

inter
Series 3000 Family Of
Computing Elements -
The Total System Solution.
Since its introduction in September, 1974, the Series 3000 family of computing
elements has found acceptance in a wide range of high performance
applications from disk controllers to airborne CPU's.

The Series 3000 family represents more than a simple collection of bipolar
components, it is a complete family of computing elements and hardware/software
support that greatly simplifies the task of transforming a design from concept
to production.

The Series 3000 Component Family

A complete set of computing elements that are designed as a system requiring
a minimum amount of ancillary circuitry.

3001 Microprogram Control Unit.
3002 Central Processing Element.
3003 Look-Ahead Carry Generator.
3212 Multi-Mode Latch Buffer.
3214 Interrupt Control Unit.
3216/26 Parallel Bi-directional Bus Driver.
ROMs/PROMs A complete set of bipolar ROMs and PROMs.
RAMs A Complete family of MOS and bipolar RAMs.

The Series 3000 Support

A comprehensive support system that assists the designer in writing
microprograms, debugging hardware,and microcode, and programming
prototype and production PROMs.

CROMIS Cross microprogram assembler.

MDS-800 Microcomputer development system with TTY/CRT,
line printer, diskette, PROM programmer and high
speed paper tape reader facilities.

ICE-30 In-circuit emulation for the 3001 MCU.

ROM-SIM ROM simulation for all of Intel's Bipolar ROMs
and PROMs.

Application Central processor and disk controller designs and
Notes system timing considerations.

Customer Comprehensive 3 day course covering the component
Course family, CPU and controller designs, microprogramming

and the MDS-800, ICE-30 and ROM-SIM operation.

The Series 3000 family is designed to provide a Total System Solution: high
performance, minimum package count and total commitment to support.

MICROPROGRAMMING
THE

SERIES 3000

REVISION A

Intel® Corporation

3065 Bowers Avenue
Santa Clara, Ca 95051

© 1976 Intel Corporation

TABLE OF CONTENTS

SECTION INTRODUCTION 1-1
1.1 SERIES 3000 BIPOLAR MICROCOMPUTER SET 1-1
1.2 CROSS MICROPROGRAMMING SYSTEM (CROMIS) 1-1

SECTION 2 XMAS LANGUAGE 2-1
2_1 XMAS LANGUAGE OVERVIEW 2-1
2_2 STATEMENT CHARACTERISTICS, CHARACTER SET AND RESERVED WORDS 2-11
2_3 IDENTIFIERS 2-12
2.4 INTEGERS 2-14
2_5 EXPRESSIONS 2-14
2_6 COMMENTS 2-15

2.7 XMAS LANGUAGE PROGRAM 2-16
2_8 STRING STATEMENT 2-16
2_9 VALUE STATEMENT _ 2-18
2_10 FIELD STATEMENT 2-18
2_11 IMPLY STATEMENT 2-19
2_12 KBUS STATEMENT 2-20
2_13 ADDRESS STATEMENT _ 2-20
2_14 SPECIFICATION STATEMENT 2-21

SECTION 3 XMAS LISTING OUTPUT 3-1
3_1 XMAS SOURCE STATEMENTS AND BIT PATTERNS _ 3-1
3_2 CROSS REFERENCE DIRECTORY 3-3
3_3 MICROPROGRAM MEMORY IMAGE 3-3

SECTION 4 FUNCTIONAL DESCRIPTION OF THE MCU _ 4-1
4_1 JUMP FUNCTIONS AND JUMP MICROPS _ 4-1
4_2 FLAG OUTPUT FUNCTIONS AND FO MICROP _ 4-7
4_3 FLAG INPUT FUNCTIONS AND FI MICROPS 4-7

SECTION 5 FUNCTIONAL DESCRIPTION OF THE CPE ARRAY 5-1
5_1 CPE FUNCTIONS AND CPE MICROPS 5-1
5_2 STRINGOPS FOR CPE FUNCTIONS _ 5-5

SECTION 6 MICROPROGRAMMING TECHNIQUES AND EXAMPLES 6-1
6_1 USE OF XMAS DECLARATION STATEMENTS _ 6-1
6_2 MICROPROGRAM MEMORY ASSIGNMENT _ 6-2
6_3 PIPELINED VS_ NON-PIPE LINED ARCHITECTURE 6-4

6.4 MICROPROGRAMMING EXAMPLES 6-4

SECTION 7 XMAPLANGUAGE 7-1

7_1 XMAP LANGUAGE OVERVIEW 7-1
7_2 XMAP LANGUAGE PROGRAM 7-5

7_3 ROM SPECIFICATION 7-5

7.4 MAPPING SPECIFICATION _ 7-5

SECTION 8 XMAP LISTING OUTPUT 8-1

8.1 XMAP SOURCE STATEMENTS AND ROM DUMPS_ 8-1

8.2 XMAP PROGRAM SUMMARY _ 8-2

TABLE OF CONTENTS
(continued)

SECTION 9 CONTROL LANGUAGE
9.1 CONTROL LANGUAGE OVERVIEW · 9·1
9.2 CONTROL LANGUAGE SYNTAX .9·4

APPENDIX A MODIFIED BNF SYNTAX DESCRIPTION NOTATION · A·l

APPENDIX B SYNTAX SUMMARY FOR THE XMAS LANGUAGE · B·l

APPENDIX C SYNTAX SUMMARY FOR THE XMAP LANGUAGE · C·1

APPENDIX D SYNTAX SUMMARY FOR THE CONTROL LANGUAGE .0·1

APPENDIX E RESERVED WORD SUMMARY · E·1

APPENDIX F BNPF AND HEXADECIMAL CODE · F·'

APPENDIX G SUMMARY OF XMAS ERROR MESSAGES · G·1

APPENDIX H SUMMARY OF XMAP ERROR MESSAGES · H·1

APPENDIX I SIMPLIFIED LANGUAGE DESCRIPTION. · 1·1

APPENDIXJ STRINGOP EXAMPLES · J·1

ii

1.1

TYPICAL
CONFIGURATION

MICROPROGRAM
MEMORY

MICROINSTRUCTION
WORD

FUNCTION
BUSSES

FIELDS

MICROINSTRUCTION
CYCLE

SECTION I
INTRODUCTION

For some time, microprogramming has been recognized as a powerful technique for the design
of a complex processing system such as the central processing unit of a general purpose com·
puter. Recent advances in high·speed LSI circuit technology have made it possible and eco·
nomically practical to apply a microprogramming solution to a wide range of design problems.

A microprogramming approach to a design problem requires two distinct steps to achieve the
design objective:

1. Design a microprogram mabie processor capable of meeting the design objective.
2. Design a microprogram that will direct the activity of the processor to satisfy the design

objective.

The first of these steps is a logic design problem; the second step is a programming problem.
The Intel® Series 3000 Bipolar Microcomputer Set supports the first aspect. CROM IS, the Cross

Microprogramming System, supports the second.

SERIES 3000 BIPOLAR MICROCOMPUTER SET

The Intel® Series 3000 Bipolar Microcomputer Set is a complete, compatible family of high

performance LSI circuit components that serve as the basic building blocks for custom micro
programmed processors and controllers. The set's two major components, the 3001
Microprogram Control Unit (MCU) and 3002 Central Processing Element (CPE), establish the
foundation of a flexible microprogram mabie architecture. The user can build on this founda
tion to meet the requirements of a wide variety of special applications.

Although a user's configuration is designed to meet the requirements of his particular
application, it is worthwhile to consider how the Series 3000 elements might be applied in a
typical microprogram mabie processor·controller implementation. The configuration illustrated
in Figure 1·1 may differ in some ways from the one a user is microprogramming. However, a
discussion of Figure 1·1 identifies the roles played by the Microprogram Memory, the Micro·
program Control Unit (MCU) and the Central Processing Element (CPE), which are funda·
mental to the architecture of any Series 3000 configuration.

The microprogram memory may be viewed (see Figure 1·2) as an array of locations, each

providing storage for one unit of control information: a microinstruction word. Each location is
identified by a unique address. An address applied to the address inputs of the microprogram
memory selects a location. The bit pattern stored in the selected location (i.e., the microinstruc·
tion word) appears in the form of a pattern of binary signal levels on the control lines con·
nected to the data outputs of the microprogram memory. Thus, each bit in the selected
microinstruction word determines the state of one control line.

A group of related control lines forms a function bus. Each function bus controls the operation
of, or supplies data to a functional unit in the system. The grouping of the control lines into
function busses imposes natural functional divisions on the microinstruction word. These divi·
sions are called fields. Each field of the microinstruction word drives a single function bus and
thereby governs the behavior of one functional unit. Therefore, each field of a microinstruction
word can be viewed as providing an instruction to be executed by one functional unit in the
system. I n other words, the microinstruction word consists of a fixed group of instructions that
are executed in parallel by corresponding functional units when the microinstruction word is
selected from the microprogram memory.

During a basic operating cycle, called a microinstruction cycle, an address is applied to the
microprogram memory, selecting one microinstruction word for execution. The fields of the
selected microinstruction word dictate the functions to be performed or initiated by the func·
tional units in the configuration during that cycle.

1·1

COh'TROLTO
MEMORY Ah'P /,/0

Fig. ,.,. Typical Series 3000 Configuration

TTT-----------------
TTT-----------------
T,,------------------

LmSE~L~EC~T~_~~~~~~~~~~~~ r MICROINSTRUCT,,c.'O"'N-=-W:.:O"'R.:.:O'-______ -l

CONTROL LINES

Fig. '·2. Microprogram Memory

1-2

ROLE OF THE
MICROINSTRUCTION
WORD FIELDS

MICROINSTRUCTION
WORD FORMAT

3001 CENTRAL
PROCESSING
ELEMENT (CPE)

CPEARRAV

CPE FIELD

CPE FUNCTION BUS

One of the microinstruction word fields controls the operation that determines which micro
instruction word will be executed during the next microinstruction cycle. Another field
specifies the operation to be performed by the data processing section (the CPE array). Still
other fields may control an external main memory and 1/0 devices.

The design flexibility of the Series 3000 computing elements makes it impossible to describe
every format exactly. However, the microinstruction word format below reflects the general
requirements of the typical configuration illustrated in Figure 1-1:

CPE MCU MCU CPE MAIN I/O
MEMORY SYSTEM

The CPE is a complete 2-bit data processing module. It includes a number of general and special
purpose registers, arithmetic and logic circuits, and several busses for data input and data
output, as illustrated in Figure 1-3. Virtually any number of CPE's may be connected, as shown
in Figure 1-4, to implement a data processing section of any desired word width. For example,
S CPE's may be arrayed to produce a 16-bit processing section.

As CPE's are wired together, all registers, arithmetic and logic circuits, and data paths expand
accordingly. However, the seven function inputs (FO-F6) to each CPE are connected in parallel
to form a single 7-bit CPE F unction Bus for the entire array. This arrangement allows the
microprogram mer to view the CPE array as a single functional unit capable of executing a
variety of data processing functions on N-bit operands.

In a typical configuration, a 7-bit field, called the CPE field, in the microinstruction word drives
the CPE Function Bus:

6543210

This field, then, determines the function to be executed by the CPE array during a
microinstruction cycle.

The 7-bit CPE Function Bus controls the internal operation of the CPE array by selecting the
operands and operation to be performed during a machine cycle. The Arithmetic and Logic
Unit (ALU), under the control of the. function bus decoder, performs over 40 Boolean and
arithmetic functions including 2's complement arithmetic and logical AND, OR, NOT, and
exclusive-NOR.

1-3

ENABLE ADDRESS EA

CARRY OUT CO
LEFT IN LI

CLK

FO
F5

CPE FUNCTION F, FUNCTION
BUS F3 BUS

F2 DECODER

F,
FO

I

I

I
I

--~

Fig. 1·3. 3002 CPE Organization

-

ED ENABLE DATA

CI

RO
CARRY IN

RIGHT OUT

A-BUS
12N LINES)

O-BUS
(2N LINES)

CLOCK --------------H----tr-~------tr--_++_~----

CL: J ,..u...--u,J A

,-----1 CO CII-----j

CARRY IN 3002
(CARRY FROM ----M>-------JLI CPEl ROi-------i

3001)

CPE FUNCTION BUS
FO F

RIGHT OUT (CARRY TO 3001)

K-BUS l
(2N LINES) '--__________ --j

3002
CPE2

3002
CPEn

r:==:t .f:=::==::::::j
~ M-BUS

1- tl--_____ •H ____ -' 12N LINESI

I-BUS
______________ -' (2N LINES)

Fig. 1-4. CPE Arrav Configuration

1-4

ARRAY
FUNCTIONS

K-BUS

K-BUS
FIELD

AFFECT OF K-BUS
ON CPE ARRAY
OPERATIONS

CARRY AND SHIFT
INPUT AND OUTPUT

ZERO DETECTION

CPE FUNCTIONS

3001 MICROPRO
GRAM CONTROL
UNIT (MCU)

PROVIDES THREE
INDEPENDENT
FUNCTIONS

Three busses, the M-bus, the I-bus and the K-bus, provide paths by which data enters the CPE
array. Within the array, eleven scratch pad registers, an accumulator (AC) register and a
Memory Address Register (MAR) provide data storage. Two internal multiplexers select
operands for the arithmetic and logic unit (ALU) from data in the registers and on the input
busses. Results of ALU operation can be stored in the scratch pad registers or the accumulator.
The ALU provides a special data transfer path to the MAR. Data in the MAR and in the
accumulator can be gated onto the output busses, the A-bus and the D-bus.

The information on the K·bus is used in every CPE function and has a modifying effect on the
result of every function. Consequently, it is typical to put a field in the microinstruction word
to provide either direct or encoded drive for the K-bus inputs to the CPE array.

This drawing illustrates a one-to-one correspondence between the 2n bit positions of the K-bus
field in the microinstruction word and the 2n K-bus input lines to the CPE array. For most
applications, it is possible to reduce the size of the K-bus field by, strapping groups of K-bus
lines together. In fact, all the K-bus lines may be strapped together in a single group and driven
by a one-bit K-bus field; in this case, only an all-zero or all-one k-bus input is possible, which is
sufficient for some applications.

The K-bus participates in every CPE operation. The K-bus inputs are always ANDed with the
B-multiplexer outputs into the ALU. Consequently, bit masking can be performed with the
mask supplied to the K-bus directly from the microinstruction. Placing the K-bus in the all one
or all zero state will, in most cases, select or deselect the accumulator in the operation. This
toggling effect on the accumulator nearly doubles the CPE's repetoire of functions. For
instance, with the K-bus in the all-zero state the data on the M-bus may be complemented and
loaded into the CPE's accumulator. The same function selected with the K-bus in the all-one
state will exclusive-NOR the data on the M-bus with the contents of the accumulator.

The CPE provides independent carry input, carry output, shift input and shift output. The shift
input and output are functional only during a shift right operation. The carry input and output
participate in arithmetic operations. In non-arithmetic operations the carry output of the CPE
array is the logical OR of all the bits of the result of operation; in other words, the carry output
serves as a "not zero" status indication for non-arithmetic operations. Zero detection in con
junction with the masking function of the K-bus input provides a complete bit testing facility.

Table 1-1 summarizes some of the important CPE functions. Note tha~ these functions are
described for all zero or all one K-bus inputs only. A complete description of all CPE functions
appears in Chapter 4.

The 3001 Microprogram Control Unit (MCU) provides the microprogrammer with three
independently controllable functional facilities:

Jump Function - A mechanism for controlling the sequence in which the microinstructions are
accessed from the microprogram memory:

Flag Input FUl'lction - A mechanism for saving the state of the Flag Input (which is usually
connected to the Carry/Shift Output of the CPE array);

Table 1-1_ ALL-ZERO AND ALL-ONE K-BUS CPE FUNCTIONS

MNEMONIC K-BUS = 00 MICRO-FUNCTION MNEMONIC K-BUS = 11 MICRO-FUNCTION

ILR Rn + CI Rn, AC ALR AC + Rn + CI Rn, AC
ACM M +CI AT AMA M +AC + CI AT
SRA AT L RO ATH AT L U AT H - (See Appendix B)

LMI Rn -+ MAR Rn+CI Rn DSM 11 MAR Rn - 1 + CI-+ Rn
LMM M MAR M +CI AT LDM 11 MAR M - 1 + CI-+AT
CIA AT + CI AT DCA AT - 1 + CI -+ AT

CSR CI- 1 Rn
See Note 1

SDR AC - 1 + CI Rn
See Note 1

CSA CI-l AT SDA AC - 1 + CI -+ AT
- (See CSA above) LDI 1-1 + CI AT

INR Rn + CI Rn ADR AC + Rn + CI Rn
(See ACM aboye) - (See AMA above)

INA AT+CI AT AlA I +AT + CI AT

CLR CI CO 0 Rn ANR CI v (R n /\ AC) CO Rn /\ AC Rn
CLA CI CO 0"" AT ANM CI v (M /\ AC) -+ CO M /\ AC -+ AT

- (See CLA above) ANI CI V (AT/\ I)"" CO AT /\ I AT

- (See CLR above) TZR CI v Rn CO Rn Rn
- (See CLA above) LTM CI v M CO M AT
- (See CLA above) TZA CI v AT-+CO AT-+ AT

NOP CI CO R R
n n ORR CI v AC CO Rn v AC-+R n

LMF CI CO M AT ORM CI v AC CO M v AC AT

- (See NOP above) ORI CI v I CO IvAT-+AT

CMR CI-+ CO ~""Rn XNR CI v (R n /\ AC) -+ CO Rn iii" AC Rn
LCM CI CO AT XNM CI v (M /\ AC) CO M iii"AC AT
CMA CI CO AT AT XNI CI v (AT /\ I) CO I iii'AT AT

NOTES:

1. 2's complement arithmetic adds 111 .. . 11 to perform subtraction of 000 ... 01.

2. Rn includes T and AC as source and destination registers in A-group 1 micro-functions.

3. Standard arithmetic carr V output values are generated in F-group 0, 1,2 and 3 instructions.

SYMBOL MEANING

I, K,M Data on the I, K, and M busses, respectively
CI, U Data on the carry input and left input, respectively
CO,RO Data on the carry output and right output, respectively

Rn Contents of register n including T and AC (R-Group I)
AC Contents of the acculhulator
AT Contents of AC or T, as specified
MAR Contents of the memory address register
L,H As subscripts, designate low and high order bit, respectively
+ 2's complement addition
- 2's complement subtraction
/\ Logical AND
v Logical OR
iii Exclusive-NOR
.... Deposit into

1-6

JUMP FUNCTIONS

JUMP FIELD

CONCEPTUALIZING
MICROPROGRAM
MEMORY

ROWS AND
COLUMNS

JUMP SET

NEXT ADDRESS
LOGIC

Flag Output Function -A mechanism for controlling the state of the Flag Output (which is
typically connected to the Carry/Shift Input to the CPE array).

The MCU has separate function bus inputs for controlling each of these facilities, as illustrated
in Figure 1-5.

The MCU defines a comprehensive and powerful microprogram memory addressing scheme that
incorporates a repetoire of eleven conditional and unconditional Jump functions as well as a
microprogram interrupt capability. In a typical configuration, a 7-bit field in the microinstruc
tion word, called the JUMP field, drives the Jump Function Bus to the MCU_

6543210

Each of the MCU's eleven jump functions is represented by a unique coding of the JUMP field.
From two to five bits of the field select the JUMP function while the remaining bits supply part
of the destination address. During each microinstruction cycle the MCU executes the Jump
function specified by the microinstruction currently being accessed from the microprogram
memory_ In executing this Jump function, the MCU formulates the address that will be used to
access the microprogram memory for the next microinstruction in the microprogram sequence.
In this way, the microprogram controls its own sequencing. The conditional Jump functions
provide a test facility by allowing selected information maintained by the MCU (e.g., in the C
and Z flags, PR-Iatch, etc.) to influence program sequencing.

It is simpler to understand the MCU Jump functions if the Microprogram Memory is con
ceptualized as a two-dimensional matrix consisting of 32 rows and 16 columns, providing a
total of 512 microinstruction locations. Refer to the illustration in Figure 1-6_ The location of
microinstruction is identified by its row address and its column address in the matrix. The 9-bit
microprogram memory address, which is provided by the MCU, specifies the row address in the
high order five bits and the column address in the low order four bits. (It is possible to
implement Microprogram Memories-larger than 512 locations, as discussed later_) For example,
from a particular row and column location, it is possible to jump unconditionally to any other
location in that row, using one Jump function, or any other location in that column, using
another Jump function.

For a given location in the matrix and MCU Jump function, there is a fixed subset of micropro
gram addresses that may be selected as the next address. These addresses are referred to as the
jump set for the Jump function; each Jump function has a jump set associated with it.

Table 4-1 provides a brief summary of the MCU's Jump functions. A more detailed description
is presented in Section 4.1.

Under normal operation, the MCU's Microprogram Address Register holds the address of the
microinstruction word currently being accessed from the microprogram memory. During a
microinstruction cycle, the Next Address Logic, under primary control of the Jump Function
Bus, formulates the address that will be clocked into the Microprogram Address Register at the
end of the current microinstruction cycle. The encoded information on the Jump Function Bus
specifies the mode (i.e., the Jump Function) by which the Next Address Logic will formulate
the next address, and, in addition, it supplies part of the next address itself. In performing a
conditional Jump function, the Next Address Logic selects information from the Microprogram
Address Register and the Jump Function Bus to form what may be termed a "base address."

1-7

AC5

JUMP AC4
FUNCTION AC3

BUS
AC2

ACI

ACO

INPUT
FUNCTION

BUS

flAG
INPUT

MCU
OUTPUT BUFFER

(HIGH ORDER 5 BITS)

MCU
OUTPUT BUFFER

(LOW ORDER 4 BITS)

~--+-t-HH-------i-t-+-+---+-t- EN MC~N~~~~UT

flAG OUTPUT
OUTPUT FUNCTION

BUS

PX-BUS

Fig. 1·5. 3001 MCU Organization

ROW
SELECT

COLUMN
SELECT

TYPICAL
JUMP

FUNCTION
(JZR)

CURRENT
ROW -

PR2 PROGRAM
PRl LATCH

rL-l~L-~~ __ -rIl~P~RO.OUTPUT~

SX·BUS

CURRENT COLUMN

Fig. 1-6. Microprogram Memory Addressing

'·8

AUXILIARY
OPERATIONS
CONTROLLED BY
JUMP FUNCTIONS

INTERRUPT

EXTENDED
ADDRESSING

ADDRESS
EXTENSION
FIELD

FI AND FO
FIELDS

FLAG INPUT
FUNCTIONS

The Next Address Logic then selects one, two or four bits of information from the latch or bus

being tested to supply a "displacement" to the "base address," which serves to form the

complete next address. Consequently, there are two possible outcomes of a Jump/test F·latch
function (JFL), whereas there are 16 possible outcomes of a Jump/test PX bus function (JPX).

Certain Jump functions also control auxiliary operations in the MCU. The JPX jump function

not only specifies a conditional jump based on the information on the PX·bus, it also specifies
that information in the PR-Iatch can be tested during some subsequent cycle via the JPR Jump
function. The JCE jump function performs the additional function of enabling the three low

order bits of the PR-Iatch (PRO, PR 1, and PR2). These three MCU outputs constitute a special

control facility that may be applied in a particular configuration as the design engineer sees fit.

The MCU jump control logic supports an interrupt facility; the JZR Jump function plays a

special role in the interrupt scheme. When the MCU executes a JZR Jump function that

specifies column address 15 (row address 0 is implied by the JZR Jump function!, the MCU

activates its Interrupt Strobe Enable (ISE) output. If an interrupt condition is pending, as

detected by external interrupt logic such as the Intel® 3214 Interrupt Control Unit, the external
interrupt logic responds to ISE by disabling the MCU's row address outputs (via the MCU's

Enable Row Address input) and forcing an alternate row address onto the microprogram

memory row address lines. The result is that the next microinstruction word is accessed from

the alternate row (typically row 31) of column 15 of the microprogram memory rather than

from row 0 of column 15. The alternate location is typically the beginning of an interrupt

service microroutine.

The MCU supports a basic microprogram memory addressing capability of 512 words; a larger

addressing capability can be implemented, however. External registers may be added to serve as

an extension to the MCU's 9-bit Memory Address Register. These latches are loaded, at the end

of each microinstruction cycle, directly from an address extension field in the currently execut

ing microinstruction word. For example, a two-bit address extension field in the micro

instruction word (with two external address extension registers) plus the 9-bit MCU address

provide a total microprogram memory addressing capability of 2048 words.

To understand the function of an address extension field, it is useful to conceptualize the

microprogram memory as a three-dimensional matrix of planes, rows and columns, as illustrated
in Figure 1-7. The address extension field supplies the plane address, while the MCU (under

control of the JUMP field) supplies the row and column addresses.

In a typical configuration, two 2-bit fields in the microinstruction word, called the F I field and

FO field, drive the MCU's Flag Input and Flag Output Busses, respectively.

W'O

FI
_ 0

rt ~
FI

FUNCT
BUS

:w='O
FO

M N

~ ~
FO

FUNCT
BUS

The MCU's Flag Output and Flag Input functions are summarized in Tables 4-2 and 4-3.

The MCU's Flag Input functions provide a mechanism for maintaining the status of selected

CPE array operations. Some attribute of the result of every CPE array operation is reflected on

either the Carry Output or the Shift Output of the array, depending upon the operation. Since

only one of these status outputs is active for any given operation, these two lines are typically

-tied together and connected to the MCU's Flag Input. During every microinstruction cycle, the

1-9

F-LATCH

CAND Z FLAGS

FLAG OUTPUT
FUNCTIONS

SUMMARY

ADDRESS
EXTENSION

FIELD

~"'"
[JjROW

Meu
[JjeOLUMN

Fig. 1-7. Microprogram Memory Extension

F-Iatch in the MCU automatically stores the state of the Flag Input. Consequently, the state of
the F·latch reflects the status of the current array operation.

It is often desirable to save the status of a particular result over several microinstruction cycles.
The C and Z flags provide this capability. The behavior of these flags is controlled by the 2-bit
Flag Input Function Bus to the MCU. During a microinstruction cycle, the control information
on the Flag Input Function Bus determines whether the state on the Flag Input is to be stored
in the C-flag, the Z-flag, both flags or neither flag. (The states of the F-Iatch, the C·flag and the
Z·flag can be tested via the MCU jump functions JFL, JCF and JZF, respectively.)

The MCU's Flag Output is typically connected to the Carry Input and the Shift Input to the
CPE array. Consequently, the state of the Flag Output affects the result of any arithmetic or
shift right operation performed by the array. The MCU's 2·bit Flag Output Function Bus
controls the state of the Flag Output. During a microinstruction cycle, the control information
on the Flag Output Function Bus determines whether the Flag Out is forced to a "0" state, a
"1" state, the state of the C·flag or the state of the Z-flag.

To the microprogram mer, a microprogrammable processor represents a computing machine
with special properties that must be directed by a microprogram to perform a particular
processing task. A microprogram is composed of a series of individual microinstructions that are
selected and executed by the machine in timed sequence. In a basic machine cycle, one micro·
instruction is selected for execution. That microinstruction dictates the operations to be per·
formed or initiated by each functional unit in the system during that execution cycle. The
microinstruction also provides information to determine which microinstruction in the micro
program is to be selected for execution during the next machine cycle.

In order to write an effective and efficient microprogram, the microprogrammer must have a
thorough understanding of his microprogrammable processor configuration. He must under·
stand the functions that each group of logic in the configuration is capable of performing and
how those functions relate to each other and to the m.icroinstruction word format. Functional
descriptions of the CPE and MCU, from the microprogrammer's point of view, are provided in
Sections 4 and 5, respectively. A functional description of a user·configured system, however,
must be provided by the design engineer who specifies the configuration.

1·10

1.2

CROMIS

XMAS LANGUAGE

XMAS

CROSS MICROPROGRAMMING SYSTEM (CROMIS)

Intel's Cross Microprogramming System supports the Series 3000. user in the development and
implementation of microprograms. CROMIS is supplied to the user in the form of two Fortran
IV source programs, XMAS (Cross Microassembler) and XMAP (ROM Programming File
Generator).

XMAS defines a symbolic, machine-oriented microprogramming language called the XMAS
Language. The XMAS Language is specifically suited to the microprogramming characteristics
of the Series 3000 computing elements. The important features of the XMAS Language
include:

• A complete set of mnemonics to represent the various CPE and MCU functions;
• Symbolic addressing to simplify the representation of microprogram sequencing;
• A mechanism to define mnemonics representing the functions controlled by user-defined

fields;
• Special support for the microinstruction word field that drives the CPE's K-bus;
• Special support for addressing a microprogramming memory greater than 512 words.

The XMAS Language simplifies the task of writing microprograms for Series 3000
configurations.

A fundamental function of CROMIS is to convert an XMAS Language microprogram into a
format suitable for programming the individual ROM or PROM devices that will serve as the
physical microprogram memory. This function involves two phases: the assembly of the XMAS
Language program, and the generation of a ROM programming file. This functional division is
provided because, during the development process, a microprogram will probably be assembled
many times before the microprogram is mapped into the ROMs or PROMS. Consequently,
CROMIS is supplied as two separate programs: XMAS and XMAP. The functional relationship
between XMAS and XMAP is represented in Figure 1-8.

During assembly, XMAS reads records from a source file. These records contain Control
Language statements and XMAS Language statements. The Control Language statements
specify 1/0 formats, select files and establish other parameters. The XMAS Language statements
constitute the symbolic representation of the microprogram; they define new fields, define
special symbols and specify the microinstruction bit patterns.

XMAS generates two files during an assembly: a list file and a microcode file. The list file may
contain the source fi Ie statements, the bit patterns generated for those statements that specify
microinstructions, error messages, a cross reference directory and a graphic representation of
the microprogram memory image generated by the assembly. The microcode file is an inter
mediate binary file of the bit patterns generated by the assembly. XMAS error messages are
listed in Appendix G.

Fig. 1-8. Relationship Batwean XMAS and XMAP

1·11

XMAP During ROM programming file generation, XMAP reads records from a source file that contains
Control Language statements and ROM Mapping language statements. These statements specify
the mapping of the microinstruction bit patterns in the microcode file, generated during
assembly by XMAS, into the bit locations of the ROM's or PROM's that will be used for the
microprogram memory.

In processing an XMAP language program, XMAP is capable of listing the following reports
when directed to do so by the proper Control Language statements:

• XMAP language source statements with any error messages, and/or a binary dump of
each ROM specified by a ROM mapping statement;

• XMAP program memory.

XMAP error messages are summarized in Appendix H.

1·12

2.1

LANGUAGE
CHARACTERISTICS

RESERVED WORDS

IDENTIFIERS

PROGRAM
STRUCTURE

DECLARATION
STATEMENTS

SECTION 2
XMAS LANGUAGE

The XMAS language is an extensible microassembly language used to write microprograms for
custom Series 3000 configurations. The XMAS language allows the microprogrammer to
symbolically represent microinstructions and microprogram sequencing, without compromising
his control over the exact coding of microinstruction words or their locations in the micro·
program memory.

The XMAS language is specifically designed to support the microprogramming characteristics of
the Series 3000 computing elements. The language includes a set of mnemonics for representing
the various CPE and MCU functions, and it allows symbolic addressing to simplify the specifica·
tion of microprogram sequencing.

One of the unique features of the XMAS language is its extensibility. Because of the wide
variety of configurations that are possible with the Series 3000 computing elements, the
detailed format of the microinstruction word cannot be built into the XMAS language.
Consequently, the XMAS language provides a mechanism for describing extensions to the
microinstruction word in the form of user·defined fields. The language also provides a mecha·
nism for associating functional mnemonics with the new fields the user defines.

Section 2.1 provides a general introduction to the XMAS language. This introduction relies
heavily on examples to illustrate the functions of XMAS language constructs. Sections 2.2
through 2.14 provide a formal description of XMAS language syntax and semantics. These
sections are intended to serve as a reference manual for the XMAS language. In the reference
sections, syntax is described using a modified BNF notation; this notation is described in
Appendix A.

XMAS LANGUAGE OVERVIEW

The XMAS language is a free·format language. Syntactic entities may appear anywhere in a
source record; the order in which entities appear is often, but not always, discretionary.
Commas and spaces may be used freely and interchangeably to enhance readability.

The reserved words, which are listed in Table 2-2 of Section 2.2, constitute the permanent
vocabulary of the XMAS language; the definitions of the reserved words are intrinsic to the
XMAS language. In an XMAS language program the microprogrammer will have occasion to .
define symbolic names (formally called identifiers) to serve as names of new fields, function
mnemonics, statement labels (for symbolic addressing), etc. All symbolic names in an XMAS
language program, both the reserved words and user·defined identifiers, can have only one
definition. In other words, a particular identifier may not serve as, say, both a field name and a
statement label.

An XMAS language program is expressed as a series of "declaration statements" followed by a
series of "specification statements." A semicolon (;) marks the end of each statement, and the
reserved word EOF marks the end of the program. Stated symbolically, an XMAS language
program has the following general form:

D;D; ... D;S;S; ... S;EOF

where the Ds represent declaration statements, and the Ss represent specification statements.

In general, the declaration statements in an XMAS language program establish the framework
for writing the specification statements. Some of the functions of declaration statements are:

• To declare and describe new fields in the microinstruction word and associate functional
mnemonics with the new fields;

• To establish a hierarchy of default bit pattern assignments for fields;

2-1

SPECIFICATION
STATEMENTS

MICROINSTRUCTION
WORD FORMAT

INTRINSIC FIELDS

USER-DEFINED
FIELDS

FIELD
DECLARATIONS

INTRODUCTION TO
THE FIELD
STATEMENT

• To designate a K-bus field;
• To designate an address extension field;
• To define symbols that represent character strings or numeric values_

In all, there are six types of declaration statements, which are identified by the reserved words:
FIELD, IMPLY, KBUS, ADDRESS, VALUE and STRING. They are all discussed in this
subsection.

Specification statements are the active elements of an XMAS language program. There is a one
to one correspondence between a specification statement and a microinstruction word. In the
context of a program, each specification statement provides XMAS, the microassembler, with
sufficient information to generate the bit patterns for every field in a single microinstruction
word and to assign that word to a particular location in the microprogram memory.

The architecture of the Series 3000 configuration prescribes the format of the microinstruction
word. Because the Intel 3001 Microprogram Control Unit (MCU) and an array of Intel 3002
Central Processing Elements (CPE array) are assumed to be central to any Series 3000 configu
ration, certain assumptions about the microinstruction word format can be made: it must have
a field to govern the function of the CPE array, and it must have fields to govern the Jump
function, the Flag Input function and the Flag Output function of the MCU. Consequently,
XMAS initially assumes a basic microinstruction word of the following form:

6 5 4 3 2 o 1 0 1 0 6 5 4 3 2 0
I CPE I FI I FO I JUMP I

The reserved words CPE, FI, FO and JUMP are called intrinsic field names. They may be used
in an XMAS language program to refer to their respective fields, as discussed later.

In most cases, the microinstruction word must control other logic in the microprocessor.
Consequently, the microinstruction word must be extended to include some number of addi
tional fields. For example, the microinstruction word might be required to supply the K-bus
inputs to the CPE array. Additional fields might be required to control an external main
memory and other logic functions within the configuration. For a particular configuration, the
complete microinstruction word might have the following format:

65432 1 0 1 0 1 0 6 5 4 3 2 o 7 6 5 4 3 2 o 2 1 032 1 0
I CPE I FI I Fol JUMP I KB I MEM I CONT I

Here, the symbols KB, MEM and CONT are arbitrarily chosen to represent the new fields.

It is important to note that the microinstruction word pictured above is only a logical represen
tation of the microinstruction format. Each field should be viewed as an independent entity.
There may, of course, be functional relationships between the fields. For example, the CPE
field, the FI field and the K-bus field (KB in this example) all playa role in determining the
functions performed by the CPE array. This does not, however, imply any positional relation
ship between these fields within the microinstruction word.

As previously mentioned, XMAS initially assumes the existence of only the four intrinsic fields:
CPE, FI, FO and JUMP. In the XMAS language, additional fields must be declared via FIELD
statements. For example, the FIELD statements:

KB FIELD LENGTH;8;

MEM FIELD LENGTH;3;

CONT FIELD LENGTH;4;

declare the new fields KB, MEM and CONT. The number on the rig"t hand side of the

2-2

SPECIFICATION
STATEMENT

PRIMITIVE FORM OF
THE SPECIFICATION
STATEMENT

REMARKS ABOUT
STATEMENT
FORMAT

ORDER IN WHICH
SPECIFICATION
STATEMENTS
APPEAR IN A
PROGRAM

INTEGER
REPRESENTATIONS

EXPRESSIONS

assignment operator (=), which follows the reserved word LENGTH, specifies the number of bit
positions to be allocated to the microinstruction word for the new field. The symbol on the left
hand side of the reserved word FIE LD is the name the microprogrammer has chosen to asso
ciate with the new field. Names defined in this context are called user-defined field names. Like
the intrinsic field names, user-defined field names are used in other statements to refer to their
respective fields.

Once the programmer has described all extensions of the microinstruction word via FIELD
statements, he has established the framework required to write complete specification state
ments. Each specification statement must provide XMAS with sufficient information to
assemble a complete microinstruction word (i.e., a bit pattern for every field) and to locate that
word in the microprogram memory. A specification could take the following form:

70: CPE=23 FI=3 FO=O JUMP=37 KB=O MEM=O CONT=2;

The number preceding the colon (:) specifies the microprogram memory location for the
microinstruction word represented by the statement. The values following the assignment
operators (=) specify the bit patterns for the fields associated with the field names: CPE, FI,
FO, JUMP, KB, MEM and CONT.

The order in which field bit pattern assignments occur in a specification statement is arbitrary.
The preceding statement could just as well have been written as:

70: CPE=23,KB=0,FO=0
FI=3
CONT=2, MEM=O
JUMP=37;

Here, the statement has been arranged to emphasize the functions to be performed by the
microinstruction word that the statement represents.

This example also illustrates the free format nature of the XMAS language. Commas, which are
the equivalent of spaces in the XMAS language, may be used to separate statement entities.
Since a semicolon (;) is required to mark the end of a statement, a statement may be continued
on any number of lines; also, two or more statements may appear on the same line. These
remarks apply to declaration statements as well as specification statements.

Since every specification statement must include an explicit microprogram memory address
assignment, specification statements may appear in any order in an XMAS language program.
Typically, the microprogrammer will write specification statements in an order that reflects the
execution sequence of the microprogram.

In the preceding examples, all values have been represented as decimal integers. The XMAS
language also supports hexadecimal (H), octal (0 or 0) and binary (B) integer representations.
The same statement can be written:

46H: JUMP=0100101B MEM=O CONT=2 CPE=270 FI=3 FO=O KB=O;

A base designator (H, 0, 0 or B) must follow the digits in all integer representations except
decimal (where the base designator D is optional). A hexadecimal integer must begin with a
decimal digit so that it may be distinguished from an XMAS identifier; a leading zero is always
sufficient.

The value of the microprogram memory location assignment must be represented by an integer,
but the values for field assignments may be represented by expressions. For example, the JUMP
field could have been specified by:

2-3

KEYWORD
ASSIGNMENT
FORM

MICROPS

INTRINSIC MICROPS

FI AND FO
MICROPS

CPE MICROPS

JUMP MICROPS

JUMP=5+{010B SHL 4)

where + is the addition operator and SH L is the shift left operator. The parentheses are not
actually required in this case because the SHL operator has a higher precedence than the +
operator. Other operators that may appear in expressions are: NOT (logical complement). AND
(logical AND). OR (logical OR), XOR (logical exclusive OR) and SHR (shift right). (The formal'
rules that govern expressions are presented in Section 2-5.)

In the example specification statements above, all field assignments took the form:

field identifier = expression

This form of field assignment is called a keyword assignment. Although a keyword assignment
may always be used, it is often not the most convenient form for specifying a field.

A keyword assignment tends to emphasize the bit pattern itself rather than the function that
the bit pattern designates. When writing a specification statement, the microprogrammer is
more concerned with specifying the functions to be performed by the microinstruction; he does
not really care how those functions may be encoded in the fields of the microinstruction word.

Another form of field assignment involves a special type of symbol called a "microp" (pro
nounced mike-ro-op). A microp is similar to an instruction mnemonic in a conventional
assembly language. The XMAS language includes a set of microps (listed in Table 2-2) for each
of the four intrinsic fields: CPE, FI, FO and JUMP. Each microp is a mnemonic for one of the
functions controlled by its respective field.

The four microps associated with the FI field are mnemonics for the four Flag Input functions
of the MCU. For example, the FI microp HCZ represents the Flag Input function "Hold C and
Z Flags." Likewise, the four microps associated with the FO field are mnemonics for the four
Flag Output functions of the MCU. For example, the FO microp FFO represents the Flag
Output function "Force Flag Output to Zero." These microps could appear in a specification
statement to specify the FI and FO fields:

46H: JUMP=25H MEM=O HCZ FFO CONT=2 KB=O CPE=27Q;

The microps HCZ and FFO make explicit bit pattern assignments for the FI and FO fields in
this statement. (In fact, HCZ is equivalent to the keyword assignment FI=3 and FFO, to FO=O.)

The encoding of the CPE field designates both the function to be performed by the CPE array
and the internal CPE register that is to participate in that function. The microps associated with
the CPE field are mnemonics for the CPE functions. The XMAS language also includes
mnemonics for the internal CPE registers; these mnemonics are called register names (listed in
Table 2-2). In a specification statement, a CPE microp must always be followed by a register
name enclosed in parentheses. For example,

LMI (R7)

means that the function represented by the CPE microp LM I is to be performed with register
R7. In the specification statement:

46H: JUMP=25H MEM=O HCZ FFO KB=O CONT=2 LMI (R7);

LMI (R7) makes an explicit bit pattern assignment for the CPE field.

The microps for the JUMP field are mnemonics for the various methods by which the MCU
may develop an address to access the microprogram memory for the next microinstruction in a
program sequence. I n a specification statement, a JUMP microp must always be followed by

2-4

TABLE 2-1_ XMAS CHARACTER SET SUMMARY

CHARACTER USED

A through Z • To compose reserved words, user-defined

(alphabetics) identifiers and integers

o through 9

(numerics)

; (semicolon) • Separates statements within program

: (colon) • Delimits the microprogram memory address

and statement labels in a specification statement.

= (equals) • Assignment operator.

+ (plus) • Arithmetic addition operator.

() (parentheses) • Used to indicate precedence in an expression.

• Used to enclose operands of CPE and JUMP microps.

, (single quote) • To enclose a character string.

$ (dollar sign) • To introduce a Control Language statement.

* (asterisk) • Used in certain contexts to inhibit XMAS addressing

checking.

/* • To mark the beginning (/*) and end (*') of a

(slash-asterisk) comment.

*'

(asterisk-slash)

. (period) • I nterpreted as a null character, only used to punctuate

integers and identifiers.

, (comma) • Used to delimit identifiers and integers where no

(space) other delimiter appears.

• Used to enhance readibility of statements.

2-5

PROGRAM
TERMINATOR

EOF

SYMBOLIC
ADDRESSING

ADDRESS
IDENTIFIERS

TABLE 2-2. XMAS RESERVED WORDS

DECLARATIONS MICROPS

FIELD INTRINSIC CPE
STATEMENT STATEMENT FIELD FIELD REGISTER

TYPE

FIELD

IMPLY
KBUS
ADDRESS
VALUE
STRING

KEYWORDS NAMES JUMP FI FO CPE NAMES OPERATORS

LENGTH JUMP JCC HCZ FFC ACM INR AC AND
DEFAULT FI JCE SCZ FFZ ADR LCM RO NOT
MICROPS Fa JCF STC FFO AlA LDI R1 OR

CPE JCR STZ FF1 ALR LDM R2 XOR
JFL AMA LMF R3 SHL
JLL ANI LMI R4 SHR
JMP ANM LMM R5
JPR ANR LTM R6
JPX CIA Nap R7
JRL CLA aRM R8
JZF CLR ORR R9
JZR CMA SDA T

CMR SDR
CSA SRA
CSR TZA
DCA TZR
DSM XNI
ILR XNM
INA XNR

one or more operands enclosed in a single set of parentheses. An operand of a ,JUMP microp is
an expression that represents the microprogram memory address of a microinstruction word
that is a target of the JUMP function. The JUMP microp JZR represents an unconditional
branch to row zero of the microprogram memory. In the statement:

46H: JZR (05H) MEM=O HCZ FFO KB=O CONT=2 LMI (R7);

JZR (05H) specifies that the next microinstruction in the microprogram sequence is to be taken
from microprogram memory location 0516' JUMP microps that represent conditional Jump
functions require two, four or sixteen operands depending upon the number of possible states
tnat the condition being tested can have. The JUMP microp JFL represents a two-way condi
tional branch determined by the state of the F-Iatch in the MCU. It could appear in a specifica
tion statement as:

JFL (12H 13H)

where 1216 is the branch destination address if the F-Iatch is reset, and 1316 is the branch
destination address if the F-Iatch is set.

A specification statement may include one or more symbolic statement labels. The specification
statement:

05H: ACCESS: NEXT: JZR (4) CONT=1 KB=O MEM=2 HCZ FFO LMI (R7);

defines the two symbols ACCESS and NEXT, both of which have the value 0516 (the micro
program memory location assignment for the microinstruction word specified by this state
ment). A symbol defined in this context is called an address identifier because it represents a
particular location in the microprogram memory. Address identifiers may be used as operands
of JUMP microps, allOWing the programmer to represent program sequencing symbolically:

2-6

XMAS ADDRESS
CHECKING

SPECIAL JUMP
MICROPJMP

DEFAULT
ADDRESSING

46H: START: JZR (ACCESS) ... ,
05H: ACCESS: JCR (DO) ... ,
01H: DO: JCC (TEST) ... ,
31H: TEST: JFL (FRESET FSET) ... ,
12H: FRESET: JZR (FINISH) ... ,
13H: FSET: JZR (FINISH) ... ,
06H; FINISH: JCC (START) ... ,

As XMAS assembles specification statements, it performs Jump function checking. If XMAS
determines that a specification statement is referencing another specification statement that is
not within the range of the Jump function, XMAS will output an error message to Its list file.
The following statements illustrate an addressing error:

46H: START: JZR (ACCESS)

07H: FINISH: JCC (START)

The microp JCC represents the Jump function "Jump in Current Column." Since the micro·
instruction words specified by these two statements have not been assigned to the same column
in the microprogram memory, XMAS will report an addressing error when it assembles the
second statement.

The JUMP microps JCC, JCR and JZR are mnemonics for the MCU's unconditional Jump
functions "Jump in Current Column," "Jump in Current Row" and "Jump in Row Zero,"
respectively. The special JUMP microp JMP represents all of these unconditional Jump
functions; in other words, JMP may be used in place of JCC, JCR or JZR in any specification
statement.

46H: START: JMP (ACCESS) ... ,
05H: ACCESS: JMP (DO) ... ,
01H: DO: .JMP (TEST) ... ,
31H: TEST: JFL (FRESET FSET) ... ,
12H: FRESET: JMP (FINISH) ... ,
13H: FSET: JMP (FINISH) ... ,
06: FINISH: JMP (START) ... ,

For each occurrence of the microp JMP, XMAS will attempt to select the appropriate uncon·
ditional Jump function. If this is not possible, XMAS will report an addressing error. (There are
no addressing errors in this example.)

In cases where specification statements appear in the order in which the microinstructions they
represent are to be unconditionally executed, an explicit specification for the JUMP field is not
required. Compare the preceding example with the following:

46H: START:
05H: ACCESS:
01H: DO:
31H: TEST:
12H: FRESET:
13H: FSET:
06H: FINISH:

JFL (FRESET FSET)
JMP (FINISH)

JMP (START)

Here, Jump functions have been specified only where they are required. XMAS will attempt to
supply the appropriate unconditional Jump function when none is specified.

2·7

USER-DEFINED
MICROPS

MORE ABOUT THE
FIELD STATEMENT

EXPLICIT BIT
PATTERN
ASSIGNMENT FORMS

DEFAULTS

USER DECLARED
FIELD DEFAULT

Microps for the CPE, FI, FO and JUMP fields are intrinsic; that is, they are part of the XMAS
language. The XMAS language provides a facility that allows the programmer to define microps
to be associated with the new fields he creates. Microps for a given field are defined in the
FIELD statement that creates that field. The FIELD statement:

MEM FIELD LENGTH=3 MICROPS (READ=2 WRITE=3);

defines the field MEM and allocates three bit positions to it. The statement also defines two
microps that are to be associated with the new field MEM: READ and WRITE. READ carries a
bit pattern of 102 for the M EM field, and WR ITE carries a bit pattern of 112 for the M EM
field. In the specification statement:

24H:FETCH: JMP (ACCESS) READ LMI (R7) HCZ FFO KB=O CONT=2;

READ takes the place of the keyword assignment MEM=2.

Most of the specification statements shown in the preceding examples include an explicit bit
pattern assignment for every field in the example microinstruction word: CPE, FI, FO, JUMP,
MEM, CONT, and KB. (The only exceptions presented so far have been the cases where the
order of the specification statements implied the coding for the JUMP field.) In a specification
statement, an explicit assignment for a field can take one of two forms: a keyword assignment
or a microp assignment. But there are a number of other non-explicit mechanisms that the
programmer can employ to specify fields.

XMAS provides default bit pattern assignments for the FI and FO fields if these fields are not
otherwise specified in a specification statement. The default for the FI field is 112, which
indicates the Flag Input function "Hold C and Z Flags" (HCZ); the default for the FO field is
002, which indicates the Flag Output function "Force Flag Output to Zero" (FFO).

32H:STEP: IRL (R7) FF1 READ KB=O JUMP (FETCH);

Since FI is not specified in this statement, XMAS assigns FI its default bit pattern (112)' The
FO microp FF1 ("Force Flag Output to One"), however, provides an explicit assignment for
FO, which overrides the default.

When the programmer creates a new field via a FIELD statement, he may declare a default bit
pattern assignment for that field. The FIE LD statement:

CONT FIELD LENGTH=4 DEFAUL T=6

defines the new field CONT and declares a default bit pattern of 01102 for this field. The
specification statement:

84H: CLR (R2) JZR (FETCH) FFO HZC READ KB=O;

does not include a bit pattern assignment for the field CONT. Consequently the assembler
assigns CONT its default bit pattern as if CONT = 6 had actually appeared in this specification
statement. The default for a given field that is declared in the FIELD statement may be
overridden in a specification statement by specifying the field in some other way. For example,
the statement:

84H: CLR (R2) JZR (FETCH) FFO HZC READ KB=O CONT=2;

includes an explicit assignment for CONT, which overrides this field's default assignment.

2-8

CPE MICROP
K-BUS DEFAULTS

KBUS STATEMENT

IMPLY STATEMENT

In Series 3000 configurations, a user-defined field in the microinstruction word provides either
direct or encoded drive for the K-bus inputs to the CPE array_ Because the K-bus participates in
all CPE functions, the field serving as the K-bus field has a modifying effect on all CPE
functions. Consequently, the CPE microps, which are mnemonics for CPE functions, are
divided into two groups: those that imply an all-zero default for the K-bus field and those that
imply an all-one default for the K-bus field. The CPE microp CLR represents a "clear register"
function, and the CPE microp AN R represents an "AND register with AC" function, but CLR
(R2) and ANR (R2) both represent the identical bit pattern for the CPE field. They differ only
in that CLR implies an all-zero bit pattern for the K-bus field.

The K-bus field default that each CPE microp implies is built into XMAS. However, if these
defaults are to be effective, the programmer must identify which of the fields he has defined is
to receive these defaults. The KBUS statement provides this mechanism. The statements:

KB FIELD LENGTH; 8;
KB KBUS;

serves to define KB and to identify that field as the K-bus field, respectively. Note that the
FIELD statement is still necessary to define the field KB.

In the specification statement:

84H: CLR (R2) JZR (FETCH) FFO HZC READ CONT;2;

the bit pattern for the KB field is given by the K-bus default provided by the CPE microp CLR.
The defaults provided by the CPE microps can always be overridden by specifying the KB field
in another way.

84H: CRL (R2) JZR (FETCH) FFO HZC READ CONT;2 KB;OFH;

Here, the explicit assignment for KB overrides the all-zero default assignment that CLR
provides for KB.

A microp carries an explicit bit pattern assignment only for the field for which the microp is
defined. However, a microp can also carry default bit pattern assignments for fields other than
the one for which the microp is defined. The IMPLY statement is used to declare the defaults
that a user-defined microp carries.

CONT FIELD LENGTH;4 MICROPS (LOAD;7 GATE;17Q STOP;2 RUN;3);
RUN IMPLY FI;2 MEM;2 KB;OFH
LOAD IMPLY MEM;4

The FIELD statement defines the field CO NT and the microps LOAD, GATE, STOP and RUN
to be associated with the field CONT. The first IMPLY statement declares the defaults that the
microp RUN carries for the FI, MEM and KB fields. The second IMPLY statement declares the
default that the microp LOAD carries for the MEM field.

81H: CLR (R4) JZR (NEXT) FFO RUN WRITE;

Here, the default for the FI field that the CONT microp RUN carries serves to specify the FI
field since this field is not otherwise specified in this statement. Both CLR and RUN carry
defaults for the K-bus field KB; however, RUN's default for KB overrides CLR's default for KB.
RUN also supplies a default for the MEM field; however, the microp WRITE is an explicit
assignment for the MEM field and, consequently, overrides RUN's default for the MEM field.

2-9

DEFAULT
HIERARCHY

ADDRESS
EXTENSION

ADDRESS
EXTENSION
FIELD

ADDRESS
STATEMENT

As the preceding examples have implied, there is a hierarchy for the various mechanisms by
which the bit pattern for a given field may be supplied in a specification statement. The
following list identifies the mechanisms presented so far in their order of decreasing
effectiveness.

1. An explicit keyword or microp assignment;
2. A default carried by a user-defined microp as declared in an I MPL Y statement;
3. In the case of the field declared to be the K-bus field, the default carried by a CPE

microp;
4. The default declared for the field in the defining FIELD statement.

An explicit assignment overrides any form of default assignment. A microp carries an explicit
assignment only for the field for which it is defined. A user-defined microp carries a default
assignment for one or more other fields if that microp has appeared in an IMPLY statement.
The default carried by a user-defined microp for a given field is used in the absence of an
explicit assignment for that field. When a field is defined in a field statement, a default bit
pattern may be declared for that field. This default is overridden by any other form of
specification for that field.

The MCU, under control of the Jump field, supports a basic microprogram memory addressing
capability of 512 words (i.e., the MCU developes a 9-bit address). In Series 3000 configurations
with a microprogram memory larger than 512 words, extra address information is typically
provided by an address extension field in the microinstruction word. For example, in a micro
instruction word of the format:

6 54 3 2 o 1 0 1 0 6 5 4 3 2 o 7 6 5 4 321 021 032 1 010
I CPE I FI I FO I JUMP I KB I MEM I CO NT I XA I

the field XA is a 2-bit address extension field. This field may be viewed as providing the
information required to select one of four possible planes in the microprogram memory. (Each
plane consists of 32 rows and 16 columns, as·addressed by the MCU.) Thus, for this example,
the location of microinstruction word is identified by an 11-bit address, consisting of a plane
address (2-bits), a row address (5-bits) and a column address (4-bits).

The microprogrammer declares an address extension field in the following way:

XA FIELD LENGTH = 2;
XA ADDRESS;

The field statement defines a new 2-bit field called XA. The ADDRESS statement identifies the
XA field as an address extension field.

Declaring a field to be an address extension field completely relieves the programmer of the
responsibility of making a bit pattern assignment for this field in a specification statement, as
the following example demonstrates.

463H: NEXT
223H: JMP (NEXT)

In processing the second statement, XMAS will use the 2 high-order bits of the jump destina
tion address (463H:) as the bit pattern assignment for the XA field.

463H:-+ 10001 1 000 1 1 -..-------plane row column

In this case, the XA field will receive a bit pattern assignment Of 1'0:1, which is the plane address
of the target microinstruction represented by the first statement.

2-10

VALUE
STATEMENT

VALUE
IDENTIFIER

STRING
STATEMENT

COMMENTS

2.2

SOURCE FILE

Programmers often find it desirable to use a symbol to represent a frequently used constant.
The VALUE statement allows the programmer to define a symbol and associate a numeric value
with it.

For example, the VALUE statements:

MASK1 VALUE OFH;
MASK2 VALUE NOT MASK1 AND OFFH;

define the symbols MASK1 and MASK2. The expression in the second statement gives MASK2
a value of FOH.

A symbol defined in a VALUE statement is called a value identifier. A value identifier may be
used anywhere an expression is allowed. For example, in the specification statement:

84H: TZR(R2) KB = MASK2 READ RUN JZR(FETCH);

MASK2 supplies the bit pattern for the KB field.

A microprogrammer may find that a particular group of symbols occur frequently in his XMAS
language program. For example,

READ RUN JZR(FETCH)

might often appear together in specification statements. The STRING statement allows the
programmer to define a symbol and associate a character string with that symbol. For example, .
the STRING statement:

DONE STRING 'READ RUN JZR(FETCH)';

associates DONE with the string of characters enclosed in the single quote (') characters. DONE
can be used in any specification statement in place of the character string it represents. For
example, the specification statements:

84H: TZR(R2) KB=MASK2 DONE;

and

84H: TZR(R2) KB=MASK2 READ RUN JZR(FETCH);

are functionally equivalent.

Comments can make a program more readable and greatly enhance the program's documenta·
tion value. In the XMAS language, any sequence of characters enclosed in /* and * / is treated as

a comment.

/* THIS IS A COMMENT */

A comment may appear anywhere a blank character is allowed.

STATEMENT CHARACTERISTICS, CHARACTER SET AND RESERVED WORDS

XMAS reads source statements from a source file. An XMAS source file consists of a sequence
of physical records, each of which may contain up to 120 characters. The XMAS source file is
discussed again in Section 3.1.

2·11

CONTROL
COMMANDS

FREE FORMAT

CHARACTER SET

RESERVED WORDS

2.3

SYNTAX

IDENTIFIER
LENGTH

NULL CHARACTER

IDENTIFIER TYPES

UNIQUE
DEFINITION

A dollar sign($) in character position one of input record is used to identify a Control Language
statement. Control Language statements are used to select certain assembly option such as list
file format. Strictly speaking, Control Language statements are not considered part of the
XMAS Language, and their discussion is deferred to Section 9.

XMAS Language statements are free format; physical record boundaries and character position
within a record are not significant. There are no restrictions as to where a statement begins or
ends or how long it is. A statement may span several records, or more than one statement may
be wholly or partially contained within a single record. The semicolon (;), when it appears
outside a comment, marks the end of a statement.

Spaces and commas may be used freely between statement elements to enhance readability. A
comment may appear anywhere a space is allowed. XMAS treats the period (.) as a null
character. The period may be used to punctuate only identifiers and integers (where spaces or
commas are not allowed).

The XMAS language character set includes the characters shown in Table 2·1. All characters not
shown in the table are treated as spaces by XMAS.

Symbolic names that are intrinsic to the XMAS language are called reserved words. XMAS
reserved words are listed by catagory in Table 2·2.

IDENTIFIERS

Symbolic names are formally called identifiers. The following rules govern the formation of an
XMAS identifier:

(jdentifier) :: = (letter) [~:i:~~}] ...

(letter):: = A!B!C!D!E!F!G!H!I!J!K!L!M!
N!O!P!Q! R !S!T!U!V!W!X!Y!Z!

(digit) :; = O! 1 !2!3!4!5!6!7!8!9

These rules state that an identifier is composed of a letter optionally followed by any combina·
tion of letters and digits.

There is no restriction as to the length of an identifier; however, only the first seven characters
are significant in establishing the uniqueness of an identifier. Examples of valid identifiers are:

X Y4Y INPUTSTART INPUTST

where the last two examples will be treated as the same identifier. The period (.), which is
treated as a null character, may be freely inserted between the characters of an identifier to
improve its readability. For example, the identifiers LEFTBIT and LEFT. BIT are equivalent,
although their visual effects are different.

The context in which an identifier ·is defined determines the attributes of that identifier and the
way in which that identifier may be employed in other statements. These are five types of
identifiers that the programmer may define in an XMAS language program. Table 2·3 summa·
rizes these identifier types. For more detai led information about an identifier type, refer to the
subsection that describes the defining statement.

Every identifier in an XMAS language program must have a unique meaning. In other words, a
given identifier can be defined only once in an XMAS language program. For example, the
identifier ABC cannot be defined as, say, both an address identifier (i.e., a specification

2·12

TABLE 2-3. SUMMARY OF USER-DEFINED IDENTIFIER TYPES

IDENTIFIER TYPE HOW DEFINED ATTRIBUTES VALID USAGE

Value identifier In a VALUE statement. Carries a numeric value. May appear in any expression

in any statement following
the defining statement.

Address identifier By appearing as a label Carries a numeric value May appear in any expression
on a specification of the microprogram in any specification
statement. memory location it statement.

represents.

Field name In a FIELD statement. Symbolizes a field in Used in statements to refer
(user-defined) the microinstruction programmatically to the

word. field it represents (e.g.,
keyword assignment in a
specification statement).

Microp By appearing in the Carries an explicit bit May appear in one IMPLY
(user-defined) MICROPS portion of pattern assignment for statement.

a FIE LD statement. the field for which it May appear in any specifica-
is defined. tion statement.
If it has appeared in an
IMPL Y statement,

carries default bit
pattern assignments for
one or more other
fields.

String name In a STRING statement. Represents a character May appear anywhere the
string. character string it represents

would be valid.

2-13

2.4

SYNTAX

BASE DESIGNATORS

NULL CHARACTER

INTEGER RANGE

2.5

statement label) and a field name, even though the context is different. The XMAS reserved
words are intrinsically defined; they may not be redefined by the programmer.

INTEGERS

The XMAS Language supports decimal, binary, octal and hexadecimal integer representations.
The following rules govern the formation of XMAS language integers:

(integer):: = (decimal integer)!
(binary integer)!
(octal integer) !
(hexadecimal integer)

(decimal integer):: = {(decimal digit)} ... [0]

(binary integer):: = {(binary digit)} ... 8

(octal integer):: = {(octal digit)} ... {g}
(hexadecimal integer):: = (decimal digit) [(hexadecimal digit)] ... H

(decimal digit):: = O! 1 !2!3!4!5!6!7!8!9

(binary digit):: = O! 1

(octal digit):: = O! 1 !2!3!4!5!6!7

(hexadecimal digit) :: = O! 1 !2!3!4!5!6!7!
8!9!A!8!C!D!E!F

The base designator for a decimal integer (D) is optional; the base designator for a binary
integer (8), an octal integer (Q or 0) or a hexadecimal integer (H) is required. The leading
character of a hexadecimal integer must be a decimal digit; a leading zero is always sufficient.

Examples of valid XMAS integers are:

2 32Q 1108 33FH 55D 55

The period (.), which is treated as a null character, may be freely inserted between the char·
acters of an integer to improve its readability. For example, the integers 3467 and 3.467 are
equivalent, although their visual effects are different.

An integer is a digit string that represents a number. The range of legitimate integers is:

that is, integers may have 3 64·bit precision. If an integer exceeds this value, an error message
will be output to the list file, a one value will be substituted, and assembly will proceed.

EXPRESSIONS

The following rules govern the formation of an XMAS expression:

(expression) ::= (term) [{ ~~R}lTERM)

2-14

PRECISION

RANGE

TRUNCATION

OPERATORS

2.6

(term):: = (subterm) [AND(subterm)] ...

(subterm) :: = (factor) [{ ~~ ~} Jfactor)

(factor):: = [NOT] (primary)

(primary):: = (value identifier)!
(address identifier)!
(integer)!
(expression»)

Examples of valid XMAS expressions are:

26H
FETCH
LOW+2

NOT (X AND Y OR Z)

where each of the identifiers (FETCH, LOW, X, Y, and Z) is assumed to be either a value
identifier (defined in a value statement) or an address identifier (defined by appearing as a
specification statement label)' Other types of identifiers (e.g., microps and register names) are
invalid in expressions.

An expression evaluation yields a single numeric result. XMAS obtains a value for an expression
by performing the indicated arithmetic and logic operations on the actual numeric values of the
primaries. Primaries are considered to have a 64·bit precision, and the result of an expression
evaluation has a 64·bit precision. The result of an expression evaluation must be a value in the
range:

0';;; value';;; 264 - 1.

In the event of an overflow, only the least significant 64 bits are retained. A constant which
exceeds 264 is replaced by 1 and an error message is generated.

The context of an expression in an XMAS language program determines how many bits of the
result are actually used. For example, if an expression is used to supply a value to be assembled
into a four·bit field, the four low·order bits of the result of the expression evaluation are used.
If any higher order bit of the result is not zero, XMAS outputs a truncation error warning
message to the list file.

Table 2-4 summarizes the XMAS language operators and identifies their precedence. If several
operators of equal precedence occur at the same level of evaluation, then the order of evalua·
tion among those operators is from left to right. Parentheses are used to override the assumed
precedence.

COMMENTS

Comments are explanatory remarks, which may appear in an XMAS language program to
improve the program's readability and documentation value. The form of an XMAS comment
is:

(comment):: = /*(character string excluding *)* /

2·15

2.7

SYNTAX

SEMICOLON

2_8

TABLE 2-4_ EXPRESSION OPERATORS

OPERATOR MEANING PRECIDENCE

NOT Logical complement First
SHL Logical shift left Second
SHR Logical shift right Second
AND Logical AND Third
OR Logical OR Fourth
XOR Logical exclusive 0 R Fourth
+ Arithmetic addition Fourth

The following is an example:

/* THIS IS A COMMENT *f

An XMAS comment may appear anywhere a blank character is permitted.

XMAS LANGUAGE PROGRAM

The following rules govern the structure of a program:

(program):: = [(declaration part>]
(specification part) EO F

(declaration part):: = { (declaration statement); } ...

(declaration statement> :: = (string statement)!
(value statement)!
(field 'statement>!
(imply statement)!
(k-bus statement>!
(address statement)

(specification part) :: = (specification statement>;

The (declaration part) of a program is syntactically optional, but in nearly all practical programs
a (declaration part) will be present. The (specification part> is, however, required; an error
message will be issued if the (specification part> is missing. A program is terminated by the
reserved word EOF.

A semicolon (;) is required to mark the end of each statement in the program. A missing
semicolon, if detected, causes an error message to be issued. Also, an error message will be
issued if a declaration statement appears in the (specification part>, or vice-versa.

Subsequent subsections discuss each of the statement types.

STRING STATEMENT

The STRING statement defines a string identifier and associates it with a character string.

2-16

SYNTAX

CONCATENATION
OF STRINGS

STRING LENGTH

EXAMPLE

(string statement)::; (string identifier) STRING
{(character string) } ...

(string identifier) :: ; (identifier)

The reserved word STRING is followed by one or more (character string)s enclosed in single
quote I') characters. When more than one quoted (character string) is present, concatenation of
the individual strings is implied. For example the separate strings:

'ABC' 'DEF' 'GHI'

are equivalent to the single string:

'ABCDEFGHI'

When XMAS encounters a string identifier in the text of the program outside a comment or a
STRING statement, XMAS treats the string identifier as if the (character string) it represents
were actually there in its place. In other words, the microassembler substitutes the character
string for the string identifier; however, the substitution does not appear in the list file.

The implementation of XMAS on a particular host computer system imposes a restriction on
the number of string characters the microassembler can store while assembling an XMAS
language program. However, the restriction applies to the total number of characters in all
(character strings) in the program rather than to the number of characters in a particular
(character string). If the total program string length limit is exceeded, XMAS will output an
error message to the list file, and abort the operation (i.e., XMAS will exit).

A string identifier may not appear in the quoted part of a STRING statement. With this
exception, a (character string) may be composed of any sequence of characters. To be useful,
however, the <character string) must have validity in the context of some other XMAS language
statement. A single·quote character I') may be in a (character string) by representing it by two
consecutive quotes. For example, the statement:

QUOTE STRING "";

defines the string identifier QUOTE and associates it with a (character string) consisting of one
single·quote character.

The creation of a string identifier that may serve as a new microp that supplies a non·intrinsic
default (not all-zeros or all-ones) to the K-bus field is one example of the use of the STRING
statement. The statement:

SRAM STRING 'KB; 101101B SRA'

defines SRAM in such a way that it may be employed like an intrinsic CPE microp in specifica
tion statement. When

SRAM{AC)

appears in a specification statement, XMAS will treat it as if

KB; 101101B SRA{AC)

has actually appeared. Note, however, that SRAM carries an explicit assignment for the field
KB (assumed to be the user-defined K-bus field) rather than a default assignment.

2-17

2.9

SYNTAX

EXAMPLES

2.10

SYNTAX

FIELD NAME

LENGTH

VALUE STATEMENT

The VALUE statement defines a value identifier and associates it with a numeric value.

(value statement) :: ; (value identifier) VALUE (experssion)

(value identifier)::; (identifier)

The value to be associated with the value identifier is the result of the evaluation of the
expression. The expression may not contain any identifier other than a label that has not been
declared in some previous VALUE statement.

Assuming that they appear in a program in the order shown, the following is an example of two
valid VALUE statements:

ONE VALUE 1;

NOT·TWO VALUE NOT (ONE +1) AND OFFH;

The statement:

JZR VALUE 47FH;

is invalid because the identifier JZR is reserved word.

A value identifier may be employed as a primary in an expression in any statement subsequent
to the one in which that value identifier is declared. In other words, a value identifier must be
declared before it is referenced.

Using a value identifier instead of an integer or a complex expression often makes a program
easier to modify. For example, if a particular constant is represented as an integer in 20
specification statements in a program, all 20 statements would have to be changed in order to
change the constant. If, however, that same constant is represented by a value identifier in
every statement, only the declaring VALUE statement need be changed.

FIELD STATEMENT

The FIELD statement declares and describes a new field. The FIELD statement defines a field
name to represent the new field, and it may optionally define microps to be associated with the
new field.

(field statement) :: ; (field name) FIE LD (field spec) ...

(field name) :: ; (identifier)

(field spec):: ; LENGTH; (integer) ! DEFAULT; (expression)

MICROPS ({(microp); (expression)} ...)

The first rule states that a FI ELD statement must consist of a field name followed by the
reserved word FIELD; the reserved word FIELD may be followed by one or more (field spec)s,
although none are required, The field name that appears in the first rule is the symbolic name
to be used to represent the field being created. The second rule defines the three forms that a
(field spec) may take. Each of these forms may appear once at most in a given FI ELD
statement. There is no restriction as to the order in which the (field spec)s may appear.

The LENGTH (fi~ld spec) is used to specify the length attribute of the field being created. The
value following the assignment operator (;) is the number of bit positions in the microinstruc·
tion word to be allocated to the new field. This value must be expressed as an integer; more

2·18

DEFAULT

MICROPS

MAXIMUM
MICROINSTRUCTION
SIZE

2.11

complex expressions are not allowed. If the LENGTH (field spec) does not appear in a FI ELD
statement, the field is allocated one bit position. For example, the statement:

K2 FIELD LENGTH = 3;

creates a new field called K2 and allocates three bit positions to it. The statement:

K1 FIELD;

creates a new field called K 1 and allocates one bit position to it.

The DEFAULT (field spec) is used to declare a default bit pattern for the field being created.
The default bit pattern is the truncated value of the expression that follows the assignment
operator (=). The default bit pattern declared in the DEFAULT (field spec) is the lowest in the
hierarchy of defaults for the field (field default hierarchy is discussed in Section 2.14). If the
DEFAULT (field spec> does not appear in the FIELD statement, the field being created has no
default bit pattern associated with it; that is, XMAS does not automatically supply a default bit
pattern for the field. In the two example statements shown above neither the field K1 nor the
field K2 has a default bit pattern associated with the field itself. (However, microps bound to
other fields may imply a default bit pattern for these fields, as discussed in Section 2.11.)

The MICROPS (field spec) defines one or more microps and associates them with the field being
created. The parentheses following the reserved word MICROPS enclose a list of one or more
microp declarations of the form:

(microp) = (expression)

The truncated value of the expression is the bit pattern the microp represents for the field. A
microp may imply default bit patterns for fields other than the one with which it is associated.
However, the default bit patterns that are implied by a particular microp are declared in an
I MPL Y statement (Section 2.11), not in the FIELD statement. The statement:

CLOCK FIELD DEFAULT = 1 MICROPS (NO.CLOCK = 0);

creates a one·bit field called CLOCK with a default bit pattern of 1, and it defines the microp
NO.CLOCK, which is to be associated with that field and is to represent a bit pattern of 0 for
that field. In the statement:

LOAD FIELD LENGTH = 2 DEFAULT = 0 MICROPS (LOADA = 1 LOADB = 3);

two microps are defined for the field LOAD.

The concatenation of the intrinsic fields (JUMP, CPE, FI, and FO) constitutes the initial
microinstruction word when assembly of an XMAS language program begins. As the micro
assembler encounters each FIE LD statement, it concatenates the new field to the current
microinstruction word. XMAS is capable of supporting a microinstruction word up to 64 bit
positions. Because the intrinsic fields require a total of 18 bit positions, the combined require·
ment of user-defined fields cannot exceed 46 bit positions.

IMPLY STATEMENT

A microp may imply default bit patterns for fields other than the field for which it is defined.
The IMPLY statement provides the mechanism for associating these default bit patterns with a
microp. The following rules define the IMPLY statement:

2-19

SYNTAX

2.12

SYNTAX

K-BUS DEFAULTS

EXAMPLE

2.13

(imply .statement) :: = (microp) IMPLY (imply list>

(imply list> :: = {(field name) = (expression)} ...

The (microp) may be either a user·defined microp (defined in a FIELD statement) or an
intrinsic microp.

The second rule states that the (imply list> consists of one or more items of the form:

(field name) = (expression)

Here, the field name identifies either an intrinsic or user-defined field other than the field for
which the microp is defined.

For example, the statement:

LOADB IMPLY GATE=O CCTL=1100B;

associates with the microp LOADB a default of 12 (l100B) for the field CCTL. Whenever the
microp LOADB appears in a specification statement to specify the field for which it is defined,
these default values will be assembled into the fields GATE and CCTL unless these fields are
explicitly specified.

KBUSSTATEMENT

The KBUS statement identifies the user-defined field that is to be treated as the K·bus field.

(k-bus statement> :: = (field name) KBUS

The field name must be defined in a FIELD statement somewhere else in the program. In other
words, a KBUS statement does not create a new field; it merely ascribes a "K-bus attribute" to
a field whose existance is established in a FIELD statement. Only one KBUS statement may
appear in a program.

The microps that are associated with the intrinsic CPE field all imply either an all-zero or an
all-one default bit pattern for the K-bus field, since the K-bus inputs to the CPE array partici
pate in every function that the CPE array performs. The KBUS statement identifies the
user-defined field that is to receive CPE microp K-bus defaults. K·bus defaults may, of course,
always be overridden in a specification statement by an explicit specification of the K-bus field
or by an implication from another microp.

The two statements:

KB FIELD LENGTH = 16 MICROPS (HI.BYTE = OFFOOH LO.BYTE = OFFH);

KB KBUS;

define the field KB and identify KB as the K-bus field, respectively. Note that the FIELD
statement does not declare a default for the KB field, since that default would always be
overridden by a CPE microp K-bus default. The FIE LD statement does, however, declare two
microps, which may be used in specification statements, when required to override the K-bus
defaults that the CPE microps provide.

ADDRESS STATEMENT

The ADDRESS statement identifies the user-defined field that is to be treated as the micro
program memory address extension field.

2-20

SYNTAX

ADDRESS
EXTENSION FIELD

XMAS HANDLES
ADDRESS
EXTENSION FIELD

EXAMPLE

2.14

SYNTAX

MICROPROGRAM
MEMORY ADDRESS
ASSIGNMENT

ADDRESS IDENTIFIER

(address statement):: = (field name) ADDRESS

The field name must be defined in a FIELD statement elsewhere in the program.

The MCU developes a 9·bit microprogram memory address, which provides a basic addressing
capability of 512 words. One method of addressing a microprogram memory larger than 512
words is to allocate an address extension field to the microinstruction representation, which
may serve as a memory "plane select" field. The ADDRESS statement identifies such a field to
XMAS.

XMAS assembles the high·order address bits needed to address the desired microprogram
memory word into the field identified in the ADDRESS statement. The microassembler obtains
the information to generate the extra address bits from the integer address, which appears in
every specification statement. Consequently, the programmer need not explicitly specify the
contents of the address extension field.

The two statements:

XADR FIELD LENGTH = 2;

XADR ADDRESS;

define the field XADR and identify it as an address extension field, respectively.

SPECIFICATION STATEMENT

A specification statement specifies, either explicitly or implicitly, the bit patterns for each field
of a single microinstruction word and assigns that word to a microprogram memory location.
Optionally, a specification statement may define one or more address identifiers.

(specification statement) :: = (label part) { (fields part) } ...

(label part) :: = [*] (integer): [(address identifier):] ..

(address identifier) :: = (identifier)

(fields part) :: = ~ (field name) = (expression) ~
(microp)
(CPE microp) (register name»)

<JUMP microp) ({(expression) } ...)
*

The first rule states that a specification statement consists of a (label part) followed by one or
more (fields part>s.

The (label part> must include a construct of the form:

(integer):

The value represented by the integer is the microprogram memory address assignment for the
microinstruction word specified by the statement. All integer representations are permitted
(Section 2.3), but the integer value must be between 0 and n·1, where n is the number of words

in the microprogram memory. Furthermore, a given integer may appear in the (label part) of
only one specification statement. The significance of the optional asterisk (*), which may
appear before the integer in the (label part), is discussed later in this section.

An address identifier is defined when it appears in the (label part) of a specification statement in
the form:

(address identifier):

2·21

FIELD
SPECIFICATION
FORMS

KEYWORD
SPECIFICATION

FI, FO OR USER
DEFINED MICROP

CPE MICROP

JUMP MICROP

EXAMPLE

The (label part) may include any number of address. identifiers, but none is required. Each
address identifier takes on the value of the microprogram memory address assignment for the
statement (j.e., the value of the integer in the (label part»). An address identifier represents
symbolically the microprogram memory location of the microinstruction word specified by the
statement; it is, therefore, useful as an operand of a JUMP microp to indicate microprogram
sequencing. In general, an address identifier may be employed in any specification statement
where an expression is allowed.

Each (fields part) of a specification statement may take one of four forms, as shown in the third
rule above. I n the form:

(field name) = (expression)

The field name identifies the field that is to receive the bit pattern suppl ied by the value of the
expression truncated to the length of the field. This form of field specification is called a
keyword specification. A keyword specification is an explicit specification for one field; it
carries no implications for any other fields in the microinstruction word.

Another form that a (fields part) may take is simply:

(microp)

Here, the microp is either an intrinsic or user-defined microp (other than a CPE microp or
JUMP microp). The microp carries an explicit bit pattern assignment for the field for which it is
defined. If the microp has appeared in an IMPLY statement, the microp carries default bit
pattern assignments for one or more other fields. Default hierarchy is discussed later in this
section.

The (fields part) may take the form:

(CPE microp) (register name»)

The CPE microps and register names are listed in Table 2-2. This (fields part) form is an explicit
assignment for the CPE field. All CPE microps carry a default pattern for the K-bus field.

The final form that the (fields part) may take is:

(JUMP microp)({(expression)} ...)
*

The JUMP microps are listed in Table 2-2. The parentheses enclose one or more operands. Each
JUMP microp symbolizes one of the MCU's conditional or unconditional Jump functions.
Unconditional JUMP microps require one operand; conditional JUMP microps require two, four
or sixteen operands depending upon the microp. Each operand represents one of the micro
program memory addresses that may be the target of the Jump function. An operand may
appear as any valid expression; typically the expression consists of simply an address identifier,
which is defined in the (label part) of another specification statement. An asterisk (*) may
appear in place of an expression only in the context of a conditional Jump function; its
meaning in this context is discussed below .

.The following specifications statement includes examples of each of the four (fields part) forms:

41H:L1:L2: CONT=15 READ ADR(R7) JZR(FETCH);

This specification statement specifies the microinstruction word at location 4116 of the micro
program memory. The statement defines the address identifiers L 1 and L2, either of which may
be used in other specification statements to reference this microinstruction word. CONT=15· is

2-22

XMAS ADDRESS
CHECKING

USE OF THE
OPTIONAL ASTERISK

XMAS
GENERATED
ADDRESSING

DEFAULTS

a keyword specification for the user-defined field, CONT, which must have been defined in a
FIELD statement. READ is a microp associated with some user-defined field; READ must have
been declared in the FIELD statement that defined the field with which READ is associated.
READ carries an explicit bit pattern assignment for its field. If READ has appeared in an
IMPL Y statement, READ carries a default bit pattern assignment for one or more other fields
(e.g., FI and/or FO). XMAS will supply a default bit pattern assignment for the FI and/or FO
fields if these fields are not otherwise specified. ADR(R7) makes an explicit bit pattern assign
ment for the CPE field. ADR (as do all CPE microps) carries a default bit pattern assignment
for the K-bus field. If a user-defined field name has appeared in a KBUS statement, then this
field will receive the K·bus default assignment. If a K-bus field has not been identified, the CPE
K-bus default is not used. JZR (FETCH) is an explicit bit pattern assignment for the JUMP
field. Here, the identifier FETCH would be normally an address identifier (i.e., it appears in the
<label part) of another specification statement}, but it could be a value identifier (defined in a
VALUE statement).

XMAS handles the JUMP field in a special way. Each JUMP microp represents an MCU Jump
function. When a JUMP microp appears in a specification statement, XMAS determines the
subset of microprogram memory locations that the microinstruction word being specified is
capable of referencing from its location in the microprogram memory using the indicated JUMP
function. The operand or operands of the JUMP microp must represent locations in this subset,
or XMAS will output an error message to the list file. The JUMP microp JZR requires its target
address to be in row zero of the microprogram memory. Consequently, in the previous
example, FETCH must represent a value in the range 0 to 15 if the microinstruction word that
FETCH defines is to be reached using the JZR Jump function. For a conditional Jump function
such as:

JRL (L1 L2 L3 L4)

each operand must represent a target address that is reachable, and the operands must be listed
in their ascending order of value.

If the programmer knows that a conditional jump will never select a particular target, say L3
(i.e., the corresponding condition will never occur!. an asterisk (*) may be substituted for the
operand:

JRL (L1 L2 * L4)

The asterisk relieves the programmer of the responsibility of supplying a valid operand. If an
asterisk appears in the (label part) of a specification statement, XMAS will not perform address
checking for that statement. For example, in the statement:

*41:L1: CCTL;15 LOADA ADR(R7} JZR(FETCH};

an error will not be reported if FETCH is out of range. Typically address checking is overridden
in this fashion when the programmer knows that address bits from an external source will be
forced onto the microprogram memory address bus (e.g., an interrupt).

If an explicit specification for the JUMP field does not appear in a specification statement,
XMAS will attempt to supply an unconditional jump code that will allow the microinstruction
currently being specified to access the microinstruction specified by the next specification
statement in the source file. If XMAS is unable to supply an appropriate jump code (i.e., the
next specification statement is for a microprogram memory location that is out of range),
XMAS will output an error message to the list file.

Every specification statement must provide either an explicit or implicit assignment for every
field in the microinstruction word, except the JUMP field as discussed above. The

2-23

DEFAULT
HIERARCHY

microinstruction word includes the four intrinsic fields (CPE, JUMP, FI, and FO), as well as all
fields the user has established in FIELD statements. The ways in which a given field can be
specified, in order of decreasing effectiveness, are:

1. An explicit keyword or microp assignment;
2. A default assignment from a microp bound to another field, as declared in an IMPLY

statement;
3. In the unique case of the K-bus field, a default assignment from a CPE microp;
4. The field's default assignment, as declared in the FIELD statement or supplied by XMAS

for the F I and FO fields.

This means, for example, that an explicit assignment for a given field always overrides any
default assignment for that field.

2-24

LIST FILE

3.1

SOURCE RECORDS

RECORD NUMBERS

BIT PATTERNS

FIELD NAME
ORDERING

SELECTING
OPTIONS

SECTION 3
XMAS LISTING OUTPUT

In assembling an XMAS language program, XMAS is capable of generating the following
reports:

• Listing of XMAS language source statements and assembled bit patterns;
• Cross reference directory;
• Graphic representation of the microprogram memory image.

The user selects the information he wants via the control language (Section 9).

XMAS outputs the selected information to the FORTRAN data file that has been designated as
the list file. The list file is page oriented; running error and page counts are given at the top of
each page. Via the control language, the user can specify an optional page title, the number of
lines per page, the number of characters per line, and the form feed mode to be used between
pages. The list file width must be a minimum of seventy· two characters.

Subsequent subsections describe the XMAS reports.

XMAS SOURCE STATEMENTS AND BIT PATTERNS

The user may choose to have both his XMAS language statements and the bit patterns produced
from the assembly of XMAS specification statements included in the list file. A partial listing is
shown in Figure 3·1.This sample is intended to illustrate output format only; it does not
necessarily represent a meaningful XMAS language program.

Each record from the source file is written to the list file left justified in column 8. The records
are copied to the list file exactly as they appear in the source file unless the line width of the
list file is too small to accommodate the entire record. In this case, the remaining characters of
the source record are written in the next line of the list file, again left-justified in column 8.
Each record in the source file, beginning with the first XMAS language statement, is assigned a
sequential record number. This record number appears as a decimal integer in the list file in
columns 1 through 5 of the line in which the corresponding record appears. Record numbers
run from 1 through 3276710; if more source records exist, the numbering simply starts
again at 1.

A bit pattern produced by an XMAS specification statement is displayed in the list file on the
line immediately following the specification statement. The line is left justified in column 8 and
contains the hexadecimal representation of the address of the microinstruction word (in paren
theses) followed by the binary bit pattern broken out into the fields of the microinstruction
word.The CPE field is given first, followed by the FI field, the FO field, the JUMP field, and
finally the user-defined fields in the order in which they are defined. The field names appear at
the top of each page below the page header. The bit positions are numbered within each field
with the rightmost bit of a field numbered zero. If a bit pattern is too long for the line width of
the list file, it is broken between fields and continued on the next line. Continuation lines are
left justified to begin directly below the beginning of the CPE field. Two blank lines are written
between a line containing a bit pattern and the subsequent line containing an XMAS specifica
tion statement.

It is possible to select only the source file records for display in the list file. In this case, the
XMAS language statements are written to the list file as described above. Field names and bit
position numbers do not appear at the top of each page.

It is also possible to select only the bit patterns for display in the list file. In this case, the bit
patterns are displayed as described above with the addition that the record number of the
beginning of the corresponding XMAS specification statement appears in columns 1 through 5.

3-'

XMAS VERS 1.0 THIS IS A SAMPLE OF XMAS OUTPUT ERRORS= 0 PAGE 10

RECORD CPE FI FQ JUMP MASK MEM
NUMBER 6543210 10 10 6543210 876543210 2J0

108 /* DEFINE KBUS FIELD TO HAVE LENGTH 9 */
109 MASK FIELD LENGTH=9 DEFAULT=0;
110 MASK KBUS;
111 MEM FIELD LENGTH=3 DEFAULT=0;
112 140: M12: ILR(R2) FI=0B FO=0B MASK=000H JMP(GST);

(008CH) 0000010 00 00 0100110 000000000 000

113 141: M13: ILR(R2) FI=0B FO=0B MASK=000H JMP(GST);
(008DH) 0000010 00 00 0100110 000000000 000

114 142: M14: ILR(R2) FI=OB FO=OB MASK=OOOH JMP(GST);
(008EH) 0000010 00 00 0100110 000000000 000

115 6: GST: ADR(R9) MASK=lFFH JLL(WD1,WI1,BD1,BI1);
(0006H) 01 11 001 00 1 1 1 101 111 1 1 11 1 1 1 11 000

116 18: SDR(R0) MASK=lFFH; 17: SDR(R1) MASK=lFFH;
(0012H) 0100000 11 11
(0011H) 0100001 11 11

01 1 0001 1 1 1 1 1 1 1 1 1 000
0011 11 1 1 1 1 11 1 1 1 1 000

117 497: SDR(R2) MASK=lFFH; 500: SDR(R3) MASK=lFFH;
(01F1H) 0100010 11 11 0110100 111111111 000
(01F4H) 0100011 11 11 0110101 111111111 000

118 175:
119
120

(00AFH)

SDR(R9) MASK=lFFH JPX(MO,M1,M2,M3,M4,
M5,M6,M7,M8,M9,M10,M11,M12,M13,
M14,M15);

0101001 11 11 1111000 111111111 000

121 150: L1: ILR(R2) FI=0B FO=0B MASK=000H JMP(GST); I'"~ ENTRY
(0096H) 0000010 00 00 0100110 000000000 000

122 FOR GLOBAL VARIABLES "~'I 151: L2: ILR(R2) FI=0B FO=0B
123 MASK=000H I'"~ ALTERNATE ENTRY FOR GLOBAL VARIABLES "~'I
124 JMP(GST); 152: L3: ILR(R2) FI=0B FO=0B MASK=000H

(0097H) 0000010 00 00 0100110 000000000 000

125 JMP (GsT) ;
(0098H) 0000010 00 00 0100110 000000000 000

Fig. 3·1. Example of XMAS Source Statements and - Bit Patterns

ERROR MESSAGES

3.2

EXAMPLE

3.3

CELL FORMAT

LIST FILE
CONSTRAINS
FORMAT

Any error messages will be output to the list file by XMAS. A summary of the XMAS error
messages is listed in Appendix G.

CROSS REFERENCE DIRECTORY

The cross reference directory contains an alphabetical list of all XMAS specification statement
labels and, for each label, a list of record numbers in which the label is referenced. The record
number corresponding to the record in which the label is defined is enclosed in parentheses.
Figure 3-2 illustrates the format of the cross reference directory.

CROSS REFERENCE DIRECTORY

LABEL

GST
L1
L2
L3
M12
M13
M14

Figure 3-2. Example of Cross Reference Directory

MICROPROGRAM MEMORY IMAGE

REFERENCES

112,113,114,(115).121,124,125
(121)
(122)
(124)
(112),119
(113).119
(114),120

The microprogram memory image is a graphic representation of the contents of the micro
program memory produced by an XMAS assembly. Jump functions and their targets are
emphasized in the image, since the principle purpose of the image is to ease the job of relocat
ing microinstructions. The image consists of an array of cells, each of which represents one
microprogram memory location and the microinstruction word it contains. The image has
sixteen columns and as many rows as are necessary to encompass the microprogram address
space. Figure 3-3 shows a sample of an image produced for a list file with sixty lines per page
and a line width of 132 characters.

A typical cell of the array has the form:

s1
n1

n2
n3

..
Fig. 3-2. Example of Cross Reference Directory

where:

s1 is the JUMP microp for this cell.
n1 is the hexadecimal target address of this cell; if the jump function is conditional, the

value is the first closest address in the set of contiguous addresses reachable by the
jump function.

n2 is the record number of the specification statement that specifies this cell.
n3 is the number of cells that have this cell as their target.

The actual format of the image depends on the line width of the list file. Ii the line width is 132
characters, sixteen columns of the image will appear across the page. If the line width is less
than 132 characters, the image will be printed in two halves with the first eight columns of all
rows printed first followed by the last eight columns of all rows. In either case, as many
complete rows of image as possible will be printed on each page.

3-3

XMAS VERS 1.0 THIS IS A SAMPLE OF XMAS OUTPUT ERRORS= o PAGE 10

MICROPROGRAM MEMORY IMAGE

OH I H

JCR' JCR ,',
, OOOIH ' 0002H -

OOOH
423 '

5 '
254 ,',

7 .,

2H

JCP -
0005H "

524 ..
3 -

3H

JCC -
0013H -

229 -
8 -

4H 5H 6H 7H

JPR' JPX' JCC
, 0020H ' 0050H ' OOIOH

429 '
9 '

113 '
4 '

119
II

8H 9H

JCR' JCR'
0009H ' OOOAH -

221 '
10 '

90 -
4 ..

AH BH CH DH EH FH

JCR JCC" JPR' JPX' JCC' JCC'
OOOBH - OOIBH - OOIOH ' 0040H ' 007BH ' 005FH '

,',
421

3 -
79 ,',

2 -
36 '

6 '
84 '

6 '
224 '

13 '
524 '

I '
----------------*-------*-------*-------------------------------=---------------*-------*-------*--------------------------------

JCC' JCC
, 0040H ' 0051H -

OOIH
534 '
II '

438 -
2 -

JCC' JCR' JCR' JCC
* 0034H ' 0016H ' 0017H ' 0077H

JPR -
0030H

JPX -
- 0060H

238 -
I -

234 -
12 -

12 '
5 '

56 '
8 '

153 '
I '

523
I

JCC '
0068H '

642 '
2 '

- JLL-
- 0014H

73 "
7 -

JPX -
0050H

JCR' JCR' JPR' JCC'
* OOIDH ' OOIEH ' 0030H ' 007FH '

276 -
5 -

375 '
3 '

224 '
7 '

477 '
4 '

123 '
9 '

----------------*-------*-------*-------------------------------=---------------*-------*-------*--------------------------------
JCR' JCR

, 0021H ' 0022H
002H

315 '
5 '

364 -
7 -

JCR I,

0023H -
,',

386 -
3 -

JZR -
0008H -

444 -
8 -

JPR' JPX' JZR
, 0020H ' 0050H ' OOOAH

333 '
9 '

299 '
4 '

398
II

JCR' JCR"
0029H ' 002AH -

479 '
10 '

400 -
4 -

JCR·· JZP - JPR' JPX' JCC' JCC'
002BH * 0008H - OOIOH ' 0040H ' 007BH ' 005FH '

89 - 397
3 ,', 2 -

285 '
6 '

288 '
6 '

742 '
13 '

712 '
I '

----------------*-------*-------~ _____________________ ----------=-- _____________ l _______ ~ _______ ~ ___________ ____________________ _

JCC' JCC
, 0040H ' 0051H *

003H
51 '
II '

72-
2 -

JPX -
- 0060H

JPB -
0030H

86 - 19
12 ..

JCC' JCR' JCR' JCC
0084H ' 0036H ' 003AH ' 0067H

634 '
5 '

555 '
8 '

662 '
I '

853
I

JCC '
0068H '

253 '
2 '

- JLL-
- 0014H

228 -
7 -

JPX
0050H

534
5

JCR' JCR' JPR' JCC'
- 003DH ' 003EH ' 0030H ' 006FH '

49 '
3 '

496 '
7 '

365 '
4 '

387 '
9 '

-------------------*-------*-------*-------------------------------=---------------*-------*-------*--------------------------------
JFL' JCR

, 0072H ' 0042H -
004H

385 '
I '

,'r:

245 -
6 -

JCC - JCC-
0062H .. 0093H -

222 -
10 ..

154 ..
I -

JPR '
0090H '

13 '
42 '

JCC' JCR
, 0066H ' 0048H

95 '
I '

123
4

JCC' JCR-
0098H ' 004AH -

352 '
13 '

553 -
5 -

JCR -
004BH

JPX ..
.. 0090H

JPR' JCC' JCC' JCR'
.. OOAOH ' 007DH ' 009EH ' 004CH '

624 -
7 -

35 ,',
3 ..

553 '
3 '

253 '
7 '

354 '
3 '

143 '
5 '

----------------*-------*-------*-------------------------------=---------------*-------*-------*-------------------------------_.
JC R' JCR

, 0051H ' 0052H ..
005H

89 '
5 '

75 "
7 ..

JCR - JZR-
0053H - 0008H -

286 -
3 -

639 -
8 ..

JPR' JPX' JZR
, 0020H ' 0050H ' OOOAH

519 '
9 '

416 '
4 '

429
II

JCR' JCR
0059H ' 005AH -

883 '
10 '

777 ..
4 -

JPR' JPX' JCC' JCC'
.. OOIOH ' 0040H ' 007FH ' 006FH '

JCR.. JZR ..
0058H .. 0008H

558 -
3 -

666 55 '
6 '

88 '
6 '

551 '
13 '

441 '
I '

----------------*-------*-------*-------------------------------=---------------!-------~-------~----------- ---------------------
JCC' JCC··

, 0040H ' 0051H -
006H

91 '
II '

92 ..
2 ..

JPR ..
0030H ..

93 "
I "

JPX" JCC' JCR' JCR' JCC
0060H - 0084H ' 0066H ' 0067H ' 0087H

53 ..
12 ..

54 '
5 '

62 '
8 '

63 '
I '

41
I

JCC '
0068H '

39 '
2 '

JLL.. JPX.. JCR' JCR' JPR' JCC'
- 0014H - 0050H - 006DH ' 006FH ' 0030H ' 008FH '

912 ..
7 ..

915 ..
5

925 '
3 '

936 '
7 '

947 '
4 '

924 '
9 '

----------------*-------~-------*-------------------------------=---------------~-------!-------!----------- ---------------------
JFL' JCR ,', JCC ,',

, 0072H ' 0072H - 0062H -
007H

987 '
I '

976 ,',

6 "

946 ..
10 ..

JPR '
.. 0090H '

JCC ..
0093H

937 "
I ..

926 '
42 '

JCC' JCR
, 0066H ' 0078H

527 '
I '

835
4

JCR ..
.. 007BH ..

JCC' JCR ..
0098H ' 007AH

779 '
13 '

998 ..
5 ..

246 "
7 ,',

JPR' JCC' JCC' JCR'
.. OOAOH ' 006DH ' 009BH ' 0074H '

JPX ..
0090H

486 ;,

3 "
36 '

3 '
399 '

7 '
377 '

3 '
244 '

5 '

USE OF
SPECIAL
CHARACTERS

Groups of four or eight rows, groups of eight columns, and columns two, three, ten and eleven
have special significance in the MCU address scheme. For this reason, these rows and columns
are set off by the use of special characters. In addition, each page has row and column labels
that specify the hexadecimal row and column addresses. The microprogram memory address of
any cell in the image is determined by concatenating its row and column address.

3-5

JUMP
FUNCTION
LOGIC

FLAG
OUTPUT
LOGIC

FLAG
INPUT
LOGIC

MICROINSTRUCTION
WORD FIELDS

4.1

UNCONDITIONAL
JUMP FUNCTIONS

CONDITIONAL
JUMP FUNCTIONS

SECTION 4
FUNCTIONAL DESCRIPTION OF THE MCU

The 3001 Microprogram Control Unit (MCU) has three functional responsibilities in a typical
Series 3000 configuration:

1. Provides sequencing for the microprogram;
2. Supplies the carry/shift input to the CPE array.
3. Handles the carry/shift output from the CPE array.

The organization of the MCU is illustrated in Figure 4·1.

The MCU's jump function logic determines the sequence in which microinstruction words are
accessed from the microprogram memory by supplying a 9-bit microprogram memory address
during each microinstruction cycle. The current microprogram memory address is held in the
Microprogram Address Register (MAR). The Next Address Logic, under control of the Jump
Function Bus, formulates the address that is clocked into the MAR at the end of the current
microinstruction cycle.

The encoded information on the Jump Function Bus designates the jump function and provides
part of the next address. The jump function determines the manner in which the Next Address
Logic formulates the next address. In all, the MCU supports eleven unconditional and con
ditional jump functions, which are described in Section 4.1.

In a typical configuration, the MCU's Flag Output (FO) is connected to the Carry Input (CI)
and the Left Input (LI) of the CPE array. Thus, the Flag Output furnishes the carry/shift input
for CPE array functions. Under control of the Flag Output Function Bus, the MCU can force
the Flag Output to zero, one, the current state of the C-Flag or the current state of the Z-Flag.
F lag output functions are described in Section 4.2.

In a typical configuration, the MCU's Flag Input (FI) is connected to the Carry Output (CO)
and the Right Output (RO) of the CPE array. Thus, the Flag Input receives the carry/shift
output of the CPE array. During each microinstruction cycle, the state of the Flag Input is
automatically saved in the MCU's F-Iatch. Under control of the Flag Input Function Bus, the
MCU can also save the state of the Flag input in the C-flag, the Z-flag, both flags or neither flag.
Flag input functions are described in Section 4.3.

In a typical configuration, three fields in the microinstruction word control the MCU's func
tions, as illustrated in Figure 4-2. The JUMP field drives the Jump Function Bus; consequently,
the JUMP field designates the jump function to be performed by the MCU. The FO and FI
fields drive the Flag Output Function Bus and the Flag Input Function Bus, respectively;
consequently the FO field determines the carry/shift input to the CPE array, and the FI field
controls the handling of the carry/shift output from the CPE array.

JUMP FUNCTIONS AND JUMP MICROPS

There are eleven jump functions that the MCU can perform. Four of these jump functions are
unconditional and seven are conditional.

An unconditional jump function specifies a jump to a single target address. The MCU's jump
function logic formulates the target address on the basis of information in the JUMP field (i.e.,
information on Jump Function Bus) and the location of the current microinstruction (i.e., the
data in the MCU's Microprogram Address Register).

A conditional jump function specifies a jump to one of a group of locations depending upon
tht: data in or on the latch or bus being tested by the jump function. The number of possible
target addresses for a conditional jump function depends on the number of states that the
condition being tested can take. The MCU's jump function logic formulates the target address

4-1

INTERRUPT
STROBE
ENABLE

NEXT
ADDRESS
FUNCTION

LOAD

ISE

AC6

AC5

AC4

AC3

AC2

AC1

ACO

LD

VCC 1
I
I

I
L

FCO FCl

FLAG
LOGIC

CONTROL

F1

FLAG
INPUT

ENABLE
ROW

ADDRESS
ERA MAS ••••• MA4

FO FC2 FC3 PX7 •••••• PX4

FLAG FLAG
OUTPUT LOGIC

CONTROL

PRIMARY
INSTRUCTION

BUS

MICROPROGRAM MEMORY
ADDRESS

MA3 ••••• MAO

----- --------- --- -- -- -- ----

SX3 •••••• SXO

SECONDARY
INSTRUCTION

BUS

Fig. 4-1. MCU Functional Organization

Fig. 4-2. Relationship Between MCU and Microinstruction Word

4-2

PR2 PROGRAM
PRl LATCH
PRO OUTPUTS

MICROPROGRAM
MEMORY
ORGANIZATION

JUMP SET

JUMP SET
DIAGRAMS

JZR

FORMAT

DESCRIPTION

JCR

FORMAT

DESCRIPTION

JCC

FORMAT

DESCRIPTION

JMP

FORMAT

DESCRIPTION

JCE

FORMAT

DESCRIPTION

based on information in the JUMP field, the location of the current microinstruction and the
current state of the data being tested.

To understand the jump functions, it is helpful to visualize the microprogram memory as a
two·dimensional matrix of 32 rows and 16 columns. Thus, a location in the matrix is identified
by a row address and a column address. The high order five bits of the MCU's Microprogram

Address Register address the row (rowO-row31), and the low order four bits address the

column (coIO-coI15).

From a given location in the matrix (i.e., a given row and column) only a subset of other
locations in the matrix can be reached using a given jump function. Figure 4·3 illustrates the

subset of locations that can be reached by each of the eleven jump functions from row21, col5
of the matrix. A similar set of diagrams could be produced for any other location in the matrix.
The XMAS language includes a set of 12 microps for specifying jump functions in specification
statements. These microps are described below and are summarized in Table 4·1.

Jump to Row Zero

JZR (L)

JZR specifies an unconditional jump to one of the sixteen column positions of row zero. L
must identify a microinstruction in row zero. Because the current microinstruction's position is

not used in formulating the next address for the JZR jump function, may be used to address
any location in row zero from anywhere in the microprogram memory. JZR (15) performs the

special function of activating the MCU's I nterrupt Strobe Enable line (lSE), which may be used
to implement a microprogram interrupt facility. NOTE: If extended memory is being used, JZR
will cause a jump to row zero in the plane indicated by the address extension field (refer to

Section 1.1).

Jump in Current Row

JCR (L)

JCR specifies an unconditional jump to one of the sixteen column positions of the current row.
L must identify a microinstruction in the current row.

Jump in Current Column

JCC (L)

JCC specifies an unconditional jump to one of the thirty·two row positions of the current

column. L must identify a microinstruction in the current column.

General Unconditional Jump

JMP (L)

JMP may be used in place of JCC, JCR and JZR to specify an unconditional jump either in the
current column, the current row or row zero. L must identify a microinstruction in the current
column, the current row or row zero. (To activate ISE, JZR (15) should be used instead of JMP
(15)).

Jump in Current Column/Row Group and Enable PR - latch Outputs

JCE (L)

JCE specifies an unconditional jump to one of eight positions in the current row group of the

current column. L must identify a location in the current row group: rowO·row7, row8-row15,
row16-row23, or row24-row31. L must identify a location in the current column. JPX also
enables the output buffer for the three lowest order bits of the PR-Iatch.

4-3

JCR
JUMP IN CURRENT ROW

CURRENT ___ •
ROW DOD

000
000
DODD
DODO
DODD
DODO
DODO
DODO

row31_DOOD

I
colO

JPR

Fig. 4-3c

JUMP/TEST PR-lATCH

rowo_

CURRENT
ROW

GROUP
Ma 7

1 0

colO Fig_ 4-3g

JCE
JUMP COLUMN/ENABLE

0000000
0000000
0000000
0000000
0000000
0000000
000000
000000
oOOoDO
000000
DODOCD
000000
000000
000000
000000
000000

- 00000.
CURRENT DODDO.

ROW 00000

GROUP 88888.
MS 7 00000.

1 0 88888:
- 000000

CURRENT
ROW

GROUP

Ma 7
1 0

000000
000000
0000000000
0000000000
0000000000
0000000000
00000000000000

I
CURRENT
COLUMN

Fig_ 4-3d

JLL
JUMP/TEST lEFT LATCH

CURRENT
ROW

GROUP

Ma
1

JCC
JUMP IN CURRENT COLUMN

Fig_ 4-3.

JFL
JUMP/TEST F-LATCH

CURRENT
COLUMN
GROUP
M3"'O

col2 If - 0)

Fig_ 4-30

JRL
JUMP/TEST RIGHT LATCH

Fig_ 4-3_ Jump Set Diagrams

4-4

JZR
JUMP TO ZERO ROW

•••••••••••••••• 0000000000000000
0000000000000000
DOOOOOOOOOOOOOOO
0000000000000000
0000000000000000

8888880088888888
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000

Fig_ 4-3b

JCF, JZF
JUMP/TEST C-FLAG
JUMP!TEST Z-FlAG

CURRENT
COLUMN
GROUP
M3 -0

0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

CURRENT BBIIB8BBBBBBBBBB
ROW 00 __ 000000000000

G~~~P §~§§§§§§§§§§
1 0 888

CURREN~
ROW

GROUP
Ma 7 6 101I

., col3 (f = 1)

col2 (f '" 0)

Fig_ 4-3f

JPX

000
000

JUMP/TEST PX·BUS

Fig_ 4-3j

JFL

FORMAT

DESCRIPTION

TABLE 4-'_ SUMMARY OF MCU JUMP FUNCTioNS

MNEMONIC JUMP FUNCTION

JZR Jump to row zero
JCC Jump in current column
JCR Jump in current row
JCE Jump in current column/row group

and enable PR-Iatch outputs
JFL Jump/test F-Iatch
JCF Jump/test C-flag
JZF Jump/test Z-flag
JPX Jump/test PX-bus and load PR-Iatch
JPR Jump/test PR-Iatch
JLL Jumpltest two leftmost PR-Iatch bits
JRL Jump/test two rightmost PR-Iatch bits

TABLE 4-2. SUMMARY OF MCU FLAG
OUTPUT FUNCTIONS

MNEMONIC FLAG OUTPUT FUNCTION

FFO Force FO to 0
FFC Force FO to C-flag
FFZ Force FO to Z-flag
FF1 Force FO to 1

TABLE 4-3. SUMMARY OF MCU FLAG
INPUT FUNCTIONS

MNEMONIC FLAG INPUT FUNCTION

SCZ Set C and Z Flags to F
STZ Set Z·flag to F
STC Set C-flag to F
HCZ Hold C-flag and Z-flag

Jump/Test F-Latch

JFL (LO L1)

JF L specifies a test on the F-Iatch. LO must identify a location in the current row group:
rowO-row15 or row16-row31. LO must identify a location in col2 if the current column is
col0-col7 or in collO if the current column is coIS·coI15' LO and L 1 must identify sequential
column locations (i.e., columns 2 and 3 or 10 and 11). LO is selected if the F-Iatch contains 0,
and L 1 is selected if the F-Iatch contains 1. See Figure 4-3e. NOTE: The test on the F-Iatch is
performed after the results of the current microinstruction being executed (on the FI line), are
reflected in the state of the F-Iatch.

4-5

JCF

FORMAT

DESCRIPTION

JZF

'FORMAT

DESCRIPTION

JPX

FORMAT

DESCRIPTION

JPR

FORMAT

DESCRIPTION

JRL

FORMAT

DESCRIPTION

JLL

FORMAT

DESCRIPTION

Jump!Test C-Flag

JCF (LO L1)

JCF specifies a test on the C-flag. LO must identify a location in the current row group:

rowO-row7. rows-row15. row16-row23 or row24-row31' LO must identify a location in col2 if
the current column is col0-col7 or in collO if the current column is coIS-coI15.LO and L 1 must
identify sequential column locations. LO is selected if the C-flag contains O. and L 1 is selected if
the C-flag contains 1. See Figure 4-3f. NOTE: The test on the C-Flag is performed before a flag
input microp in the current microinstruction being executed could change the state of the
C-Flag. Consequently JCF tests the results of a previous microinstruction. not the current one.

Jump/Test Z-Flag .

JZF (10 Ll)

JZF specifies a test on the Z-flag. JZF is identical to JCF except the Z-flag. rather than the
C-flag. is used in selecting the target address.

Jump!Test PX-Bus and Enable PR-Latch

JPX (LO Ll L2 L3 L4 L5 L6 L7 LS L9 Ll0 Lll L12 L13 L14 L15)

JPX specifies a test on the data on the PX-bus. LO must identify a location in the current row

group: rowO-row3. row4-row7. rowS-rowll. row12-row15. row16-row19. row20-row23.
row24-row27. row2S-row31' LO must identify a location in colO. LO through L 15 must identify
sequential column locations. LO is selected if the data on the PX-bus is 00002. L 1 is selected if
the data on the PX-bus is 00012 ... and L 15 is selected if the data on the PX-bus is 11112. JPX
also saves the data on the SX-bus in the PR-Iatch. See Figure 4-3j.

Jump!Test PR-Latch

JPR (LO ... L15)

JPR specifies a test on the PR-Iatch. LO must identify a location in the current row group:

row -row • row -row • row16-row23 or row24-row31' LO must identify a location in
colO. LO through L 15 must identify sequential column locations. LO is selected if the PR-Iatch
contains 00002. L1 is selected if the PR-Iatch contains 00012 •... and L 15 is selected if the
PR-Iatch contains 11112. See Figure 4-3g.

Jump!Test Rightmost PR-Latch Bits

JRL (LO Ll L2 L3)

JR L specifies a test on the right two bits of the PR-Iatch. LO must identify a location in
row4-row7 if the current row is rowO-row7. in row12-row15 if the current row is rowS-row15.
in row20-row23 if the current row is row16-row23 or in row2S-row31 if the current row is
row24-row31' LO must identify a location in col 12. LO through L3 must identify sequential
column locations. LO is selected if the PR-Iatch contains xx002. L 1 is selected if the PR-Iatch
contains xx012 •... and L3 is selected if the PR-Iatch contains xx 112' See Figure 4-3i.

Jump/Test Leftmost PR-Latch Bits

JLL (LO L1 L2 L3)

JLL specifies a test on the left two bits of the PR-Iatch. LO must identify a location in the

current row group: rowO-row7. rowS-row15. row 16-row23 or row24-row31' LO must identify a
location in col4. LO through L3 must identify consecutive column locations. LO is selected if
the PR-Iatch contains 00xx2. L 1 is selected if the PR-Iatch contains 01xx2 •... and L3 is
selected if the PR-Iatch contains 11xx2. See Figure 4-3h.

4-6

4.2

FFO

FORMAT

DESCRIPTION

FFC

FORMAT

DESCRIPTION

FFZ

FORMAT

DESCRIPTION

FF1

FORMAT

DESCRIPTION

4.3

SCZ

FORMAT

DESCRIPTION

STZ

FORMAT

DESCRIPTION

STC

FORMAT

DESCRIPTION

HCZ

FORMAT

DESCRIPTION

FLAG OUTPUT FUNCTIONS AND FO MICROPS

There are four flag output functions. The XMAS language includes a set of four FO microps for
designating the flag output functions in specification statements. The FO microps are described
below and summarized in Table 4·1.

Force FO to Zero

FFO

The state of the Flag Output is forced to zero.

Force FO to C Flag

FFC

The state of the Flag Output is forced to the current state of the C-flag.

Force FO to Z-Flag

FFZ

The state of the Flag Output is forced to the current state of the Z-flag.

Force FO to One

FF1

The state of the Flag Output is forced to one.

FLAG INPUT FUNCTIONS AND FI MICROPS

There are four flag input functions. The XMAS language includes a set of four FI microps for
designating the flag input functions in specification statements. The F I microps are described
below and summarized in Table 4-1.

Set C-Flag and Z-Flag to FO

SCZ

The C-Flag and the Z-Flag are both set to the state of the Flag Input.

Set Z-Flag to FI

STZ

The Z-Flag is set to the state of the Flag Input.

Set C-Flag to FI

STC

The C-Flag is set to the state of the Flag Input.

Hold C-Flag and Z-Flag

HCZ

The C-Flag and the Z-Flag are unaffected.

4-7

CPE ARRAY

CARRY INPUT AND
CARRY OUTPUT

LEFT INPUT AND
RIGHT OUTPUT

MICROINSTRUCTION
WORD FIELDS

5.1

CPE FUNCTIONS

CPE MICROPS

SECTION 5
FUNCTIONAL DESCRIPTION OF THE CPE ARRAY

The 3002 Central Processing Element (CPE) is a complete, 2-bit data processing module.

Virtually any number of CPEs may be connected together to form a data processing section
(called a CPE array) of any desired word width. To the microprogrammer, the CPE array
constitutes a single functional unit (rather than a number of individual CPEs) with the N-bit
registers, data paths and function circuits, where N is the number of CPEs in the array times
two. Figure 5-1 illustrates the effective functional organization of a CPE.

During each microinstruction cycle, an encoded function is applied to the CPE Function Bus
inputs. The Function Decoder, in decoding inputs, selects the arithmetic/logic unit function,
generates the scratch pad address and controls the multiplexers. The A-multiplexercan select the
data on the M-bus or the data in the addressed scratch pad register (RO through R9 or T) or the
accumulator (AC). The B-multiplexer can select the data on the I-bus or the data in the
accumulator. The data selected by the B-Multiplexer is ANDed with the data on the K-bus. The
result of the operation (i.e., the output of the arithmetic/logic unit) is d~posited in the
addressed scratch pad register or the accumulator. Certain operations also deposit data in the
Memory Address Register.

There is a single carry input (CI) to the low order bit position of the array. In an arithmetic
operation, the carry input is included in the sum, and the carry output is the arithmetic carry
for the sum. In a Boolean operation, where an arithmetic carry has no meaning, the carry
output serves as a "not zero" indication.

There is a single left input (LI) to the high order bit position of the CPE array and a single right
output from the low order bit position of the array. The left input and the right output are
active only during right shift operations (when the carry input and carry output are inactive!.

In a typical configuration, four fields in the microinstruction word are related to the CPE
functions, as illustrated in Figure 5-2. The CPE field drives the CPE Function Bus; conse
quently, the CPE field designates the function to be performed by the CPE array. The K-bus
field provides either direct or encoded drive for the K-bus inputs to the CPE array; the K-bus
inputs have an effect on every operation performed by the CPE array. The carry input (CI) and
left input (LI) to the array are normally connected to the Flag Output of the MCU; the Flag
Output is, in turn, controlled by the FO field. The carry output (CO) and the right output (RO)
are normally connected to the Flag Input of the MCU; the state of the Flag Input may be saved
in the MCU's C or Z flags under control of the FI field.

CPE FUNCTIONS AND CPE MICROPS

The functions that the CPE is capable of performing are summarized in Table 5-1. A function is
designated by a function group (F-Group) and a register group (R-Group). The F-Group is
specified by the three high order bits of the CPE field. The R-Group is implied by the low order
four bits of the CPE field. R-Group I includes RO through R9, T and AC and is denoted by the
symbol Rn. R-Group II and R-Group III include only T and AC and are denoted by the symbol
AT.

F-Group 0 through F-Group 3, are arithmetic functions, with the exception of F-Group 0,
R-Group III, which is a right shift function. The carry output (CO) reflects the arithmetic carry
of the result of an arithmetic operation. F-Group 4 through F-Group 7 are Boolean functions.
The carry output serves as a "not zero" indication in Boolean functions.

The CPE microps (summarized in Table 5-2) are mnemonics for the functions performed by the
CPE. Since the CPE microps are intrinsic to the XMAS language, they may be used in specifica
tion statements to specify the bit pattern for the CPE field. All CPE microps carry a default bit
pattern assignment of all-zero or all-ones for the K-bus field.

5-1

I
Wft T

MCU I FI FO

~----------~~ED

I
I
I
I
I
I
I

___ J

CI
RO

Fig. 5-1. CPE Array Block Diagram

K·BUS I CPE

MICROINSTRUCTION WORD

c: z
" "''' o~ z

" & ..
iii

I '--..J'
LI co

---\ ~

---(A·BUS

M·BUS
CPE

V

./ ARRAY

K O·BUS
\

I·BUS

./ V

CI RO

I

. Fig. 5-2. Relationship Between CPE Array and Microinstruction Word

5-2

TABLE 5-1_ CPE FUNCTION SUMMARY

F-GROUP R-GROUP MICRO-FUNCTION

I Rn + (AG /\ K) + CI-+ Rn, AC
0 II M+(AC/\ K)+CI-+AT

III ATL/\ (lL/\ KL)-+RO LI v I[I H /\ KH) /\ AT Hl -+ AT H
I

[AT L /\ (II.. /\ KL)l v [AT H /\ (I H /\ KH)l -+ AT L

I K v Rn -+ MAR Rn + CL + K -+ Rn
1 II K v M-+MAR M+CI+K-+AT

III (AT v K) + (AT K) +CI-+AT

I (AC /\ K) - 1 + CI-+ Rn (see Note 1)

2 II (AC /\)<) -1 +CI-+AT
III (I /\ K) - 1 + CI-+ AT

I Rn + (AC /\ K) + CI-+ Rn
3 II M + (AC /\.K) + CI-+ AT

III AT+(I/\K)+CI-+AT

I CI v (R h /\ AC /\ K) -+CO Rn /\ (AC /\ K) -+ Rn
4 II CI v (M /\ AC /\ K) -+ CO M /\ {AC /\ K) -+ AT

III CI v (AT /\ 1/\ K)-+CO AT /\ ~I /\ K) -+ AT

I Clv(Rn/\K)-+CO K /\ Rn -+ Rn
5 II CI v (M /\ K) -+ CO K/\-M-+AT

III CI v (AT /\ K)-+CO K/\ AT-+AT

I CI v (AC /\ K) -+ CO Rn v (AC /\ K) -+ Rn
6 II CI v (AC /\ K) -+ CO M v (AC /\ K) -+ AT

III CI v (I /\ K) -+ CO ATv' (1/\ K)-+AT

I CI v (Rn/\ AC /\ K) -+ CO Rn ei"(AC /\ K) -+ Rn
7 II CI v (M /\ AC /\ K) -+ CO M ei"(AC /\ K) -+ AT

III Clv(AT/\ ~/\K)-+CO ATei"(I/\K)-+AT

NOTE:

1. 2'1 complement arithmetic adds 111 ••• 11 to perform subtraction of 000 ,,' • 01.

SYMBOL MEANING

I,K, M Data on the I, K, and M busses, respectively

Rn Contents of register n (R-Group I)
AC Contents of the accumulator
AT Contents of AC or T, as specified
CI Data on the carry input
CO Data on the carry output
L,H As subscripts, designate low and high order bit, respectively

+ 2's complement addition

- 2's complement subtraction

1\ Logical AND
v Logical OR
Ii Exclusive-NO R
-+ Deposit into

5-3

TABLE 5-2 _ ALL-ZERO AND ALL-ONE K-BUS CPEFUNCTIONS

MNEMONIC K-BUS = 00 MICRO-FUNCTION MNEMONIC K-BUS = 11 MICRO-FUNCTION

ILR Rn + CI -> Rn, AC ALR AC + Rn + CI-> Rn, AC

ACM M+CI-+AT AMA M + AC + CI -> AT
SRA ATL->RO ATH-+ATL LI-+ATH - (See Appendix B)

LMI Rn -+ MAR Rn + CI-> Rn DSM 11-+ MAR Rn - 1 + CI -+ Rn
LMM M -+ MAR M+CI->AT LDM 11 -+ MAR M-1+CI-+AT
CIA AT+CI-+AT DCA AT-1+CI-+AT

CSR CI - 1 -+ Rn
See Note 1

SDR AC - 1 + CI -> Rn
See Note 1

CSA CI - 1 -+ AT SDA AC - 1 + CI -+ AT
- (See CSA above) LDI 1-1+CI-+AT

INR Rn + CI -+ Rn ADR AC + Rn + CI -+ Rn
(See ACM above) - (See AMA above)

INA AT+CI->AT AlA I+AT+CI->AT

CLR CI-> CO 0-+ Rn ANR CI v (R /\ AC) -+ CO
n - Rn/\ AC-+Rn

CLA CI-> CO 0-> AT ANM CI v (M /\ AC) -+ CO M /\ AC -+ AT

- (See CLA above) ANI CI v (AT /\ I) -+ CO AT /\ I -+ AT

- (See CLR above) TZR CI v Rn -+ CO R -> R n n
- (See CLA above) LTM CI v M -> CO M -> AT
- (See CLA above) TZA ClvAT->CO AT -> AT

NOP CI-+ CO Rn -> Rn ORR CI v AC -> CO Rn v AC -> Rn
LMF CI-> CO M ->AT ORM CI v AC -> CO M v AC-+AT

- (See NOP above) ORI CI v 1-> CO IvAT->AT

CMR CI-> CO R -+ R XNR CI v (Rn /\ AC) -> CO RniBAC-+Rn Jl n
LCM CI-+ CO M -> AT XNM CI v (M /\ AC) -+ CO M $" AC-+ AT
CMA CI-> CO AT -> AT XNI CI v (AT /\ I) -+ CO I$"AT-+AT

NOTES;

1. 2'5 complement arithmetic adds 111 . .. 11 to perform subtraction of 000 ..01.

2. An includes T and AC as source and destination registers in R-group 1 micro-functions.

3. Standard arithmetic carry output values are generated in F -group 0, 1, 2 and 3 instructions.

SYMBOL MEANING

I, K, M Data on the I, K, and M busses, respectively
CI, LI Data on the carry input and left input, respectively
CO,RO Data on the carry output and right output, respectively

Rn Contents of register n including T and AC (R-Group I)
AC Contents of the accumulator
AT Contents of AC or T, as specified
MAR Contents of the memory address register
L, H As subscripts, designate low and high order bit, respectively
+ 2's complement addition
- 2's complement subtraction
v Logical AND
/\ Logical OR
$" Exclusive-NOR
-+ Deposit into

5-4

5.2

VARIATIONS OF
CPE FUNCTIONS

STRING
STATEMENT

STRINGOPS

ASETOF
STRINGOPS
FOR THE CPE

STRINGOPS FOR CPE FUNCTIONS

By assigning specific values to the data on the K-bus inputs (K) and the carry shift input (CI or
LI), many useful operations can be derived from the CPE functions, which are sum marized in
Table 5-1. For example, consider the following function (F-Group 0, R-Group I):

Rn + (AC A K) + CI ~ Rn, AC

If K and CI are zero, the effective function is:

Rn~AC, Rn

which transfers the data from the specified register (Rn) to the accumulator (AC). If K is all
ones and CI is zero, the effective function is:

Rn + AC ~ Rn, AC

which adds the data in the specified register (Rn) and the accumulator (AC) and deposits the
sum in both registers. If K is zero and CI is one, the effective function is

Rn + 1 -+ Rn, AC

which increments the data in specified register (Rn) and deposits the result in both the specified
register and the accumulator. An effective function may be indicated in a specification state
ment with a CPE microp and an Fa microp (when the latter is necessary). The increment
function above could be designated in a specification statement by:

ILR (R2) FF1

The CPE microp I LR carries a default bit pattern assignment of zero for the K-bus field.

The XMAS language STRING statement provides a mechanism for defining new mnemonics
that may be used to represent CPE functions in specification statements. For example, the
STRING statement:

INCE STRING 'FF1 ILR'

defines the mnemonic INCE. It can be used in a specification statement as

INCE (R2)

to represent the increment function described previously.

CPE function mnemonics that are defined in STRING statements are called "stringops" to
differentiate them from microps. Using a stringop in a specification statement is often a more
convenient and meaningful way of specifying a CPE function than using the corresponding CPE
microp or a combination of a CPE microp and an Fa microp.

A set of stringops that cover most of the useful CPE operations is described in Appendix J.
Unlike the microps, stringops are not intrinsic to the XMAS language. All stringops used in
an XMAS language program must be defined in STRING statements in the declaration part
of the program. The defining STRING statement for each stringop is given in Appendix J.
For the programmer's convenience, a complete list of these STRING statements is given in
Table J-1.

5-5

6.1

FIELD
STATEMENT

ADDRESS
STATEMENT

STRING

STATEMENT

VALUE
STATEMENT

SECTION 6
MICROPROGRAMMING TECHNIQUES AND EXAMPLES

Section 6.1 discusses the proper use of XMAS declaration statements in defining a framework
that effectively represents the characteristics of a given Series 3000 configuration. Section 6.2
describes how to efficiently assign each microinstruction to a microprogram memory location.
Section 6.3 identifies the programming differences that must be considered when writing a
microprogram that is to be executed by a system with a "pipelined" architecture. Finally,
Section 6.4 provides examples of how to write and assign to memory microprograms for both
non'pipelined and pipelined systems.

USE OF XMAS DECLARATION STATEMENTS

The declaration statements in a XMAS language program establish the framework for writing
and specification statements, as described in Section 2.

The FIELD and ADDRESS statements are used to describe attributes of the particular Series
3000 hardware configuration. If the hardware designer implements a functional block of logic
(e.g., memory or I/O logic) requiring a control field in the microinstruction, the micro
programmer must declare and describe that control field via a FIELD statement. Similarly, if
the configuration includes more than 512 words of microprogram memory, the micro

programmer must identify a memory address extension field with an ADDRESS statement.
Remember that the name of the memory address extension field must be defined in a FIELD

statement. For example, the two statements:

XADR FIELD
XADR ADDRESS;

LENGTH; 2;

define the two-bit field XADR, and identify it as a memory address extension field,

respectively.

The usefulness of other declaration statements may not be quite as obvious as the FIELD and
ADDRESS statements, because these other declaration statements make the microprogram
easier to write rather than to describe the hardware configuration. Proper use of the STRING,
VALUE IMPLY and KBUS declaration statements can significantly increase the micro
programmer's efficiency in successfully completing his task.

STRING statements can be particularly helpful. A microprogram mer may know that a partic
ular group of symbols will be needed frequently in his XMAS language program. The STRING

statement allows the programmer to define a symbol and associate a character string with that
symbol. For example, the STRING statement:

NEXT STRING 'LMI(R7) READ FFI KB;Q';

associates NEXT with the string of characters enclosed between the single quote (') characters.

NEXT can be used in any specification statement in place of the character string it represents.
The CPE stringops, described in Section 5.2, are an excellent example of character strings which
have been assigned mnemonics by STRING statements. A stringop groups a specific CPE
function, flag control function and a K-bus function together into a single functional
mnemonic.

The VALUE statement allows the microprogrammer to define a symbol and associate a numeric
value with it. The value symbol can then be used in specification statements wherever the
numeric equivalent could be used. The most obvious advantage of using a symbol in place of
the numeric value is that should the programmer decide to change the numeric value, only one
VALUE statement need be changed, instead of many specification statements.

6-1

IMPLY
STATEMENT

KBUS
STATEMENT

6.2

ADDRESS
IDENTIFIER

UNCONDITIONAL
JUMPS

CONDITIONAL
JUMPS

An IMPLY statement declares the default bit pattern(s) that a microp carries for one or more
fields. By having certain microps carry default bit patterns for appropriate fields, the pro
grammer can free himself from having to assign explicitly a bit pattern to every field in every
specification statement. Recall, however, that an explicit keyword or microp assignment for a
given field overrides a default pattern that a microp may carry for that field.

Recall that each CPE microp implies an all·zero or all·one default pattern for the K-bus field. If
these defaults are to be effective, however, the microprogrammer must define (via a field
statement) and identify (via a KBUS statement) the K-bus field that is to receive these defaults.
For example, the statements:

KB FIELD LENGTH=16 MICROPS (K8000 = 8000H):

KB KBUS;

define the 16-bit field KB, define the microp K8000 and identify KB as the K-bus default
provided by a CPE microp by a keyword assignment (e.g., KB-8000H) or a user-defined microp
assignment).

MICROPROGRAM MEMORY ASSIGNMENT

Ultimately, the microprogram mer must assign each specification statement in the microprogram
to a particular location in the microprogram memory. For example, the following specification
statement:

7BH: LAB: ILR(R3) FFO STZ JFL(NC, TC);

includes an assignment to memory location 7B16 (i.e., row 7 column 11). In addition, this
statement specifies that the address identifier LAB can be used to reference this memory
location (refer to Section 2.14).

The microprogrammer should initially write the microprogram in the logical order in which it
will be executed, giving only minimal regard to memory assignment. When a sequence of
microinstructions is to be executed in the same order in which they will appear in the source
file, an explicit JUMP field specification can be omitted; XMAS will attempt to supply an
unconditional jump code that will allow the microinstruction currently being specified to access
the microinstruction specified by the next specification statement in the source fi Ie.

When a program branch is to be executed unconditionally, the general non-committal JMP
microp should be used rather than selecting JCC, JZR or JCR, unless the Interrupt Strobe
Enable (lSE) line is to be enabled (use JZR) or the PR·latch outputs are to be enabled (use
JCEl. as described in Section 4.1.

When a conditional branch in the program sequence is required, the programmer will use one of
the conditional jump microps in the jump field (JFL, JCF, JZF, JPR, JLL, JR Lor JPX). When
writing the microprogram, it will be helpful to note the number of possible destinations for
each conditional jump. It is also advantageous to assign an address identifier to each possible
destination, and to reference each destination in the expression portion of the JMP microp with
the address identifier, instead of the integer that represents the actual memory location
assigned. For example:

ADR(R5) FFO JFL(NCY, CY)

CY: INR(R5) SCZ

NCY: ...

6-2

MICROINSTRUCTION
FLOWCHART

GRID
DIAGRAM

HARDWARE
CONSIDERA TlONS

ASSIGNING
CONDITIONAL
JUMPS

ASSIGNING
UNCONDITIONAL
JUMPS

REASSIGNMENT

In this way, the microprogram can be written with all jump targets specified before the specifi
cation statements are assigned to memory. The programmer, using the control language, can
cause XMAS to output a cross reference directory containing an alphabetical list of all XMAS
specification statement labels and, for each label, a list of source file record numbers in which
the label is referenced.

Having written the microprogram with all sequencing represented symbolically or implied by
statement order, the actual assignment to microprogram memory locations must be indicated.
To assist in this task, a complete microinstruction state sequence chart should be prepared. In
such a chart, each microinstruction is represented by a node in the diagram as shown in Figure
6·4 (in section 6.4). Conditional jumps should be labeled as to type and condition correspond
ing to each possible destination. It is also helpful to show any address labels (identifiers) that
may be associated with a microinstruction.

The process of assignment can be assisted by using a grid diagram of the microprogram memory
showing the 32 rows and 16 columns. As each microinstruction is assigned, the microprogram
memory grid diagram is marked to show occupancy of that word and the flowchart is marked
to show assignment of the microinstruction.

Before assignment begins, however, one should count all conditionals of each type to assure
there are enough targets available to place them.

Using the flowchart as a guide, memory assignment can be easily accomplished if the following
sequence is followed.

1. Assign those microinstructions whose memory locations are dictated by hardware con
siderations. For example, the first instruction in a system initialization routine might be
required by hardware to be assigned to memory location 00. The location of the first instruc·
tion in an interrupt routine might also be defined by hardware constraints.

2. To do the best assignment the most restricted microinstructions should be assigned first.
In general, clusters of conditional jump targets which must be located within a limited range,
constitute the most restricted set of microinstructions. Assign all conditional jump targets
before assigning the microinstructions that reference these targets (i.e., have a conditional
JUMP microp). Recall that in 512-word microprogram memory (or in a 512 word plane of an
extended memory). there are only 64 possible destination pairs for the JCF, JZF and JFL jump
microps, since all three use columns 2 and 3 or columns 10 and 11 as their jump target. It is
important, therefore, to insure that enough destination pairs are available for the conditional
jumps used in a microprogram. Also remember that the JPX and JPR conditional microps can
require one entire row each time that they are used.

3. Leave long chains of unconditional jump sequences until last because they have the
greatest range of possible destinations. Remember that when the general JMP microp is used or
when no explicit JUMP field is specified, the next microinstruction to be executed must be in
the current row, current column or row zero. Row zero locations should be used judiciously
because only they can be reached from anywhere else in the program using a single JZR jump
function.

4. When reassignment becomes necessary, sequences of unconditional microinstructions
should be considered first since they are the easiest to move.

The programmer can, using the control language, cause XMAS to output the source statements
and or bit patterns for the microprogram.

If microprogram memory has been incorrectly assigned, XMAS will output the appropriate
error message to the list file (see Appendix G). The programmer can also have XMAS producl\ a
graphic representation of the microprogram memory image (refer to Section 3.3) which can be
extremely helpful in reassigning memory locations if required.

Figure 6-5 shows the memory assignments that have been made for the two example micro
programs in Section 6.4, using the microinstruction flow chart in Figure 6·4.

6-3

6.3

RESULT DELAY
IN PIPE LINED
SYSTEM

JFLMICROP

JCF ANDJZF
MICROPS

6.4

MICROINSTRUCTION
FLOWCHART

For a further discussion of microinstruction mapping refer to Intel's AP-13. "Designing Central
Processors Using Intel's Series 3000 Computing Elements." .

PIPELINED VS NON-PIPELINED ARCHITECTURE: PROGRAMMING CONSIDERATIONS

A "pipelined" architecture can be implemented by placing a register of edge-triggered D-type
flip-flops between the microprogram memory outputs and the circuitry controlled by those
outputs. This register allows the executing of the current microinstruction to overlap the
fetching of the next microinstruction. The address control lines from the microprogram
memory which provide the 3001 MCU with microprogram sequence information (i.e., the
jump code) are not routed through the pipeline register, however. Instead, they are applied
directly to the ACO-AC7 inputs of the MCU. Figure 6-1 illustrates both a pipelined and
non-pipelined architecture.

The major difference between microprograms written for pipelined and non-pipelined archi

tectures are associated with conditional jumps which test the results of arithmetic or logical
operations executed by the CPE array, that is, conditional jumps caused by the JF L, JCF or
JZF microps. In a pipelined architecture, the results of the arithmetic or logical operations are
delayed by one microinstruction. That is, the 3001 MCU will receive the jump code when the
microinstruction is sent to the pipelined register; however the flag logic input (FI), indicating
the results of the microinstruction execution, will not be received by the MCU for another
microinstruction cycle. Consequently, the conditional jumps caused by the JF L, JCF and JZF
microps must be delayed by at least one microinstruction after the execution of the operation
for which the result is to be tested.

Remember that the flag input, F I, (usually tied to the CPE array's carry out, CO, and shift right
out, RO, lines) is always reflected in the MCU's F-Iatch before the jump test is made by the
MCU. Thus in non-pipelined systems, the JFL microp should appear in the same microinstruc
tion that specifies the operation whose result will test; and in pipelined systems, the JFL
microp should appear in the next microinstruction after the one which specifies the operation
whose result JFL will test.

On the other hand, the setting or resetting of the C and Z flags by the MCU to reflect the level
on the flag logic input (FI) line, as the result of a flag control microp (SCZ, STC or STZl. will
not occur until after the jump test is made by the MCU. Consequently, even in non-pipelined
systems the JCF or JZF microp should appear in the next microinstruction after the one which
specifies the operation whose result JCF or JZF will test. In pipelined systems, the JCF or JZF
jump microp must be delayed by two or more microinstructions.

MICROPROGRAMMING EXAMPLES

Example 1, shown in Figure 6-2, illustrates a 16-bit multiplication routine written for execu
tion on a non-pipelined system. Example 2, shown in Figure 6-3, illustrates the same type of
routine, except it was written for execution on a pipelined system. (Example 2 does not show a
declaration part because it is assumed to have the same one listed in Example 1.) The primary
difference between the two examples is the choice of conditional jump microps in the LOOP+l
and STAY specification statements. In Example 1, JCF and JZF microps are used; in Example
2, two microps are used.

Figure 6-4 illustrates the microinstruction flowchart for examples 1 and 2. The conditional
jumps at LOOP+2 and STAY are visually apparent, as are their possible targets.

Figure 6-5 shows where each microinstruction in the examples has been assigned within micro
program memory. The two possible targets of each conditional jump (EXIT, STAY and ZERO,
ONE) were assigned first to columns 2 and 3, rows 5 and 6 respectively. Then the unconditional
jump targets were assigned. Notice that LOOP, which is the unconditional target for START +
2 and ZERO, was assigned to the same column as START + 2 and the same row as ZERO so
that it could be accessed by both.

6-4

CLOCK

LOCK

CONTROL TO
MEMORY I/O

MEMORY ADDRESS
BUS

DATA BUS TO
MEMORY

III 1111111111111111 1111111111111111

MICRO·
PROGRAM
MEMORY

I f--
ADDRESS IN f:::="""

MAO 8

MeU j~
3001 ~ I: I

CLOCK Fa
XO--X7 Feo 3 FI

IIH

IIII

OP CODE BITS TO MCU

CONTROL TO
MEMORY I/O

CP ARRAY
(I BUS NOT SHOWN)

_ CLOCK
el
CO K INPUTS

1ft

DATA IN FROM MEMORY

MEMORY ADDRESS
BUS

DATA BUS TO
MEMORY

el 00]

illJ 1111111111111111 1111111111"" II

CP ARRAY
PIPELINE (I BUS NOT SHOWN)

MICRO
REGISTER

~
r- CLOCK ""] PROGRAM el el MEMORY CO K INPUTS

:::::::::::::=- 1ft
= =-ADDRESS IN

MAO B

~~ Meu
3001

CLOCK Fa
XO X7 FCO 3 FI

lIll

OP CODE BITS TO MCU DATA IN FROM MEMORY

Fig. 6-1. Pipelined vs. Non-pipelined Architecture

6-5

050H:
051H:
054H:

064H:

061H:

1* UNSIGNED 16-BIT MULTIPLY *1
1* ASSUME THAT MULTIPLICAND IS BUFFERED AND AVAILABLE ON M-BUS *1
1* DECLARATION PART APPLIES TO EXAMPLES 1 AND 2 *1
1* K-BUS DEFINITION *1

I'"

I'"

KB FIELD LENGTH = 16
MICROPS (KZERO 0, KONES=FFFFH, KFFF0=FFF0H);

KB KBUS;

STRINGOP DEFINITIONS (SEE SECTION 5.2) ;'1

ADDM STRING 'FF0 AMA';
INCR STRING 'KZERO FFI I NR' ;
MSKR STRING 'FF0 TZR';
TSTR STRING 'KONES FF0 TZR';
CLRR STRING 'KZERO CLR';
SETR STRING 'KZERO FF0 CSR';
SHRT STR I NG 'KZERO SRA';

OTHER CONVENIENT CHARACTER STRINGS "'I
COUNT STRING
P.P STRING
MULTR STRING

'R8' ;
'AC' ;
'T' ;

1* LOOP COUNT IN R8 *1
1* PARTIAL PRODUCT IN AC *1
1* MULTIPLIER IN T *1

1* SPECIFICATION PART: EXAMPLE 1 FOR NON-PIPELINED SYSTEMS ONLY *1

START:

LOOP:

1* INITIALIZE LOOP COUNTER *1
SETR (COUNT); 1* SET COUNT TO ALL ONES *1
MSKR (COUNT) KFF0; 1* SET COUNT TO -16 *1
CLRR (P.P) STZ; 1* CLEAR AC AND Z-FLAG *1
1* MAIN MULTIPLICATION LOOP *1
TSTR (COUNT) STC; I*TEST COUNT FOR ALL ZEROS *1
SHRT (MULTR) FFZ STZ JCF (EXIT, STAY); 1* SHIFT LSB OF

MULTIPLIER INTO Z, SHIFT LSB OF PARTIAL PRODUCT
INTO MSB OF T, IF COUNT=0000 JUMP TO EXIT *1

053H: STAY: INRC (COUNT) JZF (ZERO, ONE); 1* INCREMENT COUNT AND JUMP
AFTER TESTING LSB OF MULTIPLIER *1

063H: ONE: ADDM (P.p); 1* ADD MULTIPLICAND TO PARTIAL PRODUCT *1
062H: ZERO: SHRT (P.P) STZ JMP (LOOP); 1* SHIFT LSB OF PARTIAL PRODUCT

INTO Z-FLAG AND JUMP TO LOOP *1
052H: EXIT: I'" FINAL PRODUCT IN T "'I

Fig. 6·2. Example 1: 16-Bit Multiply Routine for Non·Pipelined Systems

6·6

/* UNSIGNED 16-BIT MULTIPLY */

/* ASSUME THAT MULTIPLICAND IS BUFFERED AND AVAILABLE
ON THE M-BUS "'/

/'" DECLARAT I ON PART WI L L BE THE SAME AS THAT SHOWN FOR
EXAMPLE 1 ,', /

/* SPECIFICATION PART: EXAMPLE 2 FOR PIPELINED SYSTEMS ONLY */

/* INITIALIZE LOOP COUNTER */

050H: START: SETR (COUNT); /* SET COUNT TO ALL ONES */

051H: MSKR (COUNT) KFFF0; /,', SET COUNT TO -16 "'/

054H: CLRR (P.P) STZ; /* CLEAR AC AND Z-FLAG */

/* MAIN MULTIPLICATION LOOP */

064H: LOOP: TSTR (COUNT); /* TEST COUNT FOR ALL ZEROS */

061H: SHRT (MULTR) FFZ JFL (EXIT, STAY); "" SHIFT LSB OF
MULTIPLIER ONTO FI, SHIFT LSB OF PARTIAL PRODUCT
INTO MSB OF T, IF COUNT=0000 JUMP TO EXIT */

053H: STAY: INCR (COUNT) JFL (ZERO, ONE); /* INCREMENT COUNT
AND JUMP AFTER TESTING LSB OF MULTIPLIER */

063H: ONE: ADDM (P.p); /," ADD MULTIPLICAND TO PARTIAL PRODUCT "'/

062H: ZERO: SHRT (P.P) STZ JMP (LOOP); /,', SHIFT LSB OF PARTIAL
PRODUCT INTO Z-FLAG AND JUMP TO LOOP */

052H: EXIT: /,', FINAL PRODUCT IN T ;'/

Fig. 6·3. Example 2: 16-8it MUltiply Routine for Pipelined Systems

6·7

0 1

05 START
START

+1

ROW

LOOP
+1

06

START

START + 1

START + 2

r-------------~OLOOP

LOOP + 1

STAY = 1 JCF (JFL) - 0
0-------...... ------<-0 EXIT

= 1

ONE

Fig. 6-4. Microinstruction Flowchart

COLUMN

2 3 4 5 6 7

EXIT STAY
START

+2

ZERO ONE LOOP

Fig. 6-5. Microprogram Memory Grid Diagram

6·8

8 9 A

MICROCODE
FILE

MICROPROGRAM
MEMORY
IMPLEMENTATION

XMAP'S ROLE

7.1

FREE·FORMAT

XMAP
ITATEMENT
TYPES

MEMORY
IMPLEMENTATION

SECTION 7
XMAP LANGUAGE

When XMAS assembles a program it produces a microcode file. XMAP, directed by XMAP
language statements, operates on the contents of the microcode file and produces a ROM
programming file, which is suitable for programming the actual ROM and/or PROM devices that
constitute the physical microprogram memory.

For each specification statement in an XMAS language program, XMAS outputs to the micro
code file a complete description of the specified microinstruction word. This description
includes the address of microinstruction word (as specified in the label part of the specification
statement) and the logical bit pattern for every field in the microinstruction word. Thus, the
microcode file contains a complete logical description of a microprogram.

ROM and PROM devices are available in a number of organizations including: 512 words by a
bits, 512 words by 4 bits and 256 words by 4 bits. Individual ROMs or PROMs are configured
to form a physical microprogram memory of the required organization. For example" to con·
struct a microprogram memory of 512 words by 24 bits, three 512 word by a bit ROM's could
be used, where each ROM would carry an a·bit slice of the microinstruction word for each
microinstruction address.

The role of XMAP is to map the bit patterns in the microcode file into the desired ROM or
PROM bit locations. The XMAP language is used to describe the organization of the micro
program memory components and the detailed mapping procedure.

Section 7.1 provides an introduction to the XMAP language by way of an example mapping
problem. Sections 7.2 through 7.4 provide a formal description of the XMAP language. In the
formal descriptions, syntax is presented using a modified BNF notation; this notation is de·
scribed in Appendix A.

XMAP LANGUAGE OVERVIEW

The XMAP language is a free format language. Syntactic entities may appear anywhere in a
source record. Commas and spaces may be used freely and interchangeably to enhance read·
ability. A comment, which is delimited by /* and * /, may appear anywhere a blank character
would be allowed.

An XMAP program consists of a series of XMAP statements. A semi·colon (;) marks the end of
each statement, and the reserved word EO F marks the end of the XMAP program.

There are only two types of statements in the XMAP language: ROM specifications and
mapping specifications. A ROM specification describes the organization of a ROM or PROM. A
mapping specification describes the relationship between microprogram addresses and physical
ROM addresses for a single ROM or PROM. In addition, a mapping specification dictates which
bits of which fields of the microinstruction word are to be mapped into each bit position of a
single ROM or PROM.

The important characteristics of the XMAP language can be illustrated with a simple example.
Figure 7-1 is a pictorial representation of a simple mapping problem.

The microinstruction word has a total of 19 bits and is composed of the following five fields:
CPE (7 bits), FI (2 bits), FO (2 bits), JUMP (7 bits) and KB (1 bit). The bars (-) over bit
positions in the microinstruction word pictured in Figure 7-1 mean that the corresponding bits
must be inverted (i.e., in microcode file are to be programmed as Os in the physical ROM and
vice versa).

The physical microprogram memory is to be implemented using two 512 word by a bit ROMs
and two 256 word by 4 bit ROMs, as illustrated in Figure 7-1. ROM #2 will carry program

7-1

6 5 4 3 2 1 0 1 0" T 0 "6

CPE I FI I FO I
0 0

ROM #2
256
BY
4

ROM#1
512
BY 255
8 256

ROM #3
256
BY
4

511 511

5 4 3 2 1

JUMP
0

ROM #4
512
BY
8

511

o if

o
a:
w
N

I Kit

Fig. 7·1. Example Microprogram Memory Configuration

7·2

EXAMPLE
PROGRAM

INVERTED
ADDRESS
INPUT

addresses 0 through 255, and ROM #3 will carry program addresses 256 through 511. Since
only 19 bits are required for each microinstruction word, the low order bit position of ROM #4
will be programmed as zero (an arbitrary choice).

An XMAP language program that describes these mapping requirements is shown in Figure 7-2.

Statement (1) is a ROM specification. It states that the ROM or PROM under consideration has
an organization of 512 words by 8 bits.

Statement (2) is a mapping statement. The first part of this statement:

WORDS 0 TO 511

means that microprogram addresses 0 through 511 are to be mapped into consecutive ROM
locations beginning at ROM-address O. (ROM addresses always begin at 0; the numbers that
appear after the reserved word WORDS [i.e., 0 and 511] are always microprogram addresses.)
The second part of this statement is the reserved word BITS followed by a list of items enclosed
in parentheses. Each item corresponds to a bit position in the ROM beginning with the most
significant position and ending with the least significant bit position in the bit list. Each item
identifies the field and bit positions within the field that the corresponding ROM bit position is
to receive. Since the first (most significant) item is CPE (6), the most significant bit position of
each word of ROM 1 is to receive the most significant bit, number 6, of the CPE field; the least
significant bit position of each word of ROM1 is to receive bit number 1 of the FI field.

Statement (3) describes the organization of the next ROM to be programmed. The first part of
statement (4) specifies that microprogram address 0 through 255 are to be mapped into consec
utive ROM locations beginning at ROM address 0 (as always). The reserved word INVERT
means that bits programmed in this ROM are to be inverted. The BITS list has four items since
this ROM has four bit positions. The most significant bit position of the ROM will receive the
inverted state of bit 6 of the JUMP field for each microprogram address.

Statement (5) is not really necessary since statement (3) is still in effect. The first part of
statement (6) specifies that microprogram addresses 256 through 511 are to be mapped into
consecutive ROM locations beginning at ROM address 0 (as always).

Statement (6) specifies that the next ROM to be programmed has an organization of 512 words
by 8 bits. The last (least significant) item in the BITS list of statement (8) means that the least
significant bit position of the ROM will receive a zero for all ROM addresses. The second least
significant item in the BITS list is:

K(O)'

The single quote (') indicates that the designated bit (bit 0 of field KB) is to be programmed in
the inverted state. Note that the other bits in this ROM (i_e., the JUMP field bits) are not to be
inverted.

Statement (9), the reserved word EOF, terminates the XMAP language program.

I n configurations where an inverted address will be applied to the address inputs of a ROM or
PROM, it is necessary to map microprogram addresses into ascending ROM locations in
decending order. For example, if the address applied to ROM #4 is to be inverted, the first part
of statement (8) would be written:

WORDS 511 TO 0

meaning that microprogram address 511 is to be mapped into ROM address 0, microprogram
address 510 is to be mapped into ROM address 1, ... and microprogram address 0 is to be
mapped into ROM address 511.

7-3

(1) ROM 512 BY 8 1* ROM #1 ORGANIZATION *1;

(2) WORDS 0 TO 511 1* ROM #1 MAPPING *1

(3) ROM

(4) WORDS

(5) ROM

(6) WORDS

(7) ROM

(8) WORDS

(9) EO F

256 BY

o TO

BITS(CPE(6), CPE(5)
CPE(4), CPE(3)
CPE(2), CPE(])
CPE(0), FI(]));

4

255 INVERT
BITS(FI(0), FO(])

FO(0), JUMP(6);

256 BY 4

256 TO 511 INVERT
BITS(FI(0), FO(])

FO(0), JUMP(6);

512 BY 8

0 TO 511
BITS (JUMP (5) , JUMP(4)

JUMP (3) , JUMP (2)
JUMP(]), JUMP(0)
K(£l); 0);

I'>' ROM #2 ORGANIZATION

I'>' ROM #2 MAPPING *1

I'>' ROM #3 ORGANIZATION

I'>' ROM #3 MAPPING '>'1

I'>' ROM #4 ORGANIZATION

I;' ROM #4 MAPPING *1

Fig. 7·2. Example XMAP Language Program

74

'>'1;

'>'1;

'>'1;

7.2

SYNTAX

FREE FORMAT

SPACES, COMMAS,
COMMENTS AND
PERIODS

7.3

SYNTAX

EXAMPLE

7.4

SYNTAX

XMAPLANGUAGEPROGRAM

The following rule governs the structure of an XMAP language program:

(program) :: = [ROM .spec;] ... EOF
mapping spec;

There are two statement types: a (ROM spec) and a (mapping spec). A semi-colon marks the end
of each statement, and the reserved word EOF marks the end of the program.

XMAP language statements are free format; physical record boundaries and character positions
within a record are not significant. There are no restrictions as to where a statement begins or
ends or how long it is. A statement may span several records or may be wholly contained within
a single record.

Spaces and commas may be used freely between statement elements to enhance readability. A
comment (see Section 2.6 for syntax) may appear anywhere a space is allowed. XMAP treats
the period (.) as a null character.

ROM SPECIFICATION

A ROM specification describes the organization of a component (e.g., ROM or PROM) of the
microprogram memory that is to be programmed.

(ROM spec):: = ROM (integer1) BY (integer2)

(integer1):: = (integer)

(integer2):: = (integer)

Any valid (integer) representation (see Section 2.4) may be used for (integer1) and (integer2).

The number of words (i.e., addressable locations) in the ROM or PROM being described is
specified by (integer1). The number of bits in each word is specified by (integer2). A (ROM
spec) remai ns in effect until another (ROM spec) appears.

ROM 512 BY 8;

ROM 256 BY 4'

The first (ROM spec) describes a memory component with 512 words of 8 bits each. The
second statement describes a memory component with 256 words of 4 bits each.

MAPPING SPECIFICATION

A mapping specification controls the way in which specified bits from the microinstruction
words from specified microprogram addresses are to be mapped into a component (e.g., ROM
or PROM) of the microprogram memory.

(mapping spec):: = WORDS (range pair)
[INVERT] BITS (bit spec list»)

(range pair):: = (integer3) TO (integer4)

(bit spec list>:: = {reid name) (integer5») ['] }

7-5

EXAMPLE

EXAMPLE

EXAMPLE

(integer3):: = (integer)

(integer4) :: = (integer)

(i nteger5) :: = (integer)

Any valid (integer) representation (see Section 2.4) may be used for (integer3), (integer4) and
(integer5).

The (range pair) designates the microprogram addresses that are to be mapped into consecutive
ROM locations beginning at ROM address O. (integer3) designates the microprogram address
that is to be mapped into ROM address O. If (integer4) is greater than (integer3), microprogram
address (integer3) + 1 is mapped into ROM address 1, etc. If (integer4) is less than (integer3),
microprogram address (integer3) - 1 is mapped into ROM address 1, etc. In all cases, the
absolute value of (integer3) - (integer4) must be one less than the number of locations in the
ROM being programmed (i.e., (integerl) of the previous (ROM spec»). The optional reserved
word INVERT, when present, means that the bits listed in the (bit spec list> are to be inverted.
That is, zeros input from the microcode file are to be written in the ROM programming file as
ones, and vice versa.

The (bit spec list> designates the contents of each bit position of the ROM word. The (bit spec
list> must have exactly as many items as the number of bits in the ROM word (i.e., (integer2) in
the previous (ROM spec»).

An item in the (bit spec list) can take one of three forms. In the form:

(field name) (integer5») ['J

(field name) must be either a field name that is intrinsic to the XMAS language or a field name
that was defined in the XMAS language program whose microcode file is being mapped.
(integer5) is a bit number within the field (the rightmost bit of a field is bit 0). The optional
apostrophe ('), when present, indicates that the bit is to be inverted. The other two forms that
an item in the (bit spec list) can take are 0 and 1. A 0 indicates that the corresponding bit
position of the ROM is to receive a 0, and a 1 indicates that the corresponding bit position is to
receive a 1.

WORDS 256 TO 511

BITS (0, 1, JUMP(4), KB(2)').

This statement specifies that microprogram addresses 256 through 511 are to be mapped into
consecutive ROM locations beginning at ROM Address O. The four bit positions of each ROM
word beginning with the most significant bit position are to receive 0, 1, bit 4 of the JUMP field
and the complement of bit 2 of the KB field, respectively. KB is assumed to be a user-defined
field.

WORDS 511 TO 256

INVERT BITS (0, 1, JUMP(41. KB(2)');

This statement specifies that microprogram address 511 through 256 (taken in decending order)
are to be mapped into consecutive ROM locations beginning at ROM address O. All items in the
BITS list are to be complemented. The four bit positions of each ROM word are to receive 1, 0,
the complement of bit 4 of the JUMP field and bit 2 of the KB field. The following statement:

WORDS 511 TO 256

BITS (1,0, JUMP(4)', KB(2));

This statement is identical to the previous statement.

7-6

LIST FILE

8.1

SECTIONS
XMAP LISTING OUTPUT

In processing an XMAP language program, XMAP is capable of generating the following reports:

• Listing of XMAP language source statements and a binary dump of each ROM specified
by a ROM mapping statement;

• XMAP program summary

The user selects the information he wants via the control language (Section 9).

XMAP outputs the selected information to the FORTRAN data file that has been designated as
the list file. The list file is page oriented; running error and page counts are given at the top of
each page. Via the control language, the user can specify an optional page title, the number of
lines per page, the number of characters per line, and the form feed mode to be used between
pages. The list file line width must be a minimum of seventy· two characters.

Subsequent subsections describe the XMAP reports.

XMAP SOURCE STATEMENTS AND ROM DUMPS

The user may choose to have both the XMAP language statements and the ROM dumps
included in the list file. A partial listing is shown in Figure 8·1. The three periods in a vertical
line are not part of the actual output of but simply indicate that the entire dump is not shown.

XMAP VERS 1.0 XMAP SAMPLE ERRORS o PAGE 2

RECORD
NUMBER

25 ROM 512 BY 8;
26. 11, SPECIFY ROM 1 *1 WORDS 0 to 511
27 BITS (CPE(6), CPE(5), CPE(4), CPE(3), CPE(2), CPE(l),
28 CPE(O), KB(0)');

ROM
(000H) 0100 0001 1001 1101 1000 0101 1001 0101
(004H) 0100 0000 0000 0100 1000 0101 0100 0001

(lFCH) 1001 0101 1100/0100 0100 0000 1001 1100

29 11, SPECIFY ROM 2 *1 WORDS 0 TO 511
30 BITS (JUMP(6) , JUMP(5), JUMP(4) , JUMP (3), JUMP (2), JUMP (1) ,

JUMP(O), FO(0). FO(0));
ROM 2

(000H) 0010 0100 0110 0100 0110 0100 1111 0111
(004H) 1111 1001 1010 1101 0001 1111 011000100

Fig. 8·1. Example of XMAP Source Statements and ROM Dumps

8·1

XMAPSOURCE
RECORDS

RECORD
NUMBERS

ROM NUMBERS

ROM DUMP

SELECTION
OF OPTIONS

ERROR MESSAGES

8.2

BIT NAME

Each record from the XMAP source file, is written in the list file left justified in column 8. The
records are copies to the list file exactly as they appear in the source file unless the line width
of the list file is too small to accommodate the entire record. In this case, the remaining
characters of the source record are written in the next line of the list file, again left justified in
column 8. Each record in the source file, beginning with the first XMAP language statement, is
assigned a sequential record number. This record number appears as a decimal integer in the list
file in columns 1 through 5 of the line in which the corresponding record appears. Record
numbers run from 1 through 3276710; if more source records exist, the numbering simply
starts again at 1.

Each ROM specified by an XMAP ROM mapping statement is assigned a unique ROM number
for identification purposes. This ROM number is written in the list file in columns 1 through 8
of the first available line following the line containing the end of the corresponding XMAP
ROM mapping statement. The ROM number is used in the XMAP program summary, which is
discussed in the next subsection.

The binary dump for each ROM begins on the line following the line containing the ROM
number. Each line of the dump starts in column 12 with a three digit hexadecimal address in
parentheses. This address is followed by the contents of a set of contiguous locations beginning
with the location given by the address. Each line of the dump displays the contents of a
multiple of four locations, but as many locations are written as will fit within the line width of
the list file without violating this constraint. The contents of each location are represented as a
binary string separated into four bit fields (one field for a four-bit ROM and two fields for an
eight-bit ROM).

Via the control language, the user may specify that he wants only the XMAP source statements
or only the ROM dumps in the list file. The format of the output under either of these options
is the same as described in the appropriate paragraph above. ROM numbers are included in the
output in both cases.

Any error messages will be output to the list file by XMAP. A summary of XMAP error
messages is listed in Appendix H.

XMAPPROGRAMSUMMARY

The XMAP program summary lists for each bit in the microinstruction word the number of the
ROM and the bit position within the ROM into which the bit in question has been mapped by
the XMAP language program. An example of the format of an XMAP program summary is given
in Figure 8-2.

The format of a bit name is a field name followed by a bit number enclosed in parentheses.
Within each field, the high order bit is given first. The fields are presented in the order in which
they are output by XMAS: the CPE field is given first, followed by the F I field, the Fa field,
the JUMP field and finally the user-defined fields in the order in which they are defined in the
XMAS program.

Each bit name is followed by a list of one or more items. Each item is a ROM number followed
by a bit number enclosed in parentheses. Items within each list occur in the order of increasing
ROM number. Bit number 0 refers to the least significant bit position of each ROM word.

8-2

XMAP VERS 1.0 XMAP SAMPLE OUTPUT

SUMMARY OF XMAP PROGRAM

BIT NAME

CPE(6)
CPE (5)
CPE(4)
CPE (3)
CPE (2)
CPE (1)
CPE (0)
Fl. (1)
F I (0)
FO (1)
FO (0)

ROM(BIT POSITION)

1 (1)
1(2)
1 (3)
1(4)
1(5)
1(6)
1(7)
3(1) ,4(1)
3(2),4(2)
3(3) ,4(3)
2 (0)

Fig. 8-2_ Example of XMAP Program Summary

8-3

USE OF THE
CONTROL
LANGUAGE

9.1

RECORD
FORMAT

CONTROL
VARIABLES

DISPLAY
FUNCTION

EXAMPLE

SET FUNCTION

EXAMPLE

SECTION 9
CONTROL LANGUAGE

Both XMAS and XMAP include a control language interpreter. Like XMAS and XMAP language
statements, control language records are input from the source file. All control language records
must, however, precede the first XMAS or XMAP language statement.

The control language is used to specify various operating parameters for XMAS and XMAP. The
control language provides the mechanism for designating files, specifying I/O data record
formats and selecting listing options.

Section 9.1 provides an introduction to the control language and describes variables used in the
control language. Section 9.2 gives a formal description of control language syntax. The formal
description uses the modified BNF notation explained in Appendix A.

CONTROL LANGUAGE OVERVIEW

Every control language record must have a dollar character ($) in the first active character
position (the left margin of the source file is determined by the value of the control variable
LEFT, which is discussed below). Otherwise, control language records are free-format.

The control language deals with a set of variables called "control variables." The control
variables, their meanings and their Intel-released default initial values are summarized in Table
9-1. The control variables are discussed in more detail below. Some control variables apply to
both XMAS and XMAP, others apply to XMAS only, and others apply to XMAP only (those
that begin with ROM). .

Via the control language, two kinds of functions can be performed on a control variable: its
current value can be displayed, or it can be assigned a new value.

A display list is used to designate the control variables to be displayed. A display list begins
with the special word DISPLAY followed by a list of control variables enclosed in a single set of
parentheses. For example, the control record:

$DISPLAY (LEFT RIGHT)

instructs XMAS or XMAP to output the current values of the control variables LEFT and
RIGHT to the list file. The display list may also take the form:

$ DISPLAY (ALL)

which instructs XMAS or XMAP to output the values of all the applicable control variables to
the list file. (XMAS will not output the value of, say, ROMFILE since this control variable does
not apply to XMAS.)

Typically, the display function is used in interactive mode (i.e., when both the source file and
the list file are assigned to a terminal device). The display function provides a convenient means
of allowing the user to determine which control variables he may wish to change.

A control variable is assigned a new value when the control variable name appears in control
language record followed by an assignment operator (=) and an integer. For example, the
control language record:

$ LEFT = 4 RIGHT = 72

assigns the value of 4 to LEFT and 72 to RIGHT. A subset of the control variables, called the
binary control variables, have only two significant values: zero or non-zero. The binary control
variables all have an initial value of zero. An assignment operator and integer are not required to
assign a binary control variable a non-zero value. For example, the control record:

$PRINT BITS

9-1

VARIABLE

BITS

CODE

CROSSREF

FORMS

IMAGE

LEFT

LINES

LlSTFILE

MICROMEMORY

PRINT

RIGHT

ROM DUMP

ROMFILE

ROMSUMMARY

SOURCEFILE

TITLE

WIDTH

TABLE 9-'_ SUMMARY OF CONTROL VARIABLES

MEANING

If non-zero, XMAS displays bit patterns in the list file.

If non-zero, XMAP outputs hexadecimal code to the ROM programming file_

If zero, XMAP outputs BNPF code_

If non-zero, XMAS outputs a cross reference directory_

If non-zero, page ejects are issued between pages in the list file. If zero, 6 line

feeds a~e issued between pages.

If non-zero, XMAS outputs a microprogram memory image to the list file.

Value is the columnar location of the left margin in the source file. All
characters to the left of LEFT are ignored.

Value is the number of lines per page in the list file.

Values designates the FORTRAN data file which is currently the list file.

Value specifies the microprogram memory size.

If non-zero, source file records are echoed on the list file.

Value is the columnar location of the right margin of the source file. All
characters to the right of RIGHT are ignored.

If non-zero, XMAP will output ROM dumps to the list file.

Value designates the FORTRAN data file which is currently the ROM
mapping file.

If non-zero, XMAP will output an XMAP program summary to the list file.

Value designates the FORTRAN data file currently the source file.

The character string assigned to TITLE is put in the page header of the
list file.

Value gives the maximum number of characters in a list file record.

*These represent the default values that have been assigned by Intel. These values can be changed, however, at installation time.

9-2

INITIAL'

o

o

o

o

o

60

512

o

72

o

o

null

132

CONTROL
LANGUAGE
ERRORS

FILE
DESIGNA nON

SOURCE FILE
FORMAT CONTROL

LIST FILE
FORMAT CONTROL

WIDTH, LINES
AND FORMS
CONTROL
VARIABLES

TITLE CONTROL
VARIABLE

assigns a non-zero (i.e., true) value to the control variable PRINT and BITS. The value of the
control variable TITLE is a character string (initially null). The control language record:

$ TITLE = 'ANY CHARACTERS'

associates the character string ANY CHARACTERS with the control variable TITLE.

Exceptional conditions that cause an error message to be issued include finding an unknown
control variable name. use of the binary control variable set feature on a control variable that is
not two - valued (i.e., not "on" or "off"), and illegal syntax. After issuing an error message to

the list file, the values of all control language variables are output to the list file and processing
will terminate unless the source file is currently assigned to an interactive device (i.e., a terminal
device).

In both XMAS and XMAP, all control variables that require changing must be assigned their
desired value before the first XMAS or XMAP language statements. The control variables are
described in the following paragraphs.

The control variables SOURCEFILE, LlSTFILE and ROMFILE designate the file numbers of
the FORTRAN data files currently serving as the source file, list file and ROM programming file
(XMAP only), respectively. File numbers are related to physical files via tables in XMAS and
XMAP. These file tables are configured by the user when he installs XMAS and XMAP on his
system. He also assigns appropriate initial values (i.e., file numbers) to SOURCEFI LE,
LlSTFI LE and ROMFI LE. By convention, file number 1 is assumed to be a terminal file (e.g., a
teletype or CRT); all other file numbers are assumed to be batch files (e.g., a card reader, card
image disk file, etc.)

$ LlSTFILE = 3 SOURCEFILE = 2

List file output is to be directed to file 3. Subsequent control language records and XMAS or
XMAP language statements are to be input from file 2.

The control variables LEFT and RIGHT specify the left and right margins of source file record.
Characters to the left of LEFT or to the right of RIGHT are ignored. LEFT and RIGHT have'
initial values of 1 and 72 respectively.

$ LEFT = 5 RIGHT = 71

Subsequent source file records will be scanned beginning with character position 5 and ending
with character position 71. Subsequent control language records, if any, must have a $ in
character position 5.

The control variables WIDTH, LINES and FORMS control list file format. The value of width
gives the maximum number of characters that may appear in a list file record, not including
FORTRAN carriage control characters. WIDTH has an initial value of 132 and may not be
assigned a value greater than 132 nor less than 72. The value of LINES is the number of lines
per page in the list file; the initial value for LINES is 60. If FORMS equals zero (its initial value)
six line feeds are issued when the line count reaches LINES. If FORMS is not equal to 0, a page
eject is issued when the I ine count reaches LI N ES.

$ WIDTH = 80 FORMS LINES = 40

List file records are to contain a maximum of 80 characters. A form feed is to be issued after
every 40 lines are output to the list file.

The control variable TITLE is used to designate a list file page title. The character string
assigned to TITLE is printed as the first line of every page output to the list file by XMAS or
XMAP,

$ TITLE 'BIPOLAR MICROPROGRAM NOV. 15'

The text string BIPOLAR MICROPROGRAM NOV. 15 is printed at the top of every page in
the list file.

9-3

XMAS LISTING
OPTIONS

XMAP LISTING
OPTIONS

ROM PROGRAMMING
FILE FORMAT

CODE, CONTROL
VARIABLE

MICROPROGRAM
ADDRESS SPACE

9.2

SYNTAX

The binary control variables PRINT, BITS, CROSSREF and IMAGE are used to select XMAS
listing options (see Section 3). These variables have initial values of zero meaning that the
corresponding listing options are initially inhibited. If PRINT is non-zero, source file records are
echoed on the list file with sequential record numbers_ Control language records will not be
numbered. (PRINT applies to both XMAS and XMAP.) If BITS is non-zero, the assembled bit
patterns are displayed in the list file. If CROSSREF is non-zero, XMAS will output a cross
reference directory to the list file. If IMAGE is non-zero XMAS will output a graphic micro
program memory image to the list file.

$ PRINT BITS IMAGE

Source statement and bit patterns are to be output to the list file during the subsequent
assembly. Also, a microprogram memory image is to be output to the I ist file following the
subsequent assembly.

The binary control variables ROM DUMP and ROMSUMMARY are used to select XMAP listing
options (see Section 8). These variables have an initial value of zero meaning that the corre·
sponding listing option is initially inhibited. If ROM DUMP is non-zero, XMAP outputs a hexa
decimal dump for each XMAP mapping statement. If ROMSUMMARY is non-zero, XMAP
outputs to the list file an XMAP program summary.

$ ROMDUMP

A ROM dump is to be output to the list file.

The binary control variable CODE is used to designate the data format of the ROM pro
gramming file. If CODE is zero, XMAP outputs BNPF code (refer to Appendix E) to the ROM
programming file. If CODE is non-zero, XMAP outputs hexadecimal code to the ROM pro
gramming file.

The control variable MICROMEMORY allows XMAS and XMAP to perform microprogram
address checking. MICROMEMORY has an initial value of 512. If XMAS or XMAP detects a
microprogram address greater than or equal to MICROMEMORY, XMAS or XMAP outputs an
error message to the list file.

$ M ICROM EMORY = 2048

XMAS or XMAP will allow microprogram addresses up to 2047.

CONTROL LANGUAGE SYNTAX

The following rules govern control language syntax:

.. {(diSPlaY liSt)}
(control record) .. = $ (set list) ...

(display list):: = DISPLAY ({(ALL I . bl)} ...)
contro vana e

. .. { . [(integer)] } (set list) .. (control vanabl e) (h _)
c aracter stnng

(control variable):: BITS!
CODE!
CROSSREF!
FORMS!
IMAGE!
LEFT!
LINES!
LlSTFILE!

9-4

EXAMPLES

MICROMEMORY.!
PRINT!
RIGHT!
ROMDUMP!
ROMFILE!
ROMSUMMARY !
SOURCEFILE!
TITLE!
WIDTH!

Control language records are free-format except that each must begin with a $ character, which
must appear in the column specified by the control variable LEFT

$ LlNES= 59 DISPLAY (FORMS IMAGE)

$PRINT DISPLAY (ALL)

$ DISPLAY (LEFT, RIGHT) DISPLAY (PRINT,

$ TITLE, WIDTH)

$ TITLE = 'BIPOLAR MICROPROGRAM, NOV. 15'

All control language records must precede the first XMAS or XMAP language statement. This
means that all control variables must be set to their desired value before the first XMAS
statement is encountered. The control variables are summarized in Table 9-1.

9·5

APPENDIX A
MODIFIED BNF SYNTAX DESCRIPTION NOTATION

The syntax of a language is its structure, or the form and order in which its elements may appear. The BN F syntax
description notation, without modification, is essentially a set of rules, each of which defines how a particular syntactic
entity is to be constructed. There are two different classes of syntactic entities in BN F; one class is referred to as terminal
symbols, and the other as nonterminal symbols. Terminal symbols are those symbols which may appear in a program written
in the language that the BNF describes. Examples of these are reserved words and identifiers in ALGOL, the keywords of
FORTRAN (DO, GO TO, etc.) and statement labels and numbers in most languages. In general, symbols which may appear in
a user program written in a particular programming language are the set of terminal symbols for that language, and the
grammer describing it. Nonterminal symbols are symbols which may not appear in a program, and are used in the BNF to
build more complex structures in an understandable manner. Terminal symbols are represented in BNF by the symbols
themselves, while nonterminal symbols are bracketed by O.

For example, the syntax for an expression in the XMAS language (in a considerably simplified form) is:

(expression) :: ;= (term) ! (expression) + (term)

(term) :: = (factor) I (term) * (factor)

(factor) :: = (identifier) ! (integer) I (expression)

(integer) :: = 0 I 1 I 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9

(identifier) :: = (letter) ! (identifier) (letter)

(letter) :: = A ! B Ie! D ! E !

In BN F notation, the vertical bar is used to separate alternatives. Logically, the vertical bar is an exclusive -0 R operator.
For ::, the words "is defined as" or "has an instance as" or "may be written as" should be substituted. Thus

(letter) :: = A ! B Ie! D ! E

would be read as

"the nonterminal symbol (letter) may be written as any of the terminal symbols: A or Bore or D or E"

Hence whenever (letter) is found on the right side of another BN F rule, it really represents A or B or C or D or E. It is, as one
may observe, much more convenient to refer to (letter) than to say or write the terminals corresponding to it.

To show how these rules are used, take the rule:

(identifier) :: = (letter) I (identifier) (letter)

A valid identifier generated from this rule is:

A

since any (letter) is a valid (identifier). In addition, now that we have an (identifier) like A, the second alternative in the BNF
rule shows that AA is a valid (identifier). In fact, one may recursively expand the rule, using the second alternative:

(identifier) :: = (identifier) (letter)

and since the (identifier) on the right hand side of the rule may be replaced by an (identifier) (letter), one can generate

(identifier) = (identifier) (letter) (letter)

This recursive process may be carried out to generate arbitrary long (identifier)s. It is terminated by using the first alternative
to the rule to replace (identifier):

A-1

(identifier) :: = (identifier) (letter) (letter)

(identifier) (letter) ... (letter)

where the ... represents an arbitrary number of (Ietter>s. Finally by substitution of (letter) for (jdentifier), we get

(identifier) :: = (letter) (letter) ... (letter)

Some valid identifiers are:

A
AA
ABC,
CBAD

As noted, these are not all the valid identifier, since any arbitrary combination of (Ietter)s generates a valid (identifier). An
invalid (identifier) (can't be generated from the BNF rule describing (identifier») is:

3ABC

since an (identifier) cannot contain an (integer).

We have in fact generated the first modification to BN F notation; the rule describing (jdentifier)s may be written

(identifier) :: (letter) ...

where the ... represents an arbitrary number (greater than zero) of occurrences of the entity preceeding it. This is much easier
to write and to understand than the recursive rule it replaces.

Another useful addition to BNF notation is a bracketing tool, II may be used to bracket syntactic entities and constructs to
form a single entity. The curly brackets II are used to indicate that what is enclosed in them is both a requirement when
using the rule and a single compound entity. For example, the rules:

(a):: = I <bXC> I ...
(b):: = B
(c)::=C

says that an (a) can be an arbitrary number of repititions of BC, such as

BC
BCBC
BCBCBC

ad infinitum. In other words, the ellipses, ... , indicating arbitrary repetitions are now associated with (b) (c) as an entity,
rather than (c). In addition, if entities are stacked vertically within the brackets, this indicates that one and only one of these
stacked alternatives should be chosen. For example, the rule:

may be written:

(a) :: = AB ! AC

and says, an A must be followed by either a B or a C. The rule

(a):: = A {~} ...

generates:

AB
AC
ABC

and in general, an A followed by an arbitrary number of Bs and Cs. The unmodified BNF equivalent of this is considerably
more obscure:

(a):: = A(bor c)

(b or c):: = B I C I (b or c) B ! (b or c) C

This necessarily recursive form is considerably more difficult to conceptualize than the modified BNF form of the rule given
above.

The final addition to BNF allowing more abbreviated and less obscure notation is the brackets which indicate an optional
entity. A syntactic entity or construct which is enclosed in square [1 may optionally be chosen when the rule is used. For
example, the rule:

(a):: = A [Bl

is the same as the rule:

(a):: =A I AB

and indicates that the A mayor may not be followed by a B. It has the similar property to II in that items enclosed in [1
become a single entity. The rule

(a) ::= A [B Cl

is equivalent to

(a):: = A! A (bc list)

(bc list):: = B C ! (be list) B C

and is much easier to understand and use. This rule says that an (a) may be written as an A, followed by zero or more BCs.
When items are stacked vertically between [1, this indicates that one and only one of the items may be chosen. The rule

(a)::=Al~]

is equivalent to

(a):: = A! AB I AC

But, again, is considerably more compact.

The final caution concerns the interaction between syntax and semantics. The modified BNF rule:

A·3

(field spec):: = FI ELD H~~~~~~ T} = (expression) ~ ...
indicates that

FI ELD LENGTH = 1 LENGTH = 2 DEFAULT = 0 LENGTH = 1

is valid. While it is valid syntactically, its meaning, or semantics, is questionable. In such a case, the description of the seman
tics for this construct would probably say that the parameters LENGTH and DEFAULT may be specified only once each.

A-4

APPENDIX B
SYNTAX SUMMARY FOR THE XMAS LANGUAGE

The purpose of this appendix is to provide a quick reference to the syntax of the XMAS language. The descriptive
meta·notational is explained in Appendix A.

(program) :: = [(declaration)]

(specification part) EOF

(declaration part> :: = !(declaration statement)! ; ...

(declaration statement) :: = (string statement) !
(value statement) !
(field statement> !
(i m ply statement> !
(k·bus statement> !
(address statement) !

(specification part):: = !(specification statement>!

(string statement>:: = (string identifier) STRING
!(character string)! ...

(string identifier):: = (identifier)

(value statement):: = (value identifier) VALUE (expression)

(value identifier):: = (identifier)

(field statement) :: = (field name) FIE LD (field spec) ...

(field name):: = (identifier)

(field spec) :: = LENGTH = (integer) ! DEFAU L T = (expression)

MICROPS (!(microp) = (expression)! ...)

(imply statement> :: = (microp) IMPLY (imply list>

(imply list>:: = !(field name) = (expression)! ...

(k·bus statement> :: = (field name) KBUS

(address statement) :: = (field name) ADD R ESS

(specification statement) :: = (label part> ! (fields part> I
(label part>:: = [*] (integer): [(address identifier):]

(address identifier) :: = (identifier)

(fields part> :: = 1 (field name) = (expression)
(microp)

(CPE microp) { (register name) }
(JUMP microp) !(expression)! ...

(comment):: = /* (character string excluding */)*/

(expression):: =<term> [~~~R} (TERM) I
(term):: = (subterm) [AND (subterm)] ...

(subterm) :: = (factor) [{;~ ~ } (Factor) 1
factor = [NOT] primary

B·'

(primary) :: = Hval ue identifier)
(address identifier)
(iriteger)!

({expression»)

(integer):: = (decimal integer) !
(binary integer) !
(octal integer) !
(hexadecimal integer)

(decimal integer):: = (decimal digit)\ ... [OJ

(binary integer):: = {(binary digit)\ ... B

(octal integer):: = {(octal digit)\ ... Q
Q

(hexadecimal integer):: = (decimal digit) [(hexadecimal digit)J ... H

(decimal digit):: = O! 1 !2!3!4!5!6!7!8!9
o

(binary digit) :: = O! 1

(octal digit):: = O! 1 !2!3!4!5!617

(hexadecimal digit):: = 0!1!2!3!4!5!6!7!
8!91A!B!CID!E! F

(identifier) :: = (letter) [(letter)] ...
(digit)

(letter):: = A!B!C!O!E!F!G!H!I!J!K!L!M!
N!O!P!Q!Q!R!S!T!U!V!W!X!Y!Z

(digit):: = 0!1 !2!3!4!5!6!7!8!9

B-2

APPENDIXC
SYNTAX SUMMARY FOR THE XMAP LANGUAGE

The purpose of this appendix is to provide a quick reference to the syntax of the XMAP language. The descriptive
meta·notation is explained in Appendix A.

(program):: = {<ROM spec); } ... EOF
(mapping spec);

(ROM spec) :: = ROM (integer1) BY (integer2)

(integer1) :: = (integer)

(integer2) :: = (integer)

(mapping spec):: = WORDS (range pair)
[INVERT] BITS (bit spec list»

(range pair) :: = (integer3) TO (integer4)

(bit spec list> :: = rrld name) (integer5») [']~

(integer3) :: = (integer)

(jnteger4):: = (integer)

(integer5) :: = (integer)

c·,

APPENDIX D
SYNTAX SUMMARY FOR THE CONTROL LANGUAGE

.. $ {(diSPlay liSt>}
(control record) .. = (set list> ...

(display list)::= DISPLAY ({ ALL })
(control variables) ..

(set list> :: = {(Control variables) [= (integer) l}
= (character string)]

(control variable) :: = BITS!
CODE I
CROSSREF!
FORMS I
IMAGE I
LEFT!
LINES I
L1STFILE I
MICROMEMORY !
PRINT!
RIGHT I
ROM DUMP !
ROMFILE I
ROMSUMMARY I
SOURCEFILE!
TITLE I
WIDTH I

D-1

PROGRAM
TERMINATOR

EOF

APPENDIX E
RESERVED WORD SUMMARY

DECLARATIONS MICROPS

FIELD INTRINSIC
STATEMENT STATEMENT FIELD FIELD

TYPE KEYWORDS NAMES JUMP FI FO CPE

FIELD LENGTH JUMP JCC HCZ FFC ACM INR
DEFAULT FI JCE SCZ FFZ ADR LCM
MICROPS FO JCF STC FF0 AlA LDI

IMPLY CPE JCR STZ FF1 ALR LDM
KBUS JFL AMA LMF
ADDRESS JLL ANI LMI
VALUE JMP ANM LMM
STRING JPR ANR LTM

JPX CIA ORI
JRL CLA ORM
JZF CLR ORR
JZR CMA SDA

CMR SDR
CSA SRA
CSR TZA
DCA TZR
DSM XNI
ILR XNM
INA XNR

E-1

CPE
REGISTER

NAMES OPERATORS

AC AND
R0 NOT
R1 OR
R2 XOR
R3 SHL
R4 SHR
R5
R6
R7
R8
R9
T

APPENDIX F
BNPF AND HEXADECIMAL CODE

3NPF format is an ASCII representation of a byte in pure binary form. A "B" is punched to indicate the beginning of a byte.
:ollowing the B, exactly four or eight P's and N's must be punched, depending on the ROM word width and the pro
Iramming device. The fifth or ninth character following the B must be an F, indicating the end of a byte. All characters
'ollowing the F are ignored until another B is encountered. This allows comments (not containing the letter B) to appear
letween bytes of data in BNPF format.

3its of data in a BNPF byte appear in left-to-right order from most significant to least significant.

Example: The two bytes '3AFO' would be represented in eight bit BNPF format as

BNNPPPNPNF BPPPPNNNNF

A hexadecimal object file is an ASCII representation of program memory, expressed as a series of hexadecimal digits. These
are blocked into records, each of which contains the record length, type, memory load address, and checksum, in addition to
data. The description below applies to paper tape on a frame-by-frame basis.

Frame 0 = Record Mark
The ASCII representation of a colon (3A in base 16) is used to signal the start of a record.

,Frames 1, 2 = Record length in hexadecimal
:This is the count of the actual data bytes in the record. A record length of zero indicates end of file.

e four-character starting address at which the following data will be loaded. The first data byte is stored in the location
, icated by the load address. Successive data bytes are stored in successive memory locations.

, rrently, all records are type O. This field is reserved for future expansion.

ames 9 to 9+2* (record length) = 1 = Data
8-bit memory word is represented by two frames containing ASCII characters 0-9, A-F, which represent a hexadecimal

ue between 0 and FF (O and 255 decimal).

mes 9+2* (record length) to 9+2* {record length)+l = Checksum
Checksum is the negative of the sum of all 8-bit bytes in the record, evaluated modulo 256. The sum of all bytes in the
rd (including the checksum) should be zero.

following is an example of hexadecimal object format:

. :10000000FOD3921COCF1A3FB1216B2CODl F19A lCD2
:0800100016DOF 1831 AOAFACOBO
:00

ful reference on the subject of PROM/ROM programming is:

ntel® Data Catalog
. ctober 1973

.3-31 to 3-34

F-1

APPENDIX G
SUMMARY OF XMAS ERROR MESSAGES

1: PARSE STACK OVERFLOW
2: SORT STACK OVERFLOW
3: NAME/STRING STORAGE OVERFLOW
4: HASH TABLE OVERFLOW
5: TOO MANY LABELS FOR CROSS REFERENCE DIRECTORY
6: VALUE SPACE OVERFLOW
7: SYMBOL TABLE OVERFLOW
8: FIELD TABLE OVERFLOW
9: PARSE STACK UNDERFLOW

101: INVALID CONTROL VARIABLE
102: IDENTIFIER IS NOT A BINARY CONTROL VARIABLE
103: MISSING VALUE FOR CONTROL VARIABLE
104: ATTEMPT TO ASSIGN INVALID VALUE TO CONTROL VARIABLE
105: ATTEMPT TO ASSIGN OUT OF BOUNDS VALUE TO CONTROL VARIABLE
106: MISSING) TO TERMINATE DISPLAY LIST
107: ATTEMPT TO ASSIGN VALUE OF IMPROPER TYPE TO CONTROL VARIABLE
108: EMPTY DISPLAY LIST
109: MISSING' TO TERMINATE TITLE
110: INVALID CHARACTER
111: INVALID INTEGER
112: CANNOT ENTER XMAS STATEMENTS FROM TERMINAL
200: ILLEGAL NUMBER. 1 ASSUMED
201: ILLEGAL USE OF /
202: UNEXPECTED EOF
203: I LLEGAL USE OF $ OR •
300: FIELD IS MULTIPLY IMPLIED
301: FIELD NOT SPECIFIED
302: NO JUMP SPECIFIED IN FINAL STATEMENT
303: WRONG NUMBER OF ITEMS IN JUMP LIST
304: VALUE FOR FIELD WAS TRUNCATED
305: MICROP ALREADY HAS IMPLY LIST
306: IDENTIFIER IS NOT A MICROP
307: UNDECLARED IDENTIFIER
308: IDENTIFIER IS NOT A FIELD NAME
309: INTRINSIC FIELD MAY NOT BE USED AS KBUS FIELD
310: MULTIPLE OCCURRENCE OF KBUS STATEMENT
311: INTRINSIC FIELD MAY NOT BE USED AS ADDRESS FIELD
312: MULTIPLE OCCURRENCE OF ADDRESS STATEMENT
313: MULTIPLY DEFINED IDENTIFIER
314: MICROP VALUE TRUNCATED TO FIELD LENGTH
315: MULTIPLE MICROP LISTS FOR FIELD
316: ZERO FIELD LENGTH IS ILLEGAL
317: MULTIPLE LENGTHS FOR FIELD
318: MULTIPLE DEFAULTS FOR FIELD
319: DEFAULT VALUE WAS TRUNCATED TO FIELD LENGTH
320: JUMP IS IMPOSSIBLE

, 321: ADDRESS IS MULTIPLY DEFINED
322: ADDRESS OF STATEMENT IS OUT OF RANGE
323: JUMP FROM PREVIOUS STATEMENT IS IMPOSSIBLE
324: IDENTIFIER IS NOT A LABEL

. 325: FIELD IS MULTIPLY SPECI FlED

G-l

326: MICROP IGNORED FOR INVALID FIELD
327: INVALID USE OF IDENTIFIER AS MICROP
328: ATTEMPT TO SPECIFY INVALID FIELD
329: INVALID USE OF IDENTIFIER AS FIELD NAME
330: JUMP LIST IS EMPTY
331: INVALID USE OF IDENTIFIER AS JUMP MICROP
332: ILLEGAL REGISTER FOR MICROP, AC ASSUMED
333: INVALID USE OF IDENTIFIER AS CPE MICROP
334: ADDRESS IN JUMP IS OUT OF RANGE
335: ADDRESS OUT OF SEQUENCE IN JUMP
336: VALUE IDENTIFIER USED BEFORE DEFINITION
337: INVALID USE OF IDENTIFIER IN EXPRESSION, 0 ASSUMED
338: MULTIPLE USE OF FIELD IN IMPLY LIST
339: STRING NAME ENCOUNTERED IN STRING EXPANSION, NULL ID INSERTED
340: FIELD CAUSES MAXIMUM INSTRUCTION LENGTH TO BE EXCEEDED
341: VALUE OF LABEL IN EXPRESSION IS UNDEFINED
500: SYNTAX ERROR

G-2

APPENDIX H
SUMMARY OF XMAP ERROR MESSAGES

1: PARSE STACK UNDERFLOW
2: PARSE STACK OVERFLOW
3: MULTIPLY DEFINED SYMBOL
4: SYMBOL TABLE OVERFLOW
5: NAME SPACE OVERFLOW
6: ROM SUMMARY TABLE OVERFLOW

101: INVALID CONTROL VARIABLE
102: IDENTIFIER IS NOT BINARY CONTROL VARIABLE
103: MISSING VALUE FOR CONTROL VARIABLE
104: ATTEMPT TO ASSIGN INVALID VALUE TO CONTROL VARIABLE
105: ATTEMPT TO ASSIGN OUT OF BOUNDS VALUE TO CONTROL VARIABLE
106: MISSING) TO TERMINATE DISPLAY LIST
107: ATTEMPT TO ASSIGN VALUE OF IMPROPER TYPE TO CONTROL VARIABLE
108: EMPTY DISPLAY LIST
~09: MISSING' TO TERMINATE TITLE
il10: INVALID CHARACTER
.,,: INVALID INTEGER
i112: CANNOT ENTER XMAP STATEMENTS FROM A TERMINAL

13: SYMBOL TABLE OVERFLOW
: INVALID USE OF I

1: UNEXPECTED EOF
2: INVALID USE OF *
: INVALID CHARACTER
: INVALID INTEGER

1: INVALID ROM LENGTH
: INVALID ROM WIDTH
: BIT SPECIFIED OUTSIDE OF FIELD
: INVALID INTEGER BIT
: NUMBER OF BITS PROGRAMMED EXCEEDS ROM WIDTH
: INVALID MICROPROGRAM MEMORY ADDRESS

7: ROM LENGTH AND RANGE PAIR MISMATCH
: HEX ROM CODE REQUI RES AN 8-BIT ROM
: NUMBER OF BITS PROGRAMMED IS LESS THAN ROM WIDTH

0: ROM SIZE SPECIFICATION MUST PRECEDE MAPPING SPECIFICATION
: SYNTAX ERROR

H-l

APPENDIX I
SIMPLIFIED LANGUAGE DESCRIPTION

XMAS Definition

Notetion
Upper Case Word Specific keyword, must be used as shown.

Lower Case Word General class of elements.

Brackets Optional element, if used select one of the items stacked vertically.

Braces Require element, select one of the items stacked vertically.

Three dots ... Immediately preceeding item may occur one or more times.

Examples of Notation in Use

The notation:

Identifier VALUE expression

the word VALUE must be written as shown. The name of any legal identifier may be substituted where the word
l";'~An.H; •• r" appears as may any legal expression appear where the word "expression" appears. Such as:

any of the following forms:

BIT
BYTE
BIT VALUE
BIT STRING
BYTE VALUE
BYTE STRING

the (infinite) sequences:

, identifier, identifier

1·1

Declaration Statements

Declaration statements must precede all other statements

identifier KBUS
identifier ADDRESS;
identifier VALUE expression;
identifier FIELD LENGTH integer DEFAULT expression MICROPS (identifier=expression ___);
identifier IMPLY identifier=expression ___ ;
identifier STRING 'character-string' ___ ,

Specification Statement

* [integer:]

register-id

[label-identifier] __ _ identifier
expression __ _

expression

XMAP Statements

field-name (integer) [']
WORDS integer TO integer BITS (0

ROM integer BY integer;

Identifier

Letter [up-to-6-letters-or-digits]

Character String

any-character-except-quote

1-2

K-BUS FIELD
DEFINITION

STRINGOP NAMING
CONVENTIONS

NOTATIONAL
CONVENTIONS

APPENDIX J
STRINGOP EXAMPLES

For these STRING statements to be valid, it is necessary that the programmer define a new
field and identify that field as the K-bus field (via a FIELD statement and KBUS statement,
respectively)_ It is also necessary that the programmer declare two microps for that field (in the
defining FIELD statement!, KZERO and KONES, to represent the all zero and all one bit
patterns for the field_ For example, the statements:

KB FIELD LENGTH = a

MICROPS (KZERO = 0 KONES = OFFH

KLOW = OFH KHI = OFOH

KVAL=10);

KB KBUS;

define the a-bit field called KB and identify that field as the KBUS field_ The FIELD statement
also declares microps for the KB field_ KZERO and KONES are required for the STRING
statements given bel ow_ The other microps are arbitrarily chosen and are used in examples
below.

A functional summary of the stringops described below is given in Table 5-3. The first three
characters of the stringop identify the CPE operation, as follows:

Letters
MOV
MAR
ADD
KAD
INC
DEC
AND
lOR
XNR
MSK

TST
NOT
NEG
CLR
SET
SHR

Operation
Source 1 ~ Destination
Source 1 ~ MAR
Source 1 + Source 2 ~ Destination
K + Source 1 ~ Destination
Source 1 + 1 ~ Destination
Source 1 - 1 ~ Destination (see notational convention S, below)
Source 1 /I. Source 2 ~ Destination
Source l' v Source 2 ~ Destination
Source 1 iii Source 2 ~ Destination
K /I. Source 1 ~ Destination
K /I. Source 1 ~ Carry Output (CO)
Source 1 ~ Destination
Sou rce 1 + 1 ~ Desti nati on
o ~ Destination
-1 ~ Destination (see notational convention 5, below)
Source 1 "right shifted" ~ Destination

The fourth character of the stringop identifies the source and destination as follows:

Letter Source 1 Source 2 Destination
E Rn AC/l.K Rn,AC
R Rn AC/l.K Rn
A AC/l.K Rn
T AT AT
M M AC/l.K AT

I/l.K AT AT

The fifth character, when present, is used to identify a carry input (FO field) variation.

The follOWing notational conventions are used in the discussions below:

1. KZERO and KONES are assumed to be microps for the user defined K-bus field.

J-l

TABLE J-1. CPE STRINGOPS

STRINGOP FUNCTION CARRY OUT K-BUS CARRY!

MOVE (Rn) Rn AC 0"'" CO K=O CI =0

MOVA (Rn) [K] AC [/\ K] Rn 1 CO (K = -1) CI = 1

MOVM (AT) [K] M[/\K] AT 1 CO (K = -1) CI = 0

MOVI (AT) [K] I [/\K] AT 1 CO (K = -1) CI = 1

MARR (Rn) Rn MAR 0"'" CO K=O CI =0

MARR1 (Rn) Rn MAR Rn + 1 Rn a.c CO K=O CI = 1

MARM (AT) M MAR M AT 0"'" CO K=O CI = 0

ADDE (Rn) [K] (AC [1\ K]) + Rn Rn. AC a.c CO (K = -1) CI =0

ADDEC (Rn) [K] (AC [/\K] + Rn+C Rn.AC a.c CO (K = -1) FFC

ADDR (Rn) [K] (AC [/\ K]) + Rn Rn a.c CO (K = -1) CI =0

ADDRC (Rn) [K] (AC [/\ K]) + Rn + C Rn a.c CO (K = -1) FFC

ADDM (AT) [K] (AC [/\ K]) + M AT a.c CO (K = -1) CI = 0

ADDI (AT) [K] I [/\K] + AT"'" AT a.c CO (K = -1) CI =0

KADR (Rn) [K] Rn [vK] MAR Rn [+K] Rn a.c CO (K = 0) CI = 0

KADM (AT) [K] M [vK] MAR M [+K] AT a.c CO (K =0) CI = 0

INCE (Rn) Rn + 1 Rn. AC a.c CO K=O CI = 1

INCR (Rn) Rn + 1 Rn a.c CO K=O CI = 1

INCM (AT) M + 1 AT a.c CO K=O CI = 1

DECA (Rn) AC - 1 Rn a.c CO K =-1 CI = 0

DECT (AT) AT-1 AT a.c CO K =-1 CI = 0

DECI (AT) 1-1 AT a.c CO K =-1 CI = 0

DECR (Rn) Rn - 1 Rn -1 MAR a.c CO K =-1 CI = 0

ANDR (Rn) [K] AC[/\K] II Rn Rn I.r CO (K = -1) CI = 0

AN OM (AT) [K] AC [/\K] /\M AT I.r CO (K =-1) CI = 0

ANDI (AT) [K] I [/\ K] /\ AT AT I.r. CO (K = -1) CI = 0

IORR (Rn) [K] (AC [/\ K]) v Rn Rn AC [/\K] CO (K = -1) CI = 0

IORM (AT) [K] (AC [/\ K]) v M AT AC [11K] CO (K = -1) CI =0

IORI (AT) [K] (I [/\K]) v AT"'" AT I [/\K] CO (K = -1) CI = 0

XNRR (Rn) [K] (AC [II K]) e Rn Rn AC [/\K] CO (K = -1) CI = 0

XNRM (AT) [K] (AC [/\K])EiiM AT AC [1\ K] CO (K = -1) CI = 0

XNRI (AT) [K] (I [/\K] EiiAT AT I [/\K] CO (K = -1) CI =0

MSKR (Rn) [K] Rn [/\ K] Rn I.r CO (K = -1) CI = 0

MSKM (AT) [K] M[/\K] AT I.r, CO (K =-1) CI = 0

TSTR (Rn) [K] Rn [II K] Rn I.r. CO (K = -1) CI = 0

TSTM (AT) [K] M[IIK] AT I.r CO (K = -1) CI = 0

TSTI (AT) [K] I [I\K] v AT"'" AT I [/\ K] CO (K = -1) CI = 0

NOTR (Rn) Rn Rn 0"'" CO K=O CI = 0

NOTM (AT) M AT 0"'" CO K=O CI = 0

NEGT (AT) AT + 1 AT a.c CO K=O CI = 1

CLRR (Rn) [Ci] 0 Rn CI CO K=O (CI =0)

SETR (Rn) -1 Rn 0"'" CO K=O CI = 1

SHRT (AT) [LI] LI ATH ATH ATL ATL RO AT L RO K=O (LI = 0)

J-2

•

MOVE DEFINITION

FORMAT

FUNCTION

DESCRIPTION

MOVA DEFINITION

FORMAT

FUNCTION

DESCRIPTION

MOVM DEFINITION

FORMAT

FUNCTION

DESCRIPTION

2. The "format" part of the stringop description gives the general form in which the
stringop may appear in a specification statement.

3. Optional items are enclosed in square brackets (e.g., [KJ means that an explicit K·bus
field assignment is optional and [I\KJ means that, if an explicit assignment is given,l\K is
included in the function.

4. The abbreviation a.c. means arithmetic carry, and I.r. means logical result.
5. The expression -1 refers to the two's complement addition of 111 ... 11 (all ones) to

perform a subtraction of 000 ... 01.

The MOV stringops are used to specify the transfer of data from a source register or bus to a
destination register. An explicit K·bus field assignment may accompany a MOVA, MOVM or
MOVI stringop if it is desired to mask the information to be transferred.

Notice that the MOVE stringop (as well as many other stringops defined in this section)
includes an explicit k·bus specification, even though that specification is the same as the default
pattern implied by the I LR microp. Because the character string 'FFO I LR' only specifies a
moving function when the K·bus bit pattern is all zeros (see Table 5-1, F·group 0, R·group 11. it
is important that the K·bus pattern be specified as all zeros to ensure that the MOV E stringop
will always actually specify a moving function. While it is true that the CPE microp ILR implies
an all zero K-bus default, this default would be overridden if an explicit Non-zero K-bus pattern
were inadvertently specified; as a result a MOVE stringop with KZERO would specify a masked
addition instead of a moving function. By including KZERO in the MOVE stringop, however,
any inadvertent use of MOVE with an explicit non-zero k-bus specification will cause an error
message to be output to the list file (see Appendix G), because only one assignment is allowed
for each field in a specification statement. Thus, while KZERO may not be absolutely neces
sary, it does provide an extra safeguard when using the MOVE stringop. This same rational
applies to the inclusion of explicit K-bus field assignments in many of the stringops defined
here, even though these assignments are redundant.

MOVE STRING 'KZERO FFO ILR'

MOVE (Rn)

Rn -+ AC 0 -+ CO

The data in the specified register (Rn) is deposited in the accumulator (AC). The data in the
specified register is not changed.

MOVA STRING 'FFl SDR'

MOVA (Rn) [KJ

AC [I\KJ -+ Rn l-+CO

If K is not specified, the data in the accumulator (AC) is deposited in the specified register
(Rn). If K is specified, the data in the accumulator is ANDed J:,ith the data on the K-bus, and
the result is deposited in the specified register.

MOVM STRING 'FFO LTM'

MOVM (AT) [KJ

M [I\KJ -+ AT l-+CO

If K is not specified, the data on the M-bus is deposited in the specified register (AC or T). If K
is specified, the data on the M-bus is ANDed with the data on the K-bus, and the result is
deposited in the specified register.

J-3

MOVI DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

MARR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

MARR1 DEFINITION

FORMAT

FUNCTION

DESCRIPTION

MARM DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

ADDE DEFINITION

FORMAT

MOVI STRING 'FFI LDI'

MOVI (AT) [K]

I [!\K] -+ AT 1 -+ CO

If K is not specified, the data on the I-bus is deposited in the specified register (AC or T). If K is
specified, the data on the I-bus is ANDed with the data on the K-bus, and the result is deposited
in the specified register.

MOVE (R3)
MOVA (R3)
MOVA (R3) KLOW
MOVM (T)
MOVI (AC)

/* MOVE R3 TO AC *f
/* MOVE AC TO R3 *f
/* MOVE AC ANDED WITH KLOW TO R3 * /
/* MOVE M TO T *f
/* MOVE I TO AC *f

The MAR stringops are used to load the Memory Address Register (MAR) from a source
register or bus. The MARR1 stringop increments the contents of the specified register after the
initial contents have been transferred to the Memory Address Register. The MARM stringop
transfers the data on the M-bus to both the Memory Address Register and the specified register.

MARR STRING 'KZERO FFO LMI'

MARR (Rn)

Rn-+MAR O-+CO

The data in the specified register (Rn) is deposited in the Memory Address Register (MAR).

MARR1 STRING 'KZERO FFI LMI'

MARR1 (Rn)

Rn -+ MAR Rn + 1 -+ Rn a.c. -+ CO

The data in the specified register (Rn) is deposited in the Memory Address Register (MAR);
then, the data in the specified register is incremented.

MARM STRING 'KZERO FFO LMM'

MARM (AT)

M-+MAR M-+AT O-+CO

The data on the M-bus is deposited in both the Memory Address Register (MAR) and the
specified register (AC or T).

MARR (R7)
MARRI (R7)
MARM (AC)

/* R7 GOES TO MAR * f
/* R7 GOES TO MAR AND R7 IS INCREMENTED *f
1* M GOES TO MAR AND TO AC *f

The ADD stringops are used to specify that data from two sources (either two registers or a
register and a bus) is to be added arithmetically and the sum deposited in a destination register.
An explicit K-bus field assignment may accompany an ADD stringop if it is desired to mask one
of the source operands before the addition is performed.

ADDE STRING 'FFO ALR'

ADDE (Rn) [K]

J-4

FUNCTION

DESCRIPTION

ADDEC DEFINITION

FORMAT

FUNCTION

DEFINITION

ADDR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

ADDRC DEFINITION

FORMAT

FUNCTION

DESCRIPTION

ADDM DEFINITION

FORMAT

FUNCTION

DESCRIPTION

ADDI DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

(AC [!\KJ + Rn -+ Rn, AC a.c. -+ CO

If K is not specified, the data in the accumulator (AC) is added to the data in the specified
register (Rnl. and the sum is deposited in both the accumulator and the specified register. If K
is specified, the data in the accumulator is AN Ded with the data on the K-bus, the result is
added to the data in the specified register, and the sum is deposited in both the accumulator
and the specified register.

ADDEC STRING 'FFC ALR'

ADDEC (Rn) [KJ

(AC [!\KJ) + Rn + C -+ Rn, AC a.c. -+ CO

ADDEC is identical to ADDE except that the content of the C-flag in the MCU is included in
the sum.

ADDR STRING 'FFO ADR'

ADDR (Rn) [KJ

(AC [!\KJ + Rn -+ Rn a.c. -+ CO

ADDR is identical to ADDE except that the sum is deposited only in the specified register
(Rn). The data in the accumulator is not changed.

ADDRC STRING 'FFC ADR'

ADDRC (Rn) [KJ

(AC [!\KJ) + Rn + C -+ Rn a_c. -+ CO

ADDRC is identical to ADDR except that the content of the C-flag in the MCU is included in
the sum.

ADDM STRING 'FFO AMA'

ADDM (AT) [KJ

(AC [!\KJ) + M -+ AT a.c. -+ CO

If K is not specified, the data in the accumulator (AC) is added to the data on the M-bus, and
the sum is deposited in the specified register (AC or T). If K is specified, the data in the
accumulator is AN Ded with the data on the K-bus, the result is added to the data on the M-bus,
and the sum is deposited in the specified register.

ADDI STRING 'FF'O AlA'

ADD I (AT) [KJ

I [!\KJ + AT -+ AT a.c. -+ CO

If K is not specified, the data on the I-bus is added to the data in the specified register (AC or
T), and the sum is deposited in the specified register. If K is specified, the data on the I-bus is
ANDed with the data on the K-bus, the result is added to the data in the specified register, and
the result is deposited in the specified register.

ADDE (R7)
ADDR (R7)

J-5

/* AC PLUS R7 GOES TO AC AND R7 * /
/* AC PLUS R7 GOES TO R7 */

KADR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

KADM DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

INCE DEFINITION

FORMAT

FUNCTION

DESCRIPTION

INCR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

ADDR (AC)

ADDRC (R4)
ADDM (T)
ADDM (T) KLOW
ADDI (T)

/*AC PLUS AC GOES TO AC, WHICH IS
EQUIVALENT TO SHIFT LEFT *f
/* AC PLUS R4 PLUS C-FLAG GOES TO R4 *f
/* AC PLUS M GOES TO T *f
/* AC ANDED WITH KLOW PLUS M GOES TO T *f
/* I PLUS T GOES TO T *f

The KAD stringops are used to add the data on the K-bus to the data in a register or the data on
the M-bus and deposit the result in a register. Also, the data on the K-bus is ORed with the data
in the register or on the M-bus, and the result is deposited in the Memory Address Register
(MARl-

KADR STRING 'FFO LMI'

KADR (Rn) [KJ

Rn [vKJ --> MAR Rn [+KJ --> Rn a.c. --> CO

The data on the K-bus is inclusive ORed with the data in the specified register (Rn), and this
result is deposited in the Memory Address Register (MAR). Also, the data on the K-bus is added

to the data in the specified register, and the sum is deposited in the specified register. If K is not
specified, KADR is identical to MARR.

KADM STRING 'FFO LMM'

KADM (AT) [KJ

M [vKJ MAR M [+KJ-->AT a.c.-->CO

The data on the M-bus is inclusive ORed with the data on the K-bus, and this result is deposited
in the Memory Address Register (MAR). Also, the data on the M-bus is added to the data on
the K-bus, and the result is deposited in the specified register (AC or TI- If K is not specified,
KADM is identical to MARM.

KADR (R6) KVAL /*R6 PLUS K GOES TO R6, R6 ORED WITH
KVAL GOES TO MAR * f

KADM(T) KVAL /* M PLUS K GOES TO T, M OR ED WITH KVAL
GOES TO MAR *f

The INC stringops are used to increment data in a register or on the M-bus and deposit the
result in a register.

INCE STRING 'KZERO FFI ILR'

INCE (Rn)

Rn + 1 --> Rn, AC a.c. --> CO

The data in the specified register (Rn) is incremented, and the result is deposited in both the

specified register and the accumulator (AC).

INCR STRING 'KZERO FFI INR'

INCR (Rn)

Rn + 1 --> Rn a.c. --> CO

The data in the specified register is incremented, and the result is deposited in the specified

register.

J-6

INCM DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

DECA DEFINITION

FORMAT

FUNCTION

DESCRIPTION

DECT DEFINITION

FORMAT

FUNCTION

DESCRIPTION

DECI DEFINITION

FORMAT

FUNCTION

DESCRIPTION

DECR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

INCM STRING 'KZERO FFI ACM'

INCM (AT)

M + 1 -+ AT a.c. -+ CO

The data on the M·bus is incremented, and the result is deposited in the specified register (AC
or T).

INCE (R4)
INCR (R4)
INCM (T)

/* R4 PLUS 1 GOES TO R4 AND TO AC */
/* R4 PLUS 1 GOES TO R4 * /
/* M PLUS 1 GOES TO T */

The DEC stringops are used to decrement data in a register or on the I·bus and deposit the
result in a register.

DECA STRING 'KONES FFO SDR'

DECA (Rn)

AC - 1 -+ Rn a.c. -+ CO

The data in the accumulator (AC) is decremented, and the result is deposited in the specified
register (Rn). The data in the accumulator is not affected.

DECT STRING 'KONES FFO DCA'

DECT (AT)

AT -1-+AT

The data in the specified register (AC or T) is decremented, and the result is deposited in the
specified register.

DECI STRING 'KONES FFO LDI'

DECI (AT)

I - 1 -+ AT a.c. -+ CO

The data on the I-bus is decremented, and the result is deposited in the specified register (AC or
T).

DECR STRING 'KONES FFO DSM'

DECR (Rn)

Rn - 1 -+ Rn -1 -+ MAR a.c. -+ CO

The data in the specified register (Rn) is decremented, and the result is deposited in the
specified register. Also the Memory Address Register is set to all ones.

DECA (R3)
DECT (T)
DECI (AC)
DECR (R3)

/* AC MINUS 1 GOES TO R3 */
/* T MINUS 1 GOES TO T */
/* I MINUS 1 GOES TO AC */
/* R3 MINUS 1 GOES TO R3, ALL ONES GO TO MAR */

The AND stringops are used to specify that data from two sources (either two registers or a
register and a bus) is to be ANDed and the result deposited in a destination register. An explicit

J-7

ANDR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

ANDM DEFINITION

FORMAT

FUNCTION

DESCRIPTION

ANDI DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

IORR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

K-bus field assignment may accompany an AND stringop if it is desired to mask the
result_

ANDR STRING 'FFO ANR'

ANDR (Rn) [KJ

AC [I\KJ 1\ Rn -+ Rn Lr_ -+ CO

If K is not specified, the data in the accumulator (AC) is ANDed with the data in the specified
register (Rn), and the result is deposited in the specified register_ If K is specified, the data in
the accumulator ANDed with the data on the K-bus, this result is ANDed with the final result is
deposited in the specified register_

ANDM STRING 'FFO ANM'

ANDM (AT) [KJ

AC [I\KJ 1\ M -+ AT Lr. -+ CO

If K is not specified, the data in the accumulator (AC) is ANDed with the data on the M-bus,
and the result is deposited in the specified register (AC or TI- If K is specified, the data in the
accumulator is ANDed with the data on the K-bus, this result is ANDed with the data on the
M-bus, and the final result is deposited in the specified register_

ANDI STRING 'FFO ANI'

ANDI (AT) [KJ

I [I\KJ 1\ AT -+ AT I.r_ -+ CO

If K is not specified, the data on the I-bus is ANDed with the data in the specified register (AC
or T), and the result is deposited in the specified register_ If K is specified, the data on the I-bus
is ANDed with the data on the K-bus, this result is ANDed with the data in the specified
register, and the result deposited in the specified register.

ANDR (R6)
ANDM (T)
ANDM(T)KLOW

ANDI (T)

1* AC ANDED WITH R6 GOES TO R6 * /
1* AC ANDED WITH M GOES TO T */
1* AC ANDED WITH KLOW ANDED WITH M
GOES TO T */
1* I ANDED WITH T GOES TO T * /

The lOR stringops are used to specify that data from two sources (either two registers or a
register and a bus) is to inclusive ORed and the result deposited in a destination register. An
explicit K-bus field assignment may accompany lOR stringops if it is desired to mask one of the
sources before the inclusive OR is performed.

IORR STRING 'FFO ORR'

IORR (Rn) [KJ

(AC [I\KJ) vRn -+ Rn AC [I\KJ -+ CO

If K is not specified, the data in the accumulator (AC) is inclusive ORed with the data in the
specified register (Rn), and the result is deposited in the specified register. If K is specified, the
data in the accumulator is ANDed with the data on the K-bus, this result is inclusive ORed with
the data in the specified register, and the final result is deposited in the specified register.

J-B

IORM DEFINITION

FORMAT

FUNCTION

DESCRIPTION

IORI DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

XNRR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

XNRM DEFINITION

FORMAT

FUNCTION

DESCRIPTION

XNRI DEFINITION

FORMAT

FUNCTION

IORM STRING 'FFO ORM'

IORM (AT) [K]

(AC [i\K]) v M ~ AT AC [i\K] ~ CO

If K is not specified, the data in the accumulator (AC) is inclusive ORed with the data in the
M·bus, and the result is deposited in the specified register (AC or T). If K is specified, the data
in the accumulator is ANDed with the data on the K-bus, this result is inclusive ORed with the
data on the M·bus, and the final result is deposited in the specified register.

IORI STRING 'FFO OR I'

lOR I (AT) [K]

(I[AK])I\AT~AT I[AK]~CO

If K is not specified, the data on the I·bus is inclusive ORed with the data in the specified
register (AC or Tl. and the result is deposited in the specified register. If K is specified, the data
on the I·bus is ANDed with the data on the K·bus, this result is inclusive ORed with the data in
the specified register, and the final result is deposited in the specified register.

IORR (RO)
IORM (T)
lOR I (T)
lOR I (T) KLOW

/* AC ORED WITH RO GOES TO RO * /
/* AC ORED WITH M GOES TO T * /
/* I ORED WITH T GOES TO T */
/* I ANDED WITH KLOW ORED WITH T GOES TO T * /

The XN R stringops are used to specify that data from two sources (either two registers or a

register and a bus) are to be exclusive NORed and the result deposited in a destination register.
An explicit K·bus field assignment may accompany an XNR stringop if it is desired to mask the
accumulator before the exclusive NOR operation is performed.

XNRR STRING 'FFO XNR'

XNRR (Rn) [K]

(AC [A KJ) iB Rn ~ Rn Rn A AC [A K] ~ CO

If K is not specified, the data in the accumulator is exclusive NORed with the data in the
specified register (Rn), and the result is deposited in the specified register. If K is specified, the
data in the accumulator is ANDed with the data on the K·bus, this result is exclusive NORed
with the data in the specified register, and the result is deposited in the specified register.

XNRM STRING 'FFO XNM'

XNRM (AT) [K]

(AC [i\K]) ffi M ~ AT AC [AK] AM ~ CO

If K is not specified, the data in the accumulator (AC) is exclusive NORed with the data on the
M·bus, and the result is deposited in the specified register (AC or T). If K is specified, the data
in the accumulator is ANDed with the data on the K·bus, this result is exclusive NORed with
the data on the M·bus, and the final result is deposited in the specified register.

XNRI STRING 'FFO XNI'

XNRI (AT) [K]

(I[AK])eAT AT AT[AK] A I CO

J.g

DESCRIPTION

EXAMPLES

MSKR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

MSKM DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

TSTR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

TSTM DEFINITION

FORMAT

FUNCTION

If K is not specified, the data on the I-bus is exclusive NORed with the data in the specified
register (AC or Tl. and the result is deposited in the specified register_ If K is specified, the data
on the I-bus is ANDed with the data on the K-bus, this result is exclusive NORed with the data
in the specified register, and the final result is deposited in the specified register_

XNRR (R5)
XNRM (T)
XNRI (T)

/* AC XNORED WITH R5 GOES TO R */
/* AC XNORED WITH M GOES TO T */
/* I XNORED WITH T GOES TO T */

The MSK stringops are used to mask the data in a register or on the M-bus with the data on the
K-bus and deposit the result in a register_ An explicit K-bus field assignment should be used
with a MSK stringop_

MSKR STRING 'FFO TZR'

MSKR (Rn) [KJ

Rn .[t\KJ -+ Rn '-r_ -+ CO

The data in the specified register (Rn) is ANDed with the data on the K-bus, and the result is
deposited in the specified register_ If K is not specified, the data in the specified register is not
affected_

MSKM STRING 'FFO LTM'

MSKM (AT) [KJ

M [t\KJ -+ AT '-r. -+ CO

The data on the M-bus is AN Ded with the data on the K-bus, and the result is deposited in the
specified register (AC or T); MSKM is identical to MOVM.

MSKR (R5) KVAL /*B5 ANDED WITH KVAL GOES TO R5 */

MSKM(T) KVAL 1* M ANDED WITH KVAL GOES TO T */

The TST stringops are used primarily to test data in a register or on the M-bus or I-bus for zero.
An explicit K-bus field assignment may accompany a TST stringop in order to test selected bits
of the source operand.

TSTR STRING 'FFO TZR'

TSTR (Rn) [KJ

Rn [I\KJ -+ Rn Rn [I\KJ -+ CO

If K is specified, the data in the specified register (Rn) is tested for zero. If the specified register
contains zero; the carry output (CO) is forced to zero; if the specified register does not contain
zero, the carry output is forced to one. If K is specified, the contents of the specified register
are ANDed with the data on the K-bus, and the result is deposited in the specified register and
tested for zero, as described above. TSTR is identical to MSKR.

TSTM STRING 'FFO L TM'

TSTM (AT) [KJ

M [t\KJ -+ AT M [t\KJ -+ CO

J-l0

DESCRIPTION

TSTI DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

NOTR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

NOTM DEFINITION

FORMAT

FUNCTION

DESCRIPTION

NEGT DEFINITION

FORMAT

FUNCTION

DESCRIPTION

If K is not specified, the data on the M-bus is deposited in the specified register (AC or T) and
tested for zero_ If the data on the M-bus is zero, the carry output (CO) is forced to zero; if the
data on the M-bus is not zero, the carry output is forced to one_ If K is specified, the data of
the M-bus is ANDed with the data on the K-bus, and the result is deposited in the specified
register and tested for zero, as described above_ TSTM is identical to MSKM_

TSTI STRING 'FFO OR!'

TSTI (AT) [KJ

I [I\KJ v AT ~ AT I [I\KJ ~ CO

If K is not specified, the data on the I-bus is inclusive ORed with the data in the specified
register (AC or T). and the result is deposited in the specified register_ The data on the I-bus is
tilsted for zero; if the data on the I-bus is zero, the carry output (CO) is forced to zero; if the
data on the I-bus is not zero, the carry output is forced to one_ If K is specified, the data on the
I-bus is ANDed with the data on the K-bus_ This result is tested for zero, as described above_
This result is, also, inclusive ORed with the data in the specified register, and the result is
deposited in the specified register_ TSTI is identical to IORL

TSTR (Rl)
TSTR (Rl) KLOW

TSTM (T)
TSTI (T)

/* ONE GOES TO CO IF Rl NOT ZERO */
/* Rl ANDED WITH KLOW GOES TO Rl, ONE GOES
TO CO IF RESULT NOT ZERO */
/* ONE GOES TO CO IF M NOT ZERO, M GOES TO T */
/* ONE GOES TO CO IF I NOT ZERO, IORED
WITH T GOES TO T */

The NOT stringops are used to complement the data in a register or on the M-bus and deposit
the result in a register_ The NEGT stringop is used to take the two's complement of the data in
the accumulator or a T register.

NOTR STRING 'KZERO FFO CMR'

NOTR (Rn)

Rn -+ Rn 0 -+ CO

The data in the specified register (Rn) is complemented, and the result is deposited in the
specified register.

NOTM STRING 'KZERO FFO LCM'

NOTM (AT)

M -+AT O-+CO

The data on the M-bus is complemented, and the result is deposited in the specified register (AC
arT).

NEGT STRING 'FFI KZERO CIA'

NEGT (AT)

AT+ l-+AT AC_-+CO

The data in the specified register (AC or T) is complemented and incremented (i.e_, twos
complement). and the result is deposited in the specified register.

CLRR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

SETR DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

SHRT DEFINITION

FORMAT

FUNCTION

DESCRIPTION

EXAMPLES

The CLR Rand SETR stringops are used to transfer zero or all ones, respectively, to a register.

CLRR STRING 'KZERO CLR'

CLRR (Rn) [CI)

0-+ Rn CI -+ CO

Zero is deposited in the specified register (Rn). The carry output (CO) is forced to the state of
the carry input (CI). If the carry input is not specified, the carry output is forced to zero.

SETR STRING 'KZERO FFO CSR'

SETR (Rn)

-1-+ Rn O-+CO

The specified register (Rn) is set to all ones.

CLRR (AC)
CLRR (R3)
SETR (R3)

f* CLEAR AC * f
/* CLEAR R3 * f
1* SET R3 TO ALL ONES * f

The SHRT stringop is used to specify that the data in the accumulator or the T register is to be
shifted right one bit position.

SHRT STRING 'KZERO SRA'

SHRT (AT) [LI]

LI -+ AT H AT H -+ AT L AT L -+ RO

The data in the specified register (AC or T) is shifted right one bit position. The high order bit
of the specified register is set to the state of the left input (LI). If the left input is not specified
(i.e., if the Flag Output function is not explicitly specified), the high order bit of the specified
register receives a zero. The right output (RO) is forced to the state of the low order bit of the
specified register.

SHRT (T)

SHRT (AC) FFI

J-12

1* T RIGHT SHIFTED GOES TO T, HIGH
ORDER BIT OF TSETTO ZERO *f
f* AC RIGHT SHIFTED GOES TO AC, HIGH
ORDER BIT OF AC SET TO ONE *f

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 246-7501

Pri nted in U.S.A. MCS 049-0276/lOK

	0001
	0002
	0003
	001
	002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	8-01
	8-02
	8-03
	9-01
	9-02
	9-03
	9-04
	9-05
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	D-01
	E-01
	F-01
	G-01
	G-02
	H-01
	I-01
	I-02
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	xBack

