
United States Patent (19)
Blomgren et al.

III IIHIII IIII
US005608886A

11 Patent Number: 5,608,886
(45) Date of Patent: Mar. 4, 1997

54) BLOCK-BASED BRANCH PREDICTION
USING ATARGET FINDER ARRAY
STORING TARGET SUB-ADDRESSES

(75) Inventors: James S. Blomgren, San Jose; Earl T.
Cohen, Fremont; Brian R. Baird,
Pleasanton, all of Calif.

73) Assignee: Exponential Technology, Inc., San
Jose, Calif.

21 Appl. No.: 298,778
22 Filed: Aug. 31, 1994

(51) Int. Cl.' G06F 9/30; G06F 9/38
52 U.S. Cl. 395/586: 395/421.03; 395/421.04;

395/800
58) Field of Search 395/375, 775,

395/414, 415, 421.02, 421.03, 421.04, 421.09;
364/200

(56) References Cited

U.S. PATENT DOCUMENTS

4,110,822 8/1978 Porter et al. 364/200
5,088,030 2/1992 Yoshida 364/275
5,093,778 3/1992 Favor et al. 395/375
5,163,140 11/1992 Stiles et al. .. . 395/425
5,193,156 3/1993 Yoshida et al. 395/375
5,226,130 7/1993 Favor et al. 395/375
5,230,068 7/1993 Van Dyke et al.
5,276,882 1/1994 Emma et al.
5,287,467 2/1994 Blaner et al.
5,307,504 4/1994 Robinson et al. ...
5,327,547 7/1994 Stiles et al.
5,367,703 11/1994 Levitan
5,394,529 2/1995 Brown, III et al. .
5,414,822 5/1995 Saito et al.

... 395/375

... 395/700

... 395/375

... 395/800
395/425

... 395/800
... 395/375

395/375
5,442,756 8/1995 Grochowski et al. ... m 395/375
5,454,089 9/1995 Nguyen et al. 395/375
5,454,117 9/1995 Puziol et al. 395/800

PREDICTD
TARGET ADDR

END T TYPE
BYTE

34
38 32 3

OTHER PUBLICATIONS

Perleberg, Chris H. and Smith, Alan Jay, "Branch Target
Buffer Design and Optimization", IEEE Transactions on
Computers.
Primary Examiner-Jack B. Harvey
Assistant Examiner-Jigar Pancholi
Attorney, Agent, or Firm-Stuart T. Auvinen
(57) ABSTRACT

A target finder array in the instruction cache contains a lower
portion of the target address and a block encoding indicating
if the target address is within the same 2K-byte block that the
branch instruction is in, or if the target address is in the next
or previous 2K-byte block. The upper portion of the target
address, its block number, which corresponds to the starting
address of a 2K block, is generated from the target finder
simply by taking the upper portion or block number of the
branch instruction and incrementing and decrementing it,
and using the block encoding in the finder to select either the
unmodified block number of the branch instruction, or the
incremented or decremented block number of the branch
instruction. The lower portion of the target address that was
stored in the finder is concatenated with the selected block
number to get the predicted target address. The target
address can be predicted in parallel with reading an instruc
tion out of the cache, making the target available at the same
time the branch instruction is available, eliminating pipeline
stalls for correctly predicted branches. The initially pre
dicted target address in the finder is generated by a quick
decode of the instruction and is written when the cache is
loaded from memory. The initial prediction does not have to
be accurate because branch resolution logic will update the
finder on each branch resolution. Register indirect branches
and exceptions may also be predicted. Two instruction sets
may be accommodated by different block encodings to
indicate the instruction set. By using the block encoding, the
finder array is small and inexpensive.

21 Claims, 6 Drawing Sheets

TARGET
SUB-AddRESS

30

80

FNDER

40A 40B

5,608,886 Sheet 1 of 6 Mar. 4, 1997 U.S. Patent

3),
LSN | |def

4.

NEMVL LON
9 Z

5,608,886 Sheet 2 of 6 Mar. 4, 1997 U.S. Patent

?RIECINI-J 822

Z

|-
S_LI8 99Z

U.S. Patent Mar. 4, 1997 Sheet 3 of 6 5,608,886

N
12

NOT TAKEN

NOT TAKEN

NOT TAKEN

Fig. 5

U.S. Patent Mar. 4, 1997 Sheet 4 of 6 5,608,886

FINDER

22A TARGET
SUB-ADDRESS

PREDICTED
TARGET ADDR

40A 4OB

U.S. Patent Mar. 4, 1997 Sheet 5 of 6 5,608,886

FINDER

END T is TYPE TARGET
BYTE SUB-ADDRESS

34 33 30
32 31

PREDICTED
TARGET ADDR 21-BITS MSB 9-BITS LSB e

40A 4OB

Fig. 4A

U.S. Patent Mar. 4, 1997 Sheet 6 of 6 5,608,886

78 70

FINDER
DECODER

26

TAG DATA

82 PREDICTED r TARGET ADR
FETCH TARGET

PREDICT

22

TARGET
FINDER
ARRAY

ACTUAL
TARGET
ADDR

Fig. 6

5,608,886
1

BLOCK-BASED BRANCH PREDICTION
USING ATARGET FINDER ARRAY
STORING TARGETSUB-ADDRESSES

BACKGROUND OF THE
INVENTION-RELATED APPLICATION

This application is related to application for a "Dual
Instruction-Set Architecture CPU with Hidden Software
Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No. 08/179,
926, hereby incorporated by reference. This related appli
cation has a common inventor and is assigned to the same
assignee as the present application.

BACKGROUND OF THE INVENTION-FIELD
OF THE INVENTION

This invention relates to digital microprocessors, and
more particularly to branch prediction.

BACKGROUND OF THE
INVENTION-DESCRIPTION OF THE

RELATED ART

Modern microprocessors often employ branch prediction
techniques which attempt to "guess' or predict whether a
conditional branch instruction will be taken, or not taken. If
the branch is not taken, the next sequential instruction will
be fetched. However, if the branch is taken, then instructions
will have to be fetched starting from the target location,
interrupting the otherwise sequential instruction fetching.

FIG. 1 shows a stream of instructions 10 to be processed.
Branch instruction 12 is a conditional branch. The branch
instruction 12 may depend upon a condition code or flag that
was set by an earlier instruction in the instruction stream 10.
An evaluation of the condition codes or flags must be made
to determine if the branch instruction 12 should be taken or
not taken. If the evaluation determines that the branch
instruction 12 should not be taken, then sequential instruc
tion fetching and execution continues with the next sequen
tial instruction 14. However, if the evaluation determines
that the branch instruction 12 should be taken, then a target
instruction 16 is fetched and executed while the next sequen
tial instruction 14 is not executed. Sequential instruction
execution continues after target instruction 16 with instruc
tion 18.

Since branch instructions may be frequently encountered
in the instruction stream 10, a highly-optimized processor
must be able to process branch instructions rapidly. Execu
tion of a branch instruction requires that two operations be
performed: the branching condition must be evaluated to
determine if the branch is to be taken or not taken, and the
address of the target instruction must be calculated. If the
branch is not taken, the address of the target is not needed
since sequential fetching will continue.

Conditional branch instructions usually depend on the
values of condition codes or flags that are set by arithmetic
instructions preceding the branch instruction. These flags are
usually set late in the pipeline, after the ALU stage, and often
in the last stage of the pipeline. The branch instruction is
decoded in the decode stage of the pipeline, which is one of
the earliest stages. The branch instruction is usually decoded
before the preceeding instruction has set the flags.
A branch prediction scheme may be used, guessing the

outcome of the conditional branch before the flags are set.
The scheme may always guess not taken, or always guess
taken, and be correct about 50–60% of the time. Dynamic

O

15

20

25

30

35

40

45

50

55

60

65

2
prediction, which remembers the outcome history of the
branch, can improve the prediction.

Besides the outcome, taken or not taken, the target address
of the branch is also needed. Target addresses traditionally
have required an additional stage of the pipeline to calculate
after the branch instruction has been decoded. Unfortu
nately, un-assisted prediction of the target address is almost
impossible since there are so many possibilities, whereas
there are only two possibilities for the outcome-taken or
not taken.

Branch instructions are particularly difficult to design for
since processors are often pipelined, executing several
instructions at once. Superscalar processors feature several
pipelines, making branch design even more critical because
more instructions can be in the pipelines, and the flags are
set by instructions that are issued relatively closer in time to
the branch instruction in the superscalar pipelines. Branch
instructions may upset the normal sequential fetching and
execution of instructions, requiring that instruction fetching
begin again at the target. Sequential instructions in the
pipeline following the branch instruction have to be purged
if the branch is taken. Because branches affect fetching,
which occurs in the first stage in the pipeline, branches may
have to stall the pipeline until evaluated and the new target
address from which to fetch is generated. Stalling the
pipeline is so undesirable that many branch prediction
schemes have been developed. The large number and variety
of branch prediction schemes testify to the fact that no
scheme is entirely satisfactory.

Prediction schemes may be expensive, storing the last
target address or even the instruction at the target address.

- Prediction schemes may be slow, unable to resolve or
evaluate the branch to determine if taken or not until late in
the pipeline, requiring pipeline stalls or pipeline cancella
tions.

DUAL-INSTRUCTION-SET PROCESSOR

Processors, or central processing units (CPU’s) that are
capable of executing instructions from two separate instruc
tion sets are highly desired at the present time. For example,
a desirable processor would execute user applications for the
x86 instruction set and the PowerPCTM instruction set. It
would be able to execute the tremendous software base of
x86 programs that run under the DOSTM and WINDOWSTM
operating systems from Microsoft of Redmond, Wash., and
it could run future applications for PowerPCTM processors
developed by IBM, Apple, and Motorola.

Such a processor is described in the related copending
application for a "Dual-Instruction-Set Architecture CPU
with Hidden Software Emulation Mode', filed Jan. 11, 1994,
U.S. Ser. No. 08/179,926. That dual-instruction-set CPU has
a pipeline which is capable of executing instructions from
either a complex instruction set computer (CISC) instruction
set, such as the x86 instruction set, or from a reduced
instruction set computer (RISC) instruction set, such as the
PowerPCTM instruction set.

Two instruction decode units are provided so that instruc
tions from either instruction set may be decoded. Two
instruction decoders are required when the instruction sets
are separate because the instruction sets each have an
independent encoding of operations to opcodes. For
example, both instruction sets have an ADD operation or
instruction. However, the binary opcode number which
encodes the ADD operation is different for the two instruc
tion sets. In fact, the size and location of the opcode field in

5,608,886
3

the instruction word is also different for the two instruction
sets. In the x86 CISC instruction set, the opcode 03 hex is
the ADD rv operation or instruction for a long operand. This
same opcode, 03 hex, corresponds to a completely different
instruction in the PowerPCTM RISC instruction set. In CISC
the 03 hex opcode is an addition operation, while in RISC
the 03 hex opcode is TWI-trap word immediate, a control
transfer instruction. Thus two separate decode blocks are
necessary for the two separate instruction sets.

Switching from the CISC instruction set to the RISC
instruction set may be accomplished by a farjump or branch
instruction, while a return from interrupt can switch back to
the CISC instruction set. Prediction of these branches is
desirable since it is anticipated that for certain emulation
strategies these switches between instruction sets will fre
quently be encountered.
What is desired is an inexpensive but accurate branch

prediction scheme. It is also desired that the branch predic
tion provide both the target address and the resolution of the
branch condition as early in the pipeline as possible, pref
erably in the fetch stage. It is also desirable to have no
pipeline stalls for correctly predicted branches. The branch
prediction scheme should also provide for predicting certain
exceptions and software interrupts as well as branches.
The prediction scheme should further predict when a

Switch to the alternate instruction set will occur in a dual
instruction-set processor.

SUMMARY OF THE INVENTION

Prediction of a branch target address for a pipelined
processor uses a target finder. The branch target address is a
target for a branch instruction. An address of the branch
instruction is within a current block, and the current block
has a predetermined blocksize and starts and ends at a
multiple of the predetermined blocksize. The current block
is identified by a current block number.
The target finder comprises a finder entry which itself

comprises a predicted target sub-address. The predicted
target sub-address is an offset address within a target block.
The target block has the predetermined blocksize and starts
and ends at a multiple of the predetermined blocksize. The
target finder also has a block encoding indicating if the target
block is the current block, a previous block, or a next block.
The previous block has the predetermined blocksize and
starts and ends at a multiple of the predetermined blocksize,
and the next block has the predetermined blocksize and
starts and ends at a multiple of the predetermined blocksize.
A target generator receives the finder entry which is used

for generating a predicted target address from the block
encoding and the predicted target sub-address. The predicted
target sub-address is an address within the target block
encoded by the block encoding.
The predicted target address is rapidly generated from the

predicted target sub-address and the block encoding stored
in the finder entry. The target finder is inexpensive since only
a sub-address rather than the full target address is stored. The
target generator is fast because the addresses of the next and
previous blocks can be calculated at the same time that the
finder entry is being read.

According to other aspects of the invention, the target
finder also includes a prediction of the outcome of the
branch condition, whether the branch will be taken or not
taken.

The target address and the resolution of the branch
condition are provided early in the pipeline, as the branch

10

15

20

25

30

35

40

45

50

55

60

65

4
instruction itself is being fetched. Thus no pipeline stalls are
needed for correctly predicted branches. The block
addresses or numbers of the current, next and previous block
are calculated as the instruction cache and target finder are
being read; the block encoding merely has to select the
appropriate block number and concatenate it with the target
sub-address to get the target address.

In still further aspects of the invention, the target finder
may also include encodings for predicting exceptions and
software interrupts as well as branches. These encodings
may also predict when a switch to the alternate instruction
set will occur in a dual-instruction-set processor. The size of
the block changes from 2K bytes to 512 bytes in the alternate
instruction set.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an instruction stream containing a
branch instruction.

FIG. 2 is an instruction cache with a finder array for
branch prediction.

FIG. 3 is a diagram of an address space.
FIG. 4 is a branch prediction generator in CISC mode.
FIG. 4A is a branch prediction generator in RISC mode.
FIG. 5 is a state diagram of the taken and strong bits in the

finder array.
FIG. 6 is a diagram of a processor using the target finder

array of the present invention.

DETAILED DESCRIPTION

The present invention relates to an improvement in branch
prediction. The following description is presented to enable
one of ordinary skill in the art to make and use the invention
as provided in the context of a particular application and its
requirements. Various modifications to the preferred
embodiment will be apparent to those with skill in the art,
and the general principles defined herein may be applied to
other embodiments. Therefore, the present invention is not
intended to be limited to the particular embodiments shown
and described, but is to be accorded the widest scope
consistent with the principles and novel features herein
disclosed.

This application is related to copending application for a
"Dual-Instruction-Set Architecture CPU with Hidden Soft
ware Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No.
08/179,926, hereby incorporated by reference. Reduced
instruction set computer (RISC) and complex instruction set
computer (CISC) instructions may both be executed in the
dual-instruction-set central processing unit (CPU).
A dual-architecture central processing unit (CPU) is

capable of operating in three modes-RISC mode, CISC
mode, and emulation mode. A first instruction decoder
decodes instructions when the processor is in RISC mode,
while a second instruction decoder decodes instructions
while the processor is in CISC mode. Two instruction
decoders are needed since the RISC and CISC instruction
sets have an independent encoding of instructions or opera
tions to binary opcodes.
The third mode of operation, emulation mode, also uses

the first instruction decoder for RISC instructions, but emu
lation mode executes a superset of the RISC instruction set.
Using emulation mode, individual CISC instructions may be
emulated with RISC instructions. Thus, not all CISC instruc
tions need to be directly supported in the CPU's hardware.
Unsupported CISC instructions cause a jump to an emula

5,608,886
5

tion mode routine to emulate the unsupported CISC instruc
tion. Upon completion of the emulation mode routine,
control is returned to the CISC program with the next CISC
instruction.

TARGET FINDER ARRAY IN INSTRUCTION
CACHE

FIG. 2 shows target finder array 22 employed to generate
the predicted target address and predict the resolution of the
branch (taken or not taken). The target finder array 22 is
preferably coupled to the instruction cache 20 on the micro
processor die and in close proximity to the core of the
microprocessor. Instruction cache 20 includes a tag array 26
having an index and valid bits for each line in the cache, and
data array 24 which holds the instruction words themselves
that are fetched into the processor's pipeline. Atypical cache
line 28 contains a tag 26A and four instruction double words
24A, 24B, 24C, 24D, each of which are 64 bits in size. The
smallest addressable quantity in instruction cache 20 is a
64-bit double word. Each double word 24A-24D has a
corresponding finder entry 22A-22D in target finder array
22. As each finder entry 22A-22D is only 17 bits in size, the
cost of target finder array 22 is relatively small. However, as
will be discussed in detail, finder entries 22A-22D contain
enough information to generate a predicted target address
very rapidly. All four of the 17-bit finder entries 22A-22D
would require 68 bits, and if FIG. 2 were drawn to scale the
entire target finder array 22 would occupy about the same
area as a single 64-bit double word, such as 24D.

FIG. 3 shows an addressable instruction space. The
addressable instruction space is divided into fixed-size
blocks of 512 bytes each. These blocks are aligned to
512-byte boundaries. A branch instruction 12 is located in
block 50. Block 52 is the next 512-byte block while block
54 is the previous 512-byte block. Blocks 56, 58 are not
adjacent to the block containing branch instruction 12.

TARGET PREDICTION ONLY FOR ADJACENT
BLOCKS

The inventors have recognized that most branch targets
are in adjacent blocks or the same block that the branch
instruction is in. Thus most of the benefit of branch predic
tion can be had by providing for branch prediction to
adjacent blocks only. No prediction is provided to non
adjacent blocks 56, 58.

Prediction for targets anywhere in three blocks is prefer
able to prediction for only a single block. When the branch
instruction 12 is near the boundary of block 50, for example
near the lower boundary at 1024 bytes, it is likely that the
branch target may be within the previous block 54 because
previous block 54 is only a few bytes away. However, it is
not likely to be in the non-adjacent blocks 56, 58. Using
three blocks rather than just one or two makes the invention
less sensitive to the alignment of the branch instruction to
the boundaries of the block.

ENCODED BLOCK OF TARGET IN TARGET
FINDER ENTRY

FIG. 4 shows the finder entry 22A. Finder entry 22A
includes enough information to generate the predicted target
address using target sub-address 30 and type field 31. The
resolution of the branch, taken or not taken, is also predicted
by taken bit 33 and strong bit 32. The exact location of the
branch instruction within the instruction double word
fetched from the cache line is also specified by end byte 34.

10

15

20

25

30

35

40

45

50

55

60

65

6
End byte 34 represents the last byte of the first branch
instruction, the point where the instruction stream will be
discontinuous if the branch is taken. Since multiple instruc
tions can be present in one double word, it is possible to have
multiple branch instructions in the single double word. Since
the multiple branch instructions have to share the same
finder entry, only the first taken branch instruction of the
multiple branch instructions uses the finder entry. Thus no
prediction is possible for any subsequent branch instruction
in a double word. Allowing only one taken branch in a
double word is not a serious disadvantage since it is uncom
mon to have several taken branches within a single double
word.

Finder entry 22A contains the 9 lower or least-significant
bits of the predicted target address, the target sub-address 30.
Target sub-address 30 corresponds to the offset address
within the 512-byte blocks of FIG. 3. The only other
information needed to completely specify the predicted
target address is the address of the block that the target is in.
This is a 23-bit upper address for a 32-bit processor. It would
be very expensive to store these 23 upper address bits for
each line in the instruction cache. However, since the branch
instruction is in the current block, the address of the current
block, or block number, is known. The current block number
is simply the upper 23 address bits of the instruction pointer,
which points to the branch instruction. Since the block
number is available from the instruction pointer, the only
information that must be stored in finder entry 22A is an
indication of the predicted target's block, which can only be
the current block 50, previous block 54, or next block 52 (of
FIG. 3). In the rare case that the predicted target is in a
non-adjacent block 56,58, (of FIG. 3) this is indicated as a
predicted not taken branch.
Type field 31 contains an encoding indicating which

block, relative to the current block, that the predicted target
is in. A simple 2-bit encoding for type field 31 is:

00 Predicted Target is in current block
0. Predicted Target is in next block
10 Predicted Target is in previous block.

If the predicted target is in a non-adjacent block, then no
prediction is possible. In that case, the taken bit 33 will be
set to not taken.

PREDICTED TARGET ADDRESS GENERATION

The predicted target address is generated by the target
prediction generator 80 in FIG. 4. The lower 9 bits 40B of
the predicted target address 40 are simply read out of the
target sub-address 30 of the finder entry 22A. The 23 upper
or most-significant bits 40A of the predicted target address
40 are supplied by multiplexer or mux 42. Mux 42 is
controlled by the type field 31 which is read out of the finder
entry 22A. The type field 31 causes mux 42 to select the
upper 23 bits of the current address 38, which is the current
block number, when the type field 31 is encoded for the
predicted target in the current block 50. Incrementer 35
receives these 23 upper bits of the current address 38 and
increments it or adds one (+1) to yield the address of the next
block 52 (of FIG. 3), the next block number. The output of
incrementer 35 is selected by mux 42 when the type field 31
is encoded for the predicted target in the next block 52 (of
FIG.3). Likewise decrementer 36 receives the 23 upper bits
of the current address 38 and decrements it or subtracts one
(-1) to yield the address of the previous block 54 (of FIG.

5,608,886
7

3), the previous block number. The output of decrementer 36
is selected by mux 42 when the type field 31 is encoded for
the predicted target in the previous block 54 (of FIG. 3).
The predicted target address generator of FIG. 4 rapidly

generates the predicted target address 40 from the finder
entry 22A and the current address 38. This predicted target
address 40 can be generated within one processor clock
cycle because the 23-bit incrementer 35 and decrementer 36
can generate their outputs from the current address 38 while
the instruction cache is reading out the instruction double
word and the finder entry 22A. Once the instruction cache
access is complete, the type field 31 is used to quickly select
either the current address or one of the outputs of the
incrementer 35 and decrementer 36. Thus incrementer 35
and decrementer 36 operate in parallel with the instruction
cache look-up. The small additional delay caused by mux 42
can be accounted for by using a slightly faster RAM for the
target finder array 22 (of FIG. 2) or just for the type field 31.
Since the target finder array 22 (of FIG. 2) is smaller in size
than the data array 24 (of FIG. 2) of the instruction cache,
target finder array 22 (of FIG. 2) will be faster due to its
smaller size.

PREDICTION OF BRANCH RESOLUTION

The finder entry 22A of FIG. 4 also contains a prediction
of whether the branch instruction is taken or not taken.
Taken bit 33 indicates if the prediction is for a taken or not
taken branch. Strong bit 32 is used in conjunction with taken
bit 33 to improve the accuracy of the prediction. FIG. 5
shows a state diagram for the prediction algorithm used.
Strong bit 32 can take on the values of strong "S" or weak
'W', while taken bit 33 can have the values of taken "T' or
not taken "NT". These bits 32, 33 refer to the prediction for
the next time the branch instruction is encountered by the
instruction fetcher and are updated each time the branch
instruction is resolved by the pipeline. Initially the predic
tion is set to the weak, taken state 64. If the branch is not
taken, then bits 32, 33 are changed to strong, not taken and
state 60 is entered. Otherwise, if the branch is correctly
predicted taken, then bit 32 is updated to strong and state 66
is entered. If the branch is next resolved actually taken, then
state 66 continues and no changes to bits 32, 33 are needed.
If the branch is resolved not taken, then the prediction was
wrong and the strong bit 32 is changed to weak and state
weak, taken 64 is entered. A second mis-predict or not taken
branch resolution would cause both bits 32, 33 to change to
strong, not taken state 60. However, a resolved taken branch
would return to strong, taken state 66.
A not taken resolution from strong, not taken state 60

would remain in that state. A mis-prediction would cause the
strong bit 32 to change to weak, but the prediction for not
taken is kept, entering the weak, not taken state 62. A correct
prediction of not taken from weak, not taken state 62 would
return to strong, not taken state 60 with an update of strong
bit 32. A second mis-predict would cause both bits 32, 33 to
change to strong, taken state 66.
Thus the taken bit 33 cooperates with the strong bit 32 to

provide a prediction algorithm that allows for two mis
predictions before changing the expected resolution, taken
bit 33. This is a valuable algorithm for program loops. When
the loop is exited, the state will change from strong, taken to
weak, taken. The next time the loop is entered, the prediction
will be taken, a correct prediction. Thus only one mis
prediction would occur for each time the loop is executed;
a mis-prediction when the loop is exited.

10

15

20

25

30

35

45

50

55

60

65

8
DUAL-ARCHITECTURE ENCODING OF TYPES

The invention may be expanded to allow for multiple
architectures. In the CISC architecture, instructions can
begin and end on any byte boundary. Thus a CISC target
instruction could begin on any of bytes 0,1,2,3,4,5,6, or 7.
This requires that the least-significant bit of target sub
address 30 (of FIG. 4) specify the 8-bit byte. For CISC
instructions, the target sub-address 30 (of FIG. 4) corre
sponds to 2(=512) bytes.

However, in the RISC architecture, instructions are
always aligned to word boundaries; they must always begin
at byte 0 or 4 of the 8-byte double word and end with byte
3 or 7. The target sub-address 30 of FIG. 4 is a word
sub-address, meaning that the least-significant bit selects
between the first and second 32-bit word in a double word,
not all eight of the 8-bit bytes as for CISC. Nine bits of target
sub-address 30 corresponds to 2'(=512)32-bit words, or 2K
bytes. Thus in RISC mode the size of the block is 2K bytes,
not 512 bytes as for CISC mode. FIG. 3 shows that while
CISC mode has 512-byte blocks such as current block 50,
RISC mode has 2K-byte blocks such as current block 50'.
The range of addresses that can be predicted for the target is
limited to three blocks, which is 3x2K bytes=6K bytes for
RISC mode, but only 3x512 bytes=1.5K bytes for CISC
mode.
The difference in block sizes between the two architec

tures causes the target sub-address 30 to have slightly
different meanings depending upon the architecture. Since
the dual-instruction-set CPU can execute instructions from
both architectures simultaneously, the target finder array 22
may contain targets from both RISC and CISC branch
instructions. The architecture of the branch instruction must
therefore be encoded into the target finder array. Type field
31 can be expanded to include an encoding for the instruc
tion set. Such an encoding is shown below:

000 CISC Mode Predicted Target is in current block
000 CISC Mode Predicted Target is in next block
010 CISC Mode Predicted Target is in previous block
100 RISC Mode Predicted Target is in current block
101 RISC Mode Predicted Target is in next block
110 RISC Mode Predicted Target is in previous block.

FIG. 4A shows the branch prediction generator of FIG. 4
operating in RISC mode. Reference numerals are the same
in FIGS. 4 and 4A to indicate similar or identical elements.
FIGS. 4 and 4A show the same apparatus operating in two
modes: FIG. 4 for CISC mode, and FIG. 4A for RISC mode.
Since the lower two bits encoded by type field 31 are
identical for CISC mode and RISC mode, the control of mux
42 is the same for both modes. However, the predicted target
address 40 is a byte address for CISC mode but a word
address for RISC mode. The predicted target address 40
must be partially shifted to the left by two bits and have two
zeros appended to the right LSB's to convert the CISC byte
address to a RISC word address. Additionally, for RISC
mode, only the upper 21 bits of current address 38 are input
to incrementer 35, decrementer 36 and mux 42. Thus for
CISC mode the upper 23 bits of current address 38 generate
bits 9 to 31, but for RISC mode the upper 21 bits of current
address 38 generate bits 11 to 31. The type field 31 can
signal to control logic (not shown) to use the upper 21 bits
of current address 38 and the shifted 9 bits of predicted target
address 40B when a RISC mode target is predicted. Such
control and shifting logic is well-known by persons of skill
in the art and is therefore not discussed further.
The last byte of the branch instruction, the end byte 34, is

included in the finder entry 22A to provide architecture

5,608,886
9

independence yet still indicate the location of the branch
instruction in the instruction double word. The PowerPCTM
RISC architecture defines the origin of a branch as the
address of the branch instruction, while the x86 CISC
architecture defines as the branch origin the first byte
following the branch instruction, the first byte of the next
sequential instruction. In either architecture the target
address is calculated as a displacement added to the branch
origin. Thus for PowerPCTM the target address is the branch
instruction address+displacement, while for x86 the target
address is the address of the sequential instruction following
the branch-i-displacement. Using the end byte allows the
finder and target address generation hardware to be inde
pendent of the instruction set being executed, simplifying
the design.

PREDICTION OF EXCEPTIONS AND
INSTRUCTION-SET SWITCHING

Simple jumps and calls are not the only branch instruc
tions that can be predicted with the invention. Software
interrupts or exceptions that occur regularly may also be
predicted. Exceptions cause the state of the processor to
change, requiring that certain state information be saved on
the stack or in registers. This state information may include
the current instruction pointer and the flags or condition
code register. The privilege level may change from user to
supervisor. Because of these additional functions that occur
when an exception occurs, exception branching is not nor
mally predicted. However, an additional type in type field 31
(of FIG. 4) can be encoded indicating that the prediction is
for an exception rather than a simple branch. Encoding 111
may be used for this purpose.
Upon decoding this 111 type, the branch prediction gen

erator will generate the predicted target address in a modi
fied manner. An absolute target is used for exceptions, rather
than a target calculated by adding a displacement to the
address of the branch instruction. This absolute target
address, which is a trap or interrupt vector number or entry
point, is stored in the target finder array where the target
sub-address would be stored. The absolute target can be
anywhere in the address space. It is not limited to the current
or adjacent blocks. Since these absolute addresses are usu
ally an address into a table, such as an interrupt table stored
near address Zero, the upper address bits of the absolute
target are usually all zeros. Thus the 9 bits in the target
sub-address field is sufficient to identify these absolute
targets. The entry points in these tables are preferably at
discrete 32-byte intervals, so the 9-bit absolute address from
the target sub-address field 30 is shifted up by 5 bits before
being loaded as the predicted target address 40 (of FIG. 4).

Since the type field is encoded as 111, mux 42 of FIG. 4
will select the fourth input, which is the value zero, "0". This
places zeros in the upper bits of the predicted target address
40. Thus, by storing a portion of an absolute target address
in the target sub-address field of the finder 22A, a target

10

15

20

25

30

35

45

50

55

address for exceptions or emulation entry may be predicted.
The absolute target is not relative to the current address, so
the incrementer 25 and decrementer 36 are not needed.
Instead the mux places zeros in the upper bit-positions, and
the portion of the absolute target stored in the finder array is
shifted up by 5 bits.
A special type of exception is a switch to the alternate

instruction set. This exception may also be provided for in
the 111 type encoding, or an instruction set swap bit may be
added to the finder entry 22A. Entry points into emulation

60

65

10
mode that cause the instruction set being processed to switch
may thus also be predicted using the present invention.
Emulation mode will be entered each time a complex CISC
instruction that is not executed directly is encountered, and
so prediction should be accurate as well as useful.

REGISTER INDIRECT TARGET PREDICTION

Most branch instructions add either a displacement or
immediate value to the current instruction pointer value to
get the target address. Since this immediate value is part of
the instruction word, and does not vary over time, the target
address will not vary over time. However, some branch
instructions use a value stored in a register as the target
address. Register indirect branching which uses a value in a
register is difficult to predict since the value in the register
is not fixed but can change over time as new values are
loaded into the register.
The PowerPCTM RISC architecture includes a link register

that a branch-to-link instruction reads to calculate the target
address. A return-from-interrupt (rfi) instruction reads a
value saved in a save/restore register (SRR0) to get the target
address. Both the link register and the save/restore register
can have variable values resulting in variable target
addresses being generated.
The invention can be extended to account for register

indirect branching, such as with the link register. Type 011
is defined for register indirect branches. Alternately, addi
tional bits in the type field 31 may be defined to allow for
encoding of these additional types. When the type field 31
indicates a register indirect branch, the normal target pre
diction mechanism is not used. The branch taken/not taken
mechanism is still used. Since the value in the link register
can change, it is not useful to store a predicted target address
in the target finder array 22 (of FIG.2). Instead, if the branch
is predicted taken, the pipeline is stalled until the link
register is stable. The pipeline control logic may have
look-ahead logic to determine if any instructions in the
pipeline will write to the link register, or the pipeline may be
blindly stalled until all instructions have had the chance to
write to the link register. Pipeline control logic will signal to
the instruction fetcher at the earliest opportunity that the link
register is stable. Instruction fetching will then continue
from this new target address. If the indirect branch is
predicted not taken, then the pipeline is not stalled. Opti
mized code will set the new value in the register sufficiently
ahead of the branch instruction to avoid pipeline stalls.

WRITING TO FINDER ARRAY

The finder array is written to both when the instruction
cache is filled with a new line, and when a branch is
resolved. Thus the finder array can predict a taken branch for
the first time a branch instruction is encountered. The finder
can be corrected once the branch is encountered and
resolved, improving the accuracy of the prediction.

FIG. 6 is a diagram of a processor using the target finder
array of the present invention. Instruction cache 20 receives
instruction double words from a memory 78, which may be
a main memory or preferably a secondary cache. A tag
portion of an address and valid bits are loaded into tag array
26, while the instruction double words are loaded into data
array 24. A finder decoder 70 performs a quick decoding on
the instruction double word being loaded into instruction
cache 20 and produces the information to write into target
finder array 22. Finder decoder 70 quickly decodes all bytes
in the instruction double word to determine if any branch

5,608,886
11

instructions are present in the double word. If no branches
are detected, the taken bit 33 (of FIG. 4) is cleared to zero
and written into target finder array 22 so that no branch will
be predicted.

Finder decoder 70 determines if an opcode is present for
a branch instruction. For RISC instruction sets, the instruc
tions are aligned on the word boundary, and the opcodes
appear in a fixed byte within the instruction. Thus the finder
decoder need only decode these bytes where the opcodes are
located. If a branch is detected, the taken bit 33 (of FIG. 4)
is set and the strong bit 32 (of FIG. 4) is cleared and written
to the target finder array 22. Additionally, an immediate
displacement may be indicated by the opcode, which may be
added to the address of the fetched branch instruction to get
the predicted target address. The lower bits of this predicted
target address are written to target sub-address 30 (of FIG.
4) in the target finder array, while the upper bits are
examined to determine if the predicted target address is
within the current block 50 (of FIG. 3), the next block 52 (of
FIG. 3), or the previous block 54 (of FIG. 3), and the
corresponding encoding is written to type field 31 of the
target finder array 22 for the cache line being loaded. If the
predicted target address is not within the current or adjacent
blocks 50, 52, 54 (of FIG. 4), then the type encoded is
irrelevant, since the taken bit 33 (of FIG. 4) is set to not
taken.

The end byte of the instruction is also determined by
finder decoder 70, so that all fields of finder entry 22A (of
FIG. 4) may be written. Preferably finder decoder writes the
finder entry 22A (of FIG. 4) at the same time as the
instruction double word is being loaded into instruction
cache 20. Thus the finder array is loaded with a branch
prediction and a predicted target address when an instruction
word is loaded into the instruction cache 20. This allows a
prediction of weakly taken for the first time a branch
instruction is encountered, which is desirable since branches
are usually taken the first time encountered. Many prior-art
systems require that the branch instruction be processed by
the processor's pipeline before a target prediction can be
made. Newer architectures may support static branch pre
diction encoded into the branch instruction itself which may
be used as an initial prediction for the taken bit. The initial
prediction may be set to weakly not taken for older complex
architectures due to the complexity of generating an initial
prediction.

Target prediction generator 80, using the apparatus of
FIG. 4, reads the target finder array 22 when an instruction
is read out of instruction cache 20. A predicted target address
is available to the instruction fetcher 82 at the same time that
the instruction is read out of instruction cache 20 to instruc
tion decode stage 74. This timing allows instruction fetcher
82 to immediately switch to fetching from the predicted
target address if the branch is predicted taken by taken bit 33
(of FIG. 4).

Instruction cache 20 supplies instructions to the instruc
tion decode stage 74, which supplies decoded instructions to
the pipeline 76. Resolution logic 72 determines if a branch
instruction was take or not by evaluating flags or condition
codes set by other instructions in pipeline 76. Resolution
logic 72 must wait until all instructions that can update the
flags or condition codes have determined their flags before
evaluating the branch instruction. Flags can be bypassed to
the resolution logic 72 to reduce the delay. Resolution logic
72 also receives the actual target of the branch instruction
which is calculated by either the pipeline 76 or the instruc
tion decoder stage 74. Resolution logic 72 verifies that the
predicted target address matched the actual target address. If

10

15

20

25

30

35

45

50

55

60

65

12
not, then a mis-predict operation must be performed, rather
than a simple update of the taken and strong bits. The actual
target is also sent to instruction fetcher 82 if the branch was
mis-predicted so that the correct instruction fetching can
begin.

Resolution logic 72 updates the finder entry 22A (of FIG.
4) in the cache line corresponding to the branch instruction
that was just resolved. It writes the low bits of the actual
target address to the target sub-address 30 (of FIG. 4) and
determines which block the target address is in and encodes
this to write the type field 31 (of FIG. 4). The instruction set
and type of branch is also encoded into type field 31 (of FIG.
4). The taken bit 33 (of FIG. 4) and strong bit 32 (of FIG.
4) are also updated in accordance with the state diagram of
FIG. 5, and the actual end byte of the branch instruction is
written to end byte 34 (of FIG. 4). Often the same informa
tion will be written back into the finder entry 22A (of FIG.
4), as when the branch is correctly predicted after the first
correct prediction.

The target finder array 22 is written by both the finder
decoder 70 when the instruction cache 20 is being loaded by
memory 78, or when a branch is resolved in the processor's
pipeline 76 by resolution logic 72. Thus two separate
sources may write the target finder array 22. If the two
sources try to write simultaneously, then the finder must be
dual-ported or one of the sources must wait.

FAULTTOLERANT FINDER ARRAY

Finder decoder 70 does not have to be perfectly accurate
since a bad value in the target finder array can be corrected
and updated by resolution logic 72. A preferred embodiment
has finder decoder 70 predict most RISC branches but no
CISC branches. CISC branches can still be predicted, but the
first time a CISC branch is encountered it will be mis
predicted and its finder entry updated with the actual target
generated by the pipeline 76 or instruction decode stage 74
if the branch is determined to be taken.
Some of the lines in the target finder array 22 may become

stale as a new cache line is fetched, overwriting the old
finder. If the old finder has a branch instruction in the
pipeline, the resolution logic 72 will just blindly overwrite
the new finder with the old finder. Hard defects or soft errors
such as alpha-particle hits can be tolerated because resolu
tion logic 72 will write a correct value for the target, type,
and end byte once the branch instruction is executed by the
pipeline 76 and resolved.
The resolution logic 72 may detect that the finder entry

22A (of FIG. 4) is bad for a number of reasons. The branch
may have been predicted taken, when it was actually not
taken, or vice versa. The branch could have been predicted
correctly as taken, but the target address in the finder is
incorrect. Either the target sub-address is incorrect, the block
encoding for current or adjacent blocks is wrong, or the
branch is not actually within the current or adjacent blocks.
The end byte field 34 (of FIG. 4) may not match the last byte
of the actual branch instruction. It is even possible that the
finder predicted a taken branch, but the instruction was not
a branch instruction at all

CONCLUSION

The target finder array contains a target sub-address rather
than the full target address. A block encoding specifies if the
target is in the same aligned 2K-byte block as the branch
instruction, or in the next or previous aligned 2K-byte block.
This provides an inexpensive but accurate branch prediction

5,608,886
13

scheme. The target finder also includes a prediction of the
outcome of the branch condition, whether the branch will be
taken or not taken. The target address and the resolution of
the branch condition are provided early in the pipeline, as
the branch instruction itself is being fetched. Thus no
pipeline stalls are needed for correctly predicted branches.
The block addresses or numbers of the current, next and
previous block are calculated as the instruction cache and
target finder are being read; the block encoding merely has
to select the appropriate block number and concatenate it
with the target sub-address to get the target address.
The target finder may also include encodings for predict

ing exceptions and software interrupts as well as branches.
These encodings may also predict when a switch to the
alternate instruction set will occur in a dual-instruction-set
processor. The size of the block preferably changes from 2K
bytes to 512 bytes based on the branch granularity in the
alternate instruction set.

ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventors. For example the relative cost of target finder array
22 of FIG. 2 could be reduced further by having only one or
two finder entries 22A for all four double words 24A-24D.
This would limit prediction to only one branch instruction
for four double words, or about eight RISC instructions. The
preferred embodiment has one finder entry and one predic
tion for one double word or two RISC instructions. Other
embodiments could provide one finder for every instruction
word, but at a higher cost. This is an area vs. performance
design tradeoff. The expected density of branch instructions
is traded off against the hardware cost for the target finder
array 22. The inventors have expected one branch instruc
tion for every five to six instructions but have designed the
target finder array 22 for one branch instruction for every
two instructions because of the high performance cost of
branch pipeline stalls when prediction hardware is insuffi
cient. Another alternate embodiment is to only have one
source write to the finder array at any time, but this decreases
accuracy and performance.
A 17-bit finder entry has been described as the preferred

embodiment. Having additional bits for the target sub
address would allow for a larger block size, allowing more
branches to be predicted. Likewise fewer bits in the target
sub-address would reduce the blocksize and range of target
addresses that can be predicted. Additional adders could
allow for more than three blocks for the target, along with
more type bits to encode these additional blocks. The strong
bit is not critical for prediction, but improves the accuracy
of the taken bit's prediction. Additional bits could be used to
further improve the accuracy of prediction. Thus the exact
size of the finder entry may vary.
The cache may be implemented in various ways, such as

direct-mapped or set-associative, and it may store only
instructions or both instructions and data (a combined
cache). The size of the tag array, data array, and finder array
are variable, as is the number of lines in the cache and the
number of instruction words stored on each line. The finder
array may be implemented as a physical part of the cache,
or it may be separate from the cache.

Finder decoder 70 of FIG. 6 may only decode RISC
instructions, or it may also decode the more complex CISC
instructions, or only some of the simpler CISC instructions.
Finder decoder 70 does not have to be perfectly accurate
since a bad value in the target finder array can be corrected

5

10

15

20

25

30

35

40

45

50

55

60

65

14
and updated by resolution logic 72. A preferred embodiment
has finder decoder 70 predict most RISC branches but no
CISC branches. CISC branches can still be predicted, but the
first time a CISC branch is encountered it will be mis
predicted if it is actually taken, and its finder entry will be
updated with the actual target generated by the pipeline 76
or instruction decode stage 74.

This improvement relates to a central processing unit
(CPU) for a dual-instruction set architecture. While the
detailed description describes the invention in the context of
the PowerPCTM reduced instruction set computer (RISC)
and the x86 complex instruction set computer (CISC), it is
contemplated that the invention applies to other instruction
sets besides PowerPCTM RISC and x86 CISC, and to more
than two instruction sets, without departing from the spirit of
the invention. The exact number of bits in each register may
likewise be varied by persons skilled in the art without
departing from the spirit of the invention.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.
We claim:
1. A target finder for predicting a branch target address for

a pipelined processor, the branch target address being a
target for a branch instruction, an address of the branch
instruction being within a current block, the current block
having a predetermined blocksize and starting and ending at
a multiple of the predetermined blocksize, the current block
being identified by a current block number, the target finder
comprising:

a finder entry which comprises:
a predicted target sub-address, the predicted target

sub-address being an address within a target block,
the target block having the predetermined blocksize
and starting and ending at a multiple of the prede
termined blocksize;

a block encoding indicating if the target block is the
current block, a previous block, or a next block, the
previous block having the predetermined blocksize
and starting and ending at a multiple of the prede
termined blocksize, the next block having the pre
determined blocksize and starting and ending at a
multiple of the predetermined blocksize; and

a target generator, receiving the finder entry, for generat
ing a predicted target address from the block encoding
and the predicted target sub-address, the predicted
target sub-address being an address within the target
block encoded by the block encoding,

whereby the predicted target address is generated from the
predicted target sub-address and the block encoding
stored in the finder entry.

2. The target finder of claim 1 wherein the target generator
comprises:
means for forming a next block number of the next block

and a previous block number of the previous block
from the current block number,

multiplexing means for selecting as an outputted block
number the current block number if the block encoding
indicates that the target block is the current block, the
multiplexing means selecting as the outputted block
number the next block number if the block encoding

5,608,886
15

indicates that the target block is the next block, the
multiplexing means selecting as the outputted block
number the previous block number if the block encod
ing indicates that the target block is the previous block;
and

means for generating a predicted target address from the
outputted block number and the predicted target sub
address, the predicted target sub-address being an
address within a block having the outputted block
number,

whereby the predicted target address is generated from the
predicted target sub-address and the block encoding
stored in the finder entry.

3. The target finder of claim 2 wherein the previous block
ends at the start of the current block and the next block starts
at the end of the current block, and wherein the means for
forming comprises an incrementer for incrementing the
current block number to generate the next block number of
the next block, the means for forming further comprising a
decrementer for decrementing the current block number to
generate the previous block number of the previous block.

4. The target finder of claim 1 further predicting an
outcome of the branch instruction, the finder entry further
comprising:

an outcome prediction of the branch instruction, the
outcome prediction indicating if the branch instruction
is predicted to be taken or not taken, the pipelined
processor fetching a target instruction at the predicted
target address if the outcome prediction is to be taken,
the pipelined processor fetching a sequential instruc
tion if the outcome prediction is not taken, the sequen
tial instruction immediately following the branch
instruction,

whereby the target instruction is fetched if the outcome
prediction is to be taken, while the sequential instruc
tion is fetched if the outcome prediction is not taken.

5. The target finder of claim 2 wherein the next block
number and the previous block number are formed by the
target generator while the branch instruction is being read
out of a cache and the predicted target sub-address and the
block encoding are being read out of the target finder,
whereby the branch instruction and the predicted target
address are available at substantially the same time.

6. The target finder of claim 2 wherein the next block
number and the previous block number are formed by the
target generator while the branch instruction is being read
out of a cache and the predicted target sub-address and the
block encoding are being read out of the target finder during
the same processor clock period, whereby the branch
instruction and the predicted target address are available
during the same processor clock period.

7. The target finder of claim 6 further comprising:
resolving means for updating the target finder entry when

the branch instruction is resolved by the pipelined
processor, the resolving means updating the predicted
target sub-address with a sub-address portion of an
actual target address generated by execution of the
branch instruction by the pipelined processor, and
updating the block encoding with an indication of an
address of an actual block, the sub-address portion
being an address within the actual block,

whereby the target finder entry is fault-tolerant, being
updated when the branch instruction is executed by the
pipelined processor.

8. The target finder of claim 1 wherein the finder entry is
in a target finder array, the target finder array comprising a

10

15

20

25

30

35

40

45

50

55

60

65

16
plurality of finder entries, and wherein a cache comprises a
plurality of cache lines, each cache line having at least one
corresponding finder entry.

9. The target finder of claim 8 wherein each cache line
comprises a plurality of instructions, and wherein each cache
line has a corresponding finder entry.

10. The target finder of claim 8 wherein the corresponding
finder entry is loaded with the predicted target sub-address
and the block encoding when each cache line is loaded with
an instruction.

11. The target finder of claim 10 further comprising
finder decode means, receiving the instruction when the

instruction is being loaded into a cache line, for par
tially decoding the instruction to determine if the
instruction is a branch instruction, the finder decode
means calculating the predicted target sub-address and
the block encoding, the finder decode means loading
the predicted target sub-address and the block encoding
into the finder entry when the cache line is loaded with
the instruction,

whereby the finder entry is initialized with a predicted
target address when the instruction is loaded into the
cache.

12. The target finder of claim 8 wherein the finder entry
further comprises an end byte identifier, the end byte iden
tifier indicating a location within a cache line of a last byte
in the branch instruction.

13. The target finder of claim 1 wherein the finder entry
further comprises:

register indirect indicating means for indicating that the
branch instruction is a register indirect branch instruc
tion, wherein the target address is a value stored in a
register, the register indirect indicating means disabling
the target generator and signaling the pipelined proces
sor to fetch the value stored in the register,

whereby the finder entry includes prediction for register
indirect branches.

14. The target finder of claim 1 wherein the finder entry
further comprises:

exception indicating means for indicating that the branch
instruction is an exception branch instruction, wherein
the predicted target sub-address is a portion of an
absolute address, the exception indicating means dis
abling the target generator and signaling the pipelined
processor to store state information, the pipelined pro
cessor using the portion of an absolute address to
generate the target address,

whereby the finder entry includes prediction for exception
branches.

15. The target finder of claim 1 wherein the finder entry
further comprises:

instruction set indicating means for indicating if the
branch instruction belongs to a first instruction set, the
first instruction set having a first encoding of operations
to opcodes, the instruction set indicating means for
indicating if the branch instruction belongs to a second
instruction set, the second instruction set having a
second encoding of operations to opcodes, the first
encoding of operations to opcodes being independent
from the second encoding of operations to opcodes,

whereby the finder entry includes prediction for the
instruction set of the branch instruction.

16. The target finder of claim 1 wherein the finder entry
further comprises:

emulation entry indicating means for indicating if the
branch instruction is an emulation entry instruction, thc

5,608,886
17

emulation entry instruction causing the pipelined pro
cessor to enter emulation mode,

whereby the finder entry includes prediction for emula
tion-mode-entry branch instructions.

17. A method for predicting a branch target address for a 5
pipelined processor, the method comprising:

loading a cache with a branch instruction, an address of
the branch instruction being within a current block, the
current block having a predetermined blocksize and
starting and ending at a multiple of the predetermined
blocksize, the current block having a current block
number,

loading a target finder entry with a predicted target
sub-address, the predicted target sub-address being an
offset address within a target block, the target block
having the predetermined blocksize and starting and
ending at a multiple of the predetermined blocksize;

loading the target finder entry with a block encoding
indicating if the target block is the current block, a 20
previous block, or a next block, the previous block
having the predetermined blocksize and starting and
ending at a multiple of the predetermined blocksize, the
next block having the predetermined blocksize and
starting and ending at a multiple of the predetermined 25
blocksize;

reading the branch instruction out of the cache and the
predicted target sub-address and the block encoding out
of the target finder entry;

forming a next block number of the next block and a 30

18
whereby the predicted target address is generated from the

predicted target sub-address and the block encoding
stored in the target finder entry.

18. The method of claim 17 wherein the previous block
ends at the start of the current block and the next block starts
at the end of the current block,

19. The method of claim 18 further predicting an outcome
of the branch instruction, the method further comprising the
steps of:

loading the target finder entry with an outcome prediction
of the branch instruction, the outcome prediction indi
cating if the branch instruction is predicted to be taken
or not taken;

15 fetching a target instruction at the predicted target address
if the outcome prediction is to be taken; and

fetching a sequential instruction if the outcome prediction
is not taken, the sequential instruction immediately
following the branch instruction,

whereby the target instruction is fetched if the outcome
prediction is to be taken, while the sequential instruc
tion is fetched if the outcome prediction is not taken.

20. The method of claim 18 wherein the next block
number and the previous block number are formed while the
branch instruction is being read out of the cache and the
predicted target sub-address and the block encoding are
being read out of the target finder entry during the same
processor clock period, whereby the branch instruction and
the predicted target address are available during the same
processor clock period.

10

previous block number of the previous block from the
current block number,

Selecting as an outputted block number the current block
number if the block encoding indicates that the target

21. The method of claim 18 further comprising the step of:
updating the target finder entry when the branch instruc

tionis resolved by the pipelined processor, updating the
predicted target sub-address with a sub-address portion

block is the current block, selecting as the outputted 35 of an actual target address generated by execution of
block number the next block number if the block the branch instruction by the pipelined processor, and
encoding indicates that the target block is the next updating the block encoding with an indication of an
block; selecting as the outputted block number the address of an actual block, the sub-address portion
previous block number if the block encoding indicates 40 being an address within the actual block,
that the target block is the previous block; and

generating a predicted target address from the outputted
block number and the predicted target sub-address, the
predicted target sub-address being an address within a
block having the outputted block number,

whereby the target finder entry is fault-tolerant, being
updated when the branch instruction is executed by the
pipelined processor.

ck k k k

