRRENl'$KE:!. TIlE PH:lCEEIlJRE <XlNrKlLS 2 STA'lUS FLI\GS,

KE:{O AND SAME. KE:{O IS SE:l' IF ALL 8 OCANS READ NO KE:{ WAS PRESSED.
IF ALL 8 OCANS ARE TIlE SAME AS THE LAS!' READI~ OF THE KE:{OOMD, THEN
SAME IS SE:l'. */

READER: PRJCEWRE EK'I.'ElfiAL,
END READER,

/* PRJCEIlJRE BLANK: THIS EK'l'ERiIAL PRJCEWRE FILLS LINEO OCAN WlTII SPACES (20H ASCII)
WRING TIlE SCR>LL IiOJTINES. * / }

BLANK: PRJCEWRE EK'I.'ElfiAL,
END BLANKI

/* PRJCEIlJRE BLINE: THIS EK'l'ERiIAL PRJCEWRE BLANKS FICM TIlE aJl&:R oro TIlE END OF
TIlE DISPIAY LINE * /

BLINE: PRJCEWRE EK'l'ERiIALI
END BLINEI

/* PRJCEWRE FILL: THIS EK'l'ERiIAL PRJCEWRE FILLS THE aJl&:R LINE
WlTII SPICES*/

FILL:
PRJCEWRE EK'I.'ElfiAL;
END FILL,

10-108

AP-223

PL/M- 51 CCMPlLER CRl'O::Nl'IDLLER

32 1

33 2

34 2
35 2
36 2
37 2
38 3
39 3
40 3
41 3
42 3
43 3
44 3
45 3
46 3
47 3
48 1

49 1

SO 2
51 2
52 2
53 2
54 2
55 2
56 2
57 1

58 1

59 2
60 2
61 2
62 2
63 1

$JmCl' '

/* PlIX:E!lJRE ClIEXl< BA1lD RATE: 'IRIS PlIX:E!lJRE READS TIlE THREE KlRl' PINS 00 PI AND SETS UP
TIlE SERIAL KlRl' FOR TIlE SPEX::IFIED BA1lD RATE * /

ClIEXl<$BA1lD$RATE :
PlIX:E!lJRE;
9Xtl=7OH; /* KlIJE 1

ENABLE ROCEPrlOO*/
'.lMJD=IlM)I) OR 20H; /* TIMER 1 Atrro RELOIW * /
TRl=I; /* TIMER 1 00 */
ES:a:l; /* ENABLE SERIAL IN1'EIUVPr* /
ENSP=I; /* SERIAL IN1'EIUVPl' MAsK FLAG */
00 CASE (PI AND 0711);

; /* 00 IS ID1' l\Lt.C:MED * /
'DU-04OH; /* ISO BA1lD */
THl=MOII; /* 300 BA1lD */
THl=OOCli; /* 600 BA1lD */
THl=OEBH; /* 1200 BA1lD * /
THI-OF4H; /* 2400 BA1lD * /
THl=OFAH; /* 4800 Bi\llD * /
THl=QJ;lJf; /* 9600 Bi\llD * /

END;
END ClIEXl<$Bi\llD$RATE;

/* PlIX:E!lJRE LON> amsER: LON> amsER TAKES TIlE VAWE HElD IN lWo\ AND
UWlS IT IN1'O TIlE 8276 CllRSER RmISTERS. */

I£Wl$CdRsER:
PRX:EWRE;
IF OJRSER$QI-l TIIIiJI

0JRSER$CXlL=QJRSER$(X>UI!N;
EKl=O; /* DISi\BLE IIJWER INl'ERRlPl' * /
(XHWlD$AOORESS=8011; /* INITIALIZE OJRSER CXHWID * /
PARAMm'ER$AlJ>RESS>aJRSERS(X)L,
PARAMm'ER$AIJ>R=<lJRSER$lVif;
EKl=l; /* ENABLE IIJWER INl'ERRlPl' * /
END UlI\D$aJRSER;

/* PlIX:E!lJRE CARRIJ\GE$1IE1.rum */

CARRI1.GE$1IE1.rum :
PlIX:E!lJRE;
DISPIAY$Ri\M$R>Im'ER=DISPIAYR/\MR>INTER-aJRSER$(XID!N;
amsER$OJ~=O;
ClJRSER$CN=I;
CALL LON>$OJRSER;
END CARRIJ\GE$1IE1.rum;

10-109

PLiM-51 <XMPILER

64

65
66
67
68
69
70
71
72

13
74
75
76
77
78
79
80

81

82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97

1

2
3
3
3
3
3
3
3

3
3
4
4
4
4
3
1

1

2
3
3
3
3
3
3
3

3
3
4
4
4
4
3
1

1* PRXEWRE rx:m aJRSER: THIS PRXEWRE MJVES THE aJRSER rx:m OOE 101
R{ I\IJDING 1 ro THE aJRSER 101 RAM IJXATIOO THEN CALL LOAD aJRSER *1

rx:m$CURSER:
PRXEWRE;
IF aJRSER$KM < 18H THEN
00;

aJRSER$CN=l;
aJRSER$KM~R$KM + 1;
CALL I.OAD$CURSER;
IF DISPLAYRAMPOINTER <.7800 THEN

DISPLAYRAMPOINTER=DISPLAYRAMPOINTER +50H;
ELSE

DISPLAYRAMPOINTER=(DISPLAYRAMPOINTER-78OH);
L=DISPLAYRAMPOlN'l'ER-aJRSER$UMN;
IF DISPLAY$RAM(L)=OFlH THEN
00;

CALL FILL;
DISPLAY$RAM(L) =200;

END;
END;
END DCMN$CURSER;

1* I.O:I{ EUR END OF*I
1* LINE CIIAR1Cl'ER *1
I*IF TRUE FILL LINE*I
I*WITH SP1\CES *1

1* PRXEWRE UP aJRSER: THIS PRXEWRE MJVES THE ClJRSER UP CNE KM
R{ SUBl'Rl\CTI~ 1 ro THE ClJRSER 101 RAM IJXATIOO THEN CALL Uli\D C1JRSER -·1

UP$CURSER:
PRXEWRE;
IF ClJRSER$KM >0 THEN
00;
C1JRSER$~KM - I;
ClJRSER$OO=I;
CALL Uli\D$CURSER;
IF DISPLAYRAMPOINTER<5OO THEN

DISPLAYRAMPOINI'ER=DISPLAYRAMPOINl'ERt 7800;
ELSE

DISPLAYRAMPOINTER=DISPLAYRAMPOINTER - 50H;
L=DISPLAYRAMPOlN'l'ER-aJRSER$UlMN;
IF DISPLAY$RAM(L)=OFlH THEN
00;

CALL FILL;
DISPLAY$RAM(L)=20H;

END;
END;
END UP$CURSER;

10-1.10

1* I.O:I{ IiUR END OF LINE* 1
1* CHARl\CTER *1
1* IF TRUE FILL WITH *1
1* SPACES *1

AP-223

PL/M-51 CDlPILER

98 1

99 2
100 3
101 3
102 3
103 3
104 3
105 3
106 1

107 1

108 2
109 3
110 3
III 3
112 3
113 3
114 3
115 1

/* PRX:EruRE RIGIfI' CURSER: THIS PRX:EruRE MJIIES THE CURSER RIGIfI' OOE OOllJMN
lJi AIDING 1 TO THE CURSER OOllJMN AAM LOCATIOO THEN CALL IIJI\D CURSER * /

RIGIfI'$CURSER :
PRX:EruRE;
IF CURSER$COIllMN < 4FH THEN
00;

ClJRSER$COIllMN"<XIRSER$OJUJolN + I;
aJRSE:R$OO=l;
CALL IIJI\D$CURSER;
DISPLAYAAMPOINl'ER=DISPLAYAAMPOINI'ER + 1;

mo;
mo RIGIfI'$CURSER;

/* PRX:EruRE LEFl' aJRSER: THIS PRX:EruRE MJVES THE aJRSER LEFl' OOE OOUJolN
B'{ SUBTRl\CTI1iG 1 TO THE aJRSER <::OilMl AAM LOCATIOO THEN CALL IIJI\D aJRSER * /

LEFl'$CURSER:
PRX:EruRE;
IF aJRSER$COllJolN >0 THEN
00}

ClJRSER$COllJol"<XIRSER$<::OilMl - 1;
aJRSE:R$OO=l;
CALL IIJI\D$aJRSER;
DISPLAY$Ill\M$POINrER=OISPLAY$Ill\M$POINl'ER -1;

mol
mo LEFl'$CURSER;

10-111

AP~223

PL/M-51 a::MPILER CRI'<XNI'RJLLER

116 1

117 3
118 3
119 2
120 2
121 2
122 3
123 3
124 3
125 3
126 3

127 3
128 2

129 3
130 4
131 4
132 4
133 4
134 4

135 4
136 3
137 2
138 2
139 2
140 2
141 2

142 2
143 2
144 2
145 2
146 3
147 3
148 3
149 3
150 2
151 3
152 3
153 3
154 2
155 2
156 1

/* PRJCEIlJRE M:)V$QJRSER: THIS PRJCEIlJRE IS USED IN CONJUIC1'IOO WITII IDROSl'AR
IF A EOC F IS ROCEIVED F'R:M TIlE HOSr CGlPUTER. TIlE TEItmiAL CXNl'RJLLER WILL
READ THE NEXT TID W'TE TO I>E1'ER1INE- WHERE TO MJ\IE THE aJRSER. THE FIRST W'TE
IS THE R:M INroR1ATIOO R)l.L()oIEJ) W' TIlE O)llJMN INroR1ATlOO * /

M:)V$QJRSER:
PRJCEIlJRE ;
00 WHILE FIFO< 4; /* WAIT UNl'ILL THE M:)V$QJRSER PARAMEl1'ERS* /
END; /* ARE ROCEIVED INro THE FIR) "/
TEMP=CURSER$R:M;
aJRSER$R:M=SERIAL(2) ;
IF CURSER$R:M>TEMP THEN
00;

L=DISPLAY$Rl\M$POINTERI- ((aJRSER$lOM'EMP) * SOH) ;
IF L> 7GlI THEN . /* IF CX1l' OF RllM RANGE */

DISPLAY$RllM$POIN1'ER=L-7DOH; /* RAP AR:XJN[) TO BEGINNING */
~ ~~RllM~

am~,

~
00;

DISPLAY$Rl\M$POIN1'ER=L;

IF aJRSER$R:M<TEMP THEN
00;

L= (TEMP-<:URSER$R:M) * 5OH;
IF DISPLAY$Rl\M$POIN1'ER<L THEN /* IF CX1l' ~ RllM RANGE*/

DISPLAY$RllM$POIN1'ER= (7D<H- (L-OISPLAY$Rl\M$POIN1'ER) Ii/* RAP AR:XJN[) TO Dill) ~ RllM*'
~

DISPLAY$Rl\M$POIN1'ER=DISPLAY$Rl\M$POINTER-L;
END;

END;
TEMP=CURSER$OOllJMN;
aJRSER$OOllJMN=SERIAL (3) ;
IF aJRSER$(X)LtMN>TE THEN

DISPLAY$Rl\M$POIN1'ER=DISPLAY$Rl\M$POINl'ER+ (~);
ELSE

DISPLAYRAMPOIN1'ER=DISPLAY$Rl\M$POINTER- (TEMP-<:URSER$OOllJMN) ;
aJRSER$OO=1;
CALL LOAD$aJRSER;
L=DISPLAY$Rl\M$POINTER-aJRSER$OOILt4N;
IF DISPLAY$RllM(L)=OFlH THEN /* L<lCK FOR END FO LINE CHARIlCTER*/
00;

CALL FILL; /* IF TRJE FILL WITII SPl\CES */
DISPLAY$RllM(L)=2OH;

00;
ES=O;
00 1=2 TO FI~2;

SERIAL (I) =SERIAL (1+2) ;
END;
FIFO=FI~2;
ES=ENSP;
END MJ\I$<lJRSER; .

10-112

AP·223

PL/M- 51 o::MPILER CRra:Nl'RlLLER

157 1

158 2
159 2
160 3
161 3
162 4
163 4
164 4
165 4
166 3
167 4
168 4
169 4
170 4
171 3
172 1

173 1

174 2
175 2
176 2
177 2
178 2
179 1

/* PRlCEllJRE ERASE FR:M aJRSER TO END OF ~: * /

ERASE$FR:M$OJRSERTOENDOFSCREEN :
PRlCEllJRE;
CALL BLINE;
IF CURSER$1Oi < 18H THEN
00;

/* ERASE CURRENI' LINE * /

L=DISPLAYRAMFO~5OHJ /* GEl' NEXT LINE */
00 WHILE (L < 1008) AND (L <> (LINEO AND 7FFH));

DISPLAY$RAM(L)=OFlH; /* ERASE UNrIL LINEO OR */
L=Itl-50H; /* END OF DISPLAY RAM* /

ENDI
L=O;
00 WHILE L <> (LINEO AND 7FFH); /* ERASE UNrIL LINEO * /

DISPLAY$RAM(L)=OFlH;
L=Itl-50H;

END;
END;
END ERASE$FR:MSOJRSER$TOENDOF$SCREEN;

/* PRlCEllJRE IDlE: THIS PRX:EIl1RE !tJVES THE aJRSER TO THE 0,0 FOSITIOO */

IDlE:
PRlCEllJRE;
aJRSER$1OP00;
ClJRSER$CX)IlIl=OO I
aJRSER$OO=ll
CALL I.O!\D$CURSER;
DISPLAYRAMFOINTER=(LINEO AND 7FFH);
END IDIEI

10-113

AP·223

PL/M-51 a:MPlLER

180 1

181 2
182 2
183 1

184 1

185 2
186 2
187 2
188 2
189 2

190 2
191 1

192 1

193 2
194 2
195 2

196 3
197 3
198 3
199 3
200 2
201 2
202 2

203 2
204 2
205 3
206 3
207 3
208 3
209 1

/* PRlCEllJRE CLEAR SCREEN * /

CLFJ\R$SCREEN :
PRlCEllJRE ;
CALL HCME; _ _ _
CALL ERASE$FIOI$CURSERTOENDOFSCREEN;
E2ID CLFJ\R$SCREEN;

/* PRlCEllJRE SCRoLL */

SCR)LL:
PRlCEllJRE;
CALL BLANK;
EKO=O; /* DISABLE VERl'ICAL REFRESH INl'ERHJPl' * /
IF LINEO= iF80H THEN

LINEO= 180011;
EUlE

LINEO= LINEOtSOH;
EKO=l; /* ENABLE VERl'ICAL REFRESH INl'ERRJPl' * /
E2ID SCBOLL;

/* PRlCEllJRE LlNE$FEED * /

LlNE$FEED:
P-RlCEllJRE ;
IF CURSER$JnI=18H THEN

CALL SCBOLL;
ELSE
00;

CURSER$JnI= CURSER$IVWH;
CURSER$CN=1;
CALL UlI\D$CURSER;

E2ID;
IF DISPLAY $1WI$FOINrER > 17FH THEN

DISPLAY$R1\M$FOINrER=OISPLAY$R1\M$FOINTER-78OH;
ELSE

DISPLAYIWIFOINTER=DISPLAY$R1\M$FOINl'ERI-SOH;
L=DISPLAY$R1\M$FOINrER-aJRSER$OJUHI;
IF DISPLAY$IWI (L) =OFlH THEN /* I.C(J{ roR E2ID OF LINE CHARI\CTER* /
00;

CALL FILL; /* IF TIllE FILL WITH SPlICES * /
DISPLAY$IWI(L)=2OH;

E2ID;
E2ID LINE$FEED;

10-114

AP-223

PL/M-51 a:MPILER CRrCX:Nl'IVLLER

210 1

211 2
212 2
213 2
214 2

215 2
216 3
217 3
218 3
219 3
220 4
221 4
222 4
223 4
224 3
225 3
226 3

227 3
228 2

229 2
230 2
231 1

/* PRJCE!lJRE DISl'tM: THIS PRJCE!lJRE WILL TAKE THE B'tTE IN RAM LABELID
REX:EIVE AND PUT IT INl'O THE DISPLIIY RAM. * /

DISPLAY:
PRXElJRE;
DISPLAY$RAM (DISPLIIY$RAM$POINTER) zREX:EIVE;
IF DISPLAYRAMPOINTERa7CFH THEN /* IF END OF RAM */

DISPLAY$iW4$POINTER~OOOH; /* RAP AlOJND TO BEX;INNItI; * /
ELSE

DISPLAYRAMPOINTERaDISPLIIY$iW4$POINTERI-I;
IF OJRSER$O)UI.!N,,4m THEN
00.;

ClJRSER$COUI4N..oOH;
L--DISPLIIY$iW4$POINTER;
IF DISPLAY$RAM(L)=OFlH THEN
00;

CALL FILL;
DISPLAY$RAM(L)=2OH;

END;
IF OJRSER$1OP1BH THEN

CALL scmLL;
ELSE
OJRSER$~R:Mt11

END;
ELSE

OJRSER$O)UI.!N>OJRSER$OOUJ4NI-l;
0JRSER$QI=1;
CALL I£WOlRSER;
END DISPLAY;

10-115

AP~223

PL;M-51 <DU'ILER crommvLLER

232 1

233 2

234 2
235 3
236 3
237 3
238 3
239 3
240 2
241 3
242 3
243 3
244 4
245 4
246 4
247 4
248 3
249 3
250 3
251 3
252 2
253 3
254 3
255 3
256 3
257 2
258 3
259 3
260 3
261 3
262 3
263 4
264 5
265 5
266 5
267 5
268 5
269 5
270 5
271 5
272 5
273 5
274 5
275 5
276 5
277 5
278 4
279 3

1* PRX:EI;lJRE DOCIPIIER:. THIS PRXnlJRE OB:X>DES THE IJ)Sl' CGlPUTER'S MESSI\GES AND IEl'Elf4INFS
WHImIER IT IS A DISPIJlYABLE CHARIlCTER, CXNl'R)L lID;)JENCE, OR AN EOCAPE ~
THE PRlCEIlJRE THEN ICrS Aa::ORDm;u *1

DEx::IPHER:
PRXnlJRE:
srARl'$DOCIPIIER:
VALID$REx::EPl'IOO=O:
1=0:
00 WHILE (I<FUU) AND (SERIAL(I»lFH) AND (SERIAL(I)<7FI!1I

REx::EIVE=SERIAL (I) :
CALL DISPIJIY:
I=I+1:

END:
IF 1>0 THEN
00:

ES=O:
K=FIFO-I:
00 J=O TO K:

SERIAL(J)=SERIAL(I):
1=I+1:

FlIDJ
FIFD=K1
ES=ENSP:
VALID$REx::EPl'IOO=1:

END:
IF FIRJ=O THEN
00:

SERIAL$lNT=O:
ooro END$DOCIPIIER:

END:
IF (SERIAL(O)=lBH) THEN
00:

1* DISABLE SERIAL INl'ERRJP1' WHILE MJ\TIN3 FIro *1

1* MJVE FIro *1

1* aw3LE SERIAL INl'ERRJP1' *1

IF (ESC$SEQ=l) AND (FIro<2) THEN
ooro END$DOCIPIIER:

K=(SERIAL(l) AND 5m)-40ih
IF (K >OOH) AND (K<OCH) THEN
00:

00 CASE K: .
CALL UP$ClJRSER:
CALL JXH{$CURSER:
CALL RIGHI'$CURSER:
CALL LEFT$CURSER:
CALL CIEAR$SCREEN;
CALL MJV$(lJRSER; .
CALL ~:
:

1* ESC A *1
1* ESC B *1
1* ESC C *1
1* ESC 0 *1
1* ESC E *1
1* ESC F *1

CALL ERASE$FlO4$CURSERTOENDOFSCREm:

II. ESC H *1

1* ESC J *1
1* ESC K *1 CALL BLINE:

ENDI
END:
ES=O: 1* DISABLE SERIAL INl'ERRJPl'S WHILE MJ\TIN3 FIFU *1

10-116

AP-223

PL/M-51 CXJoIPILER CRro:Ill'RJILER

280 4
281 4
282 ,4
283 3
284 3
285 3
286 3
287 4
288 4
289 4
290 4
291 3
292 2

'293 3
294 4
295 4
296 4
297 4
298 4
299 4
300 4
301 4
302 3
303 4
304 4
305 4
306 3
307 3
308 3
309 3
310 2
311 3
312 3
313 4
314 4
315 4
316 3
317 3
318 3
319 2
320 2
321 2

00 1=0 ro (FIRJ-2);
SERIAL(I)=SERlAL(1+2);

'END;
FlFO=FIRJ-.2;
ES=];NSP;
~ID$RECEPTION=l;
IF FIFO=O THEN
00;

SERIAL$INT=O;
<DID];NJ)$I)E(:1l'HER;

'END;
];NO;

/* MJ\IE FIFO * /

/* ENABLE SERIAL INl'ERIIJPl'S * /

IF (SERIAL(O» 07H) AND (SERIAL(O)~om) THEN
00;

00 CASE (SERIAL(O) -OSH);
CALL LEF'l'$OJRSER; /* CTL H * /
;
CALL LINE$FEED;
;
CALL CLEAR$SCREBN;
CALL CARRIl\GE$REl'URN;

];NO;

ES=O;
00 1=0 ro (FIro-1);

SERIAL(I)=SERlAL (1+1);
'END;
FIFO=FIFO-1;
ES=];NSP;
~ID$RECEPTION=l;

];NO;

IF ~D$RECEPTION=O THEN
00;

ES=O;
00 1=0 ro (FIFO-1) I

SERIAL (I)=SERlAL (1+1) ;.
'END;
FIFO=FIFO-1;
ES=];NSP;

'END;
IF FIFO=O THEN

SERIAL$INT-O;
'END$DEX:IPIIER:
'END DEJ:IPIIER;

/* CTL J */

/* CTL L */
/* CTL M */

/* DISABLE SERIAL INTERRJP1'S WlilLE MJIII!G FIFO */

/* MJ\IE FIFO */

/* ENABLE SERIAL INl'ERIIJPl'S */

/* IF CIIARIICTER IS IJNlIID)GNJZED THEN * /
/* TRASH IT * /

10-117

AP-223

PL/M-51 CXJ.\PILER CRreX:NriPLLER

322 1

323 2
324 3
325 4
326 4
327 3
328 3
329 3
330 2

331 3
332 3
333 3
334 3
335 1

336 1

337 2
338 3
339 3
340 3
341 3
342 3
343 3
344 2

345 3
346 4
347 4
348 4
349 5
350 5
351 5
352 5
353 '4
354 3

355 4
356 4
357 4
358 4
359 4
360 4
361 3
362 1

1* PKJCm)RE TRAN9oIIT- TIllS PRlCEIlJRE UXl{S M TIlE CLEAR. ro SEND PIN roR AN ACTIVE
1& SIGNI\L. CNCE TIlE MAIN CQoUlUlER SIGNIILS TIlE 8051 TIlE AOCII CIIARI'Cl'ER IS PUT
INn> TIlE SERIAL OORT. *1

TRAN9oIIT:
PRlCEIlJRE;
IF LOCAL$LINE =1 THEN
00;

00 WHILE (CLEAR.roSlH>=1) OR (TRAN9o\IT$INT=0);
mo;
SSUF=AS::1I$KRi ;
TR!\I&UT$INT=O;

mo;
Eta
00;

SERIAL(FIro)=ASCII~;
FIFOo=FIrot-11
SERIAL$INT=11

mo;
mo TR!\I&UT I

1* PRlCEIlJRE AU'IO$REPFAT: THIS PRlCEIlJRE WILL PERFOlfoI AN AUro REPEAT FUlCl'IOO
AFTER A FIXED DELAY PERlOO *1

AU'IO$REPEAT :
PRlCEIlJRE ;
IF ~=1 THEN
00;

TRAN9oIIT$TOOOtE=0;
TR!\I&UT$O:XJN1'=OD<IiI
CALL TRAN9o\IT1
NEW$KEr=0,

mol
ELSE
00;

IF TRAN9o\IT$COONl' <> OOB TIIEN

1* FIRS'!' CllAAACTER *1

00;
TRAN9o\IT$COONl'='l'RAN9o\IT$COONTt-1;
IF TRAN9o\IT$OlJN'l'ooOFFH THEN l*r:I8l.N. BImiIiEIiI FIRS'!' CIIARI'Cl'ER AND TIlE sa:nm *1
001

CALL TRAN9o\IT; I*sa:nm CIIARI'Cl'ER *1
TR!\I&UT$O:XJN1'=OO,

. mol
mol
Eta
00;

aJRSER$OO"'ll
aJRSER$O:XJN1'=OI
IF TRAN9o\IT$TOOOtE m 1 THEN 1* 2 VERT FRI\MES IIE'.M;EN 3H> ro Nl'H CIIAAACTER *1

CALL TR!\I&UT I 1* 3R:l '1'IIlO.lGI Nl'H CIIARI'Cl'ER *1
TRAN9o\IT$TOOOtE= NC71' TRAN9o\IT$TOOOtE I

mol
mol
mo AU'IO$REPFAT;

10-118

AP-223

PL/M-Sl <D!PlLER

363 1

364 2
365 2

366 1
367 1
368 1
369 1
370 1
371 1
372 1
373 1
374 1
375 1
376 1
377 1

3~8 2
379 2
380 2

381 1
382 1
383 1
384 1

385 1
386 1
387 1

388 1

389 1

/******************** START MAIN PHOGRNM ***************************/
/* BmIN Ri rorrIN;; ASCII CODE FUR BLAIi< IN THE DISPLAY RJ>.Mr * /

INIT:
00 L=O ro 7CFllr

DISPLIIY$RJ>.M(L}=20Hr
ENDr

/* INITIALIZE roINl'ERS,' RJ>.M BITS, Ell'C. * /

ESC$SEQ=Or
SCAN$INT=OI
SERIAL$INT=OI
FlFU=OI
ClJRSER$CCUNr=01
ru;=01
llATA$TEiMINAL$RFAI7i=11
'lO:N=05Hl
LlNEO=1800H1
RASTER=180OHI
DISPLIIY$RJ>.M$roINTER=OOOOHI
TRAN94IT$INT=11

$IF SWl

00 1=0 ro 71
IAS'l'~(I)=OOHI

ENDI

VALI~=OI
IAS'l'$SHIFl'~=11
IAS'l'$(l)NI'R)L~=1r
IAS'l'CAPUXl(=11
$ENDIF

$IF SW2
1CVFLG=01
~=01
RiFIN=OI
KBDINT=OI
ERR:>R=01
$ENDIF

1* INITIALIZE THE 8276 */

aMoIl\ND$AOORESS=OOHI
PARl\MEJI'ER$AOORESS=4FHl
PAlWIF!l'ER$AOORESS=58Hl

PAlWIF!l'ER$AOORESS=89Hr

PAlWIF!l'ER$AOORESS=OF9HI

/* RESEll'THE 8276 */
/* NOR-IAL ImS, 80 CllARJ\C'IE1V1m * /
/* 2 1m OOlNl'S PER VERrICAL RErRl\CE

25 RJWS PER FRllME' * /
/* LINE 9 IS THE UNDERLINE rosITIOO

10 LINES PER 1m * /
/* 0FFSEl' LINE CXJUNrER, NCti-TRANSPARENr FIELD roTRIBUTE

10-119

AP·223

PL/M-51 CXJ.IPILER CRl'Cl::NI'R)LLER

390 1

391 1
392 1
393 1
394 1
395 1

396 1
397 1

398 1
399 1
400 1

401 1
402 1

403 1

404 1
405 1
406 2
407 2
408 2
409 2
410 2
411 2
412 2
413 1
414 2
415 2
416 3
417 3
418 3
419 3
420 2

421 2
422 2

423 2
424 2
425 2
426 2

'1'EMP=O:Mo1AND$AOORESS,

<lJRSER$CXlIalN=OOH,
ClJRSER$fOW=OOH,
ClJRSER$())L=OOH,
CALL LOI\D$CURSER,
'1'EMP=O:Mo1ANDSAOORESS,

CXMWID$AOORESS=OEOH,
'1'EMP=O:Mo1ANDAOORESS,

a:MWID$AOORESS=23H,
CXMoWID$AOORESS=OAOH,
'1'EMP=O:Mo1ANDRESS,

NJi-BLIM<ING UNDERLINE aJRSER, 20 CllARl\CTER COONl'S PER
OORIZCNTAL REll'AACE * /

/* PREllEll' 8276 <XXlNl'ERS * /

/* srARr DIS~ */
/* ENABLE INl'ERRlPrS * /

/* SEll' UP INl'ERRlPrS AND PRIORITIES, * /

$IF SWl
IP=IOH, /* SERIAL roRl' HAS HIGHEST PRIORI'lY * /
IE=85H, /* ENABLE 8051 EKTERW. INrERlVPl'S * /
$ENDIF

$IF SW2
IP=IOH, /* SERIAL roRl' HAS HIGHEST PRIORI'lY * /
IE=87H, /* ENABLE TIMERO IN1'ERRJPl'* /
'lKlD=05H; /* TIMER, 0 =£\IliNl' CCXJNTER * /
TLO=OFFH;
THO=OFFH; /* INITIALIZE CCXJNTER TO FFFHI*/
TRO=I;
$ENDIF

/* PRJCEilJRE SCANNER: THIS PRJCEilJRE OCANS THE KEYEOMD AND DEll'EIfoIINES IF A
SINGIE VALID KEY HAS BEI:'N ruSHED. IF TIllE THEN THE AS:II ~IVALEN1'

WILL BE TRAN9UTl'ED TO THE oosr a::MRJTER. * /

SCANNER:
EA=I,
DM'A$TEImNAL$REAI:7i=O,
IF aJRSER$COONr=lHi THEN /* PR:lGIWtW!LE aJRSER BLIM< * /
00,

aJRSER$Qi~ aJRSER$OO,
aJRSER$COONr=OO,
IF aJRSER$Qi=O THEN

<lJRSER$CXlL=7FH;
CALL IDNl$aJRSER,

END,
IF LIC<>IJXAL$LINE THEN /* IF IJXAL/LINE HAS CHAtQD srAmS * /
00,

IF IJXAL$L1NE=0 THEN
00,

ENSP=O,
ES=O;

END;
ELSE

CALL CIIB:K$B!IUD$RATE;
LIC=LOCAL$LINE;

END;
$IF SWl
00 WHILE OCAN$INT=O; /* WAIT UNITL VERl'ICAL REll'AACE BEFORE * /

IF SERIAL$INT=1 THEN /* SCANNItI; TIlE KJ;Y8'JAl1D* /
CALL OEX:IPIIER;

END;

10-120

AP·223

PL,IM-51 <XMPILER CRl'<ll'ITR>LLER

427 1
428 1

429 1
430 1

431 2
432 3
433 3
434 3
435 4
436 4
437 4
438 3
439 4
440 4
441 4
442 3
443 4
444 4
445 5
446 5
447 5
448 5
449 4
450 5
451 5
452 5
453 5
454 4

455 5
456 5
457 5

458 6
459 6
460 6

461 7
,.62 7
463 7
464 7
465 8
466 8
467 8
468 8

469 8
470 7
471 6
472 5
473 5
474 5
475 5
476 5
477 5
478 4
479 3

480 4
481 4
482 4
483 3
484 2

CALL RFADER;
IF VALI~ =1 AND SAME=1 AND (LASl'$SIUFr$KE't=SHIFr$KE\') AND

(LASl'CAPLOCK~$LOCK) AND (LASl'$O)NTR)L$KE\'=<lNI'R>L$KE't) THEN
CALL AIJ'ro$REPFAT;

ELSE
00;

IF KE'tO=O AND SAME=O THEN
00;

TEMP =0;
K=O;
00 WHILE LASl'$KE\' (K)=O;

K=K+l; -
END;
TEMP=LASl'$KE\' (K) ;
00 I=(K+l) ro 7;

TEMP='I'aoIPtLASl'$KE\' (I) ;
END;
IF TEMP=LASl'$KE\' (K) '!HEN
00;

J=O;
00 WHILE (TEMP AND OlH)=O;
~ (TEMP,I);
J=J+l;

END;
IF TEMP > 1 '!HEN
00;

VALID$I<E{=O,
NEW$KJ;Y=O;

END;
ELSE
00;

IF cx:NJ.'R)L$KE'{=0 '!HEN
AOCII$KE'{= (Iai$SCJ\N (K).KE't (J)) AND lFH;

ELSE
00;

IF S1UFr$KE'{-O '!HEN
AOCII$KE'{~ (K+08H).KE't (J),

ELSE
00;

AOCII$KE'{-Iai$SCJ\N (K).KE't (J);
IF (CAP$LOCK=O) AND (AOCII$KE\'> 6011) AND (AOCII$KE'{<7BH) '!HEN

AOCII$KE'{"IIISCII$KE'{ - 2011;
IF LLC=O '!HEN
00;

IF AOCII$KE'{=lBH '!HEN
ESC$SEtFl;

ELSE
ESC$SEtFO;

END;
END;

END;
LASl'$SIUFr$KE\' =SHIFr$KE'{ ;
LASl'CAPLOCK=CAP$LOCK ;
LASl'$O)NTR)L$KE't=<XNl'R>L$KE'{ ;
VALID$KE'{=I;
NEW$KE't= 1;

END;
END;
ELSE
00;

VALID$KE\'=O;
NEW$KJ;Y =0;

END;
END;

END;

$ENDIF

10-121

PL/M-51 a:MPILER CRl'<XNl'lQLLER

$~

$IF SW2
IF SERIAL$INT=l THEN

CALL OO::IPllER1
IF KBDINl' =1 THEN
001

IF ERRJR =0 THEN
001

~P·223

lISCII$KE'i=ISl'$KE'i (1) 1
Nao/$KR{ =11
CALL l\l1ro$REPFAT 1
KBDINl'=O;

485 1
486 1

END;
ERRJR=O;
KBDINT=O;
END;
$ENDIF

M:QJIE INroH1ATIOO:
aJDE SIZE
coosrANl' SIZE
DIREI:T VARIABLE SIZE
INDIREI:T VARIABLE SIZE
BIT SIZE
BIT-AOORESSABLE SIZE
AllXILll\R{ VARIABLE SIZE
MAXDIlM STPCK SIZE
REGISTER-BANK (S) USED:
1056 LINES RENl
o ProGRI\M ERRJR(S)

END OF PL/M-51 aJoIPILATIOO

(STATIC+OVERLAYABIE)
= 08E6H 22780
= 008CH 128D

2I:H+008 4501- OD
OOH!-OCH ~ OD
108+008 160+ OD
OOH!-OOH ~ 00

• OOOCH OD
= OOOCH 120

o

10-122

AP·223

I~I~'!I ~~S·51 ~A~Q~ AS~E'BLE~ V2.1
O~J~C' MOu~LE PLA~Eu I~ :fl:CHTAS~.UBJ
A~S~~~L~Q I~VuK~O 811 AS_51 IF1:~~rA~M.SHC

L.YC USJ U~~

I
e
.s
'I
~

b

7
II
'I

~OuR~E

I'UIILlC BLAhK
PUIIL1C 8LII\E
I'UIlLlC FILL.

H
II
Ie
IS
14
I)

II>
17
I~

fXIR~ uAIA CLlI\Eu,HA~T~R,PulhT,StR1AL,fItO,CUR~E~,~OUNT,L.)
"XTRh dIT lS~R1Nl,~SI,;S~Q,THN1NT,~CAN)

000.5 1I0CO

OUu 1I0cA

OU2.s 1I0eD

OUi!) ~OuO
o IIi! I CO~O
OU21i COUO
01120;1 USUOI/O
Oui!t 05001/0
Ou31 "/8 U I
01l3.s ti!
0113'1 IISIIO
0030 1J2110
01136 uOuO
OU3A uOtO
01l3e UOOO
OU3~ Ji?

003~ eouo
Oull1 COtO
OUH 1;0112
DUll!> COli!
OuII7 1 HA
OUIl'l t,,01l3
OUIlIl uOll2
Oullll uOtO
OUlif "OuO
Ou51 32 .

F
F

F
F

l'i I
20
21
2C
j!J

2/1
2:i
2b
21
211
i!Ii vEkT;
3u
31
!il
H
3'1
3)
30
37
311
H
/III
/I I
lie
Qj
Q4 IIU~ f~~;

4~

lib
47
1111
II~

511

51
Se
50S

Cst.G AICu311)
lIJMP VEHT

fXTRiI ccue CuEIA~H)
CSfG AHu811)
LJMP UEIAC"

eSfG A TC 0 1311)
UMP dUfFf.R

CS~G ArcUHM)
IiJI~P Hh8UF

CSfG

PU:'H
PUS,",
PUS"
MOV
MaY
MOV
MOVX
INC
SETS
I'OP
POP
POP
"ErI

I'USH
I'USI<
I'U~I<
I'US ..
IICALL.
I'OP
1'01'

POI'
1'01'
~EII

I'SII
Ace
0011
"UTtR,LiNtO
"ASTERt1,L,N~Ot1
1(0,*0111
A,ciR~
eCjj~r
SCA~
UOh
ACI.
PS~

10-123

,REStT RA9TEH TO L1NtO AND SCA~ ~EYBUAHD

,NEEUEU IF D~CUDtD KEY~OARU IS U~Eu

,FILL a276 RUW BuFfEH

,STICK StRIAL INFOHMATICN INTO THE FIFU

IPUSH HEw UStD BY I'LM51

,REINITIALIZt "A~TfR TU LINEO

leLR 8c7~ INTEHRUPI ~LAG

,INCh CUHSER CUUNT RtG1STEH
IFDR DEBDUNCt HOuTINE
,PDP flEGlSTEHS

;PUSH ALL HEb UStO BY PL~51 COuE

IFILL ti216 RUW 8uFrEH
,POP REG IS I EllS

AP-223

"!;S-Sl ,d"R" AS:.E~8L.f~ CWTASM

SVM~OL. I_liLt L.hT!Nb

N • II E T Y P E V A L U E A T T R 1 8 L T E 5

ACC, · 0 Aue .. OuEu!' A
IlLAI\K. c Aue" oua::.!' A PU8
IlLII~£. C AUOl< OUAIIH A' PUB
BUFfE" C AIIO" OU!I'H A
CHECK. C AUO .. OlAJH A
CUNll. C "uO" OullllH A
CullT2 • C Al.ltl< ounl' A
CUU .. T. 0 A 1.10 " E~T
CuRli!I< · · 0 AUO" EXT
OIlOI~E • e AuOI< OuFIIH A
OMA. · C AuOl< OuFAH A
OMAO"'I: C AIIO .. O,BdH A
DONI:, · e AuO" OlSQH A
OPH. · · · 0 AUCK ouelM A
OPL. · a ADDI< OuecH A
UGHTT C AuOH 01A1H A
ESCliEw 8 AIlOH EXT
F1Fli · 0 AUC .. ExT
F lFTY. C AuDH 016:1'" A
FILL · e AutH OOCOH A PUB
FuRTY • e Aile\(0151101 A
GUeAe~ C AIICI< OuaQH A
L. . . 0 AUOI< EXT
LINt.O. 0 AIlDH EXT
NUTYE T e AIlOl< OUHH A
DvEH • e AIlOI< Ou!S'lH A
D~EIH • C AuOR Ou711H A
Plllr.T. D AuOl< EXT
Pfili. · a AuO .. OIlOIlH A
RASIE .. · · a AIlCI< EXT
Sbllf · 0 Aile ... 01l9'1H A
S!;Ar. • B AuCk EXT
SI;RI:IUf e AUOl< OUSeH A
St.RUL ° AUCI< EXT
St-IIlN! • · !I ADOH EXT
St. VNTY · · e AIIDI< OleUM A
SHIV. e AUel< 017'1H A
il:N. · e AUOl< 01 f:lM A
THltcTY C AuDK 01!IIH A
TH"'l"" B A"OH EAT
hEr." c AIIOl< 01i?~H A
VI:,RI · C AuOl< OU2~H A

REGlSTE" IIAhKlS) uStC: U

lSSEIII:IL Y !;DMPLEre, r.c E~RUA~ ~OuNu

10-124

AP-223

Me8-51 IIA"Ru AS:.EI"R~e" CHTAS",

lUC OBJ llt.~ lIOuRI:E

511
OUSe 309'1u4 51 I:iEftBuFI IN. 1I~~I',CvEH ,H lRANlIMlT BiT IItolT au THh C14fC4\ HECElVf.
Ou,S, Cl9'1 So (;lH 11'191- ,ClA THA~SMI:'S~O~ !NfEHA~PT FLAG
0<151 ulllO F 5~ /jEre 1 AI\ 1.,1 ;UTii TRAllli Ii'll fOw PLM51 :tUTus CHECK
Ou59 i/O"'!e8 611 uveR' JB <f!",,,CIjA,,K , IF HI NOT St.T GI/BACII
Oti5e LOOl 61 I'U:.H III
Oust. A'I9'1 6c MO~ "l,hul' ,Rt.AU IIBuF
OIl&U Ci!98 U CLH 04111' ,CLEAR III DlT
Oubi! LOIIO 6~ PUSH P811 ,PUSh NEIiIliTI:RlI ullt.e BY I'LM51
0064 COt.O 6!i PLJ:lH Ace
0060 COuo 6b PUSH 00"
0060 LlIIO F 61 eLH t.!CSt.Q ,CLR E~C a~QUENCt. 'LAG
OllbA 14110 F 61:1 MOv A,UtR1,AL ,GeT StRIAL I'IfO RAM STAHT LUCATION

,ou&e ~500 F 69 ADu A,I'IFC ,AND FI~u hO~ rAN INTO THE FIFu liE ARE
Ou&E F8 111 101011 1<0,. ,PuT IT INTO RII
OU&f' t.q 11 MOV A,Hl
0111\1 4,;li1 7e ColH uE711 ,CLR Bn 7 OF Ace
ou1a F6 7J MOV IiRU,A ,PUT DATA IN FIFU
01l7l bG1BIli! 7'1 CJNE A,UDH,OvEiH ,IF DATA IS NOT A eac IIET THEN GO UVf.R
007& DlOO F 1!i :lEU UCUQ ,St.T ESC atQUENCt. fLAG
OU7et u5uO F 16 OVt.Rll INC FIft ,MOV F1FC TO N~xT ~OCATION
OulA ui!UO F 7(:lEre IiEHI4'<T ,SET 8ERIA~ INT DIT fOH P~M51 5TA,U8 CHECK
0111' uOIiO 111 POP 1I0H ,PIlP Rf.GU1EWS
Oll1E jiOtO H POP AC,\;
01l8u DOUO au POI' PU
OUIIi! LlOUI 81 POP 0111
Ou84 l2 80l 1i0dACKJ REU

83
Ou8~ COIlO 811 DLANIIJ PUIIH PSI'I ,PUSH WEi USED 8' f'LMSl
0081 CO.:O "!i PUSI4 'C~
Oua.. COlli! 811 PUS .. DPL
0081:1 COo! 81 PUSH I)PH
(H,8u COUO 811 PUSH 0011
01l8f 851101li! F 89 MOV IIPL,LIhEII+l ,GeT LUlU INFU
OO'lc 85UOb3 F 'IV MOV IIPII,LINEO ,ANO PUT IT INTO OPTW
OU'l!! 1850 91 fwlOV KO,.liOH ,NUMIIER OF C"AkACT~RS IN A -LINi
00'17 III~O 'I~ I~OTYETI MOV A,UIII' ,ASCII SPACE CHAWACTER
OU'l'l fO 93 MOVX .CPTR," ,MOV Tg DISPLAY HAM
Ou'lA A3 '14 INC IIPTR ,INCH TO ~~Xl uI:lPLAY HAM LOCATION
OU'l1l u8rA 'I, OJNZ HO,IIUlYEI ,If ALL 5014 LOCATIUNII ARE NOT fILLED

'III ,Gil 110 MORE
ou'lu uOUO '11 POP UOII ,POP RfGUlEKS
OulIF 00113 'III POP liP II
OUAl uOlli! '19 POP IIPL
OuAJ 1I0t.0 lOU POP ACC
OuA~ uOuo 101 POP Ph
OuA7 ,,2 10e HET

103 +1 'EJECT

10-125

Ap-223

MI;S-51 MAI;Ru AS;;EP BLE .. eHlAS",

Lue uBJ L1M. ~OURLE

IOq
OIlACI I;OUO 10~ tlUNt.: i>U:'M I"S~ ,PuSH kEijlST~R:' US~O BY PLM51
OUAA "O~O lOb PU::i~ ,.CL
'OIlAI; .,OCl2 101 i>Ul;i1' "PI.
OOAt; 1..01l~ lOCI I'U::i1' uF"
OUBI/ COuo 109 PU:'M uOtl
00B2 115vOll3 F 11v MOV uPH.I'C!NI ,GI:T cuRHE~T 01SPLAY RAM LUCAT10~
OUBo; 11511Q1I2 F 111 MO~ IIPL.I"CH'I+1
OIlBII q3C1310 11e URL IiP~.UuH ,SI:T BIT, l~ tOH hAM AOuRI:SS uECOulhG
Ol/fld ASiiO F lU MOv "O.C"R~EH ,GH C~A~Ek COLUMN I~FO 10 T~LL HO~

.\lq ,FAR IhTO THI: HO~ YO~ ARE
OuBu 1420 1l~ 1;0hTli MOV A • .cUM fASCII S~A~E CHAriACTt.R
OuB~ fO ill> MO~X .O~TH.A ,MOV Tu UISPLAY HAM
Qvev A3 111 lNe IlPIR ,INCH TO h~Xl ul~PLAY HAM LOCATluh
OOCI 118 1111 IN~ ~O
OUCe tl8:JOF8 11'1 CJNE HO •• SOH.COI~T1 ,IF NOT AT THE EI~D Ot TMt. LII.E

1211 , CONTlNUE
0llC5 1.I0vO 121 POi> 1I0H ,PUP At:GUlEHS
0llC1 IIOCl3 122 POi> I.IPI1
OuC9 uOCl2 12J i>OP uPL
OUCIl 1.I0~O 12q .. Oi> ACC
OuCu 1.I0UO Ii!:' POP PSi>
OIlCF e!i! 1211 HET

121
OUOU COUO 12d FILL: PUS U ,P~SH HEGISTI:R~ USI:D BY PLM5l
OuDe! 1.0~0 129 PU:;~ ACC
000'1 (;0112 1311 i>UI:iM UPL
OUDo COS3 131 I'USM OPH
011011 COIIO 132 PU5M 00.,
OUDA C3 13J ClM C
OUOIl 05(/0113 F 13'1 MO~ IiP.,.L ,GET BI:GUH,lhG O~ Ll~E RAM LOC_TJDN
OOOf 11500112 F 13~ MOV UPL.L+l ,CALI.ULATEu ~Y PLMSl
OuEI q311310 130 URL UP.,.UuH ,SET BIT 15 fOH UISPLAY HAM ADuRt.8Ii uECOUE
OUE4 18qF 137 MOV HO.UFH ,SET UP CO~NTEH FOI(SOH LOCATluNS
OUEIl A3 1311 INC IIPTR ,Gil PAST THE Of1H
OUEl 14eO lH CONTe! I MOV A •• 2UIi ,ASCII SPACE CHA~ACT~R
OUE'i fO 140 I'IO~X .OPTH.A ,MUVE 10 DlS~LAY RAM
OoEA A3 141 INI. liPT" ,INCH lO NEXT Ull:iPLAY HAM LOCATIUN
OuEII !JSrA 14e UJNZ' HO,CUt.H! ,If ALL H L~CAno ... s HAVE NOT IIEEN FILLEu

14J ,THEN COI\T1NUE
OuEU 1.I0UO 14q POP UOH ,PUP RI:GlSTEHS
OuE~ uO<l3 14~ POP OPH
OIlFI UOIli! 141> I'OP LlPL
OuFJ uO~o 141 PO .. AC,,"
OuF~ UOuo 1411 POP PSI'<
OuF? a 14'1 HEr

1511
151
,Se +1 iIIEJEI.T

10-126

Ap·223

"~S·51 MA~R ... AS~haL.fk C"TA5~,

LuC uP J U/o,e ~OuR~E

ISJ
15~ ,tt.+.+ ••• +t ••••••••••••
IS~ ITHI~ ~OuTI~t ~C~E~ UJ~PL.A' ~AM uATA T~ HO~ ~UfFtR or ijl16
150 ;+++++++++++++++++++++++++++++++++.+++++++++++ •• ++++++++t.t •••••••••
1'5/

OuFo ~ldB i51l 1.I0"NI:.I flJMP Ii~ACI\E
15'1

OuF. !!SUO!!3 F 16u LiMAI MOV ",PII."A:JTc.R ;LliAII .nR PuJI'th,A Hl(OlI ~YTE,
OuFLi o5uObi! F H'i MOV ~FL."ASh.Rt1 ILUAU .FtH Pllli\HR LU\'4 11Th,'
OIOv e.O He: MOVX A ... Ol'lll
0101 A3 16's LNC ~FTR
OIOc "Oo3~ 3 I&~ JB IIUI- ,'CIIO"E ' lIt INll HIGH, TI1EI\ LIMA U aVE"
010:. 1:.0 H:' I'IOV)(A ... Ol'h
0101> A3 1611 LNC ,uP IA
0107 1:.0 16., MOVX A ... Cl'l"
010b A3 1&0 INC LIP IQ "
010'11 1:.0 169 MOVX A ... e"ll(
OIOA A3 nu IN(,; liP I,R
OIOb 1:.0 171 MOVX A ... Cl'l~
010C A3 17.: LNC uP] R
0101.1 1:.0 173 MOVX A ... Of'll(
0101:. A3 17'1 INC UP Hi
o 1 O~ <'0 17!:> MOVX A ... CI'TI(
OUu A3 1711 INC IIPIR
0111 e.0 i71 MOVX A ,'.01'111
011e A3 17d INC 'uPIR
011j 1:.0 17~ MOVX A, .. OPTK
011'1 A3 18Q INC uP IR '
011~ 1;.0 1~1 TENI MOVX A,.Ol'll(
0110 A3 l@o! INC liP IA '
011., 1;.0 183 MOVX A •• Ol'll(
01111 113 18'1 LNC uPTR
0119 1;.0 18~ I'IOVX A; .. OPTII
OllA A3 18b IN~ IIPIR
01111 e.O lR7 MOVX A, .. OI'lI'(
011~ A3 1811 IN~ IIPIR
011U to 18'1 MOVX A, .. OPh
Ollt 1\3 l'lU INC "FIR
011F ~O I'll MOVX A, .. OP1H
01211 A3 .'1 .. INC UPIR
0121 ",0 I'IJ MOVX A, .. Ot"K
01U A3 l'I .. IN' IIP1~
012~ t,0 ~'1:i MOVX A ... Ol'lH
012~ 113 1'10 lNC IIF 11<
012!> 1;0 .'17 MOVX A, .. OI'TIC
0120 A3 1qll I'" ",PI"
0121 100 1'19 MOVX A ... el'T"
01211 A3 ~OU INC IIPI~
012'1 1::0 ~O1 IWI:.N1YI MOVX A, "\l,n K
OIU A3 ~Oil LN' ~P1R
01211 EO ':O,s MOVX A ... CP1"
0121. A~ ':0'1 INL . LIP TR'
Ol2\) 1:.0 ciO!> I'IOVX A ... Ct'TIC
012l A3 eOo LNC IIPl"
012~ 1:.0 cOl MOVX A, .. CI'Tw

10-127

AP-223

I'I.S-51 ~tA\.lIu AS:iEIY.BLE .. C",USt,

LuC vl!J L!~~ :,OvIlI.E

013U A3 .:011 lNI. IIF1~
0131 toO' .:0'1 MOVX A ... Cl'l"
OUi! A3 .:U lNI. "PIR
01!J ~O "I! ,..OVX A ... OPh
o 1 !It A3 ':\e lNI. "PIA
013~ toO "1~ MOVX 11 ... 0;-1"
013t. 113 "lq I~C IIP1~

0131 ~O ,,1~ MOVX A ... Cl'l"
01111 Al ':'\D lNC 'III' Iii
011<; c:0 .:11 MOVX A ... Cl'l"
~13A ('3 ,,1/1 lNC uPIIi
Olla 1:0 ct .. MOvX A ... CPh
013C A3 Ci!U IN' uPIR
OULl toO .:21 THIR1YI MOVX A ... Ot'h
OUto A3 .:u INC ",P1R
OUF "-0 c~J MOVX 11 ... 01'1",
0111U A3 .:24 lNC IIPlR
o !Ill 1:0 .:~~ MDVX A ... CPT"
0111.: Al ~~b INC UPTR
0111j c:0 ':21 MOVX A ... OI'T"
011141 ,,1 .:ael lNIl; "'PTR
0111; 1:0 .:2'1 MOVJC, A ... CP1",
,0111b A! illll INC IIP111
01111 1:0 ':3, MOYX A •• OP1"
011111 A3 ':l~ INC UPTR
014'1 toO c3J MOVX A.":OI'T"
0111A Al .:311 INC uP11I
011111 1:0 c3!i MOVX A' •• OPT"
Ollie A3 ':3D INC uplR
0111U 1'.0 c3" MOVX A. "OPTIC
0111t ,,1 ,,311 INC IiPJA
0111~ 1:0 ':39 MOVX A,.Ol'l ..
015U A3 ':11\1 INC UPTII
0151 ~O ~lIl fO"'TYI MO~X A,.O .. ll<
015.: A3 ':lIet INC liP Iii
015l e.0 "IIJ MDVX A,.OI'Toi
0154 ,,3 e/l" INC UP1R
015:; e.0 ell:> MOVX A ... OPTH
01511 Al ':lIb INC UPIR
~151 toO ,,117 MOVX A, .. C .. T~
01511 Al ,,1111 lNC Iip]R
015'1 to ':11'1 MOVl(A ... OI' 11<
015A ,,3 ,,511 lNC UPTR
015D toO ':51 MOVX A •• 01'1"
0151. A3 e5': INC IiPIR
01511 1:0 ,,5J "'OVX A •• OrT"
015t ,,3 ':5 .. 1"11. uPIR
015f e.O c5~ Mevx A,.OI"I<
01&U A3 .:511 INC IIPIR
01"1 1:0 .:51 MOVX A •• O .. ll<
01&': Al ,,51! U~C uPIR
01&j 1:.0 c59 rlOVX A ... C .. 11<
OU.II ,,3 ':6u I1>;C vPTR
011.:' t.O, ~61 ~UTY: MOVX A •• Ol'''''
01110 A3 efoe! INI. IIPIR

10-128

AP-223

"\oS-51 ~,A\oRU A5:,e"'~LE .. Cl(lASM

LvC U~J L!~~ :'OURLE

011./ ~O ~6j "'O~X A, .. O"l"
01,6~ ,,3 ~6" l~L IIFl"
016'; 1;0 ,,6:> Mev. A, .. Cl'll(
OH.A A~ ,,6b lNI. liP I';
OUa 1.0 11.67 MOVX A,,,CI"T,,
0161,; A3 e60 1"(; "FIR
01f1U ~O ,,6'(MOVX A, .. Ol'l"
016l 113 ,,7V INC UPI"
016~ 1;0 ,,71 \'IOVX A, .. Ct'ln
017U .3 c7e IN(; liPt~
0171 ~O e7~ MOVX A, .. Cl'l"
017e ,,3 ,,7~ INC uPlfi
017j 1:.0 ':75 MOVX A, .. Ct'TI(
01h A! e70 INC UPtR
017:> to ,,71 MOVX /\, .. Ol'lIC
0170 A3 ,,71! INI,; IiPt"
017i ~O c7'f "'OVX A, .. Ot'T"
01711 A3 o!8U IN(; uPIR
017'1 to ol81 ~IATYI MOVX A, .. Ot'TH '
017A A3 ,,8ol INC IIPIR
01711 t.0 "ej MOVX A,,,Ot'TH
0171. A3 o!84 INC IIPT" '
017U 1:.0 o!t'~ MOU A, .. OI'TN
Oln A3 c80 INI. UPIR
017f 1::0 eel MOVX A ,'"OPTIC
OlaV A3 e8ll INC IIPTR
0181 1:.0 <:8'1 MOVX A,AOt'TN
018e A3 ,,'IV IIIIC LIP /R
OHI,3 1;0 o!'!l MOVX .,AOl'lH
Olh A3 o!9c INC UPIR
018:' ~O c!'!.3 MOVX A,AOI'TH
0180 II! ,,'I" INC UPIR
0181 1;;0 cCJ~ MOVX A,.Ol'lH
01611 A3 c!CJo IN(; uP'R
0169 1;0 "CJI MOVX A,.OPTN
018A 43 "CJII INC UPlR
018a 1:.0 j!CJ'f MOYX .,.01'1H
018(; A3 30U IN(; .. PH
0181.1 to 301 liEvNfY I MOVX A, .. Ot'lN
0181:. A3 jOil INC uP'"
Olef 1;0 30.3 MOVX A,AOl'TIC
01'1V A3 030 .. 1NI,; IIPTR
01'11 EO JO) MOVX A, .. Oi'l"
01'1c A3 jOb INC IIP1R
01'1') ~o JOI MOVX A, .. Ot'lH
01'i141 A3 JOIl 1ll:C UP'R
01CJ!l toO J09 kOVX A, .. Dl'll1
~lljb A3 J10 INC liP]I.
01'17 lO J11 MO~X A, .. CPTH
01'111 A3 j1.: lNC IIPIA
0199 ~o JU MOVX A, .. Cl'lH
019A A3 J1q IN(; IIPI"
019b ~O Ji) M()~X A, .. CI'T"
01'1!;. A3 J1b !II:I,; UPI~

01'11.1 1;;0 :HI Mevx A, .. C~l"

10-129

AP-223

MLS-51 MALRy AS~hllL.EI< Cr;TA5~,

LUC uBJ UI'.t. :'OURI.E

o lilt. ,,3 jl~ IN' "~lR
0111f 1:.0 jl~ r.Ovx A, .. C~T"
OUU 43 J2u HI' "PIR
01.1 to j21 t.lbHTY: ~IOVX A,,,C~lH

OlAe! A3 .lU 11\1. "PtA
jj!j

01A" 1:.5113 Jii!'i I.Ht.CIII MOV A,UP"
01A~ ~41FijC Jii!~ (;JhE .. ,U~I1,DuNt
01AI> E.511ii! Jii!b ~IOY A,,,PI.
01AA d4UOij1 Jii!7 'JNE 1I,*OUOI1,uO"E
01AI) 15UO 18 F Jell MOV HAntR,.18n
o lfilU 7~QOijO F Jii!9 ~,Ov rlA~TI;I"l,*uOI1
01lIJ d J!ij tiEl

J!1
018 .. b5t13uO F He LlO"EI MOY hAlilI:.R,Dt'H
0187 /l5l1eijO F J31 MOV tdlJ1I;hl,OI"L
01BA Z2 J3<1 ICET

J3~
01811 (;3 HI> IlMAONEI CLH C
018C; 1;511ii! J37 MOV A,LlPi.
018~ r:!411F HII AOU A,.HD ,.lOU 79 Tu ~UFFt.R PUINTI:.R
01Cu F511ii! 331l MOV UPI., II ITO GI;;T Tu t.EXT D18Pi.AY L1Nf
OlCe :aOUF ~IIII IN!; LI't.CII 'IN THE Dl&PLAY MEMIJRY
OlC" u5t13 J41 INC "PH
OlCb 1I0U8 J4i! lUMP C~I:;Co\

J4j
JGII
JIIlI "'Nu

10-130

AP-223

I~I~-lI ~~S-51'~'~R~ 'S~E~8LEk ~2.1
C~J~Cl ~OuULE PLALf~ !~ l~l;KtY~D.ODJ
'~S~~DL~R I~V~K~~ A,; AS~51 ;Fll~ETBU.~R~

l.IIC u8J UH

c:
j

~

~
0
1
II
'i

IV
11
1~
1.)
111
15
111
1/
111
19
l!V
21
iii!
2l
illi
2~
ilo
il7
ilil
29
3\1
31
3~
H
311
3!1
31> t1

~OuR\.E

J* __ ••••• _.a_a*_. __ * •••• __ ._._ •• __ ._._._ ••• _ •• *_. ____ .a,*.,a,_a._aa __ • __ _
J****.- ••• *_.a._._ ••• _. __ • __ • __ •• _-_._._-.-_ •• *._--- •• a,*,*a",'*'t,a,.,.
Ja'*' "'_ ,._.- ~OrThA"E FuR RtAUI~G AN uhuE~OUEu • __ _
,._.. K~YDOAAU .-.-
J'-" a'a' J****.a*.aaa __ a •••••• _. ___ •• ___ .*._ .. __ . ___ ._ ___ .. _*._* __ * __ * ___ a._. ,*_* •• *"a"att*., •• *_* __ • __ * __ •• *.,.* ___ **_, _____ ._*,*.* __ * __ a _____ ._. __ , , ,

I

rHIS CuhlAI~1I lHt 1I0fT~AkE NtEUEu TO S~Ah AN UNDtCuO~D KtYIlOARU
THIS PWC'~A~ ~uSI liE LIN~EU TO THE ~Arh PRUGkAMS TU FUNCTION

H~~URY MA~ fO" HEADING ~EY ~OARO lU5ING ~UV~)

ADUR~S~ tCH ~EY ~OARD 10FFH TO 17FFH

I'UbLIC RUDEH
~XTAN uATA (LaTKEY)
tXTAN gIl lKtYu,~AMEJ

,-*-.-....... _-.. _.-.'_ _**. __ .-••••••• -._.- •••• _.**-•• _*_.- ... _-_._.
I· •
,- ~RtADE"·WOUT1N~· • ,. . ,_a.* ••• _ ••••• _ •••• _ ••••• _. __ .*._. __ •. _.*_. __ .. __ * ___ • __ .t ... ________ *_*
.eJE~!;T

AP-223

/oI,,5-S1 ",."I'/I,j AS:.HijLE .. Kt.Y"O

LuC uBJ Ll~L bOuR"E

! I
]11 ~N~E"OuEu_KEY8u."C St.G~E~T CUOt.
3'f "5tG U~DtCI,jD'O_K'YIICAR~
~II

~1

~"
OuO~ COuO 4,s ItEADt.RI I'USM I'h IPuSH "E~ uStD 8Y I'LMSI
OuOj! ~O,O 4~ PUSH AC"
OUO" COo2 4:1 I'U::;I' liFL
OUOI> ~O1l3 40 PUSI' UP"
OUOIl COuO H ,",USI' ~O~
OuOA caUl 411 I'UI:I" Uln
ouoe equ2 Q<j I'USI' ,~2H

01i0t. eou3 so I'Ul:iM U3H
OU10 'iOIOfF 51 MOV uPT~,UOI'FH ,INITIALIZ~ uPTR Tii KE'BUAHD

SC ,AIlDjjEU
Oul! l'IuO 53 MOV "I"OOH ,CLR ltRu COuNTE~
Ollt~ 1800 F S4I MOV teO,IIL5IKt,Y ,G~T K~YbOAA~ teAM POINTEH
0011 '/8ue 5!1 MOV 1<3,1I08H ,INITIALIZt LOUP CUUNTtR
Out'il L200 F 510 ClH KEYO ,INITIALIZt. PlMSI STATUS BITS
Outll li2110 F SI IiETS SA .. E
Oulu 0602 511 MORE; MOv 02",aiRO ,MUV LAST KEYBUAKO SCAN 10 Oi!M
Outl' f4 5'1 elH . ,.
O~?,O 93 6u Move ",,,".DPTH ,SCAN IIEY8uAHO
0021 Fa 61 CPL A ,INVtRT
Ou2c bOUS fie JZ lEHO ,IF bCAN ftAS ZtRU ~O INCHEMENT ZiRu COUNTEH
Ou24 tlSUU4 6.3 CJNE A. u2H, NTSAME ,CUMPAHE ~lTH LAST SCAN IF NOT THE S"~E

64 ,THEN eLR SAME B1T AND ~riITE NE~ INFURMAlIu~
65 ,Tu HAM

Ou27 11005 66 liJMP I;QUAL ,IF tQUA~ JMP UVt.R INCH OF URU COuNrEM
OU29 U501 61 lEHOI INC ult; ,INCH ZERO COUNTt.R
ou211 IISU21D !III CJNE A.02H,NTUME
ou2t. us 69 tQUALI INC kQ ,STEP TO Nt.Xl ~CAN RAM lUCATION
Ou2F u!i1l3 711 lNC liP'" ,Nt.XT KEYBOAHD AIlDRE~S
Ou31 UAt:A 71 UJNZ H3,I/URI; ,IF LOOP COUNT~R NOT 0, ~CAN AijAIN
oon 0'108011 71i CJNE kiII/OSh,bACK ,ChECK TC $EI; l' ALL 8 SCANS wHERE 0
OU36 U200 F il SETS liE 'to ,IF YES SET KEYO BIT
00311 C2UO F H (;LH U .. E

.01131. U003 75 IIACK; POP 0311
0.v3(' (lOU2 1b POP 02"· ,POP fll;lOlSTEHII
Ou3t. UOUI 77 POP 11111
OUIIO IIOUO 70 POP 00"
Ouai! uOC13 7'i POI' UPIl
OU44 110112 8U POP UPL

\ 011410 DO~O 81 POP Ace
OU411 UOIIO ~r! POP 1'811
OuliA ei! 8J HET

8'1
011411 H 8) NHAME; MO~ .. ~O.A ,IF ~CA~ ~AS NuT THE SAMt: THEN PUT NEW

80 ,SCAN INtC IwTU HAM
Ou4\. 1.:2uO F SI ClH ~.~,E ;eLR SAf't. all
OU4, 1I0liE 8c1 liJMP t.,uAL ;GU UO IIURt

89
qU
'11 tNu

10-132

AP-223

'" • ~ E v P ~ V A L U E A T T R I BUT [S

ALC. · 0 AUC" OUEII ... A
BAC", · C AuCk 01/34 ... " 5cG;L~O~CyOtO_KtYbOARU
01' · 0 Aue" oues ... A
OI'L. · 0 AuOW 01l8~14 A
EwUAL. C A"Ck o II 2 E'" ~, EtGaLhO~CuOtO_KtY~DAR"
KI;YI/ • e AUOW EXT
UiTl\EY · 0 AUCk ExT
"URI; · C AUOw OUluH R 8I;G;L~0~CUOtO_K~YDO.Ru
N1SA!'.t C Aue" OU40:1'" R StG;L~O~CUOtO_KEYbDARU
p;,~. · ., C AUCk Ol/OUH A
REAuEfc · C Autk OIiOUH R PUB SI;G;LNDtCUDtD_KEYbDARU
SAMt; · e Auek EXT
U~OtC~OtD_Kt'DDARU C StG OQ5UH ·/it;L;I.NII
ZtRIJ · · C AuOk Oll29H R StG;~~OtCuOEO_Kt'DOAR"

RtGlSTEIC IlAt,1((SJ USte I II

Al>St;/lIILr COMPLETE. t.C [kRuR:> fOuNu

10-133

AP-223

Dt.CIJOt

I~I~-.I ~~S-51 ~AL~~ ~S~E~BLEK v2.1
ObJtCT ~OUULE PL~L~~ .~ ,.IIOtCuOt.USJ
A~St~bLt~ I~VuKtD ell A5~51 ;F1:IJECOUE.S~C

LIIC UBJ Llt;t

c!
~
~

~
b
I
II
'I

IU
11
Ie:
1J
I~
IS
1b
11
111
1'1
20
21
U
i!~
241

J**************************.************.************* **._._---I-*t._ ••• _ •• _ •• __ • _____ • ___________ * ••• _ ••••• _._ •• _. __ *tt'tt.t.

J**** _._-
1**** ~OfT~A"E FUR DtCUOEO K~YIIOARu ****
Jt,t_ _a •• ,.***_ ••• _t.', __ * ____ *_*_ •••• _____ • _____ •• ,._._. ___ ._.***_tt.tt
; •• ****************** •• ********************************a* __ •• _.
I
I
I
I

1*
I·
1*

PUIIUC DtTACh
EXTR~ UAfA (LS1KtYJ
EXIRN dIT (~8~IhTJ

.·CtCuD~· INTERHUPT RUUTI~E FUR DECODED KEYIlDARuS *
* * 2:.

211 +1
1******·******************** •••• ·*.·**.******** ••• ···.***** •• *****
IiEJECT

10-134

AP-223

"'(.5-51 M.C~U AS:.E~·BLE" (ItC"O~

LIJC uBJ L~H ~OuR(.E

21
211 UEI..OuEu_KErBuAwC StG~E~' C\lOt
i''I wStG DtCUOtC_KtV~CA~u
3~

OuOu ~OuO !I uE U(.H: I'U:..., 1'5~ IPUSt1 HE~ISTt.R:'
OuOc ('Ooi! 3.: "U~H "PL IUI:>EU ~Y PLM:'l
OU04 .. Oel3 3.5 I'US'" .wF~

ouOt> CO"O 34 I'CSt< .AC~

OUOIi \lOoO~F 3~ Mev UF'I.,UOfFt1 I AUDICEI:>S FI/R Kt.VelOAHU
OU~b t a 30 CLH A
ouoe 93 31 MOVe A,,,~+OP'IC IFtTCH ASCII eYTt
OuOU ~5~0 F 311 MOv LSln'+I,A IM\lV T~ ~EMOHY TU elE Rt.AU bY PL~~l
ouOF Ui'!UO F !9 I:>ET8 I\BuI,.,' ILt.T PLIo!~l Kt~OI\ IHtoRt. 18 " BYTI:
OUl1 15dC~F 4U 1010'1 It<U,/fOrFt1 ISI:T C~U~Tt.R TU ~FFFH ~O INTI:RICUPT
Old .. 15d.r F 41 MOV TLU,iO~FH ION THE ~E~T FALLI,.,G EliGI: UF TU
OUI7 UOtO 4o! 1'01' Ace
OUl9 "Od3 4:$ 1'01' UPII IPUP RI:G181EH8
OUID uOeli'! 44 POP UPL
Oulu UOuO 4~ .. OP 1'811
OUIF ji! 4b KElI

47
all
49
5u
51 i:NU

10-135

AP·223

"~S·'31 ~,AI.RU AS:.E~PL.t" OeCuDL

SyIJbOL rAoLt I.IISTH .. "

" A " E T Y F E v A L U E • T 1 A I 8 V T E 5

ACC. · · 0 A~C" Ol/EUH
OtCuDeO_Kt.YIIOARIJ C 51:G OUi!yH Rt.L"""I I
Dt. TACH • · C AUO" OuOUH R PUB St.G"OI;C~OeO_KtYoOAAIJ
OPH. · · 0 A~O" OU8lH A
IlPL. · 0 .,,01< OU8o!H
~bOjNT I! A~OK EXT
L:.TIIEY · 0 A~D .. EAT
P;'I'o. · · • 0 A~CK' OIlOUIi A
THO. · · · . 0 A~DK OU81.H A
TlO. 0 A~O" OU8AH A

RI:.GLS rEI(tlANKU) USeOI II

A:.SI:.~'IILY COI~PlE IE, 1\0 EHRUAs fOuNIJ

10-136

AP-223

Ot TAC"

I~I~-lI ~~S-51 ~~~R~ ~S~~~B~Ek V2.1
ObJ~C' ~nuuLE PL~~E~ ~~ :tIIOtTACH.URJ
_~S~~~LtR I~VuKtD HI: AS~51 :FlluEIA~H.S~C

LUC uBJ Ll~t

1
~
j

~

~
b

I
b
'I

IV
11
It
U
14
IS
10
11
111
19 H

1*·---·--'·"-'-----*-------*----·_----*"""--"'-'-t**._.t ___ * ___ _ ;**.t __ t.t* __ *_ ;.,__ a.,_
,.... ~CtT~A"E FUR A S~R1AL UR D~TACHAIlLt ****
;* •• _ ~EY8UA"0 ****
J'*" tt" J**- _______ *t ___ ,_,_. __ ,_, __ • __ ,., ______ *_,_ ••• _* __ • __ ***. __ •• _,--_.-
J**. __ t_t ___ t ___ •• ___ ._. ___ •• ________ • ______ • __ • __ ._._***.t __ ,_,_ta __

, , , , ,
IH18 CU~IA!~~ lHt ~OfTwAHE NfEuEU TO PtRfDNM A SUFT_ARt ~E"IAL
PONT FUR StRIAL "'EYBIIANOS ANu CEUCHAeLE KtVIlOARU. THIll PRUGHAM MUST
liE L!N"'E~ 1e THE MAlhPRUGHA~S F~R UijE~ ,

UJEJ;T

10-137

LuC UIlJ

Oul!~

ouou
OUF'!
Ol/OU
OIlE~

2u
21
2r::
2,i
2~
i!~
2,.
iT
2a
;!'I
31/
31
3c
33
341
3)-
3b
37
3a
3'i
411
41
41/
4,5
4'1
II!:!
4b
47
411
49
511
51 +1

D~TACh

;,OURI.E

PUIIL!C OtTAC/'!
tXIR~ U~lA (LSIKtYJ
~XIR~ all LR~V~L~,bYNC,&YF1~J
EXIRI\ alT (Hl:lel"l,tR .. OH)

TIMEN II LOAD VALUE~ FO .. Ul~fERENT BAUO R.T~S
USED WITh UE1A~MABLE KEYaOARDS

1U1/0'
110
1511

STAHl 8U 01;. TEeT'
u.EHcM

$EJE~T

&TARTO
liTARTl
MEliSAGtO
MEliSAG~ 1

OFQOIlI;

10·138

110111;
IIfOlM
IIOUH
UEIIH

I4ESUGE 01: ftC f
OQFII)H
oEIIOIIH

,LUW BYTI: rON 150 ijAUO
,MIGh BYTE fUR 150 8AUU
,LUw BYTE FON 15U ijAUO
,HIGh eYTE FUR 150 BAUu

.~

~
~

~~S-Sl MA\;RU AS~E~8LE"

lIJC uBJ

OuOU ~OuO
OuO.: ~0t.0
011041 ':Ou013
OU07 c:Otjll4IA
oeOA 1i2uO
oooe 7StlCfll
OOOF 1StllUO
oute: .. S69
00141 ~2"2
Ouh FSo9
o U 111 oO':B

OulA cOuOl0
Oul11 c:01l1ll4
OU2U 1)2uO
OU2.: 7SUOIIO
OU2S 7SClCt8
OU211 7SIIlUO
01l2b 11018

OU211 (5e1et8
OU311 75111110
OuH .:Ou014
Oil311 t5~0
00311 A2g11
01l3A 13
Ou311 f5uO
Ou3u ::.0116
Ou3~ u2110
00111 C2t7
OUIIJ f5uO
011115 uOt.O
Oull7 uOIiO
0114'1 32

F

F

F

F
F

F
F

F

F

F

l1H

51!
SJ
541
5::.
50
51
511
59
6U
U
~.:

f>J
641
6~
60
fl7
611
6'1
711
71
71/
73
741
7:1
70
71
7&
19
eu
u
8':
8J
84
85
811
81
811
8'1
911
91
9.:
u
94
9~
90
91
90

OtTAC"

~OuRLE

; ; t._a_._. _____ * •• _._. ___ * •• ___ ._*_*• _._._._._*.*_,*t , __ .. _*_.* ___ _
1* *
;* ·Ct.TAC~· l~TtHkU~T RUU1I.E FUR OkTACHAoLt ~ErBulkO~ *
1*
i'-*---."--*---.'--------.-.'--'---'----'--*'_.'---'-*_* __ aa __ a_a ____ * ___ * __ ••

uEfALHA8LE_KtYaOARu ~E~~tNI LOUE
KStG OETACHlaLt~KerBIJA"D

IIEflLH: PUSH
I'US ..
J8
JB
liEU
MOV
MOV
,"OY
ClH
MOY
UMP ,

YALIul JB

,

JB
:lETB
MOY
MOV
MOY
IIJMP

NXT81TI MOv
MOY
JB
MOV
MOY

J(RC
MOY
JNC
SETa
Cll(
MOV

f II~ 11 1'01'
POI'
KETl

1'811
ACL
HCvFLG,IIALlD
!M'LI,HSI
"CvFLG
11'0,II8IAKI1
TlO,UIAHTu
",lllliO
UEd'
1"100, A
FII\I

IIYl\C,IIUIIII
l,.,PlI, ICS I
SYNC
L8"lKtY"lIOH
r~ U, "IIUUGE 1
TL 0, ,,"IiSU.EO
1'1,,1

I .. O,II11tSUliEl
TLO,IIHSSAliEu
IIYfIN,IITUP
A, LSTKt Y
C, l~f'ld
A
LSIKtY,A
FJi\I
IIYfJI\
uE7~
LSlKI:Hl,1
ACC
1'80\

,PYSH kEijISTtR~ YS~O BY I'LM51

,IF I(E~Elllt fLAG StT GfT Nt~T lilT
,IF TO 1& II 1 THtN NUT A STlHT BIT
,If TO IS U IHtN II II IITART bIT
,S£T Tl~£R TY IN1EkRuPT IN THE "IOOLt UF STAHT 8lT

,StT TI~kR CUUNTtR TY lIMEH MOllE

,GU bACK TU I'RUGKlM

,CHE~K If VALlu IITART bIT HAS lIEEN SkEN
,IF NOT CH~CK 4F VALID STAHT BIT
,IF YEa IIET liYNC
, INIT lliTilEY

,SET T!MtR FUR 1 81T TIM£
,AND GU HACK TU MAIN PHOliRAM

,SET TIM~R FIIR 1 B4T TIME
,CHECK TO SE£ IF ALL 8 BITS HAVE BEEN HECEIYtO
,GkT ~URKING RtG1SIEH
,GET Nf~T dlT fRYM Tl

,If NO CARI(Y THEN NOT DOllE

,CLR 81T 7
,MOY FINAL CUOt fO LSTKY.1

»

~

~CS·51 MA~RU ASDE~ijLE .. D~TACH

,",UC II~J U~~ :iOUR~E

'1'1 I
OUIiA 30D4u5 100 bTUPI Jlllb ~t.1"L I , toR .. IIF NOT 1 IH~N NuT A VA\.;lO STOP dlT
OU4U u2uO F 101 bE18 1\8uhT ,TtL\.; PL~ A dVrE l~ HEADY
OU4F u2UOUO F ~O" JMP H51 lAND GO 8ACK TU MAIN P"O~RAM

10j I
OUSe: 02uO F 10~ t.RHI liETB tli .. C ..
Ou511 C2uO F 10::' hS I: CLR I<CvFLG ,CLE"II FLAGS
Ou51> 1,;2110 F lOb ClH IIYhC
Ou5~ C2vO F 101 eLI< IOYtll\
Ou5A t.5~9 1011 MOV A" ~ 110
oose 1J2~2 10'j ::;Ere uEi!~ ,St.T T1MtR 0 Til ~OuN1EH MOuE
OuSt. "'So'l llv MDv H~C,A
O~fJu 'l'SlICtF 111 MDy fru ,I.OrFI1 ,St.T CUlihTtR Tli fFfFh ~O INTtRI<UPT
ClUU 'l5~HF 11.: May I Lv, ~OFFI1 JON hEXT FALLING EUGt UF Tu
OU61> lIOuD llJ bJMP Hr.I

1141
11~
III>
111

I~
lid !:NII

-'"

~ H ~
0

AP-223

11('5-51 I~AI.AIi AS;,E~8I.E" o~ TlICh

5YI'001. IAdL~ (,I:iT!~b

" A " E I , P t. V A I. Ii t: A I I I< 1 II U T t. b

l!;C · · · · · · · · ~ ACLoR ~Ot:Ot1 A
8YF1~ · · · · · · · a AOUR ~XI
Dt TACH. · · · · · · C AOuA OOUOH H PUll ~eb.uEI1CHl8LE_KtYaOlRU
OtTACHAdLt._~EYBlil"O ~ lIEli UOl>811 HELauNH
EHR · · · · · · · · I. ACIIA IIO~~H h ~EbaUEl1~HA8LE_Kt.YOOARO
EHRuR · · II AOuR t.XI
Flt-:!. · C AOUR 0045H H aEij.UE1A~HABLE_KtYbOARU
I1,PuT · · II AOuR VOIlOH." A
1<1I01NT. · to AOIlR tXr
L:>TI\EY. · u ACUR tXT
MtSUbEU. Nl"B VOUOH A
"~SbAIiEI. · Nll'e VOt8H A
N~TbIT. · !; ACIIR ~OclDH H ~Eij.UETACHABLE_KtYbOARIi
P~~ · . · U AOUR OOUOn A
RI,;VfLG. · · · · · · II ACUR UT
RliT · . I,; lOUR 1I054H R tiEbauETACHABLE_KfYtlOARD
STAHTI/. · NLMB IIOOOH A
SlAHTl. · N~"B OOF4H A
no!'. · · · · · I: lOUR OOUH H ~Eij-UETACHlBLE_KEYbOARD
SyNC. II ADUR tXT
Tu. · · · · · · II ADDR 001l0H.4 A
THO · · · · · · U lCuR OOliCH A
TlO · · · · · · U ACuR IIOUH 10
TMOII. Ii lOUR 0089H 10
VAllO · I: ACDR 1I0lAH Ii SEb_UETIoCHIo8LE_KfYtlOIoRU

RflHS1EH !lANK(S) UStO; II

A:lSt.l!bL Y COMPLETE, NO EHROR$ f'OUNU

10-141

·APPENDIX B
REFERENCES

1. John Murray and George Alexy, CRT Terminal Design
Using The Intel 8275 and 8279, Intel Application Note
AP·32, Nov., 1977.
2. John Katausky, A Low Cost CRT Terminal Using The
8275, Intel Application Note AP-62, Nov., 1979.

10-142

MCS®~51 Article Reprint 11

, ,~'

',1'

AR-224

Extensive I/O subsystems and a tailored instruction set allow a 16-bit
inicrocontroller to set its sights on a widening range of industrial and
computer (and telecomm and consumer) applications. .

Controller chip takes on many
industrial, computer uses

With industrial and computer control applications
increasing all the time-and telecommunications
and consumer applications emerging-designers in
creasingly need microcontrollers whose performance
extends beyond that of the conventional 8-bit
architectures. Normally, control system designers
must depend on expensive and complex multiple-chip
microprocessors to achieve high performance. But
now, a 16-bit single-chip controller offers a much
better solution. Not only does the 8096 offer perhaps
the most extensive input/output "services" of any
microcontroller, it also provides an instruction set
and addressing modes tuned for both fast control
operations and high-speed arithmetic.

In industrial applications, the 8096 can be used for
process control, 1'obotics, numerical and motor con
trol, and instrumentation. Figure 1 shows the chip
in a typical closed-loop servo system of the type used
in industrial applications. In computer applications
performance is the key feature, and here the 8096
provides greater throughput in systems in which
simple data structures-a single I/O bit-and rela
tively small memories are required. Typical applica
tions are computer peripherals such as printers,
plotters, Winch esters, and other hard-disk systems.

In the consumer end, moreover, the 8096 is ideally
suited for automotive engine and other controls (see
"Stopping a Car") and sophisticated video games.
Both applications need the speed, calculating power,
and addressability of a 16-bit microcomputer. For
telecommunications, the controller is intended for
high-speed modems, P ABXs, and central office
switching systems.

In addition to the full 16-bit CPU, the 8096's basic

Steve Wiseman, Product Marketing Manager
Steve Burton, Senior Engineer
John Katausky, Technical Marketing Manager
Intel Corp.
5000 W Williams Field Rd , Chandler, Anz. 85224

Reprinted from ELECTRONIC DESIGi. - August 5, 1982

architecture includes an 8-kbyte ROM and a 232-byte
RAM, which serves as a register file. To meet the
wide needs of controller environments, the chip
contains an eight-channel, lO-bit analog-to-digital
converter, a full-duplex UART (universal asynchro
nous receiver-transmitter), two 16-bit timers, and a
programmable pulse-width-modulated output.

Since a microcontroller must be able to interface
with various types of transducers and sensors, the
8096 fe~tures built-in, extensive I/O facilities. These
include an eight-level priority interrupt structure,
full-duplex serial I/O, parallel I/O, a watchdog
timer, analog inputs for the a-d converter; a pulse
width modulated output and a high-resolution pulse
output. Each of these facilities is integrated not only
physically but logically into the chip's structure by
being tightly coupled to the CPU.

The inherently high performance of a CPU suffers
if the controller spends too much time administering
complex real-time I/O operations. The 8096's on
board I/O facilities solve this problem by permitting
the CPU to devote more time to executing
mathematics and control algorithms and less on I/O.

Table 1. Memory allocations ofthe 8096

~-0001Hl017 On-chip I/O

0018-0019 Data register/stack pointer

001A-OOFF Data registers (230 bytes)

01OD-1FFD Off-chip expansion RAM/ROM/I/O

1FFE-1FFF On-chlp I/O

20Q0-200F Internal ROM interrupt vectors

201D-207F Reserved

2OSD-3FFF Internal ROM user program space

40Q0-FFFF Off-chlp expansion RAMIROM!lIO

Copynght 1982 Hayden Publishing Co., Inc.

11-1

16-bit microcontroller .

. The instruction set h~~dle!;· signed and uhsigned
16-bit multiplications and divisions. Both S-bit bytes
arid 16-bit double words are supported. and even 32-
bit double words are supported for a subset of the
main instruction set. A full 64 kbytes of memory
address space is usabl~.

A flexible register structure

The S096 instruction set directly supports 256
bytes of registers. which can be referenced as 12S
word registers or as 64 double-word n,gisters. These
registers also appear-for memory reference in-

Immediate 0.2 (word)

Immediate o (byte)

Indirect 0.4

Autoincrement 0.6

Short Indexed 0.4

Short Indexed 0.6

Long indexed 0.6

Long indexed 0.8

'structions-as the first 256 bytes of the 64-kbyte
RAM address space, This permits. for example. the
use of a portion of the register space as the sub
ro'utine stack on smaller systems'that do not have
external expansion memory (Table 1).

The first 24 bytes of this register space are
reserved for on-chip 110 addresses. 110 locations are
memory-mapped and can be referenced directly as
registers. The word register located at address ISH
serves as the stack pointer. Such a large register
space allows a programmer to keep his most fre
quently referenced scalar variables in registers.

NA. (B) <= (B) + A

N.A. B,#A (B) <= (B) + A

1.4 B,(A) (B) <= (B) + ((A))

1 6 B,(A)+ (B) <= (B) + ((A)); (A) <= (A)
+ <length of A>

1.4 B,C[AI (B) <= (B) + ((A) + C); where
-128<C<127

1.8 C[AI,B ((A) + C) <= (B) ST, Pop only

1.6 ~[AI,C (B) <= (B) + ((A) + C)

1.8 [AIC,B ((A) + C) = (B) ST, Pop only

Addressed operand located In reg'lsler space
Addressed operand located In ROM spate or external memory-expanSion space

Note ST and Pop are the only instructions with an address-moded destination

r
I
j

I

---... -'- --
,6096 '

r~~Tt--W--r~~r-7t?-."::::.-..t,'· ..

1. 'Sitting at the center of a closed-loop servo system, the 8096 microcontroller's 1/0 facilities
Interlace with both digital and analog input signals. The 16-bit chip can handle virtually any
type of computer or Industrial contrOl-system application.

11-2

Since the number of instructions required is reduced,
fewer external memory references are needed. As a
re~mit, program execution is accelerated.

byte of the word. A 32-bit double word begins on
an even-word address-both bit 0 and bit 1 of the
address are zeros. Double words are produced by
Multiply Words, Shift, and Normalize instructions
and are used by Divide Words, Shift, and Normalize
instructions. Double words are added and subtracted
using Add with Carry and Subtract with Borrow
instructions.

Tne 8096 uses separate internal instruction and
data buses. With this architecture, ROM and ex
ternal memory references are slightly slower than
register references. Instructions cannot be executed
out of the internal RAM register space, but external
expansion RAM instructions can be executed. In most computers, the most commonly used

instruction is Move. Because of the many registers
in the 8096, a programmer can get away with fewer
Move instructions-it is not necessary to switch

Both memory space and register space are fully
byte-addressable. A 16-bit word begins on an even
byte address, and the odd byte is the most significant

"";~\4"'·" .'
:::} :~::')i~"~
·,.i,,,,'-'<:; ;;:"":',' :-L'-"', '-:' , ",' \'

.' ;' . ,,;1'I:I,e8096 ~bev~!'Y useful in
'.i,.M::i.uoomotiye .. antiskld . braking
'1; ~ •. ·tbat !IIlows .a. driver' 00
'ia~er.te hiS.'vehiCle sSfely when

} 'pOO"$r' more wheels start slipping.
"S!iflconditioris can .be " .detected
, eIU!er. by excessive wheel-sjJeed
differential or by excessiveap
~nt deeeleration, or botl1. For
j!xample, if one wheel hits an'ice
p&t\:h during heavy braking, the

,rotation, of .that wheel. win slow
.', dowl'\ significantly, indicating a

., .i4: . On the other hand, normal
'tlresbegin to slip at or below 1 g
o,/IoI:celeration. If the apparent'
deeelerationas measured by wheel
sPeed is less than 1 g, the wheel
is' assumed to be skidding'i M
s'kid-detection techniques.~ ..
on' measuring a wheel's rO~'
speed, ' ,

Wheels are monitored by reluc
tance (magnetic) pickups, which
generate pulse trains whosefre
queneies are proportional to wheel
speed. Usually, a:~plel1ummcal

,~\~' rel~onship relatfi freQuency to
t>'~l_ s~13.3 Hz per r¢les per ~

. isa typicaLvalue, Four piCkup
outputs Ill'e easilyllaitdl:e4 by the
8096's)l~-speed inputunlt. At
each' _osition of any (1ftbe
pickupS', the current vatwi ofijmet
o is saved in the input ""0, The
programmable 'edge tt~ in
the high-speed input unit provides
a convenient 'device for handling
the' wide dynamic ra~,', (1f the '

,period measurement. At· slow

speeds, the edge detectOrean be' "'TJIen the value 46992.4S becomes
programmed to respond to both '. 46911248;; which can easily ;be
edges of the iuputsignal;llt ~;; 'represented within 00 bits, and a
medium speeds, to recognize only" 32-bY:l~ivision instruction is'
positive-going edges; and aHl~used to ,perform the divislon.
speeds, to respond to just obe of Eaehwheell'equires two such
eight positive-going edges. This "divisions..;.onefor speed, one for
technique not only extends the ' '" acceleration-.djlring each loop of
dynamic range of the measure~, 'the ~eulation. A typical loop
ment, but also reduces the inte,tl.; takes about 10 ms. A typical 8-bit

" erupt overhead at. high S~\!:, ,microprocessor takes 500 to 75Q /oIS

Three successive time s~~c. per division, which meB:ns eight
-'1'; Ty. and T.-allow the:~" SUch divisions would require 4 to
and acceleration oia wheel to be)~, 6.lIlB. But the 8096 dOes all eight
'.~termined, from ~. fo1lowing , ' divisionsio~t50/ol8. This speed;
,equations:; c" ", ' improve~1'\t transl~~,it.

VlC)'C '" ;~Ty -. TJ {l)" hlgher,.perffll'l,iranceiimdBlein
Vyz "CI('1'.,:7':'r~ (2)~nse time .• adaptability.
"A"." W., -V~y)1 . "fhe''fatchdogtimerof1he~
{O.S (T. -'1',.)} , (3) helPs~tliel'!!IiabiDty.ofthe,

where C 1s the~ Qf the braking IOOdule. A~ a 15-MHz
proportionality cOOtltallt.(e.g., C .. · elock ,ate, the ,timer is In-
1113.3) •. V,y. ,V Yf1 .and V'Cf are , eremented every 200 ItS. ,During
velocities, and Au is~eration.' eperation, thes~stenlsoftwareex·

The period;iJf t'he incoming fre.. .~ diagDosties periodicAlly to
queney Is in units of 1.6 /oIS' since ~$QreU}at theoveraU s~$l;em-
timer 0 lsinerementeQ.atthisrate. ill.eluding hardware and .software
If I, represents the value. in the -ois . operating properly. If tlul '
timer, at time x and ly the value. operatiOn is eorreet, tile software
at time y,then Eq. 1 and 2 are. will issue commands to reset the
written. as wat\:hdog. But if a system failure

V.y = ~481(I,. - I,.) (4) prevents a diagnOstic from run-
V yz = 4699%.48I{I. - Iy) (5.) ning wjthin a prescribed period,

In practice, theeonstaritsIn Eq. the watchdog timer will reset the
4 and 5 should he multiplied by a entire systenl. The software ~.
scaling factor to allow calculations not reset properly on an erroneous
to he performed in integer operation, such as a counter over-
Ill'ithmetic. A faetoroflOO, for Bow, excevt by writing to the
example, gi~llSsjJeed measured in "z'watchdog, titDer twice within its
unitlf of lJ19D,ofa~i1epernour. counting,~e. '

11-3

16-bit microcontroller

operands in and out of memory locations. In addition,
the chip's' powerful three-operand instructions
Add,. Subtract, Multiply and Logical And-often
eliminate them. Since programmer productivity
(measured in lines of code written per day) is
reasonably constant, writing fewer Move instruc
tions can lead to reduced development expense.
Register Load and Store instructions, with a full set
of addressing modes, handle moves that cannot be
eliminated.

Keeping addressing simple

Because a study of the ways in which addressing
is used on the 8086 microprocessor indicates that
programmers use complex addressing modes less
than 0.7% of the time, the 8096's instruction set
bypasses those in favor of the more commonly used
addressing modes. But should complex addressing
be needed, programmers can build such modes
through macros. Addressing modes in the 8096
include direct, register-indirect, immediate, autoin
crement, and both short (8-bit) and long (16-bit)
indexed-address. Table 2 lists the address modes and
the operations that occur when each is activated.

Indexed-address modes, by adding an 8- or 16-bit
disp!acement to the contents of any 16-bit register

to form the' effective address of an operand, allow
fast access to arrays stored anywhere in memory.
Indexed modes are also useful for, referencing ele
ments of based structures, as in the PL/M language.
However, preliminary calculations are needed to
reference a based array.

The stack pointer is fully addressable, as are all
other 16-bit registers. As a result, it can be the base
register for moded references. Stack-relative ad
dressing, which is easy to program, is often used for
recursive-subroutine parameter passing and dynam
ically allocated variables. While this technique does
not make the best use of a large register space, it
adds flexibility to the system. The stack need not
be confined to internal RAM, but can fill any
available RAM space in the system. The stack can
flow across the boundary into register space at will,
allowing recursion to very great subroutine depths.

Of the instruction set's 71 instructions, 25 take on
both word and byte form, which increases the total
to 96 instructions. The set includes 16 varieties of
conditional jump, allowing·for both signed and un
signed comparisons. All of the 2048 bits in register
space can be tested individually by a Jump on
Bit/Not Bit instruction. A Decrement and Jump on
Not Zero instruction provides for loop control.

2. Centered around the CPU and memory, the 8096's extensive 1/0 subsystem. Include an ,
analog-to-dlgltal converter, a universal asynchronous recelver-transmltter(UART). high-speed
input and output circuitry. and a pulse-width modulation olltput circuit. $Ilch IntelUgentl/O
allows the CPU to concentrate not on real-time housekeeping but on high-speed arithmetic
and control operations.

11-4

Most of the instructions execute in about 0.8 !lS;

the .Iongest, to normalize a zero, takes 8 !lS. All data
refere'nce instructions except Pop, Push, and
Normalize are available in byte form, and all such
instructions except.Jump on Bit and Normalize are
available in word form. Table 3 lists some typical
8096 instructions' and their run times.

A survey of code frequency usage shows that
although most. multiplications and divisions are
unsigned, a signed form is still necessary. When
unsigned multiplication and division instructions are
preceded by a 0.8-!ls SIGND prefix, they are con
verted into full two's-complement signed multiplica
tion and division. ;Either type of operation executes
in less than 6 !lS. Word multiplications result in a
double-word product, and byte multiplications pro
duce a word product. With an instruction called
Word Divide, a double-word dividend is divided by
a word divisor to produce a word quotient and
remainders.

Because jumps and calls are PC-relative, code is
easy to relocate. Both Jump and Call instructions
are available in a short 2-byte form with an H-bit
displacement. Jump on Bit is a 3-byte instruction
with an 8-bit displacement. An indirect jump for the
"do-case" is also provided.

In addition to the usual sign-extending (EXT)
instructions for byte-to-word and word-to-double
word conversions, the set includes instructions
LDBSA and LDBZE, which move a byte into a word
with sign or zero extension. Most one- and two
operand forms execute in 1 !lS. Conditional jumps
run in less than 1.8 !lS, and in about 0.8 !lS when
the jump is not taken.

Shifts, whether by a specific number of bit posi
tions or by a computed number, are provided for all
three operand lengths (byte, word, and double word).
In a floating-point software package, the mantissas
must be aligned before they are added or subtracted,
and the results normalized afterwards. Both func
tions require a software shift loop.

The Normalize instruction and the computer form
of the Shift Double Word instruction allow fast
software implementations of floating-point arithme
tic with up to a 32-bit mantissa. Multibit shift
instructions are very useful for scaling operations
.in scaled-integer arithmetic. Scaled-integer oper
ations are usually faster than floating-point
arithmetic in control applications.

In addition to an overflow flag, which is set by
each arithmetic instruction, there is an overflow
trap flag. It can be checked at the end of a sequence
of instructions to determine whether an overflow has
occurred anywhere in the sequence.

The instruction set is complemented by a variety
of 110 subsystems for handling virtually any com-

0.8

0.8

08

0.8

0.8 (not
taken)

1.0

1.0 (not
taken)

1.6 (taken)

1.6

1.6 (stack
register)

1.6 (stack
register)

1.8 (taken)

1.6 +
0.2/shift

1.8

2.2 +
O.2!shlft

2.4

2.4 (stack
register)

2.4 (stack
external)

2.4 (stack
external)

2.6 (stack
external)

2.8 (stack
external)

3.0 (stack
external)

3.2 (stack
external)

3.4

3.6

3.6

5.2

5.2

5.4

2'

2'

2'

3'

2

o

l'

2

2

o
2

l'

1

o

l'

o

l'

o

2'

2'

3'

2'

2'

3'

INC,DEC,CLR,
NOT,NEG,SEX

XOR,ADDC,SUB,
AND,ADD,SUBC

OR,CMP

LD,LDBSE,
ST

JC,JNC,ETC.

AND,SUB,ADD

JBS,JBC

JC,JNC,ETC.

SJMP,IJMP,
LJMP

PUSHF

PUSH

JBS,JBC,DJNZ

SHL,SHR,SHRA

POPF

NORML

POP

LCALL,SCALL,
RET

PUSHF

PUSH

POPF

POP

SCALL,CALL

RET

MULB

DIVB

MULa

MUL

DIV

MUL

these operands may have address modes

11-5

One-operand
Instructions

Two-operand
arithmetics

Two-op
arithmetics

Load and store
registers

Conditional jumps

Three-op
arithmetics

Jump on bill
jump on not bit

Conditional jumps

Unconditional
jumps

Push PSW

Stack push

Jump on bill
and jump

Shift instruc
tions

Pop PSW

Normalize

Stack pop

Subroutines

Push PSW

Stack push

Pop PSW

Stack pop

Subroutines

Subroutine

Byte multi
plication

Byte division

Byte multi
plication

Word multi
plication

Word diviSion

Word multi
plication

16-blt microcontroller

puter peripheral or industrial application (Fig. 2).
They include an a-d converter, a DART, timer
counters, and a programmable pulse-width -modu
lated output.

I/O resources inclUde a-d

The controller contains a complete eight-channel,
lO-bit a-d converter. Dsin'g successive approximation
to achieve high speed-33.6 (.LS at a I5-MHz clock rate
-it handles analog input voltages in the range of
o to 5 V. An external reference is required and must
be connected between the reference voltage and
analog ground terminals. The converter generates a
vectored interrupt when it completes a conversion
cycle, allowing the CPD to have rapid access to the
a-d input handler when operating in a multitask
environment.

Conversion is initiated by writing to an 8-bit
a-d command register. The results of a conversion
are read from two 8-bit output data registers.' One
8-bit register contains the eight most significant bits,
and the other holds the two least significant bits,
a 3-bit channel indicator, two unused bits, and a
status bit. The status bit, which indic'Ites whether
the a-d conversion is still in progress, is typically
used in a non interrupt-driven environment.

Just four bits of the a-d command register are
used. Three of the bits specify the channel to be
converted, and the fourth specifies the method of
initiating an a-d conversion cycle. For example, if
the fourth bit is a 1, the cycle begins immediately
after writing to the command register. If it is a 0,

FIFO register
(7 bits X 20 words)

3. One half of the 8096's high-speed 1/0 subsystem is an Input
unit, which contains a user-programmable change detector
that defines Input transitions for the high-speed inputs. Each
ofthe four inputs (HSI. - HSI,) can be programmed to respond
to a different Inputtransition.

the high-speed output logic subsystem initiates the
conversion: The reason for the option is that many
data acquisition algorithms require that conversions
occur at specific intervals. This requirement is often
difficult to manage through software because of
interrupt latency and other conditions. Thus, the
high-speed output subsystem provides the proper
timing for periodic a-d conversions.

The 8096's DART is virtually a carbon copy of the
one on the 8051 microcontroller. One' of its 8-bit
registers receives data, another transmits data, and
another indicates the DART status plus bits to
configure it for a specific operating mode. By setting
the appropriate bits in the third, or control-status,
register, a user can select one of four modes:

• Mode 0 (shift register) is a simple, synchronous
mode in which the 8096 provides a clock to
synchronize incoming or outgoing data. Mode 0 can
also be used to expand the I/O.

• Mode 1 is an 8-bit DART mode in which the
eighth bit is used for parity when it is enabled.

• Mode 2 is a 9-bit DART mode in which the ninth
pit is used for parity when it is enabled.

• Mode 3 is a 9-bit data/address mode in which
the DART transmits and receives nine bits of data.
This is useful for implementing a simple multipro
cessor intercommunications link in which the ninth
bit distinguishes address from data.

The remaining six bits of the control-status regis
ter are used for six operations: enabling the receiver
section of the DART, enabling parity for both
transmission and reception (even parity); storing the
ninth bit when in the 9-bit transmitting mode;
storing the ninth bit when in the 9-bit receiving
mode, indicating that the receiver is ready, and
indicating that the transmitter is ready. Also on
board are a dedicated I5-bit baud-rate generator and
a baud-rate ~lock that can be driven by either the

·8096's crystal oscillator or an input at pin 1'2CLK.
This gives maximum flexibility in setting baud rates.

The pulse-width modulated output can produce a
pulse train of variable duty cycle, which can be
integrated and clamped to provide an accurate
digital-to-analog output function. The PWM circuit
operates as follows: The 8096 crystal frequency is
divided by three and clocks an 8-bit free-running
counter. The counter output connects to one side of
an 8-bit comparator; the other side of the comparator
is tied to a user-addressable register. When the free
running counter value is the same'as the one stored
in the addressable register, an R-S flip-flop is set.
The flip-flop is also reset when the counter rolls over
from a count of 255 to O. This produces a simple yet
accurate variable duty-cycle oscillator, which can be
programmed for a variable duty cycle from 0 to 255
in increments of X/256.

11-6

16-bit microcontroller

The watchdog timer offers a simple way to recover
from a software or hardware error. Essentially a 16-
Wt free-running counter that is clocked by the CPU
clock generator circuitry, the timer is reset by
writing a 01EH followed by a OEIH to byte location
OOOAH. If a resetting does not occur at least once
every 13.107 ms, the timer will overflow, causing the
8096 to be reset-resetting reinitializes the 8096. This
feature makes it virtually impossible for the 8096
to become lost in a program for too long. For
development purposes, the reset terminal can be
connected to Vee to disable the watchdog timer.

More I/O-and faster

Correlating events in real time is one of the most
important considerations in computer-based control
system design. Another common requirement is
generating pulses and pulse trains todrive actuators.
Most single-chip microcontrollers support such
operations by having one or more timer/event coun
ters under software control. The 8096, on the other
hand, offers a complete integrated subsystem to
perform these functions. Called the high-speed I/O
unit, it is intended to be an integrated subsystem,
but it can be viewed as separate units for input and
output.

Figure 3 shows the block diagram of the high-speed
input unit. Its major components are a 16-bit timer,
a programmable change detector and a first-in, first
out (FIFO) memory. Also included are several regis
ters used by the software to control the high-speed
input unit.

The read-only timer is cleared by the system reset
and incremented once every eight CPU cycles (every
1.6 J.LS with a 15-MHz crystal). When the timer
overflows-rolls over from FFFF H to OOO!l!-a status
bit is set and an interrupt is generated. The change
detector monitors four pins on the 8096 and looks
for predefined changes. Change definitions are con
trolled by the high-speed input unit's mode register,
which is set by the software. This register contains
a 2-bit field for each of the four high-speed inputs.
Using the fields, a programmer can select the type
of change for each input. Fields are encoded in one
of four ways:

• 00 defines positive transitions divided by 8.
• 01 defines positive transitions.
• 10 defines negative transitions.
• 11 defines positive and negative transitions.
Each high-speed input can be disabled through a

second control register. When this is done, inputs
of the high-speed input unit become available as
digital input pins or, if required, two of the pins can
be connected to the high-speed output unit.

As the block diagram in Fig. 4 shows, the 'high
speed output unit uses the same timer as the input

unit and also has a 16-bit event counter. The read
only event counter is similar to the timer in that it
can be read at any time, generates an overflow
interrupt or status indication, and cannot be written
into. It differs from the timer, in that its reset and
clock sources, instead of being fixed by hardware,
can be selected under software control.

Two of the 8096's pins are dedicated to the event
counter. A positive-going pulse on ECRST (Event
Counter Reset) clears the counter, and either edge
of a pulse applied to ECCLK (Event Counter Clock)
increments the counter. A programmer has the
option of using HSIo instead of ECRST or HSI,
instead of ECCLK. These options are available by
setting the appropriate bits in the 110 control regis
ter. The event counter can also be cleared under
software control either directly, by setting a bit in
the 110 control register, or indirectly, using the high-

4. The other half of the high-speed I/O subsystem is the
output unit. Using a content-addressable memory to store so
called time-field data, the unit's logic matches this information
with timer or event-counter operations.

::tll== .. "' == ... "' ... -=0; ... *"1 "'

6 .• ,4.3'2"',0
; =-,",,, .. .::::.~,,,,=-=.,,,,_,,,-=;:.~_a*==<=;:;:;: Channel 00Qe

; : ~"--"().6:~l>IIiwt"'"".OII"tlU9h6

, ,
;.

, :.--:-.:::::-c::t~~,,",_'=%!',tnr<>Ugh$.
...----- :-~ ... :- "'---15:'S~Hconvet$iQn

~---- --- -~-"--~==.lIlo<lQtlori
... _--- -...... Outpu'.

1=Setbtt

~/event-c""_~'.
- ''''Use ti....,·' .',,.
c _ "\'.\, \\',

5. I n the content-addressable memory of the high-speed
output unit, 23-bit words are hroken down Into a 16-bltlime
field and a 7-bit command field. Command-field encoding
defines the output unit's operating mode.

11-7

speed output unit itself. I

The FIFO register of the high-speed input unit is
replaced by a content-addressable memory in the
Qutput unit. The memory contains a file of eight 23-
bit registers. The 23 bits are divided into a 16-bit
time field and a 7-bit command field. Control logic
continually scans each location in the memory to
determine whether its time field matches either the
timer or the event counter as selected by one of the
seven bits in the command field. When It match is
found, the remaining six bits in the command field
are executed.

What the bits do

The encoding of the command field bi'ts and their
functions are shown in Fig. 5. Four-bit channel code
selects the output unit's operation. For example, the
event counter can be reset or an a-d conversion can
be initiated. If one of the high-speed output pins is
to be changed, bit 5 of the command field will
determine its state. For all of the high-speed output
unit's operations, bit 4 determines whether an inter
rupt is generated upon execution of a command.

The high-speed output unit uses two interrupt
vectors, one for the software timers and one for all

other functions. When a software time!' interrupt
occurs, the interrupt service routine can interrogate,
an I/O status register to determine which of the four
timers caused the interrupt. The ability of the
command field to trigger an a-d conversion allows
measurements to be made at precise moments, an
absolute necessity in digital signal processing. Also,
the ability to reset a count when it reaches If preset
limit allows the simple implementation of a modulo
N counter. This is useful, for example, in a
crankshaft position-sensor application that
generates 214 pulses per revolution.

The eight locations in the content-addressable
memory's file are scanned at the rate of one CPU
cycle per location. At a 15-MHz clock rate, all eight
locations will be scanned within 1.6 J.LS. A high-speed
output unit's command is executed as soon as it finds
a time match. As each command is executed, it is
removed from the content-addressable memory to
make room for a new command, which is sent in from
the input holding register.

Because of the extensive functions built into the
8096, a standard 40-lead DIP is far too small; the
8096 is housed in a 68-pin JEDEC package.
Alternatively, it is supplied in a 48-pin DIP.D

11-8

The Single Component 12
MCS®,48 System

,'r'

CHAPTER 12
THE SINGLE COMPONENT MCS®-48 SYSTEM

12.0 INTRODUCTION

Sections 12.1 through 12.4 describe in detail the func
tional characteristics of the 8748H and 8749H EPROM,
8048AH/8049AH/8050AH ROM, and 8035AHLI
8039AHLl8040-AHL CPU only single component micro·
computers. Unless otherwise noted, details within these
sections apply to all versions. This chapter is limited to
those functions useful in single-chip implementations of
the MCS@-48. Chapter 14 discusses functions which allow
expansion of program memory, data memory, and input
output capability.

12.1 ARCHITECTURE

. The following sections break the MCS-48 Family into
functional blocks and describe each in detail. The follow
ing description will use the 8048AH as the representative
product for the family. See Figure 14.1.

12.1.1 Arithmetic Section

The arithmetic section of the processor contains the basic
data manipulation functions of the 8048AH and can be
divided into the following blocks:

• Arithmetic Logic Unit (ALU)

• Accumulator

• Carry Flag

• Instruction Decoder

In a typical operation data stored in the accumulator is
combined in the ALU with data from another source on
the internal bus (such as a register or 110 port) and the
result is stored in the accumulator or another register.

The foll.owing is more detailed description of the function
of each block.

INSTRUCTION DECODER

The operation code (op code) portion of each program
instruction is stored in the Instruction Decoder and con
verted to outputs which control the function of each of
the blocks of the Arithmetic Section. These lines control
the source of data and the destination register as well as
the function performed in the ALU.

ARITHMETIC LOGIC UNIT

The,ALu accepts 8-bit data words from one or two sources
anq generates an 8-bit result under control of the Instruc
tion Decoder. The ALU can perform the following
functions:

12-1

• Add With or Without Carry
• AND, OR, Exclusive OR
• Increment/Decrement
• Bit Complement
• Rotate Left, Right
• Swap Nibbles
• BCD Decimal Adjust

If the operation performed by the ALU results in a value
represented by more than 8 bits (overflow of most sig
nificant bit), a Carry Flag is set in the Program Status
Word.

ACCUMULATOR

The accumulator is the single most important data register
in the processor, being one of the sources of input to the
ALU and often the destination of the result of operations
performed in the ALU. Data to and from 110 ports and
memory also normally passes through the accumulator.

12.1.2 Program Memory

Resident program memory consists of 1024, 2048, or 4096
words eight bits wide which are addressed by the program
counter. In the 8748H and the 8749H this memory is user
programmable and erasable EPROM; in the 8048AHI
8049AHl8050AH the memory is ROM which is mask
programmable at the factory. The 8035AHLl8039AHLI
8040AHL has no internal program memory and is used
with external memory devices. Program code is com
pletely interchangeable among the various versions. To
access the upper 2K of program memory in the 8050AH,
and other MCS-48 devices, a select memory bank and a
JUMP or CALL instruction must be executed to cross the
2K boundary.

There are three locations in Program Memory of special
importance as shown in Figure 12 2.

LOCATION 0
Activating the Reset line of the processor causes the first
instruction to be fetched from location O.

LOCATION 3
Activating the Interrupt input line of the processor (if
interrupt is enabled) causes a jump to subroutine at lo
cation 3.

LOCATION 7
A timer/counter interrupt resulting from timer counter
overflow (if enabled) causes a jump to subroutine at loca
tion 7.

Therefore, the first instruction to be executed after ini
tialization is stored in location 0, the first word of an
external interrupt service subroutine is stored in location
3, and the first word of a timer/counter service routines

!!
Ia
C
iil
.-
~ .-

~
~
III
::E:
Cii
0
~
III :.
::E:

~
~
CD

N ~ ~
0
~
CD :.
::E:
Cii
0 g
:.
::E:
III g
~

c
iD
Ia ...
Dl
:I

INTERRUPT I PilOMI CPU! OSCILLATOR
EXPANJ)ER MEMORY XTAL

STROBE SEPARATE'

INITIALIZE

RESIDENT
EPROM ROM

ADDRESS
LATCH

STROBE
CYCLE
CLOCK

PROGRAM SINGLE
MEMORY STEP
ENABLE

READ
WRITE

STROBES

EXPANSION TO
MORE 110 AND

MEMORY

TEST 0

TEST 1

INT ..
Q

FLAG 0 0

" ..
FLAG 1 c

TIMER
FLAG

CARRY

ACC

ACCBIT
TEST

!e z
C>
~
m
0

I PORT1~ 0
BUS

BUFFER 8 s:
AND " LATCH 0

Z
m
Z

REGISTER 0
....

REGISTER 1 s:
REGISTER 2

0
0

REGISTER 3 @

•
REGISTER • ~

III
REGISTER S 0

-< REGISTER 6 0
REGISTER 7
8 LEVEL STACK m

(VARIABLE LENGTH) s:
OPTIONAL SECONO

REGISTER BANK

DATA STORE

RESIDENT
RAM ARRAY

SINGLE COMPONENT MCS®-48 SYSTEM

is stored in location 7. Program memory can be used to
store constants as well as program instructions. Instruc
tions such as MOVP and MOVP3 allow easy access to
data "lookup" tables.

l:

~
0
co
Go
:t
(.)

z l:
0 ~ l:

t ~
0 co
co ...
Go

0
co

:t Go
(.) :t
z (.)

0 z
0

-0
2048~ t SELMB1

2047~TSELMBO

1024
1023 -------

-
-r-

8
7
6
5
4
3
2
1
o 7161514131211101+

ADDRESS

LOCATION 7-
TIMER INTERRUPT
VECTORS
PROGRAM HERE

LOCATION 3-
EXTERNAL
INTERRUPT
VECTORS
PROGRAM HERE

RESET VECTORS
PROGRAM HERE

Figure 12·2. Program Memory Map

12.1.3 Data Memory

Resident data memory is organized as 64, 128, or 256 by
8-bits wide in the 8048AH, 8049AH and 8050AH. All
locations are indirectly addressable through either of two
RAM Pointer Registers which reside at address 0 and 1
of the register array. In addition, as shown in Figure 12-3,
the first 8 locations (0-7) of the array are designated as
working registers and are directly addressable by several

, instructions. Since these registers are more easily ad
dressed, they are usually used to store frequently accessed
intermediate results. The DJNZ instruction makes very
efficient use of the working registers as program loop
counters by allowing the programmer to decrement and
test the register in a single instruction.

By executing a Register Bank Switch instruction (SEL
RB) RAM locations 24-31 are designated as the working

12-3

registers in place of locations 0-7 and are then directly
addressable. This second bank of working registers may
be used as an extension of the first bank or reserved for
use during interrupt service subroutines allowing the reg
isters of Bank 0 used in the main program to be instantly
"saved" by a Bank Switch. Note that if this second bank
is not used, locations 24-31 are still addressable as general
purpose RAM. Since the two RAM pointer Registers RO
and RI are a part of the working register array, bank
switching effectively creates two more pointer registers
(ROland Rl!) which can be used with RO and RI to easily
access up to four separate working areas in RAM at one
time. RAM locations (8-23) also serve a dual role in that
they contain the program counter stack as explained in
Section 12.1.6. These locations are addressed by the Stack
Pointer during subroutine calls as well as by RAM Pointer
Registers RO and RI. If the level of subroutine nesting is
less than 8, all stack registers are not required and can be
used as general purpose RAM locations. Each level of
subroutine nesting not used provides the user with two
additional RAM locations.

63
(127)

«255))
USER RAM

32 x 8
(96 x 8)

«224 x 8))
32
31 BANK 1

.
I

WORKING DIRECTLY
REGISTERS ADDRESSABLE

8 x 8 WHEN BANK 1
-----Rf- - -- IS SELECTED

24
----'Rii'---- , .

23

8 LEVEL STACK ADDRESSED
OR INDIRECTLY

USER RAM THROUGH
16 x 8 R1 OR RO

(RO' OR R1')

8 .
7 BANKO I

WORKING DIRECTLY
REGISTERS ADDRESSABLE

8 x 8 WHEN BANKO

-::'=-==RI=': .:.=- ISSELECTjD I

0
RO

'IN ADDITION RO OR R1 (RO' OR R1')
MAY BE USED TO ADDRESS 256 () 8049AH, 8749H,
WORDS OF EXTERNAL RAM. «)) 8050AH

Figure 12·3. Data Memory Map

INTERNAL
BUS

WRITE
PULSE

VOH

SINGLE COMPONENT MCS®-48 SYS1;EM

ORL,ANL

D

4V

Q

D
FLIP
FLOP

LOW
IMPEDANCE

CLK Q
PULLDOWN

IN

MAX

-500

-400

10H -300 ___ ~

("A) -200

-!OOf---_
MINL-. ___ _

o 2 3
VOH(V)

VCC

VCC

-=-

5 OV

1/0
PIN

PORT!
AND 2

2V
VOL

4V

LOW IMPEDANCE PULLUP HIGH IMPEDANCE PULLUP LOW IMPEDANCE PULLDOWN

These graphs are for Informational purposes only and are not guaranteed minimums or maximums.

Figure 12-4. "Quasi-bidirectional" Port Structure

12-4

SINGLE COMPONENT MCS®-48 SYSTEM

12.1.4 Input/Output

The 8048AH has 27 lines which can be used for input or
output functions. These lines are grouped as 3 ports of 8
lines each which serve as either inputs, outputs or bidi
rectional ports and 3 "test" inputs which can alter pro
gram sequences when 'tested by conditional jump
instructions.

PORTS 1 AND 2

Ports 1 and 2 are each 8 bits wide and have identical
characteristics. Data written to these ports is statically
latched and remains unchanged until rewritten. As input
ports these lines are non-latching, i.e., inputs must be
present until read by an input instruction. Inputs are fully
TTL compatible and outputs will drive one standard TTL
load. .

The lines of ports 1 and 2 are called quasi-bidirectional
because of a special output circuit structure which allows
each line to serve as an input, and output, or both even
though outputs are statically latched. Figure 12-4 shows
the circuit configuration in detail. Each line is continu
ously pulled up to V CC through a resistive device of
relatively high impedance. '

This pullup is sufficient to provide the source current for
a TTL high level yet can be pulled low by a standard TTL
gate thus allowing the same pin to be used for both input
and output, To provide fast switching times in a "0" to
" I" transition a relatively low impedance device is
switched in momentarily ('" 115 of a machine cycle) when
ever a "I" is written to the line. When a "0" is written
to the line a low impedance device overcomes the light
pullup and provides TTL current sinking capability. Since
the pulldown transistor is a low impedance device a "1"
must first be written to any line which is to be used as an
input. Reset initializes all lines to the high impedance' 'I"
state.

It is important to note that the ORL and the ANL are read!
write operations. When executed, the p,C "reads" the
port, modifies the data according'to the instruction, then
"writes" the data back to the port. The "writing" (es
sentially an OUTL instruction) enables the low impedance
pull-up momentarily again even ifthe data was unchanged
from a "I." This specifically ~pplies to configuratkms
that have inputs and outputs mixed together on the same
port. See also .section 13.7.

BUS

Bus is also an 8-bit port which is a true bidirectional port
with associated input and output strobes. If the bidirec
tional feature is not' needed, Bus can serve as either a

12-5

statically latched output port or non-latching input port.
Input and output lines on this port cannot be mixed
however.

As a static port, data is written and latched using the OUTL
instruction and inputted using the INS instruction. The
INS and OUTL instructions generate pulses on the cor
responding RD and WR output strobe lines; however. in
the static port mode they are generally not used. As a
bidirectional port·the MOVX instructions are used to read
and write the port. A write to the port generates a pulse
on the WR ou~ line and output data is valid at the
trailing edge of WR. A read of the port generates a pulse
on the RD output line and input data must be valid at the
trailing edge of RD. When not being written or read, the
BUS lines are in a high impedance state. See also sections
13.6 and 13.7.

12.1.5 Test and INT Inputs
Three pins serve as inputs and are testable with the~
ditional jump instruction. These are TO, Tl, and INT.
These pins allow inputs to cause program branches without
the necessity to load an.input port into the acoumulator.
The TO, Tl, and INT pins have other possible functions
as well. See the' pin description in Section 12.2.

12.1.6 Program Counter and Stack
The Program Counter is an independent counter, while the
Program Counter Stack is implemented suing pairs of reg
isters in the Data Memory Array. Only 10, 11, or 12 bits
of the Program Counter are. used to address the 1024,
2048, or 4096 words, of on-board program memory of the
8048AH, 8049AH, or 8050AH, while the most significant
bits can be used for external Program Memory fetches.
See Figure 12.5. The Program Counter is initialized to
zero by activating the Reset line.

1~IArol~I~I~I~I~I~I~~~I~I~1
!

I !

Conventional Program Counter
• Counts OOOH to 7FFH
• Overflows 7FFH to OOOH

Figure 12-5. Program Counter

An interrupt or CALL to a subroutine causes the contents
of the program counter to be stored in one of the 8 register
pairs of the Program Counter Stack as shown in Figure
12-6. The pair to be used is determined by a 3-bit Stack
Pointer which is part of the Program Status Word (PSW).

SINGLE COMPONENT: MCS®-48 SYSTEM

POIN

111

TER
R23.

the word. The Program Status Word is actually a collection
of flip-flops throughout the machine which can be read or
written as a whole. The ability to write to PSW allows
for easy restoration of machine status after a power down

22 sequence.

110

101

100

011

010

001

000

,

....L

,

....L

:
....L · .-l. ,
·L

~
psw · PC8-11

PC4-7 'i >.PCO-3

MSB LSB

Figure 12-6. Program Counter Stack

21
20

19

18

17

16

15

14

13

12

11

10

9

R8

Data RAM locations 8-23 are available as stack registers
and are used to store the Program Counter and 4 bits of
PSW as shown in Figure 12-6: The Stack Pointer when
initialized to 000 pointS to RAM locations 8 and 9. The
first subroutine jump or interrupt results in the program
counter contents being transferred to locations 8 and 9 of
the RAM array. The stack pointer is then incremented by
one to point to locations 10 and 11 in anticipation of
another CALL. Nesting of subroutines wihtin subroutines
can continue up to 8 times without overflowing the stack,
If overflow does occur the deepest address stored (loca
tions 8 and 9) lNiil be 'overwritten and lost sinoe the stack
pointer overflows from III to.OOO. It also underflows from
000 to 111.

The end of a subroutine, which is signalled by a return
instruction (RET or RETR), causes the Stack Pointer to
be decremented and (the contents of the resulting register
pair to be transferred to the Program Counter.

12.1.7 Program Status Word

An 8-bit status word which can be loaded to arid from the
accumulator exists called the Program 'Status:W ord
(PSW); Figure 12-7 shows the information available in

12-6

MSB

SAVED IN STACK
I

CY CARRY

STACK POINTER
I

AC AUXILIARY CARRY
FO FLAG 0
BS REGISTER BANK SELECT

LSB

Figure 12-7. Program Status Word (PSW)

The upper four bits of PSW are stored in the Program
Counter Stack with every call to subroutine or interrupt
vector and are optionally restored upon return with the
RETR instruction. The RET return instruction does not
update PSW.

The PSW bit definitions are as follows:

Bits 0-2: Stack Pointer bits (So' S l' S2)

Bit 3: Not used (' '1" level when read)

Bit 4: Working Register Bank Switch Bit(BS)
. 0 = Bank 0

I = Bank I

Bit 5: Flag 0 bit (FO) user controlled flag which can
be complemented or cleared, and tested with
the conditional jump instruction JFO.

Bit 6: Auxiliary Carry (AC) carry bit generated by
an ADD instruction and used by the decimal'
adjust instru~tion DA A.

Bit 7: CatTy (C'Y) carry flag which indicates that the
previous operation has' resulted in overflow of
the accumula~or.

12.1~8 Condltonal Branch Logic

The conditional branch logic within the processsor enables
several conditions internal and external to the processor
to be tested by the users program. By using the conditronal
jump instruction the conditions that are listed in Table
12-1 can effect a change in the sequence of the program
execution.

SINGLE COMPONENT MCS®-48 SYSTEM

Table 12·1

Jump Conditions
Device Testable (Jum On)

not all
Accumulator All zeros zeros
Accumulator Bit - 1
Carry Flag ~ I
User Flags (FO, FI) - I
Timer Overflow Flag - I
Test Inputs (TO,..!!) 0 1
Interrupt Input (INT) 0 -

12.1.9 Interrupt

An interrupt sequence is initiated by applying a low "0"
level input to the INT pin. Interrupt is level triggered and
active low to allow "WIRE ORing" of several interrupt
sources at the input pin. Figure 12-8 shows the interrupt
logic of the 8048AH. The Interrupt line is s.ampled every
instruction cycle and when detected causes a "call to
subroutine" at location 3 in program memory as soon as
all cycles of the current instruction are complete. On 2-
cycle instructions the interrupt line is sampled on the 2nd
cycle only. INT must be held low for at least 3 machine
cycles to ensure proper interrupt operations. As in any
CALL to subroutine, the Program Counter and Program
Status word are saved in the stack. For a description of
this operation see the previous section, Program Counter
and Stack. Program Memory location 3 usually contains
an unconditional jump to an interrupt service subroutine
elsewhere in program memory. The end of an interrupt
service subroutine is signalled by the execution of a Return
andRestore Status instruction RETR. The interrupt system
is single level in that once an interrupt is' detected all
further interrupt requests are ignored until execution of an
RETR reenables the interrupt input logic. This occurs ,at
the beginning of the second cycle ofthe RETR instruction.
This sequence holds true also for an internal interrupt
generated by timer overflow. If an internal timer/counter
generated interrupt and an external interrupt are detected
at the same time, the external source will be recognized.
See the following Timer/Counter section for a description
of timer interrupt. If needed, a second external interrupt
can be created by enabling the timer/counter interrupt,
loading FFH in the Counter (ones less than terminal
count), and enabling the event counter mode. A "1" to
"0" transition on the Tl input will then cause an interrupt
vector to location 7.

INTERRUPT TIMING

The interrupt input may be enabled or disabled under
Program Control using the EN I and DIS I instructions.
Interrupts are disabled by Reset and remain so until en-

12·7

abled by the users program. An interrupt request must be
removed before the RETR instruction is executed upon
return from the service routine otherwise the processor
will re-enter the service routine immediately. Many pe
ripheral devices prevent this situation by resetting their
interrupt request line whenever the processor accesses
(Reads or Writes) the peripherals data buffer register. If
the interrupting device does not require access by the
processor, one output line of the 8048AH may be des
ignated as an "interrupt acknowledge" which is activated
by the service subroutine to reset the interrupt request.
The INT pin may also be tested using the conditional jump
instruction IN!. This instruction may be used to detect the
presence of a pending interrupt before interrupts are en
abled. If interrupt is left disabled, INT may be used as
another test input like TO and T!.

12.1.10 Time/Counter

The 8048AH contains a counter to aid the user in counting
external events and generating accurate time delays with
out placing a burden on the processor for these functions.
In b,oth modes the counter operation is the same, the only
difference being the source of the input to the counter.
The timer/event counter is shown in Figure 12-9.

COUNTER

The 8-bit binary counter is presettable and readable with
two MOY instructions which transfer the contents of the
accumulator to the counter and vice versa. 'The counter
content may be affected by Reset and should be initialized '
by software. The counter is stopped by a Reset or STOP
TCNT instruction and remains stopped until started as a
timer by a START T instruction or as an event counter
by a START CNT instruction. Once started the counter
will increment to this maximum count (FF) and overflow
to zero continuing its count until stopped by a STOP TCNT
instruction or Reset.

The increment from maximum count to zero (overflow)
results in the setting of an overflow flag flip-flop and in
the generation of an interrupt request. The state of the
overflow flag is testable with the conditional jump instruc
tion JTF. The flag is reset by executing a JTF or by Reset.
The interrupt request is stored in a latch and then ORed
with the external interrupt input INT. The timer interrupt
may be enabled or disabled independently of external in
terrupt by the EN TCNT! and DIS TCNT! instructions.
If enabled, the counter overflow will cause a subroutine
call to location 7 where the timer or counter service routine
may be stored,

If timer and external interrupts occur simultaneously, the
external source will be recognized and the Call will be to

SINGLE. COMPONENT MCS®·48 SYSTEM

S

JTF
EXECUTED ~-- ~~-+_~ R

RESET--_.J'

TIMER
FLAG

TIMER ------+---1
OVERFLOW, S Q

TIMER
OVERFLOW

TIMER INT
RECOGNIZED
EXECUTED

>-----lR

RESET

DIS TCNTI ___

EXECUTED ')----1

RESET

INTcr--------l
PIN

S

R

D

FF

TIMER
INT

ENABLE

INT
FF

CLK
ALE--I'-'"

LAST CYCLE I------...J
OFINST.

OISI

ENI
EXECUTED

EXECUTED __ ---JL/--1

S

INT
ENABLE

R

Q

Q

Q

Q

RESET '--__ ..J

CONDITIONAL
JUMP LOGIC

INTERRUPT
CALL

EXECUTED

CLR
D Q

Q
CLK

S Q
INTERRUPT

IN
PROGRESS

R

RESET

RETR
EXECUTED

FF

EXTERNAL
INTERRUPT

RECOGNIZED

TIMER
INTERRUPT

RECOGNIZED

1. WHEN INTERRUPT IN PROGRESS FLIP-FLOP IS SET
ALL FURTHER INTERRUPTS ARE LOCKED OUT
INDEPENDENT OF STATE OF EITHER INTERRUPT
ENABLE FLIP-FLOP.

2. WHILE TIMER INTERRUPTS ARE DISABLED TIMER
OVERFLOW fli WILL NOT STORE ANY OVERFLOW
THAT OCCURS. TIMER FLAG WILL BE SET, HOWEVE,R.

Figure 12·8. Interrupt Logic

. 12-8

SINGLE COMPONENT MCS®-48 SYSTEM

XTAL-15

PRESCALER

732

CLEARED ON START TIMER

EDGE
DETECTOR

START
COUNTER

o
STOPT

LOAD OR READ

I
8BITTIMERI

EVENT COUNTER

JUMP ON
TIMER FLAG

OVERFLOW
FLAG

ENABLE--------~L_~
INT

Figure 12-9. Timer/Event Counter

location 3. Since the timer interrupt is latched it will re
main pending until the external device is serviced and
immediately be recognized upon return from the service
routine. The pending timer interrupt is reset by the Call
to location 7 or may be removed by executing a DIS
TCNT! instruction.

AS AN EVENT COUNTER

Execution of a START CNT instruction connects the T!
input pin to the counter input and enables the counter.
The T! input is sampled at the beginning of state 3 or in
later MCS-48 devices in state time 4. Subsequent high to
low transitions on TI will cause the counter to increment.
T! must be held low for at least 1 machine cycle to insure
it won't be missed. The maximum rate at which the
counter may be incremented is once per three instruction
cycles (every 5.7 f.A-sec when using an 8 MHz crystal)
there is no minimum frequency. T! input must remain
high for at least 115 machine cycle after each transition.

AS A TIMER

Eexcution of a START T instruction connects an internal
clock to the counter input and enables the counter. The
internal clock is derived bypassing the basic machine cycle
clock through a + 32 prescaler. The prescaler is reset
during the START T instruction. The resulting clock in
crements the counter every 32 machine cycles. Various
delays from I to 256 counts can be obtained by presetting
the counter and detecting overflow. Times longer than 256
counts may be achieved by accumulating multiple over
flows in a register under software control. For time res-

12-9

olution less than 1 count an external clock can be applied
to the T I input and the counter operated in the event
counter mode. ALE divided by 3 or more can serve as
this external clock. Very small delays or "fine tuning"
of larger delays can be easily accomplished by software
delay loops.

Often a serial link is desirable in an MCS-48 family mem
ber. Table 12-2 lists the timer counts and cycles needed
for a specific baud rate given a crystal frequency.

12.1.11 Clock and Timing Circuits

Timing generation for the 8048AH is completely selfcon
tained with the exeception of a frequency reference which
can be XTAL, ceramic resonator, or external clock source.
The Clock and Timing circuitry can be divided into the
following functional blocks.

OSCILLATOR

The on-board oscillator is a high gain parallel resonant
circuit with a frequency range of I to II MHz. The XI
external pin is the input to the amplifier stage while X2
is the output. A crystal or ceramic resonator connected
between XI and X2 provides the feedback and phase shift
required for oscillation. If an accurate frequency reference
is not required, ceramic resonator may be used in place
of the crystal.

For accurate clocking, a crystal should be used. An ex
ternally generated clock may also be applied to XI-X2
as the frequency source. See the data sheet for more
information.

SINGLE COMPONENT MCS®~48 SYSTEM

Table 12-2. Baud Rate Generation

Frequency Tcy TO Prr(1/5 Tcy) Timer Prescaler '
(MHz) (32T~

4 3.75MS 750ns 120MS
6 2.50MS 500ns 80MS
8 1.88MS 375ns 60.2MS

11 1.36MS 275ns 43.5MS

Baud 4 MHz 6 MHz 8 MHz 11 MHz
Rate Timer Counts + Timer Counts + Timer Counts + Timer Counts +

Instr. Cycles Instr. Cycles Instr. Cycles lnstr. Cycles

110 75 + 24 Cycles 113 + 20 Cycles 151 + 3 Cycles 208 + 28 Cycles
.01% Error .01% Error .01% Error .01% Error

300 27 + 24 Cycles 41 + 21 Cycles 55 + 13 Cycles 76 + 18 Cycles
.1% Error .03% Error .01% Error .04% Error

1200 6 + 30 Cycles 10 + 13 Cycles 12 + 27 Cycles 19 + 4 Cycles
.1% Error .1% Error .06% Error .12% Error

1800 4 + 20 Cycles 6 + 30 Cycles 9 + 7 Cycles 12 + 24 Cycles
.1% Error .1% Error .17% Error .12% Error

2400 3 + 15 Cycles 5 + 6 Cycles 6 + 24 Cycles 9 + 18 Cycles
.1% Error .4% Error .29% Error .12% Error

4800 1 + 23 Cycles 2 + 19 Cycles 3 + 14 Cycles 4 + 25 Cycles
1.0% Error .4% Error

STATE COUNTER

The output of the oscillator is divided by 3 in the State
Counter to create a clock which defines the state times of
the machine (CLK). CLK can be made available on the
external pin TO by executing an ENTO CLK instruction.
The output of CLK on TO is disabled by Reset of the
processor.

CYCLE COUNTER

CLK is then divided by 5 in ti1e Cycle Counter to provide
a clock which defines a machine cycle consisting of 5
machine states as shown in Figure 12-10. Figure 12-11
shows the different internal operations as divided into the
machine states. This clock is called Address Latch Enable
(ALE) because of its function in MCS-48 systems with
external memory. It is provided continuously on the ALE'
output pin.

12.1.12 Reset

The reset input provides a means for initialization for the
processor. This Schmitt-trigger input has an internal pull
up device which in combination with an external 1 M fd
capacitor provides an internal reset pulse of sufficient
length to guarantee all circuitry is reset, as shown in Figure
12-12. If the reset pulse is generated externally the RESET
pin must be held low for at least 10 milliseconds a~ter the

12-10

.74% Error .12% Error

power supply is within tolerance. Only 5 machine cycles
(6.8 MS @ 11 MHz) are required if power is already on
and thl(oscillator has stabilized. ALE and PSEN (if EA
= 1) are active while in Reset.

Reset performs the following functions:

1) Sets program counter to zero.

2) Sets stack pointer to zero.

3) Selects register bank O.

4) Selects memory bank O.

5) Sets BUS to high impedance state (except when
EA = 5V).

6) Sets Ports 1 and 2 to input mode.

7) Disables interrupts (timer and external).

8) Stops timer.

9) Clears timer flag.

10) Clears FO and Fl.

11) Disables clock output from TO.

I

SINGLE COMPONENT MCS®-48 SYSTEM

.
S5

~

JUMP ON
TEST ~ 1 OR 0

.273 ~.ec (3.67 MHz)

-5
CYCLE

COUNTER (733 KHz)
'-____ ..1 1.36 ~.ec

DIAGRAM OF S04SAH CLOCK UTILITIES

1.36 ~.ec CYCLE .
S1 S2 S3 I S4 1 S5

INPUT DECODE EXECUTION
I NST.

INC. PC OUTPUT· 1 ADDRESS

I I
INSTRUCTION CYCLE

S1 1
INPUT t

I I

(1 BYTE, 2 CYCLE INSTRUCTION ONLY)

PREVIOUS CYCLE-.. ...,It--..... ---1ST CYCLE------I .. ~I ... 01(------2ND CYCLE----.. ~I

STATE TIME:

S2 I 53 I S4 I S5 I S1 I S2 I S3 I S4 S5 I S1 55 I S1 I S2

(02)"TO

ALE
PSEN" ----------~

RD,WR _____________________________________ ~

"EXTERNAL MODE
"IF ENABLED

S04SAH/S049AH TIMING

Figure 12-10. MCS®-48 Timing Generation and Cycle Timing

12.1.13 Single-Step

This feature, as pictured in Figure 12-13, provides the
user with a debug capability in that the processor can be
stepped through the program one instruction at a time.
While stopped, the address of the next instruction to be
fetched is available concurrently on BUS and the lower

12·11

half of Port 2. The user can therefore follow the program
through each of the instruction steps. A timing diagram,
showing the interaction' between output ALE and input
S8, is shown. The BUS buffer contents are lost during
single step; however, a latch may be added to reestablish
the lost 110 capability if needed. Datais valid at the leading
edge of ALE.

CYCLE 1

INSTRUCTION Sl S2 S3 54

INA,P FETCH INCREMENT - 'INCREMENT
INSTRUCTION PROGRAM COUNTER TIMER

OUTLP,A FETCH INCREMENT - 'INCREMENT
INSTRUCTION PROGRAM COUNTER TIMER

" cO
ANL P, = DATA FETCH INCREMENT - 'INCREMENT

INSTRUCTION PROGRAM COUNTER TIMER
c:
; ORL P, = DATA FETCH INCREMENT - 'INCREMENT

INSTRUCTION PROGRAM COUNTER TIMER ...
~ ... INS A, BUS FETCH INCREMENT - INCREMENT

INSTRUCTION PROGRAM COUNTER TIMER ...
Q)
0

OUTLBUS,A FETCH INCREMENT - INCREMENT
INSTRUCTION PROGRAM COUNTER TIMER

Q)

~
ANL BUS, = DATA FETCH INCREMENT - 'INCREMENT

INSTRUCTION PROGRAM COUNTER TIMER
:::J:
iii
~

ORL BUS, = DATA FETCH INCREMENT - 'INCREMENT
INSTRUCTION PROGRAM COUNTER TIMER

CD
~

~ :::J:
I\) S"

2l.

MOVX@'R,A FETCH INCREMENT OUTPUT RAM INCREMENT
INSTRUCTION PROGRAM COUNTER ADDRESS TIMER

MOVXA,@R FETCH INCREMENT OUTPUT RAM INCREMENT
INSTRUCTION PROGRAM COUNTER ADDRESS TIMER .. c:

(')
MOVDA,PI

FETCH INCREMENT OUTPUT INCREMENT
INSTRUCTION PROGRAM COUNTER OPCODE/ADDRESS TIMER

:::.
0 :;, MOVDPI,A FETCH INCREMENT OUTPUT INCREMENT

INSTRUCTION PROGRAM COUNTER OPCODE/ADDRESS TIMER
-I
3"
:i"
cc
c

ANLD P,A FETCH INCREMENT OUTPUT INCREMENT
INSTRUCTION PROGRAM COUNTER OPCODE/ADDRESS TIMER

ORLD P,A FETCH INCREMENT OUTPUT INCREMENT
INSTRUCTION PROGRAM COUNTER OPCODE/ADDRESS TIMER

ii'
cc .. J(CONDiTIONAL) FETCH INCREMENT' SAMPLE 'INCREMENT

INSTRUCTION PROGRAM COUNTER CONDITION SAMPLE
DI
3 STRTT FETCH INCREMENT - -

STRTCNT INSTRUCTION PROGRAM COUNTER

STOP TCNT FETCH INCREMENT - , -
INSTRUCTION PROGRAM COUNTER

ENI FETCH INClIEMENT - ' ENABLE
INSTRUCTION PROGRAM COUNTER INTERRUPT

FETCH INCREMENT ' DISABLE DISI -
INSTRUCTION PROGRAM COUNTER INTERRUPT

ENTOCLK FETCH INCREMENT ' ENABLE
INSTRUCTION PROGRAM COUNTER CLOCK

S5

-

OUTPUT
TO PORT

READ PORT

READ PORT

-
OUTPUT
TO PORT

READ PORT

READ PORT

OUTPUT
DATA TO RAM

-

-

OUTPUT DATA
TO P2LOWER

OUTPUT
DATA

OUTPUT
DATA

-
START

COUNTER

STOP
COUNTER

-
-

-

CYCLE 2

Sl S2 S3 54 S5

- READ - , - -PORT

- - - , - -

FETCH INCREMENT 'OUTPUT - -IMMEDIATE DATA PROGRAM COUNTER TO PORT

FETCH INCREMENT 'OUTPUT - -
IMMEDIATE DATA PROGRAM COUNTER TO PORT

READ - , - -- PORT

- - - , - -
FETCH INCREMENT 'OUTPUT - -IMMEDIATE DATA PROGRAM COUNTER TO PORT

FETCH INCREMENT 'OUTPUT - -IMMEDIATE DATA PROGRAM COUNTER TO PORT

- - - , - -

- READ - , - -
DATA

- READ P2 - , - -LOWER

, - - - - -
, - - - - -

- - - , - -

FETCH UPDATE , - - -, IMMEDIATE DATA PROGRAM COUNTER

'VALID INSTRUCTION ADDRESSES ARE OUTPUT
AT THIS TIME IF EXTERNAL PROGRAM MEMORY IS
BEING ACCESSED,

(1) IN LATER MCS-48 DEVICES TlIS SAMPLED IN S4.

~
Z
C)
rm
o o
3:
." o
Z
m
Z
-I
3:
o
C/)
®
I

Q)

C/)
-<
C/)
-I m
3:

SINGLE COMPONENT MCS®-4S SYSTEM

TIMING

EXTERNAL RESET

Vcc

ACTIVE
PULLUP

POWER ON RESET

Vcc

~ lK

[
Figure 12-12

The 8048AH operates in a single-step mode as follows:

1) The processor is requested to stop by applying a low
level on SS.

2) The processor responds by stopping during the address
fetch portion of the next instruction. If a double cycle
instruction is in progress when the single step com
mand is received, both cycles will be completed before
stopping.

3) The processor acknowledges it has entered the stopped
state by raising ALE high. In this state (which can be
maintained indefinitely) the address of the next instruc
tion to be fetched is present on BUS and the lower
half of port :2.

4) SS is then raised high to bring the processor out of the
stopped mode allowing it to fetch the next instruction.
The exit from stop is indicated by the processor bring
ing ALE low.

5) To stop the processor at the next instruction SS must
be brought low again soon after ALE goes low. If SS
is left high the processor· remains in a "Run" mode.

A diagram for implementing the single-step function of
the 8748H is shown in Figure 12-13. D-type flip-flop with
preset and clear is used to generate SS. In the run mode
SS is held high by keeping the flip-flop preset (preset has
precedence over the clear input). To enter single step,
preset is removed allowing ALE to bring SS low via the

dear input. ALE should be buffered since the clear input
of an SN7474 is the equivalent of 3 TTL loads. The
processor is now in the stopped state. The next instruction
is initiated by clocki!!s a "1" into the flip-flop. This' '1"
will not appear on SS unless ALE is high removing clear
from the flip-flop. In response to SS going high the pro
cessor be~s an instruction fetch which brings ALE low
resetting SS through the clear input and causing the pro
cessor to again enter the stopped state.

12.1.14 Power Down Mode
(8048AH, 8049AH, 8050AH,
8039AHL, S035AHL, S040AHL)

Exqa circuitry has been added to the 8048AHl8049AHI
8050AH ROM version to allow power to be removed from
all but the dllta RAM array for low power standby oper
ation. In the power down mode the contents of data RAM
can be maintained while drawing typically 10% to 15%
of normal operating power requirements.

v ce serves as the 5V supply pin for the bulk of circuitry
while the V DD pin supplies only the RAM array. In normal
operation both pins are a 5V while in standby, Vee is at
ground and VDD is maintained at its standby value. Ap
plying Reset to the processor through the RESET pin
inhibits any access to the RAM by the processor and
guarantees that RAM cannot be inadvertently altered as
power is removed from V ce'

A typical power down sequence (Figure 12-14) occurs as
follows:

1) Imminent power supply failure is detected by user de
fined circuitry. Signal must be early enough to allow
8048AH to save all necessary data before V ce falls
below normal operating limits.

2) Power fail sign;!l is used to interrupt processor and
vector it to a power fail service routine.

3) Power fail routine saves all important data and machine
status in the internal data RAM array. Routine may
also initiate transfer of backup supply to the V DD pin
and indicate to external circuitry that power fail routine
is complete.

4) Reset is applied to guarantee data will not be altered
as the power supply falls out of limits. Reset must be
held low until V ce is at ground level.

Recovery from the Power Down mode can occur as any
other power-on sequence with an external capacitor on
the Reset input providing the necessary delay. See the
previous section on Reset.

12-13

SINGLE COMPONENT MCS®-48 SYSTEM

+5V

+5V SINGLE 10K
STEP

MOMENTARY
PUSHBUTTON 10K

~U~N--~------------'

I S3 I S4

ALEJi

SS

BUS

P20-23

+5V

10K

S5 I S1 I

1/0

DEB OUNCE
LATCH

1/27400

SINGLE STEP CIRCUIT

S2 I S3 I . .

I PC 0-7 ;
PC 8-11

f

SINGLE STEP TI~ING

PRESET
+5V o

.-------t> CLOCK

. I .S3 I S4 I S5 I

n
:
:

Figure 12·13. Single Step Operation

12-14

Q

ALE

I S2 I

c
1/0

SINGLE COMPONENT MCS®-48 SYSTEM

POWER~
SUPPLY . PROCESSOR i' "----

INTE~RUPTED I :
POWER -----, . I I NORMAL
SUPPLY _. _' __ I __ I ___ POWERON
FAIL SIGNAL I I I SEQUENCE

I I FOLLOWS

RESET : LJ ___ _
I

DATA SAVE
ROUTINE
EXECUTED

I
ACCESS TO
DATA RAM
INHIBITED

Figure 12-14. Power Down Sequence

12.1.15 External Access Mode

Normally the first IK (S04SAH), 2K (S049AH), or 4K
(S050AH) words of program memory are automatically
fetched from internal ROM or EPROM. The EA input pin
however allows the user to 'effectively disable internal
program memory by forcing all program memory fetches

. to reference external memory. The following chapter ex
plains how access 1'0 external program memory is
accomplished.

The External Access mode is very useful in system test
and debug because it allows the user to disable his internal
appli~ations program and substitute an external program
of his choice - a diagnostic routine for instance. In ad
dition, section 12.4 explains how internal program mem
ory can be read externally, independent of the processor.
A "I" level on.EA initiates the external accesss mode.
For proper operation, Reset should be applied while the
EA input is changed.

12.1.16 Sync Mode

The S04SAH, S049AH, S050AH has incorporated a new
SYNC mode. The Sync mode is provided to ease the
design of multiple controller circuits by allowing the de
signer to force the device into known phase and state time.
The SYNC mode may also be utilized by automatic test
equipment (ATE) for quick, easy, and efficient synchro
nizing between the tester and the DUT (device under test).

SYNC mode is enabled when SS' pin is raised to high
voltage level of + 12 volts. To begin synchronization, TO
is raised to 5 volts at least four clocks cycles after SS'.
TO must be high for at least four X 1 clock cycles to fully

reset the prescaler and time state generators. TO may then
be brought down with the rising edge of X 1. Two clock
cycles later, with the rising edge of Xl, the device enters
into, Time State I, Phase I, SS' is then brought down to
5 volts 4 clocks later after TO. RESET' is allowed to go
high 5 tCY (75 clocks) later for normal execution of code.
See Figure 12-15.

12.1.17 Idle Mode

Along with the standard power down, the'SOC43S, SOC49 ,
SOC50 has added an IDLE mode instruction (OIH) to give

. even further flexibility and power management. In the
IDLE mode, the CPU is frozen while the oscillator, RAM,
timer, and the interrupt circuitry remains fully active.

When the IDL instruction (OIH) is decoded, the clock to
the CPU is stopped. CPU status is preserved in its entirety:
the Stack Pointer, Program Counter, Program Status
Word, Accumulator, RAM, and all the registers maintain
their data throughout idle.

Externally, the following occurs duriQg idle:

I) The ports remain in the logical state they were in when
idle was executed.

2) The bu's remains in the logical state it was in when
idle was executed if the bus was latched.

If the ,bus was in It high Z condition or if external
program memory is used the bus will remain in the
float state.

3) ALE remains in the inactive state (low).

4) RD', WR' , PROG' , and PSEN' remains in the inactive
state (high).

5) TO outputs clock if enabled.

There are three ways of exiting idle. Activating any en
abled interrupt (external or timer) will cause the CPU to
vector to the appropriate interrupt rontine. Following a
RETR instruction, program execution will resume at the
instruction following the address that contained the IDL
instruction.

The FO and FI flags may be used to give an indication if
the interrupt 9ccurred during normal program execution
or during i4le.This is done by setting· or clearing the flags
before going into idle. The interrupt service routine can
examine the flags and act accordingly when idle is ter
minated by an interrupt.

Resetting the device can also terminate idle. Since the
oscillator is already running, five machine cycles are all
that .is required to insure proper machine operation.

12-15

.SINGLE COMPONENT MCS®-48 SYSTEM

Xl

PHASE 1- - - - - - - - - - - - -

PHASE 2- - - - - - - - - - - - -

TIME STATE 2 3 4

12V~r---' SS .5V 1..-_________________ _

OV
5V TO OV-------------------j
5V.

5V .------.
ALE OV-------------------------~ 1..-___ _

~ OV---------------------------------------

RESET

SINGLE STEP

EXTERNAL
MEM

TEST {

INTERRUPT

BUS 8

8048AH
8049AH
8050AH

SYNC MODE TIMING

Figure 12-15. Sync Mode Timing

8

8

READ

PORT
#1 .

PORT
#2

WRITE
PROGRAM
STORE ENABLE
ADDRESS
LATCH ENABLE

12.2 PIN DESCRIPTION

The MCS-48 processors are packaged in 40 pin Dual In
Line Packages (DIP's). Table 12-3 is a summary of the
functions of each pin. Figure 12-16 is the logic symbol
for the 8048AH product family. Where it exists, the sec
ond paragraph describes each pin's function in an ex
panded MCS-48 system. Unless otherwise specified, each
input is TTL compatible and each output will drive one
standard TTL load.

Figure 12-16. 8048AH and 8049AH Logic Symbol

12-16

SINGLE COMPONENT MCS®-48 SYSTEM

Table 12-3. Pin Description
"

Pin
Designation Number· Function

Vss 20 Circuit G N D potential

VDD 26 Programming power supply; 21 V during program for the 8748H18749H; + 5V during
operation for both ROM and EPROM. Low power standby pin in 8048AH and
8049AHl8050AH ROM versions.

Vee 40 Main power supply; +5V during operation and during 8748H and 8749H pro-
gramming.

PROG 25 Program pulse; + 18V input pin during 8748H /8749H programming. Output strobe
for 8243 I/O expander.

PIO-PI7 27-34 8-bit quasi-bidirectional port, (Internal Pullup = 50KH)
(Port I)

P20-P27 21-24 8-bit quasi-bidirectional port. (Internal Pullup = 50KU)
(Port 2) 35-38

P20-P23 contain the four high order program counter bits during an external pro-
gram memory fetch and serve as a 4-bit IjO expander bus for 8243.

DO-D7 ,12-19 True bidirectional port which can be written or read synchronously using the RD.
(BUS) WR strobes. The port can also be statically latched.

Contains the 8 low order program counter bits during an external program mem-
ory fetch. and receives the addressed instruction under the control of PSEN, Also
contains the address and data during an external RAM data store instruction.
under control of ALE. RD. and WR,

.[0 I Input pin testable using the conditional transfer instructions JTO and J NTO. TO
can be designated as a clock output using ENTO CLK instruction. TO is also used
during programming and sync mode.

fI 39 Input pin testable using the JTI. and JNT I instructions. Can be designated the
event counter input using the STRT CNT instruction. (See Section 2,1.10)

iNT 6 Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled
after a reset. (Active low)

Interrupt must re~ain low for at least 3 machine cycles to ensure proper operation.
-
RD 8 Output strobe activated during a BUS relld. Can be used to enable data onto the

BUS from an external device. (Active low)

Used as a Read Strobe to External Data Memory.

RESET 4 Input which is used to initialize the processor, Also used during EPROM programming
" and verification. (Active low) (Internal pullup "" 80K 0)

WR 10 Output strobe during a BUS write. (Active low) Used as write strobe to external
data memory.

ALE II Address Latch Enable. This signal occurs once during each cycle and is useful as
a clock output.

The negative edge ,of A LE strobes address into external data and program memory.

12-17

SINGLE COMPONENT MCS®-48 SYSTEM

Table 12,3. Pin Description (Continued)

Pin
Designation Number· Function

--
PSEN 9 Program Store Enable. This output occurs only during a fetch to external program

memory. (Active low)
-
SS 5 Single step input can be used in conjunction with ALE to "single step" the processor

through each instruction. (Active low) (Internal pullup = 300K!!) + l2V for sync
modes (See 2.1.16)

EA 7 External Access input which forces all program memory fetches to reference ex-
ternal memory. Useful for emulation and debug, and essential for testing and pro-
gram verification. (Active high) + 12V for 8048AH /8049AH /8050AH program
verification and +18V for 8748H/8749H program verification (Internal pullup =
10M!! on 8048AH/8049AH/8035AHL/8039AHL/8050AH/8040AHL)

XTALI 2 One side of crystal input for internal oscillator. Also input for external source.

XTAL2 3 Other side of crystal/external source input.

'Unless otherwise stated. Inputs do not have internal pullup resistors. 8048AH, 8748H, 8049AH, 8050AH, 8040AHL

12.3 PROGRAMMING, VERIFYING AND
ERASING EPROM

The internal Program Memory of the 8748H and the
8749H may be erased and reprogrammed by the user as
explained in the following sections. See also the 8748H
and 8749H data sheets.

12.3.1 ProgrammingNerification

In brief, the programming process consists of: activating
the program mode, applying an address, latching the ad
dress, applying data, and applying a programming pulse.
This programming algorithm applies to both the 8748H
and 8749H. Each word is programmed completely before
moving on to the next and is followed by a verification
step. The following is a list of the pins used for program
ming and a descsription of their functions:

Pin
XTAL 1
Reset
Test 0

EA
BUS

P20-1
P20-2
VDD

PROG
Pl(~·PIl

Func;tion
ClOCk Input (3 to 4 MHz)
Initialization and Address Latching
Selection of Program (OV) or Verify
(5V) Mode
Activation of Program/Verify Modes
Address and Data Input Data Output
During Verify
Address Input for 8748H
Address Input for 8749H
Programming Power Supply
Program Pulse Input
Tied to ground (8749H only)

12-18

8748H AND 8749H ERASURE
CHARACTERISTICS

The erasure characteristics of the 8748H and 8749H are
such that erasure begins to occur when exposed to light
with wavelengths shorter than approximately 4000 Angs
troms (A). It should be noted that sunlight and certain
types of fluorescent lamps have wavelengths in the
3000-4000A range. Data show that constant exposure to
room level fluorescent lighting could erase the typical
8748H and 8749H in approximately 3 years while it would
take approximately 1 week to cause erasure when exposed
to direct sunlight. If the 8748H or 8749H is to be exposed
to these types of lighting conditions for extended periods
of time, opaque labels should be placed over the 8748H
window to prevent unintentional erasure.

When erased, bits of the 8748H and 8749H Program Mem
ory are in tl\e logic "0" state.

The recommended erasure procedure for the 8748H and
8749H is exposure to shortwave ultraviolet light which
has a wavelength of 2537 Angstroms (A). The integrated
dose (Le., UV intensity X exposure time) for erasure
should be a minimum of l5W-sec/cmz. The erasure time
with this dosage is approximately 15 to 20 minutes using
an ultraviolet lamp with a l2000J.tW/cmz power rating.
The 8748H and 8749H should be placed within one inch
from the lamp tubes during erasure. Some lamps have a
filter in their tubes and this filter should be removed before
erasure.

SINGLE COMPONENT MCS-48 SYSTEM

COMBINATION PROGRAMIVERIFY MODE (EPROM'. ONLY)

18V /
EA 5V ____J

I--------PROGRAM--------!+--'VERIFY'--"i----PROGRAM-

TO

IWW-

IAW-l---t--t-1WA

~ r-~O~A=TA~T=O~B=E-~
DBO-DB7 ~ - - PROGRAMMED VALID

P20-P22 LAST
ADDRESS ADDRESS (8-10) VALID

~ - ~
'DO

NEXT
ADDRESS

, IVDDwnIVD~H

+5---------------- -------------------------
PROG+:: ________ ~:J])--J{l~: __

+0 -------==--::-"'\. ... ----

VERIFY MODE (ROM/EPROM)

EA _--II
·TO

RE~ET ~ ... _________ ~;' \---------/
DBO-DB7 ==>---
P20-P22

NOTES:

ADDRESS
(0-7) VALID

ADDRESS (8-10) VALID NEXT ADDRESS VALID

1. PROG MUST FLOAT IF EA IS LOW (I.E., ¥o18V).

·TO QN EPROM ONLY.

Figure 12-17. ProgramNerlfy Sequence for 8749H/8748H

12-19

Expanded MCS®48 System 13

CHAPTER 13
EXPANDED MCS®-48 SYSTEM

13.0 INTRODUCTION

If the capabilities resident on the single-chip 8048AH/
8748H18035AHU8049AHl8749H/8039AHL are not suf
ficient for your system requirements, special on-board cir
cuitry allows the addition of a wide variety of external
memory, I/O, or special peripherals you may require. The
processors can be directly and simply expanded in the
following areas:

• Program Memory to 4K words

• Data Memory to 320 words (384 words with
8049AH)

• 110 by unlimited amount

• Special Functions using 8080/8085AH peripherals

By using bank switching techniques, maximum capability
is essentially unlimited. Bank switching is discussed later
in the chapter. Expansion is accomplished in two ways:

I) Expander 110 - A special 110 Expander circuit, the
8243, provides for the addition of four 4-bit Input!
Output ports with the sacrifice of only the lower half
(4-bits) of port 2 for inter-device communication. Mul
tiple 8243' s may be added to this 4-bit bus by gen
erating the required "chip select" lines.

2) Standard 8085 Bus ~ One port of the 8048AH/
8049AH is like the 8-bit bidirectional data bus of the
8085 microcomputer system allowing interface to the
numerous standard memories and peripherals of the
MCS®-80/85 microcomputer family.

MCS-48 systems can be configured using either or both
of these expansion features to optimize system capabilities
to the application.

Both expander devices and standard memories and pe
ripherals can be added in virtually any number and com
bination required.

13.1 EXPANSION OF PROGRAM MEMORY

Program Memory is expanded beyond the resident IK or
2K words by using the 8085 BUS feature of the MCS®-
48. All program memory fetches from the addresses less
than 1024 on the 8048AH and less than 2048 on the
8049AH occur internally with no external signals being
generated (except ALE which is always present). At ad
dress 1024 on the 8048AH, the processor automatically
initiates external program memory fetches.

13.1.1 Instruction Fetch Cycle (External)

As shown in Figure 13-1, for all instruction fetches from
addresses of 1024 (2048) or greater, the following will
occur:

13-1

1) The contents of the 12-bit program counter will be
output on BUS and the lower half of port 2.

2) Address Latch Enable (ALE) will indicate the time at
which address is valid. The trailing edge of ALE is
used to latch the address externally.

3) Program Store Enable (PSEN) indicates that an exter
nal instruction fetch is in progress and serves to enable
the external memory device.

4) BUS 'reverts to input (floating) mode and the processor
accepts its 8-bit contents as an instruction word.

ALE J

PSEN

FLOATING

BUS ~FLOATING~ FLOATING

ADDRESS INSTRUCTION

Figure 13-1. Instruction Fetch from
External Program Memory

L

All instruction fetches, including internal addresses, can be
forced to be external by activating the EA pin of the 8048AHI
8049AH!8d50AH. The 8035AHU8039AHLl8040AHL pro
cessors without program memory always operate in the ex
ternal program memory mode (EA = 5V).

13.1.2 Extended Program Memory
Addressing (Beyond 2K) .

For programs of 2K words or less, the 8048AH/8049AH
addresses program memory in the conventional manner.
Addresses beyond 2047 can be reached by executing a
program memory bank switch instruction (SEL MBO, SEL
MBI) followed by a branch instruction (JMP or CALL).
The bank switch feature extends the range of branch in
structions beyond their normal 2K range and at the same
time prevents the user from inadvertently. crossing the 2K
boundary.

PROGRAM MEMORY BANK SWITCH

The switching of 2K program memory banks is accom
plished by directly setting or resetting the most significant
bit of the program counter (bit II); see Figure 13-2. Bit
11 is not altered by normal incrementing of the program
counter but is loaded with the contents of a special flip
flop each time a JMP or CALL instruction is executed.
This special flip-flop is set by executing an SEL MB 1

EXPANDED MCS®-48 SYSTEM

instruction and reset by SEL MBO. Therefore, the SEL
MB instruction may be executed at any time prior to the
actual bank switch which occurs during the next branch
instruction encountered. Since all twelve bits of the pro
gram counter, including bit 11, are stored in the stack,
when a Call is executed, the user may jump to subroutines
across the 2K boundary and the proper bank will be re
stored upon return. However, the bank switch flip-flop
will not be altered on return.

IAftIAwl~I~I~I~I~I~I~I~I~I~1 C I

Conventional Pr~gram Counter
• Counts OOOH to 7FFH
• Overflows 7FFH to OOOH

JMP or CALL instructions transfer contents
of internal flipflop to All

• Flipflop set by SEL MBl
• Flipflop reset by SEL MBO

or by RESET

During interrupt service routine
All is forced to "0"
All 12 bits are saved in stack

Figure 13-2. Program Counter

INTERRUPT ROUTINES

Interrupts always vector the program counter to location
3 or 7 in the first 2K bank, and bit II of the program

3
PORT 20-22

8048AH ALE
8282

rr=V LATCH

~8 BUS "-
PSEN

counter is held at "0" during the interrupt service routine.
The ~nd of the service routine is signalled by the execution
of an RETR instruction. Interrupt service routines should
therefore be contained entirely in the lower 2K words of
program memory. The execution of a SEL MBO or SEL
MB I instruction within an interrupt routine is not rec
ommended since it will not alter PCII while in the routine,
but will change the internal flip-flop.

13.1.3 Restoring 1/0 Port Information

Although the lower half of Port 2 is used to output the
four most significant bits of address during an external
program memory fetch, the I/O information is still out
puted during certain portions of each machine cycle. 110
information is always present on Port 2' slower 4 bits at
the rising edge of ALE and can be sampled or latched at
this time.

13.1.4 Expansion Examples

Shown in Figure 13-3 is the addition of 2K words of
program memory using an 2716A 2K x 8 ROM to give
a total of 3K words of program memo!y:"'!!! this case no
chip select decoding is required and PSEN enables the
memory directly through the chip select input. If the sys
tem requires. only 2K of program memory, the same con
figuration can be used with an 8035AHL substituted for
the 8048AH. The 8049AH would provide 4K of program
memory with the same configuration.

'(7 to..
11) ADDRESS

V 2716
EPROM

·DATA
OUT
CS

USING 2K x 8 EPROM

Figure 13-3. Expanding MCS®-48 Program Memory Using Standard Memory Products

13-2

804BAH
B049AH

ALE

TEST 1/0
INPUTS

EXPANDED MCS®-48 SYSTEM

iffi
lOW 2Kx8

lOR E~~~~
WITH

AlDO_7 8~~1
8755

Aa-A10. CS

1/0

Figure 13-4 shows how the 8755/8355 EPROM/ROM with
110 interfaces directly to the 8048AH without the need
for an address latch. The 8755/8355 contains an internal
8-bit address latch eliminating the need for an 8212 latch.
In addition to a 2K x 8 program memory, the 8755/8355
also contains 16 I/O lines addressable as two 8-bit ports.
These ports are addressed as external RAM; therefore the
RD and WR outputs of the 8048AH are required. See the
following section on data memory expansion for more
detail. The subsequent section on 110 expansion explains
the operation of the 16 110 lines.

13.2 EXPANSION OF DATA MEMORY

Data Memory is expanded beyond the resident 64 words
by using the 8085AH type bus feature of the MCS®-48.

13.2.1 ReadlWrite Cycle

Figure 13-4. External Program Memory Interface

All address and data is transferred over the 8 lines of
BUS. As shown in Figure 13-5, a read or write cycle
occurs as follows:

ALE J I L

BUS >8< ___ FL_O_A_T_IN_G __ _

READ FROM EXTERNAL DATA MEMORY

ALE J L

BUS FLOATING FLOATING

WRITE TO EXTERNAL DATA MEMORY

FIgure 13·5. External Data Memory Timings

13-3

EXPANDED MC.S~-48 SYSTEM

I) The contents of register RO or Rl is outputed on BUS.

2) Address Latch Enable (ALE) indicates addresss is
valid. The trailing edge of ALE is used to latch the
address externally.

3) A read (RD) or write (WR) pulse on the corresponding
output pins of the S04SAH indicates the type of data
memory access i!!.£!.ogress. Output data is valid at the
trailing edge of WR and input data must be valid at
the trailing edge of RD.

4) Dat (S bits) is transferred in or out over BUS.

13.2.2 Addressing External Data Memory
External Data Memory is accessed with its own two-cycle
move instructions. MOVXA, @R and MOVX@R, A,
which transfer S bits of data between the accumulator and
the external memory location addressed by the contents
of one of the RAM Pointer Registers RO and RI. This
allows 256 locations to be addressed in addition to, the
resident lOCations. Additional pages may be added by
"bank switching" with extra output lines ofthe S04SAH.

13.2.3 Examples of Data Memory Expansion
Figure 13-6 shows how the S04SAH can be expanded
using the SI55 memory and 110 expanding device. Since
the S155 has an internalS-bit address latch, it can interface
directly to the S04SAH without the use of an external
latch. The S155 provides an additional 256 words of static
data memory and also includes 22 1/0 lines and a 14-bit
timer. See the following section on 110 expansion and the
S155 data sheet for more details on these additional
features.

BUS 8

ALE

8048AH WR
AD

PORT

3 TEST
INPUTS

18) 1/0

1'3.3 EXPANSION OF INPUT/OUTPUt

There are four possible modes of 110 expansion with the
S04SAH: one using a special low-cost expander, the S243;
another using standard MCS-SO/S5 1/0 devices; and a third
using the combination memory 110 ex,pander devices the
S155, S355, and S755. It is also possible to expand using
standard TTL devices as shown in Chapter 5.

13.3.1 I/O Expander Devi.ce

The most efficient means of 110 expansion for small sys
tems is the S243 110 Expander Device which requires only
4 port lines (lower half of Port 2) for communication with
the 804SAH. The S243 contains four 4-bit 110 ports which
serve as an extension of the on-chip 110 and are addressed
as ports #4-7 (see Figure 13-7). The following operations
may be performed on these ports:

• Transfer Accumulator to Port

• Transfer Port to Accumulator

• AND Accumulator to Port

• OR Accumulator to Port

A 4-bit transfer from a port to the lower half of the Ac
cumulator sets the most significant four bits to zero. All
communication between the S04SAH and the S243 occurs
over Port 2 lower (P2O-P23) with timing provided by an
output pulse on the PROG pin of the processor. Each trans
fer consists of two 4-bit nibbles: The first containing the
"op code" and port address, and the second containing
the actual 4 bits of data.

ADO_7

ALE 8155
256 x 8

\VA RAM

AD
101M

22 I/O

TIMER IN

TIMER OUT

Figure 13-6. 8048AHlnterfaceto·256 x 8 Standard Memories

EXPANDED MCS®-48 SYSTEM

/L ...I\.
20 1/0

'I v

PROG

a050AH 2] T::JTS
a049AH " 8048AH

A

P2O-P23 4. " "

fl CHIP SELECT CONNECTIO
-;:- THAN ONE EXPANDER IS

N IF MORE
USED

CS
A. "-

P4 4 1/0

PROG "
A

P5 4 1/0

8243
v

A "-
P6 4 1/0

DATA IN
v

P2
P7 4 1/0

v

EXPANDER INTERFACE

BITS2,3
MOO \ / '--. ___ -J

BITS 0, 1

OO} OO} READ 01 PORT 01 WRITE
10 ADDRESS 10 OR

P20-P23 ---("', ___ JX"' _____ .-J)>-----
11 11 AND

DATA (4-BITS) ADDRESS
ANDOPCODE

(4-BITS) OUTPUT EXPANDER TIMING

Figure 13-7. 8243 Expander 1/0 Interface

Nibble I

3 2 I 0

II II I A IA I
Instruction

Code
1_1 __

00 Read
01 Write
100R
II AND

Port
Address

Nibble 2

3 2 I 0

I did I did I
data

AA
00 - Port #4
01 - Port #5
10 - Port #6
II - Port #7

A high to low transition of the PROG line indicates that
address is present, while allow to high transition indicates
the presence of data. Additional 8243's may be added to
the four-bit bus and chip selected using additional output
lines from the 8048AHl8748H.

!/O PORT CHARACTERISTICS

Each of the four 4-bit ports of the 8243 can serve as either
input or output and can provide ·high drive capability in
both the high and low state.

13-5

13.3.2 1/0 Expansion with Standard
Pttr1pherals

Standard MCS-80/85 type I/O devices may be added to
the MCS@-48 using the same bus and timing used for Data
Memory expansion. Figure 13-8 shows an example of how
an 8048AH: can be connected to an MCS-85 peripheral.
110 devices reside on the Data Memory bus and in the
data memory address space and are accessed with the same
MOVX instructions. (See the previous section on data
memory expansion for a description of timing.) The fol
lowing are a few of the Standard MCS-80 devices which
are very useful in MCS@-48 systems:

• 8214 Priority Interrupt Encoder
• 8251 Serial Communications Interface
• 8255 General Purpose Programmable 110
• 8279 Keyboard/Display Interface
• 8253 Interval Timer

13.3.3 Combination Memory and
1/0 Expanders

As mentioned in the sections on program and data memory
expansion, the 8355/8755 and 8155 expanders also contain
110 capability.

EXPANDED MCS®,.48 S,YSTEM

8 KEYBOARD
INPUTS

INT INT

P20 C/D

8279
SCAN KEYBOARD

8048Ati DISPLAY OUTPUTS

RD RD
(A) DISPLAY

WR WR OUTPUT

BUS 8 DATA (B) DISPLAY
BUS OUTPUT

CS

-::-

Figure 13·8. Keyboard/Display Interface

8355/8755: These two parts of ROM and EPROM equiv
alents and therefore contain the same I/O structure. I/O
consists of two 8-bit ports which normally reside in the
external data memory address space and are accessed with
MOVX instructions. Associated with each port is an 8-
bit Data Direction Register which defines each bit in the
'port as either an input or an output. The data direction
registers are directly addressable, thereby allowing the
user to define under software control each individual bit
of the ports as either input or output. All outputs are
statically latched and double buffered. Inputs are not
latched.

8155/8156: I/O- on the 8155/8156 is configured as two
8-bit programmable 110 ports and one 6-bit programmable

BUS 8

PORT l' 8
8048AH

port. These three registers and a Control/Status register
are accessible as external data memory with the MOVX
instructions., The 'contents of the control register deter
mines the mode of the three ports. The ports can be pro
grammed as input or output with or without associated
handshake communication lines. In the handshake mode,
lines of the six-bit port become input and output strobes
for the two 8-bit ports. Also included in the 8155 is a
14-bit programmable timer. The clock inputto the timer
and the timer overflow output are available on external
pins. The timer can be programmed to stop on terminal
count or to continuously reload itself. A square wave or
pulse output on terminal count can also be specified.

PROGr-------~--~~-----~------4-------------~------------~

Figure 13·9. Low Cost 110 Expansion

13-6

EXPANDED MCS®-48 SYSTEM

110 EXPANSION EXAMPLES

Figure 13-9 shows the expansion of 110 using multiple
8243's. The only difference from a single 8243 system is
the addition of chip selects provided by additional 8048AH
output lines. Two output liens and a decoder could also
be used to address the four chips. Large numbers of 8243' s
would require a chip select decoder chip such as the 8205
to save 110 pins.

An 8255
A1 PROGRAM· PORT

MABLE A
PERIPHERAL

ALE INTERFACE PORT
8048AH

RO RO B

WR WR PORT
C

BUS 8 00-7
CS

OPTION #1 -::-

Figure 13-10 shows the 8048AH interface to a standard
MCS$-80 peripheral; in this case, the 8255 Programmable
Peripheral Interface, a 4O-pin part which provides three
8-bit programmable 110 ports. The 8255 bus interface is
typical of programmable MCS$-80 peripherals with an
8-bit bidirectional data bus, a RD and WR input for Read!
Write control, a CS (chip select) input used to enable the
Read!Write control logic and the address inputs used to
select various internal registers.

P20 AO 8255
P21 A1 PROGRAM· PORT

MABLE A
PERIPHERAL

8048AH _ INTERFACE PORT

RO AD B

WR WR PORT
C

BUS 8 00-7
CS

OPTION #2 -::-

Figure 13·10. Interface to MCS®·80 Peripherals

Interconnection to the 8048AH is very straightforward
with BUS, RD, and WR connecting directly to the cor
responding pins on the 8255. The only design consider
ation is the way in which the internal registers of the 8255
are to be addressed. If the registers are to be addressed
as external data memory using the MOVX instructions,
the appropriate number of address bits (in this case, 2)
must be latched on BUS using ALE as described in the
section on external data memories. If only a single device
is connected to BUS, the 8255 may be continuously se
lected by' grounding CS. If multiple 8255's are used, ad
ditional address bits can be latched and used as chip
selects.

A second addressing method eliminates external latches
and chip select decoders by using output port lines as ad
dress and chip select hnes directly, ,rhLS method, of
course, requires the setting of an output port with address
information prior to executlng a MOYX instruction.

13.4 MULTI-CHIP MCS®·48 SYSTEMS

Figure 13- i I shows the addition of two memory expanders
to the 8048AH, one 8355/8755 ROM and one 8156 RAM.
The main consideration in designing such a system is the

13-7

addressing of the various memories and 110 ports. Note
that in this configuration address lines AIO and AlI have
been 0 Red to chip select the 8355. This ensures that the
chip is active for all external program memory fetches in
the IK to 3K range and is disabled for all other addresses.
This gating has been added to allow the I/O port of the
8355 to be used. If the chip was left selected all the time,
there would be conflict between these ports and the RAM
and lIO of the 8156. The NOR gate could be eliminated
and All connected directly to the CE (instead of CEl input
of the 8355; however, this would create a IK word "hole"
in the program memory by causing the 8355 to be active
in the 2K and 4K range instead of the normal IK to 3K
.range.

In this system the various locations are addressed as
follows:

• Data RAM - Addresses 0 to 255 when Port 2 Bit
o has been previously set = 1 and Bit 1 set = 0

• RAM 110 - Addresses 0 to 3 when Port 2 Bit 0 =
1 and Bit I = 1

• ROM lIO - Addresses 0 to 3 when Port 2 Bit 2 or
Bit 3 = I

See the memory map in Figure 13-12.

EXPANDED MCS®.48 SYSTEM

8156/8355

ALE

PSEN
8048AH RD

WR

BUS 8

A8-10

83551
8755
ROM

EPROM

PORT

PORT

TIMER
OUT

Figure 13-11. The Three-Component MCS®-48 System

13.5 MEMORY BANK SWITCHING

Certain systems may require more than the 4K words of
program 'memory which are directly addressable by the
program counter or more than the 256 data memory and
1/0 locations directly addressable by the pointer registers
RO and Rl. These systems can be achieved using "bank
switching" techniques. Bank switching is merely the se
lection of various blocks of "banks" of memory using
dedicated output port lines from the processor. In the case
of the 8048AH, program memory is selected in blocks of
4K words at a time, while data memory and 110 are en
abled 256 words at a time.

The most important consideration in implementing two or
more banks is the software required to cross the 'bank
boundaries. Each crossing of the boundary requires that
the processor first write a control bit to an output port
before accessing memory or 1/0 in the new bank.' If pro
gram memory is being switched, programs should be or
ganized to keep boundary crossings to a minimum.

13,8

Jumping to subroutines across the boundary should be
avoided when possible since the programmer must keep
track of which bank to return to after completion of the
subroutine. If these subroutines are to be nested and ac
cessed from either ;bank, a software "stack" should be
implemented to save the bank switch bit just as if it were
another bit of the program counter.

From a hardware standpoint bank switching is very
straightforward and involves only the connection of an
110 line or lines as bank enable signals. These enables are
ANDed with normal memory and 110 chip select signals
to activate the proper bank.

13.6 CONTROL SIGNAL SUMMARY

Table 13 summarizes the instructions which activate the
various control outputs of the MCS@-48 processors. Dur
ing all other instructions these outputs are driven to the
active state.

EXPANDED MCS®-48 SYSTEM

Table 13-1. MCS®-48 Control Signals The latched mode (INS, OUTL) is intended for use in the
single-chip configuration where BUS is not begin used as
an expander port. OUTL and MOVX instructions can be
mixed if necessary. However, a previously latched output
will be destroyed by executing a MOVX instruction and
BUS will be left in the high impedance state. INS does
not put the BUS in a high impedance state. Therefore,
the use of MOVX after OUTL to put the BUS in a high
impedance state is necessary before an INS instruction
intended to read an external word (as opposed to the pre
viously latched value).

Control
Signal When Active

RD During MOVX, A, @R or INS Bus

WR During MOVX @R, A or OUTL Bus

ALE Every Machine Cycle

PSEN During Fetch of external program mem-
ory (instruction or immediate data)

PROG During MOVD, A,P ANLD P,A MOVD
P,A ORLDP,A

13.7 PO'RT CHARACTERISTICS'

13.7 BUS Port Operations

OUTL should never be used in a system with extern,,:
program memory, since latching BUS can cause the nf
instruction, if external, to be fetched improperly.

The BUS port can operate in three different modes: as a
latched 110 port, as a bidirectional bus port, or as a pro
gram memory address output when external memory is
used. The BUS port lines are either active high, active
low, or high impedance (floating).

13.7.2 POl"t 2 Operations

The lower half of Port 2 can be used in three different
ways: as a quasi-bidirectional static port, as an 8243 ex
pander port, and to adddress external program memory.

PROGRAM MEMORY
SPACE

MBl

,----'BFFH

8355
(2K)

EXTERNAL DATA
MEMORY SPACE

MBO 1-----1 400H I I ~~5
-------- 300H I I 8155
RESIDENT I I 10
--(';Kj-- 200H r-----t
-------- 100H r--~--'--tl

'--___ -" OOOH 1--------1

RESIDENT DATA
MEMORY

(64)

SECTION ADDRESS DESIGNATION

PROG.MEM OOO-BFF
DATAMEM 100-IFF
8155 PORTS 300 CMD/STATUS

301 PORTA
302 PORTB
303 PORTC
304 TIMER LOW

8355 PORTS 305 TIMER HI
400 PORTA
401 PORTB
402 DORA
403 DDRB

Figure 13-12. Memory Map for Three-Component MCS®-48 Family

13-9

EXPANDED MCS®-48 SYSTEM"

In all cases outputs are driven low by an active device
and driven high momentarily by a low impedance device
and held high by a high impedance device to vcc.

The port may contain latched 110 data prior to its use in
another mode without affecting operation of either. If
lower Port 2 (P20-3) is used to output address for an
external program memory fetch, the 110 information pre-

I/O I/O

viously latched will be automatically removed temporarily
while address is present, then retored when the fetch is
complete. However, if lower Port 2 is used to commu
nicate with an 8243, previously latched 110 information
will be removed and not restored. After an input from the
8243, P20-3 will be left in the input mode (floating). After
an output to the 8243, P20-3 will contain the value written,
ANDed, or ORed to the 8243 port.

8749H
8049AH
8048AH
8748H
8035AHL
8039AHL

,.....-___ --, ,.....-___ --, ,--____ -.-J 0 0

CJ
CJ

I/O

Figure 13-13. MCS®-48 Expansion Capability

13-10

MCS®,48 Instruction Set 14

CHAPTER 14
MCS®-48 INSTRUCTION SET

14.0 INTRODUCTION

The MCS$-48 instruction set is extensive for a machine
of its size and has been tailored to be straightforward and
very efficient in its use of program memory. All instruc
tions are either one or two bytes in length and over 80%
are only one byte long. Also, all 'instructions execute in
either one or two cycles and over 50% of all instructions
execute in a single cycle. Double cycle instructions in
clude all immediate instructions, and all 1/0 instructions.

The MCS-48 microcomputers have been designed to han
dle arithmetic operations efficiently in both binary and
BCD as well as handle the single-bit operations required
in control applications. Special instructions have also been
included to simplify loop counters, table look-up routines,
and N-way branch routines.

14.0.1 Data Transfers

As can be seen in Figure 14.1, the 8-bit accumulator is
the central point for all data transfers within the 8048.
Data can be transferred between the 8 registers of each
working register bank and the accumulator directly, i.e.,
the source or destination register is specified by the in
struction. The remaining locations of the internal RAM
array are referred to as Data Memory and are addressed
.indirectly via an address stored in either RO or R I of the
active register bank. RO and R 1 are also used to indirecly
address external data memory when it is present. Transfers
to and from internal RAM require one cycle, while trans
fers to external RAM require two. Constants stored in
Program Memory can be loaded directly to the accumu
lator and to the 8 working registers. Data can also be
transferred directly between the accumulator and the on-

I~---------l

I PROGRAM DATA I
MEMORY MEtMORY

I (~DATA) MOV I
WORKING REG

I ADD MOV I
MOV ADD

. MOVP ANL

I MOVP3 ORL I
ANL XRL
DRL XCH
XRL

EXPANDER /lIL---,-:~--'-...I'\ r-' ---------""------'''-,/I::-::-='7.:-:'.J....J'''

~~ PORTS \.rr-'-"-......,-,,, L----7'<"---""7<:----:--~----' ,F=:.c.,.-,/

EXTERNAL
MEMORY
AND
PERIPHERALS

8749H
8048AH
8049AH

8748H I
8035AHL'

.!!L ____ 8039AH~J

Figure 14·1. Data Transfer Instructions

14·1

'NO PROGRAM
MEMORY

MCS.®·4~ II\ISTflUCTION SET

;', ,

board timer counter.or the accumulator and the Program
Status word (pSW). Writing to the PSW alters machine
status accordingly and provides a means of restoring status
after an interrupt or of altering· the stack pointer if
necessary.

14.0.2 Accumulator Ope.rations

Immediate data, data memory, or the working registers
can"be added with or without carry to the accumulator.
These sources can also be ANDed, ORed, or Exclusive
ORed to the accumulator. Data may be moved to or from
the accumulator and working registers or data memory.
The two values can also be exchanged in a single
operation.

In addition, the lower 4 bits of the accumulator can be
exchanged with the lower 4-bits of any of the internal
RAM locations. This instruction, along with an instruction
which swaps the upper and lower 4-bit halves of the ac
cumulator, provides for easy handling of 4-bit quantities,
including BCD numbers. To facilitate BCD arithmetic, a
Decimal Adjust instruction is included. This instruction
is used to correct the result of the binary addition ofJwo
2-digit BCD numbers. Performing a decimal adjust on the
result in the accumulator produces the required BCD
result.

Finally, the accumulator can be incremented, decre
mented, cleared, or complemented and can be rotated left
or right 1 bit at a time with or without carty.

Although there is no subtract instruction in the 8048AH,
this operation can be easily implemented with three single
byte single-cycle instructions.

A value may be subtracted from the accumulator with the
result in the accumulator by:

• Complementing the accumulator

• Adding the value to the .~ccumulator

• Complementing the accumulator

14.0.3 Register Operations

The working registers can be accessed via the accumulator
as explained above, or can be loaded immediate with
constants from program memory. In addition, they can be
incremented or decremented or used as loop counters using
the decrement and jump, if not zero instruction, as ex-
plained under branch instructions. .

All Data Memory including working registers can be as
cessed with indirect instructions via RO and R 1 and can
be incremented.

14.0.4 Flags

There are four user-accessible flags in the 8048AH: Carry,
Auxiliary Carry, FO and PI. Carry indicates overflow of
the accumulator, and Auxiliary Carry is used to indiate
overflow between BCt> digits and is used during decimal
adjust operation. Both Carry and Auxiliary Carry are ac
cessible as part of the program status word and are stored
on the stack during subroutines. FO and F1 are undedicated
general-purpose flags to be used as the programmer de
sires. Both flags can be cleared or complemented and
tested by conditional jump instructions. FO is also acces
sible via the Program Status word and is stored on the
stack with the carry flags.

14.0.5 Branch Instructions

The unconditional jump instruction is two bytes and allows
jumps anywhere in the first 2K words of program memory.
Jumps to the second 2K of memory (4K words are directly
addressable) are made first by executing a select memory
bank instruction, then executing the jump instruction. The

. 2K boundary can only be crossed via a jump or subroutine
call instruction, i.e .. , the bank switch does not occur until
ajump is executed. Once a memory bank has been selected
all subsequent jumps will be to the selected bank until
another select memory bank instruction is executed. A
subroutine in the opposite bank can be accessed by a select
memory bank instruction followed by a call instruction.
Upon completion of the subroutine, execution will auto
matically return to the original bank; however, unless the
Original bank is reselected, the next jump instruction en
countered will again transfer execution to the opposite
bank. .

Conditional jumps can test the followihg inputs and ma
chine status:

• TO Input Pin

• T1 Input Pin

• INT Input Pin

• Accumulator Zero

• Any bit of Accumulator

• Carry Flag

• FO Flag

• FI Flag

Conditional jumps allow a branch to any address within
the current page (256 words) of execution. The conditions
tested are the instantaneous values at the time the con
ditional jump is executed. For instance, the jump on ac
cumulator zero instruction tests the accumulator itself, not
an intermediate zero flag.

14-2

MCS®·48 INSTRUCTION SeT

The decrement register and jump if not zero instruction
combines a decrement and a branch instruction to create
an instruction very useful in implementing a loop counter.
This instruction can designate anyone of the 8 working
registers as a counter and can effect a branch to any address
within the current page of execution.

A single-byte indirect jump instruction allows the program
to be vectored to anyone of several different locations
based on the contents of the accumulator. The contents
of the accumulator points to a location in program memory
which contains the jump address. The 8-bit jump address
refers to the current page of execution. This instruction
could be used, for instance, to vector to anyone of several
routines based on an ASCII character which has been
loaded in the accumulator. In this way ASCII key inputs
can be used to initiate various routines.

14.0.6 Subroutines

Subroutines are entered by executing a call instruction.
Calls can be made like unconditional jumps to any address
in a 2K word bank, and jumps across the 2K boundary
are executed in the same manner. Two separate return
instructions determine whether or not status (upper 4-bits
of PSW) is restored upon return from the subroutine.

The return and restore status instruction also signals the
end of an interrupt service routine if one has been in
progress.

14.0.7 Timer Instructions

The 8-bit on board timer/counter can be loaded or read
via the accumulator while the counter is stopped or while
counting. The counter can be started as a timer with an
internal clock source or an event counter or timer with an
external clock applied to the Tl input pin. The instruction
executed determines which clock source is used. A single
instruction stops the counter whether it is operating with
an internal or an external clock source. In addition, two
instructions allow the timer interrupt to be enabled or
disabled.

14.0.8 Control Instructions

Two instructions allow the external interrupt source to be
enabled or disabled. Interrupts are initially disabled and
are automatically disabled while an interrupt service rou
tines is in progress and re-enabled afterward.

There are four memory bank select instructions, two to
designate the active working register bank and two to
control program memory banks. The operation of the pro
gram memory bank switch is explained in section 13.1.2.

The working register bank switch instructions allow the
programmer to immediately subsfitute a second 8-register
working register bank for the one in use. This effectively
provides 16 working registers or it can be used as a means
of quickly saving the contents of the registers in response
to an interrupt. The user has the option to switch or not
to switch banks on interrupt. However, if the banks are
switched, the original bank will be automatically restored
upon execution of a return and restore status instruction
at the end of the interrupt service routine.

A special instruction enables an internal clock, which is
the XT AL frequency divided by three to be output on pin
TO. This clock can be used as a general-purpose clock in
the user's system. This instruction should be used only to
initialize the system since the clock output can be disabled
only by application of system reset.

14.0.9. Input/Output Instructions

Ports 1 and 2 are 8-bit static I/O ports which can be loaded
to and from the accumulator. Outputs are statically latched
but inputs are not latched and must be read while inputs
are present. In addition, immediate data from program
memory can be ANDed or ORed directly to Port I and
Port 2 with the result remaining on the port. This allows
"masks" stored in program memory to selectively set or
reset individual bits of the I/O ports. Ports 1 and 2 are
configured to allow input on a given pin by first writing
a "I" out to the pin.

An 8-bit port called BUS can also be accessed via the
accumulator and can. have statically latched outputs as
well. It too can have immediate data ANDed or ORed
directly to its outputs, however, unlike ports 1 and 2, all
eight lines of BUS must be treated as either input or output
at anyone time. In addition to being a static port, BUS
can be used as a true synchronous bi-directional port using
the Move External instructions used to access external
data memory. When these instructions are executed, a
corresponding READ or WRITE pulse is generated and
data is valid only at that time. When data is not being
transferred, BUS is in a high impedance state. Note that
the OUTL, ANL, and the ORL instructions for the BUS
are for use with internal program memory only.

The basic three on-board I/O ports can be expanded via
a 4-bit expander bus using half of port 2. I/O expander
devices on this bus consist of four 4-bit ports which are
addressed as ports 4 through 7. These ports have their
own AND and OR instructions like the on-board ports as
well as move instructions to transfer data in or out. The
expander AND and OR instructions, however, combine
the contents of accumulator with the selected port rather
than immediate data as is done with the on-board ports.

14-3

MCS®-48 INSTRUCTION SET

I/O devices can also be added externally using the BUS
port as the expansion bus. In this case the 1/0 ports become
"memory mapped" , i.e., they are addrl:ssed in the same
way as external data memory and exist in the external
data memory address space addressed by pointer register
RO or Rl.

14.1 INSTRUCTION SET DESCRIPTION

The following pages describe the MCS®-48 instruction set
in- detail. The instruction set is first summarized with in
structions grouped functionally. This summary page is
followed by a detailed description listed alphabetically by
mnemonic opcode.

14-4.

The alphabetical listing includes the following
information.

• Mnemonic

• Machine Code

• Verbal Description

• Symbolic Description

• Assembly Language Example

The machine code is represented with the most significant
bit (7) to the left and two byte instructions are represented
with the first byte on the left. The assembly language
examples are formulated as follows:

Arbitrary

Label: Mnemonic, Operand;

Descriptive Comment

Mnemonic

Accumulator

ADD A, R
ADDA,@R
ADD A, # data
AD DC A, R
ADDCA,
@R
ADDCA,
data
ANLA, R
ANLA,@R
ANLA, # data
ORLA, R
ORLA@R
ORL A, # data
XRL A, R

XRLA,@R

XRL, A, # data

INCA
DECA
CLRA
CPLA
DAA
SWAP A
RLA
RLCA

RRA
RRCA

Input/Output

INA,P
OUTL P,A
ANL P, # data
ORL P, # data

'INS A, BUS
'OUTL BUS, A
'ANL BUS,
data

'ORL BUS,
data
MOVDA, P

MOVD P, A

ANLD P,A
ORLD P, A

MCS@·48INSTRUCTION SET

S04SAH/S74SH/S049AH/S050AH/8749H
Instruction Set Summary

Oescrtptlon Bytes Cycle Mnemonic Description

Registers

Add register to A 1 1 INCR Increment register
Add data memory to A 1 1 INC@R Increment data memory
Add immediate to A 2 2 DECR Decrement register
Add register with carry 1 1 Branch
Add data memory 1 1
with carry JMP addr Jump unconditional

Add immediate 2 2 JMPP@A Jump indirect
with carry DJNZ R, addr Decrement register
And register to A 1 1 and jump

And data memory to A 1 1 JC addr Jump on carry = 1

And immediate to A 2 2 JNC addr Jump on carry = 0

Or register to A 1 1 JZ addr Jump on A Zero

Or data memory to A 1 1 JNZ addr Jump on A not Zero

Or immediate to A 2 2 JTO addr Jump on TO = 1

Exclusive Or register 1 1 JNTO addr Jump on TO = 0
toA JT1 addr Jump on T1 = 1
Exclusive or data 1 1
memory to A
Exclusive or 2 2
immediate to A
Increment A 1 1
Decrement A 1 1
Clear A 1 1

JNT1 addr Jump on T1 = 0
JFO addr Jump on FO = 1
JF1 addr Jump on F1 = 1
JTF addr Jump on timer flag = 1
JNI addr Jump on INT = 0
JBb addr Jump on Accumulator

Bit
Complement A 1 1
Decimal adjust A 1 1 Subroutine

Swap nibbles of A 1 1 CALL addr Jump to subroutine
Rotate A left 1 1 RET Return
Rotate A left 1 1 RETR Return and restore
through carry status
Rotate A right 1 1
Rotate A right 1 1 Flags

through carry CLRC Clear Carry
CPLC Complement Carry

Input port to A 1 2
Output A to port 1 2
And immediate to port 2 2
Or immediate to port 2 2

CLR FO Clear Flag 0
CPL FO Complement Flag 0
CLR F1 Clear Flag 1
CPL F1 Complement Flag 1

Input BUS to A 1 2 Data Moves

Output A to BUS 1 2 MOVA, R Move register to A
And immediate to BUS 2 2 MOVA,@R Move data memory

toA
Or immediate to BUS 2 2 MOVA,#data Move immediate to A

Input Expander port 1 2
toA
Output A to Expander 1 2
port
And A to Expander port 1 2
Or A to Expander port 1 2

MOVR,A Move A to register
MOV@R,A Move A to data

memory
MOV R, # data Move immediate

to register
MOV@R, Move immediate to
data data memory
MOVA,PSW Move PSW to A

Mnemonics copyright Intel Corporation 1983.
'For use with internal memory only.

MOVPSW,A MoveAtoPSW

14-5

Bytes Cycles

1 1
1 1
1 1

2 2
1 2
2 2

2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2

2 2
1 2
1 2

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1

2 2
1 1
1 1

2 2

2 2

1 1
1 1

Mnemonic

Data Moves
(Confd)
XCH A, R

XCH A,@R

XCHDA,@R

MOVXA,@R

MOVX@R,A

MOVPA,@A

MOVP3A,@A

Timer/Counter
MOVA. T
MOVT.A
STRTT
STRTCNT
STOP TCNT
EN TCNTI

DIS TCNTI

MCS®·481NSTRUCTION SET

8048AH/8748H/8049AH/8050AH/8749H
Instruction Set Summary (Con't)

Description Bytes Cycle Mnemonic Description

Control
EN I Enable external

Exchange A and 1 1 Interrupt
register DISI Disable external
Exchange A and 1 1 Interrupt
data memory SEL RBO Select register bank 0
Exchange nibble of A 1 1 SEL RB1 Select register bank 1
and register SEL MBO Select memory bank 0
Move external data 1 2
memory to A
Move A to external 1 2
data memory

SEL MB1 Select memory bank 1
ENTOCLK Enable clock output

onTO

Move to A from 1 2 NOP No Operation
current page
Move to A from Page 3 1 2

Read Timer/Counter 1 1
Load Timer/Counter 1 1
Start Timer 1 1
Start Counter 1 1
Stop Timer/Counter 1 1
Enable Timer/Counter 1 1
Interrupt
Disable Timer/Counter 1 1

Bytes

1

1

1
1
1
1
1

1

Interrupt
Mnemonics copyright Intel Corporation 1983.

14-6

Cycle

1

1

1
1
1
1
1

1

A
AC
addr
Bb
BS
BUS
C
ClK
CNT
CRR
D
data
DBF
FO, F1
I
P
PC
Pp
PSW
Ri
Rr
SP
T
TF
TO, T1
X

@
$
(X)
((X» -

MCS®-48 INSTRUCTION SET
Symbols and Abbreviations Used

,Accumulator
Auxiliary Carry
12-Bit Program Memory Address
Bit Designator (b = 0-7)
Bank Switch
BUS Port
Carry
Clock
Event Counter
Conversion Result Register
Mnemonic for 4-Bit Digit (Nibble)
8-Bit Number or Expression
Memory Bank Flip-Flop
Flag 0, Flag 1
Interrupt
Mnemonic for "in-page" Operation
Program Counter
Port Designator (p = 1, 2 or 4-7)
Program Status Word
Data memory Pointer (i = 0, or 1)
Register Designator (r = 0-7)
Stack Pointer
Timer
Timer Flag
Test 0, Test 1
Mnemonic for External RAM
Immediate Data Prefix
Indirect Address Prefix
Current Value of Program Counter
Contents of X
Contents of location Addressed by X
Is Replaced by

Mnemonics copyright Intel Corporation 1983.

14-7

MCS®-48 INSTRUCTION SET

ADD A,Rr Add Register Contents to Accumulator

Encoding: I 0 1 1 0 I 1 r rr I 68H-6FH

Description: The contents of register 'r' are added to the accumulator. Carry is
affected.

Operation: (A) - (A) + (Rr)

Example: ADDREG: ADD A,R6

r = 0-7

;ADD REG 6 CONTENTS
;TOACC

ADD A,@R1 Add Data Memory Contents to Accumulator

Encoding; I 0 1 1 0 I 0 0 0 i I 60H-61H

Description: The contents of the resident data memory location addressed by register 'i' bits
O-S** are added to the accumulator. Carry is affected.

Operation: (A) - (A) + ((Ri)) i = 0-1

Example: ADDM: MOV RO, #01 FH ;MOVE '1 F' HEX TO REG 0
ADD A, @RO ;ADD VALUE OF LOCATION

;31 TO ACC

ADD A,#data Add Immediate Data to Accumulator

Encoding: I 0 0 0 0 I 0 0 1 Il I d7 d6 dS d4 I d3 d2 d1 dO I 03H

Description: This is a 2-cycle instruction. The specified data is added to the accumulator.
Carry is affected.

Operation: (A) - (A) + data

Example: ADDID: ADD A,#ADDER: ;ADD VALUE OF SYMBOL
;ADDER' TO ACC

ADDC A,Rr Add Carry and Register Contents to Accumulator

Encoding: I 0 1 1 1 I 1 r r r I 78H-7FH

Description: The content of the carry bit is added to accumulator location 0 and the carry
bit cleared. The contents of register 'r' are then ,added to the accumulator.
Carry is affected.

Operation: (A) - (A) + (Rr) + (C)

Example: ADDRGC: AD DC A,R4

•• 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H
0-7 in 8050AH

14-8

r = 0-7

;ADD CARRY AND REG 4
;CONTENTS TO ACC

MCS®-48 INSTRUCTION SET

ADDC A,@Ri Add Carry and Data Memory Contents to Accumulator

Encoding: 1 a 1 1 1 1 a a Oil 70H-71H

Description: The content of the carry bit is added to accumulator location 0 and the carry bit
cleared. Then the contents of the resident data memory location addressed by
register 'j' bits 0-5** are added to the accumulator: Carry is affected.

Operation: (A) - (A) + «Ai» + (C)

Example: ADDMC: MOV A1,#40
ADDCA,@A1

i = 0-1

;MOVE '40' DEC TO AEG 1
;ADD CARAY AND LOCATION 40
;CONTENTS TO ACC

ADDC A,@data Add Carry and Immediate Data to Accumulator

Encoding: 10 a a 1 1 a a 1 1 1 I d7 d6 d5 d4 I d3 d2 d1 dO I 13H'

Description: This is a 2-cycle instruction. The content of the carry bit is added to
accumulator location a and the carry bit cleared. Then the specified data is
added to the accumulator. Carry is affected.

Operation: (A) - (A) + data + (C)

Example: AD DC A,#225 ;ADD CAAAY AND '225' DEC
;TOACC

ANL A,Rr Logical AND Accumulator with Register Mask

Encoding: 10 1 a 1 11 r r r I 58H-5FH

Description: Data in the accumulator is logically ANDed with the mask contained in
working register 'r'.

Operation: (A) - (A) AND (Ar)

Example: ANDAEG: ANL A,A3

r = 0-7

;'AND' ACC CONTENTS WITH MASK
;IN REG 3

ANL A,@Ri Logical AND Accumulator with memory Mask

Encoding: 10 1 a 1 10 a Oil 50H-51H

Description: Data in the accumulator is logically ANDed with the mask contained in the
data memory location referenced by register 'i' bits 0-5**.

Operation: (A) - (A) AND«Ai» i = 0-1

Example: ANDDM: MOV AO,#03FH ;MOVE '3F' HEX TO AEG a
ANL A, @AO ;'AND' ACC CONTENTS WITH

** 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H
0-7 in 8050AH

14-9

;MASK IN LOCATION 63

MCS@-48INSTRUCTION SET

ANL ~,#data Logical AND Accumulator with Immediate Mask

Encoding: 10 1 0 1 I 0 0 1 1 1 53H

Description: This is a 2-cycle instruction. Data in the accumulator is logically ANDed
with an immediately-specified mask.

Operation: (A) - (A) AND data

Examples: ANDID: ANL A,#OAFH

ANL A,#3 + X/Y

;'AND' ACC CONTENTS
;WITH MASK 10101111
;'AND' ACC CONTENTS
;WITH VALUE OF EXP
;'3 + Xy/y'

ANL BUS,#data* Logical AND BUS with Immediate Mask

Encoding: 11 0 0 1 11 0 0 0 1 98H

Description: This is a 2-cycle instruction. Data on the BUS port is logically ANDed
with an immediately-specified mask. This instruction assumes prior
specification of an 'OUTL BUS, A' instruction.

Operation: (BUS) - (BUS) AND data

Example: ANDBUS: ANL BUS,#MASK ;'AND' BUS CONTENTS
;WITH MASK EQUAL VALUE
;OF SYMBOL 'MASK'

ANL Pp,#data Logical AND Port 1-2 with Immediate Mask

Encoding: 11 001 11 0 P pi Id7 de d5 d41 d3 d2 d1 dol 99H-9AH

Description: This is a 2-cycle instruction. Data on port 'p' is logically ANDed with an
immediately-specified mask.

Operation: (Pp) - (Pp) AND DATA

Example: ANDP2: ANL P2,#OFOH

• For use with internal program memory ONLY.

14-10

p = 1-2

;'AND' PORT 2 CONTENTS
;WITH MASK 'FO' HEX
;(CLEAR P20-23)

MCS®-48 INSTRUCTION SET

ANLD Pp,A Logical AND Port 4-7 with Accumulator Mask

Encoding: 11 0 0 1 11 1 P P 1 9CH-9FH

Description: This is a 2-cycle instruction. Data on port 'p' is logically ANDed with the
digit mask contained in accumulator bits 0-3.

Operation: (Pp) - (Pp) AND (AO-3) P = 4-7
Note: The mapping of port 'p' to opcode bits 0-1 is as follows:

1 0 Port

00 4
01 5
10 6
1 1 7

Example: ANDP4: ANLD P4,A

CALL address Subroutine Call

Encoding: , a10 a9 as 1 I 0 1 0 0 I
Page Hex Op Code

o 14
1 34
2 54
3 74
4 94
5 B4
6 D4
7 F4

;'AND' PORT 4 CONTENTS
;WITH ACC BITS 0-3

Description: This is a 2-cycle instruction. The program counter and PSW bit!! 4-7 are
saved in the stack. The stack pointer (PSW bits 0-2) is updated. Program
control is then passed to the location specified by 'address'. PC bit 11 is
determined by the most recent SEL MB instruction.

A CALL cannot begin in locati'ons 2046-2047 or 4094-4095. Execution
continues at the instruction following the CALL upon return from the
subroutine.

Operation: ((SP)) - (PC), (PSW4-7)
(SP) - (SP) + 1
(PCS-10) - (addrS_10)
(PCO-7) - (addrO_7)
(PC11) - DBF

14-11

MCS@-48INSTRUE::TION SET

Example: Add three groups of two numbers. Put subtotals in locations 50, 51 and
total in location 52.

MOV RO,#50

BEGADD: MOV A,R1

ADD A,R2
CALL SUBTOT .
AD DC A R3
ADDC A,R4
CALL SUBTOT
ADDC A,R5
ADDCA,R6
CALL SUBTOT

SUBTOT: MOV @RO,A

INC RO
RET

CLR A Clear Accumulator

Encoding: 10 0 1 0 I 0 1 1 1 27H

;MOVE '50' DEC TO ADDRESS
;REGO
;MOV~ CONTENTS OF REG 1

. ;TOACC
;ADD REG 2 TO ACC
;CALL SUBROUTINE 'SUBTOT'
;ADD REG 3 TO ACC
;ADD REG 4 TO ACC
;CALL SUBROUTINE 'SUBTOT'
;ADD REG 5 TO ACC
;ADD REG 6 TO ACC
;CALL SUBROUTINE 'SUBTOT'
;MOVE CONTENTS OF ACC TO
;LOCATION ADDRESSED BY
;REGO
;INCREMENT REG 0 .
;RETURN TO MAIN PROGRAM

Description: The contents of the accumulator are cleared to zero.

Operation: A - 0

CLR C Clear Carry Bit

Encoding: 11 0 0 1 1 0 1 1 1 97H

Description: During normal programe.xecution, the carry bit can be set to one by the
ADD,ADDC, RLC, CPL C, RRC, and DAA insructions. This instruction
resets the carry bit to zero.

Operation: C - 0

CLR F1 Clear Flag 1

Encoding: 11 0 1 0 I 0 1 0 1 1 A5H

Description: Flag 1 is cleared to zero.

Operation: (F1) - 0

14-12

MCS®-48 INSTRUCTION SET

CLR FO Clear Flag 0

Encoding: 11 0 0 0 1 0 1 0 1 I 8SH

Description: Flag 0 is cleared to zero.

Operation: (FO) - 0

CPL A Complement Accumulator

Encoding: 1 0 0 1 1 1 0 1 1 1 1 37H

Description: The contents of the accumulator are complemented. This is strictly a one's
complement. Each one is changed to zero and vice-versa.

Operation: (A) - NOT (A)

Example: Assume accumulator contains 01101010.
CPLA: CPL A ;ACC CONTENTS ARE COMPLE

;MENTED TO 10010101

CPL C Complement Carry Bit

Encoding: 11 0 1 0 1 0 1 1 1 I A7H

Description: The setting of the carry bit is complemented; one is changed to zero, and
zero is changed to one.

Operation: (C) - NOT (C)

Example: Set C to one; current setting is unknown.
CT01: CLR C ;C IS CLEARED TO ZERO

CPL C ;C IS SET TO ONE

CPL FO Complement Flag 0

Encoding: 11 0 0 1 1 0 1 0 11 '95H

Description: The setting of flag 0 is complemented; one is changed to zero, and zero is
changed to one.

Operation: FO - NOT (FO)

CPL F1 Complement Flag 1

Encoding: 11 0 1 1 1 0 1 0 1/ BSH

D!ilscrlptlon: The setting of flag 1 is complemented; one is changed to zero, and zero is
changed to one.

Operation: (F1) - NOT (F1)

14-13

MCS®·48 INSTRUCTION SET

DA A Decimal Adjust Accumulator

Encoding: I 0 1 0 1 I 0 1 1 11 57H

Description: The S-bit accumulator value is adjusted to form two 4-bit Binary Coded
Decimal (BCD) digits following the binary addition of BCD numbers.
The carry bit C is affected. If the contents of bits 0-3 are greater than nine,
or if AC is one, the accumulator is incremented by six.

The four high-order bits are then checked. If bits 4-7 exceed nine, or if
C is one, these bits are increased by six. If an overflow occurs, C is set
to one.

Example: Assume accumulator contains 10011011.
DA A ;ACC Adjusted to 00000001

;WITH C SET
C AC 7 43 0
0010011011

00000110
o 1 0 1 0 0.0 0 1

o 1 1 0
000 000 0 0

DEC A Decrement Accumulator

Encoding: I 0 0 0 0 1 0 1 1 1 I 07H

ADD SIX TO BITS 0-7

ADD SIX TO BITS 4-7
OVERFLOW TO C

Description: The contents of the accumulator are decremented by one. The carry flag
is not affected.

Operation: (A) +- (A) -1

Example: Decrement contents of external data memory location 63.
MOV RO,#3FH ;MOVE '3F' HEX TO REG 0
MOVX A, @RO ;MOVE CONTENTS OF

;LOCATION 63 TO ACC
DEC A ;DECREMENT ACC
MOVX @RO,A ;MOVE CONTENTS OF ACC TO

;LOCATION 63 IN EXPANDED
;MEMORY

DEC Rr Decrement Regh}ter

Encoding: 11 1 0 0 I 1 r r r 1 CSH-CFH

Description: The contents of working register 'r' are decremented by one.

Operation: (Rr) +- (Rr) -1 r = 0-7

Example: DEeR1: DEC R1 ;DECREMENT CONTENTS OF REG 1

14-14

MCS®-48 INSTRUCTION SET

DIS I External Interrupt

Encoding: I 0 0 0 1 I 0 1 0 1 I 15H

Description: External interrupts are disabled. A low signal on the int~rrupt input pin has
no effect.

DIS TCNTI Disable Timer/Counter Interrupt

Encoding: 10 0 1 1 1 0 1 0 1 I 35H

Description: Timer/counter interrupts are disabled. Any pending timer interrupt request
is cleared. The interrupt sequence is not initiated by an overflow, but the
timer flag is set and time accumulation continues.

DJNZ Rr• address Decrement Register and Test

Encoding: 11 1 1 0 11 r r r 1 1 a7 a6 a5 a4 1 a3 a2 a1 aO 1 E8H-EFH

Description: This is a 2-cycle instruction. Register 'r' is decremented, thEm tested for
zero. If the register contains all zeros, program control falls through to the
next instruction. If the register contents are not zero, control jumps to the
specified 'address'.

The address in this case must evaluate to 8-bits, that is, the jump must be
to a location within the current 256-location page.

Example: (Rr) - (Rr) -1 r = 0-7
If Rr not 0
(PCO-7) - addr
Note: A 12-bit address specification does not cause an error if the
DJNZ instruction and the jump target are on the same page. If the DJNZ
instruction begins in location 255 of a page, it must jump to a target
address on the following page.

Example: Incre'ment values in data memory locations 50-54.
MOV RO,#50 ;MOVE '50' DEC TO ADDRESS

;REGO
MOV R3,#5 ;MOVE '5' DEC TO COUNTER

;REG3
INCRT: INC @RO ;INCREMENT CONTENTS OF

;LOCATION ADDRESSED BY
;REGO

INC RO ;INCREMENT ADDRESS IN REG 0
DJNZ R3, INCRT ;DECREMENT REG 3 - JUMP TO

;'INCRT' IF REG 3 NONZERO
NEXT - ;'NEXT' ROUTINE EXECUTED

;IF R3 IS ZERO

14-15

MCS®~48 INSTRUCTION SET

EN I Enable External Interrupt

Encoding: 10 0 0 0 10 1 0 1 1 05H

Description: External interrupts are enabled. A low signal on the interrupt input pin
initiates the interrupt sequence.

EN TCNTI Enable Timer/Counter Interrupt

Encoding: 1 0 0 1 0 I 0 1 0 1 I 25H

Description: Timer/counter interrupts are enabled. An overflow of the timer/cc;>unter
initiates the interrupt sequence.

ENTO ClK Enable Clock Output

Encoding: 10 1 1 1 I 0 1 0 1. I 75H

Description: The test 0 pin is enabled to act as the clock output. This function is
disabled by a system reset.

Example: EMTSTO: ENTO ClK ;ENABlE TO AS CLOCK OUTPUT

IN A,Pp Input Port or Data to Accumulator

Encoding: 10 0 0 0 11 0 P P 1 09H-OAH

Description: This is a 2-cycle instruction. Data present on port 'p' is
transferred (read) to the accumulator.

Operation: (A) - (Pp)
INP12: IN A,P1

MOV R6,A
INA,P2
MOV R7,A

INC A Increment Accumulator

p = 1-2
;INPUT PORT 1 CONTENTS TO ACC
;MOVE ACC CONTENTS TO REG 6
;INPUT PORT 2 CONTENTS TO ACC
;MOVE ACC CONTENTS TO REG 7

Encoding: I 0 0 0 1 1 0 1 1 1\ 17H

Description: The contents of the accumulator are incremented by one. Carry is not
affected.

Operation: (A) - (A) +1

14·16

MCS®-48 INSTRUCTION SET

Example: Increment contents of location 100 in external data memory.
INCA: MOV RO,#100 ;MOVE '100' DEC TO ADDRESS REG 0

MOVX A,@RO ;MOVE CONTENTS OF LOCATION
;100 TO ACC

INC A ;INCREMENT A
MOVX @RO,A ;MOVE ACC CONTENTS TO

;LOCATION 101

INC Rr Increment Register

Encoding: 1 0 0 0 1 11 r r r I 18H-1FH

Description: The contents of working register 'r' are incremented by one.

Operation: (Rr) - (Rr) + 1 r = 0-7

Example: INCRO: INC RO ;INCREMENT CONTENTS OF REG 0

INC @R1 Increment Data Memory Location

Encoding: I 0 0 0 1 I 0 0 0 i I 10H-11 H

Description: The contents of the resident data memory location addressed by register 'i' bits
0-5** are incremented by one. .

Operation: ((Ri)) - ({Ri)) + 1

Example: INCDM: MOV R1,#03FH
INC @R1

i = 0-1

;MOVE ONES TO REG 1
;INCREMENT LOCATION 63

INS A,BUS* Strobed Input of BUS Data to' Accumulator

Encoding: I 0 0 0 0 I 1 0 0 0 I 08H

Description: This is a 2-cycle instruction. Data present on the BUS port is transferred
. (read) to the accumulato~ when the RD pulse is dropped. (Refer to section
on programming memory expansion for details.)

Operation: (A) - (BUS)

Example: INPBUS: INS A,BUS ;INPUT BUS CONTENTS TO ACC

* For use with internal program memory ONLY.
** 0-5 in B048AH/8748H .

0-6 in 8049AH/8749H
0-7 in 8050AH

14-17

MCS®~48INSTRUCTION seT

JBb address ' Jump If Accumulator Bit Is Set

Accumulator Bit Hex Op Code

o 12
1 32
2 52
3 72
4 92
5 B2
6 02
7 F2

Description: This is a 2-cycle instruction. Control passes to the specified address if
accumulator bit 'b' is set to one.

Operation:
(PCO-7) - addr
(PC) = (PC) + 2

Example: JB4IS1: JB4 NEXT

JC address Jump If Carry Is Set

b = 0-7
If Bb = 1
If Bb = 0
;JUMP TO 'NEXT' ROUTINE
;IF ACC BIT 4 = 1

Encoding: 11 1 1 1 1 0 1 1 0 I 1 a7 a6 a5 a4 I a3 a2 a1 aO I F6H

Description: This is a 2-cycle instruction. Control passes to the specified' address if the
carry bit is set to one.

Operation: (PCO-7) - addr
(PC) = (PC) + 2

Example: JC1: JC OVFLOW

If C = 1
IfC=O

;JUMP TO 'OVFLOW' ROUTINE
;IF C == 1

Description: This is a 2-cycle instruction. Control passes to the specified address if
flag 0 is set to one.

Operation: (PCO-7) - addr If FO = 1
(PC) =(PC) + 2 If FO = 0

Example: JFOIS1: JFO TOTAL ;JUMP TO 'TOTAL' ROUTINE IF FO = 1

14-18

MCS®·48 INSTRUCTION SET

JF1 address Jump If Flag 1 Is Set

Encoding: 10 1, 1 1 10 1 1 0 1 1 a7 a6 as a41 a3 a2 a1 aol 76H

Description: This is a 2-cycle instruction. Control passes to the specified address if
flag 1 is set to one.

Operation: (PCO-7):O- addr If F1 = 1
(PC) =(PC + 2) If F1 = 0

Example: JF1IS1: JF1 FILBUF

JMP address Direct Jump within 2K Block

;JUMP TO 'FILBUF'
;RbuTINE IF F1= 1

Page Hex Op Code

0 04
1 24
2 44
3 64
4 84
[; A4
6 C4
7 E4

, ' .

Description: This is a 2-cycle instruction. Bits 0-10 of the program counter are replaced
with the directly-specified address. The setting of PC bit 11 is
determined by the most recent SELECT MB instruction.

Operation: (PC8-10) - addr 8-10
(PCO-7) - addr 0-7
(PC11) - DBF

Examplel JMP SUBTOT
JMP $-6

JMP 2FH

JMPP @A Indirect Jump within Page

Encoding: 11 0 1 1 I 0 0 1 1 I B3H

;JUMP TO SUBROUTINE 'SUBTOT
;JUMP TO INSTRUCTION SIX
;LOCATIONS BEFORE CURRENT
;LOCATION
;JUMP TO ADDRESS '2F' HEX

Description: This is a 2-cycle insruction. The contents of the program memory location
pointed to by the accumulator are substituted for the 'page' portion of the
program counter (PC bits 0-7).

14.19

MCS@I·4$ INSTRUCTION SET'

Operation: (PCO-7) - ((A))

Example: Assume accumulator contains OFH.
JMPPAG: JMPP @A ;JUMP TO ADDRESS STORED IN

;LOCATION 151N CURRENT PAGE

JNC address Jump If Carry Is Not Set

Encoding: 11 1 1 0 1 0 1 1 0 1 1 a7 a6 a5 a4 1 a3 a2 a1 aO I' ESH

Description: This is a 2-cycle instruction. Control passes to the specified address, if
the carry bit is npt set, thatis, equals zero.

Operation: (PCO-7) - addr If C = 0
(PC) = (PC) + 2 If C = 1

Example: JCO: JNC NOVFLO

JNI address Jump If Interrupt Input Is Low

;JUMP TO 'NOVFLO' ROUTINE.
;IF C= 0

Encoding: 11 0 0 0 1 0 1 1 0 1 1 a7 as a5 a41 a3 a2 a1 aO 1 B6H

Description: This is a 2-cycle instruction. Control passes to the specified address if the
interrupt input signal is low (= 0), that is, an external interrupt has been
signaled. (This signal initiates an interrupt service sequence if the external
interrupt is enabled.)

Operation: (PCO-7) - addr If I = 0
(PC) = (PC) + 2 If I = 1

Example: LOC 3: JNI EXTINT ;JUMP TO 'EXTINT' ROUTINE
;IF I = 0

JNTO address Jump If Test 0 is Low

Encoding: 10010101101 ja7a6asa41a3a2a1 aol 2SH

Description: This is a 2-cycle instruction. Control passes to the specified address, if the
test 0 signal is low.

Operation: (PCa':"7) - addr
(PC) = (PC) + 2

Example: JTOLOW: JNTO 60

14-20

If TO = 0
If TO = 1

;JUMP TO LOCATION 60 DEC
;IF TO = 0'

MCS®-48 INST~UCTION SET

JNT1 address Jump If Test 1 Is Low

Encoding: 10 1 0 0 I 0 1 1 0 I I a7 a6 a5 a4 I a3 a2 a1 aO I 46H

Description: This is a 2-cycle instruction. Control passes to the specified address, if
the test 1 signal is low.

Operation: (PCO-7) - addr
(PC) = (PC) + 2

JNZ Address Jump If Accumulator Is Not Zero

If T1 = 0
If T1 = 1

Encoding: 11 0 0 1 1 0 1 1 0 1 I a7 a6 a5 a4 I a3 a2 a1 aO I 96H

Description: This is a 2-cycle instruction. Control passes to the specified address if the
accumulator contents are nonzero at the time this instruction is executed.

Operation: (PCO-7) - addr
(PC) = (PC) + 2

Example: JACCNO: JNZ OABH

JTF address Jump If Timer Flag Is Set

IfA#O
If A = 0

;JUMP TO LOCATION 'AB' HEX
;IF ACC VALUE IS NONZERO

Encoding: I 0 0 0 1 I 0 1 1 0 I I a7 a6 a5 a4 I a3 a2 a1 aO I 16H

Description: This is a 2-cycle instruction. Control passes to the specified address if the
timer flag is set to one, that is, the timer/counter register has overflowed.
Testing the timer flag resets it to zero. (This overflow initiates an interrupt
service sequence if the timer-overflow interrupt is enabled.)

Operation: (PCO-7) - addr
(PC) = (PC) + 2

Example: JTF1: JTF TIMER

JTO address Jump If Test 0 Is High

If TF = 1
If TF = 0

;JUMP TO 'TIMER' ROUTINE
;IF TF = 1

Encoding: I 0 0 1 1 I 0 1 1 0 I I a7 a6 a5 a41 a3 a2 B1 aO I 36H

Description: This is a 2-cycle instruction. Control passes to the specified address if
the test 0 signal is high (= 1).

Operation: (PCO-7) - addr
(PC) = (PC) + 2

Example: JTOHI: JTO 53

14-21

If TO = 1
If TO= 0

;JUMP TO LOCATION 53 DEC
;IF TO = 1

MCS®-48INSTf'UCTION SET

JT1 address Jump If Test 1 Is High

Encoding: I 0 1 0 1 I 0 1 1 0 I I a7 as as a41 a3 a2 a1 aO 1 SSH

Description: This is a 2-cycle instruction. Control passes to the specified address'if the
test 1 signal is high (= 1).

Operation: (PCO-7) - addr
(PC) = (PC) + 2

Example: JT1 HI: JT1 COUNT

JZ address Jump If Accumulator Is Zero

IfT1 = 1
If T1 = 0

;JUMP TO 'COUNT' ROUTINE
;IFT1 = 1

Encoding: 11 1 0 0 1 0 1 10 1 I a7 as as a4 1 a3 a2 a1 aO 1 CSH

Description: This is a 2-cycle instruction. Control passes to the specified address if
the accumulator contains all zeros at the time this instruction is executed.

Operation: (PCO- 7)'- addr
(PC) = (PC) + 2

Example: JACCO: JZ OA3H

If A = 0
If A =;f 1

;JUMP TO LOCATION 'A3' HEX
;IFACC VALUE IS ZERO

MOV A,#data Move Immediate Data to Accumulator

Encoding: 1 0 0 1 0 I 0 0 1 1 I 1 a7 as as a4 1 a3 a2 a1 aO 1 23H

Description: This is a 2-cycle instruction. The 8-bit value specified by 'data' is loaded
in the accumulator.

Operation: (A) - data

Example: MOV A,#OA3H ;MOVE 'A3' HEX TO ACC

MOV A,PSW Move PSW Contents to Accumulator

Encoding: 11 1 0 0 1 0 1 1 1 1 C7H

Description: The contents of the program status word are moved to the accumulator.

Operation: (A) - (PSW)

Example: Jump to 'RB1SET' routine if PSW bank switch, bit 4, is set.
BSCHK: Mov A,PSW ;MOVE PSW CONTENTS TO ACC

JB4 RB1SET ;JUMP TO 'RB1SET' IF ACC BIT 4 = 1

14·22

MCS®·48 INSTRUCTION SET

MOV A,Rr Move Register Contents to Accumulator

Encoding: 11 1 1 1 11 r r r 1 F8H-FFH

Description: 8-bits of data are removed from working register 'r' into the accumulator.

Operation: (A) - (Rr) r = 0-7

Example: MAR: MOV A,R3 ;MOVE CONTENTS OF REG 3 TO ACC

MOV A,@Ri Move Data Memory Contents to Accumulator

Encoding 11 1 1 1 1 0 00 i 1 FOH-F1H

Description: The contents of the resident data memory location addressed by bits 0-5** of
register 'i' are moved to the accumulator. Register 'i' contents are unaffected.

Operation: "(A) - ((Ri»

Example: Assume R1 contains 00110110.
MADM: MOV A,@R1

i = 0-1

;MOVE CONTENTS OF DATA MEM
;LOCATION 54 TO ACC

MOV A,T. Move Timer/Counter Cont.ents to Accumulator

Encoding: 1 0 1 0 0 1 0 0 1 0 1 42H

Description: The contents of the timer/event-counter register are moved to the
accumulator.

Operation: (A) - (T)

Example: Jump to "EXIT" routine when timer reaches '64', that is, when bit 6 set-
assuming initialization 64, .
TIMCHK: MOV.A,T ;MOVE TIMER CONTENTS TO ACC

JB6 EXIT ;JUMP TO 'EXIT' IF ACC BIT 6 = 1

MOV pSW,A Move Accumulator Contents to PSW

•• O-!;i in 8048AH/8748H
0-6 in 8049AH/8749H
0-7 in 8050AH

14-23

MCS®.-48 I NS:t"RUCl'ION SET

MOV Rr,A Move Accumulator Contents to Register'

Encoding: 11 0 1 0 11 r r r 1 A8H-AFH.

Descrlptlom The contents of the accumulator are moved to register 'r'.

Operation: (Rr) - (A) r = 0-7

Example: MRA: MOV RO,A ;MOVE CONTENTS OF ACC TO REG 0

MOV Rr,#data Move Immediate Data to Register

Encoding: 11 011 1 1 r2 r1 rol B8H-BFH

Description: This is a 2-cycle instruction. The 8-bit value specified by 'data' is moved to
register'r'. .. .

Operation: (Rrf - data

Examples: MIR4: MOV R4,#HEXTEN

MIR S: MOV RS,#PI*(R*R)

MIR 6: MOV R6, #OADH

r = 0-7

;THE VALUE OF THE SYMBOL
;'HEXTEN' IS MOVED INTO REG 4
;THE VALUE OF THE EXPRESSION
;'PI*(R*R)' IS MOVED INTO REG S
;'AD' HEX IS MOVED INTO REG 6

MOV @ Ri,A Move Accumulator Contents to Data Memory

Encoding: 11 0 1 0 I 0 0 0 i I AOH-A1H

Description: The contents of the accumulator are moved to the resident data memory
location whose address is specified by bits O-S** of register 'i'. Register 'i'
contents are unaffected.

Operation: ((Ri)) - (A) . i = 0-1

Example: Assume RO contains 00000111.
MDMA: MOV @RO,A, . ;MOVE CONTENTS OF ACC TO

;LOCATION 7 (REG 7)

MOV @ Rj,#data Move Immediate Data to Data memory

Encoding: 11- 0 1 1 I 0 0 0 i I I d7 d6 dS d4. 1 d3 d2 d1 dO I BOH-B1H

Description: This is a 2-cycle instruction. The 8-bit value specified by 'data' is moved
to the resident d\'lta memory location addressed by register 'i', bits o-S**.

Operation: ((Ri)) - data i = 0-1

Examples: Move the hexadecimal value AC3F to locations 62-63.
MIDM: MOV RO,#62 ;MOVE '62' DEC TO ADDR REG 0

** 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H
0-7 in 8050AH

MOV @RO,#OACH ;MOVE 'AC' HEX TO LOCATION 62
INC RO ;INCREMENT REG 0 to '63'
MOV @RO,#3FH ;MOVE '3f' HEX TO LOCATION 63

MCS®-48 INSTRUCTION SET

MOV T,A Move Accumulator Contents to Timer/Counter

Encoding: I 0 1 1 0 1 0 0 1 0 1 62H

Description: The contents of the accumulator are moved to the timer/event-counter
register.

Operation: (T) - (A)

Example: Initialize and start event counter.
INITEC: CLR A

MOVT,A
START CNT

;CLEAR ACC TO ZEROS
;MOVE ZEROS TO EVENT COUNTER
;START COUNTER

MOVD A,Pp Move Port 4-7 Data to Accumulator

Encoding: 1 0 0 0 0 11 1 p pi OCH-OFH

Description: This is a 2-cycle instruction. Data on 8243 port 'p' is moved (read) to
a~cumulator bits 0-3. Accumulator bits 4-7 are zeroed.

Operation: (0-3) - (Pp)
(4-7) - 0

p = 4-7

Note: Bits 0-7 of the opcode are used to represent ports 4-7. If you are
coding in binary rather than assembly language, the mapping is as
follows:

Bits 10 Port

00 4
01 5
10 6
1 1 7

Example: INPPT5: MOVD A,P5 ;MOVE PORT 5 DATA TO ACC
;BITS 0-3, ZERO ACC BITS 4-7

MOVD Pp,A Move Accumulator Data to Port 4-7

Encoding: I 0 O· 1 1 11 1 P P I 3CH-3FH

Description: This is a 2-cycle instruction. Data in accumulator bits 0-3 is moved
(written) to 8243 port 'p'. Accumulator bits 4-7 are unaffected. (See NOTE
above regarding port mapping.)

Operation: (Pp) - (AO-3) P = 4-7

Example: Move data in accumulator to ports 4 and ~.

OUTP45: MOVD P4,A
SWAP A
MOVD P5,A

14-25

;MOVE ACC BITS 0-3 TO PORT 4
;EXCHANGE ACC BITS 0-3 and 4-7
;MOVE ACC BITS 0-3 TO PORT 5

MCS®-48 INSTRUCTION S.ET

MOVP A,@A Move Current Page Data to ~ccumulator

Encoding: 11 0 1 0 1 0 0 1 1 1 A3H

Description: The contents of the program memory location addressed by,the
accumulator are moved to the accumulator. Only bits 0-7 of the program
counter are affected, limiting the program memory reference to the .,
current page. The program counter is restored following this operation.

Operation: (PCO-7) - (A)
(A) - «PC»
Note: This is a 1-byte, 2-cycle instruction. If it appears in location 255 of a
program memory page, @A addresses a location in the following page.

Example: MOV128: MOV A,#128 ;MOVE '128' DEC TO ACC,
MOVP A,@A ;CONTENTS OF 129th LOCATION IN

;CURRENT PAGE ARE MOVEDTOACC

MOVP3 A,@A Move Page 3 Data to Accumulator

Encoding: 11 1 1 0 1 0 0 1 1 1 E3H

Description: This is a 2-cycle instruction. The contents of the program memory location
(within page 3) addressed by the accumulator are moved to the
accumulator. The program counter is restored following this operation.

Operation: (PCO-7) - (A)
(PC8-11) - 0011
(A) - «PC»

Example: Look up ASCII equivalent of hexadecimal code in table contained at the
beginning of page 3. Note that ASCII characters are deSignated by a
7-bit code; the eighth bit is always reset.
TABSCH: MOV A,#OB8H ;MOVE 'B8'HEX TO ACC (10111000)

ANL A,#7FH ;LOGICAL AND ACC TO MASK BIT
;7 (00111000)

MOVP3 A,@A ;MOVE CONTENTS OF LOCATION '38'
;HEX IN PAGE 3 TO ACC (ASCII '8')

Access contents of location' in page 3 labelled TAB1.
Assume current program location is not in page 3.
TABSCH: MOV A,#LOW TAB 1 ;ISOLATE BITS 0-7 OF LABEL

;APDRESS VALUE,
MOVP3 A,@A ;MOVE CONTENTS OF PAGE3,

;LOCATION LABELED 'TAB1' 'rCACe

14-26

.MCS®-48 INSTRUCTION SET
------------_ .. ----_ .. _-------------_.

MOVX A,@RI Move External-Data-Memory Contents to Accumulator

Encoding: 11 0 0 0 1 0 0 0 i 1 SOH-S1 H

Description: This is a 2-cycle instruction. The contents of the external data memory
location addressed by register 'i' are moved to the accumulator. Register 'i'
contents are unaffected. A read pulse is generated.

Operation: (A) - «Ri)) . i = 0-1

Example: Assume R1 contains 01110110.
MAXDM: MOVX A,@R1 ;MOVE CONTENTS OF LOCATION

;118 TO ACC

MOVX@Rj,A Move Accumulator Contents to External/Data Memory

Encoding: 11 0 0 1 1 0 0 0 i 1 90H-91H

Description: This is a 2-cycle instruction. The contents of the accumulator are moved to
the external data memory location addressed by register 'i'. Register 'i'
contents are unaffected. A write pulse is generated.

Operation: «Ri)) - A

Example: Assume RO contains 11000111.
MXDMA: MOVX @RO,A

NOP The NOP Instruction

Encoding: 1 0 0 0 0 1 0 0 0 0 1 OOH

i = 0-1

;MOVE CONTENTS OF ACC TO
;LOCATION 1991N EXPANDED
;DATA MEMORY

Description: No operation is performed. Execution continues with the following
instruction.

ORL A,Rr Logical OR Accumulator With Register Mask

Encoding: 1 0 1 0 0 11 r r rl 4SH-4FH

Description: Data in the accumulator is logically ORed with the mask contained in
working register 'r'.

Operation: (A) - (A) OR (Rr)

Example: ORREG: ORL A,R4

14-27

r = 0-7

;'OR' ACC CONTENTS WITH
;MASK IN REG 4

MCS@·48 JNSTRUCTION SET

ORL A,@RI Logical OR Accumulator With Memory Mask

Encoding: 10 1 00 10 0 0 i 1 40H-41H

Description: Data in the accumulator is logically ORed with the mask contained in the
resident data memory locati.on referenced by register "i", bits 0-5**.

Operation: (A) -- (A) OR ((Ri)) i = 0-1

Example: ORDM: MOV RO,#3FH;MOVE '3F' HEX TO REG 0
ORL A,@RO ;'OR' AC CONTENTS WITH MASK

;IN LOCATION 63

ORL A,#data Logical OR Accumulator With Immediate Mask

Encoding: 10 1 0 0 I 0 0 1 1 1 1 d7 d6 d5 d4 1 d3 d2 d1 dO I 43H

Description: This is a 2-cycle instruction. Data inthe accumulator is logically ORed with
an immediately-specified mask.

Operation: (A) -- (A) OR data

Example: ORID: ORL A,#'X' ;'OR' ACC CONTENTS WITH MASK
;01011000 (ASCII VALUE OF 'X')

ORL BUS,#data* Logical OR BUS With Immediate Mask

Encoding: 11 0 0 0 11 0 0 0 1 88H

Description: This is a 2-cycle instruction. Data on the BUS port is logically ORed with an
immediately-specified mask. This instruction assumes prior specification
on an 'OUTL BUS,A' instruction.

Operation: (BUS) -- (BUS) OR data

Example: ORBUS: ORLBUS,#HEXMSK :'OR' BUS CONTENTS WITH MASK
;EQUAL VALUE OF SYMBOL 'HEXMSK'

ORLPp, #data Logical OR Port 1 or 2 With Immediate Mask

Encoding: 11 0 0 0 11 0 P pi 1 d7 d6 d5 d4 I d3 d2 d1 dO I 89H-8AH

Description: This isa 2-cycle instruction. Data on port 'p' is logically ORed with an
immediately-specified mask.

Operation: (Pp) -- (Pp) OR data

Example: ORP1: ORL P1, #OFFH

• For use with internal program memory ONLY.
•• 0-5 in 8048AH/8748H

0-6 in 8049AH/8749H
0-7 in 8050AH

14-28

p = 1-2

;'OR' PORT 1 CONTENTS WITH MASK
;'FF' HEX (SET PORT 1 TO ALL ONES)

MCSS"48 INSTRUCTION SET

ORlD Pp,A logical OR Port 4-7 With Accumulator Mask

Encoding: I' 0 0 0 11 1 P P 1 8CH-8FH

Description: This is a 2-cycle instruction. Data on port 'p' is logically ORed with the
digit mask contained in accumulator. bits 0-3.

Operation: (Pp) - (Pp) OR (AO-3)

Example: ORP7: ORlD P7.A

p = 4-7

;'OR' PORT 7 CONTENTS WITH ACC
;BITS 0-3

OUTl BUS,A* Output Accumulator Data to BUS

Encoding: @1 0 0 1 0 0 1 0 I 02H

Description: This is a 2-cycle instruction. Data residing in the
accumulator is transferred (written) to the BUS port and
latched. The latched data remains valid until altered by
another OUTl instruction. Any other instruction requiring
use of the BUS port (except INS) destroys the contents of
the BUS latch. This includes expanded memory operations
(such as the MOVX instruction). logical operations on
BUS data (AND, OR) assume the OUTL BUS,A instruction
has been issued previously.

Operation: (BUS) - (A)

Example: OUTLBP: OUTL BUS, A ;OUTPUT ACC CONTENTS TO BUS

OUTl Pp,A Output Accumulator Data to Port 1 or 2

Encoding: 1 0 0 1 1 11 0 P pi 39H-3AH

Description: This is a 2-cycle instruction. Data residing in the accumulator is transferred
(written) to port 'p' and latched.

Operation: (Pp) - (A) P = 1-2

Example: OUTLP: MOV A,R7 ;MOVE REG 7 CONTENTS TO ACC
OUTL P2,A ;OUTPUT ACC CONTENTS TO PORT 2
MOV A, R6 ;MOV REG 6 CONTENTS TO ACC
OUTL P1.A ;OUTPUT ACC CONTENTS TO PORT 1

• For use with internal program memory ONLY.

14-29

MGS®-48INSTR'l,JCTIONSET·

RET Return Without PSW Restore

Encoding: 11 0 0 0 ! 0 0 1 1/ 83H

Descript!on: Ttlis is a ~-cycle instruction. The stack pointer (PSW bits 0-2) is
decremented. The program counter is then restored from the stack. PSW
bits 4-7 are not restored.

Operation: (SP) - (SP)-1
(PC) -«SP»

RETR Return with PSW Restore

Encoding: 11 0 0 1 / 0 0 1 1 I 93H

Description: This is a 2-cycle instruction. The stack pointer is decremented. The
program counter and bits 4-7 of the PSW are then restored from the stack.
Note that RETR should be used to return from an interrupt, but should
not be used within the interrupt service routine as it signals the end of an
interrupt routine by resetting the Interrupt in Progress flip-flop.

Operation: (SP) +-- (SP)-1
(PC) - «SP» .
(PSW 4-7)...,... «SP»

14-30

. MCS@-48 INSTRUCTION SET

RL A Rotate Left without Carry

Encoding: 11 1 1 0 I 0 1 1 1 I E7H

Description: The contents of the accumulator are rotated left one bit. Bit 7 is rotated'
into the bit 0 position.

Operation: (An + 1) - (An)
(AO) - (A7) n = 0-6

Example: Assume accumulator contains 10110001.
RLNC: RL A . ;NEW ACC CONTENTS ARE 01100011

RLC A Rotate Left through Carry

Encoding: 11 1 1 1 I 0 1 1 1 I F7H

Description:

Operation:

Example:

The contents of the accumulator are rotated left one bit. Bit 7 replaces the
carry bit; the carry bit is rotatd into the bit 0 position ..

(An + 1) - (An)
n = 0-6
(AO) - ,(C)
(C) - (A7)

Assume accumulator contains a 'signed' number; isolate sign without
changing value.
RLTC: CLR C

RL'CA

RRA

;CLEAR CARRY TO ZERO
;ROTATE ACC LEFT, SIGN
;BIT (7) IS PLACED IN CARRY
;ROTATE ACC RIGHT - VALUE
;(BITS 0-6) ISRES1b'RED,
;CARRY UNCHANGED, BIT 7
;IS ZERO

RR A Rotate Right without Carry

Encoding: 10 1 1 1 I 0 1 1 1 I 77H

Description: The contents of the accumulator are rotated right one bit. Bit 0 is rotated
into the bit 7 position. '

Operation: (An) - (An + 1) n = 0-6
(A7) - (AO)

Example: Assume accumulator contains 10110001.
RRNC: RR A ;NEW ACC CONTENTS ARE 11011000

. 14-31

MCS®·48INSTR.UCTION SET

RRC A Rotate Right through Carry

Encoding: 10 1 1 0 1 0 1 1 11 67H

Description: The contents of the accumulator are rotated right one bit. Bit 0 replaces the
carry bit; the carry bit is rotated into the bit 7 position.

Operation: (An) - (An + 1) n = 0-6
(A7) - (C)
(C) - (AO)

Example: Assume carry is not set and accumulator contains 10110001.
RATC: ARC A ;CAAAY IS SET AND ACC

;CONTAINS 01011000·

SEL MBO Select Memory Bank 0 .

Encoding: 11 1 1 0 1 0 1 0 1 1 E5H

Description: PC bit 11 is set to zero on next JMP or CALL instruction. All references to
program memory addresses fall within the range 0-2047.

Operation: (DBF) - 0

Example: Assume program counter contains 834 Hex.
SEL MBO ;SELECT MEMORY BANK 0
JMP $+20 ;JUMP TO LOCATION 58 HEX

SEL MB1 Select Memory Bank 1

Encoding: 11 1 '·1 101 0 1 I F5H

Description: PC bit 11 is set to one on next JMP or CALL instruction. All references to
program memory addresses fall within the range 2048-4095.

Operation: (DBF) - 1

.14-32

MCSI8~48 INSTRUCTION SET

SEL RBO Select Register Bank 0

Encoding: 11 1 0 0 1 0 1 0 1 1 C5H

Description: PSW bit 4 is set to zero. References to working registers 0-7 address data
memory locations 0-7. This is the recommended setting for normal
program execution.

Operation: (BS) - 0

SEL RB1 Select Register Bank 1

Encoding: 11 1 0 1 1 0 1 0 1 1 D5H

Description: PSW bit 4 is set to one. References to working registers 0-7 address data
memory locations 24-31. This is the recommended setting for interrupt service
routines, since locations 0-7 are left intact. The setting of PSW bit 4 in
effect at the time of an interrupt is restored by the RETR instruction when
the interrupt service routine is completed.

Operation: (BS) - 1

Example: Assume an external interrupt has occurred, control has passed to program
melTJory location 3, and PSW bit 4 was zero before the interrupt.

Operation: LOC3: JNI INIT ;JUMP TO ROUTINE 'INIT' IF
;INTERRUPT INPUT IS ZERO

INIT: MOV R7,A ;MOVE ACC CONTENTS TO
;LOCATION 7

SEL RB1 ;SELECT REG BANK 1
. MOV"R7.#OFAH ;MOVE 'FA' HEX TO LOCATION 31

SEL RBO
MOVA,R7
RETR

STOP TCNT Stop Timer/Event-Counter

Encoding: I 0 1 1 0 1 0 1 0 1.1 65H

;SELECT REG BANK 0
;RESTORE ACC FROM LOCATION 7
;RETURN - RESTORE PC AND PSW

Description: This instruction is used to stop both time accumulation and event counting.

14·33

MCS@-48INSTRUCTION SET

Example: Disable interrupt, but jump to interrupt routine after eight overflows and
stop timer. Count overflows in r~gister 7.
START: DIS TCNTI

CLRA
MOVT,A
MOV R7,A
STRTT

MAIN: JTF COUNT

JMP MAIN
COUNT: INC R7

MOVA,R7
JB31NT

JMP MAIN

INT: STOP TCNT
JMP7H

STRT CNT Start Event Conter

Encoding: I 0 1 0 0 I 0 1 0 1 I 45H

;DISABLE TIMER INTERRUPT
;CLEAR ACC TO ZEROS
iMOVE ZEROS TO TIMER
;MOVEZEROSTO REG 7·
;START TIMER
;JUMP TO ROUTINE 'COUNT'
;IF TF = 1 AND CLEAR TIMER FLAG
;CLOSE LOOP
;INCREMENT REG 7
;MOVE REG 7 CONTENTS TO ACC
;JUMP TO ROUTINE 'INT' IF ACC
;BIT 3 IS SET (REG 7 = 8)
;OTHERWISERETURN TO ROUTINE
;MAIN

;STOP TIMER
;JUMP TO LOCATION 7 (TIMER)
;INTERRUPT ROUTINE

Description: The test 1 (T1) pin is enabled as the event-counter input and the counter
is started. The event-counter register is incremented with each high-to-Iow
transition on the T1 pin.

Example: Initialize and start event counter. Assume overflow is desired with first T1
input.
STARTC: EN TCNTI

MOV A,#OFFH
MOVT,A
STRT CNT

14-34

;ENABLE COUNTER INTERRUPT
;MOVE 'FF'HEX (ONES) TO ACC
;MOVES ONES TO COUNTER
;ENABLE T1 AS COUNTER
;INPlJT AND START

MCS@-48 INSTRUCTION SET

STRT T Start Timer

Encoding: 10 1 0 1 1 0 1 0 1 1 55H

Description: Timer accumulation is initiated in the timer register. The register is
incr.emented every 32 instruction cycles. The prescaler which counts the
32 cycles is cleared but the timer register is not.

Example: Initialize and start timer.

STARTT: CLR A
MOVT,A
EN TCNTI
STRTT

SWAP A Swap Nibbles within Accumulator

Encoding: 10 1 0 0 I 0 1 1 1 I 47H

;CLEAR ACC TO ZEROS
;MOVE ZEROS TO TIMER
;ENABLE TIMER INTERRUPT
;START TIMER

Description: Bits 0-3 of the accumulator are swapped with bits 4-7 of the accumulator.

Operation: (A4-7)!:; (AO-3)

Example: Pack bits 0-3 of locations 50-51 into location 50.
PCKDIG: MOV RO, #50

MOV R1, #51
XCHDA,@RO

SWAP A
XCHDA,@R1

MOV@RO,A

;MOVE '50' DEC TO REG 0
;MOVE '51' DEC TO REG 1
;EXCHANGE BITS 0-3 OF ACC
;AND LOCATION 50
;SWAP BITS 0-3 AND 4-7 OF ACC
;EXCHANGE BITS 0-3 OF ACe AND
;LOCATION 51
;MOVE CONTENTS OF ACC TO
;LOCATION 50

XCH A,Rr Exchange Accumulator-Register Contents

Encoding: I 0 0 1 0 11 r r r I 28H-2FH

Description: The contents of the accumulator and the contents of working register 'r'
are exchanged.

Operation: . (A) !:; (Rr) r = 0-7

Example: Move PSW contents to Reg 7 without losing accumulator contents.
XCHAR7: XCH A,R7 ;EXCHANGE CONTENTS OF AEG 7

;AND ACC
MOV A, PSW ;MOVE PSW CONTENTS TO ACC
XCH A,R7 ;EXCHANGE CONTENTS OF REG 7

'AND ACC AGAIN

14-35

MCS@·48 INSTRUCTION SET.

XCH A,@R, Exchange Accumulator and Data Memory Contents

Encoding: 10 0 1 0 I 0 0 0 i 1 20H-21H

Des~ription: The contents of the accumulator and the contents of the resident data
memory location addressed bybits 0-5** of register 'i' are exchanged.
Register 'i' contents are unaffected.

Operation: (A) =; «Ri» i = 0-1

Example: Decrement contents of location 52.
DEC52: MOV RO,#52 ;MOVE '52' DEC TO ADDRESS REG 0

. XCH A,@RO ;EXCHANGE CONTENTS OF ACC

DECA
XCH A,@RO

;AND LOCATION 52
;DECREMENT ACC CONTENTS
;EXCHANGE CONTENTS OF ACC
;AND LOC.ATION 52 AGAIN

XCHD A,@Ri Exchange Accumulator and Data Memory 4-81t Data

Encoding: 10 0 1 1 1 0 0 0 i 1 30H-31H

Description: This instruction exchanges bits 0-3 of the accumulator with bits 0-3 of
th.e data :memory location addressed by bits 0-5** of register 'i'. Bits 4-7 of
the accumulator, bits 4-7 of the data memory location, and the contents of
register 'i' are unaffected.

Operation: (AO-3) =; «RiO-3» i = 0-1

Example: Assume program counter contents have been stacked in locations 22-23.

XCHNIB: MOV RO,#23
CLRA
XCHD A,@RO

;MOVE '23' DEC TO REG 0
;CLEAR ACC TO ZEROS
;EXCHANGE BITS 0-3 OF ACC AND
;LOCATION 23 (BTS 8-11 OF PC ARE
;ZEROED, ADDRESS REFERS
:TO PAGE 0)

XRL A,Rr Logical XOR Accumulator With Register Mask

Encoding: 11 1 0 1 11 r r r 1 D8H-DFH

Description: Data in the accumulator is EXCLUSIVE ORed with the mask contained in
working register 'r'.

Operation: (A) - (A) XOR (Rr)

Example: XORREG: XRL A,R5

•• 0-5 in S04SAH/S74SH
0-6 in S049AH/S749H
0-7 in S050AH

14-36

r = 0-7

;'XOR' ACC CONTENTS WITH
;MASK IN REG 5

MCS®-48 INSTRUCTION SET

XRL A,@Ri Logical XOR Accumulator With Memory Mask

Encoding: 11 1 0 1 1 0 0 0 i 1 DOH-D1H

Description: Data in the accumulator is EXCLUSIVE ORed with the mask contained in the
data memory location addressed by register 'i', bits 0-5,**

Operation: (A) - (A) XOR «Ri))

Example: XORDM: MOV R1 ,#20H
XRL A,@R1

i =0-1

;MOVE '20' HEX TO REG 1
;'XOR' ACC CONTENTS WITH MASK
;IN LOCATION 32

XRL A,#data Logical XOR Accumulator With Immediate Mask

Encoding: I' 1 0 1 1 0 0 1 1 1 1 d7 dS dS d4 1 d3 d2 d1 dO I ' D3H

Description: This is a 2-cycle instruction. Data in the accumulator is EXCLUSIVE ORed
with an immediately-specified mask.

Operation: (A) - (A) XOR data

Example: XORID: XOR A,#HEXTEN

** 0-5 in 8048AH/8748H
0-6 in 8049AH/8749H
0-7 in 8050AH

14-37

;XOR CONTENTS OF ACC WITH MASK
;EQUAL VALUE OF SYMBOL 'HEXTEN'

MCS®~48 Data Sheets 15

" ",'

, "

PORT 2

8243
MCS®-48 INPUT/OUTPUT EXPANDER

• 00 C to 700 C Operation

Figure 1. 8243
Block Diagram

15-1

PORT 4

PORT 5

PORT 6

PORT 7

P50 Vee
P40 P51

1'141 P52

PI42 P53

PI43 P50

cs Pel

PROG Pe2

P23 Pe3

P22 P73

P21 P72

P20 P71

GNO P70

Figure 2. 8243
Pin Configuration

8243

Table 1. Pin Description

Symbol Pin No. Function

PROG 7 Clock Input A high to low transi-
tion on PROG signifies 'that ad~
dress and contro'l are available on
P20-P23, and a low to high transI-
tion signifies that data IS available
on P20-P23.

CS 6 Chip Select Input A hl'gh on CS
inhibits any change of output or
internal status

P20-P23 11-8 Four (4) bit bl-dlrectlonal port con-
tains the address and control bits
on a high to low trimsltlon of
PROG Dunng a low to high tran-
sitton contains the data for a sel-
ected output port If a write opera-
tion, or the data from a selected
port before the low to high transI-
tion If a read operation.

GND 12 o volt supply
P40-P43 2-5 Four (4) bit bl-dlrectlOnall/O ports
P50-P53 1,23-21 May be programmed to be Input
P60-P63 20-17 (dunng read), low Impedance
P70-P73 13-16 latched output (after write), or a tri-

state (after read). Data on pins
P20-P23 may be directly wntten,
ANDed O(ORed with prevIous
data.

VCC 24 +5 volt supply

FUNCTIONAL DESCRIPTION

General Operation
The 8243 contains four 4-blt I/O ports which serve
as an extension of the on-chip I/O and are ad
dressed, as ports 4-7. The following operations may
be performed on these ports.

• Transfer Accumulator to Port.
• Transfer Port to Accumulator.
• AND Accumulator to Port.
• OR Accumulator to Port.

All communication between the 8048 and the 8243
occurs over Port 2 (P20-P23) with timing provided
by an output pulse on the PROG pin of the proces
sor. Each transfer consists of two 4-bit nibbles:

The first containing the "op code" and port address
and the second containing the actual 4-bits of data.
A high to low transition of the PROG line indicates
that address is present while a low to high transition
indicates the presence of data. Additional 8243's
may be added to the 4-bit bus and chip selected
using additional output lines from the 8048/8748/
8035.

15-2

Power On Initialization
Initial application of power to the device forces
'input/output ports 4, 5, 6, and 7 to the tri-state and
port 2 to the input mode. The PROG pin may ~e
either high or low when power is applied. The first
high to low transition of PROG causes device to
exit power on mode The power on sequence is
initiated if vee drops below 1V.

Address Instruction
P21 P20 Code P23 P22 Code

0 0 Port 4 0 0 Read
0 1 Port 5 0 1 Write

0 Port 6 0 ORlD
Port 7 ANlD

Write Modes
The device has three write modes. MOVD Pi, A dir
ectly writes new data into the selected port and old
data is lost. ORlD Pi, A takes new data, OR's it with
the old data and then writes it to the port. ANlD Pi, A
takes new data, AND's it with the old data and then
writes it to the port. Operation code and port ad
dress are latched from the input port 2 on the high
to low transition of the PROGpin. On the lowto high
transition of PROG data on port 2 is transferred to
the logic block of the specified output port.

After the logic manipulation IS performed, the data
is latched and outputed. The old data remains
latched until new valid outputs are entered.

Read Mode
The device has one read mode. The operation code
and port address are latched from the input port 2 on
the high to low transition of the PROG pin. As soon
as the read operation and port address are decoded,
the appropriate outputs are tri-stated, and the input
buffers switched on. The read operation is termina
ted by a low to high transition of the PROG pin. The
port (4, 5, 6 or 7) that was selected is switched to the
tri-stated mode while port 2 is returned to the input
mode.

Normally, a port will be in an output (write mode) or
input (read mode). If modes are changed during
operation, the first read following a write should
be ignored; all following reads are valid. This is to
allow the external driver on the port to settle after
the first read instruction removes the low imped
ance drive from the 8243 output. A read of any port
will leave that port in a high impedance state.

8243

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias. O· C to 70· C
Storage Temperature -6S·C to +1S0·C
Voltage on Any Pin

WIth Respect to Ground -0.5 V to +7V
Power Dissipation 1 Watt

'NOTlCE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera
tion of the' device at these or any other conditions above
those indicated in the operational sections of this specifi
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = o·c to 70·C. VCC = 5V ± 10%)

Test
Symbol Parameter Min Typ Max Units Conditions

Vil Input low Voltage -O.S 0.8 V

VIH Input High Voltage 2.0 VCC+O.S V

VOU Output low Voltage Ports 4-7 0.45 V IOl = 4.5 mA"

VOl2 Output low Voltage Port 7 1 V IOl = 20 mA

VOH1 Output High Voltage Ports 4-7 2.4 V IOH = 240,uA

Hll Input leakage Ports 4-7 -10 20 ,uA Vin = VCC to OV

IIl2 Input leakage Port 2. CS. PROG -10 10 ,uA Vm = VCC to OV

VOl3 Output low Voltage Port 2 0.45 V IOl = 0.6 mA

ICC VCC Supply Current 10 20 mA Note 1

VOH2 Output Voltage Port 2 2.4 IOH = 100,uA

IOl Sum of alilOl from 16 Outputs 72 mA 4.5 mA Each Pin

'See follOWing graph for addItional srnk current capability

A.C. CHARACTERISTICS (TA = o·c to 70°C. VCC = 5V ± 10%)

Symbol Parameter Min Max Units Test Conditions

tA Code Valid Before PROG SO ns 80 pF load

tB Code Valid After PROG 60 ns 20 pF load

te Data ValId Before PROG 200 ns 80 pF load --
to Data Valid After PROG 20 ns . 20 pF load

tH Floatmg After PROG 0 lS0 ns 20 pF load

tK PROG NegatIve Pulse Width 700 ns

tcs CS ValId Before/After PROG 50 ns

tpo Ports 4-7 Valid After PROG 700 ns 100 pF load

tlPl Ports 4-7 Valid Before/After PROG 100 ns

tACC . Port 2 Valid After PROG 6S0 ns 80 pF load

Note 1: ICC~(-40°C to 85°C EXPRESS options) 15 mA tYPIcall25 mA maximum.

15-3

WAVEFORMS

PROG

PORT2

PORT2

PORTS 4-7

PORTS 4-7

.::=x,......-: >~T-ESTPOINT-S <------..::x~

"P

les

A C Testing Inputs are dnven al2 4V for d logIc' l'
and 0 45V for a logic "0" Output liming measurements
are made al 2 OV for a logic ''1' and 0 8V for a logic "0"

~~~ ______________ 'K ________________ ~ 

FLOAT 

'~;1 ~'x OUTPUT 
VALID 

IpO 

PREVIOUS OUTPUT VALID 

- ',P 

INPUT VALID 

les 

FLOAT 

OUTPUT 
VALID 



8243 

125 

100 

.. g 
:l 
9 
" 75 
I-
Z 
W 
II: 
II: GUARANTEEO WORST CASE 

" (J C~RRENT SINKING CAPABILITIES 

" OF ANY 110 PORT PIN VS. TOTAL Z 
iii 50 SINK CURRENT OF ALL PINS 

~ 
0 
I-

25 

10 11 12 13 

MAXIMUM SINK CURRENT ON ANY PIN @ .45Y 
MAXIMUM IOL WORST CASE PIN,(mA) 

Figure 3 

Sink Capability 

The 8243 can sink 5 mA@ .45V on each of its 161/0 
lines simultaneously. If, however, all lines are not 
sinking simultaneously or all lines are not fully 
loaded., the drive capability of any individual line 
increases as is shown by the accompanying curve. 

For example, if only 5 of the 16 lines are to sink 
current at one time, the curve shows that each of 
those 5 lines is capable of sinking 9 mA @ .45V (if 
any lines are to sink 9 mA the total 10L must not 
exceed 45 mA or five 9 mA loads). 

Example: How many pins can drive 5 TTL loads (1.6 mAl 
assuming remaining pins are unloaded? 

10l = 5 x 1.6 mA = 8 mA 
dOL = 60 mA from curve 
# pins = 60 mA..;- 8 mA/pm = 7.5 = 7 

In this case, 7 lines can sink 8 mA for a total of 
56mA. This leaves 4 mA sink current capability 
which can be divided In any way among the 
remaining 8 I/O lines of the 8243. 

Example: This example shows how the use of the 20 mA 
sink capability of Port 7 affects the sinking 
capability of the other I/O lines. 

An 8243 will drive the following loads simul
taneously. 

2 loads-20 mA@ lV (port 7 only) 
8 loads-4 mA @ .45V 
6 loads-3.2 mA @ .45V 
Is thiS within the specified limits? 

,10l = (2 x 20) + (8 x 4) + (6 x 3.2) = 91.2 mAo 
From the curve. for 10l = 4 mA, ,10l = 93 mAo 
since 91.2 mA < 93 mA the loads are within 
specified limits. 

Although the 20 mA @ 1V loads are used in 
calculating dOL. It IS the largest current re
quired @ .45V which determines the maximum 
allowable ,10l. 

NOTE: Al0 to 50KO pull up resistor to +5V should be added to 8243 outputs when driVing to 5V CMOS directly 

15-5 



inter 

PORT 1 
8048 

PROG 

'20·'23 

8243 

-=-
I/O 

CS 
'4 

PROG 

TEST P5 

8048 INPUTS 8243 

P6 

P2O·P23 DATA IN 
'2 ., 

Figure 4. Expander Interface 

~ I 
-< X > 

ADDRESS (4·BITSI DATA (4·8IT51 

BITS 3,2 

g~ 1 ~~~~E 
10 I OR 
11 ' AND 

Figure 5. Output Expander Timing 

I/O 

I/O 

I/O 

'/0 

BITS 1,0 

00 
01 > PORT 
10 ADDRESS 
11, 

PROG~--------"------~--------------~----------------4---------------~ 

Figure 6. Using Multiple 8243's 

15-6 



, inter [pJ1Rl~[lJ Iilal ~ INlfo\lRl 11' 

S04SAH/S035AHL/S049AH 
S039AHL/S050AH/S040AHL 

HMOS SINGLE-COMPONENT S-BIT MICROCOMPUTER 

• High Performance HMOS II 
• Interval Timer/Event Counter 
• Two Single Levellhterrupts 
• Single 5-Volt Supply 
• Over 96 Instructions; 90% Single Byte 

• Reduced Pow~r C!>nsumption 
• Compatible with 8080/8085 Peripl)erals 
• Easily Expandable Memory and I/O 
• Up to 1.36 ",Sec Instruction Cycle 

All Instructions 1 or 2 cycles 

The Intel MCS®·48 family are totally self-sufficient, 8-bit'parallel computers fabricated on single silicon chips 
using Intel's advanced N-channel silicon gate- HMOS process. 

The family contains 27 I/O lines, an 8-bit timer/counter, and on-board oscillator/clock circuits. For systems that 
require extra capability, the family can be expanded using MCS®-80/MCS®-85 peripherals. 

To minimize development problems and provide maximum flexibility, a logically and functionally pin-compatible 
version of the ROM devices with UV-erasable user-programmable EPROM program memory is available with 
minor differences. ' 

These microcomputers are designed to be efficient controllers as well as arithmetic processors. They have 
extensive bit handling capability as well as facilities for both binary and BCD,arithmetic. Efficient use of program 
memory results from an instruction set consisting mostly of single byte instructions .and no instructions over 
2 bytes in length. -

Device 

8050AH 4K x 8 ROM 

8049AH 2K x 8 ROM 

8048AH 1 K x 8 ROM 

8040AHL none 

8039AHL none 

8035AHl none 

Figure 1. 
Block Diagram 

Internal Memory 
I 

I 
I 

I 
I 

I 

15-7 

256 x 8,BAM 

128 x 8 RAM 

64 x 8 RAM 

256 x 8RAM 

128 x 8RAM 

64 x 8 RAM 

8048AH 
8035AHL 
8049AH 
8039AHL 
8OS0AH 
8040AHL 

Figure 2. 
Logic Symbol 

RAM Standby 

yes 

yes 

yes 

yes 

yes 

yes 

TO 1 
XTAL 1 
XTAL 2 

RE;SET 
S5 

INT 
'EA 
AD 

PSEN 

Figure 3. 

P22 
P21 
P20 

Pin Configuration 



inter 

Pin 
Symbol No. 

VSS 20 

VDD 26 

VCC 40 

PROG 25 

P10-P17 27-34 
Port 1 

P20-P23 21-24 
P24-P27 35-38 
Port 2 

DBO-DB7 12-19 
BUS 

TO 1 

T1 39 

INT 6 

8048AH/8035AHL/8049AH 
8039AHL/8050AH/8040AHL 

Table 1. Pin De$crlptlon 

Function Symbol 

Circuit GND potential RD 

+ 5V during 'normal operatiqn. 

Low power stanqby pin. 

Main power supply; + 5V 
during operation. 

Output strobe for 8243 I/O 
expander. 

RESET 
8-bit quasi-bidirectional port. 

8-bit quasi-bidirectional port. 
P20-P23 contain the four high 
order program counter bits 
during an external program WR 
memory fetch and serve as a 
4-bit I/O expander bus for 
8243. 

True bidirectional port which 
can be written or read ALE 
§y!!'chronously using the RD, 
WR strobes. The port can also 
be statically latched. 

Contains the 8 low order 
program counter bits during an 
external program memory 
fetch, and receives the 
addressed instruction under the PSEN 
control of PSEN. Also contains 
the address and data during an 
external RAM data store 
instruction, under control of 
ALE, RD, and WR. SS 

Input pin testable using the 
conditional transfer instructions 
JTO and JNTO. TO can be 
designated as a clock output 
using ENTO CLK instruction 

Input pin testable using the EA 

JT1, and JNT1 instructions. 
Can be designated the timer/ 
counter input using the STRT 
CNT instruction. 

Interrupt input. Initiates an 
interrupt if interrupt is enabled. 
Interrupt is disabled after a XTAL1 
reset. Also testable with 
conditional jump instruction. 
(Active low) interrupt must 
remain low for at least 3 

XTAL2 

machine cycles for proper 
operation. 

15-8 

Pin 
No: "Function 

8 Output strobe ac\ivated during 
a BUS read. Can be used to 
enable data onto tl1e bus from 
an external device. 

Used as a read strobe t6 
external data memory. 
(Active low) 

4 Input which is used to initialize 
the processor. (Active low) 
(Non TTL VIH) 

Used during power down. 

Used during ROM verification. 

10 Output strobe during a bus 
write. (Active low) 

Used as write strobe to 
external data memory. 

11 Address latch enable. This 
signal occurs once during each 
cycle and is useful as a clock 
output. 

The negative edge of ALE 
strobes address into external 
data and program memory. 

9 Program store enable. This 
output occurs only during a 
fetch to external program 
memory. (Active low) 

5 Single step input can be used 
in conjunction with ALE to 
"single step" the processor 
through each instruction. 
(Active Low) 

Used in sync' mode 

7 External access input which 
forces all program memory 
fetches to reference external 
memory. Useful for emulation 
and debug. (Active high) 

Used during ROM verification 
(12V) 

2 One side of'crystal input for 
internal oscillator. Also input for 
external source. (Non TTL VIH) 

3 Other side of crystal input. 



Accumulator 

Mnemonic Description 
ADDA,A Add register to A 
ADDA,@R Add data memory to A 
ADD A, # data Add immediate to A 
ADDCA, R Add register with carry 
ADDCA,@R Add data memory 

with'carry 
ADDC A, # data Add immediate 

with carry 
ANLA, A And register to A 
ANLA,@A And data memory to A 
ANL A, # data And immediate to A 
ORLA, A Or register to A 
ORLA@R Or data memory to A 
ORLA,#data Or Immediate to A 
XRL A, R Exclusive or register 

toA 
XRLA,@R Exclusive or data 

memory to A 
XRL, A, # data Exclusive or 

immediate to A 
INCA Increment A 
DECA Decrement A 
CLRA Clear A 
CPLA Complement A 
DAA Decimal adjust A 
SWAP A Swap nibbles of A 
RLA Rotate A left 
RLCA Rotate A left 

th rough carry 
RRA Aotate A right 
RRCA Rotate A right 

through carry 

Input/Output 

Mnemonic Description 
INA, P Input port to A 
OUTLP, A Output A to port 
ANL P,#data And immediate to port 
ORL P,#data Or immediate to port 
INS A, BUS Input BUS to A 
OUTL BUS,A Output A to BUS 
ANL BUS, # data And immediate to BUS 
ORL BUS, # data Or immediate to BUS 
MOVDA, P Input expander port 

toA 
MOVDP, A Output A to expander 

port 

S04SAH/S035AHL/S049AH 
S039AHLlS050AH/S040AHL 

Table 2. Instruction Set 

Byte. Cycl .. 
1 1 
1 1 
2 2 
1 1 
1 1 

2 2 

1 1 
1 1 
2 2 
1 1 
1 1 
2 2 
1 1 

1 1 

2 2 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

1 1 
1 1 

Byt .. Cycle. 
1 2 
1 2 
2 2 
2 2 
1 2 
1 2 
2 2 
2 2 

2 

2 

Reglste,. 

Mnemonic 
INCR 
INC@R 
DECR 

Branch 

Mnemonic 
JMPaddr 
JMPP@A 
DJNZR, addr 

JC addr 
JNCaddr 
JZaddr 
JNZ addr 
JTO addr 
JNTO addr 
JTl addr 
JNT1 addr 
JFO addr 
JFl addr 
JTF addr 
JNI addr 
JBb addr 

Subroutine 

Mnemonic 
CALL addr 
RET 
RETR 

Flag. 

Mnemonic 
CLR C 
CPLC 
CLR FO 
CPL FO 
CLR Fl 
CPLFl 

ANLDP,A And A to expander port 2 
ORLDP,A Or A to expander port 2 

15-9 

Description 
Increment register 
Increment daia memory 
Decrement register 

Description 
Jump unconditional 
Jump indirect 
Decrement register 
and skip 
Jump on carry = 1 
Jump on carry = 0 
Jump on A zero 
Jump on A not zero 
Jump on TO = 1 
Jump on TO = 0 
Jump on Tl = 1 
Jump on T1 = 0 
Jumpon FO = 1 
Jump on Fl = 1 
Jump on timer flag 
Jurnp on INT = 0 
Jump on accumulator 
bit 

Description 
Jump to subroutine 
Return 
Retu rn and restore 
status 

Description 
Clear carry 
Coml>lement carry 
Clear flag 0 • 
Complement flag 0 
Clear flag 1 
Complement flag 1 

Bytes Cycles 
1 1 

Byte. Cycle. 
2 2 
1 2 
2 2 

2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 

Byte. Cycle. 
2 2 

Byt .. 
J 
1 

2 
2 

Cycles 
1 
1 



intel® 8048AM/8035AHU8049AH 
8039AH.U8050AH/8040AHL [P)1Rl~1L~1%1I~lNIfo\lRl'V 

Table 2. Instruction Set (Continued) 

Data Moves Timer/Counter 

Mnemonic Description Bytes Cycles .Mllemonlc Description Bytas Cycles 
MOVA, R Move r!3gister to A 1 1 MOVA, T Read timer/counter 1 1 
MOVA,@R Move data memory MOVT,A load timer/counter 

toA StRTT Start timer 
M0VA,#data Move immediate to A 2 2 STRT CNT Start timer 
MOV R,A Move A to register STOP TCNT Stop timer/counter 
MOV@R,A Move A to data EN TCNTI Enable timer/counter 

memory interrupt 
MOV R,#data Move Immediate 2 2 DIS TCNTI Disable timer/counter 

to register interrupt 
MOV @R, # data Move immediate to 2 2 

data memory 
MOVA,PSW Move PSW to A Control 
MOV PSW, A MoveAto PSW 
XCHA, R Exchange A and Mnemonic Description Bytes Cycles 

register EN I Enable external 1 1 
XCHA,@R Exchange A and interrupt 

data memory DISI Disable external 
XCHDA,@R Exchange nibble of A interrupt 

and register SElRBO Select register bank 0 
MOVXA,@R Move external data 2 SEl RBl Select register bank 1 

memory to A SEl MBO Select memory bank 0 
MOVX@R,A Move A to external 2 SEl MBl Select memory bank 1 

data memory ENTO ClK Enable clock output 
MOVPA,@A Move to A from 2 onTO 

cu rrent page 
MOVP3A,@ Move to A from page 3 2 

Mnemonic Description Bytes Cycles 
NOP No operation 1 1 
IDl Select Idle Operation 1 

15-10 



8048AH/8035AHl/8049AH 
8039AHLl8050AH/8040AHL 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ... 0° C to 70° C 
Storage Temperature .......... -65°C to +150°C 
Voltage On Any Pin With Respect 

to Ground ..................... -0.5V to +7V 
Power Dissipation ..................... 1.5 Watt 

'NO neE: Stresses above those listed under "Abso
lute Maximum Ratings" may cause permanent dam
ageto the device. This is a stress rating only' and 
functional operation of device at these or any other 
conditions above those indicated in the operational 
sections of this specification is not i,!,plied. 

D.C. CHARACTERISTICS: (TA = O°C to 70°C; VCC = VDD = 5V ± 10%; VSS = OV) 

Limits 

Symbol Parameter Min Typ Max Unit Test Conditions Device 

VIL Input Low Voltage (All 
Except RESET, X1, X2) -.5 .8 ,V All 

VIL1 Inp~ Low Voltage 
(RE ET, X1, X2) -5 .6 V All 

VIH Input High Voltage 
(All Except XTAL 1, 
XTAL2, RESET) 2.0 VCC V - All 

VIH1 Input High Voltage 
(X1, X2, RESET) 3.8 VCC V All 

VOL Output Low Voltage 
(BUS) .45 V 10L = 2.0 mA All 

VOL1 Output Low Voltage 
(RD, WR, PSEN, ALE) .45 V IOL = 1.8 mA All 

VOL2 Output Low Voltage 
(PROG) .45 V IOL = 1.0 mA All 

VOL3 Output Low Voltage 
(All Other Outputs) .45 V IOL = 1.6 mA All 

VOH Output High Voltage 
(BUS) 2.4 V IOH = -400 p.A All 

VOH1 Output High Voltage 
, 

(RD, WR, PSEN, ALE) 2.4 V IOH = -100 p.A All 

VOH2 Output High Voltage 
(All Other Outputs) 2.4 V IOH = -40 p.A All 

15-11 



8048AH/8035AHLl8049AH 
8039AHL/8050AH/8040AHL 

D.C. CHARACTER.lSTICS: (T A = O°C to 70°C; VCC = VOO = SV ± 100;",; VSS = OV) (Continued) 

Limits 

Symbol Parameter .Mln Typ Max Unit Test Conditions Device 

1L1 Leak~ Current 
(T1,INT) ±10 JJA VSS,;;;VIN';;;VCC All 

IU1 Input Leakage Current 
(P10·P17, P20·P27, 
EA, SS) -SOO ~ VSS + .4S,;;;VIN';;;VCC All 

IU2 Input Leakage Current 
RESET 20 300 /LA VSS,;;;VIN,;;;3.8V All 

ILO Leakage Current 
(BUS, TO) (High 
Impedance State ±10 JJA VSS,,;;VIN";;VCC All 

100 VOO Supply Current 3 S mA 8048AH 
(RAM Standby) 8035AHL 

4 7 mA 8049AH 
8039AHL 

S 10 mA 80S0AH 
8040AHL 

100+ Total Supply Current" 30 65 rnA 8048AH 
ICC 8035AHL 

35 70 mA 8049AH 
8039AHL 

40 80 mA 80S0AH 
8040AHL 

VOO RAM Standby Voltage' 2.2 S.S V Standby Mode Reset All 
,;;;VIL1 

"ICC + 100 is measured with all outputs disconnected; SS, RESET, and INT equal to VCC; EA equal to 
VSS· . 

15·12 



inter 8048AH/8035AHL/8049AH 
8039AHL/8050AH/8040AHL 

A.C. CHARACTERISTICS: (T A = 00 C to 700 C; VCC = VOO = 5V ± 10%; VSS = OV) 

I (I) 
11 MHz 

Symbol Parameler (Note 3) Min Max Unl" 

t Clock Period 1/xtal freq 90.9 1000 ns 

tLL ALE Pulse Width 3.5t-170 150 ns 

tAL Addr Setup to ALE 2t-110 70 ns 

tLA Addr Hold from ALE t-40 50 ns 

tCC1 Control Pulse Width (Rl5, WR) 7.5t-200 480 , ns 

tCC2 Control Pulse Width (PSEN) 6t-200 350 ns 

tow Data Setup before WR 6.5t-200 390 ns 

two Data Hold after WR t-50 40 ns 

tOR Data Hold (RD, PSEN) 1.5t-30 0 110 ns 

tRD1 RD to Data in , 6t-170 375 ns 

tRD2 PSEN to Data in 4.5t-170 240 ns 

tAW Addr Setup to WR 5t-150 300 ns 

tAD1 Addr Setup to Data (RD) 10,5t-220 730 ns 

tAD2 Addr Setup to Data (PSEN) 7.5t-200 460 ns 

tAFC1 Addr Float to RD, WR 2t-40 140 ns 

tAFC2 Addr Float to PSEN .5t-40 10 ns 

tLAFC1 ALE to Control (RD, WR) 3t-75 290 ns 

tLAFC2 ALE to Control (PSEN) 1,5t-75 60 ns 

tCA1 Control to ALE (RD, WR, PROG), t-65 25 ns 

tCA2 Control to ALE (PSEN) 4t-70 290 ns 

tcp , Port Control Setup to PROG 1.5t-80 50 ns 

tpc Port Control Hold to PROG 4t-260 100 ns 

tpR PROG to P2 Input Valid 8.51-120 650 ns 

tpF Input Data Hold from PROG 1,51 0 140 ns 

top Output Data Setup 6t-290 250 ns 

tpo Output Data Hold 1,5t-90 40 ns 

tpp PROG Pulse Width 1O.5t-250 700 ns 

tpL Port 2 I/O Setup to ALE 4t-200 160 ns 

tLP Port 2 I/O Hold to ALE .51-30 15 ns 

tpv Port Output from ALE 4,5t+100 5~0 ns 

tOPRR TO Rep Rate 3t 270 ns 

tCY Cycle Time 15t 1.36 15.0 jJ.S 

Notes: 

Condilions 
(Nole 1) 

(Note 3) 

(~!ote 2) 

(Note 2) 

(Note 2) 

1 Control Outputs CL = 80pF 
BUS Outputs CL = lSOpF 

2, BUS HIgh Impedance 
Load 20pF 

3. I(t) assumes SO% duty cycle on Xl, X2, Max 
clock penod IS lor a 1 MHz crystal input. 

15-13 



8048AH/8035AHL/8049AH 
8039AHL/S050AH/S040AI-IL 

WAVEFORMS 

ALE 

PSEN 

ALE J L 

WR 

ADDRESS 

--JtLAFC1L 

ALE Jr---"'L-I __ 1 ___ ----' 

tCA11-
RD 

Read From External Data Memory 

2.4V ------, r---
0.4SV ___ ~X;·~; TEST POINTS::~:~X,--__ _ 

A C testing Inputs are driven at 2 4V for a logic "1" and 
o 45V for a logic "0 " Output timing measurements are 
made at 2 OV for a logic "1" and 0 8V for a logic "0 .' 

Input And Output For A.C. Tests 

PORT 1/PORT 2 TIMING 

ALE 

PSEN 

P20-23 
OUTPUT 

1ST CYCLE I 

I 

2ND 
CYCLE 

PCH P9RT 20-23 DATA NEW P20-23 DATA 

P24-27 
P10-17 
OUTPUT 

I PCH 

'----------c, 
~r-----~---P-O-R-T-2-4_-27-,-P-O-RT--10-_-17-D-A-T-A~r-------~----~ NEW PORT DATA 

I 

tLP 

EXPANDER 
PORT 

OUTPUT 

EXPANDER 
PORT 

INPUT 

PROG 

-1+---.. tLA---·+I·--tPL~ 
I ,-------1-

PCH '--__________ -J 

1 

I 
I 1 

1 I 

--------l f- tCA 1 

ItPD r-:- tDP T "I . 

OUTPUT DATA I I 

It) 
f+-----tPR ----I·~I Fi 

r------, r-----, r----~-----, 
PCH 

I I 

15-14 



inter S04SAH/8035AHL/S049AH 
S039AHLlS050AH/S040AHL 

CRYSTAL OSCILLATOR MODE 

f-_---r __ ---. __ ._2-j XTAL 1 

,..,--...1----------,:-1 XTAL2 
3 

C3 

C1 ' 5pF ± 1/2pF + (STRAY < 5pF) 
C2 ' (CRYSTAL + STRAY) < 8pF 
C3 ' 20pF ± 1 pF + (STRAY < 5pF) 

CERAMIC RESONATOR MODE 
Cl 

~
f-____ ---' ___ 2-l XTALl 

_ C, .~._' ... ~:.: 
\ XTAL2 

C3 3 

Crystal series resistance should be less than 30n at 11 MHz; 
less than 75!l at 6 MHz; less than lOOn at 3.6 MHz. 

DRIVING FROM EXTERNAL SOURCE 
+5V 

47011 

p-+ ___ -.:2:.j XTAL 1 

TTL OPEN 
COLLECTOR 
GATES 

+5V 

47011 

'--_...1-_~ XTAL2 

For XTAL 1 and XTAL2 deline "high" as voltages above 1.6V 
and "low" as voltages below 1.6V. The duty cycle require
ments lor externally driving XTAL 1 and XTAL2 using the 

circuit shown above are as follows: XTAL 1 must be high 35-
65% 01 the period and.XTAL2 must be high 36-65% 01 the 
period. Rise and fall times must be faster than 20 nS. 

15-15 



8048AH/8035AHL!8049AH 
8039AHL!8050AH/8040AHL 

SUGGESTED ROM VERIFICATION ALGORITHM FOR H-MOS DEVICE ONLY 

ALE 
(NOTE 1) 

INITIAL ROM DUMP CYCLE 

+12V I 
EA----.J 

SUBSEQUENT ROM DUMP CYCLES 

! (OUTPUT) 
I 
j 
I 

: (INPUT) 
I 
I I 
I I 

I : 

DB-------L __ A_D~D~R-ES~S--~r1r~R=OM~D~AT~A~~L---AD_D_R_E~S_S~~~------------__ 

(INPUT) (OUTPUT) : (INPUT) (OUTPUT) : 

RESET _________ --1r-------------i! (INPUT) I,...: _____________ _ 

I 

P211-P23 _____ i. _______ A_D_D_R_ES_S ______ -4H'--_____ AD_D_R_E_S_S ____ ~I--------------
I (INPUT) 
I 

VCC = VDD = + 5V 

Al0 
All 

VSS = OV 

NOTE: ALE is function of Xl, X2 inputs. 

15-16 



8748H/8035H/8749H/8039H 
HMOS-E SINGLE-COMPONENT 8-BIT MICROCOMPUTER 

• High Performance HMOS-E 
• Interval Timer/Event Counter 
• Two Single Level Interrupts 
• Single 5-Volt Supply 
• Over 96 Instruc~lo~s; 

90% Single Byte 

• Compatible with 8080/8085 
Peripherals 

• Easily Expandable Memory and I/O 

• Up to 1.35 pSec Instruction Cycle 
All Instructions 1 or 2 cycles 

The Intel S749H/S039H/S74SH/S035H are totally self-sufficient, S-bit parallel computers fabricated on single 
silicon chips using Intel's advanced N-channel silicon gate HMOS-E process. 
The family contains 27 1/0 lines, an 8-bit timer/counter, on-chip RAM and on-board oscillator/clock circuits. For 
systems that require extra capability, the family can be expanded using MCSiBl-SO/MCSiBl-S5 peripherals. 
These microcomputers are designed to be efficient controllers as well as arithmetic processors. They have 
extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program 
memory results from an instruction set consisting mostly of single byte instructions and no instructions over 2 
bytes in length. 

Device 

S039H· none 

S035H none 

S749H 2Kx S EPROM 

S74SH 1Kx S EPROM 

Figure 1. 
Block Diagram 

15-17 

Internal Memory 

8748H 
8035H 
8749H 
8039H 

Figure 2. 
Logic Symbol 

, 12S x S RAM 

64xSRAM 

12SxS RAM 

64xSRAM 

8 P~RT XTA~~ 
XTAL 2 

RESET 
PORT S5 

2 INT 
EA 
RD 

PSEN 
WR 

ALE 
DBO 
DBl 
DB2 
DB3 
DB4 
DBS 
DB6 18 
DB7 
Vss '--__ -' 

Figure 3 .. 

Vee 
T1 
P27 
P26 
P2S 
P24 
P17 
P16 
P15 
P14 
P13 
P12 
Pll 
Pl0 
VDD 
PROG 
P23 
P22 
P21 
P20 

Pin Configuration 



8748H18035H/8749H/8039H ~1F\l~Il.~M~INIAlF\lif 
,',I 

Table 1. Pin DescrlpUon 

Pin' 
I . Pin 

Symbol No. Function Device Symbol No. Function Device 

VSS 20 'Circuit GNO .. · All 
potential 

VOO 26 +5V during All 
normal operation. 

(Con't) Contains the 8 
low order pro-
gram counter bits 
during an external 
program memory 

P~ogrammlng 8748H fetch, and 
power supply 8749H receives the 
(+21V), addressed in-

VCC 40 Main power All 
supply; +5V dur-
ing operation and 
programming. 

PROG 25 Output strobe All 

struction under 
the control of 
PSEN. Also con-
tains the address 
and data during 
an external RAM 

for 8243 data store in-
I/O expander. struction, under. 
Program pulse 8748H 
(+18V) input pin 8749H 

c.ontrol of ALE, 
RO, and WR. 

during (See Note) 
programming. 

TO 1 Input pin testable All 
using the con-

P10-P17 27-34 8-bit quasi- All 
Port 1 bidirectional port. 
P20-P23 21-24 8-bit quasi- All 
P24-P27 35-38 bidirectional port. 
Port 2 P20-P23 contain 

the four high 
order program 
counter bits dur-
ing an external 

ditional transfer 
instructions JTO 
.and JNTO. TO can 
be designated as 
a clock output 
using ENTO CLK 
instruction 

Used during 8748H 
programming. 8749H 

program memory 
fetch and serve 
as a 4-bit I/O 

T1 39 Input pin testable All 
using the JT1, 
and JNT1 instruc-

expander bus tions. Can be des-
for 8243. ignated the timer/ 

OBO- 12-19 True bidirectional All. counter input 
OB7 port which can be 
BUS written or read 

using the STRT 
CNT instruction. 

synchronously 
using the RO, WR 

INT 6 Interrupt input. All 
Initiates an inter-

strobes. The port 
'clin also be 
static~lIy latched. 

rupt if interrupt is 
enabled. Interrupt 
is disabled after a 
reset. Also testable 
with conditional 
jump instruction. 
(Active low) inter-
rupt must remain 
low for at least 3 
machine cycles 
for proper 
operation. 

15-18 



inter 

Pin 
Symbol No. 

RD 8 

RESET 4 

WR 10 

ALE 11 

8748H/8035H/8749H/8039H 

Table 1. Pin Description (Continued) 

Function Device 

Output strobe All 
activated during 
a BUS read. Can 
be used to enable 
data onto the bus 
from an external 
device. 

Used as a read 
strobe to external 
data memory. 
(Active low) 

Input which is Ail 
used to initialize 
the processor. 
(Active low) 
(Non TTL VIH) 

Used during 874BH 
programming. 8749H 

Output strobe All 
during a bus 
write. (Active low) 

Used as write 
strobe to external 
data memory. 

Address latch All 
enable. ThiS sig-
nal occurs once 
dunng each cycle 
and is useful as 
a clock output. 

The negative edge 
of ALE strobes 
address into 
external data and 
program memory 

Pin 
Symbol No. Function Device 

PSEN 9 Program store ALL 
enable. This out-
put occurs only 
during a fetch to 
external pro-
gram memory. 
(Active low) 

SS 5 Single step input All 
can be used in 
conjunction with 
ALE to "single 
step" the proces-
sor through each 
Instruction. 

EA 7 E;xternal access All 
Input which 
forces all pro-
gram memory 
fetches to refer-
ence external 
memory. Useful 
for emulation 
and debug. 
(Active high) 

Used during 8748H 
(18V) 8749H 
programming 

XTAL1 2 One side of All 
crystal input for 
internal oscillator. 
Also input for 
external source. 
(Non TTL VI H) 

XTAL2 3 Other side of All 
crystal Input 

NOTE: On the 8749H!8039H, PROG must be clamped to 
Vee when not programming. A diode should be used when 
using an 8243; otherwise, a direct connection is permissible. 

15-19 



inter 

Accumulator 

Mnemonic Description 
ADD A, R Add register.to A 
ADDA,@R Add data memory to A 
ADD A, It data Add immediate to A 
AD DC A, R Add register with carry 
ADDCA,@R Add data memory 

with carry 
AD DC A, It data Add immediate 

with carry 
ANLA,R And register to A 
ANLA,@R And data memory to A 
ANLA,It data And immedIate to A 
ORLA, R Or register to A 
ORLA@R Or data memory to A 
ORLA,ltdata Or Immediate to A 
XRLA, R Exclusive or register 

toA 
XRLA,@R Exclusive or data 

memory to A 
XRL, A, It d,ata ExclusIve or 

immediate to A 
INCA IncrementA 
DECA Decrement A 
CLRA Clear A 
CPLA Complement A 
DAA Decimal adjust A 
SWAP A Swap nibbles of A 
RLA Rotate A left 
RLCA Rotate A left 

through carry 
RRA Rotate A right 
RRCA Rotate A right 

through carry 

Input/Output 

Mnemonic Description 
INA,P Input port to A 
OUTL.P, A Output A to port 
ANL P,ltdata And Immediate to port 
ORL P, It data Or Immediate to port 
INSA, BUS Input BUS to A 
OUTLBUS, A Output A to BUS 
ANL BUS, It data And immediate to BUS 
ORL BUS, It data Or immediate to BUS 
MOVDA, P Input expander port 

to Pi 
MOVDP, A Output A to expander 

port 
ANLD P,A And A to expander port 
ORLD P,A Or A to expander port 

8748H/8035H/8749H18039H 

. Table 2, Instruction Set 

ReglBl.,. 

Bytes Cycles Mnemonic 
1 1 INCR 
1 1 INC@R 
2 2 DECR 

Branch 
2 2 

Mnemonic 
JMPaddr 

1 1 JMPP@A 

2 2 DJNZ R, addr 

1 1 
2 2 

JC addr 
JNCaddr 
JZaddr 
JNZ addr 
JTO addr 
JNTO addr 

2 2 JT1 addr 
JNT1 addr 
JFO addr 
JF1 addr 
JTF addr 
JNI addr 
JBb addr 

Subroutine 

Mnemonic 
CALLaddr 
RET 
RETR 

Bytes Cycles 
1 2 Flagl 
1 2 
2 2 
2 2 
1 2 
1 2 
2 2 
2 2 
1 2 

Mnemonic 
CLRC 
CPLC 
CLR FO 
CPLFO 
'CLR F1 
CPLF1 

1 2 

1 2 
1 2 

15-20 

Description 
Increment register 
Increment data memory 
Decrement register 

Description 
Jump unconditional 
Jump indirect 
Decrement register 
and skip 
Jump on carry = 1 
Jump on carry = 0 
Jump on A zero 
Jump on A not zero 
Jump on TO=: 1 
Jump on TO = g 
Jump on T1 = 1 
Jump on T1 =0 
Jump on FO = 1 
Jump on Fl = 1 
Jump on timer flag 
Jump 9n INT = 0 
Jump on accumulator 
bit 

Bytes 
1 
1 
1 

Byte. 
2 
1 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

Description ' By tel 
Jump to subroutine 2 
Return 
Return and restore ·1 
status 

Description Bytes 
Clear carry 1 
Complement carry 
Clear flag 0 
Complement flag 0 
Clear flag 1 
Complement flag 1 

Cyc'" 
1 

Cycles 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

Cycles 
2 
2 
2 

Cyc'" 
1 



inter 8748H/8035HI8749H.t8039H ~1P.l~LO~OINlfA\IRlW 

Table 2. Inltructlon Set (Continued) 

DetaM_ Timer/Counter 

Mnemonic Dncrlptlon Byt.s Cycles Mnemonic Dncrlptlon Bytes Cycl .. 
MOVA,R Move register to A 1 1 MOVA. T Read timer/counter 1 1 
MOVA.@R Move data memory MOVT.A Load timer/counter 

toA STRTT Start timer 
MOV A. # data Move immediate to A 2 2 STRTCNT Start counter 
MOVR.A Move A to register STOP TCNT Stop timer/counter 
MOV@R.A Move A to data EN TCNTI Enable timer/counter 

memory interrupt 
MOV R.#data Move immediate 2 2 DIS TCNTI Disable timer/counter 

to register interrupt 
MOV @R. # data Move immediate to 2 2 

data memory 
MOVA.PSW MovePSWtoA 

Control MOVPSW.A Move A to PSW 
XCHA. R Exchange A and Mnemonic Description Bytes Cycles 

register ENI Enable external 1 1 
XCHA.@R Exchange A and ,,1 interrupt 

data memory 0151 Disable external 
XCHDA.@R Exchange nibble of A interrupt 

and register SELRBO Select register bank 0 ' 1 
MOVXA.@R Move external data 2 SELRB1 Select register bank 1 memory to A 

SELMBO Select memory bank 0 MOVX@R.A Move A to external 2 
. data memory SEL MB1 Select memory bank 1 

MOVPA.@A Move to A from 2 ENTOCLK Enable clock output 
current page onTO 

MOVP3A.@A Move to A from page 3 ,2 

Mnemonic Description Bytes Cycles 
NOP No operation 1 1 

15-21 



. 8T48H/8035H/8749H/8,039H 

ABSOLUTE MAXIMUM RATINGS·' 

.Ambient Temperature Under Bias ••• ooe to 700 e 
Storage Temperature ....••.... -65°e to +150oe 
Voltage On Any Pin With Respect . 

to Ground ............•.•..•... -O.5Vto +7V 
Power Dissipation .•...• : . • . . . . . . . • • .• 1.0 Watt 

"NO fleE: Stresses abov~ those listed under "Abso-
. lute Maximum Ratings" maypause permanent "am

age to the device. This is a stress rating only and 
functional operation of device at these or any other 
. conditions above those indicated in the operational 
sections of this specification is not implied. 

D.C. CHARACTERISTICS: (T A = 0° C to 70Q e; Vee = VDD = 5V ± 10°1p; VSS = OV) 

Limits 

Symbol Parameter Min Typ Max Unit Test Conditions Device 

VIL Input Low Voltage (All 
Except RESET, X1, X2) -.5 .8 V All 

VIL1 Input Low Voltage 
(RESET, X1, X2) -.5 .6 V All 

VIH Input High Voltage 
(All Except XTAL 1, 
XTAL2, RESET) 2.0 Vee V All 

VIH1 Input High Voltage 
(X1, X2, RESET) 3.8 Vee V All 

VOL Output Low Voltage 
(BUS) .45 V IOL = 2.0 mA All 

VOL1 Output Low Voltage 
(RD, WR, PSEN, ALE) .45 V IOL =1.8 mA All 

VOL2 Output Low Voltage 
(PROG) .45 V IOL = 1.0 mA All I 

VOL3 Output Low Voltage 
(All Other Outputs) .45 V IOL = 1.6 mA All 

VOH Output High Voltage 
(BUS) 2.4 V IOH = -400 IlA All 

VOH1 Output High Voltage 
(RD, WR, PSEN, ALE) 2.4 V IOH = -100yA All 

VOH2 Output High Voltage 
(All Other Outputs) 2.4 V IOH = -40 IlA All 

15·22 



inter 8748H/8035H/8749H/8039H 

D.C. CHARACTERISTICS: (TA = O°C to 70°C; VCC = VOO = 5V ± 10%; VSS = OV) (Continued) 

Limits 

!)ymbol Parameter Min Typ Max Unit Test Conditions Device 

1L1 Leakage Current 
VSS,,;;VIN";;VCC (T1, INT) ±10 pA All 

ILI1 Input Leakage Current 
(P10-P17, P20-P27, 
EA,85) -500 pA VSS + .45,,;;VIN";;VCC All 

·ILl2 Input Leakage Current 
RESET -10 -300 pA VSS,,;;VIN,,;;3.8V All 

ILO Leakage Current , . 
(BUS, TO) (High 
Impedance State) ±10 pA VSS,,;;VIN";;VCC All 

100 + Total Supply Current" 80 100 rnA 8035H 
ICC 

95 110 rnA 8039H 

80 100 rnA 8748H 

95 110 rnA 8749H 

*Iec + IDD is measured with all outputs disconnected; SS, RESET, and INT equal to Vee; EA equal to VSS. 

15-23 



8748H/8035H/8749H/8039H 

A.C. CHARACTERISTICS: (TA = 0°8 10 70°C;, VCC = VOO = 5V ± 10%; VSS = OV), 

f(t) 
Symbol Parameter , (Note 3) 

t Clock Period 1/xlal freq 

tLL ALE Pulse Width 3.5t-170 

tAL Addr Setup to ALE 2t-110 

tLA Addr. Hold from ALE t-40 

tCC1 Control Pulse WidtlJ (RO. WR) 7.5t-200 

tCC2 Control Pulse Width (PSEN) 6t-2oo 

tow Data Setup before WR 6.5t-200 

two Data Hold after WR t-50 

tOR Data Hold (RD. PSEN,) 1.5t-30 

tRD1 RD to Data in 6t-170 

tRD2 PSEN to Data in 4.5t-170 

tAW Addr Setup to WR 5t-150 

tAD1 Addr Setup to Data (RD) 10.5t-g2,0 

tAD2 Addr Setup to Data (PSEN) 7.5t-200 

tAFC1 Addr Float to RD. WR 2t-40 

tAFC2 Addr Float to PSEN .5t-40 

tLAFC1 ALE to Control (RD. WR) 3t-75 

tLAFC2 ALE to Control (PSEN) 1.5t-75 

tCA1 Control to ALE (RD. WR. PROG) 1-65 

tCA2 Control to ALE (PSEN) 41-70 

tcp Port Control Setup to PROG 1.5t-80 

tpc Port Control Hold to PROG 4t-260 

tpR PROG to P2 Input Valid 8.5t-120 

tpF Input Data Hold from PROG 1.5t 

tDP Output Data Setup 6t-290 

tpD Output Data Hold 1.5t-90 

tpp PROG Pulse Width 10.5t-250 

tpL Port 2 1/0 Setup to ALE 4t-200 

tLP Port 2 1/0 Hold to ALE .5t-30 

tpv Port Output from .ALE 4.5t+100 

tOPRR TO Rep Rate 3t 

tCY Cycle Time 15t 

Notes: 

1. Control Outputs CL = 80pF 
BUS Outputs CL = 150pF 

2. BUS High Impedance 
Load 20pF 

15-24 

11 MHz Conditions 
Min Max Unit (Note 1) 

90.9 1000 ns (Note 3) 

150' ns 

70 ns (Note 2) 

50 ns 

480 ns 

350 ns 

390 ns 

40 ns 

0 110 ns 

375 ns 

240 ns 

300 ns 

730 ns 

460 ns 

140 ns (Note 2) 

10 ns (Note 2) 

200 ns 

60 ns 

25 ns 

290 ns 

50 ns 

100 ns 

650 ns 

0 140 ns 

250 ns 

40 ns 

700 ns 

160 ns 

15 ns 

510 ns 

270 ns 

1.36 15.0 j.lS 

3. f(t) assumes 50% duty cycle on Xl, X2. Max 
clock period is for a 1 MHz crystal input. 



inter 

WAVEFORMS 

ALE 

ALE J 

WR 

8748H/8035H/8749H/8039H 

L 

l 
ICAl 1--

Read From External Data Memory 

2.4V -------, ,--__ _ 

X2.0~TEST POINTS ... 2.0X 
0.45V-----' .. O.S'" -'0.8. '-. __ _ 

A.C. testing Inputs are driven at 2 4V for a logic "1" and 
0.45V for a logic "0." Output timing measurements are 
made at 2 OV for a logiC "1" and 0.8V for a logic "0," 

Write To External Data Memory Input And Output For A.C. Tests 

PORT 1/PORT 2 TIMING 

ALE 

PSEN 

NEW P20-23 DATA 
I 

PCH P<;lRT 20-23 DATA I PCH P20-23 
OUTPUT 

P24-27 
Pl0-17 
OUTPUT 

~---------~I 
-+------~------------------7-----~--~ 

NEW PORT DATA 

ILP 

EXPANDER 
PORT 

OUTPUT 

EXPANDER 
PORT 

INPUT 

PORT 24-27. PORT 10-17 DATA 
I 

---1..'-L':... ---·+I"·-IPL~ 

PCH 

---1. !-ICAl 

IIPD r-IDP T -I' 
I rp-O-RT-2-0--2-3-D-A-TA--;', 'PORT CONTROL 

~--------------~ 
OUTPUT DATA I I 

I , I'PF I 
I 1 1-+-14 _IPR_---I_I f1 1 

I 
r-------~ r~--~ I PORT CONTROL I 

I 
PCH 

I-ICP+IPC~ I I 
PROG 

---------------_____ -;1 i 'PP 

1\. 
15-25 



intJ 8748H/8036H/8749H/8039H 

CRYSTAL OSCILLATOR MODE 
C1 . 2 
----r----.------i XTAL 1 

~'e'o"f~, 
-=- I 

l----'----J----,1 XTAL2 
C3 3 

,C1 = 5pF ± 1/2pF + (STRAY < 5pF) 
C2 = (CRYSTAL + STRAY) < 8pF 
C3 = 20pF ± 1pF + (STRAY < 5pF) 

Crystal series resistance should be lessl than 30!! at 11 MHz; 
less than 7S!! at 16 MHz; less than 180!! at 3.6 MHz. 

CERAMIC RESONATOR MODE 
C1 

~
I-{ _____ -r-__ 2-j XTAL1 

1-11 

-=- C1 = C2 = 33pF ± 5% ~HZ 
XTAL2 

C3 3 

DRIVING FROM EXTERNAL SOURCE 
+5V 

47011 

2 
~--t-----i XTAL 1 

TTL OpeN 
COLLeCTOR 
GATES 

+5V' 

47011 

'-----'----:;;-i3 XTAL2 

For XTAL 1 and XTAL2 define "high" as voltages above 1.6V 
and "low" as voltages below 1.6V. The duty cycle require
ments for externally dnving XTAL1 and XTAL2 uSing the 

PROGRAMMING, VERIFYING, AND 
ERASING THE 8749H (8748H) EPROM 

Programming Verification 

In brief, the programmrng processconsists of: acti
vating the program mode, applying an address, 
latching the address, applying data, and applying a 
programming pulse. Each word is programmed 
completely before moving on to the nexJ and is 
followed by a verification step. The following is a 
list of the pins used for programming and a descrip
tion of their functions: 

Pin, Function 

XTAL 1 Clock Input (3 to 4.0 MHz) 
XTAL 2 
Reset 1I1itialization and Address Latching 
Test 0 ,Selection of Program or Verify Mode 
EA Activation of Progrl\mNerify Modes 
BUS Address and Data Input 

Data Output During Verify 
P20-P22 Address Input 

VDD Programl1)ing Power Supply 
PROG Program Pulse Input 

circuit shown above are as follows:XTAL1 must be high 3S
'6S% of the period andXTAL2 must be high 36-6S% of the 
period. Rise and fall times must be faster than 20 nS. 

WARNING: 
An attempt to program a missocketed 8749H (8748H) will 
result In severe damage to the part. An indication of a 
properly socketed part IS the appearance of the ALE clock 
output The lack of thiS clock may be used to disable the 
programmer 

The ProgramlVerify sequence IS' 
1 VOO = SV, Clock applied or Internal oscillator operat

Ing. RESET = OV, TEST 0 = SV, EA = SV, BUS and 
PROG'floatlng P10 and P11 must be lied to ground. 

2, Insert 8749H (8748H) In programming socket. 

3. TEST 0 = OV (select program mode) 

4 EA = 18V (activate progral)1 mode) 

S. Address applied to BUS and P20-22 

6. RESET = SV (Iatcll address) 

7 Data applied to BUS 

8. VOO = 21V (programming power) 

9. PROG = VCC or float followed by one SOms pulse 
to 18V 

10 VOO= SV 
11. TEST 0 = SV (venfy mode) 

12 Read and venfy data on BUS 

13, TEST 0 = OV 

14, RESET" OV and repeat from step S 

1S. Programmer should be at conditions of step 1 when 
8749H (8748H) IS removed from socket. 

15-26 



8748H/8035H/8749H/8039H 

A.C. TIMING SPECIFICATION FOR PROGRAMMING 8748H/8749H ONLY: 
(TA = 25°e ± 5°e; Vee = 5V ± 5%; Voo = 21 ± .5V) 

Symbol Parameter Min Max Unit 

tAW Address Setup Time to ~I 4tCY 

tWA Address Hold Time After ~I 4tCY 

tow Data in Setup Time to PROGI 4tCY 

two Data in Hold Time After PROGI 4tCY 

tPH RESEi Hold Time to Verify 4tCY 

tVOOW VOO Hold Time Before PROGI 0 1.0 ms 

tVOOH VOO Hold Time After PROGI 0 1.0 ms 

tpw Program Pulse Width 50 60 ms 

tTW Test 0 Setup Time for Program Mode 4tCY 

tWT Test 0 Hold Time After Program Mode 4tCY 

too Test 0 to Data Out Delay 4tCY 

tww l1ES"E'f Pulse Width to Latch Address 4tCY . 

tr• tf VOO and PROG Rise and Fall Times 0.5 100 j.!s 

tCY CPU Operation Cycle Time 3.75 5 j.!s 

tRE RESET Setup Time before EAt 4tCY 

NOTE: If Test 0 IS high. too can be triggered by RESET! 

D.C. TIMING SPECIFICATION FOR PROGRAMMING 8748H/8749H ONLY: 
(TA = 25°C ± 5°C; Vee" 5V ± 5%; VOO" 21 ± .5V) 

Symbol Parameter Min Max Unit 

VOOH VOO Program Voltage High Level 20.5 21.5 V 

VOOL VOO Voltage Low Level 4.75 5.25 V 

VPH PROG Program Voltage High Level 17.5 18.5 .V 

VPL PROG Voltage Low Level 4.0 VCC V 

VEAH EA Program or Verify Voltage High Level ,17.5 18.5 V 

'DO VOO High Voltage Supply Current 20.0 mA 

'pROG PROG High Voltage Supply Current 1.0 mA 

lEA EA High Voltage Supply Current 1.0 mA 

15-27 

Test Conditions 

, 

Test Conditions 



8748H/8035H/8749Hf8039H 

WAVEFORMS 

COMBINATION PROGRAM/VERIFY MODE (EPROM'S ONLY) 

VEAH_ 
EA 

Vee 

! I ~tRE)lr--------------,--------------------------------------------

L --'PROGRAM ---~----I---VERIFY -----j----PROGRAM-

Vee 
l==-tTW~-I' 1 

TO 

VIL 1 i--c-- tww __ I 

Vee r----------------------+----------~ 
RESET 

VILl 
tAWr--~twA 

~ r-~D-AT~A~T~O~BE~~ 
DBO-DB7 ~ - - PROGRAMMED VALID 

LAST 
ADDRESS 

__ -<NEXT ADDRX= 
VALID 

NEXT 
ADDRESS 

VDDH __+ ,tpw --tWT , _ , tVDDW-lffi,' ,I" "I tVDDH 

VDD I I' , , 
,,~: ~~~~~~-_-_--_-_--_-_-_--_-~-Dw-_-'J_-r-'~1~: ________ ' __________ . 

VERIFY MODE 

DBO-DB7 J-- ADDRESS 
(0-7) VALID 

ADDRESS (8-9) VALID 

\""------/ 

15-28 

\-----

NEXT ADDRESS VALID 



inter 8748H/8035H/8749H/8039H 

SUGGESTED EPROM 'VERIFICATION ALGORITHM FOR HM08-E QEVICE ONLY 

ALE 
(NOTE 1) 

INITIAL EPROM DUMP CYCLE 

+12V I 
EA---1 

SUBSEQUENT EPROM DUMP CYCLES 

! (OUTPUT) 

I 

: (INPUT) 

, 
I : 

DB------~ __ A_D_D_R_E~SS __ ~~~~RO~M~D~A~T~A~~~ ___ AD_D_R_E_S_S~~--------------~ 
(INPUT) (OUTPUT) I (INPUT) (OUTPUT): 

TO, RESET _____ --I.--------'! (INPUT) 1-1 -------------

I : 

: ' 
P20-P23 _____ ""L ____ A_D_D_R_ES_S ____ --IHL ______ A_DD_R_E_S_S ____ ~I--------------

I ,(INPUT) 
I 

49H 
Vee = VDD = + SV 

ADDR A10 
Vss = OV 

A11 o 

NOTE: ALE is function of X1, X2 Inputs. 

15-29 



SINGLE-COMPONENT a-BIT MICROCOMPUTERS 
EXPRESS 

• 0° C to 70° C Operation 
• ·40° C to 85° C Operation 
• 168 Hr. Burn-In 

• 8048AH/80;35AHL • 8748H 
• 8049AH/8039AHL • 8243 
• 8050AH/8040AHL • 8749H 

The new Intel EXPRESS family of single-component 8-bit microdomputers offers enhanced processing options 
to the familiar 8048AH/8035AHL, S74SH, S049AH/S039AHL, S749H, S050AH/S040AHL Intel components. These 
EXPRESS' products are designed to meet the needs of those applications whose operating requirements 
exceed commercial standards, but fall short of military conditions. 

The EXPRESS options include the commercial standard and - 40°C to S5°C operation with or without 168 
:t8 hours of dynamic burn-in at 1250C per MIL-STD-8S3, method 1015. Figure 1 summarizes the option 
marking designators and package selections. 

For a complete description of 8048AH/S035AHL, S748H, S049AH/8309AHL, 8749H,8040AHL and 8050AH 
features and operating character istics, refer to the respective standard commercial grade data sheet. This doc
ument highlights only the electrical' specifications which differ from the respective commercial part. 

P8048AH TP8048AH QP8048AH LPS048AH 
D8048AH TD8048AH QD8048AH LD804SAH 
D8748H TD8748H QD8748H LD8748H 
P8035AHL TP8035AHL QP8035AHL LP8035AHL 
D8035AHL TD8035AHL QD8035AHL LD8035AHL 
P8049AH TP8049AH QP8049AH LP8049AH 
D8049AH TD8049AH QD8049AH LD8049AH 
D8749H TD8749H QD8749H LD8749H 
P8039AHL TP8039AHL QP8039AHL LP8039AHL 
D8039AHL TD8039AHL QD8039AHL LD8039AHL 
P8050AH TP8050AH QP8050AH LP8050AH 
D8050AH TD8050AH QD8050AH LD8050AH 
P8040AHL TP8040AHL QP8040AHL LP8040AHL 
D8040AHL TD8040AHL QD8040AHL LD8040AHL 
P8243- TP8243 QP8243 
D8243 TD8243 QD8243 LD8243 

• Commercial Grade 
P Plastic Package 
D Cerdip Package 

15-30 



inter SING.LE-COMPONENT a-BIT MICROCOMPUTERS 

Extended Temperature Electrical Specification Deviations* 

TP8048AHtTP8035AHULP8048AH/LP8035AHL 
T08048AHtT08035AHUL08048AH/L08035AHL 

D.C. CHARACTERISTICS: (TA = -40°C to 85°C; VCC = VOO = 5V ± 10%; VSS = OV) 

limits 

Symbol Parameter Min Typ Max Unit Test Conditions 

VIH Input High Voltage (All Except 
XTAL1, XTAL2, RESET) 

2.2 VCC V 

100 VOO Supply Current 4 8 rnA 

100+ Total Supply Current 40 80 rnA 
ICC 

TP8049AHtTP8039AHULP8049AH/LP8039AHL 
I T08049AHtT08039AHUL08049AHlL08039AH L 

D.C. CHARACTERISTICS: (TA = -40°C to 85°C; VCC = VOO = 5V ± 10%; VSS = OV) 

Symbol 

VIH 

100 

100+ 
ICC 

limits 

Parameter Min Typ Max Unit 

Input High Voltage (All Except 2.2 VCC V 
XTAL 1, XTAL2, RESET) 

VOO Supply Current 5 10 rnA 

Total Supply Current 50 100 rnA 

TP8050AHtTP8040AHULP8050AHL/LP8040AHL 
T08050AHtT08040AHUL08050AH/L08040AH L 

Test Conditions 

D.C. CHARACTERISTICS: (TA = ~40°C to 85°C; VCC = VOO = 5V ± 10%; VSS = OV) 

limits 

Symbol Parameter Min Typ Max Unit Test Conditions 

VIH Input High Voltage (All, Except 2.2 VCC V 
XTAL 1, XTAL2, RESET) 

100 VOO Supply Current 10 20 rnA 

100 + Total Supply Current 75 120 rnA 
ICC 

15·31 



SINGLE-COMPONENT 8-BIT MICROCOMPUTERS 

Extended Temperature Electrical Specification Deviations' 

TD8748H/LD8748H 

D.C. CHARACTERISTICS: (TA" -40°C to 85°C; VCC "Yoo ".5V ± 10%; VSS '" OV) 

Limits 

Symbol Parameter Min Typ Max Unit Test Conditions 

VIH Input High Voltage (All Except 
XTAL 1, XTAL2, RESET) 

2.2 VCC V 

100+ Total Supply Current 50 130 rnA 
ICC 

T08749H/L08749H 

D.C. CHARACTERISTICS: (TA" -40°C to 85°C; VCC" VOO" 5V ± 10%; VSS" OV) 

Limits 

Symbol Parameter Min Typ Max Unit Test Conditions 

VIH Input High Voltage (All Except 2.2 VCC V 
XTAL 1, XTAL2, RESET) 

100 + Total Supply Current 75 150 rnA 
ICC 

TP8243/TD8243/LD8243 

D.C. CHARACTERISTICS: (TA = -40°C to· 85°C; VCC = 5V ± 10%; VSS = OV) 

Limits 

Symbol Parameter Min J Typ J Max Unit Test Conditions 

ICC VCC Supply Current I 15 I 25 rnA 

15-32 



inter SINGLE-COMPONENT 8-BIT MICROCOMPUTERS 

Extended Temperature Electrical Specification Deviations' 

TD8022/LD8022 

D.C. CHARACTERISTICS: (TA = -40°C to 85°C; VCC = 5.5V ± 1V; VSS = OV) 

Limits 

Symbol Parameter Min Typ Max Unit Test Conditions 

VIL 1 Input Low Voltage (Port 0) -0.5 VTH-0.2 V 

VIH Input High Voltage 2.3 VCC V VCC = 5.0V ± 10% 
(All Except XTAL 1, RESET) VTH Floating 

VIH1 Input High Voltage 3.8 VCC V VCC = 5.5V ± 1V 
(All Except XTAL 1, RESET) VTH Floating 

VIH2 Input High Voltage (Port 0) VTH+0.2 VCC V 

VIH3 Input High Voltage (RESET, XTAl1) 3.8 VCC V 

VIL Input Low Voltage -0.5 0.5 V 

VOL Output low Voltage 0.45 V IOl ~ 0.8 mA 

VOL1 Output low Voltage (P10, P11) 2.5 V IOl =3 mA 

VOH Output High Voltage (All unless 2.4 V IOH = 30!iA 
open drain option Port 0) 

III Input Current (T1) ±700 !iA VCC;;"VIN;;" 
VSS + 0.45V 

ILl1 Input Current to Ports 500 !iA VIN = 0.45V 

ICC VCC Supply Current 120 mA 

A.C. CHARACTERISTICS: (TA ~ -40°C to 85°C; VCC = 5.5V ± 1V; VSS = OV) 

Symbol Parameter Min Max Unit Test Conditions 

tCY Cycle Time 8.38 50.0 !is 3.58 MHz XTAl = 8.38 !is tCY 

VT1 Zero-Cross .Detection Input (T1) 1 3 VACpp AC Coupled 

AZC Zero-Cross Accuracy ±200 mV 60 Hz Sine Wave 

FT1' Zero-Cross Detection Input 0.05 1 kHz 
Frequency (T1) 

ILL ALE Pulse Width 3.9 23.0 !is tCY = 8.38 !is for min 

NOTE: Control Outputs: CL = 80 pf; T CY = 8.38 }.Lsec. 

AID CONVERTER CHARACTERISTICS: (AVCC = 5.5V + 1V; AVSS = OV; AVCC/2 ~ VAREF ~ AVCC) . -

Limits 

Parameter Min I Typ I Max Unit Test Conditions . 

Absolute Accuracy 1 11.6% FSR ± 'h LSB lSB 

NOTE: The analog input must be maintained at a constant voltage dUring the sample time (tss + tsh). 
"Refer to individual commercial grade data sheets for complete operating characteristics. 

15·33 



80C49-7/80C39-7 
CHMOS SINGLE-COMPONENT 8-BIT MICROCOMPUTER 

• SOC49-7 Low Power Mask Programmable ROM 
• SOC~9-7 Low Power, CPU only 

• Pln-to-pln Compatible with Intel's 
S049AH/S039AHL 

• 1.361J.sec Instruction Cycle. All Instructions 
1 or 2 Cycles 

.• Ability to Maintain Operation during 
AC Power Line Interruptions 

• Exit Idle Mode with an External or Internal 
Interrupt Signal 

• Battery Operation 
• 3 Power Consumption Selections 

-Normal Operation: 12 mA@ 11 MHz@ 5V 
-Idle Mode: 5 mA @ 11 MHz @ 5V 
-Power Down: 2 IJ.A @ 2.0V 

• 11 MHz, TTL Compatible Operation: 
VCC = 5V± 10% 
CMOS COlTlpatible Operation; 
VCC = 5V± 20% 

Intel's SOC49-7/S0C39-7 are low power, CHMOS versions of the popular MCS®-4S HMOS family members. CHMOS is a 
technology built on HMOS II and features high resistivity P substrate, diffused N well, and scaled Nand P channel devices. 
The SOC49-7/S0C39-7 have been designed to provide low power consumption and high performance. 

The SOC49-7 contains a 2K x S program memory, a 12S x S x S RAM data memory, 27 I/O lines, and an S-bit timer/counter 
in addition to an on-board oscillator and clock circuits. For systems that require extra capability, the SOC49-7 can be expanded 
using CMOS external memories and MCS®-SO and MCS®-S5 peripherals. The SOC39-7 is the equivalent of the SOC49-7 without 
program memory on-board. 

The CHMOS design of the SOC49-7 opens new application areas that require battery operation, .Iow power standby, wide 
voltage range, and the ability to maintain operation during AC power line interruptions. These applications include portable and 
hand-held instruments, telecommunications, consumer, and automotive. 

Figure 1. 
Block Diagram 

15-34 

80C49-7 
8OC39-7 

Figure 2. 
. Logic Symbol 

TO 
P~RT XTAL 1 

XTAL 2 
RESET 

PORT 55 
2 INT 

EA 
RD 

PSEN 
WR 
ALE 
DBO 
DB1 
DB2 
DB3 
PB4 
DBs 
DBS 
DBr 
Vss '-__ -=.P20 

Figure 3 . 
Pin Configuration 



inter 80C49-7/80C39-7 

Table 1. Pin Description 

Symbol Pin No. Function Symbol Pin No. Function 

VSS 20 Circuit GND potential Can be designated the 

VDD 26 low Power standby pin ,timer/counter input using 
the STRT CNT instruction. 

VCC 40 Main power supply; 
+5V during operation. INT 6 Interrupt input. Initiates an 

interrupt if interrupt is en-
PROG 25 Output strobe for 82C43 abled. Interrupt is disabled 

I/O expander .. after a reset. Also testable 

P10-P17 27-34 8-bit qu.asi-bidirectional with conditional jump in-

Port 1 port. struction. (Active low) 

P20-P23 21-24 8-bit quasi-bidirectional 
port. 

Interrupt must remain low 
for at least 3 machine 
cycles for proper operation. 

P24-P27 35-38 P20-P23 contain the four 
Port 2 high order program counter 

bits during an external 
program memory fetch 
and serve as a 4-bit I/O 
expander bus for 8243. 

RD 8 Output strobe activated 
during a BUS read. Can be 
used to enable data onto 
toe bus from an external 
device. 

DBO-DB7 12-19 True bidirect.ional port 
BUS which can be written or 

read synchronously using 

Used as a read strobe to 
external data memory. 
(Active low) 

the RD. WR strobes. The RESET 4 Input which is used to 

port can also be statically initialize the processor. 

latched. (Active low) (Non TTL VIH) 

Contains the 8 low order WR 10 Output strobe during a bus 

program counter bits dur- write. (Active low) 

ing an external program Used as write strobe to 
memory fetch. and receives external data memory. 
the addressed instruction 
under the control of PSEN. 
Also contains the address 
and data during an external 
RAM data store instruction. 

ALE 11 Address latch enable. This 
signal occurs once during 
each cycle and is useful as 
a clock output. 

under control of ALE, RD. The negative edge of ALE 
and WR. strobes address into 

TO 1 Input pin testable using the 
conditional transfer instruc-

external data and program 
memory. 

tions JTO and JNTo. TO can PSEN 9 Program store enable. This 
be designated as a clock output occurs only during 
output using ENTO ClK a fetch to external program 
instruction. memory. (Active low) 

T1 39 Input pin testable using the SS 5 Single step input can be 
JT1. and JNT1 instructions. used in conjunction with 

15-35 210936 



inter 8OC49.-1180C39-7 

Table 1. Pin Description (Continued) 

Symbol Pin No. Function Symbol Pin No. Function 

88 (Con't) ALE to "single step" the and program verification. 
processor through each (Active high) 
instruction (Active low) XTAL1 2 One side of crystal input 

EA 7 External access input which for internal oscillator. Also 
forces all program memory input for external source. 
fetches to reference (Non TTL VIH) 
external memory. Useful· 
for emulation and debug, 

XTAL2 3 Other side of crystal input. 

and essential for testing 

IDLE MODE DESCRIPTION 
The SOC49-7, when placed into Idle mode, keeps the oscillator, the internal timer and the external interrupt and 
counter pins functioning and maintains the internal register and RAM status. • 

. To place the SOC49-7 in Idle mode, a command instruction (op code 01 H) is executed. To terminate Idle mode, 
a reset must be performed or interrupts must be enabled and an interrupt signal generated. There are two 
interrupt sources that can restore normal operation. One is an external signal applied to the interrupt pin. The 
other is frem the overflow of the timer/counter. When either interrupt is invoked, the CPU is taken out of Idle 
mode and vectors to the interrupt's service routine address. Along with the Idle mode, the standard MCS®-4S 
power-down mode is still maintained. 

15-36 210936 



80049-7/8003$-7 

Table 2. Instruction Set 

Accumulator Registers 

Mnemonic Description Bytes Cycles Mnemonic Description ' Bytes Cycles 
ADDA. R Aejd reg ister to A 1 1 INCR Increment register 1 1 
ADDA.@R Add data memory to A 1 1 INC@R Increment data memory 1 
ADDA. # data Add immediate to A 2 2 DECR Decrement register 
ADDCA. R Add register with carry 1 1 
ADDCA.@R Add data memory 1 1 

with carry Branch 

ADDC A. # data Add immediate 2 2 
with carry Mnemonic Description Bytes Cycles 

ANLA. R And register to A 1 1 JMP addr Jump unconditional 2 2 

ANLA.@R And data memory to A 1 1 JMPP@A Jurnp indirect 1 2 

ANL A. # data And immediate to A 2 2 
ORLA. R Or register to A 1 1 
ORLA@R Or data memory to A 1 1 
ORL A.# data Or immediate to A 2 2 
XRL A. R Exclusive~r register 1 1 

toA 

DJNZ R. addr Decrement register 2 2 
and skip 

JC addr Jump on carry = 1 2 2 
JNC addr Jump on carry = a 2 2 
JZ addr Jump on A zero 2 2 
JNZaddr Jump on A not zero 2 2 

XRLA.@R Exclusive or data 1 1 
memory to A 

JTO addr Jump on TO = 1 2 2 
JNTO addr Jump on TO = a 2 2 

XRL. A. # data Exclusive or 2 2 JTl addr Jump on Tl = 1 2 2 
immediate to A JNTI addr Jump on Tl = a 2 2 

INCA Increment A 1 1 
DECA Decrement A 1 1 

JFO addr Jump on Fa = 1 2 2 
JFl addr Jump on Fl = 1 2 2 

CLRA Clear A 1 1 JTF addr Jump on timer flag 2 2 
CPLA Complement A 1 1 JNI addr Jump on INT = a 2 2 
DAA Decimal adjust A- I 1 JBb addr Jump on accumulator 2 2 
SWAP A Swap nibbles of A 1 1 bit 
RLA Rotate A left 1 1 
RLCA Rotate A left 1 1 

through" carry Subroutine 
RRA Rotate A right 1 1 
RRCA Rotate A right 1 1 

through carry 

Mnemonic Description Bytes Cycles 
CALL addr ' Jump to subroutine 2 2 
RET Return 2 
RETR Return and restore 2 

Input/Output status 

Mnemonic Description Bytes Cycles 
INA.P Input port to A 1 2 Flags 
OUTL p. A Output A to port 1 2 

Bytes Cycles ANL p. # data And immediate to port 2 2 
" Mnemonic Description 

ORL p. # data Or immediate to port 2 2 
CLR C Clear carry 1 1 

INSA. BUS Input BUS to A 2 
CPL,C Complement carry 

OUTL BUS. A Output A to BUS 1 2 
CLR Fa Clear flag a 

ANL BUS. # data And immediate to BUS 2 2 
CPL Fa Complement flag 0" 

ORL BUS. # data Or immediate to BUS 2 2 
CLR Fl Clear flag 1 

MOVDA. P Input expander port 1 2 
CPL Fl Complement flag 1 

to A 
MOVDP.A Output A to expander 2 

port 
ANLDP.A And A to expander port 2 
ORLD p. A Or A to expander port 2 

15·37 210936 



SOC49-7/80C39-7 

Table 2. Inst~uction Set (Continued) 

Data Moves 

Mnemonic Description Bytes Cycles 
MOVA.R Move register to A 1 1 
MOVA.@R Move data memory 

toA 
MOVA. # data Move immediate to A 2 2 
MOVR.A Move A to reg ister 
MOV@R.A Move A to data 

memory 
MOV R. # data Move immediate- 2 2 

to register 
MOV @R. # data Move immediate to 2 2 

data memory 
MOVA.PSW Move PSWto A 
MOVPSW.A Move A to PSW 
XCHA. R Exchange A and 

register 
XCH A,@R Exchange A and 

data memory 
XCHDA.@R Exchange nibble of A 

and reg ister 
MOVXA.@R Move external data 2 

memory to A 
MOVX@R.A Move A to external 2 

data memory 
MOVPA.@A Move to A from 2 

cu rrent page 
MOVP3A. @A Move to A from page 3 2 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias . . . O°C to 70°C 
Storage Temperature . . . . . . - 65°C to + 150°C 
Voltage On Any Pin With Respect 

to Ground ............ -0.5V to VCC+ 1V 
Maximum Voltage On Any Pin 

With Respect to Ground . . . . . 7V 
Power Dissipation . .. . . . . . . . . . . . 1.0 Watt 

Timer/Counter 

Mnemonic Description Bytes Cycles 
MOVA. T Read timer/counter 1 1 
MOVT.A load timer/counter 
STRTT Start timer 
STRTCNT Start counter 
STOP TCNT Stop timer/counter 
EN TCNTI Enable timer/counter 

interrupt 
DIS TCNTI Disable timer/counter 

interrupt 

Control 

Mnemonic Description Bytes Cycles 
EN I Enable external 1 1 

interrupt 
DIS I Disable external 

interrupt 
SEl RBO Select register bank 0 
SEl RB1 Select register bank 1 
SEl MBO Select memory bank 0 
SEl MB1 Select memory bank 1 
'ENTO ClK Enable clock output 

onTO 

Mnemonic Description Bytes Cycles 
NOP No operation - 1 1 
lDl Select Idle Operation 

"NOTICE: Stresses above those listed under "Ab
solute Maximum Ratings" may cause permanent 

. damage to the device. This is a stress rating only 
and functional operation of device at these or any 
other conditions above those indicated in the oper
ational sections of this specification is not implied. 

15-38 210936 



80C49-7/80C39-7 

D.C. CHARACTERISTICS: (TA = ooe to 70°C; Vee = Voo = 5V ± 20%; IVee - Vool "" 1.5V; 
VSS = OV) 

Limits 

, Symbol Parameter Min Typ Max Unit Test Conditions ' 

VIL Input Low Volta~ 
(All Except X1, RESET) 

-.5 .18 Vee V 

VIL1 Input Low Voltage X1, RESET -5 .13 Vee V 

VIH Input High Voltage __ 0.2 Vee Vee V 
(All Except XTAL 1, RESET) + 1.2 

VIH1 Input High Voltage (X1, RESET) .7 Vee Vee V 

VOL Output Low Voltage (BUS) .6 V IOL = 2.0 mA 

VOL1 ~ut Low Voltage .6 V IOL = 1.8 mA 
(RO, WR, PSEN, ALE) 

VOL2 Output Low Voltage (PROG) .6 V IOL = 1.0 mA 

VOL3 Output Low Voltage .6 V IOL = 1.6 mA 
(All Other Outputs) 

VOH Output High Voltage (BUS) .75 Vee V IOH = -400 J.l-A 

VOH1 ~ut High Voltage .75 Vee V IOH = -100~ 
(RO,WR. PSEN~ ALE) 

VOH2 Output High Voltage 2.4 V IOH = -40 J.l-A 
(All Other Outputs) 3.0 IOH = -20 J.l-A 

1L1 Input Leakage Current (T1, INT, EA) ±5 ~ VSS"" VIN "" Vee 

IU1 Input Leakage Current 
(P10-P17, P2Cl-P27, SS) 

-500 J.l-A VSS "" VIN "" Vee 

ILO Output Leakage Current (BUS, TO) ±5' ~ VSS "" VIN "" Vee 
(High Impedance State) 

ILR Input Leakage Current (RESET) -10 -300 ~ VSS "" VIN "" VIH1 
IpO Power Down Standby Current 2 J.l-A VOO = 2.0V RESET"" VIL 

ICC Active Current (rnA) ICC Idle Current (mA) 

Vee 4V 5V 6V Vee 4V 5V 

1 MHz 2.5 3.3 4.0 , 1 MHz 1.7 2,0 

6 MHz 5 6.8 8.5 6 MHz 2 3 

11 MHz 9 12 15 11 MHz 3.5 4.8 

Absolute Maximum Unloaded Current 

ICC Test Conditions: 
ICC Active , 
All o~uts disconnected 
T1, INT, SS, TO connected to HIGH (VI H) 
EA, RST connected to LOW (VIL) 
XTAL 1 External Drive 

Rise Time = 10 ns, Fall Time = 10 ns 
XTAL2 No connection 
VIH ;= Vee - 0.5V 
VIL = VSS + 0.5V 

ICC Idle 
All outputs disconnected 
XTAL 1 External Drive 

Rise Time = 10 ns, Fall Time = 10 ns 
XTAL2 No connection 
VIH = Vee - 0.5V 
VIL = VSS + 0.5V 

15-39 

6V 

2.2 

4 

6 

210936 



SOC4g..7/S0C39-7 

A.C. CHARACTERISTICS: (TA =O°Cto 70°C; VCC = VOO = 5V±20%;IVCC- VOOI~1.5V; VSS =OV) 

f (t) 
Symbol Parameter (Note 3) 

t Clock Period 1/xtal freq 

tLL ALE Pulse Width 3.5t-170 

tAL Addr Setup toALE 2t-110 

tLA Addr Hold from ALE" t-40 

tCC1 Control Pulse Width (RD, WR) 7.5t-200 

tCC2 Control Pulse Width (PSEN) 6t-200 

tow Data Setup before WR 6.5t-200 

two Data Hold after WR t-50 

tOR Data Hold (RD, PSEN) 1.5t-30 

tRD1 RD to Data in 6t-170 

tRD2 PSEN to Data in 4.5t-170 

tAW Addr Setup to WR 5t-150 

tAD1 Addr Setup to Data (RD) 10.5t-220 

tAD2 Addr Setup to Data (PSEN) '7.5t-220 

tAFC1 Addr Float to RD, WR 2t-40 

tAFC2 Addr Float to PSEN .5t-40 

tLAFC1 ALE to Control (RD, WR) 3t-75 

tLAFC2 ALE to Control (PSEN) 1.5t-75 

tCA1 Control to ALE (RD, WR, PROG) t-65 

tCA2 Control to ALE (PSEN) 4t-70 

tcp Port Control Setup to PROG 1.5t-80 

tpc Port Control Hold to PROG 4t-260 

tpR PROG to P2 Input Valid 8.5t-120 

tpF Input Data Hold from PROG 1.5t 

top Output Data Setup 6t-290' 

tpD Output Data Hold 1.5t-90 

tpp PROG Pulse Width 10.5t-250 

tpL Port 2 I/O Setup to ALE 4t-200 

tLP Port 2 I/O Hold to ALE 1.5t-120 

tpv Port Output from ALE 4.5t+100 

tOPRR TO Rep Rate 3t 

tCY Cycle Time 15t 

Notes: 

1. Control Outputs CL = 80pF 
BUS Outputs CL = 150pF 

2. BUS High Impedance 
Load 20pF 

15·40 

11 MHz 
Conditions 

Min Max Unit (Note 1) 

90.9 1000 ns (Note 3) 

150 ns 

70 ns (Note 2) 

50 ns 

480 ns 

350 ns 

390 ns 

40 ns 

0 110 ns 

350 ns 

190 ns 

300 ns 

730 ns 

460 ns 

140 ns . (Note 2) 

10 ns (Note 2) 

200 ns 

60 ns' 

25 ns 

290 ns 

50 ns 

100 ns 

650 ns 

0 140 ns 

250 ns 

40 ns 

700 ns 

160 ns 

15 ns 

510 ns 

270 ns 

1.36 15.0 IlS 

3. I(t) assumes 50% duty cycle on Xl, X2.'Max 
clock penod IS lor a 1 MHz crystal mput. 

210936 



BOC49-7/BOC39-7 

WAVEFORMS 

~ ICY 

I--ILL -IILAFC2i 

ALE J .... , _____ ----l 
IAFi2 ~ 1- ICC2 --I r- ICA2 

PSEN I I 
! I I 

r-+-'l.lr...J..' __ ,--lIDRI;: 
BUS FLOATING FLOATING FLOATING 

IADDRESS _IRD2-' INSTRUCTION 

--IAD2-

Instruction Fetch From Program Memory 

---jILAFC1 I--

L 

ALE J..------" I L 

ALE J 
---lILAFC1r 

I 
ICA1 I--

RD, 

IAFC1--i 

Read From External Data Memory 

l 

r-ICC1-' ICA1-

-----;, I 
2.4V ----""I. ,..---

X2.0~TEST POINTS~2.0X 
WR 

ADDRESS 

I 
I FLO~TING 

I---IAW--i 

Write To External Data Memory 

0.4SV ___ --', .0.S- "'0.8. '-. __ _ 

AC. testing inputs are driven at 2.4V for a logic "1" and 
0.45V for a logic "0." Output timing measurements are 
made at 2.0V for a logic "1" and 0.8V for a logic "0." 

Input And 'Output For A.C. Tests 

PORT 1/PORT 2 TIMING 

ALE 

PSEN 

P20-23 
OUTPUT 

P24-27 
P10-17 
OUTPUT 

ILP 

EXPANDER 
PORT 

OUTPUT 

EXPANDER 
PORT 

INPUT 

I- ---l 2ND 
, IPL - I r-CY_C_L_E""I. 

I ~--~------~I 

I 
PCH P9RT 20-23 DATA NEW P20-23 DATA 

PORT 24-27, PORT 10-17 DATA NEW PORT DATA 
I 

_~L.tL~, 
--I---ILA----<o·-tl .. • -IPL~ I 

I ,...----"""""', 

-----I \-ICA1 

ilPD 

,lOP "'" "I 
PCH OUTPUT DATA I I 

II II) 
I I 11-· _IPR--+l., f1 

PORT 20-23 DATA 'PORT CONTROL 

'----------------~ 

I 
I 
r----~ r---~ I PORT CONTROL' 

I 
PCH 

I-ICP+IPC~ 

PROG 

I !--'----IPP 
------------------------~~I 

15-41 210936 



80C49-7/80C39-7 

SUGGESTED ROM VERIFICATION ALGORITHM FOR CHMOS DEVICES ONLY 

INITIAL ROM DUMP CYCLE 

ALE 

DB ----I ADDRESS H ROM DATA 

'---(::':IN~P::-U::T::-) --' (OUTPUT) 

RESET ______ -' 

SUBSEQUENT ROM DUMP CYCLES 

: (OUTPUT) 
, 
, 
: (INPUT) , , 
I 
I H ADDRESS 

(INPUT) 

I (INPUT) 
I 

, 
" ' , 

, , , 
L.JROMl I ~f---"'------

(OUTPUT): 

P20-P23 ---""L ____ A_D_DR_E_S_S ___ --IHL--___ A_D_D_R_ES_S ___ J"--------
I (INPUT) 
I 

VCC = VDD = + SV 

A10 

A11 VSS = OV 

15-42 210936 



The RUPITM .. 44 Family 16 





CHAPTER 16 
THE RUPITM-44 FAMILY: 

MICROCONTROLLER WITH ON-CHIP 
COMMUNICATION CONTROLLER 

16.0 INTRODUCTION 

The RUPI-44 family is designed for applications requir
ing local intelligence at remote nodes, and communica
tion capability among these distributed nodes. The 
RUPI-44 integrates onto a single chip Intel's highest 
performance microcontroller, the 8051-core, with an in
telligent and high performance Serial communication 
controller, called the Serial Interface Unit, or SIU. See 
Figure 16-1 . This dual controller architecture allows 
complex control and high speed data communication 
functions to be realized cost effectively. 

The RUPI-44 family consists of three pin compatible
parts: 

8344-8051 Microcontroller with SIU 

8044-An 8344 with 4K bytes of on·chip ROM 
) 

program memory. 

8744-An 8344 with 4K bytes of on-chip 
EPROM program memory. 

16.1 ARCHITECTURE OVERVIEW 

The 8044's dual controller architecture enables the 
RUPI to perform complex control tasks and high speed 
communication in a distributed network environment. 

The 8044 microcontroller is the 805 I-core, and main· 
tains complete software compatibility with it. The 
microcontroller contains a powerful CPU with on·chip 
peripherals, making it capable of serving sophisticated 

i 

, real-time control applications such as instrumentation, 
industrial control, and intelligent computer peripherals. 
The microcontroller features on-chip peripherals such 
as two 16-bit timer/counters and 5 source interrupt ca
pability with programmable priority levels. The micro
controller's high . performance CPU executes most 
instructions in 1 microsecond, and can perform an 8 X 8 
multiply in 4 microsClConds. The CPU features a Bool
ean processor that can perform operations on 256 direct
ly addressable bits. 192 bytes of on-chip data RAM can 
be extended to 64~ bytes externally. 4K bytes of on-chip 
program ROM can be extended to 64K bytes externally. 
The CPU and SIU run concurrently. See Figure 16-2 . 

The SIU is designed to perform serial communications 
with little or no CPU involvement. The SIU supports 
data rates up to 2.4Mbps, externally clocked, and 375K 
bps self c1ocked'(i.e., the data clock is recovered by an 
on-chip digital phase locked loop). SIU hardware sup
ports the-HOLC/SOLC protocol: zero bit insertion/de
letion, address recognition, cyclic redundancy check, 
and frame number sequence check are automatically 
performed. 

The SIU's Auto mode greatly reduces communication 
software overhead. The AUTO mode supports the 
SOLC Normal Response Mode, by performing second
ary station responses in hardware without any CPU in
volvement. The Auto mode's interrupt control and 
frame sequence numbering capability eliminates soft
ware overhead normally required in conventional sys
tems. By using the Auto mode, the CPU is free to 
concentrate on real time control of the application. 

------'----------------, 

~:=' _ ~ H '= H ~I .. · ...... -+1--.. · ~O::-;~~~~;ION 
I I 
~--------------------~ 

Figure 16-1. RUPITI'·44 Dual Controller Architecture 

16-1 



!! 
CC 
c .. 
(1) ... 
~ 
!'l 
en 
3" 

"'2. 
~ :::;; 
Ol iii" I 

Q. I\) 

Q) 
0 

"" "" 111 
0' 
() 
~ 

0 
iii" 

CC ... 
DI 
3 

r 
5.- I 

I 
~·I 

GROUND I 

I 
I 
I 
I 
I 
I 
I' 
I 
I 
I 
L 

REFERENCE 
OSCILLATOR 

8051 
Cpt) 

INTERRUPTS 

TWO 4kBYTES 
TIMER PROGRAM 
COUNTERS MEMORY 

BUS PROGRAMMABLE 
EXPANSION 110 

----

'PORT 
DATA RAM 

S3R1AL 

INTERFACE 

UNIT (SIU) 

_____ .1 

HDLC{SDLC 

l 
® 

::0 
c: 
'U 
ii 
J.. 
.j:a 



inter RUPI"'-44 

16.2 THE HOLC/SOLC PROTOCOLS 

16.2.1 HOLC/SOLC Advantages over Async 

The High Level Oata Link Control, HOLC, is a stan
dard communication link control established by the 

, International Standards Organization (ISO). SOLC is 
a subset of HOLC. 

HOLC and SOLC are both well recognized standard 
seriaiprotocols. The Synchronous Oata Link Control, 
SOLC, is. an IBM standard communication protocol. 
IBM originally devejoped SOLC to provide efficient. 
reliable and simple communication between terminals 
and computers. 

The major advantages of SOLC/HOLC over Asyn
chronous communications protocol (Async): 

• SIMPLE: Oata Transparency 

I PRIMARY I 
J 

a) Point to Point, Half Duplex , 

I PRIMARY I 
J 1 

8044 CONTROLLED" 
SECONDARY 

-

• EFFICIENT: 

• RELIABLE: 

Well Oefined Message-Level 
Operation 

Frame Check Sequence and 
Frame Numbering 

Tile SOLC reduces system complexity. HOLC/SOLC 
are "data transparent" protocols. Oata transparency 
means that an arbitrary data stream can be sent without 
concern that some of data could be mistaken for a pro
tocol controller. Oata transparency relieves the com
munication controller having to detect special 
characters. 

SOLC/HOLC provides more data throughout than 
Async. SOLC/HOLC runs at Message-level Operation 
which transmits multiple bytes within the frame. 
Whereas Async is based on character-level operation. 
Async transmits or receives a character at a time. Since 
Async requires start and stop bits in every transmission, 
there is a considerable waste of overhead compared to 
SOLC/HOLe. 

8044 CONTROLLED 
SECONDARY 

t t 
8044 CONTROLLED 8044 CONTROLLED 
SECONDARY SECONDARY 

b) Multipoint, Halt Duple. 

~ 
PRIMARY ~ 

8044 CONTROLLED 8044 CONTROLLED 
SECONDARY SECONDARY 

f • 
8044 CONTROLLED I-

8044 CONTROLLED 
SECONDARY SeCONDARY 

c) SOLe Loop Configuration 

Figure 16-3. RUPI™·44 Supported Network Configurations 

16-3 



RUPI"'-44 

Due to SOLC/HOLC's well delineated field (see Figure 
16-4) the CPU does not have to interpret character by 
character to determine control field'and information 
field. In the case of Async, CPU must look at each 
character to interpret what it means. The practical ad
vantage of such feature is straight forward use of OMA 
for information transfer. 

In addition, SOLC/HOLC further improves Data 
throughput using implied Acknowledgement of trans
ferred information. A station using SOLC/HOLC'may 
acknowledge previously received information while 
transmitting different information in the same frame. 
In additi9n, up to 7 messages may be outstanding before 
an acknowledgement is required. 

The HOLC/SOLC protocol can be used to realize 
reliable data links. Reliable Data transmission is ensured 
at the bit level by sending a frame check sequence. cyclic 
redundancy checking, within the frame. Reliable frame 
transmission is ensured by sending a frame number 
identification with each frame. This means that a 
receiver can sequentially count received frames and at 
any time infer what the number of the next frame to 
be received should be. More important, it provides a 
means for the receiver to identify to the sender some 
particular frame that it wishes to have resent because 
of errors. 

16.2.2 HDLC/SOLC Networks 

In both the HOLC and SOLC line protocols a (Master) 
primary station controls the overall network (data link) 
and issues commands to the secondary (Slave) stations. 
The latter complies with instructions and responds by 
sending appropriate responses. Whenever a transmit
ting station must end transmission prematurely, it sends 
an abort character. Upon detecting an abort character, a 
receiving station ignores the transmission block called a 
frame. 

RUPI-44 supported HOLC/SOLC network configura
tions are point to point (half duplex) multipoint (half 

duplex), and loop. In the loop configuration the stations 
themselves act as repeaters, so that long links can be 
easily realized, see Figure 16-3. 

16.2.3 Frames 

An HOLC/SOLC frame consists of five basic fields: 
Flag, Address, Control, Data and Error Detection. A 
frame is bounded by flags-opening and closing flags. 
An address field is 8 bits wide in SOLe, extendable to 2 
or more bytes in HOLC. The control field is also 8 bits 
wide, extendable to two bytes in HOLC. The SOLC 
data field or information field may be any number of 
bytes. The HOLe data field mayor may not be on an 8 
bit boundary. A powerful error detection code called 
Frame Check Sequence contains the calculated CRC 
(Cycle Redundancy Code) for all the bits between the 
flags. See Figure 16-4. 

In HDLe and SOLC are three types of frames; an In
formation Frame is used to transfer data, a Supervisory 
Frame is used for control purposes, and a Non
sequenced Frame is used for initialization and control of 
the secondary stations. 

For a more detailed discussion of higher level protocol 
functions interested readers may refef to the references 
listed in Section 16.2.6. 

16.2.4 Zero Bit Insertion 

In data' communications, it is desirable to transmit data 
which can be of arbitrary content. Arbitrary data trans
mission requires that the data field cannot contain char
acters which are defined to assist the transmission 
protocol (like opening flag in HOLC/SOLC communi
cations). This property is referred to as "data transpar
ency". In HOLC/SOLC, this code transparency is 
made possible by Zero Bit Insertion (ZBI). 

The flag has a unique binary bit pattern: 01111110 (7E 
HEX). To eliminate the possibility of the data field con
taining a 7E HEX pattern, a bit stuffing technique 

OPENING 
FLAG 

ADDRESS CONTROL 
FIELD FIELD 

INFORMATION 
FIELD 

FRAME CHECK 
SEQUENCE (FCS) 

CLOSING 
FLAG 

01111110 8 BITS 8 BITS 
VARIABLE LENGTH 16 BITS 01111110 (ONLY IN' FRAMES) 

Figure 16..\ Frame Format 

16-4 



inter RUP11II-44 

called Zero Bit Insertion is used. This technique speci
fies that during transmission, a binary 0 be inserted by 
the transmitter after any succession of five contiguous 
binary I·s. This will ensure that no pattern of 0, I I III 
lOis ever transmitted between flags. On the receiving 
side, after receiving the flag, the receiver hardware auto
matically deletes any 0 following five consecutive I's. 
The 8044 performs zero bit insertion and deletion 
automatically. 

16.2.5 Non-retum to Zero Inverted (NR21) 

NRZI is a method of clock and data encoding that is 
well suited to the HDLC/SDLC protocol. It allows 
HDLC/SDLC protocols to be used with low cost asyn
chronous modems. NRZI coding is done at the trans
mitter to enable clock recovery from the data at the 
receiver terminal by using standard digital phase locked 
loop (DPLL) techniques. NRZI coding specifies that 
the signal condition does not change for transmitting a 
I, while an 0 causes a change of state. NRZI coding en
sures that an active data line will have a transition at 
least every 5-bit times (recall Zero Bit Insertion), while 
contiguous O's will cause a change of state. Thus, ZBI 
and NRZI encoding makes it possible for the 8044's on
chip DPLL to recover a receive clock (from received 
data) synchronized to the received data and at the same 
time ensure data transparency. 

16.2.6 References 
I. IBM Synchronous Data Link Control General 

I7!formation GA27-3093-2 File No. GENL-09. 

2. Standard Network Access Protocol Specification. 
DATA PAC Trans-Canada Telephone System CCGIII. 

3. IBM 3650 Retail Store System Loop Interface OEM 
Iriformation, IBM, GA27-3098-0 

4. Guidebook to Data Communications, Training 
Manual, Hewlett-Packard 5955-1715 

5. "Serial Backplane Suits Multiprocessor Architec
tures': Mike Webb, Computer Design, JiI~v 1984, 
p.85-96. 

6. "Serial Bus Simplifies Distributed Control': P.D. 
Mac Williams. Control Engineering, June 1984, 
p.IO]']04. 

7. "Chips Support Two Local Area Networks': Bob 
Dahlberg, Computer Design, May 1984, p. 107-114. 

8. "Build a VLSI-based Workstation/or the Ethernet 
Environment': Mike Webb. EDN,23 February 1984, 
p.297-307. 

9. "Networking With the 8044': Young Sohn & Charles 
Gopen, Digital Design, May 1984. p. 136-]37. 

16.3 RUPITM-44 DESIGN SUPPORT 

16-5 

16.3.1 Design Tool Support 
A critical design consideration is time to market. Intel 
provides a sophisticated set of design tools to speed hard
ware and software development time of 8044 based 
products. These include ICE-44, ASM-51, PLf M-51,and 
EMV-44. 

Fig ure 16-5. RUPI"'-44 Development Support 
Configuratio~ Intellec. System, 
ICE"'-44 Buffer Box, and ICE-44 
Module Plugged into a User 
Prototype Board. 

A primary tool is the 8044 In Circuit Emulator, called 
ICE-44. See Figure 16-5: In conjunction with Intel's In
telle~ Microprocessor Development System, the ICE-
44 emulator allows hardware and software development 
to proceed interactively., This approach is more effective 
than the traditional method of independent hardware 
and software development followed by system integra
tion. With the ICE-44 module, prototype hardware can 
be added to the system as it is designed. Software and 
hardware integration occurs while the product is being 
developed. 

The ICE-44 emulator assists four stages of development: 

I) Software Debugging 

It can be operated without being connected to the us
er's system before anyofthe user's hardware is avail
able. In this stage ICE-44 debugging capabilities 
can be used in conjunction with the Intellec. text edi-



RUPITII·44 

tor and 8044 macroassembler to facilitate program 
development. 

2) Hardware Developmllnt 

The ICE-44 module's precise emulation characteris
tics and full-speed program RAM make it a valuable 
tool for debugging hardware, including the time
critical SDLC serial port, parallel port, and timer 
interfaces. 

3) System Integration 

Integration of software, and hardware can begin 
when any functional ele;mell,t of the. user system 
hardware; is connected to the 8044 socket .. As each 
section of the user's hardware is completed, it is add
ed to the prototype. Thus, each section of the hard
ware and software is system tested in real-time 
operatiol! as it becomes av~ilable. 

4) System Test 

When the user's prototype is complete, it is tested 
with the final version of the user system software. 
The ICE-44 module is then \lsed for real-time emu
lation of the 8044 to debug the system'as a completed 
unit. 

The final product verification test may be performed 
using the 8744 EPROM version of the 8044 micro
computer. Thus, the ICE-44 module provides the 
user with the a bility to debug a prototype or prOduc
tion system at any stage in its deveil)pment. 

A conversion kit, ICE-44 CON, is available to upgrade 
an ICE-51 module to ICE·44. 

Intel's ASM-5l Assembler supports the 8044 special 
function registers and assembly program development. 
PL / M -51 provides designers with a high level language 
for the 8044. Programming in PL/M can greatly reduce 
development time, and ensure quick time to market. 

These tools have recently been expanded with the 
addition of the EMV-44CON. This conversion kit allows 
you to convert an EMV-51 into an EMV-44 emulation 
vehicle. The resultant low cost emulator is design for use 

16-6 

with an iPDS Personal Development System. which also 
supports the ASM-51 assembler and PL/ M,51. See 
Figure 16-6. 

Figure 16-6. RUPI-44 iPDS Personal Development 
System, EMV-44 Buffer Box, and EMV-
44 Module Plugged into a User Proto
type Board. 

Emulation support is similar to the I CE-44 with support 
for Software and Hardware Development. System 
Integration, and System Test. The iPDS's rugged 
portability and ease of use also make it an ideal system for 
production tests and field service of your finished design, 
In addition, the iPDS offers EPROM programming 
moduleforthe 8744, and direct communications with the 
8044--based BITB US via an optional iSBX344 distnbuted 
control module. 

16.3.2 8051 Workshop 

Intel provides 8051 training to its customers through the 
5-day 8051 workshop. Familiarity with the 8051 and 
8044 is achieved through a combination of lecture and 
laboratory exercises. 

For designers not familiar with the 8051, the workshop 
is an effective way to become proficient with the 8051 
architecture and capabilities. 



8044 Architecture 17 





CHAPTER 17 
8044 ARCHITECTURE 

110 GENERAL 

The 8044 is based on the 8051 core. The 8044 replaces 
the 8051's serial port with an intelligent HDLC/SDLC 
controller called the Serial Interface or SIU. Thus the 
differences between the two result from the 8044's in-' 
creased on-chip RAM (I 92 bytes) and additional spe
cial function registers necessary to control the SIU. 
Aside from the increased memory, the SIU itself, and 
differences in 5 pins (for the'serial port), the 8044 and 
8051 are compatible. 

This chapter describes the differences between the 8044 
and 8051. Information pertaining to the 8051 core, ego 
instruction set, port operation, EPROM programming, 
etc. is located in the 8051 sections of this manual. 

A block diagram of the 8044 is shown in Figure 17-1. 
The pinpoint is shown on the inside front cover. 

111 MEMORY ORGANIZATION OVERVIEW 
The 8044 maintains separate addr(lss spaces for Pro
gram Memory and Data Memory. The Program Mem
ory can be up to 64K bytes long, of which the lowest 4K 
bytes are in the on-chip ROM. 

If the EA pin is held high, the 8044 executes out of inter
nal ROM unless the Program Counter exceeds OFFFH. 
Fetches from locations 1000H through FFFFH are di
rected to external Program Memory. 

If the EA pin is held low, the 8044 fetches all instruc
tions from external Program Memory. 

The Data Memory consists of 192 bytes of on-chip 
RAM, plus 35 Special Function Registers, in addition to 
which the device is capable of accessing up to 64K bytes 
of external data memory. 

The Program Memory uses 16-bit addresses. The exter
nal Data Memory can use either 8-bit or 16-bit address-, 
es. The internal Data Memory uses 8-bit addresses, 
which provide a 256-location address space. The lower 
192 addresses access the on-chip RAM. The Special 
Function Registers occupy various locations in the upper 
128 bytes of the same address space. 

The lowest 32 bytes in the internal RAM (locations 00 
, through I FH) are divided into 4 banks of registers, each 
bank consisting of 8 bytes. Anyone of these banks can be 
selected to be the "working registers" of the CPU, and 
can be accessed by a3-bit address in the same byte as the 
opcode of an instruction. Thus, a large number of in
structions are one-byte instructions. 

The next higher 16 bytes of the internal RAM (locations 
20H through 2FH) have individually addressable bits. 
These are provided for use as software flags or for one
bit (Boolean) processing. This bit-addressing capability 
is an important feature of the 8044. In addition to the 
128 individually addressable bits in RAM, twelve of the 
Special Function Registers also have individually 
addressable bits. 

A memory map is shown in Figure 17-2. 

1l1.1 SpeCial Function Registers 

The Special Function Registers are as follows: 

17-, 

* ACC Accumulator (A Register) 
* B B Register 
* PSW Program Status Word 

SP Stack Pointer 
DPTR Data Pointer (consisting of DPH 

AND DPL) 
* PO 
* PI 
* P2 
* P3 
* IP 
* IE 

TMOD 
* TCON 

THO 
TLO 
THI 
TLl 
SMD 

* STS 
* NSNR 

STAD 
TBS 
TBL 
TCB 
RBS 
RBL 
RFL 
RCB 
DMA CNT 
FIFO 
SIUST 
PCON 

PortO 
Port I 
Port 2 
Port 3 
Interrupt Priority 
Interrupt Enable 
Timer/Counter Mode 
Timer / Counter Control 
Timer /Counter Q (high byte) 
Timer/Counter 0 (low byte) 
Timer/Counter I (high byte) 
Timer/Counter I (low byte) 
Serial Mode 
Status/Command 
Send/Receive Count 
Station Address 
Transmit Buffer Start Address 
Transmit Buffer Length 
Transmit Control Byte 
Receive Buffer Start Address 
Receive Buffer Length 
Received Field Length 
Received Control Byte 
DMA Count 
FI FO (three bytes) 
SIU State Counter 
Power Control 

The registers marked with * are both byte- and bit
addressable. 

January 1985 



PSEN ALE 



-
FFFF 

FFFF 

~XTFHNAl 

1000 

J.. 
r 1 -

OFFF OFFF 

INTERNAL EXTERNAL 

!\. OVERLAPPED 

,"" SPACf 

(EA 1) lEA 01 

0000 0000 00"-____ -' 0000 

\ 
T 

PROGRAM MEMORY 
T 

INTERNAL 
DATA MEMORY 

I 'fi 
,EXTERNAL 

DA1A 
MEMORY 

Figure 17-2. RUPITM_44 Memory Map 

Stack Pointer 

The Stack Pointer is 8 bits wide. The stack can reside 
anywhere in the 192 bytes of on-chip RAM. When the 
8044- is reset, the stack pointer is initialized to 07H. 
When executing a PUSH or a CALL, the stack pointer 
is incremented before data is stored, so the stack would 
begin at location 08H. 

17.1.2 Interrupt Control Registers 

The Interrupt Request Flags are as listed below: 

Source Reque.st Flag. Location 

External Interrupt 0 INTO, if ITO = 0 P3.2 
lEO, if ITO = I TCON.I 

Timer 0 Overflow TFO TCON.5 

External Interrupt I INTI, ifITI = 0 P3.3 
lEI, ifITI = 1 TCON.3 

Timer I Overflow TFI TCON.7 

Serial Interface Unit SI STSA 

17-3 

External Interrupt control bits ITO and ITI are in 
TCON.O and TCON.2, respectively. Reset leaves all 
flags inactive, with ITO and ITI cleared. 

All the interrupt flags can be set or cleared by software, 
with the same effect as by hardware. 

The Enable and Priority Control Registers are shown 
below. All of these control bits are set or cleared by soft
ware. All are cleared by reset. 

IE: Interrupt Enable Register (bit-addressable) 

Bit: 7 6 5 4 3 2 I 0 

IEAlxlxlESIETlIEXllETOIEXol 

where: 

EA disables all interrupts. If EA = 0, no 
interrupt will be acknowledged. If EA 
= I, each interrupt source is individ
ually ena,bled or disabled by setting or 
clearing its enable bit. 



RUPI1Mr,.-44 

ES enables or disables the Serial Inter
face Unit interrupt. If ES = 0, the Se
rial Interface Unit interrupt is 
disabled. 

ETl enables or disables the Timer 1 Over
flow interrupt. If ETl = 0, the Timer 
I interrupt is disabled. 

EX I enables or disables ExternaUnterrupt 
I. If EX 1 = 0, External Interrupt I is 
disabled. 

ETO enables or disables the Timer 0 Over
flow interrupt. If ETO = 0, the Timer 
o interrupt is disabled. 

IP: Interrupt Priority Register (bit-addressable) 

Bit: 7 6 5 4 3 2 1 0 

IxlxlxlPS IPTllpXllPTolpxol 
where: 

PS 

PTI 

PXI 

defines the Serial Interface Unit in
terrupt priority level. PS = I pro
grams it to the higher priority level. 

defines th,e Timer 1 interrupt priority 
level. PTl = I programs it to the 
higher priority level. 

defines the External Interrupt I prior
ity level. PXl = I programs it to the 
higher priority level. 

PTO defines the Timer o interrupt priority 
level. PTO = I programs it to the 
higher priority level. 

PXO defines the External Interrupt 0 prior
ity level. PXO = ) programs it to the 
higher priority level. 

17.2 Memory Organization Details 

In the 8044 family the memory is organized over three 
address spaces and the program counter. The memory 
spaces shown in Figure 18-2 are the: . 

64K-byte Program Memory address space 

64K-byte External Data Mem,ory address space 

32Q-byte Internal Data Memory address space 

The 16-bit Program Counter register provides the 8044 
with its 64K addressing capabilities. The Program 
Counter allows the user to execute calls and branches to 

17-4 

any location within the Program Memory space. There 
are no instructions that permit program execution to 
move from the Program Memory space to any of the 
data memory spaces. 

In the 8044 and 8744 the lower 4K of the 64K Program 
Memory address space is filled by internal ROM and 
EPROM, respectively. By tying the EA pin high, the 
processor can be forced to fetch from the internal 
ROM/EPROM for Program Memory addresses 0 
through 41(; Bus expansion for accessing Program 
Memory beyond 4K is automatic since external instruc
tion fetches occur automatically when the Program 
Counter increases above 4095, If the EA pin is tied low 
all Program Memory fetches are from external memory. 
The execution speed of the 8044 is the same regardless 
of whether fetches are from internal or external Pro
gram Memory. If all program storage is on-chip, byte lo
cation 4095 should be left vacant to prevent an 
undesired prefetch from external Program Memory ad
dress 4096. 

Certain locations in Program Memory are reserved for 
specific programs. Locations 0000 through 0002 are re
served for the initia\i.zation program. Following reset, 
the CPU always begins execution at location 0000. Lo
cations 0003 through 0042 are reserved for the five in
terrupt-request service programs. Each resource that 
can request an interrupt requires that its service pro
gram be stored at its reserved location. 

The 64K-byte External Data Memory address space is 
automatically accessed when the MOVX instruction is 
executed. 

Functionally the Internal Data Memory is the most 
flexible of the address spaces, The Internal Data Mem
ory space is subdivided into a 256-byte Internal Data 
RAM address space and a 128-byte Special Function 
Register address space as shown in Figure 17-3. 

The Internal Data RAM address space is 0 to 255, Four 
8-Register Banks occupy locations 0 through 31. The 
stack can be located anywhere in the Internal Data 
RAM address space. In aqdition, 128 bit locations of the 
on-chip RAM are accessible through Direct Address
ing. These bits reside in Internal Data RAM at byte lo
cations 32 through 47. Currently locations 0 through 
191 of the Internal Data RAM address space are filled 
with on-chip RAM. 

The stack depth is limited only by the available Internal 
Data RAM, thanks to an 8-bit reloadable Stack Pointer. 
The stack is used 'for storing the Program Counter dur
ing subroutine calls and may be used for passing param
eters. Any byte of Internal Data RAM or Special 
Function Register accessible through Ditect Addressing 
can be pushed/popped. 



SPECIAL 
FUNCTION 
REGISTERS 
r-"--.. 

255 255 248 F8H 
FOH 
E8H 
EOH 
D8H 

RAM DOH Dr- ---191 ~~~ 
SOH 
A8H 
AOH 
98H 
90H 
88H 

128 135 128 80H 

127 ;::::~=~-"''''' 

~~~ESS- !! b-:12;';-7-,,12:.l0 

BITSIN -<
SFRs
(128 BITS)

REGISTERS

32 7 0
- R7
24 RO BANK3
- R7
!! RO BANK2

8 =~ BANK 1
- R7
o RO BANKO

INTERNAL
DATA RAM

SPECIAL FUNCTION
REGISTERS

ADDRESS
ABLE
BITS IN
SFRs
(128 BITS)

Figure 17-3 _ Internal Data Memory
Address Space

The Special Function Register address space is 128 to
255. All registers except the Program Counter and the
four 8-Register Banks reside here. Memory mapping the
Special Function Registers allows them to be accessed
as easily as internal RAM. As such, they can be operat
ed on by most instructions. In the overlapping memory
space (address 128-191), indirect addressing is used to
access RAM, and direct addressing is used to access the
SFR's. The SFR's at addresses 192-255 are also ac
cessed using direct addressing. The Special Function
Registers are liste,d in Figure 17-4. Their mapping in the
Special Function Register -address space is shown in
Figures 17-5 and 17-6.

Performing a read from a location of the- Internal Data
memory where neither a byte of Internal Data RAM
(i.e., RAM addresses 192-255) nor a Special Function
Register exists will access data of indeterminable value.

Architecturally, each memory space is a linear sequence
of 8-bit wide bytes. By Intel convention the storage of
multi-byte address and data operands in program and
data memories is the least significant byte at the low
order address and the most significant byte at the high
order address. Within byte X, the most significant bit is

ARITHMETIC REGISTERS:
Accumulator·, B register·,
Progam Status Word·

POINTERS:
Stack Pointer, Data Pointer (high I.
low)

PARALLEL 1/0 PORTS:
Port 3·, Port 2", Port 1", Port 0"

INTERRUPT SYSTEM:
Interrupt Priority Control",
Interrupt Enable Control·

TIMERS:
Timer MODe, Timer CONtro'", Timer 1
(high I. low), Timer 0 (high I. low)

SERIAL INTERFACE UNIT:
Transmit Buffer Start,
Transmit Buffer Length,
Transmit Control Byte,
Send Count Receive Count",
DMACount,
Station Address
Receive Field Length
Receive Buffer Start
Receive Buffer Length
Receive Control Byte,
Serial Mode,
Status Regi~ter.·

• Bits in these registers are bit addressable.

Figure 17-4. Special Function Registers

represented by X.7 while the least significant bit is X.O.
Any deviation from these conventions will be explicitly
sta ted in the text.

17.2.1 Operand Addressing

There are five methods of addressing source operands.
They are Register Addressing, Direct Addressing, Reg
ister-Indirect Addressing, Immediate Addressing and
Base-Register-plus Index-Register-Indirect. Address
ing. The first three of these methods can also be used to
address a destination operand. Since operations in the
8044 require 0 (NOPonly), 1,2,3 or 4 operands, these
five addressing methods are used in combinations to pro-
vide the 8044 with its 21 addressing modes. .

Most instructions have a "destination, source" field that
specifies the data type, addressing methods and oper
ands involved. For operations other than moves, the des
tination operand is also a source operand. For example,
in "subtract-with-borrow A, #5" the A register receives
the result of the value in register A minus 5, minus C.

Most operations involve operands that are located in In
ternal Data Memory. The selection of the Program
Memory space or External Data Memory space for a

ARITHMETIC REGIS:rERS:
Accumulator·, B register·,
Pfogam Status Word·

POINTERS:
Stack POinter, Data Pointer (high &
low)

PARALLEL I/O PORTS:
Port 3' ,Port2', Port I', Port 0'

INTERRUPT SYSTEM:
Interrupt Priority Control*~
Interrupt En'able Control '.,

TIMERS:
Timer Mode, Timer Control*, Timer 1
(high & low), Timer 0 (high & low)

SERIAL INTERFACE UNIT:
Serial Mode, Status/Command*.
Send/Receive Count"', Station Address.
Transmit·Bufler Start Address,
Trans"1it Buffer Length,
Transmit Conttol Byte,
Receive Buffer Staft Address',
Receive Buffer Length,
Receive Field Length,
Receive Control Byte,
DMACqunt,
FIFO (three bytes),
SIU Controller State Counter

.. Bits In these reglsters-are bit-addressable

RUPI~-44

second operand is determined· by the operation mne
monic unless it is an immediate operand. The subset of
the Internal Data Memory being addressed is deter
mined by the addressing method and address value. For
example, the Special· Function Registers can be accessed
only through Direct Addressing with an address of 128-
255. A summary of the operand addressing methods is
shown in Figure 17-6. The following paragraphs describe
the five addressing methods~

1l2,2 Register Addressing

Register Addressing permits access to the eight registers
(R7-RO) of the selected Register Bank (RB). One of the
four 8-Register Banks is selected by a two-bit field in the
PSW. The registers may also be accessed through Direct
Addressing and Register- Indirect Addressing, since the
four Register Banks are mapped into the lowest 32 bytes
of Internal Data RAM as shown in Figures 17-9 and
17-10. Other Internal Data Memory locations that are·
addressed as registers are A, B, C, AB and DPTR.

Figure 17-5. Mapping of Special Function
Registers

REGISTER NAMES

B REGISTER
ACCUMULATOR
'THREE BYTE FIFO

TRANSMIT BUFFER START
TRANSMIT BUFFER LENGTH
TRANSMIT CONTROL BYTE
'SIU STATE COUNTER
SEND COUNT RECEIVE COUNT
PROGRAM STATUS WORD
'DMA COUNT
STATION ADDRESS
RECEIVE FIELD LeNGTH
RECEIVE BUFFER START
RECEIVE BUFFER LENGTH
RECEIVE CONTROL BYTE
SERIAL MODI'
STATUS REGISTER
INTERRUPT PRIORITY CONTROL
PORT 3
INTERRUPT ENABLE CONTROL
PORT 2
PORT 1
TIMER HIGH 1
TIMER HIGH 0
TIMER LOW 1
TIMER LOW 0
TIMER MODE
TIMER CONTROL
DATA POINTER HIGH
DATA POINTER LOW
STACK POINTER
PORTO

SYMBOLIC
ADDRESS

~

B
ACC
FIFO
FIFO
FIFO
TBS
TBL
TCB
SIUST
NSNR
PSW
DMACNT
STAD
RFL
RBS
RBL
RCB.
SMD
STS
IP
P3
IE
P2
PI
THI
THO
TLI
TLO
TMOD
TCON
DPH
DPL
SP
PO

BIT ADDRESS

247 through

231 tnrougn

215 tnrougn

tnrougn
tnrougn

tnrougn
tnrougn

143

135 tnrougn

*ICE Support Hardware registers. Under normal operating conditions there'
is no need for the CPU to access these registers.

240
124

20~

t28

BYTE
ADDRESS.

240 (FOH)
224 (EOH)
223 (DFH)
222 (DEH)

"221 (DOH)
220 lOCH)
219 (DBH)
218 (DAH)
217 (D9H)
216 (D8H)
208 (DOH)
207 (CFH)
206 (CEH)
205 (CDH)
204 (CCH)
203 (CBH)
202 (CAH)
201 (C9H)
200 (C8H)
184 (B8H),
176 (BOH)
168 (A8H)
160 (AOH)
144 (90H)
141 (8DH)
140 (8CH)
139 (8BH)
138 (8AH)
137 (89H)
136 (88H)
131 (83H)
130 (82H)
129 (81 H)
128 (80H)

Figure 17-6. Mapping of Special Function Registers

17-6

SFR's CONTAINtNG
DIRECT ADDRESSABLE BITS

Oirect
Byte

Bit Address

Address (MSB)

Hardware
Reglatar

(LSB) Symbol

240 F7 F6 F5 F4 F3 F2 F1 FO

224 E7 E6 E5 E4 E3 E2 E1 EO
NS2 NS1 NSO SES NR2 NR1 NRO SER

216 OF OE 00 OC LOB OA 09 08
CY AC FO RS1 RSO OV P

204 07106 05 04 03 02 01 DO
TBF RE RTS SI BV CPB AM RBP

200 CF CE CO CC CB CA C9tC8
PS PT1 PX1 PTO PXO

184 - 1 - 1 - 1 BC 1 BB 1 BA 1 B9 1 B8

176 B7 B6 B5 B4 B3 B2 B1 BO
EA E5 ET1 EX1 ETO EXO

168 AF) 1 IACIABIAA A9 A8

160 A7 A6 A5 A4 A3 A2 A1 AO

144 97 96 95 94 93 92 91 90
TF1 TR1 TFO TRO IE1 IT1 lEO ITO

136 8F 8E 80 8C 8B 8A 89 88

128 87 86 85 84[83[82 81 80

8

ACC

NSNR

PSW·

STS

1P

P3

1E

P2

P1

TCON

PO

Figure 17-7. Special Function Register Bit
Address

~MS8}

1

" "
68 45

60 44

~+. --+--f--+--f--+-j

~ ~ ~- ---+----!---+---+--'--I
r£-~-' -"--"--~L-~~L-~-1

f---------~-~~------- ~-~

~---------------

Figure 17-9. RAM Bit Addresses

17-7

• Register Addressing
- R7-RO
-A,B,C (bit), AB (two bytes),

DPTR (double byte)
• Direct Addressing

Lower 128 bytes of Internal Data
RAM
Special Function Registers
128 bits in subset of Special
Function Register address space

• Register-Indirect Addressing
Internal Data RAM [@R1, @RO,
@SP (PUSH and POP only)]
Least Significant Nibbles in
Internal Data RAM (@R1, @RO)
External Data Memory (@ R 1 ,
@RO,@DPTR)

• Immediate Addressing
- Program Memory (in-code con

stant)
• Base-Register-plus Index-Register

Indirect Addressing
Program Memory (@ DPTR + A,
@ PC+A)

Figure 17-8. Operand Addressing Methods

SPECIAL
FUNCTION
REGISTERS

A.

255255

'" 24 ::~:
EO"

"" DOH'" . .j

C8H :t DIRECT

COH ~ADORESS-

<NO"'CT '" D m ~1~ =i ::~S}
AOORES~ING '144 98H 4

L 136 :;:=1
128 128 SOH"""-
-- 127 ---,-",---",--=---

OIRECT •

~~~~ESSING ~ 

l 

"- ' 
RT BANI(:2 

!~ RO 

-~ 

RO 

R' 

y~--~~-"~ECT ADORESSING 

STACK-POINTER REGISTER-INDIRECT AND 
REGISTER-INDIRECT ADDRESSING 

Figure 17-10. Addressing Operands in Internal 
Data Memory 



17.2.3 Direct Addressing 

-Direct Addressing provides the only means of accessing 
. the memory-mapped byte-wide Special Function Regis

ters and memory mapped bits within the Special Func
tion Registers and Internal Data RAM. Direct 
Addressing of bytes may also be used.to access the lower 
128 bytes of Internal Data RAM. Direct Addressing of 
bits gains access to a 128 bit sub$et of the Internal Data 
RAM and .128 bit subset of the Special Function Regis
ters as shown in Figures 17-5; 17-6, 17-9, and 17-10. 

Register~ Indirect Addressing using the content of R! or 
RO in the selected Register Bank, or usi~gthe content of 
theStack Po·inter (PUSH and POP only), addresses the 
Internal Data RAM. Regfster-Indirect Addressing is 
also used for accessing the External Data Memory. In 
this case, either R I or RO in the selected Register Bank 
may be used for accessing locations within a 256-byte 
block. The block number can be preselected by the con
tents of a port The !6-bit Data Pointer maybe used for 
accessing any location within the full 64K external ad-

. dress space. 

17.3 RESET 

Reset is accomplished by holding the RST pin high for 
at least two machine cycles (24 oscillator periods) while 
the oscillator is running. The CPU responds byexecut
ing an internal reset. It also configures the ALE and 
PSEN pins as inputs. (They are quasi-bidirectional.) 
The internal reset is executed during the second cycle in 
which RST is high and is repeated every cycle until RST 
goes low. It leaves the internal registers as follows: 

Register Content 

PC OOOOH 

A OOH 

B OOH 

PSW OOH 

SP 07H 

DPTR OOOOH 

PO-P3 OFFH 

IP (XXXOOOOO) 

IE (OXXOOOOO) 

TMOD OOH 

TCON OOH 

THO OOH 

TLO OOH 

THI OOH 

TLl OOH 

17-8 

SMD OOH 

STS OOH 

NSNR OOH 

STAD OOH 

TBS OOH 

TBl OOH 

TCB OOH 

RBS OOH 

RBl OOH 

RFl OOH 

RCB OOH 

DMACNT OOH 

FIFO! OOH 

FIF.02 OOH 

FIF03 OOH 

SIUST OIH 

PCON (OXXXXXXX) 

The internal RAM is not affected by reset. When VCC 
is turned on. the RAM content is indeterminate unless 
VPD was applied prior to VCC being turned off (see 
Power Down Operation.) 

17.4 RUPITM_44 FAMILY PIN DESCRIPTION 

VSS: Circuit ground potential. 

VCC: Supply voltage during programming (of the 
8744), verification (of the 8044 or 8744), and normal 
operation. 

Port 0: Port 0 is an 8-bit open drain bidirectional I/O 
port. It is also the multiplexed low-order address and 
data bus during accesses to external memory (during 
which accesses it activates internal puIlups). It also out
puts instruction bytes during program verification. 
(External pullups are required during program verifica
tion.) Port 0 can sink eight LS TTL inputs. 

Port 1: Port I is an 8-bit bidirectional I/O port with in
ternal pullups. It receives the low-order address byte 
during program verification in the 8044 or 8744. Port 1 
can sink/source four LS TTL inputs. It can drive MOS 
inputs without external pUllups. 

Two of the Port 1 pins serve alternate functions, as listed 
below: 

Port Pin· Alternate Function 

P!.6 RTS (Request to Send). In a non-Ioopconfig
uration, RTS signals that the 8044 is ready to 
transmit data. . 



P1.7 CTS (Clear to Send). In a non-loop config
uration, CTS signals to the 8044 that the re
ceiving station is ready to accept data. 

Port 2: Port 2 is an 8-bit bidirectional I/O port with in
ternal pullups. It emits the high-order address byte dur
ing accesses to external memory. It also receives the 
high-order address bits and control signals during pro
gram verification in the 8044 or 8744. Port 2 can sink/ 
source four LS TTL inputs. It can drive MOS inputs 
without external pullups. 

Port 3: Port 3 is an 8-bit bidirectional I/O port with in
ternal pullups. Port 3 can sink/source four LS TTL in
puts. It can drive MOS inputs without external pullups. 

Port 3 pins also serve alternate functions, as listed 
below: 

Port Pin 

P3.0 

P3.1 

P3.2 

P3.3 

P3.4 

P3.5 

P3.6 

Alternate Function 

RXD (serial input port in loop configura
tion). I/O (d~ta direction control in non
loop configuration). 

TXD (serial output port in loop config
uration). DATA input/output pin in non
loop configuration. 

INTO (external interrupt) 

IN;rl (external interrupt) 

TO (Timer 0 external input) 

Tl (Timer 1 external input) SCLK (Se-
rial J.?ata Clock Input) . 

WR (external Data Memory write strobe) 

P3.7 RD (external Data Memory read strobe) 

RST /VPD: A high level on this pin for two machine cy
cles while the oscillator is running resets the device. An 

17-9 

internal pulldown permits Power-On reset using only a 
capacitor connected to VCC. 

ALE/PROG: Address Latch Enable output for latching 
the low byte of the address during accesses to external 
memory. ALE is activated though for this purpose at a 
constant rate of 1/6 the oscillator frequency even when 
external memory is not being accessed. Consequently it 
can be used for external clocking or timing purposes. 
(However, one ALE pulse is skipped during each access 
to external Data Memory.) This pin is also the program 
pulse input (PROG) during EPROM programming. 

PSEN: Program Store Enable output is the read strobe 
to external Program Memory. PSEN is activated twice 
each machine cycle during fetches from external Pro
gram Memory. (However, when executing out of exter
nal Program Memory two activations of PSEN are 
skipped during each access to external Data Memory.) 
PSEN is not activated during fetches from internal Pro
gram Memory. 

EA/VPP: When EA is held high the CPU executes out 
of internal Program Memory (unless the Program 
Counter exceeds (OFFFH). When EA is held low the 
CPU executes only out of external Program Memory. In 
the 8344, EA must be externally wired low. In the 8744, 
this pin also receives the 21 V programming supply volt
age (VPP) during EPROM programming. 

XTAL 1: Input to the inverting amplifier that forms the 
oscillator. Should be grounded when an external oscilla
tor is used. 

XTAL2: Output of the inverting amplifier that forms the 
oscillator, and input to the internal clock generator. Re
ceives the external oscillator signal when an external os-
cillator is used. . 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



8044 Serial Interface 18 





CHAPTER 18 
THE 8044 SERIAL INTERFACE UNIT 

18.0 SERIAL INTERFACE 

The serial interface provides a high-performance com
munication link. The protocol used for this communica
tion is based on the IBM Synchronous Data Link 
Control (SDLC). The serial interface also supports a 
subset of the ISO HDLC (International Standards Or
ganization High-Level Data Link Control) protocol. 

The SDLC/HDLC protocols have been accepted as 
standard protocols for many high-level teleprocessing 
systems. The serial interface performs many of the func
tions required to service the data link without interven
tion from the 8044's own CPU. The programmer is free 
to concentrate on the 8044's function as a peripheral 
controller, rather than having to deal with the details of 
the communication process. 

Five pins on the 8044 are involved with the serial inter
face (refer to Section 12.4, Family Pin Description, for 
details): 

Pin 7 

Pin 8 

Pin 10 

Pin II 

Pin 15 

RTS/PI6 

CTS/PI7 

I/O/RXD/P30 

DATA/TXD/P31 

SCLK/Tl/P35 

Figure 18-1 is a functional block diagram of the serial 
interface unit (SIU). More details on the SIU hardware 
are given in Section 18.9. 

18.1 DATA LINK CONFIGURATIONS 

The'serial interface is capable of operating in three se
rial data link configurations: 

I) Half-Duplex, point-to-point 

2) Half-Duplex, multipoint (with a half-duplex or full-
duplex primary) 

3) Loop 

Figure 18-2 shows these three configurations. The RTS 
(Request to Send) and CTS (Clear to Send) hand
shaking signals are available in the point-to-point and 
multipoint configurations. 

18.2 DATA CLOCKING OPTIONS 

The serial interface can operate in an externally clocked 
mode or in a self clocked mode. 

18-1 

Externally Clocked Mode 

In the externally clocked mode, a common Serial Data 
Clock (SCLK on pin 15) synchronizes the serial bit 
stream. This clock signal may come from the master 
CPU or primary station, or from an external phase
locked loop local to the 8044. Figure 18-3 illustrates the 
timing relationships for the serial interface signals when 
the externally clocked mode is used in point-to-point 
and multipoint data link configurations. 

Incoming data is sampled at the rising edge of SCLK, 
and outgoing data is shifted out at the falling edge of 
SCLK. More detailed timing information is given in the 
8044 data sheet. 

Self Clocked (Asynchronous) Mode 
The self clocked mode allows data transfer without a 
common system data clock. Using an on-chip DPLL 
(digital phase locked loop) the serial interface recovers 
the data clock from the data stream itself. The DPLL re
quires a reference clock equal to either 16 times or 32 
times the data rate. This reference clock may be exter
nally supplied or internally generated. When the serial 
interface generates this clock internally, it uses either 
the 8044's internal logic clock (half the crystal fre
quency's PH2) or the "timer 1" overflow. Figure 18-4 
shows the serial interface signal timing relationships for 
the loop configuration, when the unclocked mode is 
used. 
The DPLL monitors the received data in order to derive 
a data clock that is centered on the received bits. Center
ing is achieved by detecting all transitions of the re
ceived data, and then adjusting the clock transition (in 
increments of 1/16 bit period) toward the center of the 
received bit. The DPLL converges to the nominal bit 
center within eight bit transitions, worst case. 

To aid in the phase locked loop capture process, the 8044 
has a NRZI (non-return-to-zero inverted) data encod
ing and decoding option. NRZI coding specifies that a 
signal does not change state for a transmitted binary I, 
but does change state for a binary O. Using the NRZI 
coding with zero-bit insertion, it can be guaranteed that 
an active signal line undergoes a transition at least every 
six bit times. 

18.3 DATA RATES 
The maximum data rate in the externally clocked mode 
is 2.4M bits per second (bps) a half-duplex configura
tion, and I.OM in a loop configuration. 

January 1985 



!! 
CO 
c: 
iii 

~ .... 
cp .... 
en 

% C 
01 
0' 
() 
~7': 

0 
iii" 

CO 
iil 
3 

RXD 

TXD 

SYNCHRONIZED • DIGITAL 
PHASE 
LOCK 
LOOP 

, BIT PROCESSOR 

I 
I 
I 
I 
I
I 
I 
I 
I 
I 
I 

CONTROL 

BYTE PROCESSOR 

INTERNAL 
TWO 

':i':1' 

StU 
HARDWARE 
REGISTER 
(2 PORT) 

,. \~.------------------------------------------------~ 

:D 
C 
"'CJ 
"l 
J. 
'" 



MASTER! 
PRIMARY 

1) HALF-DUPLEX, POINT-TO-POINT 

MASTER! 
PRIMARY 

2) HALF-DUPLEX, MULTIPOINT 

8044 
CONTROLLED 
SECONDARY 

3) LOOP 

~ 
8044 

CONTROLLED 
SECONDARY 

MASTER! 
PRIMARY 

8044 
CONTROLLED 
SECONDARY 

8044 
CONTROLLED 
SECONDARY 

-
J 

8044 
CONTROLLED 
SECONDARY 

8044 
CONTROLLED 
SECONDARY 

Figure 18-2 . RUPI-44 Data Link Configurations 

18-3 



RtJ PI "'...;44 

In the self clocKed mode with an external reference 
clock, the maxiinum data rate is 375K bps. 

In the self clocked mode with an internally generated 
reference clock, and the 8044 operating with a 12 MHz 
crystal, the available data rates are 244 bps. to 62.5k bps, 
187.5K bps and 375K ~ps. 

For more details see the table in the SMO register de
scription, below. 

18.4 OPERATIONAL MODES 

The Serial Interface Unit (SIU) can operate in either of 
two response modes: 

I) AUTO mode 

2) FLEXIBLE (NON-AUTO) mode 

In the AUTO mode, the SIU performs in hardware a 
subset of the SOLC protocol caIled the normal response 
mode. The AUTO mode enables the SIU to recognize 
and respond to certain kinds of SOLC frames without 
intervention from the 8044's CPU. AUTO mode pro
vides a faster turnaround time and a simplified software 
interface, whereas NON-AUTO mode provides a great- . 
er flexibility with regard to the kinds of operation 
permitted. 

In AUTO mode, the 8044 can act only as a normal re
sponse mode secondary station-that is, it can transmit 
only when instructed to do so by the primary station. AlI 
such AUTO mode responses adhere strictly to IBM's 
SOLC definitions. 

In the FLEX1BLE mode, reception or transmission of 
each frame by the SIU is performed under the control 
of the CPU. In this mode the 8044 can be either a 
primary station or a secondary station. 

In both AUTO and FLEXIBLE modes, short frames, 
aborted frames, or frames which have had CRe's are 
ignored by the SIU. 

The basic format of an SOLC frame is as follows: 

I Flag I Address I Control I Information I FCS I Flag I 
Format variations consist of omitting one or more of the 
fields in the 'SOLC frame. For example, a supervisory 
frame is formed by omitting the information field. Su
pervisory frames are used to confirm received frames, 
indicate ready or busy conditions, and to report errors. 
More details ort frame formats are given in the SOLC 
Frame Format Options section, below. 

18.4.1 AUTO Mode 

To enable the SIU to receive a: frame in AUTO mode, 
the 8044 CPU sets up a receive buffer .. This is done by 

18-4 

writing two registers-Receive Buffer Start (RBS) Ad
dress and Receive Buffer Length (RBL). 

The SIU receives the frame, examines the control byte, 
and takes the appropriate action. If the frame is an in
formation frame, the SIU will load the receive buffer, 
interrupt the CPU (to have the receive buffer read), and 
make the required acknowledgement to the primary sta
tion. Oetails on these processes are given in the Oper
ation section, below. 

In addition to receiving the information frames, the SIU 
in AUTO mode is capable of responding to the following 
commands (found in the control field of supervisory 
frames) from the primary station: 

RR (Receive Ready): Acknowledges that the Pri
mary station has correctly received numbered 
frames up through N R -I, and that it is ready to re
ceiveframe NR. 

. RNR (Receive Not Ready): Indicates a temporary 
busy condition (at the primary station) due to buf
fering or other internal constraints. The quantity NR 
in the control field indicates the number of the frame 
expected after the busy condition ends, and may be 
used to acknowledge the correct reception of the 
frames up through NR-1. 

REJ (Reject): Acknowledges the correct reception 
of frames up through N R -I, and requests transmis
sion or retransmission starting at frame NR• The 
8044 is capable of retransmitting at most the pre
vious frame, and then only if it is still available in the 
transmit buffer. 

UP (Unnumbered PoIl): Also caIled NSP (Non
Sequenced PoIl) or ORP (Optional Response PoIl). 
This command is used in the loop configuration. 

To enable the SIU to transmit an information frame in 
AUTO mode, the CPU sets up a transmit buffer. This is 
done by writing two registers-Transmit Buffer Start 
(TBS) Address and Transmit Buffer Length (TBL), 
and filling the transmit buffer with the information to 
be trans~itted. 

When the transmit buffer is fuIl, the SIU can automat i
caIly (without CPU intervention) send an information 
frame (I-frame) with the appropriate sequence num-. 
bers, when the data link becomes available (when the 
8044 is poIled for information). After the SIU has trans
mitted the I-frame, it waits for acknowledgement from 
the receiving station. If the acknowledgement is nega
tive, the SIU retransmits the frame. If the acknowledge
ment is positive, the SIU interrupts the CPU, to indicate 
that the transmit buffer may be reloaded with new 
information. 



DATA 

I/O 

RTS 

CTS 

RUPI'l'-44 

RTS 

TRANSCEIVER/BUFFER 
CTS 

I/O 

• C> DATA - <J 
SCLK 

XMITDTA _____ --J 

7 

8 

10 

11 

15 

'-./ 

80« 

-

RECEive DATA RECEIVE 

'-----'~ 
TRANSMIT 
ABORTEDSY 
CtS-1 

FIgure 18·3. Seriallnterfape Timing-Clocked Mode 

18-5 



." 
cO' 
s::: 
Cil ... 
~ .... 
en 
CD ... 
it 
5' 
iD 
:<1 
I» 
(') 

-"' CD 
()) -f m 3' 

s' 
IC 
I en 
!: 
0 
0' 
(') 
7t:' 
CD 

[,,' DATA X GA X 
0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

0. 

3: 
&. 
CD 

[,m DATA (BIT-DELAYED) GA CHANGED TO FLAG 

0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 

EXTRA "1" 
INSERTED 

RXD 
10 

TXD 
11 

16X/32X 
15 

ONE'S X 
1 1 1 1 1 1 1 1 1 0 0 

TRANSMIT FRAME 

1 1 1 0 A 0 0 R E S S 

8044 

SHUT·OFF SEa X 
0 o 0 0 0 0 1 1 1 

CON T R 0 L 1 1 

DATA 

1 1 1 

DATA (BIT-DELAYED) 

1 1 1 1 

TRANSMISSION 
ABORTED BY 
SHUT·OFF 
SeQUENCE 

:xl 
c: 
'U 
"'i 
I 

"" .... 



In addition to transmitting the information frames, the 
SIU in AUTO mode is capable of sending the following 
responses to the primary station: 

RR (Receive Ready): Acknowledges that the 8044 
has correctly received numbered frames up through 
NR -I, and that it is ready to receive frame NR. 

RNR (Receive Not Ready): Indicates a temporary 
busy condition (at the 8044) due to buffering or oth
er internal constraints. The quantity N R in the con
trol field indicates the number of the frame expected 
after the busy condition ends, and acknowledges the 
correct reception of the frames up through N R - I. 

18.4.2 FLEXIBLE Mode 

In the FLEXIBLE (or non-auto) mode, all reception 
and transmission is under the control of the CPU. The 
full SOLC and HOLC protocols can be implemented, as 
well as any bit-synchronous variants of these protocols. 

FLEXIBLE mode provides more flexibility than AUTO 
mode, but it requires more CPU overhead, and much 
longer recognition and response times. This is especially 
true when the CPU is servicing an interrupt that has 
higher priority than the interrupts from the SIU. 

In FLEXIBLE mode, when the SIU receives a frame, 
it interrupts the CPU. The CPU then reads the control 
byte from the Receive Control Byte (ReB) register. If 
the received frame is an information frame, the CPU 
also reads the information from the receive buffer, ac
cording to the values in the Receive Buffer Start (RBS) 
address register and the Received Field Length (RFL) 
register. 

In FLEXIBLE mode, the 8044 can initiate transmissions 
without being polled, and thus it can act as the primary 
station. To initiate transmission or to generate a 
response, the CPU sets up and enables the SIU. The SIU 
then formats and transmits the desired frame. Upon 
completion of the transmission, without waiting for a 
positive acknowledgement from theTeceiving station, 
the SIU interrupts the CPU. 

18.5 8044 FRAME FORMAT OPTIONS 

As mentioned above, variations on the basic SOLC 
frame consist of omitting one or more of the fields. The 
choice of which fields to omit, as well as the selection 
of AUTO mode versus FLEXIBLE mode, is specified 
by the settings of the followiIlg three bits in the Serial 
Mode Register (SMO) and the Status/Control Register 
(STS): 

SMO Bit 0: NFCS (No Frame Check Sequence) 

18-7 

SMD Bit I: NB (Non-Buffered Mode-No Control 
Field) 

STS Bit I: AM (AUTO Mode or Addressed Mode) 

Figure 18-5 shows how these three bits control the frame 
format. 

The following paragraphs discuss some properties of the 
standard SOLC format, and the significance of omitting 
some of the fields. 

18.5.1 Standard SOLC Format 

The standard SOLC format consists of an opening flag, 
an 8-bit address field, and 8-bit control field, an n-byte 
information field, a 16-bit Frame Check Sequence 
(FCS), and a closing flag. The FCS is based on the 
CCITT-CRC polynominal (X 16 + X l2 + X5 + I). The 
address and control fields may not be extended. Within 
the 8044, the address field is held in the Station Address 
(STAD) register, and the control field is held in the Re
ceive Control Byte (RCB) or Transmit Control Byte 
(TCB) register. The standard SOLC format may be 
used in either AUTO mode or FLEXIBLE mode. 

18.5.2 No Control Field (Non-Buffered Mode) 

When the control field is not present, the RCB and TCB 
registers are not used. The information field begins im
mediately after the address field, or, if the address field 
is also absent, immecliately after the opening flag. The 
entire information field is stored in the 8044's on-chip 
RAM. If there is no control field, FLEXIBLE mode 
must be used. Control information may, of course, be 
present in the information field, and in this manner 
the No Control Field option may be used for imple
menting extended control fields. 

18.5.3 No Control Field and No Address Field 

The No Address Field option is available only in con
junction with the No Control Field option. The STAO, 
RCB, and TCB registers are not used. When both these 
fields are absent, the information field begins immedi
ately after the opening flag. The entire information field 
is stored in on-chip RAM. FLEXIBLE mode must be 
used. Formats without an address field have the follow
ing applications: 

Point-to-point data links (where no addressing is 
necessary) 

Monitoring line activity'(receiving all messages re
gardJess of the address field) 

Extended addressing 



RUPI"""';44 

FRAME OPTION 

Standard SOLC 
FLEXIBLE Mode 

Standard SOLC 
AUTO Mode 

No Control Field 
FLEXIBLE Mode 

No Control Field 
No Address Field 
FLEXIBLE Mode 

No FCS Field 
FLEXIBLE Mode 

No FCS Field 
AUTO Mode 

No FCS Field 
No Control Field 
FLEXIBLE Mode 

No FCS Field 
No Control Field 
No Address Field 
FLEXIBLE Mode 

Key to Abbreviations: 

F = Flag (01111110) 
A = Address Field 
C = Control Field 

NFCS 

0 

0 

0 

0 

NB AM FRAME FORMAT 

0 o F A I C I FCS I F 

0 F A C I FCS I F 

F A I FCS I F 

o F I FCS I F 

0 o F A C F 

0 F A C F 

F A F 

o F F 

I = Information Field 
FCS = Frame Check Sequence 

Note: The AM bit is AUTO mode control bit when NB = 0, and Address Mode control bit when NB = 1. 

Figure 18-5 • Frame Format Options 

18.5.4 No FCS Field 

In the normal case (NFCS=O), the last 16 bits before 
the closing flag are the Frame Check Sequence (FCS) 
field. These bits are not stored in the 8044's RAM. 
Rather, they are used to compute a cyclic redundancy 
check (CRC) on the data in the rest of the frame. A re
ceived frame with a CRC error (incorrect FCS) is ig
nored. In transmission, the FCS field is automatically 
computed by the SIU, and placed in the transmitted 
frame just prior to the closing flag. 

18-8 

The N FCS bit (SMD Bit 0) gives the user the capability 
of overriding this automatic feature. When this bit is set 
(NFCS= I), all bits from the beginning of the informa
tion field to the beginning of the closing flag are treated 
as part of the information field, and are stored in the on
chip RAM. No FCS checking is done on the received 
frames, and no FCS is generated for the transmitted 
frames. The No FCS Field option may be used in con
junction with any ofthe other options. It is typically used 
in FLEXIBLE mode, althought it does not strictly in
clude AUTO mode. Use of the No FCS Field option 



RUPI"'-44 

AUTO Mode may, however, result in SOLC protocol 
violations, since the data integrity is not checked by the 
SIU. 

Formats without an FCS field have the folIowing 
applications: 

Receiving and transmitting frames without verify
ing data integrity 

Using an alternate data verification algorithm 

Using an alternate CRC-16 polynomial (such as X16 , 

+ XIS + X 2 + I), or a 32-bit CRC 

Performing data link diagnosis by forcing false 
CRCs to test error detection mechanisms 

In addition to the applications mentioned above, alI of 
the format variations are useful in the support of non
standard bit-synchronous protocols. 

18.6 HOLC 

In addition to its support of SOLC communications, the 
8044 also supports some of the capabilities of HOLC. 
The folIowing remarks indicate the principal differences 
between SDLC and HDLe. 

HDLC permits any number of bits in the informa
tion field, whereas SDLC requires a byte structure 
(multiple of 8 bits). The 8044 itself operates on byte 
boundaries, and thus it restricts fields to multiples of 
8 bits. 

HDLC provides functional extensions to SDLC: an 
unlimited address field is allowed, and extended 
frame number sequencing. 

HDLC does not support operation in loop 
configurations. 

18.7 SIU SPECIAL FUNCTION REGISTERS 

The 8044 CPU communicates with and controls the SIU 
through hardware registers. These registers are accessed 
using direct addressing. The SIU special function regis
ters (SIU SFRs) are of three types: 

Control and Status Registers 

Parameter Registers 

ICE Support Registers 

18.7.1 Control and Status Registers 

There are three SIU Control and Status Registers: 

Serial Mode Register (SMD) 

Status/Command Register (STS) 

18-9 

Send/Receive Count Register (NSNR) 

The SMD, STS, and NSNR registers are all cl~ared by 
system reset. This assures that the SIU will power up in 
an idle state (neither receiving nor transmitting). 

These registers and their bit assignments are described 
below (see also the More Details on Registers section). 

SMD: Serial Mode Register (byte-addressable) 

Bit: 7 6 5 4 3 2 I 0 

ISCM21sCMIIsCMOINRZIrLOOplpFSINBINFCsi 

The Serial Mode Register (Address C9H) selects the 
operational modes of the SIU. The 8044 CPU can both 
read and write SMD. The SIU can read SMD but can
not write to it. To prevent conflict between CPU and 
SIU access to SMD, the CPU should write SMD only 
when the Request To Send (RTS) and Receive Buffer 
Empty (RBE) bits (in the STS register) are both false 
(0). Normally, SMD is accessed only during 
initialization. 

The individual bits of the Serial Mode Register are as 
follows: 

BitU 

SMD.O 

SMD.I 

SMD.2 

SMD.3 

SMDA 

SMD.5 

SMD.6 

SMD.7 

Name Description 

NFCS No FCS field in theSDLC frame. 

NB Non-Buffered mode. No control 
field in the SDLC frame. 

PFS Pre-Frame 'Syn~ mode. In this 
mode, the 8044 transmits two bytes 
before the first flag of a frame, for 
DPLL synchronization. If NRZI is 
enabled, OOH is sent; otherwise, 
55H is sent. In either case, 16 pre
frame transitions are guaranteed. 

LOOP Loop configuration. 

~RZI NRZI coding option. 

SCMO Select Clock Mode - Bit 0 

SCMI Select Clock Mode - Bit I 

SCM2 Select Clock Mode - Bit 2 

The SCM bits decode as folIows: 

SCM Data Rate 
~.lJ!. Clock Mode (Bits L sec)* 

0 0 0 Externally clocked 0-2AM** 

0 0 Undefined 

0 0 Self clocked, timer overflow 244-62.5K 

0 I Undefined 

0 0 Self clocked, external 16x 0-375K 



SCM Data Rate 
~'!'Jl Clock Mode .(BitsLsec)* 

0 1 Self clocked, external 32x 0-187.SK 

0 Self clocked, internal fixed 37SK 

Selfclocked, internal fixed 187.Sk 

*Based on a 12 Mhz crystal frequency 
* *0-1 M bps in loop configura tion 

STS: Status/Command Register (bit-addressable) 

Bit: 7 6 S 4 3 2 1 0 

ITBFI RBEI RTS lSI IBOV IOPB lAM IRBP I 

The Status/Command Register (Address C8H) pro
vides operational control of the SIU by the 8044 CPU, 
and enables the SIU to post status information for the 
CPU's access. The SIU can read STS, and can alter cer
tain bits, as indicated below .. The CPU can both read 
and write STS. asynchronously. However, 2-cycle in
structions that access STS during both cycles ('JBC/B, 
REL' and 'MOV /B,C.') should not be used, since the 
SIU may write to STS between the two CPU accesses. 

The individual bits of the Status/Command Register 
are as follows: 

Bit # 
STS.O 

STS.I 

STS.2 

STS.3 

Name Description 

RBP Receive Buffer Protect. Inhibits 
writing of data into the receive buff
er. In AUTO mode, RBP forces an 
RNR response instead of an RR. 

AM AUTO Mode/ Addressed Mode. Se-
lects AUTO mode where AUTO 
mode is allowed. If NB is true, 
(= I), the AM bit selects the ad
dressed mode. AM may be cleared 
by the SIU. 

OPB Optional Poll Bit. Determines 
whether the SIU will generate an 
AUTO response to an optional poll 
(UP with P=O). OPB may be set or 
cleared by the SIU. 

BOV Receive Buffer Overrun. BOV may 
be set or cleared by the SIU. 

STSA . SI SIU Interrupt. This is one of the five 
interrupt sources to the CPU. The 
vector location = 23H. SI may be 
set by the SIU. It should be cleared 
by ~he CPU before returning· from 
an interrupt routine. 

STS.S RTS Request To Send. Indicates that the 
8044 is ready to transmit or is trans-

STS.6 

. STS.7 

mitting. RTS may be read or writ
ten by the CPU. RTS may be read 
by the SIU, and in AUTO mode 
may be written by the SIU. 

RBE Receive Buffer Empty. RBE can be 
thought of as Receive Enable. RBE 
iii set to one by the CPU when it is 
ready to receive a frame, or has just 
read the buffer, and to zero by the 
SIU when a frame has been 
received. 

TBF Transmit Buffer FulL Written by 
the CPU to indicate that it has filled 
the transmit buffer. TBF may be 
cleared by the SIU. 

NSNR: Send/Receive Count Register (bit
addressable) 

Bit: '7 6 S 4 3 2 1 0 

INS21NSIINsoisESINR21NRIINROIsERI 

The Send/Receive Count Register (Address D8H) con
tains the transmit and receive sequence numbers, plus 
tally error indications. The SIU can both read and write 
NSNR. The 8044 CPU can both read and write NSNR 
a~ynchronously. However, 2-cycle instructions that ac
cess NSNR during both cycles ('JBC /B, REL', and 
'MOV /B,C') should not be used, since the SIU may 
write to NSNR between the two 8044 CPU accesses. 

The individual bits of the Send/Receive Count Register 
are as follows: . 

Bit # Name Description 

NSNR.O SER Receive Sequence Error: 
NS (P) * NR (S) 

NSNR.I NRO Receive Sequence Counter-Bit 0 

NSNR.2 NRI Receive Sequence Counter~Bit I 
NSNR.3 NR2 Receive Sequence Counter-Bit 2 

NSNR.4 SES Send Sequence Error: 
NR (P) * NS (S) and 
NR (P) * NS (S) + I 

NSNR.S NSO Send Sequence Counter - Bit 0 

NSNR.6 NSI Send Sequenc;:e Counter - Bit I 

NSNR.7 NS2 Send Sequence Counter - Bit 2 

1S.l2 Parameter Registers 

There are eight parameter registers that are used in con
nection with SIU operation. All eight registers may be 
read or written by the 8044 CPU. RFL and RCB are 
normally loaded by the SIU. 

18-10 



The eight parameter registers are as follows: 

STAD: Station Address Register 
(byte-addressable) 

The Station Address regisJer (Address CEH) contains 
the station address. To prevent access conflict, the CPU 
should access STAD only when theSIU is idle (RTS=O 
and RBE=O). Normally, STAD is accessed only during 
initialization. 

TBS: Transmit Buffer Start Address Register 
(byte-addressable) 

The Transmit Buffer Start address register (Address 
DCH) points to the location in on-chip RAM for the be
ginning of the I-field of the frame to be transmitted. The 
CPU should access TBS only when the SIU is not trans
mitting a frame (when TBF=O). 

TBl: Transmit Buffer length Register 
(byte-addressable) 

The Transmit Buffer Length register (Address DBH) 
contains the length (in bytes) of the I-field to be trans
mitted. A blank I-field (TBL=tJ) is valid. The CPU 
should access TBL only when the SIU is not transmit
ting a frame (when TBF=O). 

NOTE: The transmit and recieve buffers are not allowed 
to "wrap around" in the on-chip RAM. A "buffer end" 
is automatically generated if address 191 (BFH) is 
reached. 

TCB: Transmit Control Byte Register 
(byte-addressable) 

The Transmit Control Byte register (Address DAH) 
contains the byte which is to be placed in the control 
field of the transmitted frame, during NON-AUTO 
mode transmission. The CPU should access TCB only 
when the SIU is not transmitting a frame (when 
TBF=O). The Ns and NR counters are not used in the 
NON-AUTO mode. 

RBS: Receive Buffer Start Address Register 
(byte-addressable) 

The Receive Buffer Start address register (Address 
CCH) points to the location in on-chip RAM where the 
beginning of the I-field of the frame being received is to / 

. be stored. The CPU should write RBS only when the 
SIU is not receiving a frame (when RBE=O). 

RBl: Receive Buffer length Register 
(byte-addressable) 

The Receive' Buffer Length register (Address CBH) 
contains the length (in bytes) of the area in on-chip 

18-11 

RAM allocated for the received I-field. RBL=O is val
id. The CPU should write RBL only when RBE=O. 

RFl: Receive Field length Register 
(byte-addressable) 

The Received Field Length register (Address CDH) 
contains the length (in bytes) of the received I -field that 
has just been loaded into on-chip RAM. RFL is loaded 
by the SIU. RFL=O is valid. RFL should be accesssed 
by the CPU only when RBE=O. 

RCB: Receive Control Byte Register 
(byte-addressable) 

The Received Control Byte register (Address CAH) 
contains the control field of the frame that has just been 
received. RCB is loaded by the SIU. The CPU can only 
read RCB, and should only access RCB when RBE=O. 

18.7.3 ICE Support Registers 

The 8044 In-Circuit Emulator (ICE-44) allows the user 
to exercise the 8044 application system and monitor the 
execution of instructions in real time. 

The emulator operates with Intel's Intellec@ develop
ment system. The development system interfaces with 
the user's 8044 system through an in-cable buffer box. 
The cable terminates in a 8044 pin-compatible plug, 
which fits into the 8044 socket in the user's system. With 
the emulator plug in place, the user C(ln excercise his sys
tem in real time while collecting up to 2:i5 instruction 
cycles of real-time data, In addition, he din single-step 
the program. 

Static RAM is available (in the in-cable buffer box) to 
emulate the 8044 internal and external program mem
ory and external data memory. The designer can display 
and alter the contents of the replacement memory in the 
buffer box, the internal data memory, and the internal 
8044 registers, including the SFRs. 

Among the SIU SFRs are the following registers that 
support the operation of the ICE: 

DMA CNT: DMA Count Register 
(byte-addressable) 

The DMA Count register (Address CFH) indicates the 
number of bytes remaining in the information block that 
is currently being used. 

FIFO: Three-Byte (byte-addressable) 

The Three-Byte FIFO (Address DDH, DEH, and 
DFH) is used between the eight-bit shift register and the 
information buffer when an information block is 
received. 



RUPPM-44 

SIUST: SIU State Counter (byte-addressable) 

The SIO State Counter (Address D9H) reflects the 
state of the internal logic which is under SIU control. 
Therefore, care must be taken not to write. into this 
register. 

The SIUST register can serve as,a helpful aid to deter
mine which field of a receive frame that the SIU expects 
next. The table below will help in debugging 8044 recep-
tion problems. . 

SIUST 
VALUE FUNCTION 

01 H Waiting for opening flag. 

08H Waiting for address field. 

10H Waiting for control field. 

18H Waiting for first byte of I field. This state is 
only entered if a FCS is expected. It pushes 
the received byte onto the top of the FIFO. 

20H Waiting for second byte of I field. This state 
always follows state 18H 

28H Waiting for I field byte. This sate can be en-

tered from state 20H or from states OIH, 
Q8H, or 10H depending up<,m the sm's mode 
configuration. (Each time a byte is received, 
it is pushed onto the top of the FIFO and the 
byte at the.bottom is put into memory. For no 
FCS formatted frames, the FIFO is collapsed 
into a single register). 

30H Waiting for the closing flag after having 
overflowed the receive buffer. Note that even 
if the receive frame overflows the assigned re
ceive buffer length, the FCS is still checked. 

Examples of SIUST status sequences for different 
frame formats are shown below. Note that status 
changes after acceptance of the received field byte. 

18.8 OPERATION 

The SIU is initialized by a reset sig~al (on pin 9), fol
lowed by write operations to the SIU SFRs. Once initial
ized, the SIU can function in AUTO mode or NON
AUTO mode. Details are given below. 

Table 18-1. SIUST StatL.'; Sequences 

Exa:mple I: 

Frame Format 

SIUSTValue 

Example 2: 

Frame Format 

SIUSTValue 

Example 3: 

Frame Format 

SIUST Value 

Example 4: 

Frame Format 

SIUST Value 

Example 5: 

Frame Format 

SIUST Value 

Example 6: 

Frame Format 

SIUST Value 

I (I~:e) I 

I (I~:e) I 

1(I~:e)1 

I (I~:e) I 

F A C 

01 08 10 

F 

I 
A 

01 08 18 

F 

01 18 20 

F I 

01 28 

18 i 20 I 28 
I F~S I 

I F~S I F 

I 20 I 28 01 

I F~S I F 

28 01 

F 

01 

I OVERFLOW 

30 

18-12 

F 

01 

Frame Option 

NFCS NB AM 

o o 

o 

o o 

o 

o o 



18.8.1 Initialization 

Figure 18-6 is the SIU. Registers SMO, STS, and NSNR 
are cleared by reset. This puts the 8044 into an idle 
state-neither receiving nor transmitting. The follow
ing registers must be initialized before the 8044 leaves 
the idle state: 

STAO-to establish the 8044's SOLC station 
,address. 

SMD-to configure the 8044 for the proper operat-
ing mode. ' 

RBS,' RBL-to define the area in RAM allocated 
for the Receive Buffer. 

END-OF-
FRAME 

FLEXIBLE 
MODE 

END-DF-FRAME 
AUTO MODE 

STRTREC 

TBS, TBL-to define the area in RAM allocated for 
the Transmit B1,lffer. 

Once these registers have been initialized, the user may 
write to the STS register to enable the SIU to leave the 
idle state, and to begin transmits and/or receives. 

Setting RBE to 1 enables the SIU for receive. When 
RBE = 1, the SIU monitors the received data stream 
for a flag pattern. When a flag pattern is found, the SIU 
enters Receive mode and receives the frame. 

Setting RTS to 1 enables the SIU for transmit. When 
RTS = I, the SIU,monitors the received data stream for 
a GA pattern (loop configuration) or waits for aCTS 

END-OF
FRAME 

STRTXMIT 

END-OF
FRAME 

STRT REC ~ RBE. FLAG 

AUTO 
MODE 

FLEXIBLE 
MODE 

STRT XMIT ~ RTS. (CTS. LOOP + GA. LOOP) 
WAIT ~ NOT (STRT REC + STRT XMrr) 

Figure 18-6. SIU State Diagram 

18-13 



RU PI "'-44 

(non-loop configuration). When the GA or CTS arrives, 
the SIU enters Transmit mode and transmits a frame. 

In AUTO mode, the SIU sets RTS to enable automatic 
transmissions of appropriate responses. 

18.8.2 AUTO Mode 

Figure 18-7 illustrates the receive operations in AUTO 
mode. The overall operation is shown in Figure 18-7a. 
Particular cases are illustrated in Figures 18-7b through 
18-7j . If any Unnumbered Command other than UP 
is received, the AM bit is Cleared and the SIU responds 
as if in the FLEXIBLE mode, by interrupting the CPU 
for supervision. This will also happen if a BOV or SES 
condition occurs. If the received frame contains a poll, 
the SIU sets the RTS bit to generate a response. 

Figure 18-8 illustrates the transmit operations in AUTO 
mode. When the SIU gets the opportunity to transmit, 
and if the transmit buffer is full, it sends an I-frame. 
.otherwise, it sends an RR if the buffer is free, or an 
RNR if the buffer is protected. The sequence counters 
NS and NR are used to construct the appropriate con
trol fields. 

Figure 18-9 shows how the CPU ,responds to an SI (serial 
interrupt) in AUTO mode. The CPU tests the AM bit 
(in the STS register). If AM = I, it indicates that the 
SIU has received either an I-frame, or a positive 
response to a previously transmitted I-frame. 

18.8.3 FLEXIBLE Mode 
Figure 18-10 illustrates the receive operations in NON
AUTO mode. When theSIU successfully completes a 
task, it clears RBF and interrupts the CPU by setting 
SI to I. The exact CPU response to SI is determined 
by software. A typical response is shown in Figure IS-II. 

Figure 18-12 illustrates the transmit operations in 
FLEXIBLE mode. The SIU does not wait for a positive 
acknowledge response to the transmitted frame. Rather, 
it interrupts the CPU (by setting SI to 1) as soon as it 
finishes transmitting the frame. The exact CPU response 
to SI is determined by software. A typical response is 
shown in Figure 18-13. This response results in another 
transmit frame being set up. The sequence of opera
tions shown in Figure 18-13 can also be initiated by the 
CPU, without an Sl. Thus the CPU can initiate a 
transmission in FLEXIBLE mode without a poll, simply 
by setting the RTS bit in the STS register. The RTS bit 
is always used to initiate a transmission, but it is ap
plied to theRTS pin only when a non-loop configura
tion is used. 

18.8.4 8044 Data Link Particulars 

The following facts should be noted: 
, , , ' , , 

I) In a non-loop configuration, one or two bits are 
transmitted before the openi.ng flag. This is neces
sary for NRZI synchronization. 

2) In a non-loop configuration, one to eight extra drib
ble bits are transmitted after the clostng flag. These 
bits are a zero followed by ones. 

3) In a loop configuration, when a GA is received and 
the 8044 begins transmitting, the sequence is 
01111110101111l10 ... (FLAG, I, FLAG, AD
DRESS, etc.). The first flag is created from the GA. 
The second flag begins the message. 

4) CTS is sampled after the rising edge of the serial 
data, at about the center of the bit cell, except during 
a non-loop, externally clocked mode transmit, in 
which case it is sampled just after the falling edge. 

5) The SIU does not check for illegal I-fields. In par
ticular, if a supervisory command is received in 
AUTO mode, and if there is also an I-field, it will be 
loaded into the receive buffer (if RBP=O), but it 
cannot cause a BOV. 

6). In relation to the Receive Buffer Protect facility, the 
user should set RFL to 0 when clearing RBP, such 
that, if the SIU is in the process of receiving a frame, 

. RFL will indicate the proper value when reception of 
the frame has been completed. 

18.8.5 Turn Around Timing 

In AUTO mode, the SIU generates an RTS immediate
ly upon being polled. Assuming that the 8044 sends an 
information frame in response to the poll, the primary 
station sends back an acknowledgement. If, in this ac
knowledgement, the 8044 is polled again, a response 
may be generated even before the CPU'gets around to 
processing the interrupt caused by the acknowledge. In 
such a case, the response would be an RR (or RNR)", 
since TBF would have been set to 0 by the SIU, due to 
the acknowledge. 

If the system designer does not wish to take up channel 
time with RR responses, but prefers to generate a new 1-
frame as a response, there are several ways to accom
plish this: 

I) Operate the 8044 in FLEXIBLE mode. 

2) Specify that the master should never acknowledge 
and poll in one message. This is typically how a loop 
system operates, with the poll operation confined to 
the UP. c?l.I1mand. This leaves plenty of time for the 

18-14 



ABORT, SHORT FRAME, 
OR INVALID 
I FRAME 

NO 

YES 

BAD 

CTRL FIELD • RCB 

I FIELD • AFC BUF 

See Figures 18-1c Ihru 18-11 

Figure 18-7a. SIU AUTO Mode Rec~ive Flowchart-General 

18-15 



"BOV"+-0 

"AMI! -4-0 
"51" +-1 
"RBE"+-0 
"SES"+-0 
"SER"+-0 

Figure 18-7b. SIU AUTO Mode Receive Flowchart-Unknown Command 

18-16 



RUPI"'-44 

Figure 18-7c. SIU AUTO Mode Receive Flc;>wchart-Unnumbered Poll 

18-17 



"AM" .-0 
"SI" 4-1 
·'RBE" .... O 
"SER"..,.O 
"SES" ... 1 

NO 

RUPI~-44 

"SI" 4--1 
"NS" = NS + 1 
.. SES" .... O 
.. SER" .... O 
"TBF""'O 

Figure 18-7d. SIU AUTO Mode Receive Flowchart-Supervisory Command 

18-18 



RUPI"'-44 

BAD 

I COMMAND 
NR(P) = NS(S) + 1 
NS(P) = NR(S) 
"AM" ~ 1, "NS" = 8 

"ABE" ..... ", 
"TBF" ..... \II 
Ns~Ns+1 
"SES"'" e 
"SER" .... \II 
"51" .... 1 

Figlclr.e 18-7e. SIU AUTO Mode Receive Flowchart...,.1 Command: Prior Transmitted I-Field Confirmed, 
Current Received I-Field in Sequence 

18-19 



BAD 

I COMMAND 
NoIP' ~ Ns(S, 
NsIP' - NoIS, 

"AM" = 1, "Na" = • 

"RBE"..-(t 
"SES" ... . 
"SER" ... . 
"SI" ... 1 

Figure 18-7f. SIU AUTO Mode Receive Flowchart":"l Command: Prior Transmitted I·Field Not 
Confirmed, Current Received I·Field'Jn Sequence 

18-20 



BAD 

I.cOMMAND 
NA(P) *" NS(S) + 1 

NA(P) *- NS(S) 
NS(P) ~ NR(S) 

"AM" = 1, "NB" = 0 

"AM" ... , 
.. SES" ...... 1 
"SER ........ O 
·'RSE" .... O 
"SI" .... 1 

Figure 18-1g. $IU AUTO Mode Receive Flowchli/Ft-I Command: Sequence Error Send, Current 
Received I-Field in Sequence 

18-21 



RUP1 1loI;'44 

~AD 

I COMMAND 
NR(P) ~ Ns(S) + 1 
NS(P) ¢ NA(S) 

"AM" = 1 "Na" = 0 

"TBF" ..... " 
Ns=Ns+1 
"SES" ... , 
"SER"-..1 
"SI" ..... 1 

Figure 18-7h. SIU A,UTO Mode Receive Flowchart-I Command: Prior Transmitted I-Field Confirmed 
Sequence Error Receive 

18-22 



BAD 

"AM" .... , 
"RBE" ... , 
"51" ... 1 

I COMMAND 
NA(P) = NS(S) 

~::), :: ~~(S) "NB" = 0 

"BOV" .... 1 
"AM" .... , 
"RBE"., 

51 .... 1 

Figure 18-7i. SIU AUTO Mode Receive Flowchart-I Command: Prior Transmitted I·Field Not 
Confirmed, Sequence Error Receive " 

18-23 



BAD 

,I COMMAND 
NR(P) ~ NS(S) + 1 

~~l~l :: ~=l~l 
"AM" = 1, "NB" = 0 

"AM" ....... 
"RBE"", 
"SES" ..... 1 
"SER".-1 
"SI" .... 1 

Figure 18-7j. SIU SU10 Mode Receive Flowchart-I Command: Sequence Error Send and Sequence 
Error Receive 

18-24 



X MIT 
I 

FRAME 

-0 

YES 

RUPI"'-44 

X MIT 
RR 

FRAME 

Figure 18-8. SIU AUTO Mode Transmit Flowchart 

18-25 

X MIT 
RNR 

FRAME 



PROCESS 
INFORMATION 

OR 
SET "RBP" 

LOAD I·FIELD 
INTO 

XMITBUFFER 

Figure 18-9. AUtO Mode Response to "SI" 

18-26 



ABORT, 
SHORT FRAME 

OR INVALID I 

BAD 

NO 

YES 

RECEIVE MESSAGE 
CTAL FIELD ~RCB. 

-----1 
1 

1 

,I 
I 
1 RBE 0 

I FIELD -.REC BUF, 
seT BOV ON OVERRUN 

- - - i (ABORT FROM CPU) 

TEST 
cRe 

Figure 18-10. SIU FLEXIBLE Mode Receive Flowchart 

18-27 



RU PI 1' ... 44 

Figure 18-11. FLEXIBLE Mode Response to Recei.ve "SI" 



r - - - -;-BF--=-'- --

, I (ABORT FROM CPU) 

I 

* 

TRANSMIT MESSAGE 
USING TCB FOR 
CONTROL FIELD 

~UT-OFF • LOOP) + 
CTS·LOOP 
[ABORT FROM PRIMARY] ----, 

I 
I 
I 
I 
I 

CLEAR "TBF" 

'}..:..~!.,.1 -~----::::::::::;:J:;:'-=-::::: ______ J 

TRANSMIT 
ABORT 

SEQUENCE 

CLEAR "RTS" 
SET "SI" 

Figure 18-1/!. SIU ,FLIiXIBLE Mode Transmit Flowchart 

18-29 



RUPI""-44 

BUFEMPTY 

CTRL FIELO .... TCB 
l-fIELD ... XMIT aUF 

SET "TBF" 
SET "RTS" 

XMIT 
== 1, PENDING 

BUFFULL 

Figure 18-13. FLEXIBLE Mode Response to Transmit "sr' 



8044 to get its transmit buffedoaded with new infor
mation after an acknowledge. 

.3) The 8044 CPU can clear R TS. This will prevent a re
sponse from being sent, or abort it if it is already in 
progress. A system using external RTS/CTS hand
shaking could use a one-shot to delay RTS or CTS, 
thereby giving the CPU more time to disable the 
response. 

18.9 MORE DETAILS ON SIU HARDWARE 

The SIU divides functionally into two sections-a bit 
processor (BIP) and a byte processor (BYP)-sharing 
some common timing and control logic. As shown in 
Figure 18-14, the BIP operates between the serial port 
pins and the SIU bus, and performs all functions 
.necessary to transmit/receive a byte of data to/from 
the serial data stream. These operations include shift
ing, NRZI encoding/decoding, zero insertion/deletion, 
and FCS generation/checking. The BYP manipulates 
bytes of data to perform message formatting, and other 
transmitting and receiving functions. It operates be
tween the SIU bus (SIB) and the 8044'5 internal bus (lB). 
The interface between the SIU and the CPU involves 
an interrupt and some locations in on-chip RAM space 
which are managed by the BYP. 

The maximum possible data rate for the serial port is 
limited to 1/2 the internal clock rate. This limit is im
posed by both the maximum rate ofDMA to the on-chip 
'RAM, and by the requirements of synchronizing to an 
external clock. The internal clock rate for an 8044 run
ning on a 12 MHz crystal is 6 MHz. Thus the maximum 
8044 serial data rate is 3 MHz. This data rate drops 
down to 2.4 MHz when time is allowed for external 
clock synchronization. 

18.9.1 The Bit Processor 

In the asynchronous (self clocked) modes the clock is 
extracted from the data stream using the on-chip digital 
phase-locked-loop (DPLL). The DPLL requires a clock 
input at 16 times the data tate. This 16 X clock may 
originate from SCLK, Timer I Overflow, or PH2 (one 
half the oscillator frequency). The extra divide by-two 
described above allows these sources to be treated 
alternatively as 32 X clocks. 

The DPLL is a free-running four-bit counter running off 
the 16 X clock. When a transition is detected in the re
ceive data stream, a count is dropped (by suppressing 
the carry-in) if the current count value is greater than 8. 

• A count is added (by injecting a carry into the second 
stage rather than the first) if the count is less than 8. No 

adjustment is made if the transition occurs at the count 
of 8. In this manner the counter locks in on the point at 
which transitions in the data stream occur at the count 
of 8, and a clock pulse is generated when the count over
flows to O. 

In order to perform NRZI decoding, the NRZI decoder 
compares each bit of input data to the previous bit. 
There are no clock delays in going through the NRZI 
decoder. 

The zero insert/delete circuitry (ZID) performs zero in
sertion/deletion, and also detects flags, GA's (Go
Ahead's), and aborts (same as GA's) in the data stream. 
The pattern 1111110 is detected as an early GA, so that 
the GA may be turned into a flag for loop mode 
transmission. 

The shut-off detector monitors the receive data stream 
for a sequence of eight zeros, which is a shut-off com
mand for loop tnode transmissions. The shut-off detector 
is a three-bit counter which is cleared whenever a one is 
found in the receive data stream. Note that the ZID log
ic could not be used for this purpose, because the receive 
data must be monitored even when the ZID is being used 
'for transmission. 

As an example of the operation of the bit processor, the 
following sequence occurs in relation to the receive data: 

I) RXD is sampled by SCLK, and then synchronized to 
the internal processor clock (IPC). 

2) If the NRZI mode is selected, the incoming data is 
NRZI decoded. 

3) When receiving other than the flag pattern, the ZID 
deletes the '0' after 5 consecutive 'I's (during trans
mission this zero is inserted). The ZID locates the 
byte boundary for the rest of the circuitry. The ZID 
deletes the 'O's by preventing the SR (shift register) 
from receiving a clocking pulse. 

4) The FCS (which is a function of the data between 
the flags-not including the flags) is initialized and 
started at the detection of the byte boundary at the 
end of the opening flag. The FCS is computed each 
bit boundary until the closing flag is detected. Note 
that the received FCS has gone through the ZID 
during transmission. 

18.9.2 The Byte Processor 

Figure 18-15 is a block diagram of the byte processor 
(BYP). The BYP contains the registers and controllers 
necessary to perform the data manipulations associated 
with SDLC communications. The BYP registers may be 
read or written by the CPU over the 8044's internal bus 

18-31 



INTERRUPT 

IB 

1 
RAM CPU 

r - ---- ------- I------------:s;u, 

~I SHARED I 
REGISTERS h 

( 

'-- BYP 

I 
I 
I 
I 
I 

BIP I 
SIB I 

I 

I/O/ RXD 

A/TXD OAT 

L _________________ ~ _________ J 

Figure 18-14. The Bit and Byte Processors 

(IB), using standard 8044 hardware register operations. 
The 8044 register select PLA controls these operations. 
Three of the BYP registers connect to the IB through the 
IBS, a sub-bus which also connects to the CPU interrupt 
control registers. 

Simultaneous access of a register by both the IB and the 
SIB is prevented by timing. In particular, RAM access 
is restricted to alternate internal processor cycles for the 
CPU and the SIU, in such a way that collisions do not 
occur. 

As an example of the operation of the byte processor, the 
following sequence occurs in relation to the receive data: 

I) Assuming that there is an address field in the frame, 
the BYP takes the station address from the register 
file into temporary storage. After the opening flag; 

the next field (the address field) is compared to the 
station address in the temporary storage. If a match 
occurs, the operation continues. 

2) Assuming that there is a control field in the frame, 
the BYP takes the next byte and loads it into the 
RCB register. The RCB register has the logic to up
date the NSNR register (increment receive count, 
set SES and SER flags, etc.). 

3) Assuming that there is an information field, the next 
byte is dumped into RAM at the RBS locati!ln. The 
DMA CNT (RBLat the opening flag) is loaded 
from the DMA CNT register into ,the RB register 
and decremented. The RFL is then loaded into the 
RB register, incremented, and stored back into the 
register file. ' 

18-32 



SIP 

rr--- 7 -----------' 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

BYP 
TIMING 

AND 
CONTROL 

SIS 

SHARED 
REGISTERS 

I 

I 
I 
I 
I 
I 

L _________ ~ ____ ~~ 

Figure 18-15. The Byte Processor 

RAM 

IS 

4) This process continues until the D MA CNT reaches 
zero, or until a closing flag is received. Upon either 
event, the BYP updates the status, and, if the CRC is 
good, the NSNR register. 

into the received data stream, and the 'write port :3' con
trol signal is mapped into the SCLK path in place ofTl. 
Thus, in test mode, the CPU c~n send a serial data 
stream to the 8IU by writing to P3.0. The transmit data 
stream can be monitored by reading P3.!. Each suces
sive bit is transmitted from the SIU by writing to any bit 
in Port 3, which generates SCLK. 18.1~ DIAGNOSTICS 

An SIU test mode has been provided, so that the on-chip 
CPU can perform limited diagnostics on the SID. The 
test mode utilizes the output latches for P3.0 and P3.1 
(pins 10 and 11). These port 3 pins are not useful as 
out-put ports, since the pins are taken up by the serial 
port functions. Figure 18-16 shows the signal routing 
associated with the SIU test mode. 

Writing a 0 to P3.! enables the serial test mode (P3.! is 
set to 1 by reset). In test mode the P3.0 bit is mapped 

18-33 

In test mode, the P3.0 and P3.1 pins are placed in a high 
voltage, high impedance state. When the CPU reads 
P3.0 and P3.1 the logic level applied to the pin will be 
returned. III the test mode, when the CPU reads 3.1, the 
transmit data value will be returned, not the voltage on 
the pin. The transmit data remains constant for a bit 
time. Writing to P3.0 will result in the signal being out
putted for a short period of time. However, since the sig
nal is not latched, P3.0 will quickly return to a high 
voltage, high impedance state. 



." 
.a" 
c:: 
Ci .... 
(XI . .... 

~ !" 0> 
I 5!! '" ~ c: 

i 
i!: 
0 a.. 
CD 

PIN 15 
SClKI 

Til 
P35 

PIN11 
DATAl 
TXDI 
P31 

~ ~ I 

CPU 
BUS 

r1-
READ PORT 3 

WRITE PORT 3 

TIMER 1 OYF 

SYS ClK 

SOU 
~ RECEIVE 

DATA 
STREAM 

SOU 
TRANSMIT 

DATA 
STREAM 

SIUSERIAL 
DATA CLOCK 

:II c 
"1J 
"1 
l.. 
oIIo~ 



RUPI"'-44 

The serial test mode is disabled by writing a 1 to P3.1. 
Care must be taken that a 0 is never written to P3.1 in 
the course of normal operation, since this causes the test 
mode to be entered. 

Figure 18-17 is an example of a simple program seg
ment that can be imbedded into the user's diagnostic 
program. That example shows how to put the 8044 
into "Loop-back mode" to test the basic transmitting 
and receiving functions of the SIU. 

Loop-back mode is functionally equivalent to a hardwire 
connection between pins 10 and lion the 8044. 

In this example, the 8044 CPU plays the role of the pri
mary station. The SIU is in the AUTO mode. The CPU 
sends the SIU a supervisory frame with the poll bit set 
and an RNR command. The SIU responds with a super
visory frame with the poll bit set and an RR command. 

The operation proceeds as follows: 

~nterrupts are disabled, and the self test mode is enabled 
by writing a zero to P3.1. This estaElishes P3.0 as the 
data path from the CPU to the SIU. CTS (clear-to
send) is enabled by writing a zero to P1.7. The station 
address is initialized by writing 08AH into the STAD 
(station address register). 

The SIU is configured for receive operation in the 
clocked mode and in AUTO mode. The CPU then trans
mits a supervisory frame. This frame consists of an 

opening flag, followed by the station address, a control 
field indicating that this is a supervisory frame with an 
RNR command, and then a closing flag. 

Each byte of the frame is transmitted by writing that 
byte into the A register and then calling the subroutine 
XMIT8. Two additional SCLKs are generated to guar
antee that the last bits in the frame have been clocked 
into the SIU. Finally the CPU reads the status register 
(STS). If the operation has proceeded correctly, the sta
tus will be 072H. If it is not, the program jumps to the 
ERROR loop and terminates. 

The SIU generates an SI (SIU interrupt) to indicate 
~ that it has received a frame. The CPU clears this inter

rupt, and then begins to monitor the data stream that is 
being generated by the SIU in response to what it has 
received. As each bit arrives (via P3.1), it is moved into 
the accumulator, and the CPU compares the byte in the 
accumulator with 07EH, which is the opening flag. 
When a match occurs, the CPU identifies this as byte 
boundary, and thereafter processes the information 
byte-by-byte. 

The CPU calls the RCV8 subroutine to get each byte 
into the accumulator. The CPU performs compare oper
ations on (successively) the station address, the control 
field (which contains the RR response), and the closing 
flag. If any of these do not compare, the program jumps 
to the ERROR loop. If no error is found, the program 
jumps to the DONE lo?p. 

18-35 



RUPI"'-44 

• MeS-51 MACRO A;:;S,":HDLER DATA 

LOC C11t.J 

'0000 7sc'eoo 
0003, C281 
0005 C2fi7 
0007 7'CE8A 

ODOA 7'0861!t 
0000: 75e'l01 
0010 75C8e2 

0013 741£ 
0015 120066 
00lS 748A 
001A 120066 
001D' 7495 
00lF 1200~6 
0022 747E 
0024 120066 
0027 D280 
0029 0280 

002B E5C8 
002D B4722A 

0030 C2CC 
0032 7400 
0034 1BOC 

0036 D280 
0038 A2Bl 
00310, 13 
0038 847£03 
003£ 020046 
0041 D8F3 
0043 02005A 

0046 12005C 
0049 B4BAOE 
004C 1200'C 
004F 84BI08 
0052 12005C 
005' 847£02 

00510, SOFE 

OOSC 7808 
005E D2BO 
0060 A2B1 
0062 13 
0063 DBF9 
0065 22 

0066 7B09-
0068 13 

OOb9 0801 
OObB 22 

OObC 4004 

006E C2&0 
0070 8OF6 

0072 0280 
0074 SOFe! 

LINE 

1 

" 3 
4 
5 

• 7 
8 
9 

10 
11 
12 
13 
14 .. ,. 
17 
18 
19 
20 
21 
22 
23 
24 .. 
2. 

"7 
28 
2' 
30 
31 
32 
33 
14 ,. 
3. 
37 
38 
39 
40 
41 
42 
43 
44 
45 
4. 
47 
48 
49 
50 
51 
52 
53 
54 .. 
s. 
57 
58 
59 
.0 ., 
.2 
.3 
.4 
.5 

•• .7 
.8 •• 70 
71 
72 
73 
74 
75 
7b 
77 
78 
79 
90 
91 
92 
93 
94 

INlT MOV 
CLR 
CLR 
MOV 

BT5 •• 001-1 
P3 1 
PI 7 
BTAD. ISAH 

CONFIOVRE: RECEIVE OPERATION 

MOV 
MOV 
MOV 

NSNR •• 6AH 
SMD. *01101 
5TS. 'OC2H 

E".b·h ulf test ",ode 
Enab!.· eTS 
1"1tl.11:r.. addl' ••• 

NS(S)-3, 9E9-0, NR(9)-!5. SERoo() 
NFCS-l 
TBF-I, RBE';'l. AM-I 

TRANSMIT /It SUPERVISORY FRAME FROM THE PRIMARY STATI~ WITH THE POLL 
SIT SET AND A RNA COMI1AND 

SEND HOV A. .7EH 
CAL.L XMITB 
MDV A •• SAH 
CALL XMlTS 
MDY A: 'Oq~ 
CALL XMIT8 
MOV A •• 7EH 
CALL XMIT8 
SETB P3 0 
SETB ,P3 0 

MOV 
CJNE 

A, STS 
A. '72H. ERROR 

RNR SUP FRAME with P/F-l. NRCPl-4 

ReCltlVe clOSing flag 

O.n .... t ••• t,.. SCL.~ '. to 
J Inltlate recelV. action 

PREPARE TO RECEIYE RUP I '5 RESPO~E TO PR lMARY 'S RNA 

RECY OLR 
"00 
MOV 

LOOK FOR THE OPENINQ FLAG: 

WFLAGI SETS 
MOV 
RRC 
CJNE 
,,"P 

WFLGI DJNZ 
.1I1P' 

CNTINU CALL. 
C.JNE 
CALL 
CJNE 
CALL 
CJ~E 

DONE JHP 

ERROR JHP 

RCVS MOV 
QET8IT SETB 

MOV 
RRC 
0"'" 
RET 

XMIT8 MOV 
l3 RRC 

P3 ° 
C. P3 1 
A 
A, 101EH. WFlQl 
CNTINV 
R3. WFLAGI 
ERROR 

RCYS 
A. IOSAH. ERROR 
RCVS 
A. 10BIH. ERROR 
RCVS 
A. 107EH. ERROR 

DONE 

ERROR 

RO. lOB 
P3 0 
C. P3 t 
A 
RO. O£TBIT 

RO •• 9 
A 

DJNZ RO, II 
RET 

Ll JC l2 

CLR P3 0 
..IMP L3 

L2 SETB P3 0 
..IMP L3 .n' 

Cha" 51 
Cha" ACC 
T"\I 12 h •• " 

5ClK 
Tl"anSlll1tted data 

Oet 51U's TranSMitted add"e.s 'ield 

InitIalize the bit counte" 
SCLK 
Transmi tted data 

Initialize the bIt count." 
Put the blt to be t"ans'lIltt.d 
In the Ca""y 
When all bits hav. been sllnt 
return 

I' the carry bit 11 set. !tet 
POT't P3 0 eh. 
c 1 •• ,. port P3 0 

Figure 18-17. Loop-Back Mode Software 

18-36 



8044 -Application Examples 19 





CHAPTER 19 
8044 APPLICATION EXAMPLES 

19.0 8044 APPLICATIONS EXAMPLES 

19.1 INTERFACING THE 8044 TO A 
MICROPROCESSOR 

The 8044 is designed to serve as an intelligent controller 
for remote peripherals. However, ii'can also be used as an 
intelligent HOLC/SOLCfrontend fora microprocessor, 
capable of extensively off-loading link control functions 
for the CPU. In some applications, the 8044 can even be 
used for communications preprocessing, in addition to 
data link control. 

This section describes a sample hardware interface for 
attaching the 8044 to an 8088. It is general enough to be 
extended to other microprocessors such as the 8086 or 
the 80186. 

OVERVIEW 

A sample interface is shown in Figure 19-1. Transmis
sion occurs when the 8088 loads a 64 byte block of mem
ory with some known data. The 8088 then enables the 
8237A to OMA this data to the 8044. When the 8044 
has received all of the data from the 8237 A, it &ends the 
data in a SOLC frame. The frame is captured by the 
Spectron Datascope@* which displays it ,on. a CRT in 
hex format. ' , 

In reception, the Datascope sends an SDLC information 
frame to the 8044. The 8044 receives the SDLC frame, 
buffers it, and sends it to the 8088's memory. In this ex
ample the 8044 is being operated in the NON-AUTO 
mode; therefore, it does not need to be polled by a prima
ry station in order to transmit. 

THE INTERFACE' 

The 8044 does not have a parallel slave port. The 8044's 
32 I/O lines can be configured as a local microprocessor 
bus master. In this configuration, the 8644 can expand 
the ROM and RAM memory, control peripherals, and 
communicate with a microprocessor. 

The 8044, like the 8051, does not have a Ready line, so 
there is no way to put the 8044 in wait state. The clock 
on the 8044 cannot be stopped. Dual port RAM could 
still be used, however, software arbitration would be the 
only way to prevent collisions. Another way to interface 
the 8044 with another CPU is to put a FIFO or queue 
between the two processors, and this was the method 
chosen for this design. 

Figure 19-2 shows the schematic of the 8044/8Q88 inter
face. It involves two 8 bit tri-state latches, two SR flip
flops, and some logic gates (6 TTL packs). The circuitry 
implements a one byte FIFO. RS422 transceivers are used, 
which can be connected to a multidrop,link. Figure 19-3 
shows the 8088 and support circuitry; the memory and 
decoders are not shown. It is a b/lSic 8088 Min Mode 

*Datascope is a trademark of Spectron Inc. 

system with an 8237A OMA controller and an 8259A 
intenupt controller. 

DMA Channel One transfers a block of memory to the 
tri-state latch, while Channel Zero transfers a block of 
data from the latch to 8088's memory. The 8044's Inter
rupt 0 signal vectors the CPU into a routine which reads 
from the internal RAM and writes to the latch. The 
8044's Interrupt I signal causes the chip to read from 
the latch and write to its on-chip data RAM. Both DMA 
requests and acknowledges are active low. 

19-1 

Initially, when the power is applied, a reset pulse coming 
from the 8284A initializes the SR flip-flops. In this ini
tialization state, the 8044's transmit interrupt and the 
8088's transmit DMA request are active; however, the 
software keeps these signals disabled until either of the 
two processors are ready to transmit. The software 
leaves the receive signals enabled, unless the receive 
buffers are full. In this way either the 8088 or the 8044 
are always ready to receive, but they must enable the 
transmit signal when they have prepared a block to 
transmit. After a block has been transmitted or received, 
the DMA and interrupt signals return to the initial 
state. 

The receive and transmit buffer sizes for the blocks of 
data sent between the 8044 and the 8088 have a maxi
mum fixed length. In this case the buffer size was 64· 
bytes. The buffer size must be less than 192 bytes to en
able 8044 to buffer the data in its on-chip RAM. This 
design allows blocks of data that are less than 64 bytes, 
and accommodates networks that allow frames of vary
ing size. The first byte transftlrred between the 8088 and 
the 8044 is 'the byte count to follow; thus the 8044 knows 
how many bytes to receive before it transmits the SDLC 
frame. However, when the 8044 sends data to the 8088's 
memory, the 8237 A will not know if the 8044 will send 
less than the count the 8237A was programmed for. To 
solve this problem, the 8237A is operated in the single 
mode. The 8044 uses an I/O !:lit to generate an interrupt 
request to the 8259A. In the 8088's interrupt routine, 
the 8237A's receive DMA channel is disabled, thus al
lowing blocks of data less than ,64 bytes to be received. 

THE SOFTWARE 

The software for the 8044 and the 8088 is shown in Ta
ble 19-1. The 8088 software was written in PL/M86, 
and the- 8044 software was written in assembly 
language. 

The 8044 software begins by initializing the stack, inter
rupt priorities, and triggering types for the interrupts. 
At ,this point, the SIU parameter registers are initial
ized. The receive and transmit buffer starting addresses 
and lengths are loaded for the on-chip 0 MA. This 0 MA 
is for the serial port. The serial station address and the 
transmit control bytes are loaded too. 

January 1985 



I-----~--~-------~-I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
L_~_~____ _~ 

DATASCOPE, 

Figure 19-1. Block Diagram of 8088/8044 Interface Test . 

Once the initialization has taken place, the SIU inter
rupt is enabled, and the external interrupt which re
ceives bytes from the 8088 is enabl~. Setting the 8044's 
Receive Buffer Empty (RBE) bit el\ables the receiver. If 
this bit is.reset, no serial data can be received. The 8044 
then waits in a loop for either RECEIVE DMA inter
rupt or the SERIALINT interrupt. 

The 'RECEIVE DMA interrupt occurs when the 8237 A 
is transferring a block of data to the 8044. The first time 
this interrupt occurs; the 8044 reads the latch and loads 
the count value into the R2 register. On subsequent in
terrupts, the 8044 reads the latch, loads the data into the 
transmit buffer, and decrements R2. When R2 reaches 
zero, the interrupt routine sends the data in an SDLC 
frame, and disables the RECEIVE DMA interrupt. 
After the frame has been transmitted; a serial interrupt 
is generated. The SERIAL INT routine detects that a 
frame has been transmitted and ,re-enllbles the RE
CEIVE DMA interrupt. Thus, while the frame is being 
transmitted through the SIU, the 8237A is inhibited 
from sending data to the 8044'5 transmit buffer. 

The TRANSMIT DMA routine sends a' block of data 
from the 8044's receive buffer to the 8088's memory. 
Normally this.interrupt·rernains disable,d. Howeyet, if a 
serial interrupt' occurs, 'and the SERIAL INT routine 
detects that a frame has been received, it caUs the 
SEND subroutine. The SEND subroutine loads the 
number of bytes which were received in the frame ihto 
the receive buffer, Register R I 'points to the receive buff-

er and R2 is loaded with the count. The TRANSMIT 
DMA interrupt is enabled, and immediately upon re
turning from the SERIAL INT routine, the interrupt is 
acknowledged. Each time the TRANSMIT DMA in
terrupt occurs, a byte is read from the receive buffer, 
wtitten to the latch, and R2 is decremented. When R2 
reaches 0, the TRANSMIJ' DMA interrupt is di,sabled,_ 
the SIU receiver is re-enabled, and the 8044 interrupts 
the 8088. 

The 8088 software simply transmits a blOCk of data and 
receives a block of data, then stops. The software begins 
by initializing the 8237 A, and the 8259A. It then loads a 
block of memory with some data and enables the 8237 A 
to transmit the data. In the meantime the 8088 waits in a 
loop. After, a block of data is received from the 8044, the 

, 8088 is interrupted, and it shuts off the 8237A receive 
DMA. 

CONCLUSION 

For the software shown in Table 19-1, the transfer rat!! 
from the 8088's rnemory to the 8044 was measured at 
75K bytes/sec. This transfer rate lafgely depends upon 
the number of instructions in tbe' 8044's interrupt service 
routine. Fewer instructions result in a higher transfer rate. 

"I " 

There are many ways of interfacing the 8044 locally to 
another, microprocessor: FIFO's, dual port RAM with 
software arbitration, and 8255's are just a few. Alterna
tive approaches, \vhich 'may be more optimal for Certain 
applications, are certainly possible.' . 

19-2 



." 
cQ 
c 
~ .... 
cp 
~ 
CII 

i .... 
..... :i <p CD '" ;. 

g 
0' 
!i 
CD 
CII 

i 
CII. 

OREQ1 

OREQa 

OACKl 

~Kt 

oJQ! 
~K1 

~IOW 

RUPI EXPANSION SUS 

01 

Of 
01 GNO 
D. 
D3 
D4 
OS Vee 
D6 
D7 

•• 
:~ 2128 
'3 
A4 Pl •• •• '7 •• A9 
A10 
CE/At2 
WE/WR 
OE/RD 

·5V 

~ 
c: 
"1J 
ii 
I .... .... 



..... 
t. 

" Ili 
,r:: 
iiJ 
..... 
t 
CD 
,0 : 
i: 
S" 
i: 

-0 

i-

f 
:I 

INTR ro 

FIC 
RDY2 
AFM1 
AEN2 

~
CSYNC 

PClK 

ClKj I D 

RST~ 
ClK 

ROY 

8088 AD7 

(MIN) :g: nTEST ~g; 
lNTR A 2 

A01 
~ A13 Ale Aot 

A15 A12 A9 

" 1 A 

RESET 

g~B OEOO7~ 016 006 
015 F1 005 
014 004 
Dl3 IN 003 

gl~ ~ 8m 
01' DOJ 

cs @ 
rnt,~?IF.---, 

-5 
22K T 

MEMR 
lOR 
MEMW 
'OW 

jIll § 

J1 

" V 
lS 
04 

AEN 

I 

MR Mlib CS 
lOR lOW 

.--

+5V 

?-
2K 

_ 8237CS 
+5V 

DREat 
DACKD 
OREOl 
DACK1 
DREQ2 
OACK2 

.......... Ao-A7 

'I UIIJIIJ DOO-07 /7777777 I 

I ,,~ 

J l 

::rJ 
C 
"U 
"i 
I 

t 



inter 
Table 19-1. Transmit and Receive Software for an 8044/8088 System 

LOC OBJ LINE SOURCE 

0000 

0000 
0000 8024 

0026 

0026 7581AA 
0029 758,800 
002C 75C954 
002F 758844 

0032 758DEC 
0035 758920 

0038 75DC6A 
003B 75DB40 
003E 75CC2A 
0041 75CB40 
0044 75CE55 
0047 75DAII 

004A 901000 
0040 0200 

004F D2CE 
0051 75A894 

0054 80FE 

0056 80FE 

0058 85CD29 
005B 7929 
0050 AACD 
005F OA 
0060D2A8 
0062 22 

0063 
0013 
0013 020063 
0063 

Sdebug title (8044/8088 INTERFACE) 
2 
3 
4 FIRSLBYTE BIT o 
5 
6 
7 

8 
9 

10 
INIT: 

ORG 0 
SJMP INIT 

ORG 26H 

MOV 
MOV 
MOV 
MOV 

MOV 
MOV 

SP, #170 
IP, #00 
SMD, #54H 
TCON, #44H 

THI,#OECH 
TMOD, #20H 

; FLAG 

; INITIALIZE STACK 
; ALL INTERRUPTS ARE EQUAL PRIORITY 
; TIMER I OVERFLOW, NRZI, PRE-FRAME SYNC 
; EDGE TRIGGERED EXTERNAL INTERRUPT I 
; LEVEL TRIGGERED EXTERNAL INTERRUPT 0 
; TIMER I ON 
; INITIALIZE TIMER, 3125 BPS 
; TIMER I AUTO RELOAD 

II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

MOV TBS, #106 ; SET UP SIU PARAMETER REGISTERS 
MOV TBL, #64 
MOV RBS, #42 
MOV RBL, #64 
MOV STAD, #55H 
MOV TCB, #OOOIOOOIB ; RR, P/F= I' 

MOV DPTR, #IOOOH ; DPTR POINTS TO TRI-STATE LATCH 
SETB FIRSLBYTE ; FLAG TO INDICATE FIRST BYTE 

; FOR RECEIVE INTERRUPT ROUTINE 
SETB RBE ; READY TO RECEIVE 
MOV IE, #IOOIOIOOB ; ENABLE RECEIVE DMA AND SIU INTERRUPT 

SJMP $ ; WAIT HERE FOR INTERRUPTS 

35 ERROR: SJMP ERROR 
36 +1 SEJ 

37 .**.****** ••••••••••••••••• 
38 
39 SEND: MOV 41, RFL 
40 MOV RI, #41 
41 MOV R2, RFL 
42 INC R2 
43 
44 
45 
46 
47 

SETB EXO 
RET 

SUBROUTINES ••••••••••••••••••••••••••••••• 

; FIRST BYTE IN BLOCK IS COUNT 
; POINT TO BLOCK OF DATA 
; LOAD COUNT 

; ENABLE DMA TRANSMIT INTERRUPT 

48 ; •••••• **........... INTERRUPT SERVICE ROUTINES ••••••••••••••••••••• 
49 
50 LOCTMP SET $ . ; SET UP INTERRUPT TABLE JUMP 
51 ORG 0013H 
52 LJMP RECEIVE...DMA 
53 ORG LOLTMP 
54 
5.?, RECEIVLDMA: 

19-5 



RUPI"'-44 

56 
0063, 10000E 57 JBC FIRST_BYTE, L1 ; THE FIRST BYTE TRANSFERRED IS THE COUNT 

58 
0066 EO 59 MOVX A,@DPTR ,; READ THE LATCH 
0067 F6 60 MOV @RO,A ; PUT IT IN TRANSMIT BUFFER 
0068 08 61 INC RO 
0069 DA08 62 DJNZ R2,L2 ; AFTER READING BYTES, 

63 
006B D2CF 64 SETB TBF ; SEND DATA 
006D D2CD 65 SETB RTS 
006F D200 66 SETB FIRSLBYTE 
0071 C2AA 67 CLR EXI 

68 
0073 32 69 L2: RET! 

70 
0074 786A 71 L1: MOV RO, #106 ; RO Ii!> A POINTER TO THE TRANSMIT 

72 ; BUFFER STARTING ADDRESS 
0076 EO 73 MOVX A,@DPTR ; PUT THE FIRST BYTE INTO 
0077 FA 74 MOV R2,A ; R2 FOR THE COUNT 
0078 32 75 RET! 

76 
0079 77 LOLTMPSET $ 

0003 78 ORG 0003H 
0003 020079 79 LJMP TRANSMILDMA 
0079 80 ORG LOLTMP 

81 

82 TRANSMILDMA 
83 

0079 E7 84 MOV A,@RI ; READ BYTE OUT OF THE RECEIVE BUFFER 
007A FO 85 MOVX @DPTR,A ; WRITE IT TO THE LATCH 
007B 09 86 INC RI 
007C DA08 87 DJNZ R2, L3 ; WHEN ALL BYTES HAVE BEEN SENT 

88 
007E C2A8 89 CLR IE. 0 ; DISABLE INTERRUPT 
0080 C294 90 CLR PI. 4 ; CAUSE 8088 INTERRUPT TO TERMINATE DMA 
0082 D294 91 SETB PI. 4 
0084 D2CE 92 SETB RBE ; ENABLE RECEIVER AGAIN 

93 
0086 32 94 L3: RET! 

95 
96 
97 

0087 98' . LOLTMPSET $ 
0023 99 ORG 0023H 
0023 020087 100 LJMP SERIALINT 
0087 101 ORG LOLTMP 

102 
103 SERIALINT: 
104 

0087 30CE06 105 JNB RBE,RCV ; WAS A FRAME RECEIVED 
008A 30CFOB 106 JNB TBF,XMIT ; WAS A FRAME TRANSMITTED 
008D 020056 107 LJMP ERROR ; IF NEITHE~ ERROR 

108 
0090 20CBC3 109 RCV: JB BOV, ERROR ; IF BUFFER OVER~UN THEN ERROR 
0093 1158 110 CALL SEND ; SEND THE fRAME TO THE 8088 
0095 C2CC III CLR SI 
0097 32 112 RET! 

113 
0098 C2CC 114 XMIT: CLR SI 

19-~ 



RUPI™-44 

009A D2AA 115 SETB EXI 
009C 32 116 RETI 

117 
liS END 

SYMBOL TABLE LISTING 

NAME TYPE VALUE ATTRIBUTES 

BOV B ADDR 00CSH.3 A 
. ERROR C ADDR 0056H A 
EXO B ADDR OOASH.O A 
EXI B ADDR OOASH.2 A 
FIRSLBYTE B ADDR 0020H.0 A 
IE o ADDR OOASH A 
INIT C ADDR 0026H A 
IP o ADDR OOBSH A 
Ll C ADDR 0074H A 
L2 C ADDR 0073H A 
L3 C ADDR OOS6H A 
LOCTMP C ADDR 00S7H A 
PI o ADDR 0090H A 
RBE B ADDR OOCSH.6 A 
RBL o ADDR OOCBH A 
RBS o AD DR OOCCH A 
RCV C ADDR 0090H A 
RECEIVE_DMA C ADDR 0063H A 
RFL o ADDR OOCDH A 
RTS B ADDR 00CSH.5 A 
SEND C ADDR 005SH A 
SERIALINT C ADDR OOS7H A 
SI B ADDR OOCSH.4 A 
SMD o ADDR ,OOC9H A 
SP o ADDR OOSlH A 
STAD o ADDR OOCEH A 
TBF B ADDR OOCSH.7 A 
TBL o AD DR OODBH A 

.TBS o ADDR OODCH A 
TCB o ADDR OODAH A 
TCON o ADDR OOSSH A 
THI D AODR OOSDH A 
TMOD o ADDR 00S9H A 
TRANSMILDMA C ADDR 0079H A 
XMIT C ~DDR 009SH A 

REGISTER ·BANK(S) USED: 0, TARGET MACHINE(S): 8044 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

19-7 



Table 19-2. PL/M-86 Compiler Rupi/8088 Interface Example 

SERIES-III PL/M-86 VI 0 COMPILATION OF MdDULE RUPI_88 
OBJECT MODULE PLACED IN ·FI·R88.0BJ 
COMPILER INVOKED BY: PLM86 86 ·FI R88.SRC 

3 

4 
5 
6 

2 

2 
2 
2 

SDEBUG 
STITLE ('RUPI/8088 INTERFACE EXAMPLE') 

RUPI_88: DO, 

DECLARE 

LIT 
TRUE 
FALSE 

RECV_BUFFER(64) 
XM IT _BUFFER (64 ) 
I 
WAIT 

MASTER_CLEAR_37 
COMMAND_37 
ALL_MASK_37 
SINGLE_MASK_37 
STATUS 37 
REGUEST _REG _37 
MODE_REG_37 

LITERALLY 
LIT 
LIT 

BYTE, 
BYTE, 
BYTE, 
BYTE, 

1* 8237 PORTS*I 

LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 

CLEAR _BYTE_PTR _37 LIT 

CHO_ADDR LIT 
CHO_COUNT LIT 
CHl_ADDR LIT 
CH130UNT LIT 
CH2_ADDR LIT 
CH2_COUNT LIT 
CH3_ADDR LIT 
CH3_COUNT LIT 

'LITERALLY' , 
'OlH'; 
'OOH', 

'OFFDDH', 
'OFFD8H', 
'OFFDFH', 
'OFFDAH'. 
'OFFD8H', 
'OFFD9H', 
'OFFDBH' , 
'OFFDCH' , 

'OFFDOH', 
'OFFDIH' , 
'OFFD2H', 
'OFFD3H', 
'OFFD4H', 
'OFFD5H', 
'OFFD6H', 
'OFFD7H'., 

1* 8237 BIT ASSIGNMENTS *1 

CHO_SEL LIT 
CHI_SEL LIT 
CH2_SEL LIT 
CH3_SEL LIT 
WRITE XFER LIT 
READ_XFER LIT 
DEMAND_MODE LIT 
SINGLE MODE LIT 
BLOCK MODE LIT 
SET_MASK LIT 

SEJECT 
1* 8259 PORTS *1 

STATUS_POLL_59 
ICWl_59 
OCWI_59 
OCW2_59 
OCW3_59 
ICW2_59 
ICW3_59 
ICW4_59 

LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 

'OOH' , 
'OlH', 
'02H', 
'03H', 
'04H', 
'OSH', 
'OOH" , 
'40H', 
'BOH', 
'04H', 

'OFFEOH', 
'OFFEOH', 
'OFFEIH', 
'OFFEOH', 
'OFFEOH', 
'OFFEIH' , 
'OFFEIH', 
'OFFEIH', 

1* INTERRUPT SERVICE ROUTINE *1 

PROCEDURE INTERRUPT 32. 

OUTPUT (SINGLE_MASK_37)=40H, 
WAIT=FALSE, 
END, 

19-8 



7 

B 
9 

10 
11 
12 
13 
14 
15 

'16 
17 
18 
19 
20 
21 

22 

23 
24 
25 

- 26 

27 

28 
29 
30 

31 

32 

33 
34 
35 

36 
37 

38 

I 
I 
1 
1 
1 
I 
1 
I 
1 
I 

'I 
I 
1 
I 

1 
2 
2 

I 
I 
2 

I 
2 

DISABLE. 

1* INITIALIZE 

OUTPUTCM~ST~R_CLEAR_37) 
OUTPUTCCOMMAND 37) 
OUTPUTCALL_"AS~37) 
OUTPUTCMODE_REQ_37) 
OUTPUT C MODE_REQ_37) 
OUTPUT C CLEAR_BYTE_PTR_37) 
OUTPUTCCHO_ADDR) 
OUTPUTCCHO_ADDR) 
OUTPUTCCHO_COU~T) 
OUTPUT C CHO_CqUNT) 
OUTPUT C CHI_ADDR) 

~~~~~~:~~!:~~~:i) 
OUTPUTCCHI_COUNT)

1* INITIALIZE

OUTPUT (ICWI_59)

OUTPUT< ICW2_59)
OUTPUT< ICW4_59)
OUTPUT (OCWI_59)

8237 *1
"

-0,
-040H,
-OFH.
-CSINQLE_MODE OR WRITE_XFER OR CHO_SEL).
-CSINQLE_MODE OR READ_XFER OR CHI_SEL).
-OJ
-OOH;
-40Hi
-64;
=00.
-40Hi
-40Hi
-64;
-00,

8259 *1

=13H. I*SINQLE MODE. EDQE TRIQQERED
INPUT. 8086 INTERRUPT TYPE*I

=20H. I*INTERRUPT TYPE 32*1
-03H. I*AUTO-EOI*I
-OFEH. I*ENABLE INTERRUPT LEVEL 0*1

$E,JECT

END.

CALL SET$I~TERRUPT (32,OFF_RECV_DMA). I*LOAD INTERRUPT VECTOR LOCATION*/

XMIT_BUFFER(0)=64. I*THE FIRST BYTE IN THE BLOCK OF DATA IS THE NUMBER
OF BYTES TO BE TRANSFERED. NOT INCLUDINQ THE FIRST BYTE*/ ,

DO 1= I TO 64. 1* FILL UP THE XMIT_BUFFER WITH DATA *1
'XMIT_BVFFERC J)-1'
END.

OUTPUTCALL_MASK_37)-OFCH.

ENABLE,

I*ENABLE CHANNEL 1 AND 2 *1

WAIT-TRUE.
DO WHILE WAIT.
END,

DO WHILE I,
END.

1* A BLOCK OF DATA WILL BE TRANSFERRED TO THE RUPI,
WHEN THE RUPI RECEIVES A BLOCK OF DATA IT WILL
SEND IT TO THE 8088 MEMORY AND INTERRUPT THE 8088.
THE INTERRUPT SERVICE ROUTINE WILL SHUT OFF THE DMA
CONTROLLER AND SET 'WAIT' FALSE *1

MODULE INFORMATION:

CODE AREA SIZE - 00D7H 215D
CONSTANT AREA SIZE - OOOOH OD
VARIABLE AREA SIZE - 0082H 130D
MAXIMUM STACK SIZE· OOIEH 30P
124 LINES, READ
o PROQRAM WARNINQ8
o PROQRAM ERROR8

END OF PL/M-B6 COMPILATION

19-9

A HIGH PERFORMANCE NETWORK
USING THE 8044

19.2.1 Introduction

This section describes the design of an SOLC data link
using the 8044 (RUPI) to implement a primary station
and a secondary station. The design was implemented
and tested. The following discussion assumes that the
reader understands the 8044 and SOLe. This section is
divided into two parts. First the data link design
example is discussed. Second the software modules
used to implement the data link are described. To help
the reader understand the discussion of the software,
flow charts and software listings are displayed in
'Appendix A-and Appendix B, respectively.

Application Description

This particular data link design example uses a two wire
half-duplex multidrop topology as showri in figure 19-4.
In an SOLC multidrop topology the primary station
communicates with each secondary station. The
secondary stations communicate only to the primary.
Because of this hierarchial architecture, the logical
topology for an SOLC multidrop is a star as shown in
figure 19-5. Although the physical topology of this data
link is multidrop, the easiest way to understand the
information flow is to think of the logical (star)
topology. The term data link in this case refers to the
logical communication pathways between the primary
station and the seconc\ary stations. The data links are
shown in figure 19-5 as two way arrows.

The application example uses dumb async terminals to
interface to the SOLC network. Each secondary station
has an async terminal connected to it. The secondary
stations are in effect protocol converters which allows -
any async terminal to communicate with any other async
terminal on the network. The secondary stations use an
8044 with a UART to convert SOLC to async. Figure
19-6 displays a block diagram of the data link. The
primary station, controls the data link. In addition to
data link control the primary provides a higher level
layer which is a path control function or networking
layer. The primary serves as a message exchange or
switch. It receives information from one secondary sta
tion and retransmits it to another secondary station.
Thus a virtual end to end connection is made between
any two secondary stations on the network.

,Three separate software modules were written for this
network. The first module is a Secondary Station Oriver
(SSO) which provides an SOLC data link interface and
a user interface. This module is a general purpose driver
which requires application software to run it. The uSer
interface to the driver provides four functions: OPEN.

CLOSE, TRANSMIT, and SIU_RECV. Using these
four functions properly will allow any application soft
ware to communicate over this SOLC data link without
knowing the details of SOLC. The secondary station
driver uses the 8044's AUTO mode.

The second module is 'an example of application soft
ware which is liIiked to the secondary station driver.
This module drives the 8251A, buffers data, and inter
faces with the secondary station driver's user interface.

The third module is a primary station, which is a stand
alone program (I.e., it is not linked to any other
module). The primary station uses the 8044'5 NON
AUTO or FLEXIBLE mode. In addition to controll
ing the data link it acts as a message switch. Each time
a secondary station transmits a frame, it places ,the
destination address of the frame in the first byte of the
information or I field. When the primary station receives
a frame, it removes the first byte in the I field and
retransmits the frame to the secondary station whose
address matches this byte.

This network provides two complete layers of the OSI
(Open Systems Interconnection) -reference model: the

, physical layer and the data link layer. The physical layer
implementation uses the RS-422 electrical interface. The
mechanical medium consists of ribbon cable and con
nectors. The data link layer is defined by SOLe.
SOLC's use of acknowledgements and frame number
ing guarantees that messages will be received in the same
order in which they were sent. It also guarantees message
integrity over the data link. However this network will
not guarantee secondary to secondary message delivery,
since there are acknowledgements between secondary
stations.

19.2.2 Hardware

The schematic of the hardware is given in figure \9-7 .
The 8251A is used as an async communications con
troller, in support of the 8044. TxROY and RxROY on
the 825 IA are both tied to the two available external
interrupts of the 8044 since the secondary station driver
is totally interrupt driven. The 8044 buffers the data
and some variables in a 2016 (2K x 8 static RAM). The
8254 programmable interval timer is employed as a pro
grammable baud rate generator and system clock driver
for the 8251A. The third output from the 8254 could
be used as an external baud rate generator for the 8044.
The 2732A shown in the diagram was not used since
the software for both the primary and secondary
stations used far less than the 4 Kbytes provided on the
8744. For the async interface. the standard RS-232

PRIMARY
STATION

SECONDARY SECONDARY SECONDARY
STATION STATION STATION

Figure 19-4. SOLC Multidrop Topology

·mechanical and electrical interface was used. For the
SOLe channel, a standard two wire three state RS-422
driver is used. A DIP switch connected to one of the
available ports on the 8044 allows the baud rate,
parity, and stop bits to be changed on the async inter- .
face. The primary station hardware does not use the
USART, 8254, nor the RS-232 drivers.

SECONDARY
STATION

19.2.3 SOLe Basic Repertoire

The SOLe commands and responses implemented in
the data link include the SOLe Basic Repertoire as
defined in the IBM SOLe General Information manual.
Table 19-3 shows the commands and responses that the
primary and the secondary station in this data link
design recognize and send.

SECONDARY
STATION

PRIMARY
STATION

SECONDARY SECONDARY
STATION STATION

Figure 19-5. SOLC Logical Topology

19-11

...I
0<
zi!!:
>::0
I/) a:
<w

I-

>

>
O:z
~Q
~~ ,....---'--.....,
frl:ii
I/)

a:z..-____
~Q
zl- ~

~~ L!J [!]

.. ..
C>
<XI

Figure 19-6. Block Diagram of the Data Link
Application Example

19-12

Z
0
i=
<
I-
I/)

>
0:
<
::0 a:
Q.

~ ~ : : rJ 6 iii L 9

- - -1:11 : ; ~·T;lll : : ~ ~ 1

~, ,I, - - -

~ I I
•

I ~

'YI'
. ,

'-!"

1 I'

~ ~ I " •
~ gggggggg ,; S 8

. " . "
, , I' "'I' "I" - -

"l

Figure 19-7. Schematic of Async/SDLC Secondary Station Protocol Converter

19-13

Table 19-3. Data Link Commands and
Responses Implemented for This Design

PRIMARY STATION

Responses Commands
Recognized Sent

Unnumbered UA SNRM
OM DISC

FRMR
-RD

Supervisory RR RR
RNR RNR

Information I I

SECONDARY STATION

CommanGis Responses
Recognized Sent

Unnumbered SNRM UA
. DISC OM
-TEST FRMR

-RD
-TEST

Supervisory RR RR
RNR RNR
REJ

Information 1 I

- not included in the SDLC Basic Repertoire

The term command specifically means all frames which
the primary station transmits and the secondary stations
receive. Response refers to frames which the secondary
stations transmit and the primary station receives.

Number of Outstanding Frames

This particular data link design only allows one out
standing frame before it must receive an acknow
ledgement. Immediate acknowledgement allows the
secondary station drivers to use the AUTO mode. In
addition, one outstanding frame uses less memory for
buffering, and the software becomes easier to manage.

19.2.4 Secondary Station Driver using
AUTO mode

The 8044 secondary station driver (SSD) was written
as a general purpose SDLC driver. It was written to be
linked to an application module. The application soft
ware implements the actual application in addition to
interfacing to the SSD. The main application could be,
a ·printer or plotter, a medical intrument, or a terminal.
The SSD is independent of the main application, it just
provides the SDLC communications. Existing 8051

applications could add qigh performance SDLC com
munications capability by linking the SSD to the existing
software and providing additional software to be able
to communicate with the SSD.

/

Data Link Interface and User Interface States

The SSD has two software interfaces: a data link inter
face and a user interface as show in Figure 19:8. The
data link interface is the part of the software which con
trols the SDLC communications. It handles link access,
command recognition/response, acknowledgements,
and error recovery. The user interface provides four
functions: OPEN, CLOSE, TRANSMIT, and
SIU RECV. These are the onl~ four functions which
the application software has to interface in order to com~
municate using SDLC. These four functions are com
mon to many 110 drivers like floppy and hard disks,
keyboard/CRT, and async communication drivers.

The data link and the user interface each have their own
states. Each interface can only be in one state at any
time. The SSD uses the states of these two interfaces
to help synchronize the application module to the data
link.

There are three states which the secondary station data
link interface can be in: Logical Disconnect State
(L_D_S). Frame Reject State (FRMR_S), and the
Information Transfer State (1_ T _S). The Logical
Disconnect State is when a station is physically con
nected to the channel but either the primary or secon
dary have not agreed to enter the Information Transfer
State. Both the primary and the secondary stations syn
chronize to enter into the Information Transfer State.
Only when the secondary station is in the 1_ T _S is
it able to transfer data or information to the primary.
The Frame Reject State (FRMR_S) indicates that the
secondary station has lost software synchronization with
the primary or encountered some kind of error condi
tion. When the secondary station is in the FRMR_S, the
primary station must reset the secondary to resynchronize.

The user interface has two states, open or closed. In
the closed state the user program does not want to com
municate over the network. The communications chan
nel is closed and not available for use. The secondary
station tells the primary this by responding to all com
mands with DM. The primary continues to poll the
secondary in Case it wants to enter the 1_ T _S state.
When the user program hegins communication over the
data link it goes into the open state. It does this by call
ing the OPEN procedure. When the user interface is
in the open state it may transfer information to the
primary.

19-14

SECONDARY STATION

APPLICATION SECONDARY
MODULE STATION

DRIVER
MODULE

DATA
LINK

INTERFACE

SSD
DATA LINK INTERFACE USER

" .. INTERFACE STATES

1. LOGICAL
~

~
I' USER STATES DISCONNECT

STATE

1. OPEN
2. INFORMATION

SSD TRANSFER
INTERFACE 2. CLOSED STATE
PROCEDURES 3. FRAME

REJECT
STATE

OPEN
CLOSE
TRANSMIT
SIU RECV

Figure 19-8. Secondary Station Software Modules

19-15

Secondary Stations Commands, Responses and

State Transitions

Table 19-4 shows the commands which the secondary
station recognizes and the responses it generates. The
first row in table 19-4 displays commands the secon
dary station recognizes and each column shows the
potential responses with respect to secondary station.
For example, if the secondary is in the Logical Discon
nect State it will only respond with DM, unless it receives
a SNRM command and the user state is open. If this
is the case, then the response will be UA and the secon
dary station will move into the I_T_S.

Figure 19-9 shows the state diagram of the secondary
station. When power is first applied to the secondary
station, it goes into the Logical Disconnect State. As
mentioned above, the ,_ T _S is entered when the
secondary station receives a SNRM command and the
user state is open. The secondary responds with UA to
let the primary know that it has accepted the SNRM
and is entering the I_T_S. The I_T_S can go into
either the L_D _S or the FRMR_S. The ,_ T _S goes
into the L_D_S if the primary sends the secondary
DISC. The secondary has to respond with UA, and then
goes into the L_D_S. If the user interface changes
'from open to close state, then the secondary sends RD.
This causes the primary to send a DISC.

The FRMR_S is entered when a secondary station is
in the I~ T _S and either one of the following
conditions occurs.

- A command can not be recognized by the
secondary station.

- There is a buffer overrun.

- The Nr that was received from the primary
station is invalid. '

The secondary station cannot 'eave the FRMR_S until
it receives a SNRM or a DISC command. '

Software description of the SSD

To aid in following the description of the software, the
reader may either look at the flow charts which are given
for each procedure, or read the PLlM-51 listing pro
vided in Appendix A.

A block diagram of the software structure of th~ SSD
is given in figure 19-10. A complete module is identified
by the dotted box, and a procedure is identified by the
solid box. Therefore the SIU _RECV procedure is not
included in the SSD module, it exists in the' application
software. Two or more procedures connected by a solid
line means the procedure above calls the procedure
below. Transmit, Power_on_D, Close, and Open are
all called by the application software. Procedures
without any solid lines connected above are interrupt
procedures. The only interrupt procedure in the SSD
module is the SIU _INT.

The entire SSD module is interrupt driven. Its design
allows the application program could handle real time
events or just dedicate more CPU time to ,the applica
tion program. The SIU _INT is the only interrupt pro-

Table 19·4 . Secondary Station Responses to Primary Station Commands

Data Link Primary Station Commands
States I RR RNR SNRM DISC TEST

Information I I I
transfer state RR RR RR

RNR RNR RNR
RD RD RD RD RD

FRMR FRMR FRMR
UA UA

Test

Logical
disconnect state DM, DM DM DM DM DM

UA
Frame FRMR FRMR FRMR FRMR
reject state UA UA

19-16

DISC

UA

~~~ER ____________ ~ 

Figure 19-9. State Diagram of Secondary Station 

,19-17 



1---------------------1 
1 
1 
1 
I 
1 
I 

I 
I 
I 
I 
I 
I 
1 
1 
I 
I 
L 

r--

III 
l-e 
I-
(1)1 
I-u 
III 
Z 
Z 
0 

...-- u 
~ I--

I r-! 

'--

.---
III 
l-e 
I-
(I) 

I 
~ 
:I! 
~ ... 

r- I 
! 

'--

r--r--
t- ILl 

t-- Q 
0 
U 
ILl 
Q 

I 
Q 

I- Z 

! ~ 
I :I! 

::) 0 '--
iii u 

'---

r----

-
'-- III 

(I) 
z 
0 
Q. 
(I) 
ILl 
~ 

I 
:I! 
~ z 
(I) 

'---

r--- ~ 
:I! 
~ ... 

I 
I-
j 
>< 

'---

-
~ 

'---
Q 
ILl 
II: 
ILl 
CD 
:I! 
::) 
z z 
::) 

I 
I-
j 
>< 

'---

1 
I 
I 
I 
I 
I 
I 

- I 

----- --_..-:_-----, 

I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L---------.....:----l 

.--- i r--
> I l-

Ii! .-!--
j 

L.... ~ (I) 

I z 
I e ::)' ~ 

iii i I-

'-- L...-

1._._._.- _._._._. 

Figure 19-10. Secondary Station Driver 

19-18 



cedure in the SSD. It is automatically entered when an 
SIU interrupt occurs. This particular interrupt can be 
the lowest priority interrupt in the system. 

SSD Initialization 

Upon reset the application software is entered first. Tl:le 
application software initializies its own variables then 
calls Power_On_D which is the SSD's initialization 
routine. The SSD's initialization sets up the transmit 
and receive data buffer pointers (TBS and RBS), the 
receive buffer length (RBL), and loads the State 
variables. The STATION_STATE begins in the L_ 
D _S state, and the USER_STATE begins in the closed 
state. Finally Power_On_D initializes XMIT_ 
BUFFER_EMPTY which is a bit flag. This flag serves 
as a semaphore between the SSD and the application 
software to indicate the status of the on chip transmit 
buffer. The SSD does not set the station address. It is 
the application software's responsibility to do this. After 
initialization, the SSD is ready to respond to all of the 
primary stations commands. Each time a frame is receiv
ed with a matching station address and a good CRC, 
the ~IU _INT procedure is entered. 

SIU_INT Procedure 

The first thing the SIU_INT procedure clears the serial 
interrupt _bit (SI) in the STS register. If the SIU_ 
INT procedure returns with this bit set, another SI in
terrupt will occur. 

The SIU _INT procedure is branches three 
independent cases. The first case i~ entered if the 
STATION_STATE is not in the I_T_S. If this is 
true, then the SIU is not in the AUTO mode, and the 
CPU will have to respond to the primary on its own. 
(Remember that the AUTO mode is entered when the 
STATION_STATE enters into I_T_S.) If the 
STATION_STATE is in the I_T_S, then either the 
SIU has just left the AUTO mode, or is still in the 
AUTO mode. This is the second and third case 
respectively. 

In the first case, if the ST A TION_ST A TE is not in 
the 1_ T _S, then it must be in either the L_D _S or 
the FRMR_S. In either case a separate procedure is 
called based on which state the station is in. The In_ 
Disconnect_State procedure sends to the primary a DM 
response, unless it received a SNRM command and the 
Uf?ER_STATE equals open. In that case the SIU sends 
an UA and enters into the 1_ T _So The In_FRMR_ 
State procedure· will send the. primary the FRMR 
response unless it received either a DISC or an SNRM. 
If the primary's command was a DISC, then the secon
dary will send an UA and enter into the L_D_S. If 
the primary's command was a SNRM, then the secon
darywill send an UA, enter into the 1_ T _S, and clear 
NSNR register. 

19-19 

For the second case, if the STATION_STATE is in 
the 1_ T _S but the SIU left the AUTO mode, then the 
CPU must determine why the AUTO mode was exited, 
and generate a response to the primary. There are four 
reasons for the SIU to automatically leave the AUTO 
mode. The following is a list of these reasons, and the 
responses given by the SSD based on each reason. 

I. 1.1e SIU has received a command field it does 
not recognize. 

Response: If the CPU recognizes the command, 
it generates the appropriate response. If neither 
the SIU nor the CPU recognize the command, then 
a FRMR response is sent. 

2. The SIU has received a Sequence Error Sent 
(SES= I in NSNR register). Nr(P) -# Ns(S)+ I, and 
Nr(P) * Ns(S). 

Response: Send FRMR. 

3. A buffer overrun has occured. BOV=I in STS 
register. 

Response: Send FRMR. 

4. An I frame with data was received while RPB= I. 

Response: Go back into AUTO mode and send an 
AUTO mode response. 

In addition to the above reasons, there is one condi
tion where the CPU forces the SIU out of the AUTO 
mode. This is discussed in the SSD's User Interface Pro
cedures section in the CLOSED procedure description. 

Finally, case three is when the STATION_STATE is 
in the 1_ T _S and the AUtO mode. The CPU first 
looks at the TBF bit. If this bit is 0 then the interrupt 
may have been caused by a frame which was trans
mitted and acknowledged. Therefore the XMIT_ 
BUFFER_EMPTY flag is set again indicating that the 
application software can transmit another frame. 

The other reason this section of code could be entered 
is if a valid I frame was received. When a good I frame 
is received the RBE bit equals O. This means that the 
receiver is disabled. If the primary were to poll the 8044 
while RBE=O, it would time out since no response would 
given. Time outs reduce network throughput. To 
improve network performance, the CPU first sets RBP, 
then sets Rim. Now when the primary polls the 8044 
an immediate RNR response is given. At this point the 
SSD calls the application software procedureSIU_RECV 
and passes the length of the data as a parameter. The 
SIU _RECV procedure reads the data out of the receive 
buffer then returns to the SSD module. Now that the 
receive information has been transfered, RBP can 
be cleared. 

Command_Oecode Procedure 

The Command_Decode procedure is called from the 
SIU _INT procedure when the ST A TION_ST A TE = 
1_ T _S and the SIU left the AUTO mode as a result 



, C·FIELD OF THE REJECTED COMMAND, AS RECEIVED 

I THIS STATION'S PRESENT Ns 

l THIS SlATION'S PRESENT Nr 

~ 
r , , , 

o o W X Y Z '0 o o o 

HIGH·ORDER I 1 
RECEIVED DISAGREES WITH tRA NSMITTED Ns 

BUFFER OVERRUN (I·FIELD IS to o LONG) 

PROHIBITED I·FIELD RECEIVED 

INVALID OR NONIMPLEMENTED COMMAND 

Figure 19-1,1 . Information Field of the FRMR Response, 'as T~ansmltted 

of not being able to recognize the receive control byte. 
Commands which the SIU' AUTO mode does not 
recognize are handled here. The commands recogniz· 
ed in this procedure are: SNRM, DISC, and TEST. Any 
other command received will generate a Frame Reject 
with the nonimplemented command bit set in the third 
data byte of the FRMR frame. Any additional un
numbered frame commands which the .secondary sta
tion is going to implement, should be implemented in 
this procedure. " 

If a SNRM is received the command_decode procedure 
calls the SNRM_Response procedure. The SNRM_ 
'Response procedure sets 'the STATION_STATE = I_ 
T S, clears the NSNR register and responds with an 
UA frame. If a DISC is received, the command~deCode 
procedure sets ,the STATIqN_STATE = L_D_S, 
and responds with an UA frame. WheJ) a TEST frame 
is received, and there 15 no buffer overrun, the 
command_decode procedure responds with a T~ST 

- frame retransmitting the same, data it received. However 
if a TEST frame is received and there is a buffefover· 
rlln, the!! a, TEST frame will b,e sent withQut any data, 
instead of a ~RMR with the b}lffer overrun bit set. 

Frame Reject Procedures, 

There are two procedures which handle the FRMR state: 
XMIT _FRMR and IN_FRMR_ST ATE. XMIT':'" 
FRMR is entered when. the secondary station first goes 
into the FRMR state. The frame reject response frame 
contains the FRMR'resporise in the'command field'plus 
three' additional data bytes in the I field. Figure 19-11 
displays the format for the three data byte in the I field 

of a FRMR response. The XMIT _FRMR procedure 
sets up the Frame Reject response frame based on the 
parameter REASON which is passed to it. Each place 
in the SSD code that calls the XMIT _FRMR pro
cedure, passes the REASON that this procedure was 
called, which in turn is communicated to the primary 
station. The XMIT _FRMR procedure uses three bytes 
of internal RAM which it initializes for the correct 
response. The'TBS and TBL registers are then chang
ed to point to the FRMR buffer so that when a response 
is sent these three bytes will be.included in the I field. 

The IN_FRMR_STATE procedure i$ called by the 
SIU_INT procedure when the STATION_STATE 
already is in the FRMR state and a response is 
required. fhe IN_FRMR_STATE procedure will only 
allow two commands to remove the secondary station 
from the FRMR state: SNRM and DISC. Any other 
command which is received while in the FRMR state 
will result a FRMR response frame. 

XMIT _UNNUMBERED Procedure 

This is a general purpose transmit procedure, used 
only in the FLEXIBLE mode, which sends unnumbered 
responses to the primary. It-accepts the control byte as 
a parameter, and also expects·the TBL register to be 
set before the procedure·is called. This proeedure waits 
until·the frame has been transmitted before returning. 
If this procedure returned before the transmit interrupt 
was.generated, the SIU ::'IN'f routine would be entered. 
The SIU _INT rQutine would not be able to distinguish 
this condition. 

19-20 



SSD's User Interface Procedures -- OPEN, ~LOSE, 
TRA,NSMIT, SIU_~ECV -- are discussed in the 
following' s~ction. , 

The OPEN procedure is the simplest of all, it changes 
the USER STATE to OPEN S then returns. This lets 
the SSD know that the user wants to open the channel 
for communications. When rhe 'SSD receives a SNRM 
command, it checks the USER_STATE. If the 
USER_STATE is open, then the SSD will respond with 
an UA, and the STATION_STATE enters the 
I..,-T_S. ' 

The' CLOSE procedure is also simple, it changes the 
USER_STATE to CLOSED_S and sets the AM bit 
to O. Note that when the CPU sets the AM bit to 0 it 
puts the SIU out of the AUTO mode. This event is asyn
chronous to the events on the network. As a result an 
I frame can be lost. This is what can happen. 

I. AM is set to 0 by the CLOSE Procedure. 

2. An I frame is received and a SI interrupt occurs. 

3. The SIU_INT procedure enters case 2. 
(STATION_STATE = I_T_S, and AM = 0) 

4. Case 2 detects that the USER_STATE = 
CLOSED_S, sends a RD response and ignores 

! th,e fact that an I frame was received. 

Therefore it is advised to never call the CLOSE pro
cedure or take the stu out of the AUTO mode when 
it is receiving I frames or an I (rame will be lost. 

For both the TRANSMIT and SIU _RECV procedures, 
it is the application software's job to put data into the 
transmit buffer, and take data out of the receive buf
fer. The SSD does not transfer data in or out of its 
transmit or receive bllffers because it does not know 
what kind of buffering the application software is im
plementing. What the SSD does do is notify the applica
tion software when the transmit buffer is empty, 
XMIT _BUFFER'_EMPTY = 1, and when the receive 
buffer is full. 

One of the functions that the SSD performs to syn
chronize the application software to ihe SDLC data link. 
However some oUhe synchronization must. also b~ done 
by the application software. Remember that the S,SD 
does not want to hang up the application software 
-waiting for some event to occur on the SDLC data link, 
therefore the SSD ,always returns to the application soft
ware as soon as possible. 

For example, when the application software calls the 
OPEN procedure; the SSD returns immediately. The 
application softWare thinks that the SDLC channel is 
now open and it can transmit. This is not the case. For 
the channel to be open, the SSD must receive a SNRM 
from the primary and respond with a UA. How~ver, 
the SSD does not want to hang up the application soft
ware waiting for a SNRM' from the primary before 
returnlrtg from the OPEN procedure. When the 

TRANSMIT procedure is called, the SSD expects the 
STATION_STATE to be in the I_T_S. If it isn't, 
the SSD refuses to transmit the data. The TRANSMIT 
procedure first checks to see if the USER_STATE is 
open, if not the USER_ST ATE_CLOSED parameter 
is passed back to the application module. The next thing 
TRANSMIT checks is the STATION_STATE. If this 
is not open, then TRANSMIT passes back LINK_ 
DISCONNECTED. This means that the USER_ 
STATE is open, but the SSD hasn't received a SNRM 
commmand from the primary yet. Therefore, the 
application software should wait awhile and try again. 
Based on network performance, one knows the 
maximum amount of time it will take for a station to 
be polled. If the application software waits this length 
of time and tries again but still gets a LINK_ 
DISCONNECTED parameter passed back, higher level 
recovery must be implemented. 

Before loading the 'transmit buffer and calling the 
TRANSMIT procedure, the application software must 
check to see that XMIT _BUFFER:"'EMPTY = I. This 
flag tells the application software that it can write new 
data into the transmit buffer and call the TRANSMIT 
procedure. After the application software has verified 
that XMIT _BUFFER_EMPTY = 1, it fills the 
transmit buffer with the data and calls the TRANSMIT 
procedure passing the length of the buffer as a 
parameter. The TRANSMIT procedure checks for three 
reasons why it might not be able to transmit the frame. 
I f any of these three reasons are true, the TRANSMIT 
procedure returns a parameter explaining why it 
couldn't send the frame. If the application software 
receives one of these responses, it must rectify the pro
blem and try again. Assuming these three conditions 
are false, then the SSD clears XMIT _BUFFER_ 
EMPTY, attempts to send the data and returns the 
parameter DA TA_ TRANSMITTED. XMIT_ 
BUFFER_EMPTY will not be set to 1 again until the 
data has been transmitted and acknowledged. 

The SIU_RECV procedure must be incorporated into the 
application software module. When a valid I frame is 
received by the SIU, it calls the SIU_RECV procedure 
and passes the length ofthe received data as a parameter. 
The SIU_RECV procedure must remove all of the data 
from the receive buffer before returning to the SIU_INT 
procedure. 

Linking up to the SSD 

Figure 19-12 shows necessary parts to include in a 
PLlM-51 application program that will be linked to the 
SSD module. RL51 is used to link and locate the SSD 
and application modules. The command line used to 
do this is: 

19-21 



RL51 S:;D,obj,filename.obj,PLM~,l.PB TO filename 
& RAMSIZE(192) 

$registe~bank(O) , 
user$mod: do; 
$include (reg44.dcl) 
declare' 

lit 
buffer'_length 
siu_xmit-.:.buffer 
(buffer _iength) 
siu_recv _buffer 
(buffer_length) 

, xmit_buffe~_empty 

/* external. procedures * / 

literally 
, Iii 

byte' 

oyte 
bit 

'literally' , 
'60', 

external idata, 

, external, 
external; 

power_on_d: procedure 
end power_on_d; 

external; 

close: procedure 
end close; 

open: procedure 
end open; 

transmit: procedure 

external 

external 

(xmit_buffer_length) ,byte 
declare xmit_buffer _length 

end transmit; 

/* local procedures * / ' 
siu_recv: procedure (length) public 

declare length byte, 

using I; 

using I; 

external; 
byte; 

using \; 

, -
Figure 19-12. Applications Module Link Information 

, , 

PUM·51 and Register B~nks 
The 8044 has four register banks. PL/M-51 assumes that 
an interrupt procedure never uses the same bank as the 
procedure it interrupts. The USING 
attribute of a procedure, or the $REGISTERBANK 
control, can be used to ensure that. 

The SSD module uses the, $REGISTERBANK(l) 
attribute. Some procedures are modified witl;! tile 
USING attribute based on the register bank level of the 
calling' procedure. 

19.2.5 APPLICATION MODULE; 
Async to SDLC protocol converter 

One of the purposes of this application module ino 
demonstrate how to interface software to the SSD. 
Another purpose is to implement and test a pratical ap
plication. This application software perform& 1/0 \Yith 
an async terminal ,through a USART, bufferl< data, and 
also performs 1/0 with the SSD. In addition, it allows 
the user on the async terminal to: set the statiol;l ad-

dress, set th<; destinatio,n, ad4re~s" and go, qnline and 
offline. Setting the; station address sets the, byte in the 
ST AD reiister. The destination addres~,is the first byte 
in the I field. Going online or offline results in either 
calling the OPE~ or CLOSE procedure, respectively. 

After the secondary station PO~e~s up,' it enters the 
'terminal 'mode', whicll accepts data from the tetmimll. 
l:Iowever, before any.'data is 'seI),t, 'the user must con
fi~ure t~(,': station. The station aiidr,ess and destin,ation 
address must be set, and the station must be placed 
online. To configure the station the ESC character is 
entered at the terminal which puts the protocol converter 
into the 'configure mode'. Figure 20-13 showS the menu 
which appears'on the terminal screenl 

( I) 8044 Secondary Statioll 
.; 

\ - Set the Station Address 
2 - Set the Destination Address 
3 - Go Online 
4 - Go Offline 
5 - Return to terminal mode 

Enter option _ 

Figure 19-13. Menu for the Protocol Converter 

In the terminal mode data is buffered up in the secon
dary station. A Line Feed character 'LF' tells the'secon
dary station to send an I frame. If more 'than 60 bytes 
are buffered in the secondary'station when a 'LF' is 
received, the applications software packetizes the data 
into 60 bytes or less per frame. If a LF is entered when 
the station is offline, an error message comes on the 
screen which says 'Unable to Oet Online'. 

The secondary station also does error checking on the 
async interface for Parity, Framing Error, and Over
run ErrQr. If one of these errors are detected, an error 
message is displayed on the terminal 'screen. 

Buffering 
, , 

There are two separate buffers in the )application 
module: a transmit buffer and a receive buffer. THe 
transmit buffer receives data from the USART, and 
sends data to the SSD. The receive buffer receives data 
from the SSD, and transmits data to the USART. Each 
buffer 'is a 256 byte software FIFO. If the tranmsit FIFO 
becomes full and no 'LF' character 'is received, the 
secondary,sta~ion auwmatically begins sending the ~ta. 
In addition, the application mOQule will shut 'ofr't,he 
terII).i!1al's trllnsmitter, using CTS until the :fIFO has 
been partially emptied. A plock diagram of the buffer" 
ing for the protQcol converter is given ,in Fi!\~re' 19-14. 

Application Module Sbftware' , ;-:,', 
,-' l' '1 i ,,' I ,..~ I .- " 

A block diagr~fIl. of fhe, apllli~tion mo~ul~ sQft~a!e 
is given in, Figure.-,l 9-15 ., T.her~, are .three il)terruJlt 



I 

MULTIDROP 

SOLe DATALINK 

W", 
II:N i;;; 
Nil: 

II: II: 
W W 
IL IL 
IL IL 
~ ~ 
III III 
W !:: > :; iii Ul 
() Z W C II: II: , 1 :; 

C 
II: 

.... Ul Ul ..J .... OW oW 
~~ C> CD~ CD~ co 

III III II: 
W 
I-
!lE 

Ul 
W 
I-
> 111-
CD 

'" '" N l- N :; W Si C > 
iii Ul II: 
() Z ..J 
W C C 
II: II: --~I 0 6 W' IL 1-; 
ii: IL )(, ii: w, 

() WN 
Z 11:" > i:;: Ul 
C .... 11: 

, ~\ 

-
..J 

ro~; C 
()~ 
z:; 
>11: 

7 
UlW 
CI- ,~ 

t4~ 

,Figure 19-14. Block Diagram of Secondary Station 
Protocol Converter Illustrating Buffering 

19-23 



routines in this module: USART _RE<;:V _INT, 
USART XMIT_INT, and TIMER_O_INT. 

, The fir~ two are for servicing theUSART. 
TIMER OINT is used if the TRANSMIT pro-. 
cedure j;:;- the SSD is called and does not return 
with the DATA TRANSMITTED parameter. 
TIMER OINT employs Timer 0 to wait a finite 
amount of time before tring to transmit again. The 
highest priority interrupt is USART _RECV _INT. The 
main program and all the procedures it calls use register 
bank 0, USART _XMIT _INT and TIMER_O_INT 
and FIFO R OUT use bank I, while USART_ 
RECV n~T allii all the procedures it calls use register 
bank 2~ . 

Power_On Procedure 

The Power_On procedure initializes all of the chips 
in the system including the 8044. The 8044 is initial
ized to use the 'on-chip DPLL with NRZI coding, 
PreFrame Sync, and Timer 1 auto reload at a baud rate 
of 62.5 Kbps. The 8254 and the .8251A are initialized -
next based on the DIP switch values attached to port 
1 on the 8044. Variables and pointers are initialized, 
then the SSD's Power-Up Procedure, Power_On_ 
D, is called. Finally the interrupt system is enabled and 
the main program is entered. 

Main Program 

The main program is a simple loop which waits for a 
frame transmit command. A frame transmit command 
is indicated when the variable SEND_DATA is greater 
than O. The value of SEND _DATA equals the number 
of 'LF' characters in the transmit FIFO, hence it also 
indicates the number of ,frames pending transmission. 
Each time a frame is sent, SEND_DATA is 
decremented by one. Thus when SEND_DATA is 
greater than 0, the main program falls down into the 
next loop which polls the XMIT _BUFFER_EMPTY 
bit. When XMIT_BUFFER_EMPTY equals I, the 
SIU XMIT BUFFER can be loaded. The first byte 
in th;-buffer ~loaded with the destination address while 
the rest of the buffer is loaded with the data. Bytes are 
removed from the transmit FIFO and placed into the 
SIU XMIT BUFFER until one of three things 
hapPe"n: I. a 7 LF, character is read out of the FIFO, 
2. the number of bytes loaded equals the size of the 
SIU_XMIT_BUFFER, or 3. the transmit FIFO is 
empty. 

After the SIU XMIT BUFFER is filled, the SSD 
TRANSMIT procedurels called and the results from 
the procedure are checked. Any result other than 
DAT A TRANSMITTED will result in several retries 
within :0inite amount of time. If all the retries fail then 
the LINK_DISC procedure is called which sends a 
message to the terminal, 'Unable to Get Online'. 

USART _RECV _I NT Procedure 

When the 8251A receives a character,the RxRDY pin 

on the 8251A is activated,and this interrupt procedure 
is entered. The routine reads the USART status register 
to determine if there ,are any errors in the character 
received. If there are, the character is discarded and the 
ERROR procedure is called wllich prints the type of 
error on the screen. If there are no errors, the received 
character is checked to see if it's an ESC. If it)s an ESC, 
the MENU procedure is called which allows the user 
to change the configuration. If neither one of these two 
conditions exits the received character is inserted 
into the transmit FIFO. The received character mayor 
may not be echoed back to the terminal based on the 
dip switch settings. 

Transmit FIFO 

The transmit FIFO consists of two procedures: FIFO_ 
T IN and FIFO_T_OUT. FIFO_T_IN inserts a 
character into the FIFO,and FIFO_ T _OUT removes 
a character from the FIFO. The FIFO itself is an array 
of 256 bytes called FIFO _ T. There are two pointers 
used as indexes in the array to address the characters: 
IN PTR T and OUT_PTR_T. IN_PTR_T 
points to the location in the array which willstore the 
next byte of data inserted. OUT _PTR_ T points to 
the next byte of data removed from the array. Both 
IN PTR T and OUT PTR T are declared as 
byte;. The FIFO_ T _ IN Procedme receives a character 
from the USART _RECV _INT procedure and stores 
it in the array location pointed to by IN_PTR_T, then 
IN PTR T is incremented. Similarly, when FIFO_ 
TOUT ;-; called by the main program, to load the sm XMIT BUFFER, the byte in the array pointed 
to byOUT_PTR_T is read, then OUT_PTR'--..T is 
incremented. Since IN_PTR_ T and OUT _PTR_ T 
are always incremented, they must be able to roll over 
when they hit the top of the 256 byte address space. This 
is done automatically by having both IN_PTR_ T and 
OUT PTR T declared as bytes. Each character 
inserted intOthe transmit FIFO is tested to see if it's 
a .LF. If it is a LF, the variable SEND_DATA is 
incremented which lets the main program know that it 
is time to send an I frame. Similarily each character 
removed from the FIFO is tested. SEND _DATA is 
decremented for every LF character removed from the 
FIFO. 

IN PTR T and OUT PTR T are also used to in
dic-;Ue ho;-many bytes ;;:e in the FIFO, and whether 
it is full or empty. When a character is placed into the 
FIFO and IN PTR T is incremented, the FIFO is full 
ifINPTR-T eQualS OUT_PTR_T. When a 
character is r~d from the FIFO and OUT _PTR_ T 
is incremented, the FIFO is empty if OUT _PTR_ T 
equals IN_PTR_ T. If the FIFO.is neither full nor 
empty, then it is in use. A byte called BUFFER--,
STATUS T is used to indicate one of these three con
ditions. The application module uses the buffer statu~ 
information to control the flow of data into and out 
of the FIFO. When the transmit FIFO is empty, the 
main program must stop loading bytes into the SIU_ 

19-24 



"11 
C c 
iiJ .... 
'P .... 
~ 
OJ 
0' 
0 .... ~ 

'P c 
I\:) iii' U'! co 

iii 
3 
0 -C 
1/1 
CD 
~ 

(/) 
0 = :e 
II) 

iiJ 

r--~-------~---------------------
I MAIN PROGRAM 

I -=::J -I 1 11---________ ---, 

FIFO_T_OUT 

FIFO_T ...,!N 

co 

[ TIMER_O_INT] 

1 
I 
I 
1 
I 
I 
I 
I 
I 
J 
I 
I 
1 
I 

I I FIFO_R_OUT I : 
1 _______________________________________________ .....1 

:D 
C 
-0 
-I! 
J,. • 



XMIT_BUFFER. Just before the FIFO is full, the 
async input must be shut off using CTS. Also if the 
FIFO is full and SEND_DATA=O, then SEND_ 
DATA must be incremented to automatically send the 
data without a LF. 

Receive FIFO 

Th~ receive FIFO operates in a similiar fashion as the 
transmit FIFO does. Data is inserted into the receive 
FIFO from the SIU _RECV procedure. The SIU_ 
RECV procedure is called by the SIU _INT procedure 
when a valid I frame is received. The SIU_RECV pro
cedure mearly polls the receive FIFO status to see if it's 
full before transfering each byte from the SIU_ 
RECV _BUFFER into the receive FIFO. If the receive 
FIFO is full, the SIU _RECV procedure remains poll
ing the FIFO status until it can insert the rest of the 
data. In the meantime, the SIU AUTO mode is respond
ing to all polls from the primary with a RNR supervisory 
frame. The USART _XMIT _INT interrupt procedure 
removes data from the receive FIFO and transmits it 
to the terminal. The USART transmit interrupt remains 
enabled while the receive FIFO has data in it. When 
the receive FIFO becomes empty, the USART transmit 
interrupt is disabled. 

19.2.6 PRIMARY STATION 

The primary station is responsible for cQntrolling the 
data link. It issues commands to the secondary stations 
and receives responses from them. The primary station 
controls link access, link level error recovery, and the 
flow of information. Secondaries can only transmit 
when polled by the primary. 

Most primary stations are either micro/minicomputers, 
or front end processors to a mainframe compu~er. The 
example primary station in this design is standalone. 
It is possible for the 8044 to be used as an intelligent 
front end processor for a microprocessor, implemen
ting the primary station fUnctions. This latter type of 
design would extensively off-load link control functions 
for the microprocessor. The code listed in this paper 
can be used as the basis for this primary station design. 
Additional software is required to interface to the 
microprocessor. A hardware design example for inter
facing the 8044 to a microprocessor can be found in 
the applications section of this handbook. 

The primary station must know the addresses of all the 
stations which will be on the network. The software for 
this primary needs to know this before it is compiled, 
however a more flexible system would down load these 
parameters. 

From the listing of the software it can be seen thai the 
variable NUMBER_OF _STATIONS is a literal 
declaration, which is 2 in this design example. There 
were three stations tested o'n this data link, two secon
daries and one ,primary. Following the NUMBER_ 
OF _STATIONS declaration is a table, loaded into the 

19-26 

object code file at compile time, which lists the addresses 
of each secondary station on the network. 

Remote Station Database 

The,primary station keeps a record of each secondary 
station on the network. This, is called the Remote 
Station Database (RSD). The RSD in this software is 
an array of structures, which can be found in the listing 
and also in Figure 19-16. Each RSD stores the necessary 
information about that secondary ,station, 

To add additional secondary stations to the network, 
one simply adjusts the NUMBER_OF _STATIONS 
declaration, and adds the additional addresses to the 
SECONDARY _ADDRESSES table. The number of 
RSDs is automatically allocated at compile time, and 
the primary automatically polls each station whose 
address is in the SECONDARY _ADDRESSES table. 

Memory for the RSDs resides in external RAM. Based 
on memory requirements for each RSD, the maximum 
number of stations can be easily buffered in external' 
RAM. (254 secondary stations is the maximum number 
SDLC will address on the datalink; i.e. 8 bit address, 
FF H is the broadcast address, and 0 is the nul address. 
Each RSD uses 70 bytes of RAM. 70 x 254 = 17,780.) 

The station state, in the RSD structure, maintain the 
status of the secondary. If this byte indicates that the 
secondary is in the DISCONNECT _S, then the primary 
tries to put the station in the 1_ T _S by sending a 
SNRM. If the response is ali VA then the station state 
changes into the 1_ T _So Any other frame received 
results in the station state remaining in the 
DISCONNECT_S. When the RSD indicates that the 
station state is in the 1_ T _S, the primary will send 
either a I, RR, or RNR command, depending on the 
local and remote buffer status. When the station state 
equals GO_ TO--"DISC the primary will send a DISC 
command. If the response is an VA frame, the station 
state will change to DISCONNECT _S, else the station 
state will remain in GO_TO _DISC. The station state 
is set to GO_TO_DISC when one of the following 
responses occur: 

I. A receive buffer overrun in the primary. 

2. An I frame is received and Nr(P) t-Ns(S). 

3. An I fral\1e or a Supervisory frame is received and 
Ns(P) + 1 f. Nr(S) 'and Ns(P) t-Nr(S). 

4. A FRMR response is received. 

5. An RD response is received. 

6. An unknown response is received. 

The send count (Ns) and receive count (Nr) are also 
maintained in the RSD. Each time an I frame is sent 
by the primary and acknowledged by the secondary, Ns 
is incremented. Nr is incremented each time a valid I 
frame is received, BUFFER_STATUS indicates the 
status of the secondary stations buffer. If a RR response 
is received, BUFFER_STATUS is set to BUFFER_ 



READY. If a RNR response is received, BUFFER_ 
STATUS is set to BUFFER_NOT_READY. 

Buffering 

The buffering for the primary station is as follows: 
within each. RSD is a 64 byte array buffer which 
is initially empty. When the primary receives an I frame, 
it looks for a match between the first byte of the I frame 
and the addresses of the secondaries on the network. 
If a match exits, the primary places the data in the RSD 
buffer of the destination station. The INFO _L.ENGTH 
in the RSD indicates how many bytes are in the buffer. 
If INFO LENGTH equals O,then the buffer is emp
ty. The Primary can buffer only one I frame per sta
tion. If a second I frame is received while the address
ed secondary's RSD buffer is full, the primary cannot 
receive any more I frames. At this point the primary 
continues to poll the secondaries using RNR supervisory 
frame. 

Primary Station Software 

A block diagram of the primary station software is 
shown in Figure 19-17. The primary station software con
sists of a main program, one interrupt routine, and 

several procedures. The POWER_ON procedure 
begins by initializing the SIU's DMA and enabling the 
receiver. Then each RSD is initialized. The DPLL and 
the timers are set, and finally the TIMER 0 interrupt 
is enabled. 

The main program consists of an iterative do loop· within 
a do forever loop. The iterative do loop polls each secon
dary station once through the do loop. The variable 
STATION NUMBER is the counter for the iterative 
do statem~ which is also used as an index to the 
array of RSD structures. The primary station issues one 
command and receives one response from every secon
dary station each time through the loop. The first state
ment in the loop loads the secondary station address, 
indexed by STATION_NUMBER into the array of the 
RSD structures. Now when the primary sends a com
mand it will have the secondary's address in the 
addre~s field of the frame. The automatic address 
recognition feature is used by the primary to recognize 
the response from the secondary. 

Next the main program determines the secondary 
stations state. Based on this state, the primary knows 
what command to send. If the station is in the 
DISCONNECT _S, the primary calls the SNRM_P 

RSD. . STATION-ADDRESS 

STATION-STATE 

NS 

NR 

BUFFER-STATUS 

INFO-LENGTH 

DATA (0) 

OATA (63) 

Figure 19-16. Remote Station Database 
Structure 

19-27 



procedure to try apd ,puUhe secondary in the 1_ 'I' ~ 
S. If the station state is in the GO 'I' 0 DISC state 
the DISC_P is calJerJ, to try and p~t th;5econdary i~ 
the L_D _So If the secondary is in neither one of the 
above two states, then it is in the I 'I' S. When the 
secondary is in the 1_ 'I' _S, the primary could send one 
of three commands: I, RR, or RNR. If'the RSD's 
buffer has data in it, indicated by INFO _LENG'I'H 
being greater than zero, and the secondary's 
BUFFER_S'I'A'I'US equals BUFFER_READY, then 
an I frame will be sent. Else if RPB=O, a RR super
visory frame will be sent. If neither one of these cases 
is true, then an RNR will be sent. 'I'he last statement 
in the main program checks the RPB bit. If set to one, 
the BUFFER_ 'I'RANSFER procedure is calJed, which 
transfers the data from the SIU receive buffer to the 
appropriate RSD buffer. 

Receive Time Out 

Each time a frame is transmitted, the primary sets a 
receive time out timer; 'I'imer O. If a response is nOt 
received within a certain time, the primary returns to 
the main program and continues polling the rest of the 
stations. 'I'he minimum length of time the primary 
should wait for a response can be calculated as the sum 
of -the following parameters. 

I. propagation time to the secondary station 
2. clear-to-send time at the secondary station's DCE 

3. appropriate time for secondary station processing 
4. propagation time from the secondary station 
5. maximum frame length time 

'I'he clear-to-send time and the propagation time are 
negligible for a local network at low bit rates. However, 
the turnaround time and the maximum frame length 
time are significant factors. Using the 8044 secondaries 
in the AU'I'O mode minhnizes turnaround time. 'I'he 
maximum frame length time comes from the fact the 
8044 does not generate an interrupt from a received 
frame until it has been completely received, and the CRC 
is verified as correct. 'I'his means that the time-out is 
bit rate dependent. 

Ns and Nr check Procedures 

Each time an I frame or supervisory frame is received, 
the Nr field in the control byte must be checked. Since 
this 'data link onlyalJows one outstanding frame, a valid 
Nr would satisfy either one of two equations; 
Ns(P) + 1 = Nr(S) the I frame previously sent by the 
primary is acknowledged, Ns(P) = Nr(S) the I frame 
previously sent is not acknowledged. If either one of 
these two cases is }rue, the CHECK_NR procedure 
returns a parameter of 'I' RUE; otherwise a FALSE 
parameter is returned. If an acknowledgement is 
Jeceived,the Ns byte in the RSD structure is in
cremented, and the Information buffer may be cleared. 
Otherwise the information buffer remains full. 

MAIN PROGRAM 

BUFFER TRANSFER 

\TIMER_O_INT! 

Figure 19-17. Block Diagram of Primary 
Station Software Structure 

19-28 



When an I frame is received, the Ns field has to be 
checked also. If Nr(P) = Ns(S), then the procedure 
returns TRUE, otherwise a FALSE is returned. 

Receive Procedure 

The receive procedure is called when a supervisory or 
information frame is sent, and a response is received 
before the time-out period. The RECEIVE procedure 
can be broken down into three parts. The first part is 
entered if an I frame is received. When an I frame is 
received, Ns, Nr and buffer overrun are checked. If 
there is a buffer overrun, or there is an error in either 
Ns or Nr, then the station state is set to GO_TO_ 
DISC. Otherwise Nr in the RSD is incremented, the 
receive field length is saved, and the RPB bit is set. By 
incrementing the Nr field, the I frame just received is 
acknowledged the next time the primary polls the secon
dary with an I frame or a supervisory frame. 
Setting RBP protects the received data, and also tells 

the main program that there is data to transfer to one 
of the RSD buffers. 

If a supervisory frame is received, the Nr field is 
checked. If a FALSE is returned, then the station state 
is set to GO_ TO_DISC. If the supervisory frame 
received was an RNR, buffer status is set to not ready. 
If the response is not an I frame, nor a supervisory 
frame, then it must be an Unnumbered frame. 

The only~ Unnumbered frames the primary recognizes 
are UA, DM, and FRMR. In any event, the station state 
is set to GO TO DISC. However if the frame 
received is a FRMR;-Nr in the second data byte of the 
I field is checked to see if the secondary acknowledged 
an I frame received before it went into the FRMR state. 
I f this is not done and the secondary ackoowledged an 
I frame which the primary did not recognize, the 
primary transmits, the I frame when the secondary 
returns to the I_T _So In this case, the secondary would 
receive duplicate I frames. 

19-29 



APPENDIX A 
8044 SOFTWARE FLOWCHARTS 

1 g.:30 



POWER-ON-D PROCEDURE' 

USER-STATE = CLOSED-S 

STATION-STATION = DISCONNECT-S 

TBS = SIU-XMIT-BUFFER'STARTING ADDRESS 

RBS = SIU-RECV-BUFFER STARTING ADDRESS 

RBL = BUFFER LENGTH 

ENABLE SIU RECEIVER: RBE = 1 

XMIT -BUFFER-EMPTY = 1 

RE.TURN 

CLOSE PROCEDURE 

RETURN 

OPEN PROCEDURE 

USER STATE = OPEN_S 

RETURN 

Figure 19-18. Secondary Station Driver Flow Chart 

19-31 



XMIT-UNNUMBERED PROCEDU~E 

TRANSMIT PROCEDURE 

XMIT-BUFFER-EMPTY = 0 

TBL = XMIT -BUFFER-LENGTH 

I-FRAME:-LENGTH = XMIT-BUFFER-LENG:rH 

STATUS = DATA-TRANSMITTED 

STATUS = USER-STATE-CLOSE 

STATUS = 
LINK_DISCONNECTED 

STATUS = 
')VERFLOW 

Figure 19-19_ Secondary Station Driver Flow Chart 

19-32 



XMIT -FRMR PROCEDURE 

FRMR-BUFFER (2) = REASON 

STATION-STATE = FRMR-S 

v 

SEND FRMR 
FRAME 

N 

Figure 19-20_ Secondary Station Driver Flow Chart 

19-33 



IN·DISCONNECT·STATE PROCEDURE 

N 

SNRM·RESPONSE PROCEDURE 

Figure 19-21. Secondary Station Driver Flow Chart 

19-34 



RUPI™.44 

IN-FRMR-STATE PROCEDURE 

y 

y 

Figure 19-22. Secondary Station Driver Flow Chart 

19-35 



COMMAND DeCODE PROCEDURE 

Figure 19-23. Secondary Station Driver Flow Chart 

19-36 



:!! 
IQ 
c: 
iil .... 
cp 
N 
.". 

en 
(II 
n 
0 
:::J 
CI. 
I» .... -< <p en c.> --l I» = 0 
:::J 

0 
~. 

~ ... 
" ~ 
0 
':r 
I» 
~ 

SIU·INT PROCEDURE 

N 

Y 

Y 

Y 

XMIT·BUFFER·EMPTY 
= 1 

N 

CALL COMMAND·DECODE 11---------, 

CALL XmJ~~~~~BERED 1 • I 

CALL XMIT·FRMR 

CALL COMMAND DECODE 

::D 
C 
"CJ 

t 
.". 



MAIN PROGRAM 

LOAD DESTINATION 
ADDRESS IN FIRST 
BYTE OF SIU-XMIT 

BUFFER 

LOAD INFORMATION 
INTO SIU XMIT-BUFFER 

SIU BUFFER LENGTH 
OR FIFO-T EMPTY 

OUTPUT MESSAGE 
TO TERMINAL 

'UNABLE TO GET ON LINE' 

Y 

Figure 19-25~ Application Module Flow Chart 

19-38 



RUPITIt·44 

USART·RECV·INT INTERRUPT PROCEDURE 

N 

Figure 19-26. Application Module Flow Chart 

~1g:.39 



MENU PROCEDURE 

RETURN 

OUTPUT MENU 
. TO TERMINAL 

CALL OUTPUT-MESSAGE 
'ENTER THE STATION ADDRESS:~_ 

CALL GET -HEX 
SHIFT TO LEFT BY FOUR' 

LOAD ADDRESS 
INTO STAD 

CALL OUTPUT-MESSAGE 
'THE NEW STATION ADDRESS:_~ 

N', 

CALL OUTPUT-MESSAGE 
'ENTER THE DESTINATION ADDRESS: .. __ 

CALL GET-HEX 
SHIFT TO LEFT BY FOUR 

LOAD ADDRESS 
INTO DESTINATION-ADDRESS 

CALL OUT-MESSAGE 
'THE NEW DESTINATION ADDRESS IS:~ 

RETURN 

Figure 19-27. Application Module Flow Chart 

J 9.:40 



ERROR PROCEDUR,E 

Y. 

RESET ERROR FLAGS ON USART 

Figure 19-28 Application Module Flow Chart 

19-41 



FIFO-T-OUT PROCEDURE 

Figure 19-29 _ Application Module Flow Chart 

19--42 



FIFO·T·IN PROCEDURE 

N 

RETURN 

Figure 19-30. Application Module Flow Chart 

19-43 



SIU·RECV PROCEDURE 

Figure 19-31. Application Module Flow Chart 

19-44 



POWER ON 

I INITIALIZE SIU REGISTERS I 
I 

FOR EACH STATION 
INITIALIZE RSD RECORDS 

'1. STATION-ADDRESS 
2. STATION-STATE = DISCONNECT 

3. BUFFER-STATE = BUFFER-NOT-READV 
4. INFO-LENGTH = 0 

I 
I RETURN I 

Figure 19-32. Primary Station Flow Charts 

19-45 



PRIMARY STATION MAIN PROGRAM 

CALL SEND-SNRM 
Y 

Y 
CALL SEND-DISC 

Y CALL XMIT ITS 
(T-I-FRAME) - t-------~ 

CALL XMIT·I-T·S 
(T-RR) 

CALL BUFFER· TRANSFER 

Y 

Y 

ADDRESS NEXT STATION 
SET STAD 

Figure 19-33. Primary Station Flow Charts 

19-46 



SEND·SNRM PROCEDURE 

N 

SEND·DISC PROCEDURE 

~ 

N 

STATION·STATE = DISCONNECT!S 
BUFFER·STATUS = BUFFER·NOT·READY 

Figure 19-34. Primary Station Flow Charts 

19-47 



XMIT·I·T·S PROCEDURE 

CALL RECEIVE 

XMIT PROCEDURE 

y 

BUILD CONTROL 
FIELD USING EITHER 

I, RR, RNR 
AND NR AND/OR NS 

Figure 19-35. Primary Station Flow Charts 

19-48 



BUFFER-TRANSFER PROCEDURE 

MOVE DATA FROM 
SIU·RECV·BUFFER 
TO RSD BUFFER 

Figure 19-36. Primary Station Flow Charts 

19-49 



CHECK_NR PROCEDURE 

CHECK-IllS PROCEDURE 

F;igure 19-37. Primary Station Flow Charts , 

19-50 



< ... 

<p 
~ 

"11 
cO 
c 
iil ... 
t 
co 

'"0 
:::!. 
3 
1\1 

< 
en 
Dr -g' 
"11 

~ 
9 
1\1 

~ STATION·STATE 
= GO-TO·DISC 

REMOTE BUFFER·STATUS = BUFFER· READY 

Y 

~ 
i i 

RETURN 

::D 
C 
'"0< 

) 
• • 



APPENDIX B 
LISTINGS OF SOFTWARE MODULES 

1-9-52 



inter 
PL/M-51 COMPILER 

ISIS-II PL/II-51 Vt 0 
COl'tPILER INVOKED BY. . F2 PL"~t : FO!. APNOTE. SRC 

6 

STITLE ('RUPI-44 Second,.,.., St.tun Driver') 
.DEBUG 
.REQISTERBA~( t) 
I'IAJ~1'I0D' DOl 
_HOLIST 

'* To •• ve pap.,. the ROPI registers .". nat H.t.d. but thh u the .t.t ••• nt 
u •• d to inc Iud., them SINCLUDE (. F2 REQ44. DeL) *1 

DECLARE LIT LITERALLY 
TRUE LIT 
FALSE LIT 
FOREVER LIT 

1* SOLe cDflllII.nd. ond 1' •• pon .... *1 

DECLARE SNRM LIT 
UA LIT 
DISC LIT 
OM LIT 
FRI1R LIT 
REG_DISC LIT 
UP LIT 
TEST LIT 

1* u •• ,. st.t •• */ 

OPEN_S LIT 
CLOSED_S LIT 

1* St.t10n states 

DISCONNECT _8 
FRMR S 

LIT 
LIT 
~~IT I_Tji 

*1 

'LITERALLY'. 
'OFFH', 
'OOH', 
'WHILE l'i 

'93H'. 
'73H'. 
'43H'. 
'lFH'. 
'97H', 
'53H'. 
'33M', 
'OE3H'. 

'OOH', 
·'OtH', 

'OOH', '* LOOICALLV DISCONNECTED STATE*I 
·OtH'. /* FRAME RE.JECT STATE *1 
'02H', /* INFORMATION TRANSFER STATE *1 

/* Status valu ... r.,turned .prom TRANSMIT pT'Dcadura *1 

USER_STATE_CLOSED LIT 
LINK_DISCONNECTED LIT 
OVERFLOW LIT 
DATA_TRANSMITTED LIT 

'OOH', 
'OtH', 
'02H'. 
'03H', 

1* Param.t.r<J pass ad to XMIT _FRMR *1 

UNASSIGNED_C LIT 
NO_IJIELO..:ALLOWEO LIT 
BUFF _OVERRUN LIT 
SES_ERR LIT 

'OOH', 
'OtH', 
'02M', 
'03H', 

19-53 

20.24.47 09/20/93 PAGE 



inter 
PL/I1-51 COI1P!LER 

7 2 
B 2 

" 1 

10 2 
11 2 
12 1 

13 :2 
14 2 
15 :I 
16 1 

17 :2 

18 2 
19 " 20 2 
21 2 
22 2 
23 2 
24 2 

25 

26 2 

27 2 

2B 2 

30 2 

32 2 

34 3 

USER_BTATE 
STATION_STATE 
IjRAI1E_LENQTH 

BYTE 
BYTE 
BYTE 

AUXILIARY, 
AUXILIARY. 
AUXILIARY, 

1* Bu".". *1 

BUFFER.J-ENQTH 
SIU_XI1IT _BUFFER (BUFFER.J-ENOTH) 
SIU_RECYJlUFFER(BUFFER_LENOTH) 
FRHRJlUFFER(3) BYTE, 

XI1IT _BUFFER...EI1PTY BIT PUBLIC, 

SIU..RECY: PROCEDURE (LENGTH) EXTERNAU 
DECLARE LENGTH BYTE, 

END SIU..RECY, 

OPEN: PROCEDURE PUBLIC USING 21 
USER_BTATE-OPEN_S, 

END OPEN, 

CLOSE: PROCEDURE PUBLIC USING iz. 
AM-O, 
USER_STATE-CLOSED_S. 

END CLOSE, 

POWER_ON.J>: PROCEDVRE PUBLIC USINg 0, 

USER_STATE-CLOSED_S, 
STATION_STATE-DISCONNECT _9; 
TDS-. SIU_XI"IIT_BUFFSHO), 
RBa-. SIU_RECV_BUFFER(O); 
RBL-DUFFER_LENGTH, 

LIT 
BYTE 
BYTE 

RBE"l, /* En.ble the SIU'. receiv.,. *1 
XI1I T JlUFFERJ;I1PTY-l, 

END POWER_ON_Di 

~60'. 

PUBLIC 
PUBLIC, 

IDATA, 

TRANSMIT: PROtEDURE eXMIT JUFFERJ-ENGTH) BYTE PUBLIC USING 01 

DECLARE XI1IT _BUFFER_LENOTH BYTE, 
I BYTE 
StATUS BYTE 

IF USER_STATE-CLOSEO_S 
THEN STATUS-USER_STATE_CLOSED. 

ELSE IF STATION_STATE-DISCONNECT_S 

AUXILIARY,. 
AUXILIARY; 

THEN STATUS-LINKJHSCONNECTED, 
ELSE IF XI1IT _BUFFER.J-ENOTH>BUFFER_LENQTH 

THEN STATUS-tlVERFLOW; 
ELSE 00, 

19-54 

20· 24· 47 09/20/B3 PAgE 2 



35 3 
36 3 
37 3 

38 3 
39 3 
40 3 
41 2 
42 1 

43 2 

44 2 

45 2 
41> 2 
47 2 
48 3 
49 3 
50 2 

51 

52 2 

53 2 
54 2 
5' 2 

57 3 
5B 3 
5' 3 
1>0 2 

62 3 
63 3 
64 3 
65 2 

66 

67 2 

6B 2 

69 2 

70 2 
71 2 
72 2 

73 2 
74 3 
75 3 

XI'IIT JlUFFERj: .... TY.OI 
TBL.XIIIT JlUFFER_LENOTH, 

20: 2~: ~7 09/20/83 PAGE 3 

I_FRN1EJ.ENQT"X"ITJlUFFER~ENOTHi 1* Sto". hngtb in ca •• station 

TBF-l, 
STATUB-D"T"_TRANSI'\ITTEDI 

ENDI 
RETURN STATUSI 

END TR"NSI'fITI 

XI'IIT _UNNUtIBERED: PROCEDURE (CONTROL_BYTE) I 

DECLARE CONTROL_BYTE BYTE, 

TCB.CDNTRDL_BYTE, 
TBF-IJ 
RTB-l, 
DO WHILE NOT 81, 
END, 
81-01 

END XIIIT _UNNUI'\BEREDI 

_II...RESPONSE: PROCEDURE , 

STATION_STATE-I_T _9; 
NSNRaGl 
IF (RCB AND 10H) <> 0 '* Respond if polled *' 

THEN DO, 
TBL-o; 
CALL XI'IIT_UNNUf18EREDCUA)J 

END, 

,~ ...... t btl FRM. SNAM .tc *' 

IF XMITJlUFFER-.EI'IPTY-O /* I' lin I fI ........ , h,t p.ndlng 1or.ns.i5sian 
tb.n .... ,to". it *' 

THEN DOJ 
TBL-I.,FRAI1EJ-ENQTH, 
TBF-l, 

ENOl _I, 
END SNRI'I...RESPDNSE, 

XI'IIT_FRI1R: PROCEDURE (REASON) 

DECLARE REASON BYTE, 

TCB-FRI1R. 

TB&-. FRI'IR_BUFFER(O) , 
TBL-3, 
FRI'IR_8UFFER (0)-RC8; '* SIHP nibb Ie, in NSNR *' 
FRMR __ UFFER(I)-CSHL(NSNR AND OEH).4) OR SHRC<NSNR AND OEOH).4»). 
DO CASE REASON, 

FRMRJiUFFER(2)-OlH, '* UNASSIQNED_C *, 

19-55 



inter 

76 3 
n 3 
78 3 
79 3 

ao ., 
Bl ., 
83 3 
B4 3 
8' 4 .. 4 
87 3 
Ba 3 
B9 1 

'PO ., 
91 ., 
93 ., 
9' 3 
.6 3 
97 3 
98 1 

99 ., 
100 ., 
10l! 3 
103 3 
104 3 

10' ., 
107 3 
loa 3 
109 3 

111 4 
112 4 
113 4 
114 3 

11' 3 
116 3 

liB 4 
119 4 

END. 

FRI1RJlUFFER (l!)-o2H, 
FRI1RJlUFFER (.,) -04H, 
FRPlRJJVFFER(2)·08HJ 

STATION_STATE-FRI1R_S, 

IF (RCB AND 10H) <>0 
THEN DO. 

TBF-S, 
Rn-l, 

1* NO_IJ'IEL.D~LLOWED *1 
1* .UFF _OVERRUN *1 
/. SESJ:RR ., 

DO WHILE~NOT SII 
ENOl 
SI-o. 

END, 

IF (UBER_STATE-OPEN_S) AND «RCB AND O£FH).SNRM}) 
THEN CALL 9NR"-"ESPONBE, 

ELSE IF (RCB AND lQH) <> 0 
THEN DO. 

TBL-o, 
CALL XMIT _lJNNUfII8ERED( DI1); 

ENOl 
END IN_DISCONNECT_STATEI 

IN_FRMR_STATE: PROCEDURE. 1* Called bV StU_tNT when .. freen. ba. be.n l'ec:eived 
when in 10he FMMR .'hte *1 

IF (RCB AND-OEFH)-SNRM 
THEN DO, 

CAL.L SNRMJESPONSE. 

20: 24': 47 09/li!O/e~ PAGE 4 

T8S" SIU_XMIT_BUFFER(O), 1* Restore tl'ansllIlt buttl.,. 9tal't address *1 
ENDI 

ELSE IF (RCB AND OEFH)-DISC 
THEN DO. 

STATION_STATE-DISCONNECT _5i 
T8S-, SIU_XMIT_BUFFER(O)J 1* RUltor. tT'ansmlt buffe.,. start address */ 
IF (RCB AND 10H)<> 0 

THEN DO, 
TBL-Oi 
CALL XI'1IT_UNNUMBERED(UA), 

ENOl 
END; 

ELSE DO, 1* Recuve contT'ol bvt. ill somethIng other than DISC or SNRM *1 
IF (RCB AND 10H) <> 0 

THEN 00, 
TDF=l, 
RTS .. l, 

19-56 



intJ 
PL'I'I-51 COMPILER 20- 24: 47 0fP/20/B3 PAGE 

120 5 
121 5 
122 4 
123 3 

124 

125 2 

126 2 

128 2 

130 3 
131 3 

133 4 
134 4 
135 4 
136 3 

137 2 

13'1 3 

141 4 

143 5 
144 5 
145 5 
146 5 
147 5 
148 5 
149 5 

I~ 5 
5 

152 4 

154 5 
155 5 
156 5 
157 4 
158 3 
159 3 

160 2 

162 3 
163 3 

165 3 

EN'" 

DO WHILE NOT SII 
END, 

ENOl 

END IN_FRfItR_STATEI 

COMMAND_DECODE: P~OCEDURE 

IF (RCB AND OEFtO-SNRM 
T~N CALL SN~M_RESPONSE' 

ELSE: IF (RCB AND OEFH)-DISC 
THEN 001 

9T AT ION_ST ATE-D1 SCONNECT _So 
IF (RCB AND 10H)OO 

THEN DOl 
TBL-OJ 
CALL XMIT_UNNUr1BERED(UA)I 

ENOl 
ENOl 

ELSE IF (ReB AND OEFH) -TEST 
THEN DOl 

IF (ReB AND lOH)O 1* Re9pond if polled *1 
THEN DOl '* FOR BOY-I, SEND THE TEST RESPONSE WITHOUT AN I FIELQ *' 

IF (BOVat) 
THEN DO. 

TBL-O, 
CALL XMIT_UNNUP1BEREDCTEST OR lOH)1 

END. 
ELSE DOl 1* If no BOV ••• nd received I Ueld back to primal'W *1 

TBL-RFL. 
TSS=RBSI • 
CALL XMIT_UNNUMBEREDCTEST OR lOH)J 
T88-. SIU_XI'IIT_BUFFER(O), '* Resto1'. TBS *' 

END, 

1* If an I 'rame .... s pending •• ltt It up again *' 
IF XMIT _BUFFER-.EMPTY*O 

THEN,DOJ. 

END, 

TBL'" I _FRAl'IE_LENQTH. 
TBF-lj 

ENP, 

ELSE IF (RCB AND 01H) • 0 1* Kicked out of the AUTO mode becaus. 

THEN DO, 
an I f1'a.e was "eceiv.d whlltt RPB • 1 *1 

AM ... 1; 
IF XI'1IT _BUFFER_EI1PTY • 1 

THEN TaL ... O. 
TBF ... 1. 1* Send an AUTO mod. ,..sponse *1 

19-57 



intJ 
PL/t'fI-~l CDMPIl .. ER 

I .... 3 
167 3 

168 2 

169 

RTS" 11 
ENOl 

170 2 StU_INT PROCE~RE INTERRUPT 41 

171 2 

172 2 
173 2 

175 3 

177 , 
178 5 
179 5 
18Q 5 
lSI 4 
IS2 4 
183 3 
IS4 3 

IS5 2 

IS7 3 

189 3 

I'll 4 
192 4 
193 4 
194 3 

196 3 

DECLARE BYTE AUXILIARY, 

81-0, 
IF STATION_STAfE<> I_T_9 1* Mu-.t be in NON-AUTO mode *1 

THEN DO. 
IF RBE-O 1* Received II 'T'ame? Give response *' 

THEN DO. 

RETURN, 
ENOl 

DO CASE STATION_STATE, 
CALL IN-PISCONNECT_STATE. 
CAL.L IN_FRMR_STATEI 

ENOl 
RBE-!I 

ENOl 

1* If the program " •• ch •• this point. STATION_STATE-I_T_S 
which m •• ns the SIU eithe" w.s. or shl1 h 1n the AUTO MODE *1 

IF AM-O 
THEN DO. 

IF (RCB AND OEFH)-DISC 
THEN CALL COMMAND-PECODE. 

EL.SE IF USER_STATE-CL.Q9ED_S 
THEN DOl 

ELSE IF SES=t 

TaL-Oj 
CALL XMIT_UNNUMBERED(REGJ>ISC); 

END. 

THEN CALL XMITJ'RMReSES_ERR). 
ELSE IF BOV=1 

20: 24: 47 09/20/83 PAO£ .. 

19S 4 
THEN Dill 1* DON'T SEND FRMR IF A TEST WAS RECEIVED*I 

IF (RCB AND OEFH)-TEST 

200 4 
201 4 
202 3 
203 3 
204 3 

THEN CALL COMMAND_DECODE. 
ELSE CALL XHIT_FRMR(BUFF_OVERRUN)I 

ENOl 
ELS~ CALL COMMAND_DECODE. 
RBE=l. 

END. 

205 
206 

3 
3 

ELSE DO. 1* MUST STILL BE IN AUTO MODE *1 
IF TBF=O 

208 3 
THEN XMITJUFFER~MPTyaL 1* TMANSMITTED A FRAME *1 

IF RBE=O 
THEN DCh 

PL/I't-~l COMPILER RUPI-44 Secondartj Station Driver 

210 4 
211 4 
212 4 
213 4 
214 4 
215 3 
216 I 

:il17 

WAANINOS' 

END SlU_INTI 

END MAIN*"IJD. 

ENDJ 

4 IS THE HIGHEST USED INTERRUPT 

MODULE INFORMATION: 
CODE SIZE 
CONSTANT SIZE 
DIRECT VARIABLE SIZE 
INDIRECT VARIABLE SIZE 
BIT SIZE 
BIT-ADDRESSABLE SIZE 
AUXILIARy VARIABLE SIZE 
MAXIMUM STACK SIZE 
REGISTER-BANKeS) USED: 
460 LINES READ 
o PROQRAM ERROR e 5) 

END ,OF PL/M-51 COMPILATION 

RBP-L 1* RNR STATE *1 
RBE=l. 1* RE-ENABLE RECEIVER *1 
CALL SIU.-RECV{RFU, 
RSP-O, 1* RR STATE *1 

ENOl 

eSTATlC+OVERLAYABLE) 
• 02BFH 6550 
= OOOOH 00 

3FH+02H 63D+ 2D 
3CH+00H 60D+ 00 
OlH+OOH 1D+ OD 
OOH+OOH 00+ 00 

'"' 0006H 60 
,. 0017H 230 

o 1 2, 

19-58 

20· 24: 47 09/20/93 PAGE 



inter 
PL/~-51 COMPILER Applic.Uon Moduh' A .... nc:/SDLC PT'otocol convertltl' 

IBIS-II PLlI1-~l VI 0 
CDf1PILER INVOKED BY' : 412: pl .. '1 : 412- unot •• "e 

5 

.TITLE ('AppUc.Uon Module 

.debug 
S,..gi.te"b.nk (0) 
u •• "tmod: dOl 
.NOLIST 
DECLARE LIT 

TRUE 
FALSE 
FOREVER 
ESC 
LF 
CR 
BS 
BEL 
EMPTY 
INUSE 
FULL 
USER_STATESLOSED 
LINK_DISCONNECTED 
OVERFLOW 
DATA_TRANSI1ITTED 

1* BUFFERS *1 

LITERALLV 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 

BUFFER_LENGTH LIT 
SIU~MIT _BUFFER (BUFFER_LENGTH) 
SIU _RECV _BUFFER (BUFFER_LENGTH) 
FIFO_THiZ36) BYTE 
IN_PTR_T BYTE 
OUT_PTR_T BYTE 
BUFFER_STATUS_T BYTE 
FIFO_R(256) BVTI:: 
IN_PTR_R BYTE 
OUT J'TRJI BYTE 
BUFFER_STATUS_R BYTE 

LENGTH 
CHAR 
I 
USARTS"D 
DESTINATION_ADDRESS 
SEND_DATA 
RESULT 
ERR_I'IESSAOE_INDEX 
ERR_"ESSAGEJ'TR 

BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
WORD 

'LITERALLY', 
'OFFH'. 
'OOH'. 
'WHILE 1 '. 
'IBH'. 
'OAH', 
'ODH', 
'08H'. 
'07H', 
'OOH', 
'OJH'. 
'02H'. 
·OOH'. 
'01H', 
'02H', 
'03H', 

'60', 
BYTE 
BYTE 

AUXILIARY. 
" AUXILIARY. 

AUXILIARY, 
AUXILIARY, 
AUXILIARY. 
AUXILIARY. 
AUXILIARY, 
AUXILIARY, 

AUXILIARY. 
AUXILIARY. 
AUXILIARY. 
AUXILIARY. 
AUXILIARY. 
AUXILIARY. 
AUXILIARY. 
AUXILIARX· 
AUXILIARY. 

EXTERNAL 
EXTERNAL, 

lDATA. 

PARITY(*) BYTE CONSTANT (LF. CR. 'PaT'itl,l ET'T'oT' Detected'.LF.CR.OOH). 
FRAME<*) BYTE CONSTANT (LF. CR. 'FTamlng ETT'OT' Detected '. LF, CR. OOH). 

19-59 

18 '0-:53 09/19/83 PAGE 



inter 
PL/H-51 COMPILER Application Moduli. A • .,nc/SDLC Prottlcol conv.,,'hT 

OVEft_RVN(*) BVTE CONSTANT(LF.CR. 'Overrun E,,1'o," D.t.ct.d',t..F.CR,O), 
LINKC.) BYTE CONSTANT(LF, CR. 'Unable to O.t Onlln.',LF.CA.OOH), 
DEST..ADDR(') BYTE CONSTANT(CR. ~F. ~F. 

'Ent ... th. d •• UnatiDn .dd" •••. _'I 8S. BS. 0)' 

D..ADDR..AC~(*' BYTE CONSTANT<C~. ~F. ~F. 
'Th. n .... ct •• tination add" ••• ts ',0), 

STAT_ADDR(') BYTE CONSTANT (CR. ~F. ~F. 
'Ent.,. thi !St.tion .-ddT'.": _',8S,8S,0), 

S..ADDR..AC~(*) BYTE CONSTANT(CR. ~F. ~F. 
'Th. ne"" .t.tion addr ••• i. '.0), 

ADDR.-ACK_FIN(*) BVTE CONSTANT('H',CR,LF.LF.O), 

~~~rON~~~I_:!T:.~~~!~T~~:~i;~·,:FCR' LF. 
, \/', CR. LF. LF.
'1 - S.t th' Station Add" ••• '.L.F.CR.
'2 - S.t the D •• tin.Uon Acfd ',CR.LF.
'3 - Go On1 tn.', CR, LF.
'4 - 00 O,'lil'l.',CR,LF.
'S - R.tul'" to t.rllina1 lWlod.',CR.LF,LF,
, Ent." option: _#. BS. 0),

FIN(_) BYTE CONSTANTtCR, LF. LF. 0);

HEX_TABL.E C 17) BYTE CDNSTANT("01234'6789ABCDEF". BEL).
MENU_CHARCo) 8YTE CONSTANTC'12345'.8EL.),

lB,50.,53 09/19/83 PAQE 2

X"IT _BUFFER_EMPTY
STOP .JIlT

BIT
BIT
BIT
BIT.
BIT.

EXTERNAL 1* S.mapho". '01' RUPl SIOU Tran.mit Buff." *1
AT(147) REO. 1* T.rminal paramet • ..,.. *1

ECHO AT(084H) REG.
WAIT 1* Timeout fla. *1
ERRORJ~AQ /* E1'1'01' m ••• ag. Flag _/

USART_STATUB BVTE AnOB01H) AUXILIARY,
USART_DATA BYTE AT<OBOOH) AUXILIARY.
TIHER_CONTRO~ BYTE AT(IOO3H) AUXI~IARY.
TIHER_O BYTI!: AT(IOOOH) AUXILIARY,
TIHER_I BYTE AT(IOOIH) AUXILIARY.
TIHERj! BYTE AT(1002H) AUXILIARV;

19-60

intJ
PL/I'1-:U COMrILER Applic.Uon Moduh Ast.lnc/SDLC PT'o~ocol convltrtltr

6 2
7 1

9 2
9 1

10 2
11 1

12 2
13 2
14 1

" 2
16 2
17 1

19 2

19 2

20 2
21 2
22 2
23 2

24 2
25 2
26 2
27 2

POWER_ON_D" PROCEDURE EXTERNAL I
END POWER_DNJ).

CLOSE' PROCEDURE EXTERNAL USING 21
END CLOSE.

OPEN PROCEDURE EXTERNAL USING 21
END OPEN.

TRANSMIT' PROCEDURE (XI1IT_BUFFER_LENGTH)
DECL.ARE XI'1IT _BUFFER_LENGTH BYTE,

END TRANSMIT,

TIMER_O_INT' PROCEDURE INTERRUPT 1 USING 1;
WAIT-O.

END TIMER_O_INTI

PROCEDURE USING o!

DECLARE TEMP BYTE AUXILIARY,

BYTE EXTERNAL

SMO .. 54HI 1* Uung DPLL.. NRZI, PFS, TIMER 1. e 612. :; Kbps *1
TMOD=21H,' 1* T1me" 0 16 bIt. TImeT' 1 auto reload *1
THI-OFFHI
TCON-40Hl

TIMER_CONTROL=37HI 1* Inlhal1ze USART's system clockl 8234 *1
TlMER_O=04H.
TIMER O-OOH,
TIMER:CONTROL=77H; 1* Inltlalue TxC. RxC *1

1* O.'inition '01" dip ~l&Iitch ti@d to P1 o to PI. b

81 t Rat@ 3 2

300 on
1200 on on off
2400 on off on
4900 on off off
9600 off on

19200 0" off

Stop b1 t 4

1 on
2 off

Pal"lt~ 6

0" on
odd on off

d" 0" on

0" off

19-61

~B 00'3 O~/19/e3 PAGE 3

inter
PL/".,.;~n COt"lPJLER - ",p11c.1;10n Module' AS!jnc/SDLC PT'otatol conv.,.'t." lB: 30: 53 09119/83 PAGE 4

28 2
29 2

31 3

32 4
33 4
34 4
35 4

36 4
37 4
3B 4
39 4

40 4
41 4
42 4
43 4

44 4
45 4
46 4
47 4

4B 4
49 4
50 4
51 4

52 4
33 4
34 4
55 4
56 3

57 2
,58 2
59 2
60 2

61 2
62 2
63 2

63 2

66 2
67 2

68 2

Echo 7

on

0"
on
off *1

TEf'IP-Pl AND 07HI 1* R •• d the dip .witch to detel'rnine the bit ,..te *1
IF TEMP)5

TJo£N TEMP-O.
DO CASE TEMP 1 '* 300 *1

DO.

END.

TIP'lER_l-S3H1
TIMER_1-2OH.

1* 1200 *1 DOJ
TIMER_I-20H.
TIMER_I-oSHI

END.

1* 2400 *1 DO,
TlMER_I-oOH.
TIHER_I-02Hi

END;

1* 4800 *1 DOl
TIMER_I-30H,
TIMER_t-01H;

END,

1* 9600 *1 'DOl

END;

1* 19200 *1 DOl

END,
ENOl

TIMER_1-65HI
TlMER_I=O.

TIMER_1-33Hl
TIMER_I-O.

USART_STATUS-O, ,* Soft ". '0 ,.-0" re.et flor 8251A *1
USART _STATUS=-O;
USART _STATUS-O.
VSRRT _STATUS-40HI

TEHP-OAHI 1* D.teT'mine the p.n·it~ and. of stop bit. *1
TEMP-TEMP OR (P 1 AND 30H) I
IF STOP _8IT=1

THEN TEMP-TEI1P OR eCOH;
EL.SE TEMP-TEMP OR 40H.

USART_STATUS-TEMP; 1* USART Mod. Ward *1
USART_STATUS, USART_CMO.~7H; I*USART COI'AM."d WO'f'd RTS. RxE. DTR, TxEN-l*1

STAD-OFFHI

19-62

intJ
PL/t1-&l CO ILER Applie.UDn Maduh' A.vne/SDLe Protocol convert.", lB. 50: 53 09/t9/83 PAGE

69 2

70 2

71 2

72 2

73 2

74 2

7~ 2

76

77 2
78 2

79 2
80 2

81 2

83 3
84 3
85 3
86 3
87 3
88 2

90

91 2

92 2

93 2
94 2
9~ ,2

97 3
98 3
99 3

100 2

102 2

103

104 2

SENDJ)IITA-Oi '* Inti.lin Flags *'
INJTR_T. OUT_PTR_T. IN_PTR_R. OUT_PTR_R • O. ,*Inlh.llu FIFO PTRs_1

BUFFER_STATUS_T. BUFFER_STATUS-.R- EMPTY;

CALL POWER_ON_D'

1* USART's RxRdU is the highest PT'lOT'ltV *1
1* Bath ext.rn.! int."rupts are level tritg.l"ed*' '* En.bt. USART RlIRd". SI •• nd Ti •• ,:, 0 int.~l'upt •• 1

ERRORJLAG-OI

END POWER_ON;

FIFO_R_IN: PROCEDURE (CHAR) USING I.
DECLARE CHAR BYTE,

FIFO_RC IN_PTR_R)-CHARI
IN_PTR_R-IN_PTR_R+l i

IF 8UFFER_STATUS_R-EHPTV
THEN DOl

£"-0.
BUFFER_STATUSJt-INUSEI
Ext-!l 1* Enabl. USIIRT'. TlfD Interrupt *1
EA-l,

END.
ELSE IF «BUFFER_STATUS_R=INUSE) AND tINJTR_R=OUT_PTR_R»

THEN BUFFER_STATUS_R-FUI-L.

END FIFO_R_IN;

FIFO_R_OUT: PROCEDURE BVTE USINQ I.

DECLARE CHAR BYTE

CHAR-FIFO_R(OUT JTR_R),
OUT _PTR.Jt-oUT _PTR_R+l;
IF OU,T JTR_R-INJ'TR_R

THEN DOJ

AUXILIARV,

EX1-O, 1* Shut. of'f TxD inte1'1'upt *1
DUFFER_STATUS_R-EHPTYi

ENOl
ELSE IF «8UFFER_STATUS_R~FULL) AND COUT_PTR_R-20Il:IN_PTR_'O)

THEN BUFFER_STATUS_R-INUSEJ

RETURN CHAR I

USART_XMIT_INT: PROCEDURE INTERRUPT 2 USINQ 11

19-63

PL/M-:51 tDMP,ILER Application Modul. Alllnc/SOL.C Protocol convert.r lS. 50. e3 09/1'UB3 PAGE 4

105 :12

106 2

108 3

110 4
111 4
112 4

113 4
114 4
115 4

117 4
118 3

119 2

120

I'll 2

122 2

123 3
124 4
125 4
126 3
127 3

12B

129

130 :I

131 :I
132 2
133 2

135 2

137 :1

139 3
140 3
'141 3

143 3
144 1

DECLARE
"ESSACIE BASED ERR_MSSAQE.J'TR (1)

IF ERROR_FLAQ
THEN DOl

BYTE CONSTANT.

IF HESSAOE(ERR_MESSAGE_INDEX)<>O 1* Th.n conhnue to .end the 1I •••• g. *1
THEN DOl

USART ..,DATA - ~S9AgE(ERRJ1ESSAQE_INDEXlI
ERRJlESSAQE_INDEX-ERR_MESSAQE_I NDEX + 11

ENOl

ELSE 00; 1* If! m •••• ,. h don. T' •• ,.t ERROR_fLAG and .hut off! inte"rupt If FIFO is empty *1
ERROR_FLAQ-O.
IF BUFFER_STATUSJ '. EMPTY

THEN EXt_OJ
END.

ENOl

END USART _XMIT _INTJ

SIU_RECV. PROCEDURE (LENGTH) PUBLIC USING I.

DECLARE LENGTH BYTE.
I BYTE AUXILIARY,

DO X-O TO L.ENOTH-l;
DO WHIL.E BUFFER_STATUSJ-FUL.LJ 1* Check to Ie. if! flfo lSi full *1
ENOl
CALL FIFO..,R_IN(SIU_RECV_BUFFER(I»,

ENOl

FIFO_T_IN: PROCEDURE (CHAR) USING 2;

DECLARE CHAR BYTE.

FIFO_T< IN_PTR_T)-CHAR.
IN_PTR_T-IN_PTR_T+l;
IF CHAR-LF

THEN SEND_DATA.SEND_D~TA+l.

IF BUFFER_STATUS_T-EMPTY
, THEN BUFFER_BTATUS_T-INUSEi

ELSE IF «BUFFER_STATUS_T-INUSE) AND (IN_PTR_T+20-0UTJTR_T»
THEN DO, 1* Stop recephon u.i.ng CTS *1

END.

USART_BTATUS. UBART_CMD-UBART_CHD AND NOT<2OH)1
BUFFER_STATUS_T-FUL.LI
IF SEND_DATA=-O

THEN SEND_DATA=11 I*If th. buffe" is full and no LF
ha1i b~~n received then •• nd d_t. *1

19-64

PLllt-a! CDIII'ILER

145 "
146 a

147 2
148 a
149 "
Ul 3
ua 3
153 3
154 3
ISS 3
ISO a

lSI! 3
159 3
100 3
161 2
143 2
160 1

145 a
144 2

167 2

169 2

171 2

173 2

17. 2
175 2
176 2

177

178 "
179 a

leo 2
181 2
182 2
Ie:! 2
III. 3

FIFD_T _OUT: PROCEDURE BVTE

BVTE

CHNI-FIFD_TCOUT _PTR_T).
OUT JTR_T-ouT _PTR_T+ll
IF OUTJlTR_T-IN_PTR_T /* Th.n FIFO_T is .,.ptv *1

THEN DO.
EA-OI
BUFFER_STATUS_T-EMPTY,
BEND_DATA-OI
EA-l1

END.
ELSE IF «8UFFER_STATUS_T-FUL.L) AND (OUTJTR_T-eO-IN_PTR_T»

THEN DOl
USART_STATUS. USART_CIIDooUSART_CIID DR 20H.
BUFFER_BTATUS_T-INUSE.

END.
IF (CHAA""-" AND SENDJ)ATA>O) THEN SEND.JlATA-SEND_DATA-l,
RETURN. CHAR.

END FIFO_T _OUTI

ERROR: PROCEDVRE (STATUS) USINO 2.

DECLARE STATUS BYTE.

IF (STATUS AND OSH)<>O
THEN EARJEBSAOE_PTR-. PARITY.

ELSE IF (STATUS AND 10H)<>0
THEN ERR_HESSAOE_PTR •. OVER_RUN.

EL§ IF (STATUS AND 20M) <>0
THEN ERRJlESSAOEJTR-. FRAIIE.

ERR_IlESSAQE_'NDEX - 0,
ERROR_FL.AQ-1.
£h-1, 1* Tu,," on T. Int_r:rupt */

END ERRoR;

LINK_DISC: PROCEDURE ,

DECLARE MESBMEJTR WORD
MESSAQE BASED
.J BYTE
EX I_STORE BIT,

AUX ILlAJlv.
IlESSABEJTR (1)
AUXILIARY.

IYTE CONSTANT,

EX l_STORE_EXl 1 1* Shut off •• Vnc trAns",lt int."rupt *1
EXt-O,
f1ESSAGE_PTR-. lIM!..
~-O,

DO WHILE (t1ESSME(.J)<>O),

19-65

lB' 50. 53 0'l/19/B3 PAQE 7

inter
PL/I'I-51 Cot1PILEft Applic.tian l'Iadul.: AI1Jnc/SDLC Pl'otoco'l converta,.

195 4
196 4
197 3
lBB 3
199 3
190 :I
191 1

192 :I
193 :I

194 3
195 3
196 :I

197

199 2

199 3
200 3
201 2

202

203' 2

204 2

205 2

206 3
207 3

209 3

210 2
211 :I

213 2

214

215 2
216 2

217 2

219 3
219 3
220 3

DO WHILE (UBART_STATUS AND OlH)-o1 '* w.it 'aT' TxRDY Dn USA~T *1
END,

ENOl

USART "pAT A-MESSAGE (J);
,J-,J+IJ

EXt-EXt_STORE; 1* R.,to,. ••• ."nc tranl.it int.",.upt *1
END LINKJ)ISC.

co: PROCEDURE (CHAR) USING 21
DECLARE CHAR BYTE,

DO WHILE (uSART _STATUS AND OIH) - 0;
ENDI
USART J)ATAIitCHAR.

END COl

CI. PROCEDURE BYTE USING 21

DO WHILE (USART_STATUS AND Oal:H) - 01
END.
RETURN USART 3IATA.

END ell

OET,JiEX: PROCEDURE BYTE USINQ 21

DECLARE CHAR
I

LO: CHAR-CII

BYTE
BYTE

DO 1"'0 TO Hh

AUXILIARV,
AUXILIARY;

IF CHAR-HEX_TABLE(I)
THEN OOTO Lt.

ENDI

LL CALL COIHEX_TABLE(J)),
IF 1-16

THEN GOTO LO;

RETURN I,

END OET -HEX;

OUTPUT 3IESSAQE: PROCEDUREIM£SSAOEJ'TR) USING 2.
DECLARE MESSAOE_PTR WORD.

MESSAOE BASED MESSAGE_PTR 11) BYTE CONS'ANT.
I BYTE AUX ILIARY,

00 WHILE PlESSAGE (t) <> OJ
CALL CO U1ESSAQE II)).
X-X+11

19-66

inter
PL/I"I-:U COMPILER Ap,Uc.Uon Moduh A'Vnc/SDLC Protocol conv.T't.r

221 3

222

223 2

224 2

:1:15 2

226 2

:127 3
228 3

230 3

231 :I
:132 2

234 3

:135 4
:136 4

237 4

:138 4

239 4

240 4

241 4
242 4

243 4
244 4

245 4

246 4

247 4

248 4

249 4

ENOl

END OUTPUT _MESSAGEJ

I'ENU' PROCEDURE USING 2;

DECLARE I BYTE AUXIL.IARY,
AUXILIARY,
AUXILIARYI

CHAR BYTE
STATION_ADDRESS BYTE

START:
CALL. OUTPUT_I'tESSAQE(. SIGN_ON),

MO: CHAR-el,

DO 1-0 TO 41

ENOl

IF CHAR-MENU_CHAR (I)

THEN OOTO M1.

H1 CALL co (t'IENU_CHAR(I»j
IF 1=5

THEN OCTO I'IOJ

DO CASE I,

DO;

ENOl

DO,

CALL OUTPUT_I'IESSAOEL STAT_ADDRl.

STATION_ADDRESS-SHLCGET _HEX. 4),

STATION_~ODRESS.(STATION_ADDRESS OR GET_HEX»

BTAD-STAT I ON_ADDRESS,

CALL OUTPUTJlESSAGE(S_ADDR_AtK),

CALL CO(HEX_TABLECSHRCSTATION_ADDREBS. 4})},
CALL. COCHEX_TABLECOFH AND STATION_ADDRESS»,

CALL OUTPUT_MESSAGE(. ADDR_ACK_FIN),

CALL OUTPUT J1ESSAOE L DEST _ADDR) ,

DESTINATIONjlDDRESS-SHL{GET_HEX.4).

DESTINATION_ADDRESS-(DESTINATIONJ'DDRESS OR GET_HEX),

CALL OUTPUT_MESSAOE(D-.ADDR_ACK).

19-67

lS.50 53 09/19/83 PAGE 9

inter
PL/M-:U COMPILER Applic.tian Module: A.~nc/SDL.C ProtQc,ol· conve,.teT' 18 50 53 09119/93 PAOE 10

250 4
251 4

252 4
253 4

254 4
2" 4
256 4
257 4

258 4
259 4
260 4
261 4

262 3

263 3

264

26. 2

266 2

267 2
268 2
269 2

271 2

273 3
274 3
27' 3

.277 3

278

279

280 2
281 2

283 4,

284 4
285 3
286 3
287 4

CALL. COCHEX_TABLECSHRCDESTINATIDN_ADDRESS, 4»),
CALL COCHEX_TABLECOFH AND DESTINATION_ADDRESS»,

CALL OUTPUT_MESSAGE(, ADDR.-ACK.JIN)j
END,

DO.
CALL OUTPUT_HESSAGEC FIN);
CALL OPENl

ENOl

DO.
CALL OUTPUT_MESSAGE(FIN),
CALL. CL.oSEI

END.

CALL OUTPUT_MESSAGE(FIN),

END. F* DO CASE *1

USART_RECV_INT' PROCEDURE INTERRUPT 0 USING 21

DECLARE CHAR
STATUS

CHAR-UBARr _DATAl

BYTE
BYTE

ST ATUS-UBART _ST ATUB AND 39H.
IF STATUS<>O

THEN CALL ERROR(STATUSh
ELSE IF CHAR-ESC

THEN CALL MENU.
ELSE 001

AUXILIARY.
AUXILIARY,

CALL FIFO_T _IN(CHAR),
IF ECHO-O

THEN CALL CO(CHAR)'
END.

END UBARr _RECV _INT.

BEGIN
CALL POWER_ON.

DO FOREVERJ
IF SEND_DATA>O

THEN DO.
DO WHILE NOT(XMIT_BUFFER_EMPTY)J I-Walt until SIU_XHIT_BUFF.,.

is .mpt\l *1
END.
LENGTH. CHAR '11"1.
SIU_XHI T _BUFFER (0)-DESTINATION_ADDRESSJ
DO WHILE «CHAR<>LF) AND (LENGTH<BVFFERJ-ENGTH) AND (BUFFER_STATUS_T<>EMPTY)}I

19:-68

PL/I1-S1 COI1P ILER

2BB 4
289 4
290 4
291 4 END,

CHAR-FIFO_T _OUTI
SIU_XI1IT,JIUFFER (LENQTH I-CHAR,
LENOTH-LENQTH+ 11

lB. ~O· '? 09/19/83 PAQE 11

1* If thlt line entered .t thlt terllinel is IT •• tel" then BUFFERJ.ENOTH ch.,.. 'lend the
Hrst BUFFERJ.ENOTH che"" thltn •• nd thlt " •• t, .ince thlt SIU buff.,. i. onlv BUFFER_LENQTH bVt •• *1

292 3 Ll 1-0. '* U •• 1 to caunt thlt numb.", of unsucc •• 'ul

293 3 RETRY'
294 3

296 4
297 4
298 4
299 4
300 S
301 5
302 4
303 4
304 S

30. 5
307 5
308 S
309 4
310 4
311 3

312 " END.
313 1 END USER_MOD.

WARNINOS

t".-naml t. *1

RESUL.T-TRANSI'IIT(LENQTH)J '* Send thlt ••• ,.g. *'
IF RESULT<>DATA_TRANSI1ITTED

THEN DO,
/* Wait 50 e for link to connect thltn tl'lJ .g.1" *'

WAIT-1,

END,

THO-3CH,
TLO-OAFHI
TRO-I,
DO WHILE WAIT,
ENOl
TRo-O,
I-}+11
IF 1>100 THEN DO. /* W.dt :J site to gltt on line .1 ••

•• nd 1t1'roT' ,. •••• g. to t.,..in.1
end trV egein *1

OOTO RETRY,
ENOl

CALL LINK_DISC.
OOTO L1.

END.

2 IS THE HIGflEST USED INTERRUPT

I10DULE INFORI1ATlON
CODE SIZE
CONSTANT SIZE
DIRECT VARIABLE SIZE
INDIRECT VARIABLE SIZE
BIT SIZE
BIT-ADDRESSABLE SIZE
AUXILIARY VARIABLE SIZE
I1AXlI1UI1 STACK SIZE
REGoISTER-BANK(S) USED
713 L.INES READ
o PROGRAI1 ERROR (S I

END OF PL/I1-~1 COI1PILATION

(STATIC+OVERLAYABLE)
eo 06B2H 1714D
- 01CFH 463D

OOH+05H 00+ 5D
OOH+OOH OD+ 00
Oii!H+OIH aD+ ID
OOH+OOH 00+ OD

- 021FH 543D
• 002SH 40D

o 1 "

19-69

PL/M-.'51 COMPILER RUPI-44 Pr:t.mar", Stahon

ISIS-II PL/M-51 VI 0
COMPILER INVOKED BY F2 PLM51 F2 PNOTE SRC

6

$TITLE ('RUPI-44 Prlmar\l Statlon')
$DEBUG
$REGISTERBANK(O)
MAIN$MOD DO.

1* To save paper the RUPI regl'OteT'S aT'~ not 11St.d, but thl'J 15 the steteflll!nt
used to 1nc lude Uem _INCLUDE (92 REG44 DeL) *1

$NOLIST

DECLARE LIT
TRUE
FALSE
FOREVER

LITERALLY
LIT
LIT
LIT

'LITE;RALLY',
'OFFH',
'OOH',
'WHILE 1',

1* SOLC COMMANDS AND RESPONSES *1

DECLARE SNRM
UA
DISC
OM
FRMR
R~Q_OISC
UP
TEST
RR
RNR

LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT

'93H',
'13H',
'53H',
'IFH'.
'97H',
'53H',
'33H',
'OF3H',
'ItH'.
'tSH'.

1* REMOTE STATION BUFFER STATUS *1

BUFFER_READY
BUFFER_NOr _READY

LIT
LIT

1* STATION STATES *1

'0',
'1',

DISCONNECT 5 LIT 'OOH', 1* LOGICALLY DISCONNECTED STATE*I
GO_TO_DISC- LIT 'OtH',
I_T_S LIT '02H', 1* INFORMATION TRANSFER ~TATE *1

1* PARAMETERS PASSED TO XMIT_I_T_S *1
T_I_FRAME LIT 'OOH',
T _RR LIT 'OlH',
T_RNR LIT '02H',

1* SECONDARY STATION IDENTIFICATION *1

NUMBER_OF _STATIONS LIT '2',
SECONDARY _ADDRESSES (NUMBER_OF _STAT IONS)

BYTE CONSTANT (55H, 43H),

19-70

20 41 13 09/26/83' PAGE

P1./1I-5. CDllPIL.ER RuPJ-44 ,,.i .. ,.,, 't.tiDn 20' 47.3 09/a./83 PoIIQE a

7 2

• a
9 2

• 0 /I
11 a
.2 12

.3 3

\4 3

" 3
.6 3
.7 3

•• 3

.9 a
20 II
al 2
22 12
23 2

24

as 2

26 a
27 2
as 12

RBOI_EII_DI' JlTATIONII STIIUCTURI
18T ... TJON IIDRISS IYTI!.
STATlON_STATI IVTI!.
NIl BYTE.
NIl IYTE.
MFFER_STAT\III IVTE. /* Tit •• '.'UI .f tit ••• cond.", .,.tions "v".'" ./
INFII....-TM IYTE.
IlATAI .. , IYTEI AUXILIMY.

I. YMIA8LES *'
BT ... TION___ IYTE
RECYJIELD",,-TM aYTI

AUXILIMY.
AUXlLIMV •

..... IT BIT,

I. BUFFERS *1
SIII~"ITJlUFFERI.41 IYTE
SIII..,RECY JlIJFI'EJI 1 .41 IYTI!,

POWER_ON: PROCIDURE ,

DECLME I BYTE AUXILiARY.

T_, SIII_X,"ITJlIJFI'EJIIOI,
RIS-, SIII..,RECIIJlIIFFf;RIOI •

IllATA.

RL ... , ,/. 64 aV'e ".c.lve &tu'f.,. .,
RIE-I, '* En.".* , ... SIU', "eceiv *'

-DO I- 0 TO NUI1IER_DI' JlTATJ_ ••

ABOI iI, STIITJON..AJIDIIESS-SEC_V"""O __ I I ,.

:::::' rU:;~:'J;!=::="~~~::EII/)V.
RSDC I J INFO,..LENOTH-(h

SA'ID-54H. ,. Ulin, DP1. NAZI. PFS. TIteR , •• ~. 15 K", •• /
_21M,
THI~.
TCON-4OH, ,. v •• t, ... " '0 •• ,. ,..c •• ve 'i •• out iftt.",.upt .,
IE_.

END POWER_ON;

X"IT' PROCEDURE ICONTROLJlYTEI.

DECLME CONTROLJlVTE BYTE.

TClaCONTROLJlYTI!.
TBF-li

flL/M-51 COMPILER RUPI-44 PrlmaT'1.,J Stat10n 20"47.'1{3" 09/26/83" PAGE

2. 2
30 3
31 3
32 2

33

34 2
35 2
36 1

37 2

38 2

3. 3

40 3
41 3
42 3
43 3
44 4
45 4

47
48

4. 2

50

51

52

53 2

54 2
55 2
56 2

57 3
5. 3
60 3
61 3
62 2

63

6.

6.

RTS=l,
DO WHILE NOT SI.
END.
81=0.

END XMIT.

TIMER_O_INT PROCEDURE INTERRUPT 1 USING ,1'.
WAIT=O.

END TIMER_O_INT,

TIME_OUT PROCEDURE BYTE, 1* Tlme_out returns true 1f there wasn/t:

DECLARE

DO 1=0 TO 3.

WAIT=!.
THO=3CH.
TLO==OAFH,
TRO=l,

BYTE

DO WHILE WAIT,
IF 91=1

AUXILIARY,

THEN GOTO T _01,
END,

END.

RETURN TRUE,

SI=O,
RETURN FALSE.

END TIME_OUT,

SEND_DISC PROCEDURE.

TBL=O,
CALL XMITWISC),
IF TIME_DUT=FALSE

THEN IP RCB=UA OR RC8=DM
THEN DO.

a frame 'l"ecelved w1thln 200 mse-c,
If,there was' a frame rece1ved, ,I./llthln'
200 msec then tlme_out return5 false *1

RSD (STAT ION_NUMBER) BUFFER_STATUS-BUFFER_NOT _READY,
RSD (STATION_NUMBER) STAT ION_STATE=DISCONNECT _Sf

END,
RBE;;1.

END SEND _D I Be,

SEND_SNRM PROCEDURE,

TBL=O,

19-~2 ,

PL/M-51 COMPILER 20 47 13 09/~6/B3 PAGE

66 ~
67 2

69 3
70 3
71 3
72 3
73 2

74

75 2

76 2

78 2

79

eo 2

81 2

83 3
84 3
85 3
86 2

88 2

89

90 2

91 2

92 2

93 2

97 4
98 4

CALL XHIT<SNRH).
IF (TIME_OUT-FALSE) AND (RCa-UA)

THEN 00.
RSD(STATION_NUHBER) STAT ION_STATE-I_T _Sf
RSOCSTATION_NUMBER) NS-O.
RSOCSTATION_NUMBER) NR-O.

END,

CHECK_NS PROCEDURE BYTE.

IF (RSO(STATION_NUMBER) NR=fSHR (RCB. 1) AND 07H»
THEN RETURN TRUE.
ELSE RETURN FALSEJ

END CHECK_NS,

CHECK_NR PROCEDURE BYTE.

1* Check the Nr field of the rece1v.d fr .. me If N~(P)+l"'Nr(S) then the 11'J"'.
ha~ b.en acltnol&lledged. else 1f N.(P)=Nr(S) the" the frame ha. not been
aCknowledged. else reset the secondary *1

IF «CRSDCSTATION NUMBER) HS + 1) AND 07H) = SHR(RCB,S»
THEN DO. -

RSO(STATIOf,jJ,jUMBER) NS=((RSDCSTATION_NUMBER) NS+l) AND 07H).
RSoCSTATION_NUMBER) INFO_L~NQTH=O.

END.
ELSE IF (RSDCSTATION_NUMDER) NS <:> SHRCRCS. 5»

THEN RETURN FALSE.

RETURN TRUE.

RECEIVE PROCEDURE

DECLARE BYTE AUXILIARV.

1* If an RNR was recelved bufler_status wlll be changed 1n the 5uperV1SOl"V
frame decode ~ection futher down 1n thu, proc&'dUf'e. anlj othe,: r.spons.
m.ans the l"emote stations bul'fe.,. is .,..ady *1

IF tRCa AND 01H)=O
THEN DO. 1* I Frame Recelved *1

IF CCHECK_NS ... TRUE AND BOV=O AND CHECK_NR=TRUE)
THEN DOl

RSOCSTATION_NUMBER) NR=(CRSD(STATlON_NUMBER) NR""l) ANO 07H).
RBP=l,

19-73

intJ
PL/M-51 COMP1LER

101 :3
102 3
103 2:

105 3

107

109

110 3
111 3

113 4
110 0
115 0
116 3
117 3

lie 2

~UPI-44 Prlmary: Station

RECV _F IELD_LENGTH=RFL-l.
ENOl

ELSE RSDCSTATION_NUMJiER) STATION_STATE=...GO_TO_DISCI
END I

ELSE IF (RCB AND 03H)=OlH
THEN DO. 1* SuperV1SOrlj frame "eceived *1

IF CHECK_NR=FAl,.SE
THEN RSI)(STATION NUMBER). STATION_STATE=OO_TO_DISC,

ELSE IF «RCB AND OFH)"'05H) 1* then'RNR *1

20· 47 13 09/26/83 pAGE

THEN RSD (STAT ION_NUMBER) BUFFr:':R _STATUS-SUFFER _NOT _READY.

ELSE DO.

END,

RBE-l,

END.

1* Unnumbereli f"jlme or unknown h'.me recltlved *1
IF RCB=FRMR

THEN DO. 1* 141 FRMR was T'~celved check NT for an
acknowledged I frame *1

RCO-SIU_RECV_BUFFER(1) I
I=CHECK_NR;

END.
RSD (STAT ION_NUMBER) STAT ION_STATE=GO_TO_DISC.

119 END RECEIVE.

120 2

12i 2

122

12' 4
125 4
126 4

127 3
129 3
129 3
130 3

132 3

133 3
13' 3

136 3

DECLARE TEMP BYTE.

IF TEMP=T _I_FRAME
THEN DO, 1* Tran~ml t I frame *1

END.

1* Transfer the stat1tm" buHler Into Internal ram *1

DO TEMP=O TO RSD(STATION_NUMBER), INFO_LENGTH-i.
SIU_XMIT _BUFFER (TEMP)=RSP (STATION_NUMBER) DATA C TEMP).
ENOl

1* Bui Id the I fram. control held *1

TEMP=(SHL(RSD(STATION_NUMDEfU NR.S) OR SHURSD<STATION._NUMBER) NS. 1) OR 10H),
TBL=RSO(STATION_NUMBER). INFO...,LENGTH.
CALL XMIT <TEMP),
IF TIME_OUT=FALSE

THEN CALL RECEIVE,

ELSE DO. 1* Transml t RR or RNR*!
IF TEMP=T_RR

THEN TEMP""RR.
ELSE TEMP""RNR;

19-7~

PL/M-51 CQt1PILER

137 3
13B 3
139 3
140 3

142 3
143 I

144 2

14S 2

146 3
147 3

149 3

150 2

152 3
153 3
154 3
155 2

157 3
158 4
159 4
160 4
161 3
162 3

163

164

TEMP-(SHL(ASO{STATION_NUMBER) NR,') OR TEMP).
TBL-Oj
CALL XMITfTEI'tP).
IF TIME_OUT-FAL.S£

THEN CALL RECEIVE,
END.

END XMIT _I_T _51

BUFFER_TRANSFER PROCEDURE.

DECLARE I
J

BYTE
BYTE

AUXILIARY.
AUXILIARY;

DO 1-0 TO NUMBER_OF _STATIONS-t.

END.

IF RSD(I) 5TATlON_ADDRESS-SIU_RECV_BUFFER(O)
THEN QOTO T 1 j

Tl- IF I=NUMBER_OF_STATIONS 1* If the addressed statton don not exItS.

THEN DO.
RBP=O,
RETURNJ

END.
ELSE IF RSD(I) INFO_LENGTH=O

THEN DO.

then dIscard the data *1

~aD ~!~ -~~F~E~~~;1~~~~~~N~~~~D_LENQTH'
RBD< I) OATA(,J-1 >=SIU_RECV_BUFFEh(,J>.

END.
RB~=O;

END,

END BUFFER_TRANSFER;

BEGIN·
CALL POWER_ON.

165 2 DO FOREVER.

166 3 DO STATION_NUMBER=O TO NUMBER_OF _STATIONS-1.
167 3
168 3

170

172 3

174 3

176 3

177 3

STAD=RSD(STAT ION_NUMBER) STAT ION_ADDRESS,
IF RSD(STATl'ON_NUMBER) STATION_STATE'" DISCONNECT_S

THEN CAL.L. SEND_SNRM.
ELSE IF RSD(STATION_NUMBER) STATION_STATE'"' GO_TO_DISC

THEN CALL SEND _0 I se.
ELSE IF «RSDfSTATION_NUMBER) INPO_LENGTH)O) AND

(RSO(STATION_NUMBER) BUFFER_STATUS=BUFFER_REAOY»
THEN CALL XMIT_I_T_SCT_I_FRAME).

ELSE IF RBP""O
THEN CAL.L XMIT_I_T_S<T_RR),

ELSE CALL XMIT_I_T_S(T_RNR),

IF RSP=1
THEN CALL BUFFER_TRANSFER,

PL/M-Sl COMPILER RUPI-44 PrImar\! StatIon

179 3

180 2 END.

END.

181 END MAINSMOD.

WARNINGS
1 IS THE HIGHEST USED INTERRUPT

MODULE INFORMATIPN
CODE SIZE '
CONSTANT SIZE
DlRECT VARIABLE SUE
INDIRECT VARIABLE SIZE
alT SIZE
BIT-ADDRESSABLE SIZE
AUXIl.IARY VARIABLE SIZE
MAX IMUf1 STAe"," SIZE
REGISTER-BAN","(S) USED,
456 LINES READ
o PROGRAM ERROR (S)

END OF PL/M-51 COMPILATION

(STATIC+QVERLAYABLE)
.,. 0530H 13410
"" 0002H 20

40H+02H 640+ 20
40H+OOH 64D+ OD
01H+OOH 10+ 00
OOH+OOH 00+ 00

= 0093H 1470
"" 00l'9H 250

o 1

19-75

20 47 13 09/26/83 PAGE

20 47 13 09/26/93 PAGE 7

RUPITM Data Sheets 20

iL, ./

"

8044AH/8344AH
HIGH PERFORMANCE 8-BIT MICROCONTROLLER

WITH ON-CHIP SERIAL COMMUNICATION CONTROLLER

• 8044AH - CPU/SIU with Factory Mask Programmable ROM
• 8344AH - An 8044AH used with External Program Memory
• 8744H - An 8044AH with User Programmable/Erasable EPROM

8051 MICROCONTROLLER CORE

• Optimized for Real Time Control
12 MHz Clock, Priority Interrupts,
32 Programmable 110 lines,
Two 16·bit Timer/Counters

• Boolean Processor

• 4K x 8 ROM, 192 x 8 RAM

• 64K Accessible External Program
Memory

• 64K Accessible External Data Memory

• 4 Il,S Multiply and Divide

SERIAL INTERFACE UNIT (SIU)

• Serial Communication Processor that
Operates Concurrently to CPU

• 2.4 Mbps Maximum Data Rate

• 375 Kbps using On·Chip Phase
Locked Loop

• Communication Software in Silicon:
- Complete Data, Link Functions
- Automatic Station Responses

• Operates as an SDLC Primary or
Secondary Station

The RUPI-44 family integrates a high performanceS-bit Microcontroller, the Intel S051 Core, with an
intelligent/high performance HOLC/SOLC serial communication controller, called the Serial Interface
Unit (SIU). See Figure 1. This dual architecture allows complex control and high speed data communica
tion functions to be realized cost effectively.

Specifically, the S044's Microcontroller features: 4K byte On-Chip program memory space; 32 110 lines;
two 16-bit timer/event counters; a 5-source; 2.level interrupt structure; a full duplex serial channel; a
Boolean processor; and on-Chip oscillator and clock circuitry. Standard TTL and most byte-oriented
MCS-SO and MCS-S5 peripherals can be used for 110 and memory expansion.

The Serial Interface Unit (SIU) manages the interface to a high speed serial link. The SIU offloads the
On-Chip S051 Microcontroller of communication tasks, thereby freeing the CPU to concentrate on real
time control tasks.

The RUPI-44 family consists of the S044, S744, and S344. All three devices are identical except in respect
of on~chip program memory. The so44 contains 4K bytes of mask-programmable ROM. User program
mable EPROM replaces ROM in the S744. The S344 addresses all program memory externally.

The RUPI-44 devices are fabricated with Intel's reliable +5 volt, silicon-gate HMOSII technology and
packaged in a 40-pin DIP.

The 8344 is available in two versions: C8344H and P8344AH. Refer to the 8744 data sheetforthe C8344H.

Contro
Lines

I

8044'5 Dual Controller Architecture

8051 , 2-port
Micro- I-- I---- S.I.U.

controller RAM

Figure 1. Dual Controller Architecture

20-1

HDLC/
SDLC
port

January 1985

inter 8044AH/8344AH ~!Q)~ ~INI~~ ~1NI1F«Jl!Pa~jb}.lfl@1NI
it.; ,

, ;
~'., '

Table 1. ~UPITII·44 Family ,PI~ Description

vss :
Circuit ground potential.

vee
.
>

+ 5V power supply during operation and program
verification,

PORTO
Port 0 is an S-bit open drain bidirectional 110 port, It Is
also the multiplexed low-order address and data bus
when using external'memory, It Is used for data output
during program verification. Port 0 can sink/source eight
LS TIL loads. '

PORT 1
Port 1 is an 8-bit quasi-bidirectional 1/0 port. It is used for
the low-order address byte during program verification.
Port 1 can sink/source four LS TIL loads.

In non-loop mode two of the 1/0 lines serve alternate
functions:
-FiTS (Pl.6). Request-to-Send output. A low indicates

that the RUPI-44 1$ ready to transmit.
-C'rn (P1,7) Clear-to·Send Input. A low indicates that a

receiving station is ready to receive.

PORT 2
Port 2 is an 8-bit quasi-bidirection 110 port. It also emits
the high-order address byte when accessing external
memory. It is 4sed for the high-order address and the
control signals during program verification. Port 2 can
sink/source four LS TIL loads. -

PORT 3
Port 3 is an 8-bit quasi-bidirectional 1/0 port. It also
contains the interrupt, timer, serial port and RD and
WR pins that are used by ,various options, The output
latch corresponding to a secondary function must be pro
grammed to a one (1) for that function to operate. Port 3
can sink/source four LS TIL load!,!,

In addition to 1/0, some of the pins also serve alternate
functions as follows:
-1/0 RxD (P3.0). In point-to-polnt or multipoint configura- '

tions, this pin controls the direction of pin P3.1. Serves
as Receive Data Input In loop and diagnostic modes.

-DATA TxD (P3.1) In polnt-to-point or multipoint con- •
figurations, this pin functions as data inputloutput. In
loop mode, It serves as'transmit pin. A '0' written to
this pin enables diagnostic mode,

-iN'fO ,(P3.2). Interrupt 0 Input or gate control Input for
counter O. '.

-iiii'R (P3.3). Interrupt 1 Input or gate control Input for
counter 1.

- TO(P3.4). Input to counter O.

" ." ", ," ~
. -SCLK T1 {Pill). In addition to 110, this ,pih~prqvides In
~ to counter, 1 or serves as SCLK (serlal:cIOQk) Input .

-WR (P3.6). l'he write control signal latcHes the data
~e from Port 0 into the External Data Memory.

-RO (P3,7). The read control signal enables External
Data Memory ,to. Port O.

RST
A high on this pin fortwo machine cycles while the oscillator
is running resets the device. A small external pulldown
reSistor ("S.2KCl) from ~ST to V 58 perniits power-on reset
when a capacitor ("'IOpf) is also connected from this pin
toVcc'

ALEIPROG
Provides Address Latch Enable output used for latQhing
the address Into external 'mElmory during normal opera
tion, It is activitated ellery six OSCillator periods except
during an external data memory access, If also receives
the program pulse input for programming the EPROM
version. "

PSEN
The Program Store Enable output is a control signal
that enables the external Program',Memory to the bus
during external fetch oper!ltions. It ill acUvll-ted every
six osciilator periods, except dl,lring external, data
memory accesses. Remains high during i"ternal pro
gram execution.

EAtvPP
When held at a TIL high level, the RUPI-44 executes in
structions from the internal ROM when the PC is less
than 4096, When held at a TIL low level, the RUPI-44 fet
ches all instructions from external Program Memory.
The pin also receives the 21V EPROM programming sup-
ply voltage on the S744, .

XTAL 1 ,
Input to the oscillator's high gain amplifier. Required
when a crystal Is ulled. Connect to VSS when external
s~urce is used on XTAL 2, '

XTAL2
Output from the oscillator's amplifier. Input to the Inter
nal timing cirCUitry. A crystal or external source-can be
used, '

21)-;2

inter 8044AH/8344AH

~{' 110 RXO __ f ~ DATA T)(O~
z INTO~
~ - ~
LL INT' :E
:t TO-., 0
~ SCLK n-. G..

~ WR.-
&:! A5
'"

Figure 2.
Logic Symbol

FREQUENCE
REFERENCE

r-
I OSCIL

LATOR
&

TIMING
I
I
I
I
I
I

4096 BYTES
PROGRAM
MEMORY

(8044 & 8744)

I
I

INTERRUPTS '-_..,.....,...._...1

I--~-L

INTERRUPTS CONTROL

192 BYTES
DUAL PORT

RAM

PARALLEL PORTS
ADDRESS DATA BUS

AND 110 PINS

Figure 4.
Block Diagram

2(}-3

PIO vcc
PI1[, PO.O ADO

PU[3 POI AOI

PI1 [• 37 J PO 2 A02

pul s P03 A03

P151 6 AD.

RTS P161 7 3']P05 ADS'

m PI71 8 A04I

RST VPO[• 10"
3' "po 7 A07

110 RXO P30 10
13<. 3' Ii ,VPP

OATA TXO P3 II " 30 JALE PROG
876.

INTO P321 '2 : jiffi

INT1 P331 t3 A15

TO pul " lP2I At<

SClK T1 PHI 15 1 P2.5 AI3

iVA PHI IS PH AI2

iiii P371 17 J P2,3 All

XTAl21 18 P22 AIO

XTAl' I " " P21 AI

VSS I 20 " P2.0 AI

Figure 3. Pin
Configuration

SIU
(SERIAL

INTERFACE
UNIT)

TWO 16-BIT
TIMER EVENT

COUNTERS

COUNTERS

I
, I
I
I
I
I
I

--l

..
DATA

110
HDLC/SDLC
SERIAL
COMMUNICATIONS

.8044AH/8344AH

Functional Description
General

The 8044 integrates the powerful 8051 microcontroller
with an intelligent Serial Communication Controller
to provide a single-chip solution which will efficiently
implement a distributed processing or distributed
control system. The microcontroller is a self-sufficient
unit containing ROM, RAM, ALU, and its own
peripherals. The 8044's architecture and instruction
set are identical to the 8051 'so The 8044 replaces the
8051 's serial interface with an intelligent SDLC/HDLC
Serial Interface Unit (SIU). 64 more bytes of RAM
have been added to the 8051 RAM array. The SIU
can communicate at bit rates up to 2.4 M bps. The
SIU works concurrently with the Microcontroller so
that there is no throughput loss in either unit. Since
the SIU possesses its own intelligence, the CPU is
off-loaded from many of the communications tasks,
thus dedicating more of its computing power to con
trolling local peripherals or some external process.

The Microcontroller
The mlcrocontroller is a stand-alone high
performance single-chip computer intended for
use in sophisticated real-time application such as
instrumentation, industrial control, and intelligent
computer peripherals.

The major features of the microcontroller are:

• 8-bit CPU
• on-chip oscillator

• 4K bytes of ROM
• 192 bytes of RAM
• 32 I/O lines
• 64K address space for external Data Memory
• 64K address space for external Program

Memory

• two fully-programmable 16-bit timer/counters
• a five-source interrupt structure with two priori

ty levels

• bit addres.sability for Boolean processing
• 1 ,.,sec instruction cycle time for 60% of the in

structions 2 ,.,sec instruction cycle time for
40% of the instructions

• . 4 ,.,sec cycle time for 8 by 8 bit unsigned
Multiply/Divide

Internal Data Memory
Functionally the Internal Data Memory is the most
flexible of the address spaces. The Internal Data
Memory space is subdivided into a 256-byte Internal
Data RAM address space and a 128-byte SpeCial
Function Register address space as shown in Figure
5.

20-4

The Internal Data RAM address space is 0 to 255.
Four 8-Register Banks occupy loCations 0 through 31.
The stack can be located anywhere in the Internal
Data RAM address space. ·In addition, 128 bit loca
tions of the on-chip RAM are accessible through
Direct Addressing. These bits reside in Internal Data
RAM at byte locations.32 through 47. Currently loca
tions 0 through 191 of the Internal Data RAM address
space are filled with on-chip RAM.

RAM

SPECIAL
FUNCTION
REGISTERS
,--"---,

25s 255 248 F8H
FOH
E8H
EOH
D8H
DOH

~ C8H

{

COH

INDIRECT D 191 E~
~cPRESS- 98H

90H
88H

-=~12::.8=13~5_-",12~8 80H
127 ,...

ADDRESS· ~ b-=:d
ABLE 127 120
BITS IN
SFRs
(128 BITS)

REGISTERS

__ -.-_~A
INTERNAL SPECIAL FUNCTION
DATA RAM REGISTERS

1
ADDRESS·
ABLE
BITS IN
SFRs
(128 BITS)

DIRECT
ADDRESS
ING

Figure 5. Internal Data Memory
Address Space

Parallel 1/0

The 8044 has 32 general-purpose 110 lines which
are arranged into four groups of eight lines. Each
group is called a port. Hence there are four ports;
Port 0, Port 1, Port 2, and Port 3. Up to five lines
from 1 and Port 2 are dedicated to supporting the
serial channel when the SIU is invoked. Due to
the nature of the serial port, two of Port 3's 110
lines (P3.0 and P3.1) do not have latched outputs.
This is true whether or not the serial channel is
used.

8044AH/8344AH

Table 1. MCS®-51 Instruction Set Description

ARITHMETIC OPERATIONS LOGICAL OPERATIONS (CONTINUED)

Mnemonic Description Byte Cyc Mnemonic Destination Byte Cyc
ADD A,Rn Add register to ORL A,@Ri OR indirect RAM to

Accumulator 1 1 Accumulator
ADD A,direct Add direct byte to ORL A,#data OR immediate data to

Accumulator 2 1 Accumulator 2
ADD A,@Ri Add indirect RAM to ORL direct,/!. OR Accumulator to

Accumulator 1 1 direct byte 2
ADD A,#data Add immediate data to ORL direct;#data OR immediate data to

Accumulator 2 1 direct byte 3 2
ADDC A,Rn Add register to XRL A,Rn Exclusive-OR register to

Accumulator with Carry 1 1 Accumulator
ADDC A,direct Add direct byte to A XRL' A,direct Exclusive-OR direct

with Carry flag 2 1 byte to Accumulator 2
ADDC A,@Ri Add indirect RAM to A XRL A,@RI Exclusive-OR indirect

with Carry flag 1 1 RAMtoA 1
ADDC A,#data Add immediate data to XRL A,#data Exclusive-OR

A with Carry flag 2 1 Immediate data to A 2
SUBB A,Rn Subtract register from A XRL dlrect,A Exclusive-OR Accumu-

with Borrow 1 1 lator to direct byte 2
SUBB A,direct Subtract direct byte XRL dlrect,#data Exclusive-OR Im-

from A with Borrow 2 1 mediate data to direct 3 2
SUBB A,@Ri Subtract indirect RAM CLR A Clear Accumulator

from A with Borrow 1 1 CPL A Complement
SUBB A,#data Subtract immed data Accumulator

from A with Borrow 2 1 RL A Rotate Accumulator Left
INC A I ncrement Accumulator 1 1 RLC A Rotate A Left through
INC Rn Increment register 1 1 the Carry flag
INC direct Increment direct byte 2 1 RR A Rotate AccumtJiator
INC @Ri Increment indirect RAM 1 1 Right
INC DPTR I ncrement Data POinter 1 2 RRC A Rotate A Right through
DEC A Decrement Accumulator 1 1 Carry flag
DEC Rn Decrement register 1 1 SWAP A Swap nibbles within the
DEC direct Decrement direct byte 2 1 Accumulator
DEC @RI Decrement indirect

RAM 1 1. DATA TRANSFER
MUL AB MultiplyA&B 1 4
DIV AB DIvide A by B 1 4
DA A Decimal Adjust

Accumulator 1 1

Mnemonic Description Byte Cyc
MOV A,Rn Move register to

Accumulator
MOV A,dlrect Move direct byte to

LOGICAL OPERATIONS

Mnemonic Destination Byte Cyc

Accumulator 2
MOV A,@Ri Move Indirect RAM to

Accumulator
ANL A,Rn AND register to MOV A,#data Mov immediate data to

Accumulator 1 1 Accumulator 2
ANL A,dlrect AND direct byte to MOV Rn,/!. Move Accumulator to

Accumulator 2 1
ANL A,@Ri AND indirect RAM to

Accumulator 1 1
ANL A,#data AND Immediate data to

register'
MOV Rn,direct Move direct. byte to

register 2 2
MOV Rn,#data Move immediate data to

Accumulator 2 1 register 2
ANL direct,A AND Accumulator to MOV direct,A Move Accumulator to

direct byte 2 1 direct byte 2
ANL dlrect,#data AND immediate data to MOV direct,Rn Move register to direct

direct byte 3 2 byte 2 2
ORL A,Rn OR register to MOV direct,direct Move direct byte to

Accumulator 1 1 direct 3 2
ORL A,direct OR direct byte to MOV direct,@Ri Move indirect RAM to

Accumulator 2 1 direct byte 2 2

20-5,

intJ 8044AH/8344AH ~[Q)~~[f>!l©~ ~[f>!lIF©rRl!i¥ll~uij©[f>!l

Table 1. (Cont.)

DATA TRANSFER (CONTINUED) PROGRAM AND MACHINE CONTROL

Mnemonic Description Byte Cyc Mnemonic Description Byte Cyc
MOV direct,#data Move immediate data to ACALL addr11 Absolute Subroutine

direct byte 3 2 Call 2 2
MOV @Ri,A Move Accumulator to· LCALL addr16 Long Subroutine Call 3 2

indirect RAM RET Return from subroutine 1 2
MOV @Ri,direct Move direct byte to RETI Return from interrupt 1 2

Indirect RAM 2 2 AJMP addr11 Absolute Jump 2 2
MOV @Ri,#data Move immediate data to LJMP addr16 Long Jump 3 2

indirect RAM 2 SJMP rei Short Jump (relative
MOV DPTR,#data16 Load Data POinter with addr) 2 2

a 16-bit constant 3 2 JMP @A+DPTR Jump Indirect relative to
MOVC A,@A+DPTR Move Code byte relative the DPTR 2

to DPTRtoA 2 JZ rei Jump if Accumulator is
MOVC A,@A+PC Move Code byte relative Zero 2 2

to PCtoA 2 JNZ rei Jump if Accumulator IS
MOVX A,@RI Move External RAM (8- Not Zero 2 2

bit addr) to A 2 JC rei Jump if Carry flag IS set 2 2
MOVX A;@DPTR Move External RAM (16- JNC rei Jump if No Carry flag 2 2

bit addr) to A 2 JB bit,rel Jump if direct Bit set 3- 2
MOVX @Ri,A Move A to External RAM JNB bit, rei Jump If direct Bit Not

(8-bit addr) 2 set 3 2
MOVX @DPTR,A Move A to External R'AM JBC bit,rel Jump if direct Bit IS set

(16-bit addr) 2 & Clear bit 3 2
PUSH direct Push direct byte onto CJNE A,direct,rel Compare direct to A &

stack 2 2 Jump If Not Equal 3 2
POP direct Pop direct byte from CJNE A,#data,rel Comp, immed, to A &

stack 2 2 Jump if Not Equal 3 2
XCH A,Rn Exchange register with CJNE Rn,#data,rel Comp, Immed, to reg &

Accumulator Jump If Not Equal 3 2
XCH A,dlrect Exchange direct byte CJNE @RI,#data,rel Comp, immed, to ind, &

with Accumulator 2 Jump If Not Equal 3 2
XCH A,@RI Exchange indirect RAM DJNZ Rn,rel Decrement register &

with A Jump If Not Zero 2 2
XCHD A,@RI Exchange low-order DJNZ dlrect,rel Decrement direct &

Digit Ind RAM w A Jump if Not Zero 3 2
NOP No operation 1 1

BOOLEAN VARIABLE MANIPULATION Notes on data addressing modes:
Mnemonic Description Byte Cye Rn -Working register RO-R7

CLR C Clear Carry flag 1 1 direct -128 internal RAM locations, any 1/0 port,

CLR bit Clear di'rect bit 2 1
control or status register

@Ri -Indirect Internal RAM localton addressed by
SETB C Set Carry flag 1 1 register RO or R1
SETB bit Set direct Bit 2 1 #data -8-bit constant included in instruction
CPL C Complement Carry flag 1 1 #data16 -16-bit constant Included as bytes 2 & 3 of
CPL bit Complementdtrect bit 2 1 Instruction
ANL C,blt AND direct bit to Carry bit -128 software flags, any 1/0 pin, control or

flag 2 2 status bit

ANL C,/blt AND complement of Notes on program addressing modes:

direct bit to Carry 2 2 addr16 -Destination address for LCALL & LJMP may

ORL C/blt OR direct bit to Carry
be anywhere within the 64-K program
memory address space

flag 2 2 Addr11 --Destination address for ACALL & AJMP will be
ORL C,/bit OR complement of within the same 2-K page of program

direct bit to Carry 2 2. memory as the first byte of the following
MOV C,/blt Move direct bit to Carry instruction

flag 2 rei -SJMP and all conditional jumps Include an 8-

MOV bit,C Move Carry flag to bit offset byte, Range is +127-128 bytes relative

direct bit 2 2 to first byte of the follOWing instruction

All mnemonics copynghted © Intel Corporation 1979

2()"6

inter 8044AH/8344AH

Port 0 and Port 2 also have an alternate dedicated
function. When placed in the external access
mode, Port 0 and Port 2 become the means by
which the 8044 communicates with external pro
gram memory. Port 0 and Port 2 are also the
means by which the 8044 communicates with ex
ternal data memory. Peripherals can be memory
mapped into the address space and controlled by
the 8044.

Timer/Counters

The 8044 contains two 16-bit counters which can
be used for measuring time intervals" measuring
pulse widths, counting events, generating precise
periodic interrupt requests, and clocking the serial
communications. Internally the Timers are clocked
at 1/12 of the crystal frequency, which is the instruc
tion cycle time. Externally the counters can run up
to 500 KHz.

Interrupt System
External events and the real-time driven on-chip
peripherals require service by the CPU asyn
chronous to the execution of any particular sec
tion of code. To tie the asynchronous activities of
these functions to normal program execution, a
sophisticated mUltiple-source, two priority level,
nested interrupt system is provided. Interrupt
response latency ranges from 3 "sec to 7 "sec
when using a 12 MHz clock.

All five interrupt sources can be'mapped into one
of the two priority levels. Each interrupt source
can be enabled or disabled individually or the en
tire interrupt system can be enabled or disabled.
The five interrupt sources are: Serial Interface
Unit, Timer 1, Timer 2, and two external interrupts.
The external interrupts can be either level or edge
triggered.

Serial Interface Unit (SIU)
The Serial Interface Unit is used for HOLC/SOLC
communications.. It handle'S Zero Bit Inser
tion/Deletion, Flags, automatic address recogni
.!ion, and a 16-bit cyclic redundancy check. In ad
dition it implements in hardware a subset of the
SOLC protocol such that it responds to many
SOLC frames without CPU intervention. In certain
applications it is advantageous to have the CPU
control the reception or transmission of every
single frame. For this reason the SIU has two modes
of operation: "AUTO" and "FLEXIBLE" (or "NON
AUTO"). It is in the AUTO mode that the SIU
responds to SOLC frames without CPU intervention;
whereas, in the FLEXIBLE mode the reception or
transmission of every single frame will be under CPU
control.

20-7

There are three control registers and eight parameter
registers that are used to operate the serial inter
face. These registers are shown in Figure 5 and
Figure 6. The control registers set the modes of
operation and provide status information. The eight
parameter registers buffer the station address, receive
and transmit control bytes,and point to the on-chip
transmit and receive buffers.

Data to be received or transmitted by the SIU must
be buffered anywhere within the 192 bytes of on
chip RAM. Transmit and receive buffers are not
allowed to "wrap around" in RAM; a "buffer end"
is generated after address 191 is reached.

AUTO Mode

In the AUTO mode the SIU implements in hard
ware a subset of the SOLC protocol suoh that it
responds to many SOLC frames without CPU in
tervention. All AUTO mode responses to the
primary station will conform to IBM's SOLC defini
tion. The advantages of the AUTO mode are that
less software is required to implement a secondary
station, and the hardware generated response to polls
is much faster than doing it in software. However, the
Auto mode can not be used at a primary station.

To transmit in the AUTO mode the CPU must load
the Transmit Information Buffer, Transmit Buffer
Start register, Transmit Buffer Length register,
and set the Transmit, Buffer Full bit. The SIU
automatically responds to a poll by transmitting
an information frame with the PIF bit in the con
trol field set. When the SIU receives a positive
acknowledgement from the primary station, it
automatically increments the Ns field in the NSNR
register and interrupts the CPU. A negative acknow
ledgement would cause the SIU to retransmit the
frams.

To receive in the AUTO mode, the CPU loads the
Receive Buffer Start register, the Receive Buffer
Length register, clears the Receive Buffer Protect
bit, and sets the Receive Buffer Empty bit. If the
SIU is polled in this state, and the TBF hit in
dicates that the Transmit Buffer is empty, an
automatic RR response will be gener~ted. When a
valid information' frame is received the SIU will
automatically increment Nr in the NSNR register
and interrupt the CPU:

While in the AUTO mode the SIU can recognize
and respond to the following commands without

'CPU intervention: I (Information), RR (Receive
Ready), RNR (Receive Not Ready), REJ (Reject),
and UP (Unnumbered POll). The StU can generate

8044AH/8344AH

REGISTER NAMES

B REGISTER
ACCUMULATOR
'THREE BYTE FIFO

TRANSMIT BUFFER START
TRANSMIT BUFFER LENGTH
TRANSMIT CONlROL BYTE
, SIU STATE COUNTER
SEND COUNT RECEIVE COUNT
PROGRAM STATUS WORD
'DMA COUNT
STATldN ADDRESS
RECEIVE ,FIELD LENGTH
RECEIVE BUFFER START
RECEIVE BUFFER LENGTH
RECEIVE CONTROL BYTE
SERIAL MODE
STATUS REGISTER
INTERRUPT PRIORITY CONTROL
PORT 3 ,
INTERRUPT ENABLE CONTROL
PORT 2
PORT 1
riMER HIGH 1
TIMER HIGH 0
TIMER LOW 1
TIMER LOW 0
TIMER MODE
TIMER CONTROL
DATA POINTER HIGH

)DATA POINTER LOW
STACK POINTER
PORTO

SYMBOLIC
ADDRESS BIT ADDRESS

~ ~-' -,--'>--,

B'
ACC
FIFO
FIFO
FIFO
TBS
TBL
TCB
SIUST
NSNR
PSW
DMA CNT
STAD
RFL
RBS
RBL
RCB
SMD
STS
IP
P3
IE
P2
Pl
THl
THO
Tll
TLO
TMOD
TCON
DPH
DPL
SP
PO

247 Ihrough
231 throuah

223 t fOU

215 Ihrouah

207 throu h
191 throu
183 throu
175 throu
167 throu
151 throu

143 throuah

135 throuah

·ICE Support Hardware registers. Under normal operating conditions there
is' nb nee'd tor the CPU to access these registers.

240
224

216
208

200
184
176
168
160
144

136

128

BYTE
ADDRESS,

~

240 (FOHI
224 (EOHI
223 (DFHI
222, (DEHI
221 (DDHI
220 (DCH)
219 (DBH)
218 (DAH)
217 (D9HI
216 (D8H)
208 (DOHI
207 (CFHI
206 (CEH)
205 (CDHI
204 (CCH)
203 (CBH)
202 (CAHI
201 (C9HI

SFR's CONTAINING
DIRECT ADDRESSABLE BITS

200 (C8HI
184 (B8HI
176 (BOHI
168 (A8H)
160 (AOHI
144 (90HI
141 (8DH)
140 (8CHI
139 (BBH)
138 (8AHI
137 (89HI
136 (B8H)
131' '(83HI
130 (82H)
129 (81H)
128 (80H)

Figure 5, Mapping of Special Function registers

SERIAL MODE REGISTER (SMDI SCM2 SCMl SCMO NRZI lOOP PFS

I I

STATUS REGISTER (STS) TBF RBE RTS SI BOV OPB

I I

SEND COUNT RECEIVE

NB NFCS

I L--,

AM RBP

I L-

NO FRAME CHECK SEOUENCE
NON,BUFFERED
PRE, FRAME EYNC
LOOP
NOp!! RETURN TO ZERO INVERTED
SELECT CLOCK MODE

RECEIVE BUFFER PROTECT
AUTO, MODE/ADDRESSED MODE
OPTIONAL POLL BIT
RECEIVE INFORMATION BUFFER OVERRUN
SERIAL INTERFACE UNIT INTERRUPT
REQUEST TO SEND
RECEIVE BUFFER E!'IIPTY
TRANSMIT BUFFER FULL '

'COUNT REGISTER (NSNR) r-:=-r-=:;-:-r-:=:-r-,;;"",",--,=",..,;;-:--r-=.-.-...",--,

SEQUENCE ERROR RECEIVED
L_-L __ -'-____ RECEIVE SEQUENCE COUNTER

SEQUENCE ERROR SEND
SEND SEQUENCE COUNTER

Figure 6, Serial Interface Unit Control, re!ilisters

20-8

8044AH/8344AH

the following responses without CPU interven
tion: I (Information), RR (Receive Ready), and RNR
(Receive Not Ready).

,,'

When the Receive Buffer Empty bit (BB!:) in·
dicates that the Receive Buffer is empty, the
receiver is enabled, and when the RBE bit in·
dicates that 1he Receive Buffer is full, the receiver
is disabled. Assuming that the Receive Buffer is
empty, the SIU will respond. to a poll vvith an I
frame if the Transmit Buffer is·fuU. If the Transmit
Buffer is empty, the SIU will respond t9 a. poll
with a RR command jf the Receive -Buffer Protect
bit (RBP) is cleared, or an RNR command if RBP is
set. '

FLEXIBLE (or NON-AUTO) Mode

In the FLEXIBLE mode all ,communications are under
control of the CPU. It is the CPU's task to encode
and decode control fields, manage
acknowledgements, and adhere to the requirements
of the HOLC/SOLC protocols. The 8044 can be used
as a primary or a secondary station in this mqde.

To receive a frame in the FLEXIBLE mode, the CPU
must load the Receive Buffer Start register, the
Receive Buffer Length register, clear the Receive But- .
fer Protect bit, and set the Receive Buffer Empty bit.
If a valid opening flag is received and,~he address,
field matches the byte in the Station Address register
or the address field contains a broadcast address, the
8044 loads the control field in the receive control byte
register, and loads the I field in the receive buffer.
If there is no CRC error, the SIU interrupts the CPU,
indicating a frame has just been received. If there is
a CRC error, no interrupt occurs. The Receive Field
Length register provides the number of bytes that
were received in the information field.

To transmit a frame" the CPU must load the transmit
informatidn buffer, the Transmit Buffer Start register,
the Transmit Buffer Length register, the Transmit
Control Byte, and set theTBF and theflFS bit. The
SIU,' unsolicited by an HOLC/SOLC frame, will
transmit the' entire information frame, and interrupt
the C;PU, indicating the completion of transmission.
For' supervisorY frames or Unnumbered frames, the
transmit buffer length Yiould be O.

eRC

The FCS register is initially set to all 1 's prior to
calculating the FCS field. The SIU will not interrupt
the CPU if a CRC error occurs (in both AUTO and
FLEXIBLE modes). The GRCerror'is cleared upon,
receiving of an opening flag.

Frame Format Options

In addition to the standard, SOLC frame format,
the 8044 will support the frames displayed in
Figure 7. The standard SOLCframe is shown at
the top of this figure. For th!!l remaining frames
the information field will incorporate the control
or address bytes and the frame check sequences;
therefore these fields wHi be stored in the
Transmit and Receive buffers. For example, in the
non-buffered mode the thkd byte, is treated as the
beginning of the information field.' In the non
addressed mode, the informatioQ ,field begins after
the opening flag. The mode bits' to set the frame
format options, are foung in ,the Serial Mode
register and the Status register.

EXTENDED ADDRESSING

To realize an extended control field or an extended
address field (ising the HOLC prqtocol, the FLEXI
BLE mode must' be used. Foran extended control
field, the SIU is progra,r:nm!'ld to b,e in the non-buffered
mode. The extended controHield will be the first and
second bytes in the R~Meive_and Transmit Buffers.

. For extended addressing the SIU i~ placed in the non
, addressed mode. In this mode the CPU must imple

, ment the address rACOgnition for'received frames: The
addressing field will be the initial bytes in the Transmit
and Receive buffers followed by the control field. '

The SIU can transmit and receive only frames which
are multiples of a bits. For frames received with other
than a-bit multiples, a CRC error will cause the SIU
to reject the frame.

SOLe Loop Networks
The SIU can be used in a ADLC loop as a secondary
or primary station. When the SIU iS,placed in the Loop
moc;leitreceivesthe data on pin 10 al')d transmits the
data one bit _ time delayed on pin 11. It can also
rec'ognize the Go ahead signal and chal1ge it into a
flag when it is ready to transmit. As a secondary sta
tion the SIU can be used in the AUTO or FLftXIBLE
modes. As a primary station the FLEXIBLE mode is
used; however, additional hardware is required for
generating the Go Ahead bit pattern. In the. Loop
mode the maximum data rate is 1 Mbps clocked or
375 Kbps self-clocked. '

SDLC Multidrop Networks
The SIU can be used in a SOLC non-loop configura
tion as a secondary or' primary station. When the SIU
is placed in the non-loop mode, data is received and
transmitted on pin 11, and pin 10 drives a tri~state
buffer. In non-loop mode; modem interface pins,RTS
and CTS, become available.

20-9

8044AH/8344AH

FRAME OPTION

Stondord SDLC
NON·AUTOM_

Stondoni SDLC
AUTO Mode

Non-Bullereel M_
NON·AUTO Mode·

No Addre._ Mode
NON·AUTOM_

No ,FCS Field,
NO'I'l-AUTO M_

No FCS Field
AUTOM_'

No FCS Field
Non·Bullered M_
NON·AUTO Mode

=~:;!t~:~~d'Mode
NON·AUTO Mode

Mod. Blto:

."','

NFCS NB'

0

0

0

0

AM - "AUTO" Mode/Addr •••• d M_
NB - Non-Bullered Mod.'
NFCS - No'FCS· Field Mode
, ,

AM' FRAME FORMAT

0 I F'I>A I C I" IFcsl F I.

I"F I ~I c I,

I F I A I

0 I F I I. I Fcsi F, I

I FIAlc I IFI

r-I -F-'I-A-rl -c'I----''--'--.I-F--.I''

I F I A I F I

I F, I F I

Key to Abbrevlotlons:
F ~ Fllg (01111110)
A = Addre .. Field
C = Control Field'

I =Iniormliion Field .
FCS = Frame Chock Sequence

. Note 1: r~e ~M bit function, IS ~ontrolled by the N6 bit Wh~n NB = 0, A~ becomes AUTo'mOde select,
when NB = 1, AM becomes Address mode select '

Figure 7. Frame FormatOptioi'ls

Data Clocking Options
The 8044's serial port can operate in an externally
clocked or seifclocked system: A clocked system pro
vides to the 8044 a clock synchronization to the data.
A self-clocked system uses tile 8044'5 on-chip Digital
Phase Locked Loop (DPLL) to recover the clock from
the data, and clock this data into the Serial Receive
Shift Register. ' , '

In this mode, a clock synchronized with'thedata ,is
externally fed into the 8044. This clock may be
generated from an External Phase Locked Loop, or
possibly supplied along with the data. The 8044 can
transmit and receive data in this mode at rates u;J to
2.4 Mbps. ."

This self ,clocked.mode, allows data transfer without
a common. system data clock. An or:1-chip Digital
Phase Locked Loop is~mployed to recover the data
clock which is encoded in the data stream. The DPLL
will converge to the nominal 'bit center within eight

bit traositior;ls,worstcase. Th~' DPLL. r,equires 'a
reference clock of either 16 times (16x) pf,32 times
(32x) the data rate. This reference cloc'k may be ex
ternally applied or internally generated. When inter
nally generateo ,either the 8044's internal logic clock
(crystal frequency divided t;>y t~o) or ,the timer,1
Overflow is used as the reference clock. Using, the in
,ternal timer 1 clock the data reates Can varY fr,om 244
to 62.~ Kbps. Us!r9 the}nternat logic ci9i::k ,at a ~ 6x
sampling rate, receive; C\a~acan either be.187.5 Kbps,
or 379 Kbps. When the reference clock ,for tl:)e DPLL
is externally applied)hegata rates.ci~ vary frO.m 0
to 375 Kbps at a 16x sampling rate.

To aid in a Phase Locked Loop capture, the slufi1:is
a NRZI (Non Return to Zero Inverted) data encoding
and decoding option. Addjtjonallythe.SIl) hs,sapre
frame sync opt[on that:transmits two .bY\e~ Qlalter
nating 1 's and O's to ensure that the receive' station
DPLL wil!l~e synchronized with th:e data by the time
it receives the opening flag,

inter 8044AH/8344AH

Control and Status Registers

There are three SIU Control and Status Registers:

Serial Mode Register (SMD)

Status/Command Register (STS)

Send/Receive Count Register (NSNR)

The SMD, STS, and NSNR registers are all cleared by
system reset. This assures that the SIU will power up in
an idle state (neither receiving nor transmitting).

These registers and their bit assignments are
describecj below.

SMD: Serial Mode Register (byte-addressable)

Bit: 7 6 5 4 3 2 I 0

I SCM21 SCM I I SCMO I NRZI I LOOP I PFS I NB I NFCS I

The Serial Mode Register (Address C9H) ~elects the
operational modes of the SIU. The 8044 CPU can both
read and write SMD. The SIU can read SMD but can
not write to it. To prevent conflict between CPU and
SIU access to SMD, the CPU should write SMD only
when the Request To Send (RTS) and Receive Buffer
Empty (RBE) bits (in the STS register) are both false
(0). Normally, SMD is accessed only during
initialization.

The individual bits of the Serial Mode Register are as
follows:

Bit #

SMD.O

SMD.I

Name Description

NFCS No FCS field in the SDLC frame.

NB Non-Buffered mode. No control
field in the SDLC frame.

SMD.2 PFS Pre-Frame Sync mode. In 'this
mode, the 8044 transmits two bytes
before the first flag of a frame, for
DPLL synchronization. If NRZI is
enabled, OOH' is sent; otherwise,
SSH is sent. In eithe.r case, 16 pre
frame transitions are guaranteed.

SMD.3 LOOP Loop configuration.

SMD.4 NRZI NRZI coding option.

SMD.S SCMO Select Clock Mode - Bit 0

SMD.6 SCM I Select Clock Mode - Bit I

SMD.7 SCM2 Select Clock Mode - Bit 2

The SCM bits decode as follows:

SCM Data Rate
~..!...!l Clock Mode (BitsLsecl*

0 0 0 Externally clocked 0-2.4M**

0 0 I Reserved

0 0 . Self clocked, timer overflow 244-62.SK

0 I Reserved

0 0 Self clocked, external16x 0-37SK

SCM Data Rate
~..!...!l Clock Mode (BitsLsecl*

0 Self clocked, external 32x 0-187.SK

0 Self clocked, internal fixed 375K

Self clocked, internal fixed 187.5k

* Based on a 12 Mhz crysta.I frequency
··0-1 M bps in loop configuration

STS: Status/Command Register (bit-addressable)

Bit: 7 6 5 4 3 2 I 0

ITBF I RBE IRTS ISII BOV IOPB lAM I RBP I

The Status/Command Register (Address C8H) pro
vides operational control of the SIU by the 8044 CPU,
and enables the SIU to post status information for the
CPU's access. The SIU can read STS, and can alter cer
tain bits, as indicated below. The CPU can both read
and write STS asynchronously. However, 2-cyde in
structions that access STS during both cycles (,JBC/B,
REL' and 'MOV /B,C.') should not be used; since the
SIU may write to STS between the two CPU accesses.

The individual bits of the Status/Command Register
are as follows:

Bit#

STS.O

STS.I

STS.2

STS.3

STS.4

STS.5

Name Description

RBP Receive Buffer Protect. Inhibits
writing of data into the receive buff
er. In AUTO mode, RBP forces an
RNR response instead of an RR.

AM AUTO Mode/Addressed Mode. Se
lects AUTO mode where AUTO
mode is allowed. If NB is true,
(= I), the AM bit selects the ad
dressed mode. AM may be cleared
by the SIU.

OPB Optional Poll Bit. Determines
whether the SIU will generate an
AUTO response to an optional poll
(UP with P"",O). OPB may be set or
cleared by the SIU.

BOV Receive Buffer Overrun. BOV may
be set or cleared by the SIU.

SI SIU Interrupt. This is one of the five
interrupt sources to the CPU. The
vector location = 23H. SI may be
set by the SIU. It should be cleared
l:lY the CPU before returning from
an interrupt routine.

RTS Request To Send. Indicates that the
8044 is ready to transmit or is trans-
mitting. RTS may be read or writ
ten by the CPU. RTS may be read
by the SIU, and in AUTO mode
may be written by the SIU.

20-.11

8044AH18344AH

STS.6

STS.7

RBE Receive Buffer Empty. RBE can be
thought of as Receive Enable. RBE
is set to one by the CPU when it is
ready to receive a frame, or has just
read the buffer, and to zero by the
SIU when a frame has been
received.

TBf Transmit Buffer full. Written by
the CPU to indicate that it has filled
the transmit buffer. TBf may be
cleared by the SIU.

NSNR: Send/Receive Count Register (bit
addressable)

Bit: 7 6 5 4 3 2 I 0

INS2INSIINsolsESINR21~RIINROlsERI
The Send/Receive Count Register (Address D8H) con
tains the transmit and receive sequence nUIllbers, plus
tally error indications. The SIU can both read and write
NSNR. The 8044 CPU can both read and write NSNR
asynchronously. However, 2-cycle instructions that ac
cess NSNR during both cycles ('JBC /B, REL', and
'MOV /B,C') should not be used, since the SIU may
write to NSNR between the two 8044 CPU accesses.

The individual bits of the Send/Receive Count Register
are as follows:

BitH ~ Descril!tion

NSNR.O SER Receive Sequence Error:
NS (P) "" NR (S)

NSNR.l NRo Receive Sequence Counter-Bit 0

NSNR.2 NRI Receive Sequence Counter-Bit I

NSNR.3 NR2 Receive Sequence Counter-Bit 2

NSNR.4 SES Send Sequence Error:
NR (P) -# NS (S) and
NR (P)-# NS (S) + I

NSNR.5 NSO Send Sequence Counter - Bit 0

NSNR.6 NSI Send Sequence Counter - Bit I

NSNR.7 NS2 Send Sequence Counter - Bit 2

Parameter Registers

There are eight parameter registers that are used in con
nection with SIU operation. All eight registers may be
read or written by the 8044 CPU. RfL and RCB are
normally loaded by the SIU .

The eight parameter registers are as follows:

STAD: Station Address Register
(byte-addressable)

The Station Address register (Address CEH) contains
the station address. To, prevent ac<;ess conflict, the CPU
should access STAD only when the SIU is idle (RTS=O

and RBE=O). Normally, ~TAD is accessed only during
initialization.

TBS: Transmit Buffer'Start Address Register
(byte-addressable)

The Transmit Buffer Start address register (Address
DCH) points to the location in on-chip RAM for the be
ginning of the I-field of the frame to be transmitted. The
CPU should access TBS only when the SIU is not trans
mitting a frame (when TBf=O).

TBl: Transmit Buffer length Register
(byte-addressable)

The Transmit Buffer. Length register (Address DBH)
contains the length (in bytes) of the I-field to be trans
mitted. A blank I-field (TBL=O) is valid. The CPU
should access TBL only when the SIU is not transmit
ting a frame (when TBF=O).

NOTE: The transmit and recieve buffers are not allowed
to "wrap around" in the on-chip RAM. A "buffer end"
is automatically generated if address 191' (BFH) is
reached.

TCB: Transmit Control Byte Register
(byte-addressable)

The Transmit Control Byte register (Address DAH)
contains the byte which is to be placed in the control
field of the transmitted frame, during NON-AUTO
mode transmission. The CPU should access TCB only
when the SIU is not transmitting a frame (when
TBF=O). The Ns and NR counters are not used in the
NON-AUTO mode.

RBS: Receive Buffer Start Address Register
(byte-addressable) .

The Receive Buffer Start address register (Address
CCH) points to the location in on-chip RAM where the
begi'nning of the I-field of the frame being received is to
be stored. The CPU should write RBS only when the
SIU is not receiving a frame (when RBE=O).

RBl: Receive Buffer length' Register
(byte-addressable)

The Receive Buffer Length register (Address CBH)
contains the length (in bytes) o(the area in on-chip

RA'M allocated for the received I-field. RBL=O is val
id. The CPU should write RBL only when RBE=O.

RFl: Receive Field length Register
(byte-addressable)

The Received Field Length register (Address CDH)
contains the length (in bytes) of the received I -field that
has just been loaded into on-chip RAM. RfL is loaded
by the SIU, RfL=O is valid. RFL should be accesssed
by the CPU only when RBE=O.

20-12

8044AH/8344AH

RCB: Receive Control Byte Register
(byte-addressable)

The Received Control Byte register (Address CAH)
contains the control field of the frame that has just been
received. RCB is loaded by the SIU. The CPU can only
read RCB, and should only access RCB when RBE=O.

ICE Support Registers

The 8044 In-Circuit Emulator (ICE-44) allows the user
to exercise the 8044 application system and monitor the
execution of instructions in real time.

The emulator operates with Intel's Intellec@ develop
ment system. The development system interfaces with
the user's 8044 system through an in-cable buffer box.
The cable terminates in a 8044 pin-compatible plug,
which fits into the 8044 socket in the user's system. With

20-13

the emulator plug in place, the user can excercise his sys
tem in real time while collecting up to 255 instruction
cycles of 'real-time data. In addition, he can single-step
the program.

Static RAM is available (in the in-cable buffer box) to
emulate the 8044 internal and external program mem
ory and external data memory. The designer can display
and alter the contents of the replacement memory in the
buffer box, the internal data memory, and the internal
8044 registers, including the SFRs.

SIUST: SIU State Counter (byte-addressable)

The SIU State Counter (Address D9H) reflects the
state of the internal logic which is under SIU control.
Therefore, care must be taken not to write into this
register. This register provides a useful means for
debugging 8044 receiver problem,

8044AH/8344AH

ABSOLUTE MAXIMUM RATINGS·
Ambient Temperature Under Bias". . , .,0 to 70'C
Storage Temperature .. -65'C to + 150'C
Voltage on Any Pin With

Respect to Ground (Vss) ..
Power Dissipation" , .'

, . , - 0,5V to + 7V
, ... ,.2 Watts

• Nollce: Stresses above those ,listed under "Absolute'
Maximum Ratings" may cause perman,ent damage to
the deVice, This IS a stress rating only and functional
operation of the device at these or any other conditions
above those indicated In the operalional sections of
this specificallon IS not implied. Exposure to absolute
maximum rating conditions for extended periods may
affect device reliability,

DC CHARACTERISTICS (TA=O'C to 70'C, VCC = 5V ± 10%, VSS = OV)

Symbol Parameter Min Typ Max Units Test. Conditions

VIL Input Low Voltage -0.5 0,8 V

VIH Input High Voltage 20 VCC +0 5 V
(Except RSTIVPD and XTAL2)

VIHI Input High Voltage To 25 V XTALI to VSS
RSTIVPD For Reset, XTAL2

VOL Output Low Voltage 0.45 V· 10L= 1 6mA
Ports I, 2, 3 (Note 1)

VOLI Output Low Voltage 045 V IOL=3.2mA
Port 0 ALE, \PSEN (Note 1)

VOH Outpt High Voltage 24 V 10H= -80flA
Ports I, 2, 3

VOHI Output High Voltage 2.4 V 10H= -400"A
Port 0, ALE, \PSEN

IlL Logical 0 Input Current -800 "A XTALI at VSS
Ports I, 2, 3 VIL = 0,45V

IIHI Input High Current.TO 500 "A Vin=VCC-l.5V
RSTIVPD For Reset

III Input Leaka~ Current 10 flA 0.45V < Vin < VCC
To Port 0, \EA

ICC Power Supply Current 125 200 mA TA=25'C

CIO Capacitance of 1/0 Buffer 10 pF Ic = lMHz

IIL2 Logical 0 Input Current -3,5 mA XTAl1 = VSS
XTAL 2 VIL = 0,45V

Note 1: VOL IS degraded when the RUPI·44 rapidly discharges external capacitance This A.C. noise is most pr~nbunced dUring
emission of address data. When uSing external memory, locate the latch or buffer as close to the RUPI·44 as possible.

VOL
Emitting Degraded (peak) \

Datum Ports I/O Lines (max)

Address P2, PO PI, P3 ,8V

Write Data PO PI, P3, ALE ,8V

2()"t4

8044AH/8344AH

A.C. CHARACTERISTICS (TA O·C to 70·C, VCC = 5V ± 100;. 'SS= OV, CL for Port 0, ALE and PSEN Outputs = l00pF;
CL for All Other Outputs = ao pF)

Program Memory

Variable Clock
12 MHz Clock 1ITCLCL = 1.2 MHz to 12 MHz

Symbol Parameter Min Max Units Min Max Units

TLHLL ALE Pulse Width 127 ns 2TCLCL-40 ns
TAVLL Address Setup to ALE 43 ns TCLCL-40 ns

TLLAX' Address Hold After ALE 48 ns TCLCL·35 ns

TLLlV ALE To Valid Instr In 233 ns 4TCLCL·l00 ns

TLLPL ALE To PSEN 58 ns TCLCL·25 ns

TPLPH , PSEN Pulse Width 215 ns 3TCLCL·35 ns

TPLIV PSEN To Valid Instr In 125 ns, 3TCLCL·125 ns

TPXIX Input Instr Hold After PSEN 0 ns 0 ns

TPXIZ" Input Instr Float After PSEN 63 ns TCLCL·20 ns

TPXAV' Address Valid After PsEN 75 ns TCLCL-8 ns
TAVIV Address To Valid Ins!r In 302 ns 5TCLCL·115 ns
TAZPL Address Float To PSEN -25 ns -25 ns

Notes:
1, TLLAX for access to program memory IS different from TLLAX for data memory,
2, Interfacing RUPI·44 devices with float times up to 75ns is perrnissible, ThiS limited bus contention Will not cause any damage to Port

o drfvers.' .

External Data Memory

Variable Clock
12 MHz Clock 1ITCLCL = 1.2 MHz to 12 MHz

Symbol Parameter Min Max Units Min Max Units

TRLRI:i Ro Pulse Width 400 I'S 6TCLCL·1OQ ns

TWLWH WR Pulse Width 400 ns 6TCLCL·l00 ns

TLLAX' Address Hold After ALE 48 ns TCLCL·35
TRLoV ' . RD· To Valid Data In 250 ns 5TCLCU65 ns

TRHoX Data !:lold After Ro 0 ns 0 ns

TRHDZ Data Float After Ro 97 ns 2TCLCL·70 ns

TLLoV ALE To Valid Data In 517 ns 8TCLCL·150 ns

TAVoV Address To Vand Data In 585 ns 9TCLCL·165 ns

TLLWL ALE To WR or Ro 200 300 ns 3TCLCL·50 3TCLCL+50 ns
TAVWL Address To WR or Ro 203 ns 4TCLCL·130 ns

TWHLH WR or Ro High To ALE High 43 123 ns TCLCL·40 TCLCL+40 ns

ToVWX pat a Valid To WR Transition 33 ns TCLCL·50 ns

TOVWH Data Setup Before WR 433 ns 7TCLCL·150 ns

TWHOX Data Hold After WR 33 ns TCLCL·50 ns

TRLAZ Address Float After AD 0 ns 0 ns

Note 1. TLLAX for access· to program memory IS different from TLLAX for access data memory

Serial Interface

Symbol Parameter Min Max Units
ToCY. Data Clock 420 ns

TDCL Data Clock Low 180 ns

ToCH ollta Clock High 100 ns

20-15

inter 8044AH/8344AH -

Serial Interface- (Continl,le(tl -

lTD

toSS

tDHS

,2'~~~'--~~~J:l~~'y'--- - - r~-
Data Setup Time 40
D;t;-HoIdTim~ - - '40~

WAVEFORMS

Memory Access

Program Memory Read Cycle

180 ns

ns .
f-- ---- --- -

ns

~------------------------------TCY--------------------------~

ALE

PSEN

PORTO

PORT2
ADDRESS
OR SFR-P2

Data Memory Read Cycle

ALE

~ __ ~+ __ ~-;-~"jTPXAV
A7-AD INSTR IN

ADDRESSA15-A8 ADDRESS A15-AS

TWHLH
-----TLLDV ------------~

PSEN

RD -----------r-------, ~~------·--_+TRLRH'------------~.r_----

PORTO

PORT2
ADDRESS
OR SFR-P2

Data Memory Write Cycle

ALE

TLLAX

A7-AO

TRHDX

QATA IN,

TRLAZ

ADDRESS A15-AS OR SFR-P2

TWHUj

PSEN

WR ___________ -+~------~_{ 14------------TWLWH----------~1,----

TOVWH 'rWHOX

PORTO DATA OUT

PORT 2
ADDRESS A15-A8 OR SFR-p2

20-16

8044AH/8344AH

SERIAL 1/0 WAVEFORMS

Synchronous Data Transmission

----------~ ~------TDCl----~ r-----------~

SClK

DATA

TID

Synchronous Data Reception

TOCY

SClK
TOCl

j ~ \
\ 7 -

\
TOCH

C ~
r;

r,
DATA

- TOSS TDHS

20-17

8044AH/8344AH

AC TESTING INPUT, OUTPUT, FLOAT WAVEFORMS

INPUT/OUTPUT
FlOAT

j~ __ -FlOAT----....,t

2.4 2.0 2.0 2.4

0.45 0 8---------0.8 . 0.45

2.4=>(20 2o.'0
8
JC

TEST POINTS

0.45 ~0.::.8 ______ =

AC testing Inputs 'are driven at 2 4V for a logiC "1" and 0 45V tor a logic "0 ..
TIming measurements are made at 20V for a logiC "1" and 08V for a logiC "0"

EXTERNAL CLOCK DRIVE XTAL2

1-0-------TClCl------~

Variable Clock
Freq = 1.2 MHz to 12 MHz

Symbol Parameter Min Max Unit
TClCl Oscillator Period 83.3 287.5 ns
TCHCX High Time 20 TClCl·TClCX ns
TClCX low Time 20 TClCl·TCHCX ns
TClCH Rise Time 20 ns
TCHCL Fall Time 20 ns

20-18

TCHCl

CLOCK WAVEFORMS

INTERNAL
CLOCK

XTAL2

ALE

STATE 5

Pl I P2

8044AH/8344AH

STATE 6 I' 'STATE 1 I STATE 2

Pl I P2 Pl I P2 Pl I P2

I I I

STATE 5

Pl I P2

EXTERNAL PROGRAM MEMORY FETCH ::2 THESE SIGNALS ARE NOT
ACTIVATED DURING THE
EXECUTION OF A MOVX INSTRUCTION

PSEN '----=-_ 1 I '" I L
PO

P2(EXT) _____ 1 INDICATES ADDRESS TRANSIONSI ... ___________

READ CYCLE

RD

PO

P2
WRITE CYCLE

WR

PO

P2

PORT OPERATION

MOV PORT, SRC

DPL OR RI
OUT

OOH IS EMITTED PCL OUT (IF PROGRAM
DURING THIS PERIOD MEMORY IS EXTERNAL)

LY IDATAl n~
I. 4j: FLOAT SAMPLED • i

INDICATES DPH OR P2 SFR TO PCH TRANSITIONS

I PCL OUT(EVEN IF PROGRAM
L-__________ ---' MEMORY IS INTERNAL) .

DPL OR RI
OUT I. DATA OUT

INDICATES DPH OR P2 SFR TO PCH TRANSITIONS

OLD DATA I NEW DATA

. 5 .; tCL OUT :1h;OGRAM
I MEMORY IS EXTERNAL)

___ LPO PINS SAMPLED

MOV DES" PO ~O~P~I~N~S~S~A~M=P~L=ED=----~-----------~~
MOV DEST, PORT (Pl, P2, P3) c::::::::J
(INCLUDES INTO, INn, TO, n) ~L.----------------------I- \ - L....-

Pl, P2, P31'INS SAMPLED ::N~2S:~PLED
SERIAL PORT SHIFT CLOCK

~----q:r
RXD SAMPLED

J~gDE O)--------~XD SAMPLED

This diagram indicates when signals are clocked Internally The time It takes the signals to propagate to the pins, however,
ranges from 25 to 125 ns This propagation delay IS dependent on vanables such as temperature and Pin loading Propagation
also vanes from outp6t to output and component to component TYPically though, (T A " 25° C, fully loaded) RD and WR prop
agation delays are approximately 50 ns The other signals are tYPically 85 ns Propagation delays are Incorporated In the AC

. specifications

20-19

8744H
HIGH PERFORMANCE 8-BIT MICROCONTROLLER

WITH On-CHIP SERIAL COMMUNICATION CONTROLLER

8051 MICROCONTROLLER CORE

• Optimized for Real Time Control
12 MHz Olock, Priority Interrupts,

- 32 Programmable I/O lines,
Two 16·bit Timer/Counters

• Boolean Processor

• 4K x 8 EPROM, 192 x 9 RAM

• 64K Accessible External Program
Memory

• 64K Accessible External Data Memory

.• 4 I-IS Multiply and Divide

SeRIAL INTERFACE UNIT (SIU)

• Serial Communication Processor that ,
Operates Concurrently to CPU

• 2.4 Mbps Maximum Data Rate

• 375 Kbps using On·Chip Phase
Locked Loop

• Communication Software in Silicon:
.- Complete Data Link Functions
- Automatic Station Responses

• Operates as an SDLC Primary or
Secondary Station

The RUPI-44 family integrates a high performan.ce S-bit Microcontroller, the Intel S051 Core, with an
intelligent/high performance HOLC/SOLC serial communication controller, called the· Serial Interface
Unit (SIU). See Figure 1. This dual architecture allows complex control and high speed data communica
tion functions to be realized cost effectively.

Specifically, the S044's Microcontroller features: 4K byte On-Chip program memory space; 32 I/O lines;
two 16-bit timer/event counters; a 5-source; 2-level interrupt structure; a full duplex serial channel; a
Boolean processor; and on,chip oscillator and clock circuitry. Standard TTL and most byte-oriented
MCS-SO and MCS-S5 peripherals can be used for I/O and memory expansion.

The Serial Interface Unit (SIU) manages the interface to a high speed serial link. The SIU offloads the
On-Chip S051 Microcontroller of communication tasks, thereby freeing the CPU to concentrate on real
time control tasks.

The RUPI-44 family consists of the 8044,8744, and S3t4.'AIi three devices are identical except in respect
of on-chip program memory. The S044 contains 4K bytes of mask-programmable ROM. User program
mable EPROM replaces ROM in the S744. The 8344 addresses all program memory externally.

The RUPI-44 devices are fabricated with Intel's reliable +5 volt, Silicon-gate HMOSII technology and
packaged in a 40-pin DIP

The 8744H is available in a hermetically sealed, ceramic, 40-lead dual incline package which includes a
window that allows for EPROM erasure when exposed to ultraviolet light (See Erasure Characteristics).
During normal operation, ambient light may adversely affect the functionality of the chip. Therefore,
applications which expose the 8744H to ambient light may require an opaque label over the window.

Contro
Lines

I

8044'5 Dual Controller Architecture

8051 2-port
Micro- --- - S.I.U.

controller RAM

Figure 1. Dual Controller Architecture

HDLC/
SOLC
port

Intel Corporation Assumes No Responsibility for the Use of Any CircUItry Other Than CircUitry Embodied In an Intel Product No Other Circuit Patent Licenses are Implied

• INTEL CORPORATION" 1982

20-20 ORDER NUMBER: 210735-002

· 8744H

Table 1. RUPITM ·44 Family Pin Description

VSS
Circuit ground potential.

vee
+ 5V power supply during operation and program
verification.

PORTO
Port 0 is an 8·bit open drain bidirectional I/O port. It is
also the multiplexed low·order address and data bus
when using external memory. It is used for data output
during program verification. Port 0 can sink/source eight
LS TIL I·oads.

PORT 1
Port 1 is an 8·bit quasi·bidirectional I/O port. It is used for
the low·order address byte during program verification.
Port 1 can sink/source four LS TIL loads.

In non·loop mode two of the I/O lines serve alternate
functions: .
-RTS (Pl.6). Request·to·Send output. A low indicates

that the RUPI·44 is ready to transmit.
-CTS (Pl.?) Clear·to·Send input. A low indicates that a

receiving station is ready to receive.

PORT 2
Port 2 is an 8-bit quasi-bidirection I/O port. It also emits
the high-order address byte when accessing, external
memory. It is used fo~ the high.order address and the
control signals during program verification. Port 2 can
sink/source four LS TTL loads.

PORT 3
Port 3 is. an 8-bit quasi·bidirectional I/O port. It also
contains the interrupt, timer, serial port and RD and
WR pins that are used by vl;lrious options. The output
latch corresponding to a secondary function must be pro·
grammed to a one (1) for that function to operate. Port 3
can sink/source LS TTL loads.

In addition to I/O, some of the pins also serve alternate
functions as follows:
-I/O RxD (P3.0). In point·to-point or multipoint configura·

tions, this pin controls the direction of pin P3.1. Serves
as Receive Data input in loop and diagnostic modes.

-DATA TxD (P3.1) In point·to-point or multipoint con
figurations, this pin functions as data input/output. In
loop mode, it serves as transmit pin. A '0' written to
this pin enables diagnostic mode.

-INTO.(P3.2). Interrupt 0 input or gate.control input for
counter O.

-INTl (P3.3). Interrupt 1 input or gate control input for
counter 1.

- TO(P3.4). Input to counter O.

20-21

-SCLK T1 (P3.5). In addition to I/O, this pin provides in·
QQ!. to counter 1 or serves as SCLK (serial clock) input.

-WR (P3.6). The write control signal latches the data
~e from Port 0 into the External Data Memory.

-RD (P3.7). The read control signal enables External
Data Memory to Port O.

RST
A high on this pin for two machine cycles while the
oscillator is running resets the device. A small external
pulldown resistor (""'ll.2kQ) from RST to Vss permits
power·on reset when a capacitor (=10pf) is also con
nected from this pin to Vcc.

ALEIPROG
Provides Address Latch Enable output used for latching
the address into external memory during normal opera·
tion. It is activitated every six oscillator periods except
during an external data memory acCess. It also receives
the program pulse input for programming the EPROM
version.

PSEN
The Program Store Enable output is a control Signal
that enables the external Program Memory to the bus
during external fetch operations. It is activated every
six oscillator periods, except during external data
memory accesses. Remains high during i"ternal pro·
gram execution.

EAlVPP
When held at a TTL high level, the RUPI-44 executes in·
structions from the intesnal ROM when the PC is less
than 4096. When held at a TIL low level, the RUPI-44 fet·
ches all Instructions from external Program Memory.
The pin also receives the 21V EPROM programming sup
ply voltage on the 8744.

XTAL 1
Input to the oscillator's high gain amplifier. Required
when a crystal is used. Connect to VSS when external
source is used on XTAL 2.

XTAL2
Output from the oscillator's amplifier. Input to the inter
nal timing circuitry. A crystal or external source can be
used.

ORDER NUMBER: 210735-002

~{ 110 RXo

!i!g DATA ::11~~~
SClK ~-+- 4-

WR'4-

w RO~
<II

FREQUENCE
REFERENCE

Figure 2.
Logic Symbol

4096 BYTES
PROGRAM
MEMORY

(8044 & 8744)

L

INTERRUPTS

[___ '----T-r---'

INTERRUPTS CONTROL

8744H

192 BYTES
DUAL PORT

RAM

PARALLEL PORTS
ADDRESS DATA BUS

AND I/O PINS

Figure 4.
Block Diagram

20-22

P' 0
P, , [2

P' 2 [J

P' 1 [•

P' • [,

P' 5 [6

RTS P'SI 7

m P1T[8

RST [.

1/0 RXD P30 10

OATA TXo P3 1 I "
INTO P32 I 11

INT1 P33[13'

TO PH [14

SCLK T1 P3 5 I "
ViA PHI ..

iiO P37 I 17

XTAL2 [18

XTALI ["

VSS [20

vee
PO 0 AOO

POI AOI

PO.2 A02

PO 3 A03

PO.O ADO

J PO 5 ADS

J PO.I A08

AoT

Ei -ypp

J ALE PROG

~Pmi
)P21 "15

jP26 'A14

P25 A13

JP24 A'2

All
P2.2 A'O

P21 A9

P2.0 A8

Figure 3. Pin
Configuration

-,
I

SIU
(SERIAL

INTERFACE
UNIT)

TWO 16·BIT
TIMER EVENT

COUNTERS

COUNTERS

DATA I
I-tl---i~~ I/O

HDLC/SDLC
I SERIAL

COMMUNICATIONS

I
I
I
I
I
I

..J

ORDER NUMBER: 210735-002

8744H

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias ... O°C to 70°C

storage Temperature -65°C to +150°C

Voltage On Any Pin to VSS
(Except VPP) -0.5V to + 7V

Voltage from VPP to VSS 21.5V

Power Dissipation 2 W

'NOTlCE: Stresses above those listed under "Abso
lute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS: (T A = 0° C to 70° C; VCC = 4.5V to 5.5V. VSS = OV)

Symbol Parameter Min Max Unit Test Conditions

VIL Input Low Voltage (except EA) -0.5 O.S V

VIL1 Input Low Voltage to EA 0 O.S V

VIH Input High Voltage (Except XTAL2. RST) 2.0 VCC +0.5 V

VIH1 Ihput High Voltage to XTAL2. RST 2.5 VCC +0.5 V XTAL1 =VSS

VOL . Output Low Voltage Ports 1. 2. 3 (Note 1) 0.45 V 10L = 1.6mA

VOL1 Output Low Voltage Port O. ALE. PSEN 0.60 V 10L =3.2mA
(Note 1) 0.45 V 10L =2.4mA

VOH Output HighVoltage Ports 1. 2. 3 2.4 V 10H = -SO!LA

VOH1 Output HighVoltl!ge Port 0 (in External
Bus Mode). ALE. pss;J

2.4 V 10H =-400!LA

IlL Logical 0 Input Current P1. P2. P3 500 !LA Vin = 0.45V

UL1 Logical 0 Input Current to EAIVpp -15 mA Vin =0.45V

IIL2 Logical 0 Input Current to XTAL2 -3.5 mA XTAL1 =VSS Vin =0.45V

III Input Leakage Current to Port 0 100 !LA 0.45<Vin<VCC

IIH Logical Input C.urrent to EAIVpp 500 !LA Vin = 2.4V

IIH1 'Input Current to RSTIVPD to activate reset 500 !LA Vin < (VCC - 1.5V)

ICC Power Supply Current 270 mA 8J! outputs disconnected.
, EA=VCC

CIO Capacitance of I/O Buffers 10 pF fc=1MHzTA=25°C

20;-23 ORDER NUMBER: 210735-002

8744H

AC CHARACTERISTICS (TA = O°C to 70°C, VCC = 4.5V to 5.5V, VSS" OV, 'Load'Capacitancefor Port 0, .
ALE, and PSEN '" 100 pF; Load Capacitance for all other outputs = 80 pF~

EXTERNALPROGRAM MEMORY CHARACTERISTICS

8744H
12MHzOsc Varililble Oscillator

Symbol Parameter Min Max Min Max Units

TCLCL Oscillator Period 83.3 285.7 ns

TLHLL . ALE Pulse Width 127 2TCLCL~40 ns

TAVLL Address Valid to ALE 53 TCLCL~40 ns

TLLAX Address Hold after ALE 48 TCLCL~35 ns

TLLlV ALI;'. to Valid Instr In 183 4TCLCl:-150 ns

TLLPL ALEtoPSEN 58. TCLCL-25 ns'

TPLPH PSEN Pulse Width 190 3TCLCL-60 ns

TPLIV PSEN to Valid Instr In 100 3TCLCL-150· ns

TPXIX Input Instr Hold after PSEN 0 0 ns

TPXIZ Input Instr Float after PSEN 63 TCLCL-20 ns

TPXAV PSEN to Address Valid 75 TCLCL-8 ns

TAVIV Address to Valid Instr ,In 267 5TCLCL-150 ns

TAZPL Address Float to PSEN -25 -25 ns

EXTERNAL DATA MEMORY CHARACTERISTICS

8744H
12 MHz Osc Variable Oscillator

Symbol Parameter Min Max Min Max Units

TRLRH~ RD Pulse Width 400 6TCLCL-100 ns

TWLWH WR Pulse Width 400 6TCLCL-100 ns

TLLAX Address Hold After ALE 48 TCLCL-35 ns

TRLDV RD to Valid Data In 252 5TCLCL-165 ns

TRHDX Data Hold after RD 0 0 ns

TRHDZ Data Float after RD 97 2TCLCL-70 ns

TLLDV ALE to Valid Data In 517 8TCLCL-150 ns

TAVDV Address to Valid Data In 585 9TCLCL-165 ns

TLLWL ALE to WR or RD 200 300 3TCLCL-50 3TCLCL+50 ns

TAVWL Address to WR or RD 203 4TCLCL-130 ns

TQVWX Data Valid to WR Transition 13 TCLCL-70 ns

TQVWH Data Setup to WR High 433 7TCLCL-150 ns

TWHQX Data Held after WR 33 TCLCL-50 ns

TRLAZ RD Low to Address Float 25 25 ns

TWHLH RD or WR High to ALE High 33 133 TCLCL-50 TCLCL+50 ns

20-24 ORDER NUMBER: 210735·002

8744H

AC TESTING INPUT, OUTPUT, FLOAT WAVEFORMS

INPUT/OUTPUT FI.OAT

j ------FI.OAT----.... t
2.4 2 20 2.4

0.45 0 ... ::----------0:. 0.45
2.4=>(20 2.0.)C

TEST POINTS

0.45 ;..:0:;:.8:..... _____::;0.::..8

AC testing inputs are driven at 2.4V for a logic 1 and O.45V for a logic 0
Timing measijr$ments a,,~ made at 2.0V for a logic 1 and O.SV for a logic 0
For timing purposes, the float state is defined as the point at which a PO pin sinks 3.2mA or sources 400J'A at the voltage test levels

SERIAL UO WAVEFORMS

Synchronous Data Transmission

~-----------TOCY-----------<~

---------........ t-----'TDCL ---.I r-----------""""\
sCLK

~------------~~------TDCH

DATA

TTO

Synchronous Data Reception

~-------------TDCY------------~

------........ ~---TDCL---__l ,..---------"
sCLK

~---TDCH--__l

DATA

TOSS ~---------TOHS-------------.I

20-25 ORDER NUMBER: 210735·002

8744H ~[f,j[g[bOIMlOOO~IfJ~

Serial Interface

Symbol Parameter Min Max Units
TDCY Data Clock 420 ns

TDCL Data Clock Low 180 ns

TDCH Data Clock High 100 ns

TTD Transmit Data Delay 180 ns

TOSS Data Setup Time 40 ns

TDHS Data Hold Time 40 ns

Memory Access

Program Memory Read Cycle

~--------------~-------------TCY------------------------~

ALE

PSEN

PORTO A7-AD INSTR IN

PORT 2
ADDRESS A15-A8

Data Memory Read Cycle
TWHLH

ALE

----------------~------------~ ~~--------_+TRLRH----------~~/-------

PORTO

PORT2

Data Memory Write Cycle

ALE

TRLAZ

ADDRESS A 15-A8 OR SFR- P2

TRHDX

DATA IN

TWHLH

________________ ~----------~I.~--------TWLWH----------~~-----

TaVWH TWHOX

PORTO DATA OUT

PORT2
ADDR!;SS A15-A8 OR SFR-P2

"-

20-2d ORDER NUMBER: 210735·002

8744H

NOTE: VOL is degraded when the 8744H rapidly discharges external capacitance. This AC noise is most pronounced
during emission of address data. When using external 'memory, locate the latch or buffer as close to the 8744H
as possible.

VOL
Emitting Degraded (peak)

Datum Port, I/O Lines (max)

Address P2, PO P1, P3 0.8V

Write Data PO P1, P3, ALE 0.8V

,
EXTERNAL CLOCK DRIVIE CHARACTERISTICS (XTAL2)

Symbol Parameter Min Max Units

TCLCL Oscillator Period: 8751 H 83.3 285.7 ns

TCHCX High Time 20 ns

TClCX Low Time 20 ns

TCLCH Rise Time 20 ns

TCHCL Fall Time 20 ns

l_rCHCL

0.8 0.8

l~rCLcx-1

1-------rcLCL-- ------

20-27 ORDER NUMBER: 210735-002

CLOCK WAVEFORMS

INTERNAL
CLOCK

XTAl2

ALE

STATE 4

Pl I P2

STATE 5

Pl I P2

EXTERNAL PROGRAM MEMORY FETCH

STATES

Pl I P2

8744H

STATE 3

Pl I P2

STATE 4

Pl I P2

I I I
ACTIVATED DURING THE

STATE 5

Pl I P2

EXECUTION OF A MOVX INSTRUCTION

PSEN

::2 THESE SIGNALS ARE NOT

,----'...._=-----'1 I" I L
PO

P2(EXT) =-____ 1 INDICATES ADDRESS TRANSITIONS L.I -:-_______ -: __ -J

READ CYCLE

RD

PO

P2
WRITE CYCLE

WR

PO

P2

PORT OPERATION

MOV PORT. SRC

DPl OR Ri
OUT

OOH IS EMITTED . PCl OUT (IF PROGRAM
DURING THIS PERIOD MEMORY IS EXTERNAL)

L~" ~ r\l.-I- ..-: FLOAT SAMPLED .• i
INDICATES DPH OR P2 SFR TO PCH TRANSITIONS

I PCl OUT(EVEN iF PROGRAM 1-__________ ---' MEMORY IS INTERNAL)

. B-:i tCl OUT ;1h;OGRAM
I MEMORY IS EXTERNAL)

DPl OR RI
OUT DATA OUT

INDICATES DPH OR P2 SFR TO PCH TRANSITIONS

OLD DATA I NEW DATA SAMPLED

I.. ______ -.------------------J----CPOPINS MOV DE ST. PO ~ !--4l
MOV DEST, PORT (Pl. P2, P3) PO PINS SAMPLED c::::::J
(INCLUDES INTO. INT1. TO. T1] ~'-----------------------r, -L--

SERIAL PORT SHIFT CLOCK
Pl. P2. P3 PINS SAMPLED :~N~2S:~PLED

i~gDE O)--------~XDSAMPLED
I..--___ q:r

, RXD SAMPLED

ThiS diagram Indicates when signals are clocked Internally. The time It takes the signals to propagate to the pins, however,
r<\nges from 25 to 125 ns. ThiS propagation delay is dependent on variables such as temperature and pin loading. Propagation
also varies from output to output and component to component TYPically though, (T A = 25°C, fully loaded) RD and WRprop
agatlon delays are approximately 50 ns. The other signals are tYPically 85 ns. Propagation delays are Incorporated In the AC
specifications

20-28 ORDER NUMBER: 21(

inter 8744H

8744H EPROM CHARACTERISTICS

Erasure Characteristics
Erasure of the 8744H Program Memory begins, to
occur when the chip is exposed to light with wave
lengths shorter than approximately 4,000 Angstroms.
Since sunlight and fluorescent lighting, have wave
lengths in this range, constant exposure to these
light sources over 'an extended period of time (about
1 week in sunlight, or 3 years in room-level fluOfes
cent lighting) could cause unintentional erasure. If
an application subjects the 8744H to this type of
exposure, it is suggested that an opaque label be
placed over the window.

The recommended erasure procedure is exposure
to ultraviolet light (at 2537 Angstroms) to an inte
grated dose of at least 15 W-sec/cm2 rating for 20
to 30 minutes, at a distance of about 1 inch, should
be sufficient.

Erasure leaves the array in an all 1s state.

Programming the EPROM
To be programmed, the 8744H must be running with
a 4 to 6 MHz oscillator. (The reason the oscillator
needs to be running is that the internal bus is being
used to transfer address and program data to appro
priate registers.) The address of an EPROM location
to be programmed is applied to Port 1 and pins
P2.0-P2.3 of Port 2, while t~ta byte is applied to
Port O. Pins P2.4-P2.6 and PSEN shQuld be held low,
and P2.7 and RST high. (These are all TIb.Jevels
'except RST, which requires 2.5V for high.) EANPP
is held normally high, and is pulsed to +21V. While
EANPP is at 21V, the ALE/PROG pin,. which is
normally being held high, is pulsed low for 50 msec.
Then EANPP is returned to high. This is illustrated
in Figure 3. Detailed timing specifications are pro~
vided in the EPROM Programming and Verification
Characteristics section of this data sheet.

Program Memory Security
The program memory security feature is developed
around a "security bit" in the 8744H EPROM array.
Once this "hidden bit" is programmed, electrical
access to the contents of the entire program memory
array becomes impossible. Activation of this feature
is accomplished by programming the 8744H as
described in "Programming the EPROM" with the
exception that P2.6 is held at a TIL high rather than
a TIL low. In addition, Port 1 and P2.0-P2.3 may be
in any state. Figure 4 illustrates the security bit pro
gramming configuration. Deactivating the security
feature, which again allows programmability of the
EPROM, is accomplished by exposing the EPROM
to ultraviolet light. This exposure, as described in
"Erasure Characteristics," erases the entire EPROM
array. Therefore, attempted retrieval of "protected
code" results in its destruction.

Program Verification
Program Memory may be read only when the
"security feature" has not been activated. Refer to
Figure 5 for Program Verification setup. To read the
Program Memory, the following procedure can be
used. The unit must be running with a 4 to 6 MHz
oscillator. The address of a Program Memory loca
tion to be read is applied to Port 1 and pins P2.0-
P2.3 of Port 2. Pins P2.4-P2.6 and PSEN are held at
TIL low, while the ALE/PROG, RST, and EANPP
pins are held at TIL high. (These are all TTL levels
except RST, which requires 2.5V fOT high.) Port 0
will be the data output lines. P2.7 can be used as a
read strobe. While P2.7 is held high, the Port 0 pins
float. When P2.7 is strobed low, the contents of the
addressed location will appear at Port O. Extemal
pullups (e.g., 10K) are required on Port 0 during
program verification.

20-29 ORDER NUMBER: 210735-002

intJ

ADDR.
OOOOH
OFFFH

-b

TTL HIGH

....L ..L
4-6 MHz 0 I

~
I .

8744H

+5V

Vee f-- J

8744H

PO I~ . PGM DAl'~

-- P2.4

P2,5 ALE - - ALE PROG

P2.6

P2.7

XTAL2 EA --"-- l:AIVPP

> XTALI RST -_._.- VI HI

1-- Vss

-::- .l

Figure 3. Programming Configuration

Ne

NC

-::!::- L

TTLHI'GH r=
....L • -'-

4-6 MHz 0 I
T >

1-.
~

PI
8744H

P2.0-
P2.3

P2.4

P2.5

P2.6

P2.7

XTAL2

XTALI

Vss

+5V.

Vee

PO NC

ALE - _ ALE/PROG 50 ms PULSE TO GND

EA - - ~'EA/VPP +21V PULSE

RST r----. -- VIHI

PSEN C-',

~

Figure 4. Security Bit Programming Configuration

20-30 ORDER NUMBER: 210735-002

intJ 8744H

+SV

P1
Vee

1-------'\ PGM DATA
PO (USE 10K PULL UPS)

8744H

P2.0-
P2.3

P2.4

P2.S

P2.6

ENABLE P2.7

ALE --r- TTL HIGH.

EA ...J
XTAL2 RST VIH1

XTALl

VSS =
-

Figure 5. Program Verification Configuration

EPROM PROGRAMMING, SECURITY BIT PROGRAMMING AND VERIFICATION CHARACTERISTICS
(TA = 21°C to 27°C, VCC = 4.5V to 5.5V, VSS = OV)

Symbol Parameter Min Max Units

Vpp Programming Supply Voltage 20.5 21.5 V

IPP Programming Current 30 mA

1ITCLCL Oscillator Frequency 4 6 MHz

TAVGL Address Setup to PROG 48TCLCL

TGHAX Address Hold after PROG 48TCLCL

TDVGL Data Setup to PROG 48TCLCL

TGHDX Data Hold after PROG 48TCLCL

TEHSH ENABLE High to Vpp 48TCLCL

TSHGL Vpp Setup to PROG 10 J,!sec

TGHSL Vpp Hold after PROG 10 J,!sec

TGLGH PROGWidth 45 55 msec

TAVQV Address to Data Valid 48TCLCL

TELQV ENABLE to Data Valid 48TCLCL

TEHQZ Data Float after ENABLE 0 48TCLCL

20-31 ORDER NUMBER: 210735-002

,&144H

EPROM PROGRAMMING, SECURITY BIT PROGRAMMING AND
, VERIFICATION WAVEFORMS

PROGRAMMING VERIFICATION

} ______ A_D_D_R __ E_SS ______ »r------P1.0·P1.7 -i ? P2.0.P2.3 ADDRESS

~~~--~-------

I~~I 

PORTO ------~I<r-----D-A-r-A-IN----->~------------------~(:~~D~A~TA~~OU~T~~=)r---------

AlEPROG 

1·"--1 
TGHDX I i IroVGl-1 

i-1'AVGL--
UTGHAXI 

1 TSHGL '1--- ~~: 
. TGlGHi 

21V .. 5V ' 

~ \ TTL HIGH TTL HIGH TTl HIGH \-------
EAVPP 

I TEHSH 
---I 

I 

P2.7· ) 
(ENAiitE! 

FOR PROGRAMMING CONDITIONS SEE FIG.URE 3. 
FOR SECURITY BIT PROGRAMMING CONDITIONS SEE FIGURE 4. 
FOR VERIFICATION CONDITIONS SEE FIGURE 5. 

I • 

2(}:32 

h TELOV 1_ TEHOZ 
1 

\ ! '----_...I 

ORDER NUMBER: 210735-002 



RUPFM Article Reprints 21 





inter 

@ INTEL CORPORATION 

ARTICLE 
REPRINT 

21-1 

AR-307 

NOVEMBER'1983 

, ~anuary 1985 

ORDER NUMBER 230876-001 
, 



AR-307 

SUMMARY 
The 8044 offers a lower CO$t and higher performance 
solution to networking microcontrollers than conven
tional solutions. The system cost 'is lowered by 
integrating an entire microcomputer with an intelligent 
HOLC/SOLC communication processor onto a single 
chip. l'he higher performance is realized by integrating 
two processors running concurrently on one chip; the 

. powerful 8051 microcontroller and the Serial Inter
face Unit. The 805.1 microcontroller is substantially 
off-loaded from the communication tasks when 
using the AUTO mode. In the AUTO mode the SIU 
handles many of the data link functions in hardware. 
The advantages of the AUTO mode· are: less software 
is required to implement a secondary station data link, 
the 8051 CPU is offloaded, and the turn-around time 
is reduced, thus increasing the network throughput. 
Currently the 8044 is the only microcontroller with 
a sophisticated communications processor on-chip. In 
the future there will be more microcontrollers available 
following this trend. 

INTRODUCTION 
Today microcontrollers are being designed into 
virtually every type of equipment. For the household, 
they are turning lip in refrigerators, thermostats, 
burglar alarms, sprinklers, and even water softeners. 
At work they are found in laboratory instruments, 
copiers, elevators, hospital equipment, and telephones. 
In addition, a lot of microcomputer equipment con
tains more than one microcontroller. Applications 
using multiple microcontrollers as well, as the office. 
and home, are now faced with the same requirements 
that laboratory instruments were faced with 12 year~ 
ago - they need to connect them together and have 
them .communicate. This need was satisfied in the 
laboratory with the IEEE-488 General Purpose 
Instrumentation Bus (GPIB). However, GPIB does 
not meet the current design objectives for-network
ing microcontrollers. 

Today there are many communications schemes and 
protocols available; some of the popular ones are 
GPIB, Async, HOLC/SOLC, and Ethernet. Common 
design objectives of today's networks are: low cost, 
reliable, efficient throughput, and expandable. In 
examining available solutions, GPIB does not meet 
these design objectives; first, the cable is too expen
sive (parallel communications), second, it can only be 
used over a limited distance (20 meters), and third, 
it can only handle a limited number of stations. For 
general networking, serial communications is 
preferable because of lower cable costs and higher 
reliability (fewer connections). While Ethernet pro
vides ,very high performance, it is more of a system 
backbone rather than a microcontroller interconnect. -
Async, on the other hand, is inexpensive but it is not 
art efficient protocol for data block or file transfers. 
Even with some new modifications such as a 9 bit pro
tocol for addressing, important functions such as 

21-2 

acknowledgements, error checking/recovery, and data 
transparency are not standardized nor supported by 
available data comm chips. 

SOLC, Synchronous Oata Link Control, meets the 
requirements for communications link design. The 
physical medium can be used on two or four wire 
twisted pair with inexpensive transceivers and connec
tors. It can also be interfaced through modems, which 
allows it to be used on broadband networks, leased 
or switched telephone lines. VLSI controllers have 
been available from a number of vendors for· years; 
higher performance and more user friendly SOLC con
trollers continue to appear. SOLC has also been 
designed to be very reliable. A 16 bit CRC checks the 
integrity of the received data, while frame number
ing and acknowledgements are also built in. Using 
SDLC, up to 254 stations can be uniquely addressed, 
while HDLC addressing is unlimited. If an RS-422 
only requires a single +5 volt power supply. 

What will the end user pay for the added value pro
vided by communications? The cost of the com
munications hardware is not the only additional cost. 
There will be performance degradation in the main 
application because the mjcrocontroller now has 
additional tasks to perform. There are two extremes 
to the cost of adding communication capability. One 
could spend very little by adding an I/O port and have 
the CPU handle everything from the baud rate to the 
protocol. Of course the main application would be 
idle while the CPU was communicating. The other ex
treme would be to add another microcontroller to 
the system dedicated to communications. This 
communications processor could interface to the main 
CPU through a high speed parallel link or dual port 
RAM. This 'approach would maintain system per
formance, but it would be costly. 

Adding HDLC/SDLC Networking Capability 
Figure 1 shows a microcomputer system with a con
ventional HDLC/ SDLe communications solution. 
The additional hardware needed to realize the con
ventional design is:.an HDLCf sDLe communication 
chip, additional ROM for the communication software, 
part of an interrupt controller, a bilUd rate generator, a 
phase locked loop, NRZI encoded/decoder, and a 
cable driver locked loop are used when the transmitter 
does not send the clock on a s.eparate line from the data 
(i.e. over telephone lines, or two wire cable). the NRZI 
encoder/'decoder is used in HDLC/ SDLe to combine 
the clock into the data line. A phase locked loop is used 
to recover the clock from the data line. 

The majority of the available communication chips 
provide a limited number oJ data link control func
tions. Most of them will handle Zero Bit Inser
tion/Deletion (ZBIID), Flags, Aborts, Automatic 



AR-307 

. SERIAL 
MICROCONTROLLER COMMUNICATIONS 

SDLC/HDLC 

BAUD 
RATE 

GENERATOR 

Figure 1. Conventionalmicrocontroller networking solution 

address recognition, and CRC generation and check
ing. It is the CPU's responsibility fo manage 
link access, command recognition and response, 
acknowledgements and error recovery. Handling these 
tasks can take a lot of CPU time. In addition, servic
ing the transmission and reception of data bytes can 
also be very time consuming depending on the method 
used. 

U sing a D M A controller can increase the overall system 
performance, since it can transfer a block of data in 
fewer clock cycles than a CPU. In addition, the CPU 
and the DMA cOhtroller can multiplex their access to 
the bus so that both can be running at virtually the same 
time. However, both the DMA controller and the CPU 
are sharing the same bus, therefore, neither one get to 
utlize 100%' of the bus bandwidth. Microcontrollers 
available today do not support DMA, therefore, they 
would have to use interrupts, since polling is 
unacceptable in a multitasking environment. 

In an interrupt driven, the CPU has overhead in ad
dition to servicing the interrupt. During each inter~ 
rupt request the CPU has to save all of the important 
registers, transfer a byte, update pointers and 
counters, then restore all of its registers. At low bit 
rates this overhead may be insignificant. However, the 
percentage of overhead increases linearly with the bit 
rate. At high bit rates this overhead would consume 
all of the CPU's time. There is another nuisance fac
tor associated with interrupt driven systems, interrupt 
latency.> Too much interrupt latency will cause data 
to be lost from underrun and overt:un errors. 

The additional hardware necessary to implement the 
coinmunications solution, as shown in Figure I, wQuld 

21-3 

require 1 LSI chip and about 10 TTL chips. The cost 
of CPU throughput degradation can be even greater. 
The percentage of time the CPU has to spend servic
ing the communication tasks can be anywhere from 
10-100070, depending on the serial bit rate. These high 
costs will prevent consumer acceptance of network
ing microcomputer equipment. 

A Highly Integrated, High Performance Solution 
The 8044 reduces the cost of networking micro
controllers without compromising performance. It 
contains all of the hardware components necessary to 
implement a microcomputer system with communica
tions capability, plus it reduces the CPU and software 
overhead of implementing HOLC/SOLC. Figure 2 
shows a functional block diagram of the 8044. 

The 8044 integrates the powerful 8051 microcontroller 
with an intelligent Serial Interface Unit to provide a 
single chip solution which efficiently implements a 
distributed processing or distributed control systefiJ.. 
The microcontroller is a self sufficient unit contain
ing ROM, RAM, ALU and its own peripherals. The 
8044's architecture and instruction set are identical to 
the 8051's. The Serial Interface Unit (SIU) uses 
bit synchronous HOLC/SOLC protocol and can com
municate at bit rates up to 2.4 Mbps, externally 
clocked, or up to 375 Kbps using the on-chip digital 
phase locked loop. The SIU contains its own pro
cessor, which operates concurrently with the micro
controller. 

The CPU and the SIU, in the 8044, interface through 
192 bytes of'dual port RAM. There is no hardware 
arbitration in the dual port RAM. Both processor's 
memory access cycles are interlaced; each processor 
has access every 'other clock cycle. Therefore, there 



inter AA-307 

SIU 

HDLC/SDLC 
COMMUNICATIONS 

PROCESSOR 
8051 

MICAO
CONTROLLER 

L ______________ _ 

Figure 2. 8044 single chip microcontroller networking solution 

is no throughput loss in either processor as a result 
of the dual port RAM, and execution times are deter
ministic. Since this has always been the method for 
memory access on the 8051 microcontroller, 8051 pro
grams have the same execution time in the 8044. 

By integrating all of the communication hardware 
onto the 8051 microcontroller, the hardware cost of 
the system is reduced. Now several chips have been 
integrated into a single chip. This' means that the 
system power is reduced, P.C. board space is re
duced, inventory and assembly is reduced, and 
reliability is improved. The improvement in reli
ability is a resuit of fewer chips and interconnections 
o~the P.C. board. 

As mentioned before, there can be two extremes in 
a design which adds communications to the microcom
puter system. The 8044 solution uses the high end ex
treme. The SIU on the 8044 contains its own processor 
which communicates with the 8051 processor through 
dual port RAM and control/status registers. While 
the SIU is not a totally independent communications 
processor, it substantially offloads the 8051 processor 
from the communication tasks. 

Tbe DMA on the 8044 is dedicated to the SIU. it can
not access external RAM. By having a DMA controller 
in the SIU, the 8051 CPU is offloaded. As a result 
of the dual port RAM design. the DMA does not share 
the running at full speed while the frames are being , 

21-4 

transmitted or received. Also, the nuisance of over
run and underrun errors is totally eliminated since the 
dedicated DMA controller is guaranteed to meet the 
maximum data rates. Having a dedicated DMA con
troller means that the ,serial channel interrupt can be 
the lowest priority, thus allowing the CPU to have 
higher priority real time interrupts. 

Figure 3 shows a comparison between the conventional 
and the 8044 solution on the percentage of time the 
CPU must spend sending data. This diagram was 
derived by assuming a 64 byte information frame is .. 
being transmitted repeatedly. The conventional solu
tion is interrupt driven, and each interrupt service 
routine is assumed to take about IS instructions with 
a I Ilsec instruction cycle time. At 533 Kbps, an in
terrupt would occur every 15 usee. Thus, the CPU 
becomes completely dedicated to servicing the serial 
communications. The conventional design could not 
support bit rates higher than this because of under
runs and overruns. For the 8044 to repeatedly send 
64 byte frames, it simply has to reinitialize the DMA 
controller. As a result, the 8044 can support bit rates 
up to 2.4 Mbps. 

Some of the other communications tasks the CPU has 
to perform, such as link access, commahd recogni
tion/response, and acknowledgements, are per
formed automatically by the SIU in a mode called 
"AUTO." The combination of the dedicated DMA 
controller and the AUTO mode, substantially offload 



inter AR-307 

• CONCURRENT PROCESSING 

PERCENTAGE OF 
CPU TIME SPENT 
SERVICING SOLC 

100 
90 
80 
70 
60 
50 
40 
30 

CONVENTIONAL 
SOLUTION 

20 8044 
SOLUTION 

1~~ __ ~======================~ 
250 K 500 K 750 K 1 M 

BIT RATE (BITS/SECOf:.lO) 

Figure 3. SIU offloads CPU 

the CPU, thus allowing it ·to devote more of its power 
to other tasks. . 

8044'8 Auto Mode 
In the AUTO mode·the SIU implements in hardware 
a subset of the SOLC protocol such that it responds 
to many SOLC commands without CPU intervention. 
All AUTO mode responses to the, primary station con
form to IBM's SOLC definition. hi the AUTO mode 
the 8044 can only be a secondary station operating 
·in SOLC specified "Normal Response Mode." 
Normal Response Mode means that the secondary 
station' can not transmit unless it is polled by the 
primary station. The SIU in the AUTO mode can 
'recognize and respond to the following SOLC com
mands without CPU intervention: I ,(Information), RR 
(Receive Ready), RNR (Receive Not Ready), REJ (Re
ject), and for loop mode UP (Unnumbered Poll). The 
SIU can generate the' following responses without 
;CPU intervention: I, RR, and RNR: In addition, the 
SIU manages Ns and Nr in the control field. If it 
'detects an error in either Ns or.Nr,it interrupts the 
CPU for error recovery. 

How does the SIU know what responses to send to 
:the primary? It uses two status bits which are set by 
, the CPU. The two bits are TBF (Transmit Buffer Full) 
.and RBP (Receive Buffer Protect). TBF indicates that 
the CPU wants to send data, and Rap indicates that 
the receive data buffer is full. Table I shows the 
responses the SIU will send based on these two status 
bits. This is an innovative approach to communica
tion design, The CPU in the 8044 with one instruction 

21-5 

can directly set a bit Which communicates to the 
primary what its transmit and receive bilfferJng status 
is. 

When the CPU wants to send a frame, it loads the 
transmit buffer with the (iiata, .. loads the starting 

. address and tile count of the data into the SIU, then 
sets TBF to transmit the frame. The SIU waits for the 
primary station to poll it with a RR command. After 
the SIU is polled; it automatically sends the informa
tion frame to the primary with the proper control field. 
The SIU then waits for a positive acknowledgement 
from the primary before incremeJ)ting the Ns field and 
interrupting the CPU for more data. If a negative 
acknowledgement is received, the SIU automatically 
retransmits the frame. 

When the 8044 is ready to receive information, the 
CPU loads the receive buffer starting address and the 
buffer lengthinto-the SIU, then enables the receiver. 
When a valid information frame with the correct 
address and CRe isreceive4, ,the SIU will increment 
the Nr field, disable the receiver and interrupt the CPU 
indicating that a good I fFame has been received. The 
CPU then sets RBP, reenables the receiver and pro
cesses the received data. By enabling the receiver with 
RBP set, the SIU will automatically respond to polls 
with a. Receive Not Ready, thus keeping the link 
moving rather than timing out the primary from a 
disabled receiver, or interrupting. the CPU with 
another poll before it has processed the data. After' 
the data has been processed, the CPU clears RBP, 
returning to .. the Receive Ready respol.l$es: 



AR-307 

Table 1. SIU's automatic responses il') auto mode 

STATUS BITS 
, " 

TBF 

'0 

0, 

1 

1 

RBP 

o 
1 

o 
1 

SDLC communications can be broken up into four 
states: Logi<;al DiscclDlI,ect State, Initialization State, 
Frame Reject State, and Information Transfer State. 
Data can only be transferred in the Information 

,Transfer State. More than90OJo of the time,a station 
will be in the Information Transfer State, which is 
where the SIU can run autonomously. In the other 
states, where error recovery, online! offline, and in
itialization takes place, the CPU manages the protocoL", 

PRIMARY' 

RESPONSE 

(RR) Receive ready 

(RNR) Receive hot ready 

,(I) Infol"mation 

(I) Information 

In the Information Transfer State there are three com
mon events which occur as illustrated in Figure 4, they 
are: 1) the primary polls the secondary and the secon
dary is ready to receive but has nothing to send, 2) 
the primary sends the secondary information, and 3) 
the secondary sends, information to the primary. 
Figures 5, 6, and 7 compare the functions the con
ventional design and the 8044 must execute in order 

, to !"espond to the primary for the cases in Figure 4. 

I SECONDARY I I SECONDARY I 
Case .1. Primary, polls secondary 

secondary has nothing to send 

Command 

RR 

Case 2. Primary polls secondary 
secondary sends information frame 

Response 

RR 

'CqrnmandResponse, 

RR,NR -.. fnformation frame 

RR, NR+1 

Case 3.' Primary' sends secondary information frame 

Command Response 
" ", \ > 

RR 
RR, NR,' 

'In'ormation frame 
" ~ '. ,I ' 

, ,Note: RR =, Receive ready 'RR NR+1 " t, , 

Figure ,4. SOlC commands and responses in the information transfer state 

21 r6 



8044 
AUTO MODE' PRIMARY 

-RR
Poll 

AR·307 

CONVENTIONAL 
DESIGN 

Receive Interrupts 

Decode received control field 

Check NR field 

Load response into transmit control field 

Send frame 

Transmit interrupts 

Figure 5. Primary polls secondary, secondary has nothing to send 

8044 
AUTO MODE 

Load transmit buffer 

,Set TBF bit 

I 

Transmit Interrupt 

CASE 2 

PRIMARY 

-_It--- RR -_ .. -
poll 

CONVENTIONAL 
DESIGN 

Load transmit buffer and transmit 
control byte 
Receive Interrupts 
Decode receive control byte 
Check NR field 

Send frame 
Transmit Interrupts 

""', ... ...._- RR -_ ... _ Receive interrupts 
poll Decode receive control byte . 

Check NR field 
IncrementNS 

Flgure.6. Primary polls secondary, secondary sends I.nformatlon frame 

21-7 



AR-3Q7 . 

. CASE 3 
8044 

AUTO MODE 

Receive interrupt 

PRIMARY 
-RR ____ 

poll 

i 

-4--1 frame ___ 

CONVENTIONAL 
DESIGN 

Receive Interrupts 
Decode received control field 
Check NR field 
Load response into transmit control 

field 
Send frame 
Transmit interrupts 
Receive interrupts 
Decode receive control field 
Check NS NR fields 
Increment NR 
Load response into transmit control 

field 
Send frame 
Transmit interrupts 

Figure 7. Primary sends information frame to secondary 

Using case I as an example, the conventional design 
first gets receive interrupts bringing the data from the 
SOLC comm chip into memory. The CPU must then 
decode the command in the control field and deter
mine the response. In addition, it must check the Nr 
field for any pending acknowledgements. The CPU 
loads the transmit buffer with the appropriate address 
and control field, then transmits the frame. When the 
8044 receives this frame in AUTO mode, the CPU 
never gets an interrupt because the SIU handles the 
entire frame reception and response automatically. 

In SOLC networks, when' there is no information 
'transfers, case I is the activity on the line. Typically 
this is 80070 of the network traffic. The CPU in the 
conventional design would constantly be getting in
terrupts and servicing the communications tasks; even 
when it has nothing to send or q:ceive. On the other 
hand, the 8044 CPU would only get involved in com
municating when it has data to send pr receive. 

Having tbe SIU implement a subsef of the SOLC pro
tocol in hardware· not only offloads the CPU, but it 
also improves the throughput on the network. The 

21-8 

most critical parameter for calculating throughput on 
any high speed network is the station turnaround time; 
the time it takes a station to respond a~ter receiving, 
a frame. Since the 8044 handles all of the commands 
and responses of the Information Transfer State in 
,hardware, the turnaround time is much faster than 
handling it in software, hence a higher throughput. 

8044's Flexible Mode 
In the "NON-AUTO" mode or Flexible mode, the 
SIU does not recognize or reswnd to any commands, 
nor does it manage acknowledgements, which means 
the CPU must handle link access, command recogni
tion/response, acknowledgements and error recovery 
by itself. The Flexible mode allows the 8044 to have 
extended address fields and extended control fields, 
thus providing HOLC support. In the Flexible mode 
the 8044 can operate as a primary station, since it can 
transmit without being polled. 

Front End Communications Processor 
'The ·8044 can also be used· as an intelligent 

HOLC/SOLC front end for a microporcessor, capable 
of extensively off-loading link control functions for 



AR·307 

the microporcessor. In some applications the 8044 can 
even be used for communications preprocessing, in 
addition to data link control. For this type of design 
the S044 would communicate to the Host CPU 
through a FIFO, or dual port RAM. A block diagram 
of this design is given in Figure S. A tightly coupled 
interface between the 8044 and the Host CPU would 
be established. the Host CPU would give the S044 
high level commands and data which the 8044 would 
convert to HDLC/SDLC. This,particular type of 
design would be most appropriate for a primary 
Station which is normally a micro, mini, or mainframe 

computer. Sophisticated secondary stations could also 
take advantage of this design. 

Since the 8044 has ROM on chip, all the communica
tions software is non-volatile. The 8044 primary 
station could down-line-load software to 8044 secon
dary stations. Once down-line-loading is implemented, 
software updates to the primary and secondary 
stations could be done very inexpensively. The only 
things which would remain fixed in IWM are the 
HDLC/SDLC communications' software and the soft
ware interface to'the HOST. 

HOST SYSTEM 
M~MORY 

SYSTEM DATA BUS 

INTERFACE 
HARDWARE 

8044 DATA BUS 

8044 
EXPANSION 

MEMORY 

HDLC/SDLC DATA LINK 

Figure 8. 8044 front ehd processor 

21-9 





Design Considerations 22 





Designing Microcontroller 
Systems for Electrically 

Noisy Environments 

Contents 

SYMPTOMS OF NOISE PROBLEMS. . . . .. 22-2 

TYPES AND SOURCES OF ELECTRICAL NOISE 
Supply Line Transients . . . . . . . . . . . .. 22-2 
EMP and RFI. . . . . .. . . . . . . . . . . .. 22-2 
ESD ...................... ' .. 22-3 
Ground Noise. . . . . . . . . . . . . . . . . . . ,22-3 

"RADIATED" AND "CONDUCTED" NOISE.. 22-3 

SIMULATING THE ENVIRONMENT. . . . . .. 22-4 

TYPES OF FAILURES AND FAILURE 
MECHANISMS . . . . . . . . . . . . . . . . .. 22-4 

THE GAME PLAN . . . . . . . . . . . . . . . .. 22-5 

CURRENT LOOPS. . . . . . . . . . . . . . . " 22-5 

SHIELDING . . . . . . . . . . . . . . . . . . . .'. 22-6 
Shielding Against Capacitive Coupling . . .. 22-6 
Shielding Against Inductive Coupling . . . .. 22-6 
RF Shielding . . . . . . . . . . . . . . . . . .. 22-9 

GROUNDS. . . . . . . . . . . .'. . . . . . . . . . 22-10 
Safety Ground ................... 22-10 
Signal Ground ................... 22-11 
Practical Grounding ................ 22~12 
Braided Cable. . . . . . . . . . . . . . . . . . . 22-13 

POWER SUPPLY DISTRIBUTION AND 
DECOUPLING. . . . . . . . . . . . . . . . . . . . 22-14 

Selecting the Value of the Decoupling Cap .. 22-15 
The Case for On-Board Voltage Regulation . 22-16 

RECOVERING GRACEFULLY FROM A SOFTWARE 
UPSET . . . . . . . . . . . . . . . . . . . . . . . . 22-16 

SPECIAL PROBLEM AREAS. . . . . . . . . . . 22-18 
ESD ................ ' ......... 22-18 
Tne Automotive Environment . . . . . . . . . . 22-19 

PARTING THOUGHTS. . . . . . . . . . . . . . . 22-21 

REFERENCES. . . . . . . . . . . . . . . . . . . . 22-22 

22-1 



Digital circuits are often thought of as being immune to 
noise problems, but really they're not. Noises in digita:l 
systems produce software .. upsets: program jumps to 
apparently random locations in memory. Noise-induced 
glitches in the signal lines can cause such problems, but 
the supply voltage is more sensitive to glitches than the 
signal lines. 

Severe noise conditions, those involving electrostatic dis
charges, or as found in automotive environments, can do 
permanent damage to the hardware. Electrostatic dis
charges can blow a crater in the silicon. In the automo
tive environment, in ordinary operation, the "12V" power 
line can show + and -400V transients. 

This Application Note describes some electrical noises. 
and noise environments. Design considerations, along the 
lines of PCB layout, power supply distribution and 
decoupling, and shielding and grounding techniques,. that 
may help minimize noise susceptibility are reviewed. Spe
cial attention is given to the automotive and ESD 
environments. 

Symptoms of Noise Problems 

Noise problems are not usually encountered during the 
development phase of a microcontroller system. This is 
because benches rarely simulate the system's intended 
environment. Noise problems tend not to show up until 
the system is installed and operating in its intended envir
onment. Then, after a few minutes or hours of normal 
operation the system finds itself someplace out in left 
field. Inputs are ignored and outputs are gibberish. The 
system may respond to a reset, or it may have to. be 
turned off physically and then back on again, at which 
point it commences operating as though nothing had 
happened. There may be an obvious cause, such as an 
electrostatic discharge from somebody's fingc;r to a key" 
board or the upset occurs every time a copier machine is 
turned on or off. Or there may be no obvious cause, and 
nothing the operator can do will make the upset repeat 
itself. But a few minutes, or a few hours, or a few days 
later it happens again. 

One symptom of electrical noise problems is randomness, 
both in the occurrence of the problem and in what the . 
system does in its failure. All operational upsets that 
occur at seemingly random intervals are not necessarily 
caused by noise in the system. Marginal VCC, inadequate 
decoupling, rarely encountered software conditions, or 
timing coincidences can produce upsets that seem to 
occur randomly. On the other hand, some noise sources 
can produce upsets downright periodically. Nevertheless, 
the more difficult it is to characterize an upset as to cause 
and effect, the more likely it is to be a noise problem. 

22-2 

Types and Sources:of Electrical Noise 

The name given to electrical noises other thail those that 
are inherent in the circuit components (such as thermal 
noise) is EMI: electromagnetic interference. Motors, 
power switches, fluorescent lights, electrostatic discparges, 
etc., are sources of EM!. There is a veritable alphabet 
soup of EMI types, and these are briefly described below. 

SUPPLY LINE TRANSIENTS 
Anything that switches heavy current loads onto or off of 
AC or DC power lines will cause large transients in these 
power lines. Switching an electric typewriter on or off, for 
example, can put a IOOOV spike onto the AC power lines. 

The basic mechanism behind supply line transients is 
shown in Figure I. The battery represents any power 
source, AC or DC. The coils represent the line inductance 
between the power source and the switchable loads R I 
and R2. If both loads are drawing current, the line cur
rent flowing through the line inductance establishes a 
magnetic field of some value. Then, when one of the 
loads is switched off, the field due to that component of 
the line current collapses, generating transient voltages, 
v = L( di/ dt), which try to maintain the current at its orig
inal level. That's called an "inductive kick." Because of 
contact bounce, transients are generated whether the 
switch is being opened or closed, but they're worse when 
the switch is being opened. 

An inductive kick of one. type or another is involved in 
most line transients, including those found in the automo
tive environment. Other mechanisms for line transients 
exist, involving noi~e pickup on the lines. The noise vol
tages are then conducted to a susceptible circuit right 
along with the power. 

EMPANDRFI 
Anything that produces arcs ?r sparks will radiate elec
tromagnetic pulses (EMP) or radio-frequency interference 
(RFI). 

L 

v -

Rl R2 

Figure 1. Supply Line Transients 

AFN-02131A 



Spark discharges have probably caused more software 
upsets in digill\l equipment than any other single noise 
source. ,The upsetting mechanism is the EMP produc\:d 
by the spark. The EMP induces transients in the circuit, 
which are what actually cause the upset. 

Arcs and sparks occur in automotive ignition systems, 
electric motors, switches,' static discharges, etc. Electric 
motors that have commutator bars produce an arc as the 
brushes pass from one bar to the next. DC motors and 
the "universalH (AC! DC) motors that are used to power 
hand tools are the kinds that have commutator bars. In 
switches, ttie same inductive kick that puts transients on 
the supply lines will cause an opening or closing 'switch to 
throw a' spark. ' 

ESD 
Electrostatic discharge (ESD) is the spark tliat occurs 
when a person picks up a static charge .from walking 
across a carpet, and then discharges it into a keyboard, ~r 
whatever else can be touched. Waiking across a carpet in 
a dry climate, a person can accumulate a static voltage of 
35kV. The current pulse from an electrostatic discharge 
has an extremely fast riseti~e - typically, 4A/ nsec. fig
ure 2 shows ESD 'waveforms that have been observed' by 
some investigators of ESD phenomena. 

It is enlightening to calculate the L( dij dt) voltage required 
to drive an ,ESD current pulse through a couple of inches' 
of straight wire. Two inches of straight wire has about 
50nH of inductance. That's not very, mueh, but using 
50nH for Land 4A/ nsec for di/ dt gives an L( di/ dt) drop 
of about 200V. Recent observations by W.M: King sug· 
gest even faster risetimes (Figure 2B) and the occurrence 
of mUltiple discharges during a single discharge event. 

Obviously, ESD-sensitiyity needs t.o be considered in the 
design of equipment that is going to be subjected to it, 
such as office equipment. ' 

GROUND NOISE 
Currents in ground lines are another' source of noise. 
These can be 60Hz currents from the power lines, or RF 
hash, or crosstalk from other signals that are sharing this 
particular wire as a signal return line. Noise in the ground 
lines is often referred to as a "ground 100pH preblem. The 
basic concept .of the ground loep is shewn in Figure 3. 
The preblem is'that true earth-ground is not really at the 

, same petential in all locatiens. If the twe ends of a wire 
are earth-grounded at different locations, the voltage dif
ference between the two "groundH points can drive signifi
cant currents (several amperes) through the wire. Con
sider the wire to be part of a loop which contains, in 
i1ddition to the wire, a voltage source that represents the 
difference in petential between the two ground 'points, 
and you have the classical "ground loop. ~', By extension, 
the term is used to refer to any unWanted (and often 
unexpected) currents in a ground line. 

"Radiated" and "Conducted" Noise 

Radiated noise is neise that arrives at the victim circuit in 
the form of electromagnetic radiation, such as EMP and 
RFI. It causes trouble by inducing' extraneous voltages in 
the circuit. Conducted noise is neise that arrives at the 
victim circuit already in the form,of an extraneous vel
tage, typically via the AC or DC power lines. 

One defends against radiated noise by care in designing 
layouts and the use of effective shielding techniques. One 
defends against conducted noise with filters and suppres-

80 

60 

~ 
~, 
z 
;: 40 

i5 
a: 
~ o 

20 

--EXPERIMENTAL 
-',- -- CALCULATED, 

o 10 20 30 40 50 60 70 80 90 100 110 120 
TIME IN NANOSECONDS 

Vert: 5 Amps/Diy 
Time: 5 "Sec/OJ. 

Displayed: 
Ip: 40 Amps 
Tr.l "Sec 
SooV 

tAl 

(8) 

Figure 2. Waveforms of Electrostatic Discharge 
Currents From a Hand-Held 
MetalliC Object 

AFN-02131A 



sors, although layouts ,ana' g~ounding' techniques"are 
important here, too. 

Simulating the Environment 

Addressing noise problems after the design ofa system 
has been completed is an expensive proposition., The ill 
will generated by failures in the field is not cheap either. 
It's cheaper in the long run to invest a little time and 
money in learning about noise and noise, simulation 
equipment, so that controlled tests can be made on the 
bench as the design is developing. 

Simulating the intended noise environment is a two-step 
process: First you have to recognize what the noise envir
onment is, that is, you have to know what kinds of elec
trical noises are present, and which of them are going to 
cause trouble. Don't ignore this first step, because it's 
important. If you invest in an induction coil spark: gener-' 
ator just because your application is automotive, you1l be 
straining at the gnat and swallowing the camel. Spark 
plug noise IS the least of your worries in that 
environrrient. 

The second step is to generate the electrical noise in a' 
controlled manner. This is usually more difficult than first 
imagined; one first imagines the simulation in terms of a 
waveform generator and a few spare parts, and then finds 
that a wideband power amplifier with a 200V dynamic 
range is alsp required. A good source,of information on 
who supplies what, noise-simulating equipment is the 1981 
"ITEM" Directory and Design Guide (reference 6). 

Types of Failures and Failure Mechanisms 

A major problem that EMI can cause in digital systems is 
intermittent operational malfunction. These software 
upsets occur when the system isjn operation at the time 
an EMI 'ilb~ is 'activated, and ate ,\lSually characterized 
by alQS~p( ,ipformation' or ,ajl1mp i~the execution of 

',' ":" 

" 0 

the p'rogram to some random location in memory. The 
p~rson Who has to, iron Qui' such problems is tempted to 
say 'the program counter went crazy. There is usually no 
da'mage to 'the hardware, arid normal operation can 
resume as soon as the EM I has passed or the source is 
de-activated. Resuming normal operation usually requires 
manual or automatic reset, ,and possibly re-entering of 
lo~t information. ' 

Electrostatic discharge~ fro~ operating personnel can 
cause not only software upsets, but also permanent 
("hard') damage, to the system. For this to happen the 
system d,oesn't even have to be in operation. Sometimes 
the permanent damage is latent, meaning the initial dam
age may be marginal and require further aggravation 
through operating stress and time before permanent fail
ure takes place. Sometimes too the damage is hidden. 

One ESD-related failure mechanism that has been identi
fied hItS to do with the bias voltage on the substrate of 
the chip. On some CPU chips the substrate' is held at 
-2.5V by a phase-shift oscillator working into a capaCi~ 
tori diode clamping circuit. This is called a "charge pump" 
in chip-design circles. If the substrate wanders too far in 
either direction, program read errory are noted. Some 
designs have been known to allow electrostatic discharge 
currents to flow directly into port' pins of an 8048. The 
resulting damage to· the oxide causes an increase in leak
age current, which' loads down the charge pump, red ucing 
the substrate voltage to a margirtal or unacceptable level. 
The system is then unreliable or completely inoperative 
until the CPU chip' is replaced. But if the CPU chip was 
subjected to a discharge spark once, it will eventually 
happen again, 

Chips that have a grounded substrate, such as the 8748, 
can sometimes sustain some oxide damage without actu
ally becoming inoperative. In this case the damage is 
present, and the increased leakage current is noted; how
ever, since the substrate voltage retains its deSign value, 
the damage is largely hidden. ' 

EARTH-GROUND 
ATB 

-----\.::"'.L 0, 

'POTENTIAL DIFFERENCE' 
BETWEEN A AND B "GROUND LOOP" 

,Figure 3. What a Ground Loop Is 

'J:\.FN-02131A 

22-4 



It must therefore be recognized that connecting port pins 
unprotected to a keyboard or to anything else that is sub
ject to electrostatic discharges, makes an extremely dan
gerous configuration. It doesn't make any difference what 
epu chip is being used, or who makes it. If it connects 
unprotected to a keyboard, it will eventually be destroyed. 
Designing for an ESD-environment will be discussed 
further on. 

We might note here that MOS chips are not the only 
components that are susceptible to permanent ESD dam
age. Bipolar and linear ohips can also be damaged in this 
way. PN junctions are subject to a hard failure mecha
nism called thermal secondary breakdown, in which a 
current spike, such as from an electrostatic discharge, 
Causes microscopically localized spots in the junction to 
approach melt temperatures. Low power TTL chips are 
subject to this type of damage, as are op-amps. Op-amps, 
in addition, often carry on-chip MOS capacitors which 
are directly across an external pin combination, and these 
are susceptible to dielectric brea\<down. 

We return now to the subject of software upsets. Noise 
transients can upset the chip through any pin, even an 
output pin, because every pin on the chip connects to the 
substrate through a pn junction. 'However, the most 
vulnerable pin is probably the vee line, since it has 
direct access to all parts of the chip: 'every register, gate, 
flip-flop and buffer. 

The menu of possible upset mechanisms is quite lengthy. 
A transient on the substrate at the wrong time will gener
ally cause a program read error. A false level at a control 
input can cause an extraneous or misdirected opcode 
fetch. A disturbance on the supply line can flip a bit in 
the program counter or instruction register. A short inter
ruption or reversal of polarity on the supply line can 
actually turn the processor off, but not long enough for 
the power-up reset capacitor to discharge. Thus when the 
transient ends, the chip starts up again without a reset. 

A common failure mode is for the processor to lock itself 
into a tight loop. Here it may be executing the data in a 
table, or the program counter may have jumped a notch, 
so that the processor is now executing operands instead 
of opcodes, or it may be trying to fetch opcodes from a 
nonexistent external program memory. 

It should be emphasized that mechanisms for upsets have 
to do with the arrival of noise-induced transients at the 
pins of the chips, rather than with the generation of noise 
pulses within the chip itself, that is, it's not the chip that 
is picking up noise, it's the circuit. 

Th~ Game Plan 

Prevention is usually cheaper than suppression, so first 
we'l consider some preventive methods that might help to 

minimize the generation of noise voltages in the circuit. 
These methods involve grounding, shielding, and wiring 
techniques that are directed toward the mechanisms by 
which noise voltages are generated in the circuit. We'l 
also discuss methods of decoupling. Then ,we'l look at 
some schemes for making a graceful .recovery from upsets 
that occur in spite of preventive measures. Lastly, we'l 
take another look at two special problem areas: electro
static discharges and the automotive environment: 

Current Loops 

The first thing most people learn about electricity is that 
current won't flow unless it can flow in a closed loop. 
This simple fact is sometimes temporarily forgotten by 
the overworked engineer who has spent the past several 
years mastering the intricacies of the DO loop, the timing 
loop, the feedback loop, and maybe even the ground 
loop. The simple current loop probably owes its apparent 
demise to the invention of the ground symbol. By a 
stroke of the pen one avoids having to <!raw the return 
paths of most of the current loops in the circuit. Then 
"groun<!" turns' into an infinite current sink, so that any 
current that flows into it is gone and forgotten. Forgotten 
it may be, but it's not gone. It must return to' its, source, 
so that its path will by all the laws of nature form a 
closed loop. 

The physical geometry of a given current loop is the key 
to why it generates EMI, why it's susceptible to EMI, and 
how to shield it. Specifically, it's the area of the loop that 
matters. 

Any flow of current generates a magnetic field whose 
intensity varies inversely to the distance from the wire 
that carries the current. Two parallel wires conducting 
currents +1 and -I (as in signal feed and return lines) 
would generate a nonzero magnetic field near the wires, 
where the distance from a given point to one wire is 
noticeably different from the distance to the other wire, 
but farther away (relative to the wire spacing), where the 
distances from a given point to either wire are about the 
same, the fields from both wires tend to cancel out. Thus, 
maintaining proximity between feed and return paths is 
an important way to minimize their interference with 
other signals. The way to maintain their proximity is 
essentially to minimize their loop area. And, because the 
mutual inductance from current loop A tO,current loop B 
is the same as the mutual inductance from current loop B 
to current loop A, a circuit that doesn't radiate interfer
ence doesn't receive it either. 

Thus, from the standpoint of reducing both generation of 
EMI and susceptibility to EM I, the hard rule is to keep 
loop areas small. To say that loop areas should be min
imized is the same as saying the circuit inductance should 

AFN-02131A 



be minimized. Inductance is by definition the constant of 
proportionality between current and' the magnetic field it 
produces: t/> = LI. Holding the feed and return wires close 
together so as to promote field cancellation can be de
scribed either as minimizing the loop area or as minimiz
ing L. It's the same thing. 

Shielding 

There are three basic kinds of shields: shielding against 
capacitive coupling, shielding against inductive coupling, 
and RF shielding. Capacitive coupling is electric field 
coupling, so shielding against it amounts to shielding 
against electric fields: As will be seen, this is relatively 
easy. Inductive coupling is magnetic field coupling, so 
shielding against it is shielding against magnetic fields. 
This is a little more difficult. Strangely enough, this type 
of shielding does not in general involve the use of mag
netic materials. RF shielding, the classical "metallic bar
rierfl against all sorts of electromagnetic fields, is what 
most people picture when they think about shielding. Its 
effectiveness depends partly on the selection of the shield
ing materi~l, but mostly, as it turns out, on the treatment 
of its seams and the geometry of its openings. 

SHIELDING AGAINST CAPACITIVE COUPLING 
Capacitive coupling involves the passage of interfering 
signals through mutual or stray capacitances that aren't 
shown on the circuit diagram, but which the experienced 
engineer knows are there. Capacitive coupling to one's 
body is what would cause an unstable oscillator to 
change its frequency when the person reaches his hand 
over the circuit, for example. More importantly, in a dig
ital system it causes crosstalk in multi-wire cables. 

The way to block ~pacitive coupling is to enclose the 
circuit or conductor you want to protect in a metal 
shield. That's called an electrostatic or Faraday shield. If 
coverage is 100%, the shield does not have to be 
grounded, but it usually is, to ensure that circuit-to-shield 
capacitances go to signal reference ground rather than act 
as feedback and crosstalk elements. Besides, from a 
mechanical point of view, grounding it is almost 
inevitable. 

A grounded Faraday shield can be used to break capaci
tive coupling between a noisy circuit and a victim circuit, 
as shown in Figure 4. Figure 4A shows two circuits 
capacitively coupled through the stray capacitance be
tween them. In Figure 4B the stray capacitance is inter
cepted by a grounded Faraday shield, so that interference 
currents are shunted to ground. For example, a grounded 
plane can be inserted between PCBs (printed circuit 
boards) to eliminate most of .the capacitive coupling 
between them. 

Another application of the Faraday shield is in the e1ec-

22-6 

trostatically shielded transformer. Here, a conducting foil 
is laid between the primary and secondary coils so as to 
intercept the capacitive coupling between them. If a· sys
tem is being upset by AC line transients, this type of 
transformer may provide the fix. To be effective in this 
application, the shield must be connected to the 'green-
wire ground. . 

SHIELDING AGAINST INDUCTIVE COUPLING 
With inductive coupling, the physical mechanism involved 
is a magnetic flux density B from some external interfer
ence source that. links with a current loop in the victim 
circuit, and generates a voltage in the . loop in accordance 
with Lenz's law: v = -NA(dB/dt}, where in this case N = 
I and A is the area of the current loop in the victim 
circuit. 

There are two aspects to defending a circuit against 
inductive pickup. One aspect is to try to mjnimize the 
offensive fields at their source. This is done by minimizing 
the area of the current loop at the source so as to pro
mote field cancellation, as described in the section on cur
rent loops. The other' aspe~t is to minimize the inductive 
pickUp in. the victim circuit by minimizing the area of that 
current loop, since, from Lenz's law, the induced voltage 
is proportional to this area. So the two aspects really 
involve the same corrective action: minimize the areas of 
the current loops. In other words, niinimizing the offen
siveness of a circuit inherently minimizes its susceptibility. 

C. 
NOISE --~-II--- VICTIM 

SOURCE CKT 

L J 
~ 

(A) Capacitive Coupling 

/FARADAY SHIELD 

NOISE -11-- --11- VICTIM 
SOURCE CKT 

I J 
~ 

(B) Electrostatic Shielding 

Figure 4. Use of Faraday Shield 



V. R 

I r------:.=.:.---------
I -I 

- - - ." ""CURRENT LOOP 

Figure 5. External to the Shield, cf>=O 

,Shielding against inductive coupling means nothing more 
nor less than c~ntrolling the dimensions of the current 
loops in the circuit We must look at four examples of 
this type of ushielding": the coaxial cable, the twisted pair, 
the ground plane, and the gridded-ground PCB layout 

The Coaxial Cable - Figure 5 shows a coaxial cable 
carrying a current I from a signal source to a receiving 
load, The shield carries the same current as the center 
conductor. Outside the shield, the magnetic field pro
duced by +1 flowing in the center conductor is cancelled 
by the field produced by -I flowing in the shield. To the 
extent that the cable is ideal in producing zero external 
magneti<: field, it is immune to inductive pickup from 
external sources. The cable adds effectively zero area to 
the loop. This is true only if the shield carries the same 
current as the center conductor. 

In the real world, both the signal source and the receiving 
load are likely to have one end connected to a common 
signal ground. In that case, should the cable be grounded 
at one end, both ends, or neither end? The answer is that 
it should be grounded at both ends. Figure 6A shows the 
situation when the cable shield is grou\lded at only one 
end. In that .case the current loop runs down the center 
conductor of the cable, then back through the common 

. ground connection. The loop area is not well defined. 
The shield not only does not carry the same current as 
the center conductor, but it doesn't carry any current at 
all. There is no field cancellation at all. The shield has no 
effect whatsoever on either the generation of EM! or sus
ceptibility to EM!. (It is, however, still effective as an 
electrostatic shield, or at least it would be if the shield 
coverage were lOO%.) 

Figure 68 shows the situation when the cable is grpunded 
at both ends. Does the shield carryall of the return cur
rent, or only a portion of it on account of the shunting 
effect of the common ground connection? The answer to 
that question depends on the frequency content of the 
signal. In general, the current loop will follow the path of 
least impedance. At low frequencies, OHz to several kHz, 
where the inductive reactance is insignificant, the current 
will follow the path of least resistance. Above a few kHz, 
where inductive reactance predominates, the current will 
follow the path of least inductance. The path of least 

V. 

Va 

''--

R 

(A) Shield Has No Effect 

,,;"""' .... ':" 

---) ,,/' 
I // 
\ /// 

,---- "LOW-FREOUENCY 
CURRENT PATH 

(8) Two Return Paths 

Figure 6. Use of Coaxial Cable 

inductance is the path of minimum loop area. Hence, for 
higher frequencies the shield carries virtually the same 
current as the center conductor, and is therefore effective 
against both generation and reception of EM!. 

Note that we have now introduced the famous "ground 
loop" problem, as shown in Figure 7A. Fortunately, a 
digital system has some built-in immunity to moderate 
ground loop noise. In a noisy environment, however, one 
can break the ground loop, and still maintain the shield
ing effectiveness of the coaxial cable, by inserting an opti
cal coupler, as .shown in Figure 7B. What the optical 
coupler does, basically, is allow us to re-define the signal 
source as being ungrounded,so that that end of the cable 
need not be grounded, and still lets the shield carry the 
same current as the center conductor. Obviously, if the 
signal source weren't grounded in tht first place, the opti
cal coupler wouldn't be needed. 

The Twisted Pair - A cbeaper way to minimize loop 
area is to run the feed and return wires right next to each 
other. This isn~t as effective as a coaxial cable in minimiz
ing Iqop area. An ideal coaxial cable adds zero area to 
the loop, whereas merely keeping the feed and return 
wires next to each other is bound to add a finite area. 

However, two things work to make this cheaper method 
almost as good as a coaxial cable. First, real coaxial 
cables are not ideal. If the shield current isn't'evenly dis
tributed around the center conductor at every cross-

AFN-02131A 

22-7 



POTENTIAL DIFFERENCE 
BETWEEN THE TWO 
GROUND POINTS 

(A) The Ground Loop 

( OPTICAL COUPLER +5V 

r-----~~ , ~(--'\ 

Vs ~~~:_:_:_:_::_:_:_:_:_:_::_:_:_:_:_::_~_-_-___ J : 

R 

I 
I 
I 
I 

__ ..... 1 

(B) Breaking the Ground Loop 

Figure 7. Use of Optical Coupler 

section of the cable (it isn't), then field cancellation exter
nal to the shield is incomplete. If field cancellation is 
incomplete, then the effective area added to the loop by 
the cable isn't zero. Second, in the cheaper method the 
feed and return wires can be twisted together. This not 
only maintains their proximity, but the noise picked up in 
one twist tends to cancel out the noise picked up in the 
next twist down the line. Thus the "twisted pairn turns 
out to be about as good a shield against inductive coup
ling as coaxial cable is. 

The twisted pair does not, however,:provide electrostatic 
shielding (Le., shielding against capacitive coupling). 
Another operational difference between them is that the 
coaxial cable works better at higher frequencies. This is 
primarily because the twisted pair adds more capacitive 
loading to the signal source than the coaxial cable does. 
The twisted pair is normally considered useful up to only 
about IMHz, as opposed to near a GHz for the coaxial 
cable. 

The Ground Plane - The best way to minimize loop 
areas when many current loops are involved is to use a 
ground plane. A ground plane is a conducting surface 
that is to serve as a return conductor for all the current 
loops in the circuit. Normally, it would be one or more 
layers of a multilayer PCB. All ground points in the cir
cuit go not to a grQunded trace on the PCB, but directly 
to the ground . plane. This leaves each current loop in the 
circuit freC' to, complete itself in whatever configuration 
yields minimum loop area (for frequencies wherein the 

22·8 

ground path impedance is primarily inductive). 

Thus, if the feed path for a given signal zigZags its way 
across the PCB, the return path for this signal is free to 
zigzag right along beneath it on the ground plane, in such 
a configuration as to minimize the energy stored in the 
magnetic field, produced by this current loop. Minimal 
magnetic flux means minimal effective loop area and min
imal susceptibility to inductive'coupling. 

The Gridded-Ground PCB Layout - The next best 
thing to a ground plane is to layout the ground traces on 
a PCB in the form of a grid structure, as shown in Figure 
8. Laying horizontal traces on one side' of the board and 
vertical traces on the other side allows the passage Of sig
nal and power traces. Wherever vertical and horizontal 
ground traces cross, they must ,be connected by. a 
feed-through. 

Have we not created here a network of "ground loopsn? 
Yes, in the literal sense of the word, but loops in the 
ground layout on a PCB are not to be feared. Such inof
fensive little lOOps' have never caused as much noise pick
up as their avoidance has. Trying to avoid innocent little 
loops in the ground layout, PCB designers have forced 
current loops i~to geometries that. could swallow a whale. 
That is exactly the wrong thi,:,g to do. 

The gridded ground structure works almost as w~1l as the 
ground plane, as far as minimizing loop area is con
cerned. For a 'given current loop, the 'primary return path 
may have ,to zig once in a while where its' feed path zags, 

AFN-02131A 



~ DIP 0 DECOUPLING _ GROUND e-ELECTROLYTIC 
t""."",,;;J CAPACITOR, CAPACITOR 

, Figure 8. PCB with Gridded Ground 

but you still get a mathematically optimal distribution of 
currents in the grid structure, such that the current loop 
produces less magnetic flux than if the return path were 
restrained to follow any single given ground trace. The 
key to attaining minimum loop areas for all the current 
loops together is to let the ground currents distribute 
themselves around the entire area of the board as freely 
as possible. They want to minimize their own magnetic 
field. Just let them. 

RF SHIELDING 
A time-varying electric field generates a time-varying 
magnetic field, and vice versa. Far from the source of a 
time-varying EM field, the ratio of the amplitudes of the 
electric and magnetic fields is always 377 ohms. Up close 
to the source of the fields, however, this ratio can be 
quite different, and dependent on the nature of the 
source. Where the ratio is near 377 ohms is called the far 
field, and where the ratio is significantly different from 
377 ohms is called the near field. The ratio itself is called 
the wave impedance, E/ H. 

The near field goes out about 1/6 of a wavelength from 
the source. At I M Hz this is about 150 feet, and at 
IOMHz it's about 15 feet. That means if an EMI source 
is in the same room with the victim circuit, it's likely to 
be a near field problem. The reason·this matters is that in 
the near field an RF interference problem could be 
almost entirely due to E-field coupling or H-field cou
pling, and that could influence the choice of an RF shield 
or whether an RF shield will help at all. 

In the near field of a whip antenna, the E/ H ratio is 
higher than 377 ohms, which means it's mainly an E-field 
generator. A wire-wrap post can be a whip antenna. 
Interference from a whip antenna would be by electric 
field coupling, which is basically capacitive coupling. 
Methods to protect a circuit from capacitive coupling, 
such as a Faraday shield, would be effective against RF 

22·9 

interference from a whip antenna. A gridded-ground 
structure would be less effective. 

In the near field of a loop antenna, the E/ H ratio is 
lower than 377 ohms, which means it's mainly an H-field 
generator. Any current loop is a loop antenna. Interfer
ence from a loop antenna would be by magnetic field 
coupling, which is basically the same as inductive cou
pling. Methods to protect a circuit from inductive cou
pling, such as a gridded-ground structure, woul<;l be effec
tive against RF interference from a loop antenna. A 
Faraday shield would be less effective. 

A more difficult case of RF interference, near field or far 
field, may ~equi're a genuine metallic RF shield. The idea' 
behind RF shielding is that time-varying EMI fields 
induce currents in the shielding material. The induced 
currents dissipate energy in two ways: [2R losses iri the 
shielding material and radiation losses as they re-radiate 
their own EM fields. The energy for both of these mech
anisms is drawn from the impinging EMI fields. Hence 
the EMI is weakened as it penetrates the shield. 

More formally, the [2R losses are referred to as absorp
tion loss, and the re-radiation is called reflection loss. As 
it turns out, absorption loss is the primary shielding 
mechanism for H-fields, and reflection loss is the primary' 
shielding mechanism for E-fields. Reflection loss, being a 
surface phenomenon, is pretty much independent of the 
thickness of the shielding material. Both loss mechanisms, 
however, are dependent on ihe frequency (w) of the 
impinging EMI field, and on the permeability (fJ.) and 
conductivity (u) of the shielding material. These loss 
mechanisms vary approximately as follows: 

reflection loss to an E-field (il) dB) ~ log ~ 
wfJ. 

absorption loss to an H~field (in dB) ~ tv mufJ. 

where t is the thickness of the shielding material. 

The first expression indicates that E-field shielding is 
more effective if the shield material is highly conductive, 
and less effective if the shield is ferromagnetic, and that 
low-frequency fields are easier to block than high
frequency fields. This is shown in Figure 9. 

iii" 150 :!!. 

" 125 

m 100 0 
..J 

75 z 
0 50 
~ 
w 25 
.... 
LL 
W 

" 0.01 0.1 1.0 10 100 1000 10,000 

FREQUENCY (KILOI:IERTZ) 

Figure 9. E-Field Shielding 

AFN-Q2131A 



175 

150 

~>25 
fI) 
fI) 

0 ... 
Z 
0 

~ 75 .. 
0 
fI) 

~ 50 

25 

10 10' 103 1Q4 105 

FREQUENCY (HERTZ) 

Figure 10. H·Field Shielding 

10' 10' 

Copper and aluminum both have the same permeability, 
but copper is slightly more conductive, and so provides 
slightly greater reflection loss to an E-field., Steel is less 
effective for two reasons. First, it has a somewhat ele
vated permeability due to its iron content, and, second, as 
tends to be the case with magnetic materials, it is less 
conductive. 

On the other hand, accilrding to the expression for 
absorption loss to an H-field, H-field shielding is more 
effective at higher frequencies and with shield material 
that has both high conductivity and high permeability. In 
practice, however, selecting steel for its high permeability 
involves some compromise in conductivity. But the 
increase in permeabilitr more than makes up for ,the 
decrease in conductivity, as can be seen in Figure 10. This 
figure also shows the effect of shield thickness. 

A composite of E-field and H-field shielding is shown in 
Figure II. However, this type of data is meaningful only 
in the far field. In the near field the EMI could be 90% 
H-field,. in which case the reflection loss is irrelevant. It 
would be advisable then to l;>eef up the absorption loss, at 
the expense of reflection loss, by choosing steel. A better 
conductor than steel might be less expensive, but quite 
ineffective. , 
A different shielding mechanism that can be take,:, advan
tage, of for low freq\lency magnetic fields is the ability of 
a high permeability material such as mumetal to divert 
the field by presenting a very low reluctance path to the 
magnetic flux. Above a few kHz, however, the permeabil
ity of such materials is the same as steel. 

In actual fact the selection of a shielding material turns 
out to be less important than the presence of seams, 
joints and holes in the physiCal structure of the enclosure, 
The shielding mechanisms are related' to the induction' of 
currents in the shield rnaterial, but the currents must be 

1=1 
PLANE WAVE 

~200 
~ . : 
m 150 ,/ 

~ ----..... -~-:::--............,' 
W
9 100 REFLECTIQN ----;- ' 

" ~ ,/ 
... 50 " 
~ ~~~~"ABSORPTION 
~ O+----,--~~-~-~-~-~-T--~--_,,_--_r--__; 

0.01 0.1 1.0 10 100 1000 10,000 

FREQUENCY (KILOHERTZ) 

Figure 11. E- and H-Field Shielding 

allowed to flow freely. If they have to detour around slots 
and holes, as shown in Figure 12, the shield loses much 
of its effectiveness. 

As can be seen in Figure 12, the severity of the detour 
has less to do with the area of the hole than it does with 
the geometry of the hole. Comparing Figure 12C with 
12.D shows that a long narrow discontinuity such a~ a 
seam can cause more RF leakage than a line of holes 
with larger total area. A person who is responsible for 
designing or selecting rack or chassis enclosures for an 
EMI environment needs to be familiar with the tech
niques that are avajlable for maintaining electrical conti
nuity across seams. Information on these techniques is 
available in the references. 

Grounds 

There are two kinds of grounds: earth-ground and signal 
ground. The earth is not an equipotential surface, so 
earth ground potential varies. That and its other electrical 
properties, are not conducive to its use as a return con
ductor in a' circuit. However, circuits are often connected 
to earth ground for protection against shock hazards. The 
other. kind of ground, signal ground, is an arbitrarily 
selected reference node in a circuit-the node with respect 
to which other node voltages in the circuit are measured. 

SAFETY GROUND 
The standard 3-wire single-phase AC power distribution 
system is represented in Figure 13. The white wire is 
earth-grounded at the service entrance. If a load circuit 
has a metal enclosure or chassis, and if the black wire 
develops a short to the enclosure, there will be a shock 
hazard to operating personnel, unless the enclosure itself 
is earth-grounded. If the enclosure is earth-grounded, a. 

AFN-02131A 

22-10 



t 
__ INDUCED 

SHIELD 
CURRENTS 

--SECTION OF 

_ RECTANGULAR 
- SLOT 

SHIELD 

(A) (8) 

(0) 

Figure 12. Effect of Shield Discontinuity on Magnetically Induced Shield Current 

shor'! results in a blown fuse rather than a "hot" enclo
sure. The earth-ground connection to the enclosure is 
called a safety ground. The advantage of the 3-wire 
power system is that it distributes a safety ground along 
with the power. 

Note that the safety-ground wire carries no current, 
except in case of a fault, so that at least for low frequen
cies it's at earth-ground potential along its entire length. 
The white wire, on the other Jland, may be several volts 
off ground, due to the IR drop along its length. 

/:~~~:CE 
/- ..... ----- ..... 
I I SLACK 
I 
I 
I 
I 
I 
I 
I 
I WHITE 
I 
I 
I GREEN 
I~ ___ -

EAR~H-GROUND 

(
METAL 
ENCLOSURE 

r--------\ 
I 
I 
I 

LOAD : 
CKT I 

I 
I 
I 

----) 

Figure 13. Single-Phase Power Distribution 

SIGNAL GROUND 
Signal ground is a single point in a circuit that is desig
nated to be the reference nodeJor the circuit. Commonly, 
wires that connect to this single point are also referred to 
as "signal ground." In some circles "power supply com
mon" or PSC is the preferred terminology for these con
ductors. In any case, the manner in which these wires 
connect to the actual reference point is the basis of dis
tinction . among three kinds of signal-ground wiring 

. methods: series, parallel, and mUltipoint. These methods 
are shown in Figure 14. 

22·11 

The series connection is pretty common because it's sim
ple and economical. It's the noisiest of the th~ee, however, 
due to common ground impedance coupling between the 
circuits. When several circuits share a ground wire, cur
rents from one circuit, flowing through the finite impe
dance of the common ground line, cause variations in the 
ground potential of the other circuits. Given that the cur
rents in a digital system tend to be spiked, and that the 
common impedance is mainly inductive reactance, the 
variations could be bad enough to cause bit errors in high 
current or particularly noisy situations. 

The parallel connection eliminates common ground 
impedance problems, but uses a lot 'of wire. Other disad
vantages are that the impedance of the individual ground 
lines can be very high, and the ground lines themselves 
can become sources of EM!. 

AFN-02131A 



In the multipoint system, ground impedance is minimized 
by using a ground plane with the various circuits con
nected to it by very short ground leads. This type of con
nection would be used mainly in RF circuits above 
IDMHz. 

PRACTICAL GROUNDING 
A combination of series and, parallel ground-Wiring 
methods can be used to trade off economic and the var
ious electrical considerations. The idea is to run series 
connections for circuits ~hat have similar noise properties, 
and connect them at a single reference point, as in the 
parallel method, as shown in Figure 15. 

In Figure 15, "noisy signal ground" connects to things 
like motors and relays. Hardware ground is the safety 
ground connection to chassis, racks, and cabinets. It's a 
mistake to use the hardware ground as a return path for 
signal currents' because it's fairly noisy (for example, it's 
the hardware ground that receives an ESD spark) and 
tends to have high resistance due to joints and seams. 

\GROUND LINE 

SERIES CONNECTION 

REF. POINT 

PARALLEL CONNECTION 

MULTIPOINT CONNECTION 

REF. POINT 

REF. POINT 

Figure 14. Three Ways to Wire the Grounds 

22-12 

QUIET 
SIGNAL 

GROUND 

NOISY 
AND HIGH 
CURRENT 
SIGNAL 

<fROUND 

HARDWARE 
GROUND 

'--REF. POINT 

GREEN-WIRE 
GROUND 

Figure 15. Parallel Connection of Series Grounds 

Screws and bolts don't always make good electrical con
nections because of galvanic action, corrosion, and dirt. 
These kinds of connections may work well at first, and 
then cause mysterious maladies as the system ages. 

Figure 16 illustrates a grounding system for a 9-track dig
ital tape recorder, showing an application of the series/ 
parallel ground-wiring method. 

Figure 17 shows a similar separation of grounds at the 
PCB IC(vel. Currents in rr.ultiplexed LED displays tend to 
put a lot of noise on the ground and supply lines because 
of the constant switching and changing involved in the 
scanning process. The segment driver ground is relatively 
quiet, since it doesn't conduct the LED currents. The 
digit driver ground is noisier, and should be provided 
with a separate path to the PCB ground terminal, even if 
the PCB ground layout is gridded. The LED feed and 
return current paths should be laid out on opposite sides 
of the board like parallel flat conductors. 

Figure 18 shows right and wrong ways to make ground 
connections in racks. Note that the safety ground connec
tions from panel to rack are made through ground straps, 
not panel screws. Rack I correctly connects signal ground 
to rack ground only at the single reference point. Rack 2 
incorrectly connects signal ground to rack ground at two 
points, creating a ground loop around points 1, 2, 3,4, I. 

Breaking the "electronics ground" connection to point I 
eliminates the ground loop, but leaves signal ground in 
rack 2 sharing a ground impedance with the relatively 
noisy hardware ground to the reference point; in fact, it 
may end up using hardware ground as a return path for 
signal and power supply currents. This will probably 
cause more problems than the ground loop. 

BRAIDED CABLE 
Ground impedance'. problems can be virtually eliminated 
QY using braided cable. The reduction in impedance is 
due to skin effect: At higher frequencies the current tends 
to flow along the surface of a conductor rather tha'n uni-

AFN~02131A 



,-- - - --- g:READ"AMPLiFim------ ---I 
1 I 

1 
I 

1 
I 

9 "WRITE" CIRCUITS 1 

GREEN·WIRE 
GROUND 

Figure 16. Ground Syst.m In a 9-Track Digital R.corder 

CONTROL FUNCTIONS 

CONTROLLER 

'-------~------~+-----GROUND 

Figure 17. Separat. Ground for Multiplexed LED Display 

22-13 

I 

1 
I 

I 

AFN-02131A 



RACK 1 RACK 2 

INCORRECT 
GROUND 

PRIMARY 
POWER 

GROUND 

OI""'-_____________ .. ·-ELECTRONICS GROIIND 

GREEN-WIRE GROUND 

Figure 18. Electronic Circuits Mountt!d In Equipment Racks Should Have Separate Ground Connections. 
Rack 1 Shows Correct Grounding, Rack 2 Shows Incorrect Grounding . 

formly through its bulk. While this effect tends to 
increase the impedance of a given conductor, it also indi
cates the way to minimize impedance, and that is to 
manipulate the shape of the cross-section so as to provide 
more surface area. For its bulk, braided cable is almost 
pure surface. 

Power Supply Distribution and Decoupling 

The main consideration for power supply distribution ' 
lines is, as for signal lines, to minimize the areas of the 
current loops. But the power supply lines take on an 
importance that no signal line has when one considers the 
fact that these lines have access to every PC board in the 
system. The very extensiveness of the supply current 
loops makes it difficult to keep loop areas small. And, a 
noise glitch on a supply line is a glitch delivered to every 
board in the system. 

The power supply provides low-frequency' current to the 
load, but the inductance of the board-to-board and chip
to-chip distribution network makes it difficult for the 
power supply to maintain VCC specs on the chip while 
providing the current spikes that a digital system requires. 
In addition, the power supply current loop is a "ery large 
one, which means there will be a lot of noise pick-up. 
Figure 19A shows a load circuit trying to draw current 
spikes from a supply voltage through the line impedance. 
To the VCC waveform shown in that figure should be 
added the inductive pick-up associated with a large loop 

. area. 

Adding a decoupling capacitor solves two problems: The 
capacitor acts as a nearby source of charge to supply the 
current spikes through a smaller line impedance, and it 

defines a much smaller Inop area for the higher frequency 
components ~f EM!. This is illustrated in Figure 19B, 
which shows the capacitor supplying the current spike, 
during which VCC drops from 5V by the amount indi
cated in the figure. Between current spikes the capacitor 
recovers through the line impedance. 

One should resist the temptation to add a resistor or an 
inductor to the decoupler so as to form a genuine RC or 
LC low-pass filter because that slows down the speed 
with which the decoupler cap can be refreshed. Good fil
tering and good decoupling are not necessarily the same 
thing. 

The current loop for the higher frequency currents, then, 
is defined by the decoupling cap and the load circuit, 
rather than by the power supply and the load circuit. For 
the decoupling cap to be able to provide the current 
spikes required by the load, the inductance of this current 
loop must be kept small, which is the same as saying the 
loop area must be kept smaiL This is also the require
ment for minimizing inductive pick-up in the loop. 

There are two kinds of decoupling caps: board decouplers 
and chip rlecouplers. A board decoupler will normally be 
a lO to lOO/.lf electrolytic capacitor placed near to where 
the power supply' enters the PC board, but its placement 
is relatively non-critical. The purpose of the board 
decoupler is to refresh the charge on the chip decouplers. 
The chip decouplers are what actually provide the current 
spikes to the chips. A chip decoupler will normally be a 
0.1 to I/.If ceramic capacitor placed near the chip and 
connected to the' chip by traces that minimize the area of 
the loop formed by the cap and the chip. If a chip 
decoupler is not properly placed on the board, it will be 
ineffective as a decoupler and will serve only to increase 

AFN-()~1S1A 



,:J\ 
Vcc 

(A) brawlng Current Spikes 
through the Line Impedance 

Vcc: 

DECOUPLING 
CAPACITOR 

~T A 
==~~~======~=====--.t _"..\t 

(B) Drawing Current Spikes 
from a Decoupllng Capacitor 

Figure 19. What a Decoupling Capacitor Does 

the cost of the board. Good and bad placement of 
decoupling capacitors are illustrated in Figure20. 

Power distribution traces on the PC board need to be 
laid out so as to obtain minimal area (minimal induc
tance) in the loops 'formed by each chip and its 
decoupler, and by the chip decouplers and the board 
decoupler. One way to accomplish this goa,! is to use a 
power plane. A power plane is the same as a ground 
plane, but at VCC potential. 'More economically, a power 
grid similar to the ground grid previously discussed (Fig
ure 8) can be used. Actually, if the chip decoupling loops 
are small, other aspects of the power layout are less criti
caL In other words, power planes and power gridding 
aren't needed, but power traces, should be laid in the clos
est possible' prOXimity to ground traces, preferably so that 

There must be a very loW Ihduclence between decoupling cap.acHor and lhe IC. 

Poor Placement ~ 

Setter Placement 
~vcc 

'the ,deCl'Q8ed area of loop between capacitor & Ie dec:reaset Inductance. 

Figure 20. Placement of Decoupllng.Capacltors 

each power trace is on the direct opposite side of the 
board from a ground trace. 

,Special-purpose power supply distribution 'buses, which 
'mount on the PCB are available. The buses use a parallel 
flat conductor configuration, one conductor being a VCC 
line and, the other a ground line. Used in f:onjul)ction 
with a gridded ground layout, they not only provide a 

'Iow-inductance distribution system, but can themselves 
form part of the ground grid, thus facilitating the PCB 
layout. The buses are available with and without 
enhanced bus capacitance, under the names Mini/ Bus® 
and Q/PAC® from Rogers Corp. (5750 E. McKellips, 
Mesa, AZ 85205). 

SELECTING THE VALUE OF THE 
DECOUPLING CAP 
The effectiveness of the decoupling cap has a lot to do 
with the way the power and ground traces connect this 
capacitor to the chip. In fact, the area formed by this 
loop is more important than the value of the capacitance. 
Then, given that the area of this loop is indeed minimal, 
it can generally be said that the larger the value of the 
decoupling cap, the more effective it is, if the cap has a 
mica, ceramic, glass, or polystyrene dielectric. 

It's often said, and not altogether accurately, that the chip 
decoupler shouldn't have too large a value. There are two 
reasons for this statement. One is that some capacitors, 
because of the nature of their dielectrics, tend to become 
inductive or lossy at higher frequencies. This is true of 

AF~2131A 

22-15 



· electrolytic capacitors, but mica:, glass, ceramic, and poly
styrene 'dielectrics work well to several hundred MHz. 
The other reason cited for .not using too large a capaci
tance has to do with lead inducta'nce. 

The capacitor with its lead inductance forms a series LC 
circuit. Bel()w the frequency of series resonance, the net 
impedance of the combination is capacitive. Above that 
frequency, the net impedance is inductive. Thus a 'decou
piing capacitor is capacitive only below the frequency of 
series resonance. This frequency is given by 

£ ___ 1-
0- 21TVLC 

where C is the decoupling capacitance and L is the lead 
inductance between the capacitor and the chip. On a PC 
board this inductance is determined by the layout, and is 
the same whether the capacitor dropped into the PCB 
holes is O.OOl~f or I~f. Thus, increasing the capacitance 
lowers the series resonant frequency. In fact, according to 
the resonant frequency formula, increasing C by a factor 
of 100 lowers the resonant frequency by a factor of 10. 

Figures quoted on the series resonant frequency of a 
O.oI~f capacitor run from 10 to 15MHz, depending on, 
the lead length. If these numbers were accurate, a I ~f 
capacitor in the same position on the board would have a 
resonant frequency of 1.0 to 1.5MHz, and as a decoupler 
would do more harm than good. However, the numbers 
are based on a presumed inductance of a given length of 
wire (the lead length). It should be noted that a "length of 
wire" has no 'inductance at all, striCtly speaking. Only a 
complete current loop has inductance, and the inductance 
'depends on the geometry of the loop. FigUres quoted on 
the inductance of a length of wire are based on a pre
sumably "very la'rge" loop area, such that the magnetic 
field' produced by the return current has no cancellation 
effect on the field produced by the, current in the given 
length of wire. Such a loop geometry is not and should 
not be the case with the decoupling loop. 

Figure 21 shows VCC waveforms, measured between pins 
40 and 20 (VCC and VSS) of an 8751 CPU, for several 
conditions of decoupling on a PC boar.d that has a 
decoupling loop area slightly larger than necessary,' These 
photographs show the effects of increasing the decoupling 
capacitance. and decreasing the area of the decoupling 
loop. The indications are that a IJJf capacitor is better 
than a 0.1 ~f capacitor, which in tum IS better than 
nothing, and that the board should have been laid out 
with more attention paid to the area of the decoupling 
loop. 

Figure 21 E was obtained using a special-purpose experi
mental capacitor. designed by Rogers Corp. . ~Pac Divi
sion, Mesa, AZ) for use as a decoupler. It con •• ts of two 
parallel plates; the length of a 4O-pin DIP, separated by a 

ceramic dielectric. Sandwiched between the' CPU chip 
and the PCB (or between the- CPU socket and the PCB), 
it makes connection to pins 40. and 20, forming a leadless 
decoupling capacitor. It is' ~bviously a configuration of 
minimal inductance. Unfortunately, the particular sample 
tested had ,only 0.07 ~f of capacitance and so was unable 
to prevent the I M Hz ripple as effectively as the configu~ 
ration ,of Figure 21 D. It seems apparent, though, that 
with mare capacitance this part will alleviate a lot of 
decoupling problems. 

THE CASE FOR ON-BOARD VOLTAGE 
REGULATION 
To complicate matters, supply line glitches aren't always 
picked up in the distribution networks, but can come 
from the power supply circuit itself. In that case, a wen
designed distribution network faithfully delivers the glitch 
throughout the system. The VCC glitch in Figure 22 was 
found to be coming from within a bench power supply in 
response to the EMP produced by ail induction coil 
spark generator that was being used at Intel during a 
study of noise sensitivity. The VCC giilch is about 400mV 
high and some 20~Sec in du~tion. Normal board decoup
ling techniques were ineffective in removing it, but adding 
ap on-!>oard voltage regulator chip did the job. , 

Thus, a good case can be made in favor of using a vol
tage regulator chip on each PCB, instead of doing all the 
voltage regulation at the supply circuit. This eases 
requirements on the heat-sinking at the supply circuit, 
imd alleviates much of the pistribution and board detou
piing headaches. However, it also brings in the possibility 
that different boards would be operating at slightly differ
ent VCC levels due to tolerance in the regulator chips; 
this then learls to slightly different logic levels from board 
to board. The implications of that may vary from nothing 
to latch-up, depending on what kinds of chips are on the 
boards" and how they react to an input "high" that is 
perhaps O.4V higher than local VCe. 

Recovering Gracefully f,rom a Software 
Upset 

Even wh~n o~e follows all the best guidelines for design
ing for a noisy environment, it's always possible for a 
noise transient to occur which exceeds the circuit's 
immunity level. In that case, one can strive at least for Ii 
graceful recovery. 

Graceful recovery schemes involve additional hardware 
and/ or software which is supposed to return the system 
to a normal operating mode after a software upset has 
occurred. Two decisions have to be made: How to recog
nize when an upset has Occurred, and what to do about 
it. 

If the designer knows what kinds' and combinations of 

AFN-02131A 

22-16 



PIN 40 

ALE 

(A) No Decoupllng Cap 

PIN 40 

ALE 

PIN 40 

(C) 0.1JJf'Decoupler Stretched Directly from Pin 
40 to Pin 20, under the Socket (Tl:le' differ
ence between this and 21B is due only to the 
change In loop geometry. Also shown Is the 
upward slope of a ripple in V cc. The ripple 
frequency is 1MHz,the same as ALE.) 

ALE 

(E) Special-Purpose Decoupllng Cap under Devel
opment by Rogers Corp. (Further discussion 
in tex!.) 

(D) 1 "fDecoupler Stretched Directly from ~In 40 
to Pin 20, under the Socket. (This prevents 
the 1 MHz ripple, but there's no reduction In 
higher frequency components. Further 
Increases In capacitance effected no further 
Improvement.) 

Figure 21. Noise on Vee Line 

AFN-02131A 

22-17 



, . :~' 

" 
~.', f 

tf, " 

.,''f'. 

,"1 ." ",t', ,",: 
, '." 

SOOmV 

",' 

,. :': 

', .. ' ~' 

Figure 22. EMP·lnduced Glitch 

outputs can legally be generated by the system, he can 
, use gates to recog'niz~, and flag *,11 ocCuJten~' of an ille
gal state. of affairs. lhe nag.:can then'tJiggera jump to a 
retqVefy' routine 'whi~h then may check, or. re-initialize 
data" perhaps, 'output an' error il1essa~;' ;~r generate a 
simple reset: , ", '.' " ' ' , 

,', '.' -,'" 

The' most reliable scheme is to use a s()-'Called watchdog 
circuit. Here the CPU ,is pro~mlI!ed to generate a peri
odic signata, lo~g'as the system is executing instructions 
in -~n ,expectcid' inaniier. the periodic si~1 Is then used 
to'qold off a circuit 'that will trigger a Jump to. a recovery 
rou'tilie: Th~' periodic, 'sigIIIIl needs to be' AC-<:oupled to 
the trigger 'Circuit so that a "stUck~~tft fatilt won't continue 
to hold otT' the trigger. Then,' if the processor locks up 
someplace, the periodic signal is lost and the watchdog 
tri~rs a reset. , 

In practice, it may be convenient to drive the watchdog 
circuit with a signal which is being generated anyway by 

, the system. One needs to be Careful, however, that an 
upset does in fact discontinue that signal. Specifically, for 
example, one could use one ,of the digit drive signals 
going to a multiplexed display. But display scanning is 
often handled in response to a timer-interrupt, which may 
'continue operating even though the main program is in a 
failure mode. Even so, with a little extra software, the 
signal can be used to control the watchdog (see reference 
8 on this). 

Simpler schemes can work well for simpler systems. For 
example, if a CPU isn't doing anything but scanning and 
decoding a keyboard, there's little to lose and much to 
gain by simply resetting it periodically with an astable 
multivibrator. It only takes about 13!lsec (at 6M Hz) to 
reset an 8048 if the clock oscillator is already running. 

A zero-<:ost measure is simply to fill all unused program 
memory with NOPs and JMPs to a recovery routine. The 
etTectiveness of this method is increased by writing the 
program in segments that are separated by NO~s, and, 

22·18 

J M Ps. It's still possible, of course, to get hung up in a 
data· table or something. But you get a lot of,-protection, 
for 'tlie c~t,' ' , 

" 

FurthetdisCAsslon of graceful, fCC()veI)r schemes can be 
found' in refe~ilcei J:'" ' 

ESD , " 

M'PS chips hav,eso~ built-in pr~tec~i?n, ~gainst a static 
charge ,build-up on t\le pins, as would 'OCCur during nor
mal handling,' but tliere's no protection againSt the kinds 
of cur~nt levels and rise times that occur in a genuine 
electtostatio spark. These kinds of discharges can blow a 
cra,ter in'the silicon .• , 

It must be recognized that connecting CPU pins unpro
tected to a keyboard or to anything else that is subject to 
electrostatic discharges makes an extremely fragile config
uration. Buffering them is the very least one can do. But 
buffering d~esll 't completely solve the problem,. because 
then the.butTer chips",will sustain the !lamage (even TTL); 
therefore, one might ,consider mounting. the Duffer chips 
in sO£kets for ea~ of I:Cplll:cement, ' ' . 

T~nsieni suppressort. ~uch as ~he Tran,Z9r~@) made by 
General'semiconductor Ind.ustries (Tempe, AZ), may in 
the lon~ run prQ¥idf the cheapest: protec~on if\heir "zero 
inductance"· .structu're is used, The structure and circuit 
appli~iqn-:'are shown kt Figure 23. . 

"'j, '., 

The'~~ppreSsor eleib~nt is ~ fln juncti~n t~t: 9perates like 
a Zener diQde. 8ack~tO-back units are available for AC 
operation. The element i~ :niQre or less an open circuit at 
normal system voltage (the standoff v,oltage rating for the 
deXice), and con~~ts ii""~ a'Zent<r aiode atthe,-clamping 
voltage. 

The lead inductance in the conventional transient 'Sup
pre,ssor ,package makes the conventional package essen-

AFN...Q2131A ... 



PULSE DIGITAL 

I~t'" 
A 

B 

KEYBOARD ~ '2~ FUNCTIONAL 
TERMINAL C DECODER 

1'2~ PRINTER 

l~ 
D 

COMMON 

PATENT,PENDING 

(A) (8) 

Figure 23. "Zero-inductance" Structure and Use In Circuit 

tially useless for protection against ESD pulses, owing to 
the fast rise of these pulses. The "zero inductancen units 
are available singly in a 4-pin DIP, and in arrays of four 
to a 16-pin DIP for PCB level protection. In that applica
tion they should be mounted in close proximity to the 
chips they protect. . 

In addition, metal enclosures or frames or parts that can 
receive an ESD spark should be connected by braided 
cable to the green-wire ground. Because of the ground 
impedance, ESD current shouldn't be allowed. to flow 
through any signal ground, even if the chips are prqtected 
by transient suppressors. A 35kV ESD spark can always 
spare a few hundred volts to drive a fast current pulse 
down a signal ground line if it can't find a braided cable 
to follow. Think how delighted your 8048 will be to find 
its VSS pin abou.t 250V higher than VCC for a few lOs 
of nanoseconds. 

THE AUTOMOTIVE ENVIRONMENT 
The automobile presents an extremely hostile environ
ment for electronic systems. There are several parts to it: 

I. Temperature extremes from _40°(' to +125°C (under 
the hood) or +85°C (in the passenger compartment) 

2. Electromagnetic pulses froni the ignition system 

3. Supply line transients that will knock your socks off 

One needs to take a long, careful look at the temperature, 
extremes. The allowable storage temperatute range, for 
most Intel MOS chips is -65°C to +150°C, although 
some chips have a maximum storage temperature rating 
of + 1250 C. In operation (or "under bias, n as the data 
sheets say) the allowable ambient temperature range 
depends on the product grade, as follows: 

Ambient Temperature 

Grade min. max. 

Commercial 0 70 
Industrial -40 +85 
Autornotive -40 +110 
Military -55 +125 

The different product grades are actually the same chip, 
but tested according to different standards. Thus, a given 
commercial-grade chip might actually pass military 
temperature requirements, but not have been tested for it. 
(Qf course, there are other differences in grading require
ments having to do with packaging, burn-in, traceability, 
etc.) . , 

In any case, it's apparent that commercial-grade chips 
can't be used safely in automotive applications, not even 
in the passenger compartment. Industrial-grade chips can 
be used in the passenger compartment, and automotive or 
military chips are required in under-the-hood applications. 

Ignition noise, CB radios, and that sort ,of thing are 
, probably the least of your worries. In a poorly designed 
system, or in one that has not been adequately tested for 
the automotive environmel)t, this type of EMI might 
cause a few software upsets, but not destroy chips. 

The major problem, and the one that seems to come as 
the biggest surprise to most people, is the line transients. 
Regrettably, the 12V battery is not actually the source of 
power when the car is running. The charging syste,m is, 
and it's not very clean. The only time the battery is the 
real source of power is when the car is first being started, 
and in that condition the battery terminals may be deliv
ering about 5 or 6V. Below is a brief description of the 
major idiosyncracies of the "12V" automotive power line. 

AFN-02131A 

,22-19 



60 

50 

iii ENGINE SPEED 3000 RPM 

!:i 40 ALTERNATOR LOAD 55 AMPERES 

0 
~ 
w 30 Q 
:;) 
,I:: 
-' ... 20 :Ii c 

10 

O+---r---r--.---.--~---r---r--'---'---~ 
o 50 ~ ~ ~ ~ ~ ~ ~ ~ ~ 

TIME (MILLISECONDS) 

Figure 24. Typical Load Dump Transients 

• An abrupt reduction in the alternator load causes a 
positive voltage transient called "load dump." In a load 
dump transient the line voltage rises to 20 or 30V in a 
few msec, then decays exponentially with a time con
stant of about IOOmsec, as shown in Figure 24. Much 
higher peak voltages and longer decay times, have also 
been reported. The worst case load dump is caused by 
disconnecting a low battery from the alternator circuit 
while the alternator is running. Normally this would 
happen intermittently when the battery terminal con
nections are defective. 

• When the ignition is turned off, as the field excitation 
decays, the line voltage can go to between -40 and 
-100V for 100 msec or more. 

• Miscellaneous solenoid switching transients, such as 
the one shown in Figure 25, can drive the line' to + or 
-200 to 400V for several I-Isec. 

• Mutual coupling between unshielded wires in long 
harnesses can induce 100 and 200V transients in 
unprotected circuits. 

What all this adds up to is that people in the business of 
building systems for automotive applications need a com
prehensive testing program. An SAE guideline which des
cribes the automotive environment is available to 
designers: SAE J1211, "Recommended Environmental 
Practices for Electronic Equipment Design," 1980 SAE 
Handbook, Part I, pp. 22.80-22.96. 

Some suggestions for protecting circuitry are shown in 
Figure 26. A transient suppressor is placed in front of the 
regulator. chip to protect it. Since the rise times in these 
transients are not like those in ESD pulses, lead induc
tance is less critical and conventional devices can be used. 
The regulator it~elf is pretty much of a necessity, since a 
load dump transient is simply not going to be removed 

o SEC. , 
OVOLTS -

-100 VOLTS/DIV 

Figure 25. Transient Created by De-energizing an Air Conditioning Clutch Solenoid 

AFN..()2131A 

22-20, 



AUTOMOTIVE ON BOARD COMPUTER 

BATTERY 
+12V 

ACCESSORY 
+12V 

1-..,.--.---- +5V 

o--Jl1J''---J:'9=-'''''''''''' ---f-~P-'-5V--"·- TO" PROCESSOR 

DISTANCE 
MEASURING COIL 

Figure 26. Use of Transient Suppressors In Automotive Applications 

by any conventional LC or RC filter. The EMC Education committee has available a video 

Special 110 interfacing is also required, because of the 
need for high tolerance to voltage transients, input noise, 
inputloutput isolation, etc. In addition, switches that are 
being monitored or driven by these buffers are usually 
referenced to chassis ground instead of signal ground, and 
in a car there can be many volts difference between the 
two. 110 interfacing is discussed in reference 2. 

Parting Thoughts 

The main sources of information for this Application 
Note were the references by Ott and by White. Reference 
5 is probably the finest treatment currently available on 
the subject. The other r~ferences provided specific infor
mation as cited in the text. 

Courses and seminars on the subject of electromagnetic 
interference are given regularly throughout the year. 
Information on these can be obtained from: 

IEEE Electromagnetic Compatibility Society 
EMC Education Committee 
345 East 47th Street 
'New York, NY 10017 
Phone: (212) 752-6800 

Don White Consultants, Inc. 
International Training Centre 
P.O. Box D 
Gainesville, V A 22065 
Phone: (703) 347'()()30 

tape: "Introduction to EMC - A Video Training Tape," 
by Henry Ott. Don White Consultants offers a series of 
training courses on many different aspects of electromag
netic compatibility. ,Most organizations that sponsor 
EMC courses also offer in-plant presentations. 

22-21 





APPLICATION 
NOTE. 

22-23 

AP-155 

June 1983 

Order Number: 230659-001 



, ~. 

, :: ~" 

Oscillators CONTENTS . 

for Microcontrollers INTRODUCTION .................................. 22-25 

22-24 

FEEDBACK OSCILLATORS 
Loop Gain .... , .................................... 22,25 
How Feedback Oscillators Work ...... 22-26 
The Positive Reactance Oscillator ... 22- 26 

QUARTZ CRYSTALS 
Crystal Parameters .......................... 22-27 

equivalent circuit ....................... 22-27 
load capacitance ....................... 22- 27 
"series" vs. "parallel" crystals .. 22-28 
equivalent series resistance ...... 22- 28 
frequency tolerance ................... 22-28 
drive level .................................. 22-29 

CERAMIC RESONATORS ................ 22-29 
Specifications for Ceramic 

Resonators .................................... 22-30 

OSCILLATOR DESIGN 
CONSIDERATIONS 
On-Chip Oscillators .......................... 22-30 

crystal specifications ................. 22-30 
oscillation frequency .................. 22-30 
selection of CX1 and CX2 ........ 22-31 
placement of components ......... 22-31 
clocking other chips .................. 22-31 

External Oscillators .......................... 22-31 
gate oscillators vs. discrete 

devices ................................... 22-33 
fundamental vs. overtone 

operation ................................ 22- 33 
"series" vs. "parallel" operation 22-33 

MORE ABOUT USING THE 
"ON-CHIP" OSCILLATORS 

Oscillator Calculations ...................... 22-34 
. Start'Up Characteristics ................... 22-35 
. Steady-State Characteristics ............ 22-37 
Pin Capacitance ............................... 22-38 
McS®-51 Oscillator .......................... 22-39 
MCS®-48 Oscillator .......................... 22-39 
Pre-Production Tests ........................ 22-42 

"troubleshooting oscillator 
problems ....................... ......... 22-43 

APPENDIX I 
Quartz and Ceramic Resonator 

Formulas ................ ....................... 22-46 

APPENDIX" 
Oscillator Analysis Program ....... ...... 22-48 



AP-155 

INTRODUCTION 

Intel's microcontroller families (MCS®-48, MCS-51, 
and iACX-96) contain a circuit that is commonly referred 
to as the "on-chip oscillator". The on-chip circuitry ,is 
not itself an oscillator, of course, but an amplifier that 
is suitable for use as the amplifier part of a feedback 
oscillator. The data sheets and Microcontroller Hand
book show how the on-chip amplifier and several off
chip components can be used to design a working os
cillator. With proper selection of off-chip components, 
these oscillator circuits will perform better than almost 
any other type of clock oscillator, and by almost any 
criterion of excellence. The suggested circuits are sim
ple, economical, stable, and 'reliable. 

We offer assistance to our customers in selecting suitable 
off-chip components to work with the on-chip oscillator 
circuitry. It should be noted, however, that Intel cannot 
assume the responsibility of writing specifications for 
the off-chip components of the complete oscillator cir
cuit, nor of guaranteeing the performance of the finished 
design in production, anymore than a transistor manu
facturer, whose data sheets show a number of suggested 
amplifier circuits, can assume responsibility for the op
eration, in production, of any of them. 

We are often asked why we don't publish a list of re
quired crystal or ceramic resonator specifications, and 
recommend values for the other off-chip components. 
This has been done in the past, but sometimes with 
consequences that were not intended. 

Suppbse we suggest a maximum crystal resistance of 
30 ohms for some given frequency. Then ypur crystal 
supplier tells you the 30-ohm crystals are going to cost 
twice as much as 50-ohm crystals. Fearing that Intel 
will not "guarantee operation" with 50-ohm crystals, 
you qrder the expensive ones. In fact, Intel guarantees 
only what is embodied within an Intel product. Besides, 
there is no reason why 50-ohm crystals couldn't be used, 
if the other off-chip components are suitably adjusted. 

Should we recommend values for the other off-chip com
ponents? Should we do it for 50-ohm crystals or 30-ohm 
crystals? With respect to what should we optimize their 
selection? Should we minimize start-up time or maxi
mize frequency stability? In many applications, neither 
start-up time nor frequency stability are particularly crit
ical, and our "recommendations" are only restricting 
your system to unnecessary tolerances. It all depends 
on the application. 

Although we will neither "specify" nor "recommend" 
specific off-chip components. we do offer assistance, in 
these tasks. Intel applications engineers are available to 
provide whatever technical assistance may be needed 
or desired by our customers in designing with Intel 
products. 

This Application Note is intended to provide such assis-

22-25 

tance in the design of oscillator circuits for microcon
troller systems. Its purpose is to describe in a practical 
manner how oscillators work, how crystals and ceramic 
resonators work (and thus how to spec them), and what 
the on-chip amplifier looks like electronically and what 
its operating characteristics are. A BASIC program is 
provided in Appendix II to assist the designer in deter
mining the effects of changing individual parameters. 
Suggestions are provided for establishing a pre-produc
tion test program. 

FEEDBACK OSCILLATORS 

Loop Gain 

Figure 1 shows an amplifier whose output line goes into 
some passive network. If the input signal to the amplifier 
is v" then the output signal from the amplifier is 
v2 = Av, and the output signal from the passive network 
is v) = J3v2 = J3Av,. Thus J3A is the overall gain from 
terminal 1 to terminal 3. 

Figure 1 - Factors in Loop Gain 

Now connect terminal I to terr.linaI3, so that the signal 
path forms a loop: I to 2 to 3, which is also I. Now we 
have a feedback loop, and the gain factor J3A is called 
the loop gain. 

Gain factors are complex numbers. That means they 
have a magnitude and a phase angle, both of which vary 
with frequency. When writing a complex number, one 
must specify both quantities, magnitude and angle. A 
number whose magnitude is 3, and whose angle is 45 
degrees is commonly written this way: 3illo. The num
ber I is, in complex number notation, If!t, while 
-1 is 1~0. 

By closing the feedback loop in Figure 0, we force the 
equality 

v, = J3Av, 

This equation has two solutions: 

1) v, = 0; 

2) J3A = ILQo. 

In a given circuit, either or both of the above solutions 
may be in effect. In the first solution the circuit is quies
cent (no output signal). If you're trying to make an 



AP-155 

oscillator, a no-signal condition is unacceptable. There 
are w.ays to guarantee that the second solution is the one 
that will be in effect, and that the quiescent condition 
will be excluded. 

How Feedback Oscillators Work 

A feedback oscillator amplifies its own noise and feeds 
it back to itself in exactly the,right phase, at the oscil
latiOn frequency, to build up and reinforce the desired 
oscillations. Its ability to do that depends on its loop 
gain. First, oscillations can occur only at the frequency 
for which the loop gain has a phase angle of 0 degrees. 
Second, build-up of oscillations will occur only if the 
loop gain exceeds I at that frequency. Build-up continues 
until nonlinearities in the circuit reduce the average value 
of the loop gain to exactly I. 

Start-up characteristics depend on the small-signal prop
erties of the circuit, specifically, the small-signal loop 
gain. Steady-state characteristics of the oscillator depend 
on the large-signal properties of the circuit, such as the 
transfer curve (output voltage vs. input voltage) of the 
amplifier, and the clamping effect of the input protection 
devices. These things will be discussed more fully fur
ther on. First we will look at the basic operation of a 
particular oscillator circuit, called the "positive reac
tance" oscillator. 

The Positive Reactance Oscillator 

Figure 2 shows the configuration of the positive reac
tance oscillator. The inverting amplifier, working into 
the impedance of the feedback network, produces an 
output signal that is nominally 180 degrees out of phase 
with its input. The feedback network must provide an 
additional 180 degrees phase shift, such that the overall 
loop gain has zero (or 360) degrees phase shift at the 
oscillation frequency. 

( I 
Figure 2 - Positive Reactance Oscillator 

reactance. That is, it must be inductive. ,Then, the fre
quency at which the phase angle is zero is approximately 
the frequency at which 

+1 
X -r - wC 

where Xr is the reactance of Zr (the total Zr being Rr 
+ jXr, and C is the series combination of CX1 and CX2 ' 

C = CX1 CX2 

CX1 + CX2 

In other words, Zrand C form a parallel resonant circuit. 

If Zr is an inductor, then Xr = wL, and the frequency 
at which the loop gain has zero phase is the frequency 
at which 

wL 
wC 

or 

I 
w 

vLc 

Normally, Zr is not an inductor, but it must still have 
a positive reactance in order for the circuit to oscillate. 
There are some piezoelectric devices on the market that 
show a positive reactance, and provide a more stable 
oscillation frequency than an inductor will. Quartz crys
tals can be used where the oscillation frequency is crit
ical, and lower cost ceramic resonators can be used 
where the frequency is less critical. 

When the feedback element is a piezoelectric device, 
this circuit configuration is called a Pierce oscillator. 
The advantage of piezoelectric resonators lies in their 
property of providing a wide range of positive reactance 
values over a very narrow range of frequencies. The 
reactance will equal I/wC at some frequency within this 
range, so the oscillation frequency will be within the 
same range. Typically, the width of this range is only 
.3% of the nominal frequency of a quartz crystal, and 
about 3% of the nominal frequency of a ceramic reso
nator. With relatively little design effort, frequency ac
curacies of .03% or better can be obtained with quartz 
crystals, and .3% or better with ceramic resonators. 

QUARTZ CRYSTALS 

The crystal resonator is a thin slice of quartz sandwiched 
between two electrodes. Electrically, the device looks 
pretty much like a ? or 6 pF cal?acitor, except that over 
certain. ranges of frequencies the crystal has a positive 

, (Le., inductive) reactance. 

In order for the loop gain to have zero phase angle it 
is necessary that tile feedback element Zr have a positive 

22-26 

,The ranges of positive reactance originate in the piezo
electric property of quartz: Squeezing the crystal gener-



Ap·155 

ates an internal E-field. The effect is reversible: Apply
ing an E-field causes a mechanical deflection. Applying 
an AC E-field causes the crystal to vibrate. At certain 
vibrational frequencies there is a mechanical resonance. 
As the E-field frequency approaches a frequency of 
mechanical resonance, the measured reactance of the 

, crystal becomes positive, as shown in Figure 3. 

-JX ""0 I FIFTH MECHANICAL 
FUNDAMENTAL OVERTONE 

THIRD MECHANICAL 
OVERTONE 

Figure 3 - Crystal Reactance vs. Frequency 

Typically there are several ranges of frequencies wherein 
the reactance of the crystal is positive. Each range cor
responds to a different mode of vibration in the crystal. 
The main resonances are the so-called fundamental re
sponse and the third and fifth overtone responses. 

The overtone responses shouldn't be confused with the 
harmonics of the fundamental. They're not harmonics, 
but different vibrational modes. They're not in general 
at exact integer multiples of the fundamental frequency. 
There will also be "spurious" responses, occurring typ
ically a few hundred KHi above each main response. 

To assure that an oscillator starts in the desired mode 
on power-up, something must be done to suppress the 
loop gain in the undesired frequency ranges. The crystal 
itself provides some protection against unwanted modes 
of oscillation; too much resistance in that mode, for 
example. Additionally, junction capacitances jn the am
plifying devices tend to reduce the .gain at higher fre
quencies, and thus may discriminate against unwanted 
modes. In some cases a circuit fix is necessary, such as 
inserting a trap, a phase shifter, or ferrite beads to kill 
oscillations in unwanted modes. 

Crystal Parameters 

Equivalent Circuit 
Figure 4 shows an equivalent circuit that. is used to 
represent the crystal for circuit analysis. 

The RcLI-CI branch is called the motional arm of the 
: crystal. The values of these parameters derive from the 
mechanical properties of the crystal and are constant for 
a given mode of vibration. Typical values for various 
nominal frequencies are shown in Table I. 

22-27 

----IID~I --
SYMBOL 

EQUIVALENT CIRCUIT 

Figure 4 - Quartz Crystal: 
Symbol and Equivalent Circuit 

Co is called the shunt capacitance of the crystal. This 
is the capacitance of the crystal's electrodes and the 
mechanical holder. If one were to measure Jhe reactance 
of the crystal at a frequency far removed from a reso
nance frequency, it is the reactance of this capacitance 
that would be measured. It's normally 3 to 7 pF. 

Table 1 - Typical Crystal Parameters 

frequency Rl Ll C1 Co 
MHz ohms mH pF pF 

2. 100 520 .012 4 

4.608 36 117 .010 2.9 

11.25 19 8.38 .024 5.4 

The series resonant frequency of the crystal is the fre
quency at which LI and C I are in resonance. This fre
quency is given by 

f = I 
s 21T VLICI 

At this frequency the impedance of the crystal is R I in 
parallel with the reactance of Co. For most purposes. 
this impedance is taken to be just R I' since the reactance 
of Co is so much larger than R I' 

Load Capacitance 

A crystal oscillator circuit such as the one shown in 
Figure 2 (redrawn in Figure 5) operates at the frequency 
for which the crystal is anti resonant (ie; parallel
resonant) with the total capacitance across the crystal 
terminals external to the crystal. This total capacitance 
external to the crystal is calied the load capacitance. 

As shown in Figure 5, the load capacitance is given by 

CXI CX2 
CL = C C + Csrray 

XI + X2 

The crystal manufacturer needs to know the value of CL 

in order to adjust the crystal to the specified frequency. 



Ap·155 

CL r--------------------l I 
! ----------~~;~---------- Y 
I CX, CX• I 

i I ::t ) : 
I I L ____________________ ~ 

CRYSTAL 

r---------~;---------V 
I R, L, C, : 

I I L ___________________ ~ 

Figure 5 - Load Capacitance 

The adjustment involves putting the crystal in series 
with the specified CL , and then "trimming" the crystal 
to obtain resonance of the series combination of the 
crystal and CL at the specified frequency. Because of the 
high Q of the crystal, the resonant frequency of the 
series combination of the crystal and CL is the same as 
the antiresonant frequency of the parallel combination 
of the crystal and CL . This frequency is given by 

f = 1 
a 2 11' VLICI (CL + CO)/(CI + CL + Co) 

These frequency formulas are derived (in Appendix I) 
from the equivalent circuit of the crystal, using the as
sumptions that the Q of the crystal is extremely high, 
and that the circuit external to the crystal has no effect 
on the frequency other than to provide the load capac
itance CL . The latter assumption is not precisely true, 
but it is close enough for present purposes. 

"Series" 'vs. "Parallel" Crystals 

There is no such thing as a "series cut" crystal as 
opposed to a "parallel cut" crystal. There are different 
cuts of crystal, having to do with the parameters' of its 
motional arm in various frequency ranges, but there is 
no special cut for series or parallel operation. 

An oscillator is series resonant if the oscillation fre
quency is fs of the crystal. To operate the crystal at fs' 

the amplifier has to be noninverting. When buying a 
crystal for such an oscillator, one does not specify a load 
capacitance. Rather, one specifies the loading condition 
as "series." 

If a "series" crystal is put into an oscillator that has an 
inverting amplifier, it will oscillate in parallel resonance 
with the load ;capacitance presented to the crystal by the 

22-28 

oscillator circuit, at a frequency slightly above fs' In 
fact, at approximately 

fa = fs ( 1 + C I ) 
2 (CL + Co) 

This frequency would typically be about 0.02% above 
fs' 

Equivalent Series Resistance 

The "series resistance" pften listed on quartz crystal 
data sheets is the real part of the crystal impedance at 
the crystal's calibration frequency. This will be R 1 if 

. the calibration frequency is the series resonant frequency 
of the crystal. If the crystal is calibrated for parallel 
resonance with a load capacitance CL, the equivalent 
series resistance will be 

C 
ESR = RI (1 + -11)2 

CL 

The crystal manufacturer measures this resistance at the 
calibration frequency during the same operation in which 
the crystal is adjusted to the calibration frequency. 

Frequency Tolerance 

Frequency tolerance as discussed here is not a require
ment on the crystal, but on the complete oscillator. There 
are two types of frequency tolerances on oscillators: 
frequency accuracy and frequency stability. Frequency 
accuracy refers to the oscillator's ability to run at an 
exact specified frequency. Frequency stability refers to 
the constancy of the oscillation frequency. 

Frequency accuracy requires mainly that the oscillator 
circuit present" to the crystal the same load capacitance' 
that it was adjusted for_ Frequency 'stability requires 
mainly that the load capacitance be constant. 

In most digital applications the accuracy and stability 
requirements on the oscillator are so wide that it makes 
very little difference what load capacitance the crystal 
was adjusted to, or what load capacitance the circuit 
actually presents to the crystal. for example, if a crystal 
was calibrated to a load capacitance of 25 pF, and is 
used in a circuit whose actual load capacitance is 50 pF, 
the frequency error on that account would be less than 
0.01%. 

In a positive reactance oscillator, the crystal only needs 
to be in the intended response mode for the oscillator 
to satisfy a 0.5% or better frequency tolerance. That's 
because for any load capacitance the oscillation fre
quency is certain to be between the crystal's resonant 
and antiresonant frequencies. 

Phase shifts that take place within the amplifier part of 
the oscillator will also affect frequency accuracy and 



Ap·155 

stability. These phase shifts can normally be modeled 
as an "output capacitance" that, in the positive reac
tance oscillator, parallels CX2 ' Ifhe predictability and 
constancy of this output capacitance over temperature 
and device sample will be the limiting factor in deter
mining the tolerances that the circuit is capable of 
holding. 

Drive Level 

Drive level refers to the power dissipation in the crystal: 
There are two reasons for specifying it. One is that the 
parameters in the equivalent circUit are somewhat de
pendent on the drive level at which the crystal is cali
brated. The other is that if the application circuit exceeds 
the test drive level by too much, the crystal may be 
damaged. Note that the terms "test drive level" and 
"rated drive level" both refer to the drive level at which 
the crystal is calibrated. Normally, in a microcontroller 
system, neither the frequency tolerances nor the power 
levels justify much concern for this specification. Some 
crystal manufacturers don't even require it for micro
processor crystals. 

In a positive reactance oscillator, if one assumes the 
peak voltage across the crystal to be something in the 
neighborhood of Vee, the power dissipation can be ap
proximated as 

p= 2R,['ITf (CL + Co) VCcl2 

, 
This formula is derived in Appendix I. In a SV system, 
P rarely evaluates to more than a milliwatt. Crystals 
w;th a standard I or 2 mW drive level rating can be used 
in most digital systems. 

MY - 51 R3.58M 

100000 

10 

1 
"'0 -'--2000-'--'--4000:'=-'-6000-'--'---:6000~:-'-1:-:0000-:' 

FREQUENCY (KHz) 

Figure 6 - Ceramic Resonator Impedance vs. 
Frequency (Test Data Supplied by 

NTK Technical Ceramics) 

22-29 

CERAMIC RESONATORS 

Ceramic resonators operate on the same basic principles 
as a quartz crystal. Like quartz crystals, they are 
piezoelectric, have a reactance versus frequency curve 
similar to a crystal's, and an equivalent circuit that 
looks just like a crystal's (with different parameter 
values, however). 

The frequency tolerance of a ceramic resonator is about 
two orders of magnitude wider than a crystal's, but the 
ceramic is somewhat cheaper than a crystal. It may be 
noted for comparison that quartz crystals with relaxed 
tolerances cost about. twice· as much as ceramic reso
nators. For purposes of clocking a microconttoller, the 
frequency tolerance is often relatively noncritical, and 
the economic consideration becomes the dominant 
factor. 

Figure 6 shows a graph of impedance magnitude versus 
frequency for a 3.S8MHz ceramic resonator. (Note that 
Figure 6 is a graph of IZrI versus frequency, whereas 
Figure 3 is a graph of ~f versus frequency.) A number 
of spurious responses are apparent in Figure 6. The 
manufacturers state that spurious responses are more 
prevalent in the lower frequency resonators (kHz range) 
than in the higher frequency units (MHz range). For our 
purposes only the MHz range ceramics need to. be 
considered. 

-----I101t---
SYMBOL 

EQUIVALENT CIRCUIT 

Figure 7 - Ceramic Aesonator: 
Symbol and Equivalent Circuit 

Figure 7 shows the symbol and equivalent circuit for the 
ceramic resonator, both of which are the same as for the 
crystal. The parameters have different values, however, 
as listed in Table 2. 

Tab·le 2 - Typical Ceramic Parameters 

frequency AI Ll C, Co 
MHz ohms mH pF pF 

3.S8 7 .1l3 19.6 140 

6.0 8 .094 8.3 60 

8.0 7 .092 4.6 40 

11.0 10 .OS7 3.9 30 



AP-155 

Note that the motional ann of' the ceramic resonator 
tends to have less resistance than the quartz crystal and 
also a vastly reduced Lt/Ct ratio. This results in the 
motional ann having a Q (given by (IIR1) v'Lt/Ct) that 
is typically two orders of magnitude lower than that of 
a quartz crystaL The lower Q makes for a faster start
up of the oscillator and for a less closely. controlled 
frequency (meaning that circuitry external to· ·the reso
nator will have more influence on the frequency than 
with a quartz crystal). 

Another major difference is that the shunt capacitance 
of the ceramic resonator is an .order of magnitude higher 
than Co of the quartz crystal and more dependent on the 
frequency of the resonator. 

The implications of these differences are not all obvious, 
but some will be indicated in the section on Oscillator 
Calculations. 

Specifications for Ceramic Resonators 

Ceramic resonators are easier to specify than quartz crys
tals. All the vendor wants to know is the desired fre
quency and the chip you want it to work with. They'll 
supply the resonators, a circuit diagram showing the 
positions and values of other external components that 
may be required and a guarantee that the circuit will 
work properly at the specified frequency. 

OSCILLATOR DESIGN CONSIDERATIONS 

Designers of microcontroller systems have a number of 
options to choose from for clocking the system. The 
main decision is whether to use the "on-chip" oscillator 
or an external oscillator. If the choice is to use the on
chip oscillator, what kinds of external components are 
needed to make it operate as advertised? If the choice 
is to use an external oscillator, what type of oscillator 
should it be? 

The decisions have to be based on both economic and 
technical requirements. In this section we'll discuss 
some of the factors that should be considered. 

Figure 8 ~ USing the "On·Chlp" Oscillator 

22·30 

On-Chip Oscillators 

In most cases, the on-chip amplifier with the appropriate 
external components provides the most economical so
lution to the clocking problem. Exceptions may arise 
in severe environments when frequency tolerances are 
tighter than about 0.01 %. 

The external components that need to be added are a 
positive reactance (normally a crystal or ceramic reso
nator) and the two capacitors CXt and CX2 ' as shown 
in Figure 8. 

Crystal Specifications 

Specifications for an appropriate crystal are not very 
critical, unless the frequency is. Any fundamental-mode 
crystal of medium or better quality can be used. 

We are often asked what maximum crystal resistance 
should be specified. The best answer. to this question is 
the lower the better, but use what's available. The crystal 
resistance will have some effect on start-up time and 
steady-state amplitude, but not so much that it can't be 
compensated for by appropriate selection of the capac
itances Cx1and CX2 ' 

Similar questions are asked about specifications of load 
capacitance and shunt capacitance. The best advice we 
can give is to understand what these parameters mean 
and how they affect the operation of the circuit (that 
being the purpose of this Application Note), and then 
decide for yourself if such specifications are meaningful 
in your application or not. Normally, they're not, unless 
your frequency tolerances are tighter than about 0.1 %. 

Part of the problem is that crystal manufacturers are 
accustomed to talking "ppm" tolerances with radio en
gineers and simply won't take your order until you've 
filled out their list of specifications. It will help if you 
define your actual frequency tolerance requirements, 
both for yourself and to the crystal manufacturer. Don't 
pay for 0.003% crystals if your actual frequency tol
erance is I % . 

Oscillation Frequency 

The oscillation frequency is determined 99.5% by the 
crystal and up to about 0.5% by the circuit external to 
the crystaL The on-chip amplifier has little effect on the 
frequency, which is as it should be, since the amplifier 
parameters are temperature and process dependent. 

The influence of the on-chip aIDplifier on the frequency 
is by means of its input and output (pin-to-ground) ca
pacitances, which parallel CXt and CX2 ' and the XTALl
to-XTAL2 (pin-to-pin) capacitance, which parallels the 
crystal. The input and pin-to-pin capacitances are about 
7 pF each. Internal phase deviations from the nominal 
1800 can be modeled as an output capacitance of 25 to 
30 pF. These deviations from the ideal have less effect 



AP-1.55 

in the positive reactance oscillator (with the inverting 
amplifier) than in a comparable series resonant oscillator 
(with the noninverting amplifier) for two reasons: first, 
the effect of the output capacitance is lessened, if not 
swamped, by the off-chip capacitor; secondly, the pos
itive reactance oscillator is less sensitive, frequency
wise, to such phase errors. 

Selection of CX1 and CX2 

Optimal values for the capacitors CX ! and CX2 depend 
on whether a-quartz crystal or ceramic resonator is being 
used, and also on application-specific requirements on 
start-up time and frequency tolerance. 

Start-up time is sometimes more critical in microcon
troller systems than frequency stability, because of var
ious reset and initialization requirements. 

Less commonly, accuracy of the oscillator frequency is 
also critical, for example, when the oscillator is being 
used as a time base. As a general rule, fast start-up and 
stable frequency tend to pull the oscillator design in 
opposite directions. 

Considerations of both start-up time and frequency sta
bility over temperature suggest th<lt CX ! and CX2 should 
be about equal and at least 20 pF. (But they don't have 
to be either.) Increasing the value of. these capacitances 
above some 40 or 50 pF improves frequency stability. 
It also tends to increase the start-up time. There is a 
maximum value (several hundred pF, depending on the 
.value of R! of the quartz or ceramic. resonator) above 
which the oscillator won't start up at all. 

If the on-chip amplifier is a simple inverter, such as in 
the 8051, .the user can select values for CX ! and CX2 

between some 20 and 100 pF, depending on whether 
start-up time or frequency stability is the more critical 
parameter in a specific application. If the on-chip am
plifier is a Schmitt Trigger, such as in the 8048, smaller 
values of CX! must be used (5 to 30 pF), in order to 
prevent the oscillator from running in a relaxation mode.' 

Later sections in this Application Note will discuss the 
effects of varying C'O and CX2 (as well as other param
etets), and will have more to say on their selection. 

Placement of Components 
Noise glitches arriving at the XTALI or XTAL2 pins 
at the wrong time can cause a miscount in the internal 
clock-generating circuitry. These kinds of glitches can 
be produced through capacitive coupling between the 
oscillator components and PCB traces carrying digital 
signals with fas~ rise and fall times. For this reason, the 
oscillator components should be mounted close to the 
chip and have short, direct traces to the XTALl, 
XTAL2, and VSS pins. 

ClOCKing Other Chips 
There are times when it would be desirable to use the 
on-chip oscillator to clock other chips in the system. 

22-31 

CLOCK 
OUT 

CLOCK 
OUT 

VCC 

1K 

11K 

.1--"""""'''''''---1-; XTAL2 

Cx• 

t----;lt----<I--; XTAL 1 

A) DRIVING FROM XTAL2 

VCC 

n~XTAL2 
1K C -= X2 

XTAL1 

CX1 

B) DRIVING FROM XTAL1 

Figure 9 - Using the On-Chip Oscillator 
to Drive Other Chips 

This can be done if an appropriate buffer is used. A 
TTL buffer puts too much load on the on-chip amplifier 
f()r reliable start-up. A CMOS buffer (such as the 
74HC04) can be used, if it's fast enough and if its VIH 
and VIL specs are compatible with the available signal 
amplitudes. Circuits such as shown in Figure 9 might 
also be considered for these types of applications. 

Clock-related signals are available at the TO pin in the 
MCS-48 products, at ALE in the MCS-48 and MCS-5l 
lines, and the iACX-96 controllers provide a CLKOUT 
signal. 

External Oscillators 

When technical requirements dictate the use of an ex
ternal oscillator, the external drive requirements for the 
microcontroller, as published in the data sheet, must be 
carefully noted. The logic levels are not in general TTL
compatible. And each controller has its idiosyncracies 
in this regard. The 8048, for example, requires that both 
XTALI and XTAL2 be driven. The 8051 can be driven 
that way, but the data sheet suggest the simpler method 
of grounding XTALI and driving XTAL2. For this 
method, the driving source must be capable of sinking 
some current when XTAL2 is being driven low. 

For the external oscillator itself, there are basically two 
choices: ready-made and home-grown. 



Ap·155 

TTL Crystal Clock Oscillator 
The H5-IOO, H5-200, & HS-500 ali-metal package 
senes of oscillators are TTL compatll:lle & fit a DIP 
layout. Standard electrical specifications are shown 
below. Variations are available for special applications: 

Frequency Range: H5-1'00 - 3.5 MHz to 30 MHz 
HS-200 - 225 Khz to 3.5 MHz 
H5-500 - 25 MHz to 60 MHz 

Frequency Tolerance: ± .01% Overall 0-70° C 

Hermetically Sealed Package 
Mass spectrometer leak rate max. 
I x 10,8 atmos. cc/sec. of helium 

HS-l00 

INPUT 

OUTPUT WAVE.,FOAM 

-]'1- -IT,I"'" 

. - -F=i lC------~~"voc 
- ---- --- ----14 voe 

=- --- ...::==e~ voc 
oovoc 

~ 60% Max 

HS-200 HS-SOO 

3 5 MHz - 20 MHz 20 + MHz· 30 MHz 225 KHz - 4.0 MHz 25 MHz - 60 MHz 

Supply Voltage 
(Vcd 
Supply Current 
(lcd max. 

5V:!:: 10% 

30mA 

5V" 10% 

40mA 

OUTPUT 
HS·l00 

5V" 10% 5V" 5% 

85mA 50mA 

HS·200 HS·SOO 

3.5 MHz - 20 MHz 20+ MHz· 30 MHz 225 KHz - 4 0 MHz 25 MHz - 60 MHz 

VOH (Logic "I") 
VOL (LogiC "0") 
Symmetry 

+ 2,4V min.' 
+0 4V max" 

60/40%' 

< 10n56 

18mA min, 

+2.7V min' 
+0.5V max.' 

60140%5-

~, 5ns6 

40mA min. 

+ 2 4V min' +27Vmln? 
+04V max." + 0.5V max,' 

55.45%' 60,40%5 

.--: 15ns6 ',5ns' 

18mA min 40mA min 

TR, TF (Rise & 
Fall Time) 

Output Short 
CirCUit Current 

Output Load 1 to 10 TIL toads' 1 to 10 TIL Loads· 1 to 10 TIL Loads' 1 to 10 TTL Loads· 

CONDITIONS 
!lO source - 400 .... A max 
210 source - _. 1 OmA max 
Jlo Sink - 16 OmA max 

410 Sink - 20 OmA max 
r;"Vo - 1 4V 
'(0 4V to 2 4V) 

71 6mA per load 
'2 OmA per load 

Figure 10 - Pre-packaged Oscillator Data" 

Prepackaged oscillators are available from most crystal 
manufacturers, and have the advantage that the system 
designer can treat the oscillator as a black box whose 
performance is guaranteed by people who carty many 
years of experience in designing and building oscillators. 
Figure 10 shows a typical data sheet for some prepac~
aged oscillators. Oscillators are also available with com
plementary outputs. 

If the oscillator is to drive the microcontroller directly, 
one will want to make a careful comparison between the 
extef\lal drive, requirements in the microcontroller data 
sheet and the oscillator's, output logic levels and test 
conditions. 

If oscillator stability is less critical than cost, the user 

*Reprjnted with the permiSSion of © Midland-Ross 
Corporation 1982 

22-32 

may prefer to go with an in-house design. 'Not without 
some precautions, however. 

It's easy to design oscillators that work. Almost all of 
them do work, even if the designer isn't too clear on 
why. The key point here is that almost all of them work. 
The problems begin when the,system goes i!lto produc
tion, and marginal units commence malfunctioning in 
the field. Most digital designers, after all" are not very 
adept at designing oscillators for production. 

Oscillator design is somewhat of a black art, with the 
quality of the finished product being very dependent on 
the designer's 'experience and intuiti..,n. For that reason 
the most important consideration in any design is to 'have 
an adequate preproduction test program. Preproduction 
tests are discussed later in this Application Note. Here 
we will discuss some of the design options and take a 
look at some commonly used configurations. 



Ap·155 

Gate Oscillators versus Discrete Devices 

Digital systems designers are understandably reluctant 
to get involved with discrete devices and their peculiari
ties (biasing techniques, etc.). Besides, the component 
count for these circuits tends to be quite a bit higher 
than what II digital designer is used to seeing for that 
amount of functionality. Nevertheless, if there are un
usual requirements on the accuracy and stability of the 
clock frequency, it should be noted that discrete device 
oscillators can be tailored to suit the exact needs of the 
application and perfected to a level that. would be dif
ficult for a gate oscillator to approach. 

In most cases, when an external oscillator is needed, the 
designer tends to rely on some form of a gate oscillator. 
A TTL inverter with a resistor connecting the output to 
the input makes a suitable inverting amplifier. The re
sistor holds the inverter in the transition region between 
logical high and low, so that at least for start-up purposes 
t~e inverter is a linear amplifier. 

The feedback resistance has to be quite low, however, 
since it must conduct current sourced by the input pin 
without allowing the DC input voltage to get too far 
above the DC output voltage. For biasing purposes, the 
feedback resistance should not exceed a few k-ohms. 

1K 1K 

1.01 Itl 

74LS04 

OUTPUT 

Rx 
(SEVERAL kG) o 

CXl T Cn 

A) TTL OSCILLATOR 

1MG 

74C04 

OUTPUT 

Rx 
(SEVERAL kG) o 

B) CMOS OSCILLATOR 

Figure 11 - Commonly Used Gate Oscillators 

22-33 

But shunting the crystal with such a low resistance does 
not encourage start-up. 

Consequently, the configuration in Figure IIA might be 
suggested. By breaking Rf into two parts and AC
grounding the midpoint, one achieves the DC feedback 
required to hold the inverter in its active region, but 
without the negative signal feedback that is in effect 
telling the circuit not to oscillate. However, this biasing 
scheme will increase the start -up time, and relaxation
type oscillations are also possible. 

A CMOS inverter, such as the 74HC04, might work 
better in this application, since a larger Rf can be used 
to hold the inverter in its linear region. 

Logic gates tend to have a fairly low output resistance, 
which destabilizes the oscillator. For that reason a re
sistor Rx is often added to the feedback network, as 
shown in Figure II A and B. At higher frequencies a 
20 or 30 pF capacitor is sometimes used in the Rx 
position, to compensate for some of the internal prop
agation delay. 

Reference I contains an excellent discussion of. gate 
oscillators, al).d a number of design examples. . 

Fundamental versus Overtone Operation 
It's easier to design an oscillator circuit to operate in the 
resonator's fundamental response mode than to design 
one fot overtone operation. A quartz crystal whose fun
damental response mode covers the desired frequency 
Can be obtained up to some 30 MHz. For frequencies 
above that, the crystal might be used in an overtorie 
mode. 

Several problems arise in the design of an overtone 
oscillator. One is to stop the circuit from oscillating in 
the fundamental mode, which is what it would really 
rather do, for a number of reasons, involving both the 
amplifying device and the crystal. An additional prob
lem with overtone operation is an increased tendency 
to spurious oscillations. That is because the RJ of various 
spurious modes is likely to be about the same as R J of 
the intended overtone response. It may be necessary, as 
suggested in reference I, to specify a "spurious-to
main-response" resistance ratio to avoid the possibility 
of trouble. 

Overtone oscillators are not to be taken lightly. One 
would be well advised to consult with an engineer who 
is knowledgeable in the subject during the design phase 
of such a circuit. . 

SerIes versus Parallel Operation 
Series resonant oscillators use non inverting amplifiers. 
To make a noninverting amplifier out of logic gates 
requires that two inverters be used, as shown in Figure 
12. 

This type of circuit tends to be inaccurate and unstable 



AP-155 

in frequency over variations in temperature and vq;:. 
It has a tendency to oscillate at overtones, and to oscilhlte 
through Co of the crystal or some stray capacitance rather 
than as controlled by the mechanical resonance of the 
crystal. 

The demon in series resonant oscillators is the phase 
shift in the amplifier. The series resonant oscillator wants 
more than just a "noninverting" amplifier - it wants 
a zero phase-shift amplifier. Multistage noninverting 
amplifiers tend to have a considerably lagging phase 
shift, such that the crystal reactance must be capacitive 
in order to bring the total phase shift around the feedback 
loop back up to O. In this mode, a "12 MHz" crystal 
may be running at' 8 or 9 MHz. One can put a capacitor 
in series with the crystal to relieve the crystal of having 
to produce all of the required phase shift, and bring the 
oscillation frequency c;loser to fs. However, to further 
complicate the situation, the amplifier's phase shift is 
strongly dependent on frequency, temperature, VCC, 
and device sample. 

lK lK 

B'Jt------'f 
Figure 12 - "Series Resonant" 

Gate Oscillator 

Positive reactance oscillators ("parallel resonant") use 
inverting amplifiers. A single logic inverter can be used 
for the amplifier, as in Figure II. The amplifier's phase 
shift is less critical, compared to the series resonant 
circuit, and since only one inverter is involved there's 
less phase error anyway. The oscillation frequency is 
effectively bounded by the resonant and antiresonant 
frequencies of the crystal itself. In addition, the feedback 
network inclu4es capacitors that parallel the input and 
output terminals of the amplifier, thus reducing the effect 
of unpredictable capacitances at these points. 

MORE ABOUT USING THE "ON-CHIP" 
OSCILLATORS . 

In this section we will describe the on:chip inverters' on 
selected microcontrollers in some' detail, and discuss 
criteria for selecting components to work with them. 
Future data sheets will supplement this discussion with 
updates and information pertinent to the use of each 
chip's oscillator circuitry. 

.22-34 

Osclllat(n Calculations 

Oscillator design, thQ\lgh aided by theory, is still largely 
an empirical.exercise. The circuit is inherently nonlin
ear, and the normal analysis parameters vary with in
stantaneous voltage. In'addition, when dealing with ,the 
on-chip circuitry, we have FETs being used as resistors, 
resistors being used as interconnects, distributed delays, 
input protection devices, parasitic junctions, and pro
cessing variations. 

Consequently, oscillator. calculations are never very pre
cise. They can tie useful, however, if they will at least 
indicate the effects of variations in the circuit parilmeters 
on start-up time, oscillation frequency, and steady-state 
amplitude. Start-up time, for example, can be taken as 
an indication of start-up1'eliability. If preproduction tests 
indicate a possible start-up problem, a relatively inex
perienced designer c~n at least be made aware of what 

vcc 

XTALl o XTAL2 

C~, lL 
A) 8051-type circuit 

configuration during 
start-up. (Excludes 
Input protection devices.) 

~~------------1 
I r---------, : 

Zt,--!! . 0 I I 

- ~ : I 
Ro I I R, I I 

L_ ______ .J : 
Zl~ ____ ~ 

eX2 : CX1 I 
1.._ _ __ ~ 

B) AC - equivalent of (A) 

Figure 13 - Oscillator Circuit Model 
, Used in Start· Up Calculations 



AP-155 

parameter may be causing the marginality, and what 
direction to go in to fix it. 

The analysis used here is mathematically straightforward 
but algebraically intractable. That means it's relatively 
easy to understand and program into a computer, but it 
will not yield a neat formula that gives, say, steady-state 
amplitude as a function of this or that list of parameters. 
A listing of a BASIC program that implements the anal
ysis will be found in Appendix II. 

When the circuit is first powered up, and before the 
oscillations have commenced (and if the oscillations/ail 
to commence), the oscillator can be treated as a small 
signal linear amplifier with feedback. In that case, stan
dard small-signal analysis techniques can be used to 
determine start-up characteristics. The circuit model 
used in this analysis is shown in Figure 13. 

The circuit approximates that there are no high
frequency effects within the amplifier itself, such that" 
its high-frequency behavior is dominated by the load 
impedance ~. This is a reasonable approximation for 
single-stage amplifiers of the type used in 8051-type 
devices. Then the gain of the amplifier as a function of 
frequency is 

A 

PHASE 
100".r----__ 

50" 

F, MHz 

4.607 4.609 

-SO· 

MAGNITUDE 
20 

15 

10 

5 

O+-____ ~------~--__ --~~. 
4.606 4.607 4.608 4.609 

~lkHz-+i 

Figure 14 - Loop Gain versus Frequency 
(4.608 MHz Crystal) 

22-35 

The gain of the feedback network is 
13 = __ Z_, __ 

Z, + Zr 

And the loop gain is 
I A.;zL 

I3A=--'-
Z,+Zr ZL+Ro 

The impedances ZL' Zr' and Z, are defined in Figure 
13B. 

Figure 14 shows the way the loop gain thus calculated 
(using typical 8051-type parameters and a 4.608 MHz 
crystal) varies with frequency. The frequency of interest 
is the one for which the phase of the loop gain is zero. 
The accepted criterion for start-up is that the magnitude 
of the loop gain must exceed unity at this frequency. 
This is the frequency at which the circuit is in resonance. 
It corresponds very closely with the antiresonant fre
quency of the motional arm of the ctystal in parallel 
with Cv 

Figure 15 shows the way the loop gain varies with fre
quency when the parameters of a 3.58MHz ceramic 
resonator are used in place of a crystal (the amplifier 
parameters being typical 8051, as in Figure 14) .. Note 
the different frequency scales. 

PHASE 
100· 

50" 

O· +-~---+---+---+~+--+-~--. 

-50" 

MAGNITUDE 
20 

15 

10 

5 

O+---~~---+--~--~--+---~~ 
3.53 3.55 3.57 

~2OkHz~ 
3.5S F, MHz 

Figure 15 ....;. Loop Gain versus Frequency 
(3.58MHz Ceramic) 



. AP-t55 

Start-Up Characteristics 

It is common, in studies offeedback systems, to examine 
the behavior of the closed loop gain as a function of 
complex frequency s = CT + jw; specifically, to deter
mine the location of its poles in the complex plane. A 
pole is a point on the complex plane where the gain 
function goes to infinity. Knowledge of its location can 
be used to predict the response of the system to an input 
disturbance. 

The way that the response function depends on the lo
cation of the poles is shown in Figure 16. Poles in the 
left half plane cause the response function to take the 
form of a damped sinusoid. Poles in the right half plane 
cause the response function to take the form of an ex
ponentially growing sinusoid. In general, 

v( t) - ea'sin( wt + e) 

where a is the real part of the pole frequency. Thus if 
the pole is in the right half plane, a is positive and the 
sinusoid grows. If the pole is in the left half plane, 
a is negative and the sinusoid is' damped. 

The same type of analysis can usefully be applied to 
oscillators. In this case, however, rather than trying to 
ensure that the poles are in the'left half plane, we would 
seek to ensure that they're in the right half plane. An 

x 
-a 

x 

I ... 
8",,'ane 

IF 

a) Pol .. In the laft-half plane: f(t) - 8-11 .In ( ... t + 9) 

I ... 
s-plan8 X 

+a IF 

X 

b) Po ... In the rlght·half plane: f(t) - 8+11 .In ( ... t + 9) 

0) PoIaa on the Jw axl.: f(t) - .'n ( ... t + 9) 

Figure 16 - Do You Know Where Your Poles 
are Tonight? 

22·36 

exponentially growing sinusoid is exactly what is wanted 
from an oscillator that has just been powered· up. 

The gain function of interest in oscillators is lI(l-(3A). 
Its poles are at the complex frequencies where (3A = 
1 L5t, because that value of (3A causes the gain function 
to go to infinity. The oscillator will start up if the real 
part of the pole frequency is positive. More importantly, 
the rate at which it starts up is indicated by how much 
greater than 0 the real part of the pole frequency is. 

Ts, MILLISECONDS 

.5 

.4 

.3 

.2 

.1 

o ~+-_+-_________ _ 

10 30 50 70 90 110 

X2: 

Cx =40pF 

VCC: 

X2: 

Cx = 100 pF 

Figure 17 - Oscillator Start-Up (4.608 MHz 
Crystal from Standard Crystal Corp.) 



AP-155 

The circuit in Figure 13B can, be used to find the pole 
frequencies of the oscillator gain function. All that needs 
to be done is evaluate the impedances at complex fre
quencies II + joo rather than just at 00, and find the value 
of II + joo for which I3A = I 1St. The larger that value 
of II is, the faster the oscillator will start up. 

Of course, other things besides pole frequencies, things 
like the VCC rise time, are at work in determining the 
start-up time. But to the extent that the pole frequencies 

18, ,..sEC 

50 

40 

30 

20 

10 

X2: 

Cx-pF 

Cx =4OpF 

Cx = 140pF 

Figure 18 - Oscillator Start~Up (3.58 MHz 
Ceramic Resonator from NTK Technical Ceramics.) 

22-37 

do affect start -up time, we can obtain results like those 
in Figures 17 and 18. 

To obtain these figures, the pole frequencies were com
puted for various values of capacitance Cx from XTALl 
and XTAL2 to ground (thUS CXl = CX2 = Cx). Then 
a "time constant" for start-up was calculated as 

Ts = .!. where II is the real part of the pole frequency 
,II 

, (rad/sec), and this time constant is plotted versus CX' 

A short time constant means faster start-up. A long time 
constant means slow ,start-up: Observations 'of actual 
start-ups are shown in the figures. Figure 17 is for a 
typical 8051 with a 4.608 MHz crystal supplied by 
Standard Crystal Corp.: and figure 18 is for It typical 
8051 with a 3.58MHzceramic resonator supplied by 
NTK Technical Ceramics, Ltd. 

It can be seen in Figure 17 that, for this crystal, values 
of Cx between 30 and 50 pF minimize start-up time, but 
that the exact value in this range is not particularly 
important, even if the start-up time itself is critical. 

As previously mentioned, start-up time can be taken as 
an indication of start-up reliability. Start-up problems 
are normally associated with CX1 and CX2 being too 
small or too large for a given resonator. If the parameters 
of the resonator are known, curves such as in Figure 17 
or 18 can be generated to define acceptable ranges of 
values for these capacito~. 

As the Qscillatio,ns grow in amplitude, ~hey reach a level 
at which they undergo severe clipping within the ampli
fier, in effect reducing the amplifier gain. As the ampli
fier gain decreases, the poles move 'towards the joo axis. 
In steady-state, the poles are on the joo axis and the 
amplitude of the oscillations is constant. 

Steady-State Characteristics 

Steady-state analysis is greatly ,complicated by the fact 
that we are dealing with large sigllals and nonlinear 
circuit response. The circuit parameters vary with in
stantaneous voltage, and a number of clamping and clip
ping mechanisms come into play. Analyses that take all 
these things into account are too complicated tjJ be of 
general use, and analyses that don't take them into ac
count are too inaccurate to justify the effort. 

There is a steady-state analysis in Appendix II that takes 
some of the Complications i'lto account and ignores oth
ers. Figure 19 shows the way the steady-state amplitudes 
thus calculated (using tpical 8051 parameters and a 
4.608 MHz crystal) vary with equal bulk capacitance 
placed from XTALl and XTAL2 to ground. Ellperi
mental results are shown for comparison. 

The waveform at XTALl is a fairly clean sinusoid. Its 
negative peak is normally somewhat below zero, at a 
level which is determined mainly by the input protection 
circuitry at XTALI. 



'A~·155 

VOLTS, 

6 

5 

4 

3 

2 

20 
0 

-1 

-2 

VOLTS 

4 

3 

2 

tc~a lCTAL2 

o 8051 

, ' lCTALl 

-= Ca 

e 

·160 180 200 220 

Ca-pF 

A) Signal levala at XTAL 1 

calculated 

e experimental 
polnta 

-_--:e'-.e 

VOL at lCTAL2 

~o 40 60 60 100 120 140 160 180 200 220 
-1 

, a) Signal levels at XT!'L2 

Figure 19 - Calculated and Experimental 
Steady·State Amplitudes VS. Bulk Capacitance 

from XTAL 1 and XTAL2 to ground. 

The input protection circuitry consists of. an ohmic re
sistor and an enhancement-mode PET with the gate an\! 
souree connected to'ground (VSS), as shown in Figure 
20 for the 8051, and in Figure 21 for the 8048, Its 
function is to limit the positive volta~e a~ the gate of 
the' input FET'to the avalanche voltage of the drain 
junction. If the input pin is driven below VSS, the drain 
and source of the protection FET interchange roles, so 
its gate is connected to what is now the drain. In this 
condition the device resembles a diode with the anode 
connected to VSS. 

There is a parasitic pn junction between the ohmic re
sistor and the substrate. In the ROM parts (8051, 8048, 
etc.) the substrate is held at approximately - 3V ,by the 
on-chip back-bias generator. In the EPROMpilrts (8751, 
8748, etc.) the substrate 'is connected to VSS .. 

The effect of the input protection circuitry on the os
cillator is that if the XTALI signal goes negative, its 
negative peak is clamped to - V DS of the protection 
PET in the ROM parts, and to about -.5V in the 
EPROM parts. These negative voltages on XTALI are 
in this application self-limiting and nondestructive. 

22-;38 

The clamping action does, however, raise the DC level 
, at XTALl, which in turn tends to reduce the positive 
peak at XTAL2. The waveform at XTAL2 resembles a 
sinusoid riding on a DC level, and' whose negative peaks 
are clipped off at zero. 

Since it's normally the XTAL2 signal that drives the 
internal clocking circuitry, the question naturally arises 
as to how large this signal must be to reliably do its job, 
In fact, the XTAL2 signal doesn't have to meet the same 
VIH and VIL specifications that an external driver would 
have to., That's because as long as the oscillator is work
ing, the on-chip amplifier is driving itself through its 
own O-to-I transition region, which is very nearly the 
same as the O-to-I transition region in the internal buffer 
that follows the oscillator. If some processing'variations 
move the transition level higher or lower, the on-chip 
amplifier tends to compensate for it by the fact that its 
own transition level is correspondingly higher or lower. 
(In the 8096, it's the XTALI signal that drives the in
ternal clocking circuitry, bllt the same concept applies.) 

The main concern about the XTAL2 signal amplitude 
is as !Ill indication of the general health of the oscillator. 
An amplitude of less than about 2.5V peak-to-peak in
dicates that start-up problems could develop in some 
units (with low gain) with some crystals (with high R1). 

The remedy is to either adjust the values of CX1 andlor 
CX2 or use a crystal with a lower R I' 

The amplitudes at XTALI and XTAL2 can be adjusted 
by changing the ratio of the capacitors from XTALI and 
XTAL2 to ground. Increasing the XTAL2 capacitance, 
for example, decreases the amplitude at XTAL2 and 
increases the amplitude at XTALI by about the same 
amount. Decreasing both caps in~reases both amplitudes. 

Pin 'Capacitance 

Internal pin-to-ground and pin-to-pin capacitances at 
XTALI and XTAL2 will have some effect on the os
cillator. These Capacitances are normally taken to be in 
the rang\! of 5to 10 pF, but they are extremely difficult 
to evaluate. Any measurement of one'such capacitance 
will ne~essarily include effects from the others. One 
advantage of the positive reactanCf;: oscillator is that the 
pin-to~ground capacitances are' paralleled by external 
bulk capacitors, so a precise determination of their value 
is unnecessary. We would suggest that there is little 
justification for more precision than, to assign them a 
value of 7.pF (XTALI-to-ground and XTALI-to-XTAL2). 
This value.is probably not in error by more than 3 or 
4 pF. 

The XTAL2-to-ground capacitance is not entirely "pin 
capacitance," but more like an "equivalent output ca
pacitance" of some 25 to 30 pF, having to include the 
effect of internal phase delays. This value .will vary to 
some extent with temperature; processing, and frequency. 



Ap·155 

MC5®·51 Oscillator 

The on-chip amplifier on the HMOS MCS-51 family is 
shown in Figure 20. The drain load and feedback 
"resistors" are seen to be field-effect transistors. The 
drain load FET, RD, is typically equivalent to about 1 k 
to 3k-ohms. As an amplifier, tbe low frequency voltage 
gain is normally between - 10 and - 20, and the output 
resistance is effectively RD' 

The 8051 oscillator is normally used with equal bulk 
capacitors placed externally from XTALI to ground and 
from XTAL2 to ground. To determine a reasonable value 
of capacitance to use in these positions, given a crystal 
or ceramic resonator of known paramete'rs, one can use 
tbe BASIC analysis in Appendix II to generate curves 
such as in Figures 17' and 18. This procedure will define 
a range of values tbat will minimize start-up time. We 
don't suggest. that smaller values be used than those 
which minimize start-up time. Larger values than those 
can be used in applications where increased frequency 
stability is desired, at some sacrifice in start-up time. 

VCC 

TO INTERNAL 
CIRCUITRY 

XTAL2 

Figure 20 ..,.. MCS®·51 Oscillator Amplifier 

Standard Crystal Corp. (reference 8) studied the use of 
their crySlJlls with the MCS-51 family using skew sam
ples supplied by Intel. They suggest putting 30 pF 
capacitors from XTALI and XTAL2 to ground, if the 
crystal is specified as described in reference 8. They 
noted that in that configuration and with crystals thus 
specified, the frequency accuracy was ±0.01% and the 
frequency stability was ±0.OO5%, and that a frequency 
accuracy of ±O.OO5% could be obtained by substituting 
a 25 pF fixed cap in parallel with a 5-20 pF trimmer for 
one of the 30 pF caps. 

MCS,-51 skew samples have also been supplied to a 
number of ceramic resonator manufacturers for char
acterization with their products. These companies should 
be contacted for application information on their prod-

ucts. In general, however, ceramics tend to want some
what larger values for Cx I and CX2 than quartz crystals 
do. As shown in Figure 18, they start up a lot faster that 
way. 

In some applications the actual frequency tolerance re
quired is only I % or so, the user being concerned mainly 
that the circuit will oscillate. In that case, CXI and CX2 
can be selected rather freely in the range of 20 to 80 pF. 

As you can see, "best" values for these components 
and their tolerances are strongly dependent on the 
application and its requirements. In any case, their 
suitability should be verified by environmental testing 
before the design is submitted to production. 

MCS®-48 Oscillator 

The NMOS and HMOS MCS-48 oscillator is shown in 
Figure 2 L It differs from the 8051 in that its inverting 
amplifier is a Schmitt Trigger. This configuration was 

vce 

TO INTERNAL 
CIRCUITRY 

XTAL2 

Figure 21 ..,.. MCS®·48 Osclllato~ Amplifier 

chosen to prevent crosstalk from the TO pin, which is 
adjacent to the XTALI pin. 

All Schmitt Trigger circuits exhibit a hysteresis effect, 
as shown in Figure 22. The hysteresis is what makes 
it less sensitive to noise. The same hysteresIs allows any 
Schmitt Trigger to be )Jsed as a relaxation oscillator. All 
you have to do is connect a resistor from output to input, 
and a capacitor from input to ground, and the circuit 
oscillates in a relaxation mode as follows. 

If the Schmitt Trigger output is at a logic high, the 
. capacitor commences charging through the feedback 

resistor. When the capacitor voltage reaches the upper 
trigger point (UTP), the Schmitt Trigger output switches 
to a logic low and the capacitor commences discharging 

22-39 



5V 

~ hysteresis' 

.2V 

L... ___ +-__ +-____ VI 

LTP UTP 

Figure .22 - Schmitt Trigger 
Characteristic 

through the same resistor. When the capacitor voltilge 
reaches the lower trigger point (LTP), the Schmitt Trig
ger output switches to a logic high again, and the se
fluence repeats. The oscillation frequency is determined 
by the RC time constant and the hysteresis voltage, 
UTP-LTP. 

The 8048, can oscillate in this mode. It has an internal 
feedback resistor. All that's needed is an external ca
pacitor from XTALI to ground. In fact, if a smaller 
external feedback resistor, is added, an 8048 system 
could be designed to run in this mode. Do it at your 
own risk! This mode of operation is not tested, specified, 
documented, or encouraged in any way by Intel for the 
8048. Future steppings of the device might have a dif
ferent type of inverting amplifier (one more like the 
8051). The CHMOS members of the MCSA8 family 
do not use a Schmitt Trigger as the inverting amplifier. 

Relaxation oscillations inthe 8048 must be avoided, and 
this is the major objective in selecting the off-chip com
ponents needed to complete the oscillator circuit. 

When an 8048 is powered up, if vee has a short rise 
time, the relaxation mode starts first. The frequency is 
normally about 50kHz. The resonator mode builds more 
slowly, but it eventually takes over and dominates the 
operation of the circuiL This is shown in Figllre 23A. 

Due to processing variations, some units seem to have 
a harder time coming out of the relaxation mode, par
ticularly at low temperatures. In some cases the reso
nator oscillations rnay fail entirely, and leave the device 
in the relaxation mode. Most units will stick in the 
relaxation mode at any temperature if CX ! is larger .than 
about 50 pF. Therefore, CX ! shoilid be chosen,with some 
care, particularly if the system must operate at lower 
temperatures. 

22-40 

One method that has proven ~ff~ctive :in ajl units'.to 
- 40 e is to pui 5 pF from XTALI \0 ground and 20 
pF from XTAL7 to ground. Unfortunately, while ,this 
method does discourage, the relaxation mode, it is not 
an optimal choice for the resonator mode. For one thing, 
it does not swamp the pin capacitance. Also, it makes 
for a rather high signal level at XTALI (8 or 9 volts 
peak-to-pe~) . 

The question arises as to whether that level of signal at 
XTALI might damage the chip. Not to worry. The neg
ative peaks are self-limiting and nondestructive. The 
positive peaks could con~ivably damage the oxide, but 
in fact, NMOS chips (eg, 8048) and HMOS chips (eg, 
8048H) /lfe tested to a much higher voltage than that. 
The technology trend, of course, is to thinner oJlides, 
as the devices shrink in size. For an extra margin of 
safety, the HMOS II chips (eg, 8048AH) have an internal 
diode clamp at XTALI to Vce. 

In reality, eX! doesn't have to be quite so small to avoid 
relaxationoscillations, if the minimum operating tem
perature is not - 40 e. For less severe temperature re
quirements, values of capacitance selected in much the 
same way as for an 80S 1 can be used. The circuit should 
be tested, however, at the system's lowest temperature 
limit. 

Additional securily against relaxation oscillations can 
be obtained by putting aIM-ohm (or larger) resistor 
from XTALI to, vee. Pulling up the XTALI pin this 
way seems to discourage relaxation oscillations as ef
fectively as any other method (Figure 23B). 

Another thing that discourages relaxation oscillations is 
low vec. The resonator mode, on the other' hand, is 
much less sensitive to vce. Thus if vce comes up 

. relatively slowly (several milliseconds rise time), the 
resonator mode is normally up and running before the 
relaxation mode starts (in fact, before vee has even 
reached operating specs). This is shown in Figure 23C. 

A 'secqndary effect of the hysteresis is a shift in the 
oscillation frequency. At low frequencies, the output 
signal from an inverter without hysteresis leads (or lags) 
the input by 180 degrees. The hysteresis in a Schmitt 
Trigger,however, causes the output to lead the input by 
kss than 180 degrees (orlag by more than 180 degrees), 
by an amount that depends on the signal amplitude, as 
shown in Figure 24. At higher frequencies, there are 
additional phase shifts due to the various reactances in 
the circuit, but the pha,se shift due to the hysteresis is 
still present. Since the total phase shift in the oscillittor's 
loop gain is necessarily 0 or 360 degrees, it is apparent 
that as the oscillations build up, the frequency has to 
change to allow the reactances to compensate for the 
hysteresis. In normal operation, this additional phase 
shift due' to hysteresis does not exceed a few degrees, 
and the resulting frequency shift is negligible. 

Kyocera, a ceramic resonator manufacturer, studied'the 



use of some of their resonators (at 6.0MHz, 8.0MHz, 
and 11.OMHz) with the 8049H. Their conclusion as to 
the value of capacitance to use at XTALI and XTAL2 
was that 33 pF is appropriate at all three frequencies. 
One should probably follow the manufacturer's rec-

27pF 

h~ 
XTAL1 

0 8048 

XTAL2 

A) When V cc COIIIIIII up fast, relllXlltlon oscillations 
start first. But then the crystal takes over. 

VCC. 

1MO 

27pF 

XTAL2 h,,~ 0 

XTAL1 

8048 

B) Week pullup (1 un or more) on XTAL 1 discourages 
relllXllllon mode. 

27pF 

~-
XTAL1 

0 8048 

XTAL2 

C) No relllX8tlon oscillations when Vee 
COIIIIIII up more slowly. 

AP·155 

ommendations in this matter, since they will guarantee 
operation: 

Whether one should accept these recommendations and 
guarantees without further testing is, however, another 

VCC: 

XTAL2: 

vcc: 

XTAL2: 

vcc: 

XTAL2: 

Figure 23 - Relaxation Oscillations In the 8048 

22-41 



AP-155 

A) Inverter without hyst~resls: output leads 
Input bY t 80'. 

I 
I 

v,: I 
I 
I __ L ____ _ 

I LTP I 

'·'1 I 
B) Inverier with hystar .. is: output leads 

Input by las8 than 180'. 

Figure 24 - Ampiltude - Dependent Phase 
Shift In Schmitt Trigger 

matter. Not all users have found the recommendations 
to be without occasional problems. If you run into dif
ficulties using their recommendations, both Intel and the 
ceramic resonator manufacturer wal)t to kno,w, about it. 
It is to their interest, and ours, that such problems be 
resolved. . 

Preproduction Tests 

An oscillator design should never be' considered ready 
for production until it has proven its ability to function 
acceptably well under worst-case environmental con
ditions and with parameters at their ~brst-clise tolerance 
limits. Unexpected temperature effects inparts.that may 
already be ,near their. tolerance limits can prevent start
up of an oscillator that wOrks perfectly well on the 
bench. For example, designers often overlook temper
ature effects in ceramic capacitors. (Some ceramics are 
down to 50% of their room-temperature values at - 200 

C and +600 C.) The problem here isn't just one of 

22-42 

A) software lor oscillator test 

SOURCE 
ORGOOOO H 

JMP START 
ORG OOOB H 

CPL T1 
RETI 

ORGco:nBH 
CPL Pl1 
DJNZ P2,$ 
CPL P,O 
RETI 

START MOV TH1,#OFAH 

END 

MOV Tl1.#OFAH 
MOV TMOD,#61H 

MOV IE.IBAH 
MOV TCON,#50H 
JMP $ 

10",1 

f 
TO 

OSCILLOSCOPE 

Pl.0 or Pl.l 
TO 

OSCILLOSCOPE 
TRIGGER 

-= 

CJ 

,TIMER 0 INTERRUPT 
, TOGGLE T1 

,TIMER 1 INTERRUPT 
, TOGGLE CRO TRIGGER 

DELAY 
TOGGLE vee CONTROL 

,TIMER 1 RELOAD VALUE 
,START TL 1 AT RELOAD VALUE 
,TIMER 1 TO COUNTER, AUTO RELOAD 
,TIMER 0 TO TIMER, 16-81T 
,ENABLE TIMER INTEARUPTS ONLY 
,TURN ON 80TH TIMEAS 
,IOL.E 

Pl.0 VCC 
Pl.l 

RST 'EJ{ 

8751 

XTAL2 

XTALI 
VSS 

+5V 
50",1 

+q 

6.5-7V 

VCC RISE-TIME 
CONTROL 

L-------t'~+ q 
VCC 

8051 

XTAL2 

XTALI 
VSS 

n 
ALE 

TO FREQ. 
COUNTER 

B) oscillator tast circuit (shown lor 8051 test) 

Figure 25 - Oscillator Test Circuit 
and Software 



AP-155 

frequency stability, but also involves start-up time and 
steady-state amplitude. There may also be temperature 
effects in the resonator and amplifier. 

It will be helpful to build a test jig that will allow the 
oscillator circuit to be tested independently of the rest 
of the system. Both start-up and steady-state character
istics should be tested. Figure 25 shows the circuit that 
was used to obtain the oscillator start-up photographs 
in this Application Note. This circuit or a modified ver
sion of it would make a convenient test vehicle. The 
oscillator and its relevant components can be physically 
separated from the control circuitry, and placed in a 
temperature chamber. 

Start-up should be observed under a variety of condi
tions, including low vee and using slow and fast vee 
rise times. The oscillator should not be reluctant to start 
up even when vee is below its spec value for the rest 
of the chip. (The rest of the chip may not function, but 
the oscillator should work.) It should also be verified 
that start-up occurs when the resonator has more than 
its upper tolerance limit of series resistance. (Put some 
resistance in series with the resonator for this test.) The 
bulk capacitors from XTALI and XTAL2 to ground 
should also be varied to their tolerance limits. 

The same circuit, with appropriate changes in the soft
ware to lengthen the "on" time, can be used to test the 
steady-state characteristics of the oscillator, specifically 
the frequency, frequency stability, and amplitudes at 
XTALI and XTAL2. . 

As previously noted, the voltage swings at these pins 
are not critical, but they should be checked at the sys
tem's temperature limits to ensure that they are in good 
health. Observing these signals necessarily changes 
them somewhat. Observing the signal at XTAL2 requires 
that the capacitor at that pin ,be reduced to account for 

XTALl 
or 

XTAL2 ,6 
I 

~\ TO 
'o----i---I ... OSCILLOSCOPE 

JUMPER FOR 
GATE PROTECTION 

11K 

--
-5V 

Figure 26 - MOSFET Buffer for 
Observing Oscillator Signals 

22-43 

the oscilloscope probe capacitance. Observing the signal 
at XTALl requires the same consideration, plus a block
ing capacitor (switch the oscilloscope input to AC), so 
as to not disturb the De level at that pin. Alternatively, 
a MOSFET buffer such as the one shown in Figure 26 
can be used. It should be verified by direct measurement 
that the ground clip on the scope probe is ohmically 
connected to the scope chassis (probes are incredibly 
fragile in thi's respect), and the observations should be 
made with the ground clip on the VSS pin, or very close 
to it. If the probe shield isn't operational and in use, the 
observations are worthless. 

Frequency checks should be made with only the oscil
lator circuitry connected to XTALI and XTAL2. The 

. ALE frequency can be counted, and the oscillator fre
quency derived from that. In systems where the fre
quency tolerance is only "nominal," the frequency 
should still be checked to ascertain that the oscillator 
isn't running in a spurious resonance or relaxation mode. 
Switching vee off and on again repeatedly will help 
reveal a tendency to go into unwanted modes of 
oscillation .. 

The operation of the oscillator should then be verified 
under actual system running conditions. By this stage 
one will be able to have some confidence that the basic 
selection of components for the oscillator itself is suit
able, so if the oscillator appears to malfunction in the 
system the fault is not in the selection of these 
components. 

Troubleshooting Oscillator Problems 

The first thing to consider in case of difficulty is that 
between the test jig and the actual application there may 
be significant differences in stray capacitances, partic
ularly if the actual application is on a multi-layer board. 

Noise glitches, that aren't present in the test jig but are 
in the application board, are, another possibility. eapac
itive coupling between the oscillator circuitry and other 
signals has already been mentioned as a source of mis
countS in the internal clocking circuitry. Inductive cou
pling is also possible, if there are strong currents nearby. 
These problems are a ~nction of the PCB layout. 

Surrounding the oscillator components with "quiet" 
traces (Vee and ground, for example) will alleviate 
capacitive coupling to signals that have fast transition 
times. To minimize inductive coupling, the PCB layout 
should minimize the areas of the loops formed by the 
oscillator components. These are the loops that should 
be checked: 

XTALI through the resonator to XTAL2; 
XTALI through eXI to the VSS pin; 
XTAL2 through eX2 to the VSS pin. 



It is not unusual to find that the groundeq ends of ,eXt 

and CX2 eventually connect up tp the VSS pin only after 
looping around the farthest ends of thebpard. Not good. 

AP-1·55 

Finally, it should notbe overlooked that softwart; prob
lems sometimes imitate the symptoms of a slow-starting 
oscillator or incorrect frequency. Never underestimate 
the perversity of a software problem. 

REFERENCES 

1. Frerking, M. E., Crystal Oscillator Design 
and Temperature Compensation, Van Nostrand 
Reinhold, J978. 

2. Bottom, V., "The Crystal Unit as a Circuit 
Component," Ch. 7, Introduction to Quartz Crys
tal Unit Design, Van Nostrand Reinhold, 1982. 

3. Parzen, B., Design of Crystal and Other Har
monic Oscillators, John Wiley & Sons, 1983. 

4. Holmbeck, J. D., "Frequency Tolerance Lim
itations with Logic Gate Clock Oscillators, " } 1 st 
Annual Frequency Control Symposium, June, 
1977. 

5. Roberge, J. K., "Nonlinear Systems,;' Ch. 
6, Operational Amplifiers: Theory and Practice, 
Wiley, 1975. . 

6. Eaton, S. S., Timekeeping Advances Through 
COS/MOS Technology, RCA Application Note 
ICAN-6086. 

22-44 

7. Eaton, S. S. Micropower Cryst{ll-Controlled 
Oscillator Design Using RCA COS/MOS Invert
ers, RCA Application Note ICAN-6539. 

8. Fisher, J. B., Crystal Specifications for the 
Intel B0311B0511B751 Microcontrollers, Standard 
Crystal Corp. Design Data Note #2F. 

9. Murata Mfg. Co., Ltd., Ceramic R~sonator 
"Ceralock" Application Manual. 

10. Kyoto Ceramic Co., Ltd., Adaptability Test 
Between Intel B049H and KyoceraCeramic 
Resonators. 

II. Kyoto Ceramic Co., Ltd., Techni~al Data on 
Ceramic Resonator Model KBR-6.0M, KBR-B.OM, 
KBR-11.0M Application for B051 (Intel). 

12. NTK Technical Ceramic Division, NGK 
Spark Plug Co., Ltd., NTKK Ceramic Resonator 
Manual. 



Ap..155 

i . ,". ~ .",' , 

APPENDIX I ................... 22 
APPENDIX II .................. 24 

22-45. 



APPENDIX I 
QUARTZ AND CERAMIC RESONATOR FORMULAS 

Based on the equivalent circuit of the crystal, the imped
ance of the crystal is 

(RI + jwLI + IIjIJ)C I)(l/jwCo) ZXTAL = ---'--'--""_"--" ___ -"'-c....:._-"'--
RI + jwLI + IIjwCI + IIjwCo 

After some algebraic manipulation, this calculation can 
be written in the form 

I 
Z ----XTAl - jw(CI + Co) 

- w2LICI + jwRICI 

- w2LICT + jwRICT 

where CT is the capacitance of C I in series with Co: 

C-~ 
T - C I + Co 

The impedance of the crystal in parallel with an external 
load capacitance Cl is the same expression, but with 
Co + Cl substituted for Co: 

1- w2LICI + jwRICI 

jw(CI+Co+CJ l-w2LICr+jwRICr 

where Cr is the capacitance of C I in series with 
(CO+CL): 

, CI(CO+ Cl ) 
CT = ---'-'---"---"'--

C I + Co + Cl 

The impedance of the crystal in series with the load 
capacitance is 

I 
= ZxTAl + jwCl 

Cl + CI+Co 

jwCdCI + Co) I 

- w2LIC~+jwRICr 

- w2LICT+jwRICT 

where CT and CT are as defined above. 

The phase angles of these impedances are readily ob
tained from the impedance expressions themselves: 

_ wRICI 
exrAL - arctan I - w2LtCI 

wRICT 1T 

- arctan I - w2LICT . 2 

wRIC I 
exrAL II Q. = arctan I _ w2LICI 

wRIc;. 1T 
-arctan I - w2LICT 2 

22·46 

_ wRIc;. 
exTAL+CL - arctan I _ 2L C' , WIT 

wRICT 1T 
- arctan I - w2LtCr - 2" 

The resonant ("series resonant") frequency is the fre
quency at which the phase angle is zero and the imped
ance is low. The antiresonant ("parallel resonant") fre
quency is the frequency at which the phase angle is zero 
and the impedance is high. 

Each of the above 8-expresslons contains two arctan 
functions. Setting the denominator of the argument of 
the first arctan function to zero gives (approximately) 
the "series resonant" frequency for that configuration. 
Setting the denominator of the argument of the second 
arctan function to zero gives (approximately) the "par
allel resonant" frequency for that configuration. 

For example, the resonant frequency of the crys,al is the 
frequl(ncy at which , 

I -;-w2LIC I = 0 
I 

w =---
, VLICI 

Thus, 

or f = I 
s 21TVLICI 

It will be noted that the series resonant frequency of the 
"XTAL+ CL" configuration (crystal in series with CL) 
is the same as the parallel resonant frequency of the 
"XTAL II CL'" configuration (crystal in parallel with 
Cl ). This is the frequency at which 

I - w2LICr = 0 
I 

w. = VLICT 
Thus, 

or f = I 
• 21TVLIC~ 

This fact is used by crystal manufacturers in the process 
of calibrating a crystal to a specified load capacitance. 

By subtracting the resonant frequency of the crystal from 
its antiresonant frequency, one can calculate the range 
of frequencies over which the crystal reactance is 
positive: 

fa - fs = fs (VI + Cl/Co - 1) 

= fs (~) 



Oiven typical values for C1 and Co' this range can bartlly 
exceed 0.5% of fs. Unless the inverting amplifier in the 
positive reactance oscillatOr is doing something very 
strange indeed, the oscillation frequency is bound to be 
accurate to that percentage whether the crystal was cal
ibrated for series operation or to any unspecified load 
capacitance. 

Equivalent Series Resistance 

ESR is the real part of ZXTAL at the oscillation frequency. 
The oscillation frequency is the parallel resonant fre
quency of the "XTAL II CL" configuration (which is 
the same as the series resonant frequency of the 
"XTAL+CL" configuration). Substituting this fre
quency into the ZXTAL expression yields, after some 
algebraic manipulation, 

RI (CO~CL)2 
ESR = __ -,---=L,-,-_'_ 

AP·155 

22-47 

Drive Level 

The power dissipated by the crystal is IyR I' where I I is 
the RMS current in the motional arm of the crystal. This 
current is given by V /IZII, where V x is the RMS voltage 
across the crystal, and IZII is the magnitude of the imped
ance of the motional arm. At the oscillation frequency, 
the motional arm is a positive (inductive) reactance in 
parallel resonance with (Co+CJ. Therefore IZII is ap
proximately equal to the magnitude of the reactance of 
(CO+CL): 

where f is the oscillation frequency. Then, 

P '" IyRI = (1~~lrRI 
= [2'7Tf(Co+ CL)Vx12R1 

The waveform of the voltage across the crystal (XTALl 
to XTAL2) is approximately sinusoidal. If its peak value 
is VCC, then Vx is VCcrV2. Therefore, 



AR-155 

A'PPENDIX n 
OSCILLATOR ANALYSIS· PROGRAM 

The program is· written in BASIC. BASIC is excru
ciatingly slow, but it has some advantages. For one 
thing, more people know BASIC than FORTRAN. In 
addition, a BASIC program is easy to develop, modify, 
and "fiddle around" with. Another important advantage 
is that a BASIC program can run on practically any 
small computer system. 

Its slowness is a problem, however. For example, the 
routine which calculates the "start-up time constant" 
discussed in the text may take several hours to complete. 
A person who finds this program useful may prefer to 
convert it to FORTRAN, if the facilities are available. 

limitations of the Program 

The program was developed with specific reference to 
805 I-type oscillator circuitry. That means the on-chip 
amplifier is a simple inverter, and not a Schmitt Trigger. 
The 8096, the 8OCSI, the 8OC48 and 80C49 all have 
simple inverters. The 8096 oscillator is almost identical 
to the 8051, differing mainly in the input protection 
circuitry. The CHMOS amplifiers have somewhat dif
ferent parameters (higher gain, for example), and dif
ferent transition levels than the 8051. 

The MCS-48 family is specifically included in the pro
gram only to the extent that the input-output curve used 
in the steady-state analysis is that of a Schmitt Trigger, 
if the user identifies the device under analysis as an 
MCS-48 device. The analysis does not include the volt
age dependent phase shift of the Schmitt Trigger. 

The clamping action of the input protection circuitry is 
important in determining the steady-state amplitudes. 
The steady-state routine accounts for it by setting the 
negative peak of the XTALI signal at a level which 
depends on the amplitude of the XTALl signal in ac
cordance with experimental observations. It's an exer
cise in curve-fitting. A user may find a different type 
of curve works better. Later steppings of the chips may 
behave differently in this respect, having somewhat dif
ferent types of input protection circuitry. 

It should be notC\i that the analysis ignores a. number 
of important items, such as high-frequency effects· in 
the on-chip circuitry. These effects are difficult to pre
dict, and are no doubt dependent on ·temperature,. fre
quency, and device sample. However, they can be sim
ulated to a reasonable degree. by adding an "output 
capacitance" of about 20 pF to the circuit model (ie, 
in patallel with CX2), as described below. 

Notes on USing the Program 

The program asks the user to input values for various 
circuit parameters. First the crystal (or ceramic reso
nator) parameters are asked for. These are RI, Ll, CI, 
and CO. The manufacturer can supply these values for 
selected samples. To obtain any kind of correlation be
tween calculation and eXperiment, the values of these 
parameters must be known for the specific sample in the 
test circuit. The value that should. be entered for CO is 
the CO of the crystal itself plus an estimated 7 pF to 
account for the XTALl-to-XTAL2 pin capacitance, plus 
any other stray capacitance paralleling the crystal that 
the user may feel is significant enough to be included. 

Then the program asks for the values of the XTALl-to
ground and XTAL2-to-ground capacitances. For 
CXTALl, enter the value of the externally connected 
bulk capacitor plus an estimated 7 pF for pin capaci
tance. For CXTAL2, enter the value of the externally 
connected bulk capacitor plus an estimated 7 pF for pin 
capacitance plus about 20 pF to simulate high-frequency 
roll-off and phase shifts in the on-chip circuitry. 

Next the program asks for values for the small-signal 
parameters of the on-chip amplifier. Typically, for the 
805118751, 

Amplifier Gain Magnitude 
Feedback Resistance 

Output Resistance 

IS 
2300k-ohms 
2k-ohms 

The same values can be used for MCS-48 (NMOS and 
HMOS) devices, but they are difficult to verify, because 
the Schmitt Trigger does not lend itself to small-signal 
measurements. 



100 DEFDBL C.D.F.G.L.P.R.S.X 
200 REM 

AP-155 

APRIL 8. 1983 
300 REM *********************************************************************** 
400 REM 
500 REM 
600 REM 
700 REM 

FUNCTIONS 

800 REM FNZM(R. X) = MAGNITUDE OF A COMPLEX NUMBER. iR+JXi 
900 DEF FNZM(R.X) = SQR(R'2+X'2) 
1000 REM 
1100 REM FNZP(R. X) 
1200 REM 

ANGLE OF A COMPLEX NUMBER 
180/PI*ARCTAN(X/R) IF R)O 

1300 REM 
1400 REM 
1500 DEF FNZP(R. X) 
1600 REM 

180/PI*ARCTAN(X/R) + 180 IF RCO AND X)O 
180/PI*ARCTAN(X/R) - 180 IF R,:O AND X<:O 
180/PI*ATN(X/R) - (SGN(R)-I)*SGN(X)*90 

1700 REM 
1800 REM 
1900 REM 
2000 DEF 
2100 DEF 
2200 REM 
2300 REM 
2400 REM 
2500 REM 
2600 REM 
2700 DEF 
2800 DEF 
2900 REM 
3000 REM 
3100 REM 
3200 REM 
3300 REM 
3400 REM 
3500 DEF 
3600 DEF 
3700 REM 
3800 REM 
3900 REM 
4000 REM 
4100 DEF 
4200 DEF 
4300 REM 
4400 REM 
4500 REM 
4600 REM 
4700 REM 
4800 
4900 
5000 
5100 

REM 
REM 
REM 
REM 
REM 
REM 
REM 
DEF 
DEF 
REM 

INDUCTIVE IMPEDANCE AT COMPLEX FREQUENCY S+JF (HZ) 
Z = 2*PI*5-*L +. J2*PI*F*L 

FNRL(S.L) + JFNXL(F.L) 
FNRL(SL.LL) = 2#*PI*SL*LL 
FNXL(FL.LL) = 2#*PI*FL*LL 

CAPACITIVE IMPEDANCE AT COMPLEX FREQUENCY S+JF (HZ) 
Z = 1/C2*PI*(S+JF)*CJ 

= S/(2*PI*<S'2+F'2>*CJ + J(-F)/(2*PI*(S'2+F~2)CJ 
= F~RC(S.F.C) + JFNXC(S.F.C) 

F,NRC(SC. FC. CO = SC/(2#*PI*(SC 2+FC2)*CC) 
FNXC(SC.FC.CC) = -FC/(2#*PI*(SC'2+FC'2)*CC) 

RATIO OF TWO COMPLEX NUMBERS 
RA+JXA RA*RB+XA*XB XA*RB-RA*XB 

+ J 
RB+JX3 RB"2+XB'2 RB'2+XB"2 

FNRR(RA, XA.RB.IB) + JFNXR(RA. XA.RB.XB) 
FNRR(RA,XA,RB.IB) = (RA*RB+XA*XB)/(RB 2+XB 2) 
FNXR(RA. XA,RB. XB) = (XA*RB-XB*RAl/(RB 2+XB 2) 

PRODUCT OF TWO COMPLEX NUMBERS 
RA*RB-XA*XB + J(XA*RB+RA*XB} 

FNRM'RA. IA. RS. IB) + JFNXM(RA. XA. RB.·XB). 
FNRM(RA. XA.RB. <B) 
FNXM(RA.XA.RB. XS) 

RA*RB - XA*XB 
RAHB + RS*XA 

PARALLEL Ir1PEDANCES 

(RA+JXA) i i (RB+JXB) 
RA+RB +J{XA+XB) 

(RA+RB) '2 + (XA+XB) 2 

FNRP (RA, XA, RB. XB) + JFNXP (RA. XA. RB. XS) 

(RA+RB)'2 + '(XA+XB)~2 

FNRP(RA, XA,RB, XB) (RA*(RB '2+XB 2) + RB*(RAh2+XAA2»/«RA+RB)~2 + (XA+XB)~2) 

FNXP(RA. XA.RB. XB) = (XA*(RB 2+XB'2) + XB*(RA'2+XA'2»/«RA+RB)'2 + (XA+XB)~2). 

. 5200 
5300 
5400 
5500 
5600 
5700 
5800 
5900 
6000 
6100 
6200 
6300 
6400 
6500 
6600 
6700 
6800 
6900 
7000 
7100 
7200 
7300 
7400 
7500 
7600 
7700 
7800 

REM ************~**************~****************************************** 
REM 
REM 
REM 

BEGIN COMPUTATIONS 

LET PI = 3 141592654# 
REM 
REM DEFINE CIRCUIT PARAMETERS 
OOSVIl !4~00 

REM 
REM ESTABLISH t,otlINAL RE,;ONANT AND ANTI RESONANT CRYSTAL FREQUENCIES 
FS = FIX(I/(2*PI'SQR(Ll*CI I) I 
FA = FIX<1/{2*PI*80R(Ll,"Cl*CO/(Cl+(,O»» 
PRINT 
PRINT "XTAL IS SERIES RESONANT AT ". FS." HZ" 
PRINT PARALLEL RESONANl AT ". FA." HZ" 
PRINT 
PRINT "SELECt 
PRINT 
PRINT 
PRINT 
PRINT 

2 
3 

LIST PARAMETERS" 
CIRCUIT ANALYSIS" 
osc ILLATION FREQUENC'f H 

'3TART--UP T !ME COt"ISTANT" 
STEADY-STATE ANAl_YSIS" 

22-49 



AP-155 

7900 PRINT 
8000 INPUT N 
8100 IF N=1 THEN PRINT ELSE 8600 
8200 REM 
8300 REM ------------- .-----_. LIST PARAMETERS ----------------------------
8400 GOSUa 17100 
8500 GO TO 6800 
8600 IF N=2 THEN PR IN'- ELSE 9400 
8700 REM 
8800 REt1 - -- ------ --_. -- ------ c lRCUIT ANALYSIS - --------------------------
8900 PRINT" FREQUENCY S<,JF TYPE (S), (F) " 
9000 INPUT SQ,FQ 
9100 GOSUa 20200 
9200 GOSUa 26600 
9300 GOTO 6800 
9400 IF N=3 THEN 10300 ELSE 11000 
9500 REM 
9600 REM ------------------ OSCILLATION FREQUENCY ------------------------
9700 CL = CX.CY/(CX+CY) + cd 
9800 FQ = FIX(1I(2*PI"SQR(Ll*Cl*CL/\Cl+CU») 
9900 SQ = 0 _ 
10000 OF = FIX( 10-'INT(LOG(FA-FS)/LOG(lO)-2)+. 5) 
10100 DS = 0 ' 
10200 RETURN 
10300 GOSua 9700 
10400 GOSUa 30300 
10500 PRINT 
10600 PRINT 
10700 PRINT "FREQUENCY AT WHICH LOOP GAIN HAS ZERO PHASE ANGLE " 
10800 GOSUB 26600 
10900 GOTO 6800 
11000 IF N=4 THEN PRINT ELSE 12200 
11100 REM 
11200 REM ---------------- START-UP TIME CONSTANT -------------------------
11300 PRINT "THIS WILL TAKE SOME TIME 
11400 GOSUD 9700 
11500 GOSUB 37700 
11600 PRINT 
11700 PRINT 
11800 PRINT "FREQUENCY AT WHI,CH LOOP GAIN = 1 AT 0 DEGRELS' " 
11900 GOSUa 26600 
12000 PRINT PRINT "THIS YIELDS A START-UP TIME CONSTANT OF ", CSNG( 1000000! 1(2*PI*SG»," MICROSECS" 
12100 GOTO 6800 / 
12200 IF N=5 THEN PRINT ELSE 7300 
12300 REM 
12400 REM ---------------- STEADY-STATE ANALYSIS ------------------------_.--
12500 PRINT "STEADY-STATE ANALYSIS" 
12600 PRINT 
12700 PRINT "SELECT 
12800 PRINT 
12900 PRINT " 
13000 PRINT " 
13100 INPUT lex 

I 
2 
3 
4 

8031/8051 " 
8751" 
8035/8039/8040/8048/8049" 
874B/8749" 

13200 IF ICX<1 OR ICX:-.. THEN 12600 
13300 GOSUD 46900 
13400 GOTO 7300 
13500 REM SUBROUTINE BELOW DEFINES INPUT-OUTPUT CURVE OF OSCILLATOR CKT 
13600 IF IeX)2 AND VO=5 AND VI ':2 THEN PETURN 
13700 VO = -10*VI + 15 
13800 IF VO)5 THEN VO = 5 
13900 IF VO< 2 THEN VO = 2 
14000 IF ICX)2 AND VO)2 THEN vO 
14100 RETURN 
14200 REM 

5 

14300 REM ************************************************************** 
14400 REM 
14500 REM 
14600 REM 

DEFINE CIRCUIT PARAMETERS 

14700 INPUT" Rl (OHMS)",Rl 
14800 INPUT" Ll (HENRY)",Ll 
14900 INPUT" CI (PF)", X 
15000 Cl = X*IE-12 
15100 INPUT" CO (PF)", X 
15200 CO = X*IE-12 
15300 INPUT" eXTALl (PF) ", X 
15400 ex = X*lE-12 
15500 INPUT" CXTAL2 (PF)",X 
15600 ey = X*IE-12 

22-50 



15700 
15800 
15900 
16000 
16100 
16200 
16300 
16400 
16500 
16600 
16700 
16800 
16900 
17000 
17100 
17200 
17300 
17400 
17500 
17600 
17700 
17800 
17900 
18000 
18100 
18200 
18300 
18400 
18500 
18600 
18700 
18800 
18900 
19000 
19100 
19200 
19300 
19400 
19500 
19600 
19700 
19800 
19900 
20000 
20100 
20200 
20300 
20400 
20500 
20600 
20700 
20800 
20900 
21000 
21100 
21200 
21300 
21400 
21500 
21600 
21700 
21800 
21900 
:22000 
22100 
22200 
22300 
22400 
22500 
22600 
22700 
22900 
22900 

AP-155 

INPUT" GAIN FACTOR MAGNITUDE", AVII 
INPUT" AMP FEEDBACK RESISTANCE (K-OHMS)", X 
RX = X*1000# 
INPUT" AMP OUTPUT RESISTANCE (K-(1Ht1S) ", X 
RO = X*IOOOll 
REM 
REM 
REM LIS] CURRENT PARAMETER VALUES 
GOSUB 17100 
RETURN 
REt1 
REM 
REM ***********~~~******~*******~~***~~***4*********************** 
REt1 
REt'i 
REM 

LIST CURHENT PARAMETER VALUES 

PRINT 
PRINT "CURRENT PARAMETER VALUES 
PRINT 

RI ", RI," OHMS" 
2 Ll ", C5NG(Ll)," HENRY" 

PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 
PRINT 

7 
B 
9 

3 C1 ",CSNG(Cl*lE+12), If PF" 
4 CO ", CSNG(CO*lE+12)," PF" 
5 CXrALl =' ", CSNG(CX*lE+12>," PF"" 
6 CXTAl2 = ",CSNGCCV*lE+12), " PF" 

AMPLIFIER GAIN MAGNITUDE ", AVII 
FEEDBACM RESISTANCE = ",CSNG(RX* 001)," K-oHMS" 

OUTPUT RESISTANCE = ", CSNG(RO·' 001)," K-OHMS" 

PRINT "TO CHANGE A PARAMETER VALUE, TYPE (PARAM NO ), <NEW VALUE> " 
PRINT "OTHERWISE, TYPE 0,0 " 
INPUT N'l.,X 
IF N'l.=O THEN 
IF N'l.=I' THEN 
IF N'l.=2 THEN 
IF N'l.=3 THEN 
IF NI.=4 THEN 
IF NI.=5 THEN 
IF NI.=6 THEN 
IF NI.=7 THEN 

RETvRN 
RI X 
L1 = X 
Cl X*lE-12 
CO X*lE-12 
ex X*lE-12 
CV X*IE-12 
AV# = X 

IF NI.=8 THEN RX X*1000' 
IF NY.=9 THEN Ro = x*loao' 
GOTO 17400 
REM 
REM 
REM ************************************************************** 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
Xl = 
RE = 
XE = 
REM 
REM 
REM 
RF = 
XF = 
REM 
REM 
REM 
RI = 
XI = 
REM 
REM 
REM 
RL = 
XL = 
REM 
REM 
REM 
REt1 

CIRCUIT ANALYSIS 

ThlS rout~ne calculate~ the loop ga1n at complex frequency SO+JFG 

Crystal 1npedance RE + JXE 

FNXL(FQ,Ll) + FNXC(SQ,FQ.Cl) 
FNRP ( (R ITFNRLCSQ, L1) "FN~C (SQ, FQ, C 1) ), XL FNF>C (SQ, FQ, CO), FNXC (SQ, FQ, CO) ) 
FNXP«RITFNRL(SQ,Ll)+FNRC(SQ,FQ,CI». XI,FNRC(SQ,FQ,CO),FNXC(SQ,FQ,CO» 

2 RF T JXF (RE+JXE)! 1 (<3mpllf1er feE'dback T'eSlstance) 

FNRP(RX,O,RE, XE) 
FNXP(RX,O,RE.XE) 

3 Input llnp1edance Zl 

FNRC(SQ,FQ,C() 
FNXC (SQ, FQ, C.< ) 

RI + JXI 1mpedance of CXTALl 

4 Load 1mpedance ZL = llmpedance of CXTAL2): :CCRF+RI>+J(XF+XI)] 

FNRP (RF+R I). (XF .... X I), FNRC (SQ, FQ, CY), FNXC (SQ, FO, CY) 
FNXP«PF+RI I (XF .... Xll,FNRC'-SO r-o CY).FNX('(SQ,FQ,CY» 

23000 AR* = -AV#*FNRR(RL. XL. (RO+RL), XL) 
23100 AI# = -AV#-JlFN')(R(RL, XL, (PQ+RL), XL! 
23200 REM 
23300 REM 6 Feedbatl( ratlo \beta! (RJ+pI) !['F!Ftfdl-t,t(XF+XI») 
23400 REM Birt:!dJ' -r JI:'(lmaqllldryl 

22-51 



AP-155 

23500 REM 
23600 BR# - FNRR(RI.XI. (RI+RF). (XI+XF» 
23700 BIll - FNXR(RI. XI. (RI+RF). (XI"F» 
23800 REM 
23900 REM 7 AmplIfIer gaIn 1Tl magnitude/phase form. 
24000 REM 

ARtJAI A at AP degrees 

24100 A - FNZM(AR#.AI#) 
24200 AP - FNZP(AR4I. AI41), 
24300 REM 
24400 REM 8 (beta) In magnItude/phase form Bfl+JBI B at BP degrees 
24000 REM 
24600 
24700 
24800 
24900 
25000 
25100 
25200 
25300 
25400 
25500 
25600 
25700 
25800 
25900 
26000 
26100 
26200 
26300 
26400 
26500 
26600 
26700 
26800 
26900 
27000 
27100 
27200 
27300 
27400 
27500 
27600 
27700 
27800 
27900 
28000 
28100 
28200 
28300 
28400 
28500 
28600 
28700 
28800 
28900 
29000 
29100 
29200 
29300 
29400 
29500 
29600 
29700 
29800 
29900 
30000 
30100 
30200 
30300 
30400 
30500 
30600 
30700 
30800 
30900 
31000 
31100 
31200 

B = FNZM(BR4I,BI#) 
SP - FNZP(BR#,BI#i 
REM 
REM 9 Loop gaIn G = (BR+JBI)*CAR+JAI) 
REM ~ G(real) + JGllmaglnary) 
REI1 
GR - FNRM(AR#,AI#,BR#.BI#) 
GI - FNXM(AR#,AI#,BR#,BI#) 
REM 
REM 10 Loop g~ln In magnItude/phase form GR+JGI 
REM 
AL - FNZM(GR,GI) 
All - FNZP (GR, GIl 
RETU'RN 
REM 
REI1 

AL at AQ degrees 

REM ************~~***********~**~********************************* 
!'EM 
REM 
REM 
PRINT 

PRINT CIRCUIT ANALYSIS RESULTS 

PRINT" FREIlUENCY - ",SIl, " + J",FIl," HZ" 
PRINT" XTAL IMPEDANCE - ",FNZM(RE,XE)," OHMS AT ",FNZP(RE, XE)," DEGREES" 
PRINT (RE - ",CSNG(RE)," OHMS)" 
PRINT (KE - ",CSNG(XE)," OHMS)" 
PRINT LOAD IMPEDANCE - ",FNZM(RL, XL), " OHMS AT ",FNZP(RL,XL)," DEGREES" 
PRINT AMPLIFIER GAIN - ",A," AT ",AP," DEGREES" 
PRINT FEEDBACK RATIO - ",B," AT ",BP," DEGREES" 
PRINT LOOP GAIN - ",AL," AT ",AQ," DEGREES" 
RETURN 
REM 
REM 
REM ************************************************************** 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 

SEARCH FOR FREIlUENCY (S+JF) 
AT WHICH LOOP GAIN HAS ZERO PHASE ANGLE 

ThIS routIne searches for the fre~uency at WhlCh the lmaglnary part 
of the loop galn lS zero T~e algorlthm lS as follows. 

1 Calculate the slgn of the lmaglnary part of the loop galn (GI) 
2 Inereme~t the frequency 
3 Calculate the 519n of GI at 'the lncremented frequency 
4 If the s19n of GJ Has'not changed. go back to 2 
S If the 51gn of GJ has changed, and this frequency 15 wlthin 

1Hz of the prevlous slgn-change, e~lt the routlne 
6 OtherWIse, dlvlde the frequency' lncrement by -10 
7 Go bae It to 2 

The routine 15 entered wlth the startlng frequency SQ+JFQ and 
5tartlng lncrement DS+JDF already deflned by the caillng program 
In actual use either OS or OF lS zero, so the routine searches for 
a GI=O pOlnt by lncrementlng elther sa or FG whlle holdIng the other 
constant It return~ control to t~e call1ng program with the 
lncremented part of the frequency belng wlthin 1Hz of the actual 
GI=O pOlnt 

CALCULATE THE SIGN OF THE II1AGINARY PART OF THE LOOP GAIN (GI). 

GoSUB 20200 
GoSUB 26600 
IF GI-O THEN RETURN 
SXX - INT(SGN(GI») 
IF SXX-+I THEN OS -OS 
REM (REVERSAL OF OS FOR GI: 0 IS F'OR THE POLE-SEARCH ROUTINE. ) 
REM 
REM 2 INCREMENT THE FREIlUENCY 
REM 
SP = SO 

22-52 



31300 FP = 
31400 SQ = 
31500 FQ = 
31600 REM 

FQ 
sa + OS 
FQ + OF 

AP·155 

31700 REM 3 
31800 REM 

CALCL'LATE THE SIGN OF GI AT lHE INCREMENTED FREQUENCY 

31900 GOSUe 20200 
32000 OOSUB 26600 
32100 IF INT(SGN(GI))=O THEN RETURN 
32200 REM 
32300 REM 4 
32400 REM 

IF THE SIGN OF GI HAS NOT CrlANGED, GO BACK TO 2 

32500 IF SXX+INT(SGN(GI))=O THEN PRINT ELSE 31400 
32600 SXX = -SXX 
32700 REM 
32800 REM 5 
32900 REM 
33000 REM 
33100 REM 
33200 REM 

IF THE SIGN OF GI HAS CHANGED, AND IF THIS FREQUENCY IS WITHIN 
1HZ OF ~'"'IE P~ElJIO",15 S!GN-CHANGE. AND' IF 13! IS NEGATIVE, THEN, 
EXIT THEo ROUTINE (THE' ADDITIONAL REQUIREMENT FOR NEGATIVE 01 
IS FOR THE POLE-SEARCH ROUTINE ) 

33300 IF ABS(SP-SQ)<I' AND ADS(FP-FQ) :1 AND SXX=-l THEN RETURN 
33400 REM 
33500 REM 6 
33600 REM 

DIVIDE THE FREQUENCY INCREMENT BY -10 

33700 DS = -OS/IO. 
33800 OF = -OF/IO. 
33900 REM 
34000 REM 7 GO BACK TO 2 
34100 REM 
34200 OOTO 31200 
34300 REM 
34400 REM 
34500 REM ********~***************************************************** 
34600 REM 
34700 REM 
34800 REM 
34900 REM 
35000 REM 
35100 REM 
35200 REM 
35300 REM 
35400 REM 
3-5500 REM 

,35600 REM 
35700 REM 
35800 REM 
35900 REM 
36000 REM 
36100 REM 
36200 REM 
36300 REM 
36400 REM 
3~500 REM 
36600 REM 
36700 REM 
36800 REM 
36900 REM 
37000 REM 
37100 REM 
37200 REM 
37300 REM 
37400 REM 
37500 REM 
37600 REM 

SEARCH FOR POLE FREQUENCY 

ThiS routine searches for the-'requenc~ at which the loop gain = 1 
at 0 degrees That frequency 1& t~e pole frequency\of the closed
loop gain function The pole fr'equency 15 a complex numbe1', SQ+JFQ 
(Hz) OSCillator start-up ensues If 50:0 The algorithm 15 based on 
the calculated behaVior df the phase angle of the loop gain In ~he 
~eg1on of 1nterest on the complex plane- The locus of p01nts of zero 
phase angle crosses the J-axis at the osc11lat10n fre~uenc~ and at 
some h1gher ire~ue~cy - In between these two crosS1ngs of the J-ax1s. 
the locus 11es 1n Quadrant I of the comple, plane. form1ng an 
apprOX1mate parabola wh1ch opens to the left The bas1c plan 15 to 
follow the locus from where It crosses the J-axIs at the osc11lation 
freq,uenclJ. 1nto Quadrant 1. and fInd the pOInt on that locus where 
the loop ga1n has a magnItude of J The algorIthm 15 as follows 

1 Flnd thE' osclilatlon frequency, O+JFQ 
2 At thIS frequency calculate the slgn of (AL-1) (AL = magnItude 

of loop'galn ) 
3 Increl1'ent FQ 
4 For thIS value of Fa, fInd the value of SO for Wh1Ch the loop 

5 
6 
7 

8 
9 

ga1n has zero phase 
For th1s value of SQ+JFQ. calculate the sIgn of (AL-l) 
If the 51gn of (AL-l) ~as not changed, go back to 3 
If the sign of (AL-l) has changed. and thIS value of FG 15 
w1thln 1Hz of the prev10us SIgn-change. eXlt the rout1ne' 
OtherWIse. dIVIde the FO-Increment by -10 
Go bscJ( to 3 

FINO THE OSCILLATION FREQUENCY, O~JFQ 

37700 GOSue 9700 
37800 GOSUB 30300 
37900 REM 
38000 REM 2 
38100 REM 

AT THIS FREQUENCY, CA;_C\Jl,ATE THE SIGN OF ,(AL--i) 

38200 SYX,s INT(SGN(AL-I')l 
38300 IF SYX=-I THEN STOP 
38400 REM ESTABLISH INITIAL INCI>EMEIHATION VALUE FOR FQ 
38500 FI = FQ 
38600 OF = (FA-FI)/IO* 
38700 OOSUB 30300 
38800 DE (FQ-Fl)/10# 
38900 OF 0 
39000 FQ ~ Fl 

22·53 



AP-155 

39100 REM 
39200 REM 3 INCREMENT Fli 
39300 REM 
39400 Fli • Fli + DE 
39~00 REM 
:W600 REI'! 4. 
39700 REM 
39800 REM 
39900 REM 
40000 REM 

FOR 'THIS VA~UE OF FG, FIt~D THE VA~UE OF SG FOR WHICH THE ~OOP 
GAIN HAS ZERO PHASE. (THE ROUTINE WHICH DOES THAT NEEDS OF = O. 
SO THAT IT CAN HOLD FG CONSTANT. AND NEEDS AN INITIA~ VA~UE FOR 
OS. WHICH IS ARBITRARILV SET TO OS = 1000. ) 

40100 OS • 100011 
40200 SCi = 0 
40300 GOSUB 30300 
40400 IF A~.I! THEN RETURN 
40~ REI'! 
40600 REI'! 
40700 REM 
40800 REI'! 

5. FOR THIS VA~UE OF SG+JFIi. CA~CU~ATE THE SIGN OF (AL-l). 
6 IF THE SIGN :OF (A~-I) HAS NOT CHANGED. GO BACK TO 3 

40900 IF SVX+INT(SQN(A~-I'))=O THEN PRINT E~SE 39400 
41000 REM 
41100 REM 
41200 REI'! 
41300 REM 

7. IF THE SIGN OF (AL-I) HAS CHANGED. AND THIS VA~UE OF FG IS WITHIN 
1HZ OF THE PREVIOUS SIGN-CHANGE. EXIT THE ROUTINE 

41400 IF ABS(Fl-FIi)(1 THEN RETURN 
41500 REM . 
41600 REI'! 8. DIVIDE THE FG-INCREMENT BV -10. 
41700 REM 
41800 DE = -DE/IOII 
41900 1'1 = FG 
42000 SVX • -svx 
42100 REI'! 
42200 REM 9 GO BACK TO 3 
42300 REI'! 
42400 GOTO 39400 
42500 REI'! 
42600 REI'! 
42700 REM *************************************************************** 

STEADV-ST,ATE ANALVSIS 

The circuit model used In thiS .nal~sls is similar to the one used 
In the 'small-slgnel anaIvsi., but differs from it in two r'spects 
First, it Includes clamping and clipping effects described in the 
text. Second, the voltage .ource in the Thevenln equivalent of the 
amplifier 15 controlled b~ t~e input voltage In accordance with an 
Input-output curve defined Ilsewhere In the program. 

42800 REM 
42900 REI'! 
43000 REM 
43100 REM 
43200 REI'! 
43300 REM 
43400 REI'! 
43500 REM 
43600 REM 
43700 REM 
43800 REI'! 
43900 REI'! 
44000 REM 
44100 REM 
44200 REM 
44300 REM 
44400 REM 
44500 REM 
44600 REM 
44700 REM 
44800 REI'! 
44900 REM 
45000 REM 
45100 REM 
45200 REM 
45300 REM 
4·5400 REM 
45500 REM 
45600 REM 
45700 REM 
45800 REM 
45900 REM 
46000 REM 7. 
46100 REI'! 
46200 REM 6 
46300 REM 
46400 REM 
46500 REM 9 
46600 REM 
46700 REM 
46800 REM 

The analYSIS applies a Sinusoidal Input signal of arbitrary 
amplitude. at the OSCillation fr~~uencv. to the XTALl pin, then 
calculates the resulting waveform from the voltage source USing 
standard Fourle" techni~u.s. the fundamental 're,uenCV component of 
thiS ~av.form is extracted This fr.qu.nc~ component is th.n 
multiplied bV the factor :ZL/(ZL+RO)~l, and the result is tat.n to be 
the .,gnal appear1ng at the XTAL2 pin This .,gnal is then 
multiplied bV the'feedback rat10 (beta). and the result is taken to 
be the Signal appearing at the XTALl pin The algorithm IS no~ 
rep.ated uSing thiS computed XTALl Ilgnal 85 the assumed input 
Sinusoid. EV.TV time the algor1thm is repeated, new valu ••• ppe." at 
XTALl and XTAL2. ,but the values Cl\eng8 les. and 1 ••• with each 
repeUtlon 'Eventually they stop changing. Thu 10 the steady-state. 

The algoTtthm IS •• follows 
1. Compute approximate OSCillation fre~u.nc~ 
2 Call a Circuit analvsls at thiS frequ.nc~, 
3 Find the qUiescent levels at XTAL1 and XTAL2 (to establish the 

beg1nn1ng DC level at XTAL1) 
4 
5 
6 

Assume an Initial amplitude ~o~ the XTALl signal 
Co~r.ct the DC l.vel at )CTALl for clamping effects, if n.c •••• r~ 
Using the approp~late Input-output cu~ve, extract a DC lev.l and 
the fundamental frequenc~ component (multiplY1ng the latter by 
:Z~/(ZL+RO):) , 
Cl1P off the negative partlon of thiS output signal. If the 
neqative peak falls below zero 
If thiS Signal, multiplied by (beta), dlffeY's f~om the Input 
amplitude b~ less ,than lmV, OT' If the algorlthm has been repeated 
10 times. eXlt the routlne 
Other"llse. multlpllJ the )CTAL2 amplltude b\l (beta') and feed It 
bac~ to ~TA~I. and go bac~ to 5 

COMPUTE APPROXIMATE OSCILLATION F~EQUENCV 



46900 GOSUB 9700 
47000 REM 
47100 REM 
47200 GOSUS 
47300 PRINT 
47400 GOSUB 
47500 PRINT 
47600 REM 

2, CALL 
20800 

PRINT 
26600 

PRINT 

AP·155 

A CIRCUIT ANALYSIS AT THIS FREQUENCY. 

PRINT "ASSUMED OSCILLATION FREQUENCY' " 

47700 REM 3 FIND QUIESCENT POINT 
47800 REM (At quiescence the voltages at XTAL1 and XTAL2 a~e equal This 
47900 REM voltage level IS found b~ trlal-and-error, based on the input-
48000 REM output curve. so that a person can change the input-output curve 
48100 REM as desired without havlng to re-calculate the quiescent point ) 
48200 VI = 0 
48300 VB = 1 
48400 1'.1 = I 
48500 VI = VI + VB 
48600 GOSUS 13600 
48700 IF ABS(VO-VI)( 001 THEN 49200 
48800 IF KI+SGN(VO-VI)=O THEN 48900 ELSE 48500 
489001'.1 = SGN(VO-VII 
49000 VB = -VB/IO 
49100 GOTO 48500 
49200 VB = VI 
49300 PRINT "QUIESCENT POINT = ";VB 
49400 REM 
49500 REM 
49600 EI = 
49700 NRX 
49800 REM 

4 
01 
o 

ASSUME AN INITIAL AMPLITUDE FOR THE XTALI SIGNAL 

49900 REM 5. CORRECT FOR CLAMPING EFFECTS. IF NECESSARY. 
50000 REM OH and K2 are curve-fitting parameters f!lr the ROM parts. ) 
501001'.1 (2.5-VB)/(3-VB) 
502001'.2 = (VB-I.25)/(3-VB) 
50300 IF ICX=2 OR ICX=4 THEN IF EI«VB+ 5) THEN EO 
50400 IF ICX=I OR ICX=3 THEN 'IF EI<lVB+ 5) THEN EO 
50500 NRX = NRX + 1 
50600 REM 
50700 REM 
50800 VO = 0 
50900 VC = 0 
51000 VS = 0 

6. DERIVE XTAL2 AMPLITUDE 

51100 FOR NX = -25 TO +24 
51200 VI = EO - EI*COS(PI*NX/251 
51300 GOSUB 13600 
51400 VO = VO + VO 
51500 VC = VC + VO*COS(PI*NX/251 
51600 VS = VS + VO*SIN(PI*N%/25} 
51700 NEXT NX 
51800 VO = VO/50 

VB ELSE EO 
VB ELSE EO 

51900 VI = SQR(VC'2+VS'2)/25*FNZM(RL. XLI/FNZM«RL+ROI. XL) 
52000 REM 
52100 REM 7 CLIP XTAL2 SIGNAL 
52200 IF VO-Vl<O THEN VL = 0 ELSE VL = VO-VI 
52300 PRINT PRINT "XTALI SWING = '·.EO-EI." TO ".EO+EI 
52400 PRINT "XTAL2 SWING = ". VL." TO ". VO+Vl 
52500 REt1 
52600 REM 8 TEST FOR TERMINATION 
52700 IF. l\ll~i~t-'ll*e .. l~. <;'01 Of' NRo"=10 THEN PETl'PN 
52800 REM 
52900 REM 9 FEED BACK TO XTALI AND REPEAT 
53000 EI = VUB 
53100 GOTO 50300 

22-55 

EI - 5 
KUEI+K2 





Design Considerations 23 
When Using CHMOS 





CHAPTER 23 
DESIGN CONSIDERATIONS WHEN USING CHMOS 

23.0 WHAT IS CHMOS? 

CHMOS is Intel's n-well CMOS process which is based 
on the highly developed HMOS-II technology. There are 
three other types of CMOS processes: p-well, twin-tub, 
and silicon on sapphire (SOS). All four CMOS structures 
are discussed in the accompanying article reprint, "Inside 
CMOS Technology." SOS and twin-tub offer superior 
performance, but are very costly to manufacture. The 
n-well technology offers about the same performance as 
p-well and has been chosen for Intel's microcontrollers 
because it is more readily adapted to the currently used 
and well understood HMOS-II technology. This CMOS 
technology also offers a known path to higher performance 
products in the future. 

Because CMOS tends to have lower gate density and a 
higher gate count than an NMOS circuit of the same func
tionality, the ability to scale down the transistor size in 
CMOS processes is essential to improving the pricel 
performance ratio. The penalty paid for the size reduction, 
however, is a departure from the traditional CMOS supply 
voltage range of 3 to 18 volts. CHMOS will be limited 
to a maximum of 6 volts VCC. 

Further reduction in CHMOS die size is accomplished by 
using dynamic nodes at appropriate points in the circuit, 
whereas, traditional CMOS is fully static. This reduces 
the gate count, and therefore, the die size - achieving 
lower cost. However, the use of dynamic nodes imposes 
a minimum clOCk frequency requirement' on the CHMOS 
part. 

23.1 NOISE IMMUNITY 

CMOS noise immunity is greatly over stated. Noise im
munity has been described as the amount of noise that can 
be induced at the input of a gate that will not change the 
logic state of the output. Noise margin, on the other hand, 
is the DC levels that will be applied to an input from 
another output (Voh, Vol) and the trip point of that input. 

On the surface, CMOS would seem ideal for use in noisy 
environments. Output voltages are rail-to-rail, and input 
switch points are.approximately 50% of VCC. There is 
one thing wrong with this analysis - CMOS h.as high 
impedance inputs. High impedance inputs need only volt
age and very little current (nano Amps) to switch its output 
logic state. TTL, on the other hand, needs voltage and at 
least 20 pA (for an .LS device) to switch its output logic 
state. Because it is a lot more difficult to induce noise in 
the form of current than in the form of voltage, CMOS 
tends to be more noise sensitive than TTL. . 

However, NMOS also has high impedance inputs and has 
input leakages typically less than I pA. Because NMOS 
output voltage swings are considerably lessthan CMOS, 

CMOS has the advantage when inputs and outputs are 
. noisy. Another advantage of CMOS over NMOS is the 

p-channel pullup instead of a depletion pullup. The 
p-channel pullup is able to charge up the stray capacitance 
faster thus signal rise times are significantly improved. 

23-1 

In conclusion, don't fool yourself into thinking that CMOS 
eliminates the need to be concerned about noise problems. 
Time is well spent following good design practices and 
layout techniques from the earliest phases.of a project. 

23.2 LATCH·UP 

CHMOS is not immune to traditional CMOS latch-up, but 
the latch-up threat is highly overrated. Latch-up is usually 
the result of unforeseen operating conditions, such as an 
unexpected power-up sequence, inadvertent removal and 
te-application of a supply voltage, or "hot-socketing" the 
part (plugging a chip into its socket while the system is 
active). An energetic voltage spike on V CC or the 1/0 
lines might also trigger latch-up, but a little ringing on 
the data lines isn't going to cause any problems.' 

It is helpful to understand the mechanisms involved in the 
latch-up phenomenon. Figure 23-IA shows the circuit dia
gram of a typical CMOS output stage. Figure 23-lB shows 
a plan view of how this stage might look in n-well CMOS 
(with the gate electrodes of the FETs stripped away, since 
they are not germane to the discussion). There are two 
parasitic bipolar transistors in this structure, one pnp and 
the other npn. The n-well forms the base region of the 
pnp transistor, which is connected to VCC through the 
distributed resistance of the n-well. The source and drain 
of the p-channel pullup FET are dual emitters to the pnp 
transistor. The p-type substrate is the collector of this 
transistor and also serves as the base of the npn transistor 
which is connected to VSS through the distributed resis
tance of the substrate. The collector of this transistor is 
the n-well, and the drain and source of the pulldown 
n-channel FET are dual emitters. These parasitic transis-
tors are shown in Figure 23-IC. . 

Any pullup FET that shares the same n-well region acts 
as additional multiple emitters to the parasitic pnp tran
sistor. Much worse, ALL pUlldown FETs and input pro
t~tion devices on the IC act as adtlitionalcollectors to 
the parasitic npn transistor. This has several implications. 
Latch-up is not limited to output stages, inputs only pins 
and internal gates can also be the cause. So when latch
up does occur, it's hard to tell which device cause,d it. 

. . 
In normal operation, both of these parasitic bipolar junc
tion transistors are in an off state, and do not hamper the 
operation of the FETs. However, if either parasitic junc
tion transistor should turn on, its collector current might 
turn the other parasitic.junction transistor on, and an SCR 
type effect rapidly ensues which is called latch-up. 



DESIGN CONSIDERATIONS WHEN USING CHMOS 

.0 

INPUT 

o 

vee OHMIC 
, - /' CONNEcnON 
S #' TON-WELL 

~ OHMIC 
CONNECTION 
TO p.TYPE 
SUBSTRATE 

D 

.D 

OUTPUT 

OHMIC 
CONNECnON 

TO N-WELL 

~ 
RWELL 

RSUB 

VCC 

PNP 

OUTPUT 

NPN 

~s P+ 

, '1 
OHMIC 

VSS CONNECTION 

(A) 
OHMIC 
CONNECTION 
TO SUBSTRATE 

VSS 

(8) 

TO P-TYPE 
SUBSTRATE (C) 

Figure 23-1. CHMOS Inverter 

What might tum on one of the parasitic junction transis
tors? Look at Figure 23-1 C. The base of the parasitic pnp 
is at VCC, and the base of the'npn is at VSS. If the ouput 
line swings a diode drop above VCC, or below VSS, it 
forward-biases the "D" emitter of either the pnp or the 
npn transistor. 

Suppose it is the pnp emitter that is forward-biased by the 
output line swinging a diode drop above VCC. Some of 
the current that enters that emitter now exits the parasitic 
device as collector cUrrent. It flows ,down to the juncture 
of Rsub and the base of the npn transistor. If Rsub is low, 
the current is shunted through it to VSS, and the npn 
transistor stays off. If Rsub is high, some of the current 
crosses the base-emitter junction of the npn, and that tran
sistor will likely tum on. 

It is important to note that the designer of the integrated 
circuit has a certain amount of control over the turn-on 
probabilitie~. Grounded gUard rings placed around the npn 
emitters will have the effect of reducing the value of Rsub. 

. Reducing the value of Rsub has the effect of increasing 
the amount of current that has to enter tlie imp D emitter 
in order to tum the npn transistor on. The eHMOS, the 
npn transistor will not tum on if the current entering the 
pnp D emitter 'is less than 10 rnA. 

23·2 

A similar sequence of events can occur when the output 
line swings a diode drop below VSS. In this case it is the 
npn transistor that is in danger of turning on the pnp, 
depending on the value of Rwell and how much current 
is involved. Again, the Ie designer can reduce the value 
of Rwell by the judicious piacement of guard rings, con
nected to vee, around the pnpemitters. When the output 
line swings a diode drop below VSS, if the current that 
exits the output pin does not exceed lOrnA, there will be 
no latch-up. 

23.3 POWER SUPPLY CONSIDERATIONS 

The 'power supply, as viewed by the microcontroller, 
should be low in inductance because of the peak currents 



DESIGN CONSIDERATIONS WHEN USING CHMOS 

associated with CHMOS switching characteristics. Note 
that the- repetition rate of these peak currents increases 
with the clock frequency. Bypass capacitors of approxi
mately O.l~ should be used with proper PCB layout to 

/ensure a low inductance; high peak current power source. 
Low inductance capacitors are also available that fit under 
the package. These capacitors are also advantages for 
HMOS in noisy environments (See Application Note 
API25 "Designing Microcontroller Systems For Electri
cally Noisy Environments" in this manual for detailed 
discussion).' , 

Power supply glitches must be filtered to ensure that the 
,maximum voltage rating of the device is not violated. 
;Violation may induce an SCR effect between VCCIVDD 
and Vss (latch-up). ' 

The polarity of the power supply must never be reversed. 
The n-well is connected to VCC and the p-type substrate 
is connected to ~ound so normally that pn junction is 
reversed biased. If VCC or VDD are ever more negative 
than - 0.5 volts with respect to Vss, the n-well/substrate 
pn junction will be forward biased and short VCCIVDD 
to ground. 

When the microcontroller is powered separately from the 
surrounding circuitry, the microcontroller should always 
be powered up before any input signal is applied. The 
reverse is true when powering down, input signals first 
then the' microcontroller. 

When separate VCC and VDD power supplies are used 
for the 8OC49, VDO and VCC must track each other 
within 1.5 volts (except during power ,down) and also 
maintain the 5v 20% specification. This ensures that the 
CPU, powered by VCC, and the RAM, powered by VDD, 
have proper voltage levels to communicate. If VCC and 
VDD cannot be powered up simultaneously, VDD should 
be applied first. 

23.4 MINIMIZING POWER CONSUMPTION 

The reason CMOS parts draw considerably less current 
than an NMOS part is that there is no direct path between 
VCC and ground (refer to figure 1O-IA). When the 
p-channel pullup FET is on the n-channel pUlldown FET 
is off and the output line gets pulled up. The opposite is 
true, when the n-channel FET is on the p-channel FET is 
off and the output goes low, There is leakage associated 
with either the n-channel and p-channel FETs in the off 
state. The sum of all the leakages from every inverter on 
the chip is what is called the "quiescent current." This 
current is in the order of micro Amps and is the lesser of 
the two currents that add up to the total ICC. 

When the inverter is switching in either direction, there 
is a moment in time when both FETs are on creating a 
low resistance path between VCC and ground. The ca
pacitance on the output line (pin capacitance, trace ca
pacitance, and input capacitance to the next stage) is also 
charged or discharged which also increases current con-

sumption. This "dynamic current" is a couple of orders 
of magnitude higher than the quiescent current. 

Power supply voltage also comes into play with both types 
of currents. If VCC is high, the leakage across the off 
FET is increased. Output capacitance now has to be 
charged up to a higher level. So a higher VCC also con
tributes to making ICC larger. 

Frequency of switch can also affect the amount of current 
used. If the inverter stage is switched very slowly, then 
the average current is equal to the quiescent current. As 
the frequency of switching is increased, the dynamic cur
rent contributes more and more to the total ICC until the 
dynamic current totally swamps the quiescent current. 

Now that we are aware of what components 'make up the 
total ICC, we can work on ways of minimizing it. VCC 
can play a big roll in minimizing power. If the whole 
purpose in going to CMOS is to minimize heat dissipation 
and the power is drawn from the 110 volt AC socket, 
tweak your power. supply to the minimum voltage that the 
system will tun. On the other hand if batteries are used 
you must consider types of batteries available, lifetime of 
the battery, and the voltage drop off at the end of its life 
to determine what voltage to start at. Remember the lower 
the voltage the lower the, current draw. 

The application also has to be analyzed for what kind of 
response time is needed to determine how fast the micro
controller needs to run. If the end application is a direct 
human interface, then the response time can be relatively 
slow and the processor can run at minimum speed. But if 
real time decisions need to be made on evaluating incom
ing data, then the microcontroller needs all the time it can 
get. The idea is to run. the microcontroller as slow as you 
can and stH! get the task accomplished. 

Intel has added idle mode and power down features to 
help further manage your power consumption. Idle mode 
in the 8OC5118OC3l stops the clock to the CPU while 
keeping the oscillator, RAM, interrupts, timer/counter, 
and serial port alive. Stopping the clock to the CPU de
creases the current in the CPU from dynamic to mostly 
quiescent. Idle mode consumes approximately 1I10th the 
operating current.' 

Idle mode allows the microcontroller to minimize its cur
rent when no processing needs to be done. The live in
terrupts, timer/counter, and the serial port can wake the 
CPU and since the oscillator is running the response time 
is quick. 

Data on the ports are left in the state they wen: in when 
idle was invoked. If careful attention is given to the logic 
state of the port, total system current can be reduced. The 
state of the port for reduced current is dependent on what 
the port is driving. If it is a transistor, the transistor should 
be put into its off state. If the port pin is driving another 
CMOS gate, the loading of the port pin would be minimal 
and a choice of the logic state may be m~de on what is 

23-3 



DESIGN CONSIDERATIONS WHEN USING CHMOS 

AWAKE-.... ---..,-\ TO MCS48 
)o-_----PIN 4 . 

R2 27K 

R1 

RST 
BATTERY. 

VFET 
A ~~~:::EL 

27 K· TO MCS48 
PIN 40 

C1.'t 1 ,.F VCC AND 
V PERIPHERY 

Figure 23·2. MCS®·48 Power Down Circuit 

on the ouputs of the CMOS gate. If TIL is being driven, 
the reduced current would be when the port pin is high. 
A little thoughUn this area can go a long way in mini
mizing system current. 

Power down removes all internal clocks to decrease the 
current to totally quiescent current while the contents of 
the RAM are saved. This mode is useful in hand held 
applications where data needs to be saved between uses. 
On the 8OC51, the port pins are left in the same state they 
were in when the power down mode was called. The same 
thought processes that were needed for reduced current in 
the idle mode are valid for power down also. 

Figure 23-2 shows a .simple circuit that uses one quad 
NOR CMOS integrated circuit and some external resistors 
and capacitors to power down the CHMOS MCS48 family 
under the control of one input. To activate the operation 
of the microcontroller, the A W AKEI signal is pulled low 
and in tum, node A goes low turning on the p-channel 
VFET. This allows VCC to the microcontroller to be 
pulled to the power supply mi!lus Vsd. Node A being low 
brings RESET high after a time determined by the RICI 
time constant. The RC has been chosen to allow 10 mS 
between VCC going high and RESET going high to allow 
the oscillator time to stabilize. 

Powering down is accomplished by A W AKEI going high 
which pulls RESET low. The time delay R2C2 allows the 
reset signal enough time to signal the microcontroller to 
save the RAM before VCC is shut off. 

When idle mode and power down are used in conjunction 
with slow operating speed it can reduce your power needs 
to a minimum. 

23-4 

Unused input only pins on the MCS48 family such as SS/, 
TO, and T1 should not be allowed to float. The inputs 
woul\l float about the trip point of the inp\lt buffer. This 
switching of the input buffer can waste up to .5 inA per 
input. Tie all unused input only pins high or low. 

When the CHMOS units are being used with external 
program or data memory, PortO (Data Bus on the MCS48 
products) is left floating when in idle mode. PortO also 
floats on the 80C51 when in the power down mode. The 
same condition as described above can happen with the 
input gate on those pins. Without tying these pins high or 
low at least .5 rnA x 8 or 4 rnA could be wasted. Tie 
the PortO pins· high or low through a 500KO or IMO 
resistor. A little extra board space is minimal when con
sidering the extra power savings. 

The quasi-bidirectional pins have internal pullups so the 
inputs on these pins never float. 

23.5 CHMOS I/O PORT STRUCTURE 

The CHMOS 110 ports have similar drive capability to 
their HMOS counterparts, but the differences must be 
noted. 

23.5.1 As An Output Pin 

The 110 port structure is implemented as shown in Figure 
23-3. 

As an output pin latched to a low (0) state, pullups PI, 
P2, and P3 are in an off state While the pu1ldown NI is 
on. This configuration uses little current, since there is no 
patch between VCC and ground in the output buffer stage. 



DESIGN CONSIDERATIONS WHEN USING CHMOS 

PULLUP 
SIGNAL 

Q 

Vee 

READ 
PULIIE 

Vee Vee 

INPUT .... --0< 
DATA 

Figure 23·3. CHMOS Quasi·Bldlrectlonal I/O Port Structure 

IOH 

IOH 
@;!.4V 

IOH 
@.9vcc[::=+=+--+_+-4 __ 

2 3 4 5 

VOH 

THIS GRAPH IS FOR INFORMATIONAL PURPOSES 
ONLY. 

Figure 23·4. CHMOS I/O Current Characteristics 

When the output pin is to be latched in the high (I) state, 
the data line turns NI off and turns on the weak (5J.LA) 
pullup P2. At the same time PI (a strong pullup) turns on 
for one state time pulling the output up very quickly. Once 
the output voltage is above approximately 2 volts, P3 turns 
oli to supply the source current. P3 and the inverter form 

23-5 

a latch. This latch along with the support of 1'2 keeps the 
output high. Figure 23-4 shows the VOH vs IOH curve 
for this 'output structure when PI is off. 

23.5.2 As An Input Pin 

To use the 110 port as an input, a one must be written to 
the pin first, leaving the pin in a high state. When the 
input goes below 2 volts, P3 turns off to avoid any high 
sink currents from being presellted to the input device. 
Note when returning back to a one, P2 is the only internal 
pullup that is on. This will result in a long rise time if P2 
is the only pullup. 

23.5.3 Interfacing Between CHMOS and 
Other LogiC Families 

Interfacing Intel's CHMOS to other logic families is very 
simple and straight forward. When VCC is kept within 
10% of 5 volts all inputs (except those noted in the data 
sheets) and outputs are TTL compatible. CMOS compat
ibility is achieved as long as VCC is kept within 20% of 
5 volts. 

When driving a high current load, the output current (Ioh) 
must be limited to keep the output voltage (Voh) at a 
minimum of 2 volts. If the voltage is pulled below 2 volts 
the output current will be dropped to approximately 5 /-LA. 
See Figure 23-4. 



Inside CMOS Technology 

Photo 1: The die for the 80C51 , with the functions of the various sections identified. 

How CMOS devices are manufactured and a look at three of them 
, 

by Martin B~ Pawlpski, Tony Moroyan, and Joe Altriether 

Order Number: 230I600001 

23-6 



CMOS (complementary metal
oxide semiconductor) has often been 
called the ideal technology. It has 
low power dissipation, high im
munity to power-supply noise, 
symmetric switching characteris
tics, and a large supply-voltage tol
erance. But CMOS has rarely been 
used for advanced VLSI (very-large
scale-integration) microcomputer 
designs. Because of the complexity 
of the CMOS process, the ICs (in
tegrated circuits) produced have 
ttaditionally had a relatively poor 
price/performance ratio. 

As a result, CMOS was used only 
in applications that required low 
power and were neither perfor
mance conscious (such as in calcu
lators and watches) nor cost con
scious (many military applications, 
for example). Suddenly, however, 
all major semiconductor companies 
have announced either advanced 
CMOS products ot the intention of 
designing their next generation of 
high-performance microprocessors 
using CMOS technology. 
. What has happened to make 
CMOS both affordable and high 
performance?' For one thing, the 
dominant VLSI technology, NMOS 
(n-channel metal-oxide semicon
ductor), is rapidly approaching the 
process complexity of standard 
CMOS. It is not unusual nowadays 
for NMOS technology to have up to 
four transistor types with different 
operating characteristics. Much of 
the complexity of this process is 
added simply to help VLSI design
ers keep the operating power of 
their circuits under' control. 

Second, CMOS circuit designers 
are being more selective in the use 
of static CMOS logiC. Critically 
placed dynamic logic, creative cir
cuit design, and use of modes that 
offer varying degrees of power con
sumption are all tricks deSigners 
are using to maintain the advan
tages of CMOS. 

Finally; aggressive reduction in 
CMOS transistor size is being used 
to bring CMOS performance in line 
with that of NMOS. As a matter of 
fact" many manufacturers are de
veloping CMOS as a derivative of 
their advanced NMOS processes. 

This not only improves CMOS per
formance levels but also boosts re
liability and reduces development 
costs. 

The Evolution of LSI 
Early LSI circuits were built with 

p-channel MOS transistors, which 
permitted high-cirCUit densities yet 
were relatively slow and difficult to 
interface to normal integrated cir
cuits, such as TTL (transistor
transistor logic). As an example, 
the l103-type 1K by 1-bit dynamic 
RAM (random-access read/write 
memory), circa 1971, required its 
inputs (address, controls, and data) 
to swing between 1 and 15 volts (V) 
although its output was measured 
in millivolts - hardly TTL compat
ible! About 1974, NMOS came to 
the rescue. It provided faster speed, 
and most of its inputs and outputs 
were TTL compatible. 

Low power 
requirements are a 
major advantage of 
designing a system 

that uses CMOS. 

NMOS was more difficult to 
manufacture' than PMOS because 
contaminants would vary the 
thresholds of the n-channel transis
tors, causing deviations in speed 
and performance. But this problem 
WaS quickly overcome through ul
traclean processing rooms, and 
NMOS became the workhorse tech
nology because it cost less to ll).an
ufacture, was easy to use, and had 
good speed-power characteristics. 
And NMOS technology had poten
tial for greater improvement of its 
speed-power characteristics through 
scaling (or shrinking) of the silicon 
devices. The result of this scaling 
was HMOS (high-speed NMOS), 
which accomplished three objec
tives: increased speed, reduced 
power, and increased denSity. 

Over the past 10 years, the re
duction in transistor size has, at the 
device level, increased memory 
density by a factor of '64, increased 

23-7 

speed by a factor of 3, and reduced 
power consumption by a factor of 
100. However, the scaling cannot 
continue ad infinitum because of 
resolution limitations of the photo
lithographic equipment used to 
make the circuits as well as break
down mechanisms within the de
vices. More important, even before 
these limitations are reached, heat 
dissipation will prohibit major en
hancements with NMOS. Heat 
generation increases exponentially 
with transistor count, and, at den
sities approaching 150,000 transis
tors per integrated circuit, special 
cooling measures are required. This 
heat can accelerate failure mecha
nisms within the silicon, reducing 
device and system reliability. To 
hurdle this barrier, low-power de
vices must be used. 

The Importance of 
PQwer Consumption 

The development of NMOS was 
spurred on by the semiconductor 
industry's drive to produce high
volume, large-capacity memory de
vices, Jor which high density; rather 
than low power consumption, was 
the primary concern. As VLSI be
gan to emerge, however, power 
dissipation became a limiting .factor 
in continued increases in NMOS 
packing densities. Thus, the semi
conductor industry turned to CMOS 
as a potential alternative. 

CMOS achieves its low power 
dissipation through the use of both 
p- and n-channel transistors (hence 
the name "complementary"). Es
sentially, no DC power is dissipated 
in either logical state, and AC power 
occurs only during the relatively 
short switching period. Because 
most circuitry in a complex design 
is active only 10 to 20 percent of the 
time, CMOS achieves a dramatic re
duction in power dissipation com
pared with NMOS, which contin
ually dissipates DC power whenever 
an operating voltage is applied. 

Low power requirements area 
major advantage of designing a sys
tem that uses CMOS. Reducing 
power requirements has a domino 
effect that often substantially re
duces the cost of the end product: 



(la) 

Ub) 

(lc) 

NMOS 

Vee 

TIME 

ENHANCEMENT DEPLETION 
CURRENT CURRENT 
I 
I 
I 

TIME 

aUIESCENT 
CURRENT 

TIME 

CMOS. 

Vee 

TIME 

n'.cHANNEL 
CURRENT 

QUIESCENT 
CURRENT 

p·CHANNEL 
CURRENT 

Figure 1: A comparison of NMOS and CMOS technologies. Figure la shows the schematic 
diagrams of an inverter as Implemented in both NMOS and CMOS. A hypothetical input 
waveform and the resulting transistor currents are shown in lb and lc. 

• low power allows smaller, lower
cost power supplies to be, used 

• power distribution in the system 
is simplified 

• cooling fans can be elimiriated 

• printed-circuit boards can be 
packed more densely and can thus 
become smaller 

With smaller power supplies, 
denser circuit boards, and no fans, 
smaller cabinets can be used, re
sultmg in savings in chassis and en
closure costs. Also, power fail-safe 

and hand-held use become possi,ble 
if battery operation is feasible. 

Basic CMOS Operation 
To truly understand the promises 

(and problems) facing both the 
CMOS VLSl digital designer and 
the CMOS systems designer, one 
must first understand some CMOS 
fundamentals. 

Figure 1 compares the circuit dia
grams and current cJ:!aracteristics of 
both an NMOS and a CMOS in
verter. The NMOS inverter uses an 
n-channel depletion-mode transis-

23·8 

tor as thl7 pull-up device (which 
drives the Ol,l.tput line high) and an 
n-channel enhancement-mode.tran-' 
sistor as the pull-down device 
(which drives the output line low). 
The pull-up transistor is used as. a 
load; its operation approximates that 
of a constant current source. The 
pull-down transistor is used as the 
switching device; when active, it 
discharges the load, and when in
active it lets the pull-up charge the 
load. MOS loads are primarily ca
pacitive and include the parasitic 
capacitances of the inverter itself, 
interconnect capacitances, and the 
thin-oxide capacitances of all the 
gates the inverter is driving. 

Let's note several characteristics 
of an NMOS inverter. When the 
pull-down device is turned on, it 
not only has to sink the current 
from the capacitive load, but it also 
has to sink the current supplied by 
the pull-up load device. Even in the 
quiescent state this curren! compo
nent from the. pull-up device still 
exists. Because logic gates spend 
most of their time in the quiescent 
state, this quiescent current ac
counts for up to 90 percent of the 
total power diSSipated in NMOS 
VLSl designs; the remaining 10 per
cent is switching 9r dynamic power. 

A second related characteristic is 
that the inverter's output voltage in 
the low state, VOL. is dependent on 
the ratio of the i~Pedances of the 
pull-down and pull-up devices. This 
ratio affects the noise margin and 
switching speed a"d is generally 
around 4:1. Such a ratio .results in 
a VOL on the order of 0.2 V to 0.3 V. 
I! also causes asymmetric switching 
characteristics: the fall time of the 
inverter is significantly faster than 
its rise time. 

The CMOS inverter uses a p
channel enhancement-mode trem
sistor as the pull-tip device and an 
n-channel enhancement-mode tran
sistor as the pull-down device. In a 
CMOS inverter, both the pull-up 
and pull-down transistors are used 
as switching devices. When the iI)
put changes from low. to high, the 
p-channel device shuts off and. the 
n-channel transistor discharges the 
load. When the input changes from 



10 

0 .• CMOS NMOS 
O.S 

~ ~ 
07' 

GATE 06 

DELAY 05 
(ns) . O. 

03 

02 

01 SCALED CMOS SCALED NMOS 

01 10 

POWER/GATE (mW) 

Figure 2: The speed versus power consump
tion characterzstlcs 'of NMOS and CMOS 
technologies. Note the advantages gained by 
scaling (reducing the SIze) of the integrated 
components. 

(3a) powell (original) 

high to low, the n-channel device 
shuts off and the p-channel transis
tor charges the load. While almost 
all current from the CMOS inverter 
is used to charge or discharge the 
load, a small current component 
does not flow through the load. 
This is a result of the fact that bpth 
the p-channel and n-channel tran
sistors are on for a short period of 
time during the input voltage tran
sition. This current component is 
typically less than 10 percent of the 
total inverter current, though it de
pends greatly on the rise and fall 
times of the input signaL 

With no quiescent power com
ponent, a CMOS inverter's dy
namic power dissipation represents 
only a small fraction of an equiva-

~l § n-SUBSTRATE 

~ p-SUBSTRATE 

ITD p-WELL (3b) n-well 

(3d twin tub 

(3d) SOS (no latchup) 

SAPPHIRE 

p+ 

~ n-WELL 

ED OXIDE 

E3 POLY 

Figure 3: Cross sections of transistors formed by each of the four maJor CMOS processes. 
Figure 3a is a p-well bulk CMOS transIStor; figure 3b shows a'n n-well bulk dev,ce; figure 
3c is an example of a twin-tub bulk CMOS transIstor; the transistor in figure 3d is formed 

, using silicon-on-sapphire technology. 

23-9 

lent NMOS inverter's po~er dissi
pation. Also, the CMOS inverter is 
a "ratio-less" design, having only 
one transistor active after an input 
transition. This lets VOL go all the 
way to ground potential, resulting 
in better noise tolerance than NMOS 
inverters. It is also a simple matter 
to design CMOS circuits with out
puts that have equal rise and fall 
times. While this is important in 
some circuits, it is generally not 
taken advantage of in VLSI designs 
because it requires greater chip area. 

For NMOS and CMOS technolo
gies with similar transistor dimen
sions and gate oxides, gate delays 
are essentially identicaL The speed
power products for such a set of 
NMOS and CMOS technologies are 
shown in figure 2. This graphically 
illustrates the tremendous power 
advantage CMOS offers when used 
in high-performance VLSI designs. 

While CMOS' enjoys significant 
electrical advantages over NMOS, 
it does have a cost disadvantage. 
One small factor is the larger num
ber of process steps needed to fab. 
ricate a CMOS device. More signif
icant is the large,r die required 
because CMOS has lower gate 
density. 

CMOS Technologies 
Figure 3 shows the four major 

CMOS technologies in use today: 
powell bulk, n-well bulk, twin-tub 
bulk, and silicon-on-sapphire (50S).' 
Powell CMOS uses a p-type diffu
sion into an n-type bulk silicon sub
strate to form an n-channel transis
tor. The p-channel transistor is built 
directly in the bulk. This, is the orig
inal CMOS technology, which has 
many years of good performance 
and reliability behind it. 

The n-well CMOS process starts 
with a p-type substrate. N-type ma
te$1 is diffused into it to form the 
n-well in which p-channel devices 
are built. N-channel devices are 
built directly in the bulk substrate. 
An n-well CMOS process is usually 
derived from an advanced NMOS 
process. It also permits a highly op
timized n-channel.transistor, which 
yields a slight performance advan
tage over a powell CMOS process. 



Twin-tub CMOS combines n-well 
and powell technologies by diffusing 
both an n-well for the p-channel tran
sistorand a p~well for the n-channel 
transistor. The twin wells are usual
ly formed in a lightly doped n-type 
substrate. While it is a slightly more 
complex and costly process than 
either n-well CMOS or powell CMOS, 
twin-tub CMOS has the advantage of 
being able to optimize the perfor
mance of both the n-channel and p
channel devices. Thus, this process 
gives the highest overall performance 
of the bulk CMOS technologies. 

The . highest performing CMOS 
technology is SOS. Silicon islands are 
grown on an insulating sapphire sub
strate. N-channel or p-channel tran
sistors are then built on the islands. 
High performance is achieved due to 
the significanf reduction of pa,rasitic 
capacitance. SOS also offers good 
gate density because no parasitic 
bipolar transistors are around to 
cause a phenomenon ·called latch up. 
Unfortunately, SOS devices are dif
ficult and expensive to manufacture. 
For example, unused sapphire wafers 
cost approximately 10 times more 
than bulk silicon wafers. 

. While CMOS suffers a cost penal
ty of about 20 percent due to process 
differences, it generally suffers more 
significantly because of die size. 
(While processing steps have a linear 
relationship with cost, die size has an 
exponential relationship.) CMOS 
dies are larger than equivalent 
NMOS designs even when aggres
sive transistor scaling is employed. 
Three major factors contribute to this: 
the area used in trying to prevent 
latch up, CMOS logic-gate structure, 
and static design techniques. 

Latch Up Prevention 
Bulk CMOS· technologies have 

parasitic bipolar transistors that, if 
improperly biased, can cause a phe
nomenon called latch up. This poten
tially destructive action results from 
triggering an SCR (silicon-controlled . 
rectifier) formed by the transistors 
and can cause extremely large cur
rents to flow. Figure 4·shows the con
struction of the parasitic SCR in an 
n-well bulk CMOS device. 

(4a) Vee 

(4b) Vee 

RWELl 11 

p- SUB 
T2 

I 1 RSUB 

·n+ 

Figure 4: Parasitic SCR in bulk CMOS can cause latch up. Figure 4a shows how the parasitic 
transistors are formed in the silicon; figure 4b is a diagram of the equivalent circuit. 

Two well-defined conditions must 
exist before latch up can occur. First, 
for the SCR to be triggered, IR"II or 
IR~b must be greater than or equal to 
0.7 V. This forward-biases the base
emitter junctions of the parasitic 
bipolar transistors. Second, to sustain 
the latch up condition, the product 
of the {3s (gains) of the two bipolar 
transistors must equal at least'l. 

In order to minimize the chance of 
one of the SCRs transistors being for
ward-biased, every attempt is made 
to reduce the resistance values as 
much as is feasible. This has the ef
fect of requiring significantly larger 
injected currents before the SCR can 
be triggered. To reduce the resistance 
values, guard rings are used in the cir
cuitry. (Guard rings are low-resistiv
ity connections to the supply voltages 
placed around the CMOS p-channel 
and n-channel transistors.) While. 
guard rings reduce the SCR bias 
resistor values, they also increase the 

23-10 

space between n-channel transistors 
and p-channel transistors (thus 
reducing the gate density). To some
what minimize this effect, particular
ly sensitive areas (like VLSI com
ponent's 110 pins) are heavily guard 
ringed, while the more protected in
ternal circuitry is less so. 

A less controllable method of pre: 
venting latch up is to try and de
crease the {3s of the parasitic tran
sistors. While the vertical pnp tran
sistor's {3 is set by the process design, 
the lateral npn transistor is more 
directly controllable. Its {3 can be dras
tically reduced by increasing the n
well-to-n + diffusion spacing (or p
well-to-p + diffusion spacing in p
well technology). This method re
duces the {3 by increasing the width 
of the transistor's base. While this is 
an effective way of decreasing the 
gain of the parasitic structure, it also 
reduces the gate density. 

In bulk CMOS technol<?gies, to 



Vee vee I 

(Sa) (5b) 

OUT 

n r-B OUT 

A 

(Sc) (5d) 

L....--+ __ --t~ OUT 

.... ---t-.. OUT 

Figure 5: A comparison of typicllilogic gates in NMOS and CMOS form.' Figure 5a is an 
NMOS NOR gate, while figure 5b is a CMOS version; figure 5c is an NMOS NAND gate, 
and figure 5d is a CMOS version. 

give absolute protection against latch 
up is not only tremendously expen
sive in silicon area, but it is also vir
tually impossible. CMOS designers 
sacrifice area to ensure there is 
enough margin in their design to 
protect it from latch up in normal op
erating-system environments. 

Logic-Gate Structures 
Gate densities are also reduced in 

CMOS ~ecause standard CMOS 
logic gates are built from more tran
sistors than their NMOS equiva
lents. Standard CMOS logic-gate 
design has a 1:1 ratiQ of n-channel 
transistors to p-channel transistors. 
For example, the two input gates 
shown in figure 5 take four transis
tors in CMOS and only three in 
NMOS. The relative density de
creases as the number of inputs in
creases. For example, three-input 
gates require six transistors in CMOS 
and only four in NMOS; four-input 
gates require eight transistors in 

CMOS and only five in NMOS, etc. 
As a matter of fact', it is rare to have 
a standard CMOS gate with more 
than three inputs because the self
loading and the transistor stack 
make the structure inefficient in 
both speed and area. On the other 
hand, it is not unusual in NMOS to 
ha.ve gates with as many as eight 
inputs. 

Static Design Techniques 
A final reason for the lower CMOS 

gate densities is the use of static 
logic (modern. VLSI NMOS micro
computer designs rely heavily on 
dynamic circuitry). Dynamic 
circuitry essentially uses a small ca
pacitor as a latch to store logic val
ues. This technique saves both area 
(by reducing the number of transis
tors in a gate) and power (by reduc
ing the number of gates in struc
tures like latches, flip-flops, shift 
registers, etc.). Employing dynamic 
d~sign can reduce an NMOS latch's 

23-11 

area by 30 percent and its power 
consumption by 50 percent.' How
ever, the problem with dynamic cir
cuitry is that the capacitor used to 
store the logic value is leaky and 
will, over time, discharge and lose 
its data. This is the same problem 
faced by dynamic memory design
ers. The solution is to periodically 
refresh the capacitor, which .forces 
a minimum operating frequency to 
be adhered to. 

CMOS can also use dynamic cir
cuitry, especially ,to increase the ra
tio of n-channel transistors to p
channel transistors. Because static 
CMOS desig~s have a 1:1 ratio of 
n-channel to p-channel transistors, 
being able to increase this ratio will 
have the . effect of giving CMOS a 
higher gate density (but the mini
mum operating-frequency charac
teristic of dynamic circuitry often 
conflicts with the CMOS potential 
of absolutely minimizing power). 
Therefore, while trlle static CMOS 
design does give the lowest possi
ble power consumption (by allow
ing the device to operate at fre
quencies all the way to DC), 
dynamic CMOS designs, being more 
dense and resulting in smaller die 
sizes, tend to be more cost-effec
tive. Thus, two trends are devel
oping in. the use of CMOS for VLSI 
microcomputer design. 

Designers of the next generation 
of 16- and 32-bit microprocessors 
are choosing CMOS. Here, the goal 
is not to operate at the lowest pos
sible power level but rather to keep 
the operating power under a maxi
mum level for cooler junction tem-

, peratures, higher performance lev
els, and the ability to use standard 
low-cost packages. In these de
signs, extensive use is made of dy
namic logic. The ratio of n-channel 
transistors to p-channel transistors 
is often as high as 3:l. 

Designers of 4- and 8-bit single
chip microcomputers are choosing 
CMOS to accommodate a· host of 
new portable, hand-held, ;md ul
tra-low-power applications. Here, 
the goal if to minimize the operat
ing power levels consistent with 
the performance req1.!-ired by the 
application. In the simpler. micro-



computers, true CMOS static logic 
,is used-their simpler structure still 
allows a relatively small die size, 
while the low-performance appli
cations ·they are appropriate for 
allow low operating frequencies. 
On the other hand, the more mm
plex, higher-performance, single
chip VLSI components still make 
maximum use of static logic but are 
forced into dynamic logic for large 
arrays to keep the die cost do~n. 

Future CMOS 
CMOS will be the technology of 

choice for VLSI microcomputer de
signs. For one thing, with the advent 
of hundreds of thousands of tran
sistors on a die, CMOS is the only 
technology that offers a cost-effective 

solution to the power-density'prob
lem. 

A second and more subtle future 
issue is reduced supply voltage. As 
MOS transistors' continue to be 
scaled to smaller dimensions to eke 
out further performance and densi
ty advances, the standard 5-V supply 
voltage must be reduced, if only for 
internal circuitry, to limit substrate 
current and hot-electron effects. 
CMOS is better suited for lower sup
ply-voltage operation because its 
switch point is a fixed percentage of 
the supply voltage. Also, due to its 
"ratio-less" structures, CMOS enjoys 
better noise tolerance than NMOS, 
another important factor at lower 
supply voltages. 

Finally, CMOS has made and will 

continue to make major strides in its 
relative cost disadvantage to NMOS. 
Where CMOS formerly sold at as 
much as a fourfold premium, today 
it is selling at somewhat less than 
twice the price of comparable NMOS 
devices. With its continued use of 
standard, low-cost packaging tech
nology as well as the more creative 
use of dynamic circuitry and hybrid 
static/dynamic designs, CMOS will 
rapidly approach the cost of NMOS. 
As a matter of fact, several major 
semiconductor manufacturers have 
stated that CMOS/NMOS price pari
ty will occur this decade, and some 
manufacturers say it will happen as 
early as 1985. When CMOS and 
NMOS cost the same, why would 
anyone buy NMOS? 

A CMOS Single-Chip Computer: 
Intel's SOCS1 

by Martin B. Pawloski 

Intel's 8OC51 is an interesting exam- ,..--------------------------.... 
pie of how the static logic versus 
dynamic logic trade-off was made in 
an actual product design. The 8051 is 
an 8-bit, single-chip microcomputer 
with 4K bytes of ROM, U8 bytes of 
RAM, two 16-bit counter/timers, 
multilevel interrupt control, 32 I/O 
pin~, full-duplex UART (universal 
asynchronous receiver/transmitter), 
and on-chip oscillator and clock cir
cuits. A die with the sections iden-
tified by functions is shown in photo 
1 on page 94. 

The CMOS version of the 8051, 
called the 80CS1, is targeted at a num
ber of applications that require both 
high performance and low power 
consumption. In areas like telephony, 
automotive control, industrial con
trol, and portable instrumentation, 
the 8OC51'operates at or near its max
imum speed, even if only for short 
intervals. (For example, most real
time applications need an external
interrupt response time of less'than 
100 microseconds (/Ls); mote de
manding applications require' better 
than 10-l's response. While the re
sponse must be quick, and the inter
rupt'routine executed quickly; the 

Normal 
Vee Supply Operating- Operating Power Down 
Voltage Frequency Mode Idle Mode Mode 

Product Technology Range Range (Icc Max) (Icc Max) (Icc Max) 

12 MHz Max 24 rnA 3 rnA 50 ~A 
BOC51 CMOS 4-6 V 

12 MHz Min 24 rnA 0,3 rnA 5Ol'A 

8051 HMOS 45-55 V 12 MHz Max 150 rnA 20 rnA 
12 MHz Min 130 rnA 20 rnA 

Table 1: A comparison of the CMOS and NMOS versions of the 8051, 

processor spends a significant por
tion of its time idle.) 

Once the performance require
ments of the application are known, 
it is possible to specify ~ minimum 
operating frequency. For the 80C51, 
a hybrid static/dynamic design was 
proposed that allows a minimum die 

, size and includes various modes of 
operation to minimize power con
sumption. 

First, the only areas of the design 
that were made dynamic were the 
(very large) ROM and Control arrays. 
These arrays contain aImost 50,000 
transistors and constitute a major 
portion of the die. By making them 
dynamic, an area savings on the 

23-12 

order of 40 to 50 percent was accom
plished. 

Second, the processor, all the pe
ripheral functions, the RAM, and the 
I/O ports were made static. This al
lowed two modes of operation other 
than normal operating mode: 'Idle 
mode and Power Down mode. 

Because in many applications the 
processor does nothing more than 
wait for an event to happen, in the 
Idle mode the major clocks of the de
vice are stopped and only smaller an
cillary clocks operate to drive tne 
peripheral counter/timers, external
mterrupt control, and the seri,al chan
nel. When one of the peripherals 
generates an interrupt, the processor 



clocks are restarted and instruction 
execution reS\lmes in the interrupt
service routine. The Idle mode 
reduces power consumption by 
almost an order of magnitude. 

In Power Down mode, all the clocks 
inside the device ,are shut off and 
only the internal 128 bytes of RAM 
are "kept alive:' The only current 
consumed is a minute amount due to 
pn-junction leakage. Static logic was 
designed in the peripheral sections in 
order to support this mode because 

no clocks are available to refresh 
dynamic logic. In both the Idle and 
Power Down modes, special provi
sions are made for the dynamic cir
cuits in the ROM and Control areas 
to enter a pseudostatic condition that 
prevents any extraneous power con
sumption due to voltage drift on ca
pacitive storage nodes. 

Table 1 compares the NMOS 8051 
to the CMOS 8OC51. The SOC51, de
signed in Intel's HMOS-derived n
well process called CHMOS, is less 

than 10 percent larger than the 
NMOS design and consumes only 15 
percent of the normal operating 
power. More significant power sav
ings are possible by operating the 
SOC51 at, lower frequencies or by 
using the Idle mode. 

Martin 8. Pawloski (5000 West Williams Fitld 
Rd .. Chandltr, AZ 85224) IS Involved '" tht prod. 
uct plAnning, iit{Imtion, and Impkm£ntatibn of both 
NMOS and CMOS singJe-chlp microcomputers at 
Intel Corp. ' 

A Look at CMOS Dynamic Memory 
by Joe Altnether 

The fast-growing portable.:com
puter market is placing severe de
mands on semiconductor memory. 
For optimum system performance, 
these components must limit their 
power dissipation to suit battery 
operation and backup, and they must 
achieve the high data bandwidths 
and increased speeds needed for fast 
processing and high-resolution 
graphics. As the market reaches a 
projected $4.8 billion level by 1987 (a 
tenfold increase over 1982 levels), 
these requirements will combine to 
fuel the use' of high-performance 
CMOS dynamic RAMs. 

One architecture that can'increase 
the speed of a CMOS dynamic RAM 
incorporates static-column address 
decoders: static circuits perform the 
selection of the column address of 
the RAM. Previously, this architec
ture has not been used with'dynamic 
RAMs because of the increased 
power consumption of -the static cir
cuits over that of the dynamic cir
cuifs, ,and the advantage' of low 
power consumption would have 
b,een lost. But with CMOS, the in
creased power consumption is neg
ligible. 

Memory-device Architecture 
RAMs are organized internally as 

'rows and columns of storage cells. 
Data access occurs at the intersection 
of a row address and a column ad
dress. ln dynan,'ic RAMs, the row 

and column addresses are multi
plexed to reduce package size and pin 
count: the row addresses are clocked 
into the device with the' RAS (row ad
dress strobe) signal, causing one row 
of data (1 bit from each of the 256 col
umns in a 64K-bit dynamic RAM) to 
be fed into the 256 internal sense 
amplifiers. (Because of the low inter
nal signal levels, each column must 
have an associated sense amplifier to, 
sense and restore memorY-cell data.) 
Next, column addresses are pre
sented to the device and clocked into 
it with the CAS (column address 
strobe) Signal. These column ad
dresses are then decoded to select 
one of the 256 bits. Faster access and 
cycle times are obtained within a row 
(or "page") after the first access to it 
because the 256 bits within the row 
cO,ntinue to reside in the sense ampli
fiers and need not be refetched. Re
applying only column addresses, 
then, in what is known as Page Mode 
operation, provides f~st serial ac
cesses and can increase cycle times by 
a factor of 2. 

The CMOS dynamic RAM can in
corporate static-column circuits to 
provide performance equivalent to 
that of high-speed static RAMs. With 
CMOS, the static-decoding 5=ircuits 
reduce the internal number of -clocks 
by a factor of 3, eliminating the need 
to allow for setup and hold times of 
signals with respect to clocks and the 
need to compensate for timing skews 

23-13 

due to process variances. With static
column circuit&, precharge times are 
drastically reduced (in Page Mode 
operation of the Static-Column-mode 
device, precharge time is reduced 
from 30 nanoseconds [ns] to 5 ns). 
This precharge time reduction and 
the faster access times typically in
crease the memory's bandwidth to 20 
MHz. (Performance of memory dis
cussed here is based on the experi
mental 64K-bit CMOS dynamic RAM 
that Intel presented at the ISSCC 
conference in February 1983.) 

With static-column architecture, 
two different types of Page Mode 
operation are possible: Static Column 
mode and Ripplemode. Static Col
umn mode uses the RAS line and 
row addresses in the conventional 
manner, but once the row has been 
selected, data can be accessed mere
ly by changing column addresses. As 
with a static RAM, column addresses 
must remain stable and valid for the 
entire address access cycle. Access 
time is measured from column ad
dresses rather than the occurrence of' 
CAS. (Typically, access from column 
addresses is 30 ns; from CAS, it is 10 
ns.) 

In operation, CAS is used to place 
the output in a high-impedance state 
or to activate an output buffer. CAS 
can be held active during the entire 
page cycle. In fact, it is possible to 
keep CAS permanently active (i.e., 
grounded). During a write cycle, 



however, addresses as well as data 
are latched by CAS or WE, whichever 
occ'urs last. Operation is identical to 
that of an NMOS dynamic RAM in 
this case. This action ensures that the 
data is written into the proper mem-
ory location. " 

Although Static Column mode 
provides fast, easy accesses, speed at 
the system level is limited by how fast 
addresses for the next cycle become 
valid; the time to generate and stabi
lize the addresses must be added to 
the cycle time. Increased system 
speed can be obtained by using Rip
plemode. With this mode, static
column circuits are agam used to ob
tain access from valid column ad
dresses, but the addresses are latched 
on the falling edge of CAS, removing 
the requirement for addresses to re
main valid throughout the entire cy
cle. As a result, during the current cy
cle addresses for the next cycle can 
be set up or pipelined. 

Column addresses enter the RAM 
through the internal address latch. 
This latch, controlled by CAS, pro
vides flow-through operation. When 
CAS is inactive, the latch is open, and 
addresses pass through continuous
ly to the static-column decoders. Any 
change in address is .transmitted im
mediately to the decoder. Conse
quently, access to the RAM is again 
measured from valid column ad
dresses. The latch captures the cur
rent address on the fall of CAS, per
mitting the system address to change 
while the access occurs. CAS also 
serves as an output enable on the 
data output. Static Column mode 
and Ripplemode both permit con
tinuous data streams up to 20 MHz'. 

CMOS technolQgy and static
column architecture provide more 
than low power consumption and 
high /:>andwidth, In ,addition, static
column decoding simplifies system 
design by eliminating critical timing 
relationships while providing higher 
system speed. Access from column 
addresses gives usable speed for 
single random accesses wit,hin the 
RAM. Also, the CMOS, technology 
enhances reliability by incorporatjng 
a mechanism to significantly reduce 
soft errors. Finally, increased stored 
charge creates larger internal: signal 

levels, which cat:' more easily bE; dif
ferentiated from ,noise. As a result, 
the CMOS dynamic RAM has wider 
operating margins and system reli
ability is improved. 

Power Consumption 
At the system level, dynamic mem

ory has three components of power: 
active, standby, and refresh. The 
system's power consumption is de
fined as 

where P = system power, V = volt
age (5.5 V worst case), IA = active cur
rent, IA = standby current, I. = 

refresh current, M = number of ac
tive devices, K = number of devices 
in standby, and N = total number of 
devices. 

CMOS reduces the first term, the 
active current, relative to NMOS by 
a factor of 2. In addition, the lower 
active current reduces supply voltage 
transients, 'thus simplifying 
printed-circuit-board design and 
reducing decoupling-capacitor 
requirements. 

The second term, standby current, 
is also reduced by a factor of 2 at TTL 
input levels. Driving the RAS signal 
to a CMOS level (VDD -O.5 V) phlces 
the device in a low-power-standby 
mode and typically draws 10 micro
amperes (/tA)-a factor of 50 reduc
tion over NMOS! 

Refresh current, the third term in 
the equation, is cycle-time depen
dent. Current increases with the fre
quency of refresh., In dynamic IlAMs, 
data is stored on a capacitor that must 
be replenished or recharged every 2 
or 4 milliseconds (ms). This ,refresh 
time is a function of the stored charge 
and the leakage current. With the 
CMOS dynamic RAM, the cell stor
age capacitance is 0.125 picofarad (pF) 
compared to 0:040 pF to 0.085 pF in 
an NMOS dynamic RAM. This low 
capacitance, coupled with lower leak
age currents; permits the CMOS re
fresh pedod to be extended to 64 ms 
in standby. 

At the standard 128 refresh cycles/2 
ms (equivalent to a 15.625-p.s refresh 
period), ,the NMOS device draws 
about '4.8 milliamperes (mA) and 

,23-14 

asymptptically approaches the stand
by 'current 6f 4 mA as the refresh 
period, approaches' infinity. Even 
eliminating refresh entir~ly only re
duces the current to 4 mA, which is 
only a 16 percent improvement. As a 
result, extending NMOS refresh does 
not significantly reduc~ the system's 
power consumption. 

Contrast this characteristic to the 
improvement CMQS offers. At 15.625 
p'S, the CMOS dynamic RAM draws 
approximately 10 percent of the 
NMOS current, or 0.42 mA at TTL 
levels. Extending the refresh period 
reduces the current asymptotically to 
the standby current of 0.05 mA. At a 
64-ms refresh period, the current is 
reduced to 0.15 rnA, a 300 percent re
duction. When battery powered, the 
CMOS system has a 10 times longer 
life than does the NMOS system, and 
an extended refresh mode offers 
another fivefold improvement. A 
256K-byte CMOS memory can retain 
data for nearly one week on only AA 
nickel-cadmium (nicad) cells-more 
than sufficient for most portable 
systems. 

High-Speed 
Applications 

Ripplemode and Static Column 
mode are ideal for applications in
volving high-speed buffers, telecom
munications, and graphics. Bit
mapped graphics systems would 
seem to be a natural fit with Page 
Mode operation. However, this was 
not always the case. Prior to the In· 
tel 2164A 64K by I-bit NMOS 
dynamic RAM, it was difficult to,re
trieve all 256 bits within a single row, 
of memory because of the RAS-low 
time limitation of 10 p.s. Even with a 
Page Mode cycle time of 125 ns, to 
retrieve all 256 bits would require ,32 
p's-three times longer than allowed. 
The 2164A e,xtended ,the RAS-low 
time to 75 p's, permitting theextrac
tion of all 256 bits during a single 
Page Mode cycle. 

At the end of the cycl~, the ,device 
cannot be reaccessed again until after 
a certain off-time allows internal 
nodes to be precharged to be ready 
for the next cycle. As a result, the 
2164Acan stream data at greater than 



a 7-MHz rate continuously. This func
tion matches the timing and opera
tion of low-performance, bit-mapped 
graphics memories. One 2164A, for 
example, can map all the data for the 
256 by 256 matrix of a graphics dis
play. During the horizontal. scan time, 
the RAM performs a Page Mode cy
cle and one full line is displayed. 
During retrace time, the memory 
must be refreshed and can be up
dated with new data if required. This 
type of update is relatively slow; con
sequently, it limits the speed of 
animation on the· screen because the 
processor has access to the memory 
only 25 percent of the time. 

To increase resolution, more lines, 
each with more pixels, must be used. 
By performing two sequential Page 
Mode cycles from two different 
RAMs, pixel densities to 512 bits per 
line can be achieved. As pixel densi
ty increases, the memory cycle time 
must decrease to paint more pixels on 
a line in the same amount of time. 
This cycle-time limitation plus the 
fact that memory can be updated 
only during blanking has precluded 
dynamic ·RAMs from use in 
higher-resolution graphics displays. 
These systems are usually built with 
high-speed, expensive static RAMs. 

With Ripplemode, memory update 
during screen display time, also 
known as cycle stealing, is possible. 
As an example, a 512 by 384 display 
requires 512 bits/line and 1 bit every 
67 ns. Data is read from four memory 
devices in a series of eight Ripple
mode reads each. Data is temporari
ly stored in a video-output register 
file and then shifted to the video 
screen at a rate slower than the Rip
plemode reads. Following this, 
enough time is available to perform 
an update cycle before the next eight 
Ripplemode reads are performed to 
continue screen refresh. Eight was 
the number chosen to minimize the 
time the processor must wait to up
date the memory. In addition to this 
cycle stealing, which updates during 
display time, memory updates are 
also performed during blanking. 
Along with this system, a similar sys
tem was built using 2164As with Ex
tended Page Mode operation. Each 
system used an iAPX 86 processor 

and similar software. A comparison 
of both systems showed the CHMOS 
(complementary high-speed metal
oxide semiconductor) system to have 
a 42 percent higher drawing speed. 
Animation on the CHMOS system 
was vastly improved. 

Usable Speed 
Memory design using dynamic 

RAMs has always been a challenge. 
Although multiplexing addresses 
does reduce the package pin count 
and increase system density, it ·limits 
the access and cycle times in the 
system. To access a dynamic RAM, 
low-order row addresses are pre
sented and latched into the dynamic 
RAM with RAS. Row addresses must 
be held for a period tRAH after the fall 
of RAS to guarantee proper opera
tion. Next, the addresses must be 
changed to high-order column ad
dresses and latched into the dynamic 
RAM with CAS, creating a timing 
window tRCD, which is the RAS-to
CAS delay. 

Within this window, the designer 
must guarantee row address hold 
time, change the addresses, and ac
count for any timing skew on the 
CAS signal. If column addresses are 
valid at the maximum specified tRCD, 

access time tRAC is measured from the 
high-to-Iow transition of RAS. 

The cycle time is the sum of the ac
cess time and the cycle precharge 
time tRP ' The access time is a function 
of i RCD, which has contradictory re
quirements. It must be as long as 
possible to simplify system design 
and at the same time as short as 
possible to enhance system speed. 
Cycle time is affected directly by the 
length of tRP• ' 

Static-column operation eliminates 
the tRCD problem. After row addresses 
have been latched into the RAM, the 
second portion of the access begins 
from valid column addresses. In 
other words, column access does not 
wait for CAS to become valid, but 
operates in a fashion similar to that 
of a static RAM. This is due to the 
flow-through operation of the CAS 
latch. CAS serves only to latch the 
addresses and to provide an output 
enable. Access from valid column ad
dresses simplifies design by remov-

23-15. 

ing the CAS signal from the critical 
timing path. 

Systems using dynamic RAMs are 
typically CAS access-limited because 
controllers generate timing signals in 
discrete dock increments. A CMOS 
dynamic RAM system might operate 
at 8 MHz without Wait states. Using 
any other 64K-bit dynamic RAM 
would require the injection of one or 
two Wait states, resulting in a corre
sponding.performance penalty. Con
sequently, the advantage of higher 
processor speed is negated without 
the high-speed dynamic RAM. For 
systems incorporating either discrete 
or LSI controllers, the CMOS 
dynamic RAM simplifies the system 
design and offers higher system 
performance. 

High Reliability 
Soft errors are random, nonrecur

ring failures caused by ionizing radia
tion present within the environment. 
All matter contains small amounts of 
radioactive material. Alpha particles 
emitted by an I C's packaging material 
can penetrate the enclosed circuit. As 
they do so, they generate hole-elec
tron pairs. Any high-impedance 
node in the vicinity sensitive to 1 
million electrons may be affected, 
because the difference between a 1 
and a 0 (known as the critical charge) 
:s about 1 million electrons. Conse
quently, data in one cell could change 
from a 1 to a 0 or vice versa. Correct 
data can be rewritten into the affected 
cell and the memory ""ill again func
tion correctly, thus the term "soft 
error:' 

When first discovered during tests 
of 16K-bit dynamic RAMs, soft errors 
occurred at a rate five times greater 
than catastrophic or hard-error fail
ures. While device designers worked 
to eliminate the alpha-particle sen
sitivity, systems designers added 
error-correcting circuits (ECC), which 
increased system reliability, but the 
systems were larger and more expen
sive due to the additional com
ponents required. Also, the system 
had to test and correct the data, slow
ing the systems performance. All this 
was due to soft errors. Obviously, 
what is really required is the elimina

. tion of soft errors. 



CMOS teChnology off~rs' such a 
solution.' The CMOS dynamic 'RAM 
cell is built on an n-well in: a p·sub
strate, 'crecitirig a' p-n junction or 
diode at' fhe boundary. When' alpha 
particles create hole-electron pairs in 
a CMOS device, something else oc
curs. First, the n-well is very shalloW, 
and the majority of hole-electron 
pairs are created in the p-substrate. 
Holes cannot transfer across the 
reverse-biased p-n junction, which 
acts as a barrier to soft-error effects. 
Any electrons that do cross the junc
tion are gathered at the + 5-V node 
away from the storage cell. The' prob
ability that sufficient hole-electron 
pairs are created witnin the n-well 
that cell upset could occur is so low 
that the soft-error rate of CMOS 
dynamic RAMs is typically orders of 
magnitude below that of their NMOS 
counterparts. 

High storage capacitance also plays 
a role in the reduction of soft errors. 
The number of stored charged elec
trons representing a lora 0 is direct
ly proportional to the storage capac
itance. Higher capacitance e<J,uates 

fo m9re stored charge, which in turn 
increases the critical' 'charge. The 
critical charge is the number of par
ticles that differentiate a 1 from a O. 
Increasing the critical charge beyond 
1 million electrons significantly 
reduces the susceptibility to soft er
rors. This, in addition to the n-well 
mechanism, reduces the soft~error 
rate to much less ,than 0.001 percel'lt 
per'looo hours. 

Studies' were performed to com
pare reliability of systems with and 
without error correction for both 
NMOS and CMOS dynamic RAMs. 
The'results show one surprise: at 
256K bytes and below, the CMOS 
system without ECC is more reliable 
,than the NMos system with ECC, 
because of the cycle-time depen
dence of soft errors. In small systems, 
the memory is accessed more -fre
quently, and the probability of a soft 
error is increased. With a soft-error 
rate at the very minimum 100 times 
less than NMOS, the CMOS 
dynamic RAM does not experience 
this effect. 

Systems below 256K-by'te capacities 

benefit by the elimination of ECC cir
cuits from a cost, performance, and 
Simplicity-of-design standpoint. First, 
ECC increases the access time of the 
system by 50 ns'to check and correct 
data. Assuming a 120-ns RAM ac
cess, ECC increases the access by 42 
percent.' Moreover, the penalty on cy
cle time is even greater, especially 
when you are writing a single byte in
to a 2-byte word. In this instanc~, 
data must be accessed and corrected, 
the new byte merged into the word, 
and check bits generated. Finally, the 
system must write the new data into 
memory. Added to this are any sys
tem-timing skews. As a result, a 
200-ns cycle time stretches to a 335-ns 
system cycle time or an increase of 68 
percent. Therefore, using a CMOS 
dynamic RAM not only improves 
system reliability but enhances sys
tem speed and simplicity of design .• 

Joe AI/nether IS lechmod marlreling manager al 
Intel Corp. (21ll N. E 25th Ave., Hdlsboro, OR 
97123). 

From Inside CMOS Technology by Martin B. Pawloski, Tomy Moroyan, 'and Joe Altnether appearing In the September 1983 Issue of BYTE 
magazine. Copyright © 1983 Byte Publications, Inc. Used,wlth the permission of Byte Publications, Inc. 

23-16 



intJ ARTICLE 
REPRINT 

23·17 

AR-332 

, MAY, 1984 

ORDER NUMBER 231097-1101 



' .. 

Modular approach to C·MOS technology 
tailors process to application 

Despite the proliferation of applications. a few C-MOS process variations 
can address the functional requirements of many different products 

by Kim Kokkonen and Richard Pashley, Intel Corp, Santa Ctara, Calif 

o In the past few years, the interest in complementary
MOS technology and its applications to new products has 
exploded, Traditional arguments for C-MOS center on its 
low power dissipation, the large noise margins of comple
mentary logiC, and its simple ratio less design, With the 
advent of very large-scale integratIon, these arguments 
are taking on new meaning and importance. 

As an example, Fig, I compares the performance of 
H-MOS (high-performance n-channel MOS ) inverters with 
their equivalent in Intel's C-H-MOS (complementary high
performance MOS) technology, Though H-MOS'S speed 
continues to improve with further scaling, its delay-pow
er product IS more than an order or' magnitude higher 
than a C-H-MOS implementation wIth identical n-channel 
transistors. In a VLSI part with 50,000 gates, C-H-MOS 
could mean the difference between I and 10 watts of 
power dissipation, which might save the expense and 
difficulty of a sophisticated ciJoling system or extend, a 
portable system's operating time by a factor of 10, 

That C-MOS performance IS now" on a par with n-MOS 
technology has also accelerated its popularity, In addi
tion, the density of C-MOS cirCUitry' has improved dramat
ically with advances In technology. Finally, the number 
of process alternatives has grown so large ·thilt almost 
any integrated-circuit design can be supported with avail-
able C-MOS technology,. " , 

Unfortunately, the'waVe .of enthusiasm for C-MOS' and 
the needs of different applications h~ve lI\ultiplied the 
number of approaches that' C-MOS develope~i are taking, 
Several major Issues remain In VLSI C-MOS design-name
ly latchup and soft-error prevention, interconnections, 
and logic-design technIques, A buildiitg-block approach 
with a limited number of. basic process modules can be 
used to create a close-knit family of' technologies that 
squarely addresses these issues and Simultaneously sup
ports a Wide range of applications. 

The ,basis for C·H·MOS 

A firm foundation in n-Mos-transistor physics will 
support the advancement of C-MOS technology, As chan
nel lengths approach I micrometer, n-channel transistors 
become more difficult to optimize because the standar"d 
5-volt power supply causes problems with high-intensity 
fields, Improperly designed transistors may be unreliable 
as a result of hot;cariie.r injection into gilte oxides, or 
they may cause less localized problems by Injecting carri-

Electronics/May 3,.1984 

ers into the MOS substrate-there to bleed charge from 
storage nodes or even trigger a destructive latchup, 

The resources to develop and verify the reliability of a 
l-fLm n-channel transistor are well established and sub
stantIal. In Intel's C-H-MOS process, the basic design of 
the n-channel transistor is Identical to its H-MOS counter
part, as shown in the table. Even at the more detailed 
levels of doping profiles, the H-MOS and C-H-MOS transis
tors are nearly identical. 

Thus a high-performance C-MOS technology may be 
born out of an estabhshed n-MOS line. The relatively 
Simple addition of an n-well in the same high-resistivity 
substrate results In a C-MOS process that serves as the 
baSIS for several optimized technologies, This is just a 
start, however, as other Important issues remain, 

Latchup has been the tradllional nemesis of C-MOS, 
Given the presence of parasitic silicon controlled rectifi
ers within every bulk C-MOS chip, a current pulse of 
sufficient magnitude either inside or outside the chip may 
cause a catastrophiC latch up. Many schemes have been 
proposed to combat latch up, ranging from carefully scru
tinizing the layout (which imposes no burden on the 
technology) to a buried layer (which significantly in-

10 r-------------------------------~ 

C'H'Mosm 
1001 pJ) 

TRADITIONAL 
4~m C'MOS 
(O.S pJ) 

H'Mosm 
101 pJ) 

0.1 '--__ --'-____ -'---'--'--'-____ "-_-L __ -'--'-' 
0.01 0.1 

POWER/GATE (mW) 

1.0 

1. Power down. Despite the conllnuous Improvement' of H-MOS 
(high-performance MOS) by scaling, the delay-power product for C-H

MOS (complementary-MOS H-MOS) IS more than an order of magni· 

tude lower In the tYPical Integrated CirCUIt. 

23-18 



n-CHIINNEL TRIINSISTOR COMPIIRISON 

Technology Gate-oxide Chlnnel Th ...... old 

noMOS CoMOS tIIick ..... (l) length (pm) vol. (V) 

H-MOSI - 700 3.0 0.7 

H-MOSII C-H-MOS 400 2.0 0.7 

H-MOS II C'H-MOS III 250 1.0 0.7 

creases complexity and processing cost)_ All have some 
degree of effectiveness. 

A modular approach to a broad7based line of C-MOS 
technologies requires other measures besides mere physi
cal latchup resistance. The latchup spoiler must be appli
cable to dynamic random-access memories, erasable pro
grammable ready-only memories, and static RAMs, as 
well as to microprocessors and controllers. In order to 
improve latchup resistance, it cannot increase the dis
tance between n- and p-channel transistors (this con
straint is most significant in random logic and full C-MOS 
six-transistor statiC-RAM cells). The technique must be 
compatible with low-cost and large-volume manufactur
ing, Finally, the approach must be consistent with the 
use of an automated checking algorithm, so that every 
gate of a large semirandom logic design need not be 
scrutinized for latchup susceptibility. 

Epitaxial benefits 

Figure 2 shows the margin gained in latchup trigger 
current when an epitaxial substrate is used. The epitaxial 
substrate brings the same latchup benefits to all product 
lines, and in many cases provides additional advantages 
such as improved surface lifetimes (for dynamic RAMS) 
and reduced dc resistance (for E.PROMs and logic). Epi
taxial substrates are now available in volume from com
mercial silicon vendors, adding less than 5% to the cost 
of a finished wafer. No additional or exotic fabrication 
equipment needs to be installed. Because the epitaxial 

400 ...------------------. 

100 

.-TYPE EPITAXIAL 
SUBSTRATE ON n+ WAFER 

2:flEXTERNAL )f9V RESISTOR_ 

PARASITIC ' 

::g~:~~~E ../ 

TR:GGER CURRENT .,. 

NONEPITAXIAL 
HI-em SUBSTRATE 

10 

2_ Senefits. By raising the margin of latchup trigger current, an 
epitaxial substrate effects a dramatic Improvement in combatting 
latehup, a major concern In complementary·MOS chip design. 

Grldld drain 
profile 

no 

no 

yes 

substrate's heavily doped bulk effec
tively eliminates the vertically trig
gered latchup mode, it is possible to 
develop a set of computer-aided-de
sign tools that can flag latchup-sensi
tive layouts on the largest VLSI chips. 

Since grasping the phenomenon of 
upsets induced by alpha particles, in 
1977, memory designers have taken 
care to ensure that enough charge is 
stored within each cell to minimize 

the problem. As critical chip dimensions are reduced, 
this problem becomes more severe, however, since both 
parasitic and storage capacitances are naturally reduced. 
For the latest 1.5-J.'m noMOS process, stored' charge is low 
enough to caution even microprocessor designers to 
guard against random storage nodes suffering from soft 
errors. Fortunately, C-MOS provjdes a natural barrier 
against soft errors if the storage node is located within 
the C-MOS well. 

The well junction is reverse-biased by the power-sup
ply voltage. The electric field at this junction naturally 
repels any carriers generated outside the well that might 
otherwise diffuse up to surface storage nodes. The combi
nation of the well structure and an epitaxial substrate is 
even more effective. Here the funneling mechanism that 
usually collapses local electric fields during the passage 
of an alpha particle is also minimized. By using epitaxial 
substrates and the protection of' a C-MOS well, the 
amount of charge collected during an alpha event can be 
reduced by an order of magnitude. 

Of cOurse, the designer must arrange for the storage 
node to reside within the well. This constraint, combined 
with other performance' issues, leads to different choices 
of well and substrate polarities, depending on application. 
For example, in a C-MOS technology that is optimized for 
dynamic RAM, the ideal memory cell should have a p
channel pass gate and a p-channel capacitor located with
in an n-well in a p-type substrate. The p-channel transis
tor is chosen because it injects far fewer spurious carriers 
into the substrate and thus does ·not by itself disturb the 
state of neighboring cells. 

The conductance of the p-channel device, while lower 
than that of an n-channel device of the same size, does 
not degrade the RAM'S performance, since dynamic-RAM 
sensing is limited primarily by the amount of stored 
charge. Experimental results with C-H-MOS' dynamic 
RAMs based on these principles show a soft-error rate of 
less than 300 FIT (failures in time, or device failures per 
billion 'hours) at a power supply of only 3 v. This is an 
improvement of more than three orders of magnitude 
()ver traditional noMOS dynamic-RAM technology and of
fers the possibility of dynamic-RAM systems that require 
no error correction and that are compatible with low
voltage battery backup. 

High-density, high-performance static RAMs present 
the other side of the coin. The smallest statiC-RAM cells 
today are built using polysilicon-Ioad resistors that sus
,tain the stored-node voltage. On the time scale of an 
alpha evenl, however, these resistors in effect do not 
exist. Because the storage node's RC time constant is on 
the order of milliseconds and the alpha event's time scale 

Electronics/May 3, 1984 

23-19 



is nanoseconds, the cell appears dynafllic. In this sense, 
polysilicon"load static-RAM cells are vety similar to dy
namic-RAM cells. The major difference arises in ,the way 

, 400 

the 'cells sense the cell's information. The static-RAM cell ' , 
provides a ,direct current, and to maximize tlie ceIl's 
performance, that current must be as large as, possit>le 
while contained in a minimum area. Thus the chip! de
signer must use high-gain n-channel t,ransist9rs for the 

C 
!. .. 
I n 

300 

200 

,-
'\: ~·TYPE EPITAXIAL SUBSTRATE 

ONn+WAFER 

I ce!I's pass gates and puIldowns. For good soft-error pro
tection, th~n, the cell must be located in a p-weIl within, 
an n-type substrate. 

The p-weIl approach benefits even full ~.MOS six-tran
sistor static-RAM cells. The area of such ceIls depends 
strongly on the distance allowed between n- and p-chan-
nel deyices. Using,a straightforward implementation of 
epitaxial C-MOS, the p-well, approach provides more mar
gin against latchup at small mto-p spacings (Fig. 3). 
This phenomenon occurs because of the differing diffu
sion properties of n- and p-iype dopants. The heavy 
doping in the n-type substrate is less mobile than is the 
p-type dopant, resulting in less outdiffusion during ther
mal processing and thus minimizing the shunt resistance 
that controls latchup. 

Hooking it up 

One of the challenges of C-MOS in logic applications is 
interconnection. Designers of noMOS chips are accus
tomed to buried contacts, which directly connect, n-type 
polysiJicon and ootype transistor source or drain regions. 
Because C-MOS requires contact to. ,both p and n regions, 
the traditional n-type buried contact becomes much, less 
useful, and a version suitable for ,both ,diffusion polarities 
is quite difficult to implement. This increases the burden 
on .contact and metallization modules. 

For high-density C-MOS logic, the first level of metal is 
all but consumed by ~Ocal connections betwee/l ,p and n 
transistors. The payback from adding a second level of 
metal for longer-distance routing is very high. A good 
example exists for the six-transistor statiC-RAM ceIl com
monly used by logic designers. Figure 4 compares sin
gle- and double-metal versions, of this cell, both imple
mented with 1.5-,...m design rules. 
Here the second-metal layer provides 
the bit lines for the cell. Similar ar
guments justify the use of second 
metal in global power, clock, and 
data routing in complex microproce$
sor chips., 

Contacts themselves are more dif-' 
ficult to build in C-MOS. N-MOS tech
nology .accustomed process engineers 
to adding a phosphorus contact plug 
after the contacts have been etched. 
This plug brought several advan
tages: the phosphorus gettered metal
lic contaminants from the wafer, re
ducing junction leakage; and ,the 

(0) 

iii p·TYPE EPITAXIAL SUBSTRATE 

I ONP+WAFER~ , , 

.. 100 

10 
n-TO-p SPACING (,dn) ,,' 

3. Powe •• ma~in. With an epitaxial substrate. a p-well structure (up
per curve) y~lds a greater margin ageinst latchup than n·well at 
smaHer n- and p-devlce spacings. 

contact etch attacked the silicon substrate or if the con
tact was, misaligned toward the field-oxide edge, the plug 
would rejuvenate the resulting weakened junctions. In c
MOS, these sallie attributes must be obtained differently, 
through improved fabrication, cleanliness, new gettering 
techniques, improved dielectrics, and tightly controlled 
contact etching. Figure 5 shows the difference in imple
menting a 1.5-,...m contact structure in n~~1Os and C.MOS. 

Along with the proliferation of C-MOS technologies has 
come a wave of innovation -in 'C-MOS design techniques: 
For digital logic, the, major contenders for broad U$e are 
fuIl complementary design and domino logic, first pro
posed by AT&T Bell Laboratories (Fig. 6). For many 
applications, traditional C-MOS logic is a winner. It re
quires no clocks, has larger' operating margins,' and uses 
fewer transistors, for simple gates. For more complex 
gates, however, domino logic uses fewer transistors and 
runs faster. The speed results from connecting fewer 
transistors in series and reducing gate-fanout loading by 

r r 
high-temperature diffusion rounded, 
the profile of the contact sidewall" 
easing. the step coverage of the metal 
subsequently deposited. Further, the' 
pl~g had self-aligning features. If the 

4. PaJbaok, Theuse of double-metal layers for a six-tranSistor static-RAM cell can prodUce's 
large savings in rea~esta'te. In twO cells implemented With a 1.S.pm design rules;,the savings 
can am\llunl to one1hlrd of the total area: The cell at right uses second-layer metal for bit hnes. 

Electron,ical May 3.' 1984 

23-20 



(0) 

(b) 

METAL 

PHOSPHATE 
GLASS 

FIELD 
OXIDE 

METAL 

~1·~------I~pmBAR-------·~1 

up to a factor of two comp~red with full C-MOS. 
Interestingly; the choice of design' style influences the 

optimal type OrC-MOS well. The speed of full C-MOS is 
limited by the slower of the two transistor polarities. 
Since the trip point is quite close to half the power 
supply, the time required for either transistor type to 
discharge its load capacitance by about 2.5 v sets the 
gate's speed. Since the p-channe! device is the weaker 
one, it pays to choose a well type that improves the p
channel's cor)ductance. P-well- does this because the p
device is fabricated in an uncompensated substrate and 
thus has maximum mobility, Comparisons between n-

5. "king conblet. Contacts anI more diffi
cult to build in C-MOS than in convenllOnal n
MOS, The phosphorous contact plug used in 
noMOS after contact etching (a) adds desir
able features such as reduced junction leak
age and improved step' coverage by the metal 
layer, To gain the same advantages in C
MOS reqUIres greater process control (b), 

and p-well construction show that 
the p-channel's conductance may be 
improved by as much as 10% with 
the proper well type, 

By contrast, domino logic is at its 
best in an n-well technology, Here, 
the n-channel transistor dominates 
both performance and transistor 
count. Placing the n-channel device 
outside the well improves its conduc-
·tance and reduces the dominant par
asitic junction capacitance. Density 
also increases because no well con
tacts are required for the majority of 
the transistors. 

The twin-well approach to CoMas 
blurs these distinctions. In this ap
proach, a high-resistivity epitaxial 
layer is grown on a heavily doped 
starting wafer. Then the doping for 
each transistor polarity may be inde
pendently optimized without need 
for doping comPt:nsation. Perfor
mance arguments based on mobility 
or junction capacitance thus become 
moot. Nonetheless, domino logic will 
still be best on a p-type substrate 
(equivalent to n-well) because it does 

not require well contacts' to collect the large parasitic 
substrate curren'ts from the n-channel transistors, thus 
improving packing density.' 

Matching process to product 

"These and other technical arguments may be conibined 
into a consistent strategy (Fig. 7) for creating a line of 
C-MOS processes serving a broad marketplace. For at 
least the next several years, a complete technology line 
must include C-MOS based on both p- and n-type sub
strates. Fortunately, choosing epitaxial-latchup control 
minimizes the development cost of running both process-

, 6. Logic. Two major con
tenders for digital logic 
design are full comple
mentary (a) and domino 
logiC (b), The former re
quires no clocks and IS 
simpler ior many applica
tions. Domino logiC, 
which performs best In an 

L-. __ ..... _ OUT 

• n-well technology, is fast
er and simpler for more 
complex CirCUitS, 

(0) 

23-21 

(b) 

Electronicsl May 3; 1964 



es. Dynamic RAMs are supported on' the n-well side to 
minimize pattem sensitivities 'induced by substrate cur
rents while protecting the p-channel cell from soft errors. 
E·PROMs are built in a similar n-well C-H·MOS process. 
Placing Intel's noMOS E·PROM cell in an epitaxial p-type 
substrate eliminates parasitic effects caused by high sub
strate currents flowing during' cell programming. 

Microcontrollers land on the n-well side also, so that 
they may incorporate on-chip E·PROM cells. Most micro
controller products come in two versions, OJ;le with on
chip .E-PROM for system-development and manufacturing 
flexibility, and another with on-chip ROM for lowest cost. 
Using n-well C·MOS, a single core design can support, 
both versions. Telecommunications and signal-processing 
products can also take advantage of the n-well E·PROM 
process, both for its high-quality polysilicon-polysilicon 
capacitors and for the E-PROM cell's programmable fea
tures. High-performance static RAMS, whether six-transis
tor or polysilicon-Ioad, can take advantage of a p-well 
C.H.Mosprocess. High-end microprocessors can key off 
the dense n-to-p packing and double-metal capability of
fered by the six-transistor static-RAM process. 

Because these processes are modular, development is' 
simplified and manufacturing overhead is minimized. 
Just as all the 1.5-/-lm C·H-MOS JIl technologies share a 
common transistor module, the difficult contact module 
was developed Ollce to be shared among all. Specializeli 
features such as double polysilicon or double metal are 
extensions of the common base. 

The future 

C-MOS technology is still developing at a frenetic pace. 
Surprisingly, the application of some newer techniques 
and the demands of next-generation circuits may bring 
the various forms of C·MOS closer together, rather than 
further splitting the number of integrated processes. 

One example of this trend is the development of a 
trench-isolation technique for separating nand p devices. 
When this module is perfected, there will be no reason to 
develop six-transistor static-RAM cells on p-well technol
ogy. The near-ideal trench isolation will prevent latchup 
on either substrate type. Similarly, if stacked C-MOS stat
iC-RAM cells can be perfected, there will be no need for 
polysilicon loads. The stacked C-MOS cell will have the 
same density but with improved performance and soft
error immunity. At that time, twin-well C-MOS on a p
type substrl,ite, augmented by specililized features for spe
cific product lines, will become the one approach to a 
broad line of coMbs processes. 

Another factor affecting future C·MOS integration is the 
continued scaling of transistors. It is well known that the 
weaker p-channel transistor- is gradually catching up on 
the n-channel device as channel lengths enter the 'submi
crometer region. Eventually, the performance differences 
may become so small that p- and n-channel devi.;:es will 
be used interchangeably. Before this level is reached, 
however, the 5-Y power-supply standard must. be re
duced. Because of the large base of TTL-compatible de
signs and the impossibility of converting the world to a 
new standard ovemight, components operating from the 
new reduced supply will need to maintain TTL compati
bility and also be able to operate in a system that mixes 

Electronics/May 3, 1984 

E·PROM. 
TELECOM 
CHIPS 

7. TecHnology tr .... A relatively small line·ol C-MOS process varia
tions. or modules. can be matched to a wide vanety of products to 
serve a broad marketplac~. The broken hnes Indicate directions of 

. potential future growth. 

I 

older 5-Y components with lower-voltage ones. An on
chip 5-to-3-Y converter may be one way to solve the 
problem. This technique, however, will waste up to 40% 
of the total chip power within the voltage regulator. 

C·MOS technology provides an elegant solution because 
it can drive TTL-compatible output levels from a system 
power supply as low as 3 Y. Since TTL levels. are refer
enced to the negative (ground) rail, the grounded sub
strate offered by n-well C·MOS is a much-preferred means 
of integrating submicrol)1eter transistors into such a sys
tem. This will be a strong motive to standardize on p
substrate C·MOS. 

A final factor that tends to drive future C-MOS process
es toward commonality is the growing importance of RC 
delays in overall chip performance. The latest high-per
formance static RAMs use an aluminum strap in parallel 
with the polysilicon word line because the RC delay 
induced by even the best refractory metal polycides is 
several nllnoseconds too long. Studies of dynamic RAMS 
larger than 1 megabit similarly indicate that refractory 
word lines will probably be inadequate, forcing the tech
nology to support two layers of metal. Combining these 
observations with those made previously regarding the 
evolution of statiC-RAM cells leads to the conclusion that 
most future C·MOS technologies will have two layers of 
polysilicon as well as two layers of metal. 

The development of silicon-on-insulator technology is 
the one major factor that could renew the divergence of 
C·MOS approaches in the future. However, until the quali
ty of SOl substrates is adequate to support dynamic RAM 
and E-PROM cel!!" and not Just static logic, it will not 
playa major role in a broad-based and modular tet:hnol
ogy strategy. 0 

23·22 



i\dvanced ~lI 
Packaging Information 



, . 



CHAPTER 24 
ADVANCED PACKAGING 

24.1 Introduction 

Today, system designers using LSI and VLSI devices are 
continuously facing problems associated with achieving 
the highest system performance level, and most complex 
functional level of a particular system application in the 
smallest physical size possible. Until recently the available 
solutions to these device problems were limited to the 
traditional standard dual-inline-package (DIP) based on 
lOOmii center-to-center lead spacing and flat packages 
(FP). Today, these device problems are being solved in 
a number of new ways; DIPs based on 50 mil center-to
center lead spacing, surface mounted small outline DIP, 
surface mounted chip carriers, surface mounted gull-wing 
flat package and pin grid arrays. Among these possible 
solutions the two that are emerging as the next standard 
IC packages for LSIIVLSI devices are the surface mounted 
chip carrier and the pin grid an;ay. ' 

24.2 What Are Surface Mounted 
Chip Carriers? 

The chip carrier is basically the business portion of a DIP. 
Chip carriers are available in two general types: leadless 
and leaded. 

The leadless chip carrier construction is accomplished in 
much the same manner as the'multi-layer ceramic DIP 
package, but it is missing the side-brazed legs and much 
of the ceramic surrounding the die cavity area. Instead, 
it 'consists of a ceramic package with 1/0 pads on all four 
sides, a die cavity area, metalization traces to the 1/0 
pads, and a hermetically sealable lid. Leadless chip car
riers are available in either square or rectangular package 
outlines. The leadless chip carrier can be attached to a 
board surface either directly, by socketing, or by the ad
dition of add-on leads. 

The leaded- chip carrier construction is accomplished also 
in much the same manner as the plastic DIP package, but 
has leads that are bent down and under the package on 
all four sides rather than like the DIP. It is also missing 
much of the plastic surrounding the die platform and con
sists of plastic material encapsulating the die platform with 
110 pads or leads on all four sides. The plastic leaded chip 
carrier is available in square or rectangular package out
line, that can be attached to a board surface either directly 
or by a socket. 

Chip carriers are registered JEDEC standard packages. 
The standard is based upon two basic package types, one 
with 50mil center-to-center terminal spacing, the other 
with 40mil spacing. Each package: type was developed 

24-1. 

with certain application in mind, such as mounting meth
ods, board material, thermal characteristics and external 
features. Intel's Microcontroller Operation offers two va
rieties of JEDEC packages, both with 50mil spacing, a 
square ceramic leadless type and a square plastic leaded 
type. 

In addition to these mechanical packaging advantages, 
there are also electrical benefits. The package arrangement 
of the chip carriers 110 pads, on all four sides, allows for 
package traces to be shorter and more uniform in length. 
This allows lower resistance, less capacitance and less 
inductance, resulting in higher system performance and 
improved switching characteristics. 

24.3 Why Chip Carriers? 

Figure 24.1 shows the differences between the surface 
area (in2) versus pin count of both a ceramic dip and a 
ceramic leadless chip carrier device. 'Note that l!ll 18-pad 
chip carrier offers a 57% saving in area. As the pin counts 
increase, the chip carrier surface area advantage becomes 
significantly more obvious. This space efficiency allows 
the system designer to increase the number of components 
on a board or decrease the overall board size and, thus, 
the overall system size. 

3.0 

1.0 

-- CERAMIC DIP 

---- CHIP CARRIER (LEADLESS, CERAMIC) 

.. ~-.----.. -.-_.--- .. ----_. 
~----

16 18 20 22 24 28 32 40 44 48 52 64 68 

PIN COUNT 

FlgLlr.e 24.1. Package Area 



ADVANCED PACKAGING 

3.0 

- - ~ ~ CHIP CARRIER (PLASTIC, LEADED) 

-,- PLASTIC blP 

1.0, ..... 
,-' 

_-.AI""'''' --_-. .... 
16 18 20 22 24 28 32 40 44 48 52 54 68 

PIN COUNT 

Figure 24.2. Package Area 

Figure 24.2 shows the differences between the surface 
area (in2) versus pin count of both a plastic DIP and a 
plastic Leaded Chip Carrier device. As can be seen, the 
savings in area is also as significant as the pin count 
increases, allowing the same system benefits. 

However. the biggest advantage a ceramic chip carrier has 
over a ceramic dip is in its weight. Figure 24.3 shows the 
difference between the weight (grams) versus pin count 
of both ceramic DIP and ceramic Leadless Chip Carrier. 

14 

12 

10 

_ _ _ _ _ CHIP CARRIERS (LEAD LESS CERAMIC) 

--. CERAMIC DIP 

... -- ----.... ------....... ',.."..,. 

18 28 48 
PIN COUNT 

Figure 24.3. Package Weight 

.A 
.' 

54 

For an 18-pin count, there is a 77% weight saving and as 
, the pin counts increase to 28 and to 48. this weight savings 

increases to 90% and 95%, respectively. In the case of 
the plastic leaded chip carrier, the weight savings over a 
plastic DIP is noticeable but not significant. However, it 
is in the ability to decrease the board size and, thus, 
economizing on material and weight reduction that the 
significant advantage exists. 

24.4 What Are Pin Grid Arrays? 
The Pin Grid Array is basically a combination of the 
ceramic DIP and ceramic Leadless Chip C,arrier. The Pin 
Grid Array construction is accomplished in much the same 
manner as the multi-layer ceramic DIP, but it is missing 
the side-brazed legs and much of the ceramic surrounding 
the die cavity. Instead, it consists of a ceramie package 
with leads coming off the bottom in rows or circular pat
terns. The Pin Grid Array is available in square package 
outlines with lead spacing of 100 mils and can be attached 
to a board in the same manner as a DIP. 

Pin Grid Arrays are being proposed as JEDEC standard 
packages and will have from 1 to 10 nested rows of legs 
and may have a die cavity mounting area oriented up or 
down. 

24.5 Why Pin Grid Array? 
Figure 24.4 shows the difference between the surface area 
(in2) versus pin count of both a 50 mil spacing chip carrier 
and a 100 mil spacing Pin Grid Array device. Note that 
at approximately 68 pins and ab9ve the Pin Grid Array 
becomes a better solution for higher pin count require
ments than the chip carrier. In addition, the 100 mil lead 
spacing and through board mounting'technique provides 
customers with an assembly technology that is familiar. 

3.0 

;;-

~ 
~ 2.0 

~ 

~ 
II: 

~ 

1.0 

24-2, 

2040 

, 
,,/1 

"/,,, 
,tI 

,',',J/," .' ,. 

"II 

". ," 

_-..t _ 0.500" CHIP CARRIER 

---- 0.100' PIN GRID ' 

80 120 180 200 240 280 300 

PIN COUNT 

Figure 24.4 Surface Array 



ADVANCED) PACKAGING 

CERAMIC LEADLESS CHIP CARRIER 
All dimensions in inches and (millimeters) 

44-Leadless Hermetic Chip Carrier 
JEDEC Package Type C 

50011210'0) 

HAIOO6I 
&20-(15748) 
6OOqS2401 

m 

::g:::!I+1 B 10101 r--- 620 (15 748) r-.;-, 
1.rv""V"V' '''('''''} L:±:J 

o 
44 1 

24-3 

620(15748) 
REF 

.-099(2514) 
081 (2057) 

149(3784) 
120(3048) 

660 (18 764) 
640(16256) 

[+[Al}tOJ 

PIN 1 INDEX CORNER 



ADVANCED PACKAGING 

CERAMIC LEAD LESS CHIP CARRIER 
All dimensions in inches and (millimeters)' 

44-Leadl ... Hermetic ChIp Cerrler 
JEDEC Package Type C 

J.---"20 (1U4I) REF'--_ 

.. 1 

24-4 

TYP4PLCS 



ADVANCED PACKAGING 

PLASTIC LEADED CHIP CARRIER 
All dimensions In Inches and (millimeters) 

44-LMcIed Chip C.rrIer 
JEDEC Package Type C 

1 44 

\ 
PIN 1 
INDICATOR 

I~_" ... 
~.1111(17") 

_(1 ... 12) 

.II1II(1"'10) 

24-5 

::::::::-1 j 
.G21 (0.133) 

~T 
c:f::IH=*=- (0.113) 
~ 



infel" . ADYANCEDPACKAGING 

Pinout. .. C! u "': "! u t i ~ MCS<!l-51 Family 0: ~ 0: ~ 0: z :? ~ 

LeJ L5J L4J' : 3: : 2: '1' 1441 ~~ ~~ :.,: ~40: 
'-..I '-..J LJ LJ L..J '-..J 

P1.S =~j 
r--
L.!9_ PO.' 

P1.S =a: J 
r--
L~ PO.S 

=(J r--
PO.S PH L~7_ 

RST - -, 
...!~J 

r--
L~_ PO.7 

P3.0 
--, 
_'!.J 8051131· 

r--
L~S_ EA 

He --, 
.1!J 8052/32" r--

l~_ Ne 

--, 80C51131~ r--
P3.1 ]:!.J L~3_ ALE 

P3.2 
--, 
~~J 

r--
L.12_ PSEN 

P3.3 
--, 
_'~J 

r--
L~~ P2.7 

P3.' 
--, 
.1!.J 

r--
l~C!.. P26 

P3S 
--, 
...!?.J 

r--
l~9_ P2 S 

'-, r, r, ;-, r, r, 

~4: 
r, r' r' r-, 

'181 1191 :20: 121: :22: :23: 1251 126' :27; ;28: , , I , I , 

.. ... N :;; '" U C> N .. .. 
~ It ..J {!' Z ~ ~ ~ &: &: .. i! ... 

" )( 

"': .. N '" ~ U 
u t ~ i ~ 0: ~ ~ 0: 0. Z :? 

L6J L5J L4J : 3: : 21 '1 ' ~~< !43: :42: :411 140: 
L....I '-..J I 1 ....... ~..J L..J '-..J I 1 

P1.S ' , PO.' c...J 

P16 PO.S 

P1.7 PO.6 

HIT PO.7 

P3.0 EAlvPP 

Ne . 8751H* Ne 

P3.1 ALEIPROO 

PU P§EN 

P3.3 P2.7 

P3.' P2.6 

P3.S P2.S r, r, r, '-, r, r' -, r, r' r., r-, 
'181 '191 [20: 121 , 1221 :23: :24: 1251 1261 ,27 1 ;28: , I I , 1 I , , I I .. ... 

~ '" U C! N 

~ ~ ~ It ..J '" z &: &: '" .. i! > 0. :; .. 

"Top View Looking Through Package 



inter ADVANCED PACKAGING 

Pinouts Ii 
... .. .. u 

I: ~ ~ u ~ ~ ~ MCS®-48 Family " " :;! z ~ ;::: 

L&J L5J L4J : 3: : 2: '" 1441 ~~ ~5 :41\ :40: 
'--' '--' LJ LJ L~ '--' 

fliT' =7=J 
r--
L!'_ P2. 

EA =~J 
r--
L~8_ P,7 

=~J 
r--

iifj L~7_ P,. 

JSftR 
--, 
2~.J 

r--
l~6_ PIS 

WI! 
--, 
_ 1.!.J 

r--
L~5 _ Pl. 

Ne --, 
2~.J 80C49/39* 

r--
L~_ Ne 

ALE --, 
~:!.J 

r--
L~ P13 

DB. --, 
~~j 

r--
l~t 

P12 

DB, --, 
_1~J 

r--
l~~ 

PH 

DB. 
--, 
~~J 

r--
l~O_ 

P1Q 

'083 
--, 
~~j 

r--
L~~ 

VDD 

r, r, r, ~, r, r' -, r, r' r' r, 
1181 '191 :20:, 1211 1221 :23: :24: ,25; 126· :27; :28: , I I I 

" I 

, I , , 
rJ i rl 01> 

co u Ii! ~ 
... 

~ " 0 0 0 ~ z .. ~ 0 
a: .. 

I 
... .. -' u 

I: ~ ~ u ~ ~ 1.: 
)( " :;! z ~ ;::: .. 

LsJ LsJ L4J : 3: : 2 : ',' '«' ~~ ~~ 1411 ~ '--' '--' 
I , LJ L~ 
:- I 

iNf' LJ P2' 

EA P17 

jjjj P16 

i'SEIiI P15 

WI! Pl. 

Ne 8749H* Ne 

ALE P,3 

DB. P12 

DB, PI1 

DB. P1Q 

DB3 VDD 
r., r, r, -, r, r, -, r, r' r-' c, 
1181 1191 :20: 1211 ;22: :23: :24: ;25; 1261 :271 :28: , I I I , I I , 

rJ r!1 rl 01> 
., u Ii! N :::l ~ " 0 0 0 0 ~ z .. .. .. 0 

a: .. 

·Top View Looking Through Package 

24-7 



ADVANCED PACKAGtNG 

CERAMIC PIN GRID ARRAY 
All dimensions in inches and (millimeters) 

68-Pln Hermetic Pin Grid Array 

1~1.165(29.591) 

.030 TYP 3 PLC~~ 1.135 (~8.829) 

T@@@:=:@;;;:O =;@;;;:o =;@~@~@;;=;:@F'\h:-
.I030@@@@@@@@@ @ 

@@ @@ 

@@ @@ 

@@ @@ 

SWEOGE PIN 

PIN 1 

i i[::;:::~::::: 
@@ 

@@ 
~~=======F~==~ 

PIN 110 
CORNER 

24-8 

SWEDGE PIN ~~--., 

.055 (1.397) 

~ 
SEATING PLANE 



Pinouts 
MCS®-96 Family 

PIN 

1 

2 

3 

4 

5 

S 

7 

8 

9 

10 

11 
12 

13 

14 

15 

16 

17 

18 

20 

22 

24 

26 

28 

30 

32 

34 

SYMBOL 

ACH7/PO.7 

ACH8/PO.S 

ACH2IPO.2 

ACHO/PO.O 

ACH1/PO.l 

ACH3/PO.3 

NMI -
EA 

VCC 

VSS 

XTALl 

XTAL2 

CLKOUT 

TEsT 
INST 

ALE 

RD 

ADVANCED PACKAGING 

17 15 13 11 9 7 5 3 1 
19 16 14 12 10 8 6 4 2 68 

21 67 66 

23 65 64 

25 63 62 

27 MCS®-96* 61 60 

29 59 58 

31 57 56 

33 55 54 

36 38 40 42 44 46 48 50 53 52 
35 37 39 41 43 45 47 49 51 

MCS®-96 Pin Table 

PIN SYMBOL PIN SYMBOL PIN SYMBOL 

18 ADO/P3.0 35 READY 52 HSI2IHS04 

19 AD1/P3.1 36 T2RST/P2.4 53 HSI1 

20 AD2IP3.2 37 BHE 54 HSIO 

21 AD3IP3.3 38 WR 55 Pl.4 

22 AD4/P3.4 39 PWMlP2.5 56 P1.3 

23 ADSlP3.5 40 P2.7 57 P1.2 

24 AD6/P3.6 41 VBB 58 Pl.l 

25 AD7/P3.7 42 VSS 59 Pl.0 

26 AD8/P4.0 43 HS03 60 TXD/P2.0 

27 AD9/P4.1 44 HS02 61 RXD/P2.1 

28 AD10/P4.2 45 P2.6 62 REsET 
29 ADll/P4.3 46 Pl.7 63 EXTINT/P2.2 

30 ADl21P4.4 47 Pl.6 64 VPD 

31 AD13/P4.5 46 Pl.5 65 VREF 

32 AD141P4.8 49 HSOl 66 ANGND 

33 AD15/P4.7 50 HSOO 67 ACH4/PO.4 

34 T2CLKlP2.3 51 HSI3/HS05 68 ACH5/PO.5 

* Top View Looking Through Package 

24-9 





AIIIZOIfA 

Intel Corp 
11225 N. 28th Drive 
Suite 2140 
Phoenix 85029 
Tel (602) 869-4980 

Intel Corp 
1161 N EI Dorado Place 
Suite 301 
Tuceon 95715 
Tel (602) 299-6815 -lmel Corp 
21515 Vanowen Street 
Suite 116 

¥:.~8rar04~J~gg 
I 

Intel Corp 

~~ ~'5 Surte 101 

Tel (916) 920-8096 

InIeJ ""'" 4350 Executive Dnve 
Suite 150 

r,g) °4'WfJ&'1 
Intel Corp-
2000 EaSt 4th Street 
Suite 100 
Santa Ana 92705 

~ (7~~5~:;m2 
Intel Corp-
1350 Shorebttd Way 
Mt VI&N 94043 

~(4~b~9g6 
910-338·0255 

COLOIIADO 
Intel Corp 
4445 Northpark DrIve 
Stille 100 

~7:3) Sg~~?07 
Intel Corp· 
650 S Cherry Street 
Sulle 720 
Denver 80222 

~ (a:d.J~~2~:6 
CONIIICTICUT 

l:IMC:~a'n Road 

t!~m;~~O 
EMC Corp 
222 Summer Street 
Stamford 06901 
Tel (203) 327·2934 

I'LORIDA 

~ ~estmonte OIwe 
Suite 105 
Altamonte Springs 32714 
Tel. (305) 869-5588 

~~ ~te 62nd Street 
Sulle 104 
Ft. lat.lderdale 33309 

~(~,5J.Jr= 

DOMESTIC SALES OFFICES 

fLORIDA _ 

~'r:oo~. Street South 
Suite 170 

¥~:~.:~~02 -~:O~te ParKway 
Sulll 200 
Norcroes 30092 
Tal' (404) 449-0541 

....-
Intel Corp-
2550 Gulf Road 
Suite 815 
AoUtng Meadows 60008 

~(3~~~~ 

-.. 
Intel Corp 
8777 Purdue Road 
Sutte 125 
Indianapolis 46268 
Tel (317) 875-0623 _A 
InIoI """" 81 And..... Bwldl"&", 
~S1Rapl~~~2' II NE 
Tel (319) 393·5510 -Intel Corp 
8400 W 110th Street 
Suite 170 
OVerland Park 66210 
Tel (9!3) 642-8080 

LOIH8IAIIA 

~':l~)~,~s1ems Corp 

IIARYLANO 
InteICocp· 
7321 Parkway' Onve Soufl:! 
Suite C 
Hanover 21076 

~(3jl,'~~ 
Intel Corp 
7833' Walker OnV8 
Greenbelt 20770 
Tel (301) 441·1020 

IIAI8ACIt\I8IT1 
Intel Corp· 
27 IndUstrIal Avenue 
Chelmsford 01824 

~(6irU~S: -Intel Corp. 
7071 Orchard Lake Road 
8lJltel00 
W881 B10omfIeId 48033 
Tel (313) 851-8096 _A 
Intel Corp 
3500 W 80th Street 
Sune 360 -:lr.': 55431 
~ (6J'~5~~S:~~2 
IIII80URI 
Intel Corp, 
~ ~ City Expr8Slway 

f:h (31:r '~:OO 

__V 
=.,.~ III 
RariIan Cenm 
Edleon 08837 

~ (~N).£~o:' 
_ IIEXICO 

~ual Boulevard N E. 
B 295 

_ YOIIK 

, Parl<way 

~3~uaP:rord.Vlctor Road 
Vimor 14564 

~:{7Jf6.l~~~~ 
HOIITII c..-.... 
Intel Corp 
2700 Wycliff Road 
Sulle 102 

~'t9~7~;-8022 
OHIO 
Intel Corp· 
6500 Poe A\Ienue 

~Jn:~~~ 

OKLAHOIIA 

Inlet Corp. 
4157 S Harvard Avenue 
Surte 123 
Tulsa 74135 
Tel. (918) 749-8688 --Intel Corp 
10700 S W Beaverton 
Hilladal8 Highway 
Sutte 22 
Baavertnn 97005 

~·(~3J..rr~~ 
PENNSYLVANIA 
Intel Corp. 
455 PJnnsyNania. Avenue 
Fort WashiilgIon 19034 

~:(2Jf~~2WW 
Inlel porp. 
400 Penn Genler Boulevard 
SUite 610 

~~ ~33170 

300 

PUNlYLV~ (ConN) 

QED ElectronIcs 
139 Terwood: Road 
Willow Grove 19090 
Tel (215) 657·5600 

TUAI 

Intel Corp.-
12300 Ford Road 

Intel Corp-
7322 S W. Freeway 
Suite 1490 
Houston 77074 

~(~~~ 
Industrial DIgital Systems Corp. 
5925 Sovereign 
SUJle 101 
Houston 77036 
Tel (713)988-9421 = f'~nderson !..ana 
Surle 314 
AuSfln 78752 
Tel (512) 454·3£28 

UTA!! 
Intel CorP 
5201 Green Street 
Suite 290 

f:l' f:;) ~~~~\23 -~-:3 rs:ia Ro8a Road 
Suite 109 
RIchmond 23288 
Tel (804) 282-5668 w_ 
= ~~uuan Road 
.... 102 
Spokane 99206 
Tel (509) 928-8086 -
CANADA 
ONfARtO 

Road 

lmel Semiconductor of Ganada, Ltd 
Suite 202, Bell Mews 

~mH78R2 
+~tJ61~~714 

QUEIEC 

of Canada, Ltd 

Intel SemlcondUClof of ean.da, Ltd. 
3860 Cote Vertu Ad 
Suite 210 
St. Laurent H4R 1V4 

~LJ:51~~ 

tF1e1d Application Locatton 



inter 
ALAItAMA 
tArrow ElectronICS, Inc 
3611 Memorial Parkway So 
Huntsville 35801 
Tel (205) 882·2730 

ARIZONA 

tHamlltOn/Avnet ElectroniCS 
505 S Madison Orlve 
Tempe 85281 

~ (~lJ.9~i£~4.? 

CALIFORNIA 

tArrow ElectroniCS, Inc 
521 Weddell DrIVe 
Sunnyvale 94086 

~.(4:J_3~~ 
tArrow EleclronlCS, II'IC 
1 

Arrow ElectronICS, Inc 
2961 Dow Avenue 
T ualln 92680 

~ (7Jt6_5s:t2S:~l 
tAvnel ElectronICS 
350 McCormick Avenue 
Costa Mesa 92626 

~ (7~~5~~1~~' 
tHamlllon/Avnet Electrorncs 
1175 Bordeaux Onve 
Sunnyvale 94086 

~ (~,8J.31~~:' 
tHamllton/Avn&t Electronics 

~5 Dy/8Wf'm~2:venue 
Tel (61~ 571-7500 
TWX 916-595-2638 

tHamllton/Avnet ElectronICS 
4103 Northgate Boulevard 
SlICfllffitInto 95834 
Tel (916) 920-3150 

Hamdton/Avnet ElectronICS 
3002 G Street 
Ontario 91311 
Tel (714) 989-9411 

tHamitton Electro Sales 
3170 Pullman Street 
Costa Mesa 92626 

~ (7J:6.5t'~~gg 
Hamilton Eleclro Sales 
9650 De SOlo Avenue 
Chatsworth 91311 
Tel (818) 100-6500 

KteruIff Electrorncs, Inc := J~h351~~nue 
~(~J.3~~b' 

DOMESTIC D.ISTRIBUTORS 

CALIFORNIA, _dl 

Krerulff Eleclronlt;lS, Inc 
14101 FrankOn Avenue 
Tustin, 92680 ' 

~ (7JU.5~~::lJJ 
Kierulff ElectronICs, Inc 
5650 JlIlson Avenue 
Commerce 90040 

~ (2J~6.k~~~5 
twYIe DIStribUtion Group 
124 Maryland Street 

l~~~~or7111 
rm~ =~tl~~~P 
Irvine 92714 

~(7J1~r~,~ 

nr~ S~I~~: g:r 
Rancho Cordova ,95670 
Tel (916) 638-5262 

rstse~:!= = 
San ~o92123 
Tel (61 565-9171 
TWX 91 -335·1590 

~e =:I~~en<:UP 
Santa Clara 95051 

~ ("s~J.3~rO~~ 

~~o ~= Avenue 
Irvtne 92750 

~ (7J1'6-3~1!9ms 

~~$~:SChlC8' 
~~Intl(~~) ~~~2649 
TWX 91()"595-2642 

COI.ORADO 

l1"t~ ~~~:n~~~oup 
Thornton 80241 

~ (3~~.J~o~~3 
Avnet ElectroniCS 
Orchard Road 

80111 
74()..1017 

TWX 910·935-0787 

CONNEC'nCUT 

tArrow EIectroI'llCS, Inc 
12 Beaumont Road 

~~h~~37 =~41 
TWX 710-476-0162 

~~~:~A~~=s 
Commerce Drive
Da"bu~06810
~(271R4~~~
tpIoneer Northeast EleclfOl\lcs
112 Mlln Street
Norwalk 06851
Tel (203) 853·1515
TWX 71Q..468-3373

FLOIIIOA

tArrow ElectrOnICS, Inc
1 NE

tHBmllton/Avnet ElectronICS
3197 Tech Drive North

~ =b~::Ig2
TWX 810-863-0374

FLORIDA _dl

tPioneer EleclronlCS
221 N lake BouIeYard
Suite 412
Alia Monle SP~ 32701
~ (3~15J-8~..Q284

GI_
t~~~ro8::' Inc
Norcross 30071

~(?'J.7=~2
tHamilton
5825 0
Non:_
Tel (404
TWX .,

tPloI'I8$I" EIeclrOOIcs
58358 Peachtree Corners E
Norcross 30092
Norcross 30092

~(~~J.7~~~W
ILUIIOI8

tHamUton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60106

~(3J~_2~7~
tPioneer Electrorucs
1551 Carmen DOve

~: ~3~e :3~OOO7
TWX 916.222.1834 -tArrow E\ectrofllCS, Inc
2718 Rand Road
1~~~~41
W~ 810·341-8119

tHamllton/Avnet ElectronICS
485 Gradle Drive
Carmel 46032

~(3Jr6.~
tPtoneer ElectronICS
6408 Caslleplace Ol'ive
IndianapoliS 46250 "

~(3Jr~=1~ --
MARYLAND

ArrcNI Electronics, Inc
=rsG=Road #H
Columbia 21046

~(~ll~S:~
tHamdton/Avnet EIeClfOl'Ncs
6822 Oak Hall lane
Columbia 21045

~(3~~~~~

t~ 1~~t:!f1n~rporatlon
"_-1.s20877
~.(3~~-828-9~~

IIAIOAO*JIIaTnI

t~E~,1nc
Wobum 0180t

~:(6~I6~~jag

!~=/A~~
Wobum 01801

~(6g~~~
tPioneer NortheaSt E\ecIronica '
44 Ha:rtwen Avenue

~~X'1m 'f,[~200
TWX 710-328-6617 --tArrow E~. Inc
3810 Varsity Drive
Ann Arbor 48104

~ (3J~~2~~~8

1

tHarrullon/ Avnet Electronics
32487 Schoolcraft Road
Uvorna 48150

~:·(3J~6.2~~~1~

t __

10203 Bran Road East
Minnetonka 55343
~(6J~~t~4 _,
~~=nJd&.lnc
St louIS 63141

~.(3J16.7~:

,.w_
tArrow ElecIrorvcs, Inc
1 PerImeter RQad
Manchester 03103

~·(ew~2~
New JERNV

tHamihon/Avnet E1ectronIce
1 ~ Avenue

~. ~"I 08003
Tel (609) 424.()110
TWX 11()"940.Q262

tHanlIhon/ Avnet ElectronIcs
10 Industrial
Fllrfield 07006

~(~1l1~~

, tMicrocomputer Sys1em Techrncal DemonIlratorCenters

inter
NEW JUlEY (Cent'd)

tPtoneer Northeast ElectrOl'llCS
45"'" ..
Ptnabrook 07058

~ (2~6.7~:;'~~W
tMTl Systems Sales
383 Route 46 W
FatrHeld 07006
Tel (201) 227·5552

MlW MEXICO

lEW VOIIK

tArrow Electronics. Inc
25 Hub Drive
Melville 11735

~(5Jf6.2~=
fArrow ElectronICS, Inc
3000 South wtnton Road
Rochestet 14623
Tel (716) 275-0300
TWX 510-253-4766

fArrow Electronics. Inc
20 Oser Avenue

~1'2~1:~
TWX 510-227-6623

tHamdton/Avnel Electronic,
333 Metro Park
Rochester 14623

~ (7Jf6.2~~~~~

tHamtiton/Avnel ElectronICS
5 Hub Drive
re:1vl~~16)l~= 11747
TWX 51()"224.6166

tPtoneer Northeast Electrorucs
1806 Vestal Parkway East
Vestal 13860

~ (eglJ.2~~?C:;1'
tPtoneer N~ EleclrollICII

~~~a~o~tla~\1797 
~ (5Jf6.2~~~21~ 
tF'Ioneef Northeast Eleclrol\lcs 
840 F!:1 Park 14450 
Tel (71 381-7070 
TWX 51 253-7001 

tMTI Systems Sales 
38 Harbor Park OrI\lEl 
PO Box 271 

~ (~1;~~~~050 

DOMESTIC DISTRIBUTORS 

-... CAROLINA 

fArrow Electronics, Inc 
5240 Greandany Road 

ftfgJ~r!~~2 

tArrow ElectroniCS. Inc 
7620 McEwen Road 
CenteMlIe 45459 :x (5Jn-4~~~~ 

• fArrow ElectroniCS, Inc 
«1238 Cochran Road 
Solon 44139 . 
Tel (216) 248-3990 
TWX 81().427-9409 

tHamlHon/Avnet Electrorncs 
954 Senate Dnve 
Dayton 45459 
Tel (513) 433·0610 
lWX 810-450-2531 

tPloneer ElectroniCS 
4433 Interpomt Boulevard 
Dayton 45424 

~ (5Jf~4~~~~ 

l~~ ~k~o~~ 
Cleveland 44105 
Tel (216) 587-3600 
lWX 810-422-2211 

0IC1.AH0IIA 
tArrow ElectronICS, Inc 
4719 5 Memorral Drive 
Tulsa 74145 
Tel (918) 665-7,700 --tAlmac ElectronICS Corporation 
8022 5 W Nimbus, Bldg 7 
Beaverton 97005 

~ (~~J_4t~8~~730 

PENNSYLVANIA 
t Arrow Electl'OfllCS, Inc 
650 Seco Road 
Monroeville 15146 
Tel (412) 856-7000 

tPloneer ElectroniCS 
259 Kappa Drrve 
P1ttsbU[¥:h 15238 

~ (47f6_71~~3~~~ 

PENNSVLVANIA (Confd) 

tPioneer ElectronICS 
261 Gibraltar Road 
Horsham 19044 

~(2~f6~~ 
TEXAS 

tArrow EIeotronIcs, Inc 
3220 Commander Dnve 
Carrollton 75006 ' 
t:x,(2J~~s;' 

f~K~=ICS, Inc 
SUite 100 
Houston 77099 

~(7J~~~': 
tArrow ElectronICS, I~ 
2227 W Braker Lane 
Austin 78758 

~ {5Jfb_8~~1~~ 
tHam~ton/Avnet 8ectromcs 
2401 Rutland 
Austin 78757 

~ (5J~6.a~~~&~1 
tHamllton/ Avnet ElectronICS 
2111 W Walnut Hili Lane 
IMng 75062 

~(2Jn-8~5~~ 
tHamllton/Avnet ElectronICS 
8750 West Park 
Hosuton 77063 

~ (7Jr6~~~~~ 
tPloneer Electromcs 
9901 Burnet Road 
Aushn 78758 

~(5JfL~~~~ 
tPtoneer ElectronICS 

~~~ 'rs'm Road 

~(2J~6_=~0
tPloneer ElectrOniCS
5853 PoInt West Drive
Houston 77036
Tet (713) 988-5555
lWX <910-881-1606

UTAH

tHamdton/Avnet Etectromcs
1585 West 2100 South

f~" (':o'ti ~_2~9
TWX 910-925-4;018

Wyle DIStrIbutIon Group
1959 South 4130 West, Un.! B

~~" (~i ~7\~~104
WA8HINCITON

t Almac ElectronICS Corporahon
14360 5 E Easigate Way
Bellevue 98007

~ {2~?J_4~~2~2
tArrow electroniCS, Inc
14320 NE 21st Street
Bellevue 98007 ,
Tel (206) 643-4800
TWX 910-444-2017

"-N
tArrow EIectrontca, Inc 430 W RauBSOn Avenue
Oekcreek 53154

~("J~~2~
tHamllton/ Avnet ElectronICS
2975 Moorland Road
New BerNn 53151

~ (4Jn.~~~~0

CANADA'
ALlERTA

tHam~ton/ Avnet ElectronIcs
2816 21st 'Street N E

~~70312~30~ia6
TWX Q3.a27-642

NE

IRITIIH CCH.UIIIIA

ZentronlCB

~r:;~~ ~rt Road
Tel (604) 273-5575
TWX 04-5077-89

MANITOU

ZentronlCS
590 Berry Street

~~)R.j~5~~
ONTARIO

Hamilton/Avnel Electronics
6845,_ ""'"
Uruts G & H
Mlssl688Uga L4V 1R2

~ (4JfL~~~~2
Hamilton! Avnel Electronics
210 Colonnade Road South
Napean K2E 7L5
Tel (613) 226-1700
TWX 05-349-71

ZentronlCS
8 Tilbury Court
Brempton L6T 3T4
Tel (416) 451~
TWX 06-976-78

Zentronlcs
564/10 Weber Street North
Waterloo N2l 5Cf1
Tel (519) 884-5706

Zentrontcs
155 Colonnade Road
Unit 17
Napean K2E 7Kl
Tel (613) 225.a840
TWX 06-976-78

QUEBEC

Hamllton/Avnet Electronics
2670 Sabourin Street
51 laurent H45 1M2

~.(5J~6-4~~~~3
ZenttonlCS
505 locke Street
51 laurent H4T lXt
Tel (514) ,735-5361
TWX 05-827-535

t~lcrocomputer System TechnIcal Demonstrator Centers:

inter
.. ..-
Intel Corporation SA

~ d~ouIln a PSptef 51
8011e 1
9-1160 Bruaae18
Tel. (02)661 07 11
TElEX: 24814 _.

--Intel Corporation, S A A L •
Balance

EUROPEAN SALES ,OFFICES

--Inlet Corporation, S.A.R L
Immeuble BBC
4 QuI! des Etrolts
69005 Lyon
Tel (7) 842 40 89
TELEX. 305153

WUTGIlWAHY

Intel SemleondlJctor GmbH·
Seuilslfea8e 27
0-8000 Munchen 2
Tel (89) 538$1
TELEX 05-23177 INTl 0

GmbH"

Intel Semttonductor GmbH
Brueckstrasse 61
7012 Fellbach
trlef'~2~a: ,Ms 0

GmbH"
5'

IlRAEL
Inlel SemiconductOt Lid,"
PO Box 1659
Hada
Tel' 4/524 261
TELEX 46511

1TALY

T

-...-

Spa"

Intel Semlconductol Nederland a,v'

:=tre:'we:ul~ng
3068 Rotterdam
Tel (10) 21 23 77
TELEX- 22283

NORWAY

~~I ~~2A/S
Hvanwe"" 4
N-20t3

¥~.~) 742 420
TELEX 18018

SPAIN

Intellberta
calle Zurbaran 28
Madrid 04
Tel' (34) 1410 40 04
TELEX' 46880

SWEDEN
lmel Sweden A B.'

=ns~~a
Tet (08) 734 01 00
TELEX 12261

SW112E1U.AND

UMTED KINGDOM

"Field AppltC8tion Location

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

'-
SA
de Guerre 94

-lZ=~"2:BA
SF-00210
Helsmki 21
Tel (0) 692 60 22
TElEX 1201 224 Flfon SF

FRANCE
Ge m
Z.I de
A,.,...
91943

+~J~)

Metrologle
,La 'Tour d' Asnteres
4, Avenue Laurent Cely
926Q6..Asnleres
Tel (1) 790 62 40
TELEX 611·448

Tekelec AJrtronic

,P88

B,P 2

WUT GIRlWI\'

CES Computer Electronics Systems

1TALY

51

E/5

Tel. (02) 82470
TELEX 311351

NETHERLANDS

Koning & Hartman

~~~ 19220 
2544 EN's Gravenhage 
t~tJ1 Jrgka 210101 

NORWAY 
Nordlsk Elektronlc (Norge) A/S 
Postofflce Box 122 

~~s~:d4 
Tel, (2) 846 210 
TELEX 17546 

..o.rru-
"",am 
Componentes E ElectronlCa LOA 
~~1~barda, 133 

Tel. (19) 545 313 
TElEX 14182 BrIek$·P 

SPAll 

Interface SA 
Av Pompeu Fabra 12 
08024 Barcelona 
Tel (3) 219 80 11 
TELE><: 51508. 

ITT SESA 
~~3~~ '{Bgel 21, 6 PISO 
Tel (34) 14 1954 00 
TELEX 27461 

SWEDEN 

AS Gosta Backstrom 
Box 12009 

~~h~scnhol~ 12 
Tel (8) 541 080 
TELEX 10135 

SWITZERLAND 
Industrade AG 
HerlistraS$8 31 
CH-8304 .Weillsellen 
Tel tOt) 830 50 40 
TELEX ~6788 INOEL CH 

UNITED KI~ 
Bytech Ltd 
Unit 57 
london Road 
Earley, ReadIng 
Berkstiire 
Tel' (0734) 61031 
TELEX 848215 

Comway' Mlcrosystems Ltd 
Market Street 
UK·Bracknell, Berkst)lre 

~~t~~ 8~:~bl 55333 

Jermyn Industnes 
Vestry Estate 
Sevenoaks, Kent 
Tel' (0732)' 450144 
TELEX 95142 

MEDL 

,pp 

YUGOBLAVIA. 

., 



inter 

NSW, 2065 

~=..r:,:) 
leYeI~ Highway 

Crowe Nest, NSW, 2085 
Tel' 011-61·2·957·2744 
TELEX 79()..20097 
FAX 011-61·2-957-274<4 

_KONG 
lnlel Semlcqndootor Ltd,-
1701-3 ~Cen1re 

tel~5-215-311 
TWX 804m ITLHK 

INTERNATIONAL SALES OFFICES _ .. 
Intel Japan K.t< 
5-6 TCiModai, T~ 
t:t=:as'\'rkl-Mn 300-26 
TELEX 03658-180 

InIeI Japan KI<,-' 
2·1·15 Naka-machi 

~:ug~~m I!.a 

InIOI ... ".. KK' 
2·51·2 I<KO£&II 
Cnotu, T 182 
Tel 0424 151 

Intel Japan KK.-
2-69_ 

~:."~4~360 
InteI"Japan K.K.· 
241 Teraochl 

t~~~560 

_ .. -
~,J~'i 
~:~1.Js~'OP 

~~3-9"1:~ . 
~~21~'S4 

--InIeI SemIconc:IuctIr "* ltd 

~~~y~U 
Seoul 150

m~~l:~l~tr..Kb 8288 --

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES·

-VLC SR.L
SarmIento 1630, 1 Preo
1042 8uenoa AIres
Tel 011-54·1-35-1201/9242
TELEX, 17575 EOARG

IRAZJL
lcotron SA
~5~~ AkoM: 3650-6 Andar
Tel 011·55-11-833-2572
TELEX 1122274 ICOTBR

CHILE

OIN

~~~. ~ehna 204 
C&ell1a 6055. 

",-56-2-277-564 
TELEX- 352.()()Q3 

~~~~""t""d."", 
3801 Kennett PIke
Wilmington, Delaware 19807

_ KONG

5:!>r:r~~:~
Tel 011-852-5-0-2232,22
TWX' 39114 JINMI HX

~~~I ~~IdCen!re 
Woncha> 
Tel 011..81)2-5-833-0222 
TWX 74166 SCHMC HK -
_ee. ... 
1041109C Nirmal Industr181 Eatale 
Sion (E) 

~11.~.4e1.70 
TElEX- 011-71447 MOEV IN 

....,.~-
~o:r ,="r Nager 
Almlak 1ntemItIona1. Inc (Agent) 
465 S Mathilda Avenue 
Suite 302 

~Tot·,~~ 
SMa~iS =rn 
~o 't, "8' 
Mauldin, South CaroIi", 29657 

\~""il;g."AddO:) 
Uberty, South carolina 29657 _ .. 

- .. (Conl'O) 

~~~~7~ 
Cho
Nihoobashl CttucH<u, TOkyO 103
Tel· (oo) 662-9911
TElEX· 2523774

--J-TEK CorporatiOn

~~3, ~c.cio-~"! PeneIon 8ktg,

~"P"l'~po-K"
Tel 011..$2-2-782-8039
TElEX' KootGIT K25299

K«am " ... S_
Tet (7
TWX' DIGIT LSA _ ZI.WIIID

Mcl.aan Information Technology lid
<459 ~ P818 Road, Newmarket,

~~1~~
Tel. 011-64-9-501-219, 501-801, 587-
037
TELEX, NZ21570 THERMAl ._ ..
~=:rltd.
00Ien,.,....
Tel: 01t-92-21..s30-30617
TELEX. 2443<4 GAFAA PK

._ .. -
-- - C<NpcnIJoo Ply. ltd.
UnIte 1003-1008 Bto\:k 3
11)" PO' SOny Compie><
T __

Po. Jang

--

-
' Corp 2000 E 4th Street
SUIte 110
Santa Ana 92705
~.(7J:~~~%7

~~Orlve
Suite 150

~: (':t4~~~
'''''' Corp. 5530 N. CortJIn AvenYe
Suitt 120
Tarzana 91356
Tel: (213) 708-0333 -''''''~ r..? .. 720 Cheny
Denver 80222

~.(~3J~~~:,er
-..cur

Road
1
8-3130

DOMESTIC SERVICE OFFICES·

...- (eoardl

=~Avenue Suitt 205 '
Mallland 32151

~<38,~~W -~~ ParkwlJ)'
."'" 200 Norcron 30092-
rei. (4(4) 441:'171

~

~~c:: Road
Sulle 815
Rolling Meadows 60008

~,(3J~~l~~;~ -Intel Corp.
8400 W. 110th Street
Sulle 170
Overland Park 68210
Tel: (913) 1}42-8080

!IIAMLANO

Avenue
01824

T . 256-1800
TWX: 3-6333

-
---~To'a ~ 611y Expressway
Sulle 143

f:rh (3~:r ~~'5 -_V
'''''' Co~ =~C:rlll
Edllon 08817
Tel: (201) 225-3000

-....-....

OHIO

--
~~ ":,l' EIam Young Parkway
HIIIeboro 97123
Tel (503) 681-8080

....... V

~': ;:,g CtMer BouIevatd
Bulle 301 W

~~~31a) \~~~S40 
1EIIAI 

f"t.,.,...,l108 
52 
54 ..... 

TWX. 91 74·1347 

\'JJo~ "'"" SuhI 380 . 
Dallal 75234 
Tel: (214) 241-8087 
TWX: 910·860·5817 w_ 
Intel Corp 
110 11ath Awnue NE. 
Suite' 510 
Bel ..... 98004 
Tel' 1-800-525-5580 
TWX: 910-443·3002 -~~ ~\mnyaJope Road 
Suitt 130 
BrocIdleld 53005 
Tel (414) 784-8081 




