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(57) ABSTRACT 

A target finder array in the instruction cache contains a lower 
portion of the target address and a block encoding indicating 
if the target address is within the same 2K-byte block that the 
branch instruction is in, or if the target address is in the next 
or previous 2K-byte block. The upper portion of the target 
address, its block number, which corresponds to the starting 
address of a 2K block, is generated from the target finder 
simply by taking the upper portion or block number of the 
branch instruction and incrementing and decrementing it, 
and using the block encoding in the finder to select either the 
unmodified block number of the branch instruction, or the 
incremented or decremented block number of the branch 
instruction. The lower portion of the target address that was 
stored in the finder is concatenated with the selected block 
number to get the predicted target address. The target 
address can be predicted in parallel with reading an instruc 
tion out of the cache, making the target available at the same 
time the branch instruction is available, eliminating pipeline 
stalls for correctly predicted branches. The initially pre 
dicted target address in the finder is generated by a quick 
decode of the instruction and is written when the cache is 
loaded from memory. The initial prediction does not have to 
be accurate because branch resolution logic will update the 
finder on each branch resolution. Register indirect branches 
and exceptions may also be predicted. Two instruction sets 
may be accommodated by different block encodings to 
indicate the instruction set. By using the block encoding, the 
finder array is small and inexpensive. 

21 Claims, 6 Drawing Sheets 
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BLOCK-BASED BRANCH PREDICTION 
USING ATARGET FINDER ARRAY 
STORING TARGETSUB-ADDRESSES 

BACKGROUND OF THE 
INVENTION-RELATED APPLICATION 

This application is related to application for a "Dual 
Instruction-Set Architecture CPU with Hidden Software 
Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No. 08/179, 
926, hereby incorporated by reference. This related appli 
cation has a common inventor and is assigned to the same 
assignee as the present application. 

BACKGROUND OF THE INVENTION-FIELD 
OF THE INVENTION 

This invention relates to digital microprocessors, and 
more particularly to branch prediction. 

BACKGROUND OF THE 
INVENTION-DESCRIPTION OF THE 

RELATED ART 

Modern microprocessors often employ branch prediction 
techniques which attempt to "guess' or predict whether a 
conditional branch instruction will be taken, or not taken. If 
the branch is not taken, the next sequential instruction will 
be fetched. However, if the branch is taken, then instructions 
will have to be fetched starting from the target location, 
interrupting the otherwise sequential instruction fetching. 

FIG. 1 shows a stream of instructions 10 to be processed. 
Branch instruction 12 is a conditional branch. The branch 
instruction 12 may depend upon a condition code or flag that 
was set by an earlier instruction in the instruction stream 10. 
An evaluation of the condition codes or flags must be made 
to determine if the branch instruction 12 should be taken or 
not taken. If the evaluation determines that the branch 
instruction 12 should not be taken, then sequential instruc 
tion fetching and execution continues with the next sequen 
tial instruction 14. However, if the evaluation determines 
that the branch instruction 12 should be taken, then a target 
instruction 16 is fetched and executed while the next sequen 
tial instruction 14 is not executed. Sequential instruction 
execution continues after target instruction 16 with instruc 
tion 18. 

Since branch instructions may be frequently encountered 
in the instruction stream 10, a highly-optimized processor 
must be able to process branch instructions rapidly. Execu 
tion of a branch instruction requires that two operations be 
performed: the branching condition must be evaluated to 
determine if the branch is to be taken or not taken, and the 
address of the target instruction must be calculated. If the 
branch is not taken, the address of the target is not needed 
since sequential fetching will continue. 

Conditional branch instructions usually depend on the 
values of condition codes or flags that are set by arithmetic 
instructions preceding the branch instruction. These flags are 
usually set late in the pipeline, after the ALU stage, and often 
in the last stage of the pipeline. The branch instruction is 
decoded in the decode stage of the pipeline, which is one of 
the earliest stages. The branch instruction is usually decoded 
before the preceeding instruction has set the flags. 
A branch prediction scheme may be used, guessing the 

outcome of the conditional branch before the flags are set. 
The scheme may always guess not taken, or always guess 
taken, and be correct about 50–60% of the time. Dynamic 
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2 
prediction, which remembers the outcome history of the 
branch, can improve the prediction. 

Besides the outcome, taken or not taken, the target address 
of the branch is also needed. Target addresses traditionally 
have required an additional stage of the pipeline to calculate 
after the branch instruction has been decoded. Unfortu 
nately, un-assisted prediction of the target address is almost 
impossible since there are so many possibilities, whereas 
there are only two possibilities for the outcome-taken or 
not taken. 

Branch instructions are particularly difficult to design for 
since processors are often pipelined, executing several 
instructions at once. Superscalar processors feature several 
pipelines, making branch design even more critical because 
more instructions can be in the pipelines, and the flags are 
set by instructions that are issued relatively closer in time to 
the branch instruction in the superscalar pipelines. Branch 
instructions may upset the normal sequential fetching and 
execution of instructions, requiring that instruction fetching 
begin again at the target. Sequential instructions in the 
pipeline following the branch instruction have to be purged 
if the branch is taken. Because branches affect fetching, 
which occurs in the first stage in the pipeline, branches may 
have to stall the pipeline until evaluated and the new target 
address from which to fetch is generated. Stalling the 
pipeline is so undesirable that many branch prediction 
schemes have been developed. The large number and variety 
of branch prediction schemes testify to the fact that no 
scheme is entirely satisfactory. 

Prediction schemes may be expensive, storing the last 
target address or even the instruction at the target address. 

- Prediction schemes may be slow, unable to resolve or 
evaluate the branch to determine if taken or not until late in 
the pipeline, requiring pipeline stalls or pipeline cancella 
tions. 

DUAL-INSTRUCTION-SET PROCESSOR 

Processors, or central processing units (CPU’s) that are 
capable of executing instructions from two separate instruc 
tion sets are highly desired at the present time. For example, 
a desirable processor would execute user applications for the 
x86 instruction set and the PowerPCTM instruction set. It 
would be able to execute the tremendous software base of 
x86 programs that run under the DOSTM and WINDOWSTM 
operating systems from Microsoft of Redmond, Wash., and 
it could run future applications for PowerPCTM processors 
developed by IBM, Apple, and Motorola. 

Such a processor is described in the related copending 
application for a "Dual-Instruction-Set Architecture CPU 
with Hidden Software Emulation Mode', filed Jan. 11, 1994, 
U.S. Ser. No. 08/179,926. That dual-instruction-set CPU has 
a pipeline which is capable of executing instructions from 
either a complex instruction set computer (CISC) instruction 
set, such as the x86 instruction set, or from a reduced 
instruction set computer (RISC) instruction set, such as the 
PowerPCTM instruction set. 

Two instruction decode units are provided so that instruc 
tions from either instruction set may be decoded. Two 
instruction decoders are required when the instruction sets 
are separate because the instruction sets each have an 
independent encoding of operations to opcodes. For 
example, both instruction sets have an ADD operation or 
instruction. However, the binary opcode number which 
encodes the ADD operation is different for the two instruc 
tion sets. In fact, the size and location of the opcode field in 
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the instruction word is also different for the two instruction 
sets. In the x86 CISC instruction set, the opcode 03 hex is 
the ADD rv operation or instruction for a long operand. This 
same opcode, 03 hex, corresponds to a completely different 
instruction in the PowerPCTM RISC instruction set. In CISC 
the 03 hex opcode is an addition operation, while in RISC 
the 03 hex opcode is TWI-trap word immediate, a control 
transfer instruction. Thus two separate decode blocks are 
necessary for the two separate instruction sets. 

Switching from the CISC instruction set to the RISC 
instruction set may be accomplished by a farjump or branch 
instruction, while a return from interrupt can switch back to 
the CISC instruction set. Prediction of these branches is 
desirable since it is anticipated that for certain emulation 
strategies these switches between instruction sets will fre 
quently be encountered. 
What is desired is an inexpensive but accurate branch 

prediction scheme. It is also desired that the branch predic 
tion provide both the target address and the resolution of the 
branch condition as early in the pipeline as possible, pref 
erably in the fetch stage. It is also desirable to have no 
pipeline stalls for correctly predicted branches. The branch 
prediction scheme should also provide for predicting certain 
exceptions and software interrupts as well as branches. 
The prediction scheme should further predict when a 

Switch to the alternate instruction set will occur in a dual 
instruction-set processor. 

SUMMARY OF THE INVENTION 

Prediction of a branch target address for a pipelined 
processor uses a target finder. The branch target address is a 
target for a branch instruction. An address of the branch 
instruction is within a current block, and the current block 
has a predetermined blocksize and starts and ends at a 
multiple of the predetermined blocksize. The current block 
is identified by a current block number. 
The target finder comprises a finder entry which itself 

comprises a predicted target sub-address. The predicted 
target sub-address is an offset address within a target block. 
The target block has the predetermined blocksize and starts 
and ends at a multiple of the predetermined blocksize. The 
target finder also has a block encoding indicating if the target 
block is the current block, a previous block, or a next block. 
The previous block has the predetermined blocksize and 
starts and ends at a multiple of the predetermined blocksize, 
and the next block has the predetermined blocksize and 
starts and ends at a multiple of the predetermined blocksize. 
A target generator receives the finder entry which is used 

for generating a predicted target address from the block 
encoding and the predicted target sub-address. The predicted 
target sub-address is an address within the target block 
encoded by the block encoding. 
The predicted target address is rapidly generated from the 

predicted target sub-address and the block encoding stored 
in the finder entry. The target finder is inexpensive since only 
a sub-address rather than the full target address is stored. The 
target generator is fast because the addresses of the next and 
previous blocks can be calculated at the same time that the 
finder entry is being read. 

According to other aspects of the invention, the target 
finder also includes a prediction of the outcome of the 
branch condition, whether the branch will be taken or not 
taken. 

The target address and the resolution of the branch 
condition are provided early in the pipeline, as the branch 
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4 
instruction itself is being fetched. Thus no pipeline stalls are 
needed for correctly predicted branches. The block 
addresses or numbers of the current, next and previous block 
are calculated as the instruction cache and target finder are 
being read; the block encoding merely has to select the 
appropriate block number and concatenate it with the target 
sub-address to get the target address. 

In still further aspects of the invention, the target finder 
may also include encodings for predicting exceptions and 
software interrupts as well as branches. These encodings 
may also predict when a switch to the alternate instruction 
set will occur in a dual-instruction-set processor. The size of 
the block changes from 2K bytes to 512 bytes in the alternate 
instruction set. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a diagram of an instruction stream containing a 
branch instruction. 

FIG. 2 is an instruction cache with a finder array for 
branch prediction. 

FIG. 3 is a diagram of an address space. 
FIG. 4 is a branch prediction generator in CISC mode. 
FIG. 4A is a branch prediction generator in RISC mode. 
FIG. 5 is a state diagram of the taken and strong bits in the 

finder array. 
FIG. 6 is a diagram of a processor using the target finder 

array of the present invention. 

DETAILED DESCRIPTION 

The present invention relates to an improvement in branch 
prediction. The following description is presented to enable 
one of ordinary skill in the art to make and use the invention 
as provided in the context of a particular application and its 
requirements. Various modifications to the preferred 
embodiment will be apparent to those with skill in the art, 
and the general principles defined herein may be applied to 
other embodiments. Therefore, the present invention is not 
intended to be limited to the particular embodiments shown 
and described, but is to be accorded the widest scope 
consistent with the principles and novel features herein 
disclosed. 

This application is related to copending application for a 
"Dual-Instruction-Set Architecture CPU with Hidden Soft 
ware Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No. 
08/179,926, hereby incorporated by reference. Reduced 
instruction set computer (RISC) and complex instruction set 
computer (CISC) instructions may both be executed in the 
dual-instruction-set central processing unit (CPU). 
A dual-architecture central processing unit (CPU) is 

capable of operating in three modes-RISC mode, CISC 
mode, and emulation mode. A first instruction decoder 
decodes instructions when the processor is in RISC mode, 
while a second instruction decoder decodes instructions 
while the processor is in CISC mode. Two instruction 
decoders are needed since the RISC and CISC instruction 
sets have an independent encoding of instructions or opera 
tions to binary opcodes. 
The third mode of operation, emulation mode, also uses 

the first instruction decoder for RISC instructions, but emu 
lation mode executes a superset of the RISC instruction set. 
Using emulation mode, individual CISC instructions may be 
emulated with RISC instructions. Thus, not all CISC instruc 
tions need to be directly supported in the CPU's hardware. 
Unsupported CISC instructions cause a jump to an emula 
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tion mode routine to emulate the unsupported CISC instruc 
tion. Upon completion of the emulation mode routine, 
control is returned to the CISC program with the next CISC 
instruction. 

TARGET FINDER ARRAY IN INSTRUCTION 
CACHE 

FIG. 2 shows target finder array 22 employed to generate 
the predicted target address and predict the resolution of the 
branch (taken or not taken). The target finder array 22 is 
preferably coupled to the instruction cache 20 on the micro 
processor die and in close proximity to the core of the 
microprocessor. Instruction cache 20 includes a tag array 26 
having an index and valid bits for each line in the cache, and 
data array 24 which holds the instruction words themselves 
that are fetched into the processor's pipeline. Atypical cache 
line 28 contains a tag 26A and four instruction double words 
24A, 24B, 24C, 24D, each of which are 64 bits in size. The 
smallest addressable quantity in instruction cache 20 is a 
64-bit double word. Each double word 24A-24D has a 
corresponding finder entry 22A-22D in target finder array 
22. As each finder entry 22A-22D is only 17 bits in size, the 
cost of target finder array 22 is relatively small. However, as 
will be discussed in detail, finder entries 22A-22D contain 
enough information to generate a predicted target address 
very rapidly. All four of the 17-bit finder entries 22A-22D 
would require 68 bits, and if FIG. 2 were drawn to scale the 
entire target finder array 22 would occupy about the same 
area as a single 64-bit double word, such as 24D. 

FIG. 3 shows an addressable instruction space. The 
addressable instruction space is divided into fixed-size 
blocks of 512 bytes each. These blocks are aligned to 
512-byte boundaries. A branch instruction 12 is located in 
block 50. Block 52 is the next 512-byte block while block 
54 is the previous 512-byte block. Blocks 56, 58 are not 
adjacent to the block containing branch instruction 12. 

TARGET PREDICTION ONLY FOR ADJACENT 
BLOCKS 

The inventors have recognized that most branch targets 
are in adjacent blocks or the same block that the branch 
instruction is in. Thus most of the benefit of branch predic 
tion can be had by providing for branch prediction to 
adjacent blocks only. No prediction is provided to non 
adjacent blocks 56, 58. 

Prediction for targets anywhere in three blocks is prefer 
able to prediction for only a single block. When the branch 
instruction 12 is near the boundary of block 50, for example 
near the lower boundary at 1024 bytes, it is likely that the 
branch target may be within the previous block 54 because 
previous block 54 is only a few bytes away. However, it is 
not likely to be in the non-adjacent blocks 56, 58. Using 
three blocks rather than just one or two makes the invention 
less sensitive to the alignment of the branch instruction to 
the boundaries of the block. 

ENCODED BLOCK OF TARGET IN TARGET 
FINDER ENTRY 

FIG. 4 shows the finder entry 22A. Finder entry 22A 
includes enough information to generate the predicted target 
address using target sub-address 30 and type field 31. The 
resolution of the branch, taken or not taken, is also predicted 
by taken bit 33 and strong bit 32. The exact location of the 
branch instruction within the instruction double word 
fetched from the cache line is also specified by end byte 34. 
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6 
End byte 34 represents the last byte of the first branch 
instruction, the point where the instruction stream will be 
discontinuous if the branch is taken. Since multiple instruc 
tions can be present in one double word, it is possible to have 
multiple branch instructions in the single double word. Since 
the multiple branch instructions have to share the same 
finder entry, only the first taken branch instruction of the 
multiple branch instructions uses the finder entry. Thus no 
prediction is possible for any subsequent branch instruction 
in a double word. Allowing only one taken branch in a 
double word is not a serious disadvantage since it is uncom 
mon to have several taken branches within a single double 
word. 

Finder entry 22A contains the 9 lower or least-significant 
bits of the predicted target address, the target sub-address 30. 
Target sub-address 30 corresponds to the offset address 
within the 512-byte blocks of FIG. 3. The only other 
information needed to completely specify the predicted 
target address is the address of the block that the target is in. 
This is a 23-bit upper address for a 32-bit processor. It would 
be very expensive to store these 23 upper address bits for 
each line in the instruction cache. However, since the branch 
instruction is in the current block, the address of the current 
block, or block number, is known. The current block number 
is simply the upper 23 address bits of the instruction pointer, 
which points to the branch instruction. Since the block 
number is available from the instruction pointer, the only 
information that must be stored in finder entry 22A is an 
indication of the predicted target's block, which can only be 
the current block 50, previous block 54, or next block 52 (of 
FIG. 3). In the rare case that the predicted target is in a 
non-adjacent block 56,58, (of FIG. 3) this is indicated as a 
predicted not taken branch. 
Type field 31 contains an encoding indicating which 

block, relative to the current block, that the predicted target 
is in. A simple 2-bit encoding for type field 31 is: 

00 Predicted Target is in current block 
0. Predicted Target is in next block 
10 Predicted Target is in previous block. 

If the predicted target is in a non-adjacent block, then no 
prediction is possible. In that case, the taken bit 33 will be 
set to not taken. 

PREDICTED TARGET ADDRESS GENERATION 

The predicted target address is generated by the target 
prediction generator 80 in FIG. 4. The lower 9 bits 40B of 
the predicted target address 40 are simply read out of the 
target sub-address 30 of the finder entry 22A. The 23 upper 
or most-significant bits 40A of the predicted target address 
40 are supplied by multiplexer or mux 42. Mux 42 is 
controlled by the type field 31 which is read out of the finder 
entry 22A. The type field 31 causes mux 42 to select the 
upper 23 bits of the current address 38, which is the current 
block number, when the type field 31 is encoded for the 
predicted target in the current block 50. Incrementer 35 
receives these 23 upper bits of the current address 38 and 
increments it or adds one (+1) to yield the address of the next 
block 52 (of FIG. 3), the next block number. The output of 
incrementer 35 is selected by mux 42 when the type field 31 
is encoded for the predicted target in the next block 52 (of 
FIG.3). Likewise decrementer 36 receives the 23 upper bits 
of the current address 38 and decrements it or subtracts one 
(-1) to yield the address of the previous block 54 (of FIG. 
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3), the previous block number. The output of decrementer 36 
is selected by mux 42 when the type field 31 is encoded for 
the predicted target in the previous block 54 (of FIG. 3). 
The predicted target address generator of FIG. 4 rapidly 

generates the predicted target address 40 from the finder 
entry 22A and the current address 38. This predicted target 
address 40 can be generated within one processor clock 
cycle because the 23-bit incrementer 35 and decrementer 36 
can generate their outputs from the current address 38 while 
the instruction cache is reading out the instruction double 
word and the finder entry 22A. Once the instruction cache 
access is complete, the type field 31 is used to quickly select 
either the current address or one of the outputs of the 
incrementer 35 and decrementer 36. Thus incrementer 35 
and decrementer 36 operate in parallel with the instruction 
cache look-up. The small additional delay caused by mux 42 
can be accounted for by using a slightly faster RAM for the 
target finder array 22 (of FIG. 2) or just for the type field 31. 
Since the target finder array 22 (of FIG. 2) is smaller in size 
than the data array 24 (of FIG. 2) of the instruction cache, 
target finder array 22 (of FIG. 2) will be faster due to its 
smaller size. 

PREDICTION OF BRANCH RESOLUTION 

The finder entry 22A of FIG. 4 also contains a prediction 
of whether the branch instruction is taken or not taken. 
Taken bit 33 indicates if the prediction is for a taken or not 
taken branch. Strong bit 32 is used in conjunction with taken 
bit 33 to improve the accuracy of the prediction. FIG. 5 
shows a state diagram for the prediction algorithm used. 
Strong bit 32 can take on the values of strong "S" or weak 
'W', while taken bit 33 can have the values of taken "T' or 
not taken "NT". These bits 32, 33 refer to the prediction for 
the next time the branch instruction is encountered by the 
instruction fetcher and are updated each time the branch 
instruction is resolved by the pipeline. Initially the predic 
tion is set to the weak, taken state 64. If the branch is not 
taken, then bits 32, 33 are changed to strong, not taken and 
state 60 is entered. Otherwise, if the branch is correctly 
predicted taken, then bit 32 is updated to strong and state 66 
is entered. If the branch is next resolved actually taken, then 
state 66 continues and no changes to bits 32, 33 are needed. 
If the branch is resolved not taken, then the prediction was 
wrong and the strong bit 32 is changed to weak and state 
weak, taken 64 is entered. A second mis-predict or not taken 
branch resolution would cause both bits 32, 33 to change to 
strong, not taken state 60. However, a resolved taken branch 
would return to strong, taken state 66. 
A not taken resolution from strong, not taken state 60 

would remain in that state. A mis-prediction would cause the 
strong bit 32 to change to weak, but the prediction for not 
taken is kept, entering the weak, not taken state 62. A correct 
prediction of not taken from weak, not taken state 62 would 
return to strong, not taken state 60 with an update of strong 
bit 32. A second mis-predict would cause both bits 32, 33 to 
change to strong, taken state 66. 
Thus the taken bit 33 cooperates with the strong bit 32 to 

provide a prediction algorithm that allows for two mis 
predictions before changing the expected resolution, taken 
bit 33. This is a valuable algorithm for program loops. When 
the loop is exited, the state will change from strong, taken to 
weak, taken. The next time the loop is entered, the prediction 
will be taken, a correct prediction. Thus only one mis 
prediction would occur for each time the loop is executed; 
a mis-prediction when the loop is exited. 
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8 
DUAL-ARCHITECTURE ENCODING OF TYPES 

The invention may be expanded to allow for multiple 
architectures. In the CISC architecture, instructions can 
begin and end on any byte boundary. Thus a CISC target 
instruction could begin on any of bytes 0,1,2,3,4,5,6, or 7. 
This requires that the least-significant bit of target sub 
address 30 (of FIG. 4) specify the 8-bit byte. For CISC 
instructions, the target sub-address 30 (of FIG. 4) corre 
sponds to 2(=512) bytes. 

However, in the RISC architecture, instructions are 
always aligned to word boundaries; they must always begin 
at byte 0 or 4 of the 8-byte double word and end with byte 
3 or 7. The target sub-address 30 of FIG. 4 is a word 
sub-address, meaning that the least-significant bit selects 
between the first and second 32-bit word in a double word, 
not all eight of the 8-bit bytes as for CISC. Nine bits of target 
sub-address 30 corresponds to 2'(=512)32-bit words, or 2K 
bytes. Thus in RISC mode the size of the block is 2K bytes, 
not 512 bytes as for CISC mode. FIG. 3 shows that while 
CISC mode has 512-byte blocks such as current block 50, 
RISC mode has 2K-byte blocks such as current block 50'. 
The range of addresses that can be predicted for the target is 
limited to three blocks, which is 3x2K bytes=6K bytes for 
RISC mode, but only 3x512 bytes=1.5K bytes for CISC 
mode. 
The difference in block sizes between the two architec 

tures causes the target sub-address 30 to have slightly 
different meanings depending upon the architecture. Since 
the dual-instruction-set CPU can execute instructions from 
both architectures simultaneously, the target finder array 22 
may contain targets from both RISC and CISC branch 
instructions. The architecture of the branch instruction must 
therefore be encoded into the target finder array. Type field 
31 can be expanded to include an encoding for the instruc 
tion set. Such an encoding is shown below: 

000 CISC Mode Predicted Target is in current block 
000 CISC Mode Predicted Target is in next block 
010 CISC Mode Predicted Target is in previous block 
100 RISC Mode Predicted Target is in current block 
101 RISC Mode Predicted Target is in next block 
110 RISC Mode Predicted Target is in previous block. 

FIG. 4A shows the branch prediction generator of FIG. 4 
operating in RISC mode. Reference numerals are the same 
in FIGS. 4 and 4A to indicate similar or identical elements. 
FIGS. 4 and 4A show the same apparatus operating in two 
modes: FIG. 4 for CISC mode, and FIG. 4A for RISC mode. 
Since the lower two bits encoded by type field 31 are 
identical for CISC mode and RISC mode, the control of mux 
42 is the same for both modes. However, the predicted target 
address 40 is a byte address for CISC mode but a word 
address for RISC mode. The predicted target address 40 
must be partially shifted to the left by two bits and have two 
zeros appended to the right LSB's to convert the CISC byte 
address to a RISC word address. Additionally, for RISC 
mode, only the upper 21 bits of current address 38 are input 
to incrementer 35, decrementer 36 and mux 42. Thus for 
CISC mode the upper 23 bits of current address 38 generate 
bits 9 to 31, but for RISC mode the upper 21 bits of current 
address 38 generate bits 11 to 31. The type field 31 can 
signal to control logic (not shown) to use the upper 21 bits 
of current address 38 and the shifted 9 bits of predicted target 
address 40B when a RISC mode target is predicted. Such 
control and shifting logic is well-known by persons of skill 
in the art and is therefore not discussed further. 
The last byte of the branch instruction, the end byte 34, is 

included in the finder entry 22A to provide architecture 
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independence yet still indicate the location of the branch 
instruction in the instruction double word. The PowerPCTM 
RISC architecture defines the origin of a branch as the 
address of the branch instruction, while the x86 CISC 
architecture defines as the branch origin the first byte 
following the branch instruction, the first byte of the next 
sequential instruction. In either architecture the target 
address is calculated as a displacement added to the branch 
origin. Thus for PowerPCTM the target address is the branch 
instruction address+displacement, while for x86 the target 
address is the address of the sequential instruction following 
the branch-i-displacement. Using the end byte allows the 
finder and target address generation hardware to be inde 
pendent of the instruction set being executed, simplifying 
the design. 

PREDICTION OF EXCEPTIONS AND 
INSTRUCTION-SET SWITCHING 

Simple jumps and calls are not the only branch instruc 
tions that can be predicted with the invention. Software 
interrupts or exceptions that occur regularly may also be 
predicted. Exceptions cause the state of the processor to 
change, requiring that certain state information be saved on 
the stack or in registers. This state information may include 
the current instruction pointer and the flags or condition 
code register. The privilege level may change from user to 
supervisor. Because of these additional functions that occur 
when an exception occurs, exception branching is not nor 
mally predicted. However, an additional type in type field 31 
(of FIG. 4) can be encoded indicating that the prediction is 
for an exception rather than a simple branch. Encoding 111 
may be used for this purpose. 
Upon decoding this 111 type, the branch prediction gen 

erator will generate the predicted target address in a modi 
fied manner. An absolute target is used for exceptions, rather 
than a target calculated by adding a displacement to the 
address of the branch instruction. This absolute target 
address, which is a trap or interrupt vector number or entry 
point, is stored in the target finder array where the target 
sub-address would be stored. The absolute target can be 
anywhere in the address space. It is not limited to the current 
or adjacent blocks. Since these absolute addresses are usu 
ally an address into a table, such as an interrupt table stored 
near address Zero, the upper address bits of the absolute 
target are usually all zeros. Thus the 9 bits in the target 
sub-address field is sufficient to identify these absolute 
targets. The entry points in these tables are preferably at 
discrete 32-byte intervals, so the 9-bit absolute address from 
the target sub-address field 30 is shifted up by 5 bits before 
being loaded as the predicted target address 40 (of FIG. 4). 

Since the type field is encoded as 111, mux 42 of FIG. 4 
will select the fourth input, which is the value zero, "0". This 
places zeros in the upper bits of the predicted target address 
40. Thus, by storing a portion of an absolute target address 
in the target sub-address field of the finder 22A, a target 
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The absolute target is not relative to the current address, so 
the incrementer 25 and decrementer 36 are not needed. 
Instead the mux places zeros in the upper bit-positions, and 
the portion of the absolute target stored in the finder array is 
shifted up by 5 bits. 
A special type of exception is a switch to the alternate 

instruction set. This exception may also be provided for in 
the 111 type encoding, or an instruction set swap bit may be 
added to the finder entry 22A. Entry points into emulation 
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mode that cause the instruction set being processed to switch 
may thus also be predicted using the present invention. 
Emulation mode will be entered each time a complex CISC 
instruction that is not executed directly is encountered, and 
so prediction should be accurate as well as useful. 

REGISTER INDIRECT TARGET PREDICTION 

Most branch instructions add either a displacement or 
immediate value to the current instruction pointer value to 
get the target address. Since this immediate value is part of 
the instruction word, and does not vary over time, the target 
address will not vary over time. However, some branch 
instructions use a value stored in a register as the target 
address. Register indirect branching which uses a value in a 
register is difficult to predict since the value in the register 
is not fixed but can change over time as new values are 
loaded into the register. 
The PowerPCTM RISC architecture includes a link register 

that a branch-to-link instruction reads to calculate the target 
address. A return-from-interrupt (rfi) instruction reads a 
value saved in a save/restore register (SRR0) to get the target 
address. Both the link register and the save/restore register 
can have variable values resulting in variable target 
addresses being generated. 
The invention can be extended to account for register 

indirect branching, such as with the link register. Type 011 
is defined for register indirect branches. Alternately, addi 
tional bits in the type field 31 may be defined to allow for 
encoding of these additional types. When the type field 31 
indicates a register indirect branch, the normal target pre 
diction mechanism is not used. The branch taken/not taken 
mechanism is still used. Since the value in the link register 
can change, it is not useful to store a predicted target address 
in the target finder array 22 (of FIG.2). Instead, if the branch 
is predicted taken, the pipeline is stalled until the link 
register is stable. The pipeline control logic may have 
look-ahead logic to determine if any instructions in the 
pipeline will write to the link register, or the pipeline may be 
blindly stalled until all instructions have had the chance to 
write to the link register. Pipeline control logic will signal to 
the instruction fetcher at the earliest opportunity that the link 
register is stable. Instruction fetching will then continue 
from this new target address. If the indirect branch is 
predicted not taken, then the pipeline is not stalled. Opti 
mized code will set the new value in the register sufficiently 
ahead of the branch instruction to avoid pipeline stalls. 

WRITING TO FINDER ARRAY 

The finder array is written to both when the instruction 
cache is filled with a new line, and when a branch is 
resolved. Thus the finder array can predict a taken branch for 
the first time a branch instruction is encountered. The finder 
can be corrected once the branch is encountered and 
resolved, improving the accuracy of the prediction. 

FIG. 6 is a diagram of a processor using the target finder 
array of the present invention. Instruction cache 20 receives 
instruction double words from a memory 78, which may be 
a main memory or preferably a secondary cache. A tag 
portion of an address and valid bits are loaded into tag array 
26, while the instruction double words are loaded into data 
array 24. A finder decoder 70 performs a quick decoding on 
the instruction double word being loaded into instruction 
cache 20 and produces the information to write into target 
finder array 22. Finder decoder 70 quickly decodes all bytes 
in the instruction double word to determine if any branch 
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instructions are present in the double word. If no branches 
are detected, the taken bit 33 (of FIG. 4) is cleared to zero 
and written into target finder array 22 so that no branch will 
be predicted. 

Finder decoder 70 determines if an opcode is present for 
a branch instruction. For RISC instruction sets, the instruc 
tions are aligned on the word boundary, and the opcodes 
appear in a fixed byte within the instruction. Thus the finder 
decoder need only decode these bytes where the opcodes are 
located. If a branch is detected, the taken bit 33 (of FIG. 4) 
is set and the strong bit 32 (of FIG. 4) is cleared and written 
to the target finder array 22. Additionally, an immediate 
displacement may be indicated by the opcode, which may be 
added to the address of the fetched branch instruction to get 
the predicted target address. The lower bits of this predicted 
target address are written to target sub-address 30 (of FIG. 
4) in the target finder array, while the upper bits are 
examined to determine if the predicted target address is 
within the current block 50 (of FIG. 3), the next block 52 (of 
FIG. 3), or the previous block 54 (of FIG. 3), and the 
corresponding encoding is written to type field 31 of the 
target finder array 22 for the cache line being loaded. If the 
predicted target address is not within the current or adjacent 
blocks 50, 52, 54 (of FIG. 4), then the type encoded is 
irrelevant, since the taken bit 33 (of FIG. 4) is set to not 
taken. 

The end byte of the instruction is also determined by 
finder decoder 70, so that all fields of finder entry 22A (of 
FIG. 4) may be written. Preferably finder decoder writes the 
finder entry 22A (of FIG. 4) at the same time as the 
instruction double word is being loaded into instruction 
cache 20. Thus the finder array is loaded with a branch 
prediction and a predicted target address when an instruction 
word is loaded into the instruction cache 20. This allows a 
prediction of weakly taken for the first time a branch 
instruction is encountered, which is desirable since branches 
are usually taken the first time encountered. Many prior-art 
systems require that the branch instruction be processed by 
the processor's pipeline before a target prediction can be 
made. Newer architectures may support static branch pre 
diction encoded into the branch instruction itself which may 
be used as an initial prediction for the taken bit. The initial 
prediction may be set to weakly not taken for older complex 
architectures due to the complexity of generating an initial 
prediction. 

Target prediction generator 80, using the apparatus of 
FIG. 4, reads the target finder array 22 when an instruction 
is read out of instruction cache 20. A predicted target address 
is available to the instruction fetcher 82 at the same time that 
the instruction is read out of instruction cache 20 to instruc 
tion decode stage 74. This timing allows instruction fetcher 
82 to immediately switch to fetching from the predicted 
target address if the branch is predicted taken by taken bit 33 
(of FIG. 4). 

Instruction cache 20 supplies instructions to the instruc 
tion decode stage 74, which supplies decoded instructions to 
the pipeline 76. Resolution logic 72 determines if a branch 
instruction was take or not by evaluating flags or condition 
codes set by other instructions in pipeline 76. Resolution 
logic 72 must wait until all instructions that can update the 
flags or condition codes have determined their flags before 
evaluating the branch instruction. Flags can be bypassed to 
the resolution logic 72 to reduce the delay. Resolution logic 
72 also receives the actual target of the branch instruction 
which is calculated by either the pipeline 76 or the instruc 
tion decoder stage 74. Resolution logic 72 verifies that the 
predicted target address matched the actual target address. If 
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12 
not, then a mis-predict operation must be performed, rather 
than a simple update of the taken and strong bits. The actual 
target is also sent to instruction fetcher 82 if the branch was 
mis-predicted so that the correct instruction fetching can 
begin. 

Resolution logic 72 updates the finder entry 22A (of FIG. 
4) in the cache line corresponding to the branch instruction 
that was just resolved. It writes the low bits of the actual 
target address to the target sub-address 30 (of FIG. 4) and 
determines which block the target address is in and encodes 
this to write the type field 31 (of FIG. 4). The instruction set 
and type of branch is also encoded into type field 31 (of FIG. 
4). The taken bit 33 (of FIG. 4) and strong bit 32 (of FIG. 
4) are also updated in accordance with the state diagram of 
FIG. 5, and the actual end byte of the branch instruction is 
written to end byte 34 (of FIG. 4). Often the same informa 
tion will be written back into the finder entry 22A (of FIG. 
4), as when the branch is correctly predicted after the first 
correct prediction. 

The target finder array 22 is written by both the finder 
decoder 70 when the instruction cache 20 is being loaded by 
memory 78, or when a branch is resolved in the processor's 
pipeline 76 by resolution logic 72. Thus two separate 
sources may write the target finder array 22. If the two 
sources try to write simultaneously, then the finder must be 
dual-ported or one of the sources must wait. 

FAULTTOLERANT FINDER ARRAY 

Finder decoder 70 does not have to be perfectly accurate 
since a bad value in the target finder array can be corrected 
and updated by resolution logic 72. A preferred embodiment 
has finder decoder 70 predict most RISC branches but no 
CISC branches. CISC branches can still be predicted, but the 
first time a CISC branch is encountered it will be mis 
predicted and its finder entry updated with the actual target 
generated by the pipeline 76 or instruction decode stage 74 
if the branch is determined to be taken. 
Some of the lines in the target finder array 22 may become 

stale as a new cache line is fetched, overwriting the old 
finder. If the old finder has a branch instruction in the 
pipeline, the resolution logic 72 will just blindly overwrite 
the new finder with the old finder. Hard defects or soft errors 
such as alpha-particle hits can be tolerated because resolu 
tion logic 72 will write a correct value for the target, type, 
and end byte once the branch instruction is executed by the 
pipeline 76 and resolved. 
The resolution logic 72 may detect that the finder entry 

22A (of FIG. 4) is bad for a number of reasons. The branch 
may have been predicted taken, when it was actually not 
taken, or vice versa. The branch could have been predicted 
correctly as taken, but the target address in the finder is 
incorrect. Either the target sub-address is incorrect, the block 
encoding for current or adjacent blocks is wrong, or the 
branch is not actually within the current or adjacent blocks. 
The end byte field 34 (of FIG. 4) may not match the last byte 
of the actual branch instruction. It is even possible that the 
finder predicted a taken branch, but the instruction was not 
a branch instruction at all 

CONCLUSION 

The target finder array contains a target sub-address rather 
than the full target address. A block encoding specifies if the 
target is in the same aligned 2K-byte block as the branch 
instruction, or in the next or previous aligned 2K-byte block. 
This provides an inexpensive but accurate branch prediction 
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scheme. The target finder also includes a prediction of the 
outcome of the branch condition, whether the branch will be 
taken or not taken. The target address and the resolution of 
the branch condition are provided early in the pipeline, as 
the branch instruction itself is being fetched. Thus no 
pipeline stalls are needed for correctly predicted branches. 
The block addresses or numbers of the current, next and 
previous block are calculated as the instruction cache and 
target finder are being read; the block encoding merely has 
to select the appropriate block number and concatenate it 
with the target sub-address to get the target address. 
The target finder may also include encodings for predict 

ing exceptions and software interrupts as well as branches. 
These encodings may also predict when a switch to the 
alternate instruction set will occur in a dual-instruction-set 
processor. The size of the block preferably changes from 2K 
bytes to 512 bytes based on the branch granularity in the 
alternate instruction set. 

ALTERNATE EMBODIMENTS 

Several other embodiments are contemplated by the 
inventors. For example the relative cost of target finder array 
22 of FIG. 2 could be reduced further by having only one or 
two finder entries 22A for all four double words 24A-24D. 
This would limit prediction to only one branch instruction 
for four double words, or about eight RISC instructions. The 
preferred embodiment has one finder entry and one predic 
tion for one double word or two RISC instructions. Other 
embodiments could provide one finder for every instruction 
word, but at a higher cost. This is an area vs. performance 
design tradeoff. The expected density of branch instructions 
is traded off against the hardware cost for the target finder 
array 22. The inventors have expected one branch instruc 
tion for every five to six instructions but have designed the 
target finder array 22 for one branch instruction for every 
two instructions because of the high performance cost of 
branch pipeline stalls when prediction hardware is insuffi 
cient. Another alternate embodiment is to only have one 
source write to the finder array at any time, but this decreases 
accuracy and performance. 
A 17-bit finder entry has been described as the preferred 

embodiment. Having additional bits for the target sub 
address would allow for a larger block size, allowing more 
branches to be predicted. Likewise fewer bits in the target 
sub-address would reduce the blocksize and range of target 
addresses that can be predicted. Additional adders could 
allow for more than three blocks for the target, along with 
more type bits to encode these additional blocks. The strong 
bit is not critical for prediction, but improves the accuracy 
of the taken bit's prediction. Additional bits could be used to 
further improve the accuracy of prediction. Thus the exact 
size of the finder entry may vary. 
The cache may be implemented in various ways, such as 

direct-mapped or set-associative, and it may store only 
instructions or both instructions and data (a combined 
cache). The size of the tag array, data array, and finder array 
are variable, as is the number of lines in the cache and the 
number of instruction words stored on each line. The finder 
array may be implemented as a physical part of the cache, 
or it may be separate from the cache. 

Finder decoder 70 of FIG. 6 may only decode RISC 
instructions, or it may also decode the more complex CISC 
instructions, or only some of the simpler CISC instructions. 
Finder decoder 70 does not have to be perfectly accurate 
since a bad value in the target finder array can be corrected 
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14 
and updated by resolution logic 72. A preferred embodiment 
has finder decoder 70 predict most RISC branches but no 
CISC branches. CISC branches can still be predicted, but the 
first time a CISC branch is encountered it will be mis 
predicted if it is actually taken, and its finder entry will be 
updated with the actual target generated by the pipeline 76 
or instruction decode stage 74. 

This improvement relates to a central processing unit 
(CPU) for a dual-instruction set architecture. While the 
detailed description describes the invention in the context of 
the PowerPCTM reduced instruction set computer (RISC) 
and the x86 complex instruction set computer (CISC), it is 
contemplated that the invention applies to other instruction 
sets besides PowerPCTM RISC and x86 CISC, and to more 
than two instruction sets, without departing from the spirit of 
the invention. The exact number of bits in each register may 
likewise be varied by persons skilled in the art without 
departing from the spirit of the invention. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 
We claim: 
1. A target finder for predicting a branch target address for 

a pipelined processor, the branch target address being a 
target for a branch instruction, an address of the branch 
instruction being within a current block, the current block 
having a predetermined blocksize and starting and ending at 
a multiple of the predetermined blocksize, the current block 
being identified by a current block number, the target finder 
comprising: 

a finder entry which comprises: 
a predicted target sub-address, the predicted target 

sub-address being an address within a target block, 
the target block having the predetermined blocksize 
and starting and ending at a multiple of the prede 
termined blocksize; 

a block encoding indicating if the target block is the 
current block, a previous block, or a next block, the 
previous block having the predetermined blocksize 
and starting and ending at a multiple of the prede 
termined blocksize, the next block having the pre 
determined blocksize and starting and ending at a 
multiple of the predetermined blocksize; and 

a target generator, receiving the finder entry, for generat 
ing a predicted target address from the block encoding 
and the predicted target sub-address, the predicted 
target sub-address being an address within the target 
block encoded by the block encoding, 

whereby the predicted target address is generated from the 
predicted target sub-address and the block encoding 
stored in the finder entry. 

2. The target finder of claim 1 wherein the target generator 
comprises: 
means for forming a next block number of the next block 

and a previous block number of the previous block 
from the current block number, 

multiplexing means for selecting as an outputted block 
number the current block number if the block encoding 
indicates that the target block is the current block, the 
multiplexing means selecting as the outputted block 
number the next block number if the block encoding 



5,608,886 
15 

indicates that the target block is the next block, the 
multiplexing means selecting as the outputted block 
number the previous block number if the block encod 
ing indicates that the target block is the previous block; 
and 

means for generating a predicted target address from the 
outputted block number and the predicted target sub 
address, the predicted target sub-address being an 
address within a block having the outputted block 
number, 

whereby the predicted target address is generated from the 
predicted target sub-address and the block encoding 
stored in the finder entry. 

3. The target finder of claim 2 wherein the previous block 
ends at the start of the current block and the next block starts 
at the end of the current block, and wherein the means for 
forming comprises an incrementer for incrementing the 
current block number to generate the next block number of 
the next block, the means for forming further comprising a 
decrementer for decrementing the current block number to 
generate the previous block number of the previous block. 

4. The target finder of claim 1 further predicting an 
outcome of the branch instruction, the finder entry further 
comprising: 

an outcome prediction of the branch instruction, the 
outcome prediction indicating if the branch instruction 
is predicted to be taken or not taken, the pipelined 
processor fetching a target instruction at the predicted 
target address if the outcome prediction is to be taken, 
the pipelined processor fetching a sequential instruc 
tion if the outcome prediction is not taken, the sequen 
tial instruction immediately following the branch 
instruction, 

whereby the target instruction is fetched if the outcome 
prediction is to be taken, while the sequential instruc 
tion is fetched if the outcome prediction is not taken. 

5. The target finder of claim 2 wherein the next block 
number and the previous block number are formed by the 
target generator while the branch instruction is being read 
out of a cache and the predicted target sub-address and the 
block encoding are being read out of the target finder, 
whereby the branch instruction and the predicted target 
address are available at substantially the same time. 

6. The target finder of claim 2 wherein the next block 
number and the previous block number are formed by the 
target generator while the branch instruction is being read 
out of a cache and the predicted target sub-address and the 
block encoding are being read out of the target finder during 
the same processor clock period, whereby the branch 
instruction and the predicted target address are available 
during the same processor clock period. 

7. The target finder of claim 6 further comprising: 
resolving means for updating the target finder entry when 

the branch instruction is resolved by the pipelined 
processor, the resolving means updating the predicted 
target sub-address with a sub-address portion of an 
actual target address generated by execution of the 
branch instruction by the pipelined processor, and 
updating the block encoding with an indication of an 
address of an actual block, the sub-address portion 
being an address within the actual block, 

whereby the target finder entry is fault-tolerant, being 
updated when the branch instruction is executed by the 
pipelined processor. 

8. The target finder of claim 1 wherein the finder entry is 
in a target finder array, the target finder array comprising a 
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plurality of finder entries, and wherein a cache comprises a 
plurality of cache lines, each cache line having at least one 
corresponding finder entry. 

9. The target finder of claim 8 wherein each cache line 
comprises a plurality of instructions, and wherein each cache 
line has a corresponding finder entry. 

10. The target finder of claim 8 wherein the corresponding 
finder entry is loaded with the predicted target sub-address 
and the block encoding when each cache line is loaded with 
an instruction. 

11. The target finder of claim 10 further comprising 
finder decode means, receiving the instruction when the 

instruction is being loaded into a cache line, for par 
tially decoding the instruction to determine if the 
instruction is a branch instruction, the finder decode 
means calculating the predicted target sub-address and 
the block encoding, the finder decode means loading 
the predicted target sub-address and the block encoding 
into the finder entry when the cache line is loaded with 
the instruction, 

whereby the finder entry is initialized with a predicted 
target address when the instruction is loaded into the 
cache. 

12. The target finder of claim 8 wherein the finder entry 
further comprises an end byte identifier, the end byte iden 
tifier indicating a location within a cache line of a last byte 
in the branch instruction. 

13. The target finder of claim 1 wherein the finder entry 
further comprises: 

register indirect indicating means for indicating that the 
branch instruction is a register indirect branch instruc 
tion, wherein the target address is a value stored in a 
register, the register indirect indicating means disabling 
the target generator and signaling the pipelined proces 
sor to fetch the value stored in the register, 

whereby the finder entry includes prediction for register 
indirect branches. 

14. The target finder of claim 1 wherein the finder entry 
further comprises: 

exception indicating means for indicating that the branch 
instruction is an exception branch instruction, wherein 
the predicted target sub-address is a portion of an 
absolute address, the exception indicating means dis 
abling the target generator and signaling the pipelined 
processor to store state information, the pipelined pro 
cessor using the portion of an absolute address to 
generate the target address, 

whereby the finder entry includes prediction for exception 
branches. 

15. The target finder of claim 1 wherein the finder entry 
further comprises: 

instruction set indicating means for indicating if the 
branch instruction belongs to a first instruction set, the 
first instruction set having a first encoding of operations 
to opcodes, the instruction set indicating means for 
indicating if the branch instruction belongs to a second 
instruction set, the second instruction set having a 
second encoding of operations to opcodes, the first 
encoding of operations to opcodes being independent 
from the second encoding of operations to opcodes, 

whereby the finder entry includes prediction for the 
instruction set of the branch instruction. 

16. The target finder of claim 1 wherein the finder entry 
further comprises: 

emulation entry indicating means for indicating if the 
branch instruction is an emulation entry instruction, thc 
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emulation entry instruction causing the pipelined pro 
cessor to enter emulation mode, 

whereby the finder entry includes prediction for emula 
tion-mode-entry branch instructions. 

17. A method for predicting a branch target address for a 5 
pipelined processor, the method comprising: 

loading a cache with a branch instruction, an address of 
the branch instruction being within a current block, the 
current block having a predetermined blocksize and 
starting and ending at a multiple of the predetermined 
blocksize, the current block having a current block 
number, 

loading a target finder entry with a predicted target 
sub-address, the predicted target sub-address being an 
offset address within a target block, the target block 
having the predetermined blocksize and starting and 
ending at a multiple of the predetermined blocksize; 

loading the target finder entry with a block encoding 
indicating if the target block is the current block, a 20 
previous block, or a next block, the previous block 
having the predetermined blocksize and starting and 
ending at a multiple of the predetermined blocksize, the 
next block having the predetermined blocksize and 
starting and ending at a multiple of the predetermined 25 
blocksize; 

reading the branch instruction out of the cache and the 
predicted target sub-address and the block encoding out 
of the target finder entry; 

forming a next block number of the next block and a 30 

18 
whereby the predicted target address is generated from the 

predicted target sub-address and the block encoding 
stored in the target finder entry. 

18. The method of claim 17 wherein the previous block 
ends at the start of the current block and the next block starts 
at the end of the current block, 

19. The method of claim 18 further predicting an outcome 
of the branch instruction, the method further comprising the 
steps of: 

loading the target finder entry with an outcome prediction 
of the branch instruction, the outcome prediction indi 
cating if the branch instruction is predicted to be taken 
or not taken; 

15 fetching a target instruction at the predicted target address 
if the outcome prediction is to be taken; and 

fetching a sequential instruction if the outcome prediction 
is not taken, the sequential instruction immediately 
following the branch instruction, 

whereby the target instruction is fetched if the outcome 
prediction is to be taken, while the sequential instruc 
tion is fetched if the outcome prediction is not taken. 

20. The method of claim 18 wherein the next block 
number and the previous block number are formed while the 
branch instruction is being read out of the cache and the 
predicted target sub-address and the block encoding are 
being read out of the target finder entry during the same 
processor clock period, whereby the branch instruction and 
the predicted target address are available during the same 
processor clock period. 

10 

previous block number of the previous block from the 
current block number, 

Selecting as an outputted block number the current block 
number if the block encoding indicates that the target 

21. The method of claim 18 further comprising the step of: 
updating the target finder entry when the branch instruc 

tionis resolved by the pipelined processor, updating the 
predicted target sub-address with a sub-address portion 

block is the current block, selecting as the outputted 35 of an actual target address generated by execution of 
block number the next block number if the block the branch instruction by the pipelined processor, and 
encoding indicates that the target block is the next updating the block encoding with an indication of an 
block; selecting as the outputted block number the address of an actual block, the sub-address portion 
previous block number if the block encoding indicates 40 being an address within the actual block, 
that the target block is the previous block; and 

generating a predicted target address from the outputted 
block number and the predicted target sub-address, the 
predicted target sub-address being an address within a 
block having the outputted block number, 

whereby the target finder entry is fault-tolerant, being 
updated when the branch instruction is executed by the 
pipelined processor. 
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