
US005644752A

United States Patent (19) 11 Patent Number: 5,644,752
Cohen et al. 45 Date of Patent: Jul. 1, 1997

54 COMBINED STORE QUEUE FOR A 5,261,066 11/1993 Jouppi et al. 395/449
MASTER SLAVE CACHE SYSTEM 5,265,229 11/1993 Sareen 395/280

5,276,848 1/1994 Gallagher et al. 395/448
75) Inventors: Earl T. Cohen, Fremont; Russell W.

Tilleman, Palo Alto; Jay C. Pattin, Primary Examiner-Tod R. Swann
Redwood City, all of Calif. Assistant Examiner-J. Peikari

Attorney, Agent, or Firm-Stuart T. Auvinen
73) Assignee: Exponential Technol Inc., San ge is ogy, 57 ABSTRACT

A master-slave cache system has a large master cache and
21 Appl. No.: 350,815 Smaller slave caches, including a slave data cache for
(22 Filed: Dec. 7, 1994 Supplying operands to an execution pipeline of a processor.

9 The master cache performs all cache coherency operations,
Related U.S. Application Data freeing the slaves to supply the processor's pipelines at their

maximum bandwidth. A store queue is shared between the
I63) Continuation-in-part of Ser. No. 267,658, Jun. 29, 1994, Pat. master cache and the slave data cache. Store data from the

No. 5551,001. processor's execute pipeline is written from the store queue
6 directly into both the master cache and the slave data cache,

E. s did Ooo wow 4400 888 808 & 88thassassissa. eliminating the need for the slave data cache to write data
Ad A. awo on 4 395/457. 395/48. 395/469. 395/43 back to the master cache. Additionally, fill data from the

9 master cache to the slave data cache is first written to the
(58 Field of Search 395/448, 452, Store queue. This fill data is available for use while in the

395/463,464, 449, 450, 455, 457, 458, store queue because the store queue acts as an extension to
460, 462, 467, 469, 471, 473; 364/DIG. 1 the slave data cache. Cache operations, diagnostic stores and

56 References Cited TLB entries are also loaded into the store queue. A new store
or line fill can be merged into an existing store queue entry.

U.S. PATENT DOCUMENTS Each entry has valid bits for the master cache, the slave data
cache, and the slave's tag. Separate byte enables are pro

E. SE E.ovus Oso sees soo E. vided for the master and slave caches, but a single physical
1135 992 Fite et al. 3 address field in each store queue entry is used.

5,136,700 8/1992 Thacker 395/449
5,146,578 9/1992 Zangenepour 395/464
5,224,217 6/1993 Zangenepour 395/463 19 Claims, 4 Drawing Sheets

10 30 40

BU
RD -PL

BFR Master
Cache 28

EX-PL

TOIFROMMEM

SLV DC WR BFR
52

BU
WR Store
BFR Queue

12 52

TOTLB's

5,644,752 Sheet 2 of 4 Jul. 1, 1997 U.S. Patent

5,644,752 Sheet 4 of 4 Jul. 1, 1997 U.S. Patent

SÆTI L O L

07

?nenO ?JO?S 92

G -61
ZG

??OeO J??SeW 09

TIE

5,644,752
1.

COMBINED STORE QUEUE FOR A
MASTER-SLAVE CACHE SYSTEM

BACKGROUND OF THE INVENTION--
RELATED APPLICATIONS

This application is a Continuation-in-Part of application
for a "Master-Slave Cache System”, filed Jun. 29, 1994, U.S.
Ser. No. 08/267,658, now U.S. Pat. No. 5,551,001, having a
common inventor and assigned to the same assignee as the
present application.

BACKGROUND OF THE INVENTION-FIELD
OF THE INVENTION

This invention relates to cache memories, and more
particularly to a store queue for writing to cache memories.

BACKGROUND OF THE INVENTION
DESCRIPTION OF THE RELATED ART

A master-slave caching scheme is described in the
co-pending parent application for a "Master-Slave Cache
System”, filed Jun. 29, 1994, U.S. Ser. No. 08/267,658, now
Pat. No. 5,551,001, hereby incorporated by reference. The
master-slave cache system includes a larger master cache
that provides a low miss rate, and supports all prefetching
and cache coherency operations. The master cache controls
two Smaller slave caches, a slave-instruction cache and a
slave-data cache. The master cache includes valid bits for
the slave caches, and will instruct the slave caches to
invalidate a line when a coherency hit is detected by the
master cache.

The instruction and data slave caches are kept small and
simple so that they can match the bandwidth required by
their respective pipelines. The slave caches are tightly
coupled to the master cache which results in a low miss
penalty for a slave cache miss that hits in the master cache.
Thus the slave caches provide the high bandwidth required
by the pipelines, while the master cache provides allow miss
rate with a large size and associative organization.
The slave data cache is read during loads from the execute

pipeline. If the slave data cache is busy, the execute pipeline
must stall. If the slave data cache is often busy writing in
data, performance will be degraded. Data must be written
into the slave data cache for stores from the execute pipeline,
and for cache-line fills from the master cache to the slave
data cache. Buffering these writes when a load occurs can
improve performance by delaying these writes until a free
cycle. ,

It is also desired to buffer execution-pipeline stores to the
master cache, to allow the execute pipeline to continue
without stalling when the master cache is busy. Cache
operations, such as invalidates and cache coherency opera
tions should also be buffered to the master cache. When
buffering cache operations it is important to keep them
well-ordered with respect to normal stores.
Thus a goal of the store queue is to minimize execute

pipeline stalls caused by writing to the slave data cache at
the same time that the execute pipeline wishes to read the
slave data cache. Another goal is to minimize store stalls due
to a full store queue while still minimizing the amount of
store queue memory and control logic required.
Transfer of write or store data from the execute pipeline

to the slave data cache and the master cache must be
carefully coordinated so that any matching lines in either the
master or slave caches are updated with the store data. Fills
from the master cache to the slave data cache must also be

10

15

20

25

30

35

45

50

55

65

2
buffered to prevent interference with the execute pipeline.
Multiple store queues andfill buffers may be used. However,
a more economical approach is desired.
What is desired is a single store queue to operate with the

master-slave cache system. The store queue should be able
to accept stores from the execute pipeline and route store
data to the slave data cache and to the master cache.
Additionally, it is desired to have fill data from the master
cache to the slave data cache also be routed through the store
queue, simplifying the interconnection to the slave data
cache by having all writes to the slave data cache gothrough
the store queue. It is also desired to have a single store queue
accept updates to the translation-lookaside buffer (TLB) as
well as data for the master and slave data caches. It is
additionally desired to have the store queue accept all cache
operations, such as cache coherency and cache diagnostic
operations from the processor, allowing their order of execu
tion to be preserved.

SUMMARY OF THE INVENTION

A single store-queue is provided to accept store data from
the processor's execute pipeline for writing into either the
slave data cache or the master cache, or both. The store
queue is used as an extension of the slave data cache. Fill
data from the master cache to the slave data cache is
therefore written to the store queue and is immediately
useable, even before being written into the slave data cache.
A master-slave cache system transfers data between a

main memory and a central processing unit (CPU). The CPU
has an execution pipeline that executes at a first rate, while
the main memory stores a plurality of operands. The system
comprises a master cache for storing operands, that is
coupled to the main memory. This master cache stores a first
subset of the plurality of operands stored in the main
memory and a second subset of operands. The second subset
is a subset of the first subset.

A slave data cache is coupled to the execution pipeline,
and stores the second subset of operands. It is capable of
transferring operands to the execution pipeline at the first
rate. A store queue is coupled to receive stores from the
execution pipeline. The store queue temporarily stores oper
ands for writes to the master cache and the slave data cache.

In further aspects of the invention, the store queue
includes a means for receiving line fills from the master
cache, a means for storing the line fills in the store queue,
and a means for writing the line fills to the slave data cache.
The store queue stores operands from the execute pipeline
for writing to the master cache and the slave data cache, and
the store queue stores line fills from the master cache to the
slave data cache. In other aspects the store queue receives a
line fill from the master cache in response to a miss in the
slave data cache.
The store queue comprises a plurality of entries, each

entry in the plurality of the entries comprising:
a datafield for storing store data from the execute pipeline

or line fill data from the master cache;
a physical address field for indicating a portion of a

physical address of data in the data field; and a
destination valid means for indicating a destination of the

data in the data field.
In still further aspects of the invention the destination

valid means has a master valid indicating means for indi
cating if the entry contains valid data for writing to the
master cache, and a slave valid indicating means for indi
cating if the entry contains valid data for writing to the slave

5,644,752
3

data cache. The destination valid means may also have a
slave tag valid indicating means for indicating if the entry
contains a valid physical address for writing to a tag in the
slave data cache.

In other aspects of the invention each entry has a cache
operation indicating means for indicating that the entry is a
cache operation rather than a store or line fill. The data field
includes an encoding of a type of cache operation when the
cache operation indicating means indicates that the entry is
a cache operation.
When the cache operation indicating means indicates that

the entry is a cache operation, the master valid indicating
means indicates that the entry contains valid data for writing
to the master cache and the slave valid indicating means
indicates that the entry is not for writing to the slave data
cache. Thus cache operations are only sent to the master
cache but not to the slave data cache.
The shared store queue not only saves complexity by

having one storage buffer for both the master and slave
caches, but it can be used to buffer line fills to the slave data
cache from the master cache, further saving buffering and
control logic. Cache operations for the master cache can also
be written into the shared store queue by the execution
pipeline, and the master cache can cause the slave data cache
to invalidate a line by setting the destination valid means in
the store queue in an appropriate manner.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of the slave data cache.
FIG. 2 shows a store queue within the microprocessor die.
FIG. 3 is a simplified diagram of a store queue tag.
FIG. 4 shows in detail the differentfields in a store queue

entry.
FIG. 5 is a detailed diagram of the cache sub-system

highlighting the connections to the store queue.
DETALED DESCRIPTION

The present invention relates to an improvement in cache
memories. The following description is presented to enable
one of ordinary skillin the art to make and use the invention
as provided in the context of a particular application and its
requirements. Various modifications to the preferred
embodiment will be apparent to those with skill in the art,
and the general principles defined herein may be applied to
other embodiments. Therefore, the present invention is not
intended to be limited to the particular embodiments shown
and described, but is to be accorded the widest scope
consistent with the principles and novel features herein
disclosed.

A master-slave cache system was disclosed in the related
application entitled "Master-Slave Cache System”, filed Jun.
29, 1994, U.S. Ser. No. 08/267,658, now U.S. Pat. No.
5,551,001, hereby incorporated by reference. That applica
tion is assigned to the same assignee as the present appli
cation. The master-slave cache system includes a larger
master cache that provides a low miss rate, and supports all
prefetching and cache coherency operations. The master
cache controls two smaller slave caches, a slave-instruction
cache and a slave-dam cache. The master cache includes
valid bits for the slave caches, and will instruct the slave
caches to invalidate a line when a coherency hit is detected
by the master cache.

NOMENCLATURE USED

In the preferred embodiment, the caches are organized as
cache lines each consisting of four sub-lines. Each sub-line

10

15

20

25

30

35

45

50

55

65

4
is a 64-bit (eight-byte) double word. The sub-line is the
Smallest quantity that can be stored in the caches. Updating
a single byte requires that the entire 8-byte sub-line be
brought into the cache before the single byte is updated. The
basic unit of dam transfer to and from the slave caches is the
sub-line, also known as a sub-block.
The preferred embodiment will be described for a system

having a 32-bit byte-address known as the physical address
because it is the actual address of the datum in memory.
Only 29 bits of the physical address are needed to identify
a particular eight-byte double-word stored in the caches.
The 29-bit physical address of a double-word is divided

up into a tag and an index. The tag is the upper or
most-significantportion of the address, while the index is the
lower portion. The index is used to identify a cache line and
a sub-line. The preferred embodiment has a 21-bit tag and a
8-bit sub-line index. The upper 6 bits of the 8-bit sub-line
index is known as the line index. The line index specifies one
line in a cache with 64 lines. The remaining 2 bits of the
index specify one of the four sub-lines in a line. The sub-line
index thus includes the 6-bit line index and the 2 bits for
specifying the sub-line.

FIG. 1 is a diagram of the slave data cache 28. Each line
in the slave data cache has four sub-lines 72A, 72B, 72C,
72D. Each sub-line is a 64-bit double-word of data. Sub-line
validity is provided by sub-line valid bits 70A, 70B, 70C,
70D, one valid bit for each of the four sub-lines. The sub-line
or sub-block size is 64 bits, so 64 bits are supplied to the
execute pipeline on a load, even though the execute pipeline
may require less than 64 bits. The execute pipeline may
select a subset of the 64-bit double-word. Other embodi
ments may use different bits and widths for the pipeline and
sub-line and the tag and index portions of the address, as
these vary with the size and arrangement of the caches.

Wrapable is a term synonymous with bypass. It means
that data from an entry in the store queue may be bypassed
to the execute pipeline to supply a load, rather than using the
data in the slave data cache.

STORE QUEUE IN A PROCESSOR
In a highly-pipelined processor, a store queue is often

necessary for performance. The store queue holds data
operands from the execution pipeline that are to be written
out to the cache or memory. The store queue is a useful
structure for buffering stores to the cache and main memory.
Often the slave data cache will be busy processing a read
request from the pipeline, preventing the store from being
immediately written to the slave data cache. The store queue
can hold the store data until the slave data cache has a free
cycle. The store queue may be several words deep, allowing
it to buffer several stores simultaneously,

Since the master cache is tightly coupled to the slave data
cache, the store queue may be shared between the master
cache and the slave data cache. Because the slave data cache
is preferably write-through, lines do not have to be copied
back to the master cache after a miss occurs and an old line
is replaced. If the store data from the execution pipeline is
Written to both the slave data cache and the master cache via
the store queue, the slave data cache does not need a separate
mechanism for writing-through to the master cache. This
helps to reduce complexity of the master-slave cache and
saves space by sharing store queue storage.
Example of a Store Queue in a Microprocessor
FIG. 2 shows the store queue 52 within microprocessor

die 20. The slave instruction cache 26 supplies instruction
words to the instruction pipeline, which includes instruction

5,644,752
S

buffer 42, instruction decoder 44, and instruction fetcher 46.
Instruction decoder 44 is the last stage of the instruction
pipeline, and feeds decoded instructions to the execute
pipeline. The execution pipeline includes general-purpose
registers 56, which contain temporary storage areas visible
to and available for use by programs. The general-purpose
registers 56 feed operands to an arithmetic-logic unit (ALU)
48, which performs an operation on the data operands. Data
operands may be selected from the general-purpose registers
56, or from memory. Memory operands are supplied by
slave data cache 28. ALU 48 may write the result of the
operation back into the general-purpose registers 56, or the
result may be written or stored to memory. The operation
that the ALU executes may simply be to move data from the
general-purpose registers 56 and store that data to the
memory. The store data is transferred to the store queue 52
from either the ALU 48 or directly from the general-purpose
registers 56. Data in the store queue 52 is then written to the
slave data cache 28, if the store data corresponds to a line in
the slave data cache 28, and to the master cache 30.
Once data is placed in the store queue 52, the actual write

operations to the master cache 30 and the slave data cache
28 could occur at slightly different times, when a free cycle
occurs for the master cache 30 and for the slave data cache
28. Master cache 30 could have many free cycles, allowing
several stores to be written to the master cache 30 before
even the first store is written to the slave data cache 28, or
the reverse may be true.
A policy of allocate on write for the slave data cache 28

would require added complexity. Therefore stores that miss
in the slave data cache 28 preferably do not cause a new line
to be allocated to the slave data cache 28. Rather, the store
data are simply not written to the slave data cache 28 but are
written only to the master cache 30. Thus some of the stores
in the store queue 52 will not be written to the slave data
cache 28. However, all cacheable stores are written to the
master cache 30.

STORE QUEUE CONTENTS
FIG. 3 is a simplified diagram of a store queue entry. The

store queue 52 also contains fields for the store data (not
shown) in each store queue entry. These store queue entries
are similar to cache lines and tags. A store queue entry
includes an address field 86 for the physical address of the
store. Page information field 84 specifies properties about
the corresponding physical page in memory, such as write
through, guarded, cacheable, or coherent. The store queue
52 also includes master valid bit 89, to indicate that the store
data needs to be been written to the master cache 30, and
slave valid bit 88, to indicate that the data needs to be written
to the slave data cache 28. These valid bits 89, 88 are
necessary since the writing to the master and slave cache
may occur in any order. A slave-tag-valid bit 90 indicates
that the store data is a line fill or invalidate from the master
cache, and that the address tag in the slave data cache 28
must also be updated when the data is written. Two byte
enable fields, 91, 92 specify which bytes are valid for the
slave and master, allowing merges of bytes for multiple
writes to the same double-word. Tag information field 93
may contain parity, sub-line validity, or other information.
Type field 94 specifies if the store queue entry is a normal
cacheable write from the execution pipeline, or if it contains
a cache operation such as an invalidate request or Zeroing
operation from the CPU, or if it is some other kind of write
(non-cacheable, diagnostic).

DETAL OF A STORE QUEUE ENTRY
FIG. 4 shows in detail the different fields in a store queue

entry. The store queue may contain anywhere from one to

10

15

20

25

30

35

45

50

55

65

6
dozens of such entries, depending on the needs of the
pipelines and the hardware budget. A physical address field
86 contains the 29 most-significant bits of the physical
address of the data in the store queue entry. Atag parity field
18 contains one or more parity bits for the physical address
field 86 and the sub-line valid bits 21.

Four sub-line valid bits 21 indicate which of the first,
second, third, or fourth 64-bit sub-lines in a 256-bit cache
line is valid in the slave cache. These sub-line valid bits will
be written into the slave data cache when the tag is written.
They contain validity information for not only the one
sub-line of data in the store queue entry, but also validity
information for any other sub-lines of the same cache line
that are currently valid in the slave data cache itself.
However, if the slave tag valid bit 90 is not set, then none
of the sub-line valid bits are used to indicate validity.
The actual store or fill data is contained in data field 22,

which can hold one 64-bit sub-line. A data parity field 24
holds parity bits for data field 22.

Several valid bits indicate the destination for the data in
the entry. These include slave valid bit 88, master valid bit
89, and slave-tag valid bit 90. The store queue entry might
be normal store data from the execute pipeline, destined for
the master cache. This store data is also written to the slave
data cache if a line matching its address field is found in the
slave data cache or the store queue. In this case, slave valid
bit 88 and master valid bit 89 are both set. Additionally,
slave byte enables 91 and master byte enables 92 are set to
indicate which of the eight bytes in the 64-bit sub-line are
valid. The execute pipeline can perform writes of various
sizes up to eight bytes.
When a new cache line is written to the store queue from

the master cache, the master valid bit 89 is not set, but the
slave valid bit 88 is set. In addition, the tag field in the slave
data cache must be updated to reflect the address of the new
cache line. The slave tag valid bit 90 is set to indicate that
the slave's tag should also be written when the data is
written into the slave data cache.

If the store queue entry is being used for a TLB entry
instead offill or store data, then TLB valid bit 26 or 28 is set.
Additional valid bits could be used for other storage struc
tures on the microprocessor die that are written through the
store queue.

Attributes are stored in type fields 94A, 94B. Field 94A
indicates if the store queue entry in non-wrapable (NW),
meaning that data from this entry may not be bypassed to the
execute pipeline to supply a load. Instead, the load must wait
until the store queue data is actually written into either the
master cache or slave data cache. This NW bit indicates a
special store queue entry, such as a cache or diagnostic
operation, or a non-cacheable store. Field 94B indicates a
cache operation (CO) such as an invalidate. Page informa
tion field 84 contains attribute information about the data in
the store queue entry from the TLB. This information
includes the following four bits:

W Write-through to main memory
I Cache Inhibit (data is non-cacheable)
M MESI coherence required (broadcast write)
G Guarded Storage Area.

Certain areas of memory can be designated as guarded
storage areas. This is useful for memory-mapped input
output devices. Prefetching should not occur to guarded
memory areas. Other areas of memory can be designated as
coherent areas. This is useful for setting up communication

5,644,752
7

mailboxes or shared data between processors. Any writes to
a coherent memory area are broadcast off the microproces
sor die to any external processors. The MESI coherence
protocol specifies how memory areas may be shared coher

8
queue may be dynamically allocated between fill data and
store data, resulting in a more efficient use of processor
CSOCCS

The store queue 52 is the only path for store data from the
ently by several processors. All handling of MESI coherence 5 execution pipeline to be written out to the master cache 30
protocol operations is done through the master cache. This and the slave data cache 28. In addition, the store queue is
frees the slave caches to perform any read or Write operation the primary path to write data from the master cache 30 to
without concern for coherency. the slave data cache 28. All writes to the slave data cache are

buffered through the store queue, except when the store
CODING OF VALID AND ATTRIBUTE BITS 10 queue is full, when a fillis written directly to the slave data

The type of entry in the store queue is determined from cache. This eliminates the need for a second write port into
the setting of the valid and attribute bits. When all valid bits the slave data cache 28:Buffering all Writes through a single
are off, the entry is empty and can be used for a new store store queue also simplifies control and timing.
or fill. An entry is still empty if the sub-line valid bits 21 are Normal stores set the master valid bit. The slave valid bit
set, but the other valid bits are off. The slave valid bit is set is also set if the store hits in the slave data cache. Normal
when the data is to be written to the slave data cache, as for stores do not set the slave tag valid bit. When the master
stores, fills, or diagnostic writes to the data portion of the stores the data, the master valid bit is turned off while the
slave data cache. The slave tag-valid bit is set for diagnostic slave valid bit is left on. Likewise, the slave valid bit is
writes to the slave data cache's tags, or for fills from the turned off once the slave has written the store data, possibly master cache. The master valid bit is set for diagnostic/cache leaying the master valid bit on. Only when both the master
operations to the master cache, and normal stores. The and slave, have written the store data can the entry be
master valid bit is also set for non-cacheable stores to considered empty and re-used.
indicate that the store goes directly to the bus interface unit Data is stored on a sub-line basis, as each entry in the store
(BIU). Diagnostic or cache operations and non-cacheable queue can hold up to one sub-line (8-byte double-word) of
stores have the non-wrapable bit (NW) set, while normal data. Any subset of the 8 bytes in the sub-line may be valid
cache stores and fills have the NW bit cleared. Table 1 for either the master or slave cache. Two sets of byte enables
Summarizes these store-queue entry types. are provided-one set for the slave data cache, and one set

TABLE 1.

Store Queue Entry Types

Slave
Slave Tag Master TLB
Walid Walid Vaid Valid NW CO I Type of Entry

O O O O x x Empty
O O O x Diagnostic Write to TLB
O 1. O O 1. x x Diagnostic Write to Slave Tags
1. O O O 1. x Diagnostic Write to Slave Data
O O O 1. O 0 Diagnostic Write to Master
O O 1. O 1. O Non-Cacheable Store
O O 1. O 1. 1. x Cache Operation
O O 1. O O O O Store to Master
1. O 1. O O O O Store to Master & Slave
1. 1. O O 0 0 O Fill to Slave
1. O O O O O O Store to Slave (Master Consumed)

1 1. O O O 0 Store Merged with a Fill

The TLB valid bit indicates when the operation is a
diagnostic or normal write to the TLB. The slave's tag and
data valid bits are both set for fills from the master cache.
Some of the other store entries in Table 1 can also occur
when a store is merged with another store or a fill.

OVERVEW OF OPERATION

The store queue stores all data that will be written to the
slave data cache. This includes stores from the execution
pipeline, and cache-line fills from the master cache. The
store queue also stores all data to be written to the master
cache, except for data from external memory, which uses the
buffers in the BIU. Thus the store queue is a shared store
queue.

Instead of having a separate fill bufferfor fill data from the
master cache to the slave data cache, the store queue is used
as the fill buffer. A large savings in hardware results because
address compare and bypass logic in the store queue is
shared with the fill buffer. The storage space in the store

50

55

65

for the master cache. These two sets facilitate merges, as
they can be separately updated.
Merges

Acacheable sub-line can ordinarily be presentin only one
entry in the store queue. Before a new cacheable sub-line is
loaded into the store queue, a compare of its physical
address looks for any other cacheable entries in the store
queue having a matching physical address. When the com
pare reveals a match in the sub-line address, then a merge
must be performed so that only a single store queue entry
can ever correspond to any cacheable sub-line. Instead of
writing the new sub-line into an empty entry, the new
sub-line is merged into the existing entry with the matching
sub-line address.

However, non-cacheable data does not participate in
merges. Two separate non-cacheable entries may existin the
store queue; these two entries would be merged if they were
cacheable.
Merges increase the efficiency and performance of the

storage mechanism by combining two or more separate

5,644,752

stores into a single store. Thus while the execute pipeline
performs two or more stores, the master and slave caches
each have to perform only one store.
Only One Slave Tag Valid Allowed for a Cache Line

Entries in the store queue contain one sub-line of data.
The address field corresponds to one cache line-four
sub-lines of data in the cache. Likewise, only one slave-tag
valid bit can be set for a cache line.
The master cache will load four store-queue entries with

the four sub-lines of data when a cache-line fill occurs.
Although four entries are needed for the four sub-lines of
data, the address tag for the cache line only needs to be
written once. Thus only one of the four entries will be
marked with a set slave-tag valid bit. The other three entries
will have their slave-tag valid bits cleared.
Any operations that set the slave-tag valid bit must clear

any other slave-tag valid bits in entries having matching
cache-line addresses. Only one entry for a given cache-line
address can have the slave-tag valid bit set.
Store Queue Acts as an Adjunct of Slave Data Cache
The data in the store queue is always considered to be

more recent than the data in the slave data cache. The store
queue is not a strict subset of the slave data cache, nor is it
a side cache. The store queue acts as an adjunct to the slave
data cache: the store queue is an additional storage structure
that may contain data that is to be used rather than the older
data in the cache.
The store queue does not increase the associativity of the

slave data cache. Associativity would be increased if a line
in the slave data cache had the same index but a different
physical address as a sub-line in the store queue. If both were
valid, then two cache lines would be stored for one cache
line index, rather than just one. To keep the associativity
constant, the older line in the slave data cache must be
marked as invalid or not used for satisfying a load request.
This older line in the slave data cache will soon be over
written by the sub-line in the store queue. It is effectively
overwritten already by the entry in the store queue. The older
line in the cache is physically marked invalid when the store
queue entry is actually written in to the cache.
To prevent every store from the execute pipeline from

interfering with the lines in the slave data cache, the slave
tag valid bits are not set when store-queue entries are loaded
from the execute pipeline, if the store data does not hit in the
slave data cache. Stores from the execute pipeline that miss
in the slave data cache are just written to the master cache.
The slave valid bit will not be set when the store data does
not hit in the slave data cache. It must be set if the store does
hit in the slave data cache.
Tag Wrapping

In tag wrapping, the tag from the store queue is used
rather than the tag in the slave data cache. Tag wrapping
occurs when the data in the store queue has the same cache
line index as an olderline in the slave data cache. If the store
queue entry is marked as slave tag valid, then the physical
address tag in the store queue must be used rather than the
address tag in the slave data cache.
Tag wrapping thus wraps the newer tag from the store

queueinstead of the older tag in the slave data cache that will
soon be overwritten. Tag wrapping supplies the newer
address tag when aload (read) compares the tags for a match
determination.
Loads Bypassed from Store Queue
A load from the execute pipeline will usually hit in the

slave data cache, which will send the data operand back to
the execute pipeline. The data operand may also be supplied
from the store queue if the store queue entry matches the

10

15

20

25

30

35

45

50

55

65

10
sub-line address and its slave valid bit is set and it is
cacheable (its non-wrapable (NW) bit is cleared). When the
store queue Supplies data to the processor's pipeline it is
referred to as wrapping the store queue data or as bypassing
the slave data cache. This saves a clock cycle to write the
data operand into the slave data cache that would otherwise
be required before supplying the data operand. A partial
address compare on just the lower-order address bits (the
index portion) may be used instead of a full address compare
if the load can be discarded if the address tags do not match
(a cache miss).

EXAMPLES OF SIMPLE STORE-QUEUE
OPERATIONS

The operations required when a new cacheable store from
the execute pipeline is placed into an empty entry in the store
queue are:

1. Databytes and parity bits are written for the bytes being
stored, while other bytes are not changed.

2. The master valid bit is set.
3. The WTMG attribute bits are set. These bits come from

the TLB during the translation from a virtual to the
physical address.

4. The physical address is loaded into the physical address
field and the tag parity bits are also written.

5. The slave tag valid bit is cleared.
6. The master and slave byte enables are set according to
which bytes are being stored by the processor.

7. The slave valid bit is setif the store hits in the slave data
cache.

8. The NW and CO bits are cleared.
A merge is required when the physical address of a new

cacheable store matches the cache-line address of an exist
ing cacheable entry in the store queue. The sequence to
merge the new store from the execute pipeline into the
existing entry is:

1. Databytes and parity bits are writtenforthebytes being
stored, while other bytes are not changed.

2. The master valid bit is set.
3. The WIMG attribute bits are set. These bits come from

the TLB during the translation from a virtual to the
physical address.

4.The physical address is loaded into the physical address
field and the tag parity bits are written.

5. The slave tag valid bit is not changed. It was set if it the
existing entry was a fill, but clear if the existing entry
Was a Store.

6. The master and slave byte enables corresponding to
bytes being stored are set, and all others are not
changed.

7. The slave valid bit is set if the new store hits in the slave
data cache.

8. The NW and CO bits are cleared (should be clear
already).

A cacheable line fill that is being loaded into an empty
store queue entry will do the following:

1. Data bytes and parity bits are written for the 8 bytes
being stored.

2. The slave valid bit and slave tag valid bits are set.
3. The WTMG attribute bits are not modified.
4. The physical address is loaded into the physical address

field and the tag parity bits are written.
5. The master valid bit is not changed. It was clear for an
empty entry.

5,644,752
11

6. All of the slave byte enables are set. The master byte
enables are not changed, but are already clear for an
empty entry.

7. The NW and CO bits are cleared.
A new cacheable store may be merged into this line-fill entry
using the same procedure for the merge. The slave tag valid
bit would have been set if the entry was a line fill, but cleared
for an existing store.
A cacheable line fill that is being merged into an existing

store queue entry will follow the sequence:
1. Databytes and parity bits are written for the bytes being

stored, if they are not already valid for the master. Other
bytes that are already valid for the master are not
changed. A bytes is valid for the master if the master
valid bit is set and the corresponding byte enable is set.

2. The slave valid bit and slave tag valid bits are set.
3. The WIMG attribute bits are not modified.

4. The physical address is loaded into the physical address
field and the tag parity bits are written.

5. The master valid bit is not changed. It was set if it the
existing entry was a store, but clear if the existing entry
was a fill.

6. All of the slave byte enables are set. The master byte
enables are not changed.

7. Clear the NW and CO bits are cleared.

DETAILED RULES FOR STORE-QUEUE
The store queue operates under a set of detailed rules.

These rules are complex, covering the many possible com
binations formerges, fills, and stores. Cache diagnostic and
coherency operations are also provided for in these rules.

Certain principles, as discussed above for simple
operations, are the basis for these rules. Additionally, these
rules are needed to keep the most-recently-written data from
the execute pipeline valid while older data from the master
cache is overwritten by newer data.
Priority on Merges
New data is merged in with existing data based on the

following rules. Store data from the execute pipeline is
always the most up-to-date data and overwrites any existing
data in a store queue entry with a matching address.
However, line fill data from the master cache to the slave
data cache is always stale compared to data in the store
queue if the master valid bit is set. For fills that merge in to
store queue entries where the master valid bit is set, new fill
data is discarded that is located in bytes that are already
enabled by the master byte enables. If the master valid bit is
not set in the existing line that will be merged to, then the fill
data from the master cache is current and can safely over
write the data in the store queue.

Aline fill merging to a store entry will set all of the slave
byte enables, but not change any of the master byte enables.
A store merging into an entry used for a fill or a previous
store will set particular byte enables in both the master byte
enable and slave byte enable fields. The particular byte
enables set will be the particular bytes written by the execute
pipeline. An earlier store could have written only the first
byte of the eight bytes in a sub-line, while a later store only
writes the last byte of the sub-line. After these two stores are
merged together, the first and the last byte enables would be
the only byte enables set. As store data is written to the slave
data cache, all the slave byte enables will not be cleared until
the entry is emptied out and re-used.

However, as the master cache consumes a store, the
master byte enables are cleared. This prevents the same data

10

15

20

25

30

35

45

50

55

65

12
from being written multiple times to the master cache. The
same data will be re-written to the slave data cache on
subsequent writes for merges, but this will not reduce
performance as up to eight bytes may be written in a single
clock cycle. The byte enables are therefore cumulative for
the slave data cache but not for the master cache. The slave
and master bytes enables are kept current as data is written
to a store queue entry.

Data in the store queue may be written to the slave data
cache in any order since tag wrapping effectively writes the
new data into the combined cache/store queue as soon as a
new entry is loaded into the store queue. However, the order
entries were written into the store queue must be the same
order these entries are written back to the master cache since
the master cache does not wrap tags from the store queue.
Thus strict ordering of writes to the master cache is
necessary, but not for the slave data cache.

CONNECTIONS TO STORE QUEUE
FIG. 5 is a detailed diagram of the cache sub-system

highlighting the connections to the store queue. Slave
instruction cache 26 feeds the instruction pipeline 40 with
instructions, while slave data cache 28 loads data operands
into execute pipeline 50. Master cache 30 directly supplies
slave instruction cache 26 with sub-lines of instructions
either when a miss occurs in the slave instruction cache 26,
or with a prefetching mechanism.
A bus-interface unit (BIU) includes a read buffer 10,

which reads data from an external memory, such as a level-2
cache or DRAM main memory. Read buffer 10 supplies data
to master cache 30 when a miss occurs in master cache 30,
or a prefetching mechanism requires the data. A bus
interface-unit write buffer 12 stores data that is to be written
out to the main memory, and can be several words deep. The
master cache 30 can load BIU write buffer 12 when an older
line is cast out of master cache 30 to make room for a new
cache line.

Master cache 30 does not send fill data directly to slave
data cache 28 when a miss occurs in slave data cache 28.
Instead, the fill data from the master cache 30 is sent to the
store queue 52, and then written into slave data cache 28. A
slave data cache write buffer 14 holds one sub-line of data,
along with a tag and sub-line valid bits for writing into the
slave data cache 28. As an entry from store queue 52 is
written into slave data cache 28, it is first transferred to write
buffer 14 and then written into a location in slave data cache
28. When the store queue 52 is full, fill data may be written
into write buffer 14 rather than into store queue 52. Any data
in the write buffer 14 will be written to the slave data cache
on the next clock cycle. The write buffer is an advantage
since fill data can always be sent to the store queue or to the
write buffer 14 if the store queue is full, so no flow control
mechanism is needed for fill data.

If there are no more empty entries in the store queue, then
the fill data is loaded into the slave write buffer, which is
always empty because it is written into the slave data cache
on each following cycle. If an existing store queue entry has
the same sub-line address, then the fillis merged in with this
existing entry.

Store data operands from execute pipeline 50 are first
stored into store queue 52. From store queue 52 this store
data is then written into the master cache 30 and possibly the
slave data cache 28. If the store data is designated write
through, then it may also be written out to main memory via
the master cache through BIU write buffer 12. Additionally,
the store data may not be normal store data, but a cache

5,644,752
13

operation destined for master cache 30, or a translation
lookaside buffer (TLB) entry destined for a TLB or other
Structure.

PIPELINE MANAGEMENT

For the preferred embodiment, the execute pipeline ends
with the three pipestages: C, M, W: for Cache, Match, and
Write-back. During the C stage, the tags of the slave data
cache are accessed to determine if any match with the
physical address of a load or a store, and the data for any
such matching tag is latched. The load or store is caused by
execution of an instruction in the C-stage of the execute
pipeline. In the M stage, the latched tags are compared to
determine if a hit or miss has occurred, while in the W stage
the store is written to the store queue.

Because line fills can occur at any time, the match
determination may change. A hit may be indicated in the C
stage when the tags are read, but a line fill to the same
cache-line index could invalidate the matching cache line,
causing a hit to change to a miss (or vice-versa) in the M or
W stages. Pipeline management is necessary to track the
effects of multiple operations occurring simultaneously.
When a line fill occurs and a load in the C stage detects

that the fillis to the same cache-line index as the load, a stall
is necessary to let the fill complete. The fill could contain the
line needed by the load, or the fill could invalidate the line
containing the fill. Until the fillis in the store queue, the tags
for that line are in an uncertain state. Loads in the C stage
are also stalled if a store is occurring to the same sub-line as
the load. This is the classic data dependency stall. The store
occurs later in the pipeline than the load, as the store occurs
in the MorW stage while the load stalls in the C stage. The
store may be pending, being in the MorW stage but not yet
having been written into the store queue.
As with loads, for stores, the match (hit) is first indicated

in the C stage when the tags are read, but must be tracked
for the M and W stages. Tracking is necessary because a fill
may alter or invalidate the matching line in the cache or store
queue. Tracking in the M and W stages avoids reading the
tags for a second or third time.
As with loads, when a line fill occurs and a store in the C

stage detects that the fill is to the same cache-line index as
the store, a stallis also necessary to let the fill complete. The
fill could contain the line needed by the store, or the fill
could invalidate the line containing the fill. Astore in the W
stage may stall for one cycle if a fill for the same sub-line is
in progress; this avoids the complexity of both master and
execute pipeline writing the same store queue entry on the
same cycle.

COMPLEX OPERATIONS

Interfering Entries with Same Cache Line or Index
As a fill is loading an entry into either the store queue or

the slave write buffer, a compare will be performed to look
for store queue entries that have a physical address matching
the cache line index portion of the fill's address but having
a different physical address. Any entries with this matching
line index would be placed in the same location (line) in the
slave data cache. Since lines with two different addresses
(tags) cannot be placed in the same line in the cache as the
slave data cache is direct-mapped, the older line in the store
queue is prevented from being loaded into the slave data
cache by clearing its slave valid and slave tag valid bits. If
the older entry was a store, data will not be lost because it
will still be written to the master cache.

O

15

25

30

35

45

50

55

65

14
If the compare reveals a store queue entry that has both

the same line index, and the same tag, meaning that they are
the same line, butpossibly a different sub-line, then the slave
tag valid bit of the older entry is cleared. This is the same
procedure as for subsequent sub-lines of a line fill, that the
slave tag valid bit of each previous sub-line is turned off
when a new sub-line is loaded. Thus the same compare and
clear logic can be used.

Finally, if the compare reveals a store queue entry that has
the same line index, the same tag, and even the same
sub-line, then the fill data can be merged into the entry for
the olderline. Any bytes that are in the store queue and valid
for the master must take precedence over fill data being
merged in from the master.
Flexible Order of Operations

Using this compare and update mechanism of the tag
valid bits allows fills and stores to be processed in any order
with respect to the slave data cache. Since the order need not
be preserved, empty entries can be used without regard to
their relative location. However, the order to the master
cache must be preserved as this can include cache operations
such as invalidates and non-cacheable stores. A first-in
first-out structure need not be used, simplifying the design
and control of the store queue. Stores or fills will be written
into the slave write buffer and then into the slave data cache
anytime a free cycle occurs, when the slave data cache is not
being used for a load or another store. The slave's write
buffer can be used for pipelining the store by being located
in close proximity to the slave data cache. The slave valid
and slave tag valid bits in the store queue are cleared as soon
as the entry is moved to the slave write buffer.
Line Fills Setting Tag Valid Bits

For a typical cache-line fill, four sub-lines are succes
sively loaded into four store queue entries. The physical
address or tag field is loaded for each entry. The slave tag
valid bit and the slave valid bit are set in a special way.
Special compare logic in the store queue determines if any
previous entry in the store queue has the same cache-line
address. If such a matching entry is found, the slave tag valid
and slave valid bits for these earlier matching entries are
cleared. With this procedure, only one tag will be valid for
a given line in the store queue; this is the most recently
written entry for the line.

Cache line fills are complex operations. Since an entire
sub-line is written to each store-queue entry, all eight of the
slave byte enables are set for each entry. As each cache line
in the slave data cache has four sub-lines, and each store
queue entry can holdjust one sub-line, an entire line fill will
occupy four entries in the store queue.

In the best case, the first sub-line will be loaded into the
store queue on the first cycle, the second sub-line on the
second clock cycle, the third on the third cycle and the fourth
sub-line on the fourth clock cycle. Each of the four sub-lines
corresponds to a different one of the four sub-line valid bits.
The sub-line valid bits are cumulative, indicating all the
other valid sub-lines that have previously been written to
that line. For example, the first sub-line has its sub-line valid
bits set to 0001, while the second sub-line sets the sub-line
valid bits to 0011, the third to 0111, and the fourth to 1111.
For the second sub-line, 0011 indicates that both the first and
the second sub-lines are valid. The slave tag valid bit for the
first sub-line is cleared when the second sub-line is put in the
store queue, validating both first and second sub-lines.
Likewise, as the fourth sub-line is being written into the
store queue, its slave tag valid bit is set, and the slave tag
valid bits for other store queue entries in the same line are
cleared. The sub-line valid bits for the fourth sub-line, 1111,

5,644,752
15

indicate that all four sub-lines are valid. The sub-line valid
bits stored in the entries for the other three lines are ignored
because their slave tag valid bits are cleared.

CACHE OPERATIONS LOADED INTO STORE
QUEUE

An invalidation instruction that is processed by the
execute pipeline can also use the store queue 52. The store
queue is sent the invalidation request for the master cache.
A cache management operation bit (CO) in the store queue,
encoded in type field 94, is set by the CPU to indicate that
the store data is actually a cache management operation.
Thus the store queue may be used to send cache manage
ment operations directly to the master cache.
Types of Cache Operations

Cache operations such as invalidates, compares, and
block-Zeroing are provided for in some instruction sets.
When the execute pipeline encounters a cache operation
instruction, it places an entry into the store queue much as
it would for a normal store. However, the control bits are set
in a different manner to indicate that the entry in the store
queue is a cache operation rather than a normal store or line
fill. In particular, the non-wrapable bit (NW) is set to
indicate that the entry is not normal and cannot be bypassed
or wrapped to satisfy aload from the processor. Additionally,
the cache operation bit (CO) is set. This CO bit will be
decoded by the master cache as it consumes the store queue
entry. The master valid bit is set, but the slave and slave tag
valid bits are not set as the slave does not perform cache
operations but can merely read and write data and tags.
The type of cache operation is encoded and loaded into

the data field for the store queue entry. The master cache,
upon decoding the CO bit, also decodes the data field to
determine which cache operation to perform. For
invalidates, the physical address field of the store queue
entry will contain the sub-line address to invalidate. Merges
will never occur into an entry marked as non-wrapable, and
a cache operation will never be merged into any other store
queue entry. If another entry in the store queue has the same
address, then the cache operation will be loaded into an
empty entry rather than merged. This is an exception to the
rule that two entries cannot have the same address. A sync
operation may have to be done after a cache operation is
loaded to make sure that the store queue gets emptied out.
The sync operation can be used to place a “store barrier" in
the instruction stream. The store barrier ensures that all
instructions before the store barrier that might affect the
cache are executed first,

Diagnostic operations read or write to locations in the
master or slave caches. The NW bits is set, as is one of the
valid bits to indicate whether to write to the master or slave
data arrays, or the slave's tags. Diagnostic writes can also be
performed to the TLB.

INVALIDATION FROM MASTERTO SLAVE
All cache operations from the execute pipeline are sent to

the master cache and not to the slave caches. The master
cache contains valid bits for the slaves, as well as its own
valid bits. When an invalidation command is sent to the
master cache, the physical address from the store queue
entry indicates the address to invalidate. If this address
matches the physical address of a line in the master cache,
then the master valid bit in the master cache is cleared. If a
slave valid bit for this line in the master is also set, then it
too is cleared and an invalidate is sent to the slave cache.
The invalidate sent to the slave cache appears as a line fill,

which sets both the slave valid bit and the slave tag bit set,

10

15

25

30

35

45

50

55

65

16
but the sub-line valid bits are cleared. If all sub-line valid
bits are cleared, then the entry is an invalidate.
The slave data cache will write the new tag into the slave

data cache, but will write the sub-line valid bits 70A, 70B,
70C, 70D as zero. This has the effect of invalidating the line
in the slave data cache.

NON-CACHEABLE STORES

A store queue entry with its cache inhibit bit (I) set
indicates that the store data should not be written to either
the slave or master cache. However, the master valid bit is
still set. When the master cache consumes the non-cacheable
entry, it will decode the inhibit bit and not write the data into
the master cache. Instead, the store data will be sent directly
to the BIU write buffer so it can be written to the external
memory.

If the execute pipeline requests a load from a memory
location that is non-cacheable then the master cache will
process all non-cacheable stores in the store buffer before
processing the non-cacheable load. This preserves the order
ing of these non-cacheable operations, which are often
order-dependent since they can access memory-mapped I/O
devices. A global signal from the store queue indicates if any
entries have their non-cacheable cacheable bit set. This
global signal can be a simple OR-ing of these non-cacheable
bits, each AND-ed with their master valid bits. The master
cache can process all non-cacheable stores by continuing to
consume stores from the store queue until this signal
becomes de-asserted.

ADVANTAGES OF THE SHARED STORE
QUEUE

The close coupling of the master cache 30 and the slave
data cache 28 allows the store queue 52 to be shared between
the master cache and the slave data cache. Sharing the store
queue eliminates having a second store queue for the master
cache 30, or a fill buffer from the master cache to the slave
data cache. Cache management requests are communicated
from the execution pipeline to the master cache using the
shared store queue. The store queue preserves the order of
these cache management requests to the master cache. Stores
may be merged together in the store queue before being
written to the master or slave cache, reducing bandwidth for
Writes.

ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventors. For example the invention may easily be applied
to various data-path widths and arrangements of cache
structures beside those with 64-bit sub-lines and four sub
lines per line. The fields in a store queue entry may also vary
somewhat, as it is possible to combine some fields together
or split others apart. Other types of cache operations besides
coherency, invalidation, and diagnostic operations could be
routed through the store queue, and the store queue could be
used for stores to structures such as translation-lookaside
buffers and other storage and look-up structures.

Supplying the full 64-bit sub-line to the 32-bit execution
pipeline is an advantage when the operand is mis-aligned
with the 32-bit word; there is a good probability that the
entire mis-aligned word can be supplied by selecting the
proper bytes of the aligned sub-line. Other embodiments
may have the sub-line size match the pipeline width. The
slave dam cache may be set-associative rather than direct
mapped.

5,644,752
17

The foregoing description of the embodiments of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive nor to
limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the
above teaching. It is intended that the scope of the invention
be limited not by this detailed description, but rather by the
claims appended hereto.
We claim:
1. A master-slave cache system for transferring data

between a main memory and a central processing unit
(CPU), the CPU having an execution pipeline executing at
a firstrate, the main memory storing a plurality of operands,
the system comprising:

a master cache for storing operands, the master cache
coupled to the main memory, the master cache storing
a first subset of the plurality of operands stored in the
main memory, the master cache storing a second subset
of operands, the second subset being a subset of the first
subset;

a slave data cache, coupled to the execution pipeline, for
storing the second subset of operands, the slave data
cache capable of transferring operands to the execution
pipeline at the first rate; and

a store queue, coupled to receive stores from the execu
tion pipeline, for temporarily storing operands for
writing to the master cache and the slave data cache;

whereby the slave data cache matches the first rate required
by the execution pipeline.

2. The master-slave cache system of claim 1 wherein the
queue includes:
means for receiving line fills from the master cache;
means for storing the line fills in the store queue; and
means for writing the line fills to the slave data cache,
wherein the slave data cache does not receive the line fills

directly from the master cache; the master cache writ
ing the line fills for the slave data cache to the store
queue,

whereby the store queue stores operands from the execute
pipeline for writing to the master cache and the slave data
cache and the store queue stores line fills from the master
cache to the slave data cache.

3. The master-slave cache system of claim 2 wherein the
store queue receives a line fill from the master cache in
response to a miss in the slave data cache.

4. The master-slave cache system of claim 2 wherein the
store queue comprises a plurality of entries, each entry in the
plurality of the entries comprising:

a datafield for storing store data from the execute pipeline
or line fill data from the master cache;

a physical address field for indicating a portion of a
physical address of data in the data field;

destination valid means for indicating a destination of the
data in the data field.

5. The master-slave cache system of claim 4 wherein the
destination valid means comprises:

master valid indicating means for indicating if the entry
contains valid data for writing to the master cache;

slave valid indicating means for indicating if the entry
contains valid data for writing to the slave data cache.

6. The master-slave cache system of claim 5 wherein the
destination valid means

further comprises:
slave tag valid indicating means for indicating if the entry

contains a valid physical

10

15

20

30

35

45

50

55

65

18
address for writing to a tag in the slave data cache.
7. The master-slave cache system of claim 6 wherein each

entry further comprises:
cache operation indicating means for indicating that the

entry is a cache operation rather than a store or line fill.
8. The master-slave cache system of claim 7 wherein the

data field includes an encoding of a type of cache operation
when the cache operation indicating means indicates that the
entry is a cache operation.

9. A master-slave cache system for transferring data
between a main memory and a central processing unit
(CPU), the CPU having an execution pipeline executing at
a firstrate, the main memory storing a plurality of operands,
the system comprising:

a master cache for storing operands, the master cache
coupled to the main memory, the master cache storing
a first subset of the plurality of operands stored in the
main memory, the master cache storing a second subset
of operands, the second subset being a subset of the first
Subset;

a slave data cache, coupled to the execution pipeline, for
storing the second subset of operands, the slave data
cache capable of transferring operands to the execution
pipeline at the first rate; and

a store queue, coupled to receive stores from the execu
tion pipeline, for temporarily storing operands for
writing to the master cache and the slave data cache, the
store queue comprising:
means for receiving line fills from the master cache;
means for storing the line fills in the store queue;
means for writing the line fills to the slave data cache;

and
a plurality of entries, each entry in the plurality of the

entries comprising:
a data field for storing store data from the execute

pipeline or line fill data from the master cache;
a physical address field for indicating a portion of a

physical address of data in the data field;
cache operation indicating means for indicating that

the entry is a cache operation rather than a store or
line fill;

destination valid means for indicating a destination
of the data in the data field, the destination valid
means including:
master valid indicating means for indicating
when the entry contains valid data for writing
to the master cache;

slave valid indicating means for indicating when
the entry contains valid data for writing to the
slave data cache; and

slave tag valid indicating means for indicating
when the entry contains a valid physical
address for writing to a tag in the slave data
cache;

wherein the master valid indicating means indicates that
the entry contains valid data for writing to the master
cache and the slave valid indicating means indicates
that the entry is not for writing to the slave data cache
when the cache operation indicating means indicates
that the entry is a cache operation, whereby cache
operations are only sent to the master cache but not to
the slave data cache,

whereby the store queue stores operands from the execute
pipeline for writing to the master cache and the slave data
cache and the store queue stores line fills from the master
cache to the slave data cache.

5,644,752
19

10. The master-slave cache system of claim 9 wherein the
destination valid indicating means further comprises sub
line validity means for indicating valid sub-lines in a cache
line, and wherein the master cache invalidates an entry in the
slave data cache by writing a slave invalidation entry into the
store queue, the slave invalidation entry having

(a) the cache operation indicating means indicate that the
entry is not a cache operation;

(b) the master valid indicating means indicate that the
entry is not for writing to the master cache;

(c) the slave tag valid indicating means indicate that the
entry contains a valid physical address for writing to
the tag in the slave data cache;

(d) the sub-line validity means indicate that no sub-lines
in the cache line are valid,

whereby the tag in the slave data cache is written with a valid
bit indicating that a corresponding entry in the slave data
cache is not valid.

11. A master-slave cache system for transferring data
between a main memory and a central processing unit
(CPU), the CPU having an instruction pipeline decoding
instructions at a first rate, the CPU having an execution
pipeline executing at a second rate, the main memory storing
a plurality of operands and a plurality of instructions, the
system comprising:
a master cache for storing operands and instructions, the

master cache coupled to the main memory, the master
cache storing a first Subset of the plurality of operands
and a second subset of the plurality of instructions
stored in the main memory, the master cache storing a
third subset of instructions and a fourth Subset of
operands, the third subset being a subset of the second
subset, and the fourth subset being a subset of the first
subset;

a slave instruction cache, coupled to the master cache and
coupled to the instruction pipeline, for storing the third
subset of instructions, the slave instruction cache
capable of transferring instructions to the instruction
pipeline at the first rate;

a slave data cache, coupled to the execution pipeline, for
storing the fourth subset of operands, the slave data
cache capable of transferring operands to the execution
pipeline at the second rate;

a store queue, coupled to receive stores from the execu
tion pipeline, for temporarily storing operands for
writing to the master cache and the slave data cache;

a plurality of master tags, stored in the master cache, each
master tag in the plurality of master tags comprising:
an address tag field, for storing a tag portion of an

address of a data item, the data item being one of the
plurality of operands or one of the plurality of
instructions stored in main memory;

master valid indicating means for indicating that the
data item is valid and present in the master cache;

slave-instruction valid indicating means for indicating
that the data item is valid and present in the slave
instruction cache; and

slave-data valid indicating means for indicating that the
data item is valid and present in the slave data cache,

whereby the slave instruction cache matches the first rate
required by the instruction pipeline, and the slave data cache
matches the second rate required by the execution pipeline
and whereby the master cache contains information on valid
words present in the slave instruction cache and the slave
data cache.

12. The system of claim 11 wherein the store queue
further comprises:

10

15

20

25

30

35

45

50

55

65

20
means for receiving store data and an address of the store

data from the execution pipeline;
means for writing store data to the master cache when the

master cache is not busy;
means for writing store data to the slave data cache if the

address of the store data is present in the slave data
cache and the slave data cache is not busy; and

means for storing a plurality of store data and a plurality
of addresses of the store data,

whereby the store queue is shared between the master cache
and the slave data cache, the store queue receiving store data
from the execution pipeline and writing the store data when
the master cache and the slave data cache are each not busy.

13. The system of claim 12 wherein the execution pipeline
uses the store queue to write store data to the slave data
cache and to the master cache, eliminating a need for the
slave data cache to write through to the master cache.

14. The system of claim 13 wherein invalidation and
cache management operations from the CPU are placed in
the store queue and written only to the master cache and not
to the slave data cache, the master cache performing invali
dation and cache management operations for the slave data
cache.

15. The system of claim 11 wherein the store queue
further comprises:

means for receiving line-fill data from the master cache;
means for writing the line-fill data to the slave data cache
when the slave data cache is not busy;

whereby the store queue is also a line-fill buffer between the
master cache and the slave data cache, the store queue
receiving line-fill data from the master cache and writing the
line-fill data when the slave data cache is not busy.

16. The system of claim 15 wherein the store queue
receives the line-fill data from the master cache when data
requested by the execution pipeline is not present in the
slave data cache,

wherein the line-fill data is sent to the slave data cache
when the slave data cache misses.

17. The system of claim 15 wherein the line-fill data from
the master cache comprises less than an entire cache line in
the slave data cache,

wherein the line-fill data is a sub-line of data.
18. A master-slave cache system for transferring data

between a main memory and a central processing unit
(CPU), the CPU having an execution pipeline, the main
memory storing a plurality of operands, the system com
prising:

a master cache for storing operands, the master cache
coupled to the main memory, the master cache storing
a plurality of operands stored in the main memory;

a slave data cache, coupled to the execution pipeline, for
storing operands, the slave data cache capable of trans
ferring operands to the execution pipeline; and

a store queue, coupled to receive stores from the execu
tion pipeline, for temporarily storing operands for
writing to the master cache and the slave data cache, the
store queue comprising:
means for receiving line fills from the master cache;
means for storing the line fills in the store queue;
means for writing the line fills to the slave data cache;

and
a plurality of entries, each entry in the plurality of the

entries comprising:
a data field for storing store data from the execute

pipeline or line fill data from the master cache;

5,644,752
21

a physical address field for indicating a portion of a
physical address of data in the data field;

cache operation indicating means for indicating that
the entry is a cache operation rather than a store or
line fill;

destination valid means for indicating a destination
of the data in the data field, the destination valid
means including:
master valid indicating means for indicating
when the entry contains valid data for writing
to the master cache;

slave valid indicating means for indicating when
the entry contains valid data for writing to the
slave data cache; and

slave tag valid indicating means for indicating
when the entry contains a valid physical
address for writing to a tag in the slave data
cache;

wherein the master valid indicating means indicates that
the entry contains valid data for writing to the master
cache and the slave valid indicating means indicates
that the entry is not for writing to the slave data cache
when the cache operation indicating means indicates
that the entry is a cache operation, whereby cache
operations are only sent to the master cache but not to
the slave data cache,

10

15

20

25

22
whereby the store queue stores operands from the execute
pipeline for writing to the master cache and the slave data
cache and the store queue stores line fills from the master
cache to the slave data cache.

19. The master-slave cache system of claim 18 wherein
the destination valid indicating means further comprises
sub-line validity means for indicating valid sub-lines in a
cacheline, and wherein the master cache invalidates an entry
in the slave data cache by writing a slave invalidation entry
into the store queue, the slave invalidation entry having

(a) the cache operation indicating means indicate that the
entry is not a cache operation;

(b) the master valid indicating means indicate that the
entry is not for writing to the master cache;

(c) the slave tag valid indicating means indicate that the
entry contains a valid physical address for writing to
the tag in the slave data cache;

(d) the sub-line validity means indicate that no sub-lines
in the cache line are valid,

whereby the tagin the slave data cache is written with a valid
bit indicating that a corresponding entry in the slave data
cache is not valid.

