

inter

iAPX 88 BOOK

JULY 1981

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9). Intel Corporation
assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit
patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of
Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

BXP Intelevision MULTIBUS
CREDIT Intellec MULTIMODULE
i iSBC Plug-A-Bubble
ICE iSBX PROMPT
ICS Library Manager Promware
im MCS RMX
Insite Megachassis UPI
Intel Micromainframe JLScope

Micromap System 2000

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

Additional copies of this manual or other Intel liierature may be obtained from:

Intel Corporation
Literature Department SV3-3
3065 Bowers Avenue
Santa Clara, CA 95051

© INTEL CORPORATION. 1981 AFN·OI300C-l

ABOUT THIS BOOK

This book describes the unique Intel 8088
microprocessor, the outstanding choice for 8-
bit microcomputer applications requiring
both high performance and low cost.

The Intel 8088 is the most powerful 8-bit
microprocessor available today, yet as easy to
use as other 8-bit microprocessors designers
have used for years.

Chapter 1 introduces the 8088 CPU with its
key features that give it high performance,
with overviews on the following topics:

• Pipelined architecture
• Register resources
• Memory addressing
• Instruction set
• System interfacing
• Functional extensions

Chapter 2 provides a detailed discussion of
the programmer's architecture including:

• Register set
• Addressing modes
• Instruction set
• Assembly language

At the end of Chapter 2 is a complete set of
instruction set reference pages that describe
each instruction fully, one at a time.

Chapter 3 provides necessary information for
the hardware designer to incorporate the
8088 microprocessor into cost effective
iAPX* 88 microcomputer systems. Included
is a discussion of the following:

• Bus Timing and Status
• Bus Interface including interface to MUX

bus devices
• Memory and Peripheral Interface
• Wait States

*iAPX stands for Intel Advanced Processor System

• Interrupts
• Direct Memory Access
• Reset
• Building Large Systems

Chapter 4 gives some specific 8088 system
design examples for the simple to complex
systems:

• Multiplexed bus small systems
• Demultiplexed systems with standard mem-

ories and peripherals
• S100 Bus System
• iAPX 88 based CRT
• MUL TIBUS™ System

The Supplement provides an introduction to
microcomputer concepts and terminology
including:

• What is a microcomputer?

• What's inside the CPU?
• What are machine cycles?
• What are addressing modes?

The Appendix contains the following data
sheets and comparison benchmark reports:

Data Sheets
• iAPX 88110 data sheet
• 8284A data sheet
• 8282/8283 data sheet
• 8286/8287 data sheet

Benchmark Reports
• iAPX 88 vs. 6809
• iAPX 88 vs. Z80

Related Documentation:
• The iAPX 86,88 User's Manual

Contains complete design information on
building iAPX 86 and iAPX 88 systems,
including the use of 8089 110 processor
and 8087 numerics processor extension.
Several Application Notes are included.

• The Peripheral Design Handbook
Contains data sheets and application
notes featuring Intel peripheral devices.

• The Intel Component Data Catalog
Contains data sheets for all Intel semi
conductor components, including mem
ories and peripherals.

These books, and other documentation are
available from:

Literature Department
Intel Corporation
3065 Bowers Ave.
Santa Clara, CA 95051

ii

The material in the Assembly Language sec
tion of Chapter 2 was edited and reprinted
with permission of Hayden Book Company,
from The 8086 Primer, by Stephen P. Morse.
Copyright 1980.

Furthermore, selected material was extracted
from the following articles:

1) S.P. Morse, W.B. Pohlman, B.W. Ravenel,
"The Intel 8086 Microprocessor: A 16-Bit
Evolution of the 8080," Computer, June
1978.
2) S.P. Morse, B.W. Ravenel, S. Mazor,
W.B. Pohlman, "Intel Microprocessors
8008 to 8086," Computer, October 1980.

Table of Contents

CHAPTER 1 Page
Introduction To iAPX 88

What is the 8088? ... , 1-1
8088 Pipelined Architecture .. 1-2
Efficient Program Coding .. 1-3
iAPX 88 Megabyte Memory Addressing 1-5
The 8088's 16-Bit Instruction Set .. 1-10
Interfacing the 8088 .. 1-13
Processor Extensions ... 1-17
Review " .. , " 1-19

CHAPTER 2
iAPX 88 Architecture and Instructions

iAPX 88 Architecture .. 2-1
Register Structure ... 2-2
Addressing Modes .. ; 2-5
Organization of Instruction Set .. 2-10
Assembly Language Programming ... 2-18
Instruction Set ... 2-45

CHAPTER 3
iAPX 88 Hardware Design

CPU Pin Functions .. 3-1
8088 Bus Timing and Minimum Mode Status 3-6
Bus Interface ... 3~8
Memory and Peripheral Interface ... 3-9
Clock Generation .. 3-13
Reset ... 3-14
Ready Implementation and Timing ... 3-16
Interrupts .. 3-18
Bus Control Transfer ... 3-24
Maximum Mode Systems ... 3-24

CHAPTER 4
Application Examples

Multiplexed System ... 4-1
iAPX 88 Demultiplexed System ... 4-8
iAPX 88-Based S100 Bus System•......•........... 4-12
iAPX 88-Based CRT Controller " 4-12
iAPX 88 Multiprocessing Systems•.................... 4-14

SUPPLEMENT
What is a Microcomputer? .. S-1
What are Data, Address and Control Busses? S-2
Machine Cycles, Interrupts, and Direct Memory Access , S-3
What's Inside the CPU? .. S-4

APPENDIX
Benchmark Reports and Data Sheets

Benchmark Report: Intel® iAPX 88 vs. Zilog Z80 1
Benchmark Report: Intel® iAPX 88 vs. Motorola MC6809 20
iAPX 88/10 16-Bit HMOS Microprocessor 37
8284A Clock Generator and Driver for iAPX 88/10, iAPX 88/10 Processors 63
8282/8283 Octal Latch .. 71
8286/8287 Octal Bus Transceiver .. 76

iii

List of Figures

CHAPTER 1 Page

1-1 Microcomputer Block Diagram ... 1-1
1-2 8088 CPU .. 1-1
1-3 Program Execution in Standard Microprocessor 1-2
1-4 Pipelined Internal Architecture ... 1-2
1-5 Parallel Operation in 8088 CPU ... ,.. 1-3
1-6 8088 Register Set .. 1-4
1-7 Data Group Registers .. 1-4
1-8 Base and Index Registers .. 1-4
1-9 Control Registers .. 1-5

1-10 iAPX 88 Architecture Quick Access to Four Segment Types 1-6
1-11 Segment Registers ... 1-6
1-12 How an Address is Built ... 1-6
1-13 Process Relocation .. 1-8
1-14 iAPX 88 Addressing Modes .. 1-8
1-15 Four-Component Addressing Example 1-9
1-16 Data Transfer Instructions .. 1-10
1-17 Arithmetic Instructions .. 1-10
1-18 Bit Manipulation Instructions ... 1-11
1-19 String Instructions 1-11
1-20 Program Transfer Instructions .. 1-12
1-21 Processor Control Instructions 1-13
1-22 8088 Bus Interface is Similar to 8085 .. 1-14
1-23 Multiplexed Bus Components for Low Chip-Count Applications : 1-15
1-24 iAPX 88 Bipolar Support Components 1-16
1-25 iAPX 88 Longer Memory Access Time 1-17
1-26 iAPX 88 Processor Extensions .. 1-18

CHAPTER 2
2-1 How to Address One Million Bytes ,..................... 2-2
2-2 8088 Register Structure .. 2-3
2-3 Implicit Use of General Registers 2-4
2-4 Defining Bits in Instructions with One and Two Operands 2-6
2-5 Determing First Operand ... 2-7
2-6 Effective Addresses Used with Different Data Structures 2-7
2-7 8088 Address Components ;....................... 2-7
2-8 Reserved and Dedicated Memory Locations 2-8
2-9 Interrupt Vector Table in Memory .. 2-9

2-10 Effective Address Calculation Time ; 2-17
2-11 Translation Process ... 2-19
2-12 Assemblers and Compilers .. 2-19
2-13 Delimiters in ASM-86 ... 2-24
2-14 ASM-86 Reserved Words ... 2-43,44

References for Instruction Set .. 2-45,47

(continued)

iv

List of Figures (cont.)

CHAPTER 3 Page
3-1 8088 CPU Pins ... 3-1
3-2 Time Multiplexing of Address and Data 3-2
3-3 Decoding of Status Signals S3-S6 .. 3-2
3-4 iAPX 88 Multiplexed Bus System ... 3-4
3-5 iAPX 88 With Buffered Demultiplexed Busses 3-5
3-6 iAPX 88 Status Decoding .. 3c 5
3-7 iAPX 88 Basic Machine Cycle .. 3-7
3-8 iAPX 88 Compatible Multiplexed Bus Components ,............ 3-8
3-9 Multiplexed Bus Connections ... 3-10

3-10 Demultiplexed Bus Connections .. 3-11
3-11 iAPX 88 With Buffered Demultiplexed Busses 3-12
3-12 How 16-bit Data is Arranged in 8-bit Memory 3-13
3-13 Generating Clock Signal With 8284A .. 3-13
3-14 CPU State Following Reset ... 3-14
3-15 iAPX 88 Bus Condition During Reset .. 3-15
3-16 iAPX 88 Bus During Reset .. 3-15
3-17 8284A Reset Circuit ... 3-16
3-18 Constant Current on Reset Circuit .. 3-16
3-19 Normally READY Wait State Timing ... 3-17
3-20 Normally Not READY Wait State Timing 3-18
3-21 Using ROY 1/RDY 2 to Generate READY 3-19
3-22 Using AEN1/AEN2 to Generate READY 3-19
3-23 Si ngle Wait State Generator ... 3-19
3-24 Interrupt Acknowledge Sequence ... 3-20
3-25 Interrupt Vector Table in Memory ... 3-21
3-26 Interrupt Priorities .. 3-23
3-27 iAPX 88 Bus Condition During HOLD 3-24
3-28 iAPX 88 and 8237 A Connections .. 3-25
3-29 HOLD/HLDA Timing 3-26
3-30 iAPX 88 Using Maximum Mode ... 3-26
3-31 Min.lMax. Mode Pin Assignments ... 3-27
3-32 Queue Status Decoding 3-27
3-33 Request Grant Sequence Time (Max. Mode Only) 3-28
3-34 iAPX 88/21 Configuration ... 3-29

CHAPTER 4
4-0 iAPX 88 Multiplexed System Design Example 4-1
4-1 iAPX 88 Demo Board Address Map .. 4-2
4-2 Vest Pocket Computer Component Layout 4-3
4-3 Vest Pocket Schematic ... 4-4
4-4 iAPX 88 Demultiplexed Bus System .. 4-6
4-5 2114 Chip Select Connection .. 4-9
4-6 iAPX 88 S100 Bus System .. 4-9
4-7 iAPX 88 S100 Schematic .. 4-10
4-8 CRT Controller Block Diagram .. 4-13
4-9 8276 Row Buffer Loading ... 4-14

4-10 Escape Character Recognition Code .. 4-15
4-11 iAPX 88 Multiprocessing System .. 4-16
4-12 Typical iAPX 88 Local Mode Configuration 4-17
4-13 Typical 8089 Remote Mode Configuration 4-19
4-14 iAPX 86,88 Multiprocessing System ... 4-20

(continued)

v

List of Figures (cont.)

SUPPLEMENT Page
S-1 Microcomputer Block Diagram ; S-1

APPENDIX
iAPX 88 VS. Zilog Z80 " , ;

Table 1
Table 2
Table 3
Table 4
Table 5·
Table 6
Table 7
Table 8

Architecture Features ,.............. 2
Execution Times iAPX 88 vs. Z80A ...•. 5
Execution Times iAPX 88 vs. Z80B•............................ 6
Execution Times with Comparable Memory Access •........... :............ 6
Execution Times with Comparable Memory Access ,........ 7
Ease of Programming iAPX88 vs. Z80 ,.......... 7
Memory Utilization (Bytes) .. 8
Performance Breakdown ; 9

Fig. 1 16-bit Multiply Flowchart .. 11
Fig. 2 Block Translate Flowchart ... 14
Fig. 3 Bubble Sort : ... 17

iAPX 88 VS. Motorola MeS809 20
Table 1 Architecture Features ; ... : ~ 21
Table 2 Execution Times (5 MHz 88/10 vs. 2 MHz 6809) ;............ 24
Table 3 Execution Times with "Equal" Memory Access Times 25
Table 4 Memory Utilization (Bytes) ;............ 25
Table 5 Ease of Programming ; ... ; ; :............ 26
Table 6 Performance Breakdown ~ ; ; 27

Fig. 1 16-bit Multiply Flowchart•............................... ;............. 28
Fig. 2 Block Move Flowchart ... 31
Fig. 3 Character Search Flowchart 34

vi

Introduction To
iAPX 88

1

CHAPTER 1
INTRODUCTION

WHAT IS THE 8088?

An iAPX 88* Microcomputer system has the
three main elements typical to most compu
ter systems: The central processor (8088
CPU), the input/ output ports, and memory
(Fig. I-I).

The iAPX 88 is unique in many ways, how
ever, and the remainder of this chapter
describes the basics of the 8088 CPU and·
iAPX 88 Microcomputer systems.

One of the most unique aspects of the 8088
is shown in the simple block diagram (Fig.
1-2). The 8088 combines the powerful resour
ces of a 16-bit microprocessor internal
architecture with an easy-to-use 8-bit bus
interface. The bus interface is easy for hard
ware designers because it is similar to other
8-bit microprocessors. In particular, most of
the bus lines are identical in function to the
popular 8085A. Those designers who have
interfaced memories and 110 devices to 8085

*iAPX refers to the entire micro system built around
the 8088 CPU.

microprocessors will find it easy to incorpo
rate the 8088 into new systems.

16-BIT POWER ON AN 8-BIT BUS

The 16-bit internal architecture provides 16-
bit wide registers, data paths, a 16-bit ALU,
and a set of powerful 16-bit instructions iden
tical to the ones found in the popular 16-bit
8086 microprocessor.

With this new internal architecture, the 8088
has features that were never before available
with an 8-bit microprocessor. Among these
features is a 20-bit memory address range
and a 16-bit inputl output port address range
for 110 cycles. This gives the 8088 a full
megabyte (l,OOO,OOO-plus bytes) of memory

16-BIT

<=> 808SA INTERNAL
ARCHITECTURE BUS INTERFACE

BRINGS 16-BIT CAPABILITY TO 8-BIT
ENVIRONMENTS

Figure 1-2. 8088 CPU

ADDRESS BUS

CPU
MODULE

MEMORY

CONTROL BUS

Figure 1-1. Microcomputer Block Diagram

1-1

I/O

INTRODUCTION

addressability and 64,000 bytes of 1/0
addressability ..

The iAPX 88 instruction set includes a full
complement of arithmetic operations includ
ing addition, subtraction, multiplication, and
division, on 8-bit or 16-bit quantities. This
gives the 8088 the highest computational
throughput of any 8-bit microprocessor for
numerics intensive applications, The 8088
also has a complete set of string manipula
tion operations for performance and flexi
bility in applications where large amounts of
data are involved.

To make efficient use of its megabyte of
memory addressing, the 8088 provides the
most powerful range of addressing modes
available to the programmer; from simple
immediate addressing (data contained in the
instruction) to complex addressing built from
four components (three registers plus imme
diate data). More details are provided on
addressing modes later on in this chapter.

The 8088 has built-in hardware support for
multi-processor systems to coordinate re
source sharing of memory or peripheral
devices among mUltiple processors.

Finally, and possibly the most powerful
advantage: the 8088 is 100% code compatible
with the 16-bit 8086 cpu. All the power of
the 8086 16-bit instruction set is available in
the 8-bit 8088. So, iAPX 88 systems are easily
upgradable to iAPX 86 16-bit systems because
of this complete instruction set compatibility.

FETCH EXECUTE

TIME -

HOW THE 8088 PIPELINED
ARCHITECTURE INCREASES SYSTEM
PERFORMANCE . .

Figure 1~3 shows how programs are executed
over time in a standard microprocessor.
First, the microprocessor must fetch the
instruction to be performed, then it executes
the instruction; Only after the execution is
complete is the CPU ready to fetch in the
next instruction, execute that instruction, etc.
as the program proceeds from beginning to
end.

The CPU hardware that executesinstruc
tions must obviously wait until the
instruction is fetched and decoded before
execution begins. Therefore, in standard
microprocessors, the execution hardware
(primarily the control circuitry and the
arithmetic and logic unit) spends a lot of time
waiting for instructions to be fetched. The
8088 eliminates this wasted time by dividing
the internal CPU into two independent func
tional units (Fig. 1-4).

I~STRUCTION EXECUTION BUS
INTERFACE UNIT PIPELINE UNIT

V
SYSTEM BUS

PIPELINED ARCHITECTURE DELIVERS HIGHER
PERFORMANCE WITH REDUCED BUS "DEAD
TIME"

Figure 1-4. Pipelined Internal Architecture

FETCH EXECUTE FETCH· ••

Figure 1-3. Program Execution in Standard Microprocessor

1-2

INTRODUCTION

Bus Interface and Execution Units
Work in Parallel

The 8088 has a separate bus interface unit
called the BIU whose only job is to fetch
instructions from memory and pass data to
and from the execution hardware to the out
side world over the bus interface. Since the
execution unit and the bus interface unit are
independent, the bus interface unit fetches
additional instructions while the execution
unit (sometimes called the EU) executes a
previous instruction. This is made possible
by the instruction pipeline (or queue)
between the bus interface unit and the execu
tion unit; the bus interface unit fills this
pipeline with instructions awaiting execu
tion. Thus, whenever the execution unit
finishes executing a given instruction, the
next instruction is usually ready for imme
diate execution without delays caused by
instruction fetching. Figure 1-5 shows paral
lel fetching and executing in the 8088 CPU.

BENEFITS OF PIPELINING

Because the BIU is usually busy fetching
instructions for the pipeline, the 8088 bus is
more fully utilized making efficient use of
the iAPX 88 system bus structure. Parallel
fetching and executing also gives the 8088
almost as much performance as a micropro
cessor that moves data 16-bits at a time.

BIU

Another benefit of the parallel operation is
that since the execution unit seldom needs to
wait for the BIU to fetch the next instruc
tion, there is less need for the BIU to fetch
data quickly. Thus, the 8088 BIU allows
maximum performance and processing
power without high speed memory devices in
the system.

The only time instruction fetch time is not
totally transparent is when program execu
tion transfers to a new, non-sequential
address. When this happens, the bus inter
face unit is given the new address by the
execution unit; it then begins fetching instruc
tions sequentially from the new address. The
execution unit. must wait for the next
instruction to be fetched the way most
microprocessor units wait for every instruc
tion to be fetched. After the first instruction
is fetched from the new location the bus
interface unit again continues to fill the pipe
line with instructions and fetch-time be
comes transparent.

HOW THE 8088 REGISTER RESOURCES
PROVIDE EFFICIENT PROGRAM CODING

Figure 1-6 provides an overview of the regis
ters available in the 8088 CPU. The 8088
provides the largest number of continuously
available registers of any 8-bit microproces-

EU WAIT EXECUTE EXECUTE EXECUTE

Figure 1-5. Parallel Operation in 8088 CPU

1-3

INTRODUCTION

sor. Withinthe general register group there
are eight 16-bit registers. Four of these can be
referenced alternately as either 16-bit or as
eight 8-bit registers. All of these registers are
available to the programmer for general pur
pose activities.

In addition to the general registers, there are
two 16-bit control registers and four 16-bit
segment registers. The function of all 8088
registers is described in more. detail in the
following paragraphs.

Data Registers

The data group registers which, intheir 16-bit
form, are the AX, BX, ex and DX registers
(Fig. 1-7).· For 8-bit operations they are
broken up into a high byte and low byte.AH
is the high byte of the AX register, At is the·
low byte of the AX register, and so on. As
mentioned, these registers have general usage
forsimple arithmetic and logical operations.

Some registers have additional special func
tions which ate performed in the execution of
certain instructions. For example, the ex
register is frequently used to contain a count
value during repetitive instructions. The BX

G
f INDEX 1
f POINTER ~

·GENERAL
REGISTERS

f CONTROL ~ } ~~~11~~~s

t=:l } SEGMENT ~ .. REGISTERS

Figure 1-6. 8088 Register Set

1-4

register is used asa base register in some of
the more powerful addressing modes.

Pointer and Index Registers

Figure 1-8 shows the pointer and index regis
ters. The BP and SP registers both point to
the 8088's stack, a linear array in the 8088's
memory used for subroutine parameters,
subroutine return addresses, or other data
temporarily saved during execution of an
8088 program.

Most microprocessors have a single stack
pointer register called the SP. The 8088 has
an additional pointer into the stack called the
BP or the base pointer register. While. the SP
is used similar to stack pointers in other
machines (for pointing to subroutine and

AH AL AX

BH BL BX

CH CL CX
,

DH DL OX

Figure 1-7. Data Group Registers

BP&SPFOR B8P
STACK PARAMETER
PASSING . SP

SI & 01 FOR
STRING MANIP. &
DATA STRUCTURES
~
~

THESE CAN ALSO BE USED AS GENERAL
REGISTERS

Figure 1-8. Base and Index Registers

INTRODUCTION

interrupt return addresses), the BP register is
available to the programmer for whatever use
he desires. The BP register can contain an old
stack pointer value, or it can mark a place in
the subroutine stack independent of the SP
register. Using the separate BP register to
mark the stack saves the juggling of a single
stack pointer to reference subroutine parame
ters and addresses.

The two index registers are the SI (source
index) register and the DJ (destination index)
register (Fig. 1-8). These are both I6-bits
wide and are used by string manipulation
instructions and in building some of the more
powerful 8088 data structures and addressing
modes. Both the SI and DI registers have
auto-incrementing and auto-decrementing capa
bilities. All base and index registers have
general arithmetic and logical capabilities in
addition to their special functions.

Control Registers

Figure 1-9 shows two 16-bit control registers.
First is the IP or instruction pointer which
points to the next instruction the bus inter
face unit will fetch. (The instruction pointer is
similar to a Program Counter used in other
microprocessors, except that the IP points to
the next instruction being fetched, whereas
the traditional program counter points to the
next instruction to be executed). The second
I6-bit control register (Fig. 1-9) contains flags
or condition codes that reflect the results of

arithmetic or logical operations as they are
performed by the execution unit.

Segment Registers

The fourth group of registers, called the seg
ment registers, are used by the 8088 in the
formulation of memory addresses. Segment
register usage is described in the following
section on memory addressing.

THE iAPX 88 MEGABYTE MEMORY
ADDRESSING MEANS QUICK ACCESS
TO COMPLEX DATA STRUCTURES

As mentioned, the 8088 generates a 20-bit
memory address during every memory refer
ence operation, to address one million
(l,048,576) bytes of memory. These bytes are
stored sequentially starting from byte a to
byte FFFFF in hexidecimal or base 16 nota
tion. The 8088 has three uses for the memory
it addresses: programs, data and stack. The
8088 may separate data into "local data" used
by a particular program segment and "global
data" accessable to all program segments.
Alternately, you may have two data areas
accessable to a given program at any point in
time.

Every 20-bit memory address points either to
program code, data, or stack area in memory
(Fig. 1-10). For each of the four different
memory spaces, the 8088 has a segment base
register. Each segment register points to the
base address of the corresponding area in

INSTRUCTION I IP I
POINTER

~--~

FLAGS I

Figure 1-9. Control Registers

1-5

INTRODUCTION

memory (Fig. 1-11). The code segment regis"
ter points to: the : b~se< of the program
currently running. The stack segment register
points to the base of the 8088's stack, the data
se'gment register: points to the base of one
data 'area, and the extra segment:, register
points to the basebf another area where data
can be stored. Each segment register is l6-bits
wide, and one of the four is used in the corri
putation of every memory address that the
8088 generates~~

How are Addresses Generated?

Every time the 8088 needs tp genera,te, a
memory address, one,ofthe segment registers
is automatically chosen and added to a logi
cal address (Fig. 1-12).

For an instruction fetch, the code segment
register is automatically added to the logical
address (in: this case the contents of the
instruction pointer) to compute the value of
the instruction address. '

For an operation referencingthe 8088's stack,
the stack segment register is automatically
added to the Ibgicaladdress (the SP register
contents) 'to compute the'vahie'of1he stack
address.

For data 'reference operation~where either
the data or extra segment registers are chos~n

MODULE
CODE

MODULE
DATA

CODE'

STACK'

DATA

EXTRA

" ,SEGMENT
REGISTERS

'COiNTENTS OF 8088 SEGMENT REGISTERS"
POINT TO THE BASE ADDRESS OF THE
CORRESPONDING AREAS IN MEMORY. '

",

'Figure 1-11. Segment Registers ' ' '" .:, .

CODE

STACK

,DATA

IMPLICIT
SELECTION "

I ;/..-: s-,E-,G-M-EN-r-'I ..
,EXTRA

' .. "

SEGMENT
REGISTERS

20BI1"
PHYSICAL
ADDRESS

Figure 1-12. How an Addres~ is Built
. ."

":'i:

MODULE
STACK

SYSTEM
DATA

Figure 1-10. iAPX 88 Architecture: Quick Access to Four Segment Types

INTRODUCTION

as the base, the logical address can be made
up of many different types of values: it can be
just the immediate data value contained in
the instruction, or, it can be the sum of an
immediate data value, plus a base register,
plus an index register.

For the sum of the addition to be 20-bits
wide, the segment register value is automati
cally shifted left by four binary bits before it
is added to the 16-bit logical address. The
result is always 20-bits of physical address.

Note that since logical addresses are always
l6-bits wide, you can address up to 64,000
bytes in a. given segment without changing
the value of the segment base register. In sys
tems that do not have more than 64,000 bytes
of program plus 64,000 of stack, plus 64,000
bytes in each of two different data areas, it is
possible to set the segment registers at the
beginning of the program and then forget
them. In a system where the total amount of
memory is 64,000 bytes or less, it is possible
to set all segment registers equal and have
fully overlapping segments.

On the other hand, segment registers are very
useful when you have a large programming
task and you want isolation between. your
program code and the data area or isolation
between module data and the stack informa
tion, etc. Segmentation also makes it easy to
build relocatable and/ or reentrant programs.

RELOCATABLE AND REENTRANT
PROGRAMS
In many cases, the task of relocating an 8088
program (relocation means having the ability
to run the same program in several different
areas of memory without changing' the pro
gram itself) simply requires moving the
program code and then adjusting of the code
segment register to point to the base of the
new code area. Since programs can be writ
ten for the 8088 where branches or jumps in
program flow may occur using new locations

1-7

relative only to the instruction pointer, the
program does not care what value is kept in
the code segment regis teL figure 1-13 shows
how an entire process, consisting of code,
stack and data areas, can be relocated.

Likewise in a reentrant program, a single
program uses multiple data areas. Before the
reentrant code is entered the second time, the
data segment register value is changed so that
a different data area is made available to the
program.

ADDRESSING MODES

Now, let's continue our discussion of address
ing modes, providing more detail about how
addresses are formed.

The 8088 has 24 different addressing modes'
to generate logical addresses. Figure 1-14'
shows the different logical addresscombina
tions, from the simplest immediate data
mode to the register addressing mode, where
a selected register contains the data being
used by the instruction. In the direct address
ing mode, the instruction itself contains the
address of the data. In the register indirect
mode, the instruction points to a register con
taining the memory address of the desired'
data. There are both indexed and based
addressing m()des where the contents of an
index Or based register is added to an imme
diate data value contained in the instruction
to form the memory address.

Exactly how the 8088 selects an addressing
mode for a given instruction is encoded
within the bits of the instruction code. This is
discussed in more detail in Chapter 2.

If we examine the most complex and power
ful of the addressing modes, which includes
base register, index register, and displace
ment in the logical address, it can be seen that
some fairly complex data structures can be
easily addressed in a single instruction by the
8088.

INTRODUCTION

CODE CODE

STACK STACK

DATA DATA'

EXTRA" EXTRA

MEMORY
AFTER RELOCATION

TO RELOCATE AN ENTIRE PROCESS MOVE THE CODE,
STACK, AND DATA, AND UPDATE THE SEGMENT REGISTER
CONTENTS TO POINT TO THE NEW AREAS.

Figure 1-13. Process Relocation

MODE
" LOCATION OF DATA

IMMEDIATE WITHIN INSTRUCTION

REGISTER IN REGISTER

DIRECT AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN
INSTRUCTION.

REGISTER INDIRECT AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN
REGISTER, ' .'

INDEXED OR BASED AT MEMORY LOCATION POINTED TO BY SUM OFINDEX REC~ISTER
OR BASE REGISTER CONTENTS AND IMMEDIATE DATA CONTAINED
IN INSTRUCTION. ,', .' ,.

BASED AND INDEXED MEMORY ADDRESS IS SUM OF BASE REGISTER CONTENTS AND
WITH DISPLACEMENT INDEX REGISTER CONTENTS AND IMMEDIATE DATA:

THE LOCATION OF DATA IS REALLY THE LOGICAL ADDRESS, WHICH IS ADDEDTO THE SEGMENT
REGISTER VALUE TO FORM THE PHYSICAL MEMORY ADDRESS.

Figure 1-14. iAPX 88 Addressing Modes

1-8

INTRODUCTION

FOUR-COMPONENT ADDRESSING

An example of four-component addressing
(three-component logical address plus seg
ment base) is shown in Figure 1-15, and is
described as follows:

Suppose you're writing a program to com
pute the payroll for a large corporation. This
corporation has several groups of employees.
Within each group there are multiple em
ployees, and for each employee certain data
is kept in a record of information. Included
in this data are the employee's address, social
security number, and a wage code indicating
how much that employee is being paid.

The task at hand is to select the wage code for
a particular employee from the entire com
plex array of employee data. The 8088 can do
it with a single instruction after the registers
are 'set up., Here's how: First, set the data
segment register to the base of the employee
data, set a base register such as BX to contain
the offset number of bytes between the
employee data base address and the start of
the data that applies only to the desired
group of employees. Next we set an index
register such ,as SI to' iridex to the desired
employee's information within the given
group of employees. Finally, we use an abso-

<
PAYROLL < DATA

< <

lute displacement value to point to the given
employee's wage code within the employee's
data record.

The single instruction MOV AX, [BX + SI + 12]
then, will select the appropriate employee's
wage code. To implement the same function
with any other 8-bit microprocessor would
require multiple instructions to build the
address.

Symmetric Use of Memory

Another way these powerful addressing
modes work is that memory locations can be
used as either source or destination operand
of most instructions. A single 8088 instruc
tion can perform a logical AND between the
contents of a given memory address and an
immediate data value, and store the results
back in the same memory address. The equi
valent function would take multiple
instructions on an 8-bit processor such as
an 8080. It is as though you can treat any
memory location as a CPU register for sim
ple arithmetic and logic operations. Follow
ing are several operations which can be
performed directly on memory locations.
AND [memory address], 7FH
OR [BX + SI + 12], IF80H
ADD [memory address], 2500

I DISPLACEMENT = 12 (WAGE CODE)

I INDEX = SI (EMPLOYEE #N)

I BASE = BX (EMPLOYEE GROUP)

ISEGMENT = OS (PAYROLL SEGMENT)

MOVAX,[BX+SI+12];GETWAGECODE

Figure 1-15. Four-Component Addressing Example

1-9

INTRODUCTION

THE 8088's POWERFUL 16-BIT
INSTRUCTION SET

The 8088 has the most powerful instructions
of any 8-bit microprocessor. In . addition to
the standard instruction types you would find
on other 8-bit machines, the 8088 offers
powerful 16~bit instructions that perform the
function of multiple instructions on older
8-bit architectures. Figure 1-16 through 1-21
show the various groupings and the instruc
tion names.

The.14 data transfer instructions (Fig. 1-16)
move single bytes and words between memory
and registers as well as between registers AL
or AX and 110 ports. The stack manipUla
tion instructions are included in this group as
are instructions for transferring flag contents
and for loading segment registers.

8088 arithmetic operations (Fig. 1-17) may be
performed on four types of numbers: un
signed binary, signed binary integers,

GENERAL PURPOSE

MOV Move byte or word

PUSH Push word onto stack

POP Pop word off stack

XCHG Exchange byte or word

XLAT Translate byte

INPUT/OUTPUT

IN Input byte or word

OUT Output byte or word

ADDRESS OBJECT

LEA Load effective address

LDS Load pointer using DS

LES Load pointer using ES

FLAG TRANSFER

LAHF Load AH register from flags

SAHF Store AH register in flags

PUSHF Push flags onto stack

POPF Pop flags off stack

Figure 1-16. Data Transfer Instructions

1-10

unsigned packed decimal and unsigned
unpacked decimal numbers. Binary numbers
may be 8-bits or 16-bits long, decimal
numbers are stored in bytes, two digits per
byte for packed decimal,. and one digit per
byte for unpacked decimal.

The 8088 provides three groups of bit manip
ulation instructions (Fig. 1 .. 18) for
manipUlating bits within bytes and words
and for performing logical shifts and rotates.
The logical instructions include the Boolean
operators NOT, inclusive OR, exclusive OR,
plus a TEST instruction that· sets the flags
but does not alter either of its operands.

The bits in bytes or words may be shifted
arithmetically or logically by the shift instruc
tions. Up to 255 shifts may be performed
according to the value of the count operand
coded in the instruction. The count may be
specified as the constant "1" or as the con-

ADDITION

ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCII adjust for addition
DAA Decimal adjust for addition .

SUBTRACTION

SUB Subtract byte or word
SBB Subtractbyte or word with borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCII adjust for subtraction
DAS Decimal adjust for subtraction

MULTIPLICATION

MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCII adjust for multiply

DIVISION

DIV Divide byte or word unsigned
IDIV Integer divide byte or word
AAD ASCII adjust for division
CBW Convert byte to word
CWD Convert word to doubleword

Figure 1-17. Arithmetic Instructions

INTRODUCTION

tents of register CL, allowing the shift count
to be a variable supplied during program
execution. Bytes and words also may be
rotated. Bits rotated out of an operand are
not lost as in a shift but are circled back into
the other end of the operand.

POWERFUL STRING PROCESSING

Five basic string instructions called primitives
allow a string of bytes or words to be oper
ated on, one byte or word at a time. Strings
of up to 64K bytes may be manipulated with
these instructions. Instructions are available
to move data from a source string to a desti
nation string, or to compare two strings, or
to scan one string for a given value. In addi
tion, string instructions are provided to move
string elements to and from the AX register
in the 8088 (Fig. 1-19).

The specified operation is performed only
once when the string primitive is encountered

LOGICALS

NOT "Not" byte orword

AND "And" byte or word

OR "Inclusive or" byte or word

XOR "Exclusive or" byte or word

TEST "Test" byte or word

SHIFTS

SHLISAL Shift logical/arithmetic left
byte or word

SHR Shift logical right byte or word

SAR Shift arithmetic right byte or
word

ROTATES

ROL Rotate left byte or word

ROR Rotate right byte or word

RCL Rotate through carry left byte
or word

RCR Rotate through carry right
byte or word

Figure 1-18. Bit Manipulation Instructions

1-11

in the program. If the programmer desires
the operation to be performed repetitively,
such as in a block or string manipulation
operation, the basic string primitive may be
proceeded by a special one byte "prefix" that
causes the instruction to be repeated by the
hardware. This prefix is called REPEAT.
The use of the REPEAT prefix allows long
strings to be processed much faster than
would be possible with a software loop. The
repetitions can be terminated by a variety of
conditions and a repeated operation may be
interrupted and resumed. The CX register
counts the number of times the string opera
tion is performed.

When the 8088 moves a l6-bit quantity, it
does so 8 bits at a time automatically in the
hardware. Because of the variety of string
operations and the fact the 8088 can move
both 8-bit and 16-bit quantities using its
string instructions, the 8088 has the most
powerful string processing capabilities of any
8-bit microprocessor.

The program transfer instructions are shown
in Figure 1-20. These instructions redirect the
flow of instruction execution to other loca
tions in memory and many of them are
equivalent to instructions found in other 8-bit

MOVS Move byte orword string

MOVSB/MOVSW Move byte or word string

CMPS Compare byte or word
string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not
equal/not zero

Figure 1-19. String Instructions

INTRODUCTION

microprocessors. The 8088, however, offers
much more flexibility in how an instruction is
performed. The unconditional transfer instruc
tionsmay transfer control to a' target
instruction, within the current code, segment
for an int,rasegment transfer, or to a different
code segment with an intersegment transfer.
The transfer is made unconditionally any
time the instruction is executed. An intra
segment transfer is always made relative to
the current value of the instruction pointer.
Program segments ~hich only use intraseg
ment transfers are, therefore, relocatable in
memory. The, conditional transfer instruc
tions mayor may not transfer control,
depending on the state of the CPU, flags at
the time the instruction is executed.

The 18 instructions (Fig. 1-20), each test a
different combination of flags for a, condi
tion. If, the condition is true; control is
transferred to the target address specified for
the instruction. If the condition is false, then

,CONDITIONAL TRANSFERS

JA/JNBE Jump if above/ not below nor equal

JAE/JNB Jump if above or equai /not below

JB/JNAE Jump if below/not above,nor equal

JBE/JNA Jump if below or equal/not above'

JC Jump if carry

JE/JZ Jump if equal/zero

JG/JNLE Jump if greater/ not less nor equal

JGE/JNL Jump if greater or equal/not less

JLlJNGE Jump if less/not greater nor equal

JLE/JNG Jump if less or equal/ riot greater

JNC Jumpif not carry

JNE/JNZ Jump if not equal/not zero

JNO Jump if not overflow

JNP/JPO Jump if not parity/parity odd

JNS Jum,pif not sign,

JO Jumpif overflow

JP/JPE Jump if parity /parity even

JS Jump if sign ,

control passes to the instruction that follows
the conditional jump.
The iteration control instructions regulate the
repetition of software loops. These instruc
tionsuse the ex register as a counter. The
LOOPNE instruction for instance decre
ments a count, checks to see if the count is
zero, and branches back to the beginning of
the program loop. The equivalent furiction
would require mUltiple instructions in an
older 8-bit instruction set, such as the 8080's.

The interrupt instructions allow interrupt
s~rvice routines to be activated by both pro
grams and external' hardware devices. The
effect of software initiated interrupts is sim
ilar to hardware initiated interrupts. "

The processor control instructions (Fig. 1-21)
allow programs to control various CPU func
tions to update flags and to synchronize the
8088 with external events. Finally, the NOP
instruCtion causes the 8088 CPU to do
nothing.

UNCONDITIONAL TRANSFERS

CALL Call procedure

RET Return from procedure

JMP Jump

ITERATION CONTROLS

LOOP Loop

LOOPE/LOOPZ Loop if equal/zero

LOOPNE/LOOPNZ Loop if not equal/not zero

JCXZ Jumpifregister CX - 0

INTERRUPTS

INT Interrupt

INTO Interrupt ifoverflow

IRET Interrupt return
"

Figure 1-20. Program Transfer'lnstructions

1-12

(:;"'J;N)"RODUCTION

/.;>\. f \"
/ ,i/I.,

Well-Planned Instru5tibns (y~. 'I~
The 8088 instr;.uctions can be from one byte
to seven bytes in length, depending on the
number of operands and immediate data
fields included in the instruction. Great care
has been taken in the design of the instruc
tion set to allow for efficient programs to be
written. The 8088 instructions need not be
word aligned (starting at even addresses) con
trary to many other 16-bit instruction sets,
therefore saving bytes otherwise wasted. It is
also possible to use one-byte constants, one
byte displacements, and jump offsets, saving
code when compared with other machines
that always require 16-bit quantities be used.

The 8088 instruction set also has been
designed such that some registers are always
used for certain functions. The CX register,
for example, is used for a count value by
some repetitive instructions. This implied use
of registers allows shorter programs because
the register address need not be contained in
those instructions.

Because of the symmetric use of memory and
the ability to build sophisticated data struc-

FLAG OPERATIONS

STC Set carry flag

CLC Clear carry flag

CMC Complement carry flag

STO Set direction flag

CLO Clear direction flag

STI Set interrupt enable flag

CLI Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

HLT Halt until interrupt or reset

WAIT Wait for TEST pin active

ESC Escape to external processor

LOCK Lock bus during next instruction

NO OPERATION

NOP No operation

Figure 1-21. Proces~or Cpnlrollnslruclions

1-13

tures using the 8088 addressing modes, the
8088's instruction set is ideal for the imple
mentation of higher level languages. And
because the instruction set is bit-efficient, the
higher level language programs consume less
memory. Benchmarks have shown that the
8088 can generate both assembly language
and higher level language programs with 30%
less source and object code than other 8- and
16-bit microprocessors. This code savings
results in both higher performance and lower
memory cost. The instruction set of the 8088
is discussed in more detail in Chapter 2.

INTERFACING THE 8088 IS EASY,
FLEXIBLE

We have talked at some length about what
goes on inside the 8088, what its instruction
set is and the resources available for the pro
grammer. Following is a brief overview of
how the 8088 interfaces with other compo
nents in an iAPX 88 system.

Figure 1-22 is a simple diagram showing
some of the bus interface lines that are pro
vided on the 8088 CPU chip. The 8088 is
shown here opposite the 8085A, another
popular 8-bit microprocessor, to emphasize
the similarity between the two interfaces.
Both the 8088 and the 8085A time-multiplex
the low order 8 bits of the address bus with
the 8- bits of the data bus. This means that
during part of an 8088 machine cycle, the 8
bits of the multiplexed bus (ADo-AD7) con
tain address information, and during the
remainder of the machine cycle the same 8
lines contain data being transferred to/from
the 8088. On both the 8088 and the 8085A
there is a control line, called ALE, which sig
nals when the multiplexed address and data
lines contain address information. ALE can
be used to enable an external latch to latch
up the address for the remainder of the
machine cycle.

INTRODUCTION

The next higher order address lines, As
through A 15,· are· present throughout the
machine cycle on both the 8088 and the
8085A. Note that the 8088 has four other
address lines, A 16 through A 19 not present
on the 8085A and which the 8088 time
mUltiplexes with status information during
the machine cycle.

The three control lines RD, WR, and 110 M
signal the actual data transfer during a
machine cycle, whether the 8088 is reading or
writing, and whether that transfer is taking
place with respect to 110 devices or memory

<
8088

DTIR

550

devices. Also, the 8088, like the 8085A, has
other lines containing cycle status infor
mation available at. the beginning of the
machine cycle to inform other devices in the
system what type of machine cycle is being
performed.

There are several other control lines used
with the 8088 such as interrupts, HOLD,
READY. See Chapter 3 for details.

Using Special Multiplexed Bus Parts

Because the 8088 is so much like the 8085A,
you may connect the 8088 directly to a whole
family of multiplexed bus components de-

ADO- < > AD7

AB-
A-15

ALE

RD
8085A

WR

101M

51

STATUS

SO

808815 AN EASY UPGRADE FOR EXISTlNG8-BIT SYSTEMS

Figure 1-22. 8088 Bus Interface is Similar to 8085

1-14

INTRODUCTION

signed for the 8085A, without additional
interface logic. Figure 1-23 shows just a small
system. The multiplexed bus components are
the 8155, the 8355, 8755A, and the 8185.
Each of these contains an internal address
latch that demultiplexes internally the 8088's
bus. The multiplexed bus devices are highly
integrated as they combine mUltiple functions
to provide a low cost, high-functionality sys
tem in a very small number of components.
The 8155 contains 256 bytes of static RAM,
22 parallel 1/0 lines, and a 14-bit timerl
counter. The 8355 and 8755A contain 2K
(2048) bytes of either ROM or EPROM, and
16 parallel 110 lines. The 8185 is a 1 K byte
static RAM in a narrow 18-pin package.
Note also in Figure 1-23 that the 8088 uses an
external clock generator chip called the
8284A.There is another multiplexed-bus
memory called the 21821, brand new, that
adds 4K bytes of RAM memory to an iAPX
88 system.

BUILDING A STANDARD INTERFACE

Most applications, of course, require more
memory or 110 capacity than provided by a
multiplexed bus system like the one just des
cribed. In the average system, the designer
would like to use some commonly available
non-multiplexed RAM chips for data stor
age, some standard EPROM or ROM chips
for program storage and some special peri
pheral devices. To build a standard non
multiplexed bus structure, a whole family of
support components are provided for use
with the 8088. These support devices are
shown in Figure 1-24.

The 8088's bus can be de multiplexed very
easily using an 8282 or 8283 latch as shown in
Figure 1-24. The 8282 is a non-inverting 8-bit
latch in a narrow 20-pin package. The 8283
provides inverted outputs over the bus (" 1"
inputs become "0" outputs and vice versa).

L-___ J_t_~4_t_K __ ~~----:>IL _____ 80~8-8----~
D

o
8155

RAMIIO/TIMER

D

8088 MULTIPLEXED BUS

D D
8185
RAM

Figure 1-23. Multiplexed Bus Components for Low Chip-Count Applications

1-15

INTRODUCTION

To provide extra drive capability for the data
lines, the 8286 and 8287 8-bit transceivers are
available; the 8287 being the inverting version
of the 8286. Also shown in Figure 1-24 is the
8288 bus controller. This optional system
device decodes some status infqrmation
coming from the 8088 CPU to provide
special control signals for the bus. The 8288
provides separate memory read, memory
write, 110 read, and 110 write control
sIgnals .. Without the.. 8288, the 8085A
compatible RD, WR, and 101 M signals
would be used.

Also shown in Figure 1-24 is the 8289 bus
arbiter. It is also an optional component used
in multi:..master iAPX 88 systems. A multi
master system could be one where multiple

q I 8284A
CLOCK

~7
8286/87 8282/83 I TRANSCEIVER LATCH

,,\.

V

:>

8088's share control of the multi-master bus.
At anyone point in time; only one of the
several 8088's would be allowed to take
control of the bus to access a shared resource
such as a memory. Each 8088 would have its
own 8289 bus arbiter. Handshaking signals
between the 8289's ensure that only one of
the possible masters takes control of the bus
at a time, thus preventing conflicts between
them.

Once the standard bus structure is created,
the· 8088 interfaces easily with standard
memory and peripheral devices. In fact, the
performance requirement on memory devices
and peripherals imposed by an 8088 is much
lighter than any other high-performance 8-bit
microprocessor.

8088

V V
8288 8289

CONTROLLER I ARBITER I

U U
MUL TIMASTER BUS

Figure 1-24. iAPX 88 Bipolar Support Components

1-16

INTRODUCTION

iAPX 88 PERFORMANCE IS
COST EFFECTIVE

Figure 1-25 shows the 8088's memory speed
requirements compared to other 8-bit micro
processors. The memory access times listed
refer to the time available from when the
address first comes out of the CPU during a
memory read machine cycle until the data
must be available coming back from the
memory into the CPU.

The 8088 running at 5MHz allows 460ns for
memory devices to receive the address and
return the data. The fastest Z80 and the fas
test 6809 allow only l40ns and 320ns
respectively for the same activity to take
place. This means that the 8088 can offer its
full performance while using slower and pre
sumably cheaper memories than any other
high-performance 8-bit micropro
cessor.

Note that according to the benchmark
reports in the Appendix, the 5MHz 8088 use
slower memories while offering an average of
30% more performance than either the
2MHz 6809 or the 6MHz Z80B.

How does the 8088 offer higher performance
yet use slower memory devices? The main
reason is that parallel instruction fetch and
execute using the instruction pipeline allows

CPU
8088
5MHz

MEMORY
ACCESS 460 NS

TIME

the bus interface to be much more relaxed
while execution takes place at the full speed.
The 8088 can run at full speed using readily
available 450ns EPROM devices whereas its
counterparts, the 68B09 and Z80B require
wait states in their machine cycles to do the
same.

PROCESSOR EXTENSIONS FOR
FLOATING POINT ARITHMETIC
AND HIGH SPEED I/O

Up to now, we have justified that the 8088
CPU offers a lot of performance of its own
right, and many systems will be built around
the 8088 as the only central processing unit.
Note that there are other ways to expand on
the 8088 architecture to add additional pro
cessing power to the basic CPU. These
additional processing modules .are called pro
cessor extensions. There are two processor
extension chips that can be added to the
iAPX 88 system (Fig. 1-26).

Numerics Processor Extension

The iAPX 88/20 is an optional numerics
processor extension (NPX) added alongside
the 8088 CPU. This configuration has the
effect of adding the additional set of numerics
instructions to the 8088 instruction set. The
NPX picks its own instructions out of the

68B09 Z80A Z80B
2MHz 4MHz 6MHz

320 NS 250 NS 140 NS

LONGER ACCESS TIME MEANS SLOWER (AND
CHEAPER) MEMORIES CAN BE USED WITH iAPX 88

Figure 1-25. iAPX 88 Longer Memory Access Time

1-17

•

INTRODUCTION

8088 instruction stream. The instructions that
the NPX interprets as special purpose numer
ics instructions are regarded almost like
"no-operations" for the 8088. The NPX con
tains an additional register set of eight 80-bit
floating point registers which are mani
pulated with by the additional numerics
instructions. Together, the 8088 with the
NPX have approximately 100 times the per
formance of a standalone iAPX 88 system
for numerics-intensive applications.

1/0 Processor

The 8089 lOP, on the other hand, does not
receive instructions from the 8088 instruction
stream. It is a separate microprocessor of its
own right with its own instruction set. The
lOP is an input I output channel processor
and off-loads 110 interfacing from the 8088
general purpose CPU. The lOP's instruction
set, different from the 8088, is specifically tai
lored for peripheral" control and high speed
data transfer. With the lOP, it is possible to

~--~-~_~----~I~I----~_~_~--~
D

SYSTEM BUS

configure a dual-bus system, where the 8089
interfaces with peripheral devices on a" separ
ate "local" bus while the 8088 runs its
application programs in parallel, interfacing
with memories over the system bus.

The lOP has a high-speed direct memory
access (DMA) " mode that transfers data
between memory and peripherals or between
memory and memory at 1.25 megabytes per
second. The lOP is also capable of on-the-fly
processing activities such as masked com
parison operations or data translations. If
you have an application that requires very
high performance floating point numerics
capabilities, numerous peripheral devices, or
very high performance peripheral devices, the
NPX and lOP should be considered for
inclusion in your system. More information
on these devices is contained in other manu
als from Intel. This book will focus on single
CPU-systems build around the 8088 alone.

LOCAL I/O BUS

ARCHITECTURE EXTENDS FOR EVEN MORE PERFORMANCE

Figure1 c26. iAPX.88 ProcessoJ Extensions

1-18

INTRODUCTION

REVIEW

This chapter has provided a basic intro
duction to the 8088 CPU and iAPX 88
systems.

The 8088's pipelined architecture efficiently
uses the available bus time to maximize CPU
performance and make it possible to get
increased performance, even with slower
memory devices.

The 8088's register set makes a large number
of 16-bit registers available and some registers
have special functions allowing more efficient
instruction encoding for compact programs.

The 8088's addressing modes provide quick
access to complex data structures.

The 8088's instruction set includes powerful
16-bit instructions that lead to smaller pro
grams because many 8088 instructions replace
mUltiple instruction sequences in other 8-bit
machines.

1-19

The smaller 8088 programs run faster.

With the 8088, it is possible to build lower
cost systems than with other 8-bit micro
processors because the 8088 requires less
code memory and runs at high performance
with less expensive memories than other 8-bit
machines.

Interfacing the 8088 to 8-bit systems is easy
with processor extension chips that further
increase the 8088's performance through
parallel processing using specialized 110 and
numeric instructions and registers.

The 8088 is a unique CPU with optimal
combination of performance, ease of use, and
system economy that meets the needs of sys
tem designers in the 1980's.

The following chapters describe iAPX 88
software, hardware, and system design in
more detail.

iAPX 88 Architecture
And Instructions

2

CHAPTER 2
THE iAPX 88 ARCHITECTURE AND INSTRUCTIONS

INTRODUCTION

This chapter describes the programmer's
architecture of the 8088 CPU. The pro
gramming model is presented first, including
the memory and 110 port organizations and
the CPU registers. The addressing modes are
described next, followed by an introduction
to the instruction set and the iAPX 88
assembly language. The iAPX 88 instruction
set reference pages that describe each instruc
tion in detail conclude the chapter.

iAPX 88 ARCHITECTURE

The iAPX 88 processor architecture com
prises a memory structure, a register structure,
an instruction set, and a set of addressing
modes. The 8088 CPU can access up to one
million bytes of memory and up to 64K inputl
output ports.

The 8088 has three register files: .

1) data registers to hold intermediate results;
2). pointer and index registers to reference
within specified portions of memory;
3) segment registers used to specify these por
tions of memory.

The 8088 has nine flags that are used to
record the state of the processor and to con
trol its operations.

The 8088 instruction set and addressing
modes are richer and more symmetric than
the 8080. And the 8088 external interface,
providing such things' as int~rrupts, multip
rocessor synchronization, and resource shar
ing, exceeds the facillties provided in the
8080, the 8085, or the Z80®.

Memory Structure
The 8088 input I output space and memory
space are treated in parallel and are collec
tively called the memory structure. Code and
data reside in the memory space while (non
memory-mapped) peripheral devices reside in
the 110 space.' .
zao is a registered trademark of Zilog Corp.

Memory Space
The memory in an iAPX 88 system is a
sequence of up to one million bytes (a 64-fold
increase over the 8080). An 8088 word is any
two consecutive bytes in memory. Like the
8080, words are stored in memory. with the
most significant byte at the higher memory
address.

The one-megabyte memory can be conceived
of as an arbitrary number of segments, each
containing at most 64K bytes. The starting
address of each segment is evenly divisible by
16 (the four least significant address bits are
0). At any moment, the program can imme
diately access the contents of four such
segments:

1) Current code segment
2) Current data segment
3) Current stack segment
4) Current extra segment
Each of these segments can be identified by
placing the 16 Il10st significant bits of the
segment starting address into one of the four
16-bit segment registers. By contrast, the
8080 memory structure is simply the 8088
memory structure with all four of the current
segments starting at O.

An. 8088 instruction cim refer to bytes or
words within a segment by using a 16-bit
offset address. The processor constructs the
20-bit byte or word address automatically by
adding the 16-bit offset address (also called
the logical address) to the contents of a 16-bit
segment register, with four low-order zeros
appended (Fig. 2-1).

Input/Output Space
The 8088 110 space consists of 64K ports (a
256-fold increase over the 8080). Ports are
addressed the same way as memory except
there are no port segment registers. That is,
all ports are considered to be in one segment.
Like memory, ports may be 8- or 16-bits in
size.

ARCHITECTURE AND INSTRUCTIONS

The first 256 ports are directly addressable
(address in the instruction) by some inputj
output instructions, other instructions let you
address the total64K ports indirectly (address
in a register).

REGISTER STRUCTURE

The 8088 processor contains the thirteen 16-
bit registers and nine I-bit flags shown in
Figure 2-2. Notice that the thirteen registers
are divided into three files of four registers
each plus the thirteenth register, namely the
instruction pointer (IP) (called the program
counter in earlier processors). The IP is
not directly accessible to the programmer;
it is manipulated with control-transfer
instructions.

Data Register File
The data registers (top file Fig. 2-2) can be
addressed as either 8- or 16-bit registers.
(N ote vertical line showing byte divisions).

15 0
I IOFFSET

lOG ICAl ADDRESS ADDRESS

SEGMENT
~ __________ ~ ~~ ____ ~ADDRESS

19 o
20·BIT I

PHYSICAL MEMORY ADDRESS

Figure 2·1. How to Address One Million Bytes

2-2

The data registers handle both byte and word
quantities with equal ease. Figure 2-2 shows
that the 16-bit registers are named AX, BX,
CX, and DX; and the 8-bit registers are
named AL, AH, BL, BH, CL, CH, DL, and
DH (the L or H suffix designates high-order
or low-order byte).

Genetally, the data registers participate inter
changeably in both arithmetic and logical
operations of the 8088. However, some
instructions (e.g. string instructions) require
certain general registers for specific uses. Fig
ure 2-3 shows which registers are implicitly
used for special operations. Notice how Fig
ure 2-3 relates to Figure 2-2.

To review, data registers may be addressed as
either 8-bit or 16-bit registers as shown in
Figure 2-2. The registers in the next 2 files are
addressed only as 16-bit registers.

Pointer and Index Register File
The pointer and index registers of the 8088
consist of the 16-bit registers SP, BP, SI, and
DI as shown in Figure 2-2. These registers
usually contain offset addresses for address
ing within a segment. They reduce program
size by eliminating the need for each instruc
tion to specify frequently used addresses.
These registers serve another (and perhaps
more important) function; they provide for
dynamic logical address computation as des
cribed in the section on operand addressing
below. To accomplish this,the pointer and
index registers participate in arithmetic and
logical operations along with the 16-bit data
registers described above.

Figure 2-2 shows this file divided into the
pointer subfile (SP and BP) and the index
subfile (SI and DI). The pointer registers
provide convenient access to the current
stack segment (as opposed to the data seg
ment). Unless otherwise specified in the
instruction, pointer registers refer to the cur
rent stack segment while index registers refer
to the current data segment.

ARCHITECTURE AND INSTRUCTIONS

In certain instances, specific uses of these
four registers are indicated by the mnemonic
phrases "stack pointer," "base pointer,"
"source index," and "destination index." (Fig.
2-2).

Segment Register File
The segment registers of the 8088 are 16-bit
registers. These registers specifically identify
the four currently addressable memory seg
ments: CS (code segment), DS (data segment),
SS (stack segment), and ES (extra segment).

All instructions are fetched from the current

code segment offset by the instruction pointer
(lP) register. The segment for operand
fetches can usually be designated by append
ing a special one-byte prefix to the instruc
tion. This prefix, and other prefixes described
later, has unique encoding that distinguishes
it from the opcodes. In the absence of such a
prefix (the usual case), the operand is usually
fetched from the current data segment or cur
rent stack segment, depending on whether
the offset address was calculated from the
contents of a pointer register.

7

DATA REGISTERS
07 o

AX

BX

CX

DX

SP

BP

SI

DI

CS

DS

SS

ES

IP

FLAGS

15

I
15

I
15

I
15

AH AL

BH BL

CH CL

DH DL

POINTER AND INDEX REGISTERS

0

I

STACK POINTER

BASE POINTER

SOURCE INDEX

DESTINATION INDEX

SEGMENT REGISTERS

0

I

CODE

DATA

STACK

EXTRA

INSTRUCTION POINTER AND FLAGS
0

Ie I
INSTRUCTION
POINTER

lolDlllTlslzl IAI I pi
11 10 9 8 7 6 5 4 3 2 1 0

Figure 2-2. 8088 Register Structure

2-3

ARCHITECTURE ANDJNSTRUCTIONS

Programs can be dynamically relocated by
changing the segment registers, provided the
program itself does not load or manipulate
the segment registers.

Flag Register File
Six flags provide processor status informa
tion(Fig. 2-2). Five are the 8080/8085 flags
and usually reflect the status of the latest
arithmetic or logicaloperatidn; The sixth, an
OVERFLOW flag, reflects a signed overflow
condition.

The 8088 also contains three· flags that con
trol processor operations. These are the

. DIRECTION flag, which controls the direc
tion of the string manipulations; the INTER
RUPT FLAG, which enables or disables
external interrupts; and the.· TRAP flag,
which puts the processor into a single-step
mode for program debugging.

A more detailed discussion of the flags
follows:

1) If AF (the auxiliary carry flag) is set, there
has been a carry out of the low nibble (the
low order 4-bits of a byte) into the high nib
ble or a borrow from the high nibble into the

REGISTER . OPERATIONS

AX Word Mulhply,Word Divide,
Word I/O

AL Byte Multiply, Byte Divide, Byte
1/0, Translate, Decimal
Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

OX Word Multiply, Word Divide,
Indirect I/O

SP Stack Operations

SI String Operations

01 String Operations

Figure 2-3. Implicit Use of General Registers

low nibble of anK-bit quantity (low-order
byte of a.16.,bit quantity); This flag is used by
decimal arithmetic instructions.
2) If CF (the carry flag) is set, there has been
a carry out of, or a borrow into, the high
order bit of the result (8- or.I6:·bit). The flag
is used by instructions that add and subtract
multibyte . numbers. Rotate instructions can
also isolate a bit in memory or a register by
placing it in the carry flag.
3) If OF (the overflow flag) is set, an arith
metic overflow has occurred; that is, a signifi
cant digit has been lost because the size of the
computation exceeded the capacity of its des
tination lo.cation. An optional Interrupt On
Overflow instruction generates an interrupt
in this situation.
4) If SF (the sign flag) is set, the high-order
bit of the result is a 1. Since negative binary
numbers. are represented in the 8086 and 8088
in standard two's complement notation, SF
indicatesihe sign of the result (0 = positive, 1
= negative).
5) If PF (the parity flag) is set, the result has
even parity, an even number of I-bits. This
flag can be used to check for data transmis:
SlOn errors .
6) If ZF (the zero flag) is set, the result of the
operation is o.
Three additional control flags (Fig. 2-2) can
be set and cleared by programs to alter pro
cessor operations:
1) Setting DF (the direction flag) causes
string instructions to auto-decrement, that is,
to process strings from high addresses to low
addresses, or from "right to left". Clearing

· DF causes string instructions to auto
increment, or to process strings from "left to

· right."
2) Setting IF (the. interrupt-enable flag)
allows the CPU to recognize external (mask
able) interrupt requests. Clearing IF disables

.. these interrupts. IF has no effect on either
nonmaskable external or internally generated

· interrupts:

.·2-4

· ARCHITECTURE AND INSTRUCTIONS

3) Setting TF (the trap flag) puts the proces
sor into single-step mode for debugging. In
this mode, the CPU automatically generates
an internal interrupt after each instruction,
allowing a program to be inspected as it exe
cutes instruction by instruction.

Instruction Pointer
The 16-bit instruction pointer (lP), as shown
in Figure 2-2, is analogous to the program
counter (PC) in the 8080/8085 CPUs and
points to the next instruction. The instruction
pointer contains the offset (distance in bytes)
of the next instruction from the beginning of
the current code segment. During normal
execution, IP contains the offset of the next
instruction to be fetched. Whenever IP is
saved on the stack, however, it first is auto
matically adjusted to point to the next
instruction to be executed. Programs do not
have direct access to the instruction pointer,
but instructions cause it to change and to be
saved on and restored from the stack.

Stack Implementation
The 8088's stack is implemented in memory
and is located by the stack segment register
(SS) and the stack pointer register (SP). A
system may have an unlimited number of
stacks, and a stack may be up to 64K bytes
long, the maximum length of a segment. (An
attempt to expand a stack beyond 64K bytes
overwrites the beginning of the stack). One
stack is directly addressable at a time; this is
the current stack often referred to simply as
"the" stack. SS contJ.ins the base address of
the current stack and .SP points to the top of
the stack (TOS). In other words, SP contains
the offset of the top of the stack from the
stack segment's base address. Note, however,
that the stack's base address (contained in
SS) is not the "bottom" of the stack.

Instructions that operate on a stack add or
remove one word (2 bytes) at a time. An item
is pushed onto the stack by decrementing SP
by 2 and writing the item at the new TOS. An

2-5

item is popped off the stack by copying it
from TOS and incrementing SP by 2. In
other words, the stack grows down in
memory toward its base address. Stack oper
ations never move items on the stack, nor do
they erase them. The top of the stack changes
only as a result of updating the stack pointer.

ADDRESSING MODES

Instructions in the 8088 usually perform
operations on one or two source operands,
with the result overwriting one of the oper
ands. The first operand of a two-operand
instruction can be usually either a register or
a memory location; the second operand can
be either a register or a constant within the
instruction. (The terms first and second oper
and are used to distinguish the operands only
- their use does not imply directionality for
data transfers). Typical formats for two
operand instructions are shownin Figure 2-4.

Single-operand instructions generally allow
either a register or a memory location to
serve as the operand. Figure 2-4 also shows a
typical one-operand format. Viitually all
8088 operators may specify 8- or 16-bit
operands.

Memory Operands
An instruction may address an operand resid
ing in memory in one of the following ways,
as determined by the "mod" and "r / m" field
in the instruction (Fig. 2-5):

DIRECT ADDRESSING -16-bit offset address
contained in the instruction.

INDIRECT ADDRESSING - optionally with
an 8- or 16-bit displacement contained in the
instruction:

1) through a base register (BP or BX)
2) through an index register (SI or DI)
3) through the sum of a base register and an
index register

ARCHITECTURE AND INSTRUCTIONS

TWO OPERAND FORMAT, SECOND OPERAND IS REGISTER

[ooILs~<[I~t[] OPCODE I D I wi ...---:-MO-D----r'"I-RE-G-r-I-R/-M-,1

(optional)

[==DiSP-LO==:J
(optional)

TWO OPERAND FORMAT, SECOND OPERAND IS CONSTANT

[001 I SEG I~u I OPCODE I S I w I I MOD IOPCODE IRIM I
(optional)

[==DISP-LO =~ [== DISP~C=~ DATA-LO

(optional) (optional)

[==~IAji:C=:J
(optional)

ONE OPERAND FORMAT

[001 J=S]~I110J OPCODE I wi
(optional)

[==~SP-~ -] [==Di~-HI ==J
(optional) (optional)

FOR DEFINITION OF MOD AND RIM FIELDS, SEE FIGURE 2-5.

OTHER BIT FIELDS:

. W = 0: 8-BIT OPERAND(S)
1: 16-BIT OPERAND(S)

D = 0: DESTINATION IS FIRST OPERAND
1: DESTINATION IS SECOND OPERAND

S =0: DATA= DATA HI, DATALO } APPLIES IF
1: DATA =' DATA-LO SIGN EXTENDED W = 1

SEG: SEGMENT REG REGISTER

00 ES 8-BIT 16-BIT
01 CS
10 SS

REG: (W = 0) (W = 1)

11 DS 000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
111 BH DI

Figure 2-4. Defining Bits in Instructions with One and Two Operands

2-6

ARCHITECTURE AND INSTRUCTIONS

FIRST OPERAND CHOICE DEPENDS ON ADDRESSING MODE:

FIRST OPERAND IN MEMORY

INDIRECT ADDRESSING

00' : DISP = 0
MOD = 01 : DISP = DISP-LO SIGN

EXTENDED
10 : DISP = DISP-HI, DISP-LO

OPERAND
RIM: EFFECTIVE ADDRESS

000 (BX) + (SI) + DISP
001 (BX) + (DI) + DISP
010 (BP) + (SI) + DISP
011 (BP) + (DI) + DISP
100 (SI) + DISP
101 (DI) + DISP
110 (BP) + DISP
111 (BX) + DISP

Where () means "contents of"
'Exception-direct addressing mode

DIRECT ADDRESSING

MOD = 00
AND

RIM = 110

OPERAND EFFECTIVE
ADDRESS =

DISP-HI, DISP-LO

Figure 2-5. Determining First Operand

DATA DATA MEMORY

STRUCTURE WITHOUT BASE WITH BASE

SIMPLE DIRECT BX + OFFSET VARIABLE

ARRAYS SI BX + SI
DI BX + DI

ARRAYS SI + OFFSET BX + SI + OFFSET
OF RECORDS DI + OFFSET BX + DI + OFFSET

FIRST OPERAND
IN REGISTER

MOD=11

REGISTER

RIM: 8-BIT 16-BIT
(W = 0) (W = 1)

000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
111 BH DI

STACK

BP + OFFSET

BP + SI
BP + DI

BP + SI + OFFSET
BP + DI + OFFSET

Figure 2-6. Effective Addresses Used with Different Data Structures

DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT LOGICAL ADDRESS

BASE BASE

Instruction Fetch CS NONE IP

Stack Operation SS NONE SP

String Source DS CS,ES,SS SI

String Destination ES NONE DI

BP Used As Base Register SS CS,DS,ES Effective Add ress

General Data Read IWrite DS CS,ES,SS Effective Address

Figure 2-7. 8088 Address Components

2-7

ARCHITECTURE AND INSTRUCTIONS

Register Operands
An instruction may address an operand resid
ing in one of the general registers or in one of
the pointer or index registers. Fig. 2-5 shows
the register selection as determined by the
"r / m" field (first operand) or the "reg" field
(second operand) in the instruction.

Immediate Operands
In general, one of the two operands of a two
operand instruction can be "immediate" data
contained within the instruction. These oper
ands are represented in 2's-complement form
and may be 8-bits or 16-bits in length.

Addressing Mode Usage
The addressing modes were designed to per
mit efficient implementation of high-level
language features. For example, a simple var
iable is accessed with the direct mode,
whereas an array element in a based record
(at a memory address pointed to by some
other base variable) may be accessed within
the indirect-through-BX-plus~SI-plus-offset

mode (where BX points to start-of-record,
offset points to the start of the array within
the record, and index register SI contains the
index into the array).

The addressing modes involving the BP base
register allow accessing data in the stack
segment instead of in the data segment. Rec
ursive procedures and block-structured langu
ages frequently store data in the stack.
Address modes for accessing data elements
use effective addresses shown in Fig. 2-6.

Addressing Summary
Fig. 2-7 summarizes the address components
that are combined to generate memory
addresses. The Default segment base is the
segment register automatically chosen by the
8088 for the corresponding type of memory
reference. The Alternate segment base may
replace the Default segment if a special "seg
ment override" prefix precedes the instruction.
The Logical address is automatically added
to the chosen segment register to form the

2-8

memory address. The 8088 Assembly lan
gu~ge simplifies the task of selecting the
desired addressing modes for use with basic
8088 instruction types.

Dedicated and Reserved Memory Locations
Two areas in extreme low and high memory
are dedicated to specific processor functions
or are reserved by Intel Corporation for use
by Intel hardware and software products. As
shown in Figure 2-8, the locations are: OH
through 7FH (128 bytes) and FFFFOH
through FFFFFH (16 bytes). These areas are
used for interrupt and system reset process
ing. iAPX 88 systems should not use these
areas for any other purpose. Doing so may
make these systems incompatible with future
Intel products.

RESERVED

DEDICATED

OPEN

FFFFFH

FFFFCH
FFFFBH

FFFFOH
FFFEFH

t---------~------~---1 BOH 7FH
RESERVED

~ ____________________ -; 14H
13H

DEDICATED
1...-_________ OH

MEMORY

Figure 2-8, Reserved and Dedicated Memory
. ·Locations

ARCHITECTURE AND INSTRUCTIONS

The interrupt pointer (or interrupt vector)
table (Fig. 2-9) is the link between an inter
rupt type code and the procedure designated

to service interrupts associated with that
code. The interrupt pointer table occupies up
to 1 K bytes of low memory. There may be up

AVAILABLE
INTERRUPT
POINTERS
(224)

RESERVED
INTERRUPT
POINTERS
(27)

DEDICATED
INTERRUPT
POINTERS

3FFH

3FCH

,

084H

080H
07FH

014H

010H

OOCH

~) 008H

004H

OOOH

- TYPE 255 POINTER: _
(AVAILABLE)

TYPE 33 POINTER: - (AVAILABLE) -

- TYPE 32 POINTER: -
(AVAILABLE)

- TYPE 31 POINTER: -(RESERVED)

- TYPE 5 POINTER: -
(RESERVED)

TYPE 4 POINTER: -
OVERFLOW

-

TYPE 3 POINTER:
1-BYTE INT INSTRUCTION

TYPE 2 POINTER: - NON-MASKABLE -

- TYPE 1 POINTER:
SINGLE-STEP

-

- TYPE 0 POINTER: -
CS BASE ADDRESS

DIVIDE ERROR IP OFFSET

IJ-oIolf---16 BITS----i.~1

Figure 2-9. Interrupt Vector Table in Memory

2-9

ARCHITECTURE AND INSTRUCTIONS

to 256 4-byte entries in the table, one for each
interrupt type that can occur in the system.
Each entry is a doubleword pointer (4 bytes)
containing the address of the procedure. The
higher-addressed word of the pointer con
tains the base address of the segment
containing the procedure. The lower
addressed word contains the procedure's
offset from the beginning of the segment.
Since each entry is four bytes long, the CPU
can calculate the location of the correct entry
for a given interrupt type by simply mUltiply
ing (type*4).

Memory location FFFFOH, sixteen bytes
from the absolute top of the 8088's address
range is the first location from which the
8088 fetches an instruction following a sys
tem RESET (the activation of the RESET
pin on the 8088 CPU chip, usually at the time
system is powered up). This memory location
usually contains ajump (JMP) instruction to
the actual beginning of the system program
somewhere else in memory.

ORGANIZATION OF THE INSTRUCTION
SET

Instructions are described here in six func
tional groups:

I) Data transfer
2) Arithmetic
3) Logic
4) String manipulation
5) Control transfer
6) Processor control

Each of the first three groups mentioned in
the preceding list is further subdivided into
an array of codes that specify whether the
instruction is t~ act upon immediate data,
register or m~mory locations, whether 16-bit
words or 8-bit bytes are to be processed, and
what addressing mode is to be employed; All
of these codes are listed and explained iIi
detail in this book, but when you are writing
assembly-Iang~ge programs you do not
have to code each one individually. The con-

2-10

text of your program automatically causes
the assembler to generate the correct code.

There are three general categories of instruc
tions within each of the three functional
groups mentioned:

I) Register or memory space to or from
register
2) Immediate data to register or memory
3) Accumulator to or from registers, mem
ory, or ports
The details of the syntax of the 8088 instruc
tion set are described fully in Intel's iAPX 86,
88 assembly language programming manual.

Data Transfer Instructions
Data transfer instructions are divided into
four classes:
1) General purpose
2) Accumulator-specific
3) Address-object
4) Flag
None affect flag setting except SAHF and
POPF.

General Purpose Transfers
Four general purpose data transfer opera
tions are provided and may be applied to
most operands, though there are specific
exceptions. The general purpose transfers
(except XCHG) are the only operations
which allow a segment register as an operand.

MOV performs a byte or word transfer from
the source operand to the destination operand.

PUSH decrements the SP register by two
and then transfers a word from the source
operand to the stack element currently
addressed by SP.

POP transfers a, word operand from the
stack element addressed by the SP register to
the destination operand and then increments
SP by 2.

XCHG exchanges the byte or word source
operand with the destination operand. The
segment registers may not be operands of
XCHG.

ARCHITECTURE AND INSTRUCTIONS

Accumulator-Specific Transfers
Three accumulator-specific transfer opera
tions are provided:

IN transfers a byte (or word) from an input
port to the AL register (or AX register for a
word). The port is specified either with an
inline data byte, allowing fixed access to
ports 0 through 255, or with a port number in
the DX register, allowing variable access to
64K input ports.

OUT is similar to IN except that the transfer
is from the accumulator to the output port.

XLAT performs a table lookup byte transla
tion. The AL register is used as an index into
a 256-byte table whose base is addressed by
the BX register. The byte operand so selected
is transferred to AL.

Address-Object Transfers
Three address-object transfer operations are
provided:

LEA (load effective address) transfers the
offset address of the source operand must be
a memory operand and the destination oper
and must be a 16-bit general, pointer, or
index register.

LDS (load pointer into DS) transfers a
"pointer-object" (i.e., a 32-bit object contain
ing an offset address and a segment address)
from the source operand (which must be a
memory operand) to a pair of destination
registers. The segment address is transferred
to the DS segment register. The offset
address must be transferred to a 16-bit gen
eral, pointer, or index register.

LES (load pointer into ES) is similar to LDS
except that the segment address is transferred
to the ES segment register.

Flag Register Transfers
Four flag register transfer operations are
provided:

LAHF (load AH with flags) transfer the flag
registers SF, ZF, AF, PF, and CF (the 8080

2-11

flags) into specific bits of the AH register.

SAHF (store AH into flags) transfers specific
bits of the AH register to the flag register, SF,
ZF, AF, PF, and CF.

PUSHF (push flags) decrements the SP reg
ister by two and transfers all of the flag
registers into specific bits of the stack element
addressed by SP.

POPF (pop flags) transfers specific bits of the
stack element addressed by the SP register to
the flag registers and then increments SP by
two.

Arithmetic Instructions

The 8088 provides the four basic mathemati
cal operations in a variety of instructions.
Both 8- and 16-bit operations and both
signed and unsigned arithmetic are provided.
Standard twos complement representation of
signed values is used. The addition and sub
traction operations serve as both signed and
unsigned operations to be made (see Condi~
tional Transfer). Correction operations allow
arithmetic to be performed directly· on
packed or unpacked decimal numbers.

Flag Register Settings
Six flag registers are set or cleared by arith
metic operations to reflect results of the
operation. They generally follow these rules:

CF is set if the operation results in a carry out
of (from addition) or a borrow into (from
subtraction) the high-order bit of the result;
otherwise CF is cleared.

AF is set if the operation results in a carry
out of (from addition) or a borrow into (from
subtraction) the low-order four bits of the
result; otherwise AF is cleared.

ZFis set if the result of the operation is zero;
otherwise ZF is cleared.

SF is set if the high-order bit of the result of
the operation is set; otherwise SF is cleared.

ARCHITECTURE AND INSTRUCTIONS

PF.is set if the modulo 2 sum of the low
order eight bits of the operatiop. is 0 (even
parity); otherwise PF is cleared (odd parity).

OF is set if the operation results in a carry
into the high-order pit of the result. but not a
carry out of the high~order bit, or vice versa;
otherwise OF is cleared;

Addition
Five addition operations are provided, .

ADD performs an addition ·of the two source
operands and returns the result to one of the
operands.

ADC (add with carry) performs an addition
of the two source ope~ands, adds one' if the
CF flag is found previousiy set, and returns
the result to one of the operands.

INC (increment) performs an addition of the
source operand' and returns. the result to the
operand.' .

, ,.,',

AAA (unpacked BCD [ASCII] adjust Jor
addition) performs a correction . of the result
in AL of adding two unpacked decimal ope
rands, yielding an unpacked decimal sum.

DAA (decimal adjust for addition) performs
a correction of the result in AL of adding two
packed decimal operands, Yielding a packed
decimal sum. . '.

Subtraction .
Seven subtraction operations are provided: '

SUB. performs a s~btraction .of the two
soufce operands and returns the result to (me
of the operands.

SBB (subtract with borrow) performs a sub
traction of the two source operands, subtracts
one if the CF flag is found previously set, and
returns the resultto one of the operands.

DEC (decrement) performs a subtraction of
one from the source operand and returns the.
result to the operand.

NEG (negate) performs a subtraction .of the
source operand from zero and returns the
result to the operand.

2-12

CMP (compare) performs a subtraction of
the two source operands causing the flags to
be affected but does not return the result;

AAS (unpacked BCD [ASCII]' adjust for
subtraction) performs' a correctional the
result in AL of subtracting ,two unpacked
decinial operands,yieidingan . unpacked
decimal difference.

DAS (decimal adjust for subtraction) per
forms a correction of the result in AL of
subtracting two packed decimal operands,
yielding a packed decimal difference.

Multiplication ..'
Three multiplication operations are
provided: . '.

MUL performs an unsigned mUltipllpation of
the accumulator (AL or AX) and tlie source
operand, returning·;i double length result to
the accumulalorand its extension (AL and
AH for 8-bit operation, AX and DX for
16-bitoperation). CF and OF are set if the
top half of the result is non-zero, .

IMUL (integer mUltiply) issirililar to MUL
except that itperfornisa signed multiplica~
tion. CF and OF are set if the top half of the
result is not the sign~extension of the low half
of the result.

AAM(unpacked BCD [ASCII] adjust for
multiply) performs a' correction' of the result
in AX of multiplying' two unpacked decimal
operands, yielding ari unpacked. decirilal
product. .

Division.....,
Three division operations are provided and
two sign-extension operations' to support
signed division: .' '. . ,

DIV performs an unsigned division of the
accumulator and its extension (AL and AH
for 8-bit operation, AX and DX for 16.:bit
operation) by the source operand and returns
the. single length quotient to the a,ccumulator
(AL or AX), and returns the sin.gle length
remainder to the accumulator extension (AH

ARCHITECTURE AND INSTRUCTIONS

or DX). The flags are undefined. Division by
zero generates an interrupt of type O.

IDIV (integer division) is similar to DIV
except that it performs a signed division.

ADD (unpacked BCD [ASCII] adjust for
division) performs a correction of the divi
dend in AL before dividing two unpacked
decimal operands, so that the result will yield
an unpacked decimal quotient.

CBW (convert byte to word) performs a sign
extension of AL into AH.

CWD (convert word to double word) per
forms a sign extension of AX into DX.

LOGIC INSTRUCTIONS

The 8088 provides the basic logic operation
for both 8- and 16-bit operands.

Single-Operand Operations
Three single-operand logical operations are
provided:

NOT forms the ones complement of the
source operand and returns the result to the
operand. Flags are not affected.

Shift operations of four varieties are pro
vid~~ for memory and· register operands,
SHL (shift logic left), SHR (shift logic right),
SAL (shift arithmetic left), and SAR (shift
arithmetic righO. Single bit shifts, and vari
able bit shifts with the shift count takenfrom
the CL register are available. The CF flag
becomes the last bit shifted out; OF is defined
only for shifts with count of I, and set if the
final sign bit value differs from the previous
value of the sign bit; and PF, SF, and ZF are
set to reflect the result value.

Rotate operation of four varieties are pro
vided for memory and register operands,
ROL (rotate left), ROR (rotate right), RCL
(rotate through CF left), and RCR (rotate
through CF right). Single bit rotates, and vari
able bit rotates with the rotate count taken
from the CL register are available. The CF
flag becomes the last bit rotated out; OF is
defined only for shifts with count of I, and is

2-13

set if the final sign bit value differs from the
previous value of the sign bit.

Two-Operand Operations
Four two-operand logical operations are
provided. The CF and OF flags are cleared
on all operations; SF, PF, and ZF reflect the
result.

AND performs the bitwise logical conjunc
tion of the two source operands and returns
the result to one of the operands.

TEST performs the same operations as AND
causing the flags to be affected but does not
return the result.

OR performs the bitwise logical inclusive dis
junction of the two source operands and
returns the result to one of the operands.

XOR performs the bitwise logical exclusive
disjunction of the two source operands and
returns the result to one of the operands.

STRING MANIPULATION INSTRUCTIONS

One-byte instructions perform various primi
tive operations for the manipulation of byte
and word strings (sequences of bytes or
words). Any primitive operation can be per
formed repeatedly in hardware by preceding
its instruction with a repeat prefix. The
single-operation forms may be combined to
form complex string operations with repeti
tion provided by iteration operations.

Hardware Operation Control
All primitive string operations use the SI reg
ister to address the source operands, which
are assumed to be in the current data seg
ment. The DI register addresses the desti
nation operands, which reside in the current
extra segment. If the DF flag is cleared, the
operand pointers are incremented after each
operation (once for byte operations and twice
for word operations). If the DF flag is set, the
operand pointers are decremented after each
operation. See Processor Control for setting
and clearing DF.

ARCHITECTURE AND INSTROCTIONS

Any of the primitive string instructions may
be preceded with a one-byte prefix indicating
that the operation is to be repeated until the
operation count in CX is satisfied. The test
for completion is 'made prior to each,repeti
tion of the operation. Thus, an initial
operation count of zero will cause zero exe
cutions of the primitive operation.

Tile repeat prefix byte also designates a value
to compare with ZF flag. if the primitive
operation is one which affects the ZF flag,
and the ZF flag is unequal to the designated
value after any execution of the primitive
operation, the repetition is terminated. This
permits the scan operation to serve as a scari
while or a scan-until.

During the execution of a repeated primitive
operation the, operand pointer registers (SI
and DI) and the operation count register
(CX) are, updated after each repetition,
whereas the instruction pointer will retain the
offset address of the repeat prefix byte
(assuming it immediately precedes the string
operation instruction). Thus, an interrupted
repeated operation will be correctly resumed
when control returns from the interrupted
task.

You should avoid using the two other prefix
bytes with a repeat-prefixed string instrucc
tion. One' overrides the default segment
addressing for the SI operand and one locks
the bus to prohibit access by other bus
masters. Execution of the repeated string
operation'willnot resume properly following
an interrupt if more than one prefix is present
preceding the string primitive. Execution will
resume one byte before: the primitive (pre
sumably where the repeat prefix resides), thus
ignoring the additional prefixes.

Primitive String Operations , '
Five primitive stririg operations are pr?vided:

MOVS transfers a byte or word operand
from the source operand to the destination
operand. As a repeated operation this moves

2-14

a string' from one location in memory to
another.

CMPS subtracts the destination byte or word
operand from the source operand arid affects
the flags but does not return the result. As a
repeated operation tllis compares two strings.
With the appropriate repeat prefix it is pos
sible to determine after which string element
th~ 'two strings become unequal, thereby
establishing an ordering between the strings.

SCAS subtracts the destination byte or word
operand from AL (or AX) and affects the
flags but does not return the result. As a
repeated operatiorithis scans for the occur
rence of, or departure from a given value in
tile string. .

LODS transfers· a byte or word operand
from the source operand to AL (or AX). This
operation ordinarily would not be repeated.

STOS transfers a byte or word operand from
AL (or AX) to the destination operand. Asa
repeated operation this fills a string with a
given value.

In all cases above, the' source operand is
addressed by SI and the destination operand
is addressed by DI.

Software Operation Control
The repeat prefix provides for rapid iteration
in a hardware-repeated string operation. The
iteration control operations provide this
same control for implementing software
loops to perform complex string operations.
These iteration operations provide the same
operation count update, operation comple
tion test, and ZFflag tests that the repeat
prefix provides.

By combining the primitive string operations
and' iteration control operations with other
operations, it is possible to build sophisti
cated yet efficient string manipulation
routines. One instruction that is particularly
useful in this context is XLA T; it permits a
byte fetched from one string to be translated

ARCHITECTURE AND INSTRUCTIONS

before being stored in a second string, or
before being operated upon in some other
fashion. The translation is performed by
using the value in the AL register as an index
into a table pointed at by the BX register.
The translated value obtained from the table
then replaces the value initiallY in the AL
register.

Here is an example problem solved by use of
primitive string operations and iteration con
trol operations to implement a complex
string operation: An input driver must trans
late a buffer of EBCDIC characters into
ASCII, and transfer characters until one of
several EBCDIC control characters is encoun
tered. The transferred ASCII string is to be
terminated with an EOT character.

To initialize the translation sequence, SI
points to the beginning of the EBCDIC
buffer, DI points to the beginning of the
receiving ASCII buffer, BX points to an
EBCDIC-to-ASCII translation table, and
CX contains the length of the EBCDIC
buffer (possibly empty). The translation table
contains the ASCII equivalent for each
EBCDIC character, perhaps with ASCII
NULs for illegal characters. The EOT code is
placed into the table corresponding to
EBCDIC stop characters. The 8088 instruc
tion sequence to implement this example is
the following:
Next:

JCXA Empty
LODS Ebcbuf
XLAT Table
CMP AL, EOT
STOS Ascbuf
LOOPNE Next

Empty:

;skip if input buffer empty
;fetch next EBCDIC character
;translate it to ASCII
;test for the EOT
;transfer ASCII character
;continue if not EOT

The body of this loop requires seven bytes of
code.

CONTROL TRANSFER INSTRUCTIONS

Four classes of control transfer operations

2-15

may be distinguished:

1) calls, jumps, and returns;
2) conditional transfers;
3) iteration control; and
4) interrupts.

All control transfer operations cause the pro
gram execution to continue at some new
location in memory, possibly in a new code
segment.

Calls, Jumps, and Returns
Two basic varieties of call jumps, and returns
are provided - those which transfer control
within the current code segment, and those
which transfer control to an arbitrary code
segment, which then becomes the current
code segment. Both direct and indirect
transfers are supported; indirect transfers
make use of the standard addressing modes.

The three transfer operations are described
below:

CALL pushes the offset address of the next
instruction onto the stack (in the case of an
inter-segment transfer the CS segment regis~
ter is pushed first) and then transfers control
to the target operand.

JMP transfers control to the target operand.

RET transfers control to the return address
saved by a previous CALL operation, and
optionally may adjust the SP register to dis
card stacked parameters.

Intra-segment direct calls and jumps specify a
self-relative direct replacement, thus allowing
position independent code. A short jump
instruction (optional use) transfers ±128
by~es from the current instruction for code
compaction.

Conditional Jumps
The conditional transfers of control perform
a jump continuing upon various Boolean
functions of the flag registers. The destina
tion must be within 256-bytes from the
instruction.

ARCHITECTURE AND INSTRUCTIONS

Iteration Control
The iteration control transfer operations per
form leading- and trailing-decision loop con~
tro1. The destination of iteration control
transfers must be within ± 256-bytes from the
instruction. These operations are particularly
useful with string manipUlation operations~

There are four iteration control transfer
operations provided:

LOOP decrements the CX ("count") register
by one and transfers if CXis not zero. .

LOOPZ (also called LOOPE) decrements the
CX register by one and transfers if CX is not
zero and the ZF flag is set (loop while zero or
loop while equal).

LOOPNZ.(alsocalled LOOPNE) decre
ments the CX register by one .and transfers if
CX is not zero and the ZF flag is cleared
(loop while not zero or loop while not equal):

JCXZ transfers if the CX register is zero.

InterrLlpts
Program execution control may be trans~

ferred by means· of operations similar ih
effect to that of external interrupts. All inter
rupts transfer by pushing· the flag registers
onto the stack (as in PUSHF), and perform
an indirectcall (of the inter-segment variety)
through an interrupt vector table located at
absolute locations 0 through 3FFH. This vec
tor contains a four-byte element for each of
up to 256 different interrupt types.

There are three interrupt transfer operations
provided:

INT pushes the flag registers (asin PUSHF),
clears the TF and IF flags, and transfers con
trol with an indirect call through anyone of
the 256 vector elements. A one-byte form of
this instruction is available for interrupt
type 3.

INTO pushes the flag registers (as in
PUSHF), clears the TF and IF flags, and·
transfers control with an indirect call through
vector element 4 if the OF flag is set (trap on

overflow). If the OF flag is cleared no opera
tion takes place.

IRET transfers control to the return address
saved by a previous interrupt operation and
restores the saved flag register (as in POPF).

See Chapter 3 for further details on interrupt
operations.

PROCESSOR CONTROL INSTRUCTIONS
Various instructions and mechanisms control
the . processor and its interaction with its
environment.

Flag Operations
Seven operations provided operate directly
on individual flag registers:

CLC clears the CF flag.

CMC complements the CF flag.

STCsets the CF flag.

CLD clears the DF flag, causing the string
operations to auto-increment the operand
pointer. . .

CLI clears the. IF flag, disabling external
interrupts (except for thenon-maskable
external internlpt.

STl sets the IF flag, enabling external
interrupts after the execution of the next

. instruction;

2-16

Processor Halt
The HLT instruction causes the 8088 proces
sor halt. The halt state is cleared by RESET
or an enabled external interrupt. .

Processor Wait
The WAIT instruction causes the processor
to enter a wait state if the signal on its TEST
pin is not asserted. The wait state may be
interrupted by an enabled external interrupt.
When this occurs the saved code location is
that of the W AITinstruction, so that upon
return from the interrupting task the wait
state is reentered. The wait state is asserted.
Executionresllmes without allowing external
interrupts until after the execution of the next

ARCHITECTURE AND INSTRUCTIONS

instruction. This instruction allows the pro
cessor to synchronize itself with external
hardware.

Processor Escape

The ESC instruction provides a mechanism
by which other processors (such as the
Numeric Processor Extension) may receive
their instructions from the 8088 instruction
stream and make use of the 8088 addressing
modes. The 8088 processor does no opera
tion for the ESC instruction other than to
access a memory operand.

Bus Lock

A special one-byte lock prefix may precede
any instruction to cause the processor to
assert its bus-lock signal for the duration of
the operation caused by that instruction. This
has use in multiprocessing applications.

Single Step

When the TF flag register is set, the processor
generates a type 1 interrupt after execution of
each instruction. During interrupt transfer
sequences caused by any type of interrupt,
the TF flag is cleared after the pushflags step
of the interrupt sequence. No instructions are
provided for setting or clearing TF directly.
Rather, the flag register image saved on the
stack by a previous interrupt operation must
be modified, so the subsequent interrupt
return operation (I RET) restores TF set. This
allows a diagnostic task to single-step through
a task under test, while still executing nor
mally itself.

If the single-stepped instruction itself clears
the TF flag, the type 1 interrupt will still
occur upon completion of the single-stepped
instruction. If the single-stepped instruction
generates an interrupt or if an enabled exter
nal interrupt occurs prior to the completion
of the single-stepped instruction, the type 1
interrupt sequence will occur after the inter
rupt sequence of the generated or external
interrupt, but before the first instruction of
the interrupt service routine is executed.

2-17

INSTRUCTION TIMINGS
Instruction timings are included with the
detailed instruction set pages at the back of
this chapter. They are provided as the
number of clock periods required to execute
a particular form (register-to-register,
immediate-to-memory, etc.) of the instruc
tion. If a system is running with a 5 MHz
maximum clock, the maximum clock period
is 200 ns. Where memory operands are used,
"+EA" denotes a variable number of addi
tional clock periods needed to calculate the
operand's effective address. Fig. 2-lO lists all
effective address calculation times.

For control transfer instructions, the timings
given include any additional clocks required
to reinitialize the instruction queue as well
as the time required to fetch the target
instruction.

Note that four clocks are required for each
memory reference. Therefore, the execution
time of memory reference instructions will
depend on the number of byte transfers.

Several additional factors can increase actual
execution time over the figures shown in the
instruction set reference pages. The time pro
vided assumes that the instruction has already

EA COMPONENTS CLOCKS'

Displacement Only 6

Base or Index Only (BX,BP,SI,DI) 5

Displacement
+ 9

Base or Index (BX,BP,SI,DI)

Base BP+DI, BX+SI 7
+

Index BP+SI, BX+DI 8

Displacement BP+DI+DISP 11
+ BX+SI+DISP

Base
+ BP+SI+DISP 12 Index BX+ 01+ DISP

* Add 2 clocks for segment override

Figure 2-10. Effective Address Calculation Time

•

ARCHITECTURE AND INSTRUCTIONS

been prefetched and that it is waiting in the
instruction queue, an assumption that is valid
under most, but not all operating conditions.
A series of fast executing (fewer than two
clocks per opcode byte) instructions can
drain the queue and increase execution time.

Execution time also is slightly· impacted by
the interaction of the CPU's internal instruc
tion execution unit (EU) and BU's interface
unit (BIU) when memory operands must be
read or written. If the EU needs access to
memory, it may have to wait for up to one
clock if the BIU has already started an
instruction fetch bus cycle. The EU can
detect the need for. a memory operand and
post a bus request far enough in advance of
its need for this operand.to avoid waiting a
fu1l4-clock bus cycle. Of course, the EU does
not have to wait if the instruction queue be
tween the BIU and EU is full, because the BIU
is idle. (Note: 8088 queue contains 4 bytes.)

With typical instruction mixes, the time actu
ally required to execute a sequence of
instructions will typically be within 5-10% of
the sum of the individual timings given in the
instruction set sequence. Cases can be con
structed, however, in. which execution time
may be much higher than the sum of the
figures provided. The execution time for a
given sequence of instructions, however, is
always repeatable, assuming comparable ex
ternal conditions (interrupts, coprocessor
activity, etc.) If the execution tinie for a given
series of instructions must be determined
exactly, the instructions should be run on an
actual system hardware implementation.

ASSEMBLY LANGUAGE PROGRAMMING[1]

This section, while not meant to be a com-·
pendium of all features' and rules of ASM-86
(the Intel assembler for 8088 instructions)
covered in detail by the Intel iAPX 86,88
Assembly Language Reference Manual, pre
sents most of the ASM-86 features in a form
[I] Edited and reprinted with permission of Hayden Book Co. from
The 8086 Primer, by Stephen P. Morse. Copyright 1980.

2-18

to enable you to write meaningful programs.
Not covered are many advanced ASM-86
features; attention is focused on underlying
concepts of 'the language.

Object Code

Let's first consider a simple program that
reads in word values from input port 5,
increments each value read, and writes the
results to output port 2. The program is as
follows:
Memory Address Memory Contents
(Hexadecimal) (Binary) Comments

00000 11100101 read word into AX ...
00001 00000101 .. .from input port 5
00002 01000000 increment AX
00003 11100111 wi-ite word from AX ...
00004 00000010 ... to output port 2
00005 11101011 repeat by jumping ...
00006 11111001 ... back seven bytes
00007

The first two columns specify the address and
contents of each relevant memory location
and, as such, constitute the only form of the
program comprehensible to the processor.
This is called object code, and the language
of I's and O's in which the object code is writ
ten is called machine language. Once we have
the program in object code form, we can
store it in memory and then have the 8088
execute it.

Source Code

Writing a program in I's and O's is tedious
and repetitive, a task that computers do well.
So, instead of writing the program in
machine language, we write the program in a
language more familiar to us and then use a
computer'to translate it into the 8088's lan
guage. A program written in this more
familiar language is called source code, and
the computer program that translates source
code into object code is called a translator ..
(Fig. 2-11)

There are two kinds of translator languages
for writing source code: assembly languages
and high-level languages described below and
illustrated in Fig. 2-12

ARCHITECTURE AND INSTRUCTIONS

The process of translation might involve per
forming some additional activities before the
output is truly machine code. These activities,
like relocation and linkage, are part of the
translation process. Throughout this text,
references to translation (assembling, compil
ing) imply all necessary activities to produce
object code. .

A program written in assembly language is a
symbolic representation of the machirie
language program.

The relation between the assembly-language
program statements and the resulting object
code is usually obvious while the relation
between high-level language statements and
the resulting object code is often not obvious.
Assembly language gives you complete con
trol over the resulting object code and
thereby allows you to generate very efficient
object code (providing you're a very efficient
programmer).

A high-level language compiler frees you
from thinking about the object code and lets

SOURCE _ TRANSLATO·R _OBJECT
CODE CODE

(MACHINE
LANGUAGE)

Figure 2-11. Translation Process

SOURCE ~ ASSEMBLER L--OBJECT
CODE ~ ~CODE

(ASSEMBLY
LANGUAGE)

(MACHINE
LANGUAGE)

SOURCE j COMPILER rOBJECT
CODE CODE .

(HIGH·LEVELL. ___I (MACHINE·
LANGUAGE) LANGUAGE)

Figure 2-12. Assemblers and Compilers

you concentrate on the task you are pro
gramming. The compiler m~y generate less
efficient object code, but good compilers can
sometimes generate more efficient object
code than you could have written in assembly
language.

SYMBOLIC NAMES
The primary advantage of using assembly
language instead of machine language is the
ability to use symbolic names. Let's illustrate
this point using assembly-language source
code: .

CYCLE:
IN AX,5
INC AX
OUT 2,AX
JMP CYCLE

;read word from port 5 into AX
;increment AX
;write result to port 2
;keep repeating

The above program is simpler to read and
understand because it uses symbolic names
instead of numbers as much as possible. The
opcodes oftht? four instructions are 1110010-,
o 1000---~ 1110011-, and 1110 10 11 in the
object code. They are IN, INC, OUT, and
JMP in the assembly-language source code.
Symbolic names for opcodes are called
instruction mnemonics. The symbolic opcode
names used throughout this book are the
instruction mnemonics of ASM-86 that gen
erate corresponding bit patterns for object
code.

Register Names
Besides the opcode fields, there are other
fields in the object code (see above example).
The contents of these fields must be specified
in the assembly-language source code, so the
assembler can generate the appropriate bit
patterns in the. object code.

For example, the INC instruction has a 3-bit
reg field, indicating which register is to be
incremented when the instruction is executed.
The contents of this reg field are specified in

. the source code by indicating the symbolic
name of the register, as in "INC AX."

2-19

ARCHITECTURE AND INSTRUCTIONS

The symbolicregister names used inASM~86
are the names that are used for the registers
throughout this book ."'- •.

AX
BX
CX
OH
AL

BL
CL
OL
AH
BH

Input/Output' .

CH
OH
BP
SP
81

01
CS
OS
ES
SS

Both the IN arid OUT instructions have a
I-bit ~ field and an 8-bit port number field.
The port numbers are simply specified in the
source code by "IN AX,~" and "OUT ~,AX".
The ~ field is specified more subtly by the
presence of the AXin "IN AX,5" and "OUT
2,AX". Inputj output always uses AX when
words are involved and AL when bytes are
involved. So the appeararice of AX instead of
AL in the IN and OUT instructions indicates
that the ~field is aL(The AMS~86conven
tion is to .. place the destination before the
source; hence AX precedes port number on
the IN instruction and follows it on the OUT
instruction).

Jump Cycle
Anotherexample of a symbolic name in the
above.program is the label CYCLE on the IN
instruction. This permits theJMP instruction
to refer to the location of the IN instruction
by name as in "JUMP CYCLE." The
assembler now has enough iriformation to , ' ' "

1. ·IN_ANrr..OUT
2.

determine thai this isa jump backwards of
seVen bytes and can generate a -7 in the
appropriate field of the JMP instruction.

A Complete Program .

In the previous section,'Ye 4sed a fragment
of an. ASM-86 program. To make that frag
ment into a complete program, we need some
additional statements (see below).

This entire program will reside in a single
segment in the 8088 memory. During the
assembly process, we don't know (nor do we
care) where that s(!gment will be located; that
decision will be made prior to loading the
segment into memory.

During the assembly process, we referto the
starting address of the segment by the sym
bolic name I~AND_OUT. Lines land 7
delimit the extent of the segment; line 1
introduces the segment names IN_AND_.
OUT, and line 7 marks the end of the seg
ment (ENDS) ..

Line 8 flags the end of the source program,
thereby telling the assembler that there are no
more lines to assemble. Furthermore, it indi
cates that when the program is executed, it
should start with the instruction labeled
CYCLE (lirie 3).

The object code generated by the assembler
specifies the contents of all relevant memory
locations plus this starting address.

CS: I~AND __ OUT
;start of segment
;that's what's inCS

3. CYCLE:
4.
5.
6.

SEGMENT
ASSUME
IN
INC
OUT
JMP

. AX,S
AX
2,AX
CYCLE

7. IN_AN~_OUT

8 ..
ENDS
END CYCLE

2-20

;end of segment
;end of assembly

ARCHITECTURE AND INSTRUCTIONS

The ASSUME statement on line 2 complies
with the following rule:

at the very beginning of any segment contain
ing code, we must tell the assembler what to
assume is in the CS register when that code is
executed. This will always be the starting
address, without the last four "0" bits of the
segment, so we must include the statement:

ASSUME CS: Name_oLsegment

ASM-86 Program Structure

Now consider a more detailed ASM-86 pro
gram (shown below) to understand the
structure of such programs in general. This
program will be referred to as the "sample
program" throughout this chapter.

Line 1 introduces a segment somewhere in
the 8088 memory (we don't care where) and
gives it the name MY..DA T A.

Line 3 ends the segment. The only thing in

1. MY _DATA
·2. SUM

SEGMENT
DB ?

the segment is SUM, defined to be a byte
(DB) of data.

The question mark on line 2 indicates that
the generated object code needs to reserve a
place in memory for SUM, but it need not
specify any particular initial contents for that
location. MY_DATA is apparently going to
be used as a data segment.

Lines 4-18 define another segment with the
name MY_CODE. An examination of lines 7
to 17 reveals that the segment contains
instructions for use as a code segment.

Line 19 flags the end of the source program
and indicates that when the program is exe
cuted, execution should start with the instruc
tion labeled GO (line 7).

Assumption About OS
The ASSUME statement on line 5 tells the
assembler what it should assume will be in
the CS and DS register when the segment of
code is executed.

;data segment
;reserve a byte for SUM

;code segment
3 ... MY_DATA
4. MY_CODE
5.

ENDS
SEGMENT
ASSUME CS:MY _ CODE, DS:MY _ DATA

6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

PORT _ VAL EQU
GO: MOV

MOV
MOV

CYCLE: CMP
JNA
MOV
OUT
HLT

. NOT_DONE: IN
ADD
JMP

MY_CODE ENDS
END

3
AX,MY_DATA
DS,AX
SUM,O
SUM,100
NOT_DONE
AL,SUM
PORT _ VAL,AL

AL,PORT _ VAL
SUM,AL
CYCLE

GO

2-21

;contents of CS and DS
;symbolic name for port number
;initialize DS to MY _ DATA

;clear sum
;if SUM exceeds 100·

; ... then output SUM to port 3

; ... and stop execution
;otherwise add next input

;and repeat the test

;this is the end of the assembly

ARCHITECTURE AND INSTRUCTIONS

The need for an assumption about DS is that
some assembly-language instructions in the
code segment access data directly, particu
larly, the byte SUM. The assembler must
generate machine-language instructions that
address SUM using the direct addressing
mode. These generated instructions specify
the offset of SUM and some segment register,
typically DS, containing the starting address
of the segment (namely MY_DATA) contain
ing SUM.

The assembler needs to know which segment
registers (if any) will contain MY_DATA's
starting address, at the time these instructions
are executed. With this information, the
assembler can determine if a segment-over
riding prefix is required on these instructions,
and if so, which segment register should be
specified by the prefix. It would be the case if,
for example, MY_ D AT A's starting address
were contained only in ES. Furthermore, if
none of the registers will contain MY_
DA T A's starting address at instruction
execution time, the assembler knows that it
cannot generate any instructions capable of
accessing SUM and will be able to report this
error at instruction-assembly time.

SUMMARY
So, why assume some segment register would
contain MY_DATA's starting address at
instruction-execution time? So that SUM can
be accessed. Why is DS used? Because no
segment-overriding prefix is necessary. Make
sure this assumption is satisfied by executing
certain instructions (lines 7 and 8) prior to the
first access to SUM.

PORTS3AND 4
Line 6 specifies that PORT_VAL is equiva
lent to the constant 3. This permits PORT_
V AL to be used in place of 3 on succeeding
lines. This makes PORT_VAL a symbolic
name for port 3 and refers to PORT_VAL
whenever port 3 is wanted.N ow if we decide

2-22

to rewrite the program to use port 4 instead,
we need make only orie change: line 6 is
changed to:

PORLVAL EQU 4

The instructions on lines 7 through 17 will
keep adding inputs from port 3 until the sum
exceeds 100, output that sum to port 3, then
halt. This is accomplished as follows: The
instruction on line 7 puts - the 16 most
significant bits of - the starting address of
segment MY.DAT A into register AX; on line
8 this value is moved from AX to DS. This
makes SUM accessible in succeeding in
structions.

The instruction on line 9 initializes SUM to
O. Observe that on lines 7,8, and 9, the desti
nations, such as SUM on line 9, are always
written before the sources, as 0 on line 9.

Line 10 compares (CMP) the value in SUM
to 100 and sets processor flags, indicating
comparison results.

Line 11 tests the flags and jumps, if SUM was
not above 100 (JNA). The target of the jump
is the instruction labeled NOLDONE (line
15). If the jump on line 11 is not taken (S UM
> 100), the SUM is moved into AL (line 12);
the contents of AL is sent to output port 3
(line 13), and the processor halts (line 14).

If the jump on line 11 is taken (SUM < 100),
the value on input port 3 is sent to AL (line
15), added to SUM (line 16), and the jump on
line 17 transfers control back to line 10.

General Conclusions
Now, from the above example, what can be
noticed about the structure of an ASM-86
program? It consists of one or more segment
blocks followed by an END statement. Each
segment block starts with a SEGMENT
statement and ends with an ENDS (end-of
segment) statement. Between the SEGMENT
and ENDS statements is a sequence of other

ARCHITECTURE AND INSTRUCTIONS

statements. Each statement normally occu
pies one line. If succeeding lines are needed,
they start with "&". The structure of an
ASM-86 program is:

NAME1

NAME1
NAME2

NAME2

SEGMENT
statement

statement
ENDS
SEGMENT
statement

statement
ENDS

END

The programs presented here all display a
consistent tabular pattern.

Such tabulation is not part of the program
structure; it is optional to the assembler, but
highly recommended to make programs eas
ier to read and understand.

In the untabulated version of the IN_AND_

IN_aUT_oUT SEGMENT
ASSUME CS:IN_ANQOUT
CYCLE:IN AX,S
INCAX
OUT2,AX
JUMP CYCLE
IN AND OUT ENDS
END CYCLE

2-23

OUT program below, the assembler would
assemble faster, but the program would be
much less-comprehensible to us.

Tokens

Before examining the kinds of statements
from which ASM-86 programs are built, we
must become familiar with the building
blocks of statements. Statements are com
posed of such things as identifiers, reserved
words, delimiters, constants, and comments.
These building blocks, sometimes called tok
ens, are described below.

IDENTIFIERS

Identifiers are names that you, the pro
grammer, are free to make up. Identifiers in
the sample program are SUM, CYCLE, and
PORT _ VAL. An identifier is a sequence of
letters, numbers, and underscore characters
(_), but may not start with a number. An
identifier may be up to 31 characters long,
which means the length is practically unlim
ited. Examples of identifiers are:

X
GAMMA
JACKS
THIS_NODE
THISNODE

The last two examples are indeed different
identifiers.

;start of segment
;that's what's in CS

;end of segment
;end of assembly

ARCHITECTURE AND INSTRUCTIONS

RESERVED WORDS
Reserved words, look like identifiers, but
they have a special meaning in the language,
and you must not use them as identifier
names (Fig. 2-14). The sample program uses
reserved words like SEGMENT, MOV,
EQU, and AL. Thus, it would be perfectly
acceptable for us to make up a name like
EQUAL as in:

EQUAL DB ?

but it would be improper for us to write:

EQU DB ?

Refer to pg. 2-43, Fig. 2-14 for complete list
of ASM-86 Reserved Words.

DELIMITERS
Delimiters are non-alphanumeric characters
that have special meaning in the 8088 assem
bly language. In the sample program, we saw
such delimiters as : and ;. In this chapter we
will use many of the delimiters. For a com
plete list of delimiters in ASM-86, see Fig.
2-13.

2-24

CONSTANTS
Constants are fixed values appearing in
ASM-86 programs. In the sample program
there are constants 0, 3, and 100. These are
whole-number constants. The assembly lan
guage also allows for string constants.

A whole-number constant is any non
fractional number between 0 and 65535 (2 16

- 1). It is normally written as a decimal
number, but can also be written in binary,
ending with a B, octal, ending with a Q, or
hexadecimal, ending with an H.

To avoid confusion with identifiers, a hexa
decimal constant must start with a numeric
digit; a leading zero would suffice. Examples
of whole-number constants are 15, 10 lOB,
27Q, 3AOH, and OBFA3H.

< ?

> + [

(*]

) & = /

Figure 2-13. Delimiters in ASM-86

ARCHITECTURE AND INSTRUCTIONS

String Constant
A string constant is one or two characters
enclosed with apostrophes. Strings of more
than two characters are permitted in res
tricted cases, but are not discussed here. An
apostrophe itself may be included in a string
constant by writing it as two consecutive
apostrophes. Examples of string constants
are 'A', 'AB', and ~"'. The last example is the
string consisting of the apostrophe character.

The value of a string constant is the ASCII
code of the character(s) in the string. For
example, the value of 'A' is 4lH and the value
of 'AB' is 4l42H. Thus, string constants and
whole-number constants can be used inter
changeably.

COMMENTS
Any sequence of characters following a semi
colon (;) up to the end of the line are com
ments. They are ignored by the assembler
and should be used generously in your pro
gram to document what you are doing. While
comments like

INC CX ;increment CX .

convey little information, comments like

INC CX ;increment outer
loop counter

make a program more readable.

Expressions

One more building block,. namely expres
sions, must be introduced before we can
build statements. Expressions are built up
from some of the tokens just described.

Loosely speaking, an expression is a sequence
of operands and operators combined to pro
duce a value at program assembly time. How
are operands and operators combined to
produce the value of an expression?

OPERANDS
An operand is something that has either a
numeric value or a memory address value.

2-25

Operands with numeric values are constants,
or identifiers that represent constants. Some
numeric-valued operands, appearing in our
sample program are 100 and PORT_VAL.
The permissible range of values for such oper
ands is from -65,535 to +65,535.

Note that the value of an operand may be
negative, but a constant is never negative. A
minus sign can be written in front of a con
stant, but is never considered a part of the
constant; it is an arithmetic operator.

Memory-address operands are frequently
identifiers, such as SUM and CYCLE in the
sample program. The value of a memory
address is not simply a number; it is a set of
components, each component generally being
a number. One component is the 16 most
significant bits of the segment starting address
where the memory address is contained. The
four least-significant bits of a segment start
ing address are always zeros.

Another component is the offset address
within the segment. These two components
are referred to as the segment and offset of
the memory-address operand.

Another operand is an expression itself,
enclosed in parentheses, and used in some
bigger expression, as in 3*(PORT_VAL+5).

OPERATORS
An operator takes the value of one or more
operands and produces a new value. There
are five· kinds of operators in ASM-86

1) arithmetic operators
2) logical operators
3) relational operators
4) analytic operators
5) synthetic operators

Arithmetic Operators
Arithmetic operators are the familiar addi
tion operator (+), subtraction operator (-),
multiplication operator (*), and division
operator (/). Another arithmetic operator,
MOD, produces the remainder after doing a

ARCHITECTURE AND INSTRUCTIONS

division. Thus 19f7is2, whereas 19 MOD7 is5.

Arithmetic operators may always be applied
to a pair of numeric operands, and the result
will be numeric. The rules for applying
arithmetic operators on memory-addressing
operands are more restrictive: such opera
tions are valid only if the result has a
meaningful physical interpretation.

For example, the product of two memory
addresses has no meaningful interpretation.
What segment would it be in? What offset
would it have? Hence, it is a prohibited
operation.

The difference of two memory addresses in
the same segment is the numeric distance
between them - the difference in their offsets.

The only other meaningful arithmetic opera
tion on a memory address is adding or
subtracting a numeric value. Thus SUM+2,
CYCLE-5, and NOLDONE-GO would all
be valid expressions in the sample program.
SUM_CYCLE would not be a valid expres
sionbecause they arein different segments.

NOTE: The value of SUM+2 is a memory
address two bytes beyond SUM in the MY
_ DATA segment; it is not the numeric value
that is 2 plus-the-contents-of-Iocation-SUM.
Such contents are not known until program
execution, whereas expressions are evaluated
at assembly time.

Logical Operators
The logical operators are bit-by-bit AND,
OR, XOR (exclusive-or), and NOT,

The operands of logical operators must be
numeric only - memory-address operands
are not allowed - and the result will be
numeric. This is shown by:

10101010101010108 AND 11001100110011008
is 10001000100010008;

11001100110011008 OR 11110000111100008
is 11000000110000008;

NOT 11111111111111118 is 00000000000000008
and

11110000111100008 XOR SUM is invalid.

2-26

As an example of logical operators, consider:

IN AL,PORT_VAL
OUT PORT_VAL AND OFEAH,AL

The IN instruction gets input from PORT
_VAL, Wherever that is.

Execution of the OUT instruction sends out
put to port PORT_VAL AND OFEH, which
is either the same port, if PORT_VAL is even,
or the next lower-numbered port, if PORT
_V AL is odd. The actual port value of the
OUT instruction is determined when the
instruction is assembled, not when it is
executed.

Observe that AND, OR, XOR, and NOT are
instruction mnemonics as well as ASM-86
operators. As ASM-86 operators, they cause
a value to be computed when the program is
being assembled. As instruction mnemonics,
they perform their roles when the program is
being executed:

AND DX,PORT_VAL AND OFEH

will cause the assembler to compute the value
of PORT_VAL AND OFEH and then gener
ate an AND-immediate instruction contain
ing that value in its data field. When this
instruction is later executed, it will cause the
contents of the DX register to be ANDed
with that value and the result placed in the
DX register.

Relational Operators
1) Equal (EQ)
2) not-equal (NE)
3) less-than (L T)
4) greater-than (GT)
5) less-than-or-equal (LE)
6) greater-than-or-equal (GE)

PORT_V AL LT 5. is a relational operator.
The two operands must both be numeric or
must both be memory addresses in the same
segment. The result is always a numeric
value. It will be 0, if the relationship is false,

ARCHITECTURE AND INSTRUCTIONS

and OFFFFH (16 bits of l's) if the relation
ship is true.

Using a relational operator:

MOV BX,PORT_VAL LT 5

The assembler will assemble

MOV BX,OFFFFH

if the value of PORT_VAL is < 5;

otherwise the assembler will assemble

MOV BX,O

At first it may appear that relational opera
tors are not useful. It's not often that you
want to generate an instruction with a field
that contains either 0 or OFFFFH, and no
other choices. However, by combining rela
tional operators with logical operators, the
two relational results of 0 and OFFFFH can
be molded into any numeric values you
desire:

MOV BX,((PORT_VAL LT 5)AND 20)
& OR ((PORTVAL GE5) AND30)

will assemble

MOV BX,20

if PORT_VAL is less than 5, and

MOV BX,30

otherwise.

Note the generous use of parentheses to force
the order that operators are applied. If you
always use parentheses to make the ordering
explicit, you won't have to memorize the
rules about which operators get evaluated
first.

Analytic Operators
The analytic operators decompose memory
address operands into their components,
while synthetic operators build memory
address operands from their components. A
discussion of these operators is presented
after we learn more about memory-address
operands. (see page 2-30)

2-27

Statements

There are two kinds of ASM-86 program
statements: instruction statements (MOV,
ADD, JMP, etc.) and directive statements
(DB, SEGMENT, EQU, etc.)

Each instruction statement causes the assem
bler to generate an instruction in the object
code. Directive statements tell the assembler
what kind of code to generate for succeed
ing instruction statements. The directive
statement

DB ?

tells the assembler that MY_ PLACE is
defined as a byte. The assembler allocates a
memory address for MY_PLACE. Later,
when the assembler encounters the instruc
tion statement

INC MY_PLACE

it will generate an object code instruction to
increment the contents of MY_ PLACE.
Because of the previously-encountered direc
tive statement, the assembler will know to
place a '0' (to indicate a byte) in the w field of
the increment instruction.

The formats of the two kinds of statement are
similar. The instruction statements are of the
form

label; mnemonic argument •...• argument ;comment

The directive statements are of the form
name directive argument •...• argument ;comment

The label in an instruction statement is fol
lowed by a colon, whereas the name in a
directive statement is not. This highlights
the difference between the two kinds of
statements.

A label associates a symbolic name with the
location of an instruction. A label can be
used as an operand in a jump or call
instruction.

The . name in a directive statement has no
relation to an instruction location and can
never be jumped to.

ARCHITECTURE AND INSTRUCTIONS

Labels in instruction statements are always
optional; names in directive statements can
be mandatory, optional, or prohibited, depend
ing on the particular directive.

Mnemonics in instruction statements specify
the purpose of the statement. Directives, in
directive statements, specify the purpose of
the statement. The instruction mnemonics
correspond to the set of approximately 100
opcodes available in the 8088. The directives
correspond to the set of some 20Iunctions
provided by the ASM-86 assembler (Fig.
2-14).

The mnemonic or directive may require addi
tional information to define its purpose
completely. This information is provided by
a sequence of arguments.

Optional comments make the program more
readable; when present they must be pre
ceded by a semicolon.

Directive Statements

The various directive statements in ASM-86
are:

1) symbol-definition
2) data-definition
3) segmentation-definition
4) procedure-definition
5) termination

Symbol-Definition Statements
The EQU statement provides a means for
defining symbolic names to represent values
or other symbolic names. The two forms of
the EQU statement are illustrated:

name
new name

EQU
EQU

expression
old_name

THING
BIGGER_THING
BIGGEST_THING

DB ?
OW ?
DO ?

Some examples are:

BOILING_POINT
BUFFER,-SIZE
NEW_PORT
COUNT

EQU
EQU
EQU
EQU

212
32
PORT_VAL+1
CX

The last example differs from the other three
in that COUNT does not represent a value; it
is a synonym for the CS register.

A symbolic name can be "undefined" by a
PURGE statement so it may later represent
something entirely different:

PURGE

Data-Definition Statements
Data-definition allocates memory for a data
item, associates a symbolic name ~ith that
memory address, and optionally supplies an
initial value for the data. Symbolic names
associated with data items are called vari
ables. Examples of data-definition statements
are: (see below)

In the example below, THING is a symbolic
name associated with a byte in memory,
BIGGER_THING with two consecutive
bytes in memory, and BIGGEST_THING
with four consecutive bytes in memory.

Initial Values
Before we can discuss the question marks (?),
we need to introduce the concept of initial
values of data items.

The object code produced by the assembler
contains the l's and O's that make up each
instruction and the memory address at which
each instruction should reside. After the
object code is produced, the instructions are

;defines a byte
;definesa word (2 bytes)
;defines a doubleword (4 bytes)

2-28

ARCHITECTURE AND INSTRUCTIONS

loaded into memory at the indicated addresses
and then executed.

At the time the instructions are loaded, initial
values for data items could also be loaded
into memory. This means that the object
code, besides containing instructions and
their addresses, may also contain initial
values for data items and their addresses.
These initial values are specified to the
assembler in the data definition statements.

The following statement will cause the
assembler to produce object code that, when
loaded into memory, will result in a 25 being
placed in the memory address allocated to
THING;

THING DB 25 :byte initially contains 25

A question mark in place of an initial value
means that we do not choose' to specify an
initial value for that data item; we will be
satisfied with whatever initially appears in the
corresponding memory location. .

When the assembler sees the question mark,
it still allocates memory for the data item, but
does not produce object code to initialize the
memory location (although it could).

In general, the initial value could be specified
by an expression, since expressions are eval
uated at assembly time. So we can write
statements like:

IN_PORT DB
OUT_PORT DB

PORT_VAL
PORT_VAL+1

Recall that expressions come in two varieties
- numeric and memory address. It is mean
ingful to initialize either a byte, or a word, or
a double-word with a numeric. value. But,

LITTLE_CYCLE
BIG_CYCLE

. CYCLE

OW QYCLE
DO CYCLE

MOV BX,AX

what about a memory-address value? It won't
fit into a byte, but the offset. component fits
into a word; and, both the offset components
fit into a double word. So we .can write
initialization statements like those shown at
the bottom of this page.

The initialization of LITTLE_CYCLE per
mits an indirectintrasegment jump or call to
use the date item named LITTLRCYCLE to
transfer control to the label named CYCLE.
Similarly, an intersegment jump Or' call
transfers control to CYCLE by using the data
item named BIG_CYCLE.

Tables
So far we have used data-:-definition state
ments t.o define one byte, word, or double
word ata time. Often, we deal with tables of
bytes, words, or double words. For example,
the 8088 XLA T instruction uses a table of
bytes to translate an encoded value into the
same value under' a different encoding. The
8088 interrupt mechanism uses a table of
double-words, starting at memory location 0
to point to the starting addresses of the inter~
rupt service routines. And, the 8088 string
instructions operate on tables of bytes .or
words containing the string elements ..

A table is defined by placing several initial
values on a data-definition statement. The
following statement defines a table of bytes
containing powers of 2:

1,2,4,8,16

The byte at the memory address correspond
ing to POWERS_2 will be initialized to I
(when the object code is loaded into memory).

;offset of CYCLE
;offset and segmEmt of CYCLE

ARCHITECTURE AND INSTRUCTIONS

The next four bytes will be initialized to.2,4,8,
and :16, respectively. A table of bytes, all
initialized to zero, can be defined by

ALLZERO DB 0,0,0,0,0,0

or by the shorthand notatio~

ALL_ZERO DB 6 DUP (0)

And, finally, ian un-initialized table can be
defined by either of the foliowing equivalent
statements:

DONT_CARE
DO NT.:...CARE

DB
DB

????????
"""" ""'"

8 DUP (?) ..

TYPES OF MEMORY LOCATIONS
ASM-86 associates a type with every memory
location referred to in the' program so it can
generate the correct code for instructions that
accesses memory; For example, the data
definition statement

SUM DB ?

informs the assembler that the memory loca
tionSUM is of type, BYTE. Later, when the
assembler encounters an instruction state
ment such as

INC SUM

the assembler will know to generate a byte~
increment instruction, rather than a word
increment instruction.

A memory location can be one of the follow
ing types:
1) BYTE of data, as in:

SUM DB ? ;defining a byte

2) WORD of data (two consecutive bytes), as
m:

. BIGGER~SUM DW ? ;defining a word

3) DWORD of data (four consecutive bytes),
as in:

BIGGEST_SUM DD ? ;defining a doubleword

4) NEAR instruction location, as in:'
CYCLE: CMP SUM,100

5) FAR instruction location:
(means of defining such locations will

be discussed shortly)

2-30

An.instruction location can appear in ajump
or call instruction statement. The assembler
will generateaq. intrasegmc::nt jump or call if
the location-type is NEAR, and an: interseg
ment jump or call.if it is .I:' AR. For example,
the labelc::d instruction statement .
CYCLE:. CMF', SUM,100
informs the assembler that the memory loca
tion CYCLE is of type NEAR. (Wewill see
shortly howthesynthetic operators PTR and
THIS are used to define a memory location
of type FAR). Later, when the assembler
encounters an instru~tion such as
JMP CYCLE
the assembler will know to generate an intra
segment jump instruction,rather than an
intersegment jump instruction. ...
A memory address built by adding'or sub
tracting a numeric value. to or from ,Some
other memory address has the same tYPe:: as
the originai IIlemOry address. ForexaIIiple,
SUM+2 is a BYTE,inGGER_SUM-3 is a
WORD; and CYCLE+f is aNEARlnstruc~
tion location.

ANALYTIC AND SYNTHETIC OPEAATOAS
We now know enougl} about memory adc:ires
ses to complete the discussion of operators.

The analytic operators decompose memory
address operands into their·· components.
These operators are:

1) SEG
2) OFFSET
3)·TYPE
4) SIZE:
5) LENGTH.

.~ .

The SEG operator returns the segment com
ponent of the memory-address operand. The
OFFSET operator returns the qffset compo
nent. Both of these components are generally
numeric values.

The TYPE operator returns a numeric value,
which is the type component of the memory
address operand. _ The value of the type

ARCHITECTURE AND INSTRUCTIONS

component for the various memory-address
operands is:

Type
Memory Address Operand Component

BYTE of data 1

WORD of data 2

DWORD of data 4

NEAR instruction location -1

FAR instruction location -2

Notice that the type component for bytes,
words, and double words corresponds to the
number of bytes that each occupies. The
value of the type component for instruction
locations does not have a physical interpreta
tion.

The LENGTH and SIZE operators apply
only to data-memory-address operands
(BYTE, WORD, or DWORD).

The LENGTH operator returns a numeric
value for the number of units (bytes, words,
or double words) associated with the memory
address operand.

The SIZE operator returns a numeric value
for the number of bytes allocated for the
memory-address operand. For example, if
MULTI_WORDS is defined by

MUL TLWORDS OW 50 DUP (0)

then LENGTH MULTLWORDS is 50 and
SIZE MULTI_WORDS is 100. Notice that
SIZE X is equal to (LENGTH X)* (TYPE
X).

PTR and THIS
The synthetic operators build memory
address operands from their components.
These operators are PTR and THIS.

The PTR operator builds a memory-address
operand that has the same segment and offset
of some other memory-address operand, but
has a different type. Unlike a data-definition
statement, the PTR operator does not allo
cate memory; it merely gives another mean
ing to previously-allocated memory. For
example, if TWO_BYTE were defined by,

TWO_BYTE OW ?

then we could name first the byte in the word
as follows:

ONE_BYTE EQU BYTE PTR TWO_BYTE

In this example, the PTR operator creates a
new memory-address operand having the
same segment and offset components as
TWO_BYTE, but having a type component
of BYTE. We can name the second byte of
TWO_BYTE either as

OTHER_BYTE EQU BYTE PRT (TWO_BYTE+1)

or more simply as

OTHER_BYTE EQU

The PTR operator can also create words and
double-words as illustrated below:

MANY BYTES
FIRST WORD
SECOND DOUBLE

DB
EQU
EQU

100 DUP (?) ;an array of 100 bytes
WORD PTR MANY_BYTES
DWORD PTR (MANY_BYTES

2-31

ARCHITECTURE AND INSTRUCTIONS

Further, the PTR operator can create loca
tions of instructions:

INCHES: CMP
JMP

SUM,100
INCHES

;type of INCHES is NEAR
;intrasegment jump

MILES EQU
JMP

FAR PTR INCHES
MILES

;type of MILE$ is FAR
;intersegment jump

Notice that the above shows ways to build
new memory-address operands from old
ones by

1) using the.PTR operator as in BYTE PTR
TWO_BYTE
2) using expressions as in ONE_BYTE+ 1
3) using a combination of PTR and expres
sions as in BYTE PTR (TWO_BYTE+l)

Expressions are useful when we wish to
change the offset component but leave the
type component unchanged.

N either expressions, nor PTR, changes the
segment component. And the new memory
address operand, created by either expres
sions or PTR, will have a length component
of 1 (providing it's not an instruction
location).

The synthetic operator THIS, like PTR,
builds a memory-address operand of a speci
fied type, without allocating memory for it.
The segment and offset component of the
new memory-address operand is the segment
and offset of the next memory location avail
able for allocation. For example:

EQU
OW

THIS BYTE
?

would create MY_BYTE with type compo
nent of BYTE, and with the same segment
and offset components as MY_WORD. In

2-32

this example, MY_BYTE could have been
built with the PTR operator instead:

The THIS operator is convenient for defining
FAR instruction locations:

MILES EQU
CMP

THIS FAR
SUM,100

JMP MILES
Note that the use of the THIS operator in the
example made it unnecessary to have a
NEAR instruction location with the same
segment and offset as MILES. If we used the
PTR operator instead of the THIS operator,
such a NEAR instruction would have been
necessary.

Segmentation-Definition Statements
The segmentation-definition statements orga
nize our program to use the 8088 memory
segments. These directives are:

1) SEGMENT
2) ENDS
3) ASSUME
4) ORG

The SEGMENT and ENDS statement sub
divide the assembly-language source pro
gram into segments. Such segments
correspond to the memory segments where
the resulting object code· will eventually be
loaded. The assembler is concerned with pro
gram segmentation for the following reasons.

ARCHITECTURE AND INSTRUCTIONS

One, intrasegment jump and call instructions
contain only the offset (l6-bits)of the new
location. Intersegment jump and call instruc
tions must contain the segment (another
16-bits) in addition to the offset.

Second, data-accessing instructions that use
the current data segment and current stack
segment in the manner most optimal for the
8088 architecture contain only the offset
(l6-bits) of the data location. Any. other
instruction that accesses a data location
within one of the four currently-addressable
segments must contain a segment-overriding
prefix (another 8-bits) in addition to the

MY_DATA SEGMENT
X DB ?
Y DW ?
Z DD ?
MY_DATA ENDS

MY_EXTRA SEGMENT
ALPHA DB ?
BETA DW ?
GAMMA DD ?
MY_EXTRA ENDS

MY_STACK SEGMENT
DW 100 DUP (?)

TOP EQU THIS WORD
MY_STACK ENDS

MY_CODE SEGMENT

offset. Here,current refers to when the
instruction is executed, not assembled.

Therefore, to assemble the correct object
code, the assembler must know the segment
structure of the program and which segments
will be addressable - pointed at by segment
registers - when various instructions are
executed. This information is supplied by the
ASSUME directive.

The following· example shows how the
SEGMENT, ENDS, and ASSUME direc
tives can be used to define a code, data, extra,
and stack segment:

;this is the stack

ASSUME CS:MY_CODE,DX:MY_DATA

START:
ASSUME
MOV
MOV
MOV
MOV
MOV
MOV
MOV

ENDS

END

ES:MY_EXTRA,SS:MY_STACK
AX,MY-,DATA ;initializes DX
DS,AX
AX,MY_EXTRA ;initializes ES
ES,AX
AX,MY_STACK ;initializes SS
SS,AX
SP,OFFSETTOP ;initializes SP

START

2-33

ARCHITECTURE AND INSTRUCTIONS

Observe that the code at the head of the
MY_CODE segment will, at program execu
tion, initialize the various segment registers to
point to the appropriate segments, and the
code will initialize the stack pointer to point
to the end of the stack segment.

The ASSUME statement makes the assem
bler aware of segment register values when
the code is executed.

To illustrate the purpose of the ASSUME
statement, let's consider code (within SEG
MENT MY_CODE) that moves the contents
of byte X to byte ALPHA. To do this, we
need an instruction that moves the contents
of X into a register, say BX, and an instruc
tion that moves the contents of the register
into ALPHA. How about:

MOV
MOV

BX,X
ALPHA,BX

;from X to BX
;from BX to ALPHA

During execution of such MOV instructions,
the 8088 processor would normally use the
OS register to find the starting address of the

OLD_DATA SEGMENT
OLD_BYTE DB ?
OLD...DATA ENDS

NEW_DATA SEGMENT
NEW_BYTE DB ?
NEW_DATA ENDS
MORE_CODE SEGMENT

segment where the specified item (X or
ALPHA) is located. This will work fine when
accessing X '----- the first instruction - because
OS will indeed contain the starting address of
segment MY_DATA where Xis located.

But, this will not work when accessing
ALPHA - the second instruction - because
the starting address of segment MY_EXTRA,
where ALPHA is located, will not be con
tained in OS.

The ASSUME statement has made the
assembler aware that the first instruction will
execute properly. The assembler is also aware
(thanks to the ASSUME statement) that the
starting address of MY_EXTRA, although
not in OS, will be in one of the other segment
registers - namely ES. The assembler, there
fore, generates a segment-overriding prefix
for the second instruction so that it too, will
execute properly.

It's not always possible to know what will be
in the segment registers when a particular
instruction will be executed. Consider:

ASSUME CS:MORE_CODE
MOV
MOV
MOV
ASSUME

CYCLE: INC

MOV
MOV
JMP

MORE_CODE ENDS

AX,OLD_DATA
DS,AX
ES,AX
DS:OLD_DATA,ES:OLD_DATA

OLD_BYTE

AX,NEWJ)ATA
DS.AX
CYCLE

2-34

;put OLD...DATA into
; ... DS and
; ... ES

;what's in OS now?

;put NEW_DATA
; .. .into OS

ARCHITECTURE AND INSTRUCTIONS

The first time the INC instruction is exe
cuted, DS will contain OLD_DAT Aand the
indicated assumption on DS will be correct.
But then DS will be changed to NEW
_DATA, and the same INC instruction will
be executed a second time. Therefore, it
would be wrong for the assembler to make
assumptions about the contents of DS when
the INC instruction is executed. The assem
bler must generate a segment-override prefix
- specifying the extra segment - on the
INC instruction, even though this prefix
would be unnecessary on the first execution
of INC.

In order to tell the assembler not to make any
assumptions about DS, we must place the
following assumption just before the INC
instruction:

CYCLE:
ASSUME
INC

DS:NOTHING
OLD_BYTE

Prior to, or at the very beginning of any seg
mentcontaining code, we must tell the
assembler (via an ASSUME statement) what
it should assume will be in the CS register
when that segment of code is executed.

Instead of using an ASSUME. statement,. we
could tell the assembler which segment regis
ter should be used for the execution of each
instruction. For example, the move of X to
ALPHA in the previous example could be
written as:

MOV BX, DS:X
MOV ES:ALPHA,BX

This says that DS should be used when X is
accessed, and ES should be used when
ALPHA is accessed. Since the processor

2-35

would normally use DS when executing these
instructions, the assembler produces a segment
overriding prefix when generating object
code for the second instruction, but not for
the first instruction.

Efficient Programming
N ow let's look at one of the shortcomings of
memory segments to see how to get around it.

Memory segments always start on 16-byte
boundaries. Remember that the last 4 bits of
segment starting addresses are zero. A seg
ment can be up to 216 bytes long. If a
segment does not use all of its approximately
65,000 bytes, some other segment can· start
just beyond the last byte used by the first
segment. But the second segment must also
start on a 16-byte boundary, and, therefore,
may not start immediately after the last byte
used by the first segment. This means there
could be- up to 15 bytes wasted between
segments ..

Suppose the first segment starts at address
1000 (hexadecimal) and uses only 6D (hexa
decimal) bytes. So the last byte used is at
address 1006C. The closest the second seg
ment could start would be at address 10070,
thereby wasting the bytes at 1006D, 1006E,
and 1006F.

N ow, instead of starting the second segment
at the lowest 16-byte boundary beyond the
last byte used by the first segment, start the
second segment at the highest 16-byte boun
dary that does not cause any bytes to be
wasted: thus, we could start the second seg
ment at address 10060. This results in the last
few bytes - 13 to be exact - used by the
first segment to be also in the second
segment.

But the second segment would then simply
not use its first few bytes, which is efficient.
So, if the second segment starts at 10060, the
bytes in the second segment below offset
OOOD are siIhply not used by the second seg
ment. Therefore, no bytes are wasted.

ARCHITECTURE AND INSTRUCTIONS

Ordinarily, it doesn't matter where in mem
ory segments are located, so we let the
translator make that choice. However, we
might want to give the translator some con
straints such as "don't overlap this segment
with any other segment," "make sure the first
byte used by this segment is at an even
address - so that word accesses can be done
in a single memory reference," or "start this
segment at the following address." We can
write these constraints into the source
program:

1) Don't overlap. First usable byte in seg
ment is on a l6-byte boundary and has an
offset of 0000.

MY_SEG SEGMENT ;this is the normal case

2) Overlap if you must, but first usable byte
must be on a word boundary.

MY_SEG SEGMENT WORD ;word aligned

3) Overlap if you must, and place first usable
byte anywhere you like.

MY_SEG SEGMENT BYTE ;byte aligned

4) Start segment at specified l6-byte boun
dary. First usable byte is at specified offset.

MY_SEG SEGMENT AT 1A2BH ;address 1A2BO
ORG 0003H ;address 1A2B3

The last example introduced another state
ment, ORG (for origin). It specifies the next
offset to be used in the segment.

2-36

Procedure-Definition Statements
Procedures are sections of code that are
called into execution from various places in
the program. Each time a procedure is called
upon, the instructions that make up the
procedure are executed, then control is
returned to the place from which the proce
dure was originally called.

The 8088 instructions to call and return from
a procedure are CALL and RET. These
instructions come in two flavors - intraseg
ment and intersegment.

The intersegment instructions push (CALL)
and pop (RET) both the segment and the
offset of the place where the procedure
should return.

The intrasegment ones push and pop only the
offset.

Near and Far
Procedures called with intrasegment CALLs
must return with intrasegment RETurns.
Such procedures are known as NEAR
procedures. Similarly, procedures that are
called with intersegment CALLs must return
with intersegment RETurns and are known
as FAR procedures.

The procedure-definition statements, PROC
and ENDP (end procedure), delimit a proce
dure and indicate whether it is a NEAR or
FAR procedure. This helps the assembler in
two ways. First, when assembling CALLs to
that procedure, the assembler will know
which kind of CALL to assemble. Secondly,
when assemblingRETs from that procedure,
the assembler will know which kind of RET
to assemble: (see table on next page)

Since UP_COUNT is declared to be NEAR
procedure, all CALLs to it are assembled as
intrasegment CALLs, and all RETurns with
in it are assembled as intrasegment returns.

This example· points out some similarities
between the RET instructions and the HL T
instruction. There maybe more than one

ARCHITECTURE AND INSTRUCTIONS

MY_CODE
UP_COUNT

U~COUNT

START:

MY_CODE

SEGMENT
PROC
ADD
RET
ENDP

CALL

CALL

HLT
ENDS
END

NEAR
CX,1

UPCOUNT

UPCOUNT

START

RET in a procedure, just as there may be
more than one HLT in a program.

The last instruction in a procedure (program)
need not be a RET *HLT); but, if it isn't, that
instruction should be a jump back to some
where within the procedure (program).

The END (ENDP) tells the assembler where
the procedure (program) ends, but does not
cause the assembler to generate a RET
(HLT) instruction.

Termination Statements
With one exception, each terminating state
ment is paired up with some beginning
statement. For example, SEGMENT and
ENDS, PROC and ENDP. These terminat
ing statements are described with their
corresponding beginning statements.

The one exception is END, which flags the
end of the source program. It tells the
assembler that there are no more instruc
tions to assemble. The form of the END
statement is

END expression

where the expression must yield a memory
address value. That address is the address of
the first instruction to be executed when the
program is executed.

The following example illustrates the use of
the END statement:

2-37

START:

END START

Instruction Statements
The instruction statements, for the most part,
correspond to the instructions of the 8088
processor. Each instruction statement causes
the assembler to generate one 8088 instruc
tion. An 8088 instruction consists of an
opcode field and fields specifying the operand
addressing mode (mod field, r / m field, reg.
field).

So the instruction statements in ASM-86
must contain an instruction mnemonic as
well as sufficient addressing information to
permit the assembler to generate the instruc
tion.

INSTRUCTION MNEMONICS

Most of the instruction mnemonics are the
same as the symbolic opcode names for the
8088 instructions. Some additional instruc
tion mnemonics, NIL and NOP, make the
assembly language more versatile.

No-Operation
The instruction mnemonic NOP causes the
assembler to generate the I-byte instruction
that exchanges the contents of the AX
register with the contents of the AX register
(hexadecimal opcode 90). Besides not doing
anything, NOP doesn't waste any time not
doing it, since it doesn't make any memory
accesses. Does it seem strange to waste
precious memory locations on instructions
that do nothing? There are good reasons for
doing so.

The NOPs might serve as placeholders for
instructions to be filled in later, possibly
when the program is executing - an old trick.

ARCHITECTURE AND INSTRUCTIONS

They might also be used to slow down a
portion of the program where precise timing
relationships are important.

Placeholder

NIL is the only instruction mnemonic that
does not cause the assembler to generate any
instructions. In contrast to NOP, which
causes the assembler to generate an instruc
tion that does nothing when executed, NIL
doesn't even cause an instruction to be
generated.

NIL serves as a convenient placeholder for
labels in the assembly-language program:

CYCLE: NIL
INC AX

Although this is equivalent to

CYCLE: INC AX

the NIL makes it much easier to insert
instructions ahead of the INC instruction in
the source program, if the need arises later.

INSTRUCTION PREFIXES

The 8088 instruction set permits instructions
to start off with one or more prefix bytes. The
three possible prefixes are:

1) segment-override
2) repeat
3) lock

ASM-86 permits the following prefixes to be
included with the instruction mnemonic:

LOCK
REP
REPE
REPNE
REPZ
REPNZ

(repeat)
(repeat while equal)
(repeat while not equal)
(repeat while zero)
(repeat while non-zero)

A sample instruction statement using a prefix
is:

CYCLE: LOCK DEC COUNT

The segment-overriding prefix is generated
automatically by the assembler whenever the
assembler realizes that a memory access
requires such a prefix. The asembler makes
this decision in two steps.

First, it selects a segment register that will
make the instruction execute properly. The
assembler selects the segment register based
on information it received from previous
ASSUME statements. However, we can
force the assembler to select a particular
segment register by including that register in
the instruction as in:

MOV BX,ES:SUM

Secondly, the' assembler determines if a
segment-overriding prefix is necessary to
force execution of the instruction to use the
selected segment register.

OPERAND-ADDRESSING MODES
The 8088 processor provides various operand
addressing modes. ASM-86 must therefore
provide a means of expressing each mode
when writing instruction statements: For
example:

1) Immediate:
MOV AX,15

2) Register:
MOV AX,15

3) Direct:
SUM DB ?

;15 is an immediate operand

;AX is a register operand

MOV SUM,15 ;SUM is a direct memory

2-38

operand

4) Indirect through base register:

MOV
MOV

AX,(BX)
AX,(BP)

5) Indirect through index register:

MOV
MOV

AX,(SI)
AX,(OI)

ARCHITECTURE AND INSTRUCTIONS

6) Indirect through base register plus index
register:

MOV
MOV
MOV
MOV

AX,(BX)
AX,(BX)
AX,(BP)
AX,(BP)

(81)
(01)
(81)
(01)

7) Indirect through base .orindex register
plus offset:

1000UP(?)

MOV AX,MAN'LBYTES(BX)
MOV AX,MANY_BYTES(BP)
MOV AX,MANY_BYTES(SI)
MOV AX,MANY_BYTES(OI)

8) Indirect through base register plus index
register plus offset: .

1000UP(?)

MOV AX,MANY_BYTES(BX) (SI)
MOV AX,MANY_BYTES(BX) (01)
MOV AX,MANY_BYTES(BP) (SI)
MOV AX,MANY_BYTES(BP) (01)

The assembler uses its knowledge about a
memory location's type when generating
instructions that reference that memory
location. For example, the assemt-Ier gen
erates a byte-increment when encountering
the following: .

SUM OB ? ;type is BYTE

INC SUM ;a byte increment

However, with indirect operand-addressing
modes, it is not always possible for the

2-39

assembler to know the type of the memory
location, as illustrated by:

MOV AL,(BX)

Even though the assembler does not know
the type of the source operand in the above
instruction, it does know that the type of the
destination operand, AL, is BYTE. SO the
assembler assumes that (BX) is also of
type BYTE and generates a byte-move
instruction.

But now consider the statement:

iNC (BX)

there is no second memory location here to
help the assembler determine the type of
(BX). So the assembler cannot decide whether
to generate a byte-increment instruc
tion or a word-increment instruction. The
above statement must therefore be written as
shown so the assembler can determine the
type:

INC BYTE PTR (BX) ;a byte-increment

or

INC WORD PTR (BX) ;a word-increment

STRING INSTRUCTIONS
The assembler can usually discern the type of
an operand from its declaration, and hence
know what kind of code to generate for
accessing that operand.

However, we have just seen that, when using
an indirect-addressing mode, we might have
to supply the assembler with additional
information so it can determine the type.

String Primitives
String instructions also need such additional
information. Consider the string instruction
MOVS.

This instruction moves the contents of the
memory address whose offset is in SI into the
memory address whose offset is in 01. We
should not need to specify any operands,
since the instruction has no choice as to
which items to move and where.

ARCHITECTURE AND INSTRUCTIONS

However, theinstruction could move either a
byte or a word. The assembler must know
which is being moved, so it can generate the
correct instruction. For this reason', the
ASM-86 statement for the MOVS instruc
tion must specify the items that have been
moved into SI and 01. ' '

F,or example:

ALPHA
BETA

DB
DB

?
?

MOV SI,OFFSET ALPHA
MOV DI,OFFSET BETA
MOVS 'BETA,ALPHA

The presencec)f BETA and ALPHA ih the
MOVS statement tells the assembler to gen
erate a MOVSinstriICtion that moves bytes,
because the TYPE 'components of both
BETA and ALPHA are BYTE. Further,
from'the SEGcompbhents, of ,BETA and
ALPHA, the assembler determines if the

Detai,ls()f ASM .. 86 ,",'

Sample One:
Translate the values from input portl into a
Gray code and send result to output port l. '

operandsoftheMOVS instruction are inac
cessible segments. The OFFSET components
of ALPHA and BET A are ignored.

Like MOVS, the other four string primitives
contain operands, MOVS and CMPS, have
two operands, while SeAS, LODS, and
STOS have one. For example:

CMPS
seAs'
LODS
STOS

, BETA,ALPHA
ALPHA
ALPHA
BETA

XLA T also requires an operand; the item
that was move,d into BX to serve as the trans
lation table. The SEG component of this
operand' enables the assembler to determine
if the traIlslation table is in a currently access
ible segment; the OFFSET component .is
ignored.' An example of an XLA T statement
is as follows: '

MOV
XLAT

BX,OFFSET TABLE
TABLE

,.MY_DATA
'GRAY

SEGMENT
DB 18H,34H,05H,06H,09H,OAH,OCH, 11 H,12H,14H

'MY_DATA •

MY_CODE

'GO:

CYCLE:

'MY....:CODE

ENDS'

SEGMENT
ASSUME
MOIi
MOV
MOV
IN
XLAT
OUT
JMP

" ENDS"
END

,CS:MY _CODE, DS:MY _DATA
" AX,MY _DATA

DS,AX
BX;OFFSET GRAY
AL,1
GRAY
1,AL
CYCLE

,:GO

2-40

;establish data segment

;translation table into BX
;read in next value

... ;translate it
;output it
;and repeat

ARCHITECTURE AND INSTRUCTIONS

Sample Two:
Add two unpacked BCD (ASCII) strings
together.

MY_DATA SEGMENT
STRING_1 DB '1':7' :5' :2' ;val ue is 2571
STRING_2 DB '3':8':1':4' ;value is 4183
MY_DATA ENDS

MY_CODE SEGMENT
ASSUME CS:MY_CODE, DS:MY_DATA

GO: MOV AS,MY_DATA ;establish data segment
MOV DS,AX
CLC ;no earry initially
CLD ;forward strings
MOV SI,OFFSET STRING_1 ;establish string pointers
MOV DI,OFFSET STRING_2

CYCLE: LODS STRING_1 ;get STRING_1 element

ADC AL,[DI] ;add STRING_2 element
AAA ;eorreet for ASCII
STOS STRING_2 ;result into STRING_2
JCXZ CYCLE ;repeat for extra string
HLT ;eorreet for ASCII

MY_CODE ENDS
END GO

Sample Three:

Decimal multiplication algorithm.

MY_DATA SEGMENT
A DB '3':7':5':4':9'
B DB '6'
C DB LENGTH (A) DUP (?)
MY_DATA ENDS

MY_CODE SEGMENT
ASSUME CS:MY _CODE,DS:MY _DATA

GO: MOV AX,MY_DATA ;establish data segment
MOV DS,AX

CLD ;forward stri ngs
MOV SI,OFFSET A ;establish pointers
MOV DI,OFFSET C
MOV CX,LENGTH A ;establish eount
AND B,OFH ;elear upper half of b
MOV BYTE PTR [SI],O ;elear e[l]

CYCLE: LODS A ;get ali]
AND AL,OFH ;elear its high-order bits
MUL AL,B ;multiply by b
AAM ;eorreet for ASCII
ADD [01] ;add to e[i]
AAA ;adjust for ASCII
STOS C ;store in e[i]
MOV [DI].AH ; ... and e[l]
JCXZ CYCLE ;repeat for entire string
HLT

MY_CODE ENDS
END GO

2-41

ARCHITECTURE AND INSTRUCTIONS

Sample Four:

Move 50 bytes between two overlapping
strings.

MY _DATA SEGMENT
STRING DB 1000 DUP (?)

STRING _1 EQU STRING+7
STRING_2 EQU STRING+25
MY_DATA ENDS

MY_CODE SEGMENT
ASSUME CS:MY _CODE, DS:MY _DATA

STRING_SIZE EQU 50
GO: MOV AX,MY_DATA

MOV DS,AX
MOV CX,STRING_SIZE
MOV SI,OFFSET STRING_1
MOV DI,OFFSET STRING_2
CLD
CMP SI,DI
JLT OK
STD
ADD SI,STRING_SIZE-1
ADD Dl,STRING_SIZE-1

OK: REPEAT MOVS STRIN.G_2,STRING_1
HLT

MY_CODE ENDS
END GO

2-42

;number of bytes to move
;establish data segment

;source string
;destination string
;assume a forward move
;if source string comes first

; ... we need backwards move
;set SI and D I to
; ... end of strings
;move the string

ARCHITECTURE AND INSTRUCTIONS

DUAL FUNCTION KEYWORD/SYMBOLS

AND NOT OR SHL SHR XOR

AAA ES FLD1 FSUBRP JNGE PUSH
AAD ESC FLDCW FTST JNL PUSH
AAM F2XM1 FLDENV FWAIT JNLE F
AAS FABS FLDL2E FXAM JNO RCL
ADC FAC FLDL2T FXCH JNP RCR
ADD FADD FLDLN2 FXTRACT JNS REP
AH FADDP FLDLG2 FYL2X JNZ REPE
AL FALC FLDPI FYL2XPI JO REPN
ARPL FBLD FLDZ HLT JP E
AX FBSTP FMUL IDIV JPE REPNZ
BH FCHS FMULP IMUL JPO REPZ
BL FCLEX FNCLEX IN JS RET
BOUND FCOM FNDISI INC JZ ROL
BP FCOMP FNENI INT LAHF ROR
BX FCOMPP FNINIT INTO LOS SAHF
CALL FDECSTP FNOP IRET LEA SAL·
CBW FDISI FNSAVE JA LES SAR
CH FDIV FNSTCW JAE LOCK SBB
CL FDIVP FNSTENV JB LODS SCAS
CLC FDIVR FNSTSW JBCZ LODSB SCAS
CLD FDIVRP FPATAN JBE LODSW B
CLI FENI FPREM JC LOOP SCAS
CLTS FFREE FPTAN JCXE LOOPE W
CMC FIADD FRNDINT JE LOOPNE SI
CMP FICOM FRSTOR JG LOOPNZ SP
CMPS FICOMP FSAVE JGE LOOPZ SS
CMPSB FIDIV FSCALE JL MOV ST
CMPSW FIDIVR FSQRT JLE MOVS STC
CS FILD FST JMP MOVSB STD
CWO FMUL FSTCW JNA MOVSW STI
CX FINCSTP FSTENV JNAE MUL STOS
DAA FINIT FSTP JNB NEG STOSB
DAS FIST FSTSW JNBE NIL STOS
DEC FISTP FSUB JNC OUT W
DH FISUB FSUBP JNE POP SUB
01 FISUBR FSUBR JNG POPF TEST
DIV FLO WAIT
DL XCHG
OS XLAT
OX XLATB

??SEG

Figure 2-14. ASM-86 Reserved Words

2-43

ARCHITECTURE AND INSTRUCTIONS

NON-CONFLICTING KEYWORDS HAN OS-OFF KEYWORDS

DA
DATE
DEBUG
EJ
EJECT
EP
ERRORPRINT
GEN
GENONLY
GO
IC
INCLUDE
LI
LIST
MACRO
MEMORY
MR
NODB
NODEBUG
NOEp·
NOERRORPRINT
NOGE
NOGEN
NOLI
NOLIST
NOMACRO
NOMR
NOOBJECT
NOOJ
NOPAGING
NOPI

NOPR
NOPRINT
NOSB
NOSYMBOLS
NOXR
NOXREF
OBJECT
OJ
PAGELENGTH
PAGEWIDTH
PAGING
PI
PL
PR
PRINT
PW
RESTORE
RS
SA
SAVE
SB
STACK
SYMBOLS
TITLE
TT
WF
WORKFILE
S
ES
XR
XREF

ABS
ASSUME
AT
BYTE
COMMON
CODEMACRO
DB
DO
DO
DT
DUP
OW
DWORD
END
ENDM
ENDP
ENDS
EO
EOU
EVEN
EXTRN
FAR
GE
GROUP
GT
HIGH
INPAGE
LABEL
LE
LENGTH
LOW
LT
MASK
MOD
MODRM
NAME

Figure 2-14. ASM 86 Reserved Words (Continued)

2-44

NE
NEAR
NOSEGFLX
NOTHING
OFFSET
ORG
PAGE
PARA
PREFX
PROC
PROCLEN
PTR
PUBLIC
PURGE
OWORD
RECORD
RELB
RELW
RFIX
RFIXM
FNFIX
FNFIXM
RWFIX
SEG
SEGFIX
S E G
MENT
SHORT
SIZE
STRUC
TBYTE
THIS
TYPE
WIDTH
WORD
?

REF

IDENTIFIER

destination

source

source-table

target

short-label

accumulator

port

source-string

dest-string

count

interrupt-type

optional-pop-value

external-opcode

REFERENCES REF
FOR INSTRUCTION SET

Key to following Instruction Set Reference Pages

USED IN

data transfer,
bit manipulation

data transfer,
arithmetic,
bit manipulation

XLAT

JMP, CALL

condo transfer,
iteration control

IN,OUT

IN,OUT

string ops.

string ops.

shifts, rotates

INT

RET

ESC

EXPLANATION

A register or memory location that may contain data
operated on by the instruction, and which receives (is
replaced by) the result of the operation.

A register, memory location or immediate value that is
used in the operation, but is not altered by the
instruction.

Name of memory translation table addressed by
register BX.

A label to which control is to be transferred directly, or
a register or memory location whose content is the
address of the location to which control is to be
transferred indirectly.

A label to which control is to be conditionally
transferred; must lie within -128 to +127 bytes of the
first byte of the next instruction.

Register AX for word transfers, AL for bytes.

An I/O port number; specified as an immediate value of
0-255, or register DX (which contains port number in
range 0-64k).

Name of a string in memory that is addressed by
register SI; used only to identify string as byte or word
and specify segment override, if any. This string is .
used in the operation, but is not altered.

Name of string in memory that is addressed by register
DI; used only to identify string as byte or word. This
string receives (is replaced by) the result of the
operation.

Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL (which contains the
count in the range 0-255).

Immediate value of 0-255 identifying interrupt pointer
number.

Number of bytes (0-64k, ordinarily an even number) to
discard from stack.

Immediate value (0-63) that is encoded in the instruction
for use by an external processor.

REF REFERENCES
FO.RJNSTRUCTION SET

REF
Key to Operand Types

IDENTIFIER

(no operands)
register
reg 16
seg-reg

accumulator
immediate

immed8
memory

mem8
mem16
source-table

source-string

dest-string

OX
short-label

near-label

far-label

near-proc

far-proc

memptr16

memptr32

regptr16

repeat

EXPLANATION

No operands are written
An 8- or 16-bit general register
An 16-bit general register
A segment register
Register AX or AL
A constant in the range
O-FFFFH
A constant in the range O-FFH

An 8". or 16-bit memory
, location!11

An8-bit memory location!11
A 16-bit memory location!11

Name of 256-bytetranslate
table
Name of string addressed by
register SI

Name of string, addressed by
register 01 '

Register DX
A label within -128 to +127
bytes of the end of the
instruction

A label in c'urrent code
segment
A label in another code
segment
A procedure in current code
segment
A procedure in another code
segment
A word containing the offset of
the location in the current code
se.gment to which control is to
be transferred!11

A doubleword containing the
offset and the, segment base
address of the location in
another code segment to
which .control is ,to be trans
ferred!11

A 16-bitgeneral register
containing the offset of the
location In the current code
segment to which control is to
be transferred
A string instruction repeat
prefix

!11 Any addressing mode-direct, register
indirect, based, indexed, or based indexed
may be used (see section 2.8).

15 14 13 12 11 '10 9 8 7 6 5 4 3 2 1 0

OF OF IF TF SF ZF AF PF CF

I L----=: CARRY

PARITY

AUXILIARY CARRY

ZERO

SIGN

TRAP

INTERRUPT

DIRECTION

OVERFLOW

Effective Address Calculation Time

EA COMPONENTS CLOCKS'

Displacement Only 6

Base or Index Only (BX,BP,SI,DI) 5

Displacement
+ 9

Base or Index (BX,BP,SI,DI)

Base BP+DI, BX+SI 7
+

Index BP+SI, BX+DI 8

Displacement BP+ 01+ DISP 11
+ BX+SI+DISP

Base
+ BP+SI+DISP 12

.. Index BX+DI+DISP

* Add 2 clocks for segment override

REF REFERENCES
FOR INSTRUCTION SET

REF

"reg" Field Bit Assignments:

16-Bit (w = 1) a-Bit (w = 0) Segment

000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 OX 010 OL 10 SS
011 BX 011 BL 11 OS
100 SP 100 AH
101 BP 101 CH
110 SI 110 OH
111 01 111 BH

"mod" Field Bit Assignments:

Imod xxx r/ml

mod Displacement

00 OISP = 0*, disp-Iow and disp-high are absent

01 OISP = disp-Iow sign-extended to 16-bits, disp-high is absent

10 OISP = disp-high: disp-Iow

11 rIm is treated as a "reg" field

"rim" Field Bit Assignments:

rIm Operand Address

000 (BX) + (SI) + OISP
001 (BX) + (01) + OISP
010 (BP) + (SI) + OISP
011 (BP) + (01) + OISP
100 (SI) + OISP
101 (01) + OISP
110 (BP) + OISP
111 (BX) + OISP

OISP follows 2nd byte of instruction (before data if required).
*except if mod = 00 and rIm = 110 then EA = disp-high: disp-Iow.

AAA ASCII ADJUST
FORADDITION

AAA
Operation:

if ((AL) & OFH) > 9 or (AF) =1 then
(AL) - (AL) + 6
(AH) - (AH) + 1
(AF) -1

(CF) - (AF)
(AL) - (AL) & OFH

Description:

AAA (ASCII Adjust for Addition) changes
the contents of register AL to a valid. unpacked
decimal number; the high-order half-byte is
zeroed. AAA updates AF and CF; the content
of OF, PF, SF andZF is undefined following
execution of AAA.

Encoding:

100110111 I

Flags Affected:

AF, CF.
OF, PF, XF, ZF undefined

AAA Operands Clocks Transfers Bytes AAA Coding Example

(no operands) 4 - 1 AAA

2-45

. ,

AAD ASCII ADJUST
FOR D'IVlsION'

AAD
Operation:

(AL) +- (AH) * OAH + (AL) , , '
(AH) +-0' "

Description:

AAD (ASCII Adjust for Division) modifies
the numerator in AL before dividing two valid
unpacked decimal operands so that the quo
tient produced by the division will be a valid
unpacked decimal number. AH must be zero

Encoding:

11010101 00001010

Flags Affected:

PF, SF, ZF.
AF, CF, OF undefined

for the subsequent DIV to produce the correct
result. The ,quotient is 'returned in AL, and the
remainder is returned'in AH; both high-order
half-bytes are zeroed.AADupdiltes PF;SF
and ZF; the content of AF, CF and OF is
undefined following execution of AAD.

AADOperands ' 'Clocks Transfers Bytes AADCodirigExample

'(no operands) 60 - 2 AAD

2-46

AAM ASCII ADJUST
FOR MULTIPLY

AAM
Operation:

(AH) +- (AL) I OAH
(AL) +- (AL) % OAH

Description:

AAM (ASCII Adjust for Multiply) corrects
the result of a previous multiplication of two
valid unpacked decimal operands. A valid 2-
digit unpacked decimal number is derived
from the content of AH and AL and is

Encoding:

1101010000001010

Flags Affected:

PF, SF, ZF.
AF, CF, OF undefined

returned to AH and AL. The high-order half
bytes of the multiplied operands must have
been OH for AAM to produce a correct result.
AAM updates PF, SF and ZF; the content of
AF, CF and OF is undefined following execu
tionof AAM.

AAM Operands Clocks Transfers Bytes AAM Coding Example

(no operands) 83 - 1 AAM

2-47

AAS ASCII ADJUST
FORSUB.T·RACTION AAS

Operation:

if ((AL) & OFH} > 9 or (AF) =1 then
(AL) - (AL) -6
(AH) - (AH}-1
(AF) -1

(CF) - (AF)
(AL) - (AL) & OFH

Description:

AAS (ASCII Adjust for Subtraction) corrects
the result of a previous subtraction of two
valid unpacked decimal operands (the destina
tion operand must have been specified as

Encoding:

1001111111

Flags Affected:

AF,CF.
. OF, PF, SF, ZFundefined

register AL). AAS changes.thecontent of AL
to a valid unpacked decimal'number; the high
order· half-byte is zeroed. AASupdates AF
and CF; the content of OF; PF; SF and ZF is
undefined following execution of AAS.

.AAS Operands Clocks Transfers Bytes AAS Coding Example

(no operands) 4 - 1 AAS

2-48

ADC ADD WITH CARRY ADC
Operation:

if (CF) = 1 then (DEST) +- (LSRC)
+ (RSRC) + 1

else (DEST) +- (LSRC) + (RSRC)

Description:

ADC destination, source

ADC (Add with Carry) sums the operands,
which may be bytes or words, adds one if CF is
set and replaces the destination operand with
the result. Both operands may be signed or
unsigned binary numbers (see AAA and
DAA). ADC updates AF, CF, OF, PF, SF and
ZF. Since ADC incorporates a carry from a
previous operation, it can be used to write
routines to add numbers longer than 16 bits.

Flags Affected:

AF,CF,OF,PF,SF,ZF

2-49

ADe ADD WITH CARRY ADe

Encoding:

Memory or Register Operand with Register Operand:

1 0001 00 d w 1 mod reg r / m 1

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand to Memory or Register Operand:

11 0 a a a 0 s w I mod 0 1 a r / m I data Idata if s:w==o11

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

1 0 0 a 1 0 1 a w I data I data if w=1 I
if w = a then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

ADC Operands Clocks* Transfers Bytes

register, register 3 - 2
register, memory 9(13) + EA 1 2-4
memory, register 16(24) + EA 2 2-4
register, immediate 4 - 3-4
memory, immediate 17(25) + EA 2 3-6
accumulator, immediate 4 - 2-3

ADC Coding Examples

AOCAX, SI
AOC OX, BETA [SI]
AOC ALPHA [BX] [SI], 01
AOC BX, 256
AOC GAMMA, 30H
AOCAL,5

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-50

ADD ADDITION ADD
Operation:

(DEST) - (LSRC) + (RSRC)

Description:

ADD destination,source

The sum of the two operands, which may be
bytes or words, replaces the destination
operand. Both operands may be signed or
unsigned binary numbers (see AAA and
DAA). ADD updates AF, CF, OF, PF, SF and
ZF.

Flags Affected:

AF, CF, OF, PF, SF, ZF

2-51

ADD ADDITION ADD

Encoding:

Memory or Register Operand with Register Operand:

1 000000 d w 1 mod reg rIm 1

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand to Memory or Register Operand:

11 00000 s w 1 mod 000 rl m 1 data Idata if s:w==011

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

1 000001 0 w 1 data 1 data if w=1 1

if w = 0 then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

ADD Operands Clocks* Transfers Bytes

register, register 3 - 2
register, memory 9(13) + EA 1 2-4
memory, register 16(24)+EA 2 2-4
register, immediate 4 - 3-4
memory, immediate 17(25) + EA 2 3-6
accumulator, immediate 4 - 2-3

ADD Coding Examples

ADDCX, OX
ADD 01, [8X].AlPHA
ADD TEMP, Cl
ADD Cl, 2
ADD ALPHA, 2
ADD AX, 200

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-52

AND AND LOGICAL

Operation:

(DEST) +- (LSRC) & (RSRC)
(CF) +- 0
(OF) +- 0

Description:

AND destination,source

AND performs the logical "and" of the two
operands (byte or word) and returns the result
to the destination operand. A bit in the result
is set if both corresponding bits of the original
operands are set; otherwise the bit is cleared.

Flags Affected:

CF, OF, PF, SF, ZF.
AF undefined

AND

AND AND LOGICAL AND

Encoding:

Memory or Register Operand with Register Operand:

1001000 d w 1 mod reg rIm 1

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand to Memory or Register Operand:

11000000w Imod100r/ml data .1 data if w=1 ..

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

1 0 0 1 00 1 0 w 1 data 1 data if w=1 1

if w = 0 then LSRC =AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

AND Operands Clocks* Transfers Bytes

register, register 3 - 2
register, memory 9(13) + EA 1 2-4
memory, register 16(24) + EA 2 2-4
register, immediate 4 - 3-4
memory, immediate 17(25)+ EA 2 3-6
accumulator, immediate 4 - 2-3

AN D Coding Examples

ANDAL, BL
AND CX, FLAG_WORD
AND ASCII [DI], AL
AND CX, OFOH
AND BETA, 01H
AND AX, 01010000B

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-54

CALL CALL PROCEDURE CALL
Operation:

if Inter-Segment then
(SP) (SP) - 2
((SP) + 1 :(SP)) (CS)
(CS) SEG

(SP) (SP) - 2
((SP) + 1 :(SP)) (IP)
(lP) DEST

Description:

CALL procedure-name

CALL activates an out-of-line procedure, sav
ing information on the stack to permit a RET
(return) instruction in the procedure to
transfer control back to the instruction follow
ing the CALL. The assembler generates a dif
ferent type of CALL instruction depending on
whether the programmer has defined the pro
cedure name as NEAR or FAR. For control to
return properly, the type of CALL instruction
must match the type of RET instruction that
exits from the procedure. (The potential for a
mismatch exists if the procedure and the
CALL are contained in separately assembled
programs.) Different forms of the CALL
instruction allow the address of the target pro
cedure to be obtained from the instruction
itself (direct CALL) or from a memory loca
tion or register referenced by the instruction
(indirect CALL). In the following descrip
tions, bear in mind that the processor auto
matically adjusts IP to point to the next
instruction to be executed before saving it on
the stack.

For an intrasegment direct CALL, SP (the
stack pointer) is decremented by two and IP is
pushed onto the stack. The target procedure's
relative displacement (up to ±32k) from
the CALL instruction is then added to the
instruction pointer. This CALL instruction

Flags Affected:

None

form is "self-relative" and appropriate for
position-independent (dynamically relocat
able) routines in which the CALL and its
target are moved together in the same segment.

An intrasegment indirect CALL may be made
through memory or a register. SP is decre
mented by two; IP is pushed onto the stack.
The target procedure offset is obtained from
the memory word or 16-bit general register
referenced in the instruction and replaces IP.

For an inter segment direct CALL, SP is decre
mented by two, and CS is pushed onto the
stack. CS is replaced by the segment word con
tainedin the instruction. SF again is
decremented by two. IP is pushed onto the
stack and replaced by the offset word in the
instruction.

For an interseginent indirect CALL (which
only may be made through memory), SP is
decremented by two, and CS is pushed onto
the stack. CS is then replaced by the content of
the second word of the doubleword memory
pointer referenced by the instruction. SP again
is decremented by two, and IP is pushed onto
the stack and replaced by the content of the
first word of the doubleword pointer refer
enced by the instruction.

2-55

CALL CALL PROCEDURE CALL
Encoding:

Intra-segment direct:

1111 01 000 1 disp-Iow disp-high

DEST = (EA)

Intra-Segment Indirect:

1111111111mod010r/mi

DEST = (IP) + disp

Inter-Segment Direct:

11 0011 01 0 1 offset-low offset-high

1 seg-Iow seg-high

DEST = offset, SEG ~ seg

Inter-Segment Indirect:

1111111111mod011r/mi

DEST = (EA), SEG = (EA + 2)

CALL Operands Clocks* Tranfers Bytes

near-proc 19(23) 1 3
far-proc 28(36) 2 5
memptr16 21 (29) + EA 2 2-4
regptr 16 16(24) 1 2
memptr 32 3](57)+ EA 4 2-4.

CALL Coding Examples

CALL N EAR_PROC
CALL FAR_PROC
CALL PROC_ TABLE [SI]
CALL AX
CALL [BX].TASK [SI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-56

CBW CONVERT BYTE
TOWORD

Operation:

if (AL) < BOH then (AH) ~ 0 else (AH) « FFH

Description:

CBW (Convert Byte to Word) extends the sign
of the byte in register AL throughout register
AH. CBW does not affect any flags. CBW can
be used to produce a double-length (word)
dividend from a byte prior to performing byte
division.

Encoding:

1100110001

Flags Affected:

None

CBW

CBWOperands Clocks Transfers Bytes CBW Coding Example

(no operands) 2 - 1 CBW

2-57

ClC CLEAR CARRY CLC
Operation:

(CF) +- 0

Flags Affected:

Description:

CLC (Clear Carry flag) zeroes the carry flag
(CF) and affects no other flags. It (and CMC
and STC) is useful in conjunction with the
RCL and RCR instructions.

Encoding:

1111110001

CF

CtC Operands . Clocks Transfers Bytes

(no operands) 2 - 1

2-58

etC Coding Exarriple

CLC

CLD CLEAR DIRECTION
FLAG

Operation:

(OF)- 0

Description:

CLD (Clear Direction flag) zeroes DF causing
the string instructions to auto-increment the SI
and/or DI index registers. CLD does not
affect any other flags.

Encoding:

111111100 I

Flags Affected:

OF

ClD

CLD Operands Clocks Transfers Bytes CLD Coding EKampl.e

(no operands) 2 1 CLO

2-59

ell CLEAR INTERRUPT·
ENABLE FLAG

Operation:

(IF)~ 0

Description:

CLI (Clear Interrupt-enable flag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an external
interrupt request that appears on the INTR
line; in other words maskable interrupts are
disabled. A non-maskable interrupt appearing
on the NMI line, however, is honored, as is a
software interrupt. CLI does not affect any
other flags.

Encoding:

11111010

Flags Affected:

IF

ell

CLiOperands Clocks Transfers Bytes CLI Coding Example

(no operands) 2 - 1 eLi
--

2-60

CMC COMPLEMENT
CARRY FLAG

Operation:

if (CF) = 0 then (CF) ~ 1 else (CF) ~ 0

Description:

CMC (Complement Carry flag) "toggles" CF
to its opposite state and affects no other flags.

Encoding:

1111101011

Flags Affected:

CF

CMC

CMC Operands Clocks Transfers Bytes CMC Coding Example

(no operands) 2 - 1 CMC

2-61

CMP COMPARE CMP
Operation:

(LSRC) - (RSRC)

Description:

CMP destination, source

CMP (Compare) subtracts the source from the
destination, which may be bytes or words, but
does not return the result. The operands are
unchanged, but the flags are updated and can
be tested bya subsequent conditional jump
instruction. CMP updates AF, CF, OF, PF,

Flags Affected:

AF, CF, OF, PF, SF, ZF

SF and ZF. The comparison reflected in the
flags is that of the destination to the source. If
a CMP instruction is followed by a JG (jump
if greater) instruction, for example, the jump
is taken if the destination operand is greater
than the source operand.

2-62

CMP COMPARE CMP

Encoding:

Memory or Register Operand with Register Operand:

100111 0 d w 1 mod reg rim 1

if d = 1 then LSRC = REG, RSRC = EA
else LSRC = EA, RSRC = REG

Immediate Operand with Memory or Register Operand:

11 00000 s w 1 mod 111 rIm 1 data Idata if s:w=011 '

LSRC= EA, RSRC = data

Immediate Operand with Accumulator:

1 0 0 11 1 1 0 w 1 data 1 data if w=1 I'

if w = 0 then LSRC = AL, RSRC = data
else LSRC = AX, RSRC = data

CMP Operands Clocks* Transfers Bytes CMP Coding Examples

register, register 3 - 2 CMP BX, CX
register, memory 9(13)+ EA - " 2-4 CMP DH, ALPHA
memory, register 9(13) + EA - 2-4 CMP [BP + 2], SI
register, immediate 4 - 3-4 CMPBl,02H
memory, immediate 10(14)+ EA - 3-6 CMP [BX].RADAR [01],

3420H
accumulator, immediate 4 - 2-3 CMP AL, 00010000B

*b(w): where b denotesthe number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.: '

2-63

CMPS COMPARE STRING
(BYTE OR WORD) CMPS

Operation:

(LSRC) - (RSRC)
if (OF) = 0 then

(SI) +- (SI) + DELTA
(01) +- (01) + DELTA

else
(SI) +- (SI) - DELTA
(01) +- (01) - DELTA

Description:

eM PS destination~string,source-string

CMPS (Compare String) subtracts the destina
tion byte or word (addressed by DI)from the
source byte or word (addressed by SI). CMPS
affects the flags but does not alter either
operand, updates SI and DI to point to the
next string element and updates, AF, CF, OF,
PF, SF and ZF to reflect the relationship of the
destination element to the source element. For
example, if a JG (Jump if Greater) instruction
follows CMPS, the jump is taken if the des-

Encoding:

11 01 0011 w 1

Flags Affected:

AF, CF, OF, PF, SF, ZF

tination element is greater than the source
element. If CMPS is prefixed with REPE or
REPZ, the operation is interrupted as "com
pare while notend-of-string (CX notzero) and
strings are equal (ZF = 1)." If CMPS is
preceded by REPNE or REPNZ, the operation
is interrupted as "compare while not end-of
string (CX not zero) and strings are not equal
(ZF = 0)." Thus, CMPS can be used to find
matching or differing string elements.

if w = 0 then LSRC = (SI), RSRC = (01), DELTA = 1
else LSRC = (SI) + 1 :(SI), RSRC = (01) + 1 :(01), DELTA = 2

CMPS Operands Clocks· Transfers Bytes CMPS Coding Examples

dest-string, source-string 22(30) 2 1 CMPS BUFF1, BUFF2
(repeat) dest-string, source-string 9+22(30)/rep 2/rep 1 REP COMPS 10, KEY

·b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-64

cwo CONVERT WORD
TO DOUBLEWORD

Operation:

if (AX) < 8000H then (OX) .- 0
else (OX) .- FFFFH

Description:

CWD (Convert Word to Doubleword) extends
the sign of the word in register AX throughout
register DX. CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to
performing word division.

Encoding:

1100110011

Flags Affected:

None

cwo

CWO Operands Clocks Transfers Bytes CWO Coding Example

(no operands) 5 - 1 CWO

2-65

DAA OECIMALAOJUST
FOR ADDITION

Operation:

if ((AL) & OFH) > 9 or (AF) = 1 then
(AL) +- (AL) + 6
(AF) +-1

if (AL) > 9FH or (CF) = 1 then
(AL) +- (AL) + 60H
(CF) +-1

Description:

DAA (Decimal Adjust for Addition) corrects
the result of previously adding two valid
packed decimal operands (the destination
operand must have been register AL). DAA
changes the content of AL to a pair of valid
packed decimal digits. It updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAA.

Encoding:

100100111 I

Flags Affected:

AF, CF, PF, SF,ZF
OF undefined

DAA

DAA Operands Clocks Transfers Bytes- DAA Coding Example

(no operands) 4 - 1 DAA

2-66

DAS DECIMAL ADJUST
FOR SUBTRACTION

Operation:

if ((AL) & OFH» 9 or (AF) = 1 then
(AL) - (AL) - 6
(AF) -1

if (AL) > 9FH or (CF) = 1 then
(AL) - (AL) - 60H
(CF) -1

Description:

DAS (Decimal Adjust for Subtraction) cor
rects the result of a previous subtraction of
two valid packed decimal operands (the desti
nation operand must have been specified as
register AL). DAS changes the content of AL
to a pair of valid packed decimal digits. DAS
updates AF, CF, PF, SF and ZF; the content
of OF is undefined following execution of
DAS.

Encoding:

100101111 I

Flags Affected:

AF, CF, PF, SF, ZF.
OF undefined

DAS

DAS Operands Clocks Transfers Bytes DAS Coding Example

(no operands) 4 - 1 DAS

2-67

DEC DECREMENT. DEC
Operation:

(DEST) +- (DEST)-L

Flags Affected:

. AF, OF, PF, SF; ZF

Description:

DEC (Decrement) subtracts one from the
destination operand. The operand may be a
byte or a word and is treated as an unsigned
binary number (see AAA and DAA). DEC
updates AF, OF, PF, SF and ZF; it does not
affect CF.

Encoding:

Memory or Register Operand:

11 1 1 1 1 1 1 w 1 mod 0 0 1 rim 1

DEST= EA

Register Operand:

I 01 001 reg

DEST= REG

: i:

DEC Operands Clocks* Transfers Bytes

reg16 2 - 1
reg8 ·3· ... - 2
memOry . 15(23) + EA .. 2 2-4

,'. ,

DEC Coding Example

DECAX
·DECAL
. DEC ARRAY [SI).

/.

*b(w): where b denotes.the number of cloc;:k cycles for byte operanqs and
....w denotes the number of clock cycles for word operands.

DIV DIVIDE DIV
Operation:

(temp) - (NUMR)
if (temp) I (DIVR) > MAX then the

following, in sequence
(QUO), (REM) undefined
(SP) - (SP) - 2
((SP) + 1 :(SP)) - FLAGS
(IF) - 0
(TF) - 0
(SP) - (SP) - 2
((SP) + 1 :(SP)) - (CS)
(CS) - (2) i.e., the contents of

memory locations 2 and 3
(SP) - (SP) - 2
((SP) + 1 :(SP)) - (lP)
(IP) - (0) i.e., the contents of

locations 0 and 1
else

(QUO) - (temp) I (DIVR), where
I is unsigned division

(REM) - (temp) % (DIVR) where
% is unsigned modulo

Description:

DIV source

DIV (divide) performs an unsigned division of
the accumulator (and its extension) by the
source. operand. If the source operand i.s a
byte, it is divided into the double-length divi
dend assumed to be in registers At arid AH.
The single-length quotient is returned in AL,
and the single-length remainder is returned in
AH. If the source operand is a word;· it is.
divided into the double-length dividend in·
registers AX and DX. The single-length quo-

Flags Affected:

AF, CF, OF, PF, SF, ZF undefined

tient is returned in AX, and the single-length
remainder is returned in DX. If the quotient
exceeds the capacity of its destination register
(FFH for byte ... source, FFFFFH for word

, source), as when division by ze'ro is attempted,
a type 0 interrupt is generated, and the quo
tient and remainder are undefined. Non
integral quotients are truncated to integers.
The content of AF, CF, OF, PF, SF and ZF is
undefined following execution of DIV.

2-69

DIV DIVIDE DIV

Encoding:

11111 011 w 1 mod 11 0 rIm 1

if w = 0 then NUMR = AX, DIVR = EA, QUO = AL, REM = AH, MAX = FFH
else NUMR = DX:AX, DIVR = EA, QUO= AX, REM = DX, MAX = FFFFH

DIV Operands Clocks* Transfers Bytes DIV Coding Example

reg8 80-90 - 2 DIVCL
reg16 144-162 - 2 DIVBX
mem8 (86-96) + EA 1 2-4 DIV ALPHA
mem16 (154-172)+ EA 1 2-4 DIV TABLE [SI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-70

ESC ESCAPE ESC
Operation: Flags Affected:

if mod * 11 then data bus +- (EA)

Description:

The ESC (Escape) instruction provides a
mechanism by which other processors
(coprocessors) may receive their instructions
from the 8086 or 8088 instruction stream and
make use of the 8086 or 8088 addressing
modes. The CPU (8086 or 8088) does a no
operation (NOP) for the ESC instruction other
than to access a memory operand and place it
on the bus.

Encoding:

11011x mod x rIm

None

ESC Operands Clocks* Transfers Bytes

immediate, memory 8(12) + EA 1 2-4
immediate, register 2 - 2

ESC Coding Example

ESC 6,ARRA Y [SI]
ESC 20,AL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cyclesforword operands.

2-71

HlT HALT ALl
Operation:

None

Description:

HL T (Halt) causes the 8086, 8088 to enter the
hillt state. The processor leaves the halt state
upon activation of the RESET line, upon
receipt of a non-maskable interrupt request on
NMI, or, if interrupts are enabled, upon

Encoding:

111101 00

Flags Affected:

None

receipt of a mask able interrupt request on
INTR. HL T does noLaffect any flags; It.may
be used as an alternative to an·.endless software
loop in situations where a program must wait
for an interrupt.

HLT Operands Clocks Transfers Bytes HLTCoding Example

(no operands) 2 - 1 HLT

2-72

IDIV INTEGER DIVIDE IDIV
Operation:

(temp) - (NUMR)
if (temp) I (DlVR) > 0 and (temp)

I (DIVR) > MAX
or (temp) I (DIVR) < 0 and (temp)

I (DIVR) < 0 - MAX -1 then
(QUO), (REM) undefined
(SP) - (SP) - 2
((SP) + 1 :(SP)) - FLAGS
(IF) - 0
(TF) - 0
(SP) - (SP) - 2
((SP) + 1 :(SP)) - (CS)
(CS) - (2)
(SP) - (SP) - 2
((SP) + 1 :(SP)) - (IP)
(lP) - (0)

else
(QUO) - (temp) I (DlVR), where

I is signed division
.(REM) - (temp) % (DIVR) where

% is signed modulo

Description:

IDIV source

IDIV (Integer Divide) performs a signed divi
sion of the accumulator (and its extension) by
the source operand. If the source operand is a
byte, it is divided into the double-length divi"
dend assumed to be in registers AL and AH;
the single-length quotient is returned in AL,
and the single-length remainder is returned in
AH. For byte integer division, the maximum
positive quotient is + 127 (7FH) and the
minimum negative quotient is -127 (81H). If
the source operand is a word, it is dividec:i into
the double-length dividend in registers AX and
DX; the single-length quotient is returned in

Flags Affected:

AF, CF, OF, PF, SF, ZF undefined

2-73

AX, and the single-length remainder is
returned in DX. For word integer division, the
maximum positive quotient is +32,767
(7FFFH) and the minimum negative quotient
is -32,767 (800tH). If the quotient is positive
and exceeds the maximum, or is negative and
is less than the minimum, the quotient and
remainder are undefined, and a type 0 inter
rupt is generated. In particular, this occurs if
division by 0 is attempted. Nonintegral quo
tients are truncated (toward 0) to integers, and
the remainder has the same sign as the divi
dend. The content of AF, eF, OF, PF, SF and
ZF is undefined following IDIV.

IDIV I NTE GE RDJV IDE IDIV

Encoding:

11111 011 w 1 mod 111 rIm 1 .

if w = 0 then NUMR = AX, DIVR= EA, QUO = AL, REM = AH, MAX = 7FH
else NUMR = DX:AX, DIVR =EA, QUO =AX, REM ~ DX,MAX = 7FFFH

IDIV Operands Clocks· ... Transfers Bytes IDIV Coding Example

reg8 101-112 . - 2 IDIV BL
reg16··· 165-184 - 2 IDIVCX
mern8 (107-118)+EA 1 2-4 IDIV DIVISOR,--,--BYTE[SI]
mem16 (175-194)+EA 1 2-4 IDIV [BX].DIVISOR_WORD

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-74

IMUL INTEGER MULTIPLY IMUL
Operation:

(DEST) - (LSRC) * (RSRC) where
* is signed multiply

if (ext) = sign-extension of (LOW)
then (CF) - 0

else (CF) -1;
(OF) - (CF)

Description:

IMUL source

IMUL (Integer Multiply) performs a signed
multiplication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double
length result is returned in AH and AL. If the
source is a word, then it is multiplied by
register AX, and the double-length result is
returned in registers DX and AX. If the upper

Encoding:

11111 011 w 1 mod 1 01 rIm 1

Flags Affected:

CF, OF
AF, PF, SF, ZF undefined

half of the result (AH for byte source, DX for
word source) is not the sign extension of the
lower half of the result, CF and OF are set;
otherwise they are cleared. When CF and OF
are set, they indicate that AH or DX contains
significant digits of the result. The content of
AF, PF, SF and ZF is undefined following exe
cution of IMUL.

if w = 0 then LSRC = AL, RSRC = EA, DEST = AH, EXT = AH, LOW = AL
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = OX, LOW = AX

IMUL Operands Clocks* Transfers Bytes IMUL Coding Example

reg8 80-98 - 2 IMULCL
reg16 128-154 - 2 IMUL BX
mem8 (86-104) + EA 1 2-4 IMUL RATE_BYTE
mem16 (138-164) + EA 1 2-4 IMUL RATE_WORD [BP] [DI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-75

IN INPUT'BYTE O.RWORD ··'IN
Operation: ;.'

(OEST) - (SRC)

Flags Affected: ' .. ';:':

Description:

IN accumulator, port

IN transfers a byte or a word from an input
port to the AL register or the AX register,
respectively. The port number may be speci
fied either with an immediate byte constant,
allowing access to ports numbered 0 through

, Encodi·ng.:

Fixed Port:'

11110010wI port· .'1.'

if w = 0 then SRC = port, OEST = AL
else SRC = port+ 1 :port, OEST = AX

Variable Port:

IJ110110wl
. . ."

if w = 0 the~ SRC = O)X)';DEST ~ AI..
else SRC = (OX) + 1 :(OX),DEST = AX

None·

255, or with a number previously placed in the
DX register, allowing variable access (by
changing the value in DX) to ports numbered
from 0 through 65,535.

IN Operands .. , .• Clocks* Transfers Bytes IN Coding Example
I ..

accumulator,immed8 ;'10(14) 1 2 IN AL,OFFEAH
accumulator, OX ' 8(12)· 1 1 IN AX, OX , ~:

...

~b(w):where b denotes the numb~r of clock 9ycles for byte operands and
w d,enotes thenurriber of clock cycles for word operands.

2-76

INC INCREMENT INC
,::

Operation: Flags Affected:

(OEST) +- (OEST) + 1

Description:

INC destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is treated as an unsigned binary number
(see AAA and DAA). INC updates AF, OF,
PF, SF and ZF; it does not affect CF.

Encoding:

Memory or Register Operand:

111.11111 wlmodOOOr/ml

OE8T= EA

Register Operand:

1 01000 reg

OEST = REG

AF, OF, PF, SF, ZF

INC Operands Clocks* Transfers Bytes INC Coding Example

reg16 2 - 1 INCCX
reg8 3 - 2 INCBL
memory 15(23) + EA 2 2-4 INC ALPHA [01] [BX]

*b(w): where bdenotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for worq operands .

. ;

2-77

INT INTERRUPT INT
Operation:

(SP) - (SP) - 2
((SP) + 1 :(SP)) - FLAGS
(IF) - 0
(TF) - 0
(SP) - (SP) - 2
((SP) + 1 :(SP)) - (CS)
(CS) - (TYPE * 4 + 2)
(SP) - (SP) - 2
((SP) + 1 :(SP)) - (IP)
(IP) - (TYPE * 4)

Description:

INT interrupt-type

INT (Interrupt) activates the interrupt pro
cedure specified by the interupt-type operand.
INT decrements the stack pointer by two,
pushes the flags onto the stack, and clears the
trap (TF) and interrupt-enable (IF) flags to
disable single-step and mask able interrupts.
The flags are stored in the format used by the
PUSHF instruction. SP is decremented again
by two, and the CS register is pushed onto the
stack. The address of the interrupt pointer is
calculated by multiplying interrupt-type by
four; the second word of the interrupt pointer
replaces CS. SP again is decremented by two,
and IP is pushed onto the stack and is replaced

Flags Affected:

IF, TF

by the first word of the interrupt pointer. If
interrupt-type = 3, the assembler generates a
short (1 byte) form of the instruction, known
as the breakpoint interrupt.

Software interrupts can be used as "supervisor
calls," i.e., requests for service from an
operating system. A different interrupt-type
can be used for each type of service that the
operating sy&tem could supply for an applica
tion program. Software interrupts also may be
used to check out interrupt service procedures
written for hardware-initiated interrupts.

INT INTERRUPT

Encoding:

111 0011 0 v 1 type if v= 1

if v = 0 then TYPE = 3
else TYPE = type

INT Operands Clocks*

immed8 (type = 3) 52(72)
immed8 (type =1= 3) 51(71)

Transfers Bytes

5 1
5 2

INT

INT Coding Example

INT3
INT67

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-79

INTO INTERRUPT ON
OVERFLOW INTO

Operation:

if (OF) = 1 then
(SP) - (SP) - 2
((SP) + 1 :(SP)) - FLAGS
(IF) -0
(TF) - 0
(SP) - (SP) - 2
((SP) + 1 :(SP)) - (CS)
(CS) - (12H)
(SP) - (SP) - 2
((SP) + 1 :(SP)) - (lP)
(lP)-(10H)

Description:

INTO (Interrupt on Overflow) generates a
software interrupt if the overflow flag (OF) is
set; otherwise control proceeds to the follow
ing instruction without activating an interrupt
procedure. INTO addresses the target inter
rupt procedure (its type is 4) through the inter-

Encoding:

11001110

Flags Affected:

None

rupt pointer at location lOH; it clears the TF
and IF flags and otherwise operates like INT.
INTO may be written following an arithmetic
or logical operation to activate an interrupt
procedure if overflow occurs.

INTO Operands Clocks· Transfers Bytes I.NTO Coding Example

(no operands) 53(73) or 4 5 1 INTO

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-80

IRET INTERRUPT RETURN

Operation: .

(IP) - ((SP) + 1 :(SP))
(SP) - (SP) + 2
(CS) - ((SP) + 1 :(SP))
(SP) - (SP) + 2
FLAGS - ((SP) + 1 :(SP))
(SP) - (SP) + 2

Description:

IRET (Interrupt Return) transfers control
back to the point of interruption by popping
IP, CS and the flags from the stack. IRET thus
affects all flags by restoring them to previously
saved values. IRET is used to exit any inter
rupt procedure, whether activated by hard
ware or software.

Encoding:

111 0011 11 1

Flags Affected:

All

IRET

IRET Operands Clocks* Transfers Bytes IRET Coding Example

(nooperands) 32(44) 3 1 IRET

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the numberof clock cycles for word operands.

2-81

JA
JNBE

JUMP ON.ABOVE JA
JUMPONNOTBELOW JNBE

OR EQUAL

Operation: Flags Affected:

if (CF) & (ZF) = 0 then None
(IP) - (IP) + disp (sign-extended

to 16-bits)

Description:

Jump on Above (JA)/Jump on Not Below or
Equal (JNBE) transfers control to the target
operand (lP + displacement). If the conditions
(CF and ZF = 0) are above/not below or equal
to the tested value.

Encoding:

101110111 disp

JA/JNBE Operands Clocks Transfers

short-label .1.6 or 4 -
,

.2-82

Bytes

2

JA Coding Example

JA ABOVE

JNBE CodirigExample

JNBE ABOVE

JAE

JNB

JUMP ON ABOVE
OR EQUAL

JUMP ON NOT BELOW

Operation: Flags Affected:

if (CF) = 0 then None
(lP) +- (IP) + disp (sign-extended

to 16-bits)

D escriptio·n:

JAE (Jump on Above or Equal)/ JNB (Jump
on Not Below) transfers control to the target
operand (IP + displacement) if the condition
(CF = 0) is above or equal/not below the tested
value.

Encoding:

101110011 disp

JAE

JNB

JAE/JNB Operands Clocks Transfers Bytes JAE Coding Example

short-label 16or4 - 2 JAE ABOVE_EQUAL

2-83

JB'
JNAE

JUMPON BELOW

JUMPONiNOT
ABOVE OR EQUAL:'

Operation: Flags Affected:

if (CF) = 1 then None
(IP) - (IP) + disp (sign-extended
. to 16-bits)

Description:

JB (Jump on Be1ow)/JNAE (Jump on Not
Above or Equal) transfers control to the target
operand (IP + displacement) if the condition
(CF = 1) is below/not above or equal to the
tested value.

Encoding:

I 0111 001 0 I disp
' .. ".

'JB

JNAE

J BX J NAEOperands Clocks Transfers Bytes JBCodingExample
..

short-label 16 or 4 - 2 JB BELOW

2-84

J',BE

JNA

JUMP·ON BELOW
OR EQUAL

JUMP ON
NOT ABOVE

Operation: Flags Affected:

IF (CF) or (ZF) == 1 then None
(lP)-(IP) + disp (sign-extended

to 16-bits)

Description:

JBE (Jump on Below or Equal)/JNA (Jump
on Not Above) transfers control to the target
operand (IP + displacement) if the conditions
(CF or ZF = 1) are below or equal/or not
above the tested conditions.

Encoding:

I 0111 011 0 I disp

JBE

JNA

J13E1JNA Operands Clocks Transfers Bytes JNACoding Example
..

short-label 16 or 4 - 2 JNA NOT,-'.ABOVE
"

',2-85

JC JUMP ON CARRY JC

Operation: Flags Affected:

if (CF) = 1 THEN None
(lP) ~ (lP) + disp (sign-extended

to 16-bits)

Description:

JC (Jump on Carry) transfers control to the
target operand OP + displacement) on the con
dition CF = 1.

Encoding:

I 0111 001 0 I disp

JC Operands Clocks Transfers

short-label 16 or 4 -

2-86

Bytes

2

JiC Co(lHng Example

JCCAARY_SET

JCXZ JUMP IF ex
REGISTER ZERO

Operation: Flags Affected:

if (ex) = 0 then None
(lP) - (lP) + disp (sign-extended

to 16-bits)

Description:

JCXZ short-label

JeXZ (Jump if ex Zero) transfers control to
the target operand if ex is O. This instruction
is useful at the beginning of a loop to bypass
the loop if ex has a zero value, i.e., to execute
the loop zero times.

Encoding:

1111 00011 disp

JCXZ

JCXZ Operands Clocks Transfers Bytes
".'.

JCXZ Coding Example

short-label 18 or 6 - 2 JCXZ COUNT _DONE

2-87

JE
JZ

JUMP ON EQUAL

JUMP ON ZERO

Operation: Flags Affected:

if (ZF) = 1 then None
(IP) - (IP) + disp (sign-extended

to 16-bits)

Description:

JE (Jump on Equal)/JZ (Jump on Zero)
transfers control to the target operand (lP +
displacement) if the condition (ZF = 1) is
equal/zero on the tested value.

Encoding:

101110100 I disp

JE
JZ

JE/JZ Operands Clocks Transfers Bytes JZ Coding Example

short-label 16 or 4 - 2 JZ ZERO

2-88

JG
JNLE

JUMPON GREATER JG
JNLE JUMPON NOT

LESS OR EQUAL

Operation: Flags Affected:

if ((SF) = (OF)) & ((ZF) = 0) then None
(lP) ~ (IP) + disp (sign-extended

to 16-bits)

Description:

JG (Jump on Greater Than)/JNLE (Jump on
Not Less Than or Equal) transfers control to
the target operand (IP + displacement) if the
conditions «SF XOR OF) or ZF = 0) are
greater than/not less than or equal to the
tested value.

Encoding:

101111111 disp

JG/JNLE Operands Clocks Transfers

short-label 16or4 -

2-89

Bytes

2

JG Coding Example

JG GREATER·

JGE

JNL

JUMPON GREATER
OR EQUAL

JUMP ON NOT LESS

Operation: Flags Affected:

if.(SF) = (OF) 0 then None
(lP) - (lP) + disp (sign-extended

to 16-bits)

Description:

JGE (Jump on Greater Than or Equal)/ JNL
(Jump on Not Less Than) transfers control to
the target operand (lP + displacement) if the
condition (SF XOR OF = 0) is greater than or
equal/not less than the tested value.

Encoding:

I 011111 01 disp

JGE

:. JNL

JGE/JNL Operands Clocks Transfers Bytes JGE Coding Example

short-label 16 or 4 - 2 JGE GREATER __ EQ·UAL

2-90

JL JUMP ON LESS J L

JNGE JUMPONNOT JNGE
GREATER OR EQUAL

Operation: Flags Affected:

if (SF) =1= (OF) then None
(IP) - (IP) + disp (sign-extended

to 16-bits)

Description:

JL (Jump on Less Than)/ JNGE (Jump on Not
Greater Than or Equal), transfers control to
the target operand if the condition (SF XOR
OF = 1) is less than/not greater than or equal
to the tested value.

Encoding:

1011111001 disp

:

JL/JNGE Operands Clocks Transfers

short-label 16 or 4 -

2-91

Bytes JL Coding Example

2 JL LESS

JLE JUMPON LESS J LE
OR EQUAL

. .

JNG JUMP ON NOT GREATERJ NG

Operation: Flags Affected:

if ((SF) =1= (OF)) or ((ZF) = 1) then None
(IP) ~ (lP) + disp (sign-extended

to 16-bits)

Description:

JLE (Jump on Less Than or Equal to)/lNG
(Jump on Not Greater Than) transfers control
to the target operand (IP + displacement) if
the conditions tested «SF XOR OF) or ZF = 1)
are less than or equal tolnot greater than the
tested value.

Encoding:

I 0111111 0 I disp

JLE/JNG Operands Clocks Transfers

short-label 16 or 4 -

2-92

Bytes

2

IN'G Coding Example

JNG NOT_GREATER

J M P JUMP UNCONDITIONALLY J M P

Operation:

if Inter-Segment then (CS) ~ SEG
(IP) ~ DEST

Description:

JMP target

JMP unconditionally transfers control to the
target location. Unlike a CALL instruction,
JMP does not save any information on the
stack; no return to the instruction following
the JMP is expected. Like CALL, the address
of the target operand may be obtained from
the instruction itself (direct JMP), or from
memory or a register referenced by the instruc
tion (indirect JMP).

An intrasegment direct JMP changes the
instruction pointer by adding the relative
displacement of the target from the JMP
instruction. If the assembler can determine
that the target is within 127 bytes of the JMP,
it automatically generates a two-byte instruc
tion form called a SHORT JMP; otherwise, it
generates a NEAR JMP that can address a
target within ±32k. Intrasegment direct JMPS
are self-relative and appropriate in position-

Flags Affected:

None

independent (dynamically relocatable)
routines in which the JMP and its target are
moved together in the same segment.

An intrasegment indirect JMP may be made
either through memory or a 16-bit general
register. In the first case, the word content
referenced by the instruction replaces the
instruction pointer. In the second case, the
new IP value is taken from the register named
in the instruction.

An intersegment direct JMP replaces IP and
CS with values contained in the instruction.

An intersegmentindirect JMP may be made
only through memory. The first word of the
doubleword pointer referenced by the instruc
tion replaces IP and the second word replaces
CS.

• 2-93

J M P JUMP UNCONDITIONALLY J M P

Encoding:

Intra-Segment Direct:

1111 a 1 a a 1 1 disp-Iow 1 disp-high

DEST = (lP) + disp

Intra-Segment Direct Short:

1111 a 1 011 1 disp

DEST = (IP) + disp sign extended to 16-bits

Intra-Segment Indirect:

1111111111mod100r/ml

DEST = (EA)

Inter-Segment Direct:

1111 a 1 a 1 a 1 offset-low offset-high

seg-Iow seg-high

DEST = offset, SEG = seg

Inter-Segment Indirect:

11 1 111 11 t 1 mod 1 01 rIm 1

DEST = (EA), SEG = (EA + 2)

JMP Operands Clocks Transfers

short-label 15 -
near-label 15 -
far-label 15 -
memptr16 18+EA -
regptr16 11 -
memptr32 24+EA -

2-94

Bytes

2
3
5

2-4
2

2-4

JMP Coding Example

JMP SHORT
JMP WITHIN_SEGMENT
JMP FAR_LABEL
JMP [BX].TARGET
JMPCX
JMP OTHER.SEG [SI]

JNC JUMP ON NOT CARRY JNC
Operation: Flags Affected:

if (CF) = 0 THEN None
(lP) ~ (lP) + disp (sign-extended

to 16-bits)

Description:

JNC (Jump on Not Carry) transfers control to
the target operand (IP + displacement) on the
condition CF = o.

Encoding:

I 0111 0011 disp

JNC Operands Clocks Transfers

short-label 16 or 4 -

2-95

Bytes

2

JNC Coding Example

JNC NO_CARRY

JNE, J'UiMPON NOT EQUAL

JNZ JUMP ON NOT ZERO

Operation: Flags Affected:

if (ZF) = a then None
(IP) +- (IP) + disp (sign-extended

to 16-bits)

Description:

JNE (Jump on Not Equal toll JNZ (Jump on
Not Zero) transfers control to the target
operand (lP + displacement) if the condition
tested (ZF = 0) is true.

Encoding:

I 0111 01 01 disp

JNE
:JNZ

,JNE/JNZ Operands Clocks Transf.ers Bytes JNE Coding ExampJe

short-label 16or4 - 2 JNE NOT_EQUAL

2-96

JNO JUMP ON NOT
OVERFLOW JNO

Operation: Flags Affected:

if (OF) = 0 then None
(lP) - (IP) + disp (sign-extended

to 16-bits)

Description:

JNO (Jump on Not Overflow) transfers con
trol to the target operand (IP + displacement)
if the condition tested (OF = 0) is true.

Encoding:

101110001 disp

.JNO Operands Clocks Transfers

short-label 16 or 4 -

2-97

Bytes

2

J N O. Coding Example

JNO NO_OVERFLOW

JNS JUMPON NOT SIGN JNS

Operation: Flags Affected:

if (SF) = 0 then None
(lP) +- (IP) + disp (sign-extended

to 16-bits)

Description:

JNS (Jump on Not Sign) transfers control to
the target operand (IP + displacement) when
the tested condition (SF = 0) is true.

Encoding:

I 01111 001 disp

JNS Operands· Clocks Transfers

short-label 16or4 -

2-98

Bytes

2

JNS Coding Example

JNS POSITIVE

JNP
JPO

JUMP ON NOT PARITY

JUMP ON PARITY ODD

Operation: Flags Affected:

if (PF) = 0 then None
(IP) +- (IP) + disp (sign-extended

to 16-bits)

Description:

JNP (Jump on Not Parity)IJPO (Jump on
Parity Odd) transfers control to the target
operand if the condition tested (PF = 0) is true.

Encoding:

I 011 1 1 0 1 1 d isp

JNP
JPO

JNP/JPO Operands Clocks Transfers Bytes JPO Coding Example

short...;label 16or4 - 2 JPO ODD_PARITY

2-99

JO JUMP ON OVERFLOW

Operation: Flags Affected:

if (OF) = 1 then None
(IP) +- (lP) + disp (sign-extended

to 16-bits)

Description:

JO (Jump on Overflow) transfers control to
the target operand (IP + displacement) if the
tested condition (OF = 1) is true.

Encoding:

I 0111 0000 I disp

JOOperands . Clocks Transfers

short.:.label 16 or 4 -

Bytes

2

JO Coding. Example

JOSIG NED_OVERFLOW

JP
JPE

JUMPON PARITY

JUMP ON PARITY EQUAL

Operation: Flags Affected:

if (PF) = 1 then None
(IP) ~ (lP) + disp (sign-extended

to 16-bits)

Description:

JP (Jump on Parity)/ JPE (Jump on Parity
Equal) transfers control to the target operand
(IP + displacement) if the condition tested (PF
= 1) is true.

Encoding:

I 01111 01 0 I disp

JP
JPE

JP/JPE Operands Clocks Transfers Bytes JPE Coding Example

short-label 16 or 4 - 2 JPE EVEN_PARITY

.2-101

JS JUMP ON SIGN JS
Operation: Flags Affected:

if (SF) = 1 then None
(IP) +- (lP) + disp (sign-extended

to 16-bits)

Description:

JS (Jump on Sign) transfers control to the
target operand (rp + displacement) if the
tested condition (SF = 1) is true.

Encoding:

I 01111 000 I disp

JS Operands Clocks Transfers

short-label 16 or 4 -

2-102

Bytes

2

JS Coding Example

JS NEGATIVE

LAHF LOAD REGISTER AH
FROM FLAGS

Operation:

(AH) - (SF):(ZF):X:(AF):X:(PF):X:(CF)

Description:

LAHF (load register AH from flags) copies
SF, ZF, AF, PF and CF (the 8080/8085 flags)
into bits 7, 6, 4, 2 and 0, respectively, of
register AH. The content of bits 5, 3 and 1 is
undefined; the flags themselves are not
affected. LAHF is provided primarily for con
verting 8080/8085 assembly language pro
grams to run on an 8086 or 8088.

Encoding:

110011111 I

Flags Affected:

None

LAHF

LAHF Operands Clocks Transfers Bytes LAHFCoding Example.

(no operands) 4 - 1 LAHF

2-103

lDS·LOAO POINTER USING OS ,LDS

Operation:

(REG) - (EA)
(DS) - (EA + 2)

Description:

LOS destination,source

LDS (load pointer using DS) transfers a 32-bit
pointer variable from the source operand,
which must be a memory operand, to the des
tination operand and register DS. The offset
word of the pointer is transferred to the des
tination operand., which may be any 16-bit
general register. The segment word of the

Encoding:

1110 0 0 1 01 1 mod reg rIm 1

Flags Affected:

None

pointer is transferred to register DS. SpeCify
ing Sf as the destinatiort operand is a conve~
nient way to prepare, to process a source string
that is not in 'the current data segment (string
instructions assume tha:i the source string is
located in the current data segment and that SI
contains the offset of the string).

if mod = 11 then undefined operation

LOS Operands " Clocks Transfers Bytes LOS Coding Example

reg16, mem32 ' 24+ EA 2 2-4 LDS SI,DATA.SEG [.DI]

2-104

LEA LOAD EFFECTIVE
ADDRESS

LEA
Operation:

(REG) - EA

Description:

LEA destination,source

LEA (load effective address) transfers the off
set of the source operand (rather than its
value) to the destination operand. The source
operand must be a memory operand, and the
destination operand must be a 16-bit general

Encoding:

11 00011 01 1 mod reg rIm 1

Flags Affected:

None

register. LEA does not affect any flags. The
XLA T and string instructions assume that cer
tain registers point to operands; LEA can be
used to load these registers (e.g., loading BX
with the address of the translate table used by
the XLAT instruction).

if mod = 11 then undefined operation

LEA Operands Clocks Transfers Bytes LEA Coding Example

reg16, mem16 2+EA - 2-4 LEA BX,[BP] [DI]

2-105

L··'>E':S· .. ' "" ~ :< ';
LOAD",POJNT:ER USI;NG ES lES

Operation:

(REG) - (EA)
(ES) - (EA + 2)

Description:

LES destination, source

'" :" .' ':

LES (lOCld po.intef'using ES) transfers <l,32-bit
po~nter',yariable, frOm the source operand,
which must be.a meqlOry operand, to the des
tination'operimd and register ES. The. offset
worq of, tbe pointer is transferred to the des
tination operand, which. may ;be any 16-qit
general register. The segment word of the

Encoding:

111 0001 00 1 mod reg rIm 1

Flags Affected:

None

pointer is transferred to, register ES. S,pecifying
DI as the destination ,operand is a convenient
way to prepare to prOcess a. destination string
that is not, in the current extra segment. (The
cjestination stringmllst be located in the extra
segment, and DI must' contain the offset of the
string.)

if mod = 11 then undefined operation, "

..

:LESOp,erands, ' Clocks: TransJ~rs aytes. LES Coding. Example

reg16,mem3,g, .•.... 24+EA .2 ,2:-4 LES DI,[BX~~TEXT_BUFF
..... . ~

4-106

LOCK LOCK THE BUS LOCK
Operation:

None

Description:

LOCK is a one-byte prefix that causes the 8088
(configured in maximum mode) to assert its
bus LOCK signal while the following instruc
tion executes. LOCK does not affect any flags.

The instruction most useful in this context is
an exchange register with memory. A simple
software lock may be implemented with the
following code sequence:

Encoding:

11110000

Flags Affected:

None

Check: MOV
LOCK XCHG

TEST
JNZ

AL1
Sema,AL
AL,AL
Check

MOV Sema,O

;set AL to 1 (implies locked)
;test and set lock
;set flags based on AL
;retry if lock already set

;clear the lock when done

The LOCK prefix may be combined with the
segment override and/or REP prefixes.

LOCK Operands Clocks Transfers Bytes LOCK Coding Example

(no operands) 2 - 1 LOCK XCHG FLAG,AL

2-107

LODS LOAD STRING
(BYTE OR WORD)

LODS
Operation:

(DEST) +- (SRC)
if (OF) = 0 then (SI) - (SI) + DELTA
else (SI) +- (SI) - DELTA

Description:

LODS source-string

LODS (Load String) transfers the byte or word
string element addressed by SI to register AL
or AX, and updates SI to point to the next ele
ment in the string. This instruction is not ordi
narily repeated since the accumulator would be

Encoding:

11010110wl

Flags Affected:

None

overwritten by each repetition, and only the
last element would be retained. However,
LODS is very useful in software loops as part
of a more complex string function built up
from string primitives and other instructions.

if w = 0 then SRC = (SI), DEST = AL, DELTA = 1
else SRC = (SI) + 1 :(SI), DEST = AX, DELTA = 2

LaDS Operands Clocks* Transfers Bytes LaDS Coding Example

source-string 12(16) 1 1 LODS CUSTOMER~NAME
(repeat) source-string 9 + 13(17)/rep 1 I rep ... 1 REP LODS NAME

. *b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-108

lOOP LOOP LOOP
Operation:

(ex) ~ (ex) -1
if (ex) =1= 0 then

Flags Affected:

(IP) ~ (IP) + disp (sign-extended
to 16-bits)

Description:

LOOP short-label

LOOP decrements ex by 1 and transfers con
trol to the target operand if ex is not 0;
otherwise the instruction following LOOP is
executed.

Encoding:

1111 0001 0 1 disp

None

LOOP Operands Clocks Transfers Bytes

short-label 17/5 - 2

2-109

LOOP Coding Example

LOOPAGAIN.

LOOPE

LOOPZ

LOOPWHILE
EaUAL

LOOPWHILE
ZERO

LOOPZ

Operation: Flags Affected:

(ex) - (ex) -1 None
if (ZF) = 1 and (eX) =1= 0 then

(lP) - (lP) + disp (sign-extended
to 16-bits)

Description:

LOOPE/LOOPZ short-label

LOOPE and LOOPZ (Loop While Equal and
Loop While Zero) are different mnemonics for
the same instruction (similar to the REPE and
REPZ repeat prefixes). ex is decremented by
1, and control is transferred to the target
operand if ex is not 0 and if ZF is set;
otherwise the instruction following LOOPEI
LOOPZ is executed.

Encoding:

1111 00001 disp

LOOPE/LOOPZ Operands Clocks Transfers

short-label 18 or 6 -

2-110

Bytes

2

LOOPE Coding Example

LOOPE AGAIN

lOOPNZ

lOOPNE

LOOPWHILE
NOT ZERO

LOOPWHILE
NOT EQUAL

lOOPNE

Operation: Flags Affected:

(ex) +- (ex) -1 None
if (ZF) = a and (eX) "* a then

(IP) +- (lP) + disp (sign-extended
to 16-bits)

Description:

LOOPNE/LOOPNZ short-label

LOOPNE and LOOPNZ (Loop While Not
Equal and Loop While Not Zero) are also
synonyms for the same instruction. ex is
decremented by 1, and control is transferred to
the target operand if ex is not 0 and if ZF is
clear; otherwise the next sequential instruction
is executed.

Encoding:

1111 0 a a a a 1 disp

LOOPNE/LOOPNZ Operands Clocks Transfers

short-label 19 or 5 -

2-111

Bytes

2

LOOPNE Coding Example

LOOPNE AGAIN

MOV MOVE (BYTE OR WORD) MOV

Operation:

(DEST) +- (SRC)

Flags Affected:

Description:

MOV destination,sou(ce

MOVE transfers a byte or a word from the
source operand to the destination operand.

Encoding:

None

Memory or Register Operand to/from Register Operand:

1100010 d w 1 mod reg rIm 1

if d = 1 then SRC = EA, DEST = REG
else SRC = REG, DEST = EA

Immediate Operand to Memory or Register Operand:

11 1 00011 w 1 mod 000 rIm 1 data data if w=1

SRC = data, DEST = EA

Immediate Operand to Register:

11 011 w reg 1 data I· data if w=1

SRC = data, DEST = REG

2-112

MOV MOVE (BYTE OR WORD) MOV

Encoding:

Memory Operand to Accumulator:

11 01 0000 w 1 addr-Iow 1 addr-high
if w = 0 then SRC = addr, DEST = AL
else SRC = addr + 1 :addr, DEST = AX

Accumulator to Memory Operand:

11 01 0001 w 1 addr-Iow 1 addr-high
if w = 0 then SRC = AL, DEST = addr
else SRC = AX, DEST = addr + 1 :addr

Memory or Register Operand to Segment Register:

11 0001 1 1 0 Imod 0 reg r I ml
if reg "* 01 then SRC = EA, DEST = REG
else undefined operation

Segment Register to Memory or Register Operand:

11 00011 00 Imod 0 reg r I ml
SRC = REG,DEST = EA

MOV Operands Clocks* Transfers Bytes MOV Coding Example

memory, accumulator 10(14) 1 3 MOV ARRAY [SI], AL
accumulator, memory 10(14) 1 3 MOV AX, TEMP~RESUL T
register, register 2 - 2 MOVAX,CX
register, memory 8(12) + EA 1 2-4 MOV BP, STACK_TOP
memory, register 9(13) + EA 1 2-4 MOV COUNT [DI], CX
register, immediate 4 - 2-3 MOVCL,2
memory, immediate 10(14)+EA 1 3-6 MOV MASK [BX] [SI], 2CH
seg-reg, reg16 2 - 2 MOV ES, CX
seg-reg, mem16 8(12) + EA 1 2-4 MOV DS, SEGMENT_BASE
reg16, seg-reg 2 - 2 MOV BP, SS
memory, seg-reg 9(13) + EA 1 2-4 MOV [BX],SEG_SAVE, CS

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-113

MOVS MOVE STRING· MOVS
Operation:

(DEST) - (SRC)

Flags Affected:

Description:

M ovs des tina tion:'string, source-string

MOVS (Move String) transfers a byte or a
word from the source string (addressed by SI)
to the destination string (addressed by DI) and
updates SI and DI to point to the next string
element. When used in conjunction with REP,
MOVS performs a memory-to-memory block
transfer.

Encoding:

I 101 001 O,VV I
. '.

None

if VV = 0 thenSRC = (SI), DEST = AL, DELTA =:1 .
else SRC =(SI) + 1:(SI), DEST = AX, DELTA = 2

MOVS Operands Clocks* Transfers Bytes
"

dest-string, source-string·. 18(26) 2 1
(repeaU.(jest-string,.s()urce~string 9 + 17(25) I rep 2/rep -1

MOVS Coding Example

MOVS L1NE_EDIT_DATA
REP MOVS SCREEN, BUFFER

*b(w): where b denotes the number of clock cycles for byte operands and w denotes the
number of clock cycles for word operands.

2-114

MUL MULTIPLY MUL
Operation:

(DES) - (LSRC) * (RSRC), where *
is unsigned multiply

if (EXT) = 0 then (CF) - 0
else (CF) -1; .,
(OF) - (CF)

Description:

MULsource

MUL (Multiply) performs an unsigned multi
plication of the source operand and the accum
ulator. If the source is a byte, then it is
multiplied by register AL, and the double
length result is returned in AH and AL. If the
source operand is a word, then it is multiplied
by register AX, and the double-length result is
returned in registers DX and AX. The oper-

Encoding:

111 1 1 0 1 1 w 1 mod 1 0 0 rIm 1

Flags Affected:

CF,OF.
AF, PF, SF, ZF undefined

ands are treated as unsigned binary numbers
(see AAM). If the upper half of the result (AH
for byte source, DX for word source) is non
zero, CF and OF are set; otherwise they are
cleared. When CF' and OF are set, they indi
cate that AH or DX contains significant digits
of the result. The content of AF, PF, SF and
ZF is undefined following execution of MUL.

if w = 0 then LSRC TAL, RSRC = EA, DEST = AX, EXT = AH
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = OX

MUL Operands, Clocks* Transfers Bytes MUL Coding Example

reg8 70-77. - 2 MULBL
reg16 118-113 - 2 MULCX
mem8 (76-83)+ EA 1 2-4 MUL MONTH [SI]
mem16. (128-143) + EA 1 2,.4 MULBAUD_RATE

:,

*b(w): where b c;lenotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

NEG NEGATE N'EG
Operation:

(EA) +- SRC - (EA)
(EA) +- (EA) +1 (affecting flags)

Description:

NEG destination

NEG (Negate) subtracts the destination
operand, which may he a byte or a word, from
o and returns the result tothe destination~ This
forms the two's complement of the number,
effectively reversing the sign of an integer. If
the operand is zero, its sign is not changed.

Encoding:

11111 011 w 1 mod 011 rIm I

if w = 0 then SRC = FFH
else SRC = FFFFH

Flags Affected:

AF, CF, OF, PF, SF, ZF·

Attempting to negate a 'byte conuiining -128
or a word containing -32,768 causes no
change to the operand 'and sets OF. NEG
updatesAF, CF, OF, PF, SF and ZF. CF is
always set except when the operarid is' zero, in
which case it is cleared. "

NEG Operands Clocks* Transfers Bytes NEG Coding Example

register 3 .' 2 ·NEG AL -
memory 16(24)+ EA 2 2;.4 NEG MULTIPLIER ' ... ··1

", -"- I'

* b(w): where b Clenotes the number of clock cycles for byte operandsan'd
w denotes the number ofclbck 'cycles for liVord operands. '

2-116

NOP NO OPERATION NOP
Operation: Flags Affected:

None

Description:

NOP

NOP (No Operation) causes the CPU to do
nothing. NOP does not affect any flags.

Encoding:

"\1 0 0 1 0 0 0 0 \

.

NOP Operands Clo,cks Transfers

(no operands) 3 , -
".

2-1'17

None

Bytes' NOP Coding Example.

1 ". NOP
" .

NOT LOGICAL NOT NOT
Operation: Flags Affected:

(EA) +- SRC - (EA)

Description:

NOT destination

NOT inverts the bits (forms the one's comple
ment) of the byte or word operand.

Encoding:

11 1 1 1 0 1 1 w 1 mod 0 1 0 r / m I
if w = 0 then SRC = FFH
else SRC = FFFFH

NOT Operands Clocks· Transfers

register 3 -
memory 16(24)+ EA 2

None

Bytes NOT Coding Example

- NOTAX
- ... NOT CHARACTER

*b(w): where b denotes the number of clock cycles for byte.operands and
w denotes the number of clock cycles for word operands.

2-118

OR LOGICA'L OR

Operation:

(DEST) ~ (LSRC) OR (RSRC)
(CF) ~ 0
(OF) ~ 0

Description:

OR destination,source

OR performs the logical "inclusive or" of the
two operands (byte' or word) and returns the '
result to the destination operand. A bit in the
result is set if either or both corresponding bits
in the original operands are set; otherwise the
result bit is cleared.

Flags Affected:

CF, OF, PF, SF, ZF.
AF undefined

2-119

OR

OR LOGI·CAL OR OR

Encoding:

Memory or Register Operand with Register Operand:

1 00001 0 d w 1 mod reg r / m 1

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand to Memory or Register Operand:

11 000000 w 1 mod 001 r / m 1 data 1 data if w=1

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

1 000011 0 w 1 data 1 data if w=1 1

if w = 0 then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

OR Operands Clocks* Transfers Bytes OR Coding Example

register, register 3 - 2 OR AL, BL
register, memory 9(13) + EA 1 2-4 OR OX, PORT _10 [01]
memory, register 16(24) + EA 2 2-4 OR FLAG_BYTE, CL
accumulator, immediate 4 - 2-3 OR AL, 01101100B
register, immediate 4 - 3-4 OR CX,01H
memory, immediate 17(25) + EA 2 3-6 OR [BX].CMO_WORO,OCFH

*b(w): where b denotes the number of clock cycles for byte operands and w
denotes the number of clock cycles for word operands.

OUT OUTPUT OUT
Operation:

(OEST) -- (SRC)

Description:

OUT port,accumulator

OUT transfers a byte or a word from the AL
register or the AX register, respectively, to an
output port. The port number may be speci
fied either with an immediate byte constant,
allowing access to ports numbered 0 through

Encoding:

Fixed Port:

11 11 0011 w 1 port

if w = 0 then SRC = AL, OEST = port
else SRC = AX, OEST = port + 1 :port

Variable Port:

11110111wl

if w = 0 then SRC = AL, OEST = (OX)
else SRC = AX, OEST = (OX) + 1 :(OX)

Flags Affected:

None

255, or with a number previously placed in
register DX, allowing variable access (by
changing the value in DX) to ports numbered
from 0 through 65,535.

OUT Operands Clocks* Transfers Bytes OUT Coding Example

immed8, accumulator 10(14) 1 2 OUT 44, AX
OX, accumulator 8(12) 1 1 OUT OX, AL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-121

POP PO:P

Operation:

(DEST) ~ ((SP) + 1 :(SP))
(SP) ~ (SP) + 2

Description:

POP destination

POP transfers the word at the current top of
stack (pointed to by SP) to the destination
operand, and then increments SP by two to
point to the new top of stack. POP can be used
to move temporary variables from the stack to
registers or memory.

Flags Affected:

None

2-122

POP

POP POP

Encoding:

Memory or Register Operand:

\1 0001111 \ mod 000 r / m \

DEST= EA

Register Operand:

\ 01 011 reg

DEST = REG

Segment Register:

\ 0 0 0 reg 1 1 1 \

if reg =F 01 then DEST = REG
else undefined operation

POP Operands Clocks·

register 12
seg-reg (CS illegal) 12
memory 25+EA

Transfers

1
1
2

POP

Bytes POP Coding Example

1 POP DX
1 POPDS

2-4 POP PARAMETER

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-123

POPF POP<FLAGS

Operation:

Flags +- ((SP) + 1 :(SP))
(SP) +- (SP) + 2

Description:

POPF

POPF transfers specific bits from the word at
the current top of stack (pointed to by register
SP) into the 8086/8088 flags, replacing
whatever values the flags previously contained
(see figure 2-3-2). SP is then incremented by
two to point to the new top of stack. PUSHF

Encoding:

100111'001

Flags Affected:

All

and POPF allow a procedure to save and
restore a calling program's flags. They, also
allow a program to change the setting of TF
(there is no instructiqn for. updating this flag
directly). The charigeis accomplished· by
pushing the flags, altering bit 8 of the memory
image and then popping the flags;

POPFOp'erarids Clocks Transfers Bytes POPF Coding Example

(no operands) 12 1 ' '1 POPF : .. '

2-124

PUSH PUSH

Operation:

(SP) ~ (SP) - 2
((SP) + 1 :(SP)) ~ (SRC)

Description:

PUSH source

PUSH decrements SP (the stack pointer) by
two and then tranfers a word from the source
operand to the top of stack now pointed to by
SP. PUSH often is used to place parameters
on the stack before calling a procedure; more
generally, it is the basic means of storing tem
porary data on the stack.

Flags Affected:

None

2-125

PUSH

PUSH PUSH

Encoding:

Memory or Register Operand:

11111 11 1 1 1 mod 1 1 a r / m 1

SRC= EA

Register Operand:

1 a 1 a 1 a reg

SRC = REG

Segment Register:

1 a a a reg 1 1 a 1

SRC = REG

PUSH Operands Clocks

register 15
seg-reg (CS legal) 14
memory 24+EA

Transfers Bytes

1 1
1 1
2 2-4

2-126

PUSH

PUSH Coding Example

PUSH SI
PUSH ES
PUSH RETURN_CODE [SI]

PUSHF PUSH FLAGS PUSHF
Operation:

(SP) +- (SP) - 2

Flags Affected:

((SP) + 1 :(SP)) +- Flags

Description:

PUSHF

PUSHF decrements SP (the stack pointer) by
two and then transfers all flags to the word at
the top of stack pointed to by SP. The flags
themselves are not affected.

Encoding:

1100111011

PUSHF Operands Clocks Transfers

(no operands) 14 1

2-127

None

Bytes PUSHF Coding Example

1 PUSHF

RCl ROTATE THROUGH
CARRY LEFT

Operation:

(temp) - COUNT
do while (temp)"* 0

(tmpcf) - (CF)
(CF) - high-order bit of (EA)
(EA) - (EA) * 2 + (tmpcf)
(temp) - (temp)-1

if COUNT = 1 then
if high-order bit of (EA) "* (CF)

then (OF)-1
else (OF) - 0

else (OF) undefined

Description:

RCL destination, count

RCL (Rotate through Carry Left) rotates the
bits in the byte or word destination operand to
the left by the number of bits specified in the
count operand. The carry flag (CF) is treated
as "part of" the destination operand; that is,
its value is rotated into the low-order bit of the
destination, and itself is replaced by the high
order bit of the destination .

. 1;',

Flags Affected:

CF,OF

2-128

RCb

RCL ROTATE THROUGH
CARRY LEFT

RCL

Encoding:

111 a 1 a a v w 1 mod 01 Or 1 m 1

if v = 0 then COU NT = 1
else COUNT = (CL)

RCL Operands Clocks·

register 1, 2
register, CL 8+4/bit
memory, 1 15(23) + EA
memory, CL 20(28) + EA + 41 bit

Transfers Bytes RCL Coding Example

- 2 RCL CX, 1
- 2 RCLAL, CL
2 2-4 RCL ALPHA, 1
2 2-4 RCL [BP].PARAM,CL

*b(w): where b denotes the numberof clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-129

RCR ROTATE THROUGH. RCR
CARRY RIGHT

Operation:

(temp) ~ COUNT
do while (temp) =1= 0

(tmpcf) ~ (CF)

Flags Affected:

(CF) ~ low-order bit of (EA)
(EA) ~ (EA) I 2
high-order bit of (EA) ~ (tmpcf)
(temp) ~ (temp)-1

if COUNT = 1 then
if high-order bit of (EA) =1= next

to-high-order bit of (EA)
then (OF) ~ 1

else (OF) ~ 0
else (OF) undefined

Description:

RCR destination, count

RCR (Rotate through Carry Right) operates
exactly like RCL except that the bits are
rotated right instead of left.

Encoding:

11101 OOvw Imod 011 r/ml

if v = 0 then COUNT = 1
else COUNT = (CL)

CF, OF

RCR Operands Clocks Transfers Bytes

register, 1 2 - 2
register, CL 8+4/bit - 2
memory, 1 15(23) + EA 2 2-4
memory, CL 20(28)+ EA+4/bit 2 2-4

RCR Coding Example

RCR BX, 1
RCR BL, CL
RCR [BX].STATUS, 1
RCR ARRAY [01], CL'

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-130

REP REPEAT REP
REPE/REPZ REPE/REPZ

REPEAT WHILE EQUAL/
REPEAT WHILE ZERO

REPNE/REPNZREPNE/REPNZ
REPEAT WHILE NOT EQUAL/

REPEAT WHILE NOT ZERO

Operation: Flags Affected:

do while (CX)"* 0 None
service pending interrupt (if
any) execute primitive string

operation in succeeding byte
(CX) - (CX)-1
if primitive operation is CMPB,

CMPW, SCAB, or SCAW and
. (ZF)"* z then exit from
. while loop

2-131

REP REPEAT REP
REPE/REPZ REPE/REPZ

REPEAT WHILE EQUALl
REPEAT WHILE ZERO

REPNE/REPNZREPNE/REPNZ
REPEATWHILE NOT EQUAL/

REPEAT WHILE NOT ZERO

Description:

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While
Zero, Repeat While Not Equal and Repeat
While Not Zero are mnemonics for two forms
of the prefix byte that controls subsequent
string instruction_ repetition. The different
mnemonics are provided to improve program
clarity. The repeat prefixes do not affect the
flags.

REP is used in conjunction with the MOVS
(Move String) and STOS (Store String)
instructions and is interpreted as "repeat while
not end-of-string" (CX not 0). REPE and
REPZ operate identically and are physically
the same prefix byte as REP. These instruc
tions are used with the CMPS (Compare
String) and SCAS (Scan String) instructions
and require ZF (posted by these instructions)
to be set before initiating the next repetition.
REPNE and REPNZ are mnemonics for the
same prefix byte. These instructions function
the same as REPE and REPZ except that the
zero flag must be cleared or the repetition is
terminated. ZF does not need to be initial
ized before executing the repeated string
instruction.

Repeated string sequences are interruptable;
the processor will recognize the interrupt
before processing the next· string element.
System interrupt processing is not affected in
any way .. Upon return froin the interrupt, the
repeated operation is resumed from the point
of interruption. However, execution does not
resume properly if a second or third prefix
(i.e., segment override or LOCK) has been
specified in addition to any of the repeat
prefixes. At interrupt time, the processor
"remembers" only the prefix that immediately
precedes the string instruction. After returning
from the interrupt, processing resumes, but
any additional prefixes specified are not in
effect. If more than one prefix must be used
with a string instruction, interrupts may be
disabled for the duration of the repeated exe
cution. However, this will not prevent a non
maskable interrupt from being recognized.
Also, the time that the system is unable to
respond to interrupts may be unacceptable if
long strings are being processed.

2-132

REP

Encoding:

11111001z I

REP Operands

(no operands)

REPE/REPZ Operands

(no operands)

REPNE/REPNZ Operands

(no operands)

REPEAT REP

Clocks Transfers Bytes REP Coding Example

2 - 1 REP MOVS DEST, SRCE

Clocks Transfers Bytes REPE Coding Example

2 - 1 REPE CMPS DATA, KEY

Clocks Transfers Bytes REPNE Coding Example

2 - 1 REPNE SCAS INPUT_LINE

2-133

RET RETURN RET
Operation:

(lP) - ((SP)=1 :(SP))
(SP) - (SP) + 2
if Inter-Segment then

(CS) - ((SP) + 1 :(SP))
(SP) - (SP) + 2

if Add Immediate to Stack Pointer
then (SP) - (SP) + data

Description:

RET optional-pap-value

RET (Return transfers control from a pro
cedure back to the instruction following the
CALL that activated the procedure. The
assembler generates an intrasegment RET if
the programmer has defined the procedure
NEAR, or an inter segment RET if the pro
cedure has been defined as FAR. RET pops
the word at the top of the stack (pointed to by
register SP) into the instruction pointer and

Flags Affected:

None

increments SP by two. If RET is intersegment,
the word at the new top of stack is popped into
the CS register, and SP is again incremented
by two. If an optional pop value has been
specified, RET adds that value to SP. This
feature may be used to discard parameters
pushed onto the stack before the execution of
the CALL instruction.

2-134

RET

Encoding:

Intra-Segment:

1110000111

RETURN RET

Intra-Segment and Add Immediate to Stack Pointer:

11 1 00001 0 1 data-low

Inter-Segment:

1110010111

data-high

Inter-Segment and Add Immediate to Stack Pointer:

111 001 01 0 1 data-low data-high

RET Operands .' Clocks Transfers Bytes RET Coding Example

(intra-segm~nt,no pop) 20 1 ' 1 RET
(intra-segment, 'pop)' 24 1 3 HET4
(inter'-segment, no pop) . 32 2 1 RET

. (inter'-segment;,pop) . 31 :2 '; 3 RET2 .' .

. 2-135

ROL ROTATE LEFT ROL
Operation:

(temp) - COUNT
do while (temp) 1= 0

Flags Affected:

(CF) - high-order bit of (EA)
(EA) - (EA) * 2 + (CF)
(temp) - (temp)-1

if COUNT = 1 then
if high-order bit of (EA) 1= (CF)

then (OF)-1
else (OF) - 0

else (OF) undefined

Description:

ROL destination, count

ROL (Rotate Left) rotates the destination byte
or word left by the number of bits specified in
the count operand.

Encoding:

11101 OOvw ImodOOOr/ml

if v = 0 then COUNT = 1
else COUNT= (CL) '"

CF,OF

ROL Operands Clocks* Transfers Bytes
."

register; 1 2 " -. 2
register, CL 8+4/bit - 2
memory, 1 ,15(23) + EA 2 2-4 .
memory, CL 20(28) + EA + 41 bit 2 2-4

ROL Coding Example

ROL BX; ,1
ROLDI, CL
ROL FLAG-,-BYTE [DI], 1
ROL ALPHA"GL

, ,

*b(w): where b denotes the number of clock cycles for byte, operands and
, w denotes the number of clock cycles for word.operands.. .," ..

ROR ROTATE RIGHT ROR
Operation:

(temp) - COUNT
do while (temp) =1= 0

Flags Affected:

(CF) - low-order bit of (EA)
(EA) - (EA) I 2
high-order bit of (EA) - (CF)
(temp) - (temp)-1

if COUNT = 1 then
if high-order bit of (EA) =1= next

to-high-order bit of (EA)
then (OF)-1

else (OF) - 0
else (OF) undefined

Description:

ROR destination, count

ROR (Rotate Right) operates similar to ROL
except that the bits in the destination byte or
word are rotated right instead of left.

Encoding:

11101 00 v w 1 mod 001 rim 1

if v = 0 then COU NT = 1
else COUNT = (CL)

CF,OF

ROR Operand Clocks* Transfers Bytes

register, 1 2 - 2
register, CL 8+4/bit - 2·
memory, 1 15(23)+ EA 2 2-4
memory, CL 20(28) + EA + 41 bit 2 2-4

ROR Coding Example

ROR AL, 1
ROR BX, CL
ROR PORT_STATUS, 1
ROR CMD-,-WORD, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-137

SAHF STORE REG ISTER··AH
INTO FLAGS

Operation:

(SF):(ZF):X:(AF):X:(PF):X:(CF) +- (AH)

Description:

SAHF

SAHF (store register AH into flags) transfers
bits 7, 6, 4, 2 and a from register AH into SF,
ZF, AF, PF and CF, respectively, replacing
whatever values these flags previously had.
OF, DF, IF and TF are not affected. This
instruction is provided for 8080/8085
compatibility.

Encoding:

1100111101

.

Flags Affected:

AF, CF, PF, SF, ZF

!

SAHF

SAHFOperands Clocks Transfers Bytes SAHFCoding Example

(no operands) '. 4 . - 1 SAHF

2-138

SAL
SHL

SHIFT ARITHMETIC LEFT

SHIFT LOGICAL LEFT

Operation:

(temp) +- COUNT
do while (temp) =1= 0

(CF) +- high-order bit of (EA)
(EA) +- (EA) * 2
(temp) +- (temp)-1

if COUNT = 1 then
if high-order bit of (EA) =1= (CE)

then (OF) +-1
else (OF) +- 0

else (OF) undefined

Description:

SHL/SAL destination, count

SHL and SAL (Shift Logical Left and Shift
Arithmetic Left) perform the same operation
and are physically the same instruction. The
destination byte or word is shifted left by the
number of bits specified in the count operand.
Zeros are shifted in on the right. If the sign bit
retains its original value, then OF is cleared.

2-139

Flags Affected:

CF, OF, PF, SF, ZF.
AF undefined

SAL
SHL

SAL
SHL

SHIFT ARITHMETIC LEFT SAL
SHIFT LOGICAL LEFT SH L

Encoding:

111 01 00 v w I modi 00 r / m I
if v = 0 then COUNT = 1
else COUNT = (Cl)

SAL/SHL Operands Clocks·

register, 1 2
register, CL 8+ 4/bit
memory, 1 15(23) + EA
memory, CL 20(28)+ EA+4/bit

Transfers Bytes SAL/SHLCoding Example

- 2 SAL AH, 1
- 2 SHL DI, CL
2 2-4 SHL [BX].OVERDRAW, 1
2 2-4 SAL STORE_COUNT, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-140

SAR SHIFT ARITHMETIC
RIGHT

SAR
Operation:

(temp) - COUNT
do while (temp) =1= 0

(CF) +- low-order bit of (EA)
(EA) - (EA) I 2, where I is

equivalent to signed division,
rounding down

(temp) +- (temp)-1
if COUNT = 1 then

if high-order bit of (EA) =1= next
to-high-order bit of (EA)
then (OF)-1

else (OF) +- 0
else (OF) +- 0

Description:

SAR destination, count

SAR (Shift Arithmetic Right) shifts the bits in
the destination operand (byte or word) to the
right by the number of bits specified in the
count operand. Bits equal to the original high
order (sign) bit are shifted in on the left,
preserving the sign of the original value. Note
that SAR does not produce the same result as
the dividend of an "equivalent" IDIV instruc-

Flags Affected:

CF, OF, PF, SF, ZF.
AF undefined

tion if the destination operand is negative and
1-bits are shifted out. For example, shifting-5
right by one bit yields -3, while integer divi
sion -5 by 2 yields -2. The difference in the
instructions is that IDIV truncates all numbers
toward zero, while SAR truncates positive
numbers toward zero and negative numbers
toward negative infinity.

2-141

SAR SHIFT ARITHMETIC
RIGHT

SAR

Encoding:

111 01 00 v w 1 mod 111 r / m 1

if v = 0 then COU NT = 1
else COUNT = (CL)

SAR Operands Clocks·

register, 1 2
register, CL 8+4/bit
memory, 1 15(23) + EA
memory, CL 20(28)+ EA+4/bit

Transfers Bytes SAR Coding Example

- 2 SAR DX, 1
- 2 SAR DI, CL
2 2-4 SAR N_BLOCKS, 1
2 2-4 SAR N_BLOCKS, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-142

SBB SUBTRACT WITH
BORROW

SBB
Operation:

if (CF) = 1 then (DEST) = (LSRC) -
(RSRC) -1

else (DEST) +- (LSRC) - (RSRC)

Description:

SBB destination, source

SBB (Subtract with Borrow) subtracts the
source from the destination, subtracts one if
CF is set, and returns the result to the destina
tion operand. Both operands may be bytes or
words. Both operands maybe· signed or

Flags Affected:

2-143

AF, CF, OF, PF, SF, ZF

unsigned binary numbers (see AAS and DAS).
SBB updates AF, CF, OF, PF, SF, and ZF.
Since it incorporates a borrow from a
previous operation, SBB may be used to write
routines that subtract numbers longer than 16
bits. .

SBB

Encoding:

SUBTRACT WITH
BORROW

SBB

Memory or Register Operand and Register Operand:

100011 0 d w 1 mod reg rIm 1

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand from Memory or Register Operand:

1100000 sw 1 mod 011 rIm 1 data Idata if s:w=Ol!

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand from Accumulator:

! 00011 1 0 w ! data ! data if w=1 1

if w = 0 then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

SBB Operands Clocks* Transfers Bytes

register, register 3 - 2
register, memory 9(13) + EA 1 2-4
memory, register 16(24) + EA 2 2-4
accumulator, immediate 4 - 2-3
register, immediate 4 - 3-4
memory, immediate 17(25) + EA 2 3-6

SBB Coding Example

SBB BX, CX
SBB 01, [BX].PAYMENT
SBB BALANCE, AX
SBB AX, 2
SBB Cl, 1
SBB COUNT [SI], 10

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-144

SCAS SCAN (BYTE OR
WORD) STRING

SCAS

Operation:

(LSRC) - RSRC)
if (OF) = 0 then (01) - (01) + OEL TA
else (01) - (01) - OEL TA

Description:

seAS destination-string

seAS (Scan String) subtracts the destination
string element (byte or word) addressed by DI
from the content of AL (byte string) or AX
(word string) and updates the flags, but does
not alter the destination string or the accum
ulator. SeAS also updates DI to point to the
next string element and AF, CF, OF, PF, SF
and ZF to reflect the relationship of the scan
value in ALI AX to the string element. If

Encoding:

11010111wl

Flags Affected:

AF, CF, OF, PF, SF, ZF

seAS is prefixed with REPE or REPZ, the
operation is interpreted as "scan while not
end-of-string (CX not 0) and string-element =
scan-value (ZF = 1)." This form may be used
to scan for departure from a given value. If
SCAS is prefixed with REPNE or REPNZ, the
.operation is interpreted as "scan while not
end-of-string (CX not 0) and string-element is
not equal to scan-value (ZF = 0)." This form
may be used to locate a value in a string.

if w = 0 then LSRC = AL, RSRC = (01), OEL TA = 1
else LSRC = AX, RSRC = (01) + 1 :(01), OEL TA = 2

SCAS Operands Clocks· Transfers Bytes SCAS Coding Example

dest-string 15(19) 1 1 SCAS INPUT_LINE
(repeat) dest-string 9+15(19)/rep 1/rep 1 REPNE SCAS BUFFER\

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-145

SHIFT lOGICAL· BIGHT

Operation:

(temp) +- COUNT
do while (temp) =1= 0

CF) +- low-order bit of (EA
(EA) +- (EA) / 2, where / is

equivalent to unsigned
division

(temp) +- (temp)-1
if COUNT = 1 then

if high-order bit of (EA) =1= next
to-high-order bit of (EA)
then (OF) +-1

else (OF) +- 0
else (OF) undefined

. D~seription:

. SHR destinatiOn; source

SHR(Shift Logical R.ight) shifts the bits in the
destination operand (byte or wbrd) tOthe right
by the :llUlllberofbits specified in the count
operand. Zeros are shifted iri on iheleft.If the
sign bit retains its original value,then 0Fis
cleared.

Flags A ffeeted:

CF, OF, PF, SF, ZF:·
'AFundefined

. 2-146

SHR

SHR SHIFT LOGICAL RIGHT SHR

Encoding:

11 1 0 1 0 0 v w 1 mod 1 0 1 rIm 1
if v = 0 then COUNT = 1
e1se COU NT = (CL)

SHR Operandfi Clocks·

register, 1 2
register, CL 8+4/bit
memory, 1 15(23)+ EA
memory, CL 20(28) + EA + 41 bit

Transfers Bytes SHR Coding Example

- 2 SHR SI, 1
- 2 SHR SI, CL
2 2:-4 SHRID_BYTE [SI] [BX], 1
2 2-4 SHR INPUT_WORD, CL

*b(w): where b denotes the number of clock cycles for byte operands and
, w denote& the number of clock cycles for word operands.

2-147

STC SET CARRY, STC
Operation:

(CF) -1

Flags Affected:

Description:

STC

STC (Set Carry flag) sets CF to 1 and affects
no other flags.

Encoding:

111111001 I

.

STC Operands ... Clocks Transf~rs

(no operands) 2 " -

2-148

CF

.....

Bytes STC Coding Example

1 .. STC ..

STO SET DIRECTION FLAG

Operation:

(OF) +-1

Description:

STD

STD (Set Direction flag) sets DF to 1 causing
the string instructions to auto-decrement the
SI and/or DI index registers. STD does not
affect any other flags.

Encoding:

111111101

Timing: 2 clocks

Flags Affected:

OF

STO

STD Operands Clocks.: Transfers Bytes STD Coding Example

(no operands) 2 - 1 STO

2-149

STI ·SETINTERRUPT··
ENABLE FLAG

Operation:

(IF) -1

Description:

STI (Set Interrupt-enable flag) sets IF to 1,
enabling processor recognition of maskable
interrupt requests appearing on the INTR line.
Note however, that a pending interrupt will
not actually be recognized until the instruction
following STI has executed. STI does not
affect any other flags.

Encoding:

11111011

Flags Affected:

IF

STI

SnOperands Clocks· Transfers . Bytes STI Coding Example

(no operands) 2 - 1 STI
,.

2-150

STOS STORE {BYTEIORI
WORD) STRING

STOS
Operation:

(OEST) - (SRC)

Flags Affected:

if (OF) = 0 then (01) - (01) + OEL TA
else (01) - (01) - DELTA

Description:

STOS destination-string

STOS (Store String) transfers a byte or word
from register AL or AX to the string element
addressed by DI and updates DI to point to the
next location in the string. As a repeated
operation, STOS provides a convenient way
to initialize a string to a constant value (e.g., to
blank out a print line).

Encoding:

11010101wl

None

if w = 0 then SRC = AL, OEST = (01), DELTA = 1
else SRC = AX, OEST = (01) + 1 :(01), DELTA = 2

STOS Operands Clocks* Transfers Bytes

dest-string 11 (15) 1 1
(repeat) dest-string 9+10(14)/rep 1/rep 1

STOS Coding Example

STOS PRINT_LINE
REP STOS DISPLAY

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-151

SUB SUBTRACT

Operation:

(DEST) - (LSRC) - (RSRC)

Description:

SUB destination,source

The source operand is subtracted from the
destination operand, and the result replaces
the destination operand. The operands may be
bytes or words. Both operands may be signed
or unsigned binary numbers (see AAS and
DAS). SUB updates AF, CF, OF, PF, SF and
ZF.

Flags Affected:

AF, CF, OF, PF, SF,ZF

2-152

SUB

SUB SUBTRACT SUB

Encoding:

Memory or Register Operand and Register Operand:

1 001 01 0 d w 1 mod reg r / m ,

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand from Memory or Register Operand:

11 00000 s w 'mod 1 01 r / m , data 'data if s:w=01'

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand from Accumulator:

1 001 011 0 w , data 'data if w=1 ,

if w = 0 then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

SUB Operands Clocks* Transfers Bytes SUB Coding Example

register, register 3 - 2 SUB CX, BX
register, memory 9(13) + EA 1 2-4 SU B DX, MATH_TOTAL [SI[
memory, register 16(24) + EA 2 2-4 SUB [BP + 2], CL
accumulator, immediate 4 - 2-3 SUB AL, 10
register, immediate 4 - 3-4 SUB SI, 5280
memory, immediate 17(25) + EA 2 3-6 SUB [BPj.BALANCE, 1000

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-153

TEST

Operation:

(LSRC) & (RSRC)
(CF) +- 0
(OF) +- 0

Description:

TEST destination,source

TEST performs the logical "and" of the two
operands (byte or word), updates the flags, but
does not return the result, i.e., neither operand
is changed. If a TEST instruction is followed
by a JNZ (jump if not zero) instruction, the
jump will be taken if there are any correspond
ing I-bits in both operands.

Flags Affected:

2-154

CF, OF, PF, SF, ZF.
AF undefined

TEST

TEST TEST TEST

Encoding:

Memory or Register Operand with Register Operand:

11 00 0 0 1 0 w 1 mod reg r / m 1

LSRC = REG, RSRC = EA

Immediate Operand with Memory or Register Operand:

11111 011 w 1 mod 000 r / m 1 data data if w=1

LSRC = EA, RSRC = data

Immediate Operand with Accumulator:

11 01 01 00 w 1 data 1 data if w=1

if w = 0 then LSRC = AL, RSRC = data
else LSRC = AX, RSRC = data

TEST Operands Clocks Transfers

register, register 3 -
register, memory 9(13) + EA 1
accumulator, immediate 4 -
register, immediate 5 -
memory, immediate 11 + EA -

2-155

Bytes TEST Coding Example

2 TESTSI, DI
2-4 TEST SI, END_COUNT
2-3 TEST AL, 00100000B
3-4 TEST BX, OCC4H
3-6 TEST RETURN_CODE, 01 H

WAIT WAIT

Operation:

None

Description:

WAIT causes the CPU to enter the wait state
while its TEST line is not active. WAIT does
not affect any flags.

Encoding:

11 0011 011 1

Flags Affected:

None

WAIT

WAIT Operands Clocks Transfers Bytes I WAIT Coding Example

(no operands) 3+5n - 1 I WAIT

2-156

XCHG EXCHANGE XCHG
Operation:

(temp) ~ (DEST)
(DEST) ~ (SRC)
(SRC) ~ (temp)

Description:

XCHG destination, source

XCHG (exchange) switches the contents of the
source and destination (byte or word)
operands. When used in conjunction with the
LOCK prefix, XCHG can test and set a sema
phore that controls access to a resource shared
by multiple processors (see section 2.5).

Flags Affected:

None

2-157

XCHG EXCHANGE XCHG

Encoding:

Memory or Register Operand with Register Operand:

11000011 w 1 mod reg rIm I
SRC = EA, DEST = REG

Register Operand with Accumulator:

1 1 001 0 reg I
SRC = REG, DEST = AX

XCHG Operands Clocks* Transfers Bytes

accumulator, reg16 3 - 1
memory, register 17(25)+ EA 2 2-4
register, reg ister 4 - 2

XCHG Coding Example

XCHG AX, BX
XCHG SEMAPHORE,AX
XCHG AL, BL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-158

XLAT TRANSLATE XLAT
Operation:

AL ~ ((BX) + (AL))

Description:

XLAT translate-table

XLAT (translate) replaces a byte in the AL
register with a byte from a 256-byte, user
coded translation table. Register BX is
assumed to point to the beginning of the table.
The byte in AL is used as an index into the
table and is replaced by the byte at the offset in
the table corresponding to AL's binary value.

Encoding:

11010111

Flags Affected:

None

The first byte in the table has an offset of O.
For example, if AL contains 5H, and the sixth
element of the translation table contains 33H,
then AL will contain 33H following the
instruction. XLA T is useful for translating
characters from one code to another, the
classic example being ASCII to EBCDIC or
the reverse.

XLAT Operands Clocks Transfers Bytes XLAT Coding Example

source-table 11 1 1 XLAT ASCII_TAB

2-159

XOR EXCLUSIVE OR

Operation:

(DEST) +- (LSRC) XOR (RSRC)
(CF) +- 0
(OF) +- 0

Description:

XOR destination, source

XOR (Exclusive Or) performs the logical
"exclusive or" of the two operands and
returns the result to the destination operand. A
bit in the result is set if the corresponding bits
of the original operands contain opposite
values (one is set, the other is cleared); other
wise the result bit is cleared.

Flags Affected:

2-160

CF, OF, PF, SF, ZF.
AF undefined

XOR

XOR EXCLUSIVE OR XOR

Encoding:

Memory or Register Operand with Register Operand:

10011 00 d w I mod reg rIm I

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand to Memory or Register Operand:

11000000w Imod110r/ml data data if w=1

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

I 001 1 01 0 w I data I data if w=1 I
if w = 0 then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

XOR Operands Clocks* Transfers Bytes XOR Coding Example

register, register 3 - 2 XORCX, BX
register, memory 9(13) + EA 1 2-4 XOR Cl, MASK_BYTE
memory, register 16(24) + EA 2 2-4 XOR ALPHA [SI], DX
accumulator, immediate 4 - 2-3 XOR Al, 01000010B
register, immediate 4 - 3-4 XOR SI, 00C2H
memory, immediate 17(25) + EA 2 3-6 XOR RETURN_CODE, OD2H

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-161

iAPX 88 Hardware
Design

3

,.' ..

CHAPTER 3
HARDWARE DESIGN

INTRODUCTION

This chapter discusses the hardware design of
iAPX 88 systems. First, the pins and signals
of the 8088 CPU are functionally described
for simple, but powerful iAPX 88 systems.

The timings of 8088 signals are explained,
and how they cleanly interface the 8088 CPU
with the rest of the system.

Other parts of the iAPX 88 system are dis
cussed including, the clock generator, reset
and wait state circuits.

Interrupt handling follows, leading into a
description of maximum mode iAPX 88
systems.

8088 CPU Pin Functions

The functions of the 8088 CPU pms, are
categorized by these groups (Fig. 3-1):

1) Address
2) Data
3) Control and Status
4) Timing
5) Power/Ground

GND

AI.

AI3 A16/S3

AI2 A17JS4

Al1 AlB/55

AIO A19/S6

A9

AS MNIMX

AD7 jjjj

AD6 8088 HOLD

ADS
CPU

HlDA

AD. Wi'!

AD3 101M

AD2 DTIA

ADI DEN

ADO ALE

NMI INTA

INTR

elK READY

GND 21 RESET

Figure 3-1. 8088 CPU Pins

3-1

The number of pins in each group varies. The
only pin in the Timing group is the clock,
while others, such as the Address and Data
groups, use many pins and are multiplexed
with other functions.

The 8088 pins and their functions are briefly
described here. For more information, con
sult the iAPX 88/10 data sheet (see pg. 37 of
Appendix) and the iAPX 86, 88 Family
User's Manual.

ADDRESS AND DATA
The 8088 CPU uses 20 pins to directly
address up to one million bytes of memory.
Some address pins are mUltiplexed to also
function as data or status pins. Thus, the
8088 provides all necessary signals from a
40-pin package.

The address pins are discussed below in these
three groups:

1) ADo-AD7' Drives the lower eight address
bits and also the iAPX 88's 8~bit data bus.
2) AS-A 15. Address bits 8-15 ..
3) A 16-A 19. Drives the upper 4 bits of the
iAPX 88's 20 bit address bus; also generates
status signals.

ADO-AD7
Pins ADo through AD7 are time-multiplexed
in the iAPX 88 'system to serve as both
address and data lines (Fig. 3-2). At the
beginning of every machine cycle, the lower 8
address bits are driven on these pins. Later in
the machine cycle, these pins function as the
8-bit data bus. At this time, ADo-AD7 may
be inputs or outputs, depending on whether
the 8088 is reading or writing data to or from
the system.

These lines float to 3-state OFF during inter
rupt acknowledge and local bus "hold acknow
ledge."

HARDWARE DESIGN

As-A15
These pins drive the next 8 address bits on
the address bus. They are not multiplexed
with other signals and are valid during the
entire machine cycle. "

These lines float to 3-state OFF during inter
rupt acknowledge and local bus "hold acknow
ledge".

A 1S-A19
A 16through A 19 have two sets of functions.
First, at the beginning of each machine cycle,
these pins drive the upper 4 bits of the iAPX
88's 20-bit address bus. These 4 address bits,
(not provided by other 8-bit microproces
sors), together with the other 16-bits of
address, enable the iAPX 88 to directly
address I megabyte of memory. This is 16
times more than 8080, 8085, Z80; MC6800**
and MC6809**.

The second function of these four pins is to
provide status information. After the address
has been latched, pins A I6 and Al7 change
their function to status signals S3 and S4.
These two signals. can be decoded to deter
mine which memory segment is being acces
sed by the 8088 during the current machine
cycle (Fig. 3-3). This information could be
used to enable memory, such that each of the

8088
CPU

ALE

4 segments could have its own megabyte of
memory, extending the iAPX 88 memory
space to 4 megabytes.

Status line S5 gives the state of the interrupt
flag. S6 is always low. These status signals are
not necessary for normal operation of most
systems, but they can be useful for
diagnostics.

These lines float to 3-state OFF during inter
rupt acknowledge and local bus "hold acknow
ledge".

POWER
The 8088 should have pin 40 connected to
+5V, and pins I and 20 are ground. Decou-

.
53 54

0 0 Alternate (relative to the ES
segment)

1 0 Stack (relative to the SS segment)

0 1 Code/None (relative to the CS
segment or a default of zero)

1 1 Data (relative to the DS segment)

S5 = IF (interrupt enable flag)

S6 = 0 (indicates the 8088 is on the bus)

Figure 3-3. Decoding of Status Signals 53-56

8088
CPU

ALE

A15,~--~----------~
A8-A15

ADO-AD7 DRIVE ADDRESS EARLY AND DATA
LATE IN EACH BUS CYCLE.

Figure 3-2. Time Multiplexing of Address and Data

* Z80 is a registered trademark of ZiIog Corporation.
*'MC6800 and MC6809 are registered trademarks of Motorola Corporation. 3-2

HARDWARE DESIGN

pIing capacitors are recommended to reduce
the noise on the power and ground lines.

TIMING
Pin 19 is the clock input for basic timing of
the 8088. The maximum clock frequency is
5 MHz for the 8088, and 8 MHz for the
8088-2. The clock signal is usually generated
by the 8284A (see pg. 3-13).

CONTROL STATUS
These lines specify the type of machine cycle
occurring and control external logic.

RD. The Read line is an active LOW output,
which indicates when the CPU is reading data
from a memory or I/O device.

This signal floats to 3-state OFF during "hold
acknowledge" .

WR. The Write signal is an active LOW out
put, which indicates that the CPU is output
ting data onto the data bus to write it into a
memory or I/O device.

This signal floats to 3-state OFF during "hold
acknowledge" .

ALE. Address Latch Enable is an output that
latches the addresses on the iAPX 88's address
bus. This signal is usually connected to the
STB input of an 8282 latch, (Fig. 3-5).

The falling edge of ALE latches the address
on the system address bus to hold it through
out the entire machine cycle, even though
some of the 8088's address pins will change
their functions during this time. ALE never
floats.

IO/M. This output specifies whether the cur
rent machine cycle will address an 1/ Oor a
memory device (HIGH = I/O, LOW =
Memory). This signal is valid during the entire
machine cycle, and floats to 3-state OFF dur
ing "hold acknowledge".

RESET. Providing an orderly way to start or
restart an iAPX 88 system, reset is an active
HIGH input to the 8088, synchronized by the
8284A.

3-3

Reset causes the processor to immediately
terminate its present activity and to condition
the bus as shown in Fig. 3-15. When reset
returns LOW, the 8088 will begin executing
from memory location FFFFOI6.

During reset the processor is initialized to the
following conditions:

1) The Flag register is reset to 0000. This
disables interrupts and the single step mode.

2) The DS, ES, SS and IP registers are reset
to 0000.
3) The CS register is set to FFFF 16.

Mo/ Mx. This input configures the 8088 in the
minimum mode when HIG H, and in the max
imum mode when LOW. This manual focuses
on minimum mode systems. Refer to pg. 3-24
for a discussion of maximum mode systems.

The pins and signals described above are suf
ficient to completely control a small multi
plexed bus system (Fig. 3-4). Larger systems,
however, use latches and transceivers for de
mUltiplexing and increasing the drive of the
busses. Control signals for handling these
latches and for other functions are described
below as they are used in th,e iAPX 88 larger
system (Fig. 3-5).

DT/it Data Transmit/Receive is an output,
controlling the direction in which the data
bus transceivers (8286s or 8287s) drive the
data on the data bus. When HIGH, data is
transmitted onto the system data bus from
the 8088. When LOW, data is received from
the system bus to be read by the 8088. This
signal floats to 3-state OFF during "hold
acknowledge".

DEN. The Data Enable output drives the
output enable of the 8286/8287 data bus
transceivers. This prevents bus contention by
disabling the data bus transceivers while the
8088 is driving addresses on the address/ data
bus.

HARDWARE DESIGN

~fI tltt! 8155·2
CE PORT ~

T i I _ A

I • WR PORT ~ I I I RD B

I I I I ALE PORT

~ ADo-7 C
I - IN ~ER 101M

f----- RESET OUT

8088 .8355·218755A·2

lOW Aa-A1s ADDR I I ;--- ClK RD I I I ADo-AD7 ADDR/DATA ALE

~ I I I I PORT
I

CE A
I I I I I I I I ...

Aa-1o
.- READY

I I
I I I I I

MN/MX r-Vcc ADo-7
"

ALE
I

101M PORT

~
c

I I I I 8284A RD f---- RESET B
I I I I I ClK RESET WR
I I I I I I

READY 101M

II II II I
-

RES
RESET

X1 X2

Vc

~ r
D 510Q11 510Q

~ ,0 8185·2
':"

GN

I
CE1

I I
WR

I I I RD
ALE I I I I -

I II I I I I I
CS, CE2

Aa,Ag I I I I I
ADO-7

V

Figure 3·4. IAPX 88 Multiplexed Bus System

3·4

HARDWARE DESIGN

This signal floats to 3-state OFF during "hold
acknowledge" (Fig. 3-5).

INTR. Interrupt Request is a level-triggered
active HIGH input, sampled during the last
clock cycle of each instruction. It tells the
8088 to stop what it is currently doing and
service an 110 or peripheral device.

SSO. This is a status output. When decoded
with 101M and DR/R, SSO specifies the
type of bus activity in progress (Fig.3-6).

When INTR is detected HIGH, the 8088
jumps to an interrupt service routine via an
interrupt vector table in system memory.

INTR can be internally masked through
software by resetting the interrupt enable bit
in the Flag register. INTR is internally
synchronized.

101M

1(HIGH)

1

1

1

O(lOW)

0

0

0

DT/Fi

0

0

1

1

0

0

1

1

550

0 Interrupt Acknowledge

1 Read 1/0 port

0 Write 1/0 port

1 Halt

0 Code access

1 Read memory

0 Write memory

1 Passive
INTA. Used as a read strobe during interrupt
acknowledge cycles, INT A is active LOW
during T2, T3, and T4 of each interrupt
acknowledge cycle. INT A is never floated.

Figure 3-6. iAPX 88 Status Decoding

ALE STB
A19- 8282 L A16-A19 A16

STB
A15- 8282 I A8-A15

Vee rD1
8088 A8
CPU

STB
AD7- 8282 L AD-A7 8284A ADO

CLOCK t-+ ClK I I 11 GENERATOR t-+ READY
8286 J ~ RES

1-+ RESET DO-D7
ROY T OEI /' /'. /'0

I + INTA DT/R" ~J
GND

INTR DEN ,.-. HOLD 101M -
~ HlDA RD -

-WR 1 1 I r NMI TEST
. -

~ + +
WR RD CS J.IWR RD CE WR RDCS

<-INTR PERIPHERAL
DATA

MEMORY
HlDA Jl II'--HOLD INTR INTA ADDRESS

Figure 3-5. IAPX 88 with Buffered Demultiplexed Busses

3-5

HARDWARE DESIGN

HOLD/HLDA.Holdindicates that another
master is requesting control of, thelocal bus.
To be acknowledged, HOLD must be in its
active HIGH state.

The processor receiving the "HOLD" request
will issue HLDA (HIGH) at the end of the
last machine cycle of the current instruction.'
This acknowledges that the bus can now be
used· by the requesting device. Simultaneous
with the issuance of HLDA, the processor
floats the local bus and control lines.

After HOLD is detected as LOW, the proces
sor LOWers HLDA, and when the processor
needs to run another cycle, it will again drive
the locallms and control lines.

NMI. Non-Maskable Interrupt is an edge
triggered input causing a: type 2 interrupt.

A subroutine is activated via an interrupJ~:kw'
..tru:.in system memory. NMI is not maskable
by software.

A transition from a LOWtoHIGH initiates
the interrupt at the end of the current instruc
tion. This input is internally synchronized.

READY. The READY signal is used to add
wait states to the 8088 machine cycle so that
slow 110 or memory devices can be used.
READY is a synchronized input generated
by the 8284A in response to the RDYII
RDY2 or AEN 11 AEN2 inputs.

TEST. This input synchronizes the CPU with
an external event. When used with the "Wait
for test" instruction, the CPU IS kepLin an
idle state until TEST is driven low by an
external event.

8088 Bus Timing and Minimum Mode Status

The 8088 CPU communicates with external
logic through the systems bus. This commun
ication is accomplished by a machine cycle,
in which data is tranferred between the 8088
and a memory or peripheral device. During
this machine cycle, the 8088 first generates an

address to select the proper memory or peri
pheral device. Then the 8088 activates the
r~ad or write control-line, and the data is
either transferred into the 8088 from the
selected memory or peripheral device (a read
cycle) or out. of. the 8088 to the selected
memory or peripheral device (a write cycle).

On termination of the cycle, the data is
latched by .the 8088 (read), or the selected
device (write), and the control signal is
deactivated.

The basic machine. cycle of the 8088 consists
of four clock periods or T-states, TI, T2, T3
and T 4. (Fig. 3-7)

During the first T state (TI), the CPU places
an address on the 20~bit address/datal status
bus. This address specifies a unique location
in the memory or 110 address spaces of the
iAPX 88, and is guaranteed to be valid on the
address bus when the ALE (Address Latch
Enable) signal makes a HIGH to LOW tran
sition. i3y this time, the 101 M, SSO and
DT/R control and status signals are also
valid.

Th~s~ .. signals tell the external logic which
type of machine cycle is occurring and in

. which directioridata will flow. The signal
101M specifies whether the. addressed device
is in the iAPX 88's I/O space or memory
space.

The DT IR (Data Transmitl Receive) signal
. will be HIGH if data isto be transmitted out

of the CPU (a write cycle) or LOW if it is to
be read into the CPU (a read cycle).

SSQcan be decoded with 101M and DTIR
to specify other types of machine cycles such
as Interrupt Acknowledge, Halt and Passive.

During state T2, the 8088's lower 8 address I
data· pins (ADO-AD'?) float in preparation
for the data transfer.

Next,the DEN and RD or WR control sig~
nals.become Vfllid, to enable the data onto

3-6

HARDWARE DESIGN

the bus for the transfer. This data will be read
into, or out of, the 8088 through pins ADo
AD7, which now function as the data bus.
Also at this time the upper 4 address lines
switch from address (AJ6-AJ9) to status (S3-
S6). The status information available from
decoding these lines is primarily for diagnos
tics monitoring.

However, S3 and S4 can be decoded to
determine which of the four segments is being
accessed by that particular machine cycle.
This information can be used to select one of
the four memory segments (Code, Data,
Stack or Extra) being addressed by the iAPX
88. This technique allows memory partition
ing by segment to expand memory address
"5 up to four megabytes.

Decoding S3 and S4 can also provide a

degree of memory protection, by preventing
erroneous writes into overlapping segments.

During T3 the CPU continues to assert write
data or sample read data on the lower 8 bus
lines (ADo-AD7) and to provide status
information on the upper 4 bus lines (AJ61 S3-
AJ9/S6). This state allows time for the data
to stabilize on the bus and be read by the
8088 or the selected memory or peripheral.

At the beginning of T 4 the RD or WR line
goes inactive (HIGH) and the data is latched
into the 8088 or the selected device. The DEN
and DT (R: signals also go HIGH and the
memory or peripheral is deselected from the
bus.
Extending Machine Cycle
If the memory or 110 device cannot transfer
data at maximum CPU transfer rate, the

1~.~---------------ONEBUSCYClE----------------~·~1

ClK

A19/S8-6 ~ ADDRESS OUT X STATUS OUT }-
A16/S3 ~'--____ --J. \... _____________ --'

AwAa ~ ADDRESS OUT)-

ADrADo ------1(ADDRESS OUT))..----~(\.._...;D_A_T_A __J))..-----

ALE / \L.. _____ ----I,
IO/M~~ __ ~ ___ l_O_W_=_M_E_M_O_R_Y_,H~I-G-H-=-I/-O----~~~

WR OR RD \\--__ -.....J/

Figure 3-7. iAPX 88 Basic Machine Cycle

3-7

HARDWARE DESIGN

device must tell the CPU that the data
transfer is not complete and that the machine
cycle must be extended. It does this by bring
ing the READY input LOW before the
beginning of T3. This forces the 8088 to insert
additional clock cycles (Wait States or Tw's)
between T 3 and T 4.

Bus activity during Tw is the same as T3. The
address and control signals remain on the
bus, allowing time to complete the data
transfer. When the selected device has com
pleted the transfer, it brings the READY pin
HIGH, allowing the CPU to continue from
the Tw states into T 4.

The CPU will then latch the data on the bus
during T4, as it would during a normal
machine cycle. The machine cycle is then
terminated in T 4 when the command lines
are disabled, and the external device is de
selected. Refer to READY, see pg. 3-16, and
the iAPX 86, 88 User's Manual.

Idle Cycles

The 8088 CPU only executes a machine cycle
when instructions or operands must be trans
ferred between the 8088 and memory Or 1/0
devices. When not executing a machine cycle,
the bus interface executes idle cycles (T 1).
During these idle cycles, the CPU continues
to drive status information from the previous
machine cycle on the upper address lines.

.If the previous machine cycle was a write, the
CPU continues to drive the write data onto
the multiplexed bus until the start of the next
machine cycle. If the CPU executes idle
cycles following a read cycle, the CPU will
• not drive the lower 8 bus lines until the next
machine cycle is required.

Because the CPUprefetches up to 4 bytes of
the instruction stream for the internal instruc
tion queue, the relationship of instruction
fetch and associated operand transfers may
be skewed in time and separated by addi
tional instruction fetches.

In general, if a given instruction is fetched
into the 8088's internal instruction queue,
several additional instructions may be fetched
before the given instruction is removed from
the queue and executed.

If the instruction being executed is a jump or
other control transfer instruction, anyinstruc
tions remaining in the queue are discarded
without execution.

Bus Interface

The bus interface of an iAPX 88 can be struc
tured in a number ways. The best configur
ation for a particular application depends on
system size, and the type of memory, and 1/0
devices used.

The simplest bus interface for an iAPX 88
system uses the "multiplexed bus" configura
tion. In this system, memory and 110 devices
are attached directly to the 8088's multi
plexed Address I Data Bus (Fig. 3-4). This
configuration is ideal for small systems where
simplicity and low component-count are
important.

Each device must use ALE to internally latch
the address and separate it from data. There
are, however, certain limitations to this sys
tem. First, only memory and 110 devices
specifically designed to operate on a multi
plexed bus can be used in this system. Figure
3-8 lists all Intel multiplexed bus components
which are compatible with the iAPX 88 .

8155/8156 256 Byte Static RAM, 11.0 and Timer

8185 1024 Byte Static Ram

8355 2048 Byte ROM and I/O

8755A 2048 Byte EPROM and I/O

8256 MultifunctionUART

21821 4096 Byte Pseudostatic RAM

Figure 3-8. iAPX 88 Compatible Multiplexed I
Bus Components

HARDWARE DESIGN

Secondly, a multiplexed system is necessarily
small - usually less than 15 components -
due to the limited drive capability of the
MOS parts which directly drive the bus.

Larger iAPX 88 systems will normally use a
demultiplexed and buffered bus configura
tion, (Fig. 3-5). In this configuration, the
8282 is used to latch the address ~md hold it
on the address bus throughout the entire
machine cycle. The 8286 octal transceiver
buffers the data bus to provide the higher
drive capability necessary for large systems.
Small systems could eliminate this trans
ceiver and the latch on address lines As-AI5.

Memory and Peripheral Interface

The 8088 uses address, data and control
information to control and communicate
with system memory and peripheral compo
nents. Some components connect directly to
the multiplexed Address/ Data Bus, while
others have separate address and data pins
and must connect to a demultiplexed bus.
Some interfacing methods for both multi
plexed and demultiplexed busses follow.

MULTIPLEXED BUS SYSTEMS
The connection of two multiplexed bus com
ponents (the 8755A and 8185) is given in
Figure 3-9. These components receive both
address and data on the same pins. The
address is internally latched by the ALE con
trol signal.

The data then flows in (write), or out (read) if
the device has been enabled using the CS
(chip select) and CE (chip enable) inputs.

Note that the RD, WR, 10/ M and ALE con
trol signals from the 8088 CPU connect
directly to these chips.

Linear Chip Select
Connecting AI9 to CE2 of the 8755A in Fig.
3-9 enables this device whenever AI9 is
HIGH. CE1 is grounded so it is always valid.

3-9

The 8185 is enabled whenever All is LOW
and AI2 is HIGH by connecting CS to All,
CE2 to A12, and CEI to ground.

Recall that address lines AS-A 15 are held sta
ble throughout the machine cycle and thus
can be connected directly to the chip enable
or chip select lines.

Linear chip select is a method that reduces
system chip complexity and chip count. At
the same time, linear chip selection reduces
available address space in the system. For
instance a 2K memory device, the 8755A, is
enabled by any address between 8000016 and
FFFFF16 (a 512K byte logical address space)
(Fig. 3-9). This is usually not a problem
because most systems using the multiplexed
bus configuration are small enough that the 1
megabyte address space of the iAPX 88 is far
larger than necessary.

DE-MULTIPLEXED BUS SYSTEMS
Most system memories and peripherals re
quire the address to be stable for the entire
machine cycle, therefore requiring address to
be latched and held on a separate de
multiplexed address bus. Figure 3-10 shows
this system, with address lines Ao-A7 latched
by an 8282 octal latch, which drives the lower
8 bits of the de-multiplexed address bus.

Note that the data bus is still multiplexed.
This brings up two things to consider.

First, multiplexed bus parts can still be used
in this system, provided they are connected to
the data bus.

Second, any devices connected to the data bus
must guarantee not to drive data onto this
bus before the ALE signal has latched the ad
dress into the 8282 and the 8088 has 3-stated
its lower 8 address drivers in preparation for
reading the data. If a device were to drive the
data bus as soon as its address is generated,
bus contention would occur because the 8088
is still driving the address on this bus. This
could cause an incorrect address to be

. latched into the 8282 address latch.

Vee

~ v" A19/35
35

3 MNiMX AU ~ A13

A12
,

All 5

A10 6

A9 1

AB B

AD7 9

AD6 10

ADS 11

AD4 12

:!!
cc
c
iil
If
!O

~ NMI AD3 13

INTR 8088 AD2 14

~ HOLD ADl
15

~ TEST ADO 16

AD 32

WR 29

~ GND ALE 25

GND 101M 28 f--------='-
s::
:.
~ w /D ,
~ ~

0 c..

RESET 21

elK
19

READY rE-

ID
C ..
0
0
~
~

V"
/D
()
:::
0
~ rDl .. 8284A

CLOCK
I--GENERATOR r- RES f-----
I---

I
GND

V"
-~8

~ ADO J ~ Q
'-----.!1. ADl

~ AD2
15 AD3

16 AD4

17 ADS

18 AD6

19 AD7

21 AS

22 A9

23 A10

3 eLK
8755A

o---.!. READY

~ PAD

~ PAl

~ PA2

~ PA3
110 PORT A o---!

PA'

~ PAS

~ PA6

o---ll PAl
-

Rij ~ ViR r,;--
ALE I-f--]OiM
CE2 2

RESET 4

A
V"

eEl

PBl ~
PB6 ~
PBS ~
PB' ~
PB3 ~ I/OPORTB

PB2 ~
PBl ~
PBO fB--o

--

-2. ADO

~ ADl

'--------+ AD2 ,
AD3

5 AD4

6 ADS

7 AD6

a AD7
10 AS

11 A9

12 CE2

13 GEl
14 cs
17 AD
16 WR
15 ALE

V"

8185

GND

J: »
:J:I
C

~
:J:I
m
C
m
~
C)
Z

HARDWARE DESIGN

Conveniently, most Intel peripherals,
EPROMs and RAMs in the iAPX 88 family
provide output enable or read inputs which
prevent this from happening.

Observe how some memory and peripheral
components are connected in this system
configuration .. A 2716 2K x 8 EPROM and
two 2114 RAMs are connected in an iAPX
88 system with a demultiplexed address bus
(Fig. J,;lO). Address lines Ao-AlO from the
demultiplexed address bus are connected to
the address inputs Ao-AlO of the2716.

The multiplexed data bus is connected to the
data output of the 2716. The CE (chip ena
ble) input is driven from an address decoder.
This could be either a decoder PROM or a
TTL decoder such as a 74LS139.

Another possibility is to use a linear chip
select, described previously.

A19·
A16

A15·
A8

-

K A07· 8282
ADO

r-- STB

ALE r-- ~
8088
CPU

RD f--
WR l- I

~~ PEN r--
00-i57"" 0 E AO.A 10

2716~
CE

The output enable (OE) of the 2716 is driven
by the 8088's RD control line. This enables
the output data onto the data bus from the
2716 with the proper timing to prevent bus
contention problems.

The connections for a 2114 RAM are a little
different from a 2716 because the 2114 is a
1 K x 4 memory, and because it can· be
written-to as well as read. Also, because it
does not have an output enable, care must be
taken to not cause bus contention by driving
the data bus too early.

The address pins of the 2114 are directly con
nected to Ao-A9 on the de-multiplexed
address bus. The data pins IjOI-I/04 are
connected to the multiplexed data bus. .

"-
A16·A19 r=?
A8·A15 ,

v

AO·A7
v

00·07

v .
- -

~ I - ..:..

~V- I

ADDkESS
WEOD AO.A9 WE

2114 04~ 2114 DEC?DER

T-
00·03

CS1

l~

Figure 3-10. Demultiplexed Bus Connections

3-11

HARDWARE DESIGN

Because the 2114 is a lK x 4 memory, we
need two 2114's to make an 8-bit wide
memory. The two 2114s are connected to the
data bus so that one drives data lines Do-D3,
and the other drives D4-D7. Any read or
write to. the 2114s will enable both. chips at
the same time to !)1ove the 8-bit data byte.

The chip select input cannot be connected
directly to the output of the address decoder,
as was done with the 2716, because the 2114
has no output enable pin. Instead, CS is
delayed by ORing the chip select with the
DEN output of the 8088. This delays the
2114sfrorrioutputting the data until after the
address has been latched by the falling edge
of· ALE' and the .8088 has tri-stated. its
address/ data bus.

ALE STB
A19- 8282 I A16

STB
A15- 8282 I

Vec rD1
8088 A8 I.
CPU

STB
AD7- 8282 I 8284A ADO

CLOCK r--. ClK
GENERATOR r--. READY I

~. RES
~ RESET

8286 1
RDY TOEI

I + INTA DTIR r
GND

INTR DEN
~ HOLD 101M
- HlDA RD

. WR I
~ NMI TEST t

I
/'

LARGE DE-MUL TIPLEXEDBUS SYSTEMS
The. bus configuration in Figure 3-10 is fine
for medium-si.zed systems, but if too many
components are coimected to the busses, the
8088's outputs will not be able to drive the
system.

Figure" 3-5 shows a system where 8282
latches have been added to lines A8.:.A15 and
AI6-AI9, and an 8286 octal transceiver has
been added to the multiplexed data bus. This
accomplishes two things.

First, address bits A16-A19 are multiplexed
with status bits S3-S6 and therefore must be
latched like lines ADo-AD? if they are to be
used in addressing.

Second, the 8286 on the data bus, and the
8282s on the address bus, can drive much
higher loads than the 8088 can. With the 8088

A16-A19
~

A8-A15

AO-A7

I ff.
DO-D7

/". A

- -
-

-
I I -
t t

WRRDCS JfNRRDCE WR RDCS

I~ INTR PERIPHERAL
DATA

HlDA Tf MEMORY

1<--HOLD INTR INTA ADDRESS

t

Figure 3"11. iAPX 88 with Buffered Demultiplexed Busses

3-12

HARDWARE DESIGN

drive specified to drive 2.0mA and 100pF, a
system with 5 peripheral components and 10
memory components would overload the
bus.

The 8282 non-inverting and 8283 inverting
octal latches plus the 8286 non-inverting and
8287 inverting octal transceivers can drive
loads up to 32mA and 300pF. The 8282/8283
are directly controlled by connecting ALE to
the STB (strobe) input and grounding OE.
The 8286/8287 is controlled by connecting
the 8088's DEN and DT (R: signals to the
8286/8287's EN (enable) and T (transmit
inputs). These signals provide the proper tim
ing to guarantee that the address is latched
properly and that the 8286/8287 drives data
in the correct direction for read and write
cycles.

Note that adding these latches and transceiv
ers increases the chip count and adds
propagation delays (25ns for the 8283 and
8287 and 35ns for the 8282 and 8286) that
subtract from the read or write access time of
the system's memory and peripheral devices.
For complete specifications of the 8283/8282
and 8286/8287 see the data sheets in the
Appendix.

Memory Operands
The iAPX 88 directly operates on 8- or 16-bit
memory based variables. This means that a

MOVE3,AX

2ND CYCLE

II
1ST CYCLE

15 87 0

I 65 I 43 I
16-BIT REGISTER

FORMAT

43

65

MEMORY
MAP

Figure 3-12. How 16-bit Data is Arranged
within 8-bit memory

6

5

4

3

2

o

3-13

variable rna:! occupy one or two bytes of
memory (each byte is 8-bits). Consequently,
8-bit operands are read or written in one
machine cycle, while 16-bit operands require
two bus cycles.

16-bit operands are stored in memory, with
the most significant byte (MSB) first and the
least significant byte (LSB) in the next loca
tion. Figure 3-12 shows that when the 16-bit
operand 6543 was moved from the AX regis
ter to memory location 3, the MSB (65) was
moved into location 3 by the first machine
cycle, and the LSB (43) was moved to loca
tion 4 in the next machine cycle.

Clock Generation

The 8088 requires a clock signal with fast rise
and fall times (lOns maximum) between low
and high voltages.

The maximum clock frequency of the 8088 is
5 MHz, and 8 MHz for the 8088-2. The
recommended method for generating this
signal is to use Intel's 8284A clock generator.

USING 8284A

Either an external frequency source or a ser
ies resonant crystal may be selected to drive
the 8284A. The selected source must oscillate
at 3X the desired CPU frequency.

To select the crystal inputs of the 8284Aas
the frequency source for clock generation, the
F / C input to the 8284A must be strapped to
ground. The crystal should be connected
using the configuration shown in Figure 3-13.

~
510Q -

8088
CPU

CLKI--~"ICLK

Figure 3-13. Generating Clock Signal with 8284A

HARDWARE DESIGN

If a high-accuracy frequency source, externally
variable frequency source, or a common
source for driving mUltiple 8284A's is desired,
the External Frequency Input (EFI) of the
8284A can be selected by strapping the F / C
input HIGH through a pull-up resistor (- I K
ohms). The external frequency source should
be TTL compatible, have a 50% duty cycle,
and oscillate at 3 times the desired CPU
operating frequency.

The 8284Ahas several other functions, includ
ingRESET and READY generation (seepg.
3-16). For complete details on iAPX 88 clock
generation, refer to the iAPX 88/10 and
8284A data sheets. .

Reset

The 8088 RESET line provides an orderly
way to start or restart an iAPX 88 system.

When the processor detects the positive
going edge of a pulse on RESET, it
terminates all activities until the signal goes
LOW, at which time the internal CPU regis
ters are initialized to the reset condition (Fig.
3-14).

Upon RESET, the code segment register and
the instruction pointer are initialized to
FFFF16 and 0 respectively. Therefore, the
8088 executes its first instruction following
system reset from absolute memory location
FFFFOH. This location normally contains an

CPU COMPONENT CONTENT

FLAGS Clear

Instruction Pointer OOOOH

. CS Register FFFFH

OS Register 'OOOOH

SS Register , OOOOH

ES Register OOOOH

Queue Empty

Figure 3-14. CPU State Following Reset

intersegment direct JMP instruction whose
target is the actual beginl1ing of the system
program.
As external (maskable) interrupts are dis
abled by system reset, the system software
should re-enableinterrupts as soon as the sys
tem is initialized, to the point where inter
rupts can be processed.
The 8088 requires an active HIGH reset, with
minimum pulse width of 4 clocks, except
after power-on which requires a 50 p,s reset
pulse.

Since the CPU internally sync izes reset
with tlieCIOck,~ther set IS internally ac lVe

for up to one clock period after the external
reset.

Non-Maskable interrupts (NMI) or hold
requests occurring during the internal reset
are not acknowledged. A hold request active
immediately after the internal reset will be
honored before the first instruction fetch.

Upon reset the 8088 will condition system the
busses in the following manner (Fig. 3-15):
The address bus will float to the three-state
condition upon detection of reset by the
CPU. It floats until the CPU comes out of
reset and begins fetching code from
FFFFOH·

Other signals which three-state will be driven
HIGH for one clock low period prior to
entering three-state (Fig. 3-16).

ALE and HLDA are driven inactive (LOW)
and are not three-stated.

22K ohm pull~up resistors should be con
nected to floatable CPU command and bus
control lines, to guarantee the inactive state
of these lines in systems where 'leakage cur
rents or bus capacitance may cause the
voltage levels to settle below the minimum
HIGH voltage of devices in the system.

. The reset signal to the 8088 is normally gen
eratedby the 8284A. The 8284A has a
schmitt trigger input (RES) for generating
reset from a LOW active external reset.

3-14

HARDWARE DESIGN

The hysteresis specified in the 8284A data
sheet implies that at least 0.25 volts will
separate the logic 0 and I switching point of
the 8284A reset input. Inputs without hys
teresis switch from LOW to HIGH and
HIGH to LOW at approximately the same
voltage threshold. The inputs are guaranteed

SIGNAL CONDITION

ADO-AD? · FLOAT
A8-A15

SSO ·
101M ·
DTIR ·
DEN

DRIVEN HIGH,

· THEN FLOAT

WR ·
RD ·

INTA

ALE · LOW
HLDA

Figure 3-15. iAPX 88 Bus Condition During Reset

CLOCK

RESET INPUT

INTERNAL
RESET _______ ...1

to switch at specified LOW and HIGH vol
tages (VIL and VIH), but the actual switching
point is anywhere in between.

Since VIL min. is specified at 0.8 volts, the
hysteresis guarantees that the reset will be
active until the input reaches at least 1.05
volts. A reset will not be recognized until the
input drops at least 0.25 volts below the reset
inputs VIH of 2.6 volts.

To guarantee reset from power up, the reset
input must remain below 1.05 volts for 50 J-lS

after Vee has reached the minimum supply
voltage of 4.5 volts. The hysteresis allows the
reset input to be driven by a simple RC cir
cuit (Fig. 3-17).

The calculated RC value does not include
time for the power supply to reach 4.5 volts,
or the charge accumulated during this inter
val. Without the hysteresis, the reset output
might oscillate as the input voltage passes
through the switching voltage of the input.
The calculated RC value provides the min
imum required reset period of 50 J-lS for
8284A's that switch at the 1.05 volt level, and
a reset period of approximately 162 J-lS for
8284A's that switch at the 2.6 volt level.

,..-------t - - - - -
BUS

FLOAT BUS

'-------- DRIVE OUTPUT TO INACTIVE STATE

Figure 3-16. iAPX 88 Bus During Reset

3-15

HARDWARE DESIGN

If tighter tolerance between the minimum
and maximum reset times is necessary; the
reset circuit shown in Figure 3-18 might be
used rather than the simple RC circuit. This
circuit provides a constant current source and

a linear charge rate on the capacitor, rather
than the inverse exponential charge rate of
the RC circuit. The maximum reset period
for this implementation is 124 MS.

The 8284A synchronizes the reset input with
the CPU clock to generate the RESET signal
to the CPU. This output is also available as a
general reset to the entire system. Reset has
no effect on any clock circuits in the 8284A.

+ 5
r-

I

8284A

RESET

RES

CLK

~
FIG

SYSTEM RESET

8088

RESET

CLK

READY IMPLEMENTATION AND TIMING
As discussed previously, the ready signal is
used in the iAPX 88 system to generate wait
states to accommodate slow memory and
110 devices. Ready is also used in multipro
cessor systems to force the CPU to wait for
access to the system bus.

Figure 3-17. 8284A Reset Circuit

The 8284A can be set up for systems using
synchronous or asynchronous ready signals
by strapping the ASYNCH input HIGH
(synchronous) or LOW (asynchronous). To
use the synchronous configuration, the de
signer must analyze the ready timing to
insure that the setup and hold requirements

Vcc

RESET

v

dV Ie
dT = C

T

Rl- DETERMINES CURRENT TO CHARGE C

R2 - VALUE NOT CRITICAL = 10K

Ie = CHARGE CURRENT = Vbc(Dl~D2-Tl)

"'Vce-.S

IF ALL SEMICONDUCTORS ARE SILICON, Ie '" .~V

Figure 3-18. Constant Current on Reset Circuit

3-16

HARDWARE DESIGN

are always met by the 8284A's RDY and
AEN inputs. If this can not be guaranteed,
the asynchronous configuration must be
used.

Asynchronous System
To insert a wait state in the asynchronous
configuration, the RDY inputs must be valid
at least 35ns before the rising edge of the
clock in state T2. The AEN must be valid
SOns before that edge.

If RDY or AEN make a transition later
than these setup times, the 8284A may not
recognize the change in time to cause the
READY output to change until after the
next clock cycle. For a normally not READ Y
system, this simply causes an extra wait state
to be added. In normally READ Y systems,
this must be avoided because it results in
premature termination of the machine cycle.

Synchronous Systems
In synchronous systems, setup times for the
8284A's RDY and AEN inputs are specified
from thefalling edge of the clock in state T2.
In this configuration (ASYNCH strapped
LOW), transitions must not occur during the
RDY or AEN setup time to insure proper
operation of the 8284A.

Depending on the size and characteristics of
the system, ready implementation may use
either the normally REA D Y or the normally
not READ Yapproach.

elK

Normally Ready Systems

In normally READ Y systems, all devices are
assumed to operate at the maximum CPU
bus bandwidth. Devices that do not meet this
requirement must disable READY as noted
above to guarantee the insertion of wait
states (Fig. 3-19). This implementation is typ
ically used in small single-CPU systems. It
reduces the logic required to control the
READY signal. Since a device requiring wait
states may fail to disable READY in time to
be recognized, resulting in premature termi
nation of the machine cycle, the system
timing must be carefully analyzed when using
this approach.

Normally Not Ready Systems
An alternate ready implementation is to have
the system normally not READY. When the
selected device receives the command (RD /
WR/ INT A) and has had sufficient time to
complete the data transfer, it activates
READY to the CPU, allowing the CPU to
terminate the machine cycle (Fig. 3-20). This
implementation is characteristic of large
multiprocessor systems, multibus systems, or
where propagation delays, bus access delays
and device characteristics inherently slow the
system down. For maximum system perfor
mance, devices that can run with no wait
states must return "READY" within the pre
viously described time. Failure to respond in

RDY~::::--------------'~~~ .. ~~.~
OUTPUT ----(\ ~-

Figure 3-19. Normally READY Wait State Timing

3-17

HARDWARE DESIGN

time will only result in the insertion of one or
more wait states.

RDY1and RDY2
To generate a stable READY signal to satisfy
the 8088's setup hold times, the 8284A pro
vides two separate system ready inputs
(ROYl and ROY2) and a single synchron
ized ready output (READY) for the CPU.

The ROY inputs are enabled with separate
active LOW access enables (AENl, AEN2)
to select one of the two ready signals. The
system ready inputs to the 8284A (ROYl,
ROY2) must be valid 35ns (TRl VCL) before
T3 and AEN must be valid 60ns before T3.

For a system using only one ROY input, the
associated AEN is tied to ground while the
other AEN is connected to 5 volts through
lKohms (Fig. 3-21). If the system generates a
LOW active ready signal, it can be connected
to one of the· 8284A's AEN inputs, if the
additional setup time required by the AEN
input is satisfied. In this case, the associated
ROY input would be tied HIGH (Fig. 3-22).

Single Wait State Generator
Most memory and peripheral devices that fail
to operate at the maximum CPU frequency
typically require only one wait state.

The circuit in Figure 3-23 is an example of a
simple wait state generator. The system ready
line is driven low whenever a device requiring

elK

one wait state is selected. The flip-flop is
cleared by ALE, enablihg ROY to the
8284A.

If no wait states are required, the flip-flop
remains HIGH. IUhe system ready is driven
LOW, the flip-flop toggles on the LOW to
HIGH clock transition of T2 to force one
wait state. The next LOW to HIGH clock
transition toggles the flip-flop again to indi
cate ready, and allow completion of the
machine cycle. Further changes in the state of
the flip-flop will not affect the machine cycle.
The cycle allows approximately lOOns for
chip select decode and conditioning of the
system ready.

Interrupts

The iAPX 88 has a simple and versatile inter
rupt system. Interrupts may be triggered by
devices external to the CPU or by software
interrupt instructions or, under certain condi
tions, by the CPU itself.

Every interrupt is assigned a type code that
identifies ilto the CPU. The type code is used
by the CPU to point k9~J109»tion in the
memory based interrupt~ . "It-btble contain
ing the address of the interrupt routine.

This,+nte,' lUpt v~able can contain up to
256.~tbL,ll f.or different interrupt types (Fig.
3-25)1')(1 lIi-KY

RDYINPUT------~------------~~~~.~. ~ ~ 1

READY ~'-_____ _
OUTPUT

Figure 3-20. Normally Not READY Wait State Timing

3-18

HARDWARE DESIGN

8284A 8284A

t AEN1
SYSTEM 3 AEN1 READY

SYSTEM 4 RDY1 READY
7 AEN2

~ RDY2

4 RDY1

7 AEN2

1K 6 RDY2 1K

+5 -= +5

Figure 3-21. Using RDY1/RDY2 to Generate READY Figure 3-22. Using AEN1/AEN2to Generate READY

t-.
74125 +5

4,."'\
,---'

1KQ

t-.. t-.. J

J] 74LS04 -

74lS734

>CK

ClK " " K Or- RDY TO 8284A

ClR

ALE " "

Figure 3-23. Single Wait State Generator

3-19

HARDWARE DESIGN

EXTERNAL INTERRUPTS
The 8088 has two inputs that may be used by
external devices to signal interrupts, INTR
and NMI.

The INTR (Interrupt Request) line is usually
driven by an Intel® 8259A Programmable
Interrupt Controller (PIC), which is in tum
connected to the devices that need interrupt
service. The 8259A is a very flexible compo
nent that is controlled by software com
mands from the iAPX 88. The PIC appears
as a set of 110 ports to the software.

The 8259A's main job is to accept interrupt
requests from the devices attached to it,
determine which requesting device has high
est priority, then activate the iAPX 88 INTR
line if the selected device has higher priority
than the device currently being serviced (if
any).

When INTR is active, the CPU takes different
action depending on the state of the interrupt
enable flag (IF). No action takes place,
however, until the currently executing instruc
tion has been completed. Some unusual cases
are described under the heading of Interrupt
Latency Exceptions. Then, if IF is clear -
meaning that interrupts signaled on INTR
are masked or disabled - the CPU ignores
the interrupt request and processes the next
instruction.

ClK

/ AlE~~ ____ ~-----J

/ \~ __ -J

The INTR signal is not latched by the CPU,
so it must be held active until a response is
received or the request is withdrawn.

If interrupts on INTR are enabled (if IF is
"I"), the CPU recogniiesthe interrupt request
and processes it. Interrupt requests arriving
on INTR can be enabled by executing an STI
(set interrupt-enable flag) instruction, and
disabled by the CLI (clear interrupt-enable
flag) instruction. They also may be selectively
masked (some types enabled, some disabled)
by writing commands to the 8259A.

Note that to reduce the likelihood of exces
sive stack build-up, the STI and IRET
instructions will reenable interrupts only after
the end of the following instruction.

The CPU acknowledges the interrupt request
. by executing two consecutive interrupt acknow
ledge (INT A) machine cycles (Fig. 3-24). If a
bus hold request arrives via the HOLD line
during the INT A cycles, it is not honored
until the INT A cycles have been completed.
The first cycle signals the 8259A that the
request has been honored.

During the second INT A cycle, the 8259A
responds by placing a byte on the data bus,
This byte represents the interrupt type (0-255)
associated with the device requesting service.

1 2ND MACHINE CYCLE
T4 T1 I T2 I T3

, r
\ /

AD7-ADo--~ (VECTOR) TYPE

Figure 3-24. Interupt Acknowledge Sequence

3-20

AVAILABLE
INTERRUPT
POINTERS
(224)

RESERVED
INTERRUPT
POINTERS
(27)

DEDICATED
INTERRUPT
POINTERS

3FFH

3FCH

084H

080H
07FH

014H

010H

OOCH

(5) 008H

004H

OOOH

HARDWARE DESIGN

I-- TYPE 255 POINTER: _
(AVAILABLE)

I-- TYPE 33 POINTER:
(AVAILABLE) -

I-- TYPE 32 POINTER: -(AVAILABLE)

f- TYPE 31 POINTER: -
(RESERVED)

f- TYPE 5 POINTER: -
(RESERVED)

I-- TYPE 4 POINTER: -
OVERFLOW

TYPE 3 POINTER: .-:-
~.BYTE INT INSTRUCTION

I--
TYPE 2 POINTER: -
NON·MASKABLE

I-- TYPE 1 POINTER: -SINGLE·STEP

I-- TYPE 0 POINTER: -
DIVIDE ERROR

CS BASE ADDRESS
1--------

IPOFFSET

'""1-t----16 BITS-----l·~1

Figure 3-25. Interrupt Vector Table in Memory

3-21

HARDWARE DESIGN

The type assignment is made when the 8259A
is initialized by software in the iAPX 88.

The CPU reads this tY~~::Jocates the
corrjS~0~1inj; interrupt';,'< ,. <. ':''111 the in~er
rupt:(td16t::ta15le, and calls the correspondmg
interrupt procedure.

Interrupt Latency Exceptions
There are a few cases in which an interrupt
request is not recognized until after the fol
lowing instruction. Repeat, LOCK, and
segment override prefixes are considered
"part of' the instructions they prefix; no
interrupt is recognized between execution of
a prefix and an instruction.

A MOV (move) to segment register instruc
tion and a POP segment register instruction
are treated similarly: no interrupt is recog
nized until after the following instructibn.

This mechanism protects a program that is
changing to a new stack by updating SS and
SP. If an interrupt were recognized after SS
has been changed, but before SP has been
altered, the processor would push the flags,
CS, and IP into the wrong area of memory.

Therefore, whenever a segment register and
another value must be updated together, the
segment register should be changed first, fol
lowed immediately by the instruction that
changes the other value.

WAIT and repeated string instruction are 2
cases where an interrupt request is recognized
in the middle of an instruction. In these cases,
interrupts are processed after any completed
primitive operation or wait test cycle.

External Interrupt
An external interrupt request may also arive
on another CPU input, NMI (non-maskable '
interrupt). This line is edge-triggered (lNTR
is level-triggered) and must be active· for. at
least two clock cycles. It is generally used to
signal the CPU of a "catastrophic" event,
such as imminent loss of power, memory
error, or bus parity error.

3-22

Interrupt requests arriving on NMI cannot
be disabled. They are latched by the CPU,
and have higher priority than an interrupt
request on INTR.

If an interrupt request arrives on both lines
during instruction execution, NMI will be
recognized first. Non-maskable interrupts are
pre-defined as type 2, which means that the
address of tl:\5,.s,yryic:e..r,Qutine will be found in
the interruI1i~;{bfe at memory location
8 (Fig. 3-25). Because NMI is predefined as
type 8, the processor does not need to be
supplied with a type code to call the NMI
procedure.

Interrupt Latency
The time required for the CPU to recognize
an external interrupt request depends on how
many clock periods remain in the execution
of the current instruction. The longest latency
occurs when a multiplication, division, variable
bit shift or rotate instruction is. executing
when interrupt request arrives.

As mentioned previously, in a few cases,
worst-case latency will span two instructions
rather than one.

INTERNAL INTERRUPTS
An INT instruction generates an interrupt
immediately upon completion of its execu
tion. The interrupt type, coded into the
instruction, lets the CPU obtain the interrupt
routine address from the interrupt~
table. f~?(Iv'/)c~?\.)

Since any type code may be specified, soft
ware interrupts may be used to test interrupt
procedures written to service external
devices.

The CPU itself generates a type a interrupt
immediately following execution of a DIV or
IDIV (divide, integer divide) instruction, if
the calculated quotient is larger than the spec
ified destination.

HARDWARE DESIGN

SINGLE-STEP EXECUTION
If the trap flag (TF) is set, the CPU automat
ically generates a type I interrupt following
every instruction. Single-step execution is a
powerful debugging tool.

If the overflow flag (OF) is set, an INTO
(interrupt on overflow) instruction generates
a type 4 interrupt immediately upon comple
tion of its execution.

All internal interrupts, INT n, INTO, divide
error, and single-step share these character
istics:

1) The interrupt type code is either contained
in the instruction or is predefined.
2) No INT A machine cycles are run.
3) Internal interrupts cannot be disabled,
except for single-step.
4) Any internal interrupt (except single-step)
has higher priority than any external inter
rupt (Fig. 3-26). If interrupt requests arrive
on NMI and/ or INTR during execution of
an instruction that causes an internal inter
rupt (e.g., divide error), the internal interrupt

is processed ~f~r('--:.,p
INTERRUPT~~~~ThBLE
The interrupt~ ,tAble is the link between
an interrupt type code and the procedure
designated to' service interrupts associated

with .that codel~:~}lf~~~Z)' ,
The mterrupt-vectot-.'t"ble occupies up to the
first IK bytes of low memory. There may be
up to 256 entries in that table, one for each

INTERRUPT PRIORITIES

Divide error, INT n, INTO highest

NMI

INTR

Single-step lowest

Figure 3-26. Interrupt Priorities

interrupt type that can occur in the system.
Each entry in the table is a double word poin
ter containing the address of the procedure
that is to service interrupts of that type.

The higher-addressed word of the pointer
contains the base address of the code segment
containing the procedure, The lower
addressed word contains the procedure's
offset from the beginning of the segment.
These two word pointers will be placed in the
CS and IP registers, respectively, to cause the
CPU to execute the interrupt service routine.

Since each entry is four bytes long, the CPU
can calculate the location of the correspond
ing entry for a given interrupt type by simply
mUltiplying (type.:~4).,

t)b ~I\~~?> space at the high end of the interrupt
. ~table may be used for other purposes.

The dedicated and reserved portions of the
interrupt pointer table (locations OH-
7FH), however, should not be used for any
other purpose, to insure proper operation
and compatibility with future Intel hardware
and software products.

INTERRUPT ACKNOWLEDGE SEQUENCE
When a maskable interrupt is acknowledged,
the CPU executes two interrupt acknowledge
machine cycles (Fig. 3-24). The CPU will not
recognize a hold request from another bus
master until the full interrupt acknowledge
sequence is completed.

During the first machine cycle, the CPU
floats the address/ data bus and activates the
INT A (Interrupt Acknowledge) command
output during states T2 through T 4.

During the second machine cycle, the CPU
again activates its INT A command output.
The external interrupt system (e.g., an Intel®
8259A Programmable Interrupt Controller)
responds to this by placing a byte on the data
bus that identifies the interrupt source, the
~ type. This byte is read by the CPU,
multiplied by four, and used as a pointer into
the interrupt-¥OOtor-table.

r () r' I\;'!?~R
3-23

HARDWARE DESIGN

Before calling the corresponding interrupt
routine, the CPU saves the machine status by
pushing the flag's register onto the stack.

The CPU then clears the interrupt enable and
trap bits in the flag's register to prevent sub
sequent maskable and single-step interrupts.
The CPU also establishes the interrupt rou
tine return linkage by pushing the current CS
and IP register contents onto the stack,
before loading the new CS and IP register
values from the interrupt vector table.

Bus Control Transfer

In most iAPX· 88 designs, the system busses
are normally controlled by the 8088 CPU.
This means that address and control signals
are driven by the 8088, and that data is driven
by the 8088 or by a device being read by the
8088.

HOLD AND HLDA
In some cases, however, another device can
take control of the system bus and drive it
while the 8088 is forced into the inactive
state, called "HOLD".

This occurs when a device such as Intel's
8237 A or 8257 DMA Controller requests
control of the iAPX 88 system by driving the
8088's HOLD input HIGH. The DMA con
troller must then wait until the 8088 responds
by raising the HLDA (Hold Acknowledge)
output. This signals the DMA controller that
the 8088 has completed the machine cycle in
progress when the HOLD request occurred
and floated its busses as listed in Figure 3-27.

The 8088 remains in the HOLD state until
the DMA controller releases it by bringing
the HOLD line LOW. Then the DMA con
troller floats the bus and control goes back to
the 8088 after its HLDAoutput goes LOW.

Figure 3-28 gives a general interconnect dia
gram for an iAPX 88 system with. an
8237 A-5 DMA controller. This is a typical

cqnfiguration in which the HOLD/HLDA
sequence would be used.

The handshake timing for transfer ·of bus
control is shown in Figure 3-29. Note that the
8237 A-5 drives the system only when the
8088 is in HOLD, and that HLDA and the
8237 A AEN output can be used to properly
enable and disable other components to
assure a clean transfer of control.

Maximum Mode Systems

In addition to the minimum mode systems
described, the iAPX 88 can also be config
ured in the maximum mode.

Maximum mode systems are intended prim
arily for larger. multi~board and multi
processor systems because they provide a
more sophisticated set of bus control signals.

SIGNAL CONDITION

ADO-AD?

A8-A15

A16/S3-A19S6

RD

101M
FLOAT

WR

INTA

DT/R

DEN
..

ALE LOW·

HLDA HIGH

Figure 3-27:.iAPX 88 Bus Condition During HOLD

3-24

AS-15

i..

:!!
III
C
~

~ r-:---v lATCH

ADo-7 STB E

~
ALE I

+5
'f
N
!'"

r--I- A1 8088
B1 ~

l>
" ><
CO

W
CO

I
I»

I\) :::I
en Co

~ A2 a:
RD B2 uJ

e
~ I- Aa 0

u
~ Ba w

e
CO
N "-'-- A4
Co> »
~
:::I
:::I

WR B4
S E

10/M I
~

~ g:
:::I
III

HlDA ... ' ,.

,
HOLD a

74lS74 ClK D ClK A

1

ClK ~ 8284A X2 ~

~

,

~

i"

,.

...

r-- STB
lATCH

~E~r-
~

III '-I Z <C
HLDA Ii; . ~ W I- <C DRO <C <C 0

I!l l- e <C
<C z

,0 8237A-5 :u

HRQ ClK DACK

-'-

to..

..i\

v

1...1

I'"

AS-15

DATA

MEMORY
&

I/O

CONTROL

"

DRO DACK

I I ... ~

..

I

I

,

J: »
:lJ
c
~
:lJ
m
C
m
~

" z

HARDWARE DESIGN

In the minimum mode 8088 CPU, the
number of control outputs is limited by the
number of pins available on the 40 pin pack
age. The maximum mode iAPX 88 system
gets around this limitation by using the 8288

bus controller to generate several of the sys
tem control signals (Fig. 3-30). This frees up
several 8088 pins to support mUltiprocessing
functions not available in minimum mode
systems.

ClK

HOLD

HlDA

• Figure 3-29. HOlD/HLDA Timing

Vee rD1 L
8288 BUS

-:;:. CONTROllER
MN/MX ClK

8284A CLK So So INTA
COMMAND BUS

~ READY S1 S1 MRDC
~ RES

RESET S2 S2 MWTC

l
r-- DEN 10RC
r- DT/If 10WC

CLOCK - ALE
GENERATOR 8088

CPU

~ STB
8282 lUDRESS"T j \ A19-A8 ADDRESS) OR .I

. . II 8283

AD7-ADo < ADDRESS/DATA :>

. . ' LT
OE

i MEMORY
I/O

PERIPHERAL
DATA DATA

0 0
~

8286 DATA BUS " OE OR
8287

.)

Figure 3-30. iAPX 88 Using Maximum Mode

3-26

HARDWARE DESIGN

Pins with different functions in mInImUm
and maximum modes are listed in Fig. 3-31.

Pins 26, 27 and 28, which were DEN, DT (R
and 10! M in the minimum mode, are
replaced by the status lines SO, S 1 and S2.

These three status lines are used by the 8288
to produce seven bus control functions, ena
bling the 8088 to redefine pins 24, 25 and 29.

Pins 24 and 25 are now used to track the
status of the 8088's queue (listed in Fig. 3-32).
Pin 29 provides a function called LOCK
which is used to prevent other processors
from using a shared resource while it is being
used by the 8088.

Pins 31 and 30 now implement functions
called Request! Grant 0 and Request! Grant
1. These have the same function as HOLD!
HLDA, but both functions are implemented
on one bi-directional line. This enables the

Mode
Pin

31
30

29
28
27
26

25
24
34

Minimum Maximum

HOLD RO/GTO
HLDA RO/GT1
WR LOCK

101M S2
DT/R S1
DEN SO
ALE OSO
INTA OS1
SSO High State

Figure 3-31. Minimum/Maximum Mode
Pin Assignments

maximum mode iAPX 88 system to directly
support three bus masters - the 8088 and
two more - instead of the two supported in
the minimum mode. Figure 3-33 shows the
timing for the Request! Grant function.

In Figure 3-34, an iAPX 88 system is config
ured in the maximum mode. Status lines SO,
S I and S2 from the 8088 are connected to the
8288, which then produces the system com
mand and control signals and interface to the
multibus.

The Request! Grant lines can interface to the
8087 and 8089 co-processors as shown.

The 8284A clock generator is used the same
way as in minimum mode systems. The 8289
Bus Arbiter, also included, coordinates the
use of system resources. For a complete dis
cussion of maximum mode systems, see
Intel's iAPX 88, 86 User's Manual.

aS1 osa FUNCTION

O(LOW) 0 No operation

0 1 First byte of opcode from queue

1 (HIGH) 0 Empty the queue

1 1 Subsequent byte from queue

Figure 3-32. Queue Status Decoding

3-27

HARDWARE DESIGN

ClK

(see note 3) (see note 4)
~--~~~------~S

PULSE 1 PUlSU
MASTER RQ . CPU GT

PULSE 3
MASTER ITT

Master request is sampled by 8088 (see note 1) Master.grant is sampled by 8088

1. THE 8088 FLOATS 52, 51, So FROM 1.1.1 STATE
ON THIS EDGE

2. THE 8088 FLOATS AxDx BUS,RD,AND lOCK
ON THIS EDGE

3. THE OTHER MASTER FLOATS S2, 51, So FROM
1.1.1 STATE ON THIS EDGE

4. THE OTHER MASTER FLOATS AxDx BUS, AND
lOCK ON THIS EDGE

Figure 3-33. Request/Grant Sequence Timing (Maximum Mode Only)

3-28

elK MN/MX

~
READY

RESET

8088 5]"50

CPU AwAo

0 7-0 0

r+ RQ/GT1
aso OS1 TEST

rH,
1 1

aso OS1 BUSY

t.. RQ/GT1
8284A

." elK elK

ce· READY 8087
I: RESET NPX

Cil
(,)
I

(,)

f"
RCIIGT1

:;:
"tI

'f x
I\) co <0 co

N ... -=: RO/GT
RESET

READY __

0 elK SrSo

0 8089

a lOP
EXT2 ce·

I:
;
g

-;=: QRQ2 A19-AO

EXT 1
DrDa

r- ORO 1
CA SEL

:l

~
8286

elK INTA

~
RrRoMRDC

~
MWTC

DEN IORC

DT/R lowe
ALE

~T~ J ~
-

8282

~ '< (20R3)

'----

¢- _T
8286

c...- DE

~~
ADDRESS/DATA

Ao

AWA1

lowe
15 BIT lID

ADDRESS DECODE

I

WEOD

RAM
(2142)

COMMAND BUS

~
ADDRESS BUS

DATA BUS

OC II ROWR 'll "0 WR LI ROM [/0 PERIPHERAL 110 PERIPHERAL
(2716-2)

ORO INT ORO INT

I I I I

::I: »
JJ
C
=E »
JJ
m
C
m
en
C)
Z

Application
Examples

4

"".
~: ..

CHAPTER 4
APPLICATION EXAMPLES

INTRODUCTION
This chapter describes some iAPX 88 system
design examples, ranging from a simple
seven-chip system, to a larger system with
multiple CPU's and coprocessors. The iAPX
nomenclature is used for configurations using
the 8088 or 8086 with 8089s and 8087s.

MULTIPLEXED SYSTEM

The first iAPX 88 design example is a simple
multiplexed bus system, complete with 8088
CPU, 8284A clock generator, and - depend
ing on the amount of memory and 1/0
desired ~ 2-5 multiplexed bus components.
This system demonstates the power, sim
plicity, and density possible in iAPX 88
designs.

In its smallest configuration, this system
consists of only 4 chips:

8088

8284A

8755A-2

8185

CPU

Clock Generator

2K Bytes EPROM, 16 Lines 1/0

lK Bytes RAM

The configuration we will discuss has 7 chips:

8088 CPU

8284A Clock Generator

2 x 8755A-2 4K Bytes EPROM, 32 110 Lines

2 x 8185

8155-2

2K Bytes RAM

256 Bytes RAM, 22 110 Lines,
Timer I Counter

This system uses the 5MHz 8088 CPU. Its
memory and 110 components are connected
directly to the 8088's multiplexed address I
data bus, and no wait states are required.

Address Decoding
The memory and 110 address spaces are
decoded using upper address lines for linear
chip selects. Address lines AlO-A13 are
connected directly to the CS (chip select) and
CE (chip enable) inputs of the memory and
110 components. This eliminates the need for
special decoding PROMs or TTL, re
ducing component count and system com
plexity.

The address decoding table (Fig. 4-1) lists
address line usage for memory and 1/0
address decoding.

CAUTION: For most systems using linear
chip selects, some addresses enable rriore than
one memory or 110 device at the same time.
For instance, the 8755A-2 in location E3 is
enables any time All is HIGH. Another
device, the 8185 at E6 is enabled, when A13 is
LOW and AlO is HIGH. Although the
8755A-2 is uniquely selected by address
locations F800H-FFFFH and the 8185 is
uniquely selected by 14H-17FFH, both com
ponents are enabled by memory addresses
from COOH to FFFH. Therefore, the pro
grammer must NOT use this range of
addresses. _
I/O
This system provides 54 110 lines, some

This system is built on a 95 mm X 105 mm dedicated to the RS232C interface, the LED
printed circuit board. It draws 400 - 600 mA output, and the 8155's timerl counter. The
from a -single 5V power supply and includes other 110 lines are available for general
an RS_:232C_jnteIfa(;e~- an_~ED for visual purpose 1/0. The two 8755As provide 32 1/0
co-mm-unication, a RESET --swlicn,-- and____ lines, individually programmable as inputs or
JUMPER options. A small monitor and "'<:\,utputs. Three of these lines, PA7, PBO and
two programs - CHESS and TINY BASIC PI37 of E3, implement the RS232C REC-

I

- are available* to demonstrate system EI;VE-DATA and TRANSMIT-DATA fun-
capabilities. ctions, and the LED output.

*This software is available through "Insite", the Intel
Users Library.

!

lheimplementation of the RS232C interface
/will be explained for a few interesting tricks

/1

------- .. -~~ __________________ --------.' .----------------/4-1

APPLICATION EXAMPLES

Y1

R8 15MHz R7 Vee 0 ~ 510Q 1 1 510Q ~
,

ClKI-
03

PORT AK X1 X2 R1 ::2
J-N914

51KQ ;>. S1
8284AL

*
ffi,.. ClK E7 RES

Ie2

• 0:J PORT B K
CE2

RESET READY
A10

1fl F

A9
8755A

E2
A8

ALE ADO· V
r-'-- AD AD7 i'

;-- TOW
CI,.K RESET

READY r-
A11

A8·
A8·A19 8088 A19 A13

v CPU A12 A10

L E4

/ MN/MX ADO· ADO·AD7 AD7 ~
·AlE

AD
WR

101M

'-- 101M

/-
- WR

- WR RD

RD
ADO·AD7

~ ALE

ALE 8185
RESET CE E5

8155 ADO·AD7 ~ E1
PORT PORT

Vee C A
~. 'L

PORT
CE2

CE1 TIMER OUT B

TIMER ClK CS

Figure 4-0. iAPX 88 Multiplexed System

APPLICATION EXAMPLES

-
VCC D2, D3 = IN 914

PAl R2-R6 = 1800Q
A

ClK PORTAK
Vee

==> FJ R2 T1
2N290? XMIT DATA R6

PBO
j-.

(TO RS232 PIN 3) ==> PORT BK Vee

PB?_~ "R9 1
R4 RCV DATA

8?55A
...

~t R5 v T2 E3 lED 180Q r-----t>1 1 E2N2222 CE2
C1 D1

,)
CE1 I 10~
ALE RCV DATA ADO-

(FROM RS232 PIN 2) AD? RD -=--
lOW r--

SIGNAL GROUND (RS232 PIN 7

A 13 ~
A 11

~ A10 A 13 V

-

- ALE

- RD

- WR

- 101M

- RESET

CE2 r-
WR

RD

8185 ALE

~
E6 -

-V
ADO-AD?

CS

CE1

APPLICATION EXAMPLES '

ADDRESS LINE USAGE
RECOMMENDED

DEVICE ADDRESSING

DEVICE PART A14-A19 A13 A12 A11 A10 A9 A8 A7-AO MEMORY 16 I/O 16

B755A-2 E3 X X X 1 D D, D
D 'C FBOO-FFFF FBOQ-FB03

B755A-2 E2 X 1 X 0 D D D D FOOO-F7FF FOOO-F003

B1B5-2 E6 X 0 X X 1 D D D 1400-17FF -
. ,

...

E5'(J2short) X 0 1 X 0 D D 0 1000-13FF ~

B1B5-2
E5'(J2 open) X 0 X X 0 D D D 0000-03FF -

B155-2 E1 X X 0 X X X X D dOOO-OOFF 0000-0005

LEGEND: X=NOT USED; O=CHIP SELECT ON 0 ; 1 =CHIP SELECT ON 1 ; D=FU LL YDECODED ADDRESS
'J2short .
'J2 open

MEMORY I/O
FFFF FFFF

F803

t
F800

I
F800

8755A-2
(E3) EPROM

8755A-2
(E2) EPROM

• F804

F7FF

t F7FF
FOOO • F004

NOT USED

8755A-2
(E3)

NOT USED
EFFF

NOT USED

8185-2
(E6) RAM

17FF

t EFFF
1400 •

8755A~2

(E2)

NOT USED

• 1800
F003

t
FOOO

13FF 0006
8185-2 RAM

(E5)&J2 SHORTED

NOT USED
OFFF •

8155-2
(E1)

t
1000

0005

t
0000

0400
03FF 03FF

NOT
USED 8155-2 t

(E5)& J2

8155-2 OPEN

(E1) RAM

RAM

0100

T
0000 0000

Figure 4-1. iAPX 88 Demo Board Address Map

4-2

APPLICATION EXAMPLES

that eliminate the need for the + 12 volt and -
12 volt power supplies normally required.
The + 12 volt power supply was eliminated by
connecting the emitter of Tl to +5V. While
this produces a signal that is not strictly
within the RS232C specification, it works
well on interconnections of less than 10
meters.

This design also employs a useful trick to
eliminate a -I2V power supply. Many people
have attempted to eliminate this supply by
driving the TRANSMIT-DATA line bet
ween GROUND and +5V. Because of a
circuit switching element (Transistor T2), the
low-level signal is always a little higher than
ground and hence won't work with many
terminals requiring a negative voltage for a
LOW. This design, however, uses the REC
EIVE-DATA line (presumably driven by a
true RS232C-compatible terminal) as a
source of a negative voltage.

This negative voltage (negative whenever
RECEIVE-DATA is low) charges capacitor
CI through diode Dl. This circuit has been
verified to work when receiving any sequence
of characters, except BREAK.

BREAK causes a very long "I" on REC
EIVE-DATA; TRANSMIT-DATA event
ually exhausts the negative charge on cap-

acitor Cl. If desired, a -12 volt supply may be
connected to the junction of CI, DI and R4.

This RS232C interface is driven by soft
ware to provide the proper timing for
transmitting and receiving characters.

Multiplexed System #2: The Vest Pocket
Computer

Combini'ng state-of-the-art microprocessor
components results in a usable computer
small enough to be carried in a vest pocket
(Fig. 4.2).

In only 15 square inches (3"x5"), this system
could contain a 2K tiny BASIC operating
system, 16K memory for user programs, and
an 110 port. The port is designed to interface
to a terminal.

The system is designed with an 8088 CPU,
8755A 110 Port with EPROM and 21821
RAMs with 4K byte density each.

The 21821 is a new concept in RAM
architecture, interfacing directly on the iAPX
86, 88 or MCS-85 multiplexed bus, respond
ing directly to controls from the processor.

Contained within the 21821 is a com
plete memory system on a single piece of
silicon.

DIP-- MDS s [J

m1~

D DL

SWITCH VDT ! D!
W 8088 8755A-2

S2RESET

2
1
8
2
1

2
1
8
2
1

2
1
8
2
1

Figure 4-2. Vest Pocket Computer Component Layout

4-3

2
1
8
2
1

.'

BOBB

;;

I::

22 19 21

:,
18 8 10

0 .. '" t;; g e ~

'~:
0 ~

I B2B4A

RES

"APPUCATIONEXAMflLES

ADO
ADl

, ·AD2
AD3
AD'
AD.
AD.
'AD7

A8
. "A9

Al0

" , A1'1
A12
A13
Al'
A1.
RO

WR
ALE

,.)0/;;;

OTIR
HlOA

DEN
I.NTA

HOLO
TEST
INTR
"NM'

GND

~N/MX

Vpc
, " . GND

,.
" ,.
13
12'-

'" 10
9
8

.7 ..
• • 3
2

3.
32
2.
2.

28

r¥o--N.C.
ffs-N,C,

~~:g:

~ n

~
~+5
~+.

~

I!:

,.

"!:E'

Q

I·

11 10 9 2

w.\3: Ie w ;:i Q ex: 0

,Figure 4~3. Vest Poc~et Schematic

4-4

23 22 21 19 18 17 16 15 14 13 12

'~. ~OTE: SW21WA QUAD SPST DIP

APPLICATION EXAMPLES

3
E~ A2 , 5

2
A1

E,
GND 8

1 AO 8205
E3r¥::----+S ~

15
V ~+5 -

241

00 0, 0, ~~r:J
2Sr+ S 1

13 12
2Sr+ S 1 24

-% ADO CS
CI'J ROY 4 ADO CS

en ROY

" u
5 -f AD1
6

AD1 -t AD2 , AD'
i' AD3 8

AD3

~ :g~ 9
AD4
AD5

W. AD6
10 AD6 g AD7 11

AD'
~ ADa 12

AD8 g AD9 13 AD9
~ AD10 21821 15 AD10 21821
~ AD11 16 AD11 g AD12 17 AD12 * AD13

18 A013 g. AD14 19
AD14

~ AD15 '0 AD15 g6E 23
OE 22 ¥.-WE 21 WE

~ ALE
26

ALE
~ MIlO MilO
rr. SHE/S.16

REFEN Ut[t BHE/B·16
REFEN u/C Vee V" Vee V" , 28 g-+5 ~ 2:°5 '~ 2.?, g-+5 '} ':~ '%-s, S,

"I 25,+5 , "I '5,+5 ,

~ E2 E3 +5 P. E2 E3 +5

4 ADO CS t3 ROY 4 ADO CS i3 RDV

-* AD1 5 AD1
~ AD' , AD' -t AD3 AD3

8 AD4 S AD4 9 16" ADS 10
ADS

it AD6 11
A06

~ AD7 12
AD'

g ~g~ 13
AD8
AD9

~ AD10 21821 15 AD10 21821
W AD11

16 AD11 g AD12 17
AD12

~ AD13 18 AD13 g AD14
19 AD14

~ AD15 '0 A015
~ OE 23 OE
~ WE 22 WE
?,1 ALE 21

ALE
~ MIlO 26 M/iO
lZ BHE/S.16

REFEN U/L t BHE/S·16 --
U/L Vee V" REFEN Vee V" ,

'6 0-+5 "b 286 ''',b. '6 0- + 5 "b 286 ''',b.

NOTE: STRAP REFENTO Vss FOR SELF REFRESH

4-5

C1 XTAL GigO

+5V J~O~;W]"~ X2 GND

R2 17 Xi

DY REA
IN PUT

OT

7.SK
GND --l- CYSYNC

RDl

AEN1

APPLICATION EXAMPLES

+1~8 GND::--11l Y 2MHz

1 20 40

V" r------#
GND GND Vee

~} RESET INTA
8 19 eLK HLDA 30

ClK ~ NC
RESET ~ .. ssa r,;-

A19
READY 5 22 READY A18

PClK A17 N
U SED G~~=% RD2

~} r3-- ~ NC
38 .

Al.
+5 V

Rl
7.SK

+5V

R
SW

ESET
ITCH

I
SWl r

-

AEN2

eRl a2allA

'r~4 Ul
11

RES
I~

R3
7.SK

C2 I1).lip

00000-003FF2114's RAM (MAPPED 0-07FF)

OSC

EFI

FIC

03000-030FF8155 RAM/IO (MAPPED 3000-37FF)

ilL- NC

~NC
~GND
f-

NC -f.

33

.

,~ 17

18

GND

8

All 1

A12 2

A13 3

8

~ A15 4

1K BYTES RAM
256 BYTES RAM
2K BYTES ROM FF800-FFFFF865SA MONITOR (MAPPED 80000-FFFFF)

I/O
USART COM/STATUS

DATA
8155 COM/STATUS

PORT A
PORT B
PORTe

TIMER LOW
TIMER HIGH/MODE

8655 PORT A
PORT B

PORT A DDR
PORT B DDR

~~~~~} :~~~~E~E3~£~3YFFF) 
3000} 3001 
3002 1/0 
3003 (MAPPED 3000-37FF) 
3004 
3005 

2800} 2801 I/O 
2802 (MAPPED 2800-2FFF) 
2803 

NOTE: lIO ADDRESSES 0-3FF WILL TALK TO RAM & THEREFORE SHOULD NOT BE USED 

r,.-
A15 r;--
A14 

~ A13 
A12 ~ 5 
All 

~ Al0 

tf-8088 A9 

U2 A8 r!--
29 OTIA WR 

DEN RO 32 

101M 28 

ALE 
25 

MNJMX AD7 
9 
t;;) 

AD6 r,;--
ADS ~ 
AD4 tT,-

TEST AD3 ~ 
HOLD AD2 ~ 
NMI ADl 

~ ADO lNTR 

AB·A15 

GI~ +i~6 
Ul0 

AO GND V" 

Al 

A2 00 ~ 
151 ~} 02 ~ NC 8205 ill 

U7 0- ~. 
05 10 

Eo 06 9 

E2 07 7 

E1 

Figure 4-4. iAPX 88 Demultiplexed Bus System 

4-6 

, 
~ 

3 

~3 
2 

. Gi:O +I~o 

~ 
V" V" 

~} 
RESET P~O 

+5V-1 PAl ~ V" 
PA2 ~ 
PA3 

27 

PA4 
7a"""" N( 

PAS 
r,;-
~ 

PAS 

~. PA7 

PBO 

~} ..rl 22 
Al0 PBl ~ A9 ~ \......2.! A8 

PB2 
35 

PB3 ~ N( 
8655A PB4 

U3 PBS E-Bi"6'R PBS ~ 10 
lOW P87 r'L. 

9 jfij 
7 101M READY ~}N( 11 

ALE ClK 

19 
AD7 r-;s 

r--;-;- AD6 

f-fs" ADS 

~ AD' 

~ AD3 

~ AD2 

t-----;-; ADl 

ADO t---
CE2 CE1 

2 -1' 

~6 
5U~ 

Api; 

GND +5V 

~10 ~20 

~ 
GND Vee 007 ~ 017 

~ 016 006 .-J-L-AS 6 
015 DOS ~ ~ 
014 004 ~ ~ 

~ 013 003 ~ 
~ 012 8282 002 ~ 
~ 011 U8 001 ~ 

010 000 r!-!-t-=---' 

11 STB 

OE~ 



T T J 20 40 

~ V" Vee 3 
RESET TIMER IN 

TIMER OUT 6 

PAO ~ 
PA1 -?-
PA2 E-
PAJ *-PA4 ~ 
PA5 ~ 

PA6 tE-
PA7 tE--

8155 
~ U, PBO 

10 
PB1 ~ 

We PB2 ~ 9 RD PBJ ~ 7 IO/M PB4 ~ 
-----"l ALE PB5 ~ 

PB6 ~ 

~ AD7 PB7 ~ 

~ AD6 

~ ADS PCO ~ 
~ AD4 PC1 ~ 
~ ADJ PC2 ~ 
~ AD2 PCJ r!:-
~ AD1 PC4 ~ 
~ ADO 

CE 
PC5 P--

8 

-

ADO·AD7 

GI~ 
15 A9 GND 

16 A8 

~ A7 

r------!- A6 

r---? A5 

~ A' 2", 
~ AJ U9 

t---? A2 

~ A1 
~ AO 

WE 

110 

NC 

APPLICATION EXAMPLES 

t---:=9;TXC 
,-__ ",25,RXC 8251A 

U5 

SYNDETiBO ~ Ne 

+5V 

U12 :;;t CR2 
74LS14 -r IN914 ~D7 

f------l. 06 

~DS 
~D4 
-----1. OJ 

~1 R4 

RxD-~ 4.7K 
2 REC'O DATA 

--2i 02 

~D1 
---= DO C/O 

12 

AO 

1--+_.:;'5'JA9 GNO 
16 AS 

~A7 
~A6 
~A5 
~ A4 2114 
~ AJ U10 

~A2 
~Al 
~AO 

10 

11 

4-7 

::!~ ~:~14 

Q] SIGNAL GND 

CLEAR TO 

4 6 1 
~~~--~ : SEND 

DATASET

-=- 1488

READY

+ 5V ---l c-,-,- 1 C4.C:

T22 l'fd Io.olj.1ld
_ 15V ~ 15V

GND----6-~lc1o .,

I o.o1 /.1fd
15V

-12V----~ •

FFFFF..-

FF8001-"'::::

800001--

040001--

APPLICATION EXAMPLES

Using a dynamic storage cell, the 21821
includes all the necessary support logic such
as refresh control, arbiter, latches, and multi
plexers. (Fig. 4-3)

iAPX 88 DEMUL TIPLEXED BUS SYSTEM

In this application example we will look at an
iAPX 88 system which uses 2114 RAMs
connected to a demuitiplexed bus, and an
8251A to implement a serial interface.

As seen in Figure 4-4, the 8088 CPU receives
its CLOCK, READY and RESET signals
from the 8284A.

The control software is in the 8755A
EPROM. This software contains the "boot
up" routine which tells the CPU how to get
started when the system is reset. It might also
contain a small monitor, an interpreter such
as TINY BASIC, or some game software.

The 8155 provides 256 bytes of RAM,
timer/counter and 22 I/O lines. Both devices
connect directly to the 8088's multiplexed
address/ data bus because they internallly
latch the address when ALE goes LOW.

The majority of the system RAM is provided
by two 2ll4s. These lK x 4 static RAMs do .
not internally latch the lower 8;.bits of address
as the 8755 and 8155 do. For this reason, an
8282 octal latch is used to provide a
demultiplexed address bus. The 8282 looks at
the lower eight bits of address at the
beginning of each machine cycle, and holds it
on the address bus on the falling edge of ALE.

Note that the 2114s are chip selected, using a
decoded address from the 8205 decoder,
combined with the DEN output of the 8088.
The DEN delays the chip select until the
system is ready for data to be driven onto the
data bus. If this were not done, the 2114s
would output data onto the data bus shortly
after the address appeared on the bus. This
would .. cause. a problem called "bus con
tention", where the 8088 is driving address

4-8

information on the address/ data bus at the
same time the 2114sare beginning to drive
data on that same bus (see Fig. 4-5). This is
prevented by using DEN to delay CS until
after ALE goes LOW.

Universal Synchronousl Asynchronous
Receiver/Transmitter
Another important part of this design is the
8251A USART. The 8251A is a peripheral
device programmed by the CPU to transmit
a.nd receive serial data.

The USAR T accepts data characters from
the CPU in parallel, and then converts the
characters into a serial data stream for
transmission. Simultaneously, the 8251A can
receive serial data streams and convert them
into parallel data characters for the CPU.

The 8088 and 8251A interface is quite simple.
Data travels to and from the 8251A via the
8088's multiplexed address/ data bus. The
RD and WR inputs of the 8251A are driven
directly by the8088's RD and WR control
lines.

The Chip select is provided by the 8205
address decoder; and addr~ss line AO tells the
USART whether,the data bus is transmitting
a data character or a control/ status char
acter.

Baud/Rate Generation
The rate serial data shifts into and out of the
8251A is controlled by the Receiver Clock
(RxC) and Transmitter Clock (TxC) inputs.
They are provided by the TIMER OUT
output from the 8155's 4-bit counter/timer.

A demultiplexed system is useful for a
number of applications, including small
control or monitonng systems, dedicated
testing, or games.

The monitor software for the 8755A is
available through Insite, the INTEL users
library. It contains a "bootup"· routine,
display/alter memory and registers, single
step, break point, and other functions.

APPLICATION EXAMPLES

A15

-D-AS-A15 8205
AS

DEN

8088
CPU

AD7
8282 AO-A?

ADO -----" ,-----

I I I
STB

2114
CS p.-4 CS

2114

DO D3 D4 D7
ALE r--

J J Jj
"- DO-D7 DATA

CHIP SELECT MUST BE DELAYED BY DEN UNTIL ALE GOES LOW TO PREVENT BUS CONTENTION.

Figure 4-5. 2114 Chip Select Connection

A16-A19

U lillU lillU lilllJ lillU III! AB-A15

ULJULJULJULJ II AO-A7

LJLJLJLJ ADO-AD?

8088
CONTROL/STATUS

8286

Figure 4-6. iAPX 88 S100 Bus System

4-9

·" ...n..
PI ,
P3

20\ 20 20 8\ 8

~ AO c:s PROG ~,-! 'S PRoo QA: C~

~?
.CS ?- AO

~5
0 AD PROG AO

~
AI ~ AI ~ AI

~~
AI ~AI A2 00 ~~ A2 00 ~~ A2 00 A2 ~ A2 ~ A. UIO 0 I A3 0.11 01 ~({ A3 U12 01 A3 - 10 A3 ~ri2-~vf

UI> WEt"'- UI4 q A. 02 ~~ A4 02
13 r:t A4 02 A4 ~A4

AS 2108 03 A5 2708 03 Ii*' 2
A5 210B 03 A5

"'''-~
~A5 2114

~} r.- A6 04 h~ A6 04 S-VT- A6 04 ~@ AS ,,!; A6 1/04

~ A7 05 r---c+. A7 05 t;6'~ A7 05 A7 1/03 EA7 1/03

~ 'fi
A8 06 ~~ A8 OS ~~

A8 06 ~~ A8 1/02 ~A8 1/02 I
A9 07 A9 07 A9 01 f'9 ' 1/01 ~A9 1/01

'.
+5 ~.

'.TK- ,--=A--------------+-+-t-~r;_t_t_r----------------------
C .Ii

13121110 19 DOQ ' DIO~' '
18 001 all '.2
11 002 U Dl2 3
160030134

15 004 20 DI4.~5E~~~~~!!~~gg~~~~~~~~~~~~~ :; 005 01 5 ~
12 gg~ g~i 8

tOE ' ST8 J.ll2.
+5 I

01
AS 84 .19,000 S1B 010 I

AID
A934' 18 001 'Oil ~

~ 17 002 012:

A2'8f' 17 002 012 3
'~ .. ~ 16 00 • U 013 4

A 4 30 15 004 23 014 5
-~ AS "" '14 00 , " 010 6
A.~ - 'I' 006 016 7

'----'AT&! I . 11r'-. 10 12 007M:+!5 D17~
A Dsii@r;.".!>------T' ~-"""+5;:-"-I ': 111

D077~9~O~~~===~R~7~===O~'~8~-~,:=. =====i'·'!2tD~0~7:m.'D1DI~7~8======bU . ~06~ 13 006 016 7
0,0539 14 DOS 015 6

_~04 38 '; 004 U DI4~li~4~~~~~~§~§~dJ DO'3~ 17 003 25 013 3
D02l!E> 002 012

+' .

. , Reprinted by, permission fr~m Microtuture.

Figure 4~7.:iAPX 88 S100 Schematic

4-10

APPLICATION EXAMPL.,:S

M'

•• R'

~' " U
12 T 21pf

... CIC

3 AI9IS6

37 A1B/S!I

==1~====::3E~8 ::~/S;
6

U2
r "4[21

7~
~=ttE===~6~AI0
-<-+--r-+------,-".'j~:~

==~=+====~A" 2 AI4
---...... ---~''-'9'-1AIO

----~---~2~'~ALE
16 AD 0 15 AD I I. AD 2
13 12 AD3 ADO
: ~ A 05

9 AD6 ADt

RD 32
INTA

2.

TEST 23

INTR 18

HOL0 31

10/M 28

+,
~ __ ~~ _________ ~·~~·~ ________ . ____ ~~ ___ ~~INT

UI. 12 ~ RPI ~!;:;;+>

21 DT/R
s SO 34

2 ~~ ~~:~ us ~~m~-~~ ~~7~:-=-:-=---------------~--<,
L ___ ~~y~-t:::;-::::::::3jA2 u 02f'-13"-+-------'-"-I1~-} 012 U 0021'-17:-----<,

S--:- 27 03 12 VUIB --_:-': 013 28 D03r'6c--------~::ill
+5 f~ E3 05 10 ", 015 OO~r'4'-'---<.

I +8V

"+ IV

VR 1

4~~ 069 LOIS 006

07 1 Jl Cll D01~"--------@SHLTA
IIL~S~13~.~~0~·fL~-:_--~2JnUr;~'--_:-
L I h B,:'

.Iuf AT C2,C3,C9,C13,C17,
Cl9, C21, el2, C23,
CZ4.C25

00 , 00
GHO Ii NO

VR 3

12V

4-11

V.2

APPLICATION EXAMPLES

iAPX 88-BASED S100 BUS SYSTEM

One very popular standard for microcompu
ter systems is the S 100 Bus. This application
example describes an S 100 system which uses
the iAPX 88 to implement a high perfor
mance system which has many other benefits.

First, an iAPX 88-based S100 system is easy
to implement, because the CPU interface is
very similar to the CPUs for which the
standard SIOO was originally designed. For
example, the hardware of an 8085-based
S 100 CPU card is very similar to this system.

Secondly, because this SIOO system is using
an iAPX 88 CPU, standard SlOO memory,
I/O, peripherals, and other cards, can take
advantage of the powerful iAPX 88 features
to greatly enhance the capabilities of existing
S 100 systems based on the 8080, Z80 or other
8-bit CPU's.

Another point is that, along with higher
performance, the system alsohas the advant
age of the greatly relaxed iAPX 88 bus to
accommodate slower memory, 110, and
peripheral cards without the performance
degradation of wait states.

The bus also directly supports the iAPX
88's I Megabyte memory address space.

As shown in the block diagram in Figure 4-6,
the system -has 3K bytes of EPROM (three
2708's), IK of ROM (two 2114s), fully
buffered busses and demultiplexed address
bus. The control and status busses have been
decoded to provide compatible signals for the
SlOO bus.
110, peripherals and additional memory are
assumed to be on the other standard SlOO
cards in the system. A detailed schematic is
shown in Figure 4-7.
PC board and software for this system are
available from Microfuture [1]. The boards
are called the CP88, and the monitor
software the muMon/88.
Note 1: Microfuture,P.O. Box 5951, San Jose CA,
95150.

iAPX 88-BASED CRT CONTROLLER

This application example describes an intel
ligent CRT controller based on the iAPX 88
and the 8276 Small System CRT controller.
This design demonstrates the power of the
iAPX 88 and LSI chips for a low component
count.

A unique implementation shows how to
eliminate the need for a DMA controller,
while enabling the iAPX 88 to supply
characters directly to the 8276 by means of
interrupt-driven software.

The overhead on the processor is less than
30%, leaving it free to implement intelligent
terminal functions, as local data processing.

The entire design requires only 22 IC
packages.

The heart of the controller is an iAPX 88
operating at 5 MHz (Fig. 4-8). It is supported
by two 8185 (lK x 8) static RAMs, and a
2716 EPROM, containing control software.
An 8251 A programmable communication
interface provides synchronous or asynchro
nous serial communications.

4-12

Baud rates are selected by switches on the
board. The baud rate clock is generated by
the 8253 programmable interval timer under
software control.

An 8255A provides three 8-bit parallel 110
ports, two of which are utilized for keyboard
scanning. The third port is used to sense
option switch settings and to sense the
vertical retrace signal from the 8276 for CRT
synchronization upon reset.

The CRT interface is controlled by an 8276
programmable CRT controller. The CRT
dot and character timing is generated by an
8284A clock generator. A second counter of
the 8253 timer provides the appropriate
horizontal retrace timing for the CRT
monitor. A 2716 EPROM provides a user
programmable character generator.

A shift register transforms parallel data from

APPLICATION EXAMPLES

the character EPROM into a serial bit stream
to illuminate dots on the CRT screen. The
2716 character generator makes it possible to
display special symbols for word processing
or industrial control applications, or to
display characters and words in a foreign
language.

Screen Memory Feature
One special feature of this design is the iAPX
88's Load String (LaDS) instruction to
emulate DMA. This DMA function fills the
8276's row buffers which must receive 80
characters (one row on the CRT screen) every
617 microseconds. This is done using an
interrupt routine which saves the registers to
be used, points to the first character to be

8088

NMI BRDY

8253-5
COUNTER/

TIMER
8251A
USART

t
SERIAL

COMMUNICATIONS
. CHANNEL

DMAed, and uses a repeated Load String
(REP LaDS) to DMA 40 words (80 bytes) to
the 8276. The routine then checks to see if it is
at the bottom of the screen memory, updates
the character pointer in memory, restores the
registers, and returns from the interrupt.

DMA Emulation
The LaDS instruction actually moves each
byte of data from memory to the 8276 in one
machine cycle by using a special decoding
trick to generate both a read signal to
memory and a write signal to the 8276. The
address decoding is set up so that the screen
memory is at memory locations 30H to
7FFH. This memory is also accessed by
memory addresses 1030H through 17FFH.

CHARACTER
GENERATOR

PROGRAM/
DISPLAY
MEMORY

SHIFT
REGISTER

VERTICAL
SYNC

VIDEO

HORIZ.
__ SYNC

FROM
8253

8255A-5
KEYBOARD I

CONTROLLER j

I KEYBOARD I I STATUS

TO
CRT

Figure 4-8. CRT Controller Block Diagram

4-13

APPLICATION EXAMPLES

Any memory reads using addresses 1030H-
17FFH will simultaneously cause a write to
the 8276 row buffers (Fig. 4-9).

In this way, the iAPX88 emulates DMA by
addressing both the 8185s and 8276, directly
transferring data from the screen memory to
the 8276 row buffers. Other accesses of screen
memory, such as inputting a character from
the keyboard, are done using addresses
between 30H and 7FFH.

Another demonstration of the power of the
iAPX 88 is the routine which recognizes
escape characters (Fig. 4-10).

Using the iAPX 88's Translate (XLAT)
instruction and flexible addressing, this
routine takes only 9 lines and 22 bytes of
code. It executes in 6.6 microseconds. This
same routine written for the 8085A-2 takes 20

8088

lines, 61·· bytes, arid 31" microseconds. The
iAPX 88 uses fewer than half the lines and
bytes of code, while executing 4.7 times
faster!

iAPX 88 MULTIPROCESSING SYSTEMS

Using multiple processors in medium-to
large systems offers several significant advan
tages over the centralized approach that relies
on a single CPU and extremely fast memory:

I) System tasks may be allocated to special
purpose processors whose designs are opti
mized to perform specific tasks simply and
efficiently.

2) Very high levels of performance can be
attained when processors can execute simul
taneously (parallel/ distributed processing).

DATA BUS
DATA FLOW

RD~----------------------~~

1/2
'---- 74LS139

Yr-~~------------~~

W DECODER
ADDRESS

BUS

G
1/2

74LS139 ~
DECODER P"--'

A SINGLE 8088 STRING INSTRUCTION
MOVES DATA BYTES FROM THE 8185
RAM TO THE 8276 ROW BUFFER. THE
8088 "THINKS" IT IS LOADING THE AX
REGISTER.

1
BS WR

L-....QCS CRT
CONTROLLER

8276

Figure 4-9. 8276 Row Buffer Loading

4-14

CS RD

SCREEN
MEMORY

8185

APPLICATION EXAMPLES

3) Reliability is improved by isolating sys
tem functions so a failure or error in one part
of the system has a limited effect on the rest
of the system.

4) Modular system design promotes parallel
development of subsystems breaks the appli
cation into smaller, more manageable tasks,
and helps isolate the effects of system
modifications.

The iAPX 88 architecture supports two types
of processors: independent processors and
coprocessors.

An independent processor executes its own
instruction stream. The 8088 CPU and 8089
I/ a Processor are examples of independent
processors. An 8088 typically executes a
program in response to an interrupt. The lOP
starts its channels in response to an interrupt
like signal called a channel attention; this
signal is typically issued by a CPU.

The iAPX 88 product line architecture also
supports processor extensions. The 8087
Numeric Processor Extension is an example.
A special interface, designed into the 8088,
allows this type of processor to be ac
comodated.

The processor extension adds additional
registers, data types, and instruction re
sources directly to the system. When one 8087
is configured with one 8089 and an 8088, the
system is referred to as iAPX88/21 (Fig.
4-11).

iAPX 88 Multiprocessor Interface

The iAPX 88 architecture simplifies the
development of multiple-processor systems
by providing facilities for coordinating the
interaction of the processors. The iAPX 88
provides built-in solutions to two classic
multiprocessing coordination problems: bus
arbitration and mutual exclusion.

Bus arbitration may be performed by the bus
request/ grant logic contained in each of the
processors (local bus arbitration), by 8289

4-15

bus arbiters (system bus arbitration), or by a
combination of the two, when processors
have access to multiple shared busses. In all
cases, the arbitration mechanism operates
invisibly to software.

For mutual exclusion, each processor has a
LOCK (bus lock) signal (program activated),
to prevent other processors from obtaining a
shared system bus.

The lOP may lock the bus during a DMA
transfer to ensure both that the transfer
completes in the shortest possible time, and
that another processor does not access the
target of the transfer (e.g., a buffer) while it is
begin updated.

Each subsystem can examine and update a
memory byte with the bus locked, using a
LOCK prefix with the XCHG instruction.
This instruction can be used to implement a
semaphore mechanism for controlling the
access of mUltiple processors to shared
resources. A semaphore is a variable that
indicates whether a resource, such as a buffer
or a pointer, is "available" or "in use."

One mUltiprocessing system is shown in
Figure 4-12. This iAPX system uses the 8088
CPU to perform data processing activities.

XOR AX,AX ; clear AX

MOV BX,ESCTBL; load table pointer

MOV AL, USCHR ; read character

CMP AL,41H ; check for 41 H (lowest
possible escape character
value)

JL SETUP ; not valid

CMP AL,48H ; check for 48H (highest
possible escape character
value)

JG SETUP ; not valid

XLAT ; translate to routine address

JMP (AX)

Figure 4-10. Escape Character Recognition Code

~

~
(J)

"TI
to'
c:
iil
f'

5>
'tJ
X
CD
CD

s:
§:
-6'
o
(")
(1)

'" '" :i'
cc
In
'<

'" iD
3

<

<.

8288

I/O PROCESSING SUBSYSTEM DATA PROCESSING SUBSYSTEM

1/0 DEVICES I 1/0 MAPPED
ROMIRAM I LOCAL

RESOURCES

D
1/0 BUS

8284A
CLOCK GENERATOR

D
') <

/ ,
/ ,

LOCAL BUS

8284A
CLOCK GENERATOR

D
F------------.!.Al'-X-81l~~1..------D---~,

/ , _--,...,...-_ / \ ' ,

U // TRANSCEIVERS TRANSCEIVERS 'i88/20---TI------j
/ AND LATCHES AND LATCHES I V- :

r--~--,/ ::

fi
8288

BUS CONTROLLER

8089
lOP

_J ~ 8088 t--'------'
CPU

I

-u
8289

'-

r--

I
I
I
I
I
I
I

X
iF.1 X

8289 8288
BUS CONTROLLER BUS ARBITER

TRANSCEIVERS
AND LATCHES

TRANSCEIVERS
AND LATCHES BUS ARBITER BUS CONTROLLER

cD tP D D cfl tp

"'>

MUL TIBUS' SYSTEM BUS "'>
I

MULTIBUS® CONTROLS D I
MULTlBUS@CONTROLS

SYSTEM ROMIRAM

»
" " r-
n »
::!
o z
m
>< » s:
" r-
m
en

8288
ClK MN/MX ~ - READY ClK INTA

"11

- RESET 5,"50

JL
S,"So MRDC

8088 r4 MWTC

A,,-Ao DEN 10RC

D,-Do 'rn" r- DT/R ffiWC
ALE

cD"
c
iil
t ...
[')

RO/GTo ~ -= 8284A
STB OE

ClK I-

~
"0
1'i"

u... READY I-
8282 t---RESET I- rv (20R3)

!!!.
;;:
"II RO/GT

.j>. ><
I: 00

-..J 00
r-
0
n

- RESET
S,-So =-'--+- READY

ClK
L..,.T

!!!.
s:
0
Co m

8089 '-'--- OE
EXT2

DRO 2 A,,-Ao l,A.- ~ 8286
r---+ D,-Do

C")
0 r+ EXT 1 ADDRESS/DATA
::I
;E ~ DROl

CA SEl
C

~ + Ao

0"
::I A15-A,

\
... mwc

lSBiTiiO
ADDRESS DECODE

ADDRESS BUS I~ , ..
i i i • • •

r-*l r-+-1 r--*--,
I RAM

(D:gJlDEI 1 AI~g g6~~~6l I-(DECODEI --1
L_,_.J L_(_.J L ____ J

DATA
((I

(1 BUS 1 1 (

I'- ?-- (... ?- ,II. ,...1 I.- >- I.-).

1 (1 1

l~ t~ b ~t t~ >"07 ~~ I~ }o- }o-

CS WEOD CE OE RD WR CSt CSt RD WR CSt RD WR
DACK DACK DACK

RAM RDM I/O I/O I/O
(2142) (2716-2) PERIPHERAL PERIPHERAL PERIPHERAL

DRO INT DRO INT DRO INT

~
-rr--

»
"tJ
"tJ
r-
(;
»
:::!
o z
m
>< » s::
"tJ
r
m
tn

AP~'UCATION EXAMPLES

I/O intensive tasks, such as DMA, are
handled by the 8089 I/O Processor. This
configuration is said to use the lOP in local
mode because the 8088· and the 8089 ;;hare all
the system resources and the. comm,)ll local
bus. The system name for the 8088/8089
combination is iAPX 88/ 11.

Use of the system resources is arbitrated by
the Request/ Grant (RQ/ GT) line which
serves the same function as HOLD I HLDA
in minimum mode. This enables the 8089 to
gain control of the system to read parameter
blocks from memory, perform DMA, or
execute other I/O processing tasks.

Figure 4-11 is a block diagram of an iAPX
88/21 system. Here the 10 processor is said to
be in remote mode because it has its own local
resources separate from those of the 8088.

The processors communicate with each
other and can share resources via the
MUL TIBUS™ system bus. Control of the
MUL TIBUS™ is handled by the 8289 Bus
Arbiter. Note that each subsystem has its
own 8289 to access the system bus in order
to use shared resources and communicate
with the other subsystem.

An example of one possible configuration for
the 8089 in Remote Mode is shown in Figure
4-13. This subsystem has its own local I/O
and memory resources. For many systems of
this type, a large percentage of the 8089's
tasks will use its local resources and not
require use of the multimaster system bus.

But, when the 8089 does need to use shared
resources, the 8289 will obtain control of the

4-18

system bus for the 8089. The 8289s in the
system will assure that bus contention and
deadlock do not occur.

Some systems will have several separate data
processing tasks which can all be operated on
at the same time. This could use a con
figuration such as Figure 4-14, which has two
iAPX 88/ 10 subsystems and one iAPX 86/ 10
subsystem. This could easily be expanded by
adding Numeric Data Processors (iAPX
88/20) 8089 I/O Processors, and/ or more
iAPX 88, 86 subsystems. Each subsystem has
its own local bus on which it can attach
its own resources.

In this system, the . LOCK output of the
processors can be very important. When one
subsystem begins an operation such as a read
modify-write using a shared resource, the
CPU can use the LOCK to assure that the
operation is completed before another sub
system can take control of the system bus.

The LOCK signal tells the 8288 and 8289 that
control of the bus must not be given up
between the two bus cycles of this type of
instruction. In this way, an exchange instruct
ion can be used to set a semaphore flag
without the possibility of losing the bus
between the read and write cycles of the
exchange.

The iAPX 88 architecture promotes modular
multiprocessing designs. The maximum
mode interface with the 8288 Bus Controller
and 8289 Bus Arbiter provide all the signals
necessary for implementing multimaster
busses and greatly simplifying the design of
large systems.

APPLICATION EXAMPLES

A FROM CPU 0

< AwA, PROM CPU

liD PORT I
ADDRESS
DECODE liD WRITE COMMAND

lOGIC

READ ~ WAIT STATE LOCAL GENERATOR 8284A

"'"""'~ OR
WRITE ONE SHOT

~
RDY1 SYSTEM RESET

(1FWAITSTATES
RESEr RST

(IE INIT)
REQUIRED)

~t- ,---- READY RDY2
TRANSFER ACKNOWLEDGE

r-)
[AEN1

(IE XACK)

,...- -L- AEN2 eLK

I/O ADDRESS
r-- DECODE

LOGIC
~

I---- eLK
MULTIMASTER

~ eA
8089

CONTROL' BUS > eLK~ I----< < 8289

'--. SEL

~
DACK

5,-So ORO OR01
~es AEN

A ~ I/O INT EXT1 > PERIPHERAL TO/FROM r--

~"'''
ANOTHER lOP , - RQ/QT

LOCK i1 ~
AEN

ORO DRQ2
es srso 8,-5)

I/O INT EXT2 ADO-AD7

I L: -V PERIPHERAL A8·A19
eLK MRDe

~ I ~
LOCK MWTC

0: INTA 8289

IORC

lowe Vee
i08

ALE

PDEN DT /Fi DEN

T
DE STB DE STB

MUL IIMASTER

~
LOCAL ADDRESS ¢=: ~

ADDRESS (A,g-AJI I\.
8282/83 8282/83

~

+ <J--
DE T T OE

LOCAL DATA

¢==/ k=> A MUl TI MASTER OAT A (0 0.0,,) I\.
8286/87 8286/87

Figure 4-13. Typical 8089 Remote ModeConfiguralion

4-19

APPLICATION EXAMPLES

r------------------------------------i
PRIORITY 2

8287 8263

LOCAL BUS

so

I
ADO-AD7
AB·A19

,-------------j-..------~S1 8088

I
OE

~ r . !~
DEN I~ I;;; I:;: ~ AEN I-l-r--I ~ ...l.1;;;...J.I:;:...J·~~~~;.,,~

'----- OllR 8288 8289 B2B4A

5TB -4-- ALE 19 I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ROY,
'-------'

"'" ;;,.. L ________ _ ~ ______ ...1
(

,
~~- ------------

I

COMMAND BUS ~
"'" 7" I

<~ it: ~--J~------~~--~---~-C~---~-L~-L~--~A~DD~R=ES=S=.U~s~-----

(: ~~
~,---L~~-----------,.-----------"------':"--".---~~~----------

r--- -------
"" 7" ,...------'--'-----,

I
I
I
I
~

~

STB~ ALE '" Q

8287 6283 .-- OTIA. 8288

I
<l-

8289

l~ ~ ':l
~ 0 0

IOI-IN ~Io a: CIlU)CIl() O

it~

8284A

I~ ~ IN ~" Z ~ w w
Oa:" I~

t ~J

S2~
~ >-
c:j Q

~
51 8088

so om ,,-
gl ,,"

<;.-______________ ~L~O~CA~L~BU~S~ _______________ ~

L------------ ________________________ J

Figure 4-14. iAPX 86,88 Multiprocessing System

4-20

APPLICATION EXAMPLES

r------------------------------------.
PRIORITY 1

LOCAL BUS

L ;>-

;; ~
SO

~ .0
o -
c "

S1 " 8086

S21~
>

'"
C

..... U ~

......

""" ~ ~7 ~~ ~,y
IW Ie: DE o ... :>.I ::.::

15l1;;;~::; Itj Itj ~ '" > 0;: DEN 1(1) 1(1) IV) G AEN AEN ~ c
u 0 ~

u ~ c ~ ~
u

8287 8283 - DTIA 82B8 8289 B28<1A

l~nl~lnn? ~~
_ ,N

N

STB I-- ALE ~~
>

lOB a: -=- ~
L. ?-- ~ ~"L£ __ j~~ __ _- ------- ------- -----~ -

-------- -------- --------- ----_..../ '---,
J

" 7 I:> .l

I 10MHz I ~> ~
CLOCK

Vee

..lJ.. V

..::;> <>
- r-- f--- r--
- f--- f--- f---
- r-- f--- f---
- r-- r-- r-
- r-- r-- r--
- f--- r-- r--
- f--- r-- r--

"" 7"" 7"" 7 "< 7"< 7-"""< 7 ,--- - - -----,
I J 2 1

I SYSTEM SYSTEM

l J MEMORY I/O I
PRIORITY

I ENCODER

I JJ,. I
I I
I I DECODER I I
I I

I
I I

I PRIORITY RESOLVING I
L __ ~D~E ~~l~ __ .J

4-21

Supplement s

MICROCOMPUTER OVERVIEW

WHAT IS A MICROCOMPUTER?

A Microcomputer is a system of one or more
integrated circuit devices using semiconduc
tor technology and digital logic to implement
large computer functions on a smaller scale.

Computer miniaturization is a leap-frog
technology, with microcomputers getting
smaller, faster, and cheaper each year.

There are three main elements in a micro
computer system; each has a special role to
play in the overall operation of the computer
system. These three elements are shown in
Figure 1. They are the central processing unit
(CPU), the memory, and the input/output
(IO) ports.

The CPU does the actual work of the micro
computer system: numerical processing (addi
tions, subtractions, etc.) logical operations,
and timing functions.

The CPU is told what to do by a set of
instructions, called a program, stored in the
microcomputer's memory. Data is also kept

in the memory and processed according to
programmed instructions. The input/ output
(10) ports allow the CPU to communicate
with the outside world.

The program(s) are specially designed sec
tions of machine code that perform the
following, to name a few:

• numeric calculation
• communication with Input/ Output devices
• organization and manipUlation of data

structures
• response to expected and unexpected con

ditions and program interrupts
• translation of Input/ Output data to/ from

machine-usable format
• coordination, monitoring, and timing of

events

While it may appear that the computer does
many things simultaneously, the CPU exe
cutes just one instruction at a time. Instruc
tion times vary depending on the type of
instruction, and the speed of memory or I/O
device.

ADDRESS BUS

CPU
MODULE

MEMORY

CONTROL BUS

Figure.S-1. Microcomputer Block Diagram

S-1

1/0

SUPPLEMENT

The CPU reads in data or control signals
through the input ports and sends data or
control signals to the outside world through
the output ports.

System input I output devices may also be
called peripherals. Many different types of
peripherals exist: some peripheral devices can
do limited processing on the data given to
them by the CPU.

In a typical microcomputer-based CRT ter
minal, the input ports are connected to
keyboard push buttons while the output
ports are connected to the hardware that
generates the characters displayed on the
CRT screen.

In addition to reading input characters and
displaying them on the screen,the CPU may
also scroll character lines up the screen and
perform special functions such as instructing
the displayed characters to blink or to be
highlighted.

In this CRT application, as with others, the
CPU provides the real intelligence in the
microcomputer system and relies on memory
and 110 devices for support.

WHAT ARE DATA, ADDRESS AND
CONTROL BUSSES?

The CPU is physically connected to the
memory and 110 devices by the bus interface
which is a connection of parallel wires (some
times called "lines") that perform a similar
function. As Figure 1 shows, there are three
different busses that interface a CPU to other
system components. They are the data bus,
the address bus, and the control bus.

The data bus, as the name implies, is the set
of wires over which data passes between the
CPU and the memory and 1/0. The data can
either be instructions for the CPU, or infor
mation the CPU is passing to or from 1/0
ports.

8-2

The CPU uses the address bus to select the
desired memory or 110 device by providing a
unique address that corresponds to one of the
many memory or 110 elements in the system.

The control bus contains control lines for
signals .to the memory and 110 devices and
specifies whether data is to go into or out of
the CPU and exactly when the data is being
transferred.

From one microcomputer to another, the
number of bus lines may vary. A microcom
puter is called an "8-bit machine" if there are
eight lines in the data bus and the CPU
communicates with memory and 110 using
8-bit bytes. Likewise, a "16-bit machine" has
a 16-bit wide data bus.

Also, the number of address bus lines varies
from one microcomputer to another. Some
smaller machines, like the Intel 8088 have
only 14 lines in the address bus, providing
unique addressability of about 16,000 pieces
of information. (All the signals emanating
from a microprocessor are interpreted in
terms of voltage levels (high or low) on the
bus lines. The signals on the address bus
represent a binary number: HIGH voltages
are l's, LOW voltage are O's. Thus, a 14-line
address bus can specify up to 214 or 16,384
unique memory addresses).

In an 8-bit machine, each address (sometimes
called "location") can point to an 8-bit quan
tity of data or program information. The
Intel 8080 has 16 lines in the address bus,
providing addressability of over 65,000 bytes,

The Intel 8088, described herein, actually has
20 lines in its address bus, providing the
binary addressability for over 1 million bytes
of information.

SUPPLEMENT

HOW ARE MACHINE CYCLES,
INTERRUPTS, AND DIRECT MEMORY
ACCESS RELATED?

Machine Cycles

As the microcomputer program executes,
data is transferred to and from memory and
110 devices. Each time the CPU transfers
data between itself and one of the other parts
of the system, we call this the execution of a
machine cycle (or "bus cycle'). Machine
cycles include operations like instruction
fetch, memory read, memory write, read
from an input port, or a write to an output
port. The timing of these operations is coor
dinated by the CPU clock signal derived
from CPU timing sources from an external
crystal or other frequency source.

At the beginning of a machine cycle, the
CPU issues a binary code to the address bus
to identify the memory location or 1/0
device to be accessed. Next, the CPU issues
an activity command on the control bus.
Third, the CPU either receives or transmits
data over the data bus.

Following the data transfer, the CPU pre
pares to issue the next memory or 1/0
address for the next machine cycle. In this
manner, the CPU cycles through the pro
grammed instructions, performing logical
arithmetic and I/O operations as required.

The CPU keeps track of the instruction
sequence with the program counter register
containing the binary address of the next
instruction in memory.

Normally, the program counter is incre
mented after a given instruction is executed.
The CPU automatically fetches instructions
from memory, decodes them, and executes
them in sequence, until the program ends, or,
until special instructions tell the CPU to exe
cute instructions in other parts of program
memory.

8-3

Certain situations can interrupt the normal
sequential flow of instruction execution. For
example, a wait state may be imposed in a
given machine cycle to provide more time for
a memory or 110 device to communicate
with the CPU. Wait states are needed when a
fast microprocessor needs to communicate
with a slow memory. Here's why:

Once the CPU addresses memory, it cannot
proceed until the memory responds. While
most memories respond faster than required,
some cannot supply the addressed byte
within the minimum time established by the
CPU clock. Therefore, the memory must
request a wait state when it receives the CPU
signal that a memory read or write operation
has commenced. After the memory responds,
it signals the CPU to leave the wait state and
continue processing.

Another situation that alters sequential instruc
tion execution is an interrupt. Interrupts
actually improve CPU efficiency. For exam
ple, consider a computer that is processing a
large volume of data, portions of which are
to be output to a printer. The CPU can out
put to the printer in one machine cycle, but
the printer may take many machine cycles to
actually print the characters specified by the
data byte. So, the CPU must remain idle
until the printer can accept the next data byte
from the CPU, or, if an interrupt capability is
implemented, the CPU can output to the
printer and then return to other data process
ing. When the printer is ready to accept the
next data byte, it signals the CPU via special
interrupt control line. When the CPU an
swers the interrupt it suspends main program
execution and automatically switches to the
instructions that output to the printer, after
which, the CPU continues with main pro
gram execution where processing was
suspended.

SUPPLEMENT

Priority interrupt structures are possible
where several interrupting devices share the
same CPU. If two or more interrupts occur
simultaneously, the one with the higher prior
ity is serviced first.

Another feature that improves microproces
sor throughput is direct memory access,
otherwise called DMA. In ordinary input/
output operations, the CPU itself supervises
the entire data transfer as it executes I/O
instructions to transfer data from the input
device to the CPU and then from the CPU to
specified memory location. Similarly, data
going from memory to an output device also
goes by way of the CPU.

Some peripheral devices transfer information
to/from memory faster than the CPU can
accomplish the transfer under program con
trol. In this case, using D MA (direct memory
access) the CPU allows the peripheral device
to hold and control the bus transfer the data
directly to/from memory without involving
the CPU itself.

When the DMA transfer is done, the peri
pheral releases the hold request signal. The
CPU then resumes processing instructions
where it left off.

The DMA allows the high speed data
transfers required in many of today's micro
computer systems with hard disk controllers,
and CRT terminals, etc.

WHAT'S INSIDE THE CPU?

A typical microprocessor CPU consists of the
following three functional units: The regis
ters, arithmetic/ logic unit (ALU), and control
circuitry, described below.

Registers provide temporary storage within
the CPU for status codes, memory addresses,
and other information useful to the CPU and

8-4

programmer during program execution. Dif
ferent microprocessors have different num
bers and sizes of registers. In general, 8-bit
microprocessors have 8-bit registers and 16-
bit microprocessors have 16 bits in each
register.

All CPUs contain an arithmetic logic unit,
often referred to as theALU. The ALU, as its
name implies, is the CPU hardware that per
forms arithmetic and logical operations on
binary data. The ALU contains an adder to
perform binary arithmetic manipulations on
data obtained from memory, the registers or
other inputs. Some ALU's perform more
complex arithmetic operations such as mul
tiplication and division. ALU's also provide
other functions including Boolean logic and
data shifting by one or more bit positions.
The ALU also contains flag bits that signal
the results of arithmetic and logical manipu
lations such as sign, zero, carry, and parity
information. These flag bits frequently de
termine where the program will continue
after the current instruction is executed.

The control circuitry coordinates all micro
processor activity. Using clock inputs, the
control circuitry maintains the proper
sequence of events required for any process
ing task. The control circuitry decodes the
instruction bits and issues control signals to
units both internal and external to the CPU
to perform the proper processing action. It is
the control circuitry that responds to external
signals, such as interrupt or wait requests.

As mentioned before, an interrupt request
will cause the control circuitry to temporarily
interrupt the program in process, and direct
the microcomputer to execute a special inter
rupt service program. A wait request causes
the control circuitry to suspend processing of
the current instruction until the memory or
I/O port is ready with the data.

SUPPLEMENT

Addressing Modes

The address that the CPU provides on the
address lines selects one specific memory or
110 device from all those available. This
address can be generated in different ways
depending on the operation being performed.
For an instruction fetch, the address comes
from the CPU program counter register.
While executing an instruction, this address
can be generated many different ways, called
addressing modes.

In the simplest addressing mode, the desired
data item is contained within the instruction
being executed. In a more complex address
ing mode the instruction contains the mem
ory address of the data. Or, the instruction
may reference a CPU register that contains
the memory address of the data.

8-5

And finally within some microprocessors, the
instruction may instruct the control circuitry
to generate a complex address that is the sum
of several address components such as multi
ple registers plus data contained in the
instruction itself.

Generally, the most powerful micropro
cessors are the ones with the widest variety
of addressing modes available to the
programmer.

When you put it all together: the microcom
puter bus structure, the cpt; registers, the
addressing modes, and the instructions them
selves, you have the total microcomputer
architecture. The many available microcom
puters have many different architectures
from which the system designer has to choose
in selecting a microcomputer for this
application.

.. . ,. ,

Appendix A

Benchmark Report:
Intel® iAPX 88 vs

Zilog Z80

Z8D is a re~istered trademark of Zilog Corporation.

APPENDIX

INTRODUCTION

PROCESSOR DESCRIPTION

iAPX88 1
Table 1. Architectural Features. 2
ZilogZ80 3

PERFORMANCE M.EASUREMENTS ,'.' ... '.', .. 3

BENCHMARK PROGRAM DESCRIPTIONS. 4

RESULTS 5

PERFORMANCE COMPARISON TABLES

Table 2. Execution Times (iAPX 88 vs Z80A) 5
Table 3. Execution Times (iAPX 88 vs Z80B) 6
Table 4. Execution Times with Comparable

Memory Access Times: (iAPX 88 vs Z80A) 6
Table 5. Execution Times with Comparable

Memory Access Times: (iAPX 88 vs Z80B) 7
Table 6. Ease of Programming. 7
Table 7. Memory Utilization 8

PERFORMANCE COMPARISON GRAPHS

Graph I. Normalized Average Throughput. 8
Graph II. Normalized Average Program Length

and Code Size. .. 8

CONCLUSION. .. 9

APPENDIX. BENCHMARK PROGRAM CODE
AND FLOWCHARTS 11

AFN·01664A

APPENDIX

INTRODUCTION

This benchmark report compares the capabilities of
Intel's iAPX 88/10 microprocessor with those of the
Zilog Z80. The purpose of the report is to aid the user in
his evaluation of the two processors, and to provide him
with some of the information he will need in making a
knowledgeable decision regarding which processor best
satisfies the requirements of his application.

Because system requirements can vary greatly from one
application to the next, no one program can adequately
display the capabilities of each processor. For this
reason, ten programs have been chosen to demonstrate
the performance of the iAPX 88/10 and Z80 in several
areas. The benchmark programs cover some of the basic
tasks which are relevant to many of the applications for
which these two processors might be considered. These
ten programs demonstrate the processors capabilities in
the areas of Data Manipulation, Computation, and
Processor Control. Each program was defined in such a
way as to be relatively straightforward, while still allow
ing the processors to use their instruction set efficiently
in implementing the program.

The benchmark programs were used to evaluate the
iAPX 88/10 and Z80 on the basis of execution speed,
ease of programming (number of lines of code) and
memory usage. These factors were considered because
they are often the key requirements evaluated when a
design decision is made. Execution speed is a direct
measure of how fast a processor will complete a task.
This can be the critical requirement for many real-time
control or multi-user systems. Here, cost may not be the
primary issue because a less expensive but slower system
may be inadequate, regardless of the cost savings. On
the other hand, many systems do have critical cost
requirements for which it may make sense to sacrifice
some execution speed in order to reduce costs. For a
memory intensive system, the cost can be reduced
significantly by using less memory, or less expensive
lower speed memory. For this reason, coding efficiency
and memory access time were examined to help evaluate
price/performance tradeoffs. Another factor, the ease
of programming, is becoming more and more important
as the cost of memory decreases and the amount of soft
ware in the typical microprocessor application rapidly
grows. For many applications, software development
costs have become greater than hardware development
costs. This means that the total development costs of
such a project can be substantially reduced by using the
processor which accomplishes the most in the least
number of lines of code. To demonstrate performance
in this area, the processors have been evaluated on the
basis of the number of lines of code required for each
program which has been defined as "ease of pro
gramming."

The benchmark programs in this report were written for
the purpose of comparing the iAPX 88/10 and Z80
microprocessors. They should be used only as a guide in

evaluating processor performance and are not an abso
lute measure of performance for all applications. The
programs were written to perform the tasks in a clear
and straightforward manner. They do not necessarily
show an optimized implementation of the task for either
processor. The benchmark programs do, however, pro
vide relevant information and a consistent comparison
which may be useful to the designer in choosing the
microprocessor which delivers the best solution to the
requirements of his design.

PROCESSOR DESCRIPTION

A brief description of some of the key features of the
iAPX 88 and Z80 is included here and in Table I. The
topics discussed are Architecture, Memory Timing,
Instruction Sets, and Addressing Modes. For more com
plete descriptions, refer to Intel's 8086 Family Users
Manual and Zilog's Z80 Programming Manual or other
related literature. Throughout this document iAPX 88
will refer to a 5 MHz system using the 8088 CPU, while
Z80A and Z80B will refer to 4 MHz and 6 MHz systems
using the Z80 CPU.

Intel iAPX 88

The Intel 8088 (or 88/10) is the host processor of the
iAPX 88 microcomputer system. The 88/10 is an
N-channel MaS microprocessor which currently has a
maximum clock rate of 5 MHz. Internally the 88/10 is a
microcoded 16-bit processor which multiplexes a 16-bit
internal data bus onto an 8-bit system data bus for
external communication. The address space is 1
Megabyte which is segmented to support modular pro
gramming. Except for the implementation of the Bus
Interface Unit, the 88/10 is identical to the Intel 86/10
microprocessor.

The architecture of the 88/10 is divided into two
separate processing units, the Bus Interface Unit (BIU)
and the Execution Unit (EU). These two units perform
separate functions in parallel to maximize throughput.

The EU contains the 16-bit arithmetic/logic unit (ALU)
as well as the general registers and flags of the CPU. It is
responsible for executing instructions, and communi
cates only with the BIU. The BID performs all bus
operations needed by the EU. It contains the segment
registers, the instruction pointer, the bus control logic
and the instruction queue. Because the BIU operates in
parallel with the EU, instruction fetches overlap instruc
tion execution. The result is efficient utilization of the
system bus and transparent instruction prefetch.

The 88/10 contains three sets of four 16-bit registers,
and nine one-bit flags. The four data group registers,
AX, BX, CX and DX, as well as the four pointer and in
dex registers, SP, BP, SI and DI, are alll6-bits wide and
can be used as source and destination in most arithmetic
and logic operations. All eight of these general registers
function as accumulators for many instructions. The
data group registers, AX, BX, CX and DX can also be

AFN-01664A

APPENDIX

Table 1. Architectural F.eatures

F.eature iAPX 88110 Z80

Memory Addressability 1 megabyte 64K bytes

General Registers
Number and Size· 8 x 16 or 7x8 or

8x8 and Ix8 and
4x 16 3xl6

Coprocessor Compatibility Yes No

Instruction Sizes (bytes) (~ 1'2,31~,5J 31,2,3,4

Operand Addressing Modes t r.k! ~
Register Ye ' ' Yes
Immediate Yes Yes
Direct Address Yes Yes
Register Indirect Yes Yes
Indexed, or Based Yes Yes
Base + Indexed Yes No
Base + Displacement Yes Yes
Base + Indexed + Displacement Yes No
Auto Increment/Decrement Yes Yes

I)ata Types
BCD Digits Yes Yes
ASCII Digits Yes No
Bytes Yes Yes
Words Yes Yes
Unsigned Integers Yes Yes
Signed Integers Yes Yes

General Two Operand
Operations

Reg with Reg to Reg Yes Yes
Reg with Mem to Reg Yes Yes
Reg with Mem to Mem Yes No
Reg with Imed to Reg Yes Yes
Mem with Imed to Mem Yes No
Mem with Mem to Mem Yes·· Yes··

Interrupts
NMI Yes Yes
Software Interrupts (#) Yes (256) Yes (8)
Maskable Hardware
Interrupts (#) Yes (256) Yes (256)

Memory Access Time 460 ns 250 nsf
140 ns···

NOTES:

*iAPX 88/10: The AX, BX, ex and DX registers can be used as four 16-bit
r.egisters, or as eight 8-bit registers. With the index and pointer registers, this
gives eight 16-bit registers, or eight 8-bit and four 16-bit registt:;fS.

Z80: Each of the Be, DE, and HL registers can be used as two 8-bit registers
or a single 16-bit register. The A register is an eight bit accumulator. The
alternate register set can be used for exchanges only (general logic instruc
tions are not supported by the alternate register set).

·*For string instructions only.

···250 ns for the Z80A, and 140 ns for 'the Z80B.

used as eight 8-bit accumulators for byte operations. In
addition to their general register functions, the pointer
and index registers also serve, as address registers. The SI
and DI registers function as the source and destination
indexes for the string operations. The Stack Pointer
register (SP) is used in stack operations, and the BP
register is a base pointer for stack relative Based
Addressing modes frequently used in high level

2

language programming. The four 16-bit segment regis
ters CS, DS, SS and ES, provide memory segmentation
expanding the address space to one megabyte;

The iAPX 88 uses a four clock basic bus cycle. The nor
mal memory access time is 460 nsec. To use memories
slower than this, wait states of2OO nsec.can be added.
Using one wait state produces a memory access time of
660 nsec. Adding one wait state to the iAPX 88 reduces
the throughput only approximately 10070 because wait
states are partially hidden by the queue. 'For a non
queued machine such as the Z80, the throughput will
typically be reduced about 20%.

The iAPX 88/10 instruction set operates on bits, BCD
digits, ASCII digits, 8-bit bytes, 16-bit words, .and
signed or unsigned integers. Many of the two operand
instructions allow both operands to reside in registers,
or one in a register and one in memory. The order of the
operands is interchangeable, and the location of either
source operand may serve as. the. destination for the
result. The arithmetic instructions include 8- or 16-bit
Add, Subtract, Multiply, Divide and Compare of signed
or unsigned integer values. The iAPX 88 instructions
are identical to those of the iAPX 86 providing complete
software compatibility. Although this report considers
only single processors},stems, the iAPX 88 has the
unique compatibility with the 8087 numeric dataproc
essor to extend the data types to inClude 32-bit integers
as well as short (32-bit), long (64-bit), and extended
(80-bit) floating point numbers, and decimal numbers
of up to 18 digits. Adding ·an 8087 also adds 68 addi·
tional instructions and eight 80-bit registers.

Twenty-four addressing modes are available to directly
or indirectly access data and operands. These modes
allow. from one to four. component addressing ,using
combinations of segment" base, and index· registers,
with optional 8- or 16-bit displacements. The string
instructions provide auto increment and auto decrement
addressing, memory to memory operations, and have an
optional repeat prefix for automatically repeating the
string instruction without re-fetching the opcode from
memory.

Like the iAPX 86, the iAPX 88 has two modes of opera
tion. In the minimum mode, the iAPX 88 supports the
hold/hold acknowledge protocol to enable bus control
to be transferred to another bus master such as a DMA
controller. In the maximum mode it supports two re
quest/grant lines, each of which can 'support multiple
bus masters for multiprocessor designs using the 8087
Numeric Data Processor and/or the 8089 I/O Processor
(iAPX 88/20, iAPX 88/21, iAPX 88/11). This mode
also adds support for multiprocessor configurations and
Multibus interface.

The iAPX 88 provides nonmaskable software (internal)
interrupts and maskable or nonmaskable hardware (ex
ternal) interrupts. The interrlipt structure supports up to
256 different interrupt types using an interrupt vector
table located in memory.

AFN-01664A

APPENDIX

Zilog zao
The Z80 is an eight bit N-channel MOS microprocessor
currently available in two versions, the Z80A and Z80B.
The maximum clock rates are 4 MHz for the Z80A and
6 MHz for the Z80B. Both speed selections- are used in
benchmark timing.

The Z80 registers are grouped into the main, alternate
and special purpose register sets. The main and alternate
register sets are two identical sets of eight-bit registers.
Each set consists of eight registers, one accumulator
(A), one flag register (F), and six general purpose regis
ters: the B, C, D, E, H, and L. For some operations, the
general purpose registers can be concatenated together
into sixteen bit register pairs. The user can switch back
and forth between the main and alternate register sets
using the exchange instructions, but only one set can be
active at anyone time. One exchange instruction (EX)
allows the main accumulator and flags to be exchanged
with the alternate accumulator and flags. The other ex
change (EXX) switches all of the general purpose
registers at once. This is helpful for a single context
switch, but makes it difficult to pass data between the
main and alternate register sets.

The Z80 has six special purpose registers: IX, IY, IP,
SP, R, and 1. The IX and IY are sixteen bit index regis
ters which can be added to a displacement to provide
indexed addressing. The instruction pointer (IP) and
stack pointer (SP) are also sixteen bit registers. The R
register is a seven bit counter used for dynamic RAM
refresh. The I register is a page register which contains
the upper eight address bits for a Mode 2 interrupt.

The Z80 supports one nonmaskable interrupt and has
three modes for maskable interrupts. In Mode 0, the
Z80 requires the interrupting device to place one instruc
tion on the data bus. (This mode is identical to the way
the 8080 handles interrupts.) Mode I performs an
automatic restart to location 038H. In Mode 2, the in
terrupting device places an eight bit address on the bus.
These eight bits are concatenated with the interrupt page
register to point to a location in a memory based table
of interrupt vectors.

The basic bus timing of the Z80 consists of an opcode
fetch (MI), a memory read (M2), and a memory write
(M3). During the MI cycle, the CPU first fetches and
then decodes the instruction opcode. (Because the Z80
does not have a queue there is no overlap of opcode
fetch and execution.) The Z80 then outputs a memory
refresh address. If no wait states are used, MI is four
clock cycles, while M2 and M3 are each three clock
cycles. The MI zero wait state memory access times are
250 ns and 140 ns for the Z80A and Z80B. These times
can be increased by adding wait states. Each wait state
adds one clock per memory reference. This adds 250 ns
and 165 ns per bus cycle to the Z80A and Z80B to give
access times of 500 ns and 305 ns respectively.

3

The instruction set of the Z80 contains eight major
groups: Load and Exchange, Arithmetic, Logical,
Rotate and Shift, Bit Manipulation, I/O, CPU and pro
gram control, and Block instructions. The processor
operates on bits, BCD digits, eight-bit bytes and sixteen
bit words. The Block instructions will search or transfer
a block of memory using the DE and HL registers as
pointers and the BC register as a counter.

The Z80 provides seven addressing modes to access data
operands. It allows the use of eight or sixteen bit im
mediate addresses, indexing using the IX or IY with an
eight bit displacement and register indirect addressing
using register pairs.

PERFORMANCE MEASUREMENTS

The processors were compared in four categories of per
formance measurements. The first two categories
measure the execution speed of the iAPX 88/10 and the
Z80. The next comparison looks at the ease of use which
is the number of lines of code in each program. The last
basis for comparison is memory use or coding effi
ciency.

The first performance measurement tests the processors
for maximum execution speed. This is important for
many applications where high throughput is a critical
factor. To measure this, the processors were run at max
imum speed with no wait states. The maximum clock
rates are 5 MHz for the iAPX 88/10, 4 MHz for the
Z80A and 6 MHz for the Z80B. Table 2 gives the results
of this measurement for the iAPX 88/10 and the Z80A.
Table 3 gives the results for the iAPX 88/10 and the
Z80B.

The next measurement again examines execution speed,
but this time memory address access time was also con
sidered. While the processors were again run at their
maximum clock rates, they were also required to be
compatible with slow memories. The Z80B has a
memory access time of 140 ns which often requires the
use of expensive speed selected memories. And there are
no EPROMs which could be used in this system without
wait states. Because of this, many Z80B systems will be
required to run with one, or even two wait states, pro
viding memory access times of 305 ns and 470 ns. Many
systems using the Z80A also require one wait state
which increases the memory access time from 250 ns to
500 ns. The iAPX 88 has a zero wait state memory ac
cess time of 460 ns, This is relaxed enough to allow the
use of ordinary nonspeed selected memories including
most EPROMs. Tables 4 and 5 compare the execution
speeds of the processors for systems which have the re
quirement of a relaxed memory access time. The iAPX
88 is run with no wait states because of its 460 ns zero
wait state timing. The Z80A is measured with one wait
state providing a 500 ns memory access time. The Z80B
is measured for both the one and two wait state cases.
These measurements give relative performance for
relaxed memory access time.

AFN-01664A

APPENDIX

The next method of measuring performance was to
count the number of lines of code in each program.
These figures (in Table 6) demonstrate the power of the
instruction set and the ease with which the programmer
can implement the task using that processor. This has
been defined as "ease of use," and is becoming increas
ingly important. Both the cost of programmer time and
the amount of software in a typical application are
rapidly increasing. This means that a processor which,
can accomplish more with fewer lines of code can
greatly reduce aproduct's development time and co~t.

Table 7 is titled "Bytes of Code." It shows the number
of bytes of object code required to, encode each pro
gram. This coding efficiency is directly translatable into
system memory requirements, and therefore, into
system cost. Consequently, coding efficiency is very im
portant in cost sensitive applications which have a lai;ge
amount of software such as a sophisticated operating
system or many user programs.

Tables 2 through 7 contain the results 'oUhe four cate
gories of performance measurements. The actual times
and numbers are given for each program along with the
Relative Performance which is the Z80 time or number
divided by the iAPX 88 time or number. For each Table
the Average Relative Performance was calcuiated by
adding the Relative Performance, figures and, dividing
by the number of programs (10). An "Adjusted
Average" Relative Performance vvas also calculated.
This average is calculated without using the highest and
lowest, Relative Performance figures from that table.
This method makes sure that the average is not greatly
affected by one figure which may differ widely from the
others, such as the Computer Graphics Relative Execu
tion Time in Table 2.

PROGRAM DESCRIPTIONS

The ten benchmark programs were chosen to demon~
strate the capabilities of the iAPX 88/10 and the Z80in
the areas of Data 'Manipulation, Computation, arid
Processor Control. All iAPX 88 'code has been as
sembled and run.

1. Computer Graphics
The Computer Graphics program scales the X and Y
pairs that make up a graphics display. The l6-bit X and
Y pairs are offset by constant values (XO and YO), then
multiplied by a, fractional scale factor to obtain the
scaled XY pairs. There are 16,384 pairs. This program
demonstrates computational capability.

2. 16·Bit Multiply
The l6-Bit MUltiply program reads two l6-bit numbers
from memory, II\uitiplies them and returns the 32-bit
product and the two multiplicands to memory. It
demonstrates COIllPuUl.tional capability.

4

3. Vector Add
The l6-Bit Vector Add performs an element-by-element
add of t~o ,twenty element ,vectors. vector add demon
strates computation and' string processing capabilities.

4; BlockMove
The Block Move program reads the block 'length,
source, and destination from memory. The block length
waS chosen to be 126 bytes. The data is moved from the
source to the'd:estiii:ation using repeated moVes. Block
Move ~emonstrates manipulation of string data.

5. Block Translate
The Block Translate program translates a memory
block containing EBCDIC characters to ASCII and
stores the ASCII characters in another memory block.
The translation is done using an EBCDIC to ASCII
translation table, and the block length is 125 bytes. This
demonstrates string data manipulation and the use of a
lookup table.

6. Character Search
The Character Search program searches a table of
known length for a specific character. If that character
is found, its address is returned. If it is not found, zero
is returned. This program demonstrates data com
parison and auto increment addressing.

7. Word Shift
The Word Shift program reads a l6-bit word from
memo~y, and shifts it N places to the right. (N is chosen
to be five.) Zeros rotate in on the left. The result is
stored in memory. This demonstrates manipulation of
l6-bit data.

8. Reentrant Call
The Reentrant Call program passes'three parameters to
the called procedure: Oni: is pushed from' a general
register, the other two are pushed from memory. The
procedure is cruled, the state of the processor is pushed
onto the stack, and 'local storage is set up. The pro
cedure body adds the three parameters and places the
result In local storage. Theprocedure'is then exited and
the state of theprocessor is restored.

This program demonstrates the processors call and reen
trant procedures and its ability to pass variables to a
called procedure. Support of these features is essential
for p~ocedure oriented structured programming.

9. Bubble Sort
The Bubble Sortprogi'am sorts a one dimensional array
of sixteen bit integer elements into numerically ascend
ing order using the exchange (bubble) sort algorithm.
This program was measured for a ten element array in
which the integers ,are initially in descending order. Bub
ble Sort demonstrates indexed addressing and data
handling.

AFN'()1664A

APPENDIX

10. Interrupt Response
This program accepts an interrupt, pushes all the proc
essor registers (except the Stack Pointer) on to the stack,
and jumps to a service routine. All registers are restored
before returning from the service routine. This program
also considers the worst case latency due to finishing the
longest instruction. This is because when an interrupt
occurs it must wait to be processed until after the com
pletion of the current instruction. The times are mea
sured both with and without this latency. (For each
application where interrupt response is critical, the
designer should only consider the longest instruction his
system will use.)

RESULTS

The benchmark results are presented in Tables 2,3,4,5,
6, and 7. These tables contain performance measure
ments figures in terms of execution speed, ease of use,
and memory usage. For a description of these cate
gories, see the Performance Measurements section.

Tables 2 and 3 show that the iAPX 88 executed nine of
the ten programs faster than the Z80A, and that the
iAPX 88 was faster than the Z80B for eight of the ten
programs. The Computer Graphics program had the
largest performance difference. Here the iAPX 88 was

faster than the Z80A and Z80B by relative execution
time figures of 14.61 and 9.74. The major reason for
this difference is the sixteen bit divide instruction of the
iAPX 88. The sixteen bit multiply instruction··of the
iAPX 88 also gave it a substantial performance advan
tage in the Sixteen Bit Multiply benchmark. The Z80B
(but not the Z80A) was faster for the Block Translate
program where the alternate register set and the string
move instruction were used effectively. Both the Z80A
and Z80B were faster than the iAPX 88 for the Interrupt
Response benchmark. (The Z80 could have used the
alternate register set for even faster interrupt response,
but this would not allow multiple level interrupts.) The
two times given for each processor show its execution
time with and without latency due to finishing a
previous instruction. The relative execution time figures
for this program used the average of these numbers.
Here the Z80 gained a large advantage on instruction
latency time because it does not have the time consum
ing (but powerful) sixteen bit divide, and mUltiply in
structions of the iAPX 88. The hardware interrupt
response time of the Z80 is also faster than that of the
iAPX 88.

The Average Relative Execution Times from Tables 2
and 3 show that iAPX 88 executed the programs faster
than the Z80A and Z80B by ratios of 3.78 to 1 and 2.52
to I, respectively.

Table 2. Execution Times (iAPX 88 vs Z80A)

Absolute Time"
Benchmark Programs iAPX 88/10 (5 MHz) Z80A (4 MHz)

Computer Graphics

16-Bit Multiply

Vector Add

Block Move

Block Translate .

Character Search

Word Shift

Bubble Sort

Reentrant Call

Interrupt Response"

2.32

40.8

295.00

328.00

1507.00

136.00

13.00

2406.00

87.60

107/61.5

Average Relative Execution Time···

Adjusted Average Relative Execution Timet

NOTES:

33.9

354.0

480.0

661.0

1980.0

220.0

48.6

4596.0

140.0

75.5/69.7

"'The times are given in microseconds except for the Computer Graphics benchmark where the times are in seconds.

Relative Execution Time·
Z80AliAPX 88

14.61

8.68

1.63

2.02

1.31

1.62

3.60

1.91

1.60

0.86

3.79

2.79

"'·The times given for the Interrupt Response benchmark show two times. The first the time includes the latency due to fmishing the previous instruction. The second
time does not include this latency.

The Relative Execution Time and the averages use the average of these two times.

···The Average Relative Execution Time is the sum of the processor's normalized times for all programs divided by the number of programs (10).

frhe Adjusted Average Relative Execution Time is the average of the normalized times, excluding the highest and lowest normalized times. This prevents significant
shifts in results. due to anomalies· for one particular benchmark and may be viewed as a better measure of expected relative perfonnance.

5 AFN.()1664A

APPENDIX

Table 3. Execution Times (iAPX 88 vs Z80B)

Absolute Time"
Benchmark Programs iAPX 88/10 (5 MHz) Z80B (6 MHz)

Computer Graphics

16-Bit Multiply

Vector Add

Block Move

Block Translate

Character Search

Word Shift

Bubble Sort

Reentrant Calf

Interrupt Response"

2.32

40.80

295.00

328.00

1507.00

136:00

13.00

2406.00

87.60

107/61.5

Average Relative Execution Time'"

Adjusted Average Relative Execution Time t

NOTES:

22.6

236.0

320.0

441.0

1320.0

146.0

3l.l

3064.0

93.3

50.3/46.5

"'The tirrles are given in microseconds except for the Computer Graphics benchmark where the times are in seconds.

Relative Execution Time
Z80B/iAPX 88

9.74

5.78

1.08

1.34

0.88

1.07

2.39

1.27

1.07

0.58

2.52

1.86

·"'The times given for the Interrupt Response benchmark show two times. The first the time includes the latency due to finishing the previous instruction. The second
time does not include this latency.

The Relative Execution Time and the averages use the average of these' two times.

·"The Average Relative Execution Time is the sum of the processor's normalized times for all programs divided by the number of programs (10).

tThe Adjusted .Av~rag~ Relative Execution Time is the average of th.e normalized times, excl~ding the highest and lowest normalized times.

Tables 4 and 5 give the results for execution time with
comparable memory access times. Here, the iAPX 88
was faster than the Z80A for all ten programs, and
faster than the Z80B for nine of the ten programs. As
explained in the Performance Measurements section,
the Z80A was run with one wait state, and the Z80B for

both the cases of one and two wait states. The Average
Relative Execution Times in Tables 4 and 5 show that
the iAPX 88 was faster than the Z80A with one wait
state (4.77 to 1), the Z80B with one wait state (3.20 to 1)
and the Z80B with two wait states (3.83 to 1).

Table 4. Execution Times with Companlble Memory Access Times (iAPX 88 vs Z80A)

Absolute Time"
Benchmark Programs iAPX 88/10(5 MHz) Z80A (4 MHz)

Computer Graphics

16-Bit Multiply

Vector Add

Block Move

Block Translate

Character Search

Word Shift

Bubble Sort

Reentrant Call

Interrupt Response·'

Average Relative Execution Time'"

2.32

40.80

295.00

328.00

1507.00

136.00

13.00

2406.00

87.60

107/61.5

Adjusted Average Relative Execution Time'"

NOTES:

42.8

452.0

598.0

829.0

2514.0

272.0

59.0

5777.0

181.0

95.7/88.5

Relative Execution Time
Z80/iAPX 88

18.45

11.08

2.03

2.53

1.67

2.00

4.54

2.40

2.06

.0.90

4.77

3.54

·Times for the Z80 include one wait state -on memory access. The times are given in· mictoseconds for the Computer Graphics benchmark where the times are in
seconds.

"See note 2 of Table 2.

···See Table 3, notes 3 and 4 for description of average calculations.

6 AFN·01664A

APPENDIX

Table 5. Execution Times with Comparable Memory Access Times (iAPX 88 vs Z80B)

Relative Execution Time
Absolute Time' Z80liAPX 88

Benchmark Programs iAPX 88 (5 MHz) Z80B" Z80B'" Z80B" Z80B***

Computer Graphics 2.32 28.5 34.5 12.38 14.87

16-Bit Multiply 40.80 302.0 361.0 7.59 8.84

Vector Add 295.00 399.0 477.0 1.35 1.62

Block Move 328.00 552.0 659.0 1.68 2.01

Block Translate 1507.00 1676.0 2032.0 1.11 1.35

Character Search 136.00 181.0 216.0 1.33 1.59

Word Shift 13.00 39.0 48.0 3.02 3.65

Bubble Sort 2406.00 3851.0 4638.0 1.60 1.93

Reentrant Call 87.60 120.0 147.0 1.38 1.69

Interrupt Response t 107/61.5 63.8/59.0 77.3171.5 0.60 0.73

Average Relative Execution Timett 3.20 3.83

Adjusted Average Relative Execution Timett 2.38 2.84

NOTES:

·The times are given in microseconds except for the Computer Graphics benchmark where the times are in seconds.

uThese times for the 6 MHz Z80B include one wait state on memory accesses .

• UThese times for the 6 MHz Z80B include two wait states on memory accesses.

tSee note 2 of Table 2.

ttSee Table 3, notes 3 and 4 for description of average calculations.

Table 6 is titled "Ease of Use" and gives the number of
lines of code required for each program. The Average
Relative Program Length of 2.51 shows that the Z80 re
quired more than twice as many lines of code as the
iAPX 88 to accomplish the same tasks. The sixteen bit
multiply and divide instructions of the iAPX 88 were the
major factors in the 4.73 and 5.00 Relative Program
Length figures for the Computer Graphics and Sixteen
bit Multiply benchmarks. Some other factors which
helped the iAPX 88 in this category are its flexible ad-

dressing modes, string instructions and its ease of
handling sixteen bit data. The Z80 used fewer lines of
code for the Block Move and the Character Search
benchmarks. The iAPX 88 Block Move uses word
moves. A byte move algorithm could have been used,
but with a slight performance degradation (although
still faster than the Z80). The program would then have
the same number of lines (and bytes) of code used by the
Z80 Block Move.

Table 6. Ease of Programming (iAPX 88 vs Z80)

Lines of Code
Benchmark Program iAPX88/10

NOTE:

Computer Graphics

16-Bit Multiply

Vector Add

Block Move

Block Translate

Character Search

Word Shift

Bubble Sort

Reentrant Call

Interrupt Response

Average Relative Program Length'

15

4

8

7

10

8

2

17

26

15

Adjusted Average Relative Program Length'

·See Table 3, notes 3 and 4 for description of average calculations.

7

Z80

71

20

20

4

13
6

10

30

47

25

Relative Program Length
Z80/iAPX 88

4.73

5.00

2.50

0.57

1.30

0.75

5.00

1.76

1.81

1.67

2.51

2.44

AFN·01664A

APPENDIX

Table 7 gives the bytes of object code used to encode the
benchmark programs. The Average Relative Code Size
number of 1.97 says that the Z80 used nearly twice as
much memory to store its programs. as the iAPX 88.

Even though the majority of the Z80 opcodes are
shorter than iAPX 88 opcodes, the Z80 requires more
memory mostly because the iAPX 88 used fewer lines of
code as shown in Table 6.

Table 7. Memory Utilization (Bytes) (iAPX 88 vs Z80)

NOTE:

Benchmark 'Programs

Computer Graphics

16-Bit Multiply

Vector Add

Block Move

Block Translate

Character Search

Word Shift

Bubble Sort

Reentrant Call

Interrupt Response

Average Relative Code Size"

Adjusted Average Relative Code Size'

Bytes of Code
iAPX88/10

40

14
18

15

24

18

6

38

48

15

*See Table 3. notes 3 and 4 ~or description of average calcula~o~s.

1.0

..

.8

.7

~ .6
;:::
z
~ .5 ~

f;l
~ .4

.3

.2

- 3 .•

2 ••

0.31 1 •• -

PROCESSOR

Z80

151

41
30

11

26

15

21

62

83

28

I .• -
c

i
1.::

'"

2.51 -

~

PROGRAM LENGTH

Relative Code Size
Z80/iAPX 88

3.78

2.93

1.67

0.73

1.08

0.83

3.50

1.63

1.73

1.87

1.97

1.91

I .•
;--

~
i

1.97
r---

~

CODE SIZE

Graph I. Normalized Average Throughput Graph II. Normalized Average: Program Length and
Code Size ..

AFN·OI664A

APPENDIX

CONCLUSION

The results of this benchmark study show that the iAPX
88/10 significantly outperformed both the Z80A and
Z80B for the benchmark programs used. Table 8 shows
that the iAPX 88 is faster than both the Z80A and the
Z80B, and that the iAPX 88 uses fewer lines of code,
less memory and cheaper memory than the Z80.

The iAPX 88 did particularly well in the programs
which were word oriented. It was also efficient to pro
gram due to the powerful instruction set and flexible ad
dressing modes. Both processors do have useful string
instructions and a loop instruction with an automatic
counter. The Z80 has faster interrupt response, but was
slower and less efficient than the iAPX 88 for nearly all
other benchmarks.

In view of these results, it appears that the iAPX 88 is a
better choice for applications where high throughput,
low development cost and low memory cost are impor
tant considerations.

Table 8. Performance Breakdown

Performance Ratio of
Performance Category iAPX 88 to Z80

Execution Speed (Z80A) iAPX 88/10 is 3.79X faster
Execution Speed (Z80B) iAPX 88/10 is 2.S2X faster
Execution Speed (Z80A)* iAPX 88/10 is 4.77X faster
Execution Speed (Z80B)" iAPX 88/10 is 3.20X faster

Execution Speed (Z80B)'" iAPX 88/10 is 3.83X faster
Ease of Programming iAPX 88/10 is 2.SIX more

efficient
Coding Efficiency iAPX 88/10 is 1.97X more

efficient

NOTES:

*iAPX 88 vs Z80A with comparable memory (Z80A with 1 wait state).

··iAPX 88 vs Z80B with comparable memory (Z80B with 1 wait state).

·"""iAPX 88 vs Z80B with comparable memory (ZSOH with 2 wait states).

9 AFN-ll1664A

APPENDIX

APPENDIX

BENCHMARK PROGRAM CODE AND FLOWCHARTS

Figure 1. 16·Bit Multiply Flowchart

11 AFN-01664A

BENCHMARK: 16-Bit Multiply

PROCESSOR: Intel iAPX 88

Bytes Cycles

3
4
3
4

18
137

19
19

MOv
MUL
MOv
MOv

APPENDIX

;REGISTER USAGE:
AX- ACCUMULATOR
DX- ACCUMULATOR

AX, Ml
Ml
Pl,AX
P l, DX

14. bytes of code
4 lines of code

12

;Read operand
;A*B
;Store LSB
;Store MSB

AFN'()1664A

APPENDIX

BENCHMARK: 16-Bit Multiply

PROCESSOR: Z80

;Register usage
A Count
DE Multiplier, Product MSB
BC Multiplicand
HL ·Product LSB

Bytes Cycles

4 ~O LD DE, (M 1) ;load multiplier
4 ~O LD BC, (M~) ;Load multiplicand
t. 7 LD A,16 ;Load count
3 10 LD HL,O ;Clear HL
1 11 LP: ADD HL,HL ;Shift product LSB left
1 4 EX HL,DE ;Exchange MSB with LSB
~ 7!1 ~ JR C,MPl ;Jump if carry from LSB
1 11 ADD HL,HL ;No carry. Shift multiplier 1 eft.
3 10 JP MP~
1 11 MP1: ADD HL,HL ;Carry. Shift multiplier left.
1 6 INC HL ;Increment multiplier
1 4 MP~: EX HL,DE ;
~ 7!1 ~ JR NC,MP3 ;Jump if no carry from multiplier
1 1 1 ADD HL,BC ;Add multipl icand to product LSB
~ 7!1~ JR NC,MP3 ;Jump if no carry
1 6 INC DE ;Increment MSB due to Add carry
1 4 MP3: DEC A ;Decrement count
3 10 JP NZ,LP ;Loop if not zero
4 ~O LD (PRMSB),DE ;Store product
3 16 LD (PRLSB) HL

41 bytes of code
~O lines of code

13 AFN·01664A

APPENDIX

INITIALIZE
TRANSLATE, EBCDIC

AND ASCII TABLE
POINTERS

Figure 2. Block Translate Flowchart

14 AFN·01664A

APPENDIX

BENCHMARK: Block Translate

PROCESSOR: Intel iAPX 88

REGISTER USAGE
AL ACCUMULATOR
BX TRANSLATE TABLE POINTER
CX COUNT
SI EBCBUP POINTER
01 - ASCIBUF POINTER

Bytes Cycles

4 8 LEA BX, TABLE ;Initialize Table Pointer
4 8 LEA S I , EBCBUF ; I nit fa 1 i z e EBCDIC Pointer
4 8 LEA 01 , ASCIBUF ; Initial ize ASCI I Pointer
4 18 MOv CX, COUNT ;Initialize COUNT
1 ~ CLD ;Clear direction fl ag

16 NEXT: LODS EBCBUF ;Read EBCDIC character
15 XLAT TABLE ;Translate to ASCII
15 STOS ASCIBUF ;Store translated byte

~ 3 CMP AL,EOL ;Compare with terminator
~ 19/5 LOOPNE NEXT ;Loop unless AL=EOL or CX =0

24 bytes of code
10 1 i nes of code

15 AFN·01664A

APPENDIX

BENCHMARK: Block Translate

PROCESSOR: Z80

;Register usage
A Accumulator
BC Count
DE ASC II Buffer
DE' EBCDIC Buffer
HL Accumulator
SP Translate table pOiriter

Bytes Cycles

3 10
1 4
3 10
3 10
3 10

4 LP:
~ 7
1 4
~ 7
1 4
1 11
~ 16
3 10

LD DE' , EBCBUF
EXX
LD BC, COUNT
LD DE, ASCIBUF
LD SP, XTBL

EXX
LDD A,(DE')
EXX
LD H,O
LD L,A
ADD HL,SP
LDI (DE),(HL)
JP PO,LD

~6 bytes of code
13 lines of code

16

;Load EBCDIC pointer
;Store pointer in DE'
;COUNT = 1~5
;Load, ASCII pOinter
;Load translate table pointer

;Restore EBCDIC pointer
;Load EBCDIC character
;Restore pOinters
;Clear H
;Load character into A
;Address of ASC II character
;Move ASCII character
;Jump if not done

AFN·Q1664A

APPENDIX

Figure 3. Bubble Sort

17 AFN·Ol664A

APPENDIX

BENCHMARK: Bubble Sort

PROCESSOR: iAPX 88

Bytes

3
~

~

4
1
~

3
3
~

3
3
~

Cycles

4
;

4 A 1 :
4/16

3
14
~

3
;

17 A~:

18
4/16
~6
18
4

;
~ A3:
~

5117
15

A4:

;REGISTER USAGE:
AX ACCUMULATOR
BL EXCHANGE FLAG (OFF=TRUE, 0= FALSE)
CX COUNT OF ELEMENTS·
DX ACCUMULATOR
SI INDEX OF ARRAY

MOv BL,OFFH ;EXCHANGE=TRUE

CMP BL,OFFH ;EXCHANGE=TRUE ?
JNE A4 ; NO, FINISHED
XOR BL,BL ;EXCHANGE=FALSE
MOv CX,COUNT ;CX=COUNT=l
DEC CX
XOR S I , S I ;SI,=O

MOv AX,ARRAY[SI] ;ARRAY(I)
CMP AX,ARRAY[SI+L] ; ARRAY(1+1) ?
JLE A3 ;NO
XCRG ARRAY[SI+~] ,AX ;EXCHANGE ELEMENTS
MOv ARRAY[SI],AX
MOv BL,OFFH ;EXCHANGE=TRUE

INC SI ;SI=SI+~
INC SI
LOOP A~ ;DEC CX & LOOP IF
JMP Al

38 bytes of code
17 lines of code

18

CX=O

AFN-01664A

APPENDIX

BENCHMARK: Bubble Sort

PROCESSOR: Z80

;REGISTER USAGE:
BC ACCUMULATOR
DE ACCUMULATOR
HL COUNT

, HL ACCUMULATOR
IX AR~AY POINTER
DE TEMPORARY STORAGE

Bytes Cycles

l 8 SET FLAG, A
4 14 LD IX,PTR
3 10 LD DE,l

l 8 LI: BIT FLAG,A
l 7 III JR Z,DONE
l 8 RES FLAG,A
3 10 LD HL,COUNT-l

1 4 U: EXX
3 19 LD C,(IX+O)
3 19 LD B,(IX+l)
3 19 LD L, (IX+l)
3 19 LD H,(IX+3)
1 4 LD E,L.
1 4 LD D,H
1 4 AND A,A
1 1 1 SBC HL,BC
l 71ll JR NC,NOEX
3 19 LD (IXH)C
3 19 LD (IX+l)B
3 19 LD (IX+O)E
3 19 LD (IX+l)D
l 8 SET FLAG,A
1 4 NOEX: EXX
1 6 INC IX
1 6 INC IX
l 8 AND A,A
1 1 1 SBC HL I, DE I

l 7 III JR NZ,U
3 10 JP Ll

DONE:

6l bytes of code
30 lines of code

19

;Set FLAG bit
;Load pointer to array
;Load decrement constant

;Test FLAG
;Done if zero
;Reset FLAG
;Load COUNT

;Load data (I)

;Load data (1+1)

;Save date in DE

;Clear carry flag
;Compare data
;No ex if data(I) data(1+1)
; Exchange

;Set exchange flag

;Increment Pointer

;Clear carry flag
;Decrement COUNT
;Jump if COUNT not zero
;Another pass

AFN'()1664A

APPENDIX

Benchmark Report:
Intel® iAPX 88 vs
Motorola Me6809

MC6B09 is a registered trademark of Motorola Corporation.

20

Contents

INTRODUCTION. 21

PROCESSOR DESCRIPTION. 21

iAPX 88 Description. .. 22
MC6809 Description. .. 22
Table.1. Architectural Features. 21

BENCHMARK PROGRAM DESCRIPTIONS. 23

RESULTS.. 24

Table 2. Execution Times. 24
Table 3. Execution Times with "Equal"

Memory Access Times. 25
Table 4. Memory Utilization. 25
Table 5. Ease of Programming. 26
Graph I. Normalized Average Throughput. 26
Graph II. Normalized Average Memory Use

and Lines of Code. 26

CONCLUSION 27

Table 6. Performance Breakdown. ,• 27

APPENDIX I. BENCHMARK PROGRAM CODE
AND FLOWCHARTS· 28

Figure 1. 16·Bit Multiply Flowchart. 28
Figure 2. Block Move Flowchart. 31
Figure 3. Character Search Flowchart. 34

·Includes code and flowcharts from three benchmark programs. For Ihe
code and flowcharts for all benchmark programs conlacl your local
Inlel sales office.

tMullibus Is a Irademarkof Inlel Corporation.

AFN 01532A

APPENDIX

INTRODUCTioN

This benchmark report compares the capabilities of
Intel's iAPX 88/10 microprocessor with those of the
Motorola MC6809. The purpose of the report is to aid
the user in his evaluation of the two processors, and to
provide him with some of the information he will need
in making a knowledgeable decision regarding which
processor best satisfies the requirements of his applica
tion.

Because the requirements can vary so greatly from one
system to the next, no one program can adequately
display the capabilities of each processor. For this
reason, ten programs have been chosen to demonstrate
the performance of the iAPX 88/10 and MC6809 in
several areas. The benchmark programs cover some of
the basic tasks which are relevant to many of the ap
plications for which these two processors might be con
sidered. These ten programs demonstrate the proces
sors' capabilities in the areas of data manipulation,
computation, and processor control. Each program was
defined in such a way as to be relatively straight
forward, while still allowing the processors to use their
instruction set efficiently in implementing the program.

The benchmark programs were used to evaluate the
iAPX 88/10 and MC6809 on the basis of execution
speed, memory usage, and ease of programming (num
ber of lines of code). These factors were considered
because they are often the key requirements evaluated
when a design decision is made. Execution speed is a
direct measure of how fast a processor will complete a
task. This can be the critical requirement for many real
time control or multi-user systems. Here, cost may not
be the primary issue because a less expensive but slower
system may be inadequate, regardless of the cost sav
ings. On the other hand, many systems do have critical
cost requirements for which it may make sense to sacri
fice some execution speed in order to reduce costs. For a
memory intensive system, the cost can be reduced signi
ficantly by using less memory, or cheaper, lower speed
memory. For this reason, coding efficiency and memory
access time were examined to help evaluate price/
performance tradeoffs. Another factor, the ease of pro
gramming, is becoming more and more important as the
cost of memory decreases and the size of the typical
microcomputer application rapidly grows. For many
applications, software development costs have become
greater than hardware development costs. This means
that the total development costs of such a project can be
substantially reduced by using the processor which ac
complishes the most in the least number of lines of code.
To demonstrate performance in this area, the processors
have also been evaluated on the basis of the number of
lines of code required for each program which has been
defined as "ease of programming."

The benchmark programs in this report were written for
the purpose of comparing the iAPX 88/10 and MC6809
microprocessors. They should be used only as a guide in

21

evaluating processor performance and are not an ab
solute measure of performance for all applications. The
programs were written to perform the tasks in a clear
and straightforward manner. They do not necessarily
show an optimized implementation of the task. The
benchmark programs do, however, provide relevant in
formation and a consistent comparison which may be
useful to the designer in choosing the microprocessor
which delivers the best solution to the requirements of
his design.

PROCESSOR DESCRIPTION

A brief description of some of the key features of the
iAPX 88 and MC6809 is included here and in Table 1.

Table 1. Architectural Features

Feature iAPX88/10 MC6809

Memory Addressability I megabyte 64K bytes

General Registers
Number 8 or 8+4' 2 or I"
Size (bits) 16 or 8,16' 8 or 16"

Instruction Sizes (bytes) 1,2,3,4,5,6 1,2,3,4,5

Operand Addressing Modes
Register Yes Yes
Immediate Yes Yes
Direct Address Yes Yes
Register Indirect Yes Yes
Indexed or Based Yes Yes
Base + Indexed Yes No
Base + Displacement Yes No
Index + Displacement Yes Yes
Base + Indexed + Displacement Yes No
Indexed Indirect No Yes
Auto Increment/Decrement Yes Yes

Data Types
BCD Digits Yes Yes
ASCII Digits Yes No
Bytes Yes Yes
Words' Yes Yes
Unsigned Integers Yes Yes
Signed Integers Yes Yes

General Double Operand
Operations
Reg with Reg to Reg Yes No
Reg with Mem to Reg Yes Yes
Reg with Mem to Mem Yes No
Reg with Imed to Reg Yes Yes
Mem with Imed to Mem Yes No
Mem with Mem to Mem Yes No

Interrupts
NMI Yes Yes
Software Interrupts (#) Yes (256) Yes (3)
Fast External Interrupts (#) No Yes (I)
Multi-Vectored Interrupts (#) Yes (256) No

-The AX, BX, ex and DX registers can be used as four 16-bit registers, or as
eight 8-bit registers. With the index and pointer registers, this gives eight 16-bit
registers, or eight 8-bit and four 16-bit registers.

"The A and B registers can be used as two 8-bit registers or as one 16-bit
register.

AFN 01532A

APPENDIX

The topics discussed are Architecture, Memory Timing,
Instruction Sets; and Addressing Modes. For more com
plete descriptions, refer to Intel's 8086 Family Users'
Manual and Motorola's MC6809 Preliminary Program
ming Manual or other related literature.

iAPX 88

The Intel 8088 (or 88/10) is the host processor of the
iAPX 88 microcomputer system. The 88/10 is an
N-channel MOS microprocessor which currently has a
maximum clock rate of 5 MHz. Internally the 88/10 is a
microcoded 16-bit processor which multiplexes a 16-bit
internal data bus onto an 8-bit system data bus for ex
ternal communication. The address space is one mega
byte which is segmented to support modular programm
ing. Except for the implementation of the Bus Interface
UIiit the 88/10 is identical to the Intel 86/10
microprocessor.

The architecture of the 88/10 is divided into two
separate processing units, the Bus Interface Unit (BIU)
and the Execution Unit (EU). These two units perform
separate functions in parallel to maximize throughput.

The EU contains the 16-bit arithmetic/logic unit (ALU)
as well as the general registers and flags of the CPU. It is
responsible for executing instructions, and communi
cates only with the BIU. The BIU performs all bus
operations needed by the EU. It contains the segment
registers, the instruction pointer, the bus control logic
and the instruction queue. Because the BIU operates in
parallel with the EU, instruction fetches overlap instruc
tion execution. The result is efficient utilization of the
system bus and transparent instruction prefetch.

The 88/10 contains three sets of four 16-bit registers,
and nine one-bit flags. The four data group registers,
AX,BX, CX and DX, as well as the four pointer and in
dex registers, SP, BP, SI and DI, are all 16-bits wide and
can be used as source and destination in most arithmetic
and logic operations. All eight of these, general registers
function as accumulators for many instructions. The
data group registers, AX, BX, CX and DX can also be
used as eight 8-bit accumulators for byte operations.
The pointer and index registers also serve as address
registers in addition to their general register functions.
The SI and DI registers function as the- source and
destination pointers for the string operations. The Stack
Pointer register (SP) is used in stack operations, and the
BP register is a base pointer for stack relative Based Ad
dressing modes frequently used in high level language
programming. The four 16-bit segment registers, CS,
DS, SS and ES, provide memory segmentation expand
ing the address space to one megabyte.

The iAPX 88 uses a four-clock basic bus cycle. The nor
mal memory access time is 460 nsec. To use memories
slower than this, wait states of 200, nsec can be added.
Using one wait state produces a memory access time of
660 nsec.

22

The iAPX 88110 instruction set operates on bits, BCD
digits, ASCII digits, 8-bit bytes, 16-bit words, ,and
signed or unsigned integers. Many of the two operand
instructions allow both operands to reside in registers,
or one in a register and one in memory. The order of the
operands is interchangeable, and the location of either
source operand may serve as the destinatfon for the
result. The arithmetic instructions include 8- or 16-bit
Add, Subtract, Multiply, Divide and Compare o'fsigned
or unsigned integer values. The iAPX 88 instructions
are identical to those of the iAPX 86 providing complete
software compatibility.

Twenty-four addressing modes are available to directly
or indirectly access data and operands. These modes
allow from one to four component addressing using
combinations of segment, base, and index registers,
and/or 8- or 16-bit displacements. The string instruc
tions -provide auto increment and auto decrement ad
dressing, memory to memory operations, and have an
optional repeat prefix. '

The iAPX 88 in'the minimum mode supports the hold/
hold acknowledge protocol to enable bus control to be
transferred td another bus master such as a DMA con
troller. It can also be configured in the maximum mode
with two request/grant lines, 'each of which can support
multiple bus masters for coprocessor designs using the
8087 Numeric Data Processor and/or the 8089 I/O
Processor (iAPX 88/20, iAPX 88/21, iAPX 88/11).
Even though not considered on these benchmarks, the
8087 (iAPX 88/20) uniquely enhances the iAPX 88/10
(86110) capabilities with 68 additional instructions, in
cluding 64-bit floating point and tqmscendental func
tions, eight 80-bit stack oriented registers and seven ad
ditional numeric data types.

The iAPX 88 provides nonmaskable software (internal)
interrupts and maskable or nonmaskablehardware (ex
ternal) interrupts. The interrupt structure supports up to
256 different interrupt types using an interrupt vector
table located in memory. For more information regard
ing interrupts see your local Intel office.

MC6809

The Motorola MC6809 is an N~channel random logic
MOS microprocessor which is' available at i.o MHz, 1.5
MHz or 2.0 MHz clock rates. The MC6809 can address
up to 64 kbytes of memory. The A and B registers are
two 8-bit accumulators which may be concatenated into
a single 16-bit accumulator, theD register. There are
four pointer registers: X, Y, tJ and S. All are 16-bits
wide and function primarily as base registers for
memory addressing. The U and S registers are also used
for manipulating the hardware and user stacks. The
16-bit program counter (PC) points to the address of the
next instruction, and can also be operated on for control
transfer. The 8-bit Direct Page Register (DPR) is used to
contain the upper eight address bits for some addressing

AFN 01532A

APPENDIX

modes. The processor flags are contained in the 8-bit
condition Code Register (CCR).

The basic bus cycle of the MC6809 is a single, 500 nsec
clock cycle for the 2.0' MHz' version. The normal
memory access time is 320 nsec. To accommodate
slower memories, 125 nsec wait states can be added. Ad
ding one wait state extends the memory access time to
445 nsec. .

Although the instruction set of the MC6809 operates
predominantly on 8-bit data, there are a few bit opera
tions, two BCD adjusts, and eight instructions with
16-bit operands. Most two operand instructions require
one operand to be in a register, and the other operand to
reside in memory, with the result going to the register.
Two operand instructions such as Add or Compare can
not be done from register to register. The exceptions to
this are the Multiply, Transfer Exchange, and Sign Ex
tend instructions, for which both source operands and
the destination operand must be in registers. The arith
metic instructions include 8-bit unsigned integer Multip
ly and 8- or 16-bit Add, Subtract and Compare. Other
16-bit instructions include Load, Store, Exchange,
Transfer, and Sign Extend.

For stack mariipulation, a single Push or Pull instruc
tion allows any combination of registers to be placed on
or removed from either of the two stacks. There are also
19 branch instructions, in long (16-bit offset) or short
(8-bit offset) forms.

The MC6809 supports 13 different addressing modes.
Included in these modes. are 5 forms of indexed address
ing, including indexed Auto Increment and Auto Decre
ment modes which are useful for .string operations.
Relative addressing for Branch instructions use one- or
two-byte o(fsets as a pointer to a data location.

The MC6809 provides maskable and nonmaskable
hardware interrupts, as well as three software inter
rupts. There are two maskable hardware interrupts,
FIRQ and IRQ. The FIRQ (Fast Interrupt Request)
pushes only the Condition Code and Program Counter
registers. The IRQ automatically pushes all of the
MC6809 registers (except the SP) onto the stack. Each
MC6809 interrupt has a fixed vector address, fetching
its service routine address from a predefined memory
location. For more information regarding hardware and
software interrupts see your local Intel office.

PROGRAM DESCRIPTIONS

The ten benchmark programs were chosen to demon
strate the capabilities of the iAPX 88/10 and the
MC6809 in the areas of data manipulation, .computa
tion, and processor control. The basic algorithms for
several of the programs (Block Move, Character Search,
Word Shift, Vector Add, and 16-Bit Multiply) are
similar to the algorithms of benchmark programs .in
Motorola's MC6809 Preliminary Programming
Manual. All iAPX 88 code has been assembled and run.

23

1. Computer Graphics
The Computer Graphics program scales' the X and Y
pairs that make up a graphics display. The 16-bit X and
Y pairs are offset by constant values (XO and YO), then
mUltiplied by a fractional scale factor to obtain the
scaled XY pairs. There are 16,384palrs. This program
demonstrates 16-bit computational capability. .

2. 16-Bit Multiply
The 16-Bit Multiply program reads two 16-bit numbers
from memory, mUltiplies them and returns the 32-bit
product and the two multiplicands to memory. Multiply
demonstrates 16-bit computational capability.

3. Vector Add
The 16-Bit Vector Add perform:s an element-by-element
add of two twenty-element' vectors. Vector add demon
strates 16-bit computatic:m and string processing capa-
bilities. .

4. Block Move
The Block Move program reads the block length,
source, and destination from memory. The block length
was chosen to.be 126 bytes. The data is moved from the
source t'1 the destination using 'word moves. Block
Move demonstrates data manipulation and auto' incre-
ment addressing: ..

5. Block Translate
The Block Translate program translates a memory
block containing' EBCDIC characters to ASCII and
stores the ASCII .characters in another memory block.
The translation is done 'using an EBCDIC to ASCII
translation table, and the block length is 125 bytes. This
demonstrates data manipulation, auto increment ad
dressing,and the use of a lo.okup.tabh;.

6. Character Search .
The Character Search program searches a' table' of
known length for a specific character. If that character
is found,. its address is returned. If it is not found, zero
is returned. This' program demonstrates data com
parison and auto increment addressing.

7. Word Shift
The Word .Shift program reads a 16-bit word from
memory, and shifts it N places to the right. (N is chosen
to be five.) Zeros rotate in on the left. The result is
stored in memory. This demonstrates manipulation of
16-bit data.

8. Reentrant Call
The Reentrant Call program passes three parameters to
the called procedure. One is pushed from a general
register, the other two are pushed from memory. The
procedure is called,. the state of the processor is pushed
onto the stack, and local storage is set up. The. pro
cedure. body adds the three parameters and places the

. result in local storage, Theprocedure.is then exited and
the state of the processor is restored.

AFN 01532A

APPENDIX

This program demonstrates the processor's call and re
entrant procedures and its ability to pass variables to a
called procedure. Support of these features is essential
for structured programming.

9. Interrupt Response
I. Single-Vectored Interrupt
The Single'-Vectored Interrupt pushes all the processor
registers (except the Stack Pointer) onto the stack, and
jumps to a service routine. All registers are restored
before returning. The time also includes the length of
time the, processor requires to execute the longest
instruction before recognizing the interrupt.
II. Multi-Vectored Interrupt
The Multi-Vectored Interrupt stacks only the Instruc
tion Pointer/Program Counter and Flags/Condition
Code registers. The processor must determine which of
eight possible devices initiated the interrupt request, and
jump to the corresponding service routine. The return
time is also included.

RESULTS

The results of this study are presented in terms of execu
tion speed, memory usage, and ease, of programming.
To be relevant to applications where speed is the crucial
factor, the processors are first compared at their highest
performance, with no wait states. Then for the cases
where memory cost is an issue, comparisons are made
for execution speed with (nearly) equal memory access
times, and for coding efficiency. The processors are also
compared on the ease of programming (number of lines
of code) which can be an important factor in the
development costs of a project.

The zero wait state execution speed of the iAPX 88/10 is
compared to that of the MC6809 in Table 2. For each
program, the execution time is given in terms of Ab-

solute Time and Normalized Time for each processor.
The Normalized Time is the Absolute Time required by
the processor for that benchmark divided by the Ab
solute Time of the iAPX 8811 0 for that benchmark. The
Average Normalized Time was computed by adding the
Normalized Times and dividing by the total number of
benchmarks (10). The Adjusted Average Normalized
Time is calculated in the same manner as the Average
Normalized Time, except that the highest and the lowest
numbers were eliminated from' this average. This was
done because the Average Normalized Time was greatly
affected by the Computer Graphics benchmark. This
method is used when computing averages for other
categories as well.

The execution speed comparison made in Table 2 shows
that the iAPX 88/10 performed faster for eight of the
ten benchmarks. The MC6809's Average Normalized
Time of 3.65 says that it required 26511,10 more time than
the iAPX 88110. The Adjusted Average Normalized
Time (1.86), which eliminated the Computer Graphics
and Single-Vectored Interrupt benchmarks, shows that
the MC6809 is 86% slower, or requires 86% more time,
than the iAPX 88/10 to complete these benchmarks.

For applications where the cost of memory is a critical
factor, both the speed of memory, and the amount of
memory must be considered. By speed of memory, we
are referring to the memory access time, which is a ma
jor factor in the price of memory. Because the memory
access time of the iAPX 88 is 460 nsec with no wait
states, one wait state is added to the MC6809. This gives
a 445 nsec memory access time, which is still less than
the 460 nsec zero wait state time of the iAPX 88. A com
parison of the execution speeds of the two processors
for this case is made in Table 3 (Execution Times With
"Equal" Memory Access Times), showing that the
iAPX 88/10 was again faster than the MC6809 for eight

Table 2. Execution Times (5 MHz 88110 vs 2 MHz 6809)

Absolute Time Normalized Time

Benchmark Programs iAPX 88110 MC6809 iAPX 88110

Computer Graphics 2.32 sec 49.7 sec.
16-Bit Multiply 40.8 us 82.0 us
Vector Add 295.0 us 325.0 us
Block Move 328.0 us 674.0 us
Block Translate 1507.0 us 2687.0 us
Character Search 136.0 us 284.0 us

Word Shift 13.0 us 44.5 us

Reentrant Call 87.6 us 76.5 us
Single-Vectored Interrupt 102.6 us 25.5 us
Multi-Vectored Interrupt 24.6 us 45.5 us

Average Normalized Execution Time'
Adjusted ~verage Normalized EX,ecution Time"

"The Average Normalized Time is the sum of the processor's normalized times for all programs divided by the number of programs (10).

"The Adjusted Average Normalized Execution Time is the average of the normalized times, excluding the highest and lowest normalized times.

24

MC6809

21.42

2.01

1.10
2.05

1.78
2.09

3.42
0.87

0.27
1.85

3.69
1.90

AFN 01532A

APPENDIX

Table 3. Execution Times with "Equal" Memory Access Times (5 MHz 88/10 vs 2 MHz 6809)

Absolute Time Normalized Time
Benchmark Program iAPX 88/10

Computer Graphics 2.32 sec.

16-Bit Multiply 40.8 us

Vector Add 295.0 us

Block Move 328.0 us

Block Translate 1507.0 us

Character Search 136.0 us

Word Shift 14.4 us

Reentrant .call 87.6 us

Single-Vectored Interrupt 102.6 us

Multi-Vectored Interrupt 24.6 us

Average Normalized Execution Time"

Adjusted Average Normalized Execution Time"

"'Times-for the MC6809 mclude one walt state on memory accesses.

"See note, Table 2, for description of average calculations.

of the ten programs. The MC6809's Average Normal
ized Time of 4.17 greatly reflects (as it did in Table 2)
the fact that the iAPX 88/lO outperformed the MC6809
by a large margin (more than 24 to 1) in the Computer
Graphics benchmark. The Adjusted Average Normal
ized Time of 2.lO indicates that, after eliminating the
Computer Graphics and Single-Vectored Interrupt, the
iAPX 88/lO was more than twice as fast as the MC6809.

Table 4 compares the performance of the iAPX 88 and
the MC6809 in terms of memory use, or coding efficien
cy. The results in this table show that the iAPX 88 used
less code for nine of the ten programs. The two pro-

MC6809*

57.1 sec.

91.9 us

369.0 us

763.0 us

3016.0 us

324.0 us

49.1 us

84.1 us

30.1 us

55.3 us

iAPX88/10 MC6809

24.61

2.25

1.25

2.33

2.00

2.38

3.78

0.96

0.29

2.25

4.21

2.15

grams in which the largest performance differences oc
curred were the interrupt response benchmarks. The
MC6809 won on the Single-Vectored Interrupt, largely
due to the use of its IRQ interrupt which automatically
stacks all the MC6809's registers. The iAPX 88/lO per
formed better for the Multi-Vectored Interrupt because
its interrupt response requires no extra code to accom
modate multiple interrupt vectors. For the other pro
grams, the iAPX 88 provides significant advantages due
to its string instructions and its efficient handling of
16-bit quantities. The Adjusted Average Normalized
Number of Bytes shows the iAPX 88 with better than a
2 to 1 advantage over the MC6809 in coding efficiency.

Table 4. Memory Utilization (Bytes)

Bytes of Code

Benchmark Program iAPX 88/10 MC6809

Computer Graphics

16-Bit Multiply

Vector Add

Block Move

Block Translate

Character Search

Word Shift

Reentrant Call

Single-Vectored Interrupt

Multi-Vectored Interrupt

Average Normalized Number of Bytes of Code'

40

14

18

15

24

18

6

48

15

1

Adjusted Average Normalized Number of Bytes of Code'

"'See note, Table 2, for description of average calculations.

25

180

56

21

26

37

19

18

49

I

15

Normalized Bytes
iAPX 88/10 MC6809

4.50

4.00

1.17

1.73

1.54

1.06

3.00

1.02

0.07

15.00

3.31

2.25

AFN 01532A

APPENDIX

In Table 5 the iAPX 88 and the MC6809 are compared
for "Ease of Programming" by counting the number of
lines of code required for each benchmark. The iAPX
88 used a smaller number of lines of code than the
MC6809 for eight of the ten programs. As in coding ef
ficiency, the greatest differences occurred in the two in
terrupt response benchmarks, with the MC6809 again
having an advantage in the Single-Vectored Interrupt,

and the iAPX 88/10 using fewer instructions in the
Multi-Vectored Interrupt. For the other programs, the
iAPX 88's use of string instructions, and its ability to
handle 8-bit or 16-bit data allowed the algorithms to be
implemented in fewer lines of code. The Adjusted
Average Normalized Lines of Code was 2.67 showing
that the iAPX 88 used less lines of code than the
MC6809 by a factor of more than 2.6 to 1.

Table 5. Ease of Programming

Lines of Code Normalized Lines
Benchmark Program iAPX 88/10 MC6809 iAPX 88/10 MC6809

Computer Graphics

16-Bit Multiply

Vector Add

Block Move

Block Translate

Character Search

Word Shift

Reentrant Call

Single-Vectored Interrupt

Multi· Vectored Interrupt

IS

4

8

7

10

8

2

26

IS

I

Average Normalized Number of Lines of Code'

Adjusted Average Normalized Number of Lines of Code'

·See note, Table 2, for description of average calculations.

IAPX 88110

1.00

6809
AVERAGE

.27

8809
ADJUSTED
AVERAGE

.54

HIGHEST SPEED

IAPX 88110

1.00

6809
AVERAGE

6809
ADJUSTED
AVERAGE

.48

SPEED WITH EQUAL MEMORY
ACCESS TIME

Graph I. Normalized Average Throughput:
5 MHz iAPX 88/10 vs 2 MHz 6809

26

87

28

8

14

13

9

9

23

8

IAPX 88

1.00

8809
AVERAGE

3.19

6809
ADJUSTED
AVERAGE

2.10

BYTES OF CODE

IAPX 88

5.80

7.00

1.00

2.00

1.30

1.13

4.50

0.88

0.07

8.00

3.17

2.95

6809 8809
AVERAGE ADJUSTED

2.94 AVERAGE

2.87

LINES OF CODE

Graph II. Normalized Average Memory Use and Lines
of Code: iAPX 88/10 vs 6809

AFN 01532A

APPENDIX

CONCLUSION

The results of this benchmark study show that for the
programs used, the Intel iAPX 88/10 significantly out
performed the Motorola MC6809. In absolute execution
speed, the iAPX 88/10 proved to be 861170 faster than the
MC6809 (using the Adjusted Average). When compared
at equal memory access times, the iAPX 88/10 outper
formed the MC6809 by 1l01l70. On the basis of coding
efficiency, the iAPX 88/10 generated less than half as
much object code as the MC6809. In the Ease of Pro
gramming category, the results ;howed that the MC6809
required more than 2.6 times the number of lines of
code required by the iAPX 88/10. These results are
summarized in the table below.

Table 6. Performance Breakdown

Performance Ratio of
Performance Category iAPX 88 to MC6809

Execution Speed iAPX 88/10 is 1.86X
(Fastest) faster

Execution Speed" iAPX 88/10 is 2.IOX
faster

Coding Efficiency iAPX 88/10 is 1.47X
more efficient

Ease of Programming iAPX 88/10 is 2.67X
more efficient

·Wtth equal speed memory

27

, The iAPX 88 is the highest performance 8-bit micro
processor in the market today. The already superior per
formance of the iAPX 88 will be increased by 601170 when
the 8 MHz version is available in 1981. This, together
with the upgrade path to other object code compatible
processor series in the Microsystem 80 product line
(iAPX 86, iAPX 188, 186 and iAPX 286,288), and the
unequalled hardware and software support, makes it
clear that Intel delivers the best solution to the many ap
plications which require a powerful 8-bit microproc
essor.

AFN 01532A

APPENDIX

APPENDIX I

BENCHMARK PROGRAM CODE AND FLOWCHARTS·

Figure 1. 16·Bit Multiply Flowchart

*This appendix contains the code and flowcharts for three of the benchmark programs (16-Bit Multiply, Block Move,
and Character Search). For the code and flowcharts for all benchmark programs contact your local Intel sales office.

28 AFN 01532A

BENCHMARK: 16-Bit Multiply

PROCESSOR: Intel iAPX 88

Bytes Cycles

3
4
3
4

18
137

19
19

MOv
MUL
MOv
MOv

APPENDIX

;REGISTER USAGE:
AX- ACCUMULATOR

; OX- ACCUMULATOR

AX, Ml
M2
P 1 ,AX
P2,OX

14 bytes of code
4 lines of code

29

;Read operand
;A*B
;Store LSB
;Store MSB

AFN 01532A

BENCHMARK: l6-Bit Multiply
PROCESSOR: Motorola 6809

Bytes Cycles

3 3 LOX
4 5 LOY
3 3 LOU

~ 6 CLR
~ 6 CLR
~ 5 LOA
~ 5 LOB
1 11 MUL
~ 6 STD

~ 4 LOA
~ 5 LOB
1 11 MUL
~ 7 AOOO
~ 6 STD
~ 3 BCC
~ 6 INC

~ 5 ABl LOA
~ 4 LOB
1 11 MUL
~ 7 AOOO
~ 6 STD
~ 3 BCC
~ 6 INC
~ 4 AB~ LOA
~ 4 LOB
1 11 MUL
~ 7 AOOD
~ 6 STD

APPENDIX

;REGISTER USAGE:

#AA
#BB
#MO

O,U
1,U
1,X
1, Y

~,U

O,X
1, Y

1, U
1,U
ABl
O,U

1, X
O,Y

1,U
1,U
AB~
O,U
O,X
O,Y

O,U
O,U

o - ACCUMULATOR
X - O~E~ANO POINTER
Y - OPERAND POINTER
U - PRODUCT POINTER

;Pointer to multiplicand A(MS Byte)
;Pointer to multiplicand B(MS Byte)
;Pointer to product

;CLR MO
;CLR Ml
;Read LS byte of A (AL)
;Read LS byte of B (BL)
;AL*BL
;Store in M3:M~

;Read MS byte of A (AH)
;Read LS byte of B (BL)
;AH*BL
;AH*BL + MS byte from AL*BL
;Store in M2:Ml
;Skip INC if no carry
;Add carry to MO

;Read LS byte of A (AL)
;Read LS byte of B (BH)
;AL*BH
;AL*BH+ M~:Ml
;Store in M~:Ml
;Skip INC if no carry
;Add carry to MO
;Read AH
;Read BH
;AH*BH
;AH*BH +Ml + carries
;Store in Ml:MO

56 bytes of code
~8 lines of code

3D AFN 01632A

APPENDIX

NO

Figure 2. Block Move Flowchart

31 AFN 01532A

BENCHMARK: Block Move

PROCESSOR: I nte 1 i APX 88

Bytes Cycles

1 2 CLD
3 4 MOV
3 4 MOV
3 4 MOv
1 2 INC
2 2 SHR
2 9+25/ REP MOvS

15
7

APPENDIX

;REGISTER USAGE:
CX - BLOCK LENGTH
SI - SOURCE POINTER
01 - DESTINATION POINTER

S I, FROM
01, TO
CX,LNGTH
CX
CX,l
TO, FROM

bytes of code
lines of code

32

;Clear direction flag
;Initialize Source Pointer
;Initialize Destination Pointer
;Initialize Block Length
,
;Adjust LNGTH for word moves
;Move Block

AFN 01532A

BENCHMARK: Block Move

PROCESSOR: Motorola 6809

Bytes Cycles

4 4 LOY
3 3 LOU
3 3 LDD
1 2 INCB
2 3 BNC
1 2 INCA
1 2 SHIFT LSRA
1 2 RORB
2 8 MOVE LOX
2 8 STX
1 2 DECB
2 3 BNE
1 2 DECA
2 3 BNE

APPENDIX

;REGISTER USAGE

#FROM
#TO

o Block Length
X - Temporary Storage
Y Source Pointer
U - Destination Pointer

;Initial ize Source Pointer
;Initialize Destination Pointer

#LENGTH :Initialize Block Length

SHIFT ;Add one to avoid losing a
; byte if LENGTH is odd
;Adjust LENGTH for word
; moves

, Y++ ;Read word
,U++ ;Store word

;LS Count
MOvE

;MS Count
MOvE

26 bytes of code
14 lines of code

33 AFN 01532A

APPENDIX

Figure 3. Character Search Flowchart

34 AFN 01532A

BENCHMARK: Character Search

PROCESSOR: Intel iAPX 88

Bytes Cycles

4 6 LEA
C 4 MOv
3 4 MOv
1 C CLD

C 9+15/ REPNE SCAS
c 16/4 JZ
3 4 MOv
1 c PASTPTR:DEC

18 bytes
8 lines

APPENDIX

;REGISTER USAGE:
AL - ACCUMULATOR
CX - COUNT
DI - TABLE POINTER

DI,PTR ;Initialize Table Pointer
AL,CHAR ;Search character
CX,40 ;Initialize count

;Clear direction flag

PTR ;Search
PASTPTR ;Jump if found
DI,l ;Not found:DI will return 0
DI ;Adjust DI

of code
of code

35 AFN 01532A

APPENDIX

BENCHMARK: Character Search

PROCESSOR: Motorola 6809

Bytes Cycles

3 3 ./...OX
2 2 LOA
2 2 LOB

2 6 AGAIN CMPA
2 3 BEQ
1 2 OECB
2 3 BNE
3 3 LOX
2 5 PASTPTR LEAX' .

19
9

;REGISTER USAGE:
A - ACCUMULATOR
B' - COUNT
X - TABLE POINTER

#PTR ;Initialize Table Pointer
#CHAR ;Search character

.. #40 ;Initialize'count

,X+ . ;Compare, alltoincrement
PASTPTR ;Jump if found

;Oecrement count
AGAIN ;00 again. unless B=O

.. #1· ;Not found: X will return 0
·"l,X. ;Adjust X

bytes of code
lines of code

36 AFN D1532A

inter
iAPX 88/10

(8088)
8-BIT HMOS MICROPROCESSOR

• 8·Bit Data Bus Interface

• 16·Bit Internal Architecture

• Direct Addressing Capability to 1 Mbyte
of Memory

• Direct Software Compatibility with
iAPX 86/10 (8086 CPU)

• 14-Word by 16-Bit Register Set with
Symmetrical Operations

• 24 Operand Addressing Modes

• Byte, Word, and Block Operations

• 8-Bit and 16-Bit Signed and Unsigned
Arithmetic in Binary or Decimal,
Including Multiply and Divide

• Compatible with 8155·2, 8755A·2 and
8185·2 Multiplexed Peripherals

The Intel® iAPX 88/10 is a new generation, high performance microprocessor implemented in N-channel, depletion load,
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and
16-bit microprocessors. It is directly compatible with iAPX 86/10 software,and 8080/8085 hardware and peripherals.

MEMORY INTERFACE

C·BUS
MIN

[MAX 1
MODE MODE

GND Vee

A1' A'S
INSTRUCTION

A'3 A161S3
STREAM BYTE

OUEUE A'2 A17/S4

A11 A18/S5

A10 A19/S6

BUS
CS

A9 SSO (HIGH)
INTERFACE SS A8 MNIMX

UNIT
OS AD7 Rii
IP ADS HOLD (ROIGTO)

ADS HlDA (RQIGH)

A·BUS AD. m (lOCK)

AD3 101M (52)

AD2 DTii'i (si)
AH Al AD1 DEN (SO)
BH Bl

ADO ALE (OSO)
CH Cl

DH Dl NMI INTA (OS1)
EXECUTION

UNIT SP INTR TEST

BP ClK READY

SI GND RESET
01 FLAGS

Figure 1. iAPX 88/10 CPU Functional Block Diagram Figure 2. iAPX 88/10 Pin Configuration

37

iAPX 88/10

Table.1. Pin Description

The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The "local bus" in
these descriptions is the direct multiplexed bus interface connection to tfle 8088 (without regard to additional bus
buffers).

Symbol pin No. Type Name and Function

AD7-ADO 9-16 1/0 Address Data Bus: These lines constitute the time multiplexed memoryliO
address (T1) and data (T2, T3, Tw, and T4) bus. These lines are active HIGH and
float to 3-state OFF during interrupt acknowledge and local bus "holdacknowl-

. , edge" . ,

A15-A8 2-8,.39 0 Address Bus: These lines provide address bits 8 through 15 for the entire bus
cycle (T1-T4). These lines do not .have to be latched by ALE to .remain valid.
A 15-A8 are active HIGH and floano 3-state OFF during interrupt acknowledge
and local bus "hold acknowledge".

A19/86, A18/85, 34,38 0 Address/Status: During T1, these are the four
A17/84, A16/83 most significant address lines for memory op- .

erations. During 1/0 operations, these lines are
lOW. During memory and Il0operations, status
information is available on these lines during
T2, T3, Tw, andT4. 86 is always low. The status of 54 153 CHARACTERISTICS

the interrupt enable flag bit (85) is updated at "COWl J 0
AI'ternate Data

o , Stack

the beginning of each clock cycle. 84 and 83 are 1 {HIGH) 0 Code or None , , Data

encoded as shown. S6,sO(LOW)

This information indicates which segment reg-
ister is presently being used for data accessing.

These lines float to 3-state OFF during local bus
"hold acknowledge".

RD 32 0 Read: Read strobe indicates that the processor is performing a memory or I/O
read cycle, depending on the state·of the 101M pin or 82. This signal is used to .
read devices which reside on the 8088 local bus.HD is active LOW during T2, T3
and Tw of any read cycle, and is guaranteed to remain HIGH in T2 until the 8088
local bus has floated.

This signal floats to 3-state OFF in "hold acknowledge".

READY 22 I READY: is the acknowledgement from the addressed memory or I/O device that
it,will complete the data transfer. The RDY signal from memory or I/O is syn-
chronized by the 8284 clock generator to form READY. This signal is active
HIGH. The 8088 READY input is not synchronized. Correct operation is not
guaranteed if the set up and hold times are not met.

INTR 18 I Interrupt Request: is a .Ievel triggered input which is sampled during the last
clock cycle of each instruction to determine iUhe processor should enter into an
interrupt acknowledge operation. A subroutine is vectored to via ail interrupt
vector lookup table, located in system memory. It can be internally masked by
software resetting the interrupt enable bit. INTR is internafly synchronized. This
signal is active HIGH.

TE8T 23 I TEST: input is examined by the "wait for test" instruction. If theTE8T input is
; lOW, execution continues, otherwise the processor,waitsin an "idle" state. This

input is synchronized internally during each clock cycle on the leading edge of
ClK.

NMI 17 I Non-Maskable Interrupt: is an edge triggered input which causes a type 2
interrupt. A subroutine is vectored to via an interrupt vector lookup table located
in system memory. NMI is not maskable internally by software. A transition from
a lOW to HIGH initiates the interrupt at the end of the current instruction. This
input.is internally synchronized.

38 AFN·008268

inter iAPX 88/10

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

RESET 21 I RESET: causes the processor to immediately terminate its present activity. The
signal must be active HIGH for at least four clock cycles. It restarts execution, as
described in the instruction set description, when RESET returns LOW. RESET
is internally synchronized.

eLK 19 I Clock: provides the basic timing for the processor and bus controller. It is
asymmetric with a 33% duty cycle to provide optimized internal timing.

Vee 40 Vee: is the +5V ±10% power supply pin.

GND 1,20 GND: are the ground pins.

MN/MX 33 I Minimum/Maximum: indicates what mode the processor is to operate in. The
two modes are discussed in the following sections.

The following pin function descriptions are for the 8088 minimum mode (i.e., MN/MX = VecJ. Only the pin functions which
are unique to minimum mode are described; all other pin functions are as described above.

10/M 28 0 Status Line: is an inverted maximum mode S2. It is used to distinguish a
memory access from an I/O access. 10/M becomes valid in the T4 preceding a
bus cycle and remains valid until the final T4 of the cycle (I/O=HIGH, M=LOW).
10/M floats to 3-state OFF in local bus "hold acknowledge".

WR 29 0 Write: strobe indicates that the processor is performing a write memory or write
I/O cycle, depending on the state of the 10/M signal. WR is active for T2, T3, and
Tw of any write cycle. It is active LOW, and floats to 3-state OFF in local bus "hold
acknowledge" .

INTA 24 0 INTA: is used as a read strobe for interrupt acknowledge cycles. It is active LOW
during T2, T3, and Tw of each interrupt acknowledge cycle.

ALE 25 0 Address Latch Enable: is provided by the processor to latch the address into
the 8282/8283 address latch. It is a HIGH pulse active during clock low of T1 of
any bus cycle. Note that ALE is never floated.

DT/R 27 0 Data Transmit/Receive: is needed in a minimum system that desires to use an
8286/8287 data bus transceiver. It is used to control the direction of data flow
through the transceiver. Logically, DT/R is equivalent to S1 in the maximum
mode, and its timing is the same as for 10/M (T=HIGH, R=LOW). This signal
floats to 3-state OFF in local "hold acknowledge".

DEN 26 0 Data Enable: is provided as an output enable for the 8286/8287 in a minimum
system which uses the transceiver. DEN is active LOW during each memory and
I/O access, and for INTA cycles. For a read or INTA cycle, it is active from the
middle of T2 until the middle of T4, while for a write cycle, it is active from the
beginning of T2 until the middle of T4. DEN floats to 3-state OFF during local bus
"hold acknowledge".

HOLD,HLDA 30,31 1,0 HOLD: indicates that another master is requesting a local bus "hold". To be
acknowledged, HOLD must be active HIGH. The processor receiving the "hold"
request will.issue HLDA (HIGH) as an acknowledgement, in the middle of a T4 or
TI clock cycle. Simultaneous with the issuance of HLDA the processor will float
the local bus and control lines. After HOLD is detected as being LOW, the
processor lowers HLDA, and when the processor needs to run another cycle, it
will again drive the local bus and control lines.

Hold is not an asynchronous input. External synchronization should be
provided if the system cannot otherwiSe guarantee the set up time.

SSO 34 0 Status line: is logically equivalent to SO in th~ 101M DTIR ''0 CHARACTERISTICS

maximum mode. The combination of SSO, 10/M : ,e'G<' 0 0 ~"~~~ 0 ,
and DT/R allows the system to completely de- , 0 , ,
code the cu rrent bus cycle status. o (LOW) 0 0

0 0 ,
0 : 0

;;,~'" 0 ,

39 AFN·00826B

intJ iAPX 88/10

Table 1. Pin Description (Continued)

The following pin function descriptions are for the 8088, 8228 system in maximum mode (i.e., MN/MX=GND.) Only the pin'
functions which are unique to maximum mode are described; all other pin functions are as described above.

Symbol Pin No. Type

S2, 81, SO 26-28 0

RQ/GTO,
RQ/GT1

30,31 I/O

Name and Function

Status: is active during clock high of T4, T1,
and T2, and is returned to the passive state
(1,1,1) during T3 or during Tw when READY is
HIGH. This status is used by the 8288 bus con
troller to generate all memory and I/O access
control signals. Any change by S2, 81, or SO
during T4 is used to indicate the beginning of a
bus cycle, and the return to the passive state in
T3 or Tw is used to indicate the end of a bus
cycle.

These Signals float to 3-state OFF during "hold
acknowledge". During the first clock cycle after
RESET becomes active, these signals are active
HIGH. After this first clock, they float to 3-state
OFF.

" o (lOW)
0
0
0
((HIGH)

, ,

"
0
0 , ,
0
0 , ,

" CHARACTERISTICS

0 Interrupt Acknowledge , Read 110 port
0 ~~::elloport ,
0 Code access
0 Readmemofy
0 ~;~~v~emory ,

Request/Grant: pins are used by other local bus masters to force the processor
to release the local bus at the end of the processor's current bus cycle. Each pin
is bidirectional with RQ/GTO having higher priority than RQ/GT1. RQ/GT has an
internal, pull-up resistor, so may be left unconnected. The request/grant se
quence is as follows (See Figure 8):

1. A pulse of one ClK wide from another Jocal bus master indicates a local bus
request ("hold") to the 8088 (pulse 1).

2. During a T4 or TI clock cycle; a pulse one clock wide from the 8088 to the
requesting master (pulse 2), indicates that the 8088 has allowed the local bus
to float and that it will enter the "hold acknowledge" state at the next ClK.
The CPU's bus interface unit is disconnected logically from the local bus
during" hold acknowledge". The same rules as for HOLD/HOLDA apply as for,
when the bus is released.

3. A pulse one ClK wide from the requesting master indicatesto the 8088 (pulse
3) that the "hold" request is about to end and that the 8088 can reclaim the
local bus at the next ClK. The CPU then enters T4.

Each master-master exchange of the local bus is a sequence of three pulses~
There must be one idle elK cycle after each bus exchange. Pulses are active
lOW.

If the request is made while the CPU is performing a memory cycle, it will release
the local bus during T4 of the cycle when all the following conditions are met:

1. Request occurs on or before T2.
2. Current cycle is not the low bit of a word.
3. Current cycle is not the first acknowledge of an interrupt acknowledge

sequence.
4. A lOCked instruction is not currently executing.

If the local bus is idle when the request is made the two possible events will
follow:

1. local bus will be released during the next clock.
2. A memory cycle will start within 3 clocks. Now the four rules for a currently

active memory cycle apply with condition number 1 already satisfied.

40 AFN·00826B

iAPX 88/10

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

LOCK 29 a LOCK: indicates that other system bus masters are not to gain control of the
system bus while LOCK is active (LOW). The LOCK signal is activated by the
"LOCK" prefix instruction and remains active until the completion of the next
instruction. This signal is active LOW, and floats to 3·state off in "hold acknowl·
edge".

OS1,OSO 24, 25 a Queue Status: provide status to allow external
aSl I eso CHARACTERISTICS

tracking of the internal 8088 instruction queue. o (LOWI
1
! 0 No operation

o • Forst byte o! opco(!e !rom queue

The queue status is valid during the CLK cycle 1 (HIGH) I 0 Empty the Queue , . Subsequent byte from queue

after which the queue operation is performed.

- 34 a Pin 34 is always high in the maximum mode.

41 AFN.Q0626B

inter iAPX 88/10

FUNCTIONAL DESCRIPTION

Memory Organization
The processor provides a 20-bit address to memory which
locates the byte being referenced. The memory is orga
nized as a linear array of up to 1 million bytes, addressed
as OOOOO(H) to FFFFF(H). The memory is logically divided
into code, data, extra data, and stack segments of up to
64K bytes each, with each segment falling on 16-byte
boundaries. (See Figure 3.) .

All memory references are made relative to base
addresses contained in high speed segment registers. The
segment types were chosen based on the addressing
needs of programs. The segment registerto be selected is
automatically chosen according to the rules of the follow
ing table. All information in one segment type share the
same logical attributes (e.g. code or data). By structuring
memory into relocatable areas of similar characteristics
and by automatically selecting segment registers, pro
grams are shorter, faster, and more structured.

the next higher' address location. The BIU will auto·
matically execute two fetch or write cycles for 16-bit
operands.

Certain locations in memory are reserved for specific
CPU operations. (See Figure 4,) Locations from ad
dresses FFFFOH through FFFFFH are reserved for
operations including a jump to the initial system initial·
izationroutine. FOllowing RESET, the CPU will always
begin execution at location FFFFOH where the jump
must be located. Locations OOOOOH through 003FFH are
reservt;ld~ for interrupt operations. Four-byte pointers
consisting of a 16-bit segment address and a 16·bit off
se(address direct program flow to one of the 256 possi
ble interrupt service routines. The pointer elements are
assumed to have been stored at their respective places
in reserved memory prior to the occurrence of inter·
rupts.

Minimum and Maximum Modes

Word (16·bit) operands can be located on even or odd ad·
dress boundaries. For address and data operands, the
least significant byte of the word is stored in the lower
valued address location and the most significant byte in

The requirements for supporting minimum and maxi·
mum 8088 systems are sufficiently different that they
cannot be done efficiently with 40 uniquely defined
pins. Consequently, the 8088 is equipped with a strap
pin (MN/MX) which defines the system configuration.
The definition of a certain subset of the pins changes,
dependent on the condition of the strap pin. When the
MN/MX pin is strapped to GND, the 8088 defines pins 24
through 31 and 34 in maximum mode. When the MN/MX
pin is strapped to Vcc, the 8088 generates bus control
signals itself on pins 24 through 31 and 34.

7 o!~·hFFH

64tBD~ \."", ",.,.,
_-L XXXXOH

r1=I [I STACK SEGMENT

+ OFFSET H
~~~ [ 

REGISTER FILE ( MSB 

~~~~~~~~g=~WlO~R=D~g~BL~;:~E~ J DATA SEGMENT 
OS
ES

}EXTRA DATA SEGMENT

'----+----,.1

Figure 3. Memory Organization

Memory Segment Register
Reference Need Used

Instructions CODE (CS)

Stack STACK (SS)

Local Data DATA (DS)

External (Global) Data EXTRA (ES)

,----,R--E..,.SE--T--B..,.O-OT--S""TR-A-P-----, FFFFFH

t-___ ---'P.::R.::.OG:::R"'A::::Mc:J.:::UM"'P ___ -l FFFFOH

~--__ -------~3FFH
INTERRUPT POINTER

~---~F~O~R~TY~P~E.:::2S~S----~3~

t------------~7H
INTERRUPT POINTER

t-___ ~F~O.::R~T.::YPc:E~1 ____ ~4H

INTERRUPT POINTER 3H
~ ___ ~Fc:0.::R~T.::YPc:Ec:O ____ ~.OH

Figure 4. Reserved Memory Locations

Segment
Selection Rule

Automatic with all instruction prefetch.

All stack pushes and pops. Memory references relative to BP
base register except data references.

Data references when: relative to stack, destination of string
operation, or explicitly overridden.

Destination of string operations: Explicitly selected using a
segment override.

42 AFN-00826B

iAPX 88/10

The minimum mode 8088 can be used with either a
multiplexed or demultiplexed bus. The multiplexed bus
configuration is compatible with the MCS·85™ multi·
plexed bus peripherals (8155, 8156, 8355, 8755A, and
81851. This configuration (See Figure 5) provides the user
with a minimum chip count system. This architecture
provides the 8088 processing power in a highly integrated
form.

The demultiplexed mode requires one latch (for 64K ad·
dressability) or two latches (for a full megabyte of ad·
dressing). A third latch can be used for buffering if the
address bus load'ing requires it. An 8286 or 8287 trans·
ceiver can also be used if data bus buffering is required.
(See Figure 6.1 The 8088 provides DEN and DT/R to con-

43

trol the transceiver, and ALE to latch the addresses.
This configuration of the minimum mode provides the
standard demultiplexed bus structure with heavy bus
buffering and relaxed bus timing requirements.

The maximum mode employs the 8288 bus controller.
(See Figure 7.) The 8288 decodes status lines SO, 81,
and S2, and provides the system with all bus control
signals, Moving the bus control to the 8288 provides
better source and sink current capability to the control
lines, and frees the 8088 pins for extended large system
features, Hardware lock, queue status, and two request!
grant interfaces are provided by the 8088 in maximum
mode. These features allow co·processors in local bus
and remote bus configurations,

AFN·OO826B

iAPX 88/10

/"

T Vee

I
H--;- . eE ~oRI~

We
- PORT~
RD 8155 B •

ALE PORT~
DATA! C (61

ADDR

IN_
101M TIMER

RESET
OUT r--

Aa- A19 ADOR lOW

V R5

--"-ADo - AD1 ADOR/DATA ALE W .--- elK '.J ~~ PORT
CE A

I~ " As- Io
8088 --V .--- READY

835518755A

MNIMX f--vcc DATAl
AOQR

rD1 ALE I-- I-- 101M ~ PORT
RESET R5 I-- I-- I- RESET

B

X, X,
elK WR I--

READY I- IOiM r-- iDA ~c

RES I I I t 8284A
RESET r-- Vss Vee VOD PROG

Vee

~
I
GND We

R5

eE,
8185

A"
~I-- CS, CE2

1-1-- Ae.Ag

A

ADO]

! I
V" Vee

, V

Figure 5. Multiplexed Bus Configuration

44 AFN-00826B

inter

r
I

D i Ul
82B4A
CLOCK ClK MN'" GENERATOR

m - READY 101M
_ RESET 1111 ROY WI!

GND
CPU INTA

DTIR
I!ElI

ALE

ADo-APr
At-AlII:

INTR

i
I

i Ul
82B4A ~ MNIMX
CLOCK lK 50 GENERATOR C

m READY S,

REseT S,
ROY

GND CPU

ADG- AD7
Aa-A"

'NT

iAPX 88/10

-Vee
'j

====;l r---:l
~ 5TB I

GNO---t+--: DE 8282 :

I LATCH ADDRESS ~DDR DAr (t,:Z OR 3)

~

ET
OE

8286
DATA TRANSCEIVER

F ill 11 Ii II l r 11
l WE"] I DEll C5 RDWRJ EN

~ 2142 RAM (2) 2116·2 PROM Mes-ao
PERIPHERAL

V
B259A

INTERRUPT 1-
CONTROL

'NT
Vt--IRO-7

'--- IV----

Figure 6. Oemultiplexed Bus Configuration

OND elK MRDe

S. MWTC

S; AMWC I--N.C

S, 8288 K>RC
,-- DEN C~~~R lowe

,----- DTiR Alowe f-NC
ALE INTA

r---:l
I 5TB
I

GNO- f---- OE 8282 I rDDR/DAF----v . LATCH ADDRESS (1,20R3)

IJ

I D= T
OE 1 8286
TRANSCEIVER DATA

F ill ill 11 11
I

w'ODl1 0'11 C5 ~WR I .1\ 2142 RAM (2) 2116·2 PROM Mes·ao

1- I?ERIPHERAl

V 8259A
INTERRUPT 1-
CONTROL

- F'R'.'

Figure 7. Fully Buffered System Using Bus Controller

45 AFN-00826B

iAPX 88/10

Bus Operation
The 8088 address/data bus is broken into three parts -
the lower eight address/data bits (ADO-AD7), the middle
eight address bits (A8-A15), and the upper four address
bits (A16-A19). The address/data bits and the highest
four address bits are time multiplexed. This technique
provides the most. efficient use of pins on the proc
essor, permitting the use of a standard 40 lead package.
The middle eight address bits are not multiplexed, i.e.
they remain valid throughout each bus cycle. In addi-

tion, the bus can be demultiplexed at the processor with
a single address . latch if a standard, non:multiplexed.
bus is desired for the system. .

Each processor bus cycle consists of at least four elK
cycles. These are referred to. as T1, T2, T3, and T 4. (See
Figure 8). The. address is emitted from the processor
during T1 and data transfer occurs on the bus during T3
and T4. T2 is used primarily for changing the direction of
the bus during read operations. In the event that a "NOT
READY" indication is given by the addressed device,

i------(4+NWAIT)=TCy------1------(4+NWAJT)-TCy-----4

T, T, 13 TWAIT I T4 T1 T2 T3

elK

GOES INACTIVE IN THE STATE

~~'---__ . ----L.L~.L.L.L..l..L..l?llgu/< ~" \
ADDRISTATUS

ADDR

ADDRIDATA -----8'-__ D_A_TA_O_UT_(O"--,Dol __ ~}-{)C

READY

DT/Ft

\1---_--,11

Figure 8. Basic System Timing

46" AFN.cJ0826B

iAPX 88/10

"wait" states (Tw) are inserted between T3 and T4. Each
inserted "wait" state is of the same duration as a ClK
cycle. Periods can occur between 8088 driven bus
cycles. These are referred to as "idle" states (Ti), or inac·
tive ClK cycles. The processor uses these cycles for in·
ternal housekeeping.

During T1 of any bus cycle, the ALE (address latch
enable) signal is emitted (by either the processor or the
8288 bus controller, depending on the MN/IiiTX strap). At
the trailing edge of this pulse, a valid address and cer·
tain status information for the cycle may be latched.

Status bits SO, 51, and S2 are used by the bus controller,
in maximum mode, to identify the type of bus transac·
tion according to the following table:

S2 S1 SO CHARACTERISTICS

o (low) 0 0 Interrupt Acknowledge
0 0 1 Read 1/0
0 1 0 Write 1/0
0 1 1 Halt
1 (High) 0 0 Instruction fetch
1 0 1 Read data from memory
1 1 0 Write data to memory
1 1 1 Passive (no bus cycle)

Status bits S3 throughS6 are multiplexed with high
order address bits and are therefore valid during T2
through T4, S3 and S4 indicate which segment register
was used for this bus cycle in forming the address ac·
cording to the following table:

S4 53 CHARACTERISTICS

o (low) 0 Alternate data (Extra Segment)
0 1 Stack
1 (High) 0 Code or none
1 1 Data

S5 is a reflection of the PSW interrupt enable bit. S6 is
always equal to O.

1/0 Addressing
In the 8088, 1/0 operations can address up to a maxi·
mum .of 64K 1/0 registers. The 1/0 address appears in the
same format as the memory address on bus lines
A15-AO. The address lines A19-A16 are zero in 1/0
operations. The variable 1/0 instructions, which use
register DX as a pointer, have full address capability,
while the direct 1/0 instructions directly address one or
two of the 256 1/0 byte locations in page 0 of the 1/0 ad·
dress space. 1/0 ports are addressed in the same man·
ner as memory locations.

Designers familiar with the 8085 or upgrading an 8085
design should note that the 8085 addresses 1/0 with an
8·bit address on both halves of the 16·bit address bus.
The 8088 uses a full 16·bit address on its lower 16 ad·
dress lines.

47

EXTERNAL INTERFACE

Processor Reset and Initialization
Processor initialization or start up is accomplished with
activation (HIGH) of the RESET pin. The 8088 RESET is
required to be HIGH for greater than four clock cycles.
The 8088 will terminate operations on the high-going
edge of RESET and will remain dormant as long as
RESET is HIGH. The low-going transition of RESET trig
gers an internal reset sequence for approximately 7
clock cycles. After this interval the 8088 operates nor·
mally, beginning with the instruction in absolute loca
tion FFFFOH. (See Figure4.1 The RESET input is inter·
nally synchronized to the processor Clock. At initializa
tion, the HIGH to lOW transition of RESET must occur
no sooner than 50 /ls after power up, to allow complete
initialization of the 8088.

If INTR is asserted sooner than nine clock cycles after
the end of RESET, the processor may execute one in·
struction before responding to the interrupt.

All 3·state outputs float to 3·state OFF during RESET.
Status is active in the idle state for the first clock after
RESET becomes active and then floats to 3·state OFF.

Interrupt Operations
Interrupt operations fall into two classes; software or
hardware initiated. The software initiated interrupts and
software aspects of hardware interrupts are specified in
the instruction set description in the 8086 Family User's
Manual. Hardware interrupts can be classified as non
maskable or maskable.

Interrupts result in a transfer of control to a new pro·
gram location. A 256 element table containing address
pointers to the interrupt service program locations
resides in absolute locations 0 through 3FFH (see Fig·
ure 41, which are reserved for this purpose. Each ele·
ment in the table is 4 bytes in size and corresponds to
an interrupt "type". An interrupting device supplies an
8·bit type number, during the interrupt acknowledge se·
quence, which is used to vector through the appropriate
element to the new interrupt service program location.

Non·Maskable Interrupt (NMI)
The processor provides a single non·maskable interrupt
(NMI) pin which has higher priority than the maskable in·
terrupt request (INTR) pin. A typical use would be to actio
vate a power failure routine. The NMI is edge·triggered
on a lOW to HIGH transition. The activation of this pin
causes a type 2 i nterru pt.

NMI is required to have a duration in the HIGH state of
greater than two clock cycles, but is not required to be
synchronized to the clock. Any higher going transition
of NMI is latched on·chip and will be serviced at the end
of the current instruction or between whole moves (2
bytes in the case of word moves) of a block type instruc
tion. Worst case response to NMI would be for multiply,
divide, and variable shift instructions. There is no
specification on the occurrence of the low-going edge; it
may occur before, during, or after the servicing of N MI.
Another high-going edge triggers another response if it

AFN-00826B

iAPX 88/10

occurs after the start of the NMlprocedure. The signal
must be free of logical spikes in general and be free of
bounces on the low-going edge to avoid triggering ex
traneous responses.

Maskable Interrupt (INTR)
The 8088 provides a single interrupt request input (INTR)
which can be masked internally by software with the
resetting of the interrupt enable (IF) flag bit. The in
terrupt request signal is level triggered. Ii is internally
synchronized during each clock cycle on the high-going
edge of CLK. To be responded to, INTR must be present
(HIGH) during the clock period preceding the end of the
current instruction or the end of a whole move for a
block type instruction. During interrupt response se
quence, further interrupts are disabled. The enable bit is
reset as part of the response to any interrupt (INTR,
NMI, software interrupt, or single step), although the
FLAGS register which is automatically pushed onto the
stack reflects the state of the processor prior to the in
terrupt. Until the old FLAGS register is restored, the
enable bit will be zero unless specifically set by an in
struction.

During the response sequence (See Figure 9), the proc
essor executes two successive (back to back) interrupt
acknowledge cycles. The 8088 emits the LOCK signal
(maximum mode only) from T2 of the first bus cycle until
T2 of the second. A local bus "hold" request will not be
honored until the end of the second bus cycle. In the
second bus cycle, a byte is fetched from the external in
terrupt system (e.g., 8259A PIC) which identifies the
source (type) of the interrupt. This byte is multiplied by
four and used as a pointer into the interrupt vector
lookup table. An INTR signal left HIGH will be continual
ly responded to within the limitations of the enable bit
and sample period. The interrupt return instruction in
cludes a flags pop which returns the status of the
original interrupt enable bit when it restores the flags.

HALT
When a software HALT instruction is executed, the
processor indicates that it is entering the HALT state in
one of two ways,depending upon which mode is
strapped. In minimum mode, the processor issues ALE,
delayed by one clock cycle, to allow the system to latch
the halt status. Halt status is available on IOiM, DT/R,
and SSO. In maximum mode, the processor issues ap
propriate HALT status on S2, S1, and SO, and the 8288
bus controller issues one ALE. The 8088 will not leave
the HALT state when a local bus hold is entered "'!hile in
HALT. In this case, the processor reissues the HALT in
dicator at the end of the local bus hold. An interrupt re
quest or RESET will force the 8088 out of the HALT
state.

Read/Modify/Write (Semaphore) Operations
via LOCK

The LOCK status information is provided by the proc
essor when consecutive bus cycles are required during
the execution of an instruction. This allows the proc
essor to perform read/modify/write operations on
memory (via the "exchange register with memory"
instruction); without another system bus master receiv
ing intervening memory cycles. This is useful in multi
processor system configurations to accomplish "test
and set lock" operations. The ~ signal is activated
(LOW) in the clock cycle following decoding of the
LOCK prefix instruction. It is deactivated at the end of
the last bus cycle of the instruction following the LOCK
prefix; While LOCK is active, a request on a RQ/GT pin will
be recorded, and then honored at the end of the LOCK.

External Synchronization via TEST

As an alternative to interrupts, the 8088 provides a
single software-testable input pin (TEST). This Input is
utilized by executing a WAIT instruction. The single

T, 1 T2 T3 T4 T, \ T2

ALE J\~_~n,----__

FLOAT
ADo-AD,

Figure 9_ Interrupt Acknowledge Sequence

48 AFN-ooe268

iAPX 88/10

WAIT instruction is repeatedly executed until the TEST
input goes active (LOW). The execution of WAIT does
not consume bus cycles once the queue is full.

If a local bus request occurs during WAIT execution, the
8088 3·states all output drivers. If interrupts are enabled,
the 8088 will recognize interrupts and process them.
The WAIT instruction is then refetched, and reexecuted.

Basic System Timing

In minimum mode, the MN/MX pin is strapped to Vee
and the processor emits bus control signals compatible
with the 8085 bus structure. In maximum mode, the
MN/MX pin is strapped to GND and the processor emits
coded status information which the 8288 bus controller
uses to generate MULTIBUS compatible bus control
Signals.

System Timing - Minimum System
(See Figure 8J

The read cycle begins in T1 with the assertion of the ad·
dress latch enable (ALE) signal. The trailing (lOW going)
edge of this signal is used to latch the address informa·
tion, which is valid on the addressldata bus (ADO-AD7)
at this time, into the 8282/8283 latch. Address lines A8
through A 15 do not need to be latched because they reo
main valid throughout the bus cycle. From T1 to T4 the
101M Signal indicates a memory or 1/0 operation. At T2
the address is removed from the addressldata bus and
the bus goes to a high impedance state. The read con·
trol signal is also asserted at T2. The read (RD) signal
causes the addressed device to enable its data bus
drivers to the local bus. Some time later, valid data will
be available on the bus and the addressed device will
drive the READY line HIGH. When the processor returns
the read signal to a HIGH level, the addressed device
will again 3·state its bus drivers. If a transceiver
(8286/8287) is required to buffer the 8088 local bus,
signals DT/R and DEN are provided by the 8088.

A write cycle also begins with the assertion of ALE and
the emission of the address. The 101M signal is again
asserted to indicate a memory or 1/0 write operation. In
T2, immediately following the address emiSSion, the
processor emits the data to be written into the ad·
dressed location. This data remains valid until at least
the middle of T4. During T2, T3, and Tw, the processor
asserts the write control signal. The write (WR) signal
becomes active at the beginning of T2, as opposed to
the read, which is delayed somewhat into T2 to provide
time for the bus to float.

The basic difference between the interrupt acknowl·
edge cycle and a read cycle is that the interrupt
acknowledge (INTA) signal is asserted in place of the
read (RD) signal and the address bus is floated. (See
Figure 9J In the second of two successive INTA cycles,
a byte of information is read from the data bus, as sup·
plied by the interrupt system logic (i.e. 8259A priority in·
terrupt controller). This byte identifies the source (type)
of the interrupt. It is multiplied by four and used as a
pOinter into the interrupt vector lookup table, as de·
scribed earlier.

49

Bus Timing - Medium Complexity Systems

(See Figure 10J

For medium complexity systems, the MN/MX pin is con·
nected to GND and the 8288 bus controller is added to
the system, as well as an 8282/8283 latch for latching
the system address, and an 8286/8287 transceiver to
allow for bus loading greater than the 8088 is capable of
handling. Signals ALE, DEN, and DT/R are generated by
the 8288 instead of the processor in this configuration,
although their timing remains relatively the same. The
8088 status outputs (82, 51, and SO) provide type of
cycle information and become 8288 inputs. This bus
cycle information specifies read (code, data, or 1/0),
write (data or 1/0), interrupt acknowledge, or software
halt. The 8288 thus issues control signals specifying
memory read or write, 1/0 read or write, or interrupt
acknowledge. The 8288 provides two types of write
strobes, normal and advanced, to be applied as required.
The normal write strobes have data valid at the leading
edge of write. The advanced write strobes have the
same timing as read strobes, and hence, data is not
valid at the leading edge of write. The 8286/8287 trans·
ceiver receives the usual T and OE inputs from the
8288's DT/R and DEN outputs.

The pointer into the interrupt vector table, which is
passed during the second INTA cycle, can derive from
an 8259A located on either the local bus or the system
bus. If the master 8289A priority interrupt controller is
positioned on the local bus, a TTL gate is required to
disable the 8286/8287 transceiver when reading from the
master 8259A during the interrupt acknowledge se·
quence and software "poll".

The 8088 Compared to the 8086

The 8088 CPU is an 8·bit processor designed around the
8086 internal structure. Most internal functions of the
8088 are identical to the equivalent 8086 functions. The
8088 handles the external bus the same way the 8086
does with the distinction of handling only 8 bits at a
time. Sixteen·bit operands are fetched or written in two
consecutive bus cycles. Both processors will appear
identical to the software engineer, with the exception of
execution time. The internal register structure is iden·
tical and all instructions have the same end result. The
differences between the 8088 and 8086 are outlined
below. The engineer who is unfamiliar with the 8086 is
referred to the 8086 Family User's Manual, Chapters 2
and 4, for function description and instruction set
information.

Internally, there are three differences between the 8088
and the 8086. All changes are related to the 8·bit bus in·
terface.

• The queue length is 4 bytes in the 8088, whereas the
8086 queue contains 6 bytes, or three words. The
queue was shortened to prevent overuse of the bus by
the BIU when prefetching instructions. This was reo
quired because of the additional time necessary to
fetch instructions 8 bits at a time.

AFN.ooe268

iAPX88/10

o Te further .optimize the queue, the prefetohing alge
rithm was ohanged. The 8088 BIU will fetoh a new in
structien te lead inte the queue each time there is a 1
byte hele(space available) in the queue. The 8086
waits until a2-byte space is available.

o The internal executien time .of the instructien set is
affected by the 8-bit interface. All 16-bit fetches and
writes .frem/te memery take an .additienal feur cleck
cycles. The CPU is alse limited by the speed .of in
structien fetches. This latter ,problem .only . .occurs
when a series .of simple eperatiens .occur. When the
mere sephisticated instructions .of the 8088 are being
used, the queue has time te fill and the executien pre
ceeds as fast as the executielJunit will allew.

The 8088 and 8086 are cempletely sbftware cempatible
by virture .of their identical executien units. Seft~are
that is system dependent may net be completely trans·
f,erable, but seftware that is .net system dependent will
.operate equally as well en an 8088 .or an 8086.

50

The hardware interface .of the 8088centains the majer
differences between the twe CPUs. The pin assign
ments are nearly identical, hewever,: with the fellewing
functienal changes:

o A8-A 15 - These pins are .only address .outputs en the
8088. These address, lines are latched internally and
remain ,valid threugheut a bus cycle in a manner
similar te the 8085 upper address lines.

o BHE has ne meaning en the 8088 and has been elimi
nat,ed.

o SSO prevides the SO status infermatien in the mini
mum mede. This .output .occurs en pin 34 in minimum
medeenly. DTlR, 101M, and ssa previde the cemplete
bus status in minimum mede.

o loiM has been inverted te be cempatible with the
MCS-85 bus structure.

o ALE is delayed by .one cleck cycle in the minimum
mede when entering HALT, te allew the status te be
latched with ALE .

AFN.()(l826B

inter iAPX 88/10

T, T, T, T,

ClK ~ r r r'r
QS1, QSO)(

8088

Sli,S1,Sii lULl

'------

A19/S6-A16/S3)(A19-A16 X S6-S3

ALE '\ ,-
1'._-

8288 RDY 8284

READY 8088

AD1-ADO A7-AO DATA IN

8088 A15 - A8 A15 - A8

RD

I
DT/R \.

8288 MRDC /

d
DEN

Figure 10. Medium Complexity System Timing

51 AFN-ooB28B

iAPX 88/10

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O°C to 70°C
Storage Temperature - 65°C to + 150°C
Voltage on Any Pin with

Respect to Ground - 1.0 to + 7V
Power Dissipation 2.5 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5V ±10%)

Symbol Parameter Min. Max.

Vil Input low Voltage -0.5 +0.8

VIH Input High Voltage 2.0 Vcc+ 0.5

VOL Output low Voltage 0.45

VOH Output High Voltage 2.4

Icc Power Supply Current 340

III Input leakage Current ± 10

ILO Output leakage Current ±10

VCl Clock Input low Voltage -0.5 +0.6

VCH Clock Input High Voltage 3.9 Vcc+1.0

Capacitance of Input Buffer
CIN (All input except 15

ADO-AD? RO/GT)

Cia
Capacitance of I/O Buffer 15
(ADo-AD? RO/GT)

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5V ±10%)

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

Symbol Parameter Min.

TClCl ClK Cycle Period 200

TClCH ClK low Time (2;3 TClCl)-15

TCHCl ClK High Time (V, TClCl)+2

TCH1CH2 ClK Rise Time

TCl2Cl1 ClK Fall Time

TDVCl Data In Setup Time 30

TClDX Data In Hold Time 10

TR1VCl RDY Setup Time into 8284 (See Notes 1,2) 35

TClR1X ROY Hold Time into 8284 (See Notes 1, 2) 0

TRYHCH READY Setup Time into 8088 (2;3 TClCl)-15

TCHRYX READY Hold Time into 8088 30

TRYlCl READY Inactive to ClK(See Note 3) -B

THVCH HOLD Setup Time 35

TINVCH INTR, NMI, TEST Setup Time (See Note 2) 30

TILIH Input Rise Time (Except ClK)

TIHll Input Fall Time (Except ClK)

52

Units Test Conditions

V

V

V 10l = 2.0 mA

V 10H = 400,..A

mA TA = 25°C

,..A OV.;; V,N';; Vee

,..A 0.45V '" Your '" Vcc

V

V

pF fc = 1 MHz

pF fc = 1 MHz

Max. Units Test Conditions

500 ns

ns

ns

10 ns From 1.0V to 3.5V

10 ns From 3.5V to 1.0V

ns

ns

ns

ns

ns

ns

ns

ns

ns

20 ns From 0.8V to 2.0V

12 ns From 2.0V to O.BV

AFN.()()826B

inter iAPX 88/10

A.C. CHARACTERISTICS (Continued)
TIMING RESPONSES

Symbol Parameter

TCLAV Address Valid Delay

TCLAX Address Hold Time

TCLAZ Address Float Delay

TLHLL ALE Width

TCLLH ALE Active Delay

TCHLL ALE Inactive Delay

TLLAX Address Hold Time to ALE Inactive

TCLDV Data Valid Delay

TCHDX Data Hold Time

TWHDX Data Hold Time After WR

TCVCTV Control Active Delay 1

TCHCTV Control Active Delay 2

TCVCTX Control Inactive Delay

TAZRL Address Float to READ Active

TCLRL RD Active Delay

TCLRH RD Inactive Delay

TRHAV RD Inactive to Next Address Active

TCLHAV HLDA Valid Delay

TRLRH RD Width

TWLWH WR Width

TAVAL Address Valid to ALE Low

TOLOH Output Rise Time

TOHOL Output Fall Time

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR
A LOGIC 0 THE CLOCK IS DRIVEN AT 4 3V AND 025V TIMING MEASURE~
MENTS ARE MADE AT 1 5V FOR BOTH A lOGIC 1 AND 0

53

Min. Max. Units Test Conditions

10 110 ns

10 ns

TCLAX 80 ns

TCLCH-20 ns

80 ns

85 ns

TCHCL-10 ns

10 110 ns CL = 20-100 pF for

10 ns all 8088 Outputs
in addition to

TCLCH-30 ns internal loads
10 110 ns

10 110 ns

10 110 ns

0 ns

10 165 ns

10 150 ns

TCLCL-45 ns

10 160 ns

2TCLCL-75 ns

2TCLCL-60 ns

TCLCH-60 ns

20 ns From 0.8V to 2.0V

12 ns From 2.0V to 0.8V

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

IC'~100PF TEST

-=-

CL INCLUDES JIG CAPACITANCE

AFN·00826B

iAPX 88/10

WAVEFORMS

BUS TIMING-MINIMUM MODE SYSTEM
T1 T2 T3 Tw T4

veHv-\1- TClCl-_~CH1CH] r- -1 ~ TCl2Cl~~ ~
CLK(8284 Output)J ~ ~... I

Vel ~ ~
...:; 'TCHCTV ' TCHCl I- TClCH ~

101M, SSo

ALE

ROY (8284 Input)

SEE NOTE5

AD7-ADo

liD
READ CYCLE

(NOTE 1)

(WR, INTA=VOH)
Dl/R

DEN

TCLAV--

A1S-As (Float during INTA)

!--TClDV

~+T.::.Cl::.A::,X'+-~'\I- I
TCHDX-

TRYHCH
I

!-TClAZ TDVCl---,-.. - TClDX_

AD7-ADo

f=r
DATA IN

FlOA:J-
TAZRl~ TCLRH- I-i '-TRHAV

~
{

=qTCHCTV TCtRL TRlRH ,,~CHCTV .'

!
'. 1 !

TCVCTV- { TCVCTX - t.1
}J

54 AFN-()()8268

iAPX 88/10

WAVEFORMS (Continued)

BUS TIMING-MINIMUM MODE SYSTEM (Continued)

eLK (8284 Output)

WRITE CYCLE
NOTE 1

INTA CYCLE

NOTES 1,3

(RD, W'R=VOH)

SOFTWARE HALT

DEN,REi,WR,INTA = VOH

DT/A INDETERMINATE

ADT-ADo

DEN

WR

OT/R

ACT-ADO

.... fCLAZ

TCHCTV

INVALID ADORESS SOFTWARE HALT

relAV

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWISE
SPECIFIED.

2. ROY IS SAMPLED NEAR THE END OF T2. f3. Tw TO DETERMINE IF Tw
MACHINES STATES ARE TO BE INSERTED.

3. TWO INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADDRIDATA
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS
ARE SHOWN FOR THE SECOND INTA CYCLE.

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY.
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE

NOTED

55 AFN-008268

iAPX 88/10

A.C. CHARACTERISTICS (Continued)

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER)

TIMING REQUIREMENTS

Symbol Parameter

TClCl ClK Cycle Period

TClCH ClK low Time

TCHCl ClK High Time

TCH1CH2 ClK Rise Time

TCl2Cl1 ClK Fall Time

TDVCl Data In Setup Time

TClDX Data In Hold Time

TR1VCl ROY Setup Time into 8284 (See Notes 1, 2)

TClR1X ROY Hold Time into 8284 (See Notes 1, 2)

TRYHCH READY Setup Time into 8088

TCHRYX READY Hold Time into 8088

TRYlCL READY Inactive to ClK (See Note 4)

TINVCH Setup Time for Recognition (INTR, NMI, TEST)
(See Note 2)

TGVCH RQ/GT Setup Time

TCHGX RQ Hold Time into 8086

TILIH Input Rise Time (Except ClK)

TIHll Input Fall Time (Except CLK)

56

Min.

200

(% TClCl)-15

(V3 TClCL)+2

30

10

35

0

(21.3 TClCl)-15

30

-8

30

30

40

Max. Units Test Conditions

500 ns

ns

ns

10 ns From 1.0V to 3.5V

10 ns From 3.5V to 1.0V

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

20 ns From 0.8V to 2.0V

12 ns From 2.0V to 0.8V

AFN-ooB268

iAPX 88/10

A.C. CHARACTERISTICS (Continued)
TIMING RESPONSES

Symbol Parameter

TCLML Command Active Delay (See Note 1)

TCLMH Command Inactive Delay (See Note 1)

TRYHSH READY Active to Status Passive (See Note 3)

TCHSV Status Active Delay

TCLSH Status Inactive Delay

TCLAV Address Valid Delay

TCLAX Address Hold Time

TCLAZ Address Float Delay

TSVLH Status Valid to ALE High (See Note 1)

TSVMCH Status Valid to MCE High (See Note 1)

TCLLH CLK Low to ALE Valid (See Note 1)

TCLMCH CLK Low to MCE High (See Note 1)

TCHLL ALE Inactive Delay (See Note 1)

TCLMCL MCE Inactive Delay (See Note 1)

TCLDV Data Valid Delay

TCHDX Data Hold Time

TCVNV Control Active Delay (See Note 1)

TCVNX Control Inactive Delay (See Note 1)

TAZRL Address Float to Read Active

TCLRL RD Active Delay

TCLRH RD Inactive Delay

TRHAV RD Inactive to Next Address Active

TCHDTL Direction Control Active Delay (See Note 1)

TCHDTH Direction Control Inactive Delay (See Note 1)

TCLGL GT Active Delay

TCLGH GT Inactive Delay

TRLRH RD Width

TOLOH Output Rise Time

TOHOL Output Fall Time

NOTES:
1. Signal at 8284 or 8288 shown for reference only.

Min.

10

10

10

10

10

10

TCLAX

10

10

5

10

0

10

10

TCLCL-45

2TCLCL-75

2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to T2 state (8 ns into T3 state).
4. Applies only to T2 state (8 ns into T3 state).

57

Max. Units Test Conditions

35 ns

35 ns

110 ns

110 ns

130 ns

110 ns

ns

80 ns

15 ns

15 ns

15 ns

15 ns

15 ns

15 ns CL = 20·100 pF for
110 ns all 8088 Outputs

ns in addition to
internal loads

45 ns

45 ns

ns

165 ns

150 ns

ns

50 ns

30 ns

110 ns

85 ns

ns

20 ns From 0.8V to 2.0V

12 ns From 2.0V to 0.8V

AFN.()()826B

WAVEFORMS (Continued)

BUS TIMING-MAXIMUM MODE
SYSTEM (USING 8288)

CLK

S;,Sl,SO (EXCEPT HAL n

I ALE (8288 OUTPUn

SEE NOTE 5

ROY (8284 INPUT)

VCH r---\
.-' VCL

TCLAV-

I-----'

-
TSVLH
TCLLH·

,

iAPX 88/10

T,

!---TCLCL-TCH1CH21'H !-'TCL2CL1 ;~
.r-\ ~r\.-~ . 1:=.' I-------

"---" '-'---.:.J
TCH~L . !-TCLCH_

I
TCHSV - !-"TCLSH

WI/;; V #(SEE NOTE 8) \

\.-----

A1S- Aa

t--T~~nX_ =fCLDV

TCHDX- r--
A19·A10 S7·83

- { TCHLL

r--
I

~ ~
-TrWCL

~~~~ ~~ 
TRYLCL ~ 

, 
r 
'"-TCHRYX 

TYHSH- -
..... TeLAX _ TRYHCH3 -READ CYCLE 

TCLAV-/ 

£ TCLAZ -.1 TDVCL-!-TCLDX-

8288 OUTPUTS 

SEE NOTES 5,6 

AD7-ADO 

RD 

DT/Ii 

DEN 

TCHDTL-

AD7-I.Do 

Vf TAZRL-

\ 
TCLRL 

TCLML_ -

TCVNV- It--

If' 

58 

DATA IN 

FL:~J'-
TCLRH TRHAV 

\\ TCHDTH 
TRLRH 

TCLMH-

TCVNX- -

AFN-0D8.268 



iAPX 88/10 

WAVEFORMS (Continued) 

BUS TIMING-MAXIMUM T, 

CLK 
VCH r-\ r-'I MODE SYSTEM 

(USING 8288) VC r L f------I 1"-----' LI~ I"-----'~ 
52, 51. so (EXCEPT HAL n 

WRITE CYCLE 

DEN 

8268 oum.rrs 
see NOTES 5,8 AMWC OR AIOWC 

SOFTWARE 

MWTC OR lowe 

INTA CYCLE 

A15- Aa 
(SEE NOTES 3,4) 

8200 0l11PlI1S 
SEe NOTES 5,6 

A07-ADo 

MCE! 
PDEN 

DT/R 

INTA 

DEN 

TCLAV-

FLOAT 

-
T5VMCH-

TCLMCH-

-----__ lffiIIf ( ... note 8) ----_. 
I- -= TCLO~~ - I--rCLSH TCHDX- t-Tell 

DATA 

TCVNV-- ~ TCVNX- I-

- -TCLML TCLMH- l-
I 

_ {TCLML - _TCLMH 

RESERVED FOR '-

\ CASCADE ADDR FLOAT. FLOAT 

/-JTr
Z \ I--TDVCL~ I-TCLDX 

1/ 
,/1 J FLO~ 

POINTER 
FLOAT 

~ 
TCLMCL-I ,I-

i r--

{j'"ou 
J I 

'1- ----- / \- TCHDTH 

TCLML-

~ 
1 

{1MH - TCVNV 

TCVNX------HALT - (DEN = vodfD,M1ii5C,iQRC,MWTC,AMWC,IOWC,AIOWC,INT A,DT/R::: VOH. 

INVALID ADDRESS 

reLAV 

~ jr-------------..., ------
. \----- \._-----

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF 12, 13. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3~ CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA 
CYCLES. 

4. TWO INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADDR/DATA 
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL FOR 
POINTER ADDRESS IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY. 
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS 

(MJ!I!C, MWTC, AI\l\Vl:, /l!RC, rowe, ~, IIl'TJ\ AND DEN) LAGS THE 
ACTIVE HIGH 8288 CEN. 

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE 
NOTED. 

B. STATUS INACTIVE IN STATE JUST PRIOR TO T4. 

59 AFN-ooB26B 



intJ IAPX88/10 

WAVEFORMS (Continued) 

ASYNCHRONOUS 
SIGNAL RECOGNITION 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLy) 

NMI ··:.1 "'?eHI'.Hn .. 11 

INTR 'j""" r------A. : 
TEST 

NOTE: 1. lETUP REQUIREMENTS FOR ASYNCHRONOUS 
SIGNALS ONLY TO GUARANTEE RECOGNlnON AT NEXT elK 

eLK 

REQUEST/GRANT SEQUENCE TIMING (MAXiMUM MODE ONLy) 

"elK 

Previousgr.nl 

...... :'~ 1-1--...,..-------------,---1 
"Or-ADo lOIII 

~~I-I --------------~ 
NOTE: 1. THE COPROCESSOR MAY NOT DRIVE THE IUSSUOUTSIDETHE REGION 

SHOWN WITHOUT RISKING CONTENTION. . . 

Any CLKCYCle---j 

COPROCESSOR 

(SEE NOlE 11 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLy) 

~
'CLKCYCLE- ~-'0R2CYCLES 

ell'. . 

l -- ~,-. .j - .. ' 
HOLD~ \ 

TClHAV 

\ 

HLDA 

\ 

COPRoceSSOR . 

60 

Any elK Cycle __ I 

AFN-00826B 



inter iAPX 88/10 

iAPX 86/10, 88/10 
INSTRUCTION SET SUMMARY 

DATA TRANSFER 
MOV ,Ma.,e· 

PUSH Push' 

ReQ,Slerlmemory 

Seqmenl register 

PDP 0 PDP 

Regls'erlmemor~ 

Segmenlleglsler 

XCHG • Ex~lIanG': 

RtQ1slerimemory w,lh register 

Reg,ster wll~ accumulator 

IN=lnput trom 

F'~e!I port 

Var,ableporl 

OUT a OUlpul.a 

F,.eop0r! 
V~J,able porI 

lLAT,Translale byte 10 AL 

lU·LoadEAto,eglster 

LDS'Load pomter to DS 

lU-LoadpolnterloES 

lJ.Hf·load AH With flags 

""f-Store AH ,nto Ilags 
PUIHf·Push Ilags 

'D'F·PopUags 

ARITHMETIC 

ADD Add 

n~43210 15543110 16~43l1a 1650110 

1'0 a 01111 : mod 0 0 0 (1m 

01011 reg 

~ 

110000'1 w ImOd reg [1m I 
~ 

It 1 10010 w I 

: 11 10011 w : 

11000 1 10 1 (mOd r~g rim I 
11'OOOI01ImOd,eg~ 
111000'00 Imod reg ,1m I 
1100'11111 

110011110 I 
110011100 I 
11001110 1 ! 

~~~ 
aata II w \ I
ad~lh~
a~dr.hlgh !

ReQ Imemory wllh regISter to e,ther CO=O=o 0 ODd W I moo 'eq ~
ImmeOlatetoreglstelimemory ~o~wlmooooo r'm L_, _~_ j~l~"<;"~
Immed,ate 10 accumulator 10 0 0 0 0 lOw I data It w 1 I

ADt Add wllb carry
ReQ Imemory wltn Itglsler to either 10 a 0 1 00 (! w ImOd ~

ImmeoLateloreglslerlmemory 1100000~wlmodOl0 ,'m ~G~wj2J
ImmedIate to accumulator ~L dala I data,'w 1]

IIIC·lncrlmlnl

R~glslprlmemory I I I 1 1 1 1 I w I mOd 0 0 0

Reglsler ~

W.ASClladl~SlloraOd ~
a.u·Owmalldl~stloradd ~

SUI· Sublmt:

Reg Imemory and (fgLsle(l~e'ther

Immed,ate Irom regIster/memory

Immedlale Irom acc~mulalo,

SII - IMMrltl. .lIb bor'ra.

RIg ImemO'yl0d reg'51er 10 ell her

Immedllie Irom reO'Slerlmemory

Immed"le Irom 'ccumul~tor

Mnemonics ©lntel, 1978

100000 s w ImOOI 0 1 rim

000 I 1 0 d w mOd reg 11m

100000 S w moOO 1 1 rim

10001 1 10 wi OW

data " ~ w 01 I

data II S W 01

61

DEC Olmmul 18543210 16543210 1654Jll0 16543Z10

ReglSle rl memoly

RegIster

CMP COmplfe

RegoSle"memOly and reglsler

Immedlale wllh regl,lerlmemory

Immedlale w<lh accumulator

1111111 I w ImOdO 01

101001 Teg I
111 I 101 t w imooO I 1

~lmodle9
1 00000 s W moo 1 I 1 rim

.uS ASCII adjuSIlor subllarl ~

aAS Owmal aOjusllnr suOlraCI Flo~o.,.' ~o ",' '0"'0"''41--,-:-;;-;:----,
MUL Mull<ply lunSlgnedl li:iiii I 1 W I mod 1 0 0 "m

tMUL Inleger muiliply iSlgnedl ~w Imod 10 111m

.AM ASCII aOluSI for muiliply [1 I 0 1 0 1 00 10000 I 0 1 0 I
OIW OWlde lunSlgnedl [I 1 I I 0 I 1 w [mOd I 1 0 1 1m =:J
IDlY Inleg~r dl~lde ISlgnedl [I 1 I 101 1 W I mad 1 I I r'm I
UD..o.SCliadjuSllordlv.de 11101010110000100]

caw Con~erl byte 10 ward 1 0 0 I 1 0 0 0

CWD Con~ert word to double WOld

LOGIC
"OT In¥erl ~11-~Jffi~
SKl/SAl S~I!t IO~IOI a",nmetrc lell @o 1 0 0 v w 1 mOd I 0 0 11m I
SHRShrlllo~,cal"ghl 111010D .. wlmOdIOI~
SARShritalllhmellCllghl l110100vwlmOdl11~
ROl ROlale lelt 1 1 0 I 0 0 v w mod a a 0 f,'m

RaR Rotole "ghl I 10 I 00 .. w modO a I rim

RCL Rolate Inrough carry Ilag lefl [110 I 00 v W [mOdO 1 0 11m

RCR Rotale Ihrough carry IIghl 11 lOt 0 0 v w I mooD 1 I

ANO And

dal~ II s w 01

Reg ,memo, f and leglsleT 10 ellher ~I o~o~,~oIo Io i:" w~1 m~"d~"i:9 ~:+_---,-,----,---,-,-,---,,,
Immediate ID ,eglster/memory 1 0 0 a 0 0 0 W moo 1, 0 0 Tim data rI w I

Immedlale 10 accumulafor 00 100 lOw

TEST And tunctiOfll0 flags, no resUI1~~~,---~ __ ,--
Register/memory .nd regl,lel 11 0 0001 0 w I mOd Teg ~
Immedlale cala and reglstelimemOly 11 I 1 I 0 1 1 w I mod 0 0 0 rim I
Immedlaledala and accumulator ~ 0 W I data I dala rI w 1

DR Dr:

Reglmemoryandregl,terloelther 10000 I Od w I~~
Immedlale 10 reglSlerlmemOTy Lilo 0 0 0 0 w I modO 0 1 rim I
Immedlale to accumulator LQi£o 1 lOw loaf" 1 dala II w 1

XOR hclullvtDr

ReQ Imemory and reg Isler 10 ellher 100 1 1 0 0 d w I mOd reg ~
Immed,ale to feglSlerlmemory [1 0 0 0 0 0 0 VI I mOd 1 1 0 Tim I data

Immeo,ale to accumulalor 10 0 1 1 0 lOw I dala I data II w 1

STRING MANIPULAT10N
REP-Repnl

MOVS-Move bylelword

CMPS:Comparebylelwnrd

SeAS-Scan byleil'lord

lOOS-Loadbytell'ldloALiAX

STDa'';lof b~lell'ld trom ALIA

11111001,[I
11 ~ 1 0 0 lOw I

10101 I 1 w

LiiiiiiiiJ
110 10101 w ,

c!ala 01 w I I

data If wI I

dala 11w 1 I

AFN-D0826B

inter iAPX 88110

INSTRUCTION SET SUMMARY (Continued)'

COITRDl TRAISFER
CALL· Coli, 78543210 7.543210
mreclwilhin "umtnt 11 101000 dlsp-Iow

Indireclwilhinseament 11111111 mod 0 1 0 rim

OIrectlntersegmenl 10011010 ollset·low
seg-Iow

Indirecfinttrsegment 1"1"11 mOd 0 11 rim

J.P " U IU ... I Ju.",

Dlreclwithinsegment 11 1"101001 I dlsp-Iow

DIrect within segment-short 11101011 dlsp

InchrKtwilhinstgment 11111111 mod 1 00 rim

OIrecttntersegment 11101010 ollsel-Iow

I seo-Iow
Indirec:lintersegment 111"111 t , I mod 101 rim

RET • IIIIvrn 1nI. CALL,
Wi!fllllsegment

Withm seg adding Immed to SP

Intersegmenl

Inte.fSlgmenl. addmQtmmedtatetoSP

JE/Jl.,Jumpon eQual/lerO
JL/JISE-Jumpon leSS/nolQrealer

or eQual
JU/JIC=Jump on less orequallnol
, grealer

JI/JIIAE=Jump onbelow/not above
or eQual

JIE/JU;!~~Co~~ below or eQuall

J""I'E"Jumpon paflly/parily even

JO-Jump on overflow

JI=Jump on sign

"IE/"Il"Jumpon nol eQull/notztro
JIL/JIE=Jumponnolless/greater

or equal
JILE/JI·Jumpon not less or eQual I

greater

~,

AL = B-bit accumulator
'AX ~ 16-bit accumulator
CX = Count register
'DS = Data segment
ES = Extra segment

111 000011 I
1 1000010

1100tOl'

1 1001010

01110100

o I I I I 100

01111110

o I I 100 I 0

01110110

011.11010

1011 10000 I
0'111'1000

01,1',0101

01111101

1011111111

Above/below refers to unsigned value.
Greater'" more positive;
less'" less positive (more negative) signed values
if d .. 1 thIn "to" reg; if d '" 0 then "from" reg
if w '" 1 thin word inst~uci~o~: if w :: 0 ihen byte instruction

if mod· 11 then rim is treated as a REG field

data-low

dala-Iow

dlsp

dlsp

dlsp

dlsp

dlsp

dlsp

dlSp

!lISp

!lISP

!lISP

dlsp

.if mod· 00 thIn DISP = 0", disp-Iow and disp-high are absenl

7.5.32 I 0
dlsp-lIlgh

01l5et-htgh

seO·hlgh

dlsp-hlgh

ollsel.hlgh

Seg'hlgh~"

dlla-h!yU

data-high

·if mod· 01 then DISP = disp-Iow sign-extended 10 16-bits, disp-high is absenl'
if mod· 10 then DISP = disp-high: disp-Iow

'if rim = 000 then EA = (BX) + (SI) + DlSP
if rim = 001 then EA = (BX) + (DI) + DlSP
.if rim = 010 then EA = (BP) + (SI) + DISP
if rim = 011 then EA = (BP) + (DI) + DISP
If rim - 100 then EA = (SI) + .DISP
if rim = 101 then EA = (DI) ~·DlSP·
If rim = 110 then EA = (BP) + DlSP"
if rim -llllhln EA = (BX) + DISP
DISP follows 2nd byte of instruction (before data if required)

"Ixcept If mod· 00 and rim = 110 then EA • disp-high: disp-Iow.

Mnemonlcs©lntel,197B

7 I 5 C 3 rio 7 I. C 3 rio
".'/JIl·Jump on nol below/above

or eQual
JI.E/JA· Jump on not below or

eQuallabove
"1""I'O·Jump on !lOI parlpar odd

oliO-Jump or. no! ov;rllow

.II. Jump on nol sign

lOOP' loopCX limes

LOOP'lIlOOI'E loop while lelO/equal
LOOPlllLDD'IE Loop~hlle nol

zero/equal
"Ul Jump on CX zero

'fiT Interrupt
Typespecillea

Type3.

liTO Interrupt onoverllow

IIIETlnterruPlreturn

PROCESSOR CONTROL
CLC Clear carry

CMC Complemenlcarry

STC Set carry

CLD Clear IIlrecllon

STa Sel dlrechon

CUClearlnlerrupt

sn Sel Intelfupt

HLT Hall

WAIT Wall

0111001!

01110111

01 1 1 1'0 1 1

o I I 10001

1011 11 0 0 1 I'
1 1 100010

1.1100001

11100000

11100011

11001101

11001.100

1 1001 I 10

1100111,1

1 , 1 11 000

II 1 1010 I

1 11 1 1001

1 I 1 " 100
11111101

I 1 I 11 0 1 0

1 1 1 I 1011

1' 1110'00 I

11 0011011 I

dlSp

dlsp'

dlsp

dlsp

dlsp]
!lISP

dlSp

!lISP

!lISP

type

ESC Escape (10 exlernal devlcel

LOCK Bus lock prellx

111011 xxilmo~/m]

~oTI

il S:W = ot Ihen 16 bits 01 immediate dala form the operand
if s:w = 11 then an immediate data byte is sign extended ·to

lorm the 16-bil operand.
it: v = 0 then "co.nt" = I: il v = 1 Ihen "count" in (Cl)
x = don't care
z is used lor stri'19 primitives lor comparison with IF FlAG.

SEGMENT OVERRIDE PREFIX

l!:.IT§:ill

REG is assigned according 10 the following table:

t6-Blt(.· fl B-Bit I •• Dr
000 AX 000 AL·
001 ex 001 CL
010 DX 010 DL
011 BX 011 .BL
100 SP 100 AH
101 BP 101 CH
110 SI 110 OH
III DI 111 BH·

Slgm.id
00 ES
01 CS
10 SS
11 DS

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS 10
represent the file:

FLAGS • X:X:X:X:IOF):(DF):(IF):(TF):(SF):(ZF):X:{AF):X:{PF):X:{CF)

62 AFN-00B26B

8284A
CLOCK GENERATOR AND DRIVER FOR

iAPX 86, 88 PROCESSORS

• Generates the System clock for the
iAPX 86,88 Processors

• Uses a Crystal or a TTL Signal for
Frequency Source

• Provides Local READY and Multibus™
READY Synchronization

• 18·Pin Package

• Single +5V Power Supply

• Generates System Reset Output from
Schmitt Trigger Input

• Cap~ble of Clock Synchronization with
Other 8284As

RES ---------~-----l 0>----1 D

X1----l
XTAl

OSCillATOR
X2.----l

Fie ------.---1 J'~"L.-"

EFI--------l~

CSYNC --------------~-+_t-----'

RDY1

CKt

D a
FF1 FF2

~YNC-----------~

Figure 1. 8284A Block Diagram

63

RESET

OSC

PClK

ClK

READY

Figure 2.

ASYNC

EFI

8284A Pin Configuration

8284A

Table 1. P.in Description

Symbol 'TYpe Name and Function

AEN1, I Address Enable: AEN is an active lOW
AEN2 signal. AEN serves to qualify its respective

Bus Ready Signal (RDYI or RDY2). AENI
validates RDYI while AEN2 validates RDY2.
Two AEN signal inputs are useful in system
configurations which permit the processor to
access two Multi-Master System Busses. In
non Multi-Master configurations the AEN
signal inputs are tied true (lOW).

RDY1, I Bus Ready: (Transfer Complete). ROY is an
RDY2 active HIGH signal which is an indication from

a cjevice located on the system data bus that
data has been received, or is available. RDYI
is qualified by AENlwhile' RDY2 is qualified
by AEN2. .

ASYNC I Ready Synchronization Select:. ASYNC is an
input which defines the synchronization
mode Of the READY logic. When ASYNC is
low, two stages of READY synchronization are
provided.When ASYNC Is left open or HIGH a
single stage of READY synchronization is
provided.

READY a Ready: READY is an active HIGH signal
which is the synchronized ROY signal input.
READY is cleared after the guaranteed hold
time to the processor has been met.

Xl,X2 I Crystal In: Xl and X2 are the pins to which a
crystal is attached. The crystal frequency is 3
times the desired processor clock frequency.

F/C I Frequency/Crystal Select: F/C ~ a strapping
option. When strapped lOW, F/Cpermits the
processor's clock to be generated by the crys-
tal. When F/Gis strapped HIGH, Cl,K is gener-
ated from the EFI input.

EFI I External Frequency: When F/C is strapped
HIGH, CLK is generated from the input fre-
quency appearing ori ·this pin. The input
Signal is a square wave 3 times the frequency
of the desired ClK output.

FUNCTIONAL DESCRIPTION

General

The 8284A is a Single chip clock generator/driver for the
iAPX 86, 88 processors. The chip contains a crystal~
controlled oscillator, a divide-by-three counter, com
plete MULTIBUSTM "Ready" synchronization and reset
logic. Refer to Figure 1 for Block Diagram and Figure 2
for Pin Configuration.

Oscillator

The oscillator circuit of the 8284A is designed primarily
for use with an external series resonant, fundamental
mode, crystal from which the basic operating frequency
is derived.

Symbol 'TYpe
.

Name and Function

elK a Processor Clock: ClK is the clock output
used by the processor and all devices which
directly connect to the processor's local bus
(i.e., the bipolar support chips and other MaS
devices). ClK has an output frequency which
is Va of the crystal or EFI inputfrequency and a
'13 duty cycle. An output HIGH of 4.5 volts
(Vcc=5V) is provided on this pin to drive MaS
devices.

PClK a Peripheral Clock: PClK is a TTL level pe-
ripheral clock signal whose output frequency
is 'I. that of ClK and has a 50% duty cycle.

OSC a Oscillator Output: OSC is the TTL level out-
put of the internal oscillator circuitry. Its fre-
quency is equal to that of the crystal .

RES I Reset In: RES is an.aCtive lOW signal which
is used to generate RESET. The 8284A
provides a Schmitt trigger input so that an RC
connection can be used to establish the
power-up reset of proper duration:

RESET a Reset: RESET is an active HIGH signal which
is used to reset the 8086 family processors. Its
timing characteristics are determined by
RES.

CSYNC I Clock Synchronization: CSYNC is an active
HIGH signal which allows multiple 8284As to
be synchronized to provide clocks that are in
phase. When CSYNC is HIGH the internal
counters are reset. When CSYNC goes lOW
the internal counters are allowed to resume
counting. CSYNC needS to' be externally syn-
chronized to EFI. When using the internal os-
cillator CSYNC should be hardwired to
ground.

GND Ground.
..

Vcc Power: +5V supply.

The crystal frequency should be selected at three times
the required CPU clock. X1' and X2 are the two crystal
input crystal connections. For the most stable operation
of the oscillator (OSC) output circuit, two series resistors
(R, = R2 = 5100) as shown in the waveform figures are

. recommended. The output of the oscillator is buffered and
brought out on OSC so that other system timing Signals
can be derived from this stable, crystal-controlled source.

64

For systems which have a V CC ramp time ~ 1 V/ms and/or
have inherent board capacitance between Xl or X2, ex
ceeding 10pF (not including 8284A pin capacitance), the
configuration in Figures 4 and 6 is recommended. This
circuit provides optimum stability forthe oscillator in such
extreme conditions. It is advisable to limit stray ca
pacitances to less than 10pF on Xl and X2 to minimize
deviation from operating at the fundamental frequency.

AFN·01472B

8284A

Clock Generator
The clock generator consists of a synchronous divide·
by·three counter with a special clear input that inhibits
the counting. This clear input (CSYNC) allows the out·
put clock to be synchronized with an external event
(such as another 8284A clock). It is necessary to syn·
chronize the CSYNC input to the EFI clock external to
the 8284A. This is accomplished with two Schottky flip·
flops. The counter output is a 33% duty cycle clock at
one-third the input frequency.

The FIG input is a strapping pin that selects either the
crystal oscillator or the EFI input as the clock for the +3
counter. If the EFI input is selected as the clock source,
the oscillator section can be used independently for
another clock source. Output is taken from OSC.

Clock Outputs
The ClK output is a 33% duty cycle MaS clock driver
designed to drive the iAPX 86. 88 processors directly.
PClK is a TTL level peripheral clock Signal whose out·
put frequency is V2 that of ClK. PClK has a 50% duty
cycle.

Reset Logic
The reset logic provides a Schmitt trigger input (RES)
and a synchronizing flip, flop. to generate the reset
timing. The reset signal is synchronized to the falling
edge of ClK. A simple RC network can be used to
provide power·on reset by utilizing this function of the
8284A.

READY Synchronization
Two READY inputs (RDY1, RDY2) are provided to accom·
modate two Multi·Master system busses. Each input
has a qualifier (AEN1 and AEN2, respectively). The AEiii
Signals validate their respective ROY Signals. If a Multi·

CLOCK
SYNCHRONIZE >--+----H D Q

EFI >--+---f>C-'--f > f
1......:_--1

Master system is not being used the AEN pin should be
tied lOW.

Synchronization is required for all asynchronous active·
going edges of either ROY input to guarantee that the
ROY setup and hold times are met. Inactive·going edges
of ROY in normally ready systems do not require syn·
chronization but must satisfy ROY setup and hold as a
matter ot' proper system design.

The ASYNC input defines two modes of READY syn·
chronization operation.

When ASYNC is lOW, two stages of synchronization
are provided for active READY input signals. Positive·
going asynchronous READY inputs will first be syn·
chronized to flip·flop one at the rising edge of ClK
and then synchronized to flip-flop two at the next falling
edge of ClK. after which time the READY output will go
active (HIGH). Negative-going asynchronous READY in
puts will be synchronized directly to flip-flop two at the
falling edge of elK, after which time the READY output
will go inactive:'This mode of operation is intended for use
by asynchronous (normally not ready) devices in the sys
tem which cannot be guaranteed by design to meet the
required ROY setup timing, T R1VCL, on each bus cycle.

When ASYNC is high or left open, the first READY flip·
flop is bypassed in the READY synchronization logic.
READY inputs are synchronized by flip·flop two on the
falling edge of ClK before they are. presented to the
processor. This mode is available for synchronous
devices that can be guaranteed to meet the required
ROY setup lime.

ASYNC can be changed on every bus cycle to select the
appropriate mode of synchronization for each device in
the system.

D
Q

(TO OTHER 8284As)

Figure 3. CSYNC Synchronization

65 AFN·01472B

8284A

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias O·C to 70·C
Storage Temperature -65·C to + 150·C
All Output and Supply Voltages -0.5V to + 7V
All Input Voltages -1.0V to +5.5V
Power Dissipation 1 Watt

-NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi
cation is not implied. Exposure to absolute· maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA=O·C to 70·C, Vee = 5V± 10%)

Symbol Parameter Min.

IF Forward Input Current (ASYNC)
Other Inputs

IR Reverse Input Current (ASYNC)
Other Inputs

Ve Input Forward Clamp Voltage

Icc Power Supply Current

VIL Input lOW Voltage

VIH Input HIGH Voltage 2.0

VIHR Reset Input HIGH Voltage 2.6

VOL Output lOW Voltage

VOH Output HIGH VoltageClK 4
Other Outputs 2.4

VIHR- VILR RES Input Hysteresis 0.25

A.C. CHARACTERISTICS (TA=O·C to 70·C, Vee=5V± 10%)

TIMING REQUIREMENTS

Symbol Parameter Min.

tEHEL External Frequency HIGH Time 13

tELEH External Frequency lOW Time 13

tELEL EFI Period tEHEL + tELEH + <I

XTAl Frequency 12

tR1VGL ROY1, ROY2 Active Setup to ClK 35

t RlVCH ROY1, ROY2 Active Setup to ClK 35

tRlVCL ROY1, ROY2 Inactive Setup to ClK 35

tCLR1X ROY1, ROY2 Hold to ClK 0

tAYVCL ASYNC Setup to ClK 50

tCLAYX ASYNC Hold to ClK 0

tAlVRlV AEN1, AEN2 Setup to ROY1, ROY2 15

tCLA1X AEN1, AEN2 Hold to ClK 0

tYHEH CSYNC Setup to EFI 20

tEHYL CSYNC Hold to EFI 20

tYHYL CSYNC Width 2·tELEL

tl1HCL RES Setup to ClK 65

tCLllH RES Hold to ClK 20

tlUH Input Rise Time

tlUL Input Fall Time

66

Max. Units Test Conditions

-1.3 mA VF= 0.45V
-0.5 mA VF=0.45V

50 J.<A. VR= Vee
50 J.<A. VR= 5.25V

-1.0 V le= -5mA

162 mA

O.B V

V

V

0.45 V 5mA

V -1mA
V -1mA

V

Max. Units Test Conditions

ns 90%-90% VIN

ns 10%-10% VIN

ns (Note 1)

30 MHz
ns ASYNC= HIGH

ns ASYNC=lOW

ns

ns

... ns

ns

ns

ns

ns

ns

ns

ns (Note 2)

ns (Note 2)

20 ns From O.BV to 2.0V

12 ns From 2.0V to O.SV

AFN·01472B

8284A

A.C. CHARACTERISTICS (Continued)
TIMING RESPONSES

Symbol Parameter Min.

tClCl ClK Cycle Period 100

tCHCL ClK HIGH Time (Y3 tClcLl+2 for ClK Freq. '" 8 MHz
(Y3 tClcLl+6 for ClK Freq.=10 MHz

telcH ClK lOW Time ('l3 tclcLl-15 ·for ClK Freq."'8 MHz
('l3 tclcLl-14 for ClK Freq.=10 MHz

tCH1CH2 ClK Rise or Fall Time
tCl2Cll

tpHPl PClK HIGH Time tClCl -20

tpLPH PClK lOW Time tClCl -20

tRYlCl Ready Inactive to ClK(See Note 4) -8

tRYHCH Ready Active to ClK (See Note 3) ('l3 tClcLl-15 for ClK Freq."'8 MHz
('l3 tclcLl-14 for ClK Freq.=10 MHz

tCUl ClK to Reset Delay

tClPH ClK to PClK HIGH DELAY

tClPL ClK to PClK lOW Delay

tolcH OSC to ClK HIGH Delay -5

tOlCl OSC to ClK lOW Delay 2

tOlOH Output Rise Time (except ClK)

tOHOl Output Fall Time (except ClK)

NOTES:
1. d = EFI rise (5 ns max) + EFI fall (5 ns max).
2. Setup and hold necessary only to guarantee recognition at next clock.
3. Applies only to T3 and TW states.
4. Applies only to T2 states.

Max. Units Test Conditions

ns

ns Fig. 7 & Fig. 8

ns Fig. 7 & Fig. 8

10 ns 1.0V to 3.5V

ns

ns

ns Fig. 9 & Fig. 10

ns Fig. 9 & Fig. 10

40 ns

22 ns

22 ns

22 ns

35 ns

20 ns From O.8V to 2.0V

12 ns From 2.0V to 0.8V

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FORA LOGIC "1" AND0.45V FDA
A LOGIC '0," TIMING MEASUREMENTS ARE MADE AT 1.SV FOR BOTH A
LOGIC "'1" AND "0."

67

-. VL = 2.0BV

R.L = 325n

DEVICE
UNDER ~

TEST

rCL

-=
Cl = l00pF FOR CLK

Cl = 30pF FOR READY

AFN·014728

WAVEFORMS

CLOCKS AND RESET SIGNALS

NAME

EFI

OSC

ClK

PClK

CSYNC I

8284A

RESET 0
.-----~~.,...:....-·t

-,.... __JJ

. NOTE: ALL TIMING MEASUREMENTS ARE MADE AT 1.5. YOlTS, UNLESS OTHERWISE NOTED.

READY SIGNALS (FOR ASYNCHRONOUS DEVICES)

ClK

RDY1,2

READY

tRYHCH tRYLCL

68 AFN·01472B

8284A

WAVEFORMS (Continued)

READY SIGNALS (FOR SYNCHRONOUS DEVICES)

eLK

RDY1.2

tCLR1X

READY

tRYHCH IRYLCL

"

X1 ClK I lOAD J
24MHzO

l (SEE NOTE .1)

T X2

FIe
R2 i

~
CSYNC

"::" "::" R, = R2 = 51 on.

Clock High and Low Time (Using X1, X2)

I PULSE L EFI ClK I lOAD I
GENERATOR I I (SEE NOTE 1)

VL
FIe

.r- CSYNC

-

Clock High and Low Time (Using EFI)

69 AFN-a1472B

inter

R2 R,

NOTES:
1. Cl=l00pF
2. Cl=30pF

8284A

VCC

AEm ClK

X1

24MHz CJ READY

X2

RDY2 asc
FIC
AEN2

CSYNC

Ready to Clock (Using X1,X2)

~~--~EFI ClK~----~

F/C::
AEN1

J-----~ RDY2

AEN2
CSYNC READY·~-----"-~

Ready to Clock (UsingEFI)

70 AFN-Q1472B

8282/8283
OCTAL LATCH

• Address Latch for iAPX 86, 88,
MCS-80®, MCS-85®, MCS-48® Families

• High Output Drive Capability for
Driving System Data Bus

• Fully Parallel 8·Bit Data Register and
Buffer

• Transparent during Active Strobe

• 3·State Outputs

.20·Pin Package with 0.3" Center

• No Output Low Noise when Entering
or Leaving High Impedance State

The 8282 and 8283 are 8·bit bipolar latches with 3·state output buffers. They can be used to Implement latches, buffers.,
or multiplexers. The 8283 inverts the input data at its outputs while the 8282 does not. Thus, all of t.he principal peri ph
eral and input/output functions of a microcomputer system can be implemented with these devices.

Fl$lure 1. Logic Diagrams Figure 2. Pin Configurations

71

Pin

STB

OE

010-017

000-007
(8282)

000"507
(8283)

8282/8283

Table 1. Pin Description

Description

STROBE (Input). STB is an input control
pulse used to strobe data at the data input
pins (Ao-A7) into the data latches. This
signal is active HIGH to admit input data.
The data is latched at the HfGH to LOW
transition of STB.

OUTPUT ENABLE (Input). OE is an input
control signal which when active LOW
enables the contents of the data latches
onto the data output pin (Bo-B7)' OE being
inactive HIGH forces the output buffers to
their high impedance state.

DATA INPUT PINS (Input). Data presented
at these pins satisfying setup time re-
quirements when STB is strobed 'and
latched into the data input latches.

DATA OUTPUT PINS (Output). When OE is
true, the data in the data latches is pre-
sented as inverted (8283) or non-inverted
(8282) data onto .the data output pins.

FUNCTIONAL DESCRIPTION

72

The 8282 and 8283 octal latches are 8-bit latches with
3-state output buffers. Data having satisfied the setup
time requirements is latched into the data latches by
strobing the STB line HIGH to LOW. Holding the STB
line in its active HIGH state makes the latc.hes appear
transparent. D'ata is pres.ented to the data output pins by
activating the OE input line. When OE is inactive HIGH
the output buffers are in their high impedance state.
Enabling or disabling the output buffers will not cause
negative-going transients to appear on the data output
bus.

AFN-00727C

inter 8282/8283

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias O'C to 70'C
Storage Temperature -65'C to + 150'C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages -1.0V to + 5.5V
Power Dissipation 1 Watt

'NOTlCE: Stresses above .. those listed under"AbsollJte
Maximum Ratings" may cause permanent dam~ge to ·the
device. This is a stress rating only and functional opera
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (Vee = 5V ±10%, TA = O'C to 70'C)

Symbol Parameter Min. Max. Units Test Conditions

Ve Input Clamp Voltage -1 V le= '-5 mA i

Icc Power Supply Current 160 mA

IF Forward Input Current -0.2 mA VF = 0.45V

IR Reverse Input Current 50 ~ VR = 5.25V

VOL Output Low Voltage .45 V IOl = 32 mA

VOH Output High Voltage 2;4 V IOH = '-5 mA

IOFF Output Off Current ± 50 ~ VOFF = 0;45 to 5.25V

Vil Input Low Voltage 0.8 V Vee =5.0V See Note 1

VIH Input High Voltage 2.0 V Vee =5.0V See Note 1

F= 1 MHz
CIN Input Capacitance 12 pF VBIAS =2.5V, Vee= 5V

TA=25'C

NOTE:
1. Output loading IOL=32mA, 10H= -5mA, eL=300pF.

A.C. CHARACTERISTICS (Vee = 5V ±10%, TA = O'C to 70'C
Loading: Outputs - IOL = 32 mA, IOH = -5 mA, CL = 300 pF)

Symbol Parameter Min. Max. Units Test Conditions

TIVOV Input to Output Delay (See Note 1)
-Inverting 5 22 ns
-Non·lnverting 5 30 ns

TSHOV STB to Output Delay
-Inverting 10 40 ns
-Non·lnverting 10 45 ns

TEHOZ Output Disable Time 5 18 ns

TELOV Output Enable Time 10 30 ns

TIVSL Input to STB Setup Time 0 ns

TSLIX Input to STB Hold Time 25 ns

TSHSL STB High Time 15 ns

TILlH, TOLOH Input, Output Rise Time 20 ns From O.BV tq 2.0V

TIHIL, TOHOL Input, Output Fall Time 12 ns From 2.0V to O.BV

NOTE:
1. See waveforms and test load circuit on following page.

73 AFN'()()727C

inter 8282/8283

A.C. TESJIN.G INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

A.C. TESTING: INPUTS ARE DRIVEN AT 2AV FOR A LOGIC "1 ,. AND OASV FDA
A LOGIC' 0." TIMING MEASUREMENTS ARE MADE AT 1.5V FDA BOTH A
lOGIC ., 1" AND "0:"

OUTPUT TEST LOAD CIRCUITS

1.5V 1.5V

332 1802

OUT OUT

1300PF 1300 pF

3·STATE TO VOL 3·STATE TO VOH

74

OUT

2.14V

52.72

I 300 pF

SWITCHING

AFN·OO721C

intJ 8282/8283

WAVEFORMS

INPUTS \V \V
/1\ /1\
!---TIVSL-!+TSLIX.

V \
-.I TSHSL-I\

STB

V \
/ 1\ -

I-!IVOV- -~~e- '~--c VOH-.1V .

\V 1)-------/..\ VOL+.1V

OUTPUTS

SEE NOTE 1
I----TSHOV-

NOTE: 1.8283 ONLY - OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION.

2. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED.

~
Z

;
UI a

50

8282

10

pF LOAD

50

8283

40

200 400

pF LOAD

Output Delay VI. Capacitance

75 AFN.00727C

&

828618287
OCTAL BUS TRANSCEIVER

• Data Bus Buffer Driver for iAPX 86,88,
MCS·80™, MCS·8S™, and MCS·48™
Families

• High Output Drive Capability for
Driving System Data Bus

• Fully Parallel 8·Bit Transceivers

• 3·State Outputs

• 20·Pin Package with 0.3" Center

• No Output Low Noise when Entering
or Leaving High Impedance State

The 8286 and 8287 are 8·bit bipolar transceivers with 3·state outputs. The 8287 inverts the input data at its outputs
while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met.

AO vcc AO vcc

A1 Bo A1 BO
A2 B1 A2 i!1

B2 A3 52
B3 A4 1!3
B4 B4
B5 as
B6 A7 Bs

DE B7 DE B7
GND T GND T

Figure 1. Logic Diagrams Figure 2. Pin Configurations

76

intJ 8286/8287

Table 1. Pin Description

Symbol Type Name and Function

T I Transmit: T is an input control signal used to control the direction of the transceivers. When HIGH,
it configures the transceiver's Bo-B7 as outputs with Ao-A7 as inputs. T LOW configures Ao-A7 as
the outputs with Bo-B7 serving as the inputs.

OE I Output Enable: OE is an input control signal used to enable the appropriate output driver (as
selected by T) onto its respective bus. This signal is active LOW.

Ao-A7 I/O I.,ocal Bus Data Pins: These pins serve to either present data to or accept data from the processor's
local bus depending upon the state of the T pin.

Bo-8-,(8286) I/O System Bus Data Pins: These pins serve to either present data to or accept data from the system
80-87(8287) bus depending upon the state of the T pin.

FUNCTIONAL DESCRIPTION

The 8286 and 8287 transceivers are 8-bit transceivers with
high impedance outputs. With T active HIGH and OE ac
tive LOW, data at the Ao-A7 pins is driven onto the Bo-~
pins. With T inactive LOW and OE active LOW, data at the

77

Bo-B7 pins is driven onto the Ao-A7 pins. No output low
glitching will occur whenever the transceivers are enter
ing or leaving the high impedance state.

AFNoOl506B

inter 8286/8287

TEST LOAD CIRCUITS
..

..

1.SV 1.SV 2.14V

. . .

.~~~. 33" 862 ..
l' .

•.• !'

OUT OUT OUT

r~PF

30STATE TO VOL 3·STATE TO VOL SWltCHINll

. ,
B OUTPUt B OUTPUT A OUTPUT

1.SV 1.SV 2.28V

180" 900" 114"

OUT OUT OUT

3·STATE TO VOH 3·STATE TO VOH SWITCHING

B OUTPUT A OUTPUT A OUTPUT

78 AFtHl15068

8286/8287

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias O·C to 70·C
Storage Temperature -65·C to + 150·C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages - 1.0V to + 5.5V
Power Dissipation 1 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera
tion of tlie device at these or any other conditions above
those indicated in the operational sections of this specifi
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect devicf
reliability.

D.C. CHARACTERISTICS (Vcc = +5V ±10%, TA= O°C to 70°C)

Symbol Parameter Min Max Units Test Conditions

Vc Input Clamp Voltage -1 V Ic= -5 mA

Icc Power Supply Current-8287 130 mA
-8286 160 mA

IF Forward Input Current -0.2 mA VF=0.45V

IR Reverse Input Current 50 ,.,.A VR= 5.25V

VOL Output Low Voltage -BOutputs .45 V IOl=32 mA
-A Outputs .45 V IOL = 16 mA

VOH Output High Voltage -BOutputs 2.4 V IOH=-5 mA
-A Outputs 2.4 V IOH=-1 mA

10FF Output Off Current IF VOFF =0.45V
10FF Output Off Current IR VOFF=5.25V

VIL Input Low Voltage -A Side 0.8 V V cc = 5.0V, See Note 1
-B Side 0.9 V Vcc= 5.0V, See Note 1

V1H Input High Voltage 2.0 V V cc = 5.0V, See Note 1

F= 1 MHz
CIN Input Capacitance 12 pF VBIAS=2.5V, Vcc=5V

TA=25°C

NOTE:
1. B Outputs-IOL = 32 rnA, 10H = -5 rnA, CL = 300 pF; A Outputs-IOL = 16 rnA, 10H = -1 rnA, CL = 100 pF.

A.C. CHARACTERISTICS (Vcc = +5V ±10%, TA = O°C to 70°C)

Loading: B Outputs-IOL = 32 mA, 10H = -5 rnA. CL = 300 pF
A Outputs-loL = 16 mA, 10H = -1 mA, CL = 100 pF

Symbol Parameter Min

TIVOV Input to Output Delay
Inverting 5
Non-lnvertinQ 5

TEHTV Transmit/Receive Hold Time 5

nVEl Transmit/Receive SetuD 10

TEHOZ Output Disable Time 5

TElOV OutDut Enable Time 10

TILlH, Input, Output Rise Time
TOlOH

TIHll, Input, Output Fail Time
TOHOl

NOTE:
1. See waveforms and test load circuit on following page.

79

Max

22
30

18

30

20

12

Units Test Conditions

ns (See Note 1)
ns

ns

ns

ns

ns

ns From 0.8 V to 2.0V

ns From 2.0V to 8.0V

AFN.()l506B

8286/8287

WAVEFORMS

INPUTS \V ______ -J/I\~ __________________________ ~ ____ ~ ______ __

I
I

TEHOZ t- TELOV-1=-
VOH - .1V

OUTPUTS \V 1>-_ - - - --
_____________ -J1 \~ ____________________ +_--JI VOL + .1V

T

NOTE:

1. All timing measurements are made at 1.5V unless otherwise noted.

f;l
"' z

5
w
o

50

40

8287

200 400 600

pF LOAD

800 1000

f;l
"' z

5
w
o

50

8286

10

200

Output Delay versus Capacitance

80

pF LOAD

AFN-QI506B

