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57 ABSTRACT 

A single breakpoint address register on a CPU is shared to 
emulate a plurality of breakpoint registers. A plurality of 
breakpoints are stored in an emulation area of main memory. 
One of these breakpoints is loaded into the single breakpoint 
register on the CPU. When a translation-lookaside buffer 
(TLB) on the CPU detects a page miss, a page miss handler 
activates a debug processing routine to determine if the 
faulting page contains one of the breakpoints. If the faulting 
page does contain a breakpoint, then this breakpoint is 
written to the single breakpoint register on the CPU. Any 
page in TLB is invalidated if it contained the old breakpoint 
that was overwritten by the new breakpoint in the single 
breakpoint register. Thus only one breakpoint can have a 
page translation in the TLB at any time, and the breakpoints 
are swapped in and out of single breakpoint register when 
the TLB entries are swapped. A TLB invalidate entry 
instruction finds the old breakpoint's TLB entry and invali 
dates it. When multiple breakpoints exist on a single page, 
then that page is divided into partial pages, with each partial 
page having just one breakpoint. The TLB entries contain 
upper and lower bounds fields to identify the extent of the 
partial page. A bit in the condition register is set when 
multiple breakpoints exist on the same page. 

18 Claims, 14 Drawing Sheets 
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METHOD FOR EMULATING MULTIPLE 
DEBUG BREAKPONTS BY PAGE 
PARTITIONING USING ASINGLE 

BREAKPONT REGISTER 

BACKGROUND OF THE INVENTION 
RELATED APPLICATIONS 

This application is a continuation-in-part (CIP) of "Emu 
lation of Segment Bounds Checking Using Paging with 
Sub-Page Validity”, U.S. Pat. No. 5,440,710, U.S. Ser. No. 
08/207,857 filed Mar. 8, 1994, assigned to the same 
Assignee and with at least one common inventor. This 
application is also related to "Emulation of Program Watch 
point Checking Using Paging With Sub-Page Validity”, U.S. 
Ser. No. 08/444,813, assigned to the same Assignee and with 
at least one common inventor. This application is further 
related to "A Translator having Segment Bounds Encoding 
For Storage in a TLB", U.S. Ser. No. 08/436,137, also 
assigned to the same Assignee and with at least one common 
inventor. 

BACKGROUND OF THE INVENTION-FIELD 
OF THE INVENTION 

This invention relates to computer systems, and more 
particularly to emulation of breakpoint checking. 

BACKGROUND OF THE INVENTION 
DESCRIPTION OF THE RELATED ART 

Advanced architectures such as RISC (reduced instruc 
tion set computers) provide fewer computing resources in 
hardware than older CISC (complex instruction set 
computer) architectures. While RISC has the potential of 
higher operating speeds than CISC, many programs have 
been written for CISC architectures. Most personal comput 
ers (PC's) use the x86 architecture, at present embodied in 
CPU's such as the 386, 486, and PentiumTM manufactured 
by Intel Corporation of Santa Clara, Calif., and others. 
The parent application discloses a RISC architecture 

capable of emulating certain aspects of the x86 CISC 
architecture. In particular, segmentation is emulated by 
extending the translation-lookaside buffer (TLB) to allow 
for less than a whole page to be valid. 

Like the x86 segmentation, x86-style program watchpoint 
or breakpoint checking is awkward to implement in a 
standard RISC processor. RISC processors such as Pow 
erPCTM processors by Motorola provide far fewer hardware 
resources than x86 processors. While additional breakpoint 
registers, comparators, and control logic could be added to 
a RISC processor to support CISC breakpointing, this 
increases the cost and complexity of the RISC processor. 

PRIOR-ART CISC DEBUG HARDWARE FIG. 1 

FIG. It is a block diagram of debug breakpoint hardware 
in a typical x86 processor, which includes paging. 

Linear address 18 is translated to physical address 20 by 
translation-lookaside buffer or TLB 16, which is a small 
cache of the page translation tables stored in main memory. 
TLB 16 translates the upper 20 bits of linear address 18 by 
searching the associative TLB cache for a match, and if one 
is found, then replacing these upper 20 bits with another 20 
bits stored in the TLB 16. 

If the linear address is not found in the TLB, then a miss 
is signaled to a translator (not shown), which accesses the 
page tables in main memory and loads into the TLB the page 
table entry that corresponds to the linear address. Future 
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2 
references to the same page will “hit” in the TLB, which will 
provide the translation. 

Four debug registers 10 may each contain a linear address 
where a breakpoint is to occur. When a program accesses an 
instruction or data operand at this linear address, then a 
breakpoint is signaled and the program halted. Comparators 
26 compare the current linear address 18 to the breakpoint 
addresses stored in debug registers 10 and output match 
indications to AND gates 12. 
Debug control register 14 contains bits to enable each of 

the four debug registers 10, and possibly a global debug 
enable bit. Register 14 also contains data/code bits to 
indicate if the breakpoint addresses in each of debug regis 
ters 10 are for instruction addresses or data operand 
addresses. Four bits may be used, one for each debug 
register 10. Thus some breakpoints may be for instructions 
while others for data. These data/code bits in register 14 are 
compared to a data/code signal 21 which indicates if the 
current linear address 18 is for a data operand or an 
instruction (code). Comparators 28 compare the D/C signal 
21 to each of the four data/code bits in register 14, and 
output D/C match signals 24 to AND gates 12. If linear 
address 18 matches one of the breakpoint addresses in 
registers 10, and the data/code signal 21 matches the data/ 
code bit in register 14, then one of AND gates 12 will output 
a high signal which will be passed by OR gate 22 to generate 
a breakpoint signal. Comparators 28 may also check that the 
debug registers 10 are enabled before generating the match 
indication. 

OBJECTS OF THE INVENTION 

While the prior-art debug apparatus is effective, RISC 
processors may provide only one or two debug registers and 
comparators, rather than the four used by x86 CISC CPU's. 
The RISC debug registers are restricted to either instruction 
or data operands and are thus less flexible than the CISC 
debug registers. In the PowerPCTM architecture, a single 
register is provided for data operand breakpointing, while 
another single register is provided for instruction break 
pointing. 
What is desired is to emulate multiple breakpoints with a 

single breakpoint register. When multiple breakpoints are 
enabled, it is desired to emulate CISC-style breakpointing 
with a simple RISC-type paging system that allows for 
partial pages or sub-page validity. Emulation routines are 
desired to properly handle a page miss when the page 
contains a breakpoint. Emulation routines are also desired to 
emulate setup of debug registers. 

SUMMARY OF THE INVENTION 

In one aspect the invention is a method for emulating a 
plurality of breakpoints on a processor with a single break 
point register which stores just one breakpoint address. The 
processor also has a translation-lookaside buffer (TLB) with 
a plurality of page entries. The breakpoints are addresses 
which halt execution of a user program when accessed. 

Page entries are freely loaded into the TLB when no more 
than one breakpoint in the plurality of breakpoints is 
enabled. When two or more breakpoints in the plurality of 
breakpoints are enabled, then a page fault is signaled when 
a faulting page does not have a translation in the TLB. It is 
determined if a breakpoint in the plurality of breakpoints 
falls within the faulting page when the page fault is signaled. 
The breakpoint falling within the faulting page is hereinafter 
referred to as a first breakpoint. A page entry is loaded into 
the TLB for the faulting page while the first breakpoint is 
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loaded into the breakpoint register on the processor when the 
faulting page contains the first breakpoint. Any page entries 
in the TLB containing a breakpoint are invalidated, other 
than the faulting page entry. Execution of the user program 
is halted when the user program accesses an address match 
ing the breakpoint address in the breakpoint register on the 
processor. 
Thus only one breakpoint in the plurality of breakpoints 

has a page translation entry in the TLB, which is loaded into 
the breakpoint register on the processor when the faulting 
page entry is loaded into the TLB. 

In other aspects of the invention the plurality of break 
points are addresses of data operands or instructions. Further 
aspects include a step to determine when more than one 
breakpoint in the plurality of breakpoints falls within the 
faulting page. The faulting page is divided into partial pages 
when more than one breakpoint falls within the faulting 
page. Each partial page contains no more than one break 
point in the plurality of breakpoints. Bounds fields are 
loaded into the TLB when loading the page entry for the 
faulting page when the faulting page contains more than one 
breakpoint. The bounds fields define the boundaries of the 
partial page within the faulting page. Thus pages may 
contain multiple breakpoints yet the multiple breakpoints 
share the single breakpoint register on the processor. 

In other aspects a multiple-breakpoint bit in a condition 
register on the processor is read to determine when multiple 
breakpoints are enabled. The multiple-breakpoint bit is set 
when a second breakpoint is enabled in the plurality of 
breakpoints and the second breakpoint falls within a page 
which already contains another enabled breakpoint in the 
plurality of breakpoints. 

Other aspects of the invention include a system for 
emulating processing of a plurality of breakpoints. The 
breakpoints are addresses which halt execution of a user 
program when accessed. A central processing unit (CPU) 
has a breakpoint register that stores a single breakpoint 
address which halts execution of a user program when 
encountered. An address compare means receives a linear 
address generated by execution of the user program and is 
coupled to the breakpoint register. It compares the linear 
address to the breakpoint address and signals a breakpoint 
fault when an address match occurs. A translation-lookaside 
buffer (TLB) receives the linear address. The TLB has a 
plurality of page translation entries for pages in memory 
having a fixed number of offset addresses. Each page 
translation entry has a linear address field and a physical 
address field. The TLB outputs the physical address field for 
a matching entry when a portion of the linear address 
matches the linear address field in the matching entry. A 
memory has a plurality of storage locations addressable by 
a plurality of physical addresses. A first portion of the 
memory stores a debug table which has a plurality of debug 
entries each for storing a breakpoint address. A second 
portion of the memory stores an emulation handler routine 
which includes a means for copying a breakpoint address 
from one of the debug entries in the debug table to the 
breakpoint register on the CPU. An invalidation means 
invalidates a translation entry in the TLB containing a 
breakpoint address stored in the debug table but not stored 
in the breakpoint register on the CPU. 
Thus only one breakpoint from the debug table in memory 

has a page translation entry in the TLB. The one breakpoint 
is loaded into the breakpoint register on the processor by the 
emulation handler routine. 

In other aspects the CPU has a bound field in the matching 
entry in the TLB. The bound field contains a bound for a 
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4 
partial page. A bounds checking means receives the bound 
from the matching entry of the TLB and compares a portion 
of the linear address to the bound. A page fault is signaled 
if the linear address is outside the bound for the partial page. 
The emulation handler means has a partial page loading 
means for loading the bound field of the matching entry 
when the page translation entry is for a page containing 
multiple breakpoints. The page is divided into partial pages 
each containing one breakpoint. 

Another aspect of the invention is a method for emulating 
a plurality of breakpoints on a processor with no breakpoint 
register. A translation-lookaside buffer (TLB) on the proces 
sor has a plurality of page entries. Pages entries are freely 
loaded into the TLB when no breakpoint in the plurality of 
breakpoints is enabled. When one or more breakpoints in the 
plurality of breakpoints are enabled, then a page fault is 
signaled when a faulting page does not have a translation in 
the TLB. If a breakpoint in the plurality of breakpoints falls 
within the faulting page when the page fault is signaled, then 
no page entry is loaded into the TLB for the faulting page. 
A memory access is instead emulated for the faulting page 
when the faulting page contains the breakpoint. Execution of 
the user program is halted when the user program accesses 
an address matching the breakpoint address. Thus no break 
point in the plurality of breakpoints has a page translation 
entry in the TLB. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of debug breakpoint hardware 
in a typical x86 processor, which includes paging. 

FIG. 2 is the breakpoint apparatus for a RISC processor. 
FIG. 3 shows in detail an embodiment for a TLB with 

sub-page validity. 
FIG. 4 is a diagram of a physical memory space which 

contains a user program, an operating system, and emulation 
handler routines. 

FIG. 5 is a debug processing routine executed when a 
page misses in the TLB. 

FIG. 6 is a diagram of the condition register CR on a RISC 
processor with bits defined for aiding debug emulation. 

FIG. 7 is a state diagram of the debug setup sequence as 
debug register setup instructions are emulated. 

FIG. 8 shows the storage structures in emulation memory 
that are maintained by a debug load routine and a TLB miss 
routine with debug processing. 

FIG. 9 is a routine that emulates a debug register load 
instruction. 

FIG. 10 shows partitioning of a page which contains three 
breakpoints into partial pages. 

FIGS. 11A, 11B show an example of how the storage 
structures in the debug setup area of the emulation memory 
are modified as debug registers are loaded and enabled. 

FIGS. 12A, 12B, 12C show an example of how the TLB 
and RISC breakpoint register DABR are modified as page 
misses and hits occur. 

DETAILED DESCRIPTION 

The present invention relates to an improvement in pro 
gram debugging using breakpoints. The following descrip 
tion is presented to enable one of ordinary skill in the art to 
make and use the invention as provided in the context of a 
particular application and its requirements. Various modifi 
cations to the preferred embodiment will be apparent to 
those with skill in the art, and the general principles defined 
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herein may be applied to other embodiments. Therefore, the 
present invention is not intended to be limited to the par 
ticular embodiments shown and described, but is to be 
accorded the widest scope consistent with the principles and 
novel features herein disclosed. 

RISC BREAKPONT HARDWARE-FIG. 2 

FIG. 2 is the breakpoint apparatus for a RISC processor. 
Virtual address 18 can be the x86 linear address when the 
segment base addition is performed before generating virtual 
address 18. Virtual address 18 is translated to physical 
address 20 by translation-lookaside buffer (TLB) 16, as is 
well-known in the art. Condition register 32 contains flags or 
condition codes that are set by programs and the operating 
system. In the PowerPCTM RISC architecture, register 32 is 
known as the CR register. Data-address breakpoint register 
(DABR) 30 is loaded with a breakpoint address for a data 
operand, while instruction-address breakpoint register 
(IABR) 34 is loaded with a virtual address where a break 
point of an instruction is to occur. 

Comparators 36, 38 compare the current virtual address 
18 to the data and instruction breakpoint addresses stored in 
registers 30, 34 and generate data breakpoint signal 35 or 
instruction breakpoint signal 33 if an address match occurs. 
A breakpoint control register (not shown) may also be used 
to mask off some of the bits compared, allowing for the 
breakpoint to occur over a range of addresses. 
RISC provides only one breakpoint register for 

instructions, and another breakpoint register that can only be 
used for data operands. The present invention includes 
methods to use either one of these registers to emulate up to 
four x86-style breakpoint registers. Since these are 32-bit 
breakpoint registers, significant hardware is saved. 

TLB WITH SUB-PAGE FIELDS 
BACKGROUND 

Several embodiments of a RISC-type paging system 
adapted for emulation of segment bounds checking are 
presented in the parent, U.S. Pat. No. 5,440,710. ATLB was 
disclosed which is capable of having less than a full page 
valid. While the predominant use of sub-page validity is for 
emulation of segmentation, sub-page validity may also be 
used for emulation of breakpointing. When combined with 
RISC's single breakpoint registers, sub-page validity can 
emulate a larger set of breakpoint registers. However, effi 
cient procedures to implement the emulation of breakpoint 
ing are desired. Novel emulation routines and data structures 
have been invented for use with a CPU having a RISC-type 
paging system. 

In a paging system, a page table defines the mapping or 
translation between a program or virtual address generated 
by the user's program, and a physical address of a location 
in memory. Physical memory is divided into many pages, 
with each page being the same size, typically 4096 or 4K 
bytes. Each page begins and ends on a "page boundary', 
which is always a multiple of the page size, 4K bytes. 

DEFINITIONS 

A virtual address is composed of two parts: the lower 12 
bits form the address within a page, or page offset, while the 
upper address bits determine which page is accessed. The 
upper bits of the virtual address are the virtual page number, 
and these upper bits are translated and replaced with a 
physical page number. The virtual page number is translated 
to a physical page number by either a page table in main 
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6 
memory, or by a cache of the page table such as a 
translation-lookaside buffer (TLB). The physical address is 
thus composed of the translated page number and the 
un-translated offset. Page tables and TLB's are well-known 
and are discussed more fully with respect to the x86 archi 
tecture in U.S. Pat. No. 4.972.338, issued in 1990 to Craw 
ford and assigned to Intel Corporation of Santa Clara, Calif. 
ATLB is a small cache of the most recently used translations 
in the page tables. Inasmuch as the page tables are usually 
stored in main memory, accessing the page table for each 
memory reference adds significant overhead to each refer 
ence and slows the system down. Since each page table 
translation or entry covers 4K memory bytes, relatively few 
page table entries need to be cached by the TLB for a high 
hit rate and improved performance for most programs. 
The term “virtual address” is often used rather loosely to 

refer to any address except the physical address. The physi 
cal address is output from the paging unit and is the actual 
address in memory of a datum. When both segmentation and 
paging are combined, a user program generates an "effective 
address", which is then translated by the segmentation unit 
to a "linear address". The linear address is then translated by 
the paging unit or a TLB to the "physical address". Some 
times the effective address and the linear address are referred 
to as virtual addresses. 

TLB SUB-PAGE FIELDS FOR BOUNDS 
COMPARE LOGIC-FIG. 3 

FIG. 3 shows in detail an embodiment for a TLB with 
sub-page validity. The upper 20 bits of the 32-bit linear and 
physical addresses are stored in fields 66, 68, as in prior-art 
TLB's. Attributes are stored in attributes field 70. Two page 
offset bounds fields 82, 84 are provided that contain the 
12-bit page offset of the boundary of the valid portion of the 
page, for partially-valid pages. Two control fields 86, 88 
enable page offset bounds fields 82, 84, respectively. Each 
control field 86, 88 is one bit. When the control bit is high, 
comparison of the corresponding offset bounds field to the 
offset of the current linear address is enabled. 
Two page offset bounds fields are provided in this 

embodiment for efficient encoding of pages with two events, 
which occur for small segments that lie entirely within a 
single page, program breakpoints, and faulty memory loca 
tions. These are typically small blocks within a page. Thus 
by having two page offset bounds fields, the starting and 
ending addresses for the small block may be specified. This 
is especially useful when multiple breakpoints occur within 
one page, as will be described in detail later. 
The page offset bounds fields 82, 84 contain enough bits 

to specify the page offset down to the desired granularity. 
Thus for a 4K-byte page, which has 12 bits of address offset, 
32-bit aligned word granularity requires that 10 bits be 
stored in each page offset bounds field 82, 84, while full 
byte-granularity requires that a full 12-bit offset address be 
stored in each page offset bounds field 82, 84. 

Sub-page logic 100 includes comparison logic 90 which 
outputs a one to AND gate 94 when the 12-bit offsetportion 
of the current linear address is less than the 12-bit offset 
bound stored in field 82. If the first control bit stored in 
control field 86 is also enabled (high), then an error will be 
signaled on bounds error line 99 from OR gate 98. Thus the 
first comparison signals an error when the linear address is 
below the first offset bounds. 
The opposite type of comparison is performed for the 

second offset bounds field. Comparison logic 92 outputs a 
one to AND gate 96 when the 12-bit offset portion of the 
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current linear address is greater than the 12-bit offset bound 
stored in field 84. If the second control bit stored in control 
field 88 is also enabled (high), then an error will be signaled 
on bounds error line 99 from OR gate 98. The second 
comparison thus signals an error when the linear address is 
below the first offset bounds. 

Table 1 shows the encoding of control bits 86.88 and how 
the 12-bit offset of the linear address is compared to the 
offset bounds fields. In Table 1. “y” refers to the value stored 
in first offset bounds field 82, while "z' refers to the value 
stored in second offset bounds field 84. Proper programming 
of these offset bounds fields and their control bits allows for 
checking the lower bound of the valid block, or checking the 
upper bound of the block. Comparison for both fields may 
be enabled to allow for checking of very small blocks that 
lie entirely within a single page. 

TABLE 1. 

Encoding of Partial Page Control Bits 

Control Bits 86, 88 Error if Use 

OO Never Clear Page, No Checking 
O 2. Block Upper Bound 
10 <y Block Lower Bound 
11 >z OR <y Block Within a Page 

Several types of events may be supported with two offset 
bounds and the encoding of Table 1. With the control bits 86, 
88 set to "00", the entire page is valid. An encoding of “10” 
specifies that all addresses greater than the second offset 
bound 84 are valid, as when a segment or block begins 
within a page. The "01" encoding may be used for the end 
of a segment or block, when the upper bound ends within a 
page. Thus the first offset bound 82 specifies the upper limit 
of validity within the page. Encoding “11” specifies validity 
between the two offset bounds 82,84, which may be used to 
specify a segment or block that lies entirely within a single 
page. 

OVERVIEW OF INVENTION 

A typical RISC CPU, as shown in FIG. 2, contains only 
one register for data operand breakpoints, and one for 
instruction breakpoints. Four CISC breakpoint registers 
(FIG. 1) can be emulated with the invention, which uses one 
of the single RISC breakpoint registers and the TLB. A 
standard TLB could be used for case (1) or (2) below, but the 
modified TLB of FIG. 3 is used for case (3), when two or 
more breakpoints fall within a page. 
Three cases or possible configurations of the x86 CISC 

breakpoint registers are possible: 
(1) Only one of the four x86 CISC breakpoint registers is 

enabled. 

(2) Multiple x86 CISC breakpoints are enabled. Each 
breakpoint falls on a different 4 Kbyte page. 

(3) Multiple x86 CISC breakpoints are enabled. Multiple 
breakpoints fall on the same 4 Kbyte page. 
These three cases are handled separately. For the simplest 

case (1), the breakpoint address is simply loaded into the 
single RISC breakpoint register-either DABR or LABR. In 
all cases a basic rule is followed-that a breakpoint may 
have a page translation entry in the TLB only if that 
breakpoint is loaded into the single RISC breakpoint register 
(DABR or IABR). 

Case (2) is more complex, having multiple breakpoints 
that must share a single breakpoint register. Since there is 
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8 
only one RISC breakpoint register, only one breakpoint can 
be loaded into this RISC register. The other breakpoint 
addresses are stored in emulation memory. These other 
breakpoints are prevented from triggering by removing their 
page entry from the TLB. Only the single "active' breakpoint 
in the RISC breakpoint register may have its page entry in 
the TLB; the other breakpoints are "disabled' by not having 
a valid entry in the TLB. For these 'disabled' breakpoints to 
trigger, their page entry must first be loaded into the TLB 
and the RISC breakpoint register overwritten with the "dis 
abled' breakpoint from emulation memory. The breakpoint 
that was "active' in the RISC breakpoint register must have 
its TLB entry invalidated. A debug processing routine is 
added to the page fault routine to shuffle the breakpoints 
between the single RISC breakpoint register and emulation 
memory. 

Case (3) is by far the most complex. Multiple breakpoints 
exist on a single page. The method for case (2) of swapping 
pages will not work when two breakpoints are on the same 
page. 
The TLB allows a page entry to specify that only a portion 

of a page is valid instead of the entire 4. Kbytes. The page 
with multiple breakpoints is divided into non-overlapping 
sub-pages or portions, each portion containing a single 
breakpoint. Only one of the portions is loaded into the TLB 
at any time; the breakpoint in this loaded portion is "active' 
and copied into the single RISC breakpoint register. The 
other breakpoints are left in emulation memory and "dis 
abled by not having their portion(s) loaded into the TLB. 
Otherwise, the method for case (2) is used, or may be 
combined with case (3)'s method when multiple breakpoints 
occur on one page, and other breakpoints occur on other 
pages. 

SOFTWARE HANDLER ROUTINE 

These methods for cases (1), (2), and (3) are contained in 
two software routines shown in FIG. 4: 

1. A debug processing routine in the TLB page miss 
handler or routine 300. 

2. A debug load or setup routine 200 that emulates x86 
instructions that alter the contents of the debug registers. 

FIG. 4 is a diagram of a physical memory space 78 which 
contains a user program 110, an operating system 112, and 
emulation handler routines 117. Emulation handler routines 
117 include several routines activated for different reasons. 
These routines include TLB page miss routine 300 and 
debug register load routine 200, detailed in FIGS. 5, 10. 
Page tables 114 reside near operating system 112, while 
debug register setup memory area 135 resides near emula 
tion handler routines 117. 

DEBUG PROCESSING FORTLB PAGE MESS - 
FIG.S 

FIG. 5 is a debug processing routine executed when a 
page misses in the TLB. Debug page miss routine 300 is 
called or entered from another emulation routine for pro 
cessing page misses and loading translation entries from the 
page tables into the TLB. When debug breakpointing is 
disabled, routine 300 is quickly exited, reducing the impact 
on performance. 
The first step 310 is to determine if breakpointing is 

enabled. This can be determined by reading a global enable 
bit in emulation memory or in the condition register. Higher 
performance is achieved by defining a bit in the RISC CR 
register 32 as a "debug active' bit, as described for FIG. 6. 
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Should debug be disabled, which is the normal condition for 
most programs, then debug routine 300 is exited (step 320), 
and the TLB miss routine can freely load the new page entry 
into the TLB. When step 310 determines that debug is 
enabled, then test 330 determines if the new or incoming 
page being loaded into the TLB contains a breakpoint. Test 
330 can be accomplished by successively comparing the 
incoming page's upper page address to each breakpoint 
stored in emulation memory. If this incoming page does not 
contain a breakpoint, then again debug routine 300 may be 
exited, 320, and the incoming page freely loaded into the 
TLB. 

If test 330 determined that the incoming page contained a 
breakpoint, then test 340 is performed to determine if 
multiple breakpoints exist on the incoming page. While test 
340 could be accomplished by comparing the upper or page 
address of each debug register in emulation memory to the 
page address of the incoming page, this would require up to 
four comparisons and memory reads. A more efficient 
approach is to set a "multiple breakpoints perpage' bit in the 
CR condition register when two or more breakpoints exist 
on a page. Test 340 first reads this CRbit, and then compares 
the incoming page address to each breakpoint stored in 
emulation memory if the CR bit is set. If both the CR bit is 
set and the compare reveals that the incoming page is a page 
with multiple breakpoints on it, then the incoming page is 
broken into partial pages or portions, each portion with just 
one breakpoint, step 350. 
The incoming breakpoint is read from the breakpoint 

registers in emulation memory and loaded into the RISC 
breakpoint register, either DABR or LABR, step 360. In step 
370, the whole or partial page is loaded into the TLB. For 
partial pages, the upper and/or lower bound fields are loaded 
and their compare enable bits are set, as described for FIGS. 
3 and 11. The TLB entry that contains the old or "outgoing 
breakpoint that was in the RISC breakpoint register is 
removed from the TLB in step 380. Step 380 can be 
performed by a TLB invalidate entry instruction or 
procedure, such as the PowerPCTM tibie instruction, or by 
over-writing the old TLB entry. 
An alternative to step 310 is to testif multiple breakpoints 

are enabled, instead of testing whether debug is enabled. If 
only one breakpoint is enabled, then there is no need to 
execute the rest of debug routine 300, as the single RISC 
debug register is already loaded with the only breakpoint 
address, and no page management is needed for debug 
processing. The multiple debug breakpoints active' bit in 
the CR register is checked instead of the debug active' bit 
in the CR register. For RISC processors with both a data 
operand and an instruction breakpoint register (DABR and 
IABR), up to one breakpoint of each type (data and 
instruction) may be loaded without requiring debug process 
ing by the TLB miss handler. 

CONDITION CODE REGISTERIDENTIFIES 
DEBUG SETUP 

FIG. 6 is a diagram of the condition register CR on a RISC 
processor with bits defined for aiding debug emulation. CR 
register 32 is a 32-bit register on the RISC CPU die which 
is implicitly accessible by many instructions. For example, 
an addinstruction may set a zero flag in CR register 32 when 
the result is zero. While many bits in CR register 32 are 
defined by the RISC architecture, other bits may be freely 
used. Of these freely-usable bits, the emulation handler 
defines up to three of them for use with debug emulation. 
Debug active bit 32A is set when any debug register is 
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10 
enabled and indicates that debug breakpointing is active. 
Multiple debug bit 32B is set when two or more breakpoints 
are enabled, regardless of where these breakpoints occur. 
Multiple debug per page bit 32C is set when multiple 
breakpoints fall within a single page. Thus the three debug 
bits 33A, 33B, 33C correspond to the three cases or con 
figurations for the CISC debug breakpoint registers. Pro 
gramming the configuration for the emulated debug registers 
into the CR register improves performance by as much as a 
factor of thirty since the access of the on-chip CR register is 
fast compared to an off-chip memory access to read the 
debug configuration in the emulation memory. 

EMULATION OF DEBUG REGISTER SETUP 

The CISC debug breakpoint registers are setup by moving 
binary addresses to these registers one at a time, and by 
enabling these registers by setting bits in the debug control 
register. When any of these debug setup instructions are 
encountered, debug register load routine 200 is initiated to 
emulate the instruction. 

FIG. 7 is a state diagram of the debug setup sequence as 
debug register setup instructions are emulated. At first, no 
debug registers are enabled, and state A is active. A binary 
address is first moved into one of the emulated CISC debug 
registers by copying this binary address to the debug register 
setup area of emulation memory. This debug register is 
enabled by an instruction which sets the enable bit for the 
emulated debug register. While in the prior art this instruc 
tion would physically set a bit in the CISC debug control 
register 14 of FIG. 1, this instruction is emulated, calling the 
debug load routine 200 of FIG. 4. Debug load routine 200 
keeps track of how many of the four debug registers have 
been enabled, and if any two of the breakpoints fall within 
a single page. 

State tracker 40 of FIG. 7 sequences through four states: 
A, B, C, D as debug registers are enabled or disabled, 
keeping track of the number of registers enabled and if 
multiple breakpoints are on a page. States B, C, D corre 
spond to the three cases (1), (2), (3) respectively of possible 
configurations of the debug registers as described above in 
the overview section. 
At first, no debug breakpoints are enabled. When the first 

breakpoint is enabled, the attempted execution of the debug 
enable instruction which sets the enable bit in the debug 
control register causes debug load routine 200 to be acti 
wated: State tracker 40 advances from state A to state B, 
indicating that one debug breakpoint has been enabled. The 
next attempt to execute the debug enable instruction will 
enable a secondbreakpoint, and state tracker 40 will usually 
advance from state B to state C. State C indicates that 
multiple breakpoints are enabled, but on different pages. A 
test will be performed by debug load routine 200 to deter 
mine if the newly-enabled debug breakpoint lies on the same 
page as another breakpoint. If so, then multiple breakpoints 
exist on the same page, and state D rather than state C will 
be entered from state B. Alternatively, if two or more 
breakpoints have already been enabled, and the new break 
point lies in the same page as an existing breakpoint, then 
stage D will be entered from state C. 

Other instructions will disable existing breakpoints, also 
causing debug load routine 200 to be activated. States D, C, 
and B may then be exited for states C, B, or A, as indicated 
by the dotted arrows of FIG.7. While state tracker 40 could 
be implemented using flip-flops on the CPU die, it is 
preferably coded into debug load routine 200, with the 
current state being stored in emulation memory. 
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STORAGE STRUCTURES IN EMULATION 
MEMORY FIG. 8 

FIG. 8 shows the storage structures in emulation memory 
that are maintained by debug load routine 200 and TLB miss 
routine 300. Emulation memory includes debug register 
setup memory area 135 for storing information on the setup 
of the emulated CISC debug registers. The current state 41 
of state tracker 40 is stored as a simple 2-bit binary number 
in memory area 135. 
The breakpoint addresses for the four x86 CISC debug 

registers which are being emulated are stored in debug 
emulation table 42 of memory area 135. Four valid bits 44 
are set or cleared to indicate if each of the four debug 
breakpoints in table 42 are enabled. Alternatively, a separate 
debug control register 46 may be set up in memory area 135. 

DEBUG REGISTER LOAD ROUTINE FIG. 9 

FIG. 9 is a routine that emulates a debug register load 
instruction. When an instruction is decoded that enables one 
of the four CISC debug breakpoint registers, debug load 
routine 200 is activated. The condition register CR is read 
for the debug active, multiple debug, and multiple debugs 
per page bits. The debug tracker 40 is advanced to the next 
state in step 220, as described in FIG. 7. It may be necessary 
in step 220 to compare the page address of the incoming 
breakpoint to the page addresses of the existing, already 
loaded breakpoints to determine if the incoming breakpoint 
falls on the same page as an existing breakpoint. The CR 
register is written in step 230 to update the debug active, 
multiple debug, and multiple debugs per page bits to cor 
respond to the new state of state tracker 40. The new or 
incoming breakpoint address is written to one of the four 
debug address register DB0-DB4 in the debug area 135 of 
emulation memory, or the valid bit for that register is set or 
cleared, step 240. 
The valid bits for the four debug address registers are 

checked, step 250, to determine if this is the first breakpoint 
to be programmed. If so, then the breakpoint address is 
copied to the RISC breakpoint register (DABR or IABR) on 
the CPU die, step 260. Otherwise, the TLB must be searched 
for any page entries having a page address matching the 
incoming breakpoint. The PowerPCTM RISC architecture 
provides a TLB invalidate entry instruction (tlbie) which 
invalidates an entry in the TLB that matches the address 
supplied. Thus a simple tibie instruction may be executed. 
These matching entries must be invalidated, step 270. A full 
TLB flush could be substituted for step 270 with a loss of 
performance. 

MULTIPLE BREAKPOINTS ON A PAGE-FIG. 
O 

When two or more breakpoints lie on the same page, the 
TLB miss routine 300 is modified to load a partial page into 
the TLB rather than the whole page. The upper and lower 
bounds of the partial page are computed and loaded into the 
bounds fields of the TLB entry for the partial page. The 
bounds checking enable bits are also set, as described for 
FIG. 3. These upper and lower bounds can be pre-computed 
by the debug load routine 200 and stored in the debug area 
135 of emulation memory, or the bounds can be computed 
when the page is loaded during step 370 of routine 300. 

FIG. 10 shows partitioning of a page which contains three 
breakpoints into partial pages. The 4-Kbyte page has offset 
addresses within the page ranging from 0x0000 to 0x0FFF 
hex. At offset 0x0123 is the breakpoint programmed into 
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12 
CISC breakpoint register D1. Offset 0x0400 is the break 
point programmed into CISC breakpoint register DB0, while 
offset 0x0855 is the breakpoint programmed into CISC 
breakpoint register DB2. 

This 4-Kbyte page is divided into three non-overlapping 
partial pages, each partial page containing just one break 
point. The first partial page contains the first (DB1) break 
point at 0x0123. The lower bound is set to the lowest offset 
address on the page, 0x0000, while the upper bound is set to 
the last offset address before the next breakpoint at 0x400. 
Thus the first partial page only contains the first breakpoint 
at 0x0123, with the lower and upper bounds set to 0x0000 
and 0x03FF. These values would be programmed into the 
bounds fields 84, 82 in the TLB entry when this partial first 
page is loaded into the TLB. 
The second partial page contains the second breakpoint at 

offset 0x0400. The lower bound is set to this breakpoint's 
address, 0x0400, while the upper bound is set to the last 
offset address before the next (third) breakpoint at 0x0855. 
Thus only addresses between 0x0400 and 0x0854 will be 
valid for the second partial page, and other offset addresses 
on this page will cause a page fault when the second partial 
page is loaded in the TLB. Another partial page will be 
loaded into the TLB when the offset is outside the resident 
second partial page. 
The third partial page contains the third breakpoint (DR2) 

at 0x0855. The lower bound is 0x0855 while the upper 
bound is the last offset on the page. 0x0FFF, since there are 
no more breakpoints on this page. 
The first, second, or third partial page is selected for 

loading into the TLB based on the page faulting address. If 
the address of the page fault lies within the second partial 
page, then the second partial page is loaded into the TLB. 
Likewise for the first or third partial page. The offset address 
locations of the breakpoints in registers DB0, DB1, and DB2 
is for illustration only, and can easily be in a different order. 

EXAMPLE OF DEBUG LOADING FIGS. 11A, 
11B 

FIGS. 11A, 11B show an example of how the storage 
structures in the debug setup area 135 of the emulation 
memory are modified as debug registers are loaded and 
enabled. This example shows the worst-case of all break 
points being data operand breakpoints, so data address 
breakpoint register DABR 30 is shown on the RISC CPU 
die. The TLB 16 is also shown as having five page entries 
for simplicity. Addresses are shown in DABR30, TLB 16, 
and debug emulation table 42 as 5-digit hexadecimal 
addresses. Since the page size is 4. Kbytes, the lower three 
hex digits are the offset address within a page, while the 
upper two hex digits are the page number or address. These 
5-digit hex addresses are sometimes written with an under 
score character to emphasize the separation between the 
page and offset addresses. The address 7C 050 is equiva 
lent to 7C050, having a page address of 7C and an offset 
within the page of 050. 
The debug setup area 135 of emulation memory contains 

debug tracker current state 41, CISC debug emulation table 
42, and valid bits 44 for these four CISC debug breakpoint 
registers DB0, DB1, DB2. DB3. ATLB entry tinder 48 is 
also shown to indicate if any debug breakpoints are in the 
TLB, and if so, what debug breakpoint and which TLB 
location. This TLB entry finder is for illustration and may 
not necessarily be present in emulation memory 48. FIGS. 
11 and 12 show how the data values within these structures 
change as various operations occur. 
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Initially, as shown at the top of FIG. 11A, DABR contains 
00000, while page addresses B8, 4F, 3A, 7C, and 04 are 
stored in entries 0 to 4 of TLB 16. No debug breakpoints 
have yet been enabled, so debug emulation table 42 and 
valid bits 44 are all cleared to zeros. No debug breakpoints 
are currently in the TLB. The current state 41 of the state 
tracker 40 is state A. 

1.)The first operation is to setup the second debug register 
DB1. The breakpoint address 7C 050 is loaded into DB1 
and this CISC emulation register is enabled by setting its 
valid bit 44. This requires two discrete x86 instructions, one 
to move the breakpoint address and the second to enable the 
debug register. 

Since this is the first breakpoint to be enabled, its break 
point address is copied onto the RISC CPU and loaded into 
the single RISC breakpoint register DABR30. The current 
state 41 advances to state B, and the debug active bit in 
condition register CR is set (not shown). A page entry having 
a breakpoint is now present in the TLB, since entry 3 of TLB 
16 already contains page address 7C, which matches break 
point's 7C 050 page address. 

2.) The second operation is to load and enable the first 
debug register DB0 with breakpoint address 01121. Valid 
bits 44 are updated to show both DB0 and DB1 valid, and 
current state 41 advances to state C, indicating that multiple 
debug breakpoints are enabled, but not on the same page. 
The page address for the new breakpoint is 01, which does 
not match any entries in the TLB. DABR30 is not changed. 

3.) The third operation, shown on FIG. 11B, is to setup the 
third CISC debug register DB2. breakpoint address B8 3F8 
is loaded into the third register of debug emulation table 42 
and valid bits 44 are set for three valid breakpoints. The 
current state remains at state C since all three breakpoints 
have different page addresses-01, 7C, and B8. The page 
address for the new breakpoint is B8, which matches entry 
0 in the TLB. Thus TLB entry 0 must be invalidated since 
the new breakpoint is not loaded into the only RISC break 
point register, DABR 30. 

4.) The fourth operation is to load the last (fourth) debug 
register DB3 with breakpoint B8 14C. All valid bits 44 are 
now enabled. State D is entered because both DB2 and DB3 
fall within the same page, the page starting at address 
B8 000. However, page B8 was invalidated in TLB 16 in 
operation 3, do no further changes to TLB 16, or DABR30 
are needed. However, condition register CR is updated to set 
the multiple debugs perpage bit to indicate that case (3) now 
exists. 

5.) The setup of the CISC debug emulation registers is 
now completed. The single RISC breakpoint register 30 
contains the breakpoint for DB1, and entry 3 in the TLB as 
has the DB1 breakpoint. 

EXAMPLE OF DEBUG PROCESSING FIGS. 
12A, 12B, 12C 

FIGS. 12A, 12B, 12C show an example of how the TLB 
and RISC breakpoint register DABR are modified as page 
misses and hits occur. The top of FIG. 12A shows the setup 
of these storage structures after the debug setup of FIGS. 
11A, 11B are completed by operation 5. 

6.) The first memory reference is to address E9 000. No 
entry in TLB 16 matches page E9, so a TLB miss occurs. 
Page E9's page translation entry is loaded into location 4 of 
TLB 16, which might be the least-recently-used location in 
TLB 16. Since none of the breakpoints in debug emulation 
table 42 falls within page E9, no further debug processing is 
needed. 

10 

15 

20 

25 

30 

35 

45 

50 

55 

65 

14 
7.) The next memory reference is to address 7C 050. 

This is a TLB hit, since TLB entry 3 already contains page 
7C. This address, 7G 050 matches the breakpoint address 
in the single RISC breakpoint register DABR 30, so a 
breakpoint is signaled by the RISC CPU. This breakpoint 
can be quickly signaled as the RISC hardware register 
DABR is used to signal the breakpoint. No access of 
emulation memory 135 is needed. 

8.) Memory reference 01 100, on FIG. 12B, is a TLB 
miss since page address 01 is not present in TLB 16. This 
page is loaded into TLB entry 2. A comparison of the 
breakpoint addresses in debug emulation table 42 reveals 
that breakpoint DB0 at address 01121 falls within this new 
page starting at 01000. Thus this new incoming break 
point address 01 121 must be written to DABR 30. The 
incoming breakpoint over-writes the old "outgoing break 
point 7C 050 which was in DABR 30. However, the 
outgoing breakpoint still has its page entry in TLB 16. While 
a search of TLB could be performed to locate the outgoing 
page entry, a TLB invalidate entry instruction, tibie, is 
executed to invalidate the old breakpoint's entry in the TLB, 
which is TLB entry 3. Thus TLB entry 3, which is for page 
7C, is invalidated. The TLB location of the new 'incoming 
breakpoint is TLB entry 2, for debug emulation registers 
DBO. 

9.) Memory reference 01121 hits the TLB for page 
address 01, which is TLB entry 2. This memory reference is 
to the breakpoint address in the RISC breakpoint register 
DABR 30, and thus a breakpoint is signaled. Emulation 
memory is not referenced as the breakpoint is signaled by 
the RISC hardware. 

10.) Memory access to address B8 14C is a TLB miss. 
Since page B8 contains two breakpoints, a partial page entry 
must be loaded into TLB 16. Page B8 is divided into two 
partial pages. Address B8 14C falls within the first partial 
page, and upper and lower bounds of 3F7 and 000 are loaded 
into the bound fields 84, 82 for TLB entry 0 (bound fields are 
not shown in FIG. 12 but are shown in FIG. 3). 
The breakpoint falling within the partial page loaded into 

TLB 16 is B8 14C, stored in emulation memory in debug 
emulation register DB3. This breakpoint address is loaded 
into RISC breakpoint register DABR 30. The outgoing 
breakpoint's TLB entry is located using a tibie instruction 
which invalidates location 2 in the TLB. 

Since the memory reference, B8 14C, is to the incoming 
breakpoint loaded into RISC breakpoint register DABR30, 
a breakpoint will be signaled by the RISC CPU once the 
debug processing routine 200 and the TLB page miss 
routines finish. While the RISC hardware quickly reports the 
breakpoint, the software page miss and debug processing 
routines are relatively slow, and thus the breakpoint will not 
be reported as quickly as when the RISC breakpoint register 
DABR 30 is already loaded. This type of delay should be 
rare, since it will only occur when a jump occurs to the exact 
breakpoint from another page. 

11.) The next memory reference to address B8 100, 
shown on FIG. 12C, is a page hit to the partial page loaded 
by operation 10. 

12.) The next memory reference to address B8.3F7 is 
also a page hit to the partial page loaded by operation 10. 
However, address B8 3F7 is at the upper bound of the 
partial page. 

13.) The next reference is to address B8 400, just a few 
bytes above the last reference in operation 12. This memory 
reference is to the same 4 Kbyte page, and would be a page 
hit is debug processing were not enabled. However, this 
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reference is to the other partial page, and is a miss to the 
partial page currently loaded into TLB location 0 for break 
point DB3. 
A TLB invalidate entry instruction is used to locate the 

outgoingTLB entry at location 0, which is invalidated. The 
incoming partial page contains breakpoint DB2, which is 
loaded into RISC breakpoint register DABR30. The incom 
ing partial page is loaded to entry location 3 in TLB 16, with 
the upper bound field set to FFF and the lower bound field 
set to 3F8, the offset of the incoming breakpoint B8 3F8. 
TLB location 3 holds breakpoint DB2. 

14.) The memory reference B8 3F8 is a page hit for 
location 3, the partial page loaded in operation 13. This 
reference is to the first valid offset on the partial page, which 
is the breakpoint for debug emulation register DB2. Thus the 
RISC hardware detects a match with RISC breakpoint 
register DABR30 and signals the breakpoint. 

15.) Finally memory reference B8 A00 is a page hit to 
the partial page loaded in operation 13. 

ALTERNATE EMBODIMENTS 

Several other embodiments are contemplated by the 
inventors. The invention has been described as using a single 
RISC breakpoint register. However, the invention can easily 
be adapted for two or more breakpoint registers. For 
example, PowerPCTMRISC processors may have two break 
point registers-DABR for data operands and LABR for 
instructions. A simple embodiment is to load DABR when 
the CISC breakpoint is for a data operand, but load LABR 
when the CISC breakpoint is for instructions. The four CISC 
debug breakpoints stored in the emulation memory area may 
be allocated to either LABR or DABR, depending upon the 
type of breakpoint programmed instruction or data operand. 
The state tracker, and four emulated CISC debug registers 
can be duplicated for instruction and data breakpoints. Thus 
both DABR and LABR could be simultaneously used, pos 
sibly increasing performance. ATLB entry finder may be set 
up in emulation memory to aid locating TLB entries for 
removal or invalidation. When several TLB's exist on the 
CPU, then the invention may easily be adapted by ensuring 
that all TLB's in combination do not have more than one 
page containing a breakpoint. 
A page size of 4096 bytes was described with reference to 

the embodiments, but other page sizes and address sizes may 
be easily substituted by one skilled in the art. Many other 
combinations of the embodiments disclosed are possible in 
light of the teachings herein. 
While an embodiment with only two page offset bounds 

fields 82, 84 (FIG. 3) has been explained, it would be 
obvious for one skilled in the art to employ a different 
number of offset bounds fields or a different number of 
encoding control bits 86,88. For example, the encoding may 
be changed for greater than or equal to a page offset bound 
value, and still fall within the spirit of the invention. Addi 
tional control bits may also be added. A "100" encoding 
could specify that the entire page is valid except the region 
between the two offset bounds 82, 84. This is useful for 
watchpoints and disabling faulty memory locations. Any 
reference between the two bounds 82,84 would cause a page 
fault. 
The page with multiple breakpoints was partitioned by 

setting the upper bounds to the breakpoints or the last 
address on the page. Other partitioning methods may be 
used. Higher performance may be achieved by breaking the 
page at intermediate boundaries such as on an aligned 1 
Kbyte boundary. Another partitioning method is to make one 
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or more of the partial pages as large as possible, as was done 
for the first partial page. 

Another embodiment requires no breakpoint register at all 
on the CPU. Pages containing a breakpoint are never loaded 
into the TLB. Only pages without breakpoints are loaded 
into the TLB. All references to pages with breakpoints will 
cause a TLB miss. The TLB miss handler operates as 
described, except that breakpoint pages are not loaded into 
the TLB. At the point that the new partial page would 
otherwise be loaded into the TLB, the TLB miss handler 
must emulate the memory reference causing the page fault, 
or load a special one time TLB entry that will be valid for 
only one reference, after which it will become invalid. The 
one-time TLB entry is described in the parent patent. The 
debug load and TLB miss emulation routines described 
herein may be applied to these other embodiments described 
at length in the parent patent. 
A partial page that does not include the breakpoint can 

also be loaded into the TLB. The on-chip RISC breakpoint 
register is not used in this embodiment. Instead, the partial 
page will have a page fault when the breakpoint's address is 
reached. The page fault routine would then signal the 
breakpoint rather than the CPU's hardware. This embodi 
ment works particularly well when multiple breakpoints 
occur on the same page. 
The TLB miss routine of FIG. 5 may be modified to 

reduce or eliminate the CR bits used. The CISC x86 archi 
tecture has only four debug registers. Thus at most four 
pages could contain breakpoints. The page addresses, the 20 
upper bits of the linear addresses of the breakpoints, are 
stored in emulation memory. These breakpoint page 
addresses are updated by debug setup routine 200 in a 
conventional manner. 
On a TLB miss, test 310 can check the CR bit, or another 

bit in the emulation memory. Test 330, which determines if 
an incoming page has a breakpoint, searches through the 
four breakpoint page addresses for a match. If no match is 
found, then the incoming page does not contain a breakpoint 
and may be freely loaded, step 320. If a match is found, then 
a breakpoint occurs on the incoming page. Another emula 
tion memory location is consulted to determine how many 
breakpoints are on that page. This memory location can 
conveniently be another dimension in the debug or page 
address table. Step 350 is activated if more than one break 
point lies on the page, while step 360 is activated when only 
one breakpoint is in the incoming page. Thus only one CR 
bit is needed, to indicate if any debug breakpoints are 
enabled. 

While an embodiment with four debug breakpoints has 
been described, additional debug registers can easily be 
provided by those skilled in the art. While simply increasing 
the number of breakpoints in the debug emulation table is 
useful, providing an additional level of debugging has some 
particular unexpected advantages. Four debug breakpoints, 
as described, could be used by a user program operating on 
a lower privilege level. Four or eight more debug break 
points could be simultaneously in use by a higher-privilege 
level operating system or system-level debugger. This 
system-level debugger may be used to debug the user 
program which itself is using all four lower-level break 
points. 
The breakpoint may vary in size or width, as is conven 

tionally known. Thus the breakpoint may be one byte to 
about four bytes in size. The invention allows the width of 
the breakpoint to be dramatically increased beyond what is 
Supported in hardware. All breakpoints would trap to the 
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debug processing routine which would checkthe breakpoint, 
which can be of any width. The breakpoint register on the 
CPU die would not be used, but any page containing or 
within a breakpoint would not be loaded into the TLB. 

For example, the video graphics display memory, 64 
Kbytes to 2 Megabytes in width, may be defined as one large 
breakpoint. Any accesses to the display region would 
encounter an emulated breakpoint. This is particularly useful 
for power management. When the wide breakpoint is 
encountered, the operating system is informed that the 
display has been updated or accessed. The display's back 
light could then be turned on, restoring power to the display. 
Thus some surprising, unexpected results such as power 
management are possible with the invention. The emulated 
debug breakpoints are much more flexible and useful than 
the prior-art fixed debug registers. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 
We claim: 
1. A method for emulating a processor having a plurality 

of breakpoint register, using a processor with a single 
breakpoint register for storing just one breakpoint address 
and a translation-lookaside buffer (TLB) having a plurality 
of page entries, the breakpoints being addresses which halt 
execution of a user program when accessed, the method 
comprising the steps of: 

freely loading page entries into the TLB when no more 
than one breakpoint in the plurality of breakpoints is 
enabled; 

when two or more breakpoints in the plurality of break 
points are enabled: 
signaling a page fault when a faulting page does not 
have a translation in the TLB: 

determining if a breakpoint in the plurality of break 
points falls within the faulting page when the page 
fault is signaled, the breakpoint falling within the 
faulting page hereinafter referred to as a first break 
point; 

loading a page entry into the TLB for the faulting page; 
loading the first breakpoint into the breakpoint register 
on the processor when the faulting page contains the 
first breakpoint; 

invalidating any page entries in the TLB other than the 
faulting page entry for pages containing a breakpoint 
in the plurality of breakpoints other than the first 
breakpoint; and 

halting execution of the user program when the user 
program accesses an address matching the breakpoint 
address in the breakpoint register on the processor, 

wherein only one breakpoint in the plurality of breakpoints 
has a page translation entry in the TLB, the only one 
breakpoint being loaded into the breakpoint register on the 
processor when the faulting page's entry is loaded into the 
TL.B. 

2. The method of claim 1 wherein the plurality of break 
points are addresses of data operands, the method further 
comprising the step of: 

comparing the breakpoint address in the breakpoint reg 
ister on the processor to an address of a data operand 
being accessed by the user program and signaling a 
breakpoint and halting the user program when a match 
OCCUS 
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3. The method of claim 1 wherein the plurality of break 

points are addresses of instructions, the method further 
comprising the step of: 

comparing the breakpoint address in the breakpoint reg 
ister on the processor to an address of an instruction 
being fetched for the user program and signaling a 
breakpoint and halting the user program when a match 
OCCTS. 

4. The method of claim 1 further comprising the steps of: 
determining when more than one breakpoint in the plu 

rality of breakpoints falls within the faulting page; 
dividing the faulting page into partial pages when more 

than one breakpoint falls within the faulting page, each 
partial page containing no more than one breakpoint in 
the plurality of breakpoints; and 

loading bounds fields in the TLB when loading the page 
entry for the faulting page when the faulting page 
contains more than one breakpoint, the bounds fields 
defining boundaries of the partial page within the 
faulting page. 

whereby pages may contain multiple breakpoints yet the 
multiple breakpoints share the single breakpoint register on 
the processor. 

5. The method of claim 4 wherein the step of determining 
when more than one breakpoint in the plurality of break 
points falls within the faulting page comprises the steps of: 

reading a multiple-breakpoint bit in a condition register 
on the processor, the multiple-breakpoint bit being set 
when a second breakpoint is enabled in the plurality of 
breakpoints and the second breakpoint falls within a 
page which already contains another enabled break 
point in the plurality of breakpoints; and 

comparing for a match an address of the faulting page to 
an address of the page containing the second breakpoint 
and indicating that more than one breakpoint falls 
within the faulting page when a match occurs and the 
multiple-breakpoint bit in the condition register is set. 

6. The method of claim 5 wherein the step of comparing 
for a match signals a match when an upper portion of the 
address of the faulting page matches a page address for the 
address of the page containing the second breakpoint. 

7. A system for emulating a processor having a plurality 
of breakpoint registers, wherein breakpoints are addresses 
which halt execution of a user program when accessed, the 
system comprising: 

a central processing unit (CPU) comprising: 
a breakpoint register for storing a single breakpoint 

address which halts execution of a user program 
when encountered; 

address compare means, receiving a linear address 
generated by execution of the user program and 
coupled to the breakpoint register, for comparing the 
linear address to the breakpoint address and signal 
ing a breakpointfault when an address match occurs; 

a translation-lookaside buffer (TLB), receiving the lin 
ear address, the TLB comprising a plurality of page 
translation entries for pages in memory having a 
fixed number of offset addresses, each page transla 
tion entry comprising a linear address field and a 
physical address field, the TLB outputting the physi 
cal address field for a matching entry when a portion 
of the linear address matches the linear address field 
in the matching entry; 

a memory having a plurality of storage locations addres 
sable by a plurality of physical addresses, the memory 
having: 
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a first portion for storing a debug table comprising a 
plurality of debug entries each for storing a break 
point address; and 

a second portion for storing an emulation handler 
routine, the emulation handler routine including: 
means for copying a breakpoint address from one of 

the debug entries in the debug table to the break 
point register on the CPU; 

invalidation means for invalidating a translation 
entry in the TLB containing a breakpoint address 
stored in the debug table but not stored in the 
breakpoint register on the CPU; 

wherein only one breakpoint from the debug table in 
memory has a page translation entry in the TLB, the only 
one breakpoint being loaded into the breakpoint register on 
the processor by the emulation handler routine. 

8. The system of claim 7 wherein the CPU further 
comprises: 

a bound field in the matching entry in the TLB, the bound 
field containing a bound for a partial page; 

bounds checking means, receiving the bound from the 
matching entry of the TLB, for comparing a portion of 
the linear address to the bound, signaling a page fault 
if the linear address is outside the bound for the partial 
page. 

9. The system of claim 8 wherein the emulation handler 
routine further comprises: 

partial page loading means for loading the bound field of 
the matching entry when the page translation entry is 
for a page containing multiple breakpoints, the page 
being divided into partial pages each containing one 
breakpoint. 

10. The system of claim 7 wherein the breakpoint register 
stores a single breakpoint address for a data operand and 
wherein the plurality of breakpoints are breakpoints for data 
operands. 

11. The system of claim 10 wherein the breakpoint 
register is a RISC data breakpoint register and wherein the 
plurality of breakpoints are four CISC breakpoints. 

12. The system of claim 10 wherein the breakpoint 
register is a RISC data breakpoint register and wherein the 
plurality of breakpoints are eight CISC breakpoints arranged 
in two privilege levels. 

13. The system of claim 7 wherein the breakpoint register 
stores a single breakpoint address for an instruction and 
wherein the plurality of breakpoints are breakpoints for 
instructions. 

14. The system of claim 13 wherein the breakpoint 
register is a RISC instruction breakpoint register and 
wherein the plurality of breakpoints are four CISC break 
points. 
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15. The system of claim 14 wherein the CPU further 

comprises: 
a data breakpoint register for storing a single data break 

point address which halts execution of a user program 
when a data operand stored at the single data break 
point address is accessed; 

second address compare means, receiving the linear 
address generated by execution of the user program and 
coupled to the data breakpoint register, for comparing 
the linear address to the single data breakpoint address 
and signaling a data breakpoint fault when an address 
match occurs; 

whereby instruction breakpoints are stored in the breakpoint 
register but data operand breakpoints are stored in the data 
breakpoint register. 

16. The system of claim 15 wherein the plurality of 
breakpoints include data operand breakpoints and instruc 
tion breakpoints, and wherein the debug table includes data 
and instruction breakpoints. 

17. The system of claim 7 wherein the first portion of the 
memory further comprises a valid table for storing valid bits 
indicting which debug entries in the debug table are enabled. 

18. A method for emulating a processor having a plurality 
of breakpoint registers, using a processor with no breakpoint 
register and a translation-lookaside buffer (TLB) having a 
plurality of page entries, the breakpoints being addresses 
which halt execution of a user program when accessed, the 
method comprising the steps of: 

freely loading page entries into the TLB when no break 
point in the plurality of breakpoints is enabled; 

when one or more breakpoints in the plurality of break 
points are enabled: 
signaling a page fault when a faulting page does not 

have a translation in the TLB; 
determining if a breakpoint in the plurality of break 

points falls within the faulting page when the page 
fault is signaled, the breakpoint falling within the 
faulting page hereinafter referred to as a first break 
point; 

loading a page entry into the TLB for the faulting page 
when the faulting page contains no breakpoint; 

not loading a page entry into the TLB but emulating a 
memory access for the faulting page when the fault 
ing page contains the first breakpoint; and 

halting execution of the user program when the user 
program accesses an address matching the breakpoint 
address, 

wherein no breakpoint in the plurality of breakpoints has a 
page translation entry in the TLB. 
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