
United States Patent (19)
Blomgren

||||||
USOO5598.546A

11 Patent Number: 5,598,546
45) Date of Patent: Jan. 28, 1997

54) DUAL-ARCHITECTURE SUPER-SCALAR
PIPELINE

75 Inventor: James S. Blomgren, San Jose, Calif.

73) Assignee: Exponential Technology, Inc., San
Jose, Calif.

21 Appl. No.: 298,583
22 Filed: Aug. 31, 1994
(51) int. Cl. G06F 9/30
(52) 395/385; 395/800
58) Field of Search 395/375, 800

(56) References Cited

U.S. PATENT DOCUMENTS

3,764,988 10/1973 Onishi 395/375
4,893,233 1/1990 Denman et al. 395/375
4,992,934 2/1991 Portanova et al. 395/375
5,088,030 2/1992 Yoshida 364,275
5, 193,156 3/1993 Yoshida et al. 395/375
5,241,635 8/1993 Papadopoulos et al. 395/375
5,283,874 2/1994 Hammond............................... 395/375
5,287,467 2/1994 Blaner et al. 395/375
5,299,321 3/1994 Iizuka 395/375
5,307,504 4/1994 Robinson et al. 395/800
5,355,460 10/1994 Eickemeyer et al. 395/375
5,398,321 3/1995 Jeremiah 395/375
5,430,851 7/1995 Hirata et al. 395/375
5,438,668 8/1995 Coon et al. 395/375
5.448,764 9/1995 Eickemeyer et al.................... 395/800

Primary Examiner William M. Treat
Assistant Examiner-Saleh Najjar
Attorney, Agent, or Firm-Stuart T. Auvinen

- - - - - - - - - - -

L

57 ABSTRACT

A dual-instruction-set processor processes instructions from
two or more instruction sets. The processor has several
pipelines for processing different types of operations
Memory, ALU, and Branch operations. Instructions are
decoded by RISC and CISC instruction decoders which
generate control words for the pipelines. The control words
are encoded by the operation to be performed by the
pipelines, which can overlap for the instruction sets. A
different format for the control word is used for each
pipeline, but the format is the same for all instruction sets.
Once the control words are generated and sent to the
pipelines, an indication of the instruction set is no longer
needed. Thus instructions from several instruction sets may
be freely mixed in the pipelines, and there is no need to flush
the pipelines when the instruction set is switched. Register
operands are first converted to their RISC equivalents by the
instruction decoders so that bypass and interlock logic may
detect dependencies between instructions from any instruc
tion set. Pipeline valid bits encode the order that instructions
were in, allowing dependencies to exist within a group of
instructions at the same stage in the pipelines. A dispatcher
can decode and dispatch up to three instructions in a single
clock cycle, although the third instruction dispatched can
only be a simple branch. Compound instructions may
require more than one pipeline for processing, and two or
more control words are generated for these complex instruc
tions, with one control word sent to each pipeline.

21 Claims, 3 Drawing Sheets

NEXT INSTR

U.S. Patent Jan. 28, 1997 Sheet 1 of 3 5,598,546

-C-

8 7 6 5 4 3 2 1
ALU R-EX BR MEM ALU ALU ALU MEM

Fig. 1

BRANCH ALU MEMORY

U.S. Patent Jan. 28, 1997 Sheet 2 of 3 5,598,546

-
NEXT INSTR

O 1 2 3
V ADDR

DISPATCH

INSTR
DISP'D

ID 1 ID 2 ID 3

22
2 6

PL 33B
ALLOCATE

FCN
28 32A contL

32M WORDS

L- -

PL MEM ALU 12 BR -10
VAL PL PL P

U.S. Patent Jan. 28, 1997 Sheet 3 of 3 5,598,546

24 OPCODE INSTR 2ND OPCODE

-------- - - -
48 20

SRC CSC RISC EMU MODE
DST D ID D END
MM 52 to NEXTP

2 1 MSK 4.

31C s
50 54

TT FCN cont. WoRD
GPR CTL TOPLALLOCATE

56
IMM/MSK 58 Fig 4

TO PLALLOCATE

Fig. 5
FCN CONTL WORD

GPR CTL

MM/MSK

5,598,546
1.

DUAL-ARCHITECTURE SUPER-SCALAR
PIPELINE

RELATED APPLICATION

This application is related to application for a "Dual
Instruction-Set Architecture CPU with Hidden Software
Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No. 08/179,
926, hereby incorporated by reference. This application is
also related to application for a "Pipeline with Temporal
Re-Arrangement of Functional Units for Dual-Instruction
Set CPU', filed Jan. 11, 1994, U.S. Ser. No. 08/180,023,
abandoned, FWC No. 08/361,017 was filed in place of it,
now U.S. Pat. No. 5,542,059, hereby incorporated by ref
erence. This application is further related to application for
a "Shared Register Architecture for a Dual-Instruction-Set
CPU', filed Jul. 20, 1994, U.S. Ser. No. 08/277,962, now
U.S. Pat. No. 5,481,693, hereby incorporated by reference
and to application for a "Dual-Architecture Exception and
Branch Prediction using a Fault-Tolerant Target Finder
Array', filed Aug. 31, 1994, U.S. Ser. No. 08/298,778,
hereby incorporated by reference. These related applications
have a common inventor and are assigned to the same
assignee as the present application.

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to computer systems, and more

particularly to pipelines executing more than one instruction
Sct.

2. Description of the Related Art
Modern central processing units (CPU's) employ a pipe

linc which allow several instructions to be processed at one
time. Each stage of the pipeline performs a function in
executing or processing an instruction. Instructions gener
ally enter the pipeline and complete the pipeline one at a
time, since each stage can hold just one instruction.

Super-scalar CPU's have more than one pipeline. Thus, a
CPU with two pipelines can have two instructions enter and
complete the pipelines at a time. The maximum throughput
of instructions is effectively doubled.

DUAL-INSTRUCTION-SET PROCESSOR

Processors, or CPUs, that are capable of executing
instructions from two separate instruction sets are highly
desired at the present time. For example, a desirable pro
cessor would execute user applications for the x86 instruc
tion set and the PowerPCTM instruction set. It would be able
to execute the tremendous software base of x86 programs
that run under the DOSTM and WINDOWSTM operating
systems from Microsoft of Redmond, Wash., and it could
run future applications for PowerPCTM processors developed
by IBM, Apple, and Motorola.

Such a processor is described in the related application for
a "Dual-Instruction-Set Architecture CPU with Hidden Soft
ware Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No.
08/179,926, pending. That dual-instruction-set CPU has a
pipeline which is capable of executing instructions from
either a complex instruction set computer (CISC) instruction
set, such as the x86 instruction set, or from a reduced
instruction set computer (RISC) instruction set, such as the
PowerPCTM instruction Set.

Two instruction decode units are provided so that instruc
tions from either instruction set may be decoded. Two
instruction decoders are required when the instruction sets

10

15

20

25

30

35

40

45

50

55

60

65

2
are separate because the instruction sets each have a sub
stantially independent encoding of operations to opcodes.
For example, both instruction sets have an ADD operation or
instruction. However, the binary opcode number which
encodes the ADD operation is different for the two instruc
tion sets. In fact, the size and location of the opcode field in
the instruction word is also different for the two instruction
sets. In the x86 CISC instruction set, the opcode 03 hex is
the ADD rv operation or instruction, for a long operand.
This same opcode, 03 hex, corresponds to a completely
different instruction in the PowerPCTM RISC instruction set.
In CISC the 03 hex opcode is an addition operation, while
in RISC the 03 hex opcode is TWI-trap word immediate,
a control transfer instruction. Thus two separate decode
blocks are necessary for the two separate instruction sets.

Switching from the CISC instruction set to the RISC
instruction set may be accomplished by a far jump or branch
instruction, while a return from interrupt can switch back to
the CISC instruction set. Rapid execution of these branches
is desirable since it is anticipated that these switches
between instruction sets will frequently be encountered.

It is therefore desired to execute instructions from both
instruction sets in the same pipelines, rather than have
separate, redundant, pipelines for each instruction set. When
an instruction is encountered causing a switch between the
instruction sets, it is desired to avoid purging the pipelines
but to continue execution in the new instruction set. Thus the
pipelines must be able to contain instructions from two or
more instructions sets at the same time.

SUMMARY OF THE INVENTION

A central processing unit (CPU) processes instructions
from two separate instruction sets. This is possible because
the CPU comprises a RISC instruction decode means for
decoding instructions from a RISC instruction set, and a
CISC instruction decode means for decoding instructions
from a CISC instruction set. The RISC instruction set has a
first encoding of operations, while the CISC instruction set
has a second encoding of operations. The first encoding of
operations is substantially independent from the second
encoding of operations.
An instruction set indicating means is for indicating an

instruction set to be decoded. The instruction set indicating
means has a RISC state indicating that the RISC instruction
set be decoded and a CISC state indicating that the CISC
instruction set be decoded. A select means is coupled to the
RISC instruction decode means and the CISC instruction
decode means and outputs a control word. The control word
is generated from a decoding of an instruction from the
RISC instruction set by the RISC instruction decode means
when the instruction set indicating means is in the RISC
state. However, the control word is generated from a decode
of an instruction from the CISC instruction set by the CISC
instruction decode means when the instruction set indicating
means is in the CISC state.

The control word has a third encoding of operations to
control words which is related to but substantially different
from the first encoding and the second encoding. An execute
means is coupled to the select means and receives the control
word. The execute means executes an operation decoded by
the RISC instruction decode means when the instruction set
indicating means is in the RISC state, but the execute means
executes an operation decoded by the CISC instruction
decode means when the instruction set indicating means is
in the CISC State.

5,598,546
3

Thus instructions from both the RISC instruction set and
the CISC instruction set arc decoded into control words
which are executed by the CPU.

In further aspects of the invention the executic means
comprises a plurality of pipelines. Each pipcline in the
plurality of pipelines comprises a sequence of stages, and
each pipeline executes a subset of operations encoded by the
RISC instruction set and a subset of operations encoded by
the CISC instruction set. Each pipeline is responsive to a
particular format of the control word.

In other aspects of the invention the select means gener
ates the control word and a secondary control word when a
compound instruction is decoded. The compound instruction
encodes two operations, a primary operation and a second
ary operation. The plurality of pipelines comprises a first
pipeline which receives the control word. The first pipeline
executes the primary operation indicated by the control
word. A second pipeline receives the secondary control word
and executes the secondary operation indicated by the
secondary control word.

In still further aspects of the invention the RISC instruc
tion decode means and the CISC instruction decode means
comprise a first decoder. A second decoder decodes a second
instruction which encodes a second operation. The second
decoder also has a RISC instruction decode means for
decoding RISC instructions and a CISC instruction decode
means for decoding CISC instructions. The second decoder
outputs a second control word encoding an operation of a
RISC instruction when the instruction set indicating means
is in the RISC state, but the second control word encodes an
operation of a CISC instruction when the instruction set
indicating means is in the CISC state.
A dispatch means allocates the plurality of pipelines. A

pipeline valid array is loaded by the dispatch means and
indicates valid instructions in the plurality of pipelines.
When the CPU has a floating point pipeline, the dispatch
means allocates both the floating point pipeline and the first
pipeline for ALU operations to a floating point instruction
decoded by the first decoder. The plurality of pipelines also
has a third pipeline for executing a third subset of opera
tions. This third subset of operations comprises operations
encoded by the RISC instruction set and operations encoded
by the CISC instruction set.
The invention uses several pipelines that can each execute

both RISC and CISC instructions. Several instruction decod
ers decode both RISC and CISC instructions even during the
same clock cycle. Thus both RISC and CISC instructions
can be dispatched to the shared pipelines. The instructions
are decoded into control words which are related to but
substantially different from the two instruction sets but
depend upon the operation to be performed by the pipelines.
The control words allow the pipelines and bypass logic to be
independent of the instruction set of the decoded instruc
tions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a stream of instructions to be processed.
FIG. 2 shows three pipelines of a super-scalar processor:

a branch pipeline, an ALU pipeline, and a memory pipeline.
FIG. 3 shows the instruction decode and dispatch unit in

more detail.
FIG. 4 shows the first and second instruction decoders.
FIG. 5 shows the third instruction decoder.

DETAILED DESCRIPTION

The present invention relates to an improvement in com
puter systems. The following description is presented to
enable one of ordinary skill in the art to make and use the

10

15

20

25

30

35

45

50

55

60

65

4
invention as provided in the context of a particular applica
tion and its requirements. Various modifications to the
preferred embodiment will be apparent to those with skill in
the art, and the general principles defined herein may be
applied to other embodiments. Therefore, the present inven
tion is not intended to be limited to the particular embodi
ments shown and described, but is to be accorded the widest
scope consistent with the principles and novel features
herein disclosed.

This application is related copending application for a
“Dual-Instruction-Set Architecture CPU with Hidden Soft
ware Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No.
08/179,926, pending, hereby incorporated by reference. This
application is also related to copending application for a
"Pipeline with Temporal Re-Arrangement of Functional
Units for Dual-Instruction-Set CPU', filed Jan. 11, 1994,
U.S. Ser, No. 08/180,023, abandoned, Ser. No. 08/361,017
was filed in place of it, hereby incorporated by reference.
This application is further related to copending application
for a "Shared Register Architecture for a Dual-Instruction
Set CPU', filed Jul. 20. 1994, U.S. Ser. No. 08/277,962, now
U.S. Pat. No. 5,481,693, hereby incorporated by reference
and to copending application for a "Dual-Architecture
Exception and Branch Prediction using a Fault-Tolerant
Target Finder Array', filed Aug. 31, 1994, U.S. Ser. No.
08/298,778, hereby incorporated by reference. These related
applications have a common inventor and are assigned to the
same assignee as the present application. Reduced instruc
tion set computer (RISC) and complex instruction set com
puter (CISC) instructions may both be executed in the
dual-instruction-set central processing unit (CPU).
A dual-architecture central processing unit (CPU) is

capable of operating in three modes-RISC mode, CISC
mode, and emulation mode. A first instruction decoder
decodes instructions when the processor is in RISC mode,
while a second instruction decoder decodes instructions
while the processor is in CISC mode. Two instruction
decoders are needed since the RISC and CISC instruction
sets have a substantially independent encoding of instruc
tions or operations to binary opcodes.
The third mode of operation, emulation mode, also uses

the first instruction decoder for RISC instructions, but emu
lation mode executes a superset of the RISC instruction set.
Using emulation mode, individual CISC instructions may be
emulated with RISC instructions. Thus, not all CISC instruc
tions need to be directly supported in the CPU's hardware.
Unsupported CISC instructions cause a jump to an emula
tion mode routine to emulate the unsupported CISC instruc
tion. Upon completion of the emulation mode routine,
control is returned to the CISC program with the next CISC
instruction. These jumps to emulation mode can be predicted
with a modified branch prediction apparatus.

BASIC PIPELINE FLOW

The diagram below indicates the progression of each
instruction through one of the pipelines, with time increas
ing to the right by one clock for every stage, while subse
quent instructions are listed below one another. Stages are
abbreviated as D, A, C, M, and W, for decode, address
generate, cache, memory, and write-back.

Time (clocks): 1 2 3 4. 5 6

1st Instruction: D A C M W
2nd Instruction: D A C M W
3rd Instruction: D A C M W

5,598,546
5

Thus the pipeline is:
DECODE ADDR GEN CACHE MEMORY WRITE-BACK

Instructions are first fetched by a fetch stage that is not
shown. The decode stage decodes the instruction and dis
patches it to the correct pipeline(s). An address of an
operand is generated in the address generate stage, and a
2-clock cycle operand fetch is performed in the cache and
memory stages. Alternately, a one-cycle operand fetch may
be performed in the cache stage, and the memory stage may
be a "Match' stage wherein the cache tag or TLB tag is
compared to see if a match occurred and the operand fetched
in the cache stage is valid. A write-back stage is normally
included at the end of the pipeline when the results are
written back into the register file and the condition codes are
modified. Execution of an arithmetic-logic-unit (ALU)
operation can be performed in any of the A, C, or M stages
because the execution unit may be moved to any of these
Stages.

SUPER-SCALAR PIPELINES

Two or more pipelines as described above may be pro
vided, allowing for two or more instructions to complete the
pipeline in the same processor ciock cycle. Each pipeline is
adapted for processing a subset of the operations in an
instruction set. The decode stage for each of the pipelines is
combined into a decode and dispatch unit which is capable
of decoding several instructions in one clock cycle. The
decode unit examines the types of instruction that it has just
decoded to determine which pipelines to send each instruc
tion to. The decode and dispatch unit then dispatches each
instruction to the designated pipeline(s). Additional decod
ing may be performed in the decode stage by each individual
pipeline after the instruction has been dispatched.

FIG. 1 shows a stream of instructions to be processed.
Instruction 1 is the first to be processed, followed by
instruction 2, 3, and so forth. For this illustration, no taken
branches are encountered so that the instructions are pro
cessed in sequential order. FIG. 2 shows that the super-scalar
processor has three pipelines: a branch pipeline 10, an ALU
pipeline 12, and a memory pipeline 14. Branch pipeline 10
is adapted for processing simple branch instructions and
generating target addresses, and may contain branch predic
tion logic in the early stages such as the D stage. ALU
pipeline 12 is designed to process arithmetic and Boolean
logic instructions, and includes an ALU with an adder.
Memory pipeline 14 is for processing load and store instruc
tions. An address of an operand is generated in the A stage,
and the operand is fetched or written to a cache in the C and
M stages. Should the operand not be available in the cache,
a secondary cache or main memory may have to be
accessed, resulting in a pipeline stall until the operand is
retrieved from the slower cache or main memory. A very fast
cache could allow the M stage to be eliminated, while slower
caches might require that an additional M2 stage be inserted
into the pipeline.

Instructions are dispatched to one or more of the pipelines
10, 12, 14 by a dispatch unit 16 in the decode stage. Once
an instruction is dispatched to the first (D) stage of a
pipeline, it flows down the pipeline until the W stage is
reached. The instruction completes processing when it
leaves the W stage. Up to three instructions may complete
the W stage in any clock cycle, and up to three instructions
may be dispatched to the D stage at the start of the pipelines.
Pipeline stalls, when an instruction does not advance to the
next stage in the pipeline, may occur in any of the three
pipelines 10, 12, 14. For simplicity, the preferred embodi

10

15

20

25

30

35

40

45

50

55

60

65

6
ment stalls all three pipelines when a stall occurs in any one
pipeline. The stall only directly affects one stage in the three
pipelines: a stall in the C stage of the memory pipeline will
also stall the C stage of the branch and ALU pipelines, but
not any other stages. Of course, upstream stages may have
to be stalled because the instruction in the stalling stage did
not advance. Empty stages can be filled if downstream
stages are stalled.

FIG. 2 shows a point in time when instructions 1 and 2 are
completing the pipeline, being in the final W stage. Instruc
tion 1 is a memory instruction while 2 is an ALU instruction.
Since instruction 3 is also an ALU instruction, no instruction
was dispatched to the branch pipeline when instructions 1
and 2 were dispatched. Instead, instruction 3 had to wait to
be dispatched until the next clock cycle. Instruction 4 is also
an ALU instruction, so no instructions could be dispatched
to the branch and memory pipelines when instruction 3 was
dispatched. During the cycle that instruction 4 was dis
patched, instructions 5 and 6 were also dispatched to the
memory and branch pipelines. Thus three instructions were
dispatched during the same clock cycle. These three instruc
tion are called a group of instructions because all three
instructions were dispatched during the same clock cycle.
Also, the first dispatch was a group of two instructions,
instructions 1 and 2.

Instruction 7 is a compound ALU-memory instruction
requiring both the memory and the ALU pipelines. Instruc
tion 7 could be a fetch-execute CISC instruction that first
fetches an operand from memory, and then uses this fetched
operand in an arithmetic operation. Because instruction 8 is
also an ALU instruction, and not a branch instruction,
instruction 8 must wait another clock cycle to be dispatched
since instruction 7 is already using the D stage of the ALU
pipeline. If instruction 9 is a simple branch instruction, it
may also be dispatched with instruction 8. Likewise, if
instruction 9 is a simple memory instruction, it may be
dispatched to the memory pipeline during the same clock
cycle that instruction 8 is dispatched. However, if instruction
9 is an ALU instruction, or a compound branch or memory
instruction requiring the ALU pipeline, then instruction 9
must wait another clock cycle until instruction 8 clears the
D stage of the ALU pipeline.

INSTRUCTION DECODE AND DISPATCH UNIT

Instruction decode and dispatch unit 16 may decode and
dispatch to the pipelines up to three instructions in any clock
cycle, or group. FIG. 3 shows instruction decode and dis
patch unit 16 in more detail. Three instruction decoders 20,
20', and 22 operate in parallel to decode up to three instruc
tions in a single clock period. Instruction buffers 24, 24, 24"
supply instruction decoders 20, 20', and 22 with bytes of
instructions. Once the first instruction in instruction buffer
24 has been sufficiently decoded to determine the length of
the first instruction, the exact starting location of the second
instruction is transmitted to instruction buffer 24. The
second instruction in instruction buffer 24" may then be
decoded by the second instruction decoder 20'. For RISC
instructions, the instructions are fixed length, so decoding of
the second instruction can begin immediately. When the
second instruction has also been sufficiently decoded to
determine the exact starting location of the third instruction
is transmitted to instruction buffer 24". The third instruction
in instruction buffer 24" may then be decoded by the third
instruction decoder 22.

The exact starting locations of the second and third
instructions in the group are also sent to mux 38, along with

5,598,546
7

the starting location of the first instruction, and the starting
location of the instruction after thc third instruction, which
is determined by the third instruction decoder 22. Mux 38
receives an indication of the number of instructions in the
group, which were actually dispatched in the current clock
cycle, either one, two, or three, or none if the pipelines were
stalled. Mux 38 then selects one of these four instruction
starting locations and sends it to the instruction fetch unit
(not shown) to indicate the next group of instructions to
fetch,
Third Decoder only Decodes Simple Branches

Because each successive instruction must wait for the
preceding instruction to be sufficiently decoded to determine
the starting location of the next instruction when operating
in CISC mode, the decoding of the third instruction starts
late in the clock period. Thus the third instruction decoder 22
must decode the third instruction very quickly. Rapid decod
ing is facilitated by limiting the types of instructions that are
decodable by the third instruction decoder 22. Only simple
branch instruction are decodable by the third instruction
decoder 22. Complex branch instructions, such as CISC
branches, are not decodable by the third instruction decoder
22, but must wait until the next clock cycle to be decoded by
the first instruction decoder 20. Branches are chosen for
decoding by the third instruction decoder 22 because of the
difficulty caused by instruction stream discontinuities that
taken branches produce. Thus executing branches as quickly
as possible is desired. Allowing simple branches to be
dispatched as the third instruction in a current clock period
rather than having to wait until the following clock period
allows these branches to be predicted and resolved one clock
period earlier than if only two instruction decoders were
provided. Decoding simple ALU or memory instructions in
the third decoder would not be as effective since these types
of instructions are less disruptive to processing than are
branches. ALU and memory instructions are more difficult to
decode in part because of the number of register operands
used.

Each of the instruction decoders 20, 20', and 22 generate
one or more function control words, one for each pipeline
that a decoded instruction is dispatched to. The function
control word indicates to the pipeline what functions to
perform. The function control word, rather than the instruc
tion opcode, is sent as the decoded instruction to the
pipelines.
The function control words are different for each pipeline,

because each pipeline can perform a different set of func
tions. Thus the branch pipeline 10 receives branch function
control words 31B,32B, and 33B from the first, second, and
third instruction decoders 20, 20', 22. Likewise, the ALU
pipeline receives ALU function control words 31B and 32B
from the first and second instruction decoders 20, 20', while
the memory pipeline receives memory function control
words 31M and 32M from the first and second instruction
decoders 20, 20'.
Muxes 34, 35, and 36 select one of the function control

words for loading into the decode stages 10D, 12D, 14D of
the branch, ALU, and memory pipelines 10, 12, 14. Muxes
34, 35, 36 are controlled by dispatcher 28. Dispatcher 28
will indicate to mux 34 whether a branch instruction is in
either the first, second, or third instruction decoder 20, 20',
22. Likewise, dispatcher 28 will indicate to mux 35 whether
an ALU instruction is in either the first or second instruction
decoder 20, 20. Dispatcher 28 will also indicate to mux 36
whether a memory instruction is in either the first or second
instruction decoder 20, 20'. Dispatcher 28 will also indicate
to the decode stages 10D, 12D, 14D whether or not to clock
the selected function control word into the decode stage.

O

15

20

25

30

35

40

45

50

55

60

65

8
The decode stages 10D, 12D, 14D may perform addi

tional decoding on the function control words during the
decode clock cycle. On the following clock edge, the
function control words in the decode stages 10D, 12D, 14D
will normally be clocked down into the next stage, the A
stage, of pipelines 10, 12, 14. Stalls in any of the stages of
the pipelines may delay clocking the control word down one
or more of the pipelines.
Multiple Pipelines used for Compound Instructions
Some compound instructions may require hardware or

functional units that are present in two or more pipelines.
For example, a compound CISC fetch-execute instruction
first fetches an operand from memory or a cache, and then
uses this fetched operand as an input in an ALU arithmetic
operation. The memory pipeline must be used to fetch the
operand, while the ALU pipeline must be used to perform
the ALU arithmetic operation. Thus both the memory and
the ALU pipelines are needed by the single compound CISC
instruction. Some compound RISC instructions may also be
relatively complex, requiring more than one pipeline for
processing.
When such a compound instruction is decoded by one of

the instruction decoders 20, 22, a determination of which
pipelines are needed is made and sent to the pipeline allocate
unit 26. Pipeline allocate unit 26 first looks at the pipelines
needed by the first instruction decoded by instruction
decoder 20. These pipelines needed by the first instruction
are allocated to the first instruction. If any pipelines remain
un-allocated, then the pipeline allocate unit 26 looks at the
pipelines required by the second instruction decoded by the
second instruction decoder 20'. If any of these pipelines
required by the second instruction have already been allo
cated to the first instruction, then the second instruction
cannot be dispatched in the current clock period. Instead
mux 38 will select the starting address of the second
instruction, which will be fetched again and loaded into the
first instruction buffer 24 as the first instruction of the next
clock period.

If the pipelines needed by the second instruction in the
group are not yet allocated, then pipeline allocate unit 26
will allocate these needed pipelines to the second instruc
tion. Finally, allocate unit 26 will look at the pipelines
required by the third instruction decoder 22. Since the third
instruction decoder 22 can only decode simple branches that
use only the branch pipeline, the branch pipeline will be
allocated to the third instruction if the branch pipeline is still
un-allocated to the first or second instruction.

Pipeline allocate unit 26 will then indicate to dispatcher
28 which instruction will be sent to each pipeline. The
possible combinations are shown in Table 1.

TABLE 1.

Pipelines Allocated

Instruction Type Branch ALU Memory

Simple Branch V
Simple ALU V
Simple F.P. V
Simple Read/Write V
Memory & Update N V
Read-Execute N V
Read-Execute-Write N V
PUSH or POP N V
CALL or RET N N W
Move Immediate W or W
Condition Register V
Boolean Branch

5,598,546
9

In Table 1, “V” indicates the primary pipeline that the
instruction is dispatched to, and that pipeline is thus marked
as "valid'. Secondary pipelines that an instruction is also
dispatched to are marked as "N". By marking the secondary
pipelines as "N', only one pipeline will be marked valid for
cach instruction at each stage. A count of the total number
of instructions in the pipeline can simply be made by
counting the V's in the pipeline and not counting the N's.
However, the control words in pipelines marked "N' are
valid, but are validated by the control word in the primary
pipeline. Marking a pipeline as "N' prevents a following
instruction from allocating it.

PIPESTAGE VALID BITS

Dispatcher 28 loads valid bits for the pipelines 10, 12, 14
into pipeline valid array 40. Pipeline valid array 40 contains
an entry for each stage in the pipelines. Thus it has 5 entries:
onc for each of the D, A, C, M, and W stages. Each entry in
pipeline valid array 40 indicates which pipelines have valid
functional control words in the stage corresponding to that
entry. A simple implementation would be to have a valid bit
for each pipeline for each entry, or to have a second bit for
each pipeline stage indicating if the pipeline is the primary
or a secondary pipeline for that instruction.
The preferred implementation also encodes information

about the sequence or order of instructions in that stage or
group. The ALU pipeline stage could contain either the first
or the second instruction in the group of instructions all
dispatched in the same clock period. Likewise, the branch
pipeline stage could contain either the first, second, or third
instruction in the group. Table 2 shows the encoding of an
entry in the pipeline valid array 40. A "don't care" in the
encoding is designated as 'x'.

TABLE 2

Encoding of Pipline Valid Entry

Encoding for Issue
Time-Slot:

1st 2nd 3rd FP Meaning

00 xx X x No Instruction in 1st Issue Time-Slot
0 xx X 0 Walid ALU in 1st Issue Time-Slot
0 xx X x Valid Memory Op in 1st Issue Time-Slot
11 xx X x Walid Branch in 1st Issue Time-Slot
01 xx X 1 Valid F.P. Op in 1st Issue Time-Slot
xx 00 X x No Instruction in 2nd Issue Time-Slot
xx 01 X 0 Walid ALU in 2nd Issue Time-Slot
xx 10 X x Valid Memory Op in 2nd Issue Time-Slot
xx 11 X x Walid Branch in 2nd Issue Time-Slot
xx Ol X 1 Valid F.P. Op in 2nd Issue Time-Slot
XX XX O x No Instruction in 3rd Issue Time-Sot
XX XX 1. x Walid Branch in 3rd Issue Time-Slot

The encodings of table 2 are for each of the three issue
time-slots for up to three instructions in a group. The 1st
issue time-slot is encoded for the type of instruction that was
issued first, from the first instruction decoder 20. The 2nd
issue time-slotis encoded for the second instruction decoded
by the second instruction decoder 20', while the third issue
time-slot is encoded for the third instruction decoded by the
third instruction decoder 22. Thus the first and second issue
time-slots can encode any type of instruction, while the third
issue time-slot can only encode simple branch instructions.
An encoding of 0 1 1 0 0 would indicate an ALU

instruction followed by a branch instruction, with no third
instruction in the group. An encoding of 1001 1 0 indicates
a memory instruction, followed by an ALU instruction, and
then a branch instruction, for a total of three instructions in

5

O

15

20

25

30

35

40

45

50

55

60

65

10
the dispatched group. An encoding of 00 1 0 1 0 would not
be valid because it encodes no valid instruction in the first
issue time-slot but instructions in the second and third issue
time-slots. Likewise an encoding of 1000 1 0 is not valid
because it encodes a valid instruction in the third issue
time-slot but not in the second issue time-slot. Earlier issue
time-slots are filled up before the later issue time-slots.
Floating Point Instructions Use ALU Interlock and Control

Table 2 also shows that floating point instructions can be
encoded as a special type of ALU operation. When the ALU
type of instruction is dispatched and encoded, the floating
point bit indicates if the instruction is a normal ALU type or
a floating point type. Although the floating point instructions
are executed in a separate floating point data path, rather
than the pipelines 10, 12, 14, floating point instructions
occupy the ALU pipeline and appear to be regular ALU
instructions. Thus floating point instructions can use the
same control, interlock and by-pass select logic as ALU
operations. This sharing of resources saves considerable
logic and reduces complexity.
The disadvantage of using the ALU pipeline for floating

point instructions is that an ALU and a floating point
instruction cannot both be dispatched in the same clock
cycle as part of the same group. However, this would not be
a frequent occurrence.
Move Immediate Dispatched to Either ALU or Memory
Pipeline
Move immediate is a very simple type of instruction that

moves an immediate value from the instruction itself to a
register in the CPU. Since this instruction is so simple, few
pipeline resources are needed. These resources exist in both
the ALU and the memory pipelines. Thus table 1 shows that
the move immediate type of instruction can be dispatched to
either the ALU or to the memory pipeline. When a move
immediate instruction is decoded by the first instruction
decoder 20, pipeline allocate unit 26 does not immediately
allocate any pipelines to the first instruction. Instead, pipe
line allocate unit 26 looks at the pipelines required by the
second instruction. Pipelines are allocated for the second
instruction first. Then the first instruction, the move imme
diate, is allocated. If the second instruction uses the memory
pipeline, then the first instruction, the move immediate, is
allocated the ALU pipeline. If the second instruction uses the
ALU pipeline, then the first instruction, the move immedi
ate, is allocated the memory pipeline. However, the second
instruction cannot be allocated at all if the second instruction
requires both the ALU and the memory pipeline.

Although the first move immediate instruction can be
allocated out-of-order, with the second instruction being
allocated first, the encoding of the pipeline valid bits follows
the actual instruction order. Thus the first instruction, the
move immediate, is encoded to the first issue time-slot,
while the second instruction is encoded in the second issue
time-slot.

Allowing the move immediate instruction to be allocated
to either the ALU or the memory pipeline increases the
number of times that multiple instructions can be dis
patched, such as when two move immediates occur in
sequence. This is a common occurrence, especially when
initializing parameters in a program. In RISC mode, move
immediate can be implemented as special versions of the
add immediate and add immediate shifted instructions.
Dependent Instructions in a Single Group

Dependencies are common in an instruction stream.
Dependent instructions require results from a previous
instruction in the instruction stream. The dependent instruc
tion must wait for the previous instruction to calculate its

5,598,546
11

result and pass this result to the dependent instruction. In a
pipelined system these dependencies often cause the pipe
line to wait or stall for the result.
A conditional branch instruction is often dependent upon

a result from a prior instruction. The prior instruction is
typically an ALU instruction that sets flags or condition
codes, indicating if the result was Zero or negative. The
conditional branch instruction must wait until the condition
codes are set by the prior ALU instruction. A second
example of a common dependency is a load instruction
followed by a dependent ALU instruction. The ALU instruc
tion needs an operand that was fetched from memory by the
load instruction. The ALU instruction must wait until the
operand is loaded before performing the ALU operation.

For both of these examples of dependencies, it is critical
to know the order of the instructions in the instruction
stream. One approach would be to dispatch the dependent
instruction in the clock cycle after the prior instruction is
dispatched. This would ensure that the instruction order is
maintained. If both the prior and the dependent instruction
are dispatched to different pipelines during the same clock
cycle, then the dependency information must be stored. The
encoding of the present invention stores the instruction order
and dependency information, allowing both the dependent
and the prior instruction to be dispatched during the same
clock cycle. While a stall may still be required farther down
the pipeline to wait for the dependency to resolve, perfor
mance is increased by the faster dispatch.
The encoding of pipeline valid bits by issue time-slot,

rather than by physical pipeline, allows for instructions
dispatched together in a group (during the same clock cycle)
to have dependencies on each other. Since the encodings of
pipeline valid bits contains information on the order of the
instructions within the instruction stream, the CPU can
easily extract this order information and determine the
dependencies. These dependencies can exist not just from
one pipeline Stage to another stage, but within the same
group occupying a single stage in each of the pipelines.
The pipeline bypass logic will examine the pipeline valid

bits to determine the dependencies in the group of instruc
tions. For example, the valid bits might indicate that a load
instruction and an ALU instruction are both in the A stage,
having been dispatched during the same clock cycle. When
the ALU instruction is in the A stage of the ALU pipeline,
to perform the ALU operation, and bypass logic detects that
an ALU operand is from a register loaded by the load
instruction in the A stage of the memory pipeline, then a
dependency may exist. The bypass logic will then examine
the pipeline valid bits to determine if a dependency exists.
If the valid bits encoded are 01 10xx 0, indicating that the
ALU instruction is in the first issue time-slot, and the load
instruction is in the second issue time-slot, then no depen
dency exists. However, if the valid bits encoded are 1001 xx
0, indicating that the load instruction is in the first issue
time-slot, while the ALU instruction is in the second issue
time-slot, then a dependency exists. The ALU operation
must wait until the load instruction loads the operand into
the register file during the M stage.

Encoding information about the order of the instructions
within a group also is useful when branches or exceptions
occur. A taken branch, or a mis-predicted branch when
branch prediction is used, will require that the instructions
after the branch instruction be canceled because they are
from the sequential instruction stream, while the program
jumped to a target address instead of continuing along the
Sequential stream. Likewise, exceptions may require that all
instructions after the instruction having the exception be
canceled so that the exception may be processed.

O

15

20

25

30

35

40

45

50

55

60

65

12
Branch and exception logic will examine the pipeline

valid bits to determine which instructions in the group with
the branch or exception-causing instruction occur after the
branch or exception-causing instruction. These instructions
will be canceled, while the instructions occurring before the
branch or exception-causing instruction will be allowed to
continue through the pipelines.
Pipeline Valid Bits for Compound Operations
Compound instructions require two or more pipelines to

process. When a compound instruction is dispatched, the
encoding of the pipeline valid bits must be changed some
what. Two additional bits for each entry are first and second
compound dispatch bits. If a compound instruction is issued
in the first issue slot by the first instruction decoder, then the
first compound dispatch bit is set. If a compound instruction
is issued in the second issue slot by the second instruction
decoder, then the second compound dispatch bit is set.
Additional bits in each entry code auxiliary issue slots which
indicate the type of operation dispatched to the second
pipeline by a compound instruction. These auxiliary issue
slots are encoded in the same way that the first and second
issue slots are encoded, as shown in Table 2. Since with three
pipelines it is not possible to have two compound instruc
tions dispatched in the same clock cycle, the auxiliary issue
fields may be shared between the first and second issue slots.

FUNCTION CONTROL WORDS

Table 3 shows an encoding for the branch function control
words that are generated by instruction decoders 20, 20', and
22. These branch function control words are sent to the
branch pipeline 10 and clocked down the pipeline. Portions
of the control words can be discarded once the information
encoded in that portion has been used and is no longer
needed. Thus a portion of the control word that encodes the
type of ALU operation might not be needed once the ALU
operation is performed. This portion can be discarded once
the ALU operation has been completed, but before the
instruction has completed the pipeline.

TABLE 3

Branch Function Control Words

Control Word Instruction
Encoding Set Opcode

000000 0000 0000 x86 or PPC nop
000000 0000 0001 x86 or PPC reset
OOOOOOOOO1 0000 PowerPCTM SC
000000 000 0000 PowerPCTM rfi
000001 01 cccc x86 Jcc 8-bit

Displacement
00000 10000 cccc x86 Jcc 16- or 32-bit

Displ.
000001 1001 cccc x86 SET Condition Code
000001 110 001X x86 RETIII
00 0001 110 000 x86 CALL
x800 000111101001 x86 JUMP 16- or 32-bit

Displ.
000001 1101011 x86 JUMP 8-bit Displ.
0000011111111 x86 Indirect (Reg.)

Branch
00001 eeeeeeee x86 Unsupported

Instruction
00 01dd dddp ppp0 PowerPC fM Condition Reg

Boolean
00 Oldd d00p ppp0 PowerPCTM Move CR Register
00 Loo oooi iiii PowerPCTM Branch Conditional
00 L1000x XXXX PowerPCTM Branch
01 0Loooooi iiii PowerPCTM Branch CTR Reg
0 Loo oooi iiii PowerPCTM Branch LR Reg
11 0001 0010100 PowerPCTM Instr. Synch

5,598,546
13

TABLE 3-continued

Branch Function Control Words

Control Word Instruction
Encoding Set Opcode

100-m mmmm mmml PowerPCTM Move to CR
Reg

11 0100 0000 0001 PowerPCTM Move Reg to CR

The following designations are used in Table 3 for fields
within the control words that are used for immediate or
select information:

Don't Care
x86 Condition Code Select
Emulation Entry Point

X

CCCC

ee

pppp st Boolean Function Select
d dddd = Boolean Destination Bit

ddd = Booleal Destination Field
iiiii - Select CR field to Evaluate for Branch

OO OOO Branch Function Select
L = Update Link Register if set

Merge Mask for CR Merge Operation

The function control word has the instruction set, x86
CISC or PowerPCTM RISC, indirectly encoded into it, along
with thc type of operation, and other specifics about the
instruction. Thus there is no need to directly store an
indication of the instruction set other than the encoding to
indicate to the pipeline stages the functions to be performed.
Some instructions, such as reset and nop, perform the same
functions regardless of which instruction set the instruction
decoded was from. Thus there is no need for an indication
of the instruction set for these operations, and the instruction
set is not encoded into the control words. Other functions
will differ depending upon the instruction set. ACISCJUMP
that examines the CISC condition codes performs a some
what different function than a RISC branch conditional,
which examines the RISC CR condition register. Thus two
separate control words are encoded for the two separate
functions performed by instructions from two different
instruction sets.

The ALU and the memory pipelines also have function
control words. Each pipeline has its own unique format and
size for its function control word. The ALU pipeline in
particular requires about 100 control-word encodings, many
more than the branch pipeline because of the wide variety of
functions that can be performed by the ALU. Some
examples of the ALU function control words are shown in
Table 4, while some examples of Memory function control
words are shown in Table 5. The 'E' encodes the OE bit
indicating if the overflow bits in an exception register should
be set, as for example, when multiply or divide is executing.
The “R” bit is the record bit, which indicates if the flags or
condition code registers should be updated by the operation.

TABLE 4

ALU Function Control Words

Control Word Encoding Instruction Set Opcode

O E10000 O10R PowerPCTM add
OEO1110 1011 R PowerPCTM mulw
0 000001 1100 R PowerPCTM and
0 0100111100 R PowerPCTM X
1 01100 0000 x PowerPCTM andi (and immediate)

10

15

20

25

30

35

40

45

50

55

60

65

14

TABLE 4-continued

ALU. Function Control Words

Instruction Set Control Word Encoding Opcode

101010 0000 x PowerPCTM Xori (xor immediate)
01000x xx010 x86 ADD

1 0000x xx010 x86 AND
1 0100 xx00 x86 MOW
1 110000 xx010 x86 ROL (rotate left)

For Table 5, "sz" encodes the size of the operand-byte,
half-word, word, or double word, 'u' indicates update the
address register, and ''x'' indicates that an index register is to
be used to generate the address.

TABLE 5

Memory Function Control Words

Control Word Instruction
Encoding Set Opcode

1001010010 PowerPCTM swi (load string word imm)
00001101100 PowerPCTM dcbst (data cache block store)
1000101100 PowerPCTM TLB synch
0000x01110 PowerPCTM load word and zero
00 lux01110 PowerPCTM store byte
1.01ux01110 PowerPCTM stfd (store fp double)
010OSZ1000 x86 read-execute
011OSZ11000 x86 read-execute-write
0000sz11 000 x86 loads-POP MOV, RET
1000SZ1000 x86 stores-PUSH, MOV, CALL

When an instruction is to set or clear flags in a condition
code register, this information must also be generated and
staged down the pipelines. A flag enable field may be
attached to the function control word, or it may be a separate
field. Since both RISC and CISC have corresponding flags,
such as Zero, carry, overflow, and sign flags, a single flags
field can be used by instructions from either instruction set
to enable updating these flags. Table 6 shows that the RISC
flags OV, CA, LT, EQ correspond to the CISC flags OF
(overflow), CF (carry), SF (sign), and ZF (zero). Thus the
same bit in the flags field can be used for either a RISC or
a CISC instruction. The type of instruction set does not have
to be encoded.

TABLE 6

Flags field

Instruc
tion Set Enables Walue

RISC OV CA CR CR CR CR LT GT EQ OV xx xx CA
CISC OF CF SF ZF AF PF SF xx ZF OF AF PF CF

INSTRUCTION DECODER FOR RISC AND
CISC

FIG. 4 shows instruction decoder 20. A first or primary
opcode field in instruction buffer 24 is sent to a CISC
decoder 42 and a RISC decoder 44 for decoding the instruc
tion's opcode. The opcode, as is well-known in the art,
encodes the function or operation to be performed by the
instruction, such as ADD, JUMP, or NOP. For some more
complex RISC instructions, a secondary opcode field from
instruction buffer 24 is also required to decode the instruc
tion, and is therefore also sent to RISC decoder 44. A CISC

5,598,546
15

instruction may have its primary opcode field in an entirely
different location within the instruction buffer 24, or it may
be a different number of bits in width. For x86 and Pow
erPCTM, thc primary opcode fields overlap and are thus
shown in FIG. 4 as being the same field, although the
field-widths differ.

The CISC decoder 42 decodes the primary opcode assum
ing that the instruction in instruction buffer 24 is a CISC
instruction. Likewise the RISC decoder 44 decodes the
primary opcode assuming that the instruction in instruction
buffer 24 is a RISC instruction. The CISC and RISC
instruction sets are substantially independent, having a sub
stantially independent encoding of opcodes to functions or
operations. Thus one of decoder 42, 44 will have an erro
neous output. Each of decoder 42, 44 generates and outputs
a function control word 31C, 31R from the opcode input to
the decoders.

A mode bit in a machine state register (not shown) in the
processor indicates which mode the processor is in: CISC or
RISC mode. As described in the co-pending applications in
more detail, the mode bit is set when CISC instructions are
being processed, or cleared when RISC instructions are
being processed. This mode bit, C/R Mode, is used to select
either the control word 31C from the CISC decoder 42, or
the control word from the RISC decoder 44. Multiplexer or
mux 50 selects either control word 31C or 31R under control
of the CISC/RISC mode bit from the mode register, and
outputs the selected control word.
The first and second instruction decoder 20, 20' of FIG. 3

both output three function control words 31M, 31A, 31B,
one control word for each of the memory, ALU, and branch
pipelines. Multiple control words can be generated for a
single instruction because a compound instruction may be
dispatched to more than one pipeline. Each pipeline needs its
own control word to instruct that pipeline of the operations
to perform. Thus, while FIG. 4 has for simplicity shown a
single mux 50, and a single function control word 31 being
output, the preferred embodiment has three muxes 50 and
outputs up to three function control words, 31M, 31A, 31B.
The RISC instruction set is extended to include special

emulation-mode instructions which are useful in emulating
CISC instructions. A special emulation instruction is a
return-from-interrupt (rfi) instruction, which returns control
to the CISC program that caused emulation mode to be
entered. Thus the rfi instruction causes a switch from RISC
emulation mode to CISC mode, and the CISC/RISC mode
bit is set by the rfi instruction. These emulation instructions
are decoded by an emulation decoder 46 which operates in
conjunction with the RISC decoder 44. An emulation mode
bit also stored in the machine state register enables the
decoding of the emulation instructions.

Other information besides the opcode may be present in
the instruction buffer 24. This information may include
fields to identify which general-purpose registers to use as
the sources or destination of an operation, immediate data
such as a constant for use by an operation, or a mask field.
The exact locations of these fields in instruction buffer 24
vary with the instruction as well as the instruction set. Field
decoder 48 receives an indication of the type of instruction
decoded by decoders 42, 44, and the CISC/RISC mode bit
(not shown) and various portions of instruction buffer 24.
Field decoder 48 then outputs source and destination register
information onto bus 56, and immediate or mask informa
tion on bus 58. Alternately, mask data may be encoded
directly into the function control word, as is shown in Table
3 for the PowerPCTM move to CR instruction (mtcrf).

O

15

20

25

30

35

40

45

50

55

60

65

16
End byte detect 52 receives information from the decod

ers 42, 44 about the type of instruction encoded by the
opcode in instruction buffer 24. End byte detect 52 then
determines the size of the instruction being decoded and the
address of the next sequential instruction. This address is
transmitted to the next instruction decoder, either 20' or 22
of FIG. 3, so the exact location of the opcode field of the
second or third instructions can be determined, allowing
decoding of the second and third instructions to begin.

Pipelines required unit 54 determines which pipelines are
required by the instruction being decoded. It receives infor
mation on the type of instruction that was decoded from
decoders 42, 44. This information can be similar to the
entries in Table 1, identifying the general type of instruction
rather than the exact instruction decoded. The pipelines
required are sent to the pipeline allocate unit 26 and then to
dispatcher 28 of FIG. 3.
The instruction decoders for the first and second instruc

tions are almost identical, and designated 20 and 20' in FIG.
3. However, the third instruction decoder 22 is simpler
because of the limited time available to decode the third
instruction. FIG. 5 shows the third instruction decoder 22.
There is not enough time to decode CISC instructions, so no
CISC decoder or emulation mode decoder is included. RISC
decoder 44' is a reduced decoder, capable of decoding only
simple branch instructions. Only a single function control
word 31B is generated for the branch pipeline. Otherwise,
the third instruction decoder of FIG. 5 operates in a similar
fashion to that described in reference to FIG. 4.

SWITCH TO ALTERNATE INSTRUCTION SET
WITHOUT PIPELINE FLUSH

Since many instructions may be processed at the same
time, the processor could restrict the pipelines to processing
instructions from only one of the instruction sets at any one
time. However, the invention does not impose this restric
tion, allowing instructions from the two instruction sets to be
freely mixed in the pipelines. This is a tremendous advan
tage for executing short emulation routines of RISC instruc
tions for some of the more complex CISC instructions.
Purging the pipeline for every switch between instruction
sets would severely reduce the performance of any program
being partially emulated in the other instruction set. The
expected frequency of switches to emulation mode is about
1% of the CISC instructions, and the average # of instruc
tions in RISC mode between switches is 15–25. Flushing
would add 6 to 8 more clocks for each CISC instruction
emulated.

Instructions from two instruction sets may be dispatched
together during the same clock cycle with a modification of
the apparatus of FIGS. 3 and 4. A switch to the alternate
instruction set is typically a branch or unconditional jump of
Some sort, such as a call or return-from-interrupt. Unsup
ported CISC instructions cause an entry to emulation mode,
and thus act as an unconditional jump. For example, in Table
3 the functional control word encoded "000011 eeeeeeee'
is an x86 unsupported instruction and causes a jump to the
emulation entry point identified in the “eeeeeeee" field in
the control word. Branch prediction logic can detect these
types of branches that switch the instruction set. Such a
branch prediction apparatus is described in more detail in the
copending application for a "Dual-Architecture Exception
and Branch Prediction using a Fault-Tolerant Target Finder
Array', filed Aug. 31, 1994, U.S. Ser. No. 08/298,778,
hereby incorporated by reference. When an instruction is

5,598.546
17

?ctched having a predicted branch instruction, the predicted
target address is calculated at the same time as the fetch.
Thus the targct instruction can often be supplied to one of the
instruction buffers during the same clock cycle as the branch
instruction is delivered to the instruction buffer.
Thus a branch instruction could be loaded into the first

instruction buffer 24 of FIG. 3, while the target instruction
for that branch is loaded into the second instruction buffer
24'. The group of instructions dispatched could have both the
branch instruction and its target, which are discontinuous.
The branch instruction can be a standard branch that does

not switch to the alternate instruction set, or it could be a
branch that does switch to the alternate instruction set. When
the instruction set is to switch, then the target instruction
must be decoded by a different decoder type than the branch
instruction. For example, a CISC branchinstruction could be
loaded into the first instruction buffer 24, and would be
decoded by the CISC instruction decoder 42 of FIG. 4. The
CISC/RISC mode bit in the first instruction decoder 20
would be set to CISC mode, selecting the decoded CISC
instruction. However, the second instruction buffer 24' is
loaded with the target of the first (CISC) instruction. This
target is a RISC instruction. Branch prediction logic recog
nizes that the branch instruction also causes a switch to the
alternate instruction set. Thus branch prediction logic causes
the CISC/RISC mode bit in the second instruction decoder
20' to switch to RISC mode. The RISC decoder 44 in the
second instruction decoder 20' would be enabled, and the
decoded RISC instruction would be used to generate the
control word for the second instruction.

SHARED BYPASS AND INTERLOCK LOGIC

The bypass and interlock logic is shared between the two
instruction sets. Synonyms are defined for the architectural
registers of the two instruction sets. Thus the CISC register
EAX is synonymous with the RISC register ro, while the
CISC register ESI is synonymous with the RISC register ré.
The field decoder 48 of FIG. 4 outputs the RISC-type
registers even when CISC mode is being decoded. Thus field
decoder 48 translates CISC registers into their RISC equiva
lents before being outputted to bus 58.

Table 7 shows the codes outputted by field decoder 48 of
FIG. 4. A five-bit code in the register select field identifies
which one of the 32 registers is to be accessed. For CISC
mode, it is possible to perform a 32-bit access. When this
happens, the register encoding is the same as for RISC
mode. However, CISC mode can also access only 8 or 16
bits of a 32-bit register, and the 16-bits can be only the low
half of the 32-bit register. The 8-bit access can only be to the
low 16-bit of the 32-bit register, but can be either the first or
second byte. These possibilities are encoded in the type field
of Table 7. The register select field is also used to select
floating point registers, and the type field indicates the size
of the access, 32, 64, or 80 bits.

TABLE 7

Register Field ID Encoding

Register
Instruction Type Select
Set Field Field Meaning

RISC or CISC 000 nnnnn 32-bit access to reginnnnn
CISC 001 000mn. 8-bit access to registernn

(low byte)
CISC 010 00nnn 16-bit access to register nnn

10

15

20

25

30

35

40

45

50

55

60

65

18

TABLE 7-continued

Register Field ID Encoding

Register
Instruction Type Select
Set Field Field Meaning

CISC 011 000mn. 8-bit access to register Inn
(high byte)

RISC or CISC 100 lxxxx No register (immediate)
RISC Or CISC 100 0xxx No register or immediate
RISC or CSC 10 nnnn 32-bit access to FP register

RISC Or CISC 10 nnnnn 64-bit access to FP register

RISC or CISC 111 00nnn 80-bit access to FP register

Leading Zeros in the register select field of Table 7
indicate that only a few of the 32 registers may be selected.
For example, while a 32-bit access may select any of 32
registers, and thus all 5 bits of the select field are used
(2=32), for 8-bit accesses the upper 3 bits are always zero,
because only registers 0-3 can be selected since the CISC
architecture only defines four registers for 8-bit access.
Likewise, only 2=8 floating point registers are 80-bits wide;
the other 24 floating point registers are only 64-bits wide.

Sharing the bypass and interlock logic and forming syn
onyms for the CISC registers allows for both RISC and
CISC instructions to be in the pipelines at the same time. It
is even possible for both RISC and CISC instructions to exist
in the same group. This can occur if the RISC and CISC
instructions are dispatched together during the same clock
cycle. The shared bypass logic allows dependencies to exist
between the two instruction sets and to be resolved. For
example, a code sequence of a CISC instruction followed by
a RISC and then another CISC instruction could be pro
cessed:

Instruction Set Instruction RISC Register Equivalent

CISC POPESI (ESP) ré, (ra)
RISC add ro, ré, r8 r0, ré, r8
CISC ADD EAX, EAX r0,rO

This code sequence has a dependency between the ESI
value loaded by the CISC POP instruction and the register
ró value needed as a source in the RISC add instruction.
Since ESI is translated to ré by the field decoder 48, the
bypass and interlock logic correctly identifies a data inter
lock for ré between the CISC and RISC instructions. A
second dependency exists for ro, which is a result of the
RISC add instruction, and is a source needed by the CISC
ADD instruction. Field decoder 48 translates the EAX
register source of the CISCADD instruction to register ro,
allowing the bypass and interlock logic to detect the register
r0 dependency between the RISC add and the CISC ADD
instructions.

The sharing of architectural registers is described more
fully in the copending application for a "Shared Register
Architecture for a Dual-Instruction-Set CPU', filed Jul. 20,
1994, U.S. Ser. No. 08/277,962, now U.S. Pat. No. 5,481,
693, hereby incorporated by reference.

INSTRUCTIONS FROM TWO SETS EN
PIPELINEAT SAME TIME

The invention allows for having instructions from two
instruction sets in the pipelines at the same time. Any or all

5,598,546
19

of the three pipclines can have both RISC and CISC instruc
tions in them at any time, and any group of instructions can
have both RISC and CISC instructions in thc group in the
pipelines. There is not one pipeline for RISC and another
pipeline for CISC; rather, all pipelines are used for all
instruction sets and may freely mix instructions from the two
instruction sets. This mixing is possible because of the single
format for the function control words from either instruction
set. Pipeline control is facilitated by converting CISC reg
isters into their RISC register equivalents when the control
words are being generated. This allows the bypass and
interlock logic to be shared between the two instruction sets,
and allows for instructions from more than one instruction
set to be present in the pipeline at any time.

ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventor. For example, many encodings are possible for the
function control words, and mask, immediate, or register
information may or may not be encoded into the control
words. Two pipelines could use a similar format for the
control words. Different encodings for the pipeline stage
valid bits are also contemplated. Auxiliary encodings for
compound instructions can be achieved in a variety of ways.
The number and functions of the pipelines may also be
varied. Two or more ALU, branch, or Memory pipelines
could be provided for, or two of the pipelines could be
combined into one pipeline. The invention is not intended to
be limited to the two instruction sets described in the
preferred embodiment, nor to only two instruction sets, but
it is anticipated that the teachings disclosed herein will
enable those of skill in the art to design processors for
multiple instruction sets beyond the RISC and CISC instruc
tion sets described herein.

The various logic blocks described herein may be merged
with other blocks. While an embodiment having separate
CISC and RISC instruction decodes has been described, it is
possible that these decoders could have some common logic
functions and thus could be merged or combined together
while still providing decoding of both instruction sets. The
decoders may also be combined with the mux for selecting
either the decoded RISC instruction or the decoded CISC
instruction. The generation of the function control words
could be partitioned into the separate RISC and CISC
decoders, as described in the detailed description, or the
function control words could be generated by a logic block
after receiving some intermediate information from the
RISC and CISC decoders. Additional or separate registers
and bypass logic may be provided for RISC and CISC
modes.
Branch prediction may be implemented in many ways and

may have various capabilities. The invention does not
depend upon any particular type of branch prediction, and
may be implemented without branch prediction, although
the benefits from using branch prediction are significant. The
invention does allow for taken branches to be dispatched
together with their targets. An instruction stream disconti
nuity may therefore exist within a group of instructions in a
stage in the pipelines. The branch may be one that switches
to another instruction set, and the invention allows a group
of instructions in a stage in the pipelines to have instructions
from multiple instruction sets. Thus instructions from dif
ferent instruction sets may be dispatched together and freely
mixed in the pipelines.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration

5

10

15

20

25

30

35

40

45

50

55

60

65

20
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.

I claim:
1. A central processing unit (CPU) for processing instruc

tions from two separate instruction sets, the CPU compris
ing:
RISC instruction decode means for decoding instructions

from a RISC instruction set, the RISC instruction set
having a first encoding of operations;

CISC instruction decode means for decoding instructions
from a CISC instruction set, the CISC instruction set
having a second encoding of operations, the first encod
ing of operations substantially independent from the
second encoding of operations;

instruction set indicating means for indicating an instruc
tion set to be decoded, the instruction set indicating
means having a RISC state indicating that the RISC
instruction set be decoded, the instruction set indicating
means having a CISC state indicating that the CISC
instruction set be decoded;

select means, coupled to the RISC instruction decode
means and the CISC instruction decode means, for
outputting a control word, the control word generated
from a decoding of an instruction from the RISC
instruction set by the RISC instruction decode means
when the instruction set indicating means is in the
RISC state, the control word generated from a decoding
of an instruction from the CISC instruction set by the
CISC instruction decode means when the instruction
set indicating means is in the CISC state, the control
word having a third encoding of operations to control
words, the third encoding of operations to control
words being related to but substantially different from
the first encoding and the second encoding; and

execute means, coupled to the select means and receiving
the control word, for executing operations, the execute
means executing an operation decoded by the RISC
instruction decode means when the instruction set
indicating means is in the RISC state, the execute
means executing an operation decoded by the CISC
instruction decode means when the instruction set
indicating means is in the CISC state,

wherein RISC instructions and CISC instructions are
directly decoded to the control word, the CISC instruc
tions not being translated to RISC instructions,

whereby instructions from both the RISC instruction set and
the CISC instruction set are decoded into control words
which are executed by the CPU.

2. The CPU of claim 1 wherein the execute means
comprises:

a plurality of pipelines, each pipeline in the plurality of
pipelines comprising a sequence of stages, each pipe
line for executing a subset of operations encoded by the
RISC instruction set and a subset of operations encoded
by the CISC instruction set, each pipeline responsive to
a particular format of the control word.

3. The CPU of claim 2 wherein
the select means generates the control word and a sec

ondary control word when a compound instruction is
decoded, the compound instruction encoding two
operations, a primary operation and a secondary opera
tion, and wherein the plurality of pipelines comprises:

5,598,546
21

a first pipelinc, receiving the control word, for executing
the primary operation indicated by the control word;
and

a second pipeline, receiving the secondary control word,
for exccuting the secondary operation indicated by the
secondary control word,

whereby compound instructions are decoded into two con
trol words which are executed by two pipelines.

4. The CPU of claim 2 wherein the RISC instruction
decode means and the CISC instruction decode means
comprise a first decoder, the first decoder decoding a first
instruction which encodes a first operation, the plurality of
pipclines further comprising:

a first pipeline for executing a first subset of operations,
the first subset of operations comprising a subset of
operations encoded by the RISC instruction set and a
subset of operations encoded by the CISC instruction
set, and

a second pipeline for executing a second subset of opera
tions, the second subset of operations comprising a
subset of operations encoded by the RISC instruction
set and a subset of operations encoded by the CISC
instruction set;

the CPU further comprising:
a second decoder for decoding a second instruction which

encodes a second operation, the second decoder having
a RISC instruction decode means for decoding RISC
instructions and a CISC instruction decode means for
decoding CISC instructions, the second decoder out
putting a second control word, the second control word
encoding an operation of a RISC instruction when the
instruction set indicating means is in the RISC state but
the second control word encoding an operation of a
CISC instruction when the instruction set indicating
means is in the CISC state; and

dispatch means for allocating the plurality of pipelines,
the dispatch means allocating the first pipeline to the
first decoder if the first operation is an operation in the
first subset of operations, the dispatch means allocating
the second pipeline to the first decoder if the first
operation is an operation in the second subset of
operations,

the dispatch means further allocating the first pipeline to
the second decoder if the second operation is an opera
tion in the first subset of operations and the first
operation is outside of the first subset of operations, the
dispatch means allocating the second pipeline to the
second decoder if the second operation is an operation
in the second subset of operations and the first opera
tion is outside of the second subset of operations,

whereby two RISC or CISC instructions are dispatched to
the plurality of pipelines.

5. The CPU of claim 4 further comprising:
a pipeline valid array, loaded by the dispatch means, for

indicating valid instructions in the plurality of pipe
lines, the pipeline valid array encoding if the first
operation is in the first subset of operations, the second
subset of operations, or not valid, the pipeline valid
array further encoding if the second operation is in the
first subset of operations, the second subset of opera
tions, or not valid,

whereby validity and order of operations in the plurality of
pipelines is encoded and stored in the pipeline valid array.

6. The CPU of claim 5 wherein the first Subset of
operations comprises arithmetic-logic-unit (ALU) opera
tions, the CPU further comprising a floating point pipeline

5

10

15

25

30

35

40

45

50

55

60

65

- 22

for processing floating point operations, the dispatch means
allocating both the floating point pipeline and the first
pipeline to a floating point instruction decoded by the first
decoder.

7. The CPU of claim 4 wherein

the plurality of pipelines further comprises a third pipeline
for executing a third subset of operations, the third
Subset of operations comprising operations encoded by
the RISC instruction set and operations encoded by the
CISC instruction set,

the dispatch means allocating the third pipeline to the first
decoder if the first operation is an operation in the third
subset of operations, the dispatch means allocating the
third pipeline to the second decoder if the second
operation is an operation in the third subset of opera
tions and the first operation is outside of the third subset
of operations.

8. The CPU of claim 7 further comprising
a third decoder for decoding a third instruction encoding

a third operation, the third decoder having a RISC
instruction decode means for decoding RISC instruc
tions, the third decoder outputting a third control word
encoding a RISC branch operation when the third
instruction is a RISC branch instruction, the third
decoder being disabled when the third instruction is not
a RISC branch instruction, and wherein

the dispatch means allocates the third pipeline to the third
decoder if the third operation is a RISC branch opera
tion and the first operation is outside of the third subset
and the second operation is outside of the third subset,

whereby a third instruction is dispatched to the third pipeline
if the third instruction is a RISC branch instruction.

9. The CPU of claim 8 wherein
the first subset of operations comprises arithmetic-logic

unit (ALU) operations, the first pipeline for executing
ALU operations;

the second subset of operations comprises memory opera
tions, the second pipeline for executing memory opera
tions; and

the third subset of operations comprises branch opera
tions, the third pipeline for executing branch opera
tions.

10. The CPU of claim 2 wherein the RISC instruction
decode means and the CISC instruction decode means
comprise a first decoder, the first decoder decoding a first
instruction which encodes a first operation, the plurality of
pipelines further comprising:

a first pipeline for executing a first subset of operations,
the first subset of operations comprising a subset of
operations encoded by the RISC instruction set and a
subset of operations encoded by the CISC instruction
set; and

a second pipeline for executing a second subset of opera
tions, the second subset of operations comprising a
subset of operations encoded by the RISC instruction
set and a subset of operations encoded by the CISC
instruction set,

the CPU further comprising:
second instruction set indicating means for indicating an

instruction set to be decoded for a second instruction,
the second instruction set indicating means having a
RISC state indicating that the RISC instruction set be
decoded, the second instruction set indicating means
having a CISC state indicating that the CISC instruc
tion set be decoded;

5,598,546
23

a second decoder for decoding the second instruction
which encodes a second operation, the second decoder
having a RISC instruction decode means for decoding
RISC instructions and a CISC instruction decode
means for decoding CISC instructions, the second
decoder outputting a second control word, the second
control word encoding an operation of a RISC instruc
tion when the second instruction set indicating means is
in the RISC state but the second control word encoding
an operation of a CISC instruction when the second
instruction set indicating means is in the CISC state;
and

dispatch means for allocating the plurality of pipelines,
the dispatch means allocating the first pipeline to the
first decoder if the first operation is in the first subset of
operations, the dispatch means allocating the second
pipeline to the first decoder if the first operation is in the
second subset of operations,

the dispatch means further allocating the first pipeline to
the second decoder if the second operation is an opera
tion in the first subset of operations and the first
operation is outside of the first subset of operations, the
dispatch means allocating the second pipeline to the
second decoder if the second operation is an operation
in the second subset of operations and the first opera
tion is outside of the second subset of operations,

whereby both a RISC and a CISC instruction are dispatched
to the plurality of pipelines.

11. The CPU of claim 10 wherein

the second instruction set indicating means is coupled to
the instruction set indicating means,

if the first operation is outside of a subset of instruction
set-switching operations, the second instruction set
indicating means is in the RISC state when the instruc
tion set indicating means is in the RISC state, the
second instruction set indicating means is in the CISC
state when the instruction set indicating means is in the
CISC state;

if the first operation is in the subset of instruction-set
Switching operations, the second instruction set indi
cating means switches to the RISC state when the
instruction set indicating means is in the CISC state, the
second instruction set indicating means switching to
the CISC state when the instruction set indicating
means is in the RISC state,

whereby the second decoder switches to decoding an alter
nate instruction set when an instruction-set-switching
instruction is decoded by the first decoder.

12. The CPU of claim 11 wherein the first and second
instructions are dispatched within a single clock period,
whereby a CISC and a RISC instruction are dispatched
during the single clock period.

13. The CPU of claim 1 further comprising:
field decode means, receiving RISC instructions from the
RISC instruction set and receiving CISC instructions
from the CISC instruction set, for decoding source and
destination fields which indicate registers in the CPU,
the field decode means coupled to the instruction set
indicating means,

the field decode means outputting codes, including source
codes and destination codes for registers accessible to
the RISC instructions when the instruction set indicat
ing means is in the RISC state, the field decode means
converting codes for registers accessible to CISC
instructions into codes for registers accessible to RISC
instructions when the instruction set indicating means
is in the CISC state,

10

15

20

25

30

35

40

45

50

55

60

24
whereby a single set of register codes is used by RISC
instructions and CISC instructions.

14. The CPU of claim 13 further comprising
bypass and interlock control means, receiving the codes

for registers from the field decode means, for bypassing
a result from a prior instruction to a source for a current
instruction when a destination code for the prior
instruction matches a source code for the current
instruction,

wherein the current instruction has a dependency to the
prior instruction when the destination code for the prior
instruction matches the source code for the current
instruction, and wherein the prior instruction and the
current instruction belong to different instruction sets,

whereby a dependency may be detected between instruc
tions from different instruction sets.

15. The CPU of claim 4 wherein the first decoder further
comprises
means for detecting a move immediate instruction, the
move immediate instruction encoding a move imme
diate operation, both the first subset of operations and
the second subset of operations including the move
immediate operation, the first pipeline for executing the
move immediate operation and the second pipeline for
executing the move immediate operation;

and wherein if a move immediate instruction is detected by
the means for detecting

the dispatch means allocates the first pipeline to the
second decoder if the second operation is an opera
tion in the first subset of operations, the dispatch
means allocates the second pipeline to the second
decoder if the second operation is an operation in the
second subset of operations,

the dispatch means further allocates the first pipeline to
the first decoder if the first operation is an operation
in the first subset of operations and the second
operation is outside of the first subset of operations,
the dispatch means allocates the second pipeline to
the first decoder if the first operation is an operation
in the second subset of operations and the second
operation is outside of the second subset of opera
tions,

whereby the second instruction is dispatched to the plurality
of pipelines before the first instruction is dispatched when a
move immediate instruction is detected in the first decoder.

16. A microprocessor for processing instructions from two
separate instruction sets, the microprocessor comprising:
CISC

RISC instruction decode means for decoding instructions
from a RISC instruction set, the RISC instruction set
having a first encoding of operations, the RISC instruc
tion decode means generating a first control word
encoding an operation decoded by the RISC instruction
decode means,

CISC instruction decode means for decoding instructions
from a CISC instruction set, the CISC instruction set
having a second encoding of operations, the first encod
ing of operations substantially independent from the
second encoding of operations, the CISC instruction
decode means generating a second control word encod
ing an operation decoded by the CISC instruction
decode means;

select means, coupled to the RISC instruction decode
means and the CISC instruction decode means, for
selecting either the first control word from the RISC
instruction decode means or the second control word
from the CISC instruction decode means;

5,598,546

instruction set indicating means for indicating an instruc
tion set to be decoded, the instruction Sct indicating
mcans having a first state indicating that the RISC
instruction set be decoded, the instruction set indicating
mcans having a second state indicating that the CISC
instruction set be decoded;

the instruction set indicating means coupled to the select
means, the select means selecting the first control word
from the RISC instruction decode means when the
instruction set indicating means is in the first State
indicating that the RISC instruction set be decoded, the
select means selecting the second control word from
the CISC instruction decode means when the instruc
tion set indicating means is in the second State indicat
ing that the CISC instruction set be decoded;

the first control word and the second control word both
having a third encoding of operations to control words,
the third encoding of operations to control words being
related to but substantially different from the first
encoding and the second encoding; and

execute means, coupled to the select means and receiving
first control words and second control words, for
executing operations, the execute means executing the
operation decoded by the RISC instruction decode
means when the first control word is received from the
select means, the execute means executing the opera
tion decoded by the CISC instruction decode means
when the second control word is received from the
select means,

whereby instructions from both the RISC instruction set and
the CISC instruction set are decoded into control Words
which are executed by the microprocessor.

17. The microprocessor of claim 16 wherein the execute
means comprises:

a plurality of pipelines, each pipeline in the plurality of
pipelines comprising a sequence of stages, each pipe
line for executing a subset of operations encoded by the
RISC instruction set and a subset of operations encoded
by the CISC instruction set, each pipeline responsive to
a particular format of control words.

18. A method for simultaneously processing instructions
from a plurality of instruction sets in a processor having a
plurality of pipelines, the method comprising:

decoding a RISC instruction in a RISC instruction
decoder and determining an operation encoded by a
first opcode in the RISC instruction using a first encod
ing of operations to opcodes for a RISC instruction set;

allocating at least one pipeline in the plurality of pipelines
to the RISC instruction, the at least one pipeline having
a functional unit for performing the operation encoded
by the first opcode;

generating at least one control word for the RISC instruc
tion, the at least one control word for indicating to the

10

5

20

25

30

35

40

45

50

26
functional unit to perform the operation encoded by the
first opcode;

transmitting the at least one control word to the at least
one pipeline;

executing the operation encoded by the first opcode in the
at least one pipeline;

decoding a CISC instruction in a CISC instruction
decoder and determining an operation encoded by a
second opcode in the CISC instruction using the first
encoding of operations to opcodes for the RISC instruc
tion set when the RISC instruction is outside of a subset
of instructions that change an instruction set being
processed, but determining the operation encoded by
the second opcode in the CISC instruction using a
second encoding of operations to opcodes for the CISC
instruction set when the RISC instruction is within the
subset of instructions that change the instruction Set
being processed;

allocating a second pipeline in the plurality of pipelines to
the second instruction, the second pipeline having a
second functional unit for performing the operation
encoded by the second opcode, the second pipeline
being a different pipeline than the at least one pipeline;

generating a second control word for the CISC instruc
tion, the second control word for indicating to the
second functional unit to perform the operation
encoded by the second opcode;

transmitting the second control word to the second pipe
line; and

executing the operation encoded by the second opcode in
the second pipeline;

whereby instructions from a plurality of instruction sets are
processed by a plurality of pipelines.

19. The method of claim 18 wherein
the at least one control word is transmitted to the at least

one pipeline and the second control word is transmitted
to the second pipeline during a single clock cycle,

whereby the RISC and CISC instruction are dispatched
within the single clock cycle.

20. The method of claim 19 wherein
the first encoding of operations to opcodes for the RISC

instruction set is substantially independent from the
second encoding of operations to opcodes for the CISC
instruction set.

21. The method of claim 20 wherein
the subset of instructions that change the instruction set

being processed comprises a plurality of unsupported
complex instructions in the RISC instruction set that
are not decodable by the RISC instruction decoder.

: k k k k

