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ABOUT THIS MANUAL 

This manual provides a qualitative description of the operation of members 
of the IDT R305 l family of integrated RlSControllers. 

A quantitative description of the processor electrical interface is provided in 
the data sheets for these products. Also included in the data sheets are the 
mechanical descriptions of the part, including packaging and pin-out. 

Additional information on development tools, complementary support chips, 
and the use of these products in various applications. are provided in separate 
data sheets and applications notes. 

Any of this information is readily available from your local IDT sales 
representative. 
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Integrated Device Technology, Inc. 

FAMILY OVERVIEW CHAPTER 1 

INTRODUCTION 
The IDT R305 l family is a series of high-performance 32-bit microprocessors 

featuring a high-level of integration, and targeted to high-performance but cost 
sensitive embedded processing applications. The R305 l family is designed to 
bring the high-performance inherent in the MIPS RISC architecture into low
cost, simplified, power sensitive applications. 

Thus, functional units have been integrated onto the CPU core in order to 
reduce the total system cost, rather than to increase the inherent performance 
of the integer engine. Nevertheless, the R3051 family is able to offer 35 MIPS 
of integer performance at 40 MHz without requiring external SRAM or caches. 

Further, the R3051 family brings dramatic power reduction to these 
embedded applications, allowing the use oflow-cost packaging for devices up 
to 25 MHz. Thus, the R3051 family allows customer applications to bring 
maximum performance at minimum cost. 

FEATURES 
• Instruction set compatible with IDT 79R3000A and R3001A RISC CPUs 
• High level of integration minimizes system cost 
• 35 MIPS at 40 MHz 
• Low cost 84-pin PLCC packaging 
• Large on-chip instruction and data caches 
• Flexible bus interface allows simple, low cost designs. 
• Single, double-frequency clock input 
• 20 through 40 MHz operation 
• On-chip 4-deep write buffer eliminates memory write stalls 
• On-chip 4-deep read buffer supports burst or simple block reads 
• On-chip DMA arbiter 

DEVICE OVERVIEW 
There are currently four members of the R305 l family. All differences relate 

to the size of the on-chip instruction cache, and the structure of the on-chip 
memory management unit. All four devices are pin compatible, and user 
software compatible. They all utilize the same execution engine and bus 
interface unit, and all contain 2kB of data cache. The four family members are: 

• R3052"E" incorporates an 8kB instruction cache, and full function 
memory management unit (MMU) including 64-entry fully associative 
Translation Lookaside Buffer (TLB). 

• R3052, which also incorporates an 8kB instruction cache but does not 
include the TLB. 

• R305 l "E", which incorporates 4kB of instruction cache along with the full 
function MMU /TLB set. 

• R305 l, which incorporates 4kB of instruction cache but omits the TLB. 
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Figure I. I. Block Diagram 

Figure 1.1 shows a block level representation of the functional units within 
the R305 l I 52. The R305 l I 52 could be viewed as the embodiment of a discrete 
solution built around the R3000 or R3001. However, by integrating this 
functionality on a single chip, dramatic cost and power reductions are 
achieved. 

An overview of these blocks is presented here, with detailed information on 
each block found in subsequent chapters. 

CPU Core 
The CPU core is a full 32-bit RISC integer execution engine, capable of 

sustaining close to single cycle execution rate. The CPU core contains a five 
stage pipeline, and 32 orthogonal 32-bit registers. The R305 l family implements 
the MIPS-I ISA. In fact, the execution engine of the R305 l family is the same 
as the execution engine of the R3000 and R3001. Thus, the R305 l family is 
binary compatible with those CPU engines. 

1-2 
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System Control Co-Processor 
The R3051 family also integrates on-chip the System Control Co-processor, 

CPO. CPO manages both the exception handling capability of the R3051/52. 
as well as the virtual to physical mapping of the R3051 I 52. These topics are 
discussed in subsequent chapters. 

There are two versions of the R3051/52 MMU: the extended architecture 
versions, the R3051E and R3052E, which incorporate the same MMU as the 
R3000 and R3001. These versions contain a fully associative 64-entry TLB 
which maps 4kB virtual pages into the physical address space. The virtual to 
physical mapping thus includes kernel segments which are hard-mapped to 
physical addresses, and kernel and user segments which are mapped page by 
page by the TLB into anywhere in the 4GB physical address space. In this TLB, 
8 pages can be "locked" by the kernel to insure deterministic response in real
time applications. 

The R3051 family base versions, the R3051 and R3052, remove the TLB and 
institute a fixed address mapping for the various segments of the virtual 
address space. These devices still support distinct kernel and user mode 
operation, but do not require page management software, leading to a simpler 
software model. 

Clock Generator Unit 
The R3051/52 is driven from a single, double frequency input clock. On

chip, the clock generator unit is responsible for managing the interaction of the 
CPU core, caches, and bus interface. The clock generator unit replaces the 
external delay line required in R3000 and R3001 based applications. 

Instruction Cache 
The current family includes two different instruction cache sizes: the R305 l 

and R3051E each contain 4kB of instruction cache, and the R3052/R3052E 
each contain SkB of instruction cache. In all devices, the instruction cache is 
organized with a line size of 16 bytes (four entries). These relatively large caches 
achieve hit rates in excess of 95% in most applications, and substantially 
contributes to the performance inherent in the R3051 family. The cache is 
implemented as a direct mapped cache, and is capable of caching instructions 
from anywhere within the 4GB physical address space. The cache is implemented 
using physical addresses (rather than virtual addresses). and thus does not 
require flushing on context switch. 

Data Cache 
The R3051 family incorporates an on-chip data cache of 2kB, organized as 

a line size of 4 bytes (one word). This relatively large data cache achieves hit 
rates in excess of 90% in most applications, and contributes substantially to 
the performance inherent in the R305 l family. As with the instruction cache, 
the data cache is implemented as a direct mapped physical address cache. The 
cache is capable of mapping any word within the 4GB physical address space. 

The data cache is implemented as a write through cache, to insure that main 
memory is always consistent with the internal cache. In order to minimize 
processor stalls due to data write operations. the bus interface unit incorporates 
a 4-deep write buffer which captures address and data at the processor 
execution rate, allowing it to be retired to main memory at a much slower rate 
without impacting system performance. 
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Bus Interface Unit 
The R3051 family uses its large internal caches to provide the majority of the 

bandwidth requirements of the execution engine, and thus can utilize a simple , 
bus interface connected to slow memoiy devices. 

The R3051 family bus interface utilizes a 32-bit address and data bus 
multiplexed onto a single set of pins. The bus interface unit also provides an 
ALE (Address Latch Enable) output signal to de-multiplex the AD bus, and 
simple handshake signals to process CPU read and write requests. In addition 
to the read and write interface, the R3051 family incorporates a DMA arbiter, 
to allow an external master to control the external bus. 

The R3051 family incorporates a 4-deep write buffer to decouple the speed 
of the execution engine from the speed of the memoiy system. The write buffers 
capture and FIFO processor address and data information in store operations, 
and present it to the bus interface as write transactions at the rate the memoiy 
system can accommodate. 

The R3051 family read interface performs both single word reads and quad 
word reads. Single word reads work with a simple handshake, and quad word 
reads can either utilize the simple handshake (in lower performance, simple 
systems) or utilize a tighter timing mode when the memoiy system can burst 
data at the processor clock rate. Thus. the system designer can choose to 
utilize page or nibble mode DRAMs (and possibly use interleaving, if desired, 
in high-performance systems). or use simpler techniques to reduce complexity. 

In order to accommodate slower quad word reads, the R3051 family 
incorporates a 4-deep read buffer FIFO, so that the external interface can 
queue up data within the processor before releasing it to perform a burst fill of 
the internal caches. 

SYSTEM USAGE 
The IDT R3051 family has been specifically designed to easily connect to low

cost memoiy systems. Typical low-cost memoiy systems utilize slow EPROMs, 
DRAMs, and application specific peripherals. These systems may also 
typically contain large, slow static RAMs, although the IDT R3051 family has 
been designed to not specifically require the use of external SRAMs. 
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Figure 1.2. System Diagram 

Figure 1.2 shows a typical system implementation using off-the-shelf logic 
devices. Transparent latches are used to de-multiplex the R3051/52 address 
and data busses from the AD bus. The data paths between the memory system 
elements and the R3051/52 AD bus is managed by simple octal devices. A 
small set of simple PALs is used to control the various data path elements, and 
to control the handshake between the memory devices and the R305 l I 52. IDT 
has also implemented the R3720/2 l /22 support chip set specifically tailored 
to R305 l / 52-based systems. This chip set directly interfaces the processor to 
DRAM, ROM, and 1/0 devices, eliminating the requirement for discrete logic 
chips and PAL devices, as illustrated in Figure 1.3. 

Depending on the cost vs. performance tradeoffs appropriate to a given 
application, the system design engineer could include true burst support from 
the DRAM to provide for high-performance cache miss processing, or utilize a 
simpler, lower performance memory system to reduce cost and simplify the 
design. 
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DEVELOPMENT SUPPORT 
The IDT R3051 family is supported by a rich set of development tools, 

ranging from system simulation tools through PROM monitor and debug 
support, applications software and utility libraries, logic analysis tools, and 
sub-system modules. 

System 
Architecture 
Evaluation 

System 
Development 

Phase 

SABLE Simulator 
DBG Debugger 
PIXIE Profiler 

MIPS Compiler Suite 
Stand-Alone Libraries 
Floating Point Library 

Cross Development Tools 
Adobe Postscript PDL 

Microsoft Truelmage POL 
PeerlessPage BIOS 

Ada 

Figure 1.4. Development Support 

System 
Integration 

and Verfification 
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Figure 1.4 is an overview of the system development process typically used 
when developing R305 l family applications. The R305 l family is supported in 
all phases of project development. These tools allow timely, parallel development 
of hardware and software for R3051 family based applications, and include 
tools such as: 

• A program, Cache-R305x, which allows the performance of an R305 l I 52 
based system to be modeled and understood without requiring actual 
hardware. 

• Sable, an instruction set simulator. 
• Optimizing compilers from MIPS, the acknowledged leader in optimizing 

compiler technology. 
• Cross development tools, available in a variety of development 

environments. 
• The high-performance IDT floating point library software. 
• The IDT Evaluation Board, which includes RAM, EPROM, I/0, and the 

IDT PROM Monitor. 
• The IDT Laser Printer System board, which directly drives a low-cost print 

engine, and runs Microsoft Trueimage™ Page Description Language on 
top of PeerlessPage™ Advanced Printer Controller BIOS. 

• Adobe PostScript™ Page Description Language, ported to the R3000 
instruction set, runs on the IDT R305 l family. 

• The IDT Prom Monitor, which implements a full prom monitor (diagnostics, 
remote debug support, peek/poke, etc.). 
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PERFORMANCE OVERVIEW 
The R305 l family achieves a very high-level of performance. This performance 

is based on: 
• An efficient execution engine. The CPU performs ALU operations and 

store operations in single cycle, and has an effective load time of 1.3 
cycles, and branch execution rate of 1.5 cycles (based on the ability of the 
compilers to avoid software interlocks). Thus, the execution engine 
achieves over 35 MIPS performance when operating out of cache. 

• Large on-chip caches. The R3051 family contains caches which are 
substantially larger than those on the majority of today's microprocessors. 
These large caches minimize the number of bus transactions required, 
and allow the R305 l family to achieve actual sustained performance very 
close to its peak execution rate. 

• Autonomous multiply and divide operations. The R305 l family f ea tu res 
an on-chip integer multiplier I divide unit which is separate from the other 
ALU. This allows the R3051/52 to perform multiply or divide operations 
in parallel with other integer operations, using a single multiply or divide 
instruction rather than "step" operations. 

• Integrated write buffer. The R305 l family features a four deep write 
buffer, which captures store target addresses and data at the processor 
execution rate and retires it to main memory atthe slower main memory 
access rate. Use of on-chip write buffers eliminates the need for the 
processor to stall when performing store operations. 

• Burst read support. The R305 l family enables the system designer to 
utilize page mode or nibble mode RAMs when performing read operations 
to minimize the main memory read penalty and increase the effective 
cache hit rates. 

These techniques combine to allow the processor to achieve over 28 MIPS 
integer performance, and 64,000 dhrystones without the use of external 
caches or zero wait-state memory devices. 

The performance difference between the R305 l and R3052 depends on the 
application software and the design of the memory system. Performance 
differences in the range of 5 to 25% have been seen in various applications. 
Since both devices are pin and software compatible, the system designer has 
maximum freedom in trading between performance and cost. The development 
tool Cache-305x allows the system designer to analyze and understand the 
performance difference between these devices in his application. 
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The IDT R305 l family contains the same basic execution core as the IDT 
MIPS R3000 and the IDT R3001. In addition to being able to run software 
written for either of these processors, this enables the R305 l family to achieve 
dramatic levels of performance, based on the efficiency of the execution engine. 

This chapter gives an oveiview of the MIPS-I architecture implemented in the 
R305 l family. and discusses the programmers model for this device. Further 
detail is available in the book "mips RISC Architecture". available from IDT. 

R3051 FAMILY PROCESSOR FEATURES OVERVIEW 
The R305 l family has many of the same attributes of the IDT R3000/R3001, 

at a higher level of integration geared to lower system cost. These features 
include: 

• Full 32-bit Operation. The R3051 family contains thirty-two 32-bit 
registers, and all instructions and addresses are 32 bits. 

• Efficient Pipelining. The CPU utilizes a 5-stage pipeline design to 
achieve an execution rate approaching one instruction per cycle. Pipeline 
stalls, hazards, and exceptional events are handled precisely and efficiently. 

• Large On-Chip Instruction and Data Caches. The R305 l family utilizes 
large on-chip caches to provide high-bandwidth to the execution engine. 
The large size of the caches insures high hit rates, minimizing stalls due 
to cache miss processing and dramatically contributing to overall 
performance. Both the instruction and data cache can be accessed during 
a single CPU cycle. 

• On-chip Memory Management. The IDTR305 l I 52"E" utilizes the same 
memory management scheme as the R3000/R3001, providing a 64 fully
associative TLB to provide fast virtual to physical address translation of 
the 4GB address space. The base IDT R305 l / 52 does not utilize the TLB, 
but performs fixed segment-based mapping of the virtual space to 
physical addresses. 

R3051 FAMILY CPU REGISTERS OVERVIEW 
The IDT R305 l family provides 32 general purpose 32-bit registers, a 32-bit 

Program Counter, and two dedicated 32-bit registers which hold the result of 
an integer multiply or divide operation. The CPU registers, illustrated in Figure 
2.1, are discussed later in this chapter. 

General Purpose 
Registers 

31 _Q 
_Q_ 
r1 
r2 . . 

r29 
r3J1 
m 

Multiply/D!vide Result 
Registers 

31 0 
I HI I 
31 0 
L LO I 

Program Counter 
31 0 
I PC I 
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Figure 2.1. CPU Registers 
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Note that the MIPS-I architecture does not use a traditional Program Status 
Word (PSW) register. The functions normally provided by such a register are 
instead provided through the use of"Set" instructions and conditional branches. 
By avoiding the use of traditional condition codes, the architecture can be more 
finely pipelined. This, coupled with the fine granularity of the instruction set, 
allows the compilers to achieve dramatically higher levels of optimizations than 
for traditional architectures. 

Overflow and exceptional conditions are then handled through the use of the 
on-chip Status and Cause registers, whichreside on-chip as part of the System 
Control Co-Processor (Co-Processor 0). These registers contain information 
about the run-time state of the machine, and any exceptional conditions it has 
encountered. 

INSTRUCTION SET OVERVIEW 
All R305 l family instructions are 32-bits long, and there are only three basic 

instruction formats. This approach dramatically simplifies instruction decoding, 
permitting higher frequency operation. More complicated (but less frequently 
used) operations and addressing modes are synthesized by the assembler, 
using sequences of the basic instruction set. This approach enables object 
code optimizations at a finer level ofresolution than achievable in micro-coded 
CPU architectures. 

Figure 2 .2 shows the instruction set encoding used by the MIPS architecture. 
This approach simplifies instruction decoding in the CPU. 

I-Type (Immediate) 

31 26 25 21 20 16 15 0 

immediate 

J-Type (Jump) 

31 26 25 0 

I op I target 

R-Type (Register) 

31 26 25 21 20 16 15 11 10 6 5 0 

I rt I rd I shamt I funct I 
where: 
op is a 6-bit operation code 

rs is a five bit source register specifier 

rt is a 5-bit target register or branch condition 

immediate is a 16-bit immediate, or branch or address displacement 

target is a 26-bit jump target address 

rd is a 5-bit destination register specifier 

sh amt is a 5-bit shift amount 

funct is a 6-bit function field 
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Figure 2.2. Instruction Encoding 
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The R305 l family instruction set can be divided into the following basic 
groups: 

• Load/Store instructions move data between memory and the general 
registers. They are all encoded as "I-Type" instructions, and the only 
addressing mode implemented is base register plus signed, immediate 
offset. This directly enables the use of three distinct addressing modes: 
register plus offset: register direct: and immediate. 

• Computational instructions perform arithmetic, logical, and shift 
operations on values in registers. They are encoded as either "R-Type" 
instructions, when both source operands as well as the result are general 
registers, and "I-Type", when one of the source operands is a 16-bit 
immediate value. Computational instructions use a three address 
format. so that operations don't needlessly interfere with the contents of 
source registers. 

• Jump and Branch instructions change the control flow of a program. A 
Jump instruction can be encoded as a" J-Type" instruction, in which case 
the Jump target address is a paged absolute address formed by combining 
the 26-bit immediate value with four bits of the Program Counter. This 
form is used for subroutine calls. 

Alternately, Jumps can be encoded using the "R-Type" format, in which 
case the target address is a 32-bit value contained in one of the general 
registers. This form is typically used for returns and dispatches. 

Branch operations are encoded as "I-Type" instructions. The target 
address is formed from a 16-bit displacement relative to the Program 
Counter. 

The Jump and Link instructions save a return address in Register r3 l. 
These are typically used as subroutine calls, where the subroutine return 
address is stored into r3 l during the call operation. 

• Co-Processor instructions perform operations on the co-processor set. 
Co-Processor Loads and Stores are always encoded as "I-Type" instructions; 
co-processor operational instructions have co-processor dependent 
formats. 

In the R3051 family, the System Control Co-Processor (CPO) contains 
registers which are used in memory management and exception handling. 

Additionally, the R305 l family implements four BrCond inputs. Software 
can use the Branch on Co-Processor Condition instructions to test the 
state of these external inputs, and thus they may be used like general 
purpose input ports. 

• Special instructions perform a variety of tasks, including movement of 
data between special and general registers. system calls, and breakpoint 
operations. They are always encoded as "R-Type" instructions. 

Table 2.1 lists the instruction set mnemonics of the R3051 family. More 
detail on these operations is presented later in this chapter. For further detail. 
consult "mips RISC Architecture", or one of the language programming guides. 
available from IDT. 
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OP Description OP Description 

Load/Store Instructions Multiply/Divide Instructions 
LB Load Byte MULT Multiply 
LBU Load Byte Unsigned MULTU Multiply Unsigned 
LH Load Halfword DIV Divide 
LHU Load Halfword Unsigned DIVU Divide Unsigned 
LW Load Word 
LWL Load Word Left MFHI Move From HI 
LWR Load Word Right MTiil Move To HI 
SB Store Byte MFLO Move From LO 
SH Store Halfword MTLO Move To LO 
SW Store Word 
SWL Store Word Left Jump and Branch Instructions 
SWR Store Word Right J Jump 

JAL Jump and Link 
Arithmetic Instructions JR Jump to Register 
(ALU Immediate) JALR Jump and Link Register 

ADDI Add Immediate BEQ Branch on Equal 
ADDIU Add Immediate Unsigned BNE Branch on Not Equal 
SLTI Set on Less Than Immediate BLEZ Branch on Less than or Equal 
SLTIU Set on Less Than Immediate to Zero 

Unsigned BGTZ Branch on Greater Than Zero 
ANDI AND Immediate BLTZ Branch on Less Than Zero 
ORI OR Immediate BGEZ Branch on Greater Than or 
XORI Exclusive OR Immediate Equal to Zero 
LUI Load Upper Immediate BLTZAL Branch on Less Than Zero and 

Link 
BGEZAL Branch on Greater Than or Equal 

Arithmetic Instructions to Zero and Link 
(3-operand, register-type) 

ADD Add Special Instructions 
ADDU Add Unsigned SYSCALL System Call 
SUB Subtract BREAK Break 
SUBU Subtract Unsigned 
SLT Set on Less Than Coprocessor Instructions 
SLTU Set on Less Than Unsigned LWCz Load Wrod from Coprocessor 
AND AND SWCz Store Word to Coprocessor 
OR OR MTCz Move To Coprocessor 
XOR Exclusive OR MFCz Move From Coprocessor 
NOR NOR CTCz Move Control To Coprocessor 

CFCz Move Control From Coprocessor 
Shift Instructions COPz Coprocessor Operation 

SLL Shift Left Logical BCzT Branch on Coprocessor z True 
SRL Shift Right Logical BCzF Branch on Coprocessor z False 
SRA Shift Right Arithmetic 
SLLV Shift Left Logical Variable System Control Coprocessor 
SRLV Shift Right Logical Variable (CPO) Instructions 
SRAV Shift Right Arithmetic Variable MTCO Move To CPO 

MFCO Move From CPO 
TLBR Read indexed TLB entry 
TLBWI Write indexed TLB entry 
TLBWR Write Random TLB entry 
TLBP Probe TLB for matching entry 
RFE Restore From Exception 

4000 tbl 01 

Table 2.1. R3051 Family Instruction Set Mnemonics 

R3051 FAMILY PROGRAMMING MODEL 
This section desclibes the organization of data in the general registers and 

in memory, and discusses the set of general registers available. A summary 
descliption of all of the CPU registers is presented. 

Data Formats and Addressing 
The R3051 family defines a word as 32-bits, a half-word as 16-bits, and a 

byte as 8-bits. The byte ordertng convention is configurable during hardware 
reset (Chapter 9) into either a big-endian or little-endian convention. 
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When configured as a big-endian system, byte 0 is always the most 
significant (leftmost) byte in a word. This is the order used in MC680x0® 
microprocessors, and systems from MIPS. 

When configured as a little-endian system, byte 0 is always the least 
significant (rightmost) byte in a word. This is compatible with the iAPX® x86 
microprocessors and systems from Digital Equipment Corporation. 

Higher Big-Endian Byte Ordering Word 
Address 31 24 23 16 15 8 7 O Address 

D I ~o I ;1 I A26 I ~ I 8 
Lower r~~--+-_~~-+-_~~-~+_~~3___, 6 

Address • Most significant byte is at lowest address 

• Word is addressed by byte address of 
most significant byte 

Little-Endian Byte Ordering Word Higher 
Address 31 24 23 16 15 8 7 0 Address 

D I Lower 
Address 

B 

I 
A 

I 
g 

I 
8 

I 
8 

7 ~ 4 4 
3 0 0 

• Least significant byte is at lowest address 

• Word is addressed by byte address of 
least significant byte 
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Figure 2.3. Byte Ordering Conventions 

Figure 2.3 shows the ordering of bytes within words and the ordering of 
words within multiple word structures for the big-endian and little-endian 
conventions. 

The R3051 family uses byte addressing for all accesses, including half-word 
and word. The R3051 family has alignment constraints that require half-word 
access to be aligned on an even byte boundary, and word access to be aligned 
on a modulo-4 byte boundary. Thus, in big-endian systems, the address of a 
multiple-byte data item is the address of the most-significant byte, while in 
little-endian systems it is the address of the least-significant byte of the 
structure. 

For compatibility with older programs written for 8- or 16-bit machines, the 
MIPS instruction set provides special instructions for addressing 32-bit words 
which are not aligned on 4-byte boundaries. These instructions, which are 
Load/Store Left/Right, are used in pairs to provide addressing of misaligned 
words. This effectively means that these types of data movements require only 
one-additional instruction cycle over that required for properly aligned words, 
and provides a much more efficient way of dealing with this case than is 
possible using sequences of loads/stores and shift operations. Figure 2.4 
shows the bytes accessed when addressing a mis-aligned word with a byte 
address of 3, for each of the two byte ordering conventions. 

Higher 

MU' 
Lower 

Address 
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Figure 2.4. Unaligned Words 
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R305 l Family CPU General Registers 
The R305 l family contains 32-general registers, each containing a single 32-

bit word. The 32 general registers are treated symmetrically (orthogonally), 
with two notable exceptions: general register rO is hardwired to a zero value, 
and r31 is used as the link register in Jump and Link instructions 

Register rO maintains the value zero under all conditions when used as a 
source register, and discards data written to it. Thus, instructions which 
attempt to write to it may be used as No-Op Instructions. The use of a register 
wired to the zero value allows the simple synthesis of different addressing 
modes, no-ops, register or memory clear operations, etc., without requiring 
expansion of the basic instruction set. 

Register r3 l is used is the link register in jump and link instructions. These 
instructions are used in subroutine calls, and the subroutine return address 
is placed in register r3 l. This register can be written to or read as a normal 
register in other operations. 

In addition to the general registers, the CPU contains two registers (HI and 
LO) which store the double-word, 64-bit result of integer multiply operations, 
and the quotient and remainder of integer divide operations. 

R305 l Family CPO Special Registers 
In addition to the general CPU registers. the R305 l family contains a number 

of special registers on-chip. These registers logically reside in the on-chip 
System Control Co-processor CPO, and are used in memory management and 
exception handling. 

Table 2.2 shows the logical CPO address of each of the registers. The format 
of each of these registers, and their use. is discussed in Chapter 4 (Memory 
Management). and Chapter 5 (Exception Handling). 

Number Mnemonic Description 

0 Index Programmable pointer into on-chip TLB array 

1 Random Pseudo-random pointer into on-chip TLB array (read only) 

2 EntryLo Low-half ofTLB entry 

3 Reserved 

4 Context Pointer to kernel virtual Page Table Entry Table 

5-7 Reserved 

8 BadVAddr Bad virtual address 

9 Reserved 

10 Entry Hi High-half ofTLB entry 

11 Reserved 

12 SR Status Register 

13 Cause Cause of last exception 

14 EPC Exception Program Counter 

15 PRid Processor Revision Identifier 

16-31 Reserved 
4000 tbl 02 

Table 2.2. R3051 Family CPO Registers 
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R305 l Family Operating Modes 
The R305 l family supports two different operating modes: User and Kernel 

modes. The R305 l / 52 normally operates in User mode until an exception is 
detected, forcing it into kernel mode. It remains in Kernel mode until a Return 
From Exception (RFE) instruction is executed, returning it to its previous 
operation mode. 

The processor supports these levels of protection by segmenting the 4GB 
virtual address space into 4 distinct segments. One segment is accessible from 
either the User state or the Kernel mode, and the other three segments are only 
accessible from kernel mode. 

In addition to providing memory address protection, the kernel can protect 
the co-processors (in the case of the R3051 family, CPO) from access or 
modification by the user task. 

Finally. the R305 l family supports the execution of user programs with the 
opposite byte ordering (Reverse Endianness) of the kernel, facilitating the 
exchange of programs and data between dissimilar machines. 

Chapter 3 discusses the memory management facilities of the processor. 

R3051 Family Pipeline Architecture 
The IDT R305 l family uses the same basic pipeline structure as that 

implemented in the R3000 and R3001. Thus, the execution of a single 
instruction is performed in five distinct steps. 

• Instruction Fetch (IF). In this stage, the instruction virtual address is 
translated to a physical address and the instruction is read from the 
internal Instruction Cache. 

• Read (RD). During this stage. the instruction is decoded and required 
operands are read from the on-chip register file. 

• ALU. The required operation is performed on the instruction operands. 

• Memory Access (MEM). Ifthe instruction was a load or store, the Data 
Cache is accessed. Nate that there is a skew between the instruction cycle 
which fetches the instruction and the one in which the required data 
transfer occurs. This skew is a result of the intervening pipestages. 

• Write Back (WB). During the write back pipestage, the results of the ALU 
stage operation are updated into the on-chip register file. 

Each of these pipestages requires approximately one CPU cycle, as shown 
in Figure 2.5. Parts of some operations lap into the next cycle, while other 
operations require only 1/2 cycle. 

IF RD ALU MEM WB 

ID OP D-Cache WB 

PAddr 

~ 
One Cycle 
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Figure 2.5. 5-Stage Pipeline 
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The net effect of the pipeline structure is that a new instruction can be 
initiated every clock cycle. Thus, the execution of five instructions at a time is 
overlapped, as shown in Figure 2.6. 

1#1 IF 

1#2 

RD ALU 

IF RD 

1#3 IF 

1#4 

RD 

IF 

1#5 

RD 

~li~W~ 
IF 

Current 
CPU 
Cycle 

WB 

WB 

ALU MEM WB 

RD ALU MEM WB 
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Figure 2.6. 5-Instructions per Clock Cycle 

The pipeline operates efficiently, because different CPU resources such as 
address and data bus access, ALU operations, and the register file, are utilized 
on a non-interfering basis. 

Pipeline Hazards 
In a pipelined machine such as the R305 l / 52, there are certain instructions 

which, based on the pipeline structure, can potentially disrupt the smooth 
operation of the pipeline. The basic problem is that the current pipestage of 
an instruction may require the result of a previous instruction, still in the 
pipeline, whose result is not yet available. This class of problems is ref erred 
to as pipeline hazards. 

An example of a potential pipeline hazard occurs when a computational 
instruction (instruction n+l) requires the result of the immediately prior 
instruction (instruction n). Instruction n+l wants to access the register me 
during the RF pipestage. However, instruction n has not yet completed its 
register writeback operation, and thus the current value is not available 
directly from the register file. In this case, special logic within the execution 
engine forwards the result of instruction n's ALU operation to instruction n+ 1, 
prior to the true writeback operation. The pipeline is undisturbed, and no 
pipeline stalls need to occur. 

Another example of a pipeline hazard handled in hardware is the integer 
multiply and divide operations. If an instruction attempts to access the HI or 
LO registers prior to the completion of the multiply or divide, that instruction 
will be interlocked (held oft) until the multiply or divide operation completes. 
Thus, the programmer is isolated from the actual execution time of this 
operation. The optimizing compilers attempt to schedule as many instructions 
as possible between the start of the multiply I divide and the access of its result. 
to minimize stalls. 

However, not all pipeline hazards are handled in hardware. There are two 
categories of instructions which require software intervention to insure logical 
operation. The optimizing compilers (and peephole scheduler of the assembler) 
are capable of insuring proper execution. These two instruction classes are: 
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• Load instructions have a delay, or latency, of one cycle before the data 
loaded from memory is available another instruction. This is because the 
ALU stage of the immediately subsequent instruction is processed 
simultaneously with the Data Cache access of the load operation. Figure 
2. 7 illustrates the cause of this delay slot. 

IF RD ALU MEM WB 

1#1 ID OP D-Cache WB 
(Load) 

1#2 I-Cache ID OP 
(Delay Slot) 

Data 
Available 

1#3 I-Cache ID OP 

'-----y---1 
One Cycle 

4000 drw 07 

Figure 2.7. Load Delay 

• Jump and Branch instructions have a delay of one cycle before the 
program flow change can occur. This is due to the fact that the next 
instruction is fetched prior to the decode and ALU stage of the jump/ 
branch operation. Figure 2.8 illustrates the cause of this delay slot. 

IF 

1#1 

ranch) 

RD ALU MEM WB 

I-Cache ID OP D-Cache WB 

I-Address 

1#2 I-Cache OP 
(Delay Slot)~-~-............. --+--------< 

1#3 
Address I-Cache ID OP 
Av~ilable 

'---y--J 
One Cycle 
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Figure 2.8. Branch Delay 

The R3051/52 continues execution, despite the delay in the operation. 
Thus, loads, jumps and branches do not disrupt the pipeline flow of instruc
tions, and the processor always executes the instruction immediately following 
one of these "delayed" instructions. 
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Rather than include extensive pipeline control logic, the MIPS-I instruction 
set gives responsibility for dealing with "delay slots" to software. Thus. the 
peephole optimizer (which can be performed as part of compilation or assembly) 
can re-order the code to insure that the instruction in the delay slot does not 
require the logical result of the "delayed" instruction. In the worst case, a NOP 
can be inserted to guarantee proper software execution. 

Chapter 5 discusses the impact of pipelining on exception handling. In 
general, when an instruction causes an exception, it is desirable for all 
instructions initiated prior to that instruction to complete, and all subsequent 
instructions to abort. This insures that the machine state presented to the 
exception handler reflects the logical state that existed at the time the exception 
was detected. In addition, it is desirable to avoid requiring software to explicitly 
manage the pipeline when handling or returning from exceptions. The IDT 
R305 l / 52 pipeline is designed to properly manage exceptional events. 

R3051 FAMILY INSTRUCTION SET SUMMARY 
This section provides an overview of the R305 l family instruction set by 

presenting each category of instructions in a tabular summary form. Refer to 
the "mips RISC Architecture" reference for a detailed description of each 
instruction. 

Instruction Formats 
Every R305 l family instruction consists of a single word (32 bits) aligned on 

a word boundary. There are only three instruction formats as shown in Figure 
2.2. This approach simplifies instruction decoding. More complicated (less 
frequently used) operations and addressing modes are synthesized by the 
compilers. 

Instruction Notational Conventions 
In this manual, all variable sub-fields in an instruction format (such as rs, 

rt, immediate, and so on) are shown in lower-case names. 
For the sake of clarity, an alias is sometimes used for a variable sub-field in 

the formats of specific instructions. For example, "base" rather than "rs" is 
used in the format for Load and Store instructions. Such an alias is always 
lower case, since it refers to a variable sub-field. 

Instruction opcodes are shown in all upper case. 
The actual bit encoding for all the mnemonics is specified at the end of this 

chapter. 

Load and Store Instructions 
Load/Store instructions move data between memory and general registers. 

They are all I-type instructions. The only addressing mode directly supported 
is base register plus 16-bit signed immediate offset. This can be used to directly 
implement immediate addressing (using the rO register) or register direct 
(using an immediate offset value of zero). 

All load operations have a latency of one instruction. That is, the data being 
loaded from memory into a register is not available to the instruction that 
immediately follows the load instruction: the data is available to the second 
instruction after the load instruction. An exception is the target register for the 
"load word left" and "load word right" instructions, which may be specified as 
the same register used as the destination of a load instruction that immediately 
precedes it. 
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Big-Endian 
BE(3) BE(2) BE(l) BE(O) 

Size AdrLo(l) AdrLo(O) Data(31:24) Data(23:16) Data(l5:8) Data(7:0) 

Word 0 0 Yes Yes Yes Yes 

Tri-Byte 0 0 Yes Yes Yes No 

Tri-Byte 0 1 No Yes Yes Yes 

16-Bit 0 0 Yes Yes No No 

16-Bit 1 0 No No Yes Yes 

Byte 0 0 Yes No No No 

Byte 0 1 No Yes No No 

Byte 1 0 No No Yes No 

Byte 1 1 No No No Yes 

Little-Endian 
BE(3) BE(2) BE(l) BE(O) 

Size AdrLo(l) AdrLo(O) Data(31:24) Data(23:16) Data(l5:8) Data(7:0) 

Word 0 0 Yes Yes Yes Yes 

Tri-Byte 0 0 No Yes Yes Yes 

Tri-Byte 0 1 Yes Yes Yes No 

16-Bit 0 0 No No Yes Yes 

16-Bit 1 0 Yes Yes No No 

Byte 0 0 No No No Yes 

Byte 0 1 No No Yes No 

Byte 1 0 No Yes No No 

Byte 1 1 Yes No No No 
4000 tbl 03 

Table 2.3. Byte Addressing in Load/Store Operations 

The Load/Store instruction opcode determines the size of the data item to 
be loaded or stored as shown in Table 2.1. Regardless of access type or byte
numbering order (endian-ness), the address specifies the byte which has the 
smallest byte address of all bytes in the addressed field. For a big-endian 
access, this is the most significant byte; for a little-endian access, this is the 
least significant byte. Note that in an R3051/52 based system, the endianness 
of a given access is dynamic, in that the RE (Reverse Endianness) bit of the 
Status Register can be used to force user space accesses of the opposite byte 
convention of the kernel. 

The bytes within the addressed word that are used can be determined 
directly from the access size and the two low-order bits of the address, as shown 
in Table 2.3. Note that certain combinations of access type and low-order 
address bits can never occur: only the combinations shown in Table 2.3 are 
permissible. The R305 l family indicates which bytes are being accessed by the 
byte-enable (BE) bus. 

Table 2.4 shows the load/store instructions supported by the MIPS ISA. 
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Instruction Format and Description 

Load Byte LB rt, off set (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Sign-extend contents of addressed byte and load into rt. 

Load Byte Unsigned LBU rt, offset {base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Zero-extend contents of addressed byte and load into rt. 

Load Halfword LH rt, offset {base) 
Sign-extend 16-bit off set and add to contents of register base to 
form address. 
Sign-extend contents of addressed byte and load into rt. 

Load Halfword Unsigned LHU rt, off set {base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Zero-extend contents of addressed byte and load into rt. 

Load Word LW rt, offset (base) 
Sign-extend 16-bit offset and add to contents ofregister base to 
form address. 
Load contents of addressed word into register rt. 

Load Word Left LWL rt, offset (base) 
Sign-extend 16-bit off set and add to contents of register base to 
form address. 
Shift addressed word left so that addressed byte is leftmost byte 
ofa word. 
Merge bytes from memory with contents of register rt and load 
result into register rt. 

Load Word Right LWR rt, offset (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Shift addressed word right so that addressed byte is rightmost 
byte of a word. 
Merge bytes from memory with contents of register rt and load 
result into register rt. 

Store Byte SB rt, offset (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Store least significant byte of register rt at addressed location. 

Store Halfword SH rt, off set (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Store least significant halfword of register rt at addressed location. 

Store Word SW rt, offset (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Store least significant word of register rt at addressed location. 

Store Word Left SWL rt, offset (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Shift contents ofregister rt rig ht so that leftmost byte of the word 
is in position of addressed byte. Store bytes containing original 
data into corresponding bytes at addressed byte. 

Store Word Right SWR rt, off set (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Shift contents of register rtleftso that rightmost byte of the word 
is in position of addressed byte. Store bytes containing original 
data into corresponding bytes at addressed byte. 

4000 tbl 04 

Table 2.4. Load and Store Instructions in the R3051 Family 
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Computational Instructions 
Computational instructions perform arithmetic, logical and shift operations 

on values in registers. They occur in both R-type (both operands are registers) 
and I-type (one operand is a 16-bit immediate) formats. There are four 
categories of computational instructions: 

• ALU Immediate instructions are summarized in Table 2.5a. 

• 3-0perand Register-Type instructions are summarized in Table 2.5b. 

• Shift instructions are summarized in Table 2.5c. 

• Multiply/Divide instructions are summarized in Table 2.5d. 

Instruction Format and Description 

ADD Immediate ADDI rt, rs, immediate 
Add 16-bit sign-extended immediate to register rs and place 32-
bit result in register rt . Trap on two's complement overflow. 

ADD Immediate ADDIU rt, rs, immediate 
Unsigned Add 16-bit sign-extended immediate to register rs and place 32-

bit result In register rt. Do not trap on overflow. 

Set on Less Than SLTI rt, rs, immediate 
Immediate Compare 16-bit sign-extended immediate with register rs as 

signed 32-bit integers. Result = 1 if rs is less than immediate; 
otherwise result = 0. 
Place result in register rt. 

Set on Less Than SL TIU rt, rs, immediate 
Unsigned Immediate Compare 16-bit sign-extended immediate with register rs as 

unsigned 32-bit integers. Result= 1 ifrsis less than immediate; 
otherwise result = 0. Place result in register rt. Do not trap on 
overflow. 

AND Immediate ANDI rt, rs, immediate 
Zero-extend 16-bit immediate, AND with contents of register rs 
and place result in register rt. 

OR Immediate ORI rt, rs, immediate 
Zero-extend 16-bit immediate, OR with contents of register rs 
and place result In register rt. 

Exclusive OR Immediate XORI rt, rs, immediate 
Zero-extend 16-bit immediate, exclusive OR with contents of 
register rs and place result in register rt. 

Load Upper Immediate LUI rt, inunediate 
Shift 16-bit immediate left 16 bits. Set least significant 16 bits 
of word to zeroes. Store result in register rt. 

4000 tbl 05 

Table 2.5a. ALU Immediate Operations in the R3051 Family 
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Instruction Format and Description 

Add ADD rd, rs, rt 
Add contents of registers rs and rt and place 32-bit result In 
register rd. Trap on two's complement overflow. 

ADD Unsigned ADDU rd, rs, rt 
Add contents of registers rs and rt and place 32-bit result in 
register rd. Do not trap on overflow. 

Subtract SUB rd, rs, rt 
Subtract contents of registers rt and rs and place 32-bit result 
in register rd. Trap on two's complement overflow. 

Subtract Unsigned SUBU rd, rs, rt 
Subtract contents of registers rt and rs and place 32-bit result 
in register rd. Do not trap on overflow. 

Set on Less Than SLT rd, rs, rt 
Compare contents of register rt to register rs (as signed 32-bit 
integers). 
If register rs is less than rt, result = 1; otherwise, result = 0. 

Set on Less Than SLTU rd, rs, rt 
Unsigned Compare contents of register rt to register rs (as unsigned 32-

bit integers). If register rs Is less than rt, result = 1; otherwise, 
result= 0. 

AND AND rd, rs, rt 
Bit-wise AND contents of registers rs and rt and place result In 
register rd. 

OR OR rd, rs, rt 
Bit-wise OR contents of registers rs and rt and place result In 
register rd. 

Exclusive OR XOR rd, rs, rt 
Bit-wise Exclusive OR contents of registers rs and rt and place 
result in register rd. 

NOR NOR rd, rs, rt 
Bit-wise NOR contents of registers rs and rt and place result in 
register rd. 

4000 tbl 06 

Table 2.5b. Three Operand Register-Type Operations in the R3051 Family 

Instruction Format and Description 

Shift Left Logical SLL rd, rt, shamt 
Shift contents of register rt left by shamt bits, inserting zeroes 
Into low order bits. Place 32-bit result in register rd. 

Shift Right Logical SRL rd, rt, shamt 
Shift contents of register rtright by shamt bits, inserting zeroes 
into high order bits. Place 32-bit result in register rd. 

Shift Right Arithmetic SRA rd, rt, shamt 
Shift contents of register rt right by shamt bits, sign-extending 
the high order bits. Place 32-bit result in register rd. 

Shift Left Logical SLLV rd, rt, rs 
Variable Shift contents ofregister rt left. Low-order 5 bits ofreglster rs 

specify number of bits to shift. Insert zeroes Into low order bits 
of rt and place 32-bit result in register rd. 

Shift Right Logical SRLV rd, rt, rs 
Variable Shift contents of register rt right. Low-order 5 bits of register rs 

specify number of bits to shift. Insert zeroes into high order bits 
of rt and place 32-bit result in register rd. 

Shift Right Arithmetic SRA V rd, rt, rs 
Variable Shift contents of register rt right. Low-order 5 bits of register rs 

specify number of bits to shift. Sign-extend the high order bits 
of rt and place 32-bit result in register rd. 

4000 tbl 07 

Table 2.5c. Shift Operations in the R3051 Family 

2-14 



INSTRUCTION SET ARCHITECTIJRE CHAPTER2 

Instruction Format and Description 

Multiply MULT rs, rt 
Multiply contents of registers rs and rt as twos complement 
values. Place 64-bit result in special registers HI/LO 

Multiply Unsigned MULTU rs, rt 
Multiply contents ofregisters rs and rt as unsigned values. Place 
64-bit result in special registers HI/LO 

Divide DIV rs, rt 
Divide contents of register rs by rt treating operands as twos 
complements values. Place 32-bit quotient in special register 
LO, and 32-bit remainder in HI. 

Divide Unsigned DIVU rs, rt 
Divide contents of register rs by rt treating operands as unsigned 
values. Place 32-bit quotient in special register LO, and 32-bit 
remainder in HI. 

Move From HI MFHI rd 
Move contents of special register HI to register rd. 

Move From LO MFLO rd 
Move contents of special register LO to register rd. 

Move To HI MTHI rd 
Move contents of special register rd to special register HI. 

Move To LO MTLO rd 
Move contents of register rd to special register LO. 

4000 tbl 08 

Table 2.5d. Multiply and Divide Operations in the R3051 Family 

Jump and Branch Instructions 
Jump and Branch instructions change the control flow of a program. All 

Jump and Branch instructions occur with a one instruction delay: that is, the 
instruction immediately following the jump or branch is always executed while 
the target instruction is being fetched from storage, regardless of whether the 
branch is to be taken. 

An assembler has several possibilities for utilizing the branch delay slot 
productively: 

• It can insert an instruction that logically precedes the branch instruction 
in the delay slot since the instruction immediately following the jump/ 
branch effectively belongs to the block preceding the transfer instruction. 

• It can replicate the instruction that is the target of the branch/jump into 
the delay slot provided that no side-effects occur if the branch falls 
through. 

• It can move an instruction up from below the branch into the delay slot, 
provided that no side-effects occur if the branch is taken. 

• If no other instruction is available, it can insert a NOP instruction in the 
delay slot. 

TheJ-typeinstructionformatisusedforbothjumps-and-linksforsubroutine 
calls. In this format, the 26-bit target address is shifted left two bits, and 
combined with high-order 4 bits of the current program counter to form a 32-
bit absolute address. 

The R-type instruction format which takes a 32-bit byte address contained 
in a register is used for returns, dispatches, and cross-page jumps. 

Branches have 16-bit offsets relative to the program counter (I-type). Jump
and-Link and Branch-and-Link instructions save a return address in register 
31. 
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Table 2.6a summarizes the R305 l family Jump instructions and Table 2.6b 
summarizes the Branch instructions. 

Instruction Fonnat and Description 

Jump J target 
Shift 26-bit target address left two bits, combine with high-
order 4 bits of PC and Jump to address with a one instruction 
delay. 

Jump and Link JALtarget 
Shift 26-bit target address left two bits, combine with high-
order 4 bits of PC and Jump to address with a one instruction 
delay. Place address of instruction following delay slot in r3 l 
Oink register). 

Jump Register JR rs 
Jump to address contained in register rs with a one instruction 
delay. 

Jump and Link Register JALRrs, rd 
Jump to address contained in register rs with a one instruction 
delay. Place address of instruction following delay slot in rd. 

4000tbl09 

Table 2.6a. Jump Instructions in the R3051 Family 

Instruction Fonnat and Description 

Branch Target: All Branch instruction target addresses are 
computed as follows: Add address of instruction in delay slot 
and the 16-bit offset (shifted left two bits and sign-extended to 
32 bits). All branches occur with a delay of one instruction. 

Branch on Equal BEQ rs, rt, offset 
Branch to target address if register rs equal to rt 

Branch on Not Equal BNE rs, rt, off set 
Branch to target address if register rs not equal to rt. 

Branch on Less than or BLEZ rs.offset 
Equal Zero Branch to target address if register rs less than or equal to 0. 

Branch on Greater Than BOTZ rs.offset 
Zero Branch to target address if register rs greater than 0. 

Branch on Less Than BLTZ rs.offset 
Zero Branch to target address if register rs less than 0. 

Branch on Greater than BGEZ rs.off set 
or Equal Zero Branch to target address if register rs greater than or equal to 

0. 

Branch on Less Than BLTZAL rs, offset 
Zero And Link Place address of instruction following delay slot in register r3 l 

(link register). Branch to target address if register rs less than 
0. 

Branch on greater than BGEZAL rs, offset 
or Equal Zero And Link Place address of instruction following delay slot in register r3 l 

(link register). Branch to target address if register rs is greater 
than or equal to 0. 

4000 tbl 10 

Table 2.6b. Branch Instructions in the R305 l Family 
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Special Instructions 
The two Special instructions let software initiate traps. They are always R

type. Table 2. 7 summarizes the Special instructions. 

Instruction Format and Description 

System Call SYSCALL 
Initiates system call trap, immediately transferrtng control to 
exception handler. 

Breakpoint BREAK 
Initiates breakpoint trap, immediately transferring control to 
exception handler. 

4000 tbl 11 

Table 2.7. Special Instructions in the R3051 Family 

Co-processor Instructions 
Co-processor instructions perform operations in the co-processors. Co

processor Loads and Stores are I-type. Co-processor computational instructions 
have co-processor-dependent formats (see co-processor manuals). For the 
R305 l family, the BCzT /F instructions are used to test the state of the BrCond 
inputs. Outside of these operations, the only co-processor operations of 
relevance are those targeted at the on-chip CPO. 

Table 2.8 summarizes the Co-processor Instruction Set of the MIPS ISA 

Instruction Format and Description 

Load Word to LWCz rt, offset (base) 
Co-processor Sign-extend 16-bit off set and add to base to form address. Load 

contents of addressed word into co-processor register rt of co-
processor unit z. 

Store Word from SWCz rt, off set (base) 
Co-processor Sign-extend 16-bitoffsetandadd to basetoformaddress. Store 

contents of co-processor register rt from co-processor unit z at 
addressed memory word. 

Move To Co-processor MTCz rt, rd 
Move contents of CPU register rt into co-processor register rd of 
co-processor unit z. 

Move from Co-processor MFCz rt,rd 
Move contents of co-processor register rd from co-processor unit 
z to CPU register rt. 

Move Control To CTCz rt,rd 
Co-processor Move contents of CPU register rt into co-processor control register 

rd of co-processor unit z. 

Move Control From CFCz rt.rd 
Co-processor Move contents of control register rd of co-processor unit z into 

CPU register rt. 

Co-processor Operation COPz cofun 
Co-processor z performs an operation. The state of the R305 l/ 
52 is not modified by a co-processor operation. 

Branch on Co-processor BCzT off set 
zTrue Compute a branch target address by adding address of 

instruction in the 16-bit offset (shifted left two bits and sign-
extended to 32-bits). Branch to the target address (with a delay 
of one instruction) if co-processor z's condition line is true. 

Branch on Co-processor BCzF off set 
z False Compute a branch target address by adding address of 

instruction in the 16-bit qffset (shifted left two bits and sign-
extended to 32-bits). Branch to the target address (with a delay 
of one instruction) if co-processor z's condition line is false. 

4000 tbl 12 

Table 2.8. Co-Processor Operations in the R3051 Family 
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System Control Co-processor (CPO) Instructions 
Co-processor 0 instructions perform operations on the System Control Co

processor (CPO) registers to manipulate the memoxymanagement and exception 
handling facilities of the processor. Memoxy Management is discussed in 
chapter 4; exception handling is covered in detail in chapter 5. 

Table 2.9 summarizes the instructions available to work with CPO. 

Instruction Format and Description 

Move To CPO MTCO rt, rd 
Store contents of CPU register rt into register rd of CPO. This 
follows the convention of store operations. 

Move From CPO MFCO rt, rd 
Load CPU register rt with contents of CPO register rd. 

Read Indexed TLB Entry TLBR 
Load EntryHiand EntryLoregisters with TLB entry pointed at by 
Index register. 

Write Indexed TLB Entry TLBWI 
Load TLB entry pointed at by Index register with contents of 
EntryHi and EntryLo registers. 

Write Random TLB Entry TLBWR 
Load TLB entry pointed at by Random register with contents of 
EntryHi and EntryLo registers. 

Probe TLB for Matching TLBP 
Entry Load Index register with address of TLB entry whose contents 

match EntryHiand EntryLo. If no TLB entry matches, set high-
order bit of Index register. 

Restore From Exception RFE 
Restore previous interrupt mask and mode bits of status register 
into current status bits. Restore old status bits into previous 
status bits. 

4000 tbl 13 

Table 2.9. System Control Co-Processor (CPO) Operations in the R3051 Family 

R3051 FAMILY OPCODE ENCODING 
Table 2.10 shows the opcode encoding for the R3051 family. 
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Table 2.10. Opcode Encoding for R3051 Family 
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INTRODUCTION 
The R305 l family achieves its high standard of performance by combining 

a fast, efficient execution engine (that of the R3000A) with high-memory 
bandwidth, supplied from its large internal instruction and data caches. These 
caches insure that the majority of processor execution occurs at the rate of one 
instruction per clock cycle, and serve to decouple the high-speed execution 
engine from slower, external memory resources. 

Portions of this chapter review the fundamentals of general cache operation, 
and may be skipped by readers already familiar with these concepts. This 
chapter also discusses the particular organization of the on-chip caches of the 
R305 l family. However, as these caches are managed by the R305 l I 52 CPU 
itself. the system designer does not typically need to be explicitly aware of this 
structure. 

FUNDAMENTALS OF CACHE OPERATION 
High-performance microprocessor based systems frequently borrow from 

computer architecture principles long used in mini-computers and mainframes. 
These principles include instruction execution pipelining (discussed in Chapter 
2) and instruction and data caching. 

A cache is a high-speed memory store which contains the instructions and 
data most likely to be needed by the processor. That is, rather than implement 
the entire memory system with zero wait-state memory devices. a small zero 
wait-state memory is implemented. This memory. called a cache. then 
contains the instructions/data most likely to be referenced by the processor. 
If indeed the processor issues a reference to an item contained in the cache, 
then a zero wait-state access is made; if the reference is not contained in the 
cache, then the long latency associated with the true processor memory is 
incurred. The processor will achieve its maximum performance as long as its 
references "hit" (are resident) in the cache. 

Caches rely on the principles of locality of software. These principles state 
that when a data/instruction element is used by a processor, it and its close 
neighbors are likely to be used again soon. The cache is then constructed to 
keep a copy of instructions and data referenced by the processor, so that 
subsequent references occur with zero wait-states. 

Since the cache is typically many orders of magnitude smaller than main 
memory, each cache element must contain both the data (or instruction) 
required by the processor, as well as information which can be used to 
determine whether a cache "hit" occurs. This information, called the cache 
"TAG", is typically some or all of the address in main memory of the data item 
contained in that cache element as well as a "Valid" flag forthat cache element. 
Thus, when the processor issues an address for a reference, the cache 
controller compares the TAG with the processor address to determine whether 
a hit occurs. 

R3051 FAMILY CACHE ORGANIZATION 
There are a number of algorithms possible for managing a processor cache. 

This section describes the cache organization of the R305 l family. 

Basic Cache Operation 
When the processor makes a reference, its 32-bit internal address bus 

contains the address it desires. The processor address bus is split into two 
parts; the low-order address bits specify a location in the cache to access. and 
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the remaining high-order address bits contain the value expected from the 
cache TAG. Thus, both the instruction/data element and the cache TAG are 
fetched simultaneously from the cache memory. If the value read from the TAG 
memories is the same as the high-order address bits, a cache hit occurs and 
the processor is allowed to operate on the instruction/ data element retrieved. 
Otherwise, a cache miss is processed. This operation is illustrated in Figure 
3.1. 

PIO Virtual Address 
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Core ...--....._ ____ --..&. ___ _ 

TLB Miss 

Virtual ~ Physical 
Address Translation 

Present? 20 
PIO Match? 

Valid? 

Cache Hit -----------1 

Physical 
Address 
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Cache 
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Valid 

Cache 
Data 

Data ---------------+---+---------' 

4000drw 12 
Figure 3.1. Cache Line Selection 

To maximize performance, the R305 l family implements a Harvard 
Architecture caching strategy. That is, there are two separate caches: one 
contains instructions (operations), and the other contains data (operands). By 
separating the caches, higher overall bandwidth to the execution core is 
achieved, and thus higher performance is realized. 

Memory Address to Cache Location Mapping 
The R3051 family caches are direct-mapped. That is, each main memory 

address can be mapped to (contained in) only one particular cache location. 
This iS different from set-associative mappings, where each main memory 
location has multiple candidates for address mapping (although it should only 
be resident in one location at a time) 

This organization, coupled with the large cache sizes resident on the R305 I 
family, achieve extremely high hit rates while maximizing speed and minimizing 
complexity and power consumption. 

Cache Addressing 
The address presented to the cache and cache controller is that of the 

physical (main) memory element to be accessed. That is, the virtual address 
to physical address translation is performed by the memory management unit 
prior to the processor issuing its reference address. 

Some microprocessors utilize virtual indexing in the cache, where the 
processor virtual address is used to specify the cache element to be retrieved. 
This type of cache structure complicates software and slows embedded 
applications: 

• When the processor performs a context switch, a virtually indexed cache 
must be flushed. This is because two different tasks can use the same 
virtual address but mean totally different physical addresses. This cache 
flushing for a large cache dramatically slows context switch performance. 
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• Software must be aware of and specifically manage against "aliasing" 
problems. An alias occurs when two different virtual addresses correspond 
to the same physical address. If that occurs in a virtually indexed cache, 
then the same data element may be present in two different cache 
locations. If one virtual address is used to change the value of that 
memory location, and a different address used to read it later, then the 
second reference will not get the current value of that data item. 

By providing for the memory management unit in the processor pipeline, 
physical cache addressing is used with no inherent speed penalty. 

Write Polley 
The R305 l family utilizes a write through cache. That is, whenever the 

processor performs a write operation to memory, then both the cache (data and 
TAG fields) and main memory are written. If the reference is uncacheable, then 
only main memory is written. 

To minimize the delays associated with updating main memory, the R305 l 
family contains a 4 element write buff er. The write buff er captures the target 
address and data value in a single processor clock cycle, and subsequently 
performs the main memory write at its own, slower rate. The write buffer can 
FIFO up to 4 pending writes, as described in a later chapter. 

Partial Word Writes 
In the case of partial word writes. the R305 l family operates by performing 

a read-modify-write sequence in the cache: the store target address is used to 
perform a cache fetch: if the cache "hits", then the partial word data is merged 
with the cache and the cache is updated. Even if the cache read results in a 
hit, the memory interface will only see the partial word write, rather than the 
full word. This allows the designer to observe the actual activity of the 
execution core. 

If the cache lookup of a partial word write "misses" in the cache, then only 
main memory is updated. 

Instruction Cache Line Size 
The "line size" of a cache refers to the number of cache elements mapped by 

a single TAG element. In the R3051 family, the instruction cache line size is 
16 bytes. or four words. 

This means that each cache line contains four adjacent words from main 
memory. In order to accommodate this, an instruction cache miss is processed 
by performing a quad word (block) read from the main memory, as discussed 
in a later chapter. This insures that a cache line contains four adjacent 
memory locations. Note that since the instruction cache is typically never 
written into directly by user software, the larger line size is permissible. If 
software does explicitly store into the instruction cache (perform store operations 
with the caches "swapped"), the programmer must insure that either the 
written lines are left invalidated, or that they contain four adjacent instructions. 

Block refill uses the principle of locality of reference. Since instructions 
typically execute sequentially, there is a high probability that the instruction 
address immediately after the current instruction will be the next instruction. 
Block refill then brings into the cache those instructions immediately near the 
current instruction, resulting in a higher instruction cache hit rate. 

Block refill also takes advantage of the difference between memory latency 
and memory bandwidth. Memory latency refers to the amount of time required 
to perform a processor request, while bandwidth refers to the rate at which 
subsequent transfers can occur. Factors that affect memory latency include 
address decoding, bus arbitration, and memory pre-charge requirements; 
factors which maximize bandwidth include the use of page mode or nibble 
mode accesses, memory interleaving, and burst memory devices. 
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The processing of a quad word read is discussed in a later chapter: however, 
it is worth noting that the R305 l I 52 can support either true burst accesses or 
can utilize a simpler, slower memory protocol for quad word reads. 

Data Cache Line Size 
The data cache line size is different from that of the instruction cache, based 

on differences in their use. The data cache is organized as a line size of one word 
(four bytes). 

This is optimal for the write policy of the data cache: since an individual 
cache word may be written by a software store instruction, the cache controller 
cannot guarantee that four adjacent words in the cache are from adjacent 
memory locations. Thus each word is individually tagged. The partial word 
writes (less than 4 bytes) are handled as a read-modify-write sequence, as 
described above. 

Although the data cache line size is one word, the system may elect to 
perform data cache updates using quad word reads (block refill). The 
performance of the data cache update options can be simulated using 
Cache-305x; some systems may achieve higher performance through the use 
of data cache burst fill. No "streaming" occurs on data cache refills. 

Summary 
The on-chip caches of the R305 l family can be thought of as constructed 

from discrete devices around the R300 IA The block diagram of the cache 
interface for the R3052/R3052E is shown in Figure 3.2; the interface for the 
R3051/R3051E is similarly constructed. 
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Figure 3.2. R3051 Family Execution Core and Cache Interface 
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CACHE OPERATION 
The operation of the on-chip caches is very straightforward, and is 

automatically handled by the processor. 
Basic Cache Fetch Operation 

As with the R3000A/R300 lA, the R305 l family can access both the 
instruction and data caches in a single clock cycle, resulting in 320 MB/sec 
bandwidth to the execution core. It does this by time multiplexing the cycle in 
the cache interface: 

• During the first phase, a data cache address is presented, and a previous 
instruction cache read is completed. 

• During the second phase, the data cache is read into the processor (or 
written by the processor). Also, the instruction cache is addressed with 
the next desired instruction. 

• During the first phase of the next cycle, the instruction fetch begun in the 
previous phase is completed and a new data transaction is initiated. 

This operation is illustrated in Figure 3.3. As long as the processor hits in 
the cache, and no internal stall conditions are encountered, it will continue to 
execute run cycles. A run cycle is defined to be a clock cycle in which forward 
progress in the processor pipeline occurs. 
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Figure 3.3. Phased Access of Instruction and Data Caches 

Cache Miss Processing 
In the case of a cache miss (due to either a failed tag comparison or because 

the processor issued an uncacheable reference). the main memory interface 
(discussed in a later chapter) is invoked. If, during a given clock cycle, both the 
instruction and data cache miss, the data reference will be resolved before the 
instruction cache miss is processed. 

While the processor is waiting for a cache miss to be processed, it will enter 
stall cycles until the bus interface unit indicates that it has obtained the 
necessary data. 

When the bus interface unit returns the data from main memory, it is 
simultaneously brought to the execution unit and written into the on-chip 
caches. This is performed in a processor fixup cycle. 

During a fixup cycle, the processor re-issues the cache access that failed; 
this occurs by having the processor re-address the instruction and data 
caches, so that the data may be written into the caches. If the cache miss was 
due to an uncacheable reference, the write is not performed, although a fixup 
cycle does occur. 
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Instruction Streaming 
A special feature of the R305 l family is utilized when performing block reads 

for instruction cache misses. This process is called instruction streaming. 
Instruction streaming is simultaneous instruction execution and cache refill. 

As the block is brought in, the processor refills the instruction cache. 
Execution of the instructions within the block begins when the instruction 
corresponding to the cache miss is returned by the bus interface unit to the 
execution core. Execution continues until the end of the block is reached (in 
which case normal execution is resumed), or until some event forces the 
processor core to discontinue execution of that stream. These events include: 

• Taken branches 
• Data cache miss 
• Internal stalls (TLB miss, multiply/ divide interlock) 
• Exceptions 
When one of these events occur, the processor re-enters simple cache refill 

until the rest of the block has been written into the cache. 

CACHEABLE REFERENCES 
Chapter 4 on memory management explains how the processor determines 

whether a particular reference (either instruction or data) is to a memory 
location that may reside in the cache. The fundamental mechanism is that 
certain virtual addresses are considered to be "cacheable". If the processor 
attempts to make a reference to a cacheable address, then it will employ its 
cache management protocol through that reference. Otherwise, the cache will 
be bypassed, and the execution engine core will directly communicate with the 
bus interface unit to process the reference. 

Whether a given reference should be cacheable or not depends very much 
on the application, and on the target of the reference. Generally, I/O devices 
should be referenced as uncacheable data: for example, if software was polling 
a status register, and that register was cached, then it would never see the 
I/O device update the status (note that the compiler suite supports the 
"volatile" data type to insure that the status register in this case never gets 
allocated into an internal register). 

There may be other instances where the uncacheable attribute is appropriate. 
For example, software which directly manipulates or flushes the caches can 
not be cached: similarly, boot software can not rely on the state of the caches, 
and thus must operate uncached at least until the caches are initialized. 

SOFTWARE DIRECTED CACHE OPERATIONS 
In order to support certain system requirements, the R305 l family provides 

mechanisms for software to explicitly manipulate the caches. These mechanisms 
support diagnostics, cache and memory sizing, and cache flushing. In general, 
these mechanisms are enabled/ disabled through the use of the Status Register 
in CPO. 

The primary mechanisms for supporting these operations are cache swapping 
and cache isolation. Cache swapping forces the processor to use the data cache 
as an instruction cache, and vice versa. It is useful for allowing the processor 
to issue store instructions which cause the instruction cache to be written. 
Cache isolation causes the current data cache to be "isolated" from main 
memory: store operations do not cause main memory to be written, and all load 
operations "hit" in the data cache. 

These mechanisms are enabled through the use of the "IsC" (Isolate Cache) 
and SwC (Swap Cache) bits of the status register, which resides in the on-chip 
System Control Co-Processor (CPO). Instructions which immediately precede 
and succeed these operations must not be cacheable, so that the actual 
swapping/isolation of the cache does not disrupt operation. 
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Cache Sizing 
It is possible for software to determine whether it is executing on an R3051 

or an R3052 by determining the size of the instruction cache. Although typical 
software does not need to be aware of this difference, there may be some 
applications which desire to have software distinguish between the two 
processors. 

Cache sizing in an R3051/52 is performed much like traditional memory 
sizing algorithms, but with the cache isolated. This avoids side-effects in 
memory from the sizing algorithm, and allows the software to use the "Cache 
Miss" bit of the status register in the sizing algorithm. 

To determine the size of the instruction cache, software must: 

1: Swap Caches 
2: Isolate Caches 
3: Write distinct values at location OOOOOFFC and then at FFFFFFFC 
4: Read location OOOOOFFC. 
5: Examine the CM (Cache Miss) bit of the status register; if it indicates a 

cache miss, then location FFFFFFFC overwrote location OOOOOFFC, and 
the cache size is 4kB. Otherwise, the cache size is SkB. 

Of course a more generalized algorithm could be developed to determine the 
cache size; this may be desirable for compatibility with discrete R3000A/ 
R3001A systems or future R3051 family members. However, any algorithm 
will probably include the Swap and Isolate of the Instruction Cache, and the 
use of the Cache Miss bit. Sizing the data cache is done with a similar 
algorithm, although the caches need not be swapped. 

Note that this software should operate as uncached. Once this is done, 
software should return the caches to their normal state by performing either 
a complete cache flush or an invalidate of those cache lines modified by the 
sizing algorithm. 

Cache Flushing 
Cache flushing refers to the act of invalidating (indicating a line does not 

have valid contents) lines within either the instruction or data caches. 
Flushing must be performed before the caches are first used as real caches, and 
might also be performed during main memory page swapping or at certain 
context switches (note that the R305 l family implements physical caches, so 
that cache flushing at context switch time is not generally required). 

The basic concept behind cache flushing is to have the "Valid" bit of each 
cache line set to indicate invalid. This is done in the R3051 family by having 
the cache isolated, and then writing a partial word quantity into the current 
data cache. Under these conditions, the R3051/52 will negate the "Valid" bit 
of the target cache line. 

Again, this software should operate as uncached. To flush the data cache: 

1: Isolate Caches 
2: Perform a byte write every 4 bytes, starting at location 0, until 512 such 

writes have been performed (512 is based on the 2kB data cache). 
3: Return the data cache to its normal state by clearing the IsC function. 
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To flush the instruction cache: 

1: Swap Caches 
2: Isolate Caches 
3: Perform a byte write every 16 bytes (based on the instruction cache line 

size of 16 bytes). This should be done until each line (256 lines in the 
R3051, 512 in the R3052) have been invalidated. Note that treating the 
R3051 as an R3052 by flushing/invalidating 512 lines is acceptable 
though less efficient. 

4: Return the caches to their normal state (unswapped and not isolated). 

To minimize the execution time of the cache flush, this software should 
probably use an "unrolled" loop. That is, rather than have one iteration of the 
loop invalidate only one cache line, each iteration should invalidate multiple 
lines. This spreads the overhead of the loop flow control over more cache line 
invalidates, thus reducing execution time. 

Forcing Data into the Caches 
Using these basic tools, it is possible to have software directly place values 

into the caches. When combined with appropriate memory management 
techniques, this could be used to "lock" values into the on-chip caches, by 
insuring that software does not issue other address references which may 
displace these locked values. 

In order to force values into a cache, the cache should be Isolated. If software 
is trying to write instructions into the instruction cache, then the caches 
should also be swapped. 

When forcing values into the instruction cache, software must take care with 
regards to the line size of the instruction cache. Specifically, a single TAG and 
Valid field describe four words in the instruction cache; software must then 
insure that any instruction cache line tagged as Valid actually contains valid 
data from all four words of the block. 

SUMMARY 
The on-chip caches of the R305 l family are key to the inherent performance 

of the processor. The R305 l family design, however, does not require the 
system designer (either software or hardware) to explicitly manage this 
important resource, other than to correctly choose virtual addresses which 
may or may not be cached, and to flush the caches at system boot. This 
contributes to both the simplicity and performance of an R3051/52 based 
system. 

AE4003·0 
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INTRODUCTION 
The R305 l family provides two basic flavors of memory management. The 

base versions (the R3051 and R3052) provide segment-based virtual to 
physical address translation, and support the segregation of kernel and user 
tasks without requiring extensive virtual page management. The extended 
versions (the R3051E and R3052E) provide a full featured memory management 
unit (MMU) identical to the MMU structure of the R3000A and R300 lA. The 
extended MMU uses an on-chip translation lookaside buffer (TLB) and 
dedicated registers in CPO to provide for software management of page tables. 

This chapter describes the operating states of the processor (kernel and 
user), and describes the virtual to physical address translation mechanisms 
provided in both versions of the architecture. 

VIRTUAL MEMORY IN THE R3051 FAMILY 
There are two primary purposes of the memory management capabilities of 

the R3051 family. 
• Various areas of main memory can have individual sets of attributes 

attributed to them. For example, some segments may be indicated as 
requiring kernel status to be accessed; others may have cacheable or 
uncacheable attributes. The virtual to physical address translation of the 
R305 l / 52 establishes the rules appropriate for a given virtual address. 

• The virtual memory system can be used to logically expand the physical 
memory space of the processor, by translating addresses composed in a 
large virtual address space into the physical address space of the system. 
This is particularly important in applications where software may not be 
explicitly aware of the hardware resources of the processor system, and 
includes applications such as X-Window display systems. These types of 
applications are better served by the "E" (extended architecture) versions 
of the processor. 

Figure 4.1 shows the form of an R305 l family virtual address. The most 
significant 20 bits of the 32-bit virtual address are called the virtual page 
number, or VPN. In the extended architecture versions, the VPN allows 
mapping of virtual addresses based on 4kByte pages; in the base versions, only 
the three highest bits (segment number) are involved in the virtual to physical 
address translation. 

31 12 11 0 

I I I I VPN I Offset I 
31 30 29 20 12 

I 
0 x x kuseg 
1 0 0 ksegO 
1 0 1 kseg1 
1 1 x kseg2 
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Figure 4.1. Virtual Address Format 

In all versions, the three most significant bits of the virtual address identify 
which virtual address segment the processor is currently referencing; these 
segments have associated with them the mapping algorithm to be employed, 
and whether virtual addresses in that segment may reside in the cache. The 
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translation of the virtual address to an equivalent privilege level/ segment is the 
same for the base and extended versions of the architecture. 

PRIVILEGE STATES 
The R305 l family provides for two unique privilege states: the "Kernel" 

mode, which is analogous to the "supervisory" mode provided in many systems, 
and the "User" mode, where non-supervisory programs are executed. Kernel 
mode is entered whenever the processor detects an exception; when a Restore 
From Exception (RFE) instruction is executed, the processor will return either 
to its previous privilege mode or to User mode, depending on the state of the 
machine and when the exception was detected. 

User Mode Virtual Addressing 
While the processor is operating in User mode, a single, uniform virtual 

address space (kuseg) of 2 GBytes is available for Users. All valid user-mode 
virtual addresses have the most significant bit of the virtual address cleared to 
0. An attempt to reference a Kernel address (most significant bit of the virtual 
address set to 1) while in User mode will cause an Address Error Exception (see 
chapter 5). Kuseg begins at virtual address 0 and extends linearly for 2 G Bytes. 
This segment is typically used to hold user code and data, and the current user 
processes. The virtual to physical address translation depends on whether the 
processor is a base or extended architecture version. 

Kernel Mode Virtual Addressing 
When the processor is operating in Kernel mode, four distinct virtual 

address segments are simultaneously available. The segments are: 
• kuseg. The kernel may assert the same virtual address as a user process, 

and have the same virtual to physical address translation performed for 
it as the translation for the user task. This facilitates the kernel having 
direct access to user memory regions. The virtual to physical address 
translation depends on whether the processor is a base or extended 
architecture version. 

• ksegO. KsegO is a 512 MByte segment, beginning at virtual address 
OxBOOO_OOOO. This segment is always translated to a linear 512 MByte 
region of the physical address space starting at physical address 0. All 
references through this segment are cacheable. 
When the most significant three bits of the virtual address are "100", the 
virtual address resides in ksegO. The physical address is constructed by 
replacing these three bits of the virtual address with the value "000". As 
these references are cacheable, ksegO is typically used for kernel executable 
code and some kernel data. 

• ksegl. Ksegl is also a 512 MByte segment, beginning at virtual address 
Oxa000 _ 0000. This segment is also translated directly to the 512 MByte 
physical address space starting at address 0. All references through this 
segment are uncacheable. 
When the most significant three bits of the virtual address are "10 l ", the 
virtual address resides in ksegl. The physical address is constructed by 
replacing these three bits of the virtual address with the value "000". 
Unlike ksegO, references through ksegl are not cacheable. This segment 
is typically used for 1/0 registers, boot ROM code, and operating system 
data areas such as disk buffers. 

• kseg2. This segment is analogous to kuseg, but is accessible only from 
kernel mode. This segment contains 1 GByte of linear addresses, 
beginning at virtual address OxcOOO_OOOO. As with kuseg, the virtual to 
physical address translation depends on whether the processor is a base 
or extended architecture version. 
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When the two most significant bits of the virtual address are "11 ". the 
virtual address resides in the 1024 MByte segment kseg2. The virtual to 
physical translation is done either through the '!LB (extended versions of 
the processor) or through a direct segment mapping (base versions). An 
operating system would typically use this segment for stacks, per-process 
data that must be re-mapped at context switch, user page tables, and for 
some dynamically allocated data areas. 

Thus, in both the base and extended versions of the processor, ksegO and 
kseg 1 are always mapped in the same fashion, to the lowest 512 MBytes of the 
physical address space. In both versions of the architecture, ksegO references 
may reside in the on-chip cache, while kseg 1 references may never reside in the 
on-chip caches. 

The mapping of kuseg and kseg2 from virtual to physical addresses depends 
on whether the processor is a base or extended version of the architecture. 

A base version is distinguishable from an extended version in software by 
examining the TS ('!LB Shutdown) bit of the Status Register after reset, before 
the TLB is used. If the TS bit is set (1) immediately after reset. indicating that 
the '!LB is non-functional, then the current processor is a base version of the 
architecture. If the TS bit is cleared after reset, then the software is executing 
on an extended architecture version of the processor. 
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Figure 4.2. Virtual to Physical Address Translation in Base Versions 

BASE VERSIONS ADDRESS TRANSLATION 
Processors which only implement the base versions of memory management 

perform direct segment mapping of virtual to physical addresses, as illustrated 
in Figure 4.2. Thus, the mapping ofkuseg and kseg2 is performed as follows: 

• Kuseg is always translated to a contiguous 2 GByte region of the physical 
address space, beginning at location Ox4000_0000. That is, the value 
"00" in the two highest order bits of the virtual address space are 
translated to the value "O 1 ", with the remaining 30 bits of the virtual 
address unchanged. 

• Virtual addresses in kseg2 are directly output as physical addresses; that 
is, references to kseg2 occur with the physical address unchanged from 
the virtual address. 

• The upper 1 MByte of each of Kuseg and Kseg2 should not be used. This 
region is being reserved for compatibility with future revisions of the chip, 
which may include on-chip resources which map to these virtual addresses. 
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The base versions of the architecture allow kernel software to be protected 
from user mode accesses, without requiring virtual page management software. 
User references to kernel virtual address will result in an address error 
exception. 

Some systems may elect to protect external physical memory as well. That 
is, the system may include distinct memory devices which can only be accessed 
from kernel mode. The physical address output determines whether the 
reference occured from kernel or user mode, according to Table 4.1. 

Physical Address (31:29) Virtual Address Segment 

'000' KsegO or Ksegl 

'001' Inaccessible 

'Olx' Kuseg 

'lOx' Kuseg 

'llx' Kseg2 
4000 tbl 15 

Table 4.1. Virtual and Physical Address Relationships in Base Versions 

Thus, some systems may wish to limit accesses to some memory or 1/0 
devices to those physical address bits which correspond to kernel mode virtual 
addresses. 

Alternately, some systems may wish to have the kernel and user tasks share 
common areas of memory. Those systems could choose to have their address 
decoder ignore the high-order physical address bits, and compress all of 
memory into the lower region of physical memory. The high-order physical 
address bits may be useful as privilege mode status outputs in these systems. 

EXTENDED VERSIONS ADDRESS TRANSLATION 
The extended versions of the architecture use a full featured MMU, like that 

found in the R3000A and R300 IA, to manage the virtual to physical address 
translation of kuseg and kseg2. This MMU maps 4kByte virtual pages to 
4kByte physical pages, and controls the attribute of these pages on a page by 
page basis. The extended versions of the architecture map the virtual address 
space as illustrated in Figure 4.3. 
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Figure 4.3. Virtual to Physical Address Mapping of Extended Architecture 
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Note that kuseg and kseg2 may be mapped anywhere in the 4GByte physical 
address space. Thus, the external memory system may not be able to examine 
the physical address outputs from the processor to determine the virtual 
segment origin of the reference. Software in such a system will be much more 
responsible for managing the separation of kernel and user resources. 

Pages are mapped by substituting a 20-bit physical frame number (PFN) for 
the 20-bit virtual page number field of the virtual address. This substitution 
is performed through the use of the on-chip Translation Lookaside Buffer 
(TI.B). The TI.B is a fully associative memory that holds 64 entries to provide 
a mapping of 64 4kByte pages. When a virtual reference to kuseg or kseg2 
occurs, each TI.B entry is probed to see if it maps the corresponding VPN. 

The mapping function is provided as part of the on-chip System Control Co
Processor, CPO. CPO supports address translation, exception handling, and 
other privileged transactions. CPO contains the TLB and the other registers 
shown in Figure 4.4. 
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Figure 4.4. The System Coprocessor Registers 

The sections that follow describes the virtual to physical address mapping 
performed by the TI.B. 

TLB Entries 
Each TLB entry is 64 bits wide, and its format is illustrated in Figure 4.5. 

Each field of a TI.B entry has a corresponding field in the EntryHi/EntryLo 
register pair (described next). Figure 4.6 describes each of the fields of a TLB 
entry. 
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Figure 4.5. Format of a TLB Entry 
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EntryHi and EntryLo Registers 
These two registers provide the data path for operations which read, write, 

or probe the TLB file. The format of these registers is the same as the format 
of a 1LB entry, and is illustrated in Figure 4.6. 

TLB EntryHi Register 

,~ I 
44 43 38 37 ~, VPN I PIO I 0 I 

20 6 6 

VPN Virtual Page Number. Bits 31 .. 12 of virtual address. 

PID Process ID field. A 6-bit field which lets multiple processes share the TLB 
while each process has a distinct mapping of otherwise identical virtual page 
numbers. 

[QJ Reserved. Currently ignores writes, returns zero when read. 

31 

PFN 

N 

D 

v 

G 

TLB Entrylo Register 

12 11 10 9 8 7 0 

PFN 

20 8 

Page Frame Number. Bits 31 .. 12 of the physical address. The R3051/52"E' 
maps a virtual page to the PFN. 

Non-cacheable. If this bit is set, the page is marked as non-cacheable and 
the R3051/52"E" directly accesses main memory instead of first accessing 
the cache. 

Dirty. If this bit is set, the page is marked as "dirty" and therefore writable. 
This bit is actually a "write-protect" bit that software can use to prevent 
alteration of data. If an entry is accessed for a write operation when the D 
bit is cleared, the R3051/52"E" causes a TLB Mod trap. The TLB entry is no 
modified on such a trap. 

Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a 
TLBL or TLBS Miss occurs. 

Global. If this bit is set, the R3051/52"E" ignores the PIO match requirement 
for valid translation. In kseg2, the Global bit lets the kernel access all 
mapped data without requiring it to save or restore PIO (Process ID) values. 

Reserved. Must be written as 'O', returns 'O' when read. 
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Figure 4.6. The TLB EntryLo and EntryHi Registers 

For maximum software efficiency. operating system software could use the 
format of Entry Lo to describe a Page Table Entry in the operating system Page 
Table; however, since PTE's are managed through software algorithms, rather 
than hardware. an operating system could choose a different format than that 
of Ent:ryLo. 

Virtual Address Translation 
During a virtual to physical address translation in kuseg or kseg2, the 

R3051/52"E" compares the PID and the highest 20 bits of the virtual address 
(the VPN) to the contents of each 1LB entry. A generalized algorithm for this 
mapping is illustrated in Figure 4. 7. 
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Address Translation 

Exception Exception 

Output Physical Address 
4000 drw 21 

Figure 4. 7. TLB Address Translation 

A virtual address matches (is mapped by) a TLB entry if: 
• the VPN of the virtual address matches the VPN field of aTLB entry 
• either the "G" (global) bit of the TLB entry is set, or the PID field of the 

virtual address (stored in the Entry Hi register) matches the PID field of the 
TLB entry. 

If a match is found, then the corresponding physical address (PFN) field of 
the TLB entry is retrieved from the matching entry, along with the access 
control bits (N, D, and V). If no match is found, then either a TLB or UTLB miss 
exception will occur. Figure 4.8 shows the generation of a physical address 
from a specific virtual address mapped by the TLB. 

If the access control bits (D and V) indicate that the access is not valid (either 
the TLB entry is not valid, or the page is write protected or not yet dirty). then 
a TLB modification or TLB miss exception will occur. If the N (Non-cacheable) 
bit is set, then the processor will not look in its caches for the data, but rather 
will directly use the bus interface unit to retrieve the word from main memory. 
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The Indexregisteris a 32-bit, read-write register. which has a 6-bit field used 
to index to a specific entry in the 64-entry TLB file. The high-order bit of the 
register is a status bit which reflects the success or failure of a TLB Probe (tlbp) 
instruction, described later in this chapter. 

The Index register also specifies the TLB entry that will be affected by the TLB 
Read (tlbr) and TLB Write Index (tlbwi) instructions. Figure 4.9 shows the 
format of the Index register. 

Index Register 

31 14 13 8 7 

0 I Ip I 0 I Index I 0 I 
17 6 8 

P Probe failure. Set to 1 when the last TLBProbe (tlbp) instruction was 
unsuccessful. 

Index Index to the TLB entry that will be affected by the TLBRead and TLBWrite 
instructions. 

[QJ Reserved. Must be written as zero, returns zero when read. 

4000drw23 

Figure 4.9. The Index Register 

The Random Register 
The Random register is a 32-bit read-only register. The format of the 

Random register is shown in figure 4.10. 
The six-bit Random field indexes a Random entry in the TLB. It is basically 

a counter which decrements on every clock cycle, but which is constrained to 
count in the range of 63 to 8. That is, software is guaranteed that the Random 
register will never index into the first 8 TLB entries. These entries can be 
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Random Register 

131 
14 13 8 7 

0 I 0 I Random I 0 I I 
18 6 8 

Random A random index (with a value from 8 to 63) to a TLB entry. 

~ Reserved. Returns zero when read. 

4000drw24 

Figure 4.10. The Random Register 

"locked" by software into the 1LB file, guaranteeing that no TLB miss 
exceptions will occur in operations which use those virtual address. This is 
useful for particularly critical areas of the operating system. 

The Random register is typically used in the processing of a 1LB miss 
exception. The Random register provides software with a "suggested" TLB 
entry to be written with the correct translation; although slightly less efficient 
than a Least Recently Used (LRU) algorithm, Random replacement offers 
substantially similar performance while allowing dramatically simpler hardware 
and software management. To perform a TLB replacement, the TLB Write 
Random (tlbwr) instruction is used to write the TLB entry indexed by this 
register. 

At reset, this counter is preset to the value '63'. Thus, it is possible for two 
processors to operate in "lock-step", even when using the Random TLB 
replacement algorithm. Also, software may directly read this register, although 
this feature probably has little utility outside of device testing and diagnostics. 

TLB Instructions 
The R305 l I 52"E" provides instructions for working with the TLB, as listed 

in Table 4.2. These instructions are described briefly below. Their operation 
in base versions of the R305 l family architecture is undefined. 

Op Code Description 

tlbp Translation Lookaside Buffer Probe 

tlbr Translation Lookaside Buffer Read 

tlbwi Translation Lookaside Buffer Write at Index 

tlbwr Translation Lookaside Buffer Write at Random 
4000 th! 16 

Table 4.2. TLB Instructions 

Translation Lookaside Buffer Probe (tlbp). This instruction "probes" the 
TLB to see if an entry matches the Entry Hi register contents. If a match occurs, 
the R305 l / 52E loads the Index register with the index of the entry that 
matched. If no match exists, The R3051/52E will set the high order bit (the 
P bit) of the Index Register. 

Translation Lookaside Buffer Read (tlbr). This instruction loads the 
EntryHi and Entry Lo registers with the contents of the TLB entry pointed to by 
the Index register. 

Translation Lookaside Buffer Write at Index (tlbwi). This instruction 
loads the TLB entry pointed to by the Index register with the current values 
of the EntryHi and EntryLo register. 

Translation Lookaside Buffer Write at Random (tlbwr). This instruction 
loads the TLB entry pointed to by the Random register with the current values 
of the EntryHi and EntryLo register. 
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TLB Shutdown 
The status register contains a single bit which indicates whether the TLB is 

operating properly. This bit, once set, may only be cleared by a device reset. 
There are two reasons this bit might be set: 
• If this bit is set at device reset. prior to the actual use of the TLB for address 

mapping, then this is not an "Extended" version of the R305 l family 
architecture, and thus no TLB is present. 

• If this bit is cleared at reset, but set subsequently, then the TLB detected 
multiple virtual to physical mappings for the same VPN. This is either the 
result of improper software, or of improper operation of the TLB. If this 
condition is detected, the TLB will be shutdown, prohibiting further 
virtual to physical address mappings through the TLB. The virtual to 
physical translation of kuseg and kseg2 is undefined under these 
conditions. 

SUMMARY 
The R305 l family provides two models of memory management: a very 

simple, segment based mapping, found in the base versions of the architecture, 
and a more sophisticated. TLB-based page mapping scheme, present in the 
extended versions of the architecture. Each scheme has advantages to 
different applications. 

For example, many stand-alone applications have no need for paging, as the 
memory requirements of the application are absolutely determined when the 
system is designed. Examples of these types of systems include data 
communications applications, navigation, and process control. 

Applications may have unpredictable memory requirements. since the 
target system can not predict the resource requirements of the various tasks 
which operate on it. This is the classic model for virtual memory management 
in general purpose computers. However, this model is increasingly appropriate 
in a number of embedded applications. such as X-Window Terminals. 
Applications such as these may be connected on a network to numerous hosts, 
each of which presents tasks to the system without explicit awareness of the 
resource utilization of other hosts. Virtual memory management in such 
applications may then be appropriate, with the unmapped segments (ksegO 
and ksegl) used for the application operating system and 1/0 channels. 
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EXCEPTION HANDLING CHAPTERS 

INTRODUCTION 
Processors in general execute code in a highly-directed fashion. The 

instruction immediately subsequent to the current instruction is fetched and 
then executed; if that instruction is a branch instruction, the program 
execution is diverted to the specified location. Thus, program execution is 
relatively straightforward and predictable. 

Exceptions are a mechanism used to break into this execution stream and 
to force the processor to begin handling another task, typically related to either 
the system state or to the erroneous or undesirable execution of the program 
stream. Thus, exceptions typically are viewed by programmers as asynchronous 
interruptions of their program. (Note that exceptions are not necessarily 
unpredictable or asynchronous, in that the events which cause the exception 
may be exactly repeatable by the same software executing on the same data; 
however, the programmer does not typically "expect" an exception to occur 
when and where it does, and thus will view exceptions as asynchronous 
events). 

The R305 l family architecture provides for extremely fast, flexible interrupt 
and exception handling. The processor makes no assumptions about interrupt 
causes or handling techniques, and allows the system designer to build his own 
model of the best response to exception conditions. However, the processor 
provides enough information and resources to minimize both the amount of 
time required to begin handling the specific cause of the exception, and to 
minimize the amount of software required to preseive processor state information 
so that the normal instruction stream may be resumed. 

This chapter discusses exception handling issues in R305 l / 52-based 
systems. The topics examined are: the exception model, the machine state to 
be saved on an exception, and nested exceptions. Representative software 
examples of exception handlers are also provided, as are techniques and issues 
appropriate to specific classes of exceptions. 

R3051 FAMILY EXCEPTION MODEL 
The exception processing capability of the R305 l family is provided to assure 

an orderly transfer of control from an executing program to the kernel. 
Exceptions may be broadly divided into two categories: they can be caused by 
an instruction or instruction sequence. including an unusual condition arising 
during its execution; or can be caused by external events such as interrupts. 
When an R305 l / 52 detects an exception, the normal sequence of instruction 
flow is suspended; the processor is forced to kernel mode where it can respond 
to the abnormal or asynchronous event. Table 5.1 lists the exceptions 
recognized by the R305 l family. 
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Exception Mnemonic Cause 

Reset Reset Assertion of the Reset signal causes an exception 
that transfers control to the special vector at 
virtual address OxbfcO_OOOO. 

UTLB Miss U1LB User 1LB Miss. A reference is made (in either 
kernel or user mode) to a page in kuseg that has 
no matching 1LB entry. This can occur only in 
extended architecture versions of the processor. 

TLB Miss TI.BL (Load) A referenced 1LB entry's Valid bit isn't set, or 
TI.BS (Store) there is a reference to a kseg2 page that has no 

matching 1LB entry. This can occur only in 
extended architecture versions of the processor. 

TLB Modified Mod During a store instruction, the Valid bit is set 
but the dirty bit is not set in a matching 1LB 
entry. This can occur only in extended 
architecture versions of the processor. 

Bus Error IBE (Instruction) Assertion of the Bus Error input during 
DBE (Data) a read operation, due to such external events as 

bus timeout, backplane memory errors, invalid 
physical address, or invalid access types. 

Address Error AdEL (Load) Attempt to load, fetch, or store an unaligned 
AdES (Store) word; that is, a word or halfurord at an address 

not evenly divisible by four or two, respectively. 
Also caused by reference to a virtual address 
with most significant bit set while in User Mode. 

Overflow OVf Twos complement overflow during add or 
subtract. 

System Call Sys Execution of the SYSCALL Trap Instruction 

Breakpoint Bp Execution of the break instruction 

Reserved RI Execution of an instruction with an undefined 
Instruction or reserved major operation code (bits 31 :26), or 

a special instruction whose minor opcode (bits 
5:0) is undefined. 

Co-processor CpU Execution of a co-processor instruction when 
Unusable the CU (Co-processor Usable) bit is not set for 

the target co-processor. 

Interrupt Int Assertion of one of the six hardware interrupt 
inputs or setting of one of the two software 
interrupt bits in the Cause register. 

4000 tbl 17 

Table 5.1. R3051 Family Exceptions 

Precise vs. Imprecise Exceptions 
One classification of exceptions refers to the precision with which the 

exception cause and processor context can be determined. That is, some 
exceptions are precise in their nature, while others are "imprecise." 

In a precise exception, much is known about the system state at the exact 
instance the exception is caused. Specifically, the exact processor context and 
the exact cause of the exception are known. The processor thus maintains its 
exact state before the exception was generated, and can accurately handle the 
exception, allowing the instruction stream to resume when the situation is 
corrected. Additionally, in a precise exception model, the processor can not 
advance state; that is, subsequent instructions, which may already be in the 
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processor pipeline, are not allowed to change the state of the machine. 
Many real-time applications (especially ADA-generated applications) greatly 

benefit from a processor model which guarantees precise exception context 
and cause information. The MIPS architecture, including the R3051 family, 
implements a precise exception model for all exceptional events. 

EXCEPTION PROCESSING 
The R3051/52's exception handling system efficiently handles machine 

exceptions, including Translation Lookaside Buffer (1LB) misses, arithmetic 
overflows, 1/0 interrupts. system calls, breakpoints, reset, and co-processor 
unusable conditions. Any of these events interrupt the normal execution flow; 
the R305 l I 52 aborts the instruction causing the exception and also aborts all 
those following in the exception pipeline which have already begun, thus not 
modifying processor context. The R305 l / 52 then performs a direct jump into 
a designated exception handler routine. This insures that the R305 l / 52 is 
always consistent with the precise exception model. 

EXCEPTION HANDLING REGISTERS 
The system co-processor (CPO) registers contain information pertinent to 

exception processing. Software can examine these registers during exception 
processing to determine the cause of the exception and the state of the 
processor when it occurred There are five registers handling exception 
processing, shown in shaded boxes in Figure 5.1. These are the Causeregister, 
the EPC register, the Status register, the BadVAddr register, and the Context 
register. A brief description of each follows. 

63 

8 
7 

0 

ENTRYHI ENTRYLO 

TLB 

1--~~~~~~~~~~--1 

NOT ACCESSED BY RANDOM 
'--~~~~~~~~~~--' 

INDEX 

RANDOM 

CJ Used with Virtual Memory System 

k=ttl Used with Exception Processing 
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Figure 5.1. The CPO Execution Handling Registers 
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Table 5.2 lists the register address of each of the CPO registers (as used in 
CPO operations); the register number is used by software when issuing co
processor load and store instructions. 

Register Name Register Number (Dec.) 

Status $12 
Cause $13 
Exception PC $14 
"ILB Entry-Hi $10 
"ILB Entry-Lo $2 
Index $0 
Random $1 
Context $4 
Bad Virtual Address $8 

Pr Id $15 

Reserved $3, $5-$7, $9, $11, $16-$31 
4000 tbl 18 

Table 5.2. Co-processor O Register Addressing 

The Cause Register 
The contents of the Cause register describe the last exception. A 5-bit 

exception code indicates the cause of the current exception; the remaining 
fields contain detailed information specific to certain exceptions. 

All bits in this register, with the exception of the SW bits, are read-only. The 
SW bits can be written to set or reset software interrupts. Figure 5.2 illustrates 
the format of the Cause register. Table 5.3 details the meaning of the various 
exception codes. 

2 12 6 2 5 2 

BO: BRANCH DELAY 
CE: COPROCESSOR ERROR 
IP: INTERRUPTS PENDING 

ExcCode: EXCEPTION CODE FIELD 

rnR3 : RESERVED 
lllifilill Must Be Written as o 

Returns O when Read 
Sw: SOFTWARE INTERRUPTS* 

*READ AND WRITE. THE REST ARE READ-ONLY. 
4000 drw :!6 

Figure 5.2. The Cause Register 

Number Mnemonic Description 

0 Int External Interrupt 
1 MOD "ILB Modification Exception 
2 "ILBL "ILB miss Exception (Load or instruction fetch) 
3 "ILBS "ILB miss exception (Store) 
4 AdEL Address Error Exception (Load or instruction fetch) 
5 Ad ES Address Error Exception (Store) 
6 IBE Bus Error Exception (for Instruction Fetch) 
7 DBE Bus Error Exception (for data Load or Store) 
8 Sys SYSCALL Exception 
9 Bp Breakpoint Exception 
10 RI Reseived Instruction Exception 
11 CpU Co-Processor Unusable Exception 
12 Ovf Arithmetic Overflow Exception 

13-31 - Reseived 
4000 tbl 19 

Table 5.3. Cause Register Exception Codes 
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The meaning of the other bits of the cause register is as follows: 

BD The Branch Delay bit is set ( 1) if the last exception was taken while the 
processor was executing in the branch delay slot. If so, then the EPC 
will be rolled back to point to the branch instruction, so that it can be 
re-executed and the branch direction re-determined. 

CE The Co-processor Error field captures the co-processor unit number 
referenced when a Co-processor Unusable exception is detected. 

IP The Interrupt Pending field indicates which interrupts are pending. 
Regardless of which interrupts are masked, the IP field can be used 
to determine which interrupts are pending. 

SW The Software interrupt bits can be thought of as the logical extension 
of the IP field. The SW interrupts can be written to to force an interrupt 
to be pending to the processor, and are useful in the prioritization of 
exceptions. To set a software interrupt, a "1" is written to the 
appropriate SW bit, and a "O" will clear the pending interrupt. There 
are corresponding interrupt mask bits in the status register for these 
interrupts. 

The EPC (Exception Program Counter) Register 
The 32-bit EPC register contains the virtual address of the instruction which 

took the exception, from which point processing resumes after the exception 
has been serviced. When the virtual address of the instruction resides in a 
branch delay slot, the EPC contains the virtual address of the instruction 
immediately preceding the exception (that is, the EPC points to the Branch or 
Jump instruction). 

Bad V Addr Register 
The Bad VAddr register saves the entire bad virtual address for any 

addressing exception. 

Context Register 
The Context register duplicates some of the information in the BadVAddr 

register, but provides this information in a form that may be more useful for 
a software TLB exception handler. 

Figure 5.3 illustrates the layout of the Context register. The Context register 
is used to allow software to quickly determine the main memory address of the 
page table entry corresponding to the bad virtual address, and allows the TLB 
to be updated by software very quickly (using a nine-instruction code sequence). 

PTE Base Bad VPN 

11 19 2 

O: RESERVED: READ AS 0, MUST BE WRITTEN AS 0 

BadVPN: FAILING VIRTUAL PAGE NUMBER (SET BY HARDWARE; 
READ ONLY FIELD DERIVED FROM BADVADDR REGISTER) 

PTE Base: BASE ADDRESS OF PAGE TABLE ENTRY; 
SET BY KERNEL SOFTWARE 

4000 drw27 

Figure 5.3. Context Register 
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The Status Register 
The Status register contains all the major status bits; any exception puts the 

system in Kernel mode. All bits in the status register, with the exception of the 
TS (TLB Shutdown) bit, are readable and writable; the TS bit is read-only. 
Figure 5.4 shows the functionality of the various bits in the status register. 

The status register contains a three level stack (current, previous, and old) 
of the kernel/user mode bit (KU) and the interrupt enable (IE) bit. The stack 
is pushed when each exception is taken, and popped by the Restore From 
Exception instruction. These bits may also be directly read or written. 

At reset, the SWc, KUc, and IEc bits are set to zero; BEV is set to one; and 
the value of the TS bit depends on whether the device is an Extended 
Architecture version (TS= O) or base version (TS= 0). The rest of the bit fields 
are undefined after reset. 

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 6 5 4 3 2 0 

(Cuf.~cuO) :~!i: RE :;1::; BEV TS PE CM PZ Sv.C lsC lntr~~-~~1 :O ::::1:~:~: KUo IEo KUp IEp KUc IEc 

4 2 2 8 2 

CU: COPROCESSOR USABILITY 
BEV: BOOTSTRAP EXCEPTION VECTOR 
TS: TLB SHUTDOWN 
PE: PARITY ERROR 
CM: CACHE MISS 
PZ: PARITY ZERO 
SwC: SWAP CACHES 
lsC: ISOLATECACHE 
RE: REVERSE ENDIANNESS 

lntMASK: INTERRUPT MASK 
KUo: KERNEUUSER MODE, OLD 
IEo: INTERRUPT ENABLE, OLD 
KUp: KERNEUUSER MODE, PREVIOUS 
IEp: INTERRUPT ENABLE, PREVIOUS 
KUc: KERNEUUSER MODE, CURRENT 
IEc: INTERRUPT ENABLE, CURRENT 
O: RESERVED: READ AS ZERO 

MUST BE WRITTEN AS ZERO 
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Figure 5.4. The Status Register 

The various bits of the status register are defined as follows: 

CU Co-processor Useability. These bits individually control user level 
access to co-processor operations, including the polling of the BrCond 
input port and the manipulation of the System Control Co-processor 
(CPO). 

RE Reverse Endianness. The R305 l family allows the system to determine 
the byte ordering convention for the Kernel mode, and the default 
setting for user mode, at reset time. If this bit is cleared, the 
endianness defined at reset is used for the current user task. If this 
bit is set, then the user task will operate with the opposite byte 
ordering convention from that determined at reset. 

BEV Bootstrap Exception Vector. The value of this bit determines the 
locations of the exception vectors of the processor. If BEV = 1, then 
the processor is in "Bootstrap" mode, and the exception vectors reside 
in uncacheable space. If BEV = 0, then the processor is in normal 
mode, and the exception vectors reside in cacheable space. 

TS TLB Shutdown. This bit reflects whether the TLB is functioning. At 
reset, this bit can be used to determine whether the current processor 
is a base or extended architecture version. In extended architecture 
versions, this bit will also reflect whether the TLB is operating 
normally. as described in Chapter 4. 
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CM Cache Miss. This bit is set if a cache miss occurred while the cache 
was isolated. It is useful in determining the size and operation of the 
internal cache subsystem. 

SwC Swap Caches. Setting this bit causes the execution core to use the on
chip instruction cache as a data cache and vice-versa. Resetting the 
bit to zero unswaps the caches. This is useful for certain operations 
such as instruction cache flushing. 

IsC Isolate Cache. If this bit is set, the data cache is "isolated" from main 
memory; that is, store operations modify the data cache but do not 
cause a main memory write to occur, and load operations return the 
data value from the cache whether or not a cache hit occurred. This 
bit is also useful in various operations such as flushing, as described 
in Chapter 3. 

IM Interrupt Mask. This 8-bit field can be used to mask the hardware and 
software interrupts to the execution engine (that is, not allow them to 
cause an exception). IM( 1 :0) are used to mask the software interrupts, 
and IM (7:2) mask the 6 external interrupts. A value of 'O' disables a 
particular interrupt, and a' l' enables it. Note that the IE bit is a global 
interrupt enable; that is, if the IE is used to disable interrupts, the 
value of particular mask bits is irrelevant; if IE enables interrupts, 
then a particular interrupt is selectively masked by this field. 

KUo Kernel/User old. This is the privilege state two exceptions previously. 
A 'O' indicates kernel mode. 

IEo Interrupt Enable old. This is the global interrupt enable state two 
exceptions previously. A 'l' indicates that interrupts were enabled, 
subject to the IM mask. 

KUp Kernel/User previous. This is the privilege state prior to the current 
exception A 'O' indicates kernel mode. 

IEp Interrupt Enable old. This is the global interrupt enable state prior to 
the current exception. A 'l' indicates that interrupts were enabled, 
subject to the IM mask. 

KUc Kernel/User current. This is the current privilege state. A 'O' indicates 
kernel mode. 

IEc Interrupt Enable current. This is the current global interrupt enable 
state. A 'l' indicates that interrupts are enabled, subject to the IM 
mask. 

'O' Fields indicated as ·o· are reserved; they must be written as ·o·. and will 
return 'O' when read. 
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Prld Register 
This register is useful to software in determining which revision of the 

processor is executing the code. The format of this register is illustrated in 
Figure 5.5; the value currentlyretumedis0x0000_0230, which is the same as 
the R3000A. 

0 Implementation Revision 

16 8 8 

O: READ AS 0, MUST BE WRITTEN AS 0 

Implementation: EXECUTION ENGINE IMPLEMENTATION CODE 

Revision: REVISION LEVEL FOR THIS IMPLEMENTATION 

4000drw29 

Figure 5.5. Format of Prid Register 

EXCEPTION VECTOR LOCATIONS 
The R305 l family separates exceptions into three vector spaces. The value 

of each vector depends on the BEV (Boot Exception Vector) bit of the status 
register, which allows two alternate sets of vectors (and thus two different 
pieces of code) to be used. Typically, this is used to allow diagnostic tests to 
occur before the functionality of the cache is validated; processor reset forces 
the value of the BEV bit to a 1. Tables 5.4 and 5.5 list the exception vectors 
for the R305 l family for the two different modes. 

Exception Virtual Address Physical Address 

Reset OxbfcO_OOOO OxlfcO_OOOO 

UTLB Miss OxBOOO_OOOO OxOOOO_OOOO 

General OxBOOO_OOBO Ox0000_0080 
4000tbl 20 

Table 5.4. Exception Vectors When BEV • O 

Exception Virtual Address Physical Address 

Reset OxbfcO_OOOO OxlfcO_OOOO 

UTLB Miss OxbfcO_OlOO OxlfcO_OlOO 

General Oxbfc0_0180 Oxlfc0_0180 

4000 tbl 21 

Table 5.5. Exception Vectors When BEV • 1 

EXCEPTION PRIORITIZATION 
It is important to understand the structure of the R305 l family instruction 

execution unit in order to understand the exception priority model of the 
processor. The R305 l family runs instructions through a five stage pipeline, 
illustrated in Figure 5.6. The pipeline stages are: 

• IF: Instruction Fetch. This cycle contains two parts: the IV A (Instruction 
Virtual Address) phase, which generates the virtual instruction 
address of the next instruction to be fetched, and the ITLB phase, 
which performs the virtual to physical translation of the address. 

• RD: Read and Decode. This phase obtains the required data from the 
internal registers and also decodes the instruction. 
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• ALU: This phase either performs the desired arithmetic or logical operation, 
or generates the address for the upcoming data operation. For data 
operations, this phase contains both the data virtual address stage, 
which generates the desired virtual address, and the data TLB stage, 
which performs the virtual to physical translation. 

• MEM: Memory. This phase performs the data load or store transaction. 

• WB: Write Back. This stage updates the registers with the result data. 

IF 

IVA I 
TLB 

RD 

ID 

OVA 

ALU 

OP 

D 
TLB 

MEM 

D-FETCH 

Figure 5.6. Pipelining in the R305 l Family 

WB 

WB 
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High performance is achieved because five instructions are operating 
concurrently, each in a different stage of the pipeline. However, since multiple 
instructions are operating concurrently, it is possible that multiple exceptions 
are generated concurrently. If so, the processor must decide which exception 
to process, basing this decision on the stage of the pipeline that detected the 
exception. The processor will then flush all preceding pipeline stages to avoid 
altering processor context, thus implementing precise exceptions. This 
determines the relative priority of the exceptions. 

For example, an illegal instruction exception can only be detected in the 
instruction decode stage of the R3051/52; an Instruction Bus Error can only 
be determined in the I-Fetch pipe stage. Since the illegal instruction was 
fetched before the instruction which generated the bus error was fetched, and 
since it is conceivable that handling this exception might have avoided the 
second exception, it is important that the processor handle the illegal instruction 
before the bus error. Therefore the exception detected in the latest pipeline 
stage has priority over exceptions detected in earlier pipeline stages. All 
instructions fetched subsequent to this (all preceding pipeline stages) are 
flushed to avoid altering state information, maintaining the precise exception 
model. 
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Table 5.6 lists the priority of exceptions from highest first to lowest. 

Mnemonic Pipestage 

Reset Any 

AdEL Memory (Load instruction) 

Ad ES Memory (Store instruction) 

DBE Memory (Load or store) 

MOD ALU (Data TLB) 

TLBL ALU (DTLB Miss) 

TLBS ALU (DTLB Miss) 

Int ALU 

Sys RD (Instruction Decode) 

Bp RD (Instruction Decode) 

RI RD (Instruction Decode) 

CpU RD (Instruction Decode) 

Ovf RD (Instruction Decode) 

TLBL I-Fetch (ITLB Miss) 

AdEL IVA (Instruction Virtual Address 

IBE RD (end of I-Fetch) 
4000 tbl 22 

Table 5.6. R3051 Family Exception Priority 

EXCEPTION LATENCY 
A critical measurement of a processor's throughput in interrupt driven 

systems is the interrupt "latency" of the system. Interrupt latency is a 
measurement of the amount time from the assertion of an interrupt until 
software begins handling that interrupt. Often included when discussing 
latency is the amount of overhead associated with restoring context once the 
exception is handled, although this is typically less critical than the initial 
latency. 

In systems where the processor is responsible for managing a number of 
time-critical operations in real time, it is important that the processor minimize 
interrupt latency. That is, it is more important that every interrupt be handled 
at a rate above some given value, rather than occasionally handle an interrupt 
at very high speed. 

Factors which affect the interrupt latency of a system include the types of 
operations it performs (that is, systems which have long sequences of operations 
during which interrupts can not be accepted have long latency), how much 
information must be stored and restored to preserve and restore processor 
context, and the priority scheme of the system. 

Table 5.6 illustrates which pipestage recognizes which exceptions. As 
mentioned above, all instructions less advanced in the pipeline are flushed 
from the pipeline to avoid altering state execution. Those instructions will be 
restarted when the exception handler completes. 

Once the exception is recognized, the address of the appropriate exception 
vector will be the next instruction to be fetched. In general, the latency to the 
exception handler is one instruction cycle, and at worst the longest stall cycle 
in that system. 

INTERRUPTS IN THE R3051 FAMILY 
The R305 l family features two types of interrupt inputs: synchronized 

internally and non-synchronized, or direct. 
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The Slnt(2:0) bus (Synchronized Interrupts) allow the system designer to 
connect unsynchronized interrupt sources to the processor. The processor 
includes special logic on these inputs to avoid meta-stable states associated 
with switching inputs right at the processor sampling point. Because of this 
logic, these interrupt sources have slightly longer latency from the Slnt(n) -pin 
to the exception vector than the non-synchronized inputs. The operation of the 
synchronized interrupts is illustrated in Figure 5. 7. 

Run Cycle Exception Vector 

Phi 

128 129 
4000 drw31 

Figure 5. 7. Synchronized Interrupt Operation 

The other interrupts, Int(5:3), do not contain this synchronization logic, and 
thus have slightly better latency to the exception vector. However, the 
interrupting agent must guarantee that it always meets the interrupt input set
up and hold time requirements of the processor. These inputs are useful for 
interrupting agents which operate off of the SysClk output of the R3051/52. 
The operation of these interrupts is illustrated in Figure 5.8. 

Run Cycle Exception Vector 

130 131 

Figure 5.8. Direct Interrupt Operation 
4000 drw32 

Since the interrupt exception is detected during the ALU stage of the 
instruction currently in the processor pipeline, at least one run cycle must 
occur between (or at) the assertion of the external interrupt input and the fetch 
of the exception vector. Thus, if the processor is in a stall cycle when an 
external agent sends an interrupt, it will execute at least one run cycle before 
beginning exception processing. In this instance, there would be no difference 
in the latency of synchronized and direct interrupt inputs. 

All of the interrupts are level-sensitive and active low. They continue to be 
sampled after an interrupt exception has occurred, and are not latched within 
the processor when an interrupt exception occurs. It is important that the 
external interrupting agent maintain the interrupt line until software 
acknowledges the interrupt. 

Note that future family members will incorporate the floating point on-chip. 
The MIPS architecture recommends that Int(3) be used to handle the floating 
point interrupt. 

Each of the eight interrupts (6 hardware and 2 software) can be individually 
masked by clearing the corresponding bit in the Interrupt Mask field of the 
Status Register. All eight interrupts can be masked at once by clearing the IEc 
bit in the Status Register. 

On the synchronized interrupts, care should be taken to allow at least two 
clock cycles between the negation of the interrupt input and the re-enabling of 
the interrupt mask for that bit. 
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The value shown in the interrupt pending bits of the Cause register reflects 
the current state of the interrupt pins of the processor. These bits are not 
latched (except for sampling from the data bus to guarantee that they are stable 
when examined), and the masking of specific interrupt inputs does not mask 
the bits from being read. 

USING THE BrCond INPUTS 
In addition to the interrupt pins themselves, many systems can use the 

BrCond input port pins in their exception model. These pins can be directly 
tested by software, and can be used for polling or fast interrupt decoding. 

As with the interrupt bus. there are two versions of the BrCond pins. 
BrCond(l:O) are direct inputs, and thus the set-up and hold requirements of 
the processor must be met. BrCond(3:2) are synchronized inputs, and thus 
may be driven by asynchronous sources. The timing requirements of the 
BrCond inputs are illustrated in Figure 5.9 and Figure 5.10. 

Note that the future versions of the R3051 family which incorporate the 
floating point unit on-chip will utilize BrCond( 1) to communicate with that 
execution unit, and thus it will be unavailable to external agents. 

Run Cycle Capture BrCond BCzT/F Instruction 
Phi 

t28 t29 
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Figure 5.9. Synchronized BrCond Inputs 

Run Cycle Capture BrCond BCzT/F Instruction 

Phi 

!30 131 
4000 drw34 

Figure 5.10. Direct BrCond Inputs 

Similar to the interrupt inputs, at least one instruction must be executed (in 
the ALU stage) of the instruction pipeline prior to software being able to detect 
a change in one of these inputs. This is because the processor actually 
captures the value of these flags one instruction prior to the branch on co
processor instruction. Thus, if the processor is in a stall when the flag changes, 
there will be no difference in the time required for the processor to recognize 
synchronized or direct BrCond inputs. 

INTERRUPT HANDLING 
The assertion of an unmasked interrupt input causes the R305 l family to 

branch to the general exception vector at virtual address Ox8000_0080, and 
write the 'Int' code in the Ca use register. The IP field of the Cause register shows 
which of the six hardware interrupts are pending and the SW field in the Cause 
register show which of the two software interrupts are pending. Multiple 
interrupts can be pending at the same time, with no priority assumed by the 
processor. 
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When an interrupt occurs, the KUp, IEp, KUc and IEc bits of the Status 
register are saved in the KUo, IEo, KUp, IEp bit fields in the Status register, 
respectively, as illustrated in Figure 5. 11. The current kernel status bit KUc 
and the interrupt bit IEc are cleared. This masks all the interrupts and places 
the processor in kernel mode. This sequence will be reversed by the execution 
of an rfe (restore from exception) instruction. 

INTERRUPT SERVICING 
In case of an hardware interrupt, the interrupt must be cleared by de

asserting the interrupt line, which has to be done by alleviating the external 
conditions that caused the interrupt. Software interrupts have to be cleared 
by clearing the corresponding bits, SW(l:O), in the Cause register to zero. 

Exception Recognition 

RFE Instruction 
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Figure 5.11. Kernel and Interrupt Status Being Saved on Interrupts 

BASIC SOFTWARE TECHNIQUES FOR HANDLING 
INTERRUPTS 

Once an exception is detected the processor suspends the current task, 
enters kernel mode, disables interrupts, and begins processing at the exception 
vector location. The EPC is loaded with the address the processor will return 
to once the exception event is handled. 

The specific actions of the processor depend on the cause of the exception 
being handled. The R3051 family classifies exceptions into three distinct 
classes: RESET, UfLB Miss, and General. 

Coming out of reset, the processor initializes the state of the machine. In 
addition to initializing system peripherals, page tables, the TLB, and the 
caches, software clears both STATUS and CAUSE registers, and initializes the 
exception vectors. 

The code located at the exception vector may be just a branch to the actual 
exception code; however, in more time critical systems the instructions located 
at the exception vector may perform the actual exception processing. In order 
to cause the exception vector location to branch to the appropriate exception 
handler (presuming that such a jump is appropriate), a short code sequence 
such as that illustrated in Figure 5. 12 may be used. 
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.set noreorder # tells the assembler not to reorder the code 

•• 
*I 

.. 
*/ 

code sequence copied to UTLB exception vector 

la 
j 
nop 

kO,excep_utlb 
kO 

#address of utlb excp. handler 
#jump via reg kO 

code sequence copied to general exception vector 

la 
j 
nop 

kO,excep_general 
kO 

#address of general excp. handler 
# jump via reg kO 

Figure 5.12. Code Sequence to Initialize Exception Vectors 
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It should be noted the the contents of register kO are not preseIVed. This is 
not a problem for software. since MIPS compiler and assembler conventions 
reserve kO for kernel processes. and do not use it for user programs. For the 
system developer it is advised that the use of kO be reseIVed for use by the 
exception handling code exclusively. This will make debugging and development 
much easier. 

PRESERVING CONTEXT 
The R305 l family has the following five registers related to exception 

processing: 

1. The Cause register 
2. The EPC (exception program counter) register 
3. The Status register 
4. The BadVAddr (bad virtual address) register 
5. The Context register 

Typical exception handlers preseIVe the status, cause, and EPC registers in 
general registers (or on the system stack). If the exception cause is due to a TLB 
miss, software may also preseIVe the bad virtual address and context registers 
for later processing. 

Note that not all systems need to preseIVe this information. Since the R305 l 
family disables subsequent interrupts. it is possible for software to directly 
process the exception while leaving the processor context in the CPO registers. 
Care must be taken to insure that the execution of the exception handler does 
not generate subsequent exceptions. 

PreseIVing the context in general registers (and on the stack) does have the 
advantage that interrupts can be re-enabled while the original exception is 
handled, thus allowing a priority interrupt model to be built. 

A typical code sequence to preserve processor context is shown in Figure 
5.13. This code sequence preseIVes the context into an area of memory pointed 
to by the kO kernel register. This register points to a block of memory capable 
of storing processor context. Constants identified by name (such as R_EPC) are 
used to indicate the offset of a particular register from the start of that memory 
area. 
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*I 

la kO,except_regs #fetch address of reg save array 
SW AT,R_AT*4(k0) #save register AT 
SW vo,R_ V0*4(kO) #save register vo 
SW v1 ,R_ V1 *4(k0) #save register v1 
mfcO vO,CO_EPC #fetch the epc register 
mfcO v1,CO_SR #fetch the status register 
SW v0,R_EPC*4(k0) # save the epc 
mfcO vO,CO_CAUSE #fetch the cause register 
SW v1 ,R_SR*4(k0) # save status register 

The above code is about the minimum required 
The user specific code would follow 

Figure 5.13. Preserving Processor Context 

CHAPTER5 
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It should be noted that this sequence for fetching the co-processor zero 
registers is required because there is a one clock delay in the register value 
actually being loaded into the general registers after the execution of the mfcO 
instruction. 

DETERMINING THE CAUSE OF THE EXCEPTION 
The cause register indicates the reason the exception handler was invoked. 

Thus, to invoke the appropriate exception service routine, software merely 
needs to examine the cause register, and use its contents to direct a branch to 
the appropriate handler. 

One method of decoding the jump to an appropriate software routine to 
handle the exception and cause is shown in Figure 5.14. RegistervO contains 
the cause register, and register kO still points to the register save array . 

. set noreorder 

SW 
and 
lw 
SW 

SW 
.set 

a0,R_A0*4(k0) 
v1 ,vO,EXCMASK 
a0,cause_table(v1) 
a1,R_A1*4(k0) 
ao 
k1 ,R_K1 *4(sp) 
reorder 

#save register aO 
# isolate exception code 
# get address of interrupt routine. 
#use delay slot to save register a1 

#save k1 register 
#re-enable pipeline scheduling 

Figure 5.14. Exception Cause Decoding 
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The above sequence of instructions extracts the exception code from the 
cause register and uses that code to index into the table of pointers to functions 
(the cause_table). The cause_table data structure is shown in Figure 5.15. 
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int (*cause_table[16])() = { 
int_ extern, 
int_tlbmod, 
int_tlbmiss, 
int_tlbmiss, 
int_addrerr, 
int_addrerr, 
int_ibe, 
int_dbe, 
int_syscall, 
int_ breakpoint, 
int_trap, 
int_cpunuse, 
int_trap, 
int_unexp, 
int_unexp, 
int_unexp 
}; 

I* External interrupts 
I* TLB modification error 
I* load or instruction fetch 
I* write miss 
I* load or instruction fetch 
I* write address error 
I* Bus error - Instruction fetch 
I* Bus error - load or store data 
I* SYSCALL exception 
I* breakpoint instruction 
I* Reserved instruction 
I* coprocessor unusable 
I* Arithmetic overflow 
I* Reserved 
I* Reserved 
I* Reserved 

Figure 5.15. Exception Service Branch Table 

., ., ., ., ., 
•I ., ., 
•I ., ., ., ., ., ., ., 
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Each of the entries in this table point to a function for processing the 
particular type of interrupt detected. The specifics of the code contained in 
each of these functions is unique for a given application; all registers used in 
these functions must be saved and restored. 

RETURNING FROM EXCEPTIONS 
Returning from the exception routine is made through the rje instruction. 

When the exception first occurs the R305 l I 52 automatically saves some of the 
processor context. the current value of the interrupt enable bit is saved into the 
field for the previous interrupt enable bit, and the kernel/user mode context 
is preserved. 

The IE interrupt enable bit must be asserted (a one) for external interrupts 
to be recognized. The KUkernel mode bit must be a zero in kernel mode. When 
an exception occurs. external interrupts are disabled and the processor is 
forced into kernel mode. When the rje instruction is executed at completion of 
exception handling, the state of the mode bits is restored to what it was when 
the exception was recognized (presuming the programmer restored the status 
register to its value when the exception occurred). This is done by "popping" 
the old/previous/current KU and IE bits of the status register. 

The code sequence in Figure 5.16 is an example of exiting an interrupt 
handler. The assumption is that registers and context were saved as outlined 
above. 

gen_excp_exit: 
.set noreorder 

lw 
lw 
mtcO 
lw 
lw 
j 
rfe 

k0,CO_SR*4(AT) 
v0,R_ V0*4(AT) 
kO,CO_SR 
kO,R_EPC* 4(AT) 
AT,R_AT*4(AT) 
kO 

.set reorder 

# by the time we have gotten here 
# all general registers have been 
#restored (except of kO and vO) 
#reg. AT points to the reg save array 
#fetch status reg. contents 
# restore reg. vO 
# restore the status reg. contents 
#Get the return address 
#restore AT in load delay 
# return from int. via jump reg. 
#the rfe instr. is executed in the 
# branch delay slot 

Figure 5.16. Returning from Exception 
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This code sequence must either be replicated in each of the cause handling 
functions. or each of them must branch to this code sequence to properly exit 
from exception handling. 

Note that this code sequence must be executed with interrupts disabled. If 
the exception handler routine re-enables interrupts they must be disabled 
when the CPO registers are being restored. 

SPECIAL TECHNIQUES FOR INTERRUPT HANDLING 
There are a number of techniques which take advantage of the R305 l family 

architecture to minimize exception latency and maximize throughput in 
interrupt driven systems. This section discusses a number of those techniques. 

Interrupt Masking 
Only the six external and two software interrupts are maskable. The mask 

for these interrupts are in the status register. 
To enable a given external interrupt, the corresponding bit in the status 

register must be set. The IEc bit in the status register must also be set. It 
follows that by setting and clearing these bits within the interrupt handler that 
interrupt priorities can be established. The general mechanism for doing this 
is performed within the external interrupt-handler portion of the exception 
handler. 

The interrupt handler presetves the current mask value when the status 
register is presetved. The interrupt handler then calculates which (if any) 
external interrupts have priority, and sets the interrupt mask bit field of the 
status register accordingly. Once this is done, the IEc bit is changed to allow 
higher priority interrupts. Note that all interrupts must again be disabled 
when the return from exception is processed. 

Using BrCond For Fast Response 
The R305 l family instruction set contains mechanisms to allow external or 

internal co-processors to operate as an extension of the main CPU. Some of 
these features may also be used in an interrupt-driven system to provide the 
highest levels of response. 

Specifically, the R305 l family has external input port signals, the BrCond(0:3) 
signals. These signals are used by external agents to report status back to the 
processor. The instruction set contains instructions which allow the external 
bits to be tested, and branches to be executed depending on the value of 
BrCond. 

An interrupt-driven system can use these BrCond signals, and the 
corresponding instructions, to implement an input port for time-critical 
interrupts. Rather than mapping an input port in memory (which requires 
external logic), the BrCond signals can be examined by software to control 
interrupt handling. 

There are actually two methods of advantageously using this. One method 
uses these signals to perform interrupt polling; in this method, the processor 
continually examines these signals, waiting for an appropriate value before 
handling the interrupt. A sample code sequence is shown in Figure 5.17. 
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.set 

polling_loop: 
bc2f 
nop 

noreorder 

polling_loop 

# prevents the assembler from 
# reordering the code below 

#branch to yourself until 
# BrCond(2) is asserted 

#Once BrCond(2) is asserted, fall through 
# and begin processing the external event 

fast_response _ cp2: 

b polling_loop 

# code sequence that would do the 
# event processing 

# return to polling 

Figure 5.17. Polling System Using BrCond 
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The software in this system is very compact, and easily resides in the on-chip 
cache of the processor. Thus, the latency to the interrupt setvice routine in this 
system is minimized, allowing the fastest interrupt service capabilities. 

A second method utilizes external interrupts combined with the BrCond 
signals. In this method, both the BrCond signal and one of the external 
interrupt lines are asserted when an external event occurs. This configuration 
allows the CPU to perform normal tasks while waiting for the external event. 

For example, assume that that a valve must be closed and then normal 
processing continued when BrCond(2) is asserted 1RUE. The valve is controlled 
by a register that is memory-mapped to address Oxaffe_0020 and writing a one 
to this location closes the valve. The software in Figure 5 .18 accomplishes this, 
using BrCond(2) to aid in cause decoding. 

The number of cycles for a deterministic system is five cycles between the 
time the interrupt occurred and it was seIViced. Interrupts were re-enabled in 
four additional cycles. Note that none of the processor context needs to be 
presetved and restored for this routine. 
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.set no reorder # prevents the assembler from reordering 
#the code sequences below 

I* This section of code is placed at the general exception 
••vector location Ox8000_0080. When an external interrupt is 
•• asserted execution begins here . . , 

bc2t 
Ii 
la 
j 
nop 

close_valve 
k0,1 
kO,gen_exp_hand 
kO 

#test for emergency condition and 
#jump to close valve if TRUE 
# otherwise, 
#jump to general exc. handler 
# and process less critical excepts. 

I* This is the close valve routine - its sole purpose is to close the 
•• valve as quickly as possible. The registers 'kO' and 'k1' are reserved 
•• for kernel use and therefore need not be saved when a client or 
•• user program is interrupted. It should be noted that the value to 
•• write to the valve close register was put in reg 'kO' in the 
•• branch delay slot above - so by the time we get here it is 
•• ready to output to the close register . . , 
close_valve: 

la #the address of the close register 
#write the value to the close register SW 

mfcO 
nop 

k1 ,Oxaffe0020 
k0,0(k1) 
kO,CO_EPC #get the return address to cont processing 

j kO 
rfe 

. set reorder 

# return to normal processing 
# restore previous interrupt mask 
# and kernel/user mode bits of the 
#status register . 

Figure 5.18. Using BrCond for Fast Interrupt Decoding 

Nested Interrupts 
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Note that the processor does not automatically stack processor context 
when an exception occurs: thus, to allow nested exceptions it is important that 
software perform this stacking. 

Most of the software illustrated above also applies to a nested exception 
system. However, rather than using just one register (pointed to by kO) as a 
save area, a stacking area must be implemented and managed by software. 
Also, since interrupts are automatically disabled once an exception is detected, 
the interrupt handling routine must mask the interrupt it is currently 
servicing, re-enable other interrupts (once context is preseived) through the 
IEc bit. 

The use of Interrupt Mask bits of the status register to implement an 
interrupt prioritization scheme was discussed earlier. An analogous technique 
can be performed by using an external interrupt encoder to allow more 
interrupt sources to be presented to the processor. 

Software interrupts can also be used as part of the prioritization of 
interrupts. If the interrupt service routine desires to seivice the interrupting 
agent, but not completely perform the interrupt seivice. it can cause the 
external agent to negate the interrupt input but leave interrupt service pending 
through the use of the SW bits of the Cause register. 
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Catastrophic Exceptions 
There are certain types of exceptions that indicate fundamental problems 

with the system. Although there is little the software can do to handle such 
events, they are worth discussing. Exceptions such as these are typically 
associated with faulty systems, such as in the initial debugging or development 
of the system. 

Potential problems can arise because the processor does not automatically 
stack context information when an exception is detected. If the processor 
context has not been preserved when another exception is recognized, the 
value of the status, cause, and EPC registers are lost and thus the original task 
can not be resumed. 

An example of this occurring is an exception handler performing a memory 
reference that results in a bus error (for example, when attempting to preserve 
context). The bus error forces execution to the exception vector location, 
overwriting the status, cause, and context registers. Proper operation cannot 
be resumed. 
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HANDLING SPECIFIC EXCEPTIONS 
This section documents some specific issues and techniques for handling 

particular R3051 family exceptions. 

Address Error Exception 

Cause 
This exception occurs when an attempt is made to load, fetch, or store a word 

that is not aligned on a word boundru:y. Attempting to load or store a half-word 
that is not aligned on a half-word boundary will also cause this exception. The 
exception also occurs in User mode if a reference is made to a virtual address 
whose most significant bit is set (a kernel address). This exception is not 
maskable. 

Handling 
The R3051 family branches to the General Exception vector for this 

exception. When the exception occurs, the R3051I52 sets the ADEL or ADES 
code in the Cause register ExcCode field to indicate whether the address error 
occurred during an instruction fetch or a load operation (ADEL) or a store 
operation (ADES). 

The EPC register points at the instruction that caused the exception, unless 
the instruction is in a branch delay slot: in that case, the EPC register points 
at the branch instruction that preceded the exception-causing instruction and 
sets the BD bit of the Cause register. 

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the Status register 
in the KUo, IEo, KUp, and IEp bits, respectively and clears the KUc and IEc bits. 

When this exception occurs, the BadVAddr register contains the virtual 
address that was not properly aligned or that improperly addressed kernel data 
while in User mode. The contents of the VPN field of the Context and Entry Hi 
registers are undefined. 

Servicing 
A kernel should hand the executing process a segmentation violation signal. 

Such an error is usually fatal although an alignment error might be handled 
by simulating the instruction that caused the error. 
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Breakpoint Exception 

Cause 
This exception occurs when the R305 l / 52 executes the BREAK instruction. 

This exception is not maskable. 

Handling 
The R305 l I 52 branches to the General Exception vector for the exception 

and sets the BP code in the CAUSE register ExcCode field. 
The R305 l / 52 saves the KUp, IEp, KUc, and IEc bits of the Status register 

in the KUo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits. 
The EPCregisterpoints at the BREAK instruction that caused the exception, 

unless the instruction is in a branch delay slot: in that case, the EPC register 
points at the BRANCH instruction that preceded the BREAK instruction and 
sets the BD bit of the Cause register. 

Service 
The breakpoint exception is typically handled by a dedicated system routine. 

Unused bits of the BREAK instruction (bits 25 .. 6) can be used pass additional 
information. To examine these bits, load the contents of the instruction 
pointed at by the EPC register. NOTE: If the instruction resides in the branch 
delay slot, add four to the contents of the EPC register to find the instruction. 

To resume execution, change the EPC register so that the R305 l I 52 does not 
execute the BREAK instruction again. To do this, add four to the EPC register 
before returning. NOTE: If a BREAK instruction is in the branch delay slot, 
the BRANCH instruction must be interpreted in order to resume execution. 
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Bus Error Exception 

Cause 
This exception occurs when the Bus Error input to the CPU is asserted by 

external logic during a read operation. For example, events like bus time-outs, 
backplane bus parity errors, and invalid physical memory addresses or access 
types can signal exception. This exception is not maskable. 

This exception is used for synchronously occurring events such as cache 
miss refills. The general interrupt mechanism must be used to report a bus 
error that results from asynchronous events such as a buffered write transaction. 

Handling 
The R305 l I 52 branches to the General Exception vector for this exception. 

When exception occurs, the R305 l / 52 sets the IBE or DBE code in the CAUSE 
register ExcCode field to indicate whether the error occurred during an 
instruction fetch reference (IBE) or during a data load or store reference (DBE). 

The EPC register points at the instruction that caused the exception, unless 
the instruction is in a branch delay slot: in that case, the EPC register points 
at the BRANCH instruction that preceded the exception-causing instruction 
and sets the BD bit of the cause register. 

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the Status register 
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc 
bits. 

Servicing 
The physical address where the fault occurred can be computed from the 

information in the CPO registers: 

• If the Cause register's IBE code is set (showing an instruction fetch 
reference), the virtual address resides in the EPC register. 

• If the Cause register's DBE exception code is set (specifying a load or store 
reference), the instruction that caused the exception is at the virtual 
address contained in the EPC register (if the BD bit of the cause register 
is set, add four to the contents of the EPC register). Interpret the 
instruction to get the virtual address of the load or store reference and 
then use the TI...BProbe(tlbp) instruction and read Entry Lo to compute the 
physical page number. 

A kernel should hand the executing process a bus error when this exception 
occurs. Such an error is usually fatal. 
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Co-processor Unusable Exception 

Cause 
This exception occurs due to an attempt to execute a co-processor instruction 

when the corresponding co-processor unit has not been marked usable (the 
appropriate CU bit in the status register has not been set). For CPO 
instructions, this exception occurs when the unit has not been marked usable 
and the process is executing in User mode: CPO is always usable from Kernel 
mode regardless of the setting of the CPO bit in the status register. This 
exception is not maskable. 

Handling 
The R3051/52 branches to the General Exception vector for this exception. 

It sets the CPU code in the CAUSE register ExcCode field. Only one co
processor can fail at a time. 

The contents of the cause register's CE (Co-processor Error) field show which 
of the four coprocessors (3,2,1, or 0) the R3051/52 referenced when the 
exception occurred. 

The EPC register points at the co-processor instruction that caused the 
exception, unless the instruction is in a branch delay slot: in that case, the EPC 
register points at the branch instruction that preceded the co-processor 
instruction and sets the BD bit of the Cause register. 

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register 
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc 
bits. 

Servicing 
To identify the co-processor unit that was referenced, examine the contents 

of the Cause register's CE field. If the process is entitled to access, mark the 
co-processor usable and restore the corresponding user state to the co
processor. 

If the process is entitled to access to the co-processor, but the co-processor 
is known not to exist or to have failed, the system could interpret the co
processor instruction. If the BD bit is set in the Cause register, the BRANCH 
instruction must be interpreted; then, the co-processor instruction could be 
emulated with the EPC register advanced past the co-processor instruction. 

If the process is not entitled to access to the co-processor, the process 
executing at the time should be handed an illegal instruction/privileged 
instruction fault signal. Such an error is usually fatal. 
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Interrupt Exception 

Cause 
This exception occurs when one of eight interrupt conditions (software 

generates two, hardware generates six) occurs. 
Each of the eight external interrupts can be individually masked by clearing 

the corresponding bit in the IntMaskfteld of the status register. All eight of the 
interrupts can be masked at once by clearing the IEc bit in the status register. 

Handling 
The R3051I52 branches to the General Exception vector for this exception. 

The R305 l I 52 sets the INT code in the Cause register's ExcCode field. 
The IP field in the Cause register show which of six external interrupts are 

pending, and the SW field in the cause register shows which two software 
interrupts are pending. More than one interrupt can be pending at a time. 

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register 
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc 
bits. 

Servicing 
If software generates the interrupt, clear the interrupt condition by setting 

the corresponding Cause register bit (SWl :0) to zero. 
If external hardware generated the interrupt, clear the interrupt condition 

by alleviating the conditions that assert the interrupt signal. 
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Overflow Exception 

Cause 
This exception occurs when an ADD ADDI, SUB, or SUBI instruction results 

in two's complement overflow. This exception is not maskable. 

Handling 
The R305 l I 52 branches to the General Exception vector for this exception. 

The R3051/52 sets the OV code in the CAUSE register. 
The EPC register points at the instruction that caused the exception, unless 

the instruction is in a branch delay slot: in that case, the EPC register points 
at the Branch instruction that preceded the exception-causing instruction and 
sets the BO bit of the CAUSE register. 

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register 
in the KUo, IEo, KUp, and IEp bits. respectively, and clears the KUc and IEc 
bits. 
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Reserved Instruction Exception 

Cause 
This exception occurs when the R3051/52 executes an instruction whose 

major opcode (bits 31..26) is undefined or a Special instruction whose minor 
opcode (bits 5 .. 0) is undefined. 

This exception provides a way to interpret instructions that might be added 
to or removed from the R3051/52 processor architecture. 

Handling 
The R305 l / 52 branches to the General Exception vector for this exception. 

It sets the RI code of the Cause register's ExcCode field. 
The EPC register points at the instruction that caused the exception, unless 

the instruction is in a branch delay slot: in that case, the EPC register points 
at the Branch instruction that preceded the reserved instruction and sets the 
BD bit of the CAUSE register. 

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register 
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc 
bits. 

Servicing 
If instruction interpretation is not implemented, the kernel should hand the 

executing process an illegal instruction/reserved operand fault signal. Such 
an error is usually fatal. 

An operating system can interpret the undefined instruction and pass 
control to a routine that implements the instruction in software. If the 
undefined instruction is in the branch delay slot, the routine that implements 
the instruction is responsible for simulating the branch instruction after the 
undefined instruction has been "executed". Simulation of the branch instruction 
includes determining if the conditions of the branch were met and transferring 
control to the branch target address ( if required) or to the instruction following 
the delay slot if the branch is not taken. If the branch is not taken, the next 
instruction's address is [EPC] + 8. If the branch is taken, the branch target 
address is calculated as [EPC] + 4 +(Branch Offset"' 4). 

Note that the target address is relative to the address of the instruction in 
the delay slot. not the address of the branch instruction. Ref er to the 
description of branch instruction for details on how branch target addresses 
are calculated. 
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Reset Exception 

Cause 
This exception occurs when the R3051/52 RESET signal is asserted and 

then de-asserted. 

Handling 
The R3051I52 provides a special exception vector for this exception. The 

Reset vector resides in the R3051/52's unmapped and uncached address 
space; Therefore the hardware need not initialize the Translation Lookaside 
Buff er (1LB) or the cache to handle this exception. The processor can fetch and 
execute instructions while the caches and virtual memozy are in an undefined 
state. 

The contents of all registers in the R3051/52 are undefined when this 
exception occurs except for the following: 

• The SWc, KUc, and IEc bits of the Status register are cleared to zero. 
• The BEV bit of the Status register is set to one. 
• The Random register is initialized to 63. 
• For extended versions of the architecture, the TS bit is cleared to zero. 
• For base versions of the architecture, the TS bit is frozen at one. 

Servicing 
The reset exception is serviced by initializing all processor registers, co

processorregisters, the caches, and thememozysystem. Typically, diagnostics 
would then be executed and the operating system bootstrapped. The reset 
exception vector is selected to appear in the uncached, unmapped memozy 
space of the machine so that instructions can be fetched and executed while 
the cache and virtual memozy system are still in an undefined state. 
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System Call Exception 

Cause 
This exception occurs when the R3051/52 executes a SYSCALL instruction. 

Handling 
The R3051/52 branches to the General Exception vector for this exception 

and sets the SYS code in the CAUSE register's ExcCode field. 
The EPC register points at the SYSCALL instruction that caused the 

exception, unless the SYSCALL instruction is in a branch delay slot: in that 
case, the EPC register points at the branch instruction that preceded the 
SYSCALL instruction and the BD bit of the CAUSEregister is set. 

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register 
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc 
bits. 

Servicing 
The operating system transfers control to the applicable system routine. To 

resume execution, alter the EPC register so that the SYSCALL instruction does 
not execute again. To do this, add four to the EPC register before returning. 
NOTE: If a SYSCALL instruction is in a branch delay slot, the branch 
instruction must be interpreted in order to resume execution. 
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TLB Miss Exceptions 
There are three different types of TLB misses that can occur: 

• If the input Virtual Page Number (VPN) does not match the VPN of anyTLB 
entcy, or ifthe Process Identifier (PIO) in EntcyHi does not match the TLB 
entcy's PIO (and the Global bit is not set), a miss occurs. For KUSEG 
references, a UTLB Miss exception is taken. For KSEG2 references, a TLB 
Miss occurs. 

• If evecything matches, but the valid bit of the matching TLB entcy is not 
set, a TLB Miss occurs. 

• If the dirty bit in a matching TLB entcy is not set and the access is a write, 
a TLB MOD exception occurs. 

Figure 5 .19 (a simplified version of TLB address translation figure used in 
Chapter 4) illustrates how the three different kinds ofTLB miss exceptions are 
generated. Each of the exceptions is described in detail in the pages that follow. 

The TLB exceptions obviously only occur in extended architecture versions 
of the processor. 

Input Virtual Address 

No 

Exception Output Physical Address Exception 

4000 drw43 

Figure 5.19. TLB Miss Exceptions 
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TLB Miss Exception 

Cause 
This exception occurs when a Kernel mode virtual address reference to 

memory is not mapped, when a User mode virtual address reference to memory 
matches an invalid TLB entry, or when a Kernel mode reference to user memory 
space matches an invalid TLB entry. 

Handling 
The R305 l / 52 branches to the General Exception vector for this exception. 

When the exception occurs, the R305 l / 52 sets the TLBL or TLBS code in the 
CAUSE register's ExcCode field to indicate whether the miss was due to an 
instruction fetch or a load operation (TLBL) or a store operation (TLBS). 

The EPC register points at the instruction that caused the exception, unless 
the instruction is in a branch delay slot: in that case. the EPC register points 
at the Branch instruction that preceded the exception-causing instruction and 
sets the BD bit of the Cause register. The R3051/52 saves the KUp, IEp, KUc, 
and IEc bits of the status register in the KUo, IEo, KUp, and IEp bits, 
respectively, and clears the KUc and IEc bits. 

When this exception occurs, the BadVAddr, Context, and EntryHi register 
contain the virtual address that failed address translation. The PID field of 
EntryHi remains unchanged by this exception. The Random register normally 
specifies the pseudo-random location where the R305 l I 52 can put a replacement 
TLB entry. 

Servicing 
The failing virtual address orvirtual page number identifies the corresponding 

PTE. The operating system should load EntryLo with the appropriate PTE that 
contains the physical page frame and access control bits and also write the 
contents of EntryLo and EntryHi into the TLB. 

Servicing Multiple (nested) TLB Misses 
Within a UTLB Miss handler, the virtual address that specifies the PTE 

contains physical address and access control information that might not be 
mapped in theTLB. Then, a TLB Miss exception occurs. This case is recognized 
by noting that the EPC register points within the UTLB Miss handler. The 
operating system might interpret the event as an address error (when the 
virtual address falls outside the valid region for the process) or as a TLB Miss 
on the page mapping table. 

This second TLB miss obscures the contents of the BadVAddr, Context. and 
EntryHi registers as they were within the UTLB Miss handler. As a result, the 
exact virtual address whose translation caused the first fault is not known 
unless the UTLB Miss handler specifically saved this address. You can only 
observe the failing PTE virtual address. The BadVAddr register now contains 
the original contents of the Context register within the UTLB Miss handler, 
which is the PTE for the original faulting address. 

If the operating system interprets the exception as a TLB Miss on the page 
table, it constructs a TLB entry to map the page table and writes the entry into 
the TLB. Then, the operating system can determine the original faulting virtual 
page number, but not the complete address. The operating system uses this 
information to fetch the PTE that contains the physical address and access 
control information. It also writes this information into the TLB. 

The UTLB Miss handler must save the EPC in a way that allows the second 
miss to find it. The EPC register information that the UTLB Miss handler saved 
gives the correct address at which to resume execution. The"old" KUo and IEo 
bits of the status register contain the correct mode after the R305 l I 52 services 
a double miss. NOTE: You neither need nor want to return to the UTLB Miss 
handler at this point. 
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TLB Modified Exception 

Cause 
This exception occurs when the virtual address target of a store operation 

matches a TLB entry is marked valid, but not marked dirty. This exception is 
not maskable. 

Handling 
The R305 l / 52 branches to the General Exception vector for this exception 

and sets the MOD exception code in the CAUSE register's ExcCode field. 
When this exception occurs, the BadVAddr, Context, and Ent:ryHi registers 

contain the virtual address that failed address translation. EntryHi also 
contains the PID from which the translation fault occurred. 

The EPC register points at the instruction that caused the exception, unless 
the instruction is in a branch delay slot: in that case, the EPC register points 
at the Branch instruction that preceded the exception-causing instruction and 
sets the BD bit of the Cause register. 

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register 
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc 
bits. 

Servicing 
A kernel should use the failing virtual address or virtual page number to 

identify the corresponding access control information. The identified page 
might or might not permit write accesses. (Typically, software maintains the 
"real" write protection in other memory areas.) If the page does not permit write 
access, a "Write Protection Violation" occurs. 

If the page does permit write accesses, the kernel should mark the page 
frame as dirty in its own data structures. Use the TLBProbe (tlbp) instruction 
to put the index of the TLB entrythat must be altered in the Index register. Then 
load the EntryLo register with a word that contains the physical page frame and 
access control bits (with the data bit D set). Finally, use the TLBWrite Indexed 
(tlbwi) instruction to write EntryHi and EntryLo into the TLB. 
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UTLB Miss Exception 

Cause 
This exception occurs from User or Kernel mode references to user memocy 

space when no 1LB entcy matches both the VPN and the PID. Invalid entries 
cause a TLB Miss rather than a l.ITLB Miss. This exception is not maskable. 

Handling 
The R3051/52 uses the special lJfLB Miss interrupt vector for this exception. 

When the exception occurs, the R3051/52 sets the TLBL orTLBS code in the 
Cause register ExcCode field to indicate whether the miss was due to an 
instruction fetch or a load operation ('ILBL) or a store operation ('!LBS). 

The EPC register points at the instruction that caused the exception, unless 
the instruction is in a branch delay slot: in that case, the EPC register points 
at the Branch instruction that preceded the exception-causing instruction and 
sets the BD bit of the Cause register. 

The R3051/52 saves the KUp, IEp, KUc, and IEc bits of the status register 
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc 
bits. 

The virtual address that failed translation is held in the BadVAddr, Context, 
and EntcyHi registers. The EntcyHi register also contains the PID (Process 
Identifier) from which the translation fault occurred. The Random register 
contains a valid pseudo-random location in which to put a replacement TLB 
entcy. 

Servicing 
The contents of the Context register can be used as the virtual address of the 

memocy word that contains the physical page frame and the access control 
bits(a Page Table Entcy, or PTE) for the failing reference. An operating system 
should put the memocyword in EntcyLo and write the contents ofEntcyHi and 
EntcyLo into theTLB by using a 1LB Write Random (tlbwr) assembly instruction. 

The PTE virtual address might be on a page that is not resident in the TLB. 
Therefore, before an operating system can reference the PTE virtual address, 
it should save the EPC register's contents in a general register reseived for 
kernel use or in a physical memocy location. If the reference is not mapped in 
the 1LB, a 1LB Miss exception would occur within the l.ITLB Miss handler. 

A short routine (nine instructions, one load) to service a l.ITLB miss is shown. 

mfcO 
mfcO 
lw 
nop 
mtcO 
nop 
co 
j 
rfe 

kO,CO_CTX 
k1, CO_EPC 
kO, O(kO) 

kO, CO_TLBLO 

co_WriteR 
k1 

# get address of PTE 
#get address of failed reference 
#fetch PTE 
# load delay slot 
#write Entrylo (EntryHi set by chip hardware) 
# effective delay slot due to CPO move 
# tlbwr; write random TLB entry 
# return to EPC 
# restore context from exception 

4000 drw44 

Figure 5.20. User TLB Refill Code 

5-33 





G® 
Integrated Device Technology, Inc.. 

INTERFACE OVERVIEW CHAPTERS 

The IDT R305 l family utilizes a simple, flexible bus interface to its external 
memory and 1/0 resources. The interface uses a single, multiplexed 32-bit 
address and data bus and a simple set of control signals to manage read and 
write operations. Complementing the basic read and write interface is a DMA 
Arbiter interface which allows an external agent to gain control of the memory 
interface to transfer data. 

The R305 l family supports the following types of operations on its interface: 

• Write Operations: The R305 l family utilizes an on-chip write buffer to 
isolate the execution core from the speed of external memory during write 
operations. The write interface of the R3051 family is thus designed to 
allow a variety of write strategies, from fast 2-cycle write operations 
through multiple wait-state writes. 

The R305 l family supports the use of fast page mode writes by providing 
an output indicator, WrNear, to indicate that the current write may be 
retired using a page mode access. This facilitates the rapid "flushing" of 
the on-chip write buffer, since the majority of processor writes will occur 
within a localized area of memory. 

The write interface is described in detail in Chapter 8. 

• Read Operations: The processor executes read operations as the result 
of either a cache miss or an uncacheable reference. As with the write 
interface, the read interface has been designed to accommodate a wide 
variety of memory system strategies. There are two types of reads 
performed by the processor: 

Burst (or quad word) reads occurwhen the processor requests a contiguous 
block of four words from memory. Bursts occur in response to instruction 
cache misses, and may occur in response to a data cache miss. The 
processor incorporates an on-chip 4-deep read buffer which may be used 
to "queue up" the read response before passing it through to the high
bandwidth cache and execution core. Read buffering is appropriate in 
systems which require wait states between adjacent words of a block read. 
On the other hand, systems which use high-bandwidth memory techniques 
(such as page mode, static column, nibble mode, or memory interleaving) 
can effectively bypass the read buffer by providing words of the block at 
the processor clock rate. Note that the choice of burst vs. read buffering 
is independent of the initial latency of the memory; that is, burst mode can 
be used even if multiple wait states are required to access the first word 
of the block. 

Single word reads are used for uncacheable references (such as 1/0 or 
boot code) and may be used in response to a data cache miss. The 
processor is capable of retiring a single word read in as few as two clock 
cycles. 

The read interface of the R305 l family is described in detail in Chapter 7. 
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• DMAOperations: The R305 l family includes a OMA arbiter which allows 
an external agent to gain full control of the processor read and write 
interface. OMA is useful in systems which need to move significant 
amounts of data within memory (e.g. BitBIT operations) or move data 
between memory and I/0 channels. 

The R305 l family utilizes a very simple handshake to transfer control of 
its interface bus. This handshake is described in detail in chapter 9. 

MULTIPLE OPERATIONS 
It is possible for the R305 l family to have multiple interface activities 

pending. Specifically, there may be data in the write buffer, a read request (e.g. 
due to a cache miss}, a OMA mastership request, and an ongoing transaction 
all occurring simultaneously. 

In establishing the order in which the requests are processed, the R3051 
family is sensitive to possible conflicts and data coherency issues. For 
example, if the on-chip write buffer contains data which has not yet been 
written to memory, and the processor issues a read request to the target 
address of one of the write buffer entries, then the processor strategy must 
insure that the read request is satisfied by the new, current value of the data. 

Thus, in the R305 l family, multiple operations are serviced in the following 
order: 

1: Ongoing transactions are completed without interruption. 
2: OMA requests are serviced. 
3: Instruction cache misses are processed. 
4: Pending writes are processed. 
5: Data cache misses or uncacheable reads are processed. 

This service order has been designed to achieve maximum performance, 
minimize complexity, and solve the data coherency problem possible in write 
buff er systems. 

Note that this order assumes that the write buffer does not contain 
instructions which the processor may wish to execute. The processor does not 
write directly into the instruction cache: store instructions generate data 
writes which may change only the data cache. The only way in which an 
instruction reference may reside in the write buff er is in the case of self 
modifying code, generated with the caches swapped. If this technique is 
required in a system, then an uncacheable reference should occur prior to 
execution of the generated code, to insure that the write buffer is flushed. 
However, self-modifying code is typically not recommended. 

EXECUTION ENGINE FUNDAMENTALS 
This section describes the fundamentals of the processor read interface and 

its interaction with the execution core. These fundamentals will help to explain 
the relationship between design tradeoffs in the system interface and the 
performance achieved in R305 l / 52 based systems. 
Execution Core Cycles 

The R305 l I 52 execution core utilizes many of the same operation 
fundamentals as does the R3000A processor. Thus, much of the terminology 
used to describe the actMty of the R305 l / 52 is derived from the terminology 
used to describe the R3000A. In many instances, the activity of the execution 
core is independent of that of the bus interface unit. 
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Cycles 
A cycle is the basic timing reference of the R3051/52. Cycles in which 

forward progress is made (the processor pipeline advances) are called Run 
cycles. Cycles in which no forward progress occurs are called stall cycles. Stall 
cycles are used for resolving exigencies such as cache misses, write stalls, and 
other types of events. All cycles can be classified as either run or stall cycles. 

Run Cycles 
Run cycles are characterized by the transfer of an instruction into the 

processor core, and the optional transfer of data into or out of the execution 
core. Thus, each run cycle can be thought of as having an instruction and data, 
or ID, pair. 

There are actually two types of run cycles: cache run cycles, and refill run 
cycles. Cache run cycles (typically referred to as just run cycles) occur while 
the execution core is executing out of its on chip cache; these are the principal 
execution mechanism. 

Refill run cycles, ref erred to as streaming cycles, occur when the execution 
core is executing instructions as they are brought into the on-chip cache. For 
the R3051/52, streaming cycles are defined as cycles in which data is brought 
out of the on-chip read buffer into the execution core (rather than defining them 
as cycles in which data is brought from the memory interface to the read buff er). 

Stall Cycles 
There are three types of stall cycles: 
Walt Stall Cycles. These are commonly referred to simply as stall cycles. 

During wait stall cycles, the execution core maintains a state consistent 
with resolving a stall causing event. No cache activity will occur during 
wait stalls. 

Refill Stall Cycles. These occur only during memory reads, and are used 
to transfer data from the on-chip read buffer into the caches. 

Flxup Stall Cycles. Fixup cycles occur during the final cycle of a stall; that 
is, one cycle before entering a run cycle or entering another stall. During 
the final fixup cycle (the one which occurs before finally re-entering run 
operation), the ID pair which should have been processed during the last 
run cycle is handled by the processor. The fixup cycle is used to restart 
the processor and co-processor pipelines, and ingeneral to fixup conditions 
which caused the stall. 

The basic causes of stalls include: 
Read Busy Stalls: If the processor is utilizing its read interface, either to 

process a cache miss or an uncacheable reference, then it will be stalled 
until the read data is brought back to the execution core. 

Write Busy Stalls: If the processor attempts to perform a store operation 
while the on-chip write buffer is already full, then the processor will stall 
until a write transaction is begun on the interface to free up room in the 
write buffer for the new address and data. 

Multiply /Divide Busy Stalls: If software attempts to read the result 
registers of the integer multiply/ divide unit (the HI and LO registers) while 
a multiply or divide operation is underway, the processor execution core 
will stall until the results are available. 

Mlcro-TLB Fill Stalls: These stalls can occur when an instruction translation 
misses in the instruction TLB cache (the micro-TLB, which is a two-entry 
cache of the main TLB used to translate instruction references). When 
such an event occurs, the execution core will stall for one cycle, in order 
to refill the micro-TLB from the main TLB. Since this is a single-cycle stall, 
it is of necessity a fixup cycle. 
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Multiple Stalls 
Multiple stalls are possible whenever more than one stall initiating event 

occurs within a single run cycle. An example of such activity is when a single 
cycle results in both an instruction cache miss and a data cache miss. 

The most important characteristic of any multiple stall cycle is the validity 
of the ID pair processed in the final ffxup cycle. The R3051/52 execution core 
keeps track of nested stalls to insure that orderly operation is resumed once 
all of the stall causing events are processed. 

For the general case of multiple stalls, the service order is: 
1: Micro-TLB Miss and Partial Word Store 
2: Data Cache Miss or Write Busy Stall 
3: Instruction Cache Miss 
4: Multiply /Divide Unit Busy 
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PIN DESCRIPTION 
This section describes the signals used in the above interfaces. More detail 

on the actual use of these pins is found in other chapters. Note that many of 
the signals have multiple definitions which are de-multiplexed either by the 
ALE signal or the Rd and Wr control signals. Note that signals indicated with 
an overbar are active low. 

System Bus Interface Signals 

These signals are used by the bus interface to perform read and write 
operations. 

Ad.dress and Data Path 

A/D(31:0) I/O 

Address/Data: A 32-bit, time multiplexed bus which indicates the desired 
address for a bus transaction in one cycle, and which is used to transmit data 
between this device and external memory resources on other cycles. 

Bus transactions on this bus are logically separated into two phases: during 
the first phase, information about the transfer is presented to the memory 
system to be captured using the ALE output. This information consists of: 

Address(31:4): 

BE(3:0): 

The high-order address for the transfer is presented. 

These strobes indicating which bytes of the 32-bit bus 
will be involved in the transfer. BE(3) indicates that 
AD(31:24] is used; BE(2) indicates that AD(23:16) is 
used; BE(l) indicates thatAD(l5:8) is used; and BE(O) 
indicates that AD(7:0) is used. 

During write cycles, the bus contains the data to be stored and is driven from 
the internal write buffer. On read cycles, the bus receives the data from the 
external resource, in either a single word transaction or in a burst of four words, 
and places it into the on-chip read buffer. 

Addr(3:2) 0 

Low Address (3:2) A 2-bit bus which indicates which word is currently 
expected by the processor. Specifically, this two bit bus presents either the 
address bits for the single word to be transferred (writes or single word reads) 
or functions as a two bit counter starting at '00' for burst read operations. 

Read and Write Control Signals 

ALE 0 

Ad.dress Latch Enable: Used to indicate that the A/D bus contains valid 
address information for the bus transaction. This signal is used by external 
logic (transparent latches) to capture the address for the transfer. 

DataEn 0 

Data Input Enable: This signal indicates that the AD bus is no longer being 
driven by the processor during read cycles, and thus the external memory 
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system may enable the drivers of the memory system onto this bus without 
having a bus conflict occur. During write cycles, or when no bus transaction 
is occurring, then this signal is negated. 

Burst/ 
WrNear 0 

Burst Transfer: On read transactions. this signal indicates that the current 
bus read is requesting a block of four contiguous words from memory (a burst 
read). This signal is asserted only in read cycles due to cache misses; it is 
asserted for all I-Cache miss read cycles, and for D-Cache miss read cycles if 
selected at device reset time. 

Write Near: On write transactions, this output tells the external memory 
system that the bus interface unit is performing back-to-back write transactions 
to an address within the same 256 entry memory "page" as the prior write 
transaction. This signal is useful in memory systems which employ page mode 
or static column DRAMs. 

Rd 0 

Read: An output which indicates that the current bus transaction is a read. 

Wr 0 

Write: An output which indicates that the current bus transaction is a write. 

Ack I 

Acknowledge: An input which indicates to the device that the memory 
system has sufficiently processed the bus transaction, and that the processor 
may either advance to the next write buffer entry or release the execution core 
to process the read data. 

RdCEn I 

Read Buffer Clock Enable: An input which indicates to the device that the 
memory system has placed valid data on the AD bus, and that the processor 
may move the data into the on-chip Read Buffer. 

BusError I 

Bus Error: Input to the bus interface unit to terminate a bus transaction 
due to an external bus error. This signal is only sampled during read and write 
operations. If the bus transaction is a read operation, then the CPU will also 
take a bus error exception. 

Status Information 

Diag(I) 0 

Diagnostic Pin 1. This output indicates whether the current bus read 
transaction is due to an on-chip cache miss, and also presents part of the miss 
address. The value output on this pin is time multiplexed: 
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Cached: During the phase in which the A/D bus presents 
address information, this pin is an active high output 
which indicates whether the current read is a result of 
a cache miss. The value of this pin at this time in other 
than read cycles is undefined. 

Miss Address (3): During the remainder of the read operation, this output 
presents address bit (3) of the address the processor was 
attempting to reference when the cache miss occurred. 
Regardless of whether a cache miss is being processed, 
this pin reports the transfer address during this time. 

Diag(O) 0 

Diagnostic Pino. This output distinguishes cache misses due to instruction 
references from those due to data references. and presents the remaining bit 
of the miss address. The value output on this pin is also time multiplexed: 

I/D: If the "Cached" Pin indicates a cache miss, then a high 
on this pin at this time indicates an instruction reference, 
and a low indicates a data reference. If the read is not 
due to a cache miss but rather an uncached reference 
("Cached" is negated). then this pin is undefined during 
this phase. 

Miss Address (2): During the remainder of the read operation, this output 
presents address bit (2) of the address the processor was 
attempting to reference when the cache miss occurred. 
Regardless of whether a cache miss is being processed, 
this pin reports the transfer address during this time. 

DMA Arbiter Interface 

These signals are involved when the processor exchanges bus mastership 
with an external agent. 

BusReq I 

DMA Arbiter Bus Request: An input to the device which requests that the 
processor trt-state its bus interface signals so that they may be driven by an 
external master. The negation of this input releases the bus back to the 
R3051/52. 

BusGnt 0 

DMAArbiter Bus Grant. An output from the R305 l I 52 used to acknowledge 
that a BusReq has been detected, and that the bus is relinquished to the 
external master. 
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Interrupt Interface 

Chapter 5 discusses the exception model of the R3051 family. 

BrCond(I:O) 
SBrCond(3:2) I 

Branch Condition Port: These external signals are available as an input 
port to the processor, which can use the Branch on Co-Processor Condition 
instructions to test their polarity. The SBrCond bus is synchronized by the 
R3051/52, and thus may be driven by an asynchronous source; the BrCond 
signals are directly tied to the execution core, and thus must be generated 
synchronously. 

Slnt(2:0) 
Int(5:3) I 

Processor Interrupt: During operation, these signals are the same as the 
Int(5:0) signals of the R3000. During processor reset, these signals perform 
mode initialization of the processor. The Synchronized interrupt inputs are 
internally synchronized by the R3051/52, and thus may be generated by an 
asynchronous interrupt agent: the direct interrupts must be externally 
synchronized by the interrupt agent. 

Reset and Clocking 

Clk2xln I 

Master clock Input: This is a double frequency input used to control the 
timing of the processor 

SysClk 0 

System Reference Clock: An output from the processor which reflects the 
clock used to perform bus interface functions. This clock is used to control 
state transitions in the read buffer, write buffer, memory controller, and bus 
interface unit. It should be used as a timing reference by the external memory 
system. 

Reset I 

Master Processor Reset: This signal initializes the processor. Optional 
features of the processor are established during the last cycle of reset using the 
interrupt inputs. 

Miscellaneous 

Rsvd(4:0) 1/0 

Reserved: These five signal pins are reserved for testing and for future 
revisions of this device. Users must not connect these pins. 
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INTRODUCTION 
The R305 l family read protocol has been designed to interface to a wide 

variety of memory and 1/0 devices. Particular care has been taken in the 
definition of the control signals available to the system designer. These signals 
allow the system designer to implement a memory interface appropriate to the 
cost and performance goals of the end application. 

This chapter includes both an overview of the read interface as well as 
provides detailed timing diagrams of the read interface. 

TYPES OF READ TRANSACTIONS 
The majority of the execution engine read requests are never seen at the 

memory interface, but rather are satisfied by the internal cache resources of 
the processor. Only in the cases of uncacheable references or cache misses do 
read transactions occur on the bus. 

In general, there are only two types of read transactions: quad word reads 
and single word reads. Note that partial word reads of less than 32-bits can 
be thought of as a simple subset of the single word read. with only some of the 
byte enable strobes asserted. 

Quad word reads occur only in response to cache misses. All instruction 
cache misses are processed as quad word reads; data cache misses may be 
processed as quad word reads or single word reads, depending on the mode 
selection made during reset initialization of the device. 

In processing reads. there are two parameters of interest. The first 
parameter is the initial latency to the first word of the read. This latency is 
influenced by the overall system architecture as well as the type of memory 
system being addressed: time required to perform address decoding, and 
perform bus arbitration, memory pre-charge requirements, and memory 
control requirements, as well as memory access time. The initial latency is the 
only parameter of interest in single word reads. 

The second parameter of interest (only in quad word refills) is the repeat rate 
of data; that is, time required for subsequent words to be processed back to the 
processor. Factors which influence the repeat rate include the memory system 
architecture, the types and speeds of devices used, and the sophistication of 
the memory controller: memory interleaving, the use of page or static column 
mode, and faster devices all serve to increase the repeat rate (minimize the 
amount of time between adjacent words). 

The R305 l family has been designed to accommodate a wide variety of 
memory system designs, including no wait state operations (first word available 
in two cycles) and true burst operation (adjacent words every clock cycle), 
through simpler, slower systems incorporating many bus wait states to the first 
word and multiple clock cycles between adjacent words (this is accomplished 
by use of the on-chip read buffer). 
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READ INTERFACE SIGNALS 
The read interface uses the signals listed below. Signal names indicates with 

an overbar are active low. 

0 

This output indicates that a read operation is occurring. 

A/D (31:0) I/O 

ALE 

During read operations, this bus is used to transmit the read target 
address to the memory system, and is used by the memory system to 
return the required data back to the processor. Its function is de
multiplexed using other control signals. 

During the addressing portion of the read transaction, this bus contains 
the following: 

Address(31:4) The upper 28 bits of the read address are presented 
on A/D (31:4). 

BE(3:0) Thebytestrobesforthereadtransactionarepresented 
on A/D(3:0). 

0 

This output signal is typically connected directly to the latch enable of 
transparent latches. Latches are typically used to de-multiplex the 
address and Byte Enable information from the A/D bus. 

Addr(3:2) 0 

The remaining bits of the transfer address are presented directly on these 
outputs. In the case of quad word reads, these pins function as a two bit 
counter starting at '00'. and are used to perform the quad word transfer. 
In the case of single (or partial word) reads, these pins contain Address 
(3:2) of the transfer address. 

DataEn O 

This output indicates that the A/D bus is no longer being driven by the 
processor, and thus the output drivers of the memory system may be 
enabled. 

Special logic on the R305 l / 52 guarantees the following: 

The A/D bus is driven to guarantee that a minimum of Ons hold time 
from the negation of ALE. 
The R305 l I 52 A/D bus output drivers will be disabled a minimum of 
Ons before the assertion of DataEn. 

Thus, the system designer is assured that ALE can be used to directly 
control the latch enable of a transparent latch. Similarly, DataEn can be 
used to directly control the output enable of memory system drivers. 

Burst 0 

This output distinguishes between quad word reads and other reads. 

7-2 

READ INTERFACE 



READ INTERFACE CHAPTER7 

RdCEn I 

Read Buffer Clock Enable is used by the external memory system to cause 
the processor to capture the contents of the A/D bus. In the case of quad 
word reads, this causes the contents of the A/D bus to be strobed into the 
on-chip read buffer: in the case of single word reads, this causes the 
processor to capture the read data and may also terminate the read 
operation. 

I 

Acknowledge is used by the memory system to indicate that it has 
sufficiently processed the read transaction, and that the internal execution 
core may begin processing the read data. Thus. Ack can be used by the 
external memory system to cause the execution core to begin processing 
the read data simultaneously with the memory system bringing in 
additional words of the burst refill. The timing of the assertion of Ack by 
the memory system must be constructed to insure that words not yet 
retrieved from the memory will be brought in before they are required by 
the execution core. 

When the memory system is able to supply words at the rate of one per 
clock cycle (after the initial latency), Ack can be asserted simultaneous 
with the initial RdCEn to achieve the highest levels of performance. 

Other systems, which utilize simpler memory system strategies, may 
ignore the use of Ack in read transactions. The processor will recognize 
the implicit termination of a read operation by the assertion of the 
appropriate number (one orfour) ofRdCEn. While this approach is simpler 
to design, a small loss of performance will result. 

BusError I 

This input can be used to terminate a read operation. It will also cause 
the processor to take a BusError exception. Read transactions terminated 
by BusError do not require the assertion of Ack or RdCEn. 

Diag(l) 0 

During the address phase of the read transaction, this output indicates 
whether the read is a result of a cache miss or an uncacheable reference. 

During the remainder of the transfer, this output indicates Address(3) of 
the actual address reference which missed in the cache. 

This pin is useful in the initial debug of R305 l family based systems. 

Diag(O) 0 

During the address phase of the read transaction, this output indicates 
whether the read is a result of an instruction or data reference. 

During the remainder of the transfer, this output indicates Address(2) of 
the actual address reference which missed in the cache. 

This pin is useful in the initial debug of R305 l family based systems. 
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READ INTERFACE TIMING OVERVIEW 
The read interface is designed to allow a variety of memory strategies. An 

overview of how data is transmitted from memory and 1/0 devices to the 
processor is discussed below. Note that multiplexing the address and data bus 
does not slow down read transactions: the address is on the A/D bus for only 
one-half clock cycle, so the data drivers can be enabled quickly; memory and 
1/0 devices initiate their transfers based on addressing and chip enable, not 
on the availability of the bus. Thus, memory does not need to "wait" for the bus, 
and no performance penalty occurs. 

Initiation of Read Request 
A read transaction occurs when the processor internally performs a run 

cycle which is not satisfied by the internal caches. Immediately after the run 
cycle, the processor enters a stall cycle and asserts the internal control signal 
MemRd. This signals to the internal bus interface unit arbiter that a read 
transaction is pending. 

Assuming that the read transaction can be immediately processed (that is, 
there are no ongoing bus operations, and no higher priority operations 
pending), the processor will initiate a bus read transaction on rising edge of 
SysClk which occurs during phase 2 of the processor stall cycle. Higher priority 
operations would have the effect of delaying the start of the read by inserting 
additional processor stall cycles. 

PhiClk 

SysClk 

MemRd 

Rd 

Burst 

ALE 

A/0(31 :0) 

Data En 

Diag(1 :O) 

Run 

Stall 
(Arbitration) 

Addr 

Control 

Stall 

MissAddr 

Address Turn 
Mem. Bus 

Figure 7.1. CPU Latency to Start of Read 
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Figure 7 .1 illustrates the initiation of a read transaction, based on the 
internal assertion of the MemRd control signal. This figure is useful in 
determining the overall latency of cache misses on processor operation. 

Memory Addressing 
A read transaction begins when the processor asserts its Rd control output, 

and also drives the address and other control information onto the A/D and 
memory interface bus. Figure 7.2 illustrates the start of a processor read 
transaction, including the addressing of memory and the bus turn around. 

The addressing occurs in a half-cycle of the SysClk output. At the rising edge 
of SysClk, the processor will drive the read target address onto the A/D bus. 
At this time, ALE will also be asserted, to allow an external transparent latch 
to capture the address. Depending on the system design, address decoding 
could occur in parallel with address de-multiplexing (that is, the decoder could 
start on the assertion of ALE, and the output of the decoder captured by ALE), 
or could occur on the output side of the transparent latches. During this phase, 
DataEn will be held high indicating that memory drivers should not be enabled 
onto the A/D bus. 

Concurrent with driving addresses on the A/D bus, the processor will 
indicate whether the read transaction is a quad word read or single word read, 
by driving Burst to the appropriate polarity (low for a quad word read). If a quad 
word read is indicated, the Addr(3:2) lines will drive '00' (the start of the block); 
if a single word (or subword) is indicated, the Addr(3:2) lines will indicate the 
word address for the transfer. The functioning of the counter during quad 
words is described later. 

Bus Turn Around 
Once the A/D bus has presented the address for the transfer, it is "turned 

around" by the processor to accept the incoming data. This occurs in the 
second phase of the first clock cycle of the read transaction, as illustrated in 
Figure 7.2. 

The processor turns the bus around by carefully performing the following 
sequence of events: 

• It negates ALE, causing the transparent address latches to capture the 
contents of the A/D bus. 

• It disables its output drivers on the A/D bus, allowing it to be driven by 
an external agent. The processor design guarantees that the ALE is 
negated prior to tri-stating the A/D bus. 

• The processor then asserts DataEn, to indicate that the bus may be now 
driven by the external memory resource. The processor design insures 
that theA/D bus is released prior to DataEn being asserted. DataEn may 
be directly connected to the output enable of external memory, and no bus 
conflicts will occur. 

Thus, the processor AID bus is ready to be driven by the end of the second 
phase of the read transaction. At this time, it begins to look for the end of the 
read cycle. 

Bringing Data into the Processor 
Regardless of whether the transfer is a quad word read or a single word 

transfer. the basic mechanism for transf errtng data presented on the A/D bus 
into the processor is the same. 

Although there are two control signals involved in terminating read operations, 
only the RdCEn signal is used to cause data to be captured from the bus. 

7-5 



CHAPTER 7 

SysClk 

Rd 
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DataEn 
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Figure 7 .2. Start of Bus Read Operation 
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The memory system asserts RdCEn to indicate to the processor that it has 
(or will have) data on the A/D bus to be sampled. The earliest that RdCEn can 
be detected by the processor is the rising edge of SysClk after it has turned the 
bus around (start of phase 1 of the second clock cycle of the read). 

If RdCEn is detected as asserted (with adequate setup and hold time to the 
rising edge of SysClk), the processor will capture (with proper setup and hold 
time) the contents of the A/D bus on the immediately subsequent falling edge 
of SysClk. This captures the data in the internal read buffer for later processing 
by the execution core/ cache subsystem. 

Figure 7.3 illustrates the sampling of data by an R3051/52. 
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Figure 7.3. Data Sampling on R3051/52 
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There are actually three methods for the external memory system to 
terminate an ongoing read operation: 

• It can supply an Ack (acknowledge) to the processor, to indicate that it has 
sufficiently processed the read request and has or will supply the 
requested data in a timely fashion. Note that Ack may be signalled to the 
processor "early", to enable it to begin processing the read data even while 
additional data is brought from the A/D bus. This is applicable only in 
burst read operations. 

• It can supply a BusError to the processor, to indicate that the requested 
data transfer has "failed" on the bus, and force the processor to take a bus 
error exception. Although the system interface behavior of the processor 
when BusError is presented is identical to the behavior when Ack is 
presented, no data will actually be written into the on-chip cache. Rather, 
the cache line will either remain unchanged, or will be invalidated by the 
processor. depending on how much of the read has already been processed. 

• The external memory system can supply the requested data, using RdCEn 
to enable the processor to capture data from the bus. The processor will 
"count" the number of times RdCEn is sampled as asserted; once the 
processor counts that the memory system has returned the desired 
amount of data (one word or four words), it will implicitly "acknowledge" 
the read at the same time that it samples the last required RdCEn. This 
approach leads to a simpler memory design at the cost oflower performance. 

Throughout this chapter, method one will be illustrated. The other cases can 
easily be extrapolated from these diagrams (for example, the system designer 
can directly substitute BusError for Ack in these drawings; similarly, he can 
assume that Ack is asserted simultaneous with the last RdCEn of a read transfer). 

There are actually two phases of terminating the read: there is the phase 
where the memory system indicates to the processor that it has sufficiently 
processed the read request, and the internal read buff er can be released to 
begin refilling the internal caches; and there is the phase in which the read 
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control signals are negated by the processor bus interface unit. The difference 
between these phases is due to block refill: it is possible for the memory system 
to "release" the execution core even though additional words of the block are 
stlll required; in that case, the processor will continue to assert the external 
read control signals until all four words are brought into the read buffer, while 
simultaneously refilling/ executing based on the data already brought on 
board. 

Figure 7.4 shows the timing of the control signals when the read cycle is 
being terminated. 

t2a 
Driven by CPU 

A/0(31 :O) 

ALE 

Addr(3:2) 

Diag(1 :O) 

4000drw48 

Figure 7 .4. Read Cycle Termination 

Latency Between Processor Operations 
In general, the processor may begin a new bus activity in the phase 

immediately after the termination of the read cycle. Although this operation 
may logically be either a read, write, or bus grant, there are no cases where a 
read operation can be signalled by the internal execution core at this time. 

Since a new operation may begin one-half clock cycle after the data is 
sampled from the bus, it is important that the external memory system cease 
to drive the bus prior to this clock edge. In order to simplify design, the 
processor provides the DataEn output, which can be used to control either the 
Output Enable of the memory device (presuming its trt-state time is fast 
enough), or to control the Output Enable of a buffer or transceiver between the 
memory device data bus and the processor A/D bus. This is illustrat~d in 
Figure 7.5. 
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In general, the processor will execute stall cycles until Ack is detected. It will 
then begin the process of refilling the internal caches from the read buffer. 

The system designer should consider the difference between the time when 
the memory interface has completed the read, and when the processor core has 
completed the read. The bus interface may have successfully returned all of 
the required data, but the processor core may still require additional clock 
cycles to bring the data out of the read buffer and into the caches. Figure 7.6 
illustrates the relationship between Ack and the internal activity for a block 
read. 

Stall 

PhiClk 

Stall 

Rd Busy 
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Refill/ 
Stream/ 

Fixup 
Word o 

Refill/ 
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Stream/ 
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Figure 7 .6. Internal Processor States on Burst Read 
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This figure illustrates that the processor may perform either a stream. fixup, 
or refill cycle in cycles in which data is brought from the read buffer. The 
difference between these cycles is defined as: 

• Refill. A reftll cycle is a clock cycle in which data is brought out of the read 
buffer and placed into the internal processor cache. The processor does 
not execute on this data. 

• Flxup. A fixup cycle is a cycle in which the processor transitions into 
executing the incoming data. It can be thought of as a "retry" of the cache 
cycle which resulted in a miss. 

• Stream. A stream cycle is a cycle in which the processor simultaneously 
refills the internal cache and executes the instruction brought out of the 
read buffer. 

When reading the block from the read buffer. the processor will use the 
following rules: 

For uncacheable references, the processor will bring the single word out 
of the read buffer using a fixup cycle. 

For data cache refill, it will execute either one or four refill cycles, followed 
by a fixup cycle. 

For instruction cache refill. it will execute refill cycles starting at word zero 
until it encounters the miss address, and then transition to a fixup cycle. 
It will then execute stream cycles until either the entire block is processed, 
or an event stops execution. If something causes execution to stop, the 
processor will process the remainder of the block using simple refill cycles. 
For example, Figure 7.7 illustrates the refill/fixup/stream sequence 
appropriate for a miss which occurs on the second word of the block (word 
address 1). 

Although this operation is transparent to the external memory system, it is 
important to understand this operation to gauge the impact of design trade-offs 
on performance. 
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Figure 7.7. Instruction Streaming Example 
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READ TIMING DIAGRAMS 
This section illustrates a number of timing diagrams applicable to R305 l 

family read transactions. These diagrams reference AC parameters whose 
values are contained in the R3051/52 data sheet. 

Single Word Reads 
Figure 7 .8 illustrates the case of a single word read which did not require wait 

states. Thus, Ack was detected at the rising edge of SysClk which occurred 
exactly one clock cycle after the risin_g__edge of SysClk which asserted Rd. Data 
was sampled one phase later, and Rd and DataEn disabled from that falling 
edge of SysClk. Thus, the execution core required three stall cycles and a fixup 
to process the internal data. 

Run/ 
Fix up/ 
Stall 

PhiClk 

A/0(31 :O) 

Stall Stall Stall 

t14 

Start Turn Ack/ Sample New 
Read Bus RdCen Data Transaction 

Figure 7 .8. Single Word Read Without Bus Walt Cycles 
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Figure 7.9 also illustrates the case of a single word read. However. in this 
figure. two bus wait cycles were required before the data was returned. Thus, 
two rising edges of SysClk occurred where neither RdCEn or Ack were asserted. 
On the third rising edge of SysClk, RdCEn was asserted. Optionally, Ack could 
also be asserted at this time, although it is not strictly necessary. 

Run/ 
Fixup/ 
Stall 

Stall Stall Stall Stall Stall Fix up 
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Figure 7.9. Single Word Read With Bus Wait Cycles 
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Figure 7.10. Burst Read With No Wait Cycles 

Block Reads 
Figure 7 .10 illustrates the absolute fastest block read. The first word of the 

block is returned in the second cycle of the read; each additional word is 
returned in the immediately subsequent clock cycle. Thus, Ack can be returned 
simultaneously with the first RdCEn, to minimize the number of processor stall 
cycles. 

Note that although Ack is brought in the first data cycle, a number of clock 
cycles are required before the processor negates the Rd control output. Thus, 
the system designer is assured that Rd remains active as long as the processor 
continues to expect data. 

Figure 7.11 (a, b) illustrates a block read in which bus wait cycles are 
required before the first word is brought to the processor, but in which 
additional words can be brought in at the processor clock rate. Thus, as with 
the no wait cycle operation, Ack is returned simultaneously with the first 
RdCEn. Figure 7 .11 (a) illustrates the start of the block read, including initial 
wait cycles to the first word; Figure 7.11 (b) illustrates the activity which occurs 
as data is brought onto the chip and the read is terminated. 
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Figure 7.llb. End of Burst Read 
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Figure 7.12 (a, b) illustrates a block read in which bus wait cycles are 
required before the first word is returned, and in which wait cycles are required 
between subsequent words: figure 7.12 (a) illustrates the the first two words 
of the block being brought on chip; figure 7.12 (b) illustrates the last two words 
of the read, including the optimum timing of Ack, and the negation of the read 
control signals. 
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Figure 7.12a. First Two Words of"Throttled" Quad Word Read 
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Figure 7.12b. End of Throttled Quad Word Read 

In this diagram, the memory system returns Ack according to when the 
processor will empty the read buff er. In order to determine the optimum time 
to return Ack, the system designer must look at when the processor would read 
the fourth word from the read buffer. Align this cycle with one clock cycle after 
the memory System will return the fourth word to the processor. As shown in 
figure 5.12(b). the memory system should return Ack five cycles prior to when 
the execution core requires the fourth word. The system designer should also 
insure that the third, second, etc. words of the read cycle are available to the 
read buff er before the execution core removes them to the caches. 

7-17 



CHAPTER7 

Bus Error Operation 
Figure 7.13 is a modified version of Figure 7.9 (single word read with wait 

cycles). in which BusError is used to terminate the read cycle. In this diagram, 
note that RdCEn does not need to be asserted, since the processor will insure 
that the contents of the A/D bus do not get written into the cache or executed. 
In single word reads, BusError can be asserted anytime up until Ack is asserted. 
IfBusError andAckare asserted simultaneously, the BusErrorwill be processed; 
if BusError is asserted after Ack is sampled, it will be ignored. 

Figure 7.14 shows the impact ofBusError on block reads. The assertion of 
BusError is allowed up until the assertion of Ack. Once BusError is asserted 
(sampled on a rising edge of SysClk), the read cycle will be terminated 
immediately, regardless of how many words have been written into the read 
buffer. Note that this means that the external memory system should stop 
cycling RdCen at this time, since a late RdCEn may be erroneously detected as 
part of a subsequent read. Note that if BusError and Ack are asserted 
simultaneously, BusError processing will occur. If BusError is asserted after 
Ack, the BusError will be ignored. 
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Figure 7.13. Single Word Read Terminated by Bus Error 
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Figure 7.14. Block Read Terminated by Bus Error 
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WRITE INTERFACE CHAPTERS 

INTRODUCTION 
The write protocol of the R305 l family has been designed to complement the 

read interface of the processor. Many of the same signals are used for both 
reads and writes, simplifying the design of the memory system control logic. 

This chapter includes both an overview of the write interface as well as 
provides detailed timing diagrams of the write interface. 

IMPORTANCE OF WRITES IN R3051 FAMILY SYSTEMS 
The design goal of the write interface was to achieve two things: 

Insure that a relatively slow write cycle does not unduly degrade the 
performance of the processor. To this end, a four deep write buffer has 
been incorporated on chip. The role of the write buffer is to decouple the 
speed of the memory interface from the speed of the execution engine. The 
write buffer captures store information (data, address, and transaction 
size) from the processor at its clock rate, and later presents it to the 
memory interface at the rate it can perform the writes. Four such buffer 
entries are incorporated, thus allowing the processor to continue execution 
even when performing a quick succession of writes. Only when the write 
buffer is filled must the processor stall: simulations have shown that 
significantly less than 1 % of processor clock cycles are lost to write buffer 
full stalls. 

Allow the memory system to optimize for fast writes. To this end, a number 
of design decisions were made: the WrN ear signal is provided to allow page 
mode writes to be used in even simple memory systems: the A/D bus 
presents the data to be written in the second phase of the first clock cycle 
of a write transaction: and writes can be performed in as few as two clock 
cycles. 

All though it may be counter-intuitive, a significant percentage of the bus 
traffic will in fact be processor writes to memory. This can be demonstrated if 
one assumes the following: 

Instruction Mix: 
ALU Operations 55% 
Branch Operations 15% 
Load Operations 20% 
Store Operations 10% 

Cache Performance 
Instruction Hit Rate 98% 
Data Hit Rate 96% 

Under these assumptions, in 100 instructions, the processor would 
perform: 

2 Reads to process instruction cache misses on instruction fetches 
4% x 20 = 0.8 reads to process data cache misses on loads 
10 store operations to the write through cache 
Total: 2.8 reads and 10 writes 
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Thus. in this example, over 75% of the bus transactions arewrite operations. 
even though only 10 instructions were store operations, vs. 100 instruction 
fetches and 20 data fetches. 

TYPES OF WRITE TRANSACTIONS 
Unlike instruction fetches and data loads. which are usually satisfied by the 

on-chip caches and thus are not seen at the bus interface, all write activity is 
seen at the bus interface as single write transactions. There is no such thing 
as a "burst write": the processor performs a word or subword write as a single 
autonomous bus transaction: however, the WrN ear output does allow successive 
write transactions to be processed using page mode writes. This is particularly 
important when "flushing" the write buffer before performing a data read. 

Thus, there really is only one type of write transaction: however, the memory 
system may elect to take advantage of the assertion ofWrNear during a write 
to perform quicker write operations than would otherwise be performed. 
Alternately, a high-performance DRAM controller may utilJze a different 
strategy for performing page mode transactions (read or write) to the DRAM. 

In processing writes, there is only one parameter of interest: the latency of 
the write. This latency is influenced by the overall system architecture as well 
as the type of memory system being addressed: time required to perform 
address decoding and bus arbitration, memory pre-charge requirements. and 
memory control requirements. as well as memory access time. WrNear may be 
used to reduce the latency of successive write operations. 

The R305 l family has been designed to accommodate a wide variety of 
memory system designs, including no wait cycle operations (write completed 
in two cycles) through simpler, slower systems incorporating many bus wait 
cycles. 

Partial Word Writes 
When the processor issues a store instruction which stores less than a 32-

bit quantity, a partial word store occurs. The R3051 family processes partial 
word stores using a two clock cycle sequence: 

It attempts a cache read to see if the store address is cache resident. If 
it is, it will merge the partial word with the word read from the cache, and 
write the resulting word back into the cache. 

It will use a second clock cycle to allow the write buffer to capture the 
partial word data and target address and update the cache if appropriate. 
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WRITE INTERFACE SIGNALS 
The write interface uses the following signals: 

Wr 0 

This output indicates that a write operation is occurring. 

A/D (31:0) 1/0 

ALE 

During write operations, this bus is used to transmit the write target 
address to the memory system, and is also used to transmit the store data 
to the memory system. Its function is de-multiplexed using other control 
signals. 

During the addressing portion of the write transaction, this bus contains 
the following: 

Address(31:4) The upper 28 bits of the write address are presented 
onA/D (31:4). 

BE(3:0) The byte strobes for the write transaction are presented 
onA/D(3:0). 

During the data portion of the write transaction, the A/D bus contains the 
store data on the appropriate data lines. as indicated by the BE strobes 
during the addressing phase. 

0 

This output signal is typically connected directly to the latch enable of 
transparent latches. Latches are typically used to de-multiplex the 
address and Byte Enable information from the A/D bus. 

Addr(3:2) 0 

The remaining bits of the transfer address are presented directly on these 
outputs. Duling write transactions, these pins contain Address (3:2) of 
the transfer address. 

DataEn O 

This output will remain high throughout the write transaction. It is 
typically used by the memory system to enable output drivers: the CPU 
will maintain this output as high throughout write transactions, thus 
disabling memory system output drivers. 

WrNear 0 

This output is driven valid during the addressing phase of the write 
transaction. It is asserted if: 

1: The store target address of this write operation has the same 
Addr(31: 10) as the previous write transaction, and 

2: No read or DMA transaction has occurred since the last write. 

If one or both of these conditions are not met. the WrN ear output will not 
be asserted during the write transaction. 
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Ack I 

Acknowledge is used by the memory system to indicate that it has 
sufficiently processed the write transaction, and that the CPU may 
terminate the write transaction (and cease driving the write data). 

BusError I 

This input can also be used to terminate a write operation. BusError 
asserted during a write will not cause the processor to take a BusError 
exception. If the system designer would like the occurrence of a BusError 
to cause a processor exception, he must use it to externally generate an 
interrupt to the processor. Write transactions terminated by BusError do 
not require the assertion of Ack. BusError can be asserted at at any time 
the processor is looking for Ack to be asserted, up to and including the 
cycle in which the memory system does signal Ack. 
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WRITE INTERFACE TIMING OVERVIEW 
The protocol for transmitting data from the processor to memory and 1/0 

devices is discussed below. 

Initiating the Write 
A write transaction occurs when the processor has placed data into the write 

buffer, and the bus interface is either free, or write has the highest priority. 
Internally. the processor bus arbiter uses the NotEmpty indicator from the 
write buffer to indicate that a write is being requested. 

Assuming that the write transaction can be processed (that is, there are no 
ongoing bus operations, and no higher priority operations pending). the 
processor will initiate a bus write transaction on the next rising edge of SysClk. 
Higher priority operations would have the effect of delaying the start of the 
write. 

Figure 8. 1 illustrates the initiation of a write transaction, based on the 
internal assertion of the WbEmpty control signal. This figure applies when the 
processor is performing a write, and the write buffer is otherwise empty. If the 
write buffer already had data in it, it would continually request the use of the 
bus until it was emptied; it would be up to the bus interface unit arbiter to 
decide the priority of the request relative to other pending requests. Additional 
stores would be captured by other write buffer entries, until the write buffer 
was filled. 

Store 

PhiClk 

MemWr 

Run 
(Arbitration) Run 

WbEmpty ______ ___, 

Wr 

WrNear 

ALE 

A/D(31 :O) Addr 

Address Drive 
Mem. Data 

Data 

Figure 8.1. Start of Write Operation - BIU Arbitration 
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Memory Addressing 
A write transaction begins when the processor asserts its Wr control output, 

and also drives the address and other control information onto the A/D and 
memory interface bus. Figure 8.2 illustrates the start of a processor write 
transaction, including the addressing of memory and presenting the store data 
on the A/D bus. 

The addressing occurs in a half-cycle of the SysClk output. At the rising edge 
of SysClk, the processor will drive the write target address onto the A/D bus. 
At this time, ALE will also be asserted, to allow an external transparent latch 
to capture the address. Depending on the system design, address decoding 
could occur in parallel with address de-multiplexing (that is, the decoder could 
start on the assertion of ALE, and the output of the decoder captured by ALE), 
or could occur on the output side of the transparent latches. During this phase, 
WrNearwill also be determined and driven out by the processor. 

Data Phase 
Once the A/D bus has presented the address for the transfer, the address 

is replaced on the A/D bus by the store data. This occurs in the second phase 
of the first clock cycle of the write transaction, as illustrated in Figure 8.2. 

The processor enters the data phase by performing the following sequence 
of events: 

• It negates ALE, causing the transparent address latches to capture the 
contents of the A/D bus. 

• It internally captures the data in a register in the bus interface unit, and 
enables this register onto its output drivers on the A/D bus. The 
processor design guarantees that the ALE is negated prior to the address 
being removed from the A/D bus. 
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Wr 

A/0(31:0) 
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WrNear 

Address 
Memory 

Data 
Phase 

Data 
Out 
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Figure 8.2. Memory Addreaaing and Start of Write 
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Thus, the processor A/D bus is driving the store data by the end of the 
second phase of the write transaction. At this time, it begins to look for the end 
of the write cycle. 

Terminating the Write 
There are only two methods for the external memory system to terminate a 

write operation: 

• It can supply anAck (acknowledge) to the processor, to indicate that it has 
sufficiently processed the write request, and the processor may terminate 
the write. 

• It can supply a BusError to the processor, to indicate that the requested 
data transfer has "failed" on the bus. The system interface behavior of the 
processor when BusError is presented is identical to the behavior when 
Ack is asserted. In the case of writes terminated by BusError, no 
exception is taken, and the data transfer cannot be retried. 

Figure 8.3 shows the timing of the control signals when the write cycle is 
being terminated. 

SysClk 

Ack 

A/0(31 :0) 

Wr 

WrNear 

ALE 
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t1 

Ack Start New 
Transaction 

Figure 8.3. End of Write 

Latency Between Processor Operations 

4000drw63 

In general, the processor may begin a new bus activity in the phase 
immediately after the termination of the write cycle. This operation may be 
either a read, write, or bus grant. 

Since a new operation may begin one-half clock cycle after the data is 
sampled from the bus, it is important that the external memory system not rely 
on the store data still being present on the bus at this time. 
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Write Buffer Full Operation 
It is possible that the execution core on occasion may be able to fill the on

chip write buffer. If the processor core attempts to perform a store to the write 
buff er while the buffer is full, the execution core will be stalled by the write 
buffer until a space is available. Once space is made available, the execution 
core will use a fixup cycle to "retry" the store, allowing the data to be captured 
by the write buffer. It will then resume execution. 

The write buffer can actually be thought of as "four and one-half' entries: it 
contains a special data buffer which captures the data being presented by an 
ongoing bus write transaction. Thus, when the bus interface unit begins a 
write transaction, the write buffer slot containing the data for that write is freed 
up in the second phase of the write transaction. If the processor was in a write 
busy stall, it will be released to write into the now available slot at this time, 
regardless of how long it takes the memory system to retire the ongoing write. 

This operation is illustrated in figure 8.4. 
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Stal (Arbitration) 

PhiClk 

SysClk 

MemWr 

WbFull 

Wr 

WrNear 

ALE 

A/D(31 :0) Data 

Address Drive 
Mem. Data 

4000drw64 

Figure 8.4. Write Buffer Full Operation 
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WRITE TIMING DIAGRAMS 
This section illustrates a number of timing diagrams applicable to R3051 

family writes. The values for the AC parameters referenced are contained in 
the R3051 family data sheet. 

Basic Write 
Figure 8. 5 illustrates the case of a write operation which did not require wait 

states. Thus, Ack was detected at the rising edge of SysClk which occurred 
exactly one clock cycle after the rising edge of SysClk which asserted Wr. 

Figure 8.6 also illustrates the case of a basic write. However, in this figure, 
two bus wait cycles were required before the data was retired. Thus, two rising 
edges of SysClk occurred where Ack was not asserted. On the third rising edge 
of SysClk, Ack was asserted, and the write operation was terminated. 
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Figure 8.5. Bus Write With No Wait Cycles 
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Figure 8.6. Write With Bus Wait Cycles 
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Bus Error Operation 
Figure 8. 7 is a modified version of Figure 8.6 (basic write with wait cycles), 

in which BusError is used to terminate the write cycle. If BusError and Ack 
are asserted simultaneously, the BusError will be processed; if BusError is 
asserted after Ack is sampled, it will be ignored. 

No exception is taken because such an exception would violate the precise 
exception model of the processor. Since writes are buffered, the processor 
program counter will no longer be pointing to the address of the store 
instruction which requested the write, and other state information of the 
processor may have been changed. Thus, if the system designer would like the 
processor core to take an exception as a result of the bus error, he should 
externally latch the BusError signal, and use the output of the latch to cause 
an interrupt to the processor. 

Start Data Ack? 
Write Out 

Ack? Bus Negarte New 
Error W Transfer 
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Figure 8.7. Bua Error on Write 
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INTRODUCTION 
The R3051 family contains provisions to allow an external agent to remove 

the processor from its memory bus, and thus perform transfers (DMA). These 
provisions use the DMAarbiterto coordinate the external request for mastership 
with the CPU read and write interface. 

The DMA arbiter interface uses a simple two signal protocol to allow an 
external agent to obtain mastership of the external system bus. Logic internal 
to the CPU synchronizes the external interface to the internal arbiter unit to 
insure that no conflicts between the internal synchronous requesters (read and 
write engines) and external asynchronous (DMA) requester occurs. 

INTERFACE OVERVIEW 
An external agent indicates the desire to perform DMArequests by asserting 

the BusReq input to the processor. DMA requests have the highest priority, 
and thus, once the request is detected, is guaranteed to gain mastership at the 
next arbitration. 

The CPU indicates that the external DMA cycle may begin by asserting its 
BusGnt output on the rising edge of SysClk after BusReq is detected with 
appropriate set-up time to the external rising edge of SysClk. During DMA 
cycles, the processor holds the following memory interface signals in tri-state: 

• A/D Bus 
• Addr(3:2) 
• Interface control signals: Rd, Wr, DataEn, Burst/WrNear, and ALE 
• Diag(l:O) 

In addition to tri-stating these signals, the CPU will ignore transitions on 
RdCEn, Ack, and BusError during DMA cycles. 

Thus, the DMA master can use the same memory control logic as that used 
by the CPU: it may use Bl:irSt, for example, to obtain a burst of data from the 
memory: it may use RdCEn to detect whether the memory has satisfied its 
request, etc. Thus, DMA can occur at the same speed at which the R3051 
family allows data transfers on its bus (a peak of one word per clock cycle). 
During DMA cycles, the processor will continue to operate out of cache until 
it requires the bus. 

The external agent indicates that the DMA transfer has terminated by 
negating the BusReq input to the processor, which is sampled on the rising 
edge of SysClk. BusGnt is negated on a falling edge of SysClk, so that it will 
be negated before the assertion of Rd or Wr for a subsequent transfer. On the 
next rising edge of SysClk, the processor will resume driving tri-stated signals. 

Note that there is no hardware coherency mechanism defined for DMA 
transfers relative to either the internal caches or the write buffer. Software 
must explicitly manage D MA transfers to insure that data conflicts are avoided. 
This is an appropriate tradeoff for the vast majority of embedded applications. 
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DMA ARBITER INTERFACE SIGNALS 

BusReq I 

This signal is an input to the processor, used to request mastership of the 
external interface bus. Mastership is granted according to the assertion of this 
input, and taken back based on its negation. 

BusGnt O 

This signal is an output from the processor, used to indicate that it has 
relinquished mastership of the external interface bus. 
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DMA ARBITER TIMING DIAGRAMS 
These figures reference AC timing parameters whose values are contained 

in the R305 l family data sheet. 

Initiation of DMA Mastership 
Figure 9.1 shows the beginning of a DMA cycle. Note that if BusReq were 

asserted while the processor was performing a read or write operation, BusGnt 
would be delayed until the next bus slot after the read or write operation is 
completed. 

To initiate DMA, the processor must detect the assertion ofBusReq with proper 
set-up time to SysClk. Once BusReq is detected, and the bus is free, the 
processor will grant control to the requesting agent by asserting its BusGnt 
output, and tri-stating its output drivers, from a rising edge ofSysClk. The bus 
will remain in the control of the external master until it negates BusReq, 
indicating that the processor is once again the bus master. 
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Figure 9.1. Bus Grant and Start of DMA Transaction 
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Relinquishing Mastership Back to the CPU 
Figure 9.2 shows the end of a DMAcycle. The next rising edge ofSysClk after 

the negation of BusReq is sampled may actually be the beginning of a processor 
read or write operation. 

To terminate DMA, the external master must negate the processor BusReq 
input. Once this is detected (with proper setup and hold time), the processor 
will negate its BusGnt output on the next falling edge of SysClk. It will also re
enable its output drivers. Thus, the external agent must disable its output 
drivers by this clock edge, to avoid bus conflicts. 
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Figme 9.2. Regaining Bus Mastership 
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RESET INITIALIZATION CHAPTER 10 

AND INPUT CLOCKING 

INTRODUCTION 
This chapter discusses the reset initialization sequence required by the 

R3051 family. Also included is a discussion of the mode selectable features of 
the processor. and of the software requirements of the boot program. 

There are a small number of selectable features in the R305 l family. These 
mode selectable features are determine~he polarity of the appropriate 
Interrupt inputs when the rising edge of Reset occurs. 

RESET TIMING 
Unlike the R3000, which requires the use of a state machine during the last 

four cycles of reset to initialize the device and perform mode selection, the 
R305 l family requires a very simple reset sequence. There are only two 
concerns for the system designer: 

• The set-up time and hold requirements of the interrupt inputs (mode 
selectable features) with respect to the rising edge of Reset are met. 

• The minimum Reset pulse width is satisfied. 

MODE SELECTABLE FEATURES 
The R305 l family has features which are determined at reset time. This is 

done using a latch internal to the CPU: this latch samples the contents of the 
Interrupt bus (Sint(5:3) and Int(2:0)) at the negating edge of Reset. The encoding 
of the mode selectable features on the interrupt bus is described in Table I 0 .1. 

Interrupt Pin Mode Feature 

Slnt(5:3) Reseived 

Int(2) DBlockReftll 

Int(l) Tri-State 

Int(O) BigEndian 
4000 tbl23 

Table 10.1. R3051 Family Mode Selectable Features 

Reserved 
Resexved mode bits must be driven high. 

DBlockReflll 
If asserted (active high). data cache misses will be processed using quad 

word refills. If negated, data cache misses will be processed using single word 
reads. This mode bit does not affect the processing of instruction cache misses 
(always handled as quad word reads) or uncacheable references (always 
handled as single word reads). 

Tri-State 
If asserted (active low) at the end of reset, all CPU outputs (except SysClk) 

will remain in tri-state after reset. They will remain in tri-state until another 
reset occurs (with tri-state disabled). 
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This mode input has the unique feature that it can be used to force the CPU 
outputs to tri-state during the entire reset period. That is, ifTri-State is asserted 
while Reset is asserted, the processor outputs will be tri-stated through the 
reset period. If Tri-State is negated during reset, the output drivers will be 
enabled. Again, note that the Tri-State mode does not affect SysClk, which is 
driven regardless of the tri-state mode. 

Thus, itis possible to hold tri-state low during the majority ofreset. and bring 
it high only during the last four cycles of reset. The CPU outputs would be tri
state through the reset, but the processor would operate normally after reset. 
This is useful in board testing, and also for in-circuit emulators. 

BigEndian 
If asserted (active high), the processor will operate as a big-endian machine, 

and the RE bit of the status register would then allow little-endian tasks to 
operate in a big-endian system. If negated, the processor (and kernel) will be 
little-endian, and the RE bit will allow big-endian tasks to operate on a little
endian machine. 

R3000A Equivalent Modes 
The R3000A features a number of modes, which are selected at Reset time. 

Although most of those modes are irrelevant, a number of equivalences can be 
made: 

• IBlkSize = 4 word refill. 

• DBlkSize = 1 or 4 word refill, depending on the DBlockRefill mode selected. 

• Reverse Endianness enabled. 

• Instruction Streaming enabled. 

• Partial Word Stores enabled. 

Other modes of the R3000A primarily pertain to its cache interface, which 
is incorporated within the R305 l family and thus transparent to users of these 
processors. 

RESET BEHAVIOR 
The R305 l family samples for the negation of Reset relative to a falling edge 

of SysClk. The processor will initiate a read request for the instruction located 
at the Reset Vector at the 6th rising edge of SysClk after the negation of Reset 
is detected. These cycles are a result of: 

• Reset input synchronization performed by the CPU. The Reset input uses 
special synchronization logic, thus allowing Reset to be negated 
asynchronously to the processor. This synchronization logic introduces 
a two cycle delay between the external negation of Reset and the negation 
of Reset to the execution core. 

• Internal clock cycles in which the execution core flushes its pipeline, 
before it attempts to read the exception vector. 

• One additional cycle for the read request to propagate from the internal 
execution core to the read interface, as described in Chapter 7. 
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BOOT SOFTWARE REQUIREMENTS 
Basic mode selection is performed using hardware during the reset sequence, 

as discussed in the mode initialization section. However, there are certain 
aspects of the boot sequence that must be performed by software. 

The assertion and subsequent negation of reset forces the CPU to begin 
execution at the reset vector, which is address OxlFCO_OOOO. This address 
resides in uncached, unmapped memory, and thus does not require that the 
caches or TLB be initialized for the processor to execute boot code. 

The processor needs to perform the following activities during boot: 

• Initialize the caches 
The processor needs to determine the sizes of the on-chip caches, and 
flush each entry, as discussed in Chapter 3. This must be done before the 
processor attempts to execute cacheable code. 

• Initialize the TLB 
The processor needs to examine the TLB Shutdown bit to determine if a 
TLB is present. If this is an extended architecture version of the processor, 
software must sequence through all 64 TLB entries, giving them either a 
valid translation, or marking them as not Valid. This must be done before 
software attempts to reference through mapped space. 

• Initialize CPO Registers 
The processor should establish appropriate values in various CPO registers, 
including: 

The PID field of EntryHi. 

The IM bits of the status register. 

The BEV bit. 

Initialize KUp/IEp so that user state can be entered using a RFE 
instruction 

• Enter User State 

Branch to the first user task, and perform an RFE. 
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CHAPTER 10 RESET INITIALIZATION AND INPUT CLOCKING 

DETAILED RESET TIMING DIAGRAMS 
The timing requirements of the processor reset sequence are illustrated 

below. The timing diagrams reference AC parameters whose values are 
contained in the R305 l family data sheet. 

Reset Pulse Width 
There are two parameters to be concerned with: the power on reset pulse 

width, and the warm reset pulse width. 
Figure 10.1 illustrates the power on reset requirements of the R305 l family. 

4000drw70 

Figure 10.1. Cold Start 

Figure 10.2 illustrates the warm reset requirements of the processor. 

4000drw71 

Figure 10.2. Warm Reset 

Mode Initialization Timing Requirements 
The mode initialization vectors are sampled by a transparent latch, whose 

output enable is directly controlled by the Reset input of the processor. The 
internal structure of the processor is illustrated in Figure 10.3. 
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Figure 10.3. Mode Vector Logic 
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RESET INITIALIZATION AND INPUT CLOCKING CHAPTER 10 

Thus, the mode vectors have a set-up and hold time with respect to the rising 
edge of Reset, as illustrated in Figure 10.4. 

4000drw73 

Figure 10.4. Mode Vector Timing 

Reset Setup Time Requirements 
The reset signal incorporates special synchronization logic which allows it 

to be driven from an asynchronous source. This is done to allow the processor 
Reset signal to be derived from a simple circuit, such as an RC network with 
a time constant long enough to guarantee the reset pulse width requirement 
is met. 

The Reset set-up time parameter can then be thought of as the amount of 
time Reset must be negated before the rising edge of SysClkforit to be guaranteed 
to be recognized; failure to meet this requirement will not result in improper 
operation, but rather will have the effect of delaying the internal recognition of 
the end of reset by one clock cycle. This does not affect the timing of the 
sampling of the mode initialization vectors. 

Figure 10.5 illustrates the set-up time parameter of the R3051 family. 

4000drw74 

Figure 10.5. Reset Timing 

Clk.2:x:In Requirements 
The input clock timing requirements are illustrated in Figure 10.6. The 

system designer does not need to be explicitly aware of the timing relationship 
between Clk2xln and SysClk. Note that SysClk is driven even during the Reset 
period, (regardless of the Tri-state mode), as long as Clk2xln is provided. 
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Figure 10.6. R3051 Family Clocking 
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DEBUG MODE FEATURES CHAPTER 11 

INTRODUCTION 
This chapter discusses particular features of the R305 l included to facilitate 

debugging of R3051-based systems. Although many of these features are 
intended to be used by an In-Circuit Emulator, the features documented in this 
chapter are also useful in environments which use a logic analyzer or similar 
tool. 

OVERVIEW OF FEATURES 
The features described in this chapter include: 
• The ability of the processor to display internal instruction addresses on 

its A/D bus during idle bus cycles. This mode facilitates the trace of 
instruction streams operating out of the internal cache. 

• The ability of the processor to have instruction cache misses forced, th us 
allowing control to be brought to the bus interface. This mode is useful 
for breaking into infinite loops, and is also useful for "jamming" an 
alternate instruction stream (such as a debug monitor) into the instruction 
stream. 

Other features useful in debug and In-Circuit Emulation are contained in 
the definition of the DIAG pins, described in an earlier chapter. 

Note that the features described in this chapter are performed on the 
"Resetved" pins of the processor. Thus, future variants of the chip may or may 
not incorporate these features in the same fashion. The features described in 
this chapter are intended for initial debug, rather than continued use in a 
production system. 

DEBUG MODE ACTIVATION 
Debug mode in the R305 l family is activated by driving the Resetved(2) pin 

high. This mode can be selected any time that the part is running, or may be 
selected while the part is being reset. Again, it is not recommended that logic 
driving Resetved(2) be placed on the production board, since future variants 
of the product may use this signal for a different function. 
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CHAPTER 11 

ADDRESS DISPLAY 
Activating the debug mode forces the CPU to display Instruction stream 

addresses on itsA/D bus during idle bus cycles. Refer to figure 11. l regarding 
the timing relationship between instruction initiation in the on-chip cache and 
the output address. Note that the address is driven out, but ALE is not 
asserted. This is to reduce the impact of this mode on system designs which 
may use the initiation of ALE to start a state machine to process the bus cycle. 
Instead of ALE, external logic should use the rising edge of SysClk to latch the 
current contents of the address bus. 

The address displayed is determined by capturing the low order address bits 
used to address the instruction cache, and then capturing the TAG response 
from the cache one-half clock cycle later. These address lines are concatenated, 
and presented as follows (NoteAddrLo(l:O) will be '00' in all Instruction Cache 
cycles): 

• A/D(31:11) displays TAG(31:11) 
• A/D(l0:4) displays AddrLo(l0:4) 
• A/D(3:2) displays AddrLo(l2: 11) 
• A/D(l:O) is reserved for future use. 
• Addr(3:2) displays AddrLo(3:2) 

This mode is intended to allow gross, rather than fine, instruction trace. 
Specifically, branches taken while a write or DMA operation occurs may not be 
displayed, and there is no indication that an exception has occurred (and thus 
that initiated instructions have been aborted). Additionally, erroneous addresses 
may be presented in cycles where internal processor stalls occur, such as those 
for integer multiply/ divide interlocks or µTLB misses. 

Finally, note that the cycle immediately before a read may contain an 
erroneous address, and the cycle immediately after a read or write may not 
produce the address with appropriate timing. It is recommended that these 
cycles be ignored when tracing execution. 

ND, 
Addr 

Run 0 Run 1 Run2 Run3 Run 4 Run 5 

xx Run O Addr Run 1 Addr Run 2 Addr Run 3 Addr 

Figure 11.1. R3051 Debug Mode Instruction Address Display 
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FORCING INSTRUCTION CACHE MISSES 
Another feature for debugging is the ability to force an instruction cache 

miss from an external signal pin. As with debug mode itself, this mode is not 
intended for use in a production environment. 

Forcing an instruction cache miss is a relatively simple operation with the 
R3051 family. With the device in debug mode (Reserved(2) high), drive 
Reseived( 1) high, to be sampled on a falling edge of SysClk. This will force the 
next instruction reference to "miss" in the cache, forcing a read operation to the 
bus. Figure 11.2 illustrates a ']am" operation. 

When jamming the instruction cache, a couple of things must be considered: 
• The "Jam" input is sampled relative to the falling edge ofSysClk. However, 

IDT does not guarantee the setup and hold time parameters for this 
signal-it is recommended that a relatively conseivative design be used 
here, since the set-up and hold time of this input are probably slightly 
larger than the parameters for other inputs. 

• Due to the possibility of other bus activities (such as writes). the "Jam" 
input should be asserted at least until a read is detected on the bus. 

• The Jam input does not affect the value of the Valid bit written into the 
cache on cache line refill. However, itis recommended thatthe Jam input 
be negated prior to the Acknowledge of the read (either implicit, by RdCEn, 
or explicit, by Ack), to avoid unwanted subsequent miss cycles. 

• If an instruction other than the target of the read is forced onto the A/D 
bus for the read, it is the responsibility of that debug monitor to use 
software cache operations to fix-up the internal instruction cache before 
resuming normal execution. 

Run O Run 1 

Rsvd(2) 

Run 2 
Run 3 
(Miss) Stall 

Figure 11.2. Forcing an Instruction Cache Miss in Debug Mode 
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