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57 ABSTRACT 

A dual-instruction-set processor processes instructions from 
two or more instruction sets. The processor has several 
pipelines for processing different types of operations 
Memory, ALU, and Branch operations. Instructions are 
decoded by RISC and CISC instruction decoders which 
generate control words for the pipelines. The control words 
are encoded by the operation to be performed by the 
pipelines, which can overlap for the instruction sets. A 
different format for the control word is used for each 
pipeline, but the format is the same for all instruction sets. 
Once the control words are generated and sent to the 
pipelines, an indication of the instruction set is no longer 
needed. Thus instructions from several instruction sets may 
be freely mixed in the pipelines, and there is no need to flush 
the pipelines when the instruction set is switched. Register 
operands are first converted to their RISC equivalents by the 
instruction decoders so that bypass and interlock logic may 
detect dependencies between instructions from any instruc 
tion set. Pipeline valid bits encode the order that instructions 
were in, allowing dependencies to exist within a group of 
instructions at the same stage in the pipelines. A dispatcher 
can decode and dispatch up to three instructions in a single 
clock cycle, although the third instruction dispatched can 
only be a simple branch. Compound instructions may 
require more than one pipeline for processing, and two or 
more control words are generated for these complex instruc 
tions, with one control word sent to each pipeline. 

21 Claims, 3 Drawing Sheets 
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1. 

DUAL-ARCHITECTURE SUPER-SCALAR 
PIPELINE 

RELATED APPLICATION 

This application is related to application for a "Dual 
Instruction-Set Architecture CPU with Hidden Software 
Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No. 08/179, 
926, hereby incorporated by reference. This application is 
also related to application for a "Pipeline with Temporal 
Re-Arrangement of Functional Units for Dual-Instruction 
Set CPU', filed Jan. 11, 1994, U.S. Ser. No. 08/180,023, 
abandoned, FWC No. 08/361,017 was filed in place of it, 
now U.S. Pat. No. 5,542,059, hereby incorporated by ref 
erence. This application is further related to application for 
a "Shared Register Architecture for a Dual-Instruction-Set 
CPU', filed Jul. 20, 1994, U.S. Ser. No. 08/277,962, now 
U.S. Pat. No. 5,481,693, hereby incorporated by reference 
and to application for a "Dual-Architecture Exception and 
Branch Prediction using a Fault-Tolerant Target Finder 
Array', filed Aug. 31, 1994, U.S. Ser. No. 08/298,778, 
hereby incorporated by reference. These related applications 
have a common inventor and are assigned to the same 
assignee as the present application. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to computer systems, and more 

particularly to pipelines executing more than one instruction 
Sct. 

2. Description of the Related Art 
Modern central processing units (CPU's) employ a pipe 

linc which allow several instructions to be processed at one 
time. Each stage of the pipeline performs a function in 
executing or processing an instruction. Instructions gener 
ally enter the pipeline and complete the pipeline one at a 
time, since each stage can hold just one instruction. 

Super-scalar CPU's have more than one pipeline. Thus, a 
CPU with two pipelines can have two instructions enter and 
complete the pipelines at a time. The maximum throughput 
of instructions is effectively doubled. 

DUAL-INSTRUCTION-SET PROCESSOR 

Processors, or CPUs, that are capable of executing 
instructions from two separate instruction sets are highly 
desired at the present time. For example, a desirable pro 
cessor would execute user applications for the x86 instruc 
tion set and the PowerPCTM instruction set. It would be able 
to execute the tremendous software base of x86 programs 
that run under the DOSTM and WINDOWSTM operating 
systems from Microsoft of Redmond, Wash., and it could 
run future applications for PowerPCTM processors developed 
by IBM, Apple, and Motorola. 

Such a processor is described in the related application for 
a "Dual-Instruction-Set Architecture CPU with Hidden Soft 
ware Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No. 
08/179,926, pending. That dual-instruction-set CPU has a 
pipeline which is capable of executing instructions from 
either a complex instruction set computer (CISC) instruction 
set, such as the x86 instruction set, or from a reduced 
instruction set computer (RISC) instruction set, such as the 
PowerPCTM instruction Set. 

Two instruction decode units are provided so that instruc 
tions from either instruction set may be decoded. Two 
instruction decoders are required when the instruction sets 
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2 
are separate because the instruction sets each have a sub 
stantially independent encoding of operations to opcodes. 
For example, both instruction sets have an ADD operation or 
instruction. However, the binary opcode number which 
encodes the ADD operation is different for the two instruc 
tion sets. In fact, the size and location of the opcode field in 
the instruction word is also different for the two instruction 
sets. In the x86 CISC instruction set, the opcode 03 hex is 
the ADD rv operation or instruction, for a long operand. 
This same opcode, 03 hex, corresponds to a completely 
different instruction in the PowerPCTM RISC instruction set. 
In CISC the 03 hex opcode is an addition operation, while 
in RISC the 03 hex opcode is TWI-trap word immediate, 
a control transfer instruction. Thus two separate decode 
blocks are necessary for the two separate instruction sets. 

Switching from the CISC instruction set to the RISC 
instruction set may be accomplished by a far jump or branch 
instruction, while a return from interrupt can switch back to 
the CISC instruction set. Rapid execution of these branches 
is desirable since it is anticipated that these switches 
between instruction sets will frequently be encountered. 

It is therefore desired to execute instructions from both 
instruction sets in the same pipelines, rather than have 
separate, redundant, pipelines for each instruction set. When 
an instruction is encountered causing a switch between the 
instruction sets, it is desired to avoid purging the pipelines 
but to continue execution in the new instruction set. Thus the 
pipelines must be able to contain instructions from two or 
more instructions sets at the same time. 

SUMMARY OF THE INVENTION 

A central processing unit (CPU) processes instructions 
from two separate instruction sets. This is possible because 
the CPU comprises a RISC instruction decode means for 
decoding instructions from a RISC instruction set, and a 
CISC instruction decode means for decoding instructions 
from a CISC instruction set. The RISC instruction set has a 
first encoding of operations, while the CISC instruction set 
has a second encoding of operations. The first encoding of 
operations is substantially independent from the second 
encoding of operations. 
An instruction set indicating means is for indicating an 

instruction set to be decoded. The instruction set indicating 
means has a RISC state indicating that the RISC instruction 
set be decoded and a CISC state indicating that the CISC 
instruction set be decoded. A select means is coupled to the 
RISC instruction decode means and the CISC instruction 
decode means and outputs a control word. The control word 
is generated from a decoding of an instruction from the 
RISC instruction set by the RISC instruction decode means 
when the instruction set indicating means is in the RISC 
state. However, the control word is generated from a decode 
of an instruction from the CISC instruction set by the CISC 
instruction decode means when the instruction set indicating 
means is in the CISC state. 

The control word has a third encoding of operations to 
control words which is related to but substantially different 
from the first encoding and the second encoding. An execute 
means is coupled to the select means and receives the control 
word. The execute means executes an operation decoded by 
the RISC instruction decode means when the instruction set 
indicating means is in the RISC state, but the execute means 
executes an operation decoded by the CISC instruction 
decode means when the instruction set indicating means is 
in the CISC State. 



5,598,546 
3 

Thus instructions from both the RISC instruction set and 
the CISC instruction set arc decoded into control words 
which are executed by the CPU. 

In further aspects of the invention the executic means 
comprises a plurality of pipelines. Each pipcline in the 
plurality of pipelines comprises a sequence of stages, and 
each pipeline executes a subset of operations encoded by the 
RISC instruction set and a subset of operations encoded by 
the CISC instruction set. Each pipeline is responsive to a 
particular format of the control word. 

In other aspects of the invention the select means gener 
ates the control word and a secondary control word when a 
compound instruction is decoded. The compound instruction 
encodes two operations, a primary operation and a second 
ary operation. The plurality of pipelines comprises a first 
pipeline which receives the control word. The first pipeline 
executes the primary operation indicated by the control 
word. A second pipeline receives the secondary control word 
and executes the secondary operation indicated by the 
secondary control word. 

In still further aspects of the invention the RISC instruc 
tion decode means and the CISC instruction decode means 
comprise a first decoder. A second decoder decodes a second 
instruction which encodes a second operation. The second 
decoder also has a RISC instruction decode means for 
decoding RISC instructions and a CISC instruction decode 
means for decoding CISC instructions. The second decoder 
outputs a second control word encoding an operation of a 
RISC instruction when the instruction set indicating means 
is in the RISC state, but the second control word encodes an 
operation of a CISC instruction when the instruction set 
indicating means is in the CISC state. 
A dispatch means allocates the plurality of pipelines. A 

pipeline valid array is loaded by the dispatch means and 
indicates valid instructions in the plurality of pipelines. 
When the CPU has a floating point pipeline, the dispatch 
means allocates both the floating point pipeline and the first 
pipeline for ALU operations to a floating point instruction 
decoded by the first decoder. The plurality of pipelines also 
has a third pipeline for executing a third subset of opera 
tions. This third subset of operations comprises operations 
encoded by the RISC instruction set and operations encoded 
by the CISC instruction set. 
The invention uses several pipelines that can each execute 

both RISC and CISC instructions. Several instruction decod 
ers decode both RISC and CISC instructions even during the 
same clock cycle. Thus both RISC and CISC instructions 
can be dispatched to the shared pipelines. The instructions 
are decoded into control words which are related to but 
substantially different from the two instruction sets but 
depend upon the operation to be performed by the pipelines. 
The control words allow the pipelines and bypass logic to be 
independent of the instruction set of the decoded instruc 
tions. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows a stream of instructions to be processed. 
FIG. 2 shows three pipelines of a super-scalar processor: 

a branch pipeline, an ALU pipeline, and a memory pipeline. 
FIG. 3 shows the instruction decode and dispatch unit in 

more detail. 
FIG. 4 shows the first and second instruction decoders. 
FIG. 5 shows the third instruction decoder. 

DETAILED DESCRIPTION 

The present invention relates to an improvement in com 
puter systems. The following description is presented to 
enable one of ordinary skill in the art to make and use the 
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4 
invention as provided in the context of a particular applica 
tion and its requirements. Various modifications to the 
preferred embodiment will be apparent to those with skill in 
the art, and the general principles defined herein may be 
applied to other embodiments. Therefore, the present inven 
tion is not intended to be limited to the particular embodi 
ments shown and described, but is to be accorded the widest 
scope consistent with the principles and novel features 
herein disclosed. 

This application is related copending application for a 
“Dual-Instruction-Set Architecture CPU with Hidden Soft 
ware Emulation Mode', filed Jan. 11, 1994, U.S. Ser. No. 
08/179,926, pending, hereby incorporated by reference. This 
application is also related to copending application for a 
"Pipeline with Temporal Re-Arrangement of Functional 
Units for Dual-Instruction-Set CPU', filed Jan. 11, 1994, 
U.S. Ser, No. 08/180,023, abandoned, Ser. No. 08/361,017 
was filed in place of it, hereby incorporated by reference. 
This application is further related to copending application 
for a "Shared Register Architecture for a Dual-Instruction 
Set CPU', filed Jul. 20. 1994, U.S. Ser. No. 08/277,962, now 
U.S. Pat. No. 5,481,693, hereby incorporated by reference 
and to copending application for a "Dual-Architecture 
Exception and Branch Prediction using a Fault-Tolerant 
Target Finder Array', filed Aug. 31, 1994, U.S. Ser. No. 
08/298,778, hereby incorporated by reference. These related 
applications have a common inventor and are assigned to the 
same assignee as the present application. Reduced instruc 
tion set computer (RISC) and complex instruction set com 
puter (CISC) instructions may both be executed in the 
dual-instruction-set central processing unit (CPU). 
A dual-architecture central processing unit (CPU) is 

capable of operating in three modes-RISC mode, CISC 
mode, and emulation mode. A first instruction decoder 
decodes instructions when the processor is in RISC mode, 
while a second instruction decoder decodes instructions 
while the processor is in CISC mode. Two instruction 
decoders are needed since the RISC and CISC instruction 
sets have a substantially independent encoding of instruc 
tions or operations to binary opcodes. 
The third mode of operation, emulation mode, also uses 

the first instruction decoder for RISC instructions, but emu 
lation mode executes a superset of the RISC instruction set. 
Using emulation mode, individual CISC instructions may be 
emulated with RISC instructions. Thus, not all CISC instruc 
tions need to be directly supported in the CPU's hardware. 
Unsupported CISC instructions cause a jump to an emula 
tion mode routine to emulate the unsupported CISC instruc 
tion. Upon completion of the emulation mode routine, 
control is returned to the CISC program with the next CISC 
instruction. These jumps to emulation mode can be predicted 
with a modified branch prediction apparatus. 

BASIC PIPELINE FLOW 

The diagram below indicates the progression of each 
instruction through one of the pipelines, with time increas 
ing to the right by one clock for every stage, while subse 
quent instructions are listed below one another. Stages are 
abbreviated as D, A, C, M, and W, for decode, address 
generate, cache, memory, and write-back. 

Time (clocks): 1 2 3 4. 5 6 

1st Instruction: D A C M W 
2nd Instruction: D A C M W 
3rd Instruction: D A C M W 
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Thus the pipeline is: 
DECODE ADDR GEN CACHE MEMORY WRITE-BACK 

Instructions are first fetched by a fetch stage that is not 
shown. The decode stage decodes the instruction and dis 
patches it to the correct pipeline(s). An address of an 
operand is generated in the address generate stage, and a 
2-clock cycle operand fetch is performed in the cache and 
memory stages. Alternately, a one-cycle operand fetch may 
be performed in the cache stage, and the memory stage may 
be a "Match' stage wherein the cache tag or TLB tag is 
compared to see if a match occurred and the operand fetched 
in the cache stage is valid. A write-back stage is normally 
included at the end of the pipeline when the results are 
written back into the register file and the condition codes are 
modified. Execution of an arithmetic-logic-unit (ALU) 
operation can be performed in any of the A, C, or M stages 
because the execution unit may be moved to any of these 
Stages. 

SUPER-SCALAR PIPELINES 

Two or more pipelines as described above may be pro 
vided, allowing for two or more instructions to complete the 
pipeline in the same processor ciock cycle. Each pipeline is 
adapted for processing a subset of the operations in an 
instruction set. The decode stage for each of the pipelines is 
combined into a decode and dispatch unit which is capable 
of decoding several instructions in one clock cycle. The 
decode unit examines the types of instruction that it has just 
decoded to determine which pipelines to send each instruc 
tion to. The decode and dispatch unit then dispatches each 
instruction to the designated pipeline(s). Additional decod 
ing may be performed in the decode stage by each individual 
pipeline after the instruction has been dispatched. 

FIG. 1 shows a stream of instructions to be processed. 
Instruction 1 is the first to be processed, followed by 
instruction 2, 3, and so forth. For this illustration, no taken 
branches are encountered so that the instructions are pro 
cessed in sequential order. FIG. 2 shows that the super-scalar 
processor has three pipelines: a branch pipeline 10, an ALU 
pipeline 12, and a memory pipeline 14. Branch pipeline 10 
is adapted for processing simple branch instructions and 
generating target addresses, and may contain branch predic 
tion logic in the early stages such as the D stage. ALU 
pipeline 12 is designed to process arithmetic and Boolean 
logic instructions, and includes an ALU with an adder. 
Memory pipeline 14 is for processing load and store instruc 
tions. An address of an operand is generated in the A stage, 
and the operand is fetched or written to a cache in the C and 
M stages. Should the operand not be available in the cache, 
a secondary cache or main memory may have to be 
accessed, resulting in a pipeline stall until the operand is 
retrieved from the slower cache or main memory. A very fast 
cache could allow the M stage to be eliminated, while slower 
caches might require that an additional M2 stage be inserted 
into the pipeline. 

Instructions are dispatched to one or more of the pipelines 
10, 12, 14 by a dispatch unit 16 in the decode stage. Once 
an instruction is dispatched to the first (D) stage of a 
pipeline, it flows down the pipeline until the W stage is 
reached. The instruction completes processing when it 
leaves the W stage. Up to three instructions may complete 
the W stage in any clock cycle, and up to three instructions 
may be dispatched to the D stage at the start of the pipelines. 
Pipeline stalls, when an instruction does not advance to the 
next stage in the pipeline, may occur in any of the three 
pipelines 10, 12, 14. For simplicity, the preferred embodi 
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6 
ment stalls all three pipelines when a stall occurs in any one 
pipeline. The stall only directly affects one stage in the three 
pipelines: a stall in the C stage of the memory pipeline will 
also stall the C stage of the branch and ALU pipelines, but 
not any other stages. Of course, upstream stages may have 
to be stalled because the instruction in the stalling stage did 
not advance. Empty stages can be filled if downstream 
stages are stalled. 

FIG. 2 shows a point in time when instructions 1 and 2 are 
completing the pipeline, being in the final W stage. Instruc 
tion 1 is a memory instruction while 2 is an ALU instruction. 
Since instruction 3 is also an ALU instruction, no instruction 
was dispatched to the branch pipeline when instructions 1 
and 2 were dispatched. Instead, instruction 3 had to wait to 
be dispatched until the next clock cycle. Instruction 4 is also 
an ALU instruction, so no instructions could be dispatched 
to the branch and memory pipelines when instruction 3 was 
dispatched. During the cycle that instruction 4 was dis 
patched, instructions 5 and 6 were also dispatched to the 
memory and branch pipelines. Thus three instructions were 
dispatched during the same clock cycle. These three instruc 
tion are called a group of instructions because all three 
instructions were dispatched during the same clock cycle. 
Also, the first dispatch was a group of two instructions, 
instructions 1 and 2. 

Instruction 7 is a compound ALU-memory instruction 
requiring both the memory and the ALU pipelines. Instruc 
tion 7 could be a fetch-execute CISC instruction that first 
fetches an operand from memory, and then uses this fetched 
operand in an arithmetic operation. Because instruction 8 is 
also an ALU instruction, and not a branch instruction, 
instruction 8 must wait another clock cycle to be dispatched 
since instruction 7 is already using the D stage of the ALU 
pipeline. If instruction 9 is a simple branch instruction, it 
may also be dispatched with instruction 8. Likewise, if 
instruction 9 is a simple memory instruction, it may be 
dispatched to the memory pipeline during the same clock 
cycle that instruction 8 is dispatched. However, if instruction 
9 is an ALU instruction, or a compound branch or memory 
instruction requiring the ALU pipeline, then instruction 9 
must wait another clock cycle until instruction 8 clears the 
D stage of the ALU pipeline. 

INSTRUCTION DECODE AND DISPATCH UNIT 

Instruction decode and dispatch unit 16 may decode and 
dispatch to the pipelines up to three instructions in any clock 
cycle, or group. FIG. 3 shows instruction decode and dis 
patch unit 16 in more detail. Three instruction decoders 20, 
20', and 22 operate in parallel to decode up to three instruc 
tions in a single clock period. Instruction buffers 24, 24, 24" 
supply instruction decoders 20, 20', and 22 with bytes of 
instructions. Once the first instruction in instruction buffer 
24 has been sufficiently decoded to determine the length of 
the first instruction, the exact starting location of the second 
instruction is transmitted to instruction buffer 24. The 
second instruction in instruction buffer 24" may then be 
decoded by the second instruction decoder 20'. For RISC 
instructions, the instructions are fixed length, so decoding of 
the second instruction can begin immediately. When the 
second instruction has also been sufficiently decoded to 
determine the exact starting location of the third instruction 
is transmitted to instruction buffer 24". The third instruction 
in instruction buffer 24" may then be decoded by the third 
instruction decoder 22. 

The exact starting locations of the second and third 
instructions in the group are also sent to mux 38, along with 
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the starting location of the first instruction, and the starting 
location of the instruction after thc third instruction, which 
is determined by the third instruction decoder 22. Mux 38 
receives an indication of the number of instructions in the 
group, which were actually dispatched in the current clock 
cycle, either one, two, or three, or none if the pipelines were 
stalled. Mux 38 then selects one of these four instruction 
starting locations and sends it to the instruction fetch unit 
(not shown) to indicate the next group of instructions to 
fetch, 
Third Decoder only Decodes Simple Branches 

Because each successive instruction must wait for the 
preceding instruction to be sufficiently decoded to determine 
the starting location of the next instruction when operating 
in CISC mode, the decoding of the third instruction starts 
late in the clock period. Thus the third instruction decoder 22 
must decode the third instruction very quickly. Rapid decod 
ing is facilitated by limiting the types of instructions that are 
decodable by the third instruction decoder 22. Only simple 
branch instruction are decodable by the third instruction 
decoder 22. Complex branch instructions, such as CISC 
branches, are not decodable by the third instruction decoder 
22, but must wait until the next clock cycle to be decoded by 
the first instruction decoder 20. Branches are chosen for 
decoding by the third instruction decoder 22 because of the 
difficulty caused by instruction stream discontinuities that 
taken branches produce. Thus executing branches as quickly 
as possible is desired. Allowing simple branches to be 
dispatched as the third instruction in a current clock period 
rather than having to wait until the following clock period 
allows these branches to be predicted and resolved one clock 
period earlier than if only two instruction decoders were 
provided. Decoding simple ALU or memory instructions in 
the third decoder would not be as effective since these types 
of instructions are less disruptive to processing than are 
branches. ALU and memory instructions are more difficult to 
decode in part because of the number of register operands 
used. 

Each of the instruction decoders 20, 20', and 22 generate 
one or more function control words, one for each pipeline 
that a decoded instruction is dispatched to. The function 
control word indicates to the pipeline what functions to 
perform. The function control word, rather than the instruc 
tion opcode, is sent as the decoded instruction to the 
pipelines. 
The function control words are different for each pipeline, 

because each pipeline can perform a different set of func 
tions. Thus the branch pipeline 10 receives branch function 
control words 31B,32B, and 33B from the first, second, and 
third instruction decoders 20, 20', 22. Likewise, the ALU 
pipeline receives ALU function control words 31B and 32B 
from the first and second instruction decoders 20, 20', while 
the memory pipeline receives memory function control 
words 31M and 32M from the first and second instruction 
decoders 20, 20'. 
Muxes 34, 35, and 36 select one of the function control 

words for loading into the decode stages 10D, 12D, 14D of 
the branch, ALU, and memory pipelines 10, 12, 14. Muxes 
34, 35, 36 are controlled by dispatcher 28. Dispatcher 28 
will indicate to mux 34 whether a branch instruction is in 
either the first, second, or third instruction decoder 20, 20', 
22. Likewise, dispatcher 28 will indicate to mux 35 whether 
an ALU instruction is in either the first or second instruction 
decoder 20, 20. Dispatcher 28 will also indicate to mux 36 
whether a memory instruction is in either the first or second 
instruction decoder 20, 20'. Dispatcher 28 will also indicate 
to the decode stages 10D, 12D, 14D whether or not to clock 
the selected function control word into the decode stage. 
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The decode stages 10D, 12D, 14D may perform addi 

tional decoding on the function control words during the 
decode clock cycle. On the following clock edge, the 
function control words in the decode stages 10D, 12D, 14D 
will normally be clocked down into the next stage, the A 
stage, of pipelines 10, 12, 14. Stalls in any of the stages of 
the pipelines may delay clocking the control word down one 
or more of the pipelines. 
Multiple Pipelines used for Compound Instructions 
Some compound instructions may require hardware or 

functional units that are present in two or more pipelines. 
For example, a compound CISC fetch-execute instruction 
first fetches an operand from memory or a cache, and then 
uses this fetched operand as an input in an ALU arithmetic 
operation. The memory pipeline must be used to fetch the 
operand, while the ALU pipeline must be used to perform 
the ALU arithmetic operation. Thus both the memory and 
the ALU pipelines are needed by the single compound CISC 
instruction. Some compound RISC instructions may also be 
relatively complex, requiring more than one pipeline for 
processing. 
When such a compound instruction is decoded by one of 

the instruction decoders 20, 22, a determination of which 
pipelines are needed is made and sent to the pipeline allocate 
unit 26. Pipeline allocate unit 26 first looks at the pipelines 
needed by the first instruction decoded by instruction 
decoder 20. These pipelines needed by the first instruction 
are allocated to the first instruction. If any pipelines remain 
un-allocated, then the pipeline allocate unit 26 looks at the 
pipelines required by the second instruction decoded by the 
second instruction decoder 20'. If any of these pipelines 
required by the second instruction have already been allo 
cated to the first instruction, then the second instruction 
cannot be dispatched in the current clock period. Instead 
mux 38 will select the starting address of the second 
instruction, which will be fetched again and loaded into the 
first instruction buffer 24 as the first instruction of the next 
clock period. 

If the pipelines needed by the second instruction in the 
group are not yet allocated, then pipeline allocate unit 26 
will allocate these needed pipelines to the second instruc 
tion. Finally, allocate unit 26 will look at the pipelines 
required by the third instruction decoder 22. Since the third 
instruction decoder 22 can only decode simple branches that 
use only the branch pipeline, the branch pipeline will be 
allocated to the third instruction if the branch pipeline is still 
un-allocated to the first or second instruction. 

Pipeline allocate unit 26 will then indicate to dispatcher 
28 which instruction will be sent to each pipeline. The 
possible combinations are shown in Table 1. 

TABLE 1. 

Pipelines Allocated 

Instruction Type Branch ALU Memory 

Simple Branch V 
Simple ALU V 
Simple F.P. V 
Simple Read/Write V 
Memory & Update N V 
Read-Execute N V 
Read-Execute-Write N V 
PUSH or POP N V 
CALL or RET N N W 
Move Immediate W or W 
Condition Register V 
Boolean Branch 
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In Table 1, “V” indicates the primary pipeline that the 
instruction is dispatched to, and that pipeline is thus marked 
as "valid'. Secondary pipelines that an instruction is also 
dispatched to are marked as "N". By marking the secondary 
pipelines as "N', only one pipeline will be marked valid for 
cach instruction at each stage. A count of the total number 
of instructions in the pipeline can simply be made by 
counting the V's in the pipeline and not counting the N's. 
However, the control words in pipelines marked "N' are 
valid, but are validated by the control word in the primary 
pipeline. Marking a pipeline as "N' prevents a following 
instruction from allocating it. 

PIPESTAGE VALID BITS 

Dispatcher 28 loads valid bits for the pipelines 10, 12, 14 
into pipeline valid array 40. Pipeline valid array 40 contains 
an entry for each stage in the pipelines. Thus it has 5 entries: 
onc for each of the D, A, C, M, and W stages. Each entry in 
pipeline valid array 40 indicates which pipelines have valid 
functional control words in the stage corresponding to that 
entry. A simple implementation would be to have a valid bit 
for each pipeline for each entry, or to have a second bit for 
each pipeline stage indicating if the pipeline is the primary 
or a secondary pipeline for that instruction. 
The preferred implementation also encodes information 

about the sequence or order of instructions in that stage or 
group. The ALU pipeline stage could contain either the first 
or the second instruction in the group of instructions all 
dispatched in the same clock period. Likewise, the branch 
pipeline stage could contain either the first, second, or third 
instruction in the group. Table 2 shows the encoding of an 
entry in the pipeline valid array 40. A "don't care" in the 
encoding is designated as 'x'. 

TABLE 2 

Encoding of Pipline Valid Entry 

Encoding for Issue 
Time-Slot: 

1st 2nd 3rd FP Meaning 

00 xx X x No Instruction in 1st Issue Time-Slot 
0 xx X 0 Walid ALU in 1st Issue Time-Slot 
0 xx X x Valid Memory Op in 1st Issue Time-Slot 
11 xx X x Walid Branch in 1st Issue Time-Slot 
01 xx X 1 Valid F.P. Op in 1st Issue Time-Slot 
xx 00 X x No Instruction in 2nd Issue Time-Slot 
xx 01 X 0 Walid ALU in 2nd Issue Time-Slot 
xx 10 X x Valid Memory Op in 2nd Issue Time-Slot 
xx 11 X x Walid Branch in 2nd Issue Time-Slot 
xx Ol X 1 Valid F.P. Op in 2nd Issue Time-Slot 
XX XX O x No Instruction in 3rd Issue Time-Sot 
XX XX 1. x Walid Branch in 3rd Issue Time-Slot 

The encodings of table 2 are for each of the three issue 
time-slots for up to three instructions in a group. The 1st 
issue time-slot is encoded for the type of instruction that was 
issued first, from the first instruction decoder 20. The 2nd 
issue time-slotis encoded for the second instruction decoded 
by the second instruction decoder 20', while the third issue 
time-slot is encoded for the third instruction decoded by the 
third instruction decoder 22. Thus the first and second issue 
time-slots can encode any type of instruction, while the third 
issue time-slot can only encode simple branch instructions. 
An encoding of 0 1 1 0 0 would indicate an ALU 

instruction followed by a branch instruction, with no third 
instruction in the group. An encoding of 1001 1 0 indicates 
a memory instruction, followed by an ALU instruction, and 
then a branch instruction, for a total of three instructions in 
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10 
the dispatched group. An encoding of 00 1 0 1 0 would not 
be valid because it encodes no valid instruction in the first 
issue time-slot but instructions in the second and third issue 
time-slots. Likewise an encoding of 1000 1 0 is not valid 
because it encodes a valid instruction in the third issue 
time-slot but not in the second issue time-slot. Earlier issue 
time-slots are filled up before the later issue time-slots. 
Floating Point Instructions Use ALU Interlock and Control 

Table 2 also shows that floating point instructions can be 
encoded as a special type of ALU operation. When the ALU 
type of instruction is dispatched and encoded, the floating 
point bit indicates if the instruction is a normal ALU type or 
a floating point type. Although the floating point instructions 
are executed in a separate floating point data path, rather 
than the pipelines 10, 12, 14, floating point instructions 
occupy the ALU pipeline and appear to be regular ALU 
instructions. Thus floating point instructions can use the 
same control, interlock and by-pass select logic as ALU 
operations. This sharing of resources saves considerable 
logic and reduces complexity. 
The disadvantage of using the ALU pipeline for floating 

point instructions is that an ALU and a floating point 
instruction cannot both be dispatched in the same clock 
cycle as part of the same group. However, this would not be 
a frequent occurrence. 
Move Immediate Dispatched to Either ALU or Memory 
Pipeline 
Move immediate is a very simple type of instruction that 

moves an immediate value from the instruction itself to a 
register in the CPU. Since this instruction is so simple, few 
pipeline resources are needed. These resources exist in both 
the ALU and the memory pipelines. Thus table 1 shows that 
the move immediate type of instruction can be dispatched to 
either the ALU or to the memory pipeline. When a move 
immediate instruction is decoded by the first instruction 
decoder 20, pipeline allocate unit 26 does not immediately 
allocate any pipelines to the first instruction. Instead, pipe 
line allocate unit 26 looks at the pipelines required by the 
second instruction. Pipelines are allocated for the second 
instruction first. Then the first instruction, the move imme 
diate, is allocated. If the second instruction uses the memory 
pipeline, then the first instruction, the move immediate, is 
allocated the ALU pipeline. If the second instruction uses the 
ALU pipeline, then the first instruction, the move immedi 
ate, is allocated the memory pipeline. However, the second 
instruction cannot be allocated at all if the second instruction 
requires both the ALU and the memory pipeline. 

Although the first move immediate instruction can be 
allocated out-of-order, with the second instruction being 
allocated first, the encoding of the pipeline valid bits follows 
the actual instruction order. Thus the first instruction, the 
move immediate, is encoded to the first issue time-slot, 
while the second instruction is encoded in the second issue 
time-slot. 

Allowing the move immediate instruction to be allocated 
to either the ALU or the memory pipeline increases the 
number of times that multiple instructions can be dis 
patched, such as when two move immediates occur in 
sequence. This is a common occurrence, especially when 
initializing parameters in a program. In RISC mode, move 
immediate can be implemented as special versions of the 
add immediate and add immediate shifted instructions. 
Dependent Instructions in a Single Group 

Dependencies are common in an instruction stream. 
Dependent instructions require results from a previous 
instruction in the instruction stream. The dependent instruc 
tion must wait for the previous instruction to calculate its 
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result and pass this result to the dependent instruction. In a 
pipelined system these dependencies often cause the pipe 
line to wait or stall for the result. 
A conditional branch instruction is often dependent upon 

a result from a prior instruction. The prior instruction is 
typically an ALU instruction that sets flags or condition 
codes, indicating if the result was Zero or negative. The 
conditional branch instruction must wait until the condition 
codes are set by the prior ALU instruction. A second 
example of a common dependency is a load instruction 
followed by a dependent ALU instruction. The ALU instruc 
tion needs an operand that was fetched from memory by the 
load instruction. The ALU instruction must wait until the 
operand is loaded before performing the ALU operation. 

For both of these examples of dependencies, it is critical 
to know the order of the instructions in the instruction 
stream. One approach would be to dispatch the dependent 
instruction in the clock cycle after the prior instruction is 
dispatched. This would ensure that the instruction order is 
maintained. If both the prior and the dependent instruction 
are dispatched to different pipelines during the same clock 
cycle, then the dependency information must be stored. The 
encoding of the present invention stores the instruction order 
and dependency information, allowing both the dependent 
and the prior instruction to be dispatched during the same 
clock cycle. While a stall may still be required farther down 
the pipeline to wait for the dependency to resolve, perfor 
mance is increased by the faster dispatch. 
The encoding of pipeline valid bits by issue time-slot, 

rather than by physical pipeline, allows for instructions 
dispatched together in a group (during the same clock cycle) 
to have dependencies on each other. Since the encodings of 
pipeline valid bits contains information on the order of the 
instructions within the instruction stream, the CPU can 
easily extract this order information and determine the 
dependencies. These dependencies can exist not just from 
one pipeline Stage to another stage, but within the same 
group occupying a single stage in each of the pipelines. 
The pipeline bypass logic will examine the pipeline valid 

bits to determine the dependencies in the group of instruc 
tions. For example, the valid bits might indicate that a load 
instruction and an ALU instruction are both in the A stage, 
having been dispatched during the same clock cycle. When 
the ALU instruction is in the A stage of the ALU pipeline, 
to perform the ALU operation, and bypass logic detects that 
an ALU operand is from a register loaded by the load 
instruction in the A stage of the memory pipeline, then a 
dependency may exist. The bypass logic will then examine 
the pipeline valid bits to determine if a dependency exists. 
If the valid bits encoded are 01 10xx 0, indicating that the 
ALU instruction is in the first issue time-slot, and the load 
instruction is in the second issue time-slot, then no depen 
dency exists. However, if the valid bits encoded are 1001 xx 
0, indicating that the load instruction is in the first issue 
time-slot, while the ALU instruction is in the second issue 
time-slot, then a dependency exists. The ALU operation 
must wait until the load instruction loads the operand into 
the register file during the M stage. 

Encoding information about the order of the instructions 
within a group also is useful when branches or exceptions 
occur. A taken branch, or a mis-predicted branch when 
branch prediction is used, will require that the instructions 
after the branch instruction be canceled because they are 
from the sequential instruction stream, while the program 
jumped to a target address instead of continuing along the 
Sequential stream. Likewise, exceptions may require that all 
instructions after the instruction having the exception be 
canceled so that the exception may be processed. 
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12 
Branch and exception logic will examine the pipeline 

valid bits to determine which instructions in the group with 
the branch or exception-causing instruction occur after the 
branch or exception-causing instruction. These instructions 
will be canceled, while the instructions occurring before the 
branch or exception-causing instruction will be allowed to 
continue through the pipelines. 
Pipeline Valid Bits for Compound Operations 
Compound instructions require two or more pipelines to 

process. When a compound instruction is dispatched, the 
encoding of the pipeline valid bits must be changed some 
what. Two additional bits for each entry are first and second 
compound dispatch bits. If a compound instruction is issued 
in the first issue slot by the first instruction decoder, then the 
first compound dispatch bit is set. If a compound instruction 
is issued in the second issue slot by the second instruction 
decoder, then the second compound dispatch bit is set. 
Additional bits in each entry code auxiliary issue slots which 
indicate the type of operation dispatched to the second 
pipeline by a compound instruction. These auxiliary issue 
slots are encoded in the same way that the first and second 
issue slots are encoded, as shown in Table 2. Since with three 
pipelines it is not possible to have two compound instruc 
tions dispatched in the same clock cycle, the auxiliary issue 
fields may be shared between the first and second issue slots. 

FUNCTION CONTROL WORDS 

Table 3 shows an encoding for the branch function control 
words that are generated by instruction decoders 20, 20', and 
22. These branch function control words are sent to the 
branch pipeline 10 and clocked down the pipeline. Portions 
of the control words can be discarded once the information 
encoded in that portion has been used and is no longer 
needed. Thus a portion of the control word that encodes the 
type of ALU operation might not be needed once the ALU 
operation is performed. This portion can be discarded once 
the ALU operation has been completed, but before the 
instruction has completed the pipeline. 

TABLE 3 

Branch Function Control Words 

Control Word Instruction 
Encoding Set Opcode 

000000 0000 0000 x86 or PPC nop 
000000 0000 0001 x86 or PPC reset 
OOOOOOOOO1 0000 PowerPCTM SC 
000000 000 0000 PowerPCTM rfi 
000001 01 cccc x86 Jcc 8-bit 

Displacement 
00000 10000 cccc x86 Jcc 16- or 32-bit 

Displ. 
000001 1001 cccc x86 SET Condition Code 
000001 110 001X x86 RETIII 
00 0001 110 000 x86 CALL 
x800 000111101001 x86 JUMP 16- or 32-bit 

Displ. 
000001 1101011 x86 JUMP 8-bit Displ. 
0000011111111 x86 Indirect (Reg.) 

Branch 
00001 eeeeeeee x86 Unsupported 

Instruction 
00 01dd dddp ppp0 PowerPC fM Condition Reg 

Boolean 
00 Oldd d00p ppp0 PowerPCTM Move CR Register 
00 Loo oooi iiii PowerPCTM Branch Conditional 
00 L1000x XXXX PowerPCTM Branch 
01 0Loooooi iiii PowerPCTM Branch CTR Reg 
0 Loo oooi iiii PowerPCTM Branch LR Reg 
11 0001 0010100 PowerPCTM Instr. Synch 
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TABLE 3-continued 

Branch Function Control Words 

Control Word Instruction 
Encoding Set Opcode 

100-m mmmm mmml PowerPCTM Move to CR 
Reg 

11 0100 0000 0001 PowerPCTM Move Reg to CR 

The following designations are used in Table 3 for fields 
within the control words that are used for immediate or 
select information: 

Don't Care 
x86 Condition Code Select 
Emulation Entry Point 

X 

CCCC 

ee 

pppp st Boolean Function Select 
d dddd = Boolean Destination Bit 

ddd = Booleal Destination Field 
iiiii - Select CR field to Evaluate for Branch 

OO OOO Branch Function Select 
L = Update Link Register if set 

Merge Mask for CR Merge Operation 

The function control word has the instruction set, x86 
CISC or PowerPCTM RISC, indirectly encoded into it, along 
with thc type of operation, and other specifics about the 
instruction. Thus there is no need to directly store an 
indication of the instruction set other than the encoding to 
indicate to the pipeline stages the functions to be performed. 
Some instructions, such as reset and nop, perform the same 
functions regardless of which instruction set the instruction 
decoded was from. Thus there is no need for an indication 
of the instruction set for these operations, and the instruction 
set is not encoded into the control words. Other functions 
will differ depending upon the instruction set. ACISCJUMP 
that examines the CISC condition codes performs a some 
what different function than a RISC branch conditional, 
which examines the RISC CR condition register. Thus two 
separate control words are encoded for the two separate 
functions performed by instructions from two different 
instruction sets. 

The ALU and the memory pipelines also have function 
control words. Each pipeline has its own unique format and 
size for its function control word. The ALU pipeline in 
particular requires about 100 control-word encodings, many 
more than the branch pipeline because of the wide variety of 
functions that can be performed by the ALU. Some 
examples of the ALU function control words are shown in 
Table 4, while some examples of Memory function control 
words are shown in Table 5. The 'E' encodes the OE bit 
indicating if the overflow bits in an exception register should 
be set, as for example, when multiply or divide is executing. 
The “R” bit is the record bit, which indicates if the flags or 
condition code registers should be updated by the operation. 

TABLE 4 

ALU Function Control Words 

Control Word Encoding Instruction Set Opcode 

O E10000 O10R PowerPCTM add 
OEO1110 1011 R PowerPCTM mulw 
0 000001 1100 R PowerPCTM and 
0 0100111100 R PowerPCTM X 
1 01100 0000 x PowerPCTM andi (and immediate) 
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TABLE 4-continued 

ALU. Function Control Words 

Instruction Set Control Word Encoding Opcode 

101010 0000 x PowerPCTM Xori (xor immediate) 
01000x xx010 x86 ADD 

1 0000x xx010 x86 AND 
1 0100 xx00 x86 MOW 
1 110000 xx010 x86 ROL (rotate left) 

For Table 5, "sz" encodes the size of the operand-byte, 
half-word, word, or double word, 'u' indicates update the 
address register, and ''x'' indicates that an index register is to 
be used to generate the address. 

TABLE 5 

Memory Function Control Words 

Control Word Instruction 
Encoding Set Opcode 

1001010010 PowerPCTM swi (load string word imm) 
00001101100 PowerPCTM dcbst (data cache block store) 
1000101100 PowerPCTM TLB synch 
0000x01110 PowerPCTM load word and zero 
00 lux01110 PowerPCTM store byte 
1.01ux01110 PowerPCTM stfd (store fp double) 
010OSZ1000 x86 read-execute 
011OSZ11000 x86 read-execute-write 
0000sz11 000 x86 loads-POP MOV, RET 
1000SZ1000 x86 stores-PUSH, MOV, CALL 

When an instruction is to set or clear flags in a condition 
code register, this information must also be generated and 
staged down the pipelines. A flag enable field may be 
attached to the function control word, or it may be a separate 
field. Since both RISC and CISC have corresponding flags, 
such as Zero, carry, overflow, and sign flags, a single flags 
field can be used by instructions from either instruction set 
to enable updating these flags. Table 6 shows that the RISC 
flags OV, CA, LT, EQ correspond to the CISC flags OF 
(overflow), CF (carry), SF (sign), and ZF (zero). Thus the 
same bit in the flags field can be used for either a RISC or 
a CISC instruction. The type of instruction set does not have 
to be encoded. 

TABLE 6 

Flags field 

Instruc 
tion Set Enables Walue 

RISC OV CA CR CR CR CR LT GT EQ OV xx xx CA 
CISC OF CF SF ZF AF PF SF xx ZF OF AF PF CF 

INSTRUCTION DECODER FOR RISC AND 
CISC 

FIG. 4 shows instruction decoder 20. A first or primary 
opcode field in instruction buffer 24 is sent to a CISC 
decoder 42 and a RISC decoder 44 for decoding the instruc 
tion's opcode. The opcode, as is well-known in the art, 
encodes the function or operation to be performed by the 
instruction, such as ADD, JUMP, or NOP. For some more 
complex RISC instructions, a secondary opcode field from 
instruction buffer 24 is also required to decode the instruc 
tion, and is therefore also sent to RISC decoder 44. A CISC 
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instruction may have its primary opcode field in an entirely 
different location within the instruction buffer 24, or it may 
be a different number of bits in width. For x86 and Pow 
erPCTM, thc primary opcode fields overlap and are thus 
shown in FIG. 4 as being the same field, although the 
field-widths differ. 

The CISC decoder 42 decodes the primary opcode assum 
ing that the instruction in instruction buffer 24 is a CISC 
instruction. Likewise the RISC decoder 44 decodes the 
primary opcode assuming that the instruction in instruction 
buffer 24 is a RISC instruction. The CISC and RISC 
instruction sets are substantially independent, having a sub 
stantially independent encoding of opcodes to functions or 
operations. Thus one of decoder 42, 44 will have an erro 
neous output. Each of decoder 42, 44 generates and outputs 
a function control word 31C, 31R from the opcode input to 
the decoders. 

A mode bit in a machine state register (not shown) in the 
processor indicates which mode the processor is in: CISC or 
RISC mode. As described in the co-pending applications in 
more detail, the mode bit is set when CISC instructions are 
being processed, or cleared when RISC instructions are 
being processed. This mode bit, C/R Mode, is used to select 
either the control word 31C from the CISC decoder 42, or 
the control word from the RISC decoder 44. Multiplexer or 
mux 50 selects either control word 31C or 31R under control 
of the CISC/RISC mode bit from the mode register, and 
outputs the selected control word. 
The first and second instruction decoder 20, 20' of FIG. 3 

both output three function control words 31M, 31A, 31B, 
one control word for each of the memory, ALU, and branch 
pipelines. Multiple control words can be generated for a 
single instruction because a compound instruction may be 
dispatched to more than one pipeline. Each pipeline needs its 
own control word to instruct that pipeline of the operations 
to perform. Thus, while FIG. 4 has for simplicity shown a 
single mux 50, and a single function control word 31 being 
output, the preferred embodiment has three muxes 50 and 
outputs up to three function control words, 31M, 31A, 31B. 
The RISC instruction set is extended to include special 

emulation-mode instructions which are useful in emulating 
CISC instructions. A special emulation instruction is a 
return-from-interrupt (rfi) instruction, which returns control 
to the CISC program that caused emulation mode to be 
entered. Thus the rfi instruction causes a switch from RISC 
emulation mode to CISC mode, and the CISC/RISC mode 
bit is set by the rfi instruction. These emulation instructions 
are decoded by an emulation decoder 46 which operates in 
conjunction with the RISC decoder 44. An emulation mode 
bit also stored in the machine state register enables the 
decoding of the emulation instructions. 

Other information besides the opcode may be present in 
the instruction buffer 24. This information may include 
fields to identify which general-purpose registers to use as 
the sources or destination of an operation, immediate data 
such as a constant for use by an operation, or a mask field. 
The exact locations of these fields in instruction buffer 24 
vary with the instruction as well as the instruction set. Field 
decoder 48 receives an indication of the type of instruction 
decoded by decoders 42, 44, and the CISC/RISC mode bit 
(not shown) and various portions of instruction buffer 24. 
Field decoder 48 then outputs source and destination register 
information onto bus 56, and immediate or mask informa 
tion on bus 58. Alternately, mask data may be encoded 
directly into the function control word, as is shown in Table 
3 for the PowerPCTM move to CR instruction (mtcrf). 
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End byte detect 52 receives information from the decod 

ers 42, 44 about the type of instruction encoded by the 
opcode in instruction buffer 24. End byte detect 52 then 
determines the size of the instruction being decoded and the 
address of the next sequential instruction. This address is 
transmitted to the next instruction decoder, either 20' or 22 
of FIG. 3, so the exact location of the opcode field of the 
second or third instructions can be determined, allowing 
decoding of the second and third instructions to begin. 

Pipelines required unit 54 determines which pipelines are 
required by the instruction being decoded. It receives infor 
mation on the type of instruction that was decoded from 
decoders 42, 44. This information can be similar to the 
entries in Table 1, identifying the general type of instruction 
rather than the exact instruction decoded. The pipelines 
required are sent to the pipeline allocate unit 26 and then to 
dispatcher 28 of FIG. 3. 
The instruction decoders for the first and second instruc 

tions are almost identical, and designated 20 and 20' in FIG. 
3. However, the third instruction decoder 22 is simpler 
because of the limited time available to decode the third 
instruction. FIG. 5 shows the third instruction decoder 22. 
There is not enough time to decode CISC instructions, so no 
CISC decoder or emulation mode decoder is included. RISC 
decoder 44' is a reduced decoder, capable of decoding only 
simple branch instructions. Only a single function control 
word 31B is generated for the branch pipeline. Otherwise, 
the third instruction decoder of FIG. 5 operates in a similar 
fashion to that described in reference to FIG. 4. 

SWITCH TO ALTERNATE INSTRUCTION SET 
WITHOUT PIPELINE FLUSH 

Since many instructions may be processed at the same 
time, the processor could restrict the pipelines to processing 
instructions from only one of the instruction sets at any one 
time. However, the invention does not impose this restric 
tion, allowing instructions from the two instruction sets to be 
freely mixed in the pipelines. This is a tremendous advan 
tage for executing short emulation routines of RISC instruc 
tions for some of the more complex CISC instructions. 
Purging the pipeline for every switch between instruction 
sets would severely reduce the performance of any program 
being partially emulated in the other instruction set. The 
expected frequency of switches to emulation mode is about 
1% of the CISC instructions, and the average # of instruc 
tions in RISC mode between switches is 15–25. Flushing 
would add 6 to 8 more clocks for each CISC instruction 
emulated. 

Instructions from two instruction sets may be dispatched 
together during the same clock cycle with a modification of 
the apparatus of FIGS. 3 and 4. A switch to the alternate 
instruction set is typically a branch or unconditional jump of 
Some sort, such as a call or return-from-interrupt. Unsup 
ported CISC instructions cause an entry to emulation mode, 
and thus act as an unconditional jump. For example, in Table 
3 the functional control word encoded "000011 eeeeeeee' 
is an x86 unsupported instruction and causes a jump to the 
emulation entry point identified in the “eeeeeeee" field in 
the control word. Branch prediction logic can detect these 
types of branches that switch the instruction set. Such a 
branch prediction apparatus is described in more detail in the 
copending application for a "Dual-Architecture Exception 
and Branch Prediction using a Fault-Tolerant Target Finder 
Array', filed Aug. 31, 1994, U.S. Ser. No. 08/298,778, 
hereby incorporated by reference. When an instruction is 
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?ctched having a predicted branch instruction, the predicted 
target address is calculated at the same time as the fetch. 
Thus the targct instruction can often be supplied to one of the 
instruction buffers during the same clock cycle as the branch 
instruction is delivered to the instruction buffer. 
Thus a branch instruction could be loaded into the first 

instruction buffer 24 of FIG. 3, while the target instruction 
for that branch is loaded into the second instruction buffer 
24'. The group of instructions dispatched could have both the 
branch instruction and its target, which are discontinuous. 
The branch instruction can be a standard branch that does 

not switch to the alternate instruction set, or it could be a 
branch that does switch to the alternate instruction set. When 
the instruction set is to switch, then the target instruction 
must be decoded by a different decoder type than the branch 
instruction. For example, a CISC branchinstruction could be 
loaded into the first instruction buffer 24, and would be 
decoded by the CISC instruction decoder 42 of FIG. 4. The 
CISC/RISC mode bit in the first instruction decoder 20 
would be set to CISC mode, selecting the decoded CISC 
instruction. However, the second instruction buffer 24' is 
loaded with the target of the first (CISC) instruction. This 
target is a RISC instruction. Branch prediction logic recog 
nizes that the branch instruction also causes a switch to the 
alternate instruction set. Thus branch prediction logic causes 
the CISC/RISC mode bit in the second instruction decoder 
20' to switch to RISC mode. The RISC decoder 44 in the 
second instruction decoder 20' would be enabled, and the 
decoded RISC instruction would be used to generate the 
control word for the second instruction. 

SHARED BYPASS AND INTERLOCK LOGIC 

The bypass and interlock logic is shared between the two 
instruction sets. Synonyms are defined for the architectural 
registers of the two instruction sets. Thus the CISC register 
EAX is synonymous with the RISC register ro, while the 
CISC register ESI is synonymous with the RISC register ré. 
The field decoder 48 of FIG. 4 outputs the RISC-type 
registers even when CISC mode is being decoded. Thus field 
decoder 48 translates CISC registers into their RISC equiva 
lents before being outputted to bus 58. 

Table 7 shows the codes outputted by field decoder 48 of 
FIG. 4. A five-bit code in the register select field identifies 
which one of the 32 registers is to be accessed. For CISC 
mode, it is possible to perform a 32-bit access. When this 
happens, the register encoding is the same as for RISC 
mode. However, CISC mode can also access only 8 or 16 
bits of a 32-bit register, and the 16-bits can be only the low 
half of the 32-bit register. The 8-bit access can only be to the 
low 16-bit of the 32-bit register, but can be either the first or 
second byte. These possibilities are encoded in the type field 
of Table 7. The register select field is also used to select 
floating point registers, and the type field indicates the size 
of the access, 32, 64, or 80 bits. 

TABLE 7 

Register Field ID Encoding 

Register 
Instruction Type Select 
Set Field Field Meaning 

RISC or CISC 000 nnnnn 32-bit access to reginnnnn 
CISC 001 000mn. 8-bit access to registernn 

(low byte) 
CISC 010 00nnn 16-bit access to register nnn 
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TABLE 7-continued 

Register Field ID Encoding 

Register 
Instruction Type Select 
Set Field Field Meaning 

CISC 011 000mn. 8-bit access to register Inn 
(high byte) 

RISC or CISC 100 lxxxx No register (immediate) 
RISC Or CISC 100 0xxx No register or immediate 
RISC or CSC 10 nnnn 32-bit access to FP register 

RISC Or CISC 10 nnnnn 64-bit access to FP register 

RISC or CISC 111 00nnn 80-bit access to FP register 

Leading Zeros in the register select field of Table 7 
indicate that only a few of the 32 registers may be selected. 
For example, while a 32-bit access may select any of 32 
registers, and thus all 5 bits of the select field are used 
(2=32), for 8-bit accesses the upper 3 bits are always zero, 
because only registers 0-3 can be selected since the CISC 
architecture only defines four registers for 8-bit access. 
Likewise, only 2=8 floating point registers are 80-bits wide; 
the other 24 floating point registers are only 64-bits wide. 

Sharing the bypass and interlock logic and forming syn 
onyms for the CISC registers allows for both RISC and 
CISC instructions to be in the pipelines at the same time. It 
is even possible for both RISC and CISC instructions to exist 
in the same group. This can occur if the RISC and CISC 
instructions are dispatched together during the same clock 
cycle. The shared bypass logic allows dependencies to exist 
between the two instruction sets and to be resolved. For 
example, a code sequence of a CISC instruction followed by 
a RISC and then another CISC instruction could be pro 
cessed: 

Instruction Set Instruction RISC Register Equivalent 

CISC POPESI (ESP) ré, (ra) 
RISC add ro, ré, r8 r0, ré, r8 
CISC ADD EAX, EAX r0,rO 

This code sequence has a dependency between the ESI 
value loaded by the CISC POP instruction and the register 
ró value needed as a source in the RISC add instruction. 
Since ESI is translated to ré by the field decoder 48, the 
bypass and interlock logic correctly identifies a data inter 
lock for ré between the CISC and RISC instructions. A 
second dependency exists for ro, which is a result of the 
RISC add instruction, and is a source needed by the CISC 
ADD instruction. Field decoder 48 translates the EAX 
register source of the CISCADD instruction to register ro, 
allowing the bypass and interlock logic to detect the register 
r0 dependency between the RISC add and the CISC ADD 
instructions. 

The sharing of architectural registers is described more 
fully in the copending application for a "Shared Register 
Architecture for a Dual-Instruction-Set CPU', filed Jul. 20, 
1994, U.S. Ser. No. 08/277,962, now U.S. Pat. No. 5,481, 
693, hereby incorporated by reference. 

INSTRUCTIONS FROM TWO SETS EN 
PIPELINEAT SAME TIME 

The invention allows for having instructions from two 
instruction sets in the pipelines at the same time. Any or all 
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of the three pipclines can have both RISC and CISC instruc 
tions in them at any time, and any group of instructions can 
have both RISC and CISC instructions in thc group in the 
pipelines. There is not one pipeline for RISC and another 
pipeline for CISC; rather, all pipelines are used for all 
instruction sets and may freely mix instructions from the two 
instruction sets. This mixing is possible because of the single 
format for the function control words from either instruction 
set. Pipeline control is facilitated by converting CISC reg 
isters into their RISC register equivalents when the control 
words are being generated. This allows the bypass and 
interlock logic to be shared between the two instruction sets, 
and allows for instructions from more than one instruction 
set to be present in the pipeline at any time. 

ALTERNATE EMBODIMENTS 

Several other embodiments are contemplated by the 
inventor. For example, many encodings are possible for the 
function control words, and mask, immediate, or register 
information may or may not be encoded into the control 
words. Two pipelines could use a similar format for the 
control words. Different encodings for the pipeline stage 
valid bits are also contemplated. Auxiliary encodings for 
compound instructions can be achieved in a variety of ways. 
The number and functions of the pipelines may also be 
varied. Two or more ALU, branch, or Memory pipelines 
could be provided for, or two of the pipelines could be 
combined into one pipeline. The invention is not intended to 
be limited to the two instruction sets described in the 
preferred embodiment, nor to only two instruction sets, but 
it is anticipated that the teachings disclosed herein will 
enable those of skill in the art to design processors for 
multiple instruction sets beyond the RISC and CISC instruc 
tion sets described herein. 

The various logic blocks described herein may be merged 
with other blocks. While an embodiment having separate 
CISC and RISC instruction decodes has been described, it is 
possible that these decoders could have some common logic 
functions and thus could be merged or combined together 
while still providing decoding of both instruction sets. The 
decoders may also be combined with the mux for selecting 
either the decoded RISC instruction or the decoded CISC 
instruction. The generation of the function control words 
could be partitioned into the separate RISC and CISC 
decoders, as described in the detailed description, or the 
function control words could be generated by a logic block 
after receiving some intermediate information from the 
RISC and CISC decoders. Additional or separate registers 
and bypass logic may be provided for RISC and CISC 
modes. 
Branch prediction may be implemented in many ways and 

may have various capabilities. The invention does not 
depend upon any particular type of branch prediction, and 
may be implemented without branch prediction, although 
the benefits from using branch prediction are significant. The 
invention does allow for taken branches to be dispatched 
together with their targets. An instruction stream disconti 
nuity may therefore exist within a group of instructions in a 
stage in the pipelines. The branch may be one that switches 
to another instruction set, and the invention allows a group 
of instructions in a stage in the pipelines to have instructions 
from multiple instruction sets. Thus instructions from dif 
ferent instruction sets may be dispatched together and freely 
mixed in the pipelines. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
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20 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 

I claim: 
1. A central processing unit (CPU) for processing instruc 

tions from two separate instruction sets, the CPU compris 
ing: 
RISC instruction decode means for decoding instructions 

from a RISC instruction set, the RISC instruction set 
having a first encoding of operations; 

CISC instruction decode means for decoding instructions 
from a CISC instruction set, the CISC instruction set 
having a second encoding of operations, the first encod 
ing of operations substantially independent from the 
second encoding of operations; 

instruction set indicating means for indicating an instruc 
tion set to be decoded, the instruction set indicating 
means having a RISC state indicating that the RISC 
instruction set be decoded, the instruction set indicating 
means having a CISC state indicating that the CISC 
instruction set be decoded; 

select means, coupled to the RISC instruction decode 
means and the CISC instruction decode means, for 
outputting a control word, the control word generated 
from a decoding of an instruction from the RISC 
instruction set by the RISC instruction decode means 
when the instruction set indicating means is in the 
RISC state, the control word generated from a decoding 
of an instruction from the CISC instruction set by the 
CISC instruction decode means when the instruction 
set indicating means is in the CISC state, the control 
word having a third encoding of operations to control 
words, the third encoding of operations to control 
words being related to but substantially different from 
the first encoding and the second encoding; and 

execute means, coupled to the select means and receiving 
the control word, for executing operations, the execute 
means executing an operation decoded by the RISC 
instruction decode means when the instruction set 
indicating means is in the RISC state, the execute 
means executing an operation decoded by the CISC 
instruction decode means when the instruction set 
indicating means is in the CISC state, 

wherein RISC instructions and CISC instructions are 
directly decoded to the control word, the CISC instruc 
tions not being translated to RISC instructions, 

whereby instructions from both the RISC instruction set and 
the CISC instruction set are decoded into control words 
which are executed by the CPU. 

2. The CPU of claim 1 wherein the execute means 
comprises: 

a plurality of pipelines, each pipeline in the plurality of 
pipelines comprising a sequence of stages, each pipe 
line for executing a subset of operations encoded by the 
RISC instruction set and a subset of operations encoded 
by the CISC instruction set, each pipeline responsive to 
a particular format of the control word. 

3. The CPU of claim 2 wherein 
the select means generates the control word and a sec 

ondary control word when a compound instruction is 
decoded, the compound instruction encoding two 
operations, a primary operation and a secondary opera 
tion, and wherein the plurality of pipelines comprises: 
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a first pipelinc, receiving the control word, for executing 
the primary operation indicated by the control word; 
and 

a second pipeline, receiving the secondary control word, 
for exccuting the secondary operation indicated by the 
secondary control word, 

whereby compound instructions are decoded into two con 
trol words which are executed by two pipelines. 

4. The CPU of claim 2 wherein the RISC instruction 
decode means and the CISC instruction decode means 
comprise a first decoder, the first decoder decoding a first 
instruction which encodes a first operation, the plurality of 
pipclines further comprising: 

a first pipeline for executing a first subset of operations, 
the first subset of operations comprising a subset of 
operations encoded by the RISC instruction set and a 
subset of operations encoded by the CISC instruction 
set, and 

a second pipeline for executing a second subset of opera 
tions, the second subset of operations comprising a 
subset of operations encoded by the RISC instruction 
set and a subset of operations encoded by the CISC 
instruction set; 

the CPU further comprising: 
a second decoder for decoding a second instruction which 

encodes a second operation, the second decoder having 
a RISC instruction decode means for decoding RISC 
instructions and a CISC instruction decode means for 
decoding CISC instructions, the second decoder out 
putting a second control word, the second control word 
encoding an operation of a RISC instruction when the 
instruction set indicating means is in the RISC state but 
the second control word encoding an operation of a 
CISC instruction when the instruction set indicating 
means is in the CISC state; and 

dispatch means for allocating the plurality of pipelines, 
the dispatch means allocating the first pipeline to the 
first decoder if the first operation is an operation in the 
first subset of operations, the dispatch means allocating 
the second pipeline to the first decoder if the first 
operation is an operation in the second subset of 
operations, 

the dispatch means further allocating the first pipeline to 
the second decoder if the second operation is an opera 
tion in the first subset of operations and the first 
operation is outside of the first subset of operations, the 
dispatch means allocating the second pipeline to the 
second decoder if the second operation is an operation 
in the second subset of operations and the first opera 
tion is outside of the second subset of operations, 

whereby two RISC or CISC instructions are dispatched to 
the plurality of pipelines. 

5. The CPU of claim 4 further comprising: 
a pipeline valid array, loaded by the dispatch means, for 

indicating valid instructions in the plurality of pipe 
lines, the pipeline valid array encoding if the first 
operation is in the first subset of operations, the second 
subset of operations, or not valid, the pipeline valid 
array further encoding if the second operation is in the 
first subset of operations, the second subset of opera 
tions, or not valid, 

whereby validity and order of operations in the plurality of 
pipelines is encoded and stored in the pipeline valid array. 

6. The CPU of claim 5 wherein the first Subset of 
operations comprises arithmetic-logic-unit (ALU) opera 
tions, the CPU further comprising a floating point pipeline 
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for processing floating point operations, the dispatch means 
allocating both the floating point pipeline and the first 
pipeline to a floating point instruction decoded by the first 
decoder. 

7. The CPU of claim 4 wherein 

the plurality of pipelines further comprises a third pipeline 
for executing a third subset of operations, the third 
Subset of operations comprising operations encoded by 
the RISC instruction set and operations encoded by the 
CISC instruction set, 

the dispatch means allocating the third pipeline to the first 
decoder if the first operation is an operation in the third 
subset of operations, the dispatch means allocating the 
third pipeline to the second decoder if the second 
operation is an operation in the third subset of opera 
tions and the first operation is outside of the third subset 
of operations. 

8. The CPU of claim 7 further comprising 
a third decoder for decoding a third instruction encoding 

a third operation, the third decoder having a RISC 
instruction decode means for decoding RISC instruc 
tions, the third decoder outputting a third control word 
encoding a RISC branch operation when the third 
instruction is a RISC branch instruction, the third 
decoder being disabled when the third instruction is not 
a RISC branch instruction, and wherein 

the dispatch means allocates the third pipeline to the third 
decoder if the third operation is a RISC branch opera 
tion and the first operation is outside of the third subset 
and the second operation is outside of the third subset, 

whereby a third instruction is dispatched to the third pipeline 
if the third instruction is a RISC branch instruction. 

9. The CPU of claim 8 wherein 
the first subset of operations comprises arithmetic-logic 

unit (ALU) operations, the first pipeline for executing 
ALU operations; 

the second subset of operations comprises memory opera 
tions, the second pipeline for executing memory opera 
tions; and 

the third subset of operations comprises branch opera 
tions, the third pipeline for executing branch opera 
tions. 

10. The CPU of claim 2 wherein the RISC instruction 
decode means and the CISC instruction decode means 
comprise a first decoder, the first decoder decoding a first 
instruction which encodes a first operation, the plurality of 
pipelines further comprising: 

a first pipeline for executing a first subset of operations, 
the first subset of operations comprising a subset of 
operations encoded by the RISC instruction set and a 
subset of operations encoded by the CISC instruction 
set; and 

a second pipeline for executing a second subset of opera 
tions, the second subset of operations comprising a 
subset of operations encoded by the RISC instruction 
set and a subset of operations encoded by the CISC 
instruction set, 

the CPU further comprising: 
second instruction set indicating means for indicating an 

instruction set to be decoded for a second instruction, 
the second instruction set indicating means having a 
RISC state indicating that the RISC instruction set be 
decoded, the second instruction set indicating means 
having a CISC state indicating that the CISC instruc 
tion set be decoded; 
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a second decoder for decoding the second instruction 
which encodes a second operation, the second decoder 
having a RISC instruction decode means for decoding 
RISC instructions and a CISC instruction decode 
means for decoding CISC instructions, the second 
decoder outputting a second control word, the second 
control word encoding an operation of a RISC instruc 
tion when the second instruction set indicating means is 
in the RISC state but the second control word encoding 
an operation of a CISC instruction when the second 
instruction set indicating means is in the CISC state; 
and 

dispatch means for allocating the plurality of pipelines, 
the dispatch means allocating the first pipeline to the 
first decoder if the first operation is in the first subset of 
operations, the dispatch means allocating the second 
pipeline to the first decoder if the first operation is in the 
second subset of operations, 

the dispatch means further allocating the first pipeline to 
the second decoder if the second operation is an opera 
tion in the first subset of operations and the first 
operation is outside of the first subset of operations, the 
dispatch means allocating the second pipeline to the 
second decoder if the second operation is an operation 
in the second subset of operations and the first opera 
tion is outside of the second subset of operations, 

whereby both a RISC and a CISC instruction are dispatched 
to the plurality of pipelines. 

11. The CPU of claim 10 wherein 

the second instruction set indicating means is coupled to 
the instruction set indicating means, 

if the first operation is outside of a subset of instruction 
set-switching operations, the second instruction set 
indicating means is in the RISC state when the instruc 
tion set indicating means is in the RISC state, the 
second instruction set indicating means is in the CISC 
state when the instruction set indicating means is in the 
CISC state; 

if the first operation is in the subset of instruction-set 
Switching operations, the second instruction set indi 
cating means switches to the RISC state when the 
instruction set indicating means is in the CISC state, the 
second instruction set indicating means switching to 
the CISC state when the instruction set indicating 
means is in the RISC state, 

whereby the second decoder switches to decoding an alter 
nate instruction set when an instruction-set-switching 
instruction is decoded by the first decoder. 

12. The CPU of claim 11 wherein the first and second 
instructions are dispatched within a single clock period, 
whereby a CISC and a RISC instruction are dispatched 
during the single clock period. 

13. The CPU of claim 1 further comprising: 
field decode means, receiving RISC instructions from the 
RISC instruction set and receiving CISC instructions 
from the CISC instruction set, for decoding source and 
destination fields which indicate registers in the CPU, 
the field decode means coupled to the instruction set 
indicating means, 

the field decode means outputting codes, including source 
codes and destination codes for registers accessible to 
the RISC instructions when the instruction set indicat 
ing means is in the RISC state, the field decode means 
converting codes for registers accessible to CISC 
instructions into codes for registers accessible to RISC 
instructions when the instruction set indicating means 
is in the CISC state, 
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whereby a single set of register codes is used by RISC 
instructions and CISC instructions. 

14. The CPU of claim 13 further comprising 
bypass and interlock control means, receiving the codes 

for registers from the field decode means, for bypassing 
a result from a prior instruction to a source for a current 
instruction when a destination code for the prior 
instruction matches a source code for the current 
instruction, 

wherein the current instruction has a dependency to the 
prior instruction when the destination code for the prior 
instruction matches the source code for the current 
instruction, and wherein the prior instruction and the 
current instruction belong to different instruction sets, 

whereby a dependency may be detected between instruc 
tions from different instruction sets. 

15. The CPU of claim 4 wherein the first decoder further 
comprises 
means for detecting a move immediate instruction, the 
move immediate instruction encoding a move imme 
diate operation, both the first subset of operations and 
the second subset of operations including the move 
immediate operation, the first pipeline for executing the 
move immediate operation and the second pipeline for 
executing the move immediate operation; 

and wherein if a move immediate instruction is detected by 
the means for detecting 

the dispatch means allocates the first pipeline to the 
second decoder if the second operation is an opera 
tion in the first subset of operations, the dispatch 
means allocates the second pipeline to the second 
decoder if the second operation is an operation in the 
second subset of operations, 

the dispatch means further allocates the first pipeline to 
the first decoder if the first operation is an operation 
in the first subset of operations and the second 
operation is outside of the first subset of operations, 
the dispatch means allocates the second pipeline to 
the first decoder if the first operation is an operation 
in the second subset of operations and the second 
operation is outside of the second subset of opera 
tions, 

whereby the second instruction is dispatched to the plurality 
of pipelines before the first instruction is dispatched when a 
move immediate instruction is detected in the first decoder. 

16. A microprocessor for processing instructions from two 
separate instruction sets, the microprocessor comprising: 
CISC 

RISC instruction decode means for decoding instructions 
from a RISC instruction set, the RISC instruction set 
having a first encoding of operations, the RISC instruc 
tion decode means generating a first control word 
encoding an operation decoded by the RISC instruction 
decode means, 

CISC instruction decode means for decoding instructions 
from a CISC instruction set, the CISC instruction set 
having a second encoding of operations, the first encod 
ing of operations substantially independent from the 
second encoding of operations, the CISC instruction 
decode means generating a second control word encod 
ing an operation decoded by the CISC instruction 
decode means; 

select means, coupled to the RISC instruction decode 
means and the CISC instruction decode means, for 
selecting either the first control word from the RISC 
instruction decode means or the second control word 
from the CISC instruction decode means; 
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instruction set indicating means for indicating an instruc 
tion set to be decoded, the instruction Sct indicating 
mcans having a first state indicating that the RISC 
instruction set be decoded, the instruction set indicating 
mcans having a second state indicating that the CISC 
instruction set be decoded; 

the instruction set indicating means coupled to the select 
means, the select means selecting the first control word 
from the RISC instruction decode means when the 
instruction set indicating means is in the first State 
indicating that the RISC instruction set be decoded, the 
select means selecting the second control word from 
the CISC instruction decode means when the instruc 
tion set indicating means is in the second State indicat 
ing that the CISC instruction set be decoded; 

the first control word and the second control word both 
having a third encoding of operations to control words, 
the third encoding of operations to control words being 
related to but substantially different from the first 
encoding and the second encoding; and 

execute means, coupled to the select means and receiving 
first control words and second control words, for 
executing operations, the execute means executing the 
operation decoded by the RISC instruction decode 
means when the first control word is received from the 
select means, the execute means executing the opera 
tion decoded by the CISC instruction decode means 
when the second control word is received from the 
select means, 

whereby instructions from both the RISC instruction set and 
the CISC instruction set are decoded into control Words 
which are executed by the microprocessor. 

17. The microprocessor of claim 16 wherein the execute 
means comprises: 

a plurality of pipelines, each pipeline in the plurality of 
pipelines comprising a sequence of stages, each pipe 
line for executing a subset of operations encoded by the 
RISC instruction set and a subset of operations encoded 
by the CISC instruction set, each pipeline responsive to 
a particular format of control words. 

18. A method for simultaneously processing instructions 
from a plurality of instruction sets in a processor having a 
plurality of pipelines, the method comprising: 

decoding a RISC instruction in a RISC instruction 
decoder and determining an operation encoded by a 
first opcode in the RISC instruction using a first encod 
ing of operations to opcodes for a RISC instruction set; 

allocating at least one pipeline in the plurality of pipelines 
to the RISC instruction, the at least one pipeline having 
a functional unit for performing the operation encoded 
by the first opcode; 

generating at least one control word for the RISC instruc 
tion, the at least one control word for indicating to the 
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functional unit to perform the operation encoded by the 
first opcode; 

transmitting the at least one control word to the at least 
one pipeline; 

executing the operation encoded by the first opcode in the 
at least one pipeline; 

decoding a CISC instruction in a CISC instruction 
decoder and determining an operation encoded by a 
second opcode in the CISC instruction using the first 
encoding of operations to opcodes for the RISC instruc 
tion set when the RISC instruction is outside of a subset 
of instructions that change an instruction set being 
processed, but determining the operation encoded by 
the second opcode in the CISC instruction using a 
second encoding of operations to opcodes for the CISC 
instruction set when the RISC instruction is within the 
subset of instructions that change the instruction Set 
being processed; 

allocating a second pipeline in the plurality of pipelines to 
the second instruction, the second pipeline having a 
second functional unit for performing the operation 
encoded by the second opcode, the second pipeline 
being a different pipeline than the at least one pipeline; 

generating a second control word for the CISC instruc 
tion, the second control word for indicating to the 
second functional unit to perform the operation 
encoded by the second opcode; 

transmitting the second control word to the second pipe 
line; and 

executing the operation encoded by the second opcode in 
the second pipeline; 

whereby instructions from a plurality of instruction sets are 
processed by a plurality of pipelines. 

19. The method of claim 18 wherein 
the at least one control word is transmitted to the at least 

one pipeline and the second control word is transmitted 
to the second pipeline during a single clock cycle, 

whereby the RISC and CISC instruction are dispatched 
within the single clock cycle. 

20. The method of claim 19 wherein 
the first encoding of operations to opcodes for the RISC 

instruction set is substantially independent from the 
second encoding of operations to opcodes for the CISC 
instruction set. 

21. The method of claim 20 wherein 
the subset of instructions that change the instruction set 

being processed comprises a plurality of unsupported 
complex instructions in the RISC instruction set that 
are not decodable by the RISC instruction decoder. 
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