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MULTI-PROCESSOR DRAM CONTROLLER 
THAT PRIORITIZES ROW-MISS REQUESTS 

TO STALE BANKS 

BACKGROUND OF THE INVENTION FIELD 
OF THE INVENTION 

This invention relates to multi-processor systems, and 
more particularly for DRAM controllers which re-order 
requests from multiple sources. 

BACKGROUND OF THE INVENTION-- 
DESCRIPTION OF THE RELATED ART 

Multi-processor systems are constructed from one or 
more processing elements. Each processing element has one 
or more processors, and a shared cache and/or memory. 
These processing elements are connected to other processing 
elements using a scaleable coherent interface (SCI). SCI 
provides a communication protocol for transferring memory 
data between processing elements. A single processing ele 
ment which includes SCI can later be expanded or upgraded. 
An individual processing element typically contains two 

to four central processing unit (CPU) cores, with a shared 
cache. The shared cache is connected to an external memory 
for the processing element. The external memory is con 
structed from dynamic RAM (DRAM) modules such as 
single-inline memory modules (SIMMs). The bandwidth 
between the shared cache and the external memory is critical 
and can limit system performance. 

Standard DRAM controllers for uni-processors have been 
available commercially and are well-known. However, these 
controllers, when used for multi-processor systems, do not 
take advantage of the fact that multiple processors generate 
the requests to the external memory. Often requests from 
different processors can be responded to in any order, not 
just the order received by the memory controller. 
Unfortunately, DRAM controllers for uni-processor systems 
do not typically have the ability to re-order requests. Thus 
standard DRAM controllers are not optimal for multi 
processor systems. 

Synchronous DRAMs are becoming available which pro 
vide extended features to optimize performance. The row 
can be left open, allowing data to be accessed by pulsing 
CAS without pulsing RAS again. Many CAS-only cycles 
can be performed once the row address has been strobed into 
the DRAM chips and the row left active. Burst cycles can 
also be performed where CAS is strobed once while data that 
sequentially follows the column address is bursted out in 
successive clock cycles. 
What is desired is a DRAM controller which is optimized 

for a multi-processor system. It is desired to re-order 
requests from different CPU cores in an optimal fashion to 
increase bandwidth to the external DRAM memory. It is also 
desired to use burst features of newer synchronous DRAMs 
to further increase bandwidth. 

SUMMARY OF THE INVENTION 

A memory controller accesses an external memory in 
response to requests from a plurality of general-purpose 
processors. The memory has a plurality of bank controllers. 
Each bank controller accesses a bank of the external 
memory. Each bank controller has a state machine for 
sequencing control signals for timing access of the external 
memory. The state machine outputs a row-address-strobe 
RAS-active indication of a logical state of a RAS signal line 
coupled to the bank of the external memory. A row address 
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2 
register stores a last row address of a last-accessed row of 
the bank of the external memory. 
A counter includes reset means for resetting the counter 

upon completion of a data-transfer access to the bank of the 
external memory. The counter periodically increments when 
the row is active and no data-transfer access occurs. The 
counter outputs a stale-row indication when a count from the 
counter exceeds a predetermined count. 
A request queue stores requests from the plurality of 

general-purpose processors for accessing the external 
memory. The request queue stores row-status bits including: 

a) a row-hit indication when the last row address matches 
a row address of a request, 

b) the row-active indication from the state machine, and 
c) the stale-row indication from the counter. 
A request prioritizer is coupled to the request queue. It 

determines a next request from the request queue to generate 
a data-transfer access to the external memory. The request 
prioritizer re-orders the requests into an order other than the 
order the requests are loaded into the request queue. Thus 
requests from the plurality of processors are reordered for 
accessing the external memory. 

In further aspects of the invention the counter is incre 
mented by a slow clock having a frequency divided down 
from a memory clock for incrementing the state machine 
when the row line is active and no data-transfer access 
occurs, but the counter is incremented by the memory clock 
during the data-transfer access. Thus the counter increments 
more slowly when no data-transfer occurs than when a 
data-transfer access is occurring. 

In further aspects the predetermined count for determin 
ing the stale row indication is programmable. The request 
prioritizer re-orders requests having the stale-row indication 
before requests not having the stale-row indication when no 
requests have the row-hit indication. Thus miss requests to 
stale rows are processed before miss requests to more 
recently-accessed rows. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a diagram of a multi-processor chip which 
connects to an external memory bus. 

FIG. 2 is a diagram of a state machine for accessing a 
dynamic random-access memory (DRAM) bank using page 
mode access. 

FIG. 3 is a diagram of a burst counter which is also used 
to indicate how long the current row has been open without 
being accessed. 

FIG. 4 is a diagram of a DRAM controller for separately 
accessing multiple banks of DRAM. 

FIG. 5 is a diagram of the fields for a memory requestin 
the request queue. 

FIG. 6 is a diagram showing that the status of the DRAM 
row is determined while the cache is determining if a cache 
hit or miss has occurred. 

FIG. 7 is a waveform showing a row being opened on one 
bank while a different bank is bursting data. 

FIG. 8 is a timing diagram of SDRAM accesses using 
normal and auto-precharge. 

FIG. 9 highlights a decrease in average latency when 
using request re-ordering. 

DETALED DESCRIPTION 

The present invention relates to an improvement in 
embedded DRAM controllers. The following description is 
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presented to enable one of ordinary skill in the art to make 
and use the invention as provided in the context of a 
particular application and its requirements. Various modifi 
cations to the preferred embodiment will be apparent to 
those with skill in the art, and the general principles defined 
herein may be applied to other embodiments. Therefore, the 
present invention is not intended to be limited to the par 
ticular embodiments shown and described, but is to be 
accorded the widest scope consistent with the principles and 
novel features herein disclosed. 
Multi-Processor Die-FIG. 1 

FIG. 1 is a diagram of a multi-processor chip for con 
necting to an external memory bus. Four CPU cores 42, 44, 
46, 48 each contain one or more execution pipelines for 
fetching, decoding, and executing general-purpose instruc 
tions. Each CPU core has a level-one primary cache. Oper 
and or instruction fetches which miss in the primary cache 
are requested from the larger second-level cache 60 by 
sending a request on internal bus 52. 
CPU cores 42, 44, 46, 48 may communicate with each 

other by writing and reading data in second-level cache 60 
without creating traffic outside of chip 30 on the external 
memory bus. Thus inter-processor communication is some 
times accomplished without external bus requests. However, 
communication to other CPU's on other dies do require 
external cycles on the memory bus. 

Requests from CPU cores 42, 44, 46, 48 which cannot be 
satisfied by second-level cache 60 include external DRAM 
requests and PCI bus requests such as input-output and 
peripheral accesses. PCI requests are transferred from 
second-level cache 60 to PCI interface 58, which arbitrates 
for control of PCI bus 28, using PCI-specific arbitration 
signals. Bus 54 connects second-level cache 60 to PCI 
interface 58 and BIU 56. 
Memory requests which are mapped into the address 

space of the DRAMs rather than the PCI bus are sent from 
second-level cache 60 to bus-interface unit (BIU) 56. BUI 
56 contains a DRAM controller so that DRAM signals such 
as chip-select (CS), RAS, CAS, and the multiplexed row? 
column address are generated directly rather than by an 
external DRAM controller chip connected to a local bus. 
Communication to the other processors is accomplished 
through scaleable-coherent interface SCI57, which transfers 
data to other processing elements (not shown). 
DRAM Access Requirements 
The cost of a DRAM chip is typically reduced by multi 

plexing the row and column addresses to the same inputpins 
on a DRAM package. A row-address strobe (RAS) is 
asserted to latch the multiplexed address as the row address, 
which selects one of the rows in the memory array within the 
DRAM chip. A short period of time later a column-address 
strobe (CAS) is strobed to latch in the column address, 
which is the other half of the full address. Accessing DRAM 
thus requires that the full address be divided into a row 
address and a column address. The row address and the 
column address are strobed into the DRAM chip at different 
times using the same multiplexed-address pins on the 
DRAM chip. 
DRAM manufacturers require that many detailed timing 

specifications be met for the RAS and CAS signals and the 
multiplexed address. At the beginning of an access, the RAS 
signal must remain inactive for a period of time known as 
the row or RAS precharge period. This often requires several 
clock periods of a processor's clock. After RAS precharge 
has occurred, the row address is driven out onto the multi 
plexed address bus and RAS is asserted. Typically the row 
address must be driven one or more clock periods before 
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4 
RAS is asserted to meet the address set-up requirement. 
Then the column address is driven to the multiplexed 
address bus and CAS is asserted. 

For synchronous DRAMs, a burst mode is used where 
CAS is pulsed before the data is read out of the DRAM chip. 
On successive clock periods, a burst of data from successive 
memory locations is read out. CAS is not re-asserted for 
each datum in the burst. The internal row is left asserted 
during this time although the external RAS signal may have 
become inactive. CAS may then be asserted again with a 
different column address when additional bursts of data have 
the same row address but different column addresses. 
Indeed, a row address may be strobed in once followed by 
dozens or hundreds of CAS-only bursts. The internal row is 
left asserted as long as possible, often until the next refresh 
occurs. This is sometimes referred to as page-mode. Since a 
typical multiplexed address has 11 or more address bits, each 
row address or "page” has at least 2' or 2048 unique 
column addresses. 
When the arbitration logic for DRAM access determines 

that the current access is to a row that is not requested by any 
other CPU's, then a row precharge is performed upon 
completion of requests to the row when other requests are 
outstanding to other rows in the bank. This reduces latency 
to these other rows. 
The row address is typically the higher-order address bits 

while the column address is the lowest-order address bits. 
This address partition allows a single row to contain 2K or 
more contiguous bytes which can be sequentially accessed 
without the delay to strobe in a new row address and 
precharge the row. Since many computer programs exhibit 
locality, where memory references tend to be closer rather 
than farther away from the last memory reference, the 
DRAM row acts as a Small cache. 
The DRAM is arranged into multiple banks, with the 

highest-order address bits being used to determine which 
bank is accessed. Sometimes lower-order address bits, espe 
cially address bits between the row and column address bits, 
are used as bank-select bits. See "Page-interleaved memory 
access”, U.S. Pat. No. 5,051,889 by Fung et al., assigned to 
Chips and Technologies, Inc. of San Jose Calif. Each DRAM 
bank acts as a separate row-sized cache, reducing access 
time by avoiding the RAS precharge and strobing delay for 
references which match a row address of an earlier access. 
A synchronous DRAM adds a chip-select (CS) and a 

clock signal to the standard set of DRAM pins. The multi 
plexed address, and the RAS, CAS, and WE control signals 
are latched into the DRAM chip when CS is active on a 
rising edge of the clock. Thus RAS, CAS, and WE are 
ignored when the chip-select signal is inactive. The internal 
row may be activated by having RAS and CS low on arising 
clock edge. The row remains activated when RAS becomes 
inactive as long as CS remains inactive to that DRAM chip. 
Other rows in other DRAM chips may then be activated by 
asserting a separate CS to these other DRAM chips. Nor 
mally the multiplexed address and the RAS, CAS, WE 
control signals are shared among all banks of DRAMs, but 
each bank gets a separate chip-select. Only the bank having 
the active chip-select signal latches the shared RAS, CAS, 
WE signals; the other banks with CS inactive simply ignore 
the RAS, CAS, WE signals. 
Page-Mode DRAM State Machine-FIG. 2 

FIG. 2 is a diagram of a state machine for accessing a 
dynamic random-access memory (DRAM) bank using page 
mode access. A copy of DRAM state machine 10 is provided 
for each bank of DRAM which is to be separately accessed. 
Some DRAM banks may be disabled, indicated by disabled 
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state 91 which cannot be exited without re-configuring the 
memory. Idle state 90 is first entered; the row is not yet 
activated. Row precharge state 92 is then entered; the row is 
still inactive. After a few clock periods have elapsed, the row 
or RAS precharge requirement has been met and RAS is 
asserted. Row active state 96 is then entered. CAS is then 
asserted for reads in state 98 and for writes in state 99. After 
the CAS cycle and any burst is completed, row active state 
96 is re-entered and remains active until another access is 
requested. 

Additional accesses that have the same row address are 
known as row hits, and simply assert CAS using states 98 or 
99. When the row address does not match the row address 
of the last access, then a row miss occurs. Row precharge 
state 92 is entered, and the new row address is strobed in as 
RAS becomes active (falls) when entering state 96. Then the 
column address is strobed in states 98 or 99. 
A timer is used to signal when a refresh is needed, and 

refresh state 93 is entered once any pending access is 
completed. Refresh is typically triggered by asserting CAS 
before the RAS signal, and a counter inside the DRAM chip 
increments for each refresh so that all rows are eventually 
refreshed. 

These states can be encoded into a four-bitfield known as 
the BANK STATE, which can be read by other logic 
elements. Table 1 shows a simple encoding of these states 
into a 4-bit field. - 

TABLE 1. 

DRAM State Encoding 

BANK STATE Nane Reference No. 

0000 Idle, RAS High 90 
0001 Row Precharge 92 
O011 Row Active 96 
01.00 CAS Read 98 
01.01 CAS Write 99 
O11 Refresh 93 
1111 Not Installed 91 

Burst and Row Open Timer-FIG. 3 
FIG. 3 is a diagram of a burst counter which is also used 

to indicate how long the current row has been open without 
being accessed. Row counter 12 is provided for each bank 
of DRAMs which is separately accessible. Counter 20 is a 
4-bit binary upward-counter which increments for each 
rising edge of the increment clock input DNCR. Once the 
maximum count of 1111 (15 decimal) is reached, the counter 
holds the terminal count rather than rolling over to zero. 

Each time a new state is entered in DRAM state machine 
10 of FIG. 2, NEXT STATE is pulsed and counter 20 is 
cleared to 0000. Thus counter 20 counts the time that DRAM 
state machine 10 remains in any state. 
The processor's memory clock CLK is selected by mux 

19 for all states except row active state 96. When any state 
requires multiple clock cycles, counter 20 is used to keep 
count of the number of clock cycles in that state. For 
example, precharge may require 3 clock cycles. Row pre 
charge state 92 clears counter 20 when first entered, and 
remains active until the count from counter 20 reaches two, 
which occurs during the third clock period of CLK. Once the 
count TIME VAL output from counter 20 reaches two, row 
precharge state 92 may be exited and row active state 96 
entered. 
When bursting of data is enabled, counter 20 is also used 

as a burst counter. When read CAS state 98 is entered, 
counter 20 is incremented each clock period as the data is 
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6 
burst until the burst count is reached. Finally read CAS state 
98 is exited once the desired burst count is reached. For a 
burst of four data items, four clock periods are required, 
while a burst of eight data items requires eight clock cycles. 
CAS may be pipelined so that a new column address is 

strobedin while the last data item(s) in the previous burst are 
being read or written. A simple pipeline is used to delay the 
data transferrelative to the state machine. For a CAS latency 
of three cycles, the burst of data actually occurs three clock 
cycles after it is indicated by the burst counter. In that case, 
read CAS state 98 is exited three cycles before the burst 
completes. 

Counter 20 is used in a second way forrow active state 96. 
The second use of counter 20 is to keep track of the idle time 
since the last CAS cycle when RAS is low. Mux 19 selects 
the clock divided by ten, CLK DIV10 during row active 
state 96 ROW ACTIVE. This slower clock increments 
counter 20 at a slower rate. The slower rate is needed 
because row active state 96 may be operative for many 
cycles. In a sense, the DRAM bankis idle, butRAS has been 
left on for much of the time that row active state 96 is 
operative. Counter 20 can only count up to 15, so a fast clock 
would quickly reach the maximum count. 

Counter 20 is slowly incremented by the divided-down 
clock CLK DIV10. A programmable parameter ROW 
IDLES is programmed into a system configuration register 
and may be adjusted by the system designer for optimum 
performance. Comparator 18 signals ROW OLD when the 
count from counter 20 exceeds ROW IDLES, indicating 
that the row active state 96 has been active for longer than 
ROW IDLES periods of CLK DIV10. 
ROW Open Counter Indicates Stale Rows 
ROW OLD is thus signaled when row active state 96 has 

been active for a relatively long period of time. No data 
transfers from this bank have occurred in that time, since 
another state such as read CAS state 98 would have been 
entered, clearing counter 20. ROW OLD is an indication of 
how stale the open row is. Such information is useful when 
determining whether another reference is likely to occur to 
that open row. Once a long period of time has elapsed 
without any accesses to that row, it is not likely that future 
accesses will occur to this row. Rather, another row is likely 
to be accessed. 

Another row is more likely to be accessed when ROW 
OLD is active than when a shorter period of time has elapsed 
since the last access and ROW OLD is not asserted. The 
priority of requests may be altered to lower the priority to a 
stale bank. Scheduling logic in the DRAM controller may 
examine ROW OLD to determine when it is useful to close 
a row and begin RAS precharge for another access, even 
before another access is requested. This is known as a 
speculative precharge, when the stale row is closed, and the 
bankis pre-charged before an actual demand request arrives. 
Multi-bank DRAM Controller-FIG. 4 

FIG. 4 is a diagram of DRAM controller 56 for separately 
accessing multiple banks of DRAM. Four DRAM banks 16 
are shown, although typically 8 or 16 banks may be sup 
ported by a simple extension of the logic shown. Each bank 
has its own DRAM state machine 10, as detailed in FIG. 2, 
and burst and row counter 12. Each bank also has its own 
row-address register 14 which contains a copy of the row 
address bits strobed into the DRAMs during the last row 
open when RAS was asserted. 
Bus 54 transmits memory requests from any of the four 

CPU cores 42, 44, 46, 48 which missed in second-level 
cache 60 of FIG. 1 or PCI interface 58 or SCI 57. These 
requests are loaded into request queue 26 which are priori 
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tized by request prioritizer 22 before being processed by 
request processor 24 which activates one of the DRAM state 
machines 10 for accessing one of the DRAM banks 16. 

Refresh timer 28 is a free-running counter/timer which 
signals when a refresh is required, typically once every 0.1 
msec. The different banks are refreshed in a staggered 
fashion to reduce the power surge when the DRAM is 
refreshed. Four refresh request signals REF0:3 are sent to 
request prioritizer 22 which begins the refresh as soon as any 
active requests which have already started have finished. 
Thus refresh is given the highest priority by request priori 
tizer 22. 
As each new request is being loaded into request queue 

26, the bank address is decoded and the row address is sent 
to row-address register 14 of the decoded bank to determine 
if the new request is to the same row-address as the last 
access of that bank. The DRAM state machine 10 of that 
bank is also consulted to determine if a requested row is 
active or inactive. The row counter is also checked to see if 
ROW OLD has been asserted yet, indicating a stale row. 
The results of the early query of the bank, the row-match 

indicator ROW HIT, the DRAM state machine's current 
state of the row, ROW ACTIVE, and RAS LOW from the 
row counter, are sent to request queue 26 and stored with the 
request. 
Request Queue Stores Row Hit, Count Status-FIG. 5 

FIG. 5 is a diagram of the fields for a memory request in 
the request queue. Enable bit 31 is set when a new request 
is loaded into request queue 26, but cleared when a request 
has been processed by a DRAM state machine which 
accesses the external memory. The full address of the 
request, including the bank, row, column, and byte address 
is stored in address field 32. An alternative is to store just the 
decoded bank number rather than the bank address. Status 
bits such as read or write indications are stored in field 34. 
An identifier for the source of the request is stored in source 
field 36. 

Otherfields are loaded after the bank's state machine, row 
counter, and row address are consulted. If the new row 
address of the request being loaded into request queue 26 
matches the row address of the last access, which is stored 
in row-address register 14, then ROW HIT bit 38 is set; 
otherwise it is cleared to indicate that the old row must be 
closed and a new row address strobed in. 
The DRAM state machine 10 of the decoded bank is 

consulted to determine if the row is active (open) or inactive 
(closed). RAS is effectively "low" and the row active for 
states 96, 98, 99. When RAS is “low”, bit ROW ACTIVE 
39 is set. The row counter 12 is also consulted for the 
decoded bank, and ROW OLD is copied to ROW OLD 
bit 35 in request queue 26. 
Row Status Looked-Up During Cache Access-FIG. 6 

FIG. 6 is a diagram showing that the status of the DRAM 
row is obtained while the cache is determining if a cache hit 
or miss has occurred. Requests from CPU cores 42, 44, 46, 
48, and requests from SCI57, and PCI interface 58 are sent 
to second-level cache 60 to determine if the data requested 
is present in the on-chip cache. At the same time as the cache 
lookup, before the cache hit or miss has been determined, the 
request's address is decoded by bank decoder 62 to deter 
mine which DRAM bank contains the data. The decoded 
bank's state machine 10 and row-address register 14 are then 
selected. Row address comparator 64 signals ROW HIT if 
the new row address of the request matches the row address 
of the last access, stored in register 14, ROW ACTIVE is 
signaled by DRAM state machine 10 if the current state has 
the RAS signal active (low). 
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Row counter 12 of the decoded bank is also consulted to 

determine if the row has been open for a long period of time 
without a recent access. ROW OLD is signaled for such as 
stale row. These row status signals, ROW HTT, ROW 
ACTIVE, and ROW OLD, are loaded into request queue 
26, possibly before cache 60 has determined if a hit or a miss 
has occurred. Should a cache hit occur, the row status 
information is simply discarded since cache 60 can supply 
the data without a DRAM access. 
The bank status information in request queue 26 is 

updated when the status of a bank changes. Alternately, the 
bank's status may be read during each prioritization cycle, 
or as each request is processed. 

Request prioritizer 22 then examines the pending requests 
in request queue 26 to determine which request should be 
processed next by request processor 24. Request prioritizer 
22 often processes requests in a different order than the 
requests are received in order to maximize memory perfor 
aCC. 

In the preferred embodiment, request prioritizer 22 
attempts to group requests to the same row together. 
Requests to the row with the most requests are processed 
before requests to other rows with fewer requests. 
Prioritizer Re-Orders Requests 

Request prioritizer 22 re-orders the requests to maximize 
memory bandwidth. Bandwidth can be increased by reduc 
ing the number of row misses: requests to a row other than 
the open row. The prioritizer searches pending requests in 
request queue 26 and groups the requests together by bank 
and row. Any requests to a row that is already open are 
processed first. These requests to open rows are rapidly filled 
since the RAS precharge and opening delays are avoided. 
Row hits are requests to rows which are already open. 

Row-hit requests are re-ordered and processed before other 
row-miss requests. The row-miss request may be an older 
request which normally is processed before the younger 
row-hit request. However, the older row-miss request 
requires closing the row that is already open. If this row were 
closed, then the row-hit request would require spending 
additional delay to precharge RAS and open the row again. 

Once all of the row-hitrequests have been processed, only 
row-miss requests remain. Any requests to banks with RAS 
inactive (ROW ACTIVE=0) are processed first, since no 
row is open. Then row-miss requests to banks with open 
rows are processed. The row counter is used to determine 
priority of these requests: any row-miss requests that have 
ROW OLD active are processed before requests with 
ROW OLD inactive, so that stale rows are closed before 
more-recently accessed rows are closed. The lowest priority 
requestis a row-miss to a bank with a recently-accessed row 
open. Recently-accessed banks are likely to be accessed 
again, and thus a delay in closing the bank may allow a new 
request to that open row to be received and processed before 
closing the row to process the row-miss request. 
The pending requests are processed in this order: 
DRAM Refresh Request 
Row-Hit Request 
Row-Miss Request to Bank with Row Closed 
Row-Miss Request to Bank with Row Open, ROW 
OLD-1 

Row-Miss Request to Bank with Row Open, ROW 
OLD-0 

Thus a recently-accessed bank with ROW OLD=0 is left 
open as long as possible because any row-miss request to 
this bank is given the lowest priority. When multiple 
requests have the same priority, then requests in a group 
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having a larger number of individual requests to a row are 
processed before smaller groups of requests. 
When multiple requests are pending to the current row, 

then these requests are processed before other requests to 
other rows. Efficient CAS-only cycles are used. When there 
is only one request to the current row, then an auto-precharge 
CAS cycle is performed to precharge the row as soon as 
possible. Auto-precharge is a special type of CAS cycle 
whereby a row precharge is requested immediately after the 
data has been internally read from the RAM array, even 
before the data has been bursted out of the DRAM chip. 
Auto-precharge is supported by some synchronous 
DRAM's, allowing row precharge to begin before the data 
has been completely transferred out of the DRAM chip. 
When determining which bank to access next when 

multiple requests are to different banks, the row having the 
most pending requests is selected first. This way more 
requests are satisfied in a shorter time, since more CAS-only 
cycles may be used. It also allows more time for requests to 
other rows to accumulate, increasing the number of data 
bursts using CAS-only cycles. 
When only one request is pending to the current row, and 

no other requests are pending, then the row is left active. 
After a certain, predetermined number of clock cycles when 
the row is idle, the row is precharged. Precharging the row 
causes accesses to the old current row to take an additional 
3 cycles since the old row is closed, but accesses to other 
rows to take 3 fewer cycles than when the current row is left 
open. The longer that a bank is idle, the less likely it is to 
receive a new request to the current row. 
Separate Address and Data Busses to DRAMAllows Early 
Row Open 
A single data bus is used to connect the DRAM controller 

to all of the DRAM's data I/O pins. All banks of DRAM 
share the same data bus. Thus when one bank of DRAM is 
bursting data, all other banks must wait to read or write data. 
A single multiplexed address bus is also shared among all 

banks of DRAM. However, each bank has a separate CS 
signal, allowing a row to be open on some banks but not on 
other banks since RAS is only latched when CS to a bankis 
active. RAS, CAS and write-enable (WE) signals are nor 
mally shared but sometimes separate signals are provided 
for different banks or bytes of data. 

Since the address and data buses are separate, it is 
possible to strobe in a row or column address to one bank 
while a different bankis bursting data. FIG. 7 is a waveform 
showing a row being opened on one bank while a different 
bank is bursting data. The prioritizer first selects a row-hit 
burst of data to bank 0 followed by a second row-hitto bank 
0. The multiplexed address (MA) bus is first driven with the 
first column address C0, which is strobed in to bank 0 by 
rising edge 100 of CLK when CAS and CS0 are low. Data 
from this column address and the following three addresses 
are burst out to the data bus on successive clock cycles. 

Before all four data items are burst out of the DRAM onto 
the data bus, the next row-hit access begins by driving the 
second column address C0' onto the multiplexed address 
bus. This second column address C0' is strobed into the 
DRAM chips in bank 0 on rising edge 102 of CLK, when 
CAS and CSO are low. These same DRAM chips are 
bursting out data for the previous column address C0. 
Pipelining within the DRAM chips allows data to be bursted 
out while a new address is being strobed in. 
When the burst length is programmed to larger values, 

such as a burst of four or eight, more time is required from 
the data bus than from the address bus for row-hits. Thus 
spare bandwidth is available on the address bus. 
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10 
FIG. 7 shows that some of this spare bandwidth on the 

address bus can be used to strobe in a new row address to a 
different bank. At clock edge 106, the RAS to bank 3 is 
pulled high when CS3 is low, closing the row on bank 3. 
Perhaps a refresh has occurred for bank 3, or a request for 
bank 3 has begun to precharge RAS before bandwidth is 
available on the data bus. While data is being bursted out of 
bank 0 for column address C0, RAS and CS3 are asserted for 
bank3. Rising edge 104 of CLK when RAS and CS3 are low 
causes a new row address R3 to be latched into bank 3. Since 
the data bus is busy, bank 3 cannot yet burst out data. 
However, by strobing the row address into bank3 during the 
idle time of the multiplexed address bus, the latency to get 
the data from bank 3 is reduced to a simple CAS burst. The 
CAS burst can occur at a later time when the data bus is not 
busy. 
The spare bandwidth on the multiplexed address bus is 

well-distributed. Each CAS-only burst cycle requires 4 
cycles of the data bus to burst the data, but only 1 cycle of 
the address bus to strobe in the column address. Row-miss 
cycles require at least 2 cycles of the address bus, so less 
bandwidth is available when many row-miss cycles occur 
with few row-hit cycles. Typically at least 40% of all 
requests are row-hits while 60% or less are row misses. 
Speculative Row Open Before Cache Hit is Signaled 

Since spare bandwidth is available on the multiplexed 
address bus, speculative operations that use only the address 
bus do not reduce the overall databandwidth. A new row can 
be opened as a speculative operation before it has been 
determined if the data is available in the cache. Since the 
memory controller begins to look up the bank's status in 
parallel to the cache access, it may be known that the row is 
inactive before the cache has completed the lookup. There is 
little harm in opening the row early when the row is closed. 
Even if the cache hits, future requests may be made to this 
same DRAM row, and thus a future request's latency may be 
reduced. However, future requests to other rows may expe 
rience a higher latency. 

Should the cache miss, then the data can be retrieved from 
the DRAM bank with less latency since the row was opened 
during the cache look-up. Thus a speculative row open of a 
bank with the row inactive is desirable. The amount of time 
before an idle row is closed may be decreased for specula 
tive requests relative to demand requests. 
When a row is active, it is usually not prudent to switch 

to the new row for a speculative operation. However, once 
the cache determines that a cachemiss has occurred, then the 
speculative operation becomes a demand operation and is 
processed as described before. An speculative/demand bit is 
added to each entry in request queue 26 to indicate if the 
request is speculative, before cache look-up, or demand, 
after cache look-up. New requests are then loaded into 
request queue 26 as a speculative request in parallel to the 
cache look-up. After cache look-up the speculative request 
is changed to a demand request by inverting the speculative? 
demand bit when a cache miss occurs, but is deleted on a 
cache hit. Speculative requests do not pulse CAS or burst 
data since this would permanently alter the data for a write. 

Another useful speculative cycle is to close a row that has 
not been recently accessed and open a new row. The row 
counter signals ROW OLD when a row is opened but has 
not been accessed for a programmable period of time. Thus 
ROW OLD can be used to determine if a speculative 
request should open a new row. When ROW OLD is high, 
a new row is opened and the old row is closed. When 
ROW OLD is low, the old row has been recently used and 
the new row is not opened for the speculative request. 
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Instead any speculative requests with ROW OLD low are 
deleted or not acted upon until the cache look-up completes. 
Thus the row counter is used to determine if a speculative 

request should open a new row. All speculative requests 
have a lower priority than other demand requests, but since 
the speculative requests neveruse the data bus (until they are 
converted to demand requests), the speculative request may 
be processed ahead of other requests waiting for the data 
bus. 
A comparator may be used to compare the bank of the 

speculative address to other requests in the request queue. If 
any other demand request has the same bank address, then 
the speculative requestis deleted to avoid interference with 
the demand request. 

FIG. 8 is a timing diagram of SDRAM accesses using 
normal and auto-precharge. The symbols in FIG. 8 are: 
P start of a row precharge 
RAssert RAS and strobe in Row address 
C Assert CAS and strobe in column address 
A Assert CAS, strobe in column address, and request 

auto-precharge 
0 First data of burst on data bus 
1 Second data of burst on data bus 
2 Third data of burst on data bus 
3 Fourth data of burst on data bus 
- Idle cycle on address bus 
In case (A), new requests are received too late to perform 

an auto-precharge. The nextrequestis received after cycle 6, 
when CAS is asserted and the auto-precharge must be 
requested. The earliest a precharge can be started is in cycle 
11, during the data burst. Three clock cycles are needed to 
precharge the next row before RAS is asserted. 

In case (B), the new request is received before cycle 6 
when CAS is asserted. The new request is to a different row 
in the bank, so a row precharge is necessary. An auto 
precharge is requested when CAS is asserted for the first 
cycle so that the row precharge begins immediately after the 
data is internally read, before all the data is burst out of the 
DRAM chip. RAS for the new request may be asserted in 
cycle 11. Auto-precharge saves three cycles relative to case 
(A) with normal precharge. 
Case (C) shows multiple requests to the same row. CAS 

only cycles are performed once the row is opened by the first 
access. CAS-only cycles are performed every 4 cycles while 
auto-precharge cycles require 8 cycles, saving 4 cycles. 
Normal precharge cycles, as shown in case (A) require 11 
cycles each. 
Case (D) shows is an isolated request with no request 

immediately following. The row is left open for a period of 
time determined by the row-open counter. Once the prede 
termined delay has elapsed, the row is closed by performing 
a precharge cycle "P". A following request then does not 
have to wait the three cycles for the precharge. 
Round-Robin To Prevent Lock-Out 
When multiple sources each send multiple requests, it is 

possible that just one or a few of the sources could hog the 
DRAM, since the highest priority is given to row-hits. 
Sequential, consecutive accesses from one CPU core are row 
hits, while other CPU cores may be lower-priority row 
misses. Thus the CPU core with row hits would always be 
granted priority. The other CPU cores are locked-out, having 
lower priority. 

This lock-out problemissolved by implementing around 
robin scheme to prevent one source from always having 
highest priority. Each source is allowed two accesses to a 
bank before any other sources are allowed to win priority. 
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12 
Once a source has won priority twice and other sources have 
pending requests, then the winning source is given a lower 
priority. This scheme allows all sources to access the DRAM 
memory so all CPU cores can make forward progress in 
executing their programs. 

Allowing two consecutive wins provides improved per 
formance over a more fair scheme that allows each source 
only one win. Since each request bursts four or eight data 
items, two wins provides a large amount of data. The second 
request from the same source often is to the same row, so a 
more efficient row-hit cycle is executed when two consecu 
tive wins are allowed. 
The round-robin scheme preferably selects sources hav 

ing the same bank and row before passing priority to a 
source with a different row. This modification to a simple 
round-robin scheme improves efficiency because different 
sources requesting the same row are processed before other 
sources. Processing together both sources requesting the 
same row results in more row-hit cycles occurring, improv 
ing performance. 
Memory Ordering 

While requests from different sources or CPU cores can 
be re-ordered, requests from the same source often must be 
processed in exactly the same order received. 

Strong memory ordering requires that fetches and stores 
be processed in the exact order received from any one CPU 
core. However, requests from different sources may be 
freely mixed or re-ordered. Re-ordering requests from dif 
ferent CPU cores provides a great deal of potential for 
improving performance. 
A relaxed memory ordering allows fetches to be 

re-ordered with respect to stores, but stores must be pro 
cessed in the exact order requested from any one CPU core. 
Relaxed memory ordering provides even more opportunity 
for performance improvement by combining requests to the 
Sac OW. 

Weak memory ordering allows fetches and stores to be 
freely re-ordered. Stores may be re-ordered with respect to 
one another too. Some form of memory synchronization 
instruction is needed for weak memory ordering. SCI 
requests to other processor elements are always strongly 
ordered. 

ADVANTAGES OF THE INVENTION 

Requests from multiple processors are re-ordered to maxi 
mize DRAM row hits and minimize row misses. Increasing 
the number of row hits relative to row misses increases 
performance since row hits are processed in fewer clock 
cycles than row misses. 
The request queue provides a convenient mechanism for 

storing row-status information such as the state of the row 
and whether the request is a row hit or a row miss. The burst 
counter is not used during idle times and thus is available for 
a timer indicating the time since the last access to that bank 
when the row is active. Thus the burst counter serves a 
second purpose of determining when a row becomes stale. 
Information on which rows are less-recently accessed is 
useful for deciding when to replace the open row. 

Spare address bus bandwidth is used for speculative 
row-opening before the internal cache status is known. FIG. 
9 highlights a decrease in average latency when using 
request re-ordering. The average latency to satisfy a request, 
in clock cycles, is plotted for a 150 MHz memory bus as a 
function of the miss rate for each CPU core. As the miss rate 
per CPU increases, additional accesses to the external 
DRAM are needed, and the bus utilization increases. Mul 
tiple requests from the multiple CPU cores cause some 
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requests to wait until another request is processed. Thus 
average latency increases as the bus traffic increases. Simple 
re-ordering using a four-deep re-order buffer results in curve 
120. Re-ordering by grouping requests to the same row, and 
produces curve 122. The improved re-ordering of curve 122 
results in reduced average latency for any given miss rate. 
For example, at a 5% miss rate per CPU for a die with four 
CPU cores, average latency is reduced from 40 cycles to 23 
cycles. Thus row-based re-ordering improves average 
latency. 
The data for FIG. 9 was generate by assuming 40% of 

requests are row hits, 50% are row misses to the same bank, 
and 10% are misses to another bank. Row-hits are re-ordered 
and processed before row misses. 

ALTERNATE, EMBODMENTS 
Several other embodiments are contemplated by the 

inventors. For example the DRAM chips can be of many 
different depths and widths, and provide various features. 
These DRAMs are typically arranged on SIMM modules, 
and each SIMM module can contain two or more banks. The 
external memory is preferably 64-bits in width, which can be 
constructed from these SIMMs in a conventional manner. 
Other data-bus widths, such as 128 bit or 32 bit, are also 
possible. 

Additional buses, such as an AT or ISA bus may be 
attached to the PCIbus. Other internal buses may be added 
within the multi-processor IC, and the internal arrangement 
of busses, caches, and CPU cores may vary from the typical 
embodiment described herein. The number of CPU cores on 
a multi-processor IC may also vary. While the invention has 
been described in reference to re-ordering of requests to a 
DRAM memory, requests to other external devices may also 
be re-ordered. 
While the processor clockhas been described as the clock 

for the DRAM controller, high-speed processors often use a 
faster clockfor the processor core than for the memory. Thus 
a slower or divided-down clock is often used as a memory 
clock for DRAM access. 
The row-hit, row-active, and row-old bits in the request 

queue may be combined together or encoded in many ways. 
These bits may also be combined with other fields or bits. 
The bits can be inverted as stored so that either a one or a 
Zero indicates that the active state is set while the opposite 
value indicates that the bit is reset or cleared. The row-active 
indication may be encoded with the state of the state 
machine such that no single bit indicates RAS low. 
A second address bus may be used for accessing half of 

the DRAM banks. The second address bus allows for two 
simultaneous row-open commands to be processed at the 
same time, although the system is still limited by one data 
bus and can only process one CAS command at a time. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 
We claim: 
1. A memory controller for accessing an external memory 

in response to requests from a plurality of general-purpose 
processors, the memory controller comprising: 

a plurality of bank controllers, each bank controller for 
accessing a bank of the external memory, each bank 
controller comprising: 
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14 
a state machine for sequencing control signals for 

timing access of the external memory, the state 
machine outputting a row-active indication of a RAS 
signal line coupled to the bank of the external 
memory when the last access to the bank occurred; 

a row address register for storing a last row address of 
a last-accessed row of the bank of the external 
memory; 

a counter, including reset means for resetting the 
counter upon completion of a data-transfer access to 
the bank of the external memory, the counter peri 
odically incrementing when the row is active and no 
data-transfer access occurs, the counter outputting a 
stale-row indication when a count from the counter 
exceeds a predetermined count; 

a request queue for storing requests from the plurality of 
general-purpose processors for accessing the external 
memory, the request queue storing row-status bits 
including: 
a) a row-hit indication when the last row address 

matches a row address of a request, 
b) the row-active indication from the state machine, 

and 
c) the stale-row indication from the counter; and 

a request prioritizer, coupled to the request queue, for 
determining a next request from the request queue for 
generating a data-transfer access to the external 
memory, the request prioritizer re-ordering the requests 
into an order other than the order the requests are 
loaded into the request queue, 

whereby requests from the plurality of processors are 
re-ordered for accessing the external memory. 

2. The memory controller of claim 1 wherein the counter 
is incremented by a slow clock having a frequency divided 
down from a memory clock for incrementing the state 
machine when the row is active and no data-transfer access 
occurs, the counter being incremented by the memory clock 
during the data-transfer access, whereby the counter incre 
ments more slowly when no data-transfer occurs than when 
a data-transfer access is occurring. 

3. The memory controller of claim 2 wherein the prede 
termined count for determining the stale row indication is 
programmable. 

4. The memory controller of claim 2 wherein the request 
prioritizer includes means for re-ordering requests having 
the staie-row indication before requests not having the 
stale-row indication when no requests have the row-hit 
indication, whereby miss requests to stale rows are pro 
cessed before miss requests to more-recently-accessed rows. 

5. A multi-processor integrated circuit (IC) comprising: 
a first CPU core for processing general-purpose instruc 

tions; 
a second CPU core for processing general-purpose 

instructions; 
a shared cache for supplying data and instructions to the 

first CPU core and to the second CPU core; 
a DRAM controller, coupled to the shared cache, for 

processing miss requests from the shared cache which 
originated from the first CPU core and from the second 

CPU core; 
the DRAM controller including: 

last row-address means for storing a plurality of last 
row addresses indicating row-addresses for a recent 
access of a DRAM bank; 

row-address compare means, coupled to the last row 
address means, for signaling a row-hit when a match 
is detected; 
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sequencing means for generating RAS, CAS, and 
address signals to DRAM banks; 

request prioritizer means, coupled to the row-address 
compare means, for determining an order of process 
ing for requests from the first CPU core and the 
second CPU core, the request prioritizer means 
including means for processing a second request 
from the second CPU core before a first request from 
the first CPU core when the row-hit is signaled for 
the second request but not for the first request; 

a plurality or row timers, coupled to the request pri 
oritizer means, for indicating a number of clock 
periods since a last access to a DRAM bank, the row 
timers including means for resetting when an access 
occurs to the DRAM bank, wherein row timers 
having a lower count indicate a more-recently 
accessed DRAM bank than row timers with a higher 
count, 

whereby row-hit requests are processed before row-miss 
requests from different CPU cores. 

6. The multi-processor IC of claim 5 wherein the DRAM 
controller further comprises: 

round-robin means, coupled to the request prioritizer 
means, for allowing a limited number of requests from 
the second CPU core to be processed when requests 
from the first CPU core are pending. 

7. The multi-processor IC of claim 6 wherein the limited 
number of requests is two. 

8. The multi-processor IC of claim 7 wherein the requests 
are burst requests comprising a number of clock cycles, with 
different data being transferred on a data bus between the 
DRAM bank and the multi-processor IC for successive 
clock cycles when processing a burst request. 

9. The multi-processor IC of claim 5 wherein the request 
prioritizer means includes means for processing a request to 
a more-recently-accessed DRAM bank before a request to a 
stale DRAM bank. 

10. A method of queuing requests from multiple proces 
sors to a shared memory, the method comprising the steps 
of: 

receiving a request from a processor, the request having a 
request-address; 

loading the request-address into a request queue; 
decoding at least a portion of the request-address to 

determine a decoded bank of the shared memory con 
taining data at the request-address; 

comparing arow-address portion of the request-address to 
a stored row address for the decoded bank, the stored 
row address being a last row address strobed into the 
decoded bank for selecting a row from among a plu 
rality of rows of memory cells in the decoded bank; 

signaling a row match when the row-address portion of 
the request-address matches the stored row address; 

setting a row-match bit for the request in the request 
queue when the row match is signaled; 

determining when a period of time since a last access 
occurred to the decoded bank exceeds a predetermined 
period of time and signaling a stale row when the 
period of time since the last access exceeds the prede 
termined period of time; 

setting a stale row bit for the request in the request queue 
when the stale row is signaled; 

prioritizing requests in the request queue from different 
processors wherein priority is a function of the stale 
row bit and row-match bit for each request in the 
request queue, 
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11. The method of claim 10 further comprising: 
determining when a row in the decoded bank is in an 

inactive state; 
ignoring the row-match bit when determining priority for 

the request when the row is in the inactive state. 
12. The method of claim 10 further comprising: 
periodically incrementing a counter to periodically incre 

ment the period of time since the last access to the 
decoded bank; 

resetting the counter when an access to the decoded bank 
OccurS; 

reading the counter to determine the period of time since 
the last access to the decoded bank, 

whereby the counter indicates the period of time since the 
last access to the decoded bank. 

13. The method of claim 10 further comprising: 
marking a request loaded into the request queue as 

speculative when a shared cache has not yet determined 
that the data at the request-address is present in the 
shared cache; 

marking the request loaded into the request queue as 
demand when the shared cache determines that the data 
at the request-address is not present in the shared cache; 

canceling the request loaded into the request queue when 
the shared cache determines that the data at the request 
address is present in the shared cache, 

whereby the request queue is loaded before the shared cache 
is accessed. 

14. The method of claim 13 wherein requests marked as 
speculative are assigned a lower priority than requests 
marked as demand. 

15. The method of claim 14 further comprising: 
pulsing a CAS signal to the decoded bank and strobing in 

a column-address portion of the request-address when 
the request is processed when the request is marked as 
demand; 

not pulsing CAS for any request marked as speculative, 
but pulsing RAS and strobing in a new row address for 
requests marked as speculative, 

whereby speculative requests strobe in a new row address 
but do not strobe in a new column address. 

16. The method of claim 15 further comprising: 
processing requests having the row-match bits set with a 

first row-address in a decoded bank before processing 
requests to other row-addresses in the decoded bank 
with the row-match bits cleared, 

whereby row-matches are processed before row-misses. 
17. The method of claim 10 further comprising: 
processing requests having the row-match bit indicating a 
row miss by processing requests with the stale-row bit 
set before requests with the stale-row bit not set, 

whereby stale rows are replaced before rows which have 
been recently accessed. 

18. The method of claim 17 further comprising: 
preventing a processor from winning priority and being 

processed for more than two access transactions when 
other processors have requests in the request queue, 

whereby other processors are given priority after two 
accesses by a winning processor. 

19. The method of claim 18 wherein the access transac 
tions each comprise a CAS 

pulse wherein a column address is strobed into the shared 
memory and a data burst of multiple cycles with 
sequential data being transferred to a data bus on 
successive clock cycles, 

whereby access transactions are burst transactions. 


