

Word-Slice
User's

Manual

ADSP-1401 Program
Sequencer

ADSP-1410 Address
Generator

Word-Slice™ User's Manual

©1987 Analog Devices, Inc.
ALL RIGHTS RESERVED

Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use; nor for any infringement of patents or other
rights of third parties which may result from its use. No license is granted by implication or otherwise
under the patent rights of Analog Devices.

Word-Slice is a trademark of Analog Devices.

Printed in USA.

Contents •

CHAPTER 1 INTRODUCTION

1.1 System Overview--------------- 1 - 1
1.2 ADSP-1401 Overview 1 - 2
1 .3 ADSP-1410 Overview 1 - 3
1.4 Third-Party Support 1 - 4
1 .5 Manual Organization 1 - 5

ADSP-1401 : CHAPTERS 2 - 6

CHAPTER 2 INTERNAL ARCHITECTURE

2.1 Introduction ________________ 2 - 1
2.2 Instruction Port 2 - 3
2.3 Bidirectional Data Port 2 - 3
2.4 Program Counter 2 - 4
2.5 Adder and Width Control 2 - 5
2.6 Internal RAM and Stack Pointers 2 - 6
2.7 Interrupts and Interrupt Vector File 2 - 7
2.8 Event Counters 2 - 9
2.9 Flag 2-9
2.10 Trap/Tristate/Reset 2 - 1 O
2.11 Address Multiplexer and Address Port 2 - 12
2.12 Status Register 2 - 12

CHAPTER 3 JUMPS

3.1 Introduction---------------- 3 - 1
3.2 Conditions 3 - 3

3.2.1 Flag Input 3 - 3
3.2.2 Counters 3 - 4

iii

3.3 Address Sources _______________ 3 - 7
3.3.1 Direct Addressing 3 - 7
3.3.2 Indirect Addressing 3 - 7
3.3.3 Register Stack 3 - 8

. 3.4 Subroutines 3 - 10

CHAPTER 4 INTERRUPT PROCESSING

4.1 Introduction _________________ 4 - 1
4.2 Masking and Enabling 4 - 1
4.3 Interrupt Service Routines 4 - 2
4.4 Counter Underflow Interrupt 4 - 6
4.5 Stack Overflow and Underflow Interrupt 4 - 6

4.5.1 Stack Limit Register 4 - 8
4.5.2 Stack Paging 4 - 1 O

4.6 Trap 4 - 11

CHAPTERS SYSTEMINTERFACE

5.1 Introduction----------------- 5-1
5.2 Look-Ahead Pipeline 5 - 1
5.3 Data Input and Output 5 - 1
5.4 Instruction Hold Control _____________ 5 - 3
5.5 Tristate Outputs 5 - 4
5.6 Writeable Control Store 5 - 5
5.7 Reset 5 - 9

CHAPTER 6 INSTRUCTION SET

6.1 Introduction _________________ 6-1
6.2 Instruction Reference 6 - 2

6.2.1 Conditional Jump and Branch Instructions 6 - 3
6.2.1.1 BRANCH __________ 6-5
6.2.1.2 JOA 6 - 6
6.2.1.3 JOI 6 - 7
6.2.1.4 JDR 6-8
6.2.1.5 JDRST 6 - 9

lV

6.2.1.6 JPCNF 6-10
6.2.1.7 JPCOF 6-11
6.2.1.8 JRC 6-12
6.2.1.9 JRS 6-13
6.2.1.10 JSA 6-14
6.2.1.11 JSR 6-15
6.2.1.12 JTWO 6-16
6.2.1.13 RTN 6-17

6.2.2 Interrupt Control Instructions 6-18
6.2.2.1 CAIR 6-19
6.2.2.2 CCIR 6-20
6.2.2.3 DISIR 6-21
6.2.2.4 ENAIR 6-22
6.2.2.5 IRMBC 6-23
6.2.2.6 IRMBS 6-24
6.2.2.7 RDIV 6-25
6.2.2.8 RTNIR 6-26
6.2.2.9 SUR 6-27
6.2.2.10 SLRIVP 6-28
6.2.2.11 STIR 6-29
6.2.2.12 WRIV 6-30

6.2.3 Subroutine Stack Instructions 6-31
6.2.3.1 DSSP 6-32
6.2.3.2 PPSSD 6-33
6.2.3.3 PSDSS 6-34
6.2.3.4 RDSSP 6-35
6.2.3.5 WRSSP 6-36

6.2.4 Register Stack Instructions 6-37
6.2.4.1 AIRSP 6-38
6.2.4.2 PPGSP 6-39
6.2.4.3 PPRSD 6-40
6.2.4.4 PS DRS 6-41
6.2.4.5 PSGSP 6-42
6.2.4.6 PSPC 6-43
6.2.4.7 RDRSP 6-44
6.2.4.8 S1RSP 6-45
6.2.4.9 S4RSP 6-46
6.2.4.10 SGSP 6-47
6.2.4.11 SLSP 6-48
6.2.4.12 WRRSP 6-49

v

Vl

6.2.5 Counter Instructions 6 - 50
6.2.5.1 CLAS 6 - 51
6.2.5.2 DCCNTR 6 - 52
6.2.5.3 IFCDEC __________ 6-53
6.2.5.4 PPCNTR 6 - 54
6.2.5.5 PSCNTR 6 - 55
6.2.5.6 SETS 6 - 56
6.2.5.7 WRCNTR 6- 57

6.2.6 Status Register Instructions 6 - 58
6.2.6.1 PPSR 6 - 59
6.2.6.2 PSSR 6 - 60
6.2.6.3 ROSA 6 - 61
6.2.6.4 WRSR 6 - 62

6.2.7 Relative Jump Offset Width Instructions 6 - 63
6.2.7.1 REL16 6-64
6.2.7.2 REL 12 6 - 65
6.2.7.3 REL8 6 - 66

6.2.8 Miscellaneous Instructions 6 - 67
6.2.8.1 CONT 6 - 68
6.2.8.2 IDLE 6 - 69
6.2.8.3 IHC 6 - 70
6.2.8.4 wcs 6 - 72

6.3 Mnemonic and Opcode Summary 6 - 74

ADSP-1410: CHAPTERS 7-11

CHAPTER 7 INTERNAL ARCHITECTURE

7.1 Introduction _______________ _
7.2 Instruction Port
7.3 Alternate Instruction Register (AIR)
7.4 Bidirectional Data Port ____________ _
7.5 Address Registers
7.6 Offset Registers
7.7 Arithmetic Logic Unit (ALU) and Shifter ______ _
7.8 Compare Registers and Initialization Registers
7.9 Address Port and Bit Reverser
7.10 Control Register ______________ _

7-1
7-3
7-3
7-4
7-5
7-5
7-7
7-7
7-9
7-9

CHAPTER 8 ADDRESSING OPERATIONS

8.1 Introduction________________ 8 - 1
8.2 Update Modes 8 - 1
8.3 Looping Instructions 8 - 2
8.4 Data Selection Using DSEL 8 - 6
8.5 Alternate Instruction Register ___________ 8 - 7

CHAPTER 9 PRECISION MODES

9.1 Introduction _______________ _
9.2 One-Chip/Single-Precision Mode
9.3 One-Chip/Double-Precision Mode
9.4 Two-Chip/Double-Precision Mode ________ _

CHAPTER10 SYSTEMINTERFACE

10.1 Introduction _______________ _
10.2 Look-Ahead Pipeline
10.3 Data Transfers
10.4 Address Output Modes ___________ _
10.5 Sliding Window Timing
10.6 Compare/Zero
10.7 Bit Reversal
10.8 Reset _________________ _

CHAPTER 11 INSTRUCTION SET

9-1
9-1
9-2
9-3

10 -1
10 -1
10- 2
10- 3
10-3
10- 5
10-5
10-9

11 .1 Introduction 11 - 1
11 .2 Instruction Reference 11 - 1

11.2.1 Looping 11 - 3
11.2.1.1 YADD 11 - 4
11 .2.1.2 YDEC 11 - 6
11 .2.1.3 YINC 11 - 7
11.2.1.4 YSUB ____________ 11-8

Vll

11.2.2 Register Transfer___________ 11 - 9
11.2.2.1 BTD 11 - 11
11.2.2.2 BTR 11 - 12
11.2.2.3 CTD 11 - 13
11.2.2.4 DTI 11-14
11.2.2.5 ITD 11 - 15
11.2.2.6 ITR 11 - 16
11.2.2.7 RTD 11-17
11.2.2.8 YRTB 11 - 18
11.2.2.9 YRTC 11 - 19
11.2.2.10 YRTR 11 -20

11 .2.3 Logical and Shift 11 - 21
11.2.3.1 YAND 11 -22
11.2.3.2 YASR 11 - 23
11.2.3.3 YLSL 11 - 24
11.2.3.4 YOR 11 - 25
11.2.3.5 YXOR 11 - 26

11.2.4 Control Register 11 - 27
11.2.4.1 CRTD 11 - 28
11.2.4.2 DTCR 11 - 29
11.2.4.3 RST 11 - 30
11.2.4.4 SELB 11 - 31
11.2.4.5 SELR 11 - 32
11.2.4.6 SETA 11 - 33
11.2.4.7 SETI 11 - 34
11.2.4.8 SETP 11 - 35
11.2.4.9 SETU 11 - 36
11.2.4.10 SETY 11 - 37

11.2.5 Alternate Instruction Register 11 - 38
11.2.5.1 LDA 11 - 39
11.2.5.2 RDA 11 - 40
11.2.5.3 WRA 11-41

11.2.6 Miscellaneous 11 - 42
11.2.6.1 NOP 11 - 43
11.2.6.2 YDTY 11 - 44
11.2.6.3 YREV 11 - 45

11.3 Mnemonic and Opcode Summary 11 - 46

viii

LIST OF FIGURES

1.1 Typical Word-Slice System____________ 1 - 1
2.1 ADSP-1401 Block Diagram 2 - 2
2.2 Instruction Port Latching 2 - 3
2.3 Data Output Followed By Data Input _________ 2 - 4
2.4 Sign Extension 2 - 5
2.5 Typical Internal RAM Organization 2 - 7
2.6 External Interrupt Latching 2 - 8
2.7 Supporting Five to Eight External Interrupts 2 - 9
2.8 Timing For Trap, Tristate, and Reset 2 -11
2.9 TTR Multiplexing Circuit 2 - 11
2.1 O Address Output 2 - 12
2.11 Status Register 2 - 13
3.1 Branches, Subroutines, and Loops 3 - 2
3.2 Loops Using Flag Input 3 - 4
3.3 Flag Setup Time With and Without IR0 Masked 3 - 5
3.4 Loop Until Sign Bit= 1 3 - 6
3.5 Loop While Sign Bit = 1 3 - 6
3.6 Positive and Negative Offsets 3 - 8
3. 7 Local Stack After Three Subroutine Calls 3 - 9
3.8 Subroutine Jump and Return 3 - 1 O
3.9 Restoring Registers and Counters 3 - 11
3.1 O Internal RAM With Three Levels of Nesting 3 - 13
4.1 One-Cycle Latency After Enabling Interrupts 4 - 2
4.2 Execution of Service Routines and Subroutines 4 - 3
4.3 Interrupting a Service Routine 4 - 4
4.4 Pending Interrupt on Return From Service Routine 4 - 5
4.5 Interrupt on Subroutine Jump or Return 4 - 7
4.6 Stack Underflow and Overflow 4 - 8
4.7 Three Pushes on Stack Overflow 4 - 9
4.8 Stack Paging 4 - 10
4.9 Stretching the Clock LO Period 4 -12
5.1 Look-Ahead Pipeline Timing 5 - 2
5.2 Instruction Hold Control Using IR1 5 - 4
5.3 Download From Host to Writeable Control Store 5 - 6
5.4 WCS Timing 5 - 7
5.5 Flag Synchronization For WCS 5 - 8
6.1 Jump Instruction Flow Charts 6 - 4

lX

7.1 ADSP-1410 Block Diagram ___________ 7·_ 2
7.2 Instruction Latch Timing 7 - 3
7.3 Data Port Timing 7 - 4
7.4 Address Output and Update Paths _________ 7 - 5
7 .5 Offset Paths 7 - 6
7.6 Comparison and Reinitialization 7 - 8
7.7 Bit Reversal _________________ 7 - 9
7.8 Control Register 7 - 10
8.1 Looping Address Sequences 8 - 2
8.2 Reinitialization to Form Circular Buffer 8 - 3
8.3 Reinitialization in Pre-Update and Post-Update Modes 8 - 5
8.4 Address Increase Followed By Decrease 8 - 6
8.5 DSEL for Single-Cycle Input, Update, and Output 8 - 7
8.6 Modulo Addressing 8 - 9
9.1 Single-Chip Connections to 30-Bit Address Bus 9 - 2
9.2 Two-Chip Cascade Connections 9 - 3
9.3 Minimum Clock Period, Two-Chip/Double Precision 9 - 5
10.1 Look-Ahead Pipeline Timing 1 O - 1
10.2 Sliding Window Timing 10 - 4
10.3 Output Addresses From FFT 1 O - 6
10.4 Three-Bit-Wide Address Reversal 1 O - 7
10.5 First Bit-Reversed Address 1 O - 7
10.6 Second Bit-Reversed Address 10 - 8
10. 7 System Reset Initializes ADSP-1410 10 - 9
11 .1 Data Transfer Paths 11 - 1 O

LIST OF TABLES

2.1 ADSP-1401 Pin Definitions ____________ 2-1
2.2 Status Register Bit Definition 2 - 14
5.1 Relative Jump Offset Width Selection 5 - 3
5.2 Status After Reset Operation 5 - 9
7.1 ADSP-1410 Pin Definitions 7 - 1
7.2 B Register Selection 7 - 6
7.3 Control Register Bit Description 7 - 11
10.1 Effect of RST Instruction 1 O - 1 O
11.1 Notation Terms 11 - 2

x

Introduction • 1

1.1 SYSTEM OVERVIEW
The ADSP-1401 Program Sequencer and the ADSP-1410 Address Generator
form the Word-Slice™ chipset for implementing microcoded designs. A typical
Word-Slice system is shown in Figure 1.1. The ADSP-1401 addresses the
microcode memory, which provides instructions for all of the system components.
Arithmetic processing can be provided by one or more computational devices,
such as Analog Devices' fixed-point or floating-point ALUs and multipliers. Data
transfers between the processing units and the data/coefficient memory are
facilitated through addressing generated by one or more ADSP-1410s. Note that
both the ADSP-1401 and the ADSP-1410 latch instructions internally, whereas
the arithmetic processing units use external instruction latches.

~

....___..,
m Progra

Addre SS

PS Instruction

,,
ADSP-1401
PROGRAM

SEQUENCER

Data Port

Arithmetic
Unit

MICROPROGRAM MEMORY

Constant Field AG Instruction

,
ADSP-1410 ,,

l Buffer J
ADDRESS

GENERATOR

Data Port

:r
Constant Bus

Bidirectional
Buffer

Data
Data Bus Memory

Figure 1.1 Typical Word-Slice System

Control

T
Data

Address
r---

i.---

1 - 1

1 I
Ii!

I

1 - 2

1.2 ADSP-1401 OVERVIEW
The ADSP-1401 Program Sequencer provides the addresses needed to sequence a
microcoded system through the instructions stored in microcode memory. It can
output 16-bit addresses at a high speed because its internal Look-Ahead™ pipeline
coordinates the timing of its instruction input and address output, which are both
latched on-chip. Because of this timing, the ADSP-1401 never incurs a delay
performing a jump; the jump instruction is decoded before the next address is
output.

ADSP-1401 instructions are only seven bits wide to minimize its instruction space
in microcode. At the same time, these instructions are powerful, reducing the
programming requirements for complex operations. Besides basic straight-line
execution of code, the ADSP-1401 supports conditional and unconditional jumps,
including subroutine and interrupt service routine jumps and returns. Four
decrementing counters store twos-complement values whose sign bits can be used
as conditions for jump execution. An external Flag input provides another jump
condition. The ADSP-1401 can read an address or offset at its data port for
absolute, relative, or indirect addressing.

On-chip RAM stores return addresses, jump addresses, registers values, and local
variables. The RAM capacity is 64 words, large enough to accommodate many
levels of subroutine nesting. The RAM consists of three sections: the subroutine
stack, the register stack, and the indirect jump address space. The relative sizes of
the three sections are user-configurable.

The ADSP-1401 provides complete interrupt processing on-chip. It stores vectors
for eight external and two internal interrupts. The dedicated internal interrupts
indicate stack limit violations and counter underflow. Interrupts can be
individually masked, or disabled and enabled as a group. Interrupts are latched to
ensure recognition even if the interrupt source removes the signal. This latching
can be disabled (transparent) if not needed or desired. The ADSP-1401 handles an
interrupt by outputting the corresponding vector and saving the return address.

The ADSP-1401 can be placed in a Writeable Control Store mode in which it
provides sequential addressing to download instructions into microcode from an
external source (without executing the downloaded instructions). In this mode, the
ADSP-1401 conforms to download timing requirements through a handshake
signal.

1.3 ADSP-1410 OVERVIEW
The ADSP-1410 Address Generator produces the data memory addresses needed
to implement digital signal processing and array processing algorithms quickly
and efficiently. It can simultaneously output an address from one of its 16 address
registers and calculate the address of the next data access in a single instruction
cycle. The ADSP-1410 can also determine whether an address exceeds a user
defined limit and then reset the address value accordingly. This feature allows it
to generate looping address sequences without overhead penalty.

The ADSP-1410 has an internal ALU that can update an existing address register
through following operations:

• Increment
• Decrement
• Add offset value
• Subtract offset value
• OR with preloaded value
• AND with preloaded value
• XOR with preloaded value
• Shift one bit left
• Shift one bit right

The ADSP-1410 can also bit-reverse addresses upon output.

A single ADSP-1410 provides 16-bit addresses; you can expand the addressing
capability to 30 bits by either cascading two ADSP-1410 devices or executing two
cycles for each address. A 16-bit bidirectional data port lets you transfer data to
and from other devices. You can also transfer data between internal registers
using dedicated instructions.

The internal Look-Ahead™ pipeline latches the instruction input port and address
output port in opposite phases of the clock cycle. This timing allows the ADSP-
1410 to begin decoding the next instruction while maintaining the address of the
current cycle. Predecoding instructions provides the fastest possible address
output, for the maximum possible memory access time. If memory access time is
not critical, however, you can forego predecoding and reduce the instruction setup
time requirement.

The Alternate Instruction Register (AIR) of the ADSP-1410 provides a single
instruction cache that can reduce microcode memory requirements for many
applications. For example, if an instruction must be repeated, it would occupy
several locations in microcode. You can store it in the AIR instead and enable the
AIR the number of times needed. The AIR can also be used to supersede the
instruction in microcode conditionally (to exit a loop, for example). Modulo
addressing, which is described in Chapter 8, is accomplished using conditional
AIR execution.

1

1 - 3

1 I
Ill

I

1 - 4

1.4 THIRD-PARTY SUPPORT
A number of third-party vendors produce development tools for Word-Slice
components. At the time of this publication, these tools include the following:

• MET ASTEP is a meta-assembler package from STEP Engineering that eases
the task of writing microcode programs for Word-Slice components. This
software runs on a variety of host computers, including the IBM PC and the
VAX. STEP Engineering also sells its own development systems.

• Microtec Research supports Word-Slice components with two meta
assemblers. Their MET A29R Relocatable Macro Meta-Assembler System
consists of a definition program, an assembler, linker, and PROM formatter.
MET A29R is Microtec's version of AMDASM. Their mcASM, a second
generation meta-assembler, can use files created by AMDASM and META29R
but provides a high-level approach. Definition files for Word-Slice components
are included with both meta-assemblers.

• HILEVEL Technology's HALE (HILEVEL Assembly Language Environment)
supports both Word-Slice components and Analog Devices' floating-point
components. HILEVEL also has two control store boxes: the DS370 Emulyzer
and the DS3700 Emulyzer.

• The Hewlett-Packard (HP 64276) Microprogram Development Subsystem in
conjunction with their HP 64320S Logic State/Software Analyzer provides
control store emulation. The HP 64276 includes a meta-assembler which is not
capable of storing permanent definition files. All of these tools require an HP
6411 OA development workstation as a host.

• Logic Automation's SmartModels are software behavioral models of various
devices, including the Word-Slice components. Several simulation programs
generate board-level simulations using these models. Prototyping time is
thereby greatly reduced.

For more information, contact the vendors directly at the following addresses:

STEP Engineering
P.O. Box 61166
Sunnyvale, CA 94088
800-538-1750

HILEVEL Technology
18902 Bardeen Way
Irvine, CA 92715
800-HILEVEL

Hewlett-Packard
(Contact a local sales office)

Microtec Research
P.O. Box 60337
Sunnyvale, CA 94088
408-733-2919

Logic Automation
P.O. Box 310
Beaverton, OR 97075
503-690-6900

I

1.5 MANUAL ORGANIZATION
This manual is organized into two main sections, indicated by two banks of tabs
that mark the chapters. The first section (Chapters 2 through 6) is devoted to the
ADSP-1401; the second(Chapters 7 through 11) to the ADSP-1410. The chapters
contain the following information:

• Chapter 1 describes the general features of the ADSP-1401 and the ADSP-
1410 as well as the organization of this manual.

• Chapter 2 describes the internal architecture of the ADSP-1401. The function
of each area of the device is explained, as well as the interrelationships
between various areas.

• Chapter 3 describes how to implement program jumps, including loops and
subroutines. Jump conditioning and addressing options are explained.

• Chapter 4 describes the interrupt processing capabilities of the ADSP-140 I.
The ADSP-1401 can handle up to eight external interrupts plus two interrupts
generated internally.

• Chapter 5 describes the system interface of the ADSP-1401. Connections to
and from the device are explained.

• Chapter 6 describes the instruction set of the ADSP-1401. The mnemonic,
opcode, and description for each instruction are listed. Short examples are
given for each instruction. A summary section provides the mnemonic,
opcode, and a short description for each instruction.

• Chapter 7 describes the internal architecture of the ADSP-1410. The function
of each area of the device is explained, as well as the interrelationships
between various areas.

• Chapter 8 describes various addressing operations performed by the ADSP-
1410, including how it selects the address to output and how it updates the
address to anticipate the next access.

• Chapter 9 describes the precision modes of the ADSP-1410. Precision modes
determine the width of the generated addresses.

• Chapter 10 describes the system interface of the ADSP-1410. Connections to
and from the device are explained.

• Chapter 11 describes the instruction set of the ADSP-1410. The reference
section of this chapter describes the instructions in detail and gives short
examples. A summary section provides the mnemonic, opcode, and a short
description for each instruction.

1

ADSP-1401

ADSP-1410

1 - 5

Internal Architecture • 2

2.1 INTRODUCTION
The ADSP-1401 is a 48-pin CMOS device. Pin names and definitions are listed in
Table 2.1.

PIN NAME

16-0

Y1s-o
D1s-o
EXIR4_ 1

FLAG
TTR

CLK

Yoo
GND

DEFINITION

Instruction input, seven bits
Address output, 16 bits
Data 1/0, 16 bits
External interrupts, four inputs that are time-multiplexed to
generate eight internal signals (IR8_1)

Condition input
Three-function control input that is time-multiplexed to generate
internal Trap, Tristate, and Reset signals
Clock input
+5 Volt supply
Ground

Table 2.1 Pin Definitions

Figure 2.1 shows a block diagram of the ADSP-1401. The device consists of the
following major areas, which are described in the sections of this chapter:

• Instruction Port and Instruction Decoder
• Bidirectional Data Port
• Program Counter
• Adder and Width Control
• Internal RAM and Stack Pointers
• Interrupt Logic and Interrupt Vector File
• Event Counters
• Flag
• Trap/Tristate/Reset
• Address Multiplexer and Address Port
• Status Register

2-1

Iii!

I

5

Figure 2.1 ADSP-1401 Block Diagram

2-2

Instruction Port, Decoder, and Flag
Bidirectional Data Port
Program Counter
Adder and Width Control
Internal RAM and Stack Pointers
Interrupt logic and Interrupt Vector File

7 Event Counters
8 Trap!Tristate/Reset
9 Address Multiplexer and Port

10 Status Register

Interrupts
EXIR 4•1

r

2.2 INSTRUCTION PORT
The ADSP-1401 receives instructions through its instruction port, which consists
of seven pins (16_0). The ADSP-1401 latches an instruction during clock HI. The
instruction port is transparent during clock LO to allow predecoding of the next
instruction, as shown in Figure 2.2.

You can program the ADSP-1401 to repeat an instruction rather than latch in a
new instruction. See Instruction Hold Control in Chapter 5 for more infonnation.

ADSP-1401
Clock _J

Setup And
Predecode !1111111

L
Instruction
Port Data ----'~;-.--: -

Latched Transparent Latched

Figure 2.2 Instruction Port Latching

2.3 BIDIRECTIONAL DATA PORT
The bidirectional data port consists of 161/0 pins (D 15_0) through which the
ADSP-140 I loads values for direct or indirect addressing and transfers register
values. Data inpµt is latched during clock HI. Data output is enabled during clock
HI and disabled during clock LO. This timing accommodates a data output
followed by a data input in the next cycle, as shown in Figure 2.3. To prevent
contention on the data bus, the ADSP-1401 disables data output in time to allow
the data input to meet the required setup to the rising clock edge.

2-3

2-4

I
Ill

I

2.4 PROGRAM COUNTER
The program counter provides addressing for sequential program execution. The
ADSP-140 I increments its 16-bit program counter at the end of every instruction
cycle, unless the instruction specifically inhibits the increment. Jump instructions
load the program counter with the jump address, so that sequential execution can
continue after the jump.

ADSP-1401
Clock

Data
Output

Data
Input

L
!<111 llJ!oi<lll ~i',',,,',,, 1,,, Enabled I Disabled ___ /,.....--.;--.--,} ___ _

\, Y, !

~*~t--
Output Output
Enable Disable

Data Bus
Not Driven ~

Setup Hold

~ansparent ~i<lll Latched ..,j

Figure 2.3 Data Output Followed by Data Input

ii

I

2.5 ADDER AND WIDTH CONTROL
The adder allows the ADSP-1401 to calculate relative jump addresses by adding
offset values to the program counter. When the ADSP-1401 is executing a relative
jump instruction, it has already incremented the program counter; therefore, the
number of instructions from the address of the relative jump instruction to the
jump address is the offset value plus one.

The ADSP-1401 reads offsets at the data port. You can program the ADSP-1401
to read the least significant 8 bits or 12 bits, or all 16 bits. Offsets fewer than 16
bits wide are automatically sign-extended before being added to the program
counter address. Sign extension repeats the most significant bit to extend the
value to 16 bits, as shown in Figure 2.4.

Data Port

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xx xx xjxjx x o 1 1 0 1 0 0 1

Positive Offset, 8-bit Width

0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1

Sign Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x 11 I 0 I 0 0 1 1 0 0 0 1 1 0

Negative Offset, 12-bit Width

1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0

Sign Extension

Figure 2.4 Sign Extension

2-5

2-6

2.6 INTERNAL RAM AND STACK POINTERS
The internal RAM of the ADSP-1401 consists of 64 16-bit words. A typical RAM
configuration is shown in Figure 2.5. The RAM can be divided into the following
spaces:

• Subroutine Stack: The subroutine stack stores the return address needed to
return from a subroutine or interrupt service routine automatically. You can
also save counter, register, status and pointer values on the subroutine stack.
The subroutine stack pointer (SSP) is a 6-bit register that contains the address
of the most recently written stack location (the next stack location to be read).
The subroutine stack grows in the direction of higher memory addresses. A
subroutine stack push first increments the SSP, then writes the stack location.
A pop reads the stack location (without erasing it), then decrements the SSP.

• Register Stack: The register stack comprises two other stacks: the local stack
and the global stack. The local stack registers store jump addresses for each
level of subroutine nesting, whereas the global stack registers store jump
addresses accessible from any point in the program. The local stack pointer
(LSP) contains the 6-bit address of the most recently written local register (the
next register to be read), and the global stack pointer (GSP) contains the 6-bit
address of the most recently written global register. Jump instructions that
access the addresses stored on the register stack include two bits of opcode that
select one of the top four registers. Both the local and global stacks grow in the
direction of lower memory addresses. A register stack push first decrements the
pointer (LSP or GSP), then writes the stack location. A pop reads the stack
location (without erasing it), then increments the pointer.

• Indirect Address Space: The indirect address space stores jump addresses that
are accessed by their location in the internal RAM. In indirect jump
instructions, the RAM is addressed by the six least significant bits of the data
port (D5_0).

The reset operation automatically initializes the SSP to location 0. You must
initialize the GSP and LSP explicitly. Normally, the LSP is set to a lower address
than the GSP, because the local stack must grow to accommodate several levels of
nested subroutines, whereas the global stack can often be fixed at the outset of the
program. Indirect addresses reside in high RAM (addresses greater than the global
stack addresses).

Because the subroutine stack grows toward higher memory and the register stack
grows toward lower memory, there is a potential for a stack collision. The Stack
Limit Register (SLR) is a 4-bit register that defines the boundary between the two
stacks. The ADSP-1401 generates an internal interrupt when it detects the
overflow of either the subroutine stack or register stack. See Stack Overflow and
Underflow Interrupt in Chapter 4 for more information.

II!

r I

To Of RAM
00 Underflow Buffer ..---- SSP 1------------1
01 I (Push)
02 1-----------t •

Subroutine Stack

33 t (Push) 34
35 Register Stack
36 ..---- LSP

37
38 t (Push) 39
3A
38 ..---- GSP

3C
30
3E
3F

Bottom Of RAM

Figure 2.5 Typical Internal RAM Organization

2.7 INTERRUPTS AND INTERRUPT VECTOR FILE
The ADSP-140 I processes up to eight interrupts from external sources plus two
interrupts generated internally. The interrupt vector file stores ten 16-bit vectors
Uump addresses). Each vector is the starting address of an interrupt service
routine for one of the ten interrupts. The ADSP-1401 outputs the vector on the
address port in the cycle following the recognition of the interrupt.

2-7

2-8

1i!

I

The ADSP-1401 receives external interrupts through four level-sensitive inputs
(EXIR4_1) which are time-multiplexed to generate eight internal interrupt signals.
Interrupts IR8_5 are normally latched on the EXIR4_1 pins during clock HI, and
interrupts IR4_1 are normally latched on the EXIR4_1 pins during clock LO.
Interrupt timing is shown in Figure 2.6.

ADSP-1401
Clock

EXIR 4_1

_J
IR4-1

Transparent

Setup

t LIRS

IR4-1
Latched

IRB-5
Transparent

Setup

tUIRS

IRB-5
Latched

l Output
! Delay

...____l

Interrupt Vector
Address Valid

Address
Port

:... ...:... ...:

_x~-----'~~! -
Figure 2.6 External Interrupt Latching

You can enable or disable the processing of all interrupts, or mask interrupts
individually. The ADSP-1401 still latches an interrupt while it is disabled or
masked; if you re-enable or unmask the latched interrupt, the ADSP-1401 will
process it.

The interrupt vector file is loaded from the data port; you can also read interrupt
vectors at the data port. The Interrupt Vector Pointer (IVP) is a 4-bit register that
contains the location of the next interrupt vector to be loaded or read. You load or
read a specific vector by moving the IVP to the vector file location and performing
the appropriate instruction.

An interrupting device can remove the interrupt signal after the interrupt has been
latched. An interrupt remains latched until cleared by one of several instructions,
usually in the interrupt service routine. You can also operate interrupts in a
transparent mode, in which the latches are bypassed. In this mode, the interrupting
device must maintain the interrupt signal until the interrupt is recognized. The
transparent mode makes it possible to cancel an interrupt signal before the next
clock edge to prevent interrupt servicing. The latching mode is determined by a bit
in the status register; see Status Register, below.

I
iii

I

Support of more than four interrupts requires an external two-to-one multiplexer,
shown in Figure 2.7, to input the interrupt signals to the ADSP-1401 at the correct
times. One to four interrupt sources can be connected directly to the EXIR4_ 1 pins.
These interrupts should conform to the timing for IR8_5, the higher priority
interrupts, and you must also mask interrupts IR4_ 1. Any unused interrupt inputs
(external multiplexer inputs or EXIR4_1) should be masked and preferably
grounded as well, to prevent them from being activated.

Interrupt 8 1A
Interrupt 7 2A
Interrupt 6 3A 1Y EXIR4 Interrupt 5 4A 2:1

Interrupt 4 18
Multiplexer 2Y EXIR3 ADSP-1401

74F257 3Y EXIR2 Interrupt 3 28
4Y EXIR1 Interrupt 2 38 CLK

Interrupt 1 48 SEL8

Clock

Figure 2.7 Supporting Five to Eight External Interrupts

The internally generated interrupt signals are IR9, which indicates a stack
overflow or underflow, and IR0, which indicates a counter underflow. These
interrupts are described in Chapter 4, Interrupt Processing.

2.8 EVENT COUNTERS
The four counters of the ADSP-1401 (C3_0) store 16-bit twos-complement values.
These decrement-only counters keep track of events and implement programming
loops. Several instructions use the sign bit (most significant bit) of a counter as a
condition for executing a particular operation.

The ADSP-1401 always stores the sign bit of the most recently decremented
counter (the value before decrement) in the status register; see Status Register,
below. You can condition certain instructions on this stored sign bit. The sign bit
of a counter can also generate the internal IR0 interrupt; this interrupt is provided
primarily to end a download operation (see Writeable Control Store in Chapter 5).
See Counters in Chapter 3 for more information on how to use counters to
implement loops.

2.9 FLAG
The ADSP-1401 latches the Flag input during clock HI. Several instructions use
the Flag input (or its complement) as a condition for executing a particular
operation. See Flag in Chapter 3 for more information.

2-9

2-10

2.10 TRAP/TRISTATE/RESET
The Trap!fristate/Reset (TTR) input performs three functions:

• Trap: The Trap signal is an asynchronous, nonmaskable interrupt. It usually
indicates a system emergency, such as a power failure; you can also use it to
implement a cache (see Trap in Chapter 4). If the TTR input is asserted (HI)
during clock LO and deasserted (LO) during clock HI, a Trap signal is
generated. The Trap interrupt is serviced by the same routine as IR9; the IR9
vector is output a specified time after the assertion of the Trap signal.
Therefore, if the Trap signal is used, the routine must determine whether the
interrupt source is the internal IR9 interrupt or the Trap signal.

• Tristate: The Tristate signal places the address port in the high-impedance state
a specified time after its assertion. This signal allows another device to address
the microcode memory without otherwise affecting the ADSP-1401 operation.
If the TTR input is HI during clock HI and LO during clock LO (follows the
clock signal), the address port is placed in the high impedance state, regardless
of the executed instruction.

• Reset: The Reset signal initiates a reset operation, which places the ADSP-1401
in a known state. If the TTR input is asserted (HI) during both clock HI and
clock LO, the ADSP-1401 initiates a reset operation. The TTR input must
remain HI for two more cycles for the reset operation to complete.

The timing of the three signals is compared in Figure 2.8.

The Tristate signal can be active during clock LO only a maximum time of tTsov
from the falling clock edge; otherwise, the Trap signal is activated. Similiarly, the
Trap signal can be active during clock HI only a maximum time of tTRov from the
rising clock edge without activating Tristate. Figure 2.9 shows a time-multiplexing
circuit that coordinates the Trap, Tristate and Reset signals to the TTR input. This
circuit ensures that the Trap and Tristate signals are distinct. If both the Trap and
Tristate signals are used, they cannot be asserted in the same cycle, because the
ADSP-1401 recognizes this combination as a Reset signal.

ADSP-1401
Clock

TRAP

TRISTATE

Address

RESET

lil

r I

___ _J

f/11!/1 ~~~f--'--l-----;---
11 -.j ~ tTROV (Overlap with TRISTATE)

_J,_______.__.~ . ~'------j-""---

1 -.;\! ~ '™"' (0~"" •"" """

t

ITSE (TRISTATE Enable)

----------~: :__
~ ITROV

3 Clock Cycles

Figure 2.8 Timing for Trap, Tristate, and Reset

TRAP

RESET

TRISTATE

Clock

Figure 2.9 TIR Multiplexing Circuit

74F257
2:1 Multiplexer

Y 1------1~ TTR

ADSP-1401
Program

Sequencer

CLK

2 - 11

2-12

@

I

2.11 ADDRESS MULTIPLEXER AND ADDRESS PORT
The ADSP-140 I outputs the address of the next microcode instruction on its 16-
bit address port (pins Y 15_0). Addresses are output during clock HI and latched for
the duration of clock LO, as shown in Figure 2.10. No external latches are needed
between the address port and the microcode address inputs.

ADSP-1401
Clock _J L
Address
Output

-.;.........JXi;.....--! ____.X~-
~ ~

t AD (Address Delay)

Transparent Latched Transparent

Figure 2.10 Address Output

The address multiplexer selects the address from one of four sources in response
to the given instruction:

• Program Counter: For sequential addresses
• Adder: For absolute or relative jump addresses
• Interrupt Vector File: For interrupt service routine addresses
• Internal RAM: For indirect jump addresses, local and global jump addresses,

and subroutine return addresses

The tristate drivers of the address port are always active unless placed in the high
impedance state through either software (the IDLE instruction) .or hardware (the
TTR pin) control. For multitasking and context-switching applications, in which
other devices must access microcode memory, placing the address drivers of the
ADSP-1401 in the high-impedance state effectively removes the device from the
address bus.

2.12 STATUS REGISTER
The status register, shown in Figure 2.11, contains 16 bits (SR 15_0) that control
various operating modes of the ADSP-1401 according to Table 2.2. You can set

MSB LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IR9 IRS IR7 IR6 IRS IR4 IR3 IR2 IR1 IRO

l
Interrupt

Disable Mask
~~rn~~~~~~~~

1 Masked
0 Unmasked

l
Relative Jump Offset Width T ...

00 I 16-bit Width
01 8·bit Width
10 l IHC Mode, 8-bit Width
11 I 12-bit Width

1
Select GSP I LSP l
6} GSP Selected

[LSP Selected Interrupt
Enable I Disable

Sign Bit Interrupt
1 Enable ···········r·· Latching
0 Disable 1 ! Negative .. rn

0 1 Positive 1 Transparent
0 Latched

Figure 2.11 Status Register

2 -13

2 -14

r

and clear all bits at once or individually, using dedicated instructions. The ADSP-
1401 also writes the SR1 bit during the execution of instructions that decrement
counters. You can load or read the entire status register from the data port. You
can also save and restore the status register to and from the subroutine stack. The
reset operation clears the entire status register.

SR BIT DESCRIPTION

0 Transparent Interrupt Selection: This bit, if set, disables the latching of
external interrupts (IR8_1). Transparent interrupts require the interrupt
source to maintain the interrupt signal until the service routine
acknowledges the recognition of the interrupt. If this bit is cleared, IR8_5
are latched during clock HI and IR4_1 are latched during clock LO.

2

3

5-4

15 - 6

Sign Bit: This bit normally contains the value of the sign bit of the most
recently decremented counter (value before decrement). It can also be
set and cleared using dedicated instructions.

Interrupt Enable: This bit, if set, enables the processing of all unmasked
interrupts. If this bit is cleared, processing of all interrupts, masked and
unmasked, is disabled. External interrupts are still latched, unless SR0 is
set.

Register Stack Pointer Selection: If this bit is set, all register stack
instructions affect the global stack. If this bit is cleared, all register stack
instructions affect the local stack.

Relative Jump Offset Width and Instruction Hold Control Mode
Selection: These bits select the width of jump address offsets input at
the data port and may also place the ADSP-140 I in the Instruction Hold
Control mode, in which the instruction in the instruction latch is
repeated under control of the IR 1 interrupt input.

Interrupt Disable Mask: These ten mask bits correspond to the ten
interrupts. (SR15 is paired with IR9, SR 14 with IR8, and so forth.) If the
mask bit is set, processing of the corresponding interrupt is disabled,
although the interrupt signal is still latched. If the mask bit is cleared,
the interrupt is enabled and disabled by the SR2 bit.

Table 2.2 Status Register Bit Definition

Jumps • 3

3.1 INTRODUCTION
Normally, the ADSP-1401 provides sequential execution of microcode by
incrementing the current address in the program counter. A jump is a deviation
from sequential execution. A jump instruction outputs an address that is different
from the next sequential address and reloads the program counter with this new
address.

Jumps are used for several purposes, including:

• Conditional Branches: A conditional jump creates a branch in the program
flow based on a specified condition (the ADSP-1401 provides four conditions).
If the condition is true, the ADSP-1401 skips to another section of the
program; if the condition is false, the ADSP-1401 continues to execute
instructions sequentially. The ADSP-1401 also provides for a three-way
branch, in which two conditions are tested instead of one.

• Subroutine Calls: A jump to a subroutine executes a block of instructions in
one section of the program and then resumes sequential execution. Before the
ADSP-1401 performs a subroutine jump, it pushes the address of the next
sequential instruction on the subroutine stack. When the subroutine execution
completes, the ADSP-1401 pops the subroutine stack and program execution
continues from the return address.

• Loops: A jump to a previously executed instruction repeats the execution of
one or more instructions. The ADSP-1401 includes four event counters that
you can use to set the number of loop iterations.

• Interrupt Servicing: A jump to an interrupt service routine is similar to a
subroutine call in that the ADSP-1401 stores the next sequential address for
the return jump. However, the jump is initiated by an interrupt signal rather
than a software instruction. Interrupts are explained fully in Chapter 4,
Interrupt Processing.

These operations are illustrated in Figure 3.1. Chapter 6 provides complete
information on the specific instructions that perform these operations.

3 - 1

3-2

T

Conditional Branch

Interrupt
Service Routine

Subroutine Call
(Conditional)

T

Loop
(Conditional)

= Condition Test

= Instruction

Figure 3.1 Branches, Subroutines, Loops, and Service Routines

The ADSP-1401 obtains jump addresses from several sources:

• Data Port: The jump address is usually given in a data field supplied with the
jump instruction in microcode. The ADSP-1401 reads the address on its data
port and can output this address unchanged (absolute addressing) or add it to
the program counter value first (relative addressing).

• Indirect Address Space: An external source, usually microcode, provides an
address on the six least significant bits of the data port. This 6-bit address
selects a location in the indirect address space that contains a preloaded jump
address.

• Interrupt Vector File: On the cycle following the detection of an interrupt, the
ADSP-1401 outputs the appropriate interrupt vector on the address port.

• Register Stack: Several jump instructions access an address stored in the local
stack or global stack. The stack location is specified relative to the location of
the LSP or GSP.

• Subroutine Stack: Subroutines and interrupt service routines require jumps to
return to their calling routine. To execute a return from a subroutine or
interrupt service routine, the ADSP-1401 pops the return address from the
subroutine stack.

3.2 CONDITIONS
Conditional jump instructions contain two bits of opcode that are used to select
one of four jump conditions. These conditions are often used to control loop
iteration and subroutine execution, as well as conditional branching.

• FLAG - Execute jump if Flag input is HI.
• NOT FLAG - Execute jump if Flag input is LO.
• SIGN - Execute jump if sign bit of specified counter is HI.
• UNCONDITIONAL - Execute jump always

3.2.1 Flag Input
The Flag input signal or its complement (Not Flag) can be selected as a jump
condition. Through the Flag input, an external condition can control the execution
of a jump instruction.

Figure 3.2 shows two kinds of Flag-controlled loops. In the first example, the
jump to the top of the loop (JRC instruction to the address in Rj) is conditioned on
the Flag signal, and the loop repeats as long as the external device asserts the Flag
input. In the second example, the JPCNF instruction creates a one-instruction loop
that repeats the same microcode instruction for as long as the Flag input is
inactive. (The JPCOF performs the same function for as long as the Flag input is
active.) The Flag input can thus be used by an external device to control the
repetition of an instruction. This type of loop is useful for reconciling timing
differences.

3-3

3-4

Loop While Flag= 1 Loop Until Flag = 1

Figure 3.2 Loops Using the Flag Input

When IR0 (counter underflow interrupt) is not masked, the Flag input setup time is
greater than for when IR0 is masked, as shown in Figure 3.3. In the worst-case
timing, a Flag input leads to a counter underflow, and extra time is needed to
process the IR0 interrupt after the underflow is detected. See the current ADSP-
1401 Data Sheet for timing requirements. The IR0 interrupt is described in Counter
Underflow Interrupt, in Chapter 4.

3.2.2 Counters
The ADSP-1401 has four decrement-only event counters (C3_0), which store 16-
bit twos-complement values. The sign bit of any counter can be selected as a
condition for several jump instructions; a negative sign bit (HI) represents a true
Sign condition. Jump instructions conditioned on a counter sign bit can control
the iteration of program loops. The sign bit of a counter (value before decrement)
determines whether the loop repeats or ends. If the loop repeats, the counter is
decremented.

Before it decrements a counter, the ADSP-1401 writes the counter's sign bit to
SR1• Thus, SR1 always contains the sign bit (before decrement) of the most
recently decremented counter. The Sign condition is tested in one of two ways,
depending on the type of instruction. If the instruction decrements a specific

ADSP-1401 J
Clock

Flag
(IR 0
Masked) ~ 'tlfllll/lll#Ji

ADSP-1401 J
Clock

tlFSM ~ ~
(Worst Case)

FLAG = 1, SIGN = 1,
Decrement Set SR1 And IRO

Counter Interrupt

Flag
(IRo
Unmasked)

~,_________.! 'tlfllll/lll#Ji
tlFSU ~ ;11111

Figure 3.3 Flag Setup Time With and Without IR0 Masked

counter (conditionally or unconditionally), the sign bit of that counter (before
decrement) is tested. If the instruction does not affect a counter, the SR 1 bit is
tested. The exception is the IFCDEC instruction; if the Sign condition is selected
for this instruction, SR1 is tested even though the instruction decrements C0. This
instruction incurs a delay when used with the counter underflow interrupt, IR0; see
Counter Underflow Interrupt in Chapter 4.

You can load counters from the data port. You can also save them to and restore
them from the subroutine stack. The value you must load into a counter to execute
a loop depends on the action performed by the instruction and the location of the
conditional jump instruction within the loop (top or bottom). For example, in
Figure 3.4 the Sign condition is tested at the top of the loop. If the condition is

Figure 3.5 shows another way to construct a loop. The Sign condition is tested at
the bottom of the loop. If the condition is true, the JRS instruction executes a
jump to the top of the loop (address stored in Rj). Otherwise, the instruction that
follows the JRS instruction is executed, ending the loop. In either case, Ci is
decremented. To iterate this loop N times, the counter must be loaded with a value
2I5+N-2, a negative value, to perform the jump while the Sign condition is true.

3-5

Unconditional
'-----I Jump

Figure 3.4 Loop Until Sign Bit = 1

Ci= 215 + N -2

Figure 3.5 Loop While Sign Bit = 1

3-6

Example: N = 5

5 - 1 = H#0004

Loop Ci (before decrement)

1
2
3
4
5

0004
0003
0002
0001
0000

Example: N = 5

2 15 + 5 - 2 = H#8003

Loop Ci (Before Decrement)

1 8003
2 8002
3 8001
4 8000
5 7FFF

Examples using other instructions to create loops and count events are described
in Using the Counters of the ADSP-1401 Program Sequencer for Loop and Event
Counting. The use of the counter underflow interrupt (IR0) is explained in this
application note, as well as in Chapter 4, interrupt Processing.

3J ADDRESS SOURCES
The ADSP-1401 supports both direct and indirect addressing in its jump
instructions. A direct address points to a microcode memory location. An indirect
address points to a location in the indirect address space in the internal RAM of
the ADSP-1401; this location in tum contains an address that points to a
microcode memory location. The register stack is a third source of jump
addresses. These addresses are accessed through either the GSP or LSP.

3.3.1 Direct Addressing
Direct addressing requires input from the data port. The ADSP-1401 can perform
two types of direct jumps: an absolute jump, which interprets the given data value
as the jump address, and a relative jump, which interprets the given data value as
an offset from the program counter address. To perform an absolute jump, the
ADSP-1401 passes the data port value through the width control block and adder
to the address port unchanged. For a relative jump, the ADSP-1401 adds the data
port value to the program counter value, and outputs the sum on the address port.
Because the program counter contains the address of the next instruction, the
jump distance from the relative jump instruction is one instruction more than the
offset value. If the twos-complement offset is negative, however, the jump
distance is one less than the offset value. In Figure 3.6, an offset of H#0024
results in a jump from address H#Ol23 to H#Ol48, whereas an offset ofH#FFDC
(the twos complement ofH#0024) results in a jump from H#Ol23 to H#OlOO.

The ADSP-1401 recognizes three offset widths: 16, 12, and 8 bits. This feature
conserves data bits in microcode for applications that do not require relative jump
offset values larger than the selected data width can represent. Two status register
bits select the offset width. The ADSP-1401 ignores the unused data bits when
reading an offset from the data port.

3.3.2 Indirect Addressing
Indirect jump addresses are stored in the indirect address space (in the internal
RAM). A 6-bit address provided at the data port with an indirect jump instruction
specifies the RAM location. In principle, an indirect jump address can be stored in
any RAM location. In practice, however, the indirect address space is usually
located in the highest memory to eliminate the possibility of an indirect jump
address being overwritten by a stack operation.

3-7

3-8

H# 0121

H#0122

H#0123

H# 0124 + H# 0024 = H# 0148

H#0148

Positive Offset

Figure 3.6 Positive and Negative Offsets

3.3.3 Register Stack

H#0100

H# 0121

H#0122

H#0123

H# 0124 + H# FFDC = H# 0100

Negative Offset

The register stack consists of two stacks: the local stack and the global stack. Both
of these stacks provide storage for jump addresses. The subroutine stack can be
used for this purpose, but the SSP must be tracked so that subroutine nesting
levels are not lost. The register stack does not have this constraint. The register
stack pointers (LSP and GSP) can be moved as needed to access stack contents.

The local stack stores jump addresses used by particular subroutines. The global
stack stores jump addresses that can be accessed from any subroutine, as well as
the main program. For example, the global stack might contain a jump address
used by several interrupt service routines. Sharing jump addresses on the global
stack avoids the duplication of jump addresses in the local stack and conserves the
code required to push the jump addresses on the local stack.

A single set of register stack instructions applies to both the local stack and the
global stack. A status register bit. determines which stack a register stack
instruction affects. Certain jump instructions can access four registers of the
selected stack as jump addresses. These registers are referenced by their location
relative to the LSP or GSP; for example, R2 is the register at the location that is

J

two greater than the LSP or GSP location. To access four other registers, you
simply move the stack pointer.

The local stack can grow for each level of subroutine nesting. The number of
registers depends on the number of local stack pushes performed by the
subroutine; however, only the top four registers can be accessed without moving
the LSP. Figure 3.7 shows an example of a local stack after three subroutine calls.
The LSP pointed to location H#lD in the main program. Subroutine A pushed the
stack twice, subroutine B pushed the stack six times, and subroutine C pushed the
stack twice. Before the return from subroutine C is executed, the subroutine must
remove its registers from the stack, either by adding two to the LSP (requires one
instruction) or by popping the stack twice (requires two instructions).

LSP--.. 13

14

15

16

17

18

Move LSP to [19
Access These

1A Registers

18

1C

RO

R1 ~ Subroutine C

RO

R1

R2
Subroutine B

R3

RO

R1 ~ Subroutine A

Figure 3. 7 Local Stack After Three Subroutine Calls

Global stack registers can be loaded at the outset of the program or as the need
arises. Moving the GSP does not affect ·the stack contents; therefore, the GSP can
be reloaded to access different sets of four registers. You can relocate the GSP
temporarily by saving it on the subroutine stack and later restoring it (using
dedicated instructions).

If a register stack push violates the upper limit of the register stack defined by the
Stack Limit Register (SLR), a stack overflow interrupt is generated. See Stack
Overflow and Underflow Interrupt in Chapter 4 for details.

3-9

3 -10

3.4 SUBROUTINES
The execution of a subroutine requires two jumps: one jump to the first instruction
of the subroutine, and a return jump from the end of the subroutine to the
instruction following the subroutine call. To store the return address, the ADSP-
1401 automatically pushes the return address on the subroutine stack before
jumping to the subroutine. To return to the calling routine, the RTN instruction
pops the return address from the subroutine stack to the address port and the
program counter. The timings of a subroutine jump and return are shown in Figure
3.8.

ADSP-1401
Clock

Address

ADSP-1401
Clock

Address

Address of
Jump Instruction,

Address of RTN
Instruction

Execute Subroutine
Jump Instruction

Push Return Address
On Subroutine Stack

Jump Address

Subroutine Jump

Execute RTN
(Last Instruction
Of Subroutine)

Pop Return Address
From Subroutine Stack

Return Address

Return From Subroutine

Figure 3.8 Subroutine Jump and Return

Execute First
Instruction

Of Subroutine

r
~------

Execute Next
Instruction

Of Main Program

_____ ,

The subroutine stack also provides storage for register, counter, and status values.
In general, a subroutine should be executable from any point in the program;
therefore, it should not alter any data stored in the ADSP-1401 registers, counters,
and so forth, unless that is the intent of the subroutine. It is a good idea for a
subroutine to save the data of any locations it modifies so that it can restore them
before returning to the calling routine. The status register, any of the four
counters, and the GSP can be pushed on the subroutine stack. At the end of the
subroutine, the subroutine stack must be popped in the reverse order, as shown in
Figure 3.9. Note that a pop does not erase a stack location

Save Values On Subroutine Stack at Start of Subroutine

Initial SSP Location

···-H ... _.Fc;=i M C1

C3 I ! I ITl SSP -PR SSP ~ GSP
~-~-~

Jump to Subroutine Push C1 Push C3 Push GSP

Restore Values at End of Subroutine

SSP ~ SSP ~

C1 SSP ~ C1

SSP ~ C3

Pop GSP Pop C3 Pop C1 Return to Main Program

Figure 3.9 Restoring Registers and Counters

3 - 11

3 -12

If a subroutine stack push violates the upper limit of the subroutine stack defined
by the Stack Limit Register (SLR), a stack overflow interrupt is generated. See
Stack Overflow and Underflow Interrupt in Chapter 4 for details.

A subroutine is nested when it is called during the execution of another
subroutine. Figure 3. IO shows an example of the contents of the internal RAM
with three levels of subroutine nesting.

• Four indirect addresses and two global jump addresses are loaded in the main
program.

• The first subroutine jump pushes a return address on the subroutine stack.
Counters C1 and C3, the GSP, and the status register are pushed on the
subroutine stack in the first subroutine, to preserve their values for the main
program. After the GSP has been saved, the subroutine pushes two jump
addresses on the global stack, as well as two jump addresses on the local stack.

• The second subroutine jump pushes a return address on the subroutine stack.
Counters C1 and C2, and the GSP are pushed on the subroutine stack to
preserve their values for the first subroutine. After the GSP has been saved, the
second subroutine pushes three jump addresses on the global stack, on top of
those already saved by the first subroutine. These global stack addresses can be
used by any subsequently nested subroutines. The second subroutine uses no
local registers.

• The third subroutine jump pushes a return address on the subroutine stack. The
status register is pushed on the subroutine stack to preserve its value for the
second subroutine. The third subroutine does not alter the global stack and can
access the same global registers as the second subroutine. In this subroutine,
the LSP is selected and four jump addresses are pushed on the local stack.

The first and second subroutines, which save the GSP before pushing the global
stack, can remove their jump addresses from the global stack by simply restoring
the GSP value. Local jump addresses must be removed by incrementing the LSP.

Subroutine
Stack

Local
Stack

Global
Stack

00

01

02

SSP-+

SLR-+

LSP-+

GSP-+

3E

3F

Buffer

Return #1

C1

C3

GSP

SR

Return #2
C1

C2

GSP

Return #3

SR r--#3

RO

R1

R2

R3

RO

R1

RO

R1

R2
~#2

RO

R1 ~ #1

RO

R1
~Main

~ lndl<ect Jump Add<e9'eS

Figure 3.1 O Internal RAM With Three Levels of Nesting

ps

3-13

Interrupt Processing • 4

4.1 INTRODUCTION
The ADSP-1401 supports up to eight external interrupt sources and two additional
interrupts generated internally. Each interrupt is paired with an interrupt vector
stored in the interrupt vector file; the interrupt vector points to the service routine
for that interrupt.

You can load or read interrupt vectors at the data port by first loading the 4-bit
Interrupt Vector Pointer (IVP) with the vector location (from the data port, using a
dedicated instruction), then executing the RDIV or WRIV instruction. You should
disable interrupt processing before writing or reading the vector file. The ADSP-
1401 automatically increments the IVP after each write or read to facilitate
loading or dumping of the entire vector file.

When more than one interrupt occurs in the same cycle, interrupt priority
determines the order in which the interrupts are serviced. The ADSP-1401 assigns
priority according to the interrupt number; IR9 has the highest priority (gets
serviced first) and IR0 has the lowest priority (gets serviced last).

4.2 MASKING AND ENABLING
Interrupt processing can be enabled and disabled through two methods:

• The interrupt mask in the status register selectively enables and disables each
interrupt. The mask bits SR15_6 correspond.to the interrupt signals IR9_0,
respectively. If the mask bit is set, the corresponding interrupt signal is masked
out (disabled), although it is still latched and will be processed when the
interrupt is unmasked. Any combination of mask bits can be set or cleared in a
single instruction; the data port value selects the bits to be set or the bits to be
cleared.

• SR2 enables or disables all interrupts. If SR2 is not set, interrupt vector output
is inhibited, although interrupts are still latched and will be processed when
interrupts become enabled.

If an interrupt is pending (latched) when the interrupt is unmasked or re-enabled,
the interrupt vector is output in the cycle after the unmasking or re-enabling
instruction. Therefore, the instruction that follows the unmasking or enabling
instruction is executed before the first instruction of the interrupt service routine,
as shown in Figure 4.1.

4 -1

ADSP-1401
Clock

Address
Outputs

Interrupt
Request Latched

Unmask Or Enable
Interrupt

Next Sequential
Instruction

First Instruction Of
Service Routine (CONT\

4-2

Pending Interrupt
Recognized

-------'---'X'-_N_ex_t_A_d_d_re_s_s _ _..__.X Interrupt Vector

Figure 4.1 One-Cycle Latency After Enabling Interrupts

Push Return Address
On Subroutine Stack

If an interrupt is latched in the same cycle that an instruction masks or disables
this interrupt, it is recognized and its vector is output in the next cyc1e. An
interrupt that occurs in the cycle after the masking or disabling instruction is
latched but not processed until the interrupt is unmasked or re-enabled.

4.3 INTERRUPT SERVICE ROUTINES
Interrupt service routines are similar to subroutines. They require a jump to the
first instruction of the routine and a return jump at the end of the routine.
However, service routines have the following differences:

• Jumps to service routines are automatically performed by the ADSP-1401 in
response to an active interrupt rather than a jump instruction.

• The ADSP-1401 pushes the return address on the subroutine stack in the cycle
after the interrupt vector is output (during the first instruction of the interrupt
service routine), whereas a subroutine return address is pushed in the same
cycle that the jump address is output. The instruction being executed when the
vector is output may be accessing the internal RAM, so the stack cannot be
pushed until the instruction completes. The first instruction of any service
routine must always be a CONT instruction to allow the ADSP-1401 to save
the return address.

• When the ADSP-1401 begins processing an interrupt, it asserts an internal
Interrupt In Progress (IRIP) signal that prevents other active interrupt signals
from being processed. A return from an interrupt routine (the RTNIR
instruction) not only pops the return address from the subroutine stack, but also
clears IRIP to re-enable the processing of pending interrupts and clears the
interrupt latch for the current interrupt (external only, IR8_1). The RTNIR
instruction does not clear internal interrupts (IR9 and IR0); they must be cleared
explicitly, using dedicated instructions.

Interrupt service routines and subroutines are compared in Figure 4.2.

I

Push Return Address

T

Jump
Address

1111

I

._ Interrupt

Interrupt
Vector

CONT
Push Return Address

RTNIR
T

Subroutine Interrupt Service Routine

Figure 4.2 Execution of Service Routines and Subroutines

If the IRIP signal is cleared before the end of the service routine, a new service
routine can be nested within the current routine. One of two instructions clears the
IRIP signal:

• The CCIR (Clear Current External Interrupt) instruction clears the IRIP signal
as well as the interrupt latch for the interrupt currently being serviced (external
interrupts only).

4-3

4-4

• The CAIR (Clear All External Interrupts) instruction clears the IRIP signal.and
all external interrupt latches. Internal interrupts (IR9 and IR0) are not cleared.

A pending interrupt is recognized in the cycle in which one of these instructions is
executed, and its interrupt vector is output on the following cycle. Therefore, the
instruction that follows the CCIR instruction or CAIR instruction is executed
before the nested service routine begins, as shown in Figure 4.3. In this example,
IR7 and IR3 occur in the same cycle. IR7 is processed first. After the CCIR
instruction in the IR7 service routine re-enables interrupt processing, IR3 is
processed.

0 +-- Interrupt IR3 and Interrupt IR7

IR7
Vector

Push Return Address

Convert to Subroutine;
IR3 Recognized

RTNIR

IR3
Vector

RTNIR

Push Return Address

Figure 4.3 Interrupting a Service Routine

r

After the execution of the CCIR instruction or the CAIR instruction, the service
routine becomes identical to a subroutine. It is generally a good idea to convert
service routines to subroutines by executing CCIR or CAIR early in the routine
for the following reasons:

• Interrupts that occur while IRIP is active cannot be serviced until after IRIP is
cleared. A high priority interrupt can be ignored for a potentially indeterminate
length of time.

• If you use the nonmaskable Trap interrupt (see Trap, below), you cannot rely
on the IRIP signal to remain active for the duration of any service routine. The
Trap interrupt is not locked out by the IRIP signal. If the Trap input is asserted
while IRIP is active, its service routine is nested in the current service routine.
The return from the Trap service routine clears the IRIP signal. Because the
Trap interrupt can occur at any time, the IRIP signal can be cleared at any
time.

If service routines are not nested, a pending interrupt is processed after the return
from the current interrupt routine. One instruction from the main program is
executed between the RTNIR instruction and the first instruction of the next
interrupt routine, because the interrupt vector is output in the cycle after the
RTNIR instruction; this sequence of events is shown in Figure 4.4 .

.__ Interrupt

Interrupt
Pending

Interrupt
Vector

Push Return Address

RTNIR

Interrupt
Vector

Push Return Address

RTNIR

Figure 4.4 Pending Interrupt on Return From Service Routine

4-5

4-6

If an interrupt occurs in the cycle before a jump (a subroutine jump or a return
from a subroutine, for example), the interrupt vector displaces the jump address or
return address, which is pushed on the subroutine stack. After the return from the
interrupt routine, the jump address is output and the jump or return is executed, as
shown in Figure 4.5.

4.4 COUNTER UNDERFLOW INTERRUPT
The ADSP-1401 generates an IR0 interrupt, the lowest priority interrupt, whenever
a counter underflows (its sign bit goes HI). This interrupt is used primarily to end
a writeableA:ontrol store download (see Writeable Control Store in Chapter 5).
When IR0 is enabled, the Flag input setup time is greater than for when IR0 is
masked; see Flag Input in Chapter 3. The application note Using the Counters of
the ADSP-1401 Program Sequencer for Loop and Event Counting describes the
use of IR0 in implementing loops.

The RTNIR instruction does not clear IR0. The CLRS instruction clears both the
IR0 interrupt and SR 1, which are both set by a counter underflow. The IR0 service
routine must execute a CLRS instruction before returning; otherwise, the still
active IR0 signal will reactivate the service routine.

4.5 STACK OVERFLOW AND UNDERFLOW INTERRUPT
A stack overflows when its pointer moves beyond the upper limit of the stack and
underflows when its pointer moves beyond the lower limit of the stack. Because
the subroutine stack and register stack grow toward each other, an overflow of one
stack can cause stack pushes to overwrite data in the other stack. Underflow can
result in pops of locations outside the stack that may contain invalid data. IR9 flags
a stack overflow or underflow so that the service routine can take steps to preserve
the stack data. You can implement stack paging, described below, using this
interrupt.

The ADSP-1401 generates IR9 whenever one of the events illustrated in Figure 4.6
occurs. Note that only a push or a pop activates the interrupt; incrementing or
decrementing the stack pointer does not cause an interrupt.

• Subroutine Stack Underflow: The subroutine stack is popped from location
zero; the resulting SSP value is -63.

• Subroutine Stack Oveiflow: The subroutine stack is pushed to its upper limit
(see Stack Limit Register, below).

• Register Stack Oveiflow: The register stack (global stack or local stack) is
pushed to its upper limit, which is three locations greater than the upper limit of
the subroutine stack (see Stack Limit Register, below).

Because all of these conditions indicate a possible error in stack operation and can
result in data loss, interrupt IR9 has the highest priority. The interrupt service
routine must determine which of the three events occurred.

I

Interrupt On Subroutine Jump

pt p

Interrupt
Vector

RTNIR

Push Subroutine Jump Address =
Interrupt Return Address

J Interrupt
Service
Routine

Subroutine

Pop Subroutine Return Address

T

Interrupt On Subroutine Return

Pop Subroutine Return Address

T

..----.. Push Subroutine Return Address
= Interrupt Return Address

Pop Subroutine Return Address
~----------t RTNIR

Figure 4.5 Interrupt on Subroutine Jump or Return

Subroutine

Interrupt
Service
Routine

4-7

4-8

I

POP SS FROM
LOCATIONO

PUSH RSTO
SLR+3

LOCATION

t
SSP

__.

SSP _.

•
t

GSP ___.
orLSP

Figure 4.6 Stack Underflow and Overflow

ill

I

0

1

2

~ SLR

30
3E
3F

The RTNIR instruction does not clear IR9. An active IR9 interrupt remains latched
until cleared by the SLRIVP instruction, which also writes both the SLR
(described below) and IVP. The IR9 service routine must execute a SLRIVP
instruction before returning; otherwise, the still-active IR9 signal will reactivate
the service routine.

4.5.1 Stack Limit Register
The 4-bit Stack Limit Register (SLR) stores a value that defines the boundary
between the subroutine stack and the register stack. After each subroutine stack
push, the ADSP-1401 automatically appends two least significant zeros to the

Ill

I

SLR value and compares it to the 6-bit SSP value. After each global or local stack
push, the ADSP-1401 automatically appends two least significant ones to the 4-bit
SLR value before comparing it to the 6-bit GSP or LSP value. In each case, if the
values match a stack overflow (IR9) interrupt is generated. Thus, the subroutine
stack overflows if a push causes the SSP to equal the SLR value, and the register
stack overflows if a push causes the GSP or LSP to equal the SLR value + 3. Note
that because the SLR contains only the four MSBs of the stack limit, the SLR
value must be placed at a four-word boundary.

The three-location buffer between the upper limits of the two stacks protects both
stacks from data loss. At the most, three locations can be filled before the first
usable (non-CONT) instruction of the IR9 service routine is executed, as shown in
Figure 4.7. One location, on either the subroutine stack or register stack, is loaded
by the push that causes the overflow interrupt. Another location is filled by a push
on either stack that may be executed in the cycle during which the interrupt vector
is output. The third location, on the subroutine stack, is filled by the return address
of the IR9 service routine.

IR9 Activated

IR9 Vector

Push Return
Address

First Usable
Instruction

Figure 4.7 Three Pushes On Stack Overflow

4-9

4-10

Jll

I

4.5.2 Stack Paging
A subroutine stack overflow can occur any time the number of internal RAM
locations allocated to the subroutine stack is less than the number of return
addresses, registers, counters, and so forth, stored on the stack. This situation
usually occurs in programs that employ several subroutine nesting levels. One
strategy for handling stack overflow is stack paging. Figure 4.8 is a simplified
illustration of the paging operation. A stack paging routine saves the contents of
the stack in external memory when the stack overflows, allowing the stack area to
be overwritten without losing the stack information. As the stack is popped, it
eventually underflows, and the stack paging routine must read back the previous
page from external memory. Because both stack overflow and stack underflow
activate IR9, the IR9 service routine can perform both paging functions.

SLR

1. Subroutine
stack overflows

Figure 4.8 Stack Paging

2. IR9 service
routine writes
stack data to
external
memory

3. Subsequent
stack pushes
overwrite stack
with new data

The application note Stack Paging Expands Internal RAM of the ADSP-1401
Program Sequencer details the operations involved in stack paging.

Interrupt
Ill

rocess1 g 4

4.6 TRAP
The Trap input is one of the three functions of the TTR pin. Trap generates a
nonmaskable interrupt that has the highest priority and usually flags a situation
requiring immediate attention, such as an imminent power failure or a cache
memory page fault. The Trap signal shares the IR9 interrupt vector with the IR9
interrupt. In systems that utilize both the Trap function and the stack
overflow/underflow interrupt, the IR9 service routine must determine whether the
Trap signal or a stack overflow or underflow caused the interrupt.

The Trap signal is input asynchronously. If the TTR pin is asserted (HI) during
clock LO and deasserted (LO) during clock HI, the internal Trap signal is
activated and the IR9 interrupt vector is output a time tTRAD later. The timing of the
Trap signal is described in Trap/Tristate/Reset in Chapter 2.

The Trap interrupt differs from other interrupts in that the current address (the
program counter value, which is address of the instruction being executed when
Trap is asserted) is pushed on the subroutine stack rather than the next address
(program counter value plus one). Thus, the ADSP-1401 repeats the instruction in
which Trap is asserted after the return from the Trap service routine. This feature
facilitates the implementation of a cache memory system. If you use the Trap
signal for something other than a cache, you should take this feature into
consideration.

A cache system consists of a small amount of fast (short access time) memory,
called the cache, and a larger amount of slower and less expensive memory. The
cache contains copies of some of the locations in the slow memory. When a fetch
from one of these locations is requested (called a cache hit), the fetch requires
only the fast memory access time. When a fetch from a location not in the cache is
requested (called a cache miss or page fault), the cache controller circuitry must
copy the memory location from the slow memory to the fast memory before the
fetch can be performed. The Trap input is used to flag the cache miss. After the
Trap service routine performs the memory transfer, the fetch that caused the cache
miss is repeated. Implementations of both instruction and data caches are
described in the application note Implement A Cache Memory In Your Word Slice
System.

When the Trap input is used to signal a cache miss, the ADSP-1401 must output
the IR9 interrupt vector before the next cycle, not during the next cycle as for other
interrupts, because the cache miss must be resolved and the requested fetch
completed before the next instruction fetch. This may require stretching the clock
LO period, as shown in Figure 4.9. The service routine vector is output during the
stretched clock LO. When the service routine completes, the return address, which
is the address that caused the cache miss, is output once again.

4 - 11

TRAP

Address

ADSP-1401
Clock

4 -12

I

~,.___j -
with TRISTATE) 1 ~ ·~=..,

~c----..... i----""T~ ·f~ x------
Clock

HI

~1--1----~ i t
tTRAD

Stretched
Clock LO

Clock
HI

Figure 4.9 Stretching the Clock LO Period

,.....
Clock

LO

System Interface • 5

5.1 INTRODUCTION
The ADSP-1401 receives its instructions from microcode, and it may also receive
data and control from microcode or from other devices in the system. It outputs
addresses to microcode. These inputs and outputs determine the system interface
requirements of the ADSP-1401.

5.2 LOOK-AHEAD PIPELINE
The Look-Ahead pipeline consists of two complementary latching stages. The
instruction port and data port (during data input) are latched during clock HI and
transparent during clock LO. The address port is latched in just the opposite
fashion; it is transparent during clock HI, latched during clock LO. The ADSP-
1401 outputs an address to microcode during clock HI; this address is stable
because the instruction is latched. When the instruction port becomes transparent
during clock LO, the address latch holds the address for the rest of the cycle. The
instruction for the next cycle is partially decoded while the latch holds the address
for the current cycle, as shown in Figure 5.1.

The Look-Ahead pipeline provides two major advantages:

• No external instruction register or address registers are needed. The ADSP-
1401 can connect directly to microcode memory at both input and output.

• Because the next instruction is partially decoded before the start of the next
cycle, the address can be output sooner, allowing more time for the memory
access. Jump addresses are output in the same cycle that a jump instruction is
executed, without the complexity and inefficiency of delayed branches.

5.3 DATA INPUT AND OUTPUT
The ADSP-1401 can transfer data between its data port and most internal
locations. Data input operations load values into the internal RAM, registers,
counters, and the adder. Data output operations dump internal values for
examination.

5 - 1

5-2

ADSP-1401
Clock

Address
Output

Instruction
Input

Instruction Address Instruction Address
Transparent Transparent Transparent Transparent

Address ! Output
Stable ! Delay

... ~,
-----®1_ ~~~;~~~o~f ----

Microcode

Memory ~ ~',_
Access Time

~-™,______.__...~"w"~i" ~
Se~~~o:;d 1-.. ~

Figure 5.1 Look-Ahead Pipeline Timing

You can load and read all of the following internal locations through the data port
using the following instructions:

LOCATION

Subroutine Stack
Local Stack
Global Stack
SSP
LSP
GSP
SLR
Interrupt Vector File
IVP
Counters
PPSSD
Status Register

* Local stack selected (SR3 = 0)
t Global stack selected (SR3 = 1)

TO LOAD

PSDSS
PS DRS*
PSDRSt
WRSSP
WRRSP*
WRRSPt
SLRIVP
WRIV
SLRIVP
WRCNTR

WRSR

TO READ

PPSSD
PPRSD*
PPRSDt
RDSSP
RDRSP*
RD RS Pt
nonreadable
RDIV
nonreadable
PSCNTR and

RDSR

lnte ace 5

The SR3 bit controls the selection of either the LSP or GSP. The SGSP instruction
sets SR3, and the SLSP instruction clears SR3. The SLRIVP instruction, which
loads the SLR and the IVP simultaneously, writes the values on D5_2 to the SLR
and the values on D 15_12 to the IVP. Neither the SLR nor the IVP can be
transferred to the data port.

The indirect address space can be loaded using any stack pointer (GSP, LSP, or
SSP). You can dump the contents of any range of the internal RAM by first
setting a stack pointer to the lowest address and then executing the appropriate
pop instruction (PPRSD or PPSSD) once for each location.

You can load the entire status register directly from the data port. Also, individual
status register bits may be set and cleared through explicit instructions. You can
load counters from the data port, but you cannot read them directly. However, you
can push a counter on to the subroutine stack and pop the counter value from the
stack to the data port.

5.4 INSTRUCTION HOLD CONTROL
In the Instruction Hold Control (IHC) mode, the ADSP-1401 can repeat the
instruction in its instruction latch, instead of latching a new instruction, under
control of an external signal. The external interrupt IR 1 is redefined in this mode
to provide this control input. The IHC mode is frequently used with the IDLE
instruction to suspend the operation of the ADSP-1401, allowing another device
to address the same instruction space in microcode. Shared microcode can often
reduce microcode memory requirements.

You select the IHC mode by writing the value 10 (binary) to SR5_4, using the IHC
instruction. Other settings of SR5_4 set the width of offsets used for relative jumps,
as listed in Table 5.1. When the IHC mode is selected, only 8-bit-wide offsets are
recognized. You can use any of the instructions that set offset width (RELi 6,
RELi 2, and REL8) to change the values of SR5_4 and thereby deselect the IHC
mode.

SR5 SR4

0 0
0 1
1 0
1 1

Selection

16-bit Offset Width
8-bit Offset Width
IHC Mode, 8-bit Offset Width
12-bit Offset Width

Table 5.1 Relative Jump Offset Width Selection

In the IHC mode, an active IR1 signal initiates instruction hold. The IR1 signal is
transparent during clock HI, and latched during clock LO on pin EXIR1• IR5,
which is timeshared with IR1 on EXIR1 but latched during clock HI, is unaffected
as long as the necessary multiplexing circuit is used (see Interrupts and Interrupt
Vector File in Chapter 2).

5-3

ADSP-1401
Clock

The instruction that is in the instruction latch when IR1 is asserted (HI) is repeated
until IR1 is deasserted (LO), as shown in Figure 5.2. Assertion and deassertion of
IR 1 must meet the instruction setup time requirement.

Because IR1 is still latched in IHC mode, you must mask the IR1 interrupt (set SR7)
to allow the ADSP-1401 to use IR1 as a control signal without generating a false
interrupt. You should mask IR1 permanently to dedicate it to IHC control, if
possible. Interrupts that occur during instruction hold cannot be saved unless IR 1
is dedicated to IHC control. If you use the IR 1 signal for an interrupt as well as for
IHC, you must mask it before selecting the IHC mode and unmask it after
deselecting the IHC mode. Before unmasking IR1' however, you must also clear
the latch (using the CAIR instruction) because the use of IR 1 as an IHC control
sets the IR1 latch. The CAIR instruction also clears any pending interrupts.

5.5 TRISTATE OUTPUTS
In some applications, such as context switching and multitasking, the microcode is
addressed by more than one device. These applications require a means of
removing the ADSP-1401 from the microcode address bus temporarily. The
ADSP-1401 provides two methods through which you can place its address
outputs in the high impedance state: in software, using the IDLE instruction, and
in hardware, using the Tristate function of the TTR input. The IDLE instruction
suspends internal operation as well, whereas the Tristate input allows the ADSP-
1401 to continue performing instructions without outputting an address.

~ ~ Setup (tuRsl -+j !+-- Setup (tuRsl

EXIR 1

-------'~ u_

Instruction
Input

5-4

Instruction Instruction
IHC 1 2

Repeat
2

Figure 5.2 Instruction Hold Control Using IR1

Repeat
2

Instruction
3

The IDLE instruction holds the program counter at its current value and places the
address port in the high impedance state. The IDLE instruction is normally
executed repeatedly using the Instruction Hold Control (IHC) mode. This
technique puts the device in an idle state in which ADSP-1401 suspends operation
temporarily under external control, as described in the application note Sharing
the Output Bus of the ADSP-1401 MicroProgram Sequencer. When the IHC
control signal is removed, the ADSP-1401 continues execution from the
instruction that follows the IDLE instruction in microcode.

When the ADSP-1401 is in the idle state, it continues to latch interrupts. Because
the address outputs are in the high impedance state, however, no interrupt vector
can be output. You should therefore disable or mask interrupts before entering the
idle state.

The Tristate function of the TTR pin is activated when the TTR input is HI during
clock HI a minimum setup time before the falling clock edge. The TTR input
must also go LO within the maximum delay time from the falling clock edge
during clock LO, to avoid activating the Trap function. If both the Trap and
Tristate signals are used, they cannot be asserted in the same cycle, because the
ADSP-1401 recognizes this combination as a Reset signal. See
Trap/Tristate/Reset in Chapter 2 for a time-multiplexing circuit that coordinates
the timing of the Trap, Tristate and Reset signals to the TTR input.

5.6 WRITEABLE CONTROL STORE
A writeable control store is a microcode memory that can be loaded from an
external source, usually a host or a DMA circuit. This type of microcode memory
provides more flexibility than a fixed-program (ROM-based) microcode memory,
because you can change the microcode easily for debugging and for design
changes. The application note implement a Writeable Control Store Jn Your Word
Slice System describes several writeable control store configurations.

A download to a writeable control store requires the host to perform a series of
writes to the microcode memory. The ADSP-1401, through its WCS (Writeable
Control Store) instruction, simplifies the download process by providing
microcode addresses in sequence from a given starting address. The host provides
the starting address, the microcode instructions to load into memory, and the
signals to control the data transfer, as shown in Figure 5.3.

A download is initiated when the ADSP-1401 latches the WCS instruction at its
instruction port; it also reads the value at its data port in the same cycle to use as
the starting (lowest) address. Once the instruction and data are latched, the ADSP-
1401 does not read the instruction port or data port again until the download is
terminated. The WCS instruction loads the data port value into the program
counter, outputs the same value on the address port, and then performs the
following actions repetitively:

5-5

5-6

Host

Write Chip
Select

Data

Synchronizer

Address

Microcode
Memory

ADSP-1401
Program

Sequencer
Starting
Address

Figure 5.3 Download From Host to Writeable Control Store

• Waits for the Flag input to be asserted
• Increments the program counter
• Decrements the C0 counter
• Outputs the program counter address to microcode memory

The Flag input should not be asserted until after the WCS instruction has been
recognized at the instruction latch; otherwise, the first address will be incremented
before being output. The timing of the download operation is shown in Figure 5.4.
In this example, the Flag signal is timed so that one instruction is written every
two ADSP-1401 clock cycles.

Clock

Instruction

Data

5

PC:PC+1
c0 ~-1

FLAG ,~n~~-

Address Address 1 Address2 AddressN-1

Figure 5.4 WCS Timing

The Flag input serves as a handshake to control how frequently the ADSP-1401
outputs an address. In many systems, the host is not able to output data and
control signals as quickly as the ADSP-1401 can output addresses. By asserting
the Flag input only after it has output the data, the host guarantees that the next
address is not output too soon. If the host can perform writes at the clock
frequency of the ADSP-1401, the handshake is unnecessary and the Flag input
should be held HI for the duration of the download.

The Flag signal should be synchronized to the ADSP-1401 clock signal to
guarantee meeting setup and hold times; a synchronizing circuit is shown in
Figure 5.5. This circuit is a digital one-shot that generates a synchronized Flag
signal from a negative-true input signal. This input signal must be asserted for at
least one ADSP-1401 clock cycle to ensure its recognition.

You can terminate a download through one of three methods:

• Counter underflow interrupt (IR0)

• One of the eight external interrupts (IR8_ 1)

• A hardwarelfeset (Assertion of TTR for three cycles)

5-7

lnterr'upt
Vector

5-8

Unsynchronized
FLAG D Q t----+------i D

74F74 74F74

CP Q CP Q

Clock

Figure 5.5 Flag Synchronization For WCS

74F08

Synchronized
Flag

A counter underflow interrupt or external interrupt ends the download by causing
the ADSP-1401 to jump to an interrupt vector address and begin executing
instructions from that location. The interrupt vector must therefore point to the
location in microcode from which the ADSP-1401 is to being sequencing
instructions after the download. You should meet the following requirements to
account for the fact that no interrupt routine is being executed:

• The interrupt vector location must contain a CONT instruction, because the
ADSP-1401 saves the return address on the first instruction of any interrupt
routine. The CONT instruction does nothing but output the next address.

• The SSP should be decremented. Because the return address that the ADSP-
1401 pushes on the subroutine stack will not be used, it should be removed
from the stack.

• The CCIR or CAIR instruction must be executed to clear the interrupt latch and
IRIP signal.

The WCS instruction decrements the C0 counter each time it increments the
program counter. If IR0 is enabled, the counter underflow interrupt will eventually
go active, ending the instruction. The number to preload into C0 is two less than
the number of locations to be downloaded, because the ADSP-1401 outputs the
first address before it first decrements the counter and the last address in the cycle
in which the counter underflows. The interrupt vector is output in the cycle after
the counter underflows.

An external interrupt can also end the download. This interrupt may originate
from circuitry that decodes the last address or the end of the data file. If you use an
external interrupt to end the download, you should either mask the IR0 interrupt or
preload C0 with a value greater than the number of downloaded instructions so that
it never underflows. Note that the ADSP-1401 outputs one address after it detects
the interrupt, because the interrupt vector is not output until the following cycle.

I

To end the download with a reset operation, you must assert the TTR input for
three consecutive cycles. The first address output by the ADSP-1401 after a reset
is H#OOOO. Because the first instruction executed by the ADSP-1401 after a reset
must be a CONT instruction, you must load the CONT instruction into location
H#OOOO if you end the download with a reset. For more information about the
reset operation, see Reset, below.

5.7 RESET
To activate the Reset function, the TTR pin must be HI for both phases of one
cycle; to complete the Reset operation, the input must continue to be held HI for
two more complete cycles. The Reset function of the TTR pin initializes the
ADSP-1401 to the state described in Table 5.2. The address bus is not placed in
the high-impedance state during the reset operation.

As mentioned in the previous section, the Trap and Tristate signals must not be
asserted in the same cycle in systems that use all three functions of the TTR pin.
See Trap/Tristate/Reset in Chapter 2 for a time-multiplexing circuit that
coordinates the timing of the Trap, Tristate and Reset signals to the TTR input.

On powerup, the TTR pin should be held HI before the clock is started and for
three cycles after the clock is started to reset the ADSP-1401. Note that the
counters, the internal RAM, and the interrupt vector file are unaffected by the
Reset operation and are therefore in an indeterminate state after powerup. H#OOOO
is the first address output on the address port. The first instruction executed by the
ADSP-1401 must be a CONT, so location H#OOOO must contain a CONT
instruction.

LOCATION

Program Counter
Subroutine Stack Pointer (SSP)
Local Stack Pointer (LSP)
Global Stack Pointer (GSP)
Stack Limit Register (SLR)
Internal RAM Locations
Counters
Interrupt Latches (IR8_1)
Interrupt Vector File
Interrupt Vector Pointer (IVP)
Interrupt Mask (SR15_6)

SR5_4
SR3
SR2
SR1
SR0

Table 5.2 Status After Reset Operation

RESET ST ATVS

H#OOOO
H#OO
Invalid
Invalid
10 OOxx (H#20)
No Change
No Change
Cleared
No Change
Invalid
00 0000 0000 (interrupts unmasked)
00 (16-bit offset width)
0 (local stack selected)
0 (all interrupts disabled)
0 (positive sign bit)
0 (interrupts latched)

5-9

Instruction Set • 6

6.1 INTRODUCTION
This chapter describes all of the ADSP-1401 instructions. Section 6.2 describes
each instruction in detail and provides one or more examples that use the
instruction. Section 6.3 summarizes the standard instruction mnemonics and
opcodes and gives a brief description of each instruction. Both sections are
grouped by the following functions; within each group, the instructions are listed
alphabetically by mnemonic.

• Conditional Jump and Branch
• Interrupt Control
• Subroutine Stack
• Register Stack
• Counters
• Status Register
• Relative Jump Offset Width
• Miscellaneous

The following abbreviations are used in this chapter:

Conditions:
CONDITION
SIGN
FLAG

A condition represented by a 2-bit code provided in the opcode
The sign bit of a specified counter or the SR1 status register bit
The input at the FLAG pin

Subroutine Stack:
SS Subroutine Stack
SSP Subroutine Stack Pointer

Register Stack:
GSP
LSP
RS
RSP

Global Stack Pointer
Local Stack Pointer
Register Stack (either Global Stack or Local Stack)
Register Stack Pointer (either GSP or LSP)

6 - 1

6-2

I

Interrupts:
IRi
IRIP
IV
IVP

Ill

I

ith interrupt signal
Interrupt In Progress signal
Interrupt Vector
Interrupt Vector Pointer

Registers and Counters:
SR Status Register
PC Program Counter
SLR Stack Limit Register
Ri ith register on Register Stack (Global Stack or Local Stack)
Ci ith counter

Ports:
D
y

Data port
Address port

Note that these abbreviations are also used in the mnemonics; PSDSS, for
example, is an instruction that pushes the data port value on the subroutine stack.

6.2 INSTRUCTION REFERENCE
This section describes the operations performed by each ADSP-1401 instruction.
Any values that are changed and any restrictions that apply are specified. The
opcode for each instruction is listed, plus one or more short examples that
illustrate usage.

In normal operation, the ADSP-1401 outputs the value of the program counter on
the address port during clock HI and increments the program counter at the end of
the cycle (the program counter is post-increment). This action is represented by
Y f-- PC+l; the update of the program counter is implied, unless it is specifically
inhibited by the instruction. Any instruction that outputs an address other than the
program counter value automatically loads the program counter with this new
address.

In the examples, the code is listed in four columns. The first column contains
microcode addresses, if any are used. The second column contains opcodes, and
the third column contains the corresponding mnemonics. The fourth column
contains data port values, if any are needed.

I
IJ

I

6.2.1 Conditional Jump and Branch Instructions
Jump and branch instructions control program flow. Jump address sources include
the register stack, the data port, and the indirect address space. Jumps can be
unconditional or conditioned on the Flag input or counter Sign bit. Two bits of the
opcode, cc, determine the condition as follows:

cc Condition

00 Unconditional
01 Not Flag
10 Flag
11 Sign

In the opcodes of instructions that affect a counter, a 2-bit code, ii, specifies the
counter index (3-0). These instructions use the counter's sign bit, rather than the
value of SR 1, to test the Sign condition. Instructions that access values from the
register stack use the same 2-bit code to specify the register index. If an
instruction requires both a counter and a register, the counter and register have the
same index.

Flow charts for all conditional jump instructions are shown in Figure 6.1.

BRANCH

JDA
JDI
JDR
JDRST
JPCNF
JPCOF
JRC
JRS
JSA
JSR
JTWO
RTN

If Sign Jump Register Else If Condition Jump Data, Absolute
(Condition :t- Sign)
If Condition Jump Data, Absolute
If Condition Jump Data, Indirect
If Condition Jump Data, Relative
If Sign Jump Data, Absolute, and Reset Counter
If Not Flag Jump PC
If Flag Jump PC
If Condition Jump Register (Condition :t- Sign)
If Sign Jump Register and Decrement Counter
If Condition Jump Subroutine, Absolute
If Condition Jump Subroutine, Relative
If Condition Jump PC + 2
If Condition Return From Subroutine

6-3

0= Test Condition

0= Test SIGN

0= Test FLAG

~ = Instruction

Data 10

10

16 C3 = R3

17

18 C3-1

JORST

RSP =
RAM [29]=
i
C3

:. 15
=2

26
12

3
+N-1

16 . C3 = C3-1 12~
17 S T

18 FC3 = C3-1

JRS

6-4

16

17

40

75

Ill

10

RSP = 26
RAM [281= 75
i = 2
Data = 40

BRANCH

"f= 17 F :

18

JPCNF

JSA: Data= 40
JSR: Data= 22

40

JSA, JSR

JOA: Data= 40
JDR: Data= 22

"tJ 17 c /

40

JOA, JOR

"f° 17 F /

18

JPCOF

16iJ 17 c /

18

19

JTWO

Figure 6. 1 Jump Instruction Flow Charts

16

17

40

Data = 13
RAM [13]=40

"tJ 17 c /

40

JOI

RSP = 26
RAM [28]= 40
i = 2

tJ
JRC

SSP =37
RAM [37)=40

16iJ 17

40

RTN

CONDITIONAL JUMP AND BRANCH
BRANCH

6.2.1.1 BRANCH
If Counter Sign Jump Register Stack, Decrement Counter
Else If Condition Jump Data Absolute, Decrement Counter
(Condition* Sign)
Else Decrement Counter

IF SIGN OF Ci THEN Y f- Ri , Ci f- Ci - 1

ELSE IF CONDITION THEN Y f- D, C; f- Ci - 1

ELSE Y f- PC + 1, C; f- C; - 1

Description:
Implements a three-way conditional branch. If the sign bit of the specified counter
is HI, the next address is the value at the RAM location given by the selected
pointer (GSP or LSP) plus i, the counter index. If the sign bit of the counter is LO
and the specified condition is true, the next address is the value at the data port. If
the sign bit of the counter is LO and the specified condition is false, the
incremented program counter provides the next address. In all cases, the specified
counter is decremented. The Sign condition cannot be specified in the second IF
clause because Sign is used explicitly in the first IF clause.

Opcode:
100 cc ii

Example:
4000 000 01 11
4001 100 01 11

SGSP
BRANCH H#lOOO

SGSP selects the global stack. If the sign bit of C3 is HI, the address output by
BRANCH is [GSP+3]. If the sign bit ofC3 is LO and the Flag input is LO, the
address is H# 1000. If the sign bit of C3 is LO and the Flag input is HI, the address
is H#4002. In all three cases, C3 is decremented.

Sign of C3

1
0
0

Flag

x
0
1

Next Address

GSP+i
Data port value
PC+ 1

6

6-5

6

6-6

CONDITIONAL JUMP AND BRANCH
JOA

6.2.1.2 JOA
If Condition Jump Data Absolute

IF CONDITION
THENYf-D

ELSE Y f- PC + 1

Description:
Implements a conditional jump to a specified address. If the specified condition is
true, the next address is read from the data port. Otherwise, the incremented
program counter provides the next address.

Opcode:
111 cc 11

Example:
1000 011 00 00 DCCNTR
1001 111 11 11 JDA H#llFF

DCCNTR transfers the sign bit of C0 to SR 1 and then decrements C0. If the
resulting SR1 is HI, JDA executes a jump to H#l lFF.

6.2.1.3 JOI

CONDITIONAL JUMP AND BRANCH
JOI

If Condition Jump Data Indirect

IF CONDITION
THEN Y ~ [D5_0]

ELSEY ~PC+ 1

Description:
Implements a conditional indirect jump. If the specified condition is true, the six
least significant bits of the data port (D5_0) address a location in internal RAM; the
value stored at this location is the next address. Otherwise, the incremented
program counter provides the next address.

Opcode:
101 cc 10

Example:
1000 101 00 10 JOI H#0030

The value of [H#30] is output on the address port unconditionally.

6

6-7

6

6-8

CONDITIONAL JUMP AND BRANCH
JDR

6.2.1.4 JDR
If Condition Jump Data Relative

IF CONDITION
THENYf-PC+D+ 1

ELSE Y f- PC + 1

Description:
Implements a conditional jump to an address relative to the current address. If the
specified condition is true, the next address is the (twos-complement) value on the
data port added to the incremented program counter value. Otherwise, the
incremented program counter provides the next address. The width of the data port
input (16 bits, 12 bits, or 8 bits) is determined by SR5_4.

Opcode:
111 cc 01

Examples:
1000 111 10 01 JDR H#0004

If Flag is HI, address H# 1005 is output and the next four instructions (H# 1001 to
H#1004) are skipped.

9FFF 111 10 01 JDR H#8000

If Flag is HI, address H#2000 (H#AOOO + H#8000) is output.

CONDITIONAL JUMP AND BRANCH
JDRST

6.2.1.5 JDRST
If Counter Sign Jump Data Absolute and Reinitialize Counter
Else Decrement Counter

IF SIGN OF Ci
THEN Y f- D, C; f- Ri

ELSE Y f- PC + 1, C; f- Ci - 1

Description:
Implements either a jump and counter reinitialization or a counter decrement. If the
sign bit of the specified counter (not SR1) is HI, the next address is read from the
data port, and the counter is reinitialized with the value from the register that is i
(the counter index) locations greater than the selected register stack pointer (GSP or
LSP). Otherwise, the incremented program counter provides the next address, and
the specified counter is decremented.

Opcode:
100 11

Example:
OFEE
OFEF
OFFO

OFFF
1000

ii

000 01 10
011 10 01
100 11 01

I
(instructions)

I
111 00 11
000 00 00

SLSP
WRCNTR
JDRST

JOA
CONT

H#OOOl
H#lOOO

H#OFFO

The LSP is selected and the C1 counter is initialized to H#OOOl before the loop
(instructions H#OFFO to H#OFFF) is entered. The first time JDRST is executed,
the C 1 sign bit is LO, so C1 is decremented and the loop is executed. JDA performs
an unconditional jump to the top of the loop. The second time JDRST is executed,
C1 is H#OOOO, so the loop is executed again. The third time JDRST is executed, C1
is H#FFFF; the C1 sign bit is HI, so the loop is exited by a jump to H#lOOO, and
C1 is loaded with the value [LSP+ 1].

6

6-9

6

6-10

CONDITIONAL JUMP AND BRANCH
JPCNF

6.2.1.6 JPCNF
If Not Flag Repeat Instruction

IF NOT FLAG
THENY~PC

ELSE Y~PC+ 1

Description:
Repeats execution of the current instruction under control of the Flag signal. The
Flag input must meet setup requirements similar to those of the instruction port. If
the Flag input is inactive (LO), the program counter increment is inhibited;
otherwise, the program counter is incremented.

Opcode:
011 0101

Example:
1000 011 0101 JP CNF

If Flag is LO, address H#IOOO is output again, and the microcode instruction at that
address is repeated.

6.2.1.7 JPCOF

CONDITIONAL JUMP AND BRANCH
JPCOF

If Flag Repeat Instruction

IF FLAG
THENY ~PC

ELSEY~ PC+ 1

Description:
Repeats execution of the current instruction under control of the Flag signal. The
Flag input must meet setup requirements similar to those of the instruction port. If
the Flag input is active (HI), the program counter increment is inhibited; otherwise,
the program counter is incremented.

Opcode:
001 0101

Example:
1000 001 0101 JPCOF

If Flag is HI, address H#l 000 is output again, and the microcode instruction at that
address is repeated.

6

6 -11

6

6 -12

CONDITIONAL JUMP AND BRANCH
JRC

6.2.1.8 JRC
If Condition Jump Register Stack (Condition"# Sign)

IF CONDITION
THENY~Ri

ELSEY ~PC+ 1

Description:
Implements a conditional jump to an address stored on the register stack. If the
specified condition is true, the next address is the value of the register that is i (the
register stack index) locations above the selected pointer (GSP or LSP). Otherwise,
the incremented program counter provides the next address.

The Sign condition cannot specified for this instruction. However, the JRS
instruction performs the equivalent operation for the Sign condition and decrements
a specified counter as well.

Opcode:
110 cc ii

Example:
1000 000 01 11 SGSP
1001 000 11 00 WRRSP H#0020
1002 110 00 11 JRC

The GSP is selected and loaded with the value H#20. JRC performs a jump to
[H#23] unconditionally.

CONDITIONAL JUMP AND BRANCH
JRS

6.2.1.9 JRS
If Counter Sign Jump Register Stack and Decrement Counter
Else Decrement Counter

IF SIGN OF Ci
THENY ~Ri ,Ci~Ci-1

ELSEY ~ PC + l, Ci~ Ci - l

Description:
Implements a conditional jump to an address stored in the register stack, and
decrements the specified counter. If the sign of the specified counter is HI, the next
address is the value of the register that is i (the register stack index) locations above
the selected pointer (GSP or LSP). Otherwise, the incremented program counter
provides the next address. The specified counter is decremented in either case.

Opcode:
110 11 ii

Example:
1000 000 01 10 SLSP
1001 000 11 00 WRRSP H#0030
1002 110 11 00 JRS

The LSP is selected and loaded with the value H#30. If the sign bit of C0 is HI, a
jump to [H#30] is executed. C0 is decremented whether or not the jump is
executed.

6

6 -13

6

6-14

CONDITIONAL JUMP AND BRANCH
JSA

6.2.1.10 JSA
If Condition Jump Subroutine, Data Absolute

IF CONDITION
THEN Y ~ D, SS ~ PC + I
ELSEY ~PC+ I

Description:
Implements a conditional jump to a subroutine that begins at the specified address.
If the specified condition is true, the next address is the data port value, and the
incremented program counter value is pushed on the subroutine stack as the return
address. Otherwise, the incremented program counter provides the next address.

Opcode:
111 cc 00

Example:
1000 110 11 10 JRS
1001 111 11 00 JSA H#2000

The JRS instruction decrements C2, transferring its sign bit to SR1 before the
decrement. If this sign bit is HI, JSA jumps to the subroutine at H#2000.

6.2.1.11 JSR

CONDITIONAL JUMP AND BRANCH
JSR

If Condition Jump Subroutine, Data Relative

IF CONDITION
THEN Y f- PC + 1 + D, SS f- PC + I
ELSE Y f- PC + I

Description:
Implements a conditional jump to a subroutine that begins at an address relative to
the current address. If the specified condition is true, the next address is the (twos
complement) value on the data port added to the incremented program counter
value, and the incremented program counter value is pushed on the subroutine stack
as the return address. Otherwise, the incremented program counter provides the
next address. The width of the data port input (16 bits, 12 bits, or 8 bits) is
determined by SR5_4.

Opcode:
111 cc 10

Example:
1000 111 10 10 JSR H#0020

If Flag is HI, the address H#l021 is output; otherwise, the address H#lOOI is
output.

6

6-15

6

6 -16

CONDITIONAL JUMP AND BRANCH
JTWO

6.2.1.12 JTWO
If Condition Skip One Address

IF CONDITION
THENY ~PC+2

ELSEY ~PC+ I

Description:
Conditionally skips one instruction without requiring a jump address. If the
specified condition is true, the next address is the incremented program counter
value incremented a second time. Otherwise, the normal (incremented once)
program counter value is the next address.

Opcl>de:
101 cc 01

Examples:
1000 101 01 01 JTWO
1001 111 00 11 JDA
1002 000 00 00 CONT

If Flag is LO, the address H#l002 is output, and the unconditional jump performed
by the JDA instruction is skipped.

1000 101 10 01 JTWO
1001 101 01 01 JTWO
1002 101 10 01 JTWO
1003 101 01 01 JTWO
1004 000 00 00 CONT
1005 000 00 00 CONT

If Flag is HI, instructions at H#IOOO, H#l002 and H#l004 are executed. If Flag is
LO, instructions at H#IOOI, H#l003 and H#l005 are executed.

6.2.1.13 RTN

CONDITIONAL JUMP AND BRANCH
RTN

If Condition Return From Subroutine

IF CONDITION
THENY ~ss

ELSEY ~PC+ 1

Description:
Implements a conditional return from a subroutine Uump to the return address). If
the specified condition is true, the return address is popped from the subroutine
stack and output as the next address. Otherwise, the incremented program counter
provides the next address.

Opcode:
101 cc 11

Example:
1000 101 10 11 RTN

If Flag is HI, the return address is popped from the subroutine stack and output on
the address port.

6

6-17

6 I

6 -18

6.2.2 Interrupt Control Instructions
Interrupt control instructions affect interrupt handling operations. Some
instructions set and clear bits of the interrupt mask, enable or disable interrupt
handling, and select latched or transparent interrupts. Some instructions allow you
to read and write the interrupt vector file. Other instructions, executed within an
interrupt service routine, control the completion of the service routine and the
nesting of subsequent service routines. Note that the SLRIVP, a dual-purpose
instruction, affects the Stack Limit Register (SLR) as well as the Interrupt Vector
Pointer (IVP).

CAIR
CCIR
DISIR
EN AIR
IRMBC
IRMBS
RDIV
RTNIR
SUR
SLRIVP
STIR
WRIV

Clear All Interrupts
Clear Current Interrupt
Disable All Interrupts
Enable All Interrupts
Interrupt Mask Bitwise Clear
Interrupt Mask Bitwise Set
Read Interrupt Vector At Data Port
Return From Interrupt Routine
Select Latched Interrupts
Write SLR and IVP From Data Port
Select Transparent Interrupts
Write Interrupt Vector From Data Port

6.2.2.1 CAIR
Clear All External Interrupts

IRi f-- 0

IRIP f-- 0

Yf--PC+l

Description:

INTERRUPT CONTROL
CAIR

Clears all external interrupt latches (IR8_1) and the IRIP (Interrupt In Progress)
signal. This instruction does not clear internal interrupts IR9 and IR0; these are
cleared by the SLRIVP and CLRS instructions, respectively. Executing this
instruction from within a service routine allows the nesting of a subsequent
service routine by re-enabling interrupt processing, which is normally inhibited by
IRIP. The effect of re-enabling interrupt processing is to convert the service
routine to a subroutine.

The RTNIR instruction also clears IRIP and the latch for the interrupt being
serviced (external interrupts only); however, unlike RTNIR, CAIR clears all
external interrupt latches and does not pop the return address.

Opcode:
000 0001

Example:
;Interrupt service
1000 000 0000
1001 000 0001
1002 000 0000

routine
CONT
CAIR
CONT

The first instruction of an interrupt service routine must always be a CONT. The
CAIR instruction clears pending external interrupts and IRIP. If an IR9 or IR0
interrupt is pending when CAIR is executed, its service routine vector is output in
the cycle following the CAIR instruction (during execution of the CONT
instruction at H#1002). The IR9 or IR0 service routine stores H#1003 as its return
address.

6

6 -19

6

6-20

INTERRUPT CONTROL
CCIR

6.2.2.2 CCIR
Clear Current (External) Interrupt

IRcurrent ~ 0
IRIP ~ 0

Y~PC+l

Description:
Clears the latch of the external interrupt currently being serviced and enables the
processing of the next interrupt by clearing the IRIP (Interrupt In Progress) signal.
Internal interrupts (IR9 and IR0) are not cleared; IR9 and IR0 are cleared by the
SLRIVP and CLRS instructions, respectively. This instruction can enable
interrupts during the execution of a service routine, allowing the nesting of one
service routine within another, which is normally inhibited by IRIP. The effect of
re-enabling interrupt processing is to convert the service routine to a subroutine.

The RTNIR instruction also clears IRIP and the latch for the interrupt being
serviced (external interrupts only); however, unlike RTNIR, CCIR does not pop
the return address.

Opcode:
001 0001

Example:
;Interrupt
1000 000
1001 001
1002 000

service
0000
0001
0000

routine
CONT
CCIR
CONT

The first instruction of the service routine must be the CONT instruction, to allow
for the push of the return address push on the subroutine stack. The CCIR
instruction clears IRIP and the interrupt latch (for the current interrupt only). If
another interrupt is pending, its vector is output in the following cycle (the CONT
instruction at H#1002), and its service routine begins on the cycle after that.
Address H#l003 is stored as the return address.

6.2.2.3 DISIR
Disable All Interrupts

Description:

INTERRUPT CONTROL
DISIR

Disables all interrupt processing by clearing bit 2 of the status register. This
instruction takes effect in the cycle following its execution; interrupts that occur
while DISIR is being executed are still processed. When interrupts are disabled,
no interrupts are processed regardless of the values in the interrupt mask (SR15_6).
If interrupt latching is enabled(SR0 is LO), external interrupts (IR8_1) continue to
be latched while they are disabled. Note that the nonmaskable Trap interrupt is
still enabled.

Opcode:
001 OllO

Example:
1000

1010

001 OllO
I

(instructions)
I

Oll OllO

DIS IR

ENA IR

The DISIR instruction is used here to guarantee that instructions are executed
without interruption. An interrupt vector can be output in the cycle after DISIR
(H#lOOl) if an interrupt occurs while DISIR is executing. Interrupts are
recognized in the cycle that ENAIR executes and a vector can be output in the
following cycle. The protected microcode is thus H#1002 to H#lOl 1, inclusive.

6

6 - 21

6

6-22

INTERRUPT CONTROL
ENAIR

6.2.2.4 ENAIR
Enable All Interrupts

SR2~1

Y~PC+l

Description:
Enables all interrupt processing by setting bit 2 of the status register. The interrupt
mask (SR15_6) enables and disables individual interrupts. If an interrupt is pending
when ENAIR is executed, the interrupt vector is output on the next cycle.

Opcode:
011 0110

Example:
1000

1010
1011

001 0110
I

(instructions)
I

011 0110
000 0000

DIS IR

ENA IR
CONT

Interrupts that occur while interrupts are disabled are latched. When interrupts are
re-enabled, the vector for a pending interrupt is output on the cycle following the
ENAIR instruction (in the CONT instruction). The service routine begins on the
cycle after that, and H#l012 is stored as the return address.

6.2.2.5 IRMBC

INTERRUPT CONTROL
IRMBC

Interrupt Mask Bitwise Clear

SR 15_6 f- NOT (D 15_6) AND SR 15_6

Yf-PC+l

Description:
Clears each of the interrupt mask bits (SR 15_6) for which the corresponding data
port bit (D15_6) is set. D5_0 are ignored.

Opcode:
001 0011

Example:
1000 001 0011 IRBMC H#OCOO

This instruction clears the interrupt mask bits for IR5_4 as follows:

Status register (IR5_0 masked)
H#OCOO
Status register (IR3_0 masked)

0000 1111 11 xx xxxx
0000 1100 0000 0000
0000 0011 llxx xxxx

6

6- 23

6

6-24

INTERRUPT CONTROL
IRMBS

6.2.2.6 IAMBS
Interrupt Mask Bitwise Set

SR1s-6 f- D1s-6 OR SR1s-6

Yf-PC+l

Description:
Sets each of the interrupt mask bits (SR 15_6) for which the corresponding data port
bit (D 15_6) is set. D5_0 are ignored.

Opcode:
001 0010

Example:
1000 001 0010 IRBMS H#3000

This instruction sets the interrupt mask bits for IR7_6 as follows:

Status register (IR5_0 masked)
H#3000
Status register (IR7_0 masked)

0000 1111 11 xx xxxx
0011 0000 0000 0000
0011 1111 1 lxx xxxx

6.2.2. 7 RDIV

INTERRUPT CONTROL
RDIV

Read Interrupt Vector File at Data Port

D~IV

IVP~IVP+ 1

Y~PC+l

Description:
Outputs the value of the interrupt vector specified by the IVP on the data port and
increments the IVP. You should disable interrupts before executing the RDIV
instruction.

Opcode:
010 1101

Example:
1000 001 0110
1001 001 1101
1002 010 1101
1003 010 1101
1004 010 1101
1005 011 0110

DI SIR
SLR I VP
RDIV
RDIV
RDIV
ENAIR

H#0020

The SLRIVP instruction loads both the IVP and the SLR; in this case, the IVP
points to location 0. Because the RDIV instruction automatically increments the
IVP, three sequential executions of the RDIV instruction output the interrupt
vectors for JRo, IR 1, and IR2 on the data port.

6

6-25

6

6-26

INTERRUPT CONTROL
RTNIR

6.2.2.8 RTNIR
Return From Interrupt Service Routine

IRcurrent ~ 0

IRIP ~ 0

Y~ss

Description:
Executes a return from an interrupt service routine (jump to return address) (lnd re
enables the processing of interrupts. This instruction clears the latch of the current
external interrupt (IR8_1), clears the IRIP (Interrupt In Progress) signal, and pops
the return address from the subroutine stack. If an interrupt is pending when the
RTNIR instruction is executed, it is recognized on the following cycle, and the
first instruction of its service routine is executed on the cycle after that.

Internal interrupt latches (IR9 and IR0) are not affected and must be cleared
explicitly (using SLRIVP or CLRS, respectively) before the return is executed.
Note that whereas a subroutine return (RTN) can be conditioned, a service routine
return (RTNIR) is always unconditional.

Opcode:
000 0011

Example:
1000 001 0100
1001 000 0011

CLRS
RTNIR

These two instructions typically end an IR0 service routine. The CLRS instruction
clears the IR0 interrupt latch. The RTNIR instruction clears the IRIP signal (if it
has not been already cleared by a CAIR or CCIR instruction) and pops the return
address from the subroutine stack.

6.2.2.9 SLIR
Select Latched Interrupts

SRo f-0

Yf-PC+l

Description:

INTERRUPT CONTROL
SUR

Enables the latching of external interrupts (IR8_1). IR8_5 are latched during clock
HI and IR4_1 are latched during clock LO. When latching is enabled, all interrupts
are latched even if particular interrupts are masked or all interrupts are disabled.

Opcode:
001 0111

Example:
1000

1010

011 0111
I

(instructions)
I

001 0111

STIR

SLIR

In this example, interrupt latching is disabled for microcode instructions from
H#lOOl to H#1010. The SLIR instruction re-enables interrupt latches.

6

6- 27

6

6-28

INTERRUPT CONTROL
SLRIVP

6.2.2.10 SLRIVP
Transfer From Data Port to SLR and IVP

SLR+-- D5_2

IVP +-- D1s-12

IR9 +-- 0

Y+...-PC+l

Description:
Loads the SLR from D5_2, loads the IVP from D15_12 and clears the IR9 interrupt.
Dll_6 and D1_0 are ignored. The SLR determines the boundary between the
subroutine stack and register stack. The 4-bit SLR stores the four most significant
bits of the subroutine stack limit. The remaining two bits are zero-filled; therefore,
the subroutine stack limit can be set only at addresses that are multiples of four.
The IVP points to a location in the interrupt vector file and is used to load and
dump vector values. Neither the SLR nor the IVP can be read at the data port. The
IR9 interrupt can be cleared only through this instruction.

Opcode:
001 1101

Example:
1000 001 1101 SLR I VP H#5024

This instruction sets the IVP to location 5 and the SLR to H#24 and clears IR9 as
well. D11 _6 and D1_0 are all zeros in this example, but could be set to any values.

6.2.2.11 STIR
Select Transparent Interrupts

SR0 f- 1

IR8_1 f- 0

Y f-PC+ 1

Description:

INTERRUPT CONTROL
STIR

Disables the latching of external interrupts (IR8_ 1) by setting SR0. In transparent
interrupt mode, an external interrupt signal must remain active ifntil it is
recognized by the ADSP-1401. IR0 and IR9 are still latched and must be cleared
using CLRS and SLRIVP, respectively. The STIR instruction clears the interrupt
latch for all pending external interrupts (IR8_1).

Opcode:
011 0111

Example:
1000
1001

1010
1011

011 0111
001 0110

I
(instructions)

I
011 0110
001 0111

STIR
DIS IR

ENA IR
SLIR

The STIR instruction disables the interrupt latch. Interrupts that occur while
interrupt processing is disabled (from H#1002 to H#1010) are ignored. No
interrupts will be pending when the ENAIR instruction re-enables interrupt
processing.

6

6- 29

6

6-30

INTERRUPT CONTROL
WRIV

6.2.2.12 WRIV
Transfer From Data Port to Interrupt Vector File

IV~D

IVP~IVP+ 1

Y~PC+l

Description:
Loads the interrupt vector specified by the IVP from the data port and increments
the IVP. Use this instruction to preload the register file or to replace an interrupt
vector with a new vector. You should disable all interrupts before executing the
WRIV instruction.

Opcode:
000 1101

Example:
1000 001 0110
1001 001 1101
1002 000 1101
1003 011 0110

DIS IR
SLR I VP
WRIV
ENA IR

H#7020
H#FEOO

The DISIR instruction disables interrupts. The SLRIVP instruction loads the SLR
and the IVP; in this case, the IVP is loaded with H#7. The WRIV instruction loads
the interrupt vector 7 with the value H#FEOO and increments the IVP. The ENAIR
instruction re-enables interrupts.

In
1111

I

6.2.3 Subroutine Stack Instructions
Subroutine stack instructions push and pop the subroutine stack or manipulate the
Subroutine Stack Pointer (SSP).

DSSP
PPSSD
PSDSS
RDS SP·
WRSSP

Decrement SSP By One
Pop Subroutine Stack To Data Port
Push Data Port To Subroutine Stack
Read SSP At Data Port
Write SSP From Data Port

6- 31

6

6-32

SUBROUTINE STACK
DSSP

6.2.3.1 DSSP
Decrement SSP

SSP f- SSP-1

Yf-PC+l

Description:
Decrements the SSP. This instruction removes one location from the top of the
subroutine stack (the data at that location is unchanged).

Opcode:
000 0010

Example:
1000
1001

1010
1011

000 0101
010 0001

I
(instructions)

I
000 0010
000 0010

PSGSP
PSSR

DSSP
DSSP

The first two instructions push the GSP and the status register on the subroutine
stack. If the intervening instructions do not affect the subroutine stack, the two
DSSP instructions remove the status register and GSP values (in that order) from
the stack without affecting the current status register and GSP values.

6.2.3.2 PPSSD
Pop Subroutine Stack to Data Port

Df-SS

Yf-PC+l

Description:

SUBROUTINE STACK
PPSSD

Outputs the value at the stack location specified by the SSP on the data port and
decrements the SSP.

Opcode:
011 1110

Example:
1000 000 1011
1001 011 1110

PSCNTR
PPSSD

Counters cannot be read directly. These instructions allow C3 to be read at data
port. The PSCNTR instruction pushes the value of counter C3 on the subroutine
stack. The PPSSD instruction pops the C3 value to data port.

6

6-33

6

6-34

SUBROUTINE STACK
PSDSS

6.2.3.3 PSDSS
Push Data Port to Subroutine Stack

SSf-D

Yf-PC+l

Description:
Increments the SSP and loads the stack location specified by the SSP with the data
port value.

Opcode:
001 1110

Example:
;Subroutine
2000 000 0010
2001 001 1110

DSSP
PSDSS H#lOOO

When the subroutine is entered, the return address is on the top of the subroutine
stack. The DSSP instruction decrements the SSP, and the PSDSS instruction
pushes H#lOOO onto the stack, overwriting the old return address.

6.2.3.4 RDSSP
Transfer From SSP to Data Port

D5_0 +- SSP

Y+-PC+l

Description:

SUBROUTINE STACK
RDSSP

Outputs the value of the SSP on six least significant data port bits (D5_0).

Opcode:
010 1100

Example:
1000 010 1100 RDS SP

The SSP value is output on D5_0. D15_6 are undefined and should be masked out.

6

6- 35

6

6-36

SUBROUTINE STACK
WRSSP

6.2.3.5 WRSSP
Transfer From Data Port to SSP

SSPf- D5_0

Yf-PC+l

Description:
Loads the SSP from the six least significant data port bits D5_0.

Opcode:
000 1110

Example:
1000 000 1110 WRSSP H#003F

The WRSSP instruction initializes the SSP to location H#3F (the last location in
the internal RAM), so that the subroutine stack will begin at location 0. IR9 must
be disabled when this location is used, as explained in the application note Stack
Paging Expands Internal RAM of the ADSP-1401 Program Sequencer.

II

I

6.2.4 Register Stack Instructions
Register stack instructions affect either the global stack or local stack, depending
on the value of a status register bit (SR3). Two instructions select a stack by
controlling the value of this bit. Other instructions push or pop the selected stack,
or manipulate the selected stack pointer (GSP or LSP). The GSP can be pushed to
or popped from the subroutine stack.

AIRSP
PPG SP
PPRSD
PSDRS
PSGSP
PSPC
RDRSP
WRRSP
SlRSP
S4RSP
SGSP
SLSP

Addi To RSP
Pop Subroutine Stack To GSP
Pop Register Stack To Data Port
Push Data Port To Register Stack
Push GSP To Subroutine Stack
Push Program Counter To Register Stack
Read RSP At Data Port
Write RSP From Data Port
Subtract 1 From RSP
Subtract 4 From RSP
Select GSP
Select LSP

6- 37

6

6- 38

REGISTER STACK
AIRSP

6.2.4.1 AIRSP
Add ito RSP

RSP~RSP+ i

Y~PC+l

Description:
Adds the specified i value to the selected RSP (GSP or LSP). The two-bit i values
00, 01, 10, and 11 represent the numbers 4, 1, 2, and 3, respectively. This
instruction, by increasing the RSP, effectively removes one to four registers from
the register stack (although the stack data is unchanged).

Opcode:
010 10 ii

Examples:
1000 000 01 10
1001 010 10 10

SLSP
AIRSP

The SLSP instruction selects the LSP, and the AIRSP instruction adds two to the
LSP, removing two registers from the top of the local stack.

1000
1001

000 01 11
010 10 00

SGSP
AIRSP

The SGSP instruction selects the GSP, and the AIRSP instruction adds four to the
GSP, removing four registers from the top of the global stack.

6.2.4.2 PPGSP
Pop Subroutine Stack to GSP

GSP~SS

Y ~PC+ 1

Description:

REGISTER STACK
PPG SP

Loads the GSP with the value at the stack location specified by the SSP and
decrements the SSP.

Opcode:
000 0100

Example:
1000
1001
1002

1010

000 0101
000 0111
000 1100

I
(instructions)

I
000 0100

PSGSP
SGSP
WRRSP

PPGSP

H#0026

In this example, the GSP is saved on the subroutine stack before it is overwritten,
then restored later. The PSGSP instruction pushes the GSP on the subroutine
stack. The GSP is then selected and written with a new value (H#26). Several
instructions later, assuming that the subroutine stack has not been altered, the old
GSP value is restored by the PPGSP instruction.

6

6- 39

6

6-40

REGISTER STACK
PPRSD

6.2.4.3 PPRSD
Pop Register Stack to Data Port

D~RS

Y~PC+l

Description:
Outputs the value of the location specified by the selected RSP (GSP or LSP) on
the data port and increments the pointer.

Opcode:
Oll llll

Example:
1000
1001
1002

000 Olll
Oll llll
Oll llll

SGSP
PPRSD
PPRSD

The GSP is selected, then PPRSD is executed twice to pop the top two global
registers to the data port.

6.2.4.4 PSDRS
Push From Data Port to Register Stack

RSf-D

Yf-PC+l

Description:

REGISTER STACK
PS DRS

Decrements the selected RSP (GSP or LSP) and loads the stack location specified
by the pointer with the data port value.

Opcode:
001 1111

Example:
1000 000 0111
1001 001 1111
1002 001 1111
1003 001 1111

SGSP
PSDRS
PSDRS
PS DRS

H#lOOO
H#2000
H#3000

In this example, global jump addresses are loaded from the data port. The GSP is
selected, then the global stack is pushed with three values from data port using the
PSDRS instruction. Indirect jump addresses can be loaded in this way as well.

6

6- 41

6

6. 42

REGISTER STACK
PSGSP

6.2.4.5 PSGSP
Push GSP to Subroutine Stack

SS~GSP

Y~PC+l

Description:
Increments the SSP and loads the stack location specified by the SSP with the
value of the GSP.

Opcode:
000 0101

Example:
1000
1001
1002

lOOF

000 0101
000 0111
000 1100

I
(instructions)

I
000 0100

PSGSP
SGSP
WRRSP

PPGSP

H#0026

In this example, the GSP is saved on the subroutine stack before it is overwritten,
then restored later. The PSGSP instruction pushes the GSP on the subroutine
stack. The GSP is then selected and written with a new value (H#26). Several
instructions later, assuming that the subroutine stack has not been altered, the old
GSP value is restored by the PPGSP instruction.

6.2.4.6 PSPC
Push Program Counter to Register Stack

RS ~PC+ 1

Y~PC+l

Description:

REGISTER STACK
PSPC

Decrements the selected RSP (GSP or LSP) and loads the stack location specified
by the pointer with the incremented program counter value.

Opcode:
010 0011

Example:
1000
1001

lOOF

000 0110
010 0011

I
(instructions)

I
110 0100

SLSP
PSPC

JRC

This example uses the PSPC instruction to push the top-of-loop address on the
local stack. The local stack is selected by the SLSP instruction. Then the PSPC
instruction pushes the incremented program counter value (H#1002) on the local
stack. At the bottom of the loop, if Flag is LO, the JRC instruction performs a
jump to [LSP+O] = H#l002.

6

6-43

6

6-44

REGISTER STACK
RDRSP

6.2.4.7 RDRSP
Transfer RSP to Data Port

Ds-o +-RSP

Y+-PC+l

Description:
Outputs the value of the selected RSP (GSP or LSP) on six least significant data
bits, D5_0. D 15_6 are undefined and should be masked.

Opcode:
010 1111

Example:
1000 000 0110
1001 010 1111
1002 000 0111
1003 010 1111

SLSP
RDRSP
SGSP
RDRSP

These instructions allow the register stack pointers to be read at the data port. The
first two instructions select the LSP and transfer its value to D5_0. The last two
instructions select the GSP and transfer its value to D5_0.

6.2.4.8 $1 RSP
Subtract I From RSP

RSP f- RSP-1

Yf-PC+l

Description:

REGISTER STACK
S1RSP

Subtracts one from the specified RSP (GSP or LSP). This instruction can be used
to recover the most recently popped register.

Opcode:
000 1111

Example:
1000
1001

lOOF
1010

000 0110
011 1111

I
(instructions)

I
000 1111
011 1111

SLSP
PPRSD

SlRSP
PPRSD

Because popping the stack does not affect stack data, decreasing the value of the
GSP or LSP allows access to registers that have been previously popped. The first
two instructions pop the top local stack register to the data port. Later, assuming
the intervening instructions do not alter the local stack, the S 1 RSP instruction
recovers the register so it can be popped again.

6

6-45

6

6-46

REGISTER STACK
S4RSP

6.2.4.9 S4RSP
Subtract 4 From RSP

RSPt-RSP-4

Yt-PC+l

Description:
Subtracts four from the specified RSP (GSP or LSP). This instruction can be used
to recover the four most recently used registers.

Opcode:
011 1100

Example:
1000
1001
1002

111 0000
000 0110
011 1100

JSA
SLSP
S4RSP

H#lFFF

The JSA instruction jumps to a subroutine at address H#lFFF. The subroutine (not
shown) pushes four jump addresses on the local stack; it pops these registers
before returning to the main program. After the return from the subroutine, the
LSP is selected and the S4RSP instruction recovers the four jump addresses.

6.2.4.10 SGSP
Select GSP·

SR3 ~1

Y~PC+l

Description:

REGISTER STACK
SGSP

Selects the GSP by setting bit 3 in the status register. All register stack
instructions executed while the GSP is selected affect the global stack.

Opcode:
000 0111

Example:
1000 000 0111 SGSP
1001 010 0011 PSPC

The SGSP instruction selects the GSP so that the PSPC instruction pushes the
incremented program counter (H#l002) on the global stack.

6

6-47

6

6-48

REGISTER STACK
SLSP

6.2.4.11 SLSP
Select LSP

Description:
Selects the LSP by clearing bit 3 in the status register. All register stack
instructions executed while the LSP is selected affect the local stack.

Opcode:
000 0110

Example:
1000 000 0110 SLSP
1001 110 0011 JRC

The SLSP instruction selects the LSP so that the JRC instruction performs a jump
to [LSP+3].

6.2.4.12 WRRSP
Transfer From Data Port to RSP

RSP f- D5_0

Yf-PC+l

Description:

REGISTER STACK
WRRSP

Loads the selected RSP (GSP or LSP) from the six least significant data bits
(Ds-o).

Opcode:
000 1100

Example:
1000
1001
1002
1003

000 0111
000 1100
000 0110
000 1100

SGSP
WRRSP
SLSP
WRRSP

H#0030

H#002C

This example uses the WRRSP instruction to load the GSP with H#30 and the
LSP with H#2C. Although D15_6 are zeros in this case, they can be set to any
values because they are ignored.

6

6-49

6-50

iii

10

6.2.5 Counter Instructions
Counter instructions affect the contents of a counter or the sign bit in the status
register (SR1). In the opcodes for instructions that affect a specific counter, a 2-bit
code, ii, specifies the counter index (3-0). One counter instruction (IFCDEC) is
conditional; the condition is specified by two bits in the opcode, cc, as in
conditional jump instructions:

cc Condition

00 Unconditional
01 Not Flag
IO Flag
11 Sign

Counters can be pushed to or popped from the subroutine stack.

CLRS
DCCNTR
IFCDEC
PPCNTR
PSCNTR
SETS
WRCNTR

Clear Sign Bit (SR1)
Decrement Counter By I
If Condition Decrement C0
Pop Subroutine Stack To Counter
Push Counter To Subroutine Stack
Set Sign Bit (SR 1)
Write Counter From Data Port

6.2.5.1 CLRS
Clear Sign Bit and IR0 Latch

SR1 f-- 0

IRo f-- 0

Yf--PC+l

Description:

COUNTER
CLAS

Clears the sign bit (bit 1 in the status register) and the IR0 interrupt latch. The sign
bit normally contains a copy of the sign bit of the most recently decremented
counter (value before decrement). The IR0 interrupt is activated when the sign bit
of a counter goes high. This interrupt is not cleared by the the RTNIR instruction;
it must be cleared explicitly using CLRS.

Opcode:
001 0100

Example:
;IR0
1000
1001
1002
1003

service routine
000 0000
011 1001
001 0100
000 0011

CONT
WRCNTR
CLRS
RTNIR

H#OOlO

This IR0 service routine reinitializes C1 and returns. When the C1 counter
underflows, its sign bit is written to SRi. and the IR0 interrupt is generated. The
first instruction of the service routine must be a CONT to allow for the return
address push on the subroutine stack. The WRCNTR instruction loads C1 with a
new value from the data port (H#OOlO). The CLRS instruction clears SR1 because
the counter is no longer underflowed. CLRS must also be executed to clear IR0
before returning to the main progam; otherwise, the active IR0 interrupt would
cause another execution of the service routine.

6

6 - 51

6

6-52

COUNTER
DCCNTR

6.2.5.2 DCCNTR
Decrement Counter

Description:
Decrements the specified counter unconditionally.

Opcode:
011 00 ii

Example:
1000 011 0000
1001 101 1111

DCCNTR
RTN

The value of the C0 sign bit is written to SR1 before the decrement. The RTN
instruction is then conditioned on this value of SR 1.

6.2.5.3 IFCDEC
If Condition Decrement Counter C0

IF CONDITION
THEN C0 ~ C0-1

Y~PC+l

Description:

COUNTER
IFCDEC

Decrements counter C0 if the specified condition is true. The Sign condition tests
the value of SR1, not the C0 sign bit. If IR0 is enabled to detect counter underflow
when this instruction is used to decrement a counter, the interrupt is generated
when SR 1 goes HI, not when the counter underflows. The effect is a one
decrement lag compared with using IR0 with other instructions that decrement a
counter. One more counter decrement or an initial counter value of one less is
needed to generate IR0.

Opcode:
101 cc 00

Examples:
1000 101 10 00 IFCDEC

If Flag is LO, C0 is unchanged; if Flag is HI, C0 is decremented.

1000
1001

011 00 11
101 11 00

DCCNTR
IFCDEC

The sign bit of C3 is written to SR1 before the unconditional decrement. The
IFCDEC instruction then tests the SR1 bit to determine whether to decrement C0.

6

6-53

6

6-54

COUNTER
PPCNTR

6.2.5.4 PPCNTR
Pop Subroutine Stack to Counter

ci~ss

Y~PC+l

Description:
Loads the specified counter with the value at the location specified by the SSP and
decrements the SSP.

Opcode:
001 10 ii

Example:
1000
1001

1010

000 10 01
011 10 01

I
(instructions)

I
001 10 01

PSCNTR
WRCNTR

PPCNTR

H#OOll

This example uses C 1 and later restores its value. The PSCNTR instruction pushes
C1 on the subroutine stack to save its value. The WRCNTR instruction loads a
new value (H#OOI 1) to C1. Later, the old C1 value is restored by the PPCNTR
instruction, assuming that the intervening instructions do not alter the subroutine
stack.

6.2.5.5 PSCNTR
Push Counter to Subroutine Stack

ss~ci

Y~PC+l

Description:

COUNTER
PSCNTR

Increments the SSP and loads the stack location specified by the SSP with the
value of the specified counter.

Opcode:
000 10 ii

Example:
1000
1001

1010

000 10 10
Oll 10 10

I
(instructions)

I
001 10 10

PSCNTR
WRCNTR

PPCNTR

H#0006

This example uses C2 and later restores its value. The PSCNTR instruction pushes
C2 on the subroutine stack to save its value. The WRCNTR instruction loads a
new value (H#0006) to C2. Later, the old C2 value is restored by the PPCNTR
instruction, assuming that the intervening instructions do not alter the subroutine
stack.

6

6 - 55

6

6-56

COUNTER
SETS

6.2.5.6 SETS
Set Sign Bit

SR1 +-1

Y+-PC+l

Description:
Sets the sign bit (bit I in the status register). The sign bit normally contains a copy
of the sign bit of the most recently modified counter.

Opcode:
011 0100

Example:
1020
1021

102A

101 01 01
011 01 00

I
(instructions)

I
111 11 00

JTWO
SETS

JSA H#lOOO

The SR1 bit is set by the SETS instruction, which is executed only ifthe Flag input
is HI at the JTWO instruction. The Flag status is thereby stored in SR1• The
subsequent JSA instruction is conditioned on this stored Flag status, because the
Sign condition tests the SR1 bit. Note that this scheme works only if SR1 was not
already HI before the JTWO instruction and no counter operations intervene
between the SETS and JSA instructions.

6.2.5. 7 WRCNTR
Transfer From Data Port to Counter

Description:
Loads the specified counter from the data port.

Opcode:
Oll 10 ii

Example:
1000 011 10 11 WRCNTR

The C3 counter is initialized with H#0015.

H#0015

COUNTER
WRCNTR 6

6-57

6-58

ill

I

6.2.6 Status Register Instructions
Status register instructions affect the entire contents of the status register.
Instructions that affect the individual bits of the status register are listed in other
sections according to the function the bit or bits perform. The status register can
be pushed to or popped from the subroutine stack; it can also be loaded or read
from the data port.

PPSR
PSSR
RDSR
WRSR

Pop Subroutine Stack To Status Register
Push Status Register To Subroutine Stack
Read Status Register At Data Port
Write Status Register From Data Port

6.2.6.1 PPSR
Pop Subroutine Stack to Status Register

SR f- SS

YrPC+l

Description:

STATUS REGISTER
PPSR

Loads the status register with the value of the stack location specified by the SSP
and decrements the SSP.

Opcode:
010 0010

Example:
1000
1001

1010

010 0001
001 l100

I
(instructions)

I
010 0010

PSSR
WRSR

PPSR

H#FFCO

This example overwrites the status register but restores the old value later. The
PSSR instruction pushes the status register on the subroutine stack. The WRSR
instruction loads the status register with a new value (H#FFCO). Later, the PPSR
instruction restores the old status register value, assuming that the intervening
instructions do not change the subroutine stack.

6

6-59

6

6-60

STATUS REGISTER
PSSR

6.2.6.2 PSSR
Push Status Register to Subroutine Stack

SS t- SR

Yt-PC+l

Description:
Increments the SSP and loads the stack location specified by the SSP with the
status register value.

Opcode:
010 0001

Example:
1000
1001

1010

010 0001
001 1100

I
(instructions)

I
010 0010

PSSR
WRSR

PPSR

H#F003

This example overwrites the status register but restores the old value later. The
PSSR instruction pushes the status register on the subroutine stack. The WRSR
instruction loads the status register with a new value (H#F003). Later, the PPSR
instruction restores the old status register value, assuming that the intervening
instructions do not change the subroutine stack.

6.2.6.3 RDSR
Transfer From Status Register to Data Port

Df-SR

Yf-PC+l

Description:

STATUS REGISTER
RDSR

Outputs the value of the status register (SR15_0) on data port (D15_0).

Opcode:
010 1110

Example:
1000 010 1110 RDSR

The status register value is transferred to the data port, allowing another device to
read it.

6

6 - 61

6

6- 62

STATUS REGISTER
WRSR

6.2.6.4 WRSR
Transfer Data Port to Status Register

SR~D

Y~PC+l

Description:
Loads the status register, SR15_0, from the data port, DiS-O·

Opcode:
001 1100

Example:
1000 001 1100 WRSR H#E05C

The WRSR instruction loads the value H#E05C into the status register, which sets
options as follows:

H#E05C = 1110 0000 01 01 I I 0 0 -r- r r lntenupt Latch;ng En•bkd
Sign Bit Cleared
Interrupts Enabled
GSP Selected

'------ 8-Bit Relative Offset Width
~-------- IR9_7 and IR0 Masked

I
II!

I

6.2. 7 Relative Jump Offset Width Instructions
Relative jump offset width instructions set the values of two status register bits
(SR5_4) that control the width of the offset value read at the data port for relative
jump instructions. The Instruction Hold Control (IHC) instruction, listed under
Miscellaneous Instructions, also affects offset width.

REL16
REL12
REL8

Select 16-Bit Relative Jump Offset Width
Select 12-Bit Relative Jump Offset Width
Select 8-Bit Relative Jump Offset Width

6- 63

6_

6- 64

RELATIVE JUMP OFFSET
REL16

6.2.7.1 REL16
Select 16-Bit Relative Jump Offset Width

SR5 f--0

SR4 f--0

Yf-PC+l

Description:
Selects 16-bit relative jump offset widths by setting the values of SR5_4 to 00.
Relative jump instructions input offset values from all 16 data port bits (D 15_0).

Opcode:
010 0100

Example:
1000 010 0100
1001 111 1001

REL16
JDR H#53CO

The REL16 instruction selects a 16-bit offset width, so that the JDR instruction
adds the full 16-bit value (H#53CO) to the incremented program counter value
(H#l 002) to form the jump address (H#63C2) if Flag is HI.

6.2.7.2 REL 12

RELATIVE JUMP OFFSET
REL12

Select 12-Bit Relative Jump Offset Width

SR5 ~ 1

SR4 ~1

Y~PC+l

Description:
Selects 12-bit relative jump offset widths by setting the values of SR5_4 to 11.
Relative jump instructions input offset values from the 12 least significant data
bits (Dll_0); D 15_12 are ignored. The sign bit of the offset value is repeated to
extend the offset internally to 16 bits before the offset is added to the program
counter value.

Opcode:
010 0111

Example:
1000 010 0111
1001 111 1110

REL12
JSR H#E3CO

The REL12 instruction selects a 12-bit offset width, so that in the JSR instruction,
the four most significant bits of the data port (value H#E) are ignored. The offset
value H#03CO is added to the (incremented) program counter value (H#1002) to
form the jump address (H# 13C2) if the Sign condition is true.

6

6- 65

6

6- 66

RELATIVE JUMP OFFSET
REL8

6.2.7.3 RELS
Select 8-Bit Relative Jump Offset Width

SR5 f--- 0

SR4 f--- 1

Yf---PC+l

Description:
Selects 8-bit relative jump offset widths by setting the values of SR54 to 01.
Relative jump instructions input offset values from the eight least significant data
port bits (D7_0); D15_8 are ignored. The sign bit of the offset value is repeated to
extend the offset internally to 16 bits before the offset is added to the program
counter value.

Opcode:
010 0110

Examples:
1000 010 0111
1001 111 1110

REL8
JSR H#E3CO

The REL8 instruction selects an 8-bit offset width, so that in the JSR instruction,
the eight most significant bits of the data port (value H#E3) are ignored. The
offset value H#FFCO (H#CO with sign-extension) is added to the (incremented)
program counter value (H# 1002) to form the jump address (H#OFC2) if the Sign
condition is true.

1000

lOFF

010 0101
I

(instructions)
I

010 0110

IHC

REL8

SR5_4 are used to set the IHC (Instruction Hold Control) mode as well as relative
offset width; therefore, one of the three offset width instructions must be used to
disable the IHC mode. In this example, the IHC instruction enables the IHC mode.
Later, the REL8 instruction disables the IHC mode without changing the offset
width, because the default offset width in the IHC mode is eight bits.

I

6.2.8 Miscellaneous Instructions
Miscellaneous instructions perform various functions.

CONT
IDLE
IHC

wcs

Continue
Idle
Select Instruction Hold Control Mode, 8-Bit Relative Jump Offset
Width
Initiate Writeable Control Store Operation

6- 67

6

6-68

MISCELLANEOUS
CONT

6.2.8.1 CONT
Continue

Yf-PC+l

Description:
Performs no operation except for outputting the address from the program counter
and incrementing it at the end of the cycle.

The first instruction of an interrupt service routine must always be a CONT to allow
the ADSP·l401 to push the return address on the subroutine stack before starting to
execute the service routine.

Opcode:
000 0000

Example:
1000
1001
1002

000 0000
000 0000
000 0000

CONT
CONT
CONT

Three microcode instructions are executed in sequence. Repeated execution of
CONT drives sequential program execution. Activity may be occurring at other
devices.

6.2.8.2 IDLE

MISCELLANEOUS
IDLE

Disable Address Output and Suspend Program Execution

Y f- High Impedance

PC f-PC

Description:
Places the address port in the high impedance state and holds the program counter
at its current value for one cycle. This instruction allows another device to address
the microcode memory. IDLE is normally used in the IHC mode to repeat the IDLE
instruction for several cycles. The IDLE instruction can not be repeated in
microcode to hold the ADSP-1401 off the address bus. A series of IDLE
instructions in microcode causes the ADSP-1401 to alternately place its address
port in the high-impedance state and output the next sequential address, creating a
potential for bus contention or execution of erroneous instructions.

External interrupt requests must be inhib.ited while IDLE is being executed. If
interrupts are not inhibited, the ADSP-1401 will attempt to process an interrupt that
goes active. However, it will be unable to output an interrupt vector because the
IDLE instruction places the address port in the high-impedance state; more
important, it will set its IRIP flag, which will inhibit further interrupt processing
even after the IDLE state is exited. Interrupt processing can be inhibited using the
interrupt mask or the DISIR instruction. While processing is inhibited, interrupt
requests will still be latched.

Opcode:
001 0000

Example:
See example under IHC (next page).

6

6-69

6

6-70

MISCELLANEOUS
IHC

6.2.8.3 IHC
Select Instruction Hold Control Mode

SRs ~I

SR4 ~O

Y~PC+l

Description:
Selects the IHC (Instruction Hold Control) mode by setting the values of SR5_4 to
10. In the IHC mode, the IR1 interrupt is redefined to activate an instruction hold;
the instruction that is latched when IR1 is asserted is repeated until IR1 is
deasserted. Assertion and deassertion of IR 1 must meet the input setup requirement
(see the ADSP-1401 Data Sheet). IR1 must not be asserted with the IHC
instruction, because this would cause the ADSP-1401 to repeat the IHC instruction,
ignoring the instruction port and outputting sequential addresses indefinitely.

Because the SR5_4 bits also control relative jump offset width, the width setting
defaults to eight bits in the IHC mode.

Opcode:
010 0101

Example:
1000 001 0110
1001 010 0101
1002 001 0000
1003 010 0100
1004 000 0001
1005 011 0110

DIS IR
IHC
IDLE
REL16
CAIR
ENAIR

In this example, the IHC mode is used to repeat the IDLE instruction. The DISIR
instruction is used here to disable interrupts explicitly for two reasons. First, IR 1
must continue to be disabled ~ven after the IR1 input is deasserted to prevent the IR1
interrupt from being processed, because the IR 1 latch will be set. (If IR 1 is masked,
this is not a problem.) Second, interrupts must be disabled to prevent an interrupt
from activating the IRIP signal during the IDLE instruction. Because the interrupt
vector cannot be output during the idle state, the service routine cannot be executed.
IRIP will not be cleared and will inhibit interrupt processing even after the ENAIR
instruction re-enables interrupts.

After the IHC instruction is executed, IR1 is asserted during the IDLE instruction,
which repeats as long as IR 1 is active. When IR 1 is deasserted, the RELi 6
instruction is executed to exit the IHC mode and also set 16-bit relative jump offset
widths. The CAIR instruction clears the interrupt latch to clear IR 1; this step is not
necessary if IR1 is masked. Finally, the ENAIR instruction re-enables interrupt
processing.

6- 71

6

6-72

MISCELLANEOUS
wcs

6.2.8.4 wcs
Download to Writeable Control Store

Y~D

REPEAT
IF FLAG
THENY ~PC+ I, C0 ~ C0 - I

ELSEY ~PC

Description:
Initiates a download operation to writeable control store. The operation consists of
two parts: the first part is a jump to the address supplied at the data port; the second
part increments and outputs the address and decrements C0 (if the Flag input is HI)
or inhibits the program counter increment (if the Flag input is LO). The second part
is repeated indefinitely and is terminated by an external interrupt (IR8_1), counter
underflow interrupt (IR0) or reset. C0 should be preloaded before the WCS
instruction is executed if C0 underflow is used to terminate the download. If C0
underflow is not used, IRo should be disabled (masked).

Opcode:
010 0000

Example:
0000 000 0000
0001 011 1000
0002 001 1101
0003 000 1101
0004 011 0110
0005 010 0000

CONT
.WRCNTR
SLR I VP
WRIV
ENA IR
wcs

H#7FFE
H#0020
H#0006

H#0006

These six instructions, which occupy locations H#0000-0005 in microcode,
program the ADSP-1401 to provide addresses to download 32K (H#8000)
instructions and begin execution at the first downloaded instruction. This example
uses the counter (C0) underflow interrupt to terminate the WCS operation.

The CONT instruction is at location H#OOOO because the first instruction after reset
must be a CONT. The WRCNTR loads C0 with the initial count value (H#7FFE),
which is two less than the number of instructions to download (because the ADSP-
1401 outputs one address after the counter has underflowed and one before it
outputs the interrupt vector). The SLRIVP instruction initializes the IVP to location
0. The WRIV instruction loads the value H#0006 into interrupt vector location 0.
H#0006 is the address of the first instruction to be executed after the download.
When C0 underflows, this address value will be output, and execution will
continue from there. The ENAIR instruction is executed to enable interrupt
processing, because the default state after reset disables interrupt processing. The
WCS instruction initiates the download.

The first instructions executed after the download must clear the IRo interrupt, the
IRIP signal, and remove the return address from the subroutine stack.

6-73

6- 74

6.3 MNEMONIC AND OPCODE SUMMARY
This section is a quick reference to ADSP-1401 opcodes and standard mnemonics.
The instructions are grouped by function. Within each group, the instructions are
listed alphabetically. The 2-bit codes cc and ii are defined as follows:

cc Condition
00 Unconditional
01 Not Flag
10 Flag
11 Sign

ii Index
00 0
01 I
10 2
11 3

Status register bit definitions are summarized below:

Bit Hl(l) LO(O)
0 Transparent Interrupts Latched Interrupts
I Sign bit of the most recently decremented counter (before decrement)
2 All Interrupts Enabled All Interrupts Disabled
3 GSP Selected LSP Selected

5 - 4 Relative Jump Offset Width and IHC Mode Selection
11 12 Bits
10 IHC Mode, 8 Bits
01 8 Bits
00 16 Bits

15 - 6 Interrupt Mask (Bit 15 masks IR_~h 14 masks IR8, and so on)
Hl(l) LU(O)
Interrupt Disabled Interrupt Enabled

Conditional Jump and Branch
BRANCH 10 0 cci i If Sign Jump Register Else If Condition Jump Data,

JDA
JD!
JDR
JDRST
JP CNF
JPCOF
JRC
JRS
JSA
JSR
JTWO
RTN

111 cell
101 cclO
111 ccOl
100 llii
011 0101
001 0101
110 ccii
110 llii
111 ccOO
111 cclO
101 ccOl
101 cell

Subroutine Stack
DSSP 000 0010
PPSSD 011 1110
PSDSS 001 1110
RDSSP 0 1 O 11 0 O
WRSSP 000 1110

Absolute (Condition* Sign)
If Condition Jump Data, Absolute
If Condition Jump Data, Indirect
If Condition Jump Data, Relative
If Sign Jump Data, Absolute, and Reset Counter
If Not Flag Jump PC
If Flag Jump PC
If Condition Jump Register (Condition * Sign)
If Sign Jump Register and Decrement Counter
If Condition Jump Subroutine, Absolute
If Condition Jump Subroutine, Relative
If Condition Jump PC + 2
If Condition Return From Subroutine

Decrement SSP By 1
Pop Subroutine Stack To Data Port
Push Data Port To Subroutine Stack
Read SSP At Data Port
Write SSP From Data Port

I
Ill

I

Interrupt Control
CAIR 000 0001 Clear All Interrupts
CCIR 001 0001 Clear Current Interrupt
DIS IR 001 0110 Disable All Interrupts
EN AIR 011 0110 Enable All Interrupts
IRMBC 001 0011 Interrupt Mask Bitwise Clear
IRMBS 001 0010 Interrupt Mask Bitwise Set
RDIV 010 1101 Read Interrupt Vector At Data Port
RTNIR 000 0011 Return From Interrupt Routine
SLIR 001 0111 Select Latched Interrupts
SLRIVP 001 1101 Write SLR and !VP From Data Port
STIR 011 0111 Select Transparent Interrupts
WRIV 000 1101 Write Interrupt Vector From Data Port

Register Stack
AIRSP 010 lOii Addi to RSP (i = 00 =Add 4)
PPG SP 000 0100 Pop Subroutine Stack To GSP
PPR SD 011 1111 Pop Register Stack To Data Port
PS DRS 001 1111 Push Data Port To Register Stack
PSGSP 000 0101 Push GSP To Subroutine Stack
PSPC 010 0011 Push Program Counter To Register Stack
RDRSP 010 1111 Read RSP At Data Port
SlRSP 000 1111 Subtract 1 From RSP
S4RSP 011 1100 Subtract 4 From RSP
SGSP 000 0111 SelectGSP
SLSP 000 0110 SelectLSP
WRRSP 000 1100 Write RSP From Data Port

Counter
CLRS 001 0100 Clear Sign Bit (SR 1)
DCCNTR 011 OOii Decrement Counter By 1
IFCDEC 101 ccOO If Condition Decrement Co
PPCNTR 001 lOii Pop Subroutine Stack To Counter
PSCNTR 000 lOii Push Counter To Subroutine Stack
SETS 011 0100 Set Sign Bit (SR 1)
WRCNTR 011 lOii Write Counter From Data Port

Status Register
PPSR 010 0010 Pop Subroutine Stack To Status Register
PSSR 010 0001 Push Status Register To Subroutine Stack
RDSR 010 1110 Read Status Register At Data Port
WRSR 001 1100 Write Status Register From Data Port

Relative Jump Offset Width
REL16 010 0100 Select 16-Bit Relative Jump Offset Width
REL12 010 Olil Select 12-Bit Relative Jump Offset Width
REL8 010 0110 Select 8-Bit Relative Jump Offset Width

Miscellaneous
CONT 000 0000
IDLE 001 0000
IHC 010 0101
wcs 010 0000

Continue
Idle
Select IHC Mode, 8-Bit Relative Jump Offset Width
Initiate Writeable Control Store Operation

6-75

Internal Architecture • 7

7 .1 INTRODUCTION
The ADSP-1410 is a 48-pin CMOS device. The names and definitions of its pins
are listed in Table 7.1.

PIN NAME

19_0

Y1s-o
Dis-o
DSEL
AIRE
CMP/Z

CLK

Von
GND

Table 7.1 Pin Definitions

DEFINITION

Instruction Input, 10 bits
Address Output, 16 bits
Data 1/0, 16 bits
Data Selection Control Input
Alternate Instruction Register Enable Input
Two-Function (COMPARE and ZERO) Flag
Output
Clock Input
+5 Volt Power Supply
Ground

Figure 7 .1 shows a block diagram of the ADSP-1410. The device consists of the
following major areas, which are described in the sections of this chapter:

• Instruction Port and Instruction Decoder
• Alternate Instruction Register
• Bidirectional Data Port
• Address (R) Registers
• Offset or Base (B) Registers
• Arithmetic Logic Unit (ALU) and Shifter
• Compare (C) Registers and Initialization (I) Registers
• Address Port and Bit Reverser
• Control Register

7-1

Figure 7.1 ADSP-1410 Block Diagram

7-2

Instruction Port and Decoder
Alternate Instruction Register (AIR)
Bidirectional Data Port
Address Registers
Offset Registers
Arithmetic Logic Unit (ALU)

7 Compare Registers
8 Initialization Registers
9 Address Port and Bit Reverser

10 Control Register

itectu

7.2 INSTRUCTION PORT
The instruction port consists of 10 pins (19_0) through which the ADSP-1410
receives its 10-bit instruction. The instruction port is latched during clock HI.
During clock LO, the instruction latch is transparent, so that the ADSP-1410 can
begin decoding the next instruction as soon as it becomes available from
microcode. Figure 7 .2 shows the instruction latch timing.

ADSP-1410
Clock _J L

Setup And
Predecode ·1----lli-~l

Instruction
Port Data _ ____,~,___! -

Latched Transparent Latched

Figure 7.2 Instruction Latch Timing

7.3 ALTERNATE INSTRUCTION REGISTER (AIR)
The Alternate Instruction Register (AIR) is a 10-bit register that provides an
alternate instruction source to the instruction latch. The Alternate Instruction
Register Enable (AIRE) input pin controls an internal multiplexer that selects
either the instruction port or the AIR. When the AIRE input is active (HI), the
AIR contents are transferred to the instruction latch and the instruction port is
ignored. The timing requirements for the AIRE input are the same as for the
instruction port.

The AIR allows the execution of an internally-stored instruction in place of an
instruction from microcode, under control of the AIRE input. The ADSP-1410
can also operate in a mode in which the AIR is enabled conditionally by the
internal comparator. For more information, see Alternate Instruction Register in
Chapter 8.

7-3

7-4

I!

I

7.4 BIDIRECTIONAL DATA PORT
The data port (D) consists of 16 bidirectional pins (D15_0). The ADSP-1410 loads
data from the port into internal registers or directly to the internal ALU; it also
outputs the contents of internal registers to other devices through the data port.
Data input is latched during clock HI. Data output is driven while the clock is HI
and disabled while the clock is LO, allowing time for external data setup if the
next cycle requires data input. This timing is shown in Figure 7 .3. The output
drivers are placed in the high-impedance state when the ADSP-1410 is not writing
data.

ADSP-1410
Clock L
Data
Output

!,,,_ Enabled i Disabled

_ ___,/,.----;-----,.}>-----
> {

Data
Input

Figure 7.3 Data Port Timing

Output
Enable

Output
Disable

Data Bus
Not Driven

Setup Hold

I
Transparent

1
Latched,,... •I

I
Ill

I

7 .5 ADDRESS REGISTERS
The 16 address registers (R15_0) store 16-bit data memory addresses. These
registers enable you to keep track of 16 different pointers. Certain addressing
instructions output and update the address in an R register. The update mode,
which you select with an overhead instruction (see Control Register, below),
determines whether the address is output before or after it is updated.

The data port can also provide the address to output, as shown in Figure 7.4.
Address updates are always written to the R register specified in the instruction
opcode, whether the address source is an R register or the data port.

R Data
Register Port

Select Address
For Output And

Update

Update Output

Address
Port

Figure 7.4 Address Output and Update Paths

In most instructions, four opcode bits specify one of the 16 R registers. Two
instructions (Y ADD and YSUB) use three bits of opcode plus one control register
bit to specify the R register. For these instructions, the R registers are grouped
into two banks of eight registers each (R15_8, R7_0), and the control register bit (see
Control Register, below) selects the bank. This bank selection bit can be set or
cleared through a dedicated instruction.

7.6 OFFSET REGISTERS
The six offset (base) registers (B6_4, B2_0) store 16-bit numbers used to update
addresses. Figure 7.5 shows the paths from the B registers to the ALU. The
registers are grouped into two banks of three registers; "register" selections B7 and
B3 cause the ADSP-1410 to read the offset value directly from the data port.

7-5

7-6

CR 8 = 0 Bit Code = 11

B B B "Register''
Register Register 3 Or 7

6,5,0r4 2, 1, Or 0 (Data Port)

,,. _,,. ,,
Select Offset

Source

{ Address Source J ,, ,r_

[ALU
J

Updated
Address •

Figure 7.5 Offset Paths

A control register bit selects one of the two B banks. Instructions that specify a B
register select one of the three registers or the data port through two bits of
opcode, as shown in Table 7.2. Because either B7 or B3 selects the data port, the
status of the B bank selection bit does not matter when the specified code is 11.

CR8 Two-Bit Code Offset Source

0 00 Bo
0 01 B1
0 IO B2
0 11 Data Port

00 B4
01 Bs
IO B6
11 Data Port

Table 7.2 B Register Selection

ffi

I

7.7 ARITHMETIC LOGIC UNIT (ALU) AND SHIFTER
The Arithmetic Logic Unit (ALU) and shifter can perform the following
operations:

Two Operands
Addition
Subtraction
OR
AND
XOR

One Operand
Increment
Decrement
Shift Left
Shift Right

In most two-operand instructions, the operands are provided by an R register and
a B register. Alternatively, the data port can provide one of the operands. (In fact,
the same data port value can be used for both operands.)

Left and right shifts are single-bit; left shifts are logical (vacated bit filled with
zero) whereas right shifts are arithmetic (vacated bit filled with sign bit).

The ADSP-1410 detects whether the result of a logical operation (OR, AND,
XOR) is zero and flags this condition on its Compare/Zero (CMP/Z) output.

7.8 COMPARE REGISTERS AND INITIALIZATION REGISTERS
Circular buffers require the ability to update and output an address repeatedly
until the address value falls outside the buffer, then reset the address value to the
beginning of the buffer. Four 16-bit compare registers (C3_0) and the
corresponding 16-bit initialization registers (13_0) are used by several ADSP-1410
instructions to perform this function. I registers store the starting addresses of
buffers, and C registers store boundary values, as shown in Figure 7 .6. The C
register value may be an upper or lower boundary, depending on the direction in
which address sequencing takes place. The ADSP-1410 comparator checks the
address being output against a boundary value in a C register. If the address has
reached or gone beyond the boundary, the value in the I register (that has the same
index as the C register) is used to reinitialize the R register; otherwise, the R
register is updated as dictated by the particular instruction.

The type of comparison performed (upper boundary or lower boundary) by the
comparator depends on the instruction. The comparator asserts a compare flag HI
to enable reinitialization. The compare flag is also sent to the Compare/Zero
(CMP/Z) output pin.

7-7

7-8

u

Data
Memory

0
10

co

~ 11

C1
12

C2

0 13

C3

Figure 7.6 Comparison and Reinitialization

The input to the comparator is always the output address; the update mode
determines whether this address is output before or after being updated. For more
information on update modes, see Update Modes in Chapter 8.

I registers can be selectively enabled and disabled through a four-bit mask in the
control register. The bit in the control register must be set to enable reinitialization
with the I register of the same index. If the bit is not set, the R register is never
reinitialized, regardless of the comparator status.

h ure

7.9 ADDRESS PORT AND BIT REVERSER
The address port (Y) consists of 16 outputs (Y 15_0). The address can be passed
unchanged from one of the R registers or the data port to the address port; it can
also be updated by the ALU before being output, depending on the update mode
(see Update Modes in Chapter 8). In the latched output mode, the address outputs
are latched during clock LO. In the transparent output mode, the address outputs
are asynchronous to the clock, resulting in a shorter output delay. However, the
address output is not held to the end of the cycle. For more information, see
Address Output Modes in Chapter 10. When no address is being output, the
address port is placed in the high impedance state.

The bit reverser transposes the bits of an address about the center, interchanging
bits 15 and 0, bits 14 and 1, and so on, as shown in Figure 7.7. Bit-reversed
addresses are used to place the results of a radix-2 fast Fourier transform (FFT) in
sequential order.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
l1 l1lo11 lo lo lo l1 l1 l1 l1lo11 lo I~ lol

16-BIT
REVERSAL

Figure 7.7 Bit Reversal

7.10 CONTROL REGISTER
The control register (CR), shown in Figure 7.8, consists of 11 bits that set the user
controlled options of the ADSP-1410. These options and their corresponding bits
are described briefly in Table 7.3; details can be found in the indicated sections of ·
this manual. The entire control register can be loaded from the 11 least significant
bits of the data port. Individual bits can be set and cleared through dedicated
instructions.

7-9

MSB LSB

10 9 8 7 6 5 4 3 2 0

[I I I I I I l' 11 I1 3 2 1 0

T l
Initialization

Mask
~--------

Enabled
Disabled

l
Precision Mode

00 Single Precision
10 Double Precision, LS Chip
01 Double Precision, MS Chip
11 Double Precision, One Chip

l
Address

Output Mode

l 1 I Transparent
O Latched

Update Mode

1 Post-Update
0 Pre-Update Select R Bank

1 l Upper R Bank
O Lower R Bank

ConditionalAir
Execute Mode

Select B Bank
i 1 Enable

0 I Disable
1 Upper B Bank
0 Lower B Bank

Figure 7.8 Control Register

7-10

I
Ill

I

Bit Description

3 - 0 Reinitialization Mask: Each bit corresponds to the C register/I register pair
of the same index number. If the bit is set, the corresponding I register is
enabled, allowing conditional reinitialization of an R register with the
contents of the I register. If the bit is cleared, reinitialization with the
corresponding I register is disabled. See Looping Instructions in
Chapter 8.

5 - 4 Precision Mode Selection: These bits contain a 2-bit code that selects one
of four precision modes. The precision mode determines the width of the
addresses the ADSP-1410 generates (30-bit or 16-bit) and the
configuration in which 30-bit addresses are produced; see Chapter 9,
Precision Modes.

6 Transparent Mode Selection: This bit, if set, disables the address latching
that normally occurs in phase two (clock LO) of the cycle. In transparent
mode, the address outputs change in response to changes at the instruction
port; they are not synchronized to the clock. See Address Output Modes in
Chapter 10.

7 R Bank Selection: The 16 address (R) registers are grouped into two banks
of eight registers. For instructions that select one of eight registers (Y ADD
and YSUB), this bit selects the upper bank (if the bit is set) or the lower
bank (if the bit is cleared).

8 B Bank Selection: The six offset (B) registers are grouped into two banks
of three registers plus the data port, which acts as a fourth "register" in
each bank. This bit selects the upper bank (if the bit is set) or the lower
bank (if the bit is cleared).

9 Post-Update Mode Selection: This bit selects the update mode for
instructions that both update and output an address. If this bit is set,
addresses are output after being updated (post-update mode). If this bit is
cleared, addresses are output before being updated (pre-update mode). See
Update Modes in Chapter 8.

10 Conditional AIR Execute Mode Selection: This bit selects conditional AIR
execution. If this bit is set, an instruction that compares the output address
with a C register will conditionally enable the AIR (on the following
cycle) rather than conditionally reinitialize with an I register. This mode
disables reinitialization with the I registers, regardless of the values in the
initialization mask (CR3_0). If this bit is cleared, conditional AIR execution
is disabled, and reinitialization is gated by CR3_0. See Alternate Instruction
Register in Chapter 8.

Table 7.3 Control Register Bit Description

7- 11

Addressing Operations • 8

8.1 INTRODUCTION
An ADSP-1410 addressing instruction performs two basic operations: the output
of a data memory address and the update of the existing address. This chapter
describes variations of these basic operations through which you can program the
ADSP-1410 to generate a particular sequence of addresses. Several user
controlled features are described:

• Update Mode determines the order in which address output and address update
is performed.

• Looping Instructions have the added capability of reinitializing the address
value if the update operation causes the address to reach or exceed a user
defined limit.

• Data Selection through the DSEL input enables the ADSP-1410 to output and
update an address value directly from the data port.

• Alternate Instruction Register (AIR) provides a single instruction that the
ADSP-1410 can execute instead of the instruction from microcode. This
register is enabled unconditionally by a hardware input or conditionally by a
looping instruction.

8.2 UPDATE MODES
For instructions that both output and update an address, the update mode
determines whether the address is output before or after being updated.

• In the pre-update mode, the address is output before being updated.
• In the post-update mode, the address is output after being updated.

You select the update mode by setting or clearing a bit in the control register. In
either mode, the updated value is written to the R register unless the R register is
reinitialized by the instruction.

The pre-update mode provides a shorter clock-to-address delay than the post
update mode because the updated address has already been calculated and stored
in the R register by the previous access to the same R register. However, the post
update mode provides the shortest latency from the update of an address to its
output; in the post-update mode, the address is output in the same cycle as it is
updated, whereas in the pre-update mode, the updated address is not output until

8-1

OEFF
OFOO
OF01
OF02
OF03
OF04
OF05
OF06

the next cycle at the earliest. In the ADSP-1410, you can select the mode that best
suits your system's requirements. For example, if one of the operands in the update
operation is not available until the cycle in which the updated address is needed,
you should use the post-update mode.

8.3 LOOPING INSTRUCTIONS
Many digital signal processing implementations require multiple accesses to a
range of data memory locations. The addressing sequence that accomplishes these
accesses "wraps around" from the highest address to the lowest address of the
range, or vice versa, as illustrated in Figure 8.1. Looping instructions allow the
ADSP-1410 to generate these looping address sequences without overhead
penalty.

OEFF
OFOO
OF01
OF02
OF03
OF04
OF05
OF06

Forward Loop Backward Loop

Figure 8.1 Looping Address Sequences

8-2

'.11

I

A looping instruction outputs address from an R register or from the data port and
updates this address, in the order determined by the selected update mode. The
address that is output is also compared to a boundary value, which is stored in a C
register specified in the instruction. If the address has reached or passed the
boundary value, the source R register is reinitialized with the value of the I
register that has the same index as the C register. If the address has not reached
the boundary value, the R register is written with the updated address.

Each C register/I register pair can store address boundaries, such as those used to
implement a circular buffer. The circular buffer shown in Figure 8.2 loops
forward from address H#OEFF to address H#OF06. 12 stores the value H#OEFF
and C2 stores the value H#OF06. The loop is accomplished by iterating the YINC
instruction, which updates the address in R1 by incrementing it. When the value in
R1 matches the value in C2 (H#OF06), R 1 is reinitialized to the starting address
stored in 12 (H#OEFF).

R1 OEFF 12

i OF01
OF02

R1 I OF03

+ OF04
OFOS

R1 OF06 OF06 C2

Figure 8.2 Reinitialization to Form Circular Buffer

8-3

8

8-4

1111 1111

I 10

The action of a looping instruction is summarized below. Note that four types of
updates are possible (see Chapter 11 for instruction descriptions).

Y f- Rn or Transfer address in Rn to address port
(pre-update mode), or

Y f- Rn+ (Bm, -Bm, l, or -1) Transfer updated address to address port
(post-update mode).

IF (Y ~ Cj) THEN Rn f- Ij If output address equals or exceeds
address in Cj, write address in Ij into Rn;

ELSE Rn f- Rn + (Bm, -Bm, 1, or -1) otherwise, write the updated address to Rn.

Y = address port
= nth address register

mth offset register
jth compare register
jth initialization register

The internal comparator of the ADSP-1410 compares the output address to the
value in the C register specified in the looping instruction. The comparison is
unsigned; H#FFFF is greater than H#OOOO. The C register value is interpreted as
either an upper or lower boundary, depending on whether the update performed in
the instruction increases or decreases the address value. If the update will increase
the value of the address, the C register value is interpreted as an upper limit; if the
update will decrease the value of the address, the C register value is interpreted as
a lower limit. For looping instructions that increase the address value (YINC and
Y ADD), the compare flag is HI if the address value is greater than or equal to the
C register value. For looping instructions that decrease the address value (YDEC
and YSUB), the compare flag is HI if the address value is less than or equal to the
C register value. A HI compare flag enables the appropriate I register for
reinitializing the R register and is made available to other devices as well, through
the Compare/Zero (CMP/Z) output (see Compare/Zero in Chapter 10).

Reinitialization can be masked (disabled) under user control, enabling you to
switch between looping and linear address sequencing. One of four bits in the
control register (CR3_0) must be set to enable the I register with the same index for
reinitialization. If the bit is cleared, no reinitialization is performed; the update
performed by the particular instruction is written to the R register, regardless of
the compare flag.

Because the update mode determines the address value that is output, it also
affects the address that is compared with a C register to determine whether to
reinitialize. Figure 8.3 shows two implementations of the same circular buffer, one
using the pre-update mode and the other using the post-update mode. Both
implementations use an update that increments the address by one.

d
1111

I

Pre-Update Mode

y f-Rn

IF (Y ~ Cj) THEN Rn f- lj

ELSE Rn f- Rn + 1

Post-Update Mode

Y f- Rn+ 1
IF (Y ~ Cj) THEN Rn f- lj

ELSE Rn f- Rn + 1

Figure 8.3 Reinitialization in Pre-Update and Post-Update Modes

1111

I

In the pre-update mode, Rn is output and then updated on each access. The update
eventually increments Rn to the value of Cj, the last location of the buffer. The
ADSP-1410 detects this condition when it outputs the value of Rn on the
following access, and consequently reinitializes Rn to the value in Ij, which is the
first location of the buffer.

In the post-update mode, Rn is updated first and then output on each access. When
the update increments Rn to the value in Cj, the ADSP-1410 detects this condition
in the same cycle and reinitializes Rn to the value in Ij, which in this case is the
location before the start of the buffer. On the following access, this Rn value is
incremented to the start of the buffer and then output.

Warning: In the pre-update mode, the updated address of a looping instruction is
not compared with a boundary value until it is output by the next looping
instruction that employs the same R register. However, the type of comparison ($;
or::::) performed by the next instruction depends on whether that instruction
increases or decreases the address. If one instruction increases the address and a
subsequent instruction decreases the address, the second instruction will not
detect whether the address was increased beyond a boundary value because it tests
for the address less than or equal to a boundary value. This situation is illustrated
in Figure 8.4.

8-5

ADSP-1410
Instructions

8-6

d

C2 = 1008
85 = 0010
Bo= 0012

y +--- R1

Ill

I

IF (Y::?: C2) THEN R1 +--- 12

ELSE R1 +--- R1 + 85

y +--- R1

IF (Y ~ C2) THEN R1 +--- 12

ELSE R1 +--- R1 - Bo

Ill

I

1002

1012

1012

1000

ns

Data
Memory

Boundary
Crossings

Not Detected

Figure 8.4 Address Increase Followed By Decrease In Pre-Update Mode

8.4 DATA SELECTION USING DSEL
For all instructions that output an address from an R register, you can assert the
DSEL pin to replace the R register value with external data from the data port. The
following instructions are affected by DSEL:

• Looping instructions (Y ADD, YSUB, YINC, YDEC)
• Logical instructions (YOR, Y AND, YXOR)
• Shift instructions (Y ASR, YLSL)
• Register transfer instructions that drive the address port (YRTR, YRTB,

YRTC)
• Bit reverse instructions (YREV)

When an active DSEL is asserted along with one of these instructions, the ADSP-
1410 reads the address from the data port instead of the specified R register. If the
address is updated, it is always written back to the R register. For example, in pre
update mode, the data port value is output to the address port, updated, and written
to the specified R register. In post-update mode, DSEL allows the ADSP-1410 to
read in a value from the data port, modify the value, and output the value at the
address port in the same cycle, as shown in Figure 8.5. For register transfer
instructions that use DSEL, the data port becomes the source register. You can
load R, B, and C registers using this feature.

B
Register

Data
Port

ALU

@

I

DSEL
Asserted

Address
Port

Figure 8.5 DSEL for Single-Cycle Input, Update, and Output

@

I

R
Register

To read an offset value from the data port rather than a B register, you specify
either B7 or B3 as the offset register; you do not assert DSEL because DSEL
activates the data port as a replacement for only R registers. If you specify B7 or
B3 and also assert DSEL, both the address and offset are input from the data port.

8.5 ALTERNATE INSTRUCTION REGISTER
The Alternate Instruction Register (AIR) is a 10-bit register which stores an
instruction that is executed when the AIRE input is asserted. The AIRE input is
latched and must meet the same setup and hold times as the instruction. The AIR
is useful when circumstances require the repetitious or discriminate execution of
an instruction. The AIR does not store the DSEL input. To activate the data port
for an instruction executed from the AIR, you must assert DSEL along with
AIRE.

If conditional AIR execution is enabled (CR10 is HI), the AIR is also activated by
a true (HI) compare flag from a looping instruction. In conditional AIR execution
mode, conditional reinitialization for looping instructions is disabled; the normal .
update operation is performed in all cases. In addition, if the compare flag is true,
the AIR is enabled for the following cycle, superseding the next instruction at the
instruction port.

8-7

8-8

1111 1111

I I

One use of the AIR is to provide hardware tristate control to the address port,
which is necessary to prevent address bus contention when several ADSP-14 lOs
share the same address bus. Any instruction which does not output an address
automatically places the address port in the high-impedance state. If you load such
an instruction into the AIR, you can disable the address port by asserting the AIRE
input. The NOP instruction is well suited for this application because it disables
output without performing any operation.

Modulo addressing is one use of the conditional AIR execution mode. In this
example, the ADSP-1410 is first loaded with the following values; then the
YADD instruction (R0, B0 and C2 specified) is executed repeatedly.

CR9
CR10

AIR
C2
Bo
B1

0
1
YSUB (Ro, B1)
3
4
7

Pre-Update Mode
Conditional AIR Execution Mode

y f-Ro; Rof- Ro-B1
Boundary
Step Size
AIR Update

The Y ADD instruction in the pre-update mode outputs the Ro address and then
compares its value with the value of C2 (3). If the Ro address is greater than or
equal to 3, the AIR instruction (YSUB) is executed on the next cycle. Because
conditional AIR execution is enabled, reinitialization is disabled, and thus Ro is
always updated by adding the offset stored in B0 (4), whether or not it is greater
than or equal to 3. If the AIR is enabled, YSUB outputs the R0 address and
subtracts the offset stored in B 1 (7) from R0, yielding the modulo- I I value of the
next address. This value is output on the next Y ADD.

When Ro is initially 0, the addressing sequence illustrated in Figure 8.6 results.
The first YADD instruction outputs 0, then adds 4 to R0. The next Y ADD outputs
4, then adds 4 to Ro and enables the AIR. YSUB outputs 8, then subtracts 7 from
R0, yielding I. The rest of the addresses are generated in the same manner,
wrapping around at the appropriate values. Single-cycle modulo addressing is thus
accomplished without any overhead required to keep the address within the
desired range.

In general, to perform modulo addressing in a circular buffer of length L, you
initialize registers as listed below; Rn is any R register, Bx and By are any two B
registers, and cj is any c register:

Rn Starting address n
Bx Step size m (number of memory locations between consecutive data)
By L-m
C. n + L-2m (pre-update mode) or n + L-m (post-update mode)
AlR YSUB instruction (R0 and By specified as address and offset)

0 1 0 0
1 1 4 1
2 2 2 7
3 3 3

4 2 4

5 5 5 5

6 6 6 8
7 7 7

8 3 8 8

9 9 6 9

10 10 10 9

Figure 8.6 Modulo Addressing

You can load the AIR in one of two ways:

• From The Data Bus: To load the AIR from the data port, place the instruction
on the 10 least significant data bits (D9_0) and execute the WRA instruction.

• Selectively, From The Instruction Bus: To load the AIR from the instruction
port, assert the DSEL input and execute the LDA instruction; on the next
cycle, the ADSP-1410 loads the instruction at the instruction port into the AIR.
DSEL must meet the same setup and hold times as the LDA instruction;
otherwise, the instruction is not loaded. Therefore, if several ADSP-1410
devices share the same instruction space, you can load their AIRs selectively
by asserting DSEL only for particular devices.

Because the RST instruction must take precedence over all other instructions, it is
decoded separately from other instructions and cannot be executed from the AIR.
If you try to executed a RST from the AIR, a NOP is performed instead.
Furthermore, it is impossible to load the RST instruction into the AIR through the
instruction port because an RST instruction at the instruction port is always
executed, even on the cycle following a LDA instruction.

0
1
2
3 10
4
5
6
7 11
8
9

8-9

Precision Modes • 9

9.1 INTRODUCTION
The precision mode controls the width of addresses generated by the ADSP-1410.
Single precision provides 16 bits; double precision provides 30 bits (in two 15-bit
words). In double-precision mode, one ADSP-1410 generates an address in two
cycles or two cascaded ADSP-141 Os generate an address in a single cycle.

Single precision provides the most flexibility in systems requiring no more than
16 address bits. The double-precision modes (one-chip and two-chip) provide 30
address bits but impose the following constraints:

• Neither double-precision mode supports bit reversal (the YREV instruction).

• The one-chip/double-precision mode requires two cycles to generate an
address instead of one and does not support conditional reinitialization or
conditional AIR execution.

• The two-chip/double-precision mode supports conditional reinitialization in
the YINC and YDEC instructions, but not in the Y ADD and YSUB
instructions. Conditional AIR execution is supported as usual.

The precision mode is determined by the values of bits 5 and 4 in the control
register as follows:

CR5 CR4 Mode

0
0
1
1

0
1
0
1

Single precision
Double precision, least significant word (LSW)
Double precision, most significant word (MSW)
Double precision, one chip

The SETP instruction sets the values of these bits. This instruction is described in
Chapter 11.

9.2 ONE-CHIP/SINGLE-PRECISION MODE
In single-precision mode, the address port includes all 16 address bits.
Instructions execute in a single cycle, and all instructions are available.

9-1

CLK

ADSP·
1410

9-2

Ill Ill

I I

9.3 ONE-CHIP/DOUBLE-PRECISION MODE
In one-chip/double-precision mode, the lower 15 bits of the address port (Y 14_0)

are address bits. With a single ADSP-1410, a 30-bit address can be generated in
two cycles that output 15 bits each. Y 15 is output HI if Y 14_0 contain the MSW and
LO if they contain the LSW. The Y 15 output can be used to control an external
multiplexer or latches to a 30-bit address bus, as shown in Figure 9.1.

With a single chip, all instructions that output an address must be executed twice,
once for each 15-bit word. The ADSP-1410 automatically performs the operation
on the LSW first, except in the right shift (YASR) instruction, in which the MSW
is modified first. Only the 15 least significant bits of registers are used, and the
most significant bit of the data port (D15) is ignored. Address (R) registers must be
paired (Ro and R 1, R2 and R3, and so on) so that even-numbered registers hold
LSWs and odd-numbered registers hold MSWs. Offset (B) and comparison (C)
registers do not need to be paired. You can specify any B register or C register for
either cycle of the double-precision operation.

Conditional reinitialization and conditional AIR execution in looping instructions
are not supported in the one-chip/double-precision mode. Looping instructions
become simple output-and-update operations. Unconditional execution of an
instruction in the AIR is still supported. If the instruction needs to be repeated in
order to generate a double-precision address, the AIRE input must be asserted for
both cycles.

Y14-YO

ADDR14 - ADD RO
15 15

V15

ADDR29 - ADDR15
15

Figure 9.1 Single-Chip Connections to 30-Bit Address Bus

1111 1111

I I

Although conditional reinitialization and conditional AIR execution is not
supported in the one-chip/double-precision mode, the ADSP-1410 still performs
the 30-bit comparison. It outputs the valid compare flag on the CMP/Z pin after
the second cycle of the double-precision operation. The status of the CMP/Z pin
after the first cycle is invalid and should not be recognized as a flag.

The ADSP-1410 performs 30-bit ALU operations by storing the carry or shifted
bit resulting from the LSW operation and retrieving the bit for the next MSW
operation. (In the case of a right shift, the shift bit resulting from the MSW
operation is stored and retrieved for the next LSW operation.) Even if another
instruction intervenes between the two operations, the double-precision operation
can be completed, as long as the intervening instruction does not use the ALU.

9.4 TWO-CHIP/DOUBLE-PRECISION MODE
In the two-chip/double-precision mode, one ADSP-1410 generates only LSWs,
the other only the corresponding MSWs. The connections between the two
devices are shown in Figure 9.2. As in the one-chip/double-precision mode, only
the lower 15 bits of the address port on each device are address bits. The Y15 pins
of both devices are connected to one another in order to transfer carry, borrow,
and shift bits from one device to the other.

015 015

1410 (MS) 1410 (LS)

Y15 CMP/Z CMP/Z Y15

Compare Zero

Figure 9.2 Two-Chip Cascade Connections

9-3

9-4

II!

I
II!

10 od

Only the 15 least significant bits of any register and of the data port are used. The
most significant bit of the data port (D15) on each device receives the CMP/Z
output from the other device. Therefore, D15 must not be connected to the data
bus. The CMP/Z- to-D15 and Y15-to-Y15 connections allow the ADSP-1410 to
perform 30-bit comparisons, updating the address based on the combined compare
status of both devices. The Compare flag for the double-precision operation is
valid on the CMP/Z output of only the MSW chip, not the LSW chip. The Zero
flag for the double-precision operation is the logical AND of the CMP/Z outputs
of both chips.

In two-chip/double-precision mode, the two chips usually share the same
instructions. The bits of the control register that determine the precision mode also
determine whether the device generates the MSW or LSW. The SETP instruction,
which sets the values of these bits, must set the bits on the MSW chip to the values
that are the opposite of those on the LSW chip. Asserting DSEL on the MSW chip
during the SETP instruction inverts the values of the control bits, thus allowing the
same SETP instruction to be used to set the precision mode for both chips
simultaneously.

Because of the time needed to transmit a carry/shift/borrow bit from one chip to
the other, the two-chip/double-precision mode has an additional constraint on the
minimum clock period. The maximum carry/shift/borrow output delay is
referenced from the valid instruction input. The minimum carry/shift/borrow setup
time is referenced to the falling edge of the clock. The sum of the delay and setup
is the minimum time required from the valid instruction to the falling clock edge.
Subtracting the minimum instruction setup time to the rising edge of the clock
from this number yields the minimum clock HI time, as shown in Figure 9.3.

In the post-update mode, the address output delay is longer because the MSW
must be calculated after the input of the carry/shift/borrow bit. The maximum
MSW address output delay is referenced to the valid carry/shift/borrow bit.
Because the address must be valid before the falling edge of the clock in order to
be latched, this output delay is the determining factor in the minimum clock HI
period. The sum of this delay and the maximum carry/shift/borrow delay from the
LSW chip, minus the instruction setup time, determines the minimum clock HI
time for post-update operations, as shown in Figure 9.3.

Instruction

Carry/Shift
Output

Carry/Shift
Input

Address
Output

ADSP-1410
Clock

II II

I I

t,s :~t~p~ k ~ ~

tcs~ ~
~ ... ~--------------~

Setup To ~ ~

~~
t Delay From ~ ~ , i

Figure 9.3 Minimum Clock Period For Two-Chip/Double-Precision Mode

9-5

System Interface •

10.1 INTRODUCTION
The ADSP-1410 receives its instructions from microcode; it also receives data
and control from microcode or from other devices in the system. It outputs
addresses to the data memory address bus. Its dual-function CMP/Z flag may also
be output to a monitoring device or circuit. These inputs and outputs determine
the system interface requirements of the ADSP-1410.

10.2 LOOK-AHEAD PIPELINE
The Look-Ahead pipeline consists of two latching stages. The instruction port is
latched during clock HI and is transparent during clock LO. In the normal
(latched) output mode, the address port is transparent during clock HI and latched
during clock LO. The address becomes valid in clock HI and is stable because the
instruction is latched. When the instruction latch becomes transparent during
clock LO, the address latch holds the address for the rest of the cycle. The
instruction for the next cycle can be decoded at the same time the address for the
current cycle is being held steady, as shown in Figure 10.1.

ADSP-1410
Clock

Address
Output

Instruction
Input

Instruction Address Instruction Address
Transparent Transparent Transparent Transparent

! Address ! Output
! Stable i Delay

:~ ~!11111 ~

Figure 10.1 Look·Ahead Pipeline Timing

10 - 1

10

1

10- 2

I

The Look-Ahead pipeline provides two major advantages:

• No external instruction register or address register is needed. The ADSP-1410
can connect directly to microcode memory and data memory.

• Because the next instruction is partially decoded before the start of the next
cycle, the address can be output sooner, allowing more time for the memory
access.

10.3 DATA TRANSFERS
You can load and read all of the following registers through the data port using .the
following instructions:

REGISTER

Address (R) registers

Offset (B) registers
Comparison (C) registers
Initialization (I) registers
Alternate Instruction Register (AIR)
Control Register (CR)

* DSEL asserted
t B3 or B7 register selected

TO LOAD

YRTR*
orBTRt
YRTB*
YRTC*
DTI
WRA
DTCR

TO READ

RTD

BTD
CTD
ITO
RDA
CRTD

Data can be input to the ALU from the data port either as an address or an offset.
If DSEL is asserted during an instruction that normally loads an address from an R
register, the data port replaces the R register as the address source (although the
result of the ALU operation is still written to the R register). If an instruction
specifies B3 or B7 as an offset register, the offset is read from the data port. The
YDTY instruction passes the data at the data port directly to the address port
without affecting any R registers.

Data can also be transferred internally between R, B, C, and I registers:

TRANSFER

RtoB
BtoR
RtoC
BtoC
I toR
I to B
ItoC

INSTRUCTION(S)

RTB
BTR
RTC
BTR, then RTC
ITR
ITR, then RTB
ITR, then RTC

Data input is latched during clock HI; data output is driven while the clock is HI
and disabled while the clock is LO. This timing allows fast single-cycle data
transfers. The application note Optimize Data Transfers Between Word-Slice
Components describes various data transfer techniques. The data output delay can
be modified by changing the instruction setup time, for a certain range of setup
times; see Sliding Window Timing, below.

10.4 ADDRESS OUTPUT MODES
The ADSP-1410 can output addresses in one of two modes: latched or
transparent. In the latched mode (the normal operating mode) the address port is
transparent during clock HI and latched during clock LO. In the transparent mode,
the address port is transparent for both phases of the clock, and the address output
is referenced to the valid instruction input, rather than to the clock. Transparent
mode provides the shortest possible address output delay, but because no latching
is performed, the address outputs will change in response to changes at the
instruction port.

In latched mode, the address output delay can be modified by changing the
instruction setup time, for a certain range of setup times; see Sliding Window
Timing, below.

In the transparent mode, ifthe clock is inactive (LO), the ADSP-1410 operates
completely asynchronously. Because updated addresses are written to R registers
on the falling edge of the clock, stopping the clock also prevents alteration of the
R registers. This effect is beneficial when you want to use the ADSP-1410 as an
ALU without changing any register states. If you restart the clock, you should
ensure that a NOP is executed in the first cycle to prevent any inadvertent register
writes.

10.5 SLIDING WINDOW TIMING
Sliding window timing pertains to the relationship between instruction setup time
and address or data output delay time (latched mode only for address delay). The
maximum output delay occurs when the minimum instruction setup time is
provided. The minimum output delay occurs when the maximum usable
instruction setup time is provided. If the instruction setup time is less than the
maximum usable setup and greater than the minimum required setup, then the
output delay and the instruction setup time sum to a constant. This constant is a
"sliding window" about the rising clock edge, as shown in Figure 10.2. The
sliding window provides flexibility in adjusting instruction setup and output delay
to suit the needs of the system; you can reduce the actual output delay by
increasing the instruction setup time, up to the maximum usable setup time, or
you can reduce the necessary instruction setup time by tolerating a greater output
delay. The maximum actual address output delay is determined as a function of
the instruction setup time as follows:

10

10 - 3

1

10- 4

tLA (max) = tLAx (max)+ t1s (min) - t1s (actual)

tLA (max)
tLAx (max)

t1s (min)
t1s (actual)

Clock

Clock

= maximum actual address output delay
= tLAn (max) (pre-update mode) or tLAp (max) (post-update mode)

maximum address output delay with minimum t1s
= minimum instruction setup
= actual instruction setup

I ...
Maximum
Usable Setup

Constant

..,I
Minimum
Output Delay

t ODD (min) or t LAx (min)

~

Minimum
Required Setup

Maximum
Output Delay

t IS (min) t ODD (max) or t LAx (max)

Constant

Figure 10.2 Sliding Window Timing

Syste

The maximum actual data output delay is determined as a function of the
instruction setup time in the same manner:

too (max) = tooo (max) + t1s (min) - t1s (actual)

t00 (max) = maximum actual data output delay
t000 (max) = maximum data output delay with minimum t1s
t1s (min) = minimum instruction setup
t1s (actual) =actual instruction setup

Refer to the most recent revision of the ADSP-1410 Data Sheet for the values of
tLAx (max), t000 (max) and t1s (min).

10.6 COMPARE/ZERO
The Compare/Zero (CMP/Z) pin is a dual-function flag output that provides a way
for external circuitry to monitor two internal status flags, the compare flag and the
zero flag. These flags function as follows:

• The compare flag indicates the comparator status in a looping instruction. For
looping instructions that increase the address value (YINC and Y ADD), the
compare flag is HI if the address value is greater than or equal to the C register
value. For looping instructions that decrease the address value (YDEC and
YSUB), the compare flag is HI if the address value is less than or equal to the
C register value.

• The zero flag indicates whether the result of a logical instruction is zero. If the
result is zero, the zero flag is HI; if the result is not zero, the zero flag is LO.
Logical instructions are YOR, Y AND, and YXOR.

The CMP/Z output is LO when neither flag is active. It becomes valid during the
cycle in which one of the instructions listed above is executed and remains active
for one cycle.

10.7 BIT REVERSAL
Bit reversal transposes the bits of a word about its center. For the 16-bit address of
the ADSP-1410, bit reversal interchanges the following bits:

Y15 H Yo
Y14 H Y1
Y13 H Y2
Y12 H Y3
Y11 H Y4
Y10 H Ys
Y9 H y6
Ys H Y1

1

10- 5

1

10- 6

Bit-reversed addresses are used in implementations of algorithms such as a radix-2
fast Fourier transform (FFf). The addresses of the outputs of the FFT are the bit
reversed addresses of the corresponding inputs, as shown in Figure 10.3. An in
place implementation (output samples written back to input sample locations) of
this FFT requires the generation of bit-reversed addresses.

Input Output Bit
Array Array Reversal

X(O) X(O) 000 000 X(O)

X(1) X(4) 001 100 X(1)

X(2) X(2) 010 010 X(2)
Radix-2

X(3) Fast X(6) 011 110 X(3)

X(4) Fourier X(1) 100 001 X(4)

X(5) Transform X(5) 101 101 X(5)

X(6) X(3) 110 011 X(6)

X(7) X(7) 111 111 X(7)

Figure 10.3 Output Addresses From FFT

The ADSP-1410 contains a hardware 16-bit reverser that is activated through the
YREV instruction. YREV performs the following operations in the pre-update
mode:

• Outputs the 16-bit-reversed version of the address in the specified R register
• Adds the offset in the specified B register to the original (non-bit-reversed)

address
• Writes the result back to the R register

In the post-update mode, the address is bit-reversed and output after the offset is
added to the original address. If the R register contains the starting address of an
input sequence and the B register contains the address-spacing value (the number
of address locations from one input sample to the next), successive executions of
YREV produce 16-bit addresses in bit-reversed order.

If the input sequence contains fewer than 216 locations, only the N bits required to
address all of the input points need to be reversed. Figure 10.4 shows the bit
reversal for N = 3 (23 = 8 data locations). You can generate this sequence, or any
sequence of addresses whose N least significant bits are reversed, by loading the
appropriate base address in the R register and offset value in the B register. The
only restriction on this method is that the N least significant bits of the base
address must be zeros; the 16-N most significant bits can be any combination of
ones and zeros.

D
Figure 10.4 Three-Bit-Wide Address Reversal

As an example, suppose N = 3, providing enough addresses for eight input points
if the addresses are consecutive. For this sequence, only the three least significant
bits should be reversed, leaving the 13 most significant bits unchanged. The base
address must have its three. least significant bits set to zero; in this example, the
base address is H#4C50, and the ending address is H#4C57.

The 3-bit reversal of the base address is the same as the unreversed base address,
because of the requirement that the N least significant bits of the base address be
zeros; N zeros reverses to N zeros. Thus, in this example, the first 3-bit-reversed
address must be H#4C50. Because the ADSP-1410 performs only 16-bit reversals
and not 3-bit reversals, you must store H#OA32, the 16-bit reversal of H#4C50, in
the R register to get H#4C50 as the bit-reversed base address. When the YREV
instruction is executed, H#4C50 is output, as shown in Figure 10.5.

Figure 10.5 First Bit-Reversed Address

R Register

H#OA32

YREV Instruction

Address Port

H#4C50

1

10 - 7

1

10- 8

Note that in the R register value (H#OA32), the three bits that are being reversed
are in the three most significant bit locations (bits 15, 14, and 13). When the 16-bit
value is reversed, these three bits end up in the least significant bit locations (0, I,
and 2). To calculate the next bit-reversed address, you must add to the base
address the address spacing value, which is 001 (binary) in this example. This
value must be located in the three most significant bit positions in order to be
added to the three bits that are to be reversed. The other 13 bits must be
unchanged. Therefore, adding the value H#2000 (001 binary plus 13 least
significant zeros) to the R register value will yield the correct address when the R
register value is bit-reversed (see Figure 10.6). The B register stores the value
H#2000, which is added to the R register by the YREV instruction. Subsequent
executions of the YREV instruction yield the sequence of bit-reversed addresses.

In general, the offset to store in the B register is 216--N, where N is the number of
bits being reversed. If the memory locations interleave real and imaginary data
(every two locations contain the real part and imaginary part of a single data
value), the offset should be (216-N) + 2.

The application note Variable Width Bit-Reversing with the ADSP-1410 Address
Generator gives examples of N-bit revei:sing for different address ranges within
the 64K address space.

I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 0 I 0 I 0 I 1 I 1 I 0 I 0 I 1 I 0 I R Register
H#OA32

+ I O I 0 I 1 I 0 I 0 I O I 0 I O I 0 I 0 I 0 I 0 I 0 I O I 0 I O I B Register
H#2000

lo 11 lo lol1 l1 lo lolo 11lo11 lo -

Figure 10.6 Second Bit-Reversed Address

R Register

H#2A32

YREV Instruction

Address Port

H#4C54

10.8 RESET
Because the ADSP-1410 has no hardware reset, it can power up in any state. You
cannot even guarantee it executes the instruction at its instruction port because it
can power up with the AIR enabled. Therefore, there is a potential for data bus or
address bus contention. You can prevent data bus contention by holding the clock
input LO when you first apply power to the device; the data drivers are enabled
only when the clock is HI.

The RST instruction takes precedence over all instructions, even if the AIR is
enabled. RST clears all the bits in the control register and the instruction port and
also places the address and data ports in the high impedance state; other registers
are unaffected, as shown in Table 10.1. To ensure that RST is the first instruction
executed, you should set up the RST instruction on the instruction port before
starting the clock. This setup can be accomplished through a multiplexer that is
enabled by the system reset signal. The same signal should gate the ADSP-1410
clock, as shown in Figure 10.7.

System
'Reset

ADSP-1410
Clock

Microcode

A/B B A
2:1

Multiplexer

ADSP-1410

Figure 10.7 System Reset Initializes ADSP-1410

Register

RST
Instruction

1

10- 9

10

10 -10

LOCATION

Address Registers
Offset Registers
Compare Registers
Initialization Registers
Control Register
Alternate Instruction Register
Instruction Latch
Address Port
Data Port

Table 10.1 Effect of RST Instruction

STATUS

Unchanged
Unchanged
Unchanged
Unchanged
All bits cleared
Unchanged
All bits cleared
High Impedance
High Impedance

Instruction Set •

11.1 INTRODUCTION
This chapter describes all ADSP-1410 instructions. The reference section
describes each instruction in detail and provides one or more examples that use
the instruction. This section is followed by a summary of the standard instruction
mnemonics and opcodes. Both the reference section and summary are organized
according to six functional groups and alphabetically by mnemonic within each
group.

• Looping
• Register Transfer
• Logical and Shift
• Control Register
• Alternate Instruction Register
• Miscellaneous

The standard instruction mnemonics used in this manual relate directly to the
instructions they represent. The mnemonics of all instructions that output an
address begin with the letter Y. The mnemonics of instructions that transfer data
from one port or register to another are composed of one or two letters
representing the source, followed by the letter T, followed by one or two letters
representing the destination. For example, BTR transfers data from a B register to
an R register. The conventions used in this chapter are listed in Table 11.1.

11.2 INSTRUCTION REFERENCE
This section describes the operations performed by each ADSP-1410 instruction.
Any values that are changed and any restrictions that apply are specified. The
opcode for each instruction is listed, plus one or more short examples that
illustrate usage. In the examples, user-selected bit values are underlined. Control
register or control input values are indicated where relevant.

11 - 1

11

1 I
Ill

I

11 - 2

Register and Port Name Abbreviations:
Rn nth Address (R) register
Bm mth Offset (B) register
Cj jth Comparison (C) register
~ jth Initialization (I) register
u Data port (D15_0)

Bit Codes:
rrrr

Data bitx
Address port (Y 1s-o)
Address bit x
Control register bit x
Alternate Instruction Register

(0::;; n::;; 15)
(0::;; m::;; 7; 3 or 7 = data port)
(O::;;j::;;3)
(0::;; j::;; 3)

(0::;; x::;; 15)

(0::;; x::;; 15)
(0::;; x::;; 10)

rrr
bb
cc
ii

Four-bit R register index
Three-bit R register index (fourth bit in CR7)
Two-bit B register index (third bit in CR8)
Two-bit C register index
Two-bit I register index

pp
x

Functions:
ASR(x)
LSL(x)
REV(x)

Two-bit precision code
One-bit control register value

Arithmetic shift right function
Logical shift left function
Bit reverse function

Table 11.1 Notation Terms

11.2.1 . Looping
Looping instructions update or reinitialize an R register address based on the
value of the address with respect to the value of the C register specified in the
instruction opcode. They also output the R register value on the address port
either before or after the update, depending on the update mode. These
instructions are used frequently to implement circular buffers and modulo
addressing.

The update operation differs for each looping instruction:

YADD
YDEC
YINC
YSUB

Add offset or reinitialize
Decrement or reinitialize
Increment or reinitialize
Subtract offset or reinitialize

Looping instructions output the address in a specified R register on the address
port either before or after updating the address through an ALU operation, then
compare the output address to a boundary value in a specified C register. If the
compare status is true (the boundary value is reached or passed), the CMP/Z
output goes HI to allow external monitoring. Internally, the compare status causes
one of three actions to be performed, depending on the settings of control register
bits 10 (conditional AIR execute) and 3-0 (initialization mask):

• IfCR10 is set, the ADSP-1410 executes its next instruction from the AIR and
ignores its instruction port.

• If CR10 is cleared and the bit in the initialization mask (CR3_0) that corresponds
to the C register is set, the R register is reinitialized with the value stored in the
matching I register.

• If CR 10 is cleared and the initialization bit is cleared, the comparator output has
no internal effect. The R register is written with the output of the ALU
operation.

If the compare status is not true (the boundary value is not reached or passed), the
R register is written with the output of the ALU operation and the CMP/Z output
remains LO.

If the DSEL input is asserted when a looping instruction is loaded, the address is
supplied from the data port instead of the specified R register. The updated
address is still written to the R register.

11

11 - 3

11

11 - 4

LOOPING
YADD

11.2.1.1 YADD
Output Address I Add Offset or Reinitialize

Y ~Rn (Pre-Update Mode) or Y ~Rn+ Bm (Post-Update Mode)

IF (Y ~ Cj)

THEN Rn~ Ij

ELSE Rn ~ Rn+ Bm

Description:
Outputs the address in the specified R register on the address port either before
(pre-update mode) or after (post-update mode) summing the address with the
offset in the specified B register. If the output address is greater than or equal to
the specified C register value, the R register is reinitialized with the value stored in
the corresponding I register, provided the initialization mask bit in the control
register is enabled and the conditional AIR execute mode is disabled (CRIO = 0). If
the output address is less than the value in the specified C register, the R register is
written with the sum of the address and offset value.

This instruction uses the R bank selection bit in the control register (CR7) to select
one of the two R register banks.

Opcode:
11 cc bb 1 rrr

I
l_ R register index (CR7 selects bank)

B register index (CR8 selects bank)

'------- C/l register index

Examples:
11 00 Ql 1 .Qll CR8 = 1, CR7 = 0

Outputs the address in R3 either before or after adding the value in B5 to the
address. Compares the output address with the value in C0• If the address is less
than or equal to the C0 value, the value in 10 is written to R3.

11 .lQ ll 1 010 CR8 =don't care, CR7 = 1

Outputs the address in RIO either before or after adding the value at the data port to
the address. Compares the output address with the value in C2. If the address is
less than or equal to the C2 value, the value in 12 is written to RIO·

11 ll .l.Q. 1 111 CRs = 1, CR7 = 1, DSEL = 1

Reads the value at the data port and outputs this value on the address port either
before or after adding to it the value in B6. Compares the output address with the
value in C3. If the addi:ess is less than or equal to the C3 value, the value in 13 is
written to R15; otherwise, the sum of the data port value and the offset value is
written to R15.

11

11 - 5

11

11 - 6

LOOPING
YDEC

11.2.1.2 YDEC
Output Address I Decrement or Reinitialize

Y ~Rn (Pre-Update Mode) or Y ~Rn - 1 (Post-Update Mode)

IF(Y~Cj)

THEN Rn ~Ij

ELSE Rn~ Rn-1

Description:
Outputs the address in the specified R register on the address port either before
(pre-update mode) or after (post-update mode) decrementing the address by one. Jf
the output address is less than or equal to the specified C register value, the R
register is reinitialized with the value stored in the corresponding I register,
provided the initialization mask bit in the control register is enabled and the
conditional AIR execute mode is disabled (CR10 = 0). If the output address is
greater than the value in the specified C register, the R register is written with the
decremented address.

Opcode:
10 10 cc .r.r.i::.i::.

I
Examples:
10 10 ll 1110

R register index

C/I register index

Outputs and decrements the address in R14 and compares the output address with
the value in C3• If the address is less than or equal to the C3 value, the value in 13 is
written to R14.

1 0 1 0 fil filll DSEL = 1

Reads the value at the data port and outputs this value at the address port either
before or after decrementing it. Compares the output address with the value in C1•
If the address is less than or equal to the C1 value, the value in I 1 is written to R7;
otherwise, the data port value decremented by one is written to R7•

11.2.1.3 YINC
Output Address I Increment or Reinitialize

LOOPING
YINC

Y f- Rn (Pre-Update Mode) or Y f- Rn+ 1 (Post-Update Mode)

IF (Y ~Ci)
THEN Rn f- Ii

ELSE Rn f- Rn+ 1

Description:
Outputs the address in the specified R register on the address port either before
(pre-update mode) or after (post-update mode) incrementing the address by one. If
the output address is greater than or equal to the specified C register value, the R
register is reinitialized with the value stored in the corresponding I register,
provided the initialization mask bit in the control register is enabled and the
conditional AIR execute mode is disabled (CR10 = 0). If the output address is less
than the value in the specified C register, the R register is written with the
incremented address.

Opcode:
10 11 cc rrrr

Examples:
10 11 lQ_ 0110

R register index

C/I register index

Outputs the address in R6 either before or after incrementing it by one and
compares the output address with the value in C2. If the address is greater than or
equal to the C2 value, the value in I2 is written to R6.

10 11 _Q_Q. 1100

Outputs the address in R12 either before or after incrementing it by one and
compares the output address with the value in C0. If the address is greater than or
equal to the C0 value, the value in I0 is written to R12.

11

11 - 7

11

11 - 8

LOOPING
YSUB

11.2.1.4 YSUB
Output Address I Subtract Offset or Reinitialize

Y f- Rn (Pre-Update Mode) or Y f- Rn - Bm (Post-Update Mode)

IF (Y ~ Cj)
THEN Rn f- Ij

ELSE Rn f- Rn - Bm

Description:
Outputs the address in the specified R register on the address port either before
(pre-update mode) or after (post-update mode) subtracting the offset in the
specified B register from the address. If the output address is less than or equal to
the specified C register value, the R register is reinitialized with the value stored in
the corresponding I register, provided the initialization mask bit in the control
register is enabled and the conditional AIR execute mode is disabled (CR10 = 0). If
the output address is greater than the value in the specified C register, the R
register is written with the offset address.

This instruction uses the R bank selection bit in the control register (CR7) to select
one of the two R register banks.

Opcode:
11 cc bb. 0 rrr

I I ___ R register index (CR7 selects bank)
~----- B register index (CR8 selects bank)

'-------- C/l register index

Examples:
11 .Q_Q ll 0 000 CR8 =don't care, CR7 = 0

Outputs the address in R0 either before or after subtracting the value at the data
port (B3 or B7) from the address. Compares the output address with the value in
C0. If the address is less than or equal to the C0 value, the value in 10 is written to
R0; otherwise, the original value of R0 less the data port value is written to R0.

11 fil fil 0 100 CR8 = 1, CR7 = 1, DSEL = 1

Reads the value at the data port and outputs this value either before or after
subtracting from it the value of B5• Compares the output address with the value in
C1. If the address is less than or equal to the C1 value, the value in 11 is written to
R 12; otherwise, the original data port value less the value of B5 is written to R 12.

I
Ill

I

11.2.2 Register Transfer
Register transfer instructions are used to transfer data to and from internal
registers:

BTD
BTR
CTD
DTI
ITD
ITR
RTD
YRTB
YRTC
YRTR

Transfer from B to data port
Transfer from B to R
Transfer from C to data port
Transfer from data port to I
Transfer from I to data port
Transfer from I to R
Transfer from R to data port
Output and transfer from R to B
Output and transfer from R to C
Output and transfer from R to same R

Register transfer instructions transfer values between the following places, as
shown in Figure 11.1 :

• Between two internal registers. A value can be transferred directly from any I
or B register to any R register. The address in any R register can be output on
the address port and written to a B or C register in one instruction. Transfers
between two R registers can be accomplished in two instructions: one to
transfer from the source R register to a B register, another to transfer from the
B register to the destination R register.

• Between an internal register and the data port. Explicit instructions transfer
data to the data port from R, B, C, and I registers. Transfers from the data port
to an I register can be programmed explicitly. Transfers to the R, B, and C
registers are accomplished by executing a transfer from an R register and
asserting the DSEL pin, which substitutes the data port for the source R
register. Both DSEL and the data input must meet input setup requirements.

To transfer values to and from the control register, see Control Register
Instructions later in this chapter. To transfer values to and from the AIR, see
Alternate Instruction Register Instructions later in this chapter.

1

11 - 9

1 In

11 - 10

Instructions that begin with the letter Y also output the register value to the
address port.

R
Registers

B
ITR Registers c

Registers Registers

BTR YRTC

YRTB

YRTR YRTB YRTC DTI
with with with

DSEL DSEL DSEL

Data Port

Figure 11.1 Data Transfer Paths

11.2.2.1 BTD
Transfer From B Register to Data Port

Description:

REGISTER TRANSFER
BTD

Outputs the value in the specified B register on the data port. This instruction can
be used to place a B register value on the data bus so that it can be used by other
devices.

Opcode:
00 0011 01 bb

B register index (CR8 selects bank)

Examples:
00 0011 01 .1_Q_ CR8 = 1

Outputs the value of B6 on the data port.

00 0011 01 .Q.Q. CR8 = 0

Outputs the value of B0 on the data port.

11

11 - 11

11

11 -12

REGISTER TRANSFER
BTR

11.2.2.2 BTR
Transfer From B Register to R Register

Description:
Loads the value in the specified B register into the specified R register. This
instruction can be used to transfer an offset value to an R register for modification.
The YRTB instruction returns the offset to the B register.

Opcode:
01 00 b.b. .r..r..r.r.

I ___ R register index

•----- B register index (CR8 selects bank)

Examples:
01 00 ll .Q.ll.Q. CR8 = don 't care

Loads the value at the data port (B3 or B7) into R6•

01 00 Ql 1110 CR8 = 0

Loads the value of B 1 into R 14·

11.2.2.3 CTD
Transfer From C Register to Data Port

Description:

REGISTER TRANSFER
CTD

Outputs the value in the specified C register on the data port. This instruction can
be used to place the value of a C register on the data bus so that it can be used by
other devices.

Opcode:
00 0011 00 cc

C register index

Examples:
00 0011 00 li2.

Outputs the value of C2 on the data port.

00 0011 00 .Q_Q_

Outputs the value of C0 on the data port.

11

11 - 13

11

11 - 14

REGISTER TRANSFER
DTI

11.2.2.4 DTI
Transfer From Data Port to I Register

Description:
Loads the value at the data port into the specified I register.

Opcode:
00 0011 11 ii

I register index

Examples:
00 0011 11 .Ql_

Loads the value at the data port into I 1•

00 0011 11 1.Q_

Loads the value at the data port into 12.

11.2.2.5 ITD
Transfer From I Register to Data Port

Description:

REGISTER TRANSFER
ITD

Outputs the value in the specified I register on the data port. This instruction can
be used by other devices to read I register values.

Opcode:
00 OOll 10 ii

I register index

Examples:
00 OOll 10 _Q_Q_

Outputs the value in 10 on the data port.

00 OOll 10 ll

Outputs the value in 13 on the data port.

11

11 -15

11

11 -16

REGISTER TRANSFER
ITR

11.2.2.6 ITR
Transfer From I Register to R Register

Description:
Loads the value in the specified I register into the specified R register. This
instruction can be used to reinitialize an R register unconditionally.

Opcode:
10 00 ii rrrr

Examples:
1 0 0 0 fil .Q.l.1..1

R register index

I register index

Loads the value in 11 into R7.

10 00 .Q_Q 1010

Loads the value in 10 into R 10.

11.2.2. 7 RTD
Transfer From R Register to Data Port

Description:

REGISTER TRANSFER
RTD

Outputs the address in the specified R register on the data port. This instruction
can be used by other devices to read R register values. DSEL has no effect if
asserted for this instruction.

Opcode:
00 0100 rrrr

R register index

Examples:
00 0100 l.Qfil

Outputs the value of~ on the data port.

00 0100 fil.Q.l

Outputs the value of Rs on the data port.

11

11 -17

11

11 - 18

REGISTER TRANSFER
YRTB

11.2.2.8 YRTB
Output Address and Transfer Address to B Register

Description:
Outputs the address in the specified R register on the address port and writes the
same address to the specified B register. If DSEL is asserted, the value at the data
port is output to the address port and written to the specified B register:

This feature can be used to load B registers from the data bus.

Opcode:
00 11 bb rrrr

R register index

Examples:
00 11 fil_ 0001 CR8 = 1, DSEL = 0

Outputs the address in R1 on the address port and writes the same address to B5•

00 11 _Q_Q_ 0001 CR8 = 0, DSEL = 1

Reads the value at the data port and outputs this value on the address port; writes
the same address to B0. R 1 is unaffected.

11.2.2.9 VRTC

REGISTER TRANSFER
YRTC

Output Address and Transfer Address to C Register

Description:
Outputs the address in the specified R register on the address port and writes the
same address to the specified C register. If DSEL is asserted, the value at the data
port is output to the address port and written to the specified C register:

This feature can be used to load C registers from the data bus.

Opcode:
00 10 cc rrrr

Examples:
00 10 ll 0010

R register index

C register index

DSEL = 0

Outputs the address in R2 on the address port and writes the same value to C3.

00 10 ll 1010 DSEL = 1

Reads the value at the data port and outputs this value on the address port; writes
the same value to C3. R 10 is unaffected.

11

11 -19

11

11 - 20

REGISTER TRANSFER
YRTR

11.2.2.10 YRTR
Output Address and Transfer Address to Same Register

Description:
Outputs the address in the specified R register on the address port. If DSEL is
asserted, the value at the data port is output to the address port and written to the
specified R register:

This feature can be used to load R registers from the data bus.

Opcode:
00 0101 rrrr

R register index

Examples:
00 0101 1100 DSEL 0

Outputs the address in R 12 on the address port.

00 0101 0101 DSEL = 1

Reads the value at the data port, outputs this value on the address port, and writes
the value to R5.

I
Ill

I

11.2.3 Logical and Shift
Logical and shift instructions update the value of an R register by performing
either a logical operation or shift operation on the existing value. They also output
the R register on the address port either before or after the update operation,
depending on the update mode.

YAND
YASR
YLSL
YOR
YXOR

Output and AND with B
Output and arithmetic shift right one bit
Output and logical shift left one bit
Output and OR with B
Output and XOR with B

Logical operations are AND, OR, and XOR; the first operand is the R register
value, and the second operand is loaded from the specified B register. The left
shift operation shifts the R register value one bit left logically (fills the vacated bit
with a zero). The right shift operation shifts the R register value one bit right
arithmetically (fills the vacated bit with a copy of the original most significant
bit).

If the DSEL input is asserted when a logical instruction or shift instruction is
loaded, the address is supplied from the data port instead of the specified R
register. The updated value is still written to the R register.

The CMP/Z pin goes HI if the result of any logical instruction is zero. This output
lets you use the zero result to condition some other event.

11

11 - 21

11

11 - 22

LOGICAL AND SHIFT
YAND

11.2.3.1 YAND
Output Address and Logical AND With B Register

Y ~Rn (Pre-Update Mode) or Y ~(Rn AND Bm) (Post-Update Mode)

Rn ~ (Rn AND Bm)

Description:
Outputs the address in the specified R register on the address port _either before
(pre-update mode) or after (post-update mode) ANDing the address with the value
in the specified B register. Writes the AND result to the same R register.

Opcode:
01 10 bb. ~

~I --- R register index

~---- B register index (CR8 selects bank)

Examples:
0 1 1 0 .Q.Q. .1.1.Q.l CR8 = 1

Outputs the address in R13 either before or after ANDing it with the value in B4.
Writes the AND result to R13•

0 1 1 0 ll lillll CR8 = don 't care

Outputs the address in R9 either before or after ANDing it with the value read at
the data port. Writes the AND result to R9•

11.2.3.2 VASA

LOGICAL AND SHIFT
YASR

Output Address and Right Shift (Arithmetic)

Y f- Rn (Pre-Update Mode) or Y f- ASR(Rn) (Post-Update Mode)

Rn f- ASR(Rn)

Description:
Outputs the address in the specified R register on the address port either before
(pre-update mode) or after (post-update mode) shifting the address one bit to the
right. Writes the shifted result to the same R register. The shift is arithmetic; the
vacated most significant bit is filled with a copy of the original most significant bit
(the sign bit).

Opcode:
00 0111 rrrr

R register index

Example:
00 0111 1011

Outputs the address in R11 either before or after shifting the address right one bit.
Writes the shifted result to R 11 • For example, if the original value is

1000 1010 0011 0010

the shifted result is

1100 0101 0001 1001

11

11 - 23

11

11 - 24

LOGICAL AND SHIFT
YLSL

11.2.3.3 YLSL
Output Address and Logical Left Shift

Y t- Rn (Pre-Update Mode) or Y t- LSL(Rn) (Post-Update Mode)

Rn t- LSL(Rn)

Description:
Outputs the address in the specified R register on the address port either before
(pre-update mode) or after (post-update mode) shifting the address one bit to the
left. Writes the shifted result to the same R register. The shift is logical; the
vacated least significant bit is filled with a zero.

Opcode:
00 0110 rrrr

R register index

Example:
00 0110 1101

Outputs the address in R 13 either before or after shifting the value left one bit.
Writes the shifted result to R 13 . For example, if the original value is

1000 1010 0011 0010

the shifted result is

0001 0100 0110 0100

11.2.3.4 YOR

LOGICAL AND SHIFT
YOR

Output Address and Logical OR With B Register

Y f-- Rn (Pre-Update Mode) or Y f-- (Rn OR Bm) (Post-Update Mode)

Rn f-- (Rn OR Bm)

Description:
Outputs the address in the specified R register on the address port either before
(pre-update mode) or after (post-update mode) ORing the address with the value
in the specified B register. Writes the OR result to the same R register.

Opcode:
01 11 bb rrrr

~ R reg;,.,,. ffidex

B register index (CR8 selects bank)

Examples:
0 1 11 1.Q SllQl. CR8 = 0

Outputs the address in Rs either before or after ORing it with the value in B2•
Writes the OR result to Rs.

01 11 .lQ 1101 CR8 = 1, DSEL = 1

Reads the value at the data port and outputs this value either before or after ORing
it with the value in B6. Writes the OR result to R13.

11

11- 25

11

11 - 26

LOGICAL AND SHIFT
YXOR

11.2.3.5 YXOR
Output Address and Logical XOR With B Register

Y f- Rn (Pre-Update Mode) or Y f- (Rn XOR Bm)(Post-Update Mode)

Rn f- (Rn XOR Bm)

Description:
Outputs the address in the specified R register on the address port either before
(pre-update mode) or after (post-update mode) XORing the address with the value
in the specified B register. Writes the XOR result to the same R register.

Opcode:
01 01 bh rrrr

I R register index

----- B register index (CR8 selects bank)

Examples:
0 1 0 1 ll .l.Q.Q.Q. CR8 = 1

Outputs the address in R8 either before or after XORing it with the data port (B7)
value. Writes the XOR result to R8•

01 01 QQ 1011 CRs = 1, DSEL = 1

Reads the value at the data port and outputs this value either before or after
XORing it with the value of B4• Writes the XOR result to R 11 •

11.2.4 Control Register
Control register instructions write one or all bits of the control register with the
specified value(s) or transfer the control register contents to the data port:

CRTD
DTCR
RST
SELB
SELR
SETA
SETI
SETP
SETU
SETY

Transfer from CR to data port
Transfer from data port to CR
Reset CR all bits
Set value of CR8 (B bank select)
Set value of CR7 (R bank select)
Set value of CR10 (Conditional AIR)
Set value of CR3_0 (Initialization mask)
Set value of CR5_4 (Precision mode)
Set value of CR9 (Pre-/Post-update mode)
Set value of CR6 (Transparent/Latched mode)

Control register bits are defined as follows:

Bit HI (1)
0 10 Enabled
1 11 Enabled
2 12 Enabled
3 13 Enabled
5-4 Precision Mode Selection

LO (0)
10 Disabled
11 Disabled
12 Disabled
13 Disabled

0
0
1
1

0
1
0
1

One Chip, Single Precision

Bit
6
7
8
9
10

Two Chips, Double Precision, LSW
Two Chips, Double Precision, MSW
One Chip, Double Precision

HI (1)
Transparent Output Mode Selected
Upper R Register Bank Selected
Upper BRegister Bank Selected
Post-Update Mode Selected
Conditional AIR Execute Enabled

LO (0)
Latched Output Mode Selected
Lower R Register Bank Selected
Lower B Register Bank Selected
Pre-Update Mode Selected
Conditional AIR Execute Disabled

11

11 - 27

11

11 - 28

CONTROL REGISTER
CRTD

11.2.4.1 CRTD
Transfer from Control Register to Data Port

D 10-0 f- CR I 0-0

Description:
Outputs the value in the control register (CR10_0) on the data port (D10_0).

Opcode:
00 0010 1111

Example:
If the control register bits are set as follows:

CR3_0 All I registers enabled
CR5_4 One-chip/double-precision mode
CR6 Latched output mode
CR7 Lower R register bank selected
CR8 Upper B register bank selected
CR9 Pre-Update mode
CR10 Conditional AIR execution disabled

then the value output on the data port (D 10_0) is

001 0011 1111

and the values of D15_11 are undefined.

11.2.4.2 DTCR

CONTROL REGISTER
DTCR

Transfer from Data Port to Control Register

CR 10-0 f-- D 10-0

Description:
Loads the 11 least significant bits of the data port (D10_0) into the control register
(CR10-o).

Opcode:
00 0010 1110

Example:
If the value at D 10_0 is

010 1001 1010

the following modes are selected (D15_11 are ignored):

CR3_0 I1 and I3 enabled, I0 and I2 disabled
CR5_4 Two-chip/double-precision mode, LS chip
CR6 Latched output mode
CR7 Upper R register bank selected
CR8 Lower B register bank selected
CR9 Post-Update mode
CR10 Conditional AIR execution disabled

11

11 - 29

11

11 - 30

CONTROL REGISTER
RST

11.2.4.3 AST
Reset Control Register

CR10-o f- 0

Description:
Resets all bits of the control register (CR 10_0). The RST instruction is always
executed when it appears at the instruction port. It takes precedence even over an
instruction enabled from the AIR. The RST instruction itself cannot be executed
from the AIR; if the AIR is enabled when it contains the RST instruction, a NOP
is performed.

Opcode:
00 0000 0001

Example:
Sets all CR bits to zero, selecting the following modes:

All I registers disabled
Single-precision mode
Latched output mode
Lower R register bank selected
Lower B register bank selected
Pre-Update mode
Conditional AIR execution disabled

11.2.4.4 SELB
Select Upper or Lower B Register Bank

CRg~X

Description:

CONTROL REGISTER
SELB

Writes the bit value specified in the opcode to CR8, selecting one of the two banks
of four B registers to be used in all subsequent instructions that specify a B
register. If CR8 is set, the upper bank is selected; if CR8 is cleared, the lower bank
is selected.

Because either B3 or B7 represents the data port, the value of CR8 is unimportant
when one of these registers is specified.

Opcode:
00 0001 100 K

CR bit value

Examples:
00 0001 100 .l

Selects the upper four B registers by setting CR8 to a 1.

00 0001 100 .Q_

Selects the lower four B registers by setting CR8 to a 0.

11

11 - 31

11

11 - 32

CONTROL REGISTER
SELR

11.2.4.5 SELR
Select Upper or Lower R Register Bank

Description:
Writes the bit value specified in the opcode to CR7, selecting one of the two banks
of eight R registers to be used in all subsequent Y ADD and YSUB instructions, If
CR7 is set, the upper bank is selected; if CR7 is cleared, the lower bank is selected.

Opcode:
00 0001 101 x

CR bit value

Examples:
00 0001 101 _Q_

Selects the lower eight R registers by setting CR7 to a 0.

00 0001 101 .l

Selects the upper eight R registers by setting CR7 to a 1.

11.2.4.6 SETA
Set or Clear Conditional AIR Execution

CR10 ~ x

Description:

CONTROL REGISTER
SETA

Writes the bit value specified in the opcode to CR10, enabling or disabling
conditional AIR execution. If CR 10 is set, a true compare status in a looping
instruction causes the instruction in the AIR to be executed on the next cycle. In
this mode, reinitialization with I registers is disabled. If CR10 is cleared, the AIR
can only be enabled by the AIRE input, and reinitialization with I registers is
enabled according to the values of CR3_0.

Opcode:
00 0001 010 K

CR. bit value

Examples:
00 0001 010 .1.

Enables conditional AIR execution by setting CR 10 to a 1.

00 0001 010 J2.

Disables conditional AIR execution by setting CR10 to a 0.

11

11 - 33

11

11. 34

CONTROL REGISTER
SETI

11.2.4. 7 SETI
Set or Clear Initialization Mask Bit

CRii~x

Description:
Writes the bit value specified in the opcode to one of the initialization mask bits
(CR3-0). The bit number is specified by two bits in the instruction opcode, ii. The
mask bit controls reinitialization with the I register of the same number. Setting
the bit enables a looping instruction to reinitialize an R register with the value in
the I register. Clearing the bit disables reinitialization with the I register.

Opcode:
00 0010 0 ii.K

I CR bit value

I register index

Examples:
00 0010 0 ll .l

Sets CR3 to a 1, enabling 13 for reinitialization.

00 0010 0 .lQ Q

Clears CR2, disabling 12 for reinitialization.

11.2.4.8 SETP
Set Precision Mode

CR5_4 f- pp

Description:

CONTROL REGISTER
SETP

Writes the two-bit value specified in the opcode to CR5_4, setting the precision
mode. Bit values correspond to precision modes as follows:

0
0
1
1

0
1
0
1

single-precision mode
double-precision mode, LS chip
double-precision mode, MS chip
double-precision mode, one chip

To set an ADSP-1410 to the double-precision mode as the LS chip, you load this
instruction specifying the bit values 01 for CR5_4. If you assert the DSEL input
while loading this instruction, the bit values are reversed to 10, causing the device
to be set to the double-precision mode as the MS chip. This feature allows you to
set the precision modes of both chips in a two-chip/double-precision configuration
with the same instruction by asserting DSEL on the MS chip.

Opcode:
00 0010 10 m2

Precision code

Examples:
00 0010 10 .l.l

Sets the one-chip/double-precision mode by setting CR5_4 to 11.

00 0010 10 fil

Sets the two-chip/double-precision mode, LS chip, by setting CR5_4 to 01.

11

11 - 35

11

11 - 36

CONTROL REGISTER
SETU

11.2.4.9 SETU
Set Update Mode

Description:
Writes the bit value specified in the opcode to CR9, setting the update mode. The
update mode affects all instructions that output and update the address in an R
register. If CR9 is set, the address is output after being updated (post-update
mode); if CR9 is cleared, the address is output before being updated (pre-update
mode).

Opcode:
00 0001 011 K

CR bit value

Examples:
00 0001 011 l.

Sets the post-update mode by setting CR9 to a 1.

00 0001 011 ..Q.

Sets the pre-update mode by setting CR9 to a 0.

11.2.4.10 SETY

CONTROL REGISTER
SETY

Set Address Output Mode to Transparent or Latched

Description:
Writes the bit value specified in the opcode to CR6, setting the address output
mode. If CR6 is set, the address port is always transparent (transparent mode). If
CR6 is cleared, the address port is transparent during clock HI and latched during
clock LO (latched mode).

Opcode:
00 0001 001 K

CR bit value

Examples:
00 0001 001 l.

Sets the transparent address output mode by setting C~ to a 1.

00 0001 001 Q

Sets the latched address output mode by setting C~ to a 0.

11

11 -37

11 I
!II

I

11 - 38

11.2.5 Alternate Instruction Register
Alternate Instruction Register (AIR) instructions transfer data to and from the
AIR. The instruction in the AIR is enabled for execution by the AIRE input
unconditionally or by a true comparator status in the conditional AIR execute
mode.

The AIR can be loaded from either the data port or the instruction port. Loading
from the instruction port requires two cycles; DSEL must be asserted for the first
cycle. This requirement allows you to load the AIRs of several ADSP-1410
devices that share the same instruction bus selectively.

LDA
RDA
WRA

Transfer from instruction port to AIR
Transfer from AIR to data port
Transfer from data port to AIR

11.2.5.1 LOA

ALTERNATE INSTRUCTION REGISTER
LOA

Transfer from Instruction Port to AIR on Next Cycle

AIR f- 19_0

Description:
Causes the. instruction that appears at the instruction port on the next cycle to be
loaded into the AIR, not executed; a NOP is performed instead. The DSEL input
must be asserted along with the LDA instruction in order for AIR loading to take
place. This feature is useful if you want to load only some of several ADSP-1410
devices that share the same instruction bus. The LDA instruction can be presented
to all devices, but only the devices for which DSEL is asserted will load their
AIRs on the next cycle.

You should not attempt to load the RST instruction into the AIR. If RST appears
at the instruction port on the cycle following the LDA instruction, it is executed,
not loaded into the AIR.

Opcode:
00 0001 1110

11

11 - 39

11

11 - 40

ALTERNATE INSTRUCTION REGISTER
RDA

11.2.5.2 RDA
Transfer from AIR to Data Port

D9_0 t-AIR

Description:
Outputs the value in the AIR on the ten least significant data bits (D9_0). Bits
D 15_1o are undefined"

Opcode:
00 0010 1101

11.2.5.3 WRA

ALTERNATE INSTRUCTION REGISTER
WRA

Transfer from Data Port to AIR

Description:
Loads the value on the ten least significant data bits (D9_0) into the AIR.

Opcode:
oo 0010 noo

11

11 - 41

11 I
Ill

I

11 - 42

11.2.6 Miscellaneous
Miscellaneous instructions perform the following operations:

NOP
YDTY
YREV

No operation
Transfer from data port to address port
Output address in bit-reversed format and add offset

11.2.6.1 NOP
No Operation

Description:

MISCELLANEOUS
NOP

Performs no operation. All internal conditions are preserved. The address port and
data port are placed in the high-impedance state.

Opcode:
00 0000 0000

11

11 - 43

11

11 - 44

MISCELLANEOUS
YDTY

11.2.6.2 YDTY
Transfer from Data Port to Address Port

YrD

Description:
The value at the data port (D15_0) is read and output directly to the address port
(Y 15_0). R registers are not affected.

Opcode:
00 0001 1111

11.2.6.3 YREV

MISCELLANEOUS
YREV

Output Address in Bit-Reversed Format and Add Offset

Y ~ REV(Rn) (Pre-Update Mode)

or Y ~ REV(Rn + Bm) (Post-Update Mode)

Rn~ Rn+ Bm

Description:
Bit-reverses and outputs the address in the specified R register either before (pre
update mode) or after (post-update mode) summing it with the offset in the
specified B register. The non-reversed sum of the original value and the offset
value is written to the same R register unconditionally.

Opcode:
10 01 bb. rrrr

~ R regi"e' ffidex

B register index (CR8 selects bank)

Examples:
10 01 fil. 0101 CR8 = 1

Outputs a bit-reversed version of the address in Rs either before or after adding
the offset in Bs to the original address. Writes the non-reversed sum of the
original address and the offset value to Rs.

10 01 .QQ 1.Q.Q.Q CR8 = 1, DSEL = 1

Outputs a bit-reversed version of the value read at the data port either before or
after adding to it the offset in B4. Writes the non-reversed sum of the original data
port value and the offset value to R8.

11

11 - 45

11 I
ill

I

11 - 46

11.3 MNEMONIC AND OPCODE SUMMARY
This section provides a quick reference to the ADSP-1410 instruction mnemonics
and opcodes. The instructions are divided into six groups according tofunction.
Within each group, the instructions are listed alphabetically by the standard
mnemonic names used throughout this manual. The following bit codes are used:

rrrr Four-bit R register index
m Three-bit R register index (fourth bit in CR7)
bb Two-bit B register index (third bit in CR8)
cc Two-bit C register index
i! ' Two-bit I register index
pp Two-bit precision code
x One-bit control register value

Control register bits are defined as follows:

Bit HI(/)
0 I0 Enabled
1 I1 Enabled
2 I2 Enabled
3 I3 Enabled
5-4 Precision Mode Selection

LO (0)
I0 Disabled
I1 Disabled
I1 Disabled
I3 Disabled

0
0
1
1

0
1
0
1

One Chip, Single Precision

Bit
6
7
8
9
10

Two Chips, Double Precision, LSW
Two Chips, Double Precision, MSW
One Chip, Double Precision

HI(!)
Transparent Output Mode Selected
Upper R Register Bank Selected
Upper B Register Bank Selected
Post-Update Mode Selected
Conditional AIR Execute Enabled

LO (0)
Latched Output Mode Selected
Lower R Register Bank Selected
Lower B Register Bank Selected
Pre-Update Mode Selected
Conditional AIR Execute Disabled

Looping
YADD 11 ccbb lrrr Output Address and Add Offset or Reinitialize
YDEC 1 0 1 0 cc r r r r Output Address and Decrement or Reinitialize
YINC 1 0 11 cc r r r r Output Address and Increment or Reinitialize
YSUB 11 ccbb Orrr Output Address and Subtract Offset or Reinitialize

II

I

Register Transfer
BTD 00 OOll Olbb Transfer From B Register To Data Port
BTR 01 OObb rrrr Transfer From B Register To R Register
CTD 00 0011 OOcc Transfer From C Register To Data Port
DTI 00 0011 llii Transfer From Data Port To I Register
ITD 00 OOll lOii Transfer From I Register To Data Port
ITR 10 OOii rrrr Transfer From I Register To R Register
RTD 00 0100 rrrr Transfer From R Register To Data Port
YRTB 00 llbb rrrr Output Address and Transfer To B Register
YRTC 00 lOcc rrrr Output Address and Transfer To C Register
YRTR 00 0101 rrrr Output Address and Transfer To Same Register

Logical and Shift
YAND 01 lObb rrrr Output Address and Logical AND With B Register
YASR 00 Olll rrrr Output Address and Arithmetic Right Shift
YLSL 00 OllO rrrr Output Address and Logical Left Shift
YOR 01 llbb rrrr Output Address and Logical OR With B Register
YXOR 01 Olbb rrrr Output Address and Logical XOR With B Register

Control Register
CRTD 00 0010 llll Transfer From Control Register To Data Port
DTCR 00 0010 lllO Transfer From Data Port To Control Register
RST 00 0000 0001 Reset Control Register
SELB 00 0001 lOOx Select B Register Bank
SELR 00 0001 lOlx Select R Register Bank
SETA 00 0001 OlOx Enable/Disable Conditional AIR Execution
SETI 00 0010 Oiix Enable/Disable I Register
SETP 00 0010 lOpp Set Precision Mode
SETU 00 0001 Ollx Set Update Mode
SETY 00 0001 OOlx Set Address Output Mode

Alternate Instruction Register
LDA 0 0 0 0 0 1 1110 Transfer From Instruction Port To AIR Next Cycle
RDA 0 0 0 0 1 0 11 0 1 Transfer From AIR To Data Port
WRA 0 0 0 0 1 0 11 0 0 Transfer From Data Port To AIR

Miscellaneous
NOP 00 0000 0000
YDTY 00 0001 llll
YREV 10 Olbb rrrr

No Operation
Transfer From Data Port To Address Port
Output Address Bit-Reversed and Add Offset

11

11 - 47

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01_ADSP-1401
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	06-75
	07-01_ADSP-1410
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	xBack

