

SOFTWARE HANDBOOK

1984

Intel Corporation makes no warranty for the use of its products and assumes no
responsibility for any errors which may appear in this document nor does it make a
commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in
Intel's software license, or as defined in ASPR 7-104.9(a) (9). lritel Corporation
assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify
Intel products:

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, t. ICE, iCS, iDBp,
iDIS, 121CE, iLBX, im, iMMX, Insite, Intel, intel, intelBOS, Intelevision,
inteligent Identifier, inteligent Programming, Intellec, Intellink, iOSP, iPDS,
iSBC, iSBX, iSDM, iSXM, Library tVianager, MCS, Megachassis, MICRO
MAINFRAME, MULTI BUS, MULTICHANNEL, MULTIMODULE, Plug-A
Bubble, PROMPT, Promware, QUEST, QUEX, Ripplemode, RMXl80, Rl:JPI,
Seamless, SOLO, SYSTEM 2000, and UPI, and the combination of ICE, iCS,
iRMX, iSBC, MCS, or UPI and a numerical suffix.

The following are trademarks of the companies indicated and may only be used to
identify products of the owners.

CP/M is a trademark of Digital Research, Inc.

DEC, DEC-10, DEC-20, PDP-H, DECnet, DECwriter, RSTS, and VAX are
trademarks of Digital Equipment Corporation.

MDS is an ordering code only and is not used as a product name or trademark.

MD&!! is a registered trademark of Mohawk Data Sciences Corporatio.n.

Microsoft is a trademark of Microsoft, Inc.

C> Intel Corporation. 1983

CHAPTER 1
. OVERVIEW

Table of Contents

Introduction. 1-1

CHAPTER 2
OPERATING SYSTEMS

Introduction ..•.•...•••..... 2-1
8080/8085 Microprocessor Family

DATA SHEET
Digital Research Inc. CP/M 2.2 Operating System.................................. 2-2

8086/8088 Microprocessor Family
DATA SHEETS

iRMX 86 Operating System .. 2-5
iRMX 88 Real-Time Multitasking Executive .. 2-25
Preconfigured iRMX 86 Operating System .. 2-31
iOSP 86 iAPX 86/30 and iAPX 88/30 Support Package 2-37
iMMX 800 MULTI BUS Message Exchange Software........................... 2-41

FACT SHEET
XENIX 286 Operating Systems•.............................. 2-45

APPLICATION NOTE
AP-130 Using Operating Systems Processor's to Simplify Microcomputer DeSigns 2-51

ARTICLE REPRINTS
AR-236 Let Operating Systems Aid in Component Designs 2-102
AR-286 Software That Resides in Silicon .. 2-110
AR-287 Putting Real-Time Operating Systems to Work 2-116
AR-288 Intel's Matchmaking Strategy: Marry iRMX Operating

System with Hardware .•....•.....................•.....•........•..•.... 2-128
AR-289 iRMX 86 Has Functionality, Configurability 2-131

CHAPTER 3
TRANSLATORS AND UTILITIES FOR PROGRAM DEVELOPMENT

Introduction .. ,•. 3-1
MCS®-80/85 Microprocessor Family

DATA SHEETS
PUM 80 High Level Programming Language 3-3
FORTRAN 808080/8085 ANS FORTRAN 77 Intellec Resident Compiler. 3-6
Microsoft, Inc. MACRO-80 Utility Software Package•............... 3-10
Microsoft, Inc. BASIC-80 Interpreter Software Package ...•........................ 3-12
Microsoft, Inc. Pascal-80 Software Package 3-15
iAPX 86, 88 Software Development Packages for Series II/PDS 3-18

iAPX 86/88/186/188/286 Microprocessor Family
DATA SHEETS

PUM 86/88/186/188 Software Package 0>.............. 3-28
Pascal 86/88 Software Package••..........•............. 3-32
FORTRAN 86/88 Software Package .. 3-35
C-86 C Compiler for the 8086•............................ 3-39
8087 Software Support Package•................... 3-43
8087 Support Library. • • . . . • .. 3-46
8089 lOP Software Support Package•...........•........................ 3-50
iAPX 286 Software Development Package . 3-53
iAPX 286 Evaluation Package .. 3-58
PUM 286 Software Package•......................•.......... 3-60
VAXlVMX Resident iAPX 86/88/186 Software Development Packages 3-64
iSDM 86 System Debug Monitor•............ 3-71
iSDM 286 iAPX 286 System Debug Monitor 3-76

FACT SHEETS
iRMX Languages•.......••........•.....•................•.•.• 3-79
iRMX Operating Systems•............•...•..........•.......... 3-84
XENIX Languages•..•.................................. ,... 3-90

iii

inter
Single Chip Mlcrocontroller Software

DATA SHEETS
2920 Software Support Package•......•.......•...•....•...... ' 3-94
MC5-48 Diskette-Based Software Support Package . ~•••.•..•........•••.•••.•• 3-105
8051 Software Development Package ..•.........•....•...............•...•....... 3-107
PUM 51 Software ... 3-110
MCS-96 Software Support Package•...•..............•.......•.••......•.... ' 3-114

CHAPTER 4
PRODUCTIVITY TOOLS AND COMMUNICATION SOFTWARE

Introduction ..•..•..•..•.......••••.••••............••..•........•..••. ; • • . . 4-1
Program Development and Management Tools

,DATA SHEETS
PSCOPE High-Level Program Debugger .••.•.•..........•.•• • . . . • . . 4-2
Program Management Tools•..................................•.......... 4-7
ISIS-II Software Toolbox ' ,..................... 4-10
8086 Software Toolbox '....................... 4-12
AEDIT Text Editor ... ~ . . 4-14
CREDIT CRT-Based Text Editor. • . • 4-16

CommunlcaUon Software
DATA SHEETS

Mainframe Link for Distributed Development...................................... 4-20
Intel Asynchronous Communications Link•................. , 4-23
iNA 960 Network Software•.. 4-26
NOS-II Electronic Mail ..•• 4-38

CHAPTERS
SYSTEM AND APPLICATIONS SOFTWARE

FACT SHEETS
XENIX Productivity Software Tools... 5-1
iTPS Transaction Processing Systems Terminal Application

Processing System (iTAPS)•..............•......... 5-9
iTPS Transaction Processing Systems Communications. • . • 5-12
System 2000 Database Management System Sperry (Univac) 1100 Series 5-16

CHAPTER 6
COMPONENT SOFTWARE

DATA SHEETS
80130/80130-2 iAPX 86/30, 88/30, 186/30, 188/30 iRMX 86

Operating System Processors••............................... 6-1
80150/80150-2 iAPX 86/50, iAPX 88/50, 186/50, 188/50 CPIM 86

Operating Sys!em Processors•.•.•.....•.•... ,........................ 6-23

CHAPTER 7
, USER LIBRARY
, Introduction. • . • • . • • . 7-1
User Library

Insite User's Prog(am Library•...............•••..........•....... 7-2
Insite Submittal Requirements•.•....................... 7-3
Insite Index of Program•.•.•..•......•.......•..........•. ,...... 7-5

APPENDIX A
Software Standards...... A-1

APPENDIX B
Software Support... B-1

iv

Software Handbook
Overview 1

inter
SOFTWARE HANDBOOK OVERVIEW

Welcome to the Intel Software Handbook. This handbook is a complete guide to the software products and
services offered by Intel.

Intel's software products follow the open systems strategy that allows Intel products to be purchased at the
customers' desired level of integration. Hence these products are available for component, board, or systems
applications. This open systems philosophy is backed by software standards that insure that the software can
operate at numerous levels of integration. These software standards are described in the appendix.

Software for Intel's products is available both from Intel and from Independent Software Vendors (ISVs). For a
complete listing of software available from ISVs, see the Intel Yellow Pages which is published annually by Intel.
This handbook describes software products that are available through Intel, consisting of Intel-developed and
ISV-developed products. Products that are offered by Intel have all been evaluated and tested to meet Intel's
quality standard. They are backed by an extensive support organization described in the appendix.

1-1

Operating Systems 2

OPERATING SYSTEMS

INTRODUCTION

The ability to convert advanced microprocessor technology into solutions for modern day problems begins with
effective and efficient designs for new hardware products and architecture. However, a most critical element in
the success of any microcomputer solution is the availability of a high quality, reliable operating system.
Without this software counterpart, the technological advances cannot be fully implemen,ted, nor their benefits
fully realized.

The classic role of the microcomputer operating system can be outlined by viewing its major functions and
purposes. The functions of the microcomputer operating system are threefold: 1) to manage system resources
and the allocation of these resources to users; 2) to provide automatic functions such as initialization and
start-up procedures; and 3) to provide an efficient, straightforward and consistent method for user programs to
interface with the hardware subsystems, including a simple and friendly human interface. Typically, the
operating systems have one of two main purposes. First, they can be used to develop a new software system
that runs on another machine. These systems are usually large and fairly sophisticated. ISIS and 'XENIX are
examples of such developmental operating systems. The second purpose for microcomputer operating
systems is directed toward the execution of software programs for targeted application. The largest number of
operating systems are of this type, including the RMX systems. The most critical requirement is for these
systems to be effective and efficient since they are usually small, fast systems dedicated to a specific real-time
application.

This rather neat and simple categorization of microcomputer operating systems, which has been useful in the
past, is quickly becoming blurred. The rapid developments in microcomputer technology have increased the
power and decreased the cost of microcomputers, allowing them to become applicable to the solution of a
broader variety and more sophisticated set of problems. Microcomputer systems must increasingly provide
such capabilities as multiprogramming, multitasking, multiprocessing, networking, as well as scheduling and
priority determination. As systems become more complex, they must still remain responsive to real-tim!
applications. Operating systems must be able to capitalize on the trends toward plaCing more and more
software into silicon. This trend is blurring the distinction between the hardware and software subsystems.
Microcomputer systems are also evolving to encompass both the developmental and target application
purposes into one system.

These dramatic changes in technology place additional demands on operating systems. We see operating
systems undergoing changes to consider the need for: 1) modularity and ease of configurability;
2) evolutionary, not revolutionary, path of growth; and 3) standardization in languages, networks and the
operating system itself. The first need is required to allow the system to be a powerful development tool yet
configurable to more specialized applications. The last two items are needed to provide protection of a firm's
software investment, including the option to move toward silicon software.

The operating systems and executives in this section are state-of-the-art microcomputer systems that have
taken to task the challenges posed by advancing microprocessor technology. These operating systems offer
the widest range of solutions with the highest quality and most future-oriented software available today.
Consequently, our customers can select the appropriately optimized option to achieve their price/pel10rmance
goals and give them time-to-market advantage over their competitors.

'XENIX is a trademark of Microsoft Corp.

2-1

DIGITAL RESEARCH INC.
CP/M* 2.2 OPERATING SYSTEM

• High-performance, single-console
operating system

• Simple, reliable file system matched to
microcomputer resources

• Table-driven architecture allows field
reconfiguration to match a wide variety
of disk capacities and needs

• Extensive documentation covers all
facts of CP/M applications

• More than 1,000 commercially available
compatible software products

• General-purpose subroutines and
table-driven data-access algorithms
provide a truly universal data
management system

• Upward compatibility from all previous
versions

CP/M 2.2 is a monitor control program for microcomputer system and application uses on InteI8080/8085-based
microcomputer (see the CP/M-86' Operating System data sheet for information on CP/M for Intel 8086/8088-
based systems). CP/M provides a general environment for program ex~cution, construction, storage, and
editing, along with. the program assembly and check-out facilities.

The CP/M monitor provides rapid access to programs through a comprehensive file management package. The
file subsystem supports a named file structure, allowing dynamic allocation of file space as well as sequential
and random file access. Using this system, a large number of distinct programs can be stored in both source
and machine-executable form.

CP/M also supports a powerful context editor, Intel-compatible assembler, and debugger subsystems. Nearly all
personal software programs can be bought configured to run under CP/M, several of which are available from
Intel.

FEATURES

CP/M is logically divided into four distinct modules:

. BIOS-Basic 1/0 System

-Provides primitive operations for access to disk
drives and interface to standard peripherals
(teletype, CRT, paper tape reader/punch, bubble
memory, and user-defined peripherals)

-Allows user modification for tailoring to a particu
lar hardware environment

BOOS-Basic Disk Operating System

-Provides disk management for one to sixteen disk
drives containing independent file directories

-Implements disk allocation strategies for fully
dynamic file construct1on and minimization of
head movement acrOss the disk

©INTEL CORPORATION. 1983 2-2

-Uses less than 4K of memory allowing plenty of
memory space for applications programs

-Uses less than 4K of memory

-Makes programs transportable from system to
system

-Entry points include the following primitive
operations which can be programmatically
accessed:

SEARCH Look for a particular disk file by
name

OPEN

CLOSE

RENAME

READ

WRITE

SELECT

Open a file for further operations

Close a file after processing

Chan,ge the name of a particular file

Read a record from a particular file

Write a record to a particular file

Select a particular disk drive for
further operations

MAY 1983

ORDER NUMBER:210288-003

inter DIGITAL RESEARCH, INC.
CP/M 2.2

CCP-Console Command Processor

-Provides primary user interface by reading and
interpreting commands entered through the
console

-Loads and transfers.control to transient programs,
such as assemblers, editors, and debuggers

-Processes built-in standard commands including:

ERA Erase specified files

DIR

REN

SAVE

TYPE

List file names in the directory

Rename the specified file

Save memory contents in a file

Display the contents of a file on
the console

TPA-Transient Program Area

-Holds programs which are loaded from the disk
under command of the CCP

-Programs created under CP/M can be checked out
by loading and executing these programs in
theTPA

-User programs, loaded into the TPA, may use the
CCP area for the program's data area

-Transient commands are specified in the same
manner as built-in commands

-Additional commands can be easily defined by the
user

-Defined transient commands include:

PIP

ED

Peripheral Interchange Program
-implements the basic media transfer
operations necessary to load, print,
punch, copy, and combine disk files;
PIP also performs various
reformatting and concatenation
functions. Formatting options include
parity-bit removal, case conversion,
Intel hex file validation, subfile
extraction, tab expansion, line number
generation, and pagination

Text Editor-allows creation and
modification of ASCII files using
extensive context editing commands:
string substitution, string search,
insert, delete and block move; ED
allows text to be located by context,
line number, or relative position with a
macro command for making extensive
text changes with a single command
line

2-3

ASM Fast 8080 Assembler-uses standard
Intel mnemonics and pseudo
operations with free-format input, and
conditional assembly features

DDT Dynamic Debugging Tool-contains
an integral assembler/disassembler
module that lets the user patch,and
display memory in either assembler
mnemonic or hexadecimal form and
trace program execution with full
register and status display;
instructions can be executed between
breakpoints in real-time, or run fully
monitored, one instruction at a time

SUBMIT Allows a group of CP/M commands to
be batched together and submitted to
the operating system by a single
command

STAT Lists the number of bytes of storage
remaining on the currently logged
disks, provides statistical information
about particular files, and displays or
alters device assignments

LOAD Converts Intel hex format to absolute
binary, ready for direct load and
execution in the CP/M environment

SYSGEN Creates new CP/M system disks for
back-up purposes

MOVCPM Provides regeneration of CP/M
systems for various memory
configurations and works in
conjunction with SYSGEN to provide
additional copies of CP/M

BENEFITS

-Easy implementation on any computer configura
tion which uses an Intel 8080/8085 Central Pro
cessing Unit (see the CP/M-86 data sheet for CP/M
applications on the iAPX86 CPU)

-iPDS version supports bubble memory option as
an additional diskette drive. Also allows diskette
duplication with a single drive

-Extensive selection of CP/M-compatible programs
allows production and support of a comprehen
sive software package at low cost

-Field programmability for special-purpose operat
ing system requirements

-Upward compatibility from previous versions of
CP/M release 1

AFN-02"'C

inter DIGITAL RESEARCH, INC.
CP/M 2.2

-Provides field specification of one to sixteen logi
cal drives, each containing up to eight megabytes

-Files may contain up to 65,536 records of 128 bytes
each but may not exceed the size of any single disk

-Each disk is designed for 64 distinct files-more
directory entries may be allocated if necessary

SPECIFICATIONS

Hardware Required

-Model 800 with 720 kit

-OS 235 kit or MDS 225 with 720 kit (integral drive
supported except as system boot device)

-iPDS Personal Development System
Optional:

RAM up to 64K

-Additional floppy disk drives

-Single density via 201 controller

-Bubble memory and optional Shugart 460 5%"
disk drive for iPDS

Documentation Package

Title

CP/M 2.2 documentation consisting
of 7 manuals:

An Introduction to CP/M Features
and Facilities

CP/M 2.2 User's Guide
CP/M Assembler (ASM) User's

GUide
CP/M Dynamic Debugging Tool

(DDT) User's Guide
ED: A Context Editor for the CP/M

Disk System User's Manual
CP/M 2 Interface Guide
CP/M 2 Alteration Guide

SUPPORT:

-Individual users are physically separated by user
numbers, with facilities for file copy operations
from one user area to another

-Relative-record random-access functions provide
direct access to any of the 65,536 records of an
eight-megabyte file

Shipping Media

(Specify by Alpha Character when ordering.)

A-single density (IBM 3740/1 compatible)

B-double density

F-double-sided, double density 5%" floppy (iPDS
format)

Order Code Product Description

See Price List CP/M (Control Program for
Microcomputers) is a disk-based
operating system for the Intel
SOSO/SOS5-based systems. CP/M
provides a general environment for
program development, test, execution
and storage. CP/M storage is available
via a comprehensive, named-file
structure supporting both sequential
and random access. CP/M support
tools include a Text Editor, a
debugger, and an SOSO/SOS5
assembler.

Intel offers several levels of support for this product. depending on the system configuration in which it is used.
Please consult the price list for a detailed description of the support options available.

An Intel Software License required.
'CP/M is a registered trademark of Digital Research. Inc.
'CP/M-8S, MP/M, CP/NETand MP/NET are trademarks of Digital ResearCh, Inc.

2-4 AFN-02111C

iRMX™ 86
OPERATING SYSTEM

• Real-time processor management for
time-critical iAPX 86 and iAPX 88
applications

• On-target system development with
Universal Development Interface (UDI)

• Configurable system size and function
for diverse application requirements

• All iRMX™ 86 code can be (P)ROM'ed
to support totally solid state designs

• Compatible operating system services
for iAPX 86/30 and 88/30 Operating
System Processors (iOSPTM 86)

• Multi-terminal support with multi-user
human interface

• Broad range of device drivers included
for industry standard MULTIBUS®
peripheral controllers

• Expandable to multi-processor systems
with iMMX™ 800 Message Exchange
Software

• Extendable to iAPX 286 systems with
iRMX™ 286R option

• Powerful utilities for interactive
configuration and real-time debugging

The iRMX™ 86 Operating System is an easy-to-use, real-time, multi-tasking and muiti-programmming software
system designed to manage and extend the resources of iSBC® 86 and iSBC 88 Single Board Computers, as well
as other iAPX 86- and iAPX 88-based microcomputers. iRMX 86 functions are available in silicon with the iAPX 86/30
and 88/30 Operating System Processors, in a user configurable software package, and fully integrated into the
SYSTEM 86/300 Family of Microcomputer Systems. The Operating System provides a number of standard interfaces
that allow iRMX 86 applications to take advantage of industry standard device controllers, hardware components,
and a multitude of software packages developed by Independent Software Vendors (ISVs). Many high-performance
features extend the utility of iRMX 86 Systems into applications such as data collection, transaction processing, and
process control where immediate access to advances in VLSI technology is paramount. These systems may deliver
real-time performance and explicit control over resources; yet also support applications with multiple users needing
to simultaneously access terminals. The configurable layers of the System provide services ranging from interrupt
management and standard device drivers for many sophisticated controllers, to data-file maintenance commands
provided by a comprehensive multi-user human interface. By providing access to the standard Universal Develop
ment Interface (UDt) for each user terminal, Original Equipment Manufacturers (OEMs) can pass program development
and target application customization capabilities to their users.

HUMAN INTERFACE

USER APPLICATIONS

iRMXTM 86 VLSI Operating System

The toIowlng are trademarks of Intel CorporatIOn and may be used only to descnbe Intel products Intel, ICE, IMMX, IOSP, IRMX, ISse, ISex, ISXM, MULTIBUS, MULTICHANNEL and MULTI MODULE
Inlel Corporation assumes no responslblhty tor the use of any CircUitry other than CirCUitry embodied In an Intel product No other ClfCUIt patent hcenses are Implied

INTEL CORPORATION. 1983

2-5

January, 1983
Order Number' 210111-001

iRMX™ 86

The iRMX 86 Operating System is a complete set of
system software modules that' provide the res()urce
management functions needed by computer systems.
These management functions allow Original Equipment
Manufacturers (OEMs) to best use resources available
in microcomputer systems while getting their products
to market quickly, saving time and money. Engineers
are relieved of writing complex system software and can
concentrate instead on their application software.

This data sheet describes the major features of the
iRMX 86 Operating System. The benefits provided to
engineers who write application software and to users
who want to take advantage of improving microcomputer
price and performance are explained. The first section
outlines the system resource management functions of
the Operating System and describes several system
calls. The second section gives a detailed overview of
iRMX 86 features aimed at serving both the iRMX 86
system designer and programmer, as well as the end
users of the product into which the Operating System
is incorporated.

FUNCTIONAL DESCRIPTION

To take best advantage of iAPX 86 and 88 micropro
cessors in applications where the computer is required
to perform many functions simultaneously, the iRMX 86
Operating System provides a multiprogramming envi
ronment in which many independent, multi-tasking ap
plication programs may run. The flexibility of independent
environments allows application programmers to sep
arately manage each application's resources during both
the development and test phases.

The resource management functions of the iRMX 86
System are supported by a number of configurable soft
ware layers. While many of the functions supplied by the
innermost layer, the Nucleus, are required by all sys
tems, all other functions are optional. The I/O systems,
for example, need not be included in systems having no
secondary storage requirement. Each layer provides
functions that encourage application programmers to
use modular design techniques which aid in quick de
velopment of easily maintainable programs.

The components of the iRMX 86 Operating System pro
vide both implicit and explicit management of system
resources. These resources include processor sched
uling, up to one megabyte of system memory., up to 57
independent interrupt sources, all input and output de
vices, as well as' directory and data files contained on
mass storage ,devices and accessed by a number of in
dependent users. Management of each of these system
resources and how the resources can be shared between
multiple processors and users is discussed in the follow
ing sections.

2-6

Process Management

To implement multi-tasking application systems, pro
grammers require a method of managing the different
processes of their application, and for allowing the pro
cesses to communicate with each other. The Nucleus
layer of the iRMX 86 System provides a number of facilities
to efficiently manage these processes, and to effectively
communicate between them. These facilities are provided
by system calls that manipulate data structures called
tasks, jobs, semaphores, regions, and mailboxes. The
iRMX 86 System refers to these structures as "objects".

Tasks are the basic element of all applications built on
the iRMX 86 Operating System. Each task is an entity
capable of executing CPU instructions and issuing sys
tem calls in order to perform a function. Tasks are char
acterized by their register values (including those of an
optional 8087 Numeric Processor Extension), a priority
between 0 and 255, and the resources associated with
them.

Each iRMX 86 task in the system is scheduled for oper
ation by the iRMX 86 nucleus. Figure 1 shows the five
states in which each task may be placed, and some ex
amples of how a task may move from one state to an
other. The iRMX 86 nucleus ensures that each task is
placed in the correct state, defined by the events in its
external environment and by the task issuing system
calls. Each task has a priority to indicate its relative im
portance and need to respond to its environment. The
nucleus guarantees that the highest priority ready-to-run
task is the task that runs.

Jobs are used to define the operating environment of
a group of tasks. J09s effectively limit the scope of an
application by collecting all of its tasks and other objects
into one group. Because the environment for execution
of an application is defined by an iRMX 86 job, separate
applications can be efficiently developed by separate
development teams.

The iRMX 86 Operating System provides two primary
techniques for real-time event synchronization in mUlti
task applications: regions and semaphores.

Regions are used to restrict access to critical sections
of code and data. Once the iRMX 86 Operating System
gives a task access to resources guarded by a region,
no other tasks may make use of the resources, and the
task is given protection against deletion and suspension.
Regions are typically used to protect data structures from
being simultaneously updated by multiple tasks.

Semaphores are used to provide mutual exclusion be
tween tasks. They contain abstract "units" that are sent
between the tasks, and can be used to implement the
cooperative sharing of re~ources.

Or~er Number 210885-001

inter iRMX™ 86

(9i

NOT·ES:
(1) Task (S created

! (10)

(NON EXISTENT)

(Si

(2) Task becomes highest Priority ready task

(3) Task gets pre·empted by one with higher Priority

(4) Task calls SLEEP or task walts at an exchange

(5) Task sleep period has ended. message was sent to
waiting task or walt has ended

(6) Task calis SUSPEND on self

(7) Task suspended by other than self

(8) Task suspended by other than self or a resume that
did not bring suspension depth to zero

(9) Task was resumed by other task

(10) Task IS deleted

Figure 1. Task State Diagram

Multi-tasking applications must communicate information
and share system resources among cooperating tasks.
The iRMX 86 Operating System assigns a unique 16-bit
number, called a token, to each object created in the
System. Any task in possession of this token is able to
access the object. The iRMX 86 Nucleus allows tasks
to gain access to objects, and hence system resources,
at run-time with two additional mechanisms: mailboxes
and object directories.

Mailboxes are used by tasks wishing to share objects
with other tasks. A task may share an object by sending
the object's token via a mailbox. The receiving task can
check to see if a token is there, or can wait at the mailbox
until a token is present.

Object Directories are also used to make an object
available to other tasks. An object is made public by cata
loging its token and name in a directory. In this manner,

2-7

any task can gain access to the object by knowing its
name, and job environment that contains the directory.

Three example jobs are shown in Figure 2 to demon·
strate how two tasks can share an object that was not
known to the programmers at the time the tasks were
developed. Both Job 'A' and Job 'B' exist within the en·
vironment of the 'Root Job' that forms the foundation of
all iRMX 86 systems. Each job possesses a directory in
which tasks may catalog the name of an object. Sema·
phore 'RS', for example, is accessable by all tasks in the
system, because its name is cataloged in the directory
of the Root Job. Mailbox 'AN' can be used to transfer
objects between Tasks 'A2' and 'A3' because its token
is accessable in the object directory for Job 'A'

Table 1 lists the major functions of the iRMX 86 Nucleus
that manage system processes.

SYSTEM ROOT JOB

JOB A

TASK A1

OBJECT DIRECTORY

MAILBOX AM
MAILBOX AN
TASK A3

(0
MAILBOX

b
SEMAPHORE

JOB B

TASK B1

TASK 82

OBJECT DIRECTORY
TASK B2

OBJECT DIRECTORY

MAILBOX RM.l.QLA
SEMAPHORE RS.IQLJI
TASK B2

Figure 2. Object Directories

Memory Management

Each job in an iRMX 86 System defines the amount of
the one megabyte of addressable memory to be used
by its tasks. The iRMX 86 Operating System manages
system memory and allows jobs to share this critical re
source by providing another object type: segments.

Segments are contiguous pieces of memory, between
16 Bytes and 64K Bytes in length, that exist within the
environment of the job in which they were created. Seg
ments form the fundamental piece of system memory
used for task stacks, data storage, system buffers, loading
programs from secondary storage, passing information
between tasks, etc.

Order Number 2' 0885·00 1

inter iRMX™86

Table 1. Process Management System Calls

. System Call Function Performed

RQ$CREATE$JOB Creates an environment for a number of tasks and other objects, as well as creating an
initial task and its stack.

RQ$DELETE$JOB Deletes a job and all the objects currently defined within its bounds. All memory used
is returned to the job from which the deleted job was created.

RQ$OFFSPRING Provides a list of all the current jobs created by the specified job.

RQ$CATALOG$OBJECT Enters a name and token for an object into the object directory of a job.

RQ$UNCATALOG$OBJECT Removes an object's token and its name from a job's object directory.

RQ$LOOKUP$OBJECT Returns a token for the object with the specified name found in the object directory of
the specified job.

RQGETTYPE Returns a code for the type of Object referred to by the specified token.

RQ$CREATE$MAILBOX Creates a mailbox with queues for waiting tasks and objects with FIFO or PRIORITY
discipline.

RQ$DELETE$MAILBOX Deletes a mailbox.

RQ$SEND$MESSAGE Sends an object to a specified mailbox. If a task is waiting, the object is passed to the
appropriate task according to the queuing discipline. If no task is waiting, the object is
queued at the mailbox.

RQ$RECEIVE$MESSAGE Attempts to receive an object token from a specified mailbox. The calling task may
choose to wait for a specified number of system time units if no token is available.

RQ$DISABLE$DELETION Prevents the deletion of a specified object by increasing its disable count by one.

RQ$ENABLE$DELETION Reduces the disable count of an object by one, and if zero, enables deletion of that
object.

I

RQ$FORCE$DELETE Forces the deletion of a specified object if the disable count is either 0 or 1.

RQ$GREATE$TASK Creates a task with the specified priority and stack area.

RQ$DELETE$TASK Deletes a task from the system, and removes it from any queues in which it may be
waiting.

RQ$SUSPEND$TASK Suspends the operation of a task. If the task is already suspended, its suspension
depth is increased by one.

RQ$RESUME$TASK Resumes a task. If the task had been suspended multiple times, the suspension depth
is reduced by one, and it remains suspended.

RQ$SLEEP Causes a task to enter the ASLEEP state for a specified number of system time units.

RQGETTASK$TOKENS Gets the token for the calling task or associated objects within its environment.

RQSETPRIORITY Dynamically alters the priority of the specified task.

RQGETPRIORITY Obtains the current priority of a specified task.

RQ$CREATE$REGION Creates a region, with an associated queue of FIFO or PRIORITY ordering discipline.

RQ$DELETE$REGION Deletes the specified region if it is not currently in use.

RQ$ACCEPT$CONTROL Gains control of a region only if the region is immediately available.

RQ$RECEIVE$CONTROL Gains control of a region. The calling task may specify the number of system time
• units it wishes to wait if the region is not immediately available.

RQ$SEND$CONTROL Relinquishes control of a region.

RQ$CREATE$SEMAPHORE Creates a semaphore.

RQ$DELETE$SEMAPHORE Deletes a semaphore.

RQ$SEND$UNITS Increases a semaphore counter by the specified number of units.

RQ$RECEIVE$UNITS Attempts to gain a specified number of units from a semaphore. If the units are not
immediately available, the calling task may choose to wait.

Order Number 210885-001

2-8

iRMX™ 86

The example in Figure 2 also demonstrates when in
formation IS shared between Tasks 'A2' and 'A3'; 'A2'
only needs to create a segment, put the information in
the memory allocated, and send it via the Mailbox 'AM'
using the RQ$SEND$MESSAGE system call (see Table
1}.Task 'A3' would get the message by using the RQ$
RECEIVE$MESSAGE system call. The Figure also shows
how the receiving task could signal the sending task by
sending an acknowledgement via the second Mailbox
'AN'.

Each job is created with both maximum and minimum
limits set for its memory pool. Memory required by all
objects and resources created in the job is taken from
this pool. If more memory is required, a job may be al
lowed to borrow memory from the pool of its containing
job (the job from which it was created). In this manner,
initial jobs may efficienty allocate memory to jobs they
subsequently create, without exactly knowing their re
quirements.

The iRMX 86 Operating System supplies other memory
managment functions to search specific address ranges
for available memory. The System performs this search
at system initialization, and can be configured to ignore
non-existent memory and addresses reserved for 1/0
devices and other application requirements.

Table 2 lists the major system calls used to manage the
system memory.

Interrupt Management
. . .

Real-time systems, by their nature, must respond to
asynchronous and unpredictable events quickly. The
iRMX 86 Operating System uses interrupts and the event
driven nucleus described earlier to give real-time response
to events. Use of a pre-emptive scheduling technique
ensures that the servicing high priority events always
take precedence over other system activities.

The iRMX 86 Operating System gives applications the
flexibility to optimize either interrupt response time or
interrupt response capability by providing two tiers of In
terrupt Management. These two distinct tiers are man
aged by Interrupt Handlers and Interrupt Tasks.

Interrupt Handlers are the first tier of interrupt service.
For small, simple functions, interrupt handlers are often
the most efficient means of responding to an event. They
provide faster response than interrupt tasks, but must
be kept simple since interrupts (except the iAPX 86 and
88 non-maskable interrupt) are masked during their exe
cution. When extended interrupt service. is required, in
terrupt handlers "signal" a waiting interrupt task that,
in turn, performs more complicated functions.

Interrupt Tasks are distinct tasks whose priority is associ
ated with a hardware interrupt level. They are permitted

2-9

to make any iRMX 86 system call. While an interrupt task
is servicing an interrupt, interrupts of lower priority are
not allowed to pre-empt the system.

Table 3 shows the iRMX 86 System Calls provided to
manage interrupts.

INTERRUPT MANAGEMENT EXAMPLE

Figure 3 illustrates how the iRMX 86 Interrupt System
may be used to output strings of characters to a printer.
In the example, a mailbox named 'PRINT' is used by all
tasks in the system to queue messages to be printed.
Application tasks put the characters in segments that are
transmitted to the printer interrupt service task via the
PRINT Mailbox. Once printing is complete, the same inter
rupt task passes the messages on to another application
via the FINISHED Mailbox so that an operator message
can be displayed.

Figure 3. Interrupt Management Example

BASIC 110 SYSTEM

The Basic 110 System (BIOS) provides the direct access
to 110 devices needed by real-time applications. The
BIOS allows I/O functions to overlap other system func
tions. In this manner, application tasks make asynchro
nous calls to the iRMX 86 BIOS, and proceed to perform
other activities. When the 110 request must be completed
before an application can continue, the task waits at a
mailbox for the result of the operation.

Some system calls provided by the BIOS are listed in
Table 4.

The Basic 110 System communicates with peripheral de
vices through device drivers. These device drivers provide
the System with four basic functions needed to control
and communicate with devices: Initialize 110, Finish 110,
Queue 110, and Cancel 110. Using the device driver in
terface, users of non-standard devices may write custom
drivers compatible with the I/O System.

Order Number 21088!l 001

inter iRMX™ 86

Table 2. Memory Management System Calls

System Call Function Performed

RQSCREATESSEGMENT Dynamically allocates a memory segtnent of the specified size.

RQSDELETESSEGMENT Deletes the specified segment by deallocating the memory.

RQSGETSPOOLSATTRIBUTES Returns attributes such as the minimum and maximum, as well as current size of

RQSGETSSIZE

RQSSETSPOOLSMIN

System Call

RQSSETSINTERRUPT

RQSRESETSINTERRUPT

RQSGETSLEVEL

RQSSIGNALSINTERRUPT

RQSWAITSINTERRUPT

RQSEXITSINTERRUPT

RQSENABLE

RQSDISABLE

System Call

RQSASA TTACHSFILE

RQSASCHANGESACCESS

RQSASCLOSE

the memory in the environment of the calling task's job.

Returns the size (in bytes) of a segment.

Dynamically changes the minimum memory requirements of the job environment
containing the calling task.

Table 3. Interrupt Management System Calls

Function Performed

Assigns an interrupt handler and, if desired, an interrupt task to the specified interrupt
level. Usually the calling task becomes the interrupt task.

Disables an interrupt level, and cancels the assignment of the interrupt handler for that
level. If an interrupt task was assigned, it is deleted.

Returns the number of the highest priority interrupt level currently being processed.

Used by an interrupt handler to signal the associated interrupt task that an interrupt has
occurred.

Used by an interrupt task to SLEEP until the associated interrupt handler signals the
occurrence of an interrupt.

Used by an interrupt handler to relinquish control of the System.

Enables the hardware to accept interrupts from a specified level.

Disables the hardware from accepting interrlolpts at or below a specified level.

Table 4. Key BIOS I/O Management System Calls

Function Performed

Creates a Connection to an existing file. _

Changes the types of accesses permitted to the specified user(s) for a specific file.

Closes the Connection to the specified file so that it may be used again, or so that
the type of access may be changed.

RQSASCREATESDIRECTORY

RQSASCREATESFILE

RQSASDELETESCONNECTION

RQSASGETSFILESSTATUS

RQSASOPEN

Creates a Named File used to store the names and locations of other Named Files.

Creates a data file with the specified access rights.

Deletes the Connection to the specified file.

Returns the current status of a specified file.

Opens a file for either read, write, or update access.

RQSASREAD

RQSASSEEK

RQSASWRITE

RQSWAITSIO

Reads a number of bytes from the current position in a specified file.

Moves the current data pOinter of a Named or Physical file.

Writes.a number of bytes at the current position in a file.

Synchronizes a task with the I/O System by causing it to wait for I/O operation
results.

Order Number 210885·001

2-10

inter iRMX™86

The iRMX 86 Operating System includes a number of
device drivers to allow applications to use standard
USART serial communication devices, multiple CRTs
and keyboards, bubble memories, diskettes, disks, a
Centronics-type parallel printer, and many of Intel's
iSBC and iSBX™ device controllers (see Table 9). If an
application requires use of a non-standard device, users
need only write a device driver to be included with the
BIOS, and access it as if it were part of the standard
system. For most random-access devices, this job is
further simplified by using standard routines provided
with the System. Use of this technique ensures that ap
plications can remain device independent.

MULTI-TERMINAL SUPPORT

The iRMX 86 Terminal Support provides line editing and
terminal control capabilities. The Terminal Support com
municates with devices through simple drivers that do
only character 1/0 functions. Dynamic terminal recon
figuration is provided so that attributes such as terminal
type and line speed may be changed without modifying
the application or the Operating System. Dynamic con
figuration may be typed in, generated programmatically
or stored in a file and copied to a terminal 1/0 connection.

The iRMX 86 Terminal Support provides automatic trans
lation of control characters to specific control sequences
for each terminal. This translation enables applications

. using standard control characters to function with non
standard terminals. The translation requirements for each
terminal can be stored in terminal description files and
copied to a connection, as described above.

DISK I/O PERFORMANCE

Table 5 shows iRMX 86 performance obtained using the
iSBC 215 Winchester Disk and iSBX 218 Diskette Con
trollers under the specified conditions.

Each device driver can be used to interface to a number
of separate and, in some cases, different devices (See
Figure 4). The iSBC 215 Device Driver, supplied with the
system, is capable of supporting the iSBC 215 Winchester
Disk Controller, the iSBC 220 SMD Disk Controller, and
the iSBX 218 Flexible Disk Controller (when mounted
on an iSBC 215 board). Each device controller may, in
turn, control a number of separate device units. In addi
tion, each driver may control a number of like device
controllers. This capability allows the use of large storage
systems with a minimum of 1/0 system code to write or
maintain.

EXTENDED I/O SYSTEM

The iRMX 86 Extended 110 System (EIOS) adds a number
of 1/0 management capabilities to simplify access to

2-11

files. Whereas the BIOS provides users with the basic
system calls needed for direct management of 1/0 re
sources, many users prefer to have the system perform
all the buttering and synchronization of 1/0 requests auto
matically. The EIOS allows users to access 1/0 devices
without having to write procedures for buffering data, or
to specify particular devices with constant device names.

By performing device buffering automatically, the iRMX
86 EIOS optimizes accesses to disks and other devices.
Often, when an application task asks the System to READ
a portion of a file, the System is able to respond immedi
ately with the data it has read in advance of the request.
Similarly, the EIOS will not delay a task for writing data
to a device unless it is specifically told to, or if its output
buffers are filled.

Logical file and device names are provided by the EIOS
to give applications complete file and device indepen
dence. Applications may send data to the 'line printer'
(:LP:) without needing to know which specific device will
be used as the printer. This logical name may, in fact,
not be a printer at all, but it could be a disk file that is
later scheduled for printing.

The EIOS uses the functions provided by the BIOS to
synchronize individual 1/0 requests with results returned
by device drivers. Most EIOS system calls are similar to
the BIOS calls, except that they appear to suspend the
operation of the calling task until the 1/0 requests are
completed.

Table 5. BIOS Typical Performance

Average
Character Throughput

Function Byte. per Second·

Wlnche.ter DI.k Diskette

Single File Read 42,000 15,800

Two File Read .
(Same Device)

36,800 5,700

Single File Write 23,800 5,400

Two File Write 36,200 6,900
(Different Devices)

Read/Write Two Files 38,900 6,000
(Different Devices)

• These measurements were made in the followong enVIronment:
Entire IRMX ™ 86 operatong system and application code and data
located in on-board RAM of a 8-MHz ISBC"' 86/30 Songle Board
Computer. Named files, each with a flie size of 128 KByles, were
used with a device and volume granularity of 1 KByles and six 1
KByle buffers. The disk interleave factor was 2. The iSSC 215
Winchester Controller was attached to two 20-Mbyle drives, and
supported the ISBXTM 218 Diskette Controller that, In turn, was at
tached to two double denSity 8" diskette drives. ThiS performance
IS, to a large part, restricted by the mechanical speed of the devices.

Order Number 210885-001

intJ iRMX™86

APPLICATION SOFTWARE

TASK TASK TASK TASK TASK TASK TASK TASK TASK TASK

STREAM

PHYSICAL
FilE

FilE
DRIVER

DRIVER

Isac'
215 iSBC' DEVICE

DEVICE 254 DRIVER
DRIVER

iSBX'· ,SBC'
218 215 ,SBC' BUBBLE

DEVICE DEVICE 254 MEMORY
CONT· CONT·

ROllER ROllER

UN·
CONN.
DEVICE FilE

UNIT CONN. DEVICE UNITS

CONDUITS REPRESENT DEVICE CONNECTIONS
WIRES iN CONDUITS REPRESENT FilE CONNECTIONS

Figure 4. Device Driver and Controller Relationships

File Management

The iRMX 86 Operating System provides three distinct
types of files to ensure efficient management of both pro
gram and data files: Named Files, Physical Files, and
Stream Files. Each file type provides access to 110 de
vices through the standard device drivers mentioned
earlier. The same device driver is used to access physical
and named files for a given device.

NAMED FILES

Named files allow users to access information on second
ary storage by referring to a file with its ASCII name. The

, names of files stored on a device are stored in special
files called directories. As directories are themselves
named files, the iRMX 86 File System allows directories
to contain the names of other directories. Figure 5 illus
trates the resulting hierarchical file structure. This struc
ture is useful for isolating file names to particular user
applications, and for tailoring system data to the require
ments of users and applications sharing storage devices.
Using different branches on the directory tree, different
users do not have to coordinate in naming their files to
ensure unique names.

2-12

Whenever a request is made involving a file name, the
System will search the appropriate directory in order to
find the necessary information about the file's size, ac
cess rights, and specific location on the storage device.

The iRMX 86 BIOS uses an efficient format for writing
the directory and data information into secondary stor
age. This standard iRMX 86 format is fully compatible
with the ISO Media standard, and other Intel systems
such as the iRMX 88 Operating System. This structure
enables the system to directly access any byte in a file,
often without having to do additional 110 to access space
allocation information. The maximum size of an individual
file is 232 (4.3 billion) bytes.

EASE OF ACCESS

The hierarchical file structure is provided to isolate and
organize collections of named files. To give operators
fast and simple access to any level within the file tree,
an ATTACHFILE command is provided. This command
allows operators to give a logical name to a point in the
tree so that a long sequence of characters need not be
typed each time a file is referred to.

Order Number 210885·001

intel' IRMXTII 86

SIM SIM TEST OBJECT
SOURCE OBJECT

? I I = DIRECTORY

1\ = NAMED
~ DATA FILE

BATCH·' BATCH 2

Figure 5. Hierarchical Named File Structure

ACCESS PROTECTION

Access to each Named File is protected by the rights
assigned to each user by the owner of the file. Rights
to read, append, update, and delete may be selectively
granted to other users of the system. In general, users
of Named Files are classified into one of three categories:
User, .Group, and World. Users and Groups are used
when different programmers and programs need to share
information stored in a file. The World classification is
used when rights are to be granted to all who can use
the system.

PHYSICAL FILES

Physical Files allow more direct device access than
Named Files. Each Physical File occupies an entire de·
vice, treated as a single stream of individually accessable
bytes. No access control is provided for Physical Files
as they are typically used for such applications as.driving
a printing device, translating from one device format to
another, driving a paper tape device, and controlling
analog mechanisms.

STREAM FILES

Stream Files provide applications with a method of using
iRMX 86 file management methods for data that does
not need to go into secondary storage. Stream Files act
as direct ch,annels, through system memory, from one
task to another. These channels are very useful to pro-

2-13

grams, for example, wishing to preserve file and device
independence allowing data sent to a printer one time,
to a disk file another time, and to another program on
a different occasion.

BOOTSTRAP AND APPLICATION LOADERS

Two utilities are supplied with the System to load pro
grams and data into system memory from secondary
storage devices:

The IRMX 86 Bootstrap Loader can be configured to
a size of less than 600 bytes of P(ROM). and is typically
used to load the initial system from the system disk into
memory, and begin its execution.

The Application Loader is typically used by application
programs already running in the system to load additional
programs and data from any secondary storage device.
The Human Interface layer, for example, uses the Appli
cation Loader to load the non-resident Human Interface
Commands. The Application Loader is capable of loading
both relocatable and absolute code, as well as program
overlays.

Human Interface
The flexibility of the interface between computer con
trolled machines and their users often determines the
usability and ultimate success of the machines, Table 12
lists iRMX 86 Human Interface functions giving users

Order Number 21018~.()C)1

IRMX TIII 86

and applications simple access to the file and system
management capabilities described earlier. The process,
interrupt, and memory managment functions described
earlier, are performed automatically for Human Interface
users.

MULTI·USER ACCESS

Using the multi-terminal support provided by the BIOS,
the iRMX 86 Human Interface can support several si
multaneous users. The real-time nature of the system
is maintained by providing a priority for each user, and
using the event-driven iRMX 86 Nucleus to schedule tasks.
High-performance interrupt response is guaranteed even
while users interact with various application packages.
For example, multi-terminal support allows one person
to be using the iRMX 86 Editor, while another. compiles
a FORTRAN 86 or PASCAL 86 program, while several
others load and access applications.

Each terminal attached to the iRMX 86 multi-user Human
Interface is automatically associated with a user, a mem
ory pool, and an initial program to run when the terminal
is connected. This association is made using a file that
may be changed at any time. Changes are effective the
next time the system is initialized.

Table 6. IRMXTM Real·Tlme Performance

Real·Tlme Execution
Function Time (msec)

.SUSPEND TASK 0.45

INTERRUPT LATENCY 0.20
(to Handler) (Max)

" INTERRUPT LATENCY 0.03
(to Handler) (Typical)

CONTEXT SWITCH CAUSED 0.68
BY INTERRUPT (Max)

SEND MESSAGE
0.30

(no context switch)

SEND MESSAGE
0.57

(with context switch)

SEND CONTROL
0.19 (no context switch)

SEND CONTROL
0.50

(with context switching)

RECEIVE CONTROL
0.25

(no waiting)

Context switch time is the time between executing In the context of
a task. and the first instruction to execute In the context of another
task.

These times were measured using an 8 MHz ,sec' 86/30 Single Board
Computer with the standard configuration supported by the Precon
figured System, and all program and data stored In on-board dynamiC
RAM,

2-14

The initial program specified for each terminal can be
a special application program, a custom Human Inter
face, or the standard iRMX 86 Command Line Inter
preter (CLI). For example, you may choose to use the
Microsoft Basic Interpreter as this initial program. After
system start-up, each terminal user would be able to run
the interpreter without asking for it to be loaded. From
the BASIC interpreter an operator, for example, could run
a data collection program, written in BASIC, that com
municates with several laboratory instruments, and prints
charts and reports based on certain test results. When
finished entering, changing, or running a BASIC program,
the terminal would remain in BASIC for the next user.

Specifying an application program as a terminal's initial
program makes the interface between operators and the
computer system much simpler. Each operator need only
be aware of the function of a particular application; not
needing to interact with any unfamiliar functions also
available on h.is application system.

Specifying the standard iRMX 86 Human Interface CLI
as the initial program enables users of the terminals to
access all iRMX 86 functions. This CLI makes it easy to
manage iRMX 86 files, load and execute Intel-supplied
and custom programs, and submit command files for
later execution.

RAM

PROM

I OPERATOR
CONSOLE

APPLICATIONS

BIOS

RAM f

PROM

SYSTEM BUFFERS
AND DATA

APPLICATION CODE

I COMMON I UTILITIES

HUMAN INTERFACE

EIOS

I WINCHESTER I
DISK

DRIVER

NUCLEUS

BOOTSTRAP LOADER

BUILDING SECURITY
SYSTEM

SYSTEM
BUFFERS

DATA

16K BYTES
APPLICATION CODE

BACKGROUND I
APPLICATION

FLOPPY
DISK

DRIVER

SK BYTES NUCLEUS CODE

oOSP 66 INTERFACE

801300SF

DATA COMMUNICATION
CONTROLLER

Figure 6. Typical iRMXTM 86 Configurations

Order Number 210885-001

iRMX™ 86

MULTIPROGRAMMING SPECTRUM ------~
FLEXIBILITY

PERFORMANCE
FEATURES

EXECUTION
ENVIRONMENT

FEATURE OVERVIEW

The iRMX 86 Operating System is well suited to serve
the demanding needs of real-time applications executing
on complex microprocessor systems. The iRMX 86 Sys
tem also provides many tools and features needed by
real-time system developers and programmers. The fol
lowing sections describe features useful in both the de
velopment and execution environments. The description
of each feature outlines the advantages given to hard
ware and software engineers concerned with overall
system cost, expandability with custom and industry
standard options, and long-term maintenance of iRMX
86-based systems. The development environment fea
tures also Clescribe the ease with which the iRMX 86
Operating System can be incorporated into overall system
designs.

Execution Environment Features

REAL-TIME PERFORMANCE

The iRMX 86 Operating System is designed to offer the
high performance, multi-tasking functions required by
real-time systems. Designers can make use of the latest
VLSI devices such as the 8087 Numeric Processor Ex
tension, and the 80130 Operating System Firmware
Component to improve their system cost/performance
ratio, or the iMMX'" 800 MULTIBUS@Message Exchange

2-15

LANGUAGE
DEVELOPMENT TOOLS
STRUCTURED DESIGN

DEVELOPMENT
ENVIRONMENT

software package to divide and coordinate various system
activities among multiple processors. Typical iRMX 86
system performance characteristics are shown in Table 6.

Many real-time systems require high-performance oper
ation. To meet this requirement, all of iRMX 86 (except
for the Human Interface commands) can be put into zero
wait-state P(ROM). ThiS approach eliminates the possi
bility of disk access times slowing down performance,
while allowing system designers to take advantage of
high performance memory devices.

CONFIGURABILITY ...
The iRMX 86 Operating System is configurable by system
layer, and by system call within each layer. In addition,
all the I/O port addresses used by the System are con
figurable by the user. This flexibility gives designers the
freedom to choose configurations of hardware and soft
ware that best suit their size and functional requirements.
Two example configurations are shown in Figure 6.

Most configuration options are selected during system
design stages. Qthers may be selected during system
operation. For example, the amount of memory devoted
to queues within a Mailbox can be specified at the time
the Mailbox is created. Devoting more memory to the
Mailbox allows more messages to be transmitted to other
tasks without having to degrade system perfoJmance to
allocate additional memory dynamically.

Order Number 21018&·001

iRMXTM 86

The chart shown in Table 7 indicates the actual memory
size required to support these different configurations
of the iRMX 86 System. Systems requiring only Nucleus
level functions may require no more than 13 KBytes for
the Operating System (Use of the iAPX 86/30 requires
only 4K Bytes of RAM). Other applications, needing 110
management functions, may select portions of additional
layers that fit their needs and size constraints.

This configurability also applies to the Terminal Handler
and Debugger layers. They need be included only when
the iRMX 86 Debugger is needed (usually only during
system development) or wilen a serial terminal interface
is needed in a system that otherwise doesn't need an
1/0 System.

MULTI-PROCESSING

The resources provided by a single processor are often
not enough to perform certain functions. With the standard
interfaces provided by the iMMX 800 MULTIBUS Message
Exchange package, the iRMX 86 Operating System su~
ports a loosely-coupled multi-processing environment.
Tasks running on one processor may communicate with
tasks running on other processors, even if they operate
under different operating systems. The iMMX 800 soft
ware is capable of sending messages over the MULTIBUS
to tasks operating under either the iRMX 80 8-bit Multi
Tasking Executive, the iRMX 88 Executive, or the iRMX
86 Operating System. Using this message exchange
mechanism, applications may increase their system per
formance quite easily, improve overall Interrupt response,
gain access to the iSBC 550 Ethernet Controller, and
leave room for future product enhancements.

MULTI-USER ACCESS

Many real-time systems must provide a vanety of users
access to system control functions and collected data.

The iRMX 86 System provides easy-to-use support for
applications to access multiple terminals. It also enables
multiple and different users to access different applica
tions concurrently.

Figure 7 illustrates a typical iRMX 86 application simul
taneously supporting multi-terminal data collection and
real-time environments. Shown is a group of terminals
used by"machinists on a shop floor to communicate with
ajob management program, a building security system
that constantly monitors energy usage requirements, a
system operator console capable of accessing all system
functions, and a group of terminals in the Production
Engineering department used to monitor job costs while
developing new device control specifications and instruc
tions. The iSBC 544 Intelligent Terminal Interface sup
ports multiple user terminals without degrading system
performance to handle character 110.

I ,sac 544 -g
~ DATA

h COLLECTION
~ TERMINALS

fJQ
Figure 7. Multi-Terminal and Multi~User

Real-Time System

Table 7. iRMXTM 86 Configuration Size Chart

System Layer
. Min. ROMabie Max . Data

Size Size Size

Bootstrap Loader O.5K 1.5K 6K'

Nucleus 10.5K 24K 2K
BIOS 26K 78K 1K
Application Loader 4K 10K 2K

EIOS 10.5K 12.5K 1K

Human Interface 22K 22K 15K

UDI 11K 11K 0
Terminal Handler 3K 3K O.3K
Debugger 28.5K 28.5K 1K

Human Interface Commands 116K

Interactive Configuration Utility 308K

• Usable by System after bootloadlng.

Order Number 210885-001

2-16

iRMX™86

EXTENDABILITY

The iRMX 86 Operating System provides three means
of extensions. This extendability is essential for support
of OEM and volume end user value added features. This
ability is provided by: Ilser-defined operating system calls,
user-defined objects (similar to Jobs, Tasks, etc.), and
the ability to add functions later in the product life cycle.
The modular, layered structure of the System easily fa
cilitates later additions to iRMX 86 applications. User
defined objects are supported by the functions listed in
Table 8.

Using standard iRMX 86 system calls users may define
custom objects, enabling applications to easily manip
ulate commonly used structures as if they were part of
the original operating system.

EXCEPTiON HANDLING

The System includes predefined exception handlers for
typical 1/0 and parameter error conditions. The error
handling mechanism is both configurable and extendable.

SUPPORT OF STANDARDS

The iRMX 86 Operating System supports the many hard
ware and software standards needed by most application
systems to ensure that commonly available hardware
and software packages may be interfaced with a mini
mum of cost and effort. The iRMX 86 System supports
the iSBC family of products built on the Intel MULTIBUS
(IEEE Standard 796), and a number of standard software
interfaces such as the UDI and the common device driver
interface (See Figure 8). The procedural interfaces of

Table 8. User Extension System Calls

System Call Function Performed

RO$CREATE$COMPOSITE Creates a custom object built of previously defined objects.

RO$DELETE$COMPOSITE Deletes the custom object, but riot the vanous objects from which it was built.

RO$INSPECT$COMPOSITE Returns a list of Token Identifiers for the component objects from which the specified
composite object is built.

RQ$AL TER$COMPOSITE Replaces a component object of a composite object

RQ$CREATE$EXTENSION Creates a new type of object and assigns a mailbox used for collecting these objects
when they are deleted.

RQ$DELETE$EXTENSION Deletes an extension definition.

Figure 8. iRMXTM 86 Standard Interfaces

Order Number 21088S 001

2-17

iRMXTM 86

the UDI, a software analogy to the MULTIBUS, 'are listed
in Table 10. .

The Operating System includes support for the proposed
IEEE 80·bit extended real·variable format of the 8087
Numeric Data Processor, the IEEE 796 (MULTIBUS)
hardware interface, and the Intel· Universal Run·time In·
terface (URI). Other standards such as the iMMX 800
MULTIBUS Message Exchange, and an Ethernet· com·
munication interface, are supported by optional software
packages available to run on the IRMX 86 System.

\

SPECTRUM OF CPU PERFORMANCE

TheiRMX 86 System supports 8086 and 8088 based
systems directly at a variety of processor clock speeds.
With the iRMX 286R Operating System option, com
pletely compatible systems can be built around the iAPX
286 processor. By choosing the appropriate CPU, de
signers can select from a wide range of performance
without having to change application software.

COMPONENT LEVEL SUPPORT

The iRMX 86 System may be tailored to support specific
hardware configurations. In addition to system memory,
only an iAPX 86 or iAPX 88 microprocessor, an 8259A
Programmable Interrupt Controller, and either an 8253
or 8254 Programmable Interval Timer are required. In
addition, the iRMX 86 Operating System may be used
to augment the functions of the 80130 Operating System
Firmware Component that not only provides these hard
ware functions, but eliminates the need for approximately
14 KBytes of the iRMX 86 Nucleus code (see Figure 6).
For systems requiring extended mathematics capability,
an 8087 Numeric Data Processor may be added to per
form these functions up to 100 times faster than equivalent
software. For applications servicing more than 8 Inter
rupt sources, additional 8259A's may be configured as
slave controllers.

BOARD LEVEL SUPPORT

The iRMX 86 Operating System includes device drivers
to support a broad range of MULTIBUS device controllers.
The particular boards and types of devices supported are
listed in Table 9. The device controllers all adhere to in
dustry standard electrical and functional interfaces.

In addition to the on-CPU board terminal drivers, the
iRMX 86 BIOS includes two iSBC board-level device
drivers to support multiple terminal interfaces:

The iSBC 544 Intelligent Four-Channel Terminal
Interface Device Driver provides support for multi
ple controllers each supporting up to 4 standard
RS232 terminals. The iSBC 1544 driver takes ad
vantage of an on-board 8085 processor to greatly
reduce the system processor time required for ter-

• Ethernet IS a trademark of Xerox Corporation.

2-18

minal 110 by locally managing input and Ol,ltput
buffers. The iSBC 544 firmware provided with the
operating system can off-load the system CPU by
as much as 75%. .

The i$BC 534 Four-Channel USART Controller
Device Driver also provides support for multiple
controller boards each supporting up to 4 standard
RS232 terminals.

Table 9. Supported Devices

iSBCI!> Device
Supported Devices

Controller

iSBCI!> 86,88 Serial Port to CRT, Parallel Port to
Centronics-type Printer, InterVal
Timer, and Interr.upt Controller

ISBC® 204 Single Density Diskette

ISBC® 206 Cartridge-type Hard Disk

iSBC® 208 Single & Double Density,
Single & Double Sided.
8" & 5.25" Diskette

iSBC® 215 Standard Winchester Disks

iSBCI!> 220 Standard Storage Module Disks

iSBC® 254 Bubble Memory Board

iSBC® 534,544 4-Channel.Serial Ports to CRTs.
Modems

iSBXTM 218 Single & Double Density, Single
& Double Sided, 8" & 5.25" Disk-
ette (When used on an iSBel!> 215
Winchester Controller)

iSBXTM 270 Black and White CRT's and full
ASCII keyboards

Development Environment Features

The iRMX 86 Operating System supports the efficient
utilization of programming time by providing important
tools for program development. Some of the tools neces
sary to develop and debug real-time systems are included
with the Operating System. Others, such as language
compilers, are available from Intel and from leading In
dependent Software Vendors.

'LANGUAGES

The iRMX 86 Operating System supports a group of 31
standard system calls known as the Universal Develop
ment Interface (UDI). Figure 8 shows that the additional
features of this standard interface provide iRMX 86 sys
tems the capability: of using many compilers and lan
guage translators. These include the iAPX 86 and 88
Macro Assembler, and the Pascal 86/88, PUM 86/88,
and FORTRAN 86/88 compilers available from Intel. They
also include a number of other Intel development tools,

Order Number 210885·001

iRMX™ 86

and language translators and utilities available from other
software vendors. A subset of the UOI SYlltem Calls pro
vides another standard interface called the Universal
Runtime Interface (URI). The URI calls are those required
to execute a compiled,program, while the full set of UOI
calls is required to run a compiler.

These standard software interfaces (the URI and the UOI)
ensure that users of the iRMX 86 Operating System may
transport their applications to future releases of the iRMX
86 Operating System and other Intel and independent
vendor software products. The calls available in the URI
and UOI are shown in Table 10.

Table 10. URI and UOI System Calls

System Call Function Performed

Memory Management:
OQ$ALLOCA TE Crea!es a Segment of a specified size.

OQ$FREE Returns the specified segment to the System.

OOGETSIZE" Returns the size of the specified Segment.

OO$RESERVE$IO$MEMORY" Reserves memory to OPEN and ATTACH files. ,
File Management: I OO$ATTACH Creates a Connection to a specified file.

OQ$CHANGE$ACCESS" Changes the user access rights associated With a file or directory

OO$CHANGE$EXTENSION Changes the extension of a file name In'memory

DQ$CLOSE Closes the specified file Connecllon

OO$CREATE Creates a Named File.

OO$OELETE Oeletes a Named File.

OQ$OETACH Closes a Named File and deletes Its Connection.

OQ$OPEN Opens a file for a particular type of access

OQGETCON NECTION$STATUS' Returns the current status of the specified file Connection

OQ$FILE$INFO' Returns data about a file Connection

OO$REAO Reads the next sequence of bytes from a file.

DQ$RENAME' Renames the specified Named File

OO$SEEK Moves the position pointer of a file.

OO$TRUNCATE Truncates a file.

OO$WRITE Writes a sequence of bytes to a file.

Process Management:
OQ$EXIT Exits from the current application job.

OQ$OVERLAY' Causes the specified overlay to be. loaded

OQ$SPECIAL Performs special 110 related functions on terminals With speCial control
features.

OQ$TRAP$CC Captures control when CNTRLlC IS typed.

Exception Handling:
OQGETEXCEPTION$HANOLER Returns a pointer to the program currently being used to process errors.

OQ$OECOOE$EXCEPTION Returns a short description of the specified error code

OQ$TRAP$EXCEPTION Identifies a custom exception processing program for a particular type of error

Application Assistance:
OQ$OECOOE$TIME Returns system time and date in binary and ASCII character format.

OQGETARGUMENT" Returns the next argument from the character string used to invoke the ap-
plication program

OQGETSYSTEM$IO" Returns the name of the underlYing operating system supporting the UDI.

OdGETTIME" Returns the current t"ime of day as kept by the underlying operating system.

DQ$SWITCH$BUFFER Selects a new buffer from which to process commands.

• Calls available only through the UDI

Order Number ?10RAr, ~Ol

2-19

iRMX™86

The high performance of the iRMX 86 Operating System
enhances the throughput of compUers and other·develop
ment utilities. Table 11 indicates the average performance
of typical development environment functions operating
in the same configuration described in Table 5.

Table 11. Development Environment Performance

Function
Average

EX8Cuti9n Time

Directory Command 5.3 sec
(S Format with 25 files)

Load the COpy Commal)Q 1.2 sec

Copy a 1 K Byte File 1.0 sec
(Winchester to Winchester)

Copy a 16K Byte File 1.7 sec

Copy a 64K Byte File 3.9 sec
Copy a 1 K Byte File

1.4 sec
(Winchester to Diskette)

Compile PUM 86 3931pm

Compile PASCAL 86 4531pm
Program

TOOLS

Certain tools are necessary for the development of mi
crocomputer applications. The IRMX 86 Human Interface
includes many of these tools as non-resident commands.
They can be included on the system disk of an applica
tion system, and brought into memory when needed to
per.form functions as listed in Table 12.

Table 12. Major Human Interface Utilities

Command Function

BACKUP Copy directories and files from one
device to another.

COpy Copy one or more files to one or
more destination files.

CREATEDIR Create a directory file to store the
names of other files.

DIR List the names, sizes. owners, etc.
of the files contained in a directory.

ATIACHFILE Give a logical name to a specified
location in a file directory tree.

PERMIT Grant or rescind user access to a
file.

RENAME Change the name of a file.

SUBMIT Start the processing of a series of
commands stored in a file.

SUPER Change operator's ID to that of the
System Manager with global access
rights and privileges.

..

2-20

Table 12. Major Human Interface Utilities (Con't.)

Command Function

TIME Set the system time-of-day clock.

VERIFY Verify the structure of an iRMXTM 86
Named File.volume, and check for
possible disk data errors.

INTERACTIVE CONFIGURATION UTILITY

The iRMX 86 Operating System is designed to provide
OEMs the ability to configure for specific system hard
ware and software requirements. The Interactive Con
figuration Utility (ICU) builds iRMX 86 configurations by
asking appropriate questions and making reasonable
assumptions. It runs on either an Intellec® Series III De
velopment System or iRMX 86 System supporting the UDI
and a hard disk. Table 13 lists the hardware and support
software requirements of different iRMX 86 develop
ment system environments.

Table 13. IRMXTM 86 Development Environment

Intellecl!> Series III:
MDS 313 PUM 86/88 Compiler
One hard disk and one diskette drive

iRMXTM 86 Preconfigured System
iRMXTM 860 Utility -
iRMXTM 863 PUM 86/88 Compiler
iSBCI!> 957B Monitor
448K Bytes of RAM
5M Byte On· Line Storage and one double-density
diskette drive

SYSTEM 86/330 Microcomputer System
Basic configuration

Figure 9 shows one of the many screens displayed during
the process of defining a configuration. It shows the ab
breviations for each choice on the left, a more complete
description with the range of possible answers in the
center, and the current (sometimes default) choice on
the right. The bottom of the screen shows three changes
made by the operator (lower case lettering), and a request
for help on the Exception Mode question. In response
to a request for help, the ICU displays an additional
screen outlining possible choices and some overall sys·
tem effects.

The ICU requests only information required as a result
of previous choices. For example, if no Extended I/O
System functions are required, the ICU will not ask any
further questions about the EIOS. Once a configuration
session is complete, the operator may save all the infor
mation in a file. Later, when small changes are neces-

Order Number 210885·001

iRMX™86

sary, this file can be modified. A completely new'session
is not required.

Nucleus
(ASC)
(PV)
(ROD)
(MTS)
(DEH)
(NiH)
(EM)
(NR)

AHSysca1ls{'t'tslNo1
PoromtIef V_,on (VHINoI
Root Object Dllary Sue 10-1IfftIh1
",,_ Tllnsfer Silt ~- OFfFFHI
Del,," Excepbon Hlndler (V1IINoIDeII/Use1
Narneot Ex Hindle< ObJICI Maclute 1.-32ch'1
E.cep1~n _ IN /Program/Envrron/AIiI
Nucleus In ROIIIVHINoI

En." Changes IAbbre_no 'I, ne.·VlIueI ASC, N
pv:no
rod ,48
em'

Yes
Yes
OO.CH
0040H
Ves

Never
No

Figure 9. ICU Screen for IRMXTM 86 Nucleus

REAL-TIME DEBUGGING TOOLS

The iRMX 86 Operating System supports three distinct
debugging environments: Static, Dynamic, and Post
Mortem. While the iRMX 86 Operating System does
support a mUlti-user Human Interface, these real-time
debugging aids are usually most useful in a single-user
environment where modifications made to the system
cannot affect other users.

The static debugging aid is the iSBC 957B Monitor (in
cluded in the first shipment of some iRMX 86 options).
The Monitor provides a basic debugging capability for
both system and application code. The iRMX 86 Debug
ger provides a dynamic system debugging tool for testing
and debugging real-time systems. The Debugger allows
programmers to stop and inspect one task while the rest
of the system continues to operate. The iRMX 86 Crash/
Dump Analyzer enables programmers to intpect a sys
tem's structure after a problem has caused it to stop nor
mal operation. Each of these debugging facilities are
described below.

iSBC@ 957B Monitor

The iSBC 957B Monitor can be used either as a stand
alone monitor for static debugging and system start-up,
or as a communication link to an Intellec Development
System. A number of PROMs are included along with the
necessary cables to control a hardware configuration
such as is pictured in Figure 10. All programs necessary
for the Intellec system and the target system are included.
Configuration tools for users wishing to support different
hardware configurations are also included.

Debugging of any iAPX 86 or 88 application is accom
plished in an interactive manner via either of the two ter:
minals shown in Figure 10. If an Intellec Development
System is not present, all debugging instructions neces
sary to view and modify register and memory contents,
set execution breakpoints and provide single instruction

execution are accessable from a terminal connected di
rectly to the iAPX 86 or 88 system.

rNTELLEC
SERIES

MOOEL 210

UPP
CHANNEL

SERIAL CH2

Figure 10. Typical iSBC® 957B Configuration

iRMX™ 86 Debugger

The iRMX 86 Debugger runs as part of an iRMX 86 ap
plication. It may be used at any time during program de
velopment, or may be integrated into an OEM system
to aid in the discovery of latent errors. The Debugger can
be used to search for errors in any task, even while the
other tasks in the system are running. The iRMX 86 De
bugger communicates with the developer via a terminal
handler that supports full line editing.

System Crash/Dump Analyzer

The often difficult job of debugging real-time applications
is made much simpler with the System Crash/Dump
Analyzer. The analyzer allows program developers to
record system memory for later analysis even if the sys
tem has halted. This analYSis lists such vital Information
as which jobs have active tasks, which system queues
contain which tasks, and what segments contain which

- data.

2-21

The information used by the Analyzer is obtained from
a copy of iRMX 86 data structures after a fault has caused
an unexpected halt (crash). The processor also may be
halted deliberately to perform a system analysis. The
system information is created by a two-step process:

1. Transferring an image 01 iRMX 86 system memory
to a disk file on an Intellec Senes III Microcomputer
Development system,

2. Later printing an analyzed and formatted printout
description of the stale of the system.

Figure 11 shows a portion of a Crash/Dump Analyser
display for an iRMX 86 Mailbox. The display identifies
the mailbox by its token and shows its key attributes.
This information is followed by a list of tokens for objects
(if any) queued at the mailbox.

Order Number 21088~·OO'

IRMXT,M as

Ii
Ii - -- ---- - - --- ------------------ - -------------
Ii
Ii _ ,taUn=4AM PRIORITY
Ii OUEUE
~ - -------- ------ or- ---- - ---- ... --- ------- -----
Ii

c-mng Jab 484D 0-dllciplont PRJ
Tllkq_hood DOOO Dbjectquouehood W3

Dbjectcochtdeplll Ie NO TASKS WAITING

Dbject queue 484DJ14A83G 484DJ14A1I'G 484DJ14A6FG
484DJl4A6DG 484DJ14A68G 484DJ14A69G

JFOR
CONTAINING JOB

G FOR SEGMENT
ONOUEUE

Figure 11. Mailbox Analysis Report

The analysis displays all the mailboxes (among other
things) which exist within each job. Thus a user might
learn critical information by observing a number of ob
jects different from that expected.

Performance problems can be identified under some
circumstances. Noticing that certain mailboxes frequently
have many objects queued may suggest an increase in
the high performance cache size for the mailbox to im
prove its throughput, or give the designer cause to in
vestigate the receiving task operation to see why the
queue is so large.

The analyzer automatically. checks for system inconsis
tencies such as corrupted data structures, incorrect object
types, and stack overflow. Reports of such problems ac
company the, reports on specific system objects.

PARAMETER VALIDATION

Some iRMX 86 System Calls require parameters that
may change during the course of developing iRMX 86
applications. The iRMX 86 Operating System includes
an optional set of routines to validate these parameters
to ensure that correct numeric values are used, and that
correct object types are used where the System expects
to manipulate an object. For systems based only on the
iRMX 86 Nucleus, these routines may be removed to im
prove the performance and code size of the System once
the development phase is completed.

PRECONFIGURED SYSTEM

A ready-to-run, multi-user, Preconfigured System is in
cluded in each iRMX 86 KIT. Its configuration supports

SPECIFICATIONS

Supported Software Products
iRMX 286R iRMX 86-compatible Operating System

extension for iAPX 80286

the full Complement of devices shown in Figure 12. The
shaded area of the Figure represents the minimum hard
ware required by the start-up system. Other combinations
of the devices, up to the full compliment shown, that
support additional on-line storage are also possible. The
Preconfigured System includes all iRMX 86 System Calls
and the complete Universal Development Interface (UDI).
The UDI supports Intel High-Level Languages and many
applications available from Intel and many Independent
Software Vendors.

•••••• ' . • ""!J:. ,"','

FLOPPIES

~ .. ,~"
,saC'S34 ~

. -"~

WINCHESTERS

Fig~re 12. Pre-Configured iRMXTM 86 System

The Preconfigured System is intended to aid the initial
use of iRMX 86.features. Any 808fH)ased system currently
supporting an iRMX 86 environment with a double den
sity diskette may simply plug in the start-up system and
run. Further, thiS start-up system may be used to run the
ICU (!fa Winchester disk is attached to the system) to
develop custom configurations such as those pictured
in Figure 7. As shipped, the Human Interface supports
a single user terminal. However, the Preconfigured Sys
tem user terminal file may be altered easily to support
from two to five users. .

This System is also available as a separate product (order
code RMX 86PC E) for-those iRMX 86 users that do not
require the ability to tailor their system to custom hard
ware and software configurations. The SYSTEM 86/300
Family of Microcomputer Systems also provide users
immediate access to programming tools and system ap
plications with a ready-to-Ioad preconfigured iRMX 86
Operating System.

iRMX 860 iRMX 86 Development Utilities
Package including the iAPX 86 and 88
Linker, L.:ocater, Macro Assembler,
Librarian, and the iRMX 86 Editor

iRMX 861 PASCAL 86/88 Compiler

Order Number 210885·001

iRMXTII 86

iRMX 862

iRMX863

iRMX864

iMMX800

iOSP86

FORTRAN 86/88 Compiler

PUM 86/88 Compiler

TX Screen-oriented Editor

MULTIBUS Message Exchange soft
ware package for iRMX 80, 86, and 88
application systems

Support Package for iAPX 86/30 and
88/30 Operating System Processors

Supported Hardware Products

CPMPONENTS

iAPX 86 and 88 Microprocessors

iAPX 286 Microprocessors (with iRMX 286R)

8087 Numeric Data Processor Extension

iAPX 86/30 (80130) Operating System Firmware
Component (with iOSP 86)

8253 and 8254 Programmable Interval Timers

8259A Programmable Interrupt Controller

8251A USART

8255 Programmable Parallel Interface

iSBC® MULTIBUS@ BOARD AND SYSTEM PRODUCTS

iSBC 86/12A, 86/05, 86/14, 86/30, 88/25, and 88/40
Single Board Computers

iSBC 286110 Single Board Computer (With iRMX 286R)

iSBC 204 Diskette Controller

iSBC 206 Hard Disk Controller

iSBC 208 Diskette Controller

iSBC 215 Winchester Disk Controller ,

iSBC 220 SMD Disk Controller

iSBC 254 Bubble Memory System

iSBC 534 4-Channel Terminal Interface

iSBC 544 Intelligent 4-channel Terminal Interface and
Controller

iSBX 218 Diskette Controller (with iSBC 215)

iSBX 350 Parallel Port (Centronics-type Printer Interface)

iSBX 351 Serial Communications Port

iSBX 270 CRT, Light Pen and Keyboard Interface

SYSTEM 86/330 Computer System

SYSTEM 86/380 Computer System

Available Literature
The iRMX 86 Documentation Set is comprised of follow
ing reference manuals. Each is also be available under
the order numbers shown.

Introduction to the iRMX 86 Operating System
(9803124-04)

.iRMX 86 Operator's Manual (144523-001)

Master Index for iRMX 86 Release 5 Documentation
(145015-001)

Getting Started With The Release 5 iRMX 86 System
(145073-001)

. iRMX 86 Installation Guide (9803125-05)

iRMX Configuration Guide (9803126-05)

2-23

iRMX 86 Nucleus Reference Manual (9803122-04)

iRMX 86 Terminal Handler Reference Manual
(143324-002)

iRMX 86 Debugger Reference Manual (143323-002)

IRMX 86 Basic 110 System Reference Manual
(9803123-05)

IRMX 86 Loader Reference Manual (143318-002)

IRMX 86 Extended 110 System Reference Manual
(143308-002)

IRMX 86 Human Interface Reference Manual
(9803202-003)

GUide to Writing DeVice Drivers for the iRMX 86 and
iRMX 88110 Systems (142926-004)

IRMX 86 Programming Techniques (142982-003)

User's Guide For The ISBC 957B IAPX 86, 88 Interface
and Execution Package (143979-002) ,

iRMX 86 Disk Verification Utility Reference Manual
(144133-002)

Runtime Support Manual for iAPX 86, 88 Applications
(121776-002)

IRMX 86 Crash Analyzer Reference Manual
(144522-001)

OPTIONAL REFERENCE MATERIALS

Edit Reference Manual (143587-002)

Guide to Using iRMX 86 Languages (142907-001)

APPLICATION NOTES

Ap Note 86 - iRMX 86 Realtime Multitasking
Operating System

Ap Note 130 - Using Operating System Processors to
Simplify Microcomputer Designs

TRAINING COURSES

Introduction to the iRMX 86 Operating System

Advanced 'iRMX 86 Operating System Concepts

CUSTOMER SEMINARS

Contact Local Intel Sales Office for details on available
video-tape and slide presentations.

Order Number 210885 001

ORDERING INFORMATION
The iRMX 86 Operating System is available under a
number of different licensing options as noted here. Ex
cept for source listings (available on microfichel all options
are provided on either single or double density ISIS-for
matted diskettes, or on double density iRMX 86-formatted
diskettes. ISIS-format diskettes may be used on Intel
Intellec Development Systems. The iRMX 86-format may
be used on any iRMX 86-based system supporting the
appropriate compilers and 'development environment.

The OEM license options listed here allow users to incor
porate the iRMX 86 Operating System into their appli
cations. Each use requires payment of an Incorporation
Fee.

Order Code Description

RMX 86 KIT ARO: Single density OEM license.

RMX 86 KIT BRO: Double density OEM license.

2-24

RMX 86 KIT ERO: Double density iRMX 86-Format
OEM license for use on iRMX
86-based environments.

Other licensing options include prepayment of all future
incorporation fees, single use rights for a single machine,
use at a second development site, one-year support serv
ice extensions, the right to make copies for a(ldltional
development systems, and source listing materials.

Each option includes 90 days of support service that
provides a periodic NEWSLETTER, Software Problem
Report Service, and copies of System updates that occur
during this period. Except for source listings, all initial
licenses include the iSBC 957B iAPX 86 and 88 System
Monitor, and a complete set of iRMX 86 Documentation.

As with all Intel software, purchase of any of these options
requires the execution of a standard Intel Master Soft
ware License. The specific rights granted to users depend
on the specific option and the License signed.

iRMX™ 88
REAL·TIME MULTITASKING EXECUTIVE

• Event-driven multitasking executive
software supports iSBC® 86/05,
86/12A, 86/14, 86/30, 88/25, 88/40,
88145 or iAPX 86, 88 based applications

• Small, high·performance, PROMable
executive supports high sample rates

• Provides simple, intertask communica·
tions and synchronization

• Supports the 8087 Numeric
Processor Extension (NPX) for
arithmetic applications

• Supports component or iSBC™·based
system generation through Interactive
Configuration Utility

• I/O system provides compatible
iRMX™ 86 files and device independent
110 interface

• 110 system supports the User Run·time
Interface (URI) for PUM, PASCAL and
FORTRAN coded application tasks

• Memory management of full megabyte
iAPX 86, 88 memory

The iRMX 88 Real·Time Multitasking Executive is a small, event-driven single-user executive system. Designed
for dedicated computer applications using iSBC 86/05, 86/12A, 86/14, 86/30, 88/25, 88/40, 88/45 or iAPX
86, 88 custom products, the modular software package provides real-time application support for PASCAL,
FORTRAN, PUM and assembler coded tasks. Application tasks utilize intertask communications, synchronous
I/O control, priority-based resource allocation and file support for the iSBC 204, 206, 208, 215/218, and
220 Disk Controllers, and the iSBC 254 Bubble Memory product.

The small, high performance iRMX 88 Executive can be located in EPROM or bootstrapped into RAM
memory. The iRMX 88 Executive offers features that are suitable for performance·critical process control
applications, production test stand units, sophisticated laboratory analysis, instrumentation, specialized
data acquisition systems or monitoring stations. The iRMX 88 design, based upon the iRMX 80 Real·Time
Executive, offers iRMX 80·like interfaces for those 8·bit applications which are upgrading to 16·bit solu
tions for the 1 Megabyte addressing, expanded application functions, and higher performance data sam·
piing requirements.

USER
APPLICATION

Figure 1. Module Representation

The follOWing are trademarks of Intel Corporation and may be used only to desCribe Intel products Intel, CREDIT, Index, Instte, Intellec, library Manager, Megachanls,
Mlcromap, MULTIBUS, PROMPT, UPI, ,"Scope, Promware, MeS, ICE, tRMX, .SSC, .sex, MULTIMODULE and teS Intel CorporatIOn assumes no responsibility lor the use alany
cIrcuitry other than Circuitry embodied in an Intel product No other circuit patent licenses are Implied

© INTEL CORPORATION, 1981 October, 1;81
Order Number: '.3130.002

2-25

intJ iRMX™ 88

FUNCTIONAL DESCRIPTION

The IRMX 88 Real-Time Multitasking Executive
Software package provides facilities for executing
tasks concurrently, managing resources and serv
Icing asynch'ronous events to users of Intel's
single board computers and custom iAPX 86,
88-based products. The foundation modules sup
port real-time dedicated computer applications
with priority-based task scheduling, interrupt
dispatching, real-time clock control with 1 ms
resolution, multiple event monitoring and control,
and file services for flexible, hard, Winchester,
SMD disk units and bubble memory devices. The
software package includes the primary modules:
Nucleus, Free Space Manager, Terminal Handler,
I/O System and Bootstrap Loader. The Interactive
Configuration Utility (ICU) executes on a Series III
Intellec System, or iRMX 86 Operating System
with a Universal Development Interface·(UDI).

FEATURE OVERVIEW

Event-Driven Multitasking
The i RMX 88 Executive provides a control software
foundation called a Nucleus. The iRMX88 Nucleus
provides two major functions: first, the facility for
concurrent task execution; secondly, the facility
for handling simultaneous asynchronous events.

The structured multitasking environment permits
segmenting of the application tasks. The number
of tasks, managed by the Nucleus, Is limited only
by the available 1 Megabyte memory space. The
tasks are prioritized such that the highest-ranked'
task is executing, e.g., an alarm event preempts
the lower priority executing task. The Nucleus
supports 255 priority levels.

Since internal or external events (interrupts) occur
randomly, the Nucleus synchronizes the event
with a task. The Nucleus ~upports either an inter
rupt service routi.ne or an interrupt task. The inter
rupt service routine offers high-speed perform-

. ance flexibility since it masks all Interrupts and
supports burst-rate data sample gathering. The in
terrupt task Is useful for lower frequency inter
rupts, masking only lower priority interrupts ..

Small High-Performance Executive

The iRMX 88 Executive software utilizes a simple,
straightforward architecture which minimizes the
memory requirements, as shown in Table 1. In ad
dition, the modules are deSigned to be totally
EPROM resident for those systems where mass
storage devices cannot be used because of the
danger of ,contamination.

Real-time microcomputer solutions require the
recognition of' interrupts. The performance of the
system is with respect to data sample rates, If there
is no activity in progress when an interrupt occurs,
the time to handle that interrupt is dependent on
the number of instructions executed, e.g., 52
microseconds interrupt latency time on an iSBC
86/12A board. Most real-time solutions have mUlti
ple events occurring and background operations in
progress. Seldom does a background task have
critical sections of code which cannot be interrupted.

Intertask Communications
The iRMX 88 Nucleus provides a simple, easy-to
use intertask communications mechanism based
upon a message. Messages are transferred be
tween tasks with two basic procedure calls, a send
(ROSEND) and a wait (ROWAIl'). Task "A" requests
the Nucleus to ROSEND the pOinter to a message
buffer to Task "B" (see Figure 2). The Nucleus con
trols the message flow by activating the higher
priority Task B, or queuing the message If a lower
priority Task B is not waiting for the message. The
receiving task does an ROWAIT to get the mes
sage pOinter and can now access the data which
may be for synchronization or real-time control
operations.

Table 1. IRMX™ 88 Module Memory Requirements

TERMINAL FREE
MODULE NUCLEUS SPACE

HANDLER MANAGER PHYSICAL**

EPROM·
4.0 2.5 1.5 20.0 (K bytes)

• amount 01 code configured In EPROM; all numbers are approximate
•• includes one 3K byte deVIce driver (named Iile plus phYSIcal lile is 34.0K bytes)

••• includes an O,5K byte device driver

2-26

1/0 SYSTEM

NAMED** BOOTSTRAP * * •

32.0 1.5

AFN'()1108A

intJ

TASK A

1.

•

TASK B

1.

TASK ENTRY POINT

INITIALIZE TASK

PERFORM FUNCTION

INITIALIZE OPERATION (ROSEN D)
(SEND MESSAGE)

WAIT FOR RESPONSE (ROWAIT)

TASK ENTRY POINT

INITIALIZE TASK

WAIT FOR MESSAGE (ROWAIT)
FROM TASK A

PERFORM FUNCTION

SEND RESPONSE (ROSEN D)
TO TASK A

IRMX™ 88

Numeric Data Processor
The iRMX 88 Nucleus fully supports the 8087
Numeric Processor Extension (NPX) functions for
high·speed arithmetic functions of real·time ap·
plications. High·performance numeric processing
applications, which utilize 8·, 16·,32· and 64·bit in·
tegers, 32·, 64· and 80·bit floating pOint or 18·digit
BCD operations, are accelerated up to 100 times
over a iAPX 86, 88 software solution. The NPX
functions, including trigonometric, logarithmic
and exponential functionals, are essential in
scientific, engineering, navigational or military ap·
plications.

Nucleus Primitives

Figure 2. Intertask Communications

The Nucleus performs other functions as shown in
Table 2, in addition to the message communica·
tions management. Some primitives like CREATE
TASK and DELETE TASK allow dynamic crea·
tion/deletion of tasks during run·time. This
dynamic capability allows the Nucleus tables to

Table 2. Nucleus Primitives

NAME FUNCTION

ACCEPT Accept a message from specified exchange. Returns message ad·
dress if available, zero otherwise.

CREATE TASK Create task by building new Task Descriptor based on specified
Static Task Descriptor.

CREATE EXCHANGE Create exchange at specified RAM address.

DISABLE INTERRUPT Disable specified interrupt level.

DELETE EXCHANGE Delete specified exchange.

DELETE TASK Delete the task specified.

ENABLE INTERRUPT Initialize' message portion of the Interrupt Exchange Descriptor
associated with the specified interrupt level (the first time called
only), and enable specified interrupt level.

END INTERRUPT Signals specific end·of-interrupt for the specified interrupt exchange
in a user-supplied interrupt service routine.

INTERRUPT SEND Send an interrupt message to the specified interrupt exchange.

RESUME Resume a task that has previously been suspended.

SEND Send the message located-at "msg-addr" to the exchange specified
by "exch-addr."

SET INTERRUPT Set interrupt vector address. An interrupt is to be serviced by the
user-supplied routine starting at the address, thus bypassing
Nucleus interrupt software.

SUSPEND TASK Suspend execution of the task specified by the Task Descriptor.

WAIT Wait at the specified exchange until a message is available or time
limit expires. Return address of system timeout message or liser
message.

AFN 01108A

2-27

intJ IRMX™88

expand and accommodate infrequently used tasks
which are loaded into memory from a mass
storage device.

Interactive System Generation
The iRMX 88 Executive is constructed in a'
thoroughly modular manner with the ful~ range of
facilities being offered in library mOdules. By
selecting the appropriate features and combining
them with the user-written application tasks the
generated system is tailored to the application's
requirements minimizing memory overhead for
unused features. ;

An Int'eractive Configuration Utility provides a
query-based tool that configures the i RMX
88-based application_ Responding to questions
from the ICU utility program executing on a Series
IIIlnteliec Microcomputer Development System or
an iRMX 86-based system, the user quickly tailors
the real-time application system.

110 System
The iRMX 88 110 System provides an extensive
facility for device-independent 110. Through a
series of supplied iRMX 86 compatible device
drivers, the 110 System supports a wide-range of
iSBC peripheral controllers. Custom peripheral
controllers are supported through user-written ,
device drivers which are integrated with the 110
System at system configuration time. The device
independent nature of the system allows use of
different devices without application redesign.

The 110 System (IDS) procedures manage real-time
file operations supporting both sequential and
random access (see Table 3). The IDS maximizes
system throughput by allowing multiple disk
operations to proceed in parallel. For example,

files can be "double buffered" so that the task can
be processing data in one buffer while the IDS is
filing another.

The IDS provides access to two types of files:
• Named Flies allow applications to refer to col

lections of bytes (files) by using a name. These
names are cataloged in a directory which allows
files to be accessed by different tasks.

• Physical Files allow applications to make a
physical connection to a storage device.
Typically used for simple devices such as
printers, terminals or sequential data logging
where file structures are not necessary.

The file types are a compatible subset of the iRMX
86 Basic 110 System with a flat (non-hierarchical)
directory.

Bootstrap Loader
The iRMX 88 IDS has a Bootstrap Loader which
loads a file from mass storage into system
memory. The configurable Bootstrap Loader loads
the file from a specific device, automatically from
the first-ready device of, a designated device list,
or accepts the file name from a terminal. Storing
the system software on disk allows easier future
changes to the application system.

Run-Time Interface
The iRMX88 Executive provides the User Run-time
Interface (URI). This URI interface, in addition to
encompassing the 110 System services, provides
additional functionality for tasks. The additional
functionality includes a trap function and memory
management routines which provide the run-time
foundation for PASCAL-86, FORTRAN-86, or
PUM-86 coded application tasks.

Table 3_ 1/0 System Services

SERVICE FUNCTION

Data Transfer CLOSE Closes a file connection·.
Services. OPEN Opens a file connection for access.

READ Reads a number of bytes from a file.
SEEK Seeks to the indicated position within a file.
TRUNCATE Truncates a file.
WRITE Writes a number of bytes to that file.

File Connection ATTACH Attaches to a file connection.
Services CREATE Creates a file and returns a file connection.

CONNECTION STATUS Returns the file connection status.
DELETE Marks the file for deletion.
DETACH Detaches a file connection.
RENAME Renames an existing file.

Volume Preparation FORMAT Formats the disk for files.

AFN'()1706A

2-28

intJ iRMXTM 88

SPECIFICATIONS

Intellec® System Configuration and
Generation Requirements

Series III Intellec Microcomputer Development
System with UDI support and a minimum of 2
diskette drives.

IRMX™·Based Configuration and
Generation Requirements

iRMX 86-based system with UDI support and a
minimum of2 diskette drives.

Supported Hardware

ISBC™ SUPPORTED MICROCOMPUTERS

iSBC 86/05 Board
iSBC 86/12A Board
iSBC 86/14 Board
iSBC 86/30 Board
iSBC 88/25 Board
iSBC 88/40 Board
iSBC 88/45 Board

MASS STORAGE

iSBC 204 Flexible Diskette Controller
iSBC 206 Flexible Disk Controller
iSBC 208 Flexible Disk Controller
iSBC 215A Winchester Disk Controller
iSBC 215B Winchester Disk Controller
iSBC 220 SMD Disk Controller
iSBC 254 Bubble Memory Board

MULTIMODULE™ BOARDS

iSBX 218 Flexible Disk Controller (when used with
the iSBC 215 Controller)
iSBC 337 Numeric Data Processor

iSBX 351 Serial 110 Board

CUSTOM IAPX 86, 88·BASED SYSTEMS
REQUIREMENTS

8253 or 8254 Programmable Interval Timer
8259A Programmable Interrupt Controller
8251A USART or iSBX 351 board (when the Ter
minal Handler is configured into the system).
8087 Numeric Processor Extension (when NPX
tasks are configured into the system).

Reference Manuals (supplied)

143238 - Introduction to the iRMX 80/88 Real
Time Multitasking Executives

2-29

143241 - iRMX 88 Installation Instructions

143232 - iRMX 88 Reference Manual

142603 - iRMX 80/88 Interactive Configuration
User's Guide

142926 - Guide to Writing Device Drivers for the
iRMX 86 and iRMX 88 110 Systems

AFN·OI708A

iRMX™ 88

ORDERING INFORMATION Part Number Description

Part Number Description RMX 88 ABY Single Density ISIS media. In·
cludes incorporation fee

RMX88 A licensed product which in· buyout.
cludes Nucleus, Terminal RMX 88 BBY Double Density ISIS media. In· Handler, Free Space Manager,
and 110 System object modules.

cludes incorporation fee

Package also includes UDI·
buyout.

compatible Interactive Config· RMX88 DBY Single Density RMX·86 media.
uration Utility program for Includes incorporation fee
system generation and a com· buyout.
plete set of manuals. Purchase

RMX88 AWX One year Single Density ISIS
price includes an iRMX 88
Customer Training Course

media update service.

credit. RMX88 BWX One year Double Density ISIS

RMX88 ARO Single Density ISIS media. Re· media update service.

quires derivative work incor· RMX 88 DWX One year Single Density
poration fee. RMX·88 media update service.

RMX 88 BRO Double Density ISIS media. Re· RMX 88 LST Human readable source lis.tings
quires derivative work incor· for iRMX 88 software.
poration fee.

RMX 88 LWX Update service for human
RMX 88 ORO Single Density RMX·86 media. readable source listings.

Requires derivative work incor·
RMX 88 RF Incorporation fee.

poration fee.

2-30

PRECONFIGURED iRMX™ 86
OPERATING SYSTEM

• Ready-to-run Preconflgured iRMX™ 86
Operating System for ISB~ systems

• Efficient realtime multitasking
scheduler with 255 priority levels

• Complete support of 8087 numeric
processor extension

• Direct support of Independent
software vendor compilers and
applications

• Direct support for Intel on-target
compilers and development tools

• Simple program load and debug with
Bootstrap and Monitor In 2732A
EPROMs

• Device drivers included for diskettes,
Winchester hard disks, serial
terminal Interface, and parallel line
printer

• A complete, high-performance,
execution engine for UDI applications

The Intel Preconfigured iRMX 86 Operating System is a flexible, realtime; and multitasking system which
is configured to run on a low-cost, iSBC 86-based hardware system_ The iRMX 86 Operating System is
designed to provide a structured and efficient environment for many time- and performance-critical appli
cations such as factory automation, business data and text processing, medical electronics, data commu
nications and process control. The Preconfigured System provides this environment without requiring
specific hardware and software configurations. Based on the UOI software interface architecture for op
tional compilers and interpreters, the iRMX 86 PC System supports development of sophisticated applica
tions using the target hardware. A ready-to-use comprehensive human interface provides advanced ser
vices including creating and maintaining a hierarchical file system, entering the debug monitor and
backing-up diskette volumes.

SOFTWARE INTERFACE ARCHITECTURE

UNIVERSAL DEVELOPMENT
INTERFACE

(UDlj

UNIVERSAL RUN· TIME
INTERFACE

IUIUI

STANDARD I/O INTERFACES

REAL TIME NUCLEUS

MUL TlPAOCESSING SYSTEMS IUS
MULTIBUS

Figure 1. IRMXTM 88 PC Support for Standard Interfacas

The follOWing are trademaltt. of Intel Corporation and may be used only to desCribe Inte' products Intel, CREDIT. Index, Inslte, Intallee, Library Manager, Megachaasls,
Mlcromap. MULTIBUS, PROMPT. UPI,,,$cope, Promware, MCS, ICE, IRMX •• sac, ,sax, MULTI MODULE and ICS Inte' Corporation IllUmes no responsibility for the use of any
CircUitry other than CirCUitry emboched In an Inte' product No other CirCUit patent IIc.n •••• r. Implied

© INTEL CORPORATION. 1982 M." •• 1982
0_ Nu : 21CMH-OOl

2-31

IRMX™ 86 PC

The Preconfigured iRMX 86 Operating System is a
complete set of system software modules that are
ready-to-run in a simple MULTIBUS system con
sisting of an iSBC 86 computer, memory, and a
diskette controlleJ board. All the features of the
iRMX 86 Operating System are provided along with
a bootstrap monitor to load the system diskette in
to the system.

The Preconfigured iRMX 86 System provides both
implicit and explicit management of system
resources. These resources include the processor's
time and registers, up to one megabyte of system
memory, independent interrupt sources, all input and
output devices, as well as directory and data files
contained on diskettes or 8" Winchester disks.

FUNCTIONAL DESCRIPTION

In applications where computers are required to
perform many functions simultaneously, the iRMX
86 Operating System provides a multiprogram
ming environment in which many independent,
and optionally multitasking, applications may run.
Each application environment may be treated sep
arately to allow application programmers the flex
ibility to separately manage each application's
resources. A complete description of the iRMX 86
Operating System can be found in the iRMX 86
Data Sheet (Order Number: 210330).

User Commands
The iRMX 86 PC System provides a number of
powerful tools necessary for the development of
microcomputer applications. They are included on
the system disk and brought into memory when
needed to perform the functions listed in Table 1.

These commands are especialiy useful for manag
ing user programs and data stored on diskettes.

File Management

The iRMX 86 PC file management system allows
users to access information on diskettes by refer
ring to a file with its ASCII name. The names of
files stored on a disk are catalogued in special
files called directories. As directories are them
selves named files, the iRMX 86 file system allows
directories to contain the names of other direc
tories. This leads to a hierarchical file structure as
illustrated in Figure 2. This structure is useful for
isolating file names of particular applications, and
for tailoring the system's data to the requirements
of users and applications sharing storage devices.

6
FILE

D
DIRECTORY

DIR (OTHER)

URXSML URXCOM URXLRG UOI
LIB LIB LIB EXT

Figure 2. IRMXTM 86 PC System Disk Directory Tree
I

Table 1. IRMXTM 86 PC Commands

Command Function
AITACHDEVICE Gives a logical name to a specific disk, CRT, or Printer device
BACKUP Copy directories and files from one device to another
COpy Copy one or more files to one or more destination files
CREATEDIR Create a directory file to store the names of ~ther files
DATE Set the system calendar
DELETE Delete a file or directory
DEBUG Enter the System Monitor
DETACH DEVICE Remove a device from the system
DIR List the names, sizes, owners, etc. of the files. contained in a directory
FORMAT Prepare a new diskette volume for use
RENAME Change the name of a file
RESTORE Recreates a volume saved by BACKUP
SUBMIT Start the processing of a series of commands stored in a file
TIME Set the system time-of-day clock
VERIFY Verify the structure of an iRMX 86 Named File volume, and check for possible disk data errors

AFN·02202A

2-32

IRMX™ 86 PC

Figure 2 also shows the siructure of the direc
tories on the iRMX 86 PC system diskette. It con
tains all the programs and commands that make
up the iRMX 86 PC System. Users may add other
files and directories anywhere in the structure.
Whenever an operator makes a request to use one
of these files, the System will search the appro
priate directory tree in order to find the necessary
informati,on about the file's size, access rights,
and specific location on the diskette. Applications
may also refer to a specific file or group of files by
specifying the directory from which to start the
search.

Universal Development Interface (UDI). Figure 1
shows how this interface provides iRMX 86
systems the capability of using many compilers
and language translators. Th~se include the iAPX
86 and 88 Macro Assembler, and the PASCAL
86/88, PLiM 86/88, and FORTRAN 86/88 compilers
available from Intel. They also include a number of
other Intel development tools, and language trans
lators and applications available from indepen
dent software vendors.

The standard UDI software interface establishes a
path to future Intel software products and opens
the door to a host of compilers, interpreters, and
application programs available from independent
software vendors. These UDI calls are easy-to-use
and are listed in Table 2. A more complete list of all
the system calls provided by the iRMX 86 PC
System can be found in the iRMX 86 Data Sheet.

Standard Interfaces

The iRMX 86 PC System supports a group of 31
easy-to-use standard system calls known as the

Table 2. UDI System Calls

System Call Function Performed

Memory Management:
DQ$ALLOCATE Creates a segment of a specified size for use by the application.
DQ$FREE Returns the specified segment to the system'.
DQGETSIZE Returns the size of the specified segment.
DQ$RESERVE$10$MEMORY Reserves memory for use by 110 operations.

File Management:
DQ$AITACH Creates a connection to a specified file.
DQ$CHANGE$EXTENSION Changes or adds an extension to a file name.
DQ$CLOSE Closes the specified file connection.
DQ$CREATE Creates a Named File for use by the application.
DQ$DELETE Deletes a Named File.
DQ$DETACH Closes a file and deletes its connection.
DQ$OPEN Opens a file for a particular type of access.
DQ$READ Reads the next sequence of bytes from a file.
DQ$RENAME Renames the specified Named File.
DQ$SEEK Moves the current position pointer of a file.
DQ$TRUNCATE Truncates a file.
DQ$WRITE Writes a sequence of bytes to a file.
DQ$FILE$INFO Returns information about the specified file.
DQ$CHANGE$ACCESS Changes the access rights of the specified file.

Process Management:
DQ$EXIT Exits from the current application job.

DQGETCONNECTIONS$ST ATUS Returns the current status of the specified file connection.
DQ$OVERLAY Causes the specified overlay to be loaded.
DQ$SPECIAL Performs speci,al 1/0 related functions on terminals with special control

features.

Exception Handling:
DQGETEXCEPTION$HANDLER Returns a pointer to the program currently being used to process errors.

DQ$DECODE$EXCEPTION Returns a short description of the specified error code.

AFN 02202A

2-33

IRMX™86 PC

Table 2. UOI System Calls (con't.)

System Can Function Performed

Exception Handlirig (con't.)
DO$TRAP$EXCEPTION Identifies a custom exception processing program for a particular type of

error.

DO$TRAP$CC Identifies a custom handler for processing CNTUC keyboard inputs.

Application Assistance:
DOGETARGUMENT Returns the next argument from the character string used to invoke the

application program.

DOGETSYSTEM$ID Returns the name of the underlying operating system supporting the UDI.
DOGETTlME Returns the current time of day as kept by the underlying operating

system.
DO$SWITCH$BUFFER Selects a new buffer from which to process commands.
DO$DECODE$TIME Returns date and time in ASCII characters.

Simple System Start-Up
The iRMX 86 PC system includes a comprehensive
Monitor and Bootstrap Loader in four 2732A
EPROMs. These programs have been configured
to support the hardware shown in Figure 3. As
shown, the Monitor is capable of communicating
with an Intellec Microcomputer Development
System. This communications link can be used to
transfer programs and data between an iRMX 86
System and the Intellec Development System.

This start·up system provides a perfect environ
ment for the development and efficient execution
of applications programs. When these programs
require different I/O devices or a different software
configuration, they can be moved to any other

INTEllEC"
DEVELOPMENT

SYSTEM

PARAllEL
PORT

2732A EPROMS

(WITHl~~~~~T:~~ __ -H,--_..j.
MONITOR)

MEMORY BOARD(S)

iRMX 86 System directly. The iRMX 86 PC System
includes a separate diskette with the complete set
of iRMX 86 multitasking system call declarations for
those programmers requiring more function than is
supplied by the UDI.

Debugging Aids
The iRMX 86 PC System includes a System
Monitor that provides the capability of debugging
one task at a time. The monitor includes instruc
tions for examining and modifying the contents of
all 8086 and 8087 registers, setting system break
pOints, single-stepping, examining and modifying
system memory, executing CPU I/O, and disas
sembling program instructions.

Figure 3. Hardware Configuration of PC System

AFN·02202A

2-34 .

IRMX™ 86 PC

SPECIFICATIONS

Optional Intel@ Software Products
iRMX 86 Fully configurable iRMX 86 Realtime

Operating System

iRMX 860 iRMX 86 Development Utilities Pack
age including the iAPX 86 and 88
linker, Locater, and Macro Assembler,
librarian, and the iRMX 86 Editor

iRMX 861 PASCAL 86/88 Compiler for execution
on iRMX 86 Systems

iRMX 862 FORTRAN 86/88 Compiler for execu
tion on iRMX 86 Systems

iRMX 863 PUM 86/88 Compiler for execution on
iRMX 86 Systems

iSBC 957B iAPX 86 System Monitor and Micro
computer Development System Com·
munications link

Supported Hardware Products

ISBC® MULTIBUS® PRODUCTS

iSBC 86/12A, 86/14, and 86130 Single Board Com·
puters

iSBC 208 Flexible Disk Controller

PERIPHERAL DEVICE

CRT - RS232 at 9600 Baud

Printer - Centronics-type Parallel Interface

Diskettes - 2 to 4 Single- or Double-Density,
Single- or Double·Sided

Memory Requirements
200K Bytes to support applications less than 16K
Bytes. .

384K Bytes to support Intel's PASCAL 86 Com
piler.

256K Bytes to support Microsoft's Basic Inter
preter and a 32K Byte user program and data
space.

Reference Material
iRMX 86 Operating System Data Sheet (210330)

2-35

Getting Started with the iRMX 86 System
(144340-001) (Included in PC System Package)

Introduction to the iRMX 86 Operating System
(9803124-03)

iRMX 86 Installation Guide (9803125-04)

iRMX 86 Configuration Guide (9803126-04)

iRMX 86 NUCLEUS Reference Manual (9803122-03)

iRMX 86 Terminal Handler Reference Manual
(143324-01)

iRMX 86 Debugger Reference Manual (143323-01)

iRMX 86 Basic 1/0 System Reference Manual
(9803123-04)

iRMX 86 Loader Reference Manual (143318-01)

iRMX 86 Extended 1/0 System Reference Manual
(143318-001)

iRMX 86 Human Interface Reference Manual
(9803202-002)

iRMX 86 System Programmer's Reference Manual
(142721-003)

Guide to Writing Device Drivers for the iRMX 86
and iRMX 88110 Systems (142926-003)

iRMX 86 Programming Techniques (142982-002)

User's Guide for the iSBC 8578 iAPX 86,88 Inter
face and Execution Package (143979-002)

iRMX 86 Disk Verification Utility Reference Manual
(144133-001)

iRMX 86 Pocket Reference (142861-002)

Edit Reference Manual (143587-001)

Runtime Support Manual for iAPX 86,88 Applica-
tions (121776-001)

Guide to Using iRMX 86 Languages (143907-001)

Reference material may be ordered from any Intel
sales representative, distributor oftice, or from
Intel literature Department, 3065 Bowers Avenue,
Santa Clara, CA 95051.

Training Courses
Introduction to the iRMX 86 Operating System

iRMX 86 1/0 System Concepts

AFN 02202A

ORDERING INFORMATION
The IRMX 86 PC System Is provided on a double
density, iRMX 86 compatible system diskette (for
mat type E). The iRMX 86 PC System is shipped
with a comprehensive users' manual ("Getting
Started With The iRMX 86 System), Bootloader and
Monitor EPROMs, and the complete iRMX 86 Inter
face Libraries contained on a second diskette. A
full year of Intel Support Level D (Software Problem
Report Service) is included. This Intel copyrighted
system is licensed as a single-use software product
as defined by Intel's Master Software Licenses.

Order Code Description
RMX 86PC E Complete Preconfigured iRMX

86 Operating System with inter
face libraries, bootstrap monitor,
and user documentation. \

2-36

inter
iOSP™ 86

iAPX 86/30 AND iAPX 88/30 SUPPORT PACKAGE

• Development and run·time support for
iAPX 86/30 and 88/30 Operating
System Processors

• Total iRMX™ 86 Operating System
software compatibility

• Extendable with iRMX™ 86 Operating
System calls

• Compatible with Intel PL/M 86/88,
PASCAL 86/88, FORTRAN 86/88, and
iAPX 86/88 ASSEMBLER

• Supports (P)ROM or RAM based
system

• Complete system initialization aids

• Complete system configuration aids

• OSP Interactive. Configuration Utility

The Intel iOSP 86 Support Package for the iAPX 86/30 and 88/30 Operating System Processors contains a
comprehensive set of easy-to-use tools necessary to develop (P)ROM or RAM-based applications that use
the 80130 Operating System Firmware component. All of the system initialization and run-time facilities
are provided in libraries that may be configured to specific requirements, and linked to application pro
grams 'written in either iAPX 86 or iAPX 88 Assembler or a high level programming language such as
PASCAL 86 and PUM 86. The iOSP 86 Package provides users with the basic initialization and interface
routines needed to build application software based on the fundamental operating system functions of the
iAPX 86/30 and 88/30 Operating System Processors. The iOSP 86 Package also enables users to add higher
level I/O functions from the fully compatible iRMX 86 Operating System, or to form custom, real-time
systems.

-

The fOllOWing are trademarks of Intel Corporation and may be used only to describe Intel products Intel, CREDIT, Index, Inslte, 1ntellee, Library Manager, MegachasSl5.
Mlcromap. MUL TISUS, PROMPT, UP!, p.Scope. Promware, MeS, ICE, ,RMX, ,sac, tSBX, MUlTIMODULE, IOSP and les Intel Corporation assumes no responsibilIty for the useel

any circUitry other than Circuitry embodied In an Intel product No other Circuit patent hcense~ afe ~n1phed ,

t INTELCORPORATION.1981 OCIO~', 1881
Order Numb.r: 2102,..001

2-37

iOSP™ 86

FUNCTIONA,L DESCRIPTION

The iAPX 86/30 and iAPX 88/30 Operating System,
Processors (OSPs) provide an easy-to-use founda
tion on which many real-time applications may be
built. They provide the functions and system sup
port needed to implement bot~ simple and com
plex applications that require multiple tasks to run
concurrently (see Figure 1). These services are
made possible by the addition of the five new data
types integrated into the 80130 Operating System
Firmware (OSF) component. The 80130 OSF ex
tends the basic data types of the CPU (integer,
byte, character, etc.) by adding new system data
types (JOB's, TASK's, MAILBOX's, SEGMENT's,
and REGION's), and extensive timer, interrupt,
memory, and error management designed to give
real-time response to multitasking and multi
programming applications. As shown in the sec
ond half of the figure, other operating system func
tions such as mass storage 1/0 services and an
easy·to-use Human Interface can be added easily,
by using modules from the complete operating
system services of the i RMX 86 Operating System.
The iOSP 86 Support Package provides both an in
terface between application software and the
Operating System Processors, and development
tools designed to make the implementation and
initialization of real-time, multitasking systems
much simpler.

The iOSP 86 Support Package provides system
developers with the configuration options necessary
to tailor the iAPX 86/30 and 88/30 Operating System
Processors to custom applications. Central to the en
tire configuration process is the OSP Interactive
Configuration Utility (OSPICU). This utility is an easy
to-use tool which allows you to make configuration
decisions by responding to screen-oriented displays.
Using the ICU, users can form easy-to-use initializa-

MULTITASKING. REAL·TlME
APPLICATION SOFTWI.RE

10SP" ,6 INTERFACE LIBRARIES

~7 I ~6

I (OPTIONAL) OR 80130
~6

tion routines, and support code. The interface
libraries form a simple interface between application
software and the operating system primitives of the
80130 OSF component. The various configuration
options include:

Memory and 110 Addressing
The 80130 OSF requires a 16K byte block of
memory address space to be reserved for accessjng
internal functions. The iOSP 86 Support Package
is used to specify the base address of the 80130
and the beginning of the initialization routines.

All, Interrupt and Timer management of the OSF is
controlled via a reserved 16-byte I/O address block
that may be selected by the user. In addition, from
1 to 7 slave 8259A interrupt controllers can be
specified in order to provide the system with up to
57 priority interrupt sources. The OSF baud rate
generator may also be configured to support an
optional terminal interface.

Ex~ending the 80130 OSF

The 80130 OSF allows users to add their own
operating system extensions. These extensions
may take advantage of the detailed and efficient
intertask communication and synchronization
primitives already provided by the 80130, and/or
may utilize custom functions tailored to specific
applications. The Support Package also enables
users to extend the OSF with the extensive ser
vices of Intel's iRMX 86 Operating System, thereby
allowing applications to grow without having to
change or alter application software already writ
ten, or having to write other operating system soft
ware. Use of the 80130 with the iRMX 86 Operating
system greatly reduces the amount of memory
needed for the i RMX 86 Nucleus layer, and enables
applications to take advantage of the increased

COMPLEX
APPLICATION SOFTWARE

COMPILERS

HUMAN INTERFACE

EIOS

BASIC 110 SYSTEM

IRMX" 86 NUCLEUS

10SP" 86 INTERFACE LIBRARIES

8087 I 8086

I (OPTIONAL) OR 80130
~8

Figure 1_ Structure of Typical Systems

AFN-<l2085A

2-38

iOSPTM 86

performance and reduced size requirements in
herent in the iAPX 86/30 and 88/30 VLSI Operating
System Processors. As each of the services pro
vided by the 80130 is completely iRMX 86-compat
ible, applications have an automatic upward path
to support complete file systems and multiple pro·
,cessor environments.

Application Interfaces
Two interface libraries are included in the iOSP 86
Support Package. The first allows programmers to
write application software modules in the Com
pact Model of computation supported by Intel's
compilers. The second provides an interface to
program segments written in either the Medium or
Large Models.

The interface libraries provide the means of ac
cessing all of the primitives supported by the
Operating System Processors. With this interface,
and all the memory management primitives of the
OSPs, applications have full access to 1 M byte of
memory, and all of the addressing modes of the
CPU.

The iAPX 86/30 and 88130 OSPs allow applications'
to take full advantage of the Compact, Medium,
and Large models of computation afforded by the
segment model of the CPU's.

These libraries are fully compatible with object
modules produced by the MACRO 86/88
Assembler, and the PASCAL 86/88 and FORTRAN
86/88 and PUM 86/88 Compilers.

Application Initialization
The iOSP 86 Support Package provides for the con·
figuration of the system Root JOB, and all user ap·
plication JOB's that require initialization when the
system is started. The user may also specify the

configuration of the interrupt system (including
slave 8259A interrupt controllers) and the clock
rate used for system timing. These choices are
automatically programmed into the various
devices when the system is initialized.

Parameter Validation
Parameter validation is a configurable option of an
OSP-based system. The OSP can check the
Parameters of the Primitive that you invoke either
on a system-wide basis or on a per job basis.

Operating System Calls
The 80130 OSF performs a total of 37 operating
system primitives all of which are completely com
patible with the equivalent iRMX 86 Operating
System calls. The iOSP 86 Support Package pro
vides user-level interfaces to these primitives to
enable applications to create, delete, control, and
exchange the new data types provided by the 80130
OSF. In general, these interfaces allow application
software to manage all of the resources of an iAPX
86/30 or 88/30 OSP (and an optional 8087 Numeric
Processor Extension) system via any of the 37
system calls shown in Figure 2.

Required Development Hardware
Use of the iOSP 86 Support Package requires an
Intel MDS Development System which supports
Series III (either single or double density diskettes)
or any iRMX 86 system supporting a standard floppy
diskette drive and the iRMX 860 Assembler, Linker,
and Locator Package. Use of the 80130 requires only
a minimal system including either the iAPX 86/30
or 88/30 Operating System Processor, and enough
system memory to contain the application programs
and initialization and interface software provided in
the iOSP 86 Support Package.

JOB GROUP SEGMENT GROUP INTERRUPT MANAGEMENT GROUP

CAll ROSSETSOSSEXTENSION
CAll ROSSET$INTERRUPT
CAll ROSENTERSINTERRUN
CAll ROSEXITSINTERRUPT
CAll RO$WAITSINTERRUPT
CAll ROSSIGNAlS!NTERRUPT
CALL ROSRESETSINTERRUPJ
CAll RO$ENABlE

CAll RO$CREATESJOB

TASK GROUP

CAll ROSCREATESTASK
CAll RO$OELETESTASK
CAll ROSSUSPENOSTASK
CAll ROSRESUME$TASK
CAll ROSSlEEP
CAll ROSGETSTASKSTOKENS
CAll ROSSETSPRIORITY

MAilBOX GROUP

CALL RQSCREATESMAILBOX
CAll RQSOElETESMAllBOX
CAll RO$SENOSMESSAGE
CAll ROSRECEIVESMESSAGE

CAll ROSCREATESSEGMENT
CAll ROSOElETESSEGMENT

REGION GROUP

CAll RQSCREATESREGION
CAll RQSDElETESREGION
CAll RQSSENDSCONTROl
CAll ROSRECEIVESCONTROl
CALL ROSACCEPTSCONTROl

OBJECT MANAGEMENT GROUP
CATALOG OJBECT
lOOKUP OBJECT
CAll RO$DISABLE$DElETION
CALL RO$ENABlE$DElETION
CALL RO$GETSTYPE

Figure 2. Operating System Primitives

2-39

CALL RQSOISABlE
CAll ROSGET$lEVEl

ERROR CONTROL GROUP

CAll ROSSETSEXCEPTION
CAll RO$SIGNAlSEXCEPTION
CAll ROSGETSEXCEPTION

AFN 02065A

iOSP™ 86

ORDERING INFORMATION

Each of the ordering options listed below include all
the necessary initialization and interface procedures
needed to use the iAPX 86/30 and iAPX 88/30
Operating System Processors. Purchase of the iOSP
86 Package requires verification of an Intel Master
Software License. Each package also includes an
iOSP 86 User's Manual (Document Number
145393-001), and a one-year update service.

2-40

Part Number· Description
OSP86 A

OSP86 8

OSP86 E

iOSP 86 Support Package con
tained on an ISIS-II compat
ible, single density diskette.

iOSP 86 Support Package con
tained on an ISIS-II compat
ible, doubfe density diskette.

iOSP 86 Support pac'kage con
tained on an iRMX 86 format,
double density diskette.

iMMX™ 800
MULTIBUS®MESSAGE EXCHANGE SOFTWARE

• Supports use of multiple processors
on the MULTIBUS@system bus

• Increases total system throughput
• Implements Intel·standard multi·

processing protocol

• Supports combination of 8· and 16·bit
boards In one design

• Helps solve critical response·time
problems

• Includes Ethernet device driver ,
• Provides hardware·independent appli·

cation Interface

• Supports IRMX™ 80, iRMX™ 86, and
IRMX™ 88 applications

The iMMX MULTIBUS Message Exchange provides an Open Multiprocessing System. It \lllows tasks
executing on separate processors to communicate by sending messages. By providing an off-the-shelf
implementation of the MULTI BUS Interprocessor Protocol, it cuts many man·months off the typical devel
opment schedule. Loosely coupled multiprocessing makes multiple-microcomputer applications simple:
programs request message transfer by means of a small set of systems calls - the iMMX software takes
care of providing reliable message transfer via shared MULTI BUS memory.

The iMMX product is open to high-performance applications, encourages modular design practices, and
supports multiple operating systems. By making it easy to use multiple processors it increases total
system thorough put and allows processing power to be optimized for both 110 handling and data process
ing. Once an initial application design is complete, it can be easily enhanced by adding new tasks and/or
processors. The iMMX product allows the engineer to choose from a wide range of 8- and 16-bit iSBC
microcomputers - from the iSBC 80/24 board to the iSBC 86/30 single board computer. The net result is a
combination of performance and flexibility that meets the needs of a diverse set of multiple-micro·
computer applications.

MULTIBUP BUS

Figure 1. iMMX 800 Real·Time Executive Interface

The follOWing are trademarks at Intel Corporallon and may be used only to deSCribe Intel products Inlel, ICE, IMMX, IRMX, .sec, .sex, ISXM, MULTIBUS, MULTICHANNel,
MUL TIMQOULE and ICS Intel Corporation assumes no responsibility for the use of any cirCUitry other than Circuitry embodied In an Intel product No other CirCUit palent licenses
are Implied • ETHERNET IS a trademark at Xerox Corporation

@INTELCORPORATlON,1982 August, 1982

Order Number 143815.0<)3

2-41

iMMX™ 800

FUNCTIONAL D~SCRIPTION

Open MultiprQcessing System

OPEN TO HIGH PERFORMANCE APPLICATIONS

The iMMX supports high performance applica
tions in two ways_ First, it increases the total
system thoroughput by allowing multiple pro
cessors to be easily incorporated in an applica
tion. Second, critical response time requirements
can be met by placing computing power close to
each critical input. Application programmers can
concentrate on added-value functions while iMMX
software takes care of variable length transfers,
shared memory management, mutual exclusion,
interprocessor interrupts, and hardware details.

OPEN TO MODULAR DESIGN

By supporting modular design, iMMX software
provides four key benefits. First, each hardware
module can be selected or designed according to
needs of a subsystem; the iMMX 800 software
takes care of the integration. Second a whole
range of products can be created from a few hard
ware/software modules. Third, the breadth of pro
ducts available for the industry-standard MULTI BUS
dramatically reduces the amount of custom
design work required to complete a system. Finally,
as customers, new markets, or competition re-

DEVICE A

quires, performanCe can be enhanced or new
features can be added by adding new modules.

OPEN TO MULTIPLE OPERATING SYSTEMS

iMMX software supports both standard Intel iRMX
operating systems and custom systems. Off-the
shelf support is provided for iRMX 80, iRMX 86,
and iRMX 88 applications - allowing the engineer
to choose the best match for each problem. In ad
dition, the underlying MULTI BUS Interprocessor
Protocol (MIP) is completely specified so that
custom operating systems and other subsystems
can be integrated with iRMX-based subsystems.

Loosely·Coupled Multiprocessing
The iMMX 800 software supports loosely-coupled
multiprocessor systems. The software lnterfa<te is
composed of simple, easy-to-use, modules. By
supporting the addressing, data transfer, control,
and memory management functions, the software
as shown in Figure 2, divides the o'peration into
three functions: the virtual interface, the logical
protocol, and the physical protocol.

The virtual interface is the application task's ac
cess to the iMMX services. Using this interface, a
task can request a connection to a particular port.
Using the connection, the task can request that
messa!1les be transferred to the task(s) that are re
questing messages from the same port.

DEVICE B

1

VIRTUAL
TASK A IN"!!RFA~ TASK B

~S Z~
iMMX .--- LOGICAL -- iMMX

PROTOCOL

FACILITY
~PHYSICAL~

FACILITY

~I
PROTOCOL I ~

MUL TIBUS' BUS

"-r V

Figure 2_ Inter-Device Task·to-Task Communications

2-42

iMMX™ 800

The logical protocol supports a message manager
function. The Message Manager prepares the
message for delivery to a specific destination port
based on the connection specified. In addition,
the logical protocol returns status information
about the transfer.

The physical protocol is implemented by VLSI and
associated circuitry. This level of 'protocol includes
data flow control, mutual e~clusion mechanics,
address recognition and interactive signalling reo
quirements.

iMMX software supports four different inter·device
signalling mechanisms: MULTIBUS interrupts,
memory·mapped interrupts, I/O·port·mapped inter·
rupts and polling ..

iRMX™ Uniform Interface

The iMMX 800 software provides a uniform inter
face across all iRMX based software environ·
ments. The iMMX software services are provided
as a set of tasks, system procedures, and interrupt
drives.

Support is supplied for the iAPX 86/88·based
microcomputers that support the iRMX 86 and the
iRMX 88 Operating Systems. In addition, software
support is provided Intel 8085·based products via
the iRMX 80 Operating System. Table 1 shows the
code size requirements of each of the iMMX con
figurations. Table 2 gives a complete list of the
boards that are supported.

Table 1. iMMX 800 Software Memory
Requirements

Executive K Bytes
iRMXTM 80 Operating System 3 7K Bytes

iRMX™ 88 Operating System
128K support 4.8K Bytes
1MB support

'"Compact'" 5.5K Bytes
'"Large'" 6 3K Bytes

iRMX™ 86 Operating System 6 6K Bytes

Table 2. Supported Single Board
Computers

iRMX™ 80 iRMX™ 88 iRMX™ 86
Operating Operating Operating

System System System

iSBC~ 80/24 iSBC'" 86/05 iSBC® 86/05
iSBC® 80/30 iSBC" 86/12A iSBC" 86/12A
ISBC" 544 iSBC" 86/14 iSBC® 86/14
iSBC" 569 iSBC® 86/30 iSBC" 86/30

iSBC" 88/25 iSBC" 88/25
iSBC" 88/40 iSBC" 88/40
iSBC' 88/45 iSBC" 88/45

Message Transfer Mechanism'

iMMX multiprocessing is based on a message·
passing model. Tasks on each processor commun·
icate with each other by sending and receiving
messages to and from ports.

Table 3 shows five iMMX system calls: Find Port,
Activate Port, Transfer Message, Deactivate Port
and Lose Port.

Shared Memory Space

The iMMX software manages the message paSs·
ing in such a way that a task that receives a
message can address it even if the message
originated in the private memory of another pro·
cessor. This means that, when appropriate, the
message is copied into memory that can be ad·
dressed by the receiver.

Interpt:ocessor Protocol Architecture

The Intel MULTIBUS Interprocessor Protocol (MIP)
specifies an architecture by which processes ex·
ecuting on different MUL TIBUS single board com·
puters can communicate with one another in a
reliable, controlled manner within that system. A
system can consist of a heterogeneous set of pro·
cessors, executing a heterogeneous set of real·
time executives and application software.

Based on a simple internal structure, the MIP
specification defines a functional consistency
across several product lines and provides the

Table 3. System Calls

Function Name Description

FIND PORT COFIND Find a port and return a connection·ID

ACTIVATE PORT COACTV Activate a por,t for receiVing messages from other tasks

TRANSFER MESSAGE COXFER· Transfer a message to a port identified by the connectlon·ID.

DEACTIVATE PORT CODACT Deactivate port. Further messages are returned to the sender

LOSE CO LOSE Loses a connection to a port

2-43

inter iMMX™ 800

means to support efficient operation in multiple
processor environments.

Ethernet Device Driver

The iMMX 800 package provides an iSBC 550
Ethernet Communications Controller device
driver. This device driver uses iMMX routines to
communicate to the iSBC 550 contoller (see
Figure 3). This same approach can be used to write
other iRMX 88 and 86 device drivers.

SPECIFICATIONS

iSBC™ Supported Hardware

SINGLE BOARD COMPUTERS

iSBC 80/24

iSBC 80/30

iSBC 86/05

iSBC 86/12A

iSBC 86/14

iSBC 86/30

iSBC 88/25

ORDERING INFORMATION

Description

The iMMX 800 MULTI BUS Message Exchange
Software is a licensed product that provides users
of Intel Single Board Computers using the iRMX
80, iRMX 86, and iRMX 88 Operating Systems a
standardized, memory-based, task-to-task com
munication protocol. This protocol provides the
fundamental capabilities needed to exchange data
between multiple 8-bit and 16-bit microcomputers
residing on the same MUL TlBUS system bus.

Part Number Description

MMX 800 ARO Single DenSity Media. Re
quires incorporation fee for
each derivative work.

MMX 800 BRO Double Density Media. Re
quires incorporation fee for'
each derivative work.

2-44

,SBC • 86112A I
BOARD

""- .sec" 550
BOARD

1

.sec" 86/12A I
BOARD

""- .sec'" 550
BOARD

,RMX ... 86
APPL)CATION

J
ETHERNET ..

,R MX" 86
PLICATION AP

Figure 3. Ethernet Communications

iSBC 88/40

iSBC 88/45

INTELLIGENT CONTROLLERS

iSBC 544 (Communications)

iSBC 569 (Digital)

iSBC 550 (Communications)

via Ethernet driver

Reference Manual (Supplied)

iMMX 800 MUL TIBUS Message Exchange
Reference Manual

MMX 800 ABY Single Density Media. Includes
incorporation fee buyout.

MMX 800 BBY Double Density Media. Includes
incorporation fee buyout.

MMX 800 AWX Single Density Media. Update
service for an additional year.

MMX 800 BWX Double Density Media. Update
service for an additional year.

MMX 800 LST Human readable source
listings for the iMMX 800 soft
ware modules.

MMX 800 LWX Extends source listing up
dates for an additional year.

inter

XENIX* 286
OPERATING

SYSTEMS

© INTEL CORPORATION, SEpr~BER1983 2-45
'XENIX IS a trademark of Microsoft Corporation
tUNIX IS a trademark of Bell LaboratOries

• Fully licensed version ofthe UNIXt
operating system optimized for the Intel
iAPX 286 processor

• Fastest microprocessor implementation
of UNIX, fastest floating point perform
ance on a microprocessor

• Important commercial OEM
enhancements

• Supports multiple levels of integration:
components, boards and systems

• Supported by Intel's worldwide post
sales service and sUBport organizations

ORDER NUMBER 230752001

286 provides the OEM with a
.-_. __ ._1_ .• _ soft~are ~ase on which to build

value-added functionality. Jt.includes the
operating system, the C language, text
processors, development tools, system
accounting and security features, and

commercial enhancements that make it
the optimum foundation for OEM appli

cation software
solutions.

XENIX:
Portable,
Flexible,

Powerful
XENIX has become
the industry-standard
microcomputer operat-

ing system for inter
active, multi-user
applications. It has
gained wide popu-

larity in applications
such as distributed

data processing, busi
ness data processing,

word processing, software
development, scientific and

engineering applications, and
graphics.

•
Because of its standardization,

XENIX is portable to a variety of
hardware and therefore able to run

an even wider variety ~f software.

XENIX is also an extremely powerful
operating system, providing the applica
tions progrannmer with a wealth of de
velopment tools and utilities for bringing
OEM products to market quickly.

XENIX 286: Faster than any
other UNIX on a Micro
XENIX 286 stands bead and shoulders
above other microprocessor versions of
UNIX, because it runs on the fastest,
most advanced microprocessor on the

market: the Intel iAPX 286. As the first
UNIX operating system derivative op
timized for the iAPX 286, XENIX 286
alone can take full advantage of the
80286 's unique features;

On-chip memory management
and protection is a key advantage
of XENIX 286 over other microprocessor
UNIX' implementations. On-chip mem
ory management reduces the overhead in
accessing system memory as compared
to the usual separate memory manage
ment unit. With memory management
functionality right on the chip, the
operating system works more smoothly
and efficiently.

Advanced microprocessor
architecture provides pipeline
processing, wherein a continual flow of
instructions is kept in the CPU queue,
results in throughput several times faster
than the fastest competing
microprocessor.

Fast floating point processing
is due to XENIX 286 support of the Intel
iAPX 287 math coprocessor. Floating
point processing delivers throughput that
is an order of magnitude faster than
non-floating point processing. Extra high
processing speeds are needed in applica
tions such as data base processing, com
mercial data reduction and graphics.

2.0x

XENIX on iSBC~ 2861

1.5x

CODATA@ 8 MHz --
1.0x

ONYX@4MHz ------

0.5x

FORTUNE @ 6 MHz ----

Faster, More Reliable Still
When. Teamed with Other
Intel Systems Components
The throughput enhancements in
the XENIX 286 software are pushed
to even greater speeds by special
hardware architecture in Intel's systems
and board products.

"///////////////////////IIIIIIIIIIIIIIII~
2-46

MULTIBUS® System ArchItec-
ture IS the industry-standard systelll
bus. It accommodates any of the special
purpose Intel iSBC® boards, as well as
standard peripherals, for easy system
expansion.

iLBX™ (Local Bus Exchange)
is an Intel hardware innovation that
increases the amount of local memory
accessible by the operating system to sig
nificantly improve system throughput.

Error Correction Circuitry (ECC)
automatically detects and corrects soft
errors in RAM. This on-board, self
correction facility reduces errors and
further underscores data integrity.

A Faster Operating System
Means Market Leadership
The combination of the industry's most
widely accepted operating system for
multi-user, interactive applications with
the industry's fastest and most advanced
microprocessor gives the OEM a far
superior price/performance ratio than is

See Intel benchmark senes order no 230618-001

available through other options. The re
sult for the OEM: market leadership due
to the ability to more attractively price
products based on superior performance.

XENIX 286 combines UNIX technology

XENIX 286: The Best of
Everything
The XENIX 286 Operating System con
tains the best of many vendors' UNIX!
XENIX development efforts during the
last ten years (see Figure above). We
have taken the best features of many
UNIX versions-ease of use, flexibility,
performance, security, reliability-and
added our own enhancements (not the
least of which is compatibility with the
iAPX 286) to make XENIX 286 the op
timum software development tool for the
commercial OEM.

Superior Data Reliability and
Integrity
XENIX 286 contains enhancements to
provide extremely high data reliability
and integrity, particularly important to
the OEM who is adding value to a system
product. The following enhancements in
XENIX 286 contribute to uniformly reli
able data at all stages of application
development.

Automatic disk recovery is an
improvement of the UNIX file system
that allows automatic recovery of the file
system in the event of unexpected system
shutdown.

Record and file locks arbitrate
multiple-access requests to the same re
cord or file, allowing the programmer to
extend locks to a single record, group of
records or the entire file. This is im
portant in multi-user applications to pre
vent two or more users accessing and
updating the same information
simultaneously.

XENIX System Analysis Test
(XSAT) is a complete hardware
software diagnostic package included
with all Intel integrated system products.
XSAT provides a total analysis of a
XENIX-based system, eru;uring reliabil
ity even after the OEM configures new
drivers into the system.

Tools for Easy System
Configuration
In addition to increased data relia
bility measures, XENIX 286 has
been functionally enhanced for
easier system configuration.
An interactive configura
tion utility allows the
user to specify device
drivers, disk buffers,
memory size, etc., making
it easy for the OEM to meet
design requirements. XENIX
includes over six device drivers for
speed controllers.

rllllll"." ••••••••••
2.-47

Friendlier Interface
The standard UNIX human interface has
been enhanced in XENIX 286, with the
addition of vi, a full-screen editor, for
easier and faster application
development.

The XENIX C shell augments the capa
bilities of the standard UNIX shell with
the ability to maintain histories of in
voked processes and provide the aIias
feature, saving re-keying of often-used
commands.

Intel's Open Systems
Approach
Intel believes that system components
hardware or software-should be fully
compatible with other family members at
any level of integration and open to fu
ture VLSI advancements. XENIX 286
was designed to be part of the Open
Systems concept.

Portability from Chip to
Board to System

Intel's XENIX 286 Operatmg Sy'tem IS

available for and fully compatible across
Intel component, board and system de
signs, homething that no other XENIX
version offers.

Such portability gives OEMs the flexi
bility to choose the most appropriate and
profitable level of integration for their
applications. Component-level integra
tion allows the OEM to meet unique

f I. design requirements; board and
1 ~frl" system-level integration afford re-
. ,", ~ ~~~ duced time to market.

. ;,~. ~/ There is no loss in
, ,'~~ ..• ~" software development
,~ .•. , .. "':~ investment as your
~" "," .\' _. needs change, since
~ .;- you can port XENIX-

~ based applications from the
'. • chip to the system level or

even from one Intel processor to
another. For instance, code de

veloped on XENIX 86 can be fully
ported to a XENIX 286 system.

Open to Still Greater
ConfigurabiJity through
Third·Party Software and
Hardware
XENIX 286 users can tap into an exten
sive base of existing third-party lan
guages and application packages for
almost endless versatility in system con
figurability. There are hundreds of such
packages available today with many
more on the way.

Worldwide Support and
Service
XENIX 286 customers can take advan
tage of Intel's worldwide staff of trained
hardware and software engineers in con
tracting for application design assistance.
A liberal warranty, including software
updates and a technical newsletter, fol
lows the sale. Once the warranty expires
customers can choose from a variety of
support contracts.

Intel offers complete training on the
XENIX 286 Operating System as well as
the iAPX 286 processor and associated
hardware.

Intel, The Technological
Leader ...
Intel is committed to pushing the fron
tiers of VLSI design to their ultimate
limits. In the process, we move our
customers along the technology curve

2-48

without interruptions in application
development, or expensive mid-stream
architecture changes.

Intel started the micro revolution with the
4004 and has been the market leader with
every generation of advanced processors
since.

Systems and system software are a
natural for us: who better knows the
pieces and how to make them work
together?

.. . In Total Solutions
The XENIX 286 Operating System fully
exploits the iAPX 286, the fastest and
most sophisticated microprocessor on the
market. No other processor/operating
system combination will give OEMs a
faster and more economical path to get-
ting systems and applications on the '
market.

Intel has always been fjest with the latest
and most advanced VLSI and now with
system software tailor-made for Intel
VLSI.·Because we're there first, our
customers are first in their respective
markets with state-of-the-art OEM and
end-user products.

Specifications

The XENIX 286 Operating System includes the following utilities. commands and subroutines:

System Documen- File and String Math UtIlities Software System
Administration tation Manipulation and Sub- Development Status
Boot Utilities learn basename Routines Libraries asktime
UNIX code manuals cat abs adb date
ac cd cabs arcy df
accton Graphics chgrp ceil awk du
ar curses chmod cos ctags file
clri graph chown cosh false iostat
config plot cmp dc gets I
dcheck spline comm exp Id Ic
dump copy fabs larder Is
dumpdir cp floor make ps
finger Language crypt hypot mkstr pwd
fsck as dd log nm pstat
haltsys be diff3 rand ad quot
icheck cb egrep sin printeny tty
mkconf cc fgrep sinh prof who
login lex find srand sees +
mkfs lint grep tan size Terminal and
mknod m4 head* tanh strings Printer Utilities
mount ranlib In strip disable
ncheck ratfor mkdir Program time enable
newgrp mknod Execution tr Ipr
passwd Communlca- more" truct

tlonand at
true

pr
restore my

chon stty
sa Networking rm csh· units tabs
sddate calendar rmdir echo xstr termcap
settime cu sed yacc
shutdown mail expr tset

sort kill yes Ypr
su mesg sum nice
sync rmail split nohup
tar uucp tail· read
touch uux tr sh
tp wall tsort sleep
umount write uniq tee XSATo wc test

wait

o Inlel XENIX Operating Sy<ltem Enba,,"melU .. Berkeley UNIX 4 I BSD Enhancement i Reillaborllioncs UNIX System HI Enhancement

XENIX 286 includes support for the following Intel
Systems, Single board computers and processors.

Documentation

Text
Processing
and Editors
checker
col
creek
deraff
ed
eqn
ex
look
ms
negn
nroff
prep
pIX
refer
rev
sed
spell
t300
t300s
t45
tbl
troff
typo
vi*

Miscellaneous
backgammon
cal
fortune
hangman
quiz
scms
units
wump

• System 286/310
XENIX Operating System Documentation Includes:

• System 286/380

• iSBC® 286/10 Processor Board
-16mb of addressing
-On-chip memory protection

• New CX Series RAM board
-ECC (Error Correction Circuitry)
_iLBXTM (Local Bus Extension)

• iSBC 215 Winchester Controller
• iSBX 218 Floppy Controller
• iSBC 534 Serial liD Expansion Board
• iSBC 544 Intelligent Serial liD Expansion Board

• 80286 Central Processor
• 80287 Fast Floating Point Processor

2-49

• XENIX Fundamentals
• XENIX Installation Guide
• XENIX Operating Guide
• XENIX Reference Manual
• XENIX Software Development Manual
• XENIX Text Processing Manual

Industry Standard Text Books

The C Programming Language. Kemigan & Ritchie
A User Guide to the UNIX System, Yates and Thomas

intJ

Ordering InformatioA

XNX 286 H
XNX286K
XNX286RO
XNX 286 RF
173258
CTW14PP
SPRTECHREP
HOTLINE
SP86 330 XINSTALL
CONSULT-FIELD
CONSULT-LT

XENIX Object Software (8" double side, double density)
XENIX Object Software (5\4" double-sided, double density)
Software License Rights Extension
Software Incorporation Fee
XENIX Documentation Package
XENIX Customer Training
XENIX Support Subscription Services
XENIX Hotline Phone Service
XENIX Software Installation
XENIX Onsite Field Consulting
XENIX Onsite Field Consulting for extended time periods.

2-50

© INTEL CORPORATION, 1982 -

APPLICATION
NOTE

AP-130

_______ MM"ar,ch1982

2-51 ORDER NUMBER~ARCH 1982 , 2102115-001

AP-130

INTRODUCTION

Intel recently introduced a new s,et of extensions to its
microprocessor product line. The iAPX 86/30 and
iAPX88130 Operating System Processors (OSPs) aug
ment the general-purpose instruction set of the well
known 808618088 architecture to include common,
real-time, operating system capabilities. A single
device, the 80130 Operating System Firmware compo
nent (OSF), now provides hardware support for func
tions previously relegated to software.

The 80130 introduces new concepts in the areas of both
hardware and software. At first glance, traditional
component-level hardware designers could feel some
what intimidated by the esoteric concepts and un
familiar buzzwords encountered in the software world.
Even the experts in conventional operating system
(OS) design may initially find it strange that what used
to be "soft" software routines are now cast in silicon.

This application note is intended for readers at both
levels. The first section reviews the development of
processor extensions in general and operating system
firmware in particular. Later sections should help you
-UIlderstand what a real-time operating system can do,
how the 80130 provides these capabilities, and how to

design system hardware and software to take advantage
of such features.

The note also documents a complete (albeit simple)
system, including schematics and listings. The reader
may wish to reconstnlct this system to get started with
OSPs. Finally, a step-by-step description of the so
called "configuration" process shows how physical
system parameters are incorporated into t'he software
as the software is "installed" in memory. Through
out the note are a number of "exercises"-questions
relating to concepts just presented. Please take a
few moments to think about these questions before
reading on.

The reader need not have worked with operating sys
tems previously, though such background would be
helpful. The reader should also know something about
microprocessor hardware-at a minimum, how the
8086 or 8088 devices operate. For simplicity, most of the
software examples are written in PLlM-86, so the
reader should be familiar with PLlM-80 or some other
block-structured language. Finally, be forewarned that
the configuration steps make use of several ISIS utility
programs, including EDIT, SUBMIT, ASM86,
LINK86, and LOC86. Readers who wish to brush up on
any of the above should consult the appropriate Intel
reference manuals.

2-52

Ap·130

MAX I MAX I MODE MODE
8086 8088

Vss Vee Vss Vee

AD14 A015 AD14 A015

A013 BHE AD13 A16/S3

A012 IR7 AD12 A017/S4

AD11 IR6 AD11 AlB/55

AD10 IRS AD10 A19/S8

AD9 IR4 AD9 BHEIS7IHIGH)

ADa IR3 AD8 MNIMX

AD7 IR2 AD7 AD
ADS IR' ADS ROICffii

ADS IRO ADS iiQlGf1

AD4 INT ADO LOCK

AD3 S2 AD3 52

AD2 51 AD2 51

AD' so AD' so
ADO ACK ADO OSO

MEMes llR NMI OS,

ICCS SVSTICK INTR TEST

ClK DELAY ClK READY

BAUO Vss RESET

Figure 1. 8086 and 80130 Pinout Diagrams

2-53
AFN-02068A

AP-130

EVOWTION OF PROCESSOR
EXTENSIONS

In the early days ofniicrocomputing (circa 1974), things
were I'imple. The first microprocessors comprised just"
the central processing unit of a simple computer. Sys
tems built up from these processors were generally
small, dedicated-purpose device controllers-often
replacing the random logic of an earlier design. The
system designer had responsibility for the development
of the hardware and all application software.

Semiconductor technology has progressed rapidly
since then. Devices have become more sophisticated,
as have the applications in which they are used. System
functions today are more complex than they used to be,
and are demanding more in the way of both system
hardware and software.

To help designers cope with this complexity; semicon
ductor vendors are building increasingly more
"functionality" into their standard product lines.
Whereas the general arithmetic functions of the 8080
and 8085 were limited to addition and subtraction of
eight-bit unsigned (ordinal) values, for example, the
IntelGi 8088 and 8086 now add, subtract, multiply, or
divide eight- or 16-bit, signed or unsigned variables
-an obvious improvement.

The evolution of floating-point arithmetic provides an
other example of technology growth. Initially, design
ers of numeric and process-control systems each
developed the floating-point arithmetic routines they
needed. Intel eased this task considerably in 1977 when
it introduced a standard floating-point format and a
floating-point arithmetic software library, FPAL-80. In
1978, the iSBC 310 High-Speed Mathematics Unit im
plemented these same functions with dedicated hard
ware and executed them an order-of-magnitude faster.

The 8231A Arithmetic Processor Unit (introduced in
1979) provided similar functionality in one chip at much
lower cost. To accoJllmodate the needs of today's
world, the Intel RealMath™ software standard and the
8087 numeric coprocessor perform 80-bit floating-point
arithmetic for high-performance 8088 and 8086
systems.

This evolution of floating-point hardware illustrates two
recurring themes in the microcomputer industry. First,
there is a natural trend toward componentization:

1. New applications reveal a need for new types of
functionality (in this case, floating-point arithmetic).

2. As common requirements become evident, vendors
develop software to serve these needs.

2-54

3. Specialized hardware is developed to support the'
established functions more simply and effectively
than softw~e alone.

In time, everything ends up in silicon.

The second theme is this: different functions should be
implemented in different ways to fit the customer's
needs. '.'Universal" requirements-like 16-bit
multiplication-are best incorporated into the CPU.
Functions needed only by certain applications-like
high-speed, extended-precision square roots-should
be provided as optional Processor Extensions so that
their expense is incurred only by those who need them.
In keeping with this philosophy, Intel currently offers
several processor extension products (see "What's in a
Name?").

What's in a Name?

The 80130 Operating System Firmware (OSP) device is
only the latest member of an extremely flexible family
of Intel microprocessors. Its siblings include the 8086
and 8088 Central Processing Units (CPU s), the 8089110
Processor (lOP), and a floating-point math coproces
sor, the 8087 Numeric Processor Extension (NPX).
These individual standard components may be mixed
and matched in numerous ways to create combinations
optimized for widely varying applications.

To make it easier to discuss the most common con
figurations, Intel has defined an "Advanced Processor
Series" (iAPX) numbering scheme, something akin to
those used in the minicomputer and mainframe worlds.
The 8086 CPU by itself, for instance, is called the iAPX
86/10. The 8086/8087 combination is dubbed the iAPX
86/20. An 8086180130 pair has the name iAPX 86130. The
8086, 8087, and 80130 together would form an iAPX
86140.

When each of these combinations uses an 8088 in lieu
of the 8086, each of the numbers above substitutes
"88" for the "86". An 8088 teamed with an 80130 is
therefore called the iAPX 88/30. Finally, adding an 8089
to any system changes the final zero to a one. So, an
iAPX 88/41 system would be one using the 8088/80871
8089/80130 chip set.

Real-Time Operating Systems

Let's turn our attention now to the subject of micro
computer operating system software-an area steadily
growing in importance. The trends toward standardized
functions with specialized implementations will be
come evident.

AP-130

But first, what is an operating system? The phrase
means different things to different people. In 20 words
or less: An OS is a tool, a set of programs or routines
which reduce and simplify the problem of managing
system resources. (Well, 21, actually ...)

Most microcomputer programmers have encountered
single-user diskette operating systems, Intel's ISIS-I1@,
and CP/M@ and CP/M-86@ from Digital Research Incor
porated among them. In essence, an OS ofthis sort is a
collection of run-time subroutines which perform
device 110 operations and give application programs
access to a disk-based file system. Along with these are
routines to supervise the loading and execution of ap
plication programs. Historically, this type of OS is
oriented toward user-interactive applications: software
development, business computing, and the like.

In the mainframe world, the goal of an operating system
is to use expensive equipment as efficiently as possible.
Batch processing systems ensure that programs waste
as little CPU time as possible, though each monopolizes
the CPU until it has completed. A time-sharing OS
allots short periodic "slices" oftime to each of several
independent users, during which each has access to the
CPU, memory, and other system resources.

A step above the traditional time-sliced OS are ';~eal
time, multitasking operating systems." But what is a
"real-time" application? ("Don't all programs execute
in real time?")

A real-time system is one in which the CPU must do
many different things (tasks), all more-or-less simulta-

WRITE MACHINE
STATUS TO INDI·
CATOR LIGHTS

neously. Unlike the sequential time-sharing of
mainframe OSs, though, the tasks are prioritized. Low
priority tasks are preempted if any of higher priority
have work to do. The higher-priority task then runs
until it must wait for some external event to occur or no
longer needs the CPU for some other reason. Thus, the
CPU services tasks in their order of importance.

A computer controlling factory machinery, for in
stance, might perform five separate tasks:

1. Monitor input switches to detect emergency condi
tions, determine intended operating mode, or update
indicator lights showing machine status;

2. Drive a stepper motor to position a tool;

3. Keep track of the time of day;

4. Send output to the console (e.g., CRT), either in
response to explicit commands or as part of some
other task;

5. Read and process characters entered from a console
keyboard.

These tasks seem largely unrelated, though the first few
may be more important to system operation
than the others. Let's consider some alternate
ways to accomplish these functions with today's
microcomputers.

Conceptually, the most straightforward approach might
be to dedicate a separate computer to each. The pro
gram for each would then be quite simple: an initializa
tion phase followed by an endless loop performing the
dedicated function. Algorithms for the first four tasks
are flowcharted in Figure 2.

Figure 2. Flowcharts tor Concurrent Machlne·1bo1 Tasks
2-55

AP-130

What's wrong with this approach? Ignoring cost, the
need for multiple CPUs becomes'physically unrealistic
for more than a few tasks-60, say, or 600. And tasks
are rarely fully independent; note that the switches
monitored by task I could affect task 2, and that tasks 4
and 5 interact with the rest of the system in as yet
undefined ways. So, some sort of communications
would have to be set up between the micros.

Exercise 1. Suppose five tasks are all interrelated.
How many communications chliUIDels would have
to be set up between different processors? If each
channel requires two dedicated communication

chips, how would the number of peripheral
devices compare with the number of CPUs?

In each task, the CPU spends most of its time waiting
for time to pass or for something to happen. One CPU
,would be able to implement all five tasks if its time were
properly divided among them. An alternate approach,
then; might be for a single processor to attend to each
task in turn, performing the actions called for by each.
Figure 3 shows a flowchart for this scheme. Only one
CPU is required and the tasks can communicate be
tween themselves and share physical resources like the
console.

READ STATE OF
INPUT SIGNALS

WRITE MACHINE STATUS
TO INDICATOR UGHTS

STEP IN APPRO
PRIATE DIRECTION

INCREMENT TIME
OF-DAY COUNTERS

OUTPUT MESSAGE
TO CONSOLE

Figure 3. Machine-Tool Tasks Implemented Via Polling Scheme
2-56

A_A

AP·130

The problem here is the heavy interaction between
tasks. Before it can be serviced, an important task may
have to wait for many other less critical tasks to com
plete. This imposes a constraint that each task release
the CPU as quickly as possible. Also, lumping tasks
together obscures the boundaries between them. In
itialization sequences must be grouped with each other,
rather than with the sections of code affected. Adding to
or deleting any task may affect the others. It's not clear
how to structure the progt"am such that programmers
could cooperate on such a program.

Moreover, the various tasks can interfere with each
other. Suppose on a given pass through the processor
loop, three tasks each send one new character of a
message to the console display screen. The resulting
output would be most interesting.

The third, and optimal approach, would be one which
combined the advantages of the first two approaches,
while avoiding the pitfalls. Each function of the overall
system could be designed, written, and tested sepa
rately, as in the first approach, yet all the software
would run on a single computer system as in the
second. Tasks could therefore communicate with each
other easily, and share peripherals such as CRTs. This
multitask control and communication function could be
performed largely through software.

The key is finding a way to properly budget CPU time
between the various tasks. Early pioneers of complex,
real-time, control system design found that they needed
special routines, apart from the application tasks them
selves, to supervise the execution of application tasks.
It was (at best) an inconvenience for so many engineers
to independently define, design, document, test and
debug software with the same general purpose. At
worst, schedules slipped or projects were cancelled for
the lack of reliable executive software.

To help avoid these hazards and free up the designers to
concentrate on more immediate goals, Intel developed
iRMX 80, the first real-time, multitasking, executive
operating system for microprocessors. iRMX 86 was
introduced tothe 16-bit world two years later in 1980.

Because of the critical real-time nature of such operat
ing systems, they require certain hardware capabilities
in the host system, such as special timer logic clocked at
certain frequencies to measure the passing of time, and
interrupt controllers to monitor assorted asynchronous
events. Combine all this with a handful of memory
chips to house just the as software, and the address
decode and control logic needed by all of the above, and
you'll find you need the equivalent of a single-board
computer system just to support a multitasking
environment.

Until now, that is. The current trend is to integrate as
software and hardware functions into silicon. Intel's
iAPX 432 32-bit MicroMainframe™ system does this
within the CPU. For the 16-bit world, however, Intel
provides a separate chip, the 80130, which contains
operating system firmware as well as timer and inter
~rupt control functions.

What is the 80130 OSF? It is an extremely sophisticated
integrated circuit, fabricated using Intel's high
performance HMOS technology, which contains over
160,000 devices. In one 40-pin package (Figure 4), the
80130 combines several timers, mUltiple-mode inter
rupt control logic, and a large control store memory
-plus buffers, decoders and the like-to form the in
tegrated heart of a multitasking operating system.
Compared with the iRMX 86 Nucleus, for example, the
80130 replaces an 8259A PIC, an 8253 PIT, a special
oscillator, 16K bytes' worth of memory, and associated
control logic.

The 80130 operates in conjunction with the 8086 CPU.
Together, the two chips are called the iAPX 86/30 aSp.
The same device may be paired just as easily with an
8088 forming the iAPX 88/30. From here on, though,
references to the 8086 or "host processor" apply to
both CPUs. Due to the high speed of HMOS, the 80130
currently runs at system clock rates up to 8 MHz with
out inserting any wait states. Firmware in the 80130
supports the 35 primitive functions listed in Table 1.
Many of these are discussed in Chapter IV.

2-57

SYSTEM HARDWARE DESIGN

The 80130 supports a wide range of system architec
tures, from compact to quite complex. Most, however,
have in common the functional blocks represented in
Figure 5. After a brief review ofiAPX 86/30 systems in
general, we'll examine 80130 requirements in greater
detail.

Basic Functional Blocks

In addition to the 80130, the central processing "core"
of a typical asp system would include an 8088 or 8086
operating in maximum mode. an 82843A clock
generator, and an 8288 system controller, all connected
according to the standard rules. More on the 80130-
specific interconnects later.

Address latches (e.g .• 8282s or 8283s) are generally
needed to demultiplex the processor address bus for
standard memory devices and for memory and I/O
device-select logic. The number (from zero to three
octal latches) depends on the 'host processor.
memories, and the addressing scheme employed. Data

AFN-()2058A

AP-130

Table 1. Operating System P''rImltlves: Supported by 80130.

Task Management
Suspend Task
Resume Task
Sleep
Create Task
Delete Task
Set Priority
Get Task Tokens

Intertask Communications and Synchronization
Send Message
Receive Message
Create Mailbox
Delete Mailbox

Mutual Exclusion Control
Receive Control
Accept Control
Send Control
Create Region
Delete Region

transceivers (8286s or 8287s) may also be needed for
increased bus buffering.

Any complete microprocessor system must also have
some combination of 110 peripherals and memory, col
lectively indicated by the box labeled "Local Re
sources." As we shall see, some of the system RAM
and ROM (or EPROM) must be reserved for OSP itself.
Additional logic decodes the latched address lines to
generate chip-select signals for the memory and 110
devices.

This note only discusses simple, single-processor sys
tems. More sophisticated architectures may incor
porate a multimaster system bus, in addition to a local
processor bus. This would require additional system
controllers, address latches, and bus transceivers for
bus isolation, and address mapping logic (not shown) to
select between the various busses, enable the respec
tive transceivers, generate a System Ready signal, and
so forth. For design information on such techniques,
refer to application note AP-67 in theiAPX 86,88 User's
Manual.

2-58

Interrupt Management . Set Interrupt
Signal Interrupt
Reset Interrupt
Enter Interrupt
Wait Interrupt
Exit Interrupt
Enable

,
Disable
Get Level

Free Memory Management/System Partitioning
Create Segment
Delete Segment
Create Job

MIsc. Support
Signal Exception
Get Type
Disable Deletion
Enable Deletion
Set O.S. Extension
Get Exception Handler
Set Exception Handler

80130 Pin Functions

Back to the 80130. Certain pins on the 80130 (in particu
lar, ADI5-ADO) attach directly to the CPU. The AD
pins are bidirectional, accepting addresses from the
host and returning instructions or data. By monitoring
the system clock and status signals, S2-S0, the 80130
can decode the processor status internaily and respond
automatically to the appropriate bus cycles. The BHE
input lets the 80130 determine the width of data trans
fers and distinguishes an 8088 host from an 8086. If you
refer back to Figure I, you'll notice thatthese 80130 pin
assignments were selected to simplify P.C. board
layout.

Because of the 80130's location on the CPU side of any
latches or data transceivers (on what is sometimes
called the "pin bus"), the transceivers (if used) must be
disabled when the 80130 is driving the processor bus.
Whenever the 80130 is responding to any type of bus
cycle, it generates anACK signal. As Figure 4 suggests,
one way to avoid contention is to simply disable the
transceivers when ACK is active. ACK can also be used
to prevent the insertion of wait states.

AFNo02058A

AP-130

,----------------------------------,
I OPERATING SYSTEM UNIT I
I I
I

00-7 I
I I
I I. I 7

I
I

PROGRAMMABLE
INTERRUPT I

I LOGIC I INTERRUPT INP UTS

I I
I I
I I INTERRUPT OUT
I KERNel I
I CONTROL I

I
STORE I

I I
I I

!
~ SYSTEM ~ SYSTEM

TIMER I
I
I

:
I

08·15
~ DELAY

: K:- DELAY
TIMER

: I

~ : \
BAUO RATE ~ BAUOR

:
GENERATOR I

I

ATE

I I
f-------------------- -- --------------1
I I
I <-- I
I ~ CLOCK

I
I OATA

I 3 ,. BUS ~ STATUS I BUFFER I INTERFACE
& AND

I

I ADDRESS CONTROL ~BUSCO
ADDRESSI I LATCH I

NTROl

DATA BUS I ~ LOCAL
I I INTERR UPT
I CONTROL UNIT I (iTA) L __________________________________ ~

Figure 4. 80130 Internal Block Diagram

Additional pins on the 80130 include eight interrupt
request inputs. Internal interrupt control logic provides
many of the functions of the 8259A. During system
configuration (Chapter V), each of the eight may be
individually defined as a direct level-sensitive or edge
triggered interrupt request, or each may be cascaded
with a standard 8259A in slave mode.

The INT output must be connected to the host CPU to
inform it of an enabled interrupt request. In very large
systems with multiple, cascaded interrupt controllers,
Local Interrupt Request (LIR) indicates to the bus
contention logic whether a requesting slave is local, or
must be accessed via a multimaster bus.

driven by SYSTICK, so this connection must be made
externally. Routines within the 80130 initialize and per
form all bit-level control of the interrupt and timer
logic, according to options and parameters specified
during the configuration process. Freeing the program
mers from this tedium allows them to devote more
thought to solving their own unique problems.

An additional, independent timer generates a user
programmable, square-wave output signal called
BAUD to clock an off-chip USART.

Since the 80130 displays some ofthe characteristics of
both memory and I/O, it requires chip-select signals for
both the memory (MEMCS) and I/O (IOCS) address

The 80130 also contalns dedicated timerlogic to provide spaces. These are discussed at length below. Finally,
the OS time base, which is output on SYSTICK. Intel has reserved one output pin (called "DELAY")
Software operating in conjunction with the 81030 as- for use in future designs. Leave it unconnected in iAPX
sumes one of the interrupt inputs (INT2 in this case) is 86/30 systems.

2-59

I\)

~

I

+s

Vee

808S
(A2)

N.C. All
N.C. OS.

N.C. OSO

N.C. LOCK

N.C. ROIGT.

N.C. RQ/GTO

[SLJ INT
L:l~t~

80130
(A7)

Sli

ACKU- I-

~------------------------------------~~CONTROL
SIGNALS

(CON1HUL tJu::tJ

v

:/mlEi
-t-- '\I A

19

V·A~6 LOCAL (ON-BOARD)
RESOURCES

I--

(PllQM, PERIPHERALS. RAM I==l : : ~:~s IACCORDINGTOAPPLICAnON

~
Dl5-oo t=

t---------:

...11.
A7-AO I II v1 ~~~(+SYS)

I-
DTIR

~r:
:::JJ --

A1g..A16

N.C. BAUD ~
UR

B~g
5,2
Sli

ADDRESJ DECODe
LOGIC

2 A~~

TO SERIAL INT DELAY 10CS I :
N.C. SYSTICK

• iil"EMC:S

PERIPHERALS ~
INT7

VSS

INT6

INT5

INT4

INTa

INT2

INT1

1NTOVSS
. ---r-

y

t= ~!

PROCESSOR DATA BUS

Figure 5. Basic iAPX 86/30 Microcomputer System Block DiaS'!,am

}

SYSTEM
CONTROL
BUS

SYSTEM
ADDRESS
BUS

SYSTEM
DATA
BUS

~
". ...
~

AP-130

Additional System Requirements

The OSP requires a certain amount of off-chip memory
for its own operation. The system must provide at least
lK bytes of RAM at address OOOOOH for the CPU
interrupt vectors, plus another 1500.0 bytes for OSP
system variables, data structures, stacks, and the like.
This RAM may reside anywhere in the 8086 megabyte
address space, although it is often contiguous with the
interrupt vector up front. Application tasks must each
have their own stack, so allow at least an additional 300
bytes of RAM for each.

Any iAPX 86 system must have ROM or EPROM at the
upper end of memory to hold the CPU restart vector.
About 3400 more bytes are consumed by code to initial
ize and access the OSP. This code is generated auto
matically from libraries on a diskette provided with a
product called the iAPX 86/30 and iAPX 88/30 Operat
ing System Processor Support Package (iOSP 86).
Space left in the initialization EPROMs is available for
application tasks.

As code is being written, the system designer should
count on another 1500 bytes of code from the support

libraries being added to his application during the link·
ing and system configuration steps. These memory re
quirements are shown in Figure 6. In practice, the
separate blocks in this figure would be grouped together
for more efficient use of RAM and EPROM chips.
The 80130 occupies al6K-byte block of addresses in the
host-processor memory space, so external logic should
decode address bits A19-A14 to generate MEMCS.
Similiarly, the timer and interrupt control logic occupy
a 16-byte block of addresses in the 110 space; at least
some of the bits A15 -~ must be decoded to generate
IOCS. The 80130 decodes all the lower-order address
bits (14 for memory, four for 110 internally).

Firmware in the 80130 leaves a great deal of flexibility in
decoding the chip-select signals, to be compatible with
whatever decode logic is already present in the system.
The 110 starting address may be on any 16-byte bound
ary in the full CPU 110 space. The memory block has
only two restrictions: the off-chip initialization and in
terface code memory must be placed immediately
above the MEMCS block, so the 80130 may not occupy
the extreme top of memory, nor may the 80130 reside at
address OOOOOH since this area is reserved for interrupt
vectors.

iAPX 86/30 SYSTEM MEMORY REQUIREMENTS

OFFFFOH

MUST BE
CONTIGUOUS

400H

POWER ON·LOCATION

80130 INITIALIZATION AND CONFIGURATION
CODE (ROM/EPROM)

16K FOR 80130 ON 16K BOUNDARY

UK CODE BYTES SYSTEM INITIALIZAnON (ROM/EPROM)

1.5K RAM BYTES FOR iAPX 86/30 STACK AND DATA (RAM)

lKBYTES
RESERVED FOR
INTERRUPTS (RAM)

Figure 6. Operating System Processor System Memory Requirements
2-61

AP-130

Timing Requirements

System timing analysis is often the most tedious part of
digital hardware design. This discussion caJl be rela
tively short, though, because the 80130 timing is quite
simple: by design, the part is compatible with the timing
of the host processor. Since it interfaces directly with
the CPU p~s, traditional set-up, hold, and access times
no longer matter.

There are really only two areas of concern in analyzing
the timing of most OSP systems, both of which relate to
the user-generated chip-select signals. Figure 7 il
lustrates the relevant timing signals of a standard 8086
four-state Read cycle (memory or 110), along with the
timing responses of the 80130. 110 Write cycle timing is
the same. (Full timing diagrams are part of the respec
tive data sheets.)

The first concern is that MEMCS and IOCS must be
active early in a memory or 110 cycle if the 80130 is to

TO T1 T2

TCHCL TCLeH 1
I CLK

respond during Ta. In each case, the chip-select signals
must be active TCSCL before the end of state T2•
Assuming wait states aren't desired, addresses
generated by the CPU must propagate through the ad
dress latches and be decoded during Tl or T2 •

How much time does this leave the decOde logic? As
we'll see, ample.

By convention, TCLAV is the delay from the start of
Tl until address information is valid on the CPU pins;
TIVOV is the propagation delay through an 8282 latch;
and TCSCL is the 80130 chip-select set-up time. The
mnemonic Tovcs represents the chip-select logic prop
agation delay, after the latch outputs are stable. The
sum of these four delays must be less than two system
clock cycles, reduced by the clock transition time.

TCLAV + TlVOV + Tovcs + TCSCL STCLCL + TCLCL

Tovcs S T CLCL + TCLCL - TCLAV - TlVOV - TCSCL
:S 125 + 125 - 60 - 30 - 20 (nsee.)
S 140 nsee.

I T3 I T'
TW

I
,

I I~
TSVCH TCLCL TCLS~I TSHCL

l- t---
52.51.50

\

IHE.AD lS-AOO

.IDCS

WRIT ECYCLE

- -
AD ls-ADo

K

REA DCYCLE

ADo

K

I I
I~Asc".1 I~CL:H'

I '
r BHE,A1S-AoVALID l----

TC5CL

1 TOSCL

I
ADDRESS VALID 'INIJII. WRITE DATA VALID

-l r-TCSAK

T5ACK X
I I :CLDX. I--l TCLDV

ADDRESS VALID "- FLOAT
READ DATA VALID

I TCLVE _I

TSACK \

Figure 7. Opetatlng System Processor Timing Diagrams
2-62

H5

I '
I

Ea
1 I

~TCSAK 1-1
I

0 FLOAT

~

AP·130

The propagation delay numbers plugged into the equa
tion are worst-case values from the appropriate Intel
data sheets. The CPU is an 8086-2 operating at 8 MHz.
This means the address decode logic must produce
stable CS outputs within 140 nanoseconds.

Exercise 2. Using standard, low-power Schottky
TTL, does it make sense for a circuit to take
longer than 140 nsec. to decode 6 program or 12
I/O address bits? Even if the rather liberal setup
specs are not met, the 80130 would still work fine.
Wait states would be needed until the chip-select
signal was active, however, so performance
would degrade some.

The second point of concern relates to ready signal
timing. The 80130's acknowledge output signal, ACK,
can be used to control the CPU's ready signal. For this
case, the chip-select signal must be active early in a
memory or I/O cycle to allow activation of ACK early
enough to prevent wait states. There are two schemes
for implementing ready signals; "normally ready" and,
"normally not ready." (For more details, refer to AP-
67, "8086 System Design.") Chip-select timing is more
critical in some "normally not ready" systems.

8288

8086
CPU ALE

A19 8D G eo
A18 70 70

A17 60 eo
A16 50 50

A015 4D 4Q

AD14 3D 3D

748373

READY

Vee

-
READY

G1

In a "normally not ready" design, acknowledge signals
are generated when each resource is accessed. The
individual acknowledgements are combined to form a
system-wide ready signal which is synchronized by the
8284A clock generator via the RDY and AEN inputs.
The 8284A can be strapped to accept asynchronous
ready signals (asynchronous operation) or to accept
synchronous ready signals (synchronous operation).
Synchronous 8284A operation provides more time for
address latch propagation and chip-select decoding. In
addition, inverting ACK off chip produces an active
high ready signal compatible with the 8284A RDY in
puts, which have shorter set-up requirements than
AEN inputs. (As a side benefit, a NAND gate used like
this can combine ACK with the active-low acknowl
edge signals from other parts of the system.) Based on
these assumptions, the time available for address latch
propagation and chip-select decoding at 8 MHz is:

TCLAV + Tovcs + TCSAK + RRIVCL sTCLCL + TCLCL
Tovcs :5 2 TCLCL - TCLAV - TCSAK - TRIVCL

s 250 60 110 35
s 45 nsee.

The circuit in Figure 8 which uses Schottky TTL com
ponents leaves about 15 nsec. to produce MEMCS from

80130
OSF

G2B }~~~ G2A DECODE
C

B

A

74S138

Figure 8. High-Speed Address Decoding Circuit
2-63

· AP-130

the high-order address bits-more than enough for the
74S138 one-of-eight decoder sh9wn.

Granted, this does not leave much leeway to fully
decode the I/O address bits. A 12-input NAND gate on
AD15-AD4 could be used, introducing only a single
propagation delay but forcing the I/O register block to
start at OFFFOH. Incomplete decoding is also legal: it is
safe to drive tocs with the (latched) AD15 signal di
rectly, provided all other ports in the system are dis
abled when this bit is low. In this case, the effective
address of the I/O block (which must be specified dur
ing the system configuration step) could be OOOOH, or
any other multiple-of 16 between OOOOH and 7FFOH.

Again, the OSP system will still operate even if the
memory or I/O decoding is slow. The acknowledge
signal returned to the host CPU would just be delayed
accordingly, so unnecessary wait states would be in
serted in access cycles, but the 80130 would not mal
function. Only rarely does the OSP access resources in
its I/O space. Even if slow decode logic were to insert
several wait states into every I/O cycle, the overall
effect on system performance would be insignificant.

A few words of caution. though. If the 8284A is strap
ped for synchronous operation, external circuitry must
guarantee that ready-input transitiol).s don't violate the
latch set-up requirements. Also, the chip-select signal
must not remain low so long after the address changes
that the 80130 could respond to a non-80130 access
cycle.

Exercise 3. Suppose the typical timing values for
a particular decoder would easily meet the ready
input set-up requirements presented above for
asynchronous 8284A operation, but pathological
worst-case figures were just a little slow. Could
that circuit still be used safely in most applica
tions? What would happen ifthe worst-case com
bination of worst-case conditions ever actually
did occur? These occasional extra wait states
would probably not cause a hard system failure.

Exercise 4. Earlier it was mentioned that the ac
knowledge signal could also be used to avoid bus
contention. Prove that with any decode logic
which meets the above requirements, ACK would
disable the bus transceivers before the host CPU
samples the bus.

Example System Design

Appendix A includes full schematics for a complete
iAPX 86/30 system providing considerable function
ality with only 27 chips. In addition to the OSp, the

2-64

system has 4K bytes of 2114 RAM (with sockets for
another 4K), from 8K to 32K bytes of 2732A or 2764
EPROM, an 8251A USARToperating at 9600 baud, and
an 8255A Programmable Peripheral Interface with 24
parallel I/O lines. Eight of the inputs read logic values
off DIP switches; eight outputs drive small LEDs. Four
more outputs connect to the coil drivers of a four-phase
stepper motor. A layout diagram of the prototype ap
pears in Figure 9.

The system is even simpler than the discussion of
"typical" requirements implied. The 8086 direct-bus
drive capability is adequate to make the data trans
ceivers unnecessary. (To equalize the bus loading, the
8255A is connected to the upper half of the bus.) Ad
dress decoding logic was minimized by making the
high-order address bits "don't-cares." Moreover, the
part count could have been reduced to 16 using an 8088
and multiplexed-bus 8185 RAMs and 8755A EPROMs.
(The reader may be surprised to learn that, except for
wire-wrapping mistakes, the prototype system hard
ware worked when it was first powered up. The author
certainly was!)

APPLICATION SOFTWARE
DEVELOPMENT

Like other well-structured programs, application
software to run on the iAPX 86/30 is written as a num
ber of separate procedures or subroutines. In conven
tional programs, though, execution begins with a
section of code (the program body) at the outermost
level. The program calls application procedures, which
may call other procedures, but which eventually run to
completion and return to the program body.

In an OSP application, though, there is no "outermost
level" in the traditional sense; rather, the procedures
are started, suspended, and resumed as situations war
rant under the control of the OSP. The term "task"
refers to the execution of such a procedure in this way.
While an instruction stream is suspended, the OSP
keeps track ofthe task state (instruction counter, CPU
register contents, etc.) so that it may be resumed later.

Each task is assigned a relative priority by the program
mer, on a scale of 0 (high priority) to 255 (low). Tasks
with higher (numerically lower) priority are given pref
erential treatment by the OSP; the task actually control
ling the CPU at any given instant will be the one with the
highest priority which is not waiting for some event to
occur. (If all this sounds confusing, examples coming
later may help.)

A task which operates independent of other tasks can
be written without knowing anything about the others.

AFN-02058A

AP-130

RESET

D
o

8086
B1

80130

B4

RESISTORS SWITCHES

~~~ 

Figure 9. Example System Prototype Layout 

This makes it easy to divide a very large programming 
job among a team of programmers, each writing the 
code for some of the tasks. Moreover, a task need not 
even know if other tasks exist. They may be tested and 
debugged before others have even been written. As an 
application evolves, new tasks may be added or un
necessary ones removed without affecting the rest. 

The number of tasks in an application may need to be 
quite large. The number of tasks allowed in one applica
tion is essentially unlimited, as is the number of other 
objects-regions, mailboxes, segments, and the like. 
(The term "object" relate!! to different types of data 
structures maintained internally by the OSP.)'Each ob
ject is internally identified by a unique 16-bit "token," 
which means the theoretical maximum total is over 
65,000. The more pragmatic issue of physical memory 
consumption limits the number of simultaneous concur: 
rent tasks to "only" several thousand. 

(When a number of tasks cooperate to accomplish some 
common goal, the collection of tasks is referred to as an 
application "job. "The OSP also allows for an unlimited 
number of application jobs, though only one is il-

ent motor, and a different console might make up a 
second job.) 

All OSP application jobs must have one special in
itialization task (often called INIT$TASK) just to get 
started; this one may, in turn, create other tasks as it 
executes. The initialization task for this example is 
discussed at the end of this chapter. 

Hardware Initialization 

The life of any task can be broken into three phases: 
start-up, execution, and termination, The start-up 
phase initializes variables, data structures, and other 
objects needed by the task. During the execution phase 
the task performs its useful work. Depending on the 
application, this may be a single sequence ofactions, or 
a loop executed repeatedly. When the task completes, it 
must terminate itself so as not to use any more CPU 
time. One or more phases may be omitted. For exam
ple, some tasks are intended to execute "forever," in 
which case the termination phase is not required. . , 

lustrated in the example discussed here. A second This life cycle is suggested by Example I, a segment of 
similar machine, with different status switches, a differ- code called HARDWARE$INIT$TASK. This task first 

2-65 



~P-130 

programs the 80130 internal timer logic to generate a 
square-wave cycle on the BAUD pin every 52 system 
clock cycles, which corresponds to a system console 
data rate of 9600 baud. The task then sets the system's 
8255A PPI and 8251A USART devices to operate in the 
desired modes, and outputs a short sign-on message to 
the CRT. For the sake of reader's unfamiliar with the 
protocol for interfacing with the 8251A, simple input 
and output routines (C$IN and C$OUT) are reproduced 
in Example 2. 

HARDWMPINIT.T,.SK PROCEDURE. 
DECLARE HARDtlNITSEXCEPTSCODE WORD. 
DECLARE PARA"-!ll (.) IYTE DATA (40H. SOH. OOH. 4OH. 4EH • .:27H), 
DECLARE PARA..,.'ltINDEX BYTE. 
DECLARE SIgNfON.MESSAGE C*) BVTE DATA 

(CR. LF, ':LAPX 86/30 HARDWARE INITIALIZED', CR. LF), 
DECLARE 811m.ON.INDEX IVTE, 

DUTPUTCppnCI'll)-'OH. 
OUTPUT (T UERtCtU) )-086HJ 
OUTPUT(IAUDtTlP1!R)-33, '_OENERATES 9600 BAUD FROM 5 I1HZ_, 
OUTflUTCIAUDtTIMER ).OJ 
DO PARA"":"tINDEX-O TO (SIZECPARA".,l )-1), 

OUTPUTCCMD"l )-PARAMe'l (PARAfUo,ltlNDEX). 
ENDJ I_OF VSART INITIALIZATION DO-LooP./ 

DO SIOr.DNtlNDEX-O TCJ' (SIlE(SIONtQN'I'1ESSAQE)-l), 
CALL CtoUTCSJON'ON'"ESSAOE(SION'D~INDEX», 
END. ,.OF SlC~N-ON DO-LOOP.' 

CALL ROtRESUfilEtTABKC INn.TASK.TOKEN, lHARDsINn$EXCEPT.CODE I, 
CALL RGsDELETE.TASM.(O. IHARDSINITSEXCEPTSCODE». 
END HARDWARE.INIT.TASKI 

Example 1. System Hardware Initialization Task 

C.OUT PROCEDURE (CHAR), 
DECLARE CHAff BYTE. 
DO WHILE (INPUT(STATS~l) AND OlHI-O, 

1* NOTHING *1 
ENOl 

OUTPUT(CHAR.~ll-CHARI 

END C.OUTI 

CSIN PROCEDURE BVTE. 
DO WHILE (INPUT(STAT.~l) AND 02HI-O. 

1* NOTHINQ *1 
END. 

RETURN INPUT(CHAR.~l), 
END Ct:IN. 

Example 2. Simple 8251A Input and Output 
Routines 

The baud timer should be initialized by Ii code sequence 
like that shown here. The 80130 logic is a~tually com
patible with the initialization sequence which would be 
needed to configure timer 2 of an 8253A as a program
mable rate generator. The baud rate parameter loaded 
into the timer is simply the system clock frequency 
divided by the desired output frequency. No other 
timers should be affected by user programs. 

the procedure RQ$DELETE$TASK, suicidally 
specifying itself as the task to be deleted. 

EXercise s. Beginners may make two common 
programming errors when developing OSP tasks: 
The first is when a task deletes itself without ever 
resuming the suspended task that created it. The 
second is to not terminate a task properly, with the 
result that the processor executes a return in
struction when the task's work is done. (However, 
execution of the task did not originate with a call 
from the OS.) As with all computers, an OSP will 
do exactly what it is told. How do you suppose the 
system would react in each case? (Hint: only one 
of the two failure modes is predictable.) 

You may have noticed three things from this short ex
ample and Table I. First, every OSP call begins with 
the letters RQ. (PUM compilers totally ignore dollar 
signs within symbols; they serve only to split long sym
bol names to make them easier for humans to read.) The 
letters RQ don't mean anything in particUlar; their pur
pose is to make sure OSP routine names don't conftict 
with any user symbols. These particular letters were 
chosen to be compatible with the historical naming 
convention used by iRMX 86. It may be useful, though, 
to think ofRQ as an abbreviation for REQUEST, imply
ing that the OSP provides useful services at the bidding 
of application code. 

The second thing to notice is that the OSP routine 
names imply pretty well what each routine does. On the 
one hand, long procedure names take a little longe~ to 
type; on the other, they make code listings much easier 
to read and understand. In effect, the long names help 
make OSP code self-documenting. The long names 
shouldn't hinder code development; rarely can pro
grammers think faster than they can type. If they could, 
programmer productivity would be measured in 
thousands of lines per day. 

The third thing is that the last parameter in every OSP 
system call points to a word in which the OSP proce
dure will ,return an exception code to the application 
task. The procedure will return a non-zero exception 
code in this word if it cannot do its job correctly. This 
does not always imply that an error occurred; some
times it just means another task isn't ready to cooperate 
yet. Sometimes an exception value indicates whether 

When the hardware has been initialized, the task the OSP request was processed immediately or delayed 
calls an operating system procedure called RQ$ for some reason. In fact, some OSProutines are guaran-
RESUME$TASK. This signals the OSP thllt the task's teed never to return a non-zero exception code, yet the 
start-up phase has completed, and that'the initialization pointer is still required for the sake of consistancy. For 
task (which in this case suspended itself after creating a full explanation of the other parameters for the OSP 
HARDSINIT$TASK) may continue. Since its function procedures and details on what the different exception 
is hardware initialization only, HARD$INITSTASK codes mean, consult the iAPX 86130, 88130 User's 
has no execution phase per se. It terminates by calling Manual. 

2-66 



AP-130 

To illustrate how the OSP procedures are used, the 
following code examples implement the machine con
troller tasks introduced earlier. Appendix B puts all the 
code examples together, though not in the exact order 
discussed. Be Forewarned: the examples border on 
trivial. They are in this note to demonstrate how to call 
system routines with as few lines of code as possible, 
not to tax the capabilities of the OSP. In fact, none of the 
tasks even check for exception codes returned by the 
OSP, under the naive assumption that nothing will go 
wrong in a debugged program. If you're interested in 
more elaborate software examples, consult application 
notes AP-86 and AP-II0. These notes focus specifically 
on iRMX 86, but their methods and much of the code 
apply equally to the OSP systems. 

Simple Time Delays 

The STATUS$TASK routine simply monitors eight 
switches through an input port, and updates eight 
LEDs with a pattern determined by the switch settings 
and task status. Specifically, the LEDs display the bit
wise Exclusive-OR function of the inputs and an eight
bit software counter maintained by the task. This action 
will repeat twice per second. The task does nothing 
between iterations. 

The RQ$SLEEP routine gives application tasks a way 
to release the CPU when it is not needed. Any task 
calling this routine is "put to sleep" for the amount of 
time it specifies (from 1 to 65,000 SYSTICK intervals), 
releasing the CPU to service other tasks in the mean
time. After the requested time has transpired, the OSP 
task will reawaken the task and resume its execution, 
provided a more important task is not then executing. 

The 80130 timer logic generates the fundamental Sys
tem Tick by dividing the system clock frequency by 
two, then subdividing that frequency by a 16-bit value 
specified during the configuration process. The period 
used here is 5 msec., which would result in an 5 MHz 
system by dividing the 2.5 MHz internal frequency by 
12,500. 

Exercise 6: At this rate, what's the longest nap 
that would result from a single call to 
RQ$SLEEP? How could this duration be 
extended? 

PIJM listings for the complete STATUS$TASK routine 
appear in Example 3. 

STATUS.TABK PROCEDURE, 
DECLARE STATUS'COUNTER BYTE. 
DECL.ARE STATUS.EXCEPT.CODE WORDl 

STATUS.COUNTER-O, 
CALL RG.RESUME.TASJt(,( INIT'TASK.TI::WIEN, 'STATUS'EXCEPT'CODE), 
DO FOREVER, 

OUTPUTCPPI$B)=INPUT<PPISA) XOR STATUS'COUNTER, 
STATUS'COUNTER""STATUS.COUNTER+ 1. 
CALL RG'SLEEP (100. 'STATUS.EXCEPTtCODE). 
END. 

END STATUS.TASK, 

Example 3. Status Polling and Reporting Task 

Stepper Motor Control 

Conceptually, a stepper motor consists of four coils 
spaced evenly around a rotating permanent magnet. By 
energizing the coils in various combinations, the mag
net can be induced to align itself with the coils, individu
ally or in pairs. A microcomputer can make a stepper 
motor rotate, step-by-step, in either direction, by emit
ting appropriate coil control signal patterns at intervals 
corresponding to the step rate. 

The stepper-motor sequencer (Example 4) is an embel
lished version of STATUS$TASK. The OSP calls are 
intermixed with a few more statements of application 
code, and the task uses global variables as delay 
parameters. The reader may wish to adapt the com
mand interpreter task at the end of this chapter to let the 
operator modify (read: "play with") these parameters 
to adjust the motor speed as the program runs. 

DECLARE CwtSTEP$OELAY BYTE, 
CCW$STEPSOELAY BYTE. 
CW$PAUSE$DELAY BVTE. 
CCWSPAUSE$DELAY BYTE, 

MOTORSTASK PROCEDURE. 
DECLARE MOTOR$EXCEPT.CODE WORD, 
DECLARE MOTORSPOSITION BYTE. 

MOTORSPHASE BYTE, 
DECLARE PHASE$CODE (4) BYTE 

DATA (0000010113,0000011013.000010108.0000100113). 

CW$STEPSDELAY=50, I*INITIAL STEP DELAYS .. 1/4 SECOND*I 
CCW$STEP$DELAY=50. 
CWSPAUSESDELAY-2001 I*PAUSES AFTER ROTATION == 1 SECONO* 
CCW$PAUSE$DELAY-:ZOO, 
CALL RO$RESUMESTAS~ I I NI TSTASIoC.STOIoC.EN. @MOTORSE)(CEPTSCODE). 
DO FOREVER I 

DO MOTORSPOSITION=O TO 100. 
MOTOR$PHASE=MOTORSPOSITION AND 0003H. 
OUTPUT I PP I SC ) ""PHASESCODE (MOTORSPHASE ) • 
CALL RGSSLEEP (CWSSTEPSDELAV, @MOTOR$EXCEPT$CODE) , 
END, 

CALL ROSSLEEP ICWSPAUSE'DELAY.@MOTORSEXCEPTSCDDE). 
DO MOTOR$POSITION=O TO 100. 

MOTORSPHASE-( lOD-MOTORSPOSITION) AND 0003H, 
OUTPUT ( PPISC) ""PHASESCODE(MOTOR$PHASE). 
CALL RGSBLEEP (CCW.STEPSDELAV, @:MOTOR$EXCEPTSCODE). 
ENOl 

CALL ROSSLEEP(CCWSPAUSESDELAV.@MOTDRSE)(CEPT$CODE). 
END. 

END MDTORSTASIoC., 

Example 4. Stepper-Motor Controller Task 

Real-Time Interrupt Processing 

The 80130 supports a two-tiered hierarchy of interrupt 
processing. The lower-level tier corresponds to the 

2-67 
AFN-020e8A 



AP.130 

traditional concept of hardware interrupt servicing; a 
routine called an "Interrupt Handler" is invoked by the 
80130 internal interrupt control logic for iinmediate 
response to asynchronous external events. A short 
routine like, this might, for example, move one ~harac
ter from a USART to a buffer. Interrupt handlers oper
ate with lower-priority interrupts disabled, so it is a 
good idea to keep these routines as quick as possible. 

"Interrupt Tasks," on the other hand, are higher-level 
tasks which sit idle until "released" by an interrupt 
handler. The task then executes along with other active 
tasks, under the control of the OSp. Such a task should 
be used to perform slower but less time-critical pro
cessing when occasions warrant, such as when the 
aforementioned buffer is full. Moving such additional 
processing outside the hardware-invoked interrupt 
handler reduces the worst-case interrupt processing 
time. 

This hierarchy also decreases interrupt latency. Most 
OSP 'primitives execute in their own, private 
"environment" (e.g., ,with their own stack and data 
segments) rather than that of the calling task. Interrupt 
handlers, on the other hand, run in the same environ
ment as the interrupted task. (In fact, the 80130 
primitives may themllelves be interrupted!) Leaving the 
CPU segment registers unchanged minimizes software 
overhead and interrupt response time, but also means 
that interrupt handlers may not call certain OS 
routines. An interrupt task, on the other hand, is in
itiated and suspended by the OSP itself, ~ith no such 
restrictions'. 

Let's see how these capabilities would be used. The 
time delays introduced by the RQ$SLEEP call are only 
as accurate as the crystal frequency' from which they 
are ultimately derived. This may not be exact enough 
for critical time-keeping applications, since oscillators 
vary slightly with temperature and power fluctuation. 

To keep track of the time of day, the example system 
uses a 6O-Hz A.C. signal as its time base. (Most power 
utility companies carefully regulate line frequency to 
exactly 60 Hz, averaged over time.) A signal from the 
power supply is made TTL-compatible to drive one of 
the 80130 interrupt request pins. An interrupt handler 
responds to the interrupts, keeping track of one 
second's worth of A.C. cycles. An interrupt task counts 
the seconds by incrementing a series of variables. 

E!,ample 5 illustrates the former routine. AC$ 
HANDLER simply increments a variable on each 60-
Hz interrupt. Upon reaching 60, it clears the counter 
and signals TIME$TASK (Example 6). 

DECLARE ACICYCLE.ccx.wT BYTEJ 

AC~DLER' PROCEDURE INTERRUPT 59, I*VECTOR FOR 80130 INT3*' 
DECLME AC~XCEPTtCDDE WORD. 

CALL RGSENTER .. INTEARUPT (AC' INTERRUPT~EVEL •• AC.e:XCEPTICODE). 
AC*CYCLEICOUNT-ACICVCLE.cOUNT+l. 
IF I\C*CVCLEfCOUNT >- 60 

THEN 00, 
AC*CVCLE.cDUNT-o. 
CM.L. RCiISIGNALIINTERRUPTCACIINTERRUPTILEVEL. 

eAC'EXCEPT~OOE) • 
END. 

aBE CALL RClM:X]TIINTERRUPT(ACIINTERRUPTILEVEL. 
IACtEXCEPTICODE) I 

END At.HANDLER, 

Example 5. eG-l1z A.c' Interrupt Handler 

, In its initialization phase, TIME$TASK sets up the 
interrupt handler by calling the RQ$SET$ 
INTERRUPT routine. The body ofTIME$TASK (the 
execution phase) is just a series of nested loops count
ing hours, minutes, and seconds. When TIME$TASK 
calls .RQ$WAIT$INTERRUPT inside its biner-most 
loop, the OSP suspends execution of the task until 
AC$HANDLER signals that another second's worth 
of A.C. cycles has elapsed. Thus, interrupt handlers 
can serve to "pace" interrupt tasks. After a day, 
TIME$TASK completes and deletes itself. 

2-68 

DECLARE SECONDtCOUNT BYTE. 
PlINVTE.CDUNl' BVTE. 
HOURtcOUNT BVTE. 

Tlf'tE'TASK • PROCEDURE. 
DECLARE Tlf1E.EXCEPT'CDDE WORD. 

AC.CYCLE'COUNT-O. 
CALL RGUET.INTERRUPTCAC.INTERRUPT.LEVEL.01H. 

INTERRUPTfPTR (ACfHANDLER ). DATA.BEQ.AImR BASE. 
tTItE.EXCEPT.CODE) • 

CALL "GtRESUI1E'TA~K( INlT.TASK.TOKEN. tTIME'EXCEPT.CODE). 
DO HOURfCOUNT=O TO 23. 

DO l'lINUTE'COUNT-<J TO 59. 
DO SECOND.CDUNT-O TO S9. 

CALL RGSWAIT.INTERRUPT(AC'INTERRIJPT.LEVEL. 
eTlttE'E'XCEPT$CQDE) • 

IF SECDND$CQUNT t1DD 5 • 0 
THEN CALL PROTECTED.CRT.OUT (BEL). 

ENDI 1,* SECOND LOOP *1 
END. 1* l'lINUTE LOOP *1 

END. '* HOUR L.OOP *1 
CALL RGeR£SETSINTERRUPT(AC.INTERRUPT.LEVEl., 

eTIt1ESEXCEPT'CODE) • 
CALL R"DELETE'TASK(O, l'rIME'EXCEPT'CODE). 
END TlftiIE.TASK. 

Example e. Interrupt Task to Maintain Time of Day 

Exercise 7: The time maintained byTIME$TASK ' 
is consistently wrong, unless the system resets at 
midnight. Aside from that, how much error would 
accumulate per month hadTIME$TASK paced its 
inner loop by calling RQ$SLEEP if the system 
oscillator was 00.01% off? How does this com
pare with a cheap digital watch? How much error 
will accumulate from the 60-Hz time base 
described? 

TIME$TASK incorporates another gimmick: every five 
seconds it sends an ASCII "BEL" character (07H) to 
the console to make it beep, by ciilling a routine called 
PROTECTED$OPTPUT. This lead-in gives us a 
chance to discuss OSP provisio~s for task synchroniza
tion and mutual exclusion. 



AP-130 

Mutual Exclusion 

Whenever system resonrces (e.g., the console) are 
shared among multiple concurrent tasks, the software 
designer must be aware ofthe potential for conflicts. In 
single-threaded (as opposed to multitasking) programs, 
the easiest way to transmit characters is by calling a 
console output routine (written by the user or supplied 
by the OS) which outputs the character code. 
(Remember the examples following the hardware in

. itialization routine?) 

This approach presents two problems in a multitasking 
system. One is efficiency: a high-priority task could 
hang up the whole system while it waits for a printer 
solenoid to energize, induce a magnetic field, accelerate 
the hammer, contact a daisy-wheel spoke, move it up to 
the ribbon, and press them both against the paper. Th~s 
waste of time is termed "busy waiting," and should 
always be avoided. By OSP standards, even 1130 of a 
second can seem interminable; if the printer is other
wise occupied, the whole system could shut down 
indefinitely. . 
Aside from efficiency, though, there is a more serious 
synchronization problem here. Assume Task A has a 
higher priority than Task B. Task A is asleep. Task B 
calls a subroutine to poll the USART and transmit a 
character. The USART becomes ready. ·When this is 
detected, the subroutine prepares to output the charac
ter to the USART .... 

Time out! Task Ajust woke up and starts running. Task 
A wants to transmit its own character. It calls its own 
output routine, checks the USART, finds it available, 
sends it a new character, and goes back to sleep 
(or suspends itself, or awaits another interrupt
whatever). 

Now Task B continues. It "knows" the USART is 
available, having dutifully monitored it earlier. Task B's 
character goes out to the USART. The USART goes out 
to lunch. (In practice, the USART will probably just 
transmit corrupted data; still, its operating require
ments have been violated.) 

In Task B's output routine, the sequence of statements 
from when the peripheral is found to be ready to when 
the next character is written constitutes a "critical 
region" (a.k.a. "critical section" or "non-interruptable 
sequence"). Recognizing such regions and handling 
them correctly is an important concern in any multi
tasking system, so the OSP provides several facilities 
-interrupt control, regions and mailboxes-to help 
handle general synchronization and mutual exclusion 
problems. Which one to choose depends on the 
circumstance. 

2-69 

Exercise 8: In this example, would it be better if 
Tasks A and B shared a single output routine, so 
that only one section of code sent data to the 
USART? Convince yourself that the same (or 
worse!) problems could still arise. 

Sometimes critical ·sections can be protected by just 
disabling interrupts at appropriate points in the applica
tion software. To maintain the integrity of an iAPX 
86/30 system, application code must never execute the 
STI, CLI, or HLT instructions (ENABLE, DISABLE, 
or HALT statements in PLlM), nor can it access the 
interrupt control logic directly. Instead, the interrupt 
status sh,ould be controlled with the OSP 
RQ$ENABLE and RQ$DISABLE procedures; 
routines should be halted via RQ$SUSPEND or 
RQ$WAIT$INTERRUPT . 

Back to TIME$TASK: we want to transmit BELs to the 
console every five seconds. The console output task 
will be transmitting other characters. A "clever" pro
grammer may recognize that this will lead to a critical 
section and analyze the situation as follows: 

1. A hazard would arise if TIME$TASK sends out a 
beep when. CONSOLE$OUT$TASK is using the 
USART; 

2. TIME$TASK will only execute after being signaled 
by A$C$HANDLER; , 

3. A$C$HANDLER only reponds to an external 
interrupt. 

"Therefore, all CONSOLE$OUT$TASK has to do to 
be safe is disable the 60-Hz interrupt around its output 
routine." 

Not quite. There are still potential hazards. Suppose 
CRT$OUT$TASK has the same priority as 
TIME$TASK. TIME$TASK may already have been 
signaled by A$C$HANDLER and be ready to run when 
CRT$OUT$TASK completes. An otherwise unrelated 
event-another interrupt, for instance-could mo
mentarily suspend CRT$OUT$TASK during the criti
cal region withA.C. interrupts disabled. When the OSP 
returns to that level, it might reSllme with 
TIME$TASK, not CRT$OUT$TASK. This could lead 
to the same malfunctions as before, so disabling 6O-Hz 
interrupts didn't help. This series of worst-case as
sumptions is admittedly convoluted, but the resulting 
sporadic errors are among the hardest of all bugs to 
squash. 

The problem is that this attempted solution involves too 
much interaction between tasks, making it .confusing 
and error-prone. Even if soMe scheme of priority-level 
assignments and task interactions could be made to 
work, later modifications or simple additions to the job 



AP-130 

could cause bugs to reappear. (The analogy of an unex
ploded time bomb conies to mind.) 

A simpler solution would be one corresponding more 
closely with the problem. Accordingly. the OSP sup
ports several primitives just to supervise and control 
access to critical regions. 

One of the OSP "data types" is a data structure called a 
"Region," which can be used by application code to 
control access to a shared port or some other resource. 
A task wishing access to the resource should call the 
OSP procedure RQ$RECEIVE$CONTROL before 
trying to access that resource; when done it must call 
RQ$SEND$CONTROL. 

The asp keeps track of which regions are in use. As 
long as a region is busy (i.e., has been entered but not 
yet exited), the OSP will prevent other tasks from enter
ing the region by putting them to sleep. The OSP keeps a 
queue of all tasks waiting for the busy region. When the 
region later becomes available (i.e., when the task con
trolling the region calls RQ$SEND$CONTROL), one 
of the sleeping tasks-either the highest priority or the 
most patient-will be awakened, granted control ofthe 
region, and sent on its way. (When a region is created, 
the OSP is told whether to awaken tasks waiting for the 
region based on their priority or how long they 
have been waiting.) Effectively, a call to RQ$ 
RECEIVE$CONTROL will not return to the applica
tion task until the resource in question becomes 
available. 

The PROTECTED$CRT$OUTPUT (Example 7) dem
onstrates this protocol. The routine is declared 
ree~trant which means (by definition) the routine may 
be mterrupted and restarted safely. A reentrant routine 
~ay be shared by a number of tasks" instead of rep Ii cat-
109 the same code throughout the application. 

PROTECTED.CRr-OUT PROCEDURE (CHAR) REENTRANT. 
DECLARE CHAR DYTEI 
DECLARE CRTSEXCEPaCODE WORD. 
CALL RO*RECE IVEtCONTROL (CRT_REGIONS TOKEN', (!CRTtEXCEPTtCOOE), 
DO WHILE 'INPUT(STAn~l) AND 01H)=O, 

/* NOTHINO *' 
END, 

OUTPUT ( CHAR$51 )-CHARI 
CALL RGSSENDSCONTROL '.CRTtEXCEPT*CODE), 
END PROTECTED.CRTeOUT j 

Example 7. CRT Output Routine Protected by 
Region Protocol 

As a concession to simplicity, PROTECTED$ 
CRT$OUTPUT does use a form of the busy waiting 
method described earlier. The maximum delay at 9600 

2-70 

baud is only one millisecond, however, much shorter 
than a system tick. Besides, tasks performing character 
I/O will all have low priority levels, so the OSP would 
just delay them if anything more urgent comes up. 

Exercise 9: Decide whether this explanation is a 
feeble attempt at rationalization, or a well
justified engineering trade-off. 

Inter·Task Communication 

But what if a high priority task must output a string of 
characters, or the peripheral response time is too long? 
B~sy-waiting may not be acceptable. Alternatively, the 
output routine could buffer the data and service the 
USART within an interrupt routine. Another would be 
to simply pass the data off to a special (low-priority) 
output task and continue. 

Tasks pass information to each other via something 
called a "message." A message may be the token for 
any type of OSP object, but the most common and most 
flexible type is called· a "memory segment." In our 
example, segments will be 'used to carry strings of 
ASCII characters between tasks, so we'll examine seg
ments first. Message formats are defined by the individ
ual application programmer-make sure the sending 
and receiving tasks assume the same format! 

A memory segment is just a section of contiguous-sys
tem RAM allocated (set aside) by the OSP at the re
quest of an executing task. The OSP keeps track of a 
free memory "pool," which is initially all unused RAM 
in the system. When a task needs some RAM, it tells the 
RQ$CREATE$SEGMENT procedure how much it 
wants. The asp finds a suitable memory block in the 
pool, and returns a 16-bit token defining its location. (If 
not enough memory is available, the procedure returns 
an exception code.) 

The token is the base portion of pointer to the' first 
usable byte of the segment, with the offset portion 
assumed to be zero. (The token values for all other 
objects have no physical significance.) Knowing this, 
it's possible to access elements of the segment as the 
application warrants. 

The subroutine in Example 8 shows how to request a 
segment and construct a message. PRINT$TIME sends 
the ASCII values of the time-of-day counters 
(maintained in TIME$TASK) to the CRT output task 
described later. The-message format adopted for these 
examples will consist of a byte giving the message 

AFN-02058A 



Ap·130 

~ 

length, followed by that number of ASCn characters. 
Figure 10 shows this format. 

PRINT.TOD PROCEDUREl 
DECLARE TOD'MESSAGE'TOKEN WORD, 
DECLARE Too"eXCEPT'CODE WORD, 
DECLARE TOO'SEQMENTtOFFSET WORD, 

TOO.SEGMENT.BASE WORD, 
DECL.ARE TDD'SEQI"IENT,PNTR POINTER AT HIrOD'SEGMENT'OFFSET), 
DECLARE TOO.TEMPLATE (2B) BVTE 

DATA (27, 'THE TIME 18 NOW hh' mm $5 I, CR, LF). 
DECLARE TOD.STR INQ BASED TOD.8EQt1ENTtPNTR (28) BYTE, 
DECLARE TOD,STRING.INDEX BYTE, 

TOD'MESSAGEtTOKEN=RO'CREATEtSEGMENT (28. nOntEXCEPT.CODE) , 
TODtSEGMENT,SASe-TDD'MESSAGEtTDKEN, 
TOOtSEGMENT.DFFSET-O, 
DO TDD'STRINQ'INDEX-O TO 27, 

TOD'STRING( ToD'STR ING,INDEX)" 
TOn.TEMPLATE( TOOtSTR ING'INDEX), 

END. 
TOD.STR INQ (17) _ASC I aCOOE (HOURSCaUNT /10), 
TDD'STRING(18l=ASCIlt-CODE(HOURt-COUNT MOD 10), 
TODtSTR INQ (20) -ASC I It-CODE C MINUTEtCOUNT 110) , 
TOOtSTRING(21 )=ASCI ItCODE(MINUTE$COUNT MOD 10), 
TODtSTRING(23)-ASCI ItCODECSECONOtCOUNT 110), 
TODtSTRING(24)""ASCIItCODE(SECOND$COUNT MOD 10), 
CALL ROtSEND$MESSAGE (CRTtMA ILBOXeTOIol.EN, 

TODeMESSAGE.TOKEN, 0, ITOO'EXCEPTtCODE), 
RETURNI 
END PRINTtTOD, 

Example 8. Subroutine to Send Tlme-ot-Day 
Message to Output Task 

We're coding PRINT$TIME here (see Example 8), 
whileTIME$TASK is fresh in our minds. It will actually 
be called by (and is therefore considered a part of) 
KEYBOARD$TASK. Note that while tasks are written 
as individual procedures, they need not be fully self
contained: outside procedures should be used to help 
organize and structure the code. 

The first thing PRINT$TIME does is have the OSP 
create a segment of suitable length, and copies a 
"message template" into the segment, byte by byte. 
Then it converts the TIME$TASK counter values to 
ASCII, filling in blanks in the template. Finally, it sends 
the token for the message to the CRT mailbox. 

To repeat, these examples are intended to illustrate use 
of the OSP routines assuming minimum familiarity with 
PUM. Better programming practices might take advan
tage of PUM literals, structures and the array 
LENGTH function to build the message, rather than 
the inflexible constants shown here. Some of these 
techniques are suggested by PRINT$STATUS 
(Example 9), which indicates the binary status of the 
input switches. 

PRINTeSTATUS· PROCEDUREi 
DECL.ARE STATUStMESSAQEtTOIol.EN W~DI 
DECL.ARE STATUStEXCEPTtCODE WORDI 
DECL.ARE STATUStSEGMENTtOFFSET WORD, 

BTATUStSEQI'IENTtBABE WORDI 
DECLARE STATUS'SEQf1ENTUNTR POINTER 

AT (ISTATUStSEQI'IENT.OFFSEn, 
DECL:ARE 8TATUS.TEI'IPL.ATE (40) BVTE DATA 

(39. 'THE SWITCHES ARE NOW SET TO B',CR,LF), 
DECLARE STATUStSTRING BASED STATUSeSEGMENT.PNTR (40) BYTE, 
DECLARE STATUStSTRINGeINDEX BYTEI 
DECLARE BITtPATTERN BVTEI 

STATUseI1ESSAQEtTOKEN-RQtCREATEaSEQMENT(40, 
.STATuseEXCEPTeCODE) • 

STATUS$SEGMENTSBASE-STATUS$MESSAQE$TOIol.EN, 
STATUS$SEOI'IENTeQFFSET-Oi 
DO STATUStSTRING.INDEX-O TO 39. 

STATUS.STRING (STATUSeSTR ING.INDEX)= 
STATUSeTEMPLATE( STATUS.STRING'.INDEX) j 

END. 
OIT.PATTERN-INPUT( PP I.A). 
DO STATUStSTRINQeINDEX-29 TO 361 

STATUS.STR INQ! STATUSt-STRINQeINDEX)_ 
ASCIaCODECOIT.PATTERN AND 01H), 

01 T.PATTERN-ROR (0 I T.PATTERN, 1). 
END. 

CALL RG.SENoeMESSAGE (CRTeMAILOOJl.TOIol.EN. 
STATUS.MESSAGE.TOIol.EN, 0, I:STATUS$EXCEPT$CODE), 

END PRINT.STATUS, 

Example 9. Subroutine to Send Status Report 
Message to Output Task 

Exercise 10: One input port is read by both 
STATUS$TASK and PRINT$STATUS. Does this 
constitute a shared resource? A critical region? 

Exercise 11: PRINT$TIME reads the counts 
maintained by TIME$TASK, but doesn't alter 
them. Forced mutual exclusion is generally 
mandatory when multiple tasks perform 
read/modify/write sequences on a given variable. 
Can PRINT$TIME make TIME$TASK malfunc
tion? What about the opposite case? If this failure 
mode was deemed unacceptable, how could it be 
protected? 

Mailboxes 

The data in a message doesn't actually move or get 
copied from source to destination when the message is 
sent; this would be too slow with long messages. 
Rather, the OSP "carries" the message's token from 
task to task via a data structure cleverly termed a 
mailbox. If one task must send messages to another, a 
mailbox must be created to hold them. The sender calls 
the RQ$SEND$MESSAGE to put a message 
token into the mailbox. If the receiver isn't ready for 
the message yet, the OSP puts the message token 
into an ordered queue. When the receiver calls RQ$ 

IvITlwlwl~ITI~I~lwl~I~I~I~lwlvlwl~I~171~17Iwl'IITITI~1~I~I 
LSEGMENT STARTING ADDRESS = TOD$MESSAGESTOKEN:OOOOH 

Figure 10. Message Formats Expected by Output Task 

2-71 



AP·130 

RECEIVE$MESSAGE later, the OSP will give it the 
tokens one at a time. 

CRT$CUT.TASK PROCEDURE. 

What happens if a task tries to receive a message when 
the mailbox is empty? (This is quite possible, since 
tasks do run asynchronously.) What token would the 
OSP return? 

In the simple case ... it doesn't! Instead of returning 
right away with no data, the OSP will wait until data is 
available. In the meantime, the OSP puts the receiving 
task to sleep, remembering that it is waiting for a 
message at that mailbox. The next time a message is 
sent to that mailbox, the OSP will awaken the receiving 
task, give it the token, and-if its priority is high 
enough-resume its execution. Alternatively, receiving 
tasks may elect to not wait if the mailbox is empty, or to . 
wait only a specified time. 

Many tasks may actually send and receive messages 
through a single mailbox, with messages being queued 
in the order that the RQ$SEND$MESSAGE calls are 
executed. The OSP also maintains a list of tasks waiting 
to receive messages from an empty mailbox, analogous 
to the queued tasks waiting for region control. As each 
message is sent to the mailbox, it is passed immediately 
to a waiting task, either the one waiting the longest or 
the one with the highest priority (likewise determined 
by a parameter specified when the mailbox is created). 

Exercise 12: Under what conditions could a mail
box's message queue contain messages waiting to 
be received, while the task queue contains tasks 
waiting for messages? Ignore the possibility that 
this may happen momentarily during the imple
mentation of either routine. If you think of any 
such circumstances, please contact the author. 

Example 10 shows a task which prints the messages 
sent above. Upon receiving a message token, 
CRT$OUT$TASK determines the message length from 
the first two bytes, and sequentially prints each element 
of the string through the PROTECTED$CRT$ 
OUTPUT routine explained earlier. When done, the 
s~gment containing the message is deleted, returning its 
RAM to the free-memory pool. 

A few words are in order about the segment accessing 
techniques demonstrated here. PUM-86 has a special 
data type, called a "pointer," used to indirectly access 
other PUM variables. OSP application programs must 
be compiled with the "compact" or "large" model spe
cified. This tells the compiler to implement pointers as 
32-bit double words corresponding to the two parts 

DECLARE MESSAGE.LENGTH BVTEI 
DECLARE MESSAOE'TOMEN WORDI 
DECLARE RESPONSE.TOKEN WORD; 
DECLARE MESSAOE'EXCEPT'CODE WORD. 
DECLARE MESSAOE'SEQMENT.OFFBET WORD. 

MESSAGE.SEQMENT.BASE WQRDI 
DECLARE MESSAOE'SEOMENr'PNTR POINTER AT 

{IMESSAGE'SEGMENT.OFFSET) , 
DECLARE MESSAGE'STR INO'CHAR BASED MESSAOE'SEQMENT,PNTR DYTEI 

CALL RG'RESUME'TASKt INIT'TASK'TOKEN, \!MESSAQE'EXCEPT'CODE), 
DO FOREVER I , 

MESSAQE,TOKEN-RG.RECElVE,MESSAOE (CRT'I'IAILBOUTOKEN. OFFFFH, 
IRESPONSE,TOM.EN, lMESSAQE'EXCEPT'CDDE); 

I'IESSAQE.SEOl'tENTsOFFSET-o. 
MESSAOE*SEOf1ENT*8ASE-r1ESSAOE*TQKEN. 
MESSAOE*LENOTH-MESSAGE*STR lNG*CHAR. 
DO MESBAOEtSEOPENT*DFFSET-l TO MESSAOE*LENGTHJ 

CALL PRDTECTED*CRTtOUT (PESIlAGEtSTR lNG.CHAR) J 
END. 

CALL RGtDELETE*SEOMENT (MESSAGE.TOKEN • .u1ESSAOEtEXCEPTtCODE). 
END. 1* OF FOREVER-LOOP *1 

END CRT*OUT*TASKj 

Example 10. Task to Transmit Messages 
to the CRT 

from the details, yet at times the two parts must be 
manipulated separately (for instance, to access data in 
an OSP segment knowing only the segment token/base 
value). 

To get around this, these examples assign a pair of word 
variables to the same address as a PUM pointer vari
able. Each representation is then an alias for the other. 
To determine the base or offset value of an item of data, 
load the pointer variable with a pointer to the item and 
then reference the appropriate field of the overlayed 
pair of word variables. To "build" an arbitrary pointer, 
assign computed values to the base and offset fields and 
then access the data item via the composite pointer. 

Exercise 13: PUM 86 does not have built-in func
tions to separate the high and low-order words of a 
pointer variable. Does this seem to be a weakness 
in the language? Bear in mind that the machine 
representation for pointers varies depending on 
which programming model is specified at compila-

. tion time. When the "small" modelis selected, the 
compilers take advantage of a 16-bit pointer 
representation for faster and more compact code. 

Console Command Interpreter 

If a system has a console keyboard, it's probably used 
to accept and interpret operator commands. For this 
demonstration system, the lowest priority of all tasks is 
a simple-minded routine which polls the USART until a 
character has been received, and immediately echoes it 
by calling-you guessed it!-PROTECTED 
$CRT$OUTPUT. Thus, the keyboard is "alive"; it 
responds immediately to keystrokes, so the operator 
can type whatever nonsense he desires while every
thing else is going on. 

(base:offset) of the 8086 machine-segmented address- Ten of the keys (digits 0 through 9), invoke special 
ing scheme. PUM-86 tries to shield the programmer commands which illustrate interactions between the 

2-72 



AP-130 

multiple tasks. Commands 0 and 1 print out the time 
and status messages; the rest suspend and resume 
various tasks, as shown by Table 2. The code for 
COMMAND$TASK appears in Example 11. 

Initialization Task 

Now that the application tasks have been written, we 
can write the initialization task. 

All applications require a special type of task to initial
ize system variables and peripherals and create tasks 
and other objects used by the application. It, too, is 
written as a PUM procedure, and can thus be divided 
conceptually into the same three phases. 

Example 12 shows such a task for the demonstration 
system. The first thing INIT$TASK does is determine 
the base address of the job data segment by assigning 
pointer DATA$SEG$PTR with its own address. Next it 
calls the RQ$GET$TASK$TOKENS routine, which 
tells the task what token value the OSP assigned it at 
run time. It then initializes the system peripherals by 
creating the hardware initialization task discussed 
above; this code could have been integrated into 
INIT$TASK itself just as easily. During its own 
"execution" phase, INIT$TASK calls routines to 
create the OSP data structures shared by the applica
tion tasks: the REGION controlling access to the 
USART, and the MAILBOX repository for output mes
sages. INIT$TASK creates the application tasks them
selves by calling RQ$CREATE$TASK. 

Though not always required, it is common practice for 
the overall initialization task to suspend itself after 
creating each offspring, to let the newborn task get 
started. Under this convention, each offspring task 
must resume the initialization task by calling the 

COMMAND.TASK PROCEDURE, 
DECLARE CONSOLE'CHAR BYTE. 
DECLARE COHMAND_EXCEPT.CODE WORDI 

CALL RG.RESUMESTASK ( INIT.TASK.TOKEN, .COMMAND.EXCEPT.CODE). 
DO FOREVER, 

CDNSDLE$CHAR-C'IN AND 7FHI 
CALL PROTECTED.CRT.OUT< CONSOLE_CHAR), 
If" CONSOLE.CHAR=CR 

THEN CALL PROTECTEDSCRT$OUT(LF), 
IF (CONSOLE.CHAR:>= '0') AND (CONSOLEtCHAR <'"" '9') 

END, 

THEN DO. 
CAll PROTECTED.CRT.CUT(eR), 
CALL PROTECTED.CRT.O~T (IF), 
DO CASE (CONSOLE.CHAR- '0'), 

CALL PRINT_TOO, 
CALL PRINT.STATUS, 
CALL RO.SUSPENDtTASK(CRTtOUTtTASKtTOKEN. 

.COMMANDtEXCEPT.CODE) , 
CALL RO.RESUME$TASK (CRT$OUT.TASK.TOKEN, 

.COMMANDSEXCEPTSCODE) , 
CALL RQSDISABLE(AC.INTERRUPTSLEVEL, 

@COMMAND.EXCEPT$CODEl, 
CALL RQ.ENABLE(AC.INTERRUPT.LEVEL, 

@COMMAND.EXCEPT$CODEl, 
CALL ROSSUSPEND.T ASK (MOTORST ASKSTOKEN, 

aCOMMAND.EXCEPTtCODE) , 
CALL RO$RESUME.TASK (MOTOR$TASK$TOKEN, 

@COMMAND.EXCEPTtCODE). 
CALL RQ$SUSPEND$TASK(STATUS.TASK.TOKEN, 

aCOMMANDSEXCEPTtCODE) • 
CALL ROSRESUMESTASK (STATUS$TASK$TOKEN, 

ctCOMMAND.EXCEPTtCODE) • 
END, 1* OF CASE-LIST *1 

END; 1* OF COMMAND PROCESSING *1 

END COMMAND"TASK,' 

Example 11. Task to Accept and Process Keyboard 
Commands 

INITSTASK PROCEDURE PUBLIC. 
DECLARE INIT'EXCEf!TSCODE WORD, 

DATA.SEGSPTR=@INITSTASKSTOKEN. I*LOAD DATA SEGMENT BASE*I 
CRT.MAILBOX$TOKEN=ROSCREATE$MAILBOX (0, I1INIT$EXCEPTSCODE), 
CRT.REG ION$TOKEN=RQSCREATESREGION( 0, ItINITSEXCEPTSCODE), 
INIUTASK.TOl'.EN=RG.GETSTASK.TOKENS (a. (tINJ T'iiEXCEPT.CODE), 
HARDWARE. I N I T.T ASK.TOKEN=RO$CREATE.TASK 

(110. I1HARDWARESINIT.TASK. DATA.SEG.ADDR BASE. O. 300. 
O.I:INlTtEXCEPT.CODEl, 

CALL RG.SUSPEND$TASK (0, (UNIT.EXCEPT.CODE)! 
STATUS.TASKSTOKEN=RG.CREATE.TASK( 110 •• STATUS.TASK, 

DATAtSEG.ADOR BASE. 0. 300, 0. GtINIT.EXCEPTSCOOE) j 

CALL ROtSUSPENO.TASK(O, (!INIT.EXCEPTtCODEl, 
MOTORSTASK$TOKEN-RQ$CREATE'TASK( 110, IMOTORtTASK, 

DATAtSEGSADDR BASE, 0, 300. 0. (fINITtEXCEPT$COOE). 
CALL RG.SUSPEND.TASK(O, Cl:INIT$EXCEPT.CODEl. 
TIME$TASKSTOKEN""ROSCREATE$TASK (I~O.I!TIME'TASK, 

DATA$SEG$ADDR BASE. 0, 300, 0, .INIT$EXCEPTSCODE), 
CALL ROSSUSPENO$TASK(O.@INIT.EXCEPTSCOOE), 
CRTSOUT.TASK.TOKEN"'ROSCREATESTASKC 120, IICRTSOUT$TASK, 

DATASSEGSADOR BASE, 0, 300, O. (!INITSEXCEPT$CODE). 
CALL RQ.SUSPEND$TASKCO,@INITSEXCEPT$CODE), 
COMMANOtTASKSTOKEN=RQ.CREATE.TASK( 130. (!CQMMAND$TASK. 

DATASSEGSADDR BASE, 0. 300. O. \lINITtEXCEPT$CODEl, 
CALL RGSSUSPENDSTASK C 0, @INIT.EXCEPT$COOE). 
CALL RQSENO$INITSTASK, 
CALL RQSDELETESTASK (0, @INIT.EXCEPT$COOE), 
END INIT$TASK. 

Example 12. Task to Initialize System Software 

Table 2. Special Console Commands 
--- -- ----

Key Function 
- -~ .. - ---

0 Send Time-of-day message to CRT. 

1 Send status update message to CRT. 

2 Suspend CRT output task. The OSP will automatically save messages tll the task 
in the CRT mailbox queue. 

3 Resume CRT output task. Queued messages will be displayed. 
4 Disable 6O-Hz interrupt-driven time base. Time-of-day clock will stop. 
5 Enable 6O-Hz time base to resume clock execution. 
6 Suspend motor control task. Motor will stop. 
7 Resume motor control task. Note that if task was suspended 17 times, it must be 

resumed 17 times. 
8 Suspend status polling task. Lights indicating system status will freeze in current state. 
9 Resume status polling task. 

2-73 



AP-130 

RQ$RESUME$TASK routine when its own local in
itialization is complete. This convention is called 
synchronous initialization; its purpose is to ensure that 
each task is allowed to complete its own start-up phase 
before the next task is created. Otherwise, there's a risk 
that higher-priority tasks created later could start exe
cuting before earlier tasks were ready for them, with (at 
best) unpredicatable results. 

When all the tasks have been created, INIT$TASK has 
served its purpose. It must then call RQ$SEND$ 
INIT$TASK. This short procedure (actually self
contained in an OSP Support Package interface library, 
not built into the 80130) tells the OSP that all the off
spring tasks have been created for a given job. At this 
point, INIT$TASK could continue with non-initializa
tion activities. The code for KEYBOARD$TASK might 
have been implemented here, for example. Since this 
example has nothing more to do, INIT$TASK deletes 
itself with a final call to RQ$DELETE$TASK. 

Code Translation 

That's all, folks. Mix together the above code frag
ments, declare literals and global variables, and com
pile until done (about four minutes). The source file 
name selected for this example is AP130.PLM. The 
compiler will produce two files: an annotated source 
listing (named AP130.LST) reproduced in toto in Ap
pendix B, and a relocatable object file (AP130.0BJ) 
which will be used in the installation procedure dis
cussed next. 

High-Level Parameter Passing 
Conventions 

Well-designed programs generally rely on subprograms 
("procedures" in PLiM terminology) for often
repeated instruction sequences, or to perform 
machine-Ievel.operations within High-Level Language 
programs. PUM-86 and other Intel high-level languages 
use a standard set of conventions to pass parameters 
and results between procedures; assembly language 

. programmers are advised to adhere to these conven
tions for software compatibility. 

Before calling a subroutine or function, input 
parameters must be pushed sequentially onto the stack, 
in the order (Ieft-to-right) they appear in the procedure 
parameter list. When eight-bit parameters are pushed, 
the high-order byte associated with them is undefined. 
Thirty-two-bit pointer values are pushed in two steps, 
offset word before base word. The stack "grows" 
down, so the left-most parameter will have highest
numbered address. 

Functions which return a byte or word value (i.e., typed 
procedures) do so in the CPU AL or AX registers. 
Pointers are returned through the ES:AX register pair. 
The PLiM Programming Manual explains these con
ventions more fully. 

One way to see how an assembly language routine 
would interface with PUM is to first write a dummy 
PUM procedure using th.e same parameter sequence as 
the desired assembly language routine. Compile this 
procedure with the compiler CODE switch set. The 
listing will then include the appropriate assembly lan
guage instruction sequence, and may be followed as a 
pattern for the final routine. 

SOFTWARE CONFIGURATIONS & 
INTEGRATION 

When the application code has been written and com
piled, the hardest part of program development is over. 
Before the code may be executed, though, the OSP 
must be told various things about the system hardware 
environment, desired software options, application job 
characteristics, and so forth. 

This information is conveyed during a multi-phase se
quence of steps collectively called the Configuration 
process. Though the process is somewhat lengthy and 
time-consuming, it is also v.ery "mechanical"; the per
son doing the work d,oes not need to understand any of 
the application code or even know what it does. Nor
mally, configuration would be performed by a techni
cian or a single member of the programming team, aided 

. by appropriate SUBMIT command files. This chapter 
shows the full configuration and installation process for 
the demonstration system. For more details, refer to 
the osp User's Manual. 

2-74 

The three phases of the configuration are: 

I. Generating, linking, and locating OSP support code 
.required for the EPROM immediately above the 
80130 address space; 

2. Linking and locating the object file for the applica
tion job developed in Section IV; 

3. Creating, linking, and locating a short module 
(called the Root Job) which initializes the OSP and 
application jobs when system is reset. 

Finally, of course, the absolute code resulting from each 
phase must be programmed into EPROMs or loaded 
into a test system before it can be executed. 

Before starting, though, it is beneficial to draw up a 
memory map for host system hardware, to determine 
what sections of memory are available. This map will be 
filled in as each module is linked and located. 

AFN-02058A 



AP·130 

The prototype system memory space has two areas of 
interest: addresses OOOOOH through 01FFFH contain 
RAM, while OFCOOOH through OFFFFFH contain 
EPROM. Since the CPU uses the first lK bytes of RAM 
for the CPU interrupt pointers, and the last 16 bytes for 
the restart sequence, these areas should be recorded on 
the map. For reference purposes, Figure 11 also indi
cates that addresses OF8000H through OFBFFFH 
enable the 80130 firmware. All this is shown in 
Figure 11. 

Generating the OSP Support Code 

The OSP support code "customizes" the OSP firmware 
for a particular hardware environment, initializes the 
system, and supports extended software capabilities. 

EPROM 
(212764) 

RAM 

MEMORY MODULE {---
80130 MEMORY SPACE 

8088 INTERRUPT VECTOR 

To define the hardware environment, the user creates a 
source file which invokes a series of Intel-supplied 
macros. Parameters for these macros specify the 80130 
I/O base address, SYSTICK interval (in system clock 
cycles), and how the interrupt request pins will be used. 

For instance, the code example in Figure 12 defines the 
prototype system hardware. This source file must be 
assembled, linked with several libraries from the OSP 
support disk, and located to produce the actual OSP 
support code. Figure 13 shows the actual sequence of 
commands needed. The DATA starting address speci
fied within the LOC86 parameter list (00400H) is the 
first free byte of system RAM (see Figure 11); the 
CODE address (OF8000H) is simply the 80130 firmware 
starting address. 

STARTING ENDING 
ADDRESS ADDRESS 

OFFFF:O OFFFF:F 

OFCOO:O 

OF8OO:O OFBFF:F 

O1FF:F 

" 

0000:0 003F:F 

APPLICATION JOB STARTING ADDRESS: ____ _ 

~JOBSTARTlNGA~ESS: ____________ _ 

Figure 11. Example System Memory Map 

'TITLE(S0130 DEVICE CONFIQURATION TABLE) 
NAMEODEVCF 

SINCLUDE( Fl NDEVCF MAC) 

l(,MASTER_PIC(80130. 2000H. O. 0) 

,SLAVE_PIC( SLAVE_TYPE. BASE_PORT. EDGE_VSj.EVEL. MASTER .LEVEL ) 

l(,TIMER (80130. 2008H. 28H. 12500) 

• NDP _SUPPORT ( ENCODED,.LEVEL ) 

END 

Figure 12. 80130 Device Configuration Table 
2-75 



AP-130 

FO ASMB6 . Fl' SUP 130 AS6 F'RINT( Fl SUP130 Lsn ERRORPRINT t,. 

MACRO(BO) PAQEWIDTH( 132) 

FO LIN~B6 e-
FI OSX LIB (OSX96. OSXCNF). a. 
FI NUCI LIB(NBEQINl. " 
FI ODEVCF OB~. a. 
FI OSX LIB. " 
Fl NUCl LIB. a-
FI.OSX LIB. I< 
FI. NUC2 LIB. I< 

. FI OSX LIB. 8< 
FI NUC4 LIB. I< 
Fl OSX LIB, 8c 
Fl. NURSLV LIB. 8c 
Fl OSX LIB 8c 

TO FI SUPI30 LNK MAP PRINT( FI SUPI30 MPI) NAME (MINIMAL_BOI30) 

FO LOCS6 • &: 
FI SUPI30 LNK TO FI SUPI30 MAP PRINT( FI SUPI30 MP2) SC(3) 8< 

SEQSIZE(STACK(O» I< 
ADDRESSESCCLASSES(CODE COFSOOOH), DATAC00400H») 8c 
ORDER (CLASSES (DATA. STACK) ) &: 
OB~ECTCONTROLS(NOLINES. NOCOMMENTS. NOSYMBOLS) 

Figure 13. Support Code Conflguratlon'Commands 

A reliable and relatively straightforward way to per
form this step is to create a file containing the exact 
command sequence shown in Figure 13 and execute 
this file using the SUBMIT utility program. Of course, 
the example assumes SUBMIT, ASM86, LlNK86, 
and LOC86 are all on drive :FO:, and that the various 
libraries have been copied from the support disk to 
drive :Fl:. / 

(An alternate, support-code configuration scheme lets 
the user modify the OSP software characteristics in 
special situations. A programmer working with iRMX 
86; for instance, may wish to augment the OSP 
firmware to support all the iRMX Nucleus primitives. 
This would be done by editing and assembling file 
OTABLE.A86 to select from a menu of software op
tions, and modifying the linkage step slightly to include 
one of the iRMX 86 libraries. The OSP built-in features 
are more than sufficient for the purposes of this note, 
though, so only the first approach is illustrated.) 

Appendix D reproduces the Locate map file produced 
during this phase. Near the end of file SUP130.MP2 is a 
table of memory usage, showing that the last bytes of 
RAM and ROM consumed are OOA6: FH and OFC61: 
FH, respectively. Update Figure 11 with this informa
tion. (The final version 'of the demonstration-system 
memory map appears in Appendix C.) This phase 
needn't be repeated unless the system hardware char
acteristics change. 

Application Code Configuration 

After compiling the application job, it must be linked 
with a library of interface routines from the support 
diskette; and located within· available memory. Use 
RPIFC.LlB or RPIFL.LlB, depending on whether the 
job was compiled with the Compact or Large software 
model. Figure 14 is a command sequence file suggested 
for this purpose. Again, the starting addresses specified 
for LOC86 are taken from the system memory map. 

Whenever the support code is reconfigured, check 
SUP130.MP2 to see if its memory needs have changed. 
If so, the application-job-configuration command file 

. will need to be edited. This is still aJot simpler (not to 
mention more reliable) than retyping ~e whole se
quence each time application jobs are revised. Readers 
familiar with the capabilities of the SUBMIT program 
may prefer to represent these variables by parameters, 
such that they may be easily specified each time the 
command file is invoked. 

2-76 

As in the first phase, examine the locate map 
("AP130.MP2", reproduced in Appendix E) after the 
application code has been configured and update the 
memory map. Also, note the segment and offset values 
assi8ned to the initialization task. These will be needed 
later. 



AP-130 

Creating the Root Job 

By now, all of the code needed to execute the applica
tion program has been prepared and is ready to run 
-except it has no way to get it started! The OSP hard
ware and system data structures must be initialized 
before INIT$TASK can be created. A short module 
called the Root Job performs this function. 

Figure 15 is the Root Job source file for the demonstra
tion system, dubbed RJB130.A86. It consists of just five 
macro calls. The %JOB macro defines certain charac
teristics of the applicationjob; for a full description see 
the asp User's Manual. One of these parameters is the 
initialization-task starting address (noted in the last 
step), which will likely change with each iteration of the 
application software. 

The process closely resembles the one which produced 
the OSP support code. First, determine various system 
characteristics. Then create a file defining these charac
teristics as macro input parameters. Finally, assemble, 
link, and locate the file to produce the final code. 

The two %SAB macros define "System Address 
Blocks" -sections ofthe overall memory space which 
the OSP should not consider "free space." Note that 
the first invocation blocks off the RAM addresses con
sumed so far in the memory map, plus an extra 140H 
bytes reserved for the Root Job initialization stack. 

SUBMIT FILE TO LINK APPLICATION ..JOB TO INTERFACE LIBRARY 
AND LOCATE RESULTING OUTPUT. 
REVISED 10/23/91 - .JHW 

LINK86 Fl AP130.0BJ. Fl'RPIFC LIB TO Fl.AP130 LNK &: 
MAP PRINT(' Fl' AP130 MPl) 

LOC86 Fl AP130 LNK TO : Fl AP130 & 
ORDER CCLASSES(DATA, STACK. MEMORY» @, 

SEQSIZE (STACK (0» &! 
ADDRESSES (CLASSES (DATA (OOA70H). ~ 

CODE (OFC620H») & 
MAP PRINT ( Fl AP130 MP2) &: 
OB,JECTCONTROLS (NOLINES. NOCOMMENTS. NOPUBLICS. NOSYMBOLS) 

OHB6 Fl AP130 TO Fl AP130. H86 

COPY Fl AP130 MPl TO . LP: 

COPY Fl AP130 MP2 TO LP 

Figure 14. Job Configuration Commands 

,SOURCE PROGRAM DEFINING CHARACTERISTICS OF ROOT .JOB FOR 
,AP-130 DEMONSTRATION PROGRAM (JHW - 10/2'/81) 

SINCLUDE( Fl CTABLE MAC) 

'Y.SAB(O. ooeo. U) 
'Y.SAB C 0200. FFFF. U) 
'Y.JOBCO. DeOH. loaH. OFFFFH. OFFFFH. 1.00.1. 0,100. OFC62' 06B5. O. 0 0, 200H. 0) 
'Y.DSX WFBOOOH, N) 
'Y.SYSTEM(FBOQ, Q, 4. N. N. 1) 

END 

Figure 15. Root Job Configuration File 
2-77 

AFN-0206IIA 



AP-130 

(After completing this phase, examine RJB130.MP2 to 
confirm that 140H is the correct number.) The second 
%SAB invocation excludes addresses 02000H through 
OFFFFFH, all of which is non-RAM, either EPROM, 
80130 firmware, or non-existent. The %SYSTEM 
macro defines system-wide software parameters. 

Figure 16 is a command file to translate, link, and locate 
the root job. Once again, the LOC86 parameters come 
from Figure 11. The listings produced during this phase 
are reproduced in Appendix R The final memory map 
appears in Appendix C. 

EPROM Programming 

We are now ready to program EPROMs with the pro
gram modules linked and located above. Intel's Univer
sal PROM Programmer (UPP) and a control program 
called the Universal Prom Mapper (UPM) will be used 
in this step. Particular commands to the UPM will vary 
with program size, memory location, and EPROM type, 
but the general sequence should resemble that shown 
here. ' 

The first step is to invoke UPM and initialize the pro
gramming system, following a command sequence 
similar to that in Figure 17. The example system incor
porates two 2764 devices, so 16K bytes of memory 
buffer are cleared. 

Next, all the final code modules produced above (e.g., 
SUP130, AP130, and RJB 130) must be loaded into the 

UPM memory buffer. The three commands in Figure 18 
perform this function. 

When the final system is reset, execution must branch 
into the root job initialization sequence. When the abso
lute code modules have finished loading, manually 
patch a jump instruction into the buffer area corres
ponding to the CPU reset vector. The opcode for the 
8086 or 8088 intersegmentjump is OEAH; the instruc
tion's address field must contain the address assigned to 
label RQ$START$ADDRESS (read from the root job 
locate map), the 16-bit segment offset (low byte first) 
followed by the segment base address (ditto). The UPM 
CHANGE command shQuld be used to make this 
patch, as illustrated in Figure 19. 

The UPM memory buffer now contains a complete 
image of the code needed for the system EPROMs. Up , 
until now, all software-related steps-'-source code 
preparation, translation, linking and locating-have 
been the same for 8086- or 8088-based systems. At this 
point, however, the software installation procedures 
diverge slightly. 

Recall that the 8086 fetches instructions 16 bits at a 
time, from coordinated pairs ofEPROMs. One contains 
only even-numbered program bytes, the other, odd. To 
separate the linear UPM buffer into high- and low-order 
bytes for iAPX 86/30 designs, use the UPM STRIP 
command as shown in Figure 20. 

Now "burn" the EPROMs with the PROGRAM com
mand in Figure 21. 

LINK AND LOCATE THE lRMX 86 ROOT JOB 

MODIFIED FOR TWO-DRIVE OPERATION 
REVISED 10/25 - JHW 

ASM86 f1 RJB130 AB6 MACRO(75) 

LINK86 
.p1 CT'oot 11b(root), ~ 

.p1 RJB13Q obJ. & 
fi croot llb &: 

TO .pi RJD130 1nk & 
MAP PRINT( fl1 RJB130 mp 1) 

LoeS6 f:1 RJB130 Ink &: 
TO Fl RJIiI130 s.. 
MAP PRINT( fl RJB130 mp2) & 
De<nall. nap!' noem, nosb) & 
PC(noll, pl. noem. nosb) 
SEGSI ZE( stac k (0) ) 
QRDER(classes(data. stack. memory» &: 
ADDRESSES (c lasses (cod e (OFD180H). & 

data (OOADOH»)) 

OH86 Fl RJB130 TO Fl R')B130 H86 

COPY Fl RJB130 LST TO LP 

COPY Fl RJB130 HPl TO LP 

COPY Fl R')B130 MP2 TO LP 

Figure 16. Root Job Configuration Commands 

2-78 
AFN-02058A 



AP-130 

flilirom 0 to 3IIIh wllh 0IIh 

Figure 17. UPM Initialization Sequence 

read 86hex flle : ": lup130. h861rom 0 to 31f1h start OIcOOOh 
read 86he. file: ": ap130. h86from 0 to 3IfIh otart OIcOOOh 
read 86he. file:" : ~b130. h86lrom 0 to 3IIIh start OIcOOOh 

Figure 18. UPM Commands to Load Hex Files 

change 3ffOh=OeahJ 11h, DOh, 18h, Ofdh 

Figure 19. UPM Command to Patch Restart Vector 

otrlp low from 0 to 31f1h Into 4000h 
otrlp hi from 0 to 3IIIh Into 6000h 

Figure 20. UPM Commands to Strip High and Low Bytes 

program from 4000h to 51f1h otart 0 

program from 6000h to 7fffh otart 0 
exit 

Figure 21. UPM Commands to Program EPROMs 

To save some trouble, the UPM invocation and all com
mands except the manual patch can be combined into a 
SUBMIT command file. Replace the CHANGE com
mand with a control-E character so the operator can 
adjust the starting address for the iteration. Also place 
control-Es before each PROGRAM step to give the 
operator time to socket the next memory device. 

SUMMARY 

The development of the 80130 marks a major milestone 
in the evolution of microcomputer systems. For the 
first time, a single VLSI device integrates the hardware 
facilities and operating system firmware needed by 
real-time multitasking applications. The 80130 offers 
the system hardware designer the advantages of higher 
integration-reduced device count, smaller boards, 
greater reliability-along with faster design cycles and 
optimal system performance. 

before. It is now possible for concurrent tasks to be 
dispatched, memory segments allocated, and messages 
relayed through mailboxes nearly as easily as sub
routines, dynamic variables, and 110 ports were used in 
the past. In effect, Jobs, Tasks, Segments, Mailboxes, 
and Regions become new OSP data types, manipulated 
entirely by firmware in the 80130. 

Yet despite standardizing these functions, the OSP does 
not restrict the user's flexibility. The device can accom
modate a variety of hardware environments, and both 
the hardware and software capabilities are desired. 

ACKNOWLEDGEMENTS 

The author would like to thank Peter Pederson for 
designing and implementing the demonstration system 
breadboard discussed in this note, Pam Johnson for her 
assistance in typing the manuscript, and Hal Kop, 
Lionel Smith, George Alexy, Chuck McMinn, and 

The 80130 gives the software engineer built-in support Sandy Wharton for their help in reviewing the drafts 
for 35 standard operating system primitives. Applica- and providing many thoughtful comments and 
tion problems may now be solved at a higher level than criticisms. 

2-79 



Ap·130 

APPENDIX A 
EXAMPLE SYSTEM SCHEMATICS 

2-80 
AFN-02058A 



Vee 

lOOk!) 

~ 

~ 

i 
!: 
> 

r---------------------------------------f=================~;;~~;;~==========i_------~--~RREESS.Er,T~~~ I INPORT I 

L--

GNOGND
GND-

CD P80-7 lOUT PORT I 
8i 

~ ~~ ~ 

: ~ 

READY 

RESET II t!±E 
NMI i 
TEST CI) 

MNlMX 

INTR 

elK 

~ II I I 

ADO-AD15 ADO-AD15 

SYSTICK v-

r---
r-- I--

DATA-BUS 

Figure A-1. Example System Schematics 

00-7 A08-AD15 

CS""WE 

~ 
IVD4 

AD8-AD15 



AP-130 

G1 

1 
EN1G Vee ~+5 

A11 2 S1A EN2G 
15 • 

A12 3 S1B S2A ,. 

ElilCS • ,VO O! S2B 13 

5 IV1 
r-

2YO 12 ~ !!1 OR1CS 
mcs 6 IY2 f8 2V1 11 OR2CS 

EIi4CS 7 IV3 2Y2 10 OR3CS 
11 GN~ GND 2V3 9 3 

OR.CS 

03 D3 

12 
13 1 

2 AO 

8 

03 

12 
11 

13 04 10 
9 

F1 

A15 
1 

EN1G Vee JL+5 
A13 • S1A EN2G 

15 

A1' 
3 

S1B S2A 1L-A1. ? 

f---1 IVO 

~ 
S2B ~A15 

(80130)= IV1 'VO 
12 

USART e-s 6 IY2 f8 2Y1 11 LEPCS (2764) 

.PRll'e-s 7 IV3 2Y2 10 MEMCS (80130) 

~GNO 2V3 9 MEPCS (2764) 

Figure A-1. Example System Schematics (continued) 

2-82 
AfN.()2058A 



AP-130 

APPENDIX B , 
SOURCE CODE LISTINGS 

2-83 
AFN-GaoIl8A 



AP-130 

ISIS-II PIJM-86 V2.0 COMPILATION OF MODULE DEM0130 
OBJECT MODULE PLACED IN :F1:AP130.0BJ 
COMPILER INVOKED BY' PLM86 :F1:AP130.PLM DATE(12/21) 

3 

4 

5 

6 

7 

8 

299 

300 

301 

tDEBUG COMPACT ROM TITLE('AP-130 APPENDIX B 

DEMOt130: DO; 

1* SYSTEM-WIDE LITERAL DECLARATIONS: *1 

DECLARE FOREVER LITERALLY 'WHILE OlH'; 

1* 110 PORT DEFINITIONS: *1 

DECLARE CHARtS1 LITERALLY '4000H', 
CMDtS1 LITERALLY '4002H', 
STAT$Sl LITERALLY '4002H'; 

DECLARE PPI$A LIlERAlLY '6001H', 
PPItB LITERALLY '6003H', 
PPItC LITERALLY '600SH', 
PPItCMD LITERALLY '6007H', 
PPISSTAT I.ITERA'LLY '6007H'; 

DECL.ARE TI MERtCMD LI TERALL Y '200EH', 
BAUDtTIMER LITERAL.LY '200CH'; 

12/21/81') 

DECLARE ACtINTERRUPTtLEVEL LITERALLY '00111000B'; 

DECLARE CR LITERALLY 'ODH', 
LF,LITERALLY 'OAH', 
BEL LITERALLY '07H'; 

DECLARE ASCIltCODE (16) BYTE DATA ('01234S6789ABCDEF'); 

$EJECT 

$INCLUDE (.Fl:NUCLUS.EXT) 
tSAVE NOLIST 
tINCLUDE (: r1: NEXCEP. LIT> 
tsave nolist 

1* GLOBAL VARIABLE 'DECLARATIONS: *1 

DECLARE DATAtSEGtPTR POINTER, 
DATAtSEGtADDR STRUCTURE (OFFSET WORD, BASE WORD) 

AT (@DATAtSEG$PTR); 

DECLARE HARDWARE$INIT$TASK$TOKEN WORD, 
STATUStTASKtTOKEN WORD, 
MOTOR$TASK$TOKEN WORD, 
TIME$TASKtTOKEN WORD,' 
AC$HANDL.ER$TOKEN WORD, 
CRT$OUT$TASK$TOKEN WORD, 
COMMAND$TASK$TOKEN WORD, 
INIT$TASK$TOKEN WORD; 

DECLARE CRl$MAlL.BOX$TOKEN WORD, 
CRT$REGION$TOKEN WORD; 

2-84 
AFN-ll2058A 



302 1 
303 2 
304 2 

30t? 3 
306 2 
30'7 2 

308 
30Y ~ 

~ 

310 3 
31J 2 
312 2 

31:.3 1 
314 "2 
31~ :2 
316 2 
317 2 

318 2 

319 2 
320 2 
321 2 
322 ;< 
3"23 2 
3;:4 3 
:1~5 :.; 
, 20 2 
"27 :i 
;,';>8 3 
329 "2 
330 2 
331 2 

3a2 1 
333 2 
334 2 

335 2 
336 2 
337 2 
338 3 
339 3 
340 3 
341 3 
34"2 2 

AP-130 

SEJECT 

1* CODE EXAMPLE 2, SIMPLE CRT INPUT AND OUTPUT ROUTINES, *1 

CSOUT, PROCEDURE (CHARII 
DECLARE CHAR BYTE I 
DO WHILE (INPUT(STATSS11 AND 01HI=01 

1* NOTHING *1 
ENDI 

OUTPUT(CHARS511=CHARI 
END CSOUTI 

CSIN' PROCEDURE BYTE. 
DO WHILE (INPUT(STATS51I AND 02HI=01 

1* NOTHING *1 
ENDI 

RETURN INPUT (CHARSS1 I; 
END CUN; 

SEJECT 

1* CODE EXAMPLE 1, HARDWARE INITIALIZATION TASK, *1 

HARDWARESINITSTASK: PROCEDUREI 
DECLARE HARDSINITSEXCEPTSCODE WORDl 
DECLARE PARAMSSI (*1 BYTE DATA (40H.,9DH. OOH. 40H. 4EH. 27HI; 
DECL.ARE PARAMS51$INDEX BYTE; 
DECLARE SIGNSONSMESSAGE (*1 BYTE DATA 

(CR. LF. 'iAPX 96/30 HARDWARE INITIALIZED'. CR. LFII 
DECLARE'. SIGNSONSINDEX BYTE; 

OUTPUT (PP ISCMD I =90Hl 
OUTPUT(TIMERSCMDI=OB6HI 
OUTPUT(BAUDSTIMERI=331 I*GENERATES 9600 BAUD FROM 5 MHZ*I 
OUTPU1(BAUDSTIMERI=01 
DO PARAMS51SINDEX=0 TO (SIZE(PARAMS511-111 

OUTPUT (CMDSS1 I=PARAMSS1 (PARAMSS1SINOEXII 
END. I*OF USART INITIALIZATION DO-LOOP*I 

DO SIGNSONSINDEX=O TO (SIZE(SIGNSONSMESSAGEI-111 
CAI.L CSOUT< SIGNSONSMESSAGE (SIGNSONSINDEX 1)1 
ENOl I*OF SIGN-ON DO-LOOP*I 

CALL RGSRESUMESTASK(INITSTASKSTOKEN.eHAROSINITSEXCEPTSCODE)I 
CALL RGSDELETESTASK(o.eHAROSINITsEXCEPTSCOOEII 
eND HARDWARESINITSTASKI 

SEJe-CT 

1* CODE EXAMPLE 3. STATUS POLLING AND REPORTING TASK. *1 

STATUSSTASK' PROCEDUREI 
DECLARE STATUSSCOUNTER BYTEI 
DECLARE STATUSSEXCEPTSCODE WORDI 

STATUSSCOUNTER=OI 
CALL RGSRESUMESTASK(INITSTASKSTOKEN.eSTATUSSEXCEPTSCOOEII 
DO FOREVER. 

OUTPUT(PPISBI=INPUT(PPI.AI XOR STATUSSCOUNTERI 
STATUSSCOUNTER=STATUS.COUNTER+l1 
CALL RG.SLEEP(100.eSTATUS.EXCEPT.COOEII 
END; 

END STATUS.TASKl 

2-85 
AFN-02QII8A 



343 

344 1 
345 2 
346 2 

347 2 

348 2 
349 2 
350 2 
351 2 
352 :2 
353 2 
354 3 
355 4 
356 4 
357 4 
358 4 
359 3 
360 3 
361 4 
362 4 
363 4 
364 4 
365 3 
366 3 
367 :2 

368 

369 
370 2 

371 2 
372 2 
373 2 

375 3 
376 3 

377 3 
378 2 

379 2 

AP.130 

$E.JECT 

1* CODE EXAMPLE 4. STEPPER MOTOR CONTROL TASK. *1 

DECLARE CW$STEP$DELAY BYTE. 
CCW$STEP$DELAY, BYTE. 
CW$PAUSE$DELAY BYTE. 
CCWSPAUSESDELAY BYTE, 

MOTOR$TASK: PROCEDUREI 
DECLARE MOTORSEXCEPT$CODE WORD, 
DECLARE MOTOR$POSITION BYTE. 

MOTOR$PHASE BYTE, 
DECLARE PHASE$CODE (41 BYTE 

DATA (00000101B;0000~110B.00001010B.00001001Bl' 

CW$STEP$DELAY=501 I*INITIAL STEP DELAYS = 1/4 SECOND*I 
CCWSSTEP$DELAY=50, 
CWSPAUSE$DELAY=:200, I*PAUSES AFTER ROTATION = 1 SECOND*I 
CCWSPAUSESDELAY-200, 
CALL ROSRESUMESTASK(INITSTASKSTOKEN.@MOTORSEXCEPTSCODEl, 
DO FOREVER, 

DO MOTORSPOSITION=O TO 100, 
MOTOR$PHASE-MOTORSPOSITION AND 0003H, 
OUTPUT(PPISC I =PHASESCODE (MOTOR$PHASE I , 
CALL ROSSLEEP(CWSSTEP$D~LAY.@MOTORSEXCEPT$CODEl' 
END, 

CALL RO$SLEEP(CW$PAUSESDELAY.@MOTORSEXCEPTSCODEl, 
DO MOTORSPOSITION~O TO 100, 

MOTORSPHASE=(100-MOTORSPOSITIONI AND 0003H, 
OUTPUT(PPISCl=PHASESCODE(MOTOR$PHASEl, 
CALL ROSSLEEP(CCW$STEP$DELAY.@MOTOR$EXCEPTSCODEl, 
END, \ 

CALL ROSSLEEP(CCWSPAUSESDELAYj@MOTORSEXCEPT$CODE), 
END, 

END MOTORSTASK, 

$E.JECT 

1* CODE EXAMPLE 5. INTERRUPT HANDLER TO TRACK 60 HZ INPUT. *1 

DECLARE AC$CYCLESCOUNT BYTE; 

ACSHANDLER: PROCEDURE INTERRUPT 59, 
DECLARE ACSEXCEPTSCODE WORDI 

I*VECTOR FOR 80130 INT3*1 

CALL ROSENTER$INTERRUPT(AC$INTERRUPT$LEVEL.@AC$EXCEPT$CODEl' 
AC$CYCLE$COUNT=AC$CYCLE$COUNT+l, 
IF AC$CYCLE$COUNT >= 60 

THEN DO, 
AC$CYCLE$COUNT=OI 
CALL RO$SIGNAL$INTERRUPT(AC$INTERRUPT$LEVEL. 

@ACSEXCEPT$CODEl; 
END, 

ELSE CALL RO$EXIT$INTERRUPT(AC$INTERRUPT$LEVEL. 
@AC$EXCEPT$CODEl, 

END AC$HANDLERI 

2-86 



380 
381 2 
382 2 
383 2 
384 2 

385 3 
386 2 
387 2 
388 2 

389 

390 1 
391 2 

392 2 
393 2 

394 2 
395 2 
396 3 
397 4 
398 5 

399 5 

401 5 
402 4 
403 3 
404 2 

405 2 
406 2 

AP-130 

$EJECT 

I~ CODE EXAMPLE 7. PROTECTED CRT OUTPUT SUBROUTINE. *1 

PROTECTED$CRT$OUT: PROCEDURE (CHAR) REENTRANT. 
DECLARE CHAR BYTE. 
DECLARE CRT$EXCEPTSCODE WORD; 
CALL RGSRECEIVESCONTROL(CRTSREGIONSTOKEN.@CRT$EXCEPTSCODE), 
DO WHILE (INPUT(STAT$51) AND 01H)=O. 

1* NOTHING *1 
END. 

OUTPUT(CHAR$51)=CHAR; 
CALL RGSSENDSCONTROL(@CRTSEXCEPTSCODE); 
END PROTECTED$CRTSOUT; 

$EJECT 

1* CODE EXAMPLE O. INTERRUPT TASK TO MONITOR CLOCK TIME. *1 

DECLARE SECONDSCOUNT BYTE. 
MINUTESCOUNT BYTE. 
HOlJR$COUNT BYTE; 

TIMESTASK: PROCEDURE; 
DECLARE TIMESEXCEPTSCODE WORD; 

ACSCYCLESCOUNT=O. 
CALL RGSSET$INTERRUPT(ACSINTERRUPTSLEVEL.01H. 

INTERRUPT$PTR(ACSHANDLER).DATASSEGSADDR.BASE. 
@TIMESEXCEPTSCODEl; 

CALL RGSRESUME$TASK(INITSTASKSTOKEN.@TIMESEXCEPTSCODE); 
DO HOUR$COUNT=O TO 23. 

DO MINUTESCOUNT=O TO 59. 
DO SECONDSCOUNT=O TO 59. 

CALL RGSWAITS INTERRUPT (ACSINTERRUPT$LEVEL, 
@TIMESEXCEPTSCODE) • 

IF SECONDSCOUNT MOD 5 = 0 
THEN CALL PROTECTEDSCRTSOUT(BEL). 

END; 1* SECOND LOOP *1 
END; 1* MINUTE LOOP *1 

END. 1* HOUR LOOP *1 
CALL RGSRESETSINTERRUPT(ACSINTERRUPTSLEVEL. 

@TIMESEXCEPTSCODE). 
CALL RGSDELETESTASK(O.@TIMESEXCEPTSCODE). 
END TIMESTASK. 

2-87 



407 
408 2 
409 2 
410 2 

411 2 
412 2 

413 ~: 

414 2 

415 2 
416 2 
417 2 
418 2 
419 3 

420 3 
421 2 
422 2 
423 2 
424 2 
425 2 
426 2 
427 2 

428 2 
42<'1J 2 

430 
431 :2 
432 2 
433 -, 

~ 

434 2 

435 2 

4:l6 :2 
437 2 
438 2 

439 2 

440 -, 
441 2 
442 2 
443 3 

444 3 
445 2 
44" 2 
447 3 

448 3 
449 3 
4:;0 2 

451 2 

$E.JECT 

1* CODE EXAMPLE S. SUBROUTINE TO CREATE TIME-OF-DAY MESSAGE. *1 

PRINT$TOD: PROCEDURE; 
DECLARE TOD$MESSAGE$TOKEN WORD; 
DECLARE TOD$EXCEPT$CODE WORD; 
DECLARE TOD$SEGMENT$OFFSET WORD. 

TOD$SEGMENT$BASE WORD; 
DECLARE TOD$SEGMENT$PNTR POINTER AT (@TOD$SEGMENT$OFFSET); 
DECLARE TOD$TEMPLATE (2S) BYTE 

DATA (27. 'THE TIME IS NOW hh:mm:ss. '.CR.LF); 
DECLARE TOD$STRING BASED TOD$SEGMENT$PNTR (2S) BYTE; 
DECLARE TOD$STRING$INDEX BYTE; 

TOD$MESSAGE$TOKEN=RQ$CREATE$SEGMENT(2S.@TOD$EXCEPT$CODE); 
TOD$SEGMENT$BASE=TOD$MESSAGE$TOKEN; 
TDD$SEGMENT$OFFSET=O; 
DO TOD$STRING$INDEX=O TO 27; 

TOD$STRING(TOD$STRING$INDEX)= 
TOD$TEMPLATE(TOD$STRING$INDEX); 

END; 
TOD$STRING(17)=ASCII$CODE(HOUR$COUNT/I0); 
TOD$STRING(18)=ASCII$CODE(HOUR$COUNT MOD 10); 
TOD$STRING(20)=ASCII$CODE(MINUTE$COUNT/I0); 
TOD$STRING(21i=ASCII$CODE(MINUTE$COUNT MOD 10); 

. TOD$STR I NG (23) =ASC I I $CODE (SECOND$COUNT 110) ; 
TOD$STRING(24)=ASCII$CODE(SECOND$COUNT MOD 10); 
CALL RQ$SEND$MESSAGE(CRT$MAILBOX$TOKEN. 

TOD$MESSAGE$TOKEN.O.@TOD$EXCEPT$CODE); 
RETURN; 
END PRINT$TOD; 

$E.JE·CT 

1* CODE EXAMPLE 9. SUBROUTINE TO CREAT,E SWITCH STATUS MESSAGE. *1 

PRINT$STATUS: PROCEDURE; 
DECLARE STATUS$MESSAGE$TOKEN WORD; 
DECLARE STATUS$EXCEPT$CODE WORD; 
DECLARE STATUS$SEGMENT$OFFSET WORD. 

STATUS$SEGMENT$BASE WORD; 
DECLARE STATUS$SEGMENT$PNTR POINTER 

AT (@STATUS$SEGMENT$OFFSET); 
DECLARE STATUS$TEMPLATE (40) BYTE DATA 

<:39. 'THE SW ITCHES ARE NOW SET TO ........ B •• CR. LF); 
DECLARE STATUS$STRING BASED STATUS$SEGMENT$PNTR (40) BYTE; 
DECLARE STATUS$STRING$INDEX BYTE; 
DECLARE BIT$PATTERN BYTE; 

STATUS$MESSAGE$TOKEN=RQ$CREATE$SEGMENT(40. 
@STATUS$EXCEPT$CODE); 

STATUS$SEGMENT$BASE=STATUS$MESSAGE$TOKEN; 
STATUS$SEGMENT$OFFSET=O; 
DO STATUS$STRING$INDEX=O TO 39, 

STATUS$STRING(STATUS$STRING$INDEX)= 
STATUS$TEMPLATE(STATUS$STRING$INDEX); 

END; 
BIT$PATTERN=INPUT(PPI$A); 
DO STATUS$STRING$INDEX=29 TO 36; 

STATUS$STRING(STATUssSTRINGsINDEX)= 
ASCII$CODE(BITsPATTERN AND OlH). 

BIT$PATTERN=ROR(BITsPATTERN.1); 
END; 

CALL RQ$SENDsMESSAGE(CRTsMAILBOX$TOKEN. 
STATUS$MESSAGEsTOKEN.O.@STATUS$EXCEPTsCODE); 

END PRINTsSTATUS; 

2-88 
AFN-Q20S8A 



452 
45:l 2 
454 2 
45 c, ;:> 
456 '" 
457 2 

4 c;8 ;;> 
4:,9 :2 

46() "' 
461 2 
46Z! 3 

46:3 3 
464 ~::: 

46:, 3 
466 :J 
467 4 
468 4 
46 C? ::J 
470 3 
4"11 2 

472 
473 ;:> 
474 :;' 

4"15 d 
476 2 
477 3 
478 3 
479 :l 

481 J 

483 4 
484 4 
48:5 4 
48" ~ 

487 5 
488 5 

489 5 

490 5 

491 5 

492 5 

493 5 

494 5 

49::; 5 

496 5 
497 4 
498 3 
499 2 , 

Ap·130 

SEJECT 

/.* CODE EXAMPLE 10. TASK TO RECEIVE MESSAGES AND TRANSMIT THEM TO CRT. *1 

CRTSOUTSTASK' PROCEDURE. 
DECLARE MESSAGESLENGTH BYTE, 
DECLARE MESSAGESTOKEN WORD, 
DECLARE RESPONSESTOKEN WORD. 
DECLARE MESSAGESEXCEPTSCODE WORD, 
DECLARE MESSAGESSEGMENTSOFFSET WORD. 

MESSAGESSEGMENTSBASE WORD, 
DECLARE MESSAGESSEGMENTSPNTR POINTER AT (@MESSAGESSEGMENTSOFFSET), 
DECL.ARE MESSAGESSTRINGSCHAR BASED MESSAGESSEGMENTSPNTR BYTE, 

CAL.L RGSRESUMESTASK(INITSTASKSTOKEN.@MESSAGESEXCEPTSCODE), 
DO FOREVER. 

MESSAGESTOKEN=RGSRECE I VESMESSAGE (CRTSMAILBOXSTOKEN. OFF FFH. 
@RESPONSESTOKEN.@MESSAGESEXCEPTSCODE), 

MESSAGESSEGMENTSOFFSET=O, 
MESSAGESSEGMENTSBASE=MESSAGESTOKEN. 
MESSAGESLENGTH=MESSAGESSTRINGSCHAR. 
DO MESSAGESSEGMENTSOFFSET=l TO MESSAGESLENGTH. 

CALL PROTECTEDSCRTSOUT(MESSAGESSTRINGSCHAR), 
END. 

CALL RGSDELETESSEGMENT(MESSAGESTOKEN.@MESSAGESEXCEPTSCODE), 
END) 1* OF FOREVER-LOOP *1 

END CRTSOUTSTASK, 

SEJECT 

/* CODE EXAMPLE 11. TASK TO POLL KEYBOARD AND PROCESS COMMANDS. *1 

COMMANDSTASK: PROCEDURE, 
DECLARE CONSOLESCHAR BYTE, 
DECLARE COMMANDSEXCEPTSCODE WORD. 

CALL RGSRESUMESTASK(INITSTASKSTOKEN.@COMMANDSEXCEPTSCODE») 
DO FOREVER, 

CONSOLESCHAR=CSIN AND 7FH, 
CAL.L PROTECTEDSCRTSOUT(CONSOLESCHAR), 
IF CONSOLESCHAR=CR 

THEN CALL PROTECTEDSCRTSOUT(LF), 
IF (CONSOLESCHAR >= '0') AND (CONSOLESCHAR <= '9') 

END, 

THEN DO, 
CALL PROTECTEDSCRTSOUT(CR), 
CALL PROTECTEDSCRTSOUT(LF), 
DO CASE (CONSOLESCHAR-'O'), 

CALL PRINTSTOD, 
CALL PRINTSSTATUS, 
CALL RGSSUSPENDSTASK(CRTSOUTSTASKSTOKEN. 

@COMMANDSEXCEPTSCODE), . 
CALL RGSRESUMESTASK(CRTSOUTSTASKSTOKEN. 

@COMMANDSEXCEPTSCODE), 
CALL RGSDISABLE(ACSINTERRUPTSLEVEL. 

@COMMANDSEXCEPTSCODE), 
CALL RGSENABLE(ACSINTERRUPTSLEVEL. 

@COMMANDSEXCEPTSCODE), 
CALL RGSSUSPENDSTASK(MOTORSTASKSTOKEN. 

@COMMANDSEXCEPTSCODE). 
CALL RGSRESUMESTASK(MOTORSTASKSTOKEN. 

@COMMANDSEXCEPTSCODE), 
CALL RGSSUSPENDSTASK(STATUSSTASKSTOKEN. 

. @COMMANDSEXCEPTSCODE), 
CALL RGSRESUMESTASK(STATUSSTASKSTOKEN. 

@COMMANDSEXCEPTSCODE») 
END, 1* OF CASE-LIST *1 

END, 1* OF COMMAND PROCESSING *1 

END COMMANDSTASK, 
2-89 



500 1 
501 2 

502 2 
503 2 
504 2 
505 2 
506 2 

50~' 2 
508 2 

509 2 
510 2 

511 2 
512 2 

513 2 
514 2 

515 2 
516 2 

517 2 
518 2 
519 2 
520 2 

521 

AP-130 

SEJECT 

1* CODE EXAMPLE 12. TASK TO INITIALIZE OSP SOFTWARE. *1 

INITSTASK: PROCEDURE PUBLIC. 
DECLARE INITSEXCEPTSCODE WORD, 

DATASSEGSPTR=@INITSTASKSTOKEN. I*LOAD DATA SEGMENT BASE*I 
CRTSMAILBOXSTOKEN=ROSCREATE$MAILBOXCO.@INITSEXCEPTSCODEl. 
CRTSREGIONSTOKEN=ROSCREATESREGIONCO.@INITSEXCEPTSCODEI, 
INITSTASKSTOKEN=ROSGETSTASKSTOKENSCO.@INITSEXCEPTSCODEI;. 
HARDWARESINITSTASKSTOKEN=RO_CREATESTASK 

(110.@HARDWARESINITSTASK.DATASSEGSADDR.BASE.O.300. 
O.@INITSEXCEPTSCODEI. 

CALL RO$SUSPENDSTASKCO.@INITSEXCEPTSCODEI. 
STATUSSTASKSTOKEN=ROSCREATESTASKCII0.@STATUSSTASK. 

DATASSEGSADDR. BASE.O.300.0.@INITSEXCEPTSCODEI. 
CALL ROSSUSPENDSTASKCO,@INITSEXCEPTSCODEI. 
MOTORSTASKSTOKEN=ROSCREATESTASKCI10.@MOTORSTASK. 

DATASSEGSADDR. BASE.O.300.0.@INITSEXCEPTSCODEI. 
CALL ROSSUSPENDSTASK(O.@INITSEXCEPTSCODEI. 
TIMESTASKSTOKEN=ROSCREATESTASKC120.@TIMESTASK. 

DATASSEGSADDR. BASE.0.300.0.@INITSEXCEPTSCODEI. 
CALL ROSSUSPENDSTASKCO.@INITSEXCEPTSCODEI. 
CRTSOUTSTASKSTOKEN=RQSCREATESTASKC120.@CRTSOUTSTASK. 

DATASSEGSADDR.BASE.O.300.0.@INITSEXCEPTSCODEI. 
CALL ROSSUSPENDSTASK(O.@INITSEXCEPTSCODEI. 
COMMANDSTASKSTOKEN=ROSCREATESTASKCI30.@COMMANDSTASK. 

DATASSEGSADDR.BASE.0.300.0.@INITSEXCEPTSCODEI. 
CALL ROSSUSPENDSTASKCO.@INITSEXCEPTSCODEI. 
CALL ROSENDSINITSTASK. 
CALL ROSDELETESTASKCO.@INITSEXCEPTSCODEI. 
END INITSTASK, 

END DEMO' 130. 

MODULE INFORMATION. 

CODE AREA SIZE - 084CH 
CONSTANT AREA SIZE • OOOOH 
VARIABLE AREA SIZE • 0052H 
MAXIMUM STACK SIZE 0026H 
848 LI NES READ ° PROGRAM ERRORCS) 

END OF PL/M-86 COMPILATION 

21240 
00 

820 
380 

2-90 
AFN-020S8A 



AP-130 

APPENDIXC 
SYSTEM MEMORY MAP 

2-91 



AP~130 

EXAMPLE SYSTEM MEMORY MAP 

MEMORY MODULE 

RAM 

{ 

8088 RESiART VECTOR 
ROOT JDB CODE AREA 

80130 MEMORY SPACE 

FREE SYSTEM RAM) 

ROOT JOB DATA AREA 

APPLICATION JOB DATA AREA 

DSP SUPPORT DATA AREA 

8086 INTERRUPT VECTOR 

STARTING ENDING 
ADDRESS ADDRESS 

OFFFF:O OFFFF:F 
OFD18:0 OFD36:6 

OFC62:0 OFD17:B 

OFCOO.o OFC61:F 

0F800:0 OFBFF:F 

OOGO:O 01 FF:F 

OOAD:O OOBF:F 

OOA7:0 OOAC:1 

0040:0 OOA6:F 

0000:0 003F:F 

INITIALIZATION TASK STARTING ADDRESS: FC62:06B5 

ROOT JOB STARTING ADDRESS: __ ..!FD=18"':001=1'--__ 

2-92 
AFN-02QSBA 



AP·130 

APPENDIX D 
SUPPORT CODE LOCATE MAP 

2-93 
AFN'()2068A 



AP-130 

ISIS-I I Me8-86 LOCATER. VI 2 INVOKED BY 
FO LOCBb & 
FI SUPI30 LNK TO FI SUPI30 MAP PRINT( FI SUP130 1'1P2) SC(3) .. 

SEOSIZE(STACK(O) ) .. 
ADDRESSES (CLASSES (CODE (OF8000H) , OAT /lit (00400H) ) } .. 
ORDER (CLASSES(DATA, STACK» " OBJECTCONTROLS(NOLINES, NOCOMMENTS, NOSYMBOLS) 
WARNING 2b DECREASING SIZE OF SEGMENT 

SEOMENT STACK 

SYMBOL TABLE OF 110DULE MINIMAL_BOI30 
READ FROM FILE Fl SUPI30 LNK 
WRITTEN TO FILE FI SUPI30 

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SVt'llDL 

0040H OOOOH PUB INTERRUPTTA$KVEC 0040H 0120H PUB DEFAULT J<ANDLER 0040H 0144H PUB READYLISTRDIIT 
0040H 014BH PUB INTERRORENTRY 0040H 014CH PUB SYSTEMEXCEPTIONH 0040H OI~OH PUB DELET IONTASKTDKE 

-ANDLERPTR -N 
0040H 01~l!H PUB EXTENSIONLISTROO 0040H 0"4H PUB DELETION_OBJECT _ 0040H 015611 PU, SYSTEI1POQL TOKEN 

-T -BASE 
0040H 01~BH PUB ROOT ~OBTOKEN 0040H 015AH PUB MINTRANSSIZE 0040H OI~CH PUB LAST../'IOP _TASK 
0040H 015EH PUB NDP _INTERRUPT _LE 0040H OlbOH PUB PARAM_VALlDATION 0040H 0lb2H PUB REOIONjLAOS 

-VEL_VM -_VECTOR 
0040H 0164H PUB TABK_WAITINQ_FLA 0040H 0166H PUB REQIDt:I_TDKEN_TAB 0040H 0176H PUB SIONAL_G_INDEX 

-GS -i.E 
0040H 017BH PUB .SIGNAL_O 0040H 01EBH PUB KERNELjLAO 0040H OIE'9H PUB ACTIVATE_SIIINAL_ 

, -0 
0040H OlEAH PUB FILLCHAR 0040H 01EBH PUB NUM_SLAVES 0040H 01ECH PUB OLD_SLAVEjIUI1 
0040H OIEDH PUB INTI1ASK 0040H 01FbH PUB DISABLEI1ASK 0040H 01FFH PUB LEVEL_SET _T .... LE 
0040H O:20BH PUB IMRJ'ORT 0040H 021AH PUB EOIJ'DRT 0040H 022CH PUB IBRJ'DRT 
0040H 023EH PUB PIC_INFO 0040H 0247H PUB CLOCK_SPECJ;OI 0040H 024BH PUB CLOCK, 
0040H 024'9H PUB CLOCK_DFF oo40H 024AH PUB. CLOCK_LEVEL 0040H O'DOH PUB END_DF..JlIITA 
FBOOH 4~CCH PUB NDP _INTERRUPT..,LE FBOOH 45C2H. PUB VALIDATEJ'MAMS_ FBOOH 4~2H PUB OETDESCRTDKEN 

-VEL -BODY....DUM"", 
FBOOH 4~56H PUB OETDESCRPOINTER FBOOH 4~b7H PUB QETPOINTER FBOOH 4~3D1f PUB SCANl1EltDRY 
FBOOH 4~3BH PUB OVERFLOW FBOOH 4~33H PUB NENTRY _BODY FBOOH 4~2EH PUB KSUBPEND 
FBOOH 4~2'9H PUB KINITIALIZE FBOOH 4~24H PUB KENABLELEVELNS FBOOH 4~lFH PUB KENAllLELEVEL 
FBOOH 451AH PUB KCREATEREOI ONNS FBOOH 4~"H PUB KCREATEOB~ECTNS FBOOH 4~IOH PUB KCREATEDIJECT 
FBOOH 4~OBH PUB INITNDP FBOOH 4506H PUB INITIALIZE FBOOH 4~IH PUB FINISHINlTlALIZA 

-TION 
FBOOH 44FCH PUB EOI_ROUTINE FBOOH 44F7H PUB DIVlDEBYZERO FBOOH 44F2H PUB 'DECDDE..,LEVEL 
FBOOH 44EDH PUB COI1l1ONJ;RRoR FBOOH 44EBH PUB CLOCKENTRV _BODY FBOOH 44E3H PUB MRAVBDUNDS 
FBOOH 44DOH PUB SYSTEMEXCEPTIONH FBOOH 44721-4 PUB INITIALIZE_TIMER FBOOH 43AEH PUB INITIALIZEJ'ICS 

-ANDLER 
FBOOH 43'CH PUB INIT _INTERNAL_RE FBOOH 434EH PUB NOP _INTERRUPT _HA FSOOH 433FH PUB CLDCKENTRV 

-GIONS -NDLER 
FBOOH 433bH PUB NENTRV FBOOH 40FEH PUB INITIALIZENUCLEU FBOOH 40BbH PUB RGWAITINTERRUPT _ 

-S -BODV 
FBOOH 40B1H PUB RGSIQNALINTERRUP FBOOH 40ACH PUB RGGETLEVEL_BoDV FBOOH 40A7H PUB ROEXITINTERRUPT _ 

-T_BODV -BODV 
FBOOH 40A2H PUB ROENTERINTERRUPT FSOOH 40'9DH PUB RGDISABLEJlODY FBOOH 4094H PUB RGWAITINTERRUPT 

- _BODV 
FBOOH 40BAH PUB RGSIGNALINTERRUP FBOOH 4OBOH PUB RGOETLEVEL FBOOH 407bH PUB RGENTERINTERRUPT 

-T 
FBOOH 406CH PUB RGiEXITINTERRUPT FBOOH 40b2H PUB RQDISABLE FSOOH 405DH PUB NUNLOCK_DELETION 

-_OBJECT 
FSOOH 405SH PUB NUNLOCKNS FSOOH 4053H PUB HUNLOCK FBOOH 40~ PUB NOPEN_DELETlON_O 

-B.}ECT 
FSOOH 4049H PUB NOPENNS FSOOH 4044H PUB NOPEN FBOOH 403FH PUB NLoCK-PELETION_O 

-BJECT 
FBOOH 403AH PUB NLOCKNS FSOOH 403:5H PUB NLOCK FSOOH 4030H PUB NCLOSE_DELETION_ 

-OBJECT 
FBOOH 402BH PUB NCLOSENB FSOOH 4026H PUB NCLOSE FBOOH 40:;!IH PUB DELETERUNNINClTAB 

-K 
FSOOH 401CH PUB DELETEOB.JECT F800H 400AH PUB COPYRIGHT FSOOH 4000H PUB NBEGIN 

FBOOH 4000H PUB INIT _NUCLEUS_~U~. FC~DH 0OO4H PUB 1I1R_START FC5CH OOOEH PUB 
-P 

FC5CH OOOFH PUB INIT_CHDI FC5CH 0OlOH PUB INIT _CMD5J11\STER FC5CH OOIIH PUB 
FC5CH OOl2H PUB INIT_Cf1D4_MASTER FC61H OOOEH PUB SLAVE_TABLE FCblH 0OO3H PUB 

FCblH OOO~H PUB CLDCK_0J'ORT FC61H 0007H PUB CLOCK_COUNT FC61H OOOAH PUB 
FC61H OOOBH PUB C_CLDCK_SPECJ;OI FC61H OOOCH PUB C_CLOCK_ON FCblH 0OO9H PUB 
FBOOH 4,7bH PUB LEVEL 7 _HANDLER FSOOH 4574H PUB PARAM_VALIDATION 

- J'ATH 

MEMoRV MAP DF MODULE MINIMAL_B0130 
READ FROM FILE. FI SUPI30 LNK 
WRITTEN TO FILE Fl SUP130 

SEQMENT MAP 

START STOP LENGTH AL I QN NAME CLASS 

OOOOOH 003FFH 0400H A (ABSOLUTE) 
00400H 009EFH 05FOH W DATA DATA 
009FOH 009FFH OOIOH Q I NTVEC _REG_SEQ DATA 
OOAOOH OOAOFH 0010H Q EXT -.REG_SEQ DATA 
OOA10H OOA1FH 0010H G ~OB_REQ_SEO DATA 
OOA20H OOA2FH OOIOH Q SEf1_REQ_SEO DATA 
OOA3OH OOA3FH OOIOH G MAIL_REO_SEQ DATA 
OOA4OH OOA4FH OOIOH Q oD_REG_SEQ DATA 
flOA50H OOA5FH OOIOH G POOL_REIl_SEQ DATA 

2-94 A_ 



OOA60H -OOA6FH C010H G 

OOA70H OOA7QH OOOOH W 
OOA70H OOA70H OOOOH G 
F8QOOH FC5CDH 45CEH W 
FC5CEH FC5D2H QOO5H W 
FC5D4H FC5ESH 0012H W 
FC5E6H FC5F7H 0012H W 
FCSF8H FC609H 0012H W 
FC60AH FC612H 0OO9H B 
FC613H FC61CH OQCAH B 
FC61EH FC61EH OOOOH W 

I FC61EH FC6'lFH C J2H W 

FC620H FC620H OOOOH W 

GROUP MAP 

ADDRESS GROUP OR SEGMENT NAME 
00400H DGROUP 

DATA 
INTVEC REG SEG 
EXT _REG_SEG 
JOB_REG_SEG 
SEM_REC_SEG 
MAIL_REG_SEG 
OD_REG_SEG 
POOL_REG_SEG 
DELETION_REG_SEG 

F8QOOH CGROUP 
CODE 
P IC_CNF _SEG 
_IMR'yORT 

EOI PORT 
:=rSR=READ_PORT 
_PIC_INFO 
T I MER _CNF _SEG 
CSEG 

AP-130 

. DELET ION_REG_9 DA-TA! LAST RAM BYTE USED -EO 

STACK STACK 
"')?SEG 
CODE CODE 
P rC_CNF _SEG CODE 
_IMR_PORT CODE 
_EOI_PORT CODE 
_ISR_READ_PORT CODE 
_PIC_INFO CODE 
TIMER_CNF _SEG CODE 
CSEG CODE 

SLAVE_SEG CODEf4-- LAST EPROM BYTE USED 

MEMORY MEMORY 

2-95 



AP·130 

APPENDIX E 
APPLICATION JOB LOCATE MAP 

2-96 
AFN-02058A 



AP-130 

1515-1 I MeS-B6 LDCATER. VI 2 INVOKEO BY 
Loce6 Fl AP 130 LNK TO Fl AP130 • 

ORDER (CLASSES <DATA, STACK. MEMORY) & 
SEGSIZE <STACK (0» ~ 

ADDRESSES (CLASSES (DATA (OOA70H). • 
CODE (OFC620H» ) & 

MAP PRINT ( Fl AP13Q MP2) • OBJECTCONTRDLS (NOLINES, NQCOMMENTS, NOPUBLICS, NOSYMBOLS) 
WARNING 26 DECREASING SIZE OF SEGMENT 

SEGMENT STACK 

SYMBOL TABLE OF MODULE DEM0130 
READ FROM FILE Fl AP130. LNK 
WRITTEN TO FILE Fl AP130 

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL 

FC62H OB3AH PUB RGENDINITTASK FC62H OD1CH PUB RQ_N_C_RETURN_ 40 
FC62H OBeOH PUB RQ_N_C_RETURN_20 FC62H OAE4H PUB RG N C RE1URN 14 
FC62H OACBH PUB RG_N_C_RETURN_12 FC62H OAACH PUB RG=:N=C:=RETURN:)O 
FC62H QA90H PUB RQ_N_C_RETURN_B FC62H OA74H PUB RG_N_C _RETURN_6 
FC62H OA58H PUB RG_N_C_RETURN_ 4 FC62H OA3EH PUB RGERROR 
FCb2H OA28H PUB RGGETLEVE"L FC62H OAOEH PUB RGSIGNALEXCEPTIO 

-N 
FC62H 09FOH PUB RGWAITINTE.RRUPT FC62H 09DAH PUB RGSIGNALINTERRUP 

-T 
FC62H 09D4H PUB RGDELETESEMAPHDR FC62H 09CEH PUB RGDELETEMAILBOX 

-E 
FC62H 09B8H PUB RGEXITINTERRUPT FC62H 09B2H PUB RGUNCATALOGOB,JEC 

--T 
FCb2H 09ACH PUB R GSENDUN I TS FC62H 09A6H PUB ROSUSPENDTASK 
FC62H Q9AOH PUB RGSETPR I OR I TY FC62H Q99AH PUB -RGSETPOOLM I N 
FC62H 0994H PUB RGSETOSEXTENSION FC62H Q98EH PUB RGSENDMESSAGE 
FC62H 0988H PUB RGSLEEP FC62H Q982H PUB RGSET1NTERRUPT 
FC62H 097CH PUB RGSETEXCEPTIONHA FC62H Q976H PUB RGSE"NDCONTROL 

-NDLER 
FC62H 0970H PUB RGRECEIVEUNITS FC62H 096AH PUB RGRESUMETASK 
FC62H 0938H PUB RGRECE IVEMESSAGE FC62H 0932H PUB RGRESET INTERRUPT 
FC62H 092CH PUB RGRECEIVECONTROL FC62H 0926H PUB RGOFFSPR ING 
FC62H 0920H PUB RGLOOKUPOBJECT FC62H 091AH PUB RGINSPECTCOMPOSI 

-TE 
FC62H 09l4H PUB RGGETTASKTQKENS FC62H 090EH PUB RGOETTYPE 
FC62H 090BH PUB RGGETSIZE FC62H 0902H PUB RGGETPRIORITY 
FC62H 08FCH PUB RGGETPOOLATTR I 13 FC62H 08F6H PUB RGGETEXCEPTIONHA 

-NDLER 
FC62H OBFOH PUB RGFORCEDELETE FC62H OBEAH PUB RGENABLE 
FC62H 08D4H PUB RGENTER INTERRUPT FC62H OBCEH PUB RGENABLEDELETIoN 
FC62H OBCBH PUB RGDELETETASK FC62H 08C2H PUB RGOELETESEGMENT 
FC62H OBACH PUB RGDISABLE FC62H OBA6H PUB RGDELETEREGIoN 
FC62H OBAOH PUB RGDELETE.JOB FC62H OB9AH PUB R GOELETEEX TENS I 0 

-N 
FC62H OB94H PUB RGD I SABLEDELET I 0 FC62H OB8EH PUB RGDELETECOMPoSIT 

-N -E 
FC62H OBBBH PUB RGCREATETASK FC62H 08B2H PUB RGCREATESEMAPHOR 

-E 
FC62H OB7CH PUB RQCREATESEGMENT FC62H OB7bH PUB RGCREATEREGION 
FC62H OB70H PUB RGCATALOGOBJECT FC62H 086AH PUB RGCREATEMAILBOX 
FCb2H 0864H PUB RGCREATEJDB FC62H 085EH PUB RGCREATEEXTENSIO 

-N 
FCb2H 08SBH PUB RGCREATECDMPoSIT FCb2H OSS2H PUB RGAL TERCOMPOSI1E 

-E 
FCb2H OB4CH PUB RGACCEPTCONTROL FC62H ObB5H PUB INITTASK 

DEMD130 SYMBOLS AND LINES 
FD17H OOOCH SYM MEMORY FC62H OOOOH SYM ASCI ICODE 
OOA7H OOOOH SYM DATASEGPTR OOA7H OOOOH SYM OAT ASEGADDR 
OOA7H 0OO4H SYM HARDWAREINITTASK OOA7H 0OO6H SYM ST ATUST ASK TOKEN 

-TOKEN 
OOA7H 0OO8H SYM MOTORTASIo(.TOKEN OOA7H OOOAH SYM T I MET ASK TOKEN 
OOA7H OOOCH SYM ACHANDLERTOKEN OOA7H OOOEH SYM C RTOUTT ASK TOKEN 
OOA7H OOlOH SYM COMMANDTASKTOKEN OOA7H 0012H SYM I N I TT ASK TOKEN 
')OA7H 0014H SYM CRTMAI LBOXTOKEN OOA7H 0016H SYM CRTREGIONTOKEN 
f"C62H OOB4H SYM COUT STACK 0OO4H SYM CHAR 
FC62H OOA1H SYM CIN FCb2H OOB9H SYM HARDWARE.!NITTASK 
OOA7H 0018H SYM HARDINIT~XCEPTCO FC62H OOlOH SYM PARAM51 

-DE 
OOA7H 0040H SYM PARAM5l INDEX FC62H 0016H SYM S I GNONMESSAGE 
OOA7H 0041H SYM SIGNONINDEX FC62H 013BH SYM STATUSTASK 
OOA7H 0042H SYM STATUSCQUNTER OOA7H OOlAH SYM STATUSEXCEPTCODE 
OOA7H 0043H SYM CWSTEPDELAY OOA7H 0044H SYM CCWSTEPDEI-AY 
OOA7H 004SH SYM CWPAUSEDELAY OOA7H 0046H SYM CCWPAUSEDELAY 
FC62H 0172H SYM MOTDRTASK OOA7H C01CH SYM MOTOREXCEPTCODE 
OOA7H 0047H SYM MOTORPOSITIoN OOA7H 0048H SYM MQTORPHASE 
FC62H 0039H SYM PHASECODE OOA7H 0049H SYM ACCYCLECOUNT 
FC62H 0256H SYM ACHANDLER OOA7H OOlEH SYM ACEXCEPTCODE 
FC62H 029CH SYM PROTECTEDCRTOUT STACK OOQ6H SYM CHAR 
STACK 0OO2H SYM CRTEXCEPTCODE OOA7H 004AH _SYM SECONOCOUNT 
OOA7H 004BH SYM MINUTECOUNT OOA7H 004CH SYM HOUR COUNT 
FC62H 02CFH SYM TIMETASK OOA7H 0020H SYM TIMEEXCEPTCODE 
FC62H 038BH SYM PRINTToD OOA7H 0022H SYM TODMESSAGETOKEN, 
OOA7H 0024H SYM TODEXCEPTCQDE OOA7H 0026H SYM ToDSEGMENTOFFSET 
OOA7H 0028H SYM TODSEGMENTI3ASE OOA7H 0026H SYM TODSEGMENTPNTR 
FC62H 003DH SYM TODTEMPLATE OOA7H 0026H BAS TODSTRING 
OOA7H 004DH SYM TODSTR I NG I NDE X FC62H 0489H SYM PR lNTSTATUS 
OOA7H 002AH SYM STATUSMESSAGETOK OOA7H 002CH SYM STATUSEXCEPTCODE 

-EN 

2-97 
AFN.()20!I8A 



AP-130 

OOA7H 002EH SYM STATUSSEGMENTOFF OOA7H OOaOH SYM STATUSSEGMENTBAS 
-SET -E 

OOA7H 002EH SYM STATUSSEGMENTPNT FC62H OC59H SY'" 6T ATUSTEMPLATE 
-R 

OOA7H 002EH BAS STATUSSTRING OOA7H 004EH SY", STATUSSTRINGINDE 
-x 

OOA7H 004FH BYM BITPATTERN Fc62H 052FH BY'" CRTQUTTASK 
OOA7H OOSOH SYM MESSAGELENGTH OOA7H 0032H SY", MESSAGETOKEN 
OOA7H 0034H SYM RESPONSETOKEN OOA7H 0036H SYM MESSAGEEXCEPTCOD 

-E 
OOA7H 003BH BYM MESSAQESEGMENTDF OOA7H 003AH SYM MESSAGESEGMENl SA 

-FSET -SE 
OOA7H OOaBH BYM ME8SAQESEQMENTPN QOA7H OOa8H BAS , MESSAGESTR I NGCHA 

-TR LR 
FC62H 05AFH SYM COMMANDT ASK OOA7H 0051H SYM CONSOLECHAR 

OOA7H 003CH BYM COMMANDEXCEPTCOD !FC62H 06BSH SYM INITTASK \4--, INITIALIZATION TASK STARTING ADDRESS 
-E 

OOA7H 003EH BYM INITEXCEPTCODE FC62H 0084H LIN 302 
FC62H OOB7H LIN 304 FC62H OQ93H LIN 30. 
FC62H OOIJ6H LIN 306 FC62H 009DH LIN 307 
FC62H OOAtH LIN 308 FC62H OOA4H LIN 309 
FC62H OOBOH LIN 310 FC62H OOB3H LIN 311 
FC62H OOD9H LIN 312 FC62H OOB9H LIN 313 
FC62H OOBCH LIN 319 FC62H 00C2H LIN 320 
FCb2H OOCSH LIN 321 FC62H OOCEH LIN 322 
FCb2H OODtH LIN 323 FC62H OOE4H LIN 324 
FCb2H OOEFH LIN 325 FC62H OOFSH LIN 326 
FC62H OIOCH LIN 327 FC62H 0116H LIN 328 
FC62H OtlFH LIN 329 FC62H 012CH LIN 330 
FC62H Ot39H LIN 331 FC62H 013BH LIN 332 
FCb2H 013EH LIN 335 FC62H 0143H LIN 336 
FC62H 0150H LIN 337 FC62H 0150H LIN 338 
FC62H OI:5CH LIN 339 FC62H 0160H LIN 340 
FC62H 016DH LIN 341 FC62H Ql70H LIN 342 
FC62H O172H LIN 344 FC62H OI7~H LIN 348 
FC62H Ot7AH LIN 349 FC62H Ol7FH LIN 350 
FC62H 0184H LIN 351 FC62H 0189H LIN 352 
FC62H Ol96H LIN 353 FC62H Ol96H LIN 354 
FC62H OlA5H LIN 355 FC62H OIBOH LIN 356 
FC62H OIBDH LIN 357 FC62H OICDH LIN 358 
FC62H OlD6H LIN 359 FC62H I OIE-6H LIN 360 
FC62H OlF5H LIN 361 FC62H 0202H LIN 362 
FC62H 020FH LIN 363 FC62H 02lFH LIN 364 
FC62H 0228H LIN 365 FC62H 023SH LIN 366 
FC62H 023BH LIN 367 FC62H 0256H LIN 369 
FC62H 0259H LIN 371 FC62H 0266H LIN 372 
FC62H 0270H LIN 373 FC62H 0278H LIN 37' 
FC62H 027DH LIN 376 FC62H 028AH LIN 377 
FC62H 02BDH LIN 378 FC62H Q29AH LIN 379 
FC62H 029CH LIN 380 FC62H 02AOH LIN 383 
FC62H 02ACH LIN 384 FC62H 02B8H LIN 385 
FC62H 02BBH LIN 386 FC62H 02C2H LIN 387 
FC62H 02CAH LIN 388 FCb2H 02CFH LIN ::190 
FC62H 02D2H LIN 392 FC62H 02D7H LIN 393 
FC62H 02F3H LIN 394 FC62H 0300H LIN 395 
FC62H 030FH LIN ,396 FC62H 03lEH LIN 397 
FC62H 032DH LIN 398 FC62H 033AH LIN 399 
FC62H 034EH LIN 400 FC62H 0354H LIN 401 
FC62H 035DH LIN 402 FC62H 0366H LIN 403 
FC62H 036FH LIN 404 FC62H 037CH LIN 40' 
FC62H 0389H LIN 406 FC62H 038BH LIN 407 
FC62H 038EH LIN 415 FC62H 039FH LIN 416 
FC62H 03A7H LIN 417 FC62H Q3ADH LIN 418 
FC62H 03BEH LIN 419 FC62H 03DOH LIN 420 
FC62H 03D9H LIN 421 FC62H 03F5H LIN 422 
FC62H 040EH LIN 4~3 FC62H 0427H LIN 424 
FC62H 0440H LIN 42' FC62H Q459H LIN 426 
FC62H 0472H LIN 427 FC62H 0487H LIN 428 
FC62H 0489H LIN 429 FC62H 0489H LIN 430 
FC62H 048CH LIN 439 FC62H Q490H LIN 440 
FC62H 04A.H LIN 441 FC62H 04ABH LIN 442 
FC62H 04BCH LIN 443 FC62H 04CEH LIN 444 
FC62H 04D7H LIN 445 FC62H O;4DFH LIN 446 
FC62H 04EEH LIN 447 FC62H Oe>OBH LIN 448 
FC62H 050FH LIN 449 FC62H 05lSH LIN 4.0 
FC62H 0.2DH LIN 451 FC62H 052FH LIN 452 
FC62H 0532H LIN 460 FC62H 053FH LIN 461 
FC62H 053FH LIN 462 FC62H 055AH LIN 463 
FC62H 0560H LIN 464 FC62H OS68H LIN 465 
FC62H OS73H LIN 466 FC62H Q5S8H LIN 467 
FC62H 0592H LIN 468 FC62H 059DH LIN 469 
FC62H 05AAH LIN 470 FC62H 05ADH LIN 471 
FC62H 05AFH LIN 472 FC62H OSB2H LIN 475 
FC62H 05BFH LIN 476 FC62H OSBFH LIN 477 
FC62H 05C9H LIN 478 FC62H 05DOH LIN 479 
FCb2H 05DAH LIN 480 FC62H O~EOH LIN 481 
FC62H 05F4H LIN 483 FCb2H O~FAH LIN 484 
FCb2H 0600H LIN 485 FC62H 0610H LIN 486 
FC62H Ool6H LIN 487 FC62H 661CH LIN 488 
FC62H 062CH LIN 489 FC62H 063CH LIN 490 
FC62H Ob4CH LIN 491 FCb2H Ob5CH LIN 492 
FCb2H Ob6CH I_IN 493 FC62H Ob7CH LIN 494 
FC62H 068CH LIN 495 FC62H 069CH LIN 496 
FCb2H 06S0H LIN 498 FCb2H 06B3H LIN 499 
FCb2H ObB5H LIN 500 FC62H 06SSH LIN 502 

2-98 
AFN-oaoSBA 



AP·130 

FC62H 06C4H LIN ~03 FC62H 06D5H LIN 504 
FC62H 06E6H LIN ~O~ • FC62H 06.6H LIN 506 
FC62H 071FH LIN ~07 FC62H 072CH LIN ~OB 
FC62H 075SH LIN 509 FC62H 0762H LIN 510 
FCocH 07BBH LIN 511 FC62H 079BH LIN 512 
FC62H 07C1H LIN ~13 FC62H 07CEH LIN 514 
FC62H 07F7H LIN ~1~ FC62H OB04H LIN .16 
FC6~H OB2DH LIN 517 FC62H OB3AH LIN 51B 
FC62H OB3DH LIN 519 FC62H OEl4AH LIN 520 
FC6.;!H 0084H LIN 521 

MEHORY MAP OF MODULE DEM0130 
READ FROM FILE Fl AP130 LNK 
WRITTEN TO FILE Fl AP130 

SEGMENT MAP 

START STOP LENGTH AL I GN NAME CLASS 

100A70H 00AC1H 0052H W DATA L;.;:~=-----,==~_.:..:..:= __________ DA_t_A..J~ LAST DATA BYTE OF APPLICATION JOB 

OOAC2H 00AC2H OOOOH W STACK STACK 
OOADOH OOADOH OOOOH G ........ SEG 

I FC620H FD17BH OB5CH W CODE ~ ____________ ---, ________ C_OD_E..J~WUITCODE~EOFA~TION~OB 

FD11CH FD17CH OOOOH W MEMORY MEMORY 

GROUP MAP 

ADDRESS QROUP OR SEGMENT NAME 
FC620H CGROUP 

CODE 
00A70H DQROUP 

DATA 



AP-130 

APPENDIX F 
ROOT JOB LOCATE MAP 

2-100 
AFN-02058A 



Ap·130 

ISIS-II MCS-8b LOCATER. Vl 
LDC86 fl R.JB130 lnk 

2 INVOKED BY 
L 

TO . Fl RJB130 
MAP PRINT( fl'R.JB130 mp2) 
ac (no1 i. 1'I0p L 11oc:m. no.b) 
PC(noll. pI. nocm, nosb) 
SEGSIZE (9tilC k (0» 

" & 
& 
& 
& 

ORDER(cl ••••• (d.t •• stack. memoT'Y» ~ 

ADDRESSES ( c 1a5 ••• (code (OFDIBOH), & 
d.tilCOOADOH» ) 

WARNING 26 DECREASING SIZE OF SEGMENT 
SEGMENT STACK 

SYMBOL TABLE OF MODULE ROOT 
READ FROM FILE Fl R.JB130 LNK 
WRITTEN TO FILE Fl RJB130 

BASE OFFSET TYPE SYMBOL 

FD18H OlSOH PUB NUC_INIT _ENTRY 

BASE 

FD18H 

OFFSET TYPE SYMBOL 

0184H PUB CODEDATA 

I FD18H 0Ol1H PUB RGSTARTADDRES6'~ ROOT JOB STARTING ADDRESS FD18H 

FDIBH ooaOH PUB CRASH 
FOIBH 0030H PUB ROOTTASK 
FD18H OllaH PUB RGCREATEJOB 
FDIBH 0124H PUB ROSUSPENDTASK 
FD18H 014bH PUB RG_N_C_RETURN_40 
OOADH OOOOH PUB -JQBNUMBER 

t1EMORY MAP OF MODULE ROOT 
READ FROM FILE Fl R-J)H30 LNK 
WRITTEN TO FILE Fl RJB130 

FD18H OO:;zAH PUB 
FD18H OlOCH PUB 
FD1BH 011EH PUB 
FD18H 012AH PUB 
FD18H 0162H PUB 
OOADH 0OO2H PUB 

MODULE START ADDRESS PARAGRAPH = F01BH OFFSET = OOllH 
SEGMENT MAP 

START STOP LENGTH AL I ON NAME CLASS 

OOADOH OOAD3H 0OO4H W DATA DATA 

RGROOT JOBVERSION 
SYSTEMSUIC IDE 
RQGETTASKTOKENS 
RG_N_C_RETURN_Q 
RGERROR 
ROaTT ASKSTATUS 

OOlOH PUB 

IOOAD4H OOBFFH 012CH W INIT_STACK STACK t-- LAST DATA BYTE OF ROOT JOB 

OOCOOH aocaOH OOOOH W STACK STACK 
OOcaOH OOCOOH OOOOH G "''''SEG 
FD1S0H FD339H OlSAH W CODE CODE 
FD33AH F034SH OOOCH W SAB...oESCRIPTOR CODE 

-5 

FD346H FD366H 0021H W _~_J_DESCRIPTOR CODE i'4---LAST CODE BYTE OF RDDT JOB 

FD368H FD368H OOOOH W MEMORY 

GROUP MAP 

ADDRESS GROUP OR SEGMENT NAME 
OOADOH DGROUP 

DATA 
FD180H COROUP 

CODE 
SAB OESeR IPTQRS 
U_,·COESCRIPTORS 

MEMORY 

2-101 

INTERROR 



. ARTICLE 

. REPRINT 

AopttnIOd _ permloolan from Com"",", Deoign - September 1882. _; CGpyrIgId 11182 by eornp.- Doooan Pubilohing Co. 

2-102 

AR-236 

November, 1982 



LET OPERATING SYSTEMS 
AID IN COMPONENT 
DESIGNS 
The iRMX 86 operating system processor package offers 
hardware designers a set of thoroughly tested software 
primitives upon which to build present and future custom 
hardware designs 

by George Heider 

Component users build application systems by 
integrating standard and custom hardware, soft
ware, and packaging. Microprocessors and other 

very large scale integration cOPlponents are replacing 
much custom hardware with larger, more powerful 
standard hardware modules. Microprocessors lead to 
powerful systems, but they often require complex 
system management software. While this complex soft
ware often comprises one third or less of the final 
system software, it may require two thirds or more of 
the storage development effort. Worse, bugs in system 
management software sometimes do not show up until 
late in development or after the product is at the 
customer's site. 

One solution to this problem is to employ standard 
management software such as operating systems. More. 
complex, multifunction applications in a realtime 
environment benefit greatly from operating systems. 
Examples of these applications include file subsystems, 
public automatic branch exchange (PABX) systems, and 
transaction processing systems. But implementing 

George Heider is a senior applications engineer at 
Intel's OEM Microcomputer Systems Div, 5200 NE 
Elam Young Pkwy, Hillsboro. OR 97123. He works 
primarily with 16-bit software applications, including 
the iRMX 86 operating system. Previous experience 
includes telecommunications systems engineering. 
microprocessor systems, microprocessor operating 
system development, and disk storage system 
software. Mr Heider holds an MS in computer science 
from the University of California, Santa Barbara and 
a BSEEfrom Oregon State University. . 

Compute, Deelgn • September, 1982 

Fig 1 iRMX operating system arcbltectnu. Kernel consists 
of primitives also implemented In bardware In iAPX 16/30 and 
iAPX 18/30 OSP. 

operating system functions in a component design requires 
new software tools, education, and expertise. Also, these 
functions are often specific to the particular design, so tools 
and expertise developed for one application are not suitable 
for subsequent designs. . 

These problems are directly addressed by the Intel iAPX 
86/30 and iAPX 88/30 operating system processors (OSP) and 
the iRMX· 86 operating system. The iRMX 86 is a ful!
featured, realtime multitasking operating system for iAPX 
86 or iAPX 88 based systems. The Intel OSP implements the 
iRMX 86 kernel functions in hardware consisting of an iAPX 
86 or iAPX 88 central processor coupled with an operating 
system firmware (OSF) component, the Intel 80130. The 
OSF extends the base iAPX 86 and iAPX 88 architecture by 
adding 37 operating system primitive instructions to the 
base iAPX 86 or iAPX 88 instruction set; systems can be 
built directly on the OSP. System implementation time is 
thus decreased by having fully debugged operating system 
functions in hardware. Further capabilities can be added by 
IRMXTM is a trademark of Intel Corp 

2-103 



AR-236 

extending the set of the OSP primitives 
or by integrating portions of the iRMX 
86 on top of the OSP. 

Operating syllam architecture 
The iRMX 86 architecture shown in 
Fig I consists of the nucleus and 
layers for the basic input/output 
(I/O) system, extended I/O system, 
application loader, and human 
interface. The system also provides 
a debugger, a terminal handler, a 
bootstrap loader, and a patch 
facility. 

While the nucleus is the lowest 
layer of the operating system, fun-
damental system functions are 

Primitive 
JOB 
CREATE JOB 

TASK 
CREATE TASK 

DELETE TASK 

SUSPEND TASK 

RESUME TASK 

SLEEP 

TABLE 1 

OSPprlmitivea 

Description 

Creates a iob partition including memory pool, task list. 
and stack area. 

Creates a task with specified environment and priority. 
Task is created in ready state. Checks for insufficient 
memory available within containing job. 
Deletes a task from system as well as from any queues 
it is awaiting. Task's state and stack segment are 
deallocated. 
Suspends a task (changes its status to suspended) or 
increases task's suspension count by 1. A sleeping task 
may also be suspended and will awaken suspended 
unless resumed. 

Decreases suspension count of a task by 1. If at that 
point count is reduced to 0, task state is made ready. If 
it was suspend-asleep, it is put backJo sleep. 
Puts task in asleep state; up to 10 ms units can be 
specified. -

handled by the nucleus kernel, 
which is the core of any operating 
system. The kernel controls memory 
allocation, allocates processor 
resources, communicates between 
processes, and manages interrupts. 
In the Intel OSP these functions are 
implemented in hardware. (OSP 
functions are described in Table I; 
additional functions supported by 
the iRMX 86 nucleus are shown in 

GET TASK TOKENS Gives token for a task or task's job partition. 

Table 2.) Software development can 
be based on either the OSP or the . 
iRMX 86, allowing software develop
ment to proceed in parallel with 
hardware development. 

INTERRUPT 
SET PRIORITY 
·SET INTERRUPT 

RESET INTERRUPT 

GET LEVEL 

EXIT INTERRUPT 

, Changes task's priority to value passed in primitive. 
Assigns an interrupt handler to a level. Task that makes 
this call is made interrupt task for same level. unless call 
indicates there is no interrupt task. 

Disables an interrupt level; cancels interrupt handler; 
deletes interrupt task for level if assigned. 
Returns number of, the interrupt level for highest priority 
interrupt handler currently in operation (several interrupt 
handlers can be operating). 
Completes interrupt processing and sends end of 
interrupt signal to hardware. 

In addition to the operating system 
primitives, the OSP contains timers 
and interrupt control logic expandable 
from 8 to 57 interrupt levels. The 
timers include a system clock, Re
served delay timer, and baud rate 

SIGNAL INTERRUPT Invokes interrupt task aSSigned to a level from that 
level's interrupt handler. 

WAIT INTERRUPT Suspends interrupt task state pending a signal interrupt 
from an interrupt handler. Used by an interrupt task to 
signal its readiness to service an interrupt. 

generator. The 40-pin OSP has bus buf
fers and demultiplex logic, which 
allows it to interface directly to the 
iAPX 86 or iAPX 88 multiplexed bus. 
The OSP can be located at any 16 byte 
address boundary in the 1M-byte 
system address space. Application in
terface to OSP stepping and revision 
levels is independent. A block diagram 
of the 80130 is shown in Fig 2. 

ENTER INTERRUPT Sets dala seg";ent base for an interrupt handler. 
Enables external interrupt level. ENABLE 

DISABLE 
GET EXCEPTION 
HANDLER 
SET EXCEPTION 
HANDLER 

Disables an external interrupt level. 
Reads location and exception handling mode of current 
OSP exception handler for a task. 
Establishes location and exception handling mode of 
current OSP exception handler for task. 

SIGNAL EXCEPTION Notifies current OSP exception handler of exception. 

Minimum hardware· requirements for the iRMX 86 
operating system shown in Fig 3 are 1.8k bytes of random 
access memory (RAM), about 16k bytes of kernel code 
memory, and integrated circuits. By comparison, the OSP 
shown in Fig 4 stilI requires I.8k bytes of RAM, but does 
not require the kernel code, the programmable interrupt 
controller, or the programmable interrupt timer. These are 
all replaced by the OSP. Approximately I k bytes of required 
system configuration code are not shown in Figs 3 and 4. 

Karnal functions 
Since it defines system architecture, application requests 
for system operations like interrupt management and 
memory allocation must go through the kernel. These 

Computer D .. llln • September, 1982 

requests are made by system calls, or primitives, which 
are comparable to subroutine calls for system actions. 
Since the kernel manages much of the system hardware, 
the application code need not concern itself with many 
hardware details. This independence is not absolute, 
however: system hardware or resources not managed by 
the kernel still require application code. 

Basic kernel concepts can be explained using a general 
purpose system (Fig S). Input data can be characters. 
analog signals, or digital signals; processing can be 
numerical analysis, editing, spectrum analysis, process 
control algorithms, or virtually any other transforma
tion. Processed data must be sent to an interrupt driven 
output device-a display, a communications line, ' 

2-104 



AR-236 

Prlmltlve Oe.crlptlon 

SEGMENT 
CREATE SEGMENT Dynamically allocates area of memory of specified length 

In 16·byte paragraph units up to 64k·byte maximUm leg, 
for use as buffer). Returns location token for segment 
allocated. 

DELETE SEGMENT Deallocates memory segment Indicated by parameter 
token. 

ENABLE DELETION Allows deletion of system data type value Indicated by 
location token. 

DISABLE DELETION Prevents deletion of system data type value Indicated by 
location token. 

MAILBOX 
CREATE MAILBOX Creates a mailbox With specified task queuing dlsclplone. 

DELETE MAILBOX 

SEND MESSAGE 

RECEIVE MESSAGE 

REGION 
CREATE REGION 

DELETE REGION 

ACCEPT CONTROL 

RECEIVE CONTROL 

SEND CONTROL 

OTHER 
SET OS EXTENSION 

GET TYPE 

Returns location token. 

Deletes a mailbox and returns Its memory. If tasks are 
waiting for mailbox, they are awakened (Ie, their state IS 

made ready) with appropriate exception condition. If 
messages are waiting for tasks, they are discarded 

Sends message segment to mailbox. 

Task IS ready to receive message at mailbox. Task IS 

placed on mailbox task queue. Task can walt for 
response Indefinitely, walt (generally 10 ms) Units, or 
not wait. When complete, primitive returns to task the 
location token of message segment received. 

Creates region data type value, specifying queUing 
discipline. Returns token for region. 

Deletes region If the region IS not In use. 

Gains control of regIOn if region immediately' available, 
but does not wait If not available. 

Same pnrvitlve as accept control but task that performs 
it may elect to walt. 

Relinquishes region, 

Links new primitive With kernel. 

Gives system type code of a system data type. 

system initialization, The input task 
requests each buffer, or memory 
segment, from the kernel by making 
the kernel system call "create seg
ment" with 128 bytes, If a larger 
buffer is needed, the create segment 
call needs a larger value for the size 
parameter, When the buffer is full, 
the input task gives the segment to 
the process task, When the buffer is 
no longer needed, it can be returned 
to the system memory pool by a 
"delete segment" system call, 
Because the kernel dynamically 
manages memory allocation and 
buffer access, no additional code 
for these functions is necessary, 

Communication and synchronization 
through mailboxes 
The sample system needs a dis
patching algorithm to send the 
segments from task to task, Such an 
algorithm can be written without an 
operating system, For example, the 
input task can fill a buffer and call 
the process task, When the process 
task finishes, it can call the output 
task; the output task can finish with 
the buffer and return, When control 
returns to the input task, system 
processing for that buffer is com
plete, Another method is to have a 
polling task occasionally check if 
buffers are ready to be sent to other 
tasks. Both methods are inefficient 
and rigid, requiring that each task 
finish processing data in each buffer 
before another task can run, 

With an operating system, the 
buffers can be sent from task to task 
through "mailboxes" -places 
where tasks can send or receive 
data. (See Fig 6.) Task A sends a 
message (segment) to mailbox I and 
specifies mailbox 2 as a return 
mailbox, Task A then waits for a 
return message at mailbox 2, Task B 
receives the message (segment) from 
mailbox I, then sends a return 
message with status to mailbox 2. 

control hardware, or mass storage, In this general pur
pose system, input, process, and output are the only 
functions, or tasks, that make up the system, 

Task A receives the return message, which contains task 
B status, and synchronizes the two tasks, 

Buffer management . 
Assume input data wiJI be placed into 128-byte buffers 
by the input task. Without help from the operating 
system, the buffers must be prelocated in RAM. Soft
ware is needed to manage the buffers, which must be 
given to the tasks.in the correct sequence and returned 

. for reuse when empty, If the buffers are too small, or if 
RAM is moved, the software must handle these changes, 

If an operating system or osp is used, the locations 
and sizes of RAM are made known to the kernel during 

Computer Design • September, 1982 

In general, each task o,Ptains a segment, modifies its 
contents, sends the segment to the next task, and waits 
for another segment. The input task first gets a segment 
using "create segment." When the segment is full, the 
input task uses the kernel call "send message" to send 
the segment to mailbox A, The process task uses .the 
"receive message" system call to wait at mailbox A for 
the segment. The process task receives the segment, pro
cesses the data, puts the new data in the segment, and 
sends the segment to mailbox B, The process task then 
waits at mailbox A for the next segment from the input 
task, The output task takes the segment from mailbox B 

2-105 



inter AR-236 

TABLE 2 

AcIcIltional primitive •• upported by Ihe iRMX B6 nucleus 

CATALOGING SYSTEM 
DATA TYPES 
CATALOG OBJECT Catalogs "system data type token under name gIven 

bV task In Job partition directory. 

UNCATALOG OBJECT 

LOOKUP OBJECT 

NEW SYSTEM 
DATA TYPES 
CREATE EXTENSION 

DELETE EXTENSiON 

CREA TE COMPOSITE 

DELETE COMPOSITE 

INSPECT COMPOSITE 

ALTER COMPO'SiTE 

SEMAPHORES 
CREA TE SEMAPHORE 

DELETE SEMAPHORE 

SEND UNITS 

RECEIVE UNITS 

OTHER 
PRIMITIVES 
GET PRIORITY 

FORCE DELETE 

GET SIZE 

ADDITIONAL JOB 
PRIMITIVES 
OFFSPRING 

GET POOL ATTRIBUTES 

SET POOL MINIMUM 

DELETE JOB 

Removes name and token from Job partition 
directory. 

Uses name to fInd token cataloged in Job partItIon 
Idirectory. 

Notifies kernel of new system data type code for 
new system data type. 

Removes ~ystem data type code and deletes aJI 
composite sy'stem data types with that system data 
type code. 

Creates new system data type from list of current 
system data types and system data type code 
received from create extension. 

Deletes new syste,m data type. 

Gives list of system data types that form new 
system data type. 

Changes Itst of svstem data types that form new 
system data type. 

Creates semaphore system data type. 

Deletes semaphore system data type 

Task adds a number of Units to semaphore. 

Task asks for a number of units from semaphore 
Task can walt for response indeflnately, walt 
(generally 10 ms). or not wait. 

Gives priority level of task. 

Deletes system data type even if disabled delete has 
been called for system data type. 

Gives byte size of memory segment. 

Returns child Job partitions created by a task In 

parent Job partition. 

Gives memory pool attributes of job partition, 
including pool minimum, pool maximum, iOitlal Size, 
number of bytes used, and number of bytes 
available. 

Changes p'ool minimum for Job partitIOn. 

appear, an error routine can alert 
the system operator that processing 
has stopped. 

The mailbox method has several 
advantages over synchronization 
algorithms and polling tasks. The 
entire process is synch,ronized by the 
availability of data in segments, 
eliminating the need for algorithms 
and extra code; the same process 
applies whether the tasks operate at 
the same or different speeds. Also, 
burst input or output rates can be 
handled by adding buffers. For in
stance, if too much data arrives for 
the process or output tasks to handle 
immediately, the input task fills 
multiple buffers and passes them to 
mailbox A. The process task takes 
each segment in turn. After pro
cessing is completed, the segments 
are all sent to mailbox C, and the 
process waits for the next burst of 
data. The only interfaces between 
the tasks are mailboxes and seg
ments, so tasks can be easily re
placed or added to the processing 
loop; the same scheme works for 
larger or smaller segments. 

Tasks and task scheduling 
Tasks are independent bodies of 
executing code, initialized and 
scheduled by the kernel. Therefore, 
tasks must have iRMx 86 parameters 
like priority, initi'll memory 
resources, entry address, and other 
iRMX 86 data. A task is like an 
expanded subroutine managed by 
an operating system. The actual 
application code is written much the 
same as it is without an operating 
system except that requests are 
made using kernel calls. 

Even though the system's multi
ple independent tasks appear to run 
simultaneously, only one task 
actually runs at one time. Some 
method of scheduling is needed to 
decide which task receives control of 

Deletes job partition and returns Its memory to parent 
job partition. 

the system processor; this sched
uling depends on the task priority. Since data coming 
into a system must not be missed, the input task has the 
hi~hest priority. Data going out of the system are next in 
importance, so the output task has second priority; the 
sequential process task has the lowest priority. The 
scheduling algQrithm is simple-the highest priority task 
that is ready to run will get control of the processor. 
This is an example of preemptive priority. In this case, 
ready to run means that a task is complete-it has a seg
ment to fill and data coming in (input task), data to pro
cess (process task), or data to output (output task). For 
instance, if input data arrives when the process task is 
running and the input task has a buffer waiting for data, 
the input task will preempt the process task to receive 

and outputs the data. The output task has two choices: 
it can either delete the segment, letting the input task 
create more segments, or it can send the segment to 
mailbox C. After sending or deleting the segment, the 
output task waits at mailbox B for the next segment 
from the process task. If the output task sent the seg
ment to mailbox C, the input task segments from the 
output task, synchronizing the input task with the out
put task. If the output task deleted the segment, the 
input task creates a new segment and waits for input 
data. - The entire process runs continuously, synchro
nized by mailboxes and segment availability. Addi
tionally, the tasks can elect to wait for a specified 
amount of time at mailboxes, and if no segments 

Computer Dallign • September, 1882 

2-106 



inter AR-236 

r------OPFRAr;G~~TT\4V;;;i------l 

KERNEL 
CON1ROl 

STORE 

I, 

DllA¥ 

BAUD RAn 

3 ClUCK 

<;IAruS 

ADDRESS : _ ~:A~ONTROl 
DATA BUS I I !NTERRUPT 

L ________ ~~~~~ _______ ~ 

Fit 1 101:10 Brmware eomponent performs clock and 
Interrupt control funellons, and supplies operatin& system 
primitives. 

the data. If the input task is not running and the hard
ware driven by the output task is ready to output 
another data value, the output task will receive control 
of the processor. 

Since the operating system schedules the tasks, each 
task is designed as though it has sole control of the pro
cessor. Tasks make system calls such as receive message, 
which may cause another task to run because no 
message is waiting. In addition, interrupts will likely 
cause a different task to run. ');he kernel can schedule 
the tasks because only interrupts or system calls can 
cause a higher priority task to become ready, and both 
of these are handled by the kernel. Thus any time an 
interrupt occurs or a "System call is made, the kernel runs 
the highest priority task that is ready. The tasks are 
written without any code to manage scheduling. The 
kernel scheduling is general purpose, so adding new 
tasks to the system does not require modifying the 

INT£RRUPT 

,APX 86110 
OR 

,APX 88110 

scheduling functions. A system with work balanced 
among the tasks runs as though all tasks perform 
simultaneously. 

The net result of task scheduling is that the system 
runs as fast as it can. When data come in, the input task 
will always get control of the processor. The output task 
will execute whenever it has data to send and the input 
task is not running. The process task will run whenever 
it has data and no other tasks are running. Also, tuning 
the system is easier with the standardized mailbox inter
faces: slower tasks can be easily removed and replaced 

, with faster tasks, and remaining tasks will not be 
affected. 

In a multitasking system, multiple independent tasks 
execute concurrently. Buffer transfers occur through 
mailboxes rather than through a direct interface to 
tasks. and system functions not related to the primary 
data processing functions can be handled by other tasks. 
For example. a supervisory task that monitors a system 
console for operator requests can be added to the system 
at a lower priority than the process task. No changes to 
any scheduling algorithm would be required. 

Interrupt management 
The iRMX 86 kernel and the OSP provide two classes of 
interrupt management: interrupt handlers and interrupt 
tasks. An interrupt handler is a short procedure whose 
only function is to respond to the interrupt as quickly as 
possible. All interrupts become disabled in order to let 
the interrupt handler execute at top speed. Interrupt 
handlers can make only a few system calls. In the 
sample system. the interrupt procedure receives a data 
value, places it in a buffer, and returns. When the 
buffer is full, the interrupt handler notifies the interrupt 
task. Typical response time for an 8-MHz iAPX 86 pro
cessor, from the time an interrupt occurs until the inter
rupt handler gets control is 30 to SO ,.s. In the unlikely 
event of a worst-case time, response time is about 160 ,.s. 

Higher priority interrupts are enabled when an inter
rupt handler gets control, is 30 to SO ,.5. In the unlikely 
task uses a mailbox to pass the fun buffet on to the next 
task. Since both interrupts and tasks have priorities 
assigned to them, the kernel uses the task priority to 

INTERRUPT LINES 

FIt 3 Iwx .. lIardware requlremenll. Operatin& system iiroeeuor fill Into basic hardware system 
for Iwx .. and brillp wltll It fllllCtions of kemel .. _ory, I259A proarammable inlenapt controller, 
ud 1253 proarammable Interrupt timer. 

Computer DMlgn • SepI8mIIet, 11112 

2-107 



inter 

r:-----' --~ 
I . I 
I ,APX 86110 I 

CLOCK OR PROGRAM 
MEMORY 

DATA 
MEMORY I ,API 88110 I 

I INTERRUPT STATUS I 
: I 
I 
I r--...l..--~ __ ---lw:;"" 

INTERRUPT STATUS 

I 
I 

I 

BAUD RATE 
TIMER 

80130 

DELAV 
TIMER 

SYSTEM 
TIMER 

,APX 86/30,88/30 

Fla 4 Billie hardware system with iAPX OSP. OSP replaces kernel code, programmahle interrupt 
controUer, and pro .... mmable interval timer. ' 

determine if interrupts should be disabled or enabled. If 
the task priority is higher than an interrupt priority, that 
interrupt is disabled while the task is running. A priority 
level can be given to a task that disables all. some, or 
none' of the interrupts: ie, defining a task that is more 
important than all interrupts (initialization task), more 
important than some interrupts (input task), or less im
portant than all interrupts (processing task). 

Multiprogramming 
System parameters in a component system are normally 
well defined: RAM locations are fixed, code addresses 
are known, and address and I/O ports are specified. 
Application code usually depends on these parameters. 
If the system changes, substantial alterations are often 
needed in the application code. However, if an iRMX 86 
operating system is used, the kernel is made aware of 
system resources during system configuration. System 
configuration assigns these resources to "jobs." 

Jobs do not do work but instead serve as resource 
boundaries, containing tasks that accomplish system 
functions. Many component applications systems, 
including the sample system, will have only one job. All 
system resources are given to the job and all tasks are 
contained there. When the system is initialized, the job 
is created and control is passed to the first task in 
the job .. 

Fig 5 General purpose system consists of 3 basic functions. 
AppUcadon code receives data, places data in buffer, then 
proceues it. Processed data are sent to interrupt driven 
output devices. 

Computer De8ign • September, 1982 

Multiprogramming occurs when a system has two or 
more 'jobs. The system boundari~s provided by jobs 
confine errors and define limits for system resources 
such as memory. These boundaries limit the effect of 
one job on another. For instance, the system debugger is 
a separate job. During development, the sample pro
cessing system would look like Fig 7. After'develop
ment, the debugger would be removed, leaving only the 
application system. The job environment of the process
ing system IS not affected by adding or removing the 
debugger. The overall system will, of course, be affected 

la) 

MAILBOX 

Ib) 

Fig 6 MaDboxes allow intertask communication by 
providing places to send and receive messages (a). 
Synchronization is easy since tasks can poll a maDb'ox and 
walt for messageS. Mailboxes also form interfaces between 
tasks in application system (b) so tasks can be easUy added 
or removed without changing code. . 

2-108 



AR-236 

because removing the debugger will 
cause more. system resources to be 
available for other jobs. 

1.1 101 

APPLICATION S¥STEM 

The jobs, tasks, segments, and 
mailboxes are part of a large set of 
system data types which are data 
structures managed by the operating 
system. System data types are manip
ulated only through system calls, 
which enforce the rules that govern 
their use. Together system data 
types and system calls form the appli-
cation interface to the operating Fig 7 Job structure for development provides distinct boundaries so tbat a 

debugger (a) or otber piece of development software can be used during system 
system. This interface provides not development and later removed wltbout disturbing application job (b). 
only a good boundary for error 
detection and debugging, but also common architecture process can be in the same job and use the mailbox 
that can be carried from application to application. interfaces to send data to one output task. If system 

Debugging 
The i RMX 86 operating system has a debugger that inter
prets and uses system data types, and manipulates them 
to control the system. For example, the processing flow 
in the sample system can be halted by the debugger 
when a segment is sent to mailbox A. Data flow through 
the system can be traced by halting or break pointing the 
system as the segment goes from mailbox to mailbox. 

Debugging is further aided by the modularity of the 
tasks and jobs. Modules limit error effects; the inter
faces between the modules are well defined; and the 
modules are easily inserted or removed. A standard 
system debugger can be used for all applications, 
avoiding the need to develop specific diagnostic tools. 

Conclusion 
Multiprogramming and multitasking promote applica
tion code modularity, allowing applications to be 
created by adding new functions to old software. The 
same scheduling and kernel interfaces work for systems 
with only a few tasks, or systems 'with many tasks per
forming multiple processes. An entirely new process can 
be added to the example by adding more tasks. If the 
new and existing processes have nothing in common, the 
new process can be in a different job. If both processes 
can share general purpose tasks, such as output, the new 

designers are careful, they can design systems whose 
functions can be added in the field. Thus, expensive 
custom software will not have to be rewritten for each 
new application. 

Users with a wide range of applications will find that 
this approach allows them to implement a corres
ponding range of capabilities, expanding an OSP based 
system up to a high level human interface. A complete 
iRMX 86 operating system includes extensive 110 
capabilities, a debugger, an application loader, a 
bootstrap loader, and integrated user console functions. 
Such a system can perform general purpose processing 
and still provide all iRMX 86 facilities. With these 
features, one operating system can be used for current 
projects and expanded for future ones, minimizing soft
ware learning curves for new applications. 

Bibliography 
Introduction to the iRMX 86 Operating System. no 9803124, 

Intel Corp, Santa Clara, Calif. 1982 
iRMX 86 Nucleus Reference Manual. no 9803122. Intel Corp. 

Santa Clara, Calif, 1981 
Using the iRMX 86 Operating System on iAPX 86 Component 

Designs, Application Note APIIO. Intel Corp, Santa Clara, 
Calif, 1981 

J. Zarella, Operating Systems Concepts and Principles, 
Microcomputer Applications, Suisun City, Calif, 1979 

2-109 



intJ 

Reprinted with permission from VLSI Design magazine. 

MarchiAprill983. Copyrlght© 1983. 

ARTICLE 
REPRINT 

2-110 

AR-286 

June 1983 

210341-004 



inter AR-286 

Software That Resides In SUlcon 
Ron Slamp and Jim Person, Intel Corporation 

Silicon software sounds like a contradiction in terms. The 
casting of software in silicon implies that the software 
cannot be changed; yet software does and must change. 

For example, it must be possible to alter a microprocessor 
operating system so that the system will support different hard
ware and software designs, as well as accommodate new hard
ware components and applications. And if the software has 
been committed to silicon, then a way must exist to overcome 
any bugs that are discovered later. 

Design Considerations 

Silicon software consists of two kinds of code; on-chip code 
and off-chip code (see Figure I). In a typical case, some of the 
off-chip code works closely with the on-chip code, and IS devel
oped as part of the silicon software package. This special off
chip (or "support") code might contain initialization, interface, 
system, and version update codes. For silicon software to 
tolerate change and be usable In more than one system, the 
on-chip code must have three qualities: position independence, 
configuration independence and stepping independence. 

Position Independence 

Because the most advanced microprocessors address at least 
I megabyte of memory, system software that resides in silicon 
must work right regardless of its location in memory. Absolute 
addresses in the read-only, on-chip code or data restricts the 
configuration of the system. Because the on-chip code recog
nizes only offsets, absolute addresses are unacceptable. On· 
chip code cannot presume to know the location of any code or 
data, it can only presume to know the structure of the data 
which it accesses. It cannot know, except relatively, where in 
memory it (or any other code) resides. If the on-chip code is to 
be position independent, then any absolute addresses needed 
by the on-chip code must be obtained via the processor's 
registers. 

Position independence is not a new concept; in fact, it is' 
rather an obvious requirement for silicon software. Compilers 
and relocatable assemblers allow linking and locating, thus 
making it easier to produce positIOn-independent code. But 
most of these tools can also produce code that is not position 
independent. Silicon software developers need to be aware of 
the positIon-Independence reqUIrement throughout the design, 
implementation and test phases for their products. 

Configuration Independence 

The second requirement for silicon-resident software is that 
the on-chip code must not depend on the underlying hardware 
and software configuration of the system. Instead, the on-chip 
code must have indirect access to other code or data, and must 
then check the run-time data to deduce the system 
configuration. 

On-Chip Code 

SlilCOfl 
Software 

r---., 
I I 
I ~~J:~r~ I 
I I 
I I 

Oft-Chlp Code 

Other Code 

I System Memory 

I I L ___ J 

FIGURE I. SlllcOD software Is divided IDtO oD-chip code and off
chip code. The off-chip code either directly supports the 
oD-chlp code or contains other appllcailons code. 

Because of the read-only nature of silicon software, con
stants can cause problems when they are located within the 
on-chip code. Values representing a hardware device must not 
reside on-chip if that device can be located anywhere in the 
system, or when values support several devices having similar 
functions but different programming interfaces. Indirect access 
is necessary for all values that vary depending on the configura
tion of the system. 

Slepping Independence 

Stepping independence is an expansion of configuration in
dependence, and is perhaps the most elusive of the 
requirements to be met by software intended for residence in 
silicon. A "step" is an updated version of the on-chip code. The 
on-chip code and the off-chip code must remain compatible, 
regardless of changes in either of them. Stepping independence 
exists when all vc"ions of the on-chip code work with all 
versions of the off-chip code. 

If stepping indepcndence is taken into consideration when 
the silicon software i, developed, then provisions can be made 
for the subsequent additions of options without changing the 
on-chip code. Otherwise, the static nature of the on-chip code 
might make it impossible to add options. Although configura
tion independence can be designed into software from the start, 
stepping independence can be achieved only if a system's exist
II1g silicon software does not include features that p~event it. 

One type of data that is likely to change between steps is the 
value representing the size of a data area. If the software is to be 
stepping independent, it cannot know the sizes of the data areas 
accessed by on-chip code prior to run time. (No problems arise 
if on-chip and off-chip code agree on the size of the data area.) 

But what happens if the on-chip code is not from the same 
version of the product as the off-chip code, and if the size of the 
data area has changed between versions'! If the size of the data 
area is defined by a constant in the on-chip code, then that area 
might be smaller than the off-chip code expects it to be. This 
misunderstanding can lead to disaster as the off-chip code reads 
and writes beyond the data area. 

2-111 
VLSI DESIGN March/April 1983 210341_ 



AR-286 

This problem is solved when the on-chip code ascertains the 
size of the data area from off-chip data. Thus, the size of the 
data areas for the system becomes a configuration option. 

Getting the Bugs Out of Sll1con Software 

Every large program contains bugs. Designers usually 
remove bugs by modifying the program to correct the problem, 
and then discarding the old program. However, a program in 
silicon cannot be modified without stepping the component. 
And even so, it is undesirable to discard the outdated 
component. 

Software designed for silicon should include a facility for 
fixing bugs in on-chip code. One way to fix an on-chip bug is to 
prevent access to the routine containing the bug. A correct 
version of the routine is provided off-chip, and program execu
tion is forced to branch to the off-chip version whenever the 
routine is invoked. Modular programming practices during de
velopment help reduce the cost of such off-chip duplication. 

This on-chip bug-fix works well over time. Each component 
step has an associated collection of bug-fix modules. The col
lection is updated for each new version of the product, as 
component steps fix known bugs. During system configuration, 
the user specifies which component step is being used; the fixes 
for that step are included automatically in the off-chip code. 
Because of this facility, one step looks just like another to the 
user. 

Intel's OSF: A Software Component 

The Operating System Firmware (OSF) component consists 
of several hardware modules (see Figure 2). These modules 
provide two functions that are essential to operating systems: 
interrupts and timers. The OSF modules include a Control 
Store (16K bytes of fast RO M) to contain the silicon software, 
three programmable interval timers, an eight-input program
mable interrupt controller, a bus interface, control logic, a data 
buffer, and address latch logiC. 

The 80130: The iRMX~M 86 Kernel in Silicon 

Intel's first software-on-silicon product is the 80130. It pro
vides a fUl)ctional subset of the iRMX™ 86 Nucleus, which is 
the heart of the iRMX 86 operating system (OS). The iRMX 86 
OS is a real-time, multi-tasking, mUltiprogramming operating 
system intended for 16-bit microprocessor designs. The iRMX 
86 family of standard software modules includes a nucleus, a 
stand-along terminal handler, a stand-alone debugger, an asyn
chronous 110 system, a synchronous 110 system, a loader, a 
human interface, ahd options required for real-time applica
tions. The nucleus manages the creation and dynamic deletion 
of all system architectural features (tasks, program environ
ments, memory segments, data~communication managers, 
etc.). It also schedules tasks, based on priority, interrupt man
agement, memory management, validation of parameters, 
management of exceptional conditions, and co-processor 
support. 

How the 80130 Satisfies 
the Silicon Software Criteria 

The iRMX 86 Nucleus provides both the on-chip and off-chip 
codes needed to implement the operating system. The on-chip 
code resides in the 16K-byte ROM space of the 80130. It is the 
main portion of the Nucleus code, and includes the kernel of the 

nGURE 2. The OSF componenl works With systems that use Ihe 
IAPX 86, 88, 186, or 188 microprocessor. Close coupling of Ihe 
CPU and Ihe OSF allows maximum .ero-watl-slate performance 
of Ihe OSF software. 

On-Chi p Code 

80130 
Kernel 
Control 
Store 

Ofl-GhlpCocIe 

r Su~rt- , I User ExecutoO!"l 

I Software I , 

I ~ ~~u,estfor 
.... _ I ~~~I~g~ment ! ~servlce 
~ I _K."m ~ 

L..... ___ ---' L _?:::J + 

nGURE 3. The posltion·lndependenl Inlerface supplies data 
locatIOn and run-time values, and slart. on·chlp ezecution of 
Ihe software. 

operating system and the primitives, which are present in the 
basic 80130 configuration. The off-chip code is stored in exter
nal RAM or ROM. It consists of initialization code, and code 
that either cannot be position independent or cannot be known 
before a given system is configured. 

Position independence is guaranteed if entry to the on-chip 
code is possible only through an interface in the off-chip code 
that sets up the necessary registers. The off-chip position
independence interface (see Figure 3) provides an absolute 
data location and begins on-chip execution by the silicon
resident code. All run-time values can be determined based on 
the data location. On-chip execution gives the processor a 
location in the on-chip code from which other on-chip locations 
can be calculated. 

It was relatively easy to make the 80130 configuration inde
pendent, because (like most operating-system kernels) it con
tains only general-purpose functions. The off-chip code 
contains all the drivers for particular peripheral chips. The 
Interactive Configuration Utility integrates the drivers with the 
80130. 

The interface between the off-chip and on-chip codes 
remains stable across component steps. The stepping
independence interface (see Figure 4) resides on the chip, and 
is a map of the on-chip code. This interface gives the off-chip 
code indirect access to all on-chip "publics" (e.g., externally 
accessible routines, modules, and labels). It is also a chart that 
routes execution to the proper on-chip location. The off-chip 
code uses an index of this chart to specify which public should 

2-112 
VLSI DESIGN March/April 1983 210341·004 



inter AR-286 

On-chipCod. 

80'30 ....... 
T ..... 

11i:r.f I 1 ~.:utlon 
I I ' 
I ~ ... ~ ... 

'-"'=-...... -: Set:Up I~ 
I 

"IilURE 4. All on-chip acce._ are routed through the on-c:lI.lp 
.t.pplng-lDd.pend.nce Int.dace, wll.tcll. proYld •• compatl· 
bUlt, betw •• n on-c:1I.1p and oU-cll.1p cod.: B.cau •• til.. 
Int.dac. stnrc:ture stays const_t, til.. ext.mal referenc. 
also stays coDltant, wlI.Ue til.. on-cII.Ip OFFSET change. to 
point to til.. DeW location of til.. on·cll.tp cod •. 

be accessed. The index of a given routine remains the same 
across component steps, even though the actual address (offset 
into the component) of the public has changed. For different 
versions of the on-chip and off-chip codes to work correctly, all 
access from outside the component must be routed through the 
stepping-independence interface. 

The 80150: CP/II-86* 1D SWC:OD 

Intel's decision to implement CP/M-86 operating system in 
silicon (the 80150) raised a different design problem. With the 
80130, Intel only had to deal with Intel-designed software. Code 
design, implementation, extensions, corrections, support, and 
the subsequent effect on the end user were all under Intel's 
control. The selection of an independent software system such 
as CP/M-86 (a product of Digital Research, Inc.) introduced 
new factors into the implementation. 

The CP/M-86 Architecture 

The CP/M-86 operating system consists of three modules. 
The Console Command Processor (CCP) handles command 
line processing, and executes built-in utilities. The Basic Disk 
Operating System (BDOS) performs logical disk I/O, including 
disk reading and writing, directory management, and sector 
allocation. The Basic Input/Output System (BIOS), which con
tains the configuration-dependent code and data, also provides 
I/O for specific peripheral chips. 

CP/M-86 is a single-user, single-tasking operating system 
written in position-dependent code. The 80150 contains the 
entire CP/M-86 operating system; for many configurations, it 
requires no off-chip code. Intel's goal was to use the 
configuration-independent CCP and BDOS elements as a base, 
and add to them a BIOS that supported a variety of peripheral 
components but was still configuration independent. 

The 80150 BIOS supports the following two functional con
figuration options: 

I. A preconJigured-mode system, for which the system de
signer needs to do no operating-system code development 
or extension. 

2. A configurable-mode system, for which the designer makes 
a selection from among the Intel drivers supplied, and 
makes changes as required to meet hardware needs. 

The 80150 BIOS includes drivers for the following chips: 

~PIM-86 16 II tnuhmarlt. of Org,'al R~'('a,cll. 1m 

0 

CCP 
Code 

CCP 
Data 

+800 

BOOS 
Code 

BOOS 
Data 

+2500 

BIOS 
Code 

~ 
(a) 

Logoca' 
I.ocatlon 

0 

+,61< 

CCP 
Code 

BOOS 
Coda 

BIOS 
Coda 

CCP 
Constants and meuages 

BOOS 
Constants and mnaag_ 

BIOS 
Const.nt. and meueges 

16-byta cold-boot 
initialization 

(11.) 

"GURE 5. (a) Til. •• tandard disk-based CP IM-16 modul.1I on. 
long structur. contalD1ng both cod. and data. (b) IDt.1 
reorgaDII.d til.. ballc CP IM-a6 arcll.ttecture to fit th. op.ratlng 
.,st.m Into til.. 80150 OS flrmwar. compon.nt. 

8251A Universal Asynchronous Receiver/Transmitter 
(UART) 

8274 Multi-Protocol Serial Controller (MPSC) 
825SA Programmable Parallel Interface (PPI) 
8275 Floppy-Disk eontroller 
8237 Direct Memory Access (DMA) Controller 

If the 80150 is used as a co-processor with the iAPX 186 or 
the 188, then the on-chip peripherals of these processors 
(DMA, timers, interrupt controller, chip-select logic) are also 
used. 

Configuration independence is achieved via the Configura
tion Block (CB), with which whole BIOS drivers, data struc
tures, and built-in utilities can be selected independently by the 
system integrator. 

CP/M-86 n-ansformations 

Intel and Digital Research together addressed the issues of 
position dependence and intermixed code, dllta, buffers, and 
stacks. The CCP and BDOS were reorganized to consolidate 
code and to use the 80150's ROM space efficiently. 

CP/M-86 was originally developed using an 8080 model struc
ture. The use of this structure implied that the code and data 
groups would overlap, as they do in the classical 8080-based 
CP/M design. Each module contained set-aside buffer areas, 
and included separate data stacks. Therefore, all variable areas 

2-113 
VLSI DESIGN March/April 1983 



inter AR-286 

;' 
/ 

/ 

Address-BOOS 
Addres&-BIOS -, __ 

Addresses of user entry POIn~ - \ - _ _ Start of 810S 
CONIN ~ -t---==:..::.:.==--t 
CONOUT ,""'-..c . 

CCP 
Constants and Messages ~~~ST "" '---............ 

LlSTST ....................... :::: ............ 

BOOS 

/ 
/ ~~~~UT ""', ............. ' ............ 

AUXST ....... ~ I'- ............ 
BIOS code 

Constants and Messages 
Disk read ............ ............ ........... 
DI.Sk write !'-.., ............ 

CONIN ____ _ 

BIOS 
Constants and Messages 

E~or messages .......... """ ............. 

Input/output control blocks ......... 

CONOUT _____ _ 
--------

CCP 1'-. CRT ..... CONST--~--

Vanables. Buffer 
Keyboard 
Printer 

and Stack Disk 

BOOS 
Vanables, Bu Her 

Disk-parameter header 
Disk-parameter block 
Olsk~skew tables 

and Stack 

BIOS 
BIOS stack Van ables, Buffer 

and Stack - l&-dlsk-dnve disk-parameter headers 
All dlsk-pararneter blocks 
Check vectors 
Allocation vectors "" "" Track/sector disk buffers 

'L ____________ ~.----__ --~ 

(a) (b) (e) 

nGOE 6. The Configuration Block (CB) reconfigures the 80150 for specific hardware systems. a) The CB constants read 
down from the 80150, and vanables used at run-time. b) The BIOS portion of the CB conta1Ds configuration-dependent data. 
c)These addres.es proTide access to the 80150 on-chip code, to alter e"ecullon paths for different coDfiguratlons and stepplngl. 

and stack areas had to be removed from code that would reside 
in ROM. 

Figure 5(a) shows the general structure of the original CCP 
and BOOS. Although a natural separation between code and 
data is clear, Digital Research did not distinguish between 
constants, literal messages, and pure scratch storage. 

Intel's first step in the transformation of CP/M-86 was to 
group all variables within each module, including buffers and 
stacks. We then placed thIS data grouping at the end of the 
constants and literal mes,age, for each of the CCP and BOOS 
modules. 

The new structure (Figure 5(b)) includes all code, constants, 
and internal messages, as well as a 16-byte initial-programo·load 
(IPL) boot resident in the 16K-byte OSF ROM; We removed all 
variables from the body of CP/M-86, and put them in an eXter-
nal RAM-based structure. . 

Second, the implementation of CP/M via the Intel 8086 
"small model" (separate code and data segments) rather than 
via the 8080 model (intermixed code and data), meant that the 
necessary additional variable data space would be available at 
80150 execution time. The segmented architecture of the iAPX 
86 family made this implementation easy, because separate 
CPU registers were available for data and code addresses. As 
part of the BIOS initialization, we moved the constant data 
structures for the CCP, BDOS, and BIOS to the base of a 
RAM-resident Configuration Block (CB). An additional 
amount of RAM equivalent to the total variable space was also 
allocated and preset to zero. This 8086 "small-model" transfor
mation not only made it easy to separate code and data, but also 

made the code more efficient and eliminated approximately 
2100 bytes. 

We achieved configuration and stepping independence via 
the off-chip RAM-based Configuration Block. Figure 6(a) 
shows the overall structure of the CB as constructed during 
BIOS initialization. During initializatiOJi, the 80150 BIOS 
copies the CCP, BOOS, and BIOS constant and literal struc
tures into the Configuration Block, and appends additional 
space for variable and scratch-pad storage. Even the location of 
the CB is alterable, based on the address stored in locations 
0:3FE-3FF. 

Figure 6(b) shows expanded portions of the CB. The data 
area contains pointers that can be changed to select custom 
off-chip code instead of the standard on-chip code. The entire 
BIOS can be replaced. (The BIOS code insert in Figure 6(c) and 
the various code labels are reflected back to the CB.) Complete 
I/O control block structures are Pcovided for each CP/M logical 
device, including CRT, keyboard, list, auxiliary, and disk. The 
control block includes port addresses, protocol support, and 
other default data needed to detect and control the status of 
each peripheral. Figure 6(b) also expands the systems 'tables 
and buffers created for disk support. 

The addresses in Figure 6(b) indicate how stepping indepen
dence is achieved. Any off-chip routines changed by the user 
can be selected by altering the address of the CB. If Intel 
updates an on-chip routine, the address in the CB is updated 
automatically when the 80150 copies its constant structures 
into the CB. As explained above, full stepping independence is 
maintained, because any ROM changes can also be imple-

2-114 
VLSI DESIGN March/April 1983 210341·004 



intJ AR-286 

men ted off-chip by- having the address in the CB point to an 
off-chip patch. (The CB contains BDOS entry points (shown in 
Figure 6(b» that make thiS change possible.) 

The Configuration-Independent Interlace 

Use ofthe predefined configuration requires that the 80150 be 
installed at the top of the 8086 memory address space (FCOO:O). 
The I6-byte internal hardware boot is activated at all POWER 
ON and hardware resets. and passes control to the 80150. The 
80150 initialization sequence uses this positioning to indicate 
the default hardware configuration (floppy disk, printer port, 
serial console, or auxiliary port). Each device has predefined 
port addresses, interrupt assignments, and protocols. The 
iAPX 186 or 188 CPU supports programmable chip-selection 
and the on-chip DMA drives the floppy disk controller. 

If the configuration must be altered, or if the BIOS code 
needs revision, the 80150 can be installed on any 16K code 
boundary except at the very top or bottom of memory. A 
PROM that contains off-chip code and data for a user's particu
lar configuration is also installed at the top of memory. 

The 80150 initializes the default system hardware tables, 
then calls an EPROM to complete or revise the existing data in 
the off-chip CB RAM area. At this point, the CB contains the 
addresses that select either on-chip or off-chip code. When the 
configuration is complete, control is returned to the 80150. The 
80150 completes the CP/M initialization, displaying the familiar 
CP/M "A" sign-on. 

Conclusion 

Converting software to silicon is not new. But redesigning 
software to consist of on-chip ROM code and configurable 

RAM data is somewhat more innovative. One silicon-related 
specter that haunts software designers is the fear of 
"committing code before its time." But software designers can 
never expect to produce bug-free code the first time: And sys
tem designers cannot always predict the capabilities or the 
implementation requirements of peripheral devices that have 
yet to be built. Nevertheless, software designers who use the 
general silicon-implementation strategies of position indepen
dence and configuration independence, and who provide for 
stepping independence, can create standard silicon hardware 
without fear of component obsolescence. 0 

About the Authors 

Ron Stamp received the AS. degree in 
software technology from Portland Commu
nity College, and gained much of his skill in 
electronics at Clark Community College in 
Vancouver, Washington. He has worked In 

Intel's OEM Module Operation III Haw
thorne, Oregon since 1978 and IS currently 
the project leader for component software. 

Jim Person received the B. S degree In math
emattcs in 1962 from the UOIverslty of 
Arizona. He was the engmeenng project 
manager at Intel for the 80150 "CP/M-on-a
chip." 

2-115 
210341·004 



inter 

Reprinted with permission from Electronics, 

March 24,1983. Copyrlght© 1983. McGrayrHllllnc. All nghts reserved 

. ARTICLE 
REPRINT· 

2-116 

AR·287 

June 1983 

210341-004 



intJ AR-287 

SPECIAL REPORT 
Punching in for real-time jobs 

in industry, R&D, and offices, 

operating systems use special 

software structures to squeeze 

better-than-ever performance 

out of 16-bit microprocessors 

by Stephen Evanczuk, Software Editor 

o A special class of operating systems is hard at 
work in the 16-bit microsystem world. For controlling 
environmental processes, acquiring data at high 
speed, or even handling transactions at a commer
cial bank, these operating systems contain mecha
nisms that enable them to respond rapidly to exter
nal events and that differentiate them from the more 
familiar general-purpose operating systems. 

In fact, all the operating systems for 16-bit micro
processors respond in a reasonable period of time. 
But the general-purpose, or developmental, operating 
systems like CPIM, Bell Laboratories' Unix, and MS
DOS are intended for standard programming activi
ties like editing, compiling, and file management 
[Electronics, March 24, 1982, p. 113]. As such, they 
lack certain software structures needed for reliable 
control of processes producing data at a high speed. 

Real-time operating systems tend to fall into two 
general categories-multipurpose and embedded, re
flecting the type of hardware they run on. Multipur
pose real-time systems are typically built around full
fledged microcomputer systems with terminal, 
keyboard, plenty of system memory, and mass stor
age. Furthermore, in process-control or data-acquisi
tion applications, some special-purpose hardware is 
usually included in these systems to serve equipment 
or high-speed data input operations. Besides the fa
miliar applications for research and development, 
transaction-processing environments are an' example 
of situations needing multipurpose real-time systems. 

No doubt the largest class in volume because of 
their growing use in consumer items, embedded sys
tems are minimal hardware systems, often just one
chip microprocessors that control limited parts of a 
larger system. Programmers ordinarily employ a spe
cial development system to create the software, 
which is loaded into the target system for use and 
ideally is never seen again. 

To meet the needs of these two classes of appli
cations, real-time operating systems 'come in three 
flavors for 16-bit microprocessors. Serving multipur
pose real-time systems, one type-discussed in the 

first part of this report (see p. 106)-includes all the 
software development support found in their general
purpose counterparts. Furthermore, many can be 
stripped of the layers needed in the developmental 
environment and placed in programmable read-only 
memory for use in an embedded system. 

For "'ose who swear by Unix, the group of Unix
based operating systems discussed in the second 
part (see p. 111) may mean no need to swear at it in 
real-time applications. A growing number of vendors 
are starting to convert this admittedly non.:..real-time 
operating system into versions that can be used to 
handle external processes. Although the industry is 
cautious, if not downright skeptical, of real-time ver
sions of Unix, the fact that C-the language of 
Unix-is so highly regarded for use in real-time appli
cations may help swing this group iDto the forefront. 

The potential for distributed-control systems based 
on embedded microprocessors hinges largely on the 
availability of high-performance real-time operating 
systems that can be plugged into the application with 
the same ease as an integrated circuit. Called silicon 
software, these operating systems discussed in the 
last part (see p. 114) have been deSigned to be 
stored in read-only memory. Providing a fixed set of 
system calls, they present programmers with a con
sistent set of high-level commands to perform the 
low-level functions usually built from scratch. 

Building system-level software from scratch has 
long been the hallmark of real-time programmers, 
even a mark of honor. Fortunately, however, the in
creased acceptance of ready-made operating sys
tems using well-understood algorithms (described in 
the first part) is helping to replace this software "ran
dom logiC" with rather more standardized packages. 

On still another level, the unique responsiveness 
and throughput demonstrated by real-time operating 
systems is a truly user-friendly feature. For this rea
son, these systems should find their way into less 
obvious real-time applications, such as transaction 
processing, word processing, and personal work sta
tions for office automation. 

2-117 
IIMlronlcal March 24, 1983 210341-<10< 



AR·287 

AI90rithms star in 
multipurpose slJstems 

o Whatever environment it finds itself in, the function of 
an operating system is the efficient management of 
shared resources by a number of users, whether these are 
human beings accessing a computer through teiminals or 
programs vying for a single central processing unit. In 
fact, the degree of sophistication of an operating system 
is reflected by the number and types of physical re
sources it manages and by the fineness of control it 
exercises in their management. And operating systems 
targeted for control of the external environment must 
wrestle with the most demanding resource of all-time. 
The degree of care with which such software is designed 
to manage time is what determines its suitability for the 
real-time environment. 

Schedule,. and queu •• 
Two critical aspects of the r~-time environment are 

the random nature of physical events and the simulta
neous occurrence of physical processes. Consequently, 
interrupt handling and multitasking are primary attri
butes of a real-time operating system. In fact, it might be 

EXECUTING 
PROCESS 

Cl 

I.) ROUND·RDBIN SCHEDULING 

EXECUTING 
PROCESS 

TASK WAITING 
TO EXECUTE 

Ib) PRIORITY'BASED PREEMPTIVE SCHEDULING 

RELATIVE 
PRIORITY 

1. PriOrlti.s.)n round-robin scheduling (a), tasks (or processes) talle 
equal turns executing, while a higher-priority task Will supersede a 
lower-priority one in priority-based preemptive scheduhng (b) Most 
schedulers employ some combination of these techniques. 

argued that the mechanism for handling multitasking
the scheduler-is the heart of the operating system. The 
rest of the operating system lies atop this kernel and 
serves the specific demands of the application 
environment. 

In particular, the lists, or queues, and their managers 
that surround the scheduler are constructed to deal with 
the different physical resources supported by the operat
ing system, Thus, one queue may contain those tasks 
(processes, or programs in the course' of being run) that 
are ready to execute on the processor, another queue 
may be tasks waiting for access to input/output hard
ware, and another queue may contain tasks waiting for 
some specified event to occur. 

In any multitasking operating system, the scheduler 
uses the queues as input. Its output, on the other hand, is 
a single task that has been activated and allowed to 
execute on the central processing unit. The scheduling 
algorithm in large part defines the operating system. 

In one system, the scheduler may simply select a task 
on a first-come, first-served basis, allowing it to run until 
completion or, until some specified period of time has 
elapsed. This type of relatively primitive algorithm was 
commonly used in mainframe computers running simple 
batch-oriented operating systems. 

In a slightly more sophisticated operating system that 
can be used interactively through terminals, the schedul
er may select tasks on a round-robin basis and permit 
each of them to run for a specified period -of time (Fig. 
1). Once the task exceeds its time slice, it is placed at the 
end of the queue and forced to wait until all other tasks 
have had a chance to execute. 

Round-robin scheduling with equal time slices is ade
quate if every task is no more important than any other 
task. However, if some are considered to possess a higher 
priority, then a more sophisticated scheduling algorithm 
must be used-one that recognizes that some tasks are 
more important, but that no task should be excluded 
from using the CPU. 

One solution is the use of several queues, where the 
length of the time slice is related to the priority of 
elements in the queue. In this case, the scheduler would 
allow all tasks in each queue of a different priority to 
execute on the cPu, but lower-priority tasks would be 
given less time. 

A further refinement permits higher-priority tasks to 
suspend a running task. This technique, called preemp
tive scheduling, is an important feature for real-time 
environments, in which the delayed execution of a high
priority task could have disastrous results, rather than 
simply disappointing the user. 

In scheduling algorithms, tasks may exist in a number 
of logical states, depending on their readiness to run. In 
the Versatile Real-TimeExecutive (VRTX) from Hunter 

2-118 
Ilectronlcsl March 24. 1983 210341-004 



AR·287 

& Ready Inc .• Palo Alto. Calif .• for example. tasks are 
driven through four possible states by external events. by 
other tasks and system utilities. or by their own system 
calls (Fig. 2). For example. an executing task may delete 
itself-in which case it enters a dormant state-or may 
cause itself to be blocked either explicitly through a call 
to suspend itself or implicitly through a call to perform 
some I/O function. On the other hand. once suspended. a 
task may reschedule itself through a system call. or ·an 
external real-time event may bring the task back into the 
ready queue. 

Recognizing the importance of scheduler design. at 
least one software vendor has made it easier for real-time 
users to build systems around a prepared kernel. yPited 
States Software of Portland. Ore.. is offering a basic 
scheduler that assembles into less than 100 bytes of ob
ject code for the target microprocessor [Electronics. Nov. 
17. 1982. p.206]. Furthermore. in anticipation of real
time systems targeted for specific application areas. U. S. 
Software supplies a list of design notes detailing exten
sions to the basic kernel. 

Another u .. for queu .. 
In addition to having queues serving the scheduler 

directly. most systems use them as the preferred means 
of associating a task with a required resource. For exam
ple. one capability commonly found in real-time operat
ing systems is the ability to suspend a task for a specified 
period of time. Typically. the operating system contains a 
special queue for this function. Each element in the 
queue is a task in a suspended state. Associated with 
each task is a counter that contains the number of clock 
ticks remaining until it should be reactivated. , 

For example. in iRMX-86 from Intel Corp., Santa 
Clara. Calif.. the counters keep track of the incremental 
time remaining with respect to the previous element in 
the queue. rather than the total time remaining before 

2. T,... ...... As one task (or process) runs, others may be in 
various states of readiness. In Hunter & Ready's VRTX, for example, 
tasks can be ready (able to run immediately), suspended (waiting for a 
resource), or dormant (deleted by a system call). 

the task may be reactivated. Thus at each clock tick only 
the counter in the element at the head of the queue need 
be decremented, rather than every counter in every queue 
element. This method takes longer to insert new elements 
into the queue and so requires slightly higher overhead 
for insertion than when the total time is maintained by 
each counter; however. that overhead is more than offset 
by the time saved by Updating only a single counter. 

Real-time environments pose a special set of problems 
for resource allocation. Besides all the more familiar 
problems of scheduling. a real-time operating system 
must maintain reliable behavior under extremes of load 
when it is driven by a high rate of external stimuli. From 
the system user's point of view, the system must main
tain a predictable level of respOnse and throughput. 

In an interactive environment, users sitting at termi
nals measure response as the time the system needs to 
react to a keystroke. In general, system response is the 
time that the system needs to detect and collect data 
from some external stimulus. Throughput, in an interac
tive environment. is seen as the number of users able to 
utilize the installation simultaneously. In a more general 
real-time environment. throughput is the rate at which 
the system is able to collect, proces$, and store data. 

In fact, although response and throughput share some 
common software elements, operating-system designers 
will invariably find themselves forced to make choices 
that will tend to optimize one at the expense of the other. 
Often. the interrupt-handling requirements of a real-time 
operating system force this choice. 

Interrupt processing is hardware and software integra
tion at its most demanding (see "Handling hardware 
interrupts," p. 108). To handle interrupts, operating sys
tems often place layers of software between the user and 
the microprocessor in order to allow different levels of 
performance and capability. 

Intel's RMX-86 is a typical example of distinct levels 
of software used to perform basic interrupt processing. 
At the lowest level. an interrupt handler works intimate
ly with the hardware to execute some operation, such as 
sending a message character by character to a printer. 
Code for interrupt handlers is kept compact and simple, 
since system interrupts afe disabled during their opera
tion. The higher level, called the interrupt task. works at 
a prionty a.~sociated with the particular hardware it ser
vices. Interrupt tasks act as interfaces between applica
tion tasks, working with specific interrupt handlers to 
complete execution of operations dealing with external 
devices. RMX makes this interrupt-handling mechanism 
available to application programs through a special set of 
system calls. 

Protection and communication 
Once the interrupt software has completed its function. 

tasks that use the data are indistinguishable from any 
other task in the system as far as the operating system is 
concerned. Unless special care is taken, conflicts could 
still arise between two separate tasks that might need to 
use the same resource, such as the same location in 
memory. MP/M-86. for example. employs a special 
queue. called a mutual exclusion queue, that contains a 
unique message representing the shared resource. In or-

2-119 
Electronlc./March 24. 1983 210:141 __ 



inter AR-287 

der to use the resource, a, 
task must first capture 
the message, much as a 
node in a token-passing 
network must first obtain 
the token before being at 
liberty to trapsmit. 

Per Brinch Hansen l 

identified such shared resources as key elements in multi
tasking systems. Sections of code that access critical re
sources are called critical regions. The simple expedient 
of ensuring that only one task at a time is allowed in a 
critical region guarantees that multiple tasks may share 
the same critical resource without fear that its integrity 
may be compromised when two of them attempt to ac
cess it simultaneously (Fig. 3). 

This concept of the mutual exclusion of tasks from 
critical regions is implemented in a structure called a 
monitor, in which critical regions are gathered in one 
section of code and protected from use by more than one 
task at a time. The MSP operating system from Hemen
way Corp. of Boston [Electronics, Jan. 27, 1983, p. 119] 
explicitly supports mutual exclusion through monitors in 
its internal structure. 

Furthermore, user-written routines needing monitor 
protection are provided with four functions in MSP that 
are implemented using hardware traps for rapid access: 
Entermon, Exitmon, Wait, and Signal. Entermon and 
Exitmon serve as monitor entry and exit points, respec
tively, performing required housekeeping functions. En
termon disables system interrupts and preserves all regis
ters, while Exitmon reverses these actions. Wait and 
Signal, on the other hand, work in tandem to control 
access to a critical resource. Wait queues up tasks need
ing an unavailable resource. Signal releases them from 
the queue when the resource becomes available. 

Wait and Signal are examples of an intertask commu
nication mechanism, called semaphores, found in most 
real-time operating systems. As noted, these commands 
simply queue up and release tasks needing a critical 
resource. Such a resource may be an 110 device, a memo
ry location, or simply a go-ahead' signal that synchro
nizes a pair of tasks. For example, task A may execute 
only after task B, has completed. In this case, task A 
would begin with a Wait (flag) command, where the flag 
is used as an associated variable. Task B, on the other 
hand, would end with a Signal (flag) command. In this 
way, task A would be blocked until task B had executed 
its Signal command at the end of its processing. But 
exchanging simple go-no-go signals is not sufficient for 
many multitasking environments. 

For longer messages, real-time operating systems offer 
extensive intertask communication facilities called mail
boxes. Mailboxes are essentially semaphores with storage. 
As such, tasks needing data from another task will wait 
until the other has loaded the mailbox with the informa
tion. Intel's object-oriented RMX-86 transfers any of the 
defined objects in the system through mailboxes. Hemen-

, way's MSP, on the other hand, provides a buffer of fixed 
size that may be used without restriction on its contents, 
as long as the 256-byte buffer is not exceeded. With its' 
Multibus message exchange (iMMX) extension to RMX for 

=~/IOIiOn:,' "', ", . ",i""".,·'"",' 

, i ""!~ 'lMf:detail$ol 'slmJM.~1!ht _01111",' 
Dies theeoll'lPlelc nal.l;lteol '~~' ,'" ' , '~;llf_~i';!:" 

';'w-- as II v9h1c~ tor lotf~"" ",~,~_ 
'~~In1hillfiekl, ' '. , " ' '>' '. ',' "" :"'" , 

',I AMandard $01Iwaf',~systemlna mi«~''':',: 
_(l'$dthekeyb~dMOnltor, ilI~"fOf;~' ,; 
wlIh the harGware in.,. sy&lem to <letecta~,' , 
eolleot il, and eIIeI;t ~ action based on tlleill!i~" 
ci'IaraoIeI'. When a k$y is slr\lCkOl'l II. term •• the ~, " 
spon<ling byte 'Is oonver1ed into II. MrIaI stream 01_ ""'1 
are paBlI8d from the tel'minal to a uoiversal aeynohr •• "", 

, r.ceIver-t .... mitler. ameli J't<IeiYes the full cI'lar«Cllllt ;i:I~I"', 
UART generaIeB a hardware sigNl, or interrupt. hi n.!" ' 
fi88 tt1e proe8ssor. SinC& Inlerrupt management is a_~"" 
man aotM!.y, prooellllOl'll CQntaln' $pecial 11arOWare' to""', 
spon<l to thls signal, ,,' H,', 

, AIIt\ough the<ielallllillay vary frQm 01'18 pettiCuI"'~:' ' 
proceISOI'tothe I\eld, the resullis the' same,itO!,,,!. ~h$, ' 
~requesiline i$'a.eI1td, iheprllCHilOl!'QlaSllSII$" 

,current prooenlng an<! places valu. from lIS internal, 
nIIgisIetII iNc IIJ'lIIem memory., T~Iy, the prQce$lOf . 
aIelUS and.~-~ 'tgllltel'$ are $aVildiR \he" 
SJ$hIm stacII. a tHwn, 1iM-M l!MIerloo.letI lin ~1Mi' I, 
pOrtio",of~,~. As tneligln;lIhm, Ibep; ~II, 
IIIOr tespor\ds,' to the ... ";'i, 

, iIIeuing a ~ of iIiI"j. 
, 1'- I*1Phetal, . . ' natlef ih$ ',~ ,Ii': 
._"~.,admlll!llili_e$lgn.lon~~f>wIil! 
, ~ ~pOiIIIS by I'IIturnlnfll\ltli: 'MemorY add",_, oI'boftI;,,;, 
~he Inltrru,,-h8ndIing aubrOllllhe an<! the new pr:oce~;,i," 
llitatuli.TypqIIy, the new Il!'QOesaor status Wll PfCI'IIde fof' 
dIaabIIng any further interrupts. 'l'his latter 'aotiOnis a simpI. ~, 
preclllJliOn, preventing a single external atImuIus from caus
ing a continuous series of interrupts that wUI eventually 
result in an overllow of the system stack. 

Such an interrupt mechanism, called a vectorecllnterrupl, 
allows the speediest identifiCation and reaction to an inter
rupt. (An alternative interrupt mechanism used by earNer 
processors, called a devlce-polling interrupt, simply forced 
the processor to switch to a qefined address in memory 
containing software that polled each p.ripheral device unlil 
the device that generated the interrupt was discovered.) At 

2-120 
Ilectronics'March 24, 1963 , 210341-004 



AR-287 

2-121 
Electronics/ March 24, 1983 210341_ 



) 

AR-287 

multiprocessor-based sys
tems, Intel replaces the 
concept of a mailbox 
with that of' a software 
port connecting different 
tasks, whether they exist 
on the same or different 
physical processor. 

Unlike memory-intensive software development sys
tems, real-time environments find less need to support a 
virtual address space. In fact, the increased system over
head is less than desirable, because the designer seeks to 
minimize response latency. A useful feature, however, 
that can be found in some real-time operating systems is 
a set of system calls responsible for dynamically allocat
ing and deallocating memory. 

For example, in the ZRTS system from Zilog Corp., 
which comes in different versions for the Cupertino, 
Calif., firm's segmented Z800l and nonsegmented Z8002, 
a set of three system calls provides for dynamic alloca
tion and deallocation, as well as information on the sta
tus of memory allocation. The system call for memory 
allocation allows application programs to specify the at
tributes of the memory block to be allocated and returns 
a name referring to the created structure. 

Besides similar system calls, Intel's RMX adds some 
calls suited to its context-based architecture. In RMX, 
each task lies within the context of a job environment 
that bounds the scope of tasks within it (Fig. 4). As such, 
each task is allowed to draw from the memory pool of its 
job. In case more memory is required than that initially 
allocated to the job, a pair of system calls provides for 
querying the system on the size of the job memory pool 
and for dynamically changing it. 

Dynamic memory allocation and deallocation is a rela
tively advanced concept that exacts some overhead dur
ing runtime. However, the alternative--static allocation 
before runtime based on expected requirements-may l;le 
less suitable for applications in which the real-time envi-
ronment is relatively unpredictable. ' 

111 real-time operating systems, disk-file management is 
treated as just another asynchronous task possessing a 
particular set of critical resources--mass-storage devices. 
In real-time environments, file-managemeht utilities have 

Cal 

TASK A TASK B 

,,*eooN't: -I---- ... _,~~,. :.,.;' ~, 
•. ',. ... -'c';· '7 ::;·'·P, 

RESULT 
STOREO COUNT· N 
NUMBER OF EVENTS· N + 1 
COUNT·O 

to meet not only the requirements of general-purpose 
systems but some additional demands: 

In terms of system response, a requirement of real-time 
operating systems in heavily loaded systems is the ability 
to conduct asynchronous I/O operations. In such an oper
ation, the calling task simply queues up the I/O request, 
then immediately returns as if the task were completed in 
zero time. When the 1/0 request is fulfilled, the operating 
system switches the processor to a' separate routine 
whose address is supplied when the original asynchro
nous request was made. This completion routine then 
may continue any processing that may be required fol-
lowing the 1/0 request. . 

System throughput depends heavily on the efficiency 
and performance of the 1/0 subsystem. Peripheral con
trollers with direct memory access and the ability to 
move the disk's read-write head without necessarily per
forming data transfer can significantly reduce the over
head associated with data movement. 

Reducing overhead 
System software can also contribute to reduced over

head by providing a simple disk organization when high 
throughput is needed. One of the simplest structures' is a 
file consisting of an unbroken series of disk sectors, such 
as the contiguous file in Hemenway's MSP or the physical 
file in Intel'S RMX. By ensuritig that the next block of 
data will be written to the next physical sector on a disk, 
the operating system can reduce the delay caused by 
head movement on the disk. 

In their use of an 1/0 interface that is common to all 
system device drivers, MSP and RMX attack another im
portant aspect of system design, though one not necessar
ily tied to their utility in real-time applications. In MSP, a 
basic 1/0 routine called Iohdlr serves for all operations by 
accessing a special block of information in memory. 
RMX, on the other hand, uses a number of device-inde
pendent system calls to handle communication with pe
ripheral devices. 

Next to multiprocessor-based software systems, real
time software systems are the most difficult to debug. 
Again, the cause is the distinguishing feature of real-time 
operating systems-precise management of time. Stan
dard debugging tools for single-user general-purpose op-

TASK A 

Cbl 

TASK B 

ACQUIRE COUNT 

'.1 ..... 
RELEASE aUNT 

RESULT 
STORED COUNT· N 
NUMBER OF EVENTS· N + 1 
COUNT· 1 

3. Crltical .... lon .. lf two asynchronous tasks use a counter, events can be miscounted if task B interrupts task A before the counter is reset (a). 
Forcing the tasks to acquire a counter before using it (b) ensures synchronization through the critical regions (tinted). 

Electronic.' March 24, 1983 210341·004 



intJ AR-287 

4. .lob contut.ln Intel's RMX, all jobs eXist 
within the context of another job. A directory 
defines the objects that are known to other 
ob;ects In the same context For example, all 
three jobs may use m8llbox R. since It IS In 
the system's root-Job object directory 

eqting systems generally disable all system interrupts in 
various phases of the debugging routines. Since the object 
of a real-time software system is asynchronous involve
ment with the task under control, this effect makes stan
dard debugging tools useless. 

Ideally, debugging real-time software would use perfor
mance-analysis tools and troubleshooting aids built into 
the operating system itself. Unfortunately, the processing 
overhead and additional memory requirements imposed 
by such a technique make this an unpopular notion in 
the design of an operating system. However, some sys
tems do provide some means for run-time error handling. 
The exception handlers in RMX, for example, are proce
dures that are associated with each task when it is creat
ed. If a task attempts to use a system call but encounters 
an error, called an exception, the operating system in
vokes the associated exception handler to allow some 
,graceful recovery from the error. 

Although the technique in VRTX is not true exception 
handling, Hunter & Ready's silicon-software system does 
include a mechanism to build run-time debugging soft
ware. A special location in the VRTX configuration table 
(see p. 115) causes a user-defined routine to be called 
whenever a context switch is performed. By recording 
information about the task as well as the processor, such 

a routine can be used to create a list, called a trace, of 
the history of task execution. 

Because real-time systems often include special-pur
pose hardware, the accepted technique for debugging 
user-written routines uses the classical approach of col
lecting data before and after passing through a suspect 
region, along with a logic analyzer to monitor timing of 
traffic through critical regions. 

Intel offers some relief to this problem through the 
iRMX debugger In particular, the debugger allows the 
user to work with individual tasks without interfering in 
the operation of other tasks, as well as to monitor the 
activity of the system as a whole without disturbing it. 
The debugger recognizes data structures in the RMX ker
nel, so the user may examine system objects. In addition, 
Intel's crash analyzer brings mainframe debugging power 
to microprocessor-based applications using RMX. 

Zilog's ZRTS configuration language offers another lev
el of support to the development of systems targeted to 
specific hardware complements. By defining the details of 
the hardware, a system designer can configure ZR TS to 
particular systems. --1 Per Bnnch Hansen, "Operating System Pnnclples," Prentice-Hail, Englewood Cliffs, N J, 
1973, P 84 

Desi9ners tune Unix 
for real-time use 

o With an eye on the growing momentum of Bell Lab
oratories' Unix, real-time system designers have endeav
ored. to squeeze this complex operating system into the 
rigid confines imposed by the demands of real-time envi
ronments. Although Unix brought advanced system ca-

pability to mini- and microcomputers, the original intent 
was to provide a hospitable software-development envi
ronment, rather than to include the features considered 
necessary for real-time uses. 

Until now, data-acquisition systems employing unmod-

2-123 
1Ieotron1ca/ March 24, 1983 210341_ 



AR-287 

ified Unix typically used . 
dedicated microproces
sors to butrer a central 
computer from constant 
random activity caused 
by external events. For 
example, in the Conceps 
process-control system 

from Bell Laboratories, Murray Hill, N. 1., a Unix-based 
host is linked with auxiliary microprocessors. In each 
microprocessor, software deri"ed from Unix software 
handles the low-level details of real-time activity (Fig. I). 

Unix toH reaIoII ... 
Appearing in all shapes and sizes, Unix-compatible 

executives, Unix lookalikes, and new Unix versions are 
bringing this popular environment into real-time applica
tions. However, unlike their colleagues creating totally 
new operating systems (see pp. 106-111), designers of 
these second-generation systems are constrained by the 
boundaries set by the original. Caught between Unix's 
complex organization and the high-speed needs of some 
real-time applications, they have opted for preserving the 
basic architecture. Still, for intensive data-acquisition ap
plications, vendors like VenturCom, Cambridge, Mass., 
and Masscomp,' Littleton, Mass., add on dedicated hard
ware like high-speed peripheral controllers to link devices 
into the main system without losing the generality of the 
Unix software architecture. 

~or microprocessor-based dedicated systems, memory-

DATA PHONES 
AND 

TERMINALS 

DOWNLOADING 
AND STATUS 

SATELLITE 
MICRO 

PROCESSDR 
DATA (LSI-ll) 

SENSDRS 

1 • .. teillte _.~ .... )n Bell Labs' Conceps sYB-tem, separate 
microprocessors handle low-level details of process control. Yet 
another processor-a host computer that runs the Unix operating 
system-is in charge of coordinating these satell~e 'l'achines. 

resident kernels like the C Executive bring a measure of 
Unix compatibility. to even dedicated systems. Offered by 
JMI Software Consultants of Roslyn, Pa., the C Executive 
combines support of an extensive C-lanauage run-time 
library with many of the features considered important in 
real-time applications. Although not directly supporting 
shared data in its multitasking architecture, the execu
tive's intertask-communication facilities include data ex
change through a queuing mechanism. As befits a real
time executive, the task-scheduling algorithm allows 
higher-priority tasks to preempt lower-priority ones. Be
cause it is intended primarily for embedded systems
that is, dedicated microsystems that do not have disks
the C Executive is totally contained in system memory 
and does not support the extensive Unix file-management 
subsystem. 

Controlling real ...... tasks 
Full-blown 19'nix lookalikes, on the other hand, find 

themselves forced to deal with some of the very internal 
structures that aided Unix's rise in popularity. For appli
cations like program development where regular schedul
ing is more important that instant response, scheduling is 
aided by Unix's manipulation of the priority levels of 
tasks (or processes, in Unix's preferred terminology). For 
real-time applications, however, the slight uncertainties 
this feature introduces could destroy the synchrony of 
timed events controlled by the system. 

Consequently, one enhancement commonly found in 
the real-time offshoots is the addition of some mecha
nism to ensure more precise control of real-time tasks. A 
technique that sits well within Unix's task-oriented (that 
is, process-oriented) design is the definition of a real-time 
class of tasks (or processes). This class earns special 
rights in the operating system, such as a guarantee that 
each task will not be swapped out of memory, but re
main locked in and ready to respond more rapidly to 
events. 

VenturCom's Venix, for example, defines a,real-time 
priority level. The scheduler allows tasks running at this 
level to maintain control of the processor for as long as 
necessary. In contrast, Regulus from A1cyon Corp. of 
San Diego, Calif., speeds response' to real-time events 
through the use of 32 user-defined priority signals. 

letter I/O handling 
In addition to its scheduling algorithm, Unix's method 

of handling input/output operations needs improvement 
to perform well in real-time applications. Aiding total 
system response, the asynchronous 1/0 procedure in 
Venix supplements the conventional synchronous proce
'dure in Unix, in which the requesting task must be 
suspended until the vo operation is completed (Fig. 2). 
By placing asynchronous requests at the head of the vo 
request queue, Venix's manager lets, real-time tasks issue 
a write request, for example, and immediately continue 
processing, assured that the request will be honored next. 

Concentrating instead on improving what happens 
when 1/0 requests have been completed, Masscomp's en
hanced version of Bell Labs' Unix System III adds a 
modified signal called an asynchronous signal trap. Simi
lar to the concept of completion routines in other operat-

2-124 
m.ctronlca/March 24, 1983 210341.0G4 



inter AR-287 

ing systems, the AST mechanism allows tasks to perform 
operations that were contingent on the completion of a 
separate real-time operation. For example, by issuing an 
AST when it has completed its work, a read task is able 
to notify another task that a buffer has been filled. The 
other task is then free to initiate whatever calculation 

may be needed to make use of this new data. 
Besides such modifications improving Unix's response 

to asynchronous events, Masscomp upgraded the sys
tem's throughput by adding support for contiguous files 
to the file-management system. In this way, large 
amounts of data may be written at a high speed to 

SYNCHRONOUS INPUT/OUTPUT 

2. No blocking. In synchronous 110, execu

tion of a task blocks, or walls (tinted), until the 
data transfer IS completed (a). Since 110 IS 

handled Independently, a task need only re

quest an 110 operallon (shaded) and conlln

ue on to the next operation. 

Electronlcs/ March 24, 1983 

(.1 

(bl 

STEP, 

STEP, 

2-125 

WAITING 

,+ 1 ,+ 2 ,+3 

,+ 1 ,+2 ,+3 

210341-1)04 



intJ AR-287 

consecutive disk sectors. Since other disk accesses are 
locked out in this mode, the disk head will be positioned 
correctly, thereby eliminating unnecessary and time-con-
suming movements. { 

In addition to these 1/0 add-ons, Masscomp. boosted 
intertas~ communication capability by enlarging the 
Unix standard intertask communication mechanism, 
called pipes, to allow tasks to transfer buffers. In an 
alternative approach, Charles River Data Systems of Na
tick, Mass., allows tasks in its Unix-like Unos system to 
share data directly. A number of independently con
structed software tasks may use a common, set of loea
tions in memory to transfer data between themselves or 
to perform some sequence of calculations. However, 
whenever asynchronous tasks share some Common re-

source, their use of the resource could result in corrupted 
data-unless some mechanism coordinates their activi
ties, such as the monitor concept described on page 108. 
Unos provides a mechanism called event counts to help 
avoid these conditions. 

Event' counts are integer values that are a nondecreas
ing count of the num~ of times some particular event 
has occurred. By using an event count associated with 
some task that produces shared data and another event 
count for a task tha~ consumes the shared data, program
mers may ensure the correct sequencing of asynchronous 
data-producing and -consuming tasks. Similarly, event 
counts serve as primitive operations for emulating the 
synchronization function that is provided by semaphores 
and the mutual exclusion that is furnished by monitors. 

Chips come to ~id of 
~mbedded SlJstems 

o Storing machine instructions in read-only memory is 
hardly a new concept in microprocessors. If supporting 
software totally breaks down, Digital Equipment Corp.'s 
LSI-ll, for example, resorts to a basic keyboard monitor 
stored in a special ROM that is logically placed in the 
input/output address space. Using a primitive on-line 
debugging technique stbred in the same ROM as the mon
itor, a software designer may read and alter memory 
locations and initiate a bootstrap loading operation from 
storage--a common provision in computer systems. 

From these primitive beginnings, however, ROM-J>ased 
software has evolved into complete operating systems in 
memory, engendering the term silicon software. Comple
menting hardware for distributed-processing architec
tures, such silicon-software systems signal a migration of 
application software into dedicated microcomputers pre
viously considered unable to gain full systems capability. 
For developers of dedicated microcomputers embedded 
in some larger real-time system, silicon software spells 
the end of the need to reinvent the wheel to carry out the 
fundamental functions of a real-time operating system. 

lldendlng the mlcroproceaor 

Functionally, silicon operating systems extend the mi
croprocessor's instruction set to include system-level in
structions that perform operations on software structures, 
like queues and tables, rather than on hardware registers. 
Application-program developers are then presented with 
a virtual machine-one that is perceived by the program
mer as different from the actual host processor. In these 
virtual operating-system machines, their instruction set 
includes a well-defined set of system calls as well as the 
basic machine instructions of the host microprocessor. 
For example, with systems like VRTX and RMX, the virtu
al microprocessor has a special set of instructions for 
handling interrupts (see Table I). 

For system developers, however, the problems in devel
oping reliable silicon software extend beyond resource 

protection, timing, and communication problems (see 
pp. 106-111). In fact, the development problems extend 
beyond the purely logistical exercise of maintaining a 
separate ROM-based instruction store and one for vari
ables that need to be placed in system read-write memo
ry. Treading a fine edge between the full function of a 
general operating system and the fine-tuned performance 
of special-purpose software, silicon systems need to bal
ance the need for a wide range of system functions with 
the requirement that they squeeze into a minimal amount 
of ROM. 

Flexlbll~ for exPansIon 
Still, once a system meets a reasonable compromise 

between capahility and size, it should not irrevocably 
lock the user into accepting its choices. For example, 
many real-time applications require some custom periph
eral-device drivers and system-level functions. Conse
quently, the program should provide a mechanism for 
logically incorporating user-written extensions to the op
erating system, such as the user-defined pointers in the 
VRTX system from Hunter & Ready, Palo Alto, Calif. 

In VRTX, a configuration table (Table 2) in system 
random-access memory allows specification of a custom 
routine that is to be executed whenever the system is 
initialized. For even more delicate control of system op
erations by custom software, a trio of pointers in the 
table specifies user-written routines to be accessed when
ever a task is created or deleted or whenever a context 
switch is performed. Hunter & Ready also includes a 
location in this baseline configuration table for its antici
pated file-management extensions to VRTX. 

The 80130, an RMX-86 kernel in silicon from Intel 
Corp., Santa Clara, Calif., generalizes this approach 
through an index table containing pointers to system 
routines. If circumstances require the replacement of an 
existing system routine, the index-table pointer is merely 
altered to indicate the address of the new routine. In an 

2-126 
Ileotronlca/March 24, 1983 210341.(104 



AR·287 

TABL l 1 SYSTE:-M (ALl S FOR HANDIINC, JNHRHlJP1S 

J£~H~~:~~~::~~ 
Versatile Real Time Executive (VRTX) 

UI POST deposit message from Interrupt 
handler 

UI EXIT eXit from mterrupt handler 

UI TIMER timer mterrupt 

UI RXCHR receiver ready Interrupt 

UITXRDY transmitter ready mterrupt 

oRMX-86 

ROSSETSI NTE R R UPT assign Interrupt handler 

ROSRESETSINTER RUPT deassign Interrupt handler 

ROSGETSLEVEL return number of highest-priority 
mterrupt level currently belOg 
processed 

ROSSIGNALSI NTE R RUPT signal from mterrupt handler that 
event has occurred 

ROSWAITSINTERRUPT walt for occurrence of event 

ROSEXITSINTERRUPT relinquish control of the system 

ROSENABLE enable hardware to accept mterrupts 

ROSDISABLE disable hardware from acceptmg 
Interrupt!> 

embedded system, this new routine could be placed in 
ROM along with application software. 

Now that programs in ROM have matured into silicon 
systems, the development of software for embedded sys
tems may now follow a more hospitable development 
cycle. The particular method used to create embedded 
systems will, in general, fall into one of two paths repre
sented by the two major camps. 

On one hand, kernels in silicon from systems such as 
RMX-86 or the MSP from Hemenway Corp., Boston, 
Mass., for the 68000 or Z8000 are self-contained subsets 
of the full operating system. Consequently, software pro
grammers may use the full development version of the 
same operating system as that in the eventual target to 
create the application package. On the other hand, devel
opment of application programs around the ZRTS system 
from Zilog Corp., Cupertino, Calif., or Hunter & 
Ready's VRTX for the Z8002, iAPX-86 family, or 68000 
relies on the use of a separate development system to 
create software for the target microprocessor, since this 
software does not have development versions. 

Two approach.s 

The significance of these two approaches as usual de
pends on the intended application. Hunter & Ready 
views VRTX as a set of processor-independent building 
blocks that programmers use to construct application 
packages for embedded systems. As such, the program
mers employ the same development systems that they 
might use to build application code, but now with the 
benefit of a sophisticated set of ready-made system-soft
ware components. 

In playing its part in Intel's systematic drive toward 

TABLE 2 VRTX CONFIGURATION TABLE 

sys RAM addr 

sys RAM-Size 

sys-stack-slze 

user RAM-addr 

user-RAM-size 

user-block-size 

user-stack-slze 

user-task-addr 

user-task-count 

Sys-Inlt-addr 

sys-tcreate-addr 

sys-tdelete-addr 

sys·tswap-addr 

(RESERVEDI 

system beginning address 

system memory size 

system stack size 

starting address for available memory In 

Initial partition 

size of Inlt.al partition 

size of memory block for dynamiC allocation 

size of stack for user tasks 

address of first user task 

maximum number of tasks 

address of user-supplied Initialization routine 

address of user-supplied routme accessed 
when a task IS created 

address of user·supplted routine accessed 
when a task IS deleted 

address of user-supplied routme accessed 
when a context SWitch occurs 

address of Hunter & Ready future 
extensions to VATX 

providing an Integrated enVironment around the iAPX-
86 family, the K0130 holds the anchor position in an 
interlocked set of components. Able to function indepen
dently of the upper layers of the operating system, it 
provides a hardware base for the rest of RMX-86. Serv
ing as a viewport IIlto this system-software base for the 
central processing unit, Intel's universal run-time and 
development interfaces offer the mechanism for software 
portability needed for the next stage in the company's 
plan to grow into higher-performance microprocessors, 
such as the 186, 286, and 386. 

While interlocking with the software in this way, the 
80130 also must play its role in the complementary rela
tionships being established at the hardware level. As 
such, it includes on-chip hardware support for system
level functions, including timers, interrupt controller, bus 
control, and bus interface. 

Meanwhile, Intel's plan for software-in-silicon becomes 
evident as it gathers the other pieces of the puzzle, such 
as the 82730 text-coprocessor chip, the 82586 local-net
work coprocessor, and the 82720 graphics processor 
chip. Similar to the 80130 software connection, the 82720 
graphics part interlocks with the rest of the system at the 
software level through its support of another well-defined 
software interface-the virtual device interface. Yet to 
come are pieces for voice 1/0 support, as well as some 
level of hardware support for data-base access. 0 

2-127 
Electronics/ March 24, 1983 210341-004 



ARTICLE 
REPRINT 

Copynght© 1983. CMP PublicatIOns. Inc I 111 E Shore, Rd, Manhasset, NY 11030 
Repnnted wIth permission from Electronic Englneenng TImes. 2-128 

AR-288 

June 1983 

210341·004 



AR-288 

Intel's Matchmaking Strategy: Marry 
iRMXTM Operating System With Hardware 

Intel's major software product, the iRM)(TM-86 I6-bit 
operating system, which is now in its fifth release, 
represented a three-year development investment which 
most independent software vendors would have found a 
daunting prospect in 1978 when the project was conceived. 

The investment was essential. By the mid-I970s, feedback 
from OEMs working with Intel's hardware revealed prob
lems with system integration-the marriage of software 
with hardware. It consequently slowed sales, with the 
prospect of even greater problems at higher levels of cir
cuit integration. Intel management, looking for ways of 
coping with the ballooning software requirements of the 
rapidly accelerating hardware program, began stepping up 
software development programs in the mid-I970s. 

"The RMX program illustrates a number of things one 
needs to keep in mind with developing a real-time 
operating system;' explained Bill Lattin, Intel's OEM 
microcomputer systems manager. "Foundations must be 
well laid so the system can grow and evolve over time. And 
there is a need for the system to be open to modification 
by typical OEM-specific applications. 

"Although the RMX program has been around since 
1978, it has only recently hit its stride, as processor 
technology has advanced to use the full range of its 
features;' Lattin said. 

The fast-paced microcomputer market had created a new 
situation for systems designers in terms of a radical shift 
in the hardware/software cost ratio. Earlier hardware 
generations involved various expensive centralized 
facilities. Not only was software cheap in comparison, but 
the hardware environment changed slowly, so that it was 
also feasible to rewrite systems as needed. 

But when the price of a computer drops to as low as $5, 
the hardware environment becomes volatile and software 
turns into a major investment. Intel was finding that 
customers might invest as much as two-thirds of their 
development costs in software, only to see it eclipsed by 
evolving VLSI technology. 

It became evident that merely supplying components 
would become increasingly counterproductive. Thus, the 
Intel "total solution" emerged-a consistent systems ap
proach to hardware sales, which naturally depends heavily 
on a viable software program. 

Object-oriented programming is a method which has 
worked best in creating a software program blending with 
the component approach. By hiding data representation 
within an object with its own object manager, changes in 
the hardware environment that affect the data can be ac
commodated without having to change the rest of the 
software. 

A price is paid in terms of program size with this ap
proach, however. And it was difficult at the time to justify 
this kind of liability with the existing onboard memories 
of the 8-bit generation. 

Bill Stevens, iRMX-86 program manager for release five, 
explained the difficult decisions that had to be made at the 
outset of the program. "Every engineering decision 
involves a trade-off. We wanted to optimize program pro
ductivity and we had to have modularity. The conse
quence of this was large size. It turned out that a minimum 
configuration was 12 kbytes wide and the full configura
tion was 128 kbytes. At the time we did not have 64k 
dynamic RAMs and 64k EPROMs, so we didn't have the 
technology to realize the systems of initial specifications 
times. Bruce Schafer has to take credit for making that 
decision to go ahead anyway, early on. . . it was a gutsy 
decision, and it turned out to be absolutely righe' 

2-129 
210341.004 



AR-288 

Had Intel known of th~ difficulty it was about to en
counter in producing its 64-kbyte RAM, Schafer may have 
had second thoughts. 

Schafer joined Intel in 1976 and began working on 
iRMX-80. "It was a nice little system;' Schafer said. "A 
miniature dispatcher had evolved to handle multiple asyn
chronous events and became a primitive OEM operating 
system. It was tempting to do an enlarged version of it, 
mainly because I was already working on it for the 16-bit 
generation!' 

Schafer soon found himself centrally involved in the task 
of heading off the 16-bit software crunch, laying ground
work for a system that could cover a wide range of ap
plications, many of them unknown at the time, and a 
system which could also evolve with hardware advances. 

"When you set out to design a system of that scope, you 
don't just sit down and start writing code. It's definitely 
a top-down process;' explained Schafer. He discovered 
early in the project that the purely technical hurdles in 
writing software were minor compared to orchestrating a 
team of engineers on such a comprehensive project. 

The iRMX-86 system is multi-layered, and the project had 
to be coordinated across these layers along with the se
quence of planning, design and implementation. On top 
of that, a thorough testing program had to be coordinated 
with all phases. 

"I had a difficult time convincing engineers on the pro
ject that documentation of their work was as important 
as the work itself. Specifications were absolutely crucial 
to the development phase!' said Schafer. 

Schafer began with a customer survey to discover the kind 
of problems OEMs were experiencing with system design. 
He wrote a production implementation plan, which was 
critiqued by marketing and engineering personnel. This 
was approved in June 1978 and formed the basis for 
engineering specifications. A critiquing process evolved as 
the organizing principle behind initial product design; 
engineers on the project would exchange qocumentation 
and then meet to evaluate the progress of the system. 

The sessions were lively and the problems of coordinating 
implementation, testing and design along with the pressure 
of deadlines for the whole progr"ilm generated quite a bit 
of excitement. 

Development testing turned out to be a particularly thor
ny problem-the asynchronous interrupts and multiple-

processing aspects of real-time applications required a 
special test apparatus to simulate a real-world 
environment. 

What they came up with is a nucleus executing directly on 
the 8086 and 8088 processors as the basic building block 
of the system. Together with the next Iayer-a basic I/O 
system-a minimal operating system can be configured, 
which has been found useful in many applications. 

However, it was necessary to develop an application on 
the Series-III development system even though the target 
was going to be RMX. "We quickly realized that users 
want to be able to do development work on the machine 
they target on;' said Schafer. "This is particularly impor
tant for field maintenance ... you can't drag a Series-III 
out to an oil derrick!' To realize this goal, Intel built higher 
layers around iRMX so that program development could 
be done without a Series-III. Higher layers involve extend
ed I/O and human interface facilities. After this, 
customer-written software can be added in high-level 
languages. 

A major objective has been to provide a stable base for 
independent software vendors; with its latest release, 
Intel also announced an ISV program initially involving 
three major vendors; Microsoft, Digital Research and 
Mark Williams Inc. 

The first release of iRMX-86 came out in April 1980. Since 
then, the system has been refined and released four more 
times, with release five al?pearing last December. An In
teractive Configuration Utility appeared for the first time 
with release five, a further attempt to aid OEMs in put
ting their systems together. The system designer runs the 
ICU program on a terminal and is quizzed on his re
quirements, after which the program generates the unique 
iRMX software for his application. 

"It has been a successful product in its own right, apart 
from its role in the hardware program, but I doubt that 
anyone would have wanted to invest in a three-year 
development process before, there was a chance at some 
return;' observed Stevens, who has been most excited by 
the diverse applications he has seen. "I've really enjoyed 
the iRMX symposiums. There is always some new system 
demonstrated. In Tokyo, I just saw an 8086-based scien
tific system with really first-class graphics put together by 
Seiko. Another time I saw a blood analyzer based on the 
system. There are even RMX-based personal computers!' 

2-130 
21OM1.Q04 



ARTICLE 
REPRINT 

Copynghl© 1983 by Techntcal Pubhshmg, a dlVls10n of Dun-Donnelley Publication Corp, 
a company of Dun & Bradstreet Corp, Hudson, Mass 01749 

2-131 

AR-289 

June 1983 

21034'-004 



intel· AR-289 

iRMX™ 86 Has Functionality, Configurability 

The iRMXTM 86 operating system provides a modular set 
of building blocks from which users can create a wide 
variety of applications. iRMX 86 features include: 
multitasking; interrupt support; multiprogramming sup
port; device independence; tree-structured directories, file 
access control; and interactive debugging. 

The iRMX 86 operating system combines the concepts of 
objects, types, and type extension to form a highly
functional and highly-configurable foundation for ap
plications software. The operating system is designed for 
use with programs executing on the iAPX 86 and iAPX 
88 processors. The 8087 numeric data processor is sup
ported as on option. 

Execution Environment 

The iRMX 86 Operating System can be used with a variety 
of hardware configurations. Interactive disk-based 
systems as well as ROM-resident systems can be 
constructed. 

Any part of the operating system's code can reside in 
ROM/PROM memory. Alternatively, ail or part of this 
code can be "bootstrapped" into RAM using a small, 
configurable bootstrap loader provided with the product. 
The application code can similarly be committed to 
PROM or bootstrapped into RAM. 

The operating system divides the execution envirqnment 
into jobs and tasks. A task is described by a set of pro
cessor registers, a stack, a priority, and a state. Jobs pro
vide resources for tasks. A job can be viewed as a task 
environment. In the simplest case a job represents a 
memory pool. Tasks executing in the same lob share the 
same pool of memory. When a job is deleted, all tasks 
within the job are also deleted and all memory allocated 
to these tasks is deallocated. 

The iRMX 86 system is composed of several layers. The 
innermost layer is the Nucleus, which provides multitask
ing, interrupt control, and multiprogramming support. 
The first optional layer , the Basic I/O System, supports 
device-independence, directories, random access, and file 
access control. 

"On top" of this layer, users may add the Extended I/O 
System (providing services such as automatic buffering) 
or the Application Loader (which supports loading both 
absolute code and locatable code). The Human Interface 
uses these inner layers to support user-defined commands 
in addition to a set of standard commands. 

The design of the iRMX 86 Operating System is based on 
a set of objsct types. The operating system supports 
dynamic object creation. Each time an object is created, 
the operating system allocates the proper resources to the 
object and returns a 16-bit virtual address called the ob
ject's token. This token is subsequently used by the ap
plication to identify the specific object. 

By implementing this object-oriented approach, the 
iRMX 86 Operating System hides implementation details 
from the application software. The iRMX 86 Nucleus also 
allows users to add custom object types without changing 
the Nucleus. 

I/O Devices 

I/O devices can be manipulated in two ways. The first ap
proach allows the application to receive interrupts directly 
from the I/O device. The second approach utilizes the 
iRMX 86 Basic I/O System. With this approach, a device 
driver must be written for initiation of I/O requests and 
for interrupt handling. The application software interfaces 
to these drivers through the Basic 110 System by making 
read, write, seek, and special-function requests. 

The iRMX 86 Operating System currently includes device 
drivers for diskettes, Winchester disks, magnetic bubble 
storage devices, and Storage Module Device (SMD) 
interfaces. 

The iRMX ,6 Extended 110 System defines the concept 
of a logical device. Using this feature, each device is 
assigned a logical name. Application programs refer to 
logical devices without knowing which physical device is 
associated witl) each logical device. In this manner, the 
physic'al devic~ can be changed without changing the ap
plication programs. 

The Basic 110 System provides asynchronous 110 func
tions. Each asynchronous function is initiated by a pro
cedure call that queues the request. The procedure call 
returns immediately with an indication of whether the re
quest was successfully queued. When the request is actual
ly completed, a response message is sent to the mailbox 
specified. 

The Extended I/O System automatically synchronizes I/O 
requests. Again, a procedure call is used to initiate 110. 
The procedure, however, does not return until the request 
is complete. To enhance efficiency when this automatic 
synchronization is used, the Extended I/O System permits 
read-ahead and write-behind. 

210341-004 

2-132 



AR-289 

The iRMX 86 Human Interface automatically parses in
put lines and invokes the appropriate program based on 
the first word in each line. A program executing under the 
iRMX 86 Human Interface can request command execu
tion by providing the text for these commands to the com
mand line interpreter. 

The iRMX 86 Human Interface is supplied with a basic 
set of commands to manipulate files. These commands in
clude directory display, create directory, rename file, copy 
file, delete file, and submit a set of commands. Users can 
add custom commands to this set. 

The iRMX 86 Debugger provides the capability to debug 
one or more tasks while the rest of the system continues 
to execute. The Debugger allows a user to specify that a 
task be suspended when the task executes a particular in
struction and when the task communicates with other 
tasks. 

The most general communication mechanism provided by 
the iRMX 86 Nucleus is the mailbox object type. Each ob
ject of this type is described by two queues-a queue of 
messages waiting to be handled by tasks and a queue of 
tasks waiting for messages. An additional attribute of a 
mailbox is the specification of whether the queue of tasks 
is to be handled first-in, first-out or on a relative priority 
basis. 

The iRMX 86 Operating System also provides a 
semaphore object type. Each semaphore is described by 
a queue of waiting tasks and a unit count. This unit count 
is equivalent to a count of empty messages at a mailbox, 
but, because no actual messages are involved, a 
semaphore is a more efficient mechanism than a mailbox. 
Since semaphores allow multiple units to be sent at the 
same time, semaphores are used to create deadlock alloca
tion functions. 

To provide additional efficiency, the iRMX 86 Nucleus 
also provides a special type of semaphore called a region. 

Each iRMX 86 task has a dynamic priority attribute. This 
priority describes the relative importance of the Task's 
function with respect to other system functions. The 
iRMX 86 Nucleus always runs the highest priority ready 
task. When several tasks of the same priority are ready, 
the Nucleus arbitrarily chooses between them. 

2-133 

Scheduling requires changing the state of the task and 
placing the task in a queue of ready tasks. Whenever a task 
is scheduled or descheduled, the Nucleus checks the ready 
queue and allocates the processor to the highest priority 
ready task. In order to ensure event-driven scheduling, the 
iRMX 86 Nucleus is designed to place an absolute limit on 
the interval during which interrupts are masked. 
One attribute of the job type is a memory pool. Each 
memory pool represents the memory resources available 
to the tasks executing within a job. All objects created by 
these tasks are allocated memory from the pool. 

The iRMX 86 Operating System supports three file types. 
In all cases, application programs read and write data 
without knowing the device or the file type that is used. 
The following file types are supported: 

1) Physical-A device accessed as a physical file is treated 
as a contiguous sequence of bytes. 

2) Stream-Stream files do not exist on actual physical 
devices; rather, data is transmitted directly from one pro
gram to another. 

3) Named-Named files represent the traditional notion 
of files. Named files are described by a path through a 
tree-structured network of directories. 

The name of an iRMX 86 file is given as a path through 
a tree-structured network of directories. Each directory in 
this structure can point directly to data files and to other 
directories. One directory on each device is considered the 
root directory. All paths on a particular device begin in 
this directory. 

The basic file functions for all three file types are: open, 
close, read, and write. When random file access is re
quired, the seek system call is added to this set. For nam
ed files, additional functions are needed. These functions 
include the rename function, the truncate function, and 
the change-access funcHon. 

When a file is opened, the calling program specifies the 
type of file access required. For a data file, three types of 
access are permitted: read, write, and the read/write com
bination. The 110 system verifies that the specified access 
is available and grants the open request only if the re
quested access is available. 

210361-004 



, . 



Translators and Utilities 
for Program Development 3 





inter 
TRANSLATORS AND UTILITIES 
FOR PROGRAM DEVELOPMENT 

Intel offers an extensive selection of program development tools for its microprocessor (8080, 8086, 8088, 
80186, 80286) and microcontroller (8048, 8051, 8096 etc.) families. These tools include translators and 
programming utilities such as linkers, relocators, and library managers. These program development tools are 
high quality, time tested tools for the professional. Based on a set of well-defined standards, they provide an 
integrated development environment. The result is an extremely flexible and prod uctive program development 
environment. 

A LANGUAGE FOR EVERY NEED 
The iAPX-86 family has the most comprehensive set of translators available for a microprocessor. These 
include a macro assembler and compilers for PUM, Pascal, FORTRAN, and C (see Table 1). The macro 
assembler produces the most optimum code. PL/M is the most popular 8086 language for systems 
programming and provides the best of both optimal code and high level language capabilities. 

The main advantage of 'C' is portability across different target machines. Pascal and FORTRAN are used 
extensively for applications programming. To allow applications to be portable, Pascal and FORTRAN conform 
to ISO and ANSI77 standards respectively, with many useful extensions for microprocessor applications. 

Intel's microcontrollerfamily (8048, 8051, 8096 etc.) is similarly the best supported in the industry. PUM-51 was 
the first high level language ever to be introduced for a microcontroller. The 8096 is similarly supported with 
PUM-96. Every microcontroller in the family is supported with an assembler and linkage utilities. 

USE A MIXTURE OF LANGUAGES FOR MAXIMUM FLEXIBILITY 
Programs are typically decomposed into modules to exploit the many benefits of modular programming. Intel's 
integrated programming technology allows different modules of the same program to be programmed in a 
variety of languages. For instance, the most performance-sensitive system modules may be coded in assembler 
or in PUM. The application modules, on the other hand, can be written in Pascal to speed up programming. The 
system and application modules can then be linked into one program using the linker. Hence, the various 
modules of a program can each be coded in the most suitable-programming language. 

UTILITIES ENHANCE PROGRAMMING PRODUCTIVITY 
A set of utilities is provided to support modular and position independent programming. The linkers combine 
the constituent modules of a program into one system. A locator is provided to position the code in memory. 
This allows code to be placed in appropriate ROM and RAM locations. Also, coding can be done in a 
position-independent way. The librarian provides a structured way of organizing frequently used routines. The 
routines needed by a particular program can be linked in by the linker. The linker automatically selects only 
those modules from the libaray that are needed by the program. For the protected, virtual-memory, and 
multi-tasking processor iAPX 286, a sophisticated operating system configuration utility BUILD-286, is 
provided. 

FULL RANGE OF DEBUG SUPPORT 
The programming tools are integrated with the debugging tools via the well-defined Intel object module format 
standard. iAPX-86 family programs may be debugged using any of the Intel 8086 debug tools. This includes 
PSCOPE which provides source level software debug, and' the ICE products which provide in-target real-time 
debug. Microcontroller software is similarly supported by the various emulators and ICE units. 

CHOOSE FROM A VARIETY OF HOST CONFIGURATIONS 
The programming tools are provided on a variety of development host environments to meet the needs of 
different project sizes and development budgets (see Table 1). The environments span personal development 
systems (iPDS), stand alone development systems (Series III, Series IV), network development systems 
(NDS-II) and even theWAXNMS microcomputer. The programming tools work identically, no matter which of 
the available host configuratons is chosen. This allows the user to grow his development environment, as his 
needs grow, without impacting previous investment in software. 

* VAXNMS is a trademark of Digital Equipment Corporation. 

3-1 



inter 

Language 

Macro Assembler + Utilities 

PUM 

PASCAL 

FORTRAN 

lie" 

Ada 

NOTE: • = Planned 

HOST CODES 

Table 1. Intel Translator/Host Summary 

Component Family 

2920 
MCS-85 Family 
MCS-48 Family 
MCS-51 Family 
iACX-96 Family 
iAPX-86 Family 
iAPX-286 (Protected Mode) 

MCS-85 Family 
MCS-51 Family 
iACX-96 Family 
iAPX-86 Family 
iAPX-286 (Protected Mode) 

MCS-85 Family 
iAPX-86 Family 
iAPX-286 (Protected Mode) 

MCS-85 Family 
iAPX-86 Family 
iAPX-286 (Protected Mode) 

iAPX-86 Family 
iAPX-286 (Protected Mode) 

iAPX-86 Family 
iAPX-286 (Protected Mode) 

1 = Intel 8085 Based Development System (iPDS, MDX Series liE) 
2 = Intel iAPX-86 Based Development System (Series III, Series IV) 
3 = VAX/VMS Minicomputer 

3-2 

Host Code 

1,2 
1 
1 
1 
2 

1,2,3, 
2,3* 

1 
1 
2* 

1,2,3, 
2,3* 

1 
2,3 
2,3* 

1 
2 
3* 

2,3* 
2*,3* 

3* 
3* 



PL/M 80 
HIGH LEVEL PROGRAMMING LANGUAGE 

• Provides Resident Operation on 
Intellec® Microcomputer Development 
System and Intellec® Series" 
Microcomputer Development Systems 

• Produces Relocatable and Linkable 
Object Code 

• Sophisticated Code Optimization 
Reduces Application Memory 
Requirements 

• Speeds Project Completion with 
Increased Programmer Productivity 

• Cuts Software Development and 
Maintenance Costs 

• Improves Product Reliability with 
Simplified Language and Consequent 
Error Reduction 

• Eases Enhancement as System 
Capabilities Expand 

The PLIM SO High Level Programming Language Intellec Resident Compiler is an advanced, high level pro
gramming language for Intel SOSO and SOS5 microprocessors, iSBC-SO OEM computer systems, and Intellec 
microcomputer development systems. PL/M has been substantially enhanced since its introduction in 1973 
and has become one of the most effective and powerful microprocessor systems implementation tools avail
able. It is easy to learn, facilitates rapid program development and debugging, and significantly reduces main
tenance costs. PL/M is an algorithmic language in which program statements naturally express the algorithm 
to be programmed, thus freeing programmers to concentrate on system development rather than assembly 
language details (such as register allocation, meanings of assembler mnemonics, etc.). The PLIM compiler ef
fiCiently converts free-form PLIM programs into equivalent SOSO/SOS5 instructions. Substantially fewer PLIM 
statements are necessary for a given application than would be using assembly language or machine code. 
Since PL/M programs are problem oriented and thus more compact, programming in PLIM results in a high 
degree of productivity during development efforts, resulting in Significant cost reduction in software devel
opment and maintenance for the user. 

© INTEL CORPORATION. 1983 ' 

3-3 

MAY 1983 

ORDER NUMBER:210327-G02 



inter PLIM 80 

FUNCTIONAL DESCRIPTION 

The PUM compi-Ier is an efficient multi phase compi.ler 
that accepts source programs, translates them into 
object code, and produces requested listings. After 
compilation, the object program may be first linked to 
other modules, then located to a specific area of mem
ory, and finally executed. The diagram shown-in Figure 1 
illustrates a program development cycle where the pro
gram consists of three modules: PUM, FORTRAN, and 
assembly language. A typical PUM compiler procedure 
is shown in Table 1. 

Features 
Major features of the Intel PUM 80 compiler and pro
gramming language include: 

Resident Operation - on Intellec microcomputer devel
opment systems eliminates the need for a large in
house computer or costly timesharing system. 

Object Code Generation - of relocatable and linkable 
object codes permits PUM program development and 
debugging in small modules, which may be easily linked 
with other modules and/or library routines to form a 
complete application. 

Extensive Code Optimization - including compile time 
arithmetic, constant sUbscript resolution, and common 
subexpression elimination, results in generation of 
short, efficient CPU instruction sequences. 

Symbolic Debugging - fully supported in the PUM 
compiler and ICE-85 in-circuit emulators. 

Compile Time Options - includes general listing for
mat commands, symbol table listing, cross reference 
listing, and "innerlist" of generated assembly language 
instructions. 

Block Structure - aids in utilization of structured pro
gramming techniques. 

Access - provided by high level PUM statements to 
hardware resourc.es (interrupt systems, absolute 
addresses, CPU input/output ports). 

Data Definition - enables complex data structures to 
be defined at a high level. 

Re-entrant Procedures - may be specified as a user 
option. 

Benefits 
PUM is designed to be an efficient, cost-effective solu
tion to the speCial requirements of microcomputer soft~ 
ware development as illustrated by the following bene
fits of PUM use: 

Low Learning Effort - even for the novice programmer, 
because PUM is easy to learn. 

Earlier Project Completion - on critical projects, 
because PUM substantially increases programmmer 
productivity while reducing program development time. 

Lower Development Cost - because increased pro
grammer productivity requiring less programming 
resources for a given function translates into lower soft
ware development costs. 

Increased Reliability - because of PUM's use of simple 
statements in the program algorithm, which are easier 
to correct and thus substantially reduce the risk of 
costly errors in systems that have already reached full 
production status. 

Easier Enhancement and Maintenance - because pro
grams written in PUM are easier to read and easier to 
understand than assembly language, and thus are eas
ier to enhance and maintain as system capabilities 
expand and future products are developed. 

I 

Figure 1_ Program Development Cycle Block Diagram 

3-4 AFN-008188 



PUM 80 

Simpler Project Development - because the Intellec 
microcomputer development system with resident 
PUM 80 is all that is needed for developing and debug· 

ging software for 8080 and 8085 microcomputers, and 
the use of expensive (and remote) timesharing or large 
computers is consequently not required. 

Table 1. PUM·80 Compiler Sample Factorial Generator Procedure 

2 

3 1 
4 2 
5 2 
6 2 

7 2 
9 2 

10 3 
11 3 
12 4 
13 4 
14 4 
15 4 

16 3 
17 3 
18 4 
20 4 
21 4 
22 4 

24 2 

25 

SPECIFICATIONS 

OPERATING ENVIRONMENT 

Intel Microcomputer Development Systems 
(Series II, Series III, Series IV) 
Intel Personal Development System 

ORDERING INFORMATION 

Product Code Description 

MDS *-PLM PLiM 80 High Level Language 
Compiler. Needs Software License. 

$OBJECT(:F1 :FACT.OB2) 
$DEBUG 
$XREF 
$TITLE('FACTORIAL GENERATOR - PROCEDURE') 
$PAGEWIDTH(80) 

FACT: 
DO; 

DECLARE NUMCH BYTE PUBLIC; 

FACTORIAL: PROCEDURE (NUM,PTR) PUBLIC; 
DECLARE NUM BYTE, PTR ADDRESS; 
DECLARE DIGITS BASED PTR (161) BYTE; 
DECLARE (I,C,M) BYTE; 

NUMCH = 1; DIGITS(1)= 1; 
DO M = 1 TO NUM; 

C=O; 
DO 1=1 TO NUMCH; 

DIGITS(I) = DIGITS(I)*M + C; 
C= DIGITS(I)/10; 
DIGITS(I)= DIGITS(I) - 10*C; 

END; 

IF C<>O THEN 
DO; 

NUMCH = NUMCH + 1; DIGITS(NUMCH) = C; 
C= DIGITS(NUMCH)/10; 
DIGITS(NUMCH)= DIGITS(NUMCH) - 10*C; 

END 
END; 

END FACTORIAL; 

END; 

DOCUMENTATION 

PLiM 80 Programming Manual 
ISIS-II PL/M 80 Compiler Operator's Manual 

SUPPORT: 

Hotline Telephone Support. Software Performance 
Report (SPR), Software Updates. Technical Reports. and 
Monthly Technical NeWSletters are available. 

*MDS is an ordering code only and is not used as a product or trademark MDS@ is a registered trademark of Mohawk Data Sciences 
Corporation. 

3-5 AFN·00818B 



FORTRAN 80 
8080/8085 ANS FORTRAN 77 

INTELLEC® RESIDENT COMPILER 

• Meets ANS FORTRAN 77 
Subset Language Specification plus 
adds Intel~ microprocessor extensions 

• Supports Intel Floating Point 
Standard with the FORTRAN 80 soft
ware routines, the iSBC-310™ High 
Speed Mathematics Board, or the 
iSBC-332™ math multimodule 

• Executes on Intellec Microcomputer 
Development System, Intellec Series 
" Microcomputer Development System, 

, and Personal Development System 

• Supports full symbolic debugging with 
ICE-SOTM and ICE-S5™ 

• Produces relocatable and linkable 
object code compatible with resident 
PL/M SO and SOSO/SOS5 Macro 
Assembler 

• Provides optional run-time library to 
execute in RMX-SOTM environment 

• Has well defined I/O interface for 
configuration with user-supplied 
drivers 

FORTRAN 80 is a computer industry-standard. high-level programming language and compiler that translates FORTRAN 
statements into relocatable object modules, When the object modules are linked together and located into absolute 
program modules. they are suitable for execution on Intel 8080/8085 Microprocessors. iSBC-~O OEM Computer Systems. 
Intellec Microcomputer Development Systems and Personal Development Systems, FORTRAN 80 meets the ANS 
FORTRAN 77 Language Subset Specification1, In addition. extensions designed specifically for microprocessor applica
tions are inc,luded. The compiler operates on the Intellec Microcomputer Development System and Personal Development 
System under the ISIS-II Disk Operating Systems and produces efficient relocatable object modules that are compatible 
for linkage with PL/M 80 and 8080/8085 Macro Assembler modules, 

The ANS FORTRAN 77 language specification offers many powerful extensions to the FORTRAN language that are 
, especially well suited to Intel 808018085 Microprocessor software development. Because FORTRAN 80 conforms to 

the ANS FORTRAN 77 standard. the user is assured of compatibility with existing FORTRAN software that meets the 
standard as well as a guarantee of upward compatibility to other computer systems supporting an ANS FORTRAN 77 
Compiler. 

1 ANSI X3J3190 

(9INTEL CORPORATION. 1983 

3-6 

MAY 1983 

ORDER NUMBER:40061o-001 



intJ FORTRAN 80 

FORTRAN 80 LANGUAGE FEATURES 

Major ANS FORTRAN 77 features supported by the Intel 
FORTRAN 80 Programming Language include: 

• Structured Programming is supported with the IF ... 
THEN ... ELSE IF ... ELSE ... END IF constructs. 

• CHARACTER data type permits alphanumeric data 
to be handled as strings rather than characters 
stored in array elements. 

• Full 1/0 capabilities include: 
Sequential and Direct Access files 
Error handling facilities 
Formatted, Free-formatted, and Unformatted 
data representation 
Internal (in-memory) file units provide capa
bility to format and reformat data in internal 
memory buffers 
List Di rected Formatting 

• Supports arrays of up to seven dimensions. 

• Supports logical operators 
.EOV. - Logical equivalence 
.NEOV. - Logical nonequivalence 

Major extensions to FORTRAN 77 in Intel FORTRAN-80 
Include: 

• Direct 8080/8085 port 1/0 supported by intrinsic 
subroutines. 

• Binary and Hexadecimal integer constants. 

• Well defined interface to FORTRAN-80 1/0 state
ments (READ, OPEN, etc.), allowing easy use of 
user-supplied 1/0 drivers. 

• User-defined INTEGER storage lengths of 1, 2 or 4 
bytes. 

• User-defined LOGICAL storage lengths of 1, 2 or 4 
bytes. 

• REAL STORAGE lengths of 4 bytes. 
• Bitwise Boolean operations using logical operators 

on integer values. 

• Hollerith data constants. 
• Implicit extension of the length of an integer or 

logical expression to the length of the left-hand 
side in an assignment statement. 

• A format descriptor to suppress carriage return on 
a terminal output device at the end of the record. 

FORTRAN 80 COMPILER FEATURES 

• Supports multiple compilation units in single 
source file. . 

• Optional Assembly Language code listing. 
• Comprehensive cross-reference, symbol attribute 

and error listing. 
• Compiler controls and directives are compatible 

with other Intel language translators. 

• Optional Reentrancy. 

• User-defined default storage lengths. 

• Optional FORTRAN 66 Do Loop semantics. 

• Source files may be prepared in free format. 

3-7 

• The INCLUDE control permits specified source 
files to be combined into a compilation unit at com-
pile lime. -

• Transparent Interface for software and hardware 
floating pOint support, allowing either to be chosen 
at time of linking. 

FORTRAN 80 BENEFITS 

FORTRAN 80 provides a means of developing applica
tion software for Intel MCS-80/85 products in a 
familiar, widely accepted, and computer Industry
standardized programming language. FORTRAN 80 will 
greatly enhance the user's ability to provide cost
effective solutions to software development for Intel 
microprocessors as illustrated by the following: 

• Completely Complementary to Existing Intel Soft
ware Design Tools - Object modules are linkable 
with new or existing Assembly Language and PUM 
Modules. 

• Incremental Runtime Library Support - Runtime 
overhead is limited only to facilities required by the 
program. 

• Low Learning Effort - FORTRAN 80, like PUM, Is 
easy to learn and use. Existing FORTRAN software 
can be ported to FORTRAN 80, and programs 
developed in FORTRAN 80 can be run on any other 
computer with ANS FORTRAN 77. 

• Earlier Project Completion - Critical projects are 
completed earlier than otherwise possible because 
FORTRAN 80 will substantially increase program
mer productivity, and is complementary to PUM 
Modules by providing comprehensive arithmetic, 
I/O formatting, and data management support in 
the language. 

• Lower Development Cost - Increases in program
mer productivity translates into lower software 
development costs because less programming 
resources are required for a given function. 

• Increased Reliability - The nature of high-level 
languages, including FORTAN 80, IS that they lend 
themselves to simple statements of the program 
algorithm. This substantially reduces the risk of 
costly errors in systems that have already reached 
production status. 

• Easier Enhancements and Maintenance - Like 
PUM, program modules written in FORTRAN 80 are 
easier to read and understand than assembly 
language. This means it is easier to enhance and 
maintain FORTRAN 80 programs as system 
capabilities expand and future prod\lcts are 
developed. 

• Comprehensive, Yet Simple Project Development -
The Intellec Microcomputer Development System 
and Personal Development System, with the 
8080/8085 Macro Assembler, PL/M 80 and FORTRAN 
80 are the most comprehensive software design 
facilities available for the Intel MCS-80/85 Micropro
cessor family. This reduces development time and 
cost because expentive (and remote) timesharing or 
large computers are not required. 

AFN-00241C 



FORTRAN 80 

SAMPLE FORTRAN·aO SOURCE PROGRAM 
LISTING 

• •• THIS PROGRAM IS AN EXAMPLE OF ISIS-II FORTRAN-80 THAT 
• •• ,CONVERTS TEMPERATURE BETWEEN CELSIUS AND FARENHEIT 

PROGRAM CONVRT 

CHARACTER·1 CHOICE, SCALE 

PRINT 100 
• •• ENTER CONVERSION SCALE (C OR F) 
10 PRINT 200 

READ (5,300) SCALE 

IF (SCALE ,EQ. 'C') 
+ THEN, 

PRINT 400 
• •• ENTER THE NUMBER OF DEGREES FARENHEIT 

READ (5,.) DEGF 
DEGC = 5./9 .• (DEGF-32) 

• •• PRINT THE ANSWER 
WRITE (6,500) DEGF,DEGC 

• •• RUN AGAIN? 
20 PRINT 600 

READ (5,300) CHOICE 
IF (CHOICE .EQ. 'Y') 

+ THEN 
GOTO 10 

ELSE IF (CHOICE .EQ. 'N') 
+ THEN 

CALL EXIT 
ELSE 

GOTO 20 
END IF 

ELSE IF (SCALE .EQ. 'F') 
+ THEN 

- -- CONVERT FROM FARgNHEIT TO CELSIUS 
PRINT 100 , 
READ (5,-) DEGC 
DEGF = 9./5.-DEGC+32. 

- -. PRINT THE ANSWER 
WRITE (6,800) DEGC,DEGF 
GOTO 20 

ELSE 
- •• NOT A VALID ENTRY FOR THE SCALE 

WRITE (6,900) SCALE 
GOTO 10 

END IF 
100 FORMAT(' TEMPERATURE CONVERSION PROGRAM',II, 

+' TYPE C FOR FARENHEIT TO CELSIUS OR' ,I, 
+' TYPE F FOR CELSIUS TO FARENHEIT',II) 

200 FORMAT(/,' CONVERSION? ',$) 
300 FORMAT (A 1) 
400 FORMAT(/,'ENTER DEGREES FARENHEIT: ',$) 
500 FORMAT(/,F1.2, DEGREES FARENHEIT = ',F1.2,' DEGREES CELSIUS') 
600 FORMAT(/,' AGAIN (Y OR N)? ',$) 
100 FORMAT(/,' ENTER DEGREES CELSIUS: ',$) 
800 FORMAT(/,F1.2,' DEGREES CELSIUS = ',F1.2,' DEGREES FARENHEIT' ,I) 
900 FORMAT(/,1H ,A1,' NOT A VALID CHOICE - TRY AGAIN I , ,I) 

END ' 

3-8 



intJ FORTRAN 80 

The FORTRAN 80 Compiler is an efficient, multi phase compiler that accepts source programs, translates them into 
relocatable object code, and produces requested listings. After compilation, the object program may be linked to other 
modules, located to a specific area of memory,. then executed. The diagram shown below illustrates a program devel· 
opment cycle where the program consists of modules created by FORTRAN 80, PUM 80 and the 808018085 Macro 
Assembler. . 

ISIS·II 
TEXT 

EDITOR 

ISIS·II 
TEXT 

EDITOR 

ISI5-11 
TEXT 

EDITOR 

FORTRANBO 
SOURCE 

PUMBO 
SOURCE 

ASSEMBLY 
LANGUAGE 

SOURCE 

SPECIFICATIONS 

OPERATING ENVIRONMENT 

Required Hardware: 
• 1. Intel Microcomputer Development Systems 

-MDS-800 and Series II 

or 

2. Personal Development System 

ORDERING INFORMATION 

PART NO. DESCRIPTION 

RELOCATABLE 
OBJECT 
MODULE 

Model MDS-301 FORTRAN 80 Compiler for 
Intellec Microcomputer Develop
ment Systems 

Requires Software License. 

LOCATE 

DOCUMENTATION PACKAGE 
FORTRAN-SO Programming Manual 

ISI5-11 
LOADER 

DEBUG 
VIA 

MONITOR 

DPTIONAL 
ICE-IO™ 
ICE-I5™ 

IN·CIRCUIT 
EMULATOR 

PROM 
PROGRAMMER 

ISIS-II FORTRAN-SO Compiler Operator's Manual 

FORTRAN-SO Programming Reference Card 

SUPPORT 
Intel offers several levels of support for this product 
which are explained in detail in the price list. Please 
consult the price list for a description of the support 
options available. 

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of 
Mohawk Data SCiences Corporation. 

3-9 AFN·OO2<1C 



MICROSOFT*~ INC. MACRO-80 UT,ILITY 
SOFTWARE PACKAGE 

• Includes the MACRO-SO macro 
assembler, LINK-SO linking loader, and 
CREF-SO cross-reference facility 

• Supports a complete, Intel-standard 
MACRO facility, including IRP, IRPC, 
REPEAT, local variables, and EXITM 

• Supports conditional assembly, 
including testing of assembly pass, 

, symbol definition, and parameters to 
MACROs 

• Code is assembled in relocatable 
modules for easy manipulation by the 
LINK-SO linking loader 

• Assembly rate of over 1000 lines per 
minute 

• Provides "big computer" assembler 
I 

features without sacrificing speed or 
memory space 

• Provides a complete set of listing 
controls 

• LINK-SO loads relocatable modules at 
user-specified locations 

• CREF-SO cross-reference facility 
alphabetizes program variables and 
shows where each is defined and 
referenced 

The Microsoft Utility Software Package is a complete system for developing assembly language programs, 
routines, and subroutines. The Utility Software Package includes the MACRO-80 macro assembler, the LlNK-80 
linking loader, and the CREF-80 cross-reference facility. The CP/M' version also includes the LlB-80 Library 
Manager. 

The Utility Software Package is supplied with all Microsoft compiiers to provide assembly language subroutine 
support to main programs in the high-level programming languages. The LlNK-80 linking loader is used 
by all Microsoft compilers for linking and loading compiled relocatable modules. Thus, LlNK-80 allows the 
programmer to link together relocatable modules from different Microsoft languages. 

FEATURES 

MACRO-SO Macro Assembler 

MACRO-80 incorporates almost all "big computer" 
assembler features without sacrificing speed or 
memory space. The assembler supports a complete, 
Intel-standard macro facility, including IRP, IRPC, 
REPEAT, local variables, and EXITM. Macro names 
take precedence over instruction mnemonics and 
pseudo operations. Nesting of macros is limited only 
by memory. Code is assembled in relocatable 
modules that are easily manipulated with the flexible 
linking loader. Conditional assembly capability is 
greatly enhanced by an expanded set of conditional . 
pseudo operations that include testing of assembly 
pass, symbol definition, and parameters to macros. 
Conditionals may be nested up to 255 levels. 

© INTEL CORPORATION, 1983 3-10 

More MACR0-80 features: 

-Comment blocks 

-Variable input radix from base 2 to base 16 

-Octal or hex listings 

-INCLUDE statement assembles an alternate 
source file into the current program 

-PRINTX statement for printing assembly or 
diagnostic messages 

-PHASE/DEPHASE statements allow code to 
reside'in one area of memory but execute in 
another 

-Complete set of listing controls 

MAY 1983 

ORDER NUMBER:210243-003 



inter MICROSOFT, INC. 
MACRO-aO UTILITY 

LlNK-ao linking Loader 

With LINK-SO, any number of programs may be 
loaded with one command, relocatable modules may 
be loaded in user-specified locations, and external 
references between modules are resolved automati
cally by the loader. The loader also performs library 
searches for system subroutines and generates a 
memory load map showing the locations of the main 
program and subroutines. 

SPECIFICATIONS 

Operating Environment 

MACRO-SO resides in approximately 19K bytes of 
memory. LlNK-80 resides in approximately 14K bytes 
of memory. CREF-SO requires about 6K bytes. The 
MACRO-SO Utility Software Package is compatible 
with the CP/M" operating system. 

Required Hardware 

Intellec® Microcomputer Development System 
-iPDS (Personal Development System) 
-minimum of 1 diskette drive 

ORDERING INFORMATION 

CREF-ao Cross-Reference Faclllt~ 

The Cross-Reference Facility that is included with the 
Utility Software Package supplies a convenient al
phabetic list of all program variable names, along 
with line numbers where they are referenced and 
defined. 

Required Software 

CP/M Operating System or MP/M-U* Operating 
System. 

Documentation Package 

One copy of each manual is supplied with the 
software package. 

Description 

Microsoft Utility Software Manual 

Description Order Code 

SD106CPMSOF Microsoft MACRO-SO Utility Software Package. CP/M v~rsion (iPDS Format) 

SUPPORT: 

Intel offers several levels of support for this product, depending on the system configuration in which it is used. 
Please consult the price list for a detailed description of the support options available. 

An Intel Software License reqUired. 
"Microsoft is a trademark of Microsoft. Inc. 
"CP/M is a registered trademark of Digital Research. Inc. 
"MP/M-II is a trademark of Digital Research. Inc. 

3-11 AFN·0208SC 



MICROSOFT*, INC. BASIC-SO INTERPRETER 
SOFTWARE PACKAGE ' 

• Compatible with other Microsoft BASIC 
compilers and interpreters 

• Sophisticated string handling and 
structured programming features for 
applications development 

• Direct transfer of BASIC programs to 
the 8085, 8086 and 8088 

• Random and sequential file 
manipulation where random file record 
length is user-definable 

• Read or write memory location 
capabilities 

Ii Meets the requirements for the ANSI 
subset standard for BASIC, and 
supports many enhancem~nts 

• Extensive text edIting features built-in 

• Automatic line number generation and 
renumbering 

• Supports assembly language 
subroutine calls 

• Trace facilities for easier debugging 

BASIC Release 5.0 from Microsoft is an extensive implementation of BASIC. Microsoft BASIC gives users what 
they want from a BASIC-ease of use plus the features that are comparable to a minicomputer or large 
mainframe. 

BASIC-80 meets the requirements for the ANSI subset standard for BASIC, as set forth in document BSRX3.60-
1978. It supports many unique features rarely found in other BASICs. 

FEATURES 

-Four variable types: Integer (-32768, +32767), 
String (up to 255 characters), Single-Precision 
Floating Point (7 digits), Double-Precision 
Floating Point (16 digits). 

-Trace facilities (TRON/TROFF) for easier 
debugging. 

-Error trapping l:lsing the ON ERROR GOTO 
statement. 

-PEEK and POKE statements to read or write any 
memory location. 

-Automatic line number generation and 
renumbering, including reference line numbers. 

-Matrices with up to' 255 dimensions. 

-Boolean operators OR, AND, NOT, XOR, EQV, 
IMP. 

©INTEL CORPORATION. 1983. 

3-12 

-Formatted output using the PRINT USING facility, 
including asterisk fill, floating dollar sign, 
scientific notation, trailing sign, and comma 
insertion. 

-Direct acCess to I/O ports with the INP and OUT 
functions. 

-Extensive program editing facilities via EDIT 
command and EDIT mode subcommands. 

-Assembly language subroutine calls (up to 10 per 
program) are supported. 

-IF/THEN/ELSE and nested IF/THEN/ELSE 
constructs. 

-Supports variable-length random and sequential 
disk files with a complete set of file manipulation 
statements: OPEN, CLOSE, GET, pur, KILL, 
NAME, MERGE. 

MAY 1983 
AFN-02086C 



inter MICROSOFT, INC. 
BASIC-80 INTERPRETER 

BASIC-80 Commands, Statements, 
Functions 

AUTO' 
LIST 
NULL 
TROFF 
CLEAR 
LOAD 

RENUM 
WIDTH 
CONT 
MERGE 
RUN 
DELETE 

Program Statements 

CALL RANDOMIZE 
GOSUB COMMON 
END DEF FN 
GOTO ERROR 
STOP POKE 
WHILE/ , RESUME 

WEND SWAP 
CHAIN DEFDBL 
DEF USR DEFSTR 
LET DEFSNG 
REM DEFINT 

NAME 
SAVE 
EDIT 
NEW 
TRON 

RETURN 
WAIT 
ON GOSUB 
DIM 
FOR/NEXT/ 

STEP 
IF/THEN/ 

ELSE 
ON ERROR 

GOTO 
OPTION BASE 

Input/Output Statements and Functions 

CLOSE 
KILL 
OUT 
RESTORE 
READ 
TAB 
DATA 
LINE 

INPUT 
PRINT 
WRITE 
LPRINT 

GET 
POS 
FIELD 
LSET/RSET 
PRINT 

USING 
LOC 
MKI$ 
MKS$ 
MKD$ 
LLiST 
LPOS 

SPECIFICATIONS 

Operating Environment 

NAME 
PUT 
EOF 
SPC 
INKEY$ 
INPUT 
OPEN 
CVD 
CVI 
CVS 

The standard disk version of Microsoft BASIC-80 
occupies 24K bytes of memory. Microsoft BASIC-80 
Interpreter is compatible with Intel's ISIS operating 
system or CP/M" operating system. 

Required Hardware. 

Intellec Microcomputer Development System 

-iPDS (Personal Development System) 
-minimum of 1 diskette drive 

3-13 

Arithmetic Functions 

ABS SIN 
INT CDBL 
SGN CSNG 
ATN CINT 
EXP SOR 

String Functions 

ASC STR$ 
LEN HEX$ 
STRING$ OCT$ 
CHR$ VAL 
LEFT$ 

Operators 

II <= 
< + 
> <> 

\ 
>= 

Special Functions 

ERL ERR 
USR FRE 

Required Software 

LOG 
FIX 
COS 
RND 
TAN 

INSTR 
RIGHT$ 
MID$ 
SPACES 

XOR 
NOT 
EOV 
MOD 
IMP 
OR 
AND 

VARPTR 
PEEK 

ISIS Operating System or CP/M Operating System. 

Documentation Package 

One copy of each manual is supplied with the 
software package. 

Description 

BASIC-SO Reference Manual 
BASIC Reference Book 

AFN·02086C 



MICROSOFT, INC. 
BASIC-80 INTERPRETER 

ORDERING INFORMATION 

Description Order Code 

SD102CPM80F Microsoft BASIC-BO Interpreter Software Package, CP/M version (Double-Sided, 
Double Density 5W Floppy) iPDS format 

SD1021SS80F Microsoft BASIC-80 Interpreter Software Package, ISIS version (Double-Sided, 
Double Density 5W Floppy) iPDS format 

SUPPORT 

Int~1 offers several levels of support for this product, 
depending on the system configuration in which it is 
used. Please consult the price list for a detailed 
description of the support options available. 

An Inlel Software License required. 
'MIcrosoft IS a trademark of Microsoft, Inc. 
'CP/M is a regIstered trademark of Digital Research, Inc. 
'MP/M-II is a trademark of DIgital Research, Inc. 

3-14 AFN-Q2086C 



MICROSOFT*, INC. PASCAL-80 
SOFTWARE PACKAGE 

• Native code compiler with language 
extensions designed for system 
software implementation 

• Meets current ISO draft standard 

• Fully portable, with machine
independent front end 

• Can replace assembly language for 
most system software programming 
tasks 

• Assembly language routines callable 
from PASCAL programs 

• Global optimizer produces compact, 
fast compiled code 

• Three levels of implementation- • 
standard, extended and system 
-to conform to different levels of 
standardization and levels of machine 
interface 

A critical need is emerging for more and more software "tools"-compilers, jnterpreters, operating systems, 
database managers, and dedicated application programs. The demand for system software with ashor! 
development time and a long lifespan is rapidly making assembly language impractical: As a result, the trend in 
system software is toward a new "tool maker"-a system-oriented language. 

Microsoft Pascal-SO is a high-level language compiler specifically designed for microprocessor system 
software implementation. The language is ISO-standard Pascal, with the addition of many system-oriented 
extensions. The compiler includes a global optimizer and modular code generator identical to other Microsoft 
Pascal products. 

With Pascal-SO, system software is highly readable, modular, and transportable. Plus, Pascal's clean block 
structure and procedure orientation make system programming more efficient than with assembly language. 

FEATURES 

Pascal-SO was designed to generate state-of-the-art 
compact system software. Many extensions have 
been made to the language that not only adapt it to 
system programming, but make it easier to use in any 
application .. 

-Expanded string support with variable-size 
LSTRING type 

-UNITS and USES interfaces for clean separate 
compilation 

-Machine-oriented WORD type and operators 
-Dynamic and conform ant arrays using SUPER 

array types 
-Attributes for variables and procedures 
-Machine address types and operators 

All the enhancements to Pascal:SO are natural exten
sions of the existing language. Care has been taken 
to maintain the structured nature of Pascal while 
assimilating new features. Many low-level escapes 
have also been provided, such as direct access to 
memory locations, calls to assembly language sub
routines, and a RETYPE function. 

©INTELCORtORATION,1983 
3-15 

THE PASCAL-80 COMPILER 
DESCRIPTION 

The compiler operates in three phases. The front-end 
phase translates the source into an intermediate 
form and does all error checking and listing genera
tion. The global optimizer phase analyzes the inter
mediate code and does constant folding, common 
subexpression elimination, strength reduction, and 
other optimizations. The code generator phase 
translates the intermediate code into relocatable ob
ject code and does register allocation and peephole 
optimizations. All phases are written in Pascal. 

The runtime system handles program initialization 
and termination, runtime error reporting, floating 
point arithmetic, string handling, set operations, 
dynamic variable allocation, input/output interfacing 
to the operating system, and low-level utility 
routines. Pascal-SO is designed to interface easily to 
operating system and floating point packages. 

Pasca1-S0 uses Microsoft's Linking Loader which al
lows independent code and data segment Iqcation, 

MAY 1983 

ORDER NO: 2102_ 



MICROSOFT, INC. 
PASCAL-80 

library searching, global memory maps, and com
bination of Pascal-SO output with the output of 
Microsoft's other compilers and assembler. 

Language Description 

The Pascal-80 language is organized into three levels 
(Standard, Extended, and System) based on the 
degree of portability provided. Standard level in
cludes all features in the pending ISO standard 
DP7185. Standard level also contains the meta
language, which controls error checking, listing for
mat, and other options. Programs using only 
Standard level are portable across all Pascals that 
conform to the standard. 

MicrosoFT's extensions to Pascal appear in the Ex
tended level and the System level. The Extended level 
contains high-level features that are natural to Pas
cal and are machine independent. Programs using 
only Standard and Extended levels are portable 
across Microsoft Pascal target machines. The Sys
tem level contains 10w~level extensions that provide 
an escape from Pascal restrictions or are machine 
dependent. 

Standard Level Features 

LISTING INFORMATION 
-Object listing shows generated code, with line 

numbers. 

METALANGUAGE DIRECTIVES 
-7 directives control specific runtime error checks. 

Extended Level Features 

DATA TYPES AND MODES 
-Numeric constants in hexadecimal, octal, or 

binary 
-BYTE/WORD types for S/16-bit unsigned 

operations 
-SUPER array types permit passing any size array 

to a procedure or allocating any size array on 
the heap 

-LSTRING type provides variable-length array of 
characters; current length access with Istring. 
LEN 

-STRING and LSTRING predeclared super array 
types 

-CONST parameter type passes long constant by 
reference 

-Functions can return arrays, records, or sets 

3-16 

-Attributes can be given to variables and 
procedures: 

Variables: STATIC READONLY PORT 
Procedures: INTERRUPT PURE 
Either: PUBLIC EXTERN ORIGIN. 

OPERATORS AND INTRINSICS 
-Bitwise AND, OR, and NOT on WORDs and 

INTEGERs 
-String constants can be concatenated with "*" 
-String-oriented intrinsics: 

STRING/LSTRING: POSITN SCAN EO SCANNE 
LSTRING only: CONCAT INSERT DELETE 

-Standard library includes 19 more routines 
-FORTRAN library includes 17 more REAL 

functions 
-Extended instrinsic procedures and functions: 

LOWER, UPPER get bounds of array, set, 
subrange . 

ABORT invokes runtime error handler 
SIZEOF returns size of variable in bytes 

CONTROL FLOW AND STRUCTURE 
-CONST, TYPE, VAR, VALUE sections in any order 
-MODULE source' file for separate compilation 

INPUT/OUTPUT AND FILES 
-READ enumerated, pointer, BOOLEAN, STRING, 

LSTRING 
-WRITE enumerated, pOinter, LSTRING 
-READ and WRITE for hexadecimal, octal and 

binary 
-Negative field width justifies left instead of right 
-Temporary files, file name created automatically 
-ASSIGN and CLOSE procedures 
--FILEMODES type, access with file.MODE 
-Error trapping, access with file.TRAP and 

file.ERRS 

SYSTEM LEVEL FEATURES 
-Record types can give explicit byte offset to 

fields 
-All file types identical to special FCBFOO record 

type 
-System intrinsic byte movers: MOVEL MOVER 

FILLC 
-Address types permit low-level machine access 

ADR OF type declares address (all ADRs 
compatible) 

ADR prefix operator gets variable or constant 
address 

adr. R gives WORD address value, adr gives 
data at address 

AFN-02093C 



MICROSOFT, INC 
PASCAL·80 

Utility Software Package 

The PASCAL-SO package includes the Microsoft 
Utility Software Package. The Utility Software Pack
age includes the MACRO-SO macro assembler, the 

SPECIFICATIONS 

Operating Environment 

The Pascal compiler running under CP/M resides in 
approximately 40K bytes of memory and requires an 
additionalSK byte minimum (or4BK bytes minimum) 
plus symbol table space when compiling. ' 

Required Hardware 

Intellec Microcomputer Development System 
-iPDS (Personal Development System) 
-minimum of 1 diskette drive 

ORDERING INFORMATION 

LINK-SO linking loader, and the CREF-SO Cross
Reference Facility. Refer to the description of the 
Microsoft Utility Software Package for full details. 

Required Software 

CP/M* Operating System or MP/M-II* Operating 
System. 

Documentation Package 

One copy of each manual is provided with the 
software package. 

Description 

PASCAL-SO Reference Manual 
Microsoft Utility Software Manual 

Description Order Code 

SD105CPMSOF Microsoft Pascal-SO Software Package, CP/M version (iPDS Format) 

SUPPORT 

Intel offers several levels of support for this product, 
depending on the system configuration in which it is 
used. Please consult the price list for a detailed 
description of the support options available. 

An Intel Software License required 
'Microsoft is a trademark of Microsoft, Inc. 
'CP/M IS a registered trademark of Digital Research, Inc. 
'MP/M-II IS a trademark of Digital Research. Inc 

3-17 AFN·02093C 



iAPX 86,88 
SOFTWARE DEVELOPMENT PACKAGES 

FOR SERIES II/PDS 
• PLIM 86/88 High L.:evel Programming 

Language 
• ASM 86/88 Macro Assembler for 

iAPX 86,88 Assembly Language 
Programming 

• LINK 86/88 and LOC 86/88 Linkage and 
Relocation Utilities 

• CONY 86/88 Converter for Conversion 
of 8080/8085 Assembly Language 
Source Code to iAPX 86, 88 Assembly 
Language Source Code 

• OH 86/88 Object-to-Hexadecimal 
Converter 

• LIB 86/88 Library Manager 

. The iAPX 86,88 Software Development Packages for Series II provide a set of software development tools for 
the iAPX 86/88 CPUs and the iSBC 86/12A single board computer. The packages operate under the ISIS-II 
operating system on Intel Microcomputer Development Systems-Model 800, Series II or the Personal Devel
opment System (PDS)-thus minimizing requirements for additional hardware or training for Intel Microcom
puter Develbpment System users. 

These packages permit 8080/8085 users to efficiently upgrade existing programs into iAPX 86/88 code from 
either 8080/8085 assembly language source code or PLIM 80 source code. 

For the new Intel Microcomputer Development System user, the packages operating on a PDS or an Intellec 
Series II, such as a Model 235, provide total iAPX 86,88 software development capability. 

© INTEL CORPORATION. 1983 MAY 1983 

3-18 AFN·01239E 



inter iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS 

PUM 86/88 COMPILER 
FOR SERIES II/PDS 

• Language is Upward Compatible from 
PUM 80, Assuring MCS®-80/85 Design 
Portability 

• Supports 16-blt Signed Integer and 
32-blt Floating Point Arithmetic in 
Accordance with IEEE Proposed 
Standard 

• Easy-to-Learn, Block-Structured 
Language Encourages Program 
Modularity 

• Produces Relocatable Object Code 
Which is Linkable to All Other 8086 
Object Modules 

• Supports Full Extended Addressing 
Features of the iAPX 86/10 and 88/10 
Microprocessors (Up to 1 Mbyte) 

• Code Optimization Assures Efficient 
Code Generation and Minimum 
Application Memory Utilization 

Like its counterpart for MCS-80/85 program development, PL/M 86/88 is an advanced, structured high-level 
programming language. The PL/M 86/88 compiler was created specifically for performing software develop
ment for the Intel iAPX 86,88 Microprocessors. 

PL/M 86/88 has significant new capabilities over PL/M 80 that take advantage of the new facilities provided by 
the iAPX 86,88 microsystem, yet the PL/M 86/88 language remains compatible witli PL/M 80. 

With the exception of hardware-dependent modules, such as interrupt handlers, PL/M 80 applications may be 
recompiled with PL/M 86/88 with little r,eeed for modification. PL/M 86/88, like PL/M 80, is easy to learn, 
facilitates rapid program development, and reduces program mai~tenance costs. 

PLIM is a powerful, structured, high-level system implementation language in which program statements can 
naturally express the program algorithm. This frees the programmer to concentrate on the logic of the 
program without concern for burdensome details of machine or assembly language programming (such as 
register allocation, meanings of assembler mnemonics, etc.). 

The PLIM 86/88 compiler efficiently converts free-form PL/M language statements into equivalent 86/88 
machine instructions. Substantially fewer PLIM statements are necessary for a given application than if it were 
programmed at the assembly language or machine code level. 

The use of PLIM high-level language for system programming, instead of assembly language, results in a high 
degree of engineering productivity during project development. This translates Into significant reductions in 
initial software development and follow-on maintenance costs for the user 

FEATURES 

Major features of the Intel PLIM 86/88 compiler and 
programming language include: 

Block Structure 

PLIM source code is developed in a series of mod
ules, procedures, and blocks. Encouraging program 
modularity in this manner makes programs more 
readable, and easier to maintain and debug. The 
language becomes more flexible by clearly defining 
the scope of user variables (local to a private proce
dure, global to a public module, for example). 

The use of procedures to break down a large prob
lem is paramount to productive software develop
ment. The PL/M 86/88 implementation of a block 

3-19 

structure allows the use of REENTRANT which is 
especially useful in system design. 

Language Compatibility 

PL/M 86/88 object modules are compatible with ob
ject modules generated by all other 86/88 translators. 
This means that PLIM programs may be linked to 
programs written in any other 86/88 language. 

Object modules are compatible with ICE-88 and 
ICE-86 units; DEBUG compiler control provides the 
In-Circuit Emulators with symbolic debugging 
capabilities. 

PLIM 86/88 Language is upward-compatible with 
PL/M 80, so that application programs may be easily 
ported to run on the iAPX 86 or 88. 

AFN·01239E 



inter iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS 

Supports Five Data Types 

PUM makes use of five data types for various appli
cations. These data types range from 'one to four 
bytes, and facilitate various arithmetic, logic, and 
addressing functions: 

-Byte: 8-bit unsigned number 
-Word: 16-bit unsigned number 
-Integer: i6-bit signed number 
-Real: 32-bit floating point number 
-Pointer: 16-bit or 32-bit memory address 

indicator 

Another powerful facility allows the use of BASED 
variables that map more than one variable to the 
same memory location. This is especially useful for 
passing parameters, relative and absolute address
ing, and memory allocation. 

Two Data Structuring Facilities 

In addition to the five data types and based variables, 
PL/M supports two data structuring facilities. These 
add flexibility to the referencing of data stored in 
large. groups. 

-Array: 

-Structure: 

-Combinations 

Indexed list of same type data 
elements 
Named collection of same or dif
ferent type data elements 

of Each: Arrays of structures or 
structures of arrays 

8087 Numerics Support 

PUM programs that use 32-bit REAL data may be 
executed using the Numeric Data Processor for im
proved performance. All floating-point operations 
supported by PUM may be executed on the 8087 
NDP, or the 8087 Emulator (a software module) 
provided with the package. Determination of use of 
the chip or emulator takes place at link-time, allow
ing compilations to be run-time independent. 

Built-In String Handling Facilities 

The PUM 86/88 language contains built-in functions 
for string manipulaiton. These byte and word func
tions perform the following operations on character 
strings: MOVE, COMPARE, TRANSLATE, SEARCH, 
SKIP, and SET. 

Interrupt Handling 

PUM has the facility for generating interrupts to 
the iAPX 86 or 88 via software. A procedure may be 
defined with the INTERRUPT attribute, and the 
compiler will automatically initialize an interrupt 
vector at the appropriate memory location. The 
compiler will also generate code to same and re
store the processor status', for execution of the 
user-defined interrupt handler routine. The proce
dure SET$INTERRUPT, the function retuning 
an INTERRUPT$PTR, and the PL/M statement 
CAUSE$INTERRUPT all add flexibility to user pro
grams involving interrupt handling. 

Segmentation Control 

The PUM 86/88 compiler takes full advantage of 
program addressing with the SMALL, COMPACT, 
MEDIUM, and LARGE segmentation controls. Pro
grams with less than 64KB total code space can 
exploit the most efficient memory addressing 
schemes, which lowers total memory requirements. 
Larger programs can exploit the flexibility of ex
tended one-megabyte addressing. 

Code Optimization 

The PUM 86/88 compiler offers four levels of optimi
zation for Significantly reducing overall program 
size. 

-Combination or "folding" of constant ex
pressions; and short-circuit evaluation of Boo
lean expressions. 

-"Strength reductions" (such as a shift left rather 
than multiply by 2); and elimination of common 
sub-expressions within the same block. 

-Machine code optimizations; elimination of 
superfluous branches; re-use of duplicate code; 
removal of unreadable code. 

-Byte comparisons (rather than 20-bit address cal
culations) for pointer variables; optimization of 
based-variable operations. 

Compiler Controls 

The PUM 86/88 compiler offers more than 25 con
trols that facilitate such features as: 

-Conditional compilation 
-Intra- and Inter-module cross reference 
-Corresponding assembly language code in the 

listing file 
-Setting overflow conditions for run-time handling 

3-20 AFN-01239E 



inter iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS 

BENEFITS 

PL/M 86/88 is designed to be an efficient, cost
effective solution to the special requirements of 
iAPX 86 or 88 Microsystem Software Development, 
as illustrated by the following benefits of PUM use: 

Low Learning Effort 

PUM 86/88 is easy to learn and to use, even for the 
novice programmer. 

Earlier Project Completion 

Critical projects are completed much earlier than 
otherwise possible because PL/M 86/88, a 
structured high-level language, increases pro
grammer productivity. 

Lower Development Cost 

Increases in programmer productivity translate im
mediately into lower software development costs 

because less programming resources are required 
for a given programmed function. 

Increased Reliability 

PUM 86/88 is designed to aid in the development of 
reliable software (PUM 86/88 programs are simple 
statements ofthe program algorithm). This substan
tially reduces the risk of costly correction of errors in 
systems that have already reached full production 
status, as the more simply stated the program is, the 
more likely it is to perform its intended function. 

Easier Enhancements and Maintenance 

Programs written in PL/M tend to be self
documenting, thus easier to read and understand. 
This means it is easier to enhance and maintain 
PUM programs as the system capabilities expand 
and future products are developed. 

iAPX 86,88 MACRO ASSEMBLER 
FOR SERIES II/PDS 

• Powerful and Flexible Text Macro 
Facility with Three Macro Listing 
Options to Aid Debugging 

• Highly Mnemonic and Compact 
Language, Most Mnemonics Represent 
Several Distinct Machine Instructions 

• "Strongly Typed" Assembler Hetps 
Detect Errors at Assembly Time 

• High-Level Data Structuring Facilities 
Such as "STRUCTUREs" and 
"RECORDs" 

• Over 120 Detailed and Fully Docu
mented Error Messages 

• Produces Relocatable and Linkable 
Object Code 

ASM 86/88 is the "high-level" macro assembler for the iAPX 86,88 assembly language. ASM 86/88 translates 
symbolic 86/10, 88/10 assembly language mnemonics into 86/10, 88/10 relocatable object code. 

ASM 86/88 should be used where maximum code effici~ncy and hardware control is needed. The iAPX 86,88 
assembly language includes approximately 100 instruction mnemonics. From these few mnemonics the 
assembler can generate over 3,800 distinct machine instructions. Therefore, the software development task is 
simplified, as the programmer need know only 100 mnemonics to generate all possible 86/10, 88/10 machine 
instructions. ASM 86/88 will generate the shortest machine instruction possible given no forward referencing 
or given explicit information as to the characteristics of forward referenced symbols. 

ASM 86/88 offers many features normally found only in high-level languages. The iAPX 86,88 assembly 
language is strongly typed. The assembler performs extensive checks on the usage of variables and labels. 
The assembler uses the attributes which are derived explicitly when a variable or I~bel is first defined, then 
makes sure that each use of the symbol in later instructions conforms to the usage defined for that symbol. 
This means that many programming errors will be detected when the program is assembled, long before it is 
being debugged on hardware. 

3-21 AFN-01239E 



, inter iAPX 86~88 SOFTWARE ,DEVELOPMENT PACKAGES FOR SERIES II/PDS 

FEATURES 

Major featu res of the Intel iAPX 86,88 assembler and 
assembly language include: 

Powerful and Flexible Text Macro Facility 

- Macro calls may appear anywhere 
- Allows user to define the syntax of each macro 
- Built-in functions 

conditional assembly (IF-THEN-ELSE, WHILE) 
repetition (REPEAT) 
string processing functions (MATCH) 
support of assembly ti me I/O to console (IN, OUT), 

- Three Macro Listing Options include a GEN 
mode which provides a complete trace of all 
macro calls and expansions 

High-Level Data Structuring Capability 

- STRUCTURES: Defined to be a template and 
then used to allocate storage, The familiar dot 
notation may be used to form instruction 
addresses with structure fields. 

- ARRAYS: Indexed list of same type data ele
ments. 

- RECORDS: Allows bit-templates to be defined 
and used as instruction operands and/or to allo
c~te storage. 

Fully Supports iAPX 86,88 
Addressing Modes 

- Provides for complex address expressions in
volving base and indexing registers and 
(structure) field offsets. 

- Powerf,ul EQU facility allows complicated ex
preSSions to be named and the name can be used 
as a synonym for the expression throughout the 
module. 

Powerful STRING MANIPULATION 
INSTRUCTIONS 

- Permit direct transfers to or from memory or the 
accumulator. 

- Can be prefixed with a repeat operator for repe
titive execution with a count-down and a condi
tion test. 

Over 120 Detailed Error Messages 

- Appear both in regular listfile and error print file. 
- User documentation fully explains the occur-

rence of each error and suggests a method to 
correct it. 

Support for ICE-86 Emulation and 
Symbolic Debugging 

- Debug options for inclusion of symbol table in 
object modules for In-Circuit Emulation with 
symbolic debugging, 

Generates Relocatable and Linkable 
Object Code-Fully Compatible with 
LINK 86/88, LOC 86/88 and LIB 86/88 

3-22 

- Permits ASM 86/88 programs to be developed ' 
and debugged in small modules. These modules 
can be easily linked with other ASM 86/88 or 
PL/M 86/88 object modules and/or library 
routines to form a complete application system. 

BENEFITS 

The iAPX 86,88 macro assembler allows the exten
sive capabilities of the 86/88 CPU's to be fully ex
ploited. In any application, time and space critical 
routines can be effectively written in ASM 86/88. The 
86,88 assemqler outputs relocatable and linkable ob
ject modules, These object modules may be easily 
combined with object modules written in PLIM 
86/88-lntel's structured, high-level programming 
language. ASM 86/88 compliments PLIM 86/88 as the 
programmer may choose to write each module in the 
language most appropriate to the task and then com
bine the modules into the complete applications pro
gram using the iAPX 86,88 relocation and linkage 
utilities. 

N'N-01239E 



inter IAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS 

CONV 86/88 
MC~·80/85 to iAPX 86,88 ASSEMBLY LANGUAGE 

CONVERTER UTILITY PROGRAM 

• Translates 8080/8085 Assembly 
Language Source Code to iAPX 86,88 
Assembly Language Source Code 

• Provides a Fast and Accurate Means to 
Convert 8080/8085 Programs to the 
iAPX 86/88 Facilitating Program 
Portability 

• Automatically Generates Proper ASM 
86/88 Directives to Set Up a "Virtual 
8080" Environment that is Compatible 
with PL/M 86/88 

In support of Intel's commitment to software portability, CONV 86/88 is offered as a tool to move 8080/8085 
programs to the iAPX 86/88. A comprehensive manual, "MCS-86 Assembly Language Converter Operating 
Instructions for ISIS-II Users," covers the entire conversion process. Detailed methodology of the conversion 
process is fully described therein. 

- CONV 86/88 will accept as input an error-free 
8080/8085 assembly-language source file and 
optional controls, and produce as output, op
tional PRINT and OUTPUT files. 

- The PRINT file is a formatted copy of the 
• 8080/8085 source and the 86/88 source file with 

embedded caution messages. 

- The OUTPUT file is an 86/88 source file. 

- CONV 86/88 issues a caution message when it 
detects a potential problem in the converted 
86/88 code. 

- A transliteration of the 8080/8085 programs oc
curs, with each 8080/8085 construct mapped to its 
exact 86/88 counterpart: 

Registers 
Condition flags 
Instruction 
Operands 
Assembler directives 
Assembler control lines 
Macros 

3-23 

Because CONV 86/88 is a transliteration proc'ess, 
there is the possibility of as much as a 15%-20% 
code expansion over the 8080/8085 code, For com
pactness and efficiency it is recommended that crit
ical portions of programs be re-coded in iAPX 86,88 
assembly language. 

Also, as a consequence of the transliteration, some 
manual editing may be required for converting in
struction sequences dependent on: 

-instruction length, timing, or encoding 
-interrupt processing" 
-PL/M parameter passing conventions" 

"Mechanical editing procedures for these are sug
gested in the converter manual. 

The accompanying figure illustrates the flow of the 
conversion process. Initially, the abstract program 
may be represented in 8080/8085 or iAPX 86,88 as
sembly language to execute on that respective target 
machine, The conversion process is porting a source 
destined for the 8080/8085 to the 86/88 via CONV 
86/88. 

AFN·01239E 



inter IAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES jl/PDS 

SOURCE CODE ABSTRACT PROGRAM SOURCE CODE 
IN 8080/1085 - IN 88110, 88110 

ASSEMBLY LANG ALGORITHM ASSEMBLY LANG 

-~ ASSEMBLE 
FOR CONV88/88 FOR 

8080/1085 88110,88110 

EXECUTE ------------ EQUIVALENT ------------ EXECUTE 
ON ON 

8080/8085 ------------ FUNCTION --------_ ..... _- 88110,88110 

Figure 1. Porting 8080/8085 Source Code to the IAPX 86/10 and 88/10 

LINK 86/88 

• Automatic Combination of Separately 
Complied or Assembled IAPX 86, 88 
Programs Into a Relocatable Module 

• Automatic Selection of Required 
Modules from Specified Libraries to 
Satisfy Symbolic References 

• Extensive Debug Symbol 
Manipulation, Allowing Line Numbers, 
Local Symbols, and Public Symbols to 
be Purged and Listed Selectively 

• Automatic Generation of a Summary 
Map Giving Results of the LINK 86/88 

, Process 

• Abbreviated Control Syntax 

• Reloca.able Modules may be Merged 
Into a Single Module Suitable for 
Inclusion in a Library 

• Supports "Incremental" Linking 
• Supports Type Checking of Public and 

External Symbols 

LINK 86/88 combines object modules specified in the LINK 86/88 input list into a single output module, LINK 
86/88 combines segments from the input modules according to the order in which the modules are listed. 

LINK 86/88 will accept libraries and object modules built from PL/M 86188, ASM 86/88, or any other translator 
generating Intel's iAPX 86/88 Relocatable Object Modules. ' 

Support for incremental linking is provided since an output module produced by LINK 86/88 can be an input to 
another link. At each stage in the incremental linking process, unneeded public symbols may be purged. 

LINK 86/88 supports type checking of PUBLIC and EXTERNAL symbols reporting an error if their types are not 
consistent. ' 

LINK 86/88 will link any valid set of input modules without any controls. However, controls are available to con
trol the output of diagnostic information in the LINK 86/88 process and to control the content of the output 
module. 

LINK 86188 allows the user to create'a large program as the combination of several smaller, separately com-
o piled modules. After development and debugging of these component modules the user can link them 

together, locate them using LOC 86/88 and enter final testing with much of the work accomplished. 

3-24 AFN-Q1239E 



Inter iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS 

LIB 86/88 

• LIB 86/88 is a Library Manager 
Program which Allows You to: 

Create Specially Formatted Files to 
Contain Libraries of Object Modules 

Maintain These Libraries by Adding or 
Deleting Modules 

Print a Listing of the Modules and 
Public Symbols in a Library File 

• Libraries Can be Used as Input to 
LINK 86/88 Which Will Automatically 
Link Modules from the Library that 
Satisfy External References in the 
Modules Being Linked 

• Abbreviated Control Syntax 

Libraries aid in the job of building programs. The library' manager program LIB 86/88 creates and maintains 
files containing object modules. The operation of LIB 86/88 is controlled by commands to indicate which op
eration LIB 86/88 is to perform. The commands are: 

CREATE: creates an empty library file 
ADD: adds object modules to a library file 
DELETE: deletes modules from a library file 
LIST: lists the module directory of library files 
EXIT: terminates the LIB 86 program and returns control to ISIS-II 

When using object libraries, the linker will call only those object modules that are required to satisfy external 
references, thus saving memory space. 

Loe 86/88 

• Automatic Generation of a Summary 
Map Giving Starting Address, Segment 
Addresses and Lengths, and Debug 
Symbols and their Addresses 

• Extensive Capability to Manipulate the 
Order and Placement of Segments in 
iAPX 86/88 Memory 

• Abbreviated Control Syntax 

• Automatic and Independent 
Relocation of Segments. Segments 
May Be Relocated to Best Match 
Users Memory Configuration 

• Extensive Debug Symbol 
Manipulation, Allowing Line Numbers, 
Local Symbols, and Public Symbols to 
be Purged and Listed Selectively 

Relocatability allows the programmer to code programs or sections of programs without having to know the 
final arrangement of the object code in memory. 

LOC 86/88 converts relative addresses in an input module to absolute addresses. LOC 86/88 orders the seg
ments in the input module and assigns absolute addresses to the segments. The sequence in which the seg
ments in the input module are assigned absolute addresses is determined by their order in the input module 
and the controls supplied with the command. 

LOC 86/88 will relocate any valid input module without any controls. However, controls are available to control 
the output of diagnostic information in the LOC 86/88 process, to control the content of the output module, or 
both. 

The program you are developing will almost certainly use some mix of random access memory (RAM), read
only memory (ROM), andlor programmable read-only memory (PROM). Therefore, the location of your pro
gram affects both cost and performance in your application. The relocation feature allows you to develop your 
program on the Intellec development system and then simply relocate the object code to suit your application. 

3-25 AFN-01239E 



inter iAPX 86,88 SOFTWARE DEVELOPMENT PAC.KAGES FOR SERIES' II/PDS 

OH 86/88 

• Converts an iAPX 86/88 Absolute 
Object Module to Symbolic 
Hexadecimal Format 

• Facilitates Preparing a File for Later 
Loading by a Symbolic Hexadecimal 
Loader, such as the iSBC™ M9nitor 
SDK-86 Loader, or Universal PROM 
Mapper 

• Converts an Absolute Module to a 
More Readable Format that can be 
Displayed on a CRT or Printed for 
Debugging 

The OH 86/88 utility converts an 86/88 absolute object module to the hexadecimal format. This conversion may 
be necessary to format a module for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or 
Universal PROM Mapper. The conversion may also be made to put the module in a more readable format than 
can be displayed or printed. 

The module to be converted must be in absolute format; the output from LaC 86/88 is in absolute format. 

Figure 2. iAPX 86,88 So.ftware Development Cycle 

3-26 AFN-01239E 



· inter iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS 

SPECIFICATIONS 

Operating Environment 
Intel Microcomputer Development Systems 
Intel Personal Development System 

Documentation 

PL/M-86 Programming Manual 

1515-1/ PL/M-86 Compiler Operator's Manual 

MCS-86 User's Manual 

MCS-86 Software Development Utilities Operating 
Instructions for 1515-1/ Users 

MCS-86 Macro Assembly Language Reference 
Manual 

MCS-86 Macro Assembler Operating Instructions 
for 1515-1/ Users 

MCS-86 Assembly Language Converter Operating 
Instructions for 1515-1/ Users 

Universal PROM Programmer User's Manual 

SUPPORT: 

ORDERING INFORMATION 

iAPX 86,88 Software Development 
Packages for Series II: 

Part No. 

MDS-30S* 

MDS-309* 

MDS-311* 

Description 

Assembler and Utilities 
Package 

PUM compiler and Utilities 
Package 

PUM compiler, Assembler, 
and Utilities Package 

All Packages Require Software Licenses 

Hotline Telephone Support, Software Performance Reports (SPR), Software Updates, Technical Reports, 
Monthly Newsletters are available. 

*MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trade
mark of Mohawk Data Sciences Corporation. 

3-27 AFN-01239E 



PL/M 86/88/186/188 Software Package 

• Systems Programming Language for • Improved Compiler Performance Now 
the iAPX 86/88/1861188 Processors Supports More User Symbols and 

• Language Is Upward COn:'patible from Faster Compilation Speeds . 

PUM 80, Assuring MCS®·80185 Design • Produc!Js Relocatable Object Code 
Portability Which Is Linkable to All Other 8086 

• Advanced Structured System Imp/a- Object Modules 

mentation Language for Algorithm • Code Optimization Assures Efficient 
Development Code Generation and Minimum 

• Supports 16·Bit Signed Integer and Application Memory Utilization 

32·Bit Floating Point Arithmetic in • Built·ln Syntax Checker Doubles Per· 
Accordance with IEEE Proposed formance for Compiling Programs 
Standard Containing Errors 

• Easy-to-Learn Block-Structured • Resident on iAPX 86 Intel Micro-
Language Encourages Program computer Development Systems 
Modularity 

PUM 86 is an advanced, structured, high-level systems programming language. The RUM 86 compiler was 
created specifically for performing software development for the Intel 8086, 8088, 80186 and 80188 Microproces
sors. PL/M was designed so that program statements naturally express the program algorithm. This frees the 
programmer to concentrate on the logic of the program without concern for burdensome details of machine or 
assembly language programming (such as register allocation, meanings of assembler mnemonics, etc.). 

The PUM 86 compiler efficiently converts free-form PUM language statements into machine instructions. Sub
stantially fewer PLiM statements are necessary for a given application than if it were programmed at the assembly 
language or machine code level. 

The use of PUM high-level language for system programming, instead of assembly language, results in a 
high degree of engineering productivity during project development. This translates into significant reduc
tions in initial software development and follow-up maintenance costs for the user. 

NOTE' The Intellec~ Development System pictured here IS not Included with the PlfM 86/88 Software package but merely depIcts a language In Its operating environment. 
The following are trademarks of Intel Corporation and Its afflhates and may be used only to Identify Intel products. exp, CREDIT, I, ICE, ICS, 1m, In site, intel, INTEL, IntelevlSlon, 
Intel ink, Intellec, IMMX, IOSP, IPDS, IRMX, ISBC, ,SBX, library Manager, MeS, MULTI MODULE, Megachassis Micromainframe, MULTlaUS, Multichannel, Plug·A-Bubble, 
PROMPT, Promware, AUPI, RMX/80, System 2000, UPI, and the combination ICS, iAMX, ISaC, iSBX, ICE, ,2ICE, MCS, or UPI and numerical suffix Intel Corporation Assumes No
Responsibility for the use of Any Circuitry Other Than Circuitry Embodied In an Intel product No Other Patent licenses are Implied ©INTEL CORPORATION. 1983 

MAY 1983 

ORDER NUMBER:210689-002 

3-28 



PL/M 86188/186 SOFTWARE PACKAGE 

FEATURES 
Major features of the Intel PLIM 86 compiler and 
programming language include: 

Block Structure 
PLIM source code is developed in a series of 
modules, procedures, and blocks. Encouraging 
program modularity in this manner makes pro
grams more readable, and easier to maintain and 
debug. The language becomes more flexible, by 
clearly defining the scope of user variables (local 
to a private procedure). 

The use of procedures to break down a large 
problem is paramount to productive software 
development. The PLIM 86 implementation of a 
block structure allows the use of REENTRANT 
(recursive) procedures, which are especially use
ful in system design. 

Language Compatibility 
PLIM 86 object modules are compatible with ob
ject modules generated by all other iAPX 86 
translators. This means that PLIM programs may 
be linked to programs written in any other iAPX 86 
language. 

Object modules are compatible with In-Circuit 
Emulators; DEBUG compiler control provides the 
In-Circuit Emulators with symbolic debugging 
capabilities. . 

PLIM 86 Language is upward compatible with 
PLIM 80, so that application programs may be 
easily ported to run on the iAPX 86. 

Supports Seven Data Types 
PL/M makes use of seven data types for various 
applications. These data types range from one to 
four bytes, and facilitate various arithmetic, logic, 
and addressing functions: 

-Byte: 8-bit unsigned number 
-Word: 16-bit unsigned number 
-DWORD: 32-bit unsigned number 
-Integer: 16-bit signed number 
-Read: 32-bit floating point number 
-Pointer: 16-bit or 32-bit memory address 

indicator 
-Selector: 16-bit base portion of a pointer 

3-29 

Another powerful facility allows the use of BASED 
variables that map more than one variable to the 
same memory location. This is especially useful 
for passing parameters, relative and absolute ad
dressing, and memory allocation. 

Two Data Structuring Facilities 
In addition to the five data types and based 
variables, PLIM supports two data structuring 
facilities. These help the user to organize data in
to logical groups. 

- Array: Indexed list of same type data elements 
- Structure: Named collection of same or dif-

ferent type data elements 
~ Combinations of Each: Arrays of structures or 

structures of arrays 

8087 Numerics Support 
PLIM programs that use 32-bit REAL data may be 
executed using the Numeric Data Processor for 
improved performance. All floating-point opera
tions supported by PLIM may be executed on the 
iAPX 86/20 or 88/20 NDP, or the 8087 Emulator (a 
software module) provided with the package. 
Determination of use of the chip or Emulator 
takes place at linktime, allowing compilations to 
be run-time independent. 

Built·ln String Handling Facilities 
The PLIM 86 language contains built-in functions 
for string manipulation. These byte and word 
functions perform the following operations on 
character strings: MOVE, COMPARE, 
TRANSLATE, SEARCH, SKIP, and SET. 

Interrupt Handling 
PL/M has the facility for handling interrupts. A 
procedure may be defined with the INTERRUPT 
attrioute, and the compiler will automatically in
itialize an interrupt vector at the appropriate 
memory location. The compiler will also generate 
code to save and restore the processor status, for 
execution of the user-defined interrupt handler 
routine. The procedure SET$INTERRUPT, the 
function retuning an INTERRUPT$PTR, and the 
PLIM statement CAUSE$INTERRUPT all add flex
ibility to user programs involving interrupt and 
handling. 

AFN·01881C 



inter PL/M 86/88/186 SOFTWARE PACKAGE 

Compiler Controls 
Including several that have been mentioned, the 
PLIM 86 compiler offers more than 25 controls 
that facilitate such features as: 

- Conditional compilation 
- Including additional PLIM source files from 

disk 
- Corresponding assembly language code in the 

listing file 
- Setting overflow conditions for run-time 

handling 

Segmentation Control 
The PLIM 86 compiler takes full advantage of pro
gram addressing with the SMALL, COMPACT, 
MEDIUM, and LARGE segmentation controls_ Pro
grams with less than 64KB total code space can 
exploit the most efficient memory addressing 
schemes, which lowers total memory require
ments. Larger programs can exploit the flexibility 
of extended one-megabyte addressing. 

Code Optimization 
The PLIM 86 compiler offers four levels of op
timization for significantly reducing overall pro
gram size. 

- Combination or "folding" of constant expres
sions; and short-circuit evaluation of Boolean 
expressions 

- "Strength reductions" (such as a shift left 
rather than multiply by 2); and elimination of 
common sub-expressions within the same 
block 

- Machine code optimizations; elimination of 
superfluous branches; re-use of duplicate 
code; removal of unreachable code 

- Byte comparisons (rather than 20-bit address 
calculations) for pointer variables; optimization 
of based-variable operations 

Error Checking 
The PLIM 86 compiler has a very powerful feature 
to speed up compilations. If a syntax or program 
error is detected, the compiler will skip the code 
generation and optimization passes. This usually 
yields a 2X performance increase for compilation 
of programs with errors. 

A fully detailed set of programming and compila
tion errors is provided by the compiler. 

MOO. 1* Beglnnmg of module 'I 

SORTPROC PROCEDURE (PTR. COUNT. RECSIZE. KEYINDEX) ~ I PUBLIC and EXTERNAL attributes promote 
~L___ l programmodulanty 

DECLARE PTR POINTER. (COUNT. RECSIZE. KEYINDEX) INTEGER. 

j* Parameters 

SORT 

FIND 

END M. 

PTA IS pOinter to ftrst record ' 
COUNT IS number 01 records to be sorted 
RECSIZE IS number of bytes In each record-max IS 128 
KEYINDEX IS byte pOSItion wlthm each record of a BYTE scalar \' "Based" Vanables allow manipulation of external data by 

to be used as sort key '/ -~--~ ~~~~~I~~~~h~a~~~bW:~aa~: ~~~J\~~ep~r~~I~tt;Pp:s~~g, and 
DECLARE @ECORDBASEDPTBJ(1) BYTE, the execution time to perform many STACK operatIons 

CURRENT (128) BYTE, 
(I. J) INTEGER. 

DO J~ 1 TO COUNT-l. 
CALL MOVB(@RECORD(J'RECSIZE). ""'.:..::....:.-_, 
I""J, - __ 

DO WHILE I ,0 
AND RECORD((I- WRECSIZE-KEYINDEX) 
·CURRENT(KEYINDEX). 

CALL MOVB(@RECORD((I-l)'RECSIZE). 
@RECORO(I·RECSIZE). 
RECSIZE). 

I~I-l. 

END FIND. 

CALLCM~B~CURRENT. @RECORD(I·RECSIZE). RECSIZE). 
END SORT. 

END SORTPROC. 

rEnd of module"! 

The "AT" operator returns the address of a 
variable, Instead of Its contents Th,s IS very useful 
In passIng pOInters for based variables. 

One of several PL/M bwltMtn procedures for stnng 
manIpulatIon 

Figure 1. Sample PLIM 88 Program. 

3-30 AFN-Ol661C 



PLIM 861881186 SOFTWARE PACKAGE 

BENEFITS 
PLIM 86 is designed to be an efficient, cost-effec
tive solution to the special requirements of iAPX 
86 Microsystem Software Development, as illus
trated by the following benefits of PLIM use: 

Cost· Effective Alternative to 
Assembly Language 
PLIM 86 programs are code efficient. PLIM 86 
combines all of the benefits of a high-level 
language (ease of use, high productivity) with the 
ability to access the iAPX 86 architecture. Conse
quently, for the development of systems software, 
PLiM 86 is the cost-effective alternative to 
assembly ianguage programming. 

Low Learning Effort 
PLiM is easy to learn and to use, even for the 
novice programmer. 

Earlier Project Completion 
Critical projects are completed much earlier than 
otherwise possible because PLiM 86, a structured 
high-level language, increases programmer pro
ductivity. 

SPECIFICATIONS 

Operating Environment 

REQUIRED HARDWARE: 

Intel Microcomputer Development Systems (Series 
III/Series IV) 

ORDERING INFORMATION 

Part Number Description 
MDS-313* PLiM 86 Software Package 

3-31 

Lower Development Cost 
Increases in programmer productivity translate 
immediately into lower software development 
costs because fewer programming resources are 
required for a given programmed function. 

Increased Reliability 
PLiM 86 is designed to aid in 'the development of 
reliable software (PLIM 86 programs are simple 
statements of the program algorithm). This 
substantially reduces the risk of costly correction 
of errors in systems that have already reached full 
production status, as the more simply stated the 
prograll1 is, the more likely it is to perform its in
tended function. 

Easier Enhancements 
and Maintenance 
Programs written in PLiM tend to be self
documenting, thus easier to read and understand. 
This means it is easier to enhance and maintain 
PLiM programs as the system capabilities expand 
and future products are developed. 

Documentation Package 
PLlM-86 User's Guide for 8086-based Develop
ment Systems (121636) 

SUPPORT: 

Hotline Telephone Support, Software Performance 
Reporting (SPR), Software Updates, Technical 
Reports, Monthly Newsletter available. 

Requires Software License 

'MDS IS an ordering code only and is not used as a product 
name or trademark. MDS'" is a registered trademark of 
Mohawk Data Sciences Corporation. 

AFN·OI661C 



intJ 
PASCAL 86/88 

SOFTWARE PACKAGE 

• Resident on IAPX 86 Based Intel 
Microcomputer Development Systems 

• Object Compatible and Linkable with 
PLIM 86/88, ASM 86/88 and FORTRAN 
86/88 

• ICE™ Symbolic Deb~gglng Fully 
Supported 

• PSCOPE Source Level Debugging Fully 
Supported 

• Implements REALMATH for Consistent 
and Reliable Results 

• Unlimited User Program Symbols 

• Supports iAPX86/20, 88/20 Numeric 
Data Processors 

• Strict Implementation of ISO Standard 
Pascal 

• Useful Extensions Essential for 
Microcomputer Applications 

• Separate Compilation with Type
Checking Enforced Between Pascal 
Modules 

• Complier Option to Support Full Run
Time Range-Checking 

PASCAL 86{88 conforms to and implements the ISO Draft Proposed Pascal standard. The language is 
enhanced to support microcomputer applications with special features, such as separate compilation, inter
rupt handling and direct port I{O. To assist the development of portable software, the compiler can be directed 
to flag all non-standard features. 

The PASCAL 86/88 compiler runs on Series III and Series IV Microcomputer Development Systems. A well-defined I/O interface is 
provided for run-time support. This allows a user-written operating system to support application programs as an alternate to the 
development system environment. Program modules compiled under PASCAL 86/88 are colllpatible and linkable with modules 
written in PUM 86/88, ASM 86/88 or FORTRAN 86/88. With a complete family of compatible programming languages for the iAPX 
86,88, 186, 188 one can implement each module in the language most appropriate to the task at hand. 

PASCAL 86{88 object modules contain symbol and type information for program debugging using ICE™ 
emulators and PSCOPE source language debugger. For final production version, the compiler can remove this 
extra information and code. 

@INTEL CORPORATION. 1983 

3-32 

MAY 1983 

ORDER NUMBER:400670-001 



PASCAL 86/88 

FEATURES 

Includes all the language features of Jensen & Wirth 
Pascal as defined in the ISO Draft Proposed Pascal 
Standard. 

Supports required extensions for microcomputer 
applications. 

-Interrupt handling 
-Direct port I/O 

Separate compilation extensions allow: 

-Modular decomposition of large programs 

-Linkage with other Pascal modules as well as PUM 
86/88/186/188, ASM 86/88/186/188 and FORTRAN 
86/88. 

-Enforcement of type-checking at LINK-time 

BENEFITS 

Provides a standard Pascal for iAPX 86, 88,186,188 
based applications. 

-Pascal has gained wide acceptance as the port
able application language for microcomputer 
applications 

-It is being taught in many colleges and universities 
around the world 

-It is easy to learn, originally intended as a vehicle 
for teaching computer programming 

-Improves maintainability: Type mechanism is 
both strictly enforced and user extendable 

-Few machine specific language constructs 

Strict implementation of the proposed ISO standard 
for Pascal aids portability of application programs. A 
compile time option checks conformance to the 
standard making it easy to write conforming 
programs. 

PASCAL 86/88 extensions via predefined proce
dures for interrupt handling and direct port I/O make 
it possible to code an entire application in Pascal 
without compromising portability. 

Standard Intel REALMATH is easy to use and pro
vides reliable results, consistent with other Intel 
languages and other implementations of the IEEE 
proposed Floating-Point standard. 

3-33 

Supports numerous compiler options to control the 
compilation process, to INCLUDE files, flag non
standard Pascal statements and others to control 
program listings and object modules. 

Utilizes the IEEE standard for Floating-Point Arith
metic (the Intel REALMATH standard) for arithmetic 
operations. 

Well-defined and documented run-time operating 
system interfaces allow the user to execute the ap
plications under user-designed operating systems. 

Predefined type extensions allow: 

-Create precision in read, integer, and unsigned 
calculations. 

-Means to check 8087 erl'Ors 

-Circumvention of rigid type checking on calls to 
non-Pascal routines 

Provides run-time support for co-processors. All 
real-type arithmetic is performed on the 86/20 nu
meric data processor unit or software emulator. 
Run-time library routines, common between Pascal 
and other Intel languages (such as FORTRAN), per
mit efficient and consistently accurate results. 

Extended relocation and linkage support allows the user to 
link Pascal program modules with routines written in other 
languages for certain parts of the program. For example, real
time or hardware dependent routines written in ASM 
86/88/186/188 or PUM 86/88/186/188 can be linked to Pascal 
routines, further extending the user's ability to write structured 
and modular programs. 

PASCAL 86/88 programs "talk" to the resident 
operating system using Intel's standard interface for 
translated programs. This allows users to replace 
the development operating system by their own 
operating systems in the final application. 

PASCAL 86/88 takes full advantage of iAPX 86, 88, 186, 188 
high level language architecture to generate effiCient machine 
code. 

Compiler options can be used to control the program 
listings and object modules. While debugging, the 
user may generate additional information such as the 
symbol record information required and useful for 
debugging using PSCOPE or ICE emulation. After 
debugging, the production version may be stream
lined by removing this additional information. 

AFN.()1652B 



PASCAL 86/88 

SPECIFICATIONS 

Operating Environment 

REQUIRED HARDWARE 
Intel Microcomputer Development Systems (Series III, Series 
IV) 

ORDERING INFORMATION 

Part Number Description 

MDS*-314 PASCAL 86/88 Software Package 

Requires software license . 

Documentation Package 

PASCAL 86 User's Guide 

• MDS is an ordering code only and is not used as a product name or trademark. MDS" is a registered trademark of Mohawk Data Science. 

SUPPORT: 

Hotline Telephone Support, Software Performance Report (SPR), Software Updates, Technical Reports, and 
Monthly Technical Newsletters are available. 

3-34 AFN·01652B 



intJ 
FORTRAN 86/88 

SOFTWARE PACKAGE 

• Features high-level language support 
for floating-point calculations, 
transcendentals, Interrupt procedures, 
and run-time exception handling 

• Meets ANS FORTRAN 77 Subset 
Language Specifications 

• Supports IAPX 86/20, 88/20 Numeric 
Data Processor for fast and efficient 
execution of numeric instructions 

• Uses REALMATH Floating-Point 
Standard for consistent and reliable 
results 

• Supports Arrays Larger Than 64K 

• Unlimited User Program Symbols 

• Offers powerful extensions tailored to 
microprocessor applications 

• Offers upward compatibility with 
FORTRAN 80 

• Provides FORTRAN run-time support 
for iAPX 86,88,186,188-based design 

• Provides users ability to do formatted 
and unformatted 1/0 with sequential or 
direct access methods 

• ICE™ Symbolic Debugging Fully 
Supported 

• PSCOPE Source Level Debugging Fully 
Supported 

FORTRAN 86{88 meets the ANS FORTRAN 77 Language Subset Specification'and includes many features of 
the full standard. Therefore, the user is assured of portability of most existing ANS FORTRAN programs and of 
full portability from other computer systems with an' ANS FORTRAN 77 Compiler. 

FORTRAN 86{88 programs developed and debugged on the Intel Microcomputer Development Systems may be 
tested with the prototype using ICE symbolic debugging, and executed on an RMX-86 operating system, or on a 
user's iAPX 86,88,186,188-based operating system. 

FORTRAN 86{88 is one of a complete family of compatible programming languages for iAPX 86,88,186,188 
development: PL)M, Pascal, FORTRAN, and Assembler. Therefore, users may choose the language best suited 
for a specific problem solution. 

@INTELCORPORATION. 1983 

3-35 

MAY 1983 

ORDER NUMBER:400630-001 



FORTRAN 86/88 SOFTWARE PACKAGE 

FEATURES 

Extensive High-Level Language 
Numeric Processing Support 

Single (32-bit), double (64-bit), and double extended 
precision (80-bit) floating-point data types 

REALMATH Proposed IEEE Floating-Point Stan
dard) for consistent and reli@ble results 

Full support for all other data types: integer, logical, 
character 

Ability to use hardware (iAPX 86/20, 88/20 Numeric 
Data Processor) or software (sin:1Ulator) floating
point support chosen at link time 

ANS FORTRAN 77 Standard 

Intel® MicroproCeSsor Support 

FORTRAN 86/88 language features sUPPort of iAPX 
86/20, 88/20 Numeric Data Processor 

Compiler generates in-line iAPX 86/20, 88/20 Nu
meric Data Processor object code for floating-point 
arithmetic (See Figure 1) 

Intrinsics allow user to control iAPX 86/20, 88/20 
Numeric Data Processor, 

iAPX 86,88,186,188 architectural advantages used 
for indexing and character-string handling , 

Symbolic debugging of application using ICE 
emulators 

Source level debugging using PSCOPE. 

FLOATING-POINT-STATMENT 

TEMPER = (PRESS - VOLUM I ~UEK) - i.45 I (PRESS - VOLUM I QUEK) 
& - (PRESS - VOLUM I QUEK) • (PRESS - VOLUM I QUEK) 

OBJECT CODE GENERATED 

Intel FDRTRAN-86 Compl.ler 

IAPX 86/20, 88/20 ASSEMBLER MNEMONICS I. MACHINE CODE , STATEMENT " 2 0013 9809060COO FLJ IIOLUM 
0018 9808360000 FDIV ~UEK 
0010 9B082E0800 ,F sus ~ PRESS 
0022 980001 FST T:JS+1H 
0025 9B2E083EOOaO FOIV~ CS:iilCONST 
0028 9B09C9 FXCIiG TOS+1H 
002E 980002 r:ST TOS+2H 
0031 980EE9 FSUBRP 
0034 9B09C1 FLO T:JS+1H 
0037 9808C8 FMUL TOS 
003A 9BOOC2 FFREE TOS+2H 
0030 9BOEE1 FSUSP 
0040 98091E0400 FSTP TEMPER 
0045 98 lolA IT 

Figure 1. Object Code Generated by FORTRAN 86/88 for a Floating-Point Calculation Using IAPX 86/20, 
88/20 Numeric Processor 

3-36 AFN-Ol6S38 



inter FORTRAN 86/88 SOFTWARE PACKAGE 

Microprocessor Application Support 

-Direct byte- or word-oriented port 1/0 

-Reentrant procedures 

-Interrupt procedures 

Flexible Run-Time Support 

Application object code may be executed in iAPX 86, 
88,186,188-based environment of user's choice: 

-a Series III or Series IV Intellec Development System 

-an iAPX 86,88,186,188-based system with iRMX-86 
Operating System 

-an iAPX 86,88,186,188-based system with user
designed Operating System 

Run-time exception handling for fixed-point nu
merics, floating-point numerics, and 1/0 errors 

Relocatable object libraries for complete run-time 
support of I/O and arithmetic functions. In-line code 
execution is generated for iAPX 86/20, 88/20 Nu
meric Data Processor 

BENEFITS 

FORTRAN 86/88 provides a means of developing ap- ' 
plication software for the Intel iAPX 86,88,186,188 
products lines in a familiar, widely accepted, and 
industry-standard programming language. FOR
TRAN 86,88 will greatly enhance the user's ability to 
provide cost-effective software development for 
Intel microprocessors as illustrated by the following: 

SPECIFICATIONS 

Operating Environment 

I Intel Microcomputer Development Systems (Series 
III/Series IV) 

3-37 

Early Project Completion 

FORTRAN is an industry-standard, high-level 
numerics processing language. FORTRAN pro
grammers can use FORTRAN 86/88 on micropro
cessor projects with little retraining. Existing FOR
TRAN software can be compiled with FORTRAN 
86/88 and programs developed in FORTRAN 86/88 
can run on other computers with ANS FORTRAN 77 
with little or no change. Libraries of mathematical 
programs using ANS 77 standards may be compiled 
with FORTRAN 86/88. 

Application Object Code 
Portability for a Processor Family 

FORTRAN 86/88 modules "talk" to the resident Intel
lec development operating system using Intel's stan
dard interface for all development-system software. 
This allows an application developed under the ISIS
\I operating system to execute on iRMXl86, or a user
supplied operating system by linking in the iRMXl86 
or other appropriate interface library. A standard 
logical-record interface enables communication 
with non-standard I/O devices. 

Comprehensive, Reliable 
and Efficient Numeric Processing 

The unique combination of FORTRAN 86/88, iAPX 
86/20, 88/20 Numeric Data Processor, and 
REALMATH (Proposed IEEE Floating-Point Stan
dard) provide universal consistency in results of 
numeric computations and efficient object code 
generation. 

Documentation Package 

FORTRAN 86/88 User's Guide 

AFN·01Ml8 



intJ FORTRAN 86/88 SOFTWARE PACKAGE 

ORDERING INFORMATION 

Part Number Description 

MDS*-315 FORTRAN 86/88 Software Package 

Requires Software License 

SUPPORT 

Intel offers several levels of support for this product 
which are explained in detail in the price list. Please 
consult the price list for a description of the support 
options available. 

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of 
Mohawk Data Sciences Corporation. 

3-38 AFN·01653B 



C-86 
C COMPILER FOR THE 8086 

• Implements full C Language 
•. Produces high density code rivaling 

assembler 
• Supports Intel Object Module Format 

(OMF) 

• Runs under the Intel UDI on 
Intel Development Systems and 
iRMX™ 86 

• Available for the VAX/VMS* Operating 
System 

• Supports both small and large models of 
computation 

• Supports ICE ™ 86 and DEBUG- 86/88 
• Supports IEEE Floating Point Math with 

8087 coprocessor 

• Supports Bit Fields 
• Supports full standard 110 Library (STDIO) 
• Written in C 

The C Programming Language was originally designed in 1972 and has become increasingly popular as a 
systems development language. C is not a "very high level" language and is not tied to any specific application 
area. Although it is used for writing operating systems, it has been used equally well to write numerical, text
processing and data base programs. C combines the flexibility and programming speed of a higher level 
language with the efficiency and comrol of assembly language. 

Intel C-86 brings the full power of the C programming language to 8086 and 8088 based microprocessor 
systems. 

Intel C-86 supports the full C language as described in the Kernighan and Ritchie book, "The C Programming 
Language," (Prentice-Hall, 1978). Also included are the latest enhancements to the C language: structure 
as~ignments, functions taking structure arguments and returning structures, and the "void" and "enum" data 
types. 

C is rapidly becoming the standard microprocessor system implementation language because it provides: 

1. the ability to manipulate the fundamental objects of the machine (including machine addresses) as easily 
as assembly language. 

2. the power and speed of a structured language supporting a large number of data types, storage classes, ex
pressions and statements, 

3. processor independence (most programs developed for other processors can be easily transported to the 
8086), and . 

4. code that rivals assembly language in efficiency 

INTEL C-86 COMPILER DESCRIPTION 
The C-86 compiler operates in four phases: prepro
cessor, parser, code generator, and optimizer. The 
preprocessor phase interprets directives in C source 
code, including conditional compilations (#define). 
The parser phase converts the C program into an 
intermediate free form and does all syntactic and 

3-39 

semantic error checking. The code generator phase 
converts the parser's output into an efficient inter
mediate binary code, performs constant folding, and 
features an extremely efficient' register allocator, 
ensuring high quality code. The optimizer phase 
converts the output of the code generator into 

MAY 1983 
ORDER NUMBER:210768-002 



intJ C-86* 
C COMPILER FOR THE 8086 

relocatable Intel Object Module Format (OMF) code, 
without creating an intermediate assembly file. Op
tionally, the C-86 compiler can produce a symbolic 
assembly like file. The C-86 optimizer eliminates 
common code, eliminates redundant loads and 
stores" and resolves span dependencies (shortens 
branches) within a program. 

The C-86 runtime library consists of a number of 
functions which the C programmer can call. The run
time system includes the standard lIO library 

FEATURES 

Support for Small and Large Models 

Intel C-86 supports both the SMALL and LARGE 
modes of segmentation. A SMALL model program 
can have up to 64K bytes of code and 64K bytes of 
data, with all pointers occupying two bytes. Because 
two byte pointers permit the generation of highly 
compact and efficient code, this model is recom
mended for programs that can meet the size restric
tions. The LARGE segmentation model is used by 
programs that require access to the full addressing 
space of the 8086/8088 processors. In this model, 
each source file generates a distinct pair of code and 
data segments of up to 64k bytes in length. All point-
ers are four bytes long. . 

Preprocessor Directives 
#define-defines a macro 

#include- includes code outside of the program 
source file 

#if - conditionally includes or excludes code 

Other preprocessor directives include #undef, #ifdef, 
#ifndef, #else, #endif, and #line. 

Statements 
The C language supports a variety of statements: 

Conditionals: IF, IF-ELSE 

Loops: WHILE, DO-WHILE, FOR 

Selection of cases: SWITCH, CASE, DEFAULT 

Exit from a function: RETURN 

Loop cqntrol: CONTINUE, BREAK 

Branching: GOTO 

Expressions and Operators 
The C language includes a rich set of expressions 
and operators. 

Primary expression: invoke functions, select ele-

(STDIO), conversion routines, routines for manipu
lating strings, special routines to perform functions 
not available on the 8086 (32-bit arithmetic and 
emulated floating point), and (where appropriate) 
routines for interfacing with the operating system. 

C-86 uses Intel's linker and locator and generates 
debug records for symbols and lines on request, 
permitting access to Intel's ICE-86 and DEBUG-86 to 
aid in program testing. 

ments from arrays, and extract fields from structures 
or unions 

Arithmetic operators: add, subtract, multiply, divide, 
modulus 

,Relational operators: greater than, greater than or 
equal, less than, less than or equal, not equal 

Unary operators: indirect through a pOinter, compute 
an address, logical negation, ones complement, pro
vide the size in bytes of an operand. • 

Logical operators: AND, OR 

Bitwise operators: AND, exclusive OR, inclusive OR, 
bitwise complement 

Data Types and Storage Classes 
Data in C is described by its type and storage class. 
The type determines its representation and use, and 
the storage class determines its lifetime, scope, and 
storage allocation. The following data types-are fully 
supported by C-86: 

3-40 

char 
an 8 bit signed integer 

int 
a 16 bit signed integer 

short 
same as int (on the 8086) 

long 
a 32 bit signed integer 

unsigned 
a modifier for integer data types (char, int, 
short, and long) which doubles the positive 
range of values 

float 
a32 bit floating point number which utilizes the 
8087 or a software floating point library 

double 
a 64 bit floating point number 

AFN-Q0144B 



inter C-S6· 
C COMPILER FOR THE SOS6 

void 
a special type that cannot be used as an 
operand in expressions; normally used for 
functions called only for effect (to prevent their 
use in contexts where a value is required). 

enum 
an enumerated data type 

These fundamental data types may be used to 
create other data types including: arrays, func
tions, structures, pointers, and unions. 

The storage classes available in C-86 include: 

register 
suggests that a variable be kept in a machine 
register, often enhancing code density and 
speed 

BENEFITS 

Faster Compilation 

Intel C-86 compiles C programs substantially faster 
than standard C compilers because it produces Intel 
OMF code directly, eliminating the traditional inter
mediate process of generating an assembly file. 

Generates High Quality Code 

For typical programs using the SMALL model, the 
Intel C-86 Compiler produces code that is 14-16% 
smaller than on a Digital Equipment PDP-11. 

Portability of Code 
Because Intel C-86 supports the .STDIO and pro
duces Intel OMF code, programs developed on a 

SPECIFICATIONS 

Operating Environment 

The C-86 compiler runs host resident on both the 
Intel Series III Microcomputer DevelopmentSystem 
under ISIS-II and on the System 86/330 under the 
iRMX 86 operating system. C-86 can also run as a 
cross compiler on a VAX 11/780 computer under the 
VMS operating system. 96 KBytes of User Memory is 
required on all versions. Specify desired version 
when ordering. 

Required Hardware 
Development System Version 

-Intellec® Microcomputer Development System; Series III 
or Series IV 

3-41 

extern 
a variable defined outside of the function where 
it is declared; retaining its value throughout the 
entire program and accessible to other 
modules 

auto 
a local variable, created when a block of code is 
entered and discarded when the block is 
existed 

static 
a local variable that retains its value until the 
termination of the entire program 

typedef 
defines a new data type name from existing 
data types 

variety of machines can easily be transported to the 
8086. 

Rapid Program Development 

Intel C-86 provides the programmer with detailed 
error messages and access to ICE-86 and DEBUG-86 
to speed program development. 

Full Manipulation of the 8086 
Intel C-86 enables the programmer to utilize features 
of the C language to control bit fields, pointers, ad
dresses and register allocation, taking full advantage 
of the fundamental concepts of the 8086. ' 

-Dual Diskette Drives, Single or Doubl~ Density 

-System Console; CRT or Hardcopy Interactive 
Device 

iRMX 86 version: 

-Any iAPX 86/88, iSBC'" 86/88, iTPS 86/XXX, or 
SYS 86/3XX based system capable of running the 
iRMX 86 Operating System 

VAX version: 

-Digital Equipment Corporation VAX 11/780 or 
compatible computer 

AFN-001''''8 



C-86* inter C COMPILER FOR THE 8086 

Optional Hardware 

ISIS-II version: 

-ICE-86 

iRMX 86 version: 

-Numeric Data Processors for support of the 
REALMATH standard 

VAX version: 

-None 

Required Software 

ISIS-II version: 

-ISIS-II Diske!te Operating System 

-Series III Operating System 

iRMX 86 version: 

-iRMX 86 Realtime Multiprogramming Operating 
System 

-iRMX 860 Utilities Package 

VAX version: 

-VMS Operating System 

Optional Software 

Development System Version: 

-None 

ORDERING INFORMATION 

Order Code 

iMDX-317 

iRMX-866 

IMDX-347 

Description 
C-86 Compiler for ISIS-II 

C-86 Compiler for iRMX 86 

C-86 Cross Compiler for 
VAXNMS 

Intel Software License required. 

iRMX 86 version: 

-No,ne 

VAX version: 

-MDS·-384 Kit-Mainframe Link for distributed development, or 
iMDX-394'Asynchronous Communications Link. 

-VAX-IAPX 86/88/186 MACRO Assembler and 
utilities package (iMDX-341VX) 

Documentation Package 

The C Programming Language by Kernighan and 
Ritchie (1978 Prentice-Hall) 

C-B6 User Manual 

Shipping Media 

Development System Version: 

-One single and one douQle density ISIS-II format 
8" diskette, one S-25" Series IV Format 

iRMX 86 version: 

-Double Density iRMX 86 format 8" diskette 

-Double Density iRMX 86 format 5V4' diskette 

VAX version: 

-1600 bpi, 9 track Magnetic tape 

-One single and one double density ISIS-II format 
8" diskette 

SUPPORT 
Intel offers several levels of support for this product 
which are explained in detail in the price list. Please 
consult the price list for a description of the support 
options available. 

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of 
Mohawk Data Sciences Corporation. 

3-42 AFN-00144B 



8087 
SOFTWARE SUPPORT PACKAGE 

• Program Generation for the 8087 
Numeric Data Processor on 8080/8085 
Based Intel Microcomputer 
Development Systems 

• Consists of: 8086/8087/8088 Macro 
Assembler, 8087 Software Emulator 

• Macro Assembler Generates Code for 
8087 Processor or Emulator, While 
Also Supporting the 8086/8088 
Instruction Set 

• 8087 Emulator Duplicates Each 8087 
Floating-Point Instruction in Software, 
for Evaluation of Prototyping, or for 
Use in an End Product 

• Macro Assembler and 8087 Emulator 
are Fully Compatible with Other 
8086/8088 Development Software 

• Implementation of the IEEE Proposed 
Floating-Point Standard (the Intel® 
Realmath Standard) 

The 8087 Software Support Package is an optional extent ion of Intel's 8086/8088 Software Development 
Package that runs under ISIS-II. 

The 8087 Software Support Package consists of the 8086/8087/8088 Macro Assembler, and the Full 8087 
Emulator. The assembler is a functional superset of the 8086/8088 Macro Assembler, and includes instruc
tions for over sixty new floating-point operations, plus new data types supported by the 8087. 

The 8087 Emulator is an 8086/8088 object module that simulates the environment of the 8087, and executes 
each floating-point operation using software algorithms. This emulator functionally duplicates the operation 
of the 8087 Numeric Data Processor. 

Also included in this package are interface libraries to link with 8086/8087/8088 object modules, which are 
used for specifying whether the 8087 Processor or the 8087 Emulator is to be used. This enables the run-time 
environment to be invisible to the programmer at assembly time. 

The followmg are trademarks of Intel Corporation and may be used only to Identify Intel products exp, CREDIT, Intellee, Multlbu$, I, .SBC, Multlmodule, ICE, ISBX, PROMPT, IRMX, 
IGS. Library Manager, Promware, Inslte, MeS, RMX, Intel, Megachassls, UPI, InteleVISlon, Mlcromap, IJ.Scope and the combination of ICE, IGS, .SBC, [SBX, MeS, or RMX and a 
numerical suffix 
@INTELCORPORATION. 1983 

3-43 

MAY 1983 

ORDER NUMBER:402150-001 



8087 SOFTWARE SUPPORT PACKAGE 

FUNCTIONAL DESCRIPTION 

8086/8087/8088 Macro Assembler 

The 8086/8087/8088 Macro Assembler translates 
symbolic macro assembly language instructions 
into appropriate machine instructions. It is an ex
tended version of the 8086/8088 Macro Assembler, 
and therefore supports all of the same features and 
functions, such as limited type checking, condi
tional assembly, data structures, macros, etc. The 
extensions are the new instructions and data types 
to support floating-point operations. Realmath 
floating-point instructions (see Table 1) generate 
code capable of being converted to either 8087 in
structions or interrupts for the 8087 Emulator. The 
Processor/Emulator selection is made via interface 
libraries at LINK-time. In addition to the new 

floating-point instructions, the macro assembler 
also introduces two new 8087 data types: QWORD 
(8 bytes) and TBYTE (ten bytes). These support the 
highest precision of data processed by the 8087. 

Full 8087 Emulator 

The Full 8087 Emulator is a 16-kilobyte object mod
ule that is linked to the application program for 
floating-point operations. Its functionality is identi
cal to the 8087 chip, and is ideal for prototyping and 
debugging floating-point applications. The 
Emulator is an alternative to the use 01 the 8087 chip, 
although the latter executes floating-point applica
tions up to 100 times faster than an 8086 with the 
8087 Emulator. Furthermore, since the 8087 is a 
"co-processor," use of the chip will allow many op
erations to be performed in parallel with the 8086. 

Table 1. 8087 Instructions 

Arithmetic Instructions Processor Control Instructions 

Addition FINIT/FNINIT Initialize processor 

FADD Add real FDISI/FNDISI Disable interrup,ts 
FADDP Add real and pop 
FIADD Integer add 

Subtraction 

FENI/FNENI Enable interrupts 

FLDCW Load control word 

FSUB Subtract real 
FSTCW/FNSTCW Store control word 

FSUBP Subtract real and pop FSTSW/FNSTSW Store status word 
FISUB Integer subtract 
FSUBR Subtract real reversed 
FSUBRP Subtract real reversed and 

FCLEX/FNCLEX Clear exceptions 

FSTENV/FNSTENV Store environment 

pop FLDENV Load environment 
FISUBR Integer subtract reversed FSAVE/FNSAVE Save state 

Multiplication FRSTOR Restore state 
FMUL Multiply real 
FMULP Multiply real and pop 
FIMUL Integer multiply 

FINCSTP Increment stack pointer 

FDECSTP Decrement stack pointer 

Division FFREE Free register 

FDIV Divide real FNOP No operation 
FDIVP Divide real and pop FWAIT CPU wait 
FIDIV Integer divide 
FDIVR' Divide real reversed 
FDIVRP Divide real reversed arid Comparison Instructions 

pop 
FIDIVR Integer divide reversed FCOM Compare real 

Other Operations FCOMP Compare real and pop 
FSQRT Square root 
FSCALE Scale 
FPREM Partial remainder 

FCOMPP Compare real and pop 
twice 

FRNDINT Round to integer FICOM Integer cOl}1pare 
FXTRACT Extract exponent and 

significand 
FABS Absolute value 

FICOMP Integer compare and pop 

FTST Test 

FCHS Change sign FXAM Examine 

3,-44 AFN·01574B 



8087 SOFTWARE SUPPORT PACKAGE 

Table 1. 8087 Instructions (cont'd) 

Transcendental Instructions Data Transfer Instructions 

FPTAN Partial tangent Real Transfers I 
FPATAN Partial arctangent 

F2XM1 2'-1 

FYL2X y. 10g,X 

FYL2XP1 y. log2(X+ 1) 

Constant Instructions 

FLDZ Load +00 

FLD1 Load + 1.0 

FLDPI Load rr 

FLDL2T Load log21O 

FLDL2E Load log2e 

FLDLG2 Load log '02 

FLDLN2 Load log,2 

SPECIFICATIONS 

Operating Environment 

REQUIRED HARDWARE 
Intel Microcomputer Development Systems 
-Model BOO 
-Series II 
-Personal Development System 
-Series IV 

REQUIRED SOFTWARE 
BOB6/BOBB Software Development Package 

ORDERING INFORMATION 

Part Number Description 

MDS*-3B7 BOB7 Software Support Package 

Requires Software License 

SUPPORT 

Intel offers several levels of support for this product 
which are explained in detail .in the price list. Please 
consult the price list for a description of the support 
options available. 

FLO Load real 
FST Store real 
FSTP Store real an d pop 
FXCH Exchange registers 

Integer Transfers 

FILD Integer load 
FIST Integer store 
FISTP Integer store and pop 

Packed Decimal Transfers 

FBLD Packed decimal (BCD) 
load 

FBSTP Packed decimal (BCD) 
store and pop 

Documentation Package 

BOB6/BOB7/B08B Macro Assembly Language Refer
ence Manual for BOBO/BOBS-Based Development 
Systems 

BOB6/BOB7/BOBB Macro Assembler Operating In
structions for BOBO/B08S-Based Development Sys
tems 

The 8086 Family Users Manual Supplement for the 
8087 Numeric Data Processor 

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of 
Mohawk Data Sciences Corporation. 

3-45 

; 

I 
I 
I 

i 



8087 SUPPORT LIBRARY 

• Library to support floating point 
arithmetic in PUM·86 and ASM·86 

• Common elementary function library 
provides trigonometric, logarithmic 
and other useful functions 

• Decimal conversion module supports 
blnary·decimal conversions 

• Error·handler module simplifies 
floating point error recovery 

• Full 8087 Software Emulator for soft· 
ware debugging without the 8087 
component 

• Accurate, verified and efficient imple· 
mentation of algorithms for functions 

• Supports proposed IEEE Floating 
Point Standard for high accuracy and 
software portability 

The 8087 Support LibrarY provides PUM-86 and ASM-86 users with the equivalent numeric data processing capability 
of Fortran-86. With the Library, it is easy for PUM-86 and ASM-86 programs to do floating point arithmetic. Programs 
can link in modules to do trigonometric, logarithmic and other numeric functions, and the user is guaranteed accurate, 
reliable results for all appropriate inputs. The 8087 Support Library implements Intel's REALMATH standard and also 
supports the proposed IEEE Floating Point Standard. Consequently, by using this Library, the PUM-86 user not only 
saves software development time, but is guaranteed that the numeric software meets industry standards and is 
portable-his software investment is maintained. 

The 8087 Support Library consists of the common elementary function library, the decimal conversion module, the 
error handler module, the full 8087 Software emulator and interface libraries to the 8087 and to the 8087 emulator. 

B.PLM 

A.PLM 

DECLARE (INPUT VALUE OUTPUT VALUE) REAL 

OUTPUT VAWE.mqe,TNN(INFUT VALUE) 

,. Now .. "h,h.,e01.npu' OUTPUT VALUE .. a.bou' 
o 5511290J, 

D.ASM 

C.ASM 
'l'!tloEXTIIM mu"oppe.,ou, .. deoloIiSEGMEMTEHDS 
pa". 

UTRNmq.,TNH FAR 

INPUT VALVE DO 40 62 ~:;~:ll"Hon " • I.ot 

OUTPUT VALUE DO ' 

The loU"",ngcode duphcate.th •• bovePLtN 
''''gnmenl sla'.m~nt .,a.p' ",lit LONG /lEAL 
.aIlWie, 

Loodthpo,ome,e,Onlo ,h. SOS1 .,.cI: 
CALLmqlt,TNH , ••• ,heh".."bo],cl."Q_nt 
fSTPOUTPUT VALUE ,Io,elheon.we,ondpoplh. 

a087.'ack 

W,th ,h. le,l InP"! OUTPUT VALUE,st>O",,,bou1 
055112603 

©INTEL CORPORATION, 1983 

1----1 PLM·86 1---1 

3-46 

I--'-----I~ LINK 86 1---1 

LINKED USER 
OBJECT MODULE 

MAY 1983 

ORDER NUMBER:121653-001 



8087 SUPPORT LIBRARY 

CEL87.LIB 
THE COMMON ELEMENTARY FUNCTION LIBRARY 

CEl87.LlB contains commonly used floating pOint functions. It is used along with the 8087 numeric coprocessor or 
the 8087 emulator and it provides a complete package of elementary functions, giving valid results for all appropriate 
inputs. This library provides PUM·86 and ASM·86 users all the math functions supported intrinsically by the 
Fortran-86. Following is a summary of CEl87 functions, grouped by functionality. 

Rounding and Truncation Functions: 

mqerlEX, mqerlE2, and mqerlE4 round a real number to the nearest integer; to the even integer if there is a tie. The 
answer returned is real, a 16-bit integer or a 32-bit integer respectively. 

mqerlAX, mqerlA2, mqerlA4 round a real number to the nearest integer, to the integer away from zero if there is a tie; 
the answer returned is real, a 16-bit integer or a 32-bit integer, respectively. 

mqerlCX, mqerlC2, mqerlC4 truncate the fractional part of a real input; the answer is real, a 16-bit integer or a 32-bit in-
teger, respectively. 

Logarithmic and Exponential Functions: 

mqerlGD computes decimal (base 10) logarithms. 
mqerLGE computes natural (base e) logarithms. 
mqerEXP computes exponentials to the base e. 
mqerY2X computes exponentials to any base. 
mqerYI2 raises an input real to a 16-bit integer power. 
mqerYI4 is as mqerYl2, except to a 32-bit integer power. 
mqerYIS is as mqerYl2, but it accommodates PUM-86 users. 

Trigonometric and Hyperbolic Functions: 

mqerSIN, mqerCOS, mqerTAN compute sine, cosine, and tangent. 
mqerASN, mqerACS, mqerATN compute the corresponding inverse functions. 
mqerSNH, mqerCSH, mqerTNH compute the corresponding hyperbolic functions. 
mqerAT2 is a special version of the arc tangent function that accepts rectangular coordinate inputs. 

Other Functions: 

mqerDIM is FORTRAN's positive difference function. 
mqerMAX returns the maximum of two real inputs. 
mqerMIN returns the minimum of two real inputs. 
mqerSGH combines thE! sign of one input with the magnitude of the other input. 
mqerMOD computes a modulus, retaining the sign of the dividend. 
mqerRMD computes a modulus, giving the value closest to zero. 

DCON87.LlB 
THE DECIMAL CONVERSION LIBRARY 

DCON87.LlB is a library of procedures which convert binary representations of floating point numbers and ASCII
encoded string of digits. 

The binary-to-decimal procedure mqcBIN DECLOW accepts a binary number in any of the formats used for the 
representation of floating point numbers in the 8087. Because there are so many output formats for floating point 
numbers, mqcBIN_DEClOW does not attempt to provide a finished, formatted text string. Instead, it provides the 
"building blocks" for you to use to construct the output string which meets your exact format specification. 

3-47 AFN-02063B 



8087 SUPPORT LIBRARY 

7 . 
The decimal-ta-binary procedure mqcDEC_BIN accepts a text string which consists of a decimal number with 
optional sign, decimal pOint, and/or power-of-ten exponent. It translates the string into the caller's choice ·of binary 
formats. . 

Decimal-to-binary procedure mqcDECLOW_BIN is provided for callers who have already broken the decimal number 
Into its constituent parts. 

The procedures mqcLONG_TEMP, mqcSHORT_TEMP, mqcTEMP _LONG, and mqcTEMP _SHORT convert floating 
point numbers between the longest binary format, TEMP_REAL, and the shorter formats .. 

EHS7.LlB 
THE ERROR HANDLER MODULE 

EH87.LlB Is a library of five utility procedures which a user can utilize for writing trap handlers. Trap handlers are 
called when an unmasked 8087 error occurs. 

The 8087 error reporting mechanism can be used not only to report error conditions, but also to let software implement 
IEEE standard options not directly supported by the chip. The three such extensions to the 8087 are: normalizing 
mode, non-trapping not-a-number (NaN), and non-ordered comparison. The utility procedures support these extra 
features. 

DECODE is called near the beginning of the trap handler. It preserves the complete state of the 8087, and also iden
tifies what function called the trap handler, and returns available arguments and/or results. DECODE eliminates much 
of the effort needed to determine what error caused the trap handler to be called. 

NORMAL provides the "normalizing mode" capability for handling the "D" exception. By calling NORMAL in your trap 
handler, you eliminate the need to write code in your application program which tests for non-normal inputs. 

SIEVE provides two capabilities for handling the "I" exception. It implements non-trapping NaN's and non-ordered 
comparisons. These two IEEE standard features are useful for diagnostic work. 

ENCODE is called near the end of the trap handler. It restores the state of the 8087 saved by dECODE, and performs a 
choice of concluding actions, by either retrying the offending function or returning a specified result. 

FILTER calls each of the above four procedures. If your error handler does nothing more than detect fatal errors and 
implement the features supported by SIEVE and NORMAL, then your interface to EH87.LlB can be accomplished with 
a single call to FILTER. 

ESOS7 
THE FULL SOS7 EMULATOR 

E8087 is an object module that functionally emulates the 8087 coprocessor chip. It is ideal for use during prototyping 
and debugging floating point programs. However, the target system should use the 8087 component because it exe
cutes 1000 times faster and uses Significantly less memory. 

3-48 AFN·02063B 



inter 8087 SUPPORT LIBRARY 

E8087.L1B, 8087.L1B, 87NULL.LIB 
INTERFACE LIBRARIES 

EBOB7. LIB, BOB7.LlB and B7NULL. LIB libraries configure a user's application program for his run·time environment: 
running with the emulator, with the BOB7 component or without floating point arithmetic, respectively. 

SPECIFICATIONS 

TARGET ENVIRONMENT 

BOB6/BOBB Based Microcomputer System 

DEVELOPMENT ENVIRONMENT 

Required Hardware 

All Intel Microcomputer Development Systems (Series II. 
Series III/Series IV) 

• Recommended 

ORDERING INFORMATION 

Part Number 

MDS*·319 

Description 

BOB7 Support Library 

Requires Software License 

SUPPORT 

Intel offers several levels of support for this prodiJct 
which are explained in detail in the price list. Please 
consult the price list for a description of the support 
options available. 

Required Software 

For Series II: 

BOB6/80BB Software Development Package 

Documentation Package 

Numeric Support Library Manual 

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of 
Mohawk Data Sciences Corporation. 

3-49 AFN-02063B 



8089 lOP 
SOFTWARE SUPPORT PACKAGE 

#407200 

• Program Generation for the 8089 1/0 
Processor on the Intellec® 
Microcomputer Development System 

• Contains 8089 Macro Assemhler, plus 
Relocation and Linkage Utilities 

• Relocatable Object Module 
Compatible with All iAPX 86 and iAPX 
88 Object Modules 

• Fully Supports Symbolic Debugging 
with the RBF·89 Software Debugger 

• Supports 8089·Based Addressing 
Modes with a Structure Facility that 
Enables Easy Access to Based Data 

• Powerful Macro Capabilities 

• Provides Timing Information in 
Assembly Listing 

• Fully Detailed Set of Error Messages 

The lOP Software Support Package extends Intellec Microcomputer Development System support to the 8089 
I/O Processor. The macro assembler translates symbolic 8089 macro assembly language instructions into 
relocatable machine code. The relocation and linkage utilities provide compatibility with iAPX 86, iAPX 88, and 
8089 modules. and make structured, modular programming easier. ' 

The macro assemb.ler also provides symbolic debugging capability when used with the RBF-89 software 
debugger. 8089 program modularity is supported with inter-segment jumps and calls. The macro assembler 
also provides instruction cycle counts in the listing file, for giving the programmer execution timing informa
tion. The programs in the 8089 Software Support Package run on any Intellec Series II or Model 800 with 64K 
bytes of memory. 

• 

• 

The following are trademarks of Intel Corporation and may be used only to Identify Intel products exp, CREDIT, Intallee, Multlbus. I, ,sec, Multlmodule, ICE, ,sex, PROMPT, les, 
tRMX, l-Ibrary Manager, Promware,lnslte, MeS, RMX, Intel, Megachassts, UP!, InteleVISlon, Mlcromap, /-,Scope and the combination of ICE, .sec, ISBX, MeS. or RMX and a numerical 
suffiX MAY 1983 

© INTEL CORPORATION 1983 ORDER NUMBER:210853-002 

3-50 



8089 lOP SOFTWARE SUPPORT PACKAGE 

FUNCTIONAL DESCRIPTION 

The lOP Software Support Package contains: 

ASM89 -The 8089 Macro Assembler. 

LlNK86 - Resolves control transfer references be
tween 8089 object modules, and data ref
erences in 8086, 8088, and 8089 
modules. 

LOC86 -Assigns absolute memory addresses to 
8089 object modules. 

OH86 -Converts absolute object modules to 
hexadecimal format. 

UPM - The Universal PROM Mapper, which sup
ports PROM programming In all IAPX 
86/11 and iAPX 88/11 applications. 

ASM89 translates symbolic 8089 macro assembly 
language instructions into the appropriate machine 
codes. The ability to refer to both program and data 
addresses with symbolic n'ames makes it easier to 
develop and modify programs, and avoids the errors 
of hand translation. 

The powerful macro facility allows frequently used 
code sequences to be referred to by a single name, 

SPECIFICATIONS 

Operating Environment 
Intel Microcomputer Development Systems (Model 
800, Series II, Series III, Series IV) 

Support 
Hotline Telephone Support, Software Performance 
Report (SPR), Software Updates, Technical Reports, 
and Monthly Technical Newsletters are available. 

Documentation Package 

8089 Macro Assembler User's Guide (9800938) 

8089 Macro Assembler Pocket Reference (9800936) 

MCS-86 Software Development Utilities Operating 
Instructions for ISIS-II Users (9800639) 

Universal PROM Programmer .User's Manual 
(9800819) 

3-51 

so that any changes to that sequence need to be 
made in only one place in the program. Common 
code sequences that differ only slightly can also be 
referred to with a macro call, and the differences can 
be substituted with macro parameters. 

ASM89 provides symbolic debugging information in 
the object file. The RBF-89 debugger makes use of 
this information, so the programmer can symboli
cally debug 8089 programs. ASM89 also provides 
cycle counts for each instruction in the assembly 
listing file (see Table 1). These cycle counts help the 
programmer determine how long· a particular 
routine or code sequence will take to execute on the 
8089. 

ASM89 provides relocatable object module com
patibility with the 8086 and 8088 microprocessors. 
This object module compatibility, along with the 
8086/8088 relocation and linkage utilities, facilitates 
the designing of iAPX 86/11 and iAPX 88/11 systems. 

ASM89 fully supports the based addressing modes 
of the 8089. A structure facility allows the user to 
define a template that enables accessing of based 
data symbolically. 

Shipping Media 

-Single and Double Density Diskettes 

ORDERING INFORMATION 

Part Number Description 

MDS*-312 8089 lOP Software Support Package 

Requires Software License 

'MDS is an ordering code only and IS not used as a product name 
or trademark MDS'" IS a registered trademark of Mohawk Data 
Sciences Corporation 

AFN·OO8408C 



8089 lOP SOFTWARE SUPPORT PACKAGE 

Table 1. Sample Program Listing 

i~rS-11 H83 ttR(,I(oJ .. 3)t:"8!.E~ 1005 IolS~Ett8L{ OF ItOflUL£ TASk 
oe'Ef '40DUlf PLACEiJ !'I rl r",s. OS) 
"'~~E~81.fR 1I4YOt<Etf 91 Jl'I",!l'l f! t!.l~k ~g~ 9'1'1 ~GC::r"O d.bug plJlj,lf,dttd132' pr,f'lt':fl:tukx lit> 

BIIB 

:DU 
~aa! 
aUI 

8UI 

88" 
IIU 
8811 

1112 
1116 

IIi. 

Bll~ 

I!!Ilt 

BUF 
!Ill! 

1tIII~1 

BI.2' 
I!I8Jl 

till 
8116 

BIll .. 

Bile 

BIllE 

U4t 
Ball-

OilHl.T CO[fE 

1111 IIIUU. 

Jt JI 1182 
'5118 IIIIUII 
6182 

I." .ICI) 
lue 

2Ut1 

4IJC 

.84. FJ 

1131 •• e. 
1111 IICI 

1\ JI "'2 '5111 ........ 
" • .2 

II ... " ,." •• cc 

2Il8 

.ale 

4848 F2 

~B48 

" " 
" " 1? !l? 

" !J' 
IH '" ,3< "2 
, .. '" 
,5< '" 
1?3 ?''5f! 

191_ '" '" '" 
2;:;- '34 
2<, 38' 
'81 '.2 
38.;" '34 
H~, ... 
'" 
'" 51' 

'77 !337 

'H2 

!I'4C "lie L rHE souitC£ 

., ., ., ., 

., ., . , ., ., ., . , 
" 

'2 ., ., 
., ., 

....... "" , ........... ~ ...... ~ .. '1· .......... •• .. •• ...... •• ...... •••• ...... • .. : 

e86~ TASK PROGRAIf 

!'Ill.!'!' TASK 
iI T >I Sf. £<l'<;'I't~n t 

1B 

" IJ 

" 15 

" " " " " 21 

" " " " " " " " " 31 

" " 34 
35 

" " 30 

" .. 
" " " .. 
" " " .. 
" " " " " " " " " " " " " " " .. ., 
" " " .' 
" 

In tOle t,rlt part of tll,1 
81iJ8b S\lstt'I't flAK to lu .. ortot 
part, tht' dato I I ''1HI.d f 
Q liO I n til. 888' rIO spoe 

OQtQ9port98251 li'qu 
C o"''''l'ld9pol'' t~8251 .qu 
b ... rf It''teIiJS' I!'qu 

BeBUh 
He88th 
121iJ8h 

Itpl. p,-o;"o .. d,to. il Itov.d r,.o" 
col to tn. 1189 lOP 'n t.h. I.co"d 
ttl. locol "."o"¥ to 0 dllto po,.t 

; 8251 OP on 8889 loco I bioi. 
;8251 CP on '889 tocill bu. 
;RA" buff.,. ,n el.89 1/0 .poc. 

bUI fl!'reeHh , ; RA" bwft.,. in .1., .... t." III."O"¥ 
; locllt, on of t.h. burr.,. count 

~. d. f ,". (110. er 0 I' 
"0'01 , ~ gb, buf f, ,,'8 IS 9 
Ipd I gc, \I 
"ovb be, [gc I 

.. 
Hoy. bwtt.,. odd,. ••• ,nto ,. 
Lo.d po, nt.,. t.o count t nt.o 'e 
"ou b"t. count ,nt.o Ie 

: •• d.f I n. (IHlcro~2( PQ",,,_I, pIII.,.,,,_2) hcol loop 
( 'MC ::PQ"QI'I_1 

, 
OHE: 

d.e %po".,,_';: 
J nz %porQI'I_2, ::loop 

Ipd. ;a, buff."IlI88S' 
I 

110'0', 90, bufr.,.'8Ieo 
Ipd, gc, Y 
IIovb bc,loe] 

Inc,.."."t po In'.,. 'lito .ourc. 
l O.C,..".lIt byt. count 
; Loop bock .r byte co"nt ) • 

; Lo •• ,..,ilh,. CA IIIlth ., ... ,. ••• 
01' '116. buft.,. 

"0'01. buf'." ... d,. ••• tnto ,. 
lood po,nt.,. to cownt ,nt.o at 
"0". byh count ,nto .e 

loop": "o ... b (gb]'( go,] 
,nc 9. 

Hov. byh t,.Ol'l , •• , to •• ., butt.,. 
j Inc,. .... "t pOint.,. Int.o ••• , bu"." 

::"oero_2{Qb,Qc) 

" 
::PARAM ~1 

; Inc".".nt pOt"t..r ,nt.o .ow,.c. 
'l:PAU"_2 

ge ; Dlcr •• ullt. byt.. count 
JIIZ %PAPA"_2 

(Ie, %lOOP 
LOOPI. ; Loop back' I' byt. COUllt ) • 

TWO, go, do.t09po,.t,e2'1 toed CAl lI.ttl o.ddr- ... 0' lUI D' 

"ltoe,.o I 

Ipd, 
"'(lilt-

go, eO""Qlldlpo,,t.e251 

,b.bufr""IiISleq 
90::'\1 
bO::'[ge) 

Iud CC IIIlth .dd,. ... 0' .151 C' 

"ov. burr",. oddr." .lIto CI 
Loo.d po,nt.,. '0 covnt Into CC 
"0 .... byte covnt • nto Ie 

100pl1 ,"' t {ge], I, I oop81 loop wntll '251 t".,U'lit r •• dy 
".1 •• 9' ,nto bw"." ","vb [90],(9bl 

',"'1cI"0_2('10 gel 

" dec ,0 
,", ,0 '{LO,JP 

LOOl'91 

3-52 

l.PF\RA"_1 
I ... .::r ....... nt po, "t.,. ,nto sov"c. 

',PI1RH"3 
; {lecn.'".nt byt. covnt 

·.PAfHH'I_2 

AFN~ 



intJ 
iAPX 286 SOFTWARE DEVELOPMENT PACKAGE 

• Complete System Development 
Capability for High-Performance 
iAPX 286 Applications. 

• Allows creation of Multi-User, Virtual 
Memory, and Memory-Protected Systems. 

• Macro Assembler for Machine-Level 
Programming. 

• System Utilities for Program Linkage 
and System Building. 

• Software Simulator for Execution and 
Symbolic Debugging on Intel Devel
opment System. 

• Package Supports Program Develop
ment with PUM-286, Pascal-286, and 
FORTRAN 286. 

• Extends Existing Intellec® Develop
ment Systems to Provide Broad 
Support for the iAPX 286 Micro
processor. 

The iAPX 286 is a 16-bit microprocessor system with 32-bit virtual addressing, integrated memory protection, 
and instruction pipelining for high performance. The iAPX 286 Software Development Package is a cohesive 
set of software design aids for programming the iAPX 286 microprocessor system. The package enables 
system programmers to design protected, multi-user and multi-tasking operating system software, and 
enables application programmers to develop tasks to run on a protected operating system. 

I 

The iAPX 286 Software Development package contains a macro assembler, a program binder (for linking 
separately compiled modules together), a system builder (for configuring protected multiple-task systems), 
and a software simulator (for execution and symbolic debugging). 

The memory protection features of the iAPX 286 architecture are Invisible to application programmers, who use language 
translators and the program binder. System programmers may use special memory protection features in ASM-286 or PUM 286, 
and use the system builder for initializing and managing protection features. The Simulator duplicates the operation of the 80286 
CPU, as well as the floating point operations of the 80287, 

All the utilities in the Software Development Package run on the Intel Microcomputer Development Systems (Series III/Senes IV), 

() 
APPLICATION 

SOFTWARE 

DEBUGGER 
ICE, MONITOR, etc 

The iAPX 286 Software Development Package keeps the protection mechanism invisible to the application 
programmer, yet easy to configure for the system programmer, 

©INTEL CORPORATION, 1983 

3-53 

MAY 1983 

ORDER NUMBER:210565'()()1 



iAPX 286 SOFTWARE DEVELOPMENT PACKAGE 

iAPX 286 MACRO ASSEMBLER 
• Instruction Set and Assembler 

Mnemonics Are Upward Compatible 
with ASM-86/88. 

• Powerful and Flexible Text Macro 
Facility. 

• Type-Checking at Assembly Time Helps 
Reduce Errors at Run-Time. 

• Structures and RECORDS Provide 
Powerful· Data Representation. 

• "High-Level" Assembler Mnemonics 
Simplify the Language. 

• Supports Full Instruction Set of the 
iAPX 286/20, Incll,lding Memory 
Protection and Numerics. 

ASM-286 is the "high-level" macro assembler for the iAPX 286 assembly language. ASM-286 translates 
symbolic assembly language mnemonics into relocatable object code. The assembler mnemonics are a 
superset of ASM-86/88 mnemonics; new ones have also been added to support the new iAPX 286 instructions. 
The segmentation directives have been greatly simplified. 

The iAPX 286 assembly language includes approximately 150 instruction mnemonics. From these few 
mnemonics the assembler can generate over 4,000 distinct machine instructions. Therefore, the software 
development task is simplified, as the programmer need know only 150 mnemonics to generate all possible 
machine instructions. ASM-286 will generate the shortest machine instruction possible (given explicit 
information as to the characteristics of any forward referE¥1ced symbols). 

The powerful macro facility in ASM-286 saves development and maintenance time by coding common 
program sequences only once. A macro substitution is made each time the sequence is to be used. This facility 
also allows for conditional assembly of certain program sequences. 

ASM-286 offers many features normally found only in high-level languages. Tl'le assembly language is 
strongly typed, which means it performs extensive checks on the usage of variables and labels. This means 
that many programming errors will be detected when the program is assembled, long before it is being 
debugged. 

ASM-286 object modules conform to a thorough, well-defined format used by all 286 high-level languages and 
utilities. This makes it easy to call (and be called from) HLL object modules. 

Key Benefit: 
For programmers who wish to use assembly language, ASM-286 provides many powerful "high-level" 
capabilities that simplify program development and maintenance. 

3-54 AFN-00378S 



iAPX 286 SOFTWARE DEVELOPMENT PACKAGE 

iAPX 286 BINDER 

• Links Separately Compiled Program 
Modules Into an Executable Task. 

• Makes the iAPX 286 Protection 
Mechanism Invisible to Application 
Programmers. 

• Works with PL/M-286, Pascal-286, 
FORTRAN-286 and ASM-286 Object 
Modules. 

• Performs Incremental Linking with 
Output of Binder and Builder. 

• Resolves PUBLIC/EXTERNAL Code and 
Data References, and Performs 
I ntermodule Type-Checking. 

• Provides Print File Showing Segment 
Map, Errors and Warnings. 

• Assigns Virtual Addresses to Tasks in the 
232 Address Space. 

• Generates Linkable or Loadable Module 
for Debugging. 

BND-286 is a utility that combines iAPX 286 object modules into executable tasks In creating a task, the 
Binder resolves Public and External symbol references, combines segments, and performs address fix-ups on 
symbolic code and data. 

The Binder takes object modules written in ASM-286, PL/M-286, Pascal-286 or FORTRAN-286, and generates 
a loadable module (for execution or debugging), or a linkable module (to be re-input tothe Binder later; this is 
called incremental binding). The binder accepts library modules as well, linking only those modules required 
to resolve external references. BND-286 generates a print file displaying a segment map, and error messages. 

The Binder will be used by system programmers and application programmers. Since application 
programmers need to develop software independent of any system architecture, the 286 memory protection 
mechanism is "hidden" from users of the Binder. This allows application tasks to be fully debugged before 
becoming part of a protected system. (A protected system may be debugged, as welL) System protection 
features are specified later in the development cycle, using the 286 System Builder It is possible to link 
operating system services required by a task using either the Binder or the Builder This flexibility adds to the 
ease of use of the 286 utilities. 

Key Benefit: 
The Binder is the only utility an application programmer needs to develop and debug an individual task. Users 
of the Binder need not be concerned with the architecture of the target machine, making application program 
development for the 286 very Simple. 

iAPX 286 MAPPER 

• Flexible Utility to Display Object File 
Information .. 

• Mapper Allows Users to Display: 

• MAP-286 Selectively Purges Symbols 
from a Load Module. 

• Provides Inter-Module Cross-Referencing 
for Modules Written in All Languages. 

Key Benefit: 

Protection 
Information: 

SEGMENT TABLES 
GATE TABLES 
PUBLIC ADDRESSES 

Debug 
Information: 

MODULE NAMES 
PROGRAM SYMBOLS 
LINE NUMBERS 

A cross-reference map showing references between modules simplifies debugging; the map also lists and 
controls all symbolic information in one easy-lo-read place. 

3-55 AFN·00378B 



inter iAPX 286 SOFTWARE DEVELOPMENT PACKAGE 

iAPX 286 LIBRARIAN 

• Fast, Easy Management of iAPX 286 
Object Module Libraries. 

• Only Required Modules Are Linked, 
When Using the Binder or Builder. 

Key Benefit: 

• Librarian Allows U$ers to: 

Create Libraries 
Add Modules 
Replace 'Modules 
Delete Modules 
C,opy Modules from Another Library 
Save Library Module to Object File 
Create Backup 
Display Module Information 

(creation date, publics, segments) 

Program libraries improve management of program modules, and reduce software administrative overhead. 

iAPX 286 SYSTEM BUILDER 

• Supports Complete Creation of 
Protected, Multi-task Systems. 

• Creates a Memory Image of a 286 System 
for Cold-start Execution. 

• Resolves PUBLIC/EXTERNAL Definitions 
(between protection levels). 

• Target System may be Boot-Ioadable, 
Programmed into ROM, or Loaded From 
Mass-store. 

• Supports Memory Protection by Building 
System Tables, Initializing Tasks, and 
Assigning Protection Rights to Segments. 

• Generates Print File with Command 
Listing and System Map. 

BLO-286 is the utility that lets system programmers configure multi-tasking, protected systems from an 
operating system and discrete tasks. The Builder generates a cold-start execution module, suitable for ROM
based or disk-based systems. 

The Builder accepts input modules from iAPX 286 translators or the iAPX 286 Binder. It also accepts a "Build File" containing 
definitions and initial values for the 286 protection mechanism-descriptor tables, gates, segments, and tasks. BLD-286 gener
ates a Loadable or bootloadable output module, as well as a print file with a detailed map of the memory-protected system. 

Using the Builder command Language, system programmers may perform the following functions: 

- Assign physical addresses to segments; also set segment access rights and limits. 
- Create Call, Trap, and Interrupt "Gates" (entry-points) for inter-level program transfers. 
- Make gates available to tasks; this is an easier way to define program interfaces than using interface 

libraries. 
- Create Global (GOT), Interrupt (lOT), and any Local (LOT) Descriptor Tables. 
- Create, Task State Segments and Task Gates for multi-task applications. 
- Resolve inter-module and inter-level references, and perform type-checking. 
- Automatically select required modules from libraries. 
- Configure the memory image into partitions in the address space. 
- Selectively generate an object file and various sections of the print file. 

Key Benefit: 
Allows a system programmer to define the configuration of a protected system in one place, with one easy-to
use Utility. This specification may then be adopted by a" project members, using either the Builder or just the 
Binder. The flexibility simplifies program development for all users. 

3-56 AFN-00378B 



iAPX 286 SOFTWARE DEVELOPMENT PACKAGE. 

iAPX 286 SIMULATOR 

• Supports Symbolic Debugging of 
Complete, Protected 286 Systems. 

• Allows 286 Program Execution and 
Debugging in Absence of iAPX 286 
Hardware Execution Vehicle. 

• Functionally Duplicates the Operation 
of the iAPX 286 Microprocessor, 
Including Memory Protection. 

• Executes Full Instruction Set, Including 
, 80287 Numerics. 

• Symbolic Access to Program Variables as 
well as Descriptor Tables. 

• Two Execution Timers for Program 
Benchmarking and Interrupt Simulation. 

• UDI File System Support for User 
Program. 

SIM-286 is an 8086-resident program designed to support development of iAPX 286 O.S. kernels, systems, and 
applications. All of these may be developed and debugged without the use of a 286 hardware execution 
vehicle. 

The Simulator consists of a human interface layer, and software executors for the 80286 CPU and 80287 
Numeric Data Processor. The human interface receives commands with symbolic names, and passes control 
to the executor as though it were a 286-resident monitor. 

SIM-286 lets designers manipulate a 286 program using the symbolic names given for code and data. It also 
lets users symbolically examine and modify the protection features (such as system tables, access rights, etc.), 
if it is desi red. 

SIM-286 contains two instruction timers. One may be set and incremented during execution; this allows 
program sequences to be benchmarked in clock cycles and microseconds. The second, an interval timer, may 
be set to generate interrupts every '1 clock cycles, to simulate event-driven processing. These timers are 
extremely useful for developing system kernels. 

For programs that make operating system calls for file I/O, SI M-286 provides access to these services through 
the Universal Development Interface. 

Key Benefit: 
Symbolic system debugging (for protected 286 software) may be performed in the absence of a 286-based 
target. 

SPECIFICATIONS 

OPERATING ENVIRONMENT 

Intel Microcomputer Development Systems 
(Series III/Series IV) 

DOCUMENTATION 

ASM 286 Language Reference Manual 
ASM 286 Macro Assembler Operating 
Instructions 
iAPX 286 Utilities User's Guide 

ORDERING INFORMATION 

Product Code Description 

iAPX 286 System Builder User's Guide 
iAPX 286 Simulator User's Guide 
Pocket Reference for all the above: 

ASM 286 
Utilities 
SIM 286 

SUPPORT: 

Hotline Telephone Support, Software Performance 
Report (SPR), Software Updates, Technical Reports, 
and Monthly Technical Newsletters are available. 

iMDX-321 iAPX 286 Software Development Package 

3-57 AFN.()()378e 



". 

iAPX286 
EVAWATION PACKAGE 

• Provides elementary program 
development and debug capability for 
the iAPX 286 microprocessor: 

Assembly 
System/task build 
Symbolic debug 

• Easy evaluation of aI/ microprocessor 
dependencies: architecture, execution 
speed~ program benchmarks 

• Provides a programmatic 
understanding of the iAPX 286 
architecture: 

Instruction set 
Memory protection· 
Segmentation 
Program timing 

• Includes an iAPX 286 demonstration 
program that exploits and illustrates 
architectural features of the 286 

The Intel iAPX 286 Evaluation Package is an integrated set of software tools that aids the programmer in 
understanding how to use the iAPX 286 microprocessor. The package runs on an Intel Microcomputer 
Development System (Series III or Intel Equivalent). 

The Evaluation Package will allow a programmer to create, build, execute, and debug an assembly-level iAPX 
286 task. It will also show how a programmer can take adVantage of iAPX 286 architecture features. 

The software tools contained in the package are a macro assembler, a task builder, run-time support pro
cedures, an iAPX286 simulator, and a demonstration program. The simulator has a built-in timer for benchmark
ing code sequences and programs. It also provides symbolic debugging capability, in addition to iAPX 286 
program execution. 

The benefits of using the iAPX 286 Evaluation Package are two-fold. System designers may now learn the iAPX 
286 architecture (and determine its applicability) in the quickest manner possible. In addition, software may be 
developed now for a future 286 application, thereby getting a head start on a very time-consuming phase of 
design. 

-HUN :Fl:SM286E 
SERIES III lAPX 286 EvaluatlOI'l Pack.age Simulator, V1,0 

? LOAD DM286E -the demo program 
Program Sue" 111432 Total Memory" 60128 
? GO 

Interrupt 3 at 0118:0072 
? 
? TR ·contents of the task register 
"250 .RPL"'0 .TI"0 • INDEX=004A 

? TSS ·current task state segment 
LINK..-""00 SP0"0000 850"'026" SPl=0000 551=0139 SP2=0000 552=1.1142 IP";]D7J 
FL=0204 AX=0004 CX=0021 OX"'''000 BX"0684 SP=FFA0 BP"FFA0 SI-=00)F Dl=FFB5 
E5"0260 CS=0118 SS=026il DS""illlB RLDT=il01S 

, GO 

Interrupt 13 at 0118:0073 General Protectlon Ecode = 0000 , 
? LOT 
LDT {IT} 05EG BASE"000430 L!"!;IT"'''UH P=l OPL"'!! ED'"0 w"'l A=" SR"'0000 
LOT (2T) OS£G 8A5E"'00£100 LIM!1'=0005 pel DPL."') ED"'0 W=l A"'1 SR"'0000 

? GDT(10T) "the 10th global deSCrIptor t<'lble entry 
GOT (l0T) T5S BASE';'00EA80 LIMIT=1!05C 8"'0 P'"l DPL."'0 SR"0058 

? EXIT 

Sample Simulator Session 

© INTEL CORPORATION, 1983 

~63 

3-58 

ACCESS BASE ADDRESS LIMIT 

7 8 0 0 E A 8 0 0 0 5 C 

48 40 16 

l6-BIT SELECTOR GDT(10T) 

Segment Descriptor Table 

MAY 1983 
ORDER NUMBER:401870-001 



inter iAPX 286 EVALUATION PACKAGE 

FUNCTIONAL DESCRIPTION 

iAPX 286 Evaluation Macro Assembler 
The Evaluation Assembler (AS286E) accepts a 
source module written in the 286 Macro Assembly 
Language, and generates an object module and a 
listing file. The assembler is based upon ASM-86, and 
therefore performs type-checking on operands, sup
ports complex data structures, and utilizes the same 
macro processor. 

iAPX 286 Evaluation Builder 
The Evaluation Builder (BD286E) accepts a single 
assembler object module, and generates a single
tasking executable load module. The Evaluation 
Builder performs the following functions: 

-Assigns attributes to 286 segments: Privilege 
level, Access Rights, Base Address, Segment 
Length. 

-Creates descriptor table entries (GDT & LDT) 
from segments. 

-Initializes Segment Registers. 
-Allows call gates, interrupt gates, and trap gates 

to be explicitly created, via the Interrupt 
Descriptor Table. 

-Automatically creates call gates for X286E run
time procedures. 

-Creates the Task State Segment for a one-task 
program. 

-Produces a map showing all segments, gates, 
and public symbols. 

-Binds segments to absolute addresses. 

iAPX 286 Evaluation Simulator 
The Evaluation Simulator (SM286E) loads and ex
ecutes a 286 object module created by the Builder. 
Program execution functionally duplicates iAPX 286 
processor operation; data protection, gates, proces
sor traps and interrupts, and segmentation access 
are all supported in the same way as the iAPX 286. 
Compatibility mode and numerics are not included. 

SPECIFICATIONS 

OPERATING ENVIRONMENT 

Intel Microcomputer Development Systems 
(Series IIIISeries IV) 

ORDERING INFORMATION 
Product Code Description 

The symbolic debugger portion of the simulator sup
ports two simultaneous code break-points and 
single-step execution, as well as modification of 
variables, registers, descriptor tables, and the task 
state segment. Code disassembly is also provided. 

The Simulator has a built-in instruction timer to aid in 
benchmarking iAPX 286 programs. Another timer, 
which also counts clock cycles, can be used to 
generate interrupts at specific time intervals. 

Run-Time Support Procedures 
The Evaluation Package contains a set of run-time 
procedures (X286E) that may be "linked" to a user 
program at build-time to perform several software 
functions. These functions include creating and 
modifying segments, descriptors, and tables, creat
ing new tasks, and dynamically allocating free 
memory for segments. 

The Demonstration Program 

The Demo Program (DM286E) is an application pack
age that uses the Evaluation Tools (AS286E, BD286E, 

. SM286E, X286E) to teach users how to program the 
iAPX 286. 

It not only guides a programmer through the use of 
these tools, but the demo program itself illustrates 
how software can exploit the architecture of the 286. 
The following features are illustrated: 

-Memory Protection using object descriptors. 
-Gate creation and manipulation. 
-Task switching, procedure entry and exit. 
-Interrupt handling. 
-Dynamic task creation. 
~Inter-task communication. 

The demonstration consists of a nucleus, a real-time 
clock interface, a time-of-day clock, a CPU-utilization 
spy, and a command interpreter. The user may exe
cute these simultaneously on the simulator, and gain 
an understanding of how the 286 handles the func
tions listed above. 

DOCUMENTATION 

iAPX 286 Evaluation Macro Assembly Language 
Reference Manual 

iAPX 286 Evaluation Macro Assembler Operating 
Instructions 

iAPX 286 Evaluation Simulator Operating 
Instructions 
iAPX 286 Evaluation Builder's user's Guide 

SUPPORT: 

Hotline Telephone Support, Software Performance 
MDS*-322 iAPX 286 Evaluation Package Report (SPR), Software Updates, Technical Reports, 

(ReqUires Software License) and Monthly Technical Newsletters are available. 

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of 
Mohawk Data Sciences Corporation. 3-59 AFN-003788 



intJ 
PUM 286 SOFTWARE PACKAGE 

• Systems programming language for 
the protected virtual address mode 
IAPX286 ... 

• Upward compatible with PL/M 86 and 
PL/M 80 assuring software portability 

• Enhanced to support design of 
protected, multi-user, multi-tasking, 
virtual memory operating system 
software 

• Advanced, structured system 
implementation language for algorithm 
development 

• Produces relocatable object code 
which is linkable to object modules 
generated by all other iAPX 286 
language translators 

• Multiple levels of optimization 

• Resident on Intel microcomputer devel
opment systems (Series III, IV) 

PL/M 286 is a powerful, structured, high-level system implementation language for the development of system 
software for the protected virtual address mode iAPX 286. PL/M 286 has been enhanced to utilize iAPX 286 
features-memory management and protection-for the implementation of multi-user, multi-tasking virtual 
memory operating systems. 

PL/M 286 is upward compatible with PL/M 86 and PL/M ~O. Existing systems software can be' re-compiled with 
PLIM 286 to execute in protected virtual address mode on the iAPX 286. 

PL/M 286 is the high-level alternative to assembly language programming on the iAPX 286. For the majority of 
iAPX 286 system programs, PL/M 286 provides the features needed to access and to control efficiently the un
derlying iAPX 286 hardware and consequently it is the cost-effective approach to develop reliable, maintain
able system software. 

The PL/M 286 compiler has been <lesigned to efficiently support all phases of software development. Features 
such as a built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of pro
gram size and memory usage for efficient code generation provide the total program development support 
needed. 

• 
3-60 

MAY 1983 
ORDER NUMBER:210538-002 



inter PLIM 286 SOFTWARE PACKAGE 

FEATURES 

Major features of the Intel PL/M 286 compiler and 
programming language include: 

Structured Programming 

PL/M source code is developed in a series of mod
ules, procedures, and blocks. Encouraging program 
modularity in this manner makes programs more 
readable, and easier to maintain and debug. The 
language becomes more flexible by clearly defining 
the scope of user variables (local to a private proce
dure, for example). 

The use of modules and procedures to break down a 
large problem leads to productive software develop
ment. The PL/M 286 implementation of block struc
ture allows the use of REENTRANT procedures, 
which are especially useful in system design. 

Language Compatibility 

PL/M 286 object modules are compatible with object 
modules generated by all other 286 translators. This 
means that PL/M programs may be linked to pro
grams written in any other 286 language. 

Object modules are compatible with In-Circuit 
Emulators; DEBUG compiler control prol(ides the In
Circuit Emulators with full symbolic debugging 
capabilities. 

PL/M 286 language is upward compatible with PLiM 
86 and PL/M 80 so that application programs may be 
easily ported to run on the protected mode iAPX 286. 

Supports Seven Data Types 

PL/M makes use of seven data types for various 
applications. -These data types range from one to 
four bytes and facilitate various arithmetic, logic, 
and addressing functions: 

-Byte: 8-bit unsigned number 
-Word: 16-bit unsigned number 
-Dword: 32-bit unsigned number 
-Integer: 16-bit signed number 
-Real: 32-bit flo~ting-point number 
-Pointer: 16-bit or 32-bit memory address 

indicator 
-Selector: 16-bit pointer base. 

Another powerful facility allows the use of BASED 
variables which permit run-time mapping of var-

3-61 

iables to memory locations. This is especially useful 
for passing parameters, relative and absolute 
addressing, and dynamic memory allocation. 

lWo Data Structuring Facilities 

In addition to the seven data types and based 
variables, PL/M supports two powerful data structur
ing facilities. These help the user to organize data 
into logical groups. 

-Array: Indexed list of same type data elements 
-Structure: Named collection of same or different 

type data elements 
-Combinations of both: Arrays of structures or 

structures of arrays. 

Numerics Support 

PL/M programs that use 32-bit REAL data are ex
ecuted using the 80287 Numeric Data Processor for 
high performance. All floating-point operations sup
ported by PL/M are executed on the 80287 according 
to the IEEE floating-point standard. PL/M 286 pre;>
grams can use built-in functions and predefined 
p rocedu res-I N I T$R E AL$ M ATH$ UNIT, 
SET$REAL$MODE. GET$REAL$ERROR, 
SAVE$REAL$STATUS, RESTORE$REAL$STATUS 
-to control the operation of the 80287 within the 
scope of the language. 

Built-In String Handling Facilities 

The PL/M 286 language contains built-in functions 
for string manipulation. These byte and word func
tions perform the following operations on character 
strings: MOVE, COMPARE, TRANSLATE, SEARCH, 
SKIp, and SET. 

Built-In Port I/O 

PL/M 286 directly supports input and output from the 
iAPX 286 ports for single BYTE and WORD transfers. 
For BLOCK transfers, PLiM 286 programs can make 
calls to predefined procedures. 

Interrupt Handling 

PL/M 286 has the facility for generating and handling 
interrupts on the iAPX 286. A procedure may be 
defined as an interrupt handler through use of 
the INTERRUPT attribute. The compiler will 
then generate code to save and restore the proces
sor status on each execution of the user-defined 

AFN-OOM3B 



infel' PUM 286 SOFTWARE PACKAGE 

interrupt handler routine. The PLIM statement 
CAUSE$INTERRUPT allows the user to trigger a soft
ware interrupt from within the program. 

Protection Model 

PLIM 286 supports the implementation of protected 
operating system software by providing built-in pro
cedures and variables to access the protection 
mechanism of the iAPX 286. Predefined variables
TASK$REGISTER, LOCAL$TABLE, MACHINE$ 
STATUS, etc.-allow direct access and modification 
of the protection system. Untyped procedures and 
functions-SAVE$GLOBAl$TABLE, RESTORE$ 
GLOBAL$TABLE, SAVE$INTERRUPT$TABLE, 
RESTORE$INTERRUPT$TABLE, ClEAR$TASK$ 
SWITCHED$FLAG, GET$ACCESS$RIGHTS, GET 
$SEGMENT$lIMIT, SEGMENT$READABLE, 
SEGMENT$WRITABLE, ADJUST$RPL-provide all 
the facilities needed to implement efficient operating 
system software . 

. :1"'" 
Complier Controls 

The PL/M 286 compiler offers controls that facilitate 
such features as: 

-Optimization 
-CQnditional compilation 
-The inclusion of additional PL/M source files 

from disk 
-Cross-reference of symbols 
-Optional assembly language code in the 

listing file 
- The setting of overflow conditions for run-time 

handling. 

Addressing Control 

The PL/M 286 compiler uses the SMALL, COMPACT, 
MEDIUM, and LARGE controls to generate optimum 
addressing instructions for programs. Programs 
of any size can be easily modularized into 
"subsystems" to exploit the most efficient memory 
addressing schemes. This lowers total memory re
quirements and improves run-time execution of 
programs. 

Code Optimization 

The PL/M 286 compiler offers four levels of optimiza
tion for significantly reducing overall program size. 

-Combination or "folding" of constant 
expressions; and short·circuit evaluation of 
Boolean expressions 

3-62 

-"Strength reductions": a shift left ratheT than 
multiply by 2; and elimination of common sub
expressions within the same block 

-Machine code optimizations; elimination of 
superfluous branches; reuse of duplicate code; 
removal of unreachable code 

-Optimization of based-variable operations and 
cross-statement loadl store. 

Error Checking 

The Pl/M 286 compiler has a very powerful feature 
to speed up compilations. If a syntax or program 
error is detected, the compiler will skip the code 
generation and optimization passes. This usually 
yields a 2X performarce increase for compilation of 
programs with errors. 

A fully detailed and helpful set of programming and 
compilation error messages is provided by the com
piler and user's guide. 

BENEFITS 

PLIM 286 is designed to be an efficient, cost
effective solution to the special requirements of 
protected mode iAPX 286 Microsystem Software De
velopment, as illustrated by the following benefits of 
PLIM use: 

Low Learning Effort 

PL/M 286 is easy to learn and use, even for the novice 
programmer. 

Earlier Project Completion 

Critical projects are completed much earlier than 
otherwise possible because PL/M 286, a structured 
high-level language, increases programmer 
productivity. 

Lower Development Cost 

Increases in programmer productivity translate im
mediately into lower software development costs be
cause less programming resources are required for a 
given programmed function. 

Increased Reliability 

PL/M 286 is designed to aid in the development of 
reliable software (PL/M 286 programs are simple 
statements of the program algorithm). This substan
tially reduces the risk of costly correction of errors in 

AFN-00643B 



PL/M 286 SOFTWARE PACKAGE 

systems that have already reached full production 
status, as the more simply stated the program is, the 
more likely it is to perform its intended function. 

Easier Enhancements and Maintenance 

Programs written in PL/M tend to be sait
documenting, thus easier to read and understand. 
This means it is easier to enhance and maintain 
PL/M programs as the system capabilities expand 
and future products are developed. 

SPECIFICATIONS 

Operating Environment 

Intel Microcomputer Development System (Series 
III/Series IV) 

ORDERING INFORMATION 

Part Number Description 

iMDX 323 PL/M 286 Software Package 

Requires Software License 

3-63 

Cost-Effective Alternative to 
Assembly Language 

PL/M 286 programs are code efficient. PLIM 286 
combines all of the benefits of a high-level language 
(ease of use, high productivity) with the ability to 
access the iAPX 286 architecture, This includes lan
guage features for control of the iAPX 286 protection 
mechanism. Consequently, for the development of 
systems software, PLIM 286 is the cost-effective al
ternative to assembly language programming. 

Documentation Package 

PL/M 286 User's Guide 

SUPPORT: 

Hotline Telephone Support. Software Performance 
Report (SPR). Software Updates. Technical Reports. 
and Monthly Technical Newsletters are available. 

AFN-CKMI438 



inter 
VAX*/VMS* RESIDENT 

iAPX-86/88/186 
SOFTWARE DEVELOPMEN.T PACKAGES 

• Execut~s on DEC VAX· MInicomputer 
under VMS· Operating System to 
translate PUM-86, Pascal-86 and 
ASM-86 Programs for iAPX-86, 88 
and 186 Microprocessors. 

• Packages include Pascal-86; PUM-86; 
ASM-86; Link and Relocation Utilities; 
OH-86 Absolute Object Module to 
Hexadecimal Format Converter; and 
Libra.ry Manager Program. 

• Output linkable with Code Generated 
on Intellec® Development Systems. 

The VAX.NMS Resident Software Development Packages contain software development tools for the iAPX-86, 
88, and 186 microprocessors. The package lets the user de~elop, compile, maintain libraries, and link and 
locate programs on ~ VAX. running the VMS operating system. The translator output is object module compati
ble with programs translated by the corresponding version of the translator on an Intellec Development System. 

Three packages are available: 

1. An ASM-86 Assembler Package which includes the Assembler, the Link Utility, the Locate Utility, 
the absolute object to hexadecimal format conversion utility and the Library Manager Program. 

2. A PLlM-86 Compiler Package which contains the PLlM-86 Compiler and Runtime Support Libraries. 

3. A Pascal-86 Compiler Package which contains the Pascal-86 Compiler and Runtime Support Libraries. 

The VAXIVMS resident development packages and the Inteliec Development System development packages 
are built from the same technology base. Therefore, the VAXIVMS resident development packages and the 
Intellec Developmerrl System development packages are very similar. . 

Version numbers can be used to Identify features correspondence. The VAXNMS resident development 
packages will have the same features as the Intellec Development System product with the same version 
number. . 

Support for the iAPX-186 processor will be provided as an update to the iAPX-86, 88 software. 

The object modules produced by the translators contain symbol and type information for programming 
debugging using ICET• translators and/or the PSCOPE debugger. For final production version, the compiler 
can remove this extra information and code. 

·VAX, DEC, and VMS are trademarks of DIgital EqUipment Corporation 

@INTEL CORPORATION. 1983 

3-64 

MAY 1983 
ORDER NUMBER:21~ 



VAX*IVMS* RESIDENT 

VAX*-PL/M-86/88/186 SOFTWARE PACKAGE 

• Executes on VAX*Minicomputer Under 
the VMS* Operating System 

iii Supports 16~Bit Signed Integer and 
32-Bit Floating Point Arithmetic in 
Accordance with IEEE Proposed 
Standard 

• Easy-To-Learn Block-Structured 
Language Encourages Program 
Modularity 

• Produces Relocatable Object Code 
Which is Linkable to All Other Intel 8086 
Object Modules, Generated on Either a 
VAX* or Intellec® Development Systems 

• Code Optimization Assures Efficient 
Code Generation and Minimum 
Application Memory Utilization 

• Bunt-In Syntax Checker Doubles 
Performance for Compiling Programs 
Containing Errors 

• Source Input/Object Output Compatible 
with PL/M-86 Hosted on an Intellec® 
Development System 

• ICE™, PSCOPE Symbolic Debugging 
Fully Supported 

Like its counterpart for MCS®-80/85 program development, and Intellec® hosted IAPX-86 program develop
ment, VAX-PL/M-86 is an advanced, structured high-level programming language. The VAX-PLlM-86 
compiler was created specifically for performing software development for the Intel iAPX-86, 88, and 186 
Microprocessors. 

PL/M is a powerful, structured, high-level system implementation language In which program statements can 
naturally express the program algorithm. This frees the programmer to concentrate on the logic of the 
program without concern for burdensome details of machine or assembly language programming (such as 
register allocation, meanings of assembler mnemonics, etc.). 

The VAX-PLlM-86 compiler efficiently converts free-form PLiM language statements into equivalent 
iAPX-86/88/186 machine instructions. Substantially fewer PLiM statements are necessary for a given appli
cation than if it were programmed at the assembly language or machine code level. 

The use Qf PLiM high-level language for system programming, instead of assembly language, results in a high 
degree of engineering productivity during project development. This translates into significant reductions in 
initial software development and follow-on maintenance costs for the user. 

'VAX, DEC. and VMS are trademarks of Digital Equipment Corporation 

3-65 AFN·OO680C 



VAX· NMS· RESIDENT 

VAX*-PASCAL-86/88 SOFTWARE PACKAGE 

• Executes on VAX· Minicomputer Under 
the VMS· Operating System 

• Produces Relocatable Object Code 
Which Is Linkable to All Other Intel 8086 
Object Modules, Generated on Either a 
VAX· or Intellec® Development Systems 

• ICE™, PSCOPE Symbolic Debugging 
Fully Supported 

• Implements REALMATH for Consistent 
and Reliable Results 

• Supports iAPX-86/20, 88/20 Numeric 
Data Processors 

• Strict Implementation of ISO Standard 
Pascal 

• Useful Extensions Essential for Micro
computer Applications 

• Separate Compilation with Type
Checking Enforced Between Pascal 
Modules 

• Compiler Option to Support Full Run
Time Range-Checking 

• Source Input/Object Output 
Compatible with Pascal-86 Hosted on a 
Intellec Development System 

VAX-PASCAL-86 conforms to and implements the ISO Pascal standard. The language is enhanced to 
support microcomputer applications with special features, such as separate compilation, interrupt 
handling and direct port I/O. Other extensions include additional data types not required by the standard 
and miscellaneous enhancements such as an allowed underscore in names, an OTHERWISE clause in 
CASE construction and so forth. To assist the development of portable software, the compiler can be 
directed to flag all non-standard features. 

The VAX-PASCAL-86 compiler runs on the Digital Equipment Corporation VAX under the VMS 
Operating System A well-defined I/O interface is provided for run-time support. This allows a user
written operating system to support application programs on the target system as an alternate to the 
development system environment. Program modules compiled under PASCAL-86 are compatilble and 
linkable with modules written in PUM-86, and ASM-86. With a.complete family of compatible program
ming languages for the iAPX-86, 88, and 186 one can implement each module in the language most 
appropriate to the task at hand. 

'VAX, DEC, and VMS are trademarks of Dlgllal Equipment Corporation 

3-66 AFN-0068OC 



VAX*/vMS* RESIDENT 

VAX*-iAPX-86/88/186 MACRO ASSEMBLER 

• Executes on VAX· Minicomputer Under 
The VMS· Operating System 

• Produces Relocatable Object Code 
Which Is Linkable to All Other Intel 
iAPX-86/88/186 Object Modules, 
Generated on Either a VAX· or Intellec® 
Development Systems 

• Powerful and Flexible Text Macro Facility 
with Three Macro Listing Options to Aid 
Debugging 

• Highly Mnemonic and Compact 
Language, Most Mnemonics Represent 
Several Distinct Machine Instructions 

• "Strongly Typed" Assembler Helps 
Detect Errors at Assembly Time 

• High-Level Data Structuring Facilities 
Such as "STRUCTURES" and 
"RECORDS" 

• Over 120 Detailed and Fully Documented 
Error Messages 

• Produces Relocatable and Linkable 
Object Code 

• Source Input/Object Output Compatible 
with ASM-86 hosted on an Intellec 
Development System 

VAX-ASM-86 is the "high-level" macro assembler for the iAPX-86/88/186 assembly language. VAX-ASM-86 
translates symbolic iAPX-86/88/186 assembly language mnemonics into iAPX-86/88/186 relocatable 
object code. 

VAX-ASM-86 should be used where maximum code efficiency and hardware control is needed. The 
iAPX-86/88/186 assembly language includes approximately 100 instruction mnemonics. From these few 
mnemonics the assembler can generate over 3,800 distinct machine instructions. Therefore, the software 
development task is simplified, as the programmer need know only 100 mnemonics to generate all 
possible iAPX-86/88/186 machine instructions. VAX-ASM-86 will generate the shortest machine instruction 
possible given no forward referencing or given explicit information as to the characteristics of forward 
referenced symbols. 

VAX-ASM-86 offers many features normally found only in high-level languages. The iAPX-86/88/186 
assembly language is strongly typed. The assembler performs extensive checks on the usage of variable 
and labels. The assembler uses the attributes which are derived explicity when a variable or label is first 
defined, then makes sure that each use of the symbol in later instructions conforms to the usage defined for 
that symbol. This means that many programming errors will be detected when the program is assembled, 
long before it is being debugged on hardware. 

·VAX, DEC. and VMS are trademarks of Ol91tal Equipment Corporatlon 

3-67 AFN-0068OC 



VAX* IVMS*RESIDENT 

VAX*-LIB-86 

• Executes on VAX* Minicomputer Under 
the VMS* Operating System 

• VAX*-LIB-86 is a Library Manager 
Program which Allows You to: 
Create Specifically Formatted Files to 
Contain Libraries of Object Modules 
Maintain These Libraries by Adding or . 
Deleting Modules 
Print a Listing of the Modules and 
Public Symbols in a Library File 

• Libraries Can be Used as Input to 
VAX*-LINK-86.Which Will Automatically 
Link Modules from the Library that 
Satisfy External References in the 
Modules Being Linked 

• Abbreviated Control Syntax 

Libraries aid in the job of building programs. The library manager program VAX-LlB-86 creates and 
maintains files containing object modules. The operation of VAX-UB-86 is control/ed by commands to 
indicate which operation VAX-LlB-86 is to perform. The commands are: 

CREATE: 
ADD: 
DELETE: 
LIST: 

creates an empty library file 
adds object modules to a library file 
deletes modules from a library file 
lists the module directory of library files 

EXIT: terminates the LlB-86 program and returns control to VMS 

When using object libraries, the linker will call only those object modules that are required to satisfy external 
references, thus saving memory space. 

VAX-OH-86 

• Executes on VAX* Minicomputer Under 
the VMS* Operating System 

• Converts an iAPX 86/88/186 Absolute 
Object Module to Symbolic 
Hexadecimal Format 

• Facilitates Preparing a file for Loading 
by $ymbolic Hexadecimal Loader (e.g. 
iSBC™ Monitor SDK-86 Loader), or 
Universal PROM Mapper 

• Converts an Absolute Module to a More 
Readable Format that can be Displayed 
on a CRT or Printed for Debugging 

The VAX-OH-86 utility converts an 86/88 absolute object module to the hexadecimal format. This conversion 
may be necessary for later loading by a hexadecimal loader such as the iSBC 86/1·2 monitor or the Universal 
PROM Mapper. The conversion may also be made to put the module in a more readable format that can be 
displayed or printed. 

The module to be converted must be in absolute form; the output from VAX-LOC-86 is in absolute format. 

'VAX, VMS are trademarks of Digital Equipment Corporation. 

3-68 AFN·OO68QC 



intJ VAX* IVMS*RESIDENT 

VAX*-LINK-86 

• Executes on VAX* Minicomputer Under 
the VMS* Operating System 

• Automatic Combination of Separately 
Compiled or Assembled 86/88/186 
Programs Into a Relocatable Module, 
Generated on Either a VAX or an Intellec® 
Development System 

• Automatic Selection of Required 
Modules from Specified Libraries to 
Satisfy Symbolic References 

• Extensive Debug Symbol Manipulation, 
allowing Line Numbers, Local Symbols,. 
and Public Symbols to be Purged and 
Listed Selectively 

• Automatic Generation of a Summary 
Map Giving Results of the LINK-86 
Process 

• Abbreviated Control Syntax 

• Relocatable modules may be Merged into 
a Single Module Suitable for Inclusion in 
a Library 

• Supports "Incremental" Linking 

• Supports Type Checking of Public and 
External Symbols 

VAX-lINK-86 combines object modules specified in the VAX-lINK-86 input list into a single output module. 
VAX-lINK-86 combines segments from the input modules according to the order in which the modules are 
listed. ' 

VAX-lINK-86 will accept libraries and object modules built from VAX-PLlM-86, VAX-PASCAL-86, VAX-ASM-
86, or any other Intel translator generating 8086 Relocatable Object Modules, such as the Series III resident 
translators. 

Support for incremental linking is provided since an output module produced by VAX-lINK-86 can be an 
input to another link. At each stage in the incremental linking process, unneeded public symbols may be 
purged. 

VAX-lINK-86 supports type checking of PUBLIC and EXTERNAL symbols reporting a warning if their 
types are not consistent. 

VAX-lINK-86 will link any valid set of input modules without any controls. However, controls are available 
to control the output of diagnostic information in the VAX-lINK-86 process and to control the content of 
the output module. 

VAX-lINK-86 allows the user to create a large program as the combination of several smaller, separately 
compiled modules. After development and debugging of these component modules the user can link them 
together, locate them using VAX-LOC-86 and enter final testing with much of the work accomplished. 

·VAX, DEC, and VMS are trademarks of Digital EqUipment Corporation 

3-69 AFN·OO8IOC 



VAX*/VMS*RESIDENT 

VAX*-LOC-86 

• Executes on the VAX* Minicomputer 
Under the VMS* Operating. System 

• Automatic Generation of a Summary 
Map Giving Starting Address, Segment 
Addresses and Length, and Debug 
Symbols and their Addresses 

• Extensive Capability to Manipulate the 
Order and Placement of Segments in 
8086/80$8 Memory 

• Abbreviated Control Syntax 

• Automatic and Independent Relocation 
of Independent Relocation of Segments. 
Segments May be Relocated to Best 
Match Users Memory Configuration 

• Extensive Debug Symbol Manipulation, 
Allowing Line Numbers, Local Symbols, 
and Public Symbols to be Purged and 
Listed Selectively 

ReJocatability allows the programmer to code programs or sections of programs without having to know the 
final arrangement of the object code in memory. 

VAX-LOC-B6 converts relative addresses in an input module in iAPX-B6/BB/1B6 object module format to 
absolute addresses. VAX-LOC-B6 orders the segments in the input module and assigns absolute addresses 
to the segments. The sequence in which the segments in the input module are assigned absolute 
addresses is determined by their order in the input module and the controls supplied with the command. 

VAX-LOC-B6 will relocate any valid input module without any controls. However, controls are available to 
control the output of diagnostic information in the VAX-LOC-B6 process, to control the content of the 
output module, or both. 

The program you are developing will almost certainly use some mix of random access memory (RAM), 
read-only memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location 
of your program affects both cost and performance in your application. The relocation feature allows you to 
develop your program and then simply relocate the object code to suit your application. 

SPECIFICATIONS 

Operating Environment 

Required Hardware 

VAX' 11/7BO, 11/7B2, 11/750, or 11/730 
9 Track Magnetic Tape Drive, 1600 BPI 

Required Software 

-VMS Operating System V3.0 or Later. All of the devel
opment packages are delivered as unlinked VAX ob
ject code which can be linked to VMS as designed for 
the system where the development package is to be 
us",d. VMS command files to perform the link are 
provided. 

'VAX, DEC, and VMS are trademarks of Digital Equipment Corporation 

3-70 

Documentation Package 

iAPX-B6, BB Development Software Installation 
Manual and User's Guide for VAXNMS, Order 
number 121950-001 

Shipping Media 

9 Track Magnetic Tape 1600 bpi 

ORDERING INFORMATION 

Part Number Description 
iMDX-341VX VAX-ASM-86, VAX-LiNK-B6, VAX

LOC-B6, VAX-LlB-B6, VAX-OH-86, 
Package 

iMDX-343VX VAX-PLM-B6 Package 
IMDX-344VX VAX-PASCAL-B6 Package 

REQUIRES SOFTWARE LICENSE 

AFN-0068OC 



iSDM™ 86 
SYSTEM DEBUG MONITOR 

• Supports target system debugging 10r 
iSBC® liAPX 86,88,186 and 188-based 
applications 

• Provides interactive debugging 
commands including single-step code 
execution and symbolic displays of 
results 

• Supports 8087 Numeric Processor 
Extension (NPX) for high-speed math 
applications 

• Allows building of custom commands 
through the Command Extension 
Interface (CEI) 

• Supports application access to ISIS-II 
files 

• Provides program load capability from 
an Intellec® Development System 

• Contains configuration facilities which 
allow an applications bootstrap from 
iRMX™ 86 and 88 file compatible 
peripherals 

• Modular to allow use from an Intellec 
Development System or from a stlJnd
alone terminal 

The Intel iSDMTM 86 System Debug Monitor package contains the necessary hardware, software, cables, EPROMs 
and documentation required to interface, through a serial or parallel connection, an iSBC® 86/05, 86/12A, 86/14, 
86/30,88/25,88/40,88/45,186/03,186/51,188/48, or iAPX 86, 88,186 or 188 target system to an MDS 800, Series 
II or Series IIIlntellec® Microcomputer Development System for execution and interactive debugging of applications 
software on the target system. The Monitor can: load programs into the target system; execute the programs instruc
tion by instruction or at full speed; set breakpoints; and examinelmodify CPU registers, memory content, and other 
crucial environmental details. Additional custom commands can be built using the Command Extension Interface 
(CEI). The Monitor supports the OEM's choice of the iRMXTM 86 Operating System, the iRMX 88 Real-Time MUlti
tasking Executive or a custom system for the target application system. OEM's may utilize any iRMX 86,88 supported 
target system peripheral for a bootstrap of the application system or have full access to the ISI8-11 files of the Intellec 
System. 

The following are trademarks of Intel Corporation and may be used only to describe Intel products" Intel, ICE, IMMX, lRMX, iSBe, Isex, ISXM, MUl TI8US, Multichannel and MUL TIMODULE 
Intel Corporation assumes no responsIbility for the use of any circuitry other than circuitry embodied In an Intel product. No other Circuit patent He.nses are Implied Information contained 
heretn supercedes previously published specifICations on these deVices from Intel 

© INTEL CORPORATION. 1983 
3-71 

October. 1983 
Order Number: 230812-001 



inter iSDM™ 86 

FUNCTIONAL DESCRIPTION 

Overview 

The iSDM 86 Monitor extends the software development 
capabilities of the Intellee system so the user can effec
tively develop applications to ensure timely product avail
ability. 

The iSDM 86 package consists of ,four parts: 

• The loader program 

• . The iSDM 86 Monitor 

• The Command Extension Interface (CEI) 

• The ISIS-II Interface 

The user can use the ISDM 86 package to load programs 
into the target system from the development system, 
execute programs in an instruction-by-instruction manner, 
and add custom commands through the command ex
tension interface. The user also has the option of using 
just the iSDM 86 Monitor and the CEI in a stand-alone 
application, without the use of an Intellec development 
system. 

Powerful Debugging"Commands 
The iSDM 86 Monitor contains a powerful set of como. 
mands to support the debugging process. Some of the 

features included are: bootstrap of application software; 
selective execution of program modules based on break
points or single stepping requests; examination, modi
fication and movement of memory contents; examination 
and modification of CPU registers, including NPX regis
ters. All results are displayed in clearly understandable 
formats. Refer to Table 1 for a more detailed list of the 
iSDM 86 monitor commands. 

Numeric Data Processor Support 

Arithmetic applications utilizing the 8087 Numeric Pro
cessor Extension (NPX) are fully supported by the iSDM 
86 Monitor. In addition to executing applications with the 
full NPX performance, users may examine and modify 
the NPX's registers using decimal and real number format. 

This feature allows the user to feel confident that correct 
and meaningful numbers are entered for the application 
without having to encode and decode complex real, 
integer, and BCD hexadecimal formats. 

Command Extension Interface (CEI) 

The Command Extension Interface (CEI) allows the ad
dition of custom commands to the i8DM 86 Monitor com
mands. The CEI consists of various procedures that can 
be used to generate custom commands. Up to three 
custom commands (or sets of commands) can be added. 

Table 1. Monitor Commands 

Command Function 

B Bootstrap application program from target systems peripheral device 

C Compare two memory blocks 

D Display contents of memory block 

E' Exit from loader program to ISIS-II Interface 

F Find speCified constant in a memory block 

G Execute application program 

I Input and display data obtained from input port 

L' Load absolute Intellec® object'file into target system memory 

M Move contents of memory block to another location 

N Display and exec::ute single instruction 

0 Output data to output port 

P Print values of literals 

R' Load and execute absolute Intellec® object file in target system memory 

S Display and (optionally) modify contents of memory 

T' Transfer block of memory'to anlntellec® file 

U,V,W User defined custom commands extensions 

X Examine and (optionally) modify CPU and NPX registers 

• Commands require an attached Series II/Series III. 

3-72 



inter iSDM™ 86 

to the monitor without programming new EPROMs or 
changing the monitor's source code. 

iSiS-ii Interface 
The ISIS-II interface consists of libraries which contain 
interlaces to ISIS-II 1/0 calls. A program running on an 
iAPX 86, 88, 186 or 188-based system can use the ISIS-II 
interlace and access the individual ISIS-II 110 calls. The 
interlace allows the inclusion of these calls into the pro
gram; however, most of the calls require a Series III 
Series III system. Table 2 contains a summary of the 
major 1/0 calls and parameters. 

Program Load Capability 
The iSDM 86 loader allows the loading of iAPX 86, 88, 
186 or 188-based programs into the target system. It exe
cutes on a Intellec Microcomputer Development System 
and communicates with the target system through a 
serial or a parallel load interlace. If a Series IIISeries III 
system containing an Intel 1/0 expansion board is being 
used, the board can be used as a fast parallel load inter
face, freeing up the UPP port for application use. 

Configuration Facility 

The monitor contains a full set of configuration facilities 
which allow it to be carefully tailored to the requirements 

of the target system. Pre-configured EPROM-resident 
monitors are supplied by Intel for the iSBC 86105, 86/12A, 
86/14,86/30,88/45,186/03,186/51, and 188/48 boards. 
The monitor must be configured by the user for the iSBC 
88/25, 88/40 boards and for other iAPX 86, 88, 186, 188 
applications. iRMX 86 and iRMX 88 system users may 
use the configuration facilities to include the iAPX 86, 
88 Bootstrap Loader (V5.0 or newer) in the monitor. 

Variety of Connections Available 

The physical interface between the Intellec Microcom
puter Development System and the target system can' 
be established in one of three ways. The systems can 
be connected via a serial link, a parallel link or a fast 
paraliellink. The fast parallel link requires the use of an 
iSBC 108(A), 116(A), 517 or 5191/0 expansion board in 
the Inteliec system and is only available for connections 
with the Series IIISeries III systems. The cabling arrange
ment is different depending upon the development sys
tem being used. Figure 1 displays the cable connections 
needed between an Inteliec Series III system and a target 
system for a serial interlace. 

The iSDM 86 Monitor does not require the use of a de
velopment system. The monitor can be used by simply 
attaching a stand-alone terminal to the target system. 
Figure 1 also displays the cable connections needed for· 
this arrangement. 

Table 2. Routines for ISIS·II Services Available to Target System Applications 

Routine Target System Function 

ATTRIB Changes to ISIS-II file attribute 

CI Returns a character input from the console 

CO Transfers a character for console output 

CLOSE Clo~es an opened ISIS-II file 

DELETE Deletes the specified ISIS-II file 

DQ$CFG Returns information about monitor's communication link and type 

ERROR Displays an error message on the Intellec@ console 

EXIT Exits to the target system monitor 

LOAD Loads target system memory with ISIS-II object code file 

OPEN Opens an ISIS-II file for access 

READ Reads up to 4096 bytes from an ISIS-II file to memory 

RENAME Renames an ISIS-II disk file 

SEEK Seeks to the specified ISIS-II file location 

WRITE Writes up to 4096 bytes from memory to an ISIS-II file 

3-73 



iSDMTM 86 

A 

SERIAL 110 
PORT 

APPROPRIATE 
ISBC· BOARD 

fo OEM RS232C 
/' I CABLE 

INTELLEC® SERIES '" 
DEVELOPMENT SYSTEM 

Figure 1. Typical iSDM ™ 86 Serial Connection Environment 

SPECIFICATIONS 

Development System Environment 

The Intellec Microcomputer Development System may 
be utilized for application program development and, if 
used, requires the following to support the iSDM 86 
package: 

• 48 Kbytes memory 

• Double density or single density diskette subsystem 

• ISIS-II Operating System and associated language 
translators 

iAPX 86, 88, 186, 188 TARGET SYSTEM 
ENVIRONMENT 

To support the iSDM 86 package, the target system must 
contain the following: 

• 2K read-write memory beginning at location OH 

• 16K read-only memory beginning at location FCOOOH 

• For Parallel link: 
- 8255A Programmable Peripheral Interface 

3-74 

• For Serial link: 
- 8251A USART or 8274 Multiprotocol Serial Con

troller, and 8253/4 or 80130 or iAPX 186/188 timer, 
or 

- 82530 Serial Communications Controller, including 
82530 timer 

Hardware 

• Supported iSBC Microcomputers: 

iSBC 86/05 Single Board Computer 

iSBC86/12A Single Board Computer 

iSBC 86/14 Single Board Computer 

iSBC 86/30 Single Board Computer 

iSBC 88/25 Single Board Computer 

iSBC 88/40 Single Board Computer 

iSBC 88/45 Single Board Computer 

iSBC 186/03 Single Board Computer 

iSBC 186/51 Single Board Computer 

iSBC 188/48 Single Board Computer 

• Supported iSBX MULTIMODULETM Boards: 

iSBX 350 Parallel I/O MULTIMODULE Board 

iSBX 351 Serial I/O MULTIMODULE Board 



inter iSDMTM 86 

iSDM™ 86 Package Contents 

Cables: 

1 - Parallel I/O Cable (upload/download) 

2 - RS232 Cables 

Adaptors: 

1 - Parallel Status Adaptor 

1 - Parallel Adaptor 

I/O Drivers and Terminators: 

4 - Pull-up Resistor Packs 

4 - Pull-up/down Resistor Packs 

4 - Line Driver Packs 

Interface and Execution Software Diskettes: 

1 - Single Density, ISIS Compatible 

1 - Double Density, ISIS Compatible 

ORDERING INFORMATION 

Part Number Description 

iSDM 86 

iSDM 86 RO 

iSDM 86 BSR 

Intellec to target system interface 
and target system monitor, suitable 
for use on iSBC 86, 88, 186, 188 
computers, or other iAPX 86, 88, 
186, 188 microcomputers. Package 
includes cables, EPROMs, soft
ware and operator manual. 

The iSDM 86 package includes 
SPR Service for, 90 days after 
shipment. 

As with all Intel Software, purchase 
of any of these options requires 
execution of a standard Intel 
Master Software License. 

Object Software 

Machine Readable Source 

3-75 

System Monitor EPROMs: 

Microcomputer EPROM 

iSBC®86/05 

iSBC® 86/12A 
Four 2732A EPROMs 

iSBC® 86/14 

iSBC® 86/30 

iSBC® 88/45 Two 2764 EPROMs 

iSBC® 186/03 
Two 2764 EPROMs 

iSBC® 186/51 

iSBC® 188/48 Two 2764 EPROMs 

Reference Manual (Supplied): 

146165-001 - iSDM 86 System Debug Monitor Refer
ence Manual 



.. 

iSDM™ 286 
iAPX 286 SYSTEM DEBUG MONITOR 

, 
• Development support of iSBC® 286·and 

iAPX 286·based applications 

• Real Address Mode (RAM) and 
Protected Virtual Address Mode 
(PVAM) support 

• Universal Development Interface (UDI) 
support via development system 
connection 

• Underlying debugging tool for 
iRMX™ 286R applications 

• Supports 80287 Numeric Processor 
Extension (NPX) for high-speed math 
applications 

• Program load capability from Intellec® 
Series III Development Systems 

• Bootstrap Loader for iRMX™ 286R, 86, 
and 88 file compatible peripherals 

• iAPX 286 single step operation allowed 

The Intel iSDMTM 286 System Debug Monitor package contains the necessary hardware, software, cables, 
EPROMs, and documentation required to interface in iSBC® 286 board or iAPX 286 component applications to 
an Intell'ec® Series III through a high-speed link. The System Debug Monitor supports an OEM's choice of .the 
iRMXTM 286R Real-Time Multitasking Operating System or custom operating system, with debugging tools to ex
amine CPU registers, memory content, CPU descriptor tables, and other crucial environmental details. The Monitor 
also allows programs to access files on the development system via the internal UDI support and the serial com
munication link . 

3-76 



iSDM™ 286 

FUNCTIONAL DESCRIPTION 

Overview 

The iSOM 286 System Oebug Monitor provides pro
grammers of iAPX 286-based applications with the de
bugging tools needed to test new applications ranging 
from single-user systems to complex operating 
systems. Programmers are given direct access to both 
the Real Address (ram) and Protected Virtual Address 
(pvam) Modes of the CPU via a simple terminal inter
face, or via an Intellec Series'" Oevelopment System. 

Universal Development Interface 

Any iRMX 86, Series III, or other UOI-based application 
can be supported by the iSOM 286 Monitor. The Monitor 
emulates many of the UOI calls (ram or pvam), and 
passes all requests for a file system to the host develop
ment station. UOI applications such as compilers and 
other programs available from Independent Software 
Vendors can be tested in the target iAPX 286 environ
ment Immediately. 

Powerful. Debugging Commands 

A powerful set of user functions includes commands to: 

Examine and Modify CPU Registers 

Examine, Modify, and Move memory locations 

Symbolic reference to variable names 

Find and compare memory contents 

Set program breakpoints 

Bootstrap load application software 

Single-step CPU operation 

Change between Real Address Mode and Protected 
Virtual Address Mode 

Formatted Displays 

The 150M 285 MonItor formats all iAPX 286 pre·defined 
data structures Into clearly understandable displays. 
ThiS display gives programmers a formatted view of 
CPU registers such as LOTs, GOTs, lOTs, Segment 
Selectors, and Task State Segments - not Just a senes 
of unconnected digits. 

Numeric Data Processor Support 

In addition to executing 80287 Numenc Processor Ex
tension (NPX) applications with full NPX performance, 
programmers may examine and modify NPX registers 
using decimal and real number format. Any locallon In 
memory known to contain numenc values in standard 
real format (IEEE P754) may be examined or modified 
using normal decimal notation. In thiS manner program
mers may feel confident that correct and meaningful 
numbers are available to applications without having to 
encode and decode complex real, integer, and BCO 
hexadecimal formats. 

High-Speed Serial Connection 

Target application hardware is connected to the devel
opment system via a serial link cap~ble of 19.2K baud. • 
All control operations and UOI file manipulations occur 
over this link through the cables supplied. As shown in 
Figure 1, the serial link is supported by the iSBC 86 
USART port of the ~evelopment system. 

SERIAL I/O 
PORT 

,sec 286/10 

Figure 1. Typical i5DM Til 286 Environment 

AFN-01B04A 

3-77 



iSDM™ 286 

SPECIFICATIONS 

Development System Environment 

Intellec MOS Series III with 64 KBytes. 

Target System Environment 
Any iAPX 286 system with 8274 (non-vectored mode) 
serial link and 8254 timer, such as the iSBC 286110 Single 
Board Computer. The 8259A interrupt controller is 
optional. 

EPROMs are supplied for locations OFF8000H through 
OFFFFFFH. 

ORDERING INFORMATION 

Part Number Description 

SDM 286 iSBC 286 and iAPX 286 System Debug 
Monitor package including cables, 
EPROMs, software, and operator 
manual. 

SDM 286 BSR 

Also available with the iSBC 286/10 
ES Kit or with the iRMX 286R Kit. 

A Software License Agreement 
must be or have been executed. 

Machine Readable source for SOM 
286. 

Special source code license agree
ment is required in addition to Soft

\ ware License Agreement. 

3-78 

AFN·1804A 



intJ 

iRMX™ 
LANGUAGES 

;~~~~~~~ trademark of Bel! Laboratones 3-79 

• Industry-standard languages and 
utilities for developing applications on 
iRMX-based systems. Includes 
FORTRAN, Pascal, C, BASIC, PL/M, 
assembler, text editor 

• Complete set of utilities to create and 
manage object modules 

• Mix languages on single application 
system with VDI standard 

• Intel 8087 math coprocessor support 

• Worldwide post-sales service and 
support organization 



Full Language Support 
for iRMXTM -Based Systems 
Intel's iRMX™ 86 and 286R-based sys
tems are completely supported by a wide 
variety of popular languages and utilities 
with which to build fast, real-time, 
multi-tasking applications. Included are 
the latest versions of FORTRAN, Pascal, 
BASIC, C, PUM and Assembler for 
Intel's iAPX 86 and iAPX 286 pro
cessors. Previously developed applica
tions using any of these languages port 
easily to iRMX-based systems with 
minimal source code modifications. 

In addition to the wealth of languages 
available, iRMX-based systems are com
plemented by utilities with which to 
create and manage object modules. This 
latitude in configurability allows pro
grammers to team their efforts in order to 
achieve a shorter development time than 
would otherwise be possible. 

Because the high-level languages are 
actually resident on the iRMX-based 
system, OEMs can pass application 
software directly on to end users. End 
users may then tailor the OEM's system 
to better meet application needs by writ
ing programs uSing the same languages. 

Language-Independent 
Application Development 
Intel's Universal Run-time Interface 
(URI) and Object Module Format (OMF) 
enable several users to write different 
modules of an application, in different 
languages, then link them together. 

The OMF provides users with the ability 
to mix languages on a single application 
system, affording the luxury of choosing 
exactly the right language tools for 
specific pieces of the application, rather 
than compromising specialized tasks for 
the sake of one, project-wide language. 

iRMX languages are fully compatible 
with the Intel Series III Development 
System, should the ilser choose to develop 
applications on a specialized develop
ment system. Applications are easily 
moved to the final target system for test, 
debug and· minor redevelopment. 

Fast, Lean Programs 
For Rapid Processing 
The iRMX language products enable 
programmers to write the smallest, fas
test programs available in high-level lan
guages, due to the compiler's superior 
ability to optimize code. 

It is also possible to make iRMX 
operating system calls directly from 
FORTRAN, PASCAL and PUM. This 
means that application developers can 
take full advantage of the iRMX multi
iasking capability, whereby multiple 
applications execute concurrently on 
the operating system. Multi-tasking, a 
requirement of most real-time systems, is 
sometimes as necessary in application 
software development as in an operating 
system environment. 

3-80 

Standardized REALMATH 
Support 
All the iRMX languages (except BASIC 
and C) support the REALMATH floating 
point standard. This ensures universal 
consistency in numeric computation 
results and enables the user to take 
advantage of the Intel iAPX 86/20 and 
iAPX 88/20 Numeric Data Processor or 
iSBC® 337 MULTIMODULpM boards, 
which boost performance two to four 
times over that possible on a mini
computer. 

All the Utilities Needed to 
Link Languages 
Utilities for iRMX operating 
systems include Intel's own 
EDIT, LINK, LOCATE 
and LIBRARIAN. The 
iRMX EDIT program 
meets the needs of both 
novice and sophisticated 
users with powerful line
oriented editing facilities. 

Using the iRMX LINK program, users 
may link individually compiled object 
modules to form a single; relocatable 
object module. This provides the ability 
to merge work from several programmers 
into one cohesive application system. 

The iRMX LOCATE utility maps 
relocatable object code into the processor 
memory segments, allowing user defini
tion of module/memory type allocation. 
For example, often-used portions of an 
application may be mapped to (P)ROM. 

The LIBRARIAN object code library 
manager affords easy creation, collection 
and maintenance of related object code to 
reduce the overhead of separately main
tained modules. 

I 
I 



Finally, the iRMX Assembler for the 
iAPX 86 and iAPX 286 processors gen
erate extremely efficient code and invoke 
8086/8087 machme instructions, 

iRMXTM 86 Pascal 
iRMX Pascal meets the proposed ISO 
language standard and implements 
several mIcrocomputer extensions. A 
compile-time option checks conformance 
to the standard, making it easy to write 
uniform code. Industry-standard specifi
cations contribute to portability of appli
cation programs and provide greater 
reliability. . 

iRMX 86 Pascal supports extensions, 
such as an interrupt-handler and direct 

port I/O extension, that allow programs 
to be written specifically for micro
computers. Separate module compilation 
allows linkage of Pascal modules with 
modules written in other high-level 
languages. 

For more information on iRMX 86 Pas
cal see the Pascal 86 Software Package 
data sheet (Intel order number 400670). 

iRMXTM 86 FORTRAN 
The iRMX 86 FORTRAN compiler pro
vides total compatibility with FORTRAN 

3-81 

66 language standards, plus most new 
features provided by the FORTRAN 77 
language standard (the only significant 
exception is complex numbers). iRMX 
86 FORTRAN includes extensions spe
cifically for microcomputer application 
development. Programming is simplified 
by relocatable object libraries, which 
provide run-time support for execution 
time activities. . 

iRMX 86 FORTRAN supports the 8087 
math coprocessor for the most powerful 

TARGET 



microcomputer solution available in 
number-intensive applications. For more 
information on iRMX 86 FORTRAN see 
tbe FORTRAN 86 Software Package 
data sheet (Intel order number 400630). 

iRMX™ 86 PL/M 
PLiM offers full access to micro com-

• puter architecture while simultaneously 
offering all tbe benefits of a high-level 
language. Invented by Intel in 1976, 
PLiM 80 was the first microcomputer
specific; block-structured, high-level 
language available. Since then, tbou-
sands of users have generated 
code for millions of microcomputer

based systems using PLiM 80 and 
PLiM 86. 

Software written for 8-bit 
processors (PLIM 80) 
are easily ported to the 

more powerful 16-bit 
(PLIM 86) environment. The 

same portability will be available 
future VLSI. 

For more information about iRMX 86 
PLiM see tbe PLiM 86/88 Software 
Package data sheet (Intel order number 
210689). 

iRMX™ 86 BASIC 
Intel's offering of Microsoft BASIC is a 
standardized version of tbe most popular 
high-level language in the world. Exist
ing BASIC programs are easily ported to 
iRMX-based systems. BASIC is an ex
cellent pass-through language by which 
an OEM can offer customers the ability 
to wri te and modify their own 
applications. 

iRMX™ 86 C Compiler 
l' 

The popular new programming language, 
C (Mark William's Company version), is 
fully supported on iRMX-based systems. 
iRMX 86 C offers both small and large 

segmentation models, enabling applica
tions to be written efficiently. The iRMX 
86 C compiler combines assembly 
language efficiency witb high-level lan
guage convenience; it can manipulate on 
a machine-address level while maintain
ing tbe power and speed of a structured 
language. 

The iRMX 86 C compiler affords easy 
portability of existing C programs to 
iRMX-based systems. For more infor
mation on tbe iRMX C compiler see tbe 
iRMx 86 C Software Package data sheet 
(Intel order number 210768). 

iRMXTM 86 Text Editor 
The iRMX 86 Text Editor is screen
oriented, menu-driven and easy to learn. 
Guided by tbe menu of commands al
ways before him, tbe user can edit text 
and programs easily and efficiently. 

iRMX 86 Text Editor allows tbe simul
taneous edit of two files. This allows 
easy trans(erral of text between files and 
use of existing material in tbe creation of 
new files. Creating macros, strings of 
freqnently-used commands, is also very 
simple. The editor' 'remembers" tbe 
selected commands and allows the user to 
re-use them repeatedly. 

Worldwide Service 
and Support 
All iRMX systems are completely sup
ported by Intel's worldwide staff of 
trained hardware and software engineers. 
iRMX Language customers receive a 
warranty that includes Hotline Support, 
Software Updates, and Subscription 
Service. 

Complete documentation is provided for 
all operating system and application 
software languages, as well as for system 
hardware components. An Intel system is 
not a collection of hardware and software 
pieces as much as a cohesive whole that 
is supported and serviced as such. 

Intel Has Total Solutions 
for Real-Time Systems 
iRMX 86 and 286R are the fastest, most 
powerful operating systems available for 
multi-tasking, multi-user, real-time 
applications. Complemented by a wide 
range of industry-standard languages and 
utilities, 'the iRMX-based systems are 
highly flexible and configurable . 

Application development for iRMX
based systems is possible at tbe board or 
tbe system level. OEMs can integrate 
functionality at the most profitable level 
of product design, using one system for 
both development and target use. Intel's 
choice of industry standard high-level 
languages enables the end user to extend 
OEM-provided functionality even 
further, if desired. 

Who is better qualified to write and sup
ply software for Intel VLSI tban Intel? 
Today you have the ability to tap into 
hundreds of available application soft
ware packages, languages and utilities, 
peripherals and controllers and 
MULTIBUS® boards. 

Tomorrow, and ten years down the road, 
you will be able to tap into tbe latest, 
high-performance VLSI - without losing 
today's software i~vesttnent. 

• -,--~~iRMX LANGUAGES@------3-82 -



Specifications 

Required Hardware 

• Any iAPX 861286 based or iSBC 861 
286 based system including Intel's 
System 86/300 and 286/300 family. In 
addition, object code from the compil
ers will run on iAPX 88 based systems. 

• I40KB of memory 

• Two iRMX 86 compatible floppy disks 
or one hard disk 

• One 8" double density or 5.25" double
density floppy disk drive for distribu
tion of software 

• System console device 

Ordering Information 

Language Order Code 

ASM86, RMX860 
Utilities 

Pascal RMX861 

FORTRAN RMX862 

PLiM RMX863 

TX Editor RMX864 

BASIC RMX865 

C RMX866 

Required Software 

The lKMX 86 Operanng Syslem Rdea,e 
5 or later including the nucleus, basic I/O 
system, extended I/O system and human 
interface 

-Of-

The iRMX 286 Operating System Re
lease 2 or later including the nucleus, 
basic I/O system, extended I/O system 
and human interface 

Purchase of any RMX language requires 
signing of Intel's OEM License 
Agreement (OLA). 

Product Contents 

Two 8" disk and two 5.25" diskettes 
Edit Reference Manual-143587 
iAPX 86/88 FamIly Utilities User's 

Guide-121616 
Macro Assembler Operating Instructions 

-121628 
ASM 86 Language Reference Manual-

121703 
8087 Support Library Reference Manual 

-121725 

Two8" diskettes and two 5.25" diskettes 
Pascal 86 User's Guide-121539 

Two 8" diskettes and two 5.25" diskettes 
FORTRAN 86 User's Guide-121570 

One 8" diskette and one 5.25" diskette 
PLiM 86 User's Guide-121636 

One 8" diskette and one 5.25" diskette 
TX Screen Echter User's Guide-14541O 

One 8" diskette and one 5.25" diskette 
BASIC Reference Manual-121806 
BASIC 86 User's Guide-121986 
One 8" diskette and one 5.25" diskette 

One 8" diskette and one 5.25" diskette 
C Programming Language by 

Kernighan and Ritchie (Prentice Hall) 
C 86 Compiler User's Guide-122085 

3-83 

Warranty 

90 days: 
Software Updates, Subscription Service, 
Hotline Support 

90 days: 
Software Updates, Subscription Service, 
Hotline Support 

90 days: 
Software Updates, Subscription Service, 
HotlIne Support 

90 days: 
Software Updates, Subscription Service, 
Hotline Support 

90 days: 
Software Updates, SubscnptlOn Service 

90 days: 
Software Updates, Subscription Service 

• 

90 days: 
Software Updates, Subscription Service, 
Hotline Support 



intJ 

iRMX™ 
OPERATING 

SYSTEMS 

© INTEL CORPORATION, SEPTEMBER 1983 3-84 

• High performance, real-time, multi
tasking operating system for Intel's 
861300 and 2861300 microcomputer 
systems. 

• Highly configurable, modular structure 
for easy system expansion. 

• Wealth of desigu facilities and industry
standard languages to support fast, easy 
development. 

• Application software portable to next 
generation of Intel VLSI • 

• Supported by Intel's post-sales software 
support organization. 

ORDER NUMBER' 230751-001 



The Total Solution for the 
Real-Time Application OEM 
Intel's iRMXTII 86 and iRMX 286R 
Operating Systems are real-time, multi
tasking, multiuser, multiprogramming 
operating systems designed to support 
high performance, time-critical applica
tions such as factory automation, indus
trial control and communications net
works. The iRMX operating systems 
serve as optimized event-driven execu
tives for managing and extending the 
resources of Intel's 861300 and 286/300 
systems in real-time applications where 
high speed and low interrupt latency are 
required. Added performance for de
manding numeric-intensive tasks comes 
from support of Intel's floating point 
math coprocessors. 

Comprised of modular layers, Intel's 
iRMX operating systems are highly con
figurable, allowing the OEM to easily 
customize the system to meet the needs 
of target applications. In addition to 
application customization, the iRMX 
operating systems provide OEMs with 
complete development capabilities. They 
have systems debuggers, crash analyzers, 
screen editors, utilities, and an Inter
active Configuration Utility (ICU)
everything the development engineer 
needs to design and configure efficiently. 

A complete set of industry-standard 
languages enables OEMs to take advantage 
of existing application software which 
further reduces development time. 
Shaving months off development time is 
a key advantage to the competitive OEM. 

Speed, the Name of the 
Real-Time Game 
In a real-time system the computer must 
respond to interrupts instantly; time is 
always at a premium. Intel's iRMX 
operating systems deliver superior real
time performance, thanks to ultra-fast 
context switching, task synchronization 
and memory-based message passing. 

The iRMX 286R Operating System man
ages the resources of the 286/300 systems 
in real-address mode. iRMX 286R makes 

possible the utilization of the high
performance capabilities of Intel's iAPX 
286 microprocessor for those demanding 
high-speed applications. 

Further accelerating processing power in 
number-crunching and floating point 
math applications is iRMX operating 
system's support of Intel's math 
coprocessors . 

Our 8087 numeric data processor in our 
iRMX 86-based systems can perform 
floating point operations four times faster 
than competitive minicomputers with 
hardware math processors. For even 
greater performance, OEMs can select 
the iAPX 286 and the 80287 coprocessor 
working in tandem in iRMX 286R-based 
systems. 

The superior price/performance ratio that 
results from combining Intel's iRMX 
operating systems and the System 300 
family makes the choice clear: a more 
competitive Intel micro-based system 
over a more expensive minicomputer
based system. 

Add More Processors for 
More Power, More Speed 
Need still more micro-muscle in your 
application? In an iRMX-based system. 
additional intelligent boards can be 
added to enhance system throughput. 

With the iMMX™ 800 (MULTIBUSiIIl 
, Message Exchange) software package, 
the iRMX 86 and iRMX 286R Operating 
Systems support a loosely-coupled 
multiprocessing environment. Tasks run
ning on one board may communicate 

3-85 

with tasks running on other boards, even 
if they operate under different Intel oper 
ating systems or microprocessors. 

MUltiprocessing is possible due to the 
hardware capabilities of Intel's System 
300 MULTIBUS System Bus and the 
software support provided by iMMX 
800. Overall system performance and 
flexibility can be greatly enhanced by 
off-loading the main CPU with such in
telligent llO boards as Intel's quad serial 
communication controller, digital con
troller or Ethernet communications 
controller. 

Modular Software for 
Versatile, Easy Configuration 
The iRMX operating systems shipped 
with Intel's 86/300 and 286/300 hardware 
systems are preconfigured at the factory 
to support a standard board set; however, 
the OEM can additionally configure or 

HUMAN 
INTERFACE 

USER APPLICATIONS 



extend the operating system to meet 
specific needs. 

Intel's iRMX operating systems are con
figurable by system layer and by system 
call within each layer. Such flexibility 
gives designers the ability to choose 
software featores that best suit their ap
plication's size and functional require
ments. The iRMX operating systems also 
include I/O drivers for many of Intel's 
MULTIBUS boards and industry-

standard peripherals. You simply select 
the ones you need. 

The Interactive Configuration Utility 
(ICU) is a built-in facility for assisting 
the OEM in the configuration'process. 
The lCU prompts the user for system 
parameters and requirements, then builds 
a command file to compile, assemble, 
link, and locate necessary files. 

The net results for the OEM: fast, easy 
system configuration with quick time
to-marke~ benefits. 

For customizing and extending your 
iRMX system, Intel has provided all the 
"hooks" necessary to make the job easy. 
The iRMX 86 and iRMX 286R Operat
ing Systems contain extendability fea
tures that enable the OEM to add custom 
operating system calls, custom features, 
and custom functionality to his applica
tion-at any time in the application's 
life. The ability to add functions late in a 
product's life is key to an OEM's com
petitive edge in a fast-changing market. 

iRMX™ Operating System 
has All the Fundamentals 
Too! 
In addition to multiprocessing, Intel's 
iRMX operating systems have all the 
basics you would expect to find in a 
minicomputer operating system ... 
capabilities such as multitasking, 

mUltiprogramming, and multiterminal 
support. 

Multitasking requires a method of 
managing the different processes of 
an application and for allowing 
these processes to communicate 
with each other. The iRMX Nuc
leus provides these facilities plus 
task scheduling. The Basic I/O 
System provides users with the 
system calls for direct manage
ment ofI/O devices needed for 
real-time applications. The Ex
tended I/O System adds a number 
ofI/O management capabilities to 
simplify access to files, such as 

automatic buffering and syn-
chronization ofI/O requests. 

3-86 

The Human Interface function give 
users and applications simple access to 
the file and system management capa
bilities. Using the multiterminal support 
provided by the Basic I/O system, the 
Human Interface can support several 
simultaneous users. For example, 
multi-terminal support allows one person 
to be using the iRMX Editor, while an
other compiles a FORTRAN or Pascal 
program, while several others load and 
access applications. 

On-Target Development: 
One System Does It All 
The beauty of Intel systems lies in their 
flexibility. Engineers developing an 
iRMX-based target system can use the 
same iRMX-based system in the de
velopment process; the development and 
target systems are one in the same. The 
bottom-line benefit is low entry-level 
costs for the OEM. 

On-target development contributes im
measurably to a shorter development 
curve and decreased time-to-market, 
since it isn't necessary to purchase and 
learn separate development systems. 
With Intel's iRMX-based system, one 
system does it all. 

Tap into a Wide Range of 
Languages and Utilities 
An Intel iRMX-based system supports 
many industry-standard and widely 
available languages: FORTRAN 77, 
Pascal (ISO Draft Standard) and PUM 
compilers; Intel Assemblers, and popular 
independent vendor products, such as 
Microsoft's BASIC and Mark Williams' 
Ccompiler. 



iRMX operating systems also have a 
menu-dt~ver., screen oriented text editor 
and a varieLy of utilities for manipulating 
object code to facilitate the development 
process. 

Multiple-language support is made 
possible by a set of systems calls known 
as the Universal Development Interface 
(UOl) which enables the iRMX systems 
to interface with many compilers and 
language translators. UDI ensures that 
users will be able to transport applica
tions to future releases of iRMX oper
ating systems as well as use language and 
utilities of other software vendors that 
support UDL (For more information on 
Intel iRMX languages, see the iRMX 
Language Fact Sheet) 

Intel's Open Systems 
Approach Means Freedom 
to Grow 
At Intel, we believe that systems need to 
expand in order to meet the needs. of a 
changing market; and that is how we 
design our products. 

Standards are the key to systems that are 
open to future expansion, future tech
nology and future markets. 

Intel's iRMX operating systems are 
built from the inside-out with indus-
try standards: UDI (Universal 
Development Interface), R TI 
(Runtime Interface), MULTIBUS 
System Bus (IEEE 796), iMMX 
800 Package (MULTIBUS multi 
processing), Ethernet (IEEE 
802.3), extended math format 
(IEEE P754), and industry-standard 
peripheral device interfaces. 

An OEM who builds his product around 
ane of !nte! 's RMX -board systems is as
sured of multi vendor hardware/software 
alternatives and a future upgrade path. In 
today's highly competitive markets, that 
is the only kind of system to build. 

Today, you'll have the ability to tap into 
readily available application software 
packages, languages, and utilities, 
MULTIBUS boards, and peripherals. 
Tomorrow, you will be able to tap into the 
latest, high-performance VLSI without 
sacrificing today's software investment. 
Applications written on iRMX 86 (for 
Intel's iAPX 86) are completely portable 
to iRMX 286R running on Intel's 
iAPX 286-based systems. 

Not to be forgotten are the advantages of 
starting from the systems level to begin 
with. Intel has invested hundreds of 
man-years in software and hardware de
velopment for its systems products. For 
the OEM trying to meet a market win
dow, time-to-market is much faster when 
starting with a system instead of boards 
or components. It makes good business 
sense to let Intel provide the "micro
engine ", so you can concentrate on your 
area of expertise and get to market 
sooner! 

Worldwide Service and 
Support 
The iRMX 86 Operating System is a 
mature proven product with thousands of 
installations at the component, board and 
systems levels. Post-sales software sup
port is available to Intel iRMX 86 and 
iRMX 286R Operating Systems OEMs 
in the form of software updates and 
routine systems software maintenance. 
Software support is extendable in one-

MX OPERATING 

year increments after the initial 90-day 
'''fB-rran!y Hotline servkp- i~ available 
separately to customers needing quick 
response software support. All software 
is completely documented, and users re
ceive monthly technical reports, news
letters and access to the iRMX users 
group and software libraries. 

iRMX users can also take advantage 
of Intel's worldwide staff of trained 
hardware and software engineers for 
application design assistance. We offer 

. complete training for operating system 
.software and associated system 
hardware, bringing OEM's up to speed 
and helping get their products to market 
quickly. 

Intel, the Technology Leader 
... With the Total Solution 
Intel started the microprocessor revolu
tion with the 4004 arid has been the 
market leader with every generation of 
advanced microprocessor VLSI since. 
We not only invented the microprocessor 
but MULTIBUS single board computers, 
as well. 

Intel's technology leadership has, by 
necessity, extended from micro
processors into operating system 
software. iRMX is recognized as the 
industry standard real-time VLSI oper
ating system. 

It has evolved since 1978 utilizing the 
experience of thousands of installations 
to contribute to enhancing the perform
ance and quality of the product. 

OEMs can enhance their product's mar
ketability by leveraging their value-added 
on top of the solid foundation of an 
iRMX -based Intel 300 microcomputer 
system. Intel's solution offers the most 
price/performance with the least risk to 
progressive OEMs ... because we know 

the real-time game from the inside out. 

• --



Specifications 

Supported Software 
Products 
iRMX 860 iRMX 86 Development 

Utilities Package including 
the iAPX 86 and 88 Linker, 
LOcator, Macro Assembler, 
Librarian, and the iRMX 86 
Editor 

iRMX 861 Pascal 86/88 Compiler 

iRMX 862 FORTRAN 86/88 Compiler 

iRMX 863 PUM 86/88 Compiler 

iRMX 864 TX-Screen-Oriented Editor 

iRMX 865 BASIC Interpreter 

iRMX 866 C Compiler 

iMMX 800 MULTIBUS® Message 
Exchange software package 
for iRMX 80, 86, 88, and 
286 application systems 

Supported Hardware 
Products 
iSBC· MULTIBUS· Products 
iSBC 86/12A, 86/05, 86/14, 86/30, 

88/25,88/40, and 286/10 
Single Board Computers 

iSBC 204 Flexible Disk Controller 

iSBC 206 Hard Disk Controller 

iSBC 208 Flexible Disk Controller 

iSBC 215 Winchester Disk Controller 

iSBC 220 SMD Disk Controller 

iSBC 251 Bubble Memory System 
(iRMX 286R only) 

iSBC254 Bubble Memory System 

iSBC534 4-Channel Terminal 
Interface 

iSBC544 Intelligent 4-Channel 
Terminal Interface and 
Controller 

iSBX218 Flexible Disk Controller 

iSBX350 Parallel Port (Centronix -type 
Printer Interface) 

iSBX351 Serial Communications Port 

iSBX270 CRT, Light Pen and 
Keyboard Interface 

Available Literature 
iRMX 286R Operating System 

Installation and Configuration Guide 
for Release 1 (145556-001) 

All of the manuals listed below are 
supplied with iRMX 86 Release 5 and are 
available separately under the order 
numbers shown. 

Introduction to the iRMX 86 Operating 
System (9803124-04) 

iRMX 86 Operator's Manual 
(144523-001) 

Master Index for iRMX 86 Release 5 
Documentation (145015-00t) 

Getting Started With The Release 5 
iRMX 86 System (145073-001) 

iRMX 86 Installation Guide 
(9803125-05) . 

iRMX Configuration Guide 
(9803126-05) 

iRMX 86 Nucleus Reference Manual 
(9803122-04) . 

iRMX 86 Terminal Handler Reference 
Manual (143324-002) 

iRMX 86 Debugger Reference Manual 
(143323-002) 

iRMX 86 Basic I/O System Reference 
Manual (9803123-05) 

iRMX 86 Loader Reference Manual 
(143318-002) 

iRMX 86 Extended I/O System 
Reference Manual (143308-002) 

iRMX 86 Human Interface Reference 
Manual (9803202-003) 

Guide to Writing Device Drivers for the 
iRMX 86 and iRMX 88 I/O Systems 
(142926-004) 

iRMX 86 Programming Techniques 
(142982-003) 

User's Guide for the iSBC 957B, iAPX 
86, 88 Interface and Execution 
Package (143979-002) 

iRMX 86 Disk Verification Utility 
Reference Manual (144133-002) 

Runtime Support Manual for iAPX 86, 
88 Applications (1211776-002) 

iRMX 86 Crash Analyzer Reference 
Manual (144522-001) 

iRMX™ 86/286R Configuration Size Chart 

Bootstrap loader 
Nucleus 
BIOS 
Application loader 
EIOS 
Human Interface 
UDI 
Terminal Handler 
Debugger 

System Layer 

Human Interface Commands 
Interactive Configuration Utility 

System 86/300 Memory: 

Maximum Addressable Memory: 

Minimum Memory Required with ICU loaded: 

'Usable by System after BooUoadlng 

348KB 

1MB 

448KB 

3-88 

Min. ROMabie 
Size 

0.5K 
10.5K 
26K 
4K 

10.5K 
22K 
11K 
3K 

28.5K 

Max. 
Size 

1.5K 
24K 
78K 
10K 

12.5K 
22K 
11K 
3K 

28.5K 

Data 
Size 

6K* 
2K 
1K 
2K 
1K 
15K 
o 

0.3K 
1K 

116K 
308K 



intJ 

Ordering Information 

Each iRMX operating system includes a preconfigured version 
supporting Intel's System 300 standard hardware, a configurable 
iRMX operating system, iRMX 860 (Assembler, Linker, Locator, 
Libraries, Editor, Utilities), iRMX 863 (PLIM Language), iRMX 
System Software License and are prepaid incorporation Fee. Also 
included: Software Problem Reporting Service (iPR), and a 90 
day System Software Subscription (new s/w release updates). 
Also includes System Software documentation. 

NOTE: iRMX operating systems for Intel's System 300 mIcrocomputers 
are available kltted with System 300 hardware only. 

Refer to Intel's OEM price list, OEM Microcomputer System section, for 
ordering information. 

3-89 



inter 

XENIX· 
LANGUAGES 

• COBOL and FORTRAN support for 
XENIX·based systems . 

• Conformation to international 
standards: ANSI 77 subset FORfRAN 
and ANSI X3.231974 COBOL to 
Federal High Level 

•. Powert1\J microcomputer extensions to 
ANSI standards 

• Easy porting of mainframe and 
minicomputer applications to micro 
environment 

• Intel 8087 math coprocessor support 

• Worldwide service and support 
organization ' 



High-level Language 
Support for XENIX
Based Systems 
Intel's Xenix operating system, aVllllable 
for component, board, or system-level 
integration, is a multi-user operating 
system well suited for both technical and 
commercial interactive applications. 
Typical applications include small busi
ness systems, software development/ 
engineering workstations, distributed 
data processing and graphics. 

For OEM and end-user application de
velopment on Xenix, Intel has provided 
two industry-standard, high-level 
languages-FORTRAN and COBOL
with which to build microcomputer-based 
solutions for systems products or compo
nent and board-level applications. Xenix 
FORTRAN and COBOL accommodate 
easy porting of existing mainframe and 
mini-based applications to the micro 
environment. 

XENIX FORTRAN for 
Scientific and Technical 
Applications 
FORTRAN is the most popular pro
gramming language for scientific and 
numerical applications. There are 
thousands of existing FORTRAN pro
grams and subroutines written in main
frame and minicomputer environments, 
most of which can be ported to a micro 
environment via Intel's offering of 
Microsoft FORTRAN. 

Compliance with the X3.91978 ANSI 
standard for FORTRAN at the subset 
level ensures portability with minimal 
source code modifications. By moving to 
a microcomputer-based system, you lose 
none of your mainframe and mini
developed software investment. 

Speed and Accuracy 
Where They're Needed 
Scientific, math-oriented applications 
usually require fast, highly accurate pro
cessing. Xenix FORTRAN delivers ac
curacy with double-precision arithmetic 

which handles numbers containing 14 
significant digits. 

High speed results from Xenix FOR
TRAN support of the Intel 8087 floating 
point coprocessor, as well as from an 
extensive subroutine library, which in
cludes subroutines for 16- and 32-bit 
integer arithmetic and 32- and 64-bit 
floating-point arithmetic. Because of 
Xenix FORTRAN's 8087 math co
processor support, some programs writ
ten in Xenix FORTRAN will execute 
from two to four times faster than their 

Calls to "c" and ASM 86 are possi
ble, making it easy to interface 
non-standard peripherals to Xenix 

FORTRAN programs. 

FORTRAN 
XENIX COBOL for 
the Micro Environment 
Intel's offering of Microfocus COBOL 
is a mainframe-caliber compiler for 
ANSI 1974 COBOL programs, enabling 
Xenix-based systems to compile and run 
existing COBOL programs with minimal 
source code modification. Xenix 
COBOL aiso contains features specifi- . 
cally aimed at facilitating the interactive 

I///////////////""""""IIIIIIIIIIIIII~. 



program development of new applica
tions in a microcomputer environment. 

These features include a facility for 
dynamically loading sub-programs 
from disk as required which effectively 
removes limits on the size of the applica
tion code that can be run. Xenix COBOL 
augments the functionality of the ANSI 
standard with additional compiler fea
tures, such as interactive screen
handling, that further increase con
venience and programmer productivity. 

Users can license a separate run-time 
support package. This enables OEMs to 
pass COBOL applications onto custom
ers at a much lower cost than that in
volved in transferring full COBOL 
packages. 

Xenix COBOL is one of only eleven 
COBOL compilers in existence-and 
the only one for microcomputers-that 
has been GSA-certified 
as error-free at the 
High Level. A 
special ANSI-

defined communications module pro
vides the user with a standard mechanism 
for program-to-program message
passihg in multi-user networks such as 
those found in an "office of the future" 
setting. 

Forms-2™ SUpport for 
Screen-Painting 
Xenix COBOL supports FORMS-2, 
a powerful visual programming tool that 
speeds the creation of programs involv
ing interactive screen-handling. In an 
extremely user-friendly environment, the 
user "paints" a form on the screen, and 
FORMS-2 generates the COBOL source 
code to support it. FORMS-2 results in 
greatly improved programmer produc
tivity in a microcomputer, screen
building environment. 

Worldwide Service 
and Support 

All Xenix systems are fully supported by 
Intel's worldwide staff of trained hard
ware and software engineers. Complete 
documentation is provided for all 

, operating systems and application soft
ware languages, as well as for system 

hardware components. The Xenix and 
Xenix Languages warranty includes 
Hotline support, Software Updates, and 
Subscription Service. 

Total Solutions for 
Interactive, Multi
User Applications 
Intel's Xenix-based systems offer the 
most complete solutions for interactive, 
multi-user applications requiring fast, 
accurate throughput and a friendly, 
programming environment. Xenix is 
complemented by industry-standard, 
high-level languages with which OEMs 
can create flexible and open end-user 
systems. 

Xenix languages are completely portable 
- from one level of integration to an
other (chip to board to system). 

Intel is paving the way into the future of 
VLSI and pioneering VLSI-based sys
tems. We are committed to providing 
customers with smooth, uninterrupted 
application development on the latest 
VLSI-based systems - today and 
tomorrow. 

',IIIIIIIII.'XENIX LANGUAGES 
3-92 



inter 

Specifications 

Required Hardware: Required Software: 

• Any iAPX 86/286 based or iSBC® • Intel's Xenix 86 or Xenix 286" 
86/286 based system including Intel's Operating System 
System 86/300, 286/300 family and • Purchase of any Xenix Language 
iDIS systems requires signing of Intel's OEM 

• 128 KB memory License Agreement (OLA) 

• Two floppy disks or one hard disk *The flrst release of FORTRAN will support only Xenlx 86 

• One 8" double-density or 5.25" 
double-density floppy disk drive for 
distribution of media 

Ordering Information 

Language Orc;lerCode Product Contents warranty 

COBOL XNX867 One 8" diskette and one 5.25" diskette 90 days: 
Level II COBOL Language Reference Software Updates, Subscription Service , 

Manual-122l58 
Level II COBOL Opentting 

Guide-1221S9 
Forms II Utility Manual-122l60 
Level II COBOL Pocket Guide-122l6l 

XNX868 Incorporation Fee for passing through the 
COBOL Runtime System 

FORTRAN XNX862 One 8" diskette and one 5.25" diskette 90 days: 
Fortran Reference Manual Software Updates, Subscription Service 
Fortran User's Guide 

FORMS-2 is a trademark of Micro Focus 

3-93 



2920 SOFTWARE SUPPORT PACKAGE 

• Complete software design and 
development support for the 2920 

• Extends Intellec® Microcomputer 
Development System to support 2920 
software development 

The 2920 Software Support Package furnishes a 2920 Signal Processing Applications Software/Compiler, 2920 
Assembler, and 2920 Software Simulator. These three softwilre design and development tools run on the Intellec@ 
Microcomputer Development System. 

The 2920 'Signal Processing Application Software/Compiler is an interactive tool' for designing software to be 
executed on the 2920 Signal Processor. The compiler accepts English-like statements from the user and generates 
2920 assembly language code. 

The assembler tra,lslates symbolic 2920 assembly language programs into the machine operation code. The user can 
load the code into the simulator for 2920 simulation or to the Universal PROM Programmer for 2920 EPROM 
programming. 

The simulator, operating entirely in software, allows the user to test and symbolically debug 2920 programs. The user 
can specify input signals, simulate program execution, set up breakpoints, display input and output, and display and 
alter the contents of the 2920 registers and memory locations. The simulator can also stop or trace the program and 
constructively give the user access to the key elements inside a 2920 for analyzing his program. 

The compiler, assembler, and simulator enable the designer to develop and test an entire program without a 
complete prototype design. The 2920 designer works on the Intellec® Microcomputer Development System rather 
than on' a breadboard. The development system can program, store and recall programs or routines and aid in 2920 
program design. 

• 

• 

• 

2920 Software Support Package 

The foilowlng are trademarks of Intel Corproallon and may be used only to Identify Intel products eXP,lnteliec Mulhbus, I, .SBC, Muilimodule ICE .• sax PROMPT les. library 
Manager Prom ware Inslte, MeS RMX Intel. Megachassis UPI JnteleVISlon. Mlcroamp. ~Scope and the combination of tCE. les .SBC ,SBX MeS or AMX and a numerical 
suffiX Sept 1980 

Intel Corporation 1980 
3-94 

1662208 



inter 2920 SOFTWARE SUPPORT PACKAGE 

2920 SIGNAL PROCESSING APPLICATIONS 
SOFTWARE/COMPILER 

• Compiler generates 2920 Assembly 
Language Code 

• Extensive command set for designing 
electrical filters 

• Graphics capability enhances analysis 
of filter response or piecewise linear 
function approximations 

• Powerful MACRO capability for 
executing frequently used routines 

• Interactive software support tool for 
2920 Signal Processor 

• Extends Intellec® Microcomputer 
Development System support of the 
2920 

• Contains MACRO library for several 
standard filters and Signal processing 
functions 

The 2920 Signal Processing Applications Software/Compiler (SPAS20) is an interactive tool for designing 
software to execute on the 2920 Signal Processor 

The SPAS20 package can be visualized as being comprised of four inter-related sections: A cpmpiler section, 
a filter design section, a curve fitting section, and a MACRO section. 

Among the abilities of SPAS20 are: ability to generate 2920 assembly language code directly from 
specifications of Signal processing building blocks such as filters and waveform generators; ability to 
generate 2920 assembly language code for several classes of algebraic equations such as Y = C· X, Y = C· Y, 
and Y = C· X + Y where X, Yare variables and C is a constant; ability to generate 2920 assembly language 
code for one variable function Y(X) = F(X); ability to examine time and frequency responses of filter sections 
specified by continuous or sampled poles and zeroes; ability to examine piecewise linear approximation of 
specific function; ability for users to implement more complex commands by grouping sets of commonly 
used commands into a MACRO. 

The SPAS20 package runs under ISIS-II on any Intellec® Microcomputer Development System with 64K 
RAM. The output of SPAS20 can be assembled with the 2920 assembler, tested with the 2920 Simulator, and 
programmed into the 2920 chip with the Universal PROM Programmer for prototyping. 

3-95 AFN 01386A 



intJ - 2920 SOFTWARE SUPPORT PACKAGE 

FUNCTIONAL DESCRIPTION 

The 2920 Signal Processing Applications Software! 
Compiler gives the analog designer a "high level 
language" for his 2920 applications-it decreases 
the need to code 2920 assembly language. Further
more, the compiler Is interactive. This feature 
enables the designer to define a filter, or transfer 
function, graph their response, and change their 
parameters many times, without having to program 
and test in an actual 2920 implementation. 

Once a filter is realized by moving poles and zeros 
in the continuous and sampled planes, the filter 
may be coded and written onto an ISIS file. Simi
larly, after a function Y = F(X) has been defined, the 
code for a piecewise linear approximation can be 
stored onto an ISIS file. Several other file com
mands are available to store and retrieve command 
sequences for SPAS20 sessions. 

SPAS20 Command Language 

DEFINE 

GRAPH! 
OGRAPH 

MOVE 

REMOVE 

HELP 

FIT 

This command defines a p'ole or 
zero by associating it with a 
number (Le., POLE 3), and with. real 
and imaginary coordinates in the 
continuous or sampled plane. 

This command also defines a sym
bol by associating a name with a 
numeric value, or a MACRO by pro
viding a pointer to a specified com
mand sequence. 

This command graphically displays 
the values of obJect(s) specified, 
For example, GRAPH GAIN and 
GRAPH PHASE are used to display 
filter response. The OGRAPH com
mand will "overgraph", the new 
respons.e over the old response, 
after any changes have been 
made. (Y.ou may also graph Group 
Delay, Step, and Impulse.) 

Allows the definition of a pole or 
zero to be changed-its coor
dinates, its plane, or both. 

Deletes the definition of a pole, 
zero, symbol, or macro. 

Types an explanatory message on 
the console, pertaining to a com
mand or its attributbs. 

This command performs curve fit
ting, Le. it approximates an arbitrary 
user supplied function with a piece-
wise linear function. ' 

DATA 

HOLD 

This command allows for specifica
tion of a set of vertices (Le. X - Y 
coordinate pairs) which determine a 
piecewise linear approximation of 
some defined function, filter. 
response characteristics, etc. 

Command to correct attenuation 
due to sample-and-hold distortion: 
if ON, it corrects absolute gain by 
sin(x)!x and phase by adding x, 
where x=TS*FREQ*". It corrects 
group delay by subtracting ,,*TS. 

EVALUATE Gives the decimal numeric value of 
any expression. 

CODE Creates 2920 assembly language 
code for given poles, and zeros, 
equations, and user defined func
tions. 

The SPAS20 compiler also recognizes the follow
ing commands for file handling: 

PUT I 
APPEND 

DISPLAY 

INCLUDE 

LIST 

Writes out objects (commands) to 
a specified file, either creating a 
new one or appending an existing 
one. This enables the user to 
store all or' part of a SPAS20 ses
sion on a diskette to be brought 
back la,ter with the INCLUDE 
command. 

Copies the contents of a file to the 
console. 

Executes a sequence of 
instructions from a diskette file as 
if they were typed in fro'm the co'n
sole. 

Creates a file containing all 
conso,le interactions. 

In addition to naming macros for specific com
mand sequences, compound and conditional 
commands may be formed using all of the above 
.statements, These compound commands are: 

IF 

REPEAT 

COUNT 

3-96 

Establishes conditional flow of 
control within a block of 
commands. 

Used for repetition of a block of 
commands; executes indefinitely 
or until a condition is met (using 
WHILE, UNTIL, and END 
statements). 

Establishes the number of times a 
command sequence is to, be 
executed, in a looping fashion. 

AFN·01386A 



intJ 2920 SOFTWARE SUPPORT PACKAGE 

SPAS20 MACRO Facility Intel also supplies several MACRO library files con
taining the following commonly needed MACROs: 

Filter design MACROS 
- Butterworth filter 
- Chebyshev filter 
- Bilinear transform 

A macro is a sequence of commands that is stored 
on a temporary diskette file. The command 
sequence is executed when the macro name is 
entered as a command. This saves repetitive entry 
of the sequence, and permits alogorithms to be 
saved or. diskette for future use, This SPAS20 
facility allows you to do the following: 

- Evaluate gain or phase of digital filter 
In paraliel form 

Display the text of any macro. 

- Time response simulation 
Function design MACROs 

- Code and error optimization 
• Define a macro, specifying its name and any 

parameters that are to be used by the block. 
This definition is followed by the contents of 
the macro (commands) and the EM statement 
to end its definition. 

- Calculate instertitial error 
MACROs for generation of 2920 code 

- Code for all-POLE filter 
- Input and AID conversion 

• Invoke a macro by entering its name and 
appropriate values for any parameters. 

• List the names of all defined macros. 

Removeanyor~lmacros, 

SAMPLE SPAS20 FILTER DESIGN SESSION 
-' Fl : SPAS20 • SFT 

ISIS-II 2920 SIGNAL PROCESSING APPLICATIONS COMPILER. V2.0 · 

- Multiplication 
- Division 
- Logarithm functions 
- Square-root functions 
- Sinewave oscillator 

.DEFINE POLE 1 • -707.707 ; CREATE. POLE IN CONTINUOUS i-PLANE 

•• : LISI ALL POLES AN~ ZEROS 
POcE 1 • -707 00000.707 OOOOO.CONTINUOUS · .rS(.ALE • 100.10000 ; ESTABLISHES .REQUENC' ~ANGE OF INTEREST · .V'>~HLE -45,1 ESTASLISHES "AGNITUDE rESPONSE RANGE OF INTEREST 

PLOT "AGNITUDE RESPONSE OF POLE FAIR 

G ~ i M 
LO 

-'5"" 
_"? •• ~ 

- :.J. " 
- 1 ~. ! 
-! L' 
- 1 ':<. ') 
-1 L" 
- 2(1. ~ -2,. : 
- 2'5. ~ 

-z~, -
- 3 L ~ 

-H. ) 
-3.;.2 
-33.4 
- .1). ':. 

- 41'. ~ 
- .. S. \) 

De I HZ , "... ... A ... ... ,. ......... , ........ " ..... '.' '" 
100 150 200 300 ~oo 500 700 1000 I~OO 2000 3000 5000 

•. THE UNITS USED IN GRAPHING GAIN ARE SHOW~ IH THE LOWER LEFT CORNER 
GAIN IN DECIBELS IS GRAPHEO YERSES FREQUENCV IN HERTZ 

.; PPEPARE TO "OYE TO THE OIGITAL OO"AIN 
•. SA"PLE RATE MUST BE SPEC1FIED 

.Ii • 1/13020 RATE FOR 1'2 IHSTRUCTION PROGRA" ANO 10"H2 CLOC¥ 
TS = 7 .805004/10 •• 5 

3-97 

10000 

AFN·01386A 



intJ 2920 SOFTWARE SUPPORT PACKAGE 

SAMPLE SPAS20 FILTER DESIGN SESSION (Cont'd.) 

.""VE POLE TO Z COHYE'T FILTER TO DIGIT~L VIA "ATCHED-Z TRANSFOR"ATION 
I POLES/ZE'OES "OYED 
o 
oP LIST TRANSFO'"ED POLE 
POLE 1 • 0 71092836,0 341183'9, Z 
o 
0; (O"PARE RESPONSES OF THE ANALOG AHD DIGITAL FILTERS BY GRAPNIHG THE 
0' HEW RESPONSE OVER THE OLD 

t ................. , ............ ~ .... A •••• ~ ................. " ~ • • • •• ..., 

t.1 --------------------------- •.. 
: . ~ 

... '). '* 
.. ~ . .; 

.. 1 ,). I) 

-1 Z. I 
- I 4 • 3 
... : .~. :: 
... ! ~. ~ 
.. Z(t, ~ 
... .? l. ~ 

-.t'$.7. 

-H. -
... '3 •• ~ 
... 3" o,t) 

-3·;, ~ 
-H.4 
-04;). .: 
... 4 Z. :: 
-0$ I). ) 

+ -. 
+- : 

+' • .' . +' -
+' - • 

+ - • 
• + ' -- .. 

++ 
•• .+ 

++ 

" 

.+ .. 
C'BIHZ •• ••• • • • • • • , 

100' i 50 . 2 00' .. 300 . ~ 00 . 500' '100' i 00 0 • i .joo . 2000' . 3coo .... 5 000 ..... i 00 00 

0, FLUS SIGNS INDICATE OLO CURVE 
" HOTE THAT THE DIGITAL FILTER RESPONSE BEGINS TO INCREASE ACAIN 
0, ~T HALF THE SA"PLE RATE ( '510 HZ I, 

0; THE PHASE CHARACTERISTICS OF THIS FILTER CAN 8E EXAMINEO 
• 
OY$C~LE • -PI.PI , ESTABLISHES RAHGE OF INTE.EST 

OCR~PH PHASE 

PHttSE 
1 .• 
2.$4 
~.~4 

2.24 
I." 
I •• 5 
l.n 
I. 05 
0.75 
0 .• 5 
O.! 5 

-0.15 
-0.45 
-0. ~5 
-1.05 
-1.35 
-1." 
-I. ,. 
-2.24 
-2.54 
-2.84 
-3'14 

RAD I HZ 

P. 
• 

I •••• v" ........................... ~ ................................. A ••••••• A ••••••••• ' 

I 
., ~I " .. ____ ---

,,' #- .. 

" .. -

) ..... ......... ... ,. A ... ... ... I 

i 00 . i;o . 200 ... 300 . 4 00' 500 .. 700' i 000 . i 400 . 2000' • iooo .... 5000 ..... i 00 00 

<PUT ;FJ:POLE PZ , SAYE THE POLE LOCATION IN A DISK FILE BACKUP 
• 
'L')V( PuLE 1 1"~T\l1 l lotH~~~lt .~.lU A'St~tLY 1.00£ fU~ IHIS tlLlt~ 
B.·1 33'89~'O 82--0,505.1914 

3-98 
AFN'()1386A 



2920 SOFTWARE SUPPORT PACKAGE 

SAMPLE SPAS20 FILTER DESIGN SESSION (Cont'd.) 

OPTlftlZED 2no CODE IS Maw GENERnED TO 'AVE S'AC£, SORE 
OF THE SCIEEN OUTPUT HAS IEEN DELETED HORftALLY ALL ATTER'IS 
BY THE COft'ILER TO GENERATE CODE ARE ECHOED ON IHE SCREEN 

IN,T-tO 
'OLE I 0 a 710.945'.0 34116779.Z 
IEil: 'EIROR 0 3 379'874/10005.1 '8846567/1000, 

, HOTE: RAlE SURE SIGNAL IS <0 74635571 
LD~ ?UTZ_'I.OUTI_'I.IOO 

: OUT2.'lol OOOOOOOOoOUTI.'1 
LOA OUII.'I.OUTO.'I.IOO 

: OU11.'lol OOOOOOOOoOUTO.'1 
SU8 OUTO.'I.OUTI.'I.105 

; OUTO.'lol OOOOOOOOoOUIO.'I·O 03125000000UII.'1 
ADD OUTO.'I.OUTO.'I.103 

. OUTO.'lol IZ50000000UTO.'1-0 035156Z5000UII.'1 
ADD OUIO_'I.OUTI_'I.IOZ 

. OUTO_'lol IZ50000000UIO.'1+0 2148.37500UII.'1 
SUIOUTO.'I.OU12_'I.101 

; OUIO.'lol 1250000000UTO_'1+0 2148437500UII.'1·0 5000000000U12.'1 
SUB OUTO_'I.OUT2.'I.108 

OUTO_'lol 1250000000UTO.'1+0 21484375.0UII_'1·0 503'062500UI2.'1 
ADD OU10.'I.OUT2.'I.111 

: OUTO.'lol 1250000000UIO.'1+0 2148437500UII.PI·0 503417,,00UI2.'1 
SU8 OUTO.'I.OUT2_'I.109 

: OUTO_'lol 1250000000UIO.'1+0 21484375.0UII.PI-0 50'3710'.OUI2_Pl 
ADD OUIO.'I.INO.'I.IOO 

; OUTO_'I-I 12'OOOOOoOUIO.'1+0 2148437500UTI.'1·0 5053710'.OUI2.'I+1 OOOOOOOOoINO.PI 

0; IHE CODE CORftAND S'ECIFIED IHAT IHE POLE 'AI' 8E CODED IN LESS IHAN II 
0; INSTRUCTIONS. SO 10 INSTRUCTIONS VERE CENERATED. WITH COftRENIS 
0' IHE FINAL ERROR IH RADIUS AND ANCLE Fa. THE POLE PAIR WAS OF IHE 
0; ORDEI OF 1/I0oo,'AS INDICAIED AIOYE IN PERROR 
0, THIS O'llftIZED 2920 ASSERILY CODE CAN HOW 8E APPENDED 10 A FILE 
0; WHICH ftAV CONTAIN OTHER CODED FUNCTIONAL BLOCKS OF A 2'20 PROGRAft 
• 
.E ,(1 T 

SAMPLE SPAS20 CURVE FITTING SESSION 
-; nE~ONHTRATION OF THE HPAS20 CURVE-FITTING PACKAGe 

ISIS·II 2920 SIGNAL PROCESSING APPLICATIONS SOI'TWAilE/COIIPILER, V2.0 
.1.I~T XCI1~~".R2q 

· *; T'tf CURVE FITTP'r. C0J1'1~Nnc; 1~ C;PAct,n \'11.1. r.r.Nt:~J\TS: 2920 conF. Tn C.o\.Lr.llL/\Tl-: 
*; <in·" Fl'rlcTlf)N <iIlCH "C; v**,. x**' COITt.o RF. r.O'IPllTF.n (PI TIIR 2Q20 ("HIP 
*i '.fITH TWO 'lII1.TIPI.IF.Ci I1~I""r. AIOllT lR l""C;TRITCTYOtlC; ~Nn Tllf IlAq. ~lnll!:"t-:R IT 
*; VOt'L~ TI~ liP TllF. ~AR Ton 1.0~~. T'tF. cnnr. ~EMR~AT~n ~V Tllr CllRV~ FtTTI~r. 

*; ~n·t'A""n<j norc; ~nT lJC;r T~~ ",q. · *cnnr FIT 'sr.'l~~n(~) • ,**, r~~nR(.n, 
·coor. i !1r.Rr Ie;, T"": r;onr: GF.Nf"AT":n. 
LOA 11\."1P t'\(, "-00 

; TF,'1P-l.noonnnnn*"( 
'.nA 'CIJKF.n.,,~nl 

i XCURtn-n.,,)nnnnnn*x 
Ann xr.llnr'),'\(.~n~ 

; XCURt'1.n.~1'~2~nll*X 
Ann Tr.!1P,X,l{Ol 

; TF.',p·n.'nf)nnonn*'+l.nn(lOnoon·T~'lp 

An~ XC1JRF.n,TF.'IP,QOS 
; ~CUR~11-1.00nfJOOoo·,rlIRrn+I).n112Sn()nO*TT:·tr 

~lJK Xr.1I1H:O,TF"P,H.H2 
; YCll~r.n-I.1l0nonnnn*v:cl1ur:n-O.~1c\7'innn*Tf: II' 

A.nn 'rf."P,X, ,,"00 
; TK',p-l.oonnnonr)*X+l.nnOflO,,00*Tf.'IP 

~nn Xr.IIR~",T~'tP,~nR 
; 'Cll~r.n-l.nonnonoO*'~'IR~n+n.nn19062~(I"*TI:rlp 

~IIK xc"~~ntTKttp,Rn4 

; Xflll\f.U-l. onnoonnO*'trtTllI:O-O. O')M '1)917 'iO*T.· .. '!' 
1.1lA. XC'IJI\F.1l t ,,{C"IHH:n,1.02 

; ,rlll\rll_4 ."oonnoO*'!("llllr n-fl. '? 14 '\7 snO*TF.'tP 

*I'~T ; T1T~ r"~CTIO~ '~A~ cn~~n IN T"T~ ~'uv 1~~T~IICTtn'I~; 
I"~T • lo.nnnnnno 

3-99 AFN·Ol386A 



~ SOFnNARE SUPPORT PACKAGE 
*F.I{~O~ i TIJF rnor i\Pp:~n\'I'I"TI'C; 1( •• 1 'II T'IT": ":'UJC; r'("nro;' 
~RRnr. • n.046R7~onn 

*n.AT~ 0 'Til ,)II t ;ro:, IT";"- ""{I' J!11,·r.~uT"';I~ I. T "11:.\1: F', .. ··:·!'Ifl·':-; 'J1:,tTrr.!,r.. 
nAT, n.nnnnnnnn TIIHII I.nnnnnnnn • ".nnnoOnnn AT n.nnnnnnnn.~ 
n.n6Sh'~('12 AT O.4nnnnnnn,& 
fl.2'~6~SllO AT n.hfi6hhhh~.& 
n."~1I2~110 AT I.nnnnnnnn 

* 
*m~,\P:1 I'lATO\(Y:) 

F'I~:CTlflt1 ! ............................................. "' •••••• - ...................... ! 
n.q~ 

n.91 
o . 'it} 
O.IH 
n.17 
0.11 
() .. (lA 

n .. (,4 
n. ~? 
n .. ~/I 
",'in 
0.'.,; 
f).41 
n. 'W> 
n .17 
0.:!7 
",'n 
n.l~ 
0.14 
0.09 
0.(1) 

".on 
! ............................................................................ ! 

* n,nn 0.1 0.2 0.1 0.4 n.s 0.6 0.7 n.~ O.? 1.on 
*OGRAPIf '(**3 ; TIIF. 1l[ltFERANCr. RF.TI1F.F.N TUE CnlJF:1> Arm Tiff. ACTUAl. APiJP.ARS AS "+". 

FllnCTIOtl ! ................................................................................... ! 
I.no +' 
n.qs +~ 

o.qn + •• 
n.Rit 
O.AI 
0.7h 
n.7I 
0.~7 
n. (,2 
0.~7 
n.;2 
0.48 
0.41 
n.1R 
n.ll 
0.29 
n.~4 
n .19 
0.14 
n.IO 
n.OI) 
n.no , 

+.-+ 
++.-~ 

++.--' 
+ •• --' 

+++++++ ••• --' , 

++. 
+ -

++. ' 
+.-

++-
+.' 

+.' 

+. 
++-

+ -

!::::::::::: : ::::::: ............. t ..................... ........................... r 
n.oo 0.1 0.2 0.1 n.4 o.s 0.6 0.1 O.R 0.9 1.00 

*G~A (X.*3)-DATA(X) ; T'IR P.RROR WILL Rt CRAP11RO. 

FUNCTInN 
0.041 
0.04) 
0.039 
n.f)'H, 
n.n32 
0.n28 
0.025 
0.021 
0.017 
0.014 
n.O-IO 
n.OM 
0.001 

-o.nol 
-0.005 
-O.noA 
-n.012 
-0.016 
-0.n20 
-0.021 
-0.027 
-0.n31 

* 
*r.XlT 

! .............................................................................. ! 

! ................................................................................. 1 
0.00 0.1 n.2 0.3 
T~AT· S AU FOI.KS 

0.4 O. ~ 

3-100 

n.7 O.R 1.00 



2920 SOFTWARE SUPPORT PACKAGE 

2920 ASSEMBLER 

2920 program development on Intellec@ 
Microcomputer Development Systems 

Translates symbolic assembly language 
Instructions into 2920 machine code 

Produces Assembly Listing, Object Code 
File, and Error Diagnostics 

Output used for 2920 programming with 
the Int~lIec PROM Programmer or the 
2920 Simulator for program debug 

The 2920 Assembler translates symbolic 2920 Assembly Language instructions into the appropriate machine 
operation codes. Through this facility, the programmer is able to symbolically program 2920 hardware operations. 
Compared to machine code, these symbolic references provide faster programming, easier debugging, and greater 
reliability. 

The Assembler produces an object code file (executable machine code), a complete assembly listing, and error 
diagnostics. The object code output from the Assembler may be loaded directly into the lnlel Universal PROM 
Programmer for programming the 2920 EPROM. The object code may also be loaded to the 2920 Simulator for 2920 
system design and debug. 

The 2920 Assembler runs under the 1515·11 Operating System on the Intellec Microcomputer Development Systems. 

Sample 2920 Assembly Listing 
ISIS-II 2'20 ASSEMBLEI XI02 PAGE 

RS'EMILER IH¥OKED BY' AS2'20 SAW A'M DEBUG 

SAWTOOTH YA¥E GEHER.TOI 

LINE LOC OBJECT SOUICE STATEMENT 

$TITLE(' SAYTOOTH .. VE GENERATOR' ) 

8 , 
:0 
:1 
!2 
:3 
:4 
:5 
16 
: 7 
:8 :, 
10 
ZI 
12 
Z3 
24 
15 

SYMBOL: 

ASSEMBLY 
ERROl'S 

0 OOOOEF 
I OOOOEF 
2 OOOOH 
3 OOeAEB 
• OOIAOA , 0044EF 

7A8AEI> 
6000EF 
7082EF , 4044 EF 

10 4000EF 
11 4000H 
12 4000EF 
\3 8000EF 
14 8000EF 
15 8000H 
Ii 'OOOH 
17 8000EF 
18 8000EF 

I' 8000H 

COMPLETE 
o 
o 
I 

.. A1tHINGS • 
RIIIHS!ZE 
lOftS lZE 20 

INO 
INO 
INO 
SUI Y. KPI.INO 
SUI Y.KPt.RloIHO 
LOR DAI. Y .INO 
ADD Y. KP7 .CHDS 
cns 
LDA Y.KPO.CHOS 
LOA DAI.Y 
HOP 
HOP 
HOP 
OUTO 
OUTO 
OUTO 
EOI' 
OUTO 
OUTO 
OUT a 

EHD 

VALUE' 

a 

) SAMPLE INPUT CHANNEL 0 

SIMULTAHEOUSLY CALCULATE SAWTOOTH 
IV SUBTRACTING 3/1' FROM V 
ALSO CHECK SIGN 81T OF Y 

) IF V NtGATIVE START HEXT TOOTH 
CONYERT SAMPLED INPUT TO DIGITAL (SIGN 81T) 
SUPPRESS SAWTOOTH IF IHPUT WAS < 0 
PREPRRE TO OUTPUT SAWTOOTH 
RNALOG LEYEL MUST SETTLE 

OUTPUT SAWTOOTH 

PROGRAM WILL END IN THREE MDRE IHSTRUCTIONS 

3-101 AFN Q'386A 



inter 2920 SOFTWARE SUPPO.,T PACKAGE 

2920 SIMULATOR 

Speeds test and debug of 2920 programs 

Simulates 2920 Intern~1 operation 

Operates on Intellecl!l Microcomputer 
Development Systems 

Allows users to specify 2920 input 
signals, and display or alter ROM, RAM, 
and system variables 

Output and, internal data can be saved 
on disk for further analysis. 

Provides ability to set breakpoints and to 
collect trace information 

Easy·to·learn commands 

The 2920 Simulator is a software facility that provides testing and symbolic debugging of 2920 programs in an Inteliec 
Microcomputer Development Systems environment. The 2920 designers have the capability to specify the 2920 input 
signals, to set breakpoints, to coliect and display 2920 input, output, system variables,.and ROM and RAM data values 
during simulation. The 2920 Simulator accepts the hex format object files produced by the 2920 assembler. Output 
values and internal trace data may be saved on ISIS-II disk files for further analysis. 

Functional Description 
2920 Input Signal Specification 

The four analog signal inputs to the 2920 processor can 
be specified as algebraic combinations of basic 
functions of time. The basic functions are SIN, COS, 
EXP, LOG, SOR, SAW, saw, ABS, 

2920 Simulation 

The simulation of 2920 machine instructions is per
formed in software. All 2920 internal registers, memory, 
input values, output values, and other sys~em variables 
can be examined and modified. The internal processing 
of the 2920 is simulated. Time constants for the sample 
and hold capacitators are assumed to be zero. Calcula
tion of input signals is performed in single precision 
floating point. The speed of simulation varies with the 
complexity of the input signal, breakpoinl setting, and 
trace condition. Exclusive of 1/0 time requirements, 
2920 instructions will be simulated at a rate of approxi
mately several hundred instructions per second. 

Breakpoint Capabilities 

After' each instruction is Simulated, the breakpoint is 
evaluated to determine whether to stop or continue 
simulation. Conditional breakpoints are also provided 
for debugging purposes. Simulation can be manua1ly 
stopped at any time by pressing the ESC key on the 
Intellec console. 

Trace Capabilities 

Based on the qualifier's condition, trace data records 
can be collected during simulation. The trace data 

records are stored in In!ellec resident memory and ,are 
optionally written to the console for display or to a disk, 
fi Ie for record. 

Symbolic Debugging Capabilities 

The 2920 Simulator allows the user to refer to program 
addresses symbolically. The user can load or save the 
symbols generated from the hex format object files or 
created <luring the debugging session. 2920 program 
memory in ROM can be disassembled, or filled with 
assembled instructions. 

The 2920 Simulator is designed to provide users with 
powerful, easy-to-use commands. The user interfaces to 
the ,Simulator by entering commands to the Intellec 
console. The commands consist of one command line, 
terminated by one of the two line terminators - carriage 
return or line feed. 

The 2920 Simulator offers two types of commands: 

Simulation and Control Commands 

Command 

Simulate 

Trace 

Qualifier 

Breakpoint 

Operation 

Starts simulation of the input signals 
and the 2920 program 10 simulated 
ROM memory. Initial setting is 
"FOREVER." 

Controls the trace selection. Initial 
setting is "TIME," 

Sets qualifier condition during trace. 
Initial selting is "ALWAYS." 

Sets breakpoint condition during simu
lation. Initial setting Is "NEVER." 

AFN.o'386A 



2920 SOFTWARE SUPPORT PACKAGE 

Interrogation and Utility Command. 

Command 

Display 

Change 

Base 

Suffix 

Load 

Save 

Define 

Console 

List 

Exit 

Evaluate 

Remove 

Help 

Graphics 
OnlOff 

X Size 

Operation 

Displays the values of symbols, RAM, 
ROM, Input, output, registers and 
system variables. 

Alters the values of symbols, RAM, 
ROM, input, register and system 
variables. 

Establishes the mode of display for 
output data. 

Establishes the mode of display for 
input data. 

Fetches user symbol table and object 
code from input device. 

Sends user symbol table and object 
code to output device. 

Enters symbol name and value to user 
symbol table. 

Controls the console onloff display 

Defines list device. 

Returns program control to ISIS·II. 

Converts expression to equIvalent 
values in binary, decimal, and hex 

Deletes symbols from symbol table. 

PrOVIdes a brief summary of the syntax 
for the command languages. 

Switches output mode between list and 
graphics. 

Enters horizontal dIsplay size. 

Keyword Reference. 

The 2920 Simulator provides users with keyword refer· 
ences to gain access to all of the numeric valued 
system variables including simulated 2920's memory, 
register, status flags and input/output. These keyword 
references can function as the evaluation command, 
display command, and change command. 

• 2920 Proce •• or Keyword Relerenc .. 

INO Analog Input 0 In volts 
IN1 Analog Input 1 In volts 
IN2 Analog input 2 In volts 
IN3 Analog (nput 3 in volts 
OUTO Analog output 0 In volts (read only) 
OUT1 Analog output 1 in volts (read only) 
OUT2 Analog output 2 In volts (read only) 
OUT3 Analog output 3 in volts (read only) 
OUT4 Analog output 4 in volts (read only) 
OUT5 Analog output 5 In volts (read only) 
OUT6 Analog output 6 In volts (read only) 
OUT7 Analog output 7 in volts (read only) 
IN Sampled and held analog Input signal ih volts 
DAR Digital to analog register (RAM location 40) 
PC Program counter (Integer 1 to 192) 
CY Carry (integer 0 or 1) 
OVF Overflow (Integer 0 or 1, read only) 
OVE Overflow enable (Integer 0 or 1) 

• Softwa,. Simulator Keyword Relerence. 

TIME Elapsed simulated time In seconds 
(read only) 

TaUAL Time when the qualifier last matched In 
seconds (read only) 

COUNT Number of Instructions simulated since 
last SIMULATE command (Integer, read 
only) 

BUFFERSIZE Number of trace data records (Integer, 
read only) 

TINST Time between successive instructions 
in seconds (read only) 

SIZE Number of instructions in program dis· 
regarding actual EOP placement 

TPROG Time between successive program 
passes in seconds 

VREF Reference analog level voltage in volts 

The above keyword references are designed to aid 2920 
program debugging. 

ISIS Compatlbllltle. 

The 2920 software simulator runs under the ISIS 
"submit" facility. The 2920 soHware simulator uses the 
ISIS·II line editing capabilities to correct errors In an 
input line on the Intellec console. 

Sample 2920 Simulation Session 

-S!'l2no.~FT 

ISIS-II 2920 SDIULATOR. Vl.l . 
*; TillS IS TIIP. SIMULATION OF TilE 'SAWTOOTH GENERATOR' 

* 
*Ll~T SRG.LOG ; LI~TS THE SIMULATION SES~ION TO AN ISIS F 
*1.0An !;RG.HF.X ; LOAn TM" 01lJRCT COOF. INTO TllE ,Q20 !;tMUA,l.' 
*1'.0'1 a TO 5 ; I)tSPLAY SRG PROGRAM 
ROM 000 • LDA .K,KPS,ROO,NOP 
ROM 001 • ADD .K,KP1,ROS,NOP 
Ron 002 • LDA .1C.,.K,R02,NOP 
ROM 001 - SUH .O~C,.K,ROO,NOP 
ROM 004 • LOA DAR,.nse,ROO,NOP 
ROM nos - Ann .O~C.KP4.L01,CNDS 
*TPROG-I/IOOOO ; SET THE SAnPLR RATR 
.TRA-PC ,RAM .K ; SET THE ITF.ltS TO BE TRACF.D 
*HASE-H ; DISPLAY THE RESULTS IN BINARY 
*SIMULATE FROII 0 TILL COUNT-) ; ~IHULATE THREE INSTRUCTIONS 

PC 
SIMULATION BEGUN 

1.000000000000000000000000 
2.0000000£+0 
).OOOOOOOE+O 

HMULATION TRRI1JNATEn 

TO VERIFY COli STANT 

RAn 0 

0.101000000000000000000000 
0.101000010000000000000000 
0.001010000100000000000000 

*QUAtt'l~R.PC-O ; TRAC~ F.VERV PROCRAM PASS 
*TRACV.-T.DAR.RAH .OSC ; C;f.T TItF tTY.""C; TO SF. TRACF.n 
*RAII .OSC-ONE ; INITIAI.ln THR RA'l LOCATION 
*HREAKPOINT-T>.OOI12 ; ~I"ULATF. FOR TWO CYCLP.~ 
*RASV.-O ; S~T THF. BAS" Tn OEct~AL 
*smULAT .. FROII 0 ; BEGIN SlllllLATION 

,. nAR RA!1 1 

3-103 "FN 0'380" 



inter 292(1 SOFTWARE SI}PpbRT PACK.A~E 

c; l'WT.ATION J\F,r.UN 
0.00010000 0.B3QR4175 
0.00020000 0.~R359375 

0.00030000 0.12734375 
0.00040000 0.1~7IR710 
0.00050000 0.21093750 
0.00060000 O.0546R750 
0.00070000 -0.10156250 
O.OOOROOOO 0.73828125 
0.00090000 0.18203125 
0.0 0 10 0000 0.42578125 
0.00110000 0.26953125 
0.00120000 0.10937500 
0.00130000 -0.046B7500 

SHIULATION TE,RMINAT£n 

0.R4277334 
0.~R554~83 

0.52R320lh 
0.17109370 
0.213R6714 
0.0566405~ 

0.89941396 
0.74218745 
0.5R496089 
o • 'I 2 7 7 371 3 3 
0.27050776 
0.11328119 
0.95605459 

*GRAPll ON ; qWITCHES TqE DISPLAY '100£ TO CRAPHICS 
*TRACF.-T,O,DAR,RA:1.aSC , -I I -l.l,l ; 'iETS ITEMS TO BE TRACED 
~AH .ose-ONE i INITIALIZE THE RAI1 LOCATION 
*SHWLATF. FRO~f"O 

T 
-I 

SHfULATION RF.GUN 
-)* 

o * 

o • 
o * 
o • 
I * 
o * 
o * 
o * 
o * 

SIMULATION TERMINATED 
·EXIT 

SPECI FICATIONS 

Operating Equipment 
Required Hardware 

. . 

Intellec® Microcomputer Development System 
RUNNING ISIS 

DAR 

I 
I 
I 
I 
I • 
I 
I 
I 
I· 
I 
I 

2 I 

RAil I 

Optional Software 

-I 

FORTRAN·80 (Product Code MDS·301) 

Documentation Package 
2920 Assembly User's Guide (9800987) 
2920 Simulator User's Guide (980098?) 

. 
3 * 

Required Software 2920 Signal Processing Application Compiler 
User's Guide (121529) 

ISIS·II Diskette Operating System 

Optional Hardware 

line Printer 
Universal PROM Programmer 

. 
ORDERING INFORMATION 
Product Code Description 

MCI·20-SPS 2920 Software Support Package 
Includes 2920 Signal Processing 
Application Software/Compiler and 2920 
Assembler/Similator Software 

Shipping Media 
Flexible Diskettes 

3-104 AFN·01386A 



MCS@-48 
DISKETTE-BASED SOFTWARE 

SUPPORT PACKAGE 

• Extends Intellec microcomputer 
development system to support MC8-48 
development 

• MCS-48 assembler provides conditional 
assembly and macro capability 

• Takes advantage of powerfullSIS·n file 
handling and storage capabilities 

• Provides assembler output in standard 
Intel hex format 

The MCS-48 assembler translates symbolic 8048 assembly language instructions into the appropriate machine 
operation codes, and provides both conditional and macroassembler programming. Output may be loaded 
either to an ICE-49 module for debugging or into the iUP Universal PROM Programmer for 8748 PROM 
programming. The MCS-48 assembler operates under the ISIS-II operating system on Intel Development 
systems. 

©INTEL CORPORATION, 1983 MAY 1983 

3-105 AFN·00619D 



inter MCS@·48 

FUNCTIONAL DES~RIPTION 

The MCS-48 assembler translates symbolic 8048 
assembly language Instructions ihto the appropriate 
machine operation codes. The ability to refer to program 
addresses with symbolic names eliminates the errors of 
hand translation and makes it easier to modify programs 
when adding or deleting instructions. Conditional 
assembly permits the programmer to specify which por
tions of the master source document should be includ
ed or deleted in variations on a basic system deSign, 
such as the code required to handle optional external 
devices. Macro capability allows the programmer use of 
a single label to define a routine. The MCS-48 assembler 
will assemble the code required by the reserved routine 
whenever the macro label is inserted in the text. Output 
from the assembler is in standard Intel hex format. It 
may be either loaded directly to an in-circuit emulator 
(lCE-49) module for integrated hardware/software 
debugging, or loaded into the iUP Universal PROM 
Progtammer for 8748 PROM programming. A 
sample assembly listing is shown in Table 1. 

The MCS 48 assembler supports the 8048, 8049. 8050, 8020. 
8021.8022. 8041 and 8042. The MCS 48 assembler can also 
support CMOS versions of the 8048 family. 

SPECIFICATIONS 

Operating Environment 
(All) Intel Microcomputer Development Systems 

(Series II. Series III/Se~jes IV) 
Intel Personal Development System 

Ordering Information 

Part Number ~8Crlption 

MDS-D48' MCS-48 Disk Based Assembler 
Requires Software License 

Table 1_ Simple MC8-48 Dlskette-Blsed 

ISI8 "8D4I MACAOASSEMBLEA, V1 0 .... , 
LOC 0tIJ .. 0 SOURCE STATEMENT 

.,." 
"" "" 0100 

0100 881E 
0102 Bt28 
0104 BAU 
0108 97 
0107 FO 
01011 11 
0108 57 
DIOA AI 
010a 18 
Oloe:;: IV 
0100 EA07 

USER SYMBOLS 

,DECIMAL ADDITION ROUTINE ADO BCD NUMBER 
AT LOCATION 'BETA' TO ICD NUMBER AT Al..PHA WITH 
,RESULT IN 'ALPHA LENGTH OF NUMBER IS 'COUNT' DIGIT 

• ,PAIAS IASSUME BOTH 8ETA AND ALPHA ARE SAME LENGTH 
5 .AND HAVE eVEN NUMIER OF DIGITS OR M80 IS 0 IF 
e ,000) 
7 INIT · • L1 " " " '3 ALPHA 

14 BETA 
15 COUNT .. 
" ... 
19+Ll ... 
" 22 LP 

" .. 
" .. 
" " 

MACAO 
MOY 
MaY 
MOV 
ENDM 

eQU 
eQU 
eQU 
OIIG 
INIT 
MOV 
MOV 
.OY 
C", 
MOY 
AOor.: 
DA 
.OY 
INC 
INC 
OJ"" 
'NO 

"UOND,ADONe,CNT 
AD,'AUGND 
'U,IADDNO I 
At.ICNT 

30 
40 , 
'OOH 
ALPHA BETA COUNT 
AO 'ALPHA 
R1 taETA 
R2 ICOUNT 
C 
A ORO 

: OR1 

ORO A 

'" ., 
"' LP 

ALPHA ooolE BETA 0028 COUNT 0005 LP 0107 
LI 0102 

ASSEMBLY COMPLETE NO ERRORS 

ISIS II ASSEMBLER SYMBOl CROSS REfERENCE VIO 

SYMBOL CROSS REfERENCE 

ALPHA 1a. 17 

BETA '''' 17 
cOUla 1M 17 
INIT 7. 11 
Ll 1M 
LP 221 28 

Documentation Package 
Titles of: User Guides 

Operating Instructions 
Reference Manuals 

SUPPORT: 

PAGE 1 

Hotline Telephone Support. Software Performance 
Reports (SPR). Software Updates. Technical 
Reports. Monthly Newsletters are available. 

*MDS is an ordering code only and is not used as a product name or trademark'. MDS is a registered trademark of 
Mohawk Data Sciences Corporation. 

3-106 AFN-00619D 



inter 
8051 SOFTWARE DEVELOPMENT PACKAGE 

• Symbolic relocatable assembly 
language programming for 8051 
mlcrocontrollers 

• Extends Intellec® Microcomputer 
Development System to support 8051 
program development 

• Produces Relocatable Object Code 
which is linkable to other 8051 Object 
Modules 

• Encourage modular program design 
for maintainability and reliability 

• Macro Assembler features conditional 
assembly and macro capabilities 

• CONV51 Converter for translation of 
8048 assembly language source code 
to 8051 assembly language source 
code 

• Provides upward compatibility from 
the MCS·48™ family of single·chip 
microcontrollers 

The 8051 software development package provides development system support for the powerful 8051 family of single 
chip microcomputers. The package contains a'symbolic macro assembler and MCS·48 source code converter. 

The assembler produces relocatable object modules from 8051 macro assembly language instructions. The object 
code modules can be linked and located to absolute memory locations. This absolute object code may be used to pro· 
gram the 8751 EPROM version of the chip. The assembler output may also be debugged using the ICE-51TM in-circuit 
emulator. 

The converter translates 8048 assembly language instructions into 8051 source instructions to provide software com
patibility between the two families of microcontrollers. 

©INTEL CORPORATION, 1983 

3-107 

MAY 1983 

ORDER NUMBER:162771-Q01 



inter 8051 SOFTWARE DEVELOPMENT PACKAGE 

8051 MACRO ASSEMBLER 
• Supports 8051 family program develop

ment on IntelleC® Microcomputer 
Development Systems 

• Gives symbolic access to powerful 
8051 hardware features 

• Produces object file~ listing file and 
error diagnostics 

• Object files are linkable and locatable 

• Provides software support for many 
addressing and data allocation 
capabilities 

• SymboliC Assembler supports symbol 
table, cross·reference, macro 
capabilities, and conditional assembly 

The 8051 Macro Assembler (ASM51) translates symbolic 8051 macro assembly language modules in.to linkable and 
locatable object code modules. Assembly I~nguage mnemonics are easier to program and are more readable than 
binary or hexadecimal machine instructions. By allowing the programmer to give symbolic names to memory locations 
rather than absolute addresses, software design and debug are performed more quickly and reliably. Furthermore, 
since modules are linkable and relocatable, the programmer can do his software in modular fashion. This makes pro
grams easy to understand, maintainable and reliable. 

The assembler supports macro definitions and calls. This is a convenient way to program a frequently used code 
sequence only once. The assembler also provides conditional assembly capabilities·. 

Cross referencing is provided in the symbol table listing, showing the user the lines in which each symbol was defined 
and referenced. 

ASM51 provides symbolic access to the many useful addressing features of the 8051 architecture. These features include 
referencing for bit and byte locations, and for providing 4-bit ope~ations for BCD arithmetic. The assembler also provides symbolic 
access to hardware registers, 1/0 ports, control bits, and RAM addresses. ASM51 can support all members of the 8051 family. 

Math routines are enhanced by the MUltiply and DIVide instructions. 

If an 8051 program contains errors, the assembler provides a comprehensive set of error diagnostics, which are included in the 
assembly listing or on another file. Program testing may be performed by using the iUP Universal Programmer and iUP F87/51 
personality module to program the 8751 EPROM version of the Chip. 

ICE51 and EMV51 are available for program debugging. 

RL51 LINKER AND RELOCATOR PROGRAM 
• Links modules generated by the 

assembler 

• Locates the linked object to absolute 
memory locations 

• Enables modular programming of soft· 
ware for effiCient program development 

• Modular programs are easy to 
understand, maintainable and reliable 

The 8051 linker and relocator (RL51) is a utility which enables 8051 programmers to develop software in a modular 
fashion. The linker resolves all references between modules and the relocator assigns absolute memory locations to 
all. the relocatable segments, co.mbining relocatable partial segments with the same name. 

With this utility, software can be developed more quickly because small functional modules are easier to understand, 
design and test than large programs. 

The number of symbols in the software is very large because the assembler symbol limit applies only per module not 
the entire program. Therefore programs can be more readable and better documented. 

Modules can be saved and used on different programs. Therefore the software investment of the customer is maintained. 

RL51 produces two files. The absolute object module file can be directly executed by the 8051 family. The listing file 
shows the results of the link/locate process. 

3-108 AFN-OI944C 



8051 SOFTWARE DEVELOPMENT PACKAGE 

CO NV51 
8048 TO 8051 ASSEMBLY LANGUAGE 

CONVERTER UTILITY PROGRAM. 
• Enables software written for the 

MCS·48 family to be upgraded to run 
on the 8051 

• Maps each 8048 Instruction to a corre· 
spondlng 8051 Instruction 

• Preserves comments; translates 8048 
macro definitions and calls 

• Provides diagnostic information and 
warning messages embedded In the 
output listing 

The 8048 to 8051 Assembly Language Converter is a utility to help users of the MCS-48 family of microcomputers 
upgrade their delsgns with the high performance 8051 architecture. By converting 8048 source code to 8051 source 
code, the software Investment developed for the 8048 is maintained when the system is upgraded. 

The goal of the converter (CONV51) is to attain functional equivalence with the 8048 code by mapping each 8048 
instruction to a corresponding 8051 instruction. In some cases a different instruction is produced because of the 
enhanced instruction set (e.g., bit CLR instead of ANL). 

Although CONV51 tries to attain functional equivalence with each instruction, certain 8048 code sequences cannot be 
automatically converted. For example, a delay routine which depends on 8048 execution speed would require manual 
adjustment. A few instructions, in fact, have no 8051 equivalent (such as those involving P4-P7). Finally, there are a 
few areas of possible intervention such as PSW manipulation and interrupt processing, which at least require the user 
to confirm proper translation. The converter always warns the user when it cannot guarantee complete co~version. 

CONV51 produces two files. The output file contains the ASM51 source program produced from the 8048 instructions. 
The listing file produces correlated listings of the input and output files, with warning messages In the output file to 
point out areas that may require users' intervention in the conversion. 

SPECIFICATIONS 

OPERATING ENVIRONMENT 

All Intel Microcomputer Development Systems or Intel 
Personal Development System 

ORDERING INFORMATION 

Part Number 

MCI-51-ASM 

Description 

8051 Software Development 
Package 

'Requires Software License 

3-109 

Documentation Package: 

MCS-51 Macro Assembler User's Guide 
MCS-51 Utilities User's Guide for 8080/8085 Based De

velopment System 
MCS-51 8048-to-8051 Assembly Language Converter 

Operating Instructions for ISIS-II Users 

SUPPORT: 
Hotline Telephone Support, Software Performance 
Reporting (SPR), Software Updates, Technical Reports, 
Monthly Newsletter available. 

AFN'()1944C 



PUM 51 SOFTWARE PACKAGE 
• High-level programming language for 

the Intel MCS®-51 slngle-chlp 
microcomputer family 

• Compatible with PL/M 80 assuring 
MCS®-ao/85 design portability 

• Enhanced to support boolean 
processing . 

• Tailored to provide an optimum balance 
among on-chlp RAM usage, code size 
and code execution time 

• Allows programmer to have complete 
control of microcomputer resources 

• Produces relocatable object code 
which Is linkable to object modules 
generated by all other 8051 translators 

• Extends high-level language 
programming advantages to 
microcontroller software development 

• Improved reliability, lower maintenance 
costs, Increased programmer 
productivity and software portability 

• Includes the linking and relocating 
utility and the library manager 

• Supports all members of the Intel 
MCS®-51 architecture 

PL/M 51 is a structured, high-level programming language for the Intel MCS-51 family of microcomputers. The 
PL/M 51 language and compiler have been designed to support the unique software development require
ments of the single-chip microcomputer environment. The PLiM language has been enhanced to support 
Boolean processing and efficient access to the microcomputer functions. New compiler controls allow the 
programmer complete control over what microcomputer resources are used by PL/M programs. 

PL/M 51 is largely compatible with PL/M 80 and PL/M 86. A significant proportion of existing PL/M software can 
be ported to the.MCS-51 with modifications to support the MCS-51 architecture. Existing PL/M programmers 
can start programming for the MCS-51 with a small relearning effort. 

PL/M 5.1 is the high-level alternative to assembly language programming for the MCS-51. When code size and 
code execution speed are not critical factors, PL/M 51 is the cost-effective approach to developing reliable, 
maintainable software. 
The PL/M 51 compiler has been designed to support efficiently all phases of software implementation with 
features like a syntax checker, multiple levels of optimization, cross-reference generation and debug record 
generation. 

LEGEND 

o ~.J:~~:';?=:OOLS 
r.O- -" MC5-51 
~ __ :J SOFTWARE TOOLS 

O USER..cODED 
SOFTWARE 

Figure 1. MCS®-S1 Program Development Process 

3-110 

MAY 1983 

ORDER NUMBER:210566-001 



inter PL/M 51 SOFTWARE PACKAGE 

PL/M 51 Compiler 
FEATURES 

Major features of the Intel PL/M 51 compiler and 
programming language include: 

Structured Programming 

PL/M source code is developed in a series of mod
ules, procedures, and blocks. Encouraging program 
modularity in this manner makes programs more 
readable, and easier to maintain and debug. The 
language becomes more flexible, by clearly defining 
the scope of user variables (local to a private proce
dure, for example). 

Language Compatiblity 

PL/M 51 object modules are compatible with object 
modules generated by all other MCS-51 translators. 
This means that PL/M programs may be linked to 
programs written in any other MCS-51 language. 

Object modules are compatible with In-Circuit 
Emulators and Emulation Vehicles for MCS-51 pro
cessors; the DEBUG compiler control provides these 
tools with symbolic debugging capabilities. 

Supports Three Data Types 

PL/M makes use of three data types for various ap
plications. These data types range from one to six
teen bits and facilitate various arithmetic, logic, and 
address functions: 

-Bit: a binary digit 
-Byte: a-bit unsigned number or, 
-Word: 16-bit unsigned number. 

Another powerful facility allows the use of BASED 
variables that map more than one variable to the 
same memory location. This is especially useful for 
passing parameters, relative and absolute address
ing, and memory allocation. 

Two Data Structuring Facilities 

PL/M 51 supports two data structuring facilities. 
These add flexibility to the referencing of data stored 
in large groups. 

-Array: Indexed list of same type data elements 
-Structure: Named collection of same or different 

type data elements 
-Combinations of Both: Arrays of structures or 

structures of arrays. 

Interrupt Handling 

A procedure may be defined with the INTERRUPT 
attribute. The compiler will generate code to save 
and restore the processor status, for execution of the 
user-defined interrupt handler routines. 

Compiler Controls 

The PL/M 51 compiler offers controls that facilitate 
such features as: 

-Including additional PL/M 51 source files from 
disk 

-Cross-reference 
-Corresponding assembly language code in the 

listing file 

Program Addressing Control 

The PL/M 51 compiler takes full advantage of 
program addressing with the ROM (SMALL/ 
MEDIUM/LARGE) control. Programs with less than 2 
KB code space can use the SMALL or MEDIUM op
tion to generate optimum addressing instructions. 
Larger programs can address over the full 64 KB 
range. 

Code Optimization 

The PL/M 51 compiler offers four levels of optimiza
tion for significantly reducing overall program size. 

-Combination or "folding" of constant expressions; 
"Strength reductions" (a shift left rather than mUl
tiply by 2) 

-Machine code optimizations; elimination of super
fluous branches 

-Automatic overlaying of on-chip RAM variables 
-Register history: an off-chip variable will not be 

reloaded if its value is available in a register. 

Error Checking 

The PLIM 51 compiler has a very powerful feature to 
speed up compilations. If a syntax or program error is 
detected, the compiler will skip the code generation 
and optimization passes. This usually yields a 2X 
performance increase for compilation of programs 
with errors. 

A fully detailed set of programming and compilation 
error messages is provided by the compiler and 
user's guide. 

3-111 AFN.()()047B 



inter PL/M 51 SOFTWARE PACKAGE 

BENEFITS 

PLIM 51 is designed to be an efficient, cost-effective 
solution to the special requirements of MCS-51 Mi
crosystem Software Development, as illustrated by 
the following benefits of PL/M use: 

Low Learning Effort 

PL/M 51 is easy to learn and to use, even for the 
novice programmer. 

Earlier Project Completion 
I 

Critical projects are completed much earlier than 
otherwise" possible because PL/M 51, a structured 
high-level language, increases programmer 
productivity. 

Lower Development Cost 

Increases in programmer productivity translate im
mediately into lower software development costs be
cause less programming resources are required for a 
given programmed function. 

Increased Reliabilty 

PL/M 51 is designed to aid in the development of 
reliable software (PL/M programs are simple 
statements of the program algorithm). This substan
tially reduces the risk of costly correction of errors in 
systems that have already reached full production 
status, as the more simply stated the program is, the 
more likely it is to perform its intended function. 

Easier Enhancements and Maintenance 

Programs written in PL/M tend to be self
documenting, thus easier to read and understand. 
This means it is easier to enhance and maintain 
PL/M programs as the system capabilities expand 
and future products are developed. 

RL51 Linker and Relocator 

• Links modules generated by the 
assembler and the PL/M compiler 

• Locates the linked object to absolute 
memory locations 

• Enables modular programming of 
software-efficient program 
development 

• Modular programs are easy to 
understand, maintainable and reliable 

The MCS-51 linker and relocator (RL51) is a utility which enables MCS-51 programmers to develop software in a 
modular fashion. The utility resolves all references between modules and assigns absolute memory locations to 
all the relocatable segments, combining relocatable partial segments with the same name. 

With this utility, software can be developed more quickly because small functional modules are easier to 
understand, design and test than large. programs. 

The total number of allowed symbols in user-developed software is very large because the assembler number of 
symbols' limit applies only per module, not to the entire program. Therefore programs can be more readable 
and better documented. 

Modules can be saved and used on different programs. Therefore the software investment of the customer is 
maintained. 

RL51 produces two files. The absolute object module file can be directly executed by the MCS-51 family. The 
listing file shows the results of the link/locate process. 

3-112 AFN.Q0047e 



intJ PL/M 51 SOFTWARE PACKAGE 

LlB51 Librarian 
The LlB51 utility enables MCS-51 programmers to 
create and maintain libraries of software object mod
ules. With this utility, the customer can develop stan
dard software modules and place them in libraries, 
which programs can access through a standard in
terface. When using object libraries, the linker will 

SPECIFICATIONS 

Operating Environment 

All Intel Microcomputer Development Systems or 
Intel Personal Development Systems 

ORDERING INFORMATION 

Part Number 

iMDX 352 
Requires Software License 

Description 

PL/M 51 Software 
Package 

call only object modules that are required to satisfy 
external references. 

Consequently, the librarian enables the customer 
to port and reuse software on different projects 
-thereby maintaining the customer's software 
investment. 

Documentation Package 

PLIM 51 User's Guide 
MC5-51 Utilities User's Guide 

SUPPORT: 

Hotline Telephone Support, Software Performance Re
port (SPR), Software Updates, Technical Reports, and 
monthly Technical Newsletters are available. 

3-113 AFN·00041B 



MCS@·96 SOFTWARE SUPPORT PACKAGE 

• Symbolic relocatable assembly 
language programming for the 8096 
microcontroller family 

• System Utilities for Program Linking 
and Relocation 

• Extends Intellec® Microcomputer 
Development System to support 
MCS-96 program development 

• Encourages modular program design 
for maintainability and reliability 

The MCS-96 Software Support Package provides development system support for the MCS-96 family of 16 bit 
single chip microcomputers. The support package includes a macro assembler and system utilities. 

The assembler produces relocatab!e object modules from MCS-96 macro assembly language instructions. The 
object modules then are linked and located to absolute memory locations. 

The assembler and utilities run on the Intellec Serie,s III or equivalent Microcomputer Development System. 

. 
MCS·96 SOFTWARE SUPPORT PACKAGE 

/ ~ 
ASM·96 RL·96 
MACRO LINKER AND 

ASSEMBLER RELOCATOR 

Figure 1. MCS-96 Software Support Package 

© INTEL CORPORATION 1983 

3-114 

LIB·96 
SOFTWARE 
LIBRARIAN 

MARCH 1983 
ORDER NUMBER:230613-002 



MCS@·96 SOFTWARE SUPPORT PACKAGE 

8096 MACRO ASSEMBLER 
• Supports 8096 family program 

development on Intellec® 
Microcomputer Development System 

• Gives symbolic access to powerful 
8096 hardware features 

• Object files are linkable and 
locatable 

• Symbolic Assembler supports 
macro capabilities, cross reference, 
symbol table and conditional 
assembly 

ASM-96 is the macro assembler for the iACX family of microcontrollers. ASM-96 translates symbolic 
assembly language mnemonics into relocatable object code. Since the object modules are linkable and 
locatable, ASM-96 encourages modular programming practices. 
The macro facility in ASM-96 allows programmers to save development and maintenance time since 
common code sequences only have to be done once. The assembler also provides conditional 
assembly capabilities. 

ASM-96 supports symbolic access to the many features of the 8096 architecture. An "Include" file is 
provided with all of the 8096 hardware registers defined. Alternatively~ the user can define any subset of 
the 8096 hardware register set. 

Math routines are supported with mnemonics for 16 x 16-bit multiply or 32/16-bit divide instructions. 

The assembler runs on a Series III/Series IV Inteilec Development Systems for high performance. 

RL96 LINKER AND RELOCATOR PROGRAM 
• Links modules generated by 

the assembler 
• Locates the linked object module 

to absolute memory locations 

• Encourages modular programming 
for faster program development 

• Automated selection of required 
modules from Libraries to sa.tlsfy 
symbolic references 

RL96 is a utility that performs two functions useful in MCS-96 software development: 
-The link function which combines a number of MCS-96 object modules into a single program. 
-The locate functions which assigns an absolute address to ail relocatable addresses in the MCS-96 object 

module. 

RL96 resolves all external symbol references between modules and will select object modules from 
library files if necessary. . 

RL96 creates two files: 
- The program or absolute object module file that can be executed by the targeted member of the MCS-96 family. 
- The listing file that shows the results of link/locate, including a memory map symbol table and an 

optional cross reference listing. 

The relocator allows programmers to concentrate on software functionality and not worry about the 
al;lsolute addresses of the object code. RL96 promotes modular programming. The application can be 
broken down into separate modules that are easier to deSign, test and maintain. Standard modules can 
be developed and used in different applications thus saving software development time. 

3-115 230613-002 



"m_le> 
, 111'tr MC$@-98 SOFTWARE SUPPORT PACKAGE 

LIB 96 
The LIB 96 utility creates and maintains libraries of software object modl,lIes. The customer can develop 
standard modules and place them in libraries. Application programs can then call these modules using 
predefined interfaces. 

LIB 96 uses the following set of commands: 
-CREAT,E: Creates an empty library file. 
-ADD: Adds object mOdufes to a library file. 
-DELETE: Deletes object modules from a library file. 
-LIST: Lists the modules in the library file. 
-EXIT: Terminates 'LIB 96 
When using object libraries,' RL96 will Include only those object modules that are required to satisfy 
external references, thus saving memory space. 

SPECIFICATIONS 

Operating Environment 

REQUIRED HARDWARE: 
Intellec Microcomputer Development System 
-Series III/Series IV 

ORDERING INFORMATION 

Part Number Description 

Documentation Package: 

MCS-96 MACRO ASSEMBLER USER'S GUIDE 
MCS-96 UTILITIES USER'S GUIDE 
MCS-96 ASSEMBLER AND UTILITIES POCKET 
REFERENCE CARD 

iMDX·355 MCS-96 SOFTWARE SUPPORT PACKAGE 

Requires Software License 

3-116 



Productivity Tools and 4 
Communications Software 





inter 
PRODUCTIVITY TOOLS AND COMMUNICATIONS SOFTWARE 

INTRODUCTION 

Improving an engineering team's productivity is a never ending task in loday's competitive envfronments.lntel 
offers software tools and communication systems that optimize the usage of expensive engineering personnel 
and capital equipment. Software tools boost a programming team·s productivity, thtHeby lowering development 
costs and shortening product development times. Communication software provides further productivity gains 
by linking mUlti-computer engineering environments into highly effective networks. 

One software tool that substantially increases software productivity is PSCOPE, a source level symbolic 
debugger. The PSCOPE debugger allows the high-level language programmer to completely debug his code at 
the same level at which it was written. Breakpointing, tracing, and patching are all done in a faster and less 
error-prone manner than through obsolete machine-level debuggers. As software testing and maintenance 
consume a greater portion of development life-cycle time and cost, PSCOPE debugging can significantly 
improve programming efficiency. 

Another set of valuable software tools are Intel's Program Management Tools (PMTs), which provide the 
essential ingredients to manage large software development projects. PMTs decrease the time spent on 
tracking program changes and manually generating new systems, thereby giving engineers more time for 
software design, development, and testing. PMTs consist of a Software Version Control System (SVCS), and an 
automated software generation facility (MAKE). Together these tools control, examine, and automate the 
management of a software system that may contain many versions consisting of numerous modules. 

Intel's software toolboxes are collections of utilities that perform a variety of productivity-oriented functions. 
The ISIS-II Software Toolbox offers conditional submit file control tools, source management tools, and other 
tools that operate at the ISIS-II command level. The 8086 Software Toolbox is a collection of 16-bit software 
tools that are valuable for text formatting and preparation, software testing and performance analysis, 286/287 
software development, and a multitude of other applications. 

Intel also offers AEDIT ,an advanced editor that significantly improves programmer productivity. AEDIT was 
designed with the programmer in mind, and offers full screen editing, the ability to edit two files at once, 
features f9r manipulating large blocks of text, and dynamic macro command definition. In addition, Intel 
continues to offer and support CREDIT, an 8-bit CRT-based editor. 

The trend toward distributed data processing is well supported by Intel's complete line of communication 
software and systems. Mainframe Link integrates user mainframe computers with Intellec Development 
systems by emulating the operation of an IBM 2780 or 3780 Remote Job Entry terminal. The Asynchronous 
Communication Link enables one or more Intel Microcomputer Development Systems to communicate with a 
Digital Equipment Corporation VAX computer. The iNA 950 and iNA 960 are ready-to-use communication 
software building blocks for OEM suppliers of networked systems for both technical and commercial 
applications. Finally, NOS-II Electronic Mail enables users to send and receive messages and files between any 
nodes on the NOS-II network. 

4-1 



inter 
PSCOPE 

HIGH-LEVEL PROGRAM DEBUGGER 

• Source-Level Debugging for Higl) 
Productivity 

• Breakpoint, Single-Step and Execution 
Trace by Statement Numbers, 
Procedure Names and Labels 

• High-Level Code Patching 

• Compatible with Intel's 121CE T. 

Integrated Instrumentation and In
Circuit Emulation System for Target 
System Debugging 

• Native CPU Execution for iAPX 88 and 
86 Architectures I 

• Supports PL/M, Pascal, and FORTRAN 
Program Debugging 

PSCOPE is an interactive, symbolic debugger for high-level language programs. It allows users to scrutinize 
program execution at the source level, using high-level statement numbers, procedure and variable names and 
labels. This is typically a more productive way of debugging high-level language (HLL) programs than at the 
machine level. 

Source-level debugging means that traditional functions, such as setting breakpoints or tracing execution flow, 
are more powerful in PSCOPE. For example, tracing procedure entry (or exit) points conveys much more 
information than tracing machine instructions. Single-step execution is more powerful, using statements and 
procedures, as well. 

The productivity improvement from debugging in a high-level language is analogous to programming in a 
high-level language, when compared to assembly-level programming and debugging. 

PSCOPE users may define high-level code patches, which are "compiled" and patched into the user's program. 
Code patches may be stored on diSk, so they may be later incorporated into the program source file. 

PSCOPE is an integral part of the advanced 121CE Integrated Instrumentation and In-Circuit Emulation System. 
This allows a smooth migration from program debugging to target system debugging. 

PSCOPE's symbol capacity is virtually unlimited. Symbols are paged to disk when necessary. 

PROGRAM 
DEVELOPMENT 

ASSEMBLY 
LANGUAGE 
MODULES 

HIGH·LEVEL 
MODULE'S: 

PL/M-86 

PASCAL-86 

FORTRAN-86 

~ 
V 

~ 
-V 

SOURCE-LEVEL 
DEBUGGING 

PSCOPE: 
CPU·LEVEL DEBUGGING 

REGISTERS 

PSCOPE: 
HIGH-LEVEL DEBUGGING 

BREAKPOINTS 
TRACE POINTS 
SINGLE STEP 

EXAMINE/MODIFY 
CODE PATCHING 

TARGET SYSTEM 
INTEGRATION 

-
PSCOPE AND INSTRUMENTATION: 

~ REAL· TIME EMULATION 
HIGH·LEVEL DEBUGGING 

-V CPU·LEVEL DEBUGGING 

-

Figure 1. Debugging Methodology with PSCOPE 

4-2 

MAY 1983 
ORDER NUMBER:21035CHl03 



inter PSCOPE 
HIGH-LEVEL PROGRAM DEBUGGER 

SAMPLE DEBUGGER SESSION 

SERIES-III Pascal-86, VI.l 

Sourc~ Elle~ :F2:~AXMIN.PAS 

ObJect F.le: :F2:MAXMIN.OBJ 
Controls SpecIfIed: DEBUG. 

STMT LINE NESTING 
1 1 0 0 
2 2 0 ~ 

3 4 0 
4 5 0 
5 6 
5 7 
G 8 
7 9 

8 11 
9 12 

10 13 
10 14 
11 15 
12 16 

13 18 
14 19 
14 20 

16 21 

18 22 
20 23 

21 25 
21 26 
21 27 
22 28 

23 30 
24 31 0 
25 32 0 
26 33 
27 34 

SOURCE T~XT: :F2:MAXMIN.PAS 
proyram calc(input,output)i 
va!'" a,b: Integer; 

procedure sum(x,Y:lnteger); 
var Z: Integer; 
begIn 

Z:=X*Yi 
writeln('The sum IS I,Z); 

end; 

procedure difference(x,Y:lnteger); 
var Z: Integer; 
begin 
z:=aos(x-y); 
wflteln('The dIfference IS ',Z)i 

end; 

procedure maxmin{x,y:integer); 
begIn 
If x<y then wflteln('The maXImum is ',y, 

The mInImum is t ,x); 
if y<x then wrlte~n('The maximum is I,X, 

The minImum is ',y); 
if x=y then ~riteln ('The two inputs are equivalent '); 

end; 

beg In 
repeat (*forever*) 
write('Input two integers '); 
readl,n(a,b); 

sum(a,b) ; 
difference(a,b); 
maxmin(a,b); 

until 1(0 
end. 

The program listing for the sample PSCOPE session 
illustrates the high-level nature of PSCOPE debug
ging. The program consists of the module CALC, the 
procedures SUM, DIFFERENCE, and MAXMIN, plus 
global and local variables. Users exercise and ma
nipulate the program using these symbol!!. Code 

patches, stepping, tracing, etc. are all done on line 
nU!f1bers, procedures, labels, and symbolic names. 
To debug a program, just PSCOPE and a listing are 
required-no linkage maps, core dumps, locate 
maps, etc. are necessary. This is how high-level 
debugging relates to high-level programming. 

4-3 AFN-02UMIC 



inter ):tSCOPE 
HIGH·LEVEL PROGRAM DEBUGGER 

FEATURES 

Unlimited Breakpoints 
Breakpoints may be set on statement numbers, pro
cedure names, or program labels. Any number of 
breakpoint registers may be defined. . 

High-Level Trace Points 
Execution trace pOints are defined the same way as 
program breaks. Any number of trace points may be 
defined. A trace message is displayed when execu
tion reaches a trace point. 

Conditional Break and Trace 
Any break or trace point may be defined to automati
cally call a debugger procedure, 'which will execute 
PSCOPE commands and/or evaluate predefined 
conditions. The operations will be performed, and 
the condition will determine if the break or trace will 
be done. 

GO 
The qO command initiates program execution from 
any starting point. A set of stopping points may be 
specified ("GO TIL"), and break/trace registers may 
be used ("GO USING"). 

Source-Level Stepping 
A program may be executed, one high-level state
ment at a time, using the LSTEP command. Also, 
entire procedures may be treated as single state
ments during stepping (PSTEP); the procedures will 
be executed, but not stepped through. 

Examine/Modify Data 
PSCOPE allows users to symbolically examine (and 
change the value of) program variables and data 
structures. All PL/M and Pascal types are supported, 
including numerics, dynamic and stack variables, 
arrays, and fields wTthin structures. 

Virtual Symbol Table 
All user-program symbols are stored in a virtual sym
bol table. This means symbols will be paged to disk, if 
necessary. 

Help File 
Many PSCOPE commands, facilities, and error mes
sages have help information describing their use. 
The HELP command is used for learning the 

PSCOPE command language, for quick reference of 
command synt~x, and for learning the cause of com-
mand errors. . 

4-4 

Debugger Procedures 

PSCOPE has the facility for defining procedures in 
its command language. This block-structured com
mand language allows users to extend the capability 
of the program under debug. like macros with 
parameters, these procedures m~y also be used for 
generating compound and conditional debugger 
commands . • 
Code Patching 

Program patches may be written in the debugger 
command language to augment or replace current 
program statements. These high-level code patches 
are much closer to actual program changes than 
machine-level patches, and are easy to use. 

Built-in Editor 

A menu-driven, CRT-oriented editor is built into 
PSCOPE. This is used for creating and editing pro
gram patches, debugger procedures, and command 
lines. One key is used to invoke the editor to alter the 
last command entered, or any debugger definition 
(literally, trace register, patch, etc.) may be edited 
selectively. 

Debugger Command Language 

GO/LSTEP/PSTEP-For controlling program 
execution. 

DEFINE/DISPLAY/MODIFY/REMOVE-For manipu
lating debugger objects (such as break registers, 
patches, and procedures), or program objects 
(variables and data structures). 

CALL/RETURN-For executing debugger 
procedures. 

WRITE/CI-For console input and output. 

DO/END-For defining command blocks. 

REPEAT/COUNT-For repetition of commands or 
blocks. 

IF/THEN/ELSE-For conditional execution of com
mands or blocks. 

INCLUDE/PUT/ APPEND:......For saving/restoring 
commands and definitions to and from disk. 

AFN-02166C 



inter PSCOPE 
HIGH-LEVEL PROGRAM DEBUGGER 

BENEFITS 

Shortened Development Cycle 

The ability to define debugger procedures and make 
code patches :s very usefl..!l. !t actually allows users to 
extend the capability of the program under debug. 
After debug sessions, users typically make program 
changes or enhancements. This involves the use of 
an editor, compiler and linkage tools that create a 
"new" load module for debugging. Since PSCOPE 
allows these changes and enhancements to be made 
in the debugger, the number of Edit/Compile/Link 
iterations is lowered. More confidence can be placed 
on a program during debugging, because its capa
bilities have been more fully exercised. 

Improved Debugging Productivity 

PSCOPE provides users with the same conceptual 
interface to program debugging that was used in 
program design. This includes the high-level lan
guage constructs such as statements, procedures, 
labels and symbolic variables and data structures. 
Functions such as program trace and single-step 
execution are more meaningful with statements and 
procedures than machine instructions; therefore the 
imprOl(ement in debugging productivity is analo
gous to the programming productivity using high
level languages. 

SPECIFICATIONS 

Supports Intel's standard 86/88 languages: 

-PLIM 86/88 
-Pascal 86/88 
-FORTRAN 86/88 

ORDERING INFORMATION 

Description 

More Reliable Software 

Debugger procedures may be used to automate the 
software testing process. The procedure may 
repeatedly generate test values, execute the pro
gram with the input values, and record the results. 
Running more comprehensive tests, plus being able 
to "batch" the tests, yields more reliable software. 

Easy to Learn and Use 

An extensive command language, which is similar to 
block-structured languages such as PL/M and Pas
cal, is very easy to use in an interactive debug ses
sion. The HELP facility makes learning to use 
PSCOPE extremely fast as well. The "Literally" 
facility and debugger procedures also allow users to 
extend and tailor the command language to suit indi
vidual needs. 

Improved Software Management 

The use of debugger procedures allows parts of a 
software system to be debugged independently. Pro
cedures can be substituted for program stubs, allow
ing programmers to debug different pieces of the 
system separately. This results in improved project 
management. 

PSCOPE runs on an Intellec® Series III or Series IV 
Microcomputer Development System, either stand
alone or in an N[)S-II network configuration. A 512K 
application memory space is recommended lor most 
applications. 

Order Code 
iMDX-333 PSCOPE Program Debugger (for Series III and Series IV) 

111-951 A 

111-951 B 

11I-951C 

PSCOPE Program Debugger and 121CE Base Software for Series III with 8" single density 
disk drive 

PSCOPE Program Debugger and 121CE Base Software for Series III with'8" double density 
disk drive 

PSCOPE Program Debugger and 12 1CE Base Software for Series IV with 5 %" double density 
disk drive 

4-5 AFN·02168C 



PSCOPE inter HIGH-LEVEL PROGRAM DEBUGGER 

-run :tl:pscope 
S£KI~S-IIr P&COPB-86, Vl.0 
* 

*define llter-ally d = 'define'· 
*d Ilt~rally 1 = 'llterally' 
*0 1 b~ 'brkre~' 
*0 1 tr = I trc fey I 

* 
*load :tl:maxmin.86 
"'dlr 
OIK of :CALC 
N OUTPUT 
PI.I-INPUT 
B -

A 

SUI'" 
X 
Y 
Z 

TEXT (hle) 
nXT (fIle) 
integer 
Integer 
procedure 
• integer 
• int~ger 

DInEHBNCE 
X 

• lnteger 
procedure 
• lnteger 

y • lnteger 
• lnteger 
procedure 

integer 
• integer 

*pstep 
[Step at :CALCnl J 
*pstt;f,) 

INPUT TWO INT.t:GEHS: 
[Step at :CALC#22J 
*pst~!J 

( Input) 19 
[Step at :CALC#23] 
*~step 

THE SUt'1 IS 76 
[Step at :CALC#24j 
*pste~ 

THE DIFFERENCE IS 1, 
[Step at :CALC'25J 
*pstep 

THE MAXIMUI~ IS 19 
THE I~INIMUM IS 4 

[Step at :CALCil21j 

* 
*deflne patch #5 tIl #6 = z=x+y 

*go tIl #21 
INPUT TWO INTEGERS: 

(Input) 19 4 
THE SUM IS 23 

THE DIrFEHENCE IS 15 
THB MAXIMUM IS 19 
THE MINIMUM IS 4 

[Break at i121J 

* 
""def Ine 
.*wrlte 
.*wrlte 
.11 1 t eI 

* 
.*end 

proc PRI = do 
'tIle numbers and product 
USIng (''1,>') 'break? I 

== I y' then return true 
else return fals~ 

*d br B3 = aZI call PRl 
*go uSlng b3 

INPUT TWO INTEGERS: 
(Input) 23 24 
THE SUI"! IS 47 

TH~ DIFFERENCE IS 1 
'fHE MAXIMUM IS 24 
THE MINIMUM IS 24 

are: ',a,b,a*b 

endlf 

the numbers and the product are: +23 +24 +552 
Dreak ? 'i 
[Hr~ak at #21 J . 
*ex 1 t 
PSCOPE terllllnated 

4-6 

The Literally facility allows users to abbreviate, 
redefine and extend the command language to suit 
individual needs. 

Any PL/M-86 .• Pascal-86 or FORTRAN-86 program 
may be loaded. All symbolic names may be dis
played, in total or by type. Symbols defined at debug 
time may be displayed as well. All program types are 
supported. including numerics, user-defined types, 
and records. The symbols' types are displayed by the 
DIR command as well. 

Several flavors of stepping are offered. This example 
illustrates PSTEp, a line-by-line step where pro
cedures are executed as a single step. This program 
contains five steps in the main body, with three being 
procedure calls. 

There appears to be a bug in the program, as the sum 
is displayed incorrectly. Looking at the program, we 
notice that X and Y were multiplied instead ofadded, 
at line #5. A code patch is defined. and the program 
executes correctly. 

This illustrates the facility where a debug procedure 
(PR1) is called when reaching a breakpoint at line 
#21. Here, some values are displayed, and a condi
tion is evaluated (in this case, a query to the user). 
Had the condition been false, program execution 
would continue with no break. The high-level con
structs in the command language make this a very 
powerful facility. 

AFN-02166C 



inter PROGRAM MANAGEMENT TOOLS, 

• Increase Software Engineering 
Productivity 

• Decrease Software Administration 
Overhead 

• Allow Users to Control, Automate and 
Examine the Evolution of a Software Project 

• Enhance the Capability of Networked 
(NOS-II) and Standalone Development 
Systems 

• SVCS Simplifies Administration of 
Software Modules and Systems 

• MAKE Automatically Generates New 
Releases of Software Systems 

• Both Tools Easily Incorporated Into 
Existing Software Development 
Methodologies 

Intel's Program Management Tools (PMTs) provide the essential ingredients to manage large software devel
opment projects. PMTs decrease the time spent on tracking program changes and manually generating new 
systems, thereby giving engineers more time for software deSign, development, and testing. 

PMTs consist of a "Software Version Control System" (SVCS), and an automated software generation facility 
(MAKE). Together these tools control, examine, and automate the management of a software system that may 
contain many versions consisting of numerous modules. 

SVCS controls and documents software changes for all file types. SVCS handles storage and retrieval of 
different versions of a given module, controls update privileges, prevents different users from making changes 
independently, and requires all changes be thoroughly documented by recording who made what changes, 
when and why. 

MAKE produces the specification of a "minimum-work" job required to generate a new system. This job (Le. 
submit file) typically includes compiles and links of the latest versions of specified source and object modules. If 
a newer source module exists for any specified object module, MAKE will specify a compile of this module, 
replacing the older module in the completed program. Unnecessary links and compiles, however, are 
eliminated. MAKE does the minimum work required to ensure consistent, up-to-date software, thus saving many 
hours of compiles and links. 

Incorporating PMTs ,into an existing project is easy. PMTs work with existing operating systems and software 
tools (editors, compilers, utilities) and require very little relearning. New users can quickly gain expertise in using 
PMTs by working through the examples contained in the PMT Tutorial Manual and Diskette, which are included 
with every PMT software package. Program Management Tools are ideal in a networked (NOS-II) environment, 
where multi-version software control is critical. PMTs are also extremely valuable on standalone systems (with 
Winchester disk) as well. 

i SVCS Get the source module out of database. 

i AEDIT Make code changes using editor. 

i SVCS Put module back into database. 

I MAKE Automatically generate new version of system. 

OPTIMAL CONTROL OF A SOFTWARE PROJECT. 

Intel COrporation Assumes No Responslbtllty lOr tile Use of Any Circuitry OIlIer Than Circuitry Embodied in an Intel Product. No Other ClrcuR Patent 
lJcenses are implied 4-7 MAY 1983 
C INTEL CORPORATION, 1983. ORDER NUM8ER:210567-G03 



PROGRAM MANAGEMENT TOOLS 

SOFTWARE VERSION CONTROL SYSTEM (SVCS) 

• Simplifies Administ~ation of Software 
Modules and Systems 

• Maintains Change History Information 
on Every Module 

• Prevents Users From Accidently 
Deleting System Software or Making 
Simultaneous Module Changes 

• Offers an Effective Software Version 
Generation and Control Mechanism 

Intel's Software Version Control System (SVCS) is a utility that greatly simplifies "software system housekeep
ing. SVCS automatically controls and documents software modules in a large project, eliminating costly manual 
administration by a project leader or librarian. 

SVCS maintains a system database of software modules called units. Each unit is divided into four classes: 
Source, which contains the unit's source code; Object, which contains the unit's object code; History, which 
contains the unit's history file; and Composition, which can be arbitrarily used by the user. 

Users interact with the database by using SVCS administrative and access commands. Project managers use 
administrative commands to create new system databases, add and delete database units, set unit access 
rights, and create and name new system variants. Programmers use SVCS access commands to check out and 
return database modules when making system changes. For every change made, SVCS records what 
changed, who changed it, when it was changed, and why. 

SVCS variant generation and control enable project administrators to effectively create and identify new ver
sions of software systems. Stable versions may be write protected and placed in the public domain, working 
versions may be identified and accessible only to programming personnel, and special versions may be created 
for customized releases. In addition, version control can minimize software archival, maintenance, and support 
administrative overhead. 

AUTOMATED SOFTWARE GENERATION (MAKE) 

• Automatically Creates New Software 
Systems, Using the Latest Versions of 
Source Modules 

• Automatically Determines Which Source 
Modules Need Recompiling 

• Eliminates Unnecessary Compiles and 
Links 

• Works Closely with SVCS for Generating 
Complete, Up-To-Date Systems 

• Easily Adopted into Existing 
Developm,nt Methodologies 

• Offers Many Powerful Macro Constructs 

MAKE is a utility that greatly simplifies the generation of software systems. MAKE produces a "minimum-work" 
submit file that can generate a complete, up-to-date system without any unnecessary compiles and links. MAKE 
can reduce system generation times trom hours to minutes while concurrently minimizing administrative 
overhead. 

4-8 ORDER NUMBER:21056NI03 



PROGRAM MANAGEMENT TOOLS 

MAKE accepts a text input file that instructs it how to generate a new software system. The input file specifies all 
modules required to generate the new system and includes a description of system dependencies. It also 
specifies specific system operations, such as compiles, links, SVCS operations, line-printer spoolings, and other 
system commands. MAKE uses this input file in conjunction with the time and date stamps on each module to 
determine the optimum system generation procedure that eliminates all unnecessary compiles and links. 

Typically a MAKE input file is created once at the start of a project. Very occasionally during the life of the project 
it may need modification. A powerful set of macros makes the creation and subsequent modification of a 
generation procedure an easy task. Overall, the management of the MAKE input file is negligible compared to 
maintaining numerous submit files for system generations. 

The close relationship between SVCS and MAKE help simplify the overall job of software control at all levels. 
For example, the very latest version of a source module may not be stable enough to be included in a 
generation. A less functional, but more reliable version may exist. Since SVCS keeps unique versions distinct, 
an SVCS-module containing the more reliable version may be specified in the MAKE input file. 

BENEFITS: SVCS AND MAKE 

Intel's Program Management Tools eliminate com
mon problems such as: 

"We've modified module FOO, which has introduced a 
new set of problems. Now we can't restore it back to 
the'earlier version." 

"Module FOO2 has been modified; no one seems to 
know who changed it, or why." 

"We often have several programmers making 
changes to the same modules. Trying to avoid simul
taneous changes is a lot of effort, and we waste time 
synthesizing two sets of changes int!> one module." 

"To ensure that we release up-to-date, correct soft
ware, we periodically go into "release mode" for a 
few days. Everyone stops work completely while we 
find the latest versions, and then start the generation 
from the ground up. It literally takes days, when we 
could be making productive changes," 

SVCS and MAKE together provide a service that fits 
easily into your existing design methodology, and 
solves administrative problems such as those 
described above. 

SPECIFICATIONS· 

Networked, Multi-User Software Control 
NOS-II with at least one Intellec Microcomputer 
Development System 
iNDX, ISIS-III(N) System Software 

Standalone Use 
Intellec Series III with Model 750 Winchester Disk or 
Intellec Series IV 
SVCS and MAKE will not operate on ISIS-II local 
floppies or Model 740 Hard Disks. 
SVCS and MAKE may be exported from any 
workstation in an NDS;II configuration. 

Documentation 
''A User's Guide to Program Management Tools" 
(121958) 

SOFTWARE SUPPORT 
This product includes a 9O-day initial support consist
ing of new software releases, updates, subscription 
services (software performance reports and technical 
reports), and telephone hotline support. Additional 
software support services are available separately. 

ORDERING INFORMATION 

Part Number 

iMDX-332 

Description 

Intel Program 
Management Tools 

ORDER NUMBER:21056HI03 



ISIS-II SOFTWARE TOOLBOX 
• Significantly Improves Programmer 

Productivity 

• Collection of Utilities that Speed Up 
Software Design 

• Enhances Capabilities of ISIS-II 
Operating System 

• Most Utilities will Operate on NDS-
II Workstations and Remote Directories 

• Provides Source File Management, 
Showing Source Changes, and 
Performing Version Control 

• Provides Conditional Control and 
I'Structured Programming" to Submit 
Files 

• Runs on Model 800, Series II, 
Series III, and Series IV Intellec® 
Development Systems 

The ISIS-II Software Toolbox is a collection of system utilities that perform a variety of "productivity
oriented" functions. There are two major subsets of Toolbox tools, in addition to numerous ad hoc 
utilities. These subsets provide Conditional Submit File Control and Source File Management. 

The Conditional Submit File Control tools provide "structured programming" at the ISIS-II command level. 
Jumps, Calls, Returns, etc. are supported, as well as conditional command execution, based on asser
tions such as file existence, program errors, file matching, and string matching. 

The. Source Management Tools support version number tracking, and allow users to identify which ver
sions of each source module were used to create a load module. There is also a tool which compares 
source files and reports all differences. 

The tools outside of the two major subsets assist the programmer in some very specific development and 
debugging tasks. One tool manages all PUBLIC/EXTERNAL declarations in a system. Another merges the 
locate maps into a program listing, giving absolute symbolic debugging information. There's a directory 
sorter, a file compactor, and a tool to display just the last block of a file. 

LATEST 
COM PAR 

GENPEX 

PASSIF 

U 

MRKOBJ 

ERRS 
LAST 

fJMERGBO 
MERG8S 

MANY TOOLS IN THE TOOLBOX ENHANCE SPECIFIC PHASES OF THE DEVELOPMENT 
CYCLE OTHERS IMPROVE PRODUCTIVITY IN ALL PHASES. 

CHKLOD 

The lollowmg are trademarks of Intel Corporallon and may be used only to Identify Intel prOducts BXP. CflEOIT, t. ICE. les. 1m. Instte, Intel, mtel, InteleVISlon, Intellee, tRMX, 
,sac tsex. Library Manager. MeS, Megachassls, Mlcromap, MUitlbus, Multlrnodule. PROMPT. Promware. RMXI80. System 2000, UP!' ~Scope, and the combmatlon of ICE. leS, 
lRMX .• sec. ,SBX, MeS, or AMX and a numencal suffiX 

@In,.,Corpora',onI981 4-10 ORDER NUMBER:210567-oD3 



ISIS-II SOFTWARE TOOLBOX 

FUNCTIONAL DESCRIPTION 

Submit File Execution Control 

IF/ELSE/ENDIF-conditional submit file execu
tion based on file existence, program errors, 
pattern matching, plus several other conditions 

GOTO-causes submit execution to resume at a 
specified label 

RETURN-causes execution to return to the "sub
mitter" (calling file) 

EXIT-halts sub,mit file execution 
LOOP-forces execution to resume at the begin

ning of the submit file 
RESCAN-allows submit execution to begin 

anywhere in file 
NOTE-allows "progress report" notes to be 

placed in submit files 
WAIT-displays a message, and waits for user 

input to continue or abort 
STOPIF-halts submit file execution if specified 

listing contains errors 

Source Management 

XLATE2-submit-like tool with intelligent 
parameter substitution (for version control) 

MRKOBJ-"marks" object modules with source 
version information 

CHKLOD-lists source version data put in load 
modules by MRKOBJ 

CLEAN-deletes all old versions off a specified 
disk 

LATEST-displays latest version numbers of 
specified files 

Operating System Functions 

CONSOL-reassigns console input and console 
output as directed 

DSORT*-alphabetically sorts floppy disk and 
hard disk directories 

RELAB*-changes disk name to any other 
specified name 

Program Development and Debugging 

ERRS-fast display of program errors in PLI M 80, 
PLIM 86, and ASM 86 listings 

MERG80-merges debug data from locate maps 
into PLIM 80 listings 

MERG86-merges debug data from symbol maps 
into PLIM 86 and Pascal 86 listings 

4-'1 

GENPEX-produces include file for PLIM external 
declarations (source level) 

PASSIF-general purpose assertion checking, 
testing, and reporting tool 

Text Processing 

COMPAR-performs line-oriented text file com
parison (shows source changes) 

UPPER-changes all letters in an ASCII text file to 
uppercase 

LOWER-changes all letters in an ASCII text file to 
lowercase 

LAST-displays the last 512 bytes of a file 
SORT-sophisticated line-oriented text file sort

ing tool 

Disk Backup and File Processing 

DCOPY-fast track-by-track diskette copying 
HOBACK - sophisticated hard disk to floppy disk 

backup program 
PACK-compacts text files by removing strings of 

blanks 
UNPACK-reconstitutes "packed" files 

Disk Recovery 

GANEF*-interactively reads and writes floppy or 
hard disk data blocks 

Program Identification 

WHICH-displays version number of Software 
Toolbox Programs 

"These programs will not operate on NOS-II remote 
directories. 

This product includes a 90-day initial support consist
ing of new software releases, updates, subscription 
services (software performance reports and technical 
reports), and telephone hotline support. Additional soft
ware support services are available separately. 

ORDERING INFORMATION 

Product Code 
MDS-363t 

Description 
ISIS~II SOFTWARE TOOLBOX 

Requires software license. 

'MDS is an ordering code only and is not used as a pro
duct name or trademark. MDS is a registered 
trademark of Mohawk Data Science. 

ORDER NUMBER:210HHI03 



8086 SOFTWARE TOOLBOX 

• Collection of Tools That Speed Software 
Development 

• MPl, a Standalone Macro Processor, is 
Ideal for Debugging Macros 

• SCRIBl and SPEll Assist Text 
Preparation 

• OMC 286 and 287 EMULATOR Aid 80286 
and 80287 Software Development 

• Many Other Valuable 16-Bit Software 
Tools Are Included 

• Runs on Series III and Series IV 
Microcomputer Dev,lopment Systems 

The 8086 Software Toolbox isa collection of 16-bit software tools that can significantly improve programmer 
productivity. These tools are valuable for text formatting and preparation, software testing and performance 
analysis, 286/287 software development, and a multitude of other applications. 

Text processing tools ease document formatting and preparation. SCRIBl is a text formatting program that uses 
commands embedded in text to do paging, centering, left and right margins, subscripts, etc. SPEll finds 
misspelled words in a text file and comes with a user expandable dictionary. COMP compares two text or source 
files and displays their differences. 

Test and performance analysis tools aid software testing and performance evaluation. PERF, a performance 
analysis tool for 8086 software, is ideal for isolating code "hot spots." PASS IF is a general-purpose assertion 
qhecking and reporting tool perfect for running test suites. 

Software development for 286/287 components is assisted by two software tools: OMC 286, an 8086 to 80286 
object module convertor, and 287 EMULATOR, an 80287 emulator that runs on the 80286. 

Additional tools are included that aid 16-bit sQftware development efforts. All tools run on Series III and Series IV 
Microcomputer Development Systems. 

TEXT PROCESSING 

SCRIBl 

SPELL 

MPL 

WSORT 

COMP 

286/287 DEVELOPMENT 

OMC 286 

287 EMULATOR 

PERFORMANCE 
MEASUREMENT & TESTING 
PERF 

GRAPHIT 

PASSIF 

MISCELLANEOUS TOOLS 

FUNC 

XREF 

DC 
HSORT 

,8086 SOFTWARE TOOLBOX TOOLS 

Intel Corporation Assumes No Responsibility for the Use of Any Circuiby Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent 
Licenses are implied OCTOBER 1983 
© INTEL CORPORATION, 1983. 

4-12 ORDER HUMBER:210567-CI03 



inter 8086 SOFTWARE TOOLBOX 

FUNCTIONAL DESCRIPTION 

Text Processing 
SCRIBl-text formatting program that does paging, 
centering, left and right margins, justification, page 
headers and footers, underlines, boldface type, sub
scripts and superscripts, upper and lower case, and 
much more. Formatting commands are embedded in 
text. 

MPl-standalone macro processor that processes 
the macro language used in 8086, 80286, 8089, and 
8051 assembler-s. Can be used interactively which 
makes it ideal for debugging macros, MPL can be 
used to ~reprocess any text file. 

SPEll-finds misspelled words in a text file. Dictio
nary of correctly spelled words is user expandable. 

WSORT -utility for creating the SPELL dictionary. 

COMP-performs line-oriented text file comparison 
(shows source changes). Also understands 8086 ob
ject module formats for comparing 8086 object files. 

Performance Measurement and Testing 
PASSIF-general-purpose assertion checking, test
ing; and reporting tool. Helps automate the software 
testing process. 

PERF-performance analysis tool for 8086 software. 
Monitors references in the code segment; segment 
monitored is user defined. Works with small or com
pact bound loadable modules. Ideal for isolating code 
"hot spots." Will only run on the Series III. 

GRAFIT -'"graphing utility for use with PERF. 

Miscellaneous Tools 
OMC286 - object module convertor that converts 
8086 object modules into 80286 object modules. 

287 EMULATOR-an 80287 emulator that runs on 
the 80286. 

4-13 

FUNC-allows user to redefine the keys on a Series 
III keyboard and define function keys. Requires the 
iMDX 511 firmware. 

XREF-produces cross-reference tables from trans
lator list files. Cross-references aii symbols
variables, labels, literallies, and quoted strings. 

DC-floating pOint desk calculator program; allows 
variable definitions. 

HSORT -general heap sort utility. 

SPECIFICATIONS 

Operating Environment 

Required Hardware 
Series III or Series IV Microcomputer Development 

System 

Required Software 
ISIS-II (W), ISIS-III (N), or iNDX Operating System 

Documentaton 

"8086 Software Toolbox." 
(122203) 

Software Support 
This product includes a 90-day initial support consist
ing of new software releases, updates, subscription 
services (software performance reports and technical 
reports), and telephone hotline support. Additional 
software support services are available separately. 

ORDERING INFORMATION 

Product Code 

iMDX-364 

Description 

8086 Software Toolbox 

ORDER NUMBER:210567-OO3 



AEDIT TEXT EDITOR 

• AEDIT -80 Operates on any . 
Intelleas> Series II, Model 800, or 
IPDS Development System 

• AEDlT-86 Operates on any Intellec® 
Series III or Series IV system 

• Full Screen Editing Capabilities 

• Menu-Driven, Easy-to-Use 
• Designed for the Programmer 

• Dual File Editing 
• Easy Handling of Large Blocks of 

Text 

AEDIT is a programmer-oriented screen editor for lise on any Intellec Development System. It is 
designed to be easy to learn and easy to use. The user is guided by a menu which is used not only to 
select commands, but also to select options to commands-thu6the user is guided at all times. 

AEDIT provides full screen editing capabilities. In addition, AEDIT offers features to easily handle 
(move, copy, delete) large blocks of text. Additional commands are available to find and selectively 
replace text. 

AEDIT allows commands to be prefixed with a count, so commands can be repetitively applied to 
large portions of th'e file being edited. To facilitate command entry, the last command and last text 
strings (for FIND and REPLACE) are retained for convenient re-use. 

AEDIT has been designed with the programmer in mind. Two files can be edited during one session. 
The user can easily switch between files and transfer text between the files. AEDIT has options to 
automatically indent text to help with the entry of high-level language source. This can considerably 
shorten the programmer's editing task. . 

AEDIT can optionally use blanks instead of tabs to indent text. This means that compiler-produced 
listing files will have the same indentation as the programmer-created source file. 

Many other features make AEDIT the editor of the programmer's chOice. AEDIT can edit files of any 
size and optionally creates back-up copies of the file being edited. The user need not bother with com
plex and incomqrehensible command macro's-with AEDIT a macro is created simply by executing it. 
AEDIT remembers the user's actions for re-use, and stores them on file if requested. 

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products: BXP, CREDIT, i,lCE, 
iCS, 1m, Inslte, Intel INTEL, Intelevision, Intellec, iMMX, iOSP, iPDS, iRMX, iSBC, ISBX, Library manager, MCS, MUlTiMODUlE, 
Megachassis, Micromainframe, Micromap, MULTI BUS, Multichannel, Plug·A·Bubble, PROMPT, Promware, RMX/80, System 2000, UPI, 
and the combination of ICS, iRMX, ISBC, iSBX, ICE, MCS, or UPI and a numerical suffix, Intel Corporation Assumes No Responsibility for 
the use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Patent licenses are implied. 
© INTEL CORPORATION, 1983 MAY 1983 

4-14 ORDER NUMBER:210996-002 



AEDIT TEXT EDITOR 

MANUALS 
AEDIT is supplied with a user manual documen· 
ting all the aspects of the editor, and a pocket 
reference card. The manual includes an in· 
troductory tutorial. 

HOST SYSTEM 
AEDIT·SO is an SOSO/SOS5·based utility and can be 
run on any Intellec Development System, Series liE, 
Series II, Model SOD, or iPDS, as well as on ISIS 
Cluster workstations. 

The higher·performance AEDIT·S6 is an SOS6·based 
utility that can be run on any Intellec Series IIIE, Se· 
ries III, or Series IV Development system. Any Series 
liE, Series II or Model SOD system can be upgraded 
to Series III functionality. 

AEDIT can be configured to run with non·lntel 
terminals. Tested configurations are available 
for the following popular terminals: 

ADDS Regent 200, Viewpoint 3A + 
Beehive Mini·Bee 
DEC VT52, VT100 
Hazeltine 1510 
Lear·Seigler ADM·3A 
Zentec ZMS·35 

Regent 200 is a trademark of ADDS 
Mini·Bee is a trademark of Beehive 
DEC designated Digital Equipment Corporation 
ADM·3A is a trademark of Lear·Siegler 

ORDERING INFORMATION 

4·15 

iMDX·335 AEDIT·SO Text Editor. 

iMDX·334 

Includes 8" single and double den· 
sity diskeHes for Series liE, Series 
II, or Model SOO. and a 5%" 
diskette for iPDS. 

AEDIT·S6 Text Editor 
Includes S" single and double density 
diskettes for Series III. 



CREDIT™ 
CRT-BASED TEXT EDITOR 

MICROCOMPUTER DEVELbpMENT SYSTEMS 

• Provides Interactive Editing of ASCII 
Text Files 

• CRT Screen Display with Cursor-Based 
Editing Using Single Character 
Commands for Insertion, Deletion, 
Page Forward and Backward 

• Command Line Editing with String 
Search, Deletion, Insertion and Move 

• Displays Full Page of Text 

• Dynamic Macro Command Definition 

• Operates Under the ISIS-II Operating 
System on Intellec® and Intellec® , 
Series II Microcomputer Development 
Systems 

CREDIT is a CRT-based text editor that aids in the creation and editing of ASCII text files on Intellec Micro
computer Development Systems. Once the text has been edited to the programmer's satisfaction, it can 
be directed to the appropriate language processor for compilation, assembly or interpretation. CREDIT 
features are easy to use and simplify the change or rearrangement of text files. CREDIT runs under ISIS-II 
on any Intellec or Intellec Series II Microcomputer Development System with an Intel supplied CRT, disk 
drive(s) and 64K bytes of memory. Alternatively, it may be configured to run with non-Intel CRTs 
supporting cursor controls. 

There are two editing modes in CREDIT: a screen mode and a command line mode. The screen mode 
makes full use of the display characteristics of the CRT. The cursor pOSition is visible on the screen and 
can.be positioned by use of the cursor control keys. Display text can be corrected in two ways-either by 
sim"ply retyping the text, or by using the Single-stroke control keys. Specifically, the Single-character con
trol keys are used for change, deletion, insertion and paging forward and page backward. 

In addition to screen editing, there is command line editing, whiQh includes commands for more powerful 
and complex editing tasks. Some examples of functions available in the command line mode are search, 
block move and copy, macro definition and manipulation of external files. These easily used, high-level 
commands facilitate complex editing and speed microcomputer development. 

4-16 



CREDlfTM EDITOR 

CREDIT™ EDITOR FEATURES 

• Two editing modes: cursor-driven screen 
editing and command line context editing 

CRT Editing Inoludes: 

• Displays full page of text 

• Single control key commands for insertion, 
deletion, page forward and backward 

• Type-over correction and replacement 

• Immediate feedback of the results of each 
operation 

• The current state of the text is always 
represented on the display 

Command Line Editing Includes: 

• String search and substitute 

• String delete, change or insert 

• Block move 

• Block copy 
• User-defined macros 

• External file handling 

• Change CREDIT features with ALTER command 

• Conditional iteration 

• User-defined tab settings 

• Symbolic tag positions 

• Automatic disk full warning 

• Runs under ISIS-II SUBMIT facility 

• Option to exit at any time with original file intact 

• HELP command 

BENEFITS OF CREDIT™ EDITOR 

• Speeds source program creatipn and 
editing-lowers the cost of these functions 

• Easy to learn and use-
-source text is clearly displayed 
-Single command keys used for CRT editing 
-HELP command is available for easy 
reference when needed 

• Complements existing software - source text 
used for PLlM, PASCAL, FORTRAN, BASIC, 
and Assemblers 

• Aids in the management of source file libraries 

• Offers .full use of Intel supplied CRT cursor 
functions 

ISIS-II 
LOADER 

DEBUG 
VIA 

MONITOR 

OPTIONAL 
ICE T" 

IN-CIRCUIT 
EMULATOR 

PROM 
PMGRAMMER 

Figure 1. Microcomputer Program Development 

AFN~1083B 

4-17 



CREDIT™ EDITOR 

SCREEN MODE COMMANDS 

MOVE CURSOR: Use the directional arrow keys 
on the keyboard. 

REPLACE: Type over existing text with 
replacement new text. 

INSERT: Insert one character. 

DELETE: 

PAGE: 

Insert more than one 
character. 

Delete one character. 

Set boundaries and delete all 
text between them. 

Next Page: Get next screenful 
of text. 

Previous Page: Get previous 
screenful. 

View Page: Rewrite current 
page with possible reframing. 

COMMAND MODE COMMANDS 

HELP: 

PRINT: 

JUMP: 

MOVE: 

Display summary of 
commands. 

Print n lines or up to tag. 

Move cursor position n 
characters or to tag. 

Move cursor position n lines 
forward or backward. 

Transfer Copy block of text 
. from tag1, for n lines or 

through tag2, to cursor 
position. 

Transfer move: like Transfer 
Copy but the old copy is 
deleted. 

ADVANCED EDITING COMMANDS 

MACROS: Define a macro. 

Delete a macro, or all macros if 
name=*. 

Expand and execute macro 
contents, command mode. 

Expand and execute macro 
contents, screen mode. 

Print names and definitions of 
all macros. 

TAGS: 

EXIT: 

INSERT: 

DELETE: 

FIND: 

SUBST: 

FILES: 

4-18 

Set tag n, n = 0-9. Tag n is 
referenced as Tn. 

Normal exit. 

Exit Quit: Abandon any 
changes to edit file. 

Insert before CP all text 
between delimiters. 

Delete n characters, or 
characters up to tag. 

Delete n lines forward or 
backward. 

Search for text; move pointer if 
found. 

newtext replaces oldtext if 
oldtext is found. (Optional 
query to user before replace
ment.) 

Open file "filename" for 
Reading or Writing. 

Close the current external 
Read (Write) file. 

Go to beginning of current 
Read file. 

Read and insert n lines from 
the Read file. 

Write n lines to the external 
Write file. 

AFN·01083B 



intJ CREDIT™ EDITOR 

GET: . Get contents of file into 
command line. 

QUERY: Query User: set Query Flag 
accordingly. 

Do command only if Query 
Flag is True. 

Do command only if Query 
Flag is False. 

YES: Do command only if Yes 
(Search) Flag is False. 

SPECIFICATIONS 

Operating Environment 

Required Hardware 

Intellec® Microcomputer Development System 

-Model 800 or Series II with 64k bytes of RAM 
memory 

-Series III 

Diskette Drive(s) 
-Single or double density 

System Console 
-Intel supplied CRT or alternative CRT supporting 

cursor controls 

Optional Hardware 

Line Printer 
Additional diskette drive(s) 

ORDERING INFORMATION 

Part Number 

MDS-360* 

Description 

ISIS-II CREDIT 
CRT-Based Text Editor 

Requires Software License 

*MDS is an ordering code ·only, and is not used 
as a product name or trademark. 
MDS'" is a registered trademark of Mohawk Data 
Sciences Corporation. 

SUPPORT CATEGORY: Level B 

Do command only if Yes 
(Search) Flag is False. 

LOOP: Exit current iteration loop. 

Configure the command input 
keys to work with alternative 
CRTs. 

ALTER: 

USER: Copy text to the console. 

Display summary of 
commands. 

HELP: 

4-19 

Required Software 

ISIS-II Diskette Operating System 
-Single or double density 

Documentation Package 

CREDIT'" (CRT-Based Text Editor) User's Guide 
(9800902) 
CREDIT'" Pocket Reference (9800903) 

Shipping Media 

Flexible Diskettes 
-Single or double density 



intJ 
MAINFf'AME LINK FOR 

DISTRIBUTED DEVELOPMENT 
• Integrate. u.er mainframe re.ouree. 

with Intellec· Development Sy.tem •. 

• U.e. IBM 2780/3780 .. andarel BISYNC 
protocol .upported by a maJority of 
mainframe. and mlnlcompute,.. 

• Protocol .upporta full error detection 
with automatic retry. 

• Software run. under ISIS-II on any 
Intellee· Development Sy.tem. 

• Communicate. with remote .y.tem. on 
dedicated or .wltched (dial-up) 
telephone line .. 

• Package al.o Include. te.t. and a 
connector for loop-back .elf-te.t 
capability. 

The Mainframe Link consists of software, moclem cable to connect the development system to the modem and 
a loopback connector for diagnostic 'testing. The software runs under ISI8-11 on Intellec Development Sys
tems. It emulates the operation of an IBM 2780 or 3780 Remote Job Entry (RJE) terminal to (1) transmit ISI8-11 
files to a remote system or (2) receive files from a remote system using standard BISYNC 2780/3780 protocol. 
The remote system can be any mainframe or minicomputer which supports the IBM 2780 or 3780 communica· 
tions interface staDdard. Files may contain ASCII or binary data so that either program source files (ASCII) or 
program object files (binary) may be transmitted. 

The Mainframe Link allows the user to integrate in-house mainframe resources with Intellec Microcomputer 
Development resources. The mainframe can be used for storage, maintenance and management of program 
source and object, files. The program source can be downloaded to a development system for compilation, 
assembly, linkage, and/or location. The linked modules can be transmitted and saved on the mainframe to be 
shared by all programmers. The linked program can then be downloaded to a development system for 
debugging using ICE emulation. 

USE MAINFRAME TO 

• CREATE SOURCE PROG USING MULTIPLE CRT'. 
• STORE BACKUP & MAINTAIN LARGE DISK FILES 
• LIST PROGRAMS USING FAST PRINTERS 
• TRACK UPDATES & VERSION CONTROL 
• PROTECT ACCESS TO SOURCE/OBJECT FILES 
• SHARE COMMON LIBRARIES & MASTER PROGRAMS 
• ORGANIZE. CONTROL, MANAGE LARGE PROJECTS USE MDS FOR: 

• SYMBOLIC DEBUGGING 
USING ICE 

The following ore _ 01 Intel Corporoban and may lie ulOll only 10 ~ Intel produ": I. Int.I.INTEL. INTEI.LEC. MCS. Im.1CB. ICE. IIPI. BXP.18Iic. _.IN8ITE. _. 
CREOIT.RMXAIO.,.llcope.Mu_.PIOF1'.-.~.Lobrwy __ .MAlNMULnaoouLl.ond"' __ "'MCS.ICE.SBC._ .. lCSond._'" 
IUIIIx: e.g .. is/IC.8O. 
© INTEL CORPORATION, 1983 

4-20 

MAY 1883 
AFN'()l549C 



intJ MAINFRAME LINK 

FEATURES 

• Runs under ISI8-11 on any Intellec· Microcom
puter Development System. 

• Communicates with a remote system using IBM 
278013780 standard BISYNC protocol, which is 
supported by a majority of minicomputers and 
mainframes, on dedicated or switched (dial-up) 
telephone lines. 

• The modem cable supplied with the package can 
be used to connect the Intellec. Development 
System to the modem (or modem eliminator) 
using the standard RS232C port. 

• Supports user selectable data transmission rates 
of up to 9600 baud. 

• Package includes diagnostic tests used to verity 
the operation of the Intellec· Development Sys
tem using the loop-back connector supplied and 
data transmission up to the modem using the 
analog loop-back feature. 

• System can be configured to match the require
ments of the installation, i.e., using modem 
eliminators for connections up to fifty (SO) feet, or 
by using modems and telephone lines. 

• Software can be configured from several config-
uration options such as: 

2780, 3780 or Intel Mode 

Transparent mode for binary data 

Non-transparent mode for ASCII data 

BENEFITS 

• Allows the customer to use an in-house main
frame or minicomputer for program source
preparation, editing, back-up and maintenance 
using inexpensive CRT's and multi-terminal ac
cess. The common files may be shared and others 
protected. 

• Many programmers can use and share the high
performance devices normally available on large 
computer systems, e.g., fast printers to reduce 
listing time, the large capacity disks with their fast 
access time to store large program files. 

• The source files can be downloaded using the 
Mainframe Link to an Intellec Development Sys
tem (e.g., Model 240 or 245) for compilation, link
ing and locating. 

4-21 

Automatic translation from ASCII to EBCDIC 
and vice verse 

Receive' chaining for receiving multiple files 

• Intel mode is used mainly for file transfers be
tween two Intellec· Development Systems. The 
files are duplicated exactly. 

;;; Console commands support all standard features 
including: 

SEND data in Transparent or Non-transparent 
mode, with or without translation to EBCDIC 

RECEIVE in Transparent or Noh-transparent 
mode, with or without translation to EBCDIC. 

Support for an IBM RJE console (such as HASP) 

• Special utility programs are provided. STRZ strips 
extra binary zero's from the end of object files. 
CONSOL assigns system console input to an ISIS
II disk file. 

• Can process commands interactively from the 
console or sequentially from an ISI8-11 file under 
the SUBMIT facility for semi-automatic batch 
operation. 

• Error detection in line transmission and error re
covery by automatic retransmission. 

• A special command such as DIAGNOSE. allows 
logging of all data activity on the line, during 
transmission and reception. 

• When not used for communicating with the main
frame, the Intellec· Development System is avail
able as a complete, stand-alone system. 

• The compiled and/or linked object files may be 
transmitted back to the remote for storage. Up
dates and version numbers and dates can be 
tracked to ensure that the latest ,verSion is always 
used and back-up files are available. Binary object 
files can be later downloaded to an Intellec Devel
opment System for debugging using' an ICE 
emulator. 

• In short, provides a powerful and flexible tool 
combining the best of both micro and mainframe 
worlds, i.e., powerful CPU with large disk ca
pacity, file sharing, multi-terminal access, etc., 
from a 'mainframe or minicomputer with Intel's 
versatile and compatible software support sys
tems (including PUM, PASCAL, FORTRAN, As
sembler, R & L) and sophisticated debugging 
tools such as ICE emUlators. 

AFN-01549C 



inter MAINFRAME LINK 

SPECIFICATIONS 

Operating Environment 

Required Hardware: 

Intellec· Microcompute'r Development System 
Model 800 
Models 220, 225. 230, 235, 240 or 245 

64KB of Memory 

One Diskette Drive 
Single or Double Density 

System Console 
Intel CRT or non-Intel CRT 

Recommended Hardware for Compilation: 

Hard Disk (Models 240, 245, or Model 740 Upgrade) 

Additional Hardware Required for Model 800 
iSBC-955T11 , iSBC-534T11 

Required Software: 

ISIS-II Diskette Operating System 
Single or Double Density 

Documentation Package 
Mainframe Link User's Guide (121565-001) 

Shipping Media 

Flexible Diskettes 
Single and Double Density 

ORDERING INFORMATION 

'art Number 

*MDS-384 Kit 

DeSCription 

Mainframe Link for 
Distributed Development 

Remote System Requirements 

• IBM 278013780 BISYNC protocol as supported by 
a majority of mainframes and minicomputers in
cluding: all IBM-360/370 Systems, PDP-11/70, 
VAX-111780, Data General ECLIPSE. 

• Users should purchase this standard software 
package from the remote system vendor and any 
additional required hardware such as a synchro
nous communications interlace. 

• The operating system at the remote must be con
figured (SYSGEN'ed) with correct options such as 
line address, 2780 or 3780, ... 

Communication Equipment Requirements 
The Intellee Development System may be connected 
to the remote system using anyone of the following 
methods: 

• For short distances (up to 50 feet), use a syn
chronous modem eliminator (e.g., SPECTRON 
ME-81 FS-2). 

• For distances up to folir miles, use short haul 
synchronous modems and telephone lines. 

• For distances greater than four miles, use syn
chronous modems and telephone lines. The fol
lowing BELL modems or their equivalents are 
recommended: 

BELL 201C 2400 bits/second 
(half duplex, switched line) 

BELL 208A 4800 bits/second 
(full duplex, leased line) 

BELL 208B 4800 bits/.second 
(half duplex, switched line) 

BELL 209A 9800 bits/second 
(full duplex, leased line) 

• Modems at either end must be compatible. 

"MDS is an ordering code only and is not used as a product name or trademark. 
MOS· is a registered trademark of Mohawk Data Sciences Corporation. 

4-22 AFN-Q1549C 



inter 
INTEL ASYNCHRONOUS COMMUNICATIONS LINK 

• Communications software for VAX· • Supports N OS-II workstations host computer and Intel 
microcomputer development systems • Allows development system console to 

Compatible with VAXlVMS· and UNIXt 
function as a host terminal 

• operating systems • Operates through direct cable 
connection or over telephone lines 

• Supports Intel's Model 800, Intellec~ 
Series II, and Series III microcomputer • Software selectable transmission rate 
development systems from 300 to 9600 baud 

Intel's Asynchronous Communications Link (ACL) enables one or more Intel microcomputer develop
ment systems to communicate with a Digital Equipment Corporation VAX family computer. The link 
supports Intel Model 800, Intellec Series II, or Intellec Series III development systems and NOS-II 
workstations. Programmers can use the editing and file management tools of the host computer and 
then download to the Intel microcomputer development system for debugging and execution. Pro
grammers can use their microcomputer development system as a host terminal and control the host 
directly without changing terminals. 

WORK VAX WORK 

STATION ASYNCHRONOUS 

CIRCUIT 
STATION 

INTELLEC" I SERIES-lIIas 

ETHERNET" 

INTELLEC@ I SERIES·III 

I I 1 
WORK WORK 

HRM 
STATION STATION 

INTELLEC" SERIES.m INTELLEC" SERIES III 

The following are tradem"arks of Intel Corporation and may be used only to describe Intel products: Intel, ICE, IRMX, iSBC, iSBX, iSXM, 
MULTIBUS, MULTICHANNEL, MULTIMODULE and iCS. Intel Corporation assumes no responsibility for the use of any circuitry other 
than circuitry embodied in an Intel product. No other circuit patent licenses are implied. • 
·VAX and VAXIVMS are trademarks of Digital Equipment Corporation" 
t UNIX is a trademark of Bell Laboratories. 
"Ethernet is a trademark of Xerox Corp. MAY 1983 

~ INTEL CORPORATION, 1983 4-23 ORDER NUMBER:210903-002 



INTEL ASYNCHRONOUS COMMUNICATIONS, ,LIN'I( 

FUNCTIONAL DESCRIPTION 
The Asynchronous Communication Link (ACL) 
consists of cooperating programs: one that runs 
on the host computer, and others that run on 
each microcomputer development system. The 
development system programs execute under 
the ISIS-II or ISIS-III(N) operating sys\em and use 
Its file system. They invoke the companion pro
gram on the VAX-11/7XX, which 'runs under either 
the VAXlVMS or UNIX operatln~ system. 

I 

The link provides three modes of communica
tion: on-line transmission, single-line transmis
sion, and file transfer. In on-line mode, the 
development system' functions as a host ter
minal, enabling the programmer to develop pro
grams using the host computer's editing, com
pilation, and file-management tools directly 
from the development system's console. Later, 
switching to file transfer mode, text flies and ob
Ject code can be downloaded from the host to 
the development system for debugging and- ex
ecution. Alternatively, flies can be sent back to 
the host for editing or storage. In single line 
mode, the programmer can send single-line com
mands to the host computer while remaining in 
the ISIS-II or ISIS-III(N) environment. 

The user can select transmission rates over the 
link from 300 to 9600 baud. The link transmits in 
encapsulated blocks. The receiver program 
validates the transmission by checking record
number and checksum information In each 
block's header. In the event of a transmission 
error, the receiving program recognizes a bad 
block and requests the sender to retransmit the 
correct block. The result Is highly reliable data 
commun ications. 

SOFTWARE PACKAGE 
The Asynchronous Communications Link 
Package contains either a VAX/VMS or UNIX 
compatible magnetic tape, a single- or double
density diskette compatible with, the Intellec 
development system, and the Asynchronqus 
CommunIcations Link User's Guide containing 
installation, configuration, and operation infor· 
matlon. 

/ 

HARDWARE CONNECTION 

The Link sends data over an RS232C cable. The 
communication line from the host computer 
connects directly to a development system port. 

TELECOMMUNICATIONS 
USING THE LINK 

The ACL is ideal for cross-host program develop
ment using a commercial timesharing service. 
This configuration requires RS232C compatible 
modems and a telecommunications line. 
Depending on the anticipated level of usage, 
wide-area telephone service (WATS), a leased 
line, or a data communications network may be 
chosen to keep operating overhead low. 

ND8-11 ACCESS USING THE LINK 
The ACL is Ideal for Interconnecting VAX host· 
computers with NOS-II. This configuration re
quires that an NOS-II workstation be connected 
to the VAX host computer using the RS232C in
terface and to NOS-II using the Ethernet Inter
face. 

All three modes of communication operate iden
tically ,on NOS-II. In the on-line, mode, the 
development workstation operates as a host ter
minal, and concurrently, as an NOS-II worksta
tion. It is easy to tranSition between the VAX and 
ISIS-III(N) operating systems environments as 
LOGONILOGOFF sequences are not required to 
re-enter environments. 

In file transfer mode, text and object files can be 
transferred from the VAX directly to the Win
chester Disk at the NRM wit~out first copying 
the files to the workstation local floppy disk. 

- Similarly, flies residing on the NOS-II Network 
File System (the Winchester Disk at the NRM) 
can be transferred directly to the VAX without 
using local workstation storage. 

U.slng the EXPORTIIMPORT mechanisms of 
NOS-II, a network workstation which, is not 
directly connected to the VAX can cause flies to 
be transferred between the VAX and NRM. For 
example, any NOS-II workstation can "EXPORT" 
ACL commands to another "IMPORT"lng NOS-II 

4-24 AFN-210903B 



INTEL ASYNCHRONOUS COMMUNICATIONS LINK 

workstation which is physically connected to a 
VAX. The "IMPORT"ing workstation executes 
the ACL command file causing the desired ac· 
tion to occur. 

VAX ACCESS USING THE LINK 

Users who want multiple workstations concur· 

SPECIFICATIONS 

Software 

Asynchronous Communications Link develop· 
ment system programs 

VAXIVMS or UNIX companion program 

Media 

Single- or double-density ISIS-II compatible disk· 
ette 

60b-ft. 1600 bpi magnetic tape, VAX/VMS or UNIX 
compatible 

Manual 

Asynchronous Communications Link User's 
Guide, Order No. 172174-001 

Required Host Configuration 

VAX-11/7XX running VAX/VMS (Version 2.4) or 
fourth Berkeley distribution of UNIX 32V 

ORDERING INFORMATION 

Product Name , 
Asynchronous Communications Link 

"Bell is a trademark of American Telephone and Telegraph. 
t VAOIC Is a trademark of Racal·Vadlc Inc. 
* See price book for proper suffixes for options and media 
salectlon. 

4-25 

rently operating as VAX terminals (the ONLINE 
mode) must physically connect each work· 
station to the VAX. However, users who want 
multiple workstations to be able to upload/ 
download files, for example, must only physical· 
Iy connect one workstation to the VAX: By using 
the EXPORT/IMPORT mechanism of NOS-II as 
described above, the user can have multiple 
workstations accessing the VAX using only one 
connection. 

Required Intel Development System 
Configuration 
Model 800, Intellec Series II, or Intellec Series III 
under ISIS-II 

Required Connection 

RS232C compatible - cable 3M-3349/25 or 
equivalent; 25-pin connector 3M-3482-1000 or 
equivalent 

Recommended Modems for 
Telecommunications 
300 baud - Bell* 103 modem; VAOICt 3455 
modem or equivalent 

1200 baud - Bell 202 modem; VAOIC 3451 
modem or equivalent 

9600 baud - Bell 209A (full duplex, leased line) 
or equivalent 

Note: Since one of the two Model 800 ports uses a cur· 
rent loop interface, Model 800 users need a ter· 
mlnal or modem that is current loop compatible, 
or a current 100plRS232C converter. 

Ordering Code* 
iMOX 394 for VAX/VMS systems 

iMOX 395 for UNIX systems 

AFN'01083C 



iNA 960 NETWORK SOFTWARE 

• ISO Transport (8073) Class 4 services 
-Guaranteed message integrity 
-Data rate matching (flow control) 
-Multiple connection capability 
-Variable length messages 
-Expedited delivery 
-Negotiation of virtual circuit 

characteristics during opens 

• Additional functionality 
-Connection less transport 

(Datagram) 
-External Data Link 

• IEEE 802.3 Data Link protocol 
(CSMAlCD) supported 

• Comprehensive Network Management 
services 

-Collection of network usage 
statistics . 

-Setting and inspecting of transport 
and data link parameters 

-Fault isolation and detection 
-Boot Server 

• Compatible with multiple system 
environments 
-Runs as an iRMX™ 86 job 
-Supports host operating system 

independent designs based on 8086, 
8088 or 80168 and 82586 components 

• Runs on iSBC® 186/51 COMMputer™ 
Board 

• Size configurable to suit specific 
application requirements 

iNA 960 is a general purpose local area network software' package implementing the class 4 services of the 
ISO transport proposed specification and network management functions in system designs based on the 8086, 
8088 and 80186 microprocessors and the 82586 communications co-processor. iNA 960 also supports Intel's 
board level LAN products, the iSBC® 550 KIT and the iSBC® 186/51. Combined with the iSBC 186/51 COM
Mputer T• board, iNA 960 offers a high performance, costeffective network solution for MULTIBUS®/iRMX'M 86 
users. See Figure 1 for iNA 960 functionality and operating environments. 

iNA 960 is a ready-to-use software building block for OEM suppliers of networked systems for both technical and 
commercial applications. Examples for such applications include networked design stations, manufacturing 
process control, communicating word processors, and financial services workstations. Using the iNA 960 
software the OEM can minimize development cost and time while achieving compatibility with a growing number 
of equipment suppliers adapting the IEEE and ISO standards. 

DATA 
LINK 

LAYER i 

ISO MODEL I END-USER APPLI-
CATION PROCESS 

! 
APPLICATION 

PRESENTATION 

SESSION 

TRANSPORT 

NETWORK 

DATA LINK INTERFACE -_ .... ------_ .... ----
PHYSICAL DATA LINK 

I PHYSICAL 

NETWORK .1 
MANAGEMENT 

~ 
IMPLE-

>-~~~J:~6 

IMPLEMENTED 
BY 82586/82501 
BASED HARD WARE 

TYPICAL INA 960 
HARDWARE ENVIRONMENTS 

ISBC' 186151 
COMMputer 

BOARD 

ISBC' 550 
ETHERNET 

CONTROLLER 

Figure 1. 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit 
Patent Licenses are Implied. Information Contained Herein Supercedes PreVIously Published Specifications On These Devices From Intel. 

4-26 AUGUST 1983 
©INTEL CORPORATION, 1983. ORDER NUMBER: 230777-001 



inter iNA 960 NETWORK SOFTWARE 

FUNCTIONAL OVERVIEW 
The iNA 960 design is a standard implementation of 
the Class 4 transport protocol defined by the ISO OSI 
model. The Transport Layer provides a reliable full
duplex message delivery service on top of the "best 
effort" IEEE 802.3 standard packet delivery service 
implemented by the 82586 (or equivalent) physical 
and data link functions. 

Consisting of linkable modules, the software can be 
configured to implement a range of optional capabili
ties and interface protocols. In addition to reliable 
process-to-process message delivery, the options in
clude a datagram service, a boot server, a direct user 
access to the Data Link Layer, and a comprehensive 
network management facility. 

iNA 960 can be configured to run under iRMX 86 
along with the user software, or to run on top of a 

dedicated 8086, 8088 or 80186 processor coupled 
with an 82586 to provide a communications front end 
processor. 

The software also includes a Network Management 
service. This facility enables the user to monitor and 
adjust the network's operation in order to optimize its 
performance. 

The current release of iNA 960 includes a "null" Net
work Layer supporting the Data Link and Transport 
Layers without providing internetwork routing ser
vice. This capability will be implemented in later 
releases of iNA 960. 

For a conceptual block diagram of iNA 960, refer to 
Figure 2. 

I CLIENT I 
iRMX'" 86 OR 

REMOTE HOST 
INTERFACE 

TRANSPORT LAYER 
ISO DP 8773 

NETWORK 
LAYER 

DATA LINK 
LAYER 

j 

+ 
I INTERFACE MODULE 

~ r- - - - - - .... "-------, 
I DATAGRAM I I (OPTIONAL) I VIRTUAL CIRCUIT 
L.. _____ ....L....-____ ....I 

~ 
1~ ___ N_U_L_L~LA_Y_E_R ___ ~r.--

~ r - - - - - r-t-------. 
I EXTERNAL '1 

DATA 
DATA LINK 
INTERFACE 

I LINK I 
'- - - - - - L-rl-----...J 

t 
DATA LINK AND 

PHYSICAL LAYERS 

NETWORK 

I ::; I 

I bffi~ • 
: o~Q : 
I mwl- • 
I (/)e. I L.. ___ -J 

}HAFiDWARE 

Figure 2. iNA 960 Conceptual Block Diagram 

4-27 

iNA 960 



iNA 960 NETWORK SOFTWARE 

TRANSPORT LAYER 
The Transport Layer proVides message delivery 
services between client processes running on com
puters (network "hosts" or "nodes") anywhere in the 
network. 

Client processes are identified by a combination of a 
network address defining the node and a transport 
service access point defining the interface point 
through which the client accesses the transport 
services. The combined parameters, called the 
transport address, are supplied by the user for both 
the local and the remote client processes to be 
connected. 

The iNA 960 transport layer implements two kinds of 
message delivery services: virtual circuit and 
datagram. The virtual circuit provides a reliable point
to-point message delivery service ensuring maxi
mum data integrity, and it is fully. compatible with the 
ISO 8073 Class 4 protocol. The datagram service 
provides a best effort message delivery between 
client processes requiring less overhead and 
therefore allowing higher throughput than virtual 
Circuits. 

.. 
Virtual Circuit Services 
-Reliable Delivery: Data is delivered to the destina

tion in the exact order it was sent by the source, 
with no errors, duplications or losses, regardless of 
the quality of service available from the underlying 
network service. 

-Data Rate Matching (flow control): The Transport 
Layer attempts to maximize throughput while 
conserving communication subsystem resources 
by controlling the rate at which messages are sent. 
That rate is based on the availablity of receive buf
fers at the destination and its own resources. 

-Multiple Connection Capability (Process Multiplex
ing): Several processes can be simultaneously 
using the Transport Layer with no risk that prog
ress or lack of progress by one process will inter
fere with others. 

-Variable Length Messages: The client software 
can submit arbitrarily short or long messages for 
.transmittal without regard for the minimum or max
imum network service data unit (NSDU) .Iengths 
supported by the underlying network services. 

-Expedited Delivery: With this service the client can 
transmit up to 16 bytes of urgent data bypassing 
the normal flow control. The expedited data is 
guaranteed to arrive before any normal data sub
mitted afterward. 

Connection less Transport 
(Datagram) Service 
The datagram service option transfers data between 
client processes without establishing a virtual circuit. 
The service is a "best effort" capability and data may 
be lost or misordered. Data can be transferred at one 
time to a single destination or to several destinations 
(multicast). 

NETWORK MANAGEMENT (NM) 
The network management option provides the users 
of the network with planning, operation, maintenance 
and initialization services described below. 

-Planning: This service captures network usage 
statistics on the various layers to help plan network 
expansion. Statistics are maintained by the layers 
themselves and are made available to users via an 
interface with the NM . 

-Operation: This service allows the user to monitor 
network functions and to' inspect and adjust net
work parameters. The goal is to provide the tools 
for performance optimization on the network. 

-Maintenance: This service deals with detecting, 
isolating and correcting network faults. It also pro
vides the capabilitY\to determine the presence of 
hosts and the viability of their connection to the 
network. 

-Initialization: NM provides initialization and remote 
loading facilities. 

Network management provides distributed manage
ment of the network; the user can request any of the 
services to be performed on a remote as well as a 
local node. The NM interfaces to every other network 
layer both to utilize their services and to access their 
internal data bases. 

In support of the above services, the NM capabilities 
include layer management, echo testing, limited 
debugging facilities, and the ability to down line load 
and up line dump a remote system. 

4-28 



inter iNA 960, NETWORK SOFTWARE 

Layer management deals with manipulating the inter
nal database of a layer. The elements of these data 
bases are termed objects. Some examples for ob
jects are the number of collisions, retransmission 
time-out limit, the number of packets sent, and the list 
of nodes to boot. NM can examine and (I)odity ob
jects in a layer's data base. 

An echo facility is provided. Using this facility the host 
can determine if a node is present on the network or 
not, test the communication path to that node and 
determine whether the remote node is functional. 

NM enables the user to read or write memory in any 
host present on the network. This feature is provided 
as an aid to debugging. 

NM can down line load any system present on the 
network. A simple Data Link protocol is used to 
ensure reliability. This facility can be used to load 
databases, to boot systems without local mass 
storage or to boot a set of nodes remotely, thus 
ensuring that they have the same version of soft
ware, etc. 

·Up line dumping is an operation equivalent to 
memory read from the user's standpoint; however, up 
line dumping uses the Data Link facilities while 
memory read uses the transport facilities. 

EXTERNAL DATA LINK (EDl) 
The External Data Link option allows the user to ac
cess the functionalities of the Data Link Layer directly 
instead of having to go through the network and 
transport layers. This flexibility is useful when the 
user needs custom higher layer software, or does not 
need the Network Layer and Transport Layer 
services (e.g., when sending "best effort" messages, 
or running customer diagnostics). 

Through the EDL the capabilities supporting the 
lower layers in iNA 960 are made directly available to 
the user. EDL enables the user to establish and 
delete data link connections, transmit packets to indi
vidual and multiple receivers, and configure the data 
link software to meet the requirements of the given 
network environment. 

USER ENVIRONMENT 
iNA 960 is designed to run on hardware based on the 
8086, 8088 or 80186 microprocessors and the 82586 
LAN Coprocessor. The software can be configured to 
run under iRMX 86 or on a dedicated 8086', 8088 or 
80186 processor separately from the host. The roi
lowing section describes these two operating 
environments. 

iRMX Environment 
In this configuration, both the user program and iNA 
960 are running under iRMX 86. The communica
tions software is implemented as an iRMX 86 job 
requiring the nucleus only for most operations. The 
only exception is the boot server option which also 
needs the Basic I/O System. iNA 960 will run in any 
iRMX environment including configurations based on 
the 80130. See Figure 3 for an illustration of iNA 960 
running under iRMX 86. 

Some of the typical hardware implementations in
clude the iSBC 550 KIT combined with an 8086, 8088 
or 80186 based host or the iSBC 186/51 COMM
puter'· board integrating the host processor and the 
communications controller into a Single, high perfor
mance MULTI BUS board. See Figure 4A and 4B for 
a conceptual block diagram of these configurations. 

4-29 

Operating System/Processor 
Independent Implementation 
In those systems where iRMX 86 is not the primary 
operating system, where off-loading the host of the 
communications tasks is necessary for performance 
reasons, or where an existing communications front
end processor configuration is being upgraded, the 
user may wish to dedicate a processor for communi
cations purposes. iNA 960 can be configured to sup
port such implementations by providing network 
services on an 8086, 8088 or 80186 processor. Fig
ure 5 depicts the conceptual block diagram of this 
configuration. 

This approach provides the component and system 
designer with an ISO standard communications soft
ware building block that can be adapted to his sys
tem's needs with a minimum interfacing effort. For 
added flexibility, iNA 960 provides the user with the 
alternative of using the included interface module or 
writing his own module, if necessary. 



iNA 960 NETWORK SOFTWARE 

Figure 3. As an iRMX T• Job, iNA 960 uses nucleus calls and, when the Boot Server Is present, 
BIOS calls. 

. NETWORK 

ISBC' 550 KIT 

MULTIBUS' 

Isec 86/30 
WITH iRMX" 86 

AND INA 960 

Figure 4A. 'TYpical configuration using ISBC® 550 kit, ISBC® 86/30, iRMX 86 T• and iNA 960. 

4-30 



INA 960 NETWORK SOFTWARE 

~~ _______ N~E~TW~OR~K~ ______ ~t-

ISBC" 186/51 
WITH IRMX86 
AND INA 960 

Figure 4B. Configuration using iSBC® 186/51, IRMX 86 and iNA 960. 

-1 NETWORK r-,... ________ J _________ -.. 
( ~ 

I MEMORY 
(iNA 960 PLUS 

LOCAL 
RAM/ROM) 

82586 
8086 OR 

80186 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

SYSTEM DEDICATED I 
BUS COMMUNICATIONS I 

INTERFACE PROCESSOR I . ) _________ _________ J 

Figure 5. In the operating system/processor independent implementation iNA 960 Is running on a 
dedicated 8086, 8088 or 80186 processor. 

4-31 



iNA 960 NETWORK SOFTWARE 

USER INTERFACE 
iNA 960 is designed to run both under iRMX 86 and 
on a dedicated communications front end processor 
separately from the host. In both environments, the 
interface is based on exchanging memory segments 
called request blocks between iNA 960 and the 
client. The format and contents of the request blocks 
remain the same in both configurations; only the re
quest block delivery mechanism changes. See Fig
ure 6 for a simplified interface diagram. 

Request blocks are memory segments containing the 
data to be passed from the user to iNA 960 
(commands), or from iNA 960 to the user 
(responses). The iNA 960 request blocks consist of 
fixed format fields identical across all user com
mands and argument fields unique to the individual 

iNA 960 

Figure 6. 

Reserved (2) 
Length 
User I.D. 
Response Port 
Return Mailbox Token 
Segment Token 
Subsystem 
Opcode 
Response Code 

Arguments 

CLIENT 

commands. Refer to Figure 7 for the standard re
quest block format. 

Issuing an iNA 960 command consists of filling in the 
request block fields and transferring the block to iNA 
960 for execution. After processing the command, 
iNA 960 returns the request block with one of the 
pre-defined response codes placed in the response 
code field of the request block. The response code 
indicates whether the command was executed suc- . 
cessfully or whether an error occurred. By examining 
the response code, the user can take appropriate 
action for that command. 

For iRMX users, iNA 960 also provides a procedural 
interface option to simplify writing the application 
software interface. In this case, the allocation and 
formatting of request blocks are replaced by a proce
dure call with parameters that specify the user's com
mand options. The procedure execution will create a 
request block and fill in the appropriate fields from the 
user's parameter list. 

For component users the request block delivery 
mechanism is the means by which- the host proces
sor and the communications processor running iNA 
960 software exchange the request blocks. iNA 960 
provides several such mechanisms as well as permit
ting user-defined techniques to be utilized. 

WORD/BYTE 

WORD 
BYTE 

. WORD 
BYTE 
WORD 
WORD 
BYTE 
BYTE 

WORD 

BYTE I 

FIXED FORMAT 
FIELDS 

(same for all 
commands) 

ARGUMENTS 

(changes by 
command) 

Figure 7. iNA 960 Request Block Format 

4-32 



iNA 960 NETWOR~ SOFTWARE 

Transport Layer User Interface 

The following table summarizes the user commands and the corresponding transport layer responses. 
, 

I Command Function 

1. OPEN Allocates memory for the connection data base of a virtual circuit (or 
connection) to be established. The connection database contains 
data concerning the connection. 

-
2. SEND CONNECT Requests connection to a fully specified remote transport address 

REQUEST using specified ISO connection negotiation options. 

3. AWAIT CONNECT Indicates that the transport client is willing to consider incoming con-
REQUESTrrRAN nection requests based on pre-established acceptance criteria. 

4. AWAIT CONNECT Indicates that the transport client is willing to consider incoming con-
REQUEST/USER nection requests. If the request meets the address and negotiation 

option criteria, it is passed to the client for further consideration. 

5. ACCEPT CONNECT Indicates that the connection requested by a remote transport ser-
REQUEST vice is accepted by the client. 

6. SEND DATA or With this command, the client requests the transmission of the data 
SEND EOM DATA in the buffers using the normal delivery service of the specified 

connection. 

The SEND EOM DATA command signals that the end of the data 
marks the end of the transport service data unit. 

7. RECEIVE DATA Posts normal receive data buffers for a specific connection or for a 
buffer pool used by a class of connections. 

8. WITHDRAW RECEIVE Withdraws normal receive data buffers previously posted by a 
BUFFER RECEIVE DATA command. 

9. SEND EXPEDITED Transmits up to 16 bytes of data using the expedited delivery service. 
DATA The expedited data is guaranteed to arrive at the destination before 

any normal data submitted afterward. 

10. RECEIVE EXPEDITED Posts receive data- buffers for expedited delivery for a specific con-
DATA nection or for a pool of buffers used by a class of connections. 

11. WITHDRAW EXPEDITED Withdraws expedited receive data buffers previously posted by a 
DATA BUFFER RECEIVE EXPEDITED DATA command. 

12. CLOSE Terminates an existing connection or rejects an incoming connection 
request. Any normal or expedited data queued up to be sent will not 
be sent. 

13. AWAIT CLOSE Requests notification of the client of the termination of a specified 
connection. 

14. STATUS and DEFERRED Places status information about transport and, optionally, about a 
STATUS specified connection into a supplied buffer. 

4-33 



INA $60 NETWORK SOFTWARE 

Command Function 

15. SEND DATAGRAM Requests transmission of the data in the buffers using the transport 
datagram service. 

16. RECEIVE DATAGRAM Posts a receive buffer for a specific receiver or a class of receivers to ' 
receive data from a transport datagram. 

17. WITHDRAW DATAGRAM Withdraws datagram receive buffers previously posted by a 
BUFFER 

, 
RECEIVE DATAGRAM command. 

Network Management Layer User Interface 

Command Function " 

1. READ OBJECT Returns the value of the Specified object to the client. 

2. SET OBJECT Sets the value of an object as specified by the client. 

3. READ AND CLEAR Returns the value of the specified object to the client then clears the 
OBJECT Object. 

4. ECHO This function is used to determine the presence of a node, to test the 
communication path to the node and to ascertain the viability and 
functionality of the remote host addressed. 

5. UP LINE DUMP Requests a remote node to dump a specified memory area. 

6. READ MEMORY Reads memory of the specified network node. 

7. SET MEMORY Sets memory of the specified network node. 

8. FORCE LOAD Causes a node to attempt a remote load from another node. 

External Data Link Interface 

Command Function 

1. CONNECT With this command the client establishes a data link connection. 

2. DISCONNECT Eliminates a previously established connection. 

3. TRANSMIT Transmits data contained in buffers specified by the client. 

4. posr RECEIVE PACKET Allocates memory for maintaining records on receive data buffers. 
DESCRIPTOR Also may be used to allocate memory for buffering receive data. 

5. POST RECEIVE BUFFER Allocates memory for buffering receive data. 

6. ADD MULTICAST Adds an address to the list of data link multicast addresses. 
ADDRESS 

7. REMOVE MULTICAST Removes an address from the list of data link multicast addresses. 
ADDRESS 

8. SeT DATA LINK 1.0. Sets up a unique data link 1.0. for the station. 

4-34 



iNA 960 NETWORK SOFTWARE 

CONFIGURING iNA 960 

In order to adapt iNA 960 to his specific application, 
the user must configure the software to define the 
desired functions, to select the appropriate interface, 
to set the layer parameters and to set up for the 
required hardware configuration. 

There are four optional functionalities the user may 
elect to implement in his application: the datagram 
service, the External Data Link interface, network 
management, and the boot server. These capabilities 
can be made available simply by linking in the corres
ponding software modules. The interface options are 
also implemented in a modular fashion; the user links 

HARDWARE 
REQUIRED: 

-MDS SERIES III 
OR 

-86/300 AND 
iRMX'" 86 

-UNIVERSAL PROM 
PROGRAMMER 
IF USER SYSTEM 
IS IN FIRMWARE 

SOFTWARE 
UTILITIES 
REQUIRED: 

-TEXT EDITOR 
-ASM 86 
-LINK 86 
-LOC.86 

in the desired module to set up for the iRMX 86 or the 
operating system independent configurations. 

Layer parameters and confiuration options are first 
edited into layer configuration files, then assembled 
and linked into INA 960. Layer parameters adjust the 
network's operation to match the usage pattern and 
the available resources. For example, within the 
Transport Layer,' the flow control parameters, the 
retransmission timer parameters, the transport data 
base parameters, etc. can be set via this process. 

The user also sets up for the required hardware con
figuration, such as port addresses and interrupt 
levels, during this process. For the flow diagram of 
configuring iNA 960, refer to Figure 8. 

INPUTS I_ OPTIONAL FUNCTIONS 
_ USER ENVIRONMENT 
_ LAYER PARAMETERS 
_ H/W CONFIGURATION 

Figure 8. The Configuration Process for iNA 960 

4-35 



inter iNA 960 NETWORK SOFTWARE 

SPECIFICATIONS· 

Hardware Supported: 

-iSBC 186/51 Communicating Computer. 
-iSBC 550 KIT Ethernet controller board(s) config-

ured to run with iSBC 86/30 or iSBC 86/12B Multi
bus processor boards. 

-Custom designs based on 8086, 8088 and 80186 
microprocessors and the 82586 Local Communi
cations Controller. 

lYplcal Throughput at transport: 

Environments: 
186/51 and 50K to 200K bytes/sec 

iRMX86 
Dedicated 80186/ 100K to 300K bytes/sec 

82586 COMMengine 

Memory Requirements: (in bytes) 

Base Transport System 32K plus con-

Net Management Option 
Datagram Option 

figurable Buffer 
Memory 
1K to 5K 
2K plus Data Base 
Memory 

External Data Link Option 3K 
Boot Server Option 5K 

4-36 

Available Llterature/ 
Reference Materials: 

-iNA 960 Programmer's Reference Manual (11/83) 
-iSBC 186/51 Data Sheet (Now) 
-iSBC 186/51 Hardware Reference Manual (11/83) 

Ordering Information 
The following is a list of ordering options for the iNA 
960 Network Software. All options include a full year 
of update service that provides a periodic NEWSLET
TER, Software Problem Report Service, and copies 
of system updates that occur during this period. All of 
the object code options listed are available on either 
ISIS or RMX compatible double density diskettes. 

As with all Intel software, purchase of any of these 
options requires the execution of a standard Intel 
Master Software License. The specific rights granted 
to users depend on the specific option and the 
License signed. 



inter iNA 960 NETWORK SOFTWARE 

Order Code Description 

iNA 960 BRO OEM object code license requiring the payment of incorporation fees for 
each derivative work based on iNA 960; ISIS formatted diskettes 

iNA 960 ERO Same as above; RMX tormatted diskettes 

iNA 960 BST Object code license to use the product at a second site or facility; ISIS . 
formatted diskettes 

iNA 960 EST Same as above; RMX formatted diskettes 

INA 960 BBY Object code buy-out license requiring no further payment of incorporation 
fees; ISIS formatted diskettes 

iNA 960 EBY Same as above; RMX formatted diskettes 

iNA 960 BSU Object code single use license only; ISIS formatted diskettes 

iNA 960 ESU Same as above; RMX formatted diskettes 

iNA 960 BSR License for machine readable source code of iNA 960; ISIS formatted 
diskettes 

iNA 960 ESR Same as above; RMX formatted diskettes 

iNA 960 LST Source listing of iNA 960 provided on microfiche under a special source 
code license agreement 

iNA 960 LWX One year extension of software support service for source listings 

iNA 960 BWX Same as above for ISIS customers 

iNA 960 EWX Same as above for RMX customers 

iNA 960 RF Order code for the payment of incorporation fees 

4-37 



NOS-II ELECTRONIC MAIL 

• Improves Project Coordination and 
Communication 

• Minimizes "Phone Tag" and Excess 
Paperwork 

• Users Can Send and Receive Text or 
Object Files 

• MAIL Operates Either Interactively or in 
Command-Tail Format 

• User, Group, and "Bulletin Board" 
Mailboxes Can Be Created 

• Operates on any Workstation in the 
NOS-II Development Environment 

Electronic Mail enables users to send and receive messages and files between any nodes on the NOS-II 
network. In dOing so, Electronic Mail improves the communication and coordination between members, reduces 
"phone tag" and paper generation, aids project configuration management by enabling simplified file transfers, 
and increases flexibility in workstation location. 

Mail maintains a directory, called the "post office," which contains user, group, and bulletin board mailboxes. 
Each NOS-II user has a mailbox which is only accessible to that user. Group mailboxes are accessible by a 
defined group of users, and bulletin board mailboxes are accessible by all users. Both group and bulletin board 
mailboxes can be easily created by any system user. 

Users can send a message to any of the mailbox types listed above. Messages can consist of text generated 
when Mail is invoked, or a text or object file. Options available when sending mail include using a subject string 
to categorize a message, specifying a message expiration date and time, delaying message delivery until a 
specific date and time, marking the message URGENT, and maintaining a log of all messages sent. 

Users can interactively read their mail and perform the following operations: print messages on their workstation 
console, delete messages from a mailbqx, save messages in a file, forward messages to other users, and reply 
to message senders. In addition, users can request a mailbox summary which includes, for each message, the 
sender'S name, date sent, subject, urgency, code type (text or object), and message number. 

NOS-II Electronic Mail executes on all existing NOS-II workstations using either the iNOX or ISIS-III(N)!ISIS 
Cluster operating systems. 

TYPICAL MAIL USAGE 

• DISTRIBUTE SUPERUSER MESSAGES 

• CREATE AND SEND INTERNAL MEMOS 

• COLLECT PROJECT MILESTONE DATA 

• REPORT PROGRAM BUGS AND 

RECOMMEND SYS'fEM CHANGES 

• SEND SOURCE AND OBJECT FILES 

• USE AS TELEPHONE MESSAGE CENTER 

TYPICAL MAIL BENEFITS 

• IMPROVE TEAM COMMUNICATION AND 

COORDINATION 

• REDUCE PHONE TAG 

• MINIMIZE PAPER GENERATION 

• AID PROJECT CONFIGURATION MANAGEMENT 

• INCREASE WORKSTATION LOCATION FLEXIBILITY 

• OVERALL, BOOST DEVELOPMENT TEAM 

PRODUCTIVITY 

NOS-II ELECTRONIC MAIL 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circu~ Patent 
Licenses are implied OCTOBER 1983 
© INTEL CORPORATION, 1983. 

4-38 ORDER NUMBER:2105870003 



NDS·II ELECTRONIC MAIL 

OPERATING ENVIRONMENT 

Required Hardware 
NOS-II Environment with any 8 or 16 bit Microcom
puter Deve!opment System Workstation 

Required Software 
iNOX or ISIS-III(N)/ISIS Cluster System Software 

DOCUMENTATION 
"NOS-II Electronic Mail User's Guide" 
(122146) 

4-39 

SOFTWARE SUPPORT 
This product includes a 90-day initial support consist
ing of new software releases, updates, subscription 
services (software performance reports and technical 
reports), and telephone hotline support. Additional 
software support services are available separately. 

ORDERING INFORMATION 

Product Code 

iMOX-337 

Description 

NOS-II Electronic Mail 

ORDER NUMBER:210587-DD3 





Systems and 
Applications Software 5 





XENIX* 
Productivity 

Software 
Tools 

il 1983 Intel Corporation 

• iWORD Processing 
• iPLAN (Multiplan*) Spreadsheet 
• iMENU Development System 

'XENIX and Multiplan are trademarks of Microsoft Corporation 
NOVEMBER 1983 

ORDER NUMBER 230844-001 

5-1 



XENIX PRODUCTIVITY SOFTWARE TOOLS 

INTRODUCTION 
Software tools for the 
XENIX environment 

Intel's productivity software tools are 
designed to meet the basic information 
processing needs of the office environ
ment. Thilored specifically for the 
XENIX* operating system, the soft
ware tools are available as individual 
packages which can be applied to 
specific end-user tasks. Intel's applica
tion packages are also offered as a 
Seamless™ set of software tools, in
tegrated with a hardware/software 
system such as Intel's Database Infor
mation System (iDIS™ 861735). 
Seamless software tools support the 
transparent sharing of data files among 
various application packages with com
plete data integrity. With Seamless 
software, results from one application 
package are readily accessible and 
compatible as input for another form 
of processing. 

IWORD* 

• Standard text editing/formatting 
commands 

• Designed especially for the 
XENIX operating system 

• Easy-to-use for beginners, power
ful for experts 

• Full-screen text editor 

• Access to XENIX typesetter and 
printer drivers . 

• Embedded commands for global 
formatting 

• On-screen display of formatted 
text 

• On-line Help facility, spelling/dic
tionary module, and mail/merge 
facility 

• Worldwide service. and support 

Intel's 
"Software Backplane" 

The powerful, versatile 
word processing tool 

Inters iWORD package is a 
sophisticated, yet friendly word pro
cessing tool for preparing business 
documents, such as reports, letters, 
memoranda, technical papers, and 
more. Written in the ·C" language and 
tailored to the XENIX operating 
system, the iWORD package can run 
in both multi-user and single-user en: 
vironments. Menu-driven and screen
oriented, the iWORD package supports 
all standard text editing, storage, and 
formatting development functions. 

An effiCient, easy-to-use 
text processor 

Inexperienced users will find the 
iWORD software concepts intuitively 
easy. For example, the user accesses a 
documejlt file by opening a "drawer," 
and editing commands follow familiar 
"cut and paste" procedures. 

All commands are in plain English. 
No memorization is necessary, and 
many operations are executed by a 

"IWORD is a version of Horizon Wlrd Processing, a trademark of Horizon Software Systems, Inc. 

5-2 

single keystroke. Concise command 
menus and an .on-line Help facility are 
continuously available so that novice 
users can quickly advance in their 
word processing abilities. The iWORD 
system is sufficiently powerful to meet 
the needs of more experienced users 
as well. 

Designed around 
office needs 
"Inters iWORD software is based on 

the simple concept of an office file 
cabinet, defined by a collection of 
drawers, each of which contains files 
(documents) . 

The user may: 
• Open an existing drawer or make a 

new drawer 
• Create a new file or select an ex

isting file 
• Rename a drawer or file 
• Add to, change, copy, move or 

delete the selected file. 
There is no limit to the number of 

user-created drawers other than the 
availability of disk storage space. 



inter XENIX PRODUCTIVITY SOFTWARE TOOLS 

On-screen display of 
formatted text 

The word processor allows users to 
visually format documents and print 
them as they are displayed on the ter
minal, or to format them with the 
powerful text processing filcilities in
herent to the XENIX operating system. 
This on-screen display capability is 
particularly helpful in preparing 
documents for typesetting. 

The results of text formatting co!TI
mands appear immediately on the 
screen. Examples of these commands 
include: 
• Right justification 
• Underlining 
• Indentation 
• Centering 
• Alignment. 

Advanced word processing 
features 

Inexperienced users may execute 
commands from a simple menu (and 
related Help screens), while more pro
ficient users may opt to use up to 64 
function keys without accessing the 
menu. 

The iWORD system allows 
simultaneous support for multiple 
character andlor line printers at the 
local or system level; printer selection 
is an operator option at print time. 

The iWORD package includes a 
spelling checker and correction filcility 
with an extensive on-line dictionary. 

A Mail/Merge facility is available to 
combine mailing lists and document 
files (e.g., form letters) for printer out
put. MaillMerge also provides the 
capability of incorporating paragraphs 
from a third file. ' 

The iWORD processing allows on
screen sorting of numeric or alphabetic 
text. 

Special editing commands 
• Find commands ("string search") to 

locate characters or words in text for 
possible changes or additions 

• Deletion commands for removing 
words, sentences, lines, paragraphs 
and entire files 

• Fill commands to fit as many words 
as possible in a finite space 

• Form command to type over existing 
text 

• Command to mark location of the 
cursor within text 

• Paste-in command to copy a section 
of text 

• Replace command that replaces one 
text area with another 

• Tab setting commands 

Embedded "dot" commands 
When formatting or printing needs 

are complex, the user has easy access 
to more powerful embedded "dot" com
mands. "Dot" commands are most 
useful for medium-sized and long 
documents requiring sophisticated for
matting functions like subscripts, 
superscripts, and footnotes. "Dot" com
mands are fully compatible with 
NROFF and TROFF, the XENIX
supplied printing and typesetting 
utilities, The results of "dot" com
mands are displayed on-screen before 
the document is printed, 

Embedded commands for global for
matting include: 
• Page layout 
• Justification 
• Automatic hyphenation 
• Running headers and footers 
• Footnotes 
• Superscripts and subscripts 
• Automatic page numbering 
• XENIX typesetting commands 

(TROFF) 
• XENIX printing commands 

(NROFF). 

5-3 

Editing two files 
simultaneously 

The iWORD package provides a 
moveable "window" into a file for full
screen text editing. The user may 
slmultaneousiy display two areas of the 
same document or two different 
documents in two screen "windows:' 
Employing this "split screen" capabili
ty, the user may review two different 
files at the same time, as well as move 
text between files. 

'Designed for experienced 
and novice users 

The iWORD software provides the 
experienced word processing user the 
full strength of XENIX text prepara
tion commands, such as NROFF and 
TROFP. The iWORD package also of
fers a compn;hensive menu shell which 
makes the word processing software 
easy to use for even the most 
inexperienced computer user. In con
clusion, the iWORD system is a 
powerful, "user friendly," and flexible 
word processing package intended for 
all levels of computer proficiency. 



.. 
XENIX PRODUCTIVITY SOFTWARE TOOLS 

IPLAN· 

• Indilstry standard advanced elec-
tronk~~&h~t~n~ou 

• SOphisticated formatting options 

• Easy-to-use English commands 

• Exteulve, on-line Help facilities 

• ScroUIng features and multi
window/multi-table display 

• Links and updates multiple inter
related sp~&h~ts 

• Automatk:aUy updates calculations 

• Wlrldwlde service and support 

The most advanced 
electronic spreadsheet 
Th~ iPLAN Multiplan Spreadsheet 

software is one of the most powerful, 
easy-to-use "electronic worksheet" pro
grams available. Developed by Micro
soft Corporation, Multiplan has been 
enhanced for Intel hardware en
vironments operating under XENIX. 

The iPLAN package is a multi
purpose tool capable of a wide variety 
of business and scientific applications: 
financial modeling, planning, 
forecasting, tabulations, calculation of 
engineering formulas,' and much more. 
It supports "what-if' decision-modeling 
with a versatile two-dimensional matrix 
that can be custom-tailored for specific 
use. 

Unlike other sp~adsheets, the 
iPLAN system is designed to meet the 
needs of both inexperienced and 
sophisticated computer users. It also 
offers versatile presentation and report
ing capabilities. 

• IPLAN ~ a venIon of Microsoft Multlplan~ a trademark of Mlcnisoft Corporation. 

The iPLAN matrix format 
The iPLAN softwclre displays 

numerical data, text, or formulas in 
matrix (row/column) format. The 
spreadsheet screen is divided into 
'cells' which are referenced by row and 
column numbers. Cells may contain 
numeric data, formulas, text, or labels. 
Commands are listed at the bottom of 
the screen along with the current ad
dressed cell, the amount of unused 
spreadsheet storage space, and the 
name of the file in use. 

Designed for ease-of-use 
Beginning iPLAN users can start 

building worksheets after a couple 
hours of initial use. While simple to 
operate, the iPLAN system functionali
ty is enhanced by the skill of the user. 

,.~----~~~---------:--------~-----------===::::====::::~~~~::::::~~~IVE 2 3 BORDERED 
WINDOW 112 

COLUMNS (1-63) 

MENU 
SELECTION 

1 
2 
3 Sales 
4 
5 Cost 
6 
7 
8 
9 

10 Total Costs 
11 
12 
13 
14 

( 15 Gross Profits 
16 
17 
18 

$20000.00 

Material $4000.00 
Labor $7000.00 

Overhead $4000.00 

$15000.00 

$5000.00 

#2 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 
15 
16 
17 
18 

3 

$20000.00 

$4000.00 
$7000.00 
$4000.00 

$15000.00 

$5000.00 
CELL 

POINTER 

COMMAND: Alpha Blank Copy Delete Ed~ Format Goto Help Inset Lock Move 
Name Options Print Qu" Sort Transfer Value Window Xternal 

MESSAGE ---+-- Select option or type command letter 
R10C3 SUM(R6:8C3) 95% Free 

LOCATION --:::::::.~---
AND CONTENTS 
OF~IVECELL ABSOLUTE REFERENCE 

Typical Multiplan Screen Display 

5-4 

DOLLAR FORMAT 

STORAGE 
REMAINING 

SHEET NAME 



XENIX PRODUCTIVITY SOFTWARE TOOLS 

The iPLAN package does not use 
cryptic, abbreviated commands or 
reference codes (e.g. "AZ23"). Instead, 
it uses plain English commands (e.g. 
COPY) and reference names (e.g. 
COSTS or SALES). Completely menu
driven, the iPLAN software prompts 
the user with simple commands that 
can be executed with a single 
keystroke. To help in command selec
tion, the user can access a reference 
guide. 

Notable iPLAN features include: 
• Ability to build formulas by high

lighting cells 
• Menu-driven functions and com

mand prompting 
• Plain English command words and 

formulas 
• Comprehensive on-line reference 

guide 
• Eight-window display option 
• Full-screen display of worksheet 

formulas. 

A dynamiC, versatile 
workspace 

The iPLAN package offers an effec
tive workspace that is 63 columns 
wide by 255 rows long. Worksheets are 
easily designed to fit project re
quirements. Moreover, worksheets can 
be linked to automatically receive or 
transmit data into other related iPLAN 
worksheets. Column width can be 
varied to accept long (or short) words 
and numerals; lines of text can be 
typed across several columns. 

Up to eight windows are available 
with vertical and horizontal scrolling, 
such that different areas of a very 
large worksheet can be viewed 
simultaneously. The windows can be 
aligned, scrolled together, opened, or 
closed at the user's choice. 

Built-in data security 
. The iPLAN software features cell 

locking to protect worksheet data. 
When data and formulas have been 
entered, tie specified information can 
be "locked" in place so that vital data 
cannot be accidentally erased or 
altered. 

Flexible presentation 
features 

The iPLAN system enables users to 
produce printed reports of professional 
caliber. The program includes special 
formatting, alignment, and printing 
functions that support the printing of 
presentauon-quaiity reports. The 
iPLAN software can automatically 
break a spreadsheet into multiple 
pages, and the user can specify the ap
propriate margins. 

Powerful modeling 
capabilities 

Highlights of iPLAN modeling 
features include: 
• Alphabetical or numerical sorting 

capabilities 
• Links and automatically updates up 

to eight interrelated worksheets 
• Automatically updates· subtotals, 

totals, percentages, growth curves 
and other calculations 

• Performs multiple iterations to solve 
closed-loop problems 

• Automatically revises formulas when 
reordering rows and columns in 
displays 

• ,Cells and areas can be named for 
clarity 

• Continuous formatting allows entries 
across cell boundaries 

• Formulas moved to various work
sheet locations without retyping 

• Includes special editing area for 
quick additions or deletions 

• Sheet display may be redesigned or 
formatted in various ways without 
altering the stored data 

• Formulas, words, or numerals can 
be entered into any location so that 
printed sheets have titles and 
descriptions 

• Offers a rich repertoire of advanced 
math functions and operators. 

5-5 

iMENU· 

• Hierarchical control of menu 
screens to organize application 
program use 

• On-line application develop
ment/maintenance system 

• A menu screen design and menu 
development system for 
non-programmers 

• On-line Help facility 

• Written in the "C" language, 
specifically for XENIX 

• Supports turnkey application 
development 

• Worldwide service and support 

Simplifies use, development 
and maintenance of 
XENIX-based applications 

The iMENU software package is a 
hierarchical user interface and applica
tion development tool that ties together 
XENIX-based applications to achieve a 
high level of software integration. The 
iMENU package allows applications 
developers to create integrated, logical, 
and friendly interfaces to XENIX 
applications. 

In effect, the iMENU system allows 
the XENIX operating system to appear 
transparent to the non-te~hnical user, 
while it offers all the power and func
tionality inherent to XENIX to the 
more experienced user. The iMENU 
package interfaces with virtually all 
character-oriented terminals. 

'Aids application 
development and software 
packaging 

Programmers and experienced users 
can apply the iMENU system in main
taining or creating menus, forms, or 
Help screens for existing or new 
applications. 

• iMENU is a version of Schmidt's Imenus, 
a trademark of Schmidt Associates. 



XENIX PR·ODUCTIVITY SOFTWARE TOOLS 

FIlii XENIXfunctio~ality is retained 
and simplified with the iMENU soft
ware. Experienced users have the op
tion of skipping step-by-step menu 
selection via the fast menu selection 
mode. Advanced users can also modify 
the menu system to reflect changes in 
existing applications or to incorporate 
new applications. 

Standard iMENU package functions 
include: 
• Definition of login IDs 
• Add, delete, and list login IDs 
• Authorization control 
• Define, update, delete and list menu 

items and attributes 
• Screen and forms building 
• Interaction with XENIX shell 

commands 
• Powerful macros 
• Fast menu selection mode for ex

perienced users 
• On-line Help facility. 

5-6 

The iMENU software includes a 
Menu Development Subsystem, which 
is a menu-driven set of maintenance 
functions allowing: 
• Menu screen maintenance 
• Form screen maintenance 
• Help screen maintenance 
• Menu selection maintenance 
• Macro maintenance 
• Shellscript maintenance 
• Login ID maintenance 
• Deauthorization maintenance 
• Backup/restore. 



inter XENIX PRODUCTIVITY SOFTWARE TOOLS 

Comprehensive on-line 
Help system 

The Help system is an interactive 
user-assistance facility. The Help 
system is completely integrated with 
the iMENU package so the user need 
no! rely on bulky reference manuals to 
operate a particular application. In the 
event the user encounters problems or 
has questions, explanatory solutions 
can be made available at all times. Us
ing the iMENU system itself, program
mers and experienced users can extend 
or modify the Help system to include 
new applications. 

Expands markets and 
increases profits 

Systems integrators will find the 
iMENU system to be an indispensible 
tool for packaging XENIX-based ap
plications software and integrated hard
ware/software systems. 

Using the iMENU package, applica
tion developers can: 
• Extend the user-interface to wrap 

around new and existing applications 
software 

• Customize existing applications to 
meet varying customer needs 

• Develop application demos 
• Create applications that are easily 

used by non-programmers 
• Package separate programs into in

tegrated applications. 
The iMENU software enhances the 

cost-effectiveness of application 
development by: 
• Improving time to market for new 

software products 
• Reducing software development time 
• Reducing the need for training and 

support 
• Decreasing software installation time 
• Cutting documentation expenses 
• Unifying a family of software pro

ducts for consistent screen ap
pearance and operation. 

Integrated software for the 
iOIS system 

Intel's Database Information System 
(iDIS 86/735) provides end users and 
systems builders with a vehicle for in
corporating a Seamless set of software 
productivity tools. Seamless software 
supports the transparent sharing of data 
files among application packages with 

5-7 

complete data integrity. The iDIS 
system is a multi-user, multi-tasking 
XENIX-based microcomputer available 
with the iWORD processor, the iPLAN 
spreadsheet, the iMENU development 
system, iXTRACT communication 
facilities for downloading mainframe 
databases, thc iDB DBMS for local 
relational database management, and 
software that supports networking of 
personal computers. Application 
development tools and high-level pro
gramming languages are also offered 
with the iDIS system. Data can be 
transferred among the Seamless soft
ware packages, and the iDIS menu 
system and iHELP facility provide a 
friendly, common user interface. The 
iDIS system is an example of how Intel 
provides hardware/software components 
at all levels of integration to meet in
dividual system needs. 

Worldwide service and 
support 

All Intel software included under an 
active software maintenance agreement 
is fully supported by Intel's staff of 
trained software engineers. Depending 
on the system configuration, several 
levels of support are available. Each 
package is offered with complete 
documentation, including a comprehen
sive user manual and installation 
guide. 

SPECIFICATIONS 
Required Hardware: 
• Any 8086 or 80286-based system in

cluding Intel's SYSTEM 86/300, 
286/300 family and iDIS systems 

• Minimum of 128 KB memory 
• At least two floppy disks or one 

hard disk 
• One 8 in. or 5.25 in. double-density 

floppy disk drive for distribution 
media 

Required Software: 
• Intel's XENIX 86/286 Operating 

System 

Warranty: 
90 days for: 
Software Updates and application sup
port. Continuing support services 
available with subscription to a Soft
ware maintenance agreement. 



XENIX PRODUCTIVITY SOFTWARE TOOLS 

The following' are Irademarks of Inlel Cor
poration and may be used only to describe 
Intel producls: BXp, CREDIT, i, ICE, 121CE, 
ICS, iOBp, iOIS, iLBX, im, iMMX, Insile, 
INTEL, , Inlelevision, Intellec, Inleligenl 
IdentifierT", IntelBOS, inteligent Program
ming™, Intellink, iOSP, IPOS, iRMS, iSBC, 
iSBX, iSDM, iSXM, Library Manager, MCS, 
Megachassis, Micromainlt'ame, MULTIBUS, 
Multichannel™ Plug-A-B(Jbble, Seamless, 
MULTIMOOULE, PROMPT, Ripplemode, 
RMX/BO, RUPI, SYSTEM 2000, Data 
Pipeline, lOIS, iDBp, and UPI, and the com
bination of ICE, ICS, iRMX, iSBX, MCS, or 
UPI and a numerical suffix. Intel Corpora
tion assumes no responsibility for the use of 
any circuitry other than circuitry embodied 
in an Intel product. No other patent licenses 
are implied. Specifications are subject to 
change without notice. 

iWORD is a version of Honzon Word Pro
cessing, a trademark of Horizon Software 
Systems, Inc. iPLAN is a version of 
Microsoft's multiplan, a trademark of 
Microsoft Corporation. IMENU is a version 
of Schmidt's Imenus, a trademark of 
Schmidt Associates. 

Information contained herein supercedes 
previously published specifications on these 
devices from Intel. 

5-8 



iTPS Transaction 
Processing Systems 

Terminal Application 
Processing System (iTAPS) 

© INTEL CORPORATION. 1983 

5-9 

• Complete on-line transaction 
processing monitor 

• Easy-to-use, interactive screen 
building utiliti($ 

• Flexible, on-line transaction 
development facilities 

• Reduced user coding with 
standardized functions and 
processing modules 

• Variable indexed sequential database ' 
structure 

• Powerful interactive query language 
with Boolean logic capability 

• Multilevel user-defined security 
• Real-time report writer 
• Menu-prompting 

APIItL 1983 
ORDER NUMBER' 210415-002 



FUNCTIONAL DESCRIPTlON 
Intel's Terminal Application Processing 
System (iTAPS) is the on-line '. 
transaction processing software package 
customized for Intel's Transaction 
Processing System (iTPS). iTAPS 
consists of an interactive application 
development facility and a reliable 
high-performance run-time transaction 
processing monitor. In addition to 
providing ready-to-use software for 
building data files and maintaining 
data relafionships and structures, 
iTAPS interfaces with user-specific 
processing modules. written in COBOL 
or Pascal, iTAPS also supports a 
powerful query language that provides 
direct, easy and fast access to data 
contained· in user database files. 

FEATURES AND BENEFITS 
Application development 
As a complete transaction processing 
application development tool, iTAPS frees 
programmers from the coding 
complexities normally associated with 
development environments tb.at include 
database management, telecommuni
cations and multiprogramming-multiuser 
on-line systems. iTAPS enables 
programmers to write complex 
transaction processing applications with 
simple commands and easy-to-use 
interactive utilities. iTAPS is primarily 
intended for application programmers 
and requires minimal. systems 
programmer involvement. 

iTAPS furnishes an on-line faciliry to 
define screen formats, including the 
variables to be processed and their video 
characteristics. iTAPS simply requests the 
programmer to "paint" the screen as it 
should appear to the system user, and 
fields are then defined interactively by 
filling in a form on the screen. 

iTAPS also provides a number of 
standard modules used repetitively in any 
transaction processing application. These 
modules greatly simplify the development 
and maintenance tasks by automating 
such functions as: 

• Initialization 
• Addition of. a record to the database 
• Modification of a record in the 

database 
• Deletion of a record from the 

database 

• Index structure update 
• Data validation 
• Uniqueness checking 
• Dynamic specification of display 

format 
• File writing 
• Database searching 
• Sorting 

In addition to the standard iTAPS 
modules, the programmer may write 
user-specific COBOL or Pascal 
programs to address specific application 
processing requirements. These 
programs combined with the iTAPS 
standard modules make up an 
application transaction. The COBOL 
or Pascal program calls upon iTAPS to 
provide all database and terminal I/O 
functions. The program can also access 
non-iTAPS files using standard 110 
programming. 

All these features add up to increased 
system and programmer productivity. 
Programmers can spend more time 
designing and implementing their 
applications and less time worrying 
about multiuser on-line systems 
requirements. As a result, applications 
come on-line faster. Furthermore, the 
consistent organization of iTAPS 
application systems minimizes 
maintenance and enhancement 
problems. 

iTAPS produces extensive application 
documentation. Even if the program's 
author has departed, very little time 
will be lost reconstructing or enhancing 
the application. This means that iTAPS 
reduces the cost of application software 
both in the development phase and in 
the maintenance phase. 

Run-time transaction processing 

At run-time, iTAPS provides a 
complete multiuser on-line transaction 
processing environment with five levels 
of predefined security checks: sign-on, 
application system selection, data 
add/delete, field read/write, and field 
index. Two menu levels to select the 
application system and the desired 
tramaction are provided. 

When iTAPS receives a request from a 
terminal to initiate execution of a 
particular transaction, it allocates the 
resources between that terminal and 

5-10 

the. ilpecified transaction, and manages 
all the disk input/output. Because 
"Intel's Transaction Processing System 
has been optimized for transaction 
procesSing, the system overhead is kept 
at a minimum. Superior performance 
results as measured in terms of both 
throughput and response time. 

.iTAPS provides first level data 
validation. Errors are detected as they 
occur and before the more complex 
application processing takes place. 
Thus iTAPS significantly assists not 
only in validation and immediate 
correction of the input data, but also 
in realizing a more efficiently 
performing system by reducing 
unnecessary processing. 

iTAPS supports a powerful query 
facility based on predefined commands 
and on the use of English words to 
describe each data element. Compound 
Boolean inquiries can be formulated 
using aliases, data values and logical 
operators. The response to an inquiry 
can be displayed at the terminal or 
printed on the system printer. 

System Organization 
iTAPS is composed of five modules: 

• The Executive 
• The Communication Manager 
• The Application Manager 
• The Data Manager 
• The iTAPS terminal 

As shown, these modules interact with 
the operating system, the user's 
software, the terminal, and the 
database. This segmentation enables 
programmers to develop each module 
as an independent entity and to modify 
it without having to alter the entire 
application. Each module is designed to 
simplify application development, 
implementation and execution. 



The iTAPS Executive 

The Executive provides the interface 
with the iRMX 86 operating system 
and acts as the run-time transaction 
processing monitor. The Executive 
controls sign-on and menu displays, 
performs security-checking, and 
maintains a log which posts the 
appropriate "before" and/or "after" 
image of any data file change. Based on 
this log, the Executive provides defined 
recovery capabilities: 

• At the network level: Following a 
terminal or communication line 
failure, the last transaction is 
retrieved from storage 'and retrans
mitted to the terminal upo~ entry of 
a command by the operator. 

• At the file level: Following a system 
failure the recovery log is read to 
update the file and back-out the 
incomplete transactions. Full 
recovery is also provided by the 
recovery log in conjunction with the 
last back-up. 

In addition, the Executive provides 
statistical services to evaluate system 
use and performance, auditing facilities 

to isolate illegal transmissions, and 
documentation facilities to record the 
application and data structures. 

The iTAPS Communication Manager 
The Communication Manager controls 
the communications network. lt 
collects data that has been transmitted 
from a terminal, sends messages back 
to the terminals, and maintains the 
network buffers. Supporting both block 
and TAPS modes, the Communication 
Manager is designed to optimize line 
transmission. 

The Communication Manager is 
completely transparent to the 
application programmer as well as to 
the user. 

The iTAPS Application Manager 
The Application Manager controls the 
application processing sequence of each 
terminal within the network. Upon 
receipt of a request from the 
Communication Manager, the 
Application Manager determines the 
transaction type, schedules the 

IAMX OPERATING SYSTEM 

5-11 

appropriate processing modules, 
transfers data, and generally manages 
the logic of the application. 

The iTAPS Data Manager 
The Data Manager interfaces iTAPS 
\vith the database. It perfof!Ps th~ 
additions, changes, deletions and 
extractions requested by the 
Application Manager. It can be 
executed from a user module during 
the processing of a transaction or when 
the query language is used. 

The Data Manager uses a valued, 
inverted structure called Variable 
Indexed Sequential Access Method 
(VIS AM) to format the database. Each 
VISAM database is composed of a 
keyed access index file and a direct 
access primary file. The primary file 
contains the data records, and the 
index file contains all the pointers to 
the primary file records. Virtually all 
fields in the database can be accessed 
by keyed value. Both structured and 
unstrl,lctured (text) fields can be 
indexed. 

The iTAPS terminal 
When the TAPS mode feature is used 
in the iTPS terminal, major iTAPS 
functions are handled at the terminal 
leveL Screen-formatting, edit-checking, 
and data-validation are performed by 
the terminaL This frees the central 
processor from the burden of 
performing these tasks. iTAPS supports 
both block and TAPS modes in the 
intelligent terminals. The TAPS mode 
terminal feature enables an operator to 
correct an error while the source 
document is readily available. 

Summary 
iTAPS has been specifically designed to 
satisfy the requirements of transaction 
processing. It is a complete software 
system with an efficient architecture, a 
simplified programming style, and a 
wide array of features designed to 
optimize both applications development 
and on-line transaction processing. 
When Intel's iTPS is enhanced with 
iTAPS, the result is application 
development productivity and a 
complete user friendly secure run-time 
system. 



iTPS Transaction 
Processing "Systems 

Communications 

<lINTEL CORPORATION, 1983 

5-12 

• Extensive array of remote 
communication connection options 

• Emulation of IBM 2780/3780 RJE 
station 

• Emulation of IBM 3270 BISYNC 
cluster controller 
-Intel Transaction Processing System 
(iTPS) looks like IBM 3271 control 
unit with up to 32 devices attached 

-iTPS terminals look like IBM 3277 
terminals 
iTPS printers look like IBM 3284 
printers 

• Emulation of IBM 3270 SDLC/SNA 
cluster controller 
-iTPS looks like IBM 3274 control 
unit with up to 16 devices attached 
-iTPS terminals look like IBM 3278 
model 2 terminals 
-iTPS printers look like the IBM 
3287 printer 

• Communication speeds up to 19,200 
bits per second (bps) 

• Leased or switched communication 
lines 

APAL 1883 
ORDER NUMBER: 210418-002 



FUNCTIONAL DF.SGRIPTION 
A variety of host communications 
options are available on the iTPS 
family of systems. Emulation of an IBM 
2780 or 3780 Remote Job Entry station 
provides an easy and commonly 

, recognized method of file transfer and 
host communication. Emulation of an 
IBM 3271 control unit and its attached. 
devices using binary synchronous 
(BISYNC) protocol is provided for 
interactive communication 
requirements. For IBM System 
Network Architecture (SNA) users, 
emulation of IBM 3274 or 3276 control 
unit and its attached devices using 
synchronous data link control (SDLC) 
protocol provides interactive SNA 
communications. Thus, both batch and 
interactive communication 
requirements are satisfied. 

FEATURES AND BENEFITS 
IBM 2780/3780 emulator 

The IBM 2780 and 3780 data 
communications terminals were designed 
to allow the transmission and reception 
of large volumes of data at 
communications line speed. The devices 
Lonsist of an 80 column card reader, a 
printer and an optional 80 column card 

punch. The iTPS 2780 and 3780 
emulators perform the same functions, 
using card images from disk files for 
transfer to the host and accepting print 
or punch records from the host for 
transfer to iTPS files or spooling to the 
printer. 

The following IBM 2780/3780 features 
are supported by the emulators: 

• Full data link control 
• Full time-out control 
• Cyclic redundancy checkjng 
• Printer carriage control decoding 
• Component selection 
• Horizontal format control 
• EBCDIC transparency 
• Processor interrupt 
• Space compression/expansion (3780 

mode only) 
• Multiple record transmission (2780 

only) 
• Leased communications lines 

The emulators provide automatic or 
operator selecrable ASClllEBCDIC code 
translation. Operator selectable device 
modes are: 2780, 3780, 2770, 3741 or 
CPU. CPU mode is useful in computer
to-computer communications where 
record padding and truncation are not 

(LEASED) 
or 

(SWITCHED) 

IBM 2780/3780 Emulation 

5-13 

desired. The CPU mode allows one iTPS 
to communicate with other iTPS systems. 
The console operation can be optionally 
assigned to the disk file, minimizing 
operator interaction. 

The emulators may be operated at data 
rates up to 19,ZOO bps using: 

• Point-to-point Oeased Of switched) 
lines with synchronous modems, or 

• Hard-wired connection with'short
haul synchronous modems, or 

• Hard-wired connections with a 
synchronous modem eliminator. 

Interface to the modem or modem 
eliminator is via an 11 conductor cable 
equipped with DB-type connectors on 
both ends. The emulators communicate 
in half-duplex mode and require only 
half-duplex communications facilities. 

The emulators can communicate with a 
host system which supports an IBM 2780 
or 3780 and has a compatible modem. 
Typical hosts include IBM 360, IBM 370, 
IBM 30XX, 430X, System 34, Series 1 
and Office System 6 systems. 



IBM 3270 BISYNC emulator 
This offering provides emulation of an 
IBM 3271 model 2 BISYNC cluster 
controller. iTPS terminals and printers 
emulate IBM 3277 model 2 terminals 
and IBM 3284 printers, respectively. 
Thus, the iTPS system a~pears as a 
"real" 3271 cluster operatmg on a 
BISYNC line with up to 32 devices 
attached. The iTPS can offer a wide 
range of capabilities to end-users, like 
execution of transactions under CICS, 
software development activities under 
TSO, or execution of other 
applications developed on a host 
system which interacts with 3270 
devices. 

Functions of the 3270 such as screen
formatting, polling responses, data link 
control, time-out control and cyclic 
redundancy checking are all supported. 
The emulator may be configured to 

define any terminal keyboard character 
as any 3270 keyboard character. It is 
possible, then, to define 3270 keys not 
present on the actual keyboard. An 
ideal use of this capability is for 
definition of the 3270 keys ENTER, 
PRINT, RESET, TAB BACK, TAB, 
PFn and PAn. 

A hard copy of the information 
currently displayed on the screen may 
be obtained by pressing the local print 
key. This image will be directed to a 
spool file, if so desired. 

The 3270 BISYNC emulator 
communicates with the host in half
duplex mode on point-to-point lines. A 
synchronous modem is used at speeds 
of 1200 bps to 19,200 bps. The 
connection to the host may also be 
hard-wired using inexpensive short-haul 

(LEASED) 
or 

(SWITCHED) 

IBM 3270 BISYNC Emulation 

(LEASED) 
or 

(SWITCHED) 

IBM 3270 SDLCISNA Emulation 

5-14 

synchronous modems. The iTPS may 
be multidropped along with other 3270 
clusters. 

IBM 3270 SDLC(SNA emulator 
Emulation of an IBM 3274 Ie and SIc 
or SOLC/SNA cluster controller is also 
available. iTPS terminals emulate IBM 
3278 model 2 terminals. iTPS printers 
emulate the IBM 3287 model 2 printer. 
Thus, the iTPS system appears as a 
"real" 3274 cluster operating on an 
SOLC line with up to 16 devices 
attached.-The iTPS appears as a type 2 
logical unit (LU-2) as defined in IBM's 
System Network Architecture for 
support of display devices and a type 1 
and a type 3 logical unit (LU-3) for 
support of printer devices. 

iTPS 3270 SOLC provides for all field 
display attributes except for the 



extended attributes for color, extended 
highlighting or programmed symbols. 
The 25th line on the iTPS terminals is 
used to display symbols for INSERT 
MODE, INPUT INHIBITED, SYSTEM 
READ, JOB ACTIVE, SYSTEM 
ACTIVE and CHECK. All keys 
supported by iTPS are supported by 
iTPS 3270 SDLC/SNA. In addition, 
atfention, cu£SOr select, delete and 
insert keys may be defined. The system 
request key, if defined, may be used to 
access an SSCP·LU session from a 
LU·LU session, as with the real 3270. 

A hard copy of the information 
currently displayed on the screen can 
be obtained by pressing the local print 
key. The image will be directed to a 
spool file, if so desired. 

Transmission speeds from 1200 bps to 
19,200 bps are supported. The iTPS 
can be multidropped along with other 
SDLC/SNA devices. 

5-15 



inter 

SYSTEM 2000· 
Database 

Management 
System 

Sperry (Univac) 
1100 Series 

5-16 

• Fully integrated facilities 
• Controlled sharing of corporate 

data 
• Relational query 
• Screens and transactions without 

programming 
• Interactive report generator 
• Application development tools 
• Decision-assist microcomputer 

system 
• Vendor service and support 



SYSTEM TECHNICAL 
DESCRIPTION 

Fully integrated facilities 
!DO, the integrated Data Dictionary, 

controls all database-related information 
and processes. All access to SYSTEM 
200(J® is through the !DO, which acts as a 
control point for Data Processing. 
Operating at the core of Intel's SYSTEM 
2000, !DO stores information on database 
,tructures and processes in a form that is 
compatible with the DBMS functions. 
Floth end users and applications program
mers rely on !DO functions for DBMS re
quests. !DO handles definition, control, 
and reporting functions. All updates are 
mtegrated through !DO, and user-defined 
procedure and other facilities operate 
throagh roo, thus creating a central 
definition for all access to data. !DO 
,ecurity features protect the information 
resource from unauthorized access and 
usage. !DO enables Data Processing to re
tain greater control over the environ
ment, provides greater systems reliability, 
and allows for reduced application 
development time. 

Controlled sharing of 
corporate data 

With SYSTEM 2000, the data ad
ministrator can maintain central control 
of database files. All access by end users 
can thus be controlled and scrutinized. 
System integrity and control features 
allow multiple levels of database recovery 
spanning database archiving, roll-forward, 
and update logs. In case of program or 
machine failure, data is recoverable. Con
current access and update are allowed 
and protected without application sup
port, thus saving application time. 

!DO has been designed with inherent 
security features to protect the informa
tion resource from unauthorized access 
and usage. The key security feature is a 
password procedure which prevents 
unauthorized database creation or revi
sion. The data administrator applies the 
password at database, record, and item 
levels to impose any combination of 
retrieval, update, or search restrictions for 
each item in a database. The data ad
ministrator also uses roo to specify 
restart and recovery parameters for each 
physical database in the environment. 

SYSTEM 2000 supports concurrent 
processing, including concurrent updating, 
in all environments. Users, databases, 
and resources are coordinated via the 
Concurrent Update facility. This coor
dination ensures the integrity of the 
database and makes the most efficient 
utilization of resources to support produc
tion processing. 

Relational query 
QUEST is an English-like query/update 

language, designed for the end user in 
support of ad hoc access to the database, 
as well as for the application developer in 
support of database testing and prototyp
ing. Since this free-form, natural language 
is designed for ease of use and has power
ful search, display and update capability, 
it is ideally suited for all database access 
needs. 

For the end user, QUEST represents a 
powerful and user-friendly relational-like 
language to support on-line, ad hoc access 
to SYSTEM 2000. For the application 
programmer, QUEST is a convenient 
facility for trying out basic report and up
date procedures and as a debug tool for 
application program development. By gIv
ing the end user direct access to data, 
QUEST can ease application backlogs 
and substantially confribute to improving 
an organization's overall productivity. 

QueX, Query/Update by Example, is a \ 
powerful aid for the end user environ
ment. QueX extends the power of 
SYSTEM 2000 beyond QUEST, Report 
Writer, and PLEX by providing function
driven, screen-oriented query/update to 
the non-Data Processing user. QueX sup
ports full networking and multiple 
database access and requires only one 
hour of training for non-DP end users. 

l_--'-------'---_ 
5-17 



QueX provides a user with a fill-in-the
blank approach. QueX performs all con
currency control automatically and helps 
the user through each retrieval operation. 
continually displaying the current record. 
QueX also enables the user to perform 
data entry, deletion, and modification 
where so authorized. Once the ap
propriate databases have been created, 
QueX systems can be developed and in 
production in minutes. In short, QueX is 
the solution to immediate end user pro
ductivity. 

Screens and transactions 
without programming 

Screen Writer is an extension to QueX 
which allows screens to be defined and 
conditionally processed without any pro
gramming. Screen formats as well as the 
logic to process those screens are defined 
during an interactive session. 
Transaction-oriented systems can be 
developed in hours instead of months. 
Powerful security, editing, and validation' 
features make Screen Writer an extr:emely 
effective tool for entering and updating 
data. Editing and validation rules can 
even be specified at the character level. 

Both QueX and Screen Writer are 
available on a wide range of synchronous 
and asynchronous terminals. 

Interactive report generator 
Report Writer is a facility which sup

plies end users and programmers with de
mand and batch reporting capabilities for 
both simple and complex requirements. 

Report Writer can generate reports 
against all or selected portions of a 
database. Report Writer provides data 
editing, page formatting, calculations, 
summaries, and ordering of printed infor
mation in either demand or batch mode. 
By providing a quick and easy way to 
produce reports, Report Writer eases the 
burden on Data Processing, thereby 
reducing the application development 
costs. 

Report Writer has a conversational op
tion called Genius. Based on the user's 
response to a series of prompts, Genius 
generates distribution-quality reports in 
just minutes, without programming. 
Genius has the ability to store report 
specifications and generate the format at 
a later date. It not only provides the error 
detection and recovery capabilities needed 
for inexperienced L1sers, it also makes the 
programmer's job easier by eliminating 
coding in report production. A graphics 
option allows the user to generate bar, 
pie, line and plot charts in a conversa
tional manner. 

5-18 

Programmer language 
interfaces 

SYSTEM 2000 addresses programmer 
needs by offering programmer productivity 
tools which assist in reducing application 
development time for applications which 
may require programming. These produc
tivity tools work in concert to provide the 
benefits of data independence, on-line ap
plications support, complete documenta
tion of the environment, and reduced 
programmer time. 

With PLEX, the Programming 
Language Extension to SYSTEM 2000, 
the application developer has powerful 
database s~arch and manipulation 
capabilities at his disposal. Programmers 
can focus on specific application solutions, 
leaving SYSTEM 2000 to address the 
physical database environment. PLEX is 
ideally suited for production-oriented ap
plications in demand and batch en
vironments. 

PLEX offers the application developer a 
choice of COBOL or FORTRAN pro
gramming languages to support database 
manipulation. PLEX commands are ana
lyzed by a preprocessor that interacts 
directly with the IDD, thus ensuring 
system integrity. 



PLEX commands are high level English
like verbs which eliminate the need to 
manipulate pointers or navigate data 
structures, improving, programmer produc
tivity and reducing program maintenance. 
Capabilities include: 

• Dynamic Networking: Using PLEX 
LINK, network relationships among data 
in one or more databases may be 
established, 

• Database Loading: The high speed 
LOAD utility supports database creation 
and large volume additions. 

• Data Selection, Rerrieval and Up
dating: The WHERE clause controls data 
selection; LOCATE and GET verbs are 
for retrieval; MODIFY, REMOVE, and 
INSERT verbs are for updating. 

• Program Independence: PLEX pro
grams are independent of the physical 
structure of the databases which they ac
cess, a benefit which significantly im
proves programmer productivity over the 
traditional file environment. 

Features such as Screen Writer, QueX, 
QUEST, and Genius can be used in most 
instances to build entire applications 
without any programming. 

Decision-assist microcomputer 
system 

iDlSTM 861735 (the Intel Database In
formation System) is a fully integrated 
XENIX*-based microcomputer that allows 
decision-assist needs to be supported on 
corporate data resources. iDIS solves the 
problem of uncontrolled microcomputer 
proliferation by distributing the database 
where it is needed while enabling Data 

"'Xemx is a Trademark of Microsoft Corporation 

Processing to maintain control of the 
database. As a means of distributed pro
cessing, iDIS still observes centralized 
rules on database access, thereby preserv
ing the investment in corporate data. 
SYSTEM 2000 and iDIS work in concert 
to extract data from SYSTEM 2000 down 
to the local iDIS databases, all operating 
under IDD control. 

Many desirable features are inherent in 
the iDIS system: 

• Local relational database operation 
• Word processing and graphics 

capability 
• User-friendly environment 
., Compact desk-top integrated 

microsystem 
• High-level language support 
The hardware for iDIS is Intel's 861735. 

iDIS communicates with mainframe via a 
configurable communications subsystem. 

Complete service and support 
Documentation: Intel provides com

prehensive modular documentation, in
corporating a user-friendly approach, to 
support its full line of DBMS products. 
At present, 25 different documentation 
manuals and pocket references are 
available for various systems audiences. 

5-19 

Education: To augment documenta
tion, Intel offers nine complete, cost
effective training classes, including 
instructor-directed courses and workshops 
held publicly or at the customer's site. 
Video-based instruction is also available. 
The self-paced courses are designed to 
meet the varying knowledge requirements 
of the professional and non-technical end 
user. 

Field Support: Whatever the level of 
support required, Intel responds. Intel's 
field offices are located throughout the 
U.S., Canada, and Europe. All sofrware 
under a current license agreement is sup-

"ported by the Intel Austin Customer Ser
vice Department and by the local sales 
office. Intel maintains a customer service 
group of highly trained, experienced infor
mation systems professionals who have 
the techl}ical expertise to handle customer 
needs. A Customer Support Representa
tive (CSR) is assigned to each customer to 
provide personalized service; the CSR can 
be reached via the 24-hour TOLL FREE 
Customer Service Hotline, 

Innovation: Intel is committed to im
proving and enhancing its product family, 
thereby increasing customer productivity 
and extending their useful system life 
cycle. 

Other Environments: 
- IBM OS 
- IBM OOSIVSE 
- IBM VM/CMS 
- CDC 6000, CYBER 





SPECIFICATIONS 
Hardware support 

Sperry (Univac) 1100 SerieS' 
Operating systems 

OS 1100 
Communications 

Demand or batch mode 
Access methods 

Sequential, indexed sequential 
Main memory requirements 

Minimum recommended-30K 
Number of databases 

230 maximum (concurrent access) 
Size of data bank 

1380 billion characters data (concurrent 
access) 

Data model 
Hierarchical 

Semantic models 
Relational, network, hierarchical 

Number of on-line users 
230 (concurrent access) 

Data types 
Character, text, date, integer, decimal, 
money 

Functi0n~ 
- Database definition 

Data dictionary 
Program development 
On-line query/update 
Batch query/update 
Report generator 

- On-line data entry 
- Multiple database access 
- Item level security 
- Recovery 
- Reorganization utilities 

Concurrency control 
Multi-user/concurrent update 
Full Boolean logic 

5-21 

1 





Component Software 6 





80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

iRMX 86 OPERATING SYSTEM PROCESSORS 

• High-Performance 2-Chip Data 
Processors Containing Operating 
System Primitives 

• Standard iAPX 86/10, 88/10 Instruction 
Set Plus Task Management, Interrupt 
Management, Message Passing, 
Synchronization and Memory 
Allocation Primitives 

• Fully Extendable To and Compatible With 
iRMX" 86 

• Supports Five Operating System Data 

Types: Jobs, Tasks, Segments, 
Mailboxes, Regions 

• 35 Operating System Primitives 
• Built-In Operating System TImers and 

Interrupt Control Logic Expandable 
From 8 to 57 Interrupts 

• 8086/80150/80150-2/8088/80186/80188 
Compatible At Up To 8 MHz Without 
Wait States 

• MULTIBUS@ System Compatible Interface 

The Intel IAPX 86/30 and IAPX 88/30 are two-chip microprocessors offenng general-purpose CPU (8086) 
instructions combined with real-time operating system support. They provide a foundation for multiprogram
ming and multitasking applications The IAPX 86/30 consists of an IAPX 86/10 (16-bit 8086 CPU) and an 
Operating System Firmware (OSF) component (80130) The 88/30 consists of the OSF and an iAPX 88/10 (8-bit 
8088 CPU) (80186 or 80188 CPUs may be used In place of the 8086 or 8088.) 

Both component5 of the 86/30 and 88/30 are Implemented In N-channel. depletion-load, silicon-gate technol
ogy (HMOS). and are housed In 40-pln packages The 86/30 and 88/30 provide all the functions of the iAPX 86/1 0, 
88/10 processors plus 3!'J operating system primitives, hardware support for eight Interrupts, a system timer, a 
delay timer and a baud rate generator 

8284A 
CLOCK 
DRIVER 

ROY 

:1 
r~1 CLOCk 

I I 

8088 
OR 

BOSt-III 
! INTERRUPT STATUS I 

! I~ l Jco",,~ 
"H"""", ''''~~ _______ _ 

~-H~~ ____ BO~'30 _____ -i tf~~ 
BAUD RATE 

TIMER 
DELAY 
TIMER 

SYSTEM 
TIMER 

IAPX 86/30, 88130 

Figure 1. iAPX 86/30, 88/30 Block Diagram 

PROGRAM 
MEMORY 

DATA. 
MEMORY 

Intel Corporation Assumes No Responslbllty for the Use of Any Circuitry Other Than Circuitry Embodied 10 an Intel Product No Other CirCUit Patent Licenses a'. Implied 
@INTELCORPORATION. 1981 6-1 OCTOBER 1981 

210216·002 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

MAX I MAX I MODE ':E 8086 

V" Vee V" Vee 

AD1' AD1S (AI4) A014 AD1S (AIS) 

AD13 iHE (AI3) AD13 AI6/S3 

AD12 IR7 (AI2) AD12 AI7IS' 

AD11 IRS (Al1) AD11 A16/SS 

A010 IRS (All!) AD10 A101S6 

ADa IRC (AS) ADS SHE/S7 (HIGH) 

ADa IR3 (AS) ADa MNIMX 

AD7 IR2 AD7 AD 
ADa IR1 ADS ROIGTO 

ADS lAO ADS ROIGfi 

AD4 INT AD. LOCK 

AD3 S2 AD3 52 

AD2 51 AD2 51 

AD1 so AD1 so 
ADO ACK ADO OSO 

MEMCS LlR HMI OS1 

iOcS SYSTICK INTR TEST 
ClK DELAY elK READV 

Vss BAUD V's RESET 

Figure 2. iAPX 86/30, 88/30 Pin Configuration 

Table 1. 80130 Pin Description 

Symbol Type Name and Function 

AD1S-ADo lID Address Data: These pins constitute the time multiplexed memory address (Tl ) and 
data (T2' T3, Tw, T4) bus. These lines are active HIGH. The address presented during Tl of 
a bus cycle will be latched internally and interpreted as an 80130 internal address if 
MEMCS or 10CS is active for the invoked primitives. The 80130 pins float whenever it is 
not chip selected, and drive these pins onlyduringT2-T4 of a read cycle andT1 of an INTA 
cycle. 

IDlE/S7 Bus High Enable: The 80130 uses the BHE signal from the processor to determine 
whether to respond with data on the upper or lower data pins, or both. The signal is active 
LOW. BHE is latched by the 80130 on the trailing edge of ALE. It controls the 80130 output 
data as shown. 

SHe Ao 
0 0 Word on AD1S-ADo 
0 1 Upper byte on AD1S-ADa 
1 0 Lower byte on AD7-ADO 
1 1 Upper byte on AD7-ADO 

S2,S"SO I Status: For the 80130, the status pins are used as inputs only. 80130 encoding follows: 

52 S, So 

0 0 0 INTA 
0 0 1 lORD • 0 1 0 10WR 
0 1 1 Passive 
1 0 0 Instruction fetch 
1 0 1 MEMRD 
1 1 X Passive 

6-2 AFN.Q2059A 



infel' 80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 1, 80130 Pin Description (Continued) 

Symbol Type Name and Function 

ClK I Clock: The system clock provides the basIc timing for the processor and bus controller. 
:t is asymmetr:c with a 33% duty cyclp. to provide optimized internal timing. The 80130 
uses the system clock as an Inp'ut to the SYSTICK and BAUD timers and to synchronize 
operation with the host CPU. 

INT a Interrupt: tNT IS HIGH whenever a valid Interrupt request is asserted. It is normally used 
to Interrupt the CPU by connecting it to INTR. 

IRrlRo I Interrupt Requests: An Interrupt request can be generated by raising an IR Input (lOW 
to HIGH) and holding It HIGH until it IS acknowledged (Edge-Triggered Mode), or just by a 
HIGH level on an IR input (level-Triggered Mode). 

ACK a Acknowledge: This line is lOW whenever an 80130 resource is being accessed. It is also 
lOW dUring the first INTA cycle and second INTA cycle If the 80130 is supplying the 
Interrupt vector information. This signal can be used as a bus ready acknowledgement 
and/or bus transceiver control. 

MEMCS I Memory Chip Select: ThiS Input must be driven lOW when a kernel primitive is being 
fetched by the CPU AD13-ADo are used to select the Instruction. 

lacs I Input/Output Chip Select: When thiS Input IS low, during an lORD or IOWR cycle, the 
80130's kernel primitives are accessing the appropriate peripheral function as specified 
by the follOWing table: 

BHE A3 A2 A1 Ao 

0 X X X X Passive 
X X X X 1 Passive 
X 0 1 X X Passive 
1 0 0 X 0 Interrupt Controller 
1 1 0 0 0 Systlck Timer 
1 1 0 1 0 Delay Counter 
1 1 1 0 0 Baud Rate Timer 
1 1 1 1 0 Timer Control 

LlR a Local Bus Interrupt Request: This Signal is lOW when the Interrupt request is for a 
non-slave Input or slave Input programmed as being a local slave. 

Vee Power: Vee is the +5V supply pin. 

Vss Ground: Vss IS the ground pin. 

SYSTICK a System Clock Tick: Timer 0 Output. Operating System Clock Reference. SYSTICK is 
normally Wired to IR2 to Implement operating system timing interrupt. 

DELAY 0 DELAY Timer: Output of timer 1 Reserved by Intel Corporation for future use. 

BAUD 0 I Baud Rate Generator: 8254 Mode 3 compatible output. Output of 80130 Timer 2. 

FUNCTIONAL DESCRIPTION ment which constantly controls the telephone traffic 
in a multiphone office, file servers/disk subsystems 
controlling and coordinating multiple disks and mul
tiple disk users, and transaction processing systems 
such as electronics funds transfer. 

The increased performance and memory space of 
iAPX 86/10 and 88/10 microprocessors have proven 
sufficient to handle most of today's single-task or 
single-device control applications with performance 
to spare, and have led to the increased use of these 
microprocessors to control multiple tasks or devices 
in real-time. This trend has created a new challenge 
to designers-development of real-time, multitask
ing application systems and software. Examples of 
such systems include control systems that monitor 
and react to external events in real-time, multifunc
tion desktop and personal computers, PABX equip-

6-3 

The iAPX 86/30, 88/30 Operating System 
Processors 

The Intel iAPX 86/30, 88/30 Operating System Pro
cessors (OSPs) were developed to help solve this 

AFN·020598 



intel 
80130/80130-2 

iAPX 86/30, 88/30, 186/30, 188/30 

,----------------------------------, 
I OPERATING SYSTEM UNIT 

I I 
I 

00-7 I 
I I 
I r I 8 
I 
I 

PROGRAMMABLE 
I 

I 
INTERRUPT 

I INTERRUPT INP 
LOGIC 

UTS 

I I 
I I 
I I INTERRUPT OUT 
I 

CONTROL 
I 

I I 

I 
STORE I 

I I 
I I 

2 SYSTEM ~ SYSTEM 

: 
TIMER I 

I 

: 
I 
I 

: 
08·15 I 

r---- DELAY DElAY 

: I- TIMER I 
I 

: 

~ 
I 
I 

i I 
BAUD RATE ~ BAUORA 

: 
GENERATOR I 

I 

TE 

I I 
f-------------- ------ -- -------------1 
I I 
I k- I 
I, r- CLOCK 

I 
I I-- I 3 ,. DATA r---- BUS ~ STATUS 
! BUFFER INTERFACE 

Z • AND I 4 

I ADDRESS CONTROL ~BUSCON 
ADDRESS I LATCH 

TAOl 

DATA BUS I ~ LOCAL 
I I INTERAU PT 
I CONT'ROL UNIT I (CIA) L __________________________________ ~ 

Figure 3. OSF Internal Block Diagram 

problem, Their goal IS to Simplify the design of multl
tCjsking application systems by providing a well
defined, 'fully debugged set of operating system 
primitiVes implemented directly in the hardware, 
thereby removing the burden of designing multitask
ing operating system primitives from the application 
programmer. 

Both the 86/30 and the 88/30 OSPs are two-chip sets 
consisting of a main processor, an 8086 or 8088 CPU, 
and the Intel 80130, Operating System Firmware 
component (OS F) (see Figure 1), The 80130 provides 
a set of multitasking kernel primi,ives, kernel control 
storage, and the additional support hardware, in
cluding system timers and interrupt control, re
quired by these primitives, From the application 
programmer's viewpoint, the OSF extends the base 
iAPX 86, 88 architecture by providing 35 operating 
system primitive instructions, and supporting five 
new system data types, making the OSF a logical and 

6-4 

easy-to-use architectural extension to IAPX 86, 88 
system designs, 

The OSP Approach 

The OSP system data types (SOTs) and primitive in

structions allocate, manage and share lOW-level pro
cessor resources in an efficient manner. For 
example, the OSP implements task context manage
ment (managing a task state image consisting of 
both hardware register set and software control in-

, formation) for either the basic 86/10 context or the 
extended 86/20 (8086+8087) numerics context The 
OSP manages the entire task state image both while 
the task is actively executing and while it is inactive, 
Tasks can be created, put to sleep for specified peri- . 
ods, suspended, executed to perform their func
tions, and dynamically deleted whe.n their functions 
are complete. 

AFN·020598 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

The Operating System Processors support event
oriented systems designs. Each event may be pro
cessed by an individual responding task or along 
with other closely related events in a common task. 
External events and interrupts are processed by the 
OSP interrupt handler primitives using its built-in 
interrupt controller subsystem as they occur in real
time. The multiple tasks and the multiple events are 
coordinated by the OSP integral scheduler whose 
preemptive, priority-based scheduling algorithm 
and system timers organize and monitor the process
ing of every task to guarantee that events are pro
cessed as they occur in order of relative importance. 
The 86/30 also provides primitives for intertask com
munication (by mailboxes) and for mutual exclusion 
(by regions), essential functions for multitasking 
applications. 

Programming Language Support 

Programs for the OSP can be written in ASM 86/88 or 
PL/M 86/88, Intel's standard system languages for 
iAPX 86,88 systems. 

The Operating System Processor Support Package 
(iaSp 86) provides an interface library for applica
tion programs written in any model of PL/M-86. This 
library also provides 80130 configuration and in
itialization support as well as complete user 
documentation. 

OSF PROGRAMMING INTERFACE 

The aSF provides 35 operating system kernel 
primitives which implement multitasking, interrupt 
management, free memory management, intertask 
communication and synchronization. Table 4 shows 
each primitive, and Table 5 gives the execution per
formance of typical primitives. 

OSP primitives are executed by a combination of 
CPU and aSF (80130) activity. When an OSP primi
tive is called by an application program task, the 
IAPX CPU registers and stacks are used to perform 
the appropriate functions and relay the results to the 
application programs. 

OSP Primitive Calling Sequences 

A standard, stack-based, calling sequence is used to 
invoke the OSF primitives. Before a primitive is 
called, its operand parameters must be pushed on 
the task stack. The SI register is loaded with the 
offset of the last parameter on the stack. The entry 
code for the primitive is loaded into AX. The primitive 
invocation call is made with a CPU software interrupt 

6-5 

(Table 4). A representative ASM86 sequence for call
ing a primitive is shown in Figure 4. In PLIM the OSP 
programmer uses a call to invoke the primitive. 

SAMPLE ASSEMBLY LANGUAGE PRIMITIVE CALL 

PUSH p, ,PUSH PARAMETER 1 
PUSH P" ;PUSH PARAMETER 2 

PUSH PN ,PUSH PARAMETER N 
PUSH SP ,STACK CALLING CONVENTION 
MOV BP,SP 
LEA SI,SS:NUM_BYTES_PARAM 21BPI 

,55 51 POINTS TO FIRST 
;PARAMETER ON STACK 

MOVAX, ENTRY CODE ,AX SETS PRIMITIVE ENTRY CODE 
INT 184 ;DSF INTERRUPT 

OSP PRIMITIVE INVOKED 

POPSP 
RET NUM_BVTES __ PARAM_ ,POP PARAMETERS 

,ex CONTAINS eXCEPTION CODES 
,DL CONTAINS PARAMETER NUMBER 

THAT CAUSED EXCEPTION (IF 
, ex IS NON ZERO) 
,AX CONTAINS WORD RETURN VALUE 
,ES ax CONTAINS POINTER 

RETURN VALUE 

Figure 4. ASM/86 OSP Calling Convention 

OSP Functional Description 

Each major function of the asp is described below. 
These are: 

Job and Task Management 
Interrupt Management 
Free Memory Management 
Intertask Communication 
Intertask Synchronization 
Environmental Control 

The system data types (or SOTs) supported by the 
asp are capitalized in the description. A short· 
description of each SOT appears in Table 2. 

JOB and TASK Management 

Each OSP JOB is a controlled environment in which 
the applications program executes and the OSF sys
tem data types reside. Each individual application 
program is normally a separate asp JOB, whether it 
has one initial task (the minimum) or multiple tasks_ 
JOBs partition the system memory into pools. Each 
memory pool provides the storage areas in which the 
OSP will allocate TASK state Images and other sys
tem data types created by the executing TASKs, and 
free memory for TASK working space. The OSP sup
ports multiple executing TASKs within a JOB by 
managing the resources used by each, including the 
CPU registers, NPX registers, stacks, the system data 
types, and the available free memory space pool. 

AFN 020596 



intel· 80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

When a TASK is created, the OSP allocates memory 
(from the free memory of its JOB environment) for 
the TASK's stack and data area and initializes the 
additional TASK attributes such as the TASK priority 
level and its error handler location. (As an option, the 
caller of CREATE TASK may assign previously 
defined stack and data areas to the TASK.) Task 
priorities are integers betweEln 0 and 255 (the lower 
the priority number the higher the scheduling 
priority of the TASK). Generally, priorities up to 128 
will be assigned to TASKs which are to process inter
rupts. Priorities above 128 do not cause interrupts to 
be disabled, these priorities (129 to 255) are appro
priate for non-interrupt TASKs. If an 8087 Numerics 
Processor Extension is used, the error recovery inter
rupt level assigned to it will have a higher priority 
than a TASK executing on it, so that error handling is 
performed correctly. 

EXECUTION STATUS 
A TASK has an execution status or execution state. 
The OSP provides five execution states: RUNNING, 
READY, ASLEEP, SUSPENDED, and ASLEEP
SUSPENDED. 

- A TASK is RUNNING if it has control of the 
processor. 

--- A TASK is READY if it is not asleep, suspended, or 
asleep-suspended. For a TASK to become the run
ning (executing) TASK, it must be the highest 
priority TASK in the ready state. 

- A TASK is ASLEEP if it is waiting for a request to 
be granted or a timer event to occur. A TASK may 
put itself into the ASLEEP state. 

- A TASK is SUSPENDED if it is placed there by 
another TASK or if it suspends itself. A TASK may 
have multiple suspensions, the count of suspen
sions is managed by the asp as the TASK suspen
sion depth. 

- A TASK is ASLEEP-SUSPENDED if it is both 
waiting and suspended. 

TASK attributes, the CPU register values, and the 
8087 register values (if the 8087 is configured into 
the application) are maintained by the asp in the 
TASK state image. Each TASK will have a unique 
TASK state image. 

SCHEDULING 
The OSP schedules the processor time among the 
various TASKs on the basis of priority. A TASK has an 
execution priority relative to all other TASKs in the 
system, which the OSP maintains for each TASK in its 
TASK state image. When a TASK of higher priority 
than the executing TASK becomes ready to execute, 

6-6 

the asp switches the control of the processor to the 
h,igher priority TASK. First, the asp saves the outgo
ing (lower priority) TASK's state including CPU regis
ter values in its TASK state image. Then, it restores 
the CPU registers from the TASK state image of the 
incoming (higher priority) TASK. Finally, it causes the 
CPU to start or resume executing tbe higher priority 
TASK. 

TASK scheduling is performed by the asp. The asP's 
priority-oriented preemptive scheduler determines 
which TASK executes by comparing their relative 
priorities. The scheduler insures that the highest 
priority TASK with a status of READY will execute. A 
TASK will continue to execute until an interrupt with a 
higher priority occurs, or until it requests unavailable 
resources, for which it·is willing to wait, or until it 
makes specific resources available to a higher 
priority TASK waiting for those resources. 

TASKs can become READY,by receiving a message, 
receiving control, receiving an interrupt, or by timing 
out. The OSP always monitors the. status of all the 
TASKs (and interrupts) in the system. Preemptive 
scheduling allows the system to be responsive to the 
external environment while only devoting CPU re
sources to TASKs with work to be performed. 

TIMED WAIT 
The OSP timer hardware facilities support timed 
waits and timeouts. Thus, in many primitives, a TASK 
can specify the length of time it is prepared to wait 
for an event to occur, for the desired resources to 
become available or for a message to be received at a 
MAILBOX. The timing interval (or System Tick) can 
be adjusted, with a lower limit of 1 millisecond. 

APPLICATION CONTROL OF TASK EXECUTION 
Programs may alter TASK execution status and 
priority dynamically. One TASK may suspend its own 
execution or the execution of another TASK for a 
period of time, then resume its execution later. Multi
ple suspensions are provided. A suspended TASK 
may be suspended again. 

The eight OSP Job and TASK management primitives 
are: 

CREATE JOB 

CREATE TASK 

Partitions system resources and 
creates a TASK execution 
environment. 

Creates a TASK state image. 
Specifies the location of the 
TASK code instruction stream, 
its execution priority, and the 
other TASK attributes. 

AFN-020598 



intJ 80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

DELETE TASK Deletes the TASK state image, 
removes the instruction stream 
from execution and deallocates 
stack resources. Does not delete 
INTERRUPT TASKS. 

SUSPEND TASK Suspends the specified TASK or, 
if already suspended, in
crements its suspension depth 
by one. Execute state is 
,SUSPEND. 

RESUME TASK Decrements the TASK suspen
sion depth by one. If the sus
pension depth is then zero, 
the primitive changes the task 
execution status to READY, 
or ASLEEP (if ASLEEP/ 
SUSPENDED). 

SLEEP. Places the requesting TASK in 
the ASLEEP state for a specified 
number of System Ticks. (The 
TICK interval can be configured 
down to 1 millisecond.) 

SET PRIORITY Alters the priority of a TASK. 

Interrupt Management 

The OSP supports up to 256 interrupt levels or
ganized in an interrupt vector, and up to 57 external 
interrupt sources of which one is the NMI (Non
Maskable Interrupt). The OSP manages each inter
rupt level independently. The OSF INTERRUPT 
SUBSYSTEM provides two mechanisms for interrupt 
management: INTERRUPT HANDLERs and INTER
RUPT TASKs. INTERRUPT HANDLERs disable all 
maskable interrupts and should be used only for 
servicing interrupts that require little processing 
time. Within an INTERRUPT HANDLER only certain 
OSF Interrupt Management primitives (DISABLE, 
ENTER INTERRUPT, EXIT INTERRUPT, GET LEVEL, 
SIGNAL INTERRUPT) and basic CPU instructions 
can be used, other OSP primitives cannot be. The 
INTERRUPT TASK approach permits ailpSP 
primitives to be issued and masks only lower priority 
interrupts. 

Work flow between an INTERRUPT HANDLER and an 
INTERRUPT TASK assigned to the same level is 
regulated with the SIGNAL INTERRUPT and WAIT 
INTERRUPT primitives. The flow is asynchronous. 
When an INTERRUPT HANDLER signals an INTER
RUPT TASK, the INTERRUPT HANDLER becomes 
immediately available to process another interrupt. 
The number of interrupts (specified for the level) the 

6-7 

INTERRUPT HANDLER can queue for the INTER
RUPT TASK can be limited to the value specified in 
the SET INTERRUPT primitive. When the INTER
RUPT TASK is finished processing, it issues a WAIT 
INTERRUPT primitive, and is immediately ready to 
process the queue of interrupts that the INTERRUPT 
HANDLER has built with repeated SIGNAL INTER
RUPT primitives while the INTERRUPT TASK was 
processing. If there were no interrupts at the level, 
the queue is empty and the INTERRUPT TASK is 
SUSPENDED. See the Example (Figure 5) and Fig
ures 6 and 7. 

OSP external INTERRUPT LEVELs are directly 
related to internal TASK scheduling priorities. The 
OSP maintains a single list of priorities including 
both tasks and INTERRUPT LEVELs. The priority of 
the executing TASK automatically determines which 
interrupts are masked. Interrupts are managed by 
INTERRUPT LEVEL number. The OSP supports eight 
levels directly and may be extended by means of 
slave 8259As to a total of 57. 

The nine Interrupt Management OSP primitives are: 

DISABLE Disables an external INTER
RUPT LEVEL. 

ENABLE 

ENTER INTERRUPT 

EXIT INTERRUPT 

GET LEVEL 

RESET INTERRUPT 

SET INTERRUPT 

Enables an external INTER
RUPT LEVEL. 

Gives an Interrupt Handler 
its own data segment, sepa
rate from the data segment 
of the interrupted task. 

Performs an "END of INTER
RUPT" operation. Used by 
an INTERRUPT HANDLER 
which does not invoke an IN
TERRUPT TASK. Reenables 
interrupts, when the INTER
RUPT HANDLER gives up 
control. 

Returns the interrupt level 
number of the executing IN
TERRUPT HANDLER. 

Cancels the previous as
signment made to an 
interrupt level by SET IN
TERRUPT primitive request. 
If an INTERRUPT TASK has 
been assigned, it is also 
deleted. The interrupt level 
is disabled. 

Assigns an INTERRUPT 
HANDLER to an interrupt 
level and, optionally, an IN
TERRUPT TASK. 

AFN-02059B 



r 

80130/80130-2 
iAPX 86'/30, 88/30, 186/30, 188/30 

r CODE EXAMPLE A INTERRUPT TASK TO KEEP TRACK OF TIME·OF·DAY 

DECLARE SECOND$COUNT BYTE, 
MINUTESCOUNT BYTE, 
HOURS$COUNT BYTE: 

TIMESTASK: PROCEDURE: 
DECLARE TIMESEXCEPT'CODE WORD, 

AC$CYCLESCOUNT:D: 
CALL RQSSETSINTERRUPT(AC$INTERRUPTSLEVEL, D1H), 

@AC$HANDLER,D,@TIMESEXCEPTSCODE): 
CALL RQSRESUME$TASK(INITSTASKSTOKEN,@TIMESEXCEPTSCODE): 
DO HOUR'COUNT:D TO 23: 

DO MINUTESCOUNT:D TO 5.; 
00 SECONDSCOUNT:D TO 59; 

CALL RQSWAITSINTERRUPT(ACSINTERRUPTSLEVEL, 
@TlMESEXCEPTSCODE), 

IF SECONDSCOUNT MOD 5:. 
THEN CALL PROTECTEDSCRTSOUT(BEL); 

END, r SECOND LOOP ./ 
END, r MINUTE LOOP '/ 

END; r HOUR LOOP '/ 
CALL RQSRESETSINTERRUPT(ACSINTERRUPTSLEVEL, @TIME$EXCEPT$CODE); 
END TIMESTASK; 

f' CODE EXAMPLE B INTERRUPT HANDLER TO SUBDIVIDE A.C. SIGNAL BY 60. '/ 

DECLARE AC$CYCLE$COUNT BYTE, 

AC$HANDLER: PROCEDURE INTERRUPT 59, 
DECLARE ACSEXCEPTSCODE WORD, 

AC$CVCLESCOUNT"" ACSCYCLE$COUNT + 1, 
IF ACSCYCLESCOUNT', :60 THEN DO, 

ACSCYCLE$COUNT "0, 
CALL RQSSIGNALSINTERRUPT(ACSINTERRUPTSLEVEL,@ACSEXCEPTSCODE), 
END; 

END ACSHANDLER; 

INTERRUPT 
HANDLER CALLS 
EXIT$INTERRUPT 

NO 

Figure 5. OSP Examples 

INTERRUPT OCCURS AND 
INTERRUPT HANDLER 

GETS CONTROL 

YES 

INTERRUPT 
HANDLER CALLS 

SIGNAL$INTERRUPT 

L-( CONTROL RETURNS TO AN 
APPLICATION TASK J.----------..... ---

Figure 6. Interrupt Handling Flowchart 
6-8 

'I 
I 
I 
. 

I 

AFN·02059B 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

'I ~-~~ 
I I~@OBTAINS 

: FULL BUFFER . EJ ,,---, , , 

I 
I 
I 

I , 

-- 1 INTERRUPT ~ 
......... \ TASK " 

INTERRUPT 

CD STARTS FILLING 
EMPTV BUFFER 

@ WHEN FULL. CALLS 
SIGNAl$INTERRUPT 
TO START TASK ON 
FULL BUFFER 

/ " ,,' "-
/ -_... " 

I \ 
I \ 

_-1 
,/' ", 

I \ 
© CALLS I INTERRUPT I 

WAITSINTEARUPT \ TASK I 
TO WAIT FOR NEXT , , 
FULL BUFFER > .... ",,' 

---------
® PROCESSES 

FULL BUFFER 

I 

I 

I 
._._j 

Figure 7. Multiple Buffer Example 

SIGNAL INTERRUPT Used by an INTERRUPT 
HANDLER to activate an In
terrupt Task. 

WAIT INTERRUPT Suspends the calling Inter
rupt Task until the INTER
RUPT HANDLER performs a 
.SIGNAL INTERRUPT to in
voke it. If a SIGNAL INTER
RUPT for the task has 
occurred, it is processed. 

FREE MEMORY MANAGEMENT 

The OSP Free Memory Manager manages the 
memory pool which is allocated to each JOB for its 
execution needs. (The CREATE JOB primitive al
locates the new JOB's memory pool from the 
memory pool of the parent JOB.) The memory pool IS 
part of the JOB resources but is not yet allocated 
between the tasks of the JOB. When a TASK, MAIL
BOX, or REGION system data type structure is 
created within that JOB, the OSP implicitly allocates 
memory for it from the JOB's memory pool, so that a 

, separate call to allocate memory is not required. OSP 
primitives that use free memory management im
plicitly include CREATE JOB, CREATE TASK, 
DELETE TASK, CREATE MAILBOX, DELETE MAIL
BOX, CREATE REGION, and DELETE REGION. The 

6-9 

CREATE SEGMENT primitive explicitly allocates a 
memory area when one is needed by the TASK. For 
example, a TASK may explicitly allocate a SEGMENT 
for use as a memory buffer The SEGMENT length 
can be any multiple of 16 bytes between 16 bytes and 
64K bytes in length. The programmer may specify 
any number of bytes from 1 byte to 64 KB, the OSP 
will transparently round the value up to the appropri
ate segment size. 

The two explicit memory allocatlon/deallocatlon 
primitives are: 

CREATE SEGMENT Allocates a SEGMENT of spe
cified length (in 16-byte-long 
paragraphs) from the JOB 
Memory Pool. 

DELETE SEGMENT Deallocates the SEGMENT's 
memory area, and returns It 
to the JOB memory pool. 

Intertask Communication 

The asp has built-in intertask synchronization and 
communication, permitting TASKs to pass and share 
information with each other. OSP MAILBOXes con
tain controlled handshaking facilities which guaran
tee that a complete message will always be sent from 
a sending TASK to a receiving TASK. Each MAILBOX 
consists of two interlocked que'ues, one of TASKs 

AFN·02059B 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

and the other of Messages. Four OSP primitives for 
itltertask synchronization and communication are 
provided: 

CREATE MAILBOX Creates intertask message 
exchange. 

DELETE MAILBOX Deletes an intertask mes
sage exchange. 

RECEIVE MESSAGE Calling TASK receivesames
sage from the MAILBOX. 

SEND MESSAGE Calling TASK sends a 
message to the MAILBOX. 

The CREATE MAILBOX primitive allocates a MAIL
BOX for use as an information exchange between 
TASKs. The OSP will post information at the MAIL
BOX in a FIFO (First-In First-Out) manner when a 
SEND MESSAGE instruction is issued. Similarily, a 
message is retrieved by the OSP if a TASK issues a 
RECEIVE MESSAGE primitive. The TASK which 
creates the MAILBOX may make it available to other 
TASKs to use. 

If no message is available, the TASK attempting to 
receive a message may choose to wait for one or 
continue executing. 

The queue management method for the task queue 
(FIFO or PRIORITY) determines which TASK in the 
MAILBOX TASK queue will receive a message from 
the MAILBOX. The method is specified in the 
CREATE MAILBOX primitive. 

Intertask Synchronization and Mutual 
Exclusion 

Mutual exclusion is essential to multiprogramming 
and i multiprocessing systems. The REGION system 
data type implements mutual exclusion. A REGION is 
represented by a queue of TASKS waiting to use a 
resource which must be accessed by only one TASK 
at a time. The OSP provides primitives to use 
REGIONs to manage mutually exclusive data and 
resources. Both critical code sections and shared' 
data structures can be protected by these primitives 
from simultaneous use by more than one task. 
REGIONs support both FIFO (First-In First-Out) or 
Priority queueing disciplines for the TASKS seeking I 

to enter the REGION. The REGION SOT can also be 
used to implement software locks. 

Multiple REGIONs are allowed, and are automatically 
exited in the reverse order of entry. While in a 
REGION, a TASK cannot be suspended by itself or 
any other TASK, and thereby avoids deadlock. 

There are five OSP primitives for mutual exclusion: 

CREATE REGION Create a REGION (lock). ' 

SEND CONTROL Give up the REGION. 

ACCEPT CONTROL Request the REGION, but do 
not wait if it is not available. 

RECEIVE CONTROL Request a REGION, wait if 
not immediately available. 

DELETE REGION Delete a REGION. 

The OSP also provides dynamic priority adjustment 
for TASKs within priority REGIONs: If a higher- . 
priority TASK issues a RECEIVE CONTROL primitive, 
while a (lower-priority) TASK has the use of the same 
REGION, the lower-priority TASK will be trans
parently, and temporarily, elevated to the waiting 
TASK's priority until it relinquishes the REGION via 
SEND CONTROL. At that point, since it is no longer 
using the critical resource, the TASK will have its 
normal priority restored. 

6-10 

OSP Control Facilities 

The OSP also includes system primitives that provide 
both control and customization capabilities to a mul
titasking system. These primitives are used to control 
the deletion of SOTs and the recovery of free memory 
in a system, to allow interrogation of operating sys
tem status, and to provide uniform means of adding 
user SOTs and type managers. 

DELETION CONTROL 
Deletion of each OSP system data type is explicitly 
controlled by the applications programmer by set
ting a deletion attribute for that structure. For exam
ple, if a SEGMENT is to be kept in memory until DMA 
activity is completed, its deletion attribute should be 
disabled. Each TASK, MAILBOX, REGION, and SEG
MENT SOT is created with its deletion attribute en
abled (i.e., they may be deleted). Two OSP primitives 
control the deletion attribute: ENABLE DELETION 
and DISABLE DELETION. 

ENVIRONMENTAL CONTROL 
The OSP provides inquiry and control operations 
which help the user interrogate the application envi~ 
ronment and implement flexible exception handling. 
These features aid in run-time decision making and 
in application error processing and recovery. There 
are five OSP environmental control primitives. 

OS EXTENSIONS 
The OSP architecture is defined to allow new user
defined System Data Types and the primitives to ma
nipulate them to be--added to OSP capabilities 

AFN·02059B 



inter 80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

provided by the built-in System Data Types. The type 
managers created for the user-defined SOTs are 
called user OS extensions and are installed in the 
system by the SET OS EXTENSION primitive. Once 
:nstal!ed, the functions of the type manager may be 
invoked with user primitives conforming to the OSP 
interface. For well-structured extended architec
tures, each OS extension should support a separate 
user-defined system data type, and every OS exten
sion should provide the same calling sequence and 
program interface for the user as is provided for a 
built-in SOT. The type manager for the extension 
would be written to suit the needs of the application. 
OSP interrupt vector entries (224-255) are reserved 
for user OS extensions and are not used by the OSP. 
After assigning an interrupt number to the extension, 
the extension user may then call it with the standard 
OSP call sequence (Figure 4), and the unique 
software interrupt number assigned to the 
extension. 

ENABLE DELETION Allows a specific SEGMENT, 
TASK, MAILBOX, or REGION 
SOT to be deleted. 

DISABLE DELETION Prevents a specific SEG
MENT, TASK, MAILBOX, or 
REGION SOT from being 
deleted. 

GET TYPE Given a token for an in
stance of a system data type, 
returns the type code. 

GET TASK TOKENS 

GET EXCEPTION 
HANDLER 

SET EXCEPTION 
HANDLER 

SET OS EXTENSION 

SIGNAL EXCEPTION 

Returns to the caller infor
mation about the current 
task environment. 

Returns information about 
the calling TASK's current in
formation handler: its ad
dress, and when it is used. 

Provides the address and 
usage of an exception 
handler for a TASK. 

Modifies one of the interrupt 
vector entries' reserved for ~ 
OS extensions (224-255) to 
point to a user OS extension 
procedure. 

For use in OS extension er
ror processing. 

allow the OSP primitives to report parameter errors 
in pr.imitive calls, and errors in primitive usage. Ex
ception handling procedures are flexible and can be 
individually programmed by the application. In gen
eral, an exception handler if called will perform one 
or more of the following functions: 

-Log the Error. 
-Delete/Suspend the Task that caused the 

exception. 
-Ignore the error, presumably because it is not 

serious. 

An EXCEPTION HANDLER is written as a procedure. 
If PLM/86 is used, the "compact," "medium" or 
"large" model of computation should be specified for 
the compilation of the program. The mode in which 
the EXCEPTION HANDI;.ER operates may be speci
fied in the SET EXCEPTION HANDLER primitive. The 
return information from a primitive call is shown in 
Figure 4. CX is used to return standard system error 
conditions. Table 7 shows a list of these conditions, 
using the default EXCEPTION HANDLER of the OSP. 

HARDWARE DESCRIPTION 

The 80130 operates in a closely coupled mode with 
the iAPX 86/10 or 88/10 CPU. The 80130 resides on 
the CPU local multiplexed bus (Figure 8). The main 
processor is always configured for maximum mode 
operation. The 80130 automatically selects between 
its 88/30 and 86/30 operating modes. 

The 80130 used in the 86/30 configuration, as shown 
in Figure 8 (or a similar 88/30 configuration), 
operates at both 5 and 8 MHz without requiring pro
cessor wait states. Wait state memories are fully sup
ported, however. The 80130 may be configured with 
both an 8087 NPX"and an 8089 lOP, and provides 
full context control over the 8087. 

The 80130 (shown'in Figure 3) is internally divided 
into a control unit (CU) and operating system unit 
(OSU). The OSU contains facilities for OSP kernel 
support including the system timers for scheduling 
and timing waits, and the interrupt controller for 
interrupt management support. 

iAPX 86/30, iAPX 88/30 System 
Configuration 

The 80130 is both I/O and memory mapped to the 
EXCEPTION HANDLING local CPU bus. The CPU's status SO/-S21 is 

decoded along with 10CSI (with BHE and AD3-
The OSP supports exception handlers. These are ADo) or MEMCSI (with AD13-ADo). The pins are 
similar to CPU exception handlers such as OVER- internally latched. See Table 1 for the decoding of 
FLOW and ILLEGAL OPERATION. Their purpose is to these lines. 

6-11 
AFN·02059B 



80130/80130-2 
iAPX 86/30,88/30,186/30,188/30 

Memory Mapping 

Address lines A19-A14 can be used to form MEMCS/ 
since the 80130's memory-mapped portion is aligned 
along a 16K-byte boundry. The 80130 can reside on 
any 16K-byte boundry excluding the highest 
(FCOOOH-FFFFFH) and lowest (00000H-003FFH). The 
80130 control store code is position-independent ex
cept as limited above, in order to make it compatible 
with many decoding logic designs. AD13-ADo are 
decoded by the 80130's kernel control store. 

I/O Mapping 

The I/O-mapped portion of the 80130 must be aligned 
along a 16-byte boundry. Address lines A1S-A4 
should be used to form 10CS/. 

System Performance 

The approximate performance of representitive OSP 
primitives is given in Table 5. These times are shown 
for a typical iAPX 86/30 implementation with an 8 
MHz clock. These execution times are very compara
ble t9 the execution times of similar functions in 
minicomputers (where available) and are an order of 
magnitude faster than previous generation 
microprocessors. 

Initialization 

Both application system initialization and OSP
specific initialization/configuration are required to 
use the OSP. Configuration is based on a "database" 
provided by the user to the iOSP 86 support package. 
The OSP-specific initialization and configuration in
formation area is assigned to a user memory address 
adjacent to the 80130's memory-mapped location. 
(See Application Note 130 for f.urther'details.) The 
configuration data defines whether 8087 support is 
configured in the system, specifies if slave 8259A 
interrupt controllers are used in addition to the 
80130, and sets the operating system ti me base (Tick 
Interval). Also located in the configuration area are 
the exception handler control parameters, the ad
dress location of the (separate) application system 
configuration area and the OSP extensions in use. 
The OSP application system configuration area may 
be located anywhere in the user memory and must 
include the starting address of the application in
struction code to be executed, plus the locations of 
the RAM memory blocks to be managed by the OSP 
free memory manager. Complete application system 
support and the req'uired 80130 configuration sup
port are provided by the iAPX 86/30 and iAPX 88/30 
OPERATING SYSTEM PROCESSOR SUPPORT 
PACKAGE (iOSP 86). 

RAM Requirements 

The OSP manages its own interrupt vector, which is 
assigned to low RAM memory. Working RAM storage 
is required as stack space and data area. The 
memory space must be allocated in user RAM. 

6-12 

OSP interrupt vector memory locations OH-3FFH 
must be RAM based. The OSP requires 2 bytes of 
allocated RAM. The processor working storage is 
dynamically ,allocated from free memory. Approxi
mately BOO bytes of stack should be allocated for 
each OSP task. 

TYPICAL SYSTEM CONFIGURATION 

Figure 8 shows the processing cluster of a "typical" 
iAPX 86/30 or iAPX 88/30 OSP system. Not shown are 
subsystems likely to vary with the application. The 
configuration includes an 8086 (or 8088) operating in 
maximum mode, an 8284A clock generator and an 
8288 system controlier. Note that the 80130 is located 
on the CPU side of any latches or transceivers. See 
Intel Application Note 130 for further details on 
configuration. 

OSP Timers 

The OSP Timers are connected to the lower half of 
the data bus and are addressed at even addresses. 
The timers are read as two successive bytes, always 
LSB followed by MSB, The MSB is always latched on 
a read operation and remains latched until read. 
Timers are not gatable. 

Baud Rate Generator 

The baud rate generator is 8254 compatible (square 
wave mode 3). Its output, BAUD, is initially high and 
remains high until tpe Count Register is loaded. The 
first falling edge of the clock after the Count Register 
is loaded causes the transfer of the internal counter 
to the Count Register. The output stays high for N/2 
[(N+l)/2 if N is odd] and then goes low for N/2 
[(N-l)/2 if N is oddJ. On the falling edge of the clock 
which signifies the final count for the output in low 
state, the output returns to high state and the Count 
Register is transferred to the internal counter, The 
whole process is then repeated. Baud Rates are 
shown in Table 6. 

The baud rate generator is located at OCH (12), rela
tive to the 16-byte boundary in the I/O space in which 
the 80130 component is located ("OSF" in the follow
ing example), the timer control word is located at 

~AFN·02059B 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

CONTROL 

tJ B086 

aHE 
aHE '19 '" LOCAL 

AND 
ADORESS SYSTEM 

INTA .00 
RESOURCES 

'0 

D15 

8286 DATA 

DO 
DE 

----J) INTERRUPT REQUESTS 

Figure 8. Typical OSP Configuration 

relative address, OEH(14). Timers are addressed with 
IOCS=O. Timers 0 and 1 are assigned to the use by 
the OSP, and should not be altered by the user. 

For most baud-rate generator applications, the com
mand byte 

OB6H Read/Write Baud-Rate Delay Value 

will be used. A typical sequence to set a baud rate 
of 9600 using a count value of 52 follows (see 
Table 6): 

MOV AX.OB6H 

OUT OSF+14,AX 
MOV AX, 52 
OUT OSF+12,AL 
XCHG AL,AH 

;Prepare to Write Delay to 
Timer 3. 
;Control Word. 

;LSB written first 

OUT OSF + 12,AL ;MSB written after. 

The 80130 timers are subset compatible with 8254 
timers. 

6-13 

Interrupt Controller 

The Programmable Interrupt Controller (PIC), is also 
an integral unit of the 80130. Its eight input pins 
handle eight vectored priority interrupts. One of 
these pins must be used for the SYSTICK time func
tion in timing waits, using an external connection as 
shown. During the 80130 initialization and configura
tion sequence, each 80130 interrupt pin is individu
ally programmed as either level or edge sensitive. 
External slave 8259A interrupt controllers can be 
used to expand the total number of OSP external 
interrupts to 57. 

In addition to standard PIC funtions, 80130 PIC unit 
has an LlR output signal, which when low indicates 
an interrupt acknowledge cycle. LlR=O is provided to 
control the 8289 Bus Arbiter SYSB/RESB pin. This 
will avoid the need of requesting the system bus to 
acknowledge local bus non-slave interrupts. The 
user defines the interrupt system as part of the 
configuration. 

AFN·02059B 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

INTERRUPT SEQUENCE 
The OSP interrupt sequence is as follol/Vs: 

1. One or more of the interrupts is set by a low-to
high transition on edge-sensitivelR inputs or by a 
high input on level-sensitive IR inputs. 

2. The 80130 evaluates these requests, and sends an 
INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds 
with an interrupt acknowledge cycle which is en
coded in S2-S0' 

4. Upon receiving the first interrupt acknowledge 
from the CPU, the highest-priority interrupt is set 
by the 80130 and the corresponding edge detect 
latch is reset. The 80130 does not drive the ad
dress/data bus during this bus cycle but does 
acknowledge the cycle by making ACK=O and 
sending the LlR value for the IR input being 
acknowledged. 

5. The CPU will th.en initiate a second interrupt ac
knowledge cycle. During this cycle, the 80130 will 
supply the cascade address of the interrupting 
input at T1 on the bus and also release an 8-bit 
pointer onto the bus if appropriate, where it is 
read by the CPU. If the 80130 does supply the 
pointer, then ACK will be low for the cycle. This 
cycle also has the value LlR for the IR input being 
acknowledged. 

6. This completes the interrupt cycle. The ISR bit 
remains set until an appropriate EXIT INTERRUPT 
primitive (EOI command) is called at the end of 
the Interrupt Handler. 

OSP APPLICATION EXAMPLE 

Figure 5 shows an application of the OSP primitives 
to keep track of time of day in a simplified example. 
The system design uses a 60 Hz A.C. signal as a time 
base. The power supply provides a TTL-compatible 

signal which drives one of 80130 edge-triggered in
terrupt request pins once each A.C. cycle. The Inter
rupt Handler responds to the interrupts, keeping 
track of one second's A.C. cycles. The Interrupt Task 
counts the seconds and after a day deletes itself. In 
typical systems it might perform a data logging oper
ation once each day. The Interrupt Handler and Inter
ruptTask are written as separate modular programs. 

The Interrupt Handler will actually service interrupt 
59 when it occurs. It simply counts each interrupt, 
and at a count of 60 performs a SIGNAL INTERRUPT 
to notify the InterruptTask that a second has elapsed. 
The Interrupt Handler (ACS HANDLER) was assigned 
to this level by the SET INTERRUPT primitive. After 
doing this, the InterruptTask performed the Primitive 
RESUME TASK to resume the application task (INITS 
TASKS TOKEN). 

6-14 

The main body of the task is the counting loop. The 
InterruptTask is Signaled by the SIGNAL INTERRUPT 
primitive in the Interrupt Handler (at interrupt level 
ACS INTERRUPTS LEVEL). When the task is sig
nalled by the Interrupt Handler it will execute the 
loop exactly one time, increasing the time count 
variables. Then it will execute the WAIT INTERRUPT 
primitive, and wait until awakened by the Interrupt 
Handler. Normally, the task will now wait some period 
of time for the next signal. However, since the inter
face between the Handler and the Task is asyn
chronous, the handler may have already queued the 
interrupt for servicing, the writer of the task does not 
have to worry about this possibility. 

At the end of the day, the task will exit the loop and 
execute RESET INTERRUPT, which disables the in
terrupt level, and deletes the interrupt task. The OSP 
now reclaims the memory used by the Task and 
schedules another task. If an exception occurs, the 
coded value for the exception is available in TIMES 
EXCEPTS CODE after the execution of the primitive. 

A typical PL/M-86 calling sequence is illustrated by 
the call to RESET INTERRUPT shown in Figure 5. 

AFN·02059B 



intel' 80130/80130-2 
iAPX 86/30, 8B/30, 186/30, 188/30 

Table 2, OSP System Data Type Summary 

Job Jobs are the means of organizing the program environment and resources. An application consists of 
one or more jobs. Each IAPX 86/30 system data type IS contained In some job.,Jobs are independent of 
each other, but they may share access to resources. Each job has one or more tasks, one of which is an 

I Initial task. Joi')s are given pools at memory, ana lney may c,,,ai .. subordinate offspring jobs, which 
may borrow memory from thel r parents. 

, 
Task Tasks are the means by which computations are accomplished. A task IS an instruction stream with its 

own execution stack and private data. Each task is part of a job and is restricted to the resources 
provided by Its job. Tasks may perform general Interrupt handling as well as other computational 
functions Each task has a set of attributes, which is maintained for it by the IAPX 86/30, which 
characterize its status These attributes are' 

its containing job 
ItS register context 
Its Priority (0-255) 
ItS execution state (asleep, suspended, ready, running, asleep/suspended). 
ItS suspension depth 
its user-se!ected exception handler 
Its optional 8087 extended task state 

Segment Segments are the units of memory allocation A segment IS a phYSically contiguous sequence of 
16-byte, 8086 paragraph-length, units. Segments are created dynamically from the free memory 
space of a Job as one of its Tasks requests memory for ItS use. A segment IS deleted when it IS no longer 
needed The IAPX 86/30 maintains and manages free memory in an orderly fashion, it obtains memory 
space from the pool assigned to the containing job of the requesting task and returns the space to the 
Job memory pool (or the parent Job pool) when it IS no longer needed. It does not allocate memory to 
create a segment if sufficient free memory IS not available,to it, in that case it returns an error 
exception code 

Mailbox Mailboxes are the means of mtertask communication. Mailboxes are used by tasks to send and 
receive message segments The IAPX 86/30 creates and manages two queues for each mailbox. One 
of these queues contains message segments sent to the mailbox but not yet received by any task. The 
other mailbox queue consists of tasks that are waiting to receive messages. The IAPX 86/30 operation 
assures that waiting tasks receive messages as soon as messages are available Thus at any moment 
one or possibly both of two mailbox queues Will be empty. 

Region Regions are the means of serialization and mutual exclUSion. Regions are familiar as '"critical code 
regions'" The iAPX 86/30 region data type consists of a queue of tasks. Each task walts to execute in 
mutually exclUSive code or to access a shared data region, for example to update a file record. 

Tokens I The OSP Interface makes use of a 16-bltTOKEN data type to identify individual OSF data structures. 

I 
Each of these (each Instance) has Its own unique TOKEN. When a primitive is called, it is passed the 
TOKENs of the data structures on which it Will operate. 

6-15 
AFN·02059B 



Class 

J 
I 0 
I B r 
I 
i 

I 
I 

T 
A 
S 
K 

I 
N 
T 
E 
R 
R 

80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 3. System Data Type Codes and Attributes 

S.D.T. Code Attributes 

Jobs 1 Tasks 
Memory Pool 
S.o.T. Directory 

Tasks 2 Priority 
Stack 
Code 
State 
Exceptton Handler 

Mailboxes 3 Queue of S.o.T.s 
(generally segments) 
Queue ofTasks 

I waiting for S.o.T.s 

I Region I 5 Queue of Tasks 
waiting for mutually 

~ 
exclusive code or 
data 

6 Buffer 
Length 

Table 4. OS~Primitives 

OSP 
Primitive 

CREATE JOB 

CREATE TASK 

DELETE TASK 
SUSPEND TASK 
RESUME TASK 
SET PRIORITY 
SLEEP 

DISABLE 
ENABLE 
ENTER INTERRUPT 
EXIT INTERRUPT 
GET LEVEL 
RESET INTERRUPT 
SET INTERRUPT 

Interrupt 
Number 

184 

184 

184 
184 
184 
184 
184 

190 
184 
184 
186 
188 
184 
184 

Entry Code 
inAX 

0100H 

0200H 

0201H 
0202H 
0203H 
0209H 
0204H 

0705H 
0704H 
0703H 
NONE 
0702H 

,0706H 
0701H 

Parameters 
On Caller's Stack 

'See 80130 User Manual 

PriOrity, IP Ptr, Data Segment, Stack 
Seg, Stack Size Task Information, 
ExcptPtr 
TASK, ExcptPtr 
TASK, ExcptPtr 
TASK, ExcptPtr 
TASK, PriOrity, ExcptPtr 
Time Llmlt,ExcptPtr 

Level, ExcptPtr 
Level #, ExcptPtr 
Level #, ExcptPtr 
Level #, ExcptPtr 
Level #, ExcptPtr 
Level #, ExcptPtr 
Level, Interrupt Task Flag Interrupt 

U Handler Ptr, Interrupt Handler DataSeg 
i P ExcptPtr 
I T SIGNAL INTERRUPT 185 NONE Level, ExcptPtr 
I WAIT INTERRUPT 187 NONE Level, ExcptPtr 
f----.. --.--+---------f------~-------_t_---.-~----------

I 
i s 

i 
6-16 

AFN-02059B 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 4. OSP Primitives (Continued) 

Class 
OSP Interrupt Entry Code Parameters 

Primitive Number in AX On Caller's Stack 

M CREATE MAILBOX 184 0300H Mailbox flags. ExcptPtr 
A DELETE MAILBOX 184 0301H MAILBOX. ExcptPtr 
I RECEIVE MESSAGE 184 0303H MAILBOX. Time Limit ResponsePtr. 
L ExcptPtr 
B SEND MESSAGE 184 0302H MAILBOX. Message Response. ExcptPtr 
0 
X 

R ACCEPT CONTROL 184 0504H REGION. ExcptPtr 
E CREATE REGION 184 0500H Region Flags. ExcptPtr 
G DELETE REGION 184 0501H REGION, ExcptPtr 
I RECEIVE CONTROL 184 0503H REGION. ExcptPtr 
0 SEND CONTROL 184 0502H ExcptPtr 
N 

E DISABLE DELETION 184 000lH TOKEN.ExcptPtr 
N ENABLE DELETION 184 0OO2H TOKEN.ExcptPtr V 
I GET EXCEPTION 

R HANDLER 184 0800H Ptr.ExcptPtr 

0 GETTYPE 184 OOOOH TOKEN.ExcptPtr 
N GET TASK TOKENS 184 0206H Request. ExcptPlr 
M SET EXCEPTION 
E HANDLER 184 0801H Plr, ExcptPtr 
N SET OS EXTENSION 184 0700H Code,lnsIPtr. ExcptPtr 
T SIGNAL 
A EXCEPTION 184 0802H Exception Code. Parameter Number, 
L 

StackPtr.O.O.ExcptPtr 

NOTES: 
All parameters are pushed onto the asp stack Each parameter is one word See Figure 3 for Call Sequence. 

Explanation of the Symbols 

JOB asp JOB SOT Token 
TASK asp TASK SOT Token 
REGION asp REGION SOT Token 
MAILBOX asp MAILBOX SOT Token 
SEGMENT asp SEGMENT SOT Token 
TOKEN Any SOT Token 

Level 
ExcptPtr 
Message 
Ptr 
Seg 

Interrupt Level Number 
POinter to Exception Code 
Message Token 
POinter to Code. Stack etc. Address 
Value Loaded mto appropriate Segment Register 
Value Parameter 

6-17 
AFN·02059B 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 5. OSP Primitive Performance Examples 

Datatype' Class Primitive Execution Speed· 
(microseconds) 

JOB CREATE JOB 2950 
TASK CREATE TASK (no preemption) 1360 

SEGMENT CREATE SEGMENT 700 
MAILBOX SEND MESSAGE (with task switch) 475 

SEND MESSAGE (no task switch) 265 
RECEIVE MESSAGE (task waiting) 540 
RECEIVE MESSAGE (message waiting) 260 

REGION SEND CONTROL 170 
RECEIVE CONTROL 205 

's MHz iAPX 86/30 asp Configuation, 

Table 6. Baud Rate Count Values (16X) 

Baud 8 MHz Count 5 MHz Count 
Rate Value Value 

300 1667 1042 
600 833 521 

1200 417 260 
2400 208 130 
4800 104 65 
9600 52 33 

6-18 
AFN,02059B 



E$OK 

E$TIME 

E$MEM 

E$BUSY 

E$LlMIT 

E$CONTEXT 

E$EXIST 

E$STATE 

80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 7a. Mnemonic Codes for Unavoidable Exceptions 

Exception Code Value = 0 
the operation was successful 

Exception Code Value = 1 
the specified time limit expired before completion of the operations was possible 

Exception Code Value = 2 
insufficient nucleus memory IS available to satisfy the request 

Exception Code Value - 3 
specified region is currently busy 

Exception Code Value = 4 
attempted violation of a job, semaphore, or system limit 

Exception Code Value - 5 I 
the primitove was called In an Illegal context (e.g., call to enable for an already enabled 
interrupt) , 

Exception Code Value - 6 
a token argument does not currently refer to any object; note that the object could have 
been deleted at any time by its owner 

Exception Code Value = 7 l 
~~~~~~~~~ ____ -ra~t_te_m~p~te_d~I~'II_eg~a_l~s~ta_t_e_t_ra~n_s_it_io_n __ b_y_a_t_a_s_k ______________________ . _________ 4 

ENOTCONFIGURED Exception Code Value = 8
the primitive called is not configured In this system

~E·~I~N~T~E~R~R~U~P~T~$~S~AT~U~R~AT~I~O~N~E~x-C-e-p~tio-n~C~0~d-e~V~al~u-e-=~9---------------------------------------·-

The interrupt task on the requested level has reached Its user specified saturation pOint
for Interrupt service requests. No further interrupts will be allowed on the level until the
interrupt task executes a WAIT$INTERRUPT. (This error IS only returned, in line, to

~~~~~~~~~~~-+~ln-t-er-r~u~p-t-h=an-d~l-e~rs~.)~--~------------_______________________________ 1 
E$INTERRUPT$OVERFLOW Exception Code Value = 10 I 

The interrupt task on the requested level preViously reached its saturation pOint and I 
caused an E$INTERRUPT$SATURATION condition. It subsequently executed an 
ENABLE allowing further interrupts to come in and has received another SIG- I 

NAL$INTERRUPTcall, bringing It over its speCified saturation pOint for Interrupt service II 

requests. (This error is only returned, in line, to interrupt handlers). -.J 

Table 7b. Mnemonic Codes for Avoidable Exceptions 

E$ZERO$DIVIDE Exception Code Value = 8000H 

1 
diVide by zero Interrupt occurred 

E$OVERFLOW Exception Code Value - 8001 H 
oVEjrflow interrupt occurred 

E$TYPE Exception Code Value = 8002H 
a token argument referred to an object tha was not of required type 

E$BOUNDS Exception Code Value = 8003H I an offset argument is out of segment bounds 
i 

E$PARAM Exception Code Value = 8004H -------1 
a (non-token,non-offset) argument has an illegal value ! 

E$BAD$CALL Exception Code Value = 8005H 
.----~.~ 

an entry code for which there is no corresponding primitive was passed 

E$ARRAY$BOUNDS = 8006H Hardware or Language has detected an array overflow 

E$NDP$ERROR Exception Code Value = 8007H 
an 8087 (Numeric data Processor) error has been detected; (the 8087 status Information ! 
is contained in a parameter to the exception handler) J 

6-19 
AFN-02059B 



intel' 80130/80130-2 
iAPX 86/30,88/30,186/30,188/30 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bins ......... O°C to 700e 
Storage Temperature ................. -65°C to 150°C 
Voltage on Any Pin With 

Respect to Ground .................. - 1.0V to + 7V 
Power Dissipation ........................... 1.0 Watts 

D.C. CHARACTERISTICS (T A = DoC to 70°C, Vee = 4.5 to 5.5V) 

Symbol Parameter Min. 

V'L Input low Voltage - 0.5 

V,H Input High Voltage 2.0 

VOL Output low Voltage 

VOH Output High Voltage 2.4 

Icc Power Supply Current 

lu Input Leakage Current 

ILR IR Input Load Current 

ILO Output leakage Current. 

Vcu Clock Input Low 

VCHI Clock Input High 3.9 

C'N Input Capacitance 

C,O 110 Capacitance 

Icu Clock Input Leakage Current 

"NOTICE: Stresses above those listed under Absolute 
Maximum Ratings may ca'use permanent damage to the 
device, This is a stress rating only and functional operation 
of the device at these or any other conditions above those 
indicated in the operational sections of this specification 
is not implied. Exposure to absolute maximum rating con
ditions for extended period may affect device reliability. 

Max. Units Test Conditions 

0.8 V 

Vcc +.5 V 

0.45 V IOL = 2mA 

V IOH = -400~A 

200 mA TA = 25 C 

10 ~A 0< V,N < Vcc 

10 ~A Y'N = Vcc 
-300 /J.A Y'N = 0 

10 /J.A .45 = Y'N = Vcc 
0.6 V 

V 

10 pF 

15 pF 

10 /J.A Y'N = Vcc 
. 

150 ~A Y'N = 2.5V 
10 ~A Y'N = OV 

A.C. CHARACTERISTICS (TA = 0-70°C, Vcc = 4.5-5.5 Volt, Vss = Ground) 

80130 80130-2 
Symbol Parameter Min, Max. Min. Max. Units Test Conditions 

TCLCL ClK Cycle Period 200 - 125 - ns 

lCLCH ClK low Time 90 - 55 - ns 

TC~CL ClK High Time 69 2000 44 2000 ns 

TSVCH Status Active Setup Time 80 - 65 - ns 

TCHSV Status Inactive Hold Time 10 - 10 - ns 

TSHCL Status Inactive Setup Time 55 - 55 - ns 

TCLSH Status Active Hold Time 10 - 10 - ns 

TASCH Address Valid Setup Time 8 - 8 - ns 

TCLAH Address Hold Time 10 - 10 - ns 

TCSCL Chip Select Setup Time 20 - 20 - ns 

TCHCS Chip Select Hold Time 0 - 0 - ns 

TDSCL Write Data Setup Time 80 - 60 - ns 

TCHDH Write Data Hold Time 10 - 10 - ns 

TJLJH IR low Time 100 - 100 - ns 

TCLDV Read Data Valid Delay - 140 - 105 ns CL = 200 pE -
TCLDH Read Data Hold Time 10 - 10 - ns 

TCLDX Read Data to Floating 10 100 10 100 ns 
TCLCA Cascade Address Delay Time - 85 - 65 ns 

6-20 
AFN·02059B 



80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

A.C. CHARACTERISTICS (Continued) 

80130 80130-2 
Symbol Parameter Min. Max. Min. Max. 

TCLCF Cascade Addre::,st: Hold Time 10 - 10 -._-
T,AVE INTA Status t Acknowledge - 80 - 80 

----- f-----_. 

TCHEH Acknowledge Hold Time 0 - 0 -
TCSAK Chip Select to ACK 110 - - 110 

---- f------
TSACK Status to ACK - 140 140 

-- ._--f------ -----
TAACK Address to ACK - 90 - 90 -- f-----.----- --- -~.-- -. 
TCLOO Timer Output Delay Time - 200 - 200 

--f--
TCLOO1 Tlmer1 Output Delay Time - 200 - 200 

TJHIH INT Output Delay - 200 - 200 
-. f------

T'ACL IR Input Set Up 20 

WAVEFORMS 
A.C. 

elK 

$VSTICK 
DELAY BAUD 

______________ ~x ___ __ 
elK 

IA 

INT 
i 
I~- TJHIH 

! 
I-~ 

TIRCl ----I .. --

6-21 

Units Notes 

n~ 

ns 

ns 
---

ns 

ns 
--~----. 

ns 
-.-

ns CL - 100pF 
--

ns CL 100pF 
--

ns ,. 

ns 

AFN 020598 



80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

WAVEFORMS 
A.C. 

T' 

.. TCHCL • 

ClK -' 

~TCHSV"I 

0 

\ 
52. $1. S 

8HE, AD 

'T' 
S"TS 

WRI TE CYCLE 

I 
:T 

AD 

A 

REA o CYCLE 

AO'5-J 
AC 

K I 
2ND IN TA CYCLE 

I~ 
-ADo --.-J 

K 

. 
I I n T2 T3 

TW 

reLCH I 

I \ I 
lSVCH relel :cls~1 I :SHC~ 

r---
I I I 

~I ~ 
BHE A ~A VAUD 'k----

I 
reseL 

r TDSCL __ 

ADDRESS VALID 'fJ{f}IX WRITE DATA VAllO 

-I I .......... TCSAK 

TAACK '\ 
-I 

TCtDX -I TCLDV 

~ 
FLOAT 

READ DATAVAlIQ ~ ADDRESS VALID 

I 
TSACK \ 

TCLeF 

I-----

CD CASCADE ADDRESS 
FLOAT 

POINTER ® 
TIAVE 

I 
\ 0 

IR \ @ 

TIAVE J 
NOTES 
1 CASCADE ADDRESS PRESENTED ON AD8, AD9 AND ADt 0 CORRESPONDING TO CASO CAS 1 

AND CAS2 RESPECTIVELY AD1 1 -AD1 5 UNES ARE ACTIVE AI\ID HAVE UNKNOWN VALUES AOO-AD7 
ARE TRISTATE, 

2 POINTER VALUE IS ACTIVE ONLY IF POINTER IS GENERATED FROM THE 80150 AND NOT FROM 
EXTERNAL SLAVE UNIT , 
ACTIVE LOW ONLY WHEN POINTER DATA IS,BE'NG SUPPLIED BY THE 80150 
LOW ONLY FOR LOCAL INTERRuPT 

6-22 

T' 

j 

:;5 
J 

A 
I 
I 

I~ 
FLOAT 

~ 

FLOAT 

\ 
~ /--T,CHEH 

--t~ TCHEH 

AFN-02059B 



inter 80150/80150-2 JA\@WJA\OO©~ OOOIF@IRl~JA\ii'O@OO 

iAPX 86/50, 88/SO, 186/50, 188150 
CP/M-86* OPERATING SYSTEM PROCESSORS 

• High·Performance Two·Chip Data 
Processors Containing the Complete 
CP/M·86 Operating System 

• Standard On·Chip BIOS (Basic 
Input/Output System) Contains Drivers 
for 8272A, 8274, 8255A, 8251A 

• BIOS Extensible with User· Supplied 
Peripheral Drivers 

• User Intervention Points Allow Addition 
of New System Commands 

• Memory Disk Makes Possible Diskless 
CP/M·86 Systems 

• No License or Serialization Required 

• Bullt·ln Operating System Timers and 
Interrupt Controller 

• 8086/80150/80150-2/8088/80186/80188 
Compatible At Up To 8 MHz Without 
wait States 

The Intel iAPX 86/50, 88/50; 186/50, and 188/50 are two-chip microprocessors offering general-purpose 
CPU instructions combined with the CP/M-86 operating system. Respectively, they consist of the 8- and 
16-bit software compatible 8086,8088,80186, and 80188 CPU plus the 80150 CP/M-86 operating system 
extension. 
CP/M-86 is a single-user operating system designed for computers based on the Intel iAPX 86, 88, 186, 
and 188 microprocessors. The system allows full utilization of the one megabyte of memory available for 
application programs. The 80150 stores CP/M-86 in its 16K bytes of on-chip memory. The 80150 will run 
third-party applications software written to run under standard Digital Research CP/M-86. 
The 80150 is implemented in N-Channel, depletion-load, silicon-gate technology (HMOS), and is housed 
in a 40-pin package. Included on the 80150 are the CP/M-86 operating system, Version 1.1, plus hardware 
support for eight interrupts, a system timer, a delay timer, and a baud rate generator. 
*CPfM·86 Is a trademark of Digital Research, Inc. 

8284A 
CLOCK 
DRIVER 

RDY 

,-------1 
I I 
I 8088 I 

OR I I B086 

I INTERRUPT STATUS I 

: I 
I 
I~~--~----~~ 

INTERRUPT STATUS 

BUS 
INTERFACE 

I 
I 

CS.LlR 1------.... 

I 

BAUD RATE 
TIMER 

80150 

DELAY 
TIMER 

INTERRUPT 
REQUESTS 

_J~ 
SYSTEM 
TIMER 

IAPX 88150, 88150 

PROGRAM 
MEMORY 

Figure 1_ iAPX 86150, 86150 Block Diagram 

OATA 
MEMORY 

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products. exp, CREDIT, 1,ICE.leS, 1m, Insite, Intel. INTEL, Intelevislon.lntelllnk, 

~~.~~~~~~~: ~~::~~~~: ~~:7~sc:;~:~~~r:n~~~~;R~~~;S~~~;~~,~~~~~~1.:g~;u~:c:~;:~n~:;;~:~u~~:~~~~~~~~~~;~~ ::!.~~~b=:~rt~~~~~'s. 
of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other Patent Licenses are implied ©INTEL CORPORATION, 1982. SEPTEMBER 1982 

6-23 ORDER NUMBER: 210705-4102 



inter 80150/80150-2 
iAPX 86150,88/50,186/50,188/50 

! MAX I 
'::sE 

V •• Vee Vss Vee 

1.01. 1.015 1.01. 1.015 

1.013 BHE 1.013 1.16/53 

1.012 IR7 AD12 1.017/5' 

1.011 IRS AD11 1.18155 

4010 IRS AD10 1.19/56 

ADS IRO AD9 BHE/S7 (HIGH) 

AD8 IR3 ADa MN/MX 

1.07 IR2 1.07 iiii 

ADS IR1 ADS iiQ{c'ffi 

ADs IRO ADS ROtGT1 

AD< 'NT AD. LOCk 

AD3 iii AD3 52 

1.02 51 AD2 Si 

1.01 so AD1 so 
ADO ACK ADO OSO 

MEMCS LlR NMI OSl 

IOCS SY$TICK INTR TEST 

elK DELAY ClK READY 

V'S BAUD Vss RESET 

Figure 2. iAPX 86150, 88150 Pin Configuration 

Table 1. 80150 Pin Description 

Symbol TYpe Name and Function 

AD15-ADo I/O Address Data: These pins constitute the time multiplexed memory address (T1) and 
data (T 2, T 3, Tw, T 4) bus. These lines are active HIGH. The address presented during 
T1 of a bus cycle will be latched internally and interpreted as an 80150 internal 
address if MEMCS or lacs is active for the invoked primitives. The 80150 pins float 
whenever it is not chip selected, and drive these pins only during T2- T4 of a read 
cycle and T1 of an INTA cycle. 

BFiE/S7 I Bus High Enable: The 80150 uses the SHE signal from the processor to determine 
whether to respond with data on the upper or lower data pins, or both. The signal is 
active LOW. SHE is latched by the 80150 on the trailing edge of ALE. It controls the 
80150 output data as shown. 

SHE Ao 
0 0 Word on AD15-ADo 
0 1 Upper byte on AD15 - ADs 
1 0 Lower byte on AD7-ADo 
1 1 Upper byte on AD7-ADo 

S2. Sl. So I Status: For the 80150, the status pins are !,!sed as inputs only. 80150encoding follows: 

S2 s;- So 
0 0 0 INTA 
0 0 1 lOAD 
0 1 0 IOWA 
0 1 1 Passive 
1 0 0 Instruction fetch 
1 0 1 MEMAD 
1 1 X Passive 

6-24 
AFN·01487A 



inter 80150/80150·2 
iAPX 86150,88/50,186/50,188/50 

Table 1. 80150 Pin Description (Continued) 

Symbol lYpe Name and Function 

CLK I Clock: The system clock provides the basic timing for the processor and bus controller. 
It is asymmetric with a 33% duty cycle to provide optimized internal timing. The 80130 
uses the system clock as an input to the SYSTICK and BAUD timers and to synchronize 
operation with the host CPU --

INT 0 Interrupt: INT is HIGH whenever a valid interrupt request is asserted. It is normally used 
to interrupt the CPU by connecting it to INTR. 

IR7- IRo I Interrupt Requests: An interrupt request can be generated by raising an IR input (LOW 
to HIGH) and holding it HIGH until it is acknowledged (Edge-Triggered Mode), or just by a 
HIGH level on an IR input (Level-Triggered Mode). -

ACK 0 Acknowledge: This line is LOW whenever an 80150 resource is being accessed. It is 
also LOW during the first INTA cycle and second INTA cycle if the 80150 is supplying 
the interrupt vector information. This signal can be used as a bus ready acknowl-
edgement and/or bus transceiver control. 

MEMCS I Memory Chip Select: This input must be driven LOW whell'l a kernel primitive is being 
fetched by the CPU. AD13-ADo are used to select the instruction. 

IOCS' I Input/Output Chip Select: When this input is low, during an lORD or IOWR cycle, the 
80150's kernel primitives are acceSSing the appropriate peripheral function as speci-
fied by the following table: 

BHE A3 A2 Al Ao 

0 X X X X Passive 
X X X X 1 Passive 
X 0 1 X X Passive 
1 0 0 X 0 Interrupt Controller 
1 1 0 0 0 Systick Timer 
1 1 0 1 0 Delay Counter 
1 1 1 Q 0 Baud Rate Timer 
1 1 1 1 0 Timer Control 

LIR 0 Local Bus Interrupt Request: This signal is LOW when the interrupt request is for a 
non-slave input or slave input programmed as being a local slave. 

Vee Power: Vee is the +5V supply pin. 

VSS Ground: VSS is the ground pin. 

SYSTICK 0 System Clock Tick: Timer 0 Output. 

DELAY 0 DELAY Timer: Output of timer 1. 
-

BAUD 0 Baud Rate Generator: 8254 Mode 3 compatible output. Output of 80150 Timer 2. 

The 80150 breaks new ground in operating system 
software-on-silicon components. It is unique 
because it is the first time that an industry
standard personal/small business computer 
operating system is being put in silicon. The 
80150 contains Digital Research's CP/M-86 
operating system, which is designed for Intel's 
line of software- and interface-colTJpatible iAPX 
86, 88, 186, and 188 microprocessors. Since the 
entire CP/M-86 operating system is contained on 
the chip, it is now possible to design a diskless 
computer that runs proven and commonly 
available applications software. The 80150 is a 

true operating system extension to the host 
microprocessor, since it also integrates key 
operating system-related peripheral functions 
onto the chip. 

6-25 

MODULAR DESIGN 
Based on a proven, modular design, the system in
cludes the: 

• CCP: Console C.ommand Processor 

The CCP is the human interface to the 
operating system and' performs decoding and 

AFN·Ol«17A 



inter 80150/80150-2 
iAPX' 86150,88/50,186/50,188/50, t!.\@Wt!.\OO©~ O~IF@IR1~t!.\iiO@OO ' 

execution of user commands. 

• BOOS: Basic Disk Operating System 

The BOOS is the logical, invariant portion of the 
operating system; it supports a named file 
system with a maximum of 16 logical drives, 
containing up to 8 megabytes each for a poten
tial of 128 megabytes of on-line storage. 

• BIOS: Basic Input/Output System ' 

The physical, variant portion of the operating 
system, the BIOS contains the system
dependent input/output device handlers. 

CP/M* COMPATIBILITY 
CP/M-86 files are completely compatible with 
CP/M for 8080- and 8085-based microcomputer 
systems. This simplifies the conversion of soft
ware developed under CP/M to take full advantage 
of iAPX 86, 88, 186, 188-based systems. 

The user will notice no significant difference be
tween CP/M and CP/M-86. Commands such as 
olR, TYPE, REN, and ERA respond the same way, 
in both systems. 

CP/M-86 uses the iAPX 86, 88, 186, 188 registers 
corresponding to 8080 registers for system call 
and return parameters to further simplify software 
transport. The 80150 allows application code and 
data segments to overlap, making the mixture of 
code and data that often appears in CP/M applica
tions acceptable to the iAPX 86, 88, 186, 188. 

Unique Capabllitle,s of CP/M·86 in Silicon 
1. CP/M-86 on-a-chipreduces software develop

ment required by the system designer. It can 
change the implementation of the operating 
system into the simple inclusion of the 80150 
on the CPU board. 

'As described later, the designer can either 
simply incorporate the Intel chip without the 
need for writing even a single line of additional 
code, or he can add additional device drivers by 
writing only the small amount of additional 
code required. 

2. The 80150 is the most cost-effective way to im
ple~ent CP/M-86 in a microcomputer. The in
tegration of CP/M-86 with, the 16K bytes of 
system memory It requires, the two boot ROMS 
required in a diskette-based CP/M-86, and, the 
on-chip peripherals (interrupt controller and 
timers) lead to savings in software, parts cost, 
board space, and Interconnect wiring. 

3. The reliability of the microcomputer is in-

6-26 

creased significantly. Since CP/M-86 is now 
always in the system as a standard hardware 
operating system, a properly functioning 
system diskette is not required. CP/M-86 in 
hardware can no longer be overwritten acciden
tally by a runaway program. System reliability 
is enhanced by the decreased dependence on 
floppy disks and fewer chips and interconnec
tions required by the highly integrated 80150. 

4. The microcomputer system boots up CP/M-86 
on power-on, rather than requiring the user to 
go through a complicated boot sequence thus 
lowering the user expertise required. ' 

5. Diskless CP/M-based systems are now easy to 
design. Since CP/M is already in the microcom
puter hardware, there is no need for a disk drive 
in the system if it is not desired. Without a disk 

, drive, a system is more portable, simpler to use, 
less costly, and more reliable. 

6. The administrative costs associated with 
distributing CP/M-86 are eliminated. Since 
CP/M-86 is now resident on the 80150 in the 
microcomputer system, there is no end-user 
licensing required nor is there any serialization 
requirement' for the 80150 (because no CP/M 
diskette is used). 

7. End-users will value having their CP/M 
operating system resident in their computer 
rather than on a diskette. They will no longer 
have to back up the operating system or have a 
diskette working properly to bring the system 
up in CP/M, increasing their confidence in the 
integrity, reliability, and usability of the system. 

80150 FUNCTIONAL DESCRIPTION 
The 80150 is a processor extension that is fully 
compatible with the 8086, 8088, 80186, and 80188 
microprocessors. When the 80150 is combined 
with the microprocessor, the two-chip set is 
called' an Operating System Processor and is 
denoted as the iAPX 86/50, 88/50,186/50, or 188/50. 
The basic system configuration is shown in 
Figure 1. The 80150 connects"directly to the multi
plexed address/data bu's and runs up to 8 MHz 
without wait states. 

A. Hardware. Figure 3 is a functional diagram of 
the 80150 itself. CP/M-86 is stored in the 
16K-bytes of control store. The timers are com
patible with the ~tandard 8254 timer. The inter- . 
rupt controlier, with its eight programmable in
terrupt Inputs and one interrupt output, is 
compatible with the 8259A Programmable In
terrupt Controller. ,External slave 8259A inter-

·CP/M is a registered trademark of Digital Research, Inc. ' 

AFN·OI487A, 



inter 80150/80150·2 
iAPX 86150,88/50,186/50, 188/50 l!.\W\V7l!.\OO©~ DOOIF@OOIMll!.\'ii'D@OO 

,----------------------------------, 
I OPERATING SYSTEM UNIT I 

I 00-7 I 
I I I 1 
I r I' 
: I _ PROGRAMMABLE I / ( 
I IN~~~~~PT I INTERRUPT INPUTS 

I 

I 

II CONTROL '--------'i INTERRUPT OUT 

j STORE 

I r-------~: 
: ~ SYSTEM ~ SYSTEM 

: I~ TIMER: 

: r--r-hl,.-v""L;:~~===~: : C··,S 
DELAY I 

: _ .>I TIMER 

DELAY 

: l I: 
I: ~ BAUD RATE LLI_~ BAUD RATE I "- GENERATOR ~ 

:~------~ II-rV~--------~: 
f------------- ------- -- - -- -- ---------1 
Ir--------~ I 

! . r:- rl-- CLOCK 

16 II DATA (:=====~=J BUS ~ BUFFER INTERFACE ~ STATUS 
/'--L."7'--N...1 & AND I 4 

1 ADDRESS CONTROL. I~, BUS CONTAOL 
ADDRESS, I LATCH ~ 
DATA BUS I ~ LOCAL 

I I INTERRUPT 

I CONTROL UNIT I ([ijli) L __________________________________ ~ 

Figure 3. 80150 Internal Block Diagram 

rupt controllers can be cascaded with the 
80150 to expand the total number of interrupts 
to 57. 

B. Software. Digital Research's version 1.1 of 
CP/M·86 forms the basis of the 80150. CP/M 
consists of three major parts: the Console 
Command Processor (CCP), the Basic Disk 
Operating System (BOOS), and the Basic In· 
put/Output System (BIOS). Details on CP/M·86 
are provided in Digital Research's CPIM-86 
Operating System User's Guide and CPIM-86 
Operating System System Guide. 

vided to format diskettes, transfer files between 
devices (based on Digital Research's Peripheral 
Interchange Program PIP), and alter and display 
I/O device and file status (based on Digital 

CCP - Console Command Processor 
The CCP provides all of the capabilities provided 
by Digital Research's CCP. Bullt·in commands 
have been expanded to include capabilities nor
mally included as transient utilities on the Digital 
Research CP/M-86 diskette: Commands are pro-

6-27 

Research's STAT). . 

Through User Intervention Points, the standard 
CP/M-86 CCP.is enhanced to allow the user to add 
new built-in commands to further customize a 
CP/M-86 system. 

BOOS - Basic Disk Operating System 
Once the CCP has parsed a command, it sends it 
to the BOOS, which performs system services 
such as managing disk directories and flies. 
Some of the standard BOOS functions provide: 

Console Status 
Console Input and Output 
List Output 
Select Drive 
Set Track and Sector 

AFN-Ol467B 



80150/80150-2 
iAPX 86150,88/50,186/50,188/50 

ReadlWrite Sector 
Load Program 

The 8DOS in the 80150 provides the same func
tions as the standard Digital Research CP/M-86 
BOOS. 

BIOS - Basic Input/Output System 
The BIOS contains the system-dependent I/O 
drivers. The 80150 BIOS offers two fundamental 
configuration options: 

1. A predefined configuration which supports 
minimum cost CPIM~86 microcomputer 
systems and which requires no operating 
system development by the system designer. 

2. An OEM-configurable mode, where the 
designer can choose among several drivers.of· 

808818086180186180188 80150 CPU 

fered on the 80150 or substitute or add any ad
ditional device drivers of his choice. 

These two options negate the potential software
on-silicon pitfall of inflexibility in system design. 
The OEM can customize the end system as 
desired. 

The predefined configuration offers a choice 
among several peripheral chip drivers Included on 
the 80150. Drivers for the following chips are in
cluded in the 80150 BIOS: 

8251A 

8274 

8255A 

8272A 

Universal Synchronous/ 
Asynchronous Receiver/Transmit
ter (USART) 
Multi-Protocol Serial Controller 
(MPSC) 
Programmable Parallel Interface 
(PPI) 
Floppy Disk Controller 

FLOPl DISK 

8272A 

ADDRESS/DATA BUS 

8251A 8255A 

cONLLE PRIL~ 
Figure 4. Predefined Configuration 

6-28 
AFN.()14678 



80150/80150-2 
iAPX 86150,88/50,186/50,188/50 

Even In the predefined configuration, the system 
designer (or end user, if the system designer 
desires) may select parameters such as the baud 
rates for the console and printer, and the floppy 
disk size (standard 8" or 5Y4" mini-floppy) and 
format (FM single density or MFM double density, 
single-sided or double-sided). 

Drivers for the 80150 on-chip timers and interrupt 
controller are also included in the BIOS. 

The 80150 takes advantage of the 80186 and 80188 
on-chip peripherals in an iAPX 186/50 or 188/50 
system. For example, the integrated DMA controlier is 
used. Also fully utilized are the integrated memory chip 
selects and I/O chip selects. 

Since ali microcomputer configurations cannot 
be anticipated, the OEM-configurable rhode 
allows the system designer to use any set of 
peripheral chips desired. This configuration is 
shown in Figure 5. 

By simply changing the jump addresses in a con
figuration table, the designer can also gain the 
flexibility of adding custom BIOS drivers for other 

8088/808~~~86/80188 f---- 80150 

peripheral chips, such as bubble memories or 
more complex CRT controliers. These drivers 
would be stored in memory external to the 80150 
itself. By providing the configurability option, the 
80150 is applicable to a far broader range of 
designs that it would be with an inflexible BIOS. 

MEMORY ORGANIZATION 
When using the predefined configuration of the 
80150 BIOS, the 80150 must be placed in the top 
16K of the address space of the microprocessor 
(starting at location FCOOOH) so that the 80150 
gains control when the microprocessor is reset. 
Upon receipt of control, the 80150 writes a con
figuration block into the bottom of the micro, 
processor's address space, which must be in 
RAM. The 80150 uses the area after the inter
rupt vectors for system configuration information 
and scratch-pad storage. 

When using the OEM-configurable mode of the 
80150 BIOS, the 80150 is placed on any 16K boun-

FLOPPY DISK 

I 
8272A OTHER 

PERIPHERALS 

ADDRESS/DATA BUS 

8251A 

I 
ASYNCHRONOUS 

COMMUNICATIONS, 
CONSOLE, 

SERIAL PRINTER 

8255A 

I 
KEYBOARD, 

PARALLEL PRINTER 

'Figure 5. OEM Configurable System 

6-29 

8274 

I 
SYNCHRONOUS LINE, 

SERIAL PRINTER, 
CONSOLE 

AFN-01467B 



inter 80150/80150-2 
iAPX 86150,88/50,186/50, 188/50 &@W&IJ\I.J©~ OIJ\l.J!F@OOfi\1l&'ii'O@1J\I.J 

dary of memory except the highest (FCOOOH) or 
lowest (OOOOOH). The user writes interface code (in 
the form of a simple boot ROM) to Incorporate and 
link additional features and changes into the 
standard 80150 environment. The configuration 
block may be located as desired in the address 
space, and its size may vary widely depending on 
the application. 

Memory Disk 
A unique capability offered by the 80150 is the 
Memory Disk. The Memory Disk consists of a 
block of RAM whose size can be selected by the 
designer. The Memory Disk is treated by the 
aDOS as any standard floppy diSk, and is one of 
the 16 disks that CPIM can address. Thus files can 
be opened and closed, programs stored, and 
statistics gathered on the amount of Memory Disk 
space left. 

The Memory Disk opens the possibility of a por
table low-cost diskless microcomputer or network 
station. Applications software can be provided in 

ClK 

0 
52 f- elK 8288 S!!r-- ~ 

-
8086 

SHE ~ .,. 
~RESS/o~ 8282 

1-
INT ADO 

-

_ INT 
52 VI-

ClK AD~~ 
ADO r:-r-

10CS DECODE b 
lOGIC 

MEMes ,~ 

ill 
L1R 
IRO 

r- BAUD 
. A 

a number of ways: 

a. telephone lines via a modem. 
b. ROM-based software. 
c. a ne.twork. 
d. bubble memory based software. 
e. low-cost cassettes. 

TYPICAL SYSTEM CONFIGURATION 
Figure 6 shows the processing cluster of a 
"typical" iAPX 86/50 or lAPX 88/50 OSP system. 
Not shown are subsystems likely to vary with the 
application. The configuration includes an 8086 
(or 8088) operating in maximum mode, an 8284A 
clock generator and an 8288 system controller. 
Note that the 80150 is located on the CPU side of 
any I~tches or transceivers. 

Timers 
The Timers are connected to the lower half of the 
data bus and are addressed at even addresses. 
The timers are read as two successive bytes, 

CONTROL 

SHE 
AI' LOCAL 

AND 
ADDRESS SYSTEM 

RESOURCES 
AO 

...----
015 

"-... 
8286 , 

r~ 

~ " DO 

L-

1 
INTERRUPT REQUESTS 

IR7 

~ $YSTICK 

Figure 6. Typical OSP Configuration 
6-30 

AFN'()I467B 



80150/80150-2 
iAPX 86150,88/50,186/50,188/50 

always LSB followed by MSB. The MSB is always 
latched on a read operation and remains latched 
until read. Timers are not gatable. An external 
8254 Programmable Interval Timer may be added 
to the system. 

Baud Rate Generator 
The baud rate generator operates like an 8254 
(square wave mode 3). Its output, BAUD, is initially 
high and remains high until the Count Register is 
loaded. The first falling edge of the clock after the 
Count Register is loaded causes the transfer of 
the internal counter to the Count Register. The 
output stays high for N/2 [(N + 1)/2 if N is odd] and 
then goes low for N/2 [(N - 1)/2 if N is odd]. On the 
falling edge of the clock which signifies the final 
count for the output in low state, the output 
returns to high state and ,the Count Register is 
transferred to the internal counter. The baud rates 
can vary from 300 to 9600 baud. 

The baud rate generator is located at OCH (12), 
relative to the 16-byte boundary in the I/O space in 
which the 80150 component is located. T~e timer 
control word is located at relative address, 
OEH(14). Timers are addressed with 10CS = O. 
Timers 0 and 1 are assigned to use by the OSP, 
and should not be altered by the user. 

The 80150 timers are subset compatible with 8254 
timers. 

Interrupt Controller 
The Programmable Interrupt Controller (PIC), is 
also an integral unit of the 80150. Its eight input 
pins handle eigl'lt vectored priority interrupts. One 
of these pins must be used for the SYSTICK time 
function in timing waits, using an external con
nection as shown. During the 80150 initialization 
and configuration sequence, each 80150 interrupt 
pin is individually programmed as either level or 
edge sensitive. External slave 8259A interrupt 
controllers can be used to expand the total 
number of interrupts to 57. 

6-31 

In addition to standard PIC functions, the 80150 
PIC unit has an LlR output signal, which when low 
indicates an interrupt acknowledge cycle. LlR=O 
is provided to control the 8289 Bus Arbiter 
SYSB/RE:SB pin. This will avoid the need of re
questing the system bus to acknowledge local 
bus non-slave interrupts. The user defines the in
terrupt system as part of the configuration. 

INTERRUPT SEQUENCE 
The interrupt sequence is as follows: 

1. One or more of the interrupts is set by a low
to-high transition on edge-sensitive IR inputs 
or by a high input on level-sensitive IR inputs. 

2. The 80150 evaluates these requests, and 
sends an INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds 
with an interrupt acknowledge cycle which is 
encoded in S2 - SO, 

4. Upon receiving the first interrupt acknowledge 
from the CPU, the highest-priority interrupt is 
set by the 80150 and the corresponding edge 
detect latch is reset. The 80150 does not drive 
the address/data bus during this bus cycle but 
does acknowledge the ~cle by making 
ACK = 0 and sending the LlR value for the IR 
input being acknowledged. ' 

5. The CPU will then initiate a second interrupt 
acknowledge cycle. During this cycle, the 
80150 will supply the cascade address of the 
interrupting input at T 1 on the bus and also 
release an 8-bit pointer onto the bus if ap
propriate, where it is read by the CPU. If the 
80150 does supply the pOinter, then ACK will 
be low for the cycle. This cycle also has the 
value LlR for the IR input being acknowledged. 

6. This completes the interrupt cycle. The ISR bit 
remains set until an appropriate EXIT INTER
RUPT primitive (EOI command) is called at the 
end of the Interrupt Handler. 

AFN·01467B 



80150/80150·2 
iAPX 86150,88/50,186/50,188/50 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature .Under Bias ........ o·e to 70·e 
Storage Temperature ................. -65·C to 150·C 
Voltage on Any Pin With 

Respect to Ground .................. -1.0V to + 7V 
Power Dissipation .......................... 1.0 Watts 

D.C. CHARACTERISTICS (TA = o·c to TO·C. Vee = 4.5 to 5.5V) 

Symbol Parameter Min. 

VIL Input Low Voltage - 0.5 

VIH Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

lee Power Supply Current 

ILl Input Leakage Current 

ILR IR Input Load Current 

ILo Output Leakage Current 

VCLi Clock Input LOW 

VeHI Clock Input High 3.9 

CIN Input Capacitance 

CIO 110 Capacitance 

leu Clock Input Leakage Current 

'NOTICE: Stresses above those listed under Absolute 
Maximum Ratings may cause permanent damage to the 
device. This is a stress rating only and functional operation 
of the device at these or any other conditions above those 
indicated in the operational sections of this specification 
is not implied. Exposure to absolute maximum rating con
ditions for extended period may affect device reliability. 

Max. Units Test Conditions 

0.8 V 

Vee +.5 V 

0.45 V 10L ~ 2mA 
V IOH ~ - 400!LA 

200 mA TA = 25 C .. 
10 !LA 0< VIN < Vee 
10 ~A VIN = Vee 

-300 !LA VIN = 0 
10 !LA .45 :5 VIN " Vec 
0.6 V 

V 
'10 pF 

15 pF 

10 !LA VIN = Vee 
150 ~A VIN = 2.5V 
10 !LA VIN = OV 

A.C. CHARACTERISTICS (TA = 0-70·C, Vee = 4.5-5,5 Volt, Vss = Ground) 

80150 80150·2 

Symbol Parameter Mil!. Max. Min. Max. Units Test Conditions 

TCLCL CLK Cycle Period 200 - 125 - ns 

,fCLCH CLKLowTIme 90 - 55 - ns 

TCHCL CLK High Time 69 2000 44 2000 ns 

TSVCH Status Active Setup Time 80 - 65 - ns 

TCHSV Status Inactive Hold Time 10 - 10 - ns 

TSHCL Status Inactive Setup Time 55 - 55 - ns 

TCLSH Status Active Hold Time 10 - 10 - ns 

TASCH Apdress Valid Setup Time 8 - 8 - ns 

TCLAH Address Hold Time. 10 - 10 - ns 

TCSCL Chip Select Setup Time 20 - 20 - ns 

TCHCS Chip Select Hold Time 0 1- 0 - ns 

TDSCL Write Data Setup Time 80 - 60 - ils 

TCHDH Wr~e Data Hold Time 10 - 10 - ns 

TJWH ' IRLowTIme 100 - 100 - ns 

TCLDV Read Data Valid Delay - 140 - 105 ns CL - 200pF 

TCLDH Read Data Hold Time 10 - 10 - ns 

TCLDX Read Data to Floating 10 100 10 100 ns 
TCLCA cascade Address Dalay Time - 85 - > 65 ns 

6-32 
AFN·01467B 



inter 80150/80150·2 
iAPX 86150,88/50,186/50,188/50 ~@\Vl~OO©~ OOOIF@!raIMJ~'IT'O@OO 

A.C. CHARACTERISTICS (Continued) 

80150 80150-2 

Symbol Parameter Min. Max. Min. Max. Units Notes 

TCLCF Cascade Addresse Hold TIme 10 - 10 - ns 

T\AVE INTA Status t Acknowledge - 80 - 80 ns 

TCHEH Acknowledge Hold Time 0 - 0 - ns 

TCSAK Chip Select to ACK - 110 - 110 ns 

TSACK Status to ACK - 140 - 140 ns 

TAACK Address to ACK - 90 - 90 ns 

TCLOO Timer Output Delay Time - 200 - 200 ns CL ~ 100pF 

TCLC01 Timerl Output Delay Time - 200 - 200 ns CL ~ 100pF 

TJHIH INT Output Delay - 200 - 200 ns 
T1RCL IR Input Set Up 20 - 20 - ns 

WAVEFORMS 
A.C. 

eLK 

TelOO I --
SV$TICK. 

DELAY, BAUD ____________ ~x~ ____ _ 
CUI 

IR 

INT 

6-33 
. AFN.()1467B 



inter 80150/80150·2 
iA~X 86150,88/50, 18~/50, 1 ,88/SO tA\1P>WtA\OO©rg OOOIP@OOIM]b.\'U'O@OO 

WAVEFORMS 
A.c. 

T4 T1 12 I T3 I 
TW 

ClK 

TCHCL TelCH I 
I I 

, 
.-

.~ 
TSVCH TCLCl TClS" 'r 

\ I I 
S2. 11. SO 

~ F~ 
BHE. AI',-Ao VALID 1-----

"TO TCSCl 

BHE.AD 

B"TS 
, 

WRI TEC'tCLE L TDSCL 

I ADDRESS VALID 'f..JI'f.NX WAITE DATA VALID 

'{ -I r TCSAK 

TAACK ~ 
I TCLDX D CYCLE 1--1 rCLOV ~.,:r"1 J FLOAT 

REAO DATA VALID AODRESS VALID 1M 

AD 

REA 

K I I 
T5ACK \ 

TAC'tCLE ~ 

AJs 

I 
CD CASCADE ADDRESS 

FlOAT 
POINTER ® 

2ND IN 

TlAVE 

® 

iT R \ @ 

I 
, 

TIAVE 

NOICS 
1 CASCADE ADDRESS PRESENTED ON AD8, AD9 AND "D10 CORRESPONDING TO CABO, CAS1 

AND CAS2 RESPECTIVELY ADl1-AD15 UNES ARE ACTIVE AND HAVE UNKNOWN YAUJE8. NJO-/lD7 
ARE TRISTATE 

2 POMER VALUE IS ACTIVE ONLY IF POINTER IS GENERATED FROM THE 80150 AND NOT FROM 
EXTERNAL SLAVE UNIT 
ACTIVE LOW ONLY WHEN POINTER DATA JS BaNG SUPPLIED BY THE 80150 
LOW ONLV FOR LOCAL 1NTERRlPJ' 

T4 

I 

I 

r:;s 
I 

f9 
I 
I 

F9 
FLOAT 

~ 

FLOAT 

I 
--I j-TCHEH 

I 
-.:fFTCHEH 



User Library 7 





inter 
USER LIBRARY 

The Insite User's Program Library Is an Intel-sponsored software library supporting Intel microcomputer 
products. There are currently over 325 programs in the Library collection. 

Insite offices are located in the U.S., Brussels, PariS, Germany, the U.K., and Japan, serving about 1,500 
members worldwide. 

As the Library collection is built on programs submitted by I ntel employees as well.as customers, we encourage 
and welcome all program contributions. These contributionsllre essential to the growth and success of Insite. 

In the following pages you will be introduced to more in-depth information about Inslte. Membership and 
program submittal forms, including a complete program index listing, are also included for your convenience. 

7-1 



inter 
INSITE'M USER'S PROGRAM LIBRARY 

• Programs for 8048, 8051, 8080/8085, 
and 808618087/8088 Processors 

• Accepted Program Submittals Entitle 
You to a Free Membership or Free 
Program Package 

• Worldwide Offices to Serve You 

• Diskettes, ,Paper Tapes, and Listings 
Available for Library Programs ' 

• Program Library Catalog Offering 
Hundreds of Programs 

• Updates of New Programs Sent During 
SubSCription Period 

Insite, Intel's Software Index and Technology Exchange Library, is a varied collection of programs and 
routines that have been written by users of Intel microcomputers, single-board computers, and develop· 
ment systems. This expanding library of programs covers a broad range of software tools that includes 
monitors, conversion routines, peripheral drivers, translators, math packages, and even games. As a 
library member, you can acquire a copy of any program wlth'n the library on any of its available types of 
media. By taking advantage of the availability of existing library programs, numerous hours of coding and 
debugging time can be saved and routine or redundant programming operations can be eliminated. The 
Insite Program Library also serves as a learning tool fbr individuals unfamiliar with assembly or high·level 
languages associated with Intel's family of microcomputers. 

Membership. Membership in Insite Is available on an annual basis. Intel customers may become 
members through an accepted program contribution or paid membership fee. 

Program Submittals. The Insite Library is built on program submittals contributed by users. 
Customers are encouraged to submit their programs. (Details and forms are available through the Insite 
Library.) For each accepted program, submittors will receive a choice of three free programs (A, e, C, or D ca,tegory), 
or free membership with Insite for one year. 

Program Library Service. PAPER TAPES, DISKETTES OR SOURCE LISTINGS are available for every 
program in Insite. Diskettes are available on single or double density. Membership Is required to purchase 
programs. 

Inslte™ Program Library Catalog. Each member will be sent the Program Library Catalog consisting 
of an abstract for each program indicating the function of the routine, required hardware and software, 
and memory requirements. 

Insite members will be updated with abstracts of new programs submitted to the Library during the sub· 
scription period. For catalog and yearly subscription fee please refer to the Intel OEM Price List or contact 
the nearest IlJsite or Intel Sales Office. 

INSITE OFFICES ARE WORLDWIDE, WITH FIVE LOCATIONS TO SERVE YOU: 

NORTH AMERICA 
Intel Corporation 
3065 Bowers Avenue 

THE ORIENT 
Intel Japan K.K. 

Santa Clara, California 95051 
5-6 Tohkohdai, Toyosato-cho, 
Tsukuba·gun, Ibarakl, 300-26, Japan 
ATTN: Inslte User's Program Library 
Telephone: 029747·8511 

ATTN: Inslte User's Program Library 
Telephone: 408-987-8080 

Intel Corporation S.A.R.L. 
5 Place de la Balance 
SlIIc 223 
94528 Rungls Cedex, France 
ATTN: Inslte User's Program Library 
Telephone: 0687·22·21 

EUROPE 
Intel Semiconductor GmbH 
Seldlstrasse 27 
8000 Muenchen 2 
West Germany 
ATTN: Inslte User's Program Library 
Telephone: 089-5389-1 

7-2 

Intel Corporation (U.K.) Ltd. 
Pipers Way 
Swlndon SN3 LRJ 
Wiltshire, England 
ATTN: Inslte User's Program Library 
Telephone: 0793-488·388 



inter 
SUBMlnAL REQUIREMENTS 

Programs submitted for Insite review must follow the guidelines listed below: 

Programs must be written in a language capable of compilation and assembly by the currently-supported 
version of an Intel standard compiler/assembler. Accepted languages are documented In the following 
manuals available through Intel's Literature Department. 

- BASIC-80 Reference Manual, Order No. 980758 

- ICIS-COBOL Language Reference Manual, Order No. 980927 

- FORTRAN-80 Programming Manual, Order No. 980481 

- FORTRAN-86 User's Guide, Order No. 121570 

- Pascal-80 User's Guide, Order No. 981015 

- Pascal-86 User's Guide, Order No. 121539 

- PUM-80 Programming Manual, Order No. 980268 

- PUM-86 Programming Manual, Order No. 980466 
- MCS-48 and UPI-41 A Assembly Language Manual, 'Order No. 980255 

- MCS-86 Macro Assembly Language Reference Manual. Order No. 121703 

- 8080/8085 Assembly Language Programming Manual, Order No. 980940 

- 8086/8087/8088 Macro Assembly Language Reference Manual for 80185 Based Development System, 

Order No. 121623 
- 8086/8087/8088 Macro Assembly Language Reference Manual for 80/86 Based Development System, 

Order No. 121703 

- 8089 Assembly Language Reference Manual, Order No. 980255 

- Microsoft BASIC Compiler Reference Manual, Order No. 121805 

- Mi~rosoft BASIC-80 Reference Manual, Order No. 121806 
- Microsoft BASIC Reference Book, Order No. 121857 

- Microsoft FORTRAN-80 Reference Manual, Order No. 121798 

- Microsoft FORTRAN-80 User's Manual, Order No. 121799 

- Microsoft M/Sort Reference Manual, Order No. 121809 
- Microsoft Utility Software Manual, Order No. 121797 

A well-documented source code furnished on an ISIS-formatted 8" diskette, CP/M-formatted 8" diskette, PDS 5 W' 
diskette, or ASCII-coded paper tape. 

A source listing of the program must be included. This must be the output listing of a compilation or an 
assembly. No consideration will be given to incomplete programs or duplications of programs already in 
the Library. 

A link and locate listing. 

A demonstration program which assures the validity of the contributed program must be included. This 
must show the accurate operation of the program. 

A complete submittal form. 

Licensed software or copyrighted material must be accompanied by a written release from the appro
priate, authorized person. 

7-3 



, 'ner 

j 

Processor 

Program 
Title 

Function 

Required 
Hardware 

Required 
Software 

Input 
Parameters 

Output 
Results 

0 8048 

INSllET- USER'S PROGRAM LIBRARY 
SUBMITTAL FORM 

08051 0 808018085 o 808818087/8088 0 Other 
Indicate the MDS series model the program was created on by checking the appropri-
ate box, and Identify other MDS serles'~odels the program·may be compatible with. 

. 
, 

-

, 

Regl.t .... Modlfl.d: Prog ... mm.r: 

RAM Required: Compeny: 

ROM Required: Addre .. : 

Maximum Subroutine N •• tlnll Lev.l: City: 

A ... mbl.rtComp".r Und: Stat.: 

Progremmlng Leng".",: T_phone: 

ACKNOWLEDGEMENT AND AGREEMENT 
To tho boot of my knowledge, I hove tho right to contributothlo program motorial without breaching any obligation concomlng nondlacl08u", 
of proprietary or confidential Information of other persons or organlzatlon~. I am contributing this program material on a nonconfldentlal 
nonobligatory boolsto tho Inolto Uoofo Llb",ry lor InclU810n In It. prog,..m library, and I agree that tho Library may u.o, duplicate,. modlly, 
publish. and sell the program material without obligation or liability of any kind. The Inslte Unr's Library may publish my name and address, as 
the contributor, to facilitate user Inqulrl .. pertaining to thle program material. 

Signature Dato 

7-4 



LIST OF PROGRAMS 
ALPHABETICAL, BY APPLICATION 

Program Title Order No. 

ADD AND SUBTRACT: BCD Numbers ............................................... CB11 
ASSEMBLER: 8080 MACRO, V4.1 .................................................. BF4 
ASSEMBLER, CROSS: 8008 Code. . . . .. . . . . . . . .. .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. BC5 
ASSEMBLER, CROSS: 8048 On DG Nova .................................... . . . . . .. BC6 
ASSEMBLER, CROSS: DEC PDP-8 or PDP-11 ....................................... BC2 
ASSEMBLER, CROSS: DEC PDP-11 ................................................ BC3 
ASSEMBLER, CROSS: DEC PDP-11 ................................................ BC4 
ASSEMBLER, CROSS: MCS-48 .................................................... BC1 
ASSEMBLER, ON-LINE . . . . . . . . . . . . . . . . . . . . . .. .. . . . .. . . . . . . . . . . . .. . . . . . .. . . . .. . . . .. BF5 

BAUD RATE: Modify ...................................... . . . . . . .. . . . . . .. . . . .. . . . .. BG25 
BAUD RATE: Modify Under CP/M ................................................... BG26 
BIT HANDLING: 8048 ............................................................. BG35 
BRANCH: MCS-48 Branch Table Routine ............................................ BG37 
BREAKPOINT: 8089 ............................................................... BD15 

CALCULATE: CHECKSUM ......................................................... BD16 
CALCULATE: Sine or Cosine Routine ................................................ CB13 
CALCULATE: Square Root ......................................................... CB5 
CALCULATION: Least Squares Quadratic Fitting ....... : .............................. CB3 
CALCULATION: Natural Logarithm ............................... ' .... , .............. CB4 
CHANGE: Load Addresses, iAPX-86/88 Object File .................................. , BG42 
CHECKBOOK ...... ,............................................................. BA6 
CLOCK: 8748 Clock and LCD Tachometer ........................................... BG30 
CLOCK: MICRO/SYS MC1460 Real Time Clock Board Utilities ......................... BG31 
CLOCK: Real Time ................................................................ BG29 
COMMANDS: Meta-Programs ...................................................... BG38 
COMMUNICATION: DEC PDP-11 to Intellec Development System ...................... BB16 
COMMUNICATION: HP Calculator with Intellec Development System-800 ................ AD1 
COMMUNICATION: Intellec Development System 220/230 with SDK-85, V1.0 ............ AD4 
COMMUNICATION: Intellec Model 220/230 to-Timesharing Computer ................... AD6 
COMMUNICATION: Intellec Model 800 to/from DEC PDP-10 ..... _ ................ , .... AD8 
COMMUNICATION: Intellec Development System to/from DEC ......................... AD10 
COMMUNICATION: Intellec Development System to/from Tektronix 8001 ................ AD11 
COMMUNICATION: Intellec Development System Series-II with Minicomputer ............ AD9 
COMMUNICATION: Intellec Development System Series-II with PROMPT-48 ............. AD2 
COMMUNICATION: Intellec Development System to PROMPT-48 or -80 ................. AD3 
COMMUNICATION: Intellec System to Serial Output Device .............. , ............. AD14 
COMMUNICATION: Intel DevelOpment System to/from Hewlett-Packard Computer ........ AD15 
COMMUNICATION: Intel Development System to/from VAX 11 ............. ' ...... : ..... AD13 
COMMUNICATION: Intel MDS-Data I/O Programmer Interface .......................... BE8 
COMMUNICATION: NDS-II to/from iPDS Running CP/M-80 ." .... , ... , ... , .... , ... , ... AD17 
COMMUNICATION: Tektronix DAS 9100 Digital Analysis System 

to Intel Development System ... " .. - ... "., .... , ... , .. , .. , ..... , ... ,., ........ , .. AD12 
COMMUNICATION: Two Intellec Series-II Development Systems ....... , .. , .. , .. , ...... , AD7 
COMMUNICATION: Xerox File Transfer Facility ............. ,."." ...... , ......... ". AD16 
COMPARE: 8048 or 8049 ROMS .. , ... , ......... , ...... , .. , , ... , .... , ..... , . . . . . . . .. AE11 
COMPARE: Files ... _ .... , . , .. , ...... , .... , ... , , .. , , .. , .. , , . , ....... , . . . . . . . . . . . . .. BD11 
COMPILER: Pascal ...... , , ... , .. , ... , ..... , , . , .... , , .. , ......... , , .. , .... , .. , . , . .. BF1 
CONSOLE ACCESS: Input and Output for Series III ... , .... , ......... , ..... ,.,........ BD36 
CONTROLLER: 8278 Keyboard/Display ... , . , . , ....... , ... , .... , . , ...... , . , ........ " AC3 
CONTROLLER: 8292 on 8741A ., .. " .. , ... , .......... , ......... " ................ ,. AC4 
CONTROLLER: Dual Floppy Disk Drive, .. , . , . , .. , .. , ............ , ...... , .. , ... , , .. " AB11 
CONTROLLER: Firmware for iSBC-589 , .. ,., .... , .................... , .. , ...... , .. ,. AC7 

7-5 



inter 
Program ntle Order No. 

CONTROLLER: PID Control Loops .................................................. AB20 
CONTROLLER: PROMPT-48 Interactive ....... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. AB2 
CONTROLLER: UP1-41 8-Digit LED Display .......................................... AC1 
CONTROLLER: UP1-41A142 Digital Cassette, V2.5 ......................... , ........... AC5 
CONVERSION: ASCII-Decimal to/from FPAL Number ................................. BB13 
CONVERSION: ASCII Floating Point Numbers to AM9711 and 

Intel 8231 4 Byte FP Fomiat ..................................................... ~~5 
CONVERSION: ASCII to Floating Point .............................................. BB14 
CONVERSION: ASCII to/from EBCDIC .............................................. BB1 
CONVERSION: ASCII to/from Floating Point ......................................... BB11 
CONVERSION: ASCII ~ode to/from Intel Floating Point ................................ BB12 
CONVERSION: Binary to BCD ............................ . . . . . . . . . . . . . . . . . . . . . . . . .. BB6 
CONVERSION: Binary to BCD ...................................................... BB7 
CONVERSION: Convert/Format/Print ................................................ BB8 
CONVERSION: Decimal to/from Floating Point ....................................... BB9 
CONVERSION: FORTRAN or FPAL Floating Point to/from Decimal ..................... BB10 
CONVERSION: Hex to ASCII ....................................................... BB2 
CONVERSION: ISIS-II to/from CP/M ......................•......................... BB18 
CONVERSION: MCON-6800 Source Code to 8086/88 Source Code ..................... BB3 
CONVERSION: ZCON-Z80 to 8086/88 Source Converter .............................. BB4 
CONVERT: Doubleword to ASCII String ......................................... ',' . .. BB22 
CONVERT: Fixed Point to Floating Point ............................................. BB21 
COPY: Disk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BG28 
COPY: Diskette ................................................................... BG27 
COPY: Diskette ................................................................... B~43 
COPY: iPDS CP/M-80 Diskette. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BG45 
COPY: PDP-11 Disk File to Intel ISIS-II Disk File ...................................... BB15 
COUNT: ICE-80 Machine Cycles ............ , ....................................... BD10 
COUNT: Program Usage ........................................................... BG40 
CREDIT: Tutorial .................................................................. E6 
CREDIT: Used on Modified Hazeltine 1500 ........................................... BG33 

DEBUG: CAT.88 (iRMX88 Task Debugger) ........................................... BD34 
DEMO: 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. AE7 
DEMO: iAPX-88 ................................................................... AE13 
DEMO: iRMX 86 Multitasking spectrum Analysis ...................................... AE8 
DEMO SOFTWARE: 8275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. AE6 
DEVICE, I/O: UPI-41 A Combination ................................................. AC2 
DIAGNOSTIC: S080 110 .. , ................................................. .' . . . . . .. AE2 
DIAGNOSTIC: Microcomputer Development System 230 ............................... AE9 
DISASM ........ " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BD6 
DISASSEMBLER: 8048 Object Code ..............................................•. BD8 
DISASSEMBLER: 8080 Code ....................................................... BD1 
DISASSEMBLER: 8080 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BD4 
DISASSEMBLER: 8080 Object Code .... ' ............................................ BD2, 
DISASSEMBLER: ICE-SO Ver 2.1 ................................................... BD3 
DISASSEMBLER: ISIS-II Object Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BD5 
DIVISION: 32-Bit by 16-Bit ......................................................... CB12 
DOWNLOAD: iPDS to Serial Port ..................................... , ............. AD18 
DRIVER: 8048 Seven-Segment Display .............................................. AB5 
DRIVER: 8085 Serial 110 ...........................................•............... AB1 
DRIVER: Audio Cassette Recorder .................................................. AB6 
DRIVER: Bios and Boot Program for CP/M-80 ........................................ AB22 
DRIVER: Cassette Operating System ................................................ AB7 
DRIVER: Dumb Terminal Simulator .................................................. AB10 
DRIV,ER: Intellec Development System Series-II as Dumb Terminal ............... : . . . . .. AB9 
DRIVER: iPDS Dumb Terminal .....................................•................ AB23 

7-6 



Program Title Order No. 

DRIVER: iSBC 86/12 Real Time Clock Driver 00000000000000000000000000000000000000000 AB19 
DRIVER: PROM Programmer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BE7 
DRIVER: RMX-80, for the iSBC 254 Bubble Memory with 80/10 Board 0000000000000000000 AB14 
DRIVER: RMX-80, for the iSBC 254 Bubble Memory with 80/20/30 Board 0000000000000000 AB15 
DRIVER: RMX-86, for the iSBC 254 Bubble Memory Board 00000000000000000000000000000 AB16 
DRIVER: RMX-80 for iSBC 534 0000 0000000000000 "0 0 0 0 0 0 0 0 0 0 0000000000000000000000000 AB12 
DRIVER: RMX-80 for SBC 215 Controller Board 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AB13 
DRIVER: RMX-86, for the iPAB-128, iPAB-256, iSBX-251 Bubble Memory Products 0000000 ABH 
DRIVER: RMX-86, High Performance Driver for iSBC-550 

Ethemet CommunicatiOnS Controller 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AB 18 
DRIVER: SYCOR 135 Cassette Operating System 0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AB8 
DRIVER: Tektronix 4010 Graphic Screen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AB3 
DRIVER: Tol. Omni 810 Lineprinter 00000000000000000000000000000000000.00000000000000 AB4 
DRIVER: USART for iSBC-86/XX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 AB21 
DUMP: Diskette 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BD27 
DUMP: Diskette File 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BD28 
DUMP: Diskette File 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BD26 
DUMP: iAPX-86/88 Absolute Object File 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BD30 
DUMP: iSBC 86/12 Memory 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BD29 
DUMP: Symbol Table 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BD21 

EDIT: Disk 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 ... 0 0 0 0 0 . 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 BD33 
EDIT: Hex File 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BD31 
EDIT: Inspect and Change File 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BD32 
EDIT: Text 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BA4 
EDITOR: Text, Intel X111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BA3 
EXECUTIVE: Real Time 0000000000000000000000000000000000000. 0 0 0 0 0 0 0 0 0 0000000000000 AA8 
EXERCISE: Data Translation MULTIBUS Analog I/O Boards 0000000000000000000000000000 BE6 

FIFO 00000000000000000000000000000.0000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000 BG13 
FIFO 0000000000000000000000000000000000000000000000000000 0 0 0 0 00000000000000000000. BG12 

GAME: Bandit 00000000000000000000000000000.0000000000000000000000 o. 0 0 00000.000000 '03 
GAME: Black Box . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 015 
GAME: Breakout . 0 0 0 000000.00000000000000000000000000000. 0 000000000000000000000000 013 
GAME: Craps 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 05 
GAME: Darts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 0 0 . 0 0 . 0 0 0 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 . 0 0 0 0 0 0 0 06 
GAME: Fruit Machine 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 04 
GAME: Hangman 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 07 
GAME: Mastermind 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 09 
GAME: Maze 0000. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000. 0.00000. 0 0 0 0 0 0000000000000 02 
GAME: Maze 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 01 
GAME: Othello 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 : 0 0 • 0 0 010 
GAME: Poker 00000000000000.0000000000000000000000000000. 0 0 0 0 0 0 0 0 0 000000000000000 I 014 
GAME: Slalom, V104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 08 
GAME: Tiny Chess 86 0000000000000000000000000000000000000000000000000000 0 0 0 0 00000 012 
GENERATE: 16-Bit Random Number 00000000000000000000.0000000000.000000000000. 0 0 0 CB2 
GENERATE: Calendar 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BA8 
GENERATE: CCITT Cyclic Redundancy Check 0 0 0 . 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o. BD37 
GENERATE: Disk Directory Library 00000000000000000000000000000000000000000000.0000 0 BA15 
GENERATE: Fast Generation of IBM Bi-Sync CRC16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BD20 
GENERATE: Graph 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CB7 
GENERATE: High and Low Bytes from 8086 Hex File 00000.00.000000000000000000000000 BD35 
GENERATE: Histogram o. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CB8 
GENERATE: IBM Bi-Sync CRC16 0000000000000000000000.: 0 0 0 0 0 0 0 o. 0.000000.000000000 BD19 
GENERATE: Music for SDK-85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 011 
GENERATE: Output Signal . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BG5 

7-7 



Program Title Order No. 

GENERATE: PLIM Cross Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B025 
GENERATE: PROM Checksum Calculation ........................................... B018 
GENERATE: Public Symbol Cross Reference ......................................... B038 
GENERATE: 'Random Number ...................................................... COO 
GENER~TE: Software Documentation ............................................... BA14 
GENERATE: 'Stochastic Variates and Histograms ........ , . . . . . . . . . . . . . . . . . . . . . . . . . . . .. CA23 
GENERATE: Symbol List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B024 
GENERATE: Symbol Table for BASIC-80 . : .......................................•. " 8023 
GENERATE: Tabs .................................................................. BA16 
GENERATE: X-V Graph ............................................................ CB9 

HANDLER: RMXl80 Minimal Terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BE2 

INCREMENT: Program Counter ..................................................... B039 
INITIALIZE: Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BG24 
INITIALIZE: Baud Rate .................. " ........ , ................................ BG23 
INTERPRETER: 8086 Tiny BASIC .................................................. BF9 
INTERPRETER: Interactive 8087 Instruction Interpreter .............................. ,. AA12 
INTERPRETER: LISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BF3 
INTERPRETER: LLL BASIC-II ...................................................... BF7 
INTERPRETER: LLUChernack BASIC ............................................... BF8 
INTERPRETER: MCS-51 Tiny BASIC, V2.2 .......................................... BF10 
INTERPRETER: PILOT-80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BF2 
INTERPRETER: RMX/80 Command Line ............................................. BG4 
INTERPRETER: Single-Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BD7 

LINKAGE: Series III i8087 Linkage Modules .......................................... BG36 
LIST: Directory, ISIS Diskette/NOS Disk ................. , ............................ 8G18 
LIST: Diskette Directory ...................................................... ' .. " .. BG17 
LIST: File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. BG15 
LIST: File .............................................. , ........................... BG16 
LIST: File Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B012 
LIST: PL/M Compiler Errors ........................................................ BD13 
L1ST/P.RINT/TYPE , ........................... , .................................... BG14 
LIST: Save Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B014 
LOAD/SAVE: RAM ................................................................ BG1 

MACROS: Block Structures ......................................................... BG10 
MACROS: Block Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BG11 
MAIL 'LIST ......................................... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BA9 
MAIL LIST ............................. : .......................................... BA11 
MAIL LISTS FOR BASIC 80 ........................................................ BA 12 
MATH PACKAGE 8231 .............................................................. CA17 
MATH PACKAGE 8051 ............................................................. CA18 
MATH PACKAGE: 8080/8085 Fundamental Support Package ........................... CA20 
MATH PACKAGE: 8231 Arithmetic Processing Unit .................................... CA16 
MATH PACKAGE: Arithmetic Functions .............................................. CA11 
MATH PACKAGE: Arithmetic Functions for MCS-48 ................................... CA22 
MATH PACKAGE: Double Precision Floating Point .................................... CA12 
MATH PACKAGE: Double Precision Integer ........................................... CA4 
MATH PACKAGE: Fixed and Floating Point ........................................... CA5 
MATH PACKAGE: Floating Point, .................................................... CA2 
MATH PACKAGE:,Floating Point .................................................... CA1 
MATH PACKAGE: Floating Point .................................................... CA7 
MATH PACKAGE: Floating Point .................................................... CA6 
MATH PACKAGE: Floating Point Library/8086 ......................................... CA13 
MATH PACKAGE: Floating Point Utilities for FPAL.L1B ................................. CA8 

7-8 



Program Title Order No. 

MATH PACKAGE: HigH Speed Binary Math Package for 8031/8051 ..................... CA21 
MATH PACKAGE: Multiple Precision Arithmetic/8086 .................................. CA 14 
MATH PACKAGE: Multiply/Divide .................................................... CA15 
MATH PACKAGE: Optimized Floating Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. CA9 
MATH PACKAGE: Optimized Floating Point ........................................... CA10 
MATH PACKAGE: PLIM Multiple Precision ........................................... CA3 
MATH PACKAGE: 'Recursive Computation of Mean and Standard Deviation .............• CA19 
MERGE: Mailing List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . .. . . .. . . ... BA 10 
MONITOR: Intellec 8/MOD80 ....................................................... AA 1 
MONITOR: Bubble Memory Development Software for Intel BPK-72 ..................... AA10 
MONITOR: HSE-49 Expansion Monitor.. .. . .. . .. .. .. .. . . .. . . .. .. . .. . . .. .. . .. . .. .. .... AA 13 
MONITOR: Intellec Development System, V2.0 ....................................... AA6 
MONITOR: iSBC 250 1-MegabitBubble Memory ...................................... AA9 
MONITOR: iSBC 254 Bubble Memory Board Monitor .................................. AA 11 
MONITOR: iSBC 544 .............................................................. AA7 
MONITOR: iSBC 80/05 or 80/04 .................................................... AA14 
MONITOR: iSBC 80/10 ............................................................. AA15 
MONITOR: iSBC 80/10 or 80/10A ................................................... AA16 
MONITOR: iSBC 80/20 or 80/20-4 . .. .. . .. .. . .. .. .. .. . .. .. .. .. . . . . . . .. .. .. . .. .. .. . . .. AA 17 
MONITOR: iSBC 80/24 .. .. .. .. . . . .. . .. . .. . .. .. .. .. .. .. .. .. .. . .. .. . .. . . .. . .. .. .. .. .. AA 18 
MONITOR: ISBC BO/30 ............................................................. AA19 
MONITOR: iSBC 86/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. AA2 
MONITOR: SDK-85, V2.0 .................. , .......... , .... , .................. ,... AA3 
MONITOR: SDK-86 Keypad ................................. , ... , ........... ,...... AA5 
MONITOR: SDK-85 Serial, V1.1 .............................. , ...... , ............. ,. AA4 
MONITOR: Super Monitor 80 .................... , ... , .......................... ,... AA20 
MONITOR: Super Monitor 86 ........................... , ............. , ......... , ... AA21 
MONITOR: Super Monitor 86 for the iSBC 88/45 ...................................... AA22 
MORSE CODE TUTOR V2.0 .......................... , ........................ ,... E3 
MULTIPLICATION: 8748 BCD ........................................ , .............. CB10 
MULTIPLICATION: 4O-Bit ........................................................... CB14 

PRINT: Cover Page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BA 1 
PRINT: Discounted Cash Flow ...................................................... BA7 
PRINT: File ....................................................................... BA 17 
PRINT: Files ...................................................................... BA 18 
PRINT: Files ....................................................... " . . . . . . . . . . . . .. BA 19 
PRINT: High Speed Utility .......................................................... BG32 
PROCEDURE: Pascal 86 Screen/Cursor Control ...................................... BG34 
PROCEDURE: PLIM DOCASE ..................................................... BG9 
PROCEDURES: PLIM Output ...................................................... BG8 
PROCEDURES: PLIM Utilities ...................................................... BG7 
PROCESSOR: Macro . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BF6 
PROCESSOR: Text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BA5 
PROGRAM: 8741A as iSBC 941 ..................................................... AC6 
PROGRAMMER: EPROM-8755A .. .. .. .. . .. . . .. .. . .. .. .. . .. .. . .. . .. .. .. . .. . . .. .. .. .. BE5 
PROGRAMMER: EPROMS 2708/16132 .............................................. BE4 

READ: Paper Tape to SDK-85 RAM ................................................. BE3 
RECEIVE ........................................................................ AD5 
RECOVER: Diskette ............................................................... BG2 
RECOVERY: Diskette File .......................................................... BA2 
RELOCATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BG41 
REPORT: Status of Exported Job ................................................... BG44 

SIMULATE: iACX-96 .,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BD40 
SIMULATOR: 8048/49 Code, V1.3 ................................................... BB19 

7-9 



inter 
Program Title 'i' Order No. 

SIMULATOR: 8048/49 Simulator .................................................... BB20 
SORT: BUbble Sort and Binary Search Routines : ........ : .... .' .. :.................... BG22 
SORT: Disk Directory ............................................... : ........ : ..... BG19 
SORT: Disk Directory .................................................. '. . . . . . . . . . .. BG20 
SORT: Diskette File ......................................................... " ....... BG21 , 
SORT: General ...................................... ' ..................... '~ : . . . . . .. BA13 
SORT: Public Symbols ................................................ ' ............. ' BD39 
SORT: Symbol Table from an Absolute File ........................................... BD22 
SOURCE FILES: iAPX-86/SS System Workshop Summary and Review .................. E1 
SOURCE FILES: MCS-SO/S5 System Workshop Summary and Review .................. E2 
SPELL .................... ; ............ , ......................................... BA21 
SUBMIT: ISIS Command String ............................... :..................... BG6 

TEST: 80S0 CPU .......................................................... : ....... AE1 
TEST: iSBC SO/10 I/O Ports ........ '................................................ AE3 
TEST: Error Correcting Code ....................................................... AE12 
TEST: MCS-4S Family CPU ........................................................ AE10 
TEST: Memory ..................................................................... AE5 
TEST: Memory .................................................................... AE4 
TEST: PROM/ROM Checksum Self-Test. . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. BD17 
THERMOMETER: Thermistor Controlled ............................................. BE1 
TRACE: ICE-SO ..................................... :............................. BD9 
TRANSFORM:' Discrete Fourier .................................................. ; .. CB1 

UTILITIES: Circular Lists ........................................................... BG3 
UTILITIES: Menu ............................ : ..................................... E5 
UTILI'TIES: RT11 Diskette Utility for Intellec SOO ....................................... B817 
UTILITIES: Talk ................................................................... E4 

WORD PROCESSOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. BA20 

7-10 



Appendix A 





INTEL SOFTWARE STANDARDS 

Intel's software is built on standards which facilitate software portability and provide an open system for 
software. 

Intel's soft.ware utilizes the emerging standards in graphics, networking, database and portable operating 
system interfaces. This base system software provides a mapping from architectural and operating system 
dependencies to a standard interface. High-level applications are built from the standard interfaces and 
remain portable across multiple configurations and operating systems. Figure 1 illustrates the open software 
model relationship. 

Applications 

8ase System 
Software 

Operating 
Systems 

Micro
processors 

Languages 
R&L 

UDI I 

OPEN SOFTWARE MODEL 

Word Spread Mail & Business Project 
Document Processing Sheet Filling Graphics Management 

Language t LAN J Graphics 1 Database Run-Time 

RMX, Xenix 
CPIM, MS-DOS 

86,186,286,386 

Figure 1 

Intel has supported its fundamental software across multiple operating systems through the UDI operating 
system interface. By writing software to use ttTe UDI interface which provides memory management, 1/0 
routines, and exception handling-Intel is able to port high level languages, language run-time, and 
fundamental software to a new release or new operating system tn minimal time. Thus Intel's software is 
operating system independent. 

Intel's local area netwo(king products use the IEEE 802.3 CSMAlCD Access Method and physical layer. The 
work for this standard was done jointly by Intel, DEC, and Xerox and is commonly known as the Ethernet 
protocol. The transport layer uses the proposed ISO transport protocol specification. 

A-1 



Intel supports the ANSI graphios standardization effort and will offer produots whioh utilize these standards. 
The Virtual Devioe Interfaoe (VOl) standard developed by the ANSI X3H3 oommittee is intended to provide a 
single standard whioh supports mulitple graphios devioes with the same set of graphios funotions. A 
oompanion standard Virtual Devioe Metafile (VDM) will give a means of storing or transmitting piotures as 
streams of VOl funotions. A third graphics standard being supported by Intel is the North American Presenta
tion Level Protoool Syntax (NAPLPS). NAPL!;,S is suited for raster-soan display (both CRT and hardoopy) and 
is ourrently in final approval stage by ANSI. 

intel's Pasoal-and FORTRAN adhere to the ANSI standard and support optional extensions. All Intel 
languages (ASM-86, PUM, FORTRAN, and Pasoal) use oommon data types and parameter passing 
conventions to allow inter-language calis The real number data types in these languages utilize the IEEE 
real math standard and use the numerics coprocessor or an emulator to support the real math operations 
and funotions. The objeot module formats (OMF) are oommonly used by all of the 86 language produots as 
well as many language produots supplied by independent software vendors. 

INTEL SOFTWARE STANDARDS DOCUMENTS 

Standard Document 

UDI Run-Time Support Manual For iAPX 86, 88 Applioations, Appendix A 
(Intel 121776-002) 

NAPLPS Intel's Guide To Understanding The ANSI Videotex Presentation Level 
Protoool (Intel 145;412-001) 

VDM, VOl Draft of proposed American Standard for the Virtual Device Metafile, 
ANSI X3H33 Virtual Device Interface Task Group 

Local Area Network 
- Data link and physical Draft IEEE Standard 802.3 CSMA/CD Access Method and Physical 
layer (Ethernet) Layer Specifications, IEEE Computer Society 

- Transport layer ISO draft proposal 8073 Information Proce~sing Systems, Open 
Systems Interconnection-Connection Oriented Transport Protocol 
Specification 

FORTRAN 77 Intel's extension to ANSI FORTRAN 77 specified in FORTRAN-86 
User's Guide (Intel 121570-002) 

Pascal Intel's extension to ANSI Pascal specified in Pascal-86 User's,Guide 
(Intel 1215~9-001) 

Real Math Draft 10.0 of IEEE Task P754, Deoember 1982. 

8087 Support Library Reference Manual (Intel 121725-001 ). 

Language Data Types. 
and Parameter Passing 

- Pascal Pascal-86 User's Guide, A~pendix J (Intel 121539-003) 

- FORTRAN FORT~AN-86 User's Guide, Appendix H (InteI1?1570-002) 

Object Module Formats 
-86 8086 Relocatable Object Module Formats (Intel 121748-001) 
-286 The Concrete Representation of 80286 Object Modules, Intel internal 

document 

iAPX 286 Compilers Writer's GiJide, (Intel-in preparation) 
--------------- ----~-.-~ 

A-2 



Appendix B 





SOFTWARE SUPPORT SERVICES 

A FULL SERVICE SUPPORT PROGRAM 

Intel's Software Support Services is a comprehensive range of post-sales support programs for software and 
systems purchased from Intel. Its objectives are to maximize the system's performance and minimize 
unnecessary downtime for greater productivity. These services are provroed for all Intel developed and most 
Intel marketed third-party software. 

DESCRIPTION OF SERVICES 

Software support services will be available for the Customer as follows: 

Initial Sl,Ipport 

Initial support provides each Intel system and licensed product with gO-day support after product delivery. It 
includes automatic updates and new releaSes, Software Performance Reporting (SPR) Service, technical 
reports and monthly technical bulletin. Also available on designated products will be telephone assistance for 
product specific technical information and assistance with work-arounds, patches, and other solutions for Intel 
defined product deficiencies. 

SUBSCRIPTION SERVICE (available for Individual software products) 

1. Technical Reports 
A technical report will be published quarterly for active products and semi-annually for mature products. 
This Will contain a Configuration and Compatibility Guide, a product performance exceptions list 
providing solutions to known problems and a review of important current Software Performance Reports 
(SPR's) submitted by customers. A listing of product manuals available from Intel is also provided. 

2. Software Performance Reporting Service (SPR) 
Intel will respond to written questions (submitted on a standard SPR form) on product-specific software, 
system, or documentation issues. Intel will verify receipt ofthe SPR within 48 hours and will respond within 
3 weeks. Intel does not guarantee a resolution will always be available to specific problems. 

SOFTWARE INFORMATION SERVICE 

This service provides the Customer with direct communication with an Intel Software Support Engineer (SSE). 
The Customer may call a single service number (U.S.) between 8:00 A.M. and 5:00 P.M., (Pacific Time) for 
product-specific inquiries. 

This service enables the Customer to: 

1. Obtain assistance in using the product. 
__ documentation clarification. 
__ operational understanding. 

2. Obtain product specific information. 
__ problem identification. 
__ work-around, patch, or other solution when available. 
__ information on existing SPRs. 

3. If the reported condition is not an already documented SPR, obtain assistance in problem isolation 
techniques. 

As part of the Software Information Service, Software Support Services maintain a list of reported problems 
and problem resolutions. Software Information Services does not include user application or engineering 
time to derive a resolution to a problem if none is currently available. (See Phone Consulting under 
Consulting Services). However, the Software Support Engineer will submit a problem report into the SPR 
system under the Customer name when appropriate. 

Software Information Service is offered as a supplemental tool for obtaining maximum utilization of Intel 
software products. It is expected that the Customer will avail himself of training classes as appropriate, and 
will make reasonable efforts to utilize all product documentation. 

The Customer must designate one System Manager and one alternate as authorized callers. Additional 
persons can be authorized for an additional charge. This service is offered on a one-year period. 

8-1 



SYSTEM/SOFTWARE SUPPORT PACKAGES 

We have structured very specific support packages to assist our customers with the installation and 
reconfiguration of such systems as NDS-II and 86/330. 

NDS-II Installation Package. Includes software installation, system generation, and . network orientation . 

NDS-II Network Reconfiguration Pkg. Includes regeneration and installation of NDS-II System 
Software. 

RMX System Installation Package. Includes installation and customer orientation of the RMX 
operating system on the 86/330 or 86/380 System. 

RMX 86 Installation Package. Includes one day installation, configuration and/or 
assistance; ~ training credit for one RMX86 class; 16 hours of 
phone consulting. 

XENIX System Installation Package. Includes up to 2 days of installation and customer orientation 
of the XENIX Operating System on the 86i330 AX or 
86/380 AX System. 

121CE Installation Package. Includes the installation of and orientation to the host and 
probe software for the 121CE on a Series III or Series IV 
Intellec Development System. 

CONSULTING SERVICES 

Consulting Services provides customized support for system, board, and component level customers. 
Consulting services provide a wide range of support - from system designs to solving difficult development 
problems to complete project management and project implementation. 

1. Field Consulting - The Customer may contract for an Intel Software Support Engineer to come on-site to 
assist and advise the customer in utilizing Intel software products. This service is available on a Time and 
Material basis. Minimum period: 1 day (8 hours). Travel time and expenses are billed separately as specified 
in the price list. 

2. Phone Consulting - The Customer may contract for an Intel Software Support Engineer in the Customer 
Support Group to provide customer or application-specific research, effort, or consultation. Blocks oftime 
may be purchased and utilized in minimum fifteen (15) minute increments. 

UPDATES 

Updates and new releases for licensed products are offered on a per update basis. Each update will be 
separately priced for any registered Intel customer to purchase. Notification of updates and who requires 
which updates, will be provided through the monthly technical bulletin, ;COMMENTS, and each product
specific technical report. 

INSITE USER'S PROGRAM LIBRARY 

Intel's Software Index and Technology Library is a library of programs that have been submitted by users of 
Intel microcomputers, single-board computers, and development systems. Membership in INSITE enables the 
Customer to order programs at a nominal charge. Members are provided a program catalog and catalog updates. 

LIMITATIONS 

A. Software Support Services are limited to standard Intel system configurations supported by software 
products, as defined in the applicable software product data sheet. Services will be performed within a 
12-month period from effective date of the purchased services. 

B. Software support services do not include hardware maintenance. 

C. Any change in the equipment site of the system within the U.S. may affect Intel's ability to deliver the 
support services ordered and may result in increased charges. If the system is moved outside the 
continental U.S., it shall not be eligible for continued service as ordered, but may be eligible for continued 
service under I ntel's local terms and conditions then in effect for a like system in the country or territory of 
reinstallation. 

B-2 



OTHER INFORMATION 
A. Software Support Services is Intel's commitment to providing the customer with consistent, high-quality, 

post-sales software and system support. It is our way of delivering guaranteed support which the customer 
can rely on. To tailor a full service software/system support program that addresses specific needs, contact 
the local Intel sales or service office for more information. 

B. Term: Service will be provided for the period specified in the price list. Subscription services will 
automatically be renewed on an annual basis unless specified otherwise in writing by the customer. 

C. Charges: There are three kinds of billings utilized with the service offerings: front-end billing, monthly 
billing (not less than $100 per month): and post-service billing. The customer will be billed on one of the 
referenced types of billings, depending on the type of service. Prices will be those specified in the current 
Intel price list. 

D. In order to obtain maximum service from Software Support Services, it is advised that the customer 
maintain the system to the latest reviSion level, and assign a System Manager who will be the key contact for 
Software Support Services. 

E. Guidelines: 

1. The customer must have signed an Intel Master Software License agreement. All services and 
materials made available to the customer through Software Support Services, including documentation 
and program materials, are subject to the terms and conditions of the license/sale. 

2. The License Fee or List Price for covered software products includes a period of Initial Support as 
defined in individual product descriptions. Additional support services may be obtained as listed in the 
price list. 

3. Updates are available separately for software products. Each update to a specified software product 
has a Single charge and is purchased separately. The customer must have a valid software license that 
covers the software product to obtain any update or new release. 

The following chart summarizes the services available for various operating system environments at different 
levels of integration. 

Software Support Services 
OPERATING SYSTEM 

PRODUCT NAil. PAMMU.BIlR .S.S INDX lUX'· XENIX+ CP/ .. ··80 

INITIAL Included In 

I SUPPORT hcense fee SYS SYS SYS SYS SYS 
or pnce of BAD BRD 
each product 

CONTRACT 

I 

I 
SERVICE I SubSCription SPR-TECH-REP SYS I SYS I SYS SYS SYS 
Service BRD BRD 

Hotlme HOTLINE SYS SYS SYS SYS SYS 
Service BRD BRD 

UPDATES Each update has a SYS J SYS SYS SVS 
I 

SYS 
umque part number BRD BRD 

~PPORT , 
PACKAGES I I NOS-II SPNDS2TNSTALL SYS 
NOS-II SPNDS2RECON 

I 
SYS 

I SYS, BRD I I RMX-86 ~~:~~:\~~~~tt I i RMX Systems I 
SYS I XENIX Sys SP86330XINSTALL j 

I 
I 

SYS 
12ICE'- SPII1520lNSTALL SYS SYS I I CONSULTING I I S.RVIC •• 

SYS, BRD I Phone CONSULT-PHONE SYS i SYS SYS, BRD SYS 
I Consultmg I COMP COMP i 

Field CONSULT-FIELD SYS 

I 
SYS SYS, BRD SYS, BRD SYS 

Consultmg COMP COMP COMP 

Long-term CONSULT-LT SYS SYS SYS, BRD SYS, BRD I SYS 
Consulting COMP COMP COMP 

Expenses CONSULT-EXP Travel and liVing expenses Incurred for dellvenng 
Consulting and Support Package 

INSITI! U •• R'. User submitted and non-licensed software products and 
PROGRAM N/A programs used on or In conjunction With JnteJ 
LIBRARY Components, Boards and Systems 

KEY SYS AI! Intel standard system hardware, languages and software packages deSigned to operate on or Within 
the partICular Operating System 

BAD SelVlce prOVided for thiS Operatmg System and assOCiated language and software deSigned to operate on 
standard Intel Smgle Board Computer configuratIons 

COMP:= Support dunng the development of a user's system based on an Intel microprocessor component and 
usmg an Intel operatmg system and Its assOCiated languages and software 

·CP/M IS a trademark of Digital Research, Inc 
+XENIX IS a trademark of Microsoft Corp 

B-3 

I 

I 





intJ 

............. 
Intel Corp 
303 Williams Avenue, S W 
SUite 1422 
riw,I&'o'lliti 35BOI 
Tel (205) 533-9353 

AIIIZQNA 

~ntel Corp 
11225 N 28th OrNe 
Suite 214D 
Phoenix 85029 
Tel (S02) 869-4980 

CAUFORNIA 

Intel Corp 
1010 Hurley Way 
Suite 300 
Sacramenlo 95825 
Tel (916) 929-4078 

Intel Corp 
~~?t~ ?f~OI1unlty Road 

r7~4) D2m~35~3111 
Intel Corp· 
2000 East 4th Slreet 
Suite 100 
Santa Ana 92705 

~x (7~{6_5~~:1~442 
Intel Corp· 
1350 Shorebird Way 
MI Vtew 94043 
Tel (415) 968-8086 
T\NX 910-339-9279 
910-338-0255 

Intel Corp· 
5530 Corblr Avenue 
SUite 120 
Tarzana 91356 
Tel (213) 708-0333 
TWX 9tC-49b ::-045 

COLORADO 

Intel Corp 
4445 Norlhpark Dn ... e 
Suite 100 
Colorado Springs 80907 
Tei {303) 594-6622 

Intel Corp· 
650 S. Cherry Street 
SUlle 720 
Denver 80222 

~ (3~1~_9~~~~g~6 
CONNEcncUT 

Intel Corp 
36 Padanaram Road 
DanbUry 06810 

~x (271~~~~i~~66 
EMC Corp 
393 Center Street 

~~1I11O'3? 2O:~~91 
FLORIDA 

~~~ CJ~ 62nd Street 
SUite 104
Ft Lauderdale 33300
Tel (305) 771-0600
TWX 510-956-9407

~J~I ~r~altland
SUite 205
Maitland 32751

~ (3g1~_8~~9~~~3
GEORGIA

Intel Corp
3300 Holcombe Bridge Road
SUite 225
Norcross 30092
Tel (404) 449-0t>41

DOMESTIC SALES OFFICES

ILliNOIS

Intel Corp·
2550 Goll Road
SIJ'te 815

i~III'731~'l~tt;20~OO(l8
"tWX 910-651-5881

INDIANA

Intel Corp
9100 Porous Road
Suite 400
Indianapolis 46258
Tei (317) 8750623

IOWA

Intel Corp

fJ30An~teA~d~~~'ngnve N c
Cedar Replds 52402
Tel (319) 393-5510

KAN

Intel Co,p
8400 W l1t)lh Stleet
SlIlts '70
Overland Pari< 66210
Tel (qI3) 642-8080

LOUISIANA

Industrial Digital Systems Corp
2332 Severn Avenue
Swle 202
Metairie 70001
Tel (504) 831-6492

MARYLAND

Intel Corp·

~~~~1I:a1foa16 Dnve 

t~ (3~116_ls~~;~~~0 
Iniei Corp 
1620 Elton Road 
Silver Spring 20903 
Tel (30t) 431-1200 

MA&SACHUSETTS 

Inte! Corp· 
2 i Industrial Avenue 
Chelmsford 01824 

i~ (6gJ_3~~~6:,a3U~ 
EMC Corp 
385 Elhot Street 
Nemor 02164 
Tel (517) 244-4740 
1VVX 922531 

MICHIGAN 

Intel Corp· 
26500 Norlhwestern Hwy 
Suite 401 
Soulhfleld 48075 
Tel (313) 353-0920 
TWX 810-24404915 

MINNESOTA 
Intel Corp 
3500 W 60th Street 
SUIte 360 

~:(6J~~~:~~~~i~~2 
MISSOURI 

Inlel Corp 
4203 Earth City Expressway 

~~ g~ 630~5 
Tel (314) 291-1990 

NEW JERSEY 

l[1tel Corp· 
Raman Plaza Itl 
Rantan Center 
Edison 08837 
Tel (:?Ol) 225-3000 
1WX 710-480-6238 

NEW MEXICO 

intel Corp 
1120 Juan Tabo N E 
Albuquerqu*", 87112 
Tel (505) 292-6086 

Nlw YOAK 

Intel Corp' 
300 Vanderbilt Motor Parkway 

~:Iuprtl~~e 21;~~~oo 
TWX 510.227-6236 

Intel Corp 
80 Washington Street 
PoughkeepSie 12601 

~ (9J{L~1~o~~~3 
Intel Corp· 
211 While Spruce Boulevard 
Roc-hester 14623 
Tel (716) 424"1050 
TWX 510·253-7391 

T-Squared 

~~:;cu~~d'~~20~oad 
Tel (315) 463-85'12 
TWX 710-541-0St>4 

T-Squared 
"1353 Pittsford 
Victor Road 
Victor 14564 
Tel (716) 924-9101 
TWX 510-254-854? 

NORTH CAROUttA 

Intel Corp 
2306 W MeadOWView Road 
SUite 206 
Greensboro 27407 
Tel (919) 294-1541 

""'0 
Intel Corp· 
6500 Poe Avenue 
Dayton 45414 
Te! (513) 890-5350 
TWX 810-450-2528 

Intel Corp· 
Chagflo-Braloara Bldg. No 300 

6~~v~~aZha~~1~2touleva'd 
Tel (216) 464-6915 
TWX 810·427-9298 

OKLAHOMA 

Intel Corp 
4157 S Harvard Al/eTlue 
SUite 123 
Tulsa 74135 
Tel (918) f49-8688 

OREGON 

Intel Corp 
10700 S W Bea-.erton 
Hillsdale Highway 
SUite 22 
Beaverton 97005 

~x (5glJ_4~j~8~~~6 

PENNSYLVANIA 

Intel Corp· 

n~ ~~~~~fg~a 1~~~ue 
Tel (215) 641-1000 
TWX 510-661-2077 

QED .!::lectrQ:l'Os 
300 N York Road 
Hatboro 19040 
Tel (215) 674-9600 

TEXAS 

Intel Corp' 
12300 Ford !-mad 
Suite 380 
Dallas 75234 
Tel (214) 241 808 7 

TWX 910 860-5617 

~n~i C~~ ~ Freeway 
SUite 1490 
Houston 77074 

i~x (7~~6_898~82~~~6 
Induslrlal DI91tai Syslems Corp 
5925 Sovereign 
SUite 101 
HOIJston 77036 
Tel (713)988-9421 

~~I {Otdefson Lane 
Suite 314 
Austin 78752 
TeJ (512) 454·3628 

UTAH 

Intel Corp 
268 West 400 South 

¥!t" (~b~j ~~~"8~~~01 
VIRGINIA 

Inlel Corp 
1603 Santa Rosa Road 
Swte 109 
Richmond 23288 
Tel (804) 282-5668 

WASHtNGTON 

Intel Corp 
110 Hath Avenue N E 
SUite 510 
Bellevue 96004 

~x (2~~4!~~J~~~6 
WISCONSIN 

Intel Corp 
450 N Sunnyslope Road 
SUite 130 
Brookfieid 53005 
Tel (414) 184·9060 

CANADA 
ONTARIO 

lotel Semiconductor of Canada, lid 
39 Hwy 7, Bell Mews 
Napean K2H BR2 
Tel (613) 829-9714 
TELEX 053-4115 

Intel Semiconductor 01 Canada, ltd 
50 Galaxy Boulevard 
SUite 12 
Aexdale M9W 4Y5 
Tel (416J 675·,2105 
TELEX 06983574 

Inlel Semlconduc1or of Ganada, ltd 
201 Coosumer~ Road 
SUite 200 
Wdlowdrue M2J 4GB 
Tel (416) 494·6831 
TELEX 4946831 

_IEC 

Intel Semiconductor 01 canads, LId 
3860 Cote Vertu Road 
SUIte 210 
51 laurent H4R 1V4 

f~LE*51 ~5_~~!,~~60 

"Flel('! Application Location 



inter 
AUIIWIA 

~..!.':r'~ So 
Huntmlle 35405 , 
Tel (205) 882-2730 

-

Klerulff ElectronIC&. Inc 
14101 Frankbn Avenue 
Tustin 92680 

~(7J1~~:~ 
KI8rUIff EIecIronICI. Inc 
2586 Commerce Way 
Coo ~ 9004. 
~!2J,~ 

DOMESTIC DISTRIBUTORS 

tHamlllon/Avnet ElectfOnlCl 
Pm 

I'I.ORmA , 

t~9J~~C8s~ 
Suite 108 
Ft Lauderdale 33309 
Tel (305) 776-7790 
TWX 510-955·9456 

; ~~~ '::die Springs 

Suile 412 

t~ia~e32701 
tPloneer/Ft Lauderdale 
1500 82nc1 8tf8et NW 
Saale 506 
Ft lauderdale 33309 

~C3£5~~~= -fArrow ElectronIC8, Inc 
2979 Pacific Drtve 
Norcross 30071 

~(4£4J.7~~2 

-~r,sow~' InC 

wT~~: 

--~~C'~~vnetAo~JectronICS 
Overland Park 66215 

~(9~flb~~ 
IWIYLMD 
tHamlllon/Avnet ElectronIcs 
6822 Oak Halt lane 
Columbia 21045 

~(3W~ 

~W 1~~0V0nve CorporaIlOn 

¥.:"<3mr\i:~:~ 71{).828·9702 

t_ 
9100 GIlIIher Road 
GodheB.'1. 20877 
~ (3?~61i:~'~ 
.... ........". 
r~~ICS"nc 
Woburn 01801 

~ (6jI61t:r.6W8 
t~.~={Ao:. E~1C8 
Woburh 01801 

~(6iJ6~Of 
tHarvey/Boeton 
44 HartweU Avenue 

~n~)~l~200 
TWX 710-326-6617 

11-
tArrow ElectroniCS, Inc 
3810 Varsrty DI'fV8 
Ann Arbor 48104 

~(3J~6-:~ 

-fArrow ElectrolllCl, Inc 
2380 -... 
S1 LoutS 63141 

~(3J:~7~~ 
tHamliton/A .... neI EleetronICS 
13743 Shoreline Court 
EarIh C'[ 63045 Tel (314 344-1200 
TWX 91 762-0684 --
NEWoIIRMY 

~EleCtrOr'IICS, Inc 
M~aI~rnue 
~(2:i~~~ 
fArrow ElecIronIc8, Inc 

tHam'lton/Avnet ElectroniCS 

tHamIllon/Avnet EI8ctromc8 
10 Irduetnal 
FaIrfield 07006 
Tel (201) 575-3390 
TWX 710-734-4388 

tMTI Systems Sales 
383 Route 46 W 
Fairfield 07006 
Tel (201) 227-5552 

NEW IlEXICO 

NEW YOIIIC 

t I", 
Road 

Inc 
Road 

Inc 

fArrow ElectronICS, Inc 
20 Clef Avenue 
H"'~117 •• Tel (51 231·1000 
TWX 51 27-6623 

tMlCfOOOmputer Syatem Technical Demonstrator Centen 



tP\oneer/CiroHna 
103 Induatrlal Avenue 
Greensboro 27406 

~ (9~~6.9~~tm' -tArrow Electronics, inc 
7620 McEwen Road 
CentervIlle 45459 

~(5J~6...~1~ 
tArrow Electronics, Inc 
6238 Cochran Road 
Solon 44139 

~(2J~~~= 
tHamIltOn/Avnet Electronics 
954 Senate Drive 
Oa~~ 45459 

~(5~~6..t~~\0 
tHamHton/Avnet Etectronic& 
4588 Emery IncluafrIal Parkway 

~C~~=44128 

DOMESTIC DISTRIBUTORS 

_(Cont'tII 

tPioneer/Dayton 
4433 Interpo/nI Boule'lard 

~·\'M54I:""'" 
TWX 810-459-1622 

t_ta-nd 
4800 E 13111 SIreeI 
Cleveland 44105 

~(218'1M5f~:~ -tArrow Electronics, Inc 
4719 S Memorial Dri'Ie 
Tulsa 74145 
Tel (918) 665-7700 --~~S.~"':8,~ 
8eaYerton 97005 

~(5:~~~~0 

~:"r~Av.=n ~onlea 
Bldg C, Suite 10 

~(~~,~r 
-...""'" 
tArrow Electronics. Inc 
850 Seco Road 
Monroeville 15146 
Tel (412) 856-7000 

~,~~valley 
Hanham, ..... 

~(2~f~~~ 
TEXAI 

tArrow Electronics. InC 
10899 Klnghurat 
Suite 100 
Houston 77099 

~(7~~6~~C: 
LA~:;woniC8, Inc 10125 

Austin 78758 
~ (5~6.l7~~~C: 
tHamllton/Avnet EIectrontcs 2401 Rutland AllsUn 78757 

~ (5Jf6.8~~~~~' 

~,r':n{C::. ~~~ 
Irving 75062 

~(2J1~': 

TEXAI _II) 

tHamItton/Avnet EIeCtronIca 
8750 Weft Park 
Ho8uton 71063 

~ (7J~6~f-5Wa' 

~=ilo.. AutUn 78758 

~.(5J,~~~ 

VTAH 
tHamllton/Avnet Electronics 
1585 Welt 2100 South 
Sail lake CI~ 84119 

~(~~9~~'W = ~~~30 ac, unl1 8 
Salt Lake City 84104 
Tel (801) 974·9953 w_ 
tAlmac E\ectronk:& Corporation 
14360 S E Eastgale Way 
Bellevue 98007 

~(~~~=2 

tHamllton/Avnet ElectronICs 
14212 NE 21st Street 
Bellevue 98005 

~(2:L~2~J4 
w_ 
tArrow Electronics. Inc 
430 W RauaBOn Avenue 
Oakcreek 53154 

~ (4Jt6.kr.= 
~~g'i~~==onIcs 
New BerlIn 53151 

~ ("J~6.~~~g~o 

CANADA 
ALRRTA 

tHamllton/Avnel ElectronICs 
2816 21st Street N E 

~~~2~3~Z3ke 
lWX 03-827-642

tLA Varah. ltd
4742 14th Street N E

~2~~~5

ALRRTA _II)

Z_
~ ~~th Avenue N.E

~312~7~21 -LA Varah, Ltd
2077 Alberta Stree1
Vancouver V5Y 1C4

~.(eg:~=;~'

IIANITOIIA
L.A Varah, Lid

~1~~32 K~R E~fd Street
Tel ~) 633-6190
TWX 07-55·365

Z
590 Berry Sireet

~rrns.) ~~5-~\ --Hamillon/Avnet Eteclrof'llC8
6845 Rexwood Road
UntI8 G & H
MI8Sl888UQIII L4V lR2

~("Jn...~~~~2
HaI'lIlton/Avnet EIIIctronIca
210 Colonnade Road South
NepeI!Iin K2E 7L5
Tel' (613) 226-1700
lWX 05-349-71

LA Varah, Ltd
505 K8nOI'I!Ii Avenue
Hamilton L8E 3P2
Tel (416) 561-9311
TWX 061..e349

Zenlr0nk:8
8 TIlbury Court
E\ramptoi'I LtiT 3T4
Tel (416) 451·9600
lW)(06-976·78

Z
564110 Weber Street North
Walerloo N2L 5C6
Tel (519) 884·5700

Z"""""'"
590 Berry Street

fV~n~)R?~~~
GUIIIEC

HamiHon/Avnet EtectronIc8
2670 Sabourin Street
$I Laurent H4S 1M2

~ (5J~L~~~~3
Zantronlc8
505 locke Street
St laurent H4T lX7
Tel (514) 735-5361
TWX 05-827·535

tMfcroc::ornpuI System Techmcal Demons1rator Center1

intJ

BELGtUM

Intel CorporatIon S A

~:: Jue%OUlin a Paplef 51
Boite 1
8-1160 Brussels
Tel (02}6f: 07 11
TELEX 28414

DENIIAIIK

FlNLMD

Intel Finland OY
Hameentl9 103
SF - 00550 Helsinki 55
Tel 0/716 955
TELEX 123 332

FRANCE

Intel Corporation, S A A L •
5 Place de la Balance
Sllle 223

~:F2101~U6R~ 2:d~:
TELEX 270475

EUROPEAN SALES OFFICES

FRANCE (Cont'd)

Inlel CorporatIOn, S A A l
Immeuble BBC
4 Qual des Elrarla
69005 lyon
Tel (7) 642 40 89
TElEX 305153

WEST GERMANY

Inlet SemICOnductor GmbW
Seldlsuasse 27
0-8000 Muenchen 2
Tel (89) 53891
TELEX 05-23177 INTl 0

Intel' Semiconductor GmbH'
Malnzer SlrUie 75
0-6200 WI9sbaden 1
Tel (6121) 70 08 74
TELEX 04186183 INTW 0

Inlel SemIConductor GmbH
Brueckslraase 81
7012 Fellbach
West Germany
Tel (7tt) 58 00 82
TELEX 7254826 INTB 0

Intel Semiconductor GmbH'
HohenzoUern Suasse 5'
3000 Hannover 1

i~lE*51~2;~254~N~~ 0
Inter SemlCOnduclOl' GmbH
Ober-Ralherstrasse 2
0-4000 Dusseldorf 30

f~LE*21~_~~9}~ T~TL 0

ISRAEL
Intel Semiconductor Ltd'
PO Box 1659
Haifa
Tel 4/524
TELEX 46511

ITALY

NETHERLANDS

Spa'

Intel Semiconductor Nederland B V·

~::~deM":~ul~~ng
3068 Rotterdam
Tel (10) 21 23 77
TELEX 22283

NORWAY

~~I ~~~2 AIS
Hvamvelen 4
N-2013

~;Ie~) 742 420
TELEX 18018

_.
Intel Sweden A.8·
Box. 20092
Archlmedesvagen 5
S·16120 Brooima
Tel (08) 98 53 85
TELEX 12261

SWITZERLAND

UNITED kINGDOM
Intel Corporallon (UK) Lid'
5 Hospital Street
NantwlOO, Cheshlre CW5 5RE
Tel (0270) 626 560
TELEX 36e20

Intel Corporation (U K) Ltd'
PIpers Way
SWlndon, WIRshlre SN3 lRJ
Tel (0793) 488 388
TELEX 444447 INT SWN

"Field Appllcabon Location

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA
Bacher Eleklronlsche Geraete GmbH

~tf,~~e~renS: 26
T ef (222) 83 63 96
TELEX 11532 BASAT A

BELGIUM

DENMARK

MultlKomponent AlS
Fabnksparken 3t
OK·2600 Gloskrup

~' Jg~t545 66 45

ScandlnSVl8n SemlcondllClOr
Supply AIS

~~2~38a~ode8nhSQer1
Tel (01) 83 50 90
TELEX 19037

FINlAND

~lk~~~~~iC 2~B A
SF·00210
HelSinki 21
Tel (0) 692 60 22
TELEX 124 224 Flron SF

FRANCE
Genenm
2 I de Courtaboeuf
Avenue de la Balllque
91943 les uris Cedex-B P 88
Tel (6) 907 78 79
TELEX F691700

Jermyn SA
rue Jules Ferry 35

¥~17~,)B~~~OI~~ 04 -
TELEX 21810 F

Metrologle
La Tour d' Asnleres
" Avenue Laurent eely
92606-Asnteres
Tel (1) 791 44 44
TELEX 611-448

FRANCE (Cont'd)

Tekelec Alrtromc
Cite des oBruyeres
Rue carte Vernel
F-92310 Sevres
Tel (Ot) 534 75 35
TELEX 204552

WEST GERMANY

ElectroniC 2000 Vertrlebs A G
Neumarkter Strasse 75
[).8oo0 Munich 80
Tel (89) 43 40 61
TElEX 522561 EIEC 0

~'Wa~h Grr~~
Schulstrasse 48
0-6277 Bad Cambetg
Tel (06434) 231
TELEX 484426 JEAM 0

Celdls Enatechnlk Syslems GmbH
Gutenbetgstrasse 4
2359 Henstedt-Ulzburg 1
Tel (04193) 4026
TELEX 2180260

Proelectron VerITlebs GmbH
Max Planck Strasse 1-3
6072 Drelelch bel Frankfurt
Tel (6103) 33564
TELEX 417983

IRELAND

MICro Msrkellng
Glenageary Office Park
Glenageary
Co OublIO
Tel (1) 85 62 88
TELEX 31584

....... L

Easlronlcs Ltd
11 Rozanls Street
POBox 39300
Tel AvIV 61390
Tel (3) 47 51 51
TELEX 33638

ITALY
Eledrs 3S SPA
Vlale Elve'<'la, 18
I 20154 Milano
Tel (2) 34 97 51
TELEX 332332

ITALY (COnt'cI)

Intesl
Mllanfion Pal E/5
20090 Assago
Milano
Tel (02) 82470
TELEX 311351

NETHERLANDS

~~~~ l!:aan 
2544 EN's Gravenhage 
Tel 31 (70) 210101 
TELEX 31528 

NORWAY 

Nordisk Elekll'onic (Norge) A/S 
Postofhce Box 122 

~~d8~~~;I~d 4 

Tei (2) 786 210 
TELEX 77546 

PORTUGAL 

Dlnem 
Componentes E Etectrol'Hca LOA 

~~oo~lt~:bo~mbarda, 133 

Tel' (19) 545 313 
TELEX 1;4182 8neks-P 

SPAIII 

Interface SA 
Ronda San Pedro 22,3 
Barcelona 10 
~X {3~d8J 78 5f 

lIT SESA 
MIguel Angel 23-3 
Madrid 10 
Tel (1) 419 54 00 
TELEX 27707 

_N 
A8 Gosla Backstrom 
Box 12009 
Aistroemergatan 22 
8-10221 Stockholm 12 
Tel (8) 541 080 
TELEX 10135 

SWEDEN (Cont'd) 

SWITZERLAND 

Industrade AG 
Gemsenstrasse 2 
Postcheck 80 - 21190 
CH-8021 Zurich 
Tel (Ot) 363 23 20 
TELEX 56788 INOEL CH 

UNITED KINGDOM 

Bytech Ltd 
Unit 57 
london Road 
Earley, Reading 
Berkshire 
Tel (0734) 61031 
TELEX 848215 

Comway MlCI'osystems ltd 
Market $lreet 
UK-BraCl<nell, Berkshire 
Tel 44 (344) 55333 
TELEX 847201 ' 

Jermyn Industnes 
Vestry Estate 
Sevenoa!<s, Kent 
Tel (0732) 450144 
TELEX 95142 

MEOL 
East Lane Road 

~~rIJle:;:m~'7 7PP 
Tel (01) 904 93 07 
TELEX 2P817 

Rapid Recall, Ltd 
Rapid House/Denmark 81 
High wr,:ombe 
trk~049':WI~g -~nl 2ER 
TELEX 837931 

YUGOSLAVIA 

H A MIcroelectroniCs Enterprises 
PO Box 5604 
San Jose, California 95150 
Tel 408/978-8000 
TELEX 278-559 



inter 
AUI'IIW.IA 
Intel SefYllCOnductor Ply Lid 

~;lfiCBu~':~y ...,., . 
Crows Nest, NSW, 2089 ......... 
Tel 011-6'-2 .... 36-2744 
TElEX 790-20097 
FAX- 011-61-2-923-2632 

INTERNATIONAL SALES OFFICES 

HONG KONG 
Intel Semiconductor ltd 
13/F Hong Kong Trade Centre 
161-167 Des Voeux Road Central 
Tel 011-852-5-450-885 
TelEX 638e9 ISLHKHX ....... 
Intel Japan KK 
5-6 Tokodal, Toyosato-machi 

t~kUo~14~:8~~rakl-ken 300-26 
TELEY 03656-160 

JAPAN (Confcl) 

Intel Japan K K • 
2-'-15 Naka-rnachl 
Atsugl, Kanagawa 243 
Tel 0462-23-3511 

~~t~tiaro~m~~ 
Chofu, Tokyo 182 
Tel 0424.aB-3151 

Intel Japan K K • 
2-69 Hon-cho 

~~,m'W.talg~24~~ra 360 

JAPAN (ConI'd) 

Intel Japan K K • 
2-4-1 Terauchl 

i~07:~3~~ 560 
Intel Japan K K 
1-5-1 Marunouchl 
Chlyoda-ku, Tokyo 100 
Tel 03-201-3621/3681 

\~~J_9Jag:nm~h~ 
~::a!f~~~:2JWO 154 

"FJeld Application location 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 

-VlC SRl 
Sarmiento 1630, 1 Pl80 
1042 Buenos Aires 
Tel 35-1201/9242 
TELEX PubNc Booth 9900 or 9901 

Mai~ng Address 
SOimex International Corporation 
15 Park Row, Room #1730 
New Yorl!., New York 10038 

r~l :O~~nones 
AUS11IALJA 

Total Electml'llCs 
9 Harker Street 
.u.wood 
Victoria 3125 
Tel 61 3 288-4044 
TELEX AA 31261 

Mailing Address 

~~::x.~eJo~a 3125 
Australia 

Total Electrorncs 
# 1 Johnstone lane 
lane Cove, N S W 2066 
TELEX 26297 ....... 
IcotfOn S,A 
05110 Av Mubnga 3650·6 Andar 
Plrituba Sao Paulo 
Tel 261..()211 
TELEX 1122274/ICOTBR 

CHILE 
DIN 
AV VIC MCKENNA 204 
Casilia 6055 
Santiago 
Tel 227 564 
TelEX 352 003 

cow. ... 
~rr~~lo~al N~07z~: Machines 
Apdo Aereo 19403 
Bog""" 
Tel 211·7282 
TELEX 45716 ICM CO 

IIOHQ KONG 

INDIA 

MI(:ronlC DeviceS 
104/109C, Nlrmal Industrial Estate 
Sion (E) 

~lmb:l6-~~8022 
TelEX 011-71447 MDEV IN ...... 
Asahf ElectronICS Co ltd 
KMM Bldg Room 407 
2·14-1 Asano, Kokura 
KIIa-Ku, Kitakyushu City 802 
Tel (093) 511-6471 
TelEX AECKY 7126-16 

JAPAN (Cont'd) 

Hamllton·Avnst ElectroniCS Japan ltd 
YU and YOU Bldg 1-4 Hondome
Cho 
Nlhonbashl Chuo-Ku, Tokyo 103 
Tel (03) 662-9911 
TELEX 2523774 

Ryoyo Electnc Corp 
Konwa Bldg 
'·12·22, TsuklJI 
Chuo-Ku, Tokyo 104 
Tel (03) 543-7711/541-7311 

KOREA 

Karam Dlgllal 
2nd Floor, Government PenSIon Bldg 
1-589, Yoldo-Dong 
Youngdungpo-Ku 
Seoul 150 
Tel 782-8039 or 8049 
TelEX KODIGIT K25 299 

NEW ZEALAND 

Mclean Informabon Technology Lid 
459 Kyber Pass Road, Newmarket, 
POBox 9464, Newmarket 
Auckland " New Zealand 
Tel 501·801, 501-219, 587·037 
TelEX NZ21570 THERMAL 

IINGAPORE 

General engineers Corpor&llon Pty 
LId 

~~..()~i~~ ~~~a~UII~~~Orey Complex 

¥~nga~~~5-~~\~3163 
TELEX RS23987 GENERCO 

SOUTH AFRtcA 
ElectroniC BUllcling Elements, Ply Ltd 
PO Box 4609 
Hazelwood, Pretona 0001 
Tel 011-27·12-46-9221 or 9227 
TELEX 3·0181 SA 

TAIWAN 

T alwsn Automallon Corp· 
3rd Floor #75, Section 4 
Nanking East Road 
TaipeI 
Tel 771·0940 or 0941 
TELEX 11942 TAIAUTO 

YUGOSLAVIA 

H A MICroelectroniCS Enterprises 
PO Box 5604 
San Jose, CalifornIa 95150 
Tel (408) 978-8000 
TELEX 278·559 

·Fleld Application Location 



inter 
CALIFORNIA 

Intel Corp 
1350 Shomblrd Way 
Ml View 94043 

~ (4Jf6.3~~)~ 
910-338-0255 

Intel Corp 
2000 E 4th Street 
Suite 110 
Santa Ana 92705 

~ (7J16.s~~2~5Js7 
Intel Corp 
~~o ~rt~C1~ Road 
Tel. (714) 268-3563 I 

intel Corp 
5530 N Corbin Avenue 
Suile ~20 
Tarzana 91356 
Tel (213) 7()8..0333 

COLORADO 
Intel Corp 
650 Soulh Cherry 
Suite 720 
Denver 80222 

~x (3~lJ.9~~!2~~6 
CONNECTK:UT 
Intel Corp 
36 Padanaram Road 

~nb(~)~Jg-8366 
FLORIDA 

~~~ ~or.£ 62nd S1rset 
Suite 104
FI lauderdale 33309
Tel (305) 771-0600
TWX 510·956-9407

~;' ~altl8nd Avenue
Suite 205
Maitland 32751

~x (3~J_8~~~~~3
Intel Corp
5151 Adanson Sireet
Orlando 32804
Tel (305) 628-2393

u.s. SERVICE OFFICES

GEORGIA

Intel Corp
3300 Holcombe Bridge Road
SUite 225
Norcross 30092
Tel (404) 441-1171

ILUIIOI8

KANSAS

Intel Corp
8400 W 110lt't Street
SUite 170
Overland Park 66210
Tal- (913) 642-8080

IlARYLAND

Intel Corp 7257 Parkway Drive
Hanover 21076

~ (3?1'6_~~~
IlAllSACIIIISI'IU
Intel Corp
27 Induslnal Avenue
Chelmsford 01824

~ (6g~3~~~::
MICHIGAN
Inlel Corp
26500 Northwestern Highway
SUite 401
SOuthfield 48075

~(3J:6.t~1~0
MINNESOTA
Intel Corp
7401 Melro Boulevard
SUite 355
Edina 55435

~ (6Jf6_~~:2%)2
MISIOURI

Intel Corp
4203 Earth City Expressway
Sulte 143

~rh (3~%' gg~~'5

NEW JERSEY

NEW Y_

Intel Corp
2255 Lyell Avenue
FIochester14{100
Tel (716) 254-6120

-.to "'-INA
Intel Corp
5600 Executive Orlve
Surtt 113
CharlOtte 28212
Tel: (704) 568-896.6
Intel Corp.
2306 W MeadOWView Road
Suite 206
Greensboro 27407
Tel (919) 294-1541

OHIO

Intel Corp
6500 Poe Avenue
Dayton 45414
Tel (800) 325-4415
TWX 810-450·2528

OKLAHOMA

~~7 Csorp Harvard
Suite 123
Tulsa 74101
Tel' (918) 744-8068

OIIEGON
Inlel Corp
10700 S W Beaverton-Hillsdale

~~wY2
Beaverton 97005

~(~~_4~~~6

PENNSYLVANIA
Inte) Corp
500 Pennsylvania Avenue
Fort Washington 19034

~ (2J~6~~2W~

TIXAII

Center Boulevard
W
15235
354-1540

~ to'Inderson 'Lane
Sulle 314
Austin 78752
Tel (512)454·3628
TWX 910-874·1347

Intel Corp
12300 Ford Road
Sulle 380
Dallas 75234

~(2Jn~~t~7
Intel Corp

~~~ ~:o :reeway 
Houatoo 77074 

~.(7J~~~~~ 
VIRGINIA 
Intel Corp_ 
7700 leesburg Pike 
Sulle 412 
Falfs Church 22043 
~ (7~,~_~~:t:~g7 

W_INGTON 

Intel Corp 
110 110th Avenue N.E 

510 

WIICONIIIN 

~~ ~rgunnyslope Road 
Suite 148 
Brookfield 53005 
Tel' (414) 784·9060 




