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(57) ABSTRACT 

A microprocessor die contains several CPU cores that are 
substantially identical. A large second-level cache on the die 
is shared among the multiple CPU's. When 3 CPU's are on 
the die, their outputs are compared during a self-testing 
mode. If outputs from all three CPU's match, then no error 
is detected. When two CPU's outputs match, but a third 
CPU's output mismatches, then the third CPU is faulty. The 
output compared from each CPU is a serial scan-chain 
shift-out, parity from internal test points, and a result written 
to the shared cache. Each CPU core has a serial scan chain. 
The serial scan chain strings together most flip-flops in the 
CPU core into a serial chain. A test clock is pulsed to shift 
out the data from these flip-flops. During each test clock 
period, the serial data from each CPU is compared to the 
serial data from other CPU's. Internal test points within each 
CPU core are defined at high traffic areas in the pipeline. 
Parity is generated from these internal test points, and the 
parity from one CPU is compared to that for other CPU's 
during each CPU clock cycle. The results from each CPU 
core written back to the shared cache are also compared, and 
arbitration allows one CPU to write the result to the shared 
cache while results from other CPU's are discarded. A 
self-test circuit on the die accumulates errors for each CPU 
and reports these errors to an inexpensive external tester. 

19 Claims, 8 Drawing Sheets 
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SELF-TESTING MULT-PROCESSOR DE 
WITH INTERNAL COMPARE POINTS 

RELATED APPLICATIONS 

This application is a continuation-in-part (CDP) of "Micro 
processor with a Large Cache Shared by Redundant CPU's 
for Increasing Manufacturing Yield". U.S. Ser. No. 08/564, 
721, filed Nov. 29, 1995, having a common inventor and 
assigned to the same assignee. 

FIELD OF THE INVENTION 

This invention relates to testing of complex integrated 
circuits (IC's), and more particularly for methods to test 
microprocessors having multiple CPU cores. 

DESCRIPTION OF THE RELATED ART 

As integrated circuits (IC's) have become more complex. 
the cost to test the IC has increased dramatically. Micropro 
cessors in particular have extremely high test costs. For 
example, a microprocessor die on a silicon wafer may cost 
$100 to manufacture. Good die are sorted out from bad die 
by an initial test of each die on the wafer, known as a 
wafer-sort test. The wafer is then sawed into individual die 
and the good die are packaged. The packaged die are then 
tested once again and undergo a temperature-stress test 
known as burn-in. After burn-in the packaged die are tested 
once more to screen out marginal parts. Thus each good die 
is tested at least three times. 

Since a defect could occur on any of the million or more 
transistors on a microprocessor, many test vectors must be 
applied to fully test the microprocessor. Equipment to test 
integrated circuits is expensive and thus longer test 
sequences are more expensive. A typical test cost might be 
$8.00. The three tests, wafer-sort, after packaging, and after 
burn-in, add $24 to the $100 manufacturing cost. The total 
cost, including packaging and miscellaneous costs, is about 
$170. Although this is just an example, test costs represent 
a significant portion of the total costs. 
As microprocessors increase in complexity, test costs 

increase at an expanding rate. Embedded state machines and 
other sequential logic are often nearly impossible to test 
unless special test circuitry is added to control and observe 
electrical nodes deep within the processor. Often all flip 
flops within the processor are chained together into a "scan 
chain” to allow their states to be read or controlled at any 
time-point when the processor's normal clock is stopped. 
Other scan chains may be added to the I/O pins, or around 
sub-blocks within the processor die. 

Rather than use external test vectors from a tester, the 
processor may include self-test logic to generate the test 
vectors within the die. Broseghini et al., U.S. Pat. No. 
5.416,783 assigned to Motorola, generates pseudo-random 
numbers using the central processing unit (CPU) itself, and 
then compares the results from scan chains and generates a 
signature. Special test micro-instructions are used by 
Nozuyama, U.S. Pat. No. 5,202.978, assigned to Toshiba. 

Applicant's parent application cited above describes a 
microprocessor die which has two or more CPU cores 
(possibly with local caches) which share a large cache. 
Manufacturing yield, even of single-CPU die, is increased 
relative to die with just one CPU core since the shared cache 
is more likely to be used by one of the CPU cores, even 
when the other CPU core is defective. 

Testing two CPU's on a single die can easily double the 
test vectors required. Test logic on the die can connect a first 
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CPU core to I/O pins while a full CPU test is run on the first 
CPU core. Then the test logic can connect the second CPU 
core to the I/O pins and the full CPU test run on the second 
CPU core. Although the full CPU test can be nearly identical 
for the two CPU cores, the amount of time on the tester 
nearly doubles, as does the test cost. 
For board-level systems, one CPU has been used to check 

the output from the other CPU. This is sometimes known as 
a master?checker scheme. The two CPUs can be operated in 
exact lock-step or more loosely. McDonald, U.S. Pat. No. 
5.249,188, assigned to AG Communications Systems Corp., 
describes a master/checker where READY signals are used 
for synchronization. 
What is desired is test circuitry and methods to test 

integrated circuits which have multiple CPU cores on a 
single die. It is desired to reduce the cost of testing die 
having multiple CPU cores. It is also desired to combine 
existing scan-chain techniques with multi-processor test 
techniques. 

SUMMARY OF THE INVENTION 

A self-testing microprocessor die has a first central pro 
cessing unit (CPU) core and a second CPU core and a third 
CPU core, all substantially identical in function to the first 
CPU core. The first, second, and third CPU cores each have 
a pipeline for processing a plurality of general-purpose 
instructions. 
A shared cache is coupled to supply instructions and 

operands to the first CPU core, the second CPU core, and the 
third CPU core. The shared cache is further coupled to I/O 
pins on the self-testing microprocessor die. A self-test con 
troller receives a first output from the first CPU core, a 
second output from the second CPU core, and a third output 
from the third CPU core. It compares the first output, the 
second output, and the third output. An error signal means is 
coupled to the self-test controller. It signals a first error in the 
first CPU core when the first output does not match the 
second and third outputs; it signals a second error in the 
second CPU core when the second output does not match the 
first and third outputs, and it signals a third error in the third 
CPU core when the third output does not match the first and 
second outputs. 

Error output means is coupled to the error signal means. 
It applies to the I/O pins of the self-testing microprocessor 
die signals which indicate the first, second, and third errors. 
The first, second, and third outputs are not applied to the I/O 
pins of the self-testing microprocessor die, and an external 
tester does not receive or compare the first, second, and third 
outputs from each CPU core. The external tester merely 
reads the first, second, and third errors from the error signal 
means. Thus outputs from different CPU cores are compared 
on-chip for signaling an error. 

In further aspects the first, second, and third outputs each 
are result data generated by processing of a general-purpose 
instruction in the pipeline. The result data is written to the 
shared cache. Thus results written back to the shared cache 
from different CPU cores are compared for self-test. 

In other aspects the first, second, and third outputs each 
are a shift-out output. Each CPU core also has a scan chain 
of flip-flops within each CPU core. The scan chain serially 
shifts data in the flip-flops out to the shift-out output. Thus 
scan chains from different CPU cores are compared for 
self-test. 

In another aspect the first, second, and third outputs each 
are a plurality of internal test points within each CPU core. 
The internal test points are inaccessible from the I/O pins of 
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the self-testing microprocessor die. Thus internal test points 
from different CPU cores are compared for self-test. The 
internal test points are compressed before being transmitted 
to the self-test controller. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows a multi-processor die with a large shared 
cache and a read-only memory (ROM) containing test 
routines which is shared among the CPU cores. 

FIG. 2 is a flowchart of a test routine for testing a CPU 
COC. 

FIG. 3 is a diagram of scan-chain test logic in a CPU core. 
FIG. 4 is a voting circuit receiving scan-chain outputs 

from multiple CPU cores. 
FIG. 5 is a diagram of a pipelined CPU core with internal 

test points and compression of test-point data. 
FIG. 6 illustrates an internal test point. 
FIG. 7 illustrates compression of test data from the 

internal test points. 
FIG. 8 is a self-testing multi-CPU die with a shared cache 

including serial scan and comparison of internal test points. 
FIG. 9 is a flowchart of a test procedure for multi 

processor die using self-test with serial scan and internal test 
points. 

DETALED DESCRIPTION 

The present invention relates to an improvement in testing 
microprocessors. The following description is presented to 
enable one of ordinary skill in the art to make and use the 
invention as provided in the context of a particular applica 
tion and its requirements. Various modifications to the 
preferred embodiment will be apparent to those with skill in 
the art, and the general principles defined herein may be 
applied to other embodiments. Therefore, the present inven 
tion is not intended to be limited to the particular embodi 
ments shown and described, but is to be accorded the widest 
scope consistent with the principles and novel features 
herein disclosed. 

OVERVIEW AND ADVANTAGES 

The inventors have realized that the cost to test a complex 
microprocessor is a significant portion of the total manufac 
turing cost. As complexity increases, test cost can increase 
significantly while the basic silicon die costs otherwise 
decrease. Thus the problem of test cost must be addressed. 

Having more than one central processing unit (CPU) core 
on a microprocessor die could increase test cost significantly 
if the additional CPU cores are tested in the standard serial 
fashion. The inventors have realized that multiple CPU cores 
provide a means of testing other CPU cores in a parallel 
fashion. Parallel testing can significantly decrease test costs. 
One CPU core can act as the source of comparison test 
vectors for the other CPU cores. 

Self-Test Using Multiple CPU Cores Avoids 
External Compare 

The inventors have pondered various existing test tech 
niques and have found synergy when these techniques are 
combined with parallel testing of the multiple CPU cores. 
For example, the outputs from each CPU core can be 
compared to determine when all cores generate identical 
outputs when executing identical test programs in lock-step. 
Since it is so unlikely that all cores could generate the same 
outputs and yet be faulty, it can safely be assumed that 
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4 
matching outputs indicate that the good, expected result was 
generated, without using an external tester to compare the 
outputs from each core to the expected value. 

Using one CPU core to self-test other cores has a speed 
advantage over using the external tester to compare results 
to expected values. External I/O is slower than internal 
compares, so a higher clock rate is used for self-test than for 
external test. The higher clockrate reduces the time spent on 
the tester, lowering test cost. The external test program is 
simpler, since it merely has to let the internal self-test run 
and wait for a mis-match to be signaled from the internal 
compares, rather than compare each clock cycle's outputs 
from each CPU core. 

Because the self-test generates the test sequence 
internally, few external test vectors are required. The exter 
nal tester can use a smaller memory for test vectors, and 
less-expensive external testers may be used, further reducing 
test cost. Tester time is further reduced because new test 
vectors do not have to be loaded into the external tester's 
memory as often. 
The routing within the die is also simplified, since the 

outputs from each core do not have to be muxed to I/O pins 
for compare by the external tester. Fewer I/O pins are needed 
for test purposes, which reduces the number of shared pins 
which may be slower due to the increased loading of the test 

XCS 

Self-Test Using Serial Scan Chains 
The output of each CPU core which is compared may be 

the data written by the processor's pipeline. However, the 
output compared may also be a serial bit shifted out of a 
serial scan chain used to test the flip-flops within the 
processor core. The execution of the processors may be 
halted so that the values of all flip-flops in the serial chain 
may be shifted out to test the internal state of the processors. 
These serial-shift techniques, known by various terms such 
as level-sensitive scan design (LSSD). See Logic Design 
Principles with Emphasis on Testable Semicustom Circuits, 
by E. J. McCluskey, Prentice-Hall, 1986. pages 433–474, 
which also includes a discussion of built-in-self-test (BIST) 
techniques. 

Scan Chains Not Shifted Out to External Tester 
While previous scan techniques shifted the contents of the 

scan chain of the die to be compared by the external tester, 
the inventors have realized that each core's scan output can 
simply be compared to the scan output from other cores. The 
scan-chain's contents need not be shifted off the die to the 
external tester. The scan chain's shift-out of one CPU core 
is compared to the scan chain's shift-out of another CPU 
core, with a mis-match indicating an error. Since long scan 
chains require many clock cycles to shift out, serial-bit 
compares are performed each clock cycle until the entire 
chain has been shifted out. Once each serial bit has success 
fully compared, it can be discarded. The serial scan chain's 
clock can be operated at a higher rate when using internal 
compare than when being shifted off-chip for compare by 
the external tester. 
The compare logic for the serial scan-chain compare is 

relatively simple. When only one serial bit is shifted out of 
each CPU, only a one-bit-wide comparator is needed. A 
set-reset (S-R) latch can be used to accumulate errors and 
indicate to the external tester after the scan chain has been 
completely shifted out that an error occurred somewhere 
during the serial-chain test. 
The core's "output" which is compared may also include 

internal test points within the core itself. Internal test points 



5,732,209 
5 

are implemented which are separate from the scan chains. 
These internal test points can be defined and compared to the 
same test points in other cores each cycle of the normal CPU 
clock. A large number of bits may be compared since 
external I/O pins are not needed. These internal test points 
can be compressed by a parity or CRC scheme before being 
sent for comparison to other cores or to a central location on 
the die. 
The "test program' which is executed by the CPU cores is 

simply a series of CPU instructions which are loaded into the 
cache shared by the CPU's. Loading this test program from 
an external tester requires a number of tester cycles to 
transfer the test program to the shared cache. An on-chip 
read-only memory (ROM) can be used to permanently store 
the test program so that the test program does not have to be 
transferred from the external tester. The ROM can shadow 
the shared cache, supplying the instructions on demand to 
the CPU cores rather than the shared cache. The ROM can 
also copy the test program to the shared cache before 
execution of the test program. 
The on-chip ROM containing the self-test program can 

reduce the number of test vectors and test cycles of the 
external tester, thus reducing tester time and cost. The ROM 
reduces the number of external test vectors input to the die, 
while the internal comparisons reduces the need for the 
external tester to perform external comparisons. This com 
bination greatly reduces the tester time required, and allows 
slower, less expensive external testers to be used. 

Self-test can be used to quickly test a large portion of die 
10 of FIG. 1 to quickly screen out bad die and move on to 
the next die. Test cost is reduced when common failures are 
screened for early in the test sequence, and often the test 
sequence is adjusted as it becomes more clear what the 
common failures are. While the self-test may not completely 
test the die, it may be sufficient to reach a high effective yield 
of die passing the self-test. At the high effective yield it may 
be cost-effective to package all die that pass the self test at 
wafer sort, and simply throw away those packageddie which 
pass the self-test but do not pass the more exhaustive final 
tests. 

The number of scan-test vectors can be reduced by 
performing the self-test first, and then deleting scan-test 
sequences that merely re-test logic that self-test has already 
determined to be functional. Since self-test is much more 
efficient than scan-chain tests, overall test cost can be 
reduced. Perhaps the more comprehensive scan tests can be 
reduced by 30% to 50% when preceded by self-test. 

MULTI-CPU DE WITH SELF-TEST PROGRAM 
N ROM 

FIG. 1 shows a multi-processor die with a large shared 
cache and a read-only memory (ROM) containing test 
routines which is shared among the CPU cores. 

Die 10 includes a first CPU core 14 and a second CPU 
core 16 and a third CPU core 17. These CPU cores are 
substantially identical in function and possibly in layout. A 
large cache memory 12 serves as a cache to either the first, 
second, or third CPU core 14, 16, 17 or all. Data stored in 
cache memory 12 is accessible by CPU cores 14, 16, 17 over 
busses 20, 22, 23 respectively. Cache memory 12 is simply 
provided with one or more additional ports to allow com 
munication with second CPU core 16 and third CPU core 17. 
Cache memory 12 typically includes an additional port to an 
external bus through pads or I/O pins 18 for an external 
requester, to allow for cache line invalidations and snooping. 

Cache memory 12 is a second-level cache when CPU 
cores 14, 16, 17 contain within them one or more primary 
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6 
caches. The first-level primary caches are preferably within 
the CPU cores 14, 16, 17 so that these primary caches can 
quickly supply instructions and operands to the execution 
pipelines within CPU cores 14, 16, 17. If cache memory 12 
were the primary cache, then sharing cache memory 12 
between two or more CPU cores increases the loading and 
length of interconnect busses 20, 22 to the CPU cores 14, 16, 
17, increasing delays and slowing down the speed of the 
processor. Since the primary caches have a moderately high 
hit rate, most requests from the pipelines within CPU cores 
14, 16, 17 are handled by the primary caches within these 
cores. Thus the relatively few primary cache misses do not 
significantly reduce performance if busses 20, 22 to cache 
memory 12 become longer and slower because the second 
and third CPU cores 16, 17 are added to the die. 

Cache memory 12 is shared by CPU cores 14, 16, 17. 
When only one CPU core is functional, then the entire 
storage area of cache memory 12 is available for that one 
functional CPU core. When all CPU cores 14, 16, 17 are 
functional, then cache memory 12 may be shared between 
the CPU cores, either by some partitioning of cache memory 
12. or by allowing either CPU core to access any location in 
cache memory 12 and allowing cache lines to be allocated 
as needed. When cache memory 12 is a set-associative 
cache, some of the sets on replacement can have an affinity 
to one CPU core while other sets can have an affinity toward 
the other CPU core, although when all sets for one CPU core 
are used, the other CPU core's sets can then be allocated to 
the first CPU core. 

Cache memory 12 may itself be a composite memory 
structure, including translation-lookaside buffers (TLB's), 
and other storage areas besides just instructions and data. 
Bus-interface unit(BIU) 33 connects to cache memory 12 so 
that BIU 33 is effectively shared between the CPU cores as 
well. Thus a single BIU 33 to the external I/O pins 18 is also 
shared between the 3 CPU cores. BIU 33 sends out an 
address over address bus 39 and data over data bus 35 to 
external I/O pins 18. Many pins are required for connecting 
busses 35, 39 to external components. 

Die 10 is packaged as a triple-processor chip when CPU 
cores 14, 16, 17 and cache memory 12 are all functional. 
When only one of the CPU cores 14, 16, 17 and cache 
memory 12 are functional, then die 10 is packaged as a 
uni-processor by using a bonding option to bonding pads or 
I/O pins 18. When only two of the CPU core are functional, 
the bonding option disables the defective CPU core using 
many possible approaches. The bonding option can activate 
power-supply logic to disconnect the power supply to the 
defective CPU core, or the bonding option can disconnect 
cache memory 12 from the defective CPU core by blocking 
requests from that defective CPU core, or by disconnecting 
its interconnect bus. The bonding option may also disable a 
defective CPU core by preventing state machines in its 
control logic from leaving the reset state. However, since it 
is desired to reduce power as much as possible, powering 
down the defective CPU core is the preferred method. The 
bonding option can be as simple as an option pin that is 
bonded to ground to disable a CPU core, with the ground 
voltage being sensed and used to permanently power-down 
the defective CPU core. A fusible element can also be used 
in place of the bonding option. 
ROM 30 contains test programs and test vectors for 

testing the CPU cores 14, 16, 17. ROM 30 transmits these 
test vectors over data bus 35 to BIU 33 when ROM decoder 
31 detects that the external address on address bus 39 is an 
external address for data in ROM 30. Thus ROM 30 can 
appear to be an external component even though it is located 
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on die 10. The test vectors can appear as instructions which 
are executed on the CPU cores. Additionally, when BIU 33 
has additional ROM handshaking logic, ROM 30 may 
contain compare routines to compare a data operand written 
out to external memory from cache 12 and CPU cores 14. 
16, 17. When the data operand does not match from different 
CPU cores, an error is detected and the CPU core that wrote 
the data operand is marked as defective. 

Since ROM 30 is shared among the CPU cores, the cost 
for including ROM 30 on the 3-P die is shared among the 
CPU cores. ROM 30 is a much higher density array structure 
than cache 12 so that the additional die area for ROM 30 is 
minimal. ROM 30 may also include test sequencing logic to 
initiate and control the test routines which can operate at the 
full clock rate of the CPU cores. Thus the testing of the CPU 
cores is accelerated compared to an external tester supplying 
test vectors over I/O pins 18. This reduces test cost. 
ROM 30 may also contain test routines and vectors for 

testing cache memory 12. Test patterns such as 
checkerboard, walking ones and zeros can easily be gener 
ated by a simple test routine. ROM 30 along with BIU 33 
performs an error check or CRC of itself by running a check 
routine on its data, 
Cache memory 12 is large in comparison to the sizes of 

CPU cores 14, 16, 17, perhaps being twice the size of a 
single CPU core. Row or column redundancy within cache 
memory 12 can make it much more likely that cache 
memory 12 is functional, even though it has a larger size. As 
process technology continues to improve, especially with 
dense multi-layer-metal routing. CPU cores 14, 16, 17 may 
continue to shrink while larger-capacity cache memories are 
employed, making the relative size of each CPU core 
decrease and making the invention more effective. 

TEST ROUTINE FOR CPU CORES-FIG. 2 

FIG. 2 is a flowchart of a test routine for testing a CPU 
core. The CPU core is initially reset into self-test mode, step 
24. This could be a chip-wide reset, such as one asserted by 
an external reset pin on the die, or the reset could be a local 
reset which resets just the specific CPU core and not other 
CPU cores or other parts of the die. One or more pins may 
be asserted to cause the self-testmode to be entered on reset. 
Any RAM memory arrays in the CPU core are tested next, 
step 26. Special test modes can be used to allow these RAM 
arrays to be accessed from the I/O pins of the die without 
using the CPU core. In some embodiments the RAM arrays 
tested are in the shared portions of the die, such as the shared 
level-2 cache. Another approach which cuts test costs is to 
assume all RAM arrays are good and proceed directly to the 
functional test routine. 

Registers in the CPU core, such as general-purpose reg 
isters (GPR's), architectural registers such as flags and 
control registers, and possibly pipeline staging registers are 
next tested, step 28. If all registers are connected together in 
a scan chain, then the scan chain can be used to test all the 
registers by scanning data through the chain. Datapaths are 
next tested, step 32. Datapaths include the various adders, 
incrementers, shifters, comparitors, multipliers, bypassing, 
forwarding, muxing paths of data in the pipelines of the CPU 
core. Functional units are then tested, step 34. For example, 
the arithmetic-logic-unit (ALU) in the execute stage is tested 
to determine if all logic and arithmetic functions can be 
performed. 
When burn-in is being performed, the CPU core can be 

continuously tested by looping from step 36 and accumu 
lating errors in the chip. Otherwise the test is completed and 
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8 
a signature generated from the functional test is placed on 
the chip's I/O pins and read by the external tester, step 37. 
The external tester compared the generated signature to an 
expected signature to determine if the functional test 
detected an error. The next CPU core can be tested following 
these same steps. The test routine of FIG. 2 is preferably 
programmed into ROM 30 of FIG. 1 so that external test 
vectors need not be applied to the die. Since the internal 
logic on the die can usually run at a higher clock rate than 
the external tester, using internally-generated test vectors 
allows a higher clock frequency to be used, cutting test time 
and cost. Test vectors stored in ROM can be previously 
generated using automatic-test-program generator (ATPG) 
programs. 

SCAN CHANS IN EACH CPU CORE FIG. 3 

FIG. 3 is a diagram of scan-chain test logic in a CPU core. 
CPU core 14 includes a large number of latches or flip-flops 
41. Flip-flops 41 are connected together through combina 
torial logic (not shown) to implement various functions 
performed by CPU core 14. When the normal CPU clock. 
CPUCLK is pulsing. CPU 14 operates normally performing 
the processor's functions. However, during a scantest mode, 
CPUCLK does not pulse, but rather the scan clock. SCLK, 
is pulsed. Each pulse of the scan clock causes a bit of data 
in one flip-flop 41 to transfer to the next flip-flop 41 in the 
chain. The output of the last flip-flop 41 in the chain is output 
from CPU core 14 as shift-out SO, which is received by 
checker 38. Checker 38 exclusive-OR's SO bits received on 
successive scan clock pulses to generate a signature 40, 
typically using a linear-feedback shift register (LFSR). 

Signature 40 may be read by the external tester by 
applying signature 40 on I/O pins 18. The external tester can 
confirm that the expected signature is read, or mark CPU 
core 14 as faulty if a different signature is read than 
expected. 

Flip-flops 41 can be pre-loaded with specific values by 
shifting in the specific values into shift-in SI into the chain 
of flip-flops 41 in CPU core 14. Otherwise the shift-out SO 
can be looped back to the shift-in SI to re-load flip-flops 41 
so the test can be continued from the same state. This is 
known as a non-destructive test. 
A typical CPU core 14 may contain 8,500 flip-flops 41. If 

a single scan chain is used, then 8.500 pulses of scan clock 
SCLK are needed to scan out all the flip-flops. An alternative 
is to divide the 8.500 flip-flops 41 into several scan chains 
which are operated in parallel. For example, 32 scan chains 
can be used, with 32 shift-out SO bits received by checker 
38 each scan clock pulse. This reduces the number of 
scan-clock pulses to scan the entire CPU core 14 from 8,500 
clock pulses to about 270 pulses. CPU core 14 may be 
operated for some predetermined number of CPU clocks and 
then halted, and the scan chain clocked out by 270 scan 
clock pulses to generate a first signature. The first signature 
is then read by the external tester, and the CPU clock again 
run for a number of cycles. A second signature is then 
generated by scanning out the scan chain a second time. The 
second signature is read and confirmed by the external tester. 
This process of running the CPU clock and then scanning 
out the flip-flop's data can be repeated many times to 
confirm operation of CPU core 14. 

Signature 40 is useful because of the large number of 
flip-flops 41 in CPU core 14. In one typical implementation 
each CPU core 14 contains 8,500 flip-flops 41 chained 
together. Since it is impractical to store an 8,500-bit 
signature, the 8,500 bits are reduced to a smaller signature 
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of perhaps 32 bits. Parity or a CRC-scheme is commonly 
used. A problem with signatures is that aliasing can occur 
where a faulty CPU core can give the expected "good" 
signature. Larger signatures are less likely to have an alias 
generated. 
The invention solves the aliasing problem by comparing 

each serial bit shifted out, during each scan-clock cycle, to 
the shift-out serial bits from other CPU cores. 

TESTING MULTIPLE CPUS 

It is possible to simply test each CPU core on the die 
separately, reading out signatures from the scan chains of 
each CPU core and then comparing the signatures to an 
expected value. Current self-test logic for uni-processors 
typically compare the generated signature to an externally 
or internally-stored expected value for the signature and 
signal an error when they differ. 
When two or more substantially-identical CPU cores are 

present on the same die, one CPU core may be used to test 
the other CPU core. Two CPU cores can be used to check 
each other by running the same test routine on both and 
comparing results. The CPU cores may be tested in parallel 
by applying the same test routine to each core simulta 
neously. However, only one of the CPU's can drive the 
outputs of the die at any one time when a shared cache and 
shared BIU are used. Thus another way to observe the results 
from each CPU core is necessary when testing all CPU cores 
in parallel. 

Signature 40 derived from each CPU's scan chain of 
flip-flops 41 can be used as the result from the CPU core. 
When the signatures from both CPU cores match for all test 
routines, it can safely be assumed that both cores are good. 
However, when the signatures from different CPU cores 
mismatch, it cannot readily be determined which CPU core 
is the faulty core. One possible solution is to read the 
signatures from each CPU core out to the external tester and 
compare to an expected signature to determine which CPU 
is faulty. Another solution is to present the serial output from 
each scan chain to the I/O pins for the external tester to 
check 

Voting With 3 or More CPU Cores to Determine 
Failures 

When three or more CPU cores are present on the die, it 
is unlikely that any two of the CPU cores fail in the exact 
same manner as another CPU core. The results from the 
three CPU cores can be used to "vote" to determine which 
CPU core is faulty. For example, when two CPU cores 
generate a signature of "000AF", but the third CPU core 
running the same test routine generates a signature of 
"FF000", it is likely that the third CPU core is faulty but the 
other two are good. 

While it is possible to compare the final signatures 
generated from the scan chains of each CPU core, accuracy 
is improved when each scan-chain bit shifted out of each 
CPU core is compared before the signatures are generated, 
as no aliasing can occur. Rather than wait for the signatures 
to be generated, during each scan clock cycle the shift-out 
SO from each CPU core is compared to the shift-outs from 
the other CPU cores. If the shift-out bits from all three CPU 
cores match, it is assumed that all cores are good. The next 
SObits are shifted out of the scan chains and the comparison 
repeated. Errors are accumulated. Once the entire scan chain 
is shifted out the accumulated errors are read by the external 
tester. The CPU core with one or more errors accumulated 
for the scan chain is assumed to be faulty. 
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10 
With three CPU cores, the signatures do not have to be 

read out to the external tester after each scan. Instead, just 
the accumulated errors are read. The accumulated errors in 
the simplestform are just three set-resetlatches, one for each 
CPU core. An S-R latch is set on the first error by the 
corresponding CPU core. In most cases, simply by reading 
the three bits of the S-R latches the external tester can detect 
which CPU cores are defective. The external tester can 
simply monitor the output of the S-R latches to determine 
when an error occurs, or wait until the test ends and then 
read the S-R latches. The testing of the CPU cores does not 
have to be halted after each scan for the external tester to 
read the signatures. 

Test Signatures Not Read Out To External Tester 
Typically many test routines are executed on a CPU, with 

a signature generated after each routine. Thus many signa 
tures are generated when testing a CPU. Reading each 
signature out consumes tester time and available I/O pins 
since the signatures can be many bits wide. Simply reading 
the accumulated errorbits after all test routines are executed 
saves many tester cycles of reading signatures. Ideally no 
signature need be read out to the external tester except for 
diagnostic or pre-production uses to determine what the 
common failures are. For diagnostic purposes, it is useful to 
stop testing when a failure is detected and have the external 
tester read all observable compare inputs. 

CPU SCAN-TEST WOTING CIRCUIT-FIG. 4 

FIG. 4 is a voting circuit receiving scan-chain outputs 
from multiple CPU cores. Comparator 42 receives the shift 
out SO of the chain of flip-flops in CPU core 0. Comparator 
42 also receives the shift out SO of the chain of flip-flops in 
CPU core 1. Comparator 42 signals MATCH01 when the 
shift-out SO from CPU core 0 matches the shift-out from 
CPU core 1. Likewise comparator 44 signals MATCH02 
when the shift out from CPU core 0 matches the shift-out 
from CPU core 2, while comparator 46 signals MATCH12 
when CPU core 1 and CPU core 2 have matching shift 
outputs. 
When all three comparators detect matches, AND gate 48 

signals ALL-OK, indicating that for the current scan clock 
cycle, all three CPU cores generated the same shift-out bit, 
and no error is thus detected. OR gate 52 signals CPU0-OK 
when a match is detected by either comparator 42 or 
comparator 44, which have the shift-out from CPU 0 as an 
input. OR gate 54 signals CPU1-OK when either of com 
parators 42, 46 detect a match with the shift-out from CPU 
core 1. OR gate 56 signals CPU2-OK when either of 
comparators 44, 46 detect a match with the shift-out from 
CPU core 2. 
The signals CPUO-OK, CPU1-OK, and CPU2-OK each 

trigger an S-R latch (not shown) when low, setting the 
accumulated error bit for that CPU core. Thus rather than 
compare signatures, the scan-chain bits are compared before 
any signature is generated. The loss of information in 
generating the signature (aliasing) does not reduce the 
effectiveness of the test, since bits are compared before 
signature compression. Indeed, signatures need not be gen 
erated or read out in most cases. 

COMPARE OF INTERNAL TEST POINTS FIG. 
5 

FIG. 5 is a diagram of a pipelined CPU core with internal 
test points and compression of test-point data. A second 
level shared cache 12 supplies instructions to local instruc 
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tion cache 96 and data operands to local data cache 88. 
Second-level shared cache 12 is preferably a large cache 
which supplies instructions and data to all CPU cores. CPU 
core 14 processes instructions through a pipeline. The pipe 
line fetches instructions from local instruction cache 96 
using instruction fetch stage 62, which operates to fetch 
instructions pointed to by instruction pointer 78. As instruc 
tions are fetched into instruction buffer 64 and decoded by 
decoder 66, adder 84 adds the length of the instructions 
fetched to the instruction pointer 78 to generate a new 
instruction pointer 78. When a branch is taken or predicted, 
the branch target address is loaded into instruction pointer 78 
instead of the sequential address from adder 84. While 
instruction pointer 78 is shown as pointing to the next 
instruction to be fetched by instruction fetch stage 62, 
persons of skill in the art recognize that instruction pointer 
78 may be modified to point to the instruction being decoded 
by instruction decoder 66 as is more traditionally done. 

Decoder 66 determines the type(s) of operations required 
and passes a decoded instruction to address generate stage 
68, which performs an address calculation when required by 
the decoded instruction. Operand fetch stage 72 fetches a 
data operand from local data cache 88, or writes a data result 
to local data cache 88, possibly through a queuing or 
buffering structure (not shown). Execute stage 74 receives 
the fetched operand and possibly a register operand from 
register file 95. Execute stage 74 performs an operation 
defined by the decoded instruction. Many kinds of opera 
tions may be executed, such as addition, Boolean operations, 
shifts, and complex multi-cycle operations such as integer 
multiplication and division. Execute stage 74 typically uses 
an arithmetic-logic-unit (ALU) which includes a large adder, 

Write-back stage 76 receives the result calculated by 
execute stage 74, and writes this result to register file 95. 
Register file 95 includes general-purpose registers (GPR's) 
and flags or condition-code registers, as well as system 
registers defining the state of the processor core. 

Floating point instructions are processed by floating point 
unit (FPU) 60, which receives a decoded floating point 
instruction from decoder 66. Often many clock cycles are 
required to perform the floating point operation, and FPU 60 
may include additional decode circuitry for decoding the 
more complex floating point instructions. Data operands are 
read from and results are written back to floating point 
registers 86. A path (not shown) to data cache 88 from 
floating point registers 86 is used for loading and storing 
floating point operands. 

Pipeline valid bits 58 is an array of valid bits which 
indicate stages in the pipeline having valid instructions 
being processed. Pipeline stalls cause some stages to not 
contain valid instructions and pipeline valid bits 58 conve 
niently identify these stages. 

Internal test points 70 are locations of electrical busses 
and nodes which are frequently changing in logic values 
represented by voltages. While many logical portions of 
CPU core 14 are specialized, perhaps only being used by 
infrequently-processed instructions, internal test points 70 
are located near logic which is almost always used by most 
instructions. These frequently-changing points are ideal test 
points to quickly detect failures, thus reducing test time and 
cost. 

Since instruction pointer 78 is advanced for almost every 
instruction fetched, a test point 70 is located on the output 
of instruction pointer 78. The instruction fetched to decoder 
66 also changes frequently, so another test point 70 is 
located on the bus supplying the instruction to decoder 66. 
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Two test points are used because instruction pointer 78 is an 
address while decoder 66 receives the instruction stored at 
the address. 
Two more test points observe the result from the pipeline. 

Test points 70 are located at the output of operand fetch 
stage 72, and at the write port from write-back stage 76 to 
registerfile 95. While data both read and writtentolocal data 
cache 88 could be observed with test points 70, data read 
from local data cache 88 is likely to be error-free when all 
arrays are first tested before testing the pipeline datapaths in 
core 14. Thus local data cache 88 and second-level shared 
cache 12 are tested and determined to be functional before 
operand fetch stage 72 is tested. While data operands read 
from local data cache 88 are unlikely to be faulty, data 
written from operand fetch stage 72 to data cache 88 is more 
likely to contain an error, since operand fetch stage 72 and 
decoder 66 have not been tested earlier in the test sequence. 
Thus the store output from operand fetch stage 72 contains 
a test point 70. In some embodiments this store output is 
generated from write-back stage 76 or another stage rather 
than from operand fetch stage 72. 

The write ports to register file 95 likewise is observed by 
a test point 70, while the read ports are not observed. Again, 
register file 95 is an array tested before the pipeline stages 
are tested, and thus the read ports are less likely to detect an 
error. Faulty data is first detected while it is being written to 
register file 95 by the test point on the write ports. This test 
point 70 observes both the data being written to general 
purpose registers in register file 95 and signals which update 
individual flag bits in a condition-code register in register 
file 95. 

Floating point registers 86 also have a test point 70 on the 
write port from FPU 60. The read ports from floating point 
registers 86 do not connect to a test point since errors are 
unlikely to be detected from the previously-tested floating 
point registers 86. 

Pipeline valid bits 58 also are observed by a test point 70 
on the output from these valid bits. These valid bits are 
critical to the control and operation of the pipeline, and thus 
many errors can be detected early by observing these 
pipeline valid bits. Faulty branches and interrupts are 
detected much more quickly using the internal compare 
points than when simply observing data writes to external 
memory, which can occur many cycles after the faulty 
branch is taken. 

Instruction pointer 78 outputs a 32-bit address, and thus 
32 bits of test points are required. The instruction itself may 
be many bytes in size, and thus 96 bits are required for test 
point 70 before decoder 66. The write port to local data 
cache 88 is 64 bits wide, while the write port to register file 
95 is also 64 bits of data and another 12 or so bits for the 
flags and state update. Floating point registers 86 have a 
128-bit write port, and about 45 bits are required to observe 
pipeline valid bits 58. Thus a total of 32+96 +64+64+12+ 
128+45=441 bits of test points 70 are used. 

Full-Speed Testing Using Internal Test Points 
It is cumbersome to route 441 signal lines from each CPU 

core to a central compare point for self-checking each 
internal test point from each CPU core to the internal test 
points in the other CPU cores. Instead, the 441 test-point bits 
from a core are first compressed to a smaller 8-bit vector. 
Although error information is lost by this much 
compression, and some aliases can signal false matches. the 
test points can be compared each CPU clock cycle during the 
normal operating mode of the CPU core, as long as the CPU 
cores are operating the same test program in lock-step. 
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Compression can occur by simply generating one or two 
parity bits for each of the 7 internal test points. Test points 
that are physically close to another test point can generate 
two parity bits from the combined test point bits, or all the 
test points can be combined and then 8 parity bits generated. 
More complex compression schemes could also be used. 
Compressor 71 receives the data from the internal test points 
70 and generates an 8-bit internal vector which is transmit 
ted to a central comparator. 
The internal test points provide a powerful self-test since 

the CPU cores can be operated at full speed. For comparison, 
the scan-chain test requires 270 scan clock cycles to scan out 
the serial test data before the CPU clock can be re-started. 
Thus the internal test points can be used to test the CPU core 
at full speed, perhaps 270 times faster than the serial scan 
test. The scan clock often has a lower frequency than the 
CPU clock, so testing the internal test points is even more 
efficient than scan-chain tests. Since the internal test points 
observe different nodes than do the scan chains, the two tests 
complement each other. 

INTERNAL TEST POINT REDUCTION-FIGS. 
6, 7 

FIG. 6 illustrates an internal test point. A bus of signal 
lines which contain electrical voltages that indicate logic 
levels is tapped by buffers 82. Buffers 82 reduce the loading 
on the bus of signal lines to avoid increasing delays in the 
CPU core. Buffers 82 may also be replaced with a tree of 
exclusive-orgates to reduce the bus of signal lines to one or 
two parity bits. These cells can be powered-down when not 
running in test mode. 

FIG. 7 illustrates compression of test data from the 
internal test points 70. Compressor 71 receives the buffered 
test point signals and generates parity bits by exclusive 
ORing the test-point signals in gates 92. Buffers may also be 
used with gates 92 (not shown). A final 7- or 8-bit internal 
test vector is output from the 441 test point signals. 

MULTI-CPU DIE WITH SHARED CACHE AND 
SELF-TEST-FIG. 8 

FIG. 8 is a self-testing multi-CPU die with a shared cache 
including serial scan and comparison of internal test points. 
CPU cores 14, 16, 17 each contain local caches and a 
pipeline for processing instructions fetched from second 
level shared cache 12. Data results from CPU cores 14, 16, 
17 are also written out to second-level shared cache 12. CPU 
cores 14, 16, 17 must arbitrate for read or write access to 
second-level shared cache 12 using arbitration unit 80. 
When access is arbitrated and granted to a particular CPU 
core, mux 81 coupled that CPU core to second-level shared 
cache 12. In normal operation only one CPU core, 14, 16, 
17, is coupled to second-level shared cache 12 at any time. 
Arbitration unit 80 prioritizes requests from CPU cores 14, 
16, 17 but does not allow any one CPU core to block out 
access of other CPU cores for an extended time period. 

During test mode, arbitration unit 80 causes instructions 
from second-level shared cache 12 to be transmitted to all 
CPU cores simultaneously. Mux 81 drives an instruction 
being fetched to instruction busses to CPU cores 14, 16, 17 
simultaneously during test mode. CPU cores 14, 16, 17 
operate in lock-step by fetching the instruction at the same 
time, but they also simultaneously request to write their 
results to second-level shared cache 12. Arbitration unit 80 
grants these request to all CPU cores simultaneously, which 
normally causes a bus conflict. However, mux 81 only 
connects one of the CPU cores to second-level shared cache 
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12 during test mode, and thus only one CPU core actually 
Writes its result to second-level shared cache 12. The results 
from the other CPU cores are discarded after being com 
pared by result comparator 94. 

Result comparator 94 receives the results being written 
from each CPU core 14, 16, 17 to second-level shared cache 
12. Result comparator 94 is similar to the serial scan-chain 
comparator shown in FIG. 4. Instead of receiving the serial 
scan shift-out bits from each CPU core, as in FIG. 4, result 
comparator 94 receives the parallel data busses from each 
CPU core. and thus requires that comparators 42, 44, 46 of 
FIG. 4 be extended to 64 bits for a 64-bit data path to 
second-level shared cache 12. All 64 bits of the data result 
from CPU cores 0 and 1 (14, 16) must match for a match to 
be signaled, or whatever portion of the 64 bits is being 
written for a partial write such as a byte-write. In addition, 
result comparator 94 receives the addresses from each CPU 
core, and control information, and these are compared as 
Well, 
When all results match, no erroris detected for the current 

result being written. When a mis-match occurs, an accumu 
lated error latch is set in self-test controller 50 for the 
mismatching CPU core. Each data result written out to 
second-level shared cache 12 can be checked by comparing 
the three results from the three CPU cores and using voting 
to determine which CPU core is defective. 

Result comparator 94 also indicates to arbitration unit 80 
which CPU core is mismatching. Arbitration unit 80 then 
selects the result from a matching CPU core rather than the 
result from the faulty, mis-matching CPU core. This ensures 
that a good result is written back to second-level shared 
cache 12. Writing a faulty result to second-level shared 
cache 12 could cause a false error later in the test sequence 
if the faulty result is later read by the CPU cores. 
The internal compare points (as shown for FIG.5) in each 

CPU core 14, 16, 17, are transmitted each CPU clock cycle 
to comparator 19. Comparator 19 operates in much the same 
way as result comparator 94 in detecting a mis-match and 
setting the accumulated error bit in self-test controller 50. 
When a serial-scan mode is entered and the scan clock 

rather than the CPU clock is pulsing, then serial comparator 
21 is used to check each serial bit shifted out of the shift-out 
SO output from each CPU core 14, 16, 17. Mis-matches are 
again used to set the accumulated error bits in self-test 
controller 50. 
Thus FIG. 8 shows three different comparisons by com 

parators 19, 21, 94 for self-test. Result comparator 94 
compares addresses and data written out to the shared cache. 
Scan comparator 21 compares the serial scan bits shifted out 
from each CPU core during a serial scan mode. Comparator 
19 compares the parity of the internal compare points in each 
CPU core. All three comparators may be used at the same 
time, achieving a high amount of checking during self 
check. 

FIG. 9 is a flowchart of a test procedure for multi 
processor die using self-test with serial scan and internal test 
points. The shared second-level cache is first tested, step 
100. The test program is initially loaded into second-level 
shared cache 12 by the external tester, or preferably trans 
ferred or run from an on-chip ROM, step 104. Note that the 
"test program' in second-level shared cache 12 is not the 
same test program being run on the external tester. The 
external tester loads all or part of the "test program' as data 
onto the pins of the die when it finishes testing second-level 
shared cache 12. 
The test program has a series of instructions to be pro 

cessed by the CPU cores, and some initial data. The test 
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program and the initial data are first loaded into second-level 
shared cache 12, once mux 81 is set to test mode so that 
instructions fetched are simultaneously sent to all CPU 
cores, step 106. Alternately, the external tester mimics 
external memory in supplying operands and instructions to 
shared cache 12. Then CPU cores 14, 16, 17 are simulta 
neously reset, step 108, so that they fetch the first instruction 
from a default address within second-level shared cache 12. 
The first instruction is simultaneously transferred to all three 
CPU cores and each core executes the first instruction and 
begins fetching subsequent instructions in the test program. 

During each CPU clock cycle, step 110, when the test 
program is running, the compressed 8-bit vector of the 
internal test points is transmitted from CPU cores 14, 16, 17. 
to self-test controller 50, step 112. Each 8-bit vector is the 
parity from the 441 internal test points in each CPU core. 
Comparing these 8-bit vectors from each CPU core each 
CPU clock cycle (step 114) can quickly detect internal errors 
within a CPU core. A comparator and voting apparatus such 
as described for FIG. 4 is used for comparing the 8-bit 
vectors from the internal test points. 
The test program being executed in the CPU cores can be 

halted at any point by stopping the CPU clock to CPU cores 
14, 16, 17. The test clock, or serial scan clock, is pulsed 
once, step 118. The shift-out from each scan chain is 
connected to the shift input so that the chain is reloaded, step 
120. The serial scan chains are shifted out and compared 
using the shift-out comparators of FIG. 4, step 122. Any 
mismatches set the accumulated error latch for the mis 
matching CPU core, step 124. 
The scan clock SCLK is pulsed several hundred times to 

completely shift out all data from the serial chain of flip 
flops. The data shifted out through the shift output SO can 
be looped back to the serial shift input so that the test 
program can be re-started after the serial scan test is com 
pleted. Alternately, new data can be shifted into the flip-flops 
by applying the new data to the serial shift input SI. 

Anytime a mismatch occurs, either from result compara 
tor 94, or from comparing the internal test points (step 116) 
or comparing the serial scan chains (step 124), an error is 
signaled by asserting the self-test result signal. The external 
tester can then halt testing and move on to the next die on 
the wafer. Halting the test immediately saves tester time and 
COSt. 
When the failure does not cause a cascade of future 

failures, the CPU core can recover from the error. For 
example, a single bad data operand write can be recoverable, 
while a bad taken branch is not recoverable. When recov 
erable errors occur, a faulty CPU core can still be used to 
check other CPU cores. An alternative is to halt checking of 
the faulty core and continue comparing the remaining two 
cores. When two CPU cores each have different recoverable 
errors, then just one die can be indicated as good. 

ECONOMICS OF MULTI-CPU DE FOR SELF 
TEST 

The invention has the advantage that test time and test 
cost is reduced. When one CPU core checks the other CPU 
cores, the external tester is not actively checking I/O pins 
each internal cycle. Thus a much higher internal clock rate 
can be used. An internal clock multiplier can increase the 
rate of the external clock from the tester to generate the CPU 
and scan clocks. The higher internal clockrate reduces tester 
time and thus cost. Fewer external tester vectors are needed 
and thus less expensive testers with smaller test-vector 
memories can be used 
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A complex, high-speed tester is no longer required. Most 

of the comparisons are performed within the die without the 
need for the external tester to read I/O pins and perform 
comparisons. Thus a relatively slow and inexpensive tester 
can be used, further reducing test costs. Older test machines 
are often available at low cost. 
When only one CPU core on the die is functional, then 

self-test cannot completely test the die when non 
recoverable errors occur. The signature must be read out to 
the external tester to determine if it is good. When two 
CPU's are functional on the die, then the CPU's can be used 
to check each other as previously described. Thus test cost 
is significantly less when two die are functional. 
An approach is to use self-test for die with two or more 

functional CPU's. When testing determines that only one 
CPU is functional, then additional tester time is spent to read 
out and externally compare the signatures. Thus die with just 
one CPU functional are more expensive to test than dual 
CPU die. A single-CPU die may cost $10 to test, while a die 
with 2 or more functional CPU cost just $1 to test. 

Another approach is to discard die with only one func 
tional CPU. As the hypothetical analysis below shows. only 
6% of the die having three CPU cores present have just one 
of the CPU cores functional. Since these mono-CPU die are 
the least valuable, the cost to discard mono-CPU die is not 
large. Discarding the mono-CPU die reduces the test over 
head as self-test can be used extensively. 

Using standard yield equations described in Applicant's 
parent application, Table 1 compares the percent yield of die 
having one, two, three, and four CPU cores sharing a large 
level-two cache. 

TABLE 1. 

Die Yield for Multi-CPU Die 

1-CPU Die 2-CPU Die 3-CPU Die 4-CPU Die 

4 Good CPU's - - --- 52% 

3. Good CPU's - --- 69 37% 
2 Good CPU's -- 72% 33% 7% 
1 Good CPU's 859 26% 6% 1% 
No Good 15% 2% O% 0% 
CPU's 

Table 1 assumes a yield for each CPU core of 85% while 
Table 2 assumes a yield for each CPU of 95%. 

TABLE 2 

Die Yield for Multi-CPU Die 

-CPU Die 2-CPU Die 3-CPU Die 4-CPU Die 

4 Good CPU's - -- - 81% 

3 Good CPU's - - 85% 17% 
2 Good CPU's --- 90% 59 1% 
1 Good CPU's 95% 10% O 0% 
No Good 5% 0% 0% 0% 
CPU's 

As Tables 1 and 2 show, multi-CPU die have acceptable 
yields when the basic processing yield is good. However, the 
Multi-CPU die have larger die sizes which reduces the 
number of available die on the wafer. Table 3 shows results 
of a calculation of the number of available die for wafers of 
1, 2, 3, and 4 CPU cores and a large 512 K-Byte shared 
cache per die. A process having a 1.0 micron metal pitch is 
assumed. This process may have 0.2 micron gates. Each 
CPU is 25 mm while the shared cache is 132 mm in area. 
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TABLE 3 

Available Die Per Wafer 

Total area (mm) Available Dieper 8" wafer 
4-CPU Die 232 89 
3-CPU Die 2O7 114 
2-CPU Die 182 139 
1-CPU Die 157 164 

When 85% of the CPU cores are functional, and 67% of the 
large shared caches are functional, then the number of good 
die of various types is shown in Table 4. 

TABLE 4 

Number of Good Die by Type of Die 

# Good 1- if Good 2- . Good 3- i Good 4- Total # of 
CPU Die CPU Die CPU Die CPU Die Good Die 

4-CPU Die O 4 22 31 57 
3-CPU Die 5 25 47 - 77 
2-CPU Die 24 67 - - 91 
1-CPU Die 93 - - - 93 

ALTERNATE EMBODIMENTS 

Several other embodiments are contemplated by the 
inventors. For example the invention has been described as 
having a CPU clock and a separate serial test clock. 

Other embodiments may use a single clock with a test 
enable input to indicate when the clock is to shift data 
through the scan chain. Clocks can easily be divided or 
multiplied by those of skill in the art so that actions 
described herein occur every 2 or 4 clock pulses. The test 
program may be loaded from an external tester or generated 
from a built-in-self-test structure on the die. 
When each CPU's test scan chain is divided into several 

separate chains, then comparators 42, 44, 46 of FIG. 4 can 
be parallel comparators, comparing each corresponding bit 
of each CPU core. Another option is to generate a CRC 
checksum or a parity bit from the parallel scan chains in each 
CPU core before the CRC or parity bit is transmitted to 
comparators 42, 44. 46. 

Self-test is known by a variety of terms, including built 
in-self-test (BIST), built-in test (BIT), autonomous test, and 
self-verification. Many variations of the basic pipeline 
herein disclosed are possible and the invention may be 
modified to benefit these embodiments as well. Self-test may 
provide incomplete coverage which is acceptable for wafer 
sort, while a more exhaustive test is used for final test. For 
wafer-sort, coverage is thorough enough to avoid packaging 
bad die in most cases. 
Power may be reduced by powering-down the self-test 

circuit during normal operation of the CPU's. and by 
powering-down faulty CPU's. Test modes and features can 
be accessed by setting bits in registers within the die, or bit 
asserting special test pins. 
The shared cache memory may be either a primary, 

level-one cache, or a second-level or even third-level cache 
shared among the two processors. This shared cache may 
include a variety of other structures such as a bus-interface 
unit (BIU), Snoop and invalidation logic, translation logic or 
arrays, and instruction or branch buffering or prediction 
logic along with an instruction prefetcher. A floating point 
unit (FPU) may also be shared among the two CPU cores. 
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18 
The CPU core itself typically is a general-purpose pro 

cessor core which can execute general-purpose instructions 
from an instruction set such as a RISC or a CISC instruction 
set, perhaps the PowerPCTM RISC or x86 CISC instruction 
sets. A great variety of programs may be executed by the 
CPU core. While the cores are substantially identical in 
function, some slight differences in features or functions is 
contemplated, and physical layout on the die may vary, 
Some CPU cores may have extended abilities, such as 
executing infrequently-encountered extended instructions. 
perhaps floating point instructions, in addition to the 
general-purpose instructions. 
The CPU core is preferably a pipelined processor core 

including one or more execution pipelines. An execution 
pipeline may contain an instruction fetcher, decoder, an 
address generate unit and operand fetcher, an operation unit 
such as an arithmetic-logic-unit (ALU) and possibly a 
branch unit. For superscalar CPU cores, each execution 
pipeline may contain a subset of these units; for example a 
branch pipeline contains the branch unit while a load/store 
pipeline contains the address generate unit and operand 
fetcher. 
The invention may be extended to four or more CPU cores 

sharing one or more cache memories. Other redundant units 
may be included, such as redundant MPEG encoders. For 
superscalar CPU cores, when the pipelines are symmetrical 
it is possible to disable one or more of the pipelines and 
operate the CPU core as a uniscalar CPU rather than a 
superscalar CPU. 
The invention is also useful for burn-in, where the pack 

aged die are placed on a board of sockets and power is 
applied in a high-temperature oven to stress the packaged 
die. The burn-in board is a very simple tester which pulses 
the clock and maybe only one or two other pins. For 
complex parts such as microprocessors, pulsing a few pins 
hardly exercises the internal cores of the chip. The self test 
mode of the invention requires so few inputs that it can be 
activated and continuously run for burn-in to more fully 
exercise the chip. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 
We claim: 
1. A self-testing microprocessor die comprising: 
a first central processing unit (CPU) core, the first CPU 

core having a pipeline for processing a plurality of 
general-purpose instructions; 

a second CPU core having a pipeline for processing the 
plurality of general-purpose instructions, the second 
CPU core substantially identical in function to the first 
CPU core; 

a third CPU core having a pipeline for processing the 
plurality of general-purpose instructions, the third CPU 
core substantially identical in function to the first CPU 
core; 

a shared cache, coupled to supply instructions and oper 
ands to the first CPU core, the second CPU core, and 
the third CPU core, the shared cache further coupled to 
I/O pins on the self-testing microprocessor die; 

a self-test controller, receiving a first output from the first 
CPU core, a second output from the second CPU core, 
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and a third output from the third CPU core, for com 
paring the first output, the second output, and the third 
output; 

error signaling means, coupled to the self-test controller, 
for signaling a first error in the first CPU core when the 
first output does not match the second and third outputs, 
for signaling a second error in the second CPU core 
when the second output does not match the first and 
third outputs, and for signaling a third error in the third 
CPU core when the third output does not match the first 
and second outputs; and 

error output means, coupled to the error signaling means, 
for applying to the I/O pins of the self-testing micro 
processor die signals indicating the first, second, and 
third errors; 

wherein the first, second, and third outputs are not applied 
to the I/O pins of the self-testing microprocessor die, an 
external tester not receiving or comparing the first, 
second, and third outputs from each CPU core, the 
external tester merely reading the first, second, and 
third errors from the error signaling means, 

whereby outputs from different CPU cores are compared 
on-chip for signaling an error. 

2. The self-testing microprocessor die of claim 1 wherein 
the first, second, and third outputs each comprise result data 
generated by processing of a general-purpose instruction in 
the pipeline, the result data being written to the shared cache, 

whereby results written back to the shared cache from 
different CPU cores are compared for self-test. 

3. The self-testing microprocessor die of claim 2 further 
comprising: 

a self-test ROM, coupled to the shared cache, for perma 
nently storing a test program comprising a sequence of 
general-purpose instructions, the test program execut 
ing an extensive variety of operations performed by 
each CPU core for testing functionality of each CPU 
core, 

test activation means, coupled to an I/O pin on the 
self-testing microprocessor die, for activating a self-test 
mode and causing the test program from the self-test 
ROM to simultaneously begin executing on each of the 
CPU cores. 

wherein external test vectors containing the test program 
are not applied to the I/O pins of the self-testing 
microprocessor die. the external test vectors merely 
activating the self-test mode to execute the test program 
from the self-test ROM. 

4. The self-testing microprocessor die of claim 3 further 
comprising: 

an arbitration unit, receiving simultaneous requests from 
the first, second, and third CPU cores to write the result 
data to the shared cache. the arbitration unit sending a 
grant acknowledgment to all three CPU cores indicat 
ing that their result data is being written to the shared 
cache, but the arbitration unit discarding the result data 
from two of the cores and writing the result data from 
a selected CPU core to the shared cache, 

wherein the result data from the selected CPU core 
matches the result data from another CPU core, 

whereby faulty write data that mismatches is not written 
to the shared cache. 

5. The self-testing microprocessor die of claim 1 wherein 
the first, second, and third outputs each comprise a shift-out 
output, each CPU core further comprising a serial scan chain 
of flip-flops within each CPU core, the serial scan chain for 
serially shifting data in the flip-flops out to the shift-out 
output; 
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whereby serial scan chains from different CPU cores are 

compared for self-test. 
6. The self-testing microprocessor die of claim 5 further 

comprising: shift-clock means. coupled to the serial scan 
chain in each CPU core, for shifting bits of data in the serial 
scan chains out of the CPU core to the shift-out output, the 
bits of data in the serial scan chains being shifted by one bit 
for each pulse of a serial clock. 

7. The self-testing microprocessor die of claim 1 wherein 
the first, second, and third outputs each comprise a plurality 
of internal test points within each CPU core, the internal test 
points being inaccessible from the I/O pins of the self-testing 
microprocessor die. 

whereby internal test points from different CPU cores are 
compared for self-test. 

8. The self-testing microprocessor die of claim 7 wherein 
the internal test points are compressed before being trans 
mitted to the self-test controller. 

9. The self-testing microprocessor die of claim 8 wherein 
the internal test points are compressed by generating parity 
bits for the internal test points, the parity bits being trans 
mitted to the self-test controller for comparison. 

10. The self-testing microprocessor die of claim 9 wherein 
the parity bits from the internal test points are generated and 
transmitted to the self-test controller each cycle of a CPU 
clock, the CPU clock for advancing instructions to a next 
pipeline stage in the pipeline in each CPU core. 

whereby parity bits are generated from the internal test 
points and compared each CPU clock cycle. 

11. The self-testing microprocessor die of claim 10 
wherein the pipeline in each CPU core comprises an instruc 
tion pointer, a register file, and a plurality of pipeline stages 
including a decode stage for decoding general-purpose 
instructions, an address generate stage for generating an 
address of a data operand in the shared cache. an execute 
stage for performing an operation defined by a general 
purpose instruction, and a write-back stage for writing a 
result to the register file, the internal test points comprising: 

a first test point receiving an instruction address from the 
instruction pointer; 

a second test point receiving an instruction ready for 
decoding by the decode stage; 

a third test point receiving a data operand being written 
from the write-back stage to the register file; 

whereby high-traffic test points deep within the pipeline 
are the internal test points compared by the self-test 
controller. 

12. The self-testing microprocessor die of claim 11 
wherein each CPU core further comprises a local cache, 
coupled to the shared cache, for storing instructions and 
operands for use by a local CPU core, the internal test points 
further comprising: 

a fourth test point receiving a data operand being written 
to the local cache. 

13. A method for testing a microprocessor die comprising 
the steps of: 

connecting an external tester to external pins on the die; 
asserting with the external tester an external test pin on the 

die to initiate a self-test mode by the die; 
simultaneously resetting a plurality of substantially 

identical processor cores on the die in response to the 
external test pin; 
(a) pulsing a processor clock to the processor cores, the 

processor cores each generating an output which is 
not applied to external pins of the die; 
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(b) comparing the output generated from each proces 
sor core and signaling an error when at least one of 
the processor cores does not match the output from 
the other processor cores; 

(c) setting an error bit for the processor core having the 
output that does not match the outputs from the other 
processor cores; 

fetching additional instructions and repeating steps (a) to 
(c) until a test sequence is complete; 

applying the error bits for each processor core to external 
pins on the die; 

reading with the external tester the error bits for each 
processor core and marking the die as functional or 
non-functional in response to the error bits read; 

whereby the die is self-tested by internally comparing 
outputs from multiple processor cores. 

14. The method of claim 13 further comprising the step of: 
testing a shared cache coupled to the processor cores; 
loading instructions in the test sequence from a ROM on 

the die to the shared cache for fetching to the processor 
cores; 

wherein the test sequence is stored in the ROM on the die 
and the test sequence is not supplied from the external 
teSte. 

15. The method of claim 14 wherein the output from each 
processor core comprises a result written to the shared 
cache. 

16. The method of claim 15 wherein the output from each 
processor core further comprises parity bits generated from 
internal test points within each processor core, the internal 
test points not being accessible from the external pins of the 
die. 

17. The method of claim 16 further comprising the steps 
of: 

halting the pulsing of the processor clock; 
(j) pulsing a test clock to flip-flops in each processor 

core connected together in a serial scan chain and 
shifting contents of the flip-flops down the serial 
scan chain; 

(k) shifting out of a last flip-flop in the serial scan chain 
a shift output; 

(1) comparing the shift output from each processor core; 
(m) signaling an error when at least one of the proces 

sor cores does not match the shift output from the 
other processor cores; 

(n) setting an error bit for the processor core having the 
shift output that does not match the shift outputs 
from the other processor cores; 
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repeating steps (j) through (n) until all the contents of the 

flip-flops in the serial scan chains have been shifted out 
through the shift output; 

resuming the pulsing of the processor clock and continu 
ing with step (a), whereby serial scan chains for each 
processor core are compared internally without an 
external comparison of the scan chains by the external 
teste. 

18. The method of claim 17 wherein the external tester is 
a simple burn-in socket, the method further comprising the 
step of: 

continuously repeating the test sequence at an elevated 
temperature and applying the error bits for each pro 
cessor core to external pins on the die, 

whereby the test sequence is repeated continuously to 
exercise the die for burn-in. 

19. A multi-processor die comprising: 
a plurality of central processing unit (CPU) cores. each 

core having a pipeline for processing instructions and a 
scan test chain serially connecting storage nodes within 
the core; 

a shared cache for supplying instructions and operands to 
the plurality of cores; 

a self-test unit, receiving serial outputs from the scan test 
chains in each core, the self-test unit including: 
compare means for comparing a serial output from a 

first core to the serial outputs from other cores; 
voting means, coupled to the compare means, for 

determining a correct serial output, the correct serial 
output having a value matching a value of a serial 
output on another core; 

error means, coupled to the voting means, for signaling 
an error when a serial output does not match the 
correct serial output; 

wherein an external tester does not compare the serial 
output to an expected value but the voting means 
determined the correct serial output as a matching 
value, and 

wherein the shared cache occupies a larger area of the die 
than the area occupied by a processor core, each 
processor core further comprising a local cache, 
coupled to the shared cache. for storing instructions and 
operands for use by a local processor core. 

as a k is sie 


