
III IIII
US005745913A

United States Patent 19 11 Patent Number: 5,745,913
Pattin et al. 45 Date of Patent: Apr. 28, 1998

54 MULTI-PROCESSORDRAM CONTROLLER 5,479,640 12/1995 Cartman et al. 395,438
THAT PRIORITIZES ROW-MISS REQUESTS 5,481,691 1/1996 Day, III et al. 395,425
TO STALE BANKS 5,481,707 1/1996 Murphy Jr. et al. 395/650

5,495,339 2/1996 Stegbauer et al. 358/296
75 InVentors: Jay C. Pattin, Redwood City; James S. 5,604.884 2/1997 Thome et al. 395,494

Blomgren, San Jose, both of Calif. OTHER PUBLICATIONS

73 Assignee: Exponential Technology, Inc., San IBM 16 Mbit Synchronous DRAM Databook,
Jose, Calif. IBM0316409C, pp. 1-100, Jan. 1996.

Primary Examiner-Tod R. Swann
(21) Appl. No.: 691,005 Assistant Examiner-David Langjahr
22 Filed: Aug. 5, 1996 Attorney, Agent, or Firm-Stuart T. Auvinen

(51) Int. Cl. G06F 12/00 57 ABSTRACT
52 U.S. Cl. 711/105: 711/111; 395/413; Memory requests from multiple processors are re-ordered to

395/405; 364/DIG. 1 maximize DRAM row hits and minimize row misses.
(58) Field of Search - - - - 365/230.01; 395/405, Requests are loaded into a request queue and simultaneously

395/413,438,432 decoded to determine the DRAM bank of the request. The
d lastrow address of the decoded DRAM bankis compared to

56 References Cited the row address of the new request and a row-hit bit is set
U.S. PATENT DOCUMENTS in the request queue if the row addresses match. The bank's

state machine is consulted to determine if RAS is low or
... 364200 high, and a RAS-low bit in the request queue is set if RAS
"3 is low and the row still open. Arow counteris reset for every
... 395/405 new access but is incremented with a slow clock while the
... 395/143 o
... 395/325 row us open but not being accessed. After a predetermined
... 395/400 count, the row is considered "stale'. A stale-row bit in the

dow ow 395/425 request queue is set if the decoded bank has a stale row. A
... 36.5/230.01 request prioritizer reviews requests in the request queue and
... 395/325 processes row-hit requests first, then row misses which are
who 395/164 to a stale row. Lower in priority are row misses to non-stale
... 36.5/18991 rows which have been more recently accessed. Requests

o E loaded into the request queue before the cache has deter
3.f mined if a cache hit has occurred are speculative requests

5,051,889 9/1991 Fung et al.....
5,265,236 11/1993 Mehring et al. .
5,269,010 12/1993 MacDonald
5,280,571 1/1994 Keith et al.
5,289,584 2/1994 Thome et al. ...
5,301.287 4/1994. Herrell et al. ...
5,301.292 4/1994 Hilton et al..
5,307,320 4/1994 Farrer et al.
5,353,416 10/1994 Olson ...
5,357,606 10/1994 Adams
5,392.239 2/1995 Margulis et al.
5,392,436 2/1995 Jansen et al.
5,412,788 5/1995 Collins et al.

: A: E. t ... 395/800 and can open a new row when the old row is stale or closed.
5,448,702 9/1995 Garcia, Jr. et al. ... 395/325
5,450,564 9/1995 Hassler et al. 395/495 19 Claims, 8 Drawing Sheets

DSABLED

U.S. Patent Apr. 28, 1998 Sheet 1 of 8 5,745,913

D. D. D. D. D. D. D. D. D. D. D. o o

LEVEL-2
CACHE

PC
INTERFACE

60

U.S. Patent Apr. 28, 1998 Sheet 2 of 8 5,745,913

NEXT STATE

CLR

TIME WAL
BURST CNT

CK

CLK DIV10
ROW OLD

ROW ACTIVE ROW IDLES

12 FIG. 3

U.S. Patent Apr. 28, 1998 Sheet 3 of 8 5,745,913

54

REQUEST
OUEUE

ACTIVE
REGUEST
PROCESSING

ROW HIT, LOW, OLD

ROW ROW ROW ROW
ADDR ADDR ADDR ADDR

14 14 124 14

5,745,913 Sheet 5 of 8 Apr. 28, 1998 U.S. Patent

SONISSE OORHCH LSETTÖERH E/\|_LOW/
& $ETGITNWOH

El LV/LS ||SETTÖERH ZZ

09

|Od

99

|OS

19 - 97

OndO !

U.S. Patent Apr. 28, 1998 Sheet 6 of 8 5,745,913

5,745,913 Sheet 7 of 8 Apr. 28, 1998 U.S. Patent

£ Z T O - - O – — ±I

€I - - - - - - - - - -

8. Z T O - - O

£ Z T O – – O

£ Z T O - - O

8. Z T O - - SO

8 Z T O - - O

£ Z T O - - O

8. Z T O - - O

€ 2 T O – – V – - ?i

£ Z T O - - V - - ?i

§ Z T O - - V

8. Z T O - ~ O - - XI - - €I

9. Z T O - - SO - - XI - -)

8. Z T O - - D

SEITIO X O XIOOTIO

(C]) ESVO ?! - - € (O) ESVO (I - - ?i (g) ESVO XI - - €I (\/) ESVO (i - - åI £ Z T O

U.S. Patent Apr. 28, 1998 Sheet 8 of 8 5,745,913

LATENCY
(CYCLES)

50

120
40

122

30

20

10

1% 2% 3% 4% 5% 6% 7%

MISS RATE PER CPU

16%. 32%, 48%. 64% 80% 96%
BUS UTILIZATON

FIG. 9

5,745,913
1.

MULTI-PROCESSOR DRAM CONTROLLER
THAT PRIORITIZES ROW-MISS REQUESTS

TO STALE BANKS

BACKGROUND OF THE INVENTION FIELD
OF THE INVENTION

This invention relates to multi-processor systems, and
more particularly for DRAM controllers which re-order
requests from multiple sources.

BACKGROUND OF THE INVENTION--
DESCRIPTION OF THE RELATED ART

Multi-processor systems are constructed from one or
more processing elements. Each processing element has one
or more processors, and a shared cache and/or memory.
These processing elements are connected to other processing
elements using a scaleable coherent interface (SCI). SCI
provides a communication protocol for transferring memory
data between processing elements. A single processing ele
ment which includes SCI can later be expanded or upgraded.
An individual processing element typically contains two

to four central processing unit (CPU) cores, with a shared
cache. The shared cache is connected to an external memory
for the processing element. The external memory is con
structed from dynamic RAM (DRAM) modules such as
single-inline memory modules (SIMMs). The bandwidth
between the shared cache and the external memory is critical
and can limit system performance.

Standard DRAM controllers for uni-processors have been
available commercially and are well-known. However, these
controllers, when used for multi-processor systems, do not
take advantage of the fact that multiple processors generate
the requests to the external memory. Often requests from
different processors can be responded to in any order, not
just the order received by the memory controller.
Unfortunately, DRAM controllers for uni-processor systems
do not typically have the ability to re-order requests. Thus
standard DRAM controllers are not optimal for multi
processor systems.

Synchronous DRAMs are becoming available which pro
vide extended features to optimize performance. The row
can be left open, allowing data to be accessed by pulsing
CAS without pulsing RAS again. Many CAS-only cycles
can be performed once the row address has been strobed into
the DRAM chips and the row left active. Burst cycles can
also be performed where CAS is strobed once while data that
sequentially follows the column address is bursted out in
successive clock cycles.
What is desired is a DRAM controller which is optimized

for a multi-processor system. It is desired to re-order
requests from different CPU cores in an optimal fashion to
increase bandwidth to the external DRAM memory. It is also
desired to use burst features of newer synchronous DRAMs
to further increase bandwidth.

SUMMARY OF THE INVENTION

A memory controller accesses an external memory in
response to requests from a plurality of general-purpose
processors. The memory has a plurality of bank controllers.
Each bank controller accesses a bank of the external
memory. Each bank controller has a state machine for
sequencing control signals for timing access of the external
memory. The state machine outputs a row-address-strobe
RAS-active indication of a logical state of a RAS signal line
coupled to the bank of the external memory. A row address

5

O

15

25

35

40

45

50

55

60

65

2
register stores a last row address of a last-accessed row of
the bank of the external memory.
A counter includes reset means for resetting the counter

upon completion of a data-transfer access to the bank of the
external memory. The counter periodically increments when
the row is active and no data-transfer access occurs. The
counter outputs a stale-row indication when a count from the
counter exceeds a predetermined count.
A request queue stores requests from the plurality of

general-purpose processors for accessing the external
memory. The request queue stores row-status bits including:

a) a row-hit indication when the last row address matches
a row address of a request,

b) the row-active indication from the state machine, and
c) the stale-row indication from the counter.
A request prioritizer is coupled to the request queue. It

determines a next request from the request queue to generate
a data-transfer access to the external memory. The request
prioritizer re-orders the requests into an order other than the
order the requests are loaded into the request queue. Thus
requests from the plurality of processors are reordered for
accessing the external memory.

In further aspects of the invention the counter is incre
mented by a slow clock having a frequency divided down
from a memory clock for incrementing the state machine
when the row line is active and no data-transfer access
occurs, but the counter is incremented by the memory clock
during the data-transfer access. Thus the counter increments
more slowly when no data-transfer occurs than when a
data-transfer access is occurring.

In further aspects the predetermined count for determin
ing the stale row indication is programmable. The request
prioritizer re-orders requests having the stale-row indication
before requests not having the stale-row indication when no
requests have the row-hit indication. Thus miss requests to
stale rows are processed before miss requests to more
recently-accessed rows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a multi-processor chip which
connects to an external memory bus.

FIG. 2 is a diagram of a state machine for accessing a
dynamic random-access memory (DRAM) bank using page
mode access.

FIG. 3 is a diagram of a burst counter which is also used
to indicate how long the current row has been open without
being accessed.

FIG. 4 is a diagram of a DRAM controller for separately
accessing multiple banks of DRAM.

FIG. 5 is a diagram of the fields for a memory requestin
the request queue.

FIG. 6 is a diagram showing that the status of the DRAM
row is determined while the cache is determining if a cache
hit or miss has occurred.

FIG. 7 is a waveform showing a row being opened on one
bank while a different bank is bursting data.

FIG. 8 is a timing diagram of SDRAM accesses using
normal and auto-precharge.

FIG. 9 highlights a decrease in average latency when
using request re-ordering.

DETALED DESCRIPTION

The present invention relates to an improvement in
embedded DRAM controllers. The following description is

5,745,913
3

presented to enable one of ordinary skill in the art to make
and use the invention as provided in the context of a
particular application and its requirements. Various modifi
cations to the preferred embodiment will be apparent to
those with skill in the art, and the general principles defined
herein may be applied to other embodiments. Therefore, the
present invention is not intended to be limited to the par
ticular embodiments shown and described, but is to be
accorded the widest scope consistent with the principles and
novel features herein disclosed.
Multi-Processor Die-FIG. 1

FIG. 1 is a diagram of a multi-processor chip for con
necting to an external memory bus. Four CPU cores 42, 44,
46, 48 each contain one or more execution pipelines for
fetching, decoding, and executing general-purpose instruc
tions. Each CPU core has a level-one primary cache. Oper
and or instruction fetches which miss in the primary cache
are requested from the larger second-level cache 60 by
sending a request on internal bus 52.
CPU cores 42, 44, 46, 48 may communicate with each

other by writing and reading data in second-level cache 60
without creating traffic outside of chip 30 on the external
memory bus. Thus inter-processor communication is some
times accomplished without external bus requests. However,
communication to other CPU's on other dies do require
external cycles on the memory bus.

Requests from CPU cores 42, 44, 46, 48 which cannot be
satisfied by second-level cache 60 include external DRAM
requests and PCI bus requests such as input-output and
peripheral accesses. PCI requests are transferred from
second-level cache 60 to PCI interface 58, which arbitrates
for control of PCI bus 28, using PCI-specific arbitration
signals. Bus 54 connects second-level cache 60 to PCI
interface 58 and BIU 56.
Memory requests which are mapped into the address

space of the DRAMs rather than the PCI bus are sent from
second-level cache 60 to bus-interface unit (BIU) 56. BUI
56 contains a DRAM controller so that DRAM signals such
as chip-select (CS), RAS, CAS, and the multiplexed row?
column address are generated directly rather than by an
external DRAM controller chip connected to a local bus.
Communication to the other processors is accomplished
through scaleable-coherent interface SCI57, which transfers
data to other processing elements (not shown).
DRAM Access Requirements
The cost of a DRAM chip is typically reduced by multi

plexing the row and column addresses to the same inputpins
on a DRAM package. A row-address strobe (RAS) is
asserted to latch the multiplexed address as the row address,
which selects one of the rows in the memory array within the
DRAM chip. A short period of time later a column-address
strobe (CAS) is strobed to latch in the column address,
which is the other half of the full address. Accessing DRAM
thus requires that the full address be divided into a row
address and a column address. The row address and the
column address are strobed into the DRAM chip at different
times using the same multiplexed-address pins on the
DRAM chip.
DRAM manufacturers require that many detailed timing

specifications be met for the RAS and CAS signals and the
multiplexed address. At the beginning of an access, the RAS
signal must remain inactive for a period of time known as
the row or RAS precharge period. This often requires several
clock periods of a processor's clock. After RAS precharge
has occurred, the row address is driven out onto the multi
plexed address bus and RAS is asserted. Typically the row
address must be driven one or more clock periods before

10

15

20

25

30

35

40

45

50

55

65

4
RAS is asserted to meet the address set-up requirement.
Then the column address is driven to the multiplexed
address bus and CAS is asserted.

For synchronous DRAMs, a burst mode is used where
CAS is pulsed before the data is read out of the DRAM chip.
On successive clock periods, a burst of data from successive
memory locations is read out. CAS is not re-asserted for
each datum in the burst. The internal row is left asserted
during this time although the external RAS signal may have
become inactive. CAS may then be asserted again with a
different column address when additional bursts of data have
the same row address but different column addresses.
Indeed, a row address may be strobed in once followed by
dozens or hundreds of CAS-only bursts. The internal row is
left asserted as long as possible, often until the next refresh
occurs. This is sometimes referred to as page-mode. Since a
typical multiplexed address has 11 or more address bits, each
row address or "page” has at least 2' or 2048 unique
column addresses.
When the arbitration logic for DRAM access determines

that the current access is to a row that is not requested by any
other CPU's, then a row precharge is performed upon
completion of requests to the row when other requests are
outstanding to other rows in the bank. This reduces latency
to these other rows.
The row address is typically the higher-order address bits

while the column address is the lowest-order address bits.
This address partition allows a single row to contain 2K or
more contiguous bytes which can be sequentially accessed
without the delay to strobe in a new row address and
precharge the row. Since many computer programs exhibit
locality, where memory references tend to be closer rather
than farther away from the last memory reference, the
DRAM row acts as a Small cache.
The DRAM is arranged into multiple banks, with the

highest-order address bits being used to determine which
bank is accessed. Sometimes lower-order address bits, espe
cially address bits between the row and column address bits,
are used as bank-select bits. See "Page-interleaved memory
access”, U.S. Pat. No. 5,051,889 by Fung et al., assigned to
Chips and Technologies, Inc. of San Jose Calif. Each DRAM
bank acts as a separate row-sized cache, reducing access
time by avoiding the RAS precharge and strobing delay for
references which match a row address of an earlier access.
A synchronous DRAM adds a chip-select (CS) and a

clock signal to the standard set of DRAM pins. The multi
plexed address, and the RAS, CAS, and WE control signals
are latched into the DRAM chip when CS is active on a
rising edge of the clock. Thus RAS, CAS, and WE are
ignored when the chip-select signal is inactive. The internal
row may be activated by having RAS and CS low on arising
clock edge. The row remains activated when RAS becomes
inactive as long as CS remains inactive to that DRAM chip.
Other rows in other DRAM chips may then be activated by
asserting a separate CS to these other DRAM chips. Nor
mally the multiplexed address and the RAS, CAS, WE
control signals are shared among all banks of DRAMs, but
each bank gets a separate chip-select. Only the bank having
the active chip-select signal latches the shared RAS, CAS,
WE signals; the other banks with CS inactive simply ignore
the RAS, CAS, WE signals.
Page-Mode DRAM State Machine-FIG. 2

FIG. 2 is a diagram of a state machine for accessing a
dynamic random-access memory (DRAM) bank using page
mode access. A copy of DRAM state machine 10 is provided
for each bank of DRAM which is to be separately accessed.
Some DRAM banks may be disabled, indicated by disabled

5,745,913
5

state 91 which cannot be exited without re-configuring the
memory. Idle state 90 is first entered; the row is not yet
activated. Row precharge state 92 is then entered; the row is
still inactive. After a few clock periods have elapsed, the row
or RAS precharge requirement has been met and RAS is
asserted. Row active state 96 is then entered. CAS is then
asserted for reads in state 98 and for writes in state 99. After
the CAS cycle and any burst is completed, row active state
96 is re-entered and remains active until another access is
requested.

Additional accesses that have the same row address are
known as row hits, and simply assert CAS using states 98 or
99. When the row address does not match the row address
of the last access, then a row miss occurs. Row precharge
state 92 is entered, and the new row address is strobed in as
RAS becomes active (falls) when entering state 96. Then the
column address is strobed in states 98 or 99.
A timer is used to signal when a refresh is needed, and

refresh state 93 is entered once any pending access is
completed. Refresh is typically triggered by asserting CAS
before the RAS signal, and a counter inside the DRAM chip
increments for each refresh so that all rows are eventually
refreshed.

These states can be encoded into a four-bitfield known as
the BANK STATE, which can be read by other logic
elements. Table 1 shows a simple encoding of these states
into a 4-bit field. -

TABLE 1.

DRAM State Encoding

BANK STATE Nane Reference No.

0000 Idle, RAS High 90
0001 Row Precharge 92
O011 Row Active 96
01.00 CAS Read 98
01.01 CAS Write 99
O11 Refresh 93
1111 Not Installed 91

Burst and Row Open Timer-FIG. 3
FIG. 3 is a diagram of a burst counter which is also used

to indicate how long the current row has been open without
being accessed. Row counter 12 is provided for each bank
of DRAMs which is separately accessible. Counter 20 is a
4-bit binary upward-counter which increments for each
rising edge of the increment clock input DNCR. Once the
maximum count of 1111 (15 decimal) is reached, the counter
holds the terminal count rather than rolling over to zero.

Each time a new state is entered in DRAM state machine
10 of FIG. 2, NEXT STATE is pulsed and counter 20 is
cleared to 0000. Thus counter 20 counts the time that DRAM
state machine 10 remains in any state.
The processor's memory clock CLK is selected by mux

19 for all states except row active state 96. When any state
requires multiple clock cycles, counter 20 is used to keep
count of the number of clock cycles in that state. For
example, precharge may require 3 clock cycles. Row pre
charge state 92 clears counter 20 when first entered, and
remains active until the count from counter 20 reaches two,
which occurs during the third clock period of CLK. Once the
count TIME VAL output from counter 20 reaches two, row
precharge state 92 may be exited and row active state 96
entered.
When bursting of data is enabled, counter 20 is also used

as a burst counter. When read CAS state 98 is entered,
counter 20 is incremented each clock period as the data is

10

15

20

25

30

35

40

45

50

55

65

6
burst until the burst count is reached. Finally read CAS state
98 is exited once the desired burst count is reached. For a
burst of four data items, four clock periods are required,
while a burst of eight data items requires eight clock cycles.
CAS may be pipelined so that a new column address is

strobedin while the last data item(s) in the previous burst are
being read or written. A simple pipeline is used to delay the
data transferrelative to the state machine. For a CAS latency
of three cycles, the burst of data actually occurs three clock
cycles after it is indicated by the burst counter. In that case,
read CAS state 98 is exited three cycles before the burst
completes.

Counter 20 is used in a second way forrow active state 96.
The second use of counter 20 is to keep track of the idle time
since the last CAS cycle when RAS is low. Mux 19 selects
the clock divided by ten, CLK DIV10 during row active
state 96 ROW ACTIVE. This slower clock increments
counter 20 at a slower rate. The slower rate is needed
because row active state 96 may be operative for many
cycles. In a sense, the DRAM bankis idle, butRAS has been
left on for much of the time that row active state 96 is
operative. Counter 20 can only count up to 15, so a fast clock
would quickly reach the maximum count.

Counter 20 is slowly incremented by the divided-down
clock CLK DIV10. A programmable parameter ROW
IDLES is programmed into a system configuration register
and may be adjusted by the system designer for optimum
performance. Comparator 18 signals ROW OLD when the
count from counter 20 exceeds ROW IDLES, indicating
that the row active state 96 has been active for longer than
ROW IDLES periods of CLK DIV10.
ROW Open Counter Indicates Stale Rows
ROW OLD is thus signaled when row active state 96 has

been active for a relatively long period of time. No data
transfers from this bank have occurred in that time, since
another state such as read CAS state 98 would have been
entered, clearing counter 20. ROW OLD is an indication of
how stale the open row is. Such information is useful when
determining whether another reference is likely to occur to
that open row. Once a long period of time has elapsed
without any accesses to that row, it is not likely that future
accesses will occur to this row. Rather, another row is likely
to be accessed.

Another row is more likely to be accessed when ROW
OLD is active than when a shorter period of time has elapsed
since the last access and ROW OLD is not asserted. The
priority of requests may be altered to lower the priority to a
stale bank. Scheduling logic in the DRAM controller may
examine ROW OLD to determine when it is useful to close
a row and begin RAS precharge for another access, even
before another access is requested. This is known as a
speculative precharge, when the stale row is closed, and the
bankis pre-charged before an actual demand request arrives.
Multi-bank DRAM Controller-FIG. 4

FIG. 4 is a diagram of DRAM controller 56 for separately
accessing multiple banks of DRAM. Four DRAM banks 16
are shown, although typically 8 or 16 banks may be sup
ported by a simple extension of the logic shown. Each bank
has its own DRAM state machine 10, as detailed in FIG. 2,
and burst and row counter 12. Each bank also has its own
row-address register 14 which contains a copy of the row
address bits strobed into the DRAMs during the last row
open when RAS was asserted.
Bus 54 transmits memory requests from any of the four

CPU cores 42, 44, 46, 48 which missed in second-level
cache 60 of FIG. 1 or PCI interface 58 or SCI 57. These
requests are loaded into request queue 26 which are priori

5,745,913
7

tized by request prioritizer 22 before being processed by
request processor 24 which activates one of the DRAM state
machines 10 for accessing one of the DRAM banks 16.

Refresh timer 28 is a free-running counter/timer which
signals when a refresh is required, typically once every 0.1
msec. The different banks are refreshed in a staggered
fashion to reduce the power surge when the DRAM is
refreshed. Four refresh request signals REF0:3 are sent to
request prioritizer 22 which begins the refresh as soon as any
active requests which have already started have finished.
Thus refresh is given the highest priority by request priori
tizer 22.
As each new request is being loaded into request queue

26, the bank address is decoded and the row address is sent
to row-address register 14 of the decoded bank to determine
if the new request is to the same row-address as the last
access of that bank. The DRAM state machine 10 of that
bank is also consulted to determine if a requested row is
active or inactive. The row counter is also checked to see if
ROW OLD has been asserted yet, indicating a stale row.
The results of the early query of the bank, the row-match

indicator ROW HIT, the DRAM state machine's current
state of the row, ROW ACTIVE, and RAS LOW from the
row counter, are sent to request queue 26 and stored with the
request.
Request Queue Stores Row Hit, Count Status-FIG. 5

FIG. 5 is a diagram of the fields for a memory request in
the request queue. Enable bit 31 is set when a new request
is loaded into request queue 26, but cleared when a request
has been processed by a DRAM state machine which
accesses the external memory. The full address of the
request, including the bank, row, column, and byte address
is stored in address field 32. An alternative is to store just the
decoded bank number rather than the bank address. Status
bits such as read or write indications are stored in field 34.
An identifier for the source of the request is stored in source
field 36.

Otherfields are loaded after the bank's state machine, row
counter, and row address are consulted. If the new row
address of the request being loaded into request queue 26
matches the row address of the last access, which is stored
in row-address register 14, then ROW HIT bit 38 is set;
otherwise it is cleared to indicate that the old row must be
closed and a new row address strobed in.
The DRAM state machine 10 of the decoded bank is

consulted to determine if the row is active (open) or inactive
(closed). RAS is effectively "low" and the row active for
states 96, 98, 99. When RAS is “low”, bit ROW ACTIVE
39 is set. The row counter 12 is also consulted for the
decoded bank, and ROW OLD is copied to ROW OLD
bit 35 in request queue 26.
Row Status Looked-Up During Cache Access-FIG. 6

FIG. 6 is a diagram showing that the status of the DRAM
row is obtained while the cache is determining if a cache hit
or miss has occurred. Requests from CPU cores 42, 44, 46,
48, and requests from SCI57, and PCI interface 58 are sent
to second-level cache 60 to determine if the data requested
is present in the on-chip cache. At the same time as the cache
lookup, before the cache hit or miss has been determined, the
request's address is decoded by bank decoder 62 to deter
mine which DRAM bank contains the data. The decoded
bank's state machine 10 and row-address register 14 are then
selected. Row address comparator 64 signals ROW HIT if
the new row address of the request matches the row address
of the last access, stored in register 14, ROW ACTIVE is
signaled by DRAM state machine 10 if the current state has
the RAS signal active (low).

10

15

25

35

45

50

55

65

8
Row counter 12 of the decoded bank is also consulted to

determine if the row has been open for a long period of time
without a recent access. ROW OLD is signaled for such as
stale row. These row status signals, ROW HTT, ROW
ACTIVE, and ROW OLD, are loaded into request queue
26, possibly before cache 60 has determined if a hit or a miss
has occurred. Should a cache hit occur, the row status
information is simply discarded since cache 60 can supply
the data without a DRAM access.
The bank status information in request queue 26 is

updated when the status of a bank changes. Alternately, the
bank's status may be read during each prioritization cycle,
or as each request is processed.

Request prioritizer 22 then examines the pending requests
in request queue 26 to determine which request should be
processed next by request processor 24. Request prioritizer
22 often processes requests in a different order than the
requests are received in order to maximize memory perfor
aCC.

In the preferred embodiment, request prioritizer 22
attempts to group requests to the same row together.
Requests to the row with the most requests are processed
before requests to other rows with fewer requests.
Prioritizer Re-Orders Requests

Request prioritizer 22 re-orders the requests to maximize
memory bandwidth. Bandwidth can be increased by reduc
ing the number of row misses: requests to a row other than
the open row. The prioritizer searches pending requests in
request queue 26 and groups the requests together by bank
and row. Any requests to a row that is already open are
processed first. These requests to open rows are rapidly filled
since the RAS precharge and opening delays are avoided.
Row hits are requests to rows which are already open.

Row-hit requests are re-ordered and processed before other
row-miss requests. The row-miss request may be an older
request which normally is processed before the younger
row-hit request. However, the older row-miss request
requires closing the row that is already open. If this row were
closed, then the row-hit request would require spending
additional delay to precharge RAS and open the row again.

Once all of the row-hitrequests have been processed, only
row-miss requests remain. Any requests to banks with RAS
inactive (ROW ACTIVE=0) are processed first, since no
row is open. Then row-miss requests to banks with open
rows are processed. The row counter is used to determine
priority of these requests: any row-miss requests that have
ROW OLD active are processed before requests with
ROW OLD inactive, so that stale rows are closed before
more-recently accessed rows are closed. The lowest priority
requestis a row-miss to a bank with a recently-accessed row
open. Recently-accessed banks are likely to be accessed
again, and thus a delay in closing the bank may allow a new
request to that open row to be received and processed before
closing the row to process the row-miss request.
The pending requests are processed in this order:
DRAM Refresh Request
Row-Hit Request
Row-Miss Request to Bank with Row Closed
Row-Miss Request to Bank with Row Open, ROW
OLD-1

Row-Miss Request to Bank with Row Open, ROW
OLD-0

Thus a recently-accessed bank with ROW OLD=0 is left
open as long as possible because any row-miss request to
this bank is given the lowest priority. When multiple
requests have the same priority, then requests in a group

5,745,913

having a larger number of individual requests to a row are
processed before smaller groups of requests.
When multiple requests are pending to the current row,

then these requests are processed before other requests to
other rows. Efficient CAS-only cycles are used. When there
is only one request to the current row, then an auto-precharge
CAS cycle is performed to precharge the row as soon as
possible. Auto-precharge is a special type of CAS cycle
whereby a row precharge is requested immediately after the
data has been internally read from the RAM array, even
before the data has been bursted out of the DRAM chip.
Auto-precharge is supported by some synchronous
DRAM's, allowing row precharge to begin before the data
has been completely transferred out of the DRAM chip.
When determining which bank to access next when

multiple requests are to different banks, the row having the
most pending requests is selected first. This way more
requests are satisfied in a shorter time, since more CAS-only
cycles may be used. It also allows more time for requests to
other rows to accumulate, increasing the number of data
bursts using CAS-only cycles.
When only one request is pending to the current row, and

no other requests are pending, then the row is left active.
After a certain, predetermined number of clock cycles when
the row is idle, the row is precharged. Precharging the row
causes accesses to the old current row to take an additional
3 cycles since the old row is closed, but accesses to other
rows to take 3 fewer cycles than when the current row is left
open. The longer that a bank is idle, the less likely it is to
receive a new request to the current row.
Separate Address and Data Busses to DRAMAllows Early
Row Open
A single data bus is used to connect the DRAM controller

to all of the DRAM's data I/O pins. All banks of DRAM
share the same data bus. Thus when one bank of DRAM is
bursting data, all other banks must wait to read or write data.
A single multiplexed address bus is also shared among all

banks of DRAM. However, each bank has a separate CS
signal, allowing a row to be open on some banks but not on
other banks since RAS is only latched when CS to a bankis
active. RAS, CAS and write-enable (WE) signals are nor
mally shared but sometimes separate signals are provided
for different banks or bytes of data.

Since the address and data buses are separate, it is
possible to strobe in a row or column address to one bank
while a different bankis bursting data. FIG. 7 is a waveform
showing a row being opened on one bank while a different
bank is bursting data. The prioritizer first selects a row-hit
burst of data to bank 0 followed by a second row-hitto bank
0. The multiplexed address (MA) bus is first driven with the
first column address C0, which is strobed in to bank 0 by
rising edge 100 of CLK when CAS and CS0 are low. Data
from this column address and the following three addresses
are burst out to the data bus on successive clock cycles.

Before all four data items are burst out of the DRAM onto
the data bus, the next row-hit access begins by driving the
second column address C0' onto the multiplexed address
bus. This second column address C0' is strobed into the
DRAM chips in bank 0 on rising edge 102 of CLK, when
CAS and CSO are low. These same DRAM chips are
bursting out data for the previous column address C0.
Pipelining within the DRAM chips allows data to be bursted
out while a new address is being strobed in.
When the burst length is programmed to larger values,

such as a burst of four or eight, more time is required from
the data bus than from the address bus for row-hits. Thus
spare bandwidth is available on the address bus.

O

15

20

25

30

35

45

50

55

65

10
FIG. 7 shows that some of this spare bandwidth on the

address bus can be used to strobe in a new row address to a
different bank. At clock edge 106, the RAS to bank 3 is
pulled high when CS3 is low, closing the row on bank 3.
Perhaps a refresh has occurred for bank 3, or a request for
bank 3 has begun to precharge RAS before bandwidth is
available on the data bus. While data is being bursted out of
bank 0 for column address C0, RAS and CS3 are asserted for
bank3. Rising edge 104 of CLK when RAS and CS3 are low
causes a new row address R3 to be latched into bank 3. Since
the data bus is busy, bank 3 cannot yet burst out data.
However, by strobing the row address into bank3 during the
idle time of the multiplexed address bus, the latency to get
the data from bank 3 is reduced to a simple CAS burst. The
CAS burst can occur at a later time when the data bus is not
busy.
The spare bandwidth on the multiplexed address bus is

well-distributed. Each CAS-only burst cycle requires 4
cycles of the data bus to burst the data, but only 1 cycle of
the address bus to strobe in the column address. Row-miss
cycles require at least 2 cycles of the address bus, so less
bandwidth is available when many row-miss cycles occur
with few row-hit cycles. Typically at least 40% of all
requests are row-hits while 60% or less are row misses.
Speculative Row Open Before Cache Hit is Signaled

Since spare bandwidth is available on the multiplexed
address bus, speculative operations that use only the address
bus do not reduce the overall databandwidth. A new row can
be opened as a speculative operation before it has been
determined if the data is available in the cache. Since the
memory controller begins to look up the bank's status in
parallel to the cache access, it may be known that the row is
inactive before the cache has completed the lookup. There is
little harm in opening the row early when the row is closed.
Even if the cache hits, future requests may be made to this
same DRAM row, and thus a future request's latency may be
reduced. However, future requests to other rows may expe
rience a higher latency.

Should the cache miss, then the data can be retrieved from
the DRAM bank with less latency since the row was opened
during the cache look-up. Thus a speculative row open of a
bank with the row inactive is desirable. The amount of time
before an idle row is closed may be decreased for specula
tive requests relative to demand requests.
When a row is active, it is usually not prudent to switch

to the new row for a speculative operation. However, once
the cache determines that a cachemiss has occurred, then the
speculative operation becomes a demand operation and is
processed as described before. An speculative/demand bit is
added to each entry in request queue 26 to indicate if the
request is speculative, before cache look-up, or demand,
after cache look-up. New requests are then loaded into
request queue 26 as a speculative request in parallel to the
cache look-up. After cache look-up the speculative request
is changed to a demand request by inverting the speculative?
demand bit when a cache miss occurs, but is deleted on a
cache hit. Speculative requests do not pulse CAS or burst
data since this would permanently alter the data for a write.

Another useful speculative cycle is to close a row that has
not been recently accessed and open a new row. The row
counter signals ROW OLD when a row is opened but has
not been accessed for a programmable period of time. Thus
ROW OLD can be used to determine if a speculative
request should open a new row. When ROW OLD is high,
a new row is opened and the old row is closed. When
ROW OLD is low, the old row has been recently used and
the new row is not opened for the speculative request.

5,745,913
11

Instead any speculative requests with ROW OLD low are
deleted or not acted upon until the cache look-up completes.
Thus the row counter is used to determine if a speculative

request should open a new row. All speculative requests
have a lower priority than other demand requests, but since
the speculative requests neveruse the data bus (until they are
converted to demand requests), the speculative request may
be processed ahead of other requests waiting for the data
bus.
A comparator may be used to compare the bank of the

speculative address to other requests in the request queue. If
any other demand request has the same bank address, then
the speculative requestis deleted to avoid interference with
the demand request.

FIG. 8 is a timing diagram of SDRAM accesses using
normal and auto-precharge. The symbols in FIG. 8 are:
P start of a row precharge
RAssert RAS and strobe in Row address
C Assert CAS and strobe in column address
A Assert CAS, strobe in column address, and request

auto-precharge
0 First data of burst on data bus
1 Second data of burst on data bus
2 Third data of burst on data bus
3 Fourth data of burst on data bus
- Idle cycle on address bus
In case (A), new requests are received too late to perform

an auto-precharge. The nextrequestis received after cycle 6,
when CAS is asserted and the auto-precharge must be
requested. The earliest a precharge can be started is in cycle
11, during the data burst. Three clock cycles are needed to
precharge the next row before RAS is asserted.

In case (B), the new request is received before cycle 6
when CAS is asserted. The new request is to a different row
in the bank, so a row precharge is necessary. An auto
precharge is requested when CAS is asserted for the first
cycle so that the row precharge begins immediately after the
data is internally read, before all the data is burst out of the
DRAM chip. RAS for the new request may be asserted in
cycle 11. Auto-precharge saves three cycles relative to case
(A) with normal precharge.
Case (C) shows multiple requests to the same row. CAS

only cycles are performed once the row is opened by the first
access. CAS-only cycles are performed every 4 cycles while
auto-precharge cycles require 8 cycles, saving 4 cycles.
Normal precharge cycles, as shown in case (A) require 11
cycles each.
Case (D) shows is an isolated request with no request

immediately following. The row is left open for a period of
time determined by the row-open counter. Once the prede
termined delay has elapsed, the row is closed by performing
a precharge cycle "P". A following request then does not
have to wait the three cycles for the precharge.
Round-Robin To Prevent Lock-Out
When multiple sources each send multiple requests, it is

possible that just one or a few of the sources could hog the
DRAM, since the highest priority is given to row-hits.
Sequential, consecutive accesses from one CPU core are row
hits, while other CPU cores may be lower-priority row
misses. Thus the CPU core with row hits would always be
granted priority. The other CPU cores are locked-out, having
lower priority.

This lock-out problemissolved by implementing around
robin scheme to prevent one source from always having
highest priority. Each source is allowed two accesses to a
bank before any other sources are allowed to win priority.

10

15

25

30

35

45

50

55

65

12
Once a source has won priority twice and other sources have
pending requests, then the winning source is given a lower
priority. This scheme allows all sources to access the DRAM
memory so all CPU cores can make forward progress in
executing their programs.

Allowing two consecutive wins provides improved per
formance over a more fair scheme that allows each source
only one win. Since each request bursts four or eight data
items, two wins provides a large amount of data. The second
request from the same source often is to the same row, so a
more efficient row-hit cycle is executed when two consecu
tive wins are allowed.
The round-robin scheme preferably selects sources hav

ing the same bank and row before passing priority to a
source with a different row. This modification to a simple
round-robin scheme improves efficiency because different
sources requesting the same row are processed before other
sources. Processing together both sources requesting the
same row results in more row-hit cycles occurring, improv
ing performance.
Memory Ordering

While requests from different sources or CPU cores can
be re-ordered, requests from the same source often must be
processed in exactly the same order received.

Strong memory ordering requires that fetches and stores
be processed in the exact order received from any one CPU
core. However, requests from different sources may be
freely mixed or re-ordered. Re-ordering requests from dif
ferent CPU cores provides a great deal of potential for
improving performance.
A relaxed memory ordering allows fetches to be

re-ordered with respect to stores, but stores must be pro
cessed in the exact order requested from any one CPU core.
Relaxed memory ordering provides even more opportunity
for performance improvement by combining requests to the
Sac OW.

Weak memory ordering allows fetches and stores to be
freely re-ordered. Stores may be re-ordered with respect to
one another too. Some form of memory synchronization
instruction is needed for weak memory ordering. SCI
requests to other processor elements are always strongly
ordered.

ADVANTAGES OF THE INVENTION

Requests from multiple processors are re-ordered to maxi
mize DRAM row hits and minimize row misses. Increasing
the number of row hits relative to row misses increases
performance since row hits are processed in fewer clock
cycles than row misses.
The request queue provides a convenient mechanism for

storing row-status information such as the state of the row
and whether the request is a row hit or a row miss. The burst
counter is not used during idle times and thus is available for
a timer indicating the time since the last access to that bank
when the row is active. Thus the burst counter serves a
second purpose of determining when a row becomes stale.
Information on which rows are less-recently accessed is
useful for deciding when to replace the open row.

Spare address bus bandwidth is used for speculative
row-opening before the internal cache status is known. FIG.
9 highlights a decrease in average latency when using
request re-ordering. The average latency to satisfy a request,
in clock cycles, is plotted for a 150 MHz memory bus as a
function of the miss rate for each CPU core. As the miss rate
per CPU increases, additional accesses to the external
DRAM are needed, and the bus utilization increases. Mul
tiple requests from the multiple CPU cores cause some

5,745,913
13

requests to wait until another request is processed. Thus
average latency increases as the bus traffic increases. Simple
re-ordering using a four-deep re-order buffer results in curve
120. Re-ordering by grouping requests to the same row, and
produces curve 122. The improved re-ordering of curve 122
results in reduced average latency for any given miss rate.
For example, at a 5% miss rate per CPU for a die with four
CPU cores, average latency is reduced from 40 cycles to 23
cycles. Thus row-based re-ordering improves average
latency.
The data for FIG. 9 was generate by assuming 40% of

requests are row hits, 50% are row misses to the same bank,
and 10% are misses to another bank. Row-hits are re-ordered
and processed before row misses.

ALTERNATE, EMBODMENTS
Several other embodiments are contemplated by the

inventors. For example the DRAM chips can be of many
different depths and widths, and provide various features.
These DRAMs are typically arranged on SIMM modules,
and each SIMM module can contain two or more banks. The
external memory is preferably 64-bits in width, which can be
constructed from these SIMMs in a conventional manner.
Other data-bus widths, such as 128 bit or 32 bit, are also
possible.

Additional buses, such as an AT or ISA bus may be
attached to the PCIbus. Other internal buses may be added
within the multi-processor IC, and the internal arrangement
of busses, caches, and CPU cores may vary from the typical
embodiment described herein. The number of CPU cores on
a multi-processor IC may also vary. While the invention has
been described in reference to re-ordering of requests to a
DRAM memory, requests to other external devices may also
be re-ordered.
While the processor clockhas been described as the clock

for the DRAM controller, high-speed processors often use a
faster clockfor the processor core than for the memory. Thus
a slower or divided-down clock is often used as a memory
clock for DRAM access.
The row-hit, row-active, and row-old bits in the request

queue may be combined together or encoded in many ways.
These bits may also be combined with other fields or bits.
The bits can be inverted as stored so that either a one or a
Zero indicates that the active state is set while the opposite
value indicates that the bit is reset or cleared. The row-active
indication may be encoded with the state of the state
machine such that no single bit indicates RAS low.
A second address bus may be used for accessing half of

the DRAM banks. The second address bus allows for two
simultaneous row-open commands to be processed at the
same time, although the system is still limited by one data
bus and can only process one CAS command at a time.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.
We claim:
1. A memory controller for accessing an external memory

in response to requests from a plurality of general-purpose
processors, the memory controller comprising:

a plurality of bank controllers, each bank controller for
accessing a bank of the external memory, each bank
controller comprising:

O

15

25

30

35

45

50

55

65

14
a state machine for sequencing control signals for

timing access of the external memory, the state
machine outputting a row-active indication of a RAS
signal line coupled to the bank of the external
memory when the last access to the bank occurred;

a row address register for storing a last row address of
a last-accessed row of the bank of the external
memory;

a counter, including reset means for resetting the
counter upon completion of a data-transfer access to
the bank of the external memory, the counter peri
odically incrementing when the row is active and no
data-transfer access occurs, the counter outputting a
stale-row indication when a count from the counter
exceeds a predetermined count;

a request queue for storing requests from the plurality of
general-purpose processors for accessing the external
memory, the request queue storing row-status bits
including:
a) a row-hit indication when the last row address

matches a row address of a request,
b) the row-active indication from the state machine,

and
c) the stale-row indication from the counter; and

a request prioritizer, coupled to the request queue, for
determining a next request from the request queue for
generating a data-transfer access to the external
memory, the request prioritizer re-ordering the requests
into an order other than the order the requests are
loaded into the request queue,

whereby requests from the plurality of processors are
re-ordered for accessing the external memory.

2. The memory controller of claim 1 wherein the counter
is incremented by a slow clock having a frequency divided
down from a memory clock for incrementing the state
machine when the row is active and no data-transfer access
occurs, the counter being incremented by the memory clock
during the data-transfer access, whereby the counter incre
ments more slowly when no data-transfer occurs than when
a data-transfer access is occurring.

3. The memory controller of claim 2 wherein the prede
termined count for determining the stale row indication is
programmable.

4. The memory controller of claim 2 wherein the request
prioritizer includes means for re-ordering requests having
the staie-row indication before requests not having the
stale-row indication when no requests have the row-hit
indication, whereby miss requests to stale rows are pro
cessed before miss requests to more-recently-accessed rows.

5. A multi-processor integrated circuit (IC) comprising:
a first CPU core for processing general-purpose instruc

tions;
a second CPU core for processing general-purpose

instructions;
a shared cache for supplying data and instructions to the

first CPU core and to the second CPU core;
a DRAM controller, coupled to the shared cache, for

processing miss requests from the shared cache which
originated from the first CPU core and from the second

CPU core;
the DRAM controller including:

last row-address means for storing a plurality of last
row addresses indicating row-addresses for a recent
access of a DRAM bank;

row-address compare means, coupled to the last row
address means, for signaling a row-hit when a match
is detected;

5,745,913
15

sequencing means for generating RAS, CAS, and
address signals to DRAM banks;

request prioritizer means, coupled to the row-address
compare means, for determining an order of process
ing for requests from the first CPU core and the
second CPU core, the request prioritizer means
including means for processing a second request
from the second CPU core before a first request from
the first CPU core when the row-hit is signaled for
the second request but not for the first request;

a plurality or row timers, coupled to the request pri
oritizer means, for indicating a number of clock
periods since a last access to a DRAM bank, the row
timers including means for resetting when an access
occurs to the DRAM bank, wherein row timers
having a lower count indicate a more-recently
accessed DRAM bank than row timers with a higher
count,

whereby row-hit requests are processed before row-miss
requests from different CPU cores.

6. The multi-processor IC of claim 5 wherein the DRAM
controller further comprises:

round-robin means, coupled to the request prioritizer
means, for allowing a limited number of requests from
the second CPU core to be processed when requests
from the first CPU core are pending.

7. The multi-processor IC of claim 6 wherein the limited
number of requests is two.

8. The multi-processor IC of claim 7 wherein the requests
are burst requests comprising a number of clock cycles, with
different data being transferred on a data bus between the
DRAM bank and the multi-processor IC for successive
clock cycles when processing a burst request.

9. The multi-processor IC of claim 5 wherein the request
prioritizer means includes means for processing a request to
a more-recently-accessed DRAM bank before a request to a
stale DRAM bank.

10. A method of queuing requests from multiple proces
sors to a shared memory, the method comprising the steps
of:

receiving a request from a processor, the request having a
request-address;

loading the request-address into a request queue;
decoding at least a portion of the request-address to

determine a decoded bank of the shared memory con
taining data at the request-address;

comparing arow-address portion of the request-address to
a stored row address for the decoded bank, the stored
row address being a last row address strobed into the
decoded bank for selecting a row from among a plu
rality of rows of memory cells in the decoded bank;

signaling a row match when the row-address portion of
the request-address matches the stored row address;

setting a row-match bit for the request in the request
queue when the row match is signaled;

determining when a period of time since a last access
occurred to the decoded bank exceeds a predetermined
period of time and signaling a stale row when the
period of time since the last access exceeds the prede
termined period of time;

setting a stale row bit for the request in the request queue
when the stale row is signaled;

prioritizing requests in the request queue from different
processors wherein priority is a function of the stale
row bit and row-match bit for each request in the
request queue,

10

15

25

30

35

40

45

50

55

whereby priority of requests from different processors is a 65
function of the period of time since the last access of the
decoded bank and the row-match.

16
11. The method of claim 10 further comprising:
determining when a row in the decoded bank is in an

inactive state;
ignoring the row-match bit when determining priority for

the request when the row is in the inactive state.
12. The method of claim 10 further comprising:
periodically incrementing a counter to periodically incre

ment the period of time since the last access to the
decoded bank;

resetting the counter when an access to the decoded bank
OccurS;

reading the counter to determine the period of time since
the last access to the decoded bank,

whereby the counter indicates the period of time since the
last access to the decoded bank.

13. The method of claim 10 further comprising:
marking a request loaded into the request queue as

speculative when a shared cache has not yet determined
that the data at the request-address is present in the
shared cache;

marking the request loaded into the request queue as
demand when the shared cache determines that the data
at the request-address is not present in the shared cache;

canceling the request loaded into the request queue when
the shared cache determines that the data at the request
address is present in the shared cache,

whereby the request queue is loaded before the shared cache
is accessed.

14. The method of claim 13 wherein requests marked as
speculative are assigned a lower priority than requests
marked as demand.

15. The method of claim 14 further comprising:
pulsing a CAS signal to the decoded bank and strobing in

a column-address portion of the request-address when
the request is processed when the request is marked as
demand;

not pulsing CAS for any request marked as speculative,
but pulsing RAS and strobing in a new row address for
requests marked as speculative,

whereby speculative requests strobe in a new row address
but do not strobe in a new column address.

16. The method of claim 15 further comprising:
processing requests having the row-match bits set with a

first row-address in a decoded bank before processing
requests to other row-addresses in the decoded bank
with the row-match bits cleared,

whereby row-matches are processed before row-misses.
17. The method of claim 10 further comprising:
processing requests having the row-match bit indicating a
row miss by processing requests with the stale-row bit
set before requests with the stale-row bit not set,

whereby stale rows are replaced before rows which have
been recently accessed.

18. The method of claim 17 further comprising:
preventing a processor from winning priority and being

processed for more than two access transactions when
other processors have requests in the request queue,

whereby other processors are given priority after two
accesses by a winning processor.

19. The method of claim 18 wherein the access transac
tions each comprise a CAS

pulse wherein a column address is strobed into the shared
memory and a data burst of multiple cycles with
sequential data being transferred to a data bus on
successive clock cycles,

whereby access transactions are burst transactions.

