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(57) ABSTRACT 

A CPU pipeline is able to process instructions from a 
complex instruction set computer CISC instruction set and 
from a reduced instruction set computer RISC set. A mode 
register is provided to indicate whether RISC or CISC 
instructions are currently being processed. Two instruction 
decode units are used, one for each instruction set. Com 
pound CISC instructions flow from the decode pipestage to 
the address generate stage, then to an operand cache stage, 
and finally to an algebraic execute stage before the results 
are written back to the GPR register. When the CPU 
switches to RISC mode by clearing a mode bit in the mode 
register, the pipeline is re-arranged for processing the sim 
pler RISC instructions. Two outputs are provided for the 
RISC instruction decoder. The first output is for simple 
execute-type instructions, while the second output is for 
load/store-type instructions, and connects to the address 
generate pipestage, which generates an address for the 
operand cache stage. These instructions are prevented from 
continuing to the execute stage by a mux. The mux normally 
connects the operand cache stage to the execute stage when 
CISC instructions are being processed, but the mux directly 
connects the second output of the RISC instruction decoder 
to the execute stage when the mode register enables RISC 
instruction decoding. This reduces the latency for RISC 
instructions by l or 2 clocks. An alternate embodiment 
re-arranges the pipeline dynamically as simple instructions 
are detected by the decode units. The preferred embodiment 
uses a fixed pipeline with the execute hardware relocatable 
to the D, C, or M pipestages. Thus the pipeline is optimized 
for both RISC and CISC instructions. 

16 Claims, 6 Drawing Sheets 
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DUAL INSTRUCTION SET PROCESSOR 
HAVING A PIPELINE WITH APPESTAGE 

FUNCTIONAL UNIT THAT IS 
RELOCATABLE IN TIME AND SEQUENCE 

ORDER 

RELATED APPLICATION 

This application is a continuation of Ser. No. 08/180,023 
filed 1/1/94, now abandoned. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to microprocessor architectures, 

and more particularly to a pipeline with variable latencies to 
support execution of multiplc instruction sets. 

RELATED APPLICATION 

This application is related to a co-pending application for 
a "Dual-Instruction-Set Architecture CPU with Hidden Soft 
ware Emulation Mode', invented by Blomgren and Richter, 
Ser. No. 08/179,926, filed 1/11/94, and assigned to the same 
assignee as this application. 

2. Description of the Related Art 
The performance of microprocessors has been increased 

through the use of the well-known technique of pipelining. 
A pipelined central processing unit or CPU is divided into 
several units referred to as stages or pipestages, each pip 
estage typically requiring one processor clock period to 
perform its function. As an instruction is processed by the 
microprocessor, it flows through the pipcline: first the 
instruction is fetched from memory by the Fetch pipestage, 
then the instruction is decoded by the D stage, the decoded 
instruction may then be executed by an arithmetic-logic-unit 
(ALU) or adder, then the result from the execute stage is 
written to a register file or to memory. While a first instruc 
tion is in the execute stage, the following instruction is in the 
D stage, and the next following instruction in the Fetch 
stage. Thus many instructions are being processed at the 
same time, but each instruction is processed over several 
clock periods. The result is that the clock period may be 
reduced, improving performance. 

Pipelining has worked very well with simple, well-orga 
nized instruction scts such as with reduced instruction set 
computers or RISC instruction sets. However, older, more 
complex instructions set computers or CISC instruction sets 
contain instructions that require additional use of functional 
units. Some complex, compound instructions actually per 
form the equivalent work of two or more simple instructions. 
A high-performance design may require adding more func 
tional units and stages to the pipeline than are necessary for 
the simpler instructions. The difficulty arises in trying to 
process both simple and complex instructions in the same 
pipeline. If the pipeline is to execute both a simple RISC and 
a complex CISC instruction set, the difficulty is intensified. 
When instructions are pipelined, the results from one 

instruction may be needed by a subsequent instruction, even 
before the instruction completes. Techniques such as bypass 
ing and forwarding of results can route the result from one 
instruction to a subscquent instruction, when both instruc 
tions are in different pipestages of the pipeline. However, the 
subsequent instruction will still have to wait for the next 
pipestage to bc released by the previous instruction. 
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2 
All microprocessors perform 3 basic types of instructions: 

accessing memory, performing algebraic operations, and 
control transfer. These 3 types can be referred to as LOAD/ 
STORE, ALU, and BRANCH operations. Regardless of the 
architecture or instruction set, all instructions are composed 
of these 3 component operations. An example is in the x86 
instruction set, made popular by personal computers (PC's) 
using Intel Corporation (of Santa Clara, Calif.) 386 and 486 
microprocessors. The x86 POP instruction performs a 
LOAD from a stack in memory followed by an ALU 
operation to increment the stack pointer register. Compound 
instructions are common in CISC instruction sets such as the 
x86 set, but are rare in RISC instruction sets. 

OPERATIONAL LATENCES 

ALU operations include addition, subtraction, Boolean 
operations, and bit shifts. Multiplication, division, and other 
complex floating-point operations may also be performed if 
sufficient hardware resources are provided. This type of 
instruction usually takes one or two operands from a high 
speed internal CPU general-purpose register file (GPR), and 
stores the result back to this register file. Since data is not 
transferred off the CPU die, the operation is very fast, 
typically requiring one clock period. The latency, or time 
required to perform the operation defined by the instruction, 
is one clock period. Latency does not include fetch, decode, 
or write-back time normally required for instruction pro 
cessing; latency here refers to the time to perform a com 
ponent operation. 
LOAD/STORE operations must first compute a memory 

address where the data resides, and then write data to that 
memory location or read data from that location or address. 
Data is transferred between a register in the GPR and the 
memory, which can be slow DRAM-based system memory 
or cache memory. The cache may be on the CPU die or 
off-chip. With a cache, the transfer will usually take one 
clock, while the address computation, which normally 
requires addition, takes an additional clock. Thus the 
LOAD/STORE operations require a total of 2 clocks, for a 
latency of two. 

Control transfer or BRANCH operations calculate a new 
address to load into the instruction pointer. If the branch is 
conditional, a new target address for the code to jump to is 
calculated, and a branch condition is evaluated, usually from 
the condition code register associated with the ALU. Branch 
operations may be quite complex to pipeline, but optimiza 
tions and prediction techniques are possible. A supplemen 
tary adder may be provided to calculate the target address 
early, during the decode pipestage, and the Fetch stage may 
be designed to fetch both the target instruction and the 
sequential (branch not taken) instruction. However, since the 
branch may have to wait for the condition codes to be set by 
a previous instruction's ALU pipestage, and the next instruc 
tion must be decoded after the branch decision is made, the 
latency is at least two clocks. 

LATENCY DIAGRAM 

FIG. is a latency diagram that is useful in designing 
pipelines. Each box in the figure represents an operation or 
function that requires one clock to complete. Connections 
between boxes show how one operation may depend upon 
the results of another operation. The computational work 
performed by any instruction can be analyzed with this 
latency diagram. Instruction cache 10 contains a buffer of 
instructions that have not yet been decodcd, and may contain 
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instructions that will not be executed if a branch occurs. 
Branch adder 12 is used to calculate the target address for a 
branch. Instruction decode and register file 14 decodes an 
instruction fetched into the instruction cache, and provides 
the register operands to adder 16, which performs an ALU 5 
operation, or can calculate an address. Operand cache 18 is 
a cache of main memory data or operands and can be written 
into for a STORE operation or read from in a LOAD 
operation. 

- If an operation has a greater latency than 1 clock, then the 10 
diagram may be modified accordingly. For example, if the 
operand cache 18 were slow and required 2 clocks, then box 
18 could be replaced with two boxes in sequence. Similarly, 
the adder could be replaced with two or three boxes for 
floating-point operations. Connections may also be modified 15 
depending upon the design; for example, a very high-speed 
design might not allow connection "D', the bypass around 
the ALU. Another design might have adder 16 located after 
operand cache 18 rather than before it, or in both locations. 
A LOAD/STORE will flow through the latency diagram, 20 

FIG. 1, starting as an instruction in the I-cache 10, decoded 
in block 14, which provides address components from the 
register file or immediate values from the instruction itself, 
and ALU control information, along path “B” to adder 16. 
Adder 16 generates a memory address from these address 25 
components and provides this address along path "C" to the 
operand cache 18. The operand cache stores or loads the data 
specified by the address. If the operation is a load, then the 
data read from the cache is available to the adder 16 along 
path 'E', and is loaded into the register file (not shown). 
Thus the load operation takes 4 clocks to execute and 
provide its data result. Four clocks are required because of 
dependencies within the load instruction itself: the operand 
cache could not be accessed before the address was gener 
ated, and the address could not be generated before the 
register file provided the components. 
An operand dependency may exist with the instruction 

following the load. If the subsequent instruction is an Add 
using the data loaded by the load instruction, then the Add 
instruction will be in the adder block 16 while the load 
instruction is in the operand cache 18. However, the adder 
cannot perform the add until the end of the clock period 
when the data is provided from the cache 18 to the adder 16 
along path “E”. Thus the addinstruction must wait or "stall' 
in the add stage 16 for an additional clock before starting the 
add operation. The stall would still be necessary even if 
several adder blocks 16 were provided, because the data was 
not yet available to the add instruction. 

Recently, compilers have been designed to re-order 50 
instructions to try to reduce dependencies that cause stalls. 
In the above example, if the Add instruction could occur 
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instruction, eliminating the possibility of re-ordering. Thus 
the CISC instruction set itself imposes latencies. 

RISC PIPELINE 

RISC instructions are typically simple instructions that do 
not perform both an ALU operation and a cache or memory 
operand access. Thus path "E" of FIG. 1 is not used within 
a single instruction, but may be used by a second instruction 
following a load instruction. However, re-ordering compil 
ers reduce or eliminate the need for path "E". Thus a simple 
pipeline for RISC is: 

DECODE ADDER OPERAND CACHE 

A write-back stage is normally also included at the end of 
the pipeline when the results are written back into the 
register file and the condition codes are modified. However, 
this stage does not affect the dependencies and is thus not 
shown. Likewise the fetch stage is not shown. The adder is 
designed for both ALU operations and address generation, 
since address generation is usually simple in RISC instruc 
tions. An instruction that uses the ALU will store its result 
back to the register file rather than the operand cache 
memory, while an instruction accessing the operand cache 
will not use the ALU except for generating the address in the 
operand cache. The Execute pipestage for RISC instructions 
can perform an address generation or an ALU operation, but 
not both at the same time. 
The diagram below indicates the progression of each 

instruction through the RISC pipeline, with time increasing 
to the right by one clock for every stage, while subsequent 
instructions are listed below one another. Stages are abbre 
viated as D, E, C, and W, for decode, execute, cache, and 
write-back. 

Time (clocks): 1. 2 3 4. 5 6 
1st Instruction: D E C W 
2nd Instruction: D E C W 
3rd Instruction: D. E. C. W 

CISC PIPELINE 

Because of the existence of compound CISC instructions 
that can both load an operand and execute an ALU opera 
tion, a stall of two clocks would result if the RISC pipeline 
were used for certain compound CISC instructions. The stall 
occurs because the adder must be used twice by the com 
pound instructions-first for address generation, then after 
the operand cache fetch during the execute/ALUphase. Any 
subsequent instruction needing the adder for address gen 
eration must wait until the adder is free. 

1st Instruction: D E C E W 
2nd Instruction: D D D E C E W 

Stall Stall 

after another instruction, rather than immediately following 60 
the load instruction, then the stall would be avoided. RISC 
compilers in particular have been successful at instruction 
re-ordering, allowing for CPU's with multiple functional 
units to increase performance using dual-pipeline techniques 65 
such as super-scalar designs. However, CISC instructions 
may perform both the load and the add as one atomic 

A better pipeline for compound CISC instructions results 
from breaking the adder into two separate pipestages. The 
first adder is used solely for address generation, and is 
abbreviated 'A' , while the second adder is used for 
algebraic ALU execute operations, and is designated 'X'. 
This is often necessary for CISC instructions sets because 
address generation can be much more complicated than for 
RISC instructions. CISC address generation may require a 
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3-component add, whereas the execute unit only adds two 
opcrands, but must perform shifts and condition code opera 
tions. Thus the two types of operations may be justifiably 
separated for CISC pipelines. With two separate adders, the 
instruction flow does not have any stalls: 

X W st Instruction: D A C 
D A C X 2nd Instruction: W 

Thus the better CISC pipeline is: 
DECODE ADDR GEN OPERAND CACHE EXECUTE 

A disadvantage of this pipeline can be seen in reference to 
FIG. 2. FIG. 2 shows the same latency diagram as FIG. 1, 
with the addition of block 20, the execute stage, which 
occurs after the operand cache 18. The Adder block 16 of 
FIG. 1 has been changed to Address Generate Block 22 to 
highlight its restricted function in the CISC pipeline. If 
execute does not occur until after the operand cache 18, then 
path "F" is delayed for 2 additional clocks. This can be a 
disadvantage when the branch prediction logic mis-predicts 
and path "F" is then needed. Condition codes from the 
previous operation are delayed 2 clocks relative to the 
decode of the branch instruction, becausc they are not 
available until the previous operation finishes the execute 
stage, which is now separated from the decode stage by 2 
additional stages-the address generate adder and the oper 
and cache. 

DUAL-INSTRUCTION-SET PIPELINE 

Pipeline optimization is more difficult when instructions 
from 2 different instruction sets must be executed with the 
same CPU. It would be possible to build 2 separate pipe 
lines, onc for RISC and another for CISC, but the cost of 
having 2 of every functional unit is prohibitive. In addition, 
the complexity is great, especially if results must be 
exchanged between the two pipelines. However, simply 
choosing a RISC or a CISC pipeline and processing both 
instruction sets has severe performance penalties. For 
example, if a CISC instruction is exccuted on a simple RISC 
pipeline, a 2-clock stall can result for many sequences of 
instructions, such as explained above for a load followed by 
an add. However, if a RISC instruction is executed on a 
CISC pipeline, results are delayed by two clocks because of 
the 2 additional stages-address generate and operand 
cache-inserted before the execute stage. The diagram 
below shows an Add followed by a load that requires the 
result of the add, "y", in order to calculate the address. This 
scquence is on the RISC pipeline. 

Time (clocks): 1 2 3 4. 
Add y D E C 
Loady D. E. C 

No stalls occur bccause the result "y' from the execute 
stage is available at the end of time 2 for use in address 
generation by the Execute stage at time 3. However, stalls 
result when running this same sequence of RISC instructions 
on a CISC pipeline, as shown below. 

Time (clocks): 1 2 3. 4. 5 6 7 
Add y D A C X 
Loadly D A A A C X 

Sta Stal 
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6 
A two-clock stall occurs because the result of the add 

instruction is not available until late in the pipeline, in the 
execute/ALU "X" stage at the end of time 4. This stall did 
not occur when the execute stage was located earlier in the 
pipeline, as in the RISC pipeline arrangement. 

Thus, the example shows a 2-clock penalty for a sequence 
of RISC instructions when run on a CISC pipeline, while the 
earlier example showed a 2-clock penalty when CISC 
instructions are run on a RISC pipeline. A dual-instruction 
set CPU would thus have to be optimized either for RISC or 
for CISC instructions, with a significant penalty when 
executing instructions from the non-optimized instruction 
set. What is desired is a pipeline that can execute both RISC 
and CISC instructions without a penalty caused by optimiz 
ing the pipeline for one instruction set or the other. 

SUMMARY OF THE INVENTION 

A CPU has a pipeline for processing instructions from 2 
separate instruction sets. The CPU contains a plurality of 
functional units for processing the instructions, with at least 
one of the functional units being temporally re-locatable. 
This has the advantage that the pipeline may be optimized 
for both instruction sets. 

In another aspect of the invention, functional units are 
relocated when instructions from a first instruction set are 
being processed. In particular, the execution functional unit 
is relocated either when instructions from the first instruc 
tion set are being processed, or when simple execute-only 
instructions are detected. Thus the pipeline is re-arranged 
when processing simple execute-only instructions rather 
than complex compound instructions which require a more 
complex pipeline. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is latency diagram of a simple RISC pipeline. 
FIG. 2 is a latency diagram for a complex CISC pipeline. 
FIG. 3 is a latency diagram for a temporally-reconfig 

urable pipeline. 
FIG. 4 is a block diagram of the temporally-reconfig 

urable CPU. 
FIG. 5 is a block diagram of a dynamically and tempo 

rally-reconfigurable CPU. 
FIG. 6 is a block diagram of the preferred embodiment. 

DETAILED DESCRIPTION 

More detail on the dual-instruction set architecture may 
be found in related co-pending application for a "Dual 
Instruction-Set Architecture CPU with Hidden Software 
Emulation Mode', invented by Blomgren and Richter, pend 
ing application Ser. No. 08/179,926, filed 1/11/94, and 
assigned to the same assignee as this application, hereby 
incorporated by reference. 

This improvement relates to a central processing unit 
(CPU) with a dual-instruction set architecture. While the 
detailed description describes the invention in the context of 
a reduced instruction set computer (RISC) and a complex 
instruction set computer (CISC), it is contemplated that the 
invention applies to other instruction sets besides RISC and 
CISC, and to more than two instruction sets, without depart 
ing from the spirit of the invention. 
The basic CISC pipeline is modified for processing simple 

RISC instructions without the penalties associated with 
processing RISC instructions on the standard CISC pipeline. 
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The sequence in which the functional units appear as 
instructions are being processed must change to accommo 
date the simpler RISC instructions. The basic CISC pipeline: 

DECODE ADDR GEN CACHE EXECUTE 

must be modified to look like a RISC pipeline when execut 
ing RISC instructions: 

DECODE ADDR GENIEXE CACHE 

For the load/store type of instructions the pipeline should 
skip the last pipestage, the algebraic execute stage, and 
move directly to the write-back stage if needed. For the 
RISC execute instruction, the execution facility must be 
moved up 2 clocks in time to appear immediately after the 
decode stage. The cache stage is not needed for RISC 
execute instructions since they always write their results to 
the local register file, never to the cache memory. Therefore, 
execute instructions proceed to the write-back stage after the 
execute unit. 

FIG. 3 is a latency diagram for a temporally-reconfig 
urable pipeline. An additional path “J” has been added to the 
prior-art latency diagram of FIG. 2. This path "J" connects 
the execute unit 20 directly to the instruction decode unit 14. 
Instructions may flow out of decode unit 14 along two 
different paths, either the normal CISC path to the address 
generate unit 22, along path “B”, or directly to execute unit 
20 via path “J”. Consequently it is possible for an instruction 
to follow the full CISC pipeline from decode 14 to address 
generate 22, operand cache 18, to execute 20, but it is also 
possible to skip the address generate and operand cache 
Stages. 

Additionally, a pipe flow may terminate before reaching 
the final write-back pipestage. This is desirable for store 
operations. RISC load/store operations also do not need the 
execute pipestage, and therefore this stage is also skipped 
when these types of instructions are detected. Additional 
ports to the GPR register file may be needed because more 
than one instruction can terminate and desire to write its 
results to the register file. Condition codes may be updated 
by more than a single instruction during any given cycle, but 
the codes from the earlier instruction are over-written by the 
condition codes from the later instruction. 

In the simplified embodiment, the instruction decode 
logic determines the type of instruction and which pip 
estages are needed by the instruction. A simple RISC 
execute instruction will be detected by the decode logic and 
the decoded instruction will be sent directly to the execute 
unit along path J. However, if another instruction is in 
pipestages A or C, and will require the execute stage, then 
the execute instruction must stall in the decode pipestage 
until the previous instruction has released the execute pip 
estage. Thus the execute stage may be reserved by an 
instruction in the address generate or cache stages, prevent 
ing the execute instruction from proceeding. Although it 
would be possible to send the execute instruction to the 
execute stage without the stall, out-of-order instruction 
execution is undesirable because of the added complexity. 

CISC read-execute D A C E 
Add D D D E 

Stall Stall 

However, when a series of RISC execute instructions 
occur in sequence, the instruction decode logic will send 
these along path 'J' directly to the execute unit without 
stalls, as the diagram below shows. 
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Add D E 
Add D E 
Add ED E 

RISC loads and stores may be mixed together with simple 
execute instructions, allowing the executes to skip around 
the load/stores, because the load and stores do not need to 
reserve the execute stage: 

Add D. E 
Load D A C 
Add D E 
Add D E 
Load D A C 

If the data operand loaded by the first Load instruction is 
needed by a later execute instruction, then a data interlock 
will occur, causing a stall in the execute stage for the Add 
operation. This is a well-known technique in pipelined 
CPUs. 

Add D E 
Loady D. A C 
Add y D. D. E. 
Add D E 
Load D A C 

Data Interlock Stal 

Because of the prevalence of optimizing compilers for 
RISC that can re-order instructions, data interlocks such as 
shown above are rare. If the standard CISC pipeline is used, 
one additional clock is required to execute this sequence and 
produce the result without the data interlock. This is because 
of the additional 2 clock latency in the pipeline between the 
decode and the execute unit. 

Add D A 
Loady D 
Addy 
Add 
Load 

s E 
C E 

FIG. 4 is a block diagram of the simplified embodiment. 
An instruction fetcher (not shown) supplies an instruction to 
be decoded by instruction decode unit 32, 36. Since the 
pipeline supports both a RISC and a CISC instruction set, 
and these instruction sets are separate and independent in the 
encoding of opcodes to instructions, two separate instruction 
decode units are provided. Thus there is no restriction placed 
on the two instruction formats in relation to one another. 
Different bit fields of the instruction word may contain the 
opcode, while other bit fields may contain operand register 
pointers or identifiers or immediate data. In fact, the size of 
the instruction word may be different for the two instruction 
sets. The two instruction decoders will break the instruction 
word up into different bit fields as required by the respective 
instruction set. Since the same opcode number may map or 
encode different operations in the two instruction sets, one 
instruction decode must be disabled and the other enabled, 
depending upon the instruction set being processed at that 
time. 
The RISC and CISC instruction sets have independent 

encoding of instructions to opcodes. While both sets have 
ADD operations, the opcode number which encodes the 
ADD operation is different for the two instruction sets. In 
fact, the size and location of the opcode field in the instruc 
tion word is also different for the two instruction sets. 
Mode register 38 contains a bit to indicate the current 

mode or instruction set being processed. This RISC/CISC 
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mode bit is supplicd to the instruction decoders 32, 36 along 
signal 60. This signal will enable RISC decoder 36 and 
disable CISC decoder 32 if set to one, otherwise it will 
enable CISC decoder 32 and disable RISC decoder 36 if 
logically zero or cleared. 

if CISC mode is enabled, decoded instructions will flow 
through the pipeline as arranged for compound CISC 
instructions. Pipestages address generate 44, operand cache 
48, and execute unit 52 will be sequenced through for each 
instruction. Pipelinc stalls and repeated compound instruc 
tions may cause some stages to be repeated several times. 
The decoded instruction from CISC decode unit 32 is sent 
along bus 56 to the address generate unit 44, which may 
receive operands from the general-purpose register (GPR) 
file 34. Address generate unit 44 calculates the operand 
address and supplies this to the operand cache 48. The 
operand from the cache is sent along bus 62 to the execute 
unit 52, which calculates the final result, which is written 
back to the GPR34 along the operand bus 54. Operand bus 
54 may have to be several operand words in width to supply 
sufficient bandwidth for the various pipeline functional 
unitS. 

Slower main memory 50 provides operands when the 
operand cache 48 does not contain the requested operand, 
and provides a back-up store for operands written to the 
cache 48. Multiplexer or mux 46 selects the operand from 
the operand cache 48 when CISC mode is indicated by 
RISC/CISC mode bit 60 from mode register 38. Thus a 
connection is made between the operand cache 48 and the 
execute unit 52 for CISC instructions, resulting in the full 
CISC pipcline of D - A - C - E. 
When mode register 38 indicates RISC mode, signal 60 

sets mux 46 to connect the output of the RISC instruction 
decode unit 36 directly to the execute unit 52. Operands 
from the cache are prevented by mux 46 from being sent to 
execute unit 52 over bus 62. Thus load/store operations must 
terminate before the execute stage by writing the operand 
back to the GPR 34 using operand bus 54. Since RISC 
load/store instructions do not support an execute operation 
combined with the load/store, path 62 is not needed. The 
re-configured pipeline for RISC load/stores is therefore: D 
A - C. 
Two outputs are provided from the RISC instruction 

decode unit 36: one output for load/store operations and the 
second output for execute operations. The third type of 
operation, branches, require special hardwarc such as a 
dedicated adder and are thus not shown in FIG. 4. Decoded 
load/store-type instructions connect to the address generate 
unit 44 over bus 56 while execute-type instructions are 
decoded and sent over path 58 to execute unit 52 through 
mux 46. RISC execute instructions thus flow through a 
different portion of the pipeline than load/stores; the execute 
pipeline is D - E, while the load/store pipeline is D - A - C. 
The output from the CISC decode unit 32 and the load/ 

store output from RISC decode unit 36 can be safely 
combined on bus 56 because only one of the 2 decode units 
will be enabled at any one time. Bus contention will not 
occur with only one of the decode units driving bus 56 to the 
address generate unit 44. 

Switching bctween RISC and CISC modes is under the 
control of pipeline and mode control logic 42. Mode logic 42 
sets or clears the RISC/CISC bit 60 in mode register 38 to 
reconfigure the pipeline using mux 46. In addition, mode bit 
60 enables one of the two instruction decoders. In a pre 
ferred embodiment, certain very complex CISC instructions 
are not directly supported in hardware but are emulated by 
software routines composed of simpler RISC instructions. 
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CISC instruction decode unit 32 will detect these emulated 
instructions and signal an unknown opcode over line 40 to 
mode control 42. Mode control 42 will then set the RISC bit 
60 in register 38 and load the instruction pointer (not shown) 
with the address of the emulation routine in memory. The 
RISC emulation routine will execute, and perform the opera 
tion that the very complex CISC instruction would have 
performed. The last instruction of the emulation routine will 
be a special extended RISC instruction causing the mode 
register 38 to be reset to CISC mode and the instruction 
pointer updated to point to the following CISC instruction. 
The CISC program will continue with the following instruc 
tion unaware that the instruction was emulated with RISC 
instructions. 

Switching from CISC mode to RISC mode may also 
occur when an interrupt or exception is signaled to the mode 
logic 42. Events such as divide-by-zero and adder overflows 
may cause the mode switch to occur. If paging is provided 
with a translation-lookaside buffer (TLB) on the CPU die, 
then TLB misses or page faults can also cause the mode 
switch, allowing the TLB to be loaded only by the RISC 
mode. 
Thus both CISC and RISC instructions will be processed 

during execution of the same program, and the need exists 
for the pipeline to efficiently execute both RISC and CISC 
instructions. Rapid re-configuration of the pipeline between 
a pipeline optimized for RISC instructions and one opti 
mized for CISC instructions is possible with the mux 46 and 
mode register 38. 

DYNAMIC PIPELINE RECONFIGURATION 

In the simplified embodiment, the pipeline is static or 
fixed depending upon the instruction set currently being 
decoded. A mode register is provided to indicate whether 
RISC or CISC instructions are being decoded and executed. 
The mode register enables path "J" of latency diagram FIG. 
3 when RISC mode is indicated, and the instruction decode 
unit sends execute instructions directly to the execute unit 
while load/store operations are sent to the address generate 
unit. However, if the mode register indicates that the CISC 
instruction set is being decoded, then path 'J' is disabled 
and all instructions are sent to the address generate unit first. 
The simplified embodiment has the advantage of a simpler 
decode unit, with fewer critical timing paths, since the 
pipeline is only statically re-configured, rather than dynami 
cally on an instruction-by-instruction basis. 

However, dynamic configuration is also contemplated, as 
shown by FIG. 5. CISC instruction decode logic 32 will 
distinguish between compound or read-execute instructions 
that require the full CISC pipeline of D-A-C-E and simple 
instructions that do not require the full pipeline. For 
example, a simple execute CISC instruction would be 
detected by CISC decode unit 32 and would signal to mode 
control 42 over line 40 to re-configure the pipeline for a 
simple execute. Mode control 42 would then directly drive 
line 60A to directly connect the decode unit 32 to the execute 
unit 52 via mux 46. Line 60A would no longer indicate 
merely RISC/CISC mode, but would control the reconfigu 
ration of the temporal location of the execute unit. Since line 
60A would be driven directly by the mode logic 42, the 
pipeline could be reconfigured on a cycle-by-cycle basis for 
each instruction, although re-configuration may have to wait 
for busy functional units to finish. The mode & pipeline 
control logic 42 would have to be more complex, checking 
for other instructions in the pipeline before re-arranging the 
pipeline. The decode logic would also have to be able to 
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detect simple vs. compound instructions, and be able to 
rapidly signal the pipeline logic 42. Timing would be 
critical. 

FIXED PIPELINE WITH RE-LOCATABLE 
EXECUTE HARDWARE 

In order to simplify pipeline control, only one instruction 
can complete at a time. The same minimum number of 
clocks are required for all instructions in the pipeline, even 
if the execute stage is moved early in the pipeline. Addi 
tional "dummy' stages are added as needed after the results 
are calculated to fill in the minimum number of clocks. The 
stage after the cache is re-named "M', for memory write 
back, and all instructions flow through a 5-clock minimum 
flow: 

D A C M W. 

The execute hardware, including the ALU, can operate 
during the M stage, which would emulate the CISC pipeline. 
A compound CISC read-execute instruction would need the 
execute hardware in the M stage: 

Rd-Ex D A C Me W 

The execute hardware could also move up two clocks to 
the A stage, emulating the simple RISC-execute pipeline, D 
- E. However, stages C, M, and W will still occur to meet the 
minimum number of clocks for a flow: 

D Ale C M W. 

The execute hardware could also move ahead by one 
clock, to perform the execute operation during the C stage. 
Although the operand cache fetch would not be performed 
by a simple execute, the C stage is used as a "place holder' 
to add in a clock period. This case occurs for a simple 
execute following a load having a data interlock: 

Load y D A C M 
Add y D A Cle 

W 
M W 

Note that the load instruction does not need the execute 
hardware; if it did, for example to set condition codes, it 
could occur during the A, C, or M stages. If it occurred 
during the M stage, then the Add instruction would have to 
delay the execute to its M stage because the execute hard 
ware is busy during the Add's C stage: 

Load y D A C Mie 
Add y D A C 

W 
Mie W 

Thus the execute hardware can be relocated within the 
fixed pipeline. All instructions follow the fixed pipeline of D 
- A - C - M - W. Functional units in these pipestages 
decode, address generate, operand cache, memory write 
back, and register write-back, never are relocated. They can 
only occur in this fixed order. However, the execute hard 
ware is no longer a fixed pipestage. It can be re-located to 
occur, or perform an ALU or algebraic execute operation, 
during any of pipestages A, C, or M. 

Although all instructions now require a minimum number 
of clocks, the results from the instructions are available 
earlier. Thus subsequent instructions do not have to stall for 
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12 
data interlocks, speeding up processing. In addition, since 
the execute hardware is no longer a fixed pipestage, execute 
operations could occur in any order, as long as the data is 
available (no data interlocks). Thus the execute for a sub 
sequent instruction could precede the execute for a previous 
instruction: 

Load y D A C Mile 
Add Z D Afe C 

W 
M. W 

Although this is possible, the preferred embodiment does 
not allow of out-of-order execute because of the added 
pipeline complexity. 

FIG. 6 shows a block diagram of the preferred embodi 
ment. The figure is similar to FIGS. 4 and 5 and uses the 
same reference numbers when referring to similar elements. 
FIG. 6 has an additional memory write-back stage 51 that 
receives operands from operand cache 48. Execute hardware 
or unit 52 can be relocated within the pipeline by means of 
mux 46, which is controlled by signals 60A driven from 
mode and pipeline control logic 42. Mux 46 can receive 
inputs from 3 stages-decode 32 or 36, address generate 44, 
and operand cache 48. Since instructions are pipelined, mux 
46 must receive operands and the decoded instruction and 
control information from the previous stage in the pipeline 
in order to have a full clock period to perform the operation. 
Thus when the execute is located in the address generate 
stage, mux 46 sends the decoded instruction and operands 
over bus 58 from the instruction decoder 32, 36. When 
execute occurs during the operand cache stage, bus 62 
transmits the needed instruction information from the pre 
vious pipestage, the address generate stage 44. Finally, when 
execute occurs during the memory write-back pipestage, 
mux 46 receives operands over bus 63 from the operand 
cache pipestage. All RISC instructions are transmitted over 
bus 56 from the decode stage 36 to the address generate 
stage 44, even if the instruction is a simple execute. Thus all 
instructions travel through the full pipeline of decode 32 or 
36, address generate 44, operand cache 48, memory write 
back 51, and register write-back (not shown). Instructions 
may use the execute unit 52 during any of the 3 pipestages 
of address generate 44, operand cache 48, or memory 
write-back 51. 

ALTERNATE EMBODIMENTS 

The fixed pipeline with the execution hardware relocat 
able to the A, C, or M stages is the preferred embodiment 
because of the simplicity of having all instructions pass 
through the same pipestages. This embodiment retains the 
advantage of obtaining the results of a simple execute early 
in the pipeline, which eliminates or reduces data interlocks 
with Subsequent instructions. Branch latencies are also 
improved since condition codes for simple execute instruc 
tions are determined earlier in the pipeline, usually when the 
execute operation is performed. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 

I claim: 
1. A CPU having a pipeline for processing a plurality of 
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instructions from two separate instruction sets, said pipeline 
comprising: 

first instruction decode means for decoding instructions 
from said first instruction set, said first decode means 
providing decoded instructions to said plurality of 
functional units, said first instruction set having a first 
encoding of opcodes to instructions; 

second instruction decode means for decoding instruc 
tions from said second instruction set, said second 
instruction set having a second encoding of opcodes to 
instructions, said second encoding of opcodes to 
instructions being separate and independent from said 
first encoding of optodes to instructions, said second 
decode means providing decoded instructions to said 
plurality of functional units; 

enable means for enabling either said first instruction 
decode means or said second instruction decode means, 
said enable means coupled to said first instruction 
diccode means and coupled to said second instruction 
decode means, 

a plurality of functional units for processing said plurality 
of instructions; 

a relocatable functional unit in said plurality of functional 
units, said relocatable functional unit for executing 
nativc instructions from both of said two separate 
instruction sets; 

means for indicating which one of said two separate 
instruction sets is being processed by said plurality of 
functional units; and 

means for rc.locating, responsive to said indicating means, 
said relocating means for temporally relocating said 
relocatable functional unit in time and sequence order 
to other functional units in said plurality of functional 
units. 

2. The CPU of claim 1 wherein said two separate instruc 
tion sets comprise a first and a second instruction set, and 
whercin said relocatable functional unit is relocated by said 
relocating means when instructions from said first instruc 
tion set are being proccssed by said plurality of functional 
units. 

3. The CPU of claim 2 wherein said relocatable functional 
unit is a functional unit for executing algebraic operations 
relocated by said relocating means when instructions from 
said first instruction set are being processed by said plurality 
of functional units. 

4. The CPU of claim 2 whercin said first instruction 
decode means includes means for detecting a simple execute 
instruction and wherein a functional unit for executing 
algebraic operations is relocated by said relocating means 
when said simple execute instruction is detected by said first 
instruction decode means. 

5. A CPU pipeline for executing a complex instruction set 
computer CISC instruction set and a reduced instruction set 
computer RISC instruction set, said pipeline comprising: 
CISC decode means for decoding said CISC instruction 

Sct, 
RISC decode means for decoding said RISC instruction 

Sel, 
enable means for enabling either said RISC decode means 

or said CISC decode means, said enable means coupled 
to said RISC decode means and coupled to said CISC 
decode means: 

a plurality of functional units, each functional unit in said 
plurality of functional units for executing both native 
RISC and native CISC instructions, said plurality of 
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functional units receiving decoded insauctions from 
said CISC decode means and said RISC decode means, 
said plurality of functional units arranged in a sequence 
of functional units, 

a relocatable functional unit in said plurality of functional 
units; 

means for indicating if said RISC instruction set or said 
CISC instruction set is being processed by said plural 
ity of functional units; 

means for relocating, responsive to said means for indi 
cating, said relocating means for relocating temporally 
said relocatable functional unit in time and sequence to 
other functional units in said plurality of functional 
units if said means for indicating indicates that said 
RISC instruction set is being processed. 

6. The pipeline of claim 5 wherein said RISC instruction 
set has an encoding of opcodes to instructions separate and 
independent from the encoding of said CISC instruction set. 

7. The pipeline of claim 6 wherein said relocatable 
functional unit is relocated relative to other functional units 
by said means for relocation when said enable means 
enables said RISC decode means. 

8. The pipeline of claim 7 wherein said relocatable 
functional unit relocated by said means for relocation is a 
functional unit for execution of algebraic and logic instruc 
tions. 

9. The pipeline of claim 8 wherein said functional unit for 
execution is relocated by said means for relocation to an 
earlier position in said sequence of functional units in said 
pipeline. 

10. The pipeline of claim 9 wherein said functional unit 
for execution is relocated by said means for relocation to 
immediately after said RISC decode means, said functional 
unit for execution receiving decoded RISC execute instruc 
tions from said RISC decode means when said means for 
indicating indicates that said RISC instruction set is being 
processed. 

11. A CPU pipeline for executing a complex instruction 
set computer CISC instruction set and a reduced instruction 
set computer RISC instruction set, said pipeline comprising: 
CISC decode means for decoding said CISC instruction 

Sct, 
RISC decode means for decoding said RISC instruction 

Set, 
enable means for enabling either said RISC decode means 

or said CISC decode means, said enable means coupled 
to said RISC decode means and coupled to said CISC 
decode means; 

a plurality of functional units, said plurality of functional 
units receiving decoded instructions from said CISC 
decode means and said RISC decode means, said 
plurality of functional units arranged in a sequence of 
functional units; 

a relocatable functional unit in said plurality of functional 
units, said relocatable functional unit in said plurality 
of functional units for executing both native RISC and 
native CISC instructions, 

means for indicating if said RISC instruction set or said 
CISC instruction set is being processed by said plural 
ity of functional units; 

means for relocating, responsive to said means for indi 
cating, said relocating means for relocating temporally 
said relocatable functional unit in time and sequence to 
other functional units in said plurality of functional 
units if said means for indicating indicates that said 
RISC instruction set is being processed. 
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12. The pipeline of claim 11 wherein said RISC instruc 
tion set has an encoding of opcodes to instructions separate 
and independent from the encoding of said CISC instruction 
Set. 

13. The pipeline of claim 11 wherein said relocatable 
functional unit is relocated relative to other functional units 
by said means for relocation when said enable means 
enables said RISC decode means. 

14. The pipeline of claim 13 wherein said relocatable 
functional unit relocated by said means for relocation is a 
functional unit for execution of algebraic and logic instruc 
tions. 
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15. The pipeline of claim 14 wherein said functional unit 

for execution is relocated by said means for relocation to an 
earlier position in said sequence of functional units in said 
pipeline. 

16. The pipeline of claim 15 wherein said functional unit 
for execution is relocated by said means for relocation to 
immediately after said RISC decode means, said functional 
unit for execution receiving decoded RISC execute instruc 
tions from said RISC decode means when said means for 
indicating indicates that said RISC instruction set is being 
processed. 


