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1. 

MASTER-SLAVE CACHE SYSTEM FOR 
INSTRUCTION AND DATA CACHE 

MEMORIES 

BACKGROUND OF THE INVENTION-FIELD 
OF THE INVENTION 

This invention relates to cache memory systems, and 
more particularly to a masterslave cache system. 

BACKGROUND OF THE 
INVENTION-DESCRIPTION OF THE 

RELATED ART 

Memory access delays have not been reduced as quickly 
as have logic delays within central processing units (CPU's) 
or microprocessors. These logic delays within microproces 
sor pipelines have been reduced with new design techniques 
such as super-scalar design, where two or more pipelines can 
operate in parallel to effectively process two or more instruc 
tions in each clock cycle. Reduced instruction set computer 
(RISC) systems simplify the pipeline, allowing the clock to 
be run at a still higher frequency. Thus newer processors 
require a higher bandwidth for both instructions and data 
operands to satisfy multiple pipelines operating at higher 
frequencies. 
A memory hierarchy is often set up, in which a few small 

registers lie within the microprocessor core. A small level-1 
cache memory is placed on the microprocessor die, and a 
level-2 cache memory on the system board, with dynamic 
RAM (DRAM) comprising the large main memory. Main 
taining coherency between each of these levels in the 
memory hierarchy can be difficult and can slow down the 
cache memories in particular. Prefetching of instructions can 
also increase the complexity of the cache and slow down the 
cache. 

The trend in recent years has been to put a level-1 cache 
on the microprocessor die. As the processor pipeline 
becomes faster, the level-1 cache size has been increased to 
increase the hit rate of the level-1 cache. A high hit rate is 
necessary because the miss penalty is high, requiring that a 
slower off-chip level-2 cache or main memory be accessed. 
Often the level-1 cache is made multi-way set-associative to 
improve its hit rate. This has led to larger and more complex 
on-chip caches. However, the larger and more complex the 
cache becomes, the more difficult it becomes to make the 
cache fast enough to meet the bandwidth of the processor 
pipelines, as shown in FIG.1. As cache size is increased, the 
miss rate 12 decreases. However, the raw access time 10 to 
retrieve data from the cache increases with the cache size 
and associativity because of the larger delays from the 
longer signal-line traces and capacitive delays from addi 
tional memory cells. For a pipeline operating at 66 Mhz, and 
requiring one instruction and one data operand per cycle, 
data must be accessed from the cache every 7.5 nanoseconds 
(ns). However, this 7.5ns access time 14 sets an upper limit 
16 of 2K for the cache size for the example of FIG. 1. The 
2K cache will therefore have a higher miss rate 18 due to the 
need for the fast access time. 
A "Harvard' architecture is often needed to meet the 

bandwidth required by the two main pipelines-one for 
instructions and a second pipeline for data operands. These 
pipelines may be connected together within the processor 
core or they may be separate. For example, the instruction 
pipeline may decode instructions and feed an execution 
pipeline with decoded instructions, while the data pipeline 
also sends data operands to the execution pipeline. Alter 

5 

O 

15 

20 

25 

30 

35 

40 

45 

50 

55 

65 

2 
nately, a branch-instruction pipeline may be used to process 
branch instructions only, and would not feed decoded branch 
instructions to the execution pipeline. 
The Harvard architecture of FIG.2 shows a main memory 

34 supplying a processor core 20. Two separate caches are 
provided in the Harvard architecture, one cache 15 to supply 
the instruction pipeline 22, with a second cache 17 to supply 
data operands to the execution pipeline 24. However, this 
architecture is not flexible because fixed caches must be 
provided for data and instructions rather than having both 
share the same cache. A single, unified cache is more flexible 
because the percentage of the cache apportioned for instruc 
tions or data can vary over time, depending on the require 
ments of programs being executed. Providing two separate 
sets of address and data buses and pins 13, 11 for connection 
to off-chip data and instruction caches would also be expen 
sive. If only one set of pins is provided, then both the 
instruction cache 15 and the data cache 17 must contend for 
the same set of pins which may become a bottleneck. In 
addition, coherency can be a problem, especially when data 
operands are stored to the instruction stream. Coherency 
requests, or "snoops' must usually be sent to both caches. 
Large, complex separate caches, even though smaller than a 
unified cache, are often required. 

On-chip caches are becoming more of a bottleneck to 
processor performance. They need to be larger and more 
complex because the off-chip miss penalty is becoming 
relatively higher. Processor technology allows for rapid 
increases in pipeline speed but off-chip memory access 
times have been unable to achieve commensurate speed 
increases. However, larger, more complex caches are not as 
fast as smaller, simpler caches, and may not be able to match 
the processor's pipeline clock rate and maximum band 
width. 

What is desired is a caching scheme that will provide the 
benefits of large on-chip caches with low miss rates, but also 
offer the speed advantage of small, simple caches. It is also 
desired to provide for complex cache management opera 
tions such as prefetching, snooping, and cache coherency 
without creating a bottleneck for the processor's pipelines. 

SUMMARY OF THE INVENTION 

A master-slave caching scheme includes a larger master 
cache that provides a low miss rate, and supports all 
prefetching and cache coherency operations. The master 
cache controls two smaller slave caches, a slave-instruction 
cache and a slave-data cache. The master cache includes 
valid bits for the slave caches, and will instruct the slave 
caches to invalidate a line when a coherency hit is detected 
by the master cache. A store to the instruction stream will 
cause the master cache to instruct the slave instruction cache 
to invalidate the corresponding line in the slave-instruction 
cache. 

The instruction and data slave caches are kept small and 
simple so that they can match the bandwidth required by 
their respective pipelines. The master cache is tightly 
coupled to the slave caches which results in a low miss 
penalty for a slave cache miss that hits in the master cache. 
Thus the slave caches provide the high bandwidth required 
by the pipelines, while the master cache provides a low miss 
rate with a large size and associative organization. 
The master-slave cache system is for transferring data 

between a main memory and a central processing unit 
(CPU). The CPU has an instruction pipeline and an execu 
tion pipeline, while the main memory stores a plurality of 
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data operands and a plurality of instructions. The instruction 
pipeline decodes instructions at a first rate, while the execu 
tion pipeline is executing at a second rate. The system 
comprises a master cache for storing data operands and 
instructions. The master cache is coupled to the main 
memory and stores a first subset of the plurality of data 
operands and a second subset of the plurality of instructions 
stored in the main memory. 
A slave instruction cache is coupled to the master cache 

and is coupled to the instruction pipeline. It stores a third 
subset of the instructions stored in the master cache, the third 
subset being a subset of the second subset. The slave 
instruction cache is capable of transferring instructions to 
the instruction pipeline at the first rate. 
A slave data cache is coupled to the master cache and is 

coupled to the execution pipeline. It stores a fourth subset of 
the data operands in the master cache, the fourth subset 
being a subset of the first subset. The slave data cache is 
capable of transferring data operands to the execution pipe 
line at the second rate. 
The slave instruction cache matches the instruction trans 

ferrate required by the instruction pipeline, while the slave 
data cache matches the data-operand transfer rate required 
by the execution pipeline. The overall miss rate of the 
master-slave cache system is improved by the larger capac 
ity of the master cache, while the processor's bandwidth 
requirements are satisfied by the slave caches. 

In another aspect of the invention, an invalidation means 
coupled to the master cache invalidates data words in both 
the master cache and the slave caches. The master cache 
contains master tags that include valid bits for the slaves. 
Thus all invalidation, snoop, and cache management opera 
tions are handled by the master cache, which signals to the 
slave caches to invalidate a line only after a matching line 
has been detected as being present in the slave cache. Thus 
the searching that is required by cache management opera 
tions is performed by the master cache for the slave caches, 
freeing the slave caches of the added complexity and band 
width loss. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a graph of the relationship between cache size, 
miss rate, and access time. 

FIG. 2 is a diagram of a prior-art Harvard-architecture 
cache. 

FIG. 3 illustrates a microprocessor employing the master 
slave cache. 

FIG. 4 is a diagram of the tags stored in the master-slave 
cache. 

FIG. 5 is a is a flowchart of the basic sequence of 
operations when one of the pipelines accesses data or an 
instruction from one of the slave caches. 

FIG. 6 is a flowchart for a simple invalidate instruction. 
FIG. 7 is a flowchart of an external snoop operation. 
FIG. 8 is a flowchart for a cache flush operation. 
FIG. 9 is a flowchart for a data-cache-block-zero opera 

tion. 
FIG. 10 is a flowchart for a store-to-instruction-stream 

operation. 
FIG. 11 shows the store queue within the microprocessor 

die. 
FIG. 12 is a set-associate master cache with a common 

LRU field. 
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4 
FIG. 13 is a diagram of a store queue tag. 

DETALED DESCRIPTION 

The present invention relates to an improvement in cache 
organization. The following description is presented to 
enable one of ordinary skill in the art to make and use the 
invention as provided in the context of a particular applica 
tion and its requirements. Various modifications to the 
preferred embodiment will be apparent to those with skill in 
the art, and the general principles defined herein may be 
applied to other embodiments. Therefore, the present inven 
tion is not intended to be limited to the particular embodi 
ments shown and described, but is to be accorded the widest 
scope consistent with the principles and novel features 
herein disclosed. 

MASTER-SLAVE CACHE ARRANGEMENT 

A cache on the same substrate or die with a micropro 
cessor can supply the maximum bandwidth of the proces 
sor's pipelines while being large enough to have a low miss 
rate. The cache is arranged as a large master cache which 
controls two smaller slave caches, one slave instruction 
cache for supplying the instruction pipeline with instruc 
tions, and a second slave data cache for supplying data 
operands to the execution pipeline. 

FIG. 3 illustrates a microprocessor substrate or die 20 
containing the master-slave cache. Instruction pipeline 22 is 
supplied with instructions by slave instruction cache 26. The 
instruction pipeline 22 is clocked by a processor or pipeline 
clock. The pipeline clock controls the transfer of instructions 
from one stage of the pipeline to the next. One or more 
instruction words must be provided for each processor clock 
period. Although the instruction pipeline 22 may stall, or 
occasionally require more than one processor clock period 
for an instruction word, the maximum or full bandwidth 
when no stalls occur is n instruction words per processor 
clock period, where n is the level of scalarity. Thus the slave 
instruction cache 26 must supply the instruction pipeline 22 
with at least n instruction words per processor clock period 
if the full bandwidth of the processor is to be achieved. A 
super-scalar processor capable of executing 2 instructions 
per clock period would have n=2. 
A simplified embodiment is described having a single 

instruction pipeline and a single execution pipeline. How 
ever, most modern processors employ super-scalar designs. 
Super-scalar CPU's have several pipelines. A three-way 
super-scalar embodiment would require three instructions 
for each clock period to supply three pipelines. If two of the 
pipelines are execution pipelines capable of executing 
memory operations, then two data operands may also need 
to be supplied for each clock period. The teachings of the 
detailed description will be restricted to a simple CPU 
having a single execution pipeline and a single instruction 
pipeline. These teachings may however be extended to 
multiple pipelines by persons skilled in the art. 
The execution pipeline 24 is supplied with operands from 

slave data cache 28. In one embodiment of the invention 
execution pipeline 24 may also store data operands into 
slave data cache 28; these data operands are then written 
through to master cache 30. Master cache 30 provides all the 
cache management necessary for itself and the slave caches 
26, 28. Slave caches 26, 28 need only have a valid bit with 
each tag which is set and cleared by the master cache 30. 
Prefetching, handling external snoop requests, coherency 
operations, and cache flushes are all accomplished by the 
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master cache. Thus the slave caches 26, 28 may be kept 
simple, allowing for a fast access time and a high bandwidth. 
Master cache 30 is significantly larger and more complex 
than would be possible if it were to directly supply the 
processor's pipelines 22, 24. Directly supplying the pipe 
lines in a single processor clock requires a fast access time. 
Slave caches 26, 28 are small, fast and simple, and are 
preferably implemented as RAM-based, direct-mapped 
caches, while master cache 30 is preferably RAM-based and 
set-associative. Master cache 30 preferably has four or more 
times the capacity of both the slave caches 26, 28. Master 
cache 30 may require multiple processor clock periods to 
access its contents, while the slave caches 26, 28 are small 
enough to supply the required data operand and instruction 
words each processor clock period. An additional level-2 
cache 32 may be provided on the system board off the 
microprocessor die 20, or the level-2 cache 32 may be 
omitted, and misses from the master cache passed on to the 
main memory 34 on the system board. The high-bandwidth 
benefit of the Harvard architecture is obtained because the 
slave instruction cache 26 and slave data cache 28 can 
supply both pipelines 22, 24 as did the split instruction and 
data caches 15, 17 of the Harvard architecture of FIG. 2. 
However, two sets of address and data buses and pins 13, 11 
are not required. If the prior-art Harvard architecture is used 
with only a single set of pins, the pins must be multiplexed 
between the two caches 15, 17. The two caches 15, 17 must 
be made large so that the miss rate is small, otherwise the 
two caches 15, 17 will be contending for the multiplexed 
pins frequently, causing one cache to have to wait. However, 
the larger cache sizes reduces the clock rate and bandwidth 
that can be supplied to the processor core. The prior-art 
Harvard architecture is thus stuck between the trade-off of 
larger size and lower bandwidth, or smaller cache size and 
higher bandwidth but pin contention or die cost. 

In the invention, master cache 30 provides more func 
tionality than is the case by merely integrating an additional 
level of caching on the microprocessor die 20. Master cache 
30 is tightly coupled to slave caches 26, 28 and can relieve 
the slave caches 26, 28 from burdensome cache management 
operations such as coherency and snooping. In the Harvard 
architecture of FIG. 2, coherency between instruction cache 
15 and data cache 17 is difficult and may require that clock 
cycles be taken that would otherwise be used to supply the 
pipelines 22, 24. In the invention, the master cache 30 
absorbs these coherency requests, freeing the slave caches to 
supply the processor's pipelines. 

Additionally, the slave caches 26, 28 may be physically 
located in close proximity to the pipelines 22, 24. Thus slave 
instruction cache 26 is located near to the instruction pipe 
line 22, while the slave data cache 28 is located near the 
execution pipeline 24. The larger master cache 30 may then 
be located at a greater distance from the pipelines 22, 24 and 
the core CPU logic. This simplifies floor-planning and 
layout of the microprocessor die 20, and results in faster 
access times for transferring instructions and data from the 
slave caches 26, 28 to the pipelines 22, 24. In prior-art 
systems, the large cache sizes required that any cache be 
located away from the CPU core and the pipelines. 
Only a single set of address and data busses are needed for 

communicating with external caches and memories. Pins 31 
connect the master cache 30 with the external level-2 cache 
32, whereas on some prior-art systems a single set of pins 
had to be multiplexed. Not having to multiplex the pins 
reduces contention and complexity. A larger, wider data path 
may be used between the master cache 30 and the slave 
caches 26, 28 since no connection is necessary for the 
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6 
slave-master busses 33, 35 to the external pins of the 
microprocessor die 20. Slave-master busses 33, 35 may be 
each separately optimized for the bandwidth required by the 
particular slave cache and pipeline. 

Since the bulk of the capacity of the cache lies in the 
master cache 30 rather than the slave caches 26, 28, the 
benefits of the unified cache result. A higher hit rate is 
achieved than if the master cache were split into two 
separate half-size caches, and the master cache provides 
flexibility and adaptability by being able to place either 
instruction or data words in any line in the cache, allowing 
the portion of the cache allocated to either data or instruc 
tions to vary as needed by the programs currently executing 
on the processor. The master cache may be implemented in 
slower, denser, and lower-power memory than the slave 
caches, saving power, space and cost while maintaining a 
high hit rate. 

MASTER TAGS INCLUDE SLAVE VALID BITS 

FIG. 4 shows the tags stored with each line in the 
master-slave cache. A master tag 72 is stored for each line in 
the master cache 30. An address tag 60 stores a portion of the 
address of the data stored in the line. The data fields of the 
line are not shown but are well-known in the art and can take 
on many arrangements. The data stored may be either data 
operands, instructions, or translation or other system infor 
mation. A master valid bit 62 is used to indicate if the line 
in the master cache 30 contains valid data. A modified bit 64 
is used when a write-back policy is desired and indicates that 
the processor has written data into the cache line. Before the 
modified line is purged from the cache and replaced, the line 
must be copied or written back to external memory, or at 
least loaded into a temporary write-back buffer, before new 
data and a new tag address can be loaded into the cache line. 

Exclusive bit 66 allows for more complex cache-coher 
ency schemes. If exclusive bit 66 is set, it indicates that no 
other caches in the system may have a copy of that particular 
line. The exclusive bit is particularly useful in multi-pro 
cessor systems and can be used to help implement the MESI 
(modified, exclusive, shared, invalid) standard for cache 
coherency. 

Master tag 72 also contains a copy of the valid bits in the 
slave caches 26, 28. SI Valid bit 68 is a copy of the slave 
instruction cache's valid bit for that same line, while SD 
valid bit 70 is a copy of the slave data cache's valid bit. Thus 
the master cache has information on the contents of the slave 
caches. 
A particular line in the master cache is selected by 

breaking an address into a tag portion and an index portion. 
The index portion selects a subset of the lines in the cache 
while the tag portion is stored in the address tag field 60 of 
the master tag 72. This is a well-known technique in the art. 
Since the slave caches 26, 28 are smaller, having fewer 
cache lines, several lines in the master cache will correspond 
to each line in the slave cache. Since the master cache is 
set-associative, the several lines corresponding, or mapping 
into a single line in the slave caches may all have the same 
index portion of the address in the master cache. The number 
of address bits in the master and slave tags will be identical 
if the master cache is designed so that each column has a size 
equal to the size of the slave cache. An 8-way associative 
master cache that has 2K bytes in each column would have 
a total size of 16K. If the slave caches were chosen to be 2K 
bytes, then the address tags in the slave caches could have 
the same number of bits as the tags in the master. 
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In a preferred embodiment, the master cache is set 

associative, as shown in FIG. 12. A least-recently used 
algorithm is used to determine which set-associate, 80A, 
80B, 80C, 80Z to replace when a new line is allocated into 
the master cache and all sets store valid data. Additional 
least-recently-used (LRU) bits 82 are stored in a common 
tag field which contains LRU information for all set-asso 
ciate lines having the same index. These LRU bits 82 are 
stored with each set to keep track of which set-associate in 
the set was used least recently. Normally, this least-recently 
used set-associate would be replaced. However, if this 
least-recently-used set-associate has a slave valid bit set, 
indicating that the line is also present in a slave cache, then 
this line will not be replaced. Instead, the 2nd least-recently 
used set-associate will be replaced, leaving the LRU set 
associate in the cache. 
Thus when the LRU bits are consulted to select which 

set-associate and line should be replaced to make room for 
a new line, the slave cache valid bits 68A, 68B, 68C, 68Z, 
70A, 70B, 70C, 70Z, are also consulted. Any line having a 
slave cache valid bit set would not be replaced, even if it is 
the least-recently used line. The slave cache lines are always 
kept in the master cache in this manner. A line must first be 
purged from the slave cache before it can be a candidate for 
replacement in the master cache. 

Another approach for line replacement is to force the 
set-associates having a slave valid bits set to be the most 
recently-used set-associates. The LRU field may consist of 
subfields, one for each set-associate, making a stack. When 
a set-associate is referenced, it is placed on the top of the 
stack as the most-recently used, while the others are shifted 
down the stack. The set-associate on the bottom of the stack 
is the least-recently used and the first to be replaced. Any 
set-associates having a slave valid bit set would be placed on 
the top of the stack and could not be shifted out of their 
most-recently-used (MRU) positions except by another set 
associate having the other slave valid bit set. Thus the 
set-associates having the slave valid bit set would always be 
kept MRU, or next-MRU. 

Data slave tag 74 of FIG. 4 also includes an address tag 
60D, which may contain more address bits than the address 
tag 60 in the master cache because a smaller index width 
may be needed to access the fewer lines in the slave data 
cache. A single valid bit, the SD valid bit 68D, is needed for 
each set-associate to indicate if the line is valid in the slave 
data cache. 

Instruction slave tag 76 includes an address tag 60I, which 
may contain more address bits than the address tag 60 in the 
master cache because a smaller index width may be needed 
to access the fewer lines in the slave cache. A valid bit, the 
SI valid bit 68I, is needed to indicate if the line is valid in 
the slave instruction cache. 
Thus the master cache contains three valid bits: the master 

valid bit 62 which indicates if the line in the master cache is 
valid, and the SI valid bit 68 for the slave instruction cache 
and the SD valid bit 70 for the slave data cache. The master 
cache always contains a copy of any lines in the slave 
caches; it is not permitted for the slave caches to have lines 
which are not present in the master cache. By also having a 
copy of the slave cache's valid bits, the master can perform 
complex coherency operations such as snoops, invalida 
tions, and Zeroing, required by many modern architectures, 
without needlessly disturbing the slave caches. 
A zeroing operation causes binary zeros to be written to 

all data locations in a line. For a line that has many 
sub-blocks of data, the writing of zero to all sub-blocks may 
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8 
take many clock cycles. When the master finds a line that is 
present in one of the slave caches, indicated by the copy of 
the slave's valid bit in the master tag 72, the master causes 
the slave to invalidate that particular line in the slave, even 
though an invalidation is not being performed. A simple 
invalidation is possible if the slave data cache is write 
through, always staying consistent with the master cache. 
The master will perform all the searching and data zero 

ing, and the master will detect hits in the slave caches, while 
the slave caches merely have to invalidate a line when 
instructed to do so by the master cache. This is a significant 
savings in bandwidth for the slave caches. Since this search 
ing is performed only by the master cache, loops may be 
coded in software or hardware for searching the contents of 
the cache line-by-line. The slave caches are interrupted only 
when the search in the master cache detects a line present in 
the slave. If an action is required, rather than perform that 
action on the line in the slave cache, the master merely 
invalidates the line in the slave cache. Some types of cache 
coherency operations may not require invalidation. For 
example, some snoops may only be checking to see which 
lines are present in a cache, but do not request any invali 
dations. 

SLAVE MISS 

FIG. 5 is a flowchart illustrating the basic sequence of 
operations when one of the pipelines accesses data or an 
instruction from one of the slave caches. The slave cache 
receives the address from the pipeline and breaks the address 
into an index portion and a tag portion. The index portion is 
used to select a single line in the slave cache if the slave 
cache is direct-mapped, or a subset of lines if the slave is 
set-associative. The address tag field from the selected line 
or lines is then compared to the tag portion of the address. 
If a match results, and the slave's valid bit indicates that the 
line is valid, then the data stored in the matching line in the 
slave cache is simply supplied to the pipeline. 

However, if none of the address tags match the tag portion 
of the address, or if the slave's valid bit indicates that the 
matching line is not valid in the slave cache, then the data 
must be fetched from the master cache. The slave cache 
sends the address to the master cache, which also breaks the 
address into a tag portion and an index portion, although 
these portions may not be exactly the same as those for the 
slave since the larger master cache may require more address 
bits for the index portion than the slave cache did. The 
master cache uses the tag portion of the address to select a 
subset of lines in the master cache (multiple lines if the 
master cache is set-associative). Each address tag field 60 
from each selected line is then compared with the tag portion 
of the address. If a match is found and the master valid bit 
62 is set, then the matching line is selected, and the data is 
sent to the slave cache and the pipeline. If no match is found, 
then the address is sent off-chip to the main memory 34 or 
the level-2 cache, which supplies the data, and the data is 
placed in one of the lines of the master cache and sent to the 
slave cache and pipeline. The SI or SD valid bit is set in the 
master to indicate for future accesses that the slave cache 
now has a copy of the data in the line. 
Data from the master cache is written by the master cache 

into the slave cache line selected by the index portion of the 
address, and sets the valid bit in the slave cache. The master 
cache also writes the tag portion of the address to the slave 
cache's address tag, to reflect the new address for the line. 
A bypass may be provided to route the data from the master 
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cache directly to the pipeline so that the processor's pipeline 
does not have to wait for the data to be first written to the 
slave cache. This bypass is not shown in FIG. 5 for the sake 
of simplicity. 

Additionally, when the master cache supplies data to the 
slave cache, the master cache must clear the SI or SD valid 
bits 68, 70 stored in the master cache for the old line being 
replaced in the slave cache. An extra invalidate cycle to clear 
the old SI or SD valid bit in the master cache may be 
performed with the old address from the slave cache. During 
a miss, the slave caches 26, 28 may send a portion of their 
old address tags back to the master cache to allow the master 
cache to identify the old line and clear the SI or SD valid bit 
for the old line. The master cache may also perform a search 
of all the possible locations for the oldSI or SD valid bit and 
clear this bit once it is found. This search can occur after the 
master has transferred the new data to the slave cache and 
has set the new SI or SD valid bit. This search could be 
delayed or avoided at the expense of additional interruptions 
to the slave cache because of false "hits' from old SI or SD 
valid bits that were not cleared. 

If the modified bit 64 in the master cache is set, then the 
old line in the master must be written back to main memory 
34. For simplicity, this is not shown in FIG. 5. The slave 
instruction cache never writes data, while the slave data 
cache is write-through, so the slave caches never have to 
copy a line back to the master cache, reducing complexity of 
the slave caches. 

INVALIDATION, SNOOPING AND CACHE 
COHERENCY 

The processor may issue an instruction to invalidate any 
lines in a cache that match a certain address or range of 
addresses. These invalidate instructions are usually defined 
by the architecture and are executed by a program or 
operating system to achieve multiprocessing or system secu 
rity. In RISC instruction sets, the invalidate instruction may 
only provide a single line address for invalidation. A simple 
routine may be programmed that loops through a range of 
addresses, invalidating one line address at a time. Thus a 
specific page of addresses in the cache may be invalidated by 
looping through the entire range of possible addresses within 
the page. 

FIG. 6 is a flowchart for a simple invalidate instruction. 
The invalidate instruction is sent to the master cache when 
it is encountered by the processor's pipeline. The master 
cache breaks the address specified by the invalidate instruc 
tion, called the invalidate address, into a tag portion and an 
index portion. The index portion is used to select a subset of 
lines in the master cache, and each line's tag address is 
compared to the tag portion of the address. If a match is not 
found, then no further action is required since no line was 
found having the invalidate address. Since the slave caches 
cannot have a line which is not present in the master, the 
slave caches do not have to perform a separate invalidation 
lookup. This allows the slave caches to continue supplying 
the pipelines with operands and instructions rather than 
having to stop and perform an invalidation lookup. 

If a line is found having an address tag that matches the 
invalidate address, and the master valid bit is set, then the 
master cache checks the slave valid bits that are stored in the 
master's tag, the SI valid bit 68 and the SD valid bit 70. If 
the SI valid bit 68 is set, then the master cache writes the tag 
in the slave instruction cache with the valid bit cleared, 
invalidating the line. The slave-cache index portion of the 
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10 
address is sent to the slave instruction cache to specify the 
particular line to invalidate in the slave instruction cache. 
The slave does not need the whole address, including the tag 
portion, since the slave is preferably direct-mapped. The 
master cache then clears the SI valid bit 68I in the slave 
instruction cache, which invalidates the line in the slave 
instruction cache. 
The master also checks the SD valid bit 70 which is a copy 

of the slave data cache's valid bit. If the SD valid bit 70 is 
set, then the master cache instructs the slave data cache to 
invalidate the line. The slave-cache index portion of the 
address is sent to the slave data cache to specify the 
particular line to invalidate in the slave data cache. The 
master cache then clears the SD valid bit 70D in the slave 
data cache, which invalidates the line in the slave data cache. 
Finally the master clears all three valid bits in the master, the 
master valid bit 62, the SI valid bit 68, and the SD valid bit 
70. This invalidates the line in the master cache. 

Modern architectures allow for more than one processor 
and its associated caches. I/O devices may become bus 
masters and may update the main memory or demand 
exclusive control over a portion of main memory. A snoop 
ing mechanism is required to ensure coherency between the 
main memory and a plurality of caches and bus masters. A 
snoop request is similar to an invalidation instruction from 
the processor's pipeline, but the snoop request originates 
from an external device or snoop requester rather than from 
the processor's internal pipeline. A cacheable access by 
another processor or a bus master to main memory will 
cause a snoop request to the master cache. The snoop request 
will include a snoop address. A line found in the master 
cache corresponding to the snoop address is invalidated by 
clearing its valid bits. However, if the snoop request is a 
non-exclusive read that does not require invalidation, then 
the invalidation step is skipped. The line may have to be 
written back to the main memory if the line has been 
modified. While snoop requests are common, a snoop hit is 
rare. Thus snoop requests will frequently need to access the 
tags in the master cache to determine if a snoop hit has 
occurred, but invalidations of master cache lines will be 
much less frequent. Since the slave caches are only inter 
rupted when a snoop hit occurs, and then only when one of 
the slave valid bits is set, these snoop requests will not 
require much of the slave's bandwidth since the master 
handles all of the snoop requests that miss the slave cache 
without interrupting the slave caches. 

FIG. 7 is a flowchart of an external snoop operation. The 
sequence of operations is similar to the sequence for an 
invalidation, as discussed for FIG. 6. The main difference is 
that the snoop address originates from an external source, 
while the invalidate address originates from within the 
processor's pipelines. Thus snoop requests may be handled 
by the master cache in a manner similar to the invalidation 
commands. Thus the design of the master cache is simpli 
fied. 

More complex invalidate instructions may also be sup 
ported by extensions of these teachings. For example, an 
instruction that invalidates all lines in a cache having a 
specified index is very useful for quickly invalidating the 
entire cache by looping through the range of indexes in the 
master cache. Rather than compare the tag to the invalidate 
address, as shown in FIG. 6, the master cache would select 
the first line having the specified index, then check the SI 
valid bit and the SD valid bit as shown in FIG. 6, performing 
slave-cache line-invalidations if these bits are set. Finally 
the master clears all valid bits in the line. The master cache 
then selects the next line having the same index, and repeats 
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these operations. The master cache may allow for all lines 
having a common index to be read and written in parallel. 
For example, an 8way set-associative master cache will have 
8 lines to invalidate, requiring 8 lines to be read and written 
in parallel using the steps shown in the lower half of FIG. 6. 

Because the cache of the present invention includes both 
a master cache and slave caches, the master cache can free 
the slave caches so they can supply the pipelines with data 
and instructions at the high bandwidth required. The master 
cache is also freed from having to supply both pipelines 
because the slaves only send requests to the master at a rate 
equal to the pipeline bandwidth multiplied by the miss rate 
of the slave cache. While the slave's miss rate is higher than 
for a larger cache, because the slave is designed for speed, 
the bandwidth of misses sent to the master is much lower 
than if the master had to supply the pipeline directly. For 
example, if the slave had a 10% miss rate, and supplied the 
pipeline every 7.5 ns cycle, then only 1 out of 10 cycles 
would result in a miss that would require access to the 
master cache. The master would see a miss from the slave 
only every 75 ns. Thus the master cache has many free clock 
cycles to perform cache coherency and external snoop 
cycles. The master cache can be designed to be two or three 
times slower than the slave caches, and still have enough 
surplus bandwidth to support snoop requests. If the master 
cache had an access time of 15 ns, and had to supply both 
slave caches every 75 ns, there would still be 75 ns-15 
ins-15 ns=45 ns of unused time for snoops and coherency 
requests. Often the snoop must be responded to within a 
fixed period of time. In prior-art systems, a second, separate 
set of 'snoop' tags was often needed so that snoop requests 
could be responded to within a fixed period of time without 
slowing the cache by using the cache tags for every snoop 
request. This second set of snoop tags is not necessary with 
the master-slave cache since the master has surplus band 
width as it does not have to directly supply the processor's 
pipelines. 

CACHE FLUSH 

FIG. 8 is a flowchart for a cache flush operation. A cache 
flush causes modified data in the cache to be written or 
copied back to the main memory or an external level-2 
cache. A block of memory may be flushed by programming 
a loop that sequences through a range of addresses, per 
forming the operations shown in FIG. 8 for each iteration of 
the loop. 
The flush command will specify a flush address. This 

flush address is broken into a tag portion and an index 
portion. The index portion selects a set of associates in the 
master cache. Each of these associates in the set has its 
address tag field compared to the tag portion of the flush 
address. Typically these compares can be performed at the 
same time because the set-associative master cache has a 
comparator for each column of associates, and the total 
number of comparators is equal to the number of columns. 
If no valid matching tags are found, then the flush command 
is completed. However, if a valid matching tag is found, then 
the modified bit 64 in the master tag 72 is checked. If 
modified bit 64 is set, then the data in the selected line is 
written back to the main memory or level-2 cache and the 
flush command completes. If the modified bit 64 is not set, 
then no write-back operation is needed and the flush com 
mand completes. Since the slave caches are write-through, 
the master cache always contains an accurate copy of all the 
data in the slave caches. Consequently the slave caches are 
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12 
not interrupted by a flush command, saving the slave cache 
bandwidth for supplying the processor's pipelines. 

Flushing may be combined with invalidation. In a multi 
processing system another processor may request that a line 
be exclusive for its own use. The address of this line would 
be sent to the master cache, which would flush and invali 
date this line if it were present in the master cache. 

DATA CACHE BLOCK ZEROING 

FIG. 9 is a flowchart for a data-cache-block-zero (dcbz) 
instruction. This is a RISC instruction in a popular commer 
cial RISC instruction set and hence must be supported for 
certain commercial RISC processors. The dcbz instruction 
writes the value zero ("0x00' in hexadecimal notation) to all 
data bytes in a cache line corresponding to a dcbz address 
specified in the dcbz instruction. The dcbz instruction is an 
unusual but useful instruction. It can be used by the oper 
ating system for establishing a block of user memory in a 
cache that will later be written to by a user program. Since 
the block will be over-written by the program, the existing 
data in the block will be discarded and hence does not need 
to be fetched from main memory. The dcbz instruction can 
save many clock cycles that would be spent fetching the old 
data in the block from main memory and then overwriting 
that old data. Instead, the data in the memory block is simply 
initialized to the value zero in the cache. Once the program 
has finished writing new data to the memory block, it will 
then be written back to main memory, overwriting the data 
existing there. The exclusive bit 66 may be set so than no 
other master or external processor reads the stale data from 
the main memory, or other coherency mechanisms may be 
used. 

FIG. 9 shows the sequence of operations supporting the 
dcbz instruction with the master-slave cache. As with invali 
date and flush instructions, the dcbz instruction is sent to the 
master cache and doesn't interfere with the slave caches 
unless required for coherency. The dcbz address is broken 
into a tag portion and an index portion. The index portion is 
used to select a subset of addresses in the master cache while 
the tag portion is compared to the address tag 60 field of the 
master tag 72. If a matching line is found, then the SI valid 
bit 68 and the SD valid bit 70 are checked. If either (or both) 
slave cache's valid bit is set, then the master cache causes 
the slave cache to invalidate that line in the slave by sending 
an invalidation signal and the index portion to the slave 
cache. The master then clears the slave cache's valid bits 
(either the SI valid bit 68 or the SD valid bit 70 or both) in 
the master tag 72, but the master cache does not clear the 
master valid bit 62. 
A sub-block counter is then initialized. A line in the 

master cache may contain one or more sub-blocks. The size 
of the sub-block is here defined as the number of bytes that 
can simultaneously have a zero written to them by the master 
cache. Typically the sub-block is the width of the data path 
or bus going into the master cache, but this can vary with the 
particular embodiment. All data bytes in the selected line are 
then zeroed by writing zero to each sub-block in the line and 
incrementing the sub-block counter until all bytes in the line 
have been written to. 

If no line in the master cache was found that has a 
matching address tag, then a line must be allocated. One of 
the lines, preferably the least-recently-used line in the set, is 
selected having the same index as the index portion of the 
dcbz address. The data in the old line is written back to the 
main memory if the modified bit 64 is set, and the new 
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address tag 60 is written to the master tag 72. The master 
valid bit 62 is set, and the exclusive bit 66 may also be set. 
The SI valid bit 68 and the SD valid bit 70 are cleared. The 
data in the line is then zeroed by initializing the sub-block 
counter and successively writing the value Zero to each data 
byte in the line, one sub-block at a time. 
The zeroing operation requires many clock cycles since 

the cache must first be searched and then successive bytes of 
data written with the value zero. In prior-art systems, the 
Zeroing would stall the pipelines because the cache would be 
preoccupied with the Zeroing operation. In the present 
invention, the pipelines do not stall, because the zeroing 
operation is performed in the master cache. The slave caches 
are therefore freed to supply the pipelines at the full band 
width. The slave caches are interrupted only to perform a 
line invalidation once the search in the master cache locates 
a line to be zeroed that is present in the slave cache. The 
slower zeroing operation, which requires a loop of succes 
sive writes, is performed only in the master cache, not in the 
slave caches. 

STORE TO INSTRUCTION STREAM 

Architectures often require support for storing data oper 
ands into a block of memory that contains instruction code. 
This is known as a store to the instruction stream (STIS). 
Maintaining cache coherency can be difficult when a pro 
gram stores into its instruction stream. Coherency is par 
ticularly difficult with the prior-art Harvard architecture, as 
shown in FIG. 2. Data stores are sent from the execution 
pipeline 24 to the data operand cache 17. However, the 
instruction stream is stored in the separate instruction cache 
15. If the data operand that is being stored to the instruction 
stream has an address corresponding to a line that is cur 
rently stored in the instruction cache 15, then this data 
operand must be quickly written to main memory 34, and the 
corresponding line in the instruction cache 15 must be either 
updated with the data operand or invalidated. However, if 
the data cache is write-back, then the data operand might not 
be written back to the main memory for a long period of 
time, until the line is replaced in the data cache 17. Even 
write-through caches may have a write buffer, increasing the 
delay for the data operand to be written back to the main 
memory. Some type of coherency mechanism must be 
provided to detect a store to data cache 17 that corresponds 
to a line in instruction cache 15. Some type of path must be 
provided to update or invalidate the instruction cache when 
a store occurs in the data cache. 

The master-slave cache is ideally suited for implementing 
a coherency scheme for store to instruction stream. Since the 
master cache has control over both the slave instruction 
cache and the slave data cache, the master cache can easily 
detect a store to the instruction stream and perform the 
necessary coherency tasks. The master-slave cache can 
implement a policy of never having a line present in both of 
the slave caches at any one time. Thus if a line is present in 
the slave instruction cache, and the execution pipeline 
performs a read or a write to this same line, the line will not 
be present in the slave data cache since it is already present 
in the slave instruction cache. A miss will occur in the slave 
data cache and the data will be requested from the master 
cache. However, when the master cache reads the master tag 
of the line, the master cache will detect that the SI valid bit 
is already set. The master cache then sends an invalidate 
signal to the slave instruction cache and sends the index of 
the line. The slave instruction cache then clears its valid bit, 
which invalidates the line in the slave instruction cache. The 
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master cache clears the SI valid bit and sets the SD valid bit 
in the master tag. The master cache sends the data to the 
slave data cache, and the slave data cache writes the new 
address tag and sets its valid bit. 
The policy of never having a line present in both of the 

slave caches at any particular time can be selectively 
enabled or disabled. This allows for efficient store-to-in 
struction-stream for certain types of programs but not for 
other types. FIG. 10 shows a flowchart for a read or write 
operation from the execution pipeline to the slave data 
cache, for the particular example of a STIS where the line is 
present in the slave instruction cache. The slave data cache 
misses, and sends a request to the master cache. The master 
reads the master tag, but first checks the slave valid bit for 
the other slave, the SI valid bit. If the SI valid bit is set, a 
STIS has been detected. The master then sends an invalidate 
signal to the slave instruction cache together with the index 
of the line. The slave instruction cache invalidates the line. 
The master can then allocate the line to the slave data cache 
by clearing the SI valid bit and setting the SD valid bit in the 
master tag. The data is finally sent to the slave data cache 
from the master cache. 

In the above case, the master cache detected the STIS 
when the slave data cache requested a line, and the SI valid 
bit was already set. This very simple detection method can 
also signal when to flush the instruction pipeline. If the 
master cache detects a store from the slave data cache to a 
line present in the slave instruction cache, the master cache 
must invalidate the line in the slave instruction cache. It is 
also possible that the instruction pipeline of the processor 
has a copy of or a part of the line. Depending upon the 
architectural requirements for STIS, the master cache may 
also send a pipeline invalidate signal to the instruction 
pipeline to prevent it from using potentially stale data. The 
master-slave cache is ideally suited for detecting the STIS 
because the master tag includes the slave cache valid bits. 
Additionally, the slave instruction cache is not disturbed 
unless the STIS is detected. This allows the slave instruction 
cache to supply the instruction pipeline without interruption, 
at the full bandwidth required. The master cache only 
interrupts the slave instruction cache after the STIS is 
detected, not every time coherency must be checked. 
The slave instruction cache may also request a line that is 

stored in the slave data cache. In this case, the master cache 
will detect that the SD valid bit is set, and send an invali 
dation and the index to the slave data cache before allocating 
the line to the slave instruction cache. However, since the 
instruction pipeline only reads data, a STIS is not signaled, 
and no flush is required. 

STORE QUEUE 
In a highly-pipelined processor, a store queue is often 

necessary. The store queue holds data operands from the 
execution pipeline that are to be written out to the cache or 
memory. The store queue is a useful structure for buffering 
stores to the cache and main memory. Often the slave data 
cache will be busy processing a read request from the 
pipeline, preventing the store from being immediately writ 
ten to the slave data cache. The store queue can hold the 
store data until the slave data cache has a free cycle. The 
store queue may be several words deep, allowing it to buffer 
several stores simultaneously. Store queues such as this are 
well-known in the prior art. 

Since the master cache is tightly coupled to the slave data 
cache, the store queue may be shared between the master 
cache and the slave data cache. Because the slave data cache 
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is preferably write-through, lines do not have to be copied 
back to the master cache after a miss occurs and an old line 
is replaced. If the store data from the execution pipeline is 
written to both the slave data cache and the master cache via 
the store queue, the slave data cache does not need a separate 
mechanism for writing-through to the master cache. This 
helps to reduce complexity of the master-slave cache and 
saves space by sharing store queue storage. 

FIG. 11 shows the store queue 52 within microprocessor 
die 20. The slave instruction cache 26 supplies instruction 
words to the instruction pipeline, which includes instruction 
buffer 42, instruction decoder 44, and instruction fetcher 46. 
Instruction decoder 44 is the last stage of the instruction 
pipeline, and feeds decoded instructions to the execute 
pipeline. The execution pipeline includes general-purpose 
registers 56, which contain temporary storage areas visible 
to and available for use by programs. The general-purpose 
registers 56 feed operands to an arithmetic-logic unit (ALU) 
48, which performs an operation on the data operands. Data 
operands may be selected from the general-purpose registers 
56, or from memory. Memory operands are supplied by 
slave data cache 28. ALU 48 may write the result of the 
operation back into the general-purpose registers 56, or the 
result may be written to memory. The operation that the 
ALU executes may simply be to move data from the 
general-purpose registers 56 and store that data to the 
memory. The store data is transferred to the store queue 52 
from either the ALU 48 or directly from the general-purpose 
registers 56. Data in the store queue 52 is then written to the 
slave data cache 28, and to the master cache 30. 
Once data is placed in the store queue 52, the actual write 

operations to the master cache 30 and the slave data cache 
28 could occur at slightly different times, depending when a 
free cycle occurs for the master cache 30 and for the slave 
data cache 28. Master cache 30 could have many free cycles, 
allowing several stores to be written to the master cache 30 
before even the first store is written to the slave data cache 
28, or the reverse may be true. A policy of allocate on write 
for the slave data cache 28 would require added complexity. 
Therefore stores that miss in the slave data cache 28 pref 
erably do not cause a new line to be allocated to the slave 
data cache 28. Rather, the store data are simply not written 
to the slave data cache 28 but are written only to the master 
cache 30. Thus some of the stores in the store queue 52 will 
not be written to the slave data cache 28. However, all stores 
are written to the master cache 30. 

FIG. 13 is a diagram of a store queue tag. The store queue 
52 contains fields for the store data (not shown) and a store 
queue tag. These store queue tags are similar to cache tag 
fields. The store queue tag includes an address field 86 for 
the address of the store. Page information field 84 specifies 
if the store data is to a page in memory that is write-through, 
guarded, cacheable, or coherent. The store queue 52 also 
includes bits 88, 89 to indicate if the store data needs to be 
been written to the master cache 30, or to the slave data 
cache 28. These bits are necessary since the writing to either 
cache may occur in any order. A slave-tag-valid bit 90 is 
used to indicate that the store data is a line fill from the 
master cache, and that the address tag in the slave data cache 
28 must also be updated when the data is written. Two byte 
enable fields, 91, 92 specify which bytes are valid for the 
slave and master, allowing merges of bytes for multiple 
writes. Tag information field 93 may contain parity, sub-line 
validity, or other information. Type field 94 specifies if the 
store queue entry is a normal write from the execution 
pipeline, or if it contains a cache operation such as an 
invalidate request or zeroing operation from the CPU. 
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Instead of having a separate fill buffer for fill data from the 

master cache, the store queue is used as the fill buffer. A large 
savings in hardware results because address compare and 
bypass logic in the store queue is shared with the fill buffer. 
The storage space in the store queue may be dynamically 
allocated between fill data and write data, resulting in a more 
efficient use of processor resources. 
The store queue 52 is the only path for store data from the 

execution pipeline to be written out to the master cache 30 
and the slave data cache 28. In addition, the store queue can 
be used to write data from the master cache 30 to the slave 
data cache 28. Thus the store queue can also act as a fill 
buffer known in the prior art. This eliminates the need for a 
second write port into the slave data cache 28. Data from the 
master cache can bypass the store data in the store queue 52 
when necessary, as when the store queue is full. Invalida 
tions and reads must first check the store queue 52 to see if 
a line is present in the store queue 52. If an address match 
occurs, then the store queue must be emptied out or invali 
dated before the data may be read, or the invalidation is 
performed. For reads, data from the store queue 52 is 
preferably wrapped or bypassed onto the slave data cache 
output when a store queue hit is detected. 
An invalidation instruction that is detected by the execute 

pipeline can also use the store queue 52 to send the invali 
dation request to the master cache. A cache management 
operation bit in the store queue, encoded in type field 94, is 
set by the CPU to indicate that the store data is actually a 
cache management operation. The type of operation, data 
block zero, invalidation, search, etc., may be encoded in the 
data field in the store queue, while the address field holds the 
invalidation or zeroing address for which the master cache 
searches. Thus the store queue may be used to send cache 
management operations directly to the master cache. The 
store queue is shared by both the master cache and the slave 
data cache. 

The close coupling of the master cache 30 and the slave 
data cache 28 allows the store queue 52 to be shared between 
the master cache and the slave data cache. Sharing the store 
queue eliminates having to have a second store queue for the 
master cache 30. Cache management requests are commu 
nicated from the execution pipeline to the master cache 
using the shared store queue. Stores may be merged together 
in the store queue before being written to the master or slave 
cache, reducing bandwidth for writes. 

MASTER PREFETCH 

Most modern processors employ some form of prefetch 
ing of instructions and/or data before they are requested. 
Prefetching of instructions is the most common, so it will be 
described, although the teachings herein disclosed may be 
applied by those of skill in the art to data prefetching. The 
master-slave cache performs all prefetching into the master 
cache rather than into the slave instruction cache. This frees 
the slave instruction cache from the complexity of prefetch 
ing. Because some of the prefetched instructions will not be 
used, some bandwidth is wasted when prefetching. Since the 
master cache is so closely coupled to the slave instruction 
cache, the miss penalty from the slave instruction cache is 
small. The slave miss penalty is especially small when 
compared to the miss penalty from the master cache, which 
requires that memory off the microprocessor die be 
accessed. Therefore prefetching into the master cache 
greatly reduces the miss penalty as instruction words are 
fetched into the slave instruction cache. 
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Many prefetching schemes may be implemented in the 
master cache. The master cache may be coupled directly to 
the instruction pipeline to receive the current instruction 
pointer value, and branching information from the instruc 
tion decoder 44. However, in the preferred embodiment, the 
master cache starts prefetching when a miss request is 
processed from the slave instruction cache. The master 
cache stores the address of the miss from the slave instruc 
tion cache, and increments this address. If the incremented 
address, the prefetch address, is not present in the master 
cache, then the corresponding line will be fetched from main 
memory. The prefetch address is then incremented again, 
and the next sequential line is fetched from main memory if 
not already present in the master cache. The sequential 
prefetching continues until a hit in the master cache, or until 
another miss occurs from the slave instruction cache, reload 
ing the prefetch address. If a page boundary is reached 
before the next master cache prefetchhit or slave-cache miss 
occurs, then prefetching will stop. Other enhanced prefetch 
ing schemes may be employed, such as tagged prefetch, 
where a prefetched bit in the master tag is set when the next 
sequential line is prefetched. Tagged prefetch can prevent 
prefetching the same line multiple times. Other prefetching 
schemes may also use bits in the master tag. 
The prefetched data in the master cache may easily be 

pre-loaded into the slave instruction cache. Since the slave 
instruction cache cannot be written by the instruction pipe 
line, the master cache has complete control over writing 
words to the slave instruction cache and updating the slave 
cache tags. The master cache may directly control signals to 
write the tag and data into the slave instruction cache. The 
master may chose to pre-load into the slave a line that has 
been prefetched into the master cache. The master may even 
implement a scheme that keeps statistical data on how 
frequently or recently lines were used in the slave instruction 
cache. 

CONCLUSION AND ADVANTAGES 

The master-slave cache allows for supplying the pipelines 
of a processor at the full bandwidth required because the 
small slave caches have a fast access time and are not 
repeatedly interrupted for cache management and coherency 
operations. The large master cache performs all searching 
and Zeroing required by coherency, snooping, and block 
Zero requests, and detects stores into the instruction stream. 
The master only interrupts the slaves when a requested line 
is detected in the master cache and is also present in a slave 
cache. The master cache can have a large size, and have a 
complex organization, such as set-associative, accomplish 
ing a low miss rate for the master-slave cache. In addition to 
these benefits, the master cache may be slower than the 
slaves, saving power by being designed from slower RAM 
blocks. Power savings results from using the well-known 
power-delay tradeoff. The master cache may also employ 
other power-savings features, such as a power-down mode 
that detects periods of time when the master cache is not 
being accessed, and shuts down the sense amplifiers and 
other power-hungry circuits in the cache RAM. 

ALTERNATE EMBODIMENTS 

Several other embodiments are contemplated by the 
inventors. For example the master cache may simulta 
neously check and send invalidation requests to both the 
slave instruction cache and the slave data cache. The master 
cache is preferably constructed from RAM cells, while the 
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slaves are RAM-based and designed for speed, although 
many other implementations are possible. The preferred 
embodiment uses three separate valid bits for indicating if a 
line is valid in the master cache and the two slave caches. 
However, these valid bits could be encoded as a multi-bit 
field and still indicate validity of the lines in both the master 
and slave caches. The valid bits could also be encoded 
together with the modified and exclusive bits, or with other 
bits in the master tag. Likewise, the various bits in the store 
queue could also be combined and encoded together. In a 
preferred embodiment, the slave cache valid bits are stored 
with the least-recently-used (LRU) bits, which are stored in 
a common tag field which contains LRU information for all 
set-associate lines having the same index. Thus when the 
LRU bits are consulted to select which line should be 
replaced to make room for a new line, the slave cache valid 
bits may also be consulted. Any line having a slave cache 
valid bit set would not be replaced, even if it is the 
least-recently used line. The slave cache lines are always 
kept most-recently used in this manner. 

While a specific embodiment has been described having 
two slave caches that supply the two processor pipelines, for 
instructions and for data operands, processors with more 
than two pipelines would especially benefit from application 
of the teachings of the invention. For example, a super-scalar 
processor might have seven pipelines-one instruction pipe 
line just for branches and three execution pipelines each 
having their own instruction pipeline. Three, four, or more 
slave caches could be used to supply these pipelines. Addi 
tional valid bits or equivalent means for the additional slave 
caches could be added to the master cache tag. A floating 
point unit might have its own pipeline, and could also benefit 
from having its own slave cache supply it with operands. 
The slave caches and store queue may be organized in 

different ways, and the slave instruction cache could include 
buffering similar to the store queue to allow it to defer line 
fills from the master cache. The buses between the master 
cache and the slave caches could be separate busses as 
described, or a shared bus could be used. An embodiment 
has been described with valid bits in the master indicating if 
an instruction or data word is present in one of the slave 
caches. Another embodiment does not require that the slave 
valid bits in the master indicate that an instruction or data 
word is definitely present in the slave. It is enough that the 
slave valid bit in the master indicate that the instruction or 
data word might be present in the slave cache. This embodi 
ment relaxes the coherency requirement between the slave 
caches and the slave valid bits in the master cache, at the 
expense of some additional invalidations being sent to the 
slave caches for instruction or data words that might be 
present in the slave caches but are actually not present in the 
slave caches. 

The invention has been described as a cache using physi 
cal addresses. Caches using virtual addresses are also well 
known in the art and the invention could be modified to use 
virtual addresses rather than physical addresses. Direct 
memory access (DMA) may also be combined with the 
invention allowing DMA access to the master cache through 
a separate DMA channel. The master cache would handle all 
DMA cycles, only interrupting the slave caches when nec 
essary, when a slave valid bit is set. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
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limited not by this detailed description, but rather by the 
claims appended hereto. 
We claim: 
1. A master-slave cache system for transferring data 

between a main memory and a central processing unit 
(CPU), the CPU having an instruction pipeline decoding 
instructions at a first rate, the CPU having an execution 
pipeline executing at a second rate, the main memory storing 
a plurality of operands and a plurality of instructions, the 
system comprising: 

a master cache for storing operands and instructions, the 
master cache coupled to the main memory, the master 
cache storing a first subset of the plurality of operands 
and a second subset of the plurality of instructions 
stored in the main memory, the master cache storing a 
third subset of instructions and a fourth subset of 
operands, the third subset being a subset of the second 
subset, and the fourth subset being a subset of the first 
Subset; 

a slave instruction cache, coupled to the master cache and 
coupled to the instruction pipeline, for storing the third 
subset of instructions, the slave instruction cache 
capable of transferring instructions to the instruction 
pipeline at the first rate, the slave instruction cache 
comprising a cache that is read-only by the CPU; and 

a slave data cache, coupled to the master cache and 
coupled to the execution pipeline, for storing the fourth 
subset of operands, the slave data cache capable of 
transferring operands to the execution pipeline at the 
second rate; 

wherein the master cache comprises a set-associative 
cache, and the slave instruction cache and the slave data 
cache comprise direct-mapped caches; 

wherein the master cache further includes means for 
replacing operands and instructions using a modified 
least-recently-used algorithm, never replacing a least 
recently used operand or instruction that is present in 
the slave data cache or the slave instruction cache, 

whereby the slave instruction cache matches the first rate 
required by the instruction pipeline, and the slave data cache 
matches the second rate required by the execution pipeline. 

2. The system of claim 1 wherein the master cache has a 
capacity to contain at least four times a maximum number of 
operands and instructions that can be stored in both the slave 
data cache and the slave instruction cache. 

3. The system of claim 1 wherein the slave data cache 
comprises a write-through cache, the slave data cache for 
writing a copy of an operand back into the master cache 
when the execution pipeline writes the operand to the slave 
data cache. 

4. The system of claim 1 wherein the first subset and the 
Second subset overlap, wherein an overlapping operand in 
the first subset that has an address matching an address of an 
instruction in the second subset indicates that the overlap 
ping operand is being stored to an instruction stream stored 
in the plurality of instructions. 

5. The system of claim 1 further comprising: 
prefetching means, coupled to the master cache, for 

fetching instructions from the main memory into the 
master cache, the prefetching means fetching instruc 
tions having sequential addresses following a miss 
address from the slave instruction cache. 

6. A master-slave cache system for transferring data 
between a main memory and a central processing unit 
(CPU), the CPU having an instruction pipeline decoding 
instructions at a first rate, the CPU having an execution 
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pipeline executing at a second rate, the main memory storing 
a plurality of operands and a plurality of instructions, the 
system comprising: 

a master cache for storing operands and instructions, the 
master cache coupled to the main memory, the master 
cache storing a first subset of the plurality of operands 
and a second subset of the plurality of instructions 
stored in the main memory, the master cache storing a 
third subset of instructions and a fourth subset of 
operands, the third subset being a subset of the second 
subset, and the fourth subset being a subset of the first 
Subset; 

a slave instruction cache, coupled to the master cache and 
coupled to the instruction pipeline, for storing the third 
Subset of instructions, the slave instruction cache 
capable of transferring instructions to the instruction 
pipeline at the first rate; 

a slave data cache, coupled to the master cache and 
coupled to the execution pipeline, for storing the fourth 
subset of operands, the slave data cache capable of 
transferring operands to the execution pipeline at the 
second rate; 

a plurality of master tags, stored in the master cache, each 
master tag in the plurality of master tags comprising: 
an address tag field, for storing a tag portion of an 

address of a data item, the data item being one of the 
plurality of operands or one of the plurality of 
instructions stored in main memory; 

master valid indicating means for indicating that the 
data item is valid and present in the master cache; 

slave-instruction valid indicating means for indicating 
that the data item is valid and present in the slave 
instruction cache; and 

slave-data valid indicating means for indicating that the 
data item is valid and present in the slave data cache, 

invalidation means, coupled to the master cache and to the 
CPU, for modifying the plurality of master tags; 

the CPU including means for providing an invalidation 
address to the invalidation means; 

the invalidation means further including: 
means for signaling an invalidation hit if a tag portion 

of the invalidation address matches the address tag 
field in a matching line in the plurality of master tags; 

master invalidating means for invalidating the data item 
in the matching line in the master cache if the 
invalidation hit is signaled and the master valid 
indicating means indicates that the data item is valid 
and present in the master cache; 

first invalidating means for invalidating a first copy of 
the data item in the slave data cache if the invalida 
tion hit is signaled and the slave-data valid indicating 
means indicates that the first copy of the data item is 
valid and present in the slave data cache; and 

second invalidating means for invalidating a second 
copy of the data item in the slave instruction cache 
if the invalidation hit is signaled and the slave 
instruction valid indicating means indicates that the 
second copy of the data item is valid and present in 
the slave instruction cache, 

whereby the master cache contains information on valid 
words present in the slave instruction cache and the slave 
data cache and the slave instruction cache matches the first 
rate required by the instruction pipeline, and the slave data 
cache matches the second rate required by the execution 
pipeline and whereby all invalidation requests from the CPU 
are processed by the master cache. 
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7. The system of claim 6 further including an external 
Snoop requester coupled to the invalidation means, the 
external snoop requester providing an external snoop 
address to the invalidation means. 

8. The system of claim 7 further comprising 
means for signaling a snoop hit if the tag portion of the 

external snoop address matches the address tag field in 
a snooped line in the plurality of master tags; 

the master invalidating means invalidating the data item 
in the snooped line in the master cache if the snoop hit 
is signaled and the master valid indicating means 
indicates that the data item is valid and present in the 
master cache, 

the first invalidating means invalidating the first copy of 
the data item in the slave data cache if the snoop hit is 
signaled and the slave-data valid indicating means 
indicates that the first copy of the data item is valid and 
present in the slave data cache; and 

the second invalidating means invalidating the second 
copy of the data item in the slave instruction cache if 
the snoop hit is signaled and the slave-instruction valid 
indicating means indicates that the second copy of the 
data item is valid and present in the slave instruction 
cache, 

whereby all snoop requests from the external snoop 
requester are processed by the master cache. 

9. The system of claim 6 wherein the first copy of the data 
item in the slave data cache and the second copy of the data 
item in the slave instruction cache can not both be valid at 
the same time. 

10. The system of claim 9 wherein 
the first invalidating means invalidates the first copy of 

the data item in the slave data cache when the slave 
instruction cache requests that the second copy of the 
data item be validated and placed in the slave instruc 
tion cache; and 

the second invalidating means invalidates the second copy 
of the data item in the slave instruction cache when the 
slave data cache requests that the first copy of the data 
item be validated and placed in the slave data cache, 

thereby keeping the slave instruction cache and the slave 
data cache coherent and allowing a store to the instruction 
Streal. 

11. The system of claim 10 wherein 
the master cache signals a pipe-flush to the CPU when the 

execution pipeline writes to the data item and the slave 
instruction valid indicating means indicates that the 
second copy of the data item is valid and present in the 
slave instruction cache; 

the instruction pipeline being flushed when the pipe-flush 
is signaled. 

12. The system of claim 6 further comprising a store 
queue, the store queue further comprising: 
means for receiving store data and an address of the store 

data from the execution pipeline; 
means for writing store data to the master cache when the 

master cache is not busy; 
means for writing store data to the slave data cache if the 

address of the store data matches an address of an 
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operand in the slave data cache and the slave data cache 
is not busy; and 

means for storing a plurality of store data and a plurality 
of addresses of the store data, 

whereby the store queue is shared between the master cache 
and the slave data cache, the store queue receiving store data 
from the execution pipeline and writing the store data when 
the master cache and the slave data cache are each not busy. 

13. The system of claim 12 wherein the execution pipeline 
uses the store queue to write store data to the slave data 
cache and to the master cache, eliminating a need for the 
slave data cache to write through to the master cache. 

14. The system of claim 13 wherein invalidation and 
cache management operations from the CPU are placed in 
the store queue and written only to the master cache and not 
to the slave data cache, the master cache performing invali 
dation and cache management operations for the slave data 
cache. 

15. The master-slave cache system of claim 6 further 
comprising: 

selecting means for selecting a selected line in the master 
cache using a portion of a zeroing address; 

reading means for reading the address tag field in the 
master tag for the selected line and allocating a new line 
in the master cache if the address tag field does not 
match a tag portion of the Zeroing address; 

signal means for sending an invalidation signal to the 
slave instruction cache if the slave-instruction valid 
indicating means in the master tag for the selected line 
indicates that the data item in the selected line is valid 
and present in the slave instruction cache, the slave 
instruction cache invalidating its copy of the selected 
line in response to the invalidation signal; and 

zero means for successively writing a zero value to all 
bytes of data in the selected line in the master cache, 

whereby the cache block is zeroed in the master cache 
without interrupting the slave instruction cache except when 
the copy of the selected line is in the slave instruction cache. 

16. The master-slave cache system of claim 6 further 
comprising: 

selecting means for selecting a selected line in the master 
cache using a portion of a zeroing address; 

reading means for reading the address tag field in the 
master tag for the selected line and allocating a new line 
in the master cache if the address tag field does not 
match a tag portion of the Zeroing address; 

signal means for sending an invalidation signal to the 
slave data cache if the slave-data valid indicating 
means in the master tag for the selected line indicates 
that the data item in the selected line is valid and 
present in the slave data cache, the slave data cache 
invalidating its copy of the selected line in response to 
the invalidation signal; and 

Zero means for successively writing a zero value to all 
bytes of data in the selected line in the master cache, 

whereby the cache block is zeroed in the master cache 
without interrupting the slave data cache except when the 
copy of the selected line is in the slave data cache. 
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