

•
INMOS Limited
1000 Aztec West
Almondsbury
Bristol BS12 4SQ
UK
Telephone (0454) 616616
Telex 444723

INMOS Japan K.K.
4th Floor No 1 Kowa Bldg
11-41 Akasaka 1-chome
Minato-ku
Tokyo 107
Japan
Telephone 03-505 2840
Telex J29507 TEl JPN
Fax 03-505 2844

INMOS Corporation
PO Box 16000
Colorado Springs
CO 80935
USA
Telephone (719) 6304000
Telex (Easy Link) 62944936

INMOSSARL
Immeuble Monaco
7 rue Le Corbusier
SILIC 219
94518 Rungis Cedex
France
Telephone (1) 46.87.22.01
Telex 201222

LOCAL U.S. SALES OFFICES

INMOS Corporation
200 E Sand pointe
Suite 650
Santa Ana
CA92707
Telephone(714) 957 6018

INMOS Corpoation
2620 Augustine Drive
Suite 100
Santa Clara
CA95054
Telephone (408) 727 7771

INMOS Corporation
12400 Whitewater Drive
Suite 120
Minnetonka
MN 55343
Telephone (612) 932 7121

INMOS Corporation
6025-G Atlantic Blvd
Norcross
GA30071
Telephone (404) 242 7444

INMOS Corporation
5 Burlington Woods Drive
Suite 201
Burlington
MA01803
Telephone (617) 229 2550

INMOS Corporation
10200 E Girard Avenue
Suite B239
Denver
CO 80231
Telephone (303) 3680561

INMOSGmbH
Danziger Strasse 2
8057 Eching
Munich
West Germany
Telephone (089) 319 1028
Telex 522645

INMOS Corporation
14643 Dallas Parkway
Suite 730
Dallas
TX 75240
Telephone (214) 490 9522

INMOS Corporation
9861 Broken Land Parkway
Suite 320
Columbia
MD21046
Telephone (301) 995 6952

INMOS Corporation
PO Box 272
Fishkill
NY 12524
Telephone (914) 897 2422

DIGITAL SIGNAL
PROCESSING
DATABOOK

First Edition July 1989

INMOS Databook Series

Transputer Databook
Transputer Support Databook: Development and Sub-systems
Memory Databook
Graphics Databook
Digital Signal Processing Databook

Copyright ©INMOS Limited 1989

INMOS reserves the right to make changes in specifications at any time and without notice.
The information furnished by INMOS in this publication is believed to be accurate; however,
no responsibility is assumed for its use, nor for any infringement of patents or other rights
of third parties resulting from its use. No licence is granted under any patents, trademarks
or other rights of INMOS .

• , 1Inmos, IMS and occam are trademarks of the INMOS Group of Companies.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72-TRN-211-00

Printed at Bath Press Ltd, Bath

Contents overview

1 INMOS

2 Digital signal processing overview 5

3 IMS A100 Cascadable signal processor 9

4 IMS A110 Image and signal processing sub-system 47

5 IMS A121 2-D discrete cosine transform image processor 77

6 IMS 8009 DSP system evaluation board 97

7 IMS 0703 DSP development system 103

8 Digital filtering with the IMS A100 109

9 Discrete Fourier transform with the IMS A100 139

10 Correlation and convolution with the IMS A100 169

11 Complex (I & Q) processing with the IMS A100 189

12 Hardware considerations with the IMS A100 197

13 Image processing with the IMS A100 217

14 Cascading IMS A110s 245

15 The IMS A110 backend processor 261

A Quality and Reliability 275

iv

Contents

Preface xiv

1 INMOS
1.1 Introduction 2
1.2 Manufacturing 2
1.3 Assembly 2
1.4 Test 2
1.5 Quality and Reliability 2
1.6 Military 3
1.7 Future Developments 3

1.7.1 Research and Development 3
1.7.2 Process Developments 3

2 Digital signal processing overview 5
2.1 Introduction 6
2.2 The INMOS solution 6
2.3 The IMS A100 Cascadable Signal Processor 6

Radar and sonar systems 6
Communications 7

2.4 The IMS A110 Image and Signal Processor 7
Machine vision 7
Image compression 7
Contrast enhancement 7
Other applications 8

2.5 The IMS A121 2·D Discrete Cosine Transform Image Processor 8
Image compression 8
Image understanding 8

3 IMS A100 Cascadable signal processor 9
3.1 INTRODUCTION 10
3.2 DESCRIPTION 10
3.3 PIN DESIGNATIONS 13

3.3.1 System services 13
Power 13
ClK 13

14

14
BUSY 14

3.3.2 Synchronous input/output 15
GO 15
DIN[0-15J 15
DOUT[0-11J 15
CIN[0-11J 15
OUTRDY 15

3.3.3 Asynchronous input/output 16

16

16

w 16
ADR[O-6J 16
D[0-15J 16

v

3.4 REGISTER DESCRIPTION 17
3.4.1 Memory map 17
3.4.2 Registers 17

CCR[0-31] 17
UCR[0-31] 17
SCR 18
ACR 18
TCR 19
DIR 19
DOL 19
DOH 19

3.4.3 Static control register 19
Fast Output 19
Coefficient Size 20
Output Word Selection 20
Continuous Swap 20
Input Data Source 21
Master not Slave 21

3.4.4 Active control 'register 21
Cascade Adder Overflow 21
Selector Overflow 21
Initiate Bank Swap 21

3.4.5 Test control register 22
Examine Full Output Word 22

3.5 DEVICE APPLICATIONS 22
3.5.1 Filtering and adaptive filtering 22
3.5.2 Convolution and correlation 22
3.5.3 Matrix multiplication 23
3.5.4 Fourier transforms 23
3.5.5 Waveform synthesis 23
3.5.6 General purpose accelerator 23

3.6 ELECTRICAL SPECIFICATION 24
3.6.1 DC electrical characteristics 24

Absolute maximum ratings 24
DC operating conditions 25
DC characteristics 26
Capacitance 26

3.6.2 AC timing characteristics 27
AC test conditions 27
Clock 28
Memory interface read cycle 29
Memory interface write cycle 30
Static read accesses to DOL and DOH registers 31
Typical sequence - 8 bit coefficients, normal output 33
Typical sequence - 8 bit coefficients, fast output 34
Typical sequence - 4 bit coefficients 35
Normal output timing - 8 bit coefficient case shown 36
Fast output timing - 4 bit coefficient case shown 37
External GO and data input timing 38
Master generated GO 39
Bankswap timing 40
Coefficient access timing 41

vi

3.7 PACKAGE SPECIFICATIONS 42
3.7.1 84 pin grid array package 42

Pin grid array thermal characteristics 43
3.7.2 84 pin quad ceramic package 44

Quad cerpack thermal characteristics 45
3.8 MiliTARY STANDARD PROGRAM 46
3.9 ORDERING DETAilS 46

4 IMS A110 Image and signal processing sub-system 47
4.1 INTRODUCTION 48
4.2 DESCRIPTION 48
4.3 PROGRAMMABLE SHIFT REGISTERS 50
4.4 MAC ARRAY 50
4.5 BACKEND POST-PROCESSOR - hardware description 51

4.5.1 Shifter, Cascade Adder and Rectifier 51
4.5.2 Statistics Monitor 51
4.5.3 Data transformation unit 53
4.5.4 Data normaliser 55
4.5.5 Output adder 55
4.5.6 Output multiplexers 55

4.6 BACKEND POST-PROCESSOR - Modes Of Operation 55
4.6.1 Default mode (after Reset) 55
4.6.2 Cascade adder / MAC data scalar 55
4.6.3 Rectification 56
4.6.4 Static scaling 56
4.6.5 Dynamic scaling 56
4.6.6 Simple transformation 56
4.6.7 Dynamic normalisation 56

4.7 GLOSSARY 57
4.8 PIN DESIGNATIONS 59

4.8.1 System services 59
Power 59
ClK 59

59
4.8.2 Synchronous services 60

PSRin[7-0] 60
PSRout[7-0] 60
Cin[21-0] 60
Cout[21-0] 60

4.8.3 Asynchronous input/output 60
E1, E2 60

w 60
ADR[8-0] 60
0[7-0] 60

4.9 REGISTER DESCRIPTION 61
4.9.1 Memory map 61
4.9.2 Registers 61

CROa Coefficient registers bank Oa 61
CROb Coefficient registers bank Ob 61
CROc Coefficient registers bank Oc 63
CR1a Coefficient registers bank 1a 63
CR1b Coefficient registers bank 1b 63

vii

CR1c Coefficient registers bank 1c 63
PCRA PSRA Contrel register 63
PCRB PSRB Control register 63
PCRC PSRC Control register 63
SCR Static control register 63
ACR Active control re~ister 63
BCR Backend configuration register 64
MMB Maximum/minimum buffer 64
CMM Co~y MMR 64
OUB Overshoot/undershoot buffer 64
COU CO~l OUC 64
TCR Test control register 64
USR U~~er saturation register 64
LSR Lower saturation register 64
LUT Look-up table 64

4.10 REGISTERS - BIT ALLOCATION 65
4.10.1 PSR control registers (PCR) 65
4.10.2 Static control re~lster (SCR) 65
4.10.3 Active control register (ACR) 67
4.10.4 Backend control register 0 (BCRO) 67
4.10.5 Backend control register 1 (BCR1) 68
4.10.6 Backend control register 2 (BCR2) 68
4.10.7 Backend control register 3 (BCR3) 69

4.11 ELECTRICAL SPECIFICATION 69
4.11.1 DC electrical characteristics 69

Absolute maximum ratings 69
DC operating conditions 70
DC characteristics 70
Capacitance 70

4.11.2 AC tlmlnQ characteristics 71
AC test conditions 71

4.11.3 Timing diagrams 72
Clock Requirements 72
Microprocessor Interface Read Cycle 72
Microprocessor Interface Write Cycle 74
Synchronous Input and Output 74

4.12 PACKAGE SPECIFICATIONS 75
4.12.1 100 pin grid array package 75

Pin grid array thermal characteristics 76
4.13 ORDERING DETAILS 76

5 IMS A121 2-D discrete cosine transform Image processor 77
5.1 OVERALL DEVICE OPERATION 78

5.1.1 The fixed ROM coefficients 78
5.1.2 Number formats 78
5.1.3 Internal Bit-field Selectors and Rounding 78
5.1.4 Overflow, Saturation and Clip~inQ 79
5.1.5 Subtraction with the DCT function 79
5.1.6 Addition with the IOCT function 79
5.1.7 Resetting 79

5.2 DCT FUNCTION 80
5.2.1 Internal number format 80
5.2.2 Internal data flow 80

viii

5.2.3 The mathematical basis for the DCT 81
5.2.4 DCT coefficients 81
5.2.5 DCT coefficients (14 bit signed integers) 81

5.3 IDCT FUNCTION 82
5.3.1 Internal number format 82
5.3.2 Internal data flow 82
5.3.3 The mathematical basis for the IDCT 83
5.3.4 IDCT coefficients 83
5.3.5 IDCT coefficients (14 bit signed integers) 83

5.4 FilTER FUNCTION 84
5.4.1 Internal number format 84
5.4.2 Internal data flow 84
5.4.3 Definition of filter 84
5.4.4 Filter coefficients 85
5.4.5 Filter coefficients (14 bit Signed integers) 85

5.5 TRANSPOSER FUNCTION 86
5.5.1 Internal number format and data flow 86
5.5.2 Transposition coefficients 86
5.5.3 Transposition coeffiCients (14 bit signed integers) 86

5.6 PIN DESIGNATIONS 87
5.6.1 System services 87

Power 87
ClK 87

5.6.2 Synchronous input/output 87
GO 87
Din[11-0] 87
Dout[11-0] 88
Dx[11-3] 88
SEl[2-0] 88

5.7 ELECTRICAL SPECIFICATION 89
5.7.1 DC electrical characteristics 89

Absolute maximum ratings 89
DC operating conditions 89
DC characteristics 90

5.7.2 A.C. timing characteristics 91
Clock requirements 91
Synchronous Input and output (Din, Dout, Dx) 91
Synchronous control (GO, SEl[2-0» 92
Overall data timing 93

5.8 PACKAGE SPECIFICATIONS 94
5.8.1 44 pin PlCC package 94

PlCC thermal characteristics 95
5.9 ORDERING DETAILS 96

6 IMS B009 DSP system evaluation board 97
6.1 The IMS BOO9 Evaluation Board 98
6.2 Board Description 99
6.3 Programming 100
6.4 Product summary 100
6.5 Technical summary 101
6.6 Ordering details 101

ix

7 IMS 0703 DSP development system 103
7.1 Introduction 104
7.2 Requirements 105
7.3 Software Description 105

7.3.1 User Applications 105
7.3.2 IMS A100 Model 106
7.3.3 Address Decoder 106
7.3.4 IMS B009 driver 107
7.3.5 IMS B009 Emulator 107
7.3.6 System Controller 107
7.3.7 Multi-Window MS-DOS Interface 108

7.4 Host Environment 108
7.5 Ordering Details 108

8 Digital fiHering with the IMS A100 109
8.1 Introduction 110
8.2 From analogue to digital 110
8.3 Digital filter classifications 112
8.4 Digital filter design 115

8.4.1 Comparison between FIR and IIR filters 115
8.4.2 Basic design parameters 116
8.4.3 Design techniques suitable for FIR filters 117

Window method 117
Frequency sampling technique 120
Optimal filter design - (Remez exchange algorithm) 122
Implementing FIR filters with the IMS A100 122

8.4.4 The IMS A100 and IIR filters 124
8.4.5 Summary of the IIR filter design techniques 125

Indirect approaches for the design of IIR filters 125
The direct design techniques for IIR filters 133

8.5 Finite word-length considerations and problems 133
8.6 Adaptive filters 135
8.7 References 137

9 Discrete Fourier transform with the IMS A100 139
9.1 Introduction 140
9.2 The basic concepts of OFT 142
9.3 Algorithms for efficient evaluation of OFT 144
9.4 OFT algorithms suitable for the IMS A100 implementation 145

9.4.1 Rader's Prime Number Transform 145
9.4.2 The chirp-z transform 155

9.5 Multidimensional index mapping for OFT decomposition 158
9.5.1 Basic concepts of index mapping 158
9.5.2 Generalisation and conditions for uniqueness 159

Relatively prime case 160
Common factor case 160

9.5.3 Application of index mapping to OFT decomposition 161
Case 1 - prime factor decomposition 162
Case 2 - common factor decomposition 165

9.5.4 Extension to multiple dimensions 166
9.6 References 167

x

10 Correlation and convolution with the IMS A100 169
10.1 Introduction 170
10.2 Correlation conce~ts 170
10.3 Convolution concepts 173
10.4 Conventional hardware for tlme-domain evaluation of correlation 174
10.5 The IMS A100 implementation of correlation/convolution 175
10.6 Decomposition of long correlations and convolutions 180
10.7 2·0 Imalle convolutions with the IMS A100 182
10.8 Some application examples of correlation and convolution 184

10.8.1 Delay and periodicity estimation 184
10.8.2 Noise reduction using correlation techniques 185
10.8.3 Pulse-compression 186
10.8.4 System identification using correlation 187
10.8.5 The Discrete Fourier Transform (OFT) 188

10.9 References 188

11 Complex (I & Q) processing with the IMS A100 189
11.1 Introduction 190
11.2 Complex correlation 191
11.3 Complex convolution 195

12 Hardware considerations with the IMS A100 197
12.1 Introduction 198

12.1.1 Scope of the document 198
12.1.2 Document summary 198

12.2 The IMS A 100 Device 198
12.2.1 Pin description and constraints 199

Power Supply 199
Synchronous InputlOut~ut 199
Memo!llnterface asynchronous Input/output 201
System control 202

12.2.2 Initialisation of IMS A100s 203
12.2.3 An extra selector seHing using TCR 203

12.3 Smaller IMS A100 systems 203
12.3.1 Board Layout Constraints 204
12.3.2 Memory Interface 204
12.3.3 Clocking 205
12.3.4 Data Input 205
12.3.5 Data output and output ready 205
12.3.6 Master generated GO 205
12.3.7 External GO 205

12.4 Large IMS A100 systems 206
12.4.1 How many IMSA100 devices per board? 206
12.4.2 Cascading boards 206
12.4.3 Board Design 207

Board description 207
Memory Mapping 209

12.5 Higher Data Rates using multiple IMS A100 devices 209
12.5.1 Principle of operation 209
12.5.2 Mechanics of Operation 210
12.5.3 Using the cascade adders 211
12.5.4 Extensions to this technique 211

xi

12.6 Checking and debugging 212
12.6.1 The Memory Interface 212
12.6.2 Clock, GO and output ready 212
12.6.3 Setting up SCR values 212
12.6.4 Checking the data path 213
12.6.5 Fault finding guide 214

12.7 Conclusions 215
12.8 References 215

13 Image processing with the IMS A100 217
13.1 Introduction 218

13.1.1 The alms of this document 218
13.1.2 Document structure 218
13.1.3 An overview of signal processing 218
13.1.4 Analogue and digital conversion 219
13.1.5 Techniques for digital signal processing (DSP) 219
13.1.6 Overview of Image processing with the IMS A100 220

13.2 Practical methods of 2 dimensional convolution 220
13.2.1 2-dimensional convolution 220
13.2.2 Convolution template types 221

Low pass filter 221
Edge detection 222
Laplacian filtering (edge detection) 223

13.2.3 Effect of template size 224
13.3 Hardware requirements for 2-D convolution 224

13.3.1 The IMS A100 model 225
13.3.2 IMS A100 inltialisatlons for convolution 226
13.3.3 IMS A100 coefficient placement and data flow 227
13.3.4 Image scanning for a microprocessor based system 228

Image scanning for 2-D convolution Implementation 228
Improved Image scanning for 2-D convolution 229
Convolution efficiency 230

13.3.5 Moderate speed image convolution 230
13.3.6 Very high speed Image convolution 232

13.4 Conclusions 233
13.5 Recent advances - the IMS A110 233
13.6 Implementation of convolution on the IMS 8009 234

13.6.1 Frame Grabber support 235
13.6.2 The IMS 8009 hardware 235
13.6.3 Transputer block move capability 237
13.6.4 Implementation of the 20 convolution algorithm 239

The IMS T414 and IMS T212 239
Performance 240
Image segmentation 240
Thresholding and scaling using software LUT 241
Transfer of Image across links 242

13.6.5 The Demonstration Program 242
IMS 0703 Development software 242
Injection of noise onto images 242
Convolution kernel file 242

13.7 References 244

xii

14 Cascading IMS A110s 245
14.1 Introduction 246
14.2 Operation of a single IMS A110 246

14.2.1 One dimensional operation of an IMS A110 246
14.2.2 Two dimensional operation of an IMS A110 246

14.3 Fundamentals of cascading IMS A 11 Os 247
14.4 Cascading IMS A110s to produce long one dimensional filters 248
14.5 Cascading IMS A110s to produce wider two dimensional filters 250
14.6 Cascading IMS A110s to produce higher two dimensional filters 251
14.7 Cascading IMS A110s to produce wider and higher two dimensional filters 252
14.8 Cascading IMS A110s to perform multi pass filtering operations 254
14.9 Cascading IMS A110s for increased data precision 256

14.9.1 Increasing data precision with an external 22 bit adder 256
14.9.2 Increasing data precision with an external delay line 257
14.9.3 Increasing data precision with no external hardware 258

14.10 Cascading IMS A110s for increased coefficient precision 258
14.10.1 Increasing coefficient precision with an external 22 bit adder 258
14.10.2 Increasing coefficient precision with an external delay line 258
14.10.3 Increasing coefficient precision with no external hardware 259

14.11 Summary 259

15 The IMS A 110 backend post processor 261
15.1 Introduction 262
15.2 Description of the backend post processor 262

15.2.1 Input block (shifter, cascade adder and rectifier) 262
15.2.2 Statistics monitor 262
15.2.3 Data conditioning unit (data transformation unit and data normaliser) 264

Data transformation unit 264
Data normaliser 264

15.2.4 Output unit (output adder and output multiplexers) 265
Output adder 265
Output multiplexers 265

15.3 Uses of the backend post processor 265
15.3.1 Local area averaging 265
15.3.2 Histogram equalization 266
15.3.3 Edge detection and enhancement 267

Edge detection 267
Edge enhancement 268

15.3.4 Feature recognition 269
15.3.5 Changing conditions compensation 270
15.3.6 Binary image processing 270
15.3.7 Multilevel thresholding - image contouring 271
15.3.8 Dynamic range compression 272

15.4 Summary 273
15.5 References 274

A Quality and Reliability 275
A.1 Total quality control (TQC) and reliability programme 276
A.2 Quality and reliability in design 276
A.3 Document control 277
A.4 New product qualification 277
A.5 Product monitoring programme 277

xiii

A.6 Production testing and quality monitoring procedure 278
A.6.1 Reliability testing 278
A.6.2 Production testing 278
A.6.3 Quality monitoring procedure 279

xiv

Preface

Digital Signal Processing is a significant area of application for INMOS devices. The INMOS Digital Signal
Processing Databook has been published in response to the growing interest and requests for information
concerning INMOS DSP devices.

The databook comprises an overview, engineering data and applications information for the IMS A 100, A 110
and A 121 Digital Signal Processing devices.

The INMOS Digital Signal Processing family is a range of algorithm specific devices designed to provide
high performance. cost effective solutions to signal processing problems. The summary of current devices is
shown below.

In addition to DSP devices, the INMOS product range also includes transputer products, graphics devices
and fast SRAMS. For further information concerning INMOS products please contact your 10caliNMOS sales
outlet.

Part Algorithm Order of Data rate MOPS Military
calculation MHz available

A100-17 1 D convolution 32 2.125-8.5 68-272 yes

A100-21 1 D convolution 32 2.5-10 80-320 yes

A100-30 1 D convolution 32 3.75-15 120-480 yes

A110-20 1 D/2D convolution 21x1,7x3 20 420

A121-20 2D DCTIIDCT 1 Filter 8x8 20 320

Table 1

Ilnmos Chapter 1

e INMOS

2

1.1 Introduction

INMOS is a recognised leader in the development and design of high-performance integrated circuits and as
a pioneer in the field of parallel processing. The company manufactures components designed to satisfy the
most demanding of current processing applications and also provide an upgrade path for future applications.
Current designs and development will meet the requirements of systems in the next decade. Computing
requirements essentially include high-performance, flexibility and simplicity of use. These characteristics are
central to the design of all INMOS products.

INMOS has a consistent record of innovation over a wide product range and supplies components to system
manufacturing companies in the United States, Europe, Japan and the Far East. As developers of the Trans
puter, a unique microprocessor concept with a revolutionary architecture and the occam parallel processing
language, INMOS has established the standards for the future exploitation of the power of parallel process
ing. INMOS products also include a highly successful range of high-performance graphics devices including
a Colour Video Controller and a family of Colour Look Up Tables. INMOS also has a firmly established
reputation as a manufacturer of high-speed static RAMs, an area in which it has achieved a greater than 10%
market share.

This databook concentrates on another successful INMOS product line, an innovative range of Digital Signal
Protessing (DSP) devices designed for applications such as radar and sonar, communications, video-phones,
robot vision and high definition television. Devices include the IMS A100 Cascadable Signal Processor, the
IMS A 110 Image and Signal Processor and the IMS A 121 2-D Discrete Cosine Transform Image Processor.

The corporate headquarters, product design team and worldwide sales and marketing management are based
at Bristol, UK.

INMOS is constantly upgrading, improving and developing its range of Digital Signal Processing products and
is committed to maintaining a global position of innovation and leadership.

1.2 Manufacturing

INMOS products are currently manufactured at the INMOS Newport, Duffryn facility which began operations
in 1983. This is an 8000 square metre building with a 3000 square metre cleanroom operating to Class 10
environment in the work areas.

To produce high performance products, where each microchip may consist of up to 400,000 transistors,
INMOS uses advanced manufacturing equipment. Wafer steppers, plasma etchers and ion implanters form
the basis of fabrication.

1.3 Assembly

Sub-contractors in Korea, Taiwan, Hong Kong and the UK are used to assemble devices.

1.4 Test

The final testing of commercial and military products is carried out at the INMOS Newport, Coed Rhedyn
faCility. Military final testing also takes place at Colorado Springs.

1.5 Quality and Reliability

Stringent controls of quality and reliability provide the customer with early failure rates of less than 1000
ppm and long term reliability rates of better than 100 FITs (one FIT is one failure per 1000 million hours).
Requirements for military products are even more stringent. '

1 INMOS 3

1.6 Military

Most INMOS Digital Signal Processing devices are available, or will shortly be available, in military versions
processed in full compliance with MIL-STD-883C. Further military programmes are currently in progress.

1.7 Future Developments

1.7.1 Research and Development

INMOS has achieved technical success based on a position of leadership in products and process technology
in conjunction with substantial research and development investment. This investment has averaged 18% of
revenues since inception and it is anticipated that the future investment levels will be increased.

1.7.2 Process Developments

One aspect of the work of the Technology Development Group at Newport is to scale the present 1.2 micron
technology to 1.0 micron for products to be manufactured in 1989/90. In addition, work is in progress on the
development of 0.8 micron CMOS technology.

4

lInmos Chapter 2 5

_ digital signal
• processing

• overview

6

2.1 Introduction

Digital Signal Processing (DSP) devices permit multiplication and additions to be performed extremely quickly.
This ability is particularly useful for tasks which require repetitive calculations, e.g. filtering, speech and hand
writing recognition and image processing and enhancement. There are essentially two types of DSP device,
low to medium performance programmable devices and high performance devices dedicated to a specific
application area. Programmable devices provide the ideal solution for modest requirements (e.g. telephone
echo cancelling system). These devices cannot, however, deal with the compute intenSive properties of more
demanding signal processing requirements.

2.2 The INMOS solution

INMOS is dedicated to the production of high performance devices. By targetting specific high performance
applications the ratio of cost to performance is greatly improved. INMOS DSP devices can individually achieve
between 68 and 480 MOPS. Programming is not required as the algorithms are hardwired into the device.
Some of the devices can further be grouped together (cascaded) to linearly increase performance. These
features combine to provide an economic, compact, low power and high performance solution.

INMOS DSP applications include mobile radio base systems, satellite communication links, studio TV equip
ment, image processing, handwriting recognition and radar and sonar systems. INMOS are continually work
ing to develop new products targetted at selected signal processing applications. Current areas of interest
and development are directed at such areas as video phones, where a complex image must be compressed
for transmission across the telephone network, and High Definition TeleviSion (HDTV) for use in broadcasting
and storage of high definition TV pictures.

INMOS DSP devices are configurable rather than programmable. While a complete system could be built
solely from, for example, the A100 device (one dimensional filtering) or A11 0 devices (image processing)
the design is such that multiple devices can be used in conjunction with a controlling microprocessor. This
arrangement of controlling microprocessor and arrayable function/algorithm specific device maintains the
flexibility of a programmable system but allows very high performance in a small number of devices.

INMOS DSP devices currently include the IMS A 100 Cascadable Signal Processor, the IMS A 110 Image and
Signal Processor and The IMS A121 2-D Discrete Cosine Transform Image Processor.

2.3 The IMS MOO Cascadable Signal Processor

The IMS A 100 device is suitable for processing the high-speed data streams necessary for radio, radar, sonar
and satellite communications systems. The following techniques are typical:

• Convolution/correlation
• Pulse compression
• Adaptive filters
• Fourier transforms
• Beamforming
• Hilbert transforms

Radar and sonar systems

The IMS A 100 device utilises CMOS technology to enable 32, 16 bit multipliers to be packed into a device
dissipating less than 2W. A single device is capable of between 68 and 480 MOPS. It is a simple process
to connect A 100 devices together to give the 1,000 to 10,000 MOPS required by radar techniques such as
pulse compression. The IMS A100 device is also military qualified. It is available in both PGA and surface
mount packaging to satisfy the environmental requirements of military systems.

These features are ideal for a range of radar, sonar and ultrasonic systems. Typical applications are as
follows:

• Nose cone radar
• Early warning systems

2 DlgHal signal processing overview 7

• Ultrasonic weld inspection
• Phased array sonars
• Medical ultrasonics
• Towed array sonars

Communications

The IMS A100 device provides enormous filtering power. A high performance or general purpose micropro
cessor used to control one or more IMS A100 devices produces a high performance adaptive filter, capable
of real time countering of signal attenuation, reflection and interference in systems. The following applications
are typical:

• Digital satellite communications
• Mobile digital radio
• Megastream modem applications (for example, a 2Mbitls video conferencing system)
• Telephone exchange processing for multiple ISDN data channels.

2.4 The IMS A110 Image and Signal Processor

The IMS A 110 is ideal for solving a number of real time image processing problems. The following are typical:

• 1O/2D Convolution
• Statistics/histogram collection
• 1 D/2D Correlation
• Non-linear data transformation
• 1 D/2D Interpolation
• Image enhancement

Machine vision

The image processing requirements of machine viSion systems include noise filtering, correction of distortion
and enhancement of features. The IMS A11 0 contains a 20Mhz 7x3 multiplier array and line stores, a single
device can therefore provide filters such as edge detectors in real time. More demanding requirements can
readily be met by arraying IMS A11 0 devices. Typical applications are as follows:

• Optical alignment
• Visual inspection for defects
• Robot Vision
• Automated pathology

Image compression

The ability of the IMS A 110 device to realise data compression techniques, such as sub-band/pyramid coding
and linear predictive coding in real time, makes it ideal for the following applications:

• Video conferencing
• Facsimile of high-quality pictures
• Communication of images from remote observation points (e.g. satellites)
• Image archiving (e.g. medical image databases)

Contrast enhancement

Image processing systems often require contrast modification in addition to image filtering. This is supported
in the IMS A11 0 by the inclusion of a sophisticated data transformation post processor unit providing support
for the following applications:

• Histogram equalisation (enables adjustment to different lighting conditions)
• Image contouring (e.g. for simplifying medical images)
• Dynamic range compression or expansion

8

Other applications

• Postal sorting
• Traffic control
• Airport baggage X-ray inspection
• Handwriting and face recognition
• Bank cheque sorting and processing
• Conversion between TV standards
• Target acquisition and tracking
• Document processing
• Medical image processing
• TV special effects

2.5 The IMS A 121 2-D Discrete Cosine Transform Image Processor

The IMS A121 is the latest INMOS DSP device. It has been designed to provide high speed computation of
an 8x8 Discrete Cosine Transform (OCT) or Inverse Discrete Cosine Transform (IDCT) at video data rates
for image processing. Typical applications are as follows:

• Image data compression and decompression (e.g. video codecs)
• Image understanding (e.g. image texture analysis)

Image compression

OCT based image coding is appropriate for a wide range of applications which require image data compression
and decompression:

• Video conferencing and video phones
• FaCSimile of colour and greyscale images
• Compact disc based interactive video systems
• Office document processing systems utilising colour or greyscale images

(e.g. Document scanners, desktop publishing systems, page printers and image archiving systems)

Image understanding

The frequency domain description of an image provided by the OCT is a powerful tool for analysing textures
and patterns within an image.

Chapter 3

ASynchronous Functions.

9

IMSA100
IMS A100M

Cascadable
Signal Processor

Engineering Data

Update Coefficient Registers (UCR)

----- 32 stages -----;

f-r---Busy
~---Go
i----Clock
i----Reset
R----Error

Multiplier
Accumulator

Array

32 cycle delay (24 bits)

Synchronous Functions

FEATURES

Variants for full MIL temperature range
(-55°C to +125°C)

MIL-STD-883C processing

Full 16 bit, 32 stage, transversal filter

Fully cascadable with no speed degradation or
reduction in dynamic range

Coefficients selectable as 4, 8, 12, or 16 bits wide
Data throughput to 15.0 MHz

High speed microprocessor compatible interface

Data input and output through dedicated ports or via
the microprocessor interface

Fully static high speed CMOS implementation

Single +5V ±5% or ±10% power supply variants

TIL and CMOS compatibility

Less than 2W power dissipation

Standard 84-pin PGA or flatpack package

42-1442-01

L_.1-t-----' OutRdy

APPLICATIONS
Digital FIR filtering

High speed adaptive filtering

Correlation and Convolution
Discrete Fourier Transform

Speech processing using Linear Predictive Coding

Image processing
Waveform synthesis
Adaptive and fixed equalizers and echo cancellers

Spread spectrum communication

Beamforming and beamscanning in sonar and radar

Pulse compression

High speed fixed point matrix multiplication

June 1989

10

3.1 INTRODUCTION

The IMS Ai 00 is a high speed, high accuracy 32 stage transversal filter. Its flexible architecture allows it to
be used as a 'building block' in a wide range of Digital Signal Processing (DSP) applications. The part is
capable of performing high speed DFTs, convolution and correlation, as well as many filtering functions.

The input data word length is 16 bits, and coefficients are programmable to be 4, 8, 12 or 16 bits wide; two's
complement numerical formats are used for both data and coefficients. The coefficients can be updated
asynchronously to the system clock during normal operation, allowing the chip to be used in a variety of
adaptive systems. The IMS Ai 00 can also be cascaded to construct longer transversal filters with no additional
logic or degradation in speed, whilst preserving a high degree of accuracy. The device is controlled through
a standard memory interface, allowing use with any general purpose microprocessor. Data communications
can be either through the memory interface, or through dedicated data ports.

3.2 DESCRIPTION

The IMS Ai 00 is a 32 stage, cascadable, digital transversal filter. The general canonical transversal filter is
shown in figure 3.1. An alternative, and functionally equivalent filter is shown in figure 3.2. It is this second
realisation that is used in the IMS A 100, where the input signal is supplied in parallel to all 32 multipliers, and
the delay and summation operations are performed in a distributed manner.

Input --.--I

Output

Figure 3.1 Canonical transversal filter architecture

Input ----,.-----.--

Output

Figure 3.2 Modified transversal filter architecture

Each data sample loaded into the IMS Ai 00 is fed in parallel to all 32 stages. At each stage the current input
sample is multiplied by a coefficient stored in memory, and added to the output of the previous stage delayed
by one clock cycle. The filter output at time t = kT is given by:

y(kT) = C(O) x x(kT) + C(1) x x«k - 1)T) + ...

. . . + C(N - 1) x x«k - N + 1)T)

where x(kT) represents the kth input data sample, and C(O) to C(N -1) are the coefficients for the N stages.

3 IMS A100 Cascadable signal processor 11

While the IMS A100 architecture is designed as a transversal filter it contains many features which allow it
to be used in a wide range of signal processing applications, e.g. adaptive filtering, matrix multiplication,
discrete Fourier transforms, correlation and convolution. Figure 3.3 shows the users view of the IMS A100.

Asynchronous Functions

16

Update Coefficient Registers (UCR)

~--- 32 stages -----l~

Multiplier
Accumulator

Array

32 cycle delay (24 bits)

Synchronous Functions

1-1--__ Busy
~---Go
~--Clock
~--Reset
~---Error

L_J-!-~~ OutRdy
,........-....,L......-----,

Figure 3.3 IMS A100 Users Model

The IMS A 100 has four interfaces through which data can be transferred. The memory interface port allows
access to the coefficent registers, the configuration and status registers and the data input and output registers
for the multiplier accumulator array. Three dedicated ports are also provided, allowing high speed data input
and output to the IMS A100 and the cascading of several devices.

Typically a microprocessor will configure the IMS A 100 via the memory interface, then in a simple system data
input and output can be performed through the data input (DIR) and data output (DOL, DOH) registers. Alter
natively in a higher performance system data transfer may be performed via the dedicated input and output
ports. A typical IMS A1 00 based system is shown in figure 3.4. Simple high-throughput fixed-configuration
systems can be implemented by clocking the configuration information into the IMS A1 00 from a ROM.

The IMS A100 input data word width is 16 bits. The coefficient words can be programmed to be 4,8,12, or
16 bits wide. There is a trade off between the coefficient size and the speed of operation. If the coefficient
word is La bits wide and the clock frequency applied to the IMS A 100 is F then the maximum data throughput
is ¥C. So, for an IMS A 100 operating from a 20.8 MHz clock and using 4-bit coefficients the maximum data
throughput is 10.4 MHz, similarly for 16-bit coefficients the throughput is 2.6 MHz.

To preserve complete numerical accuracy, no truncation or rounding is performed on the partial products in the
multiplier accumulator array. The output of this array is calculated to full precision (36 bits). A programmable
barrel shifter is located at the output of this array, which allows one of five 24 bit fields to be selected from the
36 bit result. The selected 24 bits are always correctly rounded and are sign extended before being output.
The selection required can be determined from analysis of the coefficients and input data used in a given
application.

Two banks of coefficients are provided. At any instant one set of coefficients is in use within the multiplier
accumulator array, the other set being accessible via the memory interface. Once a new set of coefficients
has been loaded, the two coeffiCient banks can be interchanged by performing a write operation to the
'Bank Swap' bit of a control register.

So that devices can be cascaded (eg. to construct longer transversal filters), a 32 stage, 24 bit wide, shift
register and 24 bit adder is included on chip. The output of one chip is connected directly to the cascade
input of the next. The output of the shift register is added internally to the output of the programmable barrel

12

General purpose
microprocessor
(e.g. transputer)

Memory interface bus

Data in I I L 1 L L
IMSA100 IMS A100 IMS A100 Data out

Cascade Cascade
GO t I data t data t I

I I I
Clock

Figure 3.4 A simple IMS A100 based system

shifter to give the final 24 bit output from the chip. To minimise pin count and external buses, the data output
and the cascade input ports transfer 24 bit words as a pair of 12 bit words across a 12 bit wide multiplexed
interface.

As IMS A 1 OOs can be cascaded there is a price I performance trade off for most IMS A 100 systems. For
example, a correlation application could achieve high performance by using a cascade of IMS A100s suffi
ciently long to hold one of the waveforms being correlated in its coefficient registers and sending the other
waveform involved in the correlation along the cascade of IMS A1 OOs. A cheaper and slower solution would
be to use a smaller number of IMS A100s and to decompose the single long correlation into a sequence of
shorter correlations, the results of which are then summed.

3 IMS A100 Cascadable signal processor

3.3 PIN DESIGNATIONS

System services

Pin In/out Function
VCC,GND Power supply and return
ClK in Input clock

RESET in System reset

ERROR out Numerical overflow error
BUSY out Bank swap in progress

Synchronous input/output

Pin In/out Function

GO in/out Initiate input/computation/output cycle
DIN[()..15] in Data input port
DOUT[()..11] out Data output port
CIN[()"11] in Cascade input port
OUTRDY out Output data ready

Asynchronous input/output

Pin In/out Function
D[()..15] in/out Memory interface data bus
ADR[O·S] in Memory interface address bus

CS in Memory interface select

CE in Memory interface enable

W in Memory interface write enable

Notes

Signal names are shown with an overbar if they are active low, otherwise they are active high.
Pinout details are given in section 3.7

3.3.1 System services

System services include all the necessary logic to start up and maintain the IMS A 100.

Power

13

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latch up.

ClK

The clock input signal ClK controls the timing of input and output on the three dedicated ports and controls
the progress of data through the multiplier accumulator array.

14

When the IMS A 100 is reset the control logic within the IMS A 100 will be reset and the ACR and SCR will be
initialised to their default values. Note that neither the internal data path registers nor the coefficient registers
are affected by the reset. Resetting the device initialises the SCR to its default setting. So, depending on
the setting of SCR before a reset, a reset may also be a device reconfiguration. The sequence of operations
required to return the device to a defined state following reconfiguration is described under SCR in the register
description.

A reset is initiated automatically when power is first applied to the device. This reset will be completed once
four cycles of elK have occured after vce is valid. Alternatively reset can be initiated by taking RESET low.
This reset will be completed after at least two cycles of elK have occured while RESET is held low. RESET
should be held low for at least 200ns. Normal device operation can then continue after RESET is taken high.

The reset should be completed before either the synchronous or asynchronous parts of the device are used.

If asserted, this pin indicates an error condition has occured, and that the condition has not been cleared.
The error condition results from a numerical overflow in either the final adder or in the field selector. To allow
this signal to be wire ORed between all the devices in a cascade and hence to be used as an interrupt signal
to the host processor, the ERROR outputs are open collector.

If suitably armed before the error occured the ACR error bits can be read to discriminate the two error sources.
The error bits in the ACR and the error condition can be cleared and then the error bits armed to detect further
errors by writing values to the ACR. The sequence of values that should be written to the ACR error bits is
o followed by 1. An error condition can only be cleared if the error bits were suitably armed before the most
recent error occured.

The ACR error bits may not observe an error occuring between clearing and arming the error bits. So, when
clearing an error and arming the error bits precautions should be taken to ensure that no new error occurs.
For example, first prevent the IMS A 100 from initiating computation on new data; second wait for any results
pending to be output; then clear and rearm. The ACR error bits will observe any error occuring after they are
armed. Thus, if an error occured before the ACR error bits were armed it may be necessary to arm the error
and then force an error before proceeding to clear the error (as described above).

Following power up the contents of the multiplier accumulator array and cascade path are indeterminate.
As this indeterminate data flushes through a system of one or more IMS A 1 ODs errors are likely to occur.
Similarly, altering the device configuration defined by the SCR is likely to result in errors. The sequence of
operations required to return the device to a defined state following reconfiguration is described under SCR
in the register description section of this specification.

BUSY

When high this pin indicates that an exchange of data between the Current and Update Coefficient Registers
is in progress. Under certain conditions the duration of BUSY may be vanishingly small. BUSY will be active
if the bank swap is caused by setting ACR[O] to request a single bank swap or when SCR[2] is set selecting
Continuous Swap mode. The detailed behaviour is described in the bankswap timing diagrams.

3 IMS A100 Cascadable signal processor 15

3.3.2 Synchronous input/output

GO

The GO signal initiates a cycle of data input, computation and output. An IMS A100 configured as a slave
will monitor the GO signal on the rising edge of ClK one cycle before it is ready to accept more data and on
every rising edge thereafter until GO is found to be high. If GO is high then data input will occur on the next
rising edge of ClK. If GO is low when it is sampled no new data input will occur.

In a cascade of IMS A100s one IMS A100 may be configured as a master. The master IMS A100 will drive
its GO pin high after data has been written into its Data Input Register indicating that new data is available
and that the slave IMS A100s in the casacade should start an input, computation, output cycle. When the GO
signal goes low new data can be written to the IMS A1 OOs. Typically a host processor will write simultaneously
to the Data Input Registers of all the IMS A100s in the cascade. The host will then monitor the GO signal
before writing new data to the cascade.

DIN[0-15]

This 16 bit wide data input port allows high speed data input to the IMS A 100. The timing of this input is
controlled by the ClK and GO signals. In a cascade of IMS A100s the 16 bit wide input data path and the
ClK and GO signals will be bussed to all devices.

DOUT[0-11]

This 12 bit data port outputs the result from the IMS A 100. The 24 bit result is multiplexed through this port
as two 12 bit words, the least significant word being output first. The most significant word is output second
and remains on the data pins until a new data output sequence is about to start. The OUTRDY signal can
be used to latch these words into external circuitry. In a cascade of IMS A 1 OOs the DOUT pins of one device
connect to the CIN pins of the next device in the cascade.

CIN[0-11]

The Cascade Input allows multiple IMS A1 OOs to be cascaded. A 24 bit word is input as two 12 bit words the
least significant word being input first. The 24 bit word is delayed by a shift register and summed with the
output of the multiplier accumulator array. The delay from a word being input on the cascade input to that
word affecting the data output is 32 data input cycles. In a typicallMS A100 based system the cascade input
of each device will be connected to the data output DOUT[0-11] of the previous IMS A1 00 in the cascade.
The Cascade Input of the first device in the cascade will normally be connected to ground.

OUTRDY

The output ready signal OUTRDY goes low just after the least significant data output word is available on
the DOUT pins and goes high just after the most significant word is available. The rising edge of OUTRDY
also indicates that the Data Output registers (DOL, DOH) contain the new result word. Thus the OUTRDY
signal can either be used to latch the output of the IMS A 100 into external logic or to indicate that output of
the IMS A 100 can be read through the memory interface from the Data Output registers.

16

3.3.3 Asynchronous Input/output

This pin selects the chip; if chip select CS is Iowan access to the memory interface will be enabled. This
signal is usually asserted by the host processors' address decoder at the begining of a memory cycle.

The chip enable pin. The memory interface on the IMS A100 appears to the system controlling it as 128
words of static RAM. The chip enable CE signal is similar in operation to the chip enable signal found on static
RAMs. When CE is high the chip select, write enable and the address inputs are ignored and the memory
interface data bus is tri-state. When chip enable is Iowa single read or write access is made to one of the
registers within the IMS A100. Accesses to the memory interface can occur completely asynchronously to
operations on the data in, cascade in and data output ports DIN[O·15], CIN[0-11] and DOUT[0-11].

W

The write enable pin indicates whether the access to the IMS A100 memory interface is to be a write or a
read. If W is Iowa write access is indicated.

ADR[0-6]

The seven bit address bus comprises pins ADR[O·6]. The seven bit binary value applied to the address inputs
of the IMS A100 indicates which register is to be accessed.

D[0-15]

During a write to the memory interface a 16 bit word is applied to data bus pins D[0-15]. This word will be
latched on the rising edge of chip enable CE at the end of the cycle. During a read cycle the contents of the
location accessed are placed on the data pins. When CE is high the data signals are tri-state.

3 IMS A 100 Cascadable signal processor 17

3.4 REGISTER DESCRIPTION

The memory map shown below indicates the primary addresses for each register. All locations between
decimal addresses 64 and 75 inclusive are uniquely decoded. This group of registers is shadowed at other
locations up to the 128 word boundary. The effect of reading and writing to areas in the memory map other
than those shown in the table is undefined.

If the user wishes to initialise the device from a ROM addressed by a clocked counter, one of the following
options applies:

1 Restrict the counter to count only from 0 to 68; this avoids writing to the data registers as well as
the shadow locations.

2 Count down from 127 to zero. The initialization at the lower addresses will override spurious ones
at the higher shadowed addresses.

3.4.1 Memory map t

Register Address Address Function
decimal hex

CCR[0·31] 32-63 2Q-3F Current Coefficient Registers
UCR[0·31] 0-31 00-1F Update CoeffiCient Registers

SCR 64 40 Static Control Register

65 41 Unused location
ACR 66 42 Active Control Register

67 43 Unused location
TCR 68 44 Test Control Register
DIR 72 48 Data Input Register
DOL 74 4A Data Output Register (Least Significant Word)
DOH 75 48 Data Output Register (Most Significant Word)

t All other locations accessible via the memory interface of the IMS A 100 are reserved.

3.4.2 Registers

CCR[0-31]

The Current Coefficient Registers contain the coefficients currently being used by the multiplier accumlator
array. CCR[O] (decimal address 32) corresponds to the coefficient register of the multiplier accumlator nearest
the output of the IMS A 1 DO; i.e. this location is equivalent to C(O) in figure 3.2.

Similarly CCR[31] (decimal address 63) corresponds to C(31). The Current Coefficient Registers can be read
from at any time and can be written to provided that no data processing is taking place. The effect of writing
to the Current Coefficient Registers while data is being processed is undefined.

UCR[0-31]

The Update Coefficient Registers are equivalent to the Current Coefficient Registers, with the exception that
the values in the Update Coefficient Registers are not currently in use within the multiplier accumlator array
and can therefore be written to at any time.

A bank swap operation is equivalent to an exchange of data between the Update Coefficient Registers and
the Current Coefficient Registers.

18

SCR

64

66
68

72
74
75

.. 16 bits-----I~~

Update
Coefficient
Registers

Current
Coefficient
Registers

Static Control Register
Active ContrOl Register

Test Control Register

Data Input Register
Data Output Register
Data Output Register

SCR
ACR
TCR

DIR

DOL
DOH

127~ __________________ ~

["~~\~'·;'.:I = RESERVED (write zero to this location.
'.;.;;;.-::'>;. reading these locations gives an
, "., '.. unspecified value)

,8

'.0

8

Figure 3.5 IMS A100 memory map

The Static Control Register contains the control bits which configure the IMS A100 and are unlikely to need
updating after their initial configuration. The contents of the Static Control Register are not affected by the
IMS A100 and can be read at any time.

Reconfiguring the SCR may result in indeterminate data values within the IMS A100 system. These values
may in turn result in errors. After reconfiguring the SCR the following sequence should be followed to return
the IMS A1 00 system to a defined, error free condition:

ACR

1 Arm error bits in ACR.

2 After SCR has been reconfigured GO should be held low for 20 cycles of ClK.

3 A series of suitable data values should then be flushed through the IMS A 100 system.

4 Any errors generated should then be cleared.

5 The IMS A 100 system is then ready to commence normal operation.

The Active Control Register contains status and control bits which are likely to be accessed during normal
operation of the IMS A 100; i.e. when handling error conditions and when requesting single coefficient bank
swaps.

3 IMS A100 Cascadable signal processor 19

TCR

The Test Control Register is used for test purposes. One of the test modes provides access to the least
significant part of the multiplier accumulator array output.

DIR

The Data Input Register. The IMS MOO can be configured to either take its input data from the DIN pins or
from the Data Input Register. If the IMS A100 is configured as the master of a cascade of IMS A100s the
GO signal will be driven in response to writing data into the Data Input Register.

In a smalilMS A100 based system the Data Input Registers of all the devices in the cascade will normally
be mapped into the same location within the address space of the processor controlling the cascade. Thus
a single write operation can write data to all devices, the master IMS A100 generating the GO signal for the
slaves. The Data Input Register is write only.

DOL

The least significant word of the Data Output Register. The output data from the IMS A100 is available from
both the DOUT[D-11] pins and from the Data Output Registers. The value held in the Data Output Registers
is the 24 bit output word, sign extended to 32 bits. DOL contains the least significant 16 bits of the 24 bit
result; the register is read only.

DOH

The most significant word of the Data Output Register. The DOH register contains the most significant 8
bits of the 24 bit output word generated by the IMS A100. The most significant 8 bits of DOH are the sign
extension of the output word. DOH is read only.

The remainder of this section describes the register details bit by bit. Each section commences with the name
of the register with the bit number(s) followed by the default value, in the general format:

Name REGISTER[MSB-lSB) Default: MSB LSB

The least significant bit of a register is bit O.

t in the tables indicates the default state of the register bit(s).

3.4.3 StatiC control register

Fast Output SCR[10] DefauR: 0

The Fast Output bit controls the way in which the 24 bit output of the IMS A100 is multiplexed across the 12
bit wide DOUT port. The interval between data output cycles is the same for both Normal and Fast output
modes.

The difference between the modes is the time division between the least and most significant words. In fast
output mode the least significant 12 bit word is available for the minimum period possible, thus allowing the
most significant word to be output at the earliest possible instant. In normal output mode the least significant
word is available for the same length of time as the most significant word (unless the duration of the most
significant word is extended by idle cycles).

The timing constraints on data output in Normal mode are significantly simpler than those in Fast mode. Fast
mode should be considered a special mode which is only used where the early availability of the output words
is important, e.g. an adaptive system where the filter coefficients are being modified in response to the output
data.

All devices in a cascade of IMS A100s should be configured for the same output mode. The Fast Output bit
should not be altered during data processing. If it is altered the data output of the cascade will be undefined

20

until new input data has flushed through all stages of the cascade. If the coefficient size is 4 bits there is no
difference between the fast and normal modes.

SCR[10] Output mode
0 Normal t
1 Fast

Coefficient Size SCR[9--8] Default: 1 1

Defines size of coefficient used, in terms of word width. This also determines the minimum interval between
data input cycles and thus the data throughput of the IMS A 100. The Coefficient Size bits should not be
altered during data processing. If they are altered the data output of the cascade will be undefined until new
input data has flushed through all stages of the cascade.

In each mode the coefficient data is the least signifcant bits of the 16 bit word; e.g. in 4 bit mode, a two's
complement number should be programmed into bits Q-3 of the 16 bit register. The remaining bits 4-15 are
ignored.

SCR[9--8] Coefficient size Data input interval
00 4 bits 2 cycles

o 1 8 bits 4 cycles
1 0 12 bits 6 cycles
1 1 16 bits 8 cycles t

Reserved SCR[7-6] Default: 0 0

These locations are reserved. The user should write 0,0 to these locations to maintain compatability with
future products. The value read from this location is undefined.

Reserved SCR[3] Default: 0

This location is reserved. The user should write 0 to this location to maintain compatability with future prod
ucts. The value read from this location is undefined.

Output Word Selection SCR[5-4] Default: 1 0

These bits determine the 24 bit wide field selected from the 36 bit wide output of the multiplier accumulator
array (bit positions numbered 0 to 35). The word selected will be rounded and sign extended before being
output. Note that ranges '10' and '11' imply sign extension of the result.

The Output Word Selection bits should not be altered during data processing. If they are altered the data
output of the cascade will be undefined until new input data has flushed through all stages of the cascade.

SCR[5-4] Field
00 [7-30]

o 1 [11-34]

1 0 [15-38] t
1 1 [20-43]

Continuous Swap SCR[2] Default: 0

The Continuous Swap bit selects whether the two banks of coefficient registers are automatically exchanged
after each data input and computation cycle or if individual bank swaps occur under the direction of the Bank
Swap bit in the Active Control Register, ACR[O]. SCR[2] should not be set if a bankswap has been requested
(by setting ACR[O]) and is still pending.

3 IMS A100 Caseadable signal processor 21

SCR[2] Swap Mode
0 Swap on asserting ACR[O) t
1 Swap after end of each input cycle

Input Data Source SCR[1] Default: 0

The data source for the multiplier accumulator array can come from one of two sources. selected by SCR[1).
Data can either be input from the DIN port or it can be written into the Data Input Register via the memory
interface. See also the following section.

SCR[1] Data Source

0 From DIN port t
1 From DIR

Master not Slave SCR[O] Default: 0

The Master not Slave bit selects whether the IMS A100 samples the GO input to determine the start of a
data input cycle (slave mode). or drives the GO pin when data is written to the DIR (master mode). If input
data is supplied through the DIR one IMS A100 in the cascade should be configured as a master. If data is
supplied to the DIN port by an external data source all the IMS A 1 OOs in the cascade should be configured
as slaves and GO should be driven by an external system. Note that an illegal mode results if SCR[1) is 0
and SCR[O) is 1; i.e. a master cannot obtain data from the DIN port.

SCR[O] Mode

0 Slave t
1 Master

3.4.4 Active control register

Cascade Adder OverflOW ACR[2] Default: 0

If previously armed this status bit will be set if the addition of the 24 bit words output by the 24 from 36 bit
selector (on the output of the multiply accumulator array) and the cascade shift register causes an arithmetic
overflow. The ERROR pin will be driven low while this or any other error condition is active. This error bit and
the error condition can be cleared by writing a zero to ACR[2). provided the data in the adder is no longer in
error. After clearing this error bit the error bit should be armed (by writing a one to ACR[2)) to ensure that
any future error is detected. See ERROR section.

Selector Overflow ACR[1] Default: 0

If previously armed this status bit will be set if the 24 bit output range of the selector does not include all the
significant binary digits in the 36 bit result generated by the multiply accumulator array. The ERROR pin will
be driven low while this or any other error condition is active. This error bit and the error condition can be
cleared by writing a zero to ACR[1). After clearing this error bit the error bit should be armed (by writing a
one to ACR[1]) to ensure that any future error is detected. See ERROR section.

Initiate Bank Swap ACR[O] Default: 0

Writing a one into this control bit requests an exchange of data between the Current and Update Coefficient
Registers. The bank swap will occur as soon as the current computation cycle is completed. or on the next
clock cycle if the IMS A100 is idle. This control bit is cleared to zero by the IMS A100 when the bank
swap is complete. No access should be made to either set of coefficient registers while a bank swap is in
progress. ACR[O) should not be set if SCR[2) is already set. For a detailed description of the behaviour see
the bankswap and coefficient access timing diagrams.

22

3.4.5 Test control register

Examine Full Output Word TCR[2] Default: 0

This bit overrides the output word selection normally made by bits SCR[S-4]. The output word selection
determines the 24 bit wide field selected from the 36 bit wide output of the multiply accumulator array (bit
positions numbered 0 to 35). When TCR[2] is set to '1' the output word selection is bits '-1' to 22, where
bit' -1' is set to zero. The output word selection should not be altered during data processing. If altered
the data output of the cascade will be undefined until new input data has flushed through all stages of the
cascade.

TCR[2] Field

0 Set by SCR[5-4] t
1 [-1-22]

Reserved TCR[1] Default: 0

This location is reserved for INMOS test purposes. For normal operation the user should write 0 to this
location.

Reserved TCR[O] Default: 0

This location is reserved for INMOS test purposes. For normal operation the user should write 0 to this
location.

3.5 DEVICE APPLICATIONS

The IMS A100 can be used in a variety of different applications requiring high performance computation.
Some of these are described below, and are covered in detail in the IMS A100 Application Note series,
available from INMOS.

3.5.1 Filtering and adaptive filtering

The IMS A1 00 device can be used to implement high speed FIR and IIR digital filters. The maximum sampling
frequency of the input signal ranges between 2.12SMHz and 1SMHz, depending on the coeffiCient word length
and speed variant that has been selected.

The continuous bank swap mode allows a single device to filter complex (I & 0) data streams. High speed
random access coefficient registers enable high performance adaptive filters and equalisers to be realised
with minimal complexity.

The cascadability of the device enables FIRs of greater than 32 stages to be constructed, with no degradation
in data throughput.

3.5.2 Convolution and correlation

The IMS A 100 is the first single-chip digital correlator capable of highly accurate computation of correlation
and convolution functions (16-bit coefficients, 16-bit data and 3S-bit accumulation). These functions have
applications in matched filtering, noise reduction and pulse compression in communication, radar and sonar
systems.

For correlations and convolutions involving a large number of data pOints, devices can be cascaded to several
thousand stages with careful design. Alternatively, it is possible.to use algorithms which allow decomposition
of long correlation and convolutions into several smaller ones, which can then be carried out by a single or
smaller number of devices.

3 IMS A100 Cascadable signal processor 23

3.5.3 Matrix multiplication

The architecture of the IMS A100 allows very high speed fixed point matrix multiplication. In this application
the columns of the multiplier matrix are circulated as inputs to the chip while the coefficients are programmed
in a suitable manner with the elements of the multiplicant matrix. Larger matrices can be handled by either
cascading several chips or by decomposing the matrices into smaller ones.

3.5.4 Fourier transforms

Two algorithms, namely the Prime Number Transform (PNT) and the Chirp-Z Transform (CZT), can be used
to perform high speed Fourier transforms using IMS A 1 OOs. The Fourier transform of long data sequences
can be evaluated either by using cascaded IMS A100s or by using decompoSition algorithms to convert a
long transform into a number of short transforms (e.g. <32 points). These short transforms can then be
carried out using the IMS A 1 OOs and a host processor.

The speed of transform can be traded off against the number of chips employed. Any microprocessor with
a standard memory interface could be used to handle intermediate results and to control the overall system.
Two IMS A 1 OOs can be used to perform a transform of about 1000 points in around 1 ms to 2ms using look-up
ROMs for address generation and high speed DSP controllers, or 5ms to 10ms using a microprocessor as
the controller. More IMS A 1 OOs can be used if higher performance is required.

3.5.5 Waveform synthesis

The programmability of this digital transversal filter allows the IMS A 100 to be used for flexible waveform
generation and synthesis, by exploiting the ability to change coeffiCients randomly, quickly and simply. Such
a configuration could be attractive for PC based synthesisers, as the chip can generate very accurate high
bandwidth signals.

3.5.6 General purpose accelerator

By attaching one or more IMS A100s to any computer with DMA capability, a useful accelerator can be
constructed, capable of handling all of the above applications without reconfiguration. The cascadability of
the device enables users to add IMS A100s as required for extra processing performance, with minimal
impact on the driving software.

24

3.6 ELECTRICAL SPECIFICAnON

The IMS A100 is available in several speed, package and temperature variants (see section 3.9 - Ordering
details) and the electrical characteristics of each are described in this section. When no variant is identified
the information refers to all variants.

3.6.1 DC electrical characteristics

Absolute maximum ratings

Notes

Symbol Parameter Min. Max. Units Notes (1)

VCC DC supply voltage 0 7.0 V 2,3

VI, VO Voltage on input and output pins -1.0 VCC+0.5 V 2,3

TS Storage temperature -65 150 °C 2

TA Temperature under bias -55 125 °C 2

PDmax Power dissipation 2.0 W 2

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions
beyond those indicated in the operating sections of this specification is not implied. Stresses greater
than those listed may cause permanent damage to the device. Exposure to absolute maximum
rating conditions for extended periods may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or
electrical fields. However, it is advised that normal precautions be taken to avoid application of any
voltage higher than the absolute maximum rated voltages to this high impedence circuit. Unused
inputs should be tied to an appropriate logic level such as VCC or GND.

3 IMS A100 Cascadable signal processor 25

DC operating conditions

Symbol Parameter Min. Nom. Max. Units Notes (1)

VCC DC supply voltage 4.5 5.5 V 4

VCC 4.75 5.25 V 5,6,7

VIH Input Logic '1' Voltage ClK 4.0 VCC+0.5 V 2

Input Logic '1' Voltage RESET 2.4 VCC+0.5 V 2

Input Logic '1' Voltage other pins 2.0 VCC+0.5 V 2

VIL Input Logic '0' Voltage ClK -0.5 0.5 V 2

Input Logic '0' Voltage RESET -0.5 0.8 V 2

Input Logic '0' Voltage other pins -0.5 0.8 V 2

TA Ambient Operating Temperature 0 70 °C 3,4,7

TA -55 125 °C 3,5,6

Notes

All voltages are with respect to GND. All GND pins must be connected to GND.

2 Input signal transients up to 10 ns wide, are permitted in the voltage ranges (GND - 0.5 V) to
(GND - 1.0 V) and VCC + 0.5 V to VCC + 1.0 V.

3 400 linear ftlmin transverse air flow.

4 IMS A100-G21S, IMS A100-Q21S.

5 IMS A100-G21M, IMS A1 00-Q21 M.

6 IMS A1 OO-G17M.

7 IMS A100-G30S.

26

DC characteristics

Notes

Symbol Parameter Min. Max. Units Notes (1,2)

VOH Output logic '1' Voltage 2.4 VCC V 4

VOL Output logic '0' Voltage 0 0.4 V 5

II Input current @ GND<VkVCC ±10 ",A

IOZ Tristate output current @ GND<VkVCC ±10 ",A

ICC Average power supply current 360 mA 3

All voltages are with respect to GND. All GND pins must be connected to GND.

2 Parameters measured over variants full voltage and temperature operating range.

3 Power dissipation is application dependent and varies with output loading. The maximum given here
is for worst case data patterns and activity on all interfaces, with no DC load on outputs.

4 OUTRDY, DOUT: lOut ~ -4.4 mA; ERROR is open collector; other outputs: lOut ~ -5.5 mAo

5 OUTRDY, DOUT: lOut ~ 4.4 mA; ERROR: lOut ~ 5.5 rnA; other outputs: lOut ~ 5.5 mAo

Capacitance

Pin Typ. Units Notes

ClK 12 pF 1,2

All other pins 5 pF 1,2

1 This parameter is supplied for engineering guidance and is not guaranteed.

2 TA=25°C , F=1 MHz.

3 IMS A100 Cascadable signal processor 27

3.6.2 AC timing characteristics

AC test conditions

Output loads (except output turn-off tests)

Pin Device mode Load Unit
GO Master 20 pF

DOUT,OUTRDY Fast output 15 pF
DOUT,OUTRDY Normal output 30 pF
All other outputs All modes 30 pF

Output load (output turn-off tests)

Vref Isource
=1.5V =1mA

Timing reference levels

Pin Reference levels Notes
INPUTS 0.8V,2.0V 1

CLK 0.5V,4.0V
OUTPUTS 0.4V,2AV 2,3

OUTPUTS ±100mV change from previous steady output voltage 4

Notes

Except CLK.

2 Output continuously driven.

3 Timings are tested using VOL=0.8V and with a suitable allowance for the time taken for the output
to fall from O.8V to OAV.

4 Output turn-off tests.

28

Clock

Notes

Symbol Parameter Min. Max. Units Notes
tCHCl Clock pulse width high 19 ns 2

tCHCL 24 ns 3

tCHCL 13 ns 4

tClCH Clock pulse width low 19 ns 2

tClCH 24 ns 3

tCLCH 13 ns 4

tCHCH Clock period 48 ns 2

tCHCH 58 ns 3

tCHCH 33 ns 4

tR Clock rise time 0 50 ns 1
tF Clock fall time 0 50 ns 1

Clock input transitions should be monotonic between the input thresholds of 0.5 V and 4.0 V.

2 IMS A100-G21S, IMS A100-021S, IMS A1 00-G21 M, IMS A100-021M.

3 IMS A100-G17M

4 IMS A100-G30S

tCHCL

4.0V- --

elK

tCLCH

tCHCH

3 IMS A100 Cascadable signal processor 29

Memory Interface read cycle

Symbol Parameter Min. Max. Units Notes

tELEH CE pulse width low 60 ns

tEHEL CE pulse width high 50 ns

tSLEL CS setup time 15 ns

tEHSX CS hold time 5 ns

tAVEL Address setup time 15 ns

tEHAX Address hold time 5 ns

tWHEL Read Command setup 15 ns

tEHWX Read Command hold 5 ns

tELOX Output turn on delay 0 ns

tELOV Read data access 60 ns

tEHOX Read data hold 0 ns

tEHOZ Output turn off delay 25 ns

tELEH tEHEL

CS
----~---+----------~~--~----------------

ADR[0-6]

w

D[0-15]----+.,.

30

Memory interface write cycle

Symbol Parameter Min. Max. Units Notes

tELEH CE pulse width low 50 ns

tEHEL CE pulse width high 50 ns

tSLEL CS setup time 15 ns

tEHSX CS hold time 5 ns
tAVEL Address setup time 15 ns
tEHAX Address hold time 5 ns
tWLEL Write Command setup 15 ns
tEHWX Write Command hold 5 ns
tDVEH Write data setup 45 ns
tEHDX Write data hold 5 ns

tELEH tEHEL

CE

CS

ADR[Q-6]

W

tDVEH tEHDX

D[0-15]

3 IMS A100 Cascadable signal processor 31

Static read accesses to DOL and DOH registers

Certain applications require to read results from the IMS A100 at high speeds. To ensure full system per
formance it may be necessary to read results from the DOL and DOH registers using a continuous 'static'
access rather than using the normal clocked access.

During static access the CE Signal is held low continuously. Under this condition it is possible to monitor
either DOL or DOH continuously to observe new output words as they become available or alternatively to
switch between DOL and DOH without the restriction of having to sequence CEo

Notes

Symbol Parameter Min Max UnHs Notes

tAvov Address access time 75 ns 1
tCHOV Data input access time T+75 ns 2

tELOV CE access time 60 ns 3
tAxox Data hold after address change 0 ns
tCHOX Data hold after new data input T+O ns 2
tEHOX Data hold after end of read 0 ns

The address access time is specified for address transitions between decimal 74 (DOL register) and
decimal 75 (DOH register) only.

2 The parameter T describes the time taken from the input of a data word to that data word first
affecting the most significant word (MSW) output. This is the time at which the DOL and DOH
registers are updated.

The duration of T depends on the coefficient size selected and whether fast or normal output is
selected.

Coefficients Output mode T time
4 bit Fast 8 ClK cycles
8 bit 10 ClK cycles
12 bit 12 ClK cycles
16 bit 14 ClK cycles

4 bit Normal Not defined
8 bit 11 ClK cycles

12 bit 14 ClK cycles
16 bit 17 ClK cycles

N.B. The data value read from either DOL or DOH will change as new results are computed by the
device.

3 This parameter is the normal read access time for reading any register through the microprocessor
interface. In the special case of performing reads from only DOL and DOH any number of reads
from these registers can be made with CE held low continuously.

It is required that a static access (as described above) should commence like a normal clocked,
random, read access to either DOL or DOH. That is ADDRESS, CS and W should be established
with setup times to CE specified for a normal read access.

During a DOUDOH static access sequence accesses to locations other than DOL and DOH are
undefined.

32

GO

elK

AOR[Q-6] =~=-~~:-:::-:::---:--I-~'t~~:J-
tAVQV

0[0-15] ~---,---:-:=:---t--T-~t~C;HQ~X==-tcHOV

wJ

3 IMS A100 Cascadeable signal processor 33

Typical sequence - 8 bH coefficients, normal output

DIN b C
~ ________________ -J

OUTRDY

DOUT Previous MSW output
r---------------------~------------~

Notes

Note 3

CIN _______ ~ _____ X)(__

The minimum period between sampling the GO input is four clock cycles for 8 bit coefficients, see
the table below for the other cases.

2 After the minimum period described in note 1 has elapsed GO is sampled on every rising edge of
ClK until GO is high.

3 The delay from an output being initiated by GO to the output completing its previous output sequence
and starting the new output sequence is 8 clock cycles for 8 bit coefficients, see the table below for
the other cases.

4 The least significant word is available at the output across one complete ClK cycle for the 8 bit
coefficient, normal output case, see the table below for the other cases.

5 The most significant word is available for the minimum period described in note 4, but will be extended
by a clock cycle for each additional idle cycle inserted between data inputs.

Coefficients Min. Output Period Delay To Output Min. lSW Output Duration
note 1 note 3 notes 4 and 5

4 bit 2 ClK cycles 6 elK cycles Undefined, no normal output
8 bit 4 ClK cycles 8 elK cycles 1 ClK cycle
12 bit 6 ClK cycles 10 elK cycles 2 ClK cycles
16 bit 8 ClK cycles 12 elK cycles 3 ClK cycles

34

Typical sequence - 8 bit coefficients, fast output

OUTRDY

Notes

DOUT Previous MSW output
~--------------------~------------~

A1

Note 3

CIN _____________________ ~~'__ ___ ~>8

The minimum period between sampling the GO input is four clock cycles for 8 bit coefficients, see
the table below for the other cases.

2 After the minimum period described in note 1 has elapsed GO is sampled on every rising edge of
ClK until GO is high.

3 The delay from an output being initiated by GO to the output completing its previous output sequence
and starting the new output sequence is 8 clock cycles for 8 bit coefficients, see the table below for
the other cases.

Coefficients Min. Output Period Delay To Output
note 1 note 3

4 bit 2 ClK cycles 6 ClK cycles
8 bit 4 elK cycles 8 elK cycles
12 bit 6 elK cycles 10 elK cycles
16 bit 8 elK cycles 12 ClK cycles

3 IMS A100 Cascadable signal processor 35

Typical sequence - 4 bit coefficients

OUTRDY

Notes

DOUT Previous MSW output
~------------------~------~

Note 3

CIN __________________________ ~~ ____ ~~

The minimum period between sampling the GO input is two clock cycles for 4 bit coefficients, see
the table below for the other cases.

2 After the minimum period described in note 1 has elapsed GO is sampled on every rising edge of
ClK until GO is high.

3 The delay from an input being initiated by GO to the output completing its previous output sequence
and starting the new output sequence is 6 clock cycles for 4 bit coefficients, see the table below for
the other cases.

Coefficients Min. Output Period Delay To Output
note 1 note 3

4 bit 2 ClK cycles 6 ClK cycles
8 bit 4 ClK cycles 8 ClK cycles
12 bit 6 ClK cycles 1 0 ClK cycles
16 bit 8 ClK cycles 12 ClK cycles

36

Normal output timing - 8 bit coefficient case shown

Notes

Symbol Parameter Min. Max. Units Notes
tCHOV ClK high to DOUT valid delay 36 ns 3
tCHOV 25 ns 5
tCHOV 40 ns 4
tCHOX DOUT hold time after ClK high 2 ns

tOVRl DOUT to OUTRDY low lead 15 ns 3,4
tOVRl 10 ns 5
tRlOX DOUT hold time after OUTRDY low 10 ns 1
tovRH DOUT to OUTRDY high lead 15 ns 3,4
tovRH 10 ns 5
tRHOX DOUT hold time after OUTRDY high 10 ns 1,2
TIME1 lSW output duration 1 3 tCHCH 1
TlME2 MSW output duration 1 3 tCHCH 1,2
tOVCl CASIN setup time to ClK low 10 ns 3,5
tDVCl 14 ns 4
tCLDX CASIN hold time from ClK low 10 ns

This parameter is determined by the coefficient size in use. The minimum value given is correct for
8 bit coefficients. This parameter is extended by 1 (or 2) periods of elK if 12 (or 16) bit coefficients
are used. This mode of operation is not defined if 4 bit coefficients are used.

2 These parameters are extended by one tCHCH for each idle cycle inserted between data input
sequences.

3 IMS A1 00-G21 S, IMS A1 00-Q21 S, IMS A100-G21M, IMS A100-Q21M.

4 IMS A100-G17M.

5 IMS A100-G30S.

ClK

CIN ______ .J

DOUT lSW

tRlOX tOVRH tRHOX

OUTRDY

3 IMS A100 Cascadable signal processor 37

Fast output timing - 4 bit coefficient case shown

Notes

Symbol Parameter Min. Max. Units Notes

tcHOV ClK high to DOUT valid delay 36 ns 1,3

tCHOV 22 ns 1,5
tCHOV 40 ns 1,4

tCHOX DOUT hold time after ClK 2 ns 2

tOVRl DOUT to OUTRDY low lead 5 ns 1,6
tRlOX DOUT hold time after OUTRDY low 10 ns 6
tOVRH DOUT to OUTRDY high lead 5 ns 1,6

tRHOX DOUT hold time after OUTRDY high 10 ns 2,6
tovcH CASIN setup time to ClK high 10 ns 3,5

tOVCH 14 ns 4

tCHOX CASIN hold time to ClK high 0 ns

These parameters assume that each DOUT signal is loaded with a maximum of 15 pF.

2 tCHOX and tRHOX for the MSW are shown here for the case where 4 bit coefficients are being used.
In the other cases (8, 12 and 16 bit coefficients) the MSW is available for an additional 2, 4 or 6
ClK periods. In all cases the MSW will be available for an additional period of ClK for each idle
cycle inserted between data input sequences.

3 IMS A100-G21S, IMS A100-Q21S, IMS A1 00-G21 M, IMS A1 00-Q21 M.

4 IMS A100-G17M.

5 IMS A100-G30S.

6 The OUTRDY signal should not be used in this mode using the IMS A100-G30S variant at clock
frequencies above 20.8 MHz.

tCHOV tcHOV

DOUT

OUTRDY
----'

38

External GO and data Input timing

Notes

Symbol Parameter Min. Max. Units Notes
tGHCH GO setup time 10 ns
tCHGX GO hold time 5 ns
tOVCH DIN setup time 30 ns 1

tOVCH 17 ns 2

tCHDX DIN hold time 5 ns

IMS A1 00-G21 S. IMS A100-Q21S. IMS A1 00-G21 M. IMS A100-Q21M. IMS A100-G17M.

2 IMS A100-G30S.

elK

GO

-f-~-DIN _______ -J

3 IMS A100 Cascadable signal processor 39

Master generated GO

Notes

Symbol Parameter Min. Max. Units Notes

tEHGH Write to D1R to GO high delay 25 ns 1,4
tGHCH GO high before GO sampled 10 ns 2,4

tGLEL GO low to write to DIR 0 ns 4

tGLCH GO low before GO next sampled 10 ns 2,4

The maximum delay from a write to the D1R to GO going high is 2 * tCHCH + 50 ns.

2 This parameter assumes the capacitive load on GO is less than 20 pF. GO is specified so that one
master IMS A100 can drive three slave IMS A100s without buffering.

3 Accesses can be made through the external memory interface to any register other than DIR.

4 This mode should not be used with the IMS A 1 00-G30S variant at clock frequencies above 20.8
MHz.

Note 3

GO
---1------'1

elK

40

Bankswap timing

Notes

Symbol Parameter Min. Max. Units Notes

tEHBH ACR[O] set to BUSY high delay 55 ns 4

tCHBL BUSY hold after bankswap 50 ns 4

tCHEH ACR[O]=O hold after last input 20 ns 3,4

tEHCH ACR[0]=1 setup to next input 10 ns 3,4

The activity on CE shown is for writing ACR[0]=1. During the period Note 1 it may be possible to
access other registers (subject to their own access constraints).

2 For small tEHCH, BUSY may only occur for a short time or not occur at all.

3 If tCHEH or tEHCH is exceeded then bankswap may be synchronised to the previous or next input
cycle.

4 This mode should not be used with the IMS A100-G30S variant at clock frequencies
above 20.8 MHz.

Note 1

tEHCH

The bankswap timing diagram shows how successive data samples (A and B) can be processed by different
sets of coefficients by causing a bankswap to occur between the input of sample A and sample B.

The sequence of events is as follows:

TO No bankswap pending.

T1 GO sampled and found to be high, thus initiating input of data sample A.

T2 Bankswap requested by writing ACR[0]=1. If the minimum timing requirement, tCHEH, from T1 to T2 is
not met it is possible (but not guaranteed) that the bankswap requested at T2 will occur immediately
and thus affect the processing of data sample A.

T3 Bankswap occurs on the first rising edge of ClK upon which GO is sampled (without reference to
the state of GO). If the minimum timing requirement, tEHCH, from T2 to T3 is not met it is possible
(but not gU:3ranteed) that the bankswap requested at T2 will not occur at T3 but at the next sampling
of GO.

T4 This is the earliest time at which another bankswap can be requested.

3 IMS A100 Cascadable signal processor 41

Coefficient access timing

Symbol Parameter Min. Max. Units Notes
tEHCH End coefficient access before bankswap 0 ns
tCHEL Start coefficient access after bankswap 0 ns

Notes

During this period accesses may be made to registers other than the coefficient registers (subject
to their own access constraints).

CLK~
-
CE "' Note 1 /

T5 + T7
T6

If a bankswap (caused by setting either ACR[O)=1 or SCR[2)=1) occurs at the GO sampling point T6, then
no access should be made to the coefficient registers between T5 and T7.

42

3.7 PACKAGE SPECIFICATIONS

3.7.1 84 pin grid array package

1 2 3 4 5 6 7

A GO DIN DIN GND DIN DIN DIN
[0] [2] [5] [6] [9]

CIN GND VCC DIN DIN DIN DIN
[1] [1] [4] [8] [10] B

CIN CIN VCC ClK DIN DIN DIN
[2] [0] [3] [7] [11] C

,
CIN CIN CIN i" Index
[5] [4] [3] D

CIN GND CIN
[7] [6] IMS A100

E

84 pin grid array

CIN CIN CIN top view
[8] [9] [10] F

CIN ADR ADR
[11] [1] [3] G

ADR ADR
CE VCC D[2] D[6] D[9] [0] [5] H

ADR ADR
CS GND D[1] D[5] VCC [2] [6] J

ADR
W RESET D[O] D[3] D[4] D[7] [4] K

Figure 3.6 IMS A 100 pin configuration

Note

All VCC pins must be connected to the 5 Volt power supply.
All GND pins must be connected to ground.

8 9 10

DIN DIN DOUT
[12] [13] [1]

DIN VCC DOUT
[14] [3]

DIN DOUT DOUT
[15] [0] [5]

DOUT DOUT GND [2] [4]

DOUT DOUT DOUT
[6] [7] [8]

DOUT DOUT DOUT
[10] [11] [9]

BUSY VCC OUTRDY

D[13] D[14] ERROR

D[11] D[12] D[15]

GND D[8] D[10]

3 IMS A100 Cascadable signal processor

index

rr
~

AB

~ ~I I
I ..

Figure 3.7 84 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±O.OOS
C 2.4S6 ±0.278 0.097 ±0.011
D 4.S72 ±0.127 0.180 ±O.OOS
E 3.302 ±0.127 0.130 ±O.OOS
F 0.457 ±0.02S 0.018 ±0.001 Pin diameter
G 1.143 ±0.127 O.04S ±O.OOS Flange diameter
K 22.860 ±0.127 0.900 ±O.OOS
L 2.540 ±0.127 0.100 ±O.OOS
M 0.S08 0.020 Chamfer

Package weight is approximately 7.2 grams

Table 3.1 84 pin grid array package dimensions

Pin grid array thermal characteristics

Notes

Parameter
Junction to ambient thermal resistance

Measured at 400 linear ftlmin transverse air flow.

2 This parameter is sampled and not 100% tested.

43

44

3.7.2 84 pin quad ceramic package

Note

CE12
CS13
W 14

RESET 15
VCC 16
GN017
0[0] 18
0[1] 19
0[2] 20
0[3] 21
0[4] 22
0[5] 23
0[6] 24
0[7] 25

GN026
VCC27
0[8] 28
0[9] 29

0[10] 30
0[11] 31
0[12] 32

•

IMS A100
84 lead

quad cerpack
top view

Figure 3.8 IMS A100 pin configuration

All VCC pins must be connected to the 5 Volt power supply.
All GNO pins must be connected to ground.

74GNO
73VCC
72 GO
71 ClK
700IN[0]
690IN[1]
680IN[2]
67GNO
6601N[3]
650IN[4]
6401N[5]
6301N[6]
620IN[7]
61 0IN[8]
600IN[9]
5901N[10]
580IN[11]
5701N[12]
560IN[13]
550IN[14]
5401N[15]

3 IMS A100 Cascadable signal processor

l

o

\e C .. \

Figure 3.9 84 lead quad cerpack package dimensions

Milllmetres Inches
DIM NOM TOl NOM TOL Notes
A 38.100 ±0.508 1.500 ±0.020
B 26.924 ±0.305 1.060 ±0.012
C 20.574 ±0.203 0.810 ±0.008
0 19.558 ±0.254 0.770 ±0.010
E 0.508 0.020
F 1.270 ±0.051 0.050 ±0.002
G 2.489 ±0.305 0.098 ±0.012
H 0.635 ±0.076 0.025 ±0.003
J 1.143 ±0.102 0.045 ±0.004
K 3.099 0.122 Max.
l 27.940 1.100 Max.
M 0.178 ±0.025 0.007 ±0.001

Table 3.2 84 lead quad cerpack package dimensions

Quad cerpack thermal characteristics

Notes

Parameter
Junction to ambient thermal resistance

Measured at 400 linear ftlmin transverse air flow.

2 This parameter is sampled and not 100% tested.

Section through
package

45

46

3.8 MILITARY STANDARD PROGRAM *
The INMOS military program is designed to provide class B microcircuits in accordance with 1.2.1 of MIL-STD-
883, 'Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices'. The IMS A100M
is processed for general applications where component quality and reliability must conform to the guidelines
and objectives of military procurement. Suitability for use in specific applications should be determined using
the guidelines of MIL-STD-454.

Screening procedures are compliant with Method SOO4 and the provisions of paragraph 3.3 therein. Quality
conformance procedures are compliant with method SOOS using the alternate Group B provisions of paragraph
3.S.2. All electrical testing is performed to guarantee operation at -SS °C , +2S °C and +12S °C .

All INMOS military grade components are provided in hermetically sealed ceramic packages.

By specifying an INMOS military product, the user can be assured of receiving a product manufactured, tested
and inspected in compliance with MIL-STD-883 and one with superior performance for those applications
where quality and reliability are of the essence.

100 Percent MIL·5TD·883C Test Comment
Process Step Method Condition

Internal visual 2010 B
Stabilization bake 1008 C
Temperature cycle 1010 C
Constant acceleration 2001 D Y-1 axis
Seal test 1014 B
Seal test 1014 C
Visual inspection INMOS 89-1001
Pre burn-in electrical +2SoC data sheet
Burn-in 101S D
Post burn-in electrical +2SoC data sheet
PDA S%max
Final electrical + 12SoC data sheet
Final electrical -SsoC data sheet
External visual 2009
Group A SOOS 3.S.1 A1-A11
Group B SOOS 3.S.2
Group C SOOS MIL -STO-883C 1 .2.1 .b.17
Group D SOOS MIL -STO-883C 1 .2.1 .b.17

* See INMOS document 49-9047 'Military General Processing Specification' for full details.

3.9 ORDERING DETAILS

The following table indicates the designation of the IMS A100 variants.

INMOS designation Package Clock speed Military/commercial

IMS Ai 00-G21M CeramiC pin grid array 21 MHz military
IMS Ai 00-G21S Ceramic pin grid array 21 MHz commercial

IMS Ai 00-Q21 M Flatpack 21 MHz military
IMS A100-Q21S Flatpack 21 MHz commerCial
IMS A100-G17M Pin grid array 17 MHz military

IMS A100-G30S Pin grid array 30 MHz commercial

Chapter 4

AsynChronous Functions backend lookup
table

47

IMSA110
Image and Signal

Processing
Sub-system

Preliminary Data

Configuration and
control registers B 21x8-bit

Decode Update coefficient registers

logic 21 x S-bit
Current coefficient registers

I~ 256xB-bitdata I
transformation
lookup RAM J

PCRO ~
PCRl
PCR2 ~ MMB 3
ISCRI~

[J!§8J Q§fO ACR [E[]

1120 stage Programmable
shift register (PSRC)

1120 stage Programmable
shift register (PSRB)

1120 stage Programmable
shift register (PSRA)

Synchronous Functions

FEATURES
1-0/2-0 software configurable convolverlfilter
On-chip programmable line delays (0 -1120 stages)
8-bit data and 8-bit coefficient slice
21 multiply-and-accumulate stages
1-0 (21) or 2-D (3x7) convolution window
On-Chip post processor for data transformation
Fully cascadable in window size and accuracy
20 MHz data throughput (420 MOPs)
Signed/unsigned data and coefficients
Microprocessor interface
High speed CMOS implementation
TIL compatible
Single +5V ±10% Supply
Power dissipation < 2.0 Watts
100 pin ceramic PGA

72 TAN 141 02

7 stage
multiply-accumulate

arrayC

7 stage
multiply-accumulate

array B

APPLICATIONS

Backend
post-processing

unit
(normalisation,
saturation, and

data transformation)

Clock

R9Siii

1-0 and 2-D digital convolution and correlation
Real time image processing and enhancement
Edge and feature detection
Data transformation and histogram equalisation
Computer vision and robotics
Template matching
Pulse compression
1-0 or 2-D interpolation

June 1989

48

4.1 INTRODUCTION

The IMS A11 0 is a single-chip reconfigurable and cascadable subsystem suitable for many high speed image
and signal processing applications. Apart from its powerful multiply-accumulate capability (420 MOPs). the
strength of the IMS A 110 lies in its extensive programmable support for data conditioning and transformation.

4.2 DESCRIPTION

The IMS A 110 consists of a configurable array of multiply-accumulators, three programmable length 1120
stage shift registers, a versatile post-processing unit and a microprocessor interface for configuration and
control purposes. The comprehensive on-chip facilities make a single device capable of dealing with many
image processing operations.

Asynchronous Functions EJ 21x8-bit
Decode Update coefficient registers

logic 21 x 8-bit
Current coefficient registers

1120 stage Programmable
shift register (PSRC)

1120 stage Programmable
shift register (PSRB)

1120 stage Programmable

backend lookup
table

II 256x8-bit data
II transformation

lookup RAM

I USR I Q§[J

Configuration and
control registers

~PCRO]@] PCRl
PCR2 ~

[§QBJ E]Q[3
[EBJ0f[]

shift register (PSRA) Backend
post·processing

unit
(normalisation,
saturation, and

SynchronouS Functions data transformation)

Figure 4.1 IMS A110 users model

Clock
J!tiiSijj

The IMS A110 has five interfaces through which data can be transferred, figure 4.1. The microprocessor
interface allows access to the coefficient registers. the configuration and status registers, and the data trans
formation tables. The remaining four interfaces allow high speed data input and output to the IMS A 110 and
the cascading of several devices. A typical IMS A 110 system is shown in figure 4.3. If N devices are used in
the cascade, they can be configured, entirely under software control, as a 21 N stage 1-0 transversal filter or
as a 7X by 3Y 2-D window, where X and Yare any integers satisfying N ~ XY. For example 4 cascaded
devices can be software configured as: an 84-stage 1-0 filter, a 7 by 122-0 window. a 28 by 3 2-D window.
or a 14 by 6 2-D window.

The final output of the chip is 22 bits wide in twos complement format.

Figure 4.2 shows the distribution of the delays inside the part.

4 IMS A110 Image and signal processing sub-system

PSRln

1 D

8

PSRout

Programmable PSRC
shift register

o to 1120 stages

8

Programmable PSRB
shift register

o to 1120 stages

8

Programmable PSRA
shift register

o to 1120 stages

8

CRlc coefficient registers 7x8 bits

r-----------------~D~~--_1~----~

CRIb coefficient registers 7x8 bits

22
r-----------------~D~~---.------~

CRla coefficient registers 7x8 bits

,..------lDI--------,"--_-----'

CIN
cascade input

13

Backend processing unit

including cascade data path,
normalization, saturation units

and
data transformation look-up tables

See figure 4.4 for detail

22

COUT
cascade output

Figure 4.2 Synchronous functions of the IMS A 110

49

50

The latency between PSRin and COUT is dependent upon the length of PSRc. For example, with PSRc set
to 0, and all coefficients set to zero except CR0c[6] (so the data passes through all MAC stages), the COUT
bus will correspond to the PSRin bus delayed by 47 clock cycles.

The latency between PSRin and PSRout is 5 cycles PLUS the lengths of PSRc, PSRb and PSRa. If the shift
registers are bypassed by setting SCR[1] to 1 then PSRout will be PSRin delayed by 2 clock cycles.

The Latency between the cascade input (CIN) and cascade output (COUT) is 6 cycles. This Is shown lumped
at the cascade input and cascade output pads in figure 4.2. Figure 4.4 gives details of the data pipelining
through the backend datapath.

Input PSRin PSRout

IMS A110

Cascade Cascade
In Out

Clock

General purpose
microprocessor

PSRout

IMS A110

Cascade
Out

Figure 4.3 A typical IMS A 11 0 based system

4.3 PROGRAMMABLE SHIFT REGISTERS

PSRout

IMS A110
Cascade Output

Out

The three shift registers are 8 bits wide and are each programmable from 0 up to 1120 clock cycles in length.
The lengths are programmed into control registers via the microprocessor interface.

Data is clocked into the device via the PSRin bus (Programmable Shift Register in) at a maximum rate of
20 MHz. On-chip, the input data is then fed through a pipeline of the three shift registers. The output of the
first shift register passes to the first 7-stage mac array and also to the input of the second shift register. Having
passed through all three shift registers the data is output on the PSRout bus and can be used for cascading.
Alternatively, as shown in figure 4.2 the shift registers can be bypassed and the input data transferred to
the PSRout bus after two delay stages. This mode can be controlled via the on-chip control registers and
significantly simplifies software configuration of a cascade arrangement.

4.4 MAC ARRAY

As shown in figure 4.2, the processing core of the device consists of a configurable array of multiply
accumulators (macs). The mac array consists of three 7-stage transversal filters which can be configured
either as a 21-stage linear pipeline or as a 3 x 7 two-dimensional window. The input data is 8 bits wide and
is fed to the mac array via three programmable shift registers.

The output of each shift register is supplied as input to one of the three 7-stage transversal filters. For each
of the three transversal filters the associated input data is fed simultaneously to all 7 mac stages. At each
stage the input sample is multiplied by a coefficient stored in memory, and added to the output of the previous
stage delayed by one clock cycle. The output of each 7-stage mac is fed, via a delay stage, to the first stage
in the next transversal filter.

4 IMS A110 Image and signal processing sub-system 51

The coefficient word width in the mac array is 8 bits wide. Two banks of coefficients are provided. At any
instant one set of coefficients is in use within the mac array. The set in use is defined by the state of the
'Current Bank' bit, ACR[O]. The other set can be altered via the microprocessor interface. Once a new
set of coefficients has been loaded, the activities of the two coefficient banks can be interchanged without
interrupting the flow of data. Alternatively, by setting the 'continous bank swap' bit SCR[O], the two coefficient
banks are swapped automatically after each data input. In this case the 'Current Bank' bit only determines
which bank is used first. Both data input and coefficients can be programmed independently to support twos
complement or positive unsigned formats allowing multiple devices to be used as a 'slice' in higher accuracy
systems.

Within the mac array no truncation or rounding is performed on the partial products. The mac array output
is fed to the backend post-processing unit which is responsible for data transformation / normalisation and
cascading function.

4.5 BACKEND POST-PROCESSOR - hardware description

The Backend Post-Processor consists of four major blocks: The input block (Shifter, cascade adder and
rectifier unit), a statistics monitor, the data conditioning unit which itself consists of the data transformation
unit and the data normaliser, and the output block (output adder and multiplexers).

A detailed diagram of the Backend Post-Processor is given in figure 4.4

All operations performed in the backend are on twos complement signed numbers unless otherwise stated.

4.5.1 Shifter, Cascade Adder and RectHier

Data from the mac array enters the datapath via a programmable shifter. The shifter is capable of arithmetic
right shifts (divides) of up to 8 bits with rounding, and left shifts of up to 8 bits. The size of this shift is
controlled by the status bits BCRO[5-1]. The output of the shifter passes into the cascade adder where it is
added, along with any rounding generated by the shifter, to either the cascade input bus (BCRO[O] = 0), or a
zero value (BCR[O] = 1).

If the result of this 22-bit signed addition is greater than 221 - 1, (209715110) then the adder will generate a
positive overflow. Likewise, if it is less than _221, (-209715210) a negative overflow will be generated. In
other words, a positive overflow is generated if the result of adding two positive numbers (both MSBs = 0) is
negative (resulting MSB = 1). Conversely, a negative overflow is generated if the result of adding two negative
numbers (both MSBs = 1) is positive (MSB = 0). Adding two numbers of different signs cannot cause the
adder to overflow.

The output of the cascade adder can optionally be full-wave or half wave rectified under the control of
BCRO[7,6]. The output of the rectifier passes onto the X bus. Overflows on the X bus are signalled to both
the statistics monitor and the data conditioner.

4.5.2 Statistics Monitor

The statistics monitor allows the user to set up watch dogs on the dynamics of the data on the X bus. It
cannot affect the data on the X bus. The statistiCS gathered provide information on the system behaviour
which can be used to ensure correct data scaling and normalisation. The information is also useful in the
control of the overall system's analogue frontend.

Hardware/Functions

The statistics monitor consists of a 24 bit Min/Max register (MMR), a 24 bit MinIMax Buffer (MMB), a 22 bit
Over/UnderShoot Counter (OUC) , a 22 bit Over/UnderShoot Buffer (OUB) and a 22 bit twos complement
comparator.

52

It can perform one of four functions :

• MAX REGISTER : Capture the maximum value of data and store it in the MMR.

• MIN REGISTER: Capture the minimum value of data and store it in the MMR.

• OVERSHOOT COUNTER : Increment the OUC each time the data value exceeds the preset value
in the MMR.

• UNDERSHOOT COUNTER : Increment the OUC each time the data value is less than the preset
value in the MMR.

The mode of operation is determined by the Max/Min switch BCR1[O], and the Static Threshold switch
BCR1[1].

Operation

Each sample on the X bus is compared against the threshold stored in the MMR.

If the unit is configured as an overshoot counter and the data on the X bus exceeds the threshold in the
MMR, then the counter (OUC) is incremented. If the data is less than or equal to the threshold, then no action
will occur. The OUC is unsigned and will not wrap around. Thus it behaves as a saturating counter with a
maximum value of 222 - 1, (3FFFFF16, 419430310). If there is a positive overflow on the X bus, then the
counter will increment since the correct X bus value must exceed the threshold. Similarly a negative overflow
on the X bus will not increment the counter since the correct X bus value cannot exceed the preset threshold.

If the unit is configured as an undershoot counter then the counter will be incremented whenever the sample
is less than the preset threshold. In this case a negative overflow will cause the counter to increment.

If the unit is configured as a max register and the X bus exceeds the current threshold in the MMR, then the
value on the Xbus is loaded into the MMR and becomes the new threshold and the counter is incremented.
If the threshold is not exceeded then no action occurs. Thus the value in the MMR is the maximum value
that has appeared on the X bus, and the value in the OUC has been incremented by the number of times
that the threshold has been updated.

If the unit is configured as a min register then the threshold is updated and the counter incremented whenever
the X bus is less than the current threshold.

When operating as a minImax register, overflows on the X bus can never cause the threshold to be updated
as this would load an erroneous value into the MMR.

Overflows

Bit 22 of the MMR records the history of positive overflows on the X bus. Similarly bit 23 records the
history of negative overflows. These bits are set to zero by writing to the MMR copy location and are active
independently of whether the Static Threshold bit is set. When the MMR is read, then bits 22 and 23 are
interpreted as follows :

bit 23 bit 22 condition

0 0 No overflOW has occured

0 1 One or more positive overflows have occured
1 0 One or more negative overflows have occured
1 1 Both postive and negative overflows have occured

4 IMS A110 Image and signal processing sub-system 53

Access to registers

The MMR and QUC are accessed, through the memory interface, only via their associated buffers (MMB and
QUB respectively) and are not accessible directly. In order to load the MMR with a value, the host must first
write the value to the MMB and then transfer the data from the MMB to the MMR by performing a WRITE to
the copy MMR location, 08416. To read the MMR the host must first perform a READ cycle from location
OB416 (which transfers the contents of the MMR into the MMB) and then read the MMB. The QUB is accessed
in the same way except that the dummy writes and reads are done to and from location OBC16.

Copies from MMR to MMB and QUC to QUB (reads) can be performed at any time giving a snapshot of the
contents of the MMR and QUC respectively. Copies from MMB to MMR and QUB to QUC (writes) can also
be performed at any time allowing the threshold and counter to be updated dynamically.

4.5.3 Data transformation unit

The data transformation unit consists of a prescalar, an under/over select detector, a lookup table and a
byte selector. It can be used in isolation to perform abitrary data mappings, or in conjunction with the data
normaliser to implement sophisticated dynamic range compression functions.

Prescalar

This allows an 8-bit field anywhere within the 22-bit X bus to be selected as the address to the LUT. This is
performed by right shifting the X bus so that the required 8 bits are at the least significant end. The amount
of right shift is programmed in BCR2[4-0] and can have a value from 0 to 16.

Over/under select detector

This unit monitors whether the amount of right shift performed by the prescalar is sufficient to include all
significant bits in, and maintain the sign of, the selected 8 bit field (Le. an over or under select is generated
if the most significant bit of the selected 8 bit field differs from any subsequent bit right up to and including
the most significant bit of the right shifted X bus). This will be an overselect if the X bus is positive (Bit 21 =
0), and an underselect if the X bus is negative (Bit 21 = 1).

Prescalar under/over selects and X bus positive/negative overflows are passed to the LUT along with the
selected 8 bit address field.

Lookup table (LUT) and byte select

The LUT consists of 64 words, 32 bits wide plus two special 32 bit locations called the upper and lower
saturation registers (USR and LSR respectively). Thus the LUT is actually 66 words by 32 bits. The 32 bit
output of the LUT is called the Y bus.

The most significant 6 bits of the 8 bit address field are used to address one of 64 words in the LUT. The
least significant pair of bits in the 8 bit field are used to control a byte select on the output. Thus in addition to
operating as a 64+2 word look up table of 32 bit words, it can be used as an 8 bit, 256+2 byte LUT providing
8bit - 8bit transformations.

Positive overflows on the X bus, and over selects in the prescalar cause the LUT to access the USR overriding
the address given by the prescalar. Likewise negative overflows and under selects cause the LUT to access
the LSR. Any sort of overflow on the X bus or prescalar will cause the byte select control to be overridden
and the most significant byte (byte 3) of the appropriate Saturation Register will appear on the byte wide
output of the data transformation unit.

If there are simultaneous overflows on the X bus and in the prescalar then the overflow from the X bus takes
priority.

The USR and LSR can thus be used to model the saturating behaviour of analogue circuits instead of the usual
'Wrap around' encountered in digital systems. Alternatively the USR and LSR could signal error conditions
within the backend directly on the output pins via one of the output multiplexers.

54

Clock
cycle

1

2

3

4

5

6

Cascade input pads

221"
From MAC array + 22

'" MUX /~ I Shifter [8:0] I
22{ 22{ 1

+ + Rounding

f Cascade Adder

negative overflow 1 22

positive overflow 1

I Rectifier I
DATA TRANSFORMATION 22 22

UNIT • STATISTICS MONITOR

Prescaler Min/max buffer I

• 22 1
-l Over/under select Min/max register

~ ~ """"
8 22 t ! t'-1 6 VJ

+ :;,

'I -
.0

USR
x

Comparator GT/l T f- Control

lSR

Over/undershoot count

22 !
64x32 bit RAM Over/undershoot buffer I

32 Y bus

~
DATA NORMAUSER

[26:22] 5

[21:0J Shifter -2 to 14 h.
32

fL::'
Zero data J

L.{. Byte select ~
BCR

T 22 1
8

22 Rounding
22

I Output adder I-
22

8t
[21:14] 8 8 [7:0]

8t • 6 •
""

MUX / [13:8] ""
MUX /

8{ [21:14J [7:0) 8{

22

Cascade output pads

Figure 4.4 Detailed block diagram of the Backend Post-processing Unit

4 IMS A110 Image and signal processing sub-system 55

The LUT is loaded via the memory interface. The addressing for the LUT corresponds to the 8 bit field,
assuming that the byte selector is being used. In order to access the lookup table, USR and LSR from
the microprocessor interface, the LUT Access control bit ACR[1] must be set to zero. This will force the
Y bus to zero and the normaliser to be controlled by BCR3[7-3] regardless of the setting of the dynamic
normalisation bit, BCR3[2]. The LUT, USR and LSR can then be loaded with any arbitrary value via the
microprocessor interface. Setting the LUT access control bit to one will then allow the LUT to be used in the
data transformation unit.

4.5.4 Data normaliser

This unit consists of a shifter capable of right shifts of up to 14 bits and left shifts up to 2 bits, followed by a
zero data unit and an adder. The shifter is controllable from one of two 5 bit sources: control bits BCR3[7-3]
or bits 26 to 22 of the Y bus. The control bit Enable Dynamic Normalisation (BCR3[2]) determines which
source is in control of the normaliser. If this bit is set to zero the normaliser is controlled by BCR3[7-3].
The five bit field is a twos complement number between 14 and -2. This indicates the amount of right shift
(negative meaning left shift). Any value outside this range causes the output of the shifter to be forced to
zero. The output of the shifter, with any rounding generated by the shifter, goes into the output adder.

4.5.5 Output adder

This is a 22 bit adder with one of its inputs coming from the data normaliser. The other input is either bits
21 to 0 of the Y bus from the data transformation unit, or set to zero under the control of BCR3[1]. Note that
any overflow occuring due to left shifting in the normaliser or the subsequent addition in the output adder is
not detected by the IMS A110.

4.5.6 Output multiplexers

These two multiplexers allow the currently selected byte from the LUT to be optionally selected to drive either
the most significant byte and/or the least significant byte of the Cascade Output pins. This is controlled by
the state of BCR2[5] and BCR2[6]. Enabling either of these multiplexers overrides the state of the Cascade
Output pins only on the relavent 8 pins. The remaining pins will continue to represent the output of the output
adder.

4.6 BACKEND POST-PROCESSOR - Modes Of Operation

The backend post-processing unit is capable of performing many functions including data scaling, transfor
mation, dynamic range compression and histogram equalisation.

4.6.1 DefauH mode (after Reset)

At power up or after reset the state of the backend post-processor is such that data from the MAC array and
the cascade input are added and pass straight through the datapath unaffected.

The default mode for the statistiCS monitor is min register although the values in the OUB, OUC, MMR and
MMB will be undefined. Likewise the contents of the LUT, USR and LSR will be undefined, the LUT Access
control bit will be zero forcing the Y bus to zero and allowing the microprocessor interface to access the LUT.
USR and LSR.

Note that the cascade output pins and the PSR output pins are tristated.

4.6.2 Cascade adder / MAC data scalar

These units allow the cascading of IMS A 11 Os where the output of the MAC array may be scaled before it
is added to the cascade input data. The shifter can also be used for combining devices to obtain extended
precision in input data, coefficient word length or both.

The ability to zero the cascade input provides a simple means of controlling the number of 'active' devices
cascaded as well as a means of debugging large systems.

56

4.6.3 Rectification

Rectification, the removal of negative results, Is needed in several image processing functions.

For example, edge detection using a Sobel operator usually requires full wave rectification due to the different
signs obtained at differing edge transitions. Edge detection using a Laplacian operator produces a change
of sign at an edge. In this case, removing negative numbers using half wave rectification can produce better
results as full wave rectification can lead to some blurring of the edge transition.

4.6.4 Static scaling

This can be performed using one of two units: the MAC array output shifter (as above), and the data
normaliser. In the second case the data undergoes a simple scaling operation (with rounding) within the
normaliser. The normaliser can be used to scale (multiply) the data by the factors 0,1/16384,118192,1/4096
... , 112, 1, 2, 4. By controlling the normaliser from the control bits BCR3[7-3], this provides a means for
simple scaling of the data before it is output. Setting BCR3[1] and BCR2[6,7] to zero ensures that the data
transformation unit takes no part in the operation and the output of the normaliser is passed unchanged to
the output pins.

4.6.5 Dynamic scaling

In this mode the scaling is controlled by the data itself. I.e. the scalar is controlled from the LUT (Ybus
bits 26-22) by setting BCR3[2] to one, the Ybus input to the output adder being set to zero either by setting
BCR3[1] to zero or programming the LUT accordingly. This mode can provide a discontinuous non-linear
transformation.

4.6.6 Simple transformation

This mode allows the user to apply arbitrary transformations to the data before it is output. Here the LUT is
treated as 256 by 8. The 8 bit field selected by the LUT prescalar is used to address a byte in the LUT which
is passed directly to the output pins via one of the output multiplexers. Ybus control of the data normaliser is
disabled, BCR3[7-3] are set out of range so as to zero the normaliser output and the Ybus input to the output
adder is set to zero by BCR3[1]. One (or both) of the output multiplexers are enabled and so the addressed
byte from the LUT passes straight to the cascade output pads. Only the most significant byte of the USR and
LSR are applicable in this mode as overflows override the byte select control and force it to select the most
significant byte.

4.6.7 Dynamic normalisation

In this mode the normaliser and transformation units in the output conditioner are used together to perform
sophisticated non-linear dynamic range compression and transformations. As in the simple transformation
case the prescalar selects an 8 bit field anywhere within the X bus. The most significant 6 bits, and overflows,
are fed as an address to the LUT. In this case the lookup table is treated as 64+2 by 32. Bits 26 to 22 of the
Y bus are used to control the normaliser block so that the input to the normaliser is dynamically scaled. The
output of the normaliser is then added in the output adder to the least significant 22 bits of the Y bus (Note
that only 28 bits of the 32 bit Y bus are actually used).

Thus the data is scaled, rounded, and then an offset is added to the scaled result. Each operation can be
viewed as

output = input x Beale + off Bet

Where scale and offset are both programmable functions of input. One way to view this operation is to
consider that the original data range is divided into 64 equal sized levels and in each level a different scale
and offset is applied. The scale and offset stored in the USR and LSR would be chosen to give the desired
behaviour under overflow conditions.

Note that in the case of cascade adder overflows, the data on the X bus is invalid, so the scale here would
usually be set out of range so as to zero the normaliser output. The offsets in the USR and LSR would then
provide the cascade output directly.

4 IMS A110 Image and signal processing sub-system 57

Note also that if the 5 bit scale field in the LUT is programmed so that the normaliser always zeros the
data, then the output will correspond to the 22 bit offset field in the LUT. This can be viewed as a coarse
transformation with wide dynamic range which is useful for applications such as image contour emphasis and
equalisation.

31 24 23 16 15 8 7 0
BYTE 3 BYTE 2 BYTE 1 BYTE 0

I
scale if offset if BCR3 (0)=1 BCR3 (2)=1

Figure 4.5 Bit format of data stored in LUT, USR and LSR

4.7 GLOSSARY

This section defines the meaning of terms used elsewhere in this data sheet.

Arithmetic Shift

For a right shift, the most significant bit is always copied into the most significant end of the result. For
example shifting right by 2:

01000101 -+ 00010001

11000101 -+ 11110001

For a left shift, the least significant bit will become zero.

Note that left shifting can cause overflows and these are not detected in the MAC output scalar or the data
normaliser.

Rounding

All rounding done within the IMS A110 is equivalent to truncating after adding 1/2 LSB. (Rounding is always
applied in the positive direction). For example for 8 bit twos complement numbers undergoing a two bit right
shift:

00000011 -+ 00000000 + 1 = 00000001
00000010 -+ 00000000 + 1 = 00000001
1111111 0 -+ 11111111 + 1 = 00000000
00000001 -+ 00000000
11111101 -+ 11111111

Left shifts do not generate rounding.

Transversal Filter

(rounded up)
(rounded up)
(rounded up)
(no rounding)
(no rounding)

A transversal filter is a calculation consisting of the sum of products of successive points of input data. For
input data Xi, Xi+1," ., and a set of coefficients, cs, C5, . .. , the result, Y is:

s
Y = LCi X X6-i

i=O

58

Two's Complement

Two's complement numbers allow both positive and negative numbers. For example in 8 bit numbers the
most positive number is 127, the most negative is -128:

Rectification

two's complement
10000000
10000001
11111111
00000000
00000001
01111111

decimal
-128
-127
-1
o
1

127

Rectification is a method of removing negative numbers. There are two methods: Full wave and Half wave. In
either case all positive numbers and zero are unaffected. In Full wave rectification, any negative numbers are
negated (Le. multiplied by -1) so that they become positive. In Half wave rectification, all negative numbers
are replaced by zero.

Dynamic Range Compression

When Dynamic is used in this context, it is to indicate a change of behaviour for each data point. For example,
a dynamic shift is one where the size of the shift may change on each successive clock cycle. Dynamic
range compression is range compression making use of an offset and shift, which can change depending
on each data point. This allows the essential non-linear transformations required in image processing to be
implemented on the IMS A110.

Bit Fields

Bits, words and addresses in this data sheet are little-endian; The lowest order byte of a multiple byte word
is referred to as byte 0, and is addressed in the same way. Similarly, the least significant bit of any bit field
is that with the lowest bit number. For example, 'bits 26-22' refers to a 5 bit field where bit 22 is treated as
the least significant, and bit 26 as the most significant.

Latency

Within the IMS A 110 the latency is the number of clock cycles from an input to its corresponding output. For
instance, with the programmable shift registers bypassed by setting SCR[1] to 1 , the latency from PSRin to
PSRout will be 2 as shown in figure 4.6.

2 3

PSRout

t
PSRln latched

Figure 4.6

4 IMS A110 Image and signal processing sub-system 59

4.8 PIN DESIGNATIONS

System services

Pin In/out Function
VCC,GNO Power supply and return
ClK in Input clock

RESET in System reset

Synchronous Input/output

Pin In/out Function

PSRin[7-Q] in Programmable shift register input
PSRout[7·0] out Programmable shift register output
Cln[21·0] in Cascade input port
Cout[21-Q] out Cascade output port

Asynchronous Input/output

Pin In/out Function

E1,E2 in Memory interface enable signals

W in Memory interface write enable
ADR[8-0] in Memory interface adress bus
0[7·0] in/out Memory interface data bus

Notes

Signal names are shown with an overbar if they are active low, otherwise they are active high. Pinout details
are given in section 4.12.

4.8.1 System services

System services include all the necessary logic to start up and maintain the IMS A 110.

Power

Power is supplied to the device via the VCC and GNO pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100nF low inductance (e.g. ceramic) capacitor between VCC and GNO.

ClK

The clock signal ClK controls the timing of input and the output on the four dedicated interfaces, and controls
the progress of data through the shift registers, multiply-accumulate array and post-processing unit. The A11 0
is fully static so the clock can be slowed down or stopped in either state without corrupting data.

If this pin is taken low for at least 2 clock cycles, the control logic within the IMS A11 0 will be reset and all
of the control and configuration registers will be initialised to their default values. All other register, memory
locations, datapath registers and shift registers will not be reset by this signal.

A reset is initiated automatically when power is first applied to the device. This reset will be completed once
four cycles of ClK have occured after VCC is valid.

60

4.8.2 Synchronous services

PSRln[7-0]

This 8-bit wide bus supplies input data to the device. The input data enters the first of the three shift registers
in the chain. The timing of this input is controlled by the ClK signal. The data on the PSRln port is sampled
on the rising edge of the clock. In a cascade arrangement, this bu~ will be connected to the PSRout port of
the previous device. In such an arrangement the PSRin port on the first device will be the input to the overall
cascaded system.

PSRout[7-D]

This bus outputs the data from the last programmable shift register in the chain. The data on this bus is
synchronously clocked by the rising edge of ClK. In a cascade arrangement this port will be connected to
the PSRln port of the next device. At power up, or after a reset, the PSRout pins are tristated. They are
enabled by SCR[5].

Cln[21-D]

The Cascade Input port allows IMS A 11 Os to be cascaded. It also can be used for combining an external
signal (e.g. a reference image or an offset) with the processed result. In a cascade arrangement, this bus
will be connected to the Cascade Output of the previous device. The data on the Cln bus is sampled on the
rising edge of ClK.

Cout[21-0J

This bus outputs the processed result from the IMS A 110 and can also be used for cascading. The 22-bit
result is synchronously clocked by the rising edge of ClK. In a typical cascaded system this bus will be
connected to the Cascade Input port of the next device. On the last device in the cascade, this bus will be
the output of the overall system. At power up, or after a reset, the Cout pins are tristated. They are enabled
by SCR[4].

4.8.3 Asynchronous Input/output

E1, E2

If both of these signals are low, then the microprocessor interface is enabled. The operation of these enable
signals is very similar to those found on static RAMs. When either of these signals are high the Write Enable
and the address inputs are ignored and the microprocessor interface Data signals are high impedance. When
both Enable signals are low a read or write access is made to registers or the RAMs within the IMS A11 O.
Access to the microprocessor interface can occur asynchronously to the synchronous pins (PSRin, PSRout,
Cin, Cout) of the device.

W

Write Enable indicates whether the access to the IMS A 110 memory interface is to be a read or a write. If W
is low a write access is indicated.

AOR[B-O]

The nine bit binary value applied to the address inputs of the IMS A 110 indicates which register or RAM
location within the device is to be accessed.

0[7-0]

During a write to the microprocessor interface an 8-bit word is applied to the Data pins which is written to the
appropriate location. During a read cycle the contents of the location accessed are placed on the Data pins.
When either of the Enables are high the Data pins are high impedance.

4 IMS A110 Image and signal processing sub-system 61

4.9 REGISTER DESCRIPTION

4.9.1 Memory map

Within the IMS A 110 addresses are fully decoded. Reading from locations not defined in the memory map
will produce zero data. Data written to such locations is ignored. This allows the part to be fully programmed
using a ROM with an address incremeter. In this case, for future compatibility, zero should be written to all
undefined locations.

Register Address Address Function
decimal hex

CROa 0-6 000-006 Coefficient Registers Bank Oa
CROb 16-22 010-016 Coefficient Registers Bank Ob
CROc 32-38 020-026 Coefficient Registers Bank Oc
CR1a 64-70 040-046 Coefficient Registers Bank 1 a
CR1b 8Q-86 050-056 Coefficient Registers Bank 1 b
CR1c 96-102 060-066 Coefficient Registers Bank 1 c
PCRA 128-129 080-081 PSRA Control Register
PCRB 130-131 082-083 PSRB Control Register
PCRC 132-133 084-085 PSRC Control Register
SCR 144 090 Static Control Register

ACR 146 092 Active Control Register
BCR 160-163 OAO-OA3 Backend Configuration Register
MMB 176-178 OBO-OB2 Maximum/Minimum Buffer
CMM 180 084 Copy MMR
OUB 184-186 OBB-oBA Overshoot/Undershoot Buffer
COU 188 OBC Copy OUC
TCR 208 000 Test Control Register
USR 248-251 OF8-oFB Upper Saturation Register
LSR 252-255 OFC-QFF Lower Saturation Register
LUT 256-511 100-1FF Look-up Table

4.9.2 Registers

CRoa Coefficient registers bank oa

These seven 8-bit locations contain coefficients which can be used by the third, of the three, 7-stage mac
arrays. CROa(O) (address #000) corresponds to the coefficient register of this mac array nearest to its output.
Similarly CROa(6) (address #006) corresponds to the coefficient register of this mac nearest to its input. These
Coefficient registers can be written to provided that the other register bank is in use. Whether the coefficient
written is signed or unsigned is determined by the 'Unsigned Coefficient' bit SCR[3]. Once a value is written
to a coefficient register, its value can be read back from an internal duplicate register. These registers will
be used by the mac array, when ACR[O], 'Current Bank' is set to zero. Writing to these Coefficient Registers
while in use will result in an undefined operation of the mac array.

CROb Coefficient registers bank Ob

These seven 8-bit locations contain coefficients which can be used by the second, of the three, 7-stage mac
arrays in the chain. CROb(O) (address #010) corresponds to the coefficient register of this mac array nearest
to its output. Similarly CROb(6) (address #016) corresponds to to the coefficient register of this mac nearest
to its input. Their behaviour is otherwise identical to CROa.

62

Addre ••

(Hex)

1FF

100
OFC-OFF

OFS-OFB
000

OBC
OBS-OBA

084
OBO-OB2

OA3

0A2

OA1

OAD

092

090

OS5

084
OS3

OS2

OS1

OSO

066

060
056

050
046

040
026

020
016

010
006

000

Name

LUT

LSR

USR
TCR

COU
OUB

CMM

MMB
BCR3

BCR2

BCR1

BCRO

ACR

SCR

PCRC

PCRC

PCRB

PCRB

PCRA

PCRA

CR1c

CR1b

CR1a

CROc

CROb

CROa

7 6

0 LS
output
byte

0 0

RJII Half
Wave Wave

0 0

0 0

0 0

0 0

0 0

bit
5 4 3 2 1 0

Look Up Table

Lower Saturation Register
Upper Saturation Register

Copy OverlUnderShoot Buffer
Over/UnderShoot Buffer

Copy MinIMax Buffer
MinIMax Buffer

Normaliser Control Dynamic LUT 0
normali- to output
sation adder

MS Look Up Prescaler
output
byte

0 0 0 0 Static Greater
threshold Than

MAC Output Scaler Zero
Cascade

0 0 0 0 Backend Current
LUT Bank
Access

PSR Out Cascade Unsigned Unsigned Bypass Cont
Enable Enable Coef Data PSRs Swap
0 0 0 Shift Length (Upper Bits)

Shift Length (Lower Bits)

0 0 0 Shift Length (Upper Bits)

Shift Length (Lower Bits)

0 0 0 Shift Length (Upper Bits)

Shift Length (Lower Bits)

Bank 1 Coefficient Register

Bank 1 Coefficient Register

Bank 1 Coefficient Register

Bank 0 Coefficient Register

Bank 0 Coefficient Register

Bank 0 Coefficient Register

Figure 4.71MS A110 memory map

4 IMS A110 Image and signal processing sub-system 63

CROc Coefficient registers bank Oc

These seven 8-bit locations contain coefficients which can be used by the first, of the three, 7-stage mac
arrays in the chain. CROc(O) (address #020) corresponds to the coefficient register of this mac array nearest
to its output. Similarly CROc(6) (address #026) corresponds to to the coefficient register of this mac nearest
to its input. Their behaviour is otherwise identical to CROa.

CR1a Coefficient registers bank 1a

These seven 8-bit locations contain coefficients which can be used by the third, of the three, 7-stage mac
arrays in the chain. CR1a(0) (address #040) corresponds to the coefficient register of this mac array nearest
to its output. Similarly CR1 a(6) (address #046) corresponds to to the coefficient register of this mac nearest
to its input. These registers will be used provided that ACR[O], 'Current Bank' is set to one, or continuous
bank swap mode is in operation (SCR[O] set to one) .•.

CR1b Coefficient registers bank 1b

These seven 8-bit locations contain coeffiCients which can be used by the second, of the three, 7-stage mac
arrays in the chain. CR1 b(O) (address #050) corresponds to the coefficient register of this mac array nearest
to its output. Similarly CR1 b(6) (address #056) corresponds to to the coefficient register of this mac nearest
to its input. Their behaviour is otherwise identical to CR1 a.

CR1c Coefficient registers bank 1c

These seven 8-bit locations contain coefficients which can be used by the second, of the three, 7-stage mac
arrays in the chain. CR1C(0) (address #060) corresponds to the coefficient register of this mac array nearest
to its output. Similarly CR1c(6) (address #066) corresponds to to the coefficient register of this mac nearest
to its input. Their behaviour is otherwise identical to CR1 a.

PCRA PSRA Control register

This is a 16-bit register, with least significant byte at location #080, and is used to set up the length of the last
shift register in the chain. Programmed lengths outside the range 0 to 1120 will cause undefined behaviour
of the shift register.

PCRB PSRB Control register

This is a 16-bit register, with least significant byte at location #082, and is used to set up the length of the
second shift register in the chain. Programmed lengths outside the range 0 to 1120 will cause undefined
behaviour of the shift register.

PCRC PSRC Control register

This is a 16-bit register, with least significant byte at location #084, and is used to set up the length of the first
shift register in the chain. Programmed lengths outside the range 0 to 1120 will cause undefined behaviour
of the shift register.

SCR Static control register

The Static Control Register contains the control bits which set up parts of the IMS A110 which are likely to
not need reconfiguration during processing. The contents of this register are not affected by the IMS A110
and can be read at any time. Modifying the Static Control register during processing will result in undefined
behaviour. Normal operation will start to occur between 0 and 3 clock cycles after the completion of the write
cycle.

ACR Active control register

The Active Control Register contains status and control bits which are likely to be accessed during normal
operation of the IMS A 110.

64

BCR Backend configuration register

The Backend Configuration Registers consist of four byte-wide registers BCRO, BCR1, BCR2, and BCR3
which are located at addresses #OAO, #OA1, #0A2, and #OA3 respectively. These four registers are used to
control the backend post-processing unit. None of the control bits in these registers can be modified by the
IMS A 110. Modification of the values in these registers during processing may result in undefined behaviour.
Normal operation will start to occur between 0 and 3 clock cycles after the completion of the write cycle.

MMB Maximum/minimum buffer

These three locations hold a 24-bit wide word, with the least significant byte at the lowest address, and act as
a buffer between the MMR and the microprocessor interface. All the transactions between the MMR and the
host processor must take place through this register. When the MMR is not in use, the value of this buffer is
undefined.

CMM Copy MMR

This location is used to enable the data transfer between the MMB and MMR. A write to this location causes
the contents of MMB to be copied into the MMR and bits 23 and 22 of the MMR (the cascade adder overflow
flags) to be set to zero. A read from this location causes the reverse, i.e the contents of the MMR are copied
into the MMB. The value written to this location is ignored, the value read back is undefined.

OUB Overshoot/undershoot buffer

These three memory locations hold a 22-bit word, with the least significant byte at the lowest address, and
act as a buffer between the QUC and the microprocessor interface. All the transactions between the QUC
and the host processor must take place through this register. When the QUC is not in use, the value of this
buffer is undefined.

COU Copy oue

This location in the memory is used to enable the data transfer between the QUB and QUC. A write to this
location causes the contents of QUB to be copied into the QUC. A read from this location causes the reverse,
i.e the contents of the QUC are copied into the QUB. The value written to this location is ignored, the value
read back will be undefined.

TCR Test control register

This register is used for testing, and should be loaded with zero for normal operation.

USR Upper saturation register

This is a 32-bit value with the least significant byte at the lowest address. Its contents are used to replace
the LUT output if positive overflow(s) occur in the lookup prescaler and / or in the cascade adder. Accesses
from the microprocessor interface can only be made while ACR[1 J is set to zero.

LSR Lower saturation register

This is a 32-bit value with the least significant byte at the lowest address. Its contents are used to replace
the LUT output if negative overflow(s) occur in the lookup prescaler and / or in the cascade adder. Accesses
from the microprocessor interface can only be made while ACR[1 J is set to zero.

LUT Look-up table

These locations are for the 256-byte look-up table which is used for data mapping and transformation oper
ations. From the microprocessor interface, these locations are addressed in the same way as that seen by
the S-bit output of lookup prescaler. When used in 32 bit mode, the locations are treated in the same way
as other 32 registers: Word 0 has its most significant byte at #103, its least significant byte at #100, Word
12 has its most significant byte at #133, its least significant byte at #130. Accesses from the microprocessor
interface can only be made while ACR[1 J is set to zero.

4 IMS A110 Image and signal processing sub-system 65

4.10 REGISTERS - BIT ALLOCATION

This section describes the register details bit by bit. Each section commences with the name of the register
with the bit number(s) followed by the default value, in the general format:

Name REGISTER[MSB-LSB) Default: MSB ... LSB

The least significant bit of a register is bit O.

t in the tables indicates the default state of the register bit(s).

4.10.1 PSR control registers (PCR)

PSRA control PCRA[10-0] Default: 0 ... 0

These eleven least significant bits of the PCRA are used to specify the length of the last Programmable Shift
Register (PSRA). The length of the shift register will be numerically equal to the binary value loaded in these
bits. The value loaded in must be in the range of 0 to 1120 decimal. If a value outside this range is written to
these bits the behaviour of the shift register will be undefined. After updating this register, the behaviour of
the delay is undefined for 32 clock cycles. Hence changing the length from 1000 to 1001 delays, will result
in correct output only after 1 033 cycles.

Reserved PCRA[1S-11] Default: 00000

These 5 most significant bits of the PCRA are reserved. The user should write zero to these locations to
maintain compatibility with future products. The value read from these locations will be zero.

PSRB control PCRB[10-0] DefauH: 0 ... 0

These eleven least significant bits of the PCRB are used to specify the length of the second Programmable
Shift Register (PSRB). The length of the shift register will be numerically equal to the binary value loaded in
these bits. The value loaded in must be in the range of 0 to 1120 decimal. If a value outside this range is
written to these bits the behaviour of the shift register will be undefined.

Reserved PCRB[1S-11] Default: 00000

These 5 most significant bits of the PCRB are reserved. The user should write zero to these locations to
maintain compatibility with future products. The value read from these locations will be zero.

PSRC control PCRC[10-0] DefauH: 0 ... 0

These eleven least significant bits of the PCRC are used to specify the length of the first Programmable Shift
Register (PSRC). The length of the shift register will be numerically equal to the binary value loaded in these
bits. The value loaded in must be in the range of 0 to 1120 decimal. If a value outside this range is written
to these bits the behaviour of the shift register will be undefined.

Reserved PCRC[15-11] Default: 00000

These 5 most significant bits of the PCRC are reserved. The user should write zero to these locations to
maintain compatibility with future products. The value read from these locations will be zero.

4.10.2 Static control register (SCR)

Reserved SCR[7-6] Default: 00

These locations are reserved. The user should write zero to these locations to maintain compatibility with
future products. The value read from these locations will be zero.

PSR out Enable SCR[S] Default: 0

A zero at this location will force the PSR Output pins into the tristate mode.

66

Cascade Enable SCR[4] DefauH: 0

A zero at this location will force the Cascade Output pins into the tristate mode.

Unsigned coefficients SCR[3] Default: 0

If this bit is set to one, the format of subsequently loaded coefficients become unsigned, with coefficient value
assuming a range between 0 and 255 decimal. An 8-bit coefficient with all its bits set to one will represent
+255 decimal. When this bit is zero the format of subsequently loaded coefficients will be twos complement
and the corresponding numerical value will have a range between -128 and +127. By changing this bit whilst
coefficients are being loaded, coefficients between -128 and +255 can be used. The unsigned format on all
coefficients is suitable when IMS A 11 Os are combined to obtain wider coefficients for extended precision.

SCR[3] Coefficient type
0 Signed coefficients t
1 Unsigned coefficients

Unsigned data SCR[2] Default: 0

If this bit is set to one, the IMS A110 input (lata format will become unsigned, with input data value assuming
a range between 0 and 255 decimal. An a-bit value with all its bits set to one will represent +255 decimal.
When this bit is zero the input data format will be twos complement and the corresponding numerical value
will have a range between -128 and +127. Unlike SCR(3), this bit cannot be used to dynamically alter the
data format. The unsigned format is suitable when IMS A 11 Os are combined to obtain wider input data for
extended precision.

SCR[2] Data type
0 Signed data t
1 Unsigned data

Bypass shift registers SCR[1] Default: 0

This bit is used to program the path between the PSRin and PSRout ports. A zero at this location will cause
the output from the last programmable shift register to be sent to PSRout port. Writing a one to this bit will
cause the three programmable shift registers to be bypassed, and the data entering the port PSRin to be fed
directly, via a delay of 2 clock cycles, to the port PSRout. This bit allows full programmability of a cascade
arrangement so that the same hardware can be operated in a variety of ways.

Continous bank swap SCR[O] Default: 0

The continuous bank Swap bit selects whether the the two banks of coefficient registers are used alternately
after each data input or if this is controlled solely by the state of the 'Current Bank' bit in the Active Control
Register ACR[O).

SCR[O] Swap mode
0 Swap on asserting ACR[O) t
1 Swap after end of each input cycle

4 IMS A110 Image and signal processing sub-system 67

4.10.3 Active control register (ACR)

Reserved ACR[7-2] DefauR: 000000

These 6 most significant bits of the ACR are reserved. The user should write zero to these locations to
maintain compatibility with future products. The value read from these locations will be zero.

Enable lookup table ACR[1] DefauR: 0

Writing a zero into this control bit allows the memory interface to access the Lookup table; the output to the
data transformation unit will be zero. The normaliser will be controlled by BCR3[7-3], regardless of the state
of BCR3[2]. Writing a one to ACR[1] allows the IMS A110 to use the Lookup Table. After changing this bit,
2 clock cycles must occur before the Lookup Table can be accessed.

ACR[1] LUT mode
0 Memory interface access t
1 Data transformation unit

Current bank ACR[O] Default: 0

When the 'Continuous Bank Swap' bit is set to zero, writing a zero into this control bit instructs the IMS A 110
to use the set of coefficient registers at addresses 0 to #X26. Setting a one to this bit instructs the IMS A11 0
to use the set of coefficient registers at addresses #40 to #X66. If the 'Continuous Bank Swap' bit is set to
one, then this bit only indicates the bank selected for the first cycle of the continuous swap mode. Writing to
this bit whilst in continuous bank swap mode (SCR[O] = 1) will result in undefined behaviour of the mac array.

ACR[O] Coefficient bank
0 Use coefficient registers at 0 to #X26 t
1 Use coefficient registers at #40 to #X66

4.10.4 Backend control register 0 (BCRO)

Enable full-wave rectification BCRO[7] Default: 0

If this bit is set the output of the cascade adder is full-wave rectified (absolute value operation) before it is
fed to the remainder of the backend. This bit will override the function of the BCRO[6].

Enable half-wave rectification BCRO[6] Default: 0

Writing a one in this bit will cause the negative values from the cascade adder to be replaced with zero. Note
that writing a one into BCRO[7] will override the function of this control bit.

BCDO[7-6] Rectifier mode
00 Straight through t
01 Half wave rectification
1 0 Full wave rectification
1 1 Full wave rectification

Mac array output scaler BCRO[5-1] Default: 00000

The contents of these five bits control the amount of right or left shift applied to the data at the output of the
mac array. This field is interpreted as a two's complement number. A positive number represents a right
shift (divide). Any shift in the range -8 (10000) to +8 (01000) is legal. Values outside this range will result in
undefined behaviour of the mac output scaler.

68

Zero cascade Input BCRO[O] DefauH: 0

This bit controls the Cascade Input Multiplexer. Writing a one to this bit will cause a zero, instead of the
cascade input data, to be fed to the cascade adder.

BCR[O] Cascade input mode
0 Cascade data
1 Zero t

4.10.5 Backend control register 1 (BCR1)

Reserved BCR1[7-2] DefauH: 000000

These locations are reserved. The user should write zero to these locations to maintain compatibility with
future products. The values read from these locations will be zero.

Static threshold BCR1[1] Default: 0

If this bit is set to one, the signals from the comparator will be used to increment the Over / Undershoot
Counter only. If this bit is zero, the signals from the comparator will be used to latch the output of the
Cascade Adder into the Maximum / Minimum Register (MMR), and to increment the counter. In this case the
counter will have been incremented by the number of times that the threshold has been updated.

Enable greater than BCR1[0] Default: 0

This control bit determines whether the comparator in the statistics monitor behaves as a 'greater than', or
as a 'less than' comparator. The signal from this comparator is used to drive the Over / Undershoot Counter
and the Max / Min Register. A one at this location selects 'greater than'.

BCR1[1-G] Statistics monitor mode
00 Min. register t
01 Max. register
1 0 Undershoot counter
1 1 Overshoot counter

4.10.6 Backend control register 2 (BCR2)

Reserved BCR2[7] Default: 0

This location is reserved. The user should write zero to this location to maintain compatibility with future
products. The value read from this location will be zero.

Pass LUT data to least significant output BCR2[6] Default: 0

This bit controls the output multiplexer. If this bit is set to one, the selected byte from the LUT is output on
the least significant byte (bits 7 to 0) of the Cascade Output pins.

Pass LUT data to most significant output BCR2[5] Default: 0

This bit controls the output multiplexer. If this bit is set to one, the selected byte from the LUT is output on
the most significant byte (bits 21 to 14) of the Cascade Output pins.

Lookup prescaler BCR2[4-0] Default: 00000

The contents of these five bits control the amount of (arithmetic) right shift applied to the data, by the Lookup
Prescaler. Writing a numerical value between 0 and 16 (binary 10000) into these bits, will cause the data to
be right-shifted by a corresponding number of places. For example, if the bit pattern 00101 is written to these
five bit positions, a right shift of 5 places will occur. Writing any value outside the range (0 to 16) will result
in undefined behaviour of the lookup Prescaler.

4 IMS A110 Image and signal processing sub-system 69

4.10.7 Backend control register 3 (BCR3)

Normalizer control BCR3[7-3) Default: 00000

These five bits control the number of places, that the normaliser shifts the data to the right or to the left. This
field is interpreted as a twos complement number. A positive number is taken to be a right shift. Any shift in
the range -2(11110) to +14(01110) is legal. Any other value will cause the number zero to be output from
the normaliser.

Enable dynamic normalization BCR3[2] Default: 0

If this bit is set to one, the normaliser will be controlled by bits 26 to 22 from the output of the lookup table,
instead of BCR3[7-3].

Feed LUT data to output adder BCR3[1] Default: 0

One of the inputs of the Output Adder can be either supplied by the Lookup Table or forced to zero. Setting
this control bit to zero selects zero. Setting this control bit to one selects bits 21 to 0 of the Lookup Table.

Reserved BCR3[O] Default: 0

This location is reserved. The user should write zero to this location to maintain compatibility with future
products. The value read from this location will be zero.

4.11 ELECTRICAL SPECIFICATION

4.11.1 DC electrical characteristics

Absolute maximum ratings

Notes

Symbol Parameter Min. Max. Units Notes (1,2)

VCC DC supply voltage 0 7.0 V 3
VI,VO Voltage on any other pin -1.0 VCC+0.5 V 3
TA Temperature under bias -40 85 °C
TS Storage temperature -65 150 °C
PDmax Power dissipation 2.0 W

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied. Stresses greater
than those listed may cause permanent damage to the device. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or
electrical fields. However, it is advised that normal precautions be taken to avoid application of any
voltage higher than the absolute maximum rated voltages to this high impedence circuit. Unused
inputs should be tied to an appropriate logic level such as VCC or GND.

70

DC operating conditions

Symbol Parameter Min. Nom. Max. Units Notes (1)

vee Supply Voltage 4.5 5.0 5.5 V
VIH Input logic '1' Voltage ClK 4.0 Vee+0.5 V 2

Input logic '1' Voltage other pins 2.0 Vee+0.5 V 2
Vil Input logic '0' Voltage ClK -0.5 0.5 V 2

Input logic '0' Voltage other pins -0.5 0.8 V 2
TA Ambient Operating Temperature 0 70 °e 3

Notes

All voltages are with respect to GND.

2 Input signal transients, up to iOns wide, are permitted in the voltage ranges (GND - 0.5 V) to (GND
- 1.0 V) and VCC + 0.5 V to VCC + 1.0 V.

3 400 linear ftlmin transverse air flow.

DC characteristics

Symbol Parameter Min. Max. Units
VOH Output logic '1' Voltage 2.4 vee V
VOL Output logic '0' Voltage 0 0.4 V
liN Input leakage current(any input current) ±10 J.l.A
IOZ Off state output leakage current ±10 J.l.A
IDD Average power supply current 350 mA

Notes

All voltages are with respect to GND.

2 Parameters measured over full voltage and temperature operating range.

3 vee = Vee(max), GND $ VIN $ vee

4 lOut $ -4.4 mA

5 lOut $ 4.4 mA

Capacitance

Pin

ClK
All other pins

Typ.
12

5

Units Notes
pF 1,2
pF 1,2

1 This parameter is supplied for engineering guidance and is not guaranteed.

2 TA= 25°e , F= 1 MHz.

Notes (1,2)

4
5
3
3

4 IMS A110 Image and signal processing sub-system

4.11.2 AC timing characteristics

AC test conditions

Output loads (except output tum-off tests)

30pF for all outputs.

Output load (output tum-off tests)

OUT pin o4I-----op----.

30PFI

Timing reference levels

Pin Reference levels
INPUTS O.8V,2.0V
ClK O.5V,4.0V
OUTPUTS O.4V,2.4V

Vref lsource
=1.5V =1mA

OUTPUTS ±100mV change from previous steady output voltage

Notes

Except ClK.

2 Output c:ontinously driven.

71

Notes
1

2,3
4

3 Timings are tested using VOL=O.8V and with a suitable allowance for the time taken for the output
to fall from O.8V to O.4V.

4 Output turn-off tests.

72

4.11.3 Timing diagrams

Clock Requirements

Symbol Parameter Min Max Un"s Notes
tCHCL Clock Pulse High Width 20 ns 2
tCLcH Clock Pulse low Width 20 ns 2
tCHCH Clock Period 50 ns 2
tR Clock rise time 0 50 ns 1
tF Clock fall time 0 50 ns 1

Notes

Clock input transitions should be monotonic between the input thresholds of 0.5 V and 4.0 V.

2 For Rev.A parts tCHCL, tCLCH and tCHCH have maximum values of 50000ns, 50000ns and 100000ns
respectively. (A minimum clock frequency of 10kHz.)

tCHCL

4.0 V- --

ClK

tCLCH
tCHCH

Microprocessor Interface Read Cycle

Symbol Parameter Min Max Units Notes

tAVEL Address setup 0 ns
tEHAX Address hold 0 ns
tWHEL Read Command Setup 0 ns
tEHWX Read Command Hold 0 ns
tELOX Output turn-on 0 ns
tELOV Read data access 100 ns
tEHOX Read data hold 0 ns
tEHOZ Output turn off 25 ns

4 IMS A110 Image and signal processing sub-system 73

~ y

~

tAIlEL tEHAX

ADDRESS
----,.1 .1.
~ X

tWHEL tEHWX

w ,
tELQV ~

~ ~
tEHOZ

DATA

74

Microprocessor Interface Write Cycle

Symbol Parameter Min Max Units Notes
tELEH Enable Width low 100 ns
tAVEL Address setup 0 ns
tEHAX Address hold 0 ns
tWLEL Write Command Setup 0 ns
tEHWX Write Command Hold 0 ns
tOVEH Write data Set up 50 ns
tEHOX Write data hold 0 ns

'l, y
tELEH

'l, V

tAVEL 1 tEHAX

ADDRESS ~
tWLEL tEHWX

W ~ }
tOVEH tEHDX

DATA *
.1

Synchronous Input and Output

Symbol Parameter Min Max Units Notes

tCHOV ClK high to Output Valid 40 ns
tCHOX Output hold time after ClK 2 ns

tOVCH Input setup time to ClK high 8 ns
tCHDX Input hold time to ClK high 0 ns

Input

tOVCH tCHOX

ClK --.I /

Output

tCHOV
~ t 1

4 IMS A110 Image and signal processing sub-system

4.12 PACKAGE SPECIFICATIONS

4.12.1 100 pin grid array package

I--\nde~ 2 3 4 5 6 7 8 9

A PSRin PSRin PSRin PSRin PSRout PSRout PSRout Cout Cout
[6] [4] [2] [1] [1] [2] [5] [0] [1]

B Cin ClK PSRin PSRln PSRout GNO PSRout Cout VCC [3] [7] [3] [0] [6] [2]

C
Cin Cln Cin PSRin GNO PSRout PSRout Cout GNO [4] [2] [0] [5] [3] [7] [4]

0 VCC GNO Cin Cin PSRin PSRout Cout VCC Cout
[5] [1] [0] [4] [3] [8]

E
Cin Cin Cin GNO GNO Cout Cout Cout Cout
[8] [6] [7] [5] [11] [12] [13]

F Cin Cin Cin Cin VCC 0[6] Cout VCC GNO [9] [10] [11] [12] [16]

G
Cin Cin Cin GNO Adr GNO GNO Cout Cout
[13] [15] [17] [5] [19] [18]

H Cin Cin Cin Adr Adr
E2 GNO VCC VCC [14] [19] [21] [2] [7]

J Cin Cin
RESET

Adr Adr
E1 0[2] 0[5] 0[7] [16] [20] [3] [6]

K Cin Adr Adr Adr Adr W 0[0] 0[1] 0[3] [18] [0] [1] [4] [8]

Figure 4.8 IMS A110 100 pin grid array package pinout - top view

Note

All VCC pins must be connected to the 5 Volt power supply.
All GNO pins must be connected to ground.

75

10

Cout
[6]

Cout
[7]

Cout
[9]

Cout
[10]

Cout
[14]

Cout
[15]

Cout
[17]

Cout
[20]

Cout
[21]

0[4]

76

index

rr
~

I"

,M ~ E r 10 9 8 7 6 5 4 3 2 1

=iFf@)@)@)@)@)@)@)@)@)@)A
@)@)@)@)@)@)@)@)@)@) 8

@)@)@)@)@)@)@)@)@)@) C

@)@)@)@)@)@)@)@)@)@) D

@)@)@)@)@)@)@)@)@)@) E
K h @)@)@)@)@)@)@)@)@)@) F

@)@)@)@)@)@)@)@)@)@) G

@)@)@)@)@)@)@)@)@)@) H

I-o'"f---~ ___ "_' ---l .. ~11 cJi 1:;;:::: K: : : : .~ ~

D

r- I I

Figure 4.9 100 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 26.924 ±0.254 1.060 ±0.010
81 17.019 ±0.127 0.670 ±0.005
82 18.796 ±0.127 0.740 ±0.005
C 2.456 ±0.278 0.097 ±0.011
D 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.051 0.Q18 ±0.002 Pin diameter
G 1.143 ±0.127 0.045 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Table 4.1 1 00 pin grid array package dimensions

Pin grid array thermal characteristics

Parameter
Junction to ambient thermal resistance

Notes

Measured at 400 linear Wmin transverse air flow.

2 This parameter is sampled and not 100% tested.

4.13 ORDERING DETAilS

INMOS designation Package Clock speed Military/commercial

IMS A 11 0-G20S Ceramic pin grid array 20 MHz commercial

SEl[2-0)
elK
GO

Din ----r-ro-.

Chapter 5 77

IMSA121
2-D Discrete Cosine

Transform
Image Processor

Advance information

Dout

Dx-t==~=-~

FEATURES

8 x 8 Transform size.

8 x 8 OCT calculation time = 3.2JLs.

OC to 20 MHz pixel rate.
9 bit add/subtract input.
12 bit input/output.
14 bit fixed coefficients.

Multifunction capability (OCT, 10CT, Filter).

Full internal precision, for each dimension.

Fully synchronous interface.
High speed CMOS implementation.
TIL compatible.

Single +5V ± 10%.

Power dissipation < 1.5 Watt.

44 pin plastic package.

72 TRN 141 02

DESCRIPTION

The IMS A121 is a device for computing the Ois
crete Cosine Transform (OCT & 10CT). It will also
function as a 2-0 linear filter or perform matrix trans
position. These 4 functions operate on blocks of
data with a fixed size of 64 samples (8 x 8). The
IMS A121 has other functions aimed specifically at
the implementation of video codecs; on-chip sub
traction and addition functions may be selected to
reduce system chip count.

The main computation is performed by two identi
cal multiplication arrays, each of which perform an
8 x 8 matrix multiplication in 64 cycles, with no inter
nal rounding. The OCT/filter coefficients (14 bit) are
stored in 4 banks of fixed ROM. The intermediate
8 x 8 matrix result is rounded to 16 bits and stored in
the transposition RAM between each multiplication
array. The device is fully pipelined with data sam
pled on the input at the clock frequency and the
resultant output appearing 128 clock cycles later.

June 1989

78

5.1 OVERALL DEVICE OPERATION

The IMS A121 is a device for computing the Discrete Cosine Transform (OCT) and the Inverse Discrete
Cosine Transform (IDCT). It can also perform a simple low-pass filter operation.

The IMS A121 processes blocks of data which are 64 samples long and represent an 8 x 8 matrix. Data is
sampled on the Din port every cycle and data is output every cyde on the Dout port.

The GO signal is used to indicate the start of a block. When it is sampled high the data on the Din port is the
first sample of the block. The mode select signals SEL[2·0] are sampled at the same time. The remainder
of the block of data is sampled on the Din port for the subsequent 63 cycles and during this time the GO
signal and the SEL port are ignored. Each consecutive group of eight samples is treated as a column, eight
such columns making a block.

The computation is in two stages, between which the block of 64 intermediate samples is stored in the
transposition RAM. The transposition RAM serves a dual function of storing the intermediate results and
transposing the data from column order into row order. This permits the two matrix computation elements
to be identical although the first stage does the column computations and the second stage does the row
computations.

Data is output on the Dout port in blocks of 64 samples. However, each consecutive group of eight samples
now represents a row because of the internal transposition of data. The first sample of the block is output on
the Dout port 128 cydes after the first sample of the block was sampled on the Din port.

An auxiliary port, Ox is provided. The data on the Ox port is optionally subtracted from the data on the Din
port (OCT mode) or added to the output (IDCT mode).

The IMS A121 views Input data in column order and (because of the internal transposition) output data in
row order. However, this convention is only used to define the arithmetic which the IMS A121 performs. The
system in which the IMS A121 is a component may well view the data going into the IMS A121 in row order
and the data coming out in column order.

5.1.1 The fixed ROM coefficients

There are four sets of fixed ROM coefficients, each corresponding to one of the four possible functions the
device can perform. The two main functions which the device can perform are the OCT and the IDCT. The
other two functions provide assistance for the implementation of a video codec. The filter function is provided
at very little overhead because the device is essentially a 2-D filter. The transposition function which is a
unity multiplication, enables a simple method of switching out the filter without any external logic.

5.1.2 Number formats

All numbers input to the IMS A121 are signed integers. The Din and Dout ports use 12 bit signed integers,
while the Ox port uses 9 bit signed integers. In both cases the number format is twos complement binary.
Little Endian format is assumed throughout, so that, for example, Din[O] is the least significant bit of the Din
port and 0In[11] the most significant (sign) bit. When a nine bit number is transfered over one of the 12 bit
ports the most significant nine bits are used. The lowest three bits of the Din port are ignored and the lowest
three bits of the Dout port will be zero.

5.1.3 Internal Blt·field Selectors and Rounding

The transforms are implemented by a matrix multiplication with no truncation or rounding. This yields a 33
bit result, with bit-field selectors provided to select the parts of the result which are of interest. 16 bits are
selected from the output of the first matrix multiplication, which are stored in the matrix transposition RAM.
Either 9 bits or 12 bits are selected from the output of the second matrix multiplication (depending on the
selected mode).

Bits below the selected range are discarded although the result is rounded not truncated. This is a simple
round towards +00; if the most significant bit of those bits which have been discarded is set then one is added
to the bits which are retained.

5 IMS A121 2·D discrete cosine transform image processor 79

5.1.4 Overflow, Saturation and Clipping

Overflow can occur in the subtraction unit, the two bit-field selectors or the addition unit. Overflow occurs
whenever there are insufficient bits in the result to represent the number. When overflow occurs the result
is replaced by the most positive or the most negative number which can be represented (depending on the
sign of the correct result).

The device will normally be used in a feedback system. If either positive or negative overflow occurs, then
inaccuracies have been introduced. However, the system will remain stable.

In some of the IDCT modes the output is clipped so that all results are positive and all negative numbers are
replaced by zero. This ensures that the output is a valid (8-bit) pixel, between 0 and 255.

5.1.5 Subtraction with the OCT function

When the IMS A 121 is used to perform the OCT, it is possible to enable the on-chip subtraction unit, so that
before the OCT the data on the Dx port is subtracted from the data on the Din port. The data is presented
to the Dx port at exactly the same time as to the Din port.

In OCT mode the data on the Din port is a nine bit number (the lowest 3 of 12 bits are ignored). The result
of the subtraction is saturated to nine bits before being passed to the matrix multiplier.

5.1.6 Addition with the IDCT function

When the IMS A121 is used to perform the IDCT, it is possible to enable the on-Chip addition unit, so that
after the IDCT of the data has been done, the result may be added to the data on the Ox port. The timing
requires careful consideration because of the latency of the device (128 cycles). The first sample of a block
must be presented on the Dx port 124 cycles after the first sample was presented to Din. The data presented
to the Ox port should be transposed and is thus in the same order as it will come out of Dout four cycles
later.

The result of the addition is saturated to nine bits and then clipped so that all negative numbers are replaced
by zero. The nine bit result is presented on Dout[11·3], while Oout[2·0] will be zero. Dout[11] will be zero
because all the numbers are positive.

Two modes are provided which perform the IDCT without addition. One of these modes disables the adder
completely so that nine bit Signed results appear on Dout. The other mode does NOT add on the value on
the Ox port but still clips the result so that only positive values appear on Dout.

5.1.7 Resetting

The IMS A121 does not have a reset pin. At power-on the internal state will be undefined and as a result
the first three blocks processed are not guaranteed correct. GO must be held low for at least 63 cycles to
ensure that when it does go high it is interpreted as the start of a block.

80

5.2 OCT FUNCTION

The OCT function is selected when SEL[2-0]=000 or 100 (mode 0 or 4).

5.2.1 Internal number format

The input for the OCT is a 9 bit signed integer in the range -256 to +255. This is either an external input or
the output of the on-chip subtractor depending on SEL[2-0]. The input is multiplied in the matrix multiplication
array by 14 bit signed fixed point numbers in the range -2 to (2 - 2- 12). The accumulated result of 8 multiply
operations is a 26 bit signed integer, the bottom 8 bits of which are rounded (see section 5.1.3) and the top
2 bits used to saturate the output (see section 5.1.4). The result of the first matrix multiply is stored as a
16 bit signed integer and the second matrix multiply performed in exactly the same manner, yielding 33 bit
results. The output rounds the bottom 19 bits, saturates the top 2 bits giving a 12 bit signed integer in the
range -2048 to +2047.

Input

Coefficient

Multiply out

Selector out

Coefficient

Multiply out

Selector out

00000000
o

0000000000000
00000000000

o
0000000000000000

000000000000

00000000000
00000000000
DOD
00000000000
000000000000000

Binary
Point

Figure 5.1 OCT internal number format

5.2.2 Internal data flow

26 Select
Saturate
Round

16
Transpose

33 Select
Saturate
Round

12

5 IMS A121 2-D discrete cosine transform image processor

5.2.3 The mathematical basis for the OCT

The 1 dimensional equation for the OCT is as follows:

Forward transform X(k) = jJ;C(k) E z(m) cos [(2m 2+~)k1r] k = 0, 1, .. " N - 1

{
~ lor k = 0

where c(k) =
1 lor k = 1 ... N-1

81

where z(m) represent the input samples and X(k) is the resulting output. The special case for the IMS A121
is with N = 8 and the actual filter coefficients are then calculated. The following equation is used to calculate
the actual filter coefficients.

OCT coefficients C oe I I I<m = V2c(k) cos [(2m 2+~)h]

It should be noticed that the coefficients are 2V2 times bigger than in the forward transform equation. This
means that the output after the 2 dimensional OCT is 8 times too big (The 1 dimensional transform is applied
twice giving (2V2)2 magnitude increase). This is in accordance with the 3 bit shift of the output data necessary
to give the correct 12 bit signed output.

5.2.4 OCT coefficients

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.3870 1.1759 0.7857 0.2759 -0.2759 -0.7857 -1.1759 -1.3870
1.3066 0.5412 -0.5412 -1.3066 -1.3066 -0.5412 0.5412 1.3066
1.1759 -0.2759 -1.3870 -0.7857 0.7857 1.3870 0.2759 -1.1759
1.0000 -1.0000 -1.0000 1.0000 1.0000 -1.0000 -1.0000 1.0000
0.7857 -1.3870 0.2759 1.1759 -1.1759 -0.2759 1.3870 -0.7857
0.5412 -1.3066 1.3066 -0.5412 -0.5412 1.3066 -1.3066 0.5412
0.2759 -0.7857 1.1759 -1.3870 1.3870 -1.1759 0.7857 -0.2759

5.2.5 OCT coefficients (14 bit signed integers)

4096 4096 4096 4096 4096 4096 4096 4096
5681 4816 3218 1130 -1130 -3218 -4816 -5681
5352 2217 -2217 -5352 -5352 -2217 2217 5352
4816 -1130 -5681 -3218 3218 5681 1130 -4816
4096 -4096 -4096 4096 4096 -4096 -4096 4096
3218 -5681 1130 4816 -4816 -1130 5681 -3218
2217 -5352 5352 -2217 -2217 5352 -5352 2217
1130 -3218 4816 -5681 5681 -4816 3218 -1130

82

5.3 IDCT FUNCTION

The IOCT function is selected when SEL[2-0]=001, 101 or 111 (modes 1, 5 or 7).

5.3.1 Internal number format

The input for the IOCT is a 12 bit signed integer in the range -2048 to +2047. The input is multiplied
in the matrix multiplication array by 14 bit signed fixed point numbers in the range -2 to 2 - 2-12 • The
accumulated result of 8 multiply operations is a 29 bit signed integer, the bottom 8 bits of which are rounded
(see section 5.1.3) and the top 5 bits used to saturate the output (see section 5.1.4). The result of the first
matrix multiply is stored as a 16 bit signed integer and the second matrix multiply performed in exactly the
same manner, yielding 33 bit results. The output rounds the bottom 19 bits, saturates the top 5 bits giving a
9 bit signed integer in the range -256 to +255

Input

Coefficient

MuHlplyout

Selector out

Coefficient

MuHlplyout

Selector out

DDDDDDDDDDD
D

DDDDDDDDDDDDDDDD
DDDDDDDDDDD

o
DDDDDDDDDDDDDDDD

DDDDDDDDD

DDDDDDDDDDD
DDDDDDDDDDD
DOD
DDDDDDDDDDD
DDDDDDDDDDDDDDD

Binary
Point

Figure 5.2 IOCT internal number format

5.3.2 Internal data flow

29 Select
Saturate
Round

16
Transpose

33 Select
Saturate
Round

9

5 IMS A121 2·D discrete cosine transfonn Image processor 83

5.3.3 The mathematical basis for the IDCT

The 1 dimensional equation for the IOCT is as follows:

Inverse transfonn z(m) .. /f; ~ X(k)c(k) cos [(2m 2+~)k,..] m '"' 0, 1, ... , N - 1

{
~ for k=O

where c(k) =
1 for k = 1 ... N - 1

where z(m) represent the output samples and X(k) is the input. The special case for the IMS A121 is for
N = 8 and the actual filter coefficients are then calculated. The following equation is used to calculate the
actual filter coefficients.

. In [(2m + 1)k7I"] IDCT coefficients Coeflm/c = v2c(k)cos 2N

It should be noticed that the coefficients are 2-/2 times bigger than in the inverse transform equation. This
means that the output after the 2 dimensional IOCT is 8 times too big (The 1 dimensional transform is applied
twice giving (2-/2)2 magnitude increase). This is in accordance with the 3 bit shift of the output data necessary
to give the correct result.

5.3.4 IDCT coefficients

1.0000 1.3870 1.3066 1.1759 1.0000 0.7857 0.5412 0.2759
1.0000 1.1759 0.5412 -0.2759 -1.0000 -1.3870 -1.3066 -0.7857
1.0000 0.7857 -0.5412 -1.3870 -1.0000 0.2759 1.3066 1.1759
1.0000 0.2759 -1.3066 -0.7857 1.0000 1.1759 -0.5412 -1.3870
1.0000 -0.2759 -1.3066 0.7857 1.0000 -1.1759 -0.5412 1.3870
1.0000 -0.7857 -0.5412 1.3870 -1.0000 -0.2759 1.3066 -1.1759
1.0000 -1.1759 0.5412 0.2759 -1.0000 1.3870 -1.3066 0.7857
1.0000 -1.3870 1.3066 -1.1759 1.0000 -0.7857 0.5412 -0.2759

5.3.5 IDCT coefficients (14 bit Signed Integers)

4096 5681 5352 4816 4096 3218 2217 1130
4096 4816 2217 -1130 -4096 -5681 -5352 -3218
4096 3218 -2217 -5681 -4096 1130 5352 4816
4096 1130 -5352 -3218 4096 4816 -2217 -5681
4096 -1130 -5352 3218 4096 -4816 -2217 5681
4096 -3218 -2217 5681 -4096 -1130 5352 -4816
4096 -4816 2217 1130 -4096 5681 -5352 3218
4096 -5681 5352 -4816 4096 -3218 2217 -1130

84

5.4 FILTER FUNCTION

The filter function is selected with SEL[2-0]=010. (mode 2)

This filter is intended to be used for image data, taking 9 bit signed input data and giving a 9 bit signed result.

5.4.1 Internal number fonnat

The input to the filter is a 9 bit signed integer in the range -256 to +255. The input Is multiplied in the matrix
multiplication array by 14 bit signed fixed-point numbers in the range -2 to 2- 2-12• The accumulated result
of 8 multiply operations is a 26 bit signed integer, the bottom 5 bits of which are rounded (see section 5.1.3)
and the top 5 bits are used to saturate the output (see section 5.1.4). The result of the first matrix multiply
is stored as a 16 bit signed integer and the second matrix multiply performed in exactly the same manner,
yielding 33 bit results. The output rounds the bottom 19 bits, saturates the top 5 bits giving a 9 bit signed
integer in the range -256 to +255.

00000000
o

0000000000000
00000000

00000000000
00000000000
000000

Input

Coefficient

MuHlplyout

Selector out

Coefficient

MuHlplyout

Selector out

00000000000
000000000000000000

o
0000000000000

00000000
Binary
Point

Figure 5.3 Filter and Transpose internal number format

5.4.2 Internal data flow

26

5.4.3 Definition of filter

Select
Saturate
Round

16
Transpose

33 Select
Saturate
Round

9

The filter is a simple l-~-t filter applied in both dimensions which means that the overall filter kernel is:

[
1 2 1 1 -k 2 4 2
1 2 1

5 IMS A121 2-D discrete cosine transfonn Image processor 85

i.e. an output pixel is calculated from the corresponding pixel in the input field and its eight closest neighbours
by evaluating

ts(4 x pixel + 2 x (E four adjacent pixels) + 1 x (E four diagonal pixels))

However, at the block edges, where some of the pixels would fall outside the block boundary, the filter is
modified to 0-1-0 which means that along the edge the kernel would be:

ts [~
0

~ 1 4 (rotated to suit)
2

and the corner pixels are passed through unmodified.

5.4.4 Filter coefficients

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2500 0.5000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.2500 0.5000 0.2500 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.2500 0.5000 0.2500 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.2500 0.5000 0.2500 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.2500 0.5000 0.2500 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.2500 0.5000 0.2500
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

5.4.5 Filter coefficients (14 bit signed integers)

4096 0 0 0 0 0 0 0
1024 2048 1024 0 0 0 0 0

0 1024 2048 1024 0 0 0 0
0 0 1024 2048 1024 0 0 0
0 0 0 1024 2048 1024 0 0
0 0 0 0 1024 2048 1024 0
0 0 0 0 0 1024 2048 1024
0 0 0 0 0 0 0 4096

86

5.5 TRANSPOSER FUNCTION

The transposition function is selected with SEL[2-D]=011. (mode 3)

This is intended to be used for filtering image data, taking 9 bit signed input data and giving a 9 bit signed
result. Data is passed through unmodified and is intended to be used in conjunction with the filter function
(SEL[2-0]=010), so that by toggling SEL[O] the filter can be switched in and out.

5.5.1 Internal number format and data flow

The internal number format and data flow for the transpose function are the same as for the filter function.
Refer to sections 5.4.1 and 5.4.2.

5.5.2 Transposition coefficients

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

5.5.3 Transposition coefficients (14 bit signed integers)

4096 0 0 0 0 0 0 0
0 4096 0 0 0 0 0 0
0 0 4096 0 0 0 0 0
0 0 0 4096 0 0 0 0
0 0 0 0 4096 0 0 0
0 0 0 0 0 4096 0 0
0 0 0 0 0 0 4096 0
0 0 0 0 0 0 0 4096

5 IMS A121 2-D discrete cosine transform Image processor 87

5.6 PIN DESIGNATIONS

System services

Pin In/out Function

VCC,GND Power supply and return
ClK In Input clock

Synchronous Input/output

Pin In/out Function

GO In/out Initiate input/computation/output cycle
Din[11-0] In Data input port
Dout[11-D] Out Data output port
Dx[11-3] In Addition/subtraction port
SEl[2-0] In Mode select input port

5.6.1 System services

Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND.

ClK

The clock input signal ClK controls the timing of input and the output on the three dedicated interfaces, and
controls the progress of data through the addition/subtraction units, multipliers and transposition RAM. Since
the IMS A121 is fully static, the clock can be stopped in either phase without corrupting data.

5.6.2 Synchronous Input/output

GO

The GO signal is active high and is sampled on the rising edge of the input clock. If the device is processing a
previous block of data, the GO signal is ignored. Otherwise, the processing of a block of 64 pixels commences
and the GO signal is ignored for a further 63 cycles. Data is always assumed to be valid for the 64 cycles
from the start of a major cycle. Blocks of data may be processed at any time and with any spacing between
the major blocks, by toggling the GO signal as necessary.

Oin[11-0]

The data input port is sampled 64 times on successive clock cycles, commencing when GO is sampled high.
Data must be valid on the rising edge of ClK for each of the 64 cycles. The block of data may be considered
as an 8 x 8 matrix, where each group of 8 samples represents a column, and the 8 columns are sampled
consecutively until the block is complete. The data is twos complement, Lime Endian so that Din[11] gives
sign information, and Din[O] is the least significant bit.

88

Dout[11-o]

The data output port will be valid for periods spanning 64 clock cycles. The data will be valid on the rising
edge of the clock, exactly 128 cycles (the latency) after the data was sampled on the input. This output data,
which may be considered as an 8 x 8 matrix, is transposed with respect to the input data. The data is twos
complement, Little Endian like the input data.

Blocks of data may follow directly after one-another so that the first data of a block is presented exactly 64
cycles after the first data of the preceding block. However, if there is a gap between blocks zero will appear
on the data output port between blocks of data.

Dx[11-3]

The additiOn/subtraction port is sampled on each clock cycle in exactly the same way as the data input
port. The data on this port will either be subtracted from the signal on the data input port before matrix
multiplication, or, added to the result of matrix multiplication prior to output. The addition and subtraction
functions can never be used together. The function selected is determined by the SEl[2-0] signals. The
data is twos complement, Little Endian like the Din/Dout data. Note however, that although the Dx port has
a differe~t width, Dx[10] has the same bitwise significance as Din[10]/Dout[10].

The timing of data on the Dx port is different depending on the selected mode.

In the case of subtraction in the OCT mode, SEl[1-D]=OO, data is presented on the Dx port on the same
cycle as the corresponding data (from which it will be subtracted) is presented on the Din port.

In the case of addition in the IDCT mode, SEl[1-0]=01, data is presented on the Dx port exactly 4 cycles
before the corresponding data (to which it will have been added) appears on the Dout port.

SEl[2-D]

The mode select input port is sampled on the rising edge of elK, when GO is active, at the start of a block
of data. This fixes the selected mode for the entire block of data.

SEl[2-0] Mode Function PreSubtract PostAdd Clipping Din width Dout width

000 0 OCT Disabled Disabled Disabled 9 12

001 1 I OCT Disabled Disabled Disabled 12 9

010 2 Filter Disabled Disabled Disabled 9 9

011 3 Transpose Disabled Disabled Disabled 9 9

100 4 OCT Enabled Disabled Disabled 9 12

101 5 IDCT Disabled Enabled Enabled 12 9

110 6 Reserved - Do not use

111 7 IDCT Disabled Disabled Enabled 12 9

5 IMS A121 2-D discrete cosine transform Image processor 89

5.7 ELECTRICAL SPECIFICATION

5.7.1 DC electrical characteristics

Absolute maximum ratings

Symbol Parameter Min Max Units Notes (1)

VCC DC supply voltage 0 7.0 V 2

VI, VO Voltage on input and output pins -1.0 VCC+0.5 V 2

TA Temperature under bias -40 85 °C 2

TS Storage temperature -65 150 °C 2

PDmax Power dissipation 1.5 W 2

1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied. Stresses greater
than those listed may cause permanent damage to the device. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

DC operating conditions

Notes

Symbol Parameter Min. Nom. Max. Units Notes (1)

VCC DC supply Voltage 4.5 5.0 5.5 V

VIH Input Logic '1' Voltage 2.0 VCC+0.5 V 2

VIL Input Logic '0' Voltage -0.5 0.8 V 2

TA Ambient Operating Temperature 0 70 °C 3

All voltages are with respect to GND. All GND pins must be connected to GND.

2 Input signal transients 10 ns wide, are permitted in the voltage ranges GND - 0.5 V to GND - 1.0 V
and VCC + 0.5 V to VCC + 1.0 V.

3 400 linear ftlmin transverse air flow.

90

DC characteristics

Notes

Symbol Parameter Min. Max. Units Notes (1,2)

VOH Output Logic '1' Voltage 2.4 VCC V 10::; -4.4 mA

VOL Output Logic '0' Voltage 0 0.4 V 10::; 4.4 mA

liN Input leakage current (any input) ±10 J.lA 3

ICC Average power supply current 300 mA 4

All voltages are with respect to GND. All GND pins must be connected to GND.

2 Under the conditions specified by the DC operating conditions.

3 VCC = VCC(max). GND::; VIN::; VCC

4 This applies at 20 MHz and will be less at slower clock rates

5 IMS A121 2-D discrete cosine transform Image processor

5.7.2 A.C. timing characteristics

All timings are given for a load of 30pF unless otherwise stated.

Clock requirements

Symbol Parameter Min

tCHCL Clock Pulse High Width 20

tCLCH Clock Pulse low Width 20

tCHCH Clock Period 50

tR Clock rise time 0

tF Clock fall time 0

Notes

Max Units

ns

ns

ns

50 ns

50 ns

The clock edges should be monotonic between Vil and VIH.

tCHCL tCLCH

CLK~_: _~~I----_~ _.~)L,
Synchronous input and output (Din, Oout, Ox)

Symbol Parameter Min Max Units

tCHOV ClK high to Dout Valid 38 ns

tcHOX Dout hold time after ClK 2 ns

tDvCH Din/Dx setup time to ClK high 10 ns

tCHDX Din/Dx hold time to ClK high 0 ns

Din

Dx

tOVCH tCHDX

~ A
tCHOV 'l tCHOX

ClK

Dout

* *

91

Notes

1

1

Notes

92

Synchronous control (GO, SEL[2-Gn

Symbol Parameter Min Max Units Notes

tGHCH GO/SEl hold to clock high 0 ns

tGSCH GO/SEl setup to clock high 10 ns

elK
tGSCH tGHCH

GO / ,\

SEl X X

INPUT

OUTPUT

BLOCK A II OATA GAP I r=J3LoCK B· I [BLOCK C- -J

ClK

GO

SEl[2-O]

tCYC

t CYC = 64 clock cycles

t LAT = 128 clock cycles

t GAP = 0+ clock cycles

lATE~CY II BLOCK A II OATA GAP II SL<)cKr=J I BLOCK C

tGAP

tLAT

o o

\ I

tCYC

tCYC tGAP tCYC

(A) Start data gap (input), GO low, Oin [11 :0] = don't care

(B) Start data gap (output), Oout[11 :0] = zero

(C) Start input block, GO high, SEl[2-O] sampled

input sequence follows: 000,010, ",070, 001,011 , .. " O;i, .. " 0 67, 0 77

(0) Start output block, latency 128 cycles

output sequence follows: 000,001, .. ,007, 0 10, 0 11 , .. " Oi;, .. " 0 76, 0 77

tCYC

~
~
Co a
II)

:!:
3
S'

ID

lUI

3! en
~
1'1)
~
C
Co
iii'
() ...
!.
CD

3
(/I

S'
CD -iil
::::II
(/I -0

3
3'
I~
1'0 a
()
CD
(/I
(/I
0 ...

co
t.)

94

5.8 PACKAGE SPECIFICATIONS

5.8.1 44 pin PlCC package

ClK 7
Din[O] 8
Din[1] 9
Din[2] 10
Din[3] 11

VDD12
GND13

Din[4] 14
Din[5] 15
Din[6] 16
Din[7] 17

•

IMS A121
44 pin PlCC

top view

39 Dx[10]
38 Dx[11]
37 Dout[O]
36 Dout[1]
35 Dout[2]
34GND
33 VDD
32 Dout[3]
31 Dout[4]
30 Dout[5]
29 Dout[6]

Figure 5.4 IMS A121 44 pin PlCC J-bend package pinout

Note

All VCC pins must be connected to the 5 Volt power supply.
All GND pins must be connected to ground.

5 IMS A121 2·0 discrete cosine transform Image processor

~---------J--------~~

Figure 5.5 44 pin PLCC J-bend package dimensions

Millimetres Inches
DIM NOM TOL NOM TOL Notes

A 17.577 ± 0.692 ±
B 16.612 ± 0.654 ±
C 17.577 ± 0.692 ±
D 16.612 ± 0.654 ±
F 1.143 0.045
G 3.861 0.152
H 4.369 ± 0.172 ±
J 15.748 ± 0.620 ±
K 15.748 ± 0.620 ±
L 0.457 0.018
M 1.270 0.050

Table 5.1 44 pin PLCC J-bend package dimensions

PLCC thermal characteristics

Notes

Parameter
Junction to ambient thermal resistance

Measured at 400 linear ftlmin transverse air flow.

2 This parameter is sampled and not 100% tested.

95

96

5.9 ORDERING DETAILS

The following table indicates the designation of the IMS A121 variants.

INMOS designation Clock speed MilHary/commercial
IMS A 121-J20S 20 MHz commercial

Chapter 6 97

IMS 8009
IMS A 100 DSP System

Evaluation Board

Product Overview

IBM pc
I l Bus

IBM pc IMS T2xx
interface

~
TRAM

Y
64Kbyte SRAM

~
Address

INMOS serial links decoder &
generator

Data
Input rn ;

t I t m t~ t

IMS A100 f---+ IMS A100 r--- IMS A100 - IMS A100

t t t t

Features

• High performance Digital Signal Processing development board for both real-time
and non-real time compute-intensive applications

• Cascade of four IMS A1 OOs

• Up to 1280 Million Operations Per Second (MOPS) capability

• Up to 10MSamples/sec continuous data throughput

• Fully programmable using an IMS T2xx 16 bit transputer with 64Kbyte SRAM

• Option to install TRAM

• Transputers arrayable for high performance pipelined systems

• General purpose address mapper (Look Up Table) for data sequencing

• Data supplied from internal (Le. software/file) or external sources

• Controllable from IBM PC applications under MS-DOS or other transputer systems

• IMS A100 cascade accessible directly from IBM PC bus

• Complete DSP development environment available, including IMS A100
and IMS B009 software Simulators

• Compatible with full transputer board family

Data
Output

Clock &
Sync

98

6.1 The IMS BOO9 Evaluation Board

The IMS B009 can be used to evaluate and implement a wide range of high performance DSP techniques.
It can also be used by OEMs as a component for building high performance, flexible, DSP systems, where
the production quantities do not justify development of a specific DSP board.

The IMS 8009 is an IBM PC (XT or AT) add-in board containing 41MS A100 signal processors controlled by
an IMS T2xx. The 4 IMS A100s can be used to implement 128 tap FIR filters, convolvers or correlators, on
16 bit data, with 16 bit coefficients at rates up to 2.5 M samples/second, or at up to 10M samples/second
with 4 bit coefficients.

The IMS A100s can be controlled and configured either directly from the IBM PC or, for much greater
performance, by the IMS T2xx. Data flow through the IMS A 1 OOs can be controlled by the IBM PC,. the IMS
T2xx or directly from an external digital signal source, via a DIN 41612 edge connector. This last option
allows the IMS A100s to process data at rates up to 10MHz.

The IMS T2xx has 64Kbytes of fast SRAM. The interface between the IMS T2xx, the SRAM, and the IMS
A 1 OOs is designed to allow t.he IMS T2xx to move data through the IMS A1 OOs at speeds up to 1.25 M
samples/second. An address mapping table allows the IMS T2xx to perform complex data sequencing tasks
at high speeds. Each of the 4 transputer links on the IMS T2xx can be used to transfer data between the
IMS B009 and other transputer systems at up to 0.8 Mbytes/second simultaneously. using more than one
link for data VO can provide data transfer rates of several Mbytes/second.

The IMS B009 is a Transputer Module (TRAM) motherboard. A single TRAM, up to size 4, can be installed.
For example, an IMS 8404 TRAM can be used to provide 2 Mbytes of data storage and additional (possibly
floating point) data processing. This same TRAM could be used to run software packages such as the IMS
D700 Transputer Development System and the IMS D703 DSP Development System. The IMS B009 (with a
suitable TRAM) thus provides the basis for both a Transputer and a DSP development workstation.

Transputer Memory

IMS B009

IMS C011
link adaptor

Figure 6.1 IMS B009 key components

6 IMS B009 DSP system evaluation board 99

6.2 Board Description

The IMS B009-1 contains a cascade of four IMS A100s, an IMS T2xx 16 bit transputer with 64Kbyte SRAM,
and a socket for a standard TRAM.

An INMOS TRAM (e.g. IMS B404) provides a general purpose host processor, capable of supporting the
full INMOS occam 2 Transputer Development System, and the IMS D703 DSP Development System. The
IMS T2xx is used as a high performance controller for the IMS A100 cascade. Figure 2 shows the board with
the optional TRAM, and the configuration of the IMS A100 cascade.

IBM PC interface

~
~
~
@

~
~
~
~
ill ;
~
~ 8

I
~

* IBM PC ~
data

I
~ ill

IBM PC ~
address ~ 8

16

Figure 6.2 IMS B009 Detailed Block Diagram

DIN 41612 connector

• IMS C011
~ Links
ill

~ TRAM
~ ~ Links

~
~ IMS T2xx
~ Links

~
~
~ IMS T2xx
~ces
~

I TRAM
~ces
ill ill

~ IBM PC
~ services
~
§

I
~
~
" Data out

Go

Data in

A 4Kx 12 'address mapper' is provided for high speed generation of arbitrary address sequences. This
mapper can be applied at any time to any addresses generated in the positive address space of the IMS T2xx,
without any performance degradation. Thus, arbitrary data sequences can be preloaded, and applied at the
appropriate point during data processing.

The IMS T2xx can be connected to any other transputer with one or more standard INMOS serial links, each
link being capable of approx. 0.8MBytes!sec in each direction, and operation in full duplex. The transputer
links can also be used to connect to other transputer evaluation boards, or for arraying IMS B009s to form a
high bandwidth signal processing pipeline.

100

The TRAMlB009-1 combination offers a powerful concurrent processing environment, with preprocessing
operations such as data pre/post ordering handled by the TRAM, whilst the IMS T2xx drives the IMS A100s.
For highest performance, external ports are provided, enabling users to supply real time data to the A100
cascade, and output processed data at full speed. Thus, real time processing can be implemented with a
minimum of additional hardware.

In order to maximise the range of applications of the IMS B009, most of the key control and data signals are
brought to either the 96 way DIN 41612 connector, or to an internal connection area. This enables users to
construct DMA interfaces to all devices on the IMS T2xx memory interface bus. Thus, a wide range of real
time interfaces can be realised, making the IMS B009 ideal for general laboratory use or for prototyping final
systems.

Input data can thus be supplied from one of four sources:

• External data port (1 OMSampleslsec continuous)

• IMS T2xx memory interface (approx. 5MByteslsec burst)

• Transputer link (approx. 0.8MBytes/sec x 4 burst)

• IBM PC bus (approx. 0.2MBytes/sec burst)

Due to the relatively small power supplies provided with some IBM PC compatibles, special links have been
provided to isolate the Vee plane from the IBM PC power pins, and to provide external power directly via the
DIN 41612 connector. This enables several IMS B009s to be used in a standard IBM PC chassis without
danger of exceeding either power supply or backplane ratings.

6.3 Programming

The IMS B009 enables users to exploit the flexibility of the IMS A 100 under a standard occam 2 environment,
by running the IBM PC Transputer Development System (IMS D700) on the TRAM located on the board itself.
In this way, high performance DSP systems can be realised, using high level languages throughout. The
IMS D703 DSP Development System, supplied in both source code and binary form, demonstrates how to
make best use of the various addressing modes and facilities of the board.

The board can also be treated as a peripheral to the IBM PC, responding to commands sent to it on the PC
bus. This mode of operation disables the transputers and limits data rates to those attainable on the standard
IBM PC bus, but does enable users to evaluate the potential of attaching IMS A100s directly to an IBM PC,
controlled by a normal PC based program.

Alternatively, using the IMS B009 driver program supplied with the IMS D703, the IBM PC application can boot
the IMS T2xx directly. It can then use the driver program in exactly the same way as any transputer application,
communicating with the IMS T2xx via the link adaptor. This approach provides far higher performance for
IBM PC hosted applications than controlling the IMS A100s directly via the PC bus.

6.4 Product summary

The IMS B009-1 comprises four IMS A100s, one IMS T2xx 16-bit transputer with 64Kbyte SRAM, and the
4Kx12 address mapper. It also contains an unpopulated socket for a TRAM (up to size 4).

A comprehensive suite of documentation is supplied with each system, including full descriptions of the board
deSign, software users and reference manuals, and a set of application notes. Test software is also provided,
which performs extensive diagnostics of all functional components of the board.

6 IMS BOO9 DSP system evaluation board

6.5 Technical summary

Board ready for installation in a single IBM PC XT or AT system unit expansion slot

Four IMS A100-G21S cascadable signal processors

One IMS T2xx 16 bit transputer with 64 kbytes SRAM

10 or 20 MBit/sec INMOS link transmission speeds

DIN 41612 96 pin I/O connector

A100 signals:
Data in/out
Clock/Go/OutRdy

Transputer signals:
TRAM, T2xx Reset/Analyse/Error
1 INMOS link from IMS C011
3 INMOS links from IMS T2xx
3 INMOS links from TRAM

+5V, ground

Cables (suitable for connection to all INMOS evaluation boards)

INMOS links
Up/Down Reset/Analyse/Error cables
Standard Jumpers

Power supply required (from IBM PC or externally)

+5V (approx. 4 amps with TRAM)
Ground

Note: the IMS 8009-1 can operate with external power supplies if required.

6.6 Ordering details

Product Part number
B009 Evaluation board IMS B009-1

Available Documentation

IMS A100 Data Sheet
IMS A 100 Application Note 1: Digital Filtering with the IMS A 100
IMS A100 Application Note 2: Discrete Fourier Transforms with the IMS A100
IMS A100 Application Note 3: Correlation and Convolution with the IMS A100
IMS A100 Application Note 4: Complex (I & Q) Processing with the IMS A100
IMS A100 Application Note 5: Hardware considerations with the IMS A100
IMS A100 Application Note 6: Image processing with the IMS A100

101

102

Chapter 7 103

IMS 0703

DSP Development System

Product Overview

Features

• Numerically accurate simulator of the IMS A100 Cascadable Signal Processor

• Software simulation of both 'raw' IMS A1 00 cascade and IMS B009

• Comprehensive IMS T212-based IMS A100 driver optimised for IMS B009 facilities

• Interactive mode providing direct access to all software models

• User definable application tasks, written in occam 2

• Capable of simulating any configuration of IMS A100 devices

• Wide range of examples supplied, including FIR, convolution, correlation, OFT,
and algorithm partitioning techniques

• Simple and efficient software to hardware development route

• occam 2 language for data generation and control of user applications

• Multi-window graphics interface

• Range of OSP deSign aids, including FIR, OFT design tools

• Runs on any IBM PC (with CGNEGA) hosted transputer/occam 2 system

• All occam software components supplied in both fully documented source and binary code forms

104

7.1 Introduction

The IMS D703 DSP Development System is a comprehensive software tool for developing DSP applications
at a number of different levels, e.g.

• Optimal (Remez exchange) FIR filter design.

• Numerically accurate simulation of a filter on the IMS A 100 software model with test data.

• Software emulation of an entire IMS A100fTransputer based DSP system.

• Evaluation of a filter on 'live' data in real time (using IMS A100s on an IMS 8009 evaluation board).

The IMS D703 is based on a software harness which controls the data flow between a number of processes
providing facilities such as:

• Accurate simulation of one or more IMS A100s.

• Communication with the filing system, I/O etc. of the host PC.

• Communication with other evaluation hardware (e.g. the IMS 8009 or any transputer based system).

• Application software.

Figure 7.1 IMS D703 structure

7 IMS 0703 DSP development system 105

An example of an application software package is the filter design and evaluation package provided in the IMS
0703. This allows the user to interactively specify a filter which is then designed using the Remez exchange
technique. Having designed a filter this application package then allows the user to apply test data pattems
to either a simulation of the filter or to a hardware implementation of the filter (using the 4 IMS A100s on an
IMS B009, if available). The Input and output waveforms of the filter can be displayed in different graphics
windows.

The application packages provided within the IMS 0703 allow the user to interactively experiment in a number
of OSP areas (e.g. filter design and using correlation to detect a signal in noise) without modifying the IMS
0703 software.

Users can perform more elaborate OSP system simulations by writing their own application packages to
work within the hamess of the IMS 0703. This allows the user to concentrate on developing algorithms and
techniques while using the resources for file 1/0, simulation etc. provided by the IMS 0703.

7.2 Requirements

The IMS 0703 is supplied as both (IMS T414) executable code and occam source code. If the user wants
to modify the IMS 0703 or to recompile it to execute on a different 32 bit transputer (e.g. IMS T800) the IMS
0700 Transputer Development System is required. The IMS 0703 and IMS 0700 packages are designed
to run on a transputer (T4 or T8 family) with at least 1 Mbyte of memory, hosted by an IBM PC XT, AT or
compatible running MS-~OS. The IMS 0703 also requires an EGNCGA graphics display.

A suitable combination of products is:

IMS 0703, IMS 0700, IMS B009-1, IMS 8404

Alternatively an IMS 8008 can be substituted for the IMS 8009-1; this only allows software Simulation of IMS
A100s.

7.3 Software Description

7.3.1 User Applications

A 'user application' is an occam process which can control any of the IMS A100 systems accessible to the
IMS 0703. By combining the services of the system controller with those of the IMS 8009 driver, application
programs can be written to perform any required task. In order to make these programs as simple a possible
to write, a standard occam 'harness' is provided which includes a comprehensive set of standard procedures,
constants, and interfaces to the rest of the IMS 0703 environment. All the example applications supplied with
the IMS 0703 use this standard structure. They include code for convolutions, Discrete Fourier Transforms
and FIR design using both hardware and software versions of the IMS A100.

Since the IMS 0703 is implemented using the occam 2 language, user applications themselves are written
in occam. Thus an advanced high level language is used for programming the system, rather than awkward
text files or specialised macro languages. The range of standard procedures and examples supplied means
that users can quickly modify an application to meet their specific requirements, whilst achieving a high level of
performance. As users become more confident, they can develop their own optimised systems using parts of
the IMS 0703 as required. Indeed, because the IMS 0703 executes entirely on the transputer host, dedicated
applications can be developed which enable the IMS 8009 to act as a high performance 'turbocharger' to an
existing MS-~OS applications.

106

PROC FIR.examp1e(CBAN OF ANY to.contro11er, from.contro11er)
STANDARD services
USER_DEFINED data and PROCs

VAL descriptor IS "128 tap FIR demo"

SEQ
STANDARD initialisation

WHILE TRUE -- 100p forever
SEQ

. .. eva1uate coefficients
-- Load coefficients into the A100s
SEQ address=ccr.base FOR number. of. stages

A100.write(address, coefft[i])

-- Pass test data through A100s
SEQ i = 0 FOR test.data.size

SEQ

stop 0

A100.write(DIR, test.data[i])
A100.read(DOL, result.data[i])

Figure 7.2 Example user application for an FIR filter

A range of applications are provided to demonstrate the system, and provide a valuable means of evaluating
the IMS A100. These include:

• 1 0 and 20 Convolution

• Correlation for Pulse Compression

• Discrete Fourier Transforms using the Prime Number Transform

• FIR Coefficient Design (using Remez Exchange method)

7.3.2 IMS A100 Model

At the heart of the IMS D703 is the system level occam 2 software model of the IMS A100. This provides
a complete numerically accurate model of the IMS A100 in all modes of operation. Any configuration of
cascaded IMS A100s can also be modelled, by joining the models together with occam channels. Also,
since the model is written in occam, a model cascade can be distributed across an array of transputers for
improved performance.

System simulations can be performed by connecting the Standard Microprocessor Interface (SMI) channels
of one or more IMS A 100 models to an address decoder model. This enables memory mapped systems to
be modelled, and the address decoding scheme of a prototype system tested. Several examples of these
are provided with the IMS 0703, including a simple linear address space model, and an emulation of the
IMS B009 address decoder. Alternatively, test data can be supplied to the data input channels, which emulate
the external Data INput (DIN) port of the IMS A 100. Likewise, the output can be received on the data output
channel of the model (DOUT of the IMS A100), or read from the DOUDOH registers via the SMI channels.

7.3.3 Address Decoder

To model the behaviour of a microprocessor-controlled IMS A 100 based system, an address decoder process
is provided. This receives all memory read and write requests for the IMS A 1005, and decodes the addresses
according to the selected decoding scheme.

7 IMS 0703 OSP development system 107

Three modes of operation are provided:

• Raw Cascade Mode: Each device of the IMS A100 software model cascade is allocated 128 con
tiguous address locations. A special address is also provided so that a single write operation loads
data into the Data Input Registers (DIRs) of all the devices in the cascade at the same time.

• IMS B009 Emulator Mode: A fixed cascade size of four IMS A100 devices is used, and the address
decoder emulates the decoding used on the IMS B009 hardware.

• IMS B009 Hardware: All memory requests are passed directly to the IMS B009 driver. Additional
commands are provided to reset and boot the IMS T2xx on the IMS B009 with a new driver if
required.

7.3.4 IMS BOO9 driver

Another feature of the IMS 0703 is the IMS B009 driver. The IMS B009 is a high performance DSP board,
which contains four IMS A1 OOs with a hardware optimised interface to the IMS T2xx controller. In order to
control this board, and make full use of features such as address mapping and special block move modes,
a software driver is provided which executes on the IMS T2xx of the IMS B009.

During startup, the IMS 0703 will look for the IMS T2xx, and if present it will automatically bootstrap the
IMS T2xx with the IMS B009 driver. This enables the user to access the resources of the IMS B009, and
provides a means whereby user applications can perform complex operations at high speed with minimal
knowledge of the IMS B009 hardware.

For certain applications demanding maximum performance, more optimised drivers may be required. The
standard IMS T2xx-based driver provided with the IMS 0703 gives users an excellent framework from which
highly optimised drivers can be rapidly and reliably produced. Also, user applications can bootstrap the
IMS T2xx directly, so that experienced users can create optimised drivers for each application if necessary,
within a common environment.

7.3.5 IMS B009 Emulator

A software emulation of the IMS B009 loaded with the driver described above is also provided. IMS 0703
users can thus develop code for the IMS B009 without having the hardware physically present. Using the
standard procedures provided, users can produce applications that can execute with either the IMS B009
software emulator or the IMS B009 hardware without modification.

7.3.6 System Controller

The user environment is designed to enable DSP engineers to develop new algorithms quickly, and explore
their performance without learning large command repertoires or understanding the software complexities of
the IMS 0703. The system controller controls this environment by providing a range of interactive services
for debugging and monitoring of the system. 'Interactive' commands are entered using the keyboard, and are
processed by a simple command line interpreter. Included are commands for reading and writing locations,
plotting data both graphically and textually, monitoring messages from any part of the system, executing user
applications, and contrOlling the various modes of operation. A full hierarchical online help facility is also
provided, which can be customised to users' needs. A summary of commands is given in figure 7.3.

User application tasks can access additional functions via a special group of services, known as 'Binary'
commands. These services are designed to execute far faster than the interactive commands, by processing
commands in internal binary format directly rather than converting each command from text to binary prior
to execution. Facilities that involve large amounts of data, such as plotting, are only provided with binary
commands. The IMS B009 driver can also be accessed using binary commands. Both interactive and binary
commands can be executed by user applications.

A keystroke file facility is provided, so that users can save all keyboard actions to file, and replay them.
Keystroke files can also be created externally using any text editor or MS-DOS application, so that users can
feed data gathered from external sources into the system, and capture the results for subsequent processing.

108

INTERACTIVE
r- Application
r- Continue
r- Dump
r- Execute
r-Help
r-Keep
r-Quit
r- Read

r- Set ~ CascadeSize
'- Write Decoder =------c A 1 OOmodel

RecordFile [B009modei
Graphics B009hardware

BINARY
r-BootT2
r- FilelO -------,r- Open

r- ReadLocation - Close
r- WriteLocation - ReadByte
r- PlotText - Write Byte
r- Plotgraphics - ReadBlock
'- StopApplication - Write Block

Figure 7.3 IMS D703 Command Summary

7.3.7 Multi-Window MS-DOS Interface

A multi-window user interface MS-DOS program is provided, which acts as a bridge between the resources of
the IBM PC and the transputers. This program enables users to boot the host transputers, examine system
status, plot data, access files, and manipulate the windows. In order to display the windows, and for plotting
data graphically, an IBM PC fitted with CGA or EGA graphics hardware is required.

A comprehensive graphics suite is available to user applications, so that they can also make use of facilities
such as automatic scaling, curve fitting, windows, and screen dumping. The graphics is based on the Turbo
Pascal Graphics Toolbox, and access to most of the facilities of this package are provided.

7.4 Host Environment

The IMS D703 executes on any 32-bit transputer with at least 1 Mbyte of RAM. If an IMS B009-1 and TRAM
are being used, or the IMS D703 is being executed on an IMS B004 connected to an IMS B009-1, the
standard IMS B009 driver will be automatically booted into the IMS T2xx. To modify the IMS D703 source
code, users will require an IMS D700 Transputer Development System (TDS) for occam 2. The TDS runs
on the same hardware as the IMS D703.

The IMS D703 graphics environment and run time support requires an IBM PC XT or AT with at least
512kbytes of RAM, a hard disk, MS-DOS version 3.1 or later, and an IBM compatible CGA or EGA graphics
adaptor with monochrome or colour monitor.

7.5 Ordering Details

Product Part number

B009 Evaluation board IMS B009-1

Transputer Development System IMS D700

DSP Development Software IMS D703

Ilrimos Chapter 8 109

_ digital
filtering
with the
IMS A100

110

8.1 Introduction

When an analogue signal is sampled in time, the sampled signal is referred to as a discrete-time signal. If
each sample in this discrete-time signal is also quantised in amplitude, (e.g. represented by an arbitrary n-bit
number), then it is usually referred to as a digital signal. In the subject of digital filtering it is these types of
signals which are processed and operated on. The fact that the digital signals are quantised both in time and
amplitude gives one greater control over the processing as compared to analogue signal processing.

In these application notes the concept of the digital filtering is first introduced. This is done by starting from
a simple RC analogue filter and deriving a corresponding digital filter. The classification of digital filters is
then summarized, followed by giving a summary of techniques applicable to filter design using the IMS A1 00
device.

8.2 From analogue to digital

Figure 8.1 a shows a simple first-order RC filter. The simple differential equation describing this circuit in
terms of its input and output voltages is:

dvo(t)
vo(t) + R0"d,t = viet) (1)

where vo(t) and viet) are analogue output and input voltage waveforms. In the analogue world both input and
output voltages are continuous-time waveforms and the complexity of the solution would depend on the input
voltage function viet). Given an input waveform Vi(t), the solution can be obtained using:

(i) Standard mathematical techniques which solve the differential equation and obtain the output wave
form in closed form.

(ii) Numerical techniques which calculate the approximate output waveform in a digital computer. This
would necessitate the sampling of the input and output waveforms.

The second method above provides the basis for digital filtering techniques. Consider that the input and the
output voltages are sampled with a sampling interval T such that vdnT) and vo(nT) represent the values of
viet) and vo(t) at time t = nT.

If T is sufficiently small then the derivative dVJltl at time t = NT can be approximated by:

dvo(nT) vo(nT) - vo«n - 1)T)
-d-t-~ T (2)

substituting this in equation (1) we obtain:

RO Re
vo(nT) + Tvo(nT) - Tvo«n - 1)T) = vi(nT) (3a)

Equation (3a) is a linear difference equation that approximates the differential equation (1). Equation (3a)
can be rewritten as:

1 (ROIT)
vo(nT) = 1 + (RO IT) vi (nT) + 1 + (RO IT) vo«n - 1)T) (3b)

This is now a recursion formula in which the present input sample and the previous output sample are used
to calculate the present output sample. The notation can be simplified to:

(4a)

where bo = 1+(R~/Tl and al = 1if%b,f)·
The signal-flow diagram for this filter is shown in figure 8.1 b. The block labelled 'D' represents a delay equal
to one sampling period T. In digital filter notations a delay of n sampling periods is usually denoted by z-n.
Therefore a delay of one sampling period can be represented by z-l.

8 0lgH81 filtering wHh the IMS A100 111

It is important to note that a common element in all filter structures is the concept of storage. In the analogue
RC filter (figure 8.1 a) the storage is present in the form of a capacitor and in its digital equivalent (figure 8.1 b)
the storage takes the form of a delay stage. In fact the storage element is the essential ingredient for any
filter whether analogue or a digital. This is because filters are used to operate on the signal 'changes' and as
such they need to have some knowledge of the history of the signal to allow them to perform their function.

v, r------C::=R =:1-1 c'f~r v,

o~-----------------~~o

(a) Analogue RC filter

}--------,----vD(nT)

a1

(b) Discrete-time version of (a)

Figure 8.1 Analogue RC filter and its discrete-time equivalent

An important characteristic feature of any filters is its so called 'impulse response'. This is defined as the
output waveform of the filter when a unity impulse is applied to the input. Using equation (4a) and assuming
a unity impulse as the input waveform I.e.

tI.(O) = 1
tI.(n) = 0 lor n> 0

then the output sequence would be:

bo, a1 bo, a~bo, •.•••••• , a'i'bo, •..••••••.•••

or in short
vo(n) = a'i' bo

It should be noted that the above impulse response has, in theory, infinite length. This is due to the recursive
nature of this particular filter structure. This types of filters are often referred to as infinite-impulse-response
(IIR) filters.

An alternative way of looking at the filter in this example is to use equation (4a) in successive substitutions
I.e.

tlo(n) = botl.(n) + a1 tlo(n - 1)
= botl.(n) + a1 [botl.(n - 1) + a1t1o(n - 2))
= botl.(n) + a1 botl;(n - 1) + a~[botl.(n - 2) + a1 tlo(n - 3))
= (4b)

112

Equation (4b) expresses the output waveform as a linear combination of input samples only. but this involves
infinite number of input samples. Notice also that the coefficients bo and a1 have positive values less than unity
(R and C are assumed to be finite and non-zero). This means that in equation (4b) the coefficients decrease
for older input samples. It may therefore be reasonable to assume that these coefficients approximate to zero
beyond a certain point. In this way only a finite number of terms would be involved in equation (4b). or in other
words. the infinite impulse response is approximated by a finite impulse response since it decays rapidly to
zero. This modified filter with its finite duration impulse response falls in the category of FIR (Finite-Impulse
Response) filters. In the next section these concepts are generalized.

B.3 Digital filter classifications

Linear difference equations. similar to equation (4a & 4b) are the basis for the theory of digital filters. The
general difference equation can be expressed as:

M N

y(n) + 2: amy(n - m) = 2: b"z(n - k) (5)
m-1 ,,-0

Where the z and y sequences are the input and the output of the filter and am's and b,,'s are the coefficients
of the filte r.

As mentioned earlier the notation 111-1 is often used to denote a delay equal to one sampling period. In
the theory of the dicrete-time signals. the concept of III has been developed further and is referred to as the
III-transform. This is a discrete-time version of the well known Laplace transform (sometimes referred to as the
s-transform) which is mainly used for dealing with continuous signals. In the s-domain a delay of T seconds
corresponds to e-·T . Therefore the two variables s and III are related by:

(6)

where T is the sampling period.

In the a-domain the spectrum of a signal with a bandwidth B and sampled at a frequency I •. is periodic with
a period equal to I •. This is depicted in figure 8.2. This periodicity in the spectrum of a sampled signal is the
basic reason behind the Nyquist criterion which requires a minimum sampling frequency of twice the signal
bandwidth (Le. I.m ... = 2 x B). in order to avoid aliasing effects.

-f s

amplitude

~
-8 o 8 fs •

frequency

B is the bandwidth of the signal and I. is the sampling frequency.

Figure 8.2 Spectrum of a sampled signal

8 Digital filtering with the IMS A100 113

Equation (6) allows a mapping between the two domains. Part of the imaginary axis between -it to +y., in
the s-plane, is mapped into a unit circle in the z-domain as shown in figure 8.3. The fact that the imaginary
axis in the s-plane is mapped onto a circle is a consequence of the periodic nature of the spectrum. As
shown in figure 8.3, the left-hand half of the s-plane (between -it and +ft) is mapped onto the inside of the
unit circle, while the right-hand half is mapped onto the outside of the circle.

-f s /2

s-plane z-plane

Figure 8.3 Relationship between the s-domain and the z-domain

As in the analogue design (s-domain) where a pole in the wrong place, i.e. in the right-half plane, indicates
instability, in the case of 1iscrete-time signals (z-domain) a pole outside the unit circle causes instabilities. In
both cases zeroes can be anywhere.

Using the z-transform notation, the general linear equation (5) can be expressed as:

M N

Y(z)(1 + L amz- m) = X(z) L bk Z - k (7)

Where X(z) and Y(z) are the z-transforms of the input and output waveforms. The discrete-time (or digital)
transfer function of the general filter is thus given by:

H(z) = Y(z) = E~-o bkz-k

X(z) 1 + E::=1 amz-m
(8)

In terms of realization, digital filters are classified into nonrecursive and recursive types. The non recursive
structure contains only feed-forward paths and as such all the am terms (equation (8)) are zero. This means
that for the nonrecursive filters the output is a sum of linearly weighted present and a number of past samples
of the input signal as shown in figure 8.4. Referring to equation (8), for the nonrecursive filters the transfer
function has only zeroes and as such is always stable.

114

input ---....-----i~

output

Figure 8.4 Nonrecursive digital filter structure

In the recursive filters on the other hand some or all of the am terms are non-zero resulting in the presence
of both poles and zeroes in the transfer function. Figure 8.5 shows the general recursive filter structure.
Figure 8.6 shows an alternative structure for the same transfer function with a reduced number of delay
stages.

input

be

output

Figure 8.5 Recursive (IIR) digital filter structure

8 Digital filtering with the IMS A100 115

input

output

Figure 8.6 Alternative recursive (IIR) digital filter structure with reduced number of delay stages

Digital filters are also classified in terms of their impulse responses. In this classification those filters with
a finite duration impulse response are referred to as FIR filters and those with an infinite duration impulse
response are called IIR filters. The simplest FIR filter realization is in the nonrecursive form. For example in
figure 8.4, if a unit impulse is clocked through the filter, the sequence,

bo, b1 , b2, .•.. bN, 0, 0,0,0,0, 0, 0, ° (9)

will be output. Notice that the response consists of a sequence of samples corresponding to the filter
coefficients followed by zeroes, i.e. the nonrecursive structure is an FIR filter. On the other hand the impulse
response of the recursive structure (figures 8.5 & 8.6), because of the feedback paths, is infinite in duration,
making the configuration an IIR filter.

8.4 Digital filter design

Digital filter design methods can be divided into two categories:

(a) Design techniques suitable for FIR filters.

(b) Design techniques suitable for IIR filters.

In both cases the requirement is simply the choice of filter coefficients in such a way that the specification
for the required transfer function is met. The IMS A 100 can be used to implement high performance FIR
filters directly. It can also be used to implement IIR filters, although the general problems associated with IIR
filter design are then introduced. In this section a brief comparison between FIR and IIR filters is given and
some of their associated design techniques are summarized. Where necessary the IMS A100 implementation
issues are also discussed.

8.4.1 Comparison between FIR and IIR filters

FIR filters, because of their finite-impulse response have no counterparts among analogue filters and as
such can implement transfer functions which cannot be realized in the analogue world. One such property

116

is the excellent linear-phase characteristic which can easily be realized with FIR filters. Since a linear-phase
response corresponds to only a fixed delay, attention can be focussed on approximating the desired magnitude
response without concern for the phase. The design techniques for FIR filters are generally simpler than those
for IIR filters, and as there are no feedback paths in an FIR filter, the stability of the filter is guaranteed. Also
FIR filters have been employed, and algorithms have been developed, for adaptive processing while the use
of IIR filters in these types of systems is not common.

IIR filters on the other hand have infinite impulse responses and thus their design can be closely related to
analogue filter design. IIR filters in general require fewer stages compared to FIR filters but their stability is
not unconditional and great care should be taken to insure stability. Furthermore IIR filters do not generally
result in linear-phase characteristics which is important in many applications.

8.4.2 Basic design parameters

In digital filter deSign, for the reason of convenience, the frequency axis is usually normalised with respect to
the sampling frequency I •. For example for a filter with an actual pass-band cut-off frequency of 20kHz, a
stop-band cut-off frequency of 30kHz and a sampling frequency of 100kHz we have:

The normalised pass-band cut-off frequency Ipb = f& = 0.2

The normalised stop-band cut-off frequency I.b = & = 0.3

As shown in figure 8.7 the useful frequency axis (normalised) extends from 0.0 to 0.5, because the Nyquist
sampling theorem requires a signal to be sampled at more than twice its highest frequency. This means that
the ratio of the frequency of any component in the signal to the sampling frequency must always be less than
0.5.

I ----------------r----

a

: I

----------------r-----~-
'4 ..,

t"pb a f f sb

Figure 8.7 Specification parameters for a low pass filter.
Similar parameters exist for high pass and band pass filters.

Referring to figure 8.7, the pass-band and the stop-band ripples are usually expressed in dBs i.e:

pass-band ripple (dB)= 20 IOglO(1 + 01)

stop-band ripple (dB)= -20 log10(02).

8 Digital filtering with the IMS A100 117

The parameters fpb, f.b, 61, 62 and the sampling frequency define the basic specification of a filter prior to its
design.

8.4.3 Design techniques suitable for FIR filters

As mentioned earlier one of the major advantages of FIR filters is the ease with which linear-phase behaviour
can be obtained from these types of filters. Before summarizing the design techniques for FIR filters let us
briefly consider the necessary conditions for linear-phase behaviour. It can readily be shown that in order to
obtain an FIR filter with a linear-phase characteristic, the following condition has to be met (references 1 &
2):

h(i) = ±h(N - i) for
= 0 otherwise

(10)

This condition requires that the the impulse response of the FIR filter, h(i), to have either positive or negative
symmetry.

In the case of positive symmetry the frequency response will be of the form

H(eiwT) = A(wT)e-iwTN/2 (11 a)

where A(wT) is a real function of w. Notice that the phase is a linear function of frequency. These types of
filters are appropriate for frequency selective filters.

In the case of negative symmetry the filter transfer function will have the following form:

H(eiwT) = jB(wT)e-iwTN/2 (11 b)

Again B(wT) is a real function of w. Note that the phase is again linear with frequency, but we also have
a j term which indicates an extra phase shift of f. These types of frequency responses are required to
realise approximate differentiators and Hilbert transforms which implement a ~ phase shift over a specified
frequency range.

There are essentially three well-established classes of design methods for (linear phase) FIR filters which
are:

(i) window method

(ii) frequency sampling

(iii) optimal design (Remez Exchange Algorithm)

Each one of these techniques has its own merits and the choice of which would depend on the application
requirements and the design time involved.

Window method

This is the most straight-forward approach to the design of FIR filters. In this method having defined an
ideal frequency-response function, the corresponding ideal impulse response is determined by evaluating the
inverse Fourier transform of the ideal frequency response. In the selection of the ideal frequency response,
the linear phase condition mayor may not be applied depending on the application.

118

As mentioned earlier because digital filters deal with signals sampled at a frequency I. ,it therefore follows
that this frequency response is periodic in frequency with a period equal to I. (Nyquist theorm). It is therefore
possible to relate the impulse response and the frequency response of a digital filter via the following Fourier
pairs:

+00

H(w) = L h(n)e-j T (12)
R=-OO

1 f~ . T h(n) = - H(w)e'''W dw
w. ,...

(13)

where w" is the sampling frequency in radiansls and T is the sampling period. Having defined an ideal
frequency response, H(w), equation (13) can be used to obtain the impulse response, h(n) , of the filter.
As an example consider the ideal low-pass frequency response characteristics with a cut-off frequency w.
as shown in figure 8.8a. Using equation (13), and equating H(w) to 1.0 for -We ~ W ~ +We and to zero
elsewhere, we can calculate the impulse response h(n) which is given by:

h(n) = w.Tsin(nw.T) (14)
'" (nw.T)

where -00 < n < +00. This impulse response is shown in figure 8.8b. There are two problems associated
with this impulse response obtained in this way:

(i) The filter impulse response is infinite in duration and as such an FIR filter of infinite length is required
(remember as discussed earlier for FIR filter the impulse response sample values are effectively the
filter coefficients).

(ii) The filter is unrealizable since the impulse response begins at -00, indicating that no finite amount
of delay can make the impulse response realizable.

One way to obtain an FIR filter which approximates the required frequency response is to truncate the infinite
impulse response at n = ±f, (see figure 8.8c), and shift the impulse response to the right to avoid negative
time (figure 8.8d). This would result in a realizable FIR filter with N + 1 coefficients which are equal to the
impulse response samples.

The problem with this direct truncation of the impulse response is that it results in a fixed amount of overshoot
(approximately 9%) before and after the discontinuity in the frequency response. In the literature this problem
is referred to as the Gibbs phenomenon. For this reason, direct truncation is not often a reasonable way of
designing FIR filters.

The frequency response of a truncated time series can be improved considerably by using a window function,
w(n), which modifies the impulse response to w(n) x h(n). In the previous example the window was simply a
rectangular window. Figure 8.9 shows the application of a different window function to the example of the ideal
low-pass filter. Figure 8.9a shows the ideal infinite duration impulse response. Figure 8.9b shows the window
function and figure 8.9c shows the impulse response after the application of the window function. Figure 8.9d
shows the shifted impulse response which avoids unrealizable negative delays. The filter coefficients (b,,'s)
correspond to the sample values of this modified impulse response which is now finite and realizable. Several
window functions have been suggested in the literature some of which are:

(i) Hamming window

(Ii) Hanning window

(iii) Kaiser window

(iv) Dolph-Chebyshev window

(v) Blackman window

8 Digital filtering with the IMS A100 119

+ amplitude

I I ~ I I ..
_w s/2 -we 0 we w s 12

frequency

(a) frequency response of an ideal low-pass filter

~ ~ ~ .e. .. "'LL7 '\lVO ~<c:I:J:7" time

(b) impulse response of an ideal low-pass filter.

h(nT)

t ! I t !I I I 1 t I ! t t t I f 0
f + t time

(c) truncated impulse response.

I

! II I I I
I
I

! ~ I t t I ~ t ..
t I t t + t time 0

(d) truncated and shifted impulse response.

Figure 8.8

The generalized Hamming window function is given by:

wH(n) =a+(1-a)cos(2~n) for _(Ni1):::;n:::;_(Ni1)
= 0 otherwise

(15)

where 0 :::; a :::; 1. If a = 0.54 the window is called a Hamming window, and if a = 0.50 it is called a Hanning
window.

For the Hamming window the main lobe of the frequency response is twice the width of that of the simple
rectangular window. The amplitudes of the ripples of the Hamming window frequency response are consid
erably smaller than those of the rectangular window. For the rectangular window the peak side lobe (in the
stop band) is only 14dB below the main-lobe (pass-band) peak. For the Hamming window the peak side
lobe ripple is about 40dB below the pass band peak. Furthermore for the Hamming window 99.96% of the
spectral energy is in the main-lobe peak.

Another family of windows are those proposed by Kaiser:

for (16)

Where 10 is the modified Bessel function of the first kind. The parameters f3 is used to specify the main-lobe
width and the side-lobe level of the frequency response. f3 is usually specified to have a value between 4

120

and 9. This range of f3 corresponds to a range of side-lobe peaks of 3.1 % to 0.047% of the main-lobe peak.
The Kaiser window is essentially an optimum window in the sense that it is a finite duration sequence that
has the minimum spectral energy beyond some specified frequency. For the Kaiser window the width of main
lobe is almost three times that of the rectangular window, while the peak side lobe in the stop band is 57dB
below the pass-band peak. The side-lobe ripple envelope decays to 94dB below the pass-band peak at half
the sampling frequency.

The Dolph-Chebyshev window function has the minimum width of the main lobe in its frequency response for
a given peak value of side-lobe ripple. For this window the stop-band ripples all have the same amptitude.
Recursive equations exist which allow this window function to be evaluated.

References 1 and 2 contain further information on this design method and the associated window functions.

: h(n)

I
! ! t I t ! I I I t t . ! ! I

I , I • I , t ~
,

0
,

+ t n

(a) impulse response for an ideal low pass filter.

0

I w(n)

I ! t t t t 1 I 1 I ! ! t t t ! I ~

0 n

(b) window function w(n).

I

I h(n).w(n)

. . I t 1 t t t • . . ~ , + I I + f 0 n

(c) impulse response after the application of the window function.

; h(n).w(n)

I

t 1 I 1 ! I
I • ! , . , ,. I I ,. , . . ~
0 n

(d) time-shifted impulse response.

Figure 8.9

Frequency sampling technique

This technique is less common than the other two design methods, however for the sake of completeness it
is briefly mentioned here.

The basic idea behind this technique is that the given (desired) frequency response is approximated by
sampling it at N equally-spaced points along the frequency axis between 0 and f. (corresponding to N
samples on the unit circle in the z-plane). An N-point inverse DFT is then performed on these N frequency

8 Digital filtering with the IMS A100 121

samples to give N samples of the impulse response h{n) which corresponds to the filter coefficients. The
z-transform of the filter impulse response is then given by

N-l

H{z) = E h{n)z-n
1e=O

Substituting eiwT for z, the resulting frequency response of the filter may be evaluated which would be an
approximation of the desired frequency response. The approximation error would be exactly zero at points
where the desired frequency response was sampled and would be finite between them. This process is
depicted in figure 8.10.

To reduce these approximation errors a number of frequency samples (particularly those in the transition
band between band-pass and band-stop regions, i.e. points Tl, T2, T3 and T4 in figure 8.10) can be made
unconstrained variables. The values of these unconstrained variables are then optimised using computer
optimisation techniques involving linear-programming methods. This involves the solution of a set of linear
unequalities in the unconstrained frequency samples. In this way, by adjusting the frequency sample values
at Tl, T2, T3 and T4, considerable ripple cancellation, both in the pass-band and stop-band, can be achieved
resulting in very good filter characteristics. The detail of these techniques are beyond the objectives of this
application note, however interested readers can refer to reference 1 for further information.

amplitude

~------~--------------------------~--~-----+----~frequency

f
s

(a) sampling of the desired frequency response

amplitude

~~~r-~--------------------------~~~-4~~~----~frequency 

(b) the resulting approximation. 

Figure 8.10 



122 

Optimal filter design - (Remez exchange algorithm) 

In the frequency sampling technique, discussed in the previous section, some degree of improvement in 
the filter characteristics is obtained by allowing only a few of the frequency samples to be adjusted via a 
linear-programming technique. 

An even more powerful technique which results in truly optimal filters, in the sense of having the sharpest 
transition between pass bands and stop bands (for a given filter length and a given approximation error) 
has been formulated based on the so-called Chebyshev approximations. Computer optimisation techniques 
based on linear programming have been developed (references 3, 4, 5 & 6) which allowed engineers to 
design optimal FIR filters with a minimum amount of knowledge about the actual optimisation algorithm. 
These iterative algorithms are based upon the principles of the Remez exchange algorithm. This algorithm 
yields optimal filters that satisfy the so-called minimax error criterion (reference 1), where for a given number 
of coeffiCients, the filter minimizes the maximum ripple amplitude in the pass band. The implications of this 
optimal design are: 

(a) The Remez exchange algorithm results in an FIR filter with the smallest number of coefficients 
satisfying the required specification. 

(b) The pass-band ripple components all have the same magnitude and need not be equal to the stop-
band ripples, but their ratio must be specified. 

The input to the Remez exchange program usually includes the type of filter (frequency selective filters, 
differentiators and Hilbert transform filters), normalised stop-band and pass-band edges, the desired minimum 
stop-band attenuations, the maximum pass-band ripple and the ratio of the pass-band to stop-band ripples. 

The output of the program include estimated filter length, and impulse response (filter coefficients). It also 
includes first pass computed values for design parameters, such as pass-band ripple, stop-band attenuation. 
If the computed values do not satisfy the design requirements, the filter length may be increased slightly and 
the program is run again. Interested readers can find copies of this program in references 1, 2 & 4. 

Implementing FIR filters with the IMS A100 

The coefficient word size in the IMS A100 can be programmed to be 4,8,12 or 16 bits. Having calculated 
the filter coefficients using one of the techniques described earlier, these coefficients are then expressed in a 
4, 8, 12 or 16-bit format, depending on the required accuracy. The filter can then be implemented by simply 
loading these coefficients into the IMS A100 coefficient memories. If the number of coefficients (filter stages) 
required is less than or equal to 32, a single IMS A 100 would be sufficient, any unused coefficient locations 
being set to zero. If however, more than 32 coefficients are involved a number of IMS A 100 devices can be 
cascaded to obtain the required filter order. Alternatively it is possible to partition a long FIR transfer function 
into product terms where each term has an order equal or less than 32. Then, using a single IMS A100. the 
data can be reCirculated through the same device with different coefficients (associated with each term in 
the transfer function) for each circulation. In this way a very long FIR filter can be implemented with a single 
device at the expense of a reduction in the data rate. 

The IMS A100 can be cascaded very easily, without the need for any external components, to obtain high 
order filters with a high degree of accuracy. The device has a versatile architecture which allows it to be used 
in various system configurations. The coefficients can be programmed via a standard memory interface, 
while the input and output data can be communicated either via the memory interface or dedicated 1/0 
ports. Figure 8.11 shows some of the possible system configurations for the IMS A 100. In this diagram 
the interface between the host and the IMS A 100 consists of data and address buses of the processor plus 
standard memory-type control signals such as RIW, CE and CS. In figure 8.11 a the host processor controls 
the filter coefficients, while the actual data to be processed is supplied directly from an AID to IMS A100. In 
this example the filtered output is fed directly to a D/A. Using the IMS A100 and a host processor it is possible 
to supply the input data to the device and also to collect the filtered samples via the memory interface. This 
allows system configuration such as those shown in figures 8.11 b&c. In figure 8.11 b the host processor 
receives the input data from a peripheral such as an AID and writes it (may be after some preprocessing) 
into the data-input register (DIR) of the IMS A 100. The filtered output sample is also collected by the host via 
the memory interface and output (possibly after post processing) to a peripheral such as a D/A. Figure 8.11c 
shows a configuration where the IMS A 100 is used purely as a signal processing accelerator to the host. 
Numerous other configurations are possible including integrating an IMS A 100 into existing microprogrammed 
systems in order to improve the overall system performance. 



8 Digital filtering with the IMS A100 123 

(a) 

IMS A100 

(b) AID D/A 

=====data, address & 
control buses 

IMS A100 

(c) 

===== data, address & 
control buses 

IMS A100 

Figure 8.11 Possible system configurations using the IMS A100 in digital filtering applications 

As mentioned earlier large numbers of the IMS A 100 devices can be cascaded to construct FI R filters of a 
high order. The cascading does not involve any external components and is simply a matter of connecting the 
output of the previous device to the cascade input of the next chip and joining the data input ports together 
(if they are being used rather than the memory interface). In normal operation the cascade input of the first 
device should be grounded. Figure 8.12a shows this cascading arrangement for two IMS A1 00 devices and 
figure 8.12b depicts the block diagram of a system consisting of a host processor and two cascaded devices. 
In the latter case the data-input register (DIR) of both devices should be associated with the same address in 
the host's address space; and one of the devices should be selected as a master to generate the GO signal 
(see product data sheet for further detail). 

Another important feature of the IMS A 100 is a selector that is incorporated after the multiply-accumulator 
array. As discussed in the data sheet, the 32 multiply and accumulation in the array are performed to a 
precision of 36 bits which ensures that no intermediate overflows occur. The output selector can then be 
used to select and round a 24-bit word from this 36 bit result. This selection and rounding can be programmed 
to start from bits 7, 11, 15 or 20 and the selected word is sign extended if needed. One particularly useful 
selection is available when the input data and coefficients are in the form of 16 bit two's complement numbers 
normalised to between +1 and -1. In this case, if the selection is taken to start from bit 15, the output will 
have the same format as the input data (Le. normalised to between +1 and -1). 



124 

input 

IMS MOO .g _ IMS A100 
~I-----'\I III ::l 
S ~ g. 2 
o ~.-

ground 
CLK----~~--~------------------+_~ 

ao--~~--------------------~ 

i o 

(a) cascading of IMS A 100 devices using a dedicated input port 

Host processor 

ground 
CLK----~r_~------------------_+--~ 

(b) cascading of IMS A 100 devices when a host processor is used 

Figure 8.12 Cascading IMS A 100 devices 

8.4.4 The IMS A 100 and IIR filters 

Although the IMS A 100 is designed primarily for FIR type filter implementations, it can also be used in realizing 
IIR filters. Referring to figure 8.5 it can be seen that two IMS MOO devices can be used to implement an 
IIR filter of order 32 or less in the direct form. One Chip performing the calculation in the feed-forward path 
while the other does the feed-back path. Note that in figure 8.5 the Output of the feed-back filter has to be 
combined with the input sequence in a subtractor and fed into the input of the second Chip. This subtraction 
can be performed either by the host processor controlling the two IMS MOOs Or by an external adder. 

Mode set to: 
'Contino us Bank Swap' 

31 

I I 
I I 

7 6 5 4 3 2 1 0 

Figure 8.13 Coefficient memory allocation for IIR filter implementation 



8 Digital filtering with the IMS A100 125 

A simpler and more elegant technique to implement IIR filters using IMS A 100 is to make use of the continuous 
bank swap feature on the IMS A100 coefficient memories. This allows a single IMS A100 to be sufficient 
for the implementation of II R filters whose order is less than or equal to 16. (Before describing how this 
can be achieved it is worth noting that IIR filters generally require considerably fewer stages than their FIR 
counterparts, and as such a 16th order IIR filter implementable on a single IMS A 100 can be considered as 
having quite a high order). Figure 8.13 shows the coefficient memory allocations in this approach, where a'S 
and b's are the feedback and feedforward coefficients of the IIR filter respectively (see figures 8.5 & 8.6) and 
are loaded by the host processor. Note that in figure 8.13 alternate coefficients are set to zero in the two 
memory banks. The chip is also set to the continuous bank swap mode so that in one cycle the feedback 
coefficients (a'S) and in the next cycle the feedforward coeffiCients (b's) are used in the calculation. It will be 
shown in the following paragraphs that if the difference between data samples and alternate output samples 
are written to the data input register of the IMS A100, then the remaining output samples would correspond 
to the correct filter output. The sequence of operations is as follows: 

The host starts the filter operation by writing the first data value, xo, to the data input register of the IMS 
A 100. Remembering that the coefficient allocation is as shown in figure 8.13, the first output of the device 
would be a1XO. Referring to figure 8.6, it can readily be seen that this is indeed the feed back contribution 
needed to be subtracted from the next data sample X1. The host reads this value (a1 xo) from the data output 
registers (DOH and/or DOL) and stores it and then writes Xo, for a second time, to the IMS A 100 input. This 
time the coefficient memory banks would have been swapped and the output would correspond to boxo which 
can readily be confirmed to be the first correct filter output (see figure 8.6). The host then reads this result 
as the first valid sample of the filtered output. 

Next the host subtracts the feedback factor, read in earlier (aoxo), from the second data sample X1, and writes 
the difference to the input register of the IMS A100. Remembering that the memory banks are automatically 
swapped every cycle, the corresponding ouput of the IMS A1 00 will be: 

Referring to figure 8.6 you should be able to confirm that this value corresponds to the feedback contribution 
needed for the third input sample. The host reads this value and stores it and as before writes the input value 
(X1 - a1 xo) to the IMS A 100 input register for a second time. This will yield the second valid filtered sample 
i.e: 

b1 xo + bO(X1 - a1 xo) (17) 

The process is then continued in the same manner. The output of the IMS A100 will alternate between the 
feedback contribution and the filtered output samples. It should be emphasized that although the host is 
performing a single subtraction for every output value, it is the IMS A 100 device which is performing the bulk 
of the processing. Having established how the IMS A100 can be configured to implement IIR filters, the next 
section deals with some of the design techniques that are used for determining the IIR filter coefficients. 

8.4.5 Summary of the IIR filter design techniques 

The problem of designing recursive filters is one of determining the feedforward and feedback coefficients 
(Le. b,;s and am's in equation (8). The design techniques for IIR filters can be categorised into two basic 
groups: 

(i) Indirect approaches. 

(ii) Direct approaches. 

Indirect approaches for the design of IIR filters 

As mentioned earlier digital recursive filters are closely related to conventional analogue filters. In the indirect 
method this similarity is exploited and the digital filter coefficients are determined from a suitable analogue 
filter, using some form of transformation technique. In other words the indirect approach uses the wealth 
of knowledge already available on analogue filters (such as Butterworth, Chebyshev and Elliptic filters) and 
develops a corresponding recursive digital filter. This method involves the following two steps: 

(1) the determination of a suitable analogue filter transfer function H(s) 

(2) transformation and digitization of this analogue filter 



126 

Some of the most popular design techniques falling into the indirect category are: 

(a) Impulse-invariant transformation. 

(b) Bilinear z-transform. 

(c) Matched z-transform. 

These three techniques can be employed to derive recursive digital filters from conventional analogue filter 
structures. Before discussing these three techniques the basic characteristics of the common analogue 
filters, from which IIR filters are derived, will be briefly reviewed. The starting point in the indirect IIR design 
techniques is often one of the following analogue filter types. 

Butterworth filters: These filters are characterised by the property that their magnitude character
istic is maximally flat at the origin of the s-plane. Butterworth filters are specified by their magnitude
square functions i.e: 

IH(s)l2 = ---
1 + (!..)2n 

Se 

(18) 

The pole locations in the s-plane are equally spaced around a circle of radius We (se = iwc). 
These filters have a monotonically decreasing amplitude function with a roll-off of approximately 
6n dB/decade. Figure 8.14 shows the overall amplitude response of this type of filter. 

amplitude 

t...J 

C 

-3 dB point 

Figure 8.14 Frequency response of the Butterworth filter 

frequency 



8 Digital filtering with the IMS A100 127 

2 Chebyshev filters: In these types of filters the peak magnitude of the approximation error is mini
mized over a prescribed band of frequencies and is also equiripple over the band. Chebyshev filters 
are specified by the magnitude-square function: 

IH(s)1 2 =----
1 +ic~(!..) 

Se 

(19) 

where CN(s) is a Chebyshev polynomial of order N. The parameter e is used to specify a magnitude 
function with equal ripple in the pass band and monotonic decay in the stop band. Figure 8.15 shows 
the magnitude-square transfer function for the Chebyshev filter (type I) where the amplitude of the 
ripple is given by: 

1 
0=1--- (20) 
~ 

The poles of the Chebyshev filter lie on an ellipse determined from the parameters e, Nand Se. 
Chebyshev filters of type II on the other hand have monotonic behaviour in the pass band (maximally 
flat around wo) and exhibit equiripple behaviour in the stop band. For further details refer to references 
1 & 2. 

I H(jw)1 2 

1.0 

frequency 

Figure 8.15 Frequency response of the Chebyshev filter (type I) 



128 

3 Elliptic filters: These filters exhibit a magnitude response that is equiripple in both the pass band 
and the stop band. These filters are optimum in the sense that for a given order and for a given 
ripple specification the transition band is the shortest possible. Elliptic filters are specified by the 
magnitude-square transfer function: 

I H(jw)l2 = 1 H2~~(w) (21 ) 

Where CN(w) is a rational Chebyshev function involving elliptical functions. Figure 8.16 illustrates 
the magnitude-square response for an elliptic filter. 

frequency 

Figure 8.16 Frequency response for an elliptic filter 

It is not possible to discuss all analogue filter types in this applications note as the main objective here is to 
summarize the basic design technique which allow transformation of analogue filters to digital realizations. 
Interested readers can refer to numerous books available on analogue filters. 

Having decided the type and the specification of the analogue filter that satisfies the requirement, the next 
step in the indirect design method is to use one of the three following techniques to obtain the corresponding 
digital filter. 

Impulse Invariant Transformation 

One of the most common techniques for deriving a digital filter from a given analogue filter is the impulse
invariant transformation. As the name suggests this technique consists of using a sampled version of the 
impulse response of the analogue filter as the impulse response of the digital filter, i.e. the transformation 
does not change the impulse response of the analogue filter. Figure 8.17 illustrates the relationship between 
the analogue and the resulting digital responses of a typical low-pass filter obtained via the impulse-invariant 
method. The important point to note here is that sampling the analogue impulse response results in the 
frequency response of the resulting digital filter being periodic with a period equal to the sampling frequency 
f •. This means that the digital filter will have a frequency response similar to a repetitive version of that of the 
analogue filter. If the frequency response of the analogue filter does not decay to near zero beyond it then 
serious aliasing would occur and the digital filter response would be corrupted. This aliasing problem means 
that this design technique is not suitable for high pass filters. However for low-pass and band-pass filters the 



8 Digital filtering with the IMS A100 129 

problem can be avoided by choosing the sampling frequency high enough to ensure that the magnitude of 
the analogue filter response is negligible beyond -to (Note that the IMS A100 is capable of a sampling rate 
of 2.5MHz for 16-bit data and coefficients). 

(a) analogue impulse response (b) analogue transfer function 

time 

(c) digital impulse response (d) digital transfer function 

Figure 8.17 The impulsive invariance transformation relationship between 
analogue and digital impulse and frequency responses 

frequency 

To demonstrate how the impulse-invariant transformation is used to digitize an analogue filter, consider the 
simple case of an analogue filter with an impulse response ha(t) = Ae-at i.e. a simple RC filter (the s-domain 
transfer function of this filter is ~ ). We start by sampling the impulse response of this analogue filter with a 
sampling interval T to obtain the Corresponding impulse response for the digital filter, i.e. 

The z-transform of equation (22) is 
00 

Hd(Z) = L Ae-akT z-k 

k=<l 

Noting that as equation (23) is a geometric series the result of the summation would be 

(22) 

(23) 

(24) 

Equation (24) provides the z-domain transfer function of the resulting digital filter. To determine the filter 
coefficient (bk's and am's), equation (24) can be compared with equation (8). For this simple example it can 
be seen that we have 

-aT 
a1 =-e and bo = A. 



130 

In this example, for the sake of clarity, the impulse responses were used to arrive at the z-domain transfer 
function. As analogue filters are often specified in the s-domain, it is more convenient to perform the impulse
invariant transformation directly from the s-domain to the z-domain. It should be obvious to the reader from 
the previous example that the required mapping is of the form 

1 1 
;:;-;:; =? 1 _ e-kT z-1 (25) 

It can be shown that this is indeed a general mapping (reference 1), applicable to the impulse-invariant method 
for both real and complex s-plane poles. 

As a second example consider the two-pole analogue filter specified by: 

2 
Ha(s) = (s + 3)(s + 1) 

expanding using partial fraction yields 
1 1 

Ha(s) = s+1 - s+3 

Using equation (25) the digital transfer function would be: 

Again by comparing equation (27) with (8) we obtain the filter coefficients, 

bo = 0 b1 = e-T - e-3T 

and 
a1 = _(e-T + e-3T ) a2 = e-4T 

(26) 

(27) 

As described earlier the sampling period T is chosen to ensure negligible aliasing in the filter transfer function. 

The bilinear z-transformation 

Another indirect design method commonly used for recursive filters is the bilinear z-transformation. The major 
characteristic of this transformation is that it avoids the aliasing problem which was inherent in the impulse
invariant transformation. Given an analogue transfer function H(s), let us rename the variable s to Sa to 
indicate the reference to the analogue world i.e. H(s) = H(sa). Now let us define a new variable Sd related 
to Sa by the following mapping: 

(28) 

where T is the sampling period. 

Since the analogue frequency variable Wa is related to the s-plane variable by Sa = iwa , we can also express 
the above mapping as: 

2 WdT 
W = -tan(-) 

a T 2 (29) 

where Wd is defined as Sd = iWd' 

Starting from an analogue transfer function H(iwa ) , figure 8.18 illustrates the effect of this mapping on this 
transfer function. It can be seen from this diagram that the bilinear transformation compresses the entire 
analogue frequency range (wa = 0 -+ 00) into a finite range equal to half the sampling frequency. This means 
that the spectral folding problem is completely eliminated and aliasing is therefore avoided. This compression 
of analogue frequency axis is usually referred to as frequency warping. 

The price that is paid for this advantage is a distorted digital frequency scale resulting from this frequency 
warping. It can be seen from figure 8.18 that due to the non-linear mapping the specification of the resulting 
filter, such as the cut-off frequency, would be somewhat different from the starting analogue filter. This 
distortion can be taken into account in the course of digital filter design. For example the cut-off frequency of 
the original analogue filters are modified slightly so as after the mapping the resulting filter has the desired 
cut-off frequencies. 



8 Digital filtering with the IMS A100 

<II 

.J... 

<II 

3 

~--~-t-------- ------------------

<II 

3 

I , 
__________________ l __________________________ _ 

: , 
· 1 

: : 
I : I 

~ ~ ... .. .............. ................ .. ............ ! .................. L ',_ .............. .. 

-w 
s/2 

o 

: , 
: I 

: · 
I · ~ · : 

1 H(j~d)1 
· · · I 

W 
5/2 

Figure 8.18 Graphical illustration of the bilinear z-transform 

Returning to the transformation equation (28), we can rewrite it as: 

and remembering that z-1 = e-,.T we can write 

131 

Wd 

W 
d 

(30) 

(31 ) 

Equation (31) provides the means for bilinear transformation directly from the s-domain to the z-domain 
suitable for digital filter implementation. To illustrate how the bilinear transformation technique is used consider 
the following example: 

Filter specification 

Low pass: 0 -+ 10kHz pass band 
Sampling rate: 100kHz 
Transition band: 10kHz to 20kHz 
Stop-band attenuation: -10dE (starting at 20kHz) 
Filter must be monotonic in pass and stop band. 



132 

Design 

The monotonicity requirement indicates a Butterworth filter (see previous sections).We have: 

digital filter cut-off frequenCY=Wcd = 211" x 10000 
start of digital filter stop band=w.d = 211" x 20000. 

Since the sampling rate is 100kHz, the sampling period would be 

T .. 10-5 

therefore 
WcdT = 0.211" and W.dT = 0.411" 

Using equation (29) we can calculate the corresponding analogue filter frequencies i.e. 

analogue filter cut-off frequencY=Wca = ¥ tan(0.111') '" 0.6498 x 105 

Start of analogue filter stop band=w.a = ¥tan(0.211") .. 1.4531 x 105 

The required order of the Butterworth filter can be determined by using equation(18) and ensuring 
at least 10dE8 attenuation at W = W.a = 1.4531 x 105 i.e. 

or 

101 [1 (1.4531 x 105 )2n] .. 10 
og + 0.6498 x 105 

1 (1.4531 X105 )2n",10 
+ 0.6498 x 105 

This gives n = 1.367, therefore we choose n = 2. 

A second order butterworth filter with a cut-off at Wca = 0.650 x 105 has two equally-spaced poles 
on a circle of radius Wca (reference 1) given by 

81, 82 = -0.6498 x 105 (0.7071 ± 0.7071j) = -0.4595(1.0 ± j) x 105 

and the transfer function is given by: 

H(8) _ 8182 _ 4.223 x 109 

- (8 - 81)(8 - 82) - 82 + 0.919 x 105 + 4.223 x 109 

Now we apply the bilinear-z transformation by substituting for /I in the above transfer function from 
equation (31). This gives the following digital filter transfer function: 

H(z) = 0.0675 + 0.1349z- 1 + 0.0675z-2 (32) 
1 -1.1430z- 1 +0.4128z-2 

The digital filter coefficients can be obtained by comparing equation (32) with (8) giving: 

bo = 0.0675 
b1 = 0.1349 a1 = -1.1430 
b2=0.0675 a2=0.4128 

These coefficient values are then expressed in binary with the number of bits governed by the 
required accuracy. The factors affecting the necessary accuracy are discussed in section 5 of this 
application note. 

Matched z-transform 

This transformation is a direct mapping from the poles and zeroes in the 8-plane to the poles and zeroes in 
the z-plane. 

In general the two previous method i.e. the impulse invariant and the bilinear transformations are preferred to 
the matched z-transform as there are many cases where the matched z-transformation is not applicable. For 
this reason this technique is not detailed here. It would be sufficient to point out that the mapping is defined 
by the replacement relationship: 

(33) 



8 Digital filtering with the IMS A100 133 

The direct design techniques for IIR filters 

The IIR design techniques described so far were based on transforming a known analogue transfer function 
into the required digital filter transfer function. It is however possible to design digital IIR filters directly without 
reference to an analogue filter. Direct design methods fall into two categories namely direct closed form 
designs and optimisation techniques. 

The direct closed form design techniques begin with the desired response of the filter from which one can 
often decide where to place poles and zeroes to approximate this response. These techniques are not very 
common and as such will not be discussed here. 

The second classes of direct IIR filter design techniques are based on computer optimisation. In these 
approaches the set of design equations cannot be solved explicitly, instead mathematical optimization tech
niques are employed to determine the filter coefficients that minimize some error criterion, subject to a set of 
design equations. The algorithms involved in these optimisation techniques are of an iterative nature and are 
terminated when the error reaches a minimum or the number of iterations exceeds a specified limit. 

Among the most commonly used optimisation technique is one which minimizes the pass-band ripples in 
filters exhibiting a given stop-band attenuation. This technique is sometimes referred to as the minimax 
method and the optimization algorithm involved has been developed by Fletcher and Powell (reference 7). 
The Fletcher-Powell optimization algorithm generates the filter coefficients by using a convergent descent 
method. 

The spectral flatness approach is another optimisation technique and is based on the fact that multiplying 
the desired frequency response by its inverse should result in unity throughout the frequency spectrum (I.e. 
a flat spectral line). Any deviations from the ideal response would result in ripples in this flat spectral line. 
Optimisation techniques have been developed which attempt to minimize these ripples (reference 8). The 
difficulty with this technique is the modeling of the desired frequency response. 

Mean-square-error optimization techniques have also been developed for IIR filter design. One such technique 
has been described by Steiglltz (reference 9) which involves minimizing the square of the difference between 
actual filter behaviour and the desired performance. This algorithm searches an error .VB. design-parameter 
curve for a local minimum. 

The details of the above optimisation techniques are beyond the objectives of this application note. However 
the references given should prove adequate for interested readers. 

8.5 Finite word-length considerations and problems 

In implementing digital filters both the input samples and the filter coefficients have to be quantised and 
expressed in a limited number of bits. In the IMS A 100 chip both the coefficients and data samples can be 
quantized up to 16-bits of accuracy, although smaller word-lengths can be used if desired. 

The problems of finite word length in digital filters apply to both FIR and IIR filters but their implications are 
much more severe for the IIR filters, due to their inherent feedback nature. In the fixed-point implementations 
of digital filters it is usual to normalize the numbers so as to make their absolute values less than one I.e. in 
the form of 

dN-1.dN-2dN-3 - - - - - - - - - dsd4d3d2d1do 

where d,. represents the nth bit in the word and (.) indicates the binary point. Using this format (and two's 
complement notation) the number 

0.1111 ... 1111 

would represent a vlaue very nearly equal to +1, while the number 

1.0000 ... 0000 

would represent a value equal to -1 .0. 

If purely integer numbers were to be used the process of truncation or rounding after multiplications would 
become meaningless. However using the above fractional-number representation, where the numbers are 



134 

normalized to be less than one, the problems would not arise as the product of two numbers which are less 
than one would also be less than one. 

In general there are three sources of error arising in the implementation of digital filters these are: 

(i) Finite precision of the filter coefficients 

(ii) Limited word length of the input data 

(iii) Round-off and truncation errors in the multiplication and addition operations. 

The finite precision in the representation of the filter coefficients will obviously cause the frequency response 
of the filter to depart to some extent from that desired for both FIR and IIR filters. 

Furthermore in the case of the recursive IIR implementation, because of the existence of feedback paths, this 
finite precision may cause instabilities in the filter behaviour. This happens because the inaccuracies may 
move the z-plane poles outside the unit circle hence causing instabilities. The chances of this happening 
depends on how close the poles are to the unit circle in the first place. If multiplication and addition operations 
are followed by truncation and rounding (in order to contain word growth) further difficulties may arise. These 
problems may manifest themselves in undesirable oscillations in the form of 'limit cycle' or 'overflow' oscillations 
(discussed later). It is therefore absolutely essential for the filter behaviour to be simulated using the precision 
and roundings involved in the intended implementation. This is particularly relevant to recursive IIR filter where 
a risk of instability exists. 

One of the consequences of rounding and quantisation in the digital recursive(IIR) filters is the limit-cycle 
phenomenon, which takes the form of a stable periodic non-zero output for zero or constant input. The limit 
cycle behaviour of a digital filter in general is complex and difficult to analyse. However for simple first order 
filters, it is possible to illustrate the effect by way of an example. Consider the first order recursive filter with 
the following equation: 

yen) = 0.09x(n) + 0.91 yen - 1) 

Assume that each output yen) gets rounded to the nearest integer, also assume that the input is constant at 
100 and the previous output is 90. 

The following table shows the resulting rounded output sequence for each iteration. The last column shows 
the perfect output (without rounding) for comparison. 

n x(n) yen) rounded yen) perfect yen) 
0 100 - 90 -
1 100 90.9 91 90.9 

2 100 91.81 92 91.72 

3 100 92.72 93 92.46 
4 100 93.63 94 93.14 

5 100 94.54 95 93.76 

6 100 95.45 95 94.32 

7 100 95.45 95 94.83 

8 100 95.45 95 95.30 

9 100 95.45 95 95.72 

10 100 95.45 95 96.11 

.. ... ..... .. .. ... 

.. ... . .... .. .. ... 

.. ... ..... . . . .... 

.. 100 95.45 95 100.0 

It is observed that the output sticks at a value of 95. However if the same filter is implemented with very high 
precision and no rounding the filter output would closely approach 100 (last column in the table). 



8 Digital filtering with the IMS A100 135 

If we approach the limit from the opposite side by starting with a value of y(n) of say 110, the output would 
arrive at a limit of 105. You can see from this example that the system has a dead zone of ±5 units around 
the ideal output of 100. 

In fact it can mathematically be shown that for a first-order recursive filter of the form 

y(n) = bx(n) + ay(n - 1) 

The dead zone is given by 

Idead zonel :$ 1 !Ial (34) 

where q is the quantisation step. In the above example a quantised step of 1 was used and equation (34) 
gives a dead zone of ±5 too. 

For second-order systems similar results to (34) have been derived in the literature (reference 1). 

Overflow oscillation is another problem associated with digital recursive filters. In the IMS A1 00 chip the 
full internal precision ensures that no overflow occurs in the multiply-accumulator array. The only source 
of possible overflow is the external addition which is performed in combining the feedback terms with the 
input samples (see section 4.4). A simple but effective way to eliminate these oscillations is to perform this 
addition in a saturating manner (similar to analogue adders). This operation can easily be taken care of by 
the controlling host processor. 

In the IMS A 100 device the data and coefficients can be expressed to a precision as high as 16 bits. The 
32 multiplications and additions are carried out to 36-bit precision. This ensures that no overflow occurs in 
the multiply-accumulation array (unless all the coefficients and 32 consecutive data items have values equal 
to the most negative 16-bit number i.e. 1000000000000000 in binary, which is of course highly unlikely). 
The selector at the output of the multiply and accumulate array allows the rounding and selection of 24 bits 
out of this 36 bits. The combination of full internal accuracy, the selector functionality and the fact that the 
IMS A100 devices can easily be cascaded allows high quality FIR filters to be readily implemented. As 
described earlier the device can also be used to implement efficient IIR filters only in direct forms. It is well 
known that for high order filters direct implementations of IIR filters are more prone to instabilities compared 
to cascade or parallel arrangements. However the full internal precision of the IMS A 100 combined with 
comprehensive filter simulations should minimize these instabilities. It should however be emphasized that 
it is possible to implement a high order high precision IIR filter in the cascade form on the IMS A 100 at the 
expense of processing speed. In this case the IMS A100 should be used to implement low order (2nd or 4th 
order) sections of a cascade arrangement in turn by reloading suitable coefficients. The functionality of the 
whole filter is obtained by recirculating the first output batch through the chip with its coefficients modified to 
implement the 2nd section in the cascade array and so on. 

For the IIR filter implementations figure 8.11 c & 8.11 b can be considered as possible system configurations. 

8.6 Adaptive filters 

So far we have discussed digital filters with fixed characteristics. Fixed filters are used in many practical 
situations to combat noise or interfering signals (e.g. a matched filter) or to select a desired frequency band 
(e.g. a band-pass filter). In digital signal processing the parameters of such fixed filters are determined once 
and remain unchanged during processing. Adaptive filters on the other hand automatically adjust their own 
parameters and seek to optimize their performance according to a specific criterion. The adaptive nature of 
such filters makes them particularly suitable for situations where signal properties are unknown or variable 
with time. 

Figure 8.19 illustrates the basic structure of an adaptive filter. The input signal x(t) is filtered or weighted 
in a programmable filter to yield an output y(t). The filter output y(t) is then compared with a reference 
(sometimes called a training signal) waveform to yield an error signal e(t). This error is then used to update 
the filter coefficients in such a way that the error is progressively minimized. Several algorithms for updating 
the filter coefficients have been developed and can be found in references 10, 11 & 12. 



136 

'---~1 Adaptive algorithm 1 ..... -------, 

! 
x(t) 1 1 y(t) 

Programmable filter 

1'-------'1 +A 
}--------' 

r(t) 

Figure 8.19 Basic structure of an adaptive filter 

One example of adaptive filtering is echo cancellation in telephony. Echoes are the result of impedance 
mismatches in the communication circuits. The hybrid couplers which are used at the interface between 
two-wire and four-wire circuits are a major source of echoes. Figure 8.20 shows how an adaptive filter 
arrangement can be used to cancel these echoes at the hybrid interface. Notice that in this case the training 
signal contains the echo, while the input to the adaptive filter is the signal arriving at the hybrid. Effectively 
the filter adaptively models the echo path and produces a synthetic antiphase echo return which cancels the 
echo in the 4-wire path returning from the hybrid. 

+ 

Echo 
~ 

Hybrid 

__ --L--~.I r-r 
Transmitted signal 

Figure 8.20 Application of adaptive filtering techniques to echo cancellation 

Adaptive filters have application in lOW-bit rate speech coding based on linear prediction where the filter 
coefficients, after adaption, are transmitted instead of the speech signal itself. 

The programmability of the IMS A100 can be exploited in the implementation of adaptive filters as well as 
fixed filters discussed earlier. 



8 Digital filtering with the IMS A100 

8.7 References 

Theory and application of digital signal processing, Rabiner L.R., and Gold B., 
Prentice-Hall Inc, Englewood Cliffs, NJ, 1975. 

2 Digital signal processing. Oppenheim A.V., and Schafer R.w .• 
Prentice-Hall Inc. Englewood Cliffs. NJ, 1975. 

3 A computer program for designing optimum FIR linear-phase digital filters, 
McClellan J.H., Parks T.W., and Rabiner L.R., 
IEEE Transactions on Audio and Electroacoustics. Vol. AU-21 , No.8, December 1973. 

4 Digital signal processing, Peled A., and Liu B., John Wiley and Sons Inc., New York, 1976. 

5 Practical design rules for optimum finite impulse response low-pass digital filters, Rabiner L.R., 
Bell Systems Technical Journal. Vol. 52, No.6, July-August 1973. 

6 Approximate design relationships for low-pass FIR digital filters, Rabiner L.R., 
IEEE Transactions on Audio and Electroacoustics, Vol. AU-21 , No.5, October 1973. 

7 A rapidly convergent descent method for minimization, Fletcher R., and Powell M., 
Computer Journal 6 (No.2) 1963, pp 163-168. 

8 Time series analysis: Forcasting and control, Box G., and Jenkins G., 
Holden Day, San Francisco, CA, 1975 

9 Computer aided design of recursive digital filters, Steiglitz K., 
IEEE Transactions on Audio and ElectroacoustiCS 18 (No.2), June 1970, pp123-129. 

10 Adaptive noise cancelling: principle and applications, Widrow B. et aI, 
Proc. IEEE, 1975, Vo1.63, NO.12, pp 1692-1716. 

11 Design and application of adaptive filters, Grant P.M., COwan C.F.N., 
Electronics & Power, February 1985. 

137 



138 



Ilrmos Chapter 9 139 

@It discrete 
Fourier 
transform 
with the 
IMS A100 



140 

9.1 Introduction 

In the time-domain representation, signals are expressed as a function of time. For example x = Ae-at is 
a time-domain description of a signal whose amplitude decays exponentially with time. 

In the 18th century J.B. Fourier showed any signal that can be generated in a laboratory can be expressed as a 
sum of sinusoids of various frequencies. In other words each signal can be said to have a frequency spectrum 
represented by the amplitude and phases of various sinosoidal components. The frequency spectrum of a 
signal completely specifies it and is referred to as frequency~domain description of the signal. 

The Fourier integrals provide the means for obtaining the frequency-domain representation (the spectrum) of 
a signal from its time-domain representation or vise-versa, i.e. 

Fourier Transform: 1+00 

X(w) = -00 x(t)e-;wtdt 

Inverse Fourier Transform: 

x(t) = - X(w)e;wtdw 1 1+00 

211" -00 

where x(t) is a time-domain Signal, X(w) is the frequency spectrum of 
variable. 

(1 ) 

(2) 

x(t) and w is the frequency 

These transforms are fundamental to the description of many real world phenomena in the fields of sci
ence and engineering. In the area of signal processing the Fourier transform is an important mathematical 
(and nowadays practical) tool in understanding, analysing and solving system-level problems. The Fourier 
transform allows us to translate time serial information into the frequency domain in a reversible way. The 
components of a Signal, although dispersed in the time domain, may have restricted occupancy or a char
acteristic relationship in the frequency domain. In fact many physical processes can be categorised by the 
frequencies they generate and their relative strength. This is one reason why the Fourier transform, with 
its ability to segregate frequency components of a Signal, has gained such an importance in many signal 
processing environments. 

Apart from the ability of the Fourier transform to provide spectral information, many signal processing functions 
such as correlation, filtering and beamforming can be expressed in terms of the Fourier transform and its 
inverse. For these reasons considerable effort has gone into the development of efficient algorithms for 
evaluating the Fourier transform. The continuous-time Fourier transform, given by equation (1), can be made 
suitable for digital computation by sampling the time and frequency variables and limiting the computation to 
a finite set of data points. This modified version of the Fourier Transform is often referred to as the Oiscrete 
Fourier Transform (OFT) and will be discussed in more detail in the next section. 

Many algorithms have been developed for efficient digital computation of the OFT. Until recently the digital 
multipliers needed to implement OFT's were costly, large and relatively slow, and the general purpose micro
processors were extremely slow at performing multiplications. Consequently it was necessary to calculate 
OFT's using a minimum number of multiplications and to use data and coefficient storage economically and 
this led to development of several Fast Fourier Transform (FFT) (references 1 & 2) algorithms. These FFT 
algorithms make use of the redundancies, that occur in the OFT, to reduce the arithmetic operations involved. 
Most FFT algorithms were designed simply to minimise the total number of multiplications required to calcu
late the OFT, often at the expense of an increase in the number of additions, memory accesses and control 
complexity. One such algorithm is the Cooley-Tuckey radix-2 FFT algorithm which necessitates a data size 
equal to a power of two (N = 2n). Winogard FFT algorithms on the other hand requires that the number of 
data points to be prime. Both algorithms simply minimize the number of multiplications in the OFT by the 
use of redundancies resulting from the particular choice of the data size. These algorithms are particularly 
suitable for general-purpose computers and microprocessors where the major limit on processing speed is 
the time taken to perform the multiply instruction. 

Other algorithms have been developed which map the OFT process into particular hardware structures. Two 
such techniques are the Rader's Prime Number Transform (PNT) (reference 3) and the Chirp-Z Transform 
(CZT) (reference 4) which convert the OFT into circular correlation/convolutions. These algorithms are particu-



9 Discrete Fourier transfonn with the IMS A100 141 

larly suitable for implementation using transversal filter type structures. In the past, eeo and SAW transversal 
filters have been used to implement high-throughput wide-bandwidth OFT processors using these algorithms. 
The analogue nature of the eeo and SAW technologies has restricted the precision of these processors. 

The availability of the IMS A100, the first high performance cascadable digital transversal filter, means that 
the same algorithms can now be implemented digitally offering both high speed and high accuracy. This ap
plication note deals with the concepts behind these algorithms and their implementations using the IMS A 100 
signal processor. Generalised mapping techniques which facilitate the OFT evaluation of a long data se
quence via a number of short transforms are also discussed (The radix-2 FFT is a special case of these 
more general partitioning techniques). The approach described here is particularly suitable if a long OFT is 
to be evaluated with a transversal filter of limited size. Also, these decomposition methods are applicable to 
concurrent architectures and as such provide the basis for the trade-off between speed and cost involved in 
a particular implementation. These issues are of major importance when combining the IMS A100(s) with the 
INMOS transputer family of parallel processors. 

Figure 9.1 a shows the structure for an N-stage canonical transversal filter where the output is the weighted 
sum of the N most recent input samples. The IMS A 100 implementation of the transversal filter is depicted 
in figure 9.1 b where the multi-input summation of the canonical form has been replaced by a delay and add 
chain. You should be able to convince yourself that the two structures in figure 9.1 have the same functional 
behaviour. The main difference is that in figure 9.1 b the partial product terms are passed down the delay
and-add chain whilst in figure 9.1 a, the input samples are delayed and the sum of products is calculated 
simultaneously. 

Input ---.,-J~ 

Output 

(a) canonical transversal filter architecture 

Input--------,--------r-------,------~ 

Output 

(b) IMS A 100 implementation of the transversal filter 

Figure 9.1 Transversal filter architecture 

A simplified functional diagram for the IMS A100 is shown in figure 9.2. The major processing part of the 
chip incorporates 32 multipliers and a 32-stage delay-and-add chain. For the IMS A100 the input data word 
length in 16 bits. The coefficient word length can be programmed to be 4, 8, 12 or 16 bits. The data 
throughput ranges from 2.5 million samples/s to 10 million samples/s depending on the coefficient word size. 
Two complete sets of coefficient memories are provided. At any instant one set of coefficients is applied to 
the transversal filter, whilst the other set can be accessed via a standard memory interface (capable of 100ns 
cycle time). The function of the two coefficient memories can be exchanged by writing to control registers. 
Further this exchange can be made continuous, i.e alternate sets of coefficients can automatically be selected 
for successive computation cycles. This is particularly useful for complex number processing. 



142 

16 

Update coefficient registers 

Active coefficient registers 

16 

Multplier 
Accumulator 
Array 

lIE 32 stages 

32 cycle delay (24 bits) 

2 

36 

;0-

24 

control 
logic 

seR Ir----.:::=-,f---. Error 
I:=~~=~j---' Busy 
l.!:::::::::::;i=::::!Jr-- OutRdy 

Figure 9.2 User's model of the IMS Al00 

Data input and output are available both through dedicated ports or via the memory interface. This selection 
can be programmed via the control and status registers in the IMS A 100. 

To preserve complete numerical accuracy, no truncation or rounding is performed on the partial products in 
the multiplications and delay-and-add chain. The output of the chain is calculated with a precision of 36 bits 
which is sufficient to ensure no overflow occurs (the only time that the output of the delay-and-add chains 
exceeds 36 bits is when all 32 coefficients and 32 successive input samples have the maximum possible 
negative value i.e. 1000000000000000 in two's complement binary notation, this is of course highly unlikely). 
A programmable barrel shifter is located at the output of this chain, which allows 24 bits (starting at bits 7, 
11, 15 or 20 of the full 36 bit result) to be selected and rounded for output. To allow devices to be cascaded 
without any external components, a 32-stage 24-bit wide shift register and a 24-bit adder are included on the 
Chip. For cascading purposes the output of one chip is connected directly to the cascade input of the next. 

The control registers accessible via the memory interface allows various operational parameters to be pro
grammed. For the full detail of the specification you are advised to refer to the IMS A100 data sheet. 

In the following parts of this application note the basic concepts of DFT will be reviewed and some algorithms 
for its evaluation will be summarized. This is followed by a detailed description of those DFT algorithms 
suitable for implementation using the IMS Al00 transversal filter. A multi-dimensional mapping technique is 
also described which allows efficient computations of long-length DFTs via the IMS Al00 implementations. 

9.2 The basic concepts of OFT 

The equation for the Fourier transform and its inverse (equations 1 & 2) can be made suitable for digital 
processing by discretizing both the time variable t and the frequency variable w; and by constraining the 
integration to finite limits. Referring to equation 1, for the forward transform, this can be done by making 
t = nT and w = kwo. Where T is the sampling period of the time function and wo is the frequency resolution 
of the discrete spectrum. If the integration limits are confined over N time samples for which N independent 
frequency samples can be calculated we have 

n = 0, 1,2,3, ........ , N - 1 

k = 0, 1,2,3, ........ , N - 1 



9 Discrete fourier trans.onn with the IMS A100 

The Fourier-transform integral then becomes a Fourier-transform sum given by: 
N-l 

X(kwo) - E 2:(nT),,-ilowo .. T Ie = 0,1, ... N - 1 
.. ..0 

It can be shown that the frequency resolution in the f-domain is given by: 
211' 

wo= NT 

Substituting this in (3) gives: 
N-l 

X(kwo) = E 2:(nT)e-2"ik .. / N Ie = 0, 1, ... N - 1 
.. ..0 

For convenience the terms T and wo are usually dropped from the indicies giving the OFT equation as: 

N-l N-l 

X(Ie) = E 2:(n)e-2"i .. k / N .. E 2:(n)W .. k N Ie = 0, 1, ... N - 1 
.. ..0 .. ..0 

143 

(3) 

(4) 

(5) 

(6) 

where 
WN = e-2"i/N = COS(211') - jSin(211') (7) 

N N 
The inverse discrete Fourier transform (10FT) can be derived in a similar manner from its corresponding 
continuous form and is given by: 

N-l 1 N-l 

2:(n) = ..:!.. E X(Ie)e2"ink/ N .. - E X(Ie)WN .. k n = 0, 1, •.• N - 1 (8) 
Nk..o Nk..o 

Note that the OFT and its inverse, 10FT, are very similar, the only difference is the factor "* and the negative 
exponent in the 10FT. This similarity has important practical significance as it allows an algOrithm or a hardware 
developed for OFT to be used for 10FT with minor modifications. For example an inverse OFT on the data 
sequence 2:(0),2:(1 ) ...• 2:(N - 1) can be carried out by first reversing this sequence to generate a new data 
set 2:'() such that 2:'(0) = 2:(N - 1), 2:'(1) = 2:(N - 2) ....•... 2:'(N - 1) .. 2:(0) and then performing a OFT and 
dividing the result by N. This technique works simply because 2:'(Ie) = 2:(-Ie) ,(In the OFT both 2:(n) and X(Ie) 
are assumed to be periodic) which converts the positive exponential in (8) into a negative one, representing 
a OFT. For this reason any algorithm or implementation in the following subsections will only be described 
for OFT as the extension to an 10FT is trivial. 

It is worth noting that some authorities write the OFT and its inverse as: 
N-l 

X(Ie) = ..:!.. E 2:(n)e-2"i .. k / N DFT 
N .. ..0 

N-l 

2:(n) = E X(Ie)e2"ink/ N IDFT 
k=O 

i.e. the factor 1; is applied to the OFT rather than its inverse. This version can be seen to have a physical 
meaning since X(O), as defined, represents the average of the sampled time waveform i.e. the 'd.c.' value. 
Other authorities express the OFT and its inverse as: 

1 N-l 

X(Ie) = - E 2:(n)e-2"i .. k / N DFT 
.../N .. ..o 

N-l 

2:(n) = _1_ E X(Ie)e2"i .. k / N IDFT . 
.../Nk=O 

This last formulation is necessary if the power contents of the time-domain and frequency-domain signals are 
to be identical. 

Throughout this application note, the definitions given by equations (6) and (8) are used for OFT and 10FT. 
However, the techniques described here are applicable to all three formulations of the OFT and its inverse. 



144 

9.3 Algorithms for efficient evaluation of OFT 

From equation (6), it is apparent that the direct evaluation of the OFT is very much computation intensive. 
Assuming complex data, x(n) = xr(n) + j xi(n), we have 

N-1 

X(k) = XR(k) + jXI(k) = z)xr(n) + jxi(n)](coS(2~n) - jSin(2~n) 
n,.() 

or 

(9a) 

and 

(9b) 

where k = 0, 1, 2 ...... N -1, XR(k) and XI(k) are the real and imaginary parts of the spectrum respectively. 

From equation ~9) it can be deduced that the direct evaluation of OFT involves 4N2 multiplications and ap
proximately 4N additions. In these estimates the computations involved in the evaluation of the trigonometric 
functions, (sin and cos) have been ignored as it is possible to precalculate the trigonometric values in a look-up 
table and use them appropriately. Historically, multiplications were very slow compared to other operations, 
therefore algorithms were developed to minimize the number of required multiplications at th.e expense of 
other operations. These algorithms made use of the cyclic nature of the exponential exp (-2;Jnk) to reduce 
the number of multiplications involved. 

To demonstrate some of the resulting redundancies, consider the case where N is even. It is fairly straight
forward to show that for this case 

and 

W k _W2k f - N 

W k _ W k +f 
N -- N 

(10) 

(11 ) 

One algorithm which uses these types of redundancies is the Cooley-Tuckey radix-2 FFT (reference 1). This 
algorithm requires the number of data points to be equal to a power of two, ie N = 2m where m is an integer. 
Using the identities given by (10) and (11) the algorithm expresses the N-point OFT in terms of two ./f-point 
OFT's. Then the if-point OFT's are expressed as two !f-point transforms using identities similar to (10) and 
(11). This decomposition is carried out until all the OFT's involved are only two-point transforms. The net result 
of this decomposition is a considerable reduction in the number of multiplications. In fact it can be shown 
that for the Cooley-Tuckey radix-2 FFT algorithm the number of multiplications involved is approximately 
2N log2(N) and the number of additions is 3N log2(N). Compared to the 4N2 operations involved in the 
direct OFT calculation, for a large N, the radix-2 FFT algorithm reduces the number of multiplications and 
additions considerably. 

Another algorithm which also minimises the number of multiplications is Winogard's prime-length transform 
(reference 2). This algorithm is applicable to cases where the data size is a prime number. In practice this 
algorithm is used only for short-length transforms and mapping techniques are used to extend it to large data 
sizes (references 5 & 6). 

The argument behind the efficiency of these algorithms is only valid if the multiplication time is longer than 
other operations such as indexing and memory accesses. This is indeed the case for most general-purpose 
processors. 

Todays digital technology is capable of providing extremely powerful processing engines which mean that 
the minimization of the number of multiplications is not always the best approach. For high performance 
systems, other issues such as the memory bandwidth, architecture efficiency and parallelism potential have 
to be seriously considered. The advances in digital technology allow other algorithms particularly those 
which map the OFT onto special VLSI hardware structures to be exploited. The following sections deal 
with algorithms that map the OFT into correlation/convolutions, ideal for implementation using the IMS A 100 
transversal filter. This algorithms make use of the higher level functional nature of the device and its on-Chip 



9 Discrete Fourier transfonn with the IMS A100 145 

memory to minimise the required host's memory bandwidth. For this reason the combination of a medium
speed microprocessor and the IMS A100 device(s) results in a very high performance system capable of 
competing with bit-slice OSP processors. 

9.4 OFT algorithms suitable for the IMS A100 Implementation 

There are basically two algorithms which map the OFT into a correlation (convolution) process. These are 

(i) the Prime Number Transform (PNT) 

(ii) the Chirp-Z-Transform (CZT) 

The PNT was developed by Radar and is applicable when the number of data points is prime. The CZT 
on the other hand is applicable to any data size; it can, however, be simplified if the data size is an even 
number. The following two sections deal with each one of these algorithms and their implementations using 
the IMS A100 transversal filter. The final part of this application note describes mapping techniques which 
allow the OFT of a large number of data points to be evaluated via a number of short transforms. This 
mapping technique is of vital practical significance when implemanting PNT & CZT processors. 

9.4.1 Rader's Prime Number Transfonn 

The PNT algorithm has its origin in number theory (reference 7) and consists of three seperate operations. 
The first is a permutation (re-ordering) of the input data. The second operation is correlation of the permuted 
input data with permuted discrete cosine and sine samples. The third operation is a repermutation, which 
yields the OFT components in the conventional order of linear frequency. This final stage may be ignored in 
applications which also involve an inverse OFT. 

In this section the mathematical background for the PNT will be summarized. Where necessary examples 
are provided to assist in the understanding of the concepts. 

If the standard OFT equation, i.e. 

N-1 N-1 

X(k) = E z(n)e- 2rrj,./C/N = E z(n)W,v/c k = 0,1, ... N - 1, (12) 

is to be converted to correlation between z(n) and the twiddle factors WN'S, the nk product needs to be 
converted to a sum n + k. For cases where N is prime number theory allows us to achieve this. 

According to number theory (reference 7), for each prime number N, there exist integers r, known as prim
itive roots, whose successive integer powers modulo-N will generate a permuted version of the sequence 
1,2,3, ....... N -1. 

What this means is that for a prime number N, it is possible to map the sequence {p} = 0, 1,2, .... N - 2 via 
the equation 

q = (rq)mod N where {p} = {O, 1,2,3, ...... N - 2} (13) 

to a sequence {q} where q is a one-to-one map of the original sequence {p} and consists of a permuted 
version of the sequence {1, 2, 3, ... N - 1}. For such a unique map to be possible r must be a primitive root 
of N. Let us consider N = 7, for which one of the primitive roots of 7 is 3. From (13) the mapping equation is 

q = (3P)mod N where p = 0,1,2, .... ,5 

For p - 3 , q = (27)mod 7 = 6. Table 9.1 gives the corresponding values of p and q which confirm the 
one-to-one nature of the mapping. 

It should be emphasized that for any prime N, the primitive root r, is not unique. For example table 9.2 
illustrates the mapping given by (13) for N = 7. From this table you can see that the mapping is unique and 
cyclic for r = 3 and r = 5 which are the primitive roots of 7. In most practical cases the smallest primitive root 
is often selected. 



146 

Table 9.1 The mapping corresponding to equation (13) for r = 3 

r\p 0 1 2 3 4 5 6 7 8 9 10 11 12 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 2 4 1 2 4 1 2 4 1 2 4 1 
3" 1 3 2 6 4 5 1 3 2 6 4 5 1 
4 1 4 2 1 4 2 1 4 2 1 4 2 1 
5" 1 5 4 6 2 3 1 5 4 6 2 3 1 

6 1 6 1 6 1 6 1 6 1 6 1 6 1 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 1 1 1 1 1 1 1 1 1 1 1 1 1 

9 1 2 4 1 2 4 1 2 4 1 2 4 1 
10 1 3 2 6 4 5 1 3 2 6 4 5 1 
11 1 4 2 1 4 2 1 4 2 1 4 2 1 
12 1 5 4 6 2 3 1 5 4 6 2 3 1 
13 1 6 1 6 1 6 1 6 1 6 1 6 1 

" Note that r = 3 and r = 5 give unique mapping and are 
therefore the primitive roots of 7. 

Table 9.2 Values for q in the mapping q = (rP)mod7 

If N is prime and r is primitive root of N then we would like to apply the mapping given by (13) to an N-point 
OFT. Referring to the OFT equation (12), it can be seen that the subscripts nand k vary from 0 to N - 1 
whilst in the mapping given by (13) the variable q assumes values from 1 to N - 1 i.e it excludes zero. To 
overcome this problem we write the OFT equation (12) in the following form 

N-1 

X(O) = L z(n) (14a) 

N-1 

X(k) - z(O) = L z(n)WNk k = 1, ... ,N-1 (14b) 

i.e. we separate the expressions for the zero-frequency OFT component X(O) ( the d.c. term) which is very 
simple. This expression consists of N additions only and if required can be calculated directly. 

We are left with OFT components X(k) corresponding, to k = 1,2, .. N - 1, which are given by (14b). Note 
that in this equation we have taken z(O) to the left-hand side so as the summation over n is from n = 1 to 
n = N - 1. We can now apply the mapping given by (13) to equation (14) via the following transformations, 

m = 0, 1 , ...... , N - 2 (15) 

k=(r')modN l=0,1, ...... ,N-2 (16) 

which result in a permutation of the terms in the summation and a change in the order of the equations. 
Equation (14b) then becomes: 

N-2 

X[(r')modN)- z(O) = L z[(rm)modN)Wjy"m)modNJ[(rl)modN] (17) 
m=O 

where l = 0, 1,2, ...... N - 2 



9 Discrete Fourier transform with the IMS A100 147 

Remember that the twiddle factor. WN. is cyclic in N. therefore we have 

N-2 

X[(r')modN] - x(O) = L x[(rm)modN]W;m<l) (18) 
m..o 

where l = 0,1,2, ...... N - 2 This equation indicates that the sequence X[(r')modN] - x(O) can be calculated 
via a circular correlation of the permuted input sequence x[(r')mod N] and the sequence e-2"i(r')/N. To see 
this clearly let us consider in detail an example for a DFT of length 7. 

The expression for a 7-point DFT is given by 

6 6 

X(k) = L x(n)WNk = L x(n)e-2"ink/7 (19) 
n..o n..o 

where 11., k = 0, 1,2, ...... N - 1 

This DFT equation can be expressed in matrix form as: (The subscript 7 has been dropped from W7 for 
convenience) 

X(O) WO WO WO WO WO WO WO x(O) 
X(1) WO W1 W2 W3 W4 W5 W6 x(1 ) 
X(2) WO W2 W4 W6 W1 W3 W5 x(2) 
X(3) WO w3 w6 W2 w5 w1 w4 x(3) (20) 
X(4) WO W4 W 1 W5 W2 W6 W3 x(4) 
X(5) WO W5 W3 W1 W6 W4 W2 x(5) 
X(6) WO W6 W5 W4 W3 W2 W1 x(6) 

The superscript in each wnk is evaluated mod 6. Noting that WO = 1 and separating the equation for X(O) 
we can rewrite equation (20) as: 

X(1) - x(O) W1 W2 W3 W4 W5 W6 x(1 ) 
X(2) - x(O) W2 W4 W6 W1 W 3 W5 x(2) 
X(3) - x(O) W3 W6 W2 W5 W 1 W4 x(3) 
X(4) - x(O) W4 W1 W 5 W2 W6 W3 x(4) 

(21) 

X(5) - x(O) W5 W3 W1 W6 W4 W2 x(5) 
X(6) - x(O) W 6 W5 W4 W3 W2 W1 x(6) 

and 
6 

X(O) = Lx(n) (22) 
n=ll 

The expression for X(O) i.e equation (22) is a simple summation and is assumed to be evaluated separately. 

Dealing with the computationally intensive part of the transform i.e. equation (21). we can apply the mapping 
given by (13) to this equation which would convert equation 21 into a cyclic correlation suitable for imple
mentation using IMS A100 transversal filter. We choose r = 3 which is the smallest primitive root of 7. 
The mapping would thus correspond to that given by table 9.1. We first apply the permutation given by this 
mapping to the input sequence of x(n)'8. This would correspond to a column permutation of the twiddle matrix 
as shown in (23). 

X(1) - x(O) W1 W3 W2 W6 W4 W5 x(1 ) 
X(2) - x(O) W2 W6 W4 W5 W1 W3 x(3) 
X(3) - x(O) W3 W2 W6 W4 W5 W1 x(2) (23) 
X(4) - x(O) W4 W5 W1 W3 W2 W6 x(6) 
X(5) - x(O) W5 W1 W3 W2 W6 W4 x(4) 
X(6) - x(O) W6 W4 W5 W1 W3 W2 x(5) 

Note that the matrix equations (23) and (21) are essentially the same and their difference is only in the order 
of the terms. Next we apply the same mapping to the column matrix containing X(k) - x(O) terms in equation 



148 

(23), this would of course correspond to a similar permutation of the rows of twiddle matrix in (23); and the 
result is given as equation (24). 

X(1) -:1:(0) W1 W3 W2 W6 W4 W5 :1:(1) 
X(3)-:l:(0) W3 W2 W6 W4 W5 W1 :1:(3) 
X(2)-:l:(0) W2 W6 W4 W5 W1 W3 :1:(2) 

(24) 
X(6)-:l:(0) W6 W4 W5 W1 W3 W2 :1:(6) 
X(4)-:l:(0) W4 W5 W1 W3 W2 W6 :1:(4) 
X(5)-:l:(0) W5 W1 W3 W2 W6 W4 :1:(5) 

Referring to equation (24) it can be seen that the twiddle-factor matrix has the property that each row can 
be obtained by a left-shift (rotate) of the previous row. This means that the sequence {X(1) - :1:(0), X(3)
:1:(0), X(2) - :1:(0), X(6) - :1:(0), X(4) - :1:(0), X(5) - x(O)} can be obtained by performing a circular con
volution between the sequence {x(1), :1:(3), :1:(2):1:(6), x(4), :I:(5)} and a permuted twiddle factor set given by 
{W1, w3 , w2, w6 , w4, W5}. 

Figure 9.3 shows how this circular convolution can be implemented using a transversal filter structure. For the 
moment let us confine our attention to the canonical transversal filter structure and assume that the transversal 
filter is capable of complex processing i.e. both input data x(n) and the twiddle factors are complex. It will 
be shown later how a single IMS A 100 device can be used to implement this complex processing. Two 
implementations are shown in figure 9.3. 

:1:(0) output sequence 
X(5) X(4) X(6) X(2) X(3) X(1) 

(a) circulating the twiddle factors time 

x(O) output sequence 
X(5) X(4) X(6) X(2) X(3) X(1) 

(b) circulating the permuted input sequence time 

Figure 9.3 Prime number transform implementation based on the transversal filter structures 

In the first implementation, figure 9.3a, the permuted twiddle factors are used as the inputs to the transversal 
filter. These twiddle factors are first loaded into the filter with the input switch at position 1 and then circulated 



9 Discrete Fourier transform with the IMS A100 149 

with the input switch at position 2. The output samples, as shown in figure 9.3a, would correspond to the 
OFT of the input sequence z(n). You should be able to confirm this by referring to the matrix equation given 
by (24). For the arrangement in figure 9.3a the allocation of the data sequence z(n) to the coefficient memory 
can be formulated as: 

C(i) = z[(rN - 2- i )mod NI i = 0, 1, ... , N - 2 (25) 

where N is 7 in this case. Similarly the twiddle factor sequencing, at the input of figure 9.3a, can be 
mathematically expressed as: 

Input(i) = w[(r')mod NJ i = 0, 1, .... , N - 2 (26) 

The output sequence for figure 9.3a is given by: 

Output(i) = X[(ri)mod NI i = 0, 1, ..... , N - 2 (27) 

Figure 9.3b shows the second possible implementation in which the coefficient memory contains the permuted 
twiddle factors and the permuted data sequence is loaded at the input of the filter and is circulated to generate 
the OFT of the input samples. For this implementation the generalized equations for the input and output 
sequences and the allocation of coefficient memory are: 

C(i) = w[(r')mod NJ i = 0,1, ..... , N - 2 

Input(i) = z[(rN - 2- imod NI i = 0, 1, ..... , N - 2 

Output(i) = X[(ri)mod NI i = 0, 1, ..... , N - 2 

(28) 

(29) 

(30) 

Equation (25) to (27) and (28) to (30) define the required permutation and sequencing for a generalised prime 
number transform based on the canonical transversal filter structure. 

It was argued earlier that the IMS A100 implementation of the transversal filter structure (figure 9.1b) is 
identical in behaviour to that of the canonical form (figure 9.1 a). The only difference is that in the canonical 
form the first coefficient, C(O), is associated with the left most memory location (see figure 9.1 a) while in 
the IMS A1 00 implementation the right most coefficient register is allocated to C(O). We will now show how 
our 7-Point OFT can be implemented in complex form using the IMS A100 transversal filters. The input data 
samples z(n), the twiddle factors W n , and the OFT output samples X(n) can be expressed in terms of their 
real and imaginary parts as: 

z(n) = zr(n) + izi(n) 

wN = e-21r / N = COS(2;n) + iSin(-~n) = WR(n) + 3W I(n) 

X(n) = XR(n) + iXI(n) 

(31) 

(32) 

(33) 



150 

As mentioned earlier the IMS A100 device contains two sets of coefficient memories; at any instant one set 
of the coefficients is used in the computation whilst the other set can be accessed via a standard mem
ory interface. One very important feature of the device is that the two memory banks can be exchanged 
automatically at the beginning of every computation cycle. i.e. alternate set of coefficients are applied to 
the filter successively. This feature allows complex convolution and correlation to be performed in a single 
device. (This is unlike most conventional realizations of complex convolution/correlation where, as shown in 
figure 9.4, four transversal filters are often used to implement these complex functions). This is achieved by 
appropriately loading the two coefficient memories with combinations of real and imaginary samples of the 
reference signal and using the continuous memory-swap mode to implement complex processing. The real 
and imaginary parts of the signal to be correlated (or convolved) with the reference signal are then applied 
alternatively to the input of the IMS A100 device. An application note entitled 'Complex Processing Using the 
IMS A 100 Transversal Filters' covers this topic in detail and is available from INMOS. The remainder of this 
section gives an overview of the topic in relation to complex OFTs. 

real part 
of the input ---+\ 

signal 

imaginary part 
of the input 

signal 

transversal filter 
containing the real part 
of the reference signal 

transversal filter 
containing the imaginary part 

of the reference signal 

transversal filter 
containing the imaginary part 

of the reference signal 

transversal filter 
containing the real part 
of the reference signal 

real 
part of the 

result 

imaginary 
part of the 

result 

Figure 9.4 Conventional complex correlator/convolver involving four transversal filters 

Figure 9.5 shows the IMS A100 implementation of the 7-point OFT example, corresponding to figure 9.3a, 
where the twiddle factors are circulated. The notation used for real and imaginary parts of the signals is that 
given by equations (31) to (33). The twiddle factors are applied to the input in a sequence identical to that 
used in figure 9.3a, with the real part of each sample followed by its imaginary part. The output sequence 
is also shown. It is assumed that the delay-and-add chain in the IMS A 100 is cleared first by writing several 
zero's to the input. (Note that this is only needed once and any further transforms do not need this flushing). 
The memory banks are set in their continuous-swap mode. In the first computation cycle, with W R(1) on the 
input, the memory bank 'A' is used in the computation; in the second cycle, when W /(1) is applied to the 
input, the memory bank '8' is used in the computation; in the third cycle W R(3) is the input sample and the 
memory bank A is used in the computation and so on. Note also that for each output sample an external 
addition (with either xr(O) or xi(O) depending on whether the output corresponds to real or imaginary part of 
the result) has to be carried out as dictated by equation (24). This is a negligible overhead compared to the 
computation performed by the transversal filter and can easily be carried out by the host processor. 



9 Discrete Fourier transfonn with the IMS A100 151 

In figure 9.5 the first eleven output samples (denoted with *) are partial results and as such are not fully valid. 
This is due to the inherent delay associated with any transversal filter implementation. In continuous process
ing, however, it is possible to avoid these undefined output samples and to achieve a duty cycle of 100% by 
updating two coefficient memory locations with new data samples. For example in figure 9.5, assumming that 
we have applied the first cycle of the twiddle factor values i.e. W R(1), W 1(1), W R(3), W 1(3) ...... W R(5), W 1(5) 
to the input, it is possible to update the coefficient locations corresponding to :ti(1) and zr(1) in memory bank 
A with the imaginary and real parts of the first sample of the new input data block. This can be done during 
the latest computation cycle (with W 1(5) as the input twiddle factor) when the memory bank A is free. In 
the next cycle when W R(1) is applied to the input, zr(1) and -zi(1) in the memory bank B can be updated 
with new data values while this memory bank is free. In the following computation cycle when W /(1) is the 
input twiddle factor, the coefficient memory locations corresponding to zi(3) and zr(3) in the memory bank A 
are updated and so on. This technique removes the undefined output samples and achieves a duty cycle of 
100%. 

wr(1) 
wi(1) 
wr(3) 
wi(3) 
wr(2) 
wi(2) 
wr(6) 
wi(6) 
wr(4) 
wi(4) 
wr(5) 
wi(5) 
wr(1) 
wi(1) 
wr(3) 
wi(3) 

wi(2) CI> wr(2) j 
wr(6) .§ 
wi(6) -
wr(4) 
wi(4) 
wr(5) 

xr(O) 
or 

xi(O) 

IMS A100 

time 

• indicates unknown sample values 

Figure 9.5 IMS A100 implementation of a 7 point complex OFT, 
corresponding to the canonical transversal filter realization of figure 9.3a 

memory 
bank 
'B' 

'A' 



152 

Figure 9.6 depicts the IMS A100 implementation of the 7-point OFT, corresponding to figure 9.3b, where the 
input data samples are recirculated and the twiddle factors are stored in the coefficient memories. The input 
data samples are applied to the input in a sequence Identical to that used in figure 9.3b, with real part of 
each sample followed by its imaginary part. The output sequence Is also shown. Other characteristics of this 
implementation are identical to the previous case with the exception that in this implementation it is impossible 
to avoid initial undefined output samples even when several continuous transforms are to be performed. 

The IMS A 1 00 devices can be cascaded without any external components by simply connecting the output 
of the first device to the cascade-input of the second device. This simple cascading allows transversal 
filterslcorrelators with many stages to be easily implemented. 

xr(5) 
xi(5) 
xr(4) 
xi(4) 
xr(6) 
xi(6) 
xr(2) 
xi(2) 
xr(3) 
xi(3) 
xr(1 ) 
xi(1) 
xr(5) 
xi(5) 
xr(4) 
xi(4) 

xi(6) .. xr(6) j 
xr(2) .5 
xi(2) .. 
xr(3) 
xi(3) 
xr(1) 

xr(O) 
or 

xi(O) 

IMS A100 

time 

* indicates unknown sample values 

Figure 9.6 IMS A100 implementation of a 7 point complex OFT 
corresponding to the canonical transversal filter realization of figure 9.3b 



9 Discrete Fourier transform wHh the IMS A100 153 

Using prime-number algorithm there are basically two ways to implement A 100 based OFT processors capable 
of handling long data blocks. The obvious approach is to cascade several devices resulting in a sufficiently 
large correlator/convolver capable of dealing with the whole data block size. This approach is only acceptable 
for moderate block sizes and becomes impractical if the data size is very large. The second approach is based 
on mapping techniques which convert a large OFT into several independent short transforms. These short 
transforms can then be evaluated either concurrently or sequentially, depending on the required performance. 
This means that the decomposition techniques described here are particularly useful as they provide the basis 
for trade-ofts between cost and speed. This subject will be discussed in detail in section 5 of this application 
note. 

As mentioned earlier the IMS A100 transversal filter has an on-chip industry standard memory interface which 
allows the part to be fully memory-mapable. Figure 9.7 shows a schematic diagram of a simple system making 
use of this memory interface. When implementing the prime transform algorithm on this system, the IMS A100 
(or arrays of them) will perform the bulk of the computation and the host processor will be responsible for 
data permutation (using look-up tables), evaluating the X(O) term (equation 22), and performing the auxiliary 
addition involving either xr(O) or xi(O) (see figures 9.5-9.6). 

host processor 

IMS A100's 

memory 

IMS A100's are memory mapped using the on-Chip industry standard memory interface 

Figure 9.7 Schematic diagram of a simple IMS A100 based system 



154 

Another possible system configuration is shown in figure 9.8. This is particularly suitable for the arrangement 
of figure 9.5. The real and imaginary parts of the twiddle factors are pre-loaded in the memory MEM1 and 
are supplied to the A100 via the dedicted input port. The sequencer shown in figure 9.8 could be a simple 
counter. The processor accesses the coefficient memories and the output result via the IMS A100's memory 
interface. Other system configurations are possible. For example figure 9.9 shows the schematic of a high 
performance signal processing system using a dedicated controller. 

data 

"'" 
~ 

-

C 
mux ~ 

MEM1 

~ 

I sequencer 
I 

mux 

host processor 
address control 

II • I decode 

~ 

MEMO • 
I I I11III 

IMS A100's 
The twiddle factors are 

pre loaded in MEM1 
and are supplied to the 

IMS A1 00 via the 
dedicated input port. 

The coefficient memories 
and the output results 

are accessed via 
the IMS A100's 

memory interface. 

Figure 9.8 An implementation particularly suitable for the arrangement in figure 9.5 



9 Discrete Fourier transform with the IMS A100 155 

special-purpose controller & sequencer 

A D C 

other 
processing 
elements II II • 

II • II • • 
IMS A100's ~ 

memory memory 
system 1 system 2 

Memory system 1 
handles input and output 

of the IMS A100 

Memory system 2 
handles the IMS A100 

coefficients 

Figure 9.9 Schematic block diagram of a high performance involving a special purpose controller 

9.4.2 The chirp-z transform 

Another algorithm which converts the DFT equation into a convolution (or correlation) is the chirp-z transform. 
The reason for the name chirp is that the transform uses a sampled linear frequency-modulated carrier which 
in signal processing is often termed a 'chirp signal'. In the previous section we saw that the prime number 
transform consisted of three operations, namely 

(i) Data input permutation. 

(ii) Convolution (or correlation) of the permuted data with a permuted sequence of twiddle factors. 

(iii) A final permutation to obtain the correct output sequence. 

Figure 9.10 summarizes the principles of the prime number transform algorithm. The auxiliary computation 
for zeroth input sample and evaluation of X(O) are also shown in this schematic diagram. The structure of the 
chirp-z DFT algorithm is similar to that of the prime number transform technique and consists of the following 
sequence of three operations: 

(i) Premultiplication of the input sequence x(n) by the chirp e(-"in2/N). 

(ii) Convolution (or correlation) of the resulting sequence with a second chirp signal. 

(iii) Post-multiplication of the resulting sequence by the chirp signal e(-"ik'/N). 

These operations are summarized in figure 9.11. Comparing figure 9.10 and figure 9.11, it can be seen that 
the major difference between the two algorithms is that in the chirp-z transform the permutation operations 
are replaced by multiplications. 



156 

x(n) complex convolution 
with a permuted exponential 

X(O)fi 
: E X(O) 

x(N -1) 

Figure 9.10 The principle of the prime number transform 

x(O) 

x(n) complex convolution 
with a chirp signal X(k) 

premultiplication 
by the chirp 
e(-ffjn2/N) 

postmultiplication 
by the Chirp 

e(-ffjIr.2/N) 

Figure 9.11 The basic principle of the CZT 

X(k) 

In the CZT the convolution (correlation) operations can be implemented using the IMS A100 transversal 
filter, but the pre- and post-multiplications have to be done externally. In many applications data permutation 
may be preferred to multiplication in which case the prime numbers approach may be considered more 
advantageous. However there are applications (e.g beamforming) where the CZT, in particular a simplified 
version of it referred to as sliding CZT, is preferred. 

To understand the CZT algorithm we start from the OFT equation 

N-1 N-1 

X(k) = L x(n)e-2ffinlr./N = L x(n)W;1r. k = 0, 1, ... N - 1 (34) 
n=<l n..o 

and replace the term -2nk in the complex exponential with the seemingly more complicated expression 

(35) 

hence 
N-1 N-1 

X(k) = e-jffk2/N L [x(n)e-jffn2/N][eiff(k-n)2/Nl = e-jffk2/N L y(n)[ejff(lr.-n)2/N1 (36) 
n=<l n=<l 

where k = 0,1, ..... , N - 1. 

In equation 36, the term X(k) consists of three operations: 

(i) Multiplications of the samples X(n) with a complex linear frequency-modulated signal e-jffn2/N to 
form a new set of samples y(n); This operation is often referred to as premultiplication by a chirp, 

(ii) the convolution of y(n) with a second-linear frequency-modulated signal (the term ejfr(k-n)2/N and 

(iii) post multiplication by e- jffk2 / N . 



9 Discrete Fourier transform with the IMS A100 157 

Note that if only the power spectrum of the signal is required the final operation can be omitted, since e-ifrk2 IN 
represent only a phase-shift and I e-ifrk2 IN I = 1. Also in operation (ii) the term (k - n)2 in the complex 
exponential is equal to (n - k)2 so that a convolution operation, in this case, is identical to that of a correlation. 
Figures 9.12 and 9.13 show examples for a 6-point CZT implemented using the canonical transversal filter 
structure. In these diagrams it is assumed that the transversal filter is capable of complex processing. As 
described in the previous section the complex conolution/correlation can easily be implemented using the 
IMS A 100 transversal filter chip. 

f(5) 
f(4) 
f(3) 
f(2) 
f(1 ) 
f(O) 
f(1 ) 
f(2) 
f(3) 
f(4) 

where f(k)=efrik2/6 X(K)'s in order 

Figure 9.12 Schematic diagram for 6 point CZT using canonical transversal filter structure 

In figure 9.12, samples corresponding to the product of the input data and the premultiplying chirp are stored 
as the filter coefficients and a second sampled chirp is fed to the input of the convolver. Note that the 
convolver has N-complex points. Figure 9.13 shows an alternative implementation where the product of the 
input data samples and the premultiplying chirp samples are the inputs to the convolver and a chirp signal 
is used as the reference signal in the coefficient store. Note that in this arrangement the convolver has to 
have 2N - 1 complex points. However when the number of points in the transform are even (N =even), it 
can easily be shown that the sampled chirp signal f(n) = eifrn21N has the following properties: 

(i) it is periodic with a periodicity equal to N i.e. 

f(n) = f(n + N) (37) 

(ii) It is symmetrical about n = If i.e. 
f(n) = f(N - n) (38) 

These properties convert the convolution in figure 9.13 into a circular one which can be implemented with an 
N-point complex transversal filter. 

In many applications the PNT may be preferred to the CZT because of the requirement of pre- and post
multiplications in the latter. (Remember that in the PNT, permutation operations are involved rather than 
multiplications). 

As there are considerable amount of literature available on CZT, it will not be considered here in any more 
detail. 



158 

x(n)'s~ 

e- trjn2/ 6 

X(k)'s 

Figure 9.13 Alternative implementation of the 6 point CZT 

9.5 Multidimensional index mapping for OFT decomposition 

In the previous sections, algorithms which convert the OFT into convolution/correlation operations were pre
sented. These algorithms, particularly the PNT, are suitable for implementation using the IMS A100 transver
sal filter. 

In order to compute the OFT of long data sequences, one approach is to cascade several the IMS A100 
devices so that sufficient convolution/correlation points are made available. This approach is only acceptable 
for moderate data sizes, and does not provide the optimum performance for a given number of devices. 

In this section, index mapping techniques are described which allow long OFT's to be decomposed into sev
eral shorter transforms. These shorter transforms can then be efficiently implemented by using IMS A 100 
transversal filters. The decompOSition techniques described here can be viewed as generalised algorithms, 
with radix-2 FFT being a special case of these more general partitioning techniques. These mapping tech
niques provide the basis for designing highly concurrent systems and optimization in terms of performance 
and cost. 

9.5.1 Basic concepts of index mapping 

The essence of these mapping techniques is that by a simple change of variable, the original complex 
problem is converted into several easy ones. Before applying these techniques to the OFT, let us consider 
a few examples which should help to familiarize the reader with the terminologies used in general index 
mapping. 

Consider a one-dimensional array of data x(n), n = 0 to N - 1, where N is the total number of elements in 
the array. For N = 6, the array elements will be given by 

{x(O) x(1) x(2) x(3) x(4) x(5)} 

Let us rearrange this one-dimensional array into a two-dimensional array as shown below: 

[ x(O) x(1) x(2) x(3) x(4) x(5) 1 map [x(O) x(1) X(2)] = [ y(O,O) y(O, 1) y(0,2)] (39) 
<=* x(3) x(4) x(5) y(1, 0) y(1, 1) y(1,2) 



9 Discrete Fourier transform with the IMS A100 159 

We have 'mapped' the original one-dimensional array, x(n) ,into a two-dimentional array y(n" n2) . It can 
be seen that in this example the mapping is given by the following linear equation. 

(40) 

where n, = 0, 1 and n2 = 0, 1,2. 

The mapping is said to be one-to-one (unique) as all the elements in the original array, x(n) ,appear in the 
two-dimensional array y(n" n2) . 

As a second example consider the following mapping: 

[x(o) x(1) x(2) x(3) x(4) x(5) 1 ~ [~((03» x(2) X(4)] _ [ y(O, 0) y(O, 1) y(0,2)] (41) 
~ ~ x(5) x(1) - y(1,0) y(1,1) y(1,2) 

This mapping has been obtained from 
n = (3n, + 2n2) mod 6 (42) 

Note that in equation (42) the index n is evaluated modulo N (in this case N=6) and it is therefore 
cyclic in N. 

As a final example let us apply the following mapping 

(43) 

to our 6-element array, which gives; 

[x(O) x(1) x(2) x(3) x(4) x(5) 1 map [x(O) x(2) X(4)] _ [ y(O, 0) y(0,1) y(0,2)] (44) 
<==:> x(2) x(4) x(O) - y(1, 0) y(1, 1) y(1 ,2) 

Obviously this map is not unique as x(1), x(3) and x(5) are not represented in the matrix y(n" n2). 

9.5.2 Generalisation and conditions for uniqueness 

Let us now generalize the ideas developed in the previous examples. We are interested in mapping a one
dimensional array of length N = N, X N2 into a two-demensional array that is N" by N2 in size. In other 
words, the one-dimensional array 

x(n) for n = 0, 1, ... N - 1 

is to be mapped into a two-dimensional array 

y(n" n2) for n, = 0, 1, ... N, - 1, and n2 = 0, 1, ... N2 - 1. 

The major requirement is that the mapping must be unique. This mapping can be represented by 

[ 

y(O,O) 

[ 
~ y:. (1,0) x(O) x(1) x(2) ... x(N -1) 1 ~ 

y(N, -1,0) 

where 

y(0,1) 
y(1, 1) 

y(N,,1) 

y(0,N2 -1) 1 
y(1,N2 -1) 

~(N' - 1,N2 -1) 

(45) 

(46). 

This map, in general, can assume many different forms, but the one particularly useful to the OFT is the linear 
form, 

n = (M,n, + M2n2) mod N. (47) 

Note that n is evaluated modulo N, making the map cyclic in n. In order for this map to be unique and 
one-to-one, the mapping constants M, and M2 must satisfy certain conditions. In the literature (references 
5 & 6) these conditions have been derived from number theory for two cases which are described in the 
following two subsections. 



160 

Relatively prime case 

In this case NI and N2 are relatively prime and have no common factor. In the literature this case is often 
denoted by: 

(48) 

which means that the greatest common divisor of NI and N2 is unity. For example (5,7) = 1, (8,9) = 1 and 
(6,25) = 1. For this case the conditions on MI and M2 which make the mapping, given by (47), unique and 
one·to-one are: (references 5 & 6) 

[(MI = aN2) and/or (M2 = ,BNI)] and (MI, Nil = (M2, N2) = 1 

where a and ,B are integers.ln other words, to ensure a unique maping for this case: 

(MI must be a multiple of N2) 
or (M2 must be a multiple of NI) 
or (MI and M2 must be multiples of of N2 and NI respectively) 

and MI and NI must be relatively prime. 

and M2 and N2 must be relatively prime. 

(49) 

As an example consider NI = 5, N2 = 7, N = 35. From (49) we have to choose MI a multiple of N2 or 
M2 a multiple of NI or both. Let us make MI the simplest multiple of N2 i.e. MI = aN2 = N2 = 7, this also 
satisfies (MI, NI) = (7,5) = 1. Then noting that we must have (M2, N2) = (M2, 7) = 1, possible values for 
M2 are: 1,2,3,4,5,6,8,9,10,11,12, 13, 15. While M2 = 7,14,21 ... are not allowed as they are not relatively 
prime with N2. (Note also that for MI = 5, 10, 15, we also have M2 = aNI, which is allowed.) 

If MI is chosen to be MI = 2 X N2 = 14, then again the same values of M2 as above are valid. 

This example shows that a large class of unique mappings exist for this case. 

Common factor case 

In this case NI and N2 have a common factor r. i.e. their greatest common divisor is r and we have: 

(NI,N2) = r (50) 

For example (10,5) = 5, (9,12) = 3, and (7,21) = 7. For this case the conditions on MI and M2, making the 
mapping given by (47) unique, have been shown to be: (references 5 & 6) 

or 
2) (MI'; aN2) and (M2 = ,BNI) and (,B,N2) = (MI,NI ) = 1 

where a and ,B are integers. 

(51a) 

(51 b) 

As an example consider NI = 9, N2 = 15,N = 135. From (51a) we can choose, MI = aN2 = N2 = 15. The 
condition (a, NI) = (1,9) = 1 is already satisfied. From (51 a), values of M2 which are allowed are those which 
satisfy (M2 .; ,B x 9) and (M2, 15) = 1. Therefore following values of M2 are allowed 

M2 = 1,2,4,7,8,11,13,14,16,17,19,22, ..... 

M2 = 3,5,6,9, 10, ... are not allowed as they do not satisfy (M2, 15) = 1. 

Alternatively we could have chosen MI = aN2 = 2 x 15 = 30, then possible values of M2 would again be 

M2 = 1,2,4,7,8,11,13,14, ...... 

However we could not have chosen MI = aN2 = 3 x N2 since this violates the requirement (a, NI) = 1. 



9 Discrete Fourier transform with the IMS A100 161 

9.5.3 Application of Index mapping to DFT decomposition 

Having covered the basic principle of index mapping and the required conditions for uniqueness. let us apply 
the mapping given by (47) to the OFT and investigate its consequences. 

Remember that the OFT equation is given by 

N-1 N-1 
X(k) = L z(n)e-2trjn/C/N .. L z(n)W;/c k = 0, 1, ... N - 1 (52) 

n-o n-o 

and that the exponent of W is evaluated modulo N since 

(53) 

Let us apply the following mappings to the indices nand k; Le. to both the input data array z(n). and the 
result array X(k); 

n .. (M1 n1 + M2n2) mod N 

k = (L1k1 + L2k2) mod N 

(54) 

(55) 

Where n1. and k1. are indexed to (N1 -1) and n2 and k2 to (N2 -1). As shown below these mappings convert 
the one dimensional arrays z(n) and X(k) into two-dimensional matrices y(n1, n2) and Y(n1, n2) respectively . 

[z(0)z(1) .. . z(n) ... z(N -1)] :: 

And 

[X(0)X(1) .. X(k) •. X(N -1)]:: 

where Y(k1, k2) = X(k). 

y(O,O) 
y(1,0) 

y(0,1) 
y(1,1) 

y(N1 - 1 , 0) y(N1, 1) ..... . 

Y(O,O) 
Y(1,0) 

Y(0,1) 
Y(1,1) 

Y(N1 -1,0)Y(N1, 1) ..... . 

Applying these mappings to the OFT equation gives: 

N,- 1N2-1 

.. . y(O, N2 -1) 

.. . y(1, N2 - 1) 

... Y(0,N2-1) 

... Y(1,N2-1) 

X(L1k1 +L2k2) = L L Z(M1 n1 +M2n2)W;/c 
n,-o n2=O 

or 
N,-1N2-1 

Y(k1, k2) = L L y(n1, n2)W;/c 
n,-o n2-o 

with 

(56) 

(57) 

(58) 



162 

Let us now partially define the maps in (54) and (55) by setting; 

M2 '" PN, and L, '" "fN2 (59) 

Where P and "f are integers. 
These assignments make the last term in (58) i.e W!f2L,"21c, equals to unity.Let us now separately consider 
each one of the two cases studied earlier and investigate the effect on the three remaining terms in (58). 

Case 1 - prime factor decomposition 

For this case N, and N2 are assummed to be relatively prime. From (49) it can be seen that it is possible to 
also set: 

M, = OtN2 and L2 = 5N,. (60) 

This makes the second term in (58) i.e. Wlf,L ... ,1c2 also equal to unity. The remaining two terms in (58) can 
be written as: 

WM.L.N.1c. _ W/JN,6N, ... ,.. W/J6N, ... 1c. 
N - N '" N. 

Wlf,L,N,1c, = W;N2"/N ... ,1c, = W;;N.",1c, 

The OFT equation will therefore become: 

where k, = 0,1,2, ... , N, - 1 and k2 = 0, 1,2, ... , N2 - 1 

(61) 

(62) 

(63) 

The advantage of this equation is that it uncouples the OFT calculations in the sense that the N-point OFT 
can be mapped into two completely separate sets of short OFT's. In evaluating the Y(k" k2)'S, in equation 
(63), the inner summations over n2 are operations involving separate rows of the matrix y(n" n2). The outer 
summations over n" on the other hand, are column operations and can be carried out after the row operations 
are completed. By suitable choice of 01, p, "f, and 5, each one of these summations can be expressed as a 
OFT of the corresponding row or column. Goods (reference 8) suggested: 

01 =P=1 
"f = (Ni') mod N, 
5 = (N1') mod N2 

(64) 

[Note that in modulo arithmetic the reciprocal of a number (g) mod N is denoted by (g-') mod Nand 
is defined as: 

[(g) mod N][(g-' mod N] = 1. 

For example 
(3-') mod 7 = (5) mod 7 

since 5 x 3 = 15 which is 1 modulo 7.] 

Applying (64) to (63) gives: 

This is now a true two-dimensional OFT with the mapping of nand k given by: 

n = (N2n, + N, n2) mod N 
k = {[(Ni') mod N,]N2k, + [(N1') mod N2]N,.k2} mod N 

(65) 

(66a) 
(66b) 

In this example the mapping of n is of the simplest form and that of k is the so called Chinese Remainder 
Theorem (CRn. 



9 Discrete fourier transform with the IMS A100 163 

Having mapped the original sequence x(n) into the two dimensional array y(n1, n2), equation (65) indicates 
that the desired OFT can be evaluated by the following two steps: 

(i) Performing an N2-point OFT on each row of matrix y(n1' n2). This corresponds to a total of N1 N2-
point row OFT's and would convert the matrix y(n1, n2) into the matrix u(n1, k2) as shown in fig
ure 9.14. 

(ii) Performing an N1-point OFT on each column of the resultant matrix, u(n1, k2), to yield Y(k1, k2)' The 
desired output sequence X(k) is related to Y(k1, k2) via the mapping given by (66b). 

5-point OFT's 

k2h 

"i 
"i "i 

"i "i "i "i 
1--+-+-1-+--.4 "i "i "i "i "i 
I-+-t-t-+--j "i "i "i "i "i 
I-+-t-t-+--j"i "i"i"i 

"i "i "i "i 
"i "i "i "i 

I-+-t-t-+--j "i "i "i 
1-+-4=1--------j "i "i 
1-+-'-----1 "i 

7-point OFT's 

The OFT of the 35 data points is obtained by a set of row OFT's followed by a set of column OFT's 

Figure 9.14 Schematic representation of equation 65 for N = N1 X N2 = 7 x 5 

Example: 

In this example we consider the evaluation of the OFT of a 35-element data array x(n) (n = 0 to 34) via the 
mapping techniques discussed so far. Let us take N = N1 X N2 = 7 x 5 = 35 I.e. N1 = 7 and N2 = 5. The data 
array x(n) is first mapped into a two dimensional array y(n1' n2) via the mapping given by equation (66a) I.e. 

n = (5n1 + 7n2) mod 35 (67) 

The array y(n1, n2) would thus be as follows: 

x(O) x(7) x(14) x(21) x(28) 
x(5) x(12) x(19) x(26) x(33) 
x(10) x(17) x(24) x(31) x(3) 

y(n1' n2) = x(15) x(22) x(29) x(1 ) x(8) 
x(20) x(27) x(34) x(6) x(13) 
x(25) x(32) x(4) x(11 ) x(18) 
x(30) x(2) x(9) x(16) x(23) 

The next step is to perform the OFT of each row of this matrix. Obviously in this example this involves seven 
5-point OFT's as shown in figure 9.14. The result of these row OFT's is a new matrix denoted by u(n1, k2)' 



164 

Next the OFT of each column of the matrix u is evaluated. As shown in figure 9.14 this involves five 7-point 
OFT's and yields the matrix Y(k1, k2)' The two dimensional array Y(k1, k2) contains desired OFT results X(k), 
with the allocations governed by the mapping given by equation (66b) i.e. X(k) = Y(k1, k2) with 

k = {[(Ni 1) mod N1)N2k1 + [(N,1) mod N2]N1.k2} mod N 
k = {[3]5 k1 +[3]7 kd mod 35 

= {15k1 + 21 kd mod 35 

The array Y(k1, k2) would therefore have the following arrangement: 

X(O) X(21) X(7) X(28) X(14) 
X(15) X(1) X(22) X(8) X(29) 
X(30) X(16) X(2) X(23) X(9) 

Y(k1, k2) = X(10) X(31) X(17) X(3) X(24) 
X(25) X(11) X(32) X(18) X(4) 
X(5) X(26) X(12) X(33) X(19) 
X(20) X(6) X(27) X(13) X(34) 

In a practical implementation, the IMS A 100 transversal filter can be used to perform these short row and 
column OFT's via the prime number transform algorithm described earlier. The important fact to note here 
is that each set of row (or column) OFT's consists of a number of totally independent short transforms (see 
figure 9.14). This allows various degrees of parallelism to be exploited very easily in acheiving the required 
specification. 

For example a single A 100 based OFT processor can be used to sequentially perform all the row OFT's 
followed by the column OFT's, or when extremeley high processing speed is essential, several such OFT 
processors can be employed in parallel to complete the independent row (or column) OFT's. In the extreme 
case, it is possible to compute all row and column OFT's concurrently in a pipelined system arrangement. 
The INMOS concurrent processor family (transputers) when combined with the IMS A100(s) provide an ideal 
environment for exploiting these algorithms. 

In arriving at equation (65) we applied the conditions given by (64) to equation (63). This resulted in the 
mapping given by (66) on which the last example was based. It is possible to use other values for a, p, 'Y, 
and 5 than those given by (64). 

For example we could have used: 
'Y =5=1 
a = (Ni 1) mod N1 
p = (N,1) mod N2 

This would have resulted in the mappings for nand k to be interchanged i.e. 

n = {[(Ni1) mod N1)N2n1 +[(N,1) mod N2]N1.n2} mod N 
k = (N2k1 + N1 k2) mod N 

Another interesting possibility is 
a=p='Y=5=1 

This would result in the simple mapping for both nand k i.e. 

n = N2n1 +N1n2 
k = N2k1 +N1k2 

but requires a modification in the W. We can see this by substituting (70) into (63) which gives: 

(68) 

(69a) 
(69b) 

(70) 

(71 a) 
(71 b) 

(72) 



9 Discrete Fourier transform with the IMS A100 165 

By defining 

and 

Equation (72) can be rewritten as: 

(73) 

This equation is very similar to (65), with the exception that a modified W is used. Equation (73) also maps 
into an arrangement similar to figure 9.14. The DFT's of course, would have to be calculated with the modified 
W. This still can be done via the prime number transforms by simply replacing W with W' in the transform. 

Case 2 - common factor decomposition 

Having covered the case where N1 and N2 were relatively prime, we now go back to equation (58) and 
consider the case where N1 and N2 have a common factor r, i.e. 

(N1,N2) = r 

Remember that we applied (59) to (58) which made the last term in (58) equal to unity i.e. we have: 

(74) 

Unlike the previous case we cannot use equation (60) to make the second terms in (74) equal to unity. This 
is because the equations in (60) would violate the necessary requirement, specified by (51), for one-to-one 
mapping. 

The term W!f,L2,.,k2 is referred to as a 'twiddle factor'. Referring to (51) and remembering that we have 
already usea the conditions given by (59), we can set 

which gives 

with the mapping given by: 
n = n1 +N1n2 
k = N 2k1 +k2 

(75) 

(76) 

(77a) 
(77b) 

Note that equation (76) is very similar to equation (65) with the exception of the existence of the twiddle term. 
Equation (76) can be interpreted as shown in figure 9.15. It can be seen that when N1 and N2 have a common 
divisor, N-complex multiplications have to be performed between the row and column DFT operations. In the 
previous case where N1 and N2 were assumed to be relatively prime no such multiplications were needed 
making the former mapping more efficient and easier to implement. 



166 

~ f+----y 

row OFT's twiddle factor 
multiplications 

N = N1 X N2 with N1 and N2 having a common factor 

1--4----1 f 

f-----+------j f 

f-----+-----j f 

column OFT's 

Figure 9.15 Mapping of an N point OFT into dimensions 

9.5.4 Extension to multiple dimensions 

The concepts presented in this application note were concentrated around a two-dimensional mapping. There 
is no reason why the same concepts cannot be extended to more dimensions. For example if 

N=N1 x N2X N3 

where N1,N2 and N3 are relatively prime. The original N-point transform can be carried out via N2 x N3, N1-
point, transforms followed by N1 x N3, N2-point, transforms followed by N1 x N2, N3-point, transforms. The 
eaSiest way to see this is to first map the N -point transform into a two-dimensional one with dimensions 

and 

This consists of N3, N1 x N2-point, transforms (row OFT's) followed by N1 x N2, N3-point, transforms 
(column DFT's). E~ch one of the N1 x N2-point transforms can then be decomposed into N1, N2-point, 
transforms follOW$d py N?, N1-point, transforms. 

Note that these multidim~nsiol}t;ll index mappings apply to both prime factor and common factor decom
pOSitions. In fact radix-2 FFT is nothing more than a common factor decomposition where all the factors 
N1, N2, N3, N4 ...•..... are made equal to 2. The advantage of the prime factor over the common factor 
decomposition is in that no twiddle matrix multiplications are needed for the prime factor case. 



9 Discrete Fourier transform with the IMS A100 

9.6 References 

An algorithm for the machine calculation of complex Fourier series, Cooley J.w., Tukey J.W., 
Math. Comput., Vol.19, pp 297-301, April 1965. 

2 On computing the discrete Fourier transform, Winograd S., 
Proc. Nat. Acad. Sci. USA, Vol.73, No.4, pp. 1005-1006, April 1976. 

3 Discrete Fourier transforms when the number of data samples is prime, Rader C.M., 
Proc. IEEE, Vol.56, pp 1107-1109, June 1968. 

4 The chirp z-transform algorithm and its application, Rabiner L.R., et ai, 
The Bell System Technical Journal, May-June 1969, pp 1249-1292. 

5 Index mappings for multidimensional formulation of the DFT an convolution, Burrus C.S., 
IEEE Trans. on ASSP, Vol.25, June 1977, pp 239-242. 

6 DFTIFFT and convolutional algorithms-theory and implementation, Burrus C.S., Parks T.w., 
Wiley-interscience Publication, New York 1985. 

7 Number theory in digital signal processing, McClellan J.H., Rader C.M., 
Englewood Cliffs, NJ, Prentice-Hall Inc, 1979. 

167 

8 The relationship between two fast Fourier transforms, Good I.J., IEEE Trans. on Comput., Vol. C-20, 
pp 310-317, March 1971. 



168 



mas Chapter 10 169 

e correlation 
and 
convolution 
with the 
IMS A100 



170 

10.1 Introduction 

The correlation process is widely used in many electronic systems including instrumentation, communication, 
medical ultrasonics, radar, sonar, control systems and other signal processing environments. The basic 
reasons for this widespread use can be attributed to the many useful characteristics exhibited by the correlation 
process. These properties include 

• The ability to recover a desired signal masked by noise or other interferences. This is particularly 
useful in noisy environments that arise in communication, radar, sonar and ultrasonic applications. 

• Delay estimation capability which is essential in many applications including range measurement in 
navigation systems, radar, sonar and also system identification. 

• The ability to recognize a given pattern within a signal. 

• The auto-correlation of a signal is closely related to the power spectrum which has resulted in the 
application of the correlation process to spectral analysis. 

• The correlation process provides a good characterization of many signals and has therefore been 
used in many prediction and estimation algorithms. 

Convolution is closely related to the correlation process. Mathematically convolution is what happens in the 
process of filtering. It will be shown in the next section that both these functions involve a large number 
of multiplications and additions. Up to now, for the time domain implementation of these processes, many 
systems have used multiply-accumulator devices. Because of their inherent concurrency, the numerical 
evaluations involved in the convolution and correlation functions can be performed in parallel. But due to 
the high cost, power consumption requirement, and size restriction many digital systems use only a single 
(or possibly two) multiply-accumulator(s). This has resulted in a processing bottle-neck in the time domain 
evaluation of these functions. For example using a 16-bit multiply and accumulator chip available today it is 
possible, for a 32-point digital correlator, to achieve at best a sampling frequency of around 100 to 300KHz. 
This is further reduced as the number of correlation points increases. Additional complexities occur as some 
form of address generator has to be used to sequence the data and the reference coefficients through the 
multiply-accumulator Chip. 

The IMS A 100 VLSI chip overcomes these problems by incorporating 32 multiply-accumulators on a Single 
chip. The sampling speed of the IMS A 100 ranges from 2.5 MHz to 10 MHz depending on the reference
waveform word-size. (4, 8, 12 or 16 bits). It is the true parallelism incorporated in the systolic structure of the 
IMS A100 that allows such speed increases. The architecture of the IMS A 100 has been designed in such a 
way that large numbers of these chips can be cascaded to perform high precision correlations involving more 
than 32 points at full speed. Alternatively it is possible to use multidimensional index mapping to decompose 
a long correlation/convolution into a number of short ones which can then be carried out by usoing a single 
or a small number of devices. 

By suitable allocation of the coefficients, the IMS A100 can be used to perform 3x3, 5x5, or larger two
dimensional image convolutions. 

In this application note the concepts of correlation and convolution are first introduced followed by their 
IMS A 100 implementation issues. Partitioning techniques for decomposing a long correlation/convolution into 
a number of short ones are then described. Next an example of a two-dimensional image convolution is 
given. Finally some application areas of correlation and convolution are summarised. 

10.2 Correlation concepts 

The correlation between two functions is a measure of their similarity. This is illustrated in figure 10.1 where 
three extreme cases are depicted. Figure 10.1 a shows two waveforms which are absolutely identical and they 
have maximum positive correlation. The two waveforms in figure 10.1 b are Similar, except for their polarities 
and as such they have maximum negative correlation. Finally figure 10.1c shows one of the waveforms of 
figure 10.1 a and a noise like signal. As these two waveforms are completely dissimilar the correlation between 
them is expected to be very small or even zero. 



10 Correlation and convolution with the IMS A100 

X(t)I"'--_"'I~ __ -~-------

y(t) It---~-~r--------::::oo---
L-.-I _~ 

(a) identical waveforms with 
maximum positive 
correlation. 

._------------------------------------------------------

'(I) I~_"'I~,----___ ~--""'--
y(t) It----~J __ ~-----=::>o....-
t-.--~ 

x(t) II--__ ~-----:::_ ~L--_~ 
y(t) 

(b) opposite waveforms with 
maximum negative 
correlation. 

(b) uncorrelated waveforms 

Figure 10.1 Illustration of correlation process 

Mathematically the correlation function between two waveforms x(t) and y(t) is expressed as 

1 f'f R""Ar) = ~~oo T _2' x(t)y(t + r)dt 
-r 

171 

(1 ) 

R",,,(r) is also referred to as cross-correlation between the two waveforms. For identical waveforms (ie corre
lating a waveform x(t) with itself) the correlation function is denoted by R"",,(r) and is called the auto-correlation 
function. 

Equation (1) can be interpreted as follows: 

The cross-correlation function, R",,,(r) between the two waveforms x(t) and y(t) is obtained by shifting one 
of the two signals in time by an amount equal to r (Le. modifying y(t) to y(t + r)), multiplying the shifted 
waveforms by the other signal and integrating the product. 



172 

If the waveforms are periodic with a period To, equation (1) can be modified to: 

~ 
R""AT) = 7]1 f :c(t)y(t + T)dt o=p (2a) 

i.e. the integration is evaluated only over one period of the signal. 

Figure 10.2 provides a graphical illustration of the process of cross correlation between two waveforms :c(t) 
(figure 10.2a) and y~) figure 10.2b. We start by multiplying the two waveforms and integrating over the 
interval =p. ::; t ::; T yielding R",,,(O). With l' = 0, (ie no shift) it can be seen from figures 10.3a & 10.3b 
that there is no overlap between non-zero parts of the two waveforms resulting in R", (0) = 0 as shown in 
figure 10.2f. To evaluate R",,,(T), the waveform y(t) is left shifted by an amount equaf to 1', giving y(t + 1'), 

and the multiplication and integration is repeated. As the waveform y(t) is shifted to the left, there will be no 
overlap between non-zero parts of y(t + 1') and :c(t) untill l' > 1'1, see figure 10.2c. At l' = 1'1, the non-zero 
parts of the two waveforms just begin to overlap. Figure 10.2d shows the position of y(t) when it is shifted by 
l' = 111. Here the non-zero parts of :c(t) and y(t + 1'2) have have overlapped and the integration of the product 
of the two waveforms therefore yields a non-zero value for R",,,h) as shown in Figure 1 0.2f. As y(t) is shifted 
further the non-zero overlapping section of the two waveforms and hence the value of R",,,(T) increase. When 
y(t) is shifted to the position shown in figure 10.2e, full overlap occurs and R""AT) will attain its maximum 
value of R",,,(T3) as shown in figure 1 0.2f. Shifting y(t) further causes the value of R",,,(T) to decrease as the 
two waveforms pass each other. Figure 1 0.2f shows the complete cross-correlation function between the two 
waveforms. You can confirm the shape of this cross-correlation function by evaluating equation (2a). 

I 1 
1 
1 .. :c(t) (a) 

-To/2 0 +To/2 t 
TL '. "I 

1 
1 

I I r .. y(t) (b) 
0 t 

t 
l' 1 

J 
~ c= I 1 

(t + 1'1) (c) .. 
0 1 t 

t 
T 1 
~ 
I 1 y(t + 1'2) (d) ... 

0 t 

1 
T3 

"I '"' I ... y(t + 1'3) (e) 
0 1 t 

I 

~t 
1 

~ ~ ~ .. R",,,(T) (f) 
0 1'1 1'2 T3 l' 

Figure 10.2 Graphical illustration of the correlation process 

One interesting point to note here is that the maximum value of Rx,,(T) occurs at t = T3 which is equal to 
the time-lag, TL, between the two waveforms :c(t) and y(t). This is how the correlation process is used to 
measure delays. 



10 Correlation and convolution with the IMS A100 173 

From figure 10.2 it can be seen that the cross correlation function could have been evaluated by shifting 
x(t) to the right instead of left shifting y(t). Mathematically this can be confirmed by defining a new variable 
t' = t + l' and substituting in (2a) which gives: 

~ 
R","(1') = 7]1! x(t' - 1')y(t)dt (2b) 

o~ 

So far we have dealt with the correlation of analogue signals. For digital processing both waveforms x(t) and 
y(t) have to be sampled and digitalized. For discrete-time signals the process of correlation can be expressed 
as: 

1 N-1 

R","(mT) = N L x(kT)y((k + m)T) 
10-0 

(3a) 

At time t '" kT equation (3a) requires future samples of y(t). Similar to the analogue case, (equation 2b), the 
above equation can be modified so that it only uses past samples of y(t), i.e. 

1 N-1 

R.,1I(mT) = N L x((k - m)T)y(kT) (3b) 
10-0 

In equation (3b) , T, donates the sampling period and should be chosen to ensure that the sampling rate is 
greater than twice the signals bandwidth (Nyquist rate). For the sake of simplicity the factor, T, is usually 
dropped from the indices of equations (3a) & (3b), Le. 

and 

1 N-1 

R","(m) = N L x(k)y(k + m) 
10-0 

1 N-1 

R","(m) = N L x(k - m)y(k) 
10=0 

(4a) 

(4b) 

Where k and m are used to index the samples and N is the number of correlation points involved. In practice 
the correlation size N will depend on the duration of the two functions, and on their periodicity if they are 
periodic. 

From equations (4a) or (4b) it can be observed that direct evaluation of M samples of the cross-correlation 
function, R",,,, will involve M x N multiply-and-accumulate operations. 

10.3 Convolution concepts 

The convolution function is closely related to that of correlation. The convolution of two signals x(t) and y(t) 
is mathematically defined by: 

1 J'f 0"'1/(1') = lim -T x(t)y(1' - t)dt (5) 
T-oo -7' -r 

This equation is very much similar to equation (1) defining the correlation process. Their difference is that 
in convolution the signal y(t) is first time· reversed (Le. is mirrored around t = 0) and then shifted by 1'. This 
time-reversed and shifted signal is then multiplied by x(t) and the product is integrated over all t's. Figure 10.3 
graphically illustrates the process of convolution. 

The process of convolution occurs in filters where the output of a filter is in fact the convolution of the input 
function, d(t) , and the impulse response, h(t), of the filter (see the application note entitled 'Digital Filtering 
with the IMS A100'): 

/(1') = l+: d(t)h(1' - t)dt (6) 

where / (1') is the filter output. 

For discrete-time signals equation (5) becomes 
1 N-1 

O"'I/(m) = N L x(k)y(m - k) 
10=0 

(7) 



174 

~ 
;-~ 
, t ,. 

t 

.. 
t 

.. 

x(t) 

y(t) 

multiply & 
Integrate ------C (t) xy 

y(-t) 

Figure 10.3 Illustrating the convolution process 

which defines the convolution function for digital signals. Notice that like correlation, convolution involves 
carrying out N multiply-and-accumulations for each sample of C"'II(m). Due to the high degree of similarity 
between correlation and convolution functions, the same hardware can be used to perform both functions. 
All that needs to be done is to time-reverse one of the waveforms for the convolution process. 

The following two sections deal with hardware implementations for the correlation and convolution functions. 
The first section deals with the conventional approach involving multiply-and-accumulator chips and points out 
the processing bottle-necks associated with these solutions. The second section shows how the IMS A100 
signal processor can be configured to perform these functions efficiently and simply, at speeds not economi
cally feasible with the conventional approach. 

10.4 Conventional hardware for time-domain evaluation of correlation 

As discussed earlier, the processes of correlation and convolution are based on multiplying a delayed version 
of a sequence of samples by another sequence and summing the products. Conceptually this could be 
mechanised, as shown in figure 10.4, by providing two shift registers to hold all the values of x's and y'S 
required for the computation, a further shift register to provide the delay (mT) , an array of multipliers for 
forming the products, and a multi-input adder for the final summation. In the example of figure 10.4 the 
output would correspond to R"'II(2), as a delay of two stages is incorporated in the path of signal x(kT) giving 
x((k - 2)T) (see equation 3b). 

Up to now, due to the large number of multipliers and adders involved, it has not been possible to eco-



10 Correlation and convolution with the IMS A 100 

z's 

mT delay 

y'S ---------101 

Figure 10.4 Schematic diagram for an ideal correlator hardware 

output 
R"II(mT) 

175 

nomically implement high precision correlators directly in the form given by figure 10.4. Instead to minimize 
the size, cost and power consumption, a single multiply-and-accumulator is usually used and time-shared 
between all the multiplications. Figure 10.5 shows a schematic block diagram of a conventional correlator 
implementation. The system consists of memories to hold samples of the two signals to be correlated, a 
multiply-accumulator and an address generator hardware which is responsible for sequencing the correct 
order of signal samples through the multiply-and-accumulator. The obvious disadvantage of this arrangement 
is the processing bottle-neck caused by using a single multiply-and-accumulator to sequentially evaluate what 
is inherently a concurrent problem. Assuming a multiply-accumulate time of Tmac' for an N-point correlator 
implemented using a Single multiply-accumulator, the maximum sampling rate would be 

1 
fma".=~T. mac 

(8) 

For example if Tmac = 1 DOna and N = 1 ~O, then a signal sampling frequency of at most 100kHz would be 
possible. 

Many applications such as radar and communication require faster processing rates than can be achieved 
using a single multiply-and-accumulator. (Some improvements can be achieved by carrying out the processing 
in the frequency domain at the cost of introducing some complexity. However here we are only concerned 
with the time-domain approach. A separate application note entitled 'Discrete Fourier Transform with the 
IMS A1 ~O' deals with the time-domain to frequency-domain transformations) 

In applications where a fast processing rate is essential, a trade-off is often made between the correlator 
precision and its speed. For example if one or both of the signals z and yare assumed binary, the multi
plications become simple binary AND operatk:.ns, and it would be possible to implement a high speed low 
precision correlator. In fact many correlator chips available today are of this type and have very low precision 
compared to those implemented from multiply-accumulators. 

The IMS A 100 chip on the other hand is the first high-precision high-speed VLSI implementation of a single
chip correlator. It provides a numerical accuracy in excess of that of the 16-bit multiply and accumulators 
while allowing sampling rates in the MHz region. The next section illustrates how this chip can be used to 
perform fast and highly accurate correlation and convolution functions. 

10.5 The IMS A100 implementation of correlation/convolution 

The IMS A 100 is a 32-stage correlator (convolver) in which the samples of the two signals to be correlated 
can be represented as up to 16-bit words. This corresponds to a signal dynamic range of 96 dB's. A number 



176 

RAM holding 
samples of 

x(t) 

Address and Clock generator 

Multiply-Accumulator 

output 

RAM holding 
samples of 

!/(t) 

Figure 10.5 Block diagram of a conventional correlator/convolver 

of these devices can also be cascaded, without the need for any external components, to provide much 
longer correlators while preserving a high degree of accuracy. The IMS A100 chip (or cascaded chips) can 
be fully memory mapped and used as a peripheral accelerator to a host processor. 

To understand the architecture of the IMS A100 let us first consider the basic function of a simple 3-point 
correlator shown in figure 10.6a. The three samples of the first signal (reference signal) i.e. xo, X1 and X2 
are loaded in three registers feeding an array of three multipliers. The samples of the second signal i.e. 
yO, !/1, !/2, .... are fed into a 3-stage shift register whose outputs are also connected to the multipliers. A three 
input adder combines the products to give the correlation function. As the samples of the signal !/ are shifted 
through the shift register, the output of this hypothetical correlator (assuming the shift register is reset at the 
start) will be: 

!/OX2, !/OXl +!/1 X2, yOXo + !/1 Xl + !/2X2, !/1 Xo + !/2X1 + !/3X2, ....... 

The correlator structure in figure 10.6a can be modified to that given in figure 10.6b without affecting the 
functionality. In figure 1 0.6b the multi-input summation process is avoided and replaced by a chain of delay
and-add units. The input, supplying the signal!/, is also made common to all of the multipliers. Note also that 
the signal samples xo, X1, X2 are stored in the opposite direction to that of figure 10.6a. Supplying the input 
sequence of samples yO, !/1, !/2, 1/3, ...... to the structure of figure 10.6b and simultaneously shifting the partial 
products along the delay-and-add chain, it is straightforward to confirm that the output sequence would be 

This sequence is absolutely identical to that obtained from figure 10.6a. In other words the structure in fig
ure 1 0.6a & b have identical functionality and both can be used to perform correlation between two sequences. 
The IMS A100 architecture is based around this modified structure. The major processing part of the chip 
incorporates 32 multipliers and a 32-stage delay-and-add chain as shown in figure 10.7. 

At this point the interested reader is advised to consult the data sheet of the IMS A 100 for full details. 



10 Correlation and convolution with the IMS A100 177 

E output 

(a) conventional correlator structure 

(b) modified correlator architecture (IMS A 100) 

Figure 10.6 Relating the IMS A100 architecture to that of a correlator 

Mem 16 

IfF 

Update coefficient registers control 
logic 

Active coefficient registers seR 
2 

16 

Multplier 36 
Accumulator 
Array 

lIE 32 stages ~ 

24 
32 cycle delay (24 bits) 

Figure 10.7 User's model of the IMS A100 



178 

In order to correlate two sequences z(k) and lI(n), the samples of one of the two signals, say z(k),s, should 
be stored in one set of the IMS A100's coefficient registers. These samples should be loaded from left to 
right with the last sample of z{k) stored in the coefficient register associated with the last multiplier. If the 
reference waveforms z{k) is less than 32-samples long, any unused left-most coefficient registers should be 
set to zero. For a 30-sample reference signal, this allocation is depicted in figure 10.8. 

coefficient register 
associated with 
the first stage 

coefficient register 
associated with 

the last stage 

Figure 10.8 Example of the reference signal allocation for a 30 point correlator 

The samples of the other signal lI(n) are then applied to the input of the IMS A100. As shown earlier the 
output sequence would correspond to the cross-correlation function of the two signals. If the two signals 
z(k) and lI(n) are to be convolved rather than correlated, the reference signal z(k) should be loaded in the 
coefficient registers in the opposite direction. The register allocation for a 30-point convolver is shown in 
figure 10.9. As discussed in the data sheet, the IMS A 100 processor has two sets of coefficient registers. 
At any instant in time one set of coefficients is applied to the multiplier array, whilst the other set can be 
accessed via the IMS A100 memory interface. For correlations (convolutions) dealing with real Signals, one 
set of these coefficients would be sufficient. The second set can be used to hold a different reference signal 
and if necessary the function of the two memory banks can be interchanged by performing a write operation 
to the 'Bank swap' bit of a control register. Such an operation would initiate the correlation (convolution) of 
the input signal with the second reference waveform. The existance of the two coefficient register sets and 
the continuous bank-swap mode allows the IMS A100 to perform complex {correlation)convolution, where 
both the reference and the input signal have real and imaginary components. This configuration is discussed 
in the application note 'Complex Processing with the IMS A100'. 

coefficient register 
associated with 
the first stage 

coefficient register 
associated with 

the last stage 

Figure 10.9 Coefficient register allocation for a 30 point convolution 

For the IMS A100 the data-word length is 16 bits whilst the coefficient-word length can be programmed to 
be 4, 8, 12 or 16 bits. The maximum data throughput (the sampling rate) is a function of the coefficient size. 
Table 10.1 relates the coefficient size to the maximum sampling rate and indicates the effective number of 
multiply-and-accumulate operations per second in each case. The last column shows the effective number 
of multiply-and-accumulates when four devices are cascaded. 

The strength of the IMS A 100 can be appreciated by comparing the effective number of multiply-and
accumulations/sec with that of multiply-accumulator IC's which range from 5-10 million/sec. 

As discussed in the A 100 data sheet, in order to preserve complete numerical accuracy no truncation or 
rounding is carried out on the partial products in the multiply-and-accumulation array. The output is thus 
calculated to 36 bit precision which ensures no overflows. A barrel-shifter at the output of the multiply-and
accumulate array allows 24 bits from these 36 bits to be selected (sign-extended if necessary) and rounded 
for output. This selection can be programmed via a control register. The programming details can be found 
in the IMS A 100 data sheet. 



10 Correlation and convolution with the IMS A100 179 

Coefficient Sampling Effective number of multiply-and-accumulates 
word size rate (Millions/second) 

(bits) (MHz) Single A100 Four A100s 
4 10 320 1280 
8 5 160 640 

12 3.3 106 424 
16 2.5 80 320 

Table 10.1 

The architecture of the IMS A100 has been deSigned to allow large numbers of these devices to be cascaded 
for correlations (convolutions) involving more than 32-stages, the devices can be cascaded while preserving 
a high degree of accuracy and without the need for any external components. This is made possible by 
incorporating on chip a 32 stage, 24-bit wide, shift register and a 24-bit adder which combines the output of 
the barrel-shifter with that of the 32-stage shift register (see figure 10.7). 

The IMS A1 00 chips can be cascaded by simply connecting the output of the each device to the cascade input 
of the following device. The input is common to all cascaded devices. The effect of such an arrangement 
is that the output of the first device is delayed by 32 cycles, before being added to that of the next device. 
Figure 10.10 illustrates how, for example, a 64-point correlator can be implemented using two IMS A 100 
devices. The allocation of the reference signal samples is also indicated in this illustration. In this arrangement 
the barrel-shifter in each device acts as a data scalar (with rounding). The cascading process can be 
considered as a block-floating point operation where the common exponent is determined by the extent of 
the shift carried out by the barrel-shifter. With this cascading technique a very high degree of accuracy is 
preserved because the output scaling is only performed after every 32-multiply and accumulation stages and 
not at any intermediate stage. 

For convolution purposes the reference signal should be loaded into the coefficient stage in the opposite 
direction to that shown in figure 10.10. 

input 

IOH%I~~I' ..... 'I~I~~I 
!ll§ J multiply & accumulate lw,w 

"~·1 array r .e.. L-____________________ ~ m 

I barrel I 
shifter 

multiply & accumulate ~~ 
array ~'! 

*~ 
J 

I barrel I 
shifter 

t 
1~)"1"',1 cascade shift-register p":li®:")'lm.~r-(w1IL.. _______ ..... 

"W« IMS A100 
~----------------------~ 

t 
cascade shift-register ~<$»_*~~$~I'§iiOO 

output 

IMS A100 

Allocation of the reference signal samples for a 62 point correllation is indicated. 

Figure 10.10 Cascading two IMS A 100 devices to obtain a 64 point correlator 

A very important feature of the IMS A100 transversal filter is that the part is fully memory mappable. Apart 
from the two coefficient memory banks, which can be accessed via the IMS A100 standard memory interface, 
the input and output of the device are also accessible from the same interface. This feature allows the part 



180 

to be used either with its input and output data communicated through the dedicated ports or through the 
memory interface. The latter options allows the device to be easily interfaced to a host processor and used 
as a high speed peripheral. The status and control registers of the IMS A100, accessible via the memory 
interface, provide full control of the part by the host processor.The memory interface can also be used as 
a facility for system diagnostics, as the host processor can act as a watch-dog in systems involving arrays 
of IMS A100's. Full specification of the IMS A100, its status and control registers and its standard memory 
interface are detailed in the data sheet available from INMOS. 

10.6 Decomposition of long correlations and convolutions 

A single IMS A 100 device is effectively a 32-tap correlator (convolver) in which the samples of the two 
signals to be correlated can be expressed in upto 16-bit words. As described earlier, one method to deal 
with correlations/convolutions involving more than 32 points is to use several cascaded devices to achieve a 
longer correlator/convolver. For such an arrangement, and with 16-bit coefficients, tha data rate can be as 
high as 2.5 Million samples/sec. 

Alternatively it is possible to use various decomposition techniques to partition a long correlation/convolution 
into a number of shorter ones, which can then be carried out by a single or a small number of IMS A100 
devices. The host machine would merely combine the results from these short correlations/convolutions to 
obtain the overall result. The advantage of this approach, compared to using single MAC based processors, is 
a significant reduction in the required memory bandwidth. This is why even a medium-speed general purpose 
microprocessor can achieve a very high performance when combined with the IMS A100. 

A simple way to decompose a long correlation/convolution of length N, between waveforms x and y, is to 
break up one of the waveforms, say x, into consecutive blocks of 32 sample. Each one of these blocks 
can then be correlated/convolved with the whole of the waveform y by loading each block into the IMS A100 
coefficient registers, and using y as the input sequence. The output from these correlations/convolutions 
can then be combined by displacing each partial result by 32 samples, with respect to the previous one, 
and performing an addition operation. Note that the coefficient registers, containing blocks of waveform x, 
need only be updated once every time the whole of the waveform y is fed through the device, resulting in 
a significant saving in the memory bandwidth. The block size of 32, suggested above, whould mean that 
a single IMS A 100 would be sufficient. However processing speed can be improved by using cascading 
devices to perform these partial correlations/convolutions. With suitable memory mappings, hosts such as 
INMOS transputers can use their on-Chip DMA engine to feed the IMS A100 devices with the samples of the 
waveform y. 

A more complicated decomposition technique, to be described here, is based on the multidimensional index 
mappings (references 1 & 2). These techniques are applicable to cyclic convolutions/correlations. However 
all convolutions/correlations can be made cyclic by adding zero terms to the end of the data blocks. As an 
example, consider the following cyclic correlation: 

N-1 

C(k) = L x(k + n)y(n) (9) 
n~O 

where the indices are evaluated modulo N. The arrays C, x, and y can be mapped into multidimensional 
arrays C', x', and y', the requirement being that the mapping should be one-to-one and cyclic in at least one 
dimension. The map, in general, can assume many different forms, but the one particularly useful is the 
linear form. For a simple two-dimensional decomposition such a map would be of the form: 

(10) 

Note that n is evaluated modulo N, making the map cyclic in n. In order for this map to be unique and one
to-one, the mapping constants M1 and M2 must satisfy certain conditions. These conditions are summarised 
in section 6 of the IMS A 100 Application Note 2 which is available from INMOS and will not be repeated here. 



10 Correlation and convolution with the IMS A100 181 

As an example let us map the arrays in equation (9) into two-dimensional matrices of dimensions N, and N2 
where N = N, X N 2, we can use the mapping given by equations (10) for nand k giving 

N,-'N.-' 
C(M, k, + M2k2) = L L x(M, k, + M2k2 + M, n, + M2n2)y(M, n, + M2n2) (11 ) 

nt-o R2 

or N, N. 
C'(k" k2) = L L x'(k, + n" k2 + n2)y'(n" n2) (12) 

This is now a true two-dimensional convolution which can be made cyclic along n, if M, is made a multiple of 
N2, and/or cyclic along n2 if M2 is made a multiple of N,. With these conditions, inspection of equation (12) 
shows that the long N-point circular correlation can be performed by N~, N2-point correlations or Ni, N,-point 
correlations. This involves correlating each row (or column) of the matrix y' with all the rows (or columns) 
of the matrix x'. These short circular correlations can be efficiently performed by the IMS A100, with the 
host merely adding partial results. The approach is particularly efficient as it is possible to load one row ( or 
column) of the matrix y' into the coefficient memory of the device and to feed all the rows (or columns) of 
the matrix x' successively to the input of the device to obtain partial results, for the elements in the matrix 
C'. The fact that with this algorithm, the coefficient memories need only be updated occasionally (once 
every time all the elements of the matrix x' are fed into the device) results in an impressive reduction in the 
memory bandwidth requirement. This is why, even with a general purpose microprocessor, as the host, very 
impressive perfomance can be achieved. 

In the example given here, we concentrated around a two-dimensional mapping. It is important to realise 
that the same decomposition concepts can be extended to more dimensions. The easiest way to see this 
is to start with a two dimensional decomposition and then partition the rows of the two-dimensional matrices 
further. For example if 

N=N, X N2X N3 

the original N-point correlation can be carried out via N§, N, x N2-point correlations. However, each one 
of the N, x N2-point correlations can further be decomposed, as before into N~, N2-point correlations. 



182 

10.7 2-D Image convolutions with the IMS A100 

Many applications including image processing require 2-D convolutions and correlations. Such operations 
are needed in image filtering, edge detection, etc. There are many ways that the IMS A 100 can be used 
to speed up these operations. This section gives an example of how the device can be used to perform 
3 x 3, 5 x 5, or larger convolutions. 

Figure 10.11 a shows a 20 x 20-pixel image which is to be convolved with the 3 x 3 reference matrix given 
by figure 10.11 b. One way to achieve this is to load the reference matrix, as shown in figure 10.11 c, in one 
of the IMS A 100 coefficient register banks, and sequence the image data through the device as shown by 
the arrowed path in figure 10.11 a. In this way every third output sample of the IMS A100 would correspond 
to a valid filtered pixel for the second row of the image. To proceed, the same sequence, moved down by 
one row, is then passed through the device which provides the filtered results for the nest row and so on. A 
single IMS A100 can deal with reference matrices as big as 5 x 5. 

T .I .I .I .. T .. T .. T .l .. T .. T .l .l .l .I .I .. T .I .I .. T .. T 

J It. 't ' t. ' t '+ '+ '+ 't ' t. 't It 't ' t. 't 't ' t. ' t. ' t 't 
r r r r ~. ~. ~. ~ ~ I I I I I r r • r r ~ 

a d g 

b e h 

c f i 

(b) 3x3 convolution matrix 

(a) 20x20 pixel image, arrows show the required data sequencing 

g h 

(c) Coefficient register allocation for the 3x3 convolution 

Figure 10.11 Example of a 3x3 image convolution/correlation with the IMS A 100 



10 Correlation and convolution with the IMS A 100 183 

An alternative arrangement which gives a better throughput is one where, as shown in figure 10.12a, 7 
zeroes are inserted in the IMS A 100 coefficient registers (between terms corresponding to the columns of the 
reference matrix). The data sequencing would be as shown in figure 10.12c, where ten pixels from a given 
column are fed through the device before moving to the next column. In this scheme the first nine rows of the 
image are filtered in one scan, with 80% of the output data samples being valid. (Note that, using a single 
device, the number of inserted zeroes can be increased from 7 to 11, allowing 13 image rows to be filtered 
in each scan.) 

The examples given here are just a small subset of possible arrangements. Remembering that the IMS A 100 
devices can be cascaded or used in parallel, numerous other implementations for image processing become 
possible. 

". ". ". ". ". ". ". ". ". ". ". ". ". ". ". ". ". ". ". , , , , , , , , , , , , , , , , , , , 

, , , , , , , , , , , , , , , , , , , 
a d g 

b e h 

c f i 

(b) 3x3 convolution matrix 

(a) 20x20 pixel image, arrows show the required data sequencing 

9 zeroes 7 zeroes 7 zeroes .. )0 ... • .. )0 

I .... ·1 a b c I 0 I · .. ··1 o I d I e I 0 I .... ·1 0 g h 

(c) Coefficient register allocation for the 3x3 convolution 

Figure 10.12 Improved version of the 3x3 image convolution/correlation with the IMS A 100 



184 

10.8 Some application examples of correlation and convolution 

Correlation and convolution are encountered in numerous applications of digital signal processing, this section 
summarises some of the application areas where these techniques are used. 

10.8.1 Delay and periodicity estimation 

The correlation process can be used to estimate the time delay between two similar signals. Figure 10.13 
shows two signals z(t) and yet) which are identical in shape but have a time delay between them. If these 
two signals are correlated the cross-correlation function would attain a maximum when yet) is delayed by an 
amount equal to the delay between the two waveforms. This is illustrated in figure 1 0.13c where the peak 
of the cross-correlation function occurs at t = Td where Td is the delay between the two waveforms. This 
technique has applications in areas such as radar, sonar and medical ultrasonics where a measurement of 
the time delay between the transmitted signal and the return echo from an object gives an indication of the 
range of that object. 

x(t) 

yet) i+------+' 

F\y(t) 

Figure 10.13 Delay estimation using correlation process 

The same technique can also be used to measure the period of a repetitive signal. This can be achieved 
by correlating the signal with itself i.e. by calculating its auto-correlation function as illustrated in figure 10.14 
the auto-correlation of a periodic signal exhibits peaks, spaced a distance, To, apart where To is the period 
of the signal. One application of this technique is pitch-period measurement in speech signals. The time gap 
between the peaks in the auto-correlation function of a segment of speech provides an estimate for the pitch 
period of voiced speech. 



10 Correlation and convolution wHh the IMS A100 185 

x(t) 

R (1') 
xx 

, .' . . , , 
~ , , 

pf-..... V'""" .... ~A""v~ .... O"..-.. "Io .. ~-\c"',.." ... vvv"""'A'--:---\\I'A..,....,.~~"'v"..'Cv,......"" .. --."""'""Icvvv..,,.+A-: ~Vl'c:b .... F'''' .... y ..... _.,.-_ ........ ~'''A ........ dnj'----. l' 

Figure 10.14 Application of correlation to the periodicity measurement 

10.8.2 Noise reduction using correlation techniques 

In many real-world applications the signals to be processed are immersed and possibly masked by noise. 
Such situations occur in noisy communication channels, long-range radar and sonar systems. In such cases 
correlation techniques can be used to extract and detect the signal from the background additive noise. This 
is achieved by correlating the noisy Signal with a replica of the expected signal waveform. While the noise is 
uncorrelated with the replica Signal, the signal immersed in noise will strongly correlate with the replica signal 
giving a large output value, well above the background noise. Mathematically this can be argued as follows 
(the proof here is not rigorous but does make the point): 

Let the signal waveform consist of N samples values 80, 81, 82, ...... 8N-1. Suppose this signal is 
correlated by samples of a white noise having a standard deviation of 0',. (and variance O'~). The 
ratio of the signal power to that of the noise prior to any processing is thus: 

SignalPower 0'2 

N oi8ePower = O'i 
where O'~ is the signal variance. Suppose we correlate this noisy signal with a replica of the original 
signal in an N-point correlator. At the instant when the signal waveform masked by the background 
noise is aligned with its replica in the correlator, the output attains its maximum. At this instant the 
amplitude of signal component at the output of the correlator would be 

(13) 

The corresponding output signal power would thus be: 

Output Signal Power = N 20'!. (14) 

The noise would also be modified by the operation of the correlator. In this case each output noise 
sample is equal to the sum of weighted input noise samples-the weighting coefficients being, of 
course, the samples of the reference signal. Hence each output noise sample is equal to the summa
tion of N independent random numbers having standard deviations 800',., 810',., 820',., ...... , 8N-10',.. 

Since variances are additive in this case, the variance of the output noise samples is therefore 

(15) 

The ratio of the output signal power to that of the output noise is thus 

( S) _ Output Signal Power _ N 20'! _ NO'~ _ N(!.-) 
N OUT - O'~ou.. - NO'~O'~ - O'~ - N INPUT 

(16) 



186 

This indicates that the correlation process improves the signal to noise ratio by 

Co .. 10 log1o(N) dB's 

which is defined as the 'Correlator Gain'. 

10.8.3 Pulse-compression 

(17) 

Another application of correlation is in radar and sonar systems where pulse compression techniques are 
used to improve range resolution of the systems. In many active sonar and pulsed radar systems, a short 
pulse is transmitted followed by a listening period that represents a 'look' in the range dimension. The two 
way propagation duration, i.e. the time it takes for the pulse to travel to a target and back gives an indication 
of the range of that target. The range resolution i.e. the shortest distance between two targets that can be 
resolved, is equal to If where T is the pulse duration and c is the speed of wave propagation in the medium. 
For example for a raaar system a 10/Js pulse corresponds to a range resolution of 1.5km. Better range 
resolutions necessitate a shorter pulse. Unfortunately the transmitted pulses cannot be made too short. This 
is because most systems are peak-power limited and a shorter pulse means less signal power which in turn 
can severely limit operational range of the system. 

Pulse compression techniques allow a radar or sonar to utilize a long pulse to achieve large radiated energy, 
but simultaneously to obtain the range resolution of a short pulse. This is accomplished by using a coded 
signal instead of a simple CW pulse. At the receiver the returned Signal is correlated with a replica of the coded 
transmit signal. The returned signal would only correlate heavily with the replica for a short time, corresponding 
to when the echoes are aligned with the replica. This results in a narrow pulse appearing at the output of 
the correlator, every time a match occurs. A signal that is commonly used in pulse-compression techniques 
is the lineal FM signal. An example of such a signal is depicted in figure 10.15a. The autocorrelation of such 
a waveform is shown in figure 10.15b. Note that the autocorrelation function has a narrow peak at the origin, 
with small side lobes elsewhere, i.e. the initially long FM pulse is 'compressed' into a narrow pulse after the 
autocorrelation process. 

f\ f\ f\ f\ ~ " fI 

'1111111 

V V V V V V 
(a) a linear-FM pulse. 

(b) auto-correlation function of a linear FM pulse 

Figure 10.15 Pulse compression using a coded signal 

It can be shown that the degree of compression is equal to BT where B is the bandwidth of the coded pulse 
and T is its duration. The effective pulse duration, as far as the range resolution is concerned, will thus be: 

Effective Pulse Duration = :T = ~ (18) 



10 Correlation and convolution with the IMS A100 187 

If the 10",8 pulse in the previous example is coded in such a way that its bandwidth becomes 5MHz, the 
effective pulse duration would be: 

1 
5 X 106 = 0.2",8 

This corresponds to a range resolution of 30 metres. 

10.8.4 System identification using correlation 

Another important application of cross-correlation is in the use of random-noise test signals to identify the 
impulse response of a system. For a system with an unknown impulse response h(t), the output y(t) is related 
to an input z(t) by +00 

y(t) = loo h(u)z(t - u)dt (19) 

The cross-correlation between the input z(t) and the output y(t) is defined by 

1 loT = lim -T z(t)y(t + 1')dt 
T ...... oo 0 

1 loT 1+00 

= lim -T z(t) h(u)z(t + l' - u)dudt 
T ...... oo 0 -00 

(20) 

Using simple mathematical manipulation it can be shown that 

~,,"(1') = l+: h(u)~ .... (1' - u)du (21) 

i.e. The cross-correlation between z(t) and y(t) is the convolution of the impulse response h(t) with the 
auto-correlation of the input signal. 

If the input signal consists of broad-band white noise then its auto-correlation function, ~",,,,(1'), would be an 
impulse (since a noise signal only correlates with itself at zero delay, l' = 0). Referring to equation (21) it 
therefore follows that for broad-band noise input, the output ~,,"(1') would be a direct measure of h(1') since 

~","(1') = i+: h(u)6(1' - u)du = h(1') 

Figure 10.16 illustrates the technique. 

noise generator system under test 

system impulse response 

Figure 10.16 System identification using correlation 

(22) 



188 

10.8.5 The Discrete Fourier Transform (OFT) 

OFT has application in many signal processing areas, including speech processing, radar, sonar, image 
processing and control. This transform has often been performed using Cooley and Tukey radix-2 FFT 
algorithm (reference 3). This algorithm reduces the number of multiplications compared to direct evaluation 
of the OFT at the expense of complicating the required indexing. 

Other algorithms have also been developed which allow the evaluation of the OFT via correlation (convolution) 
techniques (references 1, 2, 4, & 5). The IMS A100 device can be used to perform high speed OFT's based 
on these convolutional algorithms. Using the IMS A100 as a peripheral to a general-purpose microprocessor 
converts a slow host into a high-performance OFT processor. A separate application note available from 
INMOS describes how these algorithms can be implemented using the IMS A100 devices. 

10.9 References 

Burrus C.S., 'Index mappings for multidimensional formulation of the OFT an convolution', 
IEEE Trans. on ASSP, Vo1.25, June 1977, pp 239-242. 

2 Burrus C.S., Parks T.W., 'OFT/FFT and convolutional algorithms-theory and implementation', 
Wiley-interscience Publication, New York 1985. 

3 Cooley J.w., Tukey J.W. 'An algorithm for the machine calculation of complex Fourier series', 
Math. Comput., Vo1.19, pp 297-301, April 1965. 

4 Rader C.M., 'Oiscrete Fourier transforms when the number of data samples is prime', 
Proc. IEEE, Vo1.56, pp 1107-1109, June 1968. 

5 Rabiner l.A., at ai, 'The chirp z-transform algorithm and its application', 
The Bell System Technical Journal, May-June 1969, pp 1249-1292. 



Ilrimos Chapter 11 189 

_ complex (I&Q) 
• processing 

with the 
IMS A100 



190 

11.1 Introduction 

Complex processing, involving in-phase and quadrature signal components, is necessary in many signal 
processing applications. This type of processing is needed in cases where the phase of the signal has 
significant impact on the processing outcome. For example consider a simple demodulator as shown in 
figure 11.1. The incoming tone, (Acoswt), is demodulated by mixing it with a local oscillator having the 
same frequency. The output of the mixer is low-pass filtered to yield the final result. If there is a phase 
difference iP between the incoming tone and the local oscillator signal, the output would be proportional to 
cos iP. This indicates that the output of our simple demodulator is strongly dependent on the relative phases 
of the incoming and local oscillator signals. For the worst case of iP = ~, the output would become zero! This 
means that the relative phase shift of the local oscillator can be quite aisasterous. 

Let us now perform the same demodulation using complex processing. The input signal can be represented 
in its complex form consisting of real and imaginary parts i.e. 

x(t) = Ae-iwt = A[cos(wt) - i sin(wt)] (1 ) 

Mixing the signal with a complex version of our local oscillator signal i.e. Ai(wt+<I» = cos(wt + iP) + i sin(wt + iP) 
yields: 

(2) 

Note that this output is complex and contains both phase (iP) and amptitude (A) information. The amptitude 
can be extracted by taking the modulus of the output i.e. 

amplitu.de = y'(A cos iP)2 + (A sin iP)2 = IAI (3) 

The above example illustrates how complex processing can be used to preserve both phase and amptitude 
information in a simple demodulator. 

"OOS(wt)~,----___ ~ ___ ---,~ACOS(iP) 
2Acos(wt + iP) 

Figure 11.1 Simple demodulator 

Similar phase related problems arise in correlation and convolution evaluations where complex processing 
becomes necessary for preserving the integrity of signals. This application note describes how on-chip 
facilities of the IMS A 100 transversal filter can be used to perform complex correlation, convolution and 
filtering. 

As described in the data sheet, the IMS A 100 transversal filter incorporates two sets of coefficient memories 
(figure 11.2), each containing 32 16-bit words. At any instant one set of coefficients is applied to the multiply
accumUlate array, whilst the other set can be accessed via the IMS A 100 standard memory interface. The 
function of the two memory banks can be interchanged by performing a write operation to the 'Bank Swap' 
bit of a control register. 

This allows the new set of coefficients to be used in the computation at the beginning of the next cycle. In this 
operation once the two memory banks are interchanged, the 'Banks Swap' control bit is reset by the device. 
No more interchanges are performed unless the bank swap control bit is again set by the host. 

There is another control bit in the static control register of the IMS A 100, that when set continuously inter
changes the two memory banks at the beginning of each and every computation cycle. When this mode 
is set, alternate coefficient memory banks will be used for even and odd computation cycles. This mode 
is particularly suitable for implementing complex data processing. The following two sections describe how 
this continuous-swap mode can be employed to perform complex convolutions and correlations using the 



11 Complex (I & Q) processing with the IMS A100 

Mem 16 

IIF 

Update coefficient registers 

Active coefficient registers 

2 

16 

Multplier 36 
Accumulator 
Array 

.. 32 stages ,., 

24 
32 cycle delay (24 bits) 

Figure 11.2 User's model of the IMS A 100 

control 
logic 

seR Error 
Busy 
OutRdy 

191 

IMS A1 00 transversal filters. A separate application note, available from INMOS, deals with the correlation 
and convolution concepts and their implementation using the IMS A100 device. Readers unfamiliar with 
the IMS A 100 and its implementation of correlation and convolution functions are advised to refer to that 
application note before reading the following sections. 

11.2 Complex correlation 

The complex correlation between two signals rand 8 is very similar to real correlation (refer to the application 
note entitled 'Correlation and convolution with the IMS A100') with the difference that one of the two signals 
has to be complex conjugated first i.e. 

or 

1 N-1 

Rr.(m) = N L r*(k)s(k + m) 
10=0 

1 N-1 

Rr.(m) = N L r(k)s*(k + m) 
10=0 

where * indicated complex conjugate operation and both waveforms rand s can be complex. 

(3) 

(4) 

Let us now investigate how the IMS A 100 can perform this function. As shown in figure 11.2, the computational 
core of the IMS A1 00 contains an array of 32 multiply-and accumulators. In order to simplify the explanation 
of complex processing, let us consider a simple five-stage transversal filter as shown in figure 11.3. Once 
you have understood how such a simple structure can be used for complex correlation, it should be easy to 
extend the idea to larger correlations sizes involving one or many cascaded IMS A100 devices. 



192 

•••••••••• , i8(1), r8(1), i8(0), r8(O) 

)~ 

Figure 11.3 Two-point complex correlator based on the IMS A 100 architecture 

memory 
bank 

B 

A 

Suppose we want to perform a two-point complex correlation between a reference signal and a sequence of 
complex input samples. Let us denote the two complex samples of the reference signal with 

r(O) = rr(O) + j ir(O) and r(1) = rr(1) + j ir(1) 

where rr and ir indicate real parts and imaginary parts of the reference signal respectively. 

Assume the input sequence is the following set of complex samples: 

8(0) = r8(0) + j i8(0), 8(1) = r8(1) + j i8(1), ........... , 8(n) = r8(n) + j i8(n), ....... . 

where r8(n) and i8(n) indicate real and imaginary parts of the nth input sample, 8(n), respectively. 

The 5-stage transversal filter shown in figure 11.3 can be used to correlate these two sequences. The 
reference signal samples are first complex conjugated i.e. 

r*(O) = rr(O) - j ir(O) and r*(1) = rr(1) - j ir(1). 

These samples of r* are then allocated to the two coefficient memory banks as shown in figure 11 .3. It can 
be seen from this diagram that both coefficient stores contain real and imaginary samples of the reference 
signal. 

Assume that the input sequence is sampled into the correlator, with the real part followed by the imaginery 
part of each input sample. i.e. the input to the correlator is 

r8(0), i8(0), r8(1), is(1) ,r8(2) ,i8(2) ............... . 

where r8(0) is the first input sample. Also assume that we have selected the continuous-swap mode so as 
the memory banks A and B are swapped every time a new input is sampled. (On the IMS A100, you can 
select this mode by writing to a control register). Assuming that the coefficient bank 'A' is selected for the first 
input sample, B for the second and so on, you should be able to convince yourself that the output sequence 
for the arrangement in figure 11.3 is as shown in table 11.1. Note that in this example it is assumed that the 
correlator is cleared first by writing several zero's to the input. 



11 Complex (I & Q) processing with the IMS A100 193 

Sample Input Output sample value 
number sample 

1 r8(0) 0 ~ 0 

2 i8(0) r8(0) X rr(1) + i8(0) X ir(1) ~ Real part of 
s(O) x r*(1) 

3 r8(1 ) -r8(0) X ir(1) + is(O) x rr(1) ~ Imag. part of 
8(0) X r*(1) 

4 is(1 ) rs(O) X rr(O) + is(O) x ir(O)+ ~ Real part of 
rs(1) x rr(1) + i8(1) x ir(1) s(O) x r*(O) +8(1) x r(1) 

5 rs(2) -rs(O) x ir(O) + is(O) x rr(O) ~ Imag. part of 
-rs(1) x ir(1) +is(1) x rr(1) s(O) x r*(O) +s(1) x r*(1) 

6 is(2) r8(1) X rr(O) + is(1) x ir(O)+ ~ Real part of 
r8(2) X rr(1) + is(2) x ir(1) s(1) x r*(O) +s(2) X r(1) 

7 rs(3) -rs(1) x ir(O) + is(1) x rr(O) ~ Imag. part of 
-rs(2) x ir(1) + is(2) x rr(1) s(1) x r*(O) + s(2) x r*(1) 

8 is(3) rs(2) x rr(O) + is(2) x ir(O)+ ~ Real part of 
rs(3) x rr(1) + is(3) x ir(1) s(2) x r* (0) + s(3) x r(1) 

9 rs(4) -rs(2) x ir(O) + is(2) x rr(O) ~ Imag. part of 
-rs(3) x ir(1) + i8(3) x rr(1) s(2) x r*(O) + s(3) x r*(1) 

10 is(4) rs(3) x rr(O) + i8(3) x ir(O)+ ~ Real part of 
rs(4) x rr(1) +is(4) x ir(1) s(3) x r*(O) + s(4) x r(1) 

11 rs(5) -rs(3) x ir(O) + i8(3) x rr(O) ~ Imag. part of 
-rs(4) x ir(1) +is(4) x rr(1) s(3) x r*(O) + 8(4) x r*(1) 

Table 11.1 Output sequence for figure 11.3 

The last column in table 1 expresses the output sequence in terms of the complex input and complex reference 
samples. Examination of the output sequence would indicate that alternate samples correspond to real 
and imaginary parts of the expected correlation function. The arrangement for the two point correlator of 
figure 11.3, can be generalised to N -point complex correlation. Figure 11.4 illustrates the allocation of a 
reference Signal to the coefficient memories of the IMS A 100 for a 15-point complex correlation. The 15 
complex samples of the reference signal are represented by: 

r(n) = rr(n) + j ir(n) for n = 0 -+ 14 

where rr(n) and ir(n) are the real and imaginery parts of the nth sample of the reference waveform. Similar 
to the 2-point complex correlator described earlier, the correct operation is achieved if each input sample is 
supplied to the chip with its real parts followed by its imaginery parts. The coefficient memories, of course, 
should be set to the continuous-swap mode. 

In general for an N-point correlator realized with the IMS A100 chip, the first sample will always be zero (see 
table 1). The following N - 1 output-sample pairs (real and imaginary parts) correspond to partial results for 
the following complex correlation coefficients: 

R,,(-(N -1)), R,,(-(N -2)), ........... , Rsr(-1) 

and these will be followed with fully formed correlation coefficients: 

R,,(O), R,,(1), Rsr(2) .......... . 



194 

memory 
,-__ ,-__ -, ____ .-__ ,-__ -, ____ .-__ -, __ -. ____ ,-__ -, __ -. ____ ,-__ -. __ -.bank 

coefficient register 
associated with 
the first stage 

The reference signal is defined by r(n) = rr(n) + jir(n) n = Oto 14. 

coefficient register 
associated with 

the last stage 

Each sample of the input signal is supplied with the real part followed by the imaginary part. 

A 

B 

Starting with coefficient set A, the banks are automatically swapped for each write to the input device. 

Figure 11.4 Example of reference signal allocation for a 15 point complex correlation using the IMS A 100 

Complex correlators involving more than 15-points can be implemented either by cascading several IMS A 100 
devices or alternatively by using mathematical decomposition techniques to convert a long correlation into 
several short ones which can then be evaluated using a single device. Although the latter approach would 
require fewer devices, the processing rate would be less than the cascade arrangement. 

The IMS A100 can be cascaded without any external components to achieve correlators involving large 
number of correlation points. As an example, figure 11.5 illustrates how a 31-point complex correlator can 
be made up by cascading two IMS A 100 devices. The allocation of a complex 3D-point reference signal to 
the coefficient memories is also shown in figure 11.5. The input sequence, having a format described earlier, 
is supplied to both devices. 



11 Complex (I & Q) processing with the IMS A100 195 

input 

memory memory 
bank bank 

§:§: ~I~ 1M c;;- ~~ ;n;n CD ~Ci) ~I~ & 00 00 'i:'~1:': ~:s. B ~ ~ ~ .=,:s. ~~ B .. .. ~~ 1:"11: .. '- .. .- .. .. .. .. .. .. .. .. .. .. .. .- ... -... -.. . -.. '- .. .-
§: ~~ ;:-§: 1M:! ~;n ~<D CD ~ ~Ci> Ie;; 
o~ 

A ~:s. ~:s. ~ COC\l 

I~ A 00 o .!;: ";:".!: "i:".~ ,:;- C\I ~ 0 .. ~ .. ~ .. .. ~ .. 
I .. I .. I 

.. 'j .. .- .. .- .. 'j .. .-.. .. I .. I .. .. I .. 

~ ~~ multiply & accumulate ~, ~~~ multiply & accumulate , array array 

t l' 
I barrel I 

shifter 
I barrel I 

shifter 

~~~>.' .4-f$. 9 cascade shift-register 1 cascade shift-register +." :. 
::~~

]output ~1
-':::%p¥-- IMS A100 IMS A100

Allocation of the reference signal samples for a 30 point complex correllation is illustrated.

Figure 11.5 Cascading two IMS A 100 devices to obtain a 31 point complex correlator

11.3 Complex convolution

The convolution process is closely related to that of correlation. In order to convolve two signals, one of the
signals is time reversed and the second signal is then correlated (without complex conjugate operation) with
this time reversed waveform I.e.

1 N-1

C .. (m) = N L r(k)s(m - k).
"'..0

(5)

The process of convolution is what happens in filters where the output corresponds to a convolution of
the input signal and the impulse response of the filter. This is equivalent to correlating (without conjugate
operation) time-reversed version of the impulse response with the input sequence.

The IMS A100 transversal filter can be used to perform complex conVolution between a reference signal

r(n) = rr(n) + jir(n) for n = 0 -+ N - 1

and an input sequence

s(O) = rs(O) + j is(O), s(1) = rs(1) + j is(1), .•........• , s(n) = rs(n) + j is(n),

Figure 11.6 illustrates how the samples of a reference signal should be loaded in the coefficient memories for
a 15-point complex convolution. In a similar fashion to the complex correlator implementation, the waveform
to be convolved with this reference is applied to the input of the IMS A 100 with the real part followed by the
imaginary part. The coefficient memory banks should be set to the continuous bank-swap mode as before.

Again several IMS A 100 devices can be cascaded to implement longer complex convolvers.

196

memory
r---'---~----r----r--~----r----r--~----~---r---'----~---r---,bank

coefficient register
associated with
the first stage

The reference signal is defined by r(n) = rr(n) + jir(n) n = Oto 14.

coefficient register
associated with

the last stage

Each sample of the input signal is supplied with the real part followed by the imaginary part.

A

B

Starting with coefficient set A, the banks are automatically swapped for each write to the input device.

Figure 11.6 Example of reference signal allocation for a 15 point complex convolution (filtering) using IMSA100

lbimos Chapter 12 197

hardware
considerations
with the
IMS A100

198

12.1 Introduction

The design of modern high speed digital systems is a considerable challenge. If the designer is using unfamil
iar new products which themselves are complex VLSI devices then this task can become very difficult. This
application note will help those who wish to build systems using the IMSA100 cascadable signal processor.

12.1.1 Scope of the document

This document should be read in conjunction with the device specification [1). The device specification is
a short, precise, and minimal description of the IMSA100. The following document gives a more detailed
description of the function of the device, along with many hints for designing the device into a circuit. Specific
hardware designs are also given, which may help the designer further.

12.1.2 Document summary

In section 12.2 a description of the IMS A 100 device is given, with a particular emphasis on the operation and
timing constraints of the various inputs and outputs.

In section 12.3 smaller systems using a few IMSA100 devices are considered.

Section 12.4 describes techniques which allow large and very large systems to be designed without loss of
th roug hput.

Section 12.5 describes a method which allows faster data rates to be achieved, by operating severallMSA100
devices in a parallel configuration.

Section 12.6 gives some suggestions for debugging and fault finding hardware after it has been built.

12.2 The IMSA100 Device

This section gives a functional and parametric description of the device, and should be read in conjunction
with the IMS A 100 data sheet. The data sheet is a necessary description for design with the IMS A 100. The
following expands on some of the device mechanics, which are described in the data sheet.

Cascade
Input [0-11]

GO Clk 5]

IMS A100

ADR CE
[0-6]

W Mem Data
[0-15]

Figure 12.1 IMS A 100 device schematic

DOUT
[0-11]

OUTRDY
BUSY
ERROR

12 Hardware considerations with the IMS A100 199

12.2.1 Pin description and constraints

The description of the various pins of the device is split into a description of power supply pins, asynchronous
pins, synchronous pins and control pins.

Power Supply

All power supply pins must be connected to the correct polarity of supply for the device to operate correctly.
The supply must be decoupled by a capacitor with a value of 100nF or more which is suitable for high
frequencies (e.g. multi-layer ceramic). One or more should be mounted as close as possible to each device
and the lead lengths of the capacitors should be minimised. The device is designed to operate with a single
supply of between 4.5 and 5.5volts.

Synchronous Input/Output

The synchronous pins of the device are CLOCK, GO, OUTRDY, Dataln[0 .. 15], DataOut[O .. 11] (multiplexed)
and Cascadeln[0 .. 11] (multiplexed).

The clock

The CLOCK input pin requires a non-standard input signal of >4.0volts for a high level and <0.5volts for a
low level. The waveform needs to be monotonic between these two levels. Details of how this is achieved are
given in later sections of this application note. In general, a CMOS level clock driver with proper termination
will be needed. The CLOCK pin forms a large capacitive load (12pF typical, 15pF max.) which needs to be
considered when designing the clock driving system.

The CLOCK is the source of synchronisation between cascaded IMS A 100 devices; GO, Dataln[0 .. 15] ~nd
Cascadeln[0 .. 11] all sample in response to it. The output signals DataOuI[0 .. 11] and OUTRDY are also
timed from the clock. When the IMS A1 00 devices are programmed to operate in the normal mode the timing
constraints associated with the transfer of data between adjacent cascaded IMS A 100 devices is less rigorous
than in 4 bit or fast modes. If the devices are being used in fast output or 4 bit modes it is important to keep
the timing skew of the clock between devices to a minimum. In practice, it is not a good idea to buffer the
clock between devices in these modes. If a master generated GO pulse is being used, a common clock
is recommended. The maximum clock frequency for an IMSA100 is normally 20.8MHz, (a 30MHz version
device is also available) but the device is fully static and will therefore operate at any frequency below this.
It is also possible to start and stop the clock, provided no single phase becomes shorter than the minimum
indicated in the data sheet.

GO

The GO pin initiates a compute cycle of the IMSA100 and synchronises the devices in a multiple IMSA100
system. The GO pin is sampled on every rising edge of CLOCK when the IMSA100 is idle, and no com
putation cycle is in progress [1]. When a '1' is sampled, a computation cycle is started, and the Dataln pins
or data input register DIR is sampled on the next rising edge of CLOCK. The GO pin will not be sampled
again until it is possible to commence another cycle. It is therefore possible to leave the GO pin at a '1' level
following the initial clock edge, if the maximum data throughput is necessary. The number of clock cycles
between successive GO samples and the result appearing at the output, are dependant on the coefficient
word length setting [1]. Cascadeln[0 .. 11] is also sampled following a GO signal.

For the GO pin to be an input, the IMSA100 is set to be a slave by setting SCR[O] to a '0'. However, the
IMSA100 can be programmed to provide a GO signal for itself and for other IMSA100s by setting SCR[O]
to a '1'. This causes the device to send a signal from it's GO pin in response to a value being written to it's
DIR register. The falling edge of this signal indicates when new data can be safely written to the IMS A1 OOs
in the system. This feature is particularly useful in small systems where a microproccessor is being used
to provide data. It should be noted that the master IMS A 100 is only designed to drive itself plus another 3
devices (maximum load < 20pF) when operating at the maximum clock rate. However, at slower clock rates
more devices can be added in line with the following table.

200

Max clock Freq. Max no of slaves Length of filter

20 MHz 3 128

17.5 MHz 4 160
16 MHz 5 192

15 MHz 6 224
10 MHz 10 352
5 MHz 30 992

It is possible to buffer the GO signal from the master IMS A 100 providing the buffer is fast enough. The
propagation delay for such a buffer with a 5pF input capacitance as a function of the IMSA1 00 clock period
is given below.

TPbuffer < Tclk - 46ns

An alternative method of buffering the GO signal is discussed in the section of this note dealing with large
systems.

Data Input bus

This 16 bit wide Dataln[0 .. 15] provides high speed data to the IMS A 1 OOs when SCRf1J is programmed to '0'.
Usually, Dataln[0 .. 15] will be common to all the IMS A 1 OOs in a given cascade. The data is sampled on the
rising edge of the clock following the acceptance of a 'GO sample' by the devices. If this bus is being used
to provide data, the IMS A 100 must be in slave mode and cannot be used as a master. Each pin represents
a capacitive load of about 5pF.

Data output bus

The 24 bit result from the IMS A 100 is multiplexed through DataOut[0 .. 11] as two 12 bit words, the least
significant word being first. The most significant word follows and remains on the pins until the next least
significant word is available. The timings of the signals are dependant on the coefficient word length and
the normallfast setting as defined in the SCR. In the 4 bit and fast modes the least significant word is only
available on one rising edge of CLOCK, with the most significant word being sent immediatly following the
same edge. In the 4 bit mode running at full speed, every rising edge is used to both latch the output data
into the Cascadeln[0 .. 11] pins, and to cause the output data to change to the new value. The advantage of
the fast output mode is that the complete 24 bit output word is made available at the earliest possible time,
whereas the normal mode delays the most significant word slightly. This eases the timing constraints of the
circuitry sampling the output data. All devices in a given cascade must be set to the same coefficient word
length and fasVnormaloption. The output drivers used on the data output pins are deSigned to drive small
loads (e.g. 2 TTL inputs or about 15pF) with a 20MHz CLOCK in the fast or 4 bit modes. Even in the normal
mode the load should not exceed 30pF on these pins.

Output ready signal

The output ready pin OUTRDY is provided to indicate when the two 12 bit output words from the data output
pins are valid. It can be used to demultiplex the output into registers, and also indicates when the data has
been stored in the data output registers DOL and DOH. The falling edge of the OUTRDY signal indicates that
the least significant word on the output is valid, whilst the rising edge indicates that the most significant word
is valid and that the DOUDOH registers contain the new output data value. As in the case of DataOut[O .. 11]
the timings of this signal are dependant upon the coefficient word length and the fasVnormal mode setting.
Again, the timing constraints are eased when the device is operating in the normal mode on 8 bit, 12 bit
and 16 bit coefficient sizes. In the fast or 4 bit modes the OUTRDY signal is triggered by the falling edge of
CLOCK following the rising edge of CLOCK which changes the output data. The OUTRDY pin should have
a similar loading to the data output pins for optimum timing, and this should not exceed the limits set for the
data output pins.

The OUTRDY signal can be used to supply a clock for a D/A converter which, if it uses less than 12 of
the available 24 bits, will only require one of the two 12 bit words, thereby avoiding the need for demulti
plexing logic. When demultiplexing is required, it can be achieved using two sets of edge triggered latches
(e.g. 74ACT374) which are clocked by OUTRDYand it's inverse (figure 12.1). It is suggested that any ex-

12 Hardware considerations with the IMS A100 201

ternallogic associated with the DataOut[O .. 11] and OUTRDY pins be of a fast TTL compatible CMOS logic
type (Le. FACn in order to minimise loadings.

Cascade input port

The cascade input port allows multiple IMSA100 devices to be cascaded together in a chain. Like
Data Out[0 .. 11], Cascadeln{ 0 .. 11] is 12 bits wide and two words are used to form a 24 bit word with the
least significant word being sampled first. The cascade input timings are given in the device specification, but
it should be noted that the OUTRDY signal does not normally coincide with the sampling of Cascadeln{ 0 .. 11].
The cascade input of the first device should be grounded unless data is to be supplied to it.

Memory Interface asynchronous Input/output

The memory interface is the asynchronous part of the system. It is designed, as far as is practical, to appear
as a memory mapped peripheral. To achieve this there are chip select, chip enable, read/write and address
and data bus Signals, which will now be described.

Chip select pin

The chip select pin CS has to be pulled low (active) at the appropriate time for the memory interface to be
enabled. This pin is usually connected to part of an address decode system.

Chip enable pin

The chip enable pin CE is pulled low (active) to enable the memory interface, after the address, write enable
Wand chip select CS signals have been set up.

Read not write

The read not write signal W defines whether a given cycle is reading from or writing to the IMS A 100 memory.
This signal should not be changed whilst CE is low.

Memory address bus

This 7 bit wide port ADR[O-6] is used to address the IMSA100 memory. A memory map is given in the
IMS A 100 specification showing locations of the two coefficient banks and control registers. The TCR register,
located at decimal address 68, will default to all zeros on power up or in response to a RESET signal. However
if it is disturbed, by for example a system memory test, it should be written back to all zeros. Failure to do
so may result in unpredictable results.

Memory data bus

The 16 bit wide memory data port DATA[O-15] handles both input and output data to and from the IMSA100
and is used to program the two banks of coefficient registers and the control registers. When writing to a
coefficient register, the memory interface is transparent while CE is low. Writing to the active coefficients
whilst the IMSA100 is running a computation cycle may cause an incorrect transient coefficient to be used.
Using the update registers followed by a bank swap avoids this problem.

202

When the CE or CS are high the data pins are tri-state. The output stages associated with the data pins are
current limited and may be loaded by more than the 30pF specified for the timings given in the specification
provided the CE pulse length is increased. The table below gives an indication of the length CE pulse
required for a series of loads.

Capacitive load CE pulse
on data bus length

300 pF 50 ns
100 pF 80 ns
300 pF 170 ns

1000 pF 500 ns

Each Data pin represents a maximum load of about 7pF when tri-stated.

System control

The IMSA100 is controlled by 3 signals, RESET, ERROR and BUSY which will now be described.

Resetting the device

To reset the IMSA100 control logic pull the RESET pin low for at least 200ns followed by two cycles of the
input clock. The reset function on the IMS A 100 only resets the control registers to their default values. It
does not change the values of the coeffiCients, clear the data path or reset the error flags if errors are still
present. There is a power on reset signal ORed with the RESET pin circuitry which requires an adequate
voltage on both the power supply and the internal clocks before it allows the internal reset signal to fall.
For this reason the CLOCK pin must be exercised at or following power up before the control registers are
programmed. A resistor (e.g. 33kn) from the RESET pin to VCC together with a capacitor (e.g. 10~F) to
GND is usually sufficient to provide an adequate signal. The pin may be connected directly to VCC provided
you are sure that your system power supply is monotonic on power up, as the power on reset circuit will only
operate once.

Error control

If the ERROR pin is asserted it indicates that there has been a numerical overflow in either the final adder
or field selector. Bits [1-2) in the Active Control Register ACR indicate which error type and the ERROR pin
is reset by writing a '0' to these registers. Before continuing, these error bits must be armed by writing a '1'
to bits[1-2) of the ACR. The ERROR pin is only able to sink current to GND and therefore requires a pull up
resistor to Vdd. Many devices can be wire ORed together to indicate an error in anyone of many IMSA100
devices within a given system. The presence of an error does not affect the operation of the IMS A 100
(although the results may be nonsense) and it is possible to continue to use the device without resetting the
condition. Although the ACR register is reset on power up, the ERROR pin is usually set again by random
numbers within the device. In order to clear the ERROR pin it is necessary to flush the system before clearing
and re-arming the ACR registers. Flushing involves writing zeros to the data input and cascade input over 32
successive cycles.

Device busy

The BUSY pin indicates when the active and update coefficient registers are being or are about to be swapped.
When this pin is high the coefficient registers should not be accessed. There is no guaranteed minimum
duration of a BUSY signal since a bank swap request may be dealt with immediately. This pin operates only
in conjunction with individual bank swap requests made via ACR[D} and not when the continuous bank swap
mode is selected by SCR[2}.

12 Hardware considerations with the IMS A100 203

12.2.2 Initialisation of IMSA100s

There are many ways of initialising one or more IMSA100 devices but if in doubt the following procedure is
recommended. First, for a system with all devices used as slaves do the following operations.

1 Apply power and start CLOCK

2 Take the RESET pin high

3 Write all coefficients to '0'

4 Set the Cascadeln[O .. 11] of the first devices in any cascades to '0'

5 Set GO to '1 ' or provide plenty of GO pulses

6 Allow the system to run like this for long enough to clear out any stored junk numbers. This period
will depend on the length of your filter and the frequency of your GO pulses.

7 Apply a RESET signal or write 'Os' and then '1s'to the ACR[1-2] - any error signal should now
disappear.

8 Set up your own SCR, coefficient and data values.

For a system with a master and slaves do the following.

1 Apply power and start CLOCK

2 Take the RESET pin high

3 Set up your own SCR values

4 Write all coefficients to '0'

5 Set the Cascadeln[0 .. 11] of the first devices in any cascades to '0'

6 Write to the data input register DIR on the master IMS A 100 to create plenty of GO pulses

7 Allow the system to run like this for long enough to clear out any stored junk numbers. This period
will depend on the length of your filter and the frequency of your GO pulses.

8 Write 'Os' and then '1 s' to ACR[1-2] - any error signal should now disappear.

9 Set up your own coefficient and data values.

12.2.3 An extra selector setting using TCR

The test control register TCR is designed to help INMOS fully test the IMSA 100. However, one of it's functions
may be of interest if the output word selection field of [7-30] gives insufficient resolution. This is most likely
to occur when smaller coefficient word lengths are in use. Writing a '1' to TCR[2] will overide the values
programmed in SCR[4-5] to give a field selection of [-1-23] where field bit [-1] will always be '0'. The other
TCR bits must always be set to '0' by the user.

12.3 Smaller IMS A100 systems

The techniques described in this section apply to systems employing perhaps four IMS A 100 devices in a
single cascade together with a small support system including a single microprocessor. Two typical systems
are shown in figure 12.2.

204

Host Processor

used for providing coefficients, input data, system set-up and control

Host Processor

used for programming coefficient registers and setting up the system

External
Data

External GO

Figure 12.2 Two simple small systems

12.3.1 Board Layout Constraints

data
output

data
output

During normal operation the IMS A 100 dissipates a fairly low average power (0.5W at 20MHz approx). How
ever, due to the high degree of parallelism within the device, it requires well decoupled, low inductance con
nections to it's power pins. A multi-layer board with a VCC and GND plane is recommended with at least one
multi-layer ceramic decoupling capacitor of 1 OOnF or more mounted as close as possible to each IMS A1 00.
The IMSA100 devices forming a cascade should be located next to each other with the Cascadeln{O .. 11)
pins of the next device near the DataOut[0 .. 11) pi ns of the first. Any circuitry using the DataOut[0 .. 11) pins
should be located as near to the IMS A 100 as possible to avoid excessive loading. The track carrying CLOCK
should take a direct route from one IMS A 100 to the next in order to avoid excessive skew.

12.3.2 Memory Interface

The last IMSA100 in a cascade chain should occupy the lowest address space and the first in the cascade
the highest. This is to maintain compatability with the addressing of the coefficient registers where coeff[O]
resides in the lowest location within the bank.

In many applications it will not be necessary to buffer the pins associated with the IMS A 100 memory interface.
It is, however, necessary to confirm that this is, in fact, the case. The timings of the proposed memory interface
together with the bus loadings should be checked with the IMSA100 device specification and the additional
information given in Section 2 of this note. If the memory interface uses high speed buffers, some termination
may be required to limit transients outside the power supply rails. In such cases 1000 resistors in series with
the offending buffer(s) are recommended.

12 Hardware considerations with the IMS A100 205

12.3.3 Clocking

In general, the smaller the system, the easier the clocking will be. The IMSA100 CLOCK is not TTL compat
able and will have to be generated by a device or devices capable of driving signals to within about 0.5volts
from each power rail. The constraint that the CLOCK signal at the IMS A 100 should be monotonic in between
the high and low limits will almost certainly mean that termination will be required. The easist way of gener
ating such a CLOCK for a small system is to use a TTL compatible CMOS device such as a 74ACT244 in
the FACTfamily of devices. A chain of IMS A 100 devices connected by a 10 thou 1000 impedance track and
driven from one end will need a terminating resistor of about 390 at the other (figure 12.4). The exact values
of terminating component will depend on many factors and the values given here are for guidance only and
some experimentation may be needed. In systems using a slow CLOCK rate a slower CLOCK edge may
ease or even remove the termination constraints.

12.3.4 Data input

The input data can be provided either through the memory interface to the DIR register or through the
16 Dataln[O .. 15] pins. The main constraint on the Dataln[O .. 15] pins is that the data should meet the
set up and hold times given in the device specification for the relevant CLOCK edge. In the majority of
cases Dataln[O .. 15] will be common to alllMSA100 devices. Termination on the drivers of this bus may be
necessary under certain circumstances.

12.3.5 Data output and output ready

The output data can be obtained from the DOUDOH registers via the memory interface or from the 12
DataOut[0 .. 11] pins. When the DataOut[0 .. 11] pins are used the two 12 bit words will have to be separated
in some way. In systems where less than 12 bits of the answer are required (e.g. to drive an 8 bit D-A
converter) it may well be possible to discard one of the two words by choosing appropriate coeffiCient values
and/or selector settings. The OUTRDY signal can be used as a basis for a CLOCK for a D-A converter or
other circuitry but it will need buffering if the load on it becomes excessive. If the full 24 bits are required the
OUTRDY signal can be used to CLOCK edge sensitive latches [1].

12.3.6 Master generated GO

The master generated GO feature of the IMSA100 was designed principly for small systems where the input
data is supplied through the memory interface. On a master device, the GO pin has a dual function; first to
provide a GO signal for all the IMSA100 devices, and second to indicate to the system when it is appropriate
to write a new value to DIR and hence start another cycle. It is difficult to obtain a high throughput, compared
with using Dataln[0 .. 15], if the output is being read from the DOUDOH registers, particularly in the 4 bit and
8 bit modes. Care is needed to avoid writing a new value into the DIR before the old value has been used,
(the correct time is indicated by the falling edge of GO) or reading the DOUDOH registers while they are
being updated (the correct time is indicated by the rising edge of OUTRDY). In a multiple IMSA100 system
using a master it is necessary to update the slave DIR registers before, or at the same time as, the master. It
does not matter which device is the master but there must only be one for a given cascade. It is possible to
update the DIR registers of all the IMS A 100 devices by addressing all their DIR registers simultaneously by
pulling all the CS pins low during the write to the master's DIR. Alternatively, the input data can be provided
to all the slaves via the common Dataln[O .. 15] which, in order to be safe, will have to remain valid until the
rising edge of the CLOCK following the falling edge of the master generated GO signal. In this case the
SCR registers in the slaves must be programmed to accept input data from Dataln[O .. 15] and not the DIR
register. It is not possible for the master IMSA100 to take it's data from Dataln[O .. 15].

12.3.7 External GO

For high speed systems and for all systems where the input data is only provided via the Dataln[O .. 15] port
a GO signal must be provided by the support system. In many systems where the maximum throughput is
required the GO signal may be taken high but it is important to keep track of when Dataln[O .. 15] is sampled
to avoid changing the input data at this time. The GO signal may be pulsed every N CLOCK cycles at or less
than the maximum data rate but any attempt to pulse GO at a higher rate will result in a drop in speed due
to some of the pulses being ignored. It is important that the GO signal changes outside the set up and hold
times given in the device specification to avoid the risk of different IMS A 100 devices in the cascade falling

206

out of synchronisation. If IMS A 100 devices in a cascade do get out of synchronisation with each other for
any reason, they will immediately resynchronise on a new correctly timed GO signal.

12.4 Large IMSA100 systems

This section deals with design techniques suitable for overcomming the problems raised when designing
systems employing many IMSA100 devices. There is a limit to the number of IMSA100 devices that can
easily be put in a single cascade without break and that limit will depend on many factors but especially board
size and speed. Many of the problems are the same as those already dealt with in the previous section but
more severe. Whilst with a small system it is fair to assume that every IMSA100 is on a single board, this
may well not be the case with large systems. However, with care it is possible to build very large systems of
IMS A1 00 devices with a phenomenal performance.

12.4.1 How many IMS A100 devices per board?

In theory it is possible to put as many IMSA100 devices in a continuous chain as necessary without limit
providing all the signals to and from the devices meet the specification. In practice boards have a finite size,
bus capacitances build up to unreasonable values, and so on. It therefore becomes necessary to partition the
problem. In practice it is possible to put 32 IMSA100 devices on a double extended Eurocard, using a 4 layer
printed circuit board together with enough additional logic to allow these boards themselves to be cascaded.
Such a board could be regarded as a 1024 stage subsystem. This same technique can be applied to smaller
numbers of IMSA100 devices on smaller boards, although address decoding will be easier if 32, 16,8 or
4 devices are grouped together. Whilst the data throughput of the cascade can be maintained, the speed
of the memory interface will be a funtion of the loading of the data lines. For many applications this will not
matter but in applications, such as fast adaptive filtering, the rate at which the coefficients can be updated
may be important. It is therefore necessary to identify which aspects of performance are important, as they
will have a significant effect on the way that the system is implemented.

12.4.2 Cascading boards

This section describes one way of maintaining the maximum throughput of the IMS A 100 devices in a multiple
board system by the use of pipelining. The general technique is to contain the timing problems to each board
separately and to make inter-board communication as easy as possible. Each board has a series of edge
triggered latches (e.g. 74374 devices) which latch all syncronous inputs and outputs including Dataln[O .. 15)
and Go. In prinCiple, all inputs are latched by a PH1 clock which is inverted to provide a PH2 clock to latch
the outputs and to provide the clock for IMS A 1 ODs. The signal is transmitted between boards between the
rising edge of PH2 and the rising edge of PH1 with the latches acting as drivers (figure 12.3).

12 Hardware considerations with the IMS A100 207

----------r---------Sysclk

: :::::::::1==:==:==:::::Mem Data Address
CE--------~----~-r------

---------------~--------~~-------w
Reset-----------------------------L-1----------

------------------------------~---------error

Figure 12.3 Placement of IMS A100 into large system

12.4.3 Board Design

The design of large boards in a cascade requires some care. This section considers the specific example of
a cascadable board with 32 IMSA100 devices and support circuitry designed to run with a 20MHz clock with
4, 8, 12 or 16 bit coeficient word lengths. Each of these boards represents a 1024 stage filter and all inputs
and outputs are latched or buffered.

Board description

To minimise the length of the connections between DataOut[O .. 11] and Cascadeln(O .. 11] of adjacent devices,
it is best to arrange the IMSA100 devices in a pattern like a snakes and ladder board (figure 12.4). This
has the additional advantage that common signals like GO, CLOCK, and the various buses may be shared
between two rows of devices.

To maximise the density of devices within the board area, half of Dataln(O .. 15) and half of the memory data
bus pass under each row of devices. The address bus and other signals pass between the first and second
rows and third and fourth rows whilst CLOCK and GO pass between the second and third rows and the fouth
and fifth rows respectively (figure 12.4).

The block of IMS A1 00 devices are mounted away from the board edge connectors. The Cascade input latches
drive the top of the IMS A 100 block, whilst the output data is produced at the bottom where it is latched. The
input data is pipelined to drive the next board as well as providing data for the IMS A 100 Dataln(0 .. 15). The
GO signal is pipelined in a similar way to provide a delayed GO signal in step with the delayed input and
output data. The system clock is used to provide PH1 and PH2 signals from two CMOS inverting buffer
devices located centrally on the connector side of the board. The clock is distributed to keep the timing skew
on the clock to adjacent devices to a minimum. The clock tracks driving the IMS A 100 devices are terminated
by 390 for the top track and 270 for the rest which are driving two rows of devices. The termination consist
of a resistor in series with a 1 OOnf capacitor to remove any DC path to GND. The tracks carrying the clock
between IMSA100 devices were 10 thou wide, but the tracks from the clock driver to the beginning of the
block of IMSA100 devices were of a width needed to match the terminating impedance. The GO signal is
treated in a similar manner to the CLOCK, with the option of connecting termination components at the end of
each track. The only signals which are not driving every device are the DataOut[O .. 11] to Cascadeln[O .. 11)
links, and the CS connections. Each one of these is connected separately to the address decoder.

208

Figure 12.4 Clock distribution for large system

Cascade
Input

The memory interface buses, the ERROR and RESET functions are not latched but buffered in some way.
The ADR[O-B], CE and W signals are all buffered from the memory interface. The data bus passes through
a bi-dirctional buffer (74F245 in this case) with it's direction defined by the RnotW signal and with it's tri-state
control connected to the board address decoder. Since there are 32 IMSA100 devices together with about
2 feet of pcb track attached to each memory data pin, the CE signal needs to have about 150ns duration.

The RESET pins of the IMSA100 devices are connected together and connected to some open collector
logic plus a resistor to VCC and a capacitor to GND. This arrangement allows a RESET signal to be applied
from the system but allows the board to reset itself if no such signal is applied. An LED indicates when the
RESET signal is high.

The ERROR pins are also connected together with a 1 KO resistor pulling up to VCC. This signal is buffered
with an open collector gate to allow the boards to be wire ORed if desired. A second LED indicates if an
error has occured in any IMSA100 on the board.

12 Hardware considerations with the IMS A100 209

Memory Mapping

The exact memory map required will vary from system to system but there are one or two pitfalls which should
be avoided. The coefficient registers in the IMS A 100 are addressed in such a way that the last coefficient is
located at address[O) and the first in location [31). In order to be consistant with this, the LAST IMSA100 on
the LAST board should occupy the LOWEST memory location. Failure to implement this will make the block
moving of stored coefficient values to the IMSA100 devices less straightforward than it could have been. If
the coefficient registers are to be in a continuous memory space, it is necessary to organize the memory map
as follows:

System Address bits: o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

INS A100 address bits: 0 1 2 3 4 5 6

Chip Select addresses: o 123 4

Board Select addresses: 012 3

This map assumes a 16 bit system address bus and 32 IMSA100 devices on each board. Remember that
the board address space should be large enough to cover both the number of IMS A 100 boards required plus
any other areas of circuitry requiring address space (e.g. memory etc).

12.5 Higher Data Rates using multiple IMSA100 devices

For some applications, data rates in excess of 10M samples/sec must be used for real time processing.
Since the fundamental maximum data rate of the IMS A 100 is 10M samples/sec, this may appear to be a
limiting factor. The following section describes a general method for interleaving multiple IMSA100 devices
to achieve effective data rates of 20 M samples/sec and above, with little or no loss of functionality.

12.5.1 Principle of operation

Figure 12.5 shows four IMS A 100 devices connected so as to provide the equivalent functionality of a 64
stage, 20M sample/sec IMSA100. The data rate to each device is reduced by introducing a data demulti
plexer, which splits the data stream into two parallel streams. This enables a reduction of input data rate to
10 M samples/sec, the maximum possible for a standard IMS A100.

The segmentation of the problem is achieved because of the transversal filter architecture of the IMS A 100.
For any transversal filter structure, the summation performed at any given time is as follows.

(1)

where X-2,X-1, Xo, ... represent successive data samples in time, and 00,01,02, ... represent the coefficients.
Equation 1 can be rewritten as follows, with the two halves of the equation performed by two separate devices.
This equation may be further generalised into N segments, executed on N 2 devices.

(2)

Figures 12.5 and 12.6 illustrate systems exploiting equation 2 to perform 20 Msample/sec filtering. The
principle is that the upper pair of devices perform the evaluation for one time period, and the lower devices
perform the evaluation for the next, which gives an interleaved computation. In these figures the abbreviations
UL refers to the upper left IMS A 100, LL the lower left, UR the upper right and LR the lower right. The following
points should be noted when observing these figures.

• The positions of the coefficients are in reverse order, and are offset between the upper and lower
devices.

• One delay stage is required at the input to the LL device.

• Both evaluations are being performed at exactly the same time, so that the major cycles of all devices
commence on the same clock edge. This is set to coincide with the time that a data sample arrives
at the UL and LL devices.

210

20 MHz data 1:2 DEMUX ~ 20 MHz system clock

~ 1 ~O
MUXselect

-:-........... -...:.:-....-.:.. ">!'*">'<-">:>'«> ... -«-. .. "!>! o,:.,.:.,o,:. ,o.:.. =t: ;.'-» '*' '*'~'*"''* .. '*'~-.:> ... "*
$
~

~ "'v "'v
~ GO C63 C61 CS9 CS C3 C1 GO C63 C61 CS9 C5 C3 C1
~
~ Din

~~
!pin

~
~"."....,.,"" 4" MAC array MAC array
~

t
Cascade delay Cascade delay

Dout

~ ~
j

~
~
~

"'v "'v ~ -::-::- GO 2:1

I ~GO C62 C60 CS8 C4 C2 CO C62 C60 CS8 C4 C2 CO MUX Data

~ >.

~~
lEl!2,~".

~~
~"" :i "'\>~ MAC array MAC array

Cascade delay Cascade delay

MUX
select

Figure 12.5 20 MHz system using external adders

12.5.2 Mechanics of Operation

To see exactly how the circuit works, consider the following sequence arriving at the data input to the demul
tiplexer.

Assume that xo is sent down bus 0, X1 is sent down bus 1, X2 down bus 0, and so on. Consider the major
cycle that commences for all devices when X3 arrives at the UL device. At that time, X2 will be at UR, X1 at
LL, and X2 at LR. For this cycle, the final output from UL and UR will be as follows.

whilst LL and LR will produce the following.

Thus, the output of the lower pair must be taken first through the output multiplexer, followed by the upper
pair. The single delay at the input to LL is necessary for the organisation of coefficients. Because COxn
must be the last calculation, data must be presented to the device with coefficient Co after the device with
coefficient C1.

12 Hardware considerations with the IMS A 100

MUX select

32
stage A
delay f=- l--+--t-----t'l v...l---t--t-----l
-,-- GO C63 C61 C59 C5 C3 C1 Go" C63 C61 C59 ""v C5 C3 C1

Din
MAC array ~l!!" "*" I MAC array

~

+ + Dout~ I Cascade delay l-...p:;;;;.::.:.-[.~ -.,.'" Cascade delay

~ ~========~~~
~
§

~
~
~

, ""v ~ rv i Go" C62 C60 C58 C4 C2 CO I Go C62 C60 C58 .A--C-4-t-C-2-t-C-0-i

LW~~ :====M=Ac=a=rra=y==~h+L....f_Do_ut _t8_1!L_"*~ ~:====MA=c=a=rra=y==~h+ Y Cascade delay }-®-- 1 Cascade delay J-<±>
MUX
select

Figure 12.6 20 MHz system using cascade adders

12.5.3 Using the cascade adders

211

Dout

2:1
MUXOata

For most applications, it is more convenient to use the cascade adders rather than external devices (fig
ure 12.6). This is because the multiplexed output of the IMSA100 causes complication. A reduction in the
number of devices used, and a simplification of the design can be achieved, by using the cascade inputs of
the IMSA100.

The cascade adders are used by first inserting a 32 sample delay into the path of the data for the UR and
LR devices, and second, by connecting the data output of UL and LL to the cascade inputs of UR and LR
respectively. This avoids the use of two accumulator devices, and simplifies circuit board layout considerably.
Of the two designs this is the more elegant, and is recommended for use in practice.

12.5.4 Extensions to this technique

Once the above technique functions correctly, many extensions are possible. Some of these extensions make
the design even simpler .

• Higher speed. By using a 3x3 or 4x4 configuration, data rates of up to 30 M samples/sec and
40 M Samples/sec respectively can be achieved. The only limitation is the speed of the demulti
plexing and multiplexing logic. The minimum number of stages using this method also increases
proportionally. Thus for 2x2 devices, a minimum of a 64 stage system is produced, which can only
be incremented in 64 stage modules. Likewise for 3x3, the minimum number is 96 stages, and for
4x4 the minimum is 128 .

• Cascading. Since two cascaded IMSA100 devices appear functionally equivalent to one 64-stage
IMSA100, each of the four devices shown can be replaced with N IMSA100 devices to form longer

212

filters. The 32 stage delay would, for example, become 64 stages with two cascaded devices per
location.

• Complex Processing. The configuration described permits complex processing, using bank swap
as described in [5]. However, the two multiplexed data streams presented in the illustrated config
urations will be the real and imaginary data streams, and the results likewise. Thus, by providing
the complex input data correctly skewed in time, the multiplexers are eliminated. This results in a
considerable simplification of the design.

• Removing UL delay. The single stage delay can be removed if less than 64 stages are required.
This is done by having a zero coefficient in the coefficient closest to the back end (leftmost on the
illustration) of the LL device.

• Removing 32 stage delay. The 32 stage delay can be eliminated, by zero filling the leftmost
coefficients of UR and LR devices. This, although simplifying the circuit, may be costly, as the
IMS A 100 stages are being used as delay elements. The merits of this depend on the relative cost
of an IMSA100 as compared with the cost of a 32 stage delay element.

12.6 Checking and debugging

This section gives some hints on how to check and debug the IMS A 100 part of a system. The IMS A 100 has
a number of features which make it easy to test within the context of a new or unproven circuit or p.e.B. The
general philosphy is to get the memory interface working and then to use the DIR and DOUDOH registers
to help find any problems. An oscilloscope is also needed to check signals like the CLOCK, GO and for
checking the operation of the various busses.

12.6.1 The Memory Interface

The best way to check the function of the memory interface is to write and read values to either or both banks
of coefficient registers. The correct operation of these is independant of the CLOCK, RESET settings or
the contents of the SCR, ACR or TCR. The values that are written at this time are not important but writing
10101... and 01010... patterns will help locate any short or open circuits on the board. If little activity is
observed from the IMSA100 then use the oscilloscope to check CS, CE, W, ADR[O-6] and DATA[O-15] lines,
and ensure the presence and correct timing of these signals. The best way to do this is to write a program
on the host processor that loops continuously doing writes and reads to one IMS A 100. These tests may not
identify crossed data or address lines.

It is worth correcting any problems in this area before proceeding to the next series of tests.

12.6.2 Clock, GO and output ready

Before checking these basic functions it is worth reseting the IMS A 100 devices either by using the RESET
pin or by powering down the system. This is to ensure that earlier attempts to debug the memory interface
have not aCCidentally written values to the SCR, TCR and ACR registers. The clock should be checked using
an oscilloscope. Problems with impedance mismatching may cause excessive voltage overshoot and/or
undershoot, or cause the clock to not meet the specification in some other way through excessive ringing.
Lack of drive in the clock driver will cause poor '0' and/or '1' levels. If the clock does not quite meet the
specification but is present and is a reasonable shape, it is probably worth leaving the problem until the rest
of the system has been debugged.

With the clock running either pull GO high or provide a series of GO pulses. If an IMSA100 is to be used as
a master simply pull GO high with a resistor for this test since all the devices are still set as slaves. Under
these conditions the OUTRDY pin should be providing pulses.

12.6.3 Setting up SCR values

Before proceeding, the SCR registers should be set to #002 in slave IMSA100 devices or #003 in any master.

12 Hardware considerations with the IMS A100 213

12.6.4 Checking the data path

The next step is to check the data path from the input of the first IMS A 100 to the output of the last one. It is
worth writing a program to display the contents of the DOUDOH registers on a monitor or TV screen.

All coefficients should be set to '0' together with Cascadeln{ 0 .. 11) of the first device. A GO signal is now
needed which is provided by the support logic or by writing to the DIR of an IMS A 100. The method depends
on the system under test, which will either be a master generated GO or externally generated GO. The value
written to a master IMS A 100 should not effect either its output or the contents of its DIRIDOL regisers, since
all the coefficients are set to '0'. If there is the option of placing a value on Cascadeln[O .. 11) of the IMSA100,
that value should appear in the DOUDOH register. For a single IMSA100 the value will be delayed by 32
cycles of GO, and for many devices the delay will be a multiple of 32 cycles.

The following tests are valid for all coefficient word lengths, although only the least significant 4 bits will be
used. The source of the GO signal is unimportant and the devices can be set for fast or normal output mode.
However, SCR[4-5] should be set to '0' to select the [7-30] field, and the answers will then be the same as
those given below. The values of coefficients and data and expected are given as hexadecimal numbers.

Set Cascadeln{ 0 .. 11) on first device to #000000
Set DIR on all devices to #1002
Set all active coefficients to #0004

If a master IMS A1 00 is used, continuously write #1002 to it's DIR register. Otherwise, apply a continuous or
frequent GO signal, while writing data to the Dataln[0 .. 15) port of all the IMS A 100 devices. For the first 32
cycles of every device the result in the DOUDOH register should increase linearly, in steps of #4008. The
result will be split between the DOL and DOH register so that for the whole result #4008 DOH = #0004 and
DOL = #0008.

1 st cycle in the cascade
2nd cycle in the cascade
3rd cycle in the cascade
4th cycle in the cascade
5th cycle in the cascade
7th cycle in the cascade
7th cycle in the cascade

DOH=#OOOO
DOH=#OOOO
DOH=#OOOO
DOH--#0001
DOH=#0001
DOH=#0010
DOH=#0010

DOL=#4008
DOL=#8010
DOL=#8018
DOL=#0020
DOL=#4028
DOL=#8030
DOL=#8038

This test can be repeated using the Dataln[O .. 15) port instead of the DIR registers by setting the SCR values
in all slave IMSA100 devices to #000. If the GO signal is generated from a master IMSA100 it will still be
necessary to write #1002 to the DIR register repeatedly. The input value #1002 can be changed to other
values to check other bits in the data path. Once the cascade path has been filled, the answers should be
stable, and any variation indicates a problem somewhere.

Now that the devices have been exercised, it should be possible to remove any error indication from the
ERROR pin by writing 'Os' to ACR[1-2] followed by writing '1s' to arm the register.

The above tests only check the memory interface and the data path through the IMSA100 devices. However,
with these working, the debugging of the rest of system is made easier. Once all this works most of the
system will be fully functional.

214

12.6.5 FauH finding guide

It is assumed throughout that power has been applied to all the VCC and GND pins correctly. If it has not,
expect very unpredictable behaviour and/or possible damage to the devices.

When a problem is encountered it is often worth varying the power supply voltage or changing the clock
frequency. This will often indicate the nature of the problem by showing if it is due to timing or perhaps noise.
The following checks may also help to diagnose the problem.

• If there is response from the memory interface check the following:

• CS is low (when it matters)

• CE is pulsing

• The addresses are valid

• W is working

• Any memory bidirectional data buffers are working in the right direction.

• If there is no GO signal from a masterlMSA100 check the following. The clock has to be present
and the RESET pin high before the SCR, ACR or TCR registers can be written to.

• There is only ONE master.

• There are no shorts on the GO track.

• SCR[O] is set to '1 '.

• TCR is set to all 'Os'.

• The clock is present.

• RESET is high.

• If there is no OUTRDY signal check the following.

• GO signals are present on some rising clock edges.

• TCR is set to all 'Os'.

• There are no shorts on the OUTRDY track.

• RESET is high.

• The answers are wrong, which could be almost anything. However, the following checklist should
diagnose the problem.

• The SCR registers are set to the correct value.

• The ACR registers are set to the correct value.

• The TCR registers are set to all zeros.

• AIIIMSA100 devices are in the same output mode. (SCR[10])

• There is only one master. (SCR[O])

• The output word selection is sensible. (SCR[4-5])

• The data input source is correct. (SCR[1])

• The coefficients word lengths are right. (SCR[8-9])

12 Hardware considerations with the IMS A100 215

• The coefficients are stored in the right bank.

• DOL and DOH are read in the right order.

• The memory data and address lines are in the right order.

• OUTRDY is not inverted wrongly in any external logic.

• 4, 8 and 12 bit coefficients are written into the least significant bits of the 16 bit wide
coefficient registers.

• Input data is valid when sampled.

• The order of the coefficients has not been mangled by the memory map.

12.7 Conclusions

This application note deals with the hardware aspects associated with the IMSA100. Other application notes
produced by INMOS relating to the design of systems employing the IMSA100 are given in the bibliography.

This document describes how system hardware with few to very many IMSA100 devices can be designed
and debugged. The information from 3 separate designs of board, designed by INMOS engineers, has been
accumulated in this document. These boards include the IMS B009 (a plug in card for the IBM PC having 4
IMSA100 devices), a high performance FFT/convolution module board with 4 IMSA100 devices and a large
system board with 32 IMSA100 devices.

12.8 References

IMSA 100 data sheet, INMOS Limited, Bristol.

2 Digital filtering with the IMS A 1 00, Application note 1, Hossein Yassaie,
INMOS Limited, Bristol.

3 Discrete Fourier transform with the IMSA100, Application note 2, Hossein Yassaie,
INMOS Limited, Bristol.

4 Correlation and convolution with the IMSA100, Application note 3, Hossein Yassaie,
INMOS Limited, Bristol.

5 Complex (I & 0) processing with the IMSA100, Application note 4, Hossein Yassaie,
INMOS Limited, Bristol.

216

Ilrmos Chapter 13 217

• Image
• processing

with the
IMS A100

218

13.1 Introduction

13.1.1 The aims of this document

The IMS A1 00 performance makes the real time processing of digital images a practical possibility. This doc
ument is a practical guide, which explains how the device is used to process digital images. The processing
done by the IMSA100 will be some form of feature extraction, such as line, corner or edge detection. Feature
extraction is often the first stage in the analysis of an image. Further analysis of an image, for example,
deciding that a group of features in an image is a vehicle number plate, is a higher level function, beyond the
scope of this document. This application note describes the following.

• The operations of filtering and edge detection of a picture or image using a technique of 2-dimensional
convolution are explained. Some simple filter types including edge detection and contrast enhance
ment are described.

• The use of the IMSA100, to perform the 2 dimensional convolution, in order to process an image is
described. This shows the simplicity of use of the IMSA1 00 in this particular application.

• The estimation of performance and cost, for processing an image using the IMSA100 is described.
Several possible systems consisting of IMS A 100 devices are given, to illustrate how easily the cost
and performance may be controlled, by using different numbers of devices, and by altering the
complexity of the system.

• The processing of images at real time speeds (20 frames per second) is described, and a hardware
implementation of this is given. This shows the high performance possible using the device.

13.1.2 Document structure

The remainder of section 13.1 gives an introduction to signal processing, and shows the position of the
IMS A 100 within the field of signal processing, and more specifically its capabilities for the processing of
digital images.

Section 13.2 gives gives a practical explanation of some of the concepts of image processing. Included is
an explanation of how filtering and edge detection of a picture operates, and how this may be applied to the
IMSA100.

Section 13.3 gives two possible systems which may be constructed using the IMSA100, from a medium
performance system to a very high performance system which will operate at real time speeds. Included in
this section is a description of how the performance of a prospective system may be estimated by trading off
performance, complexity and cost.

Section 13.4 concludes and summarises the findings of this application note.

Section 13.6 gives an implementation of 2-D image processing using the IMS B009, running on an IBM PC.
This is included as a practical illustration of the techniques described in section 13.2 and 13.3.

13.1.3 An overview of signal processing

Signal processing is an area of engineering which fills many people with dread. This is not entirely surprising
when one considers both the theoretical and practical aspects of the subject. On the one side there are the
mathematical algorithms required to solve even the simplest problem. This has long been regarded as the
territory of academics and not to be tackled by the average engineer. On the other side there is the circuitry
required to implement these algorithms. Historically, systems have often required many complex circuits, with
system design requiring a knowledge of analogue deSign, and also, in the more recent past, digital design.

Not surprisingly, there are very few scientists in the world with the knowledge or experience required to deal
with all the aspects of signal processing design. Signal processing design now covers both analogue and
digital design from the low end audio spectrum (40 KHz) through the video spectrum (100 MHz) to the top end
of the radio spectrum (100 GHz). When signal processing in all these areas began the techniques used were

13 Image processing with the IMS A100 219

purely analogue. The power of digital signal processing now approaches the top end of the video spectrum.
Although it is not yet possible to process pictures the size of a TV screen in real time, it will undoubtedly
become possible within the next decade. One of the main applications of the IMS A1 00, as described in this
document, is the processing of pictures in real time.

In the radio frequency (RF) spectrum, specialised devices are used as the first stage processing elements.
These devices use components such as wave-gUides, to give the necessary processing bandwidth (GHz).
The fastest devices use materials such as Gallium Arsenide, often super-cooled to improve its performance.
However, these devices are expensive and their use is avoided if possible. The information extracted by these
devices from a signal may be used by todays digital devices operating at speeds approaching 100 MHz. In the
future, todays digital devices may improve to a level where they encroach on the radio spectrum. However, it is
likely that RF devices will always be required as the front-end processing elements at these high frequencies.
The reason for this may remain that it is impossible to either sample or synthesise an analogue signal at
speeds in excess of 100MHz, without resort to cost prohibitive technology.

13.1.4 Analogue and digital conversion

Signal processing techniques in both the Audio and Radio spectrum are advancing both theoretically with
the development of new algorithms, and practically with the increase in the level of integration of integrated
circuits. Wherever poSSible, the new levels of integration in conjunction with efficient digital algorithms are
used, so that problems which were previously solved using analogue design are now solved using digital
design.

Of course, it is nearly always necessary to communicate with the real world using analogue signals, so
analogue to digital (A-D) and digital to analogue (D-A) converters are a necessity. This is why so much work
is done to increase the speed and accuracy of the conversion which must ultimately limit the speed of the
complete system.

The current range of A-D and D-A converters on the market can sample at up to 100 MHz. As might be
expected, the limiting speed depends very much on the required accuracy, with slower conversion required
to get improved accuracy. Of course, there is little point being able to do digital processing faster than the
analogue conversion devices, so that in practice, the performance of conversion devices and digital processing
devices proceed together.

So there are fundamentally two problems which hinder DSP development, one is analogue/digital conversion
and the other is the digital signal processing itself.

13.1.5 Techniques for digital signal processing (DSP)

Digital signal processing has advanced rapidly since the major semiconductor manufacturers started to tackle
the problem. Since then they have attempted to cram more and more raw processing power onto a single
Chip. At the same time they have realised that the signal processing devices need to be integrated into an
entire system. So, they have devised families of devices which, however, require some considerable expertise
to use. This evolution of devices has split into two directions.

The first approach is the more complex and achieves the best performance. It often involves hardware design
which is not trivial, and the systems generated will generally only perform one task. Any slight change to the
task (algorithm) may require a complete system redesign, which is both lengthy and expensive. However,
the performance of these so called bit-slice machines has been and still is very high and has a permanent
place in the field. Bit-slice machines use dedicated multipliers, accumulators and address sequencers often
with several address and data bus paths to achieve high speed.

The second approach is Simpler, and more versatile. However, the performance is considerably lower than the
bit-slice engines previously described. Design involves using a general purpose processor (CPU) which has
dedicated instructions to perform reasonably fast multiply, divide, add and subtract operations. The CPU does
this by having dedicate parallel multipliers and barrel Shifters integrated on the chip. The performance limit is
not so much the on-Chip operation as the time required to get the data off and on chip (memory bandwidth).
Possibly the best known example of a signal processing CPU is the TMS320101 and its derivatives the
TMS32020 and TMS32030.

1 TMS is a trademark of Texas Instruments

220

The previous two approaches provide solutions to a large number of signal processing problems. However,
one must accept either the performance limitations of the general purpose processor or the complexities of
bit-slice design. In both cases the problem is bandwidth into the basic processing element. The fundamental
limit is the rate at which memory can be accessed rather than the performance of the processing element
itself. If the processing performed by the basic processing element can be increased and the required
memory bandwidth can be reduced, an improved performance will be immediate. The IMSA100 uses a
novel architecture to achieve these aims.

The IMS A 100 is a processing element with considerable processing power, yet having an interface with
moderate bandwidth requirement. This is achieved by having data storage on chip, processing the data
in parallel, and storing the intermediate results of calculations. The IMSA100 has also been designed to
accommodate many of the commonest DSP algorithms; including the discrete Fourier transform [2], correlation
and convolution [3], and digital filtering [1].

13.1.6 Overview of image processing with the IMS A100

The IMS A 100 is a digital processing device at the forefront of digital signal processing performance. It is
capable of processing video bandwidth signals, as well as many other types of high bandwidth signals. The
maximum input sampling rate of the IMS A1 00 is 10 MHz, which means that it could, for example, process a
[512 x 512] image at a rate of 40 frames per second. The device operates on digital data with a width of 16
bits, and will perform 80 million multiply accumulate operations per second (80 MOPS) a performance well
in excess of most bit-slice machines.

The IMS A 100 will perform calculations on signed 16 bit integers without any loss of accuracy or overflow,
perform rounding correctly, and will also perform complex number processing [4] without any additional
hardware. This makes it an extremely simple device to use in a wide variety of applications, as it deals with
so many of the problems which have historically plagued signal processing design. Immense care has been
taken to ensure that the device is simple to use, for example, the microprocessor interface, which can be
interfaced very simply with almost any industry standard processor.

Probably the most important aspect of the IMSA100 is that several can be used in parallel, with almost no
'glue' logic. In principle, there is no limit to the number and a system with 30 devices on a single board has
been shown to work well. The processing of large images at high speed requires vast processing performance,
making the IMSA100 capability of being able to use many devices in parallel absolutely invaluable.

13.2 Practical methods of 2 dimensional convolution

13.2.1 2·dimensional convolution

The process of 2-dimensional convolution of an image is the action of comparing a reference template with
a group of pixels, at every pixel point on an image. For example, if a ~3 x 3] template were compared at
every point on an image of size [S x S], there would be 9 valid comparison pOints as shown in figure 13.1.
The first of these valid comparisons surrounds pixel 1, the second pixel 2, and so on. The comparison is
done in practice by a number of multiply and add operations. Consider the example with the first row being
compared with the template. The result of the [3 x 3] convolution for the first 3 positions will be

a.? + b.? + c.? + d.? + e.1 + f.2 + g.? + h.4 + i.S

2 a.? + b.? + c.? + d.1 + e.2 + f.3 + g.4 + h.S + i.6

3 a.? + b.? + c.? + d.2 + e.3 + f.? + g.S +h.6 +i.?

which is a total of 9 multiply-accumulate operations for every pixel in the image. The magnitude of the image
data and the magnitude and sign of the template elements determine the type of features which will be
extracted from the image. Some simple templates are described later in this section.

In a real image, the magnitude of the pixels which is a measure of their blackness, is referred to as grey
scale, having typically 8 bit accuracy. The alternative, which uses a single bit for each pixel, was used in
the past, before digital grey scale processing was possible. Future picture processing will undoubtedly be
capable of processing colour images. This is a complex field, little understood at the present time, outside

13 Image processing with the IMS A100 221

the scope of this application note.

With grey scale images it is important that the result of any Image transformation yields grey scale values
within the limits of the original image. This being so, the sign and magnitude of the elements of the template
must be chosen with care. It may be necessary to scale and/or invert the results of an image transformation,
so that the resultant image can be observed in a normal grey scale.

? ? ? ? ?

? 1 2 3 ? a b c

? 4 5 6 ? d II f

? 7 8 9 ? g h i

? ? ? ? ?

Figure 13.1 [3 x 3) convolution on a [5 x 5) image

It is usual for the template to be square, although it may be rectangular, and of any size. It is also normal
when scanning a real image to traverse the picture as shown in the diagram, i.e. traversing a row, moving
down, traversing again and so on until the entire image is scanned.

One point of interest concerns the outermost pixels, which represent invalid data. For a [3 x 3) template
a perimeter of one pixel width is invalid, for a [5 x 5) template the outermost 2 pixels are invalid and this
redundancy increases as template sizes increase. This does not matter much for large image sizes, but must
be borne in mind if large templates, with small images are being used. For the remainder of this section edge
effects will, for convenience, be ignored.

13.2.2 Convolution template types

Low pass filter

The effect shown in figure 13.2, is of a low pass filter. The numbers have been chosen to show the smoothing
effect of the filter. Notice that this is indeed a low pass filter, and that the pixel values are changing at a
frequency which is approximately the cut-off frequency of the filter. The filter has effectively changed a black
and white image into a blurred grey image.

9 0 9 0 9 5 4 5 4 5

0 9 0 9 0 1 1 1 4 5 4 5 4

9 0 9 0 9 x 1 1 1 5 4 5 4 5

0 9 0 9 0 1 1 1 4 5 4 5 4

9 0 9 0 9 5 4 5 4 4

Figure 13.2 Illustration of low pass filter

222

If this convolution is regarded as part of a picture with a pixel rate of SMHz the cut-off frequency, above which
all frequencies are removed, would be 2.SMHz. (The figure of SMHz has been chosen as it is the rate at
which an IMS A 100 can process the data.) The cut-off frequency can be reduced by making the reference
template (convolution kernel) larger. For example a [9 x 9] convolution kernel would have a cut-off frequency
of 870KHz.

For the low pass filter kernel no sign modification or scaling of the final image is necessary. Only when the
result is outside grey scale limits will any modification be required.

Edge detection

Edge detection is illustrated below with a Sobel operator. This operator combines a vertical and a horizontal
edge detector into a single Sobel operator as shown in figure 13.3.

1 1 1 -1 0 1 0 1 2

0 0 0 + -1 0 1 -1 0 1

-1 -1 -1 -1 0 1 -2 -1 0

Figure 13.3 Sobel operator formation

It may be observed that the effect of applying a horizontal edge detection to an image, followed by applying
a vertical edge detection to an image, and summing the results, will be exactly the same as directly applying
the sobel operator to the image. This same principle of adding operators together, may be applied to many
different operators with some interesting results. It is not within the scope of this application note to investigate
this subject further.

The following operations, shown in figure 13.4, on part of an image illustrate the effect of the Sobel operator.
It is possible to obtain similar results, by doing a vertical and a horizontal edge detection, squaring and adding
the results, and taking the square root to give a result for each final pixel. This is the ideal edge detector,
but the cost of squaring twice and a square root is often cost prohibitive, with the Sobel operator a very
satisfactory alternative.

Figure 13.4 shows the result of 2 convolution kernels operating on the different images. This illustrates the
requirement for scaling and sign inversion. Before the resultant images can be displayed all negative numbers
must be sign inverted and a scaling factor of 4 must also be applied. It is interesting to note that the reason
for the sign change is the direction of travel of the convolution kernel across an edge transition. Also, as will
be shown later, the steepness of the edge transition is important.

13 Image processing with the IMS A100 223

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 2 -3 -3 -3 -2 0

1 1 1 0 0 x -1 0 1 -3 -3 -4 -3 0

1 1 1 0 0 -2 -1 0 0 0 -3 -3 0

1 1 1 0 0 0 0 -3 -3 0

0 0 1 1 1 0 3 3 0 0

0 0 1 1 1 0 1 2 0 3 3 0 0

0 0 1 1 1 x -1 0 1 0 3 4 3 3

0 0 0 0 0 -2 -1 0 0 2 3 3 3

0 0 0 0 0 0 0 0 0 0

Figure 13.4 Illustration of edge detection

Laplacian filtering (edge detection)

Laplacian filtering uses a homogeneous operator, which means that it is the same in all directions. With the
use of a Laplacian edge detection operator edges in all directions can be detected. This is different from the
previous non-homogeneous edge detection (Sobel) operator, where edges in all directions except one can
be detected.

0 0 1 1 1 0 -3 3 0 0

0 0 1 1 1 -1 -1 -1 0 -3 3 0 0

0 0 1 1 1 x -1 8 -1 0 -2 5 3 3

0 0 0 0 0 -1 -1 -1 0 -1 -2 -3 -3

0 0 0 0 0 0 0 0 0 0

Figure 13.5 Illustration of Laplacian Filter

The effect of the [3 x 3] Laplacian operator is shown in figure 13.5. As the operator passes over an edge, the
magnitude of the result increases and there is a sign change. Also, the original pixels will remain, in areas
where there is no edge to be detected. In order to detect the edges, after the 2-D convolution has been done,
a 3 stage process is necessary. First the result is scaled down by a factor of 9. Second, a full rectification

224

is done, converting all negative to positive numbers. Third, the background information is thrown away, by
introducing a suitable threshold below which the result is considered to be zero.

13.2.3 Effect of template size

The previous sections have shown the effect of several [3 x 3] convolution kernels. This kernel size is
very effective in many applications, while requiring moderate processing for its calculation. One of the main
reasons for not using larger templates is that the processing requirement becomes excessive, mainly due to
the large number of multiply operations. The advantages of large kernels are twOfold, firstly the larger kernels
have a filtering effect which reduces the effect of noise, and secondly the larger kernels are able to detect
gradual changes in brightness across a group of pixels.

It must be remembered that single bit pixels are not used, and the pixels are represented In grey scale with
range from 0 to 255. This means that in a real image, edges will span several pixels, and to detect these
edges will require a larger convolution kernel.

If, for example, a [3 x 3] kernel is used to detect an edge which changes from black to white linearly over 5
pixels, then the maximum and minimum resultant pixel is 1.6 and -0.6 respectively, as shown in figure 13.6.
Each pixel is represented by a single step. This result must be compared with the result in figure 13.5, where
an instantaneous change between 2 pixels gives an output of -3.0 and 3.0. The results of -0.6 and 1.6 are
barely enough to detect an edge.

~ ___ 1.0
Input ~

0.0, ___J,r'

L-__ 1.0

0.0, __ ---.

-0.6

Figure 13.6 Effect of gradual edges on convolution output

13.3 Hardware requirements for 2-D convolution

Two possible hardware implementations of 2-D convolution using the IMSA100 are described in this section.
Because these two implementaions use exactly the same principle of operation, the IMSA100 device, which
is common to both, will first be described. The fundamental difference between the two designs is as follows.
In the lower performance system all image data is transferred to the IMSA100 across a comparatively slow
memory interface. In the high performance system all image data uses the dedicated input and output ports
of the IMSA100. These dedicated ports permit, with the addition of some dedicated hardware, a processing
rate of 5 million pixels per second.

Implementation of 2-dimensional convolution on the IMS A 100 involves loading the elements of the convolution
kernel into the coefficient registers, and passing the entire image through the device while storing the resultant
image. To obtain maximum throughput this should be a continuous operation, and will consist of a sequence
of alternate read/write operations starting at the first pixel of the first row of the image and finishing with the
last pixel of the last row of the image. The two fundamental problems are to arrange that first, the convolution
kernel elements are loaded into the appropriate coefficient registers, and second that the pixel data is ordered
correctly both before and after processing. The required initialisations of the IMSA100 are also described.

13 Image processing with the IMS A100 225

13.3.1 The IMS A 100 model

The IMSA100 model is shown in figure 13.7. The many component parts of the IMSA100 are included to add
flexibility, so that many signal processing algorithms can be implemented. This means that the device can
be used in many signal processing applications. The fundamental operation of the device is a high speed
multiplier-accumulator, which functions as a pipeline of 32 multiplier-accumulator devices. The peripheral
circuitry simplifies the use of the device.

Mem 16
IIF

Update coefficient registers control
logic

Active coefficient registers SeR
2

16

Multplier
Accumulator

36

Array

• 32 stages 100

24
32 cycle delay (24 bits)

Figure 13.7 User's model of the IMSA100.

The essential elements of the device, in so far as they are important to this discussion of 2-D convolution,
will now be described.

• The multiplier accumulator array is the powerhouse of the device. This is a 32 stage pipeline
of multipliers, which multiply 32 elements of input data with the contents of the current coefficient
registers in between 2 and 8 cycles. The cycle time is between 100ns and 400ns, and is a function
of the coefficient width. There is no loss of accuracy in this section because all calculations are at
36 bit accuracy.

• The data input is either from the dedicated data input port or via the data input register (DIR). The
DIR can be accessed from the memory interface port, which may be connected to a microprocessor.
The fastest data access is by the direct input port, with input using the DIR register being usually 2
to 4 times slower.

• The data output is taken from the high speed multiplexed data output port or from the data output
registers (DOL and DOH), which contain the 24 bits of output data. These registers, like the DlR
register, will normally be accessed much slower than the direct data output port.

• The coefficient registers are used to store the convolution coefficients, for which only the current
coefficient registers are required. Because there is no need to bank-swap coefficient and update
registers, neither the update coefficients nor the bank swap capability are ever used in this applica
tion.

• The cascade input is used for simple connection of devices. The cascade input port is multiplexed
in exactly the same way as the data output port, so that direct connection between the two and use

226

of the GO signal for synchronisation are all that is required to cascade devices. For 2 dimensional
convolution requirements, only one IMS A100 is required for doing a convolution with a kernel
containing less than 33 elements, although more devices can be used for improved performance as
will be shown later. Whenever more than one device is used the cascade input port is required.

• The 32 cycle delay element delays the cascade input data by exactly the same time as the multiplier
accumulator array. It can be used in conjunction with the data input port to add together 2 streams
of pipelined data. This is very useful, particularly for convolution requiring data partitioning. Real
time 2-dimensional convolution of images using the IMS A 100 requires the use of this delay element.

• The control registers are used to initialise the device, and for some of the working operations of
the device. These are referred to as the Static control register (SCR) and the Active control register
(ACR) respectively. The ACR can be altered during the operation of the device whereas the SCR
cannot. The use of these registers as regards 2-dimensional convolution will be described later.

• The output signals are described adequately in the IMS A 100 data sheet [6) and will not be de
scribed further here, except for the GO signal which is rei event to the discussion. The GO pins, of all
the IMS A100 devices which are cascaded together, will be joined. GO is used for synchronisation
of a cascade of devices, and is not needed in a system with only a single IMSA100, unless the
cascade input of that device is used. GO is set up from the SCR to be either a master or slave, and
there is never more than one master.

• GO is a special signal used to synchronise the cascade and data input ports. If the data input port
Din or the cascade input port Cin is driven by external hardware, then all the IMSA100 devices
will be set to slave mode and external hardware will be used to drive the GO pin. If neither the
cascade input port or data input port are driven by external hardware, (when all data will use the
memory interface) then one of the IMSA100 devices in the cascade will be configured as a master.
The master which should be the last device in the cascade, drives the GO Signal, and all the other
devices synchronise their cascade and data inputs from the GO signal they receive. The GO signal
master could in theory be driven by any of the devices in a cascade, and this would work for a short
cascade. However, operation cannot be guaranteed, whereas an infinite length cascade will work if
the master is the last device in the cascade.

13.3.2 IMS A100 initialisations for convolution

The following description summarised the initialisations of the IMSA100 devices which will be required, prior
to the operation of 2-D convolution. A full understanding will require the use of the IMS A 100 data sheet [6).
The settings necessary for a 2-dimensional convolution, using 8 bit grey scale data and 8 bit coefficients are
described.

The coefficient size is set to 8 bits by setting bits 8 (=1) and 9 (=0) of the SCR. As 8 bit grey scale is used
the top 8 data bits from either the data input port or DIR (each 16 bits wide) will be zero.

The result of the 8 by 8 multiplication will require 16 bits, and the 32 stages of accumulation will require a
further 5 bits so that the final result, will require 21 bits accuracy. The result required is manipulated internally
by a selector so as to be invisible to the user. The significant 8 bits of the result are obtained by setting bits
4 (=0) and 5 (=0) of the SCR, and reading data from the bottom 8 bits of the DOL register.

If there is a cascade of devices the lower 8 bits of output appear on the lowest 8 bits of the multiplexed data
output port, which will be connected to the cascade input of the next device in the cascade. By this means
scaling is done automatically, and is invisible to the user. The whole purpose of this is that many devices
can be cascaded, and appear like a single device with a number of stages which is a multiple of 32.

The remaining SCR register settings are as follows. Bank swap mode will be set to off. Data mode will be
set to either input data from the DIR register or data input port depending on the application. Fast output will
be set to off for this application.

The ACR will not generally be needed for this application as no bank swapping between the active and update
coefficient registers is necessary. It may be necessary to examine the selector overflow and cascade adder
overflow bits of the ACR should an error occur (error pin goes lOW).

13 Image processing with the IMS A100 227

13.3.3 IMS A100 coefficient placement and data flow

Section 13.2.2 describes some of the convolution kernels which are used to perform feature extraction and
filtering on an image. The following discussion describes how these kernel elements are mapped onto the
coefficient registers of the IMSA100 so that 2-D convolution is performed.

The IMS A 1 00 can be regarded as a 32 stage multiplier accumulator with 32 constant coefficients, which will
be consecutively multiplied with a stream of incoming pixels. The current coefficients are labelled from C(O)
to C(31) where C(O) is closest to the output, and C(31) is closest to the input, as shown in figure 13.8.

IMS A1 00 functional schematic
Din--------,----------.--------------,---------,

IMS A 100 output with time

T1 = DO.CO

Dout

~ r- T2 = D1.CO+DO.C1
063, 062 ... 01, DO IMS A100

T32 = D31.CO+D30.C1 + ... D1.C30+DO.C31

T64 = D63.CO+D62.C1 + ... D33.C30+D32.C31

Figure 13.8 Illustration of IMS A 100 pipelined calculation

In figure 13.8, pixel data presented at the Din port (or DIN register) at time 0 is referred to as DO. Immediately
after data is written, at time T1, a result will be read from the Dout port (or DOUDOH register). For the first
32 cycles (T1 to T32) of the IMS A1 00, partial results for data DO to 031, and coefficients C(O) to C(31) will
be output from the device. The results at time T1 and T2 are given.

From T32 onwards the device presents full results at its output, and the result at time T32 and T64 are given
to illustrate this. The steady state of the device yields the accumulation of 32 multiply operations which have
taken place over the previous 32 cycles. Notice also that at any instant the machine contains 32 pieces
of information (state), which are the 32 partially accumulated results, as they proceed through the 32 stage
pipeline.

If there is a cascade of 2 devices, there are 64 coefficients which can be referred to as C[O] to C[63]. The
output from the second device in the cascade is the sum of 64 multiply operations which have accumulated
over the previous 64 cycles. This principle can be extended to many IMS A 100 devices, so that long multiply
accumulation operations can be done. It is essential to be able to perform long cascades so that large
convolutions are possible. For example, a 128 point convolution will require 41MSA100 devices in cascade.

This also applies to 2-Dimensional convolution. For instance, an [11 x 11] convolution using 121 stages, will
require 4 IMSA100 devices. Of course, 7 stages are not required, which means that 7 of the coefficients
(C[127] to C[121]) of the first IMS A 100 in the cascade will be set to zero.

As can be recalled from section 13.2, a [3 x 3] convolution requires the accumulation of 9 multiply operations.
Similarly, a [5 x 5] convolution, illustrated in figure 13.9, will require 25 stages of multiply-accumulation. The
only problem is that the coefficients must be loaded in the correct coefficient locations, and the input and
output data must be ordered correctly, so that the IMS A 100 architecture can be utilised. This is described in
the following section.

228

13.3.4 Image scanning for a microprocessor based system

The following description will normally only apply to a system using a memory interface, for the transfer of
all data to and from the IMSA100. It is perfectly possible to use the following pixel sequencing operations,
for transferring data to the IMS A1 00 devices across the high speed data input and output ports. However,
this is not advised as the sequencing operations using normal hardware are complex, but are quite easy
with a microprocessor. The additional hardware could be better used for implementing an extremely high
performance system, such as described later.

Image scanning for 2-D convolution implementation

(A) Pixel array (8) IMS A100 coefficients

00 010 020 030 040 050 060 070
D1 01 t 021 031 041 051 061 071 C24 C19 C14 C9 C4

02 012 022 032 042 052 062 072 C23 C18 C13 C8 C3
03 013 023 033 043 053 063 073 C22 C17 C12 C7 C2
04 014 024 034 044 054 064 074 C21 C16 C11 C6 C1
05 015 025 035 045 055 065 075 C20 C15 C10 C5 CO
06 016 026 036 046 056 066 076
07 017 027 037 047 057 067 077
08 018 028 038 048 058 068 078
09 019 029 039 049 059 069 079

(C) Scanning for a single pixel (0) Scanning for next pixel

1 11 ~ 1 1 1 1 1 11 1 1 1
I~ -., I W II / /

--
I li-t- f,.L I

-- II II N / /
r-h r-

I I I --I-.L I
rI " " fl [I rt-- fl ff fl " [I rr I--

Figure 13.9 Pixel scanning and coefficient ordering

A pixel array (A) with 10 rows and 8 columns is used purely for convenience. The convolution kernel with 25
coefficients is shown in (8). The order of the coefficients is critical, starting at the bottom right and proceeding
one column at a time (Remember that CO is the coefficient of the last stage of the cascade). The scanning
pattern for the image is shown in (C) and (0). The dark black squares are valid output pixels, each of which
represent the convolution of 25 pixels with 25 coefficients.

If the light grey area of pixels is written to Din as shown in (C) the order will be 011 then 012 and so on
in columns until 055 is written. Immediately after 055 is written to Din a valid pixel is read from Dout. The
value of this pixel will be

0330ut = CO.055 + C1.054 + C2.053 + + C23.012 + C24.011

After this 051 is written followed by 052, 053, 054, 055 after which another valid pixel can be read.

0340ut = CO.065 + C1.064 + C2.063 + + C23.022 + C24.021

13 Image processing with the IMS A100 229

In other words, for every 5 pixels written one valid pixel is read, from the beginning until the end of the row.
At the end of the row go back to the start of the row and move down a row repeating until the entire image is
scanned. The net effect is a completely convolved image. This is inefficient as the entire image is effectively
written to the IMSA100 FIVE times.

There is fortunately an optimisation which can be incorporated. The principle is that the some of the IMS A 100
coefficients are set to zero, so that those stages act only to store and delay accumulated results. This is
described in the following section.

Improved image scanning for 2·D convolution

Improved performance can be obtained by modifying the previous image scanning technique. The improve
ment is obtained not by processing the individual pixels faster, but by passing the pixels through the IMS A 100
fewer times. This is illustrated in figure 13.10 below.

(A) Pixel array (8) IMS A1 00 coefficients

DO 010 020 030 040 050 060 070

01 011 021 031 041 051 061 071 0 0 0 0 0

02 012 022 032 042 052 062 072 0 0 0 0 0

03 013 023 033 043 053 D63 073 0 0 0 0 0

04 014 024 034 044 054 064 074 C36 C28 C20 C12 C4

05 015 025 035 045 055 065 075 C35 C27 C19 C11 C3

06 016 026 036 046 056 066 076 C34 C26 C18 C10 C2

07 017 027 037 047 057 067 077 C33 C25 C17 C9 C1

08 018 028 038 048 058 068 078 C32 C24 C16 C8 CO

09 019 029 039 049 059 069 079

(C) Scanning for 4 pixels (D) Scanning for next 4 pixels

J Jf J. J. J J J J J.I J J. J.

I)WI I II I
II I

I I .-' I ,
-- I I I 1-- I I I I f

I -Ii-t-. J I I I , -Ii--1 I I ,
" I I rt- -- -I-. , , , I 1-I- -I-. j
II II II II 'I rr--- r--- II rt rr--- r---

Figure 13.10 Pixel scanning and coefficient ordering - high performance

Data is written to the IMS A 100 devices as before except this time data is scanning over 8 rows at a time,
starting at D11 and finishing at D58. Scanning over the fifth column of 8 pixels from D51 to D58 will yield 4
valid pixels, starting at the black square.

D33 out = CO.D55 + C1.D54 + C2.D53 + + C23.D12 + C24.D11
D34 out = CO.D56 + C1.D55 + C2.D54 + + C23.D13 + C24.D12
D35 out = CO.D57 + C1.D56 + C2.D55 + + C23.D14 + C24.013
D36 out = CO.058 + C1.D57 + C2.D56 + + C23.D15 + C24.D14

230

Immediately after D330ut is read from Dout, D56 is written to Din. The partially aocumulated result for pixel
D430ut is then stored in the empty slot (The empty slot is the position in the IMS A 100 which would aocumulate
C5 with the data at Din. As this coefficient is set to zero no aocumulation takes place, and this stage acts
as delay and storage of data only) The next pixels D56 and D57 are written, and the partially aocumulated
result for D440ut and D450ut are then stored in the IMSA100 pipeline. At this time there will be 3 partially
aocumulated results D43out, D440ut and D45out, which will be required for processing the next column.

At the end of the column scan, after the pixel D58 is written, D61 followed by the remainder of that column
of 8 pixels, are written. This yields a further 4 pixels as given below.

D430ut - CO.D65 + C1.D64 + C2.D63 + + C23.D22 + C24.D21
D440ut = CO.D66 + C1.D65 + C2.D64 + + C23.D23 + C24.D22
D450ut = CO.D67 + C1.D66 + C2.D65 + + C23.D24 + C24.D23
D460ut = CO.D68 + C1.D67 + C2.D66 + + C23.D25 + C24.D24

The scanning technique which scans across 8 rows at a time, while 4 rows of pixels are written, is 2.5 times
more efficient than the previous technique, where only 5 rows are written, for a single output row. It is simple
to calculate the efficiency for any number of zeros inserted into the coefficients of the IMSA100.

Convolution efficiency

For any system, there will be a fundamental pixel processing rate. As shown in section 13.3.5 the processing
rate, writing pixels across a high performance memory interface is unlikely to be better than 4 Mpixels per
second. Realistically 2Mpixels per second is a more probable performance. However, as shown above,
there will be an efficiency factor, dependent upon the the convolution technique used, which will reduce the
performance further. The best that can be done uses an image scanning pattern as shown in figure 13.10.

To calculate the efficiency, the number of stages and the number of zeros must be known. These calculations
assume that the maximum number of zeros will be used, for whatever number of A100s are selected.

stages := number.ol.A100s X 32

stages DIV(/·' . 1)
zeros := (filter.size)2 I ter.slZe -

Ell . . zeros + 1
IClency:= ..

zeros + "'ter.slze

(1)

(2)

(3)

As a simple example, it is known to take 500ns to process a single pixel, and the efficiency is calculated at
50%. The expected processing rate will be 1 Mpixels per sec.

There is an obvious trade off between the number of A 1 00 devices used and efficiency. A small number of
zeros increases efficiency greatly. However, as efficiency approaches 100% the added cost of more IMS A1 00
devices, to give more stages, will not give a proportionate increase in performance. No figures are given
here, as it is simple to calculate the numbers, for any given application.

13.3.5 Moderate speed image convolution

A moderate image convolution rate can be obtained by using a very simple design incorporating an 8 or 16
bit processor, which controls one or severallMSA100 devices. A typical system is shown in figure 13.11.
The system chosen uses an extremely high performance 16 bit processor, the IMST212. The limiting speed
of this system is either the rate at which data can be transferred across the IMSA100/lMST212 memory
interface, or the rate at which data can be transferred to and from an external system. The external system
may consist of camera, frame grabbing hardware and some form of image displaying capability. For the
purpose of argument it will be assumed that the IMSA100/lMST212 memory interface is the limiting factor.

The performance of this system may be easily estimated, for whatever processor is used. This estimation
assumes that the image resides in memory before processing starts, and that the data input port is not used.
The resultant image will also reside in memory after processing.

13 Image processing with the IMS A100

General purpose
microprocessor
(e.g. transputer)

Memory interface bus

r - ., .. , .. ""''''''' '''''''''''''''-, Data in

L ~ L L'
IMS A100 IMS A100 IMS A100

Cascade Cascade

GO t I data t data t I
I I I

Clock

Figure 13.11 IMS A 100 coefficient loading

The processing of a single pixel involves 5 steps which are in order

read from memory
write to IMSA100
IMS A 100 processing,
read result from IMSA100
write result to memory

= 100ns
= 100ns
= 200ns
= 100ns
= 100ns

231

Data out

This shows that the time to process a single pixel will be 600ns so that for a complete picture of size [512x 512)
a processing rate of 6 frames per second may be possible. While this may be achievable in theory there are
several problems which lead to a reduction in this performance.

• The data must be transferred both to and from the system, before and after processing. In practice
this may take longer than the processing itself.

• The data must be read and then written by the processor, usually into an internal register, which will
consume at least 2 extra cycles (100ns minimum)

• The data accessed by the processor will be in the form of a 2 dimensional array of pixels. The
processor has to calculate the array subscripts for every pixel in the image, which will consume at
least 4 processor cycles (200ns). The order with which pixels are loaded is not simply row by row
and is described elsewhere. (section 13.3.4)

• The nature of the convolution algorithm means that the image may need to be split up into small
blocks, which must be overlapped, to give a continuous convolution of the entire screen. This will
result in an inefficiency of between 10% and 50% depending on the size of the blocks and the degree
of overlap.

• The algorithm implemented on the IMS A 100 has a fundamental efficiency as described in sec
tion 13.3.4. Equations are given for the calculation of this efficiency. The algorithm should be
arranged so that the efficiency is better than 50%.

The effect of all these factors that a simple microprocessor based system is likely to have a processing rate
of between 1 and 4 frames per second. Even this will require an high performance processor with optimised
software.

232

13.3.6 Very high speed image convolution

In section 13.3.2 it is shown that complete images can be processed on the IMSB009 at between 1 and 4
frames per second. In appendix A, implementation of the convolution algorithm running on the IMS B009,
under an IBM PC environment is less than 1 frame per second. The actual IMSA100 processing time is only
200ns per pixel, which is less than 10% of the total processing time. As the IMSA100 device is such a fast
device it seems wasteful to reduce the performance to this extent. In practice, many users of the IMS A 100
will wish to extract full performance which requires a hardware design.

Faster speeds require a slightly altered algorithm and dedicated hardware. The following describes a hardware
implementation capable of processing speeds up to 20 frames per second. The hardware setup is shown in
figure 13.12 This figure illustrates the hardware required to perform a [3 x 3] convolution on a [512 x 512]
image. Larger convolutions on larger images are possible with the addition of extra hardware. For example,
a [31 x 31] image convolution could be done using 31 IMSA100's and 30 sets of shift registers. Each shift
register has a 512 + 32 stage delay.

Cin r-----,.fD~o~u!..t ~C~il!!n.r----~D~O~u!!.t --.:C~in!.r----I Dout

IMS A100

512 + 32
stage delay

Cin 32 stage
mpy-acc array

Din 32 stage
delay

Din
IMS A100

512 + 32
stage delay

Dout

IMS A100
Din

Figure 13.12 Hardware for real time image convolution

In the example shown, 2 rows of data are stored in long shift registers, while the third row enters the data
input port of the first IMSA100 in the cascade. The first IMSA100 in the cascade has its cascade inputs
grounded, while all other IMSA100 devices have their cascade inputs connected to the data outputs of the
previous IMSA100 in the cascade.

The arrangement ensures that 2 pixels one above the other in an image are fed simultaneously into the
cascade input and data input of each IMSA100. The IMSA100 devices will process one line of pixels at a
time, and the entire image will eventually pass through every IMSA1 00. Because the system is fully pipelined
this results in no performance degredation.

Each stage of the cascade requires an IMSA100 and a long shift register. The IMSA100 is like a 32 stage
delay element, where the cascade input delayed by 32 stages is added to the data input after it has been
through a 32 stage multiplier-accumulator array. The 32 stage delay of the IMS A 100 means that the shift
register delay must be a single line delay (512 pixels in this case) plus 32 stages.

The data throughput rate depends on the coefficient size selected for the IMS A 1 OO's, and is unaffected by
the number of stages. If 8 bit pixels with 8 bit coefficients are selected, a data rate of 5 KHz is achieved. For
a [512 x 512] image this gives a convolution time of one frame in 50 mS. This is a frame rate of 20 Hz with
faster speeds achieved by selecting regions of interest or multiplexing frames between several boards.

13 Image processing with the IMS A100 233

As a further example application, it is required to pass a [31 x 31) pixel kernel template over a [1024 x 1024)
image at 50 frames per second. Processing will require 310 IMSA100 devices, segmented over several
boards. One configuration would use 30 [1024 + 32) delay stages, and would require 31 IMSA100's to
process the image in 200 ms. Therefore 10 such boards would be required, and a means of multiplexing the
individual images at a bandwidth of 50 Mpixels per second. This is mainly a problem of data distribution. The
processing problem has been solved by the capability of the IMSA100.

13.4 Conclusions

This application note has shown how the IMS A 100 may be used to perform fast processing of digital images.
Some typical image processing functions have been described, including edge detection and filtering of a
picture.

The versatility of the IMSA100 has been shown by the following observations.

• The IMSA100 is capable of processing images at real time speeds, 20 frames per second, and a
hardware implementation of this has been described. This processing rate is possible because of
the high speed sampling rate of 10 million pixels per second of the IMSA100.

• It is simple to build a lower performance system consisting of several IMSA100s and a micropro
cessor, with a capability of processing at between 2 and 4 frames per second. The simplicity of the
microprocessor interface which turns the device into a memory mapped peripheral helps to achieve
this.

• Identical hardware implementations can be used for different sizes and types of 2-0imensional
filters. It is therefore not difficult to modify the signal processing algorithm after the hardware design
is complete. This is eased by the general capabilities of the IMSA100 for many signal processimg
applications, involving the implementation of specific algorithms on the general purpose architecture.

• Even after hardware design is complete it is possible to increase or reduce performance as neces
sary, simply by increasing or reducing the number of IMSA100 devices in the system. This is only
possible because the device is designed specifically so that several may be used in parallel.

13.5 Recent advances - the IMS A 110

The IMS A 100 is the first in a family of OSP devices, and the observant reader will realise that there are
several inefficiencies with using the IMSA100 for 2 dimensional convolution. For this reason, INMOS have a
dedicated device aimed specifically at 20 convolution applications.

The device, known as the IMSA110, has an architecture similar to that shown in figure 13.12. The device han
dles 8 bit data and a single device is capable of performing 7x3 image convolution at a rate of 20 M samples
per second (4 times as fast as the IMS A 100). Further, the line delay elements, as shown in this figure, are
integrated onto the chip so that the device can process video signals directly, without any frame buffering.
The device has several other useful features including

• Cascadability. It is possible to perform convolution in any multiple of 7x3, so for example 14x3, or
7x 6 or 21 x 9 convolution is possible. No additional hardware is required for this, only a multiple of
IMS A 110 devices.

• An output look up table. At the output of the device is a look up table which may be modified across
a microprocessor interface. This facilitates such useful things as dynamic range enhancement and
operates at the full speed of the device.

• A max/min register and statistics monitor post processing unit. It can be very useful to
monitor the magnitude of signals passing through the device, and this can be done without stopping
proceSSing.

The IMSA110 achieves all this by having on-Chip programmable delay lines, and an on chip post-processor
for data transformation, as well as the the basic 21 stage multiplier-accumulator. It is dedicated to high

234

speed video applications, and minimises system hardware requirements in these applications. The IMSA100
by contrast, is a general purpose device which can for example perform 2 dimensional FFT calculations, 1
dimensional FFT, convolution, correlation and complex processing on 16 bit data.

Despite the advantages of the IMSA110 In video applications, it may be practical to use the IMSA100 for
large 2-Dimensional convolution sizes. For example, a 28x30 convolution would require 40 IMS A 110 devices.
The same could be achieved with 28 IMSA100 devices, plus line delay elements.

13.6 Implementation of convolution on the IMS 8009

One possible application of the IMS A 100 cascadable signal processor is the processing of two dimensional
images, such as those obtained from a TV camera. The analogue signal from the camera must first undergo
analogue to digital conversion, and may then be presented to the IMSA100 for processing. The size of the
image used in this application note is by convenience [512 x 512] pixels. The reason why this size was
selected was that a camera and frame grabber board were readily available. The IMSA100 is capable of
processing any size of image including, for example, larger images such as high resolution satellite pictures
of the earth.

This section shows how the IMS A 100 may be used to process a [512 x 512] pixel image. The work described
involves no hardware design and uses two standard boards supplied for the IBM PC. This shows how the
IMSA100 can be used to perform 2 dimensional filtering, convolution or correlation.

The system, shown in figure 13.13 is composed of a camera, monitor, digitising frame grabber board and
IMSB009 board. Both the frame grabber board and the IMSB009 [5] board are standard plug in boards for
the IBM PC.

Frame grabber

IMS B009

IBM PC
Host processor

Camera

Monitor

Figure 13.13 IBM PC and associated hardware

Software which controls the system runs on the IBM PC host processor and is written in Turbo Pascal,
Version 3.0. This program commands the frame grabber board to grab images which are then transferred to
the IMS B009 via the IBM PC host processor. The image is then transformed, using the convolution algorithm
running on the IMS B009, and transferred to the frame grabber board to be displayed on the monitor. It is
also possible to dump pre-processed and post-processed images to disc. This can be useful where further
processing is required. The software running on the IMS B009 is written in occam, although it could also be
written in C or Pascal. A knowledge of occam will be helpful for a full understanding of the implementation

13 Image processing with the IMS A100 235

of this algorithm. The program is a modified version of the IMS 0703 development software [5), which is
generally available for OSP development with the IMSA100.

The image transformation technique uses a 2 dimensional image convolution algorithm, and is demonstrated
by performing edge detection and filtering on an image. The purpose of the computer program is only to
demonstrate the technique, not to investigate the enormous number of image transformations which are
possible. The program enables further investigation of 2 dimensional convolution kemels with the minimum
of effort. This program is not available as a product but may be obtained by contacting the OSP group based
at Bristol.

The performance of the system does not utilise the full performance of the IMSA100. There are two major
reasons for this. Firstly, all the data which is processed by the IMS A 100 is transferred between the processor
and IMSA100, across a comparatively slow memory interface. Secondly, all the data is transferred to the
processor across comparatively slow links. The net effect of these factors is to reduce the effective data
rate by between 1 and 2 orders of magnitude. The bandwidth possible through the dedicated ports of the
IMSA100 is 10 Mbytes/sec. This bandwidth yields a maximum frame rate of 20 frames per second, while
the performance shown in the rest of this section is no better than one frame per second. A brief description
of how to obtain full performance from the IMSA100 is given in section 13.3.6.

13.6.1 Frame Grabber support

The frame grabber board is a card available for the IBM PC which can perform frame grabbing operations on a
video signal from an external source. The board used is a matrox PIP-1 024 capable of storing a [1024 x 1 024)
image or 4 individual [512 x 512) images, with a resolution of 8 bits per pixel.

Video in
1

2

3

MUX INPUTt------.J'I
LUT

DUAL PORT
VIDEO RAM

IBM PC 110 BUS

Figure 13.14 Frame grabber hardware support

D/A

The board can be used in conjunction with the IBM PC host processor to perform various signal processing
functions, such as horizontal and vertical line detection, using a [3 x 3) image convolution algorithm. Using the
IMS A 100 devices on the IMS B009 results in a factor of 5 performance improvement. A dedicated hardware
implementation using the IMSA100 will achieve at least a factor of 50 performance improvement.

The board is used to continuously grab pictures and display them, to freeze frames, grab single frames and
to accept single frames from the IBM PC bus which may then be displayed. The board is controlled directly
by the Turbo-pascal program which runs on the IBM PC host processor.

13.6.2 The IMS 8009 hardware

An overview of the IMS B009 is shown in figure 13.15 , and a more detailed description of the key components
is shown in figure 13.16 The IBM PC host processor communicates with the IMS C011 across the IBM PC
data bus. Conversion into the standard inmos link protocol is performed by the IMS C011 , and an optional link
jumper is used to connect this link to one of the links of the IMS T 414. A further fixed serial link communicates

236

with the IMST212. There are several other links which may optionally connect to other parts of a system.
It is possible for example to connect several IMS B009 boards together and form a larger system. Another
possibility is to use several links between the IMST414 and IMST212 to increase communication bandwidth.

IBM PC

I I Bus
IBM PC IMS T212
interface

~
TRAM

Y
64Kbyte SRAM

I
Address

INMOS serial links decoder &
generator

Data
Input !III !III!

t t ~ • I • Data
Output

IMS A100 - IMS A100 f---- IMS A100 ~ IMS A100

t t t t
Clock &

Sync

Figure 13.15 IMS B009 overview

The 64 Kbytes of SRAM act as program and data memory for the IMS T212. The high speed data in and data
out interfaces to the IMSA100 cascade are available at an external connector, for maximum speed operation
of the IMSA100 cascade. In this application all data input/output is performed by the IMST212, across the
slower microprocessor interface with the IMSA100.

The 4Kx12 SRAM look-up table, multiplexer and address decoder are used to speed the transfer of data
during processing. The flow of data during the application of a typical signal processing algorithm will be from
the frame grabber, across the IBM PC data bus, through the IMS C011 link adapter and into the memory of
the IMST414. Data is then transferred using the transputer block move engine, across the transputer link, at
about 900 Kbytes per second, into the memory of the IMS T212. The data is then processed by the IMS T212
in combination with the IMSA100 cascade and the result transferred to the IMST414. From the IMST414
the result may be transferred back to the IBM PC host processor, either to be filed on disc or to be displayed.

The IMS B009 also has a direct interface between the IBM PC bus and the IMS A 1 OO·s. This is only used
when the IMST212 is disabled. This mode of operation of the IMSB009 is not used in this application and
will not be discussed further. The use of this interface is for slow access to the IMSA100 from a program
written in any programming language on the IBM PC.

13 Image processing with the IMS A100

IBM PC interface

I
~
~

I
I
~

I 8
~
~

IBM PC I
data ~ 8

IBMJ
address §

Low

High

9

16

16

Data

16

Figure 13.16 Key components of the IMS B009

13.6.3 Transputer block move capability

DIN 41612 connector

siMS C011
~ Links
§

~ IMS T414
~ Links

IIMS T212
~ Links

~ §

IIMS T212
~ services

~
~
~ IMS T414
~ces

I IBM PC
~ services

~
N
~
~
~
~ Data out

Go

~ Data in
§

f: Ext. clock ,-

237

The transputer block move capability is used to transfer data at maximum memory bandwidth, from one
position in memory to another. This following describes the mechanics of the block move, and shows how it
is modified so that it may be specifically used for this application.

The technique uses hardware external to the transputer to modify memory accesses. Therefore the transputer
is not in total control of what is happening during the block move. The transputer is responsible for the
initialisation of the external hardware prior to execution of the block move operation. This technique, while
useful for improving performance, requires caution for its use.

All transputers have dedicated hardware support for moving blocks of data from one area of memory to
another. The IMS T212 doing a block move on the IMS B009 will transfer a 16 bit word from one memory
location to another in 300ns, with 150ns required for the read operation and 150 ns for the write operation.
One possible occam implementation is given in the code below. In this case 1024 words are transferred from

238

position #4000 to #5000. The compiler deals with setting up the counter and address registers.

[1024]ZNT arrayl:
[1024]ZNT array2:
PLACE arrayl AT #4000
PLACE arrayl AT #5000
SEQ

Load array with source data
Arrayl : = Array2

The block move capability can be used to transfer data into and out of the IMS A 100 devices extremely quickly.
However, the data must be in the correct order and word aligned. If processing is required to position the
data correctly in memory, then the performance of the system will be impaired.

The sequence of operations required to access the IMS A 100 devices from the IMS T212 is a read from
memory followed by a write to the DIR 2 register, followed by a read from the DOL 3 register followed by a
write to memory. There is little similarity between the simple transputer block move operation and the transfer
of data into and out of the IMS A 100.

The hardware required to modify the simple block move operation is an address decoder and look-up table
(LUT), which are included as part of the IMST212 memory interface. Whenever a memory address is output
by the IMS T212 and the LUT is active the address is translated by the LUT. The 4Kbytes of LUT are used
to convert a block of sequential addresses into an arbitrary sequence of addresses, with no processing
overhead.

In addition to the address translation LUT the address output by the IMST212 is decoded along with the
information of a read or a write cycle. The result is used to decide if a write to the DIR register, a read from
the DOL register, or a normal readlwrite cycle is required.

For the 2-D convolution, data is placed in the memory of the IMS T212 one pixel at a time and one line at
a time. However, the pixels are loaded into the DIR register of the IMSA100's one column at a time. The
address translation LUT is used to map the rows of pixel data into columns of pixel data so that the data
enters the IMS A 100 cascade in the correct order. In exactly the same way the output data from the IMS A 100
is in columns and must be translated into rows, so that it may be redisplayed on a monitor.

The size of the LUT enables 4096 possible translations, half of which are used for the data input, and half of
which are used for the data output from the IMSA100 cascade. Therefore it is only possible to have a block
of data of 2048 pixels. This means that for example an image of [512 x 5121 pixels must be split into, say,
128 blocks each with [16 x 321 pixels. For efficency reasons it is best to keep the blocks as close to square
as possible.

The sequence of operations involved with a 2-D convolution is as follows:

1 Read from memory through the address translation LUT so that the correct pixel is accessed.

2 Write pixel to the DIR register of all the IMS A 1 OO's in the cascade.

3 Read result of the convolution from the DOL register of the last IMS A 100 in the cascade.

4 Write result to memory location given by the address transtation LUT.

The result of doing this operation for every pixel in the block, is stored sequentially in memory and is then
transferred across the transputer link to the IMST414, where all the blocks are recombined into one image.
The complete image is then transferred to the matrox board to show the result of the convolution.

2The DIR register is the Data Input Register

3The DOL register contains the Low byte of Output Data

13 Image processing with the IMS A100 239

13.6.4 Implementation of the 20 convolution algorithm

The convolution algorithm is implemented in occam on the IMS B009 which consists essentially of 2 processors
running in parallel. The main purpose of these processors is to prepare the data for processing by the
IMS A 100 devices. This following description gives the details of this implementation with respect to both the
hardware and software.

The IMS T414 and IMS T212

The IMST414 module with 1 megabyte of memory is connected to the IBM PC host processor via a link
adaptor. This processor runs the main program and also stores the complete image buffer and result of the
convolution. Both the result of convolution and the image buffer contain 256 Kbytes of image data.

The IMST212 handles reading and writing of data across the IMSA100llMST212 memory interface. All data
processed by the IMS A 100 passes across this interface.

The IMST212 which is connected to the IMST414 by a transputer link, runs several speCialised procedures
and has limited data space for the storage of images. Therefore, the IMST212 will at any moment during
program execution be processing only a small portion of the image. The following program runs on the
IMST414 processing individual blocks of the image one after the other. The operation is described below in
pseudo-occam. Notice that the three dots at the beginning of some lines hide code within them.

PROC 2D.convo1ve(VAL [] []BYTE input.image, [][]BYTE convo1ved.image)
ca1cu1ate b10ck sizes, rows and co1umns
set up address mapper

SEQ b1ock.row = 0 FOR tota1.b1ock.rows
SEQ b1ock.co1 = 0 FOR tota1.b1ock.co1s

SEQ
Ca1cu1ate new pixe1 coordinates of the b10ck
Dump b10ck of input image array to XMS T2l2 from XMS T4l4
Convert data into XMS A100 format
F1ush XMS AlOO cascade
B10ck move data through XMS A100's (DO THE REAL WORK)
Convert resu1t into bytes
Send resu1t from XMS T2l2 to XMS T4l4
P1ace resu1t into convo1ved image array (fina1 resu1t)

The block sizes, the number of blocks in each row and the number of rows in each image are first calculated
and apply for the duration of the convolution of one entire [512 x 5121 pixel image. Each block is made up of a
precalculated number of rows and columns of individual pixels. The maximum number of pixels in each block
is 2048 pixels. This is a limitation of the address mapper which can perform a maximum of 4096 address
translations, 2048 for input and 2048 for output. Without this address mapper the pixel data would need to
be reordered by the transputer, which is extremely time consuming. The address mapper makes possible
arbitrary address sequences, so that data in the transputers memory space may be in any arbitrary order
prior to processing by the IMSA100.

The address mapper is set up once before processing the image. The code to do this is as follows:

SEQ
SEQ i = 0 FOR b1ock.size

SEQ
j := 2 * i
mapper.array[j] .- i
mapper. array [j+l] := b1ock.size + i
write array to mapper

This address mapping, between the memory and the transputer, enables the use of the transputer block
move engine. Under normal operation the block move engine transfers a block of data in contiguous memory
to another position in memory one word at a time at maximum speed. This is considerably faster than dOing
individual readlwrite operations.

240

In order to use this block move facility without the address mapper the data would need to be interleaved
with the result. This would lead to inelegant and inefficient software, and it is much better to have arrays in
contiguous memory. The transputer is reading and writing at consecutive locations, but the external hardware
is "cheating" so that the transputer is actually reading or writing at locations defined by the address mapper.
The previous piece of code is used to set up this interleaved addressing.

The operation of passing data through the IMS A 1 OO's may be considered as 4 distinct actions, which use up
two transputer block move cycles.

During the first block move, data is read from the address mapped memory location output by the transputer.
The transputer then attemps to write this data to the block move output address. However, the external
hardware recognises this cycle and intercepts it, so that data is written to the DIR register of all the IMS A 1 OO's
and not to memory. During the write to DIR the address mapper is unused.

During the second block move, the transputer attempts to read from the next memory location of the input
array. However the external hardware again recognises this and the data is read from the DOL register of
the last IMS A 100 in the cascade. The transputer then attempts to write data to the next memory location of
the output array. However this is again intercepted and the data is written to the address mapped memory
location output by the Transputer.

The net effect is that the image block residing in IMST212 memory is passed through the IMSA100 DIR
and DOL registers and the convolution result read from the DOL register now resides in contiguous memory
ready to be transferred back across a transputer link to the IMS T 414.

Performance

The performance of this setup is easily calculated as the sum of the time for two transputer block moves (2
x 300ns for IMS T212 with 1 wait state) plus the time for a single cycle of the IMS A 1 OO's (200 ns for 8 bit
coefficients). This gives a total pixel transformation time of 800 ns.

To obtain the time required for the convolution of a complete image it is only necessary to calculate the
number of blocks of pixels comprising a complete image. As will later be shown the number of blocks is not
just a function of image size, but depends on the size of the convolution kernel, and the number of pixels in
each block.

The best possible performance assumes that 256K pixels each require 800 ns of processing. This corresponds
to a processing rate of 5 frames per second. In other words the performance degredation caused by using
a memory interface, as opposed to using the dedicated cascade and data ports, to get the data into and out
of the IMSA100 yields 25% of the available performance of the IMSA100. As will now be explained, the
actual frame processing rate will be somewhat less than this, because the blocks of image data comprising
the complete image must be overlapped.

Image segmentation

The image is segmented into several blocks of pixels. This is illustrated in figure 13.17. In this example each
block overlaps in both the x and y directions dependent on the size of the convolution kernel. This image
convolution kernel with size [5 x 5] requires an overlap of 4 pixels on each edge. If this is not done the result
of the convolution of the image will have vertical and horizontal lines of incorrectly convolved data running
down and across.

Overlapping of image blocks means that pixels at the edge of a block will be passed through the IMSA100
twice. This does not matter except that the time to process an entire image will be increased. Also pixels
at the edge of the image must be ignored. In this example the 2 outermost pixels at the edge of an entire
frame do not contain useful information.

To process a single block will require the processing of 144 pixels, only 64 of which will be valid. This
represents 44% efficiency for processing the entire image. The larger the kernel or the smaller is each
individual processing block, the less efficient is this technique of image segmentation. Unfortunately this
technique is the best that can be done using the IMS B009, with data transfer across the relatively slow
memory interface.

13 Image processing with the IMS A100

I . I Area of image processed by A 1 00

_ Area of image valid after processing m Kernel template to pass over image

• The first valid pixel processed

----,-,-------r-r------'-T-------r'-------T-r--------,
I

I I I
I I I

I - 12 8 :
I ~ I
I I I I
I I I I I I 1 I I I I I

~- ------~-+-------~-~------+-+-------~~-------+-~--------~
I I I I I I I I I I I I
~ - - - - --- .. - '1' - - - - - - -~ -1- - - - --- "t - -1- - - - - - -'t -1" - - - ---- --t
I I I I I I I I I I
I I I I I I I I , I
I I I I I I I I
I I, I I I I
I I I I I
I I I I I L _ I , _______ ! _ _, _______ ! _L _ ________ ,
I I I I I I L_ _ ______ ~_~ _______ LJ _______ ~_L ________ J

I 1 I I I I I I
I I I I I t I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
t-
I
r
I
I
I
I
I
I
I

-------"t- ... -------~~-------+-1"--------_t
I I I I I I I +-.----,---1- - - - - - - "T - T - - - - - - -,- -1- - - - - - - T - r - - - - - - - - ,
I I I I I I I
I I I I

I I
I I
I I
I I

I I I I I I I I I I I I L. ________ .J _.i _______ L _1 ______ _ .i _.L _______ 1 __ 1 _______ .L _.L ________ .J

Figure 13.17 Image segmentation

Thresholding and scaling using software LUT

241

A software LUT is used to do scaling of the data output from the DOL register of the IMS A 100. Thresholding
has not been done though it is simple to add.

The data from the camera consists of [512 x 512) pixels each with 8 bit grey scale. Each pixel is operated
upon by the convolution kernel, which may have negative components. This operation is done inside the
IMSA100 and the result of the convolution for each pixel may be either negative or positive. Also, because
the data is only 8 bits, the limits are -128 to +127. As these numbers are inappropriate for output to the
monitor, scaling is applied to convert into a grey scale value between 0 and 255. However, if the values
output by the IMS A1 00 are known to be positive, because all the kernel elements are positive, the output
does not require scaling. The program enables the optional use of a predefined software LUT in order to
create images with the maximum dynamic range.

The LUT facility can be used for other techniques such as non-linear scaling and thresholding. A side effect
of the thresholding operation is further deterioration of performance. Each pixel must be read from memory,
transformed through the LUT and written back to memory. This takes 800 ms (40-50 cycles) for the IMST414,
with all the data in off-chip memory. The operation in occam is

pixe1[i] [j] := tab1e [pixe1 [i] [j]]

242

Transfer of image across links

Data transfer across links involves the transfer of 512 Kbytes of data which will take approximately 500 ms
using a single 20 MbiVsec link. Also, because of the image segmentation method described earlier, the
perimeters of each image block will in effect be transferred twice. This inefficiency is worse for large kernel
sizes and small block sizes.

In the examples used in this application note the time taken for data transfer lies between 500 ms and 1000 ms.

13.6.5 The Demonstration Program

The following information is only relevant to users of the IMS 0703 [5] software, which is available from the
OSP group, based at Bristol. Readers not using this software can ignore the following.

The demonstration program can be used to execute several functions including the convolution of a single
image. Images may be grabbed from the frame grabber board and processed, and the result may be
displayed. Also the original images and convolution results may be stored on disc, although a lot of disc
space is required at 256 Kbytes per image. An image can also be read from disc instead of from the frame
grabber which is useful if images need to be processed several times. Storing away this amount of data is
however quite slow. An optional post processing program is also available which transforms these grey scale
images on disc into postscript format. The pictures in this document are created in this manner.

IMS 0703 Development software

The program operates a modified version of the IMS 0703B development software. For more information on
this please consult the IMS 0703 user guide and reference manual. Briefly the differences are as follows:

• The routines for accessing the matrox board are included in the software but not with the standard
IMS0703.

• Routines which enable byte wide data to be transferred across the links between the IMS T212 and
IMS T414 have been enabled. With the IMS 0703 all data is transferred as 16 bit words both to and
from the IMS T212. The 16 bit word format is directly suitable for the IMS A 1 OO's assuming the use
of 16 bit coefficients. The IMS A 1 OO's process data in 400 ns in this mode.

• Because only 8 bit data is used in this application (8 bit grey scale) it would be very wasteful to transfer
16 bit words as half the data would be redundant. However, the 8 bit data must be transformed into
16 bit data with the top 8 bits held low (zero). This is because the IMS A1 00 does require 16 bit
data even when in 8 bit coefficient mode.

• The 5 applications in the IMS 0703 system have been removed, and replaced by the single appli
cation. It would be possible to add this application to the original 5 but because this application
uses a lot of memory, (512 Kbytes for the image buffers alone) it was found that the 6 applications
overflowed the 1 Mbyte of memory on the IMS B009-2. This may be aleviated in the future when
modules with 2 mega bytes or more are available.

Injection of noise onto images

The program has a facility to add random noise onto an image. The reason for doing this is to show the
benifit of large convolution kernel sizes.

Qualitatively, the effect of a large kernel is to locally average pixels surrounding a pixel point. This results in
a blurring of the image but does give the effect of reducing noise. This is the analogue equivalent of a low
pass filter.

Convolution kernel file

A convolution kernel file is read by the program each time it is executed. This means that many convolution
kernels may be investigated without the need for recompilation of the program. An example format of this file
is given below. It is only necessary to edit this file to investigate any number of convolution kernels.

13 Image processing with the IMS A100 243

The file must start with the number of convolution l'tERNELS. When the program runs, 4 kernels in this
example will be sequentially executed, and the resultant image for each is displayed on the monitor. Each
l'tERNEL has an optional description which is shown simultaneously while the convolution is being done. The
SIZE of each kernel must also be given. This is used to check for correctly entered kernel elements. The
SCALE is multiplied by each element of the kernel to give the resultant convolution kernel. The SI:GN is
used to determine the software LUT which operates on the output of the IMSA100. There are 2 possible
LUTs available for the existing program, '+' which assumes that all elements in the array are positive and
'-' which accepts either positive or negative integers. These LUTs are used because the IMSA100 is a 2's
complement integer machine, and it is therefore necessary to know if the output from the IMS A 100 requires
conversion or may be assumed positive.

It is possible to add other software LUTs, for example to do nonlinear scaling and saturation control. As
different convolution kernels may require different output conversions through the look-up table this attribute
is made individual to each kernel.

l'tERNELS 4

l'tERNEL Simpl.e fil.ter
SUE 3 SCALE 28 SI:GN +

ROW 111
ROW 111
ROW 111

FmI:SH

l'tERNEL Simpl.e fil.ter
SIZE 9 SCALE 3 SIGN +

ROW 1 111 1 1 1 1 1
ROW 1 111 1 111 1
ROW 1 1 1 1 111 1 1
ROW 1 1 1 1 111 1 1
ROW 1 1 1 1 1 1 1 1 1
ROW 1 1 1 1 111 1 1
ROW 1 1 1 1 111 1 1
ROW 1 1 1 1 111 1 1
ROW 1 1 1 1 111 1 1

FINISH

l'tERNEL Sobel. Operator Edge Detection
SIZE 3 SCALE 32 SIGN -

ROW -2 -1 0
ROW -1 0 1
ROW 0 1 2

FmISH

l'tERNEL Sobel. Operator Edge Detection
SIZE 9 SCALE 1 SIGN -

ROW -7 -7 -7 -4 -3 -4 0 0 0
ROW -7 -7 -7 -3 -4 -3 0 0 0
ROW -7 -7 -7 -4 -3 -4 0 0 0
ROW -4 -3 -4 0 0 0 4 3 4
ROW -3 -4 -3 0 0 0 3 4 3
ROW -4 -3 -4 0 0 0 4 3 4
ROW 0 0 0 4 3 4 7 7 7
ROW 0 0 0 3 4 3 7 7 7
ROW 0 0 0 4 3 4 7 7 7

FINISH

FINISH kernel. file

244

13.7 References

Digital filtering with the IMSA100, Application note 1, Hossein Yassaie, INMOS Limited, Bristol.

2 Discrete Fourier transform with the IMS A1 00, Application note 2, Hossein Yassaie,
INMOS Limited, Bristol.

3 Correlation and convolution with the IMSA100, Application note 3, Hossein Yassaie,
INMOS Limited, Bristol.

4 Complex (I & 0) processing with the IMSA100, Application note 4, Hossein Yassaie,
INMOS Limited, Bristol.

5 IMS 0703 reference manual, INMOS Limited, Bristol.

6 IMS A100 data sheet, INMOS Limited, Bristol.

7 Index mappings for multidimensional formulation of the OFT and convolution, Burrus C.S.,
IEEE Trans. on ASSP, 25:239-242, June 1977.

8 DFTIFFT and convolution algorithms - theory and implementation, Burrus C.S. and Parks T.w.,
IEEE Trans. on ASSP, 25:239-242, June 1977.

·!lJiJnos Chapter 14 245

• - cascading
IMS A110s

246

14.1 Introduction

The IMS A110 is a single-chip programmable and cascadable device suitable for many high speed image
and signal processing applications. It consists of a configurable array of multiply-accumulators (420 MOPs),
three programmable length 1120 stage shift registers, a versatile post-processing unit and a microprocessor
interface for configuration and control purposes. The comprehensive on-chip facilities makes a single device
capable of dealing with many image processing operations. A simplified block diagram is shown in figure 14.1.

For some applications however, the power and versatility of a single IMS A 110 is not sufficient, in these cases
a cascade of devices often provides a solution. The purpose of this document is to describe some of the
most useful ways to cascade IMS A 11 Os to achieve even higher performance and as such does not cover
the use of the backend processor or device applications.

14.2 Operation of a single IMS A110

The A 110 may be set up as either a one or two dimensional multiplier accumulator array (MAC).

14.2.1 One dimensional operation of an IMS A110

For one dimensional operation the first delay PSRc is set to some arbitrary value (normally zero) while PSRb
and PSRa are set to zero. N.B. at any given point in time the first MAC stage in bank c is proceSSing the
oldest data while the last MAC stage of bank a is processing the newest data.

14.2.2 Two dimensional operation of an IMS A110

For two dimensional operation the first delay (PSRc) is again set to some arbitrary value; however, the setting
of PSRa and PSRb is dependant on the line length in pixels of the image being processed. It turns out that
in order to achieve a rectangular convolution window the number of delays to be programmed into PSRa and
PSRb is equal to the line length in pixels plus the length of the MAC pipelines (seven stages). For example
if the screen width of the image to be processed is 512 pixels then the delay to be programmed into shift
registers PSRa and PSRb is 519.

N.B. normally when processing an image with an arbitrary setting of PSRc the delay (latency) through the
IMS A 110 causes the output image to be incorrectly aligned or Skewed. This results in an apparent rotation
of the output image in the horizontal plane. To correct this problem PSRc may be adjusted to introduce a
suitable number of delays to shift the image into the correct position.

Typically image data is fed into an IMS A11 0 line by line starting at the top left and ending at the bottom
right. Given this definition it may be seen that the first MAC stage in each row is processing the data nearest
the left hand side of the screen (the oldest data) and that the last MAC stage in each row is processing the
data nearest the right hand side of the screen (the newest data). In a similar fashion the first row is always
processing the newest data (the data nearest the bottom of the screen) and the last row is always processing
the oldest data (the data nearest the top of the screen). It is important to bear in mind these relationships
when programming IMS A 11 Os, otherwise the operation being performed on an image may not be what was
expected.

14 Cascading IMS A110s 247

PSRc: 0-1120 Bankc

PSRb: 0-1120

PSRa: 0-1120

CASin
Data conditioner etc.

Figure 14.1 Block diagram of the IMS A 110

14.3 Fundamentals of cascading IMS A110s

Consider a single IMS A 110 configured to perform some task on a stream of data values. The filter kernel
formed by the coefficients may be thought of as a block passing over the data. To produce bigger filters it
is necessary to join a number of separate blocks together. This may be achieved by connecting together a
number of IMS A 11 Os, as shown in figure 14.2, and configuring them suitably. In order to create a contiguous
filter kernel (i.e. a filter without overlap or gaps) it is essential that the route between PSRin and PSRout for
each device is programmed correctly and that the internal delay lines are programmed to the correct lengths.

~
Device "-1

PSRout PSRin
Device"

~t

IMSA110 IMS A110

~ CASout CASin ~t

Figure 14.2 Standard connection for cascading IMS A 11 Os

To assist in the calculation of the delays to be programmed into the programmable shift registers it is con
venient to define a reference data path through the MAC of any given IMS A110. In this document, unless
specified, the reference path is taken to be from the input to the multiplier marked with an asterisk (*) in
figure 14.1 to the cascade adder marked with a hash (#).

248

In addition before embarking on any calculation it is necessary to know the following:

1 The delay between PSRin and PSRout when the data is routed directly from PSRin to PSRout
without passing through the programmable shift registers. This delay is known as DD.

2 The delay along the reference path. This delay is known as DR.

3 The delay through the backend between cascade in and cascade out. This delay is known as DB.

4 The locations of the other inherent delays within IMS A 11 Os.

5 The meaning of line length, kernel width and kernel height. See figure 14.3 for a definition of these
terms.

Figure 14.1 shows a functional block diagram of an IMS A110 with all the inherent delays included. From this
diagram it is possible to calculate the value of the three delay constants as shown in table 14.1.

DR = (1 +1) +(7 +1)+(7+13)

DR =30

Table 14.1

...... f--------------- L --------------,1

Filter kernel

W
• H

t

L = line length

W • kernel width

H = kernel height

Figure 14.3 Depiction of line length, kernel width and kernal height

14.4 Cascading IMS A110s to produce long one dimensional filters

A single IMS A 110 is capable of producing a one dimensional filter with up to 21 taps (shorter filters may be
made by setting unrequired coefficients to zero). To create longer filters it is necessary to cascade a number
of IMS A110s together. Each additional device added to the cascade gives an additional 21 taps allowing
filters of almost unlimited size to be built from simple building blocks.

14 Cascading IMS A110s 249

To develop the delays required to be set up in a one dimensional cascade the system shown in figure 14.4
will be considered. This system only contains two devices but will be examined in a general way so that
rules may be developed for cascades of arbitrary length. It has already been mentioned how to set up the
delays to achieve one dimensional convolution in a single device. Fortunately, in cascades of IMS A11 Os the
data relationships within each device are the same as those which would exist inside a single non cascaded
device processing the same data. Hence, in the one dimensional cascade under consideration the delays
programmed into PSRa and PSRb of each device are zero.

Device n-1 Device n

PSRin PSRin

CASin CASin

Figure 14.4 Direct data path connection for cascading IMS A 11 Os

In order to cascade IMS A 11 Os into long one dimensional filters the data is normally routed directly from
the input to the output of each device without passing through the programmable shift registers, as shown
in figure 14.4. It may be seen that each piece of data takes two routes through the cascade. One route
generates partial results via the MAC of device n - 1 and the other via the MAC of device n. These partial
results are eventually combined at the cascade adder in the backend of device n. To produce the correct
result it is important that these two separate data streams are aligned correctly.

Assuming that the delay in the PSRc of device n - 1 is Xn-l and that the delay in PSRc of device n. is Xn,
it is desired to calculate the relationship between these delays for correct combination of the partial results.
Consider an item of data when it reaches device n - 1. The delay before the component due to this data,
flowing via the reference path in device n - 1, reaches the cascade adder of device n is:

Dn -1 = 41 + Xn -1

Similarly the delay before the component due to this data, flowing via the reference path in device n, reaches
the cascade adder of device n is:

Dn = DD + 1 + Xn + 1 + 3 + DR

Dn = 37+xn

Now, for a contiguous convolution kernel, it is desired for the results flowing via the MAC of device n - 1 to
arrive at the cascade adder of device n, 21 clock cycles behind those which have come from the other route.
Hence:

Dn-1-Dn =21

41 +xn_1-37-xn =21

Xn-1 =xn +17

This means that the PSRc of device n - 1 must be programmed with the value which is in PSRc of device n
plus a fixed constant of 17. This rule may be extended to take into account any number of devices providing
that the maximum length of the delay lines is not exceeded. The PSRc of the last device in the cascade may
be programmed to an arbitrary value (normally zero) providing the maximum length of the first PSRc delay
in the cascade is not exceeded.

250

For example consider the problem of filtering a data stream with a 50 tap filter. This could be achieved by
cascading three IMS A11 Os. Typical delays which would have to be programmed into the devices are given
in table 14.2.

Device 1 Device 2 Device 3

PSRa 0 0 0
PSRb 0 0 0

PSRc 34 17 0

Table 14.2

14.5 Cascading IMS A110s to produce wider two dimensional filters

A single IMS A 110 is capable of filtering an image with a two dimensional kernel which has a maximum width
of seven cells (narrower filters may be made by setting unrequired coefficients to zero). To create wider filters
it is necessary to cascade a number of IMS A110s together. Each additional device added to the cascade
increases the maximum width by an additional 7 cells, allowing filters of almost unlimited width to be created.

The connections required to cascade IMS A110s into horizontal cascades may be seen in figure 14.4. It
may be noted that the connections for this type of cascade are identical to those presented in section 14.4
for one dimensional cascading. The difference in function is achieved by changing the delays present in the
programmable shift registers. It was mentioned in section 14.2 that for two dimensional filtering using a single
device the length of PSRa and PSRb have to be programmed to the line length plus seven. Hence to ensure
correct alignment of the rows of the filter in a horizontal cascade it is necessary that PSRa and PSRb of each
of the devices must also be set to this value.

In order to cascade horizontally the pixel data is normally routed directly from the input to the output of each
device without passing through the programmable shift registers. As before it may be seen that each item of
data (pixel) takes two routes through the cascade. By assuming that the delay in the PSRc of device n - 1
is :1:,,-1 and that the delay in PSRc of device n is x,,, then the route delay equations derived are the same
as those calculated in section 14.4.

D,,_1 = 41 + X,,_1

D" =37+x"

Now, for a contiguous convolution kernel, it is desired for results flowing via the MAC of device n-1 to arrive,
at the cascade adder of device n, 7 clock cycles behind those which have come from the other route. This
may be achieved by ensuring that the data passing via MAC n - 1 takes 7 cycles longer than data passing
via the MAC n route. Hence:

Dn -1 -D" =7

41 + X,,_1 - 37 - x" = 7

X,,-1 = x" +3

This means that the PSRc of device n - 1 must be programmed with the value which is in PSRc of device n
plus a fixed constant of 3. This rule may be extended to cascade any number of devices providing that the
maximum length of the delay lines is not exceeded. The value programmed into the PSRc of the last device
in the cascade is arbitrary (normally adjusted to deskew the output image) but must not be set so high that
the PSRc of the first device in the cascade exceeds its maximum.

For example consider the problem of filtering a 1024 pixel wide image with a 15x3 filter kernel. This could
be achieved by cascading three IMS A 11 Os into a horizontal cascade. Typical delays which would have to
be programmed into the devices are given in table 14.3.

14 Cascading IMS A110s 251

Device 1 Device 2 Device 3

PSRa 1031 1031 1031
PSRb 1031 1031 1031
PSRc 6 3 0

Table 14.3

14.6 Cascading IMS A110s to produce higher two dimensional fiRers

The maximum height of a two dimensional filter kernel produced by a single IMS A11 0 is three cells. This
is restricting in some applications but. may be easily overcome by cascading a number of IMS A11 Os into a
single vertical strip. The theoretical maximum height of filter which can be created is equal to three times the
number of devices cascaded. Hence the vertical filter size is limited only by the number of devices used.

PSRin PSRout

CASin CASout

PSRout

CASout

Figure 14.5 Indirect data path connection for cascading IMS A110s

To develop the delays required to be setup in a vertical cascade the system shown in figure 14.5 will be
considered. This system only contains two devices but will be examined in a general way so that rules may
be developed for cascades of arbitrary length. It was mentioned in section 14.2 that for two dimensional
filtering using a single device the length of PSRa and PSRb have to be programmed to the line length plus
seven (L+7). Obviously to ensure correct alignment of the rows of the filter in a vertical cascade it is necessary
that PSRa and PSRb of each of the devices must also be set to this value.

To cascade vertically the pixel data is normally routed from the input to the output of each device via the
programmable shift registers (see figure 14.5). Again it may be seen that each pixel takes two routes through
the cascade. One route generates partial results via the MAC of device n - 1 and the other via the MAC of
device n.

252

These partial results are eventually combined at the cascade adder in the backend of device n. In order to
produce the correct result it is important that these two data streams are aligned correctly.

Assuming that the delay in the PSRc of device n -1 is 2:,,-1 and that the delay in PSRc of device n is 2:", it
is desired to calculate the the relationship between these delays for correct combination of the partial results.
Consider a pixel when it reaches device n - 1. The delay before the component due to this pixel, flowing via
the reference path in device n - 1, reaches the cascade adder of device n is:

D,,-l" 1 +2:,.-1 +1 +3+DR +DB

D .. -1 - 41 + 2:,,-1

Similarly the delay before the component due to this pixel, flowing via the reference path in device n, reaches
the cascade adder of device n is:

D" .. 54+ 2L + 2:,,-1 + 2:"

But for a contiguous convolution kernel it is desired for results flowing via MAC n to arrive, at the cascade
adder of device n, three line lengths after those which have come from the other route. This may be achieved
by ensuring that the data passing via MAC n takes 3L (where L is the line length in pixels) cycles longer than
data passing via the MAC n - 1 route. Hence:

D" -D .. _1 .. 3L

54+2L+2:,,_1 +2:" - 41 - 2:,,-1 .. 3L

2:,," L -13

This means that the PSRc of devica n must be programmed with a value which is equal to the line length
minus a fixed constant of 13. This rule may be extended to cascades containing any number of devices
providing that the maximum length of the delay lines is not exceeded. N.B. the setting of the PSRc of the
first device in the cascade is arbitrary and may be adjusted to deskew the output image.

For example consider the problem of filtering a 512 pixel wide image with a 7x7 filter kernel. This could
be achieved by cascading 3 IMS A 11 Os into a vertical cascade. Typical delays which would have to be
programmed into the devices are given in table 14.4.

Device 1 Device 2 Device 3

PSRa 519 519 519
PSRb 519 519 519
PSRc 0 499 499

Table 14.4

14.7 Cascading IMS A110s to produce wider and higher two dimensional filters

To produce filters which are both wider and higher than allowed by a single IMS A 110 it is possible to cascade
a number of the wider filters discussed in section 14.5 into a vertical strip.

The connections required to cascade IMS A 11 Os into two dimensional cascades may be seen in figure 14.6.
The system shown has arbitrary width but only two rows of devices allowing a maximum filter height of six
cells. However the system will be examined in a general way so that rules may be developed for cascades
of arbitrary height. It may be noted that across each row, except for the last device, direct connection is used
between PSRin and PSRout. The last device uses the indirect. route via the programmable shift registers
to connect to the first device of the next row. Since each row of this cascade consists of a horizontal
cascade the rules developed for the delays in such a cascade (see section 14.5) apply to each row of this
larger configuration. However, the relationship between the delays in the vertical direction requires careful
consideration.

14 Cascading IMS A110s 253

Device n -1,1 Device n -1,m

PSRin PSRout PSRin

CASin CASout CASin

Device n,m

PSRout PSRin PSRout

CASout CASin CASout

Figure 14.6 Connections for cascading IMS A 11 Os into wider and higher 2-D filters

Assuming that the array of IMS A 11 Os contains M devices in the horizontal direction and that the delay in
PSRc of each device is as shown in figure 14.6, it is desired to calculate the relationship between these
delays for correct combination of the partial results generated by each row within the cascade. Consider a
pixel when it reaches device n - 1,1. The delay before the first component due to this pixel, flowing via the
reference path in device n - 1,1, reaches the cascade adder of device n,1 is:

Dn -1,1 = 1 +Xn -1,1 + 1 +3 + DR +DBM

Dn -1,1 =35+6M+xn -1,1

Similarly the delay before the component due to this pixel, flowing via the reference path in device n,1,
reaches the cascade adder of device n,1 is:

Dn ,1 = 2(M -1) + 1 + (Xn -1,M + 1) +(L + 7 + 1) +(L+ 7 + 1) + 1 + 1 + (Xn ,1 + 1) +3+DR

Dn ,1 = 52+2M +2L+xn -1,M +Xn ,1

But for a contiguous convolution kernel it is desired for results flowing via MAC n,1 to arrive, at the cascade
adder of device n, 1 a period of 3L clock cycles after those which have come from the other route. Hence:

Dn ,1 - Dn -1,1 = 3L

52+2M +2L+xn -1,M +Xn ,1 -35- 6M - Xn -1,1 = 3L

17 - L - 4M +Xn -1,M +Xn ,1 = Xn -1,1

254

Now it is also known from section 14.5 that any given device in a row except the final device has PSRc
programmed to 3 more than the device which follows. This leads to the following relationship between the
delays programmed into the first and the last devices of the top row:

X,,-1,1 = X,,-1,M +3(M -1)

By substituting this result into the previous result gives:

Xn ,1 = 7 M + L - 20

This means that the PSRc of device n, 1 must be programmed with the value which is equal to 7 times the
number of devices cascaded horizontally plus the line length minus a fixed constant of 20. This rule may be
extended to cascades containing any number of devices providing that the maximum length of the delay lines
is not exceeded. N.B. the setting of PSRc of the right most device in the first row is arbitrary, but is normally
adjusted to deskew the output image.

For example consider the problem of filtering a 512 pixel wide image with a 9x9 filter kernel. This could be
achieved by cascading six IMS A 11 Os into a cascade containing three rows of two devices. Typical delays
which would have to be programmed into the devices are given in table 14.5.

Device 1,1 Device 1,2 Device 2,1 Device 2,2 Device 3,1 Device 3,2

PSRa 519 519 519 519 519 519
PSRb 519 519 519 519 519 519
PSRc 3 0 506 503 506 503

Table 14.5

14.8 Cascading IMS A110s to perform multi pass filtering operations

In addition to being able to cascade IMS A11 Os for increased filter size it is also possible to cascade devices
to perform multi pass filtering operations. For example consider the problem of edge detection in a noisy
image. This task is often performed in two stages the first is low pass filtering to reduce the amount of noise
and the second is the edge detection operation. This complete task may be performed by cascading two
IMS A 11 Os as shown in figure 14.7. Note that only an eight bit window of CASout from the first device is
connected to PSRin of the second device.

PSRin PSRout

CASin CASout

Figure 14.7 Cascading IMS A110s for multi-pass filtering

To configure such a cascade to perform the double filtering operation each device is considered separately
and the delays are setup as described in section 14.2. For the example under consideration the coefficients
of the first device are configured to perform the low pass filter operation while the coefficients of the second
device are configured as an edge detector.

14 Cascading IMS A110s 255

PSRin PSRout

22

8
CASin CASout

Figure 14.8 Multi-pass filtering by using feedback

This technique of multi pass filtering can obviously be extended to include more devices or it may be combined
with the cascading techniques discussed in earlier sections to allow multi pass filtering with larger filter sizes.

It is possible to use a single device for multi pass filtering. This technique works by feeding back alternate
cascade outputs to PSRin, and making use of bank swapping. Figure 14.8 shows the basic setup. The
disadvantages of this method are:

1 The maximum data throughput is halved.

2 The maximum filter size is reduced.

3 External logic is required.

To setup such a system requires careful programming to achieve the desired result. For example consider
the problem of passing the local averaging filter kernel shown below over an image twice.

1 1 1
1 1 1
1 1 1

It may be shown using similar techniques to those presented earlier that the delays to be programmed into
the programmable shift registers a and bare:

2L+7

This value is equal to twice the line length plus the length of the MAC pipelines. N.B. logical reasoning would
have lead to the same result by considering that the data rate within the device is equal to twice the rate of
the applied image data.

To create the correct filter kernels it is very important that the coefficient registers are programmed correctly.
Each filter is programmed into one of the two coefficient banks, and every odd coefficient must be set to
zero otherwise the two interleaved data streams will corrupt each other. The table below shows how the
coefficients should be programmed for the example under consideration.

a 1 0 1 0 1 0 0
CRO b 1 0 1 0 1 0 0

c 1 0 1 0 1 0 0

a 1 0 1 0 1 0 0
CR1 b 1 0 1 0 1 0 0

c 1 0 1 0 1 0 0

256

14.9 Cascading IMS A110s for Increased data precision

In some high precision applications the 8 bit word length of a single IMS A 110 is not sufficient. This section
presents three techniques to overcome this problem. The first two combine IMS A11 Os with simple external
hardware, the last one requires no external hardware but does place certain restrictions on the coefficients
and the data.

14.9.1 Increasing data precision with an external 22 bit adder

The first technique makes use of an external 22 bit adder in the configuration shown in figure 14.9.

16

IMSA110

Unsigned Data

IMS A110

Signed Data

Figure 14.9 Cascade of IMS A110s for increased data precision

At the input each 16 bit input value is split into two 8 bit words one containing the least significant 8 bits and
the other containing the most significant 8 bits. Each of these 8 bit data streams is fed into an IMS A110. If
the data is unsigned then both of the devices must be set to unsigned data operation. However, if the data
is signed then in order to correctly process the data and preserve the sign information it is necessary for
the least significant byte to be processed as unsigned data and the most significant byte to be processed as
signed data (see figure 14.9). This may be easily achieved by setting or clearing bit 2 of the SCR register in
each IMS A110 as appropriate. The 22 bit partial results from each device are combined by making use of
a 22 bit adder. This adder forms the sum of the top 14 bits of the least significant partial result and the full
22 bits of the most significant partial result to give the upper 22 bits of the final result. This is combined with
the lower 8 bits of the least significant partial result to give the complete 30 bit result. See figure 14.10 for a
graphical representation of this.

I 14 bits I 8 bits I LS Partial Resu~

I 22 bits I MS Partial Result
t

I 30 bits I Final Output

Figure 14.10 Calculation of the final output

This technique may be extended to give data precisions above 16 bits, however, such precisions are rarely
used in practice. Sometimes it may be desired to combine a bigger filter size, as discussed in earlier sections,
with increased precision. Such a system is simple to create and just involves replacing each IMS A110 in
figure 14.9 with the appropriate cascade of devices. Similarly multi pass filtering, as discussed in section 14.8,
may be combined with increased precision. This is achieved by selecting a 16 bit window from the output of
the system shown in figure 14.9 and feeding this into the input of another high precision stage.

14 Cascading IMS A110s 257

14.9.2 Increasing data precision with an external delay line

As an alternative to using an external adder it is possible to make use of the cascade adder built into each
IMS A110 and an external delay line (of length DB) as shown in figure 14.11.

16 Device n-1

PSRout

CASout CASout

22
'-----------' output

Figure 14.11 Alternative cascade if IMS A110s for increased data precision

The rules discussed earlier in this section about signed data apply equally to this configuration. This means
that if signed data was being processed then the left and right hand devices in the diagram would have to be
configured for unsigned and signed operation respectively. The one other consideration when increasing the
data precision in this way is the number delays required in the programmable shift registers of'each device.

Obviously the setings of PSRa and PSRb are not affected by the presence of another device and are setup
as described in section 14.2. The setting of PSRc for each device however is important, and incorrect setting
will result in erroneous calculation of the most significant 22 bits of the result.

Assuming that the delay in the PSRc of device n - 1 is Xn-1 and that the delay in PSRc of device n is X n ,

it is desired to calculate the relationship between these delays for correct combination of the partial results.
Consider an item of data when it reaches device n - 1. The delay before the component due to this data,
flowing via the reference path in device n - 1, reaches the cascade adder of device n is:

Dn- 1 = 1 + (Xn-1 + 1) + 3 + DR + DB

Dn-1 =41 +Xn

Similarly the delay before the component due to this data, flowing via the reference path in device n, reaches
the cascade adder of device n is:

Dn = 1 + (xn + 1) + 3 + DR

Dn = 35+xn

Now for the data to be correctly aligned at the cascade adder of device n the delay along each path must be
the same. Hence:

Dn- 1 -Dn =0

41 +xn-1-35-xn=0

Xn = Xn -1 +6

This means that the PSRc of device n must be programmed with the value which is in PSRc of device n - 1
plus a fixed constant of 6.

Obviously this technique of increasing data precision may be extended beyond 16 bits, or may be combined
with other cascading techniques to give larger filter sizes etc.

258

14.9.3 Increasing data precision with no external hardware

If the data and coefficients are such that only 22 bits or less are required to represent the result then it is
possible to increase the data precision with no external hardware. The connections required are similar to
those shown in figure 14.11. However, the 6 stage delay must be removed and the full 22 bits of CASout from
the first device must be connected to CASin of the second device. To correctly sum the two contributions of
the result, it is necessary to left shift the MAC output of the second device 8 places to the left. This shift is
easily performed using the shifter in the second device, however, care must be taken to ensure that overflow
does not occur. If such an overflow does occur then it will not be detected.

14.10 Cascading IMS A110s for increased coefficient precision

Section 14.9 described three different techniques for increasing data precision by cascading IMS A 11 Os. In
this section three very similar techniques are presented for increasing coefficient precision.

14.10.1 Increasing coefficient precision with an external 22 bit adder

8

IMS A110

Unsigned Data

IMS A110

Signed Data

Figu re 14.12 Cascade of I MS A 11 Os for increased coefficient precision

The first method makes use of an external 22 bit adder as shown in figure 14.12. At the input each 8 bit
value is fed to PSRin of both the IMS A110s. The device at the top of the diagram is programmed with the
least significant 8 bits of the coefficients and the device at the bottom is programmed with the most significant
8 bits of the coefficients. If the coefficients are unsigned then both of the devices must be set to unsigned
coefficient operation. However, if the coefficients are signed then in order to correctly process the data and
preserve the sign information it is necessary for unsigned and signed coefficient operation to be set in the
top and bottom devices respectively (see figure 14.12). This may be easily achieved by setting or clearing
bit 3 of the SCR register in each IMS A11 0 as appropriate. The 22 bit partial results are then combined in
exactly the same fashion as described in section 14.9.

As discussed for increased data precision this technique may be extended to more than 16 bits of accuracy
if required, or may be adapted to make use of increased filter sizes etc. For very high precision systems
increased coefficient and data precision may be combined to give very accurate results.

14.10.2 Increasing coefficient precision with an external delay line

The second method makes use of a delay line in a very similar configuration to that discussed in the previous
section. A diagram showing the setup may be seen in figure 14.13.

The rules discussed earlier in this section about signed coefficients still apply in this configuration. Hence
if signed coefficients are required then the left and right hand devices in the diagram have to be configured
for unsigned and signed coefficient operation respectively. The calculation of the setting of PSRc for each
device may be calculated in the same manner as described in the previous section. When the calculation is
performed the following relationship is developed:

Xn = X,,-1 +4

This means that the PSRc of device n must be programmed with the value which is in PSRc of device n - 1
plus a fixed constant of 4.

14 Cascading IMS A110s 259

Device n-1 Device n

PSRin PSRout

CASin CASout

22
'-----------' output

Figure 14.13 Alternative cascade if IMS A11 Os for increased coefficient precision

Obviously this technique may be extended for more preCision or adapted using information presented in
earlier sections to give increased filter size, multi pass filtering etc.

14.10.3 Increasing coefficient precision with no external hardware

It was discussed in section 14.9 how to achieve increased data precision without using any external hardware.
Since exactly the same technique may be applied to give increased coefficient precision duplicate details are
not given here.

14.11 Summary

This document has attempted to describe some of the many ways in which IMS A 11 Os may be cascaded to
yield even higher performance. Obviously it has not been possible to discuss every possible configuration
but hopefully the examples discussed should have provided both an insight into the extensive capabilities of
these devices when cascaded, and some simple rules to allow easy setting up of some of the most common
forms of cascades.

260

IlnJnos Chapter 15 261

_ the IMS A110
backend
post
processor

262

15.1 Introduction

The IMS A110 consists of a high performance conflgurable array of multiply-accumulators (420 MOPs), three
programmable length 1120 stage shift registers and a versatile backend post processing unit. All these
features are controlled from a microprocessor interface. The comprehensive on-chip facilities ensure that
a single device is capable of dealing with many tasks commonly found in the fields of signal and image
processing.

The backend post processing unit gives the IMS A 110 a high degree of flexiblility, especially for image pro
cessing applications. This document describes by example some of the uses of the backend post processor.

Unless specified otherwise all the examples considered will be based around image processing applications
with 8 bits per pixel being used to represent the image data.

15.2 Description of the backend post processor

Figure 15.1 shows the functional blocks and interconnections which are present within the backend post
processor of the IMS A 110. This diagram can be broken down into 4 main sections, the input block, statistics
monitior, data conditioning unit and output block. A brief description of each of these major sections is given
below, for full details reference should be made to the data sheet.

15.2.1 Input block (shifter, cascade adder and rectifier)

Data from the MAC array encounters the shifter when it enters the input block. The shifter is capable of up
to 8 arithmetic shifts in either direction. When shifting left it is possible for an overflow to occur. Such an
overflow is not detected by the device, hence it is left to the user to ensure that unintentional overflows do
not occur. When shifting right rounding is applied to improve the accuracy of the device. The magnitude and
direction of the shift are controlled by BCRO[5 .. 1] as described in the data sheet.

The output data from the shifter is fed into the cascade adder. Here it is added to both the rounding bit
generated by the shifter and the data applied to either the cascade input bus or zero depending on the setting
of BCRO[O]. Should the result of the 22 bit signed addition be greater than 221 - 1 then a positive overflow is
generated. Similarly if the result is less than _222 a negative overflow is generated.

The output from the cascade adder can be optionally full or half wave rectified depending on the setting of
BCRO[7 .. 6]. The output of the rectifier drives the X bus. Note that when full wave rectification is being used
and the output of the cascade adder is _221 then the output from the rectifier remains as _~1 .

15.2.2 Statistics monitor

The statistics monitior allows the X bus to be monitored for certain conditions. Four different modes of
operation are possible and these are tabulated below:

Mode BCR1[1] BCR1[O]
Max Register 0 1
Min Register 0 0
Overshoot Counter 1 1
Undershoot Counter 1 0

When configured to be in max register mode and the X bus exceeds the current threshold in the MMR (maximin
register), then the MMR is loaded with the value on the X bus and the counter (OUC) is incremented. If the
threshold is not exceeded then no action is taken. Thus assuming the MMR was initially set to _221 its value
at some later time is the maximum value which has appeared on the X bus in that period, and the OUC has
been incremented by the number of times the threshold has been updated.

15 The IMS A110 backend post processor 263

Clock
cycle

1

2

3

4

5

6

t'-'

I

Cascade input pads

221 From MAC array f 22

" MUX / I Shifter [8:0) I
22{ 22{ 1

f f Rounding

J Cascade Adder

negative over1low 1 1 22

positive over1low 1

I Rectifier I
DATA TRANSFORMATION 22

22 ~

UNIT f STATISTICS MONITOR

Prescaler Min/max buffer I
f 22 1

r--4_ Ove~underselect Min/max register

~ ~ 0· .. ,. :
22 t ! III

::> • .Q

.. USR
x

Comparator GT/LT f-- Control

LSR

Over/undershoot count

22 1
64x32 bit RAM Over/undershoot buffer I

Ybus 32
DATA NORMA USER

[26:22) 5~ [21:0) Shifter -2 to 14 h.
32

fL:';
Zero data I

..j Byte select ~
BCR

r. 22 1
8

22 Rounding
22

I Output adder I-
22

8t
[21:14] 8 8 [7:0] 8

• 6 • '" MUX / [13:8) '" MUX /
8{ [21:14) [7:0) 8{

22

Cascade output pads

Figure 15.1 Detailed block diagram of the backend post processing unit

264

If configured to be in min register mode the threshold is updated and the counter incremented whenever the
X bus is less than the current threshold. Note that when operating in max/min register mode if a positive or
negative overflow occurs then the threshold is not updated since this could leave a misleading value in the
MMR.

As an overshoot counter the statistics monitor operates by incrementing the QUC every time the value on the
X bus exceeds the threshold in the MMR or if a positive overflow occurs. The QUC is unsigned and will not
wrap around, thus behaving as a saturating counter. Similarly when configured to be in undershoot counter
mode the QUe is incremented every time the value on the X bus is less than the current threshold.

When overflows occur this is recorded in bits 22 and 23 of the MMR. Positive overflows cause bit 22 to be
set while negative overflows cause bit 23 to be set. These bits may be cleared by writing to the MMB copy
location.

Direct access to the MMR and QUC via the microprocessor interface is not possible. Instead the reading
and writing of these registers is performed by making use of the MMB, CMM, QUB and CQU registers. Full
details may be found in the data sheet.

15.2.3 Data conditioning unit (data transformation unit and data normaliser)

Data transformation unit

The data transformation unit contains a prescaler, an under/over select detector, a look up table and a byte
selector. It may be used on its own to provide arbitrary data mappings of an 8 bit segment of the X bus, or
in conjunction with the data normaliser to implement sophisticated dynamic range compression functions.

The prescaler allows an 8 bit field to be selected from anywhere within the 22 bits of the X bus. This 8 bit
field is used as an address to the LUT. The over/under select detector monitors the operaton of the prescaler
to ensure that all the significant bits and the sign of the X bus are included within the 8 bit field. If this is not
the case then an overselect or underselect signal is generated depending on whether the X bus is positive
or negative respectively.

The LUT consists of sixty four 32 bit words. In addition there are a further two 32 bit locations known as the
upper and lower saturation registers (USR, LSR). The most significant 6 bits of the address field are used to
select one of the 32 bit registers in the LUT. This 32 bit output is known as the Y bus. The least significant
2 bits of the address field are then used to control a byte select on the output. Thus the LUT may be used
to provide arbitrary 8bit - 8bit data transformations.

Positive overflows on the X bus or overselects in the prescaler cause the LUT to access the USR overriding
the address supplied by the prescaler. Similarly negative overflows and underselects cause the LUT to
access the LSR. When such conditions occur the byte select control is also overridden thus causing the most
significant byte (byte 3) of the appropriate saturation register to appear on the byte wide output of the data
transformation unit.

The LUT is programmed via the memory interface. The addressing for the LUT corresponds directly to the
8 bit field, assuming that the byte selector is being used. To enable access to the LUT, USR and LSR from
the microprocessor interface the LUT access control bit ACR(1) must be set to zero. This forces the Y bus
to zero and causes the normaliser to be controlled by BCR3[7 .. 3) regardless of the setting of the dynamic
normalisation bit. Qnce the LUT has been programmed the LUT access control bit may be reset to one thus
allowing the LUT to be used in the data transformation unit.

Data normaliser

The data normaliser contains a shifter followed by a zero data unit. The shifter is capable of right shifts of
up to 14 bits and left shifts of up to 2 bits. Any amount of shift outside this range invokes the zero data unit
which zeros the output of the data normaliser. The amount of shift is specified by one of two 5 bit sources.
These are either BCR3[7 .. 3) or bits 26 to 22 of the Y bus. The source currently selected is determined by
the setting of BCR3[2].

15 The IMS A110 backend post processor

15.2.4 Output unit (output adder and output multiplexers)

Output adder

265

The output adder takes one of its inputs from the data normaliser (including the rounding bit). The other input
is either the least significant 22 bits of the Y bus or zero depending on the setting of BCR3[1]

Output multiplexers

The output multiplexers allow the selected byte from the LUT to be optionally selected to drive either the most
or least significant 8 bits of the cascade output pins. This feature is controlled by the setting of BCR2[5 .. 6].
Any cascade output pins not being driven by the selected byte are driven by the appropriate bits of the output
adder.

15.3 Uses of the backend post processor

15.3.1 Local area averaging

Local averaging is the one of the simplest image filtering operations. A typical local averaging filter may be
seen in figure 15.2. Although this filter looks very simple to implement on IMS A 11 Os there is one slight
problem and that is how to achieve the divide by nine operation. The operation is necessary to ensure that
the output image data requires the same number of bits to represent it as the input data.

1
'9

1

1

1

1 1

1 1

1 1

Figure 15.2 Local averaging filter kernel

The IMS A110 is capable of dividing by integer powers of two. Using this capability the ~ could be replaced
with ~. Although this would adequately restrict the magnitude of the output data a significant loss of dynamic
range could occur. A better solution is to generate an approximation to ~ in the form shown below. Where %

represents the coefficient and y the number of right shifts applied:

% 1
211 R:l g

It may be simply shown that the closest approximation which may be used with IMS A 11 Os is:

%=57

y=9
By using these values the local averaging kernel to be programmed into the IMS A 110 is as shown below:

1
2D"

57

57

57

57 57

57 57

57 57

Figure 15.3 Modified local averaging filter kernel

The division by 29 can't be performed by the shifter in the input block since it is only capable of right shifting
up to 8 places. The shifter in the normaliser however is capable of right shifting the required nine places.

266

To configure an IMS A110 so that it performs the local averaging operation used in the above example the
following values would have to be programmed into the coefficient and control registers:

Coeff Register 0 1 2 3 4 5 6
CROa 57 57 57 0 0 0 0
CROb 57 57 57 0 0 0 0
CROc 57 57 57 0 0 0 0

Registers Data msb .. Isb
SCR 0 0 x 1 1 1 x 0
ACR 0 0 0 0 0 0 x 0
BCRO x x 0 0 0 0 0 1
BCR1 0 0 0 0 0 0 x x
BCR2 0 0 0 x x x x x
BCR3 0 1 0 0 1 0 0 0

x - indicates don't care.

Exactly the same technique may be applied to other filter kernels which require an awkward diviSion. For
example the edge enhancement operation shown in figure 15.4 requires a division by 5 operation. A modified
version of the kernel which may be easily implemented is shown below.

1
'5

0

-1

0

-1 0

5 -1

-1 0

Figure 15.4 Edge enhancement filter kernel

0 -13 0

-13 64 -13

0 -13 0

Figure 15.5 Modified edge enhancement filter kernel

15.3.2 Histogram equalization

Histogram equalization is one example of the wider field of histogram modification [1]. All such operations
manipulate the grey levels within an image to generate a new image with a modified grey level histogram.
The histogram equalization technique attempts to manipulate the grey levels within an image so that an even
spread is obtained across the entire range of intensities. Details of the technique are widely available in the
technical press [1] so an in depth discussion will not be provided here.

There are two distinct stages in performing a histogram equalization the second of which IMS A110s are
capable of performing. The first stage is the calculation of th~ transfer function which maps the original image

15 The IMS A110 backend post processor 267

onto the histogram equalized image. The main computational cost involved in this stage is the determination
of the original histogram. The second stage requires the implementation of the transfer function to map the
grey levels in the input image to the equalized grey levels in the output image.

The transfer function is implemented by making use of the arbitrary 8bit-8bit mapping ability of the LUT present
within the IMS A 110. The offset of each location in the LUT may be regarded as one of the original grey
levels and the value programmed into that location is the transformed grey level after equalization.

For example suppose that it was desired to use an IMS A110 to perform a histogram equalization on 8 bit
image data applied to the cascade input port with the MAC coefficients programmed to zero. The table below
shows the values which would h~ve to be programmed into the main control registers. The output data would
appear on the lower 8 bits of the cascade output port.

Register Data msb .. Isb
SCR 0 0 x 1 x x x x
ACR 0 0 0 0 0 0 A x
BCRO x x x x x x x 0
BCR1 0 0 0 0 0 0 x x
BCR2 0 1 0 0 0 0 0 0
BCR3 1 0 0 0 0 0 0 0
LUT n D D D D D D D D

x - Indicates don't care.

A - Set to 0 to program LUT, set to 1 to allow IMS A 110 LUT access.

D - Program with the mapping n ~ D[7 .. 0].

By modifying the transfer function programmed into the LUT many other operations are possible including
thresholding and image contouring which are described in sections 15.3.3 and 15.3.7 respectively.

15.3.3 Edge detection and enhancement

Edge detection

Edge detection is a very important image processing operation since it is often the first stage in feature
recognition. For example consider the vertical line detector shown in figure 15.6. This filter is actually the
y component of the Sobel operator. The output (H(x, y)) from the filter when convolved with an image is a
measure of the change of intensity in the y direction at each point.

-1 -2 -1

0 0 0

1 2 1

Figure 15.6 Y component of the SObel operator

The output at any given point may be positive or negative depending on the direction of the intensity gradient
vector at that location. Often when using such a filter to detect vertical edges only the magnitude of the
gradient vector is of interest (Le. its direction is irrelevant). The results may be modified to simply indicate
the magnitude by processing the output as shown below.

F[x,y] = IH(x,y)1

268

The modulus operation is an ideal example of the use of full wave rectification. The tables below show the
configuration of the coefficient and control registers necessary to calculate IH(3:, y)l.

Coeff Register 0 1 2 3 4 5 6
CROa -1 -2 -1 0 0 0 0
CROb 0 0 0 0 0 0 0
CROc 1 2 1 0 0 0 0

Registers Data msb .. Isb
SCR 0 0 x 1 0 1 x 0
ACR 0 0 0 0 0 0 0 0
BCRO 1 0 0 0 0 1 0 1
BCR1 0 0 0 0 0 0 x x
BCR2 0 0 0 x x x x x
BCR3 0 0 0 0 0 0 0 0

x - Indicates don't care.

Typically once an edge detection operator has been convolved with an image it is necessary to make some
sort of decision based on the magnitude as to whether an edge exists at each point of the output. The method
usually used is known as thresholding [1].

The threshold operation involves mapping all points with a grey level greater than a given threshold to
one value (typically 255), and all other points to another value (typically 0). The lookup table as described in
section 15.3.2 provides the ability to perform just such an arbitrary mapping. By modifying the control registers
presented above it is possible to do not only the edge detection operation and the full wave rectification, but
also to apply an arbitrary threshold all within a single device. The updated table of control registers is shown
below:

Registers Data msb .. Isb
SCR 0 0 x 1 0 1 x 0
ACR 0 0 0 0 0 0 A 0
BCRO 1 0 0 0 0 1 0 1
BCR1 0 0 0 0 0 0 x x
BCR2 0 1 0 0 0 0 0 0
BCR3 1 0 0 0 0 0 0 0
LUTn D D D D D D D D

x - Indicates don't care.

A - Set to 0 to program LUT, set to 1 to allow IMS A 110 LUT access.

D - Set to 0 for n less than or equal to the threshold, set to 1 otherwise.

Edge enhancement

Edge enhancement is often applied to images to either counteract blurring or to produce a sharper looking
image which is sometimes aesthetically more pleasing. One filter kernel which gives an edge enhancement
may be seen in figure 15.5. When this filter is convolved with an image it is possible to generate not only valid
positive image data but also negative values under some circumstances. One solution would be to apply full
wave rectification to the result however it is generally more acceptable if half wave rectification is applied.

To implement such a filter on an IMS A 110 the coefficient and control registers would have to be set up as
shown in the following tables.

15 The IMS A110 backend post processor 269

Coeff Register 0 1 2 3 4 5 6
CROa 0 -13 0 0 0 0 0
CROb -13 64 -13 0 0 0 0
CROc 0 -13 0 0 0 0 0

Registers Data msb .. Isb
SCR 0 0 x 1 0 1 x 0
ACR 0 0 0 0 0 0 0 0
BCRO 0 1 0 0 1 1 0 1
BCR1 0 0 0 0 0 0 x x
BCR2 0 0 0 x x x x x
BCR3 0 0 0 0 0 0 0 0

x - Indicates don't care.

15.3.4 Feature recognition

By using the statistics monitor it is possible to get the IMS A 110 to see if a given pattern was present within
an image. To enable this process to take place a number of things have to be done:

• The MAC coefficients must be configured as a pattern detector for the pattern which is being searched
for. If the pattern is large a number of devices can be cascaded (2) to achieve the required window
size.

• The statistics monitor must be configured so that it is in max register mode.

• The MMR must be programmed with _221 at the start of the search period (typically at the start of
a frame).

As one or more images are processed the MMR register is continually updated to indicate the highest MAC
output which has occured so far. When the pattern detector encounters the pattern that it is designed to
search for the MAC output should generate a very large output which exceeds a given threshold. This output
will be recorded in the MMR. By examining the MMR at the end of the search period (typically at the end
of the frame) it is possible to see if the threshold has been exceeded. If this is the case then it is possible
to say that the pattern probably occurred somewhere within the data that was processed. The setting of the
threshold to achieve reliable operation requires system teaching using known sets of data.

In a similar fashion it is possible to perform feature recognition with the statistics monitor configured as an
overshoot counter. In this mode of operation the detection of the desired pattern is indicated by an increase
in the value of the QUC (care must be taken to ensure that it does not saturate). The method of setting the
threshold at which the overshoot counter is incremented is identical to the description given in the previous
paragraph. At first sight it may appear that this method enables the number of occurences of a given pattern
to be counted. Unfortunately this is unlikely to be the case for the following reason.

When the pattern being searched for is encountered it is possible for the QUC to be incremented more than
once. This is caused by a combination of uncertainty about the pattern and the properties of pattern detectors
as decribed below:

• In a typical pattern matching application the pattern is rarely perfect. Degradations from the ideal
may be caused by additive noise, distortion of the object, changing lighting conditions etc. To take
this into account the threshold is normally set to a value which is low enough to increment the QUC
for all likely occurences of the pattern.

• Due to the nature of pattern detectors a large output is not only generated when the detector is
coincident with the pattern but quite large outputs can also be generated when it is just off centre.

The combination of these two problems means that each occurence of the pattern could increment the
QUC one or more times thus damaging any indication the change in QUC could give about the number of

270

occurences of a pattern.

15.3.5 Changing conditions compensation

The front end of many automated image processing systems will experience slowly changing input conditions.
These may occur due to changing light levels, drifting component tolerances etc. The inclusion of the maxImin
register modes of the statistics monitor allows the system to automatically compensate for these changes.
For example consider a system which uses daylight to illuminate the field of view. As the day proceeds the
output from the camera will change. By spending periods of time monitoring both the maximum and minimum
levels in the data stream it is possible to adapt the system to take these changes into account.

15.3.6 Binary image processing

A binary image is one which contains only two grey levels. Typically a binary image is the result of a
thresholding operation as described in section 15.3.3. By making use of the MAC and the backend it is
possible to implement a wide variety of different operations some of which are summarised below:

• Isolated pixel removal - removal of all pixels which have no identical neighbour.

• Line linking - bridging of small gaps between pixels.

• Encoding according to connectivity - coding of pixels depending on their connectivity with respect
to surrounding pixels.

• Binary thinning including staircase elimination - [3] [41 [51 [6] [7]

• Feature growth - opposite of the above.

• Conway's game of life - the oldest computer game known to man.

Po

Figure 15.7 A pixel and its 8 closest neighbours

As an example of the techniques involved isolated pixel removal will be examined in more detail. Consider a
pixel with its 8 surrounding neighbours as shown in figure 15.7. It is assumed that active and inactive pixels
are represented by 1 and 0 respectively.

15 The IMS A110 backend post processor 271

If the central pixel is in the opposite state to all its surrounding neighbours then the value of the central pixel
must be toggled. In order to perform the transformation it is necessary to develop a filter kernel which will
give a unique output for each of these two condition. One such kernel is shown in figure 15.8 below:

1 1 1

1 9 1

1 1 1

Figure 15.8 Filter kernel for isolated pixel removal

By programming the MAC with this kernel the outputs generated when the binary image is applied will range
from 0 to 17 inclusive. The two particular cases of special interest are 8 and 9 which correspond to a 0
surrounded by 1 s and a 1 surrounded by Os respectively.

To convert from the output of the MAC to a binary image in the original format use may be made of the LUT.
The complete mapping for the LUT and the setting of the main control registers for this example are tabulated
below:

Coeff Register 0 1 2 3 4 5 6
CROa 1 1 1 0 0 0 0
CROb 1 9 1 0 0 0 0
CROc 1 1 1 0 0 0 0

Registers Data msb .. Isb
SCR 0 0 x 1 1 1 x 0
ACR 0 0 0 0 0 0 A 0
BCRO x x 0 0 0 0 0 1
BCRl 0 0 0 0 0 0 x x
BCR2 0 1 0 0 0 0 0 0
BCR3 1 0 0 0 0 0 0 0
LUT 0-7 0 0 0 0 0 0 0 0
LUT 8 0 0 0 0 0 0 0 1
LUT9 0 0 0 0 0 0 0 0
LUT 10-17 0 0 0 0 0 0 0 1

x - Indicates don't care.

A - Set to 0 to program LUT, set to 1 to allow IMS All 0 LUT access.

15.3.7 Multilevel thresholding - image contouring

Often it is desired to highlight a number of areas within a single image. Providing that each of the areas
occupies a different region of the grey scale then this can be achieved by multi level thresholding (sometimes
known as image contouring). Typically such a technique is often used in medical work. For example consider
an X-Ray taken of a patient which may well contain three very distinct regions:

• Clear regions: representing bone.

• Intermediate regions: representing major body organs.

• Dark regions: representing regions where the X-Rays met little resistance.

272

By using the lUT to provide arbitrary 8bit-8bit data mappings as descibed in sections 15.3.2 and 15.3.3 it is
possible to assign each of these three regions a separate value. As a further enhancement external hardware
could be used to colour each of the three regions. Such colouring can greatly simplify the comprehension of
some types of image.

15.3.8 Dynamic range compression

Consider image data which requires 12 bits to represent each pixel. If it is desired to display such an image
on a system which uses only 8 bits per pixel then some form of range compression is required. One solution
is to discard the lower 4 bits of each pixel. This would leave the 8 most significant bits for display. If however,
the image was dark the lower 4 bits would contain a large proportion of the image data. To throwaway the
lower 4 bits in such a situation would almost certainly be unacceptable. A better solution in this case would
be to use the nonlinear tranformation shown in figure 15.9. Using this transformation values between 0 and
63 are unchanged; values between 64 and 1023 are mapped into the range 64 to 183 and values between
256 and 4095 are mapped into the range 184 to 232.

232
184

64

o~r-~-------------------r------------'-----~-------
o 64 1024 4095

log input scale

Figure 15.9 Typical dynamic range compression function

The IMS A11 0 is capable of performing just such a nonlinear transformation by making use of both the data
transformation unit and the data normaliser. The mode of operation which is required is known as dynamic
normalisation, this is selected by setting BCR3[2) (enable dynamic normalisation). In this mode the prescaler
selects a 6-bit field anywhere within the X bus. This is used as an address to the lUT. Bits 22 to 26 of the
output of the lUT are used to control the normaliser block so that the input to the normaliser is dynamically
scaled. The output of the normaliser is then added, in the output adder, to the least significant 22 bits of the
output of the lUT.

The operation can be viewed as:
output = (input X scale) + 0 II set

where the scale is provided by bits 22 to 26 and the offset is provided by bits 0 to 21 of the lUT.

To define the transformation function shown in figure 15.9 it is necessary to carefully calculate the values to
be placed in the LUT. The first stage in this calculation is deciding which slice of the X bus the prescaler is
going to select. In this example it will be set so that bits 4 through to 11 are selected. This means that bits

15 The IMS A110 backend post processor 273

6 to 11 are used as the address for the lookup table. Bearing this in mind it may be seen that in the first
segment of the transfer function the LUT address is zero. Since in this segment the scale is 1 (0 right shifts)
and the offset is 0 the following four bytes of data must be programmed into the first 32 bit location of the
LUT.

1 LUT 0 1 B~; 31 BY;; 21 BY;; 1 1 BY;; 0 1

The second segment of the transfer function occurs between LUT addresses 1 to 15. In this segment the
gradient is i (3 Right shifts). To ensure that the first and second segment line up correctly it is important to
set the offset of the second segment to the correct value. It may be easily shown that in this case the offset
is 56. Thus the data to be programmed into the 15 LUT locations from addresses 1 to 15 is:

BYTE 3 BYTE 2 BYTE 1 BYTE 0
LUT 1 00 CO 00 38
LUT n 00 CO 00 38
LUT 15 00 CO 00 38

In exactly the same manner the LUT data for the third and final segment of the transfer function may be
shown to be:

BYTE 3 BYTE 2 BYTE 1 BYTE 0
LUT 16 01 80 00 AS
LUTn 01 80 00 A8
LUT63 01 80 00 AS

The settings of the other main control registers to perform the example transform on data applied to the
cascade input port are:

Coeff Register 0 1 2 3 4 5 6
CROa 0 0 0 0 0 0 0
CROb 0 0 0 0 0 0 0
CROc 0 0 0 0 0 0 0

Registers Data msb .. Isb
SCR 0 0 x x x x x 0
ACR 0 0 0 0 0 0 A 0
BCRO x x x x x x x 0
BCR1 0 0 0 0 0 0 x x
BCR2 0 0 0 0 0 1 0 0
BCR3 x x x x x 1 1 0

x - indicates don't care.

A - Set to 0 to program the LUT, set to 1 to allow IMS A11 0 LUT access.

15.4 Summary

This document has attempted to describe by example some of the many ways in which the backend post
processor of the IMS A 110 may be used. It has only been possible to scratch the surface of a handful of
applications but hopefully the examples discussed should have provided an insight into both the flexibility and
capability of this section of the device.

274

15.5 References

[1] R. C. Gonzalez, p.wintz - Digital Image Processing, Addison Wesley.

[2] R. Whitton - Cascading IMS A 11 Os, INMOS.

[3] R. Stefanelli, A. Rosenfeld - Some Parallel Thinning Algorithms For Digital Pictures. Comm ACM
18,2.

[4] H.E. Lu, P.S.P. Wang - A Comment On Fast Parallel Algorithms For Thinning Digital Patterns. Comm
ACM 29, 3.

[5] C.M. Holt, A. Stewart, M. Clint, R.H. Perrott - An Improved Parallel Thinning Algorithm. Comm ACM
30,2.

[6] R.W. Hall- Fast Parallel Thinning Algorithms: Parallel Speed And Connectivity Preservation. Comm
ACM 32,1.

[7] Z. Guo, R.W. Hall- Parallel Thinning With Two Subiteration Algorithms. Comm ACM 32, 3.

mos Appendix A 275

_ quality and
reliabil ity

276

The INMOS quality programme is set up to be attentive to every phase of the semiconductor product life
cycle. This includes specific programmes in each of the following areas:

• Total Quality Control (TQC)

• Quality and Reliability in Design

• Document Control

• New Product Qualification

• Product Monitoring Programme

• Production Testing and Quality Monitoring Procedure

A.1 Total quality control (TQC) and reliability programme

Our objective to continuously build improved quality and reliability into every INMOS part has resulted in a
comprehensive Quality/Reliability Programme of which we are proud. This programme demonstrates INMOS'
serious commitment to supporting the quality and reliability needs of the electronics marketplace.

INMOS is systematically shifting away from a traditional screening approach to quality control and towards
one of building in Experimental Design quality through Statistical Process Control (SPC). This new direction
was initiated with a vigorous programme of education and scientific method training.

In the first year of the programme approximately 80 INMOS employees worldwide received thorough SPC
training. This training has been extended to cover advanced SPC and experimental design. Some of the
courses taught are listed below:

• Experimental Design Techniques

• Statistical Process Control Methods

• Quality Concepts

• Problem Solving Techniques

• Statistical Software Analysis Techniques

Today INMOS utilizes experimental design techniques and process control/monitoring throughout its devel
opment and manufacturing cycles. The following TQC tools are currently supported by extensive databases
and analysis software.

1. Pareto charts 6. Correlation Plots
2. Cause/Effect Diagrams 7. Control Charts
3. Process Flow Charts 8. Experimental Design
4. Run Charts 9. Process Capability Studies
5. Histograms

A.2 Quality and reliability in design

The INMOS quality programme begins with the design of new INMOS products. The following procedures
are examples from the INMOS programme to design quality and reliability into every product.

Innovative design techniques are employed to achieve product performance using, whenever pOSSible, state
of the art techniques. For example, INMOS uses 300 nm gate oxides on its high performance graphics,
SRAM and MICRO products to obtain the reliability inherent in the thicker gate oxide. In addition, circuit
design engineers work hand in hand with process engineers to optimise the design for the process and the
process for the product family. The result is a highly reliable design implemented in a process technology
achievable within manufacturing.

A Quality and RellabllHy 277

INMOS products are designed to have parametric margins beyond the product target specifications. The
design performance is verified using simulations of circuit performance over voltage and temperature values
beyond those of specified product operation, including verification beyond the military performance range. In
addition, the device models are chosen to ensure tolerance to wide variations in process parameters beyond
those expected in manufacture.

The design process includes consideration of quality issues such as signal levels available for sensing, reduc
tion of internal noise levels, stored data integrity and testability of all device functions. Electro-static damage
protection techniques are included in the design with input protection goals of 2K volts for MIL-STD-883 test
ing methods. Specific customer requirements can be met by matching their detailed specifications against
INMOS designed in margins.

The completion of the design includes the use of INMOS computer aided design software to fully check and
verify the deSign and layout. This improves quality as well as ensuring the timely introduction of new products.

A.3 Document control

The Document Control Department maintains control over all manufacturing specifications, lot travellers,
procurement specifications and drawings, reticle tapes and test programmes. New specifications and changes
are subject to approval by the Engineering and Manufacturing managers or their delegates. Change is
rigorously controlled through an Engineering Change Notice procedure, and QA department managers screen
and approve all such changes.

An extensive archiving system ensures that the history of any Change Notice is readily available.

Document Control also has responsibility for controlling in-line documentation in all manufacturing areas which
includes distribution of specifications, control of changes and liaison with production control and manufacturing
in introducing changed procedures into the line.

Extensive use is made of computer systems to control documentation on an international basis.

A.4 New product qualification

INMOS performs a thorough internal product qualification prior to the delivery of any new product, other than
engineering samples of prototypes to customers.

Care is taken to select a representative sample from the final prototype material. This typically consists of
three different production lots. Testing is then done to assure the initial product reliability levelS are achieved.
Product qualifications are done in accordance with MIL-STD-883, methods 5004 and 5005, or CECC/BS9000.

The initial INMOS qualification data, and the ongoing monitor data can be very useful in the user qualification
decision process. INMOS also has a very successful history of performing customer qualification testing
in-house and performing joint qualification programmes with customers. INMOS remains committed to joint
customerlvendor programmes.

A.5 Product monitoring programme

At the levels of quality and reliability performance required today (lOW PPM and FIT levels). it is essential that
a large statistically significant, current product database be maintained. One of the programmes that INMOS
uses to accomplish this is the Product Monitoring Programme (PMP).

The PMP is a comprehensive ongoing programme of reliability testing. A small sample is pulled from pro
duction lots of a particular part type. This population is then used to create the specific samples to put on
the various operating and environmental tests. Tests run in this programme include extended temperature
operating life, THB and temperature cycle. Efforts are continuing to identify and correlate more accelerated
tests to be used in the PMP.

278

A.& Production testing and qualHy monitoring procedure

A.&.1 Reliability testing

INMOS' primary reliability test method is to bias devices at their maximum rated operating power supply level
in a 140° C ambient temperature. A scheme of time varying input signals is used to simulate the complete
functional operation of the device. The failure rate is then computed from the results of the operating life
test using Arrhenius modelling for each specific failure mechanism known. The failure rate is reported at a
temperature that is a typical worst case application environment and is expressed in units of FITs where 1
FIT = 1 Fail in 10E9 device hours, (100 FIT = 0.01%/1000 Hrs). The current database enables the failure
rate to be valid over various environmental conditions.

The failure rate goal for INMOS products is 100 FITs or less at product introduction with a 50 FIT level to be
attained within one year.

For plastic packaged product, additional testing methods and reliability indices become important. Humidity
testing is used to evaluate the relative hermeticity of the package, and thermal cycling tests are used principally
to evaluate the durability of the assembly (e.g. die/bond attach).

The Humidity Test comprises of temperature, humidity, bias (THB) at 85°C, 85% Relative Humidity, and a
5V static bias configuration selected to maintain the component in a state of minimum power dissipation and
enhance the formation of galvanic corrosion. INMOS reliability goals have always been to meet or better
the current 'industry standards' and a target of less than 1 % failures through 1000 hours of THB at 90%
confidence has been set.

The Thermal Cycling tests are performed from -65°C to + 150°C for 500-1000 cycles, with no bias applied.
Thermal Shock tests using a liquid to liquid (Freon) method are cycled between -55°C and + 125 °C.
The INMOS Reliability qualification and monitoring goal for the above tests is less than 1% failures at 90%
confidence.

A.&.2 Production testing

Electrical testing at INMOS begins while the devices are still in wafer form before being divided into individual
die. While in this form, two different types of electrical test are performed.

The Parametric Probe test is to verify that the individual component parameters are within their design limits.
This is accomplished by testing special components on the wafer. The results of these tests provide feedback
to our wafer fab manufacturing facilities which allows them to ensure that the components used in the actual
devices perform within their design limits. This testing is performed on all lots which are processed, and any
substandard wafers discarded. These components are placed in the scribe streets of the wafer so they are
destroyed in the dicing operation when they are not of any further use. By placing them there, valuable chip
real estate is saved, thereby holding down cost while still providing the necessary data.

The Electrical Probe test performed on all wafers is the test of each individual circuit or chip on every wafer.
The defective dice are identified so they may be later discarded after the wafer has been separated into
individual die. This test fully exercises the circuits for all AC and DC datasheet parameters in addition to
verifying functionality.

After the dice have been assembled into packages they are again tested in our Final Test operation. In a
mature product the typical flow is:

• Preburn-in test

• Burn-in at 140°C

• Final test

• PDA (Percent Defect Allowed)

• Device Symbolisation

• QA Final Acceptance

A Quality and ReliabliHy 279

The temperature setting used for hot testing is selected so that the junction temperature is the same as it
would be after thermal stabilisation occurred in the specified environment. This is calculated using the hot
temperature power dissipation along with the thermal resistance of the package used. All INMOS product is
electrically tested and burned-in prior to shipment. Historically, the industry has selected burn-in times using
the MIL Standards as a guide (when the market would support the cost) or on a 'best guess' basis dominated
by cost considerations. Whereas INMOS invoke a burn-in reduction exercise to ensure the reduced time has
no reliability impact.

A.6.3 QualHy monitoring procedure

in the Outgoing Quality Monitoring programme, random samples are pulled from lots, that have been suc
cessfully tested to data sheet criteria. Rejected lots are 100% retested and more importantly, failures are
analysed and corrective actions identified to prevent the recurrence of specific problems.

The extensive series of electrical tests with the associated Burn-in PDA limits and Quality Assurance tests
ensure we will be able to continue to improve our high quality and reliability standards.

280

INMOS MIL-STD-883C/MIL-I-4S208

MATERIAL PROCUREMENT & PRODUCT FLOW

Wafer Fab Mat'l Procurement [2]

Wafer Fab Process [2]

Wafer Level Elect. Test [2]

Internal Visual OA Sample [2]

Assembly Mat'l Procurement

Assembly Mat'I OA Inspect

Assembly Process [1]

Electrical Testing

Burn-in

[Solder Dip] [3]

OCI Group A,B

OCI Group C,D

Certificate of Conformance

[CSI, GSI, PVT] [4]

Notes:

[1] Anam, Korea or GTE, Taiwan

[2] Newport Fab. Product:
All NMOS, CMOS SRAM
All Transputer
All G17x (CLUT)

[3] Hot Solder Dip as req'd at
Colo. Spgs. Subcontractor

[4] As required by Customer

INMOS
NEWPORT

U.K.

[5]

OFFSHORE
ASSEMBLY

[5] 600 mil Package Parts,
All MICRO & G17x Parts

[6] 300 mil DIP, LCC & FLAT PACK
SRAM Parts

V Raw Material Procurement

o Manufacturing Process

D OAGate

INMOS
COL. SPGS.

USA

[6]

