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MERGE/MASK, ROTATE/SHIFT, AND 
BOOLEAN OPERATIONS FROM TWO 
INSTRUCTION SETS EXECUTED INA 
WECTORED MUX ON A DUAL-ALU 

RELATED APPLICATIONS 

This application is a continuation-in-part (CIP) of U.S. 
Ser. No. 08/609,908 filed Feb.29, 1996 Pending. which is a 
continuation-in-part (CIP) of U.S. Ser. No. 08/444,814, filed 
May 18, 1995 now U.S. Pat. No. 5,497,341, which is a 
continuation of U.S. Ser. No. 08/207,752 filed Mar. 8, 1994, 
now U.S. Pat. No. 5.442.577, hereby incorporated by ref 
cC. 

FIELD OF THE INVENTION 

This invention relates to digital arithmetic units, and more 
particularly to methods for sign-extension, masking. 
merging, and bit-test operations. 

DESCRIPTION OF THE RELATED ART 

The grand-parent, U.S. Pat. No. 5.442.577, disclosed a 
vectored mux for performing Boolean operations and sign 
extension of an operand or immediate constant. The vec 
tored mux performs both the Boolean operation and the 
sign-extension simultaneously as one atomic operation. 
Both a Boolean operation, such as AND, XOR, AND-OR. 

and a sign-extension of one operand can be performed as an 
atomic operation using the vectored mux. The vectored mux 
is a bank of 32 ordinary four-to-one muxes (for 32-bit 
operands). Each individual mux generates one bit of the 
output. The two operands are routed to the two select or 
control inputs of the vectored mux rather than to the four 
data inputs. The two select inputs determine which one of 
the four data inputs is connected to the output. 
The four data inputs of the vectored mux are not con 

nected to the operands. Instead, signals representing a truth 
table for the Boolean operation are applied to these data 
inputs. The logical values of each bit on the two operands 
selects the proper entry of the truth table, which is output for 
that bit-position. Of course, these signals are electrical 
voltages which represent logical values such as ones and 
zeros as is well-known in the art. 

This unusual connection of the operands to the select 
inputs of the vectored mux allows many kinds of Boolean 
operations to be performed on the input operands. For a 
simple AND operation, the output is high when both input 
operands are high for a particular bit-position. Thus truth 
table signals of 0001 are applied to data inputs D0. D1, D2, 
D3 respectively for each 4:1 mux. When a particular bit 
position has both operands high, then the "1" input to data 
input D3 is selected as the output for that bit-position. 

Another advantage of the vectored mux is that different 
operations can be applied to different bit-positions for the 
32-bit result. An AND operation can be applied to the lowest 
8 bits, while a sign-extend operation is applied to the upper 
24 bits. The sign-extend operation applied to the upper 
24-bits can be a sign-extend of an 8-bit first operand 
combined with an AND-operation with the second operand. 

Simply by changing the truth-table applied to the data 
inputs, any arbitrary logical function can be performed by 
the vectored mux. By varying the truth-table inputs for 
different bit-positions in the vectored mux, different opera 
tions can be performed on different parts of an input oper 
and. Thus the vectored mux is versatile yet simple in 
construction. 
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A processor can use the vectored mux as a Boolean Logic 

Unit (BLU) in an arithmetic-logic-unit (ALU) or an integer 
execute unit. Arithmetic operations such as ADDS and 
increments are executed in an adder in the ALU while 
multiply and divide operations can be performed in an 
integer multiplier also in the ALU. Boolean operations such 
as AND's, OR's, and complements can be performed by the 
vectored mux. Sign-extensions can also be performed by the 
vectored mux along with a Boolean operation as a single 
step atomic operation. 
The parent application, U.S. Ser. No. 08/609.908, dis 

closed extensions to the to vectored mux to allow execution 
of a variety of other operations, such as merges, shifts, and 
rotates in addition to Boolean operations. Rotate or shift 
operations are often combined with merge operations for 
rotate-merge instructions. These rotate, shift, mask, and 
merge operations must also be executed by the ALU. The 
parent application described several RISC instructions from 
the PowerPCTM RISC instruction set. 

It is greatly desired to execute both RISC and x86 CISC 
instructions on the same central processing unit (CPU). This 
could allow a RISC computer to execute newer PowerPCM 
RISC programs and also execute older x86 CISC programs. 
A vast amount of code has been written with native X86 
instructions which currently can only be emulated in soft 
ware on RISC computers. Software emulation is slow and 
thus little or no performance gain is observed when running 
the CISC programs on emulators on RISC computers. 
What is desired is to extend the vectored mux to perform 

mask and merge operations for instructions from two dif 
ferent instruction sets. It is desired to use the vectored muX 
to perform Boolean, merge/mask, and shiftirotate operations 
from both a RISC and a CISC instruction set. It is also 
desired to perform more complex CISC operations such as 
rotate-through-carry, bit-test-and-complement, and shift 
double using the vectored mux. It is desired to use a RISC 
execution unit which includes a vectored mux to execute 
both RISC instructions and CISC instructions. It is desired 
to extend a RISC ALU to allow native execution of CISC 
instructions. 

SUMMARY OF THE INVENTION 

A logic-instruction execution unit executes Boolean 
operations and merge operations. The logic-instruction 
execution unit has a vectored mux which outputs a result of 
a Boolean operation or a merge operation. The vectored muX 
has a plurality of individual mux cells, and each mux cell has 
data inputs and select control inputs and an output driving 
one bit-position of the result. The select control inputs 
control which data input is coupled to drive the output 
independently of other data inputs. 
A first operand input has a plurality of electrical signals 

representing a first operand, while a second operand input 
has a plurality of electrical signals representing a second 
operand. Operand-spread means receives the first operand 
input. It extends the first operand from a reduced-width 
operand to a full-width operand by duplicating the reduced 
width operand to fill bit-positions in a full-width operand 
beyond the reduced-width operand. The operand-spread 
means outputs a spread first operand to a first data input of 
the vectored mux when the first operand is a reduced-width 
operand. 

Boolean control means applies the first operand input and 
the second operand input to the select control inputs of the 
vectored mux when a Boolean operation is executed. Truth 
table inputs are electrical signals that represents a truth table 
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for the Boolean operation. The truth-table inputs vary for 
different Boolean operations. The Boolean control means 
includes means for applying the truth-table inputs to the data 
inputs of the vectored mux when a Boolean operation is 
executed. 

Merge control means applies the spread first operand to 
the first data input on the vectored mux and applies the 
second operand input to a second data input on the vectored 
mux when a merge operation is executed. A mask generator 
generates a mask indicating a first portion of the result from 
the first operand and a second portion of the result from the 
second operand. The first portion and the second portion do 
not overlap. 
The merge control means includes a means for applying 

the mask to a select control input of the vectored mux when 
a merge operation is executed. The mask causes the vectored 
mux to select the first portion of the first operand applied to 
the first data input and the second portion of the second 
operand applied to the second data input. 
Thus the vectored mux executes both merge operations 

and Boolean operations. The operands are applied to the data 
inputs for merge operations but are applied to the select 
control inputs for Boolean operations. 

In further aspects the reduced-width operand is a byte 
operand. The operand-spread means is disabled for RISC 
instructions but enabled for CISC instructions which use 
reduced-width operands. 

In other aspects the vectored mux is comprised of indi 
vidual four-to-one mux cells each having four data inputs 
and two select control inputs. The merge control means 
further has a constant means for applying a constant elec 
trical signal to one of the select control inputs when a mask 
or a merge operation is executed. The constant electrical 
signal prevents two of the four data inputs from being 
selected while allowing only the first and the second data 
inputs to be selected for mask and merge operations. Thus 
the vectored mux uses four data inputs for Boolean opera 
tions of two operands but only two data inputs for mask and 
merge operations. 

In still further aspects of the invention a rotate means 
receives the spread first operand. It rotates the spread first 
operand by a shift-count number of bit-positions and outputs 
a rotated first operand to the first data input of the vectored 
mux when a rotate operation is executed. The merge control 
means applies the mask having a constant value when a 
simple rotate operation is executed. The constant value 
causes the rotated first operand to be selected to drive the 
output of the vectored mux as the result. Thus rotate 
operations are also performed by the logic-instruction 
execution unit and rotate results are passed through the 
vectored mux. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a diagram of a vectored mux for performing 
Boolean logic functions. 

FIG. 2 illustrates the operation performed by a RISC 
rotate-merge instruction. 

FIG. 3 shows a vectored mux which is modified to 
execute rotate-merge instructions as described in the parent 
application. 

FIG. 4 is a byte spreader which is used for extending 
CISC operands. 

FIG. S shows an execute unit with a vectored mux for 
executing Boolean logic operations, rotate, merge and bit 
test operations for both RISC and CISC instructions. 
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FIG. 6 illustrates execution of the CISC shift-double 

instruction (SHLD) by the vectored-mux BLU. 
FIG. 7 illustrates execution of the CISC rotate-through 

carry instruction (RCL) by the vectored mux BLU. 
FIG. 8 illustrates execution of the CISC bit test and 

complement instruction (BTC) by the vectored mux BLU. 
FIG. 9 is a block diagram of an ALU which executes 

native instructions from both a RISC an CISC instruction 
Set. 

FIG. 10 highlights loading of input register OP1. 
FIG. 11 highlights loading of input register OP2. 
FIG. 12 highlights loading of temporary register MQ1. 
FIG. 13 highlights loading of temporary register MQ2. 
FIG. 14 is an architectural diagram of a dual-instruction 

Set CPU. 

DETALED DESCRIPTION 

The present invention relates to an improvement in digital 
operations. The following description is presented to enable 
one of ordinary skill in the art to make and use the invention 
as provided in the context of a particular application and its 
requirements. Various modifications to the preferred 
embodiment will be apparent to those with skill in the art, 
and the general principles defined herein may be applied to 
other embodiments. Therefore, the present invention is not 
intended to be limited to the particular embodiments shown 
and described, but is to be accorded the widest scope 
consistent with the principles and novel features herein 
disclosed. 
DESCRIPTION OF BASIC VECTORED MUX-FIG. 1 

FIG. 1 is a diagram of a vectored mux for performing 
Boolean logic functions. Vectored mux 10 has 32 individual 
4:1 muxes, one generating each bit-position in the 32-bit 
result. The two input operands. OP-A. OP-B. are applied to 
the control or select inputs S1, S0 of vectored mux 10. Each 
of the 32 bits of operand-A is applied to the S1 input of a 
different 4: mux in vectored nux 10, while each bit of 
operand-B is applied to the corresponding S0 input. Thus the 
individual 4:1 mux which generates bit-position 6 of the 
result RESULT<6>, has its S1 select input connected to bit 
6 of operand-A OP-A<6>, while its S0 select input is 
connected to bit 6 of operand-B OP-B462. Other individual 
4:1 muxes in Vectored mux 10 are connected in the same 
fashion. 
The data inputs D3, D2, D1, D0 of vectored mux 10 are 

connected to truth-table signals, designated TT3. TT2. TT1, 
TT0. These truth-table signals are each 32-bits wide, for 
connecting to the 32 individual 4:1 muxes in vectored mux 
10. These truth-table signals are also abbreviated as B3, B2. 
B1, B0 to indicate a Boolean function may be input. 

For a simple Boolean function without any sign 
extension, all 32 signals are identical in the truth-table 
signals applied to one of the data inputs. Thus for AND 
operations, all 32 bits in TT3<31.0> are one, while all 32 
signals in each of TT2, TT1, and TTO are zero. Since these 
bits are the same for all 32 positions, only four bits for any 
Boolean function need to be stored or generated to drive the 
data inputs of vectored mux 10. When sign-extension is 
combined with a Boolean function, then additional bits may 
need to be stored, as was described in detail in the grand 
parent patent, U.S. Pat. No. 5.443,577. 

Sign-extension can be performed as described in the 
grand-parent patent by dividing each set of truth-table 
signals into an upper and a lower section, and modifying the 
upper section to account for the sign extension. Thus sign 
extension is accounted for in the truth-table signals them 
selves. 
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RSC ROTATE-MERGE INSTRUCTION 
FIG. 2 illustrates the operation performed by a RISC 

rotate-merge instruction. The RISC PowerPCM architecture 
provides a wealth of useful instructions, including merge 
instructions. Merge instructions in their simplest forms may 
be used to read or test a bit or a field of bits in a register. The 
bits read can be extracted to a different register where further 
processing can be performed using the extracted bits. While 
many forms and variations of these merge operations exist. 
FIG. 2 highlights one of the more complex of the merge 
instructions, rlwini. 
The merge instruction rlwimi is the "rotate-left word 

immediate then mask-insert" instruction. A 32-bit “word" is 
rotated to the left by the rotate amount "n" which is specified 
in the instruction word as shown in FIG. 2. Since this rotate 
amount "n" is contained in the instruction word itself, rather 
than in a register, the rotate amount is an "immediate" 
constant. The rotate is performed on a 32-bit source operand 
from the rS register identified by the rS field in the instruc 
tion word. A mask is then generated beginning with the bit 
identified by field MB and ending with the bit indicted by 
field ME. The rotated operand is then merged with a second 
operand in register ra.specified by field IA of the instruction 
word. The portion of rotated rS between MB and ME is 
merged into the operand in register IA. 

FIG. 2 shows a first operand in register rS having a 
least-significant-bit (LSB) with the value "X" at bit-position 
0. A left rotate by n bits shifts the LSB X over to bit-position 
n as shown. For a left-rotate the MSB's shifted out from 
bit-position 31 are rotated back to the LSB. A mask is 
generated from fields MB. ME by loading a temporary 
register with ones between MB and ME, but Zeros else 
where. This mask can be used as the control input to a mux 
which selects the rotated rS operand when the mask for that 
bit-position is one, but selects the rA register's bit when the 
mask bit for that bit-position is zero. 

Several bits can be extracted from register rS and inserted 
into register ra using rlwimi. The merge instruction can 
extract one bit or 32 bits or any number of bits between 1 and 
31. Rotating first allows these bits to be placed anywhere in 
the rA register. 
EXECUTING RISC ROTATE-MERGE ENSTRUCTION 
ON A VECTORED MUX 
FIG. 3 shows a vectored mux which is modified to 

execute rotate-merge instructions as described in the parent 
application. Vectored mux 20 is comprised of 32 individual 
2:1 muxes, one for each bit-position. Operand-A is first 
shifted or rotated by rotator 24, which has control inputs 
determining the number of bits to shift, the shift count (SC) 
having the value "n", and the direction of the rotate, left or 
right. The rotated 32-bit output from rotator 24 is received 
by vectored mux 20 on the D1 data input. 
Operand-B is input to vectored mux 20 on its D0 data 

inputs after an optional zeroing by AND gates 26. For the 
rlwimi instruction, AND gates 26 simply pass operand-B 
through. Another rotate-merge instruction, rlwinm, performs 
an AND with the mask rather than merge the rotated 
operand-A into operand-B. Any mask bits that are zero. 
before MB and after ME, cause the result of rlwinn to be 
zero. Thus operand-B is zeroed out before input to vectored 
mux 20. 
Mask generator 22 receives the beginning and ending 

mask fields MB, ME from the instruction decoder, and 
generates the mask. Ones are generated forbits between MB 
and ME, with the other bits being zero. Simple, well-known 
combinatorial logic may be used to implement mask gen 
erator 22. For example, a first mask can be generated using 
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6 
just MB, while a second mask generated using just ME. 
Simple decoders for each bit-position set the mask bit when 
the bit-position is less than or equal to MB. or greater than 
or equal to ME. The two masks are then ANDed to get the 
final mask. When MB<ME, the masks are ORed rather than 
ANDed. The generated mask. MASK<31.0>is input to the 
select control input of vectored mux 20, with each mask bit 
controlling an individual 2:1 mux. When the mask bit is high 
for a bit-position. D1 is selected and rotated operand-A is 
selected as the result output. When the mask bit is low for 
a bit-position, operand-B is selected as the result output (or 
zeros from AND gates 26 for rlwinm). 

Vectored mux 20, mask generator 22, rotator 24, and AND 
gates 26 together form merge unit 28 for performing merge 
and rotate operations. 
BOOLEAN VECTORED MUX USED FOR MERGE 
OPERATIONS 
The inventors have realized that the merge unit and the 

Boolean unit can be combined. The 4:1 mux for the Boolean 
unit can be controlled as a 2:1 mux to perform merge 
operations. Thus the same hardware mux can be used for two 
functions, reducing cost and complexity. Since both of these 
muxes are vectored muxes, reducing the number of vectored 
muxes also reduces complexity for mux control logic. 
A 4:1 mux may be logically reduced to a 2:1 mux by 

applying a constant to one of the two select inputs. When a 
constant zero is applied to the S0 input, data inputs D1 and 
D3 are never selected. Data input D0 is selected when S1 is 
low, while data input D2 is selected when S1 is high. The 4:1 
vectored mux, useful for performing Boolean operations, 
can also be used as a 2:1 mux for merge operations. 

Another major difference between the vectored 4:1 mux 
for Boolean operations and the 2:1 mux for merge operations 
is that the operands are input to the select control inputs for 
Boolean operations, but to the data inputs for merge opera 
tions. Additional control logic is needed to route the oper 
ands to the control inputs for Boolean operations but to the 
data inputs for merge and rotate operations. The mask and a 
constant must be routed to the select control inputs formerge 
operations. 
BYTE SPREADER FOR CISC OPERATIONS 

FIG. 4 is a byte spreader which is used for extending 
CISC operands. Byte-spreaders are well-known in the art. 
CISC instructions often use 8-bit (byte) or 16-bit (word) 
operands while RISC instructions always use 32-bit (double 
word, DW) operands. Since the vectored mux and merge 
unit is designed for 32-bit RISC operands, smaller CISC 
operands are either sign-extended or spread to 32 bits. Sign 
extension copies the sign bit to the upper bit-positions. 
Byte-spreading, on the other hand, copies an entire byte or 
16-bit word to the upper bit-positions. For example, the 
byte-operand 10101111 may be sign-extended to 
1111111111111111111111110101111, 

but byte-spread to 
10101111 10101111 1010111110101111. 
Byte-spreading is preferable for operands that are input to 

shift and rotate operations since a 32-bit rotate requires no 
other special muxing or correction. For example, a 2-bit 
rotate of the byte 10101111 results in 10111110, which can 
be generated from an 8-bit rotator, or from a 32-bit rotator 
when the byte input is byte-spread to 32-bits. 

Byte-spreader 11 of FIG. 4 takes operand-A and divides 
it into four bytes. The highest byte, bits 31:24, is input to 
input D2 of mux 56. The third byte, bits 23:16, is input to 
input D2 of mux 52. The second byte, bits 15:8, is input to 
input D1 of mux 56 and input D1 of mux 54. The low byte. 
bits 7:0, is input to inputs D0 of muxes 56.52, 54 and also 
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input to input D1 of mux 52. Mux, 56 selects the upper byte. 
mux 52 selects the third byte, and mux 54 selects the second 
byte of the byte-spread output. The low byte is connected 
directly to the low byte of the output. 
The select control inputs to muxes 56, 52.54 indicate if 

operand-A is a byte, word, or double-word operand. A byte 
operand selects inputs D0 from all three muxes, which 
selects the low byte to be output for all four bytes of the 
output. A word operand selects inputs D1 from all three 
muxes, copying the low byte to the third byte, bits 23:16, and 
copying the second byte to the upper byte, bits 31:24. Thus 
the 16-bit word operand is copied to the upper 16 bits of the 
output. When a double-word operand is used, muxes 56.52 
select the D2 input, passing the upper and third bytes to the 
output, while mux 54 selects the D1 input, passing the 
second byte to the output. 
Thusbyte-spreader 11 spreads or copies a byte operand to 

the upper three bytes, or copies a 16-bit word operand to the 
upper two bytes. Full-width double-word operands simply 
pass all 32 bits through with no change. Thus 32-bit RISC 
operands are not modified by byte spreader 11. 
COMBINED BOOLEAN AND MERGE UNIT USING 
VECTORED MUX 
FIG. 5 shows an execute unit with a vectored mux for 

executing Boolean logic operations, rotate. merge and bit 
test operations for both RISC and CISC instructions. Vec 
tored mux 10 is comprised of 32 individual 4:1 multiplexers 
or muxes as described for FIG. 1. When truth table inputs 
B3, B2, B1, B0 are coupled to the data inputs D3. D2. D1. 
D0 and operands A and B are coupled to the select control 
inputs S1. S0 of vectored mux 10, then the Boolean function 
encoded in the current truth-table signals is performed on 
operands A and B. Other Boolean functions are performed 
simply by applying a different set of truth-table signals to 
B3:BO, as described in detail in the grand-parent Pat. No. 
5.442.577, where tables 1-4 showed truth-table signals for 
various Boolean functions such as AND, OR, XOR, A 
ANDNOT B. 
For Boolean operations, signal BOOL is high, causing 

mux 46 to select vector B2 while mux 42 couples operand-A 
to the S1 control input of vectored mux 10. S0SEL is set high 
to connect operand-B to the S0 control input of vectored 
mux 10. Truth-table vector B0 is connected to data input D0 
through muxes 12, 50 by setting B0SEL high and MRG 
OPB and MRG MQ low. Thus vectored mux 10 is con 
nected properly for Boolean operations. 
The instruction decoder at the beginning of the pipeline 

decodes the instruction's opcode to determine what type of 
operation is called for. Boolean operations are further 
decoded into the exact Boolean operation just before the 
pipestage containing the ALU, although may variations of 
the decoding are possible. The Boolean operation decoded 
then selects the correct set of truth-table vectors to apply to 
B3:B0. For Boolean operations without a sign-extend, a 
single bit for each of the four truth-table vectors is generated 
and spread out over all 32 bits. Boolean operations with a 
sign-extended operand require two bits for each vector, one 
for the lower section and a second for the upper section, as 
was described in the grand-parent patent in Tables 5-9. Two 
copies of mux 12 are needed when the truth-table inputs are 
divided into an upper and a lower section. The four or eight 
truth-table bits may be read from a small ROM or generated 
by a programmable-logic array (PLA) or other decoding 
logic. 

For merge operations, the connection of the operands to 
the vectored mux is reversed. Instead of applying the oper 
ands to the select control inputs as for Boolean operations. 
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8 
the operands are applied to the data inputs. When two 
operands are used, operand-B is applied to data input DO 
through mux 50, which has MRG OPB set high and 
MRQ MQ low. Operand-A is applied to data input D2 
through mux 46, which has BOOL set low for merge 
operations. Operand-A is first byte-spread by byte-spreader 
11 and then rotated or shifted by rotator 24 before being 
input to mux 46 and vectored mux 10. 

Rotator 24 is preferably a simple barrel rotator, allowing 
a rotate of any number of bits to be performed in a single 
step. The number of bit-positions rotated is determined by 
the shift count SC, which can be read from a register or as 
an immediate value in the instruction itself. The direction of 
the shift or rotate. either left or right, is also determined by 
the instruction and input to rotator 24 as is the type of 
operation, either a shift or a rotate (not shown). The type and 
direction of shift/rotate is usually determined by the opcode 
itself. A rotate is a shift with the MSB looped back to the 
LSB for a left rotate. or the LSB looped back to the MSB for 
a right rotate. Shifts do not loop the MSB or LSB back, but 
simply drop bits that are shifted off the end. Zeros are shifted 
in the other end, except for arithmetic right shifts, which 
shift in the sign bit. which is the original MSB. An alternate 
embodiment described later uses a simple rotator with the 
masking and merging features of the vectored mux to 
accomplish both rotates and shifts. 

For simple rotate or shift operations, vectored mux 10 just 
passes the rotated operand-A through to the result. Data 
input D2 from rotator 24 is selected by forcing S1, S0 to 10 
in all bit-positions. Mask generator 22 defaults to output 32 
bits of ones when no mask operation is being performed. 
BOOL is low for non-Boolear operations, coupling the one 
outputs from mask generator 22 to S1 control input through 
mux 42. SOSEL is also set low, causing mux 48 to select a 
zero to S0. For more complex instructions, the rotated 
operand-A can then be merged or masked using vectored 
mux 10. Simple mask and merge operations can also be 
performed by setting the shift count to zero for rotator 24. 
Mask generator 22 receives the beginning and ending 

bit-positions of the mask or merge, MB, ME, which can each 
be encoded by 5-bit fields in the instruction word. Mask 
generator 22 generates a 32-bit mask which has ones 
between and including MB and ME, but zeros elsewhere. 
This mask is selected by mux 42 when BOOL is low, and 
applied to select input S1 of vectored mux 10. The other 
select input, S0, is driven by 32 Zeros from mux 48 as signal 
SOSEL is low. Thus data inputs D3 and D1 cannot be 
selected as S0 is low for all 32 bits. Vectored mux 0 is 
logically reduced from a 4:1 mux to a 2:1 mux for merge 
operations. 

SC, MB, and ME can be provided from decoding or 
control logic based on the type of instruction or can be 
provided directly in the instruction word. For example, a 
sign-extend byte instruction would set SC=0, MB=7, ME=0. 
thus merging bits 31 to 8 of its operand with a sign bit, if 
selected. 

For the bit positions between MB and ME, in the masked 
portion, a one is output to select input S1, and thus data input 
D2 is selected. However, for bit positions outside of the 
masked portion, a zero is output to S1, and data input D0 is 
selected. D2 receives the rotated operand-A, while D0 
receives operand-B through mux 50, which has MRGOPB 
set for two-operand merge operations. Thus operand-A. 
possibly rotated by rotator 24, is merged into operand-B 
using vectored mux 10. The mask determines which bits of 
the result originate from each operand. 
A simple mask or merge occurs when the shift count SC 

is set to zero, while a rotate-merge (rlwimi) or a shift-merge 
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operation occurs when SC is non-zero. A mask operation 
differs from a merge in that only one operand is used for a 
mask, but two for a merge. For a mask operation, bit 
positions not between MB and ME are cleared to zero. Thus 
a mask operation is simply a merge with a Zero-filled 
register. 
Mask operations are performed by applying 32 zeros to 

data input D0 rather than applying the second operand-B. 
MRG OPB and MRG MQ are set low for mask 
operations, while the B0SEL bits are set to 01, causing 
truth-table vector B0 to be applied to data input D0 through 
muxes 12.50. Bit B0 is set to zero, which is spread to all 32 
bits for the mask operation. Thus zeros are merged with 
operand-A when a mask operation such as rlwinm is per 
formed, 
An explicit sign-extension operation for RISC instruc 

tions is performed on a single operand, operand-A, by 
applying operand-A possibly after a rotate by rotator 24, to 
data input D2 through mux 46 which has signal BOOL low. 
Mask generator 22 generates a vector for the operand size as 
described for FIG. 2 of the parent application. with one bits 
where the operand-A has significant bits, but zero bits where 
sign-extension is to occur. This operand-size vector is 
applied to select control input S1. Signal SOSEL is low, 
forcing a constant zero onto select input S0 so that only data 
inputs D0 or D2 can be selected, 

Signals MRG MQ and MRG OPB are low since a 
second operand is not being merged in. Mux 50 couples the 
output from mux 12 to data input D0 of vectored mux 10. 
For sign-extension, both bits of signal B0SEL are low, 
selecting the sign bit, the MSB of operand-A. to data input 
D0 of vectored mux 10. Zero-extension is performed by 
setting truth-table signal B0 to zero, and B0SEL to 01, so 
that zeros are applied to data input D0 of vectored mux 10. 
The S1 input to vectored mux 10 is driven by a vector of 

the operand size. with one bits where the operand exists and 
zero bits for the extension part of the 32-bit result. Thus an 
8-bit byte operand being extended to 32 bits has the vector 
OOOOOOOOOOOOOOOOOOOOOOOO 11111111 

driven to select input S1. The zero bits select the sign bit 
from mux 12 and data input D0, while the one bits select the 
shifted or un-shifted operand-A from data input D2. Thus 
sign-extension is performed by merging the operand with 
the sign bits using vectored mux 10 to perform the merge. 

Result output 16 from vectored mux 10 can be used to 
generate flags for the ALU result. For example, comparing 
result output 16 to zero generates the “Z” flag. 
RISC Vectored Mux BLU Modified Slightly For CISC 
The inventors have realized that the vectored mux 

Boolean-logic unit (BLU) can be extended slightly to allow 
not only RISC instructions, but also CISC instructions to be 
natively executed. The vectored mux approach is so surpris 
ingly versatile and flexible that even CISC operations can be 
performed on an otherwise RISC BLU. 

For CISC instructions, the basic RISC execute unit 
described in the parent application is extended only slightly. 
As FIG. 5 shows, byte spreader 11 is an added element, and 
mux 12 is changed from a 2-input mux to a 4-input mux to 
allow the carry flag CF and its complement CF to be 
merged in instead of the sign bit. Zero or one. In addition to 
OP-B, MQ also needs to be a merge source. These three 
simple changes allow complex CISC operations to be 
executed on the otherwise RISC BLU. 
SIMPLIFED EMBODMENT OF ROTATOR FOR SHIFT 
OPERATIONS 
For an arithmetic shift right instruction, sign-extension is 

required. Vectored mux 10 and mask generator 22 are used 
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10 
to perform an arithmetic shift by adjusting the rotated output 
from rotator 24. The instruction decoder sets shift count SC 
to n, the number of bits to shift. ME is set to 0, while MB 
is set to 31-n. The sign bit is selected by mux 12 for the 
merge rather than Zeros. Vectored mux 10 merges the sign 
bit from mux 12 to the MSB's of the result above MB. 
Rotator 24 simply rotates by the shift count SC, even for 
shift operations. Thus rotator 24 can be used for both rotates 
and shifts by always rotating in rotator 24, but using the 
merge/mask features of vectored mux 10 to generate the 
shift result from the rotated output. 
The direction control for rotator 24 can also be eliminated 

by adjusting shift count SC. Rotator 24 is designed to always 
rotate left. For right rotates and shifts, the shift count SC is 
simply complemented in modulo 32. Thus a right shift by 
2bit-positions is complemented to a left shift by 30 bit 
positions. Of course, rotator 24 could default to either right 
or left shifts/rotates, and the modulus can be changed for 
different data-path widths, 
A shift left by a shift of “n” is thus accomplished by 

setting: 

MEen 

Merge with zeros. 
A shift right by a shift of "n" is accomplished by setting: 
SC=two's complement of n 

MEO 
Merge with zeros for logical shift, but merge with sign bit 

for arithmetic shift. 
Thus the mask/merge features of vectored mux 10 and 

surrounding logic can be used to adjust the output from a 
simplified rotator 24 which can only rotate in one direction. 
This reduces cost and complexity as a simpler rotator is used 
rather than a more versatile and complex bi-directional 
rotator/shifter. 
EXAMPLES OF CISC OPERATIONS PERFORMED ON 
BLU 
The operation of the RISC/CISCALU of FIG.5 will now 

be described for several complex CISC operations. Simple 
CISC operations that resemble RISC operations can be 
directly executed in the same manner as the corresponding 
RISC operation is executed. CISC operands of 8 or 16 bits 
are first byte-spread to 32-bits by byte spreader 32. 

For example, after byte-spreading the CISC shift instruc 
tions SHL, SHR and SAR are simple shifts that are executed 
in the same manner as the RISC shift instructions sw, SrW, 
Sraw. (RISC instructions are listed in lowercase letters while 
CISC instructions are listed in uppercase letters.) The CISC 
rotate instructions ROL, and ROR are simple rotates that are 
executed in the same manner as the RISC rotates rlwimi, 
rlwinm, rlwinm, except that no merging or masking is 
performed. 
The following PowerPCTM RISC instructions are 

executed by the vectored mux and merge BLU: 
Boolean Instructions: and, andc, nor, eqv, xor, orc. or, 

nand 
Sign-Extend Instructions: extsh, extsb 
Shift Instructions: slw, srw.sraw 
Mask/Merge Instructions: rlwimi, rlwinm, rlwinm 
These RISC instructions are executed in a single clock 

cycle. Even the mask/merge instructions are executed in one 
clock cycle because rotates and shifts can be performed 
before the merging and masking in a single pass through the 
vectored mux BLU. Any arbitrary Boolean function can be 
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performed by inputting appropriate truth-table signals to the 
data inputs of the vectored mux, as described in detail in the 
grand-parent patent. RISC sign-extensions are executed as a 
merge operation, with the sign bit merged into the vectored 
mux through mux 12 of FIG. 5. The mask generated has a 
field of ones for the size of the un-extended input operand. 
and zeros for the upper, extension bits. 
The following simple x86 CISC instructions are also 

executed in a single clock cycle: 

MOVZX. MOWSX move zero-extended or sign extended 
CBW. CWE Sign-extend a register operand 
ROL, ROR Rotates left or right 
SHL, SHR Shift left or right (logical) 
SAR shift arithmetic right 
BT Bit test 

Sign-extension for CISC instructions are preferably per 
formed as a Boolean operation as described in the grand 
parent patent. MOVes are to or from memory while CBW. 
CWDE are sign-extensions on a register operands. Since 
these CISC instructions are relatively simple, they can be 
performed on a single pass through the vectored mux. 

Other x86 instructions are more complex. and require 
multiple passes through the vectored mux BLU. These 
multi-step instructions include: 

RCL, RCR Rotate through carry left or right 
SHLD, SHRD Shift double 
BTC, BTR, BTS Bit test and modify 

These are compound instructions which perform complex 
operations and thus require two or more cycles to execute. 
Any of these CISC instructions, whether single or multi 

step, can operate on reduced-width operands. Byte spreader 
11 of FIG. 5 is used to first spread a byte operand to 32 bits, 
or a 16-bit word operand to 32 bits. The register file or bus 
interface unit is sent the desired size of the result, either byte. 
word, or 32-bit double-word. The desired size of the result 
is used to enable the desired bytes when writing the result to 
a register or memory. Thus a byte-rotate ROL would byte 
spread the byte operands to 32-bits, perform the rotate, and 
then store only the low 8 bits of the result back to a result 
register. 
COMPLEX CSC INSTRUCTIONS 

FIG. 6 illustrates execution of the CISC shift-double 
instruction SHLD by the vectored-mux BLU. The shift 
double instruction performs a shift across two operands 
located in two different registers. 

For example, register ra contains the lower operand 
AAACCCX, while register B contains the upper operand 
DDDBBBY. In concept, the two operands are put together 
with raforming the lower bits and rB forming the upper bits. 

DDDBBBY AAACCCX 

The shift is performed on the two registers as a single unit. 
Bits shifted out of the lower registerra are shifted into the 
upper register rB for a left shift. The final contents of the 
upper register rB are stored as the result: 

BBBYAAA 

The lower-bit result of a left-shift-double of n positions is 
CCCXAAA. The lower bits (AAA) are stored as part of the 
result while the upper bits (CCCX) are discarded. The 
upper-bit result is BBBYDDD, with the upper bits BBBY 
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12 
forming part of the result and the lower bits (DDD) dis 
carded. The upper and lower operands may be byte. word, or 
double-word operands, and the result is the same 'size as one 
of the input operands. 

FIG. 6 shows that two shifts are required. using two clock 
cycles through the vectored mux BLU. During the first cycle 
or step, operand AAACCCX in register ra is rotated to the 
left by the shift count n. The intermediate result 
(CCCXAAA) is stored in temporary register MQ and input 
to the vectored mux at port D0 with MRG MQ high 
selecting MQ in the second step as a merge input. During the 
second step the upper operand DDDBBBY in register rB is 
rotated to the left by n. The rotated upper operand is also 
input to the vectored mux as a first merge input through port 
D2. 
A merge mask is generated having n zeros in the lower 

bit-positions but ones in the upper bit-positions (MB=31 and 
ME=n). The merge mask controls the vectored mux because 
it is input to the select control input of the vectored mux. The 
merge mask causes the vectored mux to select the rotated 
lower n bits of the lower operand (AAA) from temporary 
register MQ, while the upper bits of the rotated upper 
operand (BBBY) are selected as the upper part of the result. 
BBBYAAA 
Right-shift-double (SHRD) operates in an analogous 

manner. The first step rotates to the right the upper operand 
and saves it to MQ. In the second step the lower operand is 
rotated right and merged with the rotated upper operand 
from MQ. The lower portion of the merged result is saved. 
Thus the complex shift-double CISC instruction can be 
executed on the vectored-mux BLU in two steps. 
ROTATE-TRHOUGH CARRY-FG. 7 

FIG. 7 illustrates execution of the CISC rotate-left 
through-carry instruction on the vectored mux BLU. The 
rotate-through-carry instruction differs from ordinary rotate 
instructions because the carry bit from the flag register is 
inserted at the bottom of the operand before the rotate is 
performed. The carry bit is set by a previous instruction. 

In concept, the operand: 

AAAXYBBB 

is first appended with the carry flag C: 
AAAXYBBB. C. 

The carry flag is not part of the 8, 16, or 32-bit operand, 
but instead is a separate, additional bit. The rotate is per 
formed on the operand and the carry flag. A 32-bit operand 
thus rotates through 33 bits, including the carry bit. The 
result of a right-rotate-through carry by n is: 

YTBBBCAAAX 

with the carry bit C at bit-position n-1 of the result. The 
original bit "X" is now the new carry flag and is not part of 
the data result Stored. 

FIG. 7 rotates the operand AAAXYBBB with the original 
carry flag "C". In step one, the operand is rotated to the left 
by n, producing the first rotated value 

YBBBAAAX 

which is input to input D2 of the vectored mux. The new 
carry flag is set to the lowest bit of the rotator output, bit 0 
which is “X”. Note that the simplified rotator only rotates 
through 32 bits and does not include the carry bit as a 33rd 
bit in the rotate loop. 
The original carry flag "C" is a single bit that was set by 

execution of a previous instruction such as an earlier ADD 
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instruction. This single carry bit is spread from one bit to 32 
bits and transmitted to input D0 of the vectored mux. 
Spreading to 32 bits can be accomplished by simply con 
necting the output of mux 12 to all 32 inputs of mux 50 of 
FIG.S. 
The mask generated in step one has MB=31 and ME=n. 

so ones are generated for bits 31 to and including bit n, with 
bits n-1 to 0 being zeros. The upper ones in the mask select 
inputs D2 of the vectored mux, which is the rotated operand. 
The lower zero bits of the mask select copies of the carry bit. 
The merged output of the vectored mux for the first step is 
therefore 

YBBBCCC 

which is stored in the MQ temporary register and sent to 
input D0 of the vectored mux in step two. 
The original operand is again sent to the rotator in step 

two, but this time it is rotated left by n-1. The first step 
rotated by n. The second rotated result is 

XYBBBAAA 

which is sent to port D2 of the vectored mux for merging 
with the first step's result stored in register MQ. The mask 
generated for the second step has MB=n-2 and ME=0, so 
zeros are generated for the upper mask bits, which select the 
result from step one. The lower mask bit are ones, selecting 
the second step's rotator output. Since the first one in the 
mask is at bit-position n-2, while the first carry bit from step 
one is at bit-position n-1, there is exactly one carry bit in the 
final answer, at bit-position n-1: 

YTBBBCAAA. 

The upper bits of the final result are from the first step 
while the lower bits are from the second step. Thus reducing 
the rotate value for the second step and adjusting the mask 
generated inserts the carry bit at the proper bit-position, 
mimicking a 33-bit rotate through the carry bit. 
The first step uses a standard, quickly-generated mask that 

is used for simple one-step shifts. This is the same mask used 
for shift-left. The second step used a non-standard mask 
which takes more time to generate. Thus the first step is 
easier to execute and not time critical, while additional time 
is available for generating the second step's mask. 

For 16-bit rotate-through carry, the shift count n is 
reduced by modulo 17 to rotate by the proper amount to 
mimic 16-bit hardware. Byte operands require that the shift 
count be reduced modulo 9. An RCL with n=9 is thus 
reduced to n=0. RCR operates in an analogous manner using 
right-rotates. 
BIT TEST & COMPLEMENT-FIG. 8 

FIG. 8 illustrates execution of the CISC bit test and 
complement instruction (BTC) on the vectored mux BLU. A 
bit test instruction copies one bit of an operand to the carry 
bit of the flags register. Any bit of a 32-bit. 16-bit, or 8-bit 
operand may be tested. The BTC instruction then comple 
ments the bit tested and writes the complement back to the 
tested bit. For example, the operand: 

AAAXBBBB 

where bit "X" is to be tested and complemented is updated 
by BTC to 

AAAX"BBBB 

where X" is the logical complement of bit X. 
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Since a rotate-left operation loads the carry flag with a 

copy of the lowest bit of the rotated result (the last bit shifted 
out), the rotator of the vectored mux BLU can be used to test 
the bit. The merge function of the vectored mux BLU can 
then be used in a second step to merge the complemented bit 
into the operand. The x86 architecture requires that the 
lowest bit of the rotated result for a rotate left be copied to 
the carry flag. 

FIG. 8 shows that in the first step the operand 

AAABBBBBB 

is rotated to the right by the tested bit's position, n. This 
places the tested bit. X. at position 0: 

BBBBBBAAAX. 

Bit Xat position zero of the rotator's output is then copied 
to the carry flag CF of the flags register. A temporary register 
in the BLU for the carry flag may also be used as the source 
of CF for step two. 

In step two, the carry flag is complemented to CF, input 
to mux 12 of FIG. 5, and spread from one bit to 32 bits by 
mux 50 before being sent to port D0 of vectored mux 10. 
The original, unrotated operand (SC=0) is input to port D2 
of the vectored mux. A mask is generated with MB=n-1 and 
ME=n-1. This generates a mask having all ones except a 
single zero at position n. This mask selects the comple 
mented carry flag CF for bit-position n but selects the 
original operand for all other bits. Thus the complemented 
carry flag is merged into the final result. 
The output of the vectored mux from step one is not stored 

as it is not needed. Since the mask is not generated until step 
two, additional time is available to generate the non 
standard mask. This helps to reduce critical paths in the 
ALU. 

Other bit-test instructions are similar and can be accom 
plished in two steps in an analogous manner. Bit-test-and 
reset (BTR) rotates the operand in step one and stores the 
lowest bit as the carry flag. However, in step two the original 
operand is merged with a zero bit rather than the comple 
ment of the carry flag at bit-position n. Bit-test-and-set 
(BTS) rotates the operand in step one and also stores the 
lowest bit as the carry flag. In step two the original operand 
is merged with a one bit rather than the complement of the 
carry flag at bit-position n. Mux 12 can be used to supply a 
one or a zero bit instead of the carry flag's complement 
simply by selecting input D1 and setting the Boolean 
truth-table bit B0 to Zero or one. 
Thus several complex CISC instructions are executed in 

multiple steps by the vectored-mux Boolean logic unit. 
These complex CISC instructions might otherwise require 
dedicated hardware for their execution, increasing cost. 
complexity, and confusion. 
RISC & CISC ALU-FG. 9 

FIG. 9 is a block diagram of an ALU which executes 
native instructions from both a RISC and a CISC instruction 
set. Dual-ALU 70 includes three main components: a full 
adder 72, a vectored-mux Boolean logic unit (BLU) 80, and 
multiplier 74. Full adder 72 generates the sum of two inputs 
and can also be used for subtraction by adding the two's 
complement of one input. Both RISC and CISC add instruc 
tions may be executed in full adder 72. Multiplier 74 is an 
8-bit by 32-bit partial multiplier capable of performing a full 
32-bit multiply infour cycles. Both RISC and CISC multiply 
instructions may be executed in multiplier 74. 
BLU 80 is based on the vectored-mux Boolean logic unit 

of FIG. 5. As described previously, both RISC and CISC 



5,781.457 
15 

Boolean, merge. shift, rotate, and bit test instructions may be 
executed by BLU 80. 
Two input operands are loaded into operand registers 82. 

84 which are then input to dual-ALU 70. Two temporary 
registers 86.88 are also available for multi-step operations 
such as multiplies and divides. Thus these temporary reg 
isters 86.88 are labeled MQ1. MQ2 because they contain 
intermediate results such as the multiplier or partial quo 
tients. As an example of execution of a multi-step divide 
instruction using an MQ register, see U.S. Ser. No. 08/344, 
179, now U.S. Pat. No. 5,574,672 hereby incorporated by 
reference. 
MULTIPLY & DIVIDE TEMPORARY REGISTERS & 
CONTROL USED FOR CISC 
The inventors have realized that the MQ registers for 

multiply and divide may also be used for multi-step CISC 
operations such as rotate-through carry and shift-double. 
Thus FIGS. 6, 7, 8 described storing intermediate results 
from a first step in the MQ register. 

Since dual-ALU 70 supports multi-cycle instructions such 
as multiply and divide, only minor changes are needed to 
support multi-cycle CISC instructions. Multi-cycle control 
logic is already present to perform integer divides and 
multiplies; this multi-cycle control logic may also be used to 
control multi-cycle CISC instructions without resorting to 
complex micro-code routines. Some changes are required in 
the inputs to input registers 82.84 and temporary registers 
86, 88. 

FIG. 10 highlights loading of input register 82, which is 
the OP1 register. A first operand may be loaded from an 
immediate field in an instruction, or from a register in a 
general-purpose register file. The result from dual-ALU 70 
may be recirculated back to input register 82, as can the 
contents of temporary register 86. MQ1. The contents of 
input registers 82.84. (OP1, OP2) may also be loaded into 
register 82 (OP1). Loading register 82 with the previous 
contents of register 82 is a hold function. Multiplies or 
divides may load OP1 shifted up by 8 bits. 
RISC instructions already require that OP1 be loaded 

from the result (for forwarding or wrapping the result into a 
subsequent operation), registerslimmediates, the low 32 bits 
of partial-result1 from the multiplier, and OP1 shifted left by 
8 since OP1 is the multiplicand in RISC multiplies. CISC 
instructions require three more inputs to OP1: 

I. OP2 recirculated to OP1 
2. OP1 recirculated back to OP1 (Hold) 
3. MQ1 loaded to OP1 
The bit-test and rotate-through-carry instructions 

described previously require that the first operand OP1 be 
used again in the second step and thus OP1 is recirculated 
back to OP1 at the end of step one for these instructions. 

FIG. 11 highlights loading of input register 84, OP2. A 
second operand may be loaded from an immediate field in an 
instruction, or from a register in a general-purpose register 
file. The result from dual-ALU 70 may be recirculated back 
to input register 82. The contents of input register 84. (OP2) 
may be recirculated back to register 84 (OP2 Hold). Mul 
tiplies may also load OP2 shifted right by 8 bits. 

For the second input register 84. OP2, RISC already 
requires inputs from registerfimmediate, ALU result, shifted 
ALU result for divide. OP2 shifted right by 8 bits, and from 
the low 32 bits of partial-result2 from the multiplier, CISC 
instructions merely require one more input: 

1. OP2 recirculated back to OP2 (Hold) 
FIG. 12 highlights loading of temporary register 86. 

MQ1. The result from dual-ALU 70 may be recirculated 
back to temporary register 86, MQ1. The contents of input 
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16 
register 84. (OP2) may be recirculated back to register 84 
(OP2) after being shifted down by 8 bits. The contents of 
temporary register 86 may also be recirculated back after a 
1-bit shift to the left with a new quotient bit shifted in, which 
is useful for accumulating the divide result (quotient) in 
register MQ. 

FIG. 13 highlights loading of temporary register 88. 
MQ2. Either the high or the low partial result from multi 
plier 74 in dual-ALU 70 is recirculated back to temporary 
register 88, MQ2. 

For the temporary registers 86.88. (MQ1, MQ2), the 
partial result from the multiplier is typically loaded for RISC 
instructions. For CISC, the normal result output from the full 
adder and BLU is also a possible input to MQ1. Temporary 
register 86, MQ1, is also input to the BLU for CISC 
operations instead of just to the multiplier for RISC instruc 
tions. This is used for shift-double and rotate-through-carry 
instructions where the intermediate result from the first step 
is stored in MQ1 and input back to the BLU for step two. 
The operand which is the multiplier, which is the second 

operand OP2, is normally shifted and loaded into MQ1 
during multiplies. For divides, the contents of MQ1 are 
shifted left one bit for each iteration and reloaded to MQ1. 
MQ2 is not modified for CISC instructions other than for 
CISC multiply and divide. 
RISC 32-bit multiplies produce a 32-bit result. The partial 

results are held in MQ1 and MQ2. For 64-bit RISC 
multiplies. MQ1 and MQ2 hold the upper part of the partial 
products. 
CISC multiplies return a double-size result, 64 bits for a 

32-bit multiply. The final multiply step puts the final partial 
results in OP1 and OP2. When the partial results are added 
together, the sum is the upper 32bits of the result. The lower 
32 bits of the answer are left in the MQ1 register. 

In one embodiment, a 32-bit by 8-bit multiplier is used 
which produces two 40-bit partial results. A 32-bit by 32-bit 
multiply can be performed in four passes through the 
multiplier and a final sum of the partial products. The upper 
32-bits of the partial products are temporarily stored in 
registers MQ1 and MQ2 for each of the four passes through 
the multiplier. The low 8 bits of the partial products for each 
pass are summed and shifted right into register OP2, which 
accumulates the lower 32-bit portion of the result. After the 
four passes through the multiplier are complete, four 8-bit 
lower portions of the partial results have been shifted into 
register OP2, which now holds the lower 32 bits of the 
result. The MQ1 and MQ2 registers hold the upper 32 bits 
of the partial products for the last pass through the multi 
plier. These partial products in MQ1 and MQ2 are summed 
to get the final upper 32-bits of the result, while the lower 32 
bits of the result is read from the OP2 register. 

Since MQ1 and MQ2 registers do not directly input to the 
32-bit full adder, MQ1 and MQ2 are swapped with the OP1 
and OP2 registers before the final add. The lower 32 bits of 
the result in OP2 is copied to MQ1 as well. 
DUAL-INSTRUCTON-SET PIPELINE 

FIG. 14 is an architectural diagram of a dual-instruction 
set CPU. Native CISC instructions are executed on an 
otherwise RISC processor. Instruction fetcher 90 fetches 
both RISC and CISC instructions from a cache or memory 
(not shown). Fetched instructions are sent to RISC decoder 
92 and CISC decoder 94. RISC decoder 92 assumes the 
instructions received are RISC instructions and attempts to 
decode them. CSC decoder 94 assumes the instructions 
received are CISC instructions and also attempts to decode 
them. For any particular instruction, either the decoded 
RISC instruction or the decoded CISC instruction is incor 
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rect. Decoded RISC and CISC instructions are sent to mux 
96 which selects decoded RISC instructions from RISC 
decoder 92 when in RISC mode, but selects decoded CISC 
instructions from CISC decoder 94 when the CPU is in CISC 
mode. 

Pipeline 100 receives decoded RISC or CISC instructions 
from mux 96 and processes these decoded instructions in a 
series of stages which fetch operands from GPR's 98 and/or 
external cache or memory, and write results and flags back 
to GPR's 98. Pipeline 100 includes as one stage dual-ALU 
70, which executes add, multiply. Boolean, and rotate/merge 
instructions as described previously. 

U.S. Pat. No. 5.481,684 and its parent application 
describe such a dual-instruction-set CPU. and using segment 
descriptors to determine when to switch between RISC and 
CISC modes. Other details of a dual-instruction-set CPU are 
contained in U.S. Pat. No. 5,481,693 which describes a 
shared register architecture wherein the GPR's and flags are 
directly shared among RISC and CISC programs without 
register swapping or Saving to memory. 
The present application describes the heart of the dual 

instruction-set CPU--a dual-ALU capable of executing 
native RISC and native CISC instructions. Rather than 
duplicate the ALU or the processor's pipelines, a single ALU 
and a single pipeline are used to process both RISC and 
CISC instructions without software emulation or translation 
of CISC instructions into RISC instructions. The vectored 
mux provides a versatile piece of hardware that is so 
surprisingly versatile that both RISC and CISC instructions 
may be executed. 
ADVANTAGES 
The invention provides a versatile yet simple apparatus 

for executing a wide variety of operations: Boolean logic, 
merge, mask, rotate. shifts, sign-extension, and Zero 
extension and combinations thereof. Often separate units are 
provided for each of these operations. The invention pro 
vides a single unit for performing all of these operations. 
The vectored mux can execute any arbitrary Boolean 

logic function merely by placing a different set of truth-table 
vectors to the data inputs. Thus special logic is not needed 
for each type of Boolean operation. Many types of Boolean 
operations can be supported with minimal design effort. 
The same vectored mux is used for merge and mask 

operations. Using the same hardware for two purposes is an 
efficient use of limited silicon resources. The rotator is 
coupled to the vectored mux so that shifts and rotates can be 
sent through the vectored mux too. This allows compound 
operations such as rotate-merge operations to be performed 
in a single step. 
Compound operations can be performed in a single step, 

such as a single clock cycle. Rotates and shifts can occur 
before a merge, mask, sign or Zero-extension operation. 
Sign-extension can be combined with a Boolean operation 
by altering the truth-table vectors. 
More complex CISC instructions require two or more 

steps or cycles in the ALU. Since RISC integer-divide and 
multiply instructions also require multiple steps, the multi 
cycle control logic is already present in the RISCALU. The 
temporary registers used to store the multiplier and partial 
quotients may also be used as temporary registers for 
intermediate results from multi-step CISC instructions. Thus 
the same hardware is used for a second purpose with the 
surprising result that both RISC and CISC instructions may 
be natively executed on the same ALU hardware. 
The invention provides a very streamlined and efficient 

execution unit for the many miscellaneous instructions that 
must be processed, especially complex CISC instructions. 
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18 
When combined with an adder and a multiplier and divider, 
two complete sets of integer ALU instructions can be 
executed from a RISC and a CISC instruction set such as the 
x86 CISC and PowerPCTM RISC instruction sets. 
ALTERNATE EMBODIMENTS 

Several other embodiments are contemplated by the 
inventors. For example the invention has been described for 
32-bit operations as the full width, but smaller or larger 
widths may be used, such as with advanced 64-bit proces 
sors. More complex or simple mask schemes may be used 
for the mask and merge operations by altering the mask 
generator. The vectored mux may be modified to have more 
or fewer data or control inputs, and the order of the inputs 
may also be modified. Multiple pipelines may be used for 
superscalar operation. Instruction sets other than RISC and 
CISC may be used, and indeed new terms describing archi 
tectures are being coined frequently. 

While the more complex operations such as compound 
rotate-merge and shift-double operations have been 
described to show the features and capabilities of the vec 
tored mux, many simpler instructions can also be executed 
by the apparatus. A more complex rotator can have addi 
tional features to insert the sign bit or zero bits to perform 
arithmetic and logical shifts rather than use the mask/merge 
features of the invention. A simple shifter rather than a 
simple rotator may also be substituted. 
Many variations of the control logic are possible. The 

various muxes may be combined. For example. Muxes 50 
and 12 may be combined into one larger mux. Muxes may 
also be combined with other hardware such as the mask 
generator being combined with mux 42. Generation of shift 
count SC and mask endpoints MB. ME may be generated in 
many different ways from the instruction itself or registers. 
A shift overflow can be defined when the shift count SC 

is greater than or equal to 32. All the data is shifted out in 
a shift overflow. The mask is forced to all Zeros and none of 
the rotated data is output as the result when a shift overflow 
OCCS. 

The particular assignment of polarities and inputs to 
muxes described herein is arbitrary. For example. inverting 
select inputs to the vectored mux and reversing bits in the 
truth-table produce the same result. Other RISC and CISC 
instructions besides those described herein may be executed 
as a sequence of shift/merge steps. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 
We claim: 
1. A logic-instruction execution unit for executing Bool 

ean operations and merge operations, the logic-instruction 
execution unit comprising: 

a vectored mux for outputting a result of a Boolean 
operation or a merge operation, the vectored muX 
comprising a plurality of individual mux cells, each 
mux cell having data inputs and select control inputs 
and an output driving one bit-position of the result, the 
select control inputs controlling which data input is 
coupled to drive the output independently of other data 
inputs; 

a first operand input comprising a plurality of electrical 
signals representing a first operand; 

a second operand input comprising a plurality of electrical 
signals representing a second operand; 
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operand-spread means, receiving the first operand input, 
for extending the first operand from a reduced-width 
operand to a full-width operand by duplicating the 
reduced-width operand to fill bit-positions in a full 
width operand beyond the reduced-width operand, the 
operand-spread means outputting a spread first operand 
to a first data input of the vectored mux when the first 
operand is a reduced-width operand; 

Boolean control means for applying the first operand 
input and the second operand input to the select control 
inputs of the vectored mux when a Boolean operation 
is executed; 

truth-table inputs comprising electrical signals represent 
ing at truth table for the Boolean operation, the truth 
table inputs varying for different Boolean operations; 

the Boolean control means including means for applying 
the truth-table inputs to the data inputs of the vectored 
mux when a Boolean operation is executed; 

merge control means for applying the spread first operand 
to the first data input on the vectored mux and for 
applying the second operand input to a second data 
input on the vectored mux when a merge operation is 
executed; 

a mask generator for generating a mask indicating a first 
portion of the result from the first operand and a second 
portion of the result from the second operand, the first 
portion and the second portion not overlapping; 

the merge control means including means for applying the 
mask to a select control input of the vectored mux when 
a merge operation is executed, wherein the mask causes 
the vectored mux to select the first portion of the first 
operand applied to the first data input and the second 
portion of the second operand applied to the second 
data input, 

whereby the vectored mux executes both merge opera 
tions and Boolean operations, the operands applied to 
the data inputs for merge operations but applied to the 
select control inputs for Boolean operations. 

2. The logic-instruction execution unit of claim 1 wherein 
the reduced-width operand is a byte operand. 

3. The logic-instruction execution unit of claim 1 wherein 
the operand-spread means is disabled for RISC instructions 
but enabled for CISC instructions using reduced-width oper 
ands. 

4. The logic-instruction execution unit of claim 1 wherein 
the vectored mux is comprised of individual four-to-one 
mux cells each having four data inputs and two select control 
inputs; 

the merge control means further comprising: 
constant means for applying a constant electrical signal 

to one of the select control inputs when a mask or a 
merge operation is executed, the constant electrical 
signal preventing two of the four data inputs from 
being selected while allowing only the first and the 
second data inputs to be selected for mask and merge 
operations, 

whereby the vectored mux uses four data inputs for 
Boolean operations of two operands but only two data 
inputs for mask and merge operations. 

5. The logic-instruction execution unit of claim 4 further 
comprising: 

rotate means, receiving the spread first operand, for 
rotating the spread first operand by a shift-count num 
ber of bit-positions and outputting a rotated first oper 
and to the first data input of the vectored mux when a 
rotate operation is executed; 
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the merge control means applying the mask having a 

constant value when a simple rotate operation is 
executed, the constant value causing the rotated first 
operand to be selected to drive the output of the 
vectored mux as the result. 

whereby rotate operations are also performed by the 
logic-instruction execution unit and rotate results are 
passed through the vectored mux. 

6. The logic-instruction execution unit of claim 5 further 
comprising: 

a carry flag indicating a carry from execution of a previ 
ous instruction; 

the merge control means including carry means for apply 
ing the carry flag to the second data input on the 
vectored mux when a rotate-through-carry instruction 
is executed, the merge control means also applying the 
rotated first operand to the first data input on the 
vectored mux. 

whereby the carry flag is merged in by the vectored mux. 
7. The logic-instruction execution unit of claim 6 further 

comprising: 
carry flag means, coupled to the rotate means, for gener 

ating as the carry flag the least-significant bit of the 
rotated first operand; 

the carry means including means for applying a comple 
ment of the carry flag to the second data input on the 
vectored mux when a bit-test-and-complement instruc 
tion is executed, the merge control means also applying 
the first operand to the first data input on the vectored 

whereby the bit-test-and-complement instruction is 
executed by the vectored mux by merging the first 
operand with the complement of the carry flag. 

8. The logic-instruction execution unit of claim 7 wherein 
the complement of the carry flag is applied to the second 
data input on the vectored mux during a subsequent cycle 
when a bit-test-and-complement instruction is executed, the 
rotate means rotating the spread first operand during an 
initial cycle before the subsequent cycle and outputting the 
least-significant bit of the rotated first operand to the carry 
flag means for generating the carry flag before the subse 
quent cycle, whereby the bit-test-and-complement instruc 
tion is executed in more than one cycle. 

9. The logic-instruction execution unit of claim 7 for 
further executing a compound shift-merge instruction in a 
single step and a rotate-merge instruction in a single step, the 
merge control means applying the rotated first operand to the 
first data input and applying the mask to the select control 
input when the compound shift-merge instruction is 
executed. 

10. The logic-instruction execution unit of claim 9 
wherein the compound shift-merge instruction and rotate 
merge instruction executed in a single step are each native 
RISC instructions and wherein the bit-test-and-complement 
instruction executed in more than one cycle is a native CISC 
instruction. whereby the vectored mux in the logic 
instruction execution unit executes native RISC instructions 
and native CISC instructions. 

11. The logic-instruction execution unit of claim 10 
wherein the compound shift-merge instruction is a RISC 
rotate-left word immediate then mask-insert rlwini instruc 
tion and wherein the bit-test-and-complement instruction is 
a CISC bit-test instruction. 

12. A central processing unit (CPU) having an arithmetic 
logic-unit (ALU) for executing integer instructions from a 
first instruction set and from a second instruction set. 
wherein the ALU comprises: 
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a first operand input: 
a second operand input: 
a byte-spreader for copying a byte-operand to a full width 

of the ALU: 
a result output: 
an adder for performing add and subtract operations on 

the first and second operand inputs, the adder output 
ting a sum as the result output; 

a Boolean-logic unit for performing Boolean, merge. 
rotate, and shift operations, the Boolean-logic unit 
comprising: 

a vectored mux having a plurality of multiplexer cells 
each having data inputs, a first select input and a second 
select input. and output for outputting one bit-position 
of the result output, each multiplexer cell selecting one 
of the data inputs as the result output in response to the 
first and second select inputs; 

truth-table means for applying electrical signals repre 
senting a truth-table of a Boolean-logic function being 
executed to the data inputs of the vectored mux; 

first select means for applying the second operand input to 
the first select inputs of the vectored mux when a 
Boolean operation is being executed, but applying a 
constant signal to the first select inputs when a Boolean 
operation is not being executed; 

mask generator means for generating a mask indicating 
which bit-positions of the first operand input are output 
to the result output and which bit-positions of the first 
operand input are not output to the result output; 

second select means for applying the first operand input to 
the second select inputs of the vectored mux when a 
Boolean operation is being executed, but applying the 
mask to the second select inputs when a Boolean 
operation is not being executed; 

a shifter for shifting and rotating the first operand input to 
produce a shifted first operand when a rotate or shift 
operation is being executed; 

first data select means, coupled to the shifter and the 
truth-table means. for outputting one of the truth-table 
signals to a data input of the vectored mux when a 
Boolean operation is being executed but for outputting 
the shifted first operand to a data input of the vectored 
mux when a Boolean operation is not being executed: 
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second data select means, coupled to the second operand 

input and the truth-table means, for outputting a second 
one of the truth-table signals to a second data input of 
the vectored mux when a Boolean operation is being 
executed but for outputting the second operand input to 
the second data input of the vectored mux when a 
Boolean operation is not being executed; 

whereby the Boolean-logic unit executes Boolean-logic 
operations and merge. rotate, and shift operations. 

13. The CPU of claim 12 wherein the Boolean, merge, 
rotate, and shift operations from the first instruction set are 
performed in a single clock cycle. 

14. The CPU of claim 12 further comprising: 
a first instruction decoder for decoding instructions from 

the first instruction set, the first instruction decoder 
generating decoded first instructions: 

a second instruction decoder for decoding instructions 
from the second instruction set, the second instruction 
decoder generating decoded second instructions; 

wherein the first instruction set has an encoding of 
instructions to operations which is independent of the 
encoding of instructions to operations for the second 
instruction set; 

an instruction mux, for selecting decoded first instructions 
from the first instruction decoder when the CPU is 
executing instructions from the first instruction set but 
selecting decoded second instructions from the second 
instruction decoder when the CPU is executing instruc 
tions from the second instruction set; 

a pipeline containing the ALU, the pipeline receiving the 
decoded instructions selected by the instruction mux: 

wherein the ALU executes decoded first instructions from 
the first instruction set and decoded second instructions 
from the second instruction set. 

15. The CPU of claim 14 wherein the instructions from 
the first instruction set are performed in a single clock cycle 
but compound instructions from the second instruction set 
are performed in two clock cycles, wherein the compound 
instructions from the second instruction set include a shift 
double instruction and a rotate-through-carry instruction. 

16. The CPU of claim 15 wherein the first instruction set 
is a RISC instruction set and wherein the second instruction 
set is a CISC instruction set. 


