
United States Patent (19)
Vigil et al.

54)

(75)

73

21

22

63
51
52
58)

(56)

SELF-TESTING MULT-PROCESSOR OE
WITH INTERNAL COMPARE POINTS

Inventors: Peter J. Vigil, San Jose; Louis S.
Lederer, Sunnyvale; James S.
Blomgren, San Jose, all of Calif.

Assignee: Exponential Technology, Inc., San
Jose, Calif.

Appl. No.: 649,117
Filed: May 14, 1996

Related U.S. Application Data

Continuation-in-part of Ser. No. 564,721, Nov. 29, 1995.
Int. Cl. ... G06F 11/26
U.S. Cl. 395/183.06
Field of Search 364/488, 490,

364/228.3: 395/183.06, 182.09: 326/9, 10;
371/22.31, 22.34 49.1

References Cited

U.S. PATENT DOCUMENTS

4,191.996 3/1980 Chesley 364/200
4,233,682 11/1980 Liebergot et al. 37/68
4,412,282 10/1983 Holden 364/200
4,633,039 12/1986 Holden 379/32
4,658,354 4/1987 Nukiyama. ... 364/200
4,785,395 11/1988 Keeley 364/200
4,907,228 3/1990 Bruckert et al. ... 37/68.3
5,164,943 11/1992 Waggoner 371/3
5,168,499 12/1992 Peterson et al. 371/11.3
5,193,175 3/1993 Cutts, Jr. et al. 395/575
5202,978 4/1993 Nozuyama 395/575
5,222,068 6/1993 Burchard 37/22.3
5,226,149 7/1993 Yoshida et al. 395/575
5.249,188 9/1993 McDonald 371/68.3
5,253,255 10/1993 Carbine 371/22.6
5,416,783 5/1995 Broseghini et al. 371122.3

SELF-TESTMODE

SELF.TEST RESULT

SELF-TES
CONTROLLER

III
US005732209A

11 Patent Number: 5,732,209
45) Date of Patent: Mar. 24, 1998

5,435,001 7/1995 Rahman et al. 395/575
5,440,724 8/1995 Boothroyd et al. 37/22.5
5,479,647 12/1995 Harness et al. 395/550
5,617,531 4/1997 Crouch et al. 395/183.06
5,640,508 6/1997 Fujiwara et al.................... 395/183.06

OTHER PUBLICATIONS

"Logic Design Principles with Emphasis on Testable Semic
ustom Circuits". E. McCluskey, 1986, pp. 433-480.
Primary Examiner-Hoa T. Nguyen
Assistant Examiner-Stephen C. Elmore
Attorney, Agent, or Firm-Stuart T. Auvinen
(57) ABSTRACT

A microprocessor die contains several CPU cores that are
substantially identical. A large second-level cache on the die
is shared among the multiple CPU's. When 3 CPU's are on
the die, their outputs are compared during a self-testing
mode. If outputs from all three CPU's match, then no error
is detected. When two CPU's outputs match, but a third
CPU's output mismatches, then the third CPU is faulty. The
output compared from each CPU is a serial scan-chain
shift-out, parity from internal test points, and a result written
to the shared cache. Each CPU core has a serial scan chain.
The serial scan chain strings together most flip-flops in the
CPU core into a serial chain. A test clock is pulsed to shift
out the data from these flip-flops. During each test clock
period, the serial data from each CPU is compared to the
serial data from other CPU's. Internal test points within each
CPU core are defined at high traffic areas in the pipeline.
Parity is generated from these internal test points, and the
parity from one CPU is compared to that for other CPU's
during each CPU clock cycle. The results from each CPU
core written back to the shared cache are also compared, and
arbitration allows one CPU to write the result to the shared
cache while results from other CPU's are discarded. A
self-test circuit on the die accumulates errors for each CPU
and reports these errors to an inexpensive external tester.

19 Claims, 8 Drawing Sheets

50

U.S. Patent Mar. 24, 1998 Sheet 1 of 8 5,732,209

35

SHARED
CACHE

FIG. 1

U.S. Patent

37

Mar. 24, 1998 Sheet 2 of 8

24 RESET INTO
TEST MODE

TEST RAM
ARRAYS 26

TEST
REGISTERS 28

TEST
DATAPATHS

32

TEST
FUNCTIONAL

UNITS
34

36

PLACE SIGNATURE ON CHP I/O PNS

5,732,209

FIG. 2

U.S. Patent Mar. 24, 1998 Sheet 3 of 8 5,732,209

12
SCLK :

CPUCLK

P
s

B

p

P

p

SIGNATURE

FIG. 3
18

U.S. Patent Mar. 24, 1998 Sheet 4 of 8 5,732,209

CPU1-SO

U.S. Patent Mar. 24, 1998 Sheet 5 of 8 5,732,209

" lacace L2 CACHE
12

96

88

DATA
-- 70 OP-FETCH IT CACHE

58 72

FP-REGS Ell 86

76 WR-BACK

95

GPR

FLAGS
STATE

F G. 5

70

U.S. Patent Mar. 24, 1998 Sheet 6 of 8 5,732,209

BUFFERED
TEST-POINTS

70 82 82 yV-WyV-Wyv

BUS
UNDER
TEST

8-BIT
INTERNAL

92 TEST
VECTOR

BUFFERED
TEST-POINTS 92

71

92

FIG.7

U.S. Patent Mar. 24, 1998 Sheet 7 of 8 5,732,209

L2 CACHE FIG. 8 12

SELF-TEST MODE
SELF-TEST
CONTROLLER

SELF-TEST RESULT
50

U.S. Patent Mar. 24, 1998 Sheet 8 of 8 5,732,209

100

TEST L2S

LOAD TEST PROGRAM FROM
ROM TO L2S FIG. 9

104 D

106 SET MUX 81 TO TEST MODE

108 SMULTANEOUSLY RESET ALL
CPU CORES

118

PULSE TEST SCAN CLOCK

RE-LOAD SCAN CHAINS 12O
WITH SHIFT-OUT

SELF-TEST CTLR
coMPARES SHIFT-out of 22

PU CORES
PULSE CPUCLOCK ALL CPU CO

SET ERROR BT OF
TRANSMIT PARTY OF INTERNAL TEST MSMATCHING CPU CORE F 124

POINTS TO SELF-TEST CTLR MISMATCH OCCURS

SELF-TEST CTLR COMPARES TEST
POINTS FROMALL CPU CORES

SET ERROR BT OF MISMATCHING CPU
CORE IF MISMATCH OCCURS

PULSE CPU
CLOCKAGAIN

SCAN CHAIN
SHIFTED OUT

YES

YES

5,732.209
1

SELF-TESTING MULT-PROCESSOR DE
WITH INTERNAL COMPARE POINTS

RELATED APPLICATIONS

This application is a continuation-in-part (CDP) of "Micro
processor with a Large Cache Shared by Redundant CPU's
for Increasing Manufacturing Yield". U.S. Ser. No. 08/564,
721, filed Nov. 29, 1995, having a common inventor and
assigned to the same assignee.

FIELD OF THE INVENTION

This invention relates to testing of complex integrated
circuits (IC's), and more particularly for methods to test
microprocessors having multiple CPU cores.

DESCRIPTION OF THE RELATED ART

As integrated circuits (IC's) have become more complex.
the cost to test the IC has increased dramatically. Micropro
cessors in particular have extremely high test costs. For
example, a microprocessor die on a silicon wafer may cost
$100 to manufacture. Good die are sorted out from bad die
by an initial test of each die on the wafer, known as a
wafer-sort test. The wafer is then sawed into individual die
and the good die are packaged. The packaged die are then
tested once again and undergo a temperature-stress test
known as burn-in. After burn-in the packaged die are tested
once more to screen out marginal parts. Thus each good die
is tested at least three times.

Since a defect could occur on any of the million or more
transistors on a microprocessor, many test vectors must be
applied to fully test the microprocessor. Equipment to test
integrated circuits is expensive and thus longer test
sequences are more expensive. A typical test cost might be
$8.00. The three tests, wafer-sort, after packaging, and after
burn-in, add $24 to the $100 manufacturing cost. The total
cost, including packaging and miscellaneous costs, is about
$170. Although this is just an example, test costs represent
a significant portion of the total costs.
As microprocessors increase in complexity, test costs

increase at an expanding rate. Embedded state machines and
other sequential logic are often nearly impossible to test
unless special test circuitry is added to control and observe
electrical nodes deep within the processor. Often all flip
flops within the processor are chained together into a "scan
chain” to allow their states to be read or controlled at any
time-point when the processor's normal clock is stopped.
Other scan chains may be added to the I/O pins, or around
sub-blocks within the processor die.

Rather than use external test vectors from a tester, the
processor may include self-test logic to generate the test
vectors within the die. Broseghini et al., U.S. Pat. No.
5.416,783 assigned to Motorola, generates pseudo-random
numbers using the central processing unit (CPU) itself, and
then compares the results from scan chains and generates a
signature. Special test micro-instructions are used by
Nozuyama, U.S. Pat. No. 5,202.978, assigned to Toshiba.

Applicant's parent application cited above describes a
microprocessor die which has two or more CPU cores
(possibly with local caches) which share a large cache.
Manufacturing yield, even of single-CPU die, is increased
relative to die with just one CPU core since the shared cache
is more likely to be used by one of the CPU cores, even
when the other CPU core is defective.

Testing two CPU's on a single die can easily double the
test vectors required. Test logic on the die can connect a first

15

20

25

35

45

55

65

2
CPU core to I/O pins while a full CPU test is run on the first
CPU core. Then the test logic can connect the second CPU
core to the I/O pins and the full CPU test run on the second
CPU core. Although the full CPU test can be nearly identical
for the two CPU cores, the amount of time on the tester
nearly doubles, as does the test cost.
For board-level systems, one CPU has been used to check

the output from the other CPU. This is sometimes known as
a master?checker scheme. The two CPUs can be operated in
exact lock-step or more loosely. McDonald, U.S. Pat. No.
5.249,188, assigned to AG Communications Systems Corp.,
describes a master/checker where READY signals are used
for synchronization.
What is desired is test circuitry and methods to test

integrated circuits which have multiple CPU cores on a
single die. It is desired to reduce the cost of testing die
having multiple CPU cores. It is also desired to combine
existing scan-chain techniques with multi-processor test
techniques.

SUMMARY OF THE INVENTION

A self-testing microprocessor die has a first central pro
cessing unit (CPU) core and a second CPU core and a third
CPU core, all substantially identical in function to the first
CPU core. The first, second, and third CPU cores each have
a pipeline for processing a plurality of general-purpose
instructions.
A shared cache is coupled to supply instructions and

operands to the first CPU core, the second CPU core, and the
third CPU core. The shared cache is further coupled to I/O
pins on the self-testing microprocessor die. A self-test con
troller receives a first output from the first CPU core, a
second output from the second CPU core, and a third output
from the third CPU core. It compares the first output, the
second output, and the third output. An error signal means is
coupled to the self-test controller. It signals a first error in the
first CPU core when the first output does not match the
second and third outputs; it signals a second error in the
second CPU core when the second output does not match the
first and third outputs, and it signals a third error in the third
CPU core when the third output does not match the first and
second outputs.

Error output means is coupled to the error signal means.
It applies to the I/O pins of the self-testing microprocessor
die signals which indicate the first, second, and third errors.
The first, second, and third outputs are not applied to the I/O
pins of the self-testing microprocessor die, and an external
tester does not receive or compare the first, second, and third
outputs from each CPU core. The external tester merely
reads the first, second, and third errors from the error signal
means. Thus outputs from different CPU cores are compared
on-chip for signaling an error.

In further aspects the first, second, and third outputs each
are result data generated by processing of a general-purpose
instruction in the pipeline. The result data is written to the
shared cache. Thus results written back to the shared cache
from different CPU cores are compared for self-test.

In other aspects the first, second, and third outputs each
are a shift-out output. Each CPU core also has a scan chain
of flip-flops within each CPU core. The scan chain serially
shifts data in the flip-flops out to the shift-out output. Thus
scan chains from different CPU cores are compared for
self-test.

In another aspect the first, second, and third outputs each
are a plurality of internal test points within each CPU core.
The internal test points are inaccessible from the I/O pins of

5,732.209
3

the self-testing microprocessor die. Thus internal test points
from different CPU cores are compared for self-test. The
internal test points are compressed before being transmitted
to the self-test controller.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a multi-processor die with a large shared
cache and a read-only memory (ROM) containing test
routines which is shared among the CPU cores.

FIG. 2 is a flowchart of a test routine for testing a CPU
COC.

FIG. 3 is a diagram of scan-chain test logic in a CPU core.
FIG. 4 is a voting circuit receiving scan-chain outputs

from multiple CPU cores.
FIG. 5 is a diagram of a pipelined CPU core with internal

test points and compression of test-point data.
FIG. 6 illustrates an internal test point.
FIG. 7 illustrates compression of test data from the

internal test points.
FIG. 8 is a self-testing multi-CPU die with a shared cache

including serial scan and comparison of internal test points.
FIG. 9 is a flowchart of a test procedure for multi

processor die using self-test with serial scan and internal test
points.

DETALED DESCRIPTION

The present invention relates to an improvement in testing
microprocessors. The following description is presented to
enable one of ordinary skill in the art to make and use the
invention as provided in the context of a particular applica
tion and its requirements. Various modifications to the
preferred embodiment will be apparent to those with skill in
the art, and the general principles defined herein may be
applied to other embodiments. Therefore, the present inven
tion is not intended to be limited to the particular embodi
ments shown and described, but is to be accorded the widest
scope consistent with the principles and novel features
herein disclosed.

OVERVIEW AND ADVANTAGES

The inventors have realized that the cost to test a complex
microprocessor is a significant portion of the total manufac
turing cost. As complexity increases, test cost can increase
significantly while the basic silicon die costs otherwise
decrease. Thus the problem of test cost must be addressed.

Having more than one central processing unit (CPU) core
on a microprocessor die could increase test cost significantly
if the additional CPU cores are tested in the standard serial
fashion. The inventors have realized that multiple CPU cores
provide a means of testing other CPU cores in a parallel
fashion. Parallel testing can significantly decrease test costs.
One CPU core can act as the source of comparison test
vectors for the other CPU cores.

Self-Test Using Multiple CPU Cores Avoids
External Compare

The inventors have pondered various existing test tech
niques and have found synergy when these techniques are
combined with parallel testing of the multiple CPU cores.
For example, the outputs from each CPU core can be
compared to determine when all cores generate identical
outputs when executing identical test programs in lock-step.
Since it is so unlikely that all cores could generate the same
outputs and yet be faulty, it can safely be assumed that

10

15

20

25

30

35

45

50

55

65

4
matching outputs indicate that the good, expected result was
generated, without using an external tester to compare the
outputs from each core to the expected value.

Using one CPU core to self-test other cores has a speed
advantage over using the external tester to compare results
to expected values. External I/O is slower than internal
compares, so a higher clock rate is used for self-test than for
external test. The higher clockrate reduces the time spent on
the tester, lowering test cost. The external test program is
simpler, since it merely has to let the internal self-test run
and wait for a mis-match to be signaled from the internal
compares, rather than compare each clock cycle's outputs
from each CPU core.

Because the self-test generates the test sequence
internally, few external test vectors are required. The exter
nal tester can use a smaller memory for test vectors, and
less-expensive external testers may be used, further reducing
test cost. Tester time is further reduced because new test
vectors do not have to be loaded into the external tester's
memory as often.
The routing within the die is also simplified, since the

outputs from each core do not have to be muxed to I/O pins
for compare by the external tester. Fewer I/O pins are needed
for test purposes, which reduces the number of shared pins
which may be slower due to the increased loading of the test

XCS

Self-Test Using Serial Scan Chains
The output of each CPU core which is compared may be

the data written by the processor's pipeline. However, the
output compared may also be a serial bit shifted out of a
serial scan chain used to test the flip-flops within the
processor core. The execution of the processors may be
halted so that the values of all flip-flops in the serial chain
may be shifted out to test the internal state of the processors.
These serial-shift techniques, known by various terms such
as level-sensitive scan design (LSSD). See Logic Design
Principles with Emphasis on Testable Semicustom Circuits,
by E. J. McCluskey, Prentice-Hall, 1986. pages 433–474,
which also includes a discussion of built-in-self-test (BIST)
techniques.

Scan Chains Not Shifted Out to External Tester
While previous scan techniques shifted the contents of the

scan chain of the die to be compared by the external tester,
the inventors have realized that each core's scan output can
simply be compared to the scan output from other cores. The
scan-chain's contents need not be shifted off the die to the
external tester. The scan chain's shift-out of one CPU core
is compared to the scan chain's shift-out of another CPU
core, with a mis-match indicating an error. Since long scan
chains require many clock cycles to shift out, serial-bit
compares are performed each clock cycle until the entire
chain has been shifted out. Once each serial bit has success
fully compared, it can be discarded. The serial scan chain's
clock can be operated at a higher rate when using internal
compare than when being shifted off-chip for compare by
the external tester.
The compare logic for the serial scan-chain compare is

relatively simple. When only one serial bit is shifted out of
each CPU, only a one-bit-wide comparator is needed. A
set-reset (S-R) latch can be used to accumulate errors and
indicate to the external tester after the scan chain has been
completely shifted out that an error occurred somewhere
during the serial-chain test.
The core's "output" which is compared may also include

internal test points within the core itself. Internal test points

5,732,209
5

are implemented which are separate from the scan chains.
These internal test points can be defined and compared to the
same test points in other cores each cycle of the normal CPU
clock. A large number of bits may be compared since
external I/O pins are not needed. These internal test points
can be compressed by a parity or CRC scheme before being
sent for comparison to other cores or to a central location on
the die.
The "test program' which is executed by the CPU cores is

simply a series of CPU instructions which are loaded into the
cache shared by the CPU's. Loading this test program from
an external tester requires a number of tester cycles to
transfer the test program to the shared cache. An on-chip
read-only memory (ROM) can be used to permanently store
the test program so that the test program does not have to be
transferred from the external tester. The ROM can shadow
the shared cache, supplying the instructions on demand to
the CPU cores rather than the shared cache. The ROM can
also copy the test program to the shared cache before
execution of the test program.
The on-chip ROM containing the self-test program can

reduce the number of test vectors and test cycles of the
external tester, thus reducing tester time and cost. The ROM
reduces the number of external test vectors input to the die,
while the internal comparisons reduces the need for the
external tester to perform external comparisons. This com
bination greatly reduces the tester time required, and allows
slower, less expensive external testers to be used.

Self-test can be used to quickly test a large portion of die
10 of FIG. 1 to quickly screen out bad die and move on to
the next die. Test cost is reduced when common failures are
screened for early in the test sequence, and often the test
sequence is adjusted as it becomes more clear what the
common failures are. While the self-test may not completely
test the die, it may be sufficient to reach a high effective yield
of die passing the self-test. At the high effective yield it may
be cost-effective to package all die that pass the self test at
wafer sort, and simply throw away those packageddie which
pass the self-test but do not pass the more exhaustive final
tests.

The number of scan-test vectors can be reduced by
performing the self-test first, and then deleting scan-test
sequences that merely re-test logic that self-test has already
determined to be functional. Since self-test is much more
efficient than scan-chain tests, overall test cost can be
reduced. Perhaps the more comprehensive scan tests can be
reduced by 30% to 50% when preceded by self-test.

MULTI-CPU DE WITH SELF-TEST PROGRAM
N ROM

FIG. 1 shows a multi-processor die with a large shared
cache and a read-only memory (ROM) containing test
routines which is shared among the CPU cores.

Die 10 includes a first CPU core 14 and a second CPU
core 16 and a third CPU core 17. These CPU cores are
substantially identical in function and possibly in layout. A
large cache memory 12 serves as a cache to either the first,
second, or third CPU core 14, 16, 17 or all. Data stored in
cache memory 12 is accessible by CPU cores 14, 16, 17 over
busses 20, 22, 23 respectively. Cache memory 12 is simply
provided with one or more additional ports to allow com
munication with second CPU core 16 and third CPU core 17.
Cache memory 12 typically includes an additional port to an
external bus through pads or I/O pins 18 for an external
requester, to allow for cache line invalidations and snooping.

Cache memory 12 is a second-level cache when CPU
cores 14, 16, 17 contain within them one or more primary

O

15

20

25

30

35

45

50

55

65

6
caches. The first-level primary caches are preferably within
the CPU cores 14, 16, 17 so that these primary caches can
quickly supply instructions and operands to the execution
pipelines within CPU cores 14, 16, 17. If cache memory 12
were the primary cache, then sharing cache memory 12
between two or more CPU cores increases the loading and
length of interconnect busses 20, 22 to the CPU cores 14, 16,
17, increasing delays and slowing down the speed of the
processor. Since the primary caches have a moderately high
hit rate, most requests from the pipelines within CPU cores
14, 16, 17 are handled by the primary caches within these
cores. Thus the relatively few primary cache misses do not
significantly reduce performance if busses 20, 22 to cache
memory 12 become longer and slower because the second
and third CPU cores 16, 17 are added to the die.

Cache memory 12 is shared by CPU cores 14, 16, 17.
When only one CPU core is functional, then the entire
storage area of cache memory 12 is available for that one
functional CPU core. When all CPU cores 14, 16, 17 are
functional, then cache memory 12 may be shared between
the CPU cores, either by some partitioning of cache memory
12. or by allowing either CPU core to access any location in
cache memory 12 and allowing cache lines to be allocated
as needed. When cache memory 12 is a set-associative
cache, some of the sets on replacement can have an affinity
to one CPU core while other sets can have an affinity toward
the other CPU core, although when all sets for one CPU core
are used, the other CPU core's sets can then be allocated to
the first CPU core.

Cache memory 12 may itself be a composite memory
structure, including translation-lookaside buffers (TLB's),
and other storage areas besides just instructions and data.
Bus-interface unit(BIU) 33 connects to cache memory 12 so
that BIU 33 is effectively shared between the CPU cores as
well. Thus a single BIU 33 to the external I/O pins 18 is also
shared between the 3 CPU cores. BIU 33 sends out an
address over address bus 39 and data over data bus 35 to
external I/O pins 18. Many pins are required for connecting
busses 35, 39 to external components.

Die 10 is packaged as a triple-processor chip when CPU
cores 14, 16, 17 and cache memory 12 are all functional.
When only one of the CPU cores 14, 16, 17 and cache
memory 12 are functional, then die 10 is packaged as a
uni-processor by using a bonding option to bonding pads or
I/O pins 18. When only two of the CPU core are functional,
the bonding option disables the defective CPU core using
many possible approaches. The bonding option can activate
power-supply logic to disconnect the power supply to the
defective CPU core, or the bonding option can disconnect
cache memory 12 from the defective CPU core by blocking
requests from that defective CPU core, or by disconnecting
its interconnect bus. The bonding option may also disable a
defective CPU core by preventing state machines in its
control logic from leaving the reset state. However, since it
is desired to reduce power as much as possible, powering
down the defective CPU core is the preferred method. The
bonding option can be as simple as an option pin that is
bonded to ground to disable a CPU core, with the ground
voltage being sensed and used to permanently power-down
the defective CPU core. A fusible element can also be used
in place of the bonding option.
ROM 30 contains test programs and test vectors for

testing the CPU cores 14, 16, 17. ROM 30 transmits these
test vectors over data bus 35 to BIU 33 when ROM decoder
31 detects that the external address on address bus 39 is an
external address for data in ROM 30. Thus ROM 30 can
appear to be an external component even though it is located

5,732,209
7

on die 10. The test vectors can appear as instructions which
are executed on the CPU cores. Additionally, when BIU 33
has additional ROM handshaking logic, ROM 30 may
contain compare routines to compare a data operand written
out to external memory from cache 12 and CPU cores 14.
16, 17. When the data operand does not match from different
CPU cores, an error is detected and the CPU core that wrote
the data operand is marked as defective.

Since ROM 30 is shared among the CPU cores, the cost
for including ROM 30 on the 3-P die is shared among the
CPU cores. ROM 30 is a much higher density array structure
than cache 12 so that the additional die area for ROM 30 is
minimal. ROM 30 may also include test sequencing logic to
initiate and control the test routines which can operate at the
full clock rate of the CPU cores. Thus the testing of the CPU
cores is accelerated compared to an external tester supplying
test vectors over I/O pins 18. This reduces test cost.
ROM 30 may also contain test routines and vectors for

testing cache memory 12. Test patterns such as
checkerboard, walking ones and zeros can easily be gener
ated by a simple test routine. ROM 30 along with BIU 33
performs an error check or CRC of itself by running a check
routine on its data,
Cache memory 12 is large in comparison to the sizes of

CPU cores 14, 16, 17, perhaps being twice the size of a
single CPU core. Row or column redundancy within cache
memory 12 can make it much more likely that cache
memory 12 is functional, even though it has a larger size. As
process technology continues to improve, especially with
dense multi-layer-metal routing. CPU cores 14, 16, 17 may
continue to shrink while larger-capacity cache memories are
employed, making the relative size of each CPU core
decrease and making the invention more effective.

TEST ROUTINE FOR CPU CORES-FIG. 2

FIG. 2 is a flowchart of a test routine for testing a CPU
core. The CPU core is initially reset into self-test mode, step
24. This could be a chip-wide reset, such as one asserted by
an external reset pin on the die, or the reset could be a local
reset which resets just the specific CPU core and not other
CPU cores or other parts of the die. One or more pins may
be asserted to cause the self-testmode to be entered on reset.
Any RAM memory arrays in the CPU core are tested next,
step 26. Special test modes can be used to allow these RAM
arrays to be accessed from the I/O pins of the die without
using the CPU core. In some embodiments the RAM arrays
tested are in the shared portions of the die, such as the shared
level-2 cache. Another approach which cuts test costs is to
assume all RAM arrays are good and proceed directly to the
functional test routine.

Registers in the CPU core, such as general-purpose reg
isters (GPR's), architectural registers such as flags and
control registers, and possibly pipeline staging registers are
next tested, step 28. If all registers are connected together in
a scan chain, then the scan chain can be used to test all the
registers by scanning data through the chain. Datapaths are
next tested, step 32. Datapaths include the various adders,
incrementers, shifters, comparitors, multipliers, bypassing,
forwarding, muxing paths of data in the pipelines of the CPU
core. Functional units are then tested, step 34. For example,
the arithmetic-logic-unit (ALU) in the execute stage is tested
to determine if all logic and arithmetic functions can be
performed.
When burn-in is being performed, the CPU core can be

continuously tested by looping from step 36 and accumu
lating errors in the chip. Otherwise the test is completed and

15

20

25

30

35

45

50

55

65

8
a signature generated from the functional test is placed on
the chip's I/O pins and read by the external tester, step 37.
The external tester compared the generated signature to an
expected signature to determine if the functional test
detected an error. The next CPU core can be tested following
these same steps. The test routine of FIG. 2 is preferably
programmed into ROM 30 of FIG. 1 so that external test
vectors need not be applied to the die. Since the internal
logic on the die can usually run at a higher clock rate than
the external tester, using internally-generated test vectors
allows a higher clock frequency to be used, cutting test time
and cost. Test vectors stored in ROM can be previously
generated using automatic-test-program generator (ATPG)
programs.

SCAN CHANS IN EACH CPU CORE FIG. 3

FIG. 3 is a diagram of scan-chain test logic in a CPU core.
CPU core 14 includes a large number of latches or flip-flops
41. Flip-flops 41 are connected together through combina
torial logic (not shown) to implement various functions
performed by CPU core 14. When the normal CPU clock.
CPUCLK is pulsing. CPU 14 operates normally performing
the processor's functions. However, during a scantest mode,
CPUCLK does not pulse, but rather the scan clock. SCLK,
is pulsed. Each pulse of the scan clock causes a bit of data
in one flip-flop 41 to transfer to the next flip-flop 41 in the
chain. The output of the last flip-flop 41 in the chain is output
from CPU core 14 as shift-out SO, which is received by
checker 38. Checker 38 exclusive-OR's SO bits received on
successive scan clock pulses to generate a signature 40,
typically using a linear-feedback shift register (LFSR).

Signature 40 may be read by the external tester by
applying signature 40 on I/O pins 18. The external tester can
confirm that the expected signature is read, or mark CPU
core 14 as faulty if a different signature is read than
expected.

Flip-flops 41 can be pre-loaded with specific values by
shifting in the specific values into shift-in SI into the chain
of flip-flops 41 in CPU core 14. Otherwise the shift-out SO
can be looped back to the shift-in SI to re-load flip-flops 41
so the test can be continued from the same state. This is
known as a non-destructive test.
A typical CPU core 14 may contain 8,500 flip-flops 41. If

a single scan chain is used, then 8.500 pulses of scan clock
SCLK are needed to scan out all the flip-flops. An alternative
is to divide the 8.500 flip-flops 41 into several scan chains
which are operated in parallel. For example, 32 scan chains
can be used, with 32 shift-out SO bits received by checker
38 each scan clock pulse. This reduces the number of
scan-clock pulses to scan the entire CPU core 14 from 8,500
clock pulses to about 270 pulses. CPU core 14 may be
operated for some predetermined number of CPU clocks and
then halted, and the scan chain clocked out by 270 scan
clock pulses to generate a first signature. The first signature
is then read by the external tester, and the CPU clock again
run for a number of cycles. A second signature is then
generated by scanning out the scan chain a second time. The
second signature is read and confirmed by the external tester.
This process of running the CPU clock and then scanning
out the flip-flop's data can be repeated many times to
confirm operation of CPU core 14.

Signature 40 is useful because of the large number of
flip-flops 41 in CPU core 14. In one typical implementation
each CPU core 14 contains 8,500 flip-flops 41 chained
together. Since it is impractical to store an 8,500-bit
signature, the 8,500 bits are reduced to a smaller signature

5,732,209
9

of perhaps 32 bits. Parity or a CRC-scheme is commonly
used. A problem with signatures is that aliasing can occur
where a faulty CPU core can give the expected "good"
signature. Larger signatures are less likely to have an alias
generated.
The invention solves the aliasing problem by comparing

each serial bit shifted out, during each scan-clock cycle, to
the shift-out serial bits from other CPU cores.

TESTING MULTIPLE CPUS

It is possible to simply test each CPU core on the die
separately, reading out signatures from the scan chains of
each CPU core and then comparing the signatures to an
expected value. Current self-test logic for uni-processors
typically compare the generated signature to an externally
or internally-stored expected value for the signature and
signal an error when they differ.
When two or more substantially-identical CPU cores are

present on the same die, one CPU core may be used to test
the other CPU core. Two CPU cores can be used to check
each other by running the same test routine on both and
comparing results. The CPU cores may be tested in parallel
by applying the same test routine to each core simulta
neously. However, only one of the CPU's can drive the
outputs of the die at any one time when a shared cache and
shared BIU are used. Thus another way to observe the results
from each CPU core is necessary when testing all CPU cores
in parallel.

Signature 40 derived from each CPU's scan chain of
flip-flops 41 can be used as the result from the CPU core.
When the signatures from both CPU cores match for all test
routines, it can safely be assumed that both cores are good.
However, when the signatures from different CPU cores
mismatch, it cannot readily be determined which CPU core
is the faulty core. One possible solution is to read the
signatures from each CPU core out to the external tester and
compare to an expected signature to determine which CPU
is faulty. Another solution is to present the serial output from
each scan chain to the I/O pins for the external tester to
check

Voting With 3 or More CPU Cores to Determine
Failures

When three or more CPU cores are present on the die, it
is unlikely that any two of the CPU cores fail in the exact
same manner as another CPU core. The results from the
three CPU cores can be used to "vote" to determine which
CPU core is faulty. For example, when two CPU cores
generate a signature of "000AF", but the third CPU core
running the same test routine generates a signature of
"FF000", it is likely that the third CPU core is faulty but the
other two are good.

While it is possible to compare the final signatures
generated from the scan chains of each CPU core, accuracy
is improved when each scan-chain bit shifted out of each
CPU core is compared before the signatures are generated,
as no aliasing can occur. Rather than wait for the signatures
to be generated, during each scan clock cycle the shift-out
SO from each CPU core is compared to the shift-outs from
the other CPU cores. If the shift-out bits from all three CPU
cores match, it is assumed that all cores are good. The next
SObits are shifted out of the scan chains and the comparison
repeated. Errors are accumulated. Once the entire scan chain
is shifted out the accumulated errors are read by the external
tester. The CPU core with one or more errors accumulated
for the scan chain is assumed to be faulty.

15

25

30

35

45

50

55

65

10
With three CPU cores, the signatures do not have to be

read out to the external tester after each scan. Instead, just
the accumulated errors are read. The accumulated errors in
the simplestform are just three set-resetlatches, one for each
CPU core. An S-R latch is set on the first error by the
corresponding CPU core. In most cases, simply by reading
the three bits of the S-R latches the external tester can detect
which CPU cores are defective. The external tester can
simply monitor the output of the S-R latches to determine
when an error occurs, or wait until the test ends and then
read the S-R latches. The testing of the CPU cores does not
have to be halted after each scan for the external tester to
read the signatures.

Test Signatures Not Read Out To External Tester
Typically many test routines are executed on a CPU, with

a signature generated after each routine. Thus many signa
tures are generated when testing a CPU. Reading each
signature out consumes tester time and available I/O pins
since the signatures can be many bits wide. Simply reading
the accumulated errorbits after all test routines are executed
saves many tester cycles of reading signatures. Ideally no
signature need be read out to the external tester except for
diagnostic or pre-production uses to determine what the
common failures are. For diagnostic purposes, it is useful to
stop testing when a failure is detected and have the external
tester read all observable compare inputs.

CPU SCAN-TEST WOTING CIRCUIT-FIG. 4

FIG. 4 is a voting circuit receiving scan-chain outputs
from multiple CPU cores. Comparator 42 receives the shift
out SO of the chain of flip-flops in CPU core 0. Comparator
42 also receives the shift out SO of the chain of flip-flops in
CPU core 1. Comparator 42 signals MATCH01 when the
shift-out SO from CPU core 0 matches the shift-out from
CPU core 1. Likewise comparator 44 signals MATCH02
when the shift out from CPU core 0 matches the shift-out
from CPU core 2, while comparator 46 signals MATCH12
when CPU core 1 and CPU core 2 have matching shift
outputs.
When all three comparators detect matches, AND gate 48

signals ALL-OK, indicating that for the current scan clock
cycle, all three CPU cores generated the same shift-out bit,
and no error is thus detected. OR gate 52 signals CPU0-OK
when a match is detected by either comparator 42 or
comparator 44, which have the shift-out from CPU 0 as an
input. OR gate 54 signals CPU1-OK when either of com
parators 42, 46 detect a match with the shift-out from CPU
core 1. OR gate 56 signals CPU2-OK when either of
comparators 44, 46 detect a match with the shift-out from
CPU core 2.
The signals CPUO-OK, CPU1-OK, and CPU2-OK each

trigger an S-R latch (not shown) when low, setting the
accumulated error bit for that CPU core. Thus rather than
compare signatures, the scan-chain bits are compared before
any signature is generated. The loss of information in
generating the signature (aliasing) does not reduce the
effectiveness of the test, since bits are compared before
signature compression. Indeed, signatures need not be gen
erated or read out in most cases.

COMPARE OF INTERNAL TEST POINTS FIG.
5

FIG. 5 is a diagram of a pipelined CPU core with internal
test points and compression of test-point data. A second
level shared cache 12 supplies instructions to local instruc

5,732,209
11

tion cache 96 and data operands to local data cache 88.
Second-level shared cache 12 is preferably a large cache
which supplies instructions and data to all CPU cores. CPU
core 14 processes instructions through a pipeline. The pipe
line fetches instructions from local instruction cache 96
using instruction fetch stage 62, which operates to fetch
instructions pointed to by instruction pointer 78. As instruc
tions are fetched into instruction buffer 64 and decoded by
decoder 66, adder 84 adds the length of the instructions
fetched to the instruction pointer 78 to generate a new
instruction pointer 78. When a branch is taken or predicted,
the branch target address is loaded into instruction pointer 78
instead of the sequential address from adder 84. While
instruction pointer 78 is shown as pointing to the next
instruction to be fetched by instruction fetch stage 62,
persons of skill in the art recognize that instruction pointer
78 may be modified to point to the instruction being decoded
by instruction decoder 66 as is more traditionally done.

Decoder 66 determines the type(s) of operations required
and passes a decoded instruction to address generate stage
68, which performs an address calculation when required by
the decoded instruction. Operand fetch stage 72 fetches a
data operand from local data cache 88, or writes a data result
to local data cache 88, possibly through a queuing or
buffering structure (not shown). Execute stage 74 receives
the fetched operand and possibly a register operand from
register file 95. Execute stage 74 performs an operation
defined by the decoded instruction. Many kinds of opera
tions may be executed, such as addition, Boolean operations,
shifts, and complex multi-cycle operations such as integer
multiplication and division. Execute stage 74 typically uses
an arithmetic-logic-unit (ALU) which includes a large adder,

Write-back stage 76 receives the result calculated by
execute stage 74, and writes this result to register file 95.
Register file 95 includes general-purpose registers (GPR's)
and flags or condition-code registers, as well as system
registers defining the state of the processor core.

Floating point instructions are processed by floating point
unit (FPU) 60, which receives a decoded floating point
instruction from decoder 66. Often many clock cycles are
required to perform the floating point operation, and FPU 60
may include additional decode circuitry for decoding the
more complex floating point instructions. Data operands are
read from and results are written back to floating point
registers 86. A path (not shown) to data cache 88 from
floating point registers 86 is used for loading and storing
floating point operands.

Pipeline valid bits 58 is an array of valid bits which
indicate stages in the pipeline having valid instructions
being processed. Pipeline stalls cause some stages to not
contain valid instructions and pipeline valid bits 58 conve
niently identify these stages.

Internal test points 70 are locations of electrical busses
and nodes which are frequently changing in logic values
represented by voltages. While many logical portions of
CPU core 14 are specialized, perhaps only being used by
infrequently-processed instructions, internal test points 70
are located near logic which is almost always used by most
instructions. These frequently-changing points are ideal test
points to quickly detect failures, thus reducing test time and
cost.

Since instruction pointer 78 is advanced for almost every
instruction fetched, a test point 70 is located on the output
of instruction pointer 78. The instruction fetched to decoder
66 also changes frequently, so another test point 70 is
located on the bus supplying the instruction to decoder 66.

O

15

20

25

30

35

45

50

55

65

12
Two test points are used because instruction pointer 78 is an
address while decoder 66 receives the instruction stored at
the address.
Two more test points observe the result from the pipeline.

Test points 70 are located at the output of operand fetch
stage 72, and at the write port from write-back stage 76 to
registerfile 95. While data both read and writtentolocal data
cache 88 could be observed with test points 70, data read
from local data cache 88 is likely to be error-free when all
arrays are first tested before testing the pipeline datapaths in
core 14. Thus local data cache 88 and second-level shared
cache 12 are tested and determined to be functional before
operand fetch stage 72 is tested. While data operands read
from local data cache 88 are unlikely to be faulty, data
written from operand fetch stage 72 to data cache 88 is more
likely to contain an error, since operand fetch stage 72 and
decoder 66 have not been tested earlier in the test sequence.
Thus the store output from operand fetch stage 72 contains
a test point 70. In some embodiments this store output is
generated from write-back stage 76 or another stage rather
than from operand fetch stage 72.

The write ports to register file 95 likewise is observed by
a test point 70, while the read ports are not observed. Again,
register file 95 is an array tested before the pipeline stages
are tested, and thus the read ports are less likely to detect an
error. Faulty data is first detected while it is being written to
register file 95 by the test point on the write ports. This test
point 70 observes both the data being written to general
purpose registers in register file 95 and signals which update
individual flag bits in a condition-code register in register
file 95.

Floating point registers 86 also have a test point 70 on the
write port from FPU 60. The read ports from floating point
registers 86 do not connect to a test point since errors are
unlikely to be detected from the previously-tested floating
point registers 86.

Pipeline valid bits 58 also are observed by a test point 70
on the output from these valid bits. These valid bits are
critical to the control and operation of the pipeline, and thus
many errors can be detected early by observing these
pipeline valid bits. Faulty branches and interrupts are
detected much more quickly using the internal compare
points than when simply observing data writes to external
memory, which can occur many cycles after the faulty
branch is taken.

Instruction pointer 78 outputs a 32-bit address, and thus
32 bits of test points are required. The instruction itself may
be many bytes in size, and thus 96 bits are required for test
point 70 before decoder 66. The write port to local data
cache 88 is 64 bits wide, while the write port to register file
95 is also 64 bits of data and another 12 or so bits for the
flags and state update. Floating point registers 86 have a
128-bit write port, and about 45 bits are required to observe
pipeline valid bits 58. Thus a total of 32+96 +64+64+12+
128+45=441 bits of test points 70 are used.

Full-Speed Testing Using Internal Test Points
It is cumbersome to route 441 signal lines from each CPU

core to a central compare point for self-checking each
internal test point from each CPU core to the internal test
points in the other CPU cores. Instead, the 441 test-point bits
from a core are first compressed to a smaller 8-bit vector.
Although error information is lost by this much
compression, and some aliases can signal false matches. the
test points can be compared each CPU clock cycle during the
normal operating mode of the CPU core, as long as the CPU
cores are operating the same test program in lock-step.

5,732,209
13

Compression can occur by simply generating one or two
parity bits for each of the 7 internal test points. Test points
that are physically close to another test point can generate
two parity bits from the combined test point bits, or all the
test points can be combined and then 8 parity bits generated.
More complex compression schemes could also be used.
Compressor 71 receives the data from the internal test points
70 and generates an 8-bit internal vector which is transmit
ted to a central comparator.
The internal test points provide a powerful self-test since

the CPU cores can be operated at full speed. For comparison,
the scan-chain test requires 270 scan clock cycles to scan out
the serial test data before the CPU clock can be re-started.
Thus the internal test points can be used to test the CPU core
at full speed, perhaps 270 times faster than the serial scan
test. The scan clock often has a lower frequency than the
CPU clock, so testing the internal test points is even more
efficient than scan-chain tests. Since the internal test points
observe different nodes than do the scan chains, the two tests
complement each other.

INTERNAL TEST POINT REDUCTION-FIGS.
6, 7

FIG. 6 illustrates an internal test point. A bus of signal
lines which contain electrical voltages that indicate logic
levels is tapped by buffers 82. Buffers 82 reduce the loading
on the bus of signal lines to avoid increasing delays in the
CPU core. Buffers 82 may also be replaced with a tree of
exclusive-orgates to reduce the bus of signal lines to one or
two parity bits. These cells can be powered-down when not
running in test mode.

FIG. 7 illustrates compression of test data from the
internal test points 70. Compressor 71 receives the buffered
test point signals and generates parity bits by exclusive
ORing the test-point signals in gates 92. Buffers may also be
used with gates 92 (not shown). A final 7- or 8-bit internal
test vector is output from the 441 test point signals.

MULTI-CPU DIE WITH SHARED CACHE AND
SELF-TEST-FIG. 8

FIG. 8 is a self-testing multi-CPU die with a shared cache
including serial scan and comparison of internal test points.
CPU cores 14, 16, 17 each contain local caches and a
pipeline for processing instructions fetched from second
level shared cache 12. Data results from CPU cores 14, 16,
17 are also written out to second-level shared cache 12. CPU
cores 14, 16, 17 must arbitrate for read or write access to
second-level shared cache 12 using arbitration unit 80.
When access is arbitrated and granted to a particular CPU
core, mux 81 coupled that CPU core to second-level shared
cache 12. In normal operation only one CPU core, 14, 16,
17, is coupled to second-level shared cache 12 at any time.
Arbitration unit 80 prioritizes requests from CPU cores 14,
16, 17 but does not allow any one CPU core to block out
access of other CPU cores for an extended time period.

During test mode, arbitration unit 80 causes instructions
from second-level shared cache 12 to be transmitted to all
CPU cores simultaneously. Mux 81 drives an instruction
being fetched to instruction busses to CPU cores 14, 16, 17
simultaneously during test mode. CPU cores 14, 16, 17
operate in lock-step by fetching the instruction at the same
time, but they also simultaneously request to write their
results to second-level shared cache 12. Arbitration unit 80
grants these request to all CPU cores simultaneously, which
normally causes a bus conflict. However, mux 81 only
connects one of the CPU cores to second-level shared cache

O

15

20

25

30

35

45

50

55

65

14
12 during test mode, and thus only one CPU core actually
Writes its result to second-level shared cache 12. The results
from the other CPU cores are discarded after being com
pared by result comparator 94.

Result comparator 94 receives the results being written
from each CPU core 14, 16, 17 to second-level shared cache
12. Result comparator 94 is similar to the serial scan-chain
comparator shown in FIG. 4. Instead of receiving the serial
scan shift-out bits from each CPU core, as in FIG. 4, result
comparator 94 receives the parallel data busses from each
CPU core. and thus requires that comparators 42, 44, 46 of
FIG. 4 be extended to 64 bits for a 64-bit data path to
second-level shared cache 12. All 64 bits of the data result
from CPU cores 0 and 1 (14, 16) must match for a match to
be signaled, or whatever portion of the 64 bits is being
written for a partial write such as a byte-write. In addition,
result comparator 94 receives the addresses from each CPU
core, and control information, and these are compared as
Well,
When all results match, no erroris detected for the current

result being written. When a mis-match occurs, an accumu
lated error latch is set in self-test controller 50 for the
mismatching CPU core. Each data result written out to
second-level shared cache 12 can be checked by comparing
the three results from the three CPU cores and using voting
to determine which CPU core is defective.

Result comparator 94 also indicates to arbitration unit 80
which CPU core is mismatching. Arbitration unit 80 then
selects the result from a matching CPU core rather than the
result from the faulty, mis-matching CPU core. This ensures
that a good result is written back to second-level shared
cache 12. Writing a faulty result to second-level shared
cache 12 could cause a false error later in the test sequence
if the faulty result is later read by the CPU cores.
The internal compare points (as shown for FIG.5) in each

CPU core 14, 16, 17, are transmitted each CPU clock cycle
to comparator 19. Comparator 19 operates in much the same
way as result comparator 94 in detecting a mis-match and
setting the accumulated error bit in self-test controller 50.
When a serial-scan mode is entered and the scan clock

rather than the CPU clock is pulsing, then serial comparator
21 is used to check each serial bit shifted out of the shift-out
SO output from each CPU core 14, 16, 17. Mis-matches are
again used to set the accumulated error bits in self-test
controller 50.
Thus FIG. 8 shows three different comparisons by com

parators 19, 21, 94 for self-test. Result comparator 94
compares addresses and data written out to the shared cache.
Scan comparator 21 compares the serial scan bits shifted out
from each CPU core during a serial scan mode. Comparator
19 compares the parity of the internal compare points in each
CPU core. All three comparators may be used at the same
time, achieving a high amount of checking during self
check.

FIG. 9 is a flowchart of a test procedure for multi
processor die using self-test with serial scan and internal test
points. The shared second-level cache is first tested, step
100. The test program is initially loaded into second-level
shared cache 12 by the external tester, or preferably trans
ferred or run from an on-chip ROM, step 104. Note that the
"test program' in second-level shared cache 12 is not the
same test program being run on the external tester. The
external tester loads all or part of the "test program' as data
onto the pins of the die when it finishes testing second-level
shared cache 12.
The test program has a series of instructions to be pro

cessed by the CPU cores, and some initial data. The test

5,732,209
15

program and the initial data are first loaded into second-level
shared cache 12, once mux 81 is set to test mode so that
instructions fetched are simultaneously sent to all CPU
cores, step 106. Alternately, the external tester mimics
external memory in supplying operands and instructions to
shared cache 12. Then CPU cores 14, 16, 17 are simulta
neously reset, step 108, so that they fetch the first instruction
from a default address within second-level shared cache 12.
The first instruction is simultaneously transferred to all three
CPU cores and each core executes the first instruction and
begins fetching subsequent instructions in the test program.

During each CPU clock cycle, step 110, when the test
program is running, the compressed 8-bit vector of the
internal test points is transmitted from CPU cores 14, 16, 17.
to self-test controller 50, step 112. Each 8-bit vector is the
parity from the 441 internal test points in each CPU core.
Comparing these 8-bit vectors from each CPU core each
CPU clock cycle (step 114) can quickly detect internal errors
within a CPU core. A comparator and voting apparatus such
as described for FIG. 4 is used for comparing the 8-bit
vectors from the internal test points.
The test program being executed in the CPU cores can be

halted at any point by stopping the CPU clock to CPU cores
14, 16, 17. The test clock, or serial scan clock, is pulsed
once, step 118. The shift-out from each scan chain is
connected to the shift input so that the chain is reloaded, step
120. The serial scan chains are shifted out and compared
using the shift-out comparators of FIG. 4, step 122. Any
mismatches set the accumulated error latch for the mis
matching CPU core, step 124.
The scan clock SCLK is pulsed several hundred times to

completely shift out all data from the serial chain of flip
flops. The data shifted out through the shift output SO can
be looped back to the serial shift input so that the test
program can be re-started after the serial scan test is com
pleted. Alternately, new data can be shifted into the flip-flops
by applying the new data to the serial shift input SI.

Anytime a mismatch occurs, either from result compara
tor 94, or from comparing the internal test points (step 116)
or comparing the serial scan chains (step 124), an error is
signaled by asserting the self-test result signal. The external
tester can then halt testing and move on to the next die on
the wafer. Halting the test immediately saves tester time and
COSt.
When the failure does not cause a cascade of future

failures, the CPU core can recover from the error. For
example, a single bad data operand write can be recoverable,
while a bad taken branch is not recoverable. When recov
erable errors occur, a faulty CPU core can still be used to
check other CPU cores. An alternative is to halt checking of
the faulty core and continue comparing the remaining two
cores. When two CPU cores each have different recoverable
errors, then just one die can be indicated as good.

ECONOMICS OF MULTI-CPU DE FOR SELF
TEST

The invention has the advantage that test time and test
cost is reduced. When one CPU core checks the other CPU
cores, the external tester is not actively checking I/O pins
each internal cycle. Thus a much higher internal clock rate
can be used. An internal clock multiplier can increase the
rate of the external clock from the tester to generate the CPU
and scan clocks. The higher internal clockrate reduces tester
time and thus cost. Fewer external tester vectors are needed
and thus less expensive testers with smaller test-vector
memories can be used

10

15

20

25

30

35

45

50

55

65

16
A complex, high-speed tester is no longer required. Most

of the comparisons are performed within the die without the
need for the external tester to read I/O pins and perform
comparisons. Thus a relatively slow and inexpensive tester
can be used, further reducing test costs. Older test machines
are often available at low cost.
When only one CPU core on the die is functional, then

self-test cannot completely test the die when non
recoverable errors occur. The signature must be read out to
the external tester to determine if it is good. When two
CPU's are functional on the die, then the CPU's can be used
to check each other as previously described. Thus test cost
is significantly less when two die are functional.
An approach is to use self-test for die with two or more

functional CPU's. When testing determines that only one
CPU is functional, then additional tester time is spent to read
out and externally compare the signatures. Thus die with just
one CPU functional are more expensive to test than dual
CPU die. A single-CPU die may cost $10 to test, while a die
with 2 or more functional CPU cost just $1 to test.

Another approach is to discard die with only one func
tional CPU. As the hypothetical analysis below shows. only
6% of the die having three CPU cores present have just one
of the CPU cores functional. Since these mono-CPU die are
the least valuable, the cost to discard mono-CPU die is not
large. Discarding the mono-CPU die reduces the test over
head as self-test can be used extensively.

Using standard yield equations described in Applicant's
parent application, Table 1 compares the percent yield of die
having one, two, three, and four CPU cores sharing a large
level-two cache.

TABLE 1.

Die Yield for Multi-CPU Die

1-CPU Die 2-CPU Die 3-CPU Die 4-CPU Die

4 Good CPU's - - --- 52%

3. Good CPU's - --- 69 37%
2 Good CPU's -- 72% 33% 7%
1 Good CPU's 859 26% 6% 1%
No Good 15% 2% O% 0%
CPU's

Table 1 assumes a yield for each CPU core of 85% while
Table 2 assumes a yield for each CPU of 95%.

TABLE 2

Die Yield for Multi-CPU Die

-CPU Die 2-CPU Die 3-CPU Die 4-CPU Die

4 Good CPU's - -- - 81%

3 Good CPU's - - 85% 17%
2 Good CPU's --- 90% 59 1%
1 Good CPU's 95% 10% O 0%
No Good 5% 0% 0% 0%
CPU's

As Tables 1 and 2 show, multi-CPU die have acceptable
yields when the basic processing yield is good. However, the
Multi-CPU die have larger die sizes which reduces the
number of available die on the wafer. Table 3 shows results
of a calculation of the number of available die for wafers of
1, 2, 3, and 4 CPU cores and a large 512 K-Byte shared
cache per die. A process having a 1.0 micron metal pitch is
assumed. This process may have 0.2 micron gates. Each
CPU is 25 mm while the shared cache is 132 mm in area.

5,732,209
17

TABLE 3

Available Die Per Wafer

Total area (mm) Available Dieper 8" wafer
4-CPU Die 232 89
3-CPU Die 2O7 114
2-CPU Die 182 139
1-CPU Die 157 164

When 85% of the CPU cores are functional, and 67% of the
large shared caches are functional, then the number of good
die of various types is shown in Table 4.

TABLE 4

Number of Good Die by Type of Die

Good 1- if Good 2- . Good 3- i Good 4- Total # of
CPU Die CPU Die CPU Die CPU Die Good Die

4-CPU Die O 4 22 31 57
3-CPU Die 5 25 47 - 77
2-CPU Die 24 67 - - 91
1-CPU Die 93 - - - 93

ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventors. For example the invention has been described as
having a CPU clock and a separate serial test clock.

Other embodiments may use a single clock with a test
enable input to indicate when the clock is to shift data
through the scan chain. Clocks can easily be divided or
multiplied by those of skill in the art so that actions
described herein occur every 2 or 4 clock pulses. The test
program may be loaded from an external tester or generated
from a built-in-self-test structure on the die.
When each CPU's test scan chain is divided into several

separate chains, then comparators 42, 44, 46 of FIG. 4 can
be parallel comparators, comparing each corresponding bit
of each CPU core. Another option is to generate a CRC
checksum or a parity bit from the parallel scan chains in each
CPU core before the CRC or parity bit is transmitted to
comparators 42, 44. 46.

Self-test is known by a variety of terms, including built
in-self-test (BIST), built-in test (BIT), autonomous test, and
self-verification. Many variations of the basic pipeline
herein disclosed are possible and the invention may be
modified to benefit these embodiments as well. Self-test may
provide incomplete coverage which is acceptable for wafer
sort, while a more exhaustive test is used for final test. For
wafer-sort, coverage is thorough enough to avoid packaging
bad die in most cases.
Power may be reduced by powering-down the self-test

circuit during normal operation of the CPU's. and by
powering-down faulty CPU's. Test modes and features can
be accessed by setting bits in registers within the die, or bit
asserting special test pins.
The shared cache memory may be either a primary,

level-one cache, or a second-level or even third-level cache
shared among the two processors. This shared cache may
include a variety of other structures such as a bus-interface
unit (BIU), Snoop and invalidation logic, translation logic or
arrays, and instruction or branch buffering or prediction
logic along with an instruction prefetcher. A floating point
unit (FPU) may also be shared among the two CPU cores.

10

15

20

25

35

45

55

65

18
The CPU core itself typically is a general-purpose pro

cessor core which can execute general-purpose instructions
from an instruction set such as a RISC or a CISC instruction
set, perhaps the PowerPCTM RISC or x86 CISC instruction
sets. A great variety of programs may be executed by the
CPU core. While the cores are substantially identical in
function, some slight differences in features or functions is
contemplated, and physical layout on the die may vary,
Some CPU cores may have extended abilities, such as
executing infrequently-encountered extended instructions.
perhaps floating point instructions, in addition to the
general-purpose instructions.
The CPU core is preferably a pipelined processor core

including one or more execution pipelines. An execution
pipeline may contain an instruction fetcher, decoder, an
address generate unit and operand fetcher, an operation unit
such as an arithmetic-logic-unit (ALU) and possibly a
branch unit. For superscalar CPU cores, each execution
pipeline may contain a subset of these units; for example a
branch pipeline contains the branch unit while a load/store
pipeline contains the address generate unit and operand
fetcher.
The invention may be extended to four or more CPU cores

sharing one or more cache memories. Other redundant units
may be included, such as redundant MPEG encoders. For
superscalar CPU cores, when the pipelines are symmetrical
it is possible to disable one or more of the pipelines and
operate the CPU core as a uniscalar CPU rather than a
superscalar CPU.
The invention is also useful for burn-in, where the pack

aged die are placed on a board of sockets and power is
applied in a high-temperature oven to stress the packaged
die. The burn-in board is a very simple tester which pulses
the clock and maybe only one or two other pins. For
complex parts such as microprocessors, pulsing a few pins
hardly exercises the internal cores of the chip. The self test
mode of the invention requires so few inputs that it can be
activated and continuously run for burn-in to more fully
exercise the chip.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.
We claim:
1. A self-testing microprocessor die comprising:
a first central processing unit (CPU) core, the first CPU

core having a pipeline for processing a plurality of
general-purpose instructions;

a second CPU core having a pipeline for processing the
plurality of general-purpose instructions, the second
CPU core substantially identical in function to the first
CPU core;

a third CPU core having a pipeline for processing the
plurality of general-purpose instructions, the third CPU
core substantially identical in function to the first CPU
core;

a shared cache, coupled to supply instructions and oper
ands to the first CPU core, the second CPU core, and
the third CPU core, the shared cache further coupled to
I/O pins on the self-testing microprocessor die;

a self-test controller, receiving a first output from the first
CPU core, a second output from the second CPU core,

5,732,209
19

and a third output from the third CPU core, for com
paring the first output, the second output, and the third
output;

error signaling means, coupled to the self-test controller,
for signaling a first error in the first CPU core when the
first output does not match the second and third outputs,
for signaling a second error in the second CPU core
when the second output does not match the first and
third outputs, and for signaling a third error in the third
CPU core when the third output does not match the first
and second outputs; and

error output means, coupled to the error signaling means,
for applying to the I/O pins of the self-testing micro
processor die signals indicating the first, second, and
third errors;

wherein the first, second, and third outputs are not applied
to the I/O pins of the self-testing microprocessor die, an
external tester not receiving or comparing the first,
second, and third outputs from each CPU core, the
external tester merely reading the first, second, and
third errors from the error signaling means,

whereby outputs from different CPU cores are compared
on-chip for signaling an error.

2. The self-testing microprocessor die of claim 1 wherein
the first, second, and third outputs each comprise result data
generated by processing of a general-purpose instruction in
the pipeline, the result data being written to the shared cache,

whereby results written back to the shared cache from
different CPU cores are compared for self-test.

3. The self-testing microprocessor die of claim 2 further
comprising:

a self-test ROM, coupled to the shared cache, for perma
nently storing a test program comprising a sequence of
general-purpose instructions, the test program execut
ing an extensive variety of operations performed by
each CPU core for testing functionality of each CPU
core,

test activation means, coupled to an I/O pin on the
self-testing microprocessor die, for activating a self-test
mode and causing the test program from the self-test
ROM to simultaneously begin executing on each of the
CPU cores.

wherein external test vectors containing the test program
are not applied to the I/O pins of the self-testing
microprocessor die. the external test vectors merely
activating the self-test mode to execute the test program
from the self-test ROM.

4. The self-testing microprocessor die of claim 3 further
comprising:

an arbitration unit, receiving simultaneous requests from
the first, second, and third CPU cores to write the result
data to the shared cache. the arbitration unit sending a
grant acknowledgment to all three CPU cores indicat
ing that their result data is being written to the shared
cache, but the arbitration unit discarding the result data
from two of the cores and writing the result data from
a selected CPU core to the shared cache,

wherein the result data from the selected CPU core
matches the result data from another CPU core,

whereby faulty write data that mismatches is not written
to the shared cache.

5. The self-testing microprocessor die of claim 1 wherein
the first, second, and third outputs each comprise a shift-out
output, each CPU core further comprising a serial scan chain
of flip-flops within each CPU core, the serial scan chain for
serially shifting data in the flip-flops out to the shift-out
output;

10

15

20

25

30

35

45

50

55

65

20
whereby serial scan chains from different CPU cores are

compared for self-test.
6. The self-testing microprocessor die of claim 5 further

comprising: shift-clock means. coupled to the serial scan
chain in each CPU core, for shifting bits of data in the serial
scan chains out of the CPU core to the shift-out output, the
bits of data in the serial scan chains being shifted by one bit
for each pulse of a serial clock.

7. The self-testing microprocessor die of claim 1 wherein
the first, second, and third outputs each comprise a plurality
of internal test points within each CPU core, the internal test
points being inaccessible from the I/O pins of the self-testing
microprocessor die.

whereby internal test points from different CPU cores are
compared for self-test.

8. The self-testing microprocessor die of claim 7 wherein
the internal test points are compressed before being trans
mitted to the self-test controller.

9. The self-testing microprocessor die of claim 8 wherein
the internal test points are compressed by generating parity
bits for the internal test points, the parity bits being trans
mitted to the self-test controller for comparison.

10. The self-testing microprocessor die of claim 9 wherein
the parity bits from the internal test points are generated and
transmitted to the self-test controller each cycle of a CPU
clock, the CPU clock for advancing instructions to a next
pipeline stage in the pipeline in each CPU core.

whereby parity bits are generated from the internal test
points and compared each CPU clock cycle.

11. The self-testing microprocessor die of claim 10
wherein the pipeline in each CPU core comprises an instruc
tion pointer, a register file, and a plurality of pipeline stages
including a decode stage for decoding general-purpose
instructions, an address generate stage for generating an
address of a data operand in the shared cache. an execute
stage for performing an operation defined by a general
purpose instruction, and a write-back stage for writing a
result to the register file, the internal test points comprising:

a first test point receiving an instruction address from the
instruction pointer;

a second test point receiving an instruction ready for
decoding by the decode stage;

a third test point receiving a data operand being written
from the write-back stage to the register file;

whereby high-traffic test points deep within the pipeline
are the internal test points compared by the self-test
controller.

12. The self-testing microprocessor die of claim 11
wherein each CPU core further comprises a local cache,
coupled to the shared cache, for storing instructions and
operands for use by a local CPU core, the internal test points
further comprising:

a fourth test point receiving a data operand being written
to the local cache.

13. A method for testing a microprocessor die comprising
the steps of:

connecting an external tester to external pins on the die;
asserting with the external tester an external test pin on the

die to initiate a self-test mode by the die;
simultaneously resetting a plurality of substantially

identical processor cores on the die in response to the
external test pin;
(a) pulsing a processor clock to the processor cores, the

processor cores each generating an output which is
not applied to external pins of the die;

5,732,209
21

(b) comparing the output generated from each proces
sor core and signaling an error when at least one of
the processor cores does not match the output from
the other processor cores;

(c) setting an error bit for the processor core having the
output that does not match the outputs from the other
processor cores;

fetching additional instructions and repeating steps (a) to
(c) until a test sequence is complete;

applying the error bits for each processor core to external
pins on the die;

reading with the external tester the error bits for each
processor core and marking the die as functional or
non-functional in response to the error bits read;

whereby the die is self-tested by internally comparing
outputs from multiple processor cores.

14. The method of claim 13 further comprising the step of:
testing a shared cache coupled to the processor cores;
loading instructions in the test sequence from a ROM on

the die to the shared cache for fetching to the processor
cores;

wherein the test sequence is stored in the ROM on the die
and the test sequence is not supplied from the external
teSte.

15. The method of claim 14 wherein the output from each
processor core comprises a result written to the shared
cache.

16. The method of claim 15 wherein the output from each
processor core further comprises parity bits generated from
internal test points within each processor core, the internal
test points not being accessible from the external pins of the
die.

17. The method of claim 16 further comprising the steps
of:

halting the pulsing of the processor clock;
(j) pulsing a test clock to flip-flops in each processor

core connected together in a serial scan chain and
shifting contents of the flip-flops down the serial
scan chain;

(k) shifting out of a last flip-flop in the serial scan chain
a shift output;

(1) comparing the shift output from each processor core;
(m) signaling an error when at least one of the proces

sor cores does not match the shift output from the
other processor cores;

(n) setting an error bit for the processor core having the
shift output that does not match the shift outputs
from the other processor cores;

10

15

20

25

35

45

22
repeating steps (j) through (n) until all the contents of the

flip-flops in the serial scan chains have been shifted out
through the shift output;

resuming the pulsing of the processor clock and continu
ing with step (a), whereby serial scan chains for each
processor core are compared internally without an
external comparison of the scan chains by the external
teste.

18. The method of claim 17 wherein the external tester is
a simple burn-in socket, the method further comprising the
step of:

continuously repeating the test sequence at an elevated
temperature and applying the error bits for each pro
cessor core to external pins on the die,

whereby the test sequence is repeated continuously to
exercise the die for burn-in.

19. A multi-processor die comprising:
a plurality of central processing unit (CPU) cores. each

core having a pipeline for processing instructions and a
scan test chain serially connecting storage nodes within
the core;

a shared cache for supplying instructions and operands to
the plurality of cores;

a self-test unit, receiving serial outputs from the scan test
chains in each core, the self-test unit including:
compare means for comparing a serial output from a

first core to the serial outputs from other cores;
voting means, coupled to the compare means, for

determining a correct serial output, the correct serial
output having a value matching a value of a serial
output on another core;

error means, coupled to the voting means, for signaling
an error when a serial output does not match the
correct serial output;

wherein an external tester does not compare the serial
output to an expected value but the voting means
determined the correct serial output as a matching
value, and

wherein the shared cache occupies a larger area of the die
than the area occupied by a processor core, each
processor core further comprising a local cache,
coupled to the shared cache. for storing instructions and
operands for use by a local processor core.

as a k is sie

