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57 ABSTRACT 

A computer system emulates segment bounds checking with 
a paging System. Pages entirely within a segment are des 
ignated as clear pages, while the first and last pages 
containing segment bounds may be partially-valid pages. 
The computer system has a memory with a segment descrip 
tortable and an active segment descriptor cache. The active 
segment descriptor cache holds a copy of the segment 
descriptors for the active segments in a central processing 
unit (CPU). The active segment descriptor cache also hold 
the first and last clear page numbers and the first and last 
linear address offsets for the active segment. A software 
segment load routine copies portions of the segment descrip 
tor from the segment descriptor table to the active segment 
descriptor cache when a user program loads a new segment. 
Only the segment base address is copied to the CPU die; the 
segment limit and selector need not be stored on the CPU 
die. The CPU has a translation-lookaside buffer (TLB) that 
includes bounds fields and a comparator for signaling when 
an offset portion of a linear address is outside the bound on 
a page. ATLB miss routine compares the linear address to 
the first and last clear pages in the active segment descriptor 
cache and loads a fully-valid page if the linear address is 
between the first and last clear pages, but loads the bounds 
field with the page offset of the segment bound if the linear 
address is to a partial page at the bounds of the segment. 

20 Claims, 17 Drawing Sheets 
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TRANSLATOR HAVING SEGMENT BOUNDS 
ENCODNG FOR STORAGE IN ATLB 

BACKGROUND OF THE INVENTION-- 
RELATED APPLICATIONS 

This application is a continuation in part (CIP) of "Emu 
lation of Segment Bounds Checking Using Paging with 
Sub-Page Validity”, U.S. Pat. No. 5,440,710, U.S. Ser. No. 
08/207,857 filed Mar. 8, 1994, assigned to the same 
Assignee and with at least one common inventor. This 
application is also related to "Emulation of Program Watch 
point Checking Using PagingWith Sub-Page Validity". U.S. 
Pat. No. 5,598.593, assigned to the same Assignee and with 
at least one common inventor. This application is further 
related to "Method for Debug Emulation of Multiple Break 
points by Page-Partitioning Using a Single Breakpoint 
Register”, U.S. Ser. No. 08/436,136, also assigned to the 
same Assignee and with at least one common inventor. 

BACKGROUND OF THE INVENTION-FIELD 
OF THE INVENTION 

This invention relates to address translation handlers, and 
more particularly for methods to emulate segment bounds 
checking with a paging system. 

BACKGROUND OF THE INVENTION-- 
DESCRIPTION OF THE RELATED ART 

Some computer architectures, such as for RISC or 
reduced instruction set computers, employ paging without 
segmentation, since paging can be simple to implement. 
However CISC (complex instruction set computer) archi 
tectures employ both segmentation and paging. One such 
architecture is the x86 architecture, at present embodied in 
CPU's such as the 386, 486, and PentiumTM manufactured 
by Intel Corporation of Santa Clara, Calif., and others. 

In a paging system, a page table defines the mapping or 
translation between a program or virtual address generated 
by the user's program, and a physical address of a location 
in memory. Physical memory is divided into many pages, 
with each page being the same size, typically 4096 or 4K 
bytes. Each page begins and ends on a "page boundary". 
which is always a multiple of the page size, 4K bytes. 
Definitions 
A virtual address is composed of two parts: the lower 12 

bits form the address within a page, or page offset, while the 
upper address bits determine which page is accessed. The 
upper bits of the virtual address are the virtual page number, 
and these upper bits are translated and replaced with a 
physical page number. The virtual page number is translated 
to a physical page number by either a page table in main 
memory, or by a cache of the page table such as a 
translation-lookaside buffer (TLB). The physical address is 
thus composed of the translated page number and the 
un-translated offset. 

Page tables and TLB's are well-known and are discussed 
more fully with respect to the x86 architecture in U.S. Pat. 
No. 4972,338, issued in 1990 to Crawford and assigned to 
Intel Corporation of Santa Clara, Calif. A TLB is a small 
cache of the most recently used translations in the page 
tables. Inasmuch as the page tables are usually stored in 
main memory, accessing the page table for each memory 
reference adds significant overhead to each reference and 
slows the system down. Since each page table translation or 
entry covers 4K memory bytes, relatively few page table 
entries need to be cached by the TLB for a high hit rate and 
improved performance for most programs. The term “virtual 
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2 
address” is often used rather loosely to refer to any address 
except the physical address. The physical address is output 
from the paging unit and is the actual address in memory of 
a datum. When both segmentation and paging are combined, 
a user program generates an "effective address", which is 
then translated by the segmentation unit to a "linear 
address”. The linear address is then translated by the paging 
unit or a TLB to the "physical address". Sometimes the 
effective address and the linear address are referred to as 
virtual addresses. 

PRIOR-ART SEGMENTATION AND PAGING 
HARDWARE FIG. 1 

FIG. is a block diagram of address generation in a 
typicalx86 processor, which includes both segmentation and 
paging. Address generate unit 30 calculates a virtual or 
effective address 32 from address components indicated by 
an instruction being processed. Address generate unit 30 or 
other decode logic (not shown) indicates which segment is 
being referenced by the instruction and selects one segment 
descriptor 34 in a segment descriptor register array 33. The 
selected segment descriptor 34 includes a base address field 
which outputs the base or starting address of the selected 
segment on line 36, and a limit or upper bound which is 
outputted on line 40. Effective address 32 is added to the 
base address 36 in segment adder 42, to produce a linear 
address 38. The segment adder 42 must be a full 32-bit adder 
in the x86 architecture because segments can begin and end 
on any boundary, down to single-byte granularity. 

Subtractor 44 subtracts the effective address 32 from the 
limit 40. If a negative value results, then the effective 
address exceeds the limit and a segment overrun error is 
signaled. A second adder/subtractor could be used to check 
the lower bound of the segment; however if the lower bound 
is always effective address 0, then the segment adder 42 can 
be used for the lower bound check. If the result is a negative 
number then the lower bound has been violated. Thus the 
negative flag or the sign bit may be used for lower bound 
checking. Comparators may also be employed for bounds 
checking. 

Linear address 38 is translated to a physical address by 
translation-lookaside buffer or TLB 46, which is a small 
cache of the page translation tables stored in main memory. 
TLB 46 translates the upper 20 bits of the linear address by 
searching the associative TLB cache for a match, and if one 
is found, then replacing these upper 20 bits with another 20 
bits stored in the TLB 46. 

If the linear address is not found in the TLB, then a miss 
is signaled to the translator 48, which accesses the page 
tables in main memory and loads into the TLB the page table 
entry that corresponds to the linear address. Future refer 
ences to the same page will "hit" in the TLB, which will 
provide the translation. Translator 48 may be implemented 
entirely in hardware, entirely in software, or in a combina 
tion of hardware and software. 

PRIOR-ART SEGMENT TABLES & 
REGISTERS-FIG. 2 

FIG. 2 illustrates the communication between a CPU and 
memory for Supporting segmentation. ALU 30, or an address 
generate unit, indicate which segment is being accessed 
when an effective address is sent to segment adder 42. The 
segment number selects a descriptor entry in segment 
descriptor register array 33. The segment's base address is 
then sent to segment adder 42 and added to the effective 
address. The resulting linear address is outputted to TLB 46, 
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which translates the linear address to physical address 50. 
Physical address 50 is used to access memory 12. 
CPU 10 is limited in the number of segment descriptors 

that may be stored in segment descriptor register array 33. 
Typically only six segments may be cached in array 33 on 
the die of CPU 10. Segment descriptor table 14 in memory 
12 stores descriptors for many other segments. Other seg 
ment descriptor tables may also be provided in memory 12. 
While the segment number is sufficient to identify one of the 
six segments stored in array 33 on CPU 10, other segments 
are identified by a segment selector. A segment selector 
includes an index into Segment descriptor table 14 to locate 
one particular descriptor. In the x86 architecture, a global bit 
in the segment selector determines if a local or a global 
segment descriptor table is used, allowing two segment 
descriptor tables to be "accessible” at any given time. 

PRIOR-ART SEGMENT DESCRIPTORS AND 
CACHE-FIG. 3 

FIG. 3 highlights the relationship between data structures 
on the CPU die and in memory for segmentation. In 
memory, each segment descriptor contains a segment base 
address, a segment limit, which together define the bounds 
of a segment, and attributes. Each segment descriptor table 
may hold up to 8K entries, and there may be several 
descriptor tables. 
On the CPU die, a cache of six active segments is kept. 

The segment selector is stored in a segment register while 
the descriptor is retrieved from memory and cached in an 
active segment descriptor cache. Each TLB entry contains a 
linear address field that is compared to a linear address 
output from the segmentation unit. The TLB outputs a 
physical address and paging attributes from a matchingTLB 
entry. 
Objects of the Invention 
What is desired is to emulate segment bounds checking 

with a paging system. It is desired to emulate CISC-style 
segmentation with a simple RISC-type paging system. Emu 
lation routines are desired to emulate instructions that load 
a new segment. Emulation routines are also desired to 
properly handle a page miss when the page lies within a 
segment. 

SUMMARY OF THE INVENTION 

A system for emulating segmentation on a processor with 
page-address translation has a central processing unit 
(CPU). The CPU has a segment register for storing a base 
address of an active segment. The active segmentis accessed 
by a user program executing on the CPU. The segment 
register does not store a limit for the active segment. In some 
aspects of the invention the segment register is a general 
purpose register (GPR). 
A linear address generation means receives an identifier 

for the active segment from the user program, and selects the 
segment register containing the active segment and adds the 
base address of the active segment to an address from the 
user program. The linear address generation means outputs 
a sum as a linear address. A translation-lookaside buffer 
(TLB) receives the linear address from the linear address 
generation means. The TLB has a plurality of page transla 
tion entries for pages in memory having a fixed number of 
offset addresses, with each page translation entry having a 
linear address field and a physical address field. The TLB 
outputs the physical address field for a matching entry when 
a portion of the linear address matches the linear address 
field in the matching entry. 
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4 
Amemory has a plurality of storage locations addressable 

by a plurality of physical addresses. A first portion of the 
memory stores a segment descriptor table comprising a 
plurality of segment descriptors, each having attributes, a 
base address, and a limit for a segment. A second portion of 
the memory stores an active segment descriptor cache which 
has a plurality of entries for active segments loaded in the 
CPU for access. The identifier for the active segment selects 
a selected cache entry for the active segment. Each entry has 
a copy from the segment descriptor table of the attributes of 
one of the active segments. Each entry also has a first clear 
page field indicating the address of a first clear page in the 
active segment. The first clear page has all offset addresses 
within the page being valid for access. A first linear address 
field in each entry indicates a first linear address for the 
active segment. The segment's limitis not stored on the CPU 
but is only stored in the memory. 

Infurther aspects an emulation handler means is executed 
on the CPU. It checks for segment bounds violations of 
linear addresses for pages not having all offset addresses 
within the page valid. Thus segment bounds are checked 
only for pages not having all offset addresses within the page 
valid, while clear pages with all offset addresses valid are 
not checked for segment bounds violations. 
A bound field in the matching entry in the TLB contains 

a bound for the active segment. A segment bounds checking 
means receives the bound from the matching entry of the 
TLB, and compares a portion of the linear address to the 
bound. Signaling a segment bound violation if the linear 
address is outside the bound for the active segment. The 
segment bounds checking means is disabled when the 
matching entry contains a clear page with all offsets within 
the page valid for access by the active segment. Thus 
segment bounds are checked only for pages not having all 
offset addresses within the page valid, while clear pages with 
all offset addresses valid are not checked for segment bounds 
violations. 

In still further aspects of the invention each entry in the 
active segment descriptor cache also has a last clear page 
field indicating the address of a last clear page in the active 
segment. The last clear page has all offset addresses within 
the page valid for access. Alastlinear address field indicates 
a last linear address for the active segment. 

Other aspects of the invention include methods for emu 
lating a segment load by a CPU. A portion of the segment 
table entry is copied to an active segment descriptor cache 
in the memory. A base address from the segment table entry 
is copied to a segment register on the CPU. Afirst clear page 
(FCP) number identifying a first clear page for an active 
segment is generated. The first clear page is a first page in 
the active segment with all offset addresses within the page 
valid for access by the active segment. 

Other aspects of the invention include a method for 
loading a translation-lookaside buffer (TLB) on a central 
processing unit (CPU). A first clear page number and a last 
clear page number are read from an entry in the active 
segment descriptor cache. A page number portion of a linear 
address is compared to the last clear page number. The TLB 
is loaded with a clear page translation entry under appro 
priate conditions. 

BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 is a block diagram of address generation in a 

typical x86 processor, which includes both segmentation and 
paging. 

FIG. 2 illustrates the communication between a CPU and 
memory for supporting segmentation. 
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FIG. 3 highlights the relationship between data structures 
on the CPU die and in memory for segmentation. 

FIG. 4 shows a large segment in physical memory space. 
FIG. 5 is an enlarged view of the segment boundaries. 
FIG. 6 highlights data structures in memory and on the 

CPU die for emulation of segmentation. 
FIG. 7 is another diagram of the location of segment 

information in the system. 
FIG. 8 is a simplified diagram of the address generation 

hardware on the RISC CPU. 
FIG. 9 shows in detail a preferred embodiment for a TLB 

entry. 
FIG. 10 is a hardware embodiment for generating the first 

and last clear page and linear address fields. 
FIGS. 11A and 11B show the steps in a routine that 

emulates segment loading. 

5 

15 

FIGS. 12, 12A, 12B detail the steps in a TLB miss 
emulation routine. 

FIG. 13 is an emulation subroutine 202 to invalidate TLB 
entries for an old segment being unloaded. 

FIG. 14 is a diagram of a physical memory space which 
contains a user program, an operating System, and emulation 
handler routines. 

DETALED DESCRIPTION 

The present invention relates to an improvement in 
address generation. The following description is presented 
to enable one of ordinary skill in the art to make and use the 
invention as provided in the context of a particular applica 
tion and its requirements. Various modifications to the 
preferred embodiment will be apparent to those with skill in 
the art, and the general principles defined herein may be 
applied to other embodiments. Therefore, the present inven 
tion is not intended to be limited to the particular embodi 
ments shown and described, but is to be accorded the widest 
scope consistent with the principles and novel features 
herein disclosed. 

This is a continuation-in-part of (CIP) of "Emulation of 
Segment Bounds Checking using Paging with Sub-Page 
Validity”, U.S. Pat. No. 5.440,710 U.S. Ser. No. 08/207,857 
filed Mar. 8, 1994, hereby incorporated by reference. Addi 
tional background information on segmentation and paging 
is provided in the parent patent. 

Several embodiments of a RISC-type paging system 
adapted for emulation of segment bounds checking are 
presented in the parent, U.S. Pat. No. 5.440,710. The basics 
of a software emulation routine was presented. However, 
more efficient procedures to implement the emulation of 
segmentation are desired. Novel emulation routines and data 
structures have been invented for use with a CPU having a 
RISC-type paging system. 

CONCEPT OF CLEAR PAGES-FIGS. 4-5 

The parent patent first disclosed that segment bounds need 
only be checked for pages that contain a segment boundary. 
For large segments, only the first page and the last page need 
to be checked for segment boundary violations; pages 
entirely within the large segment do not need to be checked 
at all for segment bounds violations. Pages entirely within a 
large segment are called "clear” pages. 

FIG. 4 shows a large segment 14 in physical memory 
space 78. Segment 114 begins at the segment base on page 
3, and ends at the segment limit on page 10. Thus only pages 
3 and 10 need to be checked for segment bounds violations. 
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6 
Pages 3 and 10 are partially-valid pages for segment 114. 
Pages 4, 5, 6, 7, 8, and 9 lie entirely within segment 114 and 
are thus clear pages. Page 4 is the first clear page (FCP) of 
segment 114, while page 9 is the last clear page (LCP) for 
segment 114. When segment boundaries are not aligned to 
page boundaries, the first clear page is always one page 
above the first partial page, while the last clear page is 
always one page less than the last partial page for the 
segment. However, a Small segment (not shown) may not 
have any clear pages. 
First and Last Linear Addresses (FLA, LLA) 

FIG. 5 is an enlarged view of the segment boundaries. 
Memory space 78A is the lower portion of physical memory 
space 78, while memory space 78B is the upper portion of 
memory space 78. Page 4 is the first clear page (FCP), and 
is identified by the starting address of page 4, FCP. The first 
address of the segment, its base address, is indicated by the 
first linear address (FLA) on page 3. 

Page 9 is the last clear page (LCP), and is identified by the 
starting address of page 9, LCP. The last address of the 
segment, at its upper bound, is indicated by the last linear 
address (LLA) on page 10, the last partial page. Since the 
limit is the number of bytes in the segment, the upper 
bound's address is the sum of the base address and the limit 
(base-limit). Thus the last linear address (LLA) is base-- 
limit in the x86 architecture. 
The concepts of clear pages, and first and last clear pages 

and linear addresses, are useful in constructing emulation 
routines and segment memory structures. By using these 
concepts in emulation routines, the amount of information 
cached on the CPU die from the segment descriptor may be 
greatly reduced. 

ACTIVE SEGMENT DESCRIPTOR CACHE IN 
MEMORY-FG. 6 

FIG. 6 highlights data structures in memory and on the 
CPU die for emulation of segmentation. Segment descriptor 
tables are kept in memory, as in the prior art. However, 
rather than cache on the CPU die the full descriptors for six 
active segments, these active descriptors are cached in 
memory. Since memory is much less expensive than regis 
ters on the CPU die, it is much more cost effective to cache 
these descriptors in abundant memory than in the crowded 
CPU die. 
The segment's base address must still be stored on the 

CPU die, since this base must be added to every address 
generated by the user program. The segment selector, seg 
ment limit, and attributes are not stored on the CPU die, as 
they are not needed. Instead, the segment's attributes are 
merged in with the page attributes in a TLB entry, so that the 
most restrictive of the segment and page attributes is stored 
in the TLB. For example, if the segment is read-write, but 
the page is read-only, then the more restrictive attribute, 
read-only, is loaded into the TLB for that page. Likewise, if 
the privilege level is 3 for the segment but only 2 for the 
page, the segment's more-restrictive privilege level of 3 is 
loaded into the TLB's page entry. 
The TLB entries also contain a new segment number field. 

This segment number field can contain the three-bit segment 
number that indicates which of the six active segments the 
TLB entry corresponds to. In a preferred embodiment, this 
segment number field contains six binary bits, with each bit 
indicating if that TLB entry is valid for an active segment. 
Thus a single TLB entry may be used by all six active 
segments. A single TLB entry may be shared by two or more 
active segments by setting two or more of the six segment 
enable bits in the TLB's segment number field. 
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The TLB entry also contains a new partial page control 
field. This field holds the bounds information for partial 
pages, as will be explained for FIG. 9. This bounds infor 
mation is conveniently generated when necessary from the 
first and last linear address and clear page information: FLA, 
LLA, FCP, LCP. The dashed lines of FIG. 6 indicate that the 
partial page control field is generated from the FCP, LCP, 
FLA, LLA fields in the active segment descriptor cache in 
memory. 
Memory Cache Stores FCP, LCP. FLA, LLA 
The active segment descriptor cache in memory conve 

niently stores additional information used to load the TLB 
with segment information. Storing this information with the 
segment descriptor improves the speed of the segmentation 
emulation routine as the necessary information is stored in 
one place. 

FIG. 6 shows that the active segment descriptor cache 
stores the first and last clear page and linear address infor 
mation in fields FCP, LCP, FLA, LLA. These fields are 
calculated each time a segment is loaded by a program 
running on the CPU and the loaded segment becomes one of 
the six active segments. The clear page information does not 
need to be stored for each of the possibly thousands of 
segments in the segment tables, which would increase the 
memory required to store these segment tables. 

Other information useful to the emulation handlers is also 
stored with the active segment descriptor entries. This 
information may include a pointer to a linked list of entries 
in the TLB enabled for a particular segment. This linked list 
is useful when a new segment is loaded and the old segment 
must be flushed from the TLB. The emulation handler can 
simply invalidate the TLB entries in the list for the old 
segment, rather than search all entries in the TLB for entries 
enabled for the old segment being purged. This extrafield is 
labeled as field "x" in FIG. 6. Aroutine usingfieldx and the 
linked list is described later in reference to FIG. 13. 
The segment selector is also stored in the active segment 

descriptor cache rather than on the CPU die. This selector is 
used by the emulation routines to locate a particular descrip 
tor in the segment descriptor tables in memory. The selector 
contains an index into a segment table, and a bit to indicate 
if a local or global descriptor table is to be used. Thus the 
segment selector, like the segment limit, is removed from the 
CPU die and placed in inexpensive memory. 
The selector is usually generated by a user program or 

operating system and loaded into a segment register on the 
CPU die. The selector may first be loaded into a general 
purpose register (GPR), or it may reside in memory. The 
emulation routine is activated by a segment load instruction. 
The emulation routine moves the new selector to the seg 
ment register which will erase the old base address stored 
there. The emulation routine then purges the old segment 
from the TLB and active segment descriptor cache. After the 
old segment has been purged, the emulation routine moves 
the new selector from the GPR register or memory to the 
active segment descriptor cache. This new segment selector 
is then also used to locate the segment's entry in the segment 
tables, and the new segment's base and limit and attributes 
are fetched from the segment table and loaded into the active 
Segment descriptor cache. 
The segment selector is generated by the user program or 

operating system and loaded into a segment register on the 
CPU die. The emulation routine moves this segment selector 
to the active segment descriptor cache, and uses the selector 
to find the segment's entry in the segment tables, and copies 
the base, limit, and attributes to the active segment descrip 
tor cache. Thus the information in the active segment 
descriptor cache originates from both the CPU die and the 
segment table. 
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8 
FIG. 6 shows that only the segment base must be stored 

on the CPU die as a special register for segmentation. On a 
RISC processor, certain general-purpose registers may be 
designated by the system software or emulation routines for 
storage of the six segment base addresses. Thus most of the 
segmentation registers have been removed from the CPU. 
The extension of the TLB with the segment number field and 
partial page control fields is more streamlined than adding 
segmentation logic, as existing paging hardware is extended 
rather than new subsystems being added. 
Segment Selector and Limit Not Stored on CPU-FIG. 7 

FIG. 7 is another diagram of the location of segment 
information in the system. The system includes memory 12' 
and CPU die 10'. The CPU die 10' includes an arithmetic 
logic-unit (ALU) 30 which includes address generation 
logic. ALU 30 sends a program's effective address to 
segment adder 42, which adds this effective address to the 
segment's base address. The base address is stored in 
segment registers 33, and one of six base addresses is 
selected by the identifier or segment number received from 
the ALU. The linear address produced by the segment adder 
searches TLB 46 for a matching entry, and the physical 
address is output if a matching entry is found. 
As was described in reference to FIG. 6, segment registers 

33' contains the base address, but not the selector or limit. 
Active segment descriptor cache 35 contains the segment 
selector and limit, as well as another copy of the base 
address. Active segment descriptor cache 35 is called a 
"cache” although it is in normal main memory, which is 
typically constructed from dynamic RAM. It is a cache in 
the sense that it holds a subset of the information in segment 
descriptor table 14. Since only six segments can be active on 
CPU 10' at any time, only six entries are needed in active 
segment descriptor cache 35. Only the 3-bit segment number 
identifier is needed to access an entry in cache 35, along with 
the starting address of this table, which is either explicitly 
stored in memory 12 or is part of the instruction code 
executed by the emulation routines. However, the much 
larger size of segment descriptor tables 14 requires that the 
16-bit segment selector be used to point to a particular 
segment's entry, rather than just the 3-bit segment number. 
Thus access of the segment descriptor tables 14 is more 
complex and slower, as the proper address is more difficult 
to generate. 

RISC PAGING HARDWARE EMULATES 
SEGMENTATION-FIG. 8 

FIG. 8 is a simplified diagram of the address generation 
hardware on the RISC CPU. An ALU or address generate 
unit 30 generates an effective address (E.A.) from execution 
of a user's program. ALU30 also determines which segment 
should be accessed. For example, when a data move instruc 
tion is executed, an effective address for the data item in 
memory is generated by ALU 30. This effective address is 
typically in the data segment (DS:), so the segment number 
outputted corresponds to the data segment. If the instruction 
executed is a jump instruction, the effective address gener 
ated is the address of a target instruction. In that case, the 
effective address is in the code segment (CS:), and the 
segment number outputted corresponds to the code segment. 
An example of one possible mapping of active segments to 
segment numbers is shown below in Table 1. 



5,652,872 

TABLE 

Active Segments 

Segment Name Code Segment # 

Code Segment CS: OOO 
Data Segment IDS: OO1 
Stack Segment SS: 010 
Extra Data Segment ES: Oil 
Extra Data Segment FS: 100 
Extra Data Segment GS: 101 

The segment number selects one of the six base addresses 
stored in the segment registers 33. The selected base address 
is outputted on bus 36 to segment adder 42, which sums the 
base and the effective addresses. The resulting linear address 
(L.A.) searches through TLB 46 for an entry that matches 
the upper 20 bits of this linear address. If a matching entry 
is found, the segment number stored in that matching entry 
must also match the segment number output from the ALU 
30. If the segment numbers and linear addresses match, then 
the physical address is read out of TLB 46 and combined 
with the low 12 offset bits of the linear address (not shown) 
and output to memory as the physical address. 
The linear address is also loaded into data address register 

60 (DAR). DAR register 60 holds all linear addresses, 
whether for data, instructions or for the stack. The segment 
number is loaded into a portion of data storage interrupt 
service register 62 (DSISR). DAR register 60 and DSISR 
register 62 are used by the PowerPCTM architecture for 
exception handling. When no matching entry is found in 
TLB 46, a page fault is signaled and the execution of the 
user program suspends while the matching page entry is 
fetched from page tables in memory. On some CPU's, the 
page fault is handled by a hardware sequencer or state 
machine. In the preferred embodiment, this page fault han 
dler is a software routine that reads DAR register 60 to get 
the linear address, which is used to locate the matching entry 
in the page tables, and DSISR register 62, which is used to 
indicate the status. Status can indicate if the linear address 
corresponds to an instruction address or a data address. 
Storing the segment number in this status register is conve 
nient if the page fault handler must consult the active 
segment descriptor cache. The opcode and any instruction 
modifier bytes such as register specifiers or prefixes may 
also be stored in DSISR register 62. 
TLB 46 also contains partial page control fields, which 

indicate if the page is a clear page, with no bounds checking 
required, or a partially-valid page that must be checked. 

TLB FIELDS FOR BOUNDS AND OFFSET 
COMPARE LOGIC FG. 9 

FIG. 9 shows in detail an embodiment for a TLB entry 64. 
The upper 20 bits of the 32-bit linear and physical addresses 
are stored in fields 66,68. Attributes are stored in attributes 
field 70. Two page offset bounds fields 82.84 are provided 
that contain the 12-bit page offset of the boundary of the 
valid portion of the page, for partially-valid pages. Two 
control fields 86.88 enable page offset bounds fields 82,84, 
respectively. Each control field 86.88 is one bit. When the 
control bit is high, comparison of the corresponding offset 
bounds field to the offset of the current linear address is 
enabled. 
Two page offset bounds fields are provided in this 

embodiment for efficient encoding of pages with two events, 
which occur for Small segments that lie entirely within a 
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10 
single page, program watchpoints, and faulty memory loca 
tions. These are typically Small blocks within a page. Thus 
by having two page offset bounds fields, the starting and 
ending addresses for the small block may be specified. 
The page offset bounds fields 82, 84 contain enough bits 

to specify the page offset down to the desired granularity. 
Thus for a 4K-byte page, which has 12 bits of address offset, 
32-bit aligned word granularity requires that 10 bits be 
stored in each page offset bounds field 82, 84, while full 
byte-granularity requires that a full 12-bit offset address be 
stored in each page offset bounds field 82, 84. 

Sub-page logic 100 includes comparison logic 90 which 
outputs a one to AND gate 94 when the 12-bit offset portion 
of the current linear address is less than the 12-bit offset 
bound stored in field 82. If the first control bit stored in 
control field 86 is also enabled (high), then an error will be 
signaled on bounds error line 99 from OR gate 98. Thus the 
first comparison signals an error when the linear address is 
below the first offset bounds. 
The opposite type of comparison is performed for the 

second offset bounds field. Comparison logic 92 outputs a 
one to AND gate 96 when the 12-bit offset portion of the 
current linear address is greater than the 12-bit offset bound 
stored in field 84. If the second control bit stored in control 
field 88 is also enabled (high), then an error will be signaled 
on bounds error line 99 from OR gate 98. The second 
comparison thus signals an error when the linear address is 
above the second bounds. 

Table 2 shows the encoding of control bits 86.88 and how 
the 12-bit offset of the linear address is compared to the 
offset bounds fields. In Table 2. “y” refers to the value stored 
in first offset bounds field 82, while 'Z' refers to the value 
stored in second offset bounds field 84. Proper programming 
of these offset bounds fields and their control bits allows for 
segment base checking at the lower bound of the segment, 
or segment limit checking at the upper bound of the seg 
ment. Comparison for both fields may be enabled to allow 
for checking of very small segments that lie entirely within 
a single page. 

TABLE 2 

Encoding of Partial Page Control Bits 

Control Bits 86, 88 Error if Use 

OO Never Clear Page, No Checking 
01. >2. Segment Upper Bound 
10 <y Segment Lower Bound 

>z OR <y Segment Within a Page 

Several types of events may be supported with two offset 
bounds and the encoding of Table 2. With the control bits 86, 
88 set to "00", the entire page is valid. An encoding of “10" 
specifies that all address greater than the second offset bound 
84 is valid, as when a segment begins within a page. The 
"01" encoding may be used for the end of a segment, when 
the upper bound ends within a page. Thus the first offset 
bound 82 specifies the upper limit of validity within the 
page. Encoding “11” specifies validity between the two 
offset bounds 82, 84, which may be used to specify a 
segment that lies entirely within a single page. 

HARDWARE EQUIVALENT OF FCP, LCP. FLA, 
LLA GENERATION-FIG. 10 

FIG. 10 is a hardware embodiment for generating the first 
and last clear page and linear address fields. The 32-bit base 
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address is broken into a 20-bit upper portion or page number 
and a 12-bit lower portion of offset. OR gate 115 outputs a 
low signal when all 12 lower bits of the base's offset are 
Zero. All of the base's offset bits are zero when the base is 
the first address of a page, when the segment's base is 5 
aligned with the start of a page. If any of the 12 offset bits 
are one, then the segment is not aligned to the page, and the 
page number must be incremented. The first clear page is the 
next page after the first partial page, so the 20-bit page 
number of the base address must be incremented. Incre 
menter 110 increments the 20-bit page number of the base 
address when its carry-in input is high, which occurs when 
OR gate 115 signals that any of the 12 offset bits are 
O-ZO. 

Incrementer 110 is only 20 bits in size, and its output is 
stored as the page number for the first clear page 130 (FCP). 15 
The 12 offset bits of the base address are stored as the 12 
offset bits of the first linear address 120 (FLA). While both 
the FCP and FLA could be stored as full 32-bit addresses, 
preferably only a subset of these 32-bit addresses are stored, 
as shown in FIG. 10. Since the address for the first clear page 20 
130 will always be page-aligned, the 12 offset bits for FCP 
will always be zero. Thus they do not need to be stored. 
Storage space may be reduced by saving only the 20-bit page 
number for the first clear page 130. The address of the first 
linear address (FLA) 120 actually includes a 20-bit page 25 
number as well as a 12-bit offset. The 20-bit page number for 
the FLA will be one page lower than the first clear page in 
all instances except when page-aligned. Since the 20-bit 
page number is always either one less than the FCP, or equal 
to the FCP, a separate 20-bit page number need not be stored 30 
for both the FCP and the FLA. Thus a single 32-bit storage 
can hold both the FCP and the FLA. The FCP is generated 
by taking the 20 upper bits and appending 12 zeros for the 
offset bits, while the FLA is generated by using the low 12 
offset bits stored, and appending the upper 20 bits of the FCP 35 
when all 12 offset bits are zero, or appending the upper 20 
bits of the FCP decremented by one when all 12 offset bits 
are not all Zero. 
The upper bound of the segment is the limit. However, the 

limit is expressed as the maximum effective address of the 40 
segment, where the segment base is at effective address zero. 
Thus the upper bound expressed as a linear address is the 
base added to the limit, base-limit. Adder 126 adds the 
32-bit base to the 32-bit limit and stores the upper linear 
address in storage 136. AND gate 134 receives all 12 offset 45 
bits of the upper bound stored in storage 136, and outputs a 
one or high signal if all offset bits are one. When all offset 
bits are one, the offset in hexadecimal is FFFh. Offset FFFh 
is the last address on a page. Thus the upper bound is page 
aligned when all 12 offset bits are one. AND gate 134 50 
outputs a decrement signal to decrementer 128 when the 
upper bound is not page-aligned, which causes decrementer 
128 to subtract one from the 20-bit page number of the upper 
bound is storage 136. The decrementer's result is stored as 
the page number of the last clear page 132 (LCP). The 12 55 
offset bits of the upper bound from storage 136 are stored as 
the last linear address 122 (LLA). 

Again, the last clear page and last linear address are 
actually two 32-bit addresses, but only one 32-bit value is 
stored. When the 12 lower bits stored as LLA 122 are all one, 60 
then the 20 upper bits stored as LCP 132 are simply 
appended to LLA to get a 32-bit value for LLA. When any 
of the 12 offset bits are zero, the upper bound is not 
page-aligned, and the 20 bits stored as LCP must be incre 
mented by one before being appended to the 12 offset LLA 65 
bits. The full 32-bit LCP value is always the 20-bit LCP132 
stored with 12 zero bits appended as the offset. 

12 
Thus storing the clear page addresses as 20-bit page 

numbers, and the first and last linear addresses as 12-bit 
offsets reduces storage requirements by half without the loss 
of address information. The active segment descriptor cache 
in memory preferably stores the FCP, LCP, FLA, LLA 
values as 20 and 12-bit values as described here for FIG. 10. 

SEGMENT LOAD EMULATION ROUTINE - 
FIG. 11 

In a preferred embodiment, the calculation of FCP, LCP, 
FLA, LLA values is performed by software when the 
segment is loaded. When a user program "loads” a new 
segment, a segment selector is generated by the program or 
operating system, and moved or loaded into a segment 
register. In a CISC CPU, this load would invoke a hardware 
sequence that would fetch the segment table entry from 
memory and cache the descriptor on the CPU die, and 
perform a series of attribute and privilege checks. The RISC 
CPU of the present invention would not directly support this 
move instruction that transfers the selector to the segment 
register. Instead, when the opcode is decoded for the seg 
ment load instruction, an invalid or undecodable opcode is 
detected. This calls a software emulation routine, which 
decoded the opcode and emulates or performs the function 
that would be performed by the CISC hardware. 

FIGS. 11A and 11B show the steps in a routine that 
emulates segment loading. When a user program or operat 
ing system executes an instruction to load a new value into 
one of the six segment registers, the instruction decoder is 
unable to decode that segment load instruction since the 
CPU's hardware does not directly support segmentation. 
The instruction decoder signals an invalid opcode, which 
interrupts the user program or operating system. Emulation 
code is entered and the opcode is decoded by the software 
emulation routine, possibly with a partial or pre-decode by 
the instruction decoder that selects one entry point into the 
emulation code out of several possible entry points. The 
entry point is an address of the first instruction to execute in 
the emulation routine. 

The first step 202 in the segment load emulation routine 
is to invalidate any entries in the TLB for the old segment. 
One approach would be to flush the entire TLB by invali 
dating all entries in the TLB. This could have a severe 
performance penalty. A search could be performed by read 
ing every TLB entry and comparing the segment number 
field in each TLB entry to the segment number for the 
segment being loaded. If the segment numbers match, then 
the TLB entry is invalidated. If the segment number field of 
the TLB is the preferred embodiment having six bits, one for 
each segment, then the particular bit for the segment being 
replaced is checked and cleared if active. Other bits for other 
segments would not be changed. If all segment bits are off, 
then the entry could be removed from the TLB entirely by 
invalidating the entry. A preferred embodiment of the TLB 
invalidate step 202 using linked lists is shown later in FIG. 
13. 

Once all TLB entries for the old segment have been 
invalidated, the new segment is fetched in steps 204, 206. 
The segment selector is retrieved, from a general-purpose 
register on the CPU, from a memory location, or from 
immediate data that is specified by the segment loadinstruc 
tion. The segment selector contains an index into a segment 
table, and a global/local bit to determine if a local or global 
segment descriptor table is to be accessed. Other informa 
tion identifying the user and the starting location in memory 
of these segment tables is normally stored by the operating 
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system on the CPU die for a CISC CPU, but is stored in 
memory by emulation code in the present invention. A 
pointer or address of the particular segment's entry in the 
segment tables in memory is derived (204) from the selector 
and the other information stored by emulation code. The 
segment entry stored at the pointer's location in memory is 
retrieved (206) and copied to the active segment descriptor 
cache in the emulation code's portion of the memory. 
The information copied to the active segment descriptor 

cache includes the segment base address, limit, and 
attributes that are stored in the segment table. The selector 
is also copied into the active segment descriptor cache from 
the emulation routine that extracted the selector from a 
register, memory, or the segment load instruction. 
Only the base address from the segment descriptor in 

memory is copied to the CPU die and loaded into one of the 
general-purpose registers (GPR's) which holds the segment 
base (step 208). Any of the unused GPR's may be used for 
holding the segment base; thus no specific segment register 
is needed, although for clarity one of these GPR's is shown 
in the figures as the “segment register" holding the segment 
base. The segment limit is left in memory in the active 
segment descriptor cache. 

O 

15 

20 

The emulation routine reads the base address, step 210 
and determines if the lower 12 bits of the base are all Zero 
(step 212). The segment base is page-aligned if all 12 lower 
bits are zero. When page-aligned, the FCP field in the active 
segment descriptor cache is loaded with the 20-bit page 
number, which is the 20 most-significantbits (MSB's) of the 
base address (step 216). When the segment base is not 
page-aligned, the 20 MSB's of the base address are incre 
mented by one and the loaded as the FCP. step 214. This is 
equivalent to adding 4096 to the page's address, or incre 
menting the page number by one to yield the first clear page. 
The 12 least-significant bits (LSB's), or offset, of the 

segment base are stored in the active segment descriptor 
cache as the first linear address (FLA) for the segment being 
loaded (step 218). Thus 32 bits of memory are used to store 
both the FCP and the FLA. Of course, 64 bits of memory 
could be used if the FLA and FCP were each stored as full 
32-bit values. This may save some processing time. 

FIG. 11B is a continuation of FIG. 11A. In step 220, the 
base and limit are read, either from the segment table or 
preferably from the active segment descriptor cache. The 
base is added to the limit by the emulation routine by coping 
the base and limit to temporary general-purpose registers 
(GPR's) on the CPU and using an ADD instruction, with the 
result being saved to a GPR register or to emulation memory 
(step 222). If the 12 offset bits of the base-limit result from 
step 222 are all ones (FFF hex), then the upper bound is 
page-aligned and the LCP field of the active segment 
descriptor cache is simply loaded with the upper 20 bits of 
the baselimit result that was temporarily stored in step 222. 
If any of the LSB's are zero, then the upper bound is not 
page-aligned (step 224) and the LCP field is loaded with the 
upper 20 bits of the base-limit result decremented by one, 
step 226. Decrementing the LCP by one is equivalent to 
subtracting one page-length (4K) from the upper bound's 
page number, yielding the last clear page. 
The last linear address (LLA) field is loaded with the 12 

lower bits of the base-limit result, step 230. If these FCP, 
LCP. FLA, LLA values were merely stored in temporary 
storage such as in GPR's, then they must now be copied to 
the active segment descriptor cache in memory, step 232. If 
the FCP. LCP. FLA, LLA values were stored directly to the 
active segment descriptor cache as they were generated then 
step 232 is not necessary. 
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14 
TLB MISS EMULATION ROUTINE-FIG. 12 

Another emulation routine is needed for handling page 
faults. Page faults occur when a linear address is presented 
to the TLB, but the TLB does not contain any matching 
entries. For the present invention, a page fault can also occur 
when a TLB entry is found with a matching linear address, 
but the segment number field in the TLB does not match the 
segment number for the linear address, or the segment's 
enable bit is not active for that matchingTLB entry. This can 
occur when a user program attempts to access another user's 
segment with the proper linear address, but has not been 
granted privilege to access that segment. Thus segment 
faults can initially be signaled as page faults. Another 
common cause for a page miss is a first write to a page 
present in the TLB. This first write makes the page "dirty", 
and a dirty or accessed bit is set in the page tables. The more 
generic term “TLB miss” is thus used to describe page faults 
caused either by lack of matching linear address, first write 
to a page, or segment faults caused by lack of a matching 
segment number. 

FIGS. 12, 12A and 12B detail the steps in a TLB miss 
emulation routine. This routine is activated when the TLB 
hardware is unable to complete address translation, as dis 
cussed above. The user program or operating system is 
interrupted and a starting address for the TLB miss emula 
tion routine is loaded into the CPU's instruction fetcher. 
When the TLB generates an interrupt or exception for a 

page fault, TLB miss routine 300 is started. The segment 
number is stored for each faulting linear address in DSISR 
register 62 as discussed for FIG. 8. Likewise each faulting 
linear address is stored in DAR register 60. When the page 
fault is signaled, DAR register 60 and DSISR register 62 
will be loaded with the values for the faulting linear address 
and segment. The segment number is extracted from the 
DSISR register by the emulation routine 300 which reads at 
least a portion of DSISR register 62, step 302. A pointer to 
one of the six entries in the active segment descriptor cache 
is generated, step 304. The emulation routine 300 may 
simply store a memory pointer to the first entry in the active 
segment descriptor table, and add the segment number 
multiplied by the size of each entry. 
The active segment descriptor cache is read, and the FCP 

and LCP values are read (step306) for the segment indicated 
by the segment number in the DSISR register 62. If the 
linear address is greater than the first clear page (FCP), and 
less than or equal to the last clear page (LCP), then the linear 
address lies in a clear page and the whole page is valid. 
Whole page valid subroutine 320 is then activated, FIG. 
12A. 

If either of the FCP and LCP tests 308,310 fail, then the 
linear address lies in a partial page at the ends of the segment 
or a bounds fault may have occurred. An additional level of 
bounds checking is then performed by the emulation routine 
300. The pointer from step 304 is again used to read the 
active segment descriptor cache to obtain FLA and LLA. 
Although all fields-FCP, LCP, FLA, LLA-could have 
been read at once in step 306, this would require at least a 
64-bit data transfer, which might require additional bus 
cycles. Thus only 32 bits are read in step 306 and additional 
read step 312 is needed to read FLA, LLA. 
The second level of checking compares the linear address 

to FLA and LLA, steps 314,316. If the linear address from 
DAR register 60 is less than the first linear address (FLA), 
then the linear address is below the lower bound of the 
segment and a segment bounds fault is signaled, 360. 
Likewise, if the linear address is greater than the last linear 
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address LLA, the linear address is above the upper bound 
and the segment bounds fault signaled. Otherwise, if checks 
314, 316 pass, then the linear address is within the segment 
bounds and no segment fault is signaled. Instead, partial 
page subroutine 340 of FIG. 12B is activated to complete 
loading of the TLB. 
The first and second levels of checking do not have to 

perform full 32-bit compares. For the first level, steps 308, 
310, the FCP and LCP values are compared. Since these 
values are stored as 20-bit page numbers, the upper 20 bits 
of the linear address may simply be compared. Alternatively, 
12 zeros may be appended to the FCP value before com 
parison. For LCP 12 ones are appended to the 20-bit LCP 
value before 32-bit comparison. The second level 
comparison, 314, 316, may be just a 12-bit comparison of 
the 12-bit FLA, LLA values stored in the active segment 
descriptor cache, if the 20-bit compare result is saved. If a 
full 32-bit comparison is used, then the 20-bit page numbers 
FCP. LCP, must be selectively decremented or incremented, 
respectively, if the bound's linear addresses are not page 
aligned (step 312). 

If a segment bounds fault is signaled, 360, then an 
additional emulation routine is entered (not shown). Seg 
ment bounds faults are serious and typically the user pro 
gram must be halted and control returned to the operating 
system. Clean-up routines are then executed which are well 
known. 
Whole Page Valid-FIG. 12A 
When the whole page is valid, as determined by the first 

level of checking for clear pages, subroutine 320 of FIG. 
12A is executed. Debug or breakpoint processing 380 is first 
executed, which checks a debug enable register to determine 
if any breakpoints are active, and performs special process 
ing if necessary. Once debug processing is complete, a 
pointer to the page tables in memory is derived from the 
linear address, step 322. The upper 20-bit page number of 
the linear address from DAR register 60 are used together 
with a starting address for a page table to locate the proper 
page entry. Thus the page number acts as an index into a 
page table. The starting address of the page table is stored in 
emulation memory or an unused GPR for the present 
invention, although for CISC machines it was stored as a 
special register on the CPU. Several levels of page tables 
may be used, with the first level of page tables being a 
directory of page tables and the second level being the user's 
local page table. While appearing to be complex, multi-level 
page tables are well-known in the art. 
The page table entry from the final level of page tables is 

retrieved from memory, step 324. This page table entry 
(PTE) includes a 20-bit physical page number and attributes, 
which are re-ordered for placement in the TLB. The dirty or 
accessed bit for the page may be updated at this time. The 
segment's attributes must also be fetched from the active 
segment descriptor cache as described in steps 304,306 for 
other fields of the active segment descriptor cache. The 
segment's attributes are merged into the page attributes by 
selecting the most-restrictive to the page's and segment's 
attributes for each type of attribute. The upper 20 bits of the 
linear address, and the upper 20 bits of the physical address, 
and attributes are used to construct the TLB entry. These 
fields may be written separately to the TLB, or preferably 
they are first assembled and grouped together in memory 
before being written to the TLB. 
The partial page control bits are also set to "00", indicat 

ing that the whole page is valid and disabling bounds 
checking on subsequent accesses to this TLB entry. The 
segment number is also loaded into the TLB entry, or the 
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segment's enable bit in the six-bit segment number field is 
enabled, step 330. Finally the fully-assembled TLB entry is 
loaded into the TLB, step 332, if it was not loaded 
piecemeal-fashion. 
At this point the faulting user program may be resumed, 

allowing the faulting instruction to be re-executed, and the 
linear address in the DAR register re-generated to be trans 
lated by the newly-loaded entry in the TLB. 
Partial Page Valid-FIG. 12B 
FIG.12B shows TLB loading when only apart of the page 

is valid. Many of the same steps are used by partial-page 
loading subroutine 340 as shown and described for FIG. 
12A. 
The partial page control bits are set to a value other than 

"00", indicating that only a partial page is valid, step 344. 
Table 2 shows encoding for these partial-page control bits. 
The offsetboundsfields 82, 84 of FIG. 9 are loaded in step 

342 with the 12-bit FLA and/or LLA values retrieved from 
the active segment descriptor cache. It may be necessary to 
read FLA and LLA from memory again (as shown in steps 
304,312) if they are not still stored in temporary GPR's on 
the CPU. If the page contains an upper bound, as indicated 
by LCP compare step 310 failing, the LLA must be loading 
into page offset bounds field 84, and the partial page control 
bits are set to "01". If the page contains a lower bound, as 
indicated by FCP compare step 308 failing, the FLA must be 
loading into page offset bounds field 82, and the partial page 
control bits are set to "10". If both LCP and FCP compare 
steps 308,310 were to fail, then both the upper and the lower 
bound lie within the page. Page offset field 82 is loaded with 
the FLA and page offset field 84 is loaded with the LLA, and 
the partial page control bits are set to "11", enabling both 
upper and lower bounds checking on subsequent TLB 
aCCCSSCS. 

Other steps are similar to those shown and described for 
FIG. 12A. 

ROUTINE TO INVALIDATE OLD SEGMENTS 
TLB ENTRIES FG, 13 

FIG. 13 is an emulation subroutine 202 to invalidate TLB 
entries for an old segment being unloaded. This subroutine 
202 is called from the segment load routine 200 of FIG. 11A. 
Six linked lists are set up in emulation subroutine 202's 
memory, one for each active segment. Alinked list is a series 
of entries, with each entry having a data item and a pointer. 
The pointer points to the address of the next entry in the 
linked list. Thus the items are “linked” together by their 
pointers. When a linked list is used, an entry is added to the 
linked list for a segment each time a new translation is 
loaded into the TLB for that segment (this is done during 
step 332 of FIGS. 12A, 12B). Typically the new entry is 
added to the end of the linked list and the pointer to the new 
entry is added to the formerly-last entry. An entry is deleted 
from the linked list each time a segment's translation is 
removed from the TLB, as when a TLB entry is replaced. 
The TLB miss routine must include a search routine to locate 
the linked list for each segment enabled for that TLB entry, 
and then locate the entry in the linked list for that translation 
and deleted the entry. The pointer of the previous entry in the 
linked list is replaced with the deleted entry's pointer. 
The invalidation subroutine 202 reads the segment num 

ber and reads the pointer to the first item in that segment's 
linked list, step 402. This pointer may be stored in the active 
segment descriptor cache in field "x" of FIG. 6. The first 
item in the linked list is read at the memory location pointed 
to by the pointer, step 404. That item includes a pointer to 
an entry in the TLB for that segment. The TLB entry pointed 
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to by the first itemis invalidated for that segment by clearing 
its segment enable bit in the segment number field of the 
TLB entry, step 406. A checkis made to determine if the end 
of the linked list has been reached, 408. If not, the first item's 
pointer is read, and the second item is retrieved, 410. The 
TLB entry corresponding to the second item is then 
invalidated, 412. This process is repeated until the end of the 
linked list is reached, and all TLB entries for that linked 
list's segment are invalidated. 
An alternate embodiment of the linked list is to include an 

additional first-link bit in field X. The first-link bit is set 
when the first page for a segment is loaded into the TLB. 
Thus old segments with no active TLB entries can be 
swapped out without consulting the linked list. However, 
once the first entry is loaded into the TLB for a segment, 
then the first-link bit is set in its active segment descriptor 
cache entry, and purging this old segment would require 
consulting the linked list as described. 
Another alternative is to have a gang-clearfunction in the 

TLB hardware. The gang-clear would be asserted by writing 
a command to the TLB, identifying the segment number. All 
TLB entries would have this segment's valid bit cleared by 
this gang-clear. While this rapidly clears the TLB of the old 
segment, it requires additional hardware in the TLB, such as 
an AND gate for each segment valid bit in each TLB entry 
or location. 

A brute force approach is to read each entry in the TLB 
and compare its segment valid bits to the current segment, 
or to write back these segment valid bits with the old 
segment's valid bit cleared. Reading and writing each TLB 
entry can require many separate clock cycles though. 

SOFTWARE HANDLER ROUTINE 

FIG. 14 is a diagram of a physical memory space 78 
which contains a user program 110, an operating system 112, 
and emulation handler routines 117. Emulation handler 
routines 117 include several routines activated for different 
reasons. These routines include TLB miss routine 300 and 
segment load routine 200, detailed in FIGS. 11, 12. Segment 
descriptor tables 14 resides near operating system 112, while 
active segment descriptor cache 35 resides near emulation 
handler routines 117. 

ALTERNATE EMBODIMENTS 

Several other embodiments are contemplated by the 
inventors. Various combinations of the embodiments 
described and trade-offs among them are possible. Instead of 
designating sub-pages down to byte-granularity, sub-pages 
could be defined only down to an intermediate granularity, 
with software checking the remaining references. 
A page size of 4096 bytes was described with reference to 

the embodiments, but other page sizes and address sizes may 
be easily substituted by one skilled in the art. Standard 
expand-up segments were described, but expand-down seg 
ments may also be used. Expand-down segments are com 
monly used for stacks while expand-up segments are used 
for code and data segments. These segment types are well 
known in the art. Many other combinations of the embodi 
ments disclosed are possible in light of the teachings herein. 
FIG.7 described a separate segment adder that added the 

segment base address to the effective address in the memory 
management unit (MMU). Amore preferred embodiment is 
disclosed in the parent patent that performs this addition in 
the ALU rather than in the MMU. The two-port adder in the 
ALU is expanded to three ports to allow the segment base to 
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be added in when the effective address is being generated. 
This blurs the distinction between the ALU and the MMU, 
but generates the linear address in fewer steps. 

While an embodiment with only two page offset bounds 
fields 82, 84 (FIG. 9) has been explained, it would be 
obvious for one skilled in the art to employ a different 
number of offset bounds fields or a different number of 
encoding control bits 86,88. For example, the encoding may 
be changed for greater than or equal to a page offset bound 
value, and still fall within the spirit of the invention. Addi 
tional control bits may also be added. A "100" encoding 
could specify that the entire page is valid except the region 
between the two offset bounds 82, 84. This is useful for 
watchpoints and disabling faulty memory locations. Any 
reference between the two bounds 82.84 would cause a page 
fault. 

Another embodimentis to not load any partial pages in the 
TLB. Only clear pages are loaded into the TLB. All refer 
ences to partial pages at segment boundaries will cause a 
TLB miss. The TLB miss handler operates as described, 
except that partial pages are not loaded into the TLB. At the 
point that the new partial page would otherwise be loaded 
into the TLB, the TLB miss handler must emulate the 
memory reference causing the page fault, or load a special 
one-time TLB entry that will be valid for only one reference, 
after which it will become invalid. The one-time TLB entry 
is described in the parent patent. The segment load and TLB 
miss emulation routines described herein may be applied to 
these other embodiments described at length in the parent 
patent. 

Debug or program watchpoint emulation may be com 
bined with the invention by designating these watchpoints as 
invalid offsets within a page. Additional bounds fields and 
compare logic may be needed to efficiently handle both 
segment bounds and watchpoints on a single page. The 
emulation routines described herein may be modified to 
program in additional bounds fields or modify existing 
segment bounds fields during the debug processing step. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
and description. It is notintended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 
We claim: 
1. A system for emulating segmentation on a processor 

with page-address translation, the system comprising: 
a central processing unit (CPU) comprising: 

a segment register for storing a base address of an 
active segment, the active segment being accessed 
by a user program executing on the CPU, the seg 
ment register not storing a limit for the active seg 
ment; 

linear address generation means, receiving an identifier 
for the active segment from the user program, for 
selecting the segment register containing the active 
segment and adding the base address of the active 
segment to an address from the user program, the 
linear address generation means outputting a sum as 
a linear address; 

a translation-lookaside buffer (TLB), receiving the lin 
ear address from the linear address generation 
means, the TLB comprising a plurality of page 
translation entries for pages in memory having a 
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fixed number of offset addresses, each page transla 
tion entry comprising a linear address field and a 
physical address field, the TLB outputting the physi 
cal address field for a matching entry when a portion 
of the linear address matches the linear address field 
in the matching entry; 

a memory having a plurality of storage locations addres 
sable by a plurality of physical 
addresses, the memory having: 
a first portion for storing a segment descriptor table 

comprising a plurality of segment descriptors, each 
segment descriptor having attributes, a base address, 
and a limit for a segment; and 

a second portion for storing an active segment descrip 
tor cache, the active segment descriptor cache com 
prising a plurality of entries for active segments 
loaded in the CPU for access, the identifier for the 
active segment selecting a selected cache entry for 
the active segment, each entry comprising: 
a copy from the segment descriptor table of the 

attributes of one of the active segments; 
a first clear page field indicating the address of a first 

clear page in the active segment, the first clear 
page having all offset addresses within the page 
being valid for access; 

a first linear address field indicating a first linear 
address for the active segment; 

wherein the segment's limit is not stored on the CPU but is 
only stored in the memory. 

2. The system of claim 1 further comprising: 
emulation handler means, for execution on the CPU, for 

checking for segment bounds violations of linear 
addresses for pages not having all offset addresses 
within the page valid, 

wherein segment bounds are checked only for pages not 
having all offset addresses within the page valid, wherein 
clear pages with all offset addresses valid are not checked for 
segment bounds violations. 

3. The system of claim 1 further comprising: 
a bound field in the matching entry in the TLB, the bound 

field containing a bound for the active segment; 
segment bounds checking means, receiving the bound 
from the matching entry of the TLB, for comparing a 
portion of the linear address to the bound, signaling a 
segment bound violation if the linear address is outside 
the bound for the active segment. 

4. The system of claim 3 wherein the segment bounds 
checking means is disabled when the matching entry con 
tains a clear page with all offsets within the page valid for 
access by the active segment, wherein segment bounds are 
checked only for pages not having all offset addresses within 
the page valid, wherein clear pages with all offset addresses 
valid are not checked for segment bounds violations. 

5. The system of claim 1 wherein each entry in the active 
segment descriptor cache further comprises a copy from the 
segment descriptor table of the base address and the limit of 
one of the active segments. 

6. The system of claim 1 wherein each entry in the active 
segment descriptor cache further comprises a selector for the 
active segment, the selector containing an index into the 
segment descriptor table. 

7. The system of claim 1 wherein each entry in the active 
segment descriptor cache further comprises: 

a last clear page field indicating the address of a last clear 
page in the active segment, the last clear page having 
all offset addresses within the page valid for access; and 
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a last linear address field indicating a last linear address 

for the active segment. 
8. The system of claim 7 further comprising: 
a bound field in the matching entry in the TLB, the bound 

field containing a bound, the bound being an upper 
bound or a lower bound for the active segment; 

segment bounds checking means, receiving the bound 
from the matching entry of the TLB, for comparing a 
portion of the linear address to the bound, signaling a 
segment bound violation if the linear address is outside 
the bound for the active segment; 

wherein the segment bounds checking means is disabled 
when the matching entry contains a clear page with all 
offsets within the page valid for access by the active 
segment, the clear page being the first clear page, the 
last clear page, or a page between the first clear page 
and the last clear page, 

wherein segment bounds are checked only for pages not 
having all offset addresses within the page valid, whereas 
clear pages with all offset addresses validare not checked for 
segment bounds violations. 

9. The system of claim 8 further comprising a TLB miss 
routine, the TLB miss routine comprising: 

means for activation of the TLB miss routine when no 
matching entry is found in the TLB having a linear 
address field matching a portion of the linear address; 

means for retrieving a page table entry from a third 
portion of the memory; 

means for loading the page table entry into the TLB; 
means for reading the identifier for the active segment; 
means for selecting the selected cache entry for the active 

segment in response to the identifier for the active 
segment; 

means for reading the first clear page field and the last 
clear page field from the selected cache entry; 

means for comparing a page number portion of the linear 
address to the first clear page field and the last clear 
page field, including means for indicating that the 
linear address is in a clear page when the means for 
comparing indicates that the linear address is in the first 
clear page, the last clear page, or a page between the 
first clear page and the last clear page; 

means for writing a disable bit to the page table entry in 
the TLB, wherein the disable bit disables the segment 
bounds checking means when the page table entry is in 
the matching entry; 

second compare means for comparing the linear address 
to the firstlinear address field and the lastlinear address 
field, and for signaling a segment bounds error when 
the linear address exceeds the last linear address or is 
less than the first linear address; 

means for filling the bound field with the first linear 
address field when the means for comparing indicates 
that the linear address is below the first clear page, the 
means for filling the bound field loading the last linear 
address field into the bound field when the means for 
comparing indicates that the linear address is above the 
last clear page, the means for filling being disabled 
when the segment bounds error is signaled; 

wherein the TLB miss routine compares the linear address to 
the first clear page field and the last clear page field to 
determine if the linear address is in a clear page, and loads 
the disable bit into the TLB when the linear address is to a 
clear page. 

10. The system of claim 1 wherein the linear address 
generation means comprises a three-port adder, the three 
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port adder having at least three input ports which receive the 
base address and effective address components of an address 
from the user program. 

11. The system of claim 1 wherein the segmentregisterfor 
storing a base address of an active segment is a general 
purpose register (GPR). 

12. Amethod for emulating a segment load by a CPU, the 
method comprising: 

generating a pointer to a segment table entry in a segment 
table in a memory; 

copying a portion of the segment table entry to an active 
segment descriptor cache in the memory; 

copying a base address from the segment table entry to a 
segment register on the CPU; 

generating a first clear page (FCP) number identifying a 
first clear page for an active segment, the first clear 
page being a first page in the active segment with all 
offset addresses within the page valid for access by the 
active segment, the first clear page number being 
(i) an upper portion of the base address when a lower 

portion of the base address is a first offset address on 
a page, 

(ii) an upperportion of the base address incremented by 
one page number when a lower portion of the base 
address is not a first offset address on the page, 

generating a first linear address (FLA) offset as the lower 
portion of the base address; 

storing the first clear page number (FCP) and the first 
linear address offset (FLA) in the active segment 
descriptor cache in the memory; 

wherein the active segment descriptor cache is loaded with 
the portion of the segment table entry but the CPU is loaded 
only with the base address when the segment is loaded. 

13. The method of claim 12 further comprising: 
adding the base address to a segment limit, the base 

address and the segment limit being stored in the 
segment table entry for the active segment; 

outputting the sum of the base address and the segment 
limit as an upper bound for the active segment; 

generating a last clear page (LCP) number identifying a 
last clear page for the active segment, the last clear 
page being the last page in the active segment with all 
offset addresses within the page valid for access by the 
active segment, the last clear page number being 
(i) an upper portion of the upper bound when a lower 

portion of the upper bound is a last offset address on 
a page, 

(ii) an upper portion of the upper bound decremented 
by one page number when a lower portion of the 
upper bound is not a last offset address on the page, 

generating a last linear address (LLA) offset as the lower 
portion of the upper bound; 

storing the last clear page number (LCP) and the last 
linear address offset (LLA) in the active segment 
descriptor cache in the memory; 

wherein the active segment descriptor cache is loaded with 
a portion of the segment table entry and the FCP, LCP. FLA, 
and LLA. 

14. The method of claim 13 wherein the upper portion of 
the base address is a page number and wherein the lower 
portion of the base address is an offset address on a page. 

15. The method of claim 14 wherein the method is 
activated by a segment load instruction executed by a user 
program. 
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16. The method of claim 11 further comprising the step of: 
clearing segment valid bits in a translation-lookaside 

buffer (TLB) for an old segment being replaced by the 
segment load, the old segment having a same segment 
number as the active Segment. 

17. The method of claim 16 wherein clearing the segment 
valid bits comprises: 

asserting a gang clear, the gang clear clearing all segment 
valid bits in the TLB for the old segment. 

18. The method of claim 16 wherein clearing the segment 
valid bits comprises: 

searching the TLB for old entries having the segment 
valid bit set for the old segment, and clearing the 
segment valid bit set for the old segment for the old 
entries. 

19. The method of claim 16 wherein clearing the segment 
valid bits comprises: 

searching a linked listin memory for TLB entries having 
the segment valid bit set for the old segment, and 
clearing the segment valid bit set for the old segment 
for the old entries. 

20. A method for loading a translation-lookaside buffer 
(TLB) on a central processing unit (CPU), the method 
comprising: 

deriving a pointer to an entry in an active segment 
descriptor cache in a memory; 

reading a first clear page number and a last clear page 
number from the entry; 

comparing a page number portion of a linear address to 
the first clear page number; 

comparing the page number portion of the linear address 
to the last clear page number; 

loading the TLB with a clear page translation entry having 
all offset addresses valid for access by a segment when 
the page number portion is 
(a) not less than the first clear page number, and 
(b) not greater than the last clear page number; 

when the clear page translation entry is not loaded: 
reading a first linear address offset and a last linear 

address offset from the entry; 
decrementing the first clear page number if the first 

linear address offset is zero and concatenating with 
the first linear address offset to produce a first linear 
address; 

incrementing the last clear page number if the last 
linear address offset is a last offset on a page and 
concatenating with the last linear address offset to 
produce a last linear address; 

comparing the linear address to the first linear address; 
comparing the linear address to the last linear address; 
signaling a segment bounds violation when the linear 

address is less than the first linear address or greater 
than the last linear address; 

loading the TLB with a partial page translation entry 
having not all offset addresses valid for access by the 
segment when a segment bounds violation is not 
signaled; 

whereby the first and last clear page numbers in the active 
segment descriptor cache are compared to the linear address 
and a fully-valid page translation is loaded into the TLB 
when a clear page is found. 

ce k k . . 


