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in-circuit emulator (ICE) at the rate generated. The debug 
queue transferS trace records to the external ICE using a 
dedicated bus to the ICE So that bandwidth is not taken from 
the memory bus. The memory bus is not slowed for 
debugging, providing a more realistic debugging Session. 
The debug buffer is also used as a video FIFO for buffering 
pixels for display on a monitor. The dedicated bus is 
connected to an external DAC rather than to the external ICE 
when debugging is not being performed. 

20 Claims, 7 Drawing Sheets 
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DEBUG AND WIDEO QUEUE FOR MULTI 
PROCESSOR CHIP 

BACKGROUND OF THE INVENTION FIELD 
OF THE INVENTION 

This invention relates to computer Systems, and more 
particularly to trace capture for debugging and a cacheable 
Video architecture using debugging hardware. 

BACKGROUND OF THE INVENTION 
DESCRIPTION OF THE RELATED ART 

Complex computer Systems and programs rarely work 
exactly as designed. During the development of a new 
computer System, unexpected errors or bugs may be discov 
ered by thorough testing and exhaustive eXecution of a 
variety of programs and applications. The Source or cause of 
an error is often not apparent from the error itself, many 
times an error manifests itself by locking the target System 
for no apparent reason. Thus tracking down the Source of the 
error is problematic. 
An existing host computer System is often used to observe 

activity of the target System. A trace of this activity is made 
just before the error occurs. This host System and its 
interface is known as an in-circuit emulator (ICE). Often the 
ICE is a simple personal computer (PC) connected to an 
emulator interface. The emulator interface is connected to a 
Small circuit card that is plugged into the target System being 
developed. The small circuit card is inserted between the 
micro-processor and the motherboard. Phillips et al. describe 
an ICE in U.S. Pat. No. 5,321,828, which is assigned to Step 
Engineering of Sunnyvale Calif. 
A trigger condition, Such as an access of a specific 

address, is programmed into the host System. Addresses 
from the microprocessor are continuously Sent from the 
Small circuit card to the emulator interface and compared to 
the trigger address. Once an address match occurs, the 
emulator captures bus activity that occurs after the trigger, or 
Saves bus activity that occurred just before the trigger or 
Some programmable delay relative to the trigger. 
A particular problem occurs when the microprocessor 

chip contains an internal cache. The internal cache hides the 
activity of the microprocessor core by buffering and delay 
ing memory accesses. The microprocessor core may write to 
the trigger address in the internal cache many cycles before 
the internal cache writes the data at the trigger address out 
to the external pins of the chip. Thus the emulator may not 
trigger until many cycles after the microprocessor reaches 
the trigger address. 

This problem has been solved in a variety of ways. For 
example, Johnson and Witt in U.S. Pat. No. 5,357,626, 
assigned to Advanced Micro Devices of Sunnyvale Calif., 
use a Second microprocessor chip which operates in a 
master-slave mode to a first microprocessor chip. The Sec 
ond microprocessor chip duplicates the instructions 
executed by the first (master) chip. The Second (slave) 
microprocessor chip has special pins to transmit internal 
execution State to the ICE. Thus a Second, Specially 
modified microprocessor chip is used to make internal State 
information available to the ICE. Additional I/O pins on the 
chip are used to aid in debugging. 

FIG. 1 is a timing diagram of a prior-art in-circuit emu 
lator debugging a microprocessor. Execution of a test pro 
gram in the microprocessor core generates internal trigger 
events, EVENT 1, EVENT 2, EVENT 3, which occur at 
different times depending on the programming of trigger 
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2 
conditions in debug registers. These internal trigger events 
pass information to the I/O pins of the chip, Such as the 
trigger address, data, and possibly internal State information. 
BuS 14 includes the address, data, and Status pins of the chip 
which are connected to ICE 12. Special test pins which pass 
internal information to ICE 12 are also included in bus 14. 

All addresses generated by the processor, or by a bus 
interface unit for the processor, are transmitted over buS 14 
to ICE 12. Most of these addresses are not addresses near the 
trigger address which are stored by ICE 12 as the trace. Thus 
most of the addresses transmitted to ICE 12 over bus 14 are 
discarded by ICE 12. Thus much of the bandwidth on bus 14 
to ICE 12 is wasted bandwidth. 
While the debugging apparatus of FIG. 1 is adequate for 

slower chips with a single microprocessor core, when faster 
or multiple processor cores or other independent Sub 
Systems exist on a chip, the number of events occurring can 
increase beyond the bandwidth of the pins of the chip. FIG. 
2 shows a timing diagram for a chip having multiple 
processor cores connected to an ICE which is overwhelmed 
by debug events. The three processor cores, CPU-0, CPU-1, 
CPU-2, do not connect directly to the I/O pins of the chip 
Since this requires too many pins. Instead, these processor 
cores are connected to a shared internal cache and then to a 
bus-interface unit which sends requests outside the chip. The 
first processor core generates trigger events EVENT 1, 
EVENT 2, EVENT 3, while the second processor core 
generates trigger events EVENT 4 and EVENT 5. The 
third processor core generates trigger events EVENT 6, 
EVENT 7. 

Since the processor cores are capable of Simultaneously 
executing independent programs, these events may be gen 
erated at approximately the same time. There is only one 
interface to the pins of the chip and to external ICE 12. 
Therefore only one event may be transmitted to ICE 12 at a 
time. When multiple events occur from different processor 
cores, such as events EVENT 4 and EVENT 2, both 
events cannot be transmitted over bus 14 to ICE 12. 
The multiple processor cores increase the possible debug 

bandwidth Since multiple programs may be executing at the 
Same time. Another problem is that these processor cores 
often are executing at a higher clock rate than the external 
interface of bus 14 to ICE 12. Thus while the internal trigger 
events are generated in a short amount of time using the 
faster internal clock, these events cannot be transmitted over 
external buS 14 to ICE 12 as quickly as they are generated. 
The interface for transmitting debug event information 

from the microprocessor chip to ICE 12 can be expanded by 
increasing the number of pins on buS 14. However, this is 
very expensive and not practical, especially when the 
amount of debug information doubles or triples as when 
multiple processor cores are simultaneously executing test 
programs. The chip cannot generate more debug information 
than can be transmitted out of the chip in any given cycle or 
Some of the generated debug information will be lost. 

All but one of the multiple processor cores could be 
disabled from generating trigger events, but this Severely 
limits the ability to debug realistic Situations when multiple 
programs execute on the multi-processor chip. While the 
data and address buSSes of the bus-interface unit and the 
shared cache may be used to transmit the trigger event 
information to the external ICE, it is more desirable to use 
a separate interface for debug events So that the existing data 
and address buSSes may continue to be used for program 
execution and accessing external memory Such as DRAM. 
Debugging can change the program's behavior when the 
external bus must be halted to transfer debug information off 
the chip. 
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What is desired is a debugging System for multi-processor 
chips. It is desired to execute Several test programs Simul 
taneously on a microprocessor chip which has Several inde 
pendent processor cores and to generate internal trigger 
events from multiple processor cores. It is desired to trans 
mit these multiple trigger events to an external ICE using a 
small interface having relatively few I/O pins. It is desirable 
to use a debug interface which is separate from the DRAM 
interface. It is also desired to have the majority of the 
hardware for the debug interface to be useful during normal 
processing. It is desired to combine the debug interface with 
a Video display interface. 

SUMMARY OF THE INVENTION 

A microprocessor die is adapted for high-Speed debug 
ging. I/O pins on the die make electrical connections 
between circuitry on the microprocessor die and external 
circuitry. The I/O pins include memory interface pins for 
connection to an external memory and debug interface pins 
for connection to an external in-circuit emulator (ICE). A 
processor core fetches and executes instructions. A cache is 
coupled to the processor core. It Supplies instructions and 
operands to the processor core. A bus-interface unit is 
coupled to the cache and to the memory interface pins. It 
accesses the external memory when an instruction or an 
operand requested by the processor core is not present in the 
cache. 
A debug queue is coupled to the processor core. The 

debug queue Stores debug trace records generated by execu 
tion of traced instructions by the processor core. A debug 
interface is coupled to the debug queue and to the debug 
interface pins on the microprocessor die. It transferS debug 
trace records previously written to the debug queue to the 
external ICE. The external ICE displays the debug trace 
records. The debug interface pins are different pins than the 
memory interface pins. 

Thus the debug interface is a Separate interface from the 
memory interface. The debug queue bufferS debug trace 
records to the external ICE using the debug interface pins. 
The bandwidth of the memory interface pins is not used for 
transferring debug trace records, allowing high-speed 
debugging. 

In further aspects the debug queue is a FIFO memory. The 
debug trace records are written to the debug queue at a first 
rate of a processor clock but read from the debug queue to 
the debug interface pins at a Second rate of an external clock. 
The Second rate of the external clock is a lower rate than the 
first rate of the processor clock. Transfer of debug trace 
records to the external ICE is delayed by several external 
clock cycles when the debug queue contains other debug 
trace records. 

In Still further aspects the debug trace records Stored in the 
debug queue include a time-Stamp field which indicates a 
temporal location of when the debug trace record was 
generated by the processor core. An identifier field indicates 
a debug event which caused the debug trace record to be 
generated. Thus the time-Stamp field in the debug trace 
record is Stored in the debug queue and transferred to the 
external ICE to indicate when the debug trace record was 
generated by the processor core. 

In further aspects a time-Stamp counter has a limited 
modulus. The time-Stamp counter reaches the limited modu 
lus in less than a minute when each pulse of a processor 
clock increments the time-Stamp counter. Thus the debug 
trace records include a time Stamp generated from a limited 
modulus counter. 
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4 
In further aspects of the invention a rollover trace record 

is written to the debug queue when the time-Stamp counter 
reaches the limited modulus. The time-Stamp counter is 
incremented after every X pulses of the processor clock, 
where X is a clock divisor programmed into a clock divisor 
register. Thus the time-Stamp counter is incremented at a 
programmable rate. 

In other aspects the time-Stamp counter is cleared after 
each debug trace record is written to the debug queue. Thus 
the time-Stamp field indicates an amount of time Since the 
previous debug trace record was written to the debug queue. 

In other aspects a Second processor core fetches and 
executes general-purpose instructions. The Second processor 
core is coupled to the cache and coupled to the debug queue. 
The debug queue is further coupled to the Second processor 
core. The debug queue Stores debug trace records generated 
by execution of traced instructions by the processor core and 
by the Second processor core. The processor core and the 
Second processor core are not directly connected to address 
and data I/O pins on the microprocessor die. The processor 
core and the Second processor core indirectly access the 
external memory through the cache and the bus-interface 
unit. Thus multi-processor debugging is accomplished by 
the debug queue buffering debug trace records generated 
from both the processor core and the Second processor core. 
The processor core and the Second processor core execute 
independent programs. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a timing diagram of a prior-art in-circuit emu 
lator debugging a microprocessor. 
FIG.2 shows a timing diagram for a chip having multiple 

processor cores connected to an ICE which is overwhelmed 
by debug events. 

FIG. 3 is a timing diagram of a multi-processor chip with 
a debug queue for buffering debug trace information to an 
external in-circuit emulator (ICE). 

FIG. 4 is a timing diagram of a multi-processor chip with 
a debug queue which transmits trace information to an 
external ICE at a slower rate. 

FIG. 5 is a diagram of trace records stored in the debug 
Gueue. 

FIG. 6 is a diagram of a debug trigger register for a 
multi-processor chip. 

FIG. 7 is a diagram of a multi-processor chip with a debug 
Gueue. 

FIG. 8 is a diagram of a multi-processor die with a debug 
queue which is also used for buffering video pixels. 

DETAILED DESCRIPTION 

The present invention relates to an improvement in micro 
processor debug and Video architecture. The following 
description is presented to enable one of ordinary skill in the 
art to make and use the invention as provided in the context 
of a particular application and its requirements. Various 
modifications to the preferred embodiment will be apparent 
to those with skill in the art, and the general principles 
defined herein may be applied to other embodiments. 
Therefore, the present invention is not intended to be limited 
to the particular embodiments shown and described, but is to 
be accorded the widest Scope consistent with the principles 
and novel features herein disclosed. 

A debug queue is added on the microprocessor chip to 
buffer debug information being sent to the external ICE. 
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This queue allows for debug trace information to be gener 
ated at a higher rate than can be sent off-chip, as long as the 
queue does not fill up. When a trigger is reached internally, 
the debug trace information is rapidly Sent to the debug 
queue and then transmitted to the external ICE at a lower 
rate. The debug queue allows for a short period of time when 
multiple debug events are generating trace information. The 
Size or depth of the queue determines how many Simulta 
neous triggers can occur, and how much trace information 
can be generated and Stored without loSS. 

Buffering debug trace information is not performed by the 
prior-art microprocessors. The trace information is generally 
received in real-time by prior-art ICE’s. Buffering trace 
information for a prior-art ICE would cause the time infor 
mation to be lost. 

FIG. 3 is a timing diagram of a multi-processor chip with 
a debug queue for buffering debug trace information to an 
external in-circuit emulator (ICE). The three processor 
cores, CPU-0, CPU-1, CPU-2, do not connect directly to the 
bonding pads or I/O pins of the chip Since this requires too 
many pins. Instead, these processor cores are connected to a 
shared internal cache and then to a bus-interface unit which 
Sends requests outside the chip. The first processor core 
generates trigger events EVENT 1, EVENT 2, EVENT 
3, while the Second processor core generates trigger events 
EVENT 4 and EVENT 5. The third processor core gen 
erates trigger events EVENT 6, EVENT 7. 

Internal bus 18 receives trace information from the three 
CPU cores, Such as address, Status, and possibly data. 
Internal bus 18 receives this trace information and loads it 
into debug queue 20. Debug queue 20 temporarily Stores 
debug trace information and then transmits it on external bus 
14 through the I/O pins of the microprocessor chip to ICE 
12. Debug queue 20 is a standard first-in-first-out (FIFO) 
buffer, although the read and write ports can be of different 
widths. 

Internal bus 18 can be made wider than external bus 14 
Since I/O pins of the chip are not needed for internal 
connections from the CPU cores to debug queue 20. Internal 
buS 18 can operate at a higher speed than external buS 14 
Since internal connections have lower capacitance and 
delays than external connections. Debug trace information 
from the CPU cores is sent over internal bus 18 at a high rate 
to debug queue 20, and then transmitted at a lower rate from 
debug queue 20 over external bus 14 to ICE 12. 
Buffering Allows Slower External Bus to ICE 

FIG. 4 is a timing diagram of a multi-processor chip with 
a debug queue which transmits trace information to an 
external ICE at a slower rate. Debug trace information is 
generated at the high clock rate of the processor cores, as 
indicated by the short time period of EVENT 1 . . . 
EVENT 7 generated by the processor cores. These trace 
events are Stored in debug queue 20 and then Sent to external 
ICE 12 over external bus 14. ICE 12 receives these trace 
events at a slower rate of the memory-bus clock as indicated 
by the longer time periods of EVENT 1 and EVENT 4, 
the first two trace events received by queue 20. 
Format of Trace Records in Debug Queue 

FIG. 5 is a diagram of trace records stored in the debug 
queue. When a trigger is detected in a CPU core, Such as by 
address comparison to a trigger address in a debug register, 
trace information is Sent to debug queue 20. Three formats 
are defined for Storing the trace information in the debug 
queue. The three formats differ in size: a 16-bit format, a 
32-bit format, and a 64-bit format. The larger-sized formats 
can Store more information about the debug event. The 
64-bit format stores 32 bits of data, while the 32-bit format 
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6 
does not store the data. The 16-bit format does not store the 
data nor the address, while the 32-bit format stores 16 bits 
of the address. 

All three formats Store the cause of the event and a time 
stamp. The cause field identifies which of the four debug 
trigger registers and which CPU core or other Sub-System on 
the chip caused the event. A six-bit field is used for the cause 
field: 

OOOOOO Empty, no trace record 
OO1 REO Trace caused by debug register 1, from requestor REQ 
O1OREO Trace caused by debug register 2, from requestor REQ 
O11REO Trace caused by debug register 3, from requestor REQ 
1OOREO Trace caused by debug register 4, from requestor REQ 

The source of the record, in requester field REQ, is 
encoded as: 

OOO CPU core O 
OO1 CPU core 1 
O10 CPU core 2 
1OO Cache subsystem 
101 Bus Interface Unit to External DRAM 
110 System interface 
111 Diagnostic unit 

The cache may generate a debug event independently of 
any CPU core. An external Snoop request to the shared cache 
could match a trigger address. If more than one Source 
generates the Same trigger at the same time, then the REQ 
field of the cause is Set for the lowest requester. 
Time Stamp Field Stored in Debug Queue on Chip 
The time stamp allows the ICE to place the buffered event 

into the order the events occurred, even when the events are 
generated by different processor cores. A time-Stamp register 
is used by all CPU cores and sub-systems to load the 
time-Stamp field into the debug queue. Thus a single time 
base is used for all processor cores, allowing comparison of 
processor activity of different CPU cores. The time stamp 
indicates how far apart different events are. 
The time-Stamp register is a 10-bit register which incre 

ments every N cycles of the processor clock. A Second 
register holds the value for N, the clock divisor, while a third 
register controls the operation of the time-Stamp register. 
The time-Stamp register is not a real-time clock requiring 

many bits. Ten bits provides cycle-level granularity for 
events occurring within 1024 processor clock cycles of each 
other. For events which are farther apart than 1024 cycles, 
the clock divisor can be programmed to a value larger than 
1 So that longer periods of time can be measured by the time 
Stamp. For example, a clock divisor of 16 indicates that an 
event occurred within a 16-cycle window, and can distin 
guish events 16,384 cycles apart. 
The time-stamp divisor is a 16-bit value, allowing the 

time-Stamp register to be incremented as slowly as once 
every 65,535 clock cycles. Programming the time-Stamp 
divisor to Zero invokes a Special mode where the time Stamp 
is no longer periodically incremented. Instead the time 
Stamp register is incremented only when a trace event is 
triggered. When two or more events occur in a single clock 
period, the time-Stamp register is only incremented once for 
the cycle. This mode is useful for identifying when two 
events occur in the Same clock cycle, without indicating the 
time of each event. 
The time-Stamp control register contains four bits: 
1. Saturate/Roll over Counter 
2. Reset time-Stamp counter after each trace record gen 

erated 
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3. Generate time-Stamp roll-over trace record 
4. Queue overflow trace record generate enable. 
When the first bit is cleared the 10-bit time-stamp register 

rolls over to Zero when the maximum count is reached. 
Setting the first bit causes the counter to Saturate or Stop 
counting/incrementing once the maximum count (0x3FF 
hex) is reached. 

Setting the Second control bit causes the time-Stamp 
counter to reset to Zero after each event is triggered. In this 
mode the time Stamp represents the difference (delta) in time 
between trace records. 

Setting the third control bit causes a Special roll-over trace 
record to be generated each time the time-Stamp counter 
rolls over to Zero. This special roll-over trace record is 
written to the top of the debug queue once every time it rolls 
over and can be used by the external ICE to generate an 
exact time of each event triggered, even when the events are 
Separate by more than 1024 cycles (or multiples of the clock 
divisor). Of course, the counter must be set to roll over by 
clearing the first control bit. 
Queue Overflow Record 

Other formats for the trace records may be defined, and 
the order and type of fields in a trace record may be changed 
for different record formats. For example, a queue-overflow 
record may be generated when the debug queue overflows. 
This queue-overflow record is inserted to the top of the 
queue and eventually read out to the external ICE. 
Debug Trigger Registers 

FIG. 6 is a diagram of a debug trigger register for a 
multi-processor chip. Four debug registers 42 are shared 
among all three processor cores for triggering debug events. 
Address field 80 is programmed with a 32-bit address which 
is compared with addresses generated by the three processor 
cores. An address match is required for many types of debug 
events, but not for all types of events. For example, an 
interrupt may trigger a debug event although no address is 
compared. 
Mask field 82 is a 5-bit field which is programmed with 

a binary number. The binary number indicates the number of 
least-significant address bits to ignore or mask off in the 
address comparison to the trigger address in address field 80. 
When mask field 82 is programmed with the value 00101, 
then the lowest five address bits are ignored; any address 
within an aligned 32-byte block is considered an address 
match. Thus mask field 82 allows for coarse granularity of 
address comparisons. 

Type field 84 is programmed with a code indicating the 
type of transaction to trigger on. For example, the debug 
register can be programmed to trigger on a write to a certain 
address but not trigger on a read to that same address. Code 
or Data accesses can be Selected, as can accesses to diag 
nostic or memory Spaces. Table 1 lists the types of transac 
tions and their respective codes for type field 84. These 
codes may be combined when a don’t care (“X”) is present 
in the codes. 

TABLE 1. 

Trigger Types 

Requires Address 
Code Type Match 

OOxxO Read Access Yes 
OOxx1 Write Access Yes 
OOxOx Code-Space Access Yes 
OOx1x Data-Space Access Yes 
OOOxx Memory-Space Access Yes 

1O 
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8 

TABLE 1-continued 

Trigger Types 

Requires Address 
Code Type Match 

OO1xx Diagnostic-Space Access Yes 
O1xxx Reserved/Undefined No 
10eee Event From CPU No 
11OOO Debug Queue Full No 
11OO1 External Interrupt No 
11010 External Error No 
111i System Interrupt No 

Setting type field 84 to 11000 causes a debug trigger when 
the debug queue is full or nears full. This inserts a “queue 
near full record into the debug queue which can be detected 
by the external ICE once the record is read out of the chip. 

For system interrupts, the interrupt number “i i” is 
encoded into the last two bits of type field 84. For CPU 
events, the CPU event is encoded into the last three bits of 
type field 84 designated “eee'. Table 2 lists the types of CPU 
events. Event counters can be programmed to count cache 
accesses, Snoops, pipeline Stalls, and branch prediction 
results. These event counters can overflow when more than 
2 events of that type have occurred. Instruction and data 
address Strobes when an address or data match occurs. 

TABLE 2 

CPU Event Types 

Code CPU Event Selected 

OOO Event Counter 0 
OO1 Event Counter 1 
O10 Event Counter 2 
O11 Instruction Address Strobe 
1OO Event Counter O Overflow 
101 Event Counter 1. Overflow 
110 Event Counter 2 Overflow 
111 Data Access Strobe 

External interrupts and errors can also trigger debug 
events when type field 84 is set to 11001 or 11010. These 
event types do not require an address match Since an address 
is not generated. 
CPU identifier field 86 is an 8-bit field which indicates 

which processor core or Sub-System is the debug event 
programmed for. Each of the four debug registers 42 can be 
programmed to trigger on addresses or events from any of 
the processor cores. Any of the debug registers 42 can be 
programmed to trigger on an event from any of the processor 
cores, or just Some of the cores. Table 3 shows the encoding 
for CPU identifier field 86, where “X” is a don't care bit. 

TABLE 3 

CPU Identifier Field 

Encoding Trigger from 

1XXXXXXX CPU core O 
X1XXXXXX CPU core 1 
XX1XXXXX CPU core 2 
XXX1XXXX Reserved 
XXXX1XXX Level-2 Cache 
XXXXX1XX DRAM BU 
XXXXXX1X System Interface 
XXXXXXX1 Reserved 

An encoding of 11100000 triggers on a match from any of 
the three processor cores. An encoding of 11101110 triggers 
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when the match or event is from any of the three processor 
cores or from the shared cache or system or DRAM inter 
faces. Thus CPU identifier field 86 can be used to trigger a 
debug event for writing to a specific address location by any 
processor core or sub-system. An encoding of 10100000 
triggerS only for an event generated by the first or third 
processor cores. CPU identifier field 86 thus allows for great 
flexibility in programming debug events. A code of 
00000000 disables the trigger register. 

Action field 88 indicates what action is taken when a 
debug event is triggered. A common action taken is to add 
a trace record to the debug queue. Other actions include 
Stopping the processor clock to one or more of the processor 
cores, and Sending an interrupt to a Specific processor. Table 
4 lists the actions encoded by action field 88. 

TABLE 4 

Action Field 

Encoding Action Taken 

OOOOO No Action 
Okkk0 Stop clock to CPUs kkk 
100cc Send Interrupt to CPU cc 
11ttt Add Trace Record of Type ttt 

ClockS may be stopped to one or more processor cores by 
programming a one-hot encoding of the CPU's as “kkk”. For 
example, encoding 01000 stops the clock for the first pro 
cessor core but no others. Encoding 00110 stops the clock 
for the Second and third processor cores but not the first core, 
while encoding 01110 Stops the clock to all three processor 
cores when the event is triggered. Field “cc” is 00 for CPU 
0, 01 for CPU 1, or 10 for CPU 2. 
An interrupt is Sent to only one processor core, So a binary 

encoding “cc' is used to identify which processor core 
receives the interrupt. Encoding action field 88 with 10001 
sends the interrupt to the first processor core while 10010 
Sends the interrupt to the Second processor core and 10011 
Sends the interrupt to the third processor core. 
When the action specified is to add a trace record to the 

debug queue, the size and type of the trace record added is 
encoded as record type “tt t”. Table 5 lists the possible trace 
record types. FIG. 5 showed the trace record formats for 16-, 
32-, and 64-bit record types. The time stamp rollover or 
queue overflow record types cannot be Selected as they are 
automatically generated when the time Stamp register rolls 
over and the third control bit for the time stamp counter is 
Set. The queue overflow record is generated independently 
of the debug events when the queue overflows. 

TABLE 5 

Trace Record Types 

Code ttt Trace Record Type 

OOO 16-bit (No address, no data) 
OO1 32-bit (Address, no data) 
1OO 64-bit, data word O 
101 64-bit, data word 1 
110 64-bit, data word 2 
111 64-bit, data word 3 
O11 Queue Overflow 
O1O Time Stamp Rollover 

In the preferred embodiment, accesses are 128-bit data 
bursts, and thus separate trace record types are defined for 
each of the four 32-bit words of the burst. 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

10 
Multi-Processor Chip with Debug Queue-FIG. 7 

FIG. 7 is a diagram of a multi-processor chip with a debug 
queue. Multi-processor die 40 contains three processor cores 
for executing independent general-purpose programs. CPU 
cores 30, 32, 34 each contain one or more pipelines for 
fetching and executing instructions. CPU cores 30, 32, 34 
each contain an execution unit and one or two primary 
caches. 
CPU cores 30, 32, 34 request instructions and data 

operands from Second-level cache 28, which is preferably a 
large write-back cache. Misses in Second-level cache 28 are 
sent to external DRAM 21. Bus-interface unit (BIU) 26 
generates bus cycles on external memory buS 24, which is a 
64-bit or 128-bit data bus. 

Internal bus 50 sends requests from CPU cores 30, 32, 34 
to second-level cache 28. Separate busses from each CPU 
core can be used, but the shared internal bus 50 is less 
expensive. Each CPU core 30, 32, 34 has its own primary 
cache. 

Internal bus 50 also connects to debug queue 20 to supply 
address, data, and status information from CPU cores 30, 32, 
34 or second-level cache 28. The address, data, and status 
information is used to assemble the trace record loaded into 
debug queue 20 when a debug event is triggered and the 
action specified in action field 88 is to load a trace record 
into the debug queue. 

Trigger detector 38 compares addresses and cycle Status 
information from CPU cores 30, 32, 34 and second-level 
cache 28 to the trigger addresses and conditions pro 
grammed into debug registers 42. In a preferred 
embodiment, four debug registers are provided for all CPU 
cores and sub-systems on multi-processor die 40. When a 
debug event is detected by trigger detector 38, then debug 
queue loader 36 assembles the address, data, and Status from 
internal bus 50 and creates a trace record of the type 
specified by action field 88 of debug registers 42. When the 
action specified does not load a trace record into debug 
queue 20, then debug queue loader 36 sends a stop clock 
command or an interrupt to the appropriate CPU core 30, 32, 
34 from clock and interrupt control logic 27. 

Trace records loaded into debug queue 20 are read out to 
external ICE 12. External ICE bus 14 includes some of I/O 
pins 44 on multi-processor die 40 so that the trace records 
written to debug queue 20 are transmitted off-chip to exter 
nal ICE 12. Since I/O pins 44 are a limited resource, and 
adding more I/O pins significantly increases the cost of 
multi-processor die 40, external ICE bus 14 is limited to 16 
data bits, or two bytes. This is a very small amount of debug 
trace information, being only half of a 32-bit trace record, 
the Smallest record format containing an address. The Small 
size of external ICE bus 14 is unsatisfactory if debug 
information is not Stored in debug queue 20 and had to be 
transferred off-chip immediately. 
Advantages of Debug Queue and Separate Debug Bus 
Debug queue 20 allows debug trace information to be 

rapidly generated within die 40 and then sent off-chip at a 
more leisurely pace on a low-bandwidth external bus. Cost 
is reduced as few I/O pins are needed for transferring debug 
information off the die to the external ICE. The primary 
interface to the external DRAM 21 is not used for trace 
information, So debug operation does not reduce the band 
width available for fetching operands and instructions. 
Using external memory buS 24 for transmitting debug trace 
information to ICE 12 would require some of the bandwidth 
that is otherwise used for program execution. Thus the 
programs being debugged are not slowed down due to a lack 
of bandwidth on the external memory bus. This provides 
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more realistic program execution when debugging is per 
formed Since a dedicated bus is available for off-loading 
debug trace records. 
Performance and Programming Considerations 

In a preferred embodiment, the debug queue contains 128 
bytes of storage. Up to 64 16-bit records, or 32 32-bit 
records, or 16 64-bit records, or any combination of no more 
than 128 bytes may be contained in the debug queue at any 
time. The debug queue transmits two bytes of trace infor 
mation each cycle of a clock. The internal processor clock 
operates at triple the external bus frequency. When 16-bit 
trace records are generated each processor clock cycle, then 
the debug queue fills up after 64 processor clocks, or 32 
clocks when two processor cores are each generating trace 
records simultaneously and the queue is not being emptied. 

Normally the queue is being emptied by transferring two 
bytes of trace record to the ICE each external clock period. 
For every three processor clock periods, two bytes are read 
out of the debug queue but at least Six bytes are written in 
by one processor core. The net is four more bytes for every 
three processor clocks. If the trace records continue to be 
generated at this rate, the queue fills in 128/4 or 32 processor 
clocks. Thus a burst of no more than 32 records can be added 
to the queue by any one trigger event. 

This is Still a significant burst of trace information, over 
32 clock periods, for Such a Small queue. Larger queue sizes 
could be used to Support capture of larger bursts. It is 
important that the average generation of trace records be leSS 
than the external transfer rate of two bytes per 150 MHz 
clock period. Since debug events are normally quite rare, it 
is unlikely that the average over a long period of time 
exceeds the external transfer rate. 

The user or program debugger can interactively adjust the 
trace generation rate. When the debug queue overflows from 
too many trace records being generated, a Special queue 
overflow record may be inserted into the debug queue. When 
a queue overflow record is generated and detected upon 
being read out to the external ICE, the programmer can 
reduce the trace frequency by using a 16-bit record rather 
than a 32- or 64-bit record, or by reducing the number of 
trigger addresses or adjusting the event counters. The CPUS 
clock could also be slowed down relative to the external 
clock. 
Debug Queue Used for Video FIFO-FIG. 8 

FIG. 8 is a diagram of a multi-processor die with a debug 
queue which is also used for buffering video pixels. The 
components of FIG. 8 operate in a manner Similar to that 
described for FIG. 7. External DRAM 21 includes a portion 
used as frame buffer 66, which contains pixel data for 
display on monitor 62. Many formats and encodings of 
pixels are possible, and a common format uses two bytes for 
a full-color red-green-blue (RGB) pixel. 

Video controller 64 is located on multi-processor die 40. 
Video controller 64 includes timing circuits to generate 
horizontal and vertical synchronization signals HSYNC, 
VSYNC to monitor 62 to indicate when a new horizontal 
line or a new Screen of horizontal lines are being written to 
monitor 62. HSYNC and VSYNC are derived from a 
graphics pixel clock which times the transfer of individual 
pixels in a horizontal line. 

Video controller 64 includes counters to indicate which 
horizontal line and which pixel in the horizontal line is being 
transferred. Video controller 64 is pipelined so that pixels 
are fetched ahead of their being transferred to monitor 62. 
Rather than fetch pixels directly from frame buffer 66 in 
external DRAM 21, video controller 64 first requests the 
pixels from level-two cache 28. Since level-two cache 28 is 
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a write-back cache, Sometimes new pixels are written by 
CPU cores 30, 32, 34 to level-two cache 28 but the new 
pixels have not been written back to external DRAM 21. 
This commonly occurs when a new image is being written, 
or a portion of the display is being updated. 
A local frame buffer portion 66" of frame buffer 66 in 

external DRAM 21 is present in second-level cache 28. 
Pixels requested by video controller 64 which are not in 
local frame buffer portion 66" are misses to second-level 
cache 28 and are fetched from external DRAM 21 by BIU 
26. Since pixel fetching is deeply pipelined, larger blocks of 
pixels can be fetched from DRAM 21 using burst cycles. 
This improves efficiency of external DRAM bus 24. 

Pixels requested from second-level cache 28 are trans 
ferred over internal bus 50 to debug queue 20. Since debug 
mode is disabled when internal video controller 64 is 
enabled, debug queue 20 is used as the video FIFO. Pixels 
loaded into debug queue 20 are transferred off die 40 using 
I/O pins 44 on external ICE bus 14. Since external ICE bus 
14 is 16 bits wide, a standard two-byte pixel is transferred 
to digital-to-analog converter (DAC) 60 each pixel clock 
cycle. DAC 60 converts the 16-bit pixel from digital format 
to analog Voltages representing the intensity of the red, 
green, and blue components of the pixel, and these analog 
voltages are sent to monitor 62. A RAM look-up table may 
be used with the DAC to change attributes or re-map the 
color Space. 
When debugging is performed, debug queue 20 is used for 

debug trace records and video controller 64 is disabled. An 
external Video card is used to generate display information. 
Since debug is Seldom used by end users, end-user Systems 
can use the debug queue for Video functionality, reducing 
System cost. 
Advantages of Combined Video & Debug Queue 

Cost and complexity are reduced by using the same 
hardware buffer for two purposes: video pixel buffering and 
debug trace buffering. Both uses provide a stream of data to 
external devices: either the video pixels to an external DAC 
and monitor, or debug trace records to an external ICE. 

Placing a cached portion of the frame buffer in DRAM 
allows several frame buffers to exist as the DRAM size is 
large. Specialty RAMs such as VRAMs are not needed, 
reducing cost. The processors have instant access to the 
cached copy of the frame buffer as it is located on-chip in the 
shared second-level cache. The cached frame buffer does not 
have to be flushed when the Screen is updated, and the 
cached frame buffer does not have to be write-through since 
the Video controller accesses the Second-level cache on-chip 
before accessing the frame buffer in the external DRAM. 
Making the cache and the frame buffer write-back rather 
than write-through increases performance, especially when 
frequent Screen updates are performed, Since all updates do 
not have to be immediately written out to DRAM. Newly 
written pixels can be accumulated until a large block of 
pixels can be burst out to the DRAM. Bursts of 32 bytes (16 
pixels) are much more efficient than Single-pixel (2-byte) 
writes to DRAM. Frequent updates overwrite earlier updates 
and the earlier update no longer must be written back to 
DRAM, thus decreasing traffic. Writes can be accumulated 
and written in larger blocks, which improves efficiency of 
the DRAM interface. 

Rather than use extra pins for a data path to the external 
frame buffer, the invention uses the existing DRAM path to 
access the frame buffer in the DRAM. Cost is reduced since 
additional pins are not needed for a dedicated data path to 
the frame buffer. 
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Alternate Embodiments 
Several other embodiments are contemplated by the 

inventors. For example the RAMDAC may be integrated 
onto the microprocessor chip So that the analog RGB signals 
are transmitted off chip directly to the monitor. A flat-panel 
display or other display technologies may be Substituted 
with some modifications. The width of the busses may be 
varied, and in particular a 4-byte pixel and external ICE bus 
is contemplated by the inventors. 
Many variations of the Video and debug logic are possible. 

Separate internal busses may be used for the different CPU 
cores, or a shared bus may be used as described. Separate 
debug registers could be provided for each CPU core, and 
the triggering logic and address comparators may be located 
near or in the CPU cores. More than one debug queue could 
be used, and the Size of the queue can be varied. 

The foregoing description of the embodiments of the 
invention has been presented for the purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the Scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 
We claim: 
1. A microprocessor die adapted for high-Speed debug 

ging comprising: 
I/O pins on the die for making electrical connections 
between circuitry on the microprocessor die and exter 
nal circuitry, the I/O pins including memory interface 
pins for connection to an external memory and debug 
interface pins for connection to an external in-circuit 
emulator (ICE); 

a processor core for fetching and executing instructions, 
a cache, coupled to the processor core, for Supplying 

instructions and operands to the processor core; 
a bus-interface unit, coupled to the cache and to the 
memory interface pins, for accessing the external 
memory when an instruction or an operand requested 
by the processor core is not present in the cache; 

a debug queue, coupled to the processor core, for Storing 
debug trace records generated by execution of traced 
instructions by the processor core, and 

a debug interface, coupled to the debug queue and to the 
debug interface pins on the microprocessor die, for 
transferring debug trace records previously written to 
the debug queue to the external ICE, the external ICE 
for displaying the debug trace records, 

wherein the debug interface pins are different pins than 
the memory interface pins, the debug interface being a 
Separate interface from the memory interface, 

whereby the debug queue bufferS debug trace records to 
the external ICE using the debug interface pins and 
whereby bandwidth of the memory interface pins is not 
used for transferring debug trace records, allowing 
high-Speed debugging. 

2. The microprocessor die of claim 1 wherein the debug 
queue comprises a FIFO memory including: 

Writing means for writing the debug trace records to the 
debug queue at a first rate of a processor clock, and 

reading means for reading the debug trace records Stored 
in the debug queue to the debug interface pins at a 
Second rate of an external clock, 

wherein the Second rate of the external clock is a lower 
rate than the first rate of the processor clock. 
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3. The microprocessor die of claim 2 wherein the reading 

means reads a debug trace record which was written to the 
debug queue at least N cycles of the external clock before, 
the debug queue containing N debug trace records, whereby 
transfer of debug trace records to the external ICE is delayed 
by Several external clock cycles when the debug queue 
contains other debug trace records. 

4. The microprocessor die of claim 1 wherein the debug 
trace records Stored in the debug queue include: 

a time-Stamp field for indicating a temporal location of 
when the debug trace record was generated by the 
proceSSOr core, 

an identifier field for indicating a debug event which 
caused the debug trace record to be generated, 

whereby the time-Stamp field in the debug trace record is 
Stored in the debug queue and transferred to the exter 
nal ICE to indicate when the debug trace record was 
generated by the processor core. 

5. The microprocessor die of claim 4 further comprising: 
a time-Stamp counter having a limited modulus, the 

time-Stamp counter reaching the limited modulus in 
less than a minute when each pulse of a processor clock 
for clocking the processor core increments the time 
Stamp counter; 

wherein the time-Stamp field for a first debug trace record 
is capable of containing a same numerical value as a 
Second debug trace record when the time-Stamp counter 
reaches the limited modulus between the first debug 
trace record and the Second debug trace record, 

whereby the debug trace records include a time Stamp 
generated from a limited-modulus counter. 

6. The microprocessor die of claim 5 further comprising: 
rollover means, coupled to the time-stamp counter, for 

Writing a rollover trace record to the debug queue when 
the time-Stamp counter reaches the limited modulus, 
and 

reset means, coupled to the rollover means, for resetting 
the time-Stamp counter when the time-Stamp counter 
reaches the limited modulus, 

whereby the rollover trace record in the debug queue 
Separates the first debug trace record from the Second 
debug trace record when the time-Stamp counter 
reaches the limited modulus between the first debug 
trace record and the Second debug trace record. 

7. The microprocessor die of claim 5 further comprising: 
divisor means, coupled to the time-Stamp counter, for 

incrementing the time-Stamp counter after every X 
pulses of the processor clock, where X is a clock 
divisor programmed into a clock divisor register, 

whereby the time-Stamp counter is incremented at a 
programmable rate. 

8. The microprocessor die of claim 5 further comprising: 
clearing means, coupled to the time-Stamp counter, for 

clearing the time-Stamp counter after each debug trace 
record is written to the debug queue, 

wherein the time-Stamp field indicates an amount of time 
Since the previous debug trace record was written to the 
debug queue when the clearing means is activated. 

9. The microprocessor die of claim 1 further comprising: 
a Second processor core for fetching and executing 

general-purpose instructions, the Second processor core 
coupled to the cache and coupled to the debug queue; 

the debug queue further coupled to the Second processor 
core, for Storing debug trace records generated by 
execution of traced instructions by the processor core 
and by the Second processor core; 
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wherein the processor core and the Second processor core 
are not directly connected to address and data I/O pins 
on the microprocessor die, the processor core and the 
Second processor core indirectly accessing the external 
memory through the cache and the bus-interface unit, 

whereby multi-processor debugging is accomplished by the 
debug queue buffering debug trace records generated from 
both the processor core and the Second processor core. 

10. The microprocessor die of claim 9 wherein the pro 
ceSSor core and the Second processor core execute indepen 
dent programs. 

11. The microprocessor die of claim 10 wherein the traced 
instructions are instructions which access a traced memory 
location, the traced memory location having a trigger 
address Stored in a debug register, the microprocessor die 
further comprising: 

trigger compare means, coupled to the processor core and 
coupled to the Second processor core for comparing 
memory addresses generated by the processor core and 
the Second processor core to the trigger address Stored 
in the debug register, the trigger compare means Sig 
naling a debug event when a match is detected. 

12. The microprocessor die of claim 1 further comprising: 
a Video controller for generating a horizontal Synch Signal 

and a vertical Synch Signal to an external display, the 
horizontal Synch Signal indicating when a new hori 
Zontal line of pixels is being Sent to the external display, 
the vertical Synch Signal indicating when a new Screen 
of horizontal lines is being Sent to the external display; 

pixel fetch means, in the Video controller, for requesting 
pixels for display by the external display, the pixel fetch 
means requesting the pixels from the cache; 

pixel transfer means, coupled to the pixel fetch means, for 
transferring the pixels from the cache to the debug 
Gueue, 

whereby the debug queue Stores the pixels for display. 
13. The microprocessor die of claim 12 wherein the cache 

includes a frame buffer portion for Storing a Subset of the 
pixels in a Screen of horizontal lines, the external memory 
Storing a full frame buffer containing all of the pixels in the 
Screen of horizontal lines, 

wherein the pixel transfer means retrieves pixels from the 
frame buffer portion of the cache but retrieves pixels 
from the external memory only when the pixels are not 
present in the frame buffer portion of the cache, 

whereby the frame buffer is cached. 
14. The microprocessor die of claim 12 wherein the cache 

is a write-back cache, the cache containing updated pixels 
recently written by the processor core but not yet written 
back to the frame buffer in the external memory, the video 
controller first requesting pixels from the cache, the Video 
controller requesting pixels from the frame buffer in the 
external memory when the pixels are not present in the 
cache, 

whereby the frame buffer is cached by a write-back cache 
wherein updated pixels are not immediately written 
through to the frame buffer in external memory. 

15. A microprocessor comprising: 
a central processing unit (CPU) for executing instructions; 
a cache for Storing instructions, operands, and pixels for 

display, the cache operating in a write-back mode 
whereby an operand or a pixel written by the CPU is 
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not written back to an external memory until an entire 
cache line containing the operand or the pixel is written 
back to the external memory; 

a debug register for Storing a trigger address of a debug 
event, 

a debug comparator, coupled to the debug register and 
coupled to the CPU, for comparing the trigger address 
from the debug register to an address generated by 
execution of instructions by the CPU, the debug com 
parator Signaling a debug event when a match occurs, 

a trace record loader, coupled to the CPU, for generating 
a trace record when the debug event is triggered, the 
trace record including an identifier for the trigger 
address and a time Stamp for indicating a relative time 
that the debug event occurred; 

a FIFO buffer, coupled to the trace record loader, for 
Storing the trace record for later transmission to an 
external in-circuit emulator (ICE); and 

a Video controller for transferring pixels from the cache to 
the FIFO buffer, the FIFO buffer transmitting the pixels 
to an external display when the external ICE is not 
connected to the microprocessor, 

whereby the FIFO buffer stores trace records when debug 
ging and pixels when not debugging. 

16. The microprocessor of claim 15 further comprising: 
a video-ICE interface, coupled to the FIFO buffer but not 

coupled to the cache, for transferring a Stream of pixels 
from the FIFO buffer to the external display monitor 
when debug mode is disabled, but transferring trace 
records to the external ICE when debug mode is 
enabled; 

a memory interface, coupled to the cache, for accessing an 
external DRAM memory when a request for an 
instruction, operand, or pixel misses in the cache, 

wherein the video-ICE interface is separate from the 
memory interface So that trace records are not trans 
ferred over the memory interface, allowing the memory 
interface to operate at a full operating Speed during 
debug mode. 

17. The microprocessor of claim 16 wherein the CPU 
comprises a plurality of independent processor cores, each 
processor core for executing instructions from a general 
purpose instruction Set independently of execution by other 
proceSSOr cores, 
whereby debug events are generated from multiple pro 

ceSSor cores executing independent programs. 
18. A method for tracing execution of a program of 

instructions on a processor chip comprising the Steps of: 
executing a stream of instructions on a processor core and 

generating an address, 
comparing the address generated by the processor core to 

a trigger address and trigger conditions and Signaling a 
debug event when a match occurs, 

reading an action field in a debug register containing the 
trigger address when the debug event is signaled and 
performing an action indicated by the action field; 

when the action in the action field is a trace-address 
action: 
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generating a trace record including the address gener 
ated by the processor core and loading the trace 
record into a debug queue, 

when the action in the action field is a trace-address-data 
action: 
generating a trace record including the address gener 

ated by the processor core and data generated by the 
processor core and loading the trace record into a 
debug queue, 

when one or more trace records are present in the debug 
queue: 
reading an oldest trace record out of the debug queue 

and outputting the oldest trace record to debug 
interface pins on the processor chip 

when a trace record is present on the debug interface pins: 
transferring the trace record to an external in-circuit 

emulator (ICE) and displaying the trace record to a 
debugging user, 

whereby trace records are generated and loaded into the 
debug queue before being transferred to the external 
ICE. 

15 

18 
19. The method of claim 18 further comprising the steps 

of: 
when the action in the action field is a trace-address-data 

action or a trace-address action: 
reading a time-Stamp counter and writing a time-Stamp 

value of the time-Stamp counter to the trace record 
generated 

whereby the trace record includes the time-Stamp value to 
indicate when the debug event occurred. 

20. The method of claim 18 further comprising the steps 
of: 

when the action in the action field is a Stop-clock action: 
Stopping a processor clock to the processor core and 

halting execution of instructions, 
when the action in the action field is a Send interrupt 

action: 
generating an interrupt to the processor core; 

whereby the debug event generates a trace record, gen 
erates the interrupt or Stops the processor clock. 


