
USOO584.8264A

United States Patent (19) 11 Patent Number: 5,848,264
Baird et al. (45) Date of Patent: Dec. 8, 1998

54) DEBUG AND WIDEO QUEUE FOR MULTI- 5,493,637 2/1996 Martin 395/131
PROCESSOR CHIP 5,546,562 8/1996 Patel 395/500

5,564.041 10/1996 Matsui et al. 395/500
75 Inventors: Brian R. Baird, Pleasanton; David E. is E. Ayal - 33

Y/ -- Y-2 OlSOl C al.

Sighter tly GN S 5,680,583 10/1997 Kuijsten 395/500
isioner both of San Jose all of 7,510,934 1/1998 Bona et al. 395/183.06
Calif. s s Primary Examiner Kevin J. Teska

Assistant Examiner Ayni Mohamed
73 Assignee: S3 Incorporated, Santa Clara, Calif. Attorney, Agent, or Firm-Stuart T. Auvinen

57 ABSTRACT
21 Appl. No.: 740,248

A microprocessor die contains Several processor cores and a
22 Filed: Oct. 25, 1996 shared cache. Trigger conditions for one or more of the
(51) Int. Cl. .. G06F 9/455 processor E. as press s debug EYE
52 U.S. Cl. .. 395/500 E. etected, t recora is g
58 Field of Search 395/385,500, O s lug RC N e microprocessor i CC

395/527 records Irom cullerent processor cores can be rapidly gen
erated and loaded into the debug queue. The external inter

56) References Cited face cannot transfer these trace records to an external

U.S. PATENT DOCUMENTS

5,313,618 5/1994 Pawloski et al. 395/500
5,321,828 6/1994 Phillips et al. 395/500
5,329.273 7/1994 Patton 340/517
5,357,626 10/1994 Johnson et al... ... 395/500
5,392.420 2/1995 Balmer et al. 395/500
5,410,547 4/1995 Drain 371/22.4
5,479,634 12/1995 Takita.
5,486,876 1/1996 Lew et al. 348/719
5,493,315 2/1996 Atchley 345/200

O O O D D D D
28

O O O O OO

in-circuit emulator (ICE) at the rate generated. The debug
queue transferS trace records to the external ICE using a
dedicated bus to the ICE So that bandwidth is not taken from
the memory bus. The memory bus is not slowed for
debugging, providing a more realistic debugging Session.
The debug buffer is also used as a video FIFO for buffering
pixels for display on a monitor. The dedicated bus is
connected to an external DAC rather than to the external ICE
when debugging is not being performed.

20 Claims, 7 Drawing Sheets

26

FRAME
BUFFER

HSYNC

U.S. Patent Dec. 8, 1998 Sheet 1 of 7 5,848,264

i
N

SN

5
o
He
Z

D

5,848,264 Sheet 2 of 7

ZTINE/AE(…)97 LNBAE

Dec. 8, 1998

??TN?N?)()(Z(INEAE)()()(INEAR

U.S. Patent

5,848,264 Sheet 3 of 7

ZTINE/AE()9TLNEAE

Dec. 8, 1998

GTLNEAEVILNE/AE STINEAE)()(Z?INEAE

U.S. Patent

U.S. Patent Dec. 8, 1998 Sheet 4 of 7 5,848,264

CPU-O EVENT 1X XEVENT 2 X XEVENT 3

CPU-1 EVENT 4X XEVENT 5

CPU-2 EVENT_6X XEVENT_7

N QUEUE

EVENT 1 EVENT 4

FG. 4 CE
12

U.S. Patent Dec. 8, 1998 Sheet 5 of 7 5,848,264

CAUSE TIME STAMP 16-BIT TRACE RECORD

CAUSE TIME STAMP ADDRESS-15:02

32-BIT TRACE RECORD

CAUSE TIME STAMP ADDRESSC 15:02 DATA31:02

64-BIT TRACE RECORD

80 82 84 86 88

ADDRC31:02 MASK CPU# ACTION

U.S. Patent Dec. 8, 1998 Sheet 6 of 7 5,848,264

O O D O O O O D D
26

CPU-O
LEVEL-2

30 CACHE BU

32

CPU-2

34 27

38 CONTROL

TRG DB QUEUE
LOADER

36

DEBUG
REG'S 42

O D O O DO O. D D

40

FIG. 7

U.S. Patent Dec. 8, 1998 Sheet 7 of 7 5,848,264

O O D D, DO O. O. D D
28

CPU-O

FRAME FRAME
BUFFER BUFFER

D

D

O

O

D

O

D

O

5,848,264
1

DEBUG AND WIDEO QUEUE FOR MULTI
PROCESSOR CHIP

BACKGROUND OF THE INVENTION FIELD
OF THE INVENTION

This invention relates to computer Systems, and more
particularly to trace capture for debugging and a cacheable
Video architecture using debugging hardware.

BACKGROUND OF THE INVENTION
DESCRIPTION OF THE RELATED ART

Complex computer Systems and programs rarely work
exactly as designed. During the development of a new
computer System, unexpected errors or bugs may be discov
ered by thorough testing and exhaustive eXecution of a
variety of programs and applications. The Source or cause of
an error is often not apparent from the error itself, many
times an error manifests itself by locking the target System
for no apparent reason. Thus tracking down the Source of the
error is problematic.
An existing host computer System is often used to observe

activity of the target System. A trace of this activity is made
just before the error occurs. This host System and its
interface is known as an in-circuit emulator (ICE). Often the
ICE is a simple personal computer (PC) connected to an
emulator interface. The emulator interface is connected to a
Small circuit card that is plugged into the target System being
developed. The small circuit card is inserted between the
micro-processor and the motherboard. Phillips et al. describe
an ICE in U.S. Pat. No. 5,321,828, which is assigned to Step
Engineering of Sunnyvale Calif.
A trigger condition, Such as an access of a specific

address, is programmed into the host System. Addresses
from the microprocessor are continuously Sent from the
Small circuit card to the emulator interface and compared to
the trigger address. Once an address match occurs, the
emulator captures bus activity that occurs after the trigger, or
Saves bus activity that occurred just before the trigger or
Some programmable delay relative to the trigger.
A particular problem occurs when the microprocessor

chip contains an internal cache. The internal cache hides the
activity of the microprocessor core by buffering and delay
ing memory accesses. The microprocessor core may write to
the trigger address in the internal cache many cycles before
the internal cache writes the data at the trigger address out
to the external pins of the chip. Thus the emulator may not
trigger until many cycles after the microprocessor reaches
the trigger address.

This problem has been solved in a variety of ways. For
example, Johnson and Witt in U.S. Pat. No. 5,357,626,
assigned to Advanced Micro Devices of Sunnyvale Calif.,
use a Second microprocessor chip which operates in a
master-slave mode to a first microprocessor chip. The Sec
ond microprocessor chip duplicates the instructions
executed by the first (master) chip. The Second (slave)
microprocessor chip has special pins to transmit internal
execution State to the ICE. Thus a Second, Specially
modified microprocessor chip is used to make internal State
information available to the ICE. Additional I/O pins on the
chip are used to aid in debugging.

FIG. 1 is a timing diagram of a prior-art in-circuit emu
lator debugging a microprocessor. Execution of a test pro
gram in the microprocessor core generates internal trigger
events, EVENT 1, EVENT 2, EVENT 3, which occur at
different times depending on the programming of trigger

15

25

35

40

45

50

55

60

65

2
conditions in debug registers. These internal trigger events
pass information to the I/O pins of the chip, Such as the
trigger address, data, and possibly internal State information.
BuS 14 includes the address, data, and Status pins of the chip
which are connected to ICE 12. Special test pins which pass
internal information to ICE 12 are also included in bus 14.

All addresses generated by the processor, or by a bus
interface unit for the processor, are transmitted over buS 14
to ICE 12. Most of these addresses are not addresses near the
trigger address which are stored by ICE 12 as the trace. Thus
most of the addresses transmitted to ICE 12 over bus 14 are
discarded by ICE 12. Thus much of the bandwidth on bus 14
to ICE 12 is wasted bandwidth.
While the debugging apparatus of FIG. 1 is adequate for

slower chips with a single microprocessor core, when faster
or multiple processor cores or other independent Sub
Systems exist on a chip, the number of events occurring can
increase beyond the bandwidth of the pins of the chip. FIG.
2 shows a timing diagram for a chip having multiple
processor cores connected to an ICE which is overwhelmed
by debug events. The three processor cores, CPU-0, CPU-1,
CPU-2, do not connect directly to the I/O pins of the chip
Since this requires too many pins. Instead, these processor
cores are connected to a shared internal cache and then to a
bus-interface unit which sends requests outside the chip. The
first processor core generates trigger events EVENT 1,
EVENT 2, EVENT 3, while the second processor core
generates trigger events EVENT 4 and EVENT 5. The
third processor core generates trigger events EVENT 6,
EVENT 7.

Since the processor cores are capable of Simultaneously
executing independent programs, these events may be gen
erated at approximately the same time. There is only one
interface to the pins of the chip and to external ICE 12.
Therefore only one event may be transmitted to ICE 12 at a
time. When multiple events occur from different processor
cores, such as events EVENT 4 and EVENT 2, both
events cannot be transmitted over bus 14 to ICE 12.
The multiple processor cores increase the possible debug

bandwidth Since multiple programs may be executing at the
Same time. Another problem is that these processor cores
often are executing at a higher clock rate than the external
interface of bus 14 to ICE 12. Thus while the internal trigger
events are generated in a short amount of time using the
faster internal clock, these events cannot be transmitted over
external buS 14 to ICE 12 as quickly as they are generated.
The interface for transmitting debug event information

from the microprocessor chip to ICE 12 can be expanded by
increasing the number of pins on buS 14. However, this is
very expensive and not practical, especially when the
amount of debug information doubles or triples as when
multiple processor cores are simultaneously executing test
programs. The chip cannot generate more debug information
than can be transmitted out of the chip in any given cycle or
Some of the generated debug information will be lost.

All but one of the multiple processor cores could be
disabled from generating trigger events, but this Severely
limits the ability to debug realistic Situations when multiple
programs execute on the multi-processor chip. While the
data and address buSSes of the bus-interface unit and the
shared cache may be used to transmit the trigger event
information to the external ICE, it is more desirable to use
a separate interface for debug events So that the existing data
and address buSSes may continue to be used for program
execution and accessing external memory Such as DRAM.
Debugging can change the program's behavior when the
external bus must be halted to transfer debug information off
the chip.

5,848,264
3

What is desired is a debugging System for multi-processor
chips. It is desired to execute Several test programs Simul
taneously on a microprocessor chip which has Several inde
pendent processor cores and to generate internal trigger
events from multiple processor cores. It is desired to trans
mit these multiple trigger events to an external ICE using a
small interface having relatively few I/O pins. It is desirable
to use a debug interface which is separate from the DRAM
interface. It is also desired to have the majority of the
hardware for the debug interface to be useful during normal
processing. It is desired to combine the debug interface with
a Video display interface.

SUMMARY OF THE INVENTION

A microprocessor die is adapted for high-Speed debug
ging. I/O pins on the die make electrical connections
between circuitry on the microprocessor die and external
circuitry. The I/O pins include memory interface pins for
connection to an external memory and debug interface pins
for connection to an external in-circuit emulator (ICE). A
processor core fetches and executes instructions. A cache is
coupled to the processor core. It Supplies instructions and
operands to the processor core. A bus-interface unit is
coupled to the cache and to the memory interface pins. It
accesses the external memory when an instruction or an
operand requested by the processor core is not present in the
cache.
A debug queue is coupled to the processor core. The

debug queue Stores debug trace records generated by execu
tion of traced instructions by the processor core. A debug
interface is coupled to the debug queue and to the debug
interface pins on the microprocessor die. It transferS debug
trace records previously written to the debug queue to the
external ICE. The external ICE displays the debug trace
records. The debug interface pins are different pins than the
memory interface pins.

Thus the debug interface is a Separate interface from the
memory interface. The debug queue bufferS debug trace
records to the external ICE using the debug interface pins.
The bandwidth of the memory interface pins is not used for
transferring debug trace records, allowing high-speed
debugging.

In further aspects the debug queue is a FIFO memory. The
debug trace records are written to the debug queue at a first
rate of a processor clock but read from the debug queue to
the debug interface pins at a Second rate of an external clock.
The Second rate of the external clock is a lower rate than the
first rate of the processor clock. Transfer of debug trace
records to the external ICE is delayed by several external
clock cycles when the debug queue contains other debug
trace records.

In Still further aspects the debug trace records Stored in the
debug queue include a time-Stamp field which indicates a
temporal location of when the debug trace record was
generated by the processor core. An identifier field indicates
a debug event which caused the debug trace record to be
generated. Thus the time-Stamp field in the debug trace
record is Stored in the debug queue and transferred to the
external ICE to indicate when the debug trace record was
generated by the processor core.

In further aspects a time-Stamp counter has a limited
modulus. The time-Stamp counter reaches the limited modu
lus in less than a minute when each pulse of a processor
clock increments the time-Stamp counter. Thus the debug
trace records include a time Stamp generated from a limited
modulus counter.

15

25

35

40

45

50

55

60

65

4
In further aspects of the invention a rollover trace record

is written to the debug queue when the time-Stamp counter
reaches the limited modulus. The time-Stamp counter is
incremented after every X pulses of the processor clock,
where X is a clock divisor programmed into a clock divisor
register. Thus the time-Stamp counter is incremented at a
programmable rate.

In other aspects the time-Stamp counter is cleared after
each debug trace record is written to the debug queue. Thus
the time-Stamp field indicates an amount of time Since the
previous debug trace record was written to the debug queue.

In other aspects a Second processor core fetches and
executes general-purpose instructions. The Second processor
core is coupled to the cache and coupled to the debug queue.
The debug queue is further coupled to the Second processor
core. The debug queue Stores debug trace records generated
by execution of traced instructions by the processor core and
by the Second processor core. The processor core and the
Second processor core are not directly connected to address
and data I/O pins on the microprocessor die. The processor
core and the Second processor core indirectly access the
external memory through the cache and the bus-interface
unit. Thus multi-processor debugging is accomplished by
the debug queue buffering debug trace records generated
from both the processor core and the Second processor core.
The processor core and the Second processor core execute
independent programs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a timing diagram of a prior-art in-circuit emu
lator debugging a microprocessor.
FIG.2 shows a timing diagram for a chip having multiple

processor cores connected to an ICE which is overwhelmed
by debug events.

FIG. 3 is a timing diagram of a multi-processor chip with
a debug queue for buffering debug trace information to an
external in-circuit emulator (ICE).

FIG. 4 is a timing diagram of a multi-processor chip with
a debug queue which transmits trace information to an
external ICE at a slower rate.

FIG. 5 is a diagram of trace records stored in the debug
Gueue.

FIG. 6 is a diagram of a debug trigger register for a
multi-processor chip.

FIG. 7 is a diagram of a multi-processor chip with a debug
Gueue.

FIG. 8 is a diagram of a multi-processor die with a debug
queue which is also used for buffering video pixels.

DETAILED DESCRIPTION

The present invention relates to an improvement in micro
processor debug and Video architecture. The following
description is presented to enable one of ordinary skill in the
art to make and use the invention as provided in the context
of a particular application and its requirements. Various
modifications to the preferred embodiment will be apparent
to those with skill in the art, and the general principles
defined herein may be applied to other embodiments.
Therefore, the present invention is not intended to be limited
to the particular embodiments shown and described, but is to
be accorded the widest Scope consistent with the principles
and novel features herein disclosed.

A debug queue is added on the microprocessor chip to
buffer debug information being sent to the external ICE.

5,848,264
S

This queue allows for debug trace information to be gener
ated at a higher rate than can be sent off-chip, as long as the
queue does not fill up. When a trigger is reached internally,
the debug trace information is rapidly Sent to the debug
queue and then transmitted to the external ICE at a lower
rate. The debug queue allows for a short period of time when
multiple debug events are generating trace information. The
Size or depth of the queue determines how many Simulta
neous triggers can occur, and how much trace information
can be generated and Stored without loSS.

Buffering debug trace information is not performed by the
prior-art microprocessors. The trace information is generally
received in real-time by prior-art ICE’s. Buffering trace
information for a prior-art ICE would cause the time infor
mation to be lost.

FIG. 3 is a timing diagram of a multi-processor chip with
a debug queue for buffering debug trace information to an
external in-circuit emulator (ICE). The three processor
cores, CPU-0, CPU-1, CPU-2, do not connect directly to the
bonding pads or I/O pins of the chip Since this requires too
many pins. Instead, these processor cores are connected to a
shared internal cache and then to a bus-interface unit which
Sends requests outside the chip. The first processor core
generates trigger events EVENT 1, EVENT 2, EVENT
3, while the Second processor core generates trigger events
EVENT 4 and EVENT 5. The third processor core gen
erates trigger events EVENT 6, EVENT 7.

Internal bus 18 receives trace information from the three
CPU cores, Such as address, Status, and possibly data.
Internal bus 18 receives this trace information and loads it
into debug queue 20. Debug queue 20 temporarily Stores
debug trace information and then transmits it on external bus
14 through the I/O pins of the microprocessor chip to ICE
12. Debug queue 20 is a standard first-in-first-out (FIFO)
buffer, although the read and write ports can be of different
widths.

Internal bus 18 can be made wider than external bus 14
Since I/O pins of the chip are not needed for internal
connections from the CPU cores to debug queue 20. Internal
buS 18 can operate at a higher speed than external buS 14
Since internal connections have lower capacitance and
delays than external connections. Debug trace information
from the CPU cores is sent over internal bus 18 at a high rate
to debug queue 20, and then transmitted at a lower rate from
debug queue 20 over external bus 14 to ICE 12.
Buffering Allows Slower External Bus to ICE

FIG. 4 is a timing diagram of a multi-processor chip with
a debug queue which transmits trace information to an
external ICE at a slower rate. Debug trace information is
generated at the high clock rate of the processor cores, as
indicated by the short time period of EVENT 1 . . .
EVENT 7 generated by the processor cores. These trace
events are Stored in debug queue 20 and then Sent to external
ICE 12 over external bus 14. ICE 12 receives these trace
events at a slower rate of the memory-bus clock as indicated
by the longer time periods of EVENT 1 and EVENT 4,
the first two trace events received by queue 20.
Format of Trace Records in Debug Queue

FIG. 5 is a diagram of trace records stored in the debug
queue. When a trigger is detected in a CPU core, Such as by
address comparison to a trigger address in a debug register,
trace information is Sent to debug queue 20. Three formats
are defined for Storing the trace information in the debug
queue. The three formats differ in size: a 16-bit format, a
32-bit format, and a 64-bit format. The larger-sized formats
can Store more information about the debug event. The
64-bit format stores 32 bits of data, while the 32-bit format

15

25

35

40

45

50

55

60

65

6
does not store the data. The 16-bit format does not store the
data nor the address, while the 32-bit format stores 16 bits
of the address.

All three formats Store the cause of the event and a time
stamp. The cause field identifies which of the four debug
trigger registers and which CPU core or other Sub-System on
the chip caused the event. A six-bit field is used for the cause
field:

OOOOOO Empty, no trace record
OO1 REO Trace caused by debug register 1, from requestor REQ
O1OREO Trace caused by debug register 2, from requestor REQ
O11REO Trace caused by debug register 3, from requestor REQ
1OOREO Trace caused by debug register 4, from requestor REQ

The source of the record, in requester field REQ, is
encoded as:

OOO CPU core O
OO1 CPU core 1
O10 CPU core 2
1OO Cache subsystem
101 Bus Interface Unit to External DRAM
110 System interface
111 Diagnostic unit

The cache may generate a debug event independently of
any CPU core. An external Snoop request to the shared cache
could match a trigger address. If more than one Source
generates the Same trigger at the same time, then the REQ
field of the cause is Set for the lowest requester.
Time Stamp Field Stored in Debug Queue on Chip
The time stamp allows the ICE to place the buffered event

into the order the events occurred, even when the events are
generated by different processor cores. A time-Stamp register
is used by all CPU cores and sub-systems to load the
time-Stamp field into the debug queue. Thus a single time
base is used for all processor cores, allowing comparison of
processor activity of different CPU cores. The time stamp
indicates how far apart different events are.
The time-Stamp register is a 10-bit register which incre

ments every N cycles of the processor clock. A Second
register holds the value for N, the clock divisor, while a third
register controls the operation of the time-Stamp register.
The time-Stamp register is not a real-time clock requiring

many bits. Ten bits provides cycle-level granularity for
events occurring within 1024 processor clock cycles of each
other. For events which are farther apart than 1024 cycles,
the clock divisor can be programmed to a value larger than
1 So that longer periods of time can be measured by the time
Stamp. For example, a clock divisor of 16 indicates that an
event occurred within a 16-cycle window, and can distin
guish events 16,384 cycles apart.
The time-stamp divisor is a 16-bit value, allowing the

time-Stamp register to be incremented as slowly as once
every 65,535 clock cycles. Programming the time-Stamp
divisor to Zero invokes a Special mode where the time Stamp
is no longer periodically incremented. Instead the time
Stamp register is incremented only when a trace event is
triggered. When two or more events occur in a single clock
period, the time-Stamp register is only incremented once for
the cycle. This mode is useful for identifying when two
events occur in the Same clock cycle, without indicating the
time of each event.
The time-Stamp control register contains four bits:
1. Saturate/Roll over Counter
2. Reset time-Stamp counter after each trace record gen

erated

5,848,264
7

3. Generate time-Stamp roll-over trace record
4. Queue overflow trace record generate enable.
When the first bit is cleared the 10-bit time-stamp register

rolls over to Zero when the maximum count is reached.
Setting the first bit causes the counter to Saturate or Stop
counting/incrementing once the maximum count (0x3FF
hex) is reached.

Setting the Second control bit causes the time-Stamp
counter to reset to Zero after each event is triggered. In this
mode the time Stamp represents the difference (delta) in time
between trace records.

Setting the third control bit causes a Special roll-over trace
record to be generated each time the time-Stamp counter
rolls over to Zero. This special roll-over trace record is
written to the top of the debug queue once every time it rolls
over and can be used by the external ICE to generate an
exact time of each event triggered, even when the events are
Separate by more than 1024 cycles (or multiples of the clock
divisor). Of course, the counter must be set to roll over by
clearing the first control bit.
Queue Overflow Record

Other formats for the trace records may be defined, and
the order and type of fields in a trace record may be changed
for different record formats. For example, a queue-overflow
record may be generated when the debug queue overflows.
This queue-overflow record is inserted to the top of the
queue and eventually read out to the external ICE.
Debug Trigger Registers

FIG. 6 is a diagram of a debug trigger register for a
multi-processor chip. Four debug registers 42 are shared
among all three processor cores for triggering debug events.
Address field 80 is programmed with a 32-bit address which
is compared with addresses generated by the three processor
cores. An address match is required for many types of debug
events, but not for all types of events. For example, an
interrupt may trigger a debug event although no address is
compared.
Mask field 82 is a 5-bit field which is programmed with

a binary number. The binary number indicates the number of
least-significant address bits to ignore or mask off in the
address comparison to the trigger address in address field 80.
When mask field 82 is programmed with the value 00101,
then the lowest five address bits are ignored; any address
within an aligned 32-byte block is considered an address
match. Thus mask field 82 allows for coarse granularity of
address comparisons.

Type field 84 is programmed with a code indicating the
type of transaction to trigger on. For example, the debug
register can be programmed to trigger on a write to a certain
address but not trigger on a read to that same address. Code
or Data accesses can be Selected, as can accesses to diag
nostic or memory Spaces. Table 1 lists the types of transac
tions and their respective codes for type field 84. These
codes may be combined when a don’t care (“X”) is present
in the codes.

TABLE 1.

Trigger Types

Requires Address
Code Type Match

OOxxO Read Access Yes
OOxx1 Write Access Yes
OOxOx Code-Space Access Yes
OOx1x Data-Space Access Yes
OOOxx Memory-Space Access Yes

1O

15

25

35

40

45

50

55

60

65

8

TABLE 1-continued

Trigger Types

Requires Address
Code Type Match

OO1xx Diagnostic-Space Access Yes
O1xxx Reserved/Undefined No
10eee Event From CPU No
11OOO Debug Queue Full No
11OO1 External Interrupt No
11010 External Error No
111i System Interrupt No

Setting type field 84 to 11000 causes a debug trigger when
the debug queue is full or nears full. This inserts a “queue
near full record into the debug queue which can be detected
by the external ICE once the record is read out of the chip.

For system interrupts, the interrupt number “i i” is
encoded into the last two bits of type field 84. For CPU
events, the CPU event is encoded into the last three bits of
type field 84 designated “eee'. Table 2 lists the types of CPU
events. Event counters can be programmed to count cache
accesses, Snoops, pipeline Stalls, and branch prediction
results. These event counters can overflow when more than
2 events of that type have occurred. Instruction and data
address Strobes when an address or data match occurs.

TABLE 2

CPU Event Types

Code CPU Event Selected

OOO Event Counter 0
OO1 Event Counter 1
O10 Event Counter 2
O11 Instruction Address Strobe
1OO Event Counter O Overflow
101 Event Counter 1. Overflow
110 Event Counter 2 Overflow
111 Data Access Strobe

External interrupts and errors can also trigger debug
events when type field 84 is set to 11001 or 11010. These
event types do not require an address match Since an address
is not generated.
CPU identifier field 86 is an 8-bit field which indicates

which processor core or Sub-System is the debug event
programmed for. Each of the four debug registers 42 can be
programmed to trigger on addresses or events from any of
the processor cores. Any of the debug registers 42 can be
programmed to trigger on an event from any of the processor
cores, or just Some of the cores. Table 3 shows the encoding
for CPU identifier field 86, where “X” is a don't care bit.

TABLE 3

CPU Identifier Field

Encoding Trigger from

1XXXXXXX CPU core O
X1XXXXXX CPU core 1
XX1XXXXX CPU core 2
XXX1XXXX Reserved
XXXX1XXX Level-2 Cache
XXXXX1XX DRAM BU
XXXXXX1X System Interface
XXXXXXX1 Reserved

An encoding of 11100000 triggers on a match from any of
the three processor cores. An encoding of 11101110 triggers

5,848,264

when the match or event is from any of the three processor
cores or from the shared cache or system or DRAM inter
faces. Thus CPU identifier field 86 can be used to trigger a
debug event for writing to a specific address location by any
processor core or sub-system. An encoding of 10100000
triggerS only for an event generated by the first or third
processor cores. CPU identifier field 86 thus allows for great
flexibility in programming debug events. A code of
00000000 disables the trigger register.

Action field 88 indicates what action is taken when a
debug event is triggered. A common action taken is to add
a trace record to the debug queue. Other actions include
Stopping the processor clock to one or more of the processor
cores, and Sending an interrupt to a Specific processor. Table
4 lists the actions encoded by action field 88.

TABLE 4

Action Field

Encoding Action Taken

OOOOO No Action
Okkk0 Stop clock to CPUs kkk
100cc Send Interrupt to CPU cc
11ttt Add Trace Record of Type ttt

ClockS may be stopped to one or more processor cores by
programming a one-hot encoding of the CPU's as “kkk”. For
example, encoding 01000 stops the clock for the first pro
cessor core but no others. Encoding 00110 stops the clock
for the Second and third processor cores but not the first core,
while encoding 01110 Stops the clock to all three processor
cores when the event is triggered. Field “cc” is 00 for CPU
0, 01 for CPU 1, or 10 for CPU 2.
An interrupt is Sent to only one processor core, So a binary

encoding “cc' is used to identify which processor core
receives the interrupt. Encoding action field 88 with 10001
sends the interrupt to the first processor core while 10010
Sends the interrupt to the Second processor core and 10011
Sends the interrupt to the third processor core.
When the action specified is to add a trace record to the

debug queue, the size and type of the trace record added is
encoded as record type “tt t”. Table 5 lists the possible trace
record types. FIG. 5 showed the trace record formats for 16-,
32-, and 64-bit record types. The time stamp rollover or
queue overflow record types cannot be Selected as they are
automatically generated when the time Stamp register rolls
over and the third control bit for the time stamp counter is
Set. The queue overflow record is generated independently
of the debug events when the queue overflows.

TABLE 5

Trace Record Types

Code ttt Trace Record Type

OOO 16-bit (No address, no data)
OO1 32-bit (Address, no data)
1OO 64-bit, data word O
101 64-bit, data word 1
110 64-bit, data word 2
111 64-bit, data word 3
O11 Queue Overflow
O1O Time Stamp Rollover

In the preferred embodiment, accesses are 128-bit data
bursts, and thus separate trace record types are defined for
each of the four 32-bit words of the burst.

1O

15

25

35

40

45

50

55

60

65

10
Multi-Processor Chip with Debug Queue-FIG. 7

FIG. 7 is a diagram of a multi-processor chip with a debug
queue. Multi-processor die 40 contains three processor cores
for executing independent general-purpose programs. CPU
cores 30, 32, 34 each contain one or more pipelines for
fetching and executing instructions. CPU cores 30, 32, 34
each contain an execution unit and one or two primary
caches.
CPU cores 30, 32, 34 request instructions and data

operands from Second-level cache 28, which is preferably a
large write-back cache. Misses in Second-level cache 28 are
sent to external DRAM 21. Bus-interface unit (BIU) 26
generates bus cycles on external memory buS 24, which is a
64-bit or 128-bit data bus.

Internal bus 50 sends requests from CPU cores 30, 32, 34
to second-level cache 28. Separate busses from each CPU
core can be used, but the shared internal bus 50 is less
expensive. Each CPU core 30, 32, 34 has its own primary
cache.

Internal bus 50 also connects to debug queue 20 to supply
address, data, and status information from CPU cores 30, 32,
34 or second-level cache 28. The address, data, and status
information is used to assemble the trace record loaded into
debug queue 20 when a debug event is triggered and the
action specified in action field 88 is to load a trace record
into the debug queue.

Trigger detector 38 compares addresses and cycle Status
information from CPU cores 30, 32, 34 and second-level
cache 28 to the trigger addresses and conditions pro
grammed into debug registers 42. In a preferred
embodiment, four debug registers are provided for all CPU
cores and sub-systems on multi-processor die 40. When a
debug event is detected by trigger detector 38, then debug
queue loader 36 assembles the address, data, and Status from
internal bus 50 and creates a trace record of the type
specified by action field 88 of debug registers 42. When the
action specified does not load a trace record into debug
queue 20, then debug queue loader 36 sends a stop clock
command or an interrupt to the appropriate CPU core 30, 32,
34 from clock and interrupt control logic 27.

Trace records loaded into debug queue 20 are read out to
external ICE 12. External ICE bus 14 includes some of I/O
pins 44 on multi-processor die 40 so that the trace records
written to debug queue 20 are transmitted off-chip to exter
nal ICE 12. Since I/O pins 44 are a limited resource, and
adding more I/O pins significantly increases the cost of
multi-processor die 40, external ICE bus 14 is limited to 16
data bits, or two bytes. This is a very small amount of debug
trace information, being only half of a 32-bit trace record,
the Smallest record format containing an address. The Small
size of external ICE bus 14 is unsatisfactory if debug
information is not Stored in debug queue 20 and had to be
transferred off-chip immediately.
Advantages of Debug Queue and Separate Debug Bus
Debug queue 20 allows debug trace information to be

rapidly generated within die 40 and then sent off-chip at a
more leisurely pace on a low-bandwidth external bus. Cost
is reduced as few I/O pins are needed for transferring debug
information off the die to the external ICE. The primary
interface to the external DRAM 21 is not used for trace
information, So debug operation does not reduce the band
width available for fetching operands and instructions.
Using external memory buS 24 for transmitting debug trace
information to ICE 12 would require some of the bandwidth
that is otherwise used for program execution. Thus the
programs being debugged are not slowed down due to a lack
of bandwidth on the external memory bus. This provides

5,848,264
11

more realistic program execution when debugging is per
formed Since a dedicated bus is available for off-loading
debug trace records.
Performance and Programming Considerations

In a preferred embodiment, the debug queue contains 128
bytes of storage. Up to 64 16-bit records, or 32 32-bit
records, or 16 64-bit records, or any combination of no more
than 128 bytes may be contained in the debug queue at any
time. The debug queue transmits two bytes of trace infor
mation each cycle of a clock. The internal processor clock
operates at triple the external bus frequency. When 16-bit
trace records are generated each processor clock cycle, then
the debug queue fills up after 64 processor clocks, or 32
clocks when two processor cores are each generating trace
records simultaneously and the queue is not being emptied.

Normally the queue is being emptied by transferring two
bytes of trace record to the ICE each external clock period.
For every three processor clock periods, two bytes are read
out of the debug queue but at least Six bytes are written in
by one processor core. The net is four more bytes for every
three processor clocks. If the trace records continue to be
generated at this rate, the queue fills in 128/4 or 32 processor
clocks. Thus a burst of no more than 32 records can be added
to the queue by any one trigger event.

This is Still a significant burst of trace information, over
32 clock periods, for Such a Small queue. Larger queue sizes
could be used to Support capture of larger bursts. It is
important that the average generation of trace records be leSS
than the external transfer rate of two bytes per 150 MHz
clock period. Since debug events are normally quite rare, it
is unlikely that the average over a long period of time
exceeds the external transfer rate.

The user or program debugger can interactively adjust the
trace generation rate. When the debug queue overflows from
too many trace records being generated, a Special queue
overflow record may be inserted into the debug queue. When
a queue overflow record is generated and detected upon
being read out to the external ICE, the programmer can
reduce the trace frequency by using a 16-bit record rather
than a 32- or 64-bit record, or by reducing the number of
trigger addresses or adjusting the event counters. The CPUS
clock could also be slowed down relative to the external
clock.
Debug Queue Used for Video FIFO-FIG. 8

FIG. 8 is a diagram of a multi-processor die with a debug
queue which is also used for buffering video pixels. The
components of FIG. 8 operate in a manner Similar to that
described for FIG. 7. External DRAM 21 includes a portion
used as frame buffer 66, which contains pixel data for
display on monitor 62. Many formats and encodings of
pixels are possible, and a common format uses two bytes for
a full-color red-green-blue (RGB) pixel.

Video controller 64 is located on multi-processor die 40.
Video controller 64 includes timing circuits to generate
horizontal and vertical synchronization signals HSYNC,
VSYNC to monitor 62 to indicate when a new horizontal
line or a new Screen of horizontal lines are being written to
monitor 62. HSYNC and VSYNC are derived from a
graphics pixel clock which times the transfer of individual
pixels in a horizontal line.

Video controller 64 includes counters to indicate which
horizontal line and which pixel in the horizontal line is being
transferred. Video controller 64 is pipelined so that pixels
are fetched ahead of their being transferred to monitor 62.
Rather than fetch pixels directly from frame buffer 66 in
external DRAM 21, video controller 64 first requests the
pixels from level-two cache 28. Since level-two cache 28 is

15

25

35

40

45

50

55

60

65

12
a write-back cache, Sometimes new pixels are written by
CPU cores 30, 32, 34 to level-two cache 28 but the new
pixels have not been written back to external DRAM 21.
This commonly occurs when a new image is being written,
or a portion of the display is being updated.
A local frame buffer portion 66" of frame buffer 66 in

external DRAM 21 is present in second-level cache 28.
Pixels requested by video controller 64 which are not in
local frame buffer portion 66" are misses to second-level
cache 28 and are fetched from external DRAM 21 by BIU
26. Since pixel fetching is deeply pipelined, larger blocks of
pixels can be fetched from DRAM 21 using burst cycles.
This improves efficiency of external DRAM bus 24.

Pixels requested from second-level cache 28 are trans
ferred over internal bus 50 to debug queue 20. Since debug
mode is disabled when internal video controller 64 is
enabled, debug queue 20 is used as the video FIFO. Pixels
loaded into debug queue 20 are transferred off die 40 using
I/O pins 44 on external ICE bus 14. Since external ICE bus
14 is 16 bits wide, a standard two-byte pixel is transferred
to digital-to-analog converter (DAC) 60 each pixel clock
cycle. DAC 60 converts the 16-bit pixel from digital format
to analog Voltages representing the intensity of the red,
green, and blue components of the pixel, and these analog
voltages are sent to monitor 62. A RAM look-up table may
be used with the DAC to change attributes or re-map the
color Space.
When debugging is performed, debug queue 20 is used for

debug trace records and video controller 64 is disabled. An
external Video card is used to generate display information.
Since debug is Seldom used by end users, end-user Systems
can use the debug queue for Video functionality, reducing
System cost.
Advantages of Combined Video & Debug Queue

Cost and complexity are reduced by using the same
hardware buffer for two purposes: video pixel buffering and
debug trace buffering. Both uses provide a stream of data to
external devices: either the video pixels to an external DAC
and monitor, or debug trace records to an external ICE.

Placing a cached portion of the frame buffer in DRAM
allows several frame buffers to exist as the DRAM size is
large. Specialty RAMs such as VRAMs are not needed,
reducing cost. The processors have instant access to the
cached copy of the frame buffer as it is located on-chip in the
shared second-level cache. The cached frame buffer does not
have to be flushed when the Screen is updated, and the
cached frame buffer does not have to be write-through since
the Video controller accesses the Second-level cache on-chip
before accessing the frame buffer in the external DRAM.
Making the cache and the frame buffer write-back rather
than write-through increases performance, especially when
frequent Screen updates are performed, Since all updates do
not have to be immediately written out to DRAM. Newly
written pixels can be accumulated until a large block of
pixels can be burst out to the DRAM. Bursts of 32 bytes (16
pixels) are much more efficient than Single-pixel (2-byte)
writes to DRAM. Frequent updates overwrite earlier updates
and the earlier update no longer must be written back to
DRAM, thus decreasing traffic. Writes can be accumulated
and written in larger blocks, which improves efficiency of
the DRAM interface.

Rather than use extra pins for a data path to the external
frame buffer, the invention uses the existing DRAM path to
access the frame buffer in the DRAM. Cost is reduced since
additional pins are not needed for a dedicated data path to
the frame buffer.

5,848,264
13

Alternate Embodiments
Several other embodiments are contemplated by the

inventors. For example the RAMDAC may be integrated
onto the microprocessor chip So that the analog RGB signals
are transmitted off chip directly to the monitor. A flat-panel
display or other display technologies may be Substituted
with some modifications. The width of the busses may be
varied, and in particular a 4-byte pixel and external ICE bus
is contemplated by the inventors.
Many variations of the Video and debug logic are possible.

Separate internal busses may be used for the different CPU
cores, or a shared bus may be used as described. Separate
debug registers could be provided for each CPU core, and
the triggering logic and address comparators may be located
near or in the CPU cores. More than one debug queue could
be used, and the Size of the queue can be varied.

The foregoing description of the embodiments of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the Scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.
We claim:
1. A microprocessor die adapted for high-Speed debug

ging comprising:
I/O pins on the die for making electrical connections
between circuitry on the microprocessor die and exter
nal circuitry, the I/O pins including memory interface
pins for connection to an external memory and debug
interface pins for connection to an external in-circuit
emulator (ICE);

a processor core for fetching and executing instructions,
a cache, coupled to the processor core, for Supplying

instructions and operands to the processor core;
a bus-interface unit, coupled to the cache and to the
memory interface pins, for accessing the external
memory when an instruction or an operand requested
by the processor core is not present in the cache;

a debug queue, coupled to the processor core, for Storing
debug trace records generated by execution of traced
instructions by the processor core, and

a debug interface, coupled to the debug queue and to the
debug interface pins on the microprocessor die, for
transferring debug trace records previously written to
the debug queue to the external ICE, the external ICE
for displaying the debug trace records,

wherein the debug interface pins are different pins than
the memory interface pins, the debug interface being a
Separate interface from the memory interface,

whereby the debug queue bufferS debug trace records to
the external ICE using the debug interface pins and
whereby bandwidth of the memory interface pins is not
used for transferring debug trace records, allowing
high-Speed debugging.

2. The microprocessor die of claim 1 wherein the debug
queue comprises a FIFO memory including:

Writing means for writing the debug trace records to the
debug queue at a first rate of a processor clock, and

reading means for reading the debug trace records Stored
in the debug queue to the debug interface pins at a
Second rate of an external clock,

wherein the Second rate of the external clock is a lower
rate than the first rate of the processor clock.

15

25

35

40

45

50

55

60

65

14
3. The microprocessor die of claim 2 wherein the reading

means reads a debug trace record which was written to the
debug queue at least N cycles of the external clock before,
the debug queue containing N debug trace records, whereby
transfer of debug trace records to the external ICE is delayed
by Several external clock cycles when the debug queue
contains other debug trace records.

4. The microprocessor die of claim 1 wherein the debug
trace records Stored in the debug queue include:

a time-Stamp field for indicating a temporal location of
when the debug trace record was generated by the
proceSSOr core,

an identifier field for indicating a debug event which
caused the debug trace record to be generated,

whereby the time-Stamp field in the debug trace record is
Stored in the debug queue and transferred to the exter
nal ICE to indicate when the debug trace record was
generated by the processor core.

5. The microprocessor die of claim 4 further comprising:
a time-Stamp counter having a limited modulus, the

time-Stamp counter reaching the limited modulus in
less than a minute when each pulse of a processor clock
for clocking the processor core increments the time
Stamp counter;

wherein the time-Stamp field for a first debug trace record
is capable of containing a same numerical value as a
Second debug trace record when the time-Stamp counter
reaches the limited modulus between the first debug
trace record and the Second debug trace record,

whereby the debug trace records include a time Stamp
generated from a limited-modulus counter.

6. The microprocessor die of claim 5 further comprising:
rollover means, coupled to the time-stamp counter, for

Writing a rollover trace record to the debug queue when
the time-Stamp counter reaches the limited modulus,
and

reset means, coupled to the rollover means, for resetting
the time-Stamp counter when the time-Stamp counter
reaches the limited modulus,

whereby the rollover trace record in the debug queue
Separates the first debug trace record from the Second
debug trace record when the time-Stamp counter
reaches the limited modulus between the first debug
trace record and the Second debug trace record.

7. The microprocessor die of claim 5 further comprising:
divisor means, coupled to the time-Stamp counter, for

incrementing the time-Stamp counter after every X
pulses of the processor clock, where X is a clock
divisor programmed into a clock divisor register,

whereby the time-Stamp counter is incremented at a
programmable rate.

8. The microprocessor die of claim 5 further comprising:
clearing means, coupled to the time-Stamp counter, for

clearing the time-Stamp counter after each debug trace
record is written to the debug queue,

wherein the time-Stamp field indicates an amount of time
Since the previous debug trace record was written to the
debug queue when the clearing means is activated.

9. The microprocessor die of claim 1 further comprising:
a Second processor core for fetching and executing

general-purpose instructions, the Second processor core
coupled to the cache and coupled to the debug queue;

the debug queue further coupled to the Second processor
core, for Storing debug trace records generated by
execution of traced instructions by the processor core
and by the Second processor core;

5,848,264
15

wherein the processor core and the Second processor core
are not directly connected to address and data I/O pins
on the microprocessor die, the processor core and the
Second processor core indirectly accessing the external
memory through the cache and the bus-interface unit,

whereby multi-processor debugging is accomplished by the
debug queue buffering debug trace records generated from
both the processor core and the Second processor core.

10. The microprocessor die of claim 9 wherein the pro
ceSSor core and the Second processor core execute indepen
dent programs.

11. The microprocessor die of claim 10 wherein the traced
instructions are instructions which access a traced memory
location, the traced memory location having a trigger
address Stored in a debug register, the microprocessor die
further comprising:

trigger compare means, coupled to the processor core and
coupled to the Second processor core for comparing
memory addresses generated by the processor core and
the Second processor core to the trigger address Stored
in the debug register, the trigger compare means Sig
naling a debug event when a match is detected.

12. The microprocessor die of claim 1 further comprising:
a Video controller for generating a horizontal Synch Signal

and a vertical Synch Signal to an external display, the
horizontal Synch Signal indicating when a new hori
Zontal line of pixels is being Sent to the external display,
the vertical Synch Signal indicating when a new Screen
of horizontal lines is being Sent to the external display;

pixel fetch means, in the Video controller, for requesting
pixels for display by the external display, the pixel fetch
means requesting the pixels from the cache;

pixel transfer means, coupled to the pixel fetch means, for
transferring the pixels from the cache to the debug
Gueue,

whereby the debug queue Stores the pixels for display.
13. The microprocessor die of claim 12 wherein the cache

includes a frame buffer portion for Storing a Subset of the
pixels in a Screen of horizontal lines, the external memory
Storing a full frame buffer containing all of the pixels in the
Screen of horizontal lines,

wherein the pixel transfer means retrieves pixels from the
frame buffer portion of the cache but retrieves pixels
from the external memory only when the pixels are not
present in the frame buffer portion of the cache,

whereby the frame buffer is cached.
14. The microprocessor die of claim 12 wherein the cache

is a write-back cache, the cache containing updated pixels
recently written by the processor core but not yet written
back to the frame buffer in the external memory, the video
controller first requesting pixels from the cache, the Video
controller requesting pixels from the frame buffer in the
external memory when the pixels are not present in the
cache,

whereby the frame buffer is cached by a write-back cache
wherein updated pixels are not immediately written
through to the frame buffer in external memory.

15. A microprocessor comprising:
a central processing unit (CPU) for executing instructions;
a cache for Storing instructions, operands, and pixels for

display, the cache operating in a write-back mode
whereby an operand or a pixel written by the CPU is

15

25

35

40

45

50

55

60

65

16
not written back to an external memory until an entire
cache line containing the operand or the pixel is written
back to the external memory;

a debug register for Storing a trigger address of a debug
event,

a debug comparator, coupled to the debug register and
coupled to the CPU, for comparing the trigger address
from the debug register to an address generated by
execution of instructions by the CPU, the debug com
parator Signaling a debug event when a match occurs,

a trace record loader, coupled to the CPU, for generating
a trace record when the debug event is triggered, the
trace record including an identifier for the trigger
address and a time Stamp for indicating a relative time
that the debug event occurred;

a FIFO buffer, coupled to the trace record loader, for
Storing the trace record for later transmission to an
external in-circuit emulator (ICE); and

a Video controller for transferring pixels from the cache to
the FIFO buffer, the FIFO buffer transmitting the pixels
to an external display when the external ICE is not
connected to the microprocessor,

whereby the FIFO buffer stores trace records when debug
ging and pixels when not debugging.

16. The microprocessor of claim 15 further comprising:
a video-ICE interface, coupled to the FIFO buffer but not

coupled to the cache, for transferring a Stream of pixels
from the FIFO buffer to the external display monitor
when debug mode is disabled, but transferring trace
records to the external ICE when debug mode is
enabled;

a memory interface, coupled to the cache, for accessing an
external DRAM memory when a request for an
instruction, operand, or pixel misses in the cache,

wherein the video-ICE interface is separate from the
memory interface So that trace records are not trans
ferred over the memory interface, allowing the memory
interface to operate at a full operating Speed during
debug mode.

17. The microprocessor of claim 16 wherein the CPU
comprises a plurality of independent processor cores, each
processor core for executing instructions from a general
purpose instruction Set independently of execution by other
proceSSOr cores,
whereby debug events are generated from multiple pro

ceSSor cores executing independent programs.
18. A method for tracing execution of a program of

instructions on a processor chip comprising the Steps of:
executing a stream of instructions on a processor core and

generating an address,
comparing the address generated by the processor core to

a trigger address and trigger conditions and Signaling a
debug event when a match occurs,

reading an action field in a debug register containing the
trigger address when the debug event is signaled and
performing an action indicated by the action field;

when the action in the action field is a trace-address
action:

5,848,264
17

generating a trace record including the address gener
ated by the processor core and loading the trace
record into a debug queue,

when the action in the action field is a trace-address-data
action:
generating a trace record including the address gener

ated by the processor core and data generated by the
processor core and loading the trace record into a
debug queue,

when one or more trace records are present in the debug
queue:
reading an oldest trace record out of the debug queue

and outputting the oldest trace record to debug
interface pins on the processor chip

when a trace record is present on the debug interface pins:
transferring the trace record to an external in-circuit

emulator (ICE) and displaying the trace record to a
debugging user,

whereby trace records are generated and loaded into the
debug queue before being transferred to the external
ICE.

15

18
19. The method of claim 18 further comprising the steps

of:
when the action in the action field is a trace-address-data

action or a trace-address action:
reading a time-Stamp counter and writing a time-Stamp

value of the time-Stamp counter to the trace record
generated

whereby the trace record includes the time-Stamp value to
indicate when the debug event occurred.

20. The method of claim 18 further comprising the steps
of:

when the action in the action field is a Stop-clock action:
Stopping a processor clock to the processor core and

halting execution of instructions,
when the action in the action field is a Send interrupt

action:
generating an interrupt to the processor core;

whereby the debug event generates a trace record, gen
erates the interrupt or Stops the processor clock.

