
The Am8052 CRT
Controller

Technical Manual

Advanced Micro Devices . .

Am8052
Alphanumeric

CRT
. Controller

Technical Manual

© 1986 Advanced Micro Devices, I,:\c .

. Advanced Micro Devices reserves the right to make chariges in its products without
notice in order to improve design or performance characteristics. The company

assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

· .

Author Jurgen Stelbrink

Contributors KaWai Leung Ch.3
Olivier Garbe Ch.5.1 ;5.2
Robert Earley Ch.5.3
Mark Young Ch.6.3
Joe Brcich Ch.6.5
Hans Joachim Ruhl Ch.6.6

Copyeditor Harry Lau

Table of Contents

1. CRT DISPLAY P':iPDUCTS 1-1

1.0 Introduction 1-1
1.1 Alphanumeric Display Prodl!cts ... 1-1
1.2 Advanced Display Features 1-2

Linked-List Data Structure 1-2
Windows 1-4
Virtual Windows or Split Screens 1-4
Smooth-Scrolling 1-4
Attributes ... 1-5
Proportional Spacing 1-7
Cursors 1~7

Host Bus Interface '. ~ 1-8

2. Am8052 ARCHITECTURE 2-1

2.1 Overview 2-1
2.2 Interface Signals 2-2
2.3 Register Descriptions "'" 2-6

CRTC Slave Transfers 2-6
Register Test 2-7
Video Timing Programming Example .··1 2-21

2.4 DMA Operations 2-23
DMA Signals and Protocol 2-23
Buffering IBRO 2-25
DMA Transfer Operation 2-26
DMA Read and Write Operations 2-26
Waii Operation ... 2-27
Idle DMA Cycles 2-27
DMA Burst COntrol ... 2-28

2.5 Row Management Unit Operations ... 2-28
Background Information Management 2-29
Window Information Management 2-35

2.6 Attributes ... 2-36
2.6.1 Character Attributes 2-40
2.6.2 Field Attributes ... 2-42
2.6.3 Row Attributes 2-42
2.6.4 Frame Attributes 2-42
2.6.5 Cursor Display 2-42
2.6.6 Fill Code Attributes ,2-43
2.7 Interrupt Operations 2-44

• 2.8 Smooth Scroll Mechanisms 2-46
J' 2.9 Synchronization 2-50

2.10 RHand Interface Video ... 2-51

3. Am8Q52 SOFTWARE COOKBOOK 3-1

3.1 Introduction 3-1
3.2 Register Initialization 3-1

, Mode RE1gister 1 3-1
Mode Register 2 3-1

3.3

Attribute Port Enable Register
Attribute Redefinition Register
Top of Page Hard Register
Top of Window Hard Register

. Top of Page Soft Register
Top of Window Soft Register
Attribute Flag Register
Burst Register
Verticallnterl\lpt Row Register
Timing Register

Background and Window text
Main Definition Block and Window Definition Blocks
Main Definition Block
Window Definition Block
Background Row Control Block and
Window Row Control Block
Background Row Redefinition Block and
Window Row Redefinition Block

3.4

3.5

3.6

3.7

Background and Windows
Non-aligned Windows
'Background/Window Strategies

Attributes
Attribute Invoking
Latched and Unlatched Attributes
The FAT-bit

Vertical Smooth Scroll
Smooth Scrolling Upand Down
Background and Window Smooth-scroll
Polling
Non-Vectored Interrupt
Vectored Interrupt

Editing the Linked List
Row Control Block Memory
Row Insertion
Row Deletion
Character Code and Attribute Pointers

4. VIDEO SYSTEM APPLICATIONS

4.0 Introduction
4.1 Typical Applications
4.2 Multiplexing the Data Inputs
4.3 Cl¥iracter Pipelining

....

4.4 Character/System Clock Synchroni~ation
4.5 Crystal Oscillator Layout
4.6 Half Dot Shift

5. GENERAL APPLICATIONS

5.1 Loadable Character Font Generator
for an Am8052 System

5.2 Horizontal Smooth Scroll
5.3 Bit-Mapped Graphics with Am8052.

6. Am8052 BUS INTERFACE GUIDE

6.0 Introduction
6.1 Performance Decisions

Single/Dual Bus Architecture
System Clock Rate

3-1
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3:2
3-2
3-2
3-2
3-3

3-3

3-4
3-4
3-5
3-6
3-6
3-9

3-10
3-10
3-10
3-11
3-11
3-11
3-11
3-11
3-11
3-12
3-13
3-13
3-13

4-1

4-1
4-1
4-1
4-4
4-4
4-6
4-7

5-1

5-1
5-5
5-8

6-1

6-1
6-1
6-2
6-2

Wait States ...
DMA Burst Length
FulVReduced Attribu~e Fetches

6.2 General System Bus Application Hints
Upper Address Writes
Slave Transfers
Clock Input Requirements
Interrupt Acknowledge •...
Wait Synchronization
Bus Turn-around

6.3 Ain8052 and an 8-bit Microprocessor Interface
6.4 Am8052 and 8086 Interface in MIN Mode
6.5 Am8052 and 68000 Interface
6.6 Am8052 and 80188 Interface with

Dual Bus Architecture

7. L,OW-CPST SMART TERMINAL DEMO SYSTEM ...
7.1 Introduction
7.2 Demo Set-Up
7.3 Building Procedure
7.4 Hardware Description

System Interface
Video Interface

7.5 USER'S MANUAL FOR THE
LOW-COST, SMART TERMINAL

Displays
Controls
Normal CO Control'Characters
Backspace ...
Carriage Return
NewLIne ...
Escape
Escape Sequences .. .
Reselto Initial State .. .
Control Sequence Introducer
Extended Control Characters
Extended Control Sequences .
Cursor Backward
Cursor Down
Cursor Forward
Cursor Position
CursorUp ...
Delete Line
Erase in Display
Erase in Line .
Insert Line ...
Reset Mode
Scroll Down
Select Graphic Rendition
Set Mode ...
Scroll Right
Scroll Up
Pr.ivate Control Sequences
Character Blink Rate ...
Load Font Cell
Select Active Display
Select Cursor Appearance
Smooth Scroll Rate
Select Window Visibility
Select Message Visibility

iii

6-2
6-2
6-4
6-4
6-4
6-4
6-5
6-5
6-5
6-5
6-6

6-14
6-16

6-19

7-1
7-1
7-1
7-2
7-2
7-3
7-5

7-7
7-7
7-7
7;7
7-7
7-7
7-7
7-7 I

7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-9
7-9
7-9
7-9
7-9

7-10
7-10
7-10
7-10
7-10
7-11
7-11
7-11

. 7-11
7-11
7-12
7-12
7-12

7.6 LOW-COST TERMINAL COMPARISONS 7-12

Appendices

A. Mixing Data Paths Expand Options In System Design
Mark S. Young and James R. Williamson A-1

,
B. Chip Set Gives A Smooth Scroll In CRT Displays

Steven Dines and Mohammad Maniar 8-1

C. CRT Controllers Can Enhance Test Display And Simplify Editing
Jurgen Stelbrink C-1

D. Source Code For The Low-Cost Smart Terminal Board D-1

• 1

iv

CHAPTER 1

CRT DISPLAY PRODUCTS

1.0 INTRODUCTION

, Raster·scan CRT (Cathocle Ray Tube) displays
form the principle communication link between
computers and users in business, science and
educational applications. The trend toward using
high-resolution. displays to enhance information
transfers between man and machine is
accelerating.

As CRT terminals become increaSingly sophis
ticated, the designar is faced 'with many new
problems in areas of data manipulation and display.
The high-resolution screen necessary to display a
full-siz.e typewriter page results in pixel rates
exceeding 50 MHz. Additionally, the use of
microprocessor technology in modern terminal

. designs has transferred the editing tasks from the
host system to the terminal itseH.

CRT terminal designs can be divided into two
categories. Alphanumeric terminals are used in
office workstations. They incorporate features
such as flexible attribute t'landling, proportional
spacing of characters, split-screens or multiple
window display, smooth-scrolling of windows, and
variable character width and height in full-page,
132x60 screen formats. The video subsystem of a .
CRT terminal with these sophisticated features can
be implemented with as few as three devices. This
significantly reduces It and system development
cost and board space without sacrificing perform
ance, The. three devices consist of the Am8052 Al
phanumeric CRT Controller (CRTC), the Am8152A
Video System Controller (VSC) , and a character
font generator. This subsystem talks to the system
bus on one side and generates a high-speed pixel
stream on the other. This chip set is subject of this
har;Jdbook.

Terminals of the second category employ a bit
mapped graphic display. The mai~ application are'a
for these terminals are engineering workstations in
CAD/CAM systems. In bit-mapped displays, each
pixelcan be set or reset independently. A graphic
controller with a high processing power is Aeeded
to update a high-resolution screen containing
more than one million pixels in a reasonable time.
The Am815x family supports this kind of·
application.

New designs of high-end alphanumeric CRT
systems tend to use bi.t- mapped dis'plays beCause

of the flexibility. However, because of the high
processing power needed to generate the display
and the large display memory storing thel bit-map,
an alphanumeric terminal based on bit-mapped
graphic is more expensive and takes up more
board space than a dedicated, alphanumeric CRT
subsystem based on the CRT Controller chip set.
On the other side, a CRTC-based system can
handle limited bit-mapped graphics to display pie
,charts or bar graphs in business-tYpe applications.

1.1 ALPHANUMERIC D1SPLA Y PRODUCTS

Figure 1.1 shows a\ typical proportional-spacing
application based on the CRT Controller chip set.
The distinctive characteristics of this subsystem
are as following:

• Up to 80 MHz video dot rate for high-resolution,
flicker-free displays.

• Linked-list display data structure in system
memory simplifying text-editing tasks.

• Background or Window smooth-scroll capability
without external MSI or software overhead.

• User-friendly, 16-bit CPU interface. Compatible
with 8066, Z8000, and 68000 CPUs. 16-Mbyte
memory addressing capability.

The· chip set capabilities are contributed to the
CRTC and VSC as described below:

AmS052. The CRT Controller. (CRTC). is a
general-purpose interface device for raster Scan
CRT displays. The on-Chip DMA controller inter
prets a linked-list data' structure in system memory
defining the text displayed, 01'1 the screen. ThiS
simplifies text-editing tasks. It supports attributes
such as subscript, superscript, underline, multiple
cursors and blinking. User-definable attributes
provide flexibiifty. Windows and background can
basmooth- scrolled at user.ctefinablerates.

The CRTC is register-oriented and fully user- .
programmable. The frame timing and operating
mode are initialized by the host CPU.

AmS152A. The Video System Controller is ba
sically a programmable (2- to 17-bit) shift register.

1-1'

CHARACTER AND CRT
ATTRIBUTE ROM MONITOR'

HOST
CPU Am8052

Am0152A

r··I.····I.··· .. -= . .
1-----.;. P~~~~E : . . .

........... ' ••••• .J

Figure 1-1 Typical Application

/'

050988,·,

It serializes the character slices supplied by the
character font generator. Attributes such as
highlight and reverse video are incorporated in the
serial pixel stream put out. . The VSC provides two
video outputs: a two-bit digital output and a four
level analog (composite) video output. An on
chip,crystal-driven oscillator provides the pixel
shift clock (dot clock), the charaoter clock, and the
system clock.

1.2 ADVANCED DISPLAY FEATURES

Stllte-of-the-art, letter-quality printers support •
fancy text display features such as proportional
spacing with block justification and double print.
Workstations for word processing should be able
to display edited text on the screen that looks like
the . print-out of these letter-quality printers, in
order to make the word processing task more
ergonomical for the operator. For example, it is
intolerable that some workstations display the
beginning and end of an underline with a special
character sequenoe instead of simply underlining
the string. Additionally, it should support features
like highlighting, which is equivalent to double
print in case of a printer,blinking of characters.and
muttiple cursors to emphasize parts of the text.

Vertical smooth-scroll will become a standard
feature of future. designs. Smooth-scrolling is
much more ergonomical for the user. Also helpful
are windows (Qverlaid on the displayed page) to
provide temporary information about issued
commands.

Additionally, a CRT controller Should supply a
display data structure organized ,as, a linked-list in·

system memory. However, the editing response
time is shorter compared to a system using linear,
data structur~s.

The features expected of a state-of-the-art CRT
controller will now be discussed in more detail.
The CRT controller chip set i'mplements all these
features in silicon. .

Linked-list Data Structure

In standard CRT subsystems the display data is
organized as contiguous memory blocks. These·
blocks are associated with video frames ano stored
in special memory called video. refresh memory. '
When editing tasks like character or line insertion
or deletion are to be executed, the CPU has to
move blocks of the display data. This time
consuming operation slows down the editing
process.

Text editing becomes much more e,legant and
faster when operating on a linked-list data structure
where the display data is organized in small strings,
usually rows;"glued together by pointers (Figures

, 1.2, 1.3). The advantage of the linked-list data
structure becomes obvious when looking at the
execution speed, of editing tasks. A line can be
inserted or deleted by modifying one pointer
instead of moving half the screen down, thereby
increasing the execution speed significantly.
Pages' can be swapped simply by altering one -
pointer. \

The linked-list data structure has a' second
advantage: If the display data is stored in the main
system memory the CRT controller can directly
fetch the data from thelisl' the wordprQcessor is

1-2·

r"--------------, r--- ---,
I
I
I CHARACTERS I

TOP OF PAGE I
MAIN ROW

REGISTER I DEFINITION CONTROL
I BLOCK

T"\ r"- BLOCK #1
~ ATTRIBUTES I

I'
I
I
I
I
I

Am8052 I
I --------------.1

05098B 1-2

I
I
I
I

l.~
I
I
I
I
I
I

MAIN
DEFINITION

BLOCK

4

r-

"-4

ROW 'I CHARACTERS I
CONTROL
BLOCK #2

ATTRIBUTES I

ROW CHARACTERS I
CONTROL
BLOCK #3

ATTRIBUTES I ~

SySTEM MEMORY
L ___ _

Figure 1·2 Linked·List Display Data Management: Background

r--------------,
I
I ,
I
I ,
I
I
I
I
I
I
I
I
I
I
L.

TOP OF PAGE
REGISTER

Am8052

05098B 1-3

r--
WINDOW ~ WINDOW

DEFINITION ROWCONTROL

r- BLOCK r- BLOCK

--. WINDOW
ROW CONTROL

r BLOCK

--. WINDOW ~ WINDOW
DEFINITION ROWCONTROL

r BLOCK r- BLOCK

'-t WINDOW
ROW CONTROL

r BLOCK

CHARACTERS I

ATTRIBUTES I

CHARACTERS I

ATTRIBUTES I

CHARACTERS I
ATTRIBUTES I

CHARACTERS I

-,
I
I
I
I
I
I
I
I
I
I
I
I
I

ATTRIBUTES I

L _______________________ .: ____________________ ~~~T!'~_~:~~~~_..J

Figure 1·3 Linked-List Display Data Management: Windows

1-3

'operating on. This eliminates the need of setting
up ~ special list of diSplay data. .

ground ~ow Control Blo.ck .•. The row segrnimtation
feature is also available for windows.

In an Am8052"based video system, the' display, Vi!1~al Win~ows or Split Screens
data:.is stored in system.rnemory and is easily ac" .
celisible by the host CPU when-'~ting display" Although the rules of window positioning do not
editing tasks. The display data cOnsisling of char" permit overlapping or adjacent windows, the
acters and, their attributes is grouped into strings background and window data structures can be
c~lIed sE1gments. One or IllQre segments build 'ufl-~ used to implement virtual horizontally or. vertically
a roW. These segments are tied together .by Ii ''aligned windows. This can be be~t described
linear Ust of pointers containing in Row Control using the illustration in Figure 1.4. This sample.
Blocks. Each Row Control Block holds all display consists 'of two rows with each two
.information relevant to describe an entire character segments: 'lONE" and "TWO," ''THREE" ·and
row on the screen. RoiN Control Blocks again are "FOUR." The user wishes to be able to scroll any
chained via pointers; . each block points to its of these segments at a given time. The window
successor. ' positioning rules do not permit assignment of all

four segments as windows. However, any of tllese
four segments can be dynamically assigned to be a
window; anyone of these windows can be scrolled
independently from the other three. This gives
the viewer the illusion of aligned windows. .

One block located at the top of the linked-list
defiQes screen attributes such as cursor type, blink
rate, and positioning. This Main Definition Block is
pointed to by a pointer stored inside the CRTC.

The CRTC interprets the linked-list and transfers
the Character code strings and . attributes
sequentially to the character font generator. The
character slice output of the character font
generator is then serialized by thecempanion.part
of the Arn8052, the Video' System Controller
(VSC) , and sent to the monitor.

Windows

Windows are text hlocksoverlaying the
background to provide temporary information for

. the viewer. Windows can be displayed or removed
without corrupting the background. Windows are
defined by a IinkecHist data structure similar to the
background data structure. The Am8052 can
support any number of windows as long as they
are vertically separated by at least two character
rows .. Any number of windows or the background
may be scrolled. "

The Top of Window register inside the Am8052
points to the beginning of the window linked-list,
the Window Definition Block for the top-most
window. The Window Definitlon logically is similar
tp the Main Deiinition Block of the background; it
contains the general characteristics of. this parti
cularwindow (for example, size and positioning).

. Each Window Definition Block links to the next Win
dow Definition Block. Window Definition Blocks
need to' be arranged in the sequence the windows
are supposed to appear on the display (the top-

. mol1twincioWfii"st., the bottom window last).

The Window Row Control Block pointer located in
the Window Definition Block links to the first Win
dow Row Control Block which is similar to the bqlck-

Smooth-Scrolling

Vertical smooth-scrolling is the gradual
replacement of a character row on a scan line by.
Scan . line basis. The Visual effect is more eye
pleasin~ to the viewer and will become an
ergonomical requirement for future terminal
designs. The smooth- scroll of the entire screen is
a relatively easy task and can be accomplished with
a minimum of hardware. However, smooth-scrol
ling an overlaid window or smooth-scrolling the
background when displaying Windows is a much
more sophisticated task. If a window is smooth
scrolled, text seems to appear and disappear with- ,
in the window while ,the background' stays abso
lutely stable (Figure 1.5). If, on the other hand, the
background is scrolled, then the background text

. will appear to pass under the window.

Vertical smooth-scrolling of the background or of
windows is executed requiring very few
interactions of the host CPU. Only when a row is
totally scrolled ill or out does the CHTC. Interrupt
the CPU torelink the data structure. The scroll rate
being programmable covers the range from very .
low-speed scrOlling, where the eye can identify t~e
scan line stepping, to high-speed scrolling, where .
the .text moves too fast to be readable. The
medium speed gives the smoothest effect ..

1-4

Attributes

There are three, kinds of attributes which are dis
tinguished by the number of characters to 'which
they correspond. The screen attributes, SUCh as
smooil:1-scroll rate, cursor style, and blink rate,
effect the text display of the entire screen. ,flOW

ROW CONTROL

I RCB

WINDOW CONTROL

j 1
ONE TWO

THREE FOUR

r r
I
I
I
I

...... RCB
I
I
I

----------------------~ WRCB D
L. L RCB

ONE TWO

THREE FOUR

WRCB
RCB

05098B 1-4

Figure 1-4 Virtual Window or Split Screens

attributes, such as scan line count and character
positioning within the character cell, are valid for
entire character rows. The third kind of attribute is
directly associated with particular characters or
character strings. Examples of(::haracter attributes
are: highlight, underline, bUnking; subscript and
superscript.

Many CRT controllers treat characters and
attributes in the same fashion; they fetch one
attribute per character., This straightforward
relation is also the easiest to handle by software.

1-5

However, the price for this scheme is the
increased bus occupancy of the- CRT controller to
fetch 24 bits per character compared to 8 bits per
character' in applications requiring no attribute
fetches at all. Especially in high-end alphanumeric
applications asking for maximum system
performance, the system designer's goal is to
keep bus occupancy as low as possible. This
application asks for a more flexible and less. bus
time consuming attribute architecture.

Characters are ·typically uncQrreJated along a

character string. ,Attributes, on the other hand, are
highly correlated; features such as reverse video
affect a character string rather than individual char
acters. For this reason, a flexible correspondence
between characters and attributes can save mem
ory space and can reduce the bus occupancy.

In demand attribute mode, an attribute is loaded
only if the attribute characleristics should be
changed. A flag is inserted in the character list to
instruct the CRT controller to fetch a new attribute
word. This attribute word may apply either to the
next character (unlatched attribute) or to all
following .characters not invoking attributes
(latched attribute). This flag could either be a
specific character which 'is hot displayed on the
screen or it could be any bit of the character code
(usually the most significant bit). The first option
allows a 255-character set with the trade-off that a·
flag character has to be inserted when the attribute
characteristics are to be changed. The second
option does not require this character string
modification, but it halves the available character
set (128 character codes).

The CRTC has been designed to allow a great
versatility in attribute options. Ten attribute bits are
predefined, four attribute bits are user-definable. If
the number of user-definable attributes is not suf
ficient to satisfy the specific requirements of the ap
plication any predefined attributes may be rede
fined to increase the set of user-definable attri
butes. The predefined attributes are listed below:

Highlight. It causes the VSC to switch to the
highest intensity level when displaying the
characters.

Reverse. The color of the background and the
foreground are exchanged. If the normal character

n n

WINDOW

WINDOW
~ ~ v ~

WINDOW

WINDOW
~ ~ ~ ~ v v

n n ~

appears white on a black background the reversed
character will appear black on a white. backgrou nd.

Superscript. The character is shifted up a de
fined numberof scan lines.

Subscript. The character is shifted down a de
fined number of scan lines.

Underline. The character is underlined, the posi
tion of the underline is programmable.

Strike Through. The affected character is
struck through; sometimes this attribute is called
shifted underline.

Blink. The affected character blinks at a program
mable rate and duty cycle.

The internal processing of the attribute bits
superscript andsubscrlpt may be disabled to
access a speCial character font generator for
displaying smaller subscript or superscript
characters. The two attributes listed below cannot
be redefined as user-definable attribute bits, since
they do not correspond to an attribute port pin;
they effect only the internal attribute processing.

Ignor~. The character is not loaded into the line
buffer; a character dm be erased by setting this bit.

latched. This attribute word applies to all
following ~haracters; it gets latched in the CRTC.

Proportional Spacing

Proportional spacing has become a standard fea
ture of higher performance, letter-quality printers.
In order to display a text on the screen similar to the
printed text on paper, the CRT system should be

UP

BACKGROUNE>
BACK GROUND

BACK GROUND
"" BACK GROUND

BACK GROUND
BACKGROUND

DOWN

0509881,5

Figure 1-5 Smooth ScrOlling

1-6

able to support proportional spacing.

Proportional spacing means that narrow characters
such as ·i~' use less space in a character roiN than
wider characters such as "W· (Figure 1.6). The
screen is no longer divided into" a raster. of
character fields. The number ·of characters which
can be put into one line becomes .a function of the
characters itself. Summarized, It provides a type
set look of the text.

Text right-justification in proportional-spacing appli
cations requires a user-definable number of blank
pixels to be tailored to characters to get a straight
right border of the text (Figure 1.7). Trailing blanks
allow lines to be stretched smoothly and
unnoticeably.

In proportional-spacing applications, the character
font generator also stores, in parallel to the
character font, the width of the individual character
and passes this 4-bit value (2 ... 17 pixels) to the
Video System Controller which uses it to
determine the divide ratio for the character clock.
The character clock is modulated along the width
of the characters in the string. .

The system clock times the DMA transfers when
the CRTC is bus master; In proportional·spacing
applications, this clock is also used to determine
the screer.l timing (screen blanking, horizontal and

• • ..

• • • • • • • • • • • • • • • • • • • . .

vertical sync timing), because the character clock
rate no longer provides a constant clock for the
counters.

I

Both the character and the system clock are
divided from tlie dot clock. A crystal directly
connected to the VSC controls the dot clock
frequency. Internal PLL logic multiplies the crystal
frequency. by five to genera~.e".the dot clock. This
allows the designer to use inexpensive crystals
oscillating in fundamental mode even when
generating dot clocks of 80 MHz.

Cursors

The Am8052 supports two kinds of cursors. The
X-V cursor appears on a programmable X-V coor
dinate. This cursor is tied to this position on the
screen. When a scroll occu"rs the cursor will still
appear on the same location, but will apply to a new
character. The second cursor type is specified via
the character attribute word. The cursor is attach-'
ed to a particular character and will move with the
character when the text is scrolled. Due to the way
the two cursors are specified, a screen may have
only one X-V cursor (the Main Definition Block can
store only one pair of coordinates) and as many
attribute cursors as there characters on the screen.

The cursor style is very flexible. Examples of
cursor styles are as follows:

• • •• • • • • • • • • ••• • • • • • • • • ••

0609881-6

Figure 1-6 Proportional Spa~ing

• • • • • • • • • • • • •• • • • • • • • • ..
• • • • • • • ••• • • • • • • • .. • • • ••

~-
0509881-7

Figure 1-7 Trailing Blanks

1-7

• Static or blinking underline.
, Blinking by switching between normal display

and blank
• Blinking by· switching between normal display

and reverse·
• Reverse character

The X-V cursor and the attribute cursor may have
different styles to be able to distinguish them. For
example, the X-V cursor may be a blinking under
line whereas the attribute cursor may reverse the
character.

Host Bus Interface

The CRTC can easily be interfaced to most i6-bit
system buses. In slave mode the CPU· initializes
the CRTC by programming the. registers for the
timing parameters. After being activated, the
CRTC tries to gain thE! bus mastership to fill the line
buffers and t~en starts displaying. The CRTC bus
interface . supports 24-bit linear address buses
(68000, 8086) and 23~bit segmented address
buses (Z8000).

"

1-8

CHAPTER 2

, Am8052 ARCHITECTURE

2.1. OVERVIEW

The Am8052 can be used together with the
Am8152A Video System controller, which is
specially designed to complement the Am8052
and ,enhance its displaying capabilities.

The Am8052, after initialization by' the host
p.rocessor, acts as a' stand-alone device in, the
following manner: '

• It fetches the data to be displayed from the main
memory using its internal DMA controller.

.' It manipulates the displayable character cades
along with their attributes.

• It provides all, the timing signals to synchronize
beam-scanning with the character-pixel stream.

• It provides useful features such as size-pro
. grammable windows and vertical smooth-scroll.

The Arn8052 is areal-time raster scan display
controller ,that keeps track .. of updating the display
screen on a character-row basis by toggling its
internal row-buffers; one being ~isplayed by the
Display Control Unit while the other two are loaded
through the DMA interlace under control of the
Row Management Unit.

All the above operations are synchronized by the
Video Timing Control Unit and initialized by the
host processor through bus interlace logic. The
Am8052 block diagram (Figure 2.1) shows the
functional units and how they interlace with each
other.

,
Following reset, the Am8052 remains in Slave
Mode, and waits for the host processor to initialize,
the timing an,d control regi$ters. It also waits fOT the
host CPU to load a single register address,
pointing to the start of the qisplay data list in the
host memory. '

While in the idle state,. the device holds both
H~YNC and VSYNC signals inactive (LOW) to pre-

. vent. undefined synchronization to the CRT which
might damage high bandwidth tubes. It also holds
the Blank signal active to inhibn the CRT beam.

Once ,the device has been initialized, and upon a
command from the CPU, the DMA enters a bus

2-1

request $equel")ce to update the three internal row
buffers whenever possible. A row buffer cannot
be loaded at the same time that it, is . being
displayed. ' ' '
. '
The Row Management Unit governs the loading of
the characters to be displayed, as well as' their
attributes (whenever they are invoked), into the
row i:)uffers. This logic also updates the Display
Control Registers (not accessible to the user)r" on a
row by row basis, as specified by the Row
Definition Blocks located in main memory.

With the beginning of Vertical' Blank (VBLANK
going High), the Am8052 terminates any process
es/active from the current frame, and starts loading
tl\e information defining the next frame. It takes
the Top Of Page Pointer stored in an internal regis
ter, and begins loading the Main Definition Block,
the Window Definition Block (if present) and the '
first Row Control Block inCluding character and attri
bute, strings. By the end of vertical blank (VBLANK
going Low) the Am8052 must have the first inter
nal rQw buffer filled to ensure a flicker-free screen.

The Display Control Unit combines the character .
stream from one of the three row buffers with the
row- or character~dependent display characteristics
of these characters. As a reSUlt, the Display
Control Unit provides, on Ro-R4, the Scan line
address of the one currently being displayed, and
outputs the sequence of character codes contain
ed in this row, on CCo-CC7. These two values
form the address sent to the Character Font Gener
ator. , The character code ,(most signifi~ant part of
the address) points to the matrix of pixels synthe
Sizing the character on the screen, while the scan
line number (least significant part ofU;eaddress)
indicates which lin~ of the matrix is to be displayed
on the screen. The Character Font Generator pro
vides the resultant line of pixels, which subsequen
tly is serialized by the Video' System Controller and
processed according to the various attributes.

2.2. INTERFACE SIGNALS

With the exception of CLK11 and CLK2 inputS, all
inpuls and outputs of the CRTC are TTL
compatible. Figur~ 2.2 shows the device pin-out.

VSS1, VSS2(Grpund) ,
V CC1, V CC2 (+5V Power Supply)

(For tolerance specification, refer to the DC char
acteristics)

CLK1 (System Clock, Input) .

The system clock controls the DMA and peripheral
portion of the CRTC and times all memory
accesses. It requires a timing duty cycle of about
50% at. its highest frequency and is driven by an
external timing source, usually the system/CPU
clock. In propo.rtional spacing applications, w~ere
the character clock (CLK2) is variable, the system
clock shbuld be used to time the horizontal and
vertical sync rates. CLK1 is not TIL-compatible (for
specifications refer to the DC characteristics).
Figure 2.3 shows a CLK1/CLK2 driver generating a
clock signal with the required High and Low levels.

CLK2 (Character Clock, Input)

The character ciocktimes the Character Code and

CLK1~

iiS+--+

im +--+

R/W+--+

WAi'F~

ell

C/ii

'i5'fEIJ

mm:1

m~

1i'Iill

IDrn

iNi'

INTACK

lEO

BUS
INTERFACE

LOGIC

DMA
CONTROL

Attribute outputs of the CRTC. In applications not
using proportional spacing, CLK2 is fi)(ed in
frequency and can, therefore, time horizontal and
vertical sync (HSYNC and VSYNC). This allows
CLK1, the system clock, to be unrelated and
asynchronous to the display timing. CLK2 is not
TIL-compatible. f

ADO-AD15 .
(Address/DataBus, Input/Output)

The Address/Data Bus is a time-multiplexed,
bidirectional, active-High, three-state bus. The
presenc~f addresSes is. indicated by.Address
Strobe (~; presence of data is indicated by Data
Strobe (OS). When the CRTC is in control of the
system bus (Bus Master'), it dominates the AD Bus.
When the CRTC is idle (Bus Slave), the CPU or oth
er external devices can control the AD Bus. and
may use it to access the internal registers of the
CRTC. In upper address update cycles (Bus Mas
ter Write) the CRTC strobes out the new, most sig-

ROW
+---+ MANAGEMENT

UNIT

Ro-R,

CURSOR

APO-AP,o

~--.---v CCo-CC,

03901A02

Figure 2-1 Am8052 Block Diagram

2-2

nlficant part of the memory address (upper 7 or 8
bits). For both Linear and Segmented Addressing
Mode, this address is output on ADo-AD7; the
interrupt vector is also strobed out on ADo-AD7'

AS (Address Strobe, Input/Output,
Active Low)

Address Strobe is a bidirectional, three-state sig
nal. In Slave Mode, this inpu1,i:ontro!§Jhe internal
transparent latches at the C/Dand CS inputs. In
multiplexed address/data bus systems, the rising
edge of AS latches C/O and CS. In demultiplexed
address/data bus systems, AS may be held Low to
make the above-mentioned latches transparent.

When the CRTC is the bus master, AS is an output
indicating a valid address on the AD bus. The
address may be latched with the ri~ing edge of AS.
During Upper Address Update Cycles, AS and
R/W are both driven Low. Refer to the Section 6
for application hints.

OS (Data Strobe, Input/Output, Active Low)

Data Strobe is a bidirectional, three-state signal.
When the CRTC is in the Slave Mode and the host
CPU is accessing internal registers of.J!!e ,CRTC,
DS is the input timing the transfer. DS may be
asynchronous to CLK1. When the CRTC is bus
master, DS is an output, timing the Memory Read
operation.

¢t) 8/"
AD(O_15) CCO_7 Z
AS

11/ " os APO-10 ~y R/W

os Z" C/O RO-4

/
RST

~

WAIT
Am8052

VSYNC

eLK, CRTC HSYNC

fN'f BLANK

INTACK CURSOR

lEI

lEO CLK2
,

BRa
ESYNC

BAi
BAO

OlEN

OREN

LS001211

CS (Chip S~lect, Input, Active Low)

The CS input is usep by the host CPU to access
the CRIC's internal registers. CS may be latched
internally by a transparent latch controlled by the
AS input.

WAIT (Wait, Input, Active Low)

The WAIT input is used to stretch the DS strobe
whenever the, CRTC accesses slow system
memory. The status of the WAIT signal is sampled
only on the falling ed~ CLK1, in T2 of Bus
Master Read Cycles. WAIT is ignored during Bus
Master Writes or Slave Mode register accesses.

RNi (Read/Write, Input/Output)

Read/Write is a bidirectional, three-state signal.
RIW indicates the data flow diltection for the bus
transaction under way, and in Master Mode
remains stable for the length of the bus cycle.
During Idle DMA Cy~les, RIW is driven High.

C/O (Command/Data, Input)

In Slave Mode, C/O determines whether the host
CPU transfers a pointer or data information. In
Master Mode, C/O is disregarded; ..9'0 flows
through a transparent latch controlled by AS.

CDO05191

Figure 2-2 Am8052 Pinout

2-3

DTEN, OREN (Data Transmit Enabl.e, Data
Receive Enable,. Open Drain Output)

Data Transmit Enable and Data ReceJye Enable
control external address/data bus transceivers,

. when Jequired. When' DTEN is Low, the trans
ceivers should be driven out from the CRTC onto
the bus. When DREN is Low, the transceivers
sMould be driven from the 'bus into the CRTC.
DTEN and DREN are never Low simultaneously.

BRa (Bus Request, Input/Open Drain Output)

When the CRTC asserts BRO Low to gain ,bus
mastership, it remains Low until the CRTC has
released the bus. A bus release will occur; when
the programmed DMA burst length is counted out
(see Burst Register programming), when an entire
Internal Row Buffer has been filled, or when DMA
preemption is being requested (BAI High). This
pin is also an input pin which allows the CRTC to
senSe the BRO Iinq1,.

BAI (Bus Acknowledge In,. Input)

Bus Acknowledge In is an active-Lowihput. When
the CRTC requires host bus access and has

Mode Description

Slave Mode Pointer Write
Slave Mode (not defined)
Slave Mode Data write
Slave Mode Data Read
Master Mode Memory Read,
Master Mdde Upper addr.update

120

successfully pufJed its BRO ·pin. Low, . a BAI Low
input flags th.e CRTC .. thatit can obtain bus
mastership. 'BAI.is internally synchronized for MID
periods ·of CLK1 to alleviate rnetastableproblems.
When the CRTC does not require host bus
access, the BAI ,input ripples to the BAO output.

DM~eemption may be implemented by remov
ing BAI during a DMA burst, forcing the CRTC to
finish the current DMA cycle and to release BRO ... If
the DMA burst· is hot completed and hoother
device requests the bus (BRO is High), the CRTC
reasserts BRO . .The CRTC releases the bus for a
minimum of three bus clock (CLK1) cycles.

BAO (Bus Acknowledge Out, Output,
Active Low)

,I

BAO output is forced Inactive High when the
CRTC has obtained bus mastership; otherwise,
the BAI input ripples out of the CRTC via the BAO
output.

INT (Interrupt Request, Output, Open
Drain, Active Low)

This line is used to indicate an interrupt request to

C/Q RIW Data Bus

H L Pointer input
H H (undefined)
L L Data input
L H Data output
X H Data input
X L Address output

~~Ar-,------~----o+5V

CLOCK
, OSCILLA·

TOR

22pF

TTL

22pF

Figure 2-3 CLK1/CL.K2 Driver

2-4

CLKlICLK2
TO AmB052
(VOL < 0.3V)
(VOH > 4.0V)

9617BA·4

the host processor. It is driven Low by the CRTC
until an Interrupt Acknowledge is received on the
INTACK pin or until the host·CPU)acknowledges
the interrupt by updating Mode Register 2.

INTACK (Interrupt Acknowledge, Input,
Active Low)

When this line is driven Low, the CRTC examines
its lEI line to-determine if it has been granted an
acknowledge by \the CPU. INTACK must be High
for normal operations. If INTACK is kept Low or
floating, the CRTC will not respond to any slave
accesses nor will it execute DMA transfers.

lEI (Interrupt Enable-In, Input, Active High)

A Low on lEI during Interrupt Acknowledge
signifies that a higher priority interrupt on the daisy
chain is being acknowledged. lEI being - High
indicates that the CRTC has highest interrupt
priority. If the CRTC is not requesting an interrupt,
lEI ripples to lEO.

lEO (Interrupt Enable-Out, Output,
Active High)

lEO follows lEI during Interrupt Acknowledge if the
CRTC has not made an interrupt request. lEO Low
disables' lower priority devices from issuing
interrupt requests. Refer to the Interrupt Section
for a detailed description of the interrupt protocol.

HSVNC (Horizontal Syn,c, Output, Active High)

HSVNC is an active High output which controls the
horizontal retrace of the CRT's electron beam.
This output is held inactive (LOW) when the CRTC
.is reset to prevent unknown synchronization of the
CRT which might cause damage to high bandwidth
tubes.

VSVNC (Vertical Sync, Output, Active High)

VSYNC is an active High output which controls the·
vertical retrace of the CRT's electron . beam; This
output IS held Low when the CRTC is reset to
prevent damage to the CRT.

BLANK (Blank Video, Output, Active High)

BLANK is an active High output. If serves to blank
out inactive display areas of the CRT. It is a

2-5

compostte of horizontal and vertical blank. This
output is held High when the CRTC is reset. .

ESVNC (External Sync, Input, Active High)

This pin is the external synchronization input and
should be used exclusively for power line
synchronization. The ESYNC input cannot
synchronize two video systems since HSYNC is
not altered by this signal. This input is enabled by
setting the External Sync Enable (ES) bit in Mode
Register 1.

RSTT (Test Reset, Input, Active Low)

RSTT resets the horizontal and vertical internal
counters,. and therefore can be activated to
synchronize multiple CRTCs. Whenever RSTT
input goes Low, the following takes effect: .
• HSYNCLow
• VSYNCLow
• BLANK. High
• Mode Register 2: DO-8 reset to "0" -
• Horizontal counter reset
• Vertical counter reset

For synchronizing two CRTCs, Rsn should be
driven synchronously to the Video Timing Clock
(CLK10rCLK2)'

RST (Reset, Input,- Active Low)

A Low on this input for at least 5 clock cycles is
interpreted by the CRTC as a Reset signal. The
effect of Reset is to drive all CRTC bus ~ignals into
the high-impedance state and initialize Mode
Registers 1 and 2. Any Bus Master transaction is
terminated and the CRTC will switch to Slave
Mode.

CCO_7 (Character Code, Outputs, Active
High)

This character port outputs 8 bits of character data
stored in the Character Code Section of the row
buffer currently being displayed. The character
code output can be delayed by 1 or 2 Glock
periods (CLK2) in order to allow the attribute bits
associated with the particular character code to be
masked and decoded and to generate suitable
synchronized attribute control (refer to Character
Period Skew Programming in Mode Register 1).

RO-4 (Scan Line Address, Outputs,
Active High)

These outputs provide the binary address of the
characterslice being displayed. ,Usually, RO-4 form
the least significant address portion of a· character
font generator. All outputs are High (1 FH) for scan
lines outside the range specified by Character
Start and End (refer Row Redefinition Block
programming).

APO-10 (Attribute Port, Outputs)

These 11 lines output the attribute information
associated with the characters. Du ring HSYNC the
Row Attribute Word contained in the Row
Redefinition Block is output on APO-4 and APS-10"
This word can be stored externally by the falling
edge of HSYNC.

CURSOR (Cursor, Output)

This pin is the cursor output indicator. Refer to the
Cursor Section for further information.

2.3 REGISTER DESCRIPTIONS

This section provides a brief description of the
Command, Status, and Display Tirning registers in
the CRTC. Each register description includes the
register address, the operation of the individual
register fields and the state of the register after a
reset (hardware or software).

Table 1 is a summary of the CRTC's 22 registers.
The registers are addressed by an internal pointer
which is 5 bits wide. The pointer is loaded via
AD0-4 on the_external AD bus in Slave Mode write
cycles with C/O being High.

After power-up, the registers should be initialized
in the following sequence:

• Clear the DE bit of Mode Register 1 by hardware
reset or by loading the registers

• Initialize all registers starting with Mode Register
2 (except Mode Register 1) with the appropriate
values

• Load Mode Register 1, with the DE-bit set, to
enable the display

• Load Mode Register 2

Addressing. the eRTC with non-specified pointers
(OD-OFH, 19-1 FH) ··causes no problems. The
registers can be loaded u$inga simple software
loop, starting at OOH and ending at 1 FH.

Register Ad.dres!!ing

The registers can be accessed only when the
CRTC is in the Slave Mode. They are addressed in
a two-step sequence, to simplify slave accesses
via a de multiplexed address/data bus:

• First load the internal pointer register by
asserting CS Low and C/O High· to indicate a
command-type cycle. The subsequent Data
Strobe latches the register address provided by
the low part of the address/data bus (AOO-A04).
This latched register address remains valid until a
subsequent slave wri1e cycle with C/O High
changes it.

• Reaccess the CRTC with CS Low and C/O Low
to read or write the register pointed by the
latched address. The data is strobed in or out by
the OS signal.

The CRTC is in Slave Mode if it has not been
granted control of the bus. After the CRTC has
asserted BRO, it is remains in Slave Mode until it
receives an bus acknowledge (BAI Low). The CPU
can access the CRTC registers any time; the CRTC
places no restrictions on slave accesses;

2-5

,.,

CRTC Slave Transfers

All slave transfers with the CRTCcan be carried out
asynchronous~ with ~ect to the CRTC CLK1
input. Only AS and OS are used to transfer the
information.

The slave transaction typically starts with a pointer
write, although repetitive accesses to the same
CRTC register can be made without any inter
vening pointe~ modification. The transaction is
timed off the OS signal, since AS may not be pre
sent in certain systems. The read transaction com
mences from the low going edge of OS. The write
transaction takes place on the rising edge of OS.

The AS input is used to drive a transparent latQ!:!.. on
the CRTC, which is used to ca.pture C/O and CS in
a multiplexed address/data system. If the system is
demultiplexed, then AS should be driven Low
when the CRTC is in the Slave Mode. This drives
the latch permanently transparent, allowing'. the

, \

Table 1 Am8052 Registers

Pointer Address'(AD~ADO)

HEX

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
10
11
12
13
14
15
16
17
18

TYPE

RNoI
RNoI
RfW
W
RNoI
RNoI
RNoI
RNoI
W
RNoI
RfW
RfW
RNoI
W
W
W
W
W
W
W
W'
W

ACTIVE BITS' REGISTER NAME

16 Mode 1
16 Mode 2
12 Attribute Enable
5 Attribute Redifinition
8 Top of page soft (High Order)

16 Top of page soft (Low Order)
8 , Top of window soft (High Order)

16 Top of window soft (Low Order)
16 Attribute Flag
8 , Top of page hard (High)

16 Top of page hard (Low)
8 ' Top of window hard (High)

16 Top of w.indow hard (Low)
16 DMABurst
12 *VSYNC Width/Scan Delay
12 'Vertical Active Lines
12 *Vertical Total Lines
16 *HSYNCNERTINT
9 *HDRIVE
9 *H Scan Delay

10 *H TQtal Count
10 'H Total Display

'These registers should be only accessed when display enable ("DE" bit in
mode1) i~ reset, since they control the video timing signals

demultiplexed CS and C/D to pass into the CRTC.
When the DS goes Low and a read transaction is in
progress, the CRTC drives, the read data onto its
ADo-AD15 lines and also drives DTEN Low. This
enables any off-chip bus transceivers, allowing the
data to be transmitted to the bus master. When
the bus master captures the data, it drives the DS
Signal High. This causes the CRTC to cease
driving its ADo-AD15 lines and also causes DTEN
to return High, switohing off the bus transceivers. '\

• All reserved fields in the registers should be set
to zero, however, the state of these fields when
reading the programmed value bac.k is. undefin- '
ed. For verification purposes these fields must
be masked out (logical AND) before comparing
the va,lue read back with the value programmed.

• The TOP hard register and the TOP soft register
use the sam~ internal re.9ister. The-refore,
writing to one register also c"'hanges the value of
the other register. (The CRTC uses internal
flags to differentiate between write accesses to

Register Test'

When designing register test routine the software
designer must consider the following points:

• The Attribute Enable, the Attribute Redefinition,
,the DMA Burst, and all video timing registers are
write only.

2-7

either register). .

• If the CRTC' is programmed for segmented
mode, all upper address registers are loaded via
the upper half of the 16-bit address/data bus (for
linear mode via the loWer half of the address/data
bus). However, the value read back appears on
the lower half of the address/data bus, (for both
segmented and linear mode).

.Mode Register 1

Mode Register 1 contains display and OMA control
bits (Figure 2.4). On reset, all Mode Register 1 bits
set to "0".

Video Timing Clock-CLK1/2 (015)

This bit indicates whether CLK1 or CLK2 drives the
video timing logic to time the HSYNC (or HORIVE),
VSYNC and BLANK outputs. In non-proportional
spacing applications CLK1 is selected, whereas in
proportional spacing applications CLK2 usua,lly
times the sync signal, since the frequency of CLK2
is modulated by the character width.

CLK112 = 0: Selects CLK2 for clocking the sync
counters

CLK1/2 = 1: Selects CLK1 for clocking the sync
counters

Character ShiH-CSHIFT (014)

This bit affects the relative order assigned to the
two bytes (character codes) fetched from memory
in a word access (Figure 2.5).

CSHIFT =0. The LOW byte is displayed first. This
mode is compatible with iAPX
microprocessors.

CSHIFT =1 The HIGH byte is displayed first. This·
mode is compatible with 68000
microprocessors.

CSHIFT does not affect 16-bit word data, such as
addresses, pointers, control information, and
attributes.

Invisible Attribute Flag-IAF (013)

IAF=O: The charaaer that invoked an attribute is
loaded into the row buffer, and
subsequently displayed. The character is
affected by the attribute word (see option
1 or 2 in Figure 2.39).

IAF=1: The characters that invoked an attribute
are not loaded into the, row buffeJ. The

-invoked . attribute applies to the next
character. One character word (two
characters) should contain only one

.Attribute Flag. The second Attribute flag
within one character word will be
disregarded. If two Attribute Flags are

separated by a word boundary (within two
character words), both will be processed.

Screen Width Limit-SLIM (012)

The SLIM bit controls the number of characters
loaded in each row buffer to either 132 or 96. This
can reduce bus overhead when the CRTC row
iength is 96 characters or less. If the CRTC
reaches the limit of the row buffer (132 characters),
and more characters are requested, the last,
132nd, character is repeated. ,In the 96-character
mode, the CRTC continues with the random data
of the row buffers.

SLlM=O: The row buffer size is' set to 132
characters.

SLlM=1: The row buffer size is set to 96
characters.

LinearlSegm~nted Mode-LIS (011)

This bit indicates whether the system/display
memory access is accomplished by addressing it in
a linear or segmenteq mode.

US=O: The CRTC is set fOJ segmented
addressing. Th~ linked-list address
pointers are, two words long. Seven bits
(08-14) of the first word define the
segment address. The second' 16-bit
word is. the offset address within the
segment. Any overflow, of the 16-bit
offset address does not carry into the
upper 7-bit segment address.

2-S

US=1: The CRTC is set up for a linear addres
sing scheme, The most significant byte
of the 24-bit linear address is stored in
the lower half of the first word (00-7).
The second word holds the remaining
16 bits. Any overflow of the 16-bit offset
increments the S-bit upper address.

During page update cycles the CRTC puts out the
upper part of the 23/24-bit address on AOo-A07.
The user may latch the 7/S-bit address (refer to
Section 6).

Video Blank-"':'VB (010)

This bit all~wsttie user to blank the screen while
making changes in' the displayed text or when
switching the context. The linked-list must;
however, be valid before VB is reset.

I\)

cO

-:;

VIDEO TIMING CLOCK (CLK 112)

CHARACTER SHIFT (CSHiFT)'

INVISIBLE ATTRIBUTE FLAG (IAF)

SCREEN,WIDTH LIMIT (SLIM)

LlNEARISEGMENTED (LIS)

VIDEO BLANK (VB)

CHARACTER PERIOD {
SKEW (SK, , SKo)

D'5
ADDRESS: 000000, OOH (READ/WRITE)

00

Figure 2-4 Mode Register 1

DISPLAY ENABLE (DE)

EXTERNAL SYNC
ENABLE (ES)

} INTERLACE (h: '0)

DISPLAY HIDDEN (DHJ

} WAIT STATE (WS'.-WSO)

HORIZONTAL OUTPUT
SELECT (HOS)

03901A'05

FETCHED CHARACTER WORD DISPLAY

015 DO

A
A B

CSHIFT=1
A B

B A
CSHIFT =0

03901A-06

Figure 2-5 Character Sh ift

\/B=O: Normal Operation

VB=1: The horizontal and vertical sync circuitry
and outputs operate normally and the
BLANK output is forced High.. DMA
operation is suspended--normal operation
resumes when VB=O and the next vertical
blanking period occurs.

Do not use Video Blank (VB-bIT in Mode Register
1) to blank the display while the linked-list is being
modified. Instead, synchronize the CPU to the
Am8052 linked-list scanning via Vertical Interrupts
(''working on a busy railroad"), or use double
buffered linked-lists (the Am8052 interprets one
while the CPU updates the other).

If Video Blank is used, first switch to a linked-list
defining a blank screen, wait until the Am8052 has
completely loaded the three top-most rows (all
three internal row buffers are filled with blanks),
and then set the Video Blank bit in Mode Register
1. This procedure ensures that, when the VB-bit is
reset, no random characters are displayed from VB
being reset to the beginning of the next frame.
During this time interval, the Am8052 will display
the contents of the internal row buffers which were
pre loaded with Blanks. No DMA activity will occur
until the beginning of the next frame, when normal
operation is resumed.

Character Period ~kew-SK1' SK2 (Og, Os)

The skew bits compensate externally introduced
clock skew between, character code, attribute
word, and/or video control signals, e.g. pipe lined
character code path to the Video System
Controller (Am8152A) to relax the required access
time of the character font generator (see Section
4). The skew bits program various delays in
number of character clock cycles applied to the
VSYNC, HSYNC, and BLANK signals with respect

to character code' output. The attributes and
cursor outputs can also be selectively delayed by
SKo and SK1. The following combinations are
programmable:

Bit Settings Signal Skew (# of CLK2 Cycles)

HSYNC,VSYNC APO-AP10 CCO-CC7
SK1 SKO & BLANK '. & CURSOR & RO-R4

o 0
o 1
1 0
1 1

o
1
2
1

o
o
1
1

Horizontal output Select-HOS (07)

o
o
o
o

HOS=O: The HSYNC/HDRIVE output pin outputs
the horizontal sync timing as programmed in the
HSYNC Register (8-bit counter).

HOS=1: The HSYNC/HDRIVE output pin outputs
the horizontal drive timing as programmed in the
HDRIVE Register (9-bit counter).

Wait State-WS2, WSo (06, 05)

These . bits indicate the number of Wait states
inserted for each DMA cycle. These Wait states
are in addition to any externally applied Wait states.
When the CRTC is in Slave Mode, these bits are
ignored.

WS1 WSO WAIT STATE

0 0 No Wait State
0 1 DS stretched by one clock
1 0 DS stretched by two clocks
1 1 Reserved

Oisplay Hidden-OH (04)

Applies only to characters which have the Ignore
attribute bit set ("1 ") in the attribute word
associated with this character.

DH=O: The Ignore attribute is active; characters
with the Ignore attribute set ("1 ") are not
loaded into the row- buffer.

DH=1: Those characters are treated as
displayable information (see Section 2,6).

Interlace-11, 10 (03. 02)

Control the timing of non-interlaced, interlaced,
repeat field interface videQ to support different

2-10

CRTs (see Section 2.10).

11 10 MODE OF OPERATION

o
o
1
1

o Non-Interlaced Video
1 Reserved
o Repeat Field Interlace (RFI)
1 InterlacecfVideo

External Sync Enable-ES (01)

Enables the ESYNC input for power line
synchronization.

ES=O: ESYNC input is ignored.

ES=1: A rising edge at the ESYNC input during a
vertical-retrace active period (even frame
only in interlaced mode) causes the
HSYNC output to go (or remain) active for a
full horizontal retrace period. The VSYNC
active period is stretched, even when
register timing signifies an end to vertical
retrace, until an ESYNC falling edge
occurs.

Display Enable-DE (Do)

DE=O: VSYNC, HSYNC outputs are inactive
(LOW) and the BLANK . output is held
active (HIGH). DMA operation is disabled.
The DE bit is reset by a hardware reset
(RST =Low) or may be reset by the host
processor (software reset). DE=O resets
the scroll logic to the non-scrolling state.

DE=1: The CRTC disp.lay operation is enabled.
DE can be set only by a host processor

• access of Mode Register 1. Setting the
DE=1 causes the VSYNC, HSYNC, and
BLANK outputs to become active and the
DMA controller on board the CRTC event
ually requests access to the system bus.

Mode Register 2:

Mode Register 2 contains the primary contr?l. ~its
for the interrupt control logic and cursor definition
(Figure 2.6).

Upon reset, all Mode Register 2 bits are reset to
zero.

Cursor Enable-CUE (015)

CUE=O: The CRTC does not output any XY
cursor information.

CUE=1: The XY Cursor Register is enabled.
CRTC outputs cursor at the character
position defined by the XY Cursor
Register (see Main Definition Block).

Attribute Cursor Mask-ACM1. ACMo (013. 012)
Cursor Mask-XYCM1. XYCM2 (010.09)

Th'e cursor mask field (013, 012, 010, 09) defines
the type of cursor that is generated when ·a cursor
is required. This field is divided into two parts:

D13 D12 CURSOR ATIRIBUTE
DEFINITION

0 0 Cursor Pin Whole
0 1 Cursor Pin Part
1 0 Underline
1 1 Reverse

D10 D9 XV CURSOR DEFINITION

0 0 Cursor Pin Whole
.0 1 Cursor Pin Part

1 0 Underline
1 1 Reverse

"Cursor Pin Whole" means that the cursor signal
will appear on the cursor pin for every scan line of
that character position (TSLC). CURS and CURE
of the Row Redefinition Block are ignored.

"Cursor Pin Part" means that the cursor Signal will
appear on the cursor pin for those scan lines
specified in the Row Redefinition Block (CURS
and CURE).

"Underline" (BLOB) means that the cursor signal
will appear on the underline pin (AP1) for the scan
lines specified in the Row Redefinition Block
(CURS and CURE).

"Reverse" (part) means that the cursor signal will
appear on the reverse pin (AP5) for the scan lines
specified in the Row Redefinition Block (CURS
andCUHE).

Scroll In Progress-SIP (08)

SIP is a status bit thaf is set/reset by the CRTC
smooth scroll control logic.

SIP=O.: The CRTC is not currently scrolling.

SIP=1: The CRTC is scrolling either window or
background.

2-11

Disable Lower Chain-O.LC (1)7)

DLC=O: lEO operates normally.

DLC=1: The Interrupt Enable Out (lEO) output of
the device is forced Low, disabling
interrupts from all lower priority devices on
the daisy-chain.

No Veclor-NV (06)

NV=O: The CRTC outputs the interrupt vector
programmed in the Main Definition Block.
(See the section on Main Definition Block
and Interrupt.)

NV=1: During an Interrupt Acknowledge cycle,
the interrupt vector is inhibited. The
vector can, therefore, be provided by
external hardware if necessary. It has no
effect on the setting of the Interrupt
Under Service bits.

Interrupt Under Service Vertical
Event-IUSV (05) ,

This status bit is automatically set if I PV (I nterrupt
Pending Vertical Event) is the highest priority
interrupt request pending when an Interrupt
Acknowledge sequence takes place. It can also
be set or cleared directly by CPU command. While
the IUSV is set, internal and external daisy-chains
prevent the same and lower priority sources of
interrupt from requesting interrupts. The IUSV can
be cleared to "0" only by CPU command. For
details of Interrupt Operation, see Section 2.7.

Interrupt Enable Vertical Event-lEV (04)

This bit enables or disables the vertical event
interrupt logic.

lEV = 0: The Vertical Interrupt is disabled, The
CRTC does not request an interrlllPt at
vertical event nor respond to an interrupt
acknowledge.

lEV = 1: The Vertical Interrupt is enabled.

Interrupt Enable (lEV) does not affect the normal
operation of Interrupt Pending (IPV) and Interrupt
Under Service (IUSV). If lEV disables the interrupt
(IEV=O), then setting the Interrupt Pending Bit
(IPV) does not activate the Intern.lpt Request Line.
If IEV=O, then a "1" in' IUSV affects the interrupt
daisy-chain; all lower priority devices are disabled ..

,

Interrupt Pending Vertical Event---:-IPV (0-3)

IPV is a status bit which, when set to "1," indicates
that a vertical event has occurred and CPU service
is required. A vertical event occurs when the
CRTC internal load row counter matches the
VERTINT value loaded in the HSYNCNERTINT
Register. This interrupt provides real-time
positional information. This is the lowest priority IP
bit in the CRTC. The IPV can be cleared only by a
CPL,J command.

Interrupt Under Service
,Smooth-Scroll-IUSS (02)

Same as vertical event but applies for smooth
scroll event.

Interrupt Enable Smooth-Scroll-IES (01)

This bit enables or disables the smooth-scroll's
interrupt logic. Same as vertical event.

Interrupt Pending Smooth-Scroll-IPS (Do)

IPS is a status bit which, when set, indicates that a
smooth-scroll event requires CPU intervention.
This is the highest priority IP bit.

Attribute Port Enable Register

Bits Do through DlO in the Attribute Port Enable
Register allow the corresponding attribute
information to be output on the matching attribute
pin (Figure 2.7). When reset ("0"), the
corresponding attribute pin is driven Low. When
set, the corresponding pin outputs attribute
information. Bits D3 and D40f this word affect the
subscript and superscript attribute pin operation. If
these bits are enabled for subscript or superscript,
the corresponding pins will be active. These
attributes are independent of the Ro-R4 outputs.
The user can thus address a· separate character
font generator for subscript or superscript display,
e.g. a smaller font. The CURSOR PIN ENABLE
(CPE, D13) bit of. this. register enables/disables

, only the cursor pin, When disabled, neither the X
Y cursor nor .the attribute cursor is output throutlh ,
the cursor pin (CURSOR=Low). .

Attribute Cursor Enable-ACE (014)

The Attribute Cursor Enable Register enables!
disables the path between attribute cursor and

2-12

~
w

CURSOR
ENABLE (CUE)

RESERVED

ATTRIBUTE {
CURSOR MASK

RESERVED

X-YCURSOR {
MASK

SCROll IN
PROGRESS (SIP)

015

~
WRllE:O

READ: X

ADDRE$S: 00001 •• D1H (READ/WRITE)

Figure 2-6 Mode Register 2

Do

INTERRUPT PENDING SOFTSCROll (IPS) .

INTERRUPT ENABLE SOFTSCROll (IES)

INTERRUPT UNDER SERVICE SOFTSCROl. (IUSS)

INTERRUPT PENDING VERTICAL (IPV)

INTERRUPT ENABLE VERTICAL (lEV)

INTERRUPT UNDER SERVICE VERTICAL (IUSV)

NO VECTOR (NV)

DISABLE lOWER CHAIN (DlC)

03901A-07

cursoroutpul pin.

Attribute Redefinition Register

The Attribute Redefinition Register allows the user
to redefine some of the internally processed
attributes, which can, therefore, be treated as user
definables (Figure 2.8). A "0" keeps normal
attribute operation; a "1" directly outputs the
attribute state to its corresponding pin without any
internal processing of the attributes.

Top of Page/Top of Window Registers

Figures 2.9 and 2.10 show the format of these
registers.

The Top Of Page and Top Of Window Registers
point to the Main Definition Block and Window
Definition Block respectively; these blocks contain
the primary information concerning the
background displa¥ and the window display.

Two different forms of Top of Page/Window
Register writes are available: hard and soft. "Top of
Page/Window Soft" is used to trigger the smooth
scroll and to interact with the smooth-scroll
controller (see section on smooth-scroll). ''Top of
Page/Window Hard" has no effect on the smooth
scroll procedure and should be used for link
manipulations that do not involve smooth-scroll. If
the .Top of Window Register contains "0," no
window is displayed on the screen.

Top Of Page/Window Hard and Top Of
Page/Window Soft access the same internal
register: When loading Top Of Page/Window Hard
the information the value gets strobed into the
visible register and, in addition, gets immediately
transferred to the DMA unit. When loading the
Top Of Page/Window Soft register the value gets
only loaded into this visible register. The transfer
to the DMA unit is delayed until the CRTC re-Ioads
the hard register with the value stored in the soft

register (only for smooth scrolling being activated).
This means, that loading the hard register
overwrites the contents of the soft register, but
loading the soft register does not over-write the
contents of the hard register ..

Attribute Fiag Register

The Attribute Flag Register defines the bit pattern
, that wiN invoke an attribute word from the attribute

segment (Figure 2.11).

This 16-bit register is divided into two sections,
Mask and Value ... Each 8-bit character code loaded
from memory, is analyzed, to determine whether
this character is an attribute invoking character.
Any binary group of character can be defined as
attribute invoking characters. The analysis is
based on a mask operation (using Mask) and a
comparison of the remaining pattern with Value. If
the remaining pattern and the Value are equal, this
character is an attribute word invoking character. In
this manner; it is possible to define a group of 1, 2,
4, 8, ... , 256 character codes as attribute invoking
character codes.

The attribute· fetch mechanism can be completely
turned off (0 attribute invoking character codes) by
setting the least significant Mask-bit (08) to "0",
and the corresponding value-btt (Do to "1", e:g.
loading 0001 H into the Attribute Flag Register.
(This feature is only available on devices with
copyright date of 1985 or later).

Mask (7-0) (015-08)

The Mask Register defines which bits of the 8-btt
character field will be compared against the Value
Register to determine if the character invokes an
attribute word. A "0" in bit position N of the mask
indicates that character bit N is a "don't care" in the
value comparison. A "1" in bit position N of the
Mask Register indicates that character bit N should
be compared against value bit N.

Page And Window Registers

Of Active Bits Address

Register LINEAR SEG. BINARY HEX TYPE

Top Of Page Soft (HI) 8 7 00100 04 RIW
Top Of Page Soft (LO) 16 16 00101 05 RIW
Top Of Window Soft (HI) 8 7 00110 06 RIW
Top Of Window Soft (LO) 16 16 00111 07 RIW
Top Of Page Hard (HI) 8 7 01001 09 RIW
Top Of Page Hard (LO) 16 16 Ql0l0 OA RIW
Top Of Window Hard (HI) 8 7 01011 OS RIW
Top Of Window Hard (LO) 16 16 01100 OC RIW

2-14

~
(J1

0'5
AD,DRESS: 00010., 02H (WRITE ONLY)

Do

ATTRIBUTE CURSOR ENABLE (ACE) -----' BLINK (BL)

CURSOR PIN ENABLE (CPE) --------' L ___ UNDERLINE (UNO)

USER DEFINED (UD) -----------------' '-----'---- SHIFTED UNDERLINE (SUNO)

USER DEFINED (UD) ____________ -----_...J
'---------- SUBSCRIPT (SUBS)

USER OEFINED(UD)----------------------' '-------------'- SUPERSCRIPT (SUPS)

USERDEFINED(U~-------------------------------'
L _______ '-_______ REVERSE (REV)

L __ '-________________________ HIGHLIGHT (HL)·

~
WRITE: 0

AEAD:X

03901A-08

Figure 2·7 Attribute Port Enable Register

0,5

~
OJ

~
WRITE: 0

READ: X

ADDRESS: 000118.03H (WRITE ONLy)
Do

DISABLE BLINK (DBLK)

'----- DISABLE UNDERLINE (DUND)

L.. _______ DISABLE SHIFTED UNDERLINE (DSUND)

L-_________ DISABLE SUBSCRIPT (DSB)

'-------------- DISABLE SUPERSCRIPT (DSP)

03901A-09

Figure 2-8 Attribute Redefinition Register

Value (7-0) (07-00)

The Value Register holds up to eight bits of
information for comparison with the fetched
character, to determine if an attributE! should be
invoked. Note that only those bits of the Value
Register which have the corresponding bits of the
Mask Register set to "1" are compared against the
character code. Value bits with corresponding
Mask bits set to "0" should be set also to "0,"
unless the attribute fetch mechanism is disabled.

Example 1:

So the Attribute Flag Register contents are:

1 1 1 0000 (j 000000 00 (EOOOH)'

Example 2

One specific flag (7FH) invokes an attribute. In this
case, all bits of the character code are compared to
the Value.

Flag-character: 0
So the mask is: 1
and the value is: 0

All control characters (character code within OOH
and 1 FH) invoke an attribute. To display these
control characters IAF=O; not to display these Hence the Attribute Flag Register contains:
characters IAF=1 (see Mode Register 1). All
control characters are of the form: 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 (FF7FH)'

Control Characters: 0 0 0 X X X X X Burst Register
So the mask is: 1 1 1 0 0 0 0 0
and the value is: 0 0 0 0 0 0 0 0 The Burst Register (Figure 2.12) specifies the bus

occupancy of the CRTC DMA unit. Burst Count
determines the maximum burst length in Number (X is "Don1 Care")

0807 Do • UPPER ADDRESS

015 Do

LOWER ADDRESS I
03901A·9

Figure 2·9 Top of Page and Top of Window Pointer Formats with LIS = 0

Do

UPPER ADDRESS

Do

. L.I _______ ~L_OW_E_R_AD_DR_E_SS __;.. ____ ,I

03901A·10

Figure 2·10 Top of Page and Top of Window Pointer Formats with LIS = 1

ADDRES~: 010008, 08H (WRITE ONLY)

D'5 D. D, Do
.r------~______;?

MASK (7·0) VALUE (7-0) ~

ATTRIBUTE FETCH

03901A·11 o NORMAL OPERATION

1 ATTRIBUTE FETCH DISABLE
Figure 2·11 Attribute Flag Register X NORMAL OPERATION

2·17

"

of DMA transfer cyples.,Burst Space determines
the' minimum release time between two bursts.
This guarantees real-time responses of the CPU to
other peripherals. Burst Count and Burst Space
must be programmed with reasonable values that
allow the CRTC to fetch all data ne'eded for a flicker
free scre"m.

Burst Sp~ce-BS7-O (015-08)

This 8-bit value speCifies the number of 15 system
clock cycle (CLK1) periods before another bus
request will 'be issued, after the CRTC has
released the bus due to burst count out. If this
value is set to "()" the CRTC occupies the bus as
long as necessary to accomplish' its DMA activity,
e.g. fetching all information related to a particular
character row. If a DMA burst is interrupted due to
DMA preemption or "end of row", the next burst
completes the remaining burst count. This means,
that the first DMA burst loading a row usually is
shorter than programmed.

Burst Count-BCO_7 (0,00)

The CRTC executes Burst Count-1 DMA transfer
cycles per burst. If BC0-7 is set to "0," no DMA
activity will occur. If BCO_7is set to "1," the CRTC
only requests the bus and after granting the bus,
immediately releases the bus, because the first
cycle is an Idle DMA Cycle (no bus activity for three
clocks). So, the minimum value for normal
operation is "2."

Video Timing Registers:

These registers are initialized before setting the
DE-bit in Mode Register 1.' They hold the
parameters needed to generate vertical and'
horizontal sync and blank (VSYNC, HSYNC, and
BLANK). These signals are' put out on the like
named pins of the CRTC and are used by the
Am8152A., BLANK combines horizontal and
vertical blal)k (HBLANK and VBLANK).

Horizontal timing parameters are expressed in
number of bus or character clock cycles (CLK112 bit

of Mode Register 1). Vertical timing parameters are
expressed in number, of scan lines' (HSYNC
cycles). ! '

HSYNC (8-bit counter), and HDRIVE (9-bit counter)
represent two, ways of specifying the Signal
waveform on the HSYNC, outp!.!t pin. With the
exception of the width, these two counters are
functionally identical; ,

In the following discussion a frame consists of one
field in non-interlaced mode and two fields (even'
and odd) in RFI and Video Interlace modes.
Figures 2.13 and 2.14 show the vertical timing. '

Vertical Sync WidthNertical Scan Delay
Register '

Figure 2.15 show~ the register format.

NOT USED
VERTICAL SCAN DELAY (VSD)
VERTICAL SYNC WIDTH (VSW)

Vertical Scan Oelay-VSO (011-06)
,

The Vertical Scan Delay field specifies the vertical
blank time after the falling edge of VSYNC, thus
defining the top bord~r width, or vertical back
porch, of the screen. VSD is expressed in scan~
line units. When in non-interlaced mode, the
actual vertical scan delay is equal to VSD ;: 1 scan
lines. When in video interlace mode or Repeat
I=ield Interlace (RFI) mode, the actual vertical scan
delay is equal to [(VSD + 1) I 2 lines). In this case,
VSD must be odd.

Vertical Sync Width-VSW (05-00)

The Vertical Sync Width determines the width of
the active-High pulse 'signal which,is sent through
VSYNC output to the CRT monitor in, order to
synchronize it vertically.

VSW is expressed in scan line units. In non
interlaced mode, the actual vertical sync width is

ADDRESS: 10000a, 10H (W~tTE ONLY)

08 D7 Do

~ ____ BU_~_T_SP_~_E~_-~ ____ ~ __ ~_B_UR_~_C_OU_m_(7_'~ ____ -J1

Figure 2-12 Burst Register

2-18

equal to VSW + 1 scan lines. Vertical Active Lines Register·

In interlaced and RFI mode, the actual vertical sync
is equal to [(VSW+1)/2 lines). In this case, VSW
must be odd.

NOT USED
VERTICAL ACTIVE LINES (VAL) .

03901A·17

VSYNC
(EXTERNAl)

VSYNC
(~XTERNAL)

VBLANK
(INTERNAL)

-IVSW+1 i4. ---- VTOT+ 1----+1

-V8D+11-

VAL+1 .1

Figure 2·13 Non·lnterlaced Video Vertical Sync Timing

VTOT+1
.~----~ 2 .-----~.

.~ ____ VTOJ+1. _____ -I

(EVEN FIELD) (ODD FIELD)

VBLANK ----+--1
QNTI1RNAL)

03901A·18

03901A·19

03901A-14

VSD, VSW, VAL MUST BE ODD
VTOT MUST BE EVEN

VAL+1
-2-

Figure 2·14 RFI and VI~eo Interlace Vertical Sync Timing

HSIl!9

HSYNC
(EXTERNAL)

HBLANK
(INTERNAL)

~----HTC+1----.

r-- ~~~~v~: ~

1----HTD+1---./--

INTERLACED VIDEO: HTC MUST BE EVEN

Figure 2·14a Horizontal Sync Tlmi~g

ADDRESS: 10001a, _1H (WRITI;,.,ONLY)

VSD VSW

Figure 2·15· Vertical Sync WldthNertical Scan Delay Register

2·19

This 12-bit field defines the. number of scan lines
between the end of a vertical sync pulse and the
start of vertical ~Ianking (Figure 2.16).

In non-interlaced rnode, the actual sca'n line
number between VSYNC and next VSYNC is
(VTOT +1).

When in non·interlacedmode, the actual scan-line In interlaced or RFI mode, this timing is [(VTOT+
number between the falling edge of VSYNC and 1)/2], and VTOT must be even (half scan line
the rising edge of VBLANK is equal to VAL+ 1. between even and odd fields).
The active video area height on the screen is then r

(VAL+ 1) - (VSD+ 1) '" VAL- VSD scan lines.

When in video interlace or RFI mode, the actual
scan-line number between VSYNC and VBLANK
is equal to [(VAL + 1) /2]. In this case VAL must be
odd. The active video area heighton the screen is
then given by [(VAL + 1) / 2] - [(VSD + 1) /2] =
[(VAL - VSD) / 2 scan lines]. This is true for the
odd and even field.

Vertical Total Lines Register

NOT USED
VERTICAL TOTAL LINES (VTOT)

The. Vertical Total Lines Register defines the total
number of scan lines per field minus the vertical
sync width~Figure 2.17).

Horizontal Sync and Vertical Interrupt
Row Register

Figure 2.18 shows the register format.

VERTICAL INTERRUPT ROW (VERTINT)
HORIZONTAL SYNC WIDTH (HSYNC)

Vertical Interrupt Row-VERTINT (08-015)

This field determines the row number which, affer
being completely loaded by OMA, causes an
interrupt. If VERTINT is set to ''0:' the vertical
interrupt occurs after the rising edge of VBLANK,
before the CRTC starts loading the Main Definition
Block. If VERTINT is set to "1" ("n"), the vertical
interrupt is generated right after the first (nth)' row
has been loaded.

ADDRESS: 10010B. 12H (WRITE ONLY)

012011

VAL

Figure 2-16 Vertical Active Lines Register

ADDRESS: 10011B. 13H (WRITE ONLY)

VTOT

Figure 2-17 Vertical Total Lines Register

ADDRESS: 1~100B, 14H (WRITE ONLY)

0807

VERTINT HSYNC

Do

Do

Figure 2-18 Horizontal Sync WidthNerticallnterrupt Row Register

2-20

03901A-15

03901A-16

03901A-20

Horizontal Sync Width-HSYNC (Do-07)

This field determines the width of the horizontal
sync (active High) pulse in video clock units (GLK1
or CLK2 depending upon CLK1I2 bit in Mode
Register 1), provided that HSYNC is selected
(HOS=O in Mode Register 1). These pulses are
output on the HSYNC pin. The actual width of the
signal is HSYNC + 1 clock periods.

Horizontal Drive Register

Reserved
HORIZONTAL DRIVE (HDRV)

This register determines the width of HSYNC if
horizontal drive is selected (HOS=1 in Mode
Register 1). The actual width of HSYNC is HDRV +
1 clock periods. This is also an output on the
HSYNC pin. (See Figure 2.19.)

Horizontal Scan Delay Register

Reserved
HORIZONTAL SCAN DELAY (HSD)

The Horizontal Scan Delay Register determines
the interval. from rising edge oi HSYNC to the
falling edge of HBLANK, which defines the left
border (back porch) on the screen. The actual

interval value is HSD + 1 clock periods. (See
Figure 2.20.)

Horizontal Total Count Register

Reserved
HORIZONTAL TOTAL COUNT (HTC)

This register determines the period of the HSYNC
waveform, The period is HTC + 1 clock periods. In
Interlaced mode, HTC must be even. (See Figure
2.21.)

Horizontal Total Display Register

Reserved
HORIZONTAL TOTAL DISPLAY (HTD)

This register determines the interval from the rising
edge of HSYNC to the rising edge of HBLANK.
HTD must be odd in interlaced mode. The actual
interval value is HTD + 1 clock periods. (See
Figure 2.22.)

Video Timing Programming Example

The following example outlines the computation of.
the display timing parameters .for a 30 row by 80
character display, each character embedded in a 8

ADDRESS: 10101e, 15,H (WRITE ONLY)

015 0908

HDRV

03901A-21

Figure 2-19 Horizontal Drive Register

ADDRESS: 101109, iSH (WRITE ONlY)

015 0908 Do

HSO

03901A-22

Figure 2-20 Horizontal Scan Delay Register

2-21

x 17 (H x V) matrix, with a refresh rate of. 50 Hz in
non-interlaced mode using a CRT monitor with the
following characteristics:

Display Resolution:

Scanning frequency:

Horizontal retrace time:
Vertical retrace time:
Horizontal SYNC width:

Computation:

720 pixels horizontal
512 lines vertical
28-36 kHz horizontal
45-65 Hz vertical
6 microseconds
600 microseconds
3 microseconds

The appropriate character clock and the timing
parameters for the video timing registers must be
calculated.

The active display size is given by:
Horizontal: 80 characters· 8 pixels/char.

= 640 pixels
Vertical: 30 rows ·17 scan Iines/row

= 510 scan lines

Assuming a 20% blank border vertically, the 510
scan lines occupy 80% of frame time. At a frame
rate of 50 Hz, the horizontal frequency can be
calculated as:

Total Scan Lines/frame: 510 scan lines 1 0.80
= 637 Scan lines

Horizontal Frequency: 637·50 Hz.= 31.85 kHz

Assuming a 20% blank horizontally, the 80
characters occupy 80% of row time. Character
clock is therefore 100 times the horizontal
frequency (3.185 MHz). Each character occupies
1/1dOofthe row.

Let us use a more convenient frequency, 3.00
MHz, as character clock and re-calculate the
parameters:

Character clock
Horizontal frequency
Scan line time
Frame time

Frame rate

3.00 MHz
30kHz
33.3 microseconds
637 ~ 33.3 microseconds
=21.2ms
47Hz

Now the registers' contents can be calculateq:

Mode Register 1

The character clock is 3 MHz; the CLK1/2 bit is set
to "0" to select CLK2 for the frame timing
generation.

With only 80 characters/row, we select "SLlM=1"
which reduces the row buffer length to 96
characters.

The rrionitor accepts an HSYNC Signal: "HOS=O"

Non-interlaced made y~elds in: "11 =0," "10=0."

External Sync Enable is set to "0," since we do not
need to be synchronized to another signal.

Display Enable should be set to "1," once the
other registers are setto the proper values.

Vertical sync width: The vertical sync width is equal
to the specified horizontal retrace time of the
monitor.

VSW + 1 = 600 niicroseconds
VSW + 1 = 600/33.3 = 18 scan lines

ADDRESS: 10111s.17H (WRITE ONLY)

Do

HTC

03901A·23

Figure 2-21 Horizontal Total Count Register

ADDRESS: 11OO0B, 18H (WRITE ONLY)

DO

HTD

03901A·24

Figure 2-22 Horizontal Total Display Register

2-22

VSW

Vertical Total Line Register (VTOT): The number of
vertical total lines equals to the number of scan
lines (637) minus the Vertical Sync Width (VSW).
(see Figure 2.13)

VTOT +1 = 637-(VSW+1)=619
VTOT = 61810 = 26AH

Vertical Active Line Register

This value is the total scan line number' of the
screen minus the number of scan lines contained
in the bottom border area (10% of the screen
height):

VAL + 1 = 0.9' (VTOT + 1)
= 0.9' 619 = 557 scan lines

VAL = 55610 = 22CH

Vertical Total Line Register:

VTOT + 1 = 637-(VSW + 1) =619
VTOT = 6181O=26AH

Vertical Sync WidthNertical Scan Delay
Register

Vertical Sync Width (VSW)=11 H (as computed
above)

Vertical Scan Delay (VSD): (see Figure 2.13)

VSD + 1 = (VAL + 1)-510
VSD = 4610 = 2EH

VSD shifted six bits left to fit the field in the
register.

VSDshifl = B80H

VSW/vSD Register = VSD shifl + VSW
= OB80H + 11 H '" OB91 H

Horizdntal Sync and Verticallmerrupt
Row Register

VERTINT is set to "0," in this example.
HSYNC + 1 = 3 microseconds = 3' 3

= 9 character clocks
HSYNC = 810 ;= 8H

Horizontal Drive Register

Horizontal Scan Delay Register

HSD + 1 = (HSYNC + 1) + (HSYNC to HBLANK
delay)

HSD+1 = (HSYNC+1)+[HTC+1-(HSYNC+1)
- numberof displayed charactersj/2

HSD+1 = (100-9-80)/2+9=15character
clocks

HSD = 1410 = OEH

Horizontal Total Count Register'

HTC + 1 = 100 character clocks
HTC = 9910 = 63H

Horizontal Total Display.Register:

HTD + 1 = number of characters displayed +
(HSD+1)

HTD + 1 = 80 + 15
HTD = 941O=5EH

2.4 DMA OPERATIONS

Once the CRTC has been initialized and the
various registers programmed to meet the
application's needs, the CRTC is responsible for
initiating System Bus Requests to fetch Control
Data and Display Data from memory and to transfer
them into its on-board registers and row buffers,
respectively. The CRTC requests the bus after the
DE-btt in Mode Register 1 has been set to a "1."

DMA Signals and Protocol

Before the CRTC can, perform a DMA operation, it
must gain control of the System Bus. The BRO,
BAI and BAO interface pins constitute the basic
interface between the CRTC and other devices
capable of .bus arbitration (e.g. microprocessors
and other DMA devices). Whenever the CRTC
requests bus control, the operation is executed
according to the flowchart in Figure 2.23. The
DMA sequence can described as the foliowinQ:

1. If the CRTC needs to perform a DMA access, it
triggers the bus request operation.

2. First, it checks whether the bus is being used
~nother peripheral device by polling the
BRO line until it is High. Then, it waits for the
CPU to gain bus control.Tt.lis is indicated
through the daisy-chain (BAI=High).

This is a "don't care" since HOS=O. (HSYNC
selected) 3. At that time the bus is under control of the

2-23

DMA ACTIVATED
START OF BUS REQUEST OPERATION

POLLING FOR BUS
RELEASE FROM BUS·MASTER (IF PRESENT)
AND FOR BUS RELEASE ACKNOWLEDGE
FROM CPU •

ACTIVATING BUS REQUEST LINE
AND DAISY CHAIN LOCK

WAITING FOR BUS REQUEST
ACKNOWLEDGE FROM CPU

DMA TRANSFER OPERATION

DMA TRANSFER INTERRUPTION?

BUS RELEASE AT END
OF DMA TRANSFER

TEMPORARY
BUS RELEASE

Figure 2-23 DMA Bus Request Flow Chart

2-24

2

4

6

8

03901A-25

CPU, and the CRTC can issue its request by
pulling BRQ Low. It also inhibits Bus
Acknowledge from propagating to lower priority
devicesJj!!Jhe lower part of the daisy-chain) by
pulling BAO Hig/1; this avoids granting the Bus
to lower priority devices which may have issued
BRQ at the same time as the CRTC.

4. Before initiating gny DMA transfer, the CRTC
waits for bus re9lJ§st acknowledge from the
CPU by polling its BAI input. .

5. The CRTC now acts as Bus Master and
performs the required transfers.

6. The eRTC DMA transfer can be temporarily
interrupted by removing Bus Acknowledge In
(BAI=High)-external bus preemption. The
CRTC requires that BAI is active for a minimum
of four clocks. If the CRTC is preempted within
the first four clocks, the CRTC might not detect
the bus acknowledge causing the CRTC to
keep waiting for BAI Low. The result is that the
bu~ arbitration locks up. To overcome this lock
condition either the minimum width of BAI must
be guaranteed or the external arbiter must be
able to recover from this lock condition (detect
of lock, then temporary release the preempting
signal).

7 .. The CRTC terminates the transfer when it has
filled the internal row buffers or when the burst
count reaches zero. The bus is released
(BRQ=Hi9!!L aM. bus acknowledge ripples
through (BAO=BAI). Then either the CPU or a
lower priority device on the daisy chain can gain

5V

control of the bus. ----.JJ:le lower priority device
might have pulled BRQ Low concurrently with
the CRTC and is waiting for BAI=Low to start its
activity.

8. The CRTLDMA transfer is interrupted by
removing BAI. The CRTC finishes the current
bus cycle and~eases the b~ for three
system clocks (BRQ=High, BAO=BAI). Then it
tries to resume DMA activity and continues
DMA operations and burst count from where it
was interrupted.

Buffering BRO

When BRQ needs to be buffered (for example, to
drive a system backplane), a speCific bidirectional
interface buffer must be used. Such an interface
and its implementation is described below:

Detail "A" in Figure 2.24 shows the BRQ buffer
logic .. Note that the "buffer" and the "OR gate" are
both open collector (OC) devices. When the
backplane BRQ is High, and no DMA device
requested the bus, then all BAI's and BAO'S are
High, hence X3 and X2 are High and X1 is driven
High.

If device X requests the bus, it locks BAO High arid
pulls X1 Low to initiate a bus request, which in turn
pulls X3 Low since X2 is High (BAO=High). The
detail "A" logic is then locked into this state
through the open collector buffer, as the CPU and
the other detail "A" interfaces on the bus. All
these interfaces are locked the same' way as the

DETAIL "A"

BRQI.-~~--------~------~~~~

CPU.

03901A-26

• CRTC '

DEVICE X

DTC DTC

DEVICEY DEVICEZ

Figure2-24 System with Multiple DMA Devices

2-25

requestir19 one. A few, cycles later, the CPU
acknowledges the bus request by pulling
BUSACK Low, the CRlC (device X) then executes
its transfers. When the CRTe finishes its trans~
it releases BRQ and relinks its BAI input to BAO

'output, hence driving BAO Low. The Low
propagates through the daisy-chain, and as lohg
al:) one of the:BAO is High, the backplane BRO line
and the devices BRO signals will be held Low due
to detail "A" logic structure.

On~e all the BAO'~ have gone High, the backplane
BRO goes High, and the CPU gains control over
the bus.

DMA Transfer Operation

The DMA transfer itself consists of data moves
from memory into the CRTC, controlled by the
CRTC's DMA unit.

If a control block is fetched, the words loaded are
steered toward the internal control registers. If
display data (characters or attributes) are fetched
from memory, it is steered toward an internal row
buffer.

In both cases the CRTC must:

1. Output the address 01 the data iocation.

CLK1

ADo-AD,.

R/Vi

2. Sample the WAIT input and Wetch the read
cycle if needed. WAIT is sampled only at the
falling edge of the system clock in T2 of a Bus
Master Read cycle.

3. Read the data and transfer it to the proper
destination (buffer or internal register).

The Am8052 can address up to 16-Mbyte
addresses as 256 pages of 64K bytes each. The
upper address is updated on a qemand basis, as
outlined below:

There is a Lipper address change between the
previous fetch cycle and the current one, or this 'is
the first fetch of a new frame. In either case,
succeeding read cycles are preceded by a single
write cycle to latch the new upper address
address. (See Figure 2.25)

There is no upper address change since the
previous fetch cycle and it is not the first fetch of a
new frame. In this case t~e succeeding fetches
are not preceded by a upper address write cycle.
A new burst does not necessarily begin with a
page address update.

DMA Read and Write Operations

The start 01 a DMA ,cycle is initiated by AS being

i------DMA READ CYCLE WITH PAGE CHANGE------i

03901A-2'i

Figure 2-25 DMA Transfer Operation

, 2-26

driven Low, which indicates a valid address on the
ADo-AD15 address/data lines. At that time DTEN
is also driven Low and allows the valid address to
be buffered on the system bus through external
buffers. The valid address may be latched on the
system bus on the rising edge of AS,

During the first portion of a DMA read cycle with a
page change, RffJ is pulled Low. by the CRTC for
three complete clock cycles,' and the address
present on the ADO-AD? bus during T1 is the
updated page address which should be latched
externally on the rising edge of AS. Refer to
section 6 on interfacing the upper address latch.
The CRTC never outputs an active OS during a
write cycle. The next three clock cycles represent
a normal DMA read cycle.

During T2 the CRTC ceases driving the ADo-A015
bus with. the address information, and DTEN goes
inactive (HIGH). OS is driven Low as an indication
to the memory system that it may drive the bus with
the read data. Half of a clock cycle later, OREN is
driven Low to enable the receiving buff.ers local to
theCRTC. .

Data is captured by. the CRTC on the falling edge
of the T3 clock cycle; then both OS and OREN
return High~The system might turn off the data
with either OS or OREN. In both cases the data
hold time required by the CRTC is satisfied.

Wait Operation

During T2 of the read cycle, the WAIT signal is
sampled by the falling edge of CLK1' If Low, the
cycle is stretched by one CLI(1 cycle. However,
the WAIT input can be operate~as a READY input,
by taking Low as the default level. In both- cases,
the input signal must satisfy the setup and hold
time requirements ql the CRTC, to avoid
metastable conditions (see Section 6).

The CRTC also has a software Wait state capability:
zero, one or two wait states can be ~pecified in
Mode Register 1 and are automatically inserted in
each Bus Master Read cycle independently of the
WAIT input line. '

When both hardware and software Wait states are
. requested, they occur consecutively and not
concurrently: The hardware Wait States are
honored first, immediately followed by software
wait states if so programmed.

Idle DMA Cycles

An I,dle DMA cycle is a bus cycle (three clocks)

during which the CRTC executes internal
operations (e.g., row linkage and window overlay).
Since Idle DMA cycles are single bus cycles, the
CRTC does not relea"se the bus; otherwise, bus
overhead, would be increased. The CRTC
releases the bus (burst of Idle DMA Cycles) only if a
window or the background row needs to be filled
with Fill Code characters.

Each DMA burst executes in the following
sequence:

1. The CRTC asserts BRO to arbitrate the bus.

2. The CRTC waits for BAI to be asserted by the
external bus arbiter (usually a CPU).

'3. BAI is sampled with the ne~t rising edge of
CLK1' If the set-up time (parameter 75) is not
satisfied, the CRTC may perhaps not catch BAI
with that edge, but, definitely catches it with. the
next edge (metastable conditions cannot
occur).

4. Then BAI is internally synchronized to T2 of the
running state machine. After synchronization
the CRTC executes the first DMA cycle, which
externally starts on the next T1 state. The time
elapsed from receiving BAI is between six and
eight clocks depending on when BAI comes
relative to the free running internal state
machine.

Table of Idle DMA Cycles:

The table below lists conditions were the CRTC
inserts Idle DMA cycles (this list might not be
complete).

Event # of Idle
DMA Cycles

Begining of DMA burst if previous burst
was preempted or counted out 0
Begining of the first burst of a frame 1
Begining of first burst for a new row 2
Loading the Window Definition Block 1
Loading a Row Redefinition Block 1
Loading a Window Row Control Block 1
End of a row (background) 1

(window) 2
End of preempted burst 0
Fill Code segment (segment with 1
character pointer equal zero)
Window segment filled with Fill Code 3clks/2char

2-27

DMA Burst Control

Ouring DMA action, ,the CPU IS denied aCCElSs,to
the bus and therefore cannot execute programs~

. This situation can lead to problems in the interrupt
response Jime of the CPU, since the CPU can only
re.c6grii~e 'and service an interrupt re~uest while in '
control of the bus. Note that at the beginning of
everY frame; immediately after the vertical bla:nking
Interval, the CRTC tries to request the bus.

".' ' I

To allow the CPU cbntrol of the bus within certain
limits,a BurSt Register is ptovided inside the CRTC
and is programmable by the CPU. This Burst
Regis~er sPecifies a time slot during whiCh the
CRTC is allowed to request the bus; Both the time
slot duration arid its cycle time are programmable.
Forfurtherinformation, refer to Section 2.3.

2.5 ROW MANAGEMENT UNIT
OPERATIONS '

Tile Row Management Unit controls the system for
fetching,interpreting, and steering the information
contained in memory; loading the three row
buffers with displayable information; and updating
internal registers to redefine some of the screen
characteristics.

Listed beiow is the information that the Row
Management Untt may steer for updating.

Steer into the row-buffers:
• characters
• attributes

Steer into the internal registers:

alterable pn a frame basis:
• absolute cursor coordinates (CUX, CUY)
• fill character code
• blink control and parameters (for cursors and,

characters) ,
• ' scroll control and parameters' ,
•)nterl'lJpt vectors (for vertical event and smooth-

scrolf event ' " ,

alterable on a row basis:
• total scan line count per row (TSLC)
• normal character start and end line numbers

(NCS,NCE)
• superscript character start and end scan7line

numbers (SBCS, SBCE)
• subscrIpt character'start and end scan-line

numbers(SBCS, SBCE)
• cursor pattern start and end scan-line numbers

(CURS, CURE)

.,' underline poSition (UND)
• shifted underline positibn (SUN D)

The information 'to' be fetched by the Row
Management Unit is addressed' by linked-list
pointers, and the Row Management Unit' keeps ,
track of the addresses of the information present in
memory. The Row Management Unit also inter
prets window infor.mation when it is present.

The final task performed by the Row Management
Unit is the selection of displayable, charaCters
(which are the only ones, loaded into the row
buffers) dependi(1g up()n the "ignOl'e" and "invis-
ible attribute flag" bits settings. .

Windows

The CRTC is capable of controlling and displaying
a text file on the screen (known as background)
concurrently with other text files embedded in.
rectangles (known as windows) positioned
anywhere inside the actil(e display area of the
screen. With conventional CRT .controllers, this
feature can only be implemented if the CPU is
awa:re of the position and size of the window, with
all the inconvenience and software complexity this
implies. One of the important features of the
CRTC is that it allows the CPU to process a .
background file and a window file independently
without being continuously cqncerned with size
and posttion of the window. .

,The CRTC holds two pointer registers; each
containing the starting address of ,a linked-list
.residing in memo~: one pointer corresponds ·to
the background Information, while, the other
'corresponds to the first window's information. The
first window is the first one encountered when
scanning the Screen from top to bottom. The user
is able to define an arbitrary number of windows on
the screen, as long as two background character
rows (three for interlaced video) separate the
windows vertically. Virtual windows, however, may
occur side by side (horiz0l!tal split-scr~en).

Each window links to the following) one (ranging
, . from top to bottom of the screen) with' a link

pointer. There are no more windows when the link
pointer of the last window contains zero.

Two main linked-lists reside in system memory
holding the entire information defining a particular
display:

The backgroJr,d listpointed to by Top of Page
(TOP) Register, containing the p~rameters of the
background display.

2-26

The window(s) list pointed to by Top of Window
(TOW) Register, containing the parameters of the
window(s) display. '

Depending upon the memory addressing scheme,
the user can choose either of two addressing
modes: segmented mode or linear mode.

Segmented Mode

The segmented mode divides the' memory into
pages containing 64K bytes each. The CRTC can
address 128 pages. In this case, the pointer is 23
bits wide arranged in two 16-bit words with the
following configuration:

Seven bits pointing to one page among the 128
addressable pages. These seven bits are right
justified in the most significant byte of the first 16-
bit word.

16 bits pointing to the address within the selected
page. These 16 bits constitute the secondword.

When operating in the segmented mode, crossing
a page boundary does not increment' the page
number. It results in wrap'-around operation within
the same page.

Linear Mode

In the linear mode the CRTC addresses memory as
one 16-megabyte block,. with a 24-bit-wide pointer
arranged in two 16-bit words with the following
configuration:

16 bits representing the least significant part of the
address in the second word.

In this mode, when the second word crosses a
64K boundary, the first word is incremented by
one.

The selection between these two modes is
accomplished through the LIS bit in Mode
Register 1.

LlS=O segmented mode enabled
L/S=1 linear mode enabled

Consistent with the byte addressing method used
by all 16-bit microprocessors, ADo always outputs a
"0" at addresl'! time. This means that the CRTC
actually addresses 32K 16-bit words instead of
64K bytes. This applies for both linear and
segmented addressing modes. This implies that
all character strings must start at an even address
- they have to be word boundary aligned.

Background Information Management

The TOP (Top Of Page) Register points to the first
data word of a block called "Main Definition Block."

, This block is unique for each background list, and
the information it contains is fetched on a frame
basis and stored into the applicable internal
regi$lers of the CRTC. Simply by changing the
pointer in the TOP register entire pages can be
swapped at an instant without any flickering.

Main Definition Block {MOB) Overview

Eight bits representing the most significant part of' The Main Definition Block contains seven data
the address embedded in the least significant byte words (MDo-MD6) defined as follows (Figures 2.26
of the first word, and 2,27):

03901A-28

Figure 2-26 Main Definition Block (US = 0)

2-29

MDO,MD,1' Poinfer to first Row Control Block
, MD2.Absolute cursor coordinates ("X" coordinate
" byte-and "Y" coordinate byte)

MD3. Fill character code (one flag bit + one byte
code)
MD4. Blink controVscroll control \
MDs. Interrupt vectorS: verticalevenVscroll event
MOs. Total scan line count perrow.

MDB Detailed Description:

MDo,MD1' The Row Control Block pointer points
to the block defining the first row's control
information.

MD2' The' ,absolute cursor coordinates indicate,
the row number and the character 'position within,

, this row where the absolute cursor is displayed.
The topmost row is row "0" the leftmost character
position is "0".

MD3' The fill character code is a user-defined 8-bit
code. This is used as a filler in the row buffer if all
the characters for that row have been loaded and
did not fill the programmed buffer size. Segments
with a character code pointer of "O"'are also filled

, with the fill code. The number of visible characters
(visible #) specifies the length of these segments.
Windows, where the window segments do not fill
up the window size, are filled by the fill code too.
The flag bit (flag attribute)" when set, causes the
CRTC to load an El.xtra attribute word from the
attribute list and use it as a latched attribute
(immediately active) for the fill character. The extra
attribute word must invoke a latched attribute.

MD4: The blink contr.oVscroll control is composed
of 15 bits. '

Smooth·Scroll Enable (SSE), enables the
smooth-scroll operation for either the backgrdund

or a window.

o Smooth-scroll disabled
1 Smooth-scroll enabled

\ Scroll Up/Down (SUD)iridicates the direction
of the scroll.

o Smooth-scroll down
1 Smooth-scroll up

Scroll Window/Backg~ound (SWB) indicates
whether the background or a window wil! be
scrolled.

o Smooth-scroll background
1 Smooth-scroll window

Scroll Rate (SR3-SRO) is a 4-bit word
specHying. the smooth-scroll rate according, to the
following table:

SR3 SR2 SR1 SRO Scroll Rate

0 0 0 0 1 Scan Line/Frame
0 0 0 1 2 Scan Lines/Frame
0 0 1 0' 3'ScanLines !Frame
0 0 1 1 4 Scan Lines/Frame
0 1 0 0 5 Scan lines/Frame
0 1 0 1 6 Scan Unes!Frame
0 1 1 0 7 Scan LineslFrame

.0 1 1 1 8 Scan LineslFrame,
(fastest)

1 0 0 0 1 Scan Line/Frame
,1 0 0 1 1 Scan Linel2 Frames
1 0 1 0 1 Scan Une13 Frames
1- 0 1 1 1 Scan Une/4Frames
1 l' 0 0 ·1 Scan Unel5 Frames
1 1 0 1 1 Scan Une/6 Frames
1 1 ' 1 0 1 Scan Unei'7 Frames
1 1 1 1 1 S,pan Une/8 Frames

(slowest)

03901A·29

Figure 2-27, Main Definition Block (US = 1)

2-30

Cursor Blink Rate (CUB1,CUBO) defines the
blinking rate for both attribute and absollJte
cursors:

Blink Frequency
CUB1 CUBO Blink Period (at 60 Hz Frame

Rate)

0 0 16 Frames 3.('5 Hz
0 1 32 Frames 1.85 Hz
1 0 64 Frames 0.93 Hz
1 1 128 Frames 0.46 Hz

Cursor Blink Duty Cycle (CUD)

CUD Cursor Blink Duty Cycle

o Blink Output 75% Inactive, 25% Active
1 Blink Output 50% Inactive, 50% Active

Character Blink Duty Cycle (CHD)

CHD Character BJink Duty Cycle

o Blink Output 75% inactive, 25% Active
1 Blink Output 50% Inactive, 50"10 Active

Absolute Cursor Blink Enable (CXYBE)

o Cursor Blink Disable
1 Cursor Blink Enable

Attribute Cursor Blink Enable (CATBE)

o Cursor Blink Disable
1 Cursor Blink Disable

Character Blink Rate (CHB1, CHBO)

CHB1 CHBO Blink Period

o
o
1
1

o
1
o
1

16 Frames
32 Frames
64 Frames

128 Frames

Blink Frequency
(at 60 Hz Frame
Rate)

3.75 Hz
1.85 Hz
0.93 Hz
0.46 Hz

The character and the cursor can have different··
blink rates and different duty cycles.

MD5' The Interrupt Vector Register contains the
smooth-scroll and vertical event interrupt vectors.
When one of these interrupts is activated,the

corresponding a·bit vector is output on AD/ADO
at Interrupt Acknowledge time, H the NV-bit in
Mode Register 2 is reset.

The vertical event interrupt vector is totally user
programmable.

The smooth-scroll interrupt vector is partially user
programmable: Bits 0 and 2 through 7 are user
definable, while Bit 1 reflects the state of the SIP
(Scroll Interrupt Pending). bit. This feature allows
the user to steer the smooth-scroll interrupts into
two different routines.

SIP=1 The CRT is informing the CPU to execute a
relink during scrolling operation.

SIP=O The CRT does not nead CPU intervention
but signals the CPU that the scroll
operation is completed.

MD6' TSLC is a 5-bit value defining the number
of total scan lines· per row minus one. This value is
reprogram mabie on a row basis via the Row
Definition Block.

This TSLC must be equal to the TSLe of the first
row in the linked-list.

In video interlace or RFI mode, the TSLCs of all.
rows displayed must be even or the TSLCs of all
rows must be odd .. In non-interlaced video, rows
with odd and even TSLCs may be mixed.
However, this is res~ricted when. displaying
windows (refer to Section 2.5.4). Figure 2.28
shows the values of the total number of scan lines
for all video modes. .

Row Control Block (RCB)

Once the CRTC has loaded the Main Definition
Block into its internal registers, it fetches the first
Row Control Block (Figures 2.29 and 2.30). To
ease text-editing procedures, the CRTC allows the
user to split each row into segments. This
partitioning is necessary when dealing with window
positioning within the screen, The ''window''
section provides detailed information. . Each
segment may contain up to 255 visible characters
and upto 255 hidden characters limited by the 8-
bit cou nter. .

Hidden characters are characters that the CRTC
fetches from system memory but that are not
loaded into the internal. row buffers. . They are
identified by the Ignore Bit of the attribute Yiord
when DH in Mode Register 1 is reset. An attribute
flag character is also a hidden' character if the

2-31

Invisible Attribute Flag (IAF) of Mode Register 1 is interpreted by the CRTC in the foll~wing way:
set.

The CRTC pre-fetches two rows to keep all three.
internal row buffers filled. This results in fetching
two redundant rows at the bottom of the screen.
To minimize bus occupancy of fhe CRTC these last
two rows can be ''termination Row Control Blocks."
Thisblock consists of a Row Control Block Pointer
pointing to itself, a Character Code Pointer set to
"0," 'and C-f1ag=O (a single, empty character
segment).

RCB Overview

RAO,RA1' A two-word link pointer pointing to the'
next Row Control Block.

RA2-6. The first segment's block composed of
five data words:

The numbers of visible and hidden
characters in the segment constitute the
first data word,
The segment's character-list pointer (next two
data words),
The segment's attribute-list pointer
(two words),
Successive segments are identical to the first,
An optional "Row Redefinition Block" pointer
(two data words).

The user must set at least one Row Redefinition
Block after power-up. 'A Row Redefinition Block
contains characteristics applicable to a row. This
information stays latched until another Row
Redefinition Block is encountered. If no Row
Redefinition Block is fetched after power up,
information such as character start and end scan
lines is undefined. If N segments are present in a
Row Control Block, its length is either:

N • 5 + 2 if no Row Redefinition Block is present,
N • 5 + 4 if a Row Redefinition Block is present.

RCB Detailed Description:

RAO,RA1' The most significant bit in the first
word indicates if a Row Definition Block has to be

, loaded for the current row. When this flag (LNK) is
"1," the Row Definition Block is loaded. The
remainder of the first two words contain the link
pointer to next Row Control Block.

RA2. The sum of hidden and visible characters
must be at least "1 ". The number of hidden
characters and the number of visible characters are

No window within the current row ~

The DMA uses the sum of the hidden and visible
character numbers to determine the number of
characters to be fetched. In this case the CRTC
does not distinguish between those two numbers;
it uses only the sum. Note, that the segment
length is not determined by #. Visible. The
segment length is only determined by the number
of visible characters the CRTC extracts out of the
characters loaded in by DMA.

Window within the current row

In,a window, both the number of hidden and visible
characters in background, and the number of
window segments have to be specified correctly.
The total number of hidden and visible characters
determines the number of characters fetched from
memor)i:' The CRTC takes the number gf visible
characters in the segment and the window
coordinates of the Window Block in order to place
the window. The specified number of visible
characters for a particular segment has to match
the number the CRTC extracts from the characters
loaded by DMA.

TOTAL NUMBER OF SCAN LINES

TSLC NON-INTERLACED
OR RFI MODE

00000 1
00001 2
00010 3
00011 4
00100 5
00101 6
00110 7
00111 8
01000 9
01001 10
01010 11
01011 12
01100 13
01101 14
01110 15
01111 16

11111 32

INTERLACED
MODE

1+1=2
1+2=3
2+2=4
2+3=5
3+3=6
3+4=7
4+4=8
4+5=9
5+5=10
5+6= 11
6+6=12
6 + 7 = 13
7 + 7 = 14
7 + 8 = 15
8 + 8 = 16
8+9=17

Figure 2-28 Total Number Of Scan Lines As
A Function Of TSLC

2-32

03901A-30

D15

RAe-In

, 03901A-31

Figure 2·29 Row Contrl,ll Block (US = 0)
f

Do

--------11
1ST

------~~------~--------------------~'"1i"'
------11

nTH

~~""----~~--"iT
::~~~~~;';'~~;-~----~~~--~~--~--~~=1

Figure 2·30 Row Control Block (US = 1)

2·33

RA3,RA4' These two words contain the
character code address pointing to the beginning
of the character code string of this segment and
the continue bit (C).

C=O This is the last segment of this row.
C=1 The segment list continues.

If this pointer is "0," then the space specified by
the visible number of characters for this segment is
filled with the fill code.

RAS,RA6' The pointer links to the attribute string
of this segment.

The segment header (RA3-RAs) must be
repeated for each additional segment. If the LNK
bit in RAo is set, the two words following the last
segment header must contain the pointer to the
Row Redefinition Block.

Row Redefinition Block

The Row Redefinition Block is composed of five
words. These words hold information relevant to
the display characteristics of the row (Figure 2.31).

\

RRO Total Scan Line Count (TSLC) 5 Bits
Normal Character Start (NCS) 5 Bits
Normal Character End (NCE) 5 Bits

RR1 Row Attributes 5 Bits
Superscript Character Start (SPCS) 5 Bits
Superscript Character End (SPCE) 5 Bits

RR2 Row Attributes 5 Bits
Subscript Character Start (SBCS) 5 Bits
Subscript Character End (SBCE) 5 Bits

RR3 Cursor Start 5 Bits
Cursor End • 5 Bits

RR4 Double Row (DR) 2 Bits
Underline(UND) 5 Bits
Shifted Underline(SUND) 5 Bits

RRo

All this information is captured by the CRTC. It acts
on the invoking character row and succeeding
ones until a new Row Redefinition Block is
invoked.

The Total Scan Line Count (TSLC) defines the
total number of scan lines per row minus one.

Normal Character Start (NCS) and I=nd (NCE)
define the vertical position and height of normal
characters within the row.

The same. definition applies to superscript and
subscript characters with SPCS, SPCE, SBCS,
SBCE. .

When the scan line count is less than the character
. start scan line value (NCS, SPCS, or SBCS) or lar
ger than the character end scan line value (NCE,
SPCE, or SBCE), Ro-R4 puts out 1FH. Figure
2.32 shows an example. Normally the character
slice with the address 1 FH is programmed to be
blank.

More details concerning these parameters are
included in Section 2.6, Attributes.

There are ten user-definable row attribute bits
which are output on the APo-AP4 and APS-AP10
pins during the horizontal retrace time. Bits 014
through 010 in RR1 are output on AP10-APS,
while bits D14 through D10 in RR2are output on
AP 4-APO' This row attribute can be registered
externally to the CRTC with the falling edge of
HSYNC. This feature can be used for a set of user
definable attributes or to implement functions
which are not directly supported by the CRTC; for
example, loadable character fqntgenerator or
horizontal smooth-scroll. Cursor start and cursor
end applies to partial, reverse and underline
cursors, and defines the position and height of the
corresponding cursor. (See Section 2.6.5, Cursor
Display.)

The Double Row bits (DR1,DRo) allow the user to,
insert double row characters in the text on a row

Os 04 Do

~~------------------r---------~------+-----------------~ •
RR,

RR,

03901A·32

Figure 2-31 Row Redefinition Block

2-34

03901A·33

SCAN LINE
COUNT CHARACTER CELL Ro-R.

10

TSLC= 10 NCS=2

1FH

1FH

O.

1FH

1FH

NCE=8

Figure 2-32 Character Placement

basis. The code is interpreted as follows:

OR1 ORo

0 0 Normal Character Row
0 1 Reserved
1 0 Top Half of a Double Row
1 1 Bottom Half of a Double Row

The linked-list for a double size row.consists of two
Row Control Blocks, one for the top half of the row
and one for the bottom half. The data accessed by
these row control blocks should be identical, apart
from the DRbits in the Row Redefinition.Blocks.

Underline specifies the scan line number on which
the underline attribute acts.

Shifted underline acts the same way as underline
except that it applies to the shifted underline
attribute.

,Row Redefinition Block Loading Process

If RCBn initiates loading of a Row Redefinition
Block (LNKF1), the CRTC will load the same Row
Redefinition Block also for Rown+ 1 (LNK=O) and
Rown+2 (LNK=O) to get the new parameters also
for the two remaining row buffers. Note, that for
these tw.O rows the CRTC only loads the Row
Redefinition Block (5 words) and not the Row
Redefinition Block Pointer (last two words of the
RCB). This means, that the Row Redefinition
Block should not be modified, until the CRTC has
fetched these two rows.

Window Information Management

The Top Of Window Register (TOW) points to the
first word of a Window Definition Block (WDB),
which specifies the window characteristics. There .
is one Window Definition Block per window, and
they are linked together starting with the topmost
window on the screen (whose WDB is painted by
TOW). If TOW=O, no window is displayed on the
screen.

The Window Definition Block defines the following
parameters (see Figures 2.33 and 2.34):

WDO,WD1. First Window Control Block link
pointer (two words)

WD2,WD3' Next Window Definition Block link
pointe,r (two words)

WD4' The start and end window row numbers
(one word)

WDs. The. start. and end window character
numbers (one word)

The WindOW Row Control Block Point points to the
Window Row Control Block specifying the first row
of the window. The most significant bit of WDo
(Smooth-Scroll Window, SCW) indicates if this
particular window should be scrolled:

sqw Smooth-Scroll Window

o Window Smooth-Scroll Disabled
. 1 Window Smooth-Scroll Enabled

Note, that smooth-scrolling does not occur until
conditions specified in the Main Definition Block
are satisfied.

When the pointer to the next Window. Definition
Block is equal to zero, there are no more windows
on the screen. Otherwise, the pointer indicates
the address of next Window Definition Block.

The. start and end window row numbers are two
bytes which indicate the vertical position of the first
and last window rows on the screen expressed in
row Qumber. .

2-35

03901A-34
\ .

Figure 2-33 . WiI;dow Definition Block (LIS = 0)

03901A-35

Figure 2-34 Window Definition Block (LIS = 1)

The most significant bit of WD2 must be "O"when
US=O.

The start and end window character numbers are
two bytes which indicate the horizontal position of
the first and last window characters on the screen.

')

As mentioned above, the Window Control BlOCk is
identical to the Row Control Block (Figure 2.35 and
2,36). However, some restrictions should be
observed when dealing withwindows:

The number of visible characters of overwritten
background segment is effectively interpreted by
the row management unit whenever a window is
present withir the row. When no window is
present, the CRTC needs only the sum of hidden
and visible characters of the loading segment to
know the length of the segment in memory.

The start and end positions of the window have to
match segment boundaries in the background
display. A window may span multiple segments
(See Figure 2.37).

Only one window can exist between the row

numbers sPecified by start window row # and end
window row #. I

When the contents of a window row's linked-list do
not fill the window's row, the fill code is used to fill
the remaining character positions of that window's
row. During that time, the bus is not released and
dummy DMA cycles are executed.

The Window Redefinition Bloc,k (Figure 2.38) is
structured similar to the Row Redefinition Block.
TSLC is left out, since a window row has. to have
the same number of scan lines as the background
rowftowrl~& .

2.6 ATTRIBUTES

This section focuses on the Character Attribute
architecture and the variouS character display
options handled by the CRTC. Since the user may
have very specific display requirements that match
his own design, the CRTC has been designed to
provide great versatility in'lhe attribute options.

In the character stream two pieces of information

2-36

03901A-37

Figure 2·35 Window Row Control Block (US = 0)

03901A-38

Figure 2·36 Window Row Control Block (US = 1)

2·37

are present:

1. The actual character code.

2. An attribute invoking flag that may be part of the
character code, or a ~pecific code by itself. This
option is. programmed via that Attribute Flag
Register internal to the CRTC. The function of
this register is describe,d in' Section 2.3
(Register Description).

Once the choice of attribute:invoking flag(s) has
been made it is possible to either display orinhibit
the display of the flag by using the Invisible
Attribute Flag (IAF) bit contained in Mode Register
1. If IAF=O, each code invoking an attribute is
displayed, meaning that this specific code not only
invokes an attribute, but is also output on
CCO-CC7 to address the character font generator.
This character is affected by the invoked attribute.
If IAF=1, any code invoking an attribute is not
loaded into the row-buffer and the invoked
attribute then affects the following character. If two
or more successive flags are present in the stream,
only the last one (and the attribute it invokes)

BACKGROUND SEGMENT 1 SEGMENT 2

WINDOW 1 SEGMENT 1

affects the first displayable character code
encountered (see Figure 2.39). Figure 2.40
shows the Attribute Flag detect mechanism. .

A character attribute is a code which affects the
display characteristics of a character or set of
characters .on the screen.

The CRTC djstinguishes four levels of attributes:

• Character attributes
• Field attributes
• Row attributes
• Frame attributes

2.6.1 Demand Attribute Fetch

The CRTC supports a flexible relationship
between character. code fetches and associated
attribute fetches. Since attributes usually do not
change on a character basis, the bus occupancy of
the CRTC can be reduced (increasing system
performance), by invoking attributes only at
attribute transitions, i.e., demand attribute fetch.

SEGMENT 3 SEGMENT 4

WINDOW 2 , SEGMENT 1 I SEGMENT 2 I SEGMENT 3

WINDOW 3 SEGMENT 1
,

03901A·36

Figure 2-37 . Window Overlay

Do

03901A·38

Figure 2-38 Window Redefintion Block

2-38

After power-up, at least one latched attribute must
be specified to set (initialize) the default attribute
word. .

The CRTC supports various options; the three
most common implementations' are outlined
below. All three options have similar implications'
on text editing. They differ, however, when
analyzing bus utilization and attribute editing ..

Option 1

Each character code invokes an attribute. This is
the most straightforward implementation, and
editing is very easy. However, it puts the highest
burden on the bus (low performance system). For
this mode IAF=O and the Attribute Flag Register
contains OOOOH.

Characters Attributes

.~~: ~8B~lt'~~I ~~~~'2~Bit~. ~~I One.For.One
Optio" 1

Option 2

Option 3

036848·6

03901A·41

tiE '''~ f3t------------t1 ::'::.7.:'.::'."

t::ftY1t--------------I1 :::.:::~~':"...::::'
Flgure2-39 Attribute Fetch Options

. Figure 2-40 Attribute Flag Defect Mechanism

2-39

FETCH
ATTRIBUTE
ENABLE

Option 2

A single bit within the character code specifies
whether ,an attribute should be invoked. Adding or
deleting attributes involves two actions:

Set or reset bit in character code

Update the attribute list (block move)

This options reduces the required bus bandwidth
by about 50% (permanent savings), with the cost
of a single data block move, to update the attribute
list. Segmentation can reduce the editing
overhead. However, it· increases the required bus
bandwidth (larger RCBs). The editing impact to the
character list is relatively low, but the character set
is reduced to 128 characters.

Option 3

This option implements a demand attribute
scheme with a character set of 255 characters and
a single attribute flag character. Adding and
deleting attributes involves two actions.

Insertion or deletion of the flag character (block
move)

Update of the attribute list (block move)

This option, similar to the previous option, reduces
the required bus bandwidth by approximately
50%, but demands more CPU effort when editing
the attribute list.

Character Attributes

Character attributes are word quantities which
affect various CRTC output signals and other
operations on a character-by-character basis.
These words reside in memory and are accessed
via the attribute-segment pointers associated with
the character-segment pointers in the Row Control
Blocks. The character attributes are stored in ,
parallel with the corresponding character code in

each row buffer. The bits in the attribute worp are
discussed below:

The Attribute Port Enable and Attribute Re
definition Register affect the attribute processing.
Referto Section 2.3 (Register Description).

Blink

When this bit' is set in the attribute word, the APo
pin outputs a periodic signal whose rate and duty
cycle are specified in the Main Definition Block.
When this bit is reset, APo outputs a Low level.
Blink may be programmed to be a user-definable
attribute. In this case, no internal blink attribute
processing is done. '

Underline

When this bit is set in the attribute word, the AP1
pin outputs a High for one scan line in the
character cell. The scan line on which the
underline is active is specified in the Row
Redefinition Block and can, therefore, be changed
on a row-by-row basis. If this attribute is made user
definable (see Attribute Redefinition Register), the
pin is active for all scan lines of the character cell.
Underline is active for two scan lines when
displaying double-height rows.

Shifted Underline

This bit acts like Underline except that the Signal is
output on AP2 and the scan line number is
specified by an independent 5-bit word also
contained in the Row Redefinition Block. Shifted
Underline also may be Overbar or Strike Through.

Subscript

When this bit is set, the affected character is
displayed on a set of scan lines specified by
subscript character start line number and subscript

Attribute Word Organization

Bft 15: Latched/Unlatched
Bft 14: Cursor
Bft 13: Ignore Character
Bft 12: Reserved
Bft 11: Reserved
Bft 10: User-Definable
Bft 9: User-Definable'
Bft 8: User-Definable

2-40

Bit 7: User'Definable
Bit 6: Highlight
Bit 5: 8everse
Bit 4: Superscript
Bit 3: Subscript
Bit 2; Shifted Underline/Strike Through
Bit 1 : Underline
Bit 0: Blink

character end line number in the Row Redefinition
Block. This bit is generally used to display
subscript characters. In addition to this internal
process, a High level is output on' AP3 indicating a
subscript character. This feature may be used to
switch to a·different character font generator. The
subscript attribute pin is active for all scan lines
between start line number and end line number. If
.it is programmed to be a user-definable attribute,
the pin is active for all scan lines of the character
cell. .

. Superscript

Similar to subscript. The set of scan lines is speci
fied by superscript character start line # and super
script character end line # in the Row Redefinition
Block. The attribute is output on AP 4. It can also
be programmed to be a user-definable attribute.

Reverse

When this bit is set, a High level is output on APs.
This bit may be used to reverse the invoking
character on the' screen. No internal attribute
processing is done, so this attribute can be treated
as a user-definable ,one. Reverse is exclusive
ORed with the reverse cursor.

Highlight

When this bit is set, a High level is output on AP6'
This bit may be used to highlight the invoking'
character on jhe screen. No internal attribute
processin,g is done, so it can be treated as user
definable if desired.

User·Definable

These four bits have their state output on the
'matching pins (AP{AP10)' and can be used as
desired to affect the invoking characterS ..

Ignore Character

When the Ignore Bit is set to "1," and the Display
Hidden (DH) bit in Mode Register 1 is reset ("0"),
neither the affected character nor its attribute code',
are . loaded into the row buffer and thus are not
displayed. When DH is set, the ignore characters
(those having invoked . the ignore attribute) are'
loaded along ,with their attribute code. The ignore
bit is not put out on the attribute port.

Cursor

If this bit is set, an attribute cursor is displayed at .
the affected character position, dependent upon
the mode of the cursor display logic. See section
on cursor display.

Latched/Unlatched

When this bit of the attribute word is set ("latChed")
the attribute information applies to all characters
following the character that invoked the attribute
word. This is described in more detail in the
section qn field attributes. This bit is not put out on
the attribute port.

Character Attribute Timing

The attribute .information present on the attribute
port is output coincident to, or one character clock
after the invoking character, depending upon the
skew-bits in Mode Register 1. This compensates
skew between character codes and attributes, if
external character code pipe linIng is required.

Attribute Port Enable Register

The function of this register is described in Section
2.3, Register Description. The superscript and
subscript effect are not cancelled by resetting the
corresponding bits in this register; in fact, this only
drives the corresponding attribute port pins Low.
The internal attribute processing still takes place.
To disable subscript and supersc;ript action, the
Attribute Redefinition Register must be used.

The subscript and superscript, when enabled, may
be· used to choose between a standard character
generator and a specific character generator for
subscript and/or superscript. However, in most
applications, one standard font generator can be
used for all three.

Attribute Reciefinition Regis~er

Four user-definable attributes are provided for
optional external attribute processing. If this
number is nof sufficient, then the highlight and
reverse attributeS may be used as usef-definable '
without any modification:. .

If this is still not enough, the user can disable the
normal effect of other attributes and turn them into '
user-definable attributes. These attributes are:

2-41

superscript
subscript
shifted underline
underline
blink

This yields 11 user-definable attributes. The
function of the Attribute Redefinition Register is
described in the Register Description Section.

If a user-definable attribute is directelyrnixed with
the seria.i Video signal put out by the.Am8152A,
the attribute must be delayed by one character
clock plus one dot clock. This· compensates for
the internal delay in the Am8152A.

2.6.2 Field Attributes

A field attribute affects a set of successive
characters. This feature reduces memory
consumption and software complexity compared

. to character attributes when dealing with character
strings. Field attributes are similar to character
attributes and are implemented by setting. the
latched attribute bit.

When a character does not invoke an attribute, it
implicitly invokes the default attribute. Therefore,
every character appearing on the screen is
associated with an attribute, in one of the following
manners:

• The character invokes either a latched or
unlatched attribute. This attribute affects that
specific character (if it is a displayable character).

• The character does not invoke an attribute. The
default attribute affects this character.

Additionally., invoking a latched attribute also
reloads the default attribute, As specified earlier,
when an Ignore attribute is invoked and Display
Hidden is reset, the attribute word and the
character are not loaded in the. Row buffers.
However,. if the invoked attribute is a latched
attribute, then the Ignore attribute is latched and
succeeding characters are not loaded. On the
other hand, if they invoke an attribute with Ignore
reset, the ignore function is cancelled for all
succeeding characters as soon as a latched
attribute with ignore bit reset is invoked. , .

A latched attribute affects all subsequent
characters not involving attributes, whether they
are in windows or background, until a new latched
attribute is encountered. As a result, a latched
attribute wraps around the screen, ripples t~rough

rows, background-window· and window-back
ground, etc.

2.6.3 Row Attributes

The Row attribute§i are 10 bits that are output on
APo-AP 4 and APS-AP1Q, at horizontal retrace
time. This is a CRTC feature that enables .the user
to modify display characteristics on a row-by-row
basis.

The Row attributes are specified in the Row
Redefinition Block and may be latched by external
logic at HSYNC fall-time. Some examples in the
applications of Row attributes will follow. The
shape of the modified area(s) is always a horizontal
screen slice(s): ~

reverse row(s)
highlight row(s)
blink row(s)
color palette addressing
row(s) underline
change character set
switch to semi-graphic generator
switch video output to a graphic
display unit to mix graphic and text
blank row(s) (secret prompts)

The row attributes are internally latched and do not
need to be rewritten on each row. Therefore, the
internal Row Attribute Register is updated each
time a Row Redefinition Block is invoked (see
Figure 2-48 Row Attribute Timing).

The row attribute word is output seyen clocks after
BLANK goes High and is removed one clock
before BLANK goes Low. However, a pro
grammed skew between BLANK and the attribute
output still applies. The horizontal timing para
meters must be chosen in such a way that the
edge of HSYNC falls in th~ interval where the
attribute port provides valid data.

2.6.4' Frame Attributes

Frame attributes a(fect the character display
characteristics of the entire screen. These
attributes are stored in the Main Definition Block
and define:

x-y cursor positioning
fill character code
x-y cursor blink rate and duty cycle
smooth-scroll of window or background
smooth-scroll rate and direction r

2·42

2.6.5 Cursor Displays

Cursors are used to locate specific points in the
text that need particular attention. Two types of
cursors are supported by the CRTC:

single absolute cursor (x-y cursor}
multiple attribute cursors

The Absolute Cursor

This cursor is positioned on the screen according
to its "X" (horizontal) and "Y" (vertical) coordinates
speCified in the Main Definition Block, and fetched
by the CRTC during the vertical retrace time.

"X" is expressed in character units. "x=o" indicates
the first character column. "Y" is expressed in row
units. "Y=O" indicates the first row on the screen.
This cursor is called absolute because it refers to
the screen boundaries and is not dependent upon
the text displayed on the screen. When the text is '
scrolled, the cursor position stays stationary
relative to the screen. However, while the screen
is smooth scrolling, this cursor stays with row "Y,"
until the topmost row is relinked. At that time, the
absolute cursor jumps to the new row "Y." This
behavior can cause' the absolute cursor to move
temporarily across background/window bound
aries. Therefore, while smooth scrolling mixed
screens, absolute cursor display should be
disabled.

When the CRT monitor beam matches the cursor
position, a CRTC internal cursor signal is activated
to indicate the match. This signal may be steered
internally to one of three output pins: cursor pin,
reverse pin, and underline pin.

The choice of the output pin is made through the
cursor mask contained in Mode Register 2. In the
same register, a cursor enable bit, when reset,
controls disabling the Absolute Cursor. Further
more, it is possible to partially affect the character
position on the screen by speCifying the scan line
boundaries in which the output Signal will be
active. These boundaries are specified in the Row
Redeflnition Blocks by CURS and CURE.

(
The Attribute Cursor

This cursor is positioned with the visible character
that invoked an attribute with Cursor Bit=1. A
display can therefore contain as many attribute
cursors as there are character positions.

An attribute cursor is implicitly linked to the text in
which it is contained. If the text scrolls up, the

attribute cursor scrolls with the text, whereas the
absolute cursor would remain steady.

When an attribute cursor is encountered, the same
operation' as with the absolute cursor occurs.
Mowever, a different set of bits in the cursor Mask
Register steers the attribute cursor signal to one of
the three outputs. This allows the user to distin
guish the attribute cursor from the,absolute cursor
on the screen. The same scan line boundaries are
used for both cursorS.

Cursor Characteristics

One out of four shapes may be chosen for each of
the two cursors described earlier:

Cursor Whole. The cursor signal is output on
the cursor pin for each scan line of the character
position.

Cursor Part. The cursor signal is output on the
cursor pin for the specific scan lines contained
between cursor start and cursor end boundaries
specified in the Row Redefinition Block.

Reverse. Same operation as cursor part except
that the Signal is output on the reverse attribute pin
after being exclusive ORed with the internal
reverse attribute signal.

Underline. Same operation as cursor part
except that the signal is output on the underline
attribute pin.

2.6.6 Fill-Code Attributes

When the Row Management Unit reaches the end
of the last segment of a row, and the row-buffer is
not full (96 characters or 132 depending upon
"slim" setting), the Row Management Unit fills the
remaining space in the row buffer with a specific
code specified by the user in the Main' Definition
Block. This code is the fill code, and needs special
attention when it appears in text. Each time the
row buffer is not filled by the contents of the linked
list, the fill code is loaded into the row buffer.

If the fill code is an attribute invoking code, the
Row Management unit may not invoke an attribute,
depending on the "FAT" bit in the Main Definition
Block. If the user needs to display the fill code
associated with an attribute, he should then set
the "FAT" flag (Fill Code Attribute in the Main
Definition Block) to one and add the desired
attribute in the attribute list of the last segment
invoked. Only one attribute word is fetched for the
fill characters, so this attribute must be a latched

2-43

attribute to. affect all fill characters loaded into the
row buffer.

The ignore attribute is discarded when associated
with the fill code.

2.7 INTERRUPT OPERATIONS

An interrupt may occur whenever the CPU needs
to be notified of various events internal to the
CRTC or that an operation has just been
completed. There are two sources of CRTC
interrupts:

Vertical Interrupt

The vertical interrupt, if enabled, can be used as a.
real-time interrupt by the CPU or it can be used as
an indication that certain CRT updates should take
place. The vertical interrupt is issued when the "n7
th" character row has been loaded by the CRTC
into its internal row buffers. The value of "n" is
determined by the 8-bit VERTINT field in the
HSYNC Register. When"n" is set to "1," the CRTC
issues a vertical interrupt after the last segment of
the first row is completely loaded. (See·also

. section on register programming.)

Smooth-scroll Interrupt

The smooth-scroll interrupt is used to inform the
CPU when to update the display linked-lists during

. smooth-scrolling; See Section 2.8, smooth-scroll
mechanism, for more details.

Interrupt Protocol

A complete interrupt cycle consists of an interrupt
request by the CRTC followep by an Interrupt
Acknowledge of the CPU (Figure 2.41). The
request, which consists of INT being pulled Low by
the CRTC, notifies the CPU that an interrupt is
pending. The Interrupt Acknowledge cycle
notifies the peripheral that its interrupt has been
recognized. In return, the peripheral may provide
an interrupt vector to the CPU to identify itself (see
the sectionon Row Mahagement Unit).

The CRTC has two sources of interrupt and each
interrupt source has three bits that control' the
issuance of an interrupt. These bits are the
Interrupt Pending bit (IP), the Interrupt Enable bit
(IE), and the Interrupt Under Service bit {IUS). In
addition to the control bits, two further bits control
the interrupt behavior of the CRTC. These are the
Disable Lower Chain bit (DLC) and the No Vector
bit (NV) in Mode Register 2.

Peripherals are connected together via,' an
interrupt daisy-chain formed with their lEI (Interrupt
Enable In) and lEO (Interrupt Enable Out) pins.
The daisy-chain resolves the interrupt priority.

For the purpose of this description, the CRTC may
be considered as having two interrupt sources:
Smooth-scroll, and Vertical Interrupt The Smooth
scroll Interrupt has higher priority.

Figure 2.41 'is a state diagram of interrupt
processing for an interrupt source (assuming its IE
bit is ".1 "). An interrupt source with an interrupt
pending ~IP=1) makes an interrupt request (by
pulling INT Low) only if it does not have an interrupt
under service (IUS=Low), no higher priority
interrupt is being serviced (IEI=High), arid no
Interrupt Acknowledge transaction is in progress.
lEO is not pulled down by the interrupt source at
this time. lEO continues to follow .lEI until an
Interrupt Acknowledge occurs. Some time after
INT has been pulled Low, the. CPU initiates an
Interrupt Acknowledge bus cycle. Between the
falling edge of INTACK and the falling edge of DS,
the lEI/lEO daisy-chain settles. AS is optional. Any
interrupt source with an interrupt pending (IP=1)
holds its lEO line Low· during Interrupt Acknow
ledge. All.other interrupt sources make lEO follow
lEI (transparent). When DS falls, only the highest
priority interrupt source with a pending interrupt
(IP=1) has its lEI input High and its IUS bit set at "0."
This is the interrupt source being acknowledged,
and at this point it sets its IUS bit to "1." If the
peripheral's NV bit is "0," the interrupt source
identifies itself by placingjbe interrupt vector on
ADO-AD? Each time DS is activated during
Interrupt Acknowledge cycles, the vector is put
out The upper byte is driven Low. If the NV bit is
"1," the peripheral's ADo-AD15 pins remain
floating, thus allowing external circuitry to supply
the vector.

While ,an interrupt source has an Interrupt Under
Service (IUS=1), it prevents all lower priority
deVices from requesting interrupts by forcing lEO
Low. When interrupt servicing is complete, the
CPU must reset the IUS and the IP bits.

A peripheral's Interrupt Enable bit (IE) modifies the
peripheral's behavior in the following manner-if
tlie I E bit is "0," the effect is as if all !nterrupts from
the peripheral are disabled. However, the
peripheral can still set its IP bit if an interrupt is
required. lithe IE bit is cleared while the source is
driving INT Low, INT raturns High until lEi's set. To
prevent race conditions, the CPU should mask out
interrupts from the peripheral before clearing IE.
Note that IE, when cleared, also prevents the
CRTC from responding to an Interrupt Acknow-

2-44

ANY

HIGH

HIGH

ANY

ANY

03901A-40

ANY

IP IUS IE

~

LOW

STATE 1 STATE 2

~ ~ 1J
LOW LOW

IP IUS IE IP IUS IE

C2.EE] l2EEJ
STATE 3

~
STATE 4

jJ,
ANY

IP IUS IE

.~

ITEJ

ANY

IP IUS IE

IANYI.O I 0 I

STATE 7

Transition Lagend

f'A\ The peripheral.detects an Interrupt condition and sets
t.::.{ Interrupt Pendmg.

rs\ All higher priority peripherals finish interrupt service,
~ thus allowing lEI to go High.

rc\. An interrupt-acknowledge transaction starts, and the
l:;:{ IEI/lEO daisy chain settles.

'i)'\ The interrupt-acknowledge ,.ransaction termi.nates with
C::.{ the peripheral selected. Interrupt Under Service (IUS) is

set to 1, and Interrupt Pending (IPJ mayor may not be
reset

f'E\ The Interrupt"acknowledge transaction terminates with a
&:::.{ higher priority device having been selected.

~ The Interrupt Pending bit in the peripheral is reset by an
~ I/O operation.

f'G'\ A new interrupt conditio~ IS detected by the peripheral,
t:;;!{ causing I P to be set again.

fH\ Interrupt service is terminated forthe peripheral by
L!!{ resetting IUS.

[e) IE is reset to zero, causing interrupts to be disabled.

[!) IE is set to one, re·enabling interrupts.

1. ThiS diagram assumes MIE= 1. The effect of MJE""Q is
the same as that of setting IE""O.

2. The DLe bit does not affect the states of Individual
interrupt sources. Its only effect IS on the lEO output of
awholeperipheral

G > STATE 6

ANY LOW

IP IUS IE

I ANY I 1 10 1

STATES

State Legend

m ~Zri~~:rr~:ts are pending or under service for this

OJ ~~ei~~~~~~t~; ~~I~i~~~n~O~~ Interrupt reques·t has

m ~:~~t~~~~~!~~e~i~i~~; ~~~~~yi~~~~~~~~~f~~~S~nhas been
. interrupt under service, and this has forced lEI Low.

rn ~~ ~~~~~~~;·i~~i~~~:~~g~:r:le~~:~c;ej~~inn~rl~i:~:uSptnd
m ~i~~~~e~~~~:i~~c~~~;~:~~leh~~~~~~~/~~~~:~~~~~sio~~ltn~

lEI Low.

rn :ha~~e:ife~~~r~~~y ~n(J~::~~u~~ G~~i~a~:;~cyei~e~~ii~~
Low) jf a higher priority device generates an interrupt.

m !~~ ~Se~~~nS;~~~: ~~~~eh!r~~.cePt that an interrupt is

rn interrupts are disabled from this source because IE = °
III ~~:~~~~~~~;~e~i~~~~~s~~~ ~~i~~~~~c; :~~ lower

3. Transition I to state 6 or 7 can occur from any state
except 3 or 4 (which only occur during interrupt
acknowledge).

4. Transition J from state 6.or 7 can be to any state except
3 or 4, depending on the value of lEI, IP, and IUS.

Figure 2-41 State Diagram for an Interrupt Source

2-45

ledge. While IE is cleared, lEO follows 'lEI.
The peripheral's lEO line can be forced
unconditionally into the Low state by setting the
DLC bit to "1."

2.8 SMOOTH-SCROLL MECHANISMS

The Am8052 provides very powerful smooth-scroll
capability with minimum interaction by the CPU.
Window(s) or background can be smooth-scrolled
either up or down at a rate that is programmable via
the scroll parl;imeters field in the Main Definition
Block. Since the CRTC is designed towork with a
linked-list structure, some' precautions should be
taken when relinking the text after each scrolled
row.

General Smooth-Scrolling Rules

Either windows or background can be scrolled at
one time; they cannot be scrolled at the same time.

When a window splitting the screen vertically
(sharing the row buffer with background

,characters) is intended to be smooth-scrolled,
then all of its rows must have the same total scan
line counts (TSLC).

Double Buffering Technique

Smooth-scrolling operation is achieved by moving
the appropriate data up or down on a scan line
basis. Therefore, the CRTC adds an offset to the
internal row's, scan line count and outputs the
result on Ro-R4' This results in a displacement of
the data on the screen by the number of scan lines
equal to the offset. As soon as the last scan line
(top or bottom depending on the scroll direction)
of the first row of text has reached the· top
extremity of the screen, a text. relink, has to be
made. This relink serves to push the disappearing
row off the screen or to link a new row onto the top
of the screen.

In order to maintain asniooth relink transaction and
allow for CPU time constraints, the Am8052
controls the relink timing through interrupts and
double buffering' of pointer register. As soon as
the CRTC has begun smooth-scrolling a character
row, it generates an interrupt. The CPU which
maintains the linked-lists responds by writing to
"Top of Page (Window) Soft" a pointer value that
provides the correct linked-list for the display after

, it has completed the scroll of the current row. The
CRTC uses this new value as the active "Top of
Page (Window)" only after the row scroll in

progress is completed. This double buffering of
the "Top of Page' (Window)" values allows
maximum time (one character row scroll time) for
the CPU to relink and respond to the interrupt.

According to the preceding, when the user wants
to smooth~scroll a portion of the, display
(background or window), he should define two
Main/Window Definition Blocks, and flip between
those two blocks each time a smooth-scroll
interrupt occurs. This technique allows the user to
execute the link modifications on the unused
definition block while the other is being processed
bytheCRTC.

Detailed Interlock Mechanism:

The Top of PageIWindow Soft is the key interface
between the CPU and the CRTC when dealing
with smooth-scrolling.

When the CPU writes a pointer value into this
register, it does not modify the actual Top of
Page/Window Register (Hard Register) used by
theCRTC to fetch the Main/Window Definition
Block. In fact, the transfer between this temporary
register to the actual register takes place according
to ,the smooth-scroll algorithm internal to the
CRTC. Therefore, if the smooth-scroll process has
not been enabled, writing to Top of PageIWindow
Soft does not change anything in the link
architecture and this register should be used only
if smooth-scroll operation is (or will be) performed.
If the user wants to. change the link in a non
smooth-scroll condition he should use the "Top of
PageIWindow Hard" Register.

The smooth-scroll mechanism is enabled by
setting the Smooth- Scroll Enable bit (SSE) in the
Main Definition Block. Two other bits in the Main
Definition Block are used to select Window/
Background scrolling and. ,Up/Down scrolling
directions. Additionally, when scrolling 'windows,
the Smooth-Scroll Window bit (SCW) in the
corresponding Window Definition Blocks must be
set. All windows which have SCW set are.scrolled
simultaneously. Windows which have SCW reset
remain steady.

Smooth scrolling is stopped by resetting the
enable bit (SSE-Bit) in the Main Definition Block.

When the backgrC'und is scrolled only Top Of
Page Soft needs to be updated; loading Top of
Window Soft has no effect. Similarly, when '
scrolling windows only Top Of Window Soft is
relevant.

2-46

Scroll Down

The Top of PageIWindow Hard Register links to
the MainlWindow Definition Block of the currently
displayed text. When a down scroll is initiated, the
current text is moved down a fraction of a row. The
empty space at the top of the screen is filled with a
fraction of the scrolled-in row. Therefore, the
CRTC has to know the pointer to the new
Main/Window Definition Block before it can start
scrolling. The pOinter is loaded into the Top of
Page/Window Soft Register.

The programming sequence shown in Figure 2.42
refers to both scrolling background or windows.

CRTC
REGISTERS

MOBs,
WDSs

11) 12)

The example shows two rows scrolling in a
background or window consisting of a total of four
rows. When scrolling the background the TOP
Soft Register is reloaded and two Main Definition
Blocks are used to implement the "Double Buffer"
technique. If a window is scrolled, the TOW Soft
Register and two. Window Definition Blocks are
involved. The numbers in the programming
sequence below correspond to Figure 2.42.

1. The CRT system displays a steady screen. The
TOP/TOW Hard Register links to a MDBIWDB
with smooth-scroll disabled. The smooth-scroll
process is inniated from this steady state.

13)
SIP=O

.--_15_) --. ~T

2ND SCROLLED IN ROW

03901A-42

RCBs.
WRCSs

1ST SCROLLED IN ROW

ORIGINAL 1ST ROW

ORIGINAL 2ND Rbw

L

ORIGINAL 3RD ROW

ORIGINAL 4TH ROW

Figure 2-42 Scroll Down Sequence

2-47

I AFTER SCROLLING DOWN
TWO ROWS 15)

I
I

-.J

BEFORE SCROLLING 11)

2. The CPU prepares another MOB/WOB with
smooth-scroll enabled. This MOBIWOB con
tains a pointer to the ROBIWRCB for the
scrolled-in row which in turn points onfo the first
row currently displayed on the. screen. The
CPU loads the pointer to this MOBIWOB into
~oprrow Soft Register.

3. The CPU then enables smooth-scrolling by
setting the smooth- scroll bit in the MOBIWOB
described in Step 1. The CRTC detects this
change when it fetches this block during the
next vertical retrace period. The first frame after
this change still reflects the same unscrolled
display. Scrolling begins with the following
frame. If the TOprrOW Soft Register was not
initialized, the start of scrolling waits for the
initialization. At this time the CRTC transfers
the contents of the TOprrOW Soft Register to
the TOprrOW Hard Register to allow scrolling
to the new row. It issues an interrupt on
smooth-scroll event to notify the CPU that the
TOprrOW Soft Register can be updated. The
update can take place at any time until the new
row is entirely scrolled-in. If the update was not
performed at that time, the displayed text
scrolls up (hard-scroll) one row and this same.
row is smooth-scrolled in again.

4. The TOprrOW Soft Register is relinked to the
tvlOBIWOB pointing to the ROB/WRCB of the
next row to be scrolled-in. If only one row
should be scrolled, Step 4 is left out. For
scrolling "n" rows, Step 4 is repeated after each
interrupt issued by the CRTC "n-1" times.

5. To stop the smooth-scroll process, the new
pointer in the TOP/TOW Soft Register points to
a copy of the previous MOBIWOB in which- the
SSE-bit is cleared. Scrolling of both
background and windows' is stopped by
resetting SSE. The crnc notifies the host
CPU that smooth scrolling is completed by
issuing a last smooth scroll interrupt with SIP'
(Smooth Scroll in Progress) being reset.

Scroll Up

The numbers in the progralnmingsequence below
correspond to Figure 2.43.

1. The TOprrOW Hard Register links to the
MOBIWOB of the currently displayed text.

. Smooth-scroll is disabled.

2. The scroll process is initiated by enabling
smooth-scrolling in the MOBIWOB. The
TOprrOW Soft Register does not need to be

loaded at that time. The last row displayed links
to the row to .be scrolled-in. ,The CRTC detects
the change of the scroll enable bit when it
fetches the block during the next vertical
retrace· period. After it has started smooth
scrollil')g it issues an interrupt on smooth-scroll
event to make the CPU update the TOprrOW
Soft Register.

3. The TOPITOW Soft Register link$ to the
MOBIWOB pointing to the RCBIWRCB ,of the
row following the scrQlled-out row. If only one
row should be scrolled, Step 3 is left out. ' For
scrolling "n" rows, Step 3 is repeated "n-1"
Jimes.

4. To stop the smooth-scroll process, the
TOprrOW Soft Register points toa MOBIWOB
with scroll disabled (SSE=O).'

Smooth Scroll in Progress B1t (SIP· Bit)

The SIP-bit is a status bit in the'Mode Register 2
indicating to the CPU thai the CRTC is actually
scrolling either window or background while the
SSE bit (Smooth-Scroll Enable) is set. The.SIP bit
is set as soon as the CRTC has loaded the Main
Definition Block with SSE=1. Nevertheless, once
the CPU resets SSE to "0," the CRTC waits until
the entire smooth-scroll is finished before
resetting SIP to "0." Furthermore, when using
vectored interrupt, the SIP bit appears in Bit 1 of
the interrupt vector and, therefore, allows the user
the ability to vector to two different programs
depending on the status of smooth-scroll without
polling the SI P bit.

The CRTC scans the SSE-bit in the Main Definition
Block only at the top of the frame (not scrolling)
and after transferring TOPITOW soft register to
TOprrOW hard register (previous frame was
smooth scrolled). After scanning the MOB, and a
relink took place; and the previous frame was
scrolled, then the CRTC sets the interrupt pending
bit for smooth scroll. At that time the SIP-bit
reflects exactly the state of the SSE-bit in the
scanned MOB.

If at that timeSSE=1 the CRTC issues an interrupt
with SIP=1 asking the host CPU to load a new
pOinter into the soft register; a pointer required for
the subsequent relink. In this case scrolling
continues.

If at that time SSE=O the CRTC issues an interrupt
with SIP=O notifying the host CPU that scrolling
has been terminated.

2-48

·Smooth·Scroll Parameters

IUSS. Interrupt Under Service for Smooth·Scroll
operation (Bit 2 in Mode Register 2) is set either by
a hardware interrupt acknowledge (INTACK Low)
or bya software interrupt acknowledge (host CPU
sets IUSS).

IES.. Interrupt EnableSmooth·Scroll Bit 1 in
Mode Register 2. enables smooth scroll interrupts.
Alternatively, the host CPU can poll the interrupt
pending bit to perform the smooth scroll relinks.

CRTC
REGISTERS

MOBs,
WOBs

(1) (2)

This bit can only be set and reset by the hqst CPU.

IPS. Interrupt Pending for Smooth·Scroll event.
Bit 0 in Mode Register 2. This bit indicates that the
smooth scroll logic requires service by the host
CPU. This bit is set by the CRTC or the CPU, and
reset only by the CPU. It it independent of the
state of IES.

SIP. Scroll in Progress, Bit 8 in Mode Register 2.
. Set and reset by the CRTC.

SIP=l SIP=O

r--_(4~) --.~T

BEFORE SCROLLING (1)

ORIGINAL 1ST ROW

03901A-43

RCBs,
WRCBs

L

ORIGINAL 2ND ROW

ORIGINAL 3RO ROW

ORIGINAL 4TH ROW

1ST SCROLLED IN ROW

Figure 2·43 Scroll Up SeqLlence

2·49

...,
I AFTER SCROLLING UP

TWO ROWS (4)

.J

"

2.9 SYNCHRONIZATION

The CRTC has two built·in synchronization
mechanisms: External SYNC (ESYNC) qnd Reset
for Test (RSn). These mechanisms are activated
by applying Signals to the synchronization input
pins (ESYNC and RSn). The, ESYNC input
synchronizes the CRTC to an external frame

. frequency. In most applications this input locks the
vertical timing to the ~ower-line frequency to avoid
screen swimming. RSTT synchronizes multiple
CRT controllers.

Multiple CRT Controller Synchronization

The Reset for Test (RSTT) input synchronizes two
or more CRTCs. This synchronization sequence is
executed only upon system initialization. Figure
2.44 shows the timing diagram. RSn can
synchroni?e multiple CRTCs only once after power
on,because applying RSn would corrupt the
display. It cannot be used to synololronize multiple
CRTCs on a frame basis. This means, that all
CRTCs have to programmed in a way that they
operate synchronously forever (e.g. same clock
and same timing parameters).' The sequence of
operation for RSn is:

Reset all CRTC's by pulling Reset (RST) Low for at
least five clock cycles (CLK1 or CLK2, whichever is
slower).

After RST becomes inactive, initialize all CRTC
registers including MO,de Register 1 and 2 with
DE=O.

Activate' RSn' synchronous to CLK1 or CLK2
depending on the CLK1/2 bit in Mode Register 1.
It must be synchronous to the clock determining
the frame timing. It must meet the set-up time ts to

avoid metastable problems.

Reload Mode Register 1 and 2 .. Set DE=1 (Mode
Register 1).

Deactivate RSn synchronous to CLK1 or CLK2.
RSn must be active for a minimum of five clock
cycles and its rising'edge must meet the hold time
requirement. The rising edge of RSTT triggers all
CRTC's to start display synchronously. Detailed
ResetforTestTiming is shown in Figure 2.44.

External Sync Operation

The ESYNC' input allows synchronization of the
CRT display vertical frame rate to the power line
frequency to eliminate waviness and other effects.
The ES bit in Mode Register 1 defines whether
ESYNC controls the Vertical Sync rate.

ESYNC is recognized by the CRTC for every field
or frame. It causes the VSYNC signalto become
active at the occurrence of HSYNC. In non
interlaced mode, VSYNC becomes active at the
first rising edge of HSYNC following ESYNC's
risihg edge (Figure 2.46). In interlaced mode,
VSYNC ,comes active at the next HSYNC active
when in the even frame, or in the middle between
two HSYNC's in the odd frame (Figure 2.47).

The VSYNC and HSYNC are inactive (BLANK is
active) before, during, and after reset. When the
display is enabled via mode bit DE, HSYNC output
becomes active, while VSYNC waits for ESYNC
active. The display is delayed up to one ESYNC
period.

ESYNC cannot be used to synchronize multiple
CRTCs, since it synchronizes only VSYNC, but not

03901A-44

Figure 2-44 Reset for Test Timing

2-50

HSYNC. Only RSn can synchronize multiple
CRTCs.

2.10 RFI and INTERLACED VIDEO

There are two types of interlace, Repeat Fielc;t
Interlac~ (RFI) and Interlaced Video (IV). Both
types use the same vertical and horizontal timing
as described in the Vertical and Horizontal Timing
Section. Both schemes offset the vertical position
of the scan lines of the odd numbered fields so
that they are physically interleaved with the scan
lines of the even fields; For RFI, the same video
information is displayed on both odd and even
fields. The slight offset of the odd field eliminates
the horizontal stripes that sometimes occur
between scan lines on non-interlaced displays.
(See Figure 2.48)

Interlaced Video is used to increase the amount of
information displayed on a monitor . without
increasing the horizontal or vertical scan rates. IV
takes advantage of the odd field scan line offset by
displaying half the video in the even field
(alternating lines) and half in the odd field. The
effect is to essentially double the vertical character
density with respect to RFI or non-interlaced video.
One problem with IV is the potential imbalance of

ClK1,2(1)

CRT beam current between the odd and even
fields and the resulting loss of perfect video
interleave. This. imbalance is greatest if the
character rows consist of an even number of scan
lines (adding up the scan lines in the even field
and the odd field).

Restrictions for Interlace Video

The restrictions mentioned below apply only to
Interlace Video. They do not apply to RFI or non
interlace video;

If smooth scrolling is disabled, any mixture of
background and windows can be displayed, as
long as windows are horizontally separated by
three or more character rows (not scan lines).
Windows should not overlap horizontally.

The Am8052 does not support split-screen
smooth-scrolling in Video Interlace mode .. Also, in
Video Interlace mode, a screen containing only
background and no windows can only be smooth- .
scrolled if all rows have an even scan count (TSLC
even) and the number of scan lines scrolled per
frame is also even (scroll rates: 2, 4, 6, 8 scan
lineslframe. No scrolling restriction applies to non-
interlace or RFI video. .

---I ~ HSYNC+1

HSYNC

VSYNC

~rIL---fl.-Jl..-

1- b t 1 I 0 I 1 I ,I VTL I~
. \. .J

. . . 1CLK. -..., 1CLK

HBLANK(2)

VBLANK(2) ~
VSD+ 1 ---I . ." I

1+----VAL+1---J

(1) CLK1 OR CLK2 DEPEND)NG ON CLK1/2 IN MODE REGISTER 1

(2) BLANK. HBLANK + VBLANK

0390iA·43

Figure 2-45 Detailed Reset for Test Timing Diagram

2-51

)

~---,. I'i"""""
.RST ~\·

:::::_~_n __ .~_,~._'......1=~
W'''_ ~~ ~

Figure 2-46 Non-Interlaced ESYNC Operation
f .

J

---, r-"
1m' . L---!.

ESYNC __ --In
HSYNC

VSYNC

JLJl..-.
1 · __ _

*~ I. ODD FRAME >-------""

BLANK

HSYNC

Figure 2-47 Interlaced ESYNC Operation

5' pt-K + SKEW (1) 5 CLK t SKEW (2)

If ROW ATTRIBUTES'\!

12CLK, + SKEW (2)

(1) 'eLK IS CLK, OR CLK •• DEPENDING ON PRoGRAMMING OF
MODE REGISTER 1 (0,.). SKEWISCLK, ORCLK. CYCLES;
vALUE SRECIFIED IN MODE,REGISTER 1 (Dg,.D.) .

(2) SKEW IS CLK~ CYCLES; VALUE SPECIFIED IN MOOE

REGISTER1 (D • • P.)

Figure 2-48 Row Attribute Timing

2-52

03901A-45 .

03901A-46

05098B 2·48

RFI INTERLACED VIDEO NON·INTERLACED VIDEO

Ro-R,t Ro-R4 Ro-R4 Ro-R4 Ro-R4

0 eesee 0 eeeee 0 eeeee
••••• 0 • 1 '

e 2 e e
• ••• 3

2 e 4 e 2 e '.
• 2 • 5

3 eee 6 eeeee 3 eee
••• 3 7

4 e 8 4 e
• 4 ••••• 0

5 e e 5 e
• 5 • 2

6 eeeee 3 eee 6 eeeee
••••• 6 • 4

7 5 e 7
7 ••••• 6

8 7 8
8 8

0 eeeee 0 eeeee 0 eeeee
••••• 0 • e 2 e e
• ••• 3

2 e 4 e 2 e
• 2 • 5

3 eee 6 eeeee 3 eee
••• 3 7

4 e 8 4 e
• 4 ••••• 0

5 e e 5 e
• 5 • 2

6 .eeeee 3 eee 6 ee e e e,
••••• 6 • 4

t 5 e 7
7 ••••• 6

8 7 8
8 8

0 eeeee 0 eeeee 0 eeeee
••••• 0 • e 2 e e
• ••• 3

2 e 4 e 2 e
• 2 • 5

3 eee 6 eeeee 3 eee'
••• 3 7

4 e 8 4 e

LEVEN ODD~ LEvEN ODD~ t:= ODD FIELD

EVEN FIELD
FIELD FIELD FIELD FIELD

, 03901A·47
Figure 2·49 Scan line Addressing

'2·53 .

(

CHAPTER 3

SOFTWARE COOKBOOK

3.1 INTRODUCTION

The previous chapter discussed the capabilities
and features of the CRTC in detail. it addressed
the hardware and software design engineer,
supplying all the information about the Am8052
needed to design a CRTC based CRT subsystem.

This chapter addresses the software design
engineer in particular. It accesses all the. related
topics, when programming the CRTC. The first
section (3.2) describes how the CRTC internal
control registers are to be programmed. For frame
timing-register programming, refer to Chapter
2.3.4. The second section (3.3) guides the reader
.in setting up the linked-list display data structure in
memory. Section 3.4 covers window and
background strategies and what happens when
windows are not aligned correctly. The fourth lists
hints on attribute incorporation. Smooth-scrolling
is described in Section 3.6. Several diagrams and
flowcharts aid the reader in understanding the
appropriate programming sequence. Section 3.7
shows how easy· text editing becomes when
operating on a linked-list data structure. The last
section contains three sample programs written in
Z8002 assembly language.

The user must perform the six steps listed below to
set up a display consisting of background and
windows: .

• Initialize the 22 control and timing registers of
theCRTC.

• Prepare the character strings (segments) for the
background and window text. These segments .
can b.e placed in any order in memory.

• Prepare matching attribute word strings
(segments) for the background and window text.
The rules for invoking attributes are described in
Sections 2.6 and 3.5.

• Define a Main Definition Block· for the
background; and a Window Definition Block for

. each window present on the screen.

• Set up a Row Control Blocks linked-list for the
background text and a Window Row Control
Block linked-list for each of the windows
present. Each Control Block defines one row by
linking. the appropriate character and attribute

3-1

segments together.

• Define a set of Row Redefinition Blocks and
Window Row Redefinition Blocks. The CRTC
must encbunter at least one Redefinition Block
after power-up to initialize the internal registers
storing the row attributes.

3.2 REGISTER INITIALIZATION

The CRTC contains 22 control and timing
registers. To prevent damages to monitors all
timing registers should be loaded with the desired
values before the display is enabled by setting the
DE-bit in Mode Register 1. Section 2.3.2
describes how the CRTC· registers can be
accessed in Slave Mode. The following para
graphs suggest valaes to be programmed in the
control registers.

Mode Register 1. A hardware reset (RST input
pulled Low) or a software reset (DE-bn in Mode
Register 1) clears it initially. After the linked-list in
memory is set up and after all other register are
initialized, Mode Register 1 is reloaded with the DE
bit set to one. The Display Hidden feature (DH-bit
in Mode Register 1) is intended as a debugging
tool for the system programmer. If the DH-bit is set,
characters with the invisible-attribute set are
displayed. Also, when the DH-bit is set, the rows
of displayed windows may not be aligned.

Mode Register 2. The CUE-bit enables the X
V cursor. The two cursor mask fields (ACMO,1 and
XVCMO,1) define the layout of the attribute and X-V
cursor. For example, to specify the attribute cursor
as a blinking underline, the attribute cursor defini
tion "Cursor Pin Part" is selected, the Attribute
Cursor Blink Enable bit (CATBE) in the Main Defini
tion Block is set, and Cursor Start and End scan

. line numbers in the Redefinition Block are equal.
IES ahd lEV enable the interrupts on smooth scroll
or vertical event (refer to Section 2.7).

Attribute Port Enable Register. Unless the
user wants to disable any existing· attribute
features, a value of 67FFH in the Attribute Port
Disable Register is recommended (refer to
Sections 2.6 and 4.5). Subscript and Superscript
can only be disabled by programming the Attribute
Redefjnition Register below.

Attribute Redefinition Register. This regis
ter should be set-to. OOOOH unles.s the user wants
to redefine the attribute bits for otherpur'poslils. '

Top of Page Hard Register & Top of
Window Hard Register; These four registers
link to the Main Definition Block and the first
Window -Definition Block. In non-soft-scrolling
applications the CPU reloads the "hard" register
when altering pages or windows.

Top of Page Soft Register & Top of
Window Soft Register. These four registers
hold temporarily the updated pointers to the Main
Definition Block and the. first Window Definition
Block. After soft-scrolling an entire row, the CRTC
updates the "hard" pointer with the, pointer stored
in the "soft" register. This dO!Jble-buffering tech
nique keeps the CPU response time constrains as
low as possible. If. smooth-scroll is disabled, any
write to the TOP Soft Register or the TOW Soft
Registerwill be disregarded by the CRTC.

Attribute Flag Registe'r. Refer to Section 3.5
for programming hints. . .

Burst Register. The values for the burst count '
and burst space specified in this register
determine the ratio the CRTC is allowed. to gain
mastership of the system bus. The reader must
keep in mind that bus bandwidth for the CRTC
must be sufficient enough the fetch the display
information. If the allocated bus\ bandwidth is too
low, the screen may only show partial rows,
repeated rows, or may be garbage. The burst
count and burst space should be programmed to
fuUiII this requirement in worst case.

Vertical 'Interrupt Row Register. This regis
ter determines the row' number which (after being
completely loaded) causes the vertical interrupt.
The vertical interrupt can be used either to drive a
real time clock or to notify the CPU that a certain
row just has been loaded. This guarantees that
the CRTC does not scan this part of the linked list
for about one frame time. The CPU can update
this row.

Timing registers. Refer to Sections 2.3.3 and'
,2.3.4 for description.

3.3 BACKGROUND AND WINDOW TEXT

The bapkground and the window text is stored in
the system memory as character strings called
charaCter segments. The characters are byte quan
tities usually encoded in ASCII (American Standard
Code for Information Interchange). However,
there is no restriction to the ASCII codEt. The

CRTC only compares the characters against the at
tribute flag mask to d~cide whether this character is
an attribute invoking character. The character font
is stored in the external character font generator.

The .1S-bit attribute words are stored in attribute
strings, called attribute'segments, corresponding
to the character segments.' The character and
attribute segments of each row are bound toge
ther by the Row Control Blocks (window or back-

. ground). In the Main Definition Block are the head
ers of background linked list consisting of Row
Control Blocks. The Window Definition Blocks are
the headers of the window linked-lists' consisting
of Window Row Control Blocks. For details refer to
Section 2.5.

Main Definition Block and Window
Definition Blocks

The following paragraphs list some suggestions
how to set up the Definition Blocks. X and V, are
zero-origin. .

Main Definition Block:

MDO-MD1" Contains the pointer to the first
background Row Conirol Block.

MD2' If an X-V cursor is desired, the user must set
the CU~-bit in Mode Register 2 and load MD2 with
the cursor's x and y coordinates. If an X-V cursor is
not d13sired, the user should reset the CUE-bit.

\ .

MD3. The CRTC will put the fill character code' i~to
the portions -of the line buffer not filled by visible
.characters. For example~ if the fill character code is
a blank character and the text segments occupy
100 of the 132 characters of the line buffer then
the CRTC will assign blanks to tMe remaining 32
characters of the line buffer.

Selling the FAT-bit will cause the CRTC to load
one attribute word for the first fill character of the fill
character string. This attribute should be a latched
allril;>ute to effect the entire fill character string.

MD4' The cursqr or character blink rate can be
programmed from 0.46-3.5 Hz assuming ~ SO Hz
frame rate. A 75% output inaptive duty cycle will
make the character visible 75% of the time while a
50% 'output inactive duty cycle will make it visible
50% of the time.

The slowest· programmable smooth scroll rate is
one scan line per eight frames and· the fastest is
eight scan lines per frame. .

3-2

MDS- When an interrupt is .issued by the CRTC 10
the 'host processor, the CRTC returns a vector
number stored in MDs (soft scroll or vertical inte
rrupt) if the NV bit in Mode Register 1 is set to zero,

MD6- The TSLC value in MDa is applicable only
. when the CRTC is scrolling rows with variable
TSLCs (refer to Section 3.6). The TSLC in MD6 is
set equal to the TSLC of the first displayable row.

Window Definition Block:

WDO":WD1- Points to the first Window Row
Control Block (the first displayable row in the
window): The SCW bit should be set if the window
is going to scroll.

WD2-WD3_ If another window exists after this
one, then' WD2 and WD3 contain the pointer
address of that, window's Window Definition Block.
If no further window exist~ then WD2 and WD3
contain zeros.

WD4- SpeCifies the vertical positioning of the
current window in terms of the, posttion of the first
row of the wiMow ("0" for the topmost row) and
the last row of the window.

WDs- Specifies the horizontal positioning of the
current window ("0" for the leftmost character).

BackgrQund Row Control Block and
Window Row Control Block

A Row Oontrol Block describing a row containing
only one segment has a length of seven words
(nine, words including the pointer to the optional
Row Redefinition Block if LNK is set). If the row is
partitioned into segments, each segment adds five

,words to the staQdard length. Segmented rows
are desirable because they simplify editing tasks.
Segmentation is required when displaying win-

. claws (refer to Chapter3.4).'

Example of Row Control Block (one segment)

RA1 ,XXXXH
RA2 0010H

RA3 OOOOH

RA4 XXXXH

Link bit (LNK) is setto make the
CRTC fetch the Row Redefinition
Blockpointer. The upper address is
set to zero assuming less than 64,
kbytes of memory is used.
Address of next Row Control Block
No hidden characters arid 16,
displayable characters in this row.
Upper address set to zero assuming
less than 64 kbytes of memory.
Address of character string

3-3

RAs OOOOH Upper address set to zero
RA6 XXXXH Address of matching attrib!Jte string
RA7 OOOOH Upper address set to zero
RAS XXXXH Address of Row Redefinition Block

Example of a RCB with 3 segments

RAO OOOOH Most signWicant bit is reset to
specify that this RCB has no Row
Redefinition Block

RA1 XXXXH Address of the next RCB

~2 0010H ' No hidden characters and 16
displayable characters'in segment 1

RA3 SOOOH Most signHicant bit to signify that
more segments follow

RA4 XXXXH Address of character stfing of first
segment

RAS OOOOH Upper address set to z,ero
RA6 XXXXH Address of attribute string'for first

segment
RA7 0020H No hidden cl)aracters and 32

displayable characters in segment 2
RAS SOOOH Signifies more segments to follow
RAg XXXXH Address of character string for

second segment
RA10 OOOOH
RA11 ' XXXXH Address of attribute string for

$econd segment
RA12 0014H No hidden characters and 20 '

displayable charaoters in th ird
segment

RA13 OOOOH :Most signHicant bit reset to signify
that the following segment is the
last one

RA14 XXXXH Address of character string for third
segment

RA1S OOOOH
RA16 XXXXH Address of attribute string for third

segment

Background'Row RedefinitionBlock and
Window Row Redefinition Block:

After power-up the CRTC requires at lea~t one
Background, Row Redefinition Block to initialize
internal CRTC registers Sioring the cHaracter
positioning. Additionally,' when displaying, win
dows, at least one Window Row Redefinition Block
has to be provided after power-up. The CRtC
does not reset these registers when displaying a
new page; it overrides the contents only when ,~
encounters a new Row Redefinition Block. How
ever, it is a .good practice to add a Row Redefinition
Block to the first Row Control' Block of both,
window and background. '

The maximum number olscan lines (TSLe + 1) is
32· since the CRTC provides a 5-bit scan line
address. The minimum value for the Total Scan
Line Count (TSLC) is determined by the height of

the character font. In order not to truncate a part of
the displayed charact,erTSLC should be at least
equal to NCE (Normal Character End). NCE minus
NCS plus 1 (NCE -'NCS + 1) equals the actual
height of the character but it does not start on the
first scan-line 'Unless NCS .. O. - ,'. !

Example of a Row Redefinition Block

TSLC = ODH
NCS' = 02H

, .. OAH
SPCS= OOH
SPCE = 08H
SBCS = 04H
SBCE = OCH
CURS= ~BH

CURE= OCH
DR .. OOH
UND = OCH

SUND= 01H

Row height is 14 scan lines
Characters are displayed on the NCE
Srd through 11 th scan lines .J

Superscripts are displayed on the
,1st through 9th scan lines .
Subscripts are displayed on the
5th through 13th scan lines
Cursor is displayed on the 12th
and 13th scan line

Normal character row
Underline is displayed on 13th
scan line
Shifted Underline on 2nd scan
line (over bar)

The two Row Attributes (10 bits) are not processed
internally; this word is output during horizontal
retrace to extend the attribute capabilities of the
Cinc.

Attribute Processing

If 'a row displayetl does not contain any attributes
then the CRTC. will not examine the attribute
addresses in that row's RCB. Otherwise, these
attribute,addresses contain the starting location of
the attributes list ,for that row. The' attribute codes
accessed by the attribute address should appear
in the order the attributes are referenced. For ex
ample, ifthe 1 st characterQn a particular row is a su
perscripted, the. 2nd character is a subscripted,
and the 3rd character underlined then the attribute
string should be 0010H (superscript), 0008H (sub
script) and 0002H (iJr\deriine) respectively. Note
that the attribute string might be shorter than the
, character string since attribute can be fetched on a
demand basis. ,Refer to Chapter 3.5 for details.

3.4 BACKGROUND AND WINDOWS

There are two independent Iinked~list" data
sfructuresthat describe background and windows.

Windows are rectangular. blocks of text that overlay
the background without altering. the background

·'datastructure. ,The background remains intact
VJhen ,the overlaying window is remoVed. Whim
compared to a software implementatior, of
windows, this hardware approach eliminates the
modification of the display linked-list when display
ing or removing windows. Window boundaries can
be defined as large as the, entire display screen, or
as small as ,one character in width. When
displaying windows, the user must take into consi-'
deration that the window boundaries fall on
segment boundaries of the background. Conse
quently, a heavily segmented background row

'increases the number of choices of window
placements and sizes. ,If the sUI1il of the number of
visible characters for a row is less than the window
size specified in the Window Definition Block, the
window row will be filled by the fill character code.

The rule for placing multiple windows on the
screen is:

• Windows must be separated vertically by at least
two packground rows for non-interlaced mode,
and three background rows for interlaced or RFI
modes.

Figure 3.1 shows the linked-list structure for a mutti
window display. The Top Of Window Hard Regis
ter (TOWH) points to the Window Definition Block
(WDS) of the first (topmost) window. Each WDS
links to the WDS describing the window below.
The WDS for the window on the bottom of the
screen (here: the third WOS) contains a pointer set
to zero, specifying that the current window is the
last displayed window. If no window is to be display
ed, TOWH is set to zero. Additionally, ,each WDS
contains the pointer to the first Window Row
Control Siock (WRCS). A WRCS has a similar struc-,

, ture as a background Row Control Slack (RCB). To
add or delete a window, the, user simply changes
the' next WDS pointer in the desired Window
Definition Block.

Non-Aligned Windows

If a window is not aligned to the segment boun
daries of the background, a forced alignment will
occur after eaph re-link. This forced alignment
affects the background segments overlayed by ,
the window. Some example for forced alignment
are illustrated in Figures 3.2 to 3.6.

3-4

c..>
&0

Figure 3-1 Window Linked-List Architecture

0509883-1
CRTC REGISTER

--

~PTI..£~~

rr ~NOOW-'
\.........; REOEFlNfTON I

BlOCK L.. __ --I

OPTIONAL

(r YnNoOw'"
\....: REDEFlNrrON I

BLOCK L. __ -oJ

OPTIONAL

(r-;-:O:-'
\.....; REDEFINITON I

BlOCK L. __J

WII'IlOW#1

~n.£NA....!:

(r ';-NOOW-'
'-.,; REOEFINfTON I

BLOCK L __ --I

OPTIONAL

(r W;-NDOW-'
\.....; REDEFINrrON I

BLOCK L __J

OPTIONAL

rr-W:~-'
'-..: REDEANfTON I

BLOCK L __ --I

MEMORY

WINDOW,2

----- .1 WINDOW

£.PT!£NAJ:

fr ;-NOOW-'
\....: REDEFINTTON I

BLOCK L __ --I

2..PT!2N~

(r W;-NoOW-'
~ REOEFINITON I

BlOCK L __J

OPTIONAL

fr ;-NOO"W'"
~ REDEFNfTON I

BlOCK '- __ -J

WINDOW#L

Background/Window Strategies

The flexibility of the window linked-list striJcture
allows the placement of a window anywhere on the
screen, provided that the constraints mentioned
earlier in the chapter are met. The user can use
the flexibility. of the window placements to
implement a split screen format, or a· display
containing virtual side by side windows.

A split screen format can place two equal-size texts
onthe screen. simultaneously, one in the window
and pne in the background. This feature is useful
for character searching, comparing, and other text
processing purposes. Figure 3-7 shows examples
of split screens.

The window placement rules specify that two
windows must be separated vertically by two or
three background rows. However, virtual windows
can be placed side by side. Figure 3-8 shows an
example where the screen is divided into four
quarters. Anyone of these four windows can be
scrolled independently. Virtual side-by-side
windows give the illusion that windows can be
adjacent to each other by redefining background
and windows via the control block structure.

Examples of virtual side by sidewindows

The screen in Figure 3-8 is composed of two rows,
corisisting of a toial of four strings: ONE, TWO,
THREE and FOUR. These strings (segments) can
be placed anywhere in the system memory.. Two
Row Control Blocks (RCBs) link the segments
together.

Each segment is also pointed to by a Window Row
Control Block (WRCB). To be able to scroll a
particular segment, this segment must first be
defined as a window. Figure 3-9 shows the linked
list configuration for scrolfingthe segment ONE.
Windpw display is enabled by changin!) the Top Of
Window Register (TOW) from "0" to the address of

the Window Definition Block (WDB). The WDB
links to the segment to be scrolled.

To enable scrolling of the segment FOUR, the
pointer in the WDB linking to the WRCB linked list
needs to be modified (F:igure 3-1 0).

3.5 ATTRIBUTES

The CRTC supports nine character attributes such
as: Cursor, Blink, Underline, Shifted Under
line/Strike Through, Subscript, Superscript, Re
verse, Highlight, and Ignore· Character. Four
additional attribute bits are user definable. One
attribute bit specifies whether. this attribute is
latched or unlatched. The total number of four
teen attribute bits are stored in the sixteen-bit
attribute word fetched on a character basis. The
four user-definable attributes are predefined
attributes; except for the Ignore Character and
Cursor attribute (Do-DlO of the attribute word)
which may be put out on the Attribute Port lines
APO-APlO respectively. .

To maximize the flexibility of attribute processing,
the internal attribute processing of the CRTC can
be disabled. This gives the user up to 11 user
definable attributes. The internal processing of
the five attributes (Blink, Underline, Shifted
Underline/Strike Through, Subscript, and Super
script) is controlled by the Attribute Redefinition
Register. The Attribute Port lines themselves are
controlled by the Attribute Enable Register. This
register allows the disabling of the output of
particular attributes; the line becomes Low.

A· character may ·have any combination of these
attributes. The only exception is that one char
acter cannot have both the superscript and sub
script attribute.

The number of hidden characters (Hidden #) in the
Row Control Block or Window Row Control Block

SEGMENT 1
I
I
I
I

SEGMENT 2
I
I
I
I

SEGMENT 3

I I

E
I I
I I

0509883-2

Figure 3-2 The Original Aligned Structure

3-6

SEGMENT 1
I

SEGMENT 2
I

SEGMENT 3 I I
I I
I I
I I
I EJ I
I
I
I I

0509883-3 I I

Figure 3-3 The left boundary of the window Is drawn Inward_ The front portion of Segment 2'5
data will appear In the gap not covered by the window.

SEGMENT 1

050988 3-4

: SEGMENT 2 :

I I
I I
I _-1

r:::l
~-.,
I I
I I

~EGMENT 3

r-
I SEG-
I MENT
I 4
L __

Figure 3-4 The right boundary of the window Is drawn inward. The data from Segment 3 starts
immE!"dlately after the window and part of the previously Invisible Segment 4 becomes visible.

SEGMENT 1 SEGMENT 2 SEGMENT 3

!--_W_IN_D_O_W_l __ --,,.----11: :~M~: ~ ~
SEGMENT 3

0509883-5

Figure 3-5 The right boundary of the window is extended outward. The extended portion of
the window will inhibit the loading of Segment 3 into the line buffer and.?

SEGMENT 1 SEGMENT 2 SEGMENT 3

WINDOW' 1

0509883-6

Figure 3-6 The left boundary of the window is extended outward. The extended portion of the
window will overlay some of the right portion of Segment 1's data.

3-7

must account for the characters in the segment
with the Ignore Character attribute set. The CRTC
needs this information in order to overlay windows
correctly. For debugging purposes, the ignored
characters can be displayed by setting the DH-bit
(Display HiddenDH=1) in Mode Register 1.
Displaying ignored characters in a segment will
increase the number of displayable characters in
the segment. This may cause windows to overlay'
incorrectly.

Attribute Invoking

The CRTC supports a demand attribute fetch to
save memory space and to reduce the bus
occupancy of the CRTC. The CRTC scans the

WINDOW BACKGROUND

fetched charactel'$ for attribute invoking char"
acters. A character is an attribute invoking charac
ter when it matches the Value programmed in the
Attribute Flag Register. Each time a match occurs
an attribute word is fetched from the attribut"e
string. Certain bits of the character code can be
masked off by the Mask, programmed in the same
register. The CRTC supports three basic options
as shown in Figure 3.11.

In the straightforward Option 1, each character
invokes .an attribute. In this case, the Latch
ed/Unlatched attribute is ignored since latched
attributes apply only to characters not invoking
attributes. To enable this scheme, the Attribute
Flag Register is programmed with OOxxH where "x"
is a ''don't care."

WINDOW

BACKGROUND

05098B 3·7

Figure 3-7 Morizontal and Vertical Split Screens

ONE TWO

THREE FOUR

t ONE t TWO

THREE FOUR

WDB

Figure 3-8 Split Screen with four Windows

TOW

I WRCBA HONE

I WRCB B H TWO

I WRCB C H THREE

I WRCB D H FOUR

05098B 3·8

a: ~ w~" Hr-O=CN-=E:---l

Figure 3-9 Scr.olling Window "'ONE"

3-8

I WRCS S H~TW~O~
I WRCS C H THREE

I WRCS D H FOUR

05098B 3·9

In Option 2; only the characters with the most
significant bit of character code set invoke an
attribute. Therefore, the Attribute Flag Register is
programmed with 8080H' A Mask of 80H specifies·
that only the most significant bit of the character
code must match the most significant bit of ttie
Value (here: "1"). The attribute invoking character
is displayed if the Invisible Attribute Flag in Mode
Register 1 is not set. If the Invisible Attribute Flag
is set, the attribute invoking character is not
displayed and the fetched attribute applies to the
next character.

In Option 3, only one specific character code (the
Flag) invokes an attribute. The Invisible Attribute
Flag is set to disable the display of these
characters. The Mask of theAllribute Flag
Register is loaded with FFH ,to specify that the
character code must match eX,acUy the Value to
invoke an attribute. To.program the character code

ONE TWO

THREE t
FOURt

05098B 3-10

10H to be the Flag, the Attribute Flag Register is \
loaded with.FF1 0H'

Certain attribute port lines may be disabled (they
stay Low) by loading a pattern into the Attribute
Port Enable Register. For. example, a value of
607FH in the Attribute Port Disable Register will
enable all the predefined attributes anc;f disable all
the user-definable attributes. The internal
'processing of the predefined attributes may be
disabled by using the Attribute Redefinition
Register. This yields up to 11 user-definable
attributes. The predefined attributes Reverse and
Highlight are not processed internally, so they can
be treated as user-definable attributes. The
processing of these attributes takes place in the
Video System Controller (Am8152A). 'fo display
the attribute invoking character, the IAF-bit in
Mode Register 1 must be reset.

I WRCBA HONE

I WRCBB H TWO

I WRCB C H THREE

FOUR l

Figure 3-10 Scrolling Window "FOUR"

Characters Attributes

~E; ~8BiIS ~I ~~'2Bils~lone'For.one Option 1

Option 2 fir ""' . ~I-------;I ::::::::::.:::-
Option 3 t-::tplr------~------_tl :::.:::;::".~~::::-

03684B-6

Figure 3-11 Attribute Fetch Options

3-9

. Latched and IJnlatched Attributes

A latched attribute applies to the attribute invoking
character and all subsequent characters not
invoking attributes. Latched attributes are not
affected by window/background boundaries or
screen boundaries. This means that the latched
attributes in windows carried over to the back
ground will carry over. to the next frame. To avoid
strange results in processing attributes, it is a good,'
practice to have a latched attribute for the first
char-acter of e\'lch segment.

Examples of attribute processing

The characters A and B invoke attributes.
ThedisplayisACCC BD D D.

A and B both invoke unlatched underline
attributes (0002H)

ACCC.6,DDD

A invokes a latched underline attribute (8002H), B
invokes an unlatched superscript attribute
(0010H)'

A invokes a latched underline attribute (8002H), B
invokes a latched superscript attribute (8010H)'

A..Q..Q.QBDDD

A invokes a latched underline attribute (8002H), B
invokes a latched null attribute (8000H).

.A..Q..Q.Q B D D D

A invokes a latched underline attribute (8002H), C
invokes a latched null ~ttribute (8000H), B invokes
a latched underline attribute (8002H), and D'
invokes latched null attribute (8000H)'

ACCCaDDD

The FAT~Bjt

Setting the FAT-bit (Fill Code Attribute bit in the
Main Definition Block) will C\'luse the CRTC to fetch
an attribute for the first Fill Code character in a Fill
Cdde string. If the Fill Code attribute is unlat~hed,
then itonly applies to the first Fill Code character. If
the Fill Code attribute is latched, then it applies to
the whole Fill Code segment. The first valid
character after the Fill Code segment shol.lld

unlatch the previously latched attribute; this pre
vents the attribute from being carried past the
Fill Code segment.

,
The CRTC loads Fill Code characters into its
internal row buffer if either one of the three
conditions below is true:

• The character code pointer of a segment is' zero;
the CRTC will fill the current segment with Fill
Code. The size of the segment is defined by
Visible #. The Fill Code Attribute is fetched from
the address defined by the Attribute Pointer.

• The total number of characters fetched for a
window is less than the horizontal width of the
window (End Window Character #-Start Window
Character #). The remaining part is filled with the
Fill Code. The CRTC increments the current
attribute pointer to fetch the Fill Code attribute;
this means, the Fill Code attribute follows the last
fetched character attribute.

• The total number of characters fetched for a row
is less than that defined by the SLIM-bit in Mode
Register 1 (96 or 132 characters). The remain
ing part is filled with the Fill Code. The Fill Code
attribute is fetched from the location following
the last fetched character attribute.

3.6 VERTICAL SMOOTH SCROLL

Vertical Smooth Scroll moves the text in fraction of
rows up or down; the effect is more eye-pleasing
than hard scrOlling. The number of scan lines the
text is moved per frame is programmable in 16
steps. The programmable rate ranges from very
slow motion, where the viewer sees the text
jumping in steps of scan lines (lowest rate), to a
scroll rate Where the text moves faster than the
eyes of the viewer can follow (highest rate).

The CRTC performs smooth scrolling by adding a
variable offset to the initial scan line count of the
top most row. . The offset is decremented or
incremented, on a frame basis;'for scrolling up or
down, respectively. For example, if the scroll rate
is one scan line per four frames, then the CRTC will
scroll the text one scan line in one frame and waits
for three frames before scrolling another scan line.
In this manner, each character row appears to
move upward smoothly, as opposed to the jerky
motion of hard scrolling. The CRTC controls the
smooth scroll process with minimum CPU
intervention. The CPU only needs to update the
linked list each time an entire row is scrolled in or
out. All other operations that take place are
transparent tothe user.

3-10

The ,bac~ground and windows can each scroll
independently, but not simultaneously. Either the

, background or window{s) can scroll at any given
time. When multiple windows are to be scrolled
simultaneously they do so synchronously, with the
same rate, and in ,the same direction. The infor
mation on this type of scrolling is defined in the
Main Definition Block. Windows can be scrolled
independeritly by 'enabling window smooth
scrolling in the Main Definition ,Block and setting
the, Smooth Scroll Window bits" in, the Window
Definnion Blocks of the windows to be scrolled.

Smooth ScroilingUp and Down '

Flipping between two Main Definition Blocks
(MDBs) or two Window Definition Blocks (WDBs),
when scrolling background or windows, avoids
screen flickering caused by scanning partially
updated definition blocks. The Top of PageIWin
dow Smooth Register alternately points to two

. different definition blocks. The CPU always up
dates the definition currently not processed by the
CRTC. On relink request, the CPU toggles the
pointer in the Top Of Page/Window Smooth Regis
ter. Initially, the TOPS/TOWS Register pOints to
the ,definition block linking to the Row Control
Block (RCB) of the topmost row. Figure 3.12
illustrates this process.

Background and Window Smooth-ScrOll

To smooth-scroll the background, only the scroll
bits in M D4 of the Main Definition Block need to be
set. To smooth-scroll a window, the scroll bits in
MD4 and the SCW bit in the scrolling window's
definnion block must be set. When a background
text is scrolled past a window text, a common TSLC
must exist between th'9 window. row and the
background row that it overlays {Figure 3.13). If a
background row is scrolled past a window row with
their TSLC being unequal then distortion to the
display will occur.

It is essential that for any scrolUng activity, the
tSLC in MDs of the MDB must be equal to the
TSLC of the fil'st RCB. To scroll a background-only
dis-play with variable TSLCs on each row, the
TSLC ,n MDsof the MDB must be equal to ~he
TSLC of the' top-most row. Consequently, MDs
must be constantly updated white the background
is scrolling. The update of MDs must occur before
the new pointer is written to the Top of Page
Register.' \

The interaction betwe,en the CPU and ,the eRTC
may be coordinated using one of three tech
niques: polling, non-vectored interrupt, or vec
tored interrupt. '

Polling

'The CPU may test the IPS-bit (Interrupt Pending
Smooth-Scroll bit in Mode Register 2) frequently to
verify the time when the CRTC requires CPU
intervention. The CRTC' issues two types of inter
rupts (setting the interrupt pending bit) distin
guished by the Scroll In Progress bit (SIP-bit in
Mode Register 2). When the SIP-bit is set on
interrupt theCRTe likes to have the Top Of
PageIWin'dow Smooth Register updated. When
the smooth-scrolling is finished, the CRTC issues
an interrupt with the SIP"bit reset to nbtify the CPU

. that it is done. After servicing the requested
action, the CPU must reset the interrupt pending
by software.

Non-Vectored Interrupt

A less time-consuming and more efficient way of
requesting CPU interventions is to use hardware
interrupts. If the Interrupt Enable Smooth-Scroll bit
(IES-bit in Mode Register 2) is set the CRTC will al
so activate, the INT line each·time the IPS-bit is set.
The INT lirfe may be connected to the non-vector
ed interrupt input 6f the CPU or to a dedicated
interrupt controller such as the 8259A or Am9519.
In the end of the interrupt service routine the IPS
bit must be reset to enable further interrupts.

Vectored Interrupt

The most elegant way of synchronizing CPU inter
ventions is to use vectored interrupts. Therefore
the No Vector bit (NV of Mode Register 2) must be
reset. Similar to non-vectored interrupts the CRTC
also activates the INT line when IPS-bit is set.
When the CPU acknowledges the interrupt by as
serting the INTAC,K line the CRTC strobes out an 8-
bit interrupt vector. Usually, this pointer addresses

, indirectly via a vector table the interrupt saMce
routine. Bit 1 of the interrupt vector reflects the
status of the SIP-bit so that testing the SIP-bit in
the interrupt service routine becomes obsolete.
The CPU may execute different interruPt service
routines for both types of interrupts. Asserting the
INTACK line also sets the Interrupt Under Service
Smooth Scroll bit (IUSS-bit in Mode Register 2).
Note, that unlike the, implementation in some
Z8000-type peripherals the interrupt acknowledge
does not reset the interrupt pending bit. Both the

, IPS-bit arid the IUSS-bit must be reset by software
in the end of the interrupt service routine. \'

3.7 EDITING THE LINKED-LIST

All text data is organized in a linked-list struCture

3-11

simplifying editing taskS. The host CPU only
needs to mo~lify the pointers in order to swap
pages,. i!lsert lines, delete lines, or· display
windows. Pages can be swapped simply··· by
reloading either the Top Of Page Register pointer
or the pointer in the Main DefinitionBlock linking to
tti'e tdp most row. Since the pointers have both an
upper and a lower part (two 16-bit values), a
problem arises wf,len the hdst CPU has to update
both for a new pointer value.; the CRTC might use
a partially updated pointer in the case where the
CPU has loaded only either the upper or' .Iower
pointer, and the CRTC gains the bus mastership
right after this load. This problem occurs when

SCROLLING UP ONE LINE

•

SCROLLING UP ANOTHER LINE

•

0509863-12

updating both pOinters in Topo! PagelWindow
Registerorthe pointerS in MainDefinition Block.

Row Control Block Memory
i·

The user can prevent the problem by
synchronizing the host CPU updates with the
CRTC .linked-Iist scanning, via the vertical interrupt
feature. For example; the vertical interrupt may be
set to ocCur afte~ loading the fil'l1t row to signal that
the Main Definition Block may be modified without
any risk o.f running into the above mentioned
problems. If only the lower part of the pointers is to

SCROLLING DOWN ONE LINE

•

SCROLLING DOWN ANOTHER LINE

•

Figure 3-12 MOB Swapping Simplifies Scrolling

3-12

'be modified, the problem does not occur; pointers
can be modified at any time. '

Row Insertion

First, link the new row to the subsequent row (Step
1 in Figure 3.20), then link the previous row to the
new row (Step 2 in Figure 3.20). When operating
only with the lower half of the pointers, this type of
modification can be done, at any time; without any
concern of synchronization to the CRTC
operation.

Row Deletion

A row is deleted simply by linking the pointer in the
previous Row Control Block to the next Row

. Control Block (Step 1 in Figure 3.21).

" Character CO,de and Attribute Pointers

The least significant bitof the linked-list pointers in
,registers or memories is "don't care." The CRTC
resets this bit when operating with the pointer.
Consequently, all addresses put out by the CRTC
are even. Since characters are S-bit quantities
which can be located at either odd or even
addresses, the user has to take into consideration
that character code strings always start at even
addresses. This might become a restriction if the
background characters are stored in a linear list and
this Jist has to be split up into segments in order to
overlay IOIindows. Since the character, code
pointers are always even, the background list can
be split only at even addresses. The number of
choic~s can be' increased by interleaving
characters with the Ignore Attribute Set.

BACKGROUND)

a----- BACKGROUND TLSC
MAY VARY

05OO8B 3-13

WINDOW 1 BACKGROUND TLSC
= WINDOW TLSC

-----1 BACKGROUND TLSC
MAY VARY

SOFT SCROLLING WINDOWS

BACKGROUND

I ~,oow I ... BACKGROUND TLSC
r = WINDOW'TLSC

SOFT SCROLLING BACKGROUND

Figure 3-13 Background rows overlayed by window
must have the same TSle than the window rows.

3-13

MEMORY

MAIN
PROGRAM

CALL SOFT
SCROLL

INTIALIZATION

SOFT SCROLL INTIALIZATION SUBROUTINE

TO~~~I~HE~-------------,

CONTINUE
NORMAL

~r

SCROLL
TERMINATE
INTERRUPT

FROMCRTC\ (SIP.')

SCROLL TERMINATE
INTERRUPT (SIP. 0)

SOFT SCROLL INTERRUPT HANDLING ROUTINE

----\

NO

1----'0; RETURN FROM INTERRUPT""----'

FROM CRTC\ ________ ~r------...,

YES

Figure 3·14 Flowchart for scrolling up the background using vectored Interrupts

3·14

05098B 3-14

MEMORY

MAIN
PROGRAM

CALL SOFT
SCROLL

INTIALIZATION

SMOOTH SCROLL INTIALIZATION SUBROUTINE

TO~6~~I~HE~-------------,

CONTINUE
NORMAL

"T

0509883-15

INTERRUPT
FROM CRTC

\
SMOOTH SCROLL INTERRUPT HANDLING ROUTINE

'----,

Figure 3-15 Flowchart for scrolling up the background using non-vectored Interrupts

3-15

SCROLL INTIALIZATION r-------------,
I I
I I
I
I

L ____________ .J

START SCROLL

EXIT ROUTINE

Figure 3-16 Stop scrolling up of the background after N.lines

3-16

0509883-16

SCROLL INTIALIZATION r------------,

SET/RESET SCW
BITS IN WINDOW
WDBS TO SELECT

SCROLLING!
NON·SCROLLING

WINDOWS

I
I
I
I
I
I
I
I,
I
I.

L_-'- _______ ..., __ .J

0509883-17

\

START SCROLL

EXIT ROllTlNE

Figure 3.17-Stop'scrolllrig up Of a window after NUnes

3·17

SCROlllNTIAlIZATION r------------...,
1 1
1 1
1 1

·1 1

L ___________ _

1
1

START SCROll

Figure 3·18 Stop scrolling down of the background after N lines

3-18

050988 3-18

SCROLL INTIALiZATION START SCROLL r-------------,

L ____________ .J

EXIT ROUTINE

0509883-19

Figure 3-19 Stop scrolling down of a window after ~ lines

3-19

NEW ROW

ORIGINAL CONFIGURATION ROW INSERTION
Osa98B 3-20

Figure 3-20 Pointer manipulation inserts ROW

ORIGINAL CONFIGURATION ROW DELETION
05098B 3-21

Figure 3-21 Pointer'manipulation deletes ROW

3-20

CHAPTER 4

VIDEO SYSTEM APPLICATIONS

4.0 INTRODUCTION

This .chapter outlines three system applications of
the.Am8052 and the Am8152A. The first
application describes a typical design with 8 pixels
per character. and a 40 MHz pixel rate. In the
second application, the character width is increas
ed to 12 pixels and it will be shown how the 9-bit
wide input of the Am8152A is multiplexed-to load
the wider character slice. The third application,
proportional-spacing, discusses pipe lining of the
data flow, which becomes necessary at high
character clock rates.

4.1 TYPICAL APPLICATIONS

Figure 4.1 shows a non-proportional spacing
application operating the video system at 40-MHz
pixel rate. The character matrix is 7 x 9 pixels in a
character cell of 8 x 14 pixels. The rightmost pixel
is blanked. The Character Clock defining the rate
of characters being shifted out can be determined
by dividing the jilixel rate by the horizontal width of
the character cell:

40 MHz/8 =5 MHz.

Since this video system employs only a single
Video System Controller- (VSC), which does not
need to be synchronized to an external dot clock,
the .internal crystal oscillator can be used. The
crystal frequency can be determined as

40 MHz/5 = 8 MHz.

Since the CLK2 frequency is constant, the Clock2
Divide Ratio inputs (CLK2DR<3:0» may be
hardwired to High or Low, respectively, instead of
generating new values on a character-by- character
basis as in the case of proportional spacing. Since
no trailing blanks are used, TB<1 :0> are tied Low.
The formula for calculating the appropriate Clock2
Divide Ratio is shown below:

N Number of pixels/character
n CLK2DR programming
TB NumqerofTrailing Blanks
2 adjust range to 2 .. 17 pixels/character

In this example, "n" becomes 8 -0 - 2 = 6. Since

4-1

the character matrix is 7-bits wide horizontally,
inputs DD7 and DD8 can be grounded. The 256
different characters are addressed by the 8-bit
Character Code (usually an ASCII code). The 14
scan lines, per character cell, are addressed by the
4-bit Scan Line Address. Altogether 12 bits are
used to select a particular character slice, which
implies using an 8K x 8(7)-bit Character Font
Generator (usually ROM, PROM, or EPROM).

A 5-MHz CLK2 translates to a 200 ns character
clock period. The following calculation shows how
the maximum allowable data' access time for the
Character Font Generator is determined. The
Am8052 strobes out the Character Code
(CC<7:0», and Scan Line Addresses (R<4:0»
with a propagation delay to the Character Clock
(MCLK2)' The character slice data addressed
needs to' be valid before the next rising edge of
the Character Clock to allow the VSC to latch it.
Therefore, the propagation delay of the Am8052
plus the maximum access time of the Character
Font Generator plus the set-up time required by
the VSC must be less than one character clock
period. Assuming the Am8052 propagation delay.
from MCLK2 to CC and R is 55 ns (6-MHz spec),
and TCLK2 to MCLK2 delay is 8 ns, and the set-up
time required for the data to TCLK2 is 20 ns, the
maximum access time becomes:

200 ns-55 ns-8 ns-20 ns = 117 ns.

Am27S43(4K x 8) PROMs satisfy this requirement
(55 ns maximum).

4.2 MULTIPLEXING THE DATA INPUTS

This application features a system of 12-bit-wide,
non- proportional spaced characters at 60-MHz dot
rate. It is illustrated in Figure 4.2. Similar to Figure
4.1, the on-chip crystal generator can be used to
generate the Dot Clock. The crystal frequency is
60 MHz/5 = 12 MHz; The inputs specifying the
number of Trailing Blanks to . be added are
grounded (no Trailing Blanks). Having a non
proportional spaced set of characters means that
there is no use for the Trailing Blanks; therefore,
their inputs are grounded.

The CLK2 Divide Ratio inputs are hardwired to .
High and Low to provide a constant divide ratio.
The Dot Clock is divided by 12 to generate the

Character Clock. The inputs are programmed as:'

12-0-2 = 10 (10108),

, Given the 60"MHz dot rate and the 12-pixel-wide
character c~lIs the CLK2 frequency cim be
calculated as

CLK2=60MHz/12=5MHz.

The character clock Period becomes 200ns.,
Since the character cell is wider than the data input
path of the VSC, the data must. be pipelined. With
the rising edge of the clock, the right 9 pixels are

SYSTEM CLOCK

VSYNC

HSYNC

BLANK

AmS052

CRTC

Am27S43

4/<x a

Alb

AP,

AI>:!

APs

APe

DIGITAL GROUND
(GND,l

ANALOG GRbUND
(GNDzl

~, J.

Vee "

7

loaded. DDO is the rightmost pixel. Wtth" the next
falling edge of the clock,-the VSC latches tt'le left 8
pixels. In this application, only 3 bits are loaded
with the second clock edge. '

The CRTC outputs the Character Code, (CC0-7)
and Scan L!ne Addresses (Rd-4) with a propaga
tiOn delay Qf55 ns to the rising edge of MCLK2'
The maximum skew between TCLKl and MCLK1
are 8 ns and 12 ns for riSing and falling edges
respectively. Similar to the application shown in
Figure 4.1, the maximum allowable access time is:

200 ns-8 ns-20 ns-55 ns= 117ns.

HSYNC x,
BLANK c::J 8 MHz

x2 CBLANK 3000

FORE .~66PF

BS
Am81'52A

REV

FS ~
TB

GND2

o CLl~DR' EXTDCLK

1

2

3
AADJ

000-6 V-

007

DDa

HSDLD VSDLD VID,.2

O5098B 4-1

EJ' CRT
, MONITOR ,',

Figure 4-1 Non-proportional Spacing System

4-2

Since PROM B has to present the data at the
inputs of the register with a set-up time of 2 ns
(Am29821 parameter), the access time of PROM B
can be calculatedas:

200 ns-55 ns-8 ns-2 ns = 135 ns.

The multiplexing of the data is as follows:

The CRTC outputs the character and scan line
information for the characters synchronously to
MCLK2' The Character Code and the Scan Line
Address select a particular character slice. Since

SYSTEM CLOCK

1 • ,
MCLKl MCLK2

VSYNC

HSYNC

BLANK

APo
APl

Am8052
AP2

CRTC APs

APs

CCO-7 Ro-a

T DATA A
(A)

ADDR DO-7
Aii127S43

4Kx8 BE

t
8

~
(8)

ADDR D0-7
DATAB ,,- OE DATAL

3 D Q 3
Am27S41 Do v Amtu

4Kx4 . __ BE~ CP

05098B 4-2

the VSC expects 9 bits of data on the rising edge
of TCLK2, and PROM A supplies only 8 bits,
PROM B provides the 9th bit; it is connected io
DDs. Enabling PROM A with TCLK2 ensures that'
the first 8 bits are present at the VSC data inputs
prior to the riSing edge of TCLK2' PROM B is
permanently enabled, therefore, the 9th bit is
available at the rising edge of TCLK2 but is ignored
on the falling edge. The remaining 3 bits (12-bit
character width) are loadec;l on the falling edge of
TCLK2 at which time the Am8052 has already
selected the next character. Therefore, the output
of PROM B has to be registered (Figure 4.3).

I I
MCLK2 MCLKl

VSYNC

HSYNC Xl ~
BLANK .~12MH x2
CBLANK

30on'l56 F
FORE ~p

56 pF

BS

Am8152A

REV

FS X3

- TBo.1
-L 0.47pF

Vee
GND2

a EXTDCLK

~ 1 =
CLI~DR

'--- r-- 2 '.

r- 3
AADJ

~on
7' ¥.

ii
t--- TCLK.2 =

r=F
DDo_7

r- DDs

HSDLD VSDLD V1Dl.2

1 1 1

[J
Figure 4-2 Multiplexed data path to load wider character slices

4-3

4.3 CHARACTER PIPELINING

At high character clock rates, or in proportional
spacing applications, the character data, path
needs to be pipe lined to relax, as much as
possible, the access time requirements for the
Character Font Generator. Assuming a 8-MHz
clock rate and taking the approach of the examples
in Figure 4. t and Figure 4.2 would require an
access time of:

125 ns-8 ns-45 ns-20 ns =52 ns.

The following analysis points out how this access
time cCin be relaxed (Figure 4.4).

The clock to output delay of the Am29821 register
is specified at 12 ns. The set-up time is 2 ns. This
calculates a worst case access time of:

125 ns - 12 ns - 2 (lS = 111 ns.

Pipelining both input and output data gains about
50 ns (Figure 4.5). '

If only the input data is pipe lined than the
requirement becomes:

125 ns-12 ns-20 ns = 93 ns.

This approach still gains41 ns.

The C RTC allows programming the skew between .
Character Code and Attribute output or Control
Signal (HSYNC, VSYNC, and BLANK) output.
(See Mode Register 1 description in Chapter 2)
This skewcan be used advantageously in this case
by advancing the Character Code and Scan Line
Address by one or two CLK2 cycles so that the rest
of the signals do not need to be pipelined
externally.

4.4 CHARACTER/SYSTEM CLOCK
SYNCHRONIZATION

In proportional-spacing applications, the Character
Clock defining the Character Output Rate and the
System Clock defining video timing (VSYNC,
HSYNC, BLANK) must be synchronized at the left
edge of the display in order to avoid a jagged
edge. The VSC synchronizes both clocks when
the SSEL (Synchronization Select) is tied High. If
SSEL is Low, no synchronization occurs.

Synchronization ensures that H$YNC and BLANK
change synchronously to CLK2, resulting in a
straight and smooth I left border Of the display. The
right edge of the screen also is straight and

\1<1 .. 1--------- 300 nsec-------~-l _---I' '~ ___ ---J' ,~. --. __
__ --'I ,'-___ --J'

CC,R _____ -'X"' _____ h_TH_C_H_A_RA_C_TE_R..;.. ___ --'X (N+1)ASCHARACTER

______ ~Xxxxx~~~·· _____ -~m~H~C~HA~R~AC~T~ER~---JX~XWX~X~X ____ _

DATAB __________ JX~XXXX~·~ ___ ~m~H~C~HA~R~AC~T~ER~ ___ -'X~X~X~XX~ __ ~~_

\ I \

X (n-1)TS CHARACTER X nTH CHARACTERS

DDO-7 X X x:: _D;.:O:;:..7 __ ---JX D9·11

~---~v~---~
nTH CHARACTERS

0509884·3

Flg\lre 4-3 Multiplexed chl;lracter data timing

4-4

smooth since the width of the display is a multiple
of the fixed-rate System Clock (CLK1)' Note, that it
is the system designer's responsibility to ensure
that the last characters in any line are blank, so a
valid character is not truncated due to the
asynchronism ofCLKl and CLK2 at the end of a
scan line.

The synchronization process of CLKl and CLK2
takes place in the beginning of HBLANK. The
VSC holds CLK2 Low. for several CLKl cycles then
toggles in phase to CLKl until it recognizes

'HBLANK gOing Low (inactive). From then on

SYSTEM CLOCK

VSV",C

HSVNC

BLANK

APo

AP,

Am8052
AP.

CRTC
AP3

APe

AF7

0509884-4

CLK2 is generated as, controlled by the divide ratio
inputs.

Additionally, the VSC delays HSYNC and VSYNC
so that they change synchronous with the Video
Data (VIOl and VID2)' The internal delay buffers
are clocked by CLK2when SSEL is Low, and by
CLKl when SSEb.is High. Since these delays
match the video delay when SSEL is Low, these
buffers can be used to latch any other. video
attribute the user might chose to use, in addition to
the given attributes (FS, BS, REV, etc.).

VSVNC

HSVNC X1.

BLANK

CBLANK X.

FORE

BS

FS Am8152A

REV

TBo
X3

0.47pF
TB, GND.

Figure 4-4 . Character pipe lining In proportional spacing systems

4-5

4.5 CRYSTAL OSCILLATOR LAYOUT

The VSC has two power supplies: a digital power
supply (V CC1 and GND1) and an analog' power
supply (VCC2 and GND2)' This splH ,enables the
system designer to keep the analog supply as
clean as possible. A low-noise analog supply is
essential for a reliable operation of the crystal
oscillator and the phase-lock-loop (PLL)
multiplying the crystal frequency; especially if the
operation of the PLL is a direct function of the
noise-level on the supply.

The PC-board should be laid out in such a way that
the lines from the pins of the VSC to the external
capacitors, resistors and crystal are as short as
possible. These passive circuits are connected to
the analog ground (GND2)'

4.6 HALF DOT SHIFT WITH THE
Am8152A

To increase the display quality, character slices can,
be shifted half a dot as shown in Figure 4-6. One
character font bit enables or.disables this feature.
This bit is delayed by two D-flip-flops to compen-

r---- 125nsec~

HDS

o
1
o
1
1
1
1

Figure 4-6 Half Dot Shift

sate for the delay in the Am8152A (Figure
4-7). The AND-gates route the output of the
Am8152A (VID2) either triggered flip-flop or to the
negative edge triggered flipcflop. If Half Dot Shift is
activated, the appropriate character slice is shifted
half a dot to the left.

TCLK2 ~ r----: __ --' 1.-_ 1

MCLK2 _--,I \\-_---1/ \\-_--1/ \\----

CC/R nTH CHARACTER X (n+1) CHARACTER X"-_______ JX"--__

. 1ST LATCH __ ---IX nTH CHARACTER X (n+1)ASCHARACTER X"--_____ --

PROM'OUTPUT _____ ---'X nTH CHARACTER X (n+1) CHARACTER X\.-.;.... __

.2ND LATCH, DD ____ -Jx"-______ --Jx nTH CHARACTER X (n+ 1) CHARACTER x:
0509864·5

. Figure 4-5 Pipelining Timing Diagram

.4-'6

~----------------~----------~----OEXT 0509884-7

DOT CLOCK

Figure 4-7 Half Dot Shift Diagram

CHAPTER 5

GENERAL APPLICATIONS

Some applications for alphanumeric CRT systems
require a dynamically programmable character-set
to be able to. modify the character font, to add
special characters used in some foreign langua
ges, or to provide semi-graphic characters. In this
chapter, three application notes for the CRTC are
introduced. These applications examples by no
mean imply to cover solutions for all types of appli
cations; however, they serve to motivate desig
ners to use their imagination and creativeness in
finding the ideal solution for his or her particular
application design.

5.1 LOADABLE CHARACTER GENERATOR
FOR AN Am8052 SYSTEM

This application note describes a Loadable
Character Generator for an AmB052 based alpha~
numeric CRT system, implementing the unique
approach when the AmB052 itself loads the
character font. It assumes that the reader is familiar
with the AmB052. For background information,
refer to Section 2. An alternate approach is descri
bed in the chapter on low cost, smart terminals.

There are two basic approaches to the design of a
Loadable Character Generator:

(i) The "usual" way of designing a Loadable
Character Font Generator (RAM) is to
implement it as a dual-port memory where the
CPU has direct access. An. address multiplexer
is then inserted at the Address Bus of the Char
acter Generator (CC0-7 and RO-4), connect the
output via a bus driver to the System Data Bus,
and control both the mUltiplexer and the driver
by arbitration logic. To prevent screen flicker
ing, the Character Generator should only be
accessed during horizontal or vertical retrace.

The advantage of this approach is that the char
acter RAM can be read and written directly by the
CPU. Also, the Font RAM can be altered rapidly.

The disadvantage is that a large number of TIL
support parts is required to build the two-port RAM
control logic. .

(ii) The second approach utilizes the AmB052 for
loading the Character Generator. Most of the
pins of the Character Generator .. are already
connected to the AmB052. Only a path to the

.5-1

data bus of the Character Generator must be
set up; a few additional TIL devices are need
ed to implement this feature. The Character
Generator information is stored in the linked list.

Advantage of this approach is the small amount of
support logic required.

The disadvantage is that more sophisticated
software is required to control ·the loading process,
and the character font cannot be read back.

This application note focuses on the second
approach, utilizing the AmB052 (Figure 5-1).

A blank part of the screen is utilized to load the
Character Font Generator. In the initialization
phase, this space can be the entire screen; during
display time, it may be a blank space at the bottom
of the screen. The number of characters per frame
which can be reloaded is directly proportional to
the space allocated.

The screen is divided into two parts (Figure 5-2):
the visible part of the screen displays the normal
text; 'the invisible, lower part hides the rews used
to load the Character Font Generator. In this
example, there are 1B scan lines at the bottom of
the screen that are used to load a character box of
7 X 9 pixels. These scan lines are located between
normal:vertical-blank active and vertical-sync
active. The rows are hidden by setting a user
definable Row Attribute Bit that externally blanks
the video. Each character of the rows inVokes an
attribute word. As in the usual display mode, the
character code addresses a character box in the
Character Generator. However, the purpose of the
attribute word changes; now, it contains the data of
the character slice to be loaded.

Detailed Description

The AmB052 provides user definable data during
horizontal retrace. This data is stored as a row
attribute word in the Row Redefinition Block. It can
be latched with the falling edge of HSYNC. In this
design, two bits are used to control the load
operation. One bit blanks the screen to hide the
rows containing the Character Generator data; the
second bit disables the Read input of ~the
Character Generator and enables the attribute bus
driver. The bus driver connects the attribute port

CLK2

CLK1

! I
CURSOR

UNO LOAD ,~.

~
---L-I

I-'-

APO-10 '. "
' LATCH'

'r-Y' I-'-

~ HSVNC t
BLANK BLANK

~ EN ~

~
DRIVER

" Am8052 • Am8152A

"----V'

~
V

RD

""- DATA

I· WR
R0-4

./ CHARACTER
ADDR FONT

i... GENERATOR
CCO--7 ~

V- CS

, J,

0509885-1

,
Figure 5·1 Using the AmB052 to Load the Character Generator

FIRST HIDDEN ROW
(3 SCAN LINES)

TO LOAD UPPER
PART OF CHARACTER

SECONO HIDDEN ROW
. (6 SCAN LINES)

THIRD HIDDEN ROW
(9.l?CAN LINES)

...,.

VISIBLE PART OF
THE SCREEN

I- ATTRIBUTE BLANKED - }
I- (USED TO LOAD CHARACTER GENERATOR) ~ ... f--18 SCAN LINES

•

Figure 5·2 Screen Layout

5·2

to the data bus of Character Generator. Since this
design assumes a 7 X 9 character box, only 7 bits
of the attribute are connected. to the Character
Generator; the 8th bit is grounded at the input of
the driver. Any character fonts size can be suppor
ted in orderto accommodate design changes.

Two bits of the attribute port and the cursor output
are used to enable the loading of specific character
slices. These 3 bits have a common feature. The
character part where these attributes are active is
programmble ona character row basis. "Underline"
and "Shifted Underline" are active during one scan
line in the character cell. The scan line number,
where these two attributes are active, is specified
in the Row Redefinition Block. The values can be
changed on a row basis by specifying a Row
Redefinition Block for each row. "Cursor", is an
attribute which is active during part of a character.
"Start" and "End" values for this attribute is speci
fied in the Row Redefinition Block. If these values
arE1 identical, the attribute is active only during one
programmed scan line (see Tables 1 and 2).

The 3 attributes determine which slice of the
selected character is loaded. The attribute string
layout of Figure 5-4 assumes that the Row
Redefinition Blocks contain the values of Tables 1
and 2. Each attribute word activates one of these
3 attribute bits to select a specific character slice.
The character slice is loaded with' the 7 bit value
contained in the attribute word. Three consec
utive attribute words in which each activates a
different attribute bit (Figure 5-4) so that tHe upper
3 slices are reloaded in the end. In the next row,
the row attributes are redefined to e'nable loading
of the middle part of the characters. A third row
loads the remaining lower part.

When one of the 3 attribute output pins is
activated by the attribute word, and when a latched
row attribute bit disables Read, then the Character

CLK2

RD

LOAD

WR

Generator receives a Write pulse to Strobe in the
character slice (Figure 5-3) ,

Seven attribute bits must be programmed in the
Attribute Redefinition Register as user-definable
attributes, In this design, a maximum of 44
characters-per-frame can be reprogrammed. This
number is determined by:

• The length of the row buffers (132 characters)

• 18 scan lines are used for loading the Character
GeneratoJ

• Each character has 9 slices (9 character pos
itions in the row buffer),

Modifications to support character font generators
widerthan 7 bits:

Loading can be done in steps, A character box
which is12 pixels wide can be loaded ill two steps,
each loading 6 pixels. The 7th bit of tlie attribute
now selects the left or right part. An alternative is
to use a latched attribute bit (an output of the latch
in' Figure 5-1) to select the parts. Note that these
attributes are constant in the entire row, therefore,
different parts cannot be loaded if a latched
attribute is used.

Scan line count 'can be reduced when less
attributes are used to select character slices, Note
that the minimum scan line count of a row is
determined by the time the CRTC needs to fill the
row buffer.

An arbitrary number of attributes ("n") are utilized to
'select slices. The first row loads the upper "n" char
acter slices and has a minimum scan line count of
"n," The second row loads the next "n" slices and
has a scan line count of 2 • n. A ,third row loads

0509885-3

Figure 5-3 Write Timing

Ei-3

subsequent "n" sliges and has 3 • n scan lines. In
this example of a 7 X 9 character· box and 3 slice
attrib\Jtes, 2, rows are needed to load all 10 slices.
The first row loads the upper 3 slices and contains
3 scan lines, the second row has 4 scan lines and
loads the middle 3 slices. The third row has 9 scan

, lines and loads the lower 3 slices.

The "old" vertical blank active time must be repro
grammed to allocate space for the character-load
rows. An attribute bit will blank this part of the
screen so that there ,is no visually detectable differ-

CURSOR 1 0 0 1
UNO 0 1 0 0

SUND 0 0 1 0
S S S S
L L L L

ATTRIBUTE I I I I
'BITS C C C C

E E E E

1 2 3 1

C C C C
H H H H

CHARACTER A A A A
'CODE R R R R

A A A A
C C C C

1 1 1 2

0
1
0
S
L
I
C
E

2

C
H
A
R
A
C
~
2

ence on screen.

Figure 5-5 shows two 7 X 9 character cells con
taining an "A" and a "F". Figure 5"6 shows parts of
Jhe linked list data strings specifying the data to ,
load the character fonts of these characters;

A 7 X 9 character set of 256 characters fits into an
.8K X 8 RAM. The maximum accesstirne depends
on the resolution of the display (high resolution =>
abOut 60 ns). '

,0 1 0 0
0 0 1 0
1 0 0 1
S S S S
L L l L
I I I I
C C C C
E E E E

3 1 2 3

C C C C
H H H H
A A A A
R R R R
A A A A
C C C C

2 3 3 3

, 0509885·4

Figure 5-4 Character and Attribute List

SLICE 1
SLICE 2
SLICE 3
SLICE 4
SLICES
SLICE 6
SLICE 7
SLICE 8
SLICE 9

7 BIT CHARACTER SLICE 7 BIT CHARACTER SLICE

Figure 5-5 7 x 9 Character Box

5-4

0509885-5 '

Table 1 Parameters for Row Redefinition
Block of 1st Row

TSLC

NCS

NCE

CURS =
CURE
UNO
SUNO

4 The first .row Ipads only the
upper five character slices
Normal character ~art on scan I
ineO

= 0

4 Normal character end on scan
line 4

o Cursor start
o Cursor end
'1 Underline active on line 1
2 Shifted underline, active on line 2

Table 2 Parameters of Row Redefinition
Block of 2nd Row

TSLC = 9 The second row loads the lower
five character slices (scanning
the first five lines a second time is an
unavoidable overhead)

NCS
NCE'
CURS

CURE
\ UNO

SUNO

o Character position starts at 0 and
9 endsat9 '
'5 All other values are incremented

by5to
5 access lower 5 scan lines
6
7

5.2 HORIZONTAL SMOOTH SCROLL

Vertical screen scrolling on standard terminals is
done by replacing the text line by line; the text
appears to jump up or down the screen. A more
desirable and ergonomic approach is to smooth
scroll the text. The Am8052 alphanumeric CRT

CURSOR
UNO

SUND

SLICE,
DATA

1
0
0
0
0
0
1
0
0
0

0
1
0
0
0
1
0
1
0
0

1ST ROW
0 1
0 0
1 0
0' 0
1 0
0 0
0 1
0 0
1 0
0 0

i 1
0

0 0
1 0
0 1 0
0 0 1
0 0 0
1 1 0
0 0 0
1 0' 0
0 0 0
0 0 1

0
1
0
1
1
1
1
1
1
1

controller (CRTC) can achieve this effect by
replacing the scrolled line on a scan line basis. The
text moves in steps of line partitions (scan lines).
This produce smaller jumps and is almost
unnoticeable to the viewer; It appears to be a con
tinuous, 'smooth, upward or downward movement
of the texr on screen. The'scrolling itself is exe
cuted without CPU interventions.

In applications that involve displaying text running
off the screen horizontally requires scrolling the
text accordingly. Once the user has experienced
'vertical smooth scroll, the demand for horizontal
smooth scroll will come naturally. Similar to vertical
smooth scroll, horizontal smooth scroll can be
done by replacing characters on a pixel basis. Al
though the CRTC does not have a bUilt-in mechan
ism to control horizontal smooth scrolling, this appli
cation note provides some ideas for a practical im- ,
plementation. External MSllogic and CPU interven
tions are required to control the scrOlling process.

The basic idea behind this scrolling technique is to
place a dummy character in front of the line. This
character is made invisible by delaying the
horizontal BLANK with external logiC. The enti.re
line is then moved by modifying the width of this
dummy character, utilizing the proportional
character capability of the Am8152A Video System
Controller (VSC). The blank delay covers the en
tire dummy character when it is programmed forfull
width: By reducing the width of this character, the
first visible character moves left and gets partially
covered. Characters seem to enter the screen on
the right side and leave on the left side. Figure 5-7
diagrams the process.

2ND ROW 3RDROW
0 1 0 0 1 0,0 1 0 0
0 0 1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0 1
1 0 0 0 1 0 0 0 0 0
0 0 1, 0 0 0 0 0 0 0
0 1 1 1 0 0 0 1 1 1
0' 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 '0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0

Figure 5-6 Character Code and Attribute sequence to load "An and "f"

5-5

Detailed Descriptipn:

Here it assumes a non-proportional spacing
environment with a character width of 8 pixels, and
a dummy character width 01.10 pixels; there is no
restriction to these values. Extemallogic hides the
dummy character and the first visible character by
c;lelaying BLANK (10 pixels). The delayed BLANK
ma~ks off the serial video stream,put out by the

. VSC (Figure 5-8). '

By reducing the character' width of the dummy
ch~racter from 10 to. 2 pixels in 8 steps, the
leftmost character is mov(ld out. The dummy
character has to be wider t~an the widest visible
character in order to hide a dummy character (2
pixels minimul11" width) as well as the leftmost
character in the blanked space (Step 9 of Figure 5-
7) .. The width' of the dummy character can be
controlled by using several methods described in
the following paragraphs. Step 9 of Figure 5-7 is
optional, it is shown to clarify the entire process.
The user can expand the dummy character to its

BI,ANKED PART

ful,1 size (10 pixels) when only one piicel of the
leftmost character is left visible (Step 8 to Step 10).

Horizontal smooth-scrolling can be made frame
synchronous by incblporath1g the Vertical Interrupt
of-the CRTC. ' This interrupt is issued once per
frame. The scroll rate can range from as low as one
pixel per several frames to several pixels per frame. '
This is similar to the programmable scroll rate for
vertical smooth scrolling. For additionaLinformation
refer to Section 2 of this handbook.

External Blanking

One of the criterion for this application is to find a
simple way of delaying BLANK to the appropriate
number of pixels (example 10) to hide the dummy
character.

A practical approach is to delay BLANK by feeding
it through two D~flip-f(ops clocked by the system
clock CLK1. This requires CLK1 period to be

VISIBLE PART OF THE SCREEN

STEP 1: DUMMY 1ST

STEP 2:,

STEP 8:

STEP 9:

STEP 10:

STEP 11:

CHARACTER CH~R.

10 PIXEL$ 8 PIXELS

1ST 2ND.
CHAR. CHAR.

DUMMY 2ND
CHARACTER CHAR,

10 PIXELS 8 PIXELS

LEFT BORDER
OF THE SCREEN

Figure 5-7

5-6

05098B 5-7

larger th~n the character clock period (CLK2) and
that CLK1 has the appropriate pixel width (Figures
5-8 and 5-9).

Another approach is to use a counter to delay the
BLANK for the appropriate. number of pixels. The
counter is to be clocked by the DOT Clock and
enabled by the first edge of CLK1 or CLK2. after
BLANK active. The problem with this approach is
that an external DOT Clock must be available. Most

BLANK

applications make use of the built-in PLL of the
VSC and consequently an external DOT Clock in
unavailable.

Width Control

The width of the dummy character can be modified
by using the propOrtional character' display cap
abilities of the VSC. In propdrtional character

DELAYED BLANK

CLKli---+--~------;

Am8052

CLK1

BLANK (Am8052)

DELAYED BLANK

CLK2

CHARACTER ROW
STEP 1

CLK2

CHARACTER ROW
STEP 2

CLKl VIDli---f---'--I

"---------1 BLANK VID21---I---I

Am8152

05098B 5-8

Figure 5-8 Delaying BLANK

05098B 5-9

Figure 5·9 Delayed BLANK Timing

5-,7

applications, where the character font generator
already contains a set .of characters with widths
between 2 and 10, no special hardware is neces
sary (Figure 5-10). The CPU-changes the dummy
character for each scrolling step. The new char
acter has either a decreased or increased width,
depending on the scrolling direction. Decreasing
the width causes a left scroll; increasing the width
causes a right scroll. The row data list has to be
updated after scrolling an entire character.

. In proportional character applications, the user has
to keep track of the width of the.character inserted
or deleted when updating the row data list. The
modification of the width of the dummy character is
a function of the width of the inserted or deleted
character.

In applications with a fixed character-width, it might
be practical to add a character-font width generator
to implement a character set of different widths for
the dummy character.

Another approach in controlling the width of the
dummy character is to include the bias of the row in
the Row Attribute Word. This attribute word is put
out during horizontal retrace, and can be latched
by HSYNC (Figure 5-11). The character attribute
AP9 is only activated during scanning the dummy
character to switch the multiplexer. The multi
plexer normally guides the Character Font Gen,
erator output to the VSC CLK2-Divider inputs.
Only during scanning the dummy character the 4-
bit width stored in the Row Attribute Word is used.
This approach is advantageous when the linked
list contains only one Row Redefinition Block
common to all rows. In that case, the CPU only has
to update one word to move the screen hori
zontally. In the other approaches the CPU has to

update one character per row.

5.3 BJT·MAPPED GRAPHICS WITH
Am8052

This section outlines a second approach in using
the Am8052 for bit-mapped graphic. The design
discussed in the reprints of magazine articles in the
appendices dealt with graphic information stored in
a special x-y addressed display memory. The
linked-list interpreted by the Am8052 provides
only the address information and not the display
information itself. The approach presented in this
section involves linked-list providing all display
information including the pixel data. The software
oriented implementation requires only one
external 8-bit multiplexer (minimum configuration)
whereas the hardware oriented implementation of
the design outlined in the magazine article
requires multiplexers, a separate display memory
including refresh circuitry, and bus arbitration logic
to let either the host CPU or the CRTC access the
display memory. The advantages of this scheme
over the design shown in the magazine articles can
be summarized as follows:

• less external circuitry
• no dual-ported display memory, pixel and text

data is stored in system memory

However, this approach has some trade-off and
limitations compared to the design in the last
chapter.

• mixed text and graphics only on horizontally split
screens (entire scan lines are allocated for either
text or graphics)

CC/R I----~I/" ./
FONT 1-_______ 1/) DD

v

Am8052

i.o-.,....,~
I
I

I : Am8152A
: i ______________________ ~
t _______________ ----~--~-~ CLK2

Figure 5·10 Variable Character Widths

5-8

05098B 5-10

• heavily increased system bus' utilization (up to
100%) when displaying graphics, therefore dual
bus architecture appropriate

Both designs provide the same resolution for text
and graphics (same dot clock). Both designs take
advantage of the linked-list architecture of the
CRTC system and thereby allow easy and fast
page swapping, block moves. Further- on, the
graphic page can be vertically smooth scrolled in
both designs.

Pixel Generation

A standard CRT controller strobes out the
character code (usually the ASCII-code for the
character to be displayed) on a character clock ba
sis. This character code and the scan line address
select a particular character slice address in the
character font generator. The character font
generator then provides the character slice data
which is serialized by the video shift register.

In this bit-mapped graphic approach the character
font generator is bypassed and the character code
is shifted out directly. Since the character code
can have any 8-bit pattern, it can define any slice of
8 pixels. Since subsequent scan lines on bit
graphic displays are usually unique bit patterns,
each scan line is described by its own sequence of
charaqter codes. This means that,in bit-mapped
graphic mode, character rows contain only one
scan line compared to a scan line count of 8 .. 16 in
text mode. Consequently, the bus utilization of
the CRTC increases drastically. In fact, the screen
resolution is limited by the data transfer capability
of the system bus.

CC/R "\
./

FONT

Am8052

HSYNC • "\ I
AP

/
LATCH I I

0509885-11

In bit-mapped graphic mode the Total Soan Line
Count (TSLC) is set to OOH in the. Row RedefinUion
Block (RRB) for the first graphic scan line.
AddUionally, one bit of the 10-bit row attribute
switches the multiplexers to graphic mode. This
row and all succeeding rows will maintain that
attribute until another RRB is invoked by the linked
list of RQw Control Blocks. In this fashion
alphanumeric and bit-mapped presentations can
be .intermixed on the display device.

Figure 5-12 shows the linked-list data structure
upon which this application is based. For the

. rows/scan lines defined to be bit-mapped, the
hardware will be made to display the 8 pixels per
character slice directly out of the CRTC instead of
using a character font memory as an indirect look
up mechanism. This switching mechanism is
implemented with the row attribute information
normally outputted by the CRTC during horizontal
retrace. In this application only one bit is used to
differentiate between text and bit-mapped graphic
mode. The other bits can be used for other purpo
ses such as implementing a soft loadable character
font generator.

The major design consideration is that the CRTC's
on-chip DMA controller is given enough bus time
to complete loading the row buffers contained in
the chip before(the information is displayed. The
CRTC must be able to load one character row in
less than a horizontal SYNC cycle (one scan line).
In the limit, this can take all of the available bus time
and would, therefore, lock out the host CPU. from
processing. For this reason, it is expected that
only small portions of the total display will be bit
mapped such as in business applications to display
small charts or graphs. .

") DO
v

Am8152

f)~
v

" 2:1 4) CLK2 DIV

J\.
v

4)
·V ---

Figure 5-11

5-9

To minimize the bus ,utilization of tne,CRrC the
linked-listd~scribing the graphic should be
stralghtf0rar& ~o windows andnosElgmentation.

, ,

Sy$tem, Performance

To improve the system performance a dual-bus
architecture may be implemented. The display
information is stor~d in local memory shared by th~
host CPU and the CRTC. ,Additionally, the CPU
has system rnElmory to, perform the other tasks. In
this scheme. the host CPU is only slowed down
when it actually access,es the ~isplay <;lata while the,
CRTC still us,es nearly the entire bus bandwidth
provided by the local memory.

To calculate the DMA time for a row four factors
must be considered. The. performance data is
based on the 8-MHi CRTC,

• Each DMA cycle takes 3 ticks of the CLK1 clock
assuming operating without Wait states. A bus
cycle therefore will be 3/8 Mhz or 375 ns. This
implies, using a transparent address latch, that. a
total of Parameter 4 + Parameter 42 = 30 + 185 =
215 ns is the maximum access time to sys
tem/local memory that will be used for bit
mapped data.

Each row's data consists of:
,

• Row Control Block (RCB) information (7 words or
bus cycles)

• The data to be displayed (Two bytes per bus
cycle)

• Any attributes that the data invokes (one
attribute per bus cycle)

The performance calculations consider three
different resolutions for the bit-mapped portio,n of
the display: 512, 768, and 1024 dots horizontally.
The former and latter represent low and high end
,applications; the middle resolution is typical for
many present CRT systems and fits into the hard
ware of the CRTC in a particularly convenient way,

For all of these screen resolutions many common
considerations will first·be discussed, To simplify
both the software which generates the bit-map
data and to optimize the bus utilization, it is
desirable to place all of the data within, one
contiguous 64K segment of CPU address space.
In terms of theCRTC this means that the upper
address does not need to be updated, eliminating
Am8052 ,Bus Master Write cycles and thereby
saving' bus time. For this same reason it is desir-

able to have all, pUhe RCB's forthe rows of the bit~
map inthis.same address space. ' , .. '

To minimize the, bus request and bus release,
overhead due to handshaking involved it is desir
abl.e to have the DMAburstas long as possible~
The maximum lengtb fora DMA burst Is 'one
Cllaracter row. It is programmed when the Burst
Space value in the Burst Register is set to OOH,

Since character attributes are not. used in graphic
mode it is.desirable to turn the attribute fetches off.
(see Attribute Flag Register).

A word of explanation is appropriate at this point
concerning the values to be put into the Row
Control Block word RA2' The "HIDDEN #"and the
''VISIBLE #" are used by the DMAto ascertain the
maximum number of characters to be fetched into
the internal row buffers. For each segment of a
row, the DMA will fetch a number of characters
equivalent to the sum of these two parameters. In .
graphic mode "HIDDEN #" should be set to zero
and "VISIBLE #" to 64, 96, or 128 for screen
resolutions, of 512, 768, or 1024, respectively. (
The remaining row buffer entries are filled INith the
programmed fill code.

Timing Calculations

The DMA must fetch the contrOl, information and
character data for graphic row in less than the
horizontal scan time. The number of DMA cycles
per row can be determined as:

N = R/16+C+B
N =' number of DMA cycles per row
R, screen resolution in pixels
G 7 words for Row Control Block
B = 7bus cycles for bus exchange and Idle

DMACycies

The data (charaCter string) must be word aligned.
The, CRTC takes additional time internally to fill in
the row buffer with the default data byte specified
by the MDB's character fill code. Internally each
row buffer has 132 entries. However, for screen
size equal to or less than 96 characters per row,
the SLIM bit in Mode Register 1 may be set to
reduce the time taken to do the fill operation. This,
"magiC number" was used as the basis for the
medium resolution selection to reduce the
required fill time to zero. The time to fill the
remaining part of a row it takes. a system clock
(CLK1) cycles per fill character.

The Maximum horizontal frequency supported by
each of the' three resolutions is as follows
(Am8052 at a MHz):

5c10

512 pixels/line

[512116+ 14]· 3 + (96-(51218))
= [32 + 14]·3 +(96-64) = 138+32
= 170ticksofCLK1 =0.021 ms
Fmax= 47 kHz

768 pixels/line

[768/16+ 14]·3 + 0 = [48 + 14]·3
= 186ticksofCLK1 = 0.023 ms
Fmax=43 kHz

1024 pixelslline

[1024/16 + 14]· 3 + (132- (1024/8))
= [64 +14]·3+(132-128)=234+4
= 238 ticks of CLK1 = 0.029 ms
Fmax= 34 kHz

MOB TSlC=X

RCB'

RCB RRBPNTR

RCB (lNK=O)

RCBRRBPNTR

RCB

05098B 5-12

Hardware ImplementatIon

A latch (Figure 5-11) stores the row attribute data
the CRTC outputs during horizontal retrace. The
Am29841 latch is ideal for this purpose as it con
tains 10 bits worth of storage in the convenient 24-
pin slim package and has the correct polarity of
clock.

A multiplexer feeds either the 8-bit character code
(graphic mode) or the character slice data provided
by the character font generator (text mode) to the
parallel input of the Video Shift Register.

Another Multiptexer selects the character width
from the character font generator (as for propor
tionally-spaced characters) or is set to 01108 to
indicate eight pixels per character clock when in
graphic mode.

MAIN DEFINTION BLOCK
X = 8 TO 16 FOR TYPICAL TEXT DATA

NORMAL TEXT AND ATTRIBUTE POINTERS
(NO RRB NECESSARY)
(lNK=O)

FIRST ROW OF BIT-MAP
(lNK = 1) INVOKES RRr"B=_..._ __ -------,

'-------0+1 RRB TSlC ~o, POW ATT = BITMAP

LAST ROW OF BIT-MAP

NEXT ROW OF TEXT
(lNK=1)

'-___ ---,-__ ~RRB TSlC = X. ROW ATT. TEXT

Figure 5-12 "Linked List"

5-11

CHAPTER 6

A~8052 BUS INTERFACE GUIDE

6.0 INTRODUCTION

The Am8052 is a general-purpose controller for
raster scan CRT displays. Its link-oriented data
manipulation provides sophisticated text display
without imposing undue overhead on the host
CPU. The versatility pf this device covers a wide
range of applications from medium performance up
to very-high performance displays.

A wide variety of systems will be able to take
advantage of its features, turning them into power
ful display controllers with a minimum of chip count.
This application note covers the area in a system
outlined in Figure 6-1. It should provide designers
with application hints and information on how to
interface the device to some of the popular CPUs.

6.1 PERFORMANCE DECISIONS

When designing a display subsystem, the system
designer makes multiple decisions to acheive the

MEMORY

CPU

06178)1 ~1

r------l
I I
I 8052 BUS· I
I INTERFACE I
I I

I
I
I
I \
I
I
I

I

I Am8052

I
I
I

most cost-effective design. The designer finds
the best compromise between performance and
cost; the cost mainly consists of hardware/software
development and manufacturing. The following
shows the trade-off between software develop
ment cost and hardware cost.

The basic factors that influence the performance of
a display system are:

1. Single/dual bus architecture
2. System clock rate .
3. Number of wait states
4. DMA burst length
5. FulVreduced attribute fetches

The hardware designer defines the first three
factors. The fourth factor is determined by system
constraints such as real-time response time or multi
master bus sharing. The fifth is set by the software.
designer. The demand attribute fetch feature of
the Am8052 can be used to reduce bus traffic by
about 50%.

CHARACTER
FONT

GENERATOR

Figure 6·1 8052 Bus Interface

6-1

How is system performance measured? First of all,
system performance is defined here as the
response time Of tasks executed by the local
intelligence. It is assumed, also, that this response
time is directly proportional to the remaining bus
bandwidth in the CPU. Therefore, parameters
such as Wait States can be very important in the
determination of system performance.

The various factors affecting system performance
are. analyzed ill the following.

Single/Dual Bus Architecture

The single most important decision the system
designer makes is to implement either a single or
dual bus architecture.

In the single bus architecture, (Figure 6-1) the
CPU, the system memory, and the peripheral
devices are interfaced via a single bus, the System
Bus. With the Am8052, all display information are
stored in the system memory and the Am8052 self-

LOCAL BUS

MEMORY
A "- Am8052

" " ;.. "

loads this data via the system bus. Consequently,
the more data the Am8052 transfers, the smaller
the CPU bus bandwidth and lower performance.
However, this is the simplest approach and re
quires no additional hardware.

The the dual bus architecture (Figure 6-2) is
implemented in higher performance systems
where peripheral devices do not claim a share of
the bus bandwidth. Each peripheral device has its
local memory and interfaces via its local bus. The
Am8052 stores all display data in this local memory.
Thus, the self-load no longer burdens the System
Bus and Am8052 bus traffic becomes insignificant.
This set-up does not affect the overall system
performance.

When interfacing the Am8052 to synchronous
buses, performance can be increased if the on
chip (Am8052) bus arbitration· logiC is not used.
Instead, an external, synchronous arbitration logic
is used to arbitrate the System Bus on a cycle-by
cycle basis. In this mode, BAI is tied Low to allow
the Am8052 to perform its transaction at any time.

"- r ~ Am8152A

" CRT

{t MONITOR

--"', CHAR. -'"
FONT

----v' GEN.

V

BUFFER

"- :>. .
A " 7

"-
CPU MEMORY

"
,/

SYSTEM BUS

05098B 6·2

Figure 6-2 Dual-Bus Architecture

An active DS (Data Strobe) is treated as an cycle
request. WAIT is pulled Low for as long as it is
necessary to hold the Am8052. Upon release of
WAIT, the actual bus cycle is perfomled.

System Clock Rate

The Am8052 was originally designed as a Z8000
peripheral, one that has three clocks per machine
cycle; this means, performancecwise, a ,6MHz
Am8052 can cope with an 8MHz 8086, or 68000,
or one of the MOS microprocessors that operates
on four clock cycles per machine cycle. It is
obvious, therefore, that, if the clock rate of the
Am8052 is high, the Am8052 requires less of the
System Bus bandwidth and gives a higher
performance. '

In order to optimize the system performance with
the Am8052, the CPU should be operated
asynchronous to the Am8052. However, since
some dynamic memory controller operate
synchronously to the System Clock, the design
should be simplified to operate both the CPU and
the Am8052 synchronously; The disadvantage of
this approach is that it requires a faster Am8052.

Wait States

A single Wait State increases, by 33%, the bus
bandwidth used by the· Am8052. The two
examples in the following show cases in which
whether or not Wait States are inserted made an
important difference.

In the first example, the Am8052 occupies' 6% of
the bus bandwidth. Inserting a single Wait State
raises it to 8%, two Wait States raises it to 10%.
The overall system performance is basically not
affected.

Am8052

no Wait ,

State 6%

1 Wait
State 8%

2 Wait
States 10%

Example 1

DMA CPU

94%

92%

90%

Relative
Performance

1.00

0'.98

0,96

The difference would be drastically increased if the
Am8052 occupies a more significant share of the
bus bandwidth and other DMA devices are also .
taking their share Of it. The following table shows
the difference in relative performance when DMA
devices are involved.

Example 2

Am8052 DMA CPU Relative
. Performance

no Wait
State 45% 15% 40% 1.00

1 Wait
State 60% 15% 25% 0.625

2 Wait
States 75% 15% 10% 0.250

Here, the insertion of two Wait States reduces the
relative system performance to a quarter of the one
with no Wait State.

6-3

DMA Burst Length

The purpose of performing bus transactions in
burst is, on one hand, to minimize the effect o#bus
exchange overhead (burst as long as possible) .
and, on the other hand, to limit the time the
Am8052 occupies the bus to allow real-time
responses of the CPU or other peripherals.

The DMA burst length is another factor which
affects the system performance. This is due to bus
arbitration and bus re.lease overhead. After the
Am8052 has asserted Bus Request (BRa Low),
the system will acknowledge the bus request· by
asserting BAI Low. However, in most systems this
exchange involves a bus dead time of a few clock
cycles (overhead). Furthermore, it takes the
Am8052 about eight clock cycles to perform the
first bus cycle after receiving bus acknowledge.

Considering these facts, the bus exchange
overhead decreases if the burst length is
increased (less bus exchanges). In the best case
Burst Space is set to zero. Here, the bus is
exchanged only once per character row being
loaded. In the worst case Burst Count is set to "2".
Here, single bus cycle DMA bursts are performed
which maximize the bus exchange overhead.

An analysis has shown the overhead involved due
to bus exchanges is neglectable if the burst length
exceeds 64. '

Full/Reduced Attribute Fetch

The amount of attribute fetches also directly affect
the system performance. In lower performance
systems the software designer can choose to
employ the full attribute fetch mode. This means
the Am8052 fetches an attribute for each character
being loaded. The advantage 'is that this is the
most simple software' scheme which can be
implemented. There is a fixed relationship be
tween characters and their attributes.

The required bus bandwidth can be reduced by
abolJt a factor of two when implementing the
reduced or demand attribute fetch mode. Here;
attributes are loaded when required. However, this
scheme involves a more sophisticated software
since the relationship of characters' and their
attributes becomes variable. •

6.2 GENERAL SYSTEM BUS
APPLICATION HINTS

The following outlines the unique observations of
the Am8052 bus interface.

Upper Address Writes

The Am8052 updates the upper address on a
demand basis to minimize bus overhead. In upper
address write cycles (Bus Master Writes), AS and
RiW are both Low. This is the only time the
Am8052 pulls the RiW Low. In both segmented
and linear mode, the upper address (7 or 8-bit,
respectively) are strobed out on the lower half of
the address/dat~us (ADo=z). Note, that it is not
possible to OR AS and R/W in order to enable a

0617SA 6-3

AmSOS2-BUS SYSTEM-BUS
74LS373

ADo_7 o A16-23
----,

BUSMASTER.052 L.....- t
AS8052~

R/Weo52

L BUSMASTER.052

Figure6-3 Incorrect Implementation
Latch Stores Upper Address

transparent latch (Figure 6-3). Since R/W pro
pagates into the Bus Master Read cycle followi~
the write cycle (timing parameter 10), ORing R/W
and AS may generate a glitch. Therefore, it is pref
erable to take an approach similar to Figure 6-4.

The upper address is stored in a regislersuch as
the Am29823. The register is enabled when the
CRTC is bus master (BAI=Low, and BAO=High)
and RiW is Low. The register is strobed by the
trailing edge of AS. The CRTC timing guarantees
that R/W settles before that edge.

Slave Transfers

The CRTC supports two slave data transfer modes:
the latched and the unlatched mode. The latched
mode may be selected for systems with a
multiplexed address/data bus such as the 8086
and Z8000. The CRTC latches Chip Select (CS)
and Control/Data (C/O) with the trailing edge of
address strobe. C/O indicates to the CRTC that
the CPU is going to address one of the internal
registers (C/O=High), or that the CPU is going to
transfer data to or from a previously addressed
register (C/O=Low). With the subsequent data
svobe, ,either the pointer or the. data word is
transferred-,- The leading edge of data strobe
latches R/W. The entire cycle may be asynch
ronous to CLK1 or CLK2.

The unlatched mode may be chosen for systems
with demultiplexed address/data bus such as the
68000. Address strobe being Low enables an
internal transparent latch to pass CS and C/O
through to slave select logic. Therefore, both CS
and C/O must be, stable for the entire cycle. AS is
connected 10 a flag that Signals the bus has
stabilized, that is, the address is valid. CS is the

0617SA 6·2

Am29823

ADo_7 a

CP EN Of

AS.052 ~t L BUSMASTER.052

=BU=S"'"MA""S=TE=Roo52

• Riwao52

Figure 6-4 Correct Implementation
Register Stores Upper Address

6-4

decoded I/O address. C/O usually connects to A1
of the system bus. (AI is the least significant
address in 16-bit microprocessor systems; Ao is
"don't care".) Similar to the latched mode, data
strobe latches R/W, and transfers either the
pointer or the data.

Clock Input Requirements

All inputs except the two clock inputs (ClK1,
ClK2) have the normal TIL input voltagel
capacitance specification. The two clock inputs
require a lower Input low Voltage, a higher Input
High Voltage; and they have an increased input
capacitance. The companion part, Am8152A,
provides clock signals satisfying these require
ments. Applications not employing the Am8152A
can either use CMOS clock drivers or the discrete
circuit in Figure 6-S. To increase output drive
capability and improve rise and fall times, CMOS
drivers can be connected in parallel. .

Interrupt Acknowledge

The Am80S2 provides an interrupt acknowledge
input)o support vectored interrupts. For normal
operation this input has to be tied high. Note that,
as long as INT ACK is low or floating the device will
not respond to any slave transactions, or will not
execute any mastertransfers.

Wait Synchronization

It is very important, that WAIT is synchronized to
the clock (ClKl), especially when software Wait
States are enabled. When the number of software
Wait States is set to zero, and the setup and hold
times of WAIT to ClKI are violated, the Am80S2
either misses WAIT going High and inserts an
additional Wait State (not a problem), or it goes
meta-stable (a seldom case, but a real problem,
since meta-stable consequ.ences are not predict~
able). If the WAIT setup and hold timing is violated
and the number of software Wait States is 1, 2,or
3, an additional problem occurs. In that case the
Am80S2 does not insert th~rammed software
Wait States, and scans the WAIT input in the subse
quent T1 cycle. If WAIT is low in this T1 state, the'
Am80S2 will hang up this T1 state, characterized
by AS toggling with the frequency of ClKI.

Bus Turn-Around

The bus turnaround times when going from the
address output (OTEN low) to data input (OREN
low) should be analyzed carefully. Slow driver

. furn-off times in conjunction with fast turn-on de
lays might cause bus contention on the multiplex
ed address/data bus. Therefore, combinatorial
delays between the transceiver control outputs of
the Am80S2 (OREN, OTEN) and the transceiver
inputs should be avoided (use transceivers with

120
,..--.J\I\iIlr-..... ---1r---<> + 5V

06178A 6·4

CLOCK
OSCILLA·

TOR

22pF

TIL

22pF

Figure 6-S ClK1/ClK2 Driver

6-S

CLK1/CLK2
TO Am8052
(VOL < 0.3V)
(VOH > 4.0V)

receive/transmit control such as Am2949). Note
that, in Master Read cycles, the Am8052' does not
require a data hold time to OREN or OS, whichever
goes inactive first. . So either OREN or OS may be
used to enable/disable the data. '.

6.3 Am60S2 AND AN 6-Bit
• MICROPROCESSOR INTERFACE

There are two fundamental issues associated with
mixing devices that. communicate over different
sized buses. The first problem is allowing the two
devices to communicate on a "common" data bus.
Consider, for example, a 16-bit system utilizing 8-
and 16-biI peripherals. Overcoming the mis
matched data paths requires some form of control-

a) 16 BIT
DEVICE

16 BIT
b) DEVICE

led mqltip!exing/demultiplexing of th(j dif:ferent
dC!ta paths. In addition, extra control signals for
partitioning .the . 16-bit word into 8·. and 16-bit units
may be required .. Today, most of the 16-bit CPU
based systems that use a-bit peripherals usually
use just the lower half of the. data bus to transfer
data to and from the peripheral. However, this
scheme does not wQrk when interfacing 16-bit
peripherals to a-bit CPUs, especially when .these
peripherals have bus master capability.

Data Funnelling

When a 16-bit peripheral attempts to transfer data
over, an 8-bit bus (memory write cycle or slave read
cycle), the 16-bit data has to be broken down into
two bytes and transferred sequentially. First, the.

81;11T
SYSTEM

8 BIT
SYSTEM

ADDRESS -< \ A,s-A, \.... ____________ :..-___ -Jr-"

AO~~ __________ _JI
c) 8·BIT .. ----(C:JD~<:7~:O~>:::)----(C:JD~<-:· 1~5~:8:>:J>-

DATA BUS-

WR,RD----..... ' I 'r--
DAT!;~~---<\... ______ ~D_·<~1~5~:O~> ______ _J>___

MEMIIO \ I \ ,--
A""'CrnK"rr.NO=W~L~ED:;;;G""'E '--' '---./

06178A 6·9

Figure 6-6 Bus Master or Slave Read Operation

6-6

lower 8-bits are transferred out on the bus (Figure
6-6a), and then in the next transfer cycle the upper
8-bits of the 16-bit word are sent out (Figure 6-6b).
The generalized bus timing for such an operation
is shown in Figure 6-6c. Figures 6-7a, 6-7b, and 6-
7c show the opposite case; a bus read operation
from an 8-bit bus to a 16-bi\ peripheral. Here, the
first byte read from the system must be latched.
Once the second byte has been fetched, the 16-
bit peripheral reads in the assembled 16-bit (2-
byte) word. Additionally, provisions may need to
be made for the case when the 16-bit peripheral
accesses single bytes.

Interruptions of the two cycle transfer must be
analyzed very carefully. Master transfers must not
be interrupted by slave accesses while being in

a)

b)

16 BIT
OI;VICE

16 BIT
OEVICE

the middle of a two-cycle transaction. Similar, slave
accesses must not be interrupted by master
transfers. While the interfacing funnels the data,
the current bus cycle needs to be stretched.
When the peripheral is bus master, as shown in
Figures 6-6a, 6-6b, and 6-6c, the 16-bit peripheral
is holding its data available for what would normally

. be two complete bus transfer cycles. This stretch
can be achieved by delaying the transfer
acknowledge signal to the peripheral, causing it to
wait (WAIT asserted).

In slave mode, the 8-bit CPU would have to make
two consecutive read operations to examine a 16-
bit peripheral status register. The peripheral must
not become bus master in between the first and
second ,read operations since this invalidates the

.y··'iliill\\l}; •••• ? •••••••• r.· ;..... S~S~~M
I I
I I
I I
I I
I I
I I
I I ,-L __ ~ I

,.,,-___ -..1

8 BIT
SYSTEM

o\DORESS -< >-A,.-A, \. ___________________ --J

Ao \\-_____JI

c) 8-BIT 0:J~ -----«=~O~'-~· ~15~:8~>::::)----~(C:::Jo~'-~· ~7:~O ~>=>

\ I \ . r-
16-BIT OATA -----------:-----~(:20~<=1~5~:O~>:J BUS •

MEM/IO ------""""'
'"'AC"'K"'N"'O""WiiiLEF;O"Gt;;E

06178A 6-10

Figure 6·7 Bus Master Read or Slave Write Operation

6-7 ,.

results af the first read operation. This function
can be 'handled in two different ways: if the CPU
has a bus lock instruction (for example, like ,the
iAPX family of CPUs), then the programmer uses
one of these before the CPU ,accesses the
peripheral. Alternately" the CPU can disable the
arbitrati6n logic "Vhfle it is performing the critical
uninterruptible slave transfer.

','
D'eveloping the Control and Data Transfer '
Interface

Designing the control interface to allow mixing 8
and 16-bit peripherals requires an analysis of the
data and control flow. The data flow automatically
defines the data path design' (see Figures6-6 & 6-
7). The bus master operation by the peripheral is
relatively straightforward. During a write operation,
the data is written out sequentially: the lower byte
first and then the upper byte (or vice-versa).
During a read operation, the data is fetched
sequentially. The byte' fetched first iS'latched, to
hold the data until the peripheral can read it. In the
second byte read cycle, the remaining byte is
fetched, the 16-bit word is assembled from the two
bytes, and the 16-bit word is loaded into the
peripheral. Similarly, WAIT is asserted until the
second byte read cycle can be terminated.

The slave' mode of operation works almost
identically to the peripheral bus master mode. The
master read cycle is similar to the slave write cycle,
and the master write cycle is similar to ,the slave
read cycle. In general, if the peripheral puts data
on the narrower system bus, the peripheral can
keep the data active in both sequential system bus

·cycles. On the other hand, if data is loaded into
the peripheral, the interface logic has to latch the
data of the first fetch cycle, whereas the data of the
second cycle can be loaded directly into the
peripheral (no latching required).

When defining the interface, thEi designer must
make' a conscious choice about which byte (upper
or lower) to latch during peripheral read operations
(or conversely, slave peripheral write operations).
Once this decision has been made, the CPU must
always access the latched data byte first (during a
slave write) and then access the non-latched byte
to complete the transfer. This restriction is a minor
one with no extra software overhead; yet it cOuld
affect the ease of the programmer's coding if not
handled properly. For exampl~, if the programmer
uses a compiler to generate the software for the
systell), extra care may be necessary to ensure the
compiler gene'rates the correct addressing
sequence. An alternative to this solution would be
to latch both the upper and lower data bytes. In
that case, the cost of the interface would be

increased, as would the complexity, with no gain in
performance.

The state diagram (Figure 6-8) illustrates the
control sequence implemented in the 8/16-bit bus
control logic. It also depicts how uninterrupted
word transfers will occur and how the addresses for
upper and lower bytes are generated. In addition,
the specific bus timing of the peripheral and the
data, bus must, be examined to quantify the state
pontrol flow and provide information on data
latching, read/write ,control, strobes, and
addressing to and from the Peripheral. The state
control flow is broken down into three parts: bus
master read, slave read, and slave write 0eerations;

The three control signals that must be be
generated by the 8/16-bit control unit are: Address
bJLO (AO), peripheral hold (WAin, and bus read
(RD). The Ab line is generated by the cornrollogic
to indicate which byte' is to be transferred in bus
master modes only. Otherwise, the Ao generated
by the system is used to indicate which byte is
being accessed. The WAIT line holds up the~,
peripheral during tral1sfers. The RD line is required
te indicate successive transfer cycles on the bus;

,The peripheral's control signals will only strobe
active once, because the two cycle transfer should
be kept hidden from the peripheral.,

The slave transfer flows are alm"st identical,
except the CPU is generating the bus Signals and
the transfer directions are reversed, that is, a bus
write goes into the peripheral. .

The -conceptual logic for the 16-to 8-bit data flow
example is shown in Figwe 6-9. The data on the
upper byte is latched when data is being read (as
bus master) and read or written (as a bu.s slave).
Although this interface must latch data coming
from the 8-bit data bus into the peripheral, it also
needs to act as transceiver when the peripheral is
sending data out to the system. The ideal part,to

, accomplish such an interface would be one that

6-8

has a three-stated output, with an 8-bit wide latch,
in one direction and a three-stated driver in the
other direction. The Am2952 8-bit bidirectional I/O
port provides a close match to the targeted logic
and allows the combining of the upper data bus
latch and upper data driver chips into one IC. It
provides two 8-bit clocked I/O ports, each with
three-state output controls and individual clocks
and, clock enables. An Am2949 bidjrectional bils
transceiver COmpletes the logic required to buffer
the data path.

The state flow control requires logic capable of'
sequentially moving from state to state, holding in
a particular state, and being reset or initialized back

to a predefined state. This design integrates the
state machine generator into the same
Programmable Array L.ogic device (PAL) as the
control signal logic.

The bus control logic required to generatE(the data
path flow logic and the bus control signals is
considerable. This is especially true if the
peripherals and CPUs have different signal
conventions (for exa~e, AS, DS, and R/W
versus ALE, RD, and WR). Conversion between
different signal conventions, signal polarity
changes, and extra functions (such as generating
Ao) requires quite a bit of logic-synthesis ability. If
the peripheral has bus master capability, additional
information, such as bus arbitration controls, must
be fed into the next state determination logic to
decide what control sequence to follow.

Assembling a 8-bit CPu/16-bit peripheral interface
combines aU the individual components discussed
above. Figure 6-10 shows a typicaI8/16-bit control

q?AS=l+
so CS=l+

. MROV=l

A~=O' RW=l • MROV=O

8:)MRDV=O

TMRDV=l

8:)MRDV=1

TMRDV=O

82JMRDV =O

TMRDV=l

06178A 6·11

interface. The state machine and the bus and latch
controls have to be tightly coupled in order to
transfer data between the 8-bit and 16-bit buses;
The generalized machine is designed under the
assumption that the peripheral has bus master
capability. If this is not the case, the design can be
vastly simplified.

Since the CRTC does not modify system memory,
no provision for a bus master write operation

. needs to be provided. This provision is important
because it eliminates the need to generate a
system write control signal (WR). In addition, the
control and display information has to be aligned
on word boundaries. This additional requirement
relieves the 8/16-bit control logic from worrying
about funneling the bytes and performing
odd/even byte transfers. It also saves control
inputs from the Am8052 because all transfers are
words; there is no need for upper and lower data
strobes or byte high enable inputs/outputs.

COMMENTS

WAIT TILL PERIPHERAL TAKES BUS;
MAKE SURE MEMORV ACKNOWLEDGE IS
NOT ASSERTED.

READ IN UPPER BYTE; A.=l;·
WAIT FOR MEMORV ACKNOWLEDGE;
ISSUE RD STROBE.

WAIT FOR MEMORY ACKNOWLEDGE
TOGO AWAY.

READ IN THE LOWER BYTE; A.=O;
WAIT FOR MEMORV ACKNOWLEDGE;
ISSUE RD STROBE.

STROBE IN DATA TO PERIPHERAL;
DEASSERT WAIT;
WAIT FOR SUCCESSFUL READ.

Figure 6·8 ~us Master. Read State Flow Control

6-9

STATE ,
MACHINE 1· .. _-'----- CS'

os ----~~I BUS I· .. ------I~., Ao
CONTROL

RiW • ~ TRANSLATION. • RD
LOGIC

.. • • WR
WAIT ... -----1 FUNNEL LOGIC

CONTROL. MEM ACK

PERIPHERAL
SIDE

DATA
FUNNEL
LOGIC

CONTROL
LINES

8

CPU
SIDE

, Figure 6·9 Conceptual 16/8·Bit Conversion Logic

CLK

CLKEN ----------1----,
OE --------+--1

0< 15:8 >

OE-----t

I ' I L ___ ---'
r EN -------------,

REN ------------,

0<7,:0>

Figure 6·10 Data Funnel ~ogic

6-10

8

8

06178A 6-12'

06178A 6-13

The slave accesses by the CPU are either pointer
writes (to select the desired control/status register)
or 16-bit data readlwrite operations. The pointer
write operation is really an S-bit operation because
only the lower S bits of the data form the register
address. This is illustrated in the flow diagram by .
the path that bypasses half the .§Iave read/write .
states if the command/data (C/D) line is High.
These state flow diagrams are derived directly from
the timing diagrams of the AmS052. The three
different transfer timings are shown in Figures 6-
11,6-12, and 6-13.

Two special conditions have been incorporated
into the state flow diagrams whenever a transfer is
first initiated. Before a new transfer cycle is at
tempted (that is, the state machine is waiting in

ClK,

UPPER BYTE
TRANSF.ER

T, Tw

SO), the memory acknowledge must be inactive.
This prevents any interference from the last
transfer. The second special condition occurs
when the AmS052 asserts the RfW line to indicate
a write operation. Whenever the AmS052 updates
the upper S bits of the 24-bit address latch, the
RfW line indicates a write operation (in conjunction
with AS). The Am8052 is not actually performing a
system data write, only an address latch update.
Hence, the state flow reflects this fact by not
starting a sequence if the R/W line is .active Low
from the AmS052.

These simplifications allow the AmSQ52 to S-bit
CPU control interface to be syntheslzed in a single
AmPAL22V10 device (Figure 6-14). In addition,
the bus control signals are converted from AS, DS,

Tw Tw T,

lOWER BYTE ---------+----+------,
TRANSFER L..-----If----t--.....

~---c~----~--~o----

Ao ___ ~

SY~~;~~·~----------~(C~H~IG~H~B~~~E~:»------«::~lO~W~BY~T!E::::~

CPs I

'------_ 1
06!Z8A 6-14

Figure 6-11 Bus Master Read Timing Diagram

6-11

AS, RD, CSSy• '

! '

, CSa•52

RiW 21.0 ~l\ss\\\\\\\\S\\S\S\\\\\S\\\\\

f

------~----~(I~
OE o• • IL. ------_ ,

SVWA~::.---«::=~L~OW~BY~T!E=:J}--N---<\.' ___ H...;IG_H.;;.BVT...;.;;.E __ ...I>-
Figure 6·12 Slave Read Timing Diagram

06178A 6-15

AS, WR, CSsyS

, Ao ?l1l I77717i

CSS052

R/W \\\\\\\\\\\\\\\\\\\\\\\\\\S'{~ I77717i

CPs

SYSTEM ---<
BUS ' '

HIGIl BYTE }----Ttl (LQW BYTE)--

A'OO- 15)1
it (LOW AND HIGH BYTE)--

06178A 6-16
Figure 6·13 Slave Write Timing Diagram

6-12

and R/W to RD and WR. Figure 6-14 shows the
assembled control and data transfer logic for this
interface. The minimum Am8052 and bus control
signals that have to be generated are RD, Ao, OS,
RIW. Although OS and R/W are used as inputs'
during a bus master operation by the Am8052, the
AmPAL22V10 must convert the CPU RD and WR
signals to OS and R/W for slave I/O operations.
The signals Ao and RD are generated by the
control logic when the Am8052 is performing a
read access to the system. The WAIT (or not
READY) signal to the Ani8052 also needs to be
generated by the control logic. Additionally, the
four control signals of the bidirectional port and
transceiver are generated.

ciD •

BAI •
+ !

BRQ •
BAO •

•
•

AmPAL
22Vl0 . CS

R/Vi

Ama052
OS

WAIT

(/
AD8 ':'" 15

"\I la

OREN

~ I
ADo_7

~ /a

Trade-offs and Limitations

In a design dramatically affecting the I/O of the
system, a number of trade-offs· and limitations
should be noted. The most obvious limitation in
using 16-bit peripherals on an 8-bit bus is that the
16-bit peripheral will be under-utilized. The speed
of all I/O operations will be cut by 50%.
Consequently, the bus utilization will go up if the
16-bit peripheral represents a significant factor of
the bus usage. A CRT controller like the Am8052
niight use 5% to 10% of the bus bandwidth for
display information when using 16-bit I/O.
Converting to 8-bit I/O would double bus usage to
10% to 20%, or more.

A,

CS

BUSAK

• RD

WR

• AO

MEMACK (READY)

~

F
CE sCPs

CE R

OE BR

CPR

OE As

~
Am2952 / ..

A B/ DATA BUS

V 'I 0- /a

L-.-. T

R
. ~ Am2949 A

) A Br-...
V 'I

06178A 6-17 .
Figure 6-14 Am8052 8-Bit Interface

6-13

Another factor that might affect the bus usage ·is
the efficiency of the 8- to 16-bit conversion control
logic. If the state machine designed to perform the
8/16-bit conversion (or 16/32:bit) is impr9perly
designed, then extra transfer overhead may be,
introduced. This could mean a sequential transfer
of two 8-bit values takes longer than two single 16-
bit transfers. The system designer must weigh the
cost of the extra overhead on I a case-by-case
basis. However, as· previously mentioned, the
benefits may well justify these limitations; the bus
is self-limiting, but the device characteristics allow
for value-added designs. In addition to bus'
degradation for certain configurations, extra logic
and design effort are involved. However, most

A19 - 16

. I Am298~ ~
o OE EN CP I

D
AD,s-o

interfaces outside a system's immediale family
require some kind of extra interface logic anyway.
Therefore, by optimizing the control signals and
incorporating them into programmable logic

, devices such as the AmPAL22V10, the IC count
can be dramatically reduced.

6.4 THE Am8052 AND 8086 INTERFACE
IN MIN MODE

The 16-bit multiplexed address/data bus of the
8086 is ,directly connected to the multiplexed
address/data lines of the Am8052, Figure 6-t5.
The upper address (7 bit for segmented mode or 8

MilO AS OS R/W

Vee

I

~ AO'5-0 ~ V

6 L~ CHIP
AD,

-V SELECT - ciD
DECODER

MilO Am29809 CS

8086-2 '---< Am8052

ALE AS

-"'\
V [>

RD
OS

WR J
74lS244

DTiA Riw
'EN

HlDA .J-... BAI V

HOLD BRQ

ClK I ClK'}---L lOGIC ClK

8284

06178A 6-7

Figure 6·15 SOS6-AmS052 Interface

6-14

bit for linear mode) is strobed out on the lower half
of the bus (ADO-6 or AD0-7) and is stored in a
register (Am29823). The Am8052 may be pro
grammed for segmented or linear mode depend
ing on whether address roll-over is desired. The
register output is enabled (OE=Low) when the
Am8052 is bus ~ster. Clocking is enabled
(EN=Low) when RfW is Low while the Am8052 is
bus master (upper address update cycle). The
trailing edge of Address Strobe clocks the register.

RD and WR from the 8086 are logically ORed to
~nerate DS. ALE is in.'!'erted and connected to
AS of the Am8052. DT/R is also inverted to form
RiW. All three signals are passed through a three
state buffer which is enabled when the 8086 is bus
master. MemoryllO (MilO) is pull~d High when the
Am8052 is bus master since the Am8052 only
addresses memory.

Bus Clock

The Bus Master timing is synchronized to the bus
clock (CLK1) of the Am8052. In order to get a
similar and synchronous bus timing when the 8086
or the Am8052 are driving the bus, the Am8052
bus clock can be connected to the 8086 bus
clock. However, in proportional spacing appli
cations, the video timing must.be derived from the
bus clock and therefore the bus clock must be
synchronized to the character clock (CLK2)'

For -these applications the Am8152A provides the
synchronized clocks (CLK 1 ,CLK2) with the· right
timing and DC specification.

In non-proportional spacing applications, the
Am8052 can operate with the 8086 bus clock if the
duty cycle is adjusted. In this case, the Am8152A
cannot be used as the clock driver, and a separate'
clock driver needs to be provided,. This clock
driver must provide a clock satisfying the special
clock input specification (MOS speCification) such
as clock High and Low width and voltage, and input
capacitance. Most CMOS drivers or a discrete
clock driver shown in Figure 6-5 satisfies these

specifications. This design must be changed for
different frequencies. Figure 6-16 shows circuitry
which adjusts the duty cycle for the Am8052. The
required delay time needs to be adjusted for the
chosen bus clock frequency.

At high bus clock frequencies (e.g., ~ 8 MHz) Bus
Request of the Am8052 must be synchronized to
the clock, to generate a synchronized HOLD for
the 8086.

Detailed Timing Analysis

The following timing analysis is based on an 8-MHz
8086-2 and an 8-MHz Am8052. At this frequency
the minimum clock High (TCHCL) and Low
(TCLCH) times for the 8086-2 become 43 ns and
68 ns, respectively. Some of the subsequent
calculations are based on these values for TCHCL
and TCLCH.

Slave Reads and Writes

#21

#22

#23

#24

#25

CS set-up time to the trailing edge of AS
(minimum 0 ns). The 8086-2 provides a set
up time of 28 ns of ADO-15 before the trail
ing edge of ALE. Let us assume 0 ns of min
imum propagation delay since neither the
inverter nor the driver specifies one. The
maximum propagation delay allowed for the
decoder is, therefore, 28 ns (68 ns-40 ns).
The decode time for the Am29806/809
decoders is 13 ns.

CS hold time after the trailing edge of AS
(minimum 25 ns). The 8086-2 proyides a
minimu m address hold time of 33 ns.

C/O set-up time before the trailing edge of
AS (minimum 0 ns). The 8086-2 provides
an address set-up time of 28 ns.

C/D hold time' after the trailing edge of AS
(minimum 25 ns). The 8086-2 provides a
minimum address hold time of 33 ns.

Delay from CS to DS (minimum 30 ns). The

CLK JLJUL j . ~ SUliL CLK'

. DELAY·LlNE

t '.~ SUliL CLK'

CLK JLJUL

06178A 6-8

Figure 6-16 Duty Cycle Adjustment"for the Am8052

6-15

worst case (shortest delay) can be cal- Slave Mode
culatedas:

(TCLCH - TCHLL) + TCLRL
+ (28 ns-13 ns)
= (68 ns-55 ns) + 10 ns + (28 ns-13 ns)
=37ns.

#26 Access time (maximum 150' ns). The8086-
2 expects an 110 access time no longer
than:

2·TCLCL-TCLRL-TDVCL
= 2 • 125 ns - 1 00 ns - 20 ns
= 130 ns.

This means that one Wait State must be inserted.

#27 Data hold time (minimum 10 ns). The 8086-
2 requires a max. data hold time of 0 ns, i.e.,
no hold time.

#28+ RIW to DS. Since DT/R is connected to the
29 RiW input of the CRTC, this timing is not

guaranteed by design.

#32 Data hold time during slave writes (minimum
20 ns). The 8086-2 provides at least 38 ns.

#33 Data set-up time in slave writes (minimum 90
ns). The 8086-2 provides more than one
clock period (125 ns) dataset-uptime.

#34 The Am8052 requires a minimum Data
Strobe pulse width of 100 ns. The 8086-2
provides

TWLWH
= 2· TCLCL-40 ns
= 210 ns'.

#35 Recovery time (minimum 330 ns). The
8086-2 provides more than 3 clock periods
=375 ns.

6.5 Am8052 AND 68000 INTERFACE

One of the designer's most challenging tasks is to
interface two generically different Sus Masters.
Such as the 68000 microprocessor and the
Am8052 CRT Controller. Both Bus Masters sup
port a 16-bit-wide data bus and a 24-bit linear ad
dre'ssing space (if the Linear/Segmented bit in the
Am8052 Mode Register 1 is set to "1 "). The con
trol bus signals of the Am8052, however, differ
from that of the 68000's and need to be translated
bidirectionally. Figure 6-17 shows the interface
schematics.

The Am8052 provides two basic slave modes: the
latched mode for systems with multiplexed
address/data buses and the unlatched mode for
systems with de multiplexed . address/data. buses.
In this interface application, the Am8052 operates
in the unlatched mode because the address and
data buses of the 68000 are demultiplexed. In this
mode, Address Strobe (AS) is kept asserted
throughout the entire bus cycle, making the inter
nalJatches for Chip Select (CS) and Control/Data
(C/D) transparent. AS is driven Low by an open
collector inverter connected to SAl. This forces
AS to go Low whenever the Am8052 is not. in
control of the bus.

Slave Access Timing Analysis:

The Am8052 timing parameters are analyzed in
ascending numerical order.

#25 The set-up time of Chip Select (CS) to Data
Strobe (DS) must be at least 30 ns in order
to guarantee the minimum access time
(#26). Violation of this specification could
happen if Parameter 26 is lengthened, as
shown below.

#26 When CS and DS are asserted simultan
eously, the access time increases from 150
ns (#26) to 180 ns (150 ns + 30 ns). The
68000 requires an access time of 175 ns
(2.5 • 125 ns - 60 ns - 15 ns) to operate
without Wait States. No such Wait States
are necessary for slave reads.

#27 The data hold time requirement of 0 ns
(68000 read operation)· is easily met; the
Am8052 provides a minimum of 10 ns.

#28 The R/W setup time requirement of 0 ns
before DS (Am8052) is is guaranteed by the
68000 (1 clock cycle).

#32 .The data hold time (20 ns) in slave write is
provided by the 1 O-MHz or slower 68000s.

#33 The data set-up time before the trailing
edge of data strobe (80 ns) is provided by
the 8-MHz 68000 (145 ns min).

#34 The minimum guaranteed write pulse width
of the 8-MHz 68000 is 115ns. The Am8052
requires at least a 100 ns pulse. Similar to
#26, smaller values for #25 cause the DS
pulse width (#34) to be widened. In order to
satisfy this parameter, either the set-up time

6-16

#24 must be at least 15 ns or one Wait State
(68000) must be inserted. The 15 ns set
up time demands a fast chip select decoder.

- - " #36 The CS to DS hold time. (5 ns) is satisfied by
the address hold time of the 68000 (30 ns
min).

#37 Same as #36.

ADDRESS BUS

,/. ~. ~ "15 ~ 8

L--

A23 -A'8

~ l CHIP J SELECT
DECODER

.. ,1JL-
A,s-A,

,;1'

0'5- DO'

BGACK

\ Vee iQ~ DW BR

CP
68000 J'oo FFI + ~ IPl. a

Ifil, vee1':""11 ,.....,
FF:

CP R-
AS

BG 1----1>
lDS -
UDS

RiW

IPl.

FC. C
FC, B 74lS138
FC. A

DTACK

))
- - -
lDS UDS RIW

Data Strobe

The Am8052 in slave mode can only be accessed
as a 16-bit peripheral· (word transfers only>". This
means that- both Data Strobes of the 68000 (LDS
and UDS) must be active simultaneously. It is only
then that the OR gate asserts DS for the Am8052.
The driver is enabled when the 68000 is Bus
Master (BAI High). In Master Mode, both data
str0tles are driven by the Am8052 because it does
only word transfers. '

DATA BUS

~
" 16 DREN DTEN ,

A,
ciD

Am29823 K
'I

OEENCP

t ' r-

~ r- h "-
Am29841

AD, •

AD •
OE lE

..... Vee I'

I ..A
AS

.-------J>o-J OC
BAI

..A fvee Am8052

BREa
CS

}- RiW

~
DS ,...

D---t>-- fvee
74lS32

r
INTRa

...... WAIT

INTACK

L lEI

--DTACK

06178A 6.5 Figure 6-17 68000-Am8052 Interface

6-17

Master Mode

After the AmB052 is initialized and the display is
enabled, the AmB052 asserts Bus Request
(BREQ Low) to request the system bus. The bus
arbitration scheme between the Ah1B052 and the
6BOOO is discussed in the paragraph below. To
avoid bus contention at the end of. Bus Master
read cycle, the data bus transceiver (not shown)
must be turned. off before the AmB052 starts
driving the address for the next cycle. Timing
Parameter 11· allows a turn-off time of 25 ns which
is sufficient forthe Am29B63 transceiver.

Bus Arbitration

The 6BOOO CPU supports a three-wire bus
arbitration mechanism. A peripheral requesting
bus mastership asserts a Bus Request (BR Low),
see Figure 6-1B. The CPU,in response, asserts a
Bus Grant (BG Low). At the end of the current bus
cycle, the requesting peripheral goes on the bus.
The end of the current CPU bus cycle is signaled
by the Address Strobe going inactive. The
combination of Bus Grant active and Address
Strobe inactive asynchronously resets FF2 (see·
Figure 6-17), thereby asserting BAI for the
AmB052 and Bus Grant Acknowledge (BGACK).
Resetting FF2 also resets FF1 asynchronou~
which deactivates BR. In response to BR
becoming inactive, the 6BOOO deactivates BG.

Note that BR must be Low for at least 20 ns after
BGACK to prevent rearbitration. The inverters and
the delay· through FF1 must meet this
requirement. BGACK and BAI stay asserted until
the Am8.052 terminates its DMA burst and releases
BREQ. At that time.FF2 is asynchronously set and
BGACK and BAI are deactivated, and the 6BOOO
resumes operation.

The bus arbitration mechanism does not . yet
support DMA preemption. However, AmB052
DMA preemption by external devices can simply
be supported by setting FF2 on preemption. The
preemption DMA can grant the bus after the
AmB052 has releaseQ.Jhe bus by deactivating
BREQ. In this case, BAI being Low is no longer
sufficient to flag that the AmB052 has been
granted the system bus. For proper DMA
preemption support, the data strobe drivers and
the open collector driver for AS must be controlled
by a signal. which flags that the AmB052 is on the
bus. (Note: For the time between preemption (BAI
High) and bus release (BREQ High), the AmB052
is still in control of the system bus).

Interrupt Acknowledge

The AmB052 supports vectored interrupts if the
No Vector bit in Mode Register 2 is disabled
(NV=O). The vector is put out in Interrupt Acknow
ledge cycles (INTACK Low, lEI High, and DS Low).

BRQa052 =t\~l --_,....-r-(~:\l ====~-:_I-+-__
BRsaooo \ ! .

\~-------'

/

I BGeaooo \1.-_---11

:~'
:1 ~~:v.----~,'---_

ASS052

PROCESSOR-I ... ·----AmS052---.. ·I-PROCESSOR

06178A6-6

Figure 6·18 Bus Exchange Timing

6-18

6.6 Am8052 AND 80188 INTERFACE
WITH DUAL BUS ARCHITECTURE

With today's predominantly 16-bit systems, some
new designs still evolve around the S-bit structure.
The underlying reason is cost. Systems designed
for specific control operations can usually be satis
fied with state-of-the-art S-bit CPUs such as the
S01SS. They do not require the slightly higher per
formance 16-bit CPUs such as the S01S6. The S
bit system design requires less memory devices
(EPROMs, RAMs) and less MSI-devices (address
latches, data bus drivers) .. Board layout is simpler
as well.

, ; .
With all the attractiveness of an S-bit system
design, interfacing such a system "Yith the
AmS052 must maintain the low cost level. The
additional cost of designing an S-bit system
interfacing with a 16-bit device must be kept as low
as possible.

The interface design outlined below contains only
low cost, off-the-shelf devices such as the
A'mPAL 16LS, byte-wide registers, drivers and
transceivers (Am2947, Am2956, and Am2959)
and a few standard TTL devices.

Data Path (Figure 6-19)

The previous section analyzed the strategy and
general problems associated with designing the
AmS052 into an S-bit system. There the AmS052
interfaces with the byte-wide memory and micro
processor via a 16-bit to. S-bit data funneling logic.
The dr;;twback of that design is a significant system
performance degradation due to the AmS052
DMAactivity.

r

The design discussed here avoids this drawback
by implementing a dual bus architecture. The
AmS052' fetches the display information from a
local memory, without affecting the operation of
the microprocessor. This local memory is
implemented in two static memory devices (e.g. SK
• S static CMOS RAMs). The bus arbitration logic
controls CPU accesses to the local bus, pre
empting the AmS052 whenever necessary.
Depending on whether the AmS052 is bus master
or bus slave, the bus arbitration logic has to take
actions listed in the following, in order to grant the
local bus to the CPU.

If the AmS052 is in slave 'mode, the arbitration logic
prevents the AmS052 from granting the local bus
by blocking Bus Acknowledge (BAI stays High).
The CPU then accesses the local memory without
asserting any Wait States. Since the AmS052

typically uses about 5 to 20% of the bus bandwidth
(SO to 95% of the time the AmS052 is off the bus),
this can be considered to be the normal case.

If tne AmS052 is bus master, the CPU transfer
cycle is stopped temporarily by inserting Wait
States (ARDY Low). To minimize the wait time, the
AmS052 DMA is immediately preempted (BAI
High). As soon as the AmS052 releases the bus
(BRO High) the CPU transfer cycle is terminated
(ARDY High).

Control LogiC

The control logic consists of three separate units:
The "Master" unit (Detail A in Figure 6-20), the
"Bus Arbiter" (Detail B in Figure 6-20) and the PAL
device (Figure 6~22), converting the CPU-AmB052
signals and generating the various control signals
for the data path logic (Figure 6-19).

The "Master" Unit

The "Master" unit generates a signal MASTER,
which indicates if the AmS052 has granted bus
mastership on the local bus (MASTER Low).
MASTER- is the output of a flip-flop built out of
ORlAND gates. Master is asserted when the
AmS052 receives a bus acknowledge (BAI Low),
after it has requested the bus (BRO Low).
MASTER then stays active until the AmS052
releases the bus (BRO High). In applications not
involving DMA preemption, MASTER can be
generated simply by OR'ing BRO and BAI. This
simplified logic does not generate a correct
MASTER signal in case of DMA preemption,
because the AmS052 is bus master while BRO is
Low and BAI is High (time between preemption
and bus release).

The "Bus Arbiter"

This simple logic arbitrates' between the CPU and
the AmS052 where the CPU has higher priority.
When the AmS052 is in slave mod,e and the CPU
accesses the local bus (MCS Low or PCS Low),
ARDY becomes High and BAI is blocked from
going Low, in order to prevent granting the Bus to
the AmS052. When the AmS052 is bus master
and .the CPU accesses the local bus, ARDY is
asserted and DMA preemption is initiated. This
forces the AmS052 off the bus. To avoid glitches
on BAI, and satisfy the minimum width requirement
for BAI, DMA preemption is delayed until the next
address strobe (AS Low).

6-19

80188

DT/R 1--1r--i

A~~I-______ ~ __ -v

ARDY

80188

Figure 6·19 80188-Am80S2 Interface

r------------------------~--------l

I
I
I
I

r-------------------------~------~---.MA~~
--j

Vee

,-----------+--6---i BRO ------,
I
I
I
I

>--+--+-----.-IBAI
I
I
I
I
I

I I . I L ____________________ ~T~~_J

Figure 6·20 Bus Arbitration Logic

6-20

Am80S2

06178A 6-18

Am8052

06178A 6-19

BROcATc

PREMP

OFF

-----------+--------~

ARDY

1 Am8052 requests bus (BRO j)
2 Aml!052 receives bus acknowledge (BAI j)
3 801B8' requests Am8052 DMA preemption (MCS j or PC S. j)
4 Preemption' request to A,mB052 Is delayed until M CATC j to

06178A 6-20

guarentee,mln width of BAI (> 4 ClK, cycles)
5 Am8052 gets off the bus (BRO 1 r
6 AmB052 requests bus again
7 Am8052 receives bus acknowledge after CPU flnl~hes access

Figure 6-21 Bus Arbitration Timing Diagram

-

Ao • Ao Ds" -os"

MASTER • MAsffii Ds,. -05,. (

DEN DEN AS .. • AS

ALE ALE DS DS

DTiR DTiR eWE. Am8052 80188 1618
WR WR WE .. Rm

RD RD OE. _OE,

MCS MCS ' OE, -OE"

PCS, PCS OE. _OE.

CS

06178A 6-21

Figure 6-22 Contr61 Logic

6-21

Slave Access Sequence

The CPU loads internal regi~ters of the Am8052 in
two' cycles. First, ,it strobes 'the upp~r data bYte
into a latch by assertil1g PCS2' Next, bo,h data
bytes are loaded into. the".Am8052 'bY asserting
PCS1'

To minimize interface logic, this application does
not support rt;lad accesses of the upper byte of the
internal registers. Only the lowt;lr byte cal1 be read.
Contents of' control registers can be tracked by

;'

software in memory, the(efore it is not necessary to
be able to read these registers. All status bits
except the "Scroll In Progress" (SIP) bit are located
in the 10wE'1r byte and can be read. However, the
SIP-bit can be scanned while using vectored
interrupts, because it is included in 'the Interrupt
vector:' '

When the Am8052 is in slave mode, the least
significant CPU address line (Ao) selects the .
memory device for the upper (Ao Low) or lower
byte (Ao High) and the appropriate transceivers.

PAL Design Specification

AMPAL16L8
PAT007
Interface 80188 - Am8052

PAL DESIGN SPECIFICATION
H.-J. Ruehl 1/15/85

Advanced M'icro Devices, Stuttgart, West Germany

/PCS1
RW

/MCS
/DSH

AD /DEN
/DSL /AS

ALE
/DS

/RD
/WE

DSH MCS*DS*AO*/MASTER + DS*/WE*MASTER

DSL MCS*DS*/AO*/M~STER ' + DS*/WE*MASTER

IF (/MASTER) THEN AS ALE

IF (/MASTER) THEN DS RD + WR

IF (/MASTER) THEN WE DTR

OE3 /MASTER*PCS1*DTR

OE4 MCS*DEN*AO*/MASTER

/WR DTR/ MASTER GND
/OE2 /OE3 /OE4 VCC

OE2 MCS*DEN*/AO*/MASTER + /MASTER*PCS1*DEN

6-22

CHAPTER 7

LOW-COST .SMART TERMINAL DEMO SYSTEM

7.1 INTRODUCTION

This project was initiated to demonstrate that a low
cost, but high performance terminal can be built
based on the Am8052/Am8152A CRT controller
chip'set. It shows that it is possible to design a high
performance display system with limited amount of
memory (just 16 kBytes) and a low-cost CPU (the
Am8051) (Figures 7.1, 7.2, and 7.3). The arch
itecture of the Am8052 allows dis~ay updates and
editing tasks to be performed with' a minimum load
on the local CPU (mostly pointer changes rather
than block moves). However, by providing more
memory or a faster CPU, the overall system
performance can be further improved.

Note. The hardware design and the corre
sponding software package are the property of
Advanced Micro Devices Inc., Sunnyvale. Howev
er, since this project is intended to be a promotion
tool for the Am8052, the complete (or any part of
the) hardware or software may be copied and used
in other designs. Soucre code and listing files are
made available on IBM PC compatible floppy-disks.

The complete demo set consists of:

• Hardware description (Section 7.4)
• Software users manual (Section 7.5)
• Comparison to other terminals (Section 7.6)
• ' Source files (2 floppy-disks)
• Listing files (2 floppy-disks)
• Demo program (1 floppy-disk)
• Am8052 Terminal Board (IBM PC form factor)
• Cable for async communication port

The following items are required, but not provided:

• Power supply: IBM PC or ext: power supply
• IBM PC monochrome monitor plus AC power

cable
• IBM PC/XT/ATwith asyncport (COM1)

7.2 DEMO, SET·UP

Take the following steps to set up the demo:

• Turn ,off the power to the IBM PC/XT/AT or
compatable,

7-1

• Open chassis by removing five screws located
on the back side of, the system

• Insert the Am8052 Terminal board into one of
the empty slots

• Connect the bottom 9-pin D-Connector' (J4) to
the async port of the PC (COM1). The cable is
supplied. '

• Connect the upper 9-pin D-Connector (J3) to
the monochrome monitor. The cable'is attached
to the monitor.

• Connect the monitor to AC power. A special
cable is required, but not supplied. A spare IBM
PC power cable can be used.

• Turn on the PC power. After a few secOnds a
cursor shbuld show up at the top left corner of
the display. Also, the PC should bopt up. If
either item does not happen ,turn off power and
re-check the connections. '

it Insert demo disk into the PC and execute demo
by typing the following command sequence:

BASICA
LOAD "DEMO"
RUN

(to load basic interpreter)
(to load source of demo)
(to execute demo)

• If the demo disk contains the compiled (faster)
version of the demo cal,led "DEMO.EXE", it may
be executed ,by typing:

DEMO (to load and execute
demo)

• Various parts of the demo may be executed by
selecting items of the main demo menu.

Speed

The termi~al board operates at 9600 baud. The
b,aud rate may be changed by reprogramming
EPROM addresses 3FFOH and 3FF1H. -For
example, to set the baud rate to 19200 the value at
3FFOH (DbIBaudOpt) should be set t080H,and
the value at 3FF1H (BaudRatCnt) to FDH.

The demo program written in BASIC supplies
characters at a lower rate than equivalent to 9600
baud. To show higher screen update rates, the fol
lowing com~a!1d may be execut~d: .

COPY A:DEMO.BAS COM1:

. This command copies the source ·file of the demo
program to the terminal board. The font loading per
formance may be shown by down-loading the file
"8052FONT.DOC" to the terminal board. It will
define the 120-character-per-line font.

COPY A:8052 FONT. DOC COM1 :

The Am8052 can currently load one new character
font matrix (7*12 pixel) per frame (about 60'
ch~rslsec). Defining the characters using the ANSI
standard it takes about 50 bytes to describe a
single character. At 9600, baud about 1000
bytes/sec.can be down loaded. This results in an
update rate of 20 characterslsec which is Jimited by
the data rate of the async line.

The terminal has been speed optimized. The
character placement and CRILF routine have been
speeded up as much as possible. The result is,
that this board can'operate at 19200 baud without
interface handshake (no control 'signal, no
XON/XOFF) as long as no escape sequences are
sent to the terminal board.

7.3 BUILDING PROCEDURE

There are nine assembly source files supplied on
two IBM PC compatible disks. The files are listed
Qelow:

C BASE Interrupt Handlers
C_INIT Initial1"zation
C SWITCH Dispatch Control
C TABLES Control Tables (easy expandable)
C WORK Control Routines
C_UTIL System Utilities

'C_FONT 80 Character-Per-Line Font
C CONFIG Confi'guration
C_MemMap Included Definitions

Each of these files is down loaded to· the HP
64110A Logic Developement System. The' first
eight files are assembled with the Am8051 Cross
Assembler. The resulting object files must then be
linked together. Both C_BASE and C_CONFIG
contain absolute addresses. C BASE also
contains relocatable program' memOry as do the
remaining six tnodules; All eight modules shotlld
be specified together in the link with the base of

the relocatable program segment set to 0040H.

The absolute file produced by the linker can than
be uploaded to a PROM programmer. The baud
rate is defined in the C..,:CONFIG module. the
locations "DbIBaudOpt" and '~BaudRatCnt" corre
spond to the special 'function registers PCON and
TH1, respectively. The Am8051 timer 1 is used to
generate the serial communications clock descri
bed in the 8051's users manLial. Only the most
significant bit of "DbIBaudOpt" (corresponds to
SMOD) is relevant.

Keyboard Interface

The keyboard logic is copied from the IBM PC/XT
Technical Manual. It is provided as an example
only. The hardware is not tested. In fact, if U15 is
installed tlJe system will not operate. The current
software does not support the keyboard interface.

7.4. HARDWARE DESCRIPTION

While the the cost for VLSI is decreasing,the so
called "dumb" terminals take over more and more
features of their smart companions. Performance,
features, and ergonomics are the important consid
erations for todays generation of low cost term
inals. Large eye-saving, operator friendly non-glare
screens,which can be tilted or swiveled to suit the
user, combined with high resolution smooth
scrolling displays highlight the ergonomic features.
Functional enhancements include user program
mble function keys, programmble screen formats
(80 or 132 columns), a stationary 25th status line
with the time of day. High screen update rates, and
text editing speed are characteristic of these high
performa!1ce terminals. .

7-2

First generation alphanumeric CRT controllers
such as the 6845 (Motorola) or the 8275 (Intel)
became the standard for low cost systems.
However, as the demand for enhanced features
increases, these very low cost controllers lose their
attractiveness. Implementing additional features
with external logic would raise the cost. Second
generation controllers such as the Am8052 are
becoming more cost effective since these control
lers integrate enhanced functions in a single
device. Furthermore, drastic price reductions
made possible by die shrinks and cost saving'pack
aging techniques (i.e. PLCC-Plastic Leaded Chip
Carrier) now match the requirements ,of this very
cost sensitive market.

An Am8051/8751 micro-controller is chosen as

the local intelligence. It receives display commands
from the host' system via an asynchronous
communication channel and interprets them,
eventually generating the display list for the
Am8052. Both the CRT controller and the micro
controller share a 16kbyte static RAM array which
stores this display data. The AmS051 controller
views this memory as 16kbytes (S-bit interface)
while the AmS052 views it as Sk words (16-bit
interface). Four l?tandard latches (74LS373) and a
PAL device demultiplex the address buses and
implement the data funneling logiC to interface the
S-bit and 16-bit bus masters.

'Since the Am8052 off-loads display and editing
tasks from the processor, ,lillie CPU activity is
required. With the AmS052, editing tasks such as
swapping pages, inserting/deleting lines or charac
ters are implemented via pointer manipulation
rather than data block moves. The simple, inexpen
sive Am8051/S751 micro-controller is, therefore,
capable of executing ,all display fast and efficiently. '

The distinctive characteristics are listed below:

• two display formats (selected by software) ,
SO • 24 characters with 9 • 14 pixels/chafcell
120 ·30 characters with 6 • 10 pixels/char cell

• optionally up to three trailing blanks may be
appended to simpmy text right justification

• windowing and vertical smooth scrolling

• proportional spacing

• highlight, superscript, subscript, reverse, under
line, overscore, blinking, muHiple cursors

Additional features requiring extra hardware:

• soft loadable character font generator
(single port RAM)

• horizontal'smooth scroll

• 'italic characters generated by hardware

• Kanji/Chinese character set

System Interface

Addressing

Two transparent address latches (74LS373) de
multiplex the 16-bit addreSs/data bus of the
AmS052 and, in addition, the, S-bit address/data

bus on Port O. Both latches are enabled if either
ALE of the AmS051 (gated with BAI) or AS of the
CRTC are active. The output of the lower latch is
always enabled, the output of the uppe.!.latch is
only enabled if the CRTC is bus master (BAI Low).
OtherWise, the upper address is directly driven by
the AmS051. Port 2 (upper address byte of the
Am8051) cannot be connected to the inputs of
the upper address latch, because this would resuH
in bus contention, when the Am8051 reads the
upper RAM.

Am8051 Address Map

The Am8051 addresses data memory (IC3 and
IC4), the internal registers of the AmS052, and the
keyboard logic. These cycles are flagged by BAI
being inactive, and by either RD or WR being
active. The PAL device perfo.rm the decoding task.
The address map is listed below:

OOOOH-3FFFH

4000H-7FFFH'
SOOOH-BFFFH
COOOH-FFFFH

keyboard logic (odd addresses
onlyl)
Am8052 internal registers
data memory (IC3 and IC4)
reserved

Note, that reading even addresses activates the
output of IC1. The keyboard logic must" therefore,
be accessed by odd addresses only. The I/O ad
dress space is defined as follows:

0001H
4000H

4001H

4003H'

keyboard latch (IC21) (read only)
Am8052 register data access
(high byte, R/W)

, AmS052 register data access
(low byte, R/W)
Am8052 register pointer
(low byte, write only)

The proper sequence of accessing both halves of
the Am8052 registers is crucial. Before performing
any ~egister access the pointer must be loaded.
When writing a register first the high byte is latched
(even address), then the low byte (odd address) is
provided. In the second cycle, the interface'
controller supplies both bytes to the AmS052.
When reading a register the two' cycles are per
formed in the reverse order. First, the low byte is
read (odd address), then the high byte (even
address) is read.

Bus Arbitration

The AmS051 performs the bus arbitration' in
"software. The bus request of the, AmS052' (BRa)
interrupts the Am8051. In the following interrupt
service routine the Am8051 three-states Port 2

7-3

(upper address bus) and port 0 (lower address!
data bus). Then it acknowledges bus request by

. granti~he bus to the Am8052 by pulling P1.2
. Low (BAI Low) and P1.3.High (AS .J::!!gh). Pl.2
controls the bus acknowledge input (BAI) directly.
P1.3 pu"s the address strobe line of the Am8052
(AS) Low whenever a slave access is planned. For
Am8051 memory accesses P1.3 must be High to
a,low ALE to propagate to the address latch (AST
Low). A High on any port 3 pins is equivalent. to a
floating output since each of these pins has an
open-drain driver with internal pull-up resistors.

The Am8051 scans the level on the interrupt input
frequently to determine when the CRTC releases
the bus. In response, the Am8051 removes Bus
Acknowledge (P1.2 High and P1.3 High). This
design can support OMA preemption, since the
Am805l can preempt the Am8052 wheneverap
propriate by removing SAl. The Am8051 program
loop executed while the Am8052 controls the bus,
must be located within program memory internal to
the Am8051.

Am8051 Memory Access

The 8-bit Am8051 accesses the 16-bit RAM in
byte mode. For even addresses (Ao Low) IC16 is
selected, for odd addresses (Ao High) IC24 is
selected. IC14 latches the lower address byte~
Port 2 provides. the upper address byte directly ..
IC5 and IC13 are both disabled, since data will go
directly to Port .. O. The lower RAM (IC16) is selected
(CS4 Low); IC24 ~isabled. In read cycles the
output is enabled (OE Low). Write is enabled (WE
Low) during a write cycle.

In read cycles when AO is Low IC13 is enabled (OE
Low, G High) to pass the data from the upper RAM
(IC24) to the data port of the Am8051 (Port 0). In
write cycles IC5 is .enabled (OE Low, G High) to
pass the data in the opposide direction from the
Am8051 to the RAM. IC5 and IC13 can be
replaced by a single, bidirectional latch (such as
the 74LS646). For memory accesses only the
transparent (driver) function is required .. However,
the latching function is required when the Am8051
accesses the 16-bit registers of the Am8052 (see
below). '

Am8052 Memory Access

The Am8052 ~orms only word read accesses.
This means WE stays inactive High. Also, both
RAMs are selected, and Ao is disregarded. IC5 and
IC13 are disabled.

Register Write

The Am8052 registers are accessed in two cycles .
The first write cycle Imches a pointer to the register
to be accessed (C!D High). In subsequent write
cycles the actl§l .data tra!!sfer to the register can
tak.e place (C!O Low): C!O is connected.to A 1 of
the Am8051. Otherwise, control or data write
cycles are identical.

!-;low does the Am8051 load the 16-bit register via
its 8-bit data bu~? To accomplish this task, the
Am8051 first latches the upper byte in IC5 (Ao
Low, OE2 High, G2 High pulsed). In the next cycle,
the Am8051 accesses the CRTC and loads both
bytes into the Am8052 (Ao High, OE2. Low, G2
Low). The upper byte is supplied by IC5, the lower
byte is supplied by Port o. .

Register Read

The Am8051 reads a 16-bit register in the reverse
sequence. First it accesses the CRTC, to read
both bytes. The lower byte is loaded into the
Am8051 immediately, the upper byte is temporarily
latched in IC13 (AO Low" OEl High, Gl High
pulsed). In a subsequent cycle the Am8051 can
read the upper byte from IC13 (Ao High, OEl Low,
G1 Low). .

Port 1 Allocation

P1.2 and P1.3 are High when the Am8051
controls the system bus. P1.4 and P1.5 control
the keyboard logiC .. For normal operation these
lines. should be Low. OEN is active once per active
scan line and may be used to determine ·the beam
position. Therefore, it is connected to the counter!
timer input oflhe Am8051 (TO).

7-4

Control Logic

Most of the control logic is integrated in a single
PAL device, a PAL16\.,8, which controls the mem
ory selection, write enable, and output enable, the
control for th,e data funnelinllJIC5 and IC13), and
the bidirectional data strobe (OS) forthe Am8052.

Timing

The~ Am8051 and the CRTC operate asyn
chronously.The Am8051 should be operated at
its maximum frequency to· achieve maximum
performance. The CRTC is driven by the clocks

provided by the Am8152A (Video System
Controller). CLK1 specifies the bus clock (DMA
operation). CLK2 determines the character clock
rate. To support various screen formats and,
optionally, proportional spacing CLK1 controls the
video timing. Both clocks are derived from the dot
clock, and digitally synchronized during HBLANK
to avoid screen jitter. The dot clock is 16 MHz.
CLK1 is 4MHz (divide ratio of four). CLK2 cycle
width varies from 4 to 12 dots, thus also resulting in
a maximum frequency of 4MHz.

Video Interface

Basic Configuration

The basic configuration consists of the Am8052
(IC3), the Am8152A (IC12), a JEDEC pin-

PAL SPECIFICATION PROGRAM

PAL16L8
PAT020
8051-Am8052 INTERFACE CONTROLLER
ADVANCED MICRO DEVICES, SUNNYVALE CA

compatible character forit generator ROM (IC1),
the dot clock oscillator (Y2), and the video cable
driver (IC19); All the remaining logic shown is
optional and implements ttle special functions
outlined below.

Horizontal Smooth Scroll

The Am8052 only supports vertical smooth scroll
directly. Horizontal smooth scroll can however be
implemented quite easily. A dummy character is
placed at the start of each character row. This
dummy character is made invisible by blanking it
externally. The actual smooth scrolling is
performed by modulating the width of this
character. By shortening it, the character row
moves left. Eventually, the leftmost character will
disappear. At that time the first character is linked

PAL DESIGN SPECIFICATION
6/21/85

JUERGEN STELBRINK

AO /RD /BAI MEM 10 NC /WR NC NC GND
NC /CS3 /CS4 /OE2 Gl G2 /DS fOE /CS VCC

OE
CS3

CS4

OE2

/Gl

/G2

CS
IF

RD + DS*BAI
/AO*RD*MEM*/IO*/BAI +
/AO*WR*MEM*/IO*/BAI +
DS*BAI
AO*RD*MEM*/IO*/BAI +
AO*WR*MEM*/IO*/BAI +
DS*BAI
/AO*WR*MEM*/IO +
AO*WR*/MEM*IO
/MEM*/AO + MEM*AO +
/1O*/MEM + IO*MEM +
/AO*IO + AO*IIO +
/RD
/MEM*IO + MEM* 10 +
/WR + AO
IMEM*IO*AO

(/BAI) DS = RD + WR

DESCRIPTION:

OUTPUT ENABLE OF RAMS
UPPER (EVEN) RAM

LOWER (ODD) RAM·

IC2, CPU WRITES EVEN RAM
IC2, CPU WRITES AM8052
ICI

IC2

AM8052 CHIP SELECT
BIDIRECTIONAL DATA STROBE

The n,m-inverted equations for Gl and G2 are listed below:

Gl

G2

/AO*RD*MEM*/IO +
AO*RD*/MEM*1O
/AO*WR*MEM*/1O +
/AO*WR*/MEM*IO

7-5

CPU READS EVEN RAM
CPU READS AM8052
CPU WRITES EVEN RAM
CPU WRITES AM8052

out, and the width of the dummy character is
increased t6 it's original size. Then the smooth
scroll process is . continued until the second
character is scrolled out completely, etc.

The digital delay line consisting of four D-Flip-Flops
(IC22) delays BLANK to mask off the video stream
(IC23). The delay is set to four CLK1 cycles (16 dot
clocks). This covers the maximum length of the
dummy character (12 dots) plus a delay of one
CLK2 cycl.e (the first CLK2 cycle is 4 dot clocks).

Since the Am8152A involves one further dot clock
propagation delay, the rightmost pixel of the
dummy character is not masked off by the delayed
BLANK: This pixel is blanked by loading a blank
pixel ("1 ") into the 12th position of the video shift
register.

The upper half of the video shift register is loaded
with the falling edge of CLK2. While CLK2 is High,
the character font generator output is three-stated
(IC1). So, the pull-up resistors supply a High to the
parallel input port, causing the Am8152A to always
latch "1 "s with the falling edge of CLK2. Since the
character font is implemented in negative logic (for
normal video REVERSE is active), "1"s are
represented as blank pixels.

Horizontal smooth scroll is discussed in more detail
in a separate application note.

Soft Loadable Character Font Generator

Once horizontal smooth scroll is implemented, it
takes only one additional latch (IC7) to integrate a
soft loadable character font generator. Note, that
this implementation differs from the method
discussed in an earlier AMD application note. This
implementation requires less hardware and also
boosts the loading performance. Here, one slice of
one character may be loaded per character row
resulting in a loading rate of about two to three full
character cells per frame (100 to 200 characters
cells, per second) assuming that 24 character rows
are diplayed and that a cell contains between 8 and
12 slices.

In this implementation, the dummy character at the
start of each character row performs one more task.
It enables the loading process as well as providing
all necessary information to perform the process
itse~.

The character code of the dummy character
specifies the character to be loaded. The upper
eight bits of the 10-bit row attribute word contained

in the Row. Redefinition Block provides the pixel
pattern of the character slice to be loaded. The
cursor attripute selects the scan-line to be loaded.
Therefore, the Row Redefinition Block defines the
scan-I.ine number to be loaded (the cursor pOSition
within the character cell). The values for cursor start .
and end must tie equal to activate this attribute for
a single scan line only.

Finally, the cursor attribute bit within the character
attribute word of the dummy character enables the
loading process itself.

Character Code Graphic

An alphanumeric display system can implement bit
mapped graphic' directly. One graphic
implementation in an alphanumeric system treats
the character code directly as bit-map. Each cha
racter code specifies eight consecutive pixels with
in a scan line. Therefore, the character code
bypasses the character font generator via IC2 and
supplies the pixel pattern to the parallel input of
the shift register. Since each character row now
consists of only one scan line, the AmB052 bus
traffic is increased significantly and must be

analyzed carefully. .

Row attribute bit 1 enables/disables this mode. For
normal operation this bit is set to "0."

7-6

Italic Characters

Italic type characters could obviously be supported
by an additional (or larger) character font ROM or by
reloading the character font RAM. But a small
amount of special hardware can change straight
characters to slanted characters.

The italic mode is turned on by placing a unique
shaped blank character into the character string.
This character is wide on the top and narrow on the
bottom. Once this character is placed in a character
string all following characters will be tilted according
the programmed shape of the "Italic On" character.
The italic mode is turned off by placing a blank
character with the reversed shape into the
character string.

IC11, a 256'8 bit PROM implements this feature.
The 8-bit address is assembled from the 4-bit scan
line address and the 4-bit CLK2 divide ratio
supplied by the AmB052. For the standard divide
ratios from 4 to 12 the PROM just passes the
supplied ratio through to the Am815;:!A (normal
character mode). For four other ratios this device

becomes active. There, it modulates the width of
the character with the scan line address to build
the uniquely shaped charac~ers: The following
table lists the width values and shows how they
affect the character diplay.

Value

0000
0000

. 0010

1010
1110
1111

Function

Italic On (9 pixels/character)
Italic Off (9 pixels/character)
normal character (4 pixels wide)

normal character (4 pixels wide)
Italic On (6 pixels/character)
Italic Off (6 pixels/character)normal

The. italic mode is automatically feset at the end of a
character row. Both characters controlling. italic
mode have the same width as the standard
characters. So, no width computations like in
proportional spacing applications are required.

Italic mode is turned on by placing a blank (20H) in
the string. This blank has the width value: 0000 or
1110 depending on the chosen screen format.
The italic mode is t.erminated by inserting a blank
with a width value: 0001 or 1111.

7.5 USER'S. MANUAL FOR THE
LOW-COST, SMART TERMINAL

Displays

Background Display

30
128

80 ·24
120·30

usable.rows stored in memory
characterslrow stored in memory
characters in "normal" mode
characters in "compressed" mode

Scrolls vertically and horizontally

Message Display

1 row (visible only when selected)
128 characters/row

Scrolls only horizontally

Window Display

14 uS1'lble rows (7 visible when
selected)

40 characters/row (40 visible when
selected)

Scrolls only vertically

There is only one cursor in the terminal; it is always
in the active display. It may not be visible (e.g.
beyond the currently visible bounds, or under the
(visible) window while in the background display).
The active position (Le. cursor) indicates where the
next graphic character which this system receives
will be stored.

7-7

Controls

There are five classes of controls: normal ASCII
control characters,escape sequences, extended
control characters, standard control sequences,
and private control sequences.

Normal CO Control Characters

These are the subset of the ASCII X3.4 control
characters which we have implemented.

Backspace (BS)

Moves the active position one column left in the
active row, except when the cursor is already in the
leftmost column in the display. This controJ'does
not cause scrolling.

Carriage Return (CR)

Moves the active position to the first column in the
active row. This control does not cause scrolling.

New Line (NL)

Moves the active. position to the first column in the
next row downward from the active row. If the
active row is the bottom row of the display then a
blank row is inserted at the bottom of the display
and the top row is deleted. This has the
appearance of scrolling the entire display upward
one row. The next row, to which the active
position is moved, is the new bottom row.

This control has no effect when the message
display is active.

Escape (ESC)

Introduces escape sequences defined in the ANSI
X3.64 extension.

~scape Sequ~nces

Thes.e are seqencesdeflnEldin ANSI X3:64 thai
consist of an escape character followed by a final
character. They are parameterlesscontrols.

Reset to Inital State (RIS)-ESC c

Resets the terminal to a blank background display,
in small display mode, scrolled all the way up and to
the right, with the active position at the first column
in the 'seventh row (top row .on the monilor
·screen). The graphicr~ndition, character blink
rate, smooth scroll. rate and cursor appearance are
given their initial values. The Vertical Editing Mode
(VEM), Display Width Mode (AMDDWM), Scroll
Mode (AMDSCM) and Screen Polarity Mode
(AMDSPM) are all reset. The message and window
displays are also blanked as well as being made
invisible. The background display is active and the
character generator is reloaded with its initial
patterns,

Control Sequence Introducer
(CSI)-ESC[

Intr09uces control sequences defined in the ANSI
X3.64 extension. It also introduces the private
control sequences .that are implemented in accor
=dance wtth that standard.

Extended Control Characters

The ControlSequencEi Introducer (CSI) is also
available as a single, 8-bit control character (x'9B').
It . perfcorms the same function as the escape
sequence described above.

Ex.tended Control Sequences

These are sequences introduced with the Control
Sequence Introducer(CSI~ described above.
They may contain parameters and intermediate
characters and end with. a final character.
Parameters may be interpreted either as decimal .
numbers or as special selectors that depend on
the particular control for their meaning. A default
parameter is one that is missing or is 'specified with
a value of zero.

Cursor Backward (CUB)--CSI Pn D
'j

Moves the active pOSition left by. the .number of
columns specified' by the single numeric

parameter, wtthouta.ltering its vertical pOSition. An
!!,ttempt t0m.avethe a~tive position. beyond the
·Ieftmost column .intha,display leaves it at the

. leftmostcoh.Jmll. A default parameter causes
movement one column leftward, except from the'
leftmost column. This control does not cause
scroUing. It may move the. cursor to a poSition
where it is invisible.

Cursor Down (CUD)--CSI Pn B

Moves the active position downward the number
of rows specified by the single'numeri6 parameter,
without altering its horizontal.position .. An attempt
to move the active pOSition beyond the bottom row
of tQe display leaves it at the bottom row. A default.
parametercause~movementone row downward,
except from the bottom row. This control does not
causescrolHng. It may move the cursor to a
position where it is invisible. .

Cursor Forward (CUF)-CSI Pn C

Moves the active position the number of columns.
rightward specified by the single numeric para
meter, with04t altering its vertical position. An

. attempt to move the active position beyond the
rightmost column in the display le'aves 'it at the
rightmost column. A default parameter causes
movement one column· rightward, except from the
rightmost column. This control does not cause
scrolling. It may move the cursor to a position
where it is invisible. .

Cursor Position (CUP)--CSI Pn i PnH

Mov~s the active pOSition to the row and colufun
speCified by the two numeric parameters. The first
parameter specifies the row; a default causes
movement ~o the top row. An attempt to move the
active position beyond the bottom row in the
display leaves it at the bottom row. The· second
parameter specifies the' column; a default .causes
movement to the. leftmost column. An attempt to
move the active position beyond the rightmost
column in the display leaves it at the rightmost col
umn. This control does not cause scrolling. It may
move the cu rsor to a position where it is invisible.

Cursor Up (CUU)-CSI Pn A·

Moves the active position upward the number of
rows specified by the single numeric parameter,
without altering, its horizontal. pOSition. An attempt

7-8

to move the active position beyond the top row of
the display leaves it at the top row. A default
parameter causes movement one row upward,
except from the top row. This control does not
cause scrolling. It may move the cursor to a
position where it is invisible.

Delete Line (DL)-CSI Pn ryJ

Deletes the number of rows specified by the single
numeric parameter. If the Vertical Editing Mode is
reset then the active row and rows below it are
discarded and any remaining rows at the bottom of
the display are shifted upward with blank rows
being shifted into the display below them. The
active position remains in the same horizontal pos
ition within the highest row that was shifted (which
may be blank). If VEM is set then the active row
and rows above it are discarded and any re-maining
rows at the top of the display are shifted downward
with blank rows being shifted into the display
above them. The active position remains in the
same horizontal position within the lowest row that
was shifted (which may be blank). An attempt to de
lete more rows than is possible blanks the display
from, and including, the active row through the bot
tom or top row, depending on the state of VEM. A
defauH parameter causes one row to be deleted.

Erase In Display (ED)-CSI Ps J

Blanks a region, of the display, specified by the
selective parameter. A default parameter causes
the region from, and including, the active pOSition
through the end of the display to be blanked. The
active position does not change.

Parameter Meaning

o Blanks the active·pos~ion and all
positions to the end of the display
Blanks from the beginning of the
display up to, and including, the
active position

2 Blanks the entire display

J Parameters other than those listed above are ignored.

Erase In Line (EL)-CSI Ps K

Blanks a region of the active row specified by the
selective parameter. A default parameter causes
the region from, and including, the active position
through the end of the row to be blanked. The

active position does not change.

7-9

Parameter Meaning

o Blanks the active position and all
pos~ions to the end of the row
Blanks from the beginnirig of the row
up to, and including, the active
position

2 Blanks the entire row

Parameters other than those listed above are ignored.

Insert Line (IL)-CSI Pn L

Inserts the number of blank rows specified by the
single numeric parameter. If the Vertical Editing
Mode (VEM) is reset then the active row and all
rows below it are shifted downward. The active
pOSition remains in the same horizontal pOSition
within the first (highest) blank row. If VEM is set
then the ac.tive row and al/ rows above it are shifted
upward. The active position remains in the same
horizontal position in the last (lowest) blank row.
An attempt to insert more rows than are being
shifted blanks the display from, and including, the
active row through the· bottom or top row,
depending on the state of VEM. Rows·shifted out
of the display are discarded. A default parameter
causes one blank row to be inserted.

Reset Mode (RM)-CSI Ps I

Resets the modes indicated by the selective
parameters to their initial states. Four modes have
been implemented. When Vertical Editing Mode
(VEM) is reset the Insert Line (IL) and Delete Line
(DL) controls operate below the active. row. When
Display Width Mode (AMDDWM) is reset the normal
display mode (80 characters per row and only 24
rows displayed) is in effect. When Scroll Mode
(AMDSCM) is reset then jump (Le. non-smooth)
scrolling is affected. When Screen Polarity Mode
(AMDSPM) is reset then normal characters are
shown as· light on dark. A sequence with no
parameters has no effect.

Parameter Meaning.

7 VEM (insert/delete below active row)
?3 AMDDWM (normal display mode)
?4 . AMDSCM (jump scrolling)
?5 AMDSPM (light on dark characters)

Parameters other than those listed above are ignored.

Scroll Down (SD)-CSI Pn T

Scrolls the display downward the number of rows
specified by the single numeric parameter. An
attempt to scroll the top row of the display
downward beyond the top row on the screen
leaves it at the top row. A default parameter
causes the display to scroll down one row, unless
the top row of the display is already at the top row
on the screen.

This control has no effect when the message·
display is active.

Select Graphic Rendition
(SGR)-CSI Ps m

Selects the attributes, with which subsequent
characters will be displayed, as specified by the
selective parameters. A choice between two fonts
is also selectable. A sequence with no parameters
does not change attributes.

Parameters

o

1
4
5
7
9

·10
11
22
24
25
27
29

?91
?92
?93

Meaning

Initial rendition: steady, normal
intensity, not underlined, not
crossed out, normally aligned,
positive image, primary font
Bold or increased intensity
Underlined
Blinking
Negative image
Crossed out (legible but marked as
to be deleted)
Primary font
Secondary font
Normal intensity
Not underlined
Steady (not blinking)
Positive image
Not crossed out

. Superscript alignment
Subscript alignment
Normal alignment

Parameters other than those listed above are ignored.

Scroll Left (SL)-CSI Pn SP @

Scrolls the display leftward the number of columns
speCified by the single numeric parameter. An
attempt to scroll the rightmost column of the
display leftward beyond the rightmost colur.nn on
the monitor screen leaves it at the rightmest
column. A default parameter causes the display to
scroll left one column, unless the rightmost column

of the display is already at the rightmost column on
the monitor screen.

This control has no effect when the window display
is active.

Set Mode (SM)-CSI Ps h

Sets the mode indicated b¥ the selected
parameters to their alternate states. Two modep
have been implemented. When Vertical Editing
Mode (VEM) is set the Insert Line (IL) and Delete
Line (DL) controls operate above the active row.
When the Display Width Mode (AMDDWM) is set
the compressed display mode (120 characters per
row and all 30 rows displayed) is in effect. When
the Scroll Mode (AMDSCM) is set then smooth
scrolling is used. When the Screen Polarity Mode
(AMDSPM) is set then normal characters are
shown dark' on light. A sequence with' no
parameters has no effect.

Parameters Meaning

7 VEM (insert/delete abOve active row)
?3 AMDDWM (compressed display

mode)
?4 AMDSCM (smooth scrolling)
?5 AMDSPM (dark on light characters)

Parameters other than those listed above are ignored.

Scroll Right (SR)-CSI Pn SP A

Scrolls the . display rightward the number of
columns specified by the single numeric para
meter. An attempt to scroll the leftmost column of
the display rightward beyond the leftmost column
on the monitor screen leaves it at the leftmost
column .. A default parameter causes the display to
scroll right one column, unless the leftmost column
of the display is already at the leftmost column on
the monitor screen.

This control has no effect when the window display
is active.

,Scroll Up (SU)-CSI Pn S

Scrolls the display upward the number of rows
specified by the single numeric parameter .. An
attempt to scroll the bottom row .of the display
upward beyond the bottom row on the monitor
screen leaves it at the bottom row. A default
parameter causes the display to scroll up one row,

7-10

unless the bottom row of the display is already at
the bottom on the monitor screen.

This control has no effect when the window display
is active. '

Private Control sequences

These are sequences that are introduced by the
Control Sequence Introducer (CSI). Theymay
contain parameters just like the standard sequen
ces, but their final characters are in the set which
the standard has reserved for private use.

Character Blink Rate (AMDCBR)-CSI Psu

Selects the rate and duty cycle, for characters
displayed with the blink attribute, as specified by
the selective parameters. Currently blinking charac
ters, as well as .those subsequently displayed, will
reflect the selection made by this control. A de
fault parameter selects the fastest bJink rate and a
25%-75% duty cycle.

Parameters Meaning

o initial character blink: fastest,
25%-75% cycle

11 Blink wfth 50% active, 50% inactive
cycle

12 Blink with 25% active, 75% inactive
cycle

20 Fastest blink rate
21 Fast blink rate
22 .Slow blink rate
23 Slowest blink rate

Parameters other than those listed above are ignored.

Load Font Cell (AMDLFC)-CSI Pn ... Pn-

Programs one cell of the character generator with
the pattern specified by the numE!ric parameters~
When in "normal" display mode' the 7·9 display
cells are programmed, otherwise the small display
cells (5x7) are programmed. The first parameter
specifies which character cell is to be programmed.
There are 256 chracter cells specified in the range
o through 255, inclusive. All cells except that at
location 32 can be programmed; this is always a
blank and cannot be changed. A default for this
parameter will cause this control to be ignored.
The second parameter specifies at which character
cell slice programming is t9 begin. Slices are

numbered downward beginning with zero. Slices
. above the first slice are automatically blanked. A

default for this parameter causes the programmed
pattern to begin at the top slice. in the character
cell. The rest of the numeric parameters each
represent a slice of the character Pattern. They are
decimally encoded byte values for the desired
eight-bit slices, with the most significant bit at the
left side of the character and the least significant bit
at the other side of the character cell. In small
display mode, the entire slice (all eight bits) are
shown with an additional blank pixel after each
character. In large display mode, only the most sig
nificant six bits are shown and there is no additional
blank pixel. A default for a pattern parameter
causes the slice to be blanked. As many slices are
programmed as there are parameters supplied,
down to the bottom of the character cell. Any un
programmed slices below the last programmed
slice are automatically blanked.

Select Active Display (AMDSAD)-CSI Psp

Makes one of the background, message or
window displays the active display. The active dis
play is where the' characters being received are
stored and where the controls being received per
form their functions. The displays each have their
own active position and current graphic rendition.
The cursor is shown at the active position Of the ac
tive display, provided that active position is visible.
A default parameter makes the background display
the active display. This control does not affect
message and window display visibility.

Parameter Meaning

o

1
2

Makes the background display active
(default)
Makes the message display active
Makes the window display active

Parameters other than those listed above are ignored.

Select Cursor Appearance
(AMDSCA)-CSI Ps v

Selects th'e appearance of the cursor, which marks
the active position,' as specified by the selective
parameters. The fundamental form of the cursor,
as well as whether or not it blinks and at what rate,
can be changed. A default parameter selects a
steady, reversed block covering' the entire
character cell.

7-11

Parameters Meaning ..

o Initial cursor: steady, reversed, full
block
Reversed block covering entire
character cell

2 Reversed block covering lower half
of character

3 Solid block covering lower half of·
character

4 Underscore
5 Thick underscore

10 ' Steady, non-blinking
11 Blink with 50% active, 50% inactive

cycle
12 Blink with 25% active, 75% inactive

cycle
20 ' Eastest blink rate
21 East blink rate
22 Slow blink rate
23 Slowest blink rate

Parameters other than those listed above are ignored.

Smooth Scroll Rate (AMDSSR)-CSI Ps t

Selects the rate at which both vertical and
horizontal s~ooth scrolling occurs as specified by
the selective parameters. If more than one
parameter is specified then the last one has
precedence.' A default parameter selects one
scanline/pixel per frame.

Parameter Meaning

o Initial scroll rate: one scan line/pixel
per frame

1 One scan line/pixel per frame
2 Two scan lines/pixels per frame

.3 Three scan lines/pixels per frame
4 Eour SCan lines/pixels per frame
5 Eive scan lines/pixels per frame
6 Six scan lines/pixels per frame
7 Seven scan lines/pixels per frame
8 Eight scan lines/pixels per frame

12 One scan line/pixel every two frames
13 One scan line/pixel every three

frames
14 One scan line/pixel every four frames
15 One scan line/pixel every five frames
16 One scan line/pixel every six frames
17 One scan line/pixel every seven

frames
18 One scan line/pixel every eight

frames

Parameters other than those listed above are ignored.

Select Window Visibility
, (AMDSWV)-CSI Psr

Makes the window display either visible or invisibLe
as specified by the selective parameter. A default
parameter makes the window display invisible.
Thiscontrol does not affect which display is active.

Parameter Meaning

o Makes the window display invisible
(default)
Makes the window dis~lay visible

Parameters other than those listed above are ignored.

Select Message Visibility (AMDSMV)-CSI Ps q

Makes the message display either visible or
invisible as specified by the selective parameter. A
default parameter makes the message display
inviSible. This control does not affect which display
is active. '

Parameter Meaning

o Makes the message display invisible
(default)
Makes the message display visible

Parameters other than those listed above are ignored.

7.6 lOW-COST TERMINAL COMPARISONS

This document contains two tables comparing the
features of four terminals with the implemented
Low-Cost, Smart Terminal based on the Am80521
Am8152A chip se,l. The purpose is to clarify the

, relationship of this terminal to other well known
alphanumeric terminals. The tables include the
DEC VT100 and VT220 and the IBM 3101. All but
the IBM terminal are ANSI X3.64 compatible term
inals. The IBM terminal claims to adhere to an ear
lier ANSI and ISO specification; it is similar in som'e
respects to the ADDS Viewpoint or the DEC VT52.

It is very important to understand that the ANSI
specification does not define the characteristics of
any specific terminal, nor does it require any
minimum implementation. Rather, it defines the
method of encoding control information which may

7-12

be sent to, or received from, a terminal.
Consequently, a terminal may conform to ANSI
X3.64 whether or not it has the ability, for example,
to insert a line in a display. If an ANSI X3.64
compatible terminal does have the ability to insert a
line in a display, however, then the control which is
sent to perform a line insertion must be encoded
as specified in the ANSI standard.

Ina practical sense, a user of ANSI terminals can
write software which performs the most elementary
operations (such as cursor positioning) with
confidence that they will work on any conforming
terminal. There are some slightly more advanced
operations (such as insertion and deletion) which
mayor may not be included in a given terminal, but
if present will always be encoded in the standard
manner. The user may write "portable" programs
which make use of these functions only if he
checks carefully for their support on any terminals
he wishes to use. Finally, there will be many
unique operations for a given terminal (such as
window support) which will be represented by
"private" extensions that conform to the ANSI
standard. User programs which make use of such
operations become bound toa particular terminal
or its emulators.

From the user's viewpoint, it would be better if
there were some truly standard specification of a
terminal, for which he could write programs with the
expectation that such programs would then be
completely "portable" among ANSI compatible
terminals. Unfortunately, this is not the situation.
Only the method of encoding control information is .
standardized, not the characteristks or capabilities
of a terminal. Still, this is better than th.e complete
absence of standardization. Programs can be
written which are reasonably portable and standard
modules for sending controls to a terminal can De
developed. Furthermore, high-level software
simulations of more advanced features, which may
be missing in some terminals, can be written to use
the simpler features which are present. For these
reasons, it is appropriate for developers of new

terminals to conform to the ANSI X3.64 standard.

The Low-Cost Smart Terminal, implemented with
the Am8052/Am8152A chip set on an IBM-PC
board, does have ANSI X3.64 compatible control
definitions. Its relationship to other terminals can
only be determined by detailed analysis of the
characteristics of these terminals. The two tables
which form the bulk of this document provide a first
level analysis. The first table is a· summary of
grouf)S of features. The second is a detailed listing
of individual controls.

In viewing this comparison, certain general
statements can be made. These are:

1. The' implemented terminal handles the most
common forms of cursor positioning and
character display as do all the other terminals.

2. The implemented terminal includes advanced,
yet fairly common features such as character
assigned attributes, row insertion and deletion,
smooth .scrolling and a window. The criteria for
including these features was that they should
relate directly to capabilities of the Am8052. No
advanced features have been included ''for
their own sake"or for compatibility with any
other terminal. Such features, since they do
not -relate to the Am8052, would be primarily a
software exercise.

3. The implemented terminal includes some
"private" controls .for the purpose of
demonstrating unique hardware capabilities
such as varying the rate of smooth scrolling,
smooth scrolling either window or background
without affecting the other and horizontal
smooth scrolling.

The comparison reveals the original design intent,
that it should demonstrate the applicability of the
Am8052 to a low-cost terminal while also revealing
the advanced features that the use of an Am8052
could bring to such a product.

7-13

SUMMAR-" TABLE

Am8052 VT100 VT220 IBM

1. Simple cursOr movement YES YES YES YES
and positioning.

2. Additional cursor IND&RI IND&RI within a row
movement only only

('

3. Cursor tabulation fore hrz fore hrz fore &
movements only. . only backhrz

4. Tabulation hard setup simple set & simple set &
. control only clear clear

5. Insert and Deletes YES YES YES
by Row

6. Insert and YES YES
Deletes
by Character

7. Unconditional display & line display & line display & line display line &
Erasures &chr & 'chr . field

8. Conditional display display
ErasureS & line

9. Vertical smooth smooth smooth jump
Scrolling only &Jump & jump only

·10. Horizontal smooth
Scrolling only

11. Superscripts YES
and Subscripts

12. Modes some well stocked well stocked
"but most hardware but most hardware
dependent dependent

13. Character Display YES . YES YES YES
Attributes

14. Selectable Fonts YES YES. YES YES

15. Alterable Fonts YES YES

16. Windows single fixed simple scrolling simple scrolling
region region

17. Am8052 Dependent special c<;lntrols
Features defined

18. Double Height! Double Width YES YES
Characters

. 19. Diagnostics and Reports . YES YES cursorpos
only

20. Miscellaneous reset resetcomm& resetcomm& comm
specials specials

7-14

DETAILED TABLE
\

Am8052 VT100 VT22Q IBM

1. Simple cursor movement and positioning

Cursor Back YES YES YES YES
Curser Down YES YES YES YES
Cursor Forward YES YES YES YES
CUrsor Position YES YES ·YES YES
Cursor Up YES YES YES YES
Backspace YES YES YES YES
Carriage Return YES YES YES YES
Newline YES YES YES YES
Line Feed YES YES YES YES
HorzVertPos 1) YES YES

2. Additional cursor movement

Horzpos Abs 1) YES
Index 1) YES YES
Reverse Index 1) YES YES

3. Cursor tabulation movements

Horizontal Tab 1) YES YES YES
Cursor Backward Tab 1) YES

4. Tabulation control

Clear Tab 1) YES YES
Set HorzTab 1) YES YES

5. Insert and Deletes by Row

Delete Line YES YES YES
Insert Line YES YES YES

6. Insert and Deletes by Character

Insert Character 1) YES YES
Delete Character 1) YES YES

7. Unconditional Erasures

Erase Display YES YES YES YES
Erase Line YES YES YES YES
Erase Field 1) YES
Erase Character 1) YES

8. Conditional Erasures

Erase Display 1) YES YES
Erase Line 1) YES

9. Vertical Scrolling

Scroll Down YES YES YES
Scroll Up YES YES YES YES

10. Horizontal Scrolling

Scroll Left YES

7-15

\'
I

Am8052 VT100 VT220 IBM

Scroll Right YES

'11. Superscripts and SubScripts
, ,

Partial Line Down YES
Partial Line Up YES

12. Modes ,~

Reset Mode YES YES YES
Set Mode YES YES YES
Send-Receive 1) YES
LineFeed/NewLine 1) YES YES -
Insert/Replace 1) YES
ANSINT52 1) YES YES
AutoRepeat 1) , YES YES
Cursor Key Usage .. 1) YES YES
Keypad usage) 1) YES \ YES
OrigIn Location 1) YES YES
NormallReverse Display lj YES YES
Interlace Display 1) YES
80/132 Column Display (120) YES YES YES
Jump/Sm09t~ Scroll YES YES YES

, AutoWrap 1) YES YES
Print Form Feed 1) YES
Print Extent, 1) YES
Text Cursor 1) YES

13. Character Display Attributes

Select Grph Ren YES YES YES
Start'Field ' \ 1) YES

14. Selectable Fonts

Shift Out YES Y!=S YES YES
Shift In YES YES YES YES
Single Shift Two 1) YES
Single Shift Three 1) YES
Select Char;lcter Set 2) YES YES

15. Alterable Fonts

Lo~d Font YES YES

16. Windows
\

Write to Window YES
Make Window Visible YES
Make Window Invisible YES

17. Am8052 Dependent Features

Character Blink Rate YES
Select Qursor Siyle YES '(

Smooth Scroli Rate YES

18. Double HeightlDouble Width Characters, ,

Double-Width Line 1) YES YES,
Double-Height Line 1) YES YES

7-16

Am8052 VT100 VT220 IBM

19. Diagnostics and Reports

Screen Alignment 1) YES YES
Identify Terminal 1) YES YES
Confidence Test 1) YES YES
Cursor Position 1) YES YES YES
Report Term Pa(ams 1) YES YES
Request Term Params 1) YES YES

20. Miscellaneous

. Reset Init State YES YES YES
Bell 2) YES YES YES
EnquirY 1) YES YES
Xon 1) YES .YES YES
Xoff 1) YES YES YES
Cancel 1) YES YES YES
Substitute 1) YES YES
Device Attribute 1) YES YES
Restore Cursor 1) YES YES
Save Cursor 1) YES YES
Load LEOs 1) YES

Notes: 1) software driver not implemented, but can be easily added
2) requires additional hardware support
-) not supported

low-Cost Smart Terminal Demo Board

7-17

Vee

128~
~ 6 g N 0

r!! is is is is r"J
19

D7
" ~

D,
18

17
D,

16
D,

" 15
Ds

13
D2

12
D,

11
Do

8 14 4 3 18 1717 113 2 5 6 9 12 15 19 16

Vee
BE,~ D BE2~

Q

128~
BE U13 BE U5

~ 74LS373 ,022- 74LS373 G, G G2 G
Q D

19 9 15 5 2 19 16 6 12 3 4 7 8 13 14 17 18
D7

18
D,

U24 17

6264 D,
16

D,
15

Ds
13

D2
12

D,
11

Do ,
SHEET 1,3

Vee Vee

U16

~ I" <: .~
~ "

6264 .. <: <: 2 1 2 Q D 3

26 r 26 W11 -,a ~
CS

I
cs U25 ~ 2 2 2 1 6

A'2 A'2 74LS373 re-----o 23 23 9
Al1 Al~ ~ 21 21 12
AlO AlO f---'----o
A9

24 24 15
~ .

A9

As
25 25 5 4

,As :-;s-"
A7

3 3 19
A7

GDE r---o

AD14
!li~o

(SHEET 1,2)
AST SAl jvee

SHEET 3
20

Q D .. " .(<- <: <: <:

41 1 4 9 U14 8
A,

j
A, 74LS373

5 5 6 7
A, A,

6 6 5 4
A, A,

7 7 2 3
As As

8 8 19 18
A2 ,A2

9 9 16 17
A, A,

10 10 15 14
Ao Ao

ADo~ 13

CSDEWE CSDEWE (SHEET3) G DE
20 22 27 20122127 r~yto 1 0 r"J r'!i ~ 8 8 is 8 .. « « «

AST
SHEET 3

Figure 7-1 Am8052 Terminal Board System Interface

7-18

Vee
Vee

Rl i=1 8.2K
27

Vee
24 8

RESET RST

10~F '-
GND n C4~ , U3

Am8052 I 52
AD,.

I 51 Vee

I
AD14

50
INTACK ~ Vee

I
AD13

49 - ~
Vee

I
AD12 IEl Rl0 r 20 48
AD" RSn ~ 2.2K

I 47 Os 10 17 Os AD'0
46

AD, Cs 17 19
Cs

45 AMi 7 7
WR ADo U26

cio ~A' r-o WR AmPAL16L8
A14~ 10 ~

Vee
MEM~ ...:!-,

~ BAi MEM
44

WAIT ~ AD7
42 3 Biii ~ AD.
41 2 AD ~ AD.
40 ;(S 9

Ao <>--~ ~. AD, Ao
39 BAi 14 GND

AD,
38 Vee

.&10 AD.
37 2.2K U27 AD, R7
36 13 n 1 ADo _ BRa - 3

OE,

ve: ~
INT

2- U27
2.2K 18

R.

13 P1.3 FUNCTION
(SHEET 1,3)

28 INT, ~ 0 8052 SLAVE MODE
MEM P2.7 INTo

27 3

~AST
1 8052 MASTER MODE

AD'4 P:!.o P'2 ~ 26 30 f MEMORY ACCESS
AD13 P2.5 ALE 11 10

25 4 12
U23 AD'2 P2.4 P1.3

AD'1
24

P:!., WR
16 74LSOO . AD,o

23
P2.2

AD,
22

P2.1 AD 17

A~8
21 14

p.o To BLANK (ACTIVE ONCE PER CHARACTER ROW)
Vee (SHEET 2)

Cll -.t U4
8751 5

10~F ~ P1.9 p,., (SHEET 3)

R5
8.2K >

'¢' 30pF
32 18

~C14 PO.7 XTAL.
33

PO.6 ck.ll.059 34
po.s .t MHZ CRl

! 35 19
PO.4 XTAL, ~C12

36
PO.3 30pF

37 ~e is
PO.2

EA 31
PO.I

39
P~.o PSE"N 29

PSEN
(SHEET 3)

v!:O~Op~~ J:
(SHEET3)

Figure 7·1 Am8052 Terminal Board System Interface (Continued)

7-t9

Vee
W9

WEOEN cs (FRO~20)
R, R. R, l' ? .-=... ?'r!:4?

1 2 127 22120 1 2',.¢. ,
35 10 WE DE CS

pGNO
Ro Ao

34 9
R, A,

33 8

CS~ R. A.
32 7

R, A,
28

Vee
-, 60 6 19

CCo A. U1 0,
59 5 6264 18

CC, A, o.
58 4 0, 17

CC. A.
57 3 0, 16

CC, A,
56, 25 0, 15

CC, A.
55 24

A.
D. 13

CC,
54

CC.
21

AlO
0, 12

53 23 Do 11
CC, A"

~ A,.

8
4

18

U3
1

11 3
Am8052 5 8

13
6 7

5

6 U2 16
3 74LS244 2

4 14
2 3

15 7
7 6

17 9
8 5

J:fD1'1t OW

2 12
1 4

3 - 6 EN 19 2 16 5 15 6 12 9

_.......£. - l20r19~O O~ 8 1 7 2 6 3 5 4 W r-~1 11 0 g 8 (TOU1) Vee

F
U9

12 4 5 3 6 2 7 1 8~
8~

14,l,4,10,13-Vee
29 7-ONo 8 13 7 14 4 17 3 18

HSYNC
6 I

AP10
5

AP.
4

AP.

AP,
3

2
AP.

AP,
1

67
AP,

AP,
66

AP.
65

AP,
64

APo
63

26
ClK,

61
ClK.

U2274LS175
BLANK

4_2 5_7 12____.10 13 15 1,16-Vcc

~ ~gE ~7LM
B-OND ~ 28 9 Q 11 9 Q 14

I
L---

~

'\
25 I I VSYNC

(TOU7) or U19
BLANK ~3

~OEN(TOU1) (TO 8051) 2 Vee U2L
CURSOR ~4 74LS32

168
13 7 ' 6 WE

r 13:J?11 5

U19

Figure 7-2 Am8052 Terminal Board Video Interface

7-20

Vee Vee

j35 j38
Vee

~
GND,

1
000 Vee

2
DO, j14 Y2

,3
DO. 16,MHZ

4
DO. EXTDCLK

16 S

5
DO • OSCILLATOR OSC20 .

6
DO. .¢: 7
DO. X, ~

S
007 X. ~

~ DO. GND. ~

Vee ,\7

G CLK, ORo Xa n f
CLK, DR,

CLK, ORa

, Vee
U12

l_~
Am8152A

12 :[
JW5 Ro

SSEL
R,

P
GRLVL .:.::.--

Teo

~~ W4

R. 22

R.
'Te,

Vee
DWo---!£ ,~

j OW
23

V~ 4116,
HSYNC

5 6 7

1 Ao A, Aa A. 10 19
CLI<a ORa U19 A. 0.

2
A.

11 1S 26 6 14 2
U11 0, ClKo DR, HSDLD

3
A. 27521 0 0

12 17
CLK.,DRo

15
A7 o. 9 20

CLKa DR. HSDLD
25 17

14 13 S 43 1 3 4 VID,

"* 2
45'

FS VIOo
42 4 6 15

46 - REV 5

-' U23
74LSOO

U27
74LS32

4 6 48
FORE

5

9 S 47
CBLANK

~e 10

I U21 30
MCLK,

31
MCLKa

12
33

BLANK
24

VSYNC

,~ BS
P1.1

MCLK, (8051)
(SHEET3)

F,igl,lre 7-2 Am8052 Terminal Board Video Interface (Continued)

7-21

U19

~

~19

J3 VIDEO CONNECTO R

o Nc~t6rtJ~kgtE

,J NC :
NC---<> 4

NC 0

1S HS

3 VB

16 20nRS

C1!i..L
~120PF

5 20nR9

C20 ~ 120pF

7

Vee

r 28

07 '9
AD7

O.
'8

AD.

O.
17

AD.

0, '6
AD.

0, '5
AD.

(SHEET ')

D. '3
AD.

0, '2 AD,
J2

U28
9PIN

CONNECTOR
1488 (MALE)

TxO " OUT

'0
U4 7RTS W, '2

8751 Pl..
2 ,

'0 W2
RxO

8 ffi W3
P1.7

D. "
CE 0 U10

2764 5E
27128 . W6 I 27256 g

PGM. 271 :::::'
A14

2 ,
26

W7

A"

A'2
2

AD.

PSEN (SHEET')

Vee

A14

A"

A'2
2 ,

A"
23

A"

A,. 2' A,.

A.
24

A.

A.
25

A. (SHEET')

A7
3

A7

A.
4

A.

A.
5

A.

A.
6

A,

A,
7

A.

A.
S

A.

A,
g

A,

Vee A. '0 A.
GND

~4

Figure 7·3 Am8052 Terminal Board EPROM and Keyboard Interface

7-22

APPENDIX A

Mixing Data Paths Expand Options In System Design

- Mark S. Young and James R. Williamson

© Copyright Computer Design Publishing Co., January 1985.
All rights reserved. Reprinted by permission.

MIXING DATA PATHS
EXPANDS OPTIONS IN
SYSTEM DESIGN
Chip designers are creating powerful CPU s and peripherals
with 16- and 32-bit parts. Mixing these with 8-bit parts '
overcomes limitations imposed by established designs,
incomplete families, and software incompatibility.

by Mark S. Young and
James R. Williamson

Integrating 16- and 32-bit peripherals and CPUs
into 8-bit designs, at the simplest level, means
separating the control and data paths from new
peripherals and the systems. Mixing different data
path widths and control protocols, however, makes
possible major improvements in function, perfor
mance, and cost.

The price/performance curve of VLSI chips, for
example, allows designers to obtain more and bet
ter functions for the same amount of money every
year. Alternately, the functionality of a device can
remain constant while the price falls.

Moreover, these new devices with wider data paths
can extend the life of older designs. For example,
many of the most popular personal computers today
use the 8088 microprocessor and, therefore, are con
strained to an 8-bit data path. Designers of add-on
accessories for these personal computers prefer the

Mark S. Young is a product planning engineer at
Advanced Micro Devices, Inc (Sunnyvale, Calif). He
holds a BA in computer science from the University
0/ California at Berkeley.

James R. Williamson is an applications engineer at
A MD. He holds a BS in electrical engineering/rom
the Cali/ornia State Polytechnic University, Pomona.

newer 16-bit peripherals. These peripherals will let
users preserve their software investments, improve
performance, and stave off obsolescence.

Mixing different data path widths can also enhance
new designs. For example, it is less expensive to use
an 8-bit bus in a new design because the memory
requirements are generally cheaper. Only half as
many dynamic RAMs are necessary for the same
number of kilobytes of memory. In addition, an
8-bit bils needs much less control and support logic.
Designers can mix smaller data path peripherals with
wider data path CPUs. This allows them to introduce
systems ba'sed on the newer, more powerful 32-bit
CPUs even before 32-bit peripherals are available.

Designers can use this mixing method to obtain
wider data paths from existing designs until a new
system design is warranted. They can also use parts
in unexpected applications. For example, cost
conscious terminal manufacturers might want to use
the Am8052/8I 52Achip set (the 8052 is an advanced
CRT controller and the 8152A is a video system con
troller) in new terminals based on the relatively
inexpensive 8051 microprocessor. Mixing the 8-bit,
single-chip microprocessor with the 16-bit CRT con
troller allows designers to maximize the cost/perfor
mance ratio of the terminal.

Mixed data path widths can improve bus utiliza
tion as well. A 16-bit peripheral in a 32-bit system
only occupies half the data bus for data transfers.
If the designer mixes, the data paths correctly, how
ever, the 16-bit peripheral could transfer data as

A-1

lAS- t +
ICS- i +
.. RDY.

MROy.t

MR'DV .0

WAil UHfIl PlfIlP!1!ml lms BUS
ItAKI SUR! M£¥ORY At_lOO! IS'
N!l1 ASS£RlfD

wrAP IN UPPU 8Y!!, NJ _ I.
WAIl fOIl MlMOftYAClINOWllOOf
'Issur fiG SlR08£ " '

WAil fOll'MlMDRY ACUDWUOOI
10 co AWAY

IIAP IN lHl. lowtR BYl£: All • 0,
WAil fOIl M£¥ORY ACKNOWlfOO['
ISM RO srROII!

STROBl IN !lAIA 10 PtRIPIi!RAL
IlI,ASSIRI WAil
WAil 1011 SlJCCISSfUI R(AP (DS)

'fbe state nc,w tonlrol dillJram for II bu,s master read
operation illustrates t~ control sequente emp\l')'l.'d
by tbe 8/16-bil bus conlrol IllfIk. '

32-bit chunks and improve bus efficiency by 100 per
cent for that peripheral.

Two central concerns stem from mixing devices
that communicate over different-sized buses. The
first problem results when two devices communicate
on a "common" data bus. Consider, for example,
a 32-bit system utilizing 8- and 16-bit peripherals.
Overcoming the mismatched data paths requires
some form of controlled multiplexlng/demultiplexing
of the different data paths. In addition, extra con
trol signals for partitioning tlie 32-bit word into 8-,
16-, and 32-bitchunks may be required.

Many 16-bit CPU-based systems that use 8-bit
peripherals normally use just the lower 8 bits of the
data bus to transfer data to and from the peripheral.
This method does not work in systems using 16-bit
peripherals and 8-bit CPUs, however, and it tends
to break down in systems with 8-bit peripnerals hav'
ipg bus master capability.

A bus multiplexing method involves multiple
transfers when taking data from or adding data to
a mismatched data bus. For example, before a 16-bit
peripheral can .transfer data over an 8-bit bus; the
16-bit data must be divided into two 8-bit chunks.
It is then transferred sequentially. First, the lower
8 bits are transferred out on the bus; Then, in the
next transfer 'cycle, the upper 8 bits of the 16-bit
word 'are sent out. The major difference in the oppo
site case~a bus read operation from an 8-bit bus
to a 16-bit device-is that the first byte read from
the system must' be latched. Once the second b'yte:
has been fetched, the i6-bit peripheral reads in the
assembled 16-bit (2~byte) word. Additional provi
sions may be needed when the 16"bitperipheral only
wants: to a<:cess a',single byte.

the other major problem in mixed data path
transfers is the actual data read/write operation. The
nature of the multiple transfer forces designers to
guatanteethat the stretched transfer will occur and
that it will not be interrupted. Two asp~ts of stretc~
ing the transfer cycle from or to the peripheral illus
trate the complexity of this problem.

The first case, when the peripheral is the bus
master, is the simplest. A 16-bit peripheral holds its
data available for what normally would be two com
pletebUs transfer cycles. This function can be per
formed when the transfer acknowledge signal to the
peripheral is delayed. If the data was latched instead
of holding the peripheral in a mllitiple word trlillsfer,
however, the device could-try to send the next 16-bit
data word and its "new" address. The procedure
of latching the data and releasing the peripheral
should not be used, therefore, because it may inter
fere with the addressing of the remaining (pending)
8-bit .transfer. '

Whenever a device acts as a bus slave to a CPU
that cannot access-the device's natural word width
in a single operation, a different constraint appears.
The sequence must be set up so the peripheral cannot
obtain the bus while the CPU is in the middle of a
,slave read/write operation. in a typical system, the'
CPU is the last devjce in the interrupt queue. It is
possible for the peripheral 'to become bus master
between the first and second read operations and in
validate the results of the first read operation in a
realtime system. This is because an 8-bit CPU would
have to perform two consecutive read operations to
examine a 16-bit peripheral control register. '

TQis function ciill be handled two different ways,
If the CPU has a bus lock instruction, as in the iAPX
family of CPUs, the programmer must use one of
thes·e instructions before the CPU accesses the
peripheral. Alternately, the CPU needs tp disable
the arbitration logic while it is performing the unin
terruptible access with the 16-bit peripheral.

Crucial cycte
The uninterruptible word transfer cycle is crucial

for maintaining the integrity of the data transferred.
When either the CPU or a peripheral on the bus

, makes an access using the 8(l6-bit control logic, it
must complete the larger device's word access before
relinquishing the bus. If this requirement is not met,
a transfer's integrity can be violated easily by some
other device. This interrupts the transfer, a,nd cor
rupts or aborts the multiplexing sequence.

To illustrate this point, cons,ider a system consist- '
ing of an 8-bit CPU and several 8- and 16-bit periph
erals. Assume one of the peripherals is executing a'
block transfer of i6-bit data onto the 8-bit bus. If
the CPU interrupted the transfer in order to poll the
peripheral during a half-word -transfer, two undesir
able events wo~ld occur. ,Either the multiplexing

A-2

sequence would be damaged irreparably when the
CPU polled the peripheral, or the CPU would read
garbage from the peripheral.

Designing the control interface to allow mixing
of 8- and l6-bit peripherals requires attention to the
data and control flow. During a write operation, the
data is written out sequentially: the lower,byte comes
before the upper byte (or vice versa). The read oper
ation differs only because the data bus is 8 bits and
because it forgets the last byte transferred; it knows
the current byte only. Hence, the interface requires
that one Of the bytes be latched until the full l6-bit
word has been assembled.

The slave mode of operation works almost the
Same as the peripheral bus master mode. The single
exception is the slave write operation. When the
interface is defined, the designer must make a con
scious choice about ~hich byte (upper or' lower) to
latch during peripheral read operations (or con
versely, slave peripheral write operations). Once this
decision has been made, the CPU must always access
the latched data byte first (during a slave Write) and
then access the non-latched byte to complete the
transfer. This restriction is minor, requiring no extra
software overhead. It CQuid affect the ease of the
programmer's coding if not handled properly, how
ever. For example, if the programmer used a com
piler to generate the software for the system, extra
care may be necessary to ensure the compiler gener
ates the correct addressing sequence.

An alternative solution would be to latch both the
upper and lower data bytes. In this case, however,
the cost of the interface would increase, as would
the complexity, with no appreciable gain. The con
trol flow in these designs derives from two differ-

STAT£ FLOW EQUIVALENTS SO SI SI S1 S3 S3

I T, I T2 Tw I Tw I Tw I
CLU, I I

: :
ASS052~ I

I
I
I
I
I

OsS051 I
I
I ,
I
I

UPPER BYTE TRANSFER I I
I
I

LOWER BYTE TRANSFER I :
I
I
I
I

MEMACK \ / 7 \ 7 \

WAIT---, I

Aoz=J I

ent sources: the state control flow itself and the l6-bit
peripheral interfacing with the 8-bit bus. A state dia
gram can be used to specify how uninterrupted word
transfers will occur a,nd how the upper and lower
byte address is generated.

in additIOn, the specific bus timing of the periph
eral and the data bus must be examined to quantify
the state control flow. These timing" specifics also
provide information on data latching, read/write
control strobes, and ,addressing to and from the
peripheral. The state control flow is divided into four
operations: bus master read, bus master write, slave
read, and slave write.

For a bus master read/write operation from a
l6-bit peripheral device operating on an 8-bit bus,
four control signals must be generated by the
8/l6-bit control unit: address bit D (AD), peripheral
hold (WAIT), bus read (RD), and bus write (WR).
The AD line is generated by the 8/l6-bit control logic
to indicate which byte is to be transferred in bus
master modes only, Otherwise, the AD generated by
the system is used to indicate which byte is being
accessed. The WAIT line holds up the peripheral
during transfers. The RD and WR lines are required
to indicate successive transfer cycles on the bus.

Hidden transfers
The peripheral's signals will only strobe active

once because it does not know that two transfers are
being executed. The slave transfer flows are almost
identical, except the CPU is generating the bus sig
nals and the transfer directions are reversed (ie, a
bus write goes into the peripheral).

Tw

For this 16- to 8-bit data flow example, the data
on the upper byte only needs to be latched when data

S3

I T3

I

I

S4

I

In addition to a state flow
diagram, a timing diagram
can be used to describe such
data read/write operations as
a master bus read.

SYSTEM HIGH BYTE
DATA

LOW BYTE

CPs I I

RD I II I

A-3

-:T--{~----

L. _____ ..:.. ___ --1

,,'------

Tile 16- 10 J2-bil con\"t~rsalion logic diagram indicales
the complexity or blls and funnel logic conlrol. II
must con~erl belti'ern different sillnw conwntion.~
and polarities U \'iell as generate f~lra function. and
bu, arbitration conlrol sil!n~I~.

is being .read (as bus master) or written (as a bus
slave). An interface' to handle this operation needs
to latch data coming fro/TI the 8-bit data bus into
the peripheral, it also needs to act as transceiver
when the peripheral is sending data out to the system.
A device with a clocked, tri-state output that has an
8-bit wide latch in OIle direction and a tri-state trans
ceiver in -the other direction would be ideal for
accomplishing such an interface.

The Am2952 8-bit bidirectional I/O port provides
a good enough match to the logic and allows the
upper data bus latch and upper data transceiver chips
to be combined on one IC. It provides two 8-bit
clocked I/O ports, each with tri-state output con
trois and individual clocks and latch enables. An
Am2949 bidirectional bus transceiver completes the
logic required for the data path function.

The state flow !,:ontrol requires logic that can move
sequentially from state to state, hold in a particular
state, and be reset or initialized back to a predefined
state. Depending on the number of states required

, (generally less than 16 distinct states for a design of
this complexity), a 3- or 4-bit counter should be able
to solve the problem nh;ely.

Considerable bus control logic is required to gen
erate the data path flow logic and the bus control
signals. This is especially true if the peripherals and
CPUs use different signal conventions (eg, when AS,
DS, and R/W use address latch enable, RD, and
WR). Conversion from one signal convention to

another, changes in signai polarity, and provision
for extra functions· (such as generating AO) require
a lot of logic synthesis abi~ity. If the peripheral has
bus master capability, such additional information
as bus arbitration controls must be fed into the next'
state determinlltion logic in order to decide what .con
trol sequence to follow.

Customized interface minimizes cost
An 8/16-bit control interface between the Am8052

CRT controller and an 8-bit CPU provides a good
example of how customizing a general interrace can
reduce costs. (The CRT controller is designed with
a 16-bit data interface.) The on board DMA unit
fetches data from sy,stem memory and the CPU polls
the CRT --c.ontroller's internal status and control
registers. Because the CRT controller does not

. modify system memory, how~er, a bus master write
operation is unnecessary. Thus, there is no reason
to generate a system write control signal (WR).

In additiQn, the control and display information
must be aligned on word boundaries. This require
mentrelieves the 8/1Q-bit control logic from funneling
the bytes and performing odd/even byte transfers.
It also saves control inputs from the CRT controller
because all transfers are words; that is, no, need
exists for upper and lower data strobes or byte high
enable inputs.

The bus master read operations are standard 16-bit
data transfers divided into two 8.-bit transfers. The
CPU's slave accesses are either pointer' writes (to
select the desired control/status register) or 16-bit
data read/write operations. (Pointer write operations

A-4

The slate IRlithiM aild Ifte bus and IaMI COBtrots
han to be t'oupfe4.in order to lraosfet· data betwft!ll
tile 8- ud 16-bit buses. TIlis,~ IIddIine is
desiped wi.h the usu1npIinR lim. the perIpIIend 1m
bus master CIIpeblllt,. If this Is IIOC 1ft!! caR. tile
ciesla. cae M.-tty simtJiifint:

Am8052

Am2949

are actually 8-bit operations because only the lower
8 bits of the data form the register address.) The bus
master read operation can be represented by a state
flow diagram or a timing diagram. Conceptually,
state flow diagrams are easier to understand, but tim
ing diagrams usually convey more information.
Other state flow diagrams can. be derived directly
from the timing diagrams of the CRT controller to
8-bit interface.

Simplifications allow synthesis on one device
Two special conditions must be met in the state

machine implemented in the 8/16 interface. First,
before a new transfer cycle is attempted (when the
state machine is waiting in the initial state, SO),
memory acknowledge (MRDY) must be inactive.
This prevents interference from the last transfer.

The second special condition occurs when the
CRT controller asserts the R/W line to indicate a
write operation. Although the CRT controller does
not write data into system memory, when it updates
the upper 8 bits of the 24-bit address latch the R/W
line indicates a write operation (in conjunction with
AS). The CRT controller is not actually performing
a system data write, only an address latch update.
The state machine, therefore, must not start a bus
sequence if the R/W line is held active low by the
CRT controller during a bus master operation.

These simplifications in design allow the CRT con
troller to 8-bit CPU control interface to be synthe
sized in a single AmPAL22VIO programmable logic
array device. In addition, the bus control signals are
converted from AS, DS, and R/W to RD and WR.
The minimum CRT controller and bus control sig
nals that must be generated are RD, AD, DS, and
R;:'W. Although the CRT controller uses DS and
R/W as inputs during a bus master operation, the

Tbe logic for control and
data transfer between an
Am8052 and 8-bit CPU bas
the control interface

, implemented in an
AmPAL22VIO.

PAL device must convert the CPU RD and WR sig
nals to DS and t/W for slave I/O operations.

The signals AD and RD are generated by the con- .
trollogic when the CRT controller is performing' a
read access to system. The WAIT (or not READY)
signal to the CRT controller must also be generated
by the control logic. The data flow controls require
six additional controls to load and strobe the latch,
and to enable transceivers to pass data to and from
the 8-bit bus. Theoretically, A more bits (outputs)
are required to represent all the control states needed
to manipulate the 8/16-bit control logic. This means
the design appears to need 14 output logic units in
a PAL device to perform the required task.

Reducing the 14 output cells to the 10 cells avail
able in the PAL device requires a closer look at the
timing and output switching functions. The AO and
RD control lines are in effect part of the system bus
control and, therefore, cannot be multiplexed easily.
The DS and R/W lines to the CRT controller are
also fixed because they must be valid throughout the
entire transfer cycle as well.

This leaves 6 of the 10 output logic cells of the
PAL device to represent the remaining 1 D identified
control lines. This method of minimization involves
careful state synthesis, analysis of the signal switch
ing functions during the transfers, and utilization
of several control pins on the CRT controller. By
using the BREQ, BACKI, BACKO, CS, and C/O
inputs to the PAL device, we can reduce the num
ber of unique states required to 8 instead of 15. This
reduces the number of logic cells required for the
state machine from 4 to 3 bits.

At this stage, the design requires seven control sig
nals tb manipulate the data transfer registers and
WAIT line. The two latch enables (CEs and CDR)
on the Am2952 bidirectional I/O port can be

A-5

permanentiy enabled. By controlling the clock signal
to the latches, the controls required for three pins
can be reduced to one. The interface control suite
machine will only use the correct side of the dual
latches on the bidirectional I/O port.

The Am8052 CRT controller helps considerably
with its own control bus interface. Two signals
provided by the CRT controller, TBEN and RBEN,
switch the data transceivers in the correct direction
regardless of the type of data transfer (as a bus
master or bus slave). When the controller is a bus
master performing a read operation, or wheJ) it is
a bus slave undergoing a write operation, therefore,
the RBEN signal is strobed to obtain the correct
polarity: By using this line, two of the· remaining
six control lines can be eliminated (REN on the
Am2949 and OEAS on the Am2952). Although the
TBEN line performs'a similar function, it does not
function correctly in a 16- to 8-bit multiplexed
bus environment. '

Two of the remaining control lines (OEAS on the
Am2952 and 10 on the bidirectional bus transceiver)
must be generated by individual cells in the PAL
device. The two clock enables on the Am2952 are
permanently enabled. The two Am2952 clocks are
,tied together to minimize the amount of logic re
quired in the PAL device used to generate clock
strobes to the latches.

This leaves the design with three logic cells and
four output fun~tions (the WAIT line to the CRT
controller and ihe 3 state bits), Careful analysis of

the state flows and timing diagrams indicates that
ttie WAIT line is only asserted in 4 of the 8 states.
A clever assignment of state numbers to the state
flow sequence allows the WAIT line to' be absorbed
into the 3 state encoding bits. The logic equations
for the AmP AL22V 1 0 device>can be derived directly
from the timing diagrams.

An unusual problem might occur when a periph
eral device operates as a bus slave on a smaller data
bus, such as a 16-bit peripheral to 8-bit CPU. During
the first slave write operation, the chip select CS is
enabled by the bus master making the access. No
actual data-just the data latch-is strobed'into the
peripheral, however. After the first byte Of data has
been written, the second access causes the full 16-bit
data to be strobed into the peripheral.

If the designer is using a common CS function to
both the peripheral and the 8/16-bit control logic,
the controller logic must be designed not to glitch
or strobe any of the control lines to the peripheral
(it must prevent OS, R/W from being enabled, for
example). For some peripheral devices, glitches on
the control lines might cause the register to be written
accidentally onto a register that will be overwritten
in the next write cycle anyway. With other periph
erals this might be a catastrophic event. Many
devices acting as bus slaves have write recovery time
requirements (ie, a certain minimum interval between
corisecutive write operations). Glitches on the con
trollines might force the next (and final) write oper
ation to be delayed-or cause a violation of the

A-6

The data bus and qmtrol
interface between an 8-bit
8088 CPU and a 16-bit
Am9516 DMA controller uses
an ArriPAL22VIO for
control, and a 74LS161 for
state sequencing along with
a bidirectional I/O port
and transceiver:

device specifications. Glitches might evade any spe
cial addressing/register accessing scheme used in the
peripheral. This might occur, for example, if the
slave device requires the user to write the address
of theregister that was accessed immediately before
the register was writteri. In this case, glitches or use
less control strobes could wreck the sequence.

The problem can also be solved by using two lines.
In this solution, one of the lines would go to the
peripheral device and the other would connect to the
8/l6-bit controller. The chip select to the peripheral
is activated each time a slave read occurs (for both
upper and lower byte accesses), orwhen a slave write
operation occurs and the unlatched 8-bit data is
being written. The chip select function to the 8/16-bit
controller is chosen each time the peripheral is
selected normally (for slave read/writes on both
upper and lower 8-bit data transfers). This problem
is bypassed completely when two separate chip select
functions are used: one for loading up the Am2952
latch during a slave write/read and one to strobe the
Am8052 controller into action when it is needed by
the 8-bit CPU.

Bus conversion maximizes flexibility
A data bus and control interface to an 8088 8-bit

microprocessor and Am9516 16-bit DMA controller
can be created using four devices: an AmPAL22V 10
for the control block, a 74LS161 counter for the state
sequencer, an Am2952 bidirectional I/O port, and
an Am2949 bidirectional transceiver.

This design incorporates certain simplifications.
The DMA controller requires word accesses only
during command chaining and for slave register ac
cesses. The 8/16-bit data transfer interface for bus
master operations (ie, DMA data transfer functions)
is handled automatically as a programmable option.
During slave write operations, the first byte output
to the DMA controller must have an odd address
and the following second byte an even address. Con
versely, during a slave read cycle, the first byte read
from the DMA controller must be at an even address
and the second at the next higher odd address.

Furthermore, for bus master operations, the sys
tem must use the latched address line AO (LAO) from
the AmPAL22VIO as its sole AO. Bec~lUse the logic
is already available, the system does not have to pro
vide this function. LAO now becomes the system ad
dress bit 0 with full 24-mA drive capability.

Deciding on a means for controlling the funneling
of the data stream-that is, transforming 16-bit data
irito 8-bit data and vice versa-was the first step in
deriving this example. As mentioned earlier, simply
dividing each 16-bit access into two 8-bit data trans
fer cycles presents one way of dojng this. On out
going accesses (16-bit path from the DMA controller)
durihg the first cycle, the upper half of the 16-bit
path is latched while the lower halfpasses through

A-7

PIN

BEGIN

CK = I
S[0:2) . = 2:4
AD = 5

. ISEL = 6
ALE = 7
HLOA = 8
IBW = 9
READY ,= 10
RESET = 11

IRO = 23
IWR = 22
LAO = 21
IDS = 20
IRW = 19
IWAIT = 18
IA '= 17
IB = 16
IC = IS
10 = 14;

IF {RESEn THEN ARESET{ I;
This section defines the wiggles when the Am9516 is bus master

IF (HLOA) THEN ENABLE{ I;
IF (/S[2) , HLOAI THEN BEGIN

IF {S[I] * ISfOD THEN
LAO = ICK', BW + IBW' AO'

ALE + I BW ' LAO • IALE ;
ELSE

LAO =BW+/BW'AO*
ALE + IBW ' LAO '/ALE ;

END;
IF {HLOAI THEN

{CASEI {Sf2:0Jl

END;

BEGIN
II BEGIN
RD = IRW • DS
A • = IBW • IRW '.lCK
WR = IBW ' RW' DS
C = IBW' RW
WAIT = I

END;
21 BEGIN
RD = IRW * DS
B = BW
A = IBW ' IRW
WR = IBW ' RW * DS
C =/BW'RW
WAIT = ISW

END;
31 BEGIN
RD = IRW ' DS * B
B =BW'CK
A = IBW ' RD
WR =/BW'RW'DS
C = IBW' RW
WAIT = BW

END;
51 BEGIN
RD = IRW • DS
A =/BW'/CK
WAIT = BW

END;
61 BEGIN
RO =/RW'DS
A = IBW

END;
71 BEGIN
Ro = IRW • OS
A = IRo

END;

This section defines the wiggels when the 8088 is bus master'
BEGIN

END.

LAO= AO • ALE ' SEl + LAO • I ALE • SEL
B =LAO'WR'SEL
A =/LAO'WR'SEL
DS = A + lLAO ' RD • SEL
C = lLAO ' RD ' SEL
D =LAO'RD'SEl
END;

This PLPL file implements an interface between the
8-bit 8088 and the 16-bit· Am9516.

, .

Programming the PAL and the counter

In writing the Programming Language for Program·,
mabie logic (PLPL) file to control the operation of
the AmPAL22V10 and the UL5161 counter, the
Inputs to the PAL device from the counter are as
signed SO, 51, and 52, respectively. Then, It is pos
sible to apply a "sculptured design" technique to
the entire timing diagram (see figure in Panel, "A
matter of timing") by using the Case statement from
PLPL. By assigning combinatorial equations to only
one binary partition or column at a time (Case), the
p8signer can ignore all other aspects of the design
for the time being and generate slmple'equatlons
directly from the timing waveforms.

During clock time T1 of the Am9S16's word read
cycle the state of the 74L5161 (50,51,52) is cleared
to 000 by the assertion of address latch enable
(ALE). LAO Is' the on!y output control signal from the
qAT controller asserted during this period. This sig
nal is handled as a special case, however. During
time T2 of the DMA controller'S word read cycle,
the RD and WAi'f outputs from the CRT con'troller
must be asserted. This time partition corresponds)
to the state Inputs 52, 51, 50 = 001. Therefore, the
first .case equations are

CASE (S[2:0J)
BEGIN
1) BEGIN

RD= IRW'DS ; Transform Control

WAIT=1'

END;

; Signals IRW a~d OS
; into. InteURD

; Assert Wait
; unconditionally

During time T2 of the DMA controller's byte read
cycle, A is the only additional output not already

accounted for In the Case stat,ement. This signal ,
aUows a byte of data to ,flow through tfie bldlr.ec~
tlonal bus transceiver Into' the DMA controller'
during pyte read operations. ·50me additional con'
stralnts are placed on this Signal, however: it must
only be aSserted in time T2 on,byte read oper~ions
(the BIW input) and it must be delayec[Qy a half
clock period from the rising edge of T2 (CK signal).
Thus the Case s,tatement becomes "

CASE ,(S[2:0])
BEGIN
1) , BEGIN

RD= IRW'DS
A= IBW'/RW'/CK

WAIT = 1

END;

; enable the
; recejver

Finally, by examining the last time T2 elements
(WR and C) during the DMA controller's byte write
cycle, the remaining terms in Case 1 are derived.
With the exception of LAO, the remainingiequations'
were developed in the same fashion. Clearly, this
"sculptured" tectmique is a very ,Simple and
methodical means for arriving at the Boolean re-
quirements for a logic block. ' ,

As the PLPL Hsting sholNs, the signal LAO was
handled slightly differently from the previOUSly dis
cussed method. The number of product terms gen
erated via the Case statement made this approach

, necessary. The number exceeded the upper limit
(16 terms) for a programmable lOgic array. As a prac
tical matter, therefore, it was necessary to optimize
this signal manually. However, it should be noted
that this step will not be necessary once the fully
optimized version of PLPL becomes available,

It tri-state buffer onto the 8-bit bus. During the sec- tion of a syntax to fully express this art has taken
ond cycle, the tri-state buffer is turned off and the a long time. AMD recently developed such a,language
previously latched half ofthe data is driven onto the for programming the AmPAL22VlO, however.
bus. On incoming accesses (8-bit path to 16-bit path), i, "Programmi,ng Language for ProgI:ammable
the proc,ess is reversed. Logic," or PLPL, allows the designer to specify a

The control mechanisms that perform this cycling design using muIiiple input formats. This specifica
depend on the WAIT and R/W signals passing to tion flexibility supports the, variety of design
and from the DMA controller, and on the ability approaches necessary to express different design
to enable or disable the latches and transceivers selec- problems efficiently. These formats range from sitn
tively. The Am2952 bidirectional I/O port was pIe sum-of-products Boolean equations to high level
chosen because of its dual registers and its flexible constructs. PLPL alsq supports the input specifica-

; control. The AmPAL22VlO device was chosen to tions for many types of AND/OR based devices, in
match the required number of control pins and func- ' cluding all of the current AMD programmable logic
tions. Since the complexity of this design requires array and PROM devices. I'

the use ef all of the PAL's I/O pins for control func- PLPL is block structured, and includes tbe high
tions, however, it was necessary to use a 74LS161 level language constructs If"Then-Else, Case, and
counter to provide the state sequencer function. For; all familiar to maily programmers of the C and

Programming with PLPL
It has long been the logic designer's "art" to merge

the often very different concepts and notations of tim
ing information with Boolean logic. Yet, the evolij-

Pascal languages. Macros,functions, COnStants, and
variables may also be used in PLPL. The language
also facilitates use, clarity, and self-documentation.

Sucb current programmable legic technology and
associated programming la~gua:.'p. as PLpL ,allow

A-S

A matter of timing
The complex AmPAL22V10 design used the accom
panying timing . diagram to correspond to the
desired waveforms_ They are partitioned by the
respective binary state (or count) from the counter_
. The· desired timing requirements during the

period when the DMA controller is bus master
appears below_ During time T1, address la1ch
enable (ALE) is asserted by the DMA controller to
denote the beginning of the cycle; a short time later,
an address is driven onto the bus. This address is
valid at the falling edge of ALE. The control signal
LAO (latched AO), therefore, must be valid at this
time, as well. In this phase of the cycle, it must also
be high to enable the odd byte from memory to be
loaded into the bidirectional 1/0 port. In addition,
the assertion of ALE performs the function of reset
ting the 74L5161 counter tei 0000 in order to syn
chronize the cycle.

During time T2, the DMA controller will assert its
05 signal. TIle timing for this signal, in conjunction
with the RIW signal (asserted in T1) must be'trans-

formed into an 8088-eq!:!.!.valent RD signal. During
a word read cycle, this RD signal also must be arti
ficially negated and then reasserted to accomplish
a double byte read. At the same time, the DMA con
troller must be "parked" in order to multiplex or
assemble a word. Thus, the WAIT signal Is also
asserted at time T2. During time TW (52, 51,
50 = 010), the receiver clock enable control signal
B must be asserted In order to allow the next sys
tem clock's rising edge to strobe the upper byte into
the bidirectional 110 port. ThisJs accomplished dur
ing the next TW period (52, 51, 50=011).

During the remainder of the word read cycle, RD
Is negated and then reasserted after LAOJ:las been
forced low to addres~ the even byte. A Is then
asserted to allow both the previously latched upper
byte and the current lower byte to be driven onto
the DMA controller's pins. And finally, thE! WAIT sig
nal is negated, allowing the DMA controller to finish
Its read cycle by strobing,in the 16 bits of command
data on its data pins.

Am9516 Am9516, Am9516

Am9516
ClOCK

WORD READ CYCLE ~ BYTE READ CYCLE __ I----:- BYTE WRITE CYCLE-I
TW-j-TW- TW--!-TW-!-TW-j-T, Tl-t--Tl-j-TW-I-T,-\-Tl--!-Tl-l-TW-j-T,-+j

-Il n ·n ALE L..-_____ - __ ~ ____ ...J DotoD" '---:-------

~ Do to D" ~~=~-~ L-
Ao toA15~ DATA LATCHED) (DATA IN ~ DATA IN ~1.._..cDA ... TA ... D"_UT_~1

LAo---1 ;.xx LATCHED An LATCHED An

IRD'----, r--1 r---1
~------~I I~ ______ ~I I~ ____ ~

;r---------------------------I
18------,

I
IWR'------____ ~_____________________ r---

'---_---'I Ifr-----________________________ --,

nTT--"':"'..,

50_->---,

highly organize.d application-oriented control blocks
to be formed easily. These tools can conceptually
raise the designer above the details' of the design at
the logic level and directly translate the necessary
responSe characteristics from a timing diagram.
. This approach can be referred to as a "sculptured

design"technique because it is analogous to the way
solid stone is formed according to an artist's image.
Raw logic can be transformed directIyinto useful con
trol functions from the desired timing information.

~ ____________________ ~r_

The AmPAL22V1O is, in essence, a fuse-program
mable gate containing up .to 22 inputs. and 10 out
puts. It can define and program that architecture of
each output on a pin by pin basis. Thus,the designer
is free to optimize the design mix between registered
and combinatorial functions as needed.

The AmPAL22VlO is.programmed by opening fus
able links in any or all of its 10 output macrocells,
as well as in its AND gate. array. The AND gate struc
tllTe is very similar to other PAL devices; therefore

A-9

displayed white on black. Proportional spacing is
achieved by altering the CLK2 input to the AmS052.
The CLK2 spacing can be made to be as narrow as 2
pixels, or as wide as 17, assigning each character a
width value that can be used to program the CLK2
output of the AmS15.3. Proportionally spaced video

ADVANCED
MICRO

DEVICES, INC.
901 Thompson Place

P.O. Box 3453
Sunnyvale,

California 94088
(408) 732-2400

TWX: 910-339-9280
TELEX: 34-6306

TOLL FREE
(800) 538-8450

colilPlmR DEliSI/September 1983

BlINK

FI& 4 A 16-bit elllU'Ilder attribute
affeets each 1n4h1dual dtaraeteru It II
Output from the CRT _troller (a). In
memory. hOWll'l'er, eaeII dllII'IlCter
need not Invoke a _ attribute. In
MMDPIe (11), the 1_ attrRlute,ln
ccmjlllldtoa .wftIl the ,....... 1It1ribute,
aUoWII a strinl of ~ ... be
dIIpIafed .In reverse "Ideo wkhIIt eaeII
dIIII'IlCter Ita to be IndMdWllly
re'ferSed.

characters allow the screen to be formatted similar
to the output of a proportionally spaced printer.
Thus, proportionally spaced text can be composed.

. accurately on the screen, prior to printing.
The CLK2 output of the AmS15.3 can be further

modified by trailing blanks. Any number of blank
pixels, between 0 and 3, can be inserted after the
visible character. This allows the user to implement
a smooth right justification of text, without insert
ing blank characters between consecutive words.

In addition to handling characters, the controller
chip applies innovative techniques to the raster
scan. It provides programmable horizontal syn
chronous (HSYNC), vertical synchronous (VSYNc),
and BLANK signals., and accepts an external syn
chronization input. This input allows the frame to
be synchronized to some external source such as
line frequency, which prevents annoying in
terference display patterns known as "swimming."

Beyond supporting the more common noninter
laced and interlaced modes of operation, the chip
also has a repeat field interlace feature that has
each character row effective1yrepeated and offset
by the scan line. This has the effect of making a
vertical stroke on the screen look more solid, to
match the horizontal strokes.

Reprinted with permission from COMPUTER DESIGN

A-10

APPENDIX B

Chip Set Gives A Smooth Scroll In CRT Displays

-Steven Dines and Mohammad· Maniar

• ~ SPECI", RE'OR' .. TE~'." DO ""TER ""' .. LOGY

CHIP SET GIVES A
SMOOTH SCROLL IN
CRT DISPLAYS
Two large scale integration chips and a read only memOry
font generator interface 16-bit processors with eRTS directly
to control scrolling in multiple windows and to space
characters proportionally.

by Steven Dines and
'Mohammad Maniar

Marrying state-of-the"art display technology and
computational capability in today's terminal re
quires a large data handling capability. Features
such as a noninterlace flicker-free frame refresh
and a full-page graphics representation dictate high
dot update rates in the lOO-MHz range. This speed
can only be handled by emitter coupled logic chips
with all of their attendant problems. Similarly,
embedded local editing intelligence places severe
constraints on a terminal's microprocessor sub
system, which must efficiently handle such inter
active tasks as insertions and deletions.

Steven Dines is currently a department manager at
Advanced Micro Devices Inc, 901 Thompson PI,
Sunnyvale, CA 94086, where he is responsible for
microprocessor peripheral product planning. He holds
a BSEE from the 'University of Leeds and an MSEE

from the University of Manchester, England.

Mohammad Maniar is supervisor of MOS
microprocessor design engineering at Advanced Micro
Devices. He holds a 'BS in electrical engineering from
NED Engineering College, Pakistan, and an MSEE
from the University of California, Berkeley.

These and many other obstacles have been solved
by a 2-chip cathode ray tube,(cRT) controller set
that combines the advantages of N-channel metal
oxide semiconductor and bipolar technologies. The
two chips, together with an offchip font generation,
circuit, form a complete CRT interface between the
microprocessor bus and the monitor (Fig I). In this
application, the Am80S2 CRT controller is used as a
direct memory access (DMA) controller. This has
two advantages: first, it eliminates a separate DMA
controller, thereby keeping costs down and saving
space in the CRT terminal. Second and more signifi
cant, the DMA channel on the CRT controller can be
customized to facilitate the controller's editing func
tions. Thus, ,a font-control read only memory allows
a full video subsystem to be built that matches
display data formats with printed information.

CIlllPUTfllIlE1I8IJSep .. mb.~ 1983

8-1

The OJl.:1A channel is configured as a linked-list
processor, which sets up the display data with'
minimal editing overhead. This channel fetches
data into onboard buffers that store three rows of
character information. Incorporating triple row
buffers onchip solves a major impediment to a
pleasant-looking display: it allows the user to scroll
smoothly in a split-screen application, which has
always been a major problem in screen formatting.

Parallel pixel data emerge from the font gen
erator.and are serialized by the CRT controller set's
second chip, the Am8l53. All clocks for the system
are also generated here. These consist. of a
lOO-MHz pixel or dot clock, and two sub clocks ,
the Am8052 CLKI bus clock and CLK2 character
clock. Emitter coupled logic (ECL) outputs in the
Am8l53 obviate the need for peripheral ECL output
devices. Thus, both analog and ECL video are out-
put from the Am8l53. .

Smooth scrolling
Scroll has always been one of the main require

ments of any display terminal. Usually data are
moved on the screen on a character row by character
row basis, which makes for poor viewing. In addi-

tion, using "hard" scroll to rapidly scan a document
is prohibitive to use because the eye has a hard time
following the staccato movement of the text.

Smooth scrolling allows the text to be scrolled
gradually, scan line by scan line. Not only is this
much more pleasing to the eye, but it also allows
documents to be.visually scanned very rapidly,.in a
manner similar to the'way one scans a phon~ book
for a particular entry, Implementing this scan line
by scan line offsetis fairly easy. The'difficulty lies
in holding part of tl;1e screen stationary while scroll
ing the remainder. The Am8052 supports both split
screens (horizontal and vertical) and smooth scroll
of a subscreen"':""a combination that has previously
been impossible to implement economically. Win
dow screens also create data structure problems
since each scroll involves juggling large amounts of
data. While this may be a difficult task for a local
central processing unit (Cpu), the Am8052 CRT con
troller integrated circuit (Ic) fetches all its refresh
data by means of a linked-list data structure.

In this structure, a top-of-page register contains
the 24-bit memory addres's of the first component
in the list, called the main definition block (MOB).
The MOB, in turn, points to a sequence of row

.T

Fig l Two large scale integration chips and a font-generation read only memory form the interface between a 16-bit
microprocessor bus and the CRT. Using thre.e row buf{ers instead of the usual two ensures smooth scrolling in a split-screen
application. The DMA channel.fetches rows of characters Into the three row buffers and outputs multiplexed data for
attribute and cursor generation. The video processor chip serializes data for a video cutput and synchronizes the display
with all the appropriate timing signals. The font generator can format the characters for proportional spacing. to match !lIe
typical proportionally spaced characters of a printer output.

COMPUTER OEIIOII/September 1983

B-2

0',',: /,

..... ..
'·ITE I , ~-

Fig 2 Windowing requires manipulation of a large amount
of data. By using a linked-list data structnre, the CRT

controller chip can perform the windowing task at the CRT

refresh rate. The chip maintains parallel control over the
characters for both the full screen and the window. In this
example, the three row control blocks keep track of their
row entries in the background of tile Screen, while at the
same time the window control block is used to insert the
word "COW" in the appropriate window.

control blocks (RCBs). These blocks hold pointers to
character and attribute lists for the appropriate
row. The controller IC scans this complete list once
per frame. Furthermore, the Am8052 keeps an eye
on a second parallel Jist-the window data struc
ture. This window linked list is used to overlay win
dows onto the screen. As the controller fetches
screen data, it jumps from the screen to the win
dow and vice versa to format the display (Fig 2).

After setting the display and one or more win
dows, the user can now issue :i·"scroll window"
command to set the scroll in motion. When scroll
ing the screen, the user must ensure that the data
structure Js updated fa reflect the new screen by
modifying a pointer. Likewise, when scrolling one
of multiple windows, the user must then update the
window list in a similar fashion. In both cases, no
complex data movements need occur. The Am8052
can scroll as slowly as one scan line every eight
frames, and 'as fast as eight scan lines per frame-a
significant spread in scroll rates. A system of in
terlocks protects the data from corruption during
this scrolling.

A split-screen smooth scroll mandates three row
buffers; a 2-row buffer configuration [Fig 3(a)] is
acceptable for a single screen. Each of the rows is
swapped or toggled with the other. Thus, while one

COMPUTER BESIGI/September 1983

row is being loaded, the other can be displayed. As
long as each row buffer (ie, character row) is
displayed for multiple scan lines, enough time is
available to reload. However, for a' split~screen
smooth scroll, a character row can only be present
in the frame for one scan line. This does not permit
the alternate row b'uffer to be loaded and causes
the screen to flicker. With three row buffers,
however [Fig 3(b»), the problems of single scan line
rows are averaged out, eliminating annoying screen
flicker.

Character display generation
The Am8052 gives a flexible character capability

to a video display terminal. Once the size (in scan
lines) of a given character row is determined, the
characters can then be placed in any position on the
row. Further, row size can be varied on a row-by
row basis, and characters can be displayed as
normal, superscripted, or subscripted; to allow
flexible text. .

Each character can be modified by an attribute
word [Fig 4(a)] that is stored along with the
character in the row buffers. Attribute words are
fetched from memory, at the time the display is on,
in a fashion similar to characters. The number of
attributes fetched, however, can be programmed to
be much smaller than the number. of characters,
thus reducing bus overhead. As in Fig 4(b), the
string "CHANGED" is to be displayed in reverse
video. By fetching a reverse attribute on the first
"c" and a nonreverse attribute on the first "N" of
"NORMAL," only two attributes are required to
reverse the 7-character string.

The Am8052 attribute word on APO-APIO can be
used by the Am81S3 to produce gray-level video
from the font generator. For example, normal
characters are displayed gray on white. If the
highlight bit is set, however, the character will be

Fig 3 For split-screen scrolling applications, a character
row could be displayed for only a single scan line. With two
row "uffers (a), this does not leave enough time for the
reloading of the alternate row buffer, which results in a
flashing screen. With three rQw buffers operating in a
rotating fill-display mode (b), any single row buffer can be
displayed for one s.:an line without any danger of screen
flashing.

8-3

It allows the same powerful, yet familiar features.
However, it is the AmPAL22VIO's 10 output logic
macrocells that give the designer substantial new
design freedom. Moreover, at each macrocell out
put is a tri-state output buffer controlled by a
separate output-enable AND gate ..

These macrocells provide the AmPAL22VlO's key
features. They can be configured to make any or all
of the 110 pins act either in sequence or in combi
nation and have either active-high or active-low char
acteristics. Furthermore, the output enables can
individually control the direction of the pins so they
act as outputs, inputs, or bidirectional ports."

A number of trade-offs and limitations are appar
ent in a design that so dramatically affects the input
and output of the system. The most obvious limita
tion stems from under utilization of 16-bit periph
erals on an 8-bit bus-the speed of all 110 operations
are· cut in half. As a result, bus utilization will
increase if the 16-bit peripheral represents a signifi
cant factor of the bus use. A CRT controller such
as the Am8052 might use 5 to 10 percent of the bus
bandwidth for display information when using 16-bit
110. Converting to 8-bit 110 would double bus use
to 10 to 20 percent. Another factor that might affect
the bus usage is the efficiency of the 8- to 16-bit con-

version control logic. If the state machine designed
toperform the 8/16-bit (or l~/32-bit) conversion is
improperly designed, extra transfer overhead might
be introduced. This might mean a sequential transfer
of two 8-bit values would take twice as long a single

, 16-bit transfer·.
I The design constraints might limit the use of the
peripheral to byte-only operations during data trans
fers (as in the design using the DMA Am9516 con
troller), and slow it down by a factor of two during
command operations. For such a DMA device as the
Am9S16, the extra time required for command fetch
ing is not usually a significant portion of bus time.

System designers will have to weigh the cost. of
the extra overhead on a case-by-case basis. The ben
fits may welljustify these limitations~particularly
when the bus is self-limiting, but the device charac
teristics allow for value-added designs. In addition
to bus degradation for certain configurations, extra
logic and design effort are involved. Most interfaces
outside a system's immediate family require some
kind of extra interface logic, however. By manipulat
ing the signals and incorporating them into program
mable logic devices such as the AmPAL22VI0 device,
therefore, "most of this logic is Jree.

8-4

APPENDIX C

CRT Controll~rs Can Enhance Test Display An(/ S;~ 'ditttRf
- Juergen Stelbrink

computer Technology Review Winter 1983

CRT Controllers Can
Enhance Text Display
And Simplify, Editing

For screen editing the CPU normally has to move blocks of display data. This time
consuming task can be speeded up by use of a CRT, controller.

, byJuergenstielbrink,
Advanced Micro Devices Inc,

Reprinted by permission of the publisher from the Winter 1983
edition of COMPUTER TECHNOLOGY REVIEW

s termi
nals become increasingly sophisticat
ed, the designer is faced with many
new problems in the areas of data ma
nipulation and display. The high
resolution screen necessary to display
a full-size BV. x ll-in, page results in
pixel rates exceeding 50 MHz, Addi
tionally, the use of microprocessor
technology in modem terminal de
signs has transferred the editing tasks
from the host system to the terminal
itself. Support for the latest text·
display features available from lettel'"
quality printers can be provided by ,
CRT controllers,

Today's printers can support
such text-display features as propOI'"
tional spacing with block justification
and double print To adapt the
word-processing task more fully to
the human operator, workstations fOr
word processing should be able to dis
play edited text that looks like the
printo,ut of these lettel'quality
printers,

For example, instead of'display
ing the beginning and end of an un:
derline with a special character se
quence, the workstation should uncleI'"
line the string just as the printer
does, Additionally, it should support
features like highlighting (which is
equivalent to double print in the case
of a printer), character blinking, and
multiple cursors to emphasize parts
of the text

Vertical -smooth scroll will be
come a standard feature of future de
signs, Also helpful would be windows
(overlaid on the displayed page) to

C-1

provide temporary information about
issued commands,

LINKED-LIST DATA STRUCTURE

In standard CRT subsystems, display
data is organized as contiguous mem
ory blocks associated with video
frames ane! stored in video-refresh
memory. To execute editing tasks like
character or line insertion br dele
tion, the CPU has 'to move blocks of
this data-a time-consuming opeI;a
tionthat slows down the editing
process.

Text editing would be faster and
more elegant if a linked-list data struc
ture were used. In a' linked-list struc
ture, display data is organized in
small strings-usually rows-held to-·
gether by pointers, The advantage be
comes obVious when you consider ex
ecution speed:-you can insert or de
lete a line by modifying one pointer in
stead of moving half the screen down
,(Fig 1). And you can swap pages sim
ply by altering a pointer.

A second advantage is that when
the display data is stored In the inain
system memory, the CRT controller
can fetch the data directly frpm the
list on which the word processor is op
erating, and there's no need to set up
a special list o,f display data.

WINDOWS

Windows are text blocks overlaid in
the background. Usually they're used
to display temporary information. A

Comp~ter Technology Review

ROW DELETION ORIGINAL CONFIGURATION ROW INSERTION

'II 1 In a linked·list structure, data is organized in small strings held together by pOinter'S. A line
can be inserted or deleted by modification of a single pointer.

word processor, for example/,might
use the windows to display com"
mand tables while the background
still shows the edited text. After the
user has chosen a command from the
table, the window is removed to make
the overlaid text visible again.

Multitasking systems might use a
window for each task currently ~c
tive. In order to keep the window
processing overhead small, the data·
structure ofth~windowshould be sim
ilar to the background data structure
so that you can display or remove win
dows without modifying the back
ground data structure.

SOFT SCROLLING AND ATIRIBUTES

Vertical soft scrolling is the gradual re
placement 'of a character row on a
scan-line by scan-line basis. The dis
played effect is more eye-pleasing
than hard scrolling (where entire ,
rows are replaced) and will become a
key feature in future terminal de
signs. The smooth scroll of the entire
screen is a relatively easy task and,
can be accomplished with a mini
mum of hardware.

However, soft scrolling of an
overlai~ window or soft scrolling of
the background while windows are
displayed is a much more sophisticat
ed task. If a window is smooth
scrolled, text seems to appear and dis-

appear within it while the back
ground remains stable. If, on the
other hand, the background is
scrolled, background text will appear
to pass under the window. ,

There are three kinds of attrib
utes, distinguished by the number of
characters they correspond to:
• Screen ,attributes affect the

text display of the entire screen
and represent screen informa
tion that might vary from page to
page. Smooth-scroll rate, cursor
blink rate, and cursor layout are
all attributes of this kind.

• Row attributes modify text on a
row basis. The height of a row
and the positkming of normal,
subSCripted, and superscripted
characters are some examples.

• Character attributes modify
certain characters or strings. Ex
amples are highlight, underline,
blinking, subscript, and super
script.

Many'CRT controllers treat char
acters and attributes in the same fash
ion. They fetch one' attribute word
per character. To minimize the bus oc
cupa:ftcy of the CRT controller, the
number of attribute fetches should be
minimized. A fundamental difference
between the changing rate of charac
ters and attributes is that characters

Fig 2 In proportional spacing, letters vary in
the amount ofline space they occupy. An "M",
for example, is wider th,an an "I".

C-2

Winter 1983

are typically uncorrelated along a
character string and attributes are
highly correlated, since features like
reverse video affect a character string
rather than individual characters. For,
this reason, a' flexible correspon- .
dence between characters and attrib
utes' saves memory space and re
duces the bus occupancy.

In a de~and-attribute mode, an
attribute is only loaded when the at
tribllte characteristics need to be
changed. A flag is positioned ill, the
character stting to make the CRT con
troller fetch a new attribute word,
which could apply either to the next
character or to all following charac
ters. This flag could be a specific char
acter that is not displayed' on the
screen, or it could be any bit of the
character code. The first option
would allow a 2,55-character set with
a small bus overhead when attributes
are fetched. The second option
would halve the character set but elim
inates overhead for attribute incor
poration.

PROPORTIONAL SPACING AND
CURSOR

Proportional spacing is nOw a stan
dard feature of high-performance let
ter-quality printers. The CRT system
should be able to support propor
tional spacing in order to display a
text on the screen similar to the print
ed text on paper.

Proportional spacing means that
narrow characters like "I" use less
space in a character row than wider
characters like "M" (Fig 2,). The screen
is no longer divided into a raster of
character fields. The number of char
acters that can be put into one line is
noW a function of the characters
themselves. Right justification in pro
portional-spacing applications re
quires a user-definable number of
blank pixels to follow each character
so that the text will have a straight
right-hand edge.

Two kinds of cursors are imagin
able. A cursor could'be programmed
to appear on an x-v coordinate. This
tYPe of cursor would be tied to the
screen. When scrolling, the cursor
still appears on the same location but
applies to a new character. The sec-

computer Technology Review

r-~---:-~~==:r~~=~=========l-.HSYNC

, DMA
CHANNEL

~===t=BLANK
~ 'ISYNC

CCo-7

APO_10

~~~~t~====:==:t:CURSOR r RO_4 

Fig 3 A cathode-ray tube controller (CRTC) uses three line buffers for smooth scrolling of win
c;lows and provides the chara,eter: code and scan-line address fql' the character-font generator. 

ond way to specify cursors is to use 
the attribute word. In this case, the 
cursor would be fixed to a character, 
so any scrolling o( the screen would 
move the cursor and character both. A 
system usually has only one X-V cur
sor, since each X-V cursor needs a 
pair of coordinates. There is no restric
tion in the number of attribute cur-' 
sors because this information is a 
part of the attribute word. 

The cursor layout should be very 
fleXible. Examples of cursor styles are: 
• Static or blinking underline. 
• Blinking by switching between 

normal display and blank. 
• Blinking by switching betweeJ;l 

normal display and reverse. 
• Reverse character. 

The X-V cursor and the' attribute 

~~~K--~~---------" 

cursor can have different styles to dis
tinguisI;1 them. For example, the X-V
cursor could be a blinking underline
and the attribute cursor could re
verse the character.

SILICON IMPLEMENTATION

,These features are all supported by
the Am8052 and Am8152153 CRT con
troller (CRTC) chip set. To make edit
ing tasks simpler and faster, the set
supports a ,display data structure or
ganized as a linked list in system mem
:my. By adding an e~ternal character
font generator to these chips, you can
build a complete subsystem that talks
to the system bus on one side and gen
erates a high-speed analog or digital

f-,-'-----+- DIGITAL

4-LEVEl ANALOG VIDEO

1-----+-'1 .. CLK1 [SYSTEM)

1-----+-'1 .. CLK2 [CHARACTER)

Fig 4 A parallel-to-serial video-shift register generates a high-speed pixel stream from data sup
plied by ine character generator and the CRTC.

C-3

Winter 1983

videQ signal on the other. Other fea
tures, such.as horizontal soft scroll
and a loadable character-font genera
tor, can be implemented by the addi
tion of a few more medium-scale inte
gration (MSI) devices and 'support
software.

The first element of this design,
the CRT controller (Am 8052, CRTC)
(Fig 3), fetches the display data via the
built-in DMAcontroller, interprets
the linked ,list, and handles attrib
utes, windows, and soft scrolling. It
has three line buffers to support
flicker-free smooth scrolling of win
dows and provides the character
code and scan-line address for the
character-font generator: Its maxi
mum character-output rate is 14 MHz.

The second element in the chip
set, the Video System Controller
(VSC), is basically a parallel-to-serial
video-shift register (Fig 4). It accepts
the character font from the character
generator, and the attribute words
supplied by the CRTC, and generates

. a high-speed pixel stream. The video
output provides a 4-level analog sig
nal that can directly drive a 75 n load
or a l-bi! digital signaL The video sys
tem controller (VSC) can handle video
rates of 40 MHz (TTL outputs) or 100'
MHz (ECL outputs), allowing high
resolution flicker-free displays.

The CRTC handles the linkel;l-list
management,. the windows, soft
scrolling, cursor, and attribute proc
essing. The display data is stored in
system memory to be easily accessi
ble by the host CPU dU,ring its execu
tion of display-editing tasks. The dis"
play data ,consists of characters and
their attributes, both of whiEh 'are '
grouped into segments. One or more
segments are tied together by a list of
pointers-the· row-control block-to
form a row. Row-control blocks are
connected via a linked list, each block
pointing to its successor. The CRTC in
terprets the linked list and transfers
the character strings and attributes se- '
quentially to' the character generator.
. the terminal pi-ocessor loads the

top-of-page register (Fig 5) to notify
,the CRT cO!'troller of the beginning of
the linked list The main definition
1:1Iock at the beginning of the linked
lisC contains screen attributes like
curSOr style and cursor blink rate,
and a pointer to the first row-control
block. The row-control block holds in
formatioI:1 relevant to one row'dis
played on the screen. It contai~s
pointers to the succeeding row
control block and pointers to seg
ments containing character and attrib-

computer Te.chnology Review

CRTC REGISTERS

r' ,. , , ,
OPTIONAL I r------.... , r-----,'

II' ROW- "
-,REDEFINITION " •

L_~O:K_.JI

OPTIONAL r-------
I rc----:-"1
y flEPr:iTl6N1
L~~~~j

Fig 5 The top~of~page register points to the be
gin of the linked list. The main definition block
contains screen attributes and the row-control
block holds infonnation for one row of the
display.

ute strings. Positioning of subscript,
superscript, and normal characters
in the row and the number of scan
lines per row is optionally redefin
able on a row-by-row basis.

The display data structure repre
senting the layo.ut of windows is simi
lar to the data structure of the back
ground. Vertical soft scrolling
of the background or of windows ,re
quires little interaction with the CPU.
The CinC only interrupts the CPU
When a row is totally scrolled in or
out, to make it relink the data struc
ture. The scroll rate is programmable
and can range from one scan line per

eight frames (low-speed scrolll to
eight scan lines per frame (high
speed scrolli. '

ATTRIBUTE PROCESSING

The CRTC allows fleXible attribute
processing. Attributes are handled in
is-bit quantities and fetched on de
mand, in order tel reduce bus occupa
tion for direct memory access (DMAI.
Seven attribute bits are predefined
and four are user-definable. However,
the internal attribute processing can
be partially or totally deactivated to
satisfy specific application require
ments so that the designer can inter
face external attribute-processing log
ic. The predefined attributes are:
• Highlight. Characters are made

brighter.
• Reverse. The colors of the back

ground and the foreground are
exchanged.

• Superscript. The character is
shifted up a defined number of
scan lines.

.' SubScript. The character is shift
ed down a defined number of
scan lines.

• Underline. The character is un
derlined; the position of the un
derline is programmable.

• Strike through (shifted under
linel. The affected character is
struck through.

• Blink. The affected character
blinks at a programmable rate
and duty cycle.
The attributes mentioned above

CLKj

BlNK

Ul

REV

CRTC Hl

HSYNC

SYSBUS VSYNC

CGo_?

RO-4

Winter 1983

control an attribute port of the CRTC,
A special character:font generator
can be used to display smaller sub
script or superscript characters, Two
attributes are used for internal proc
essingonly. They are:
• Ignore. The character is not load

ed into the line buffer and, conse
quently, not displayed, You can
erase a character by setting
this attribute bit.

• Latched. This attribute word is
latched by the CRTC and there
fore applies to a character string.'
The VSC serializes the character

stream, processes the attributes, han
dles proportional spacing, and gener
ates the system timing. In propor
tional-spacing applications, the char
acter generator corisists of two parts:
one part stores the font of the charac
ters; the other holds the character
width-a 4-bit value. The character
widt!'> is passed to the VSC to deter
mine the divide factor for the charac
ter clock, which is connected to the
CRTC to specify the character-output
rate. In addition, the VSC has logic to
allow you to justify text by the inser
tion of up to three blank pixels be
tween characters. This technique al
lows smooth, virtually unnoticeable
.line stretching.
The CRTC can easily be interfaced to
is-bit system buses. In, slave mode,
the CPU initializes the CRTC by pro
gramming the registers for the timing
parameters. After the CRTC is activat
ed, it tries to gain mastery of the bus
to fill the line buffers, and then starts
displaying. The CRTC bus-interface

CBlANK
DIFF) ANALOG

FORE
VIDEO

REV VSC
) ~IGITAL TTL'ECl

'.'
HSYNC VSYNC

VSYNC
HSYNC

Fig 6 In a sta'ndard proportional-character application, the CRTC's 8-bit charactel'-code ICCo
through CC7 J and the 5-bit scan-line count !Ru through I4J address the character-font generator.
The VSC can serialize character slices up to 17 bits wide.

C-4

computer TEtchnology Review

architecture supports 24-bit linear ad
dress buses (68000, 8086) and 23-bit
segmented address buses IZ80001. To
make sure that the system still can re
spond to interrupts in real time, the
CRTC has a burst-length register that
controls the maximum length of a
DMA block read and a burst-space reg
ister to have a minimum delay be
tween two DMA cycles.

Fig 6 shows a standard propor
tional-character application' employ
ing the CRTC, the VSC, and a charac
ter-font generator. The 8-bit character
eode, usually ASCII code, allows a set
of up to 256 characters. The 5-bit scan
line address can distinguish 32 scan
lines. The VSC can serialize up to 17-
bit-wide character slices, so that the
maximum achievable character box is
17 X 32 pixels.

Since the CRTC fetches all the
data needed for the display refresh
from system memory, the controller

uses a significant part of the bus band
width. For each frame, it fetches the
control, character, and attribute
blocks. The bus overhead caused by
the video refresh is a function of the
number of displayed characters and
invoked attributes.

In systems where the CPU is in
volved in editing tasks, it might be in
tolerable for the CRTG to use a major
part ofthe bus bandwidth. This prob
lem can be solved by utilizing a dual
bus system. The main memory where
the display data is stored has two
ports. One is connected to the, main
system bus; the other passes the
data via a local bus to the CRT
controller.

In this configuration, the CRT
DMA transfer doesn't slow the svstem
down. Instead, an arbitration l~gic
controls system and CRT access to
the display memory. The data path
from the main bus to the local bus is

Impl~mentation of Horizontal Soft Scroll
NORMAL BLANK,

The basiC idea behind this implementation is to place in DELAYED BLANK
the front ofthe line a dummy character that's rendered

Winter 1983

used to access the CRTC directlv to
alter register contents. -

The structUl'e of the CRTC allows
you to add special features that.aren't
directly supported. The implementa
tion of horizontal soft scroll is a good
example of the flexibility of the con
troller's design Isee Boxl. Horizontal
scroll m,oves the entire page left 01'

right in order to display characters
that are hidden because the text row
is wider than the row that can be dis
played on the screen. Similar to verti-'
cal soft scroll, horizontal soft scroll
moves text on a pixel basis rather
than on a character basis, so the
viewer notices very smooth move
ments .•

Juergen Stelbrink, applications
engineer for Advanced Micro
Devices, has his MS degree in com
puter engineering from the RWTH
Aachen, West Germany.

I~
\ ff

STEP 1 r-DUMM';;;;';- I '2NO CHAR invisible by extemallogic that delays the horizontal

~~~~~~-[ 
1ST CHAR 

BLANK. You move the entire line by using the VSC's pro- STEP 2 1ST CHAR I 2NO CHAR 
portional-spacing capability to modify the width of this 1 2NO CHAR I STEP 3 I-~~~~R I 1ST CHAR 
dummy chaFacter. 

When the dummy character is programmed for full STEP 4 ~~V":HARJ IST'CHAR I '2NDCHAR I 
width, the delayed BLANK covers it. When you reduce STEP 5 ~~~:"~-'ST CHAR I 2NO CHAR I .Ii< 
the width cif this character, the first visible character 

STEPS DUMMY liST CHARI 2ND CHAR I 
~ 

moyes left and gets partially covered. Characters seem.to h CHAR.J.. 

enter the screen on the right side and seem to leave it on STEP 7 DUMMyl 1ST CHAR I 2ND CHAR I 
h~i¥ the left. STEPS DUM 

I 2NDCHAR I 
The detailed description that follows assumes a' 

ST,EP 9 

~~_~~C~~ 
2NlCHAR I rionproportional-spacing application, a character width DUMMY CHAR 

of 8 pixels, and a dummy character width of 10 pixels. STEP1/) t~~~~~=[ 2ND CHAR I 
There is no restriction on these values, hut reference to a 

!-IOPlXElS"""""PlXElS-! 

VISIBlE-! 
specific environment makes the description easier. 

By reducing the width of the dummy character ~INVISIBLE ~l" 
from 10 to 3 (steps 1 through 7 in Fig 1) and a modifica-
tion of the character-segment potpter in the row'control Fig 1 In horizontal soft-scroll, the 'proportional-character capability is 
block (step 8), the left-most character is moved out. Each used to reduce the width of an invisible dwnmy character placed at 

scroll step the CPU modifies the width ofthe dummy the front of each line. As the width changes, the first visible character 

character one pixel .. Decreasing the width causes a left 
moves left and gets partially covered. 

scroll; increasing the width causes a right scroll. The -horizontal s.oft-scroll speed can be similar to the vertical tal retrace and can be latched by HSYNC. , 
soft-scroll speed (scrolling one pixel per 8 frames to 8 • In proportional-spacing applications, the .charac-
pixels 'per frame). It is supported by the CRTC interrupt ter-font generator can be programmed to contain a 
on a vertical event issued once per frame. set of characters with widths from 3 to 10. 

The width of the dummy character is controlled by The second task the designer is cQnfronted with is 
proViding an appropriate value at the character-clock di- to find a simple solution to delay BLANK. If the system-
videI' inputs ofthe VSC. This value can be supplied in sev- clock cycle is wiper than the character-clock cycle., 
!'Ii-always: BLANK can be delayedby being fed through two D-

• The width can be controlled by the folir user- flipflops clocked by the system clock (CLK1) (Fig 2) . 
definable attribute bits of the attribute word corre- Another approach is to use a counter to delay 
sponding to the dummy character. BLANK the appropriate number of pixels. The counter is 

• Bits of the row-attribute word can determine the 910cked by the dot clock and enabled by the first edge of 
width. This attribute word is put out during horizon- CLK1 or CLK2 after BLANK inactive .• 

c-s 



\' 

\ ' 

\ . 



APPENDIX D 

Source Code For The Low-Cost Smart Terminal Board 





t::I 
I ..... 

11805111 

TITLE " CALEB 0.00 Interrupt Handlers" 
; ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

C_Base CALEB 0.00 

Copyright 1985 Advanced Micro Devices, Inc. 

This file contains the reset and interrupt entrypoints as well as the 

interrupt handlers. 

NAME "Interrupt Handlers" 

.............................................................................. , 

GLB CopyrightMsg EEPROM resident claim 

..................................................................................... , 

EXT Reset 

EXT P l cCsr ,Shwllnd 

EXT ScrlRtOne, ScrlL tOne, SetForScrLUp,SetForScrlDn 

EXT SetAftScrlDn,SetllndPos 

EXT IIrAmS052Reg,RdAmS052Reg 

in C_lnit 

in C_Uti l 

in C_Uti l 

in C_Util 
in C_Uti l 

;-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

SKIP 

INCLUDE C_Menflap 

SKIP 
; ++++++++++++++++++++++++~+++++++++++++++.++++++++++++++++++++++++++++++++++++++ 

This is the base of the AmS052/8152 Low Cost Terminal demonstration firmware. 

The entrypoints for the reset and five interrupt sources are defined here. 

There are only eight bytes between interrupt entrypoints, so when a larger 

handler than that is required the entrypoint must transfer control 'elsewhere. 

This is the case for most of the interrupt handlers we have implemented. 

; .......................................................................................................................................................... .. 

ORG OOOOOH Reset entrypoint 

The 8751 reset condition begins execution here. This entrypoint will only 
be -entered once, immediately after power is suppl ied to the board. 

LJMP ; Go to the reset procedure 

ORG '00003H External interrupt 0 entrypoint 

The external interr~pt 0 entrypoint is defined below. The 8751's INTO* 
input is comected to the AmB052's bus request (BRQ*) output<. Therefore, 

this interrupt occurs when the AmB052 desires control of the display 
memory bus for performing video refresh. 

PUSH P2 
MOV P2,#OFFH 

LJMP BusReqHdl 

ORG OOOOBH 

Save port 2 contents and keep 

it from interfering w/AmB052 

Go to actual' handler 

Timer 0 interrupt entrypoint 

The timer 0 interrupt entrypoint is defined below. The 8751's TO input 

is connected to the AmS052's BLANK output. This has the affect of counting 

visible scan lines. The counter is reloaded during vertical retrace so 
that the interrupt occurs twenty-eight (28) scan lines before the vertical 

blanking period begins~ at the bottom of the monitor screen. 

PUSH PSII 

SETB RSO 

SETB RSI 
AJMP EndFrmHdl 

SKIP 

2 

Save norma l fl ags 

Change regi ster bank for 

high priority interrupt 

Go to actual handler (which 

must be in first 2K of code) 



t:f 
I 

N 

ORG 00013H ~; External interrupt 1 entrypoint 

The external interrupt 1 entrypoint is defined t)elow. The 8751's INT1* 
input is connected to the AmB052 , s I NT* output. Th i s interrupt occurs 
for the vertical event or when the saft'scroll (smooth scroll) process 

in the AmB052 requires attention. 

PUSH PSII 

SETB RSO 
SETB, RSI 

AJMP AmB052Hdl 

Save normal flags 
Change regi ster bank for 

high priority interrupt 

Go to actual handler (which 
must be in fi rst 2K of code) 

• e ~ ____________________________________ - - - - - - - - - - - - - - - - - -, 
ORG 0001BH Timer 1 interrupt entrypoint 

Timer 1 is used to provide the clock for serial coo.nunications with the 

host; therefore, the timer 1 interrupt is disabled and this entrypoint 
should never be executed. 
for use whi le debugging. 

As a precauti on, we put a jump' to·sel f here 
lie also included other code, as if this were 

a val id interrupt, so that it would be possible to continue. 

PUSH PSW Save norma l fl ags 

LJMP $ Stick right here 

POP PSW Restore normal flags 

RET! Exit from interrupt 

. -------------------------------------------------------------------, 
ORG 00023H Serial port interrupt entrypoint 

The serial port interrupt entrypoint is defined below. The 8751's serial 
por.t capabi l ity. is used for communications with the host. Currently, only 
reception is implemented since CALEB does not generate output. The addition 
of ANSI X3.64 report capabi l ities or the inclusion of a keyboard wi II make 

transmission necessary. 

PUSH PSII 

SETB RSO 
AJMP HstComHdl 

Save norma l fl ags 
Reg bank for low priority intr 
Go to actual handler (which 

must be in fi rst 2K of code) 

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

SKIP 
; ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

PROG Begin ,relocatable program here. 

The following ensures that the 8751's EEP.ROM contains a copyright claim. 

Copyr i gh tMsg: 

DB II Copyright 1985 Advanced Micro Devices, Inc. II 

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

BusReqHdl: 

Handles the bus request interrupt from the AmB052. The bus acknowledge 
signa Lis output unt il the AmB052 na longer des i res the bus then it is 
returned to its inactive state. The contents of port 2 are saved and 
restored so that the port can be configured as all inputs during AmB052 
bus transactions (any pins configured as outputs will interfere with the 
signals on the bus). Port 2 reconfiguration has already been done by 
this time. 

·CLR AmB052BusAckFlg 
JNB AmB052BusReqFlg,$ 
SETB AmB052BusAckFlg 
POP P2 
RET I 

Acknowledge the bus request 
Stay here 'til BRQ* is released 

then remoVe bus acknow ledge 

Restore port 2 contents 
, ExIt from interrupt 

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

SKIP 

; ++++++++t+++++++++++++++++++++++++,++++++++++++++++++++++++++++++++++++++++++++ 

EndFrmHdl: 

Handles the timer 0 interrupt which occurs near the end of the fr~me (at 
the 28th visible scan line from the bottom of the monitor screen). It 

.~; sets a flag (which is reset by the AmB052 interrupt handler) to signal 
the start of this end·of·frame processing time. This handler also does 
all changes to display memory to support horizontal smooth scrolling. 

4 



SETB EndFrmFlg Set end-of-frame flag and ADD A,RO Readjust to be in character 

JNB HrzScrlFlg,EFHO get out if not horz_ scroll MOV HrzCurPxl,A and store new pi xel offset 

DJNZ HrzFrmCnt,EFH9 Get -out if no update for hz scr MOV A,HrzScrlCnt Check char scroll count 

PUSH ACC Save JZ EFH6 and jump if already at end 

PUSH DPH special function LCALL ScrlRtOne Else, get next character 

PUSH DPL registers 

MOV HrzFrmCnt,HrzFrmSet Reset update count EFH5: Check for end of scroll 

JNB AMDDWIIB it, EFH 1 Jump if in normal mode DJNZ HrzScrlCnt,EFH8 Continue if more to scroll 

MOV RO,#6 Char width in' compressed mode 

SJMP EFH2 - and continue JB HrzDirFlg,EFH8 Finish last char for scroll rgt 

EFHl : MOV HrzCurPx l ,#0 For left, set .to char boundary . 

MOV RO,#9 Char width in normal mode MOV _ HrzFrmCnt,#l and wait one more frame time 

SJMP EFH8 . to actually finish 

EFHil: 

JB HrzDirFlg,EFH4 Jump if scroll ing right EFH6: Actual .finish of horizontal scroll 

MOV A,HrzScrlCnt Check char scro II COU"lt and MOV HrzCurPxl,#O Set pixel offset to char bound 

JZ EFH6 jump if a l ready at end CLR HrzScrlFlg Indicate no longer scroll ing 
1::1, LCALL PlcCsr Place cursor (if possible) I' ..., 

CLR C Clear carry for below JB MsgActFlg,EFH8 Get out if in message display 

MOV A,RO Char width LCALL SetWndPos Set window position if in bgd 

SUBB A, HrzCurPxl .mihus h<;lrz pixel offset is JNB WndVisFlg,EFH8 Get out if window not visible 

MOV R1>,A amount to scroll in this chr LCALL ShwWnd Show window if it should be 

MoV A, HrzPxlShf .. Amount shifted each time SJMP EFH8 Get out 

SUBB A,Rl minus amount left this chr 

JC EFH3 skip if this char is enough EFH10: Set function char width and exit 

MOV ' HrzCurPxl ,A Else store new pixel offset MOVX A,lilDPTR Get function attr (high byte) 

LCALL ScrlLtOne and go to next character ANL A,#OF8H Mask off old w'idth bi ts and 

SJMP EFH5 Go check for end of scroll ORL A,RO put in new width 

MOVX OlDPTR,A Write new high byte of attr 

EFH3: INC DPL Point to low byte 

MOV 'A, HrzCurF'xl Current pi xel offset MOVX A,lilDPTR Get low byte of function attr 

ADD A, HrzPxlShf plus amount to shift gives ANL A,#07FH Mask off old width bit and 

SJMP EFH7 new pixel offset; continue ORL A,Rl put in new one 

MOVX OlDPTR,A Wri te new low byte of attr 

EFH4: Right scroll POP DPL Restore 

CLR C Clear carry for below POP DPH special function 

MOV ,A, HrzCurPxl C'urrent 'pixel offset 'in char POP ACC registers 

SUBB A, HrzPxlShf minus # shifted each time EFHO: Final exit 

JNC EFH7' Continue if still in char POP , PSW Restore flags and reg bank 

RET I Exit from interrupt 

6 



t:J 
I .,.. 

EFH7: 

MOV HrzCurPxl,A 

EFH8: 

SETB C 

MOV A,#12 

SUBB A,HrzCurPxl 

DEC A 

MOV RO,A 

SIIAP A 

ANL A,#080H 

MOV Rl,A 

MOV A,#OO7H 

ANL A,RO 

MOV RO,A 

MOV DPTR,#BgdFncAtrO 

JNB MsgActF 19, EFH10 

MOV DPTR, #MsgFncA tr 

SJMP EFH10 

In middle of character 

; Keep new pixel offset 

Set up for funct i on character wi dth 

Full 

maximum width 

minus pixel offset 

minus two (for Am8152) 

Keep new wi dth 

Most sig bit of width to bit 7 

and all el se masked off 

then keep for low attr byte 

Mask off all but 3 low bits 

of new width 

then keep for high attr by'te 

Point to bgd function attribute 

and use it unless in message 

Point to msg function attribute 

and use it 

CLR ACC.3 

MOV R3,A 

CLR EndFrmFlg 

MOV THO ,#ENDJRM_CNT_H I 

MOV no, #ENO JRM _ CNT _ LO 

JNB CsrShwFlg,AHO, 

CLR CsrShwFlg 

SETB CsrSetFlg 

SJMP AHl 

AHO: 

JNB CsrSetFlg,AHl 

CLR CsrSetFlg 

XCH A,R2 

SETB ACC.7 

XCH A,R2 

AHl : 

JB ACC.O,AH3 

;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I AH2: 

SKIP 
; +++++++++++++++++++++++++t++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Am8052Hdl: 

Handles the vertical event and smooth scroll ing interrupts from the Am8052. 

The vertical event, is set to occur during vertical retrace and i,s used to 

LCALL IIrAm8052Reg 

POP DPL 

POP DPH 

POP ACC 

POP PSII 

RETI 

reset the visible scan line counter. lie also use this time to synchronize AH3: 

turning the cursor on. The smooth scroll ing interrupt also occurs during 

vertical retrace and is ,fully discussed in Am8052 technical documents. 

PUSH ACe Save 

PUSH DPH special function 

PUSH, DPL registers 

MOV Rl,#ModReg2lnd Read interrupt pendi ng 

LCALL RdAm8052Reg status from Am8052 

MOV A,R3 Check vert i ca l event pend! ng 

JNB ACC.3,AHl and jump if not 

CLR ACC.O 

MOV R7,A 

MOV A,R2 

MOV R6,A 

CLR VrtScrlNewFlg 

JB ACC.O,AH6 

JB SudBit,AHS 

MOV A, VrtScrlCnt 

JZ AH4 

INC VrtScrlCnt 

SJMP AH7 

Clear the condition 

and keep it 

Reset end·of·frame flag 

Reload 

end·of·frame counter 

Skip if not requesting cursor 

Reset cursor request and 

defer actual action 

unti lnext frame 

Skip if no deferred cursor req 

Reset deferred request flag 

Get byt~ wi th enable bi t and 

set it (shows cursor) 

then plit that byte back 

Jump if a smooth scroll intr 

Update Am8052 status 

Restore 

special function 

registers 

Restore flags and reg bank 

Exit from interrupt 

Clear smooth scroll condition 

Keep low 

and high 

bytes of status 

Signal extra row now available 

Jump if scroll ing continues 

Jump if scrolling up 

Check for late continuation of 

up scroll, jump if not 

Allow for extra call when 

scroll ing up and cqntinue 



t=' 
I 

\J1 

AH4: 
LCALL SetAftScrlDn 

AH5: 
CLR Vr~ScrlFlg 

LCALL PlcCsr 

SJMP AH16 

AH6: 
JNB WndActFlg,AH10 
MOV RO.-#WndWDBO.AN.OFST+WDB_RowPag 

MOV Rl,#TOWSftLOlnd 
MOV R3,#WndWDBO.AN.OFST 
JB CurWDBFlg,AH7 
SETB CurWDBFlg 
MOV R2,#WncM:>Bl.SR.PAGE 

SJMP AHB 

AH7: 
CLR CurWDBFlg 

MOV R2,#WndWDBO.SR.PAGE 

AHB: 
JNB CurMDBFlg,AH9 

MOV R5 ,#BgdMDB1.AN .OFST+MDB_Scrl 

SJMP AH12 

AH9: 
MOV R5 ,#BgdMDBO.AN .oFST+MDB _ Scrl 

SJMP AH12 

AH10: 
MOV R1,#TOPSftLolnd 

MOV R2,#BgdlDBO.SR.PAGE 
1 _JB C~rMDBF 19,AH11 

SETB CurMDBFlg 

MOV RO,#BgdMDB1.AN.OFST+MDB_RowPag 

MOV -R3,#BgdlDB1.AN.OFST 

MOV R5,#BgdMDB1.AN.OFST+MDB:,Scrl 

SJMP AH12 "' 
9 

Clean up after scroll up 

; Indicate no longer scroll ing 
;' Place cursor (if possible) 
; Go restore status for exit 

Cpntinue scroll ing 

J~ if I n background 
Set up for window scrolling 

;Set up for background scrolling _ 

AH11: 
CLR CurMDBFlg 
MOV RO,#BgdMDBO.AN.OFST+MDB_RowPag 
MOV R3,#Bgcl4DBO.AN.OFST 
MOV R5,#BgdMDBO.AN.OFST+MDB_Scrl 

AH12: 
JB SudBit,AH14 
J.NB VrtScrlFlg,AH12a 
LCALL -SetAftScrlDn 

AH12a: 
SETB VrtSc:rlFlg 
DJNZ VrtScrlCnt,AH13 
MOV DPH,R2 
MOV DPl,RO 
MOV A, TopRow 

MOVX mPTR,A 

MOV II,ScrlByt 

CLR ACC.O 
SJMP AH15 

AH13: 
LCALL SetForScrlDn 

MOV DPH,R2 
MOV DPL,RO 
MOV -A,R4 

MOVX mPTR,A 
MOV A,ScrlByt 

, SJMP AH15 

AH14: 
SETB VrtScrlFlg 

lCALL SetForScrLUp 
MOV DPH,R2 

MOV DPl,RO 

MOV A,R4 
MOVX mPTR,A 

-MOV A,ScrlByt 

DJNZ VrtScrlCnt,AH15 
CLR ACC.O 

10 

J~ if 'scroll ing up 
Skip if first row in down scr 
Clean up after a 'scroll down 

Indicate scroll in progress 

J~ if more after this 
Poi nt to row poi nter 

in appropriate block 
and make it poi nt to top 
visible row 

, Get scro II cont ro l byte 
and set up to stop 
after th i s last row 

Set up to scroll another row 
Point to row pointer 

in appropriate block 
and make it point to top 
visible row 

Get scroll control byte 
and continue scroll ing 

Indicate scroll in progress 

Set up to scroll another row 

Point to row pointer 
in appropriate block 
and make it point to top 

visible row 
_ Get scroll control byte 
J~ if more after this 
Else set IJp to stop scroll 



t::j 
I 

0'> 

AH15: 
MOV DPH,#BgdMDBO.SR.PAGE 

MOV DPL,R5 

MOVX ~PTR,A 

LCALL WrAm8052Reg 

AH16: 

MOV R1,#ModReg2Ind 

MOV A,R6 

MOV R2,A 

MOV A,R7 

MOV R3,A 

AJMP AH2 

Point to 

appropri ate MDB and put 

in new scroll control byte 

Write new block (MDB orllDB) 

Ready 

to restore status 

Go restor!, status 

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

SKIP 
; ++++++++++:+++++++++++++++++++++++++++++++++ .... +++++++++++++++++++++++++++++++++ 

HstComHdl: 

Handles host communications using the 8751 's on·chip asynchronous serial 

_, port feature. Currently, only reception from the host is supported, but 

transmission can be easily added. 

PUSH ACC 

PUSH DPH 

PUSH DPL 

JNB RI,HCH4 

ClR RI 

MOV DPH,#HstRcvBuf .SR .PAGE 

MOV DPL, HstRcvl nsOff 

CLR C 

MOV A,HstRcVCnt 

SUBB A,#80 

JNC HCH3 

ADD A,#NEARJULL_CNT 

JNC HCH1 

SETB HstRcvBsyFlg 

I I 

Preserve accumulator 

and 

data pointer 

JLITlp (to xmt) if no rcv intr 

Reset receiver intr condition 

Point to ring buffer 

insertion location 

Ensure no interference w/SUBB 

Current number of chars in ring 

compared with maximum 

JLITlp (to exit) if ring is full 

Check for nearly full ring 

JLITlp if pl enty of room 

Signal busy if nearly full 

HCH1 : 

MOV A,SBUF 

MOVX iilDPTR,A 

MOV A,HstRcvlnsOff 

INC A 

JJiZ HCH2 

MOV A,#HstRcvBuf .AN.OFST 

HCH2: 

MOV HstRcvlnsOff ,A 

INC HstRcvCnt 

HCH3: 

POP DPL 

POP DPH 

POP ACC 

POP PSW 

RET! 

HCH4: 

CLR T! 

Read and store character 

Get character from host 

and store it in ring buffer 

Insertion location now 

incremented to next location 

JLITlp if still in buffer range 

Reset to start if past end 

Finish receiver interrupt 

; Keep new insertion location 

; New number of chars in ring 

Common interrupt exit (rcv and xmt) 

Restore data- pointer 

and 

accumulator 

Restore flags and r.eg bank 

Exit from interrupt 

Transmitter interrupt handler 

; -Reset transmit intr condition 

NOTE: There is currently no software support for transmission to the host. 

This part of the handler merely shows where actual code to support 

this capabil ity would be placed. 

SJMP HCH3 Go to exit 

; +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t++++++++ 

end of C_Base 

12 



t::I 
I ....., 

"8051" 

TITLE" CALEB 0.00 Initialization" 
:++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

C_lnit CALEB 0.00 

Copyright 1985 Advanced Micro Devices, Inc. 

This file contains the ,reset, memory test and initialization code. 

NAME "Initialization" 

PROG 

-_ .. -_ ...................... -_ .. -- -- -_ ............ -- .... ---_ .. ----_ .. ------- -_ .... -- --_ .. - --- -_ .. --- ...... --_ .. , 
GLB Reset Reset procedure 

; .......................... .. -- ...................... ........... ' .......................................................................................... .. 
EXT DisCon ; in C Switch 

EXT IIrFntCel, HidCsr ,ShwCsr in C_Util 

EXT D l yT i l EndF rm,lIrAm8052Reg, RdAm8052Reg in C_Util 

EXT Hal fSwap in C_Util 

EXT FntJx9, Fnt_5x7 in CJont 

EXT DblBaudOpt, BauclRatCnt in C_Config 

;+++++++++.+++++++++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++ 

SKIP 

INCLUDE C _ MemMap 

SlOP 
; +++++++++++++++++++++++++++++++++++++++++++-++++++++++++++++:+++++++++++++++++++ 

Reset: Reset procedure 

This is the beginning of the reset procedure. lie get here either from a 

power·oo condition (i .e. chip reset) or a Reset To Initial State (RIS) . 

control from the host. 

,HOV IE,#O 

MOV Pl, #OEDH 

MOV P3,#OFFH 

MOV PSI/,#O 

MOV SP ,fI06TH 
MOV Rl,flModRegllnd 

MOV R2,#O 

MOV R3,fIO 

LCALL IIrAm8052Reg 

MOV IP ,#OOTH 

MOV TMOD,fI025H 

MOV TCON,fI055H 

MOV SCON,fI050H 

MOV DPTR, flDblBaucllpt 

CLR A 

MOVC A,iiIA+DPTR 

MOV PCON,A 

MOV DPTR, #BaudRatCnt 

CLR A 
MOVC A,iiIA+DPTR 

MOV TH1,A 

HOV TLl,A 

MOV THO,#ENDJRM_CNT_HI 

HOV TLO,#ENDJRM_CNT:...LO 

2 

Disable all interrupts 

Ensure 7: HstllmtBsyFlg·>input 

6: HstRcvBsyFlg·>busy 

5: KbdRcvRdyFlg·>input 

,'4: KeybrdEnbFlg·>disable 

3: AmB052XfrBit·>high 

2: AmB052BusAck·>high 

'1: AMDSPMBit ·>low 

0: (unused) • > i nput 

Ensure special functions and 

marking output to host 

Ensure normal register bank 

Base of 24·byte stack 

Mode Regi liter 1 

gets' zeroes 

to 

disable the display, 

Bus request (INTO), end·of· 

frame (TO) and Am8052 (lNT1) 

are high priority; serial 

and unimplemented (T1) low 

Timer 1 (mode 2) for baud rate; 

timer 0 (counter, mode 1) 

for end·of·frame interrupt 

Both timers on; 

edge tri ggered interrupts 

Serial mode 1 (8·bit, variable 

baud rate); receiver enabled 

Load dOubl e baud opt i on for 

PCON contents 

OOit 10r norma l speed 

80H for dOubled 

Load baud rate count 

End·of·frame interrupt occurs 

28 scan lines from bottom 



I::i 
I 

(Xl 

All of display memory will now be tested.' An alternating bit test is 

performed followed by an address test. Here we begin to write the first 

pattern set for the alternating bit test. 

MOV P2,#DspM~mBas.SR.PAGE 
MOV RO,#DspMemBas.AN.OFST 

MOV A,#aAAH 

MOV MemTstTmp,A 

MOV R7,#DSP _MEM_SIZ.SR.PAGE 

MT1.: 

MOV R6,#4 

MT2: 

MOV R5,#PAG_SIZ/4 

MT3:" 

MOv)( iilRO,A 

INC RO 

DJNZ R5;MT3 

CPL A 

OJNZ R6,MT2 

INC P2 

DJNZ R7,MT1 

Start at first byte of 

display memory 

Initial test pattern also 

saved for verification 

Number of pages to test 

For each page 

; Number of groups per page 

For each group in a page 

; Number of bytes per group 

For e~ch byte in a group 

Wri te test pattern to memory 

then address next" byte 

Loop unt i l end of group 

Change pattern for next group 

Loop unt i l end of page" 

Address next page 

Loop unt i l end of memory 

Next, the patterns are verified. As each byte is checked 'the complemented 

pattern is written back. This section is performed twice so that each bit 

i's tested Kith both a one and a zero. 

MT4: 

MOV P2,#DspMemBas.SR.PAGE 

MOV R7,#DSP_MEM_SIZ.SR.PAGE 

MT5: 

MOV R6,#4 

MT6: 

MOV R5,#PAG_SIZ/4 

/3 

Verification (done twice) 

Start at first page (RO is a) 

Number of pages to test 

For each page 

; Number of groups per page 

For each group ina, page 

; Number of bytes per group 

MT7: For each byte in a group 
MOv)( A,iilRO R~ad memory, check expected 

CJNE A,MemTstTmp,RstErr pattern and qui t on an error 

CPL A Change pattern and 
MOv)( iilRO,A write it to memory 

INC Ra then address next byte 

DJNZ R5,MT7 LOOP' untit end of group 

MOV MemTstTmp,A Save next verification pattern 

DJNZ R6,MT6 Loop unt i l end of page 

INC P2 Address next page 

DJNZ R7,MT5 Loop unti l end of memory 

CPL A 

MOV MemTstTmp,A 

CJNE A,#aAAH,MT4 Verify again, if first time 

The display memory has passed the alternating bit test; now the initial 

address test patterns will be written. Each byte's offset address (within 

it's page) is exclu~ive·or'ed with it's page address. This ensures a 

different pattern for each byte in a page and for each byte at the sal1)e 

offset in di fferent pages. 

MOV R2,#DspMemBas. SR. PAGE Start at first page (RO is 0) 

MOV R7,#DSP _MEM_SIZ.SR.PAGE Number of pages to test 

MT8: For each page 

MOV P2,R2 ; 'Address page 

MT9: For each byte in a page 

MOV A,RO Make pattern from offset and 

XRL A,R2 page address 
MOv)( iilRO,A Write test pattern to memory 

DJNZ RO,MT9 Loop unti l page is finished 

INC R2 Prepare for next page 

DJNZ R7,MT8 Loop unt i l end of memory 

4 



t:j I I 
1.0 

Next, the address 'patterns are verified. As each byte is' checked a zero 

is written back. This aids the verification process as well as providing 

a basis (all zero memory) for subsequent display memory initial ization. 

NOV R2,flDspMemBas.SR.PAGE ;' Start at first page (RO ,is 0) 

NOV R7,flDSP _ME"_SIZ.SR.PAGE ,NlI1tIer of pages to test 

MT10: For each page 

NOV P2',R2 ; Address page 

MT11: For each byte ina page 

MOV A,RO Make pattern, from offset and 

XRl A;R2 ", page address then 

MOV MemTstT~,A !lave for verification check 

MOVX' 'A,aKO Read memory, check expected 

CJNE A,MemlstT~,RstErr pattern and qui t on an error 

ClR A ; Write zero 

MOVX CilRO, A to memory 

DJNZ' RO"KT11 Loop until page is finished 

INC R2 Prepare for next page 

DJNZ R7,Mf10 '; Loop unti l end of memory 

Display memory is now tested and initialized to all zeroes. We proceed with 

testing Jl;he..Am6052. 

SJMP All 

; +++++~++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++:++++++++ 

RstErr,: 

If some initialization error occurs then the following procedure is 

executed~ 

SJMP $ Currently' we just stick here 

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

5 

AT1: 

NOTE: There is currently no test of the AmB052. A 'si~le access'ibil ity 

teSt, which writes and verifies patterns in the read/write regi!lters 

of the AmB052 could be added here. THIS TEST SHOULD lEAVE THE 
AnI8052 DISABLED AT ,ALL TIMES. 

The AmB052 is now known to be accessible. We assune i,t works and begin 

it's initialization. The display is already disabled; all, other "egisters 

will be written except Mode Register 2. This latter is deferred until after 
the display is enabled. 

MOV R1,#AtrEnblnd 

MOV 'R2,#D67H 

NOV R3,#OFFH 

LCALl WrAmB052Reg 

MOV R1,#AtrRdflnd 

MOV R2, #OOOK 
MOV, R3,#OOOH 

LCALL WrAmB052Reg 

NOV R1,#TOPSftHiind 

LCALL WrAmB052Reg 

MOV Rl,#ToPSftLolnd 

LCALL WrAmB052Reg 

NOV, R1;#TOWSftHiind 

LCALl WrAm!!052Reg 

MOV R1,#TDWSftLolnd 

LCALL WrAmB052Reg 

MOV Rl,#AtrFlglnd 

LCALl WrAmB052Reg 

NOV R1,#TOPHrdHiind 

LCALL WrAmB052Reg 

MOV Rl,#TOIIHrdHiind 

LCALL WrAmB052Reg 

NOV R1,#TOPHrdLolnd 

MOV R2,#ClrFntMOB.SR.PAGE 

MOV R3,#ClrFntMOB.AN.OFST 

6 

;Attribute Port Enable 

;Attribute Redefinition 

;Top of Page Soft Pofnter 

;Top of Window Soft Pointer 

;Attribute Flag 

; Top of Page & Wi nd Ha..rd Po inters 

high word = 0 

;Top of Page & Wiild Hard ready 

for font load 



? .... 
o 

LCALL IIrAmSOS2~eg 

HOV Rl,#TOIIHrdLolnd 

HOV R.2,#Cl rFntlll¥'.SR. PAGE 

HOV R3,#ClrFntIlDB.AN.OFST 

LCALL WrAmSOS2Reg 

HOV Rl,#OMABstind 

MOV R2,#010H 

HOV R3,#040H 

LCALL IIrAmSOS2Reg 

MOV Rl,#Vrtllthlnd 

NOV R2, #002H 

NOV 'R3,#94FH 

LCALL IIrAmBOS2Reg 

NOV R 1 i#VrtActLne I nd 

NOV 'R2,#O01H 

NOV R3, #067H 

~CALL IIrAm8052Reg 

MOV Rl,#VrtTotLnelnd 

NOV R2,#O01H 

NOVR3,#06CH 

LCALL IIrAmB052Reg " 

NOV Rl,#HsyncVlntlnd 

HOV R2,#O01H 

MOV R3, #020R 

lCALL IIrAm8052Reg 

MOV Rl,#HDrvlnd 

NOV Ra, #OOOH 

HOV R3, 11920H 

LCALL IIrAmB052Reg 

NOV Rl,#HScnDlylnd 

NOVR2,#OOOH 

MOV R3,#022H 

LCALL IIrAmBOS2Reg 

MOV Rl,#HTotCntlnd 

NOV R2,f!OOOH 

HOV R3,#ODBH 

LCALL IIrAm80S2Reg 

NOV Rl,#HTotDsplnd 

NOV R2; #OOOH 

NOV R3, #OD9H 

LCALL IIrAmBOS2Reg 

; DMA Burs t and Space 

;Vertical Sync lIidth 

and Vertical Scan, Delay 

;Vertical Active Lines 

;Vertical Total Lines 

;Hori'zontaL Synch Width 

; • and Vert i ca l Event Row 

;Horizontal Drive 

;Horizontal Sca~ Delay 

;Horizontal Total 'Count 

;Horizontal Total l}isplay 

7 

lie next initiaLIze a portion of display memory, in a speciaf way which 

is used' only for initially blan/dng the character generator RAM. This 

clear font display requires only a single main definition block, sixteen 

row control blocks' (each with its own single character), and two attribute 

words and a row redefinition block which all RCBs use in conmon. There is 

also a termination window definition block. 

First, the main definition block is written. , Since memory is known to 

contain all zeroes, only those parts of the HOB with non'· zero values will 

be written. 

NOV P2,#ClrFntMOB,SR.PAGE Address page of .the MDB at 

NOV RO.#ClrFntMDB.AN.OFST+MDB_RowPag offset' of' top row poi nter 

NOV A,#ClrFntRCBBas.SR.PAGE Point to page 

MOVX iilRO,A of top row 

INC RO and 

NOV A,#ClrFntRCBBas.AN.OFST its offset 

MOVX iilRO,A 

- INC RO 

MOV A,#·1 In.,ossible cursor position 
NOVX aIIO,A entered for x 
INC RO and 
MOVX iilRO,A for y 

INC RO 

NOV A,#OOIH Set the FAT bit to fetch 

MOVX iilRO,A an attribute for fill chars 

NOV RO,JIClrFntMDB.AN.OFST+MDB_Tslc Set MOB's'TSLe fi'eld to 

NOV A,#IS.SL.2 15 (which means 16 scan 

MOVX iilRO,A lines per character r,ow) 

Next, each of the sixteen row control blocks is initiaLIzed. Again, ohly' 

non·zero bytes are written. 

NOV R2,#ClrFntRCBBas.SR.PAGE 

NOV R3,#ClrFntChrBas.AN.OFST 

MOil R4,#ClrFntAtr.SR.PAGE 

MOV RS,#ClrFntAtr.AN.OFST 

HOV R6,#ClrFntRRB.SR.PAGE 

NOV R7,#ClrFntRRB.AN.OFST 

NOV Rl,#16 

8 

Address page of first RCB 

Address offset of character 

Address page arid 

offset of attr,ibutes, 

Address page and 

offset of row redef block 

Nl.I1Iber of RCBs to be made 



t:I 
I ...... 

...... 

CF1:' 

MOV. P2,R2 

Mov. RO, fit ll'FntRCBBas .AN. OFST +RCB _RdfLnle 

MOV. A,#080H 

MOVX iilRO,A 

Mov. A,RO 

MOV. RO,#ClrFntRCBBas.AN.OFST+RCB_RoWOff 

Address RCB at 

l inle bit offset (1st byte) 

Set redef blocle linle bit 

to indicate RRB ptr present 

Offset of RCB to be written 

as offset of next RCB 

_MOVX iilRO,A (all RCBs at same offset) 

Mov. RO, #C l rFntRC!lBas .AN .oFSftRCB _1 st+SEG _ NlIIl'Ii s 

MOV A,#1 

-MOVX iilRO,A-

; One character specified per row 

(rest are fil led with null) 

Mev. RO, #C l rFntRCBBas .AN .OFST-fRCB j st+SEG _ Ch rPag 

MOV. A,R2 

MOVX iilRO,A 

INC RO 

MOV. A,R3 

MOVX iilRO,A 

Put in page address_ 

of char (same as its RCB) 

and then 

its offset 

Mov. _ RO ,#Cl rFntRCBBas .AN .OFST +RCB _1 st+SEG _ AtrPag 

MOV. A,R4 

MOVX iilRO,A-

-INC RO 

Mov. A,R5 

MOVX iilRO,A 

Put in page address 

of attributes 

and then 

their begiming offset 

MOV. -1i0 ,#Cl rFntRCBBas.AN .OFST+RCB _ Cl rRdfPag 

NOV. A ;R6 : Put in page address 

of row redef blocle 

and then 
MOVX iilRO,A 

INC RO 

Mev. A,R7 

NOVX iilRO,A 

INC R2 
MOV. RO,#ClrFntRCBBas-.AN.OFST+RCB_RowPag 

MOV- A,R2 

MOVX iilRO,A 

DJNZ Rl;CFl 

DEC A 

MOVX iilRO,A 

its offset 

-; -Prepare for next page 

Put -next page address 

into -pagli' address 

for next_ RCB 

Loop until all RCBs _are written 

Malee the last RCB 

poi nt -to i tsel f 

Then, we initial fze the attribute words. The first one is -set to force 

a load of character generator RAM. The 'second is a latched but otherwise 

innocuous attribute which is fetched for the fin characters. 

9 

MOV. P2,R4 ; Address page and 

MOV. RO,#ClrFntAtr .AN.OFST offset of first attril>ute 

MOV. A,#047H Set cursor bi t and width to 

MOVX iilRO,A load data fQr -7x9 chars 

INC RO initially, also 

MOV. A,#010H .. set requi red superscript , 
MOVX iilRO,A attribute 

INC RO 

Mev. A,#087H Second word is latched, 

MOVX -iilRO,A nothing special attribute 

And now, the row redefinition blocle is initial-ized to load zeroes into each 

sl ice-of each character. This is done by leaving the row attribute fields 

all zeroes and forcing all slices of a character to be loaded with each row, 

Mev. P2,R6- Address page and 

Mev. RO ,tIC l rFntRRB .AN. OFST of fset of RRB 

Mev. A,#15.SL.2 Set 16 scan lines per row into 

MOVX iilRO,A RRB's TSLC field (1st byte) 

Mev. RO,#ClrFntRRB.AN.OFST+RRB_SpcsLo_Spce; Set suPerscript start/end lines 

MOIl ~i#15 to 0 and 15 so that it spans 

MOVX iilRO,A the ent i re character -row 

Mev. RO,#ClrFntRRB.AN.OFST+RRB_CursLo_Cure; Set cursor start and end lines 

MOV. A,#15 to 0 and 15 so that it spans 

MOVX iilRO,A the ent ire character row 

Finally, a window definition bloc;le is defined with its positioned near the 

bottom of the display. It will be fetched by the Am8052 and show the first 

,_ of -the_ blanleed character rQws. 

Mev. P2,#ClrFntIlDB.SR.PAGE 

Mev. RO.#ClrFntIlDB.AN.OFST+IIDB_RowPag 

Mev. -A,#Cl rFntRCBBas. SR • PAGE 

MOVX iilRO,A-

INC RO 

MOV. _ A,#ClrFntRCBBas.AN.OfST 

-MOVX iilRO,A 

-10 

_; Address IIDB -at 

offset to top row poi nter 

Point to ffrst RCB (juSt in 

case) 



t;:; 
I .... 

N 

'\ 

"MOV 

MOV 

MOVX 

INC 

MOV 

MOVX 

INC 

""MOV 

MOVX 

INC 

MOV 

MOVX 

RO ,#C l rFntWB .AN .OFST +\lDB _ NxtPag-

A,#Cl rFntIlDB.SR.PAGE 

@RO,A 

RO 

A,#Cl rFntIlDB.AN.OFST 

@RO,A 

RO 

A,#20 

@RO,A 

RO 

A,#21 

@RO,A 

Address poi nter" to next WB and 

make it point to itiel f 

Set second from bottom row 

for start 

and 

bottom partial row 

for end 

lie next set things in motion. Interrupts are enabled and the display 

is enabled. lie need the AmB052 operating in order to load the character 

generator RAM. 

MOV IE,#087H Enable interrupts (not serial) 

MOV Rl,#ModRegllnd 

MOV R2,#OC8H Enable the AmB052 di splay 

MOV R3,#001H , " operations 

lCAll IIrAmB052Reg 

MOV Rl,#ModReg2Ind 

MOV R2,#096H Enable AmB052 vertical 

MOV R3,#OD2H .interrupt 

lCAll IIrAmB052Reg 

lCAll DlyTilEndFrm Be sure that all is working 

Now we will zero the entire character generator. This section is done 

twice; first for the 7x9 characters and then for the 5x7 characters. 

Sixteen character cells are cleared in each frame. 

CF2: 

ClR A 

CF3: 

MOV P2,#ClrFntChrBas.SR.PAGE 

MOV RO,#ClrFntChrBas.M.OFST 

MOV R7,#16 

lCAll DlyTilEndFrm 

11 

For- each set Of chars (7x9 & 5x7) 

; Start with null (char code 0) 

For each frame (group of 16 chars) 

Address page and 

offset of fi rst character 

NUI1ber of characters to load 

lIait for an auspicious omen 

CF4: 

MOVX @RO,A 

INC P2 

INC A 

DJNZ R7,CF4 

JNZ CF3 

lCAll DlyTilEndFnn 

MOV DPTR,#ClrFntAtr 

MOVX A,@OPTR 

CJNE A,#047H,CF5 

MOV A,#044H 

MOVX @OPTR,A 

SJMP CF2 

,,-
For each character (row) in the frame 

Store code of char to be loaded 

Next page (next character) and 

next cell to be loaded 

loop unti l frame is set up 

loop unti l back to null char 

Ensure that we are finished 

Check first attribute for 

width of load character 

Skip if just loaded 5x7 chars 

Else, set up to load 

5x7 set and 

go do it 

Now that the character generator RAM is cleared we need- to disable the 

AmB052 in preparation for initial izing memory for actual operation. 

CF5: 

MOV IE,#O 

MOV Rl,#ModRegllnd 

MOV R2,#OCCH 

MOV R3,#OOlH 

lCAll IIrAmB052Reg 

Finished clearing character generator 

Disable all interrupts 

Using Mode 1 Register 

blank di splay (VB=1) 

but leave AmB052 enabled 

The following code initial izes all of memory, both internal and external, 

for normal operation. 

Memlnt: 

MOV Rl,#126 Clear all but ROand Rl 

MOV A,#OOH 

MOV RO,#02H 

IntVar: loop point for clearing variables 

MOV @RO,A 

INC RO 

DJNZ Rl,lntVar 

12 



MOV CurAtr ,fIOOH 

MOV ActCol,fIOOH 

MOV ActRow, fI07H 
MOV - CurRow, flllndRCB7. SR. PAGE 

MOV VisColi flOOH 

MOV VisRow, fI07H 

MOV BgnRow, tlllndRC'sO. SR. PAGE 

MOV T ojlRow, tlllndRCB7 • SR. PAGE 

- MOV BtmROw,flllndRCBI3.SR.PAGE 

MOV RemRow, flllnclRCB 13. SR .PAGE 

MOV EndRoII.flllndRCBI3.SR.PAGE 

MOV ExtRow,tlllndRCBI4.SR.PAGE 

MOV -R3,#WndVarBuf .SR.PAGE 

MOV R4,#WndVarBuf .AN.OFST 

LCALL Hal fSwap 
MOV CurAtr ,fIOOH 

MOV ActCol,fIOOH 
-t::j NOV ActRow,fIOOH 

I CurRow,#MsgRCB.SR.PAGE ..... MOV 
W MOV, 'yisCol,fIOOH 

MOV VisRow,fIOOH 
NOV • BgnRow,#MsgRCB.SR.PAGE 

MOV ToPRow,#MsgRCB.SR.PAGE, 

MOV Btnilow,#MsgRCB.SR.PAGE 
_ NOV - RemRow,#MsgRCB.SR.PAGE 

MOV EndRow, #MsgRCB. SR. PAGE 

MOV ExtRow,#MsgRCB-.SR. PAGE 

MOV -R3,#MsgVarBuf .SR.PAGE 

NOV R4,#MsgVarBuf .AN .OFST 

LCALL Hal fSwap 
MOV CurAtr ,fIOOH 

MOll ActCo l, fIOOH 
MOV ActRow, fI06H 

MOV CurRow,#BgdRCB6. SR. PAGE 

MOV VisCol,fIOOH 

MOV VisR-ow,fI06H 

MOV BgnRow, #BgdRCBO. SR .PAGE 
, MOV TopRow,#BgdRCB6. SR. PAGE 

MOV Btnilow, #BgdRCB29. SR. PAGE 
, MOV RemRow,#BgdRCB29.SR.PAGE 

13 

Initial attribute is 00 
Initial ize to leftmost col 

First window row is 7th in list 
Page value to active rOw 
Always a in window 

; "age value to begiming of list 
Page value to AmBOS2 bgn of lst 
Page value to last visible row -

Page value to rows below dsp 
PagEt value of last row in list 
Page value of extra 

Initial attribute is '00 
Initial ize to leftmost col 
First msg row-is first in list 
Page value to active row 
Start left al igned 

Page value to begiming of list 
Page value to AmB052 bgn of lst 
Page value to last visible row 

Pa~e value to rows below dsp 
Page value of last row in list 
Page value of extra 

Initial attribute is 00 

Initial ize to l~ftmost col 
First bgrd row is 6th in list 

Page'value to active row 
Start left al igned 

Page value to bgn of list 
Page value to AmB052 bgn lst 
'Page value to last visible row 

; Page value to rows below'dsp 

IIOV EndRow,#BgdRCB29.SR.PAGE 
MOV ExtRow,#BgdRCB30.SR.PAGE 
MOV R3;#BgdVarBuf .SR.PAGE 
MOV R4 ,#BgdVarBuf .AN .OFST 
LCALL Half Swap 
-~ ,DSpllid,#BO 

IIOV DspHgt,#24 

IIOV ColAdd,#1 

MOV RowAdd,fIO 

MOV RcbOff ,#BgdRCBO.AN.OFST 

MOV ChrOff ,#BgdChrBufO.AN.OFST 

IIOV AtrOff ,#BgdAtrBufO.AN.OFST 

MOV iinctCol, #28 
-SETB CsrZonFlg 

MOV CsrSiz,fIOOFH 
MOV Hs tRcvl nsOff ,#HS tRcvBuf .AN .OFST 
MOV - HstR~vExtOff ,#HstRcvBuf .AN .OFST 

Page value of last row in list 

Page value of extra 

;Set parameters used fn program 
Many -are- offsets into pages 

Initial ize characters and attributes for the background and the message row. 

MOV P2;#BgdRCBO.SR.PAGE 

MOV ~2,#32 

MOV A,'· I 

FilRow: 

MOV RO,#BgdChrBufO.AN.OFST 

NOV Rl,#128 
FilChr: 

MOVl( iilRO,A 
INC RO 
DJNZ Rl,FilChr 

INC P2 
DJNZ R2,FilRow 

IIOV R2,#32 

MOV R6,fIOOOH 

MOV R7,fIO07H 
FilAtrRow: 

NOV RO,#BgdAtrBufO.AN.OFST 
MOV Rl,#128 

14 

;Background Row 0 page 
;count of rows (includes msg) 
;blank ,all characters 

; row loop point 
;offs,et of fi rst character 
;128 characters per row 

;character loop point 

, ; next character 

;end of row 
;next row 

;P2 now points to attributes 
;32 rows again 

; r(lw loop point 
;offset of attributes 
;128 per row 



t::! 
I 

I-' 

.I>-

Fi lAtr: 

MOV 

MOVX 

INC 

MOV 

MOVX 

INC 

DJNZ 

INC 

DJNZ 

A,R7 

QRO,A 

RO 

A,R6 

QRO,A 

RO 

R1,Fi lAtr 

P2 

R2,FilAtrRow 

;attriblJte loop point 

; set two bytes 

;next attribute 

;end of row 

;next row 

Initial ize the background row control blocks. 

- 'MOV R2,#BgdRCBO.SR.PAGE 

MOV - R1,#31 

;page for row 0 control block 

;only initial izing background 

IntBgd: ;background RCB init loop point 

MOV P2,R2 • ;set page of RCB 

MOV RO,#BgdRCBO.AN.OfST+RCB_RdfLnk ;set flag to show row follows 

MOVA,#080H 

MOVX, @RO,A 

MOV RO,#BgdRCBO.AN.OFST+RCB_1st+SEG_cont ;1st is not last seg 

MOVX @RO,A 

MOV RO,#BgdRCBO.AN.OFST+RCB_2nd+SEG_Cont ;2nd is not last seg 

MOVX @RO,A 

HOV RO.#BgdRCBO.AN.OFST+RCB_3rd+SEG_Cont ;3rd is not last seg 

MOVX QRO,A 

MOV A,#8gdFncChrO.SR.PAGE ;page for function charac~er 

MOV RO,#BgdRCBO.AN.OFST+RCB_1st+SEG_ChrPag ;all func chars in 1 page 

MOVX OlRO,A 
MOV RO,#BgdRCBO.AN .OFST+RCB_1st+SEG_AtrPag ;same for attributes 

MOVX @RO,A 

MOV A,#1 
HOV RO,#8gdRCBO.AN .OFST+RCB_1st+SEG_NumVis ;1 function character (vis) 

MOVX @RO,A 

MOV 'A,#28' ; 28 characters in 2nd segment 

MOV RO,#BgdRCBO.AN .OFST+RCB_2nd+SEG _NumVis ' 

MOVX OlRO,A 

MOV RO,#8gdRCBO.AN .OFST+RCB_1st+SEG _ChrOff ;function char pos 

MOV A,#BgdFncChrO.AN.OFST 

15 

MOVX QRO,A 

MOV RO ,#8gdRCBO .AN .OFST +RCB _1 st+SEG _A trOff and attributes 

MOV A,#8gdFncAtrO.AN.OFST 

MOVX QRO,A 

MOV RO,#8gdRCBO .AN .OFST+RCB_2nd+SEG_ChrPag ;R2 has page for this row 

MOV A,R2 

MOVX OlRO,A 

MOV RO, #BgdRGBO. AN. OFST +RCB _ 3rd+SEG _ ChrPag 

MOVX OlRO,A 

MOV RO,#BgdRCBO.AN .OFST+RCB_ 4th+SEG_ChrPag 

MOVX QRO,A 

MOV RO, #BgdRCBO .AN .OFST +RCB _ 2nd+SEG _ ChrOff ;set offset for char start' 

MOV A,#BgdChrBufO.AN .OFST 

MOVX QRO,A 

MOV RO ,#8gdRCBO .AN .OFST +RCB _ 2nd+SEG _At rPag andattrib start 

MOV A,R2 

ORL A,#20H ;set the attribute pages 

MOVX OlRO,A 

MOV RO, #8gdRCBO .AN .OFST +RCB _ 3rd+SEG _A trPag 

MOVX OlRO,A 

MOV RO,#BgdRCBO.AN .OFST+RCB_ 4th+SEG_AtrPag 

MOVX OlRO,A 

MOV RO, #BgdRCBO ;AN .OFST +RCB _ 3rd+SEG _NumVi s ;40 visible in 3rd seg 

MOV A,#40 

MOVX OlRO,A 

MOV RO ,#BgdRCBO .AN .OFST +RCB _ 3rd+SEG _ Chr'Off 

MOV ,A,#BgdCh'rBufO.AN.OFST+28 ;statting 28 past first char 

MOVX OlRO,A 

MOV RO, #BgdRCBO .AN .OFST +RCB _3rd+SEG _At rOff 

MOV A,#8gdAtrBufO .AN .OFST+2*28 ;attrib start '28*2 after 1st 

MOVX @RO-,A 

MOV RO,#8gdRCBO.AN .OFST +RCB_ 4th+SEG..:NumVi s ;60 visible in 3rd seg 

MOV A,#60 

MoliX @RO,A 

MOV RO,#BgdRCBO.AN .OFST+RCB_ 4th+SEG_ChrOff 

MOV A, #8gdChrBufO .AN .OFST +28+40 -;starting 28+40 after 1st 

MOVX @RO,A 

MOV RO,#8gdRCBO.AN .OFST+RCB_ 4th+SEG_AtrOff 

MOV A, #BgdA t rBufO .AN .OFST +2*(28+40) ; attrib at ,2*(28+40) 

MOVX OlRO, A 

16 



MOY RO, #8gdRCBO .AN .OFST +RCB _ BgdRdfPag 

MOV A,#NrmRRB.SR.PAGE 

MOVX GlRO,A 

MOY . RO,#8gdRCBO.AN.OFST+RCB_BgdRdfOff 

MOV A,#NrmRRB.AN.OFST 

MOVX IilRO,A 

MOV A,R? 

INC A 

MOV' RO,#8gdRC~O.AN.OFSr+RCB_RowPag 

MOVX GlRO,A 

MOV RZ,A 

DJNZ Rl,lntBgd 

Initialize message Row Control Block 

MOV RZ,#MsgRCB.SR.PAGE 

MOV PZ;R2 

t:I MOV RO, #MsgRCB. AN. OFST +RCB _ Rdf Lnk 
I 

A,#080H .... MOV 
I.n 

MOVX IilRO,A· 

MOV RO,#MsgRCB.AN.OFST+RCB_RowPag 

MOV A,#wndRCB14.SR.PAGE 

MOVX IilRO';A 

tNC RO 

MOV A,#IIndRCB14.AN .OFST 

MOVX iilRO,A 

MOV RO ,#MsgRCB.AN .OFST+RCB _lst+SEG_ NlIJIIfi s 

MOV· A,#l 

MOVX IilRO,A 

'HOY RO, #MsgRCB .AN .OFSr +RCB _1 st+SEG_ Cont 

MOV A;#o80H 

HaYx IilRO,A 

MOV RO,flMS9RCB.AN.OFST+RCB_lst+SEG_Chrpag 

HOY A,#MsgFncChr.SR.P1IGE 

MOVX IilRO,A 

. INC. RO 

HOV A,#HsgFncChr .AN .OFST 

MOVX iilRO,A 

MOV . RO ,#MsgRCB .AN .OFST+RCB _lst+SEG_ AtrPag 

HOV A,#HsgFncAtr .SR.PAGE 

17 

;all point to same 

row redef block 

;next page 

; is page 'in "next" I ink 

;and next· for Coop 

';continue for 31' ,rows 

;P2 = R2 = msg page 

;"next" is last wnd RCB 

;1 visible in function 

;lst seg is not last 

;char is in function page 

;char is function char 

;attrib is func attrib 

HOVX 'IilRO,A 

INC RO 

MOV A,#MsgFncAtr .AN.OFST 

MOVX iilRO,A 
'HOV RO ,#HsgRCB .AN .OFST+RCB_ 2nd+SEG_ NlI1IVi s ;128 visible in next segment 

HOV A,#080H 

HOVX IilRO,A 

HOY RO,#MsgRCB .AN .OFST+RCB_ 2nd+SEG_ChrPag ;characters in RCB page 

HOY A,R2 

HOVX IilRO,A 

INC RO 

MOV A,#HsgChrBuf .AN.OFST at msg buffer. offset 

HOVX IilRO,A 

HOY RO ,#HsgRCB .AN • OFST +RCB _ 2nd+SEG _A trPag ;attrib page calculated 

from RCB page MOY A,R2 

ORL A,#020H 

MOVX IilRO,A 

INC RO 

HOY A,#HsgAtrBuf .AN .OFST 

MOVX iilRO,A 

INC RO 

INC RO 

INC RO 

MOV A,#NrmRRB.SR.PAGE 

MOVX IilRO,A 

INC RO 

HOV A,#NrmRRB.AN.OFST 

MOVX IilRO,A 

lie nOw initial ize the lIindow memory. 

HOY P2,#IIndChrBufO.SR.PAGE 

HOY R2,#15 

MOY _A,#' • 

Fi IIindRow: 

HOY' RO,#llndChrBufO.AN .OFST 

HOY Rl,#40 

FillindChr: 

MOVX IilRO,A 

INC RO 

'DJNZ Rl,FillindChr 
18 

;attrib offset 

; then set row redef ptr 

to std location 

; P2 poi nts to fi rst wnd row 
; R2 has count 'of 'wi ndow rows 

;A has blank character 

;window row loop point 

;set character offset 

; R 1 = character count 

;window character loop point 

;blank the character 

; next character 



t:I 
I 
I-' 

'" 

INC P2 

DJNZ R2,FilWndRow 

MOil P2,#IIndAtrBufO.SR.PAGE 

MOV R2,#15 

MOV A,#07 

Fi lWrtdAtrRow: 

MOV ROi#llndAtrBuf,O.AN.OFST 

MOV It; ,;jI40 

Fi lWndAtr: 

MOVX iilRO,A 

INC RO' 

INC RO 

,D,JNZ R1,FilWndAtr 

INC P2' 

DJNZ, R2, FilWndAtrRow 

MOV 

MOV 

IntWnd: 

MOV 

R2,#IIndRCBO.SR. PAGE 

R1,#15 

P2,R2 

;next row 

;done with window characters 

;P2 = fi rst wnd attrib page 

; R2 = count of rows 

;A = initial attrib 

;window row loop point 

;RO = ptr to attrib 

;R1 = attrib count 

;window attribute loop point 

;set attrib 

;next attrib 

;next' row 

;done with window attributes 

;R2 = window row 0 page 

;R1 = window row ,count 

;point to wnd page 

MOV RO ,#IIndRCBO .AN .OFST +RCB _RdfLnk ; indicate row follows 

MOV 

MOVX 

MOV 

MOV 

MOVX 

MOV 

MOV 

MOVX 

MOV 

MOV 

MOVX 

MOV 

MOV 

ORL 

MOVX 

MOV 

MOV 

A,#080H 

iilRO,A 

RO,#IIndRCBO.AN.OFST+RCB_Seg+SEG_NumVis 

A,#40 

iilRO,A 

RO, #IIndRCBO .AN .OFSr +RCB _ Seg+SEG _ Chi-Pag 

A,R2 

iilRO,A 

RO ,#IIndRCBO .AN .OFST+RCB _ Seg+SEG _ ChrOff 

A ,#IIndCh rBufO .AN .OFST 

iilRO,A 

RO ,#IIndRCBO .AN .OFST +RCB _ Seg+SEG _ AtrPag 

A,R2 

A;#010H-

iilRO,A 

RO ,#IIndRCBO .AN .OFST +RCB _ Seg+SEG_AtrOff, 

A, #IIndAtrBufO. AN. OFST 

19 

;one seg with 40 visible 

;chars on same page 

at buffer offset 

;attrib page calculated 

from char page 

;attribute offset const 

MOVX iilRO,A 

MOV RO ,#IIndRCBO.AN .OFST +RCB _ WndRdfPag ; use the std row redef 

MOV A,#NrmRRB.SR.PAGE 

MOVX iilRO,A 

MOV' RO,#IIndRCBO.AN.OFST+RCB_WndRdfOff 

MOV A,#NrmRRB.AN.OFST 

MOVX iilRO,A 

MOV RO, #IIndRCBO .AN .OFST+RCB _ RowOff ;next row at std offset 

MOV A,#IIndRCBO.AN.OFST 

MOVX iilRO,A 

MOV A,R2 on next page 

INC A 

MOV RO ,#IIndRCBO .AN .OFST +RCB _ RowPag 

MOVX iilRO,A 

MOV R2,A inext row 

DJNZ R1,IntWnd 

Initialize Termination Row Control block in last window row 

MOV A,#IIndRCB14.SR .PAGE 

MOV TrmRow,A 

MOV P2,#BgdRCB29.SR.PAGE 

MOV RO, #BgdRCB29 .AN .OFST +RCB _ RowPag 

MOVX iilRO, A 

INC RO 

MOV A,#IIndRCB14.AN .OFST 

MOV TrnOff,A 

MOVX iilRO,A 

MOV R2,Tr~ow 
MOV P2,R2 

MOV RO,#IIndRCB14.AN,.OFST+RCB_RowPag 

MOV A,R2' 

MOVX iilRO,A 

MOV A, TrnOff 

INC RO 

MOVX iilRO,A 

INC RO' 

CLR A 

20 

;page of last window row 

is page of termi nat i on row 

;make row 29 last in brgd 

;also set termination offset 

;R2 P2 termination row 

; term row poi nts to itsel f 

;term row has no hidden chars 

~ 



t:::I 
I 

...... 
'-J 

MOVX IiIRO,A 

INC RO 

MOV A,#1 and one visible char 

.-MOVX QRO,A, 

MOV ROi#IIncIRCB14,AN.OFST+RCB_Seg+SEG_AtrPag 

HOV A,#TrmAtr.SR.PAGE ;term attrib page 

MOVX QRO,A 

INC RO 

HOV A,#TnnAtr.AN.OFST ;term attrib offset 

MOVX QRO,A 

Initial ize Function Character and Attribute 

MOV DPTR,#BgdFncChr'O' ;function characters are blank 

MOV A,II' I 

MOVX IilDPTR,A 

INC DPTR 

MOVX IilDPTR,A 

INC DPTR 

MOV A,#OOZH ;1st function attrib 

MOVX IilDPTR,A 
, INC DPTR 

HOV A,#090H 

MOVX QoPTR,A 

INC DPTR 

MOV A,#OO4H ;Zrid function attrib 

MOVX IilDPTR,A 

INC DPTR 

CLR A 

MOVX IilDPTR,A 

Injtia.l fze Termination Attribute 

HOV DPTR,#TrmAtr ;termination attrib 

MOV A;#087H 

MOVX IilDPTR,A 

INC 'DPTR" 

CLR A 
MOVX 'IiIDPTR,A' 

21 

Initial ize Message Function Character and Attribute 

MOV DPTR,#MsgFncChr ;function character is blank 

MOV Ai'" I 

MOVX IilDPTR,A 

INC OPTR 

INC DPTR 

MOV A,#OOZH ;'functi on, 'attribute 

MOVX IilDPTR,A 

INC DPTR 

MOV A,#080H 

MOVX IilDPTR,A 

Initial ize Background Main Definition Blocks 

MOV PZ; #BgcH>BO. SR. PAGE 

HOV RO,#BgcM>BO.AN.OFST+MDB_RowPag 

MOV R1,#Z 
InitHOB: 

MOV, A, TopROW 

MOVX IiIRO, A 

INC RO 

INC RO 

HOV A,#OO1H 

HOYx QRO,A 

INC RO 

MOv A,#OOOH 

MOVX QRO,A 

INC RO • 
~V A,#OO1H 

MOVX QRO,A 

INC RO 

MOV A;" I 

-MOvx &lRO,A 

MOV A,RO 

ADO A,#5 

HOV RO,A 

MOV A,#034H 

MOIll< IiIRO,A 

MOV RO,#Bgd4DB1.AN .OFST+MDB_RowPag 

DJNZ R1,InitMOB 
22 

;PZ = 1st bgrd main def 

;RO = MDB 1st row page ptr 

;RZ is count of main defs 

;main def loop point 

;1st row is TOp Row 

;cursor ,in 1st visible col 

;cursor on first row 

;set FAT bit 

;fill char is blank 

;scanl ine count for top visible 

;next main def 1st row page 



Initial ize lIindow Definition blocks 

MOV P2,#IIndllDBO. SR. PAGE ;P2 = window clef page 

MOV R2,#2 ;R2 = window def count 

InitlindDefBlk: ;window def loop point 

MOV RO,#IIndllDBO.AN .OFST ;scroll window flag 

MOV A,#080H 

MOVX ii1RO, A 

INC RO 

INC RO 

MOV A,#IIndRCB7. SR.PAGE ;page of first row 

MOVX ii1RO,A 

INC RO -I 
MOV A,#IIndRCB7 .AN .OFST ;offset of fi rst row 

MOVX ii1RO,A 

INC RO 

INC RO 

t::I INC RO 
I MOV A,#TrmllDB. SR.PAGE ;page of term wind def .... 

00 
MOVX ii1RO,A 

INC RO 

MOV A,#TrmllDB.AN .OFST ;offset of term wind def 

MOVX ii1RO,A 

INC RO 

MOV A,#6 ;window begins in row 6 

MOVX ii1RO,A 

INC RO 

MOV A,fl12 ;window ends in row 12 

MOVX ii1RO,A 

INC RO 

MOV A,#29 ;window begins in column 29 

MOVX ii1RO,A 

INC RO 

MOV A,#68 ;window ends in column 68 

MOVX . iilRO,A 

MOV RO,#IIndllDB1.AN.OEST ; ready for next def block 

MOV P2,#IIndllDB1.SR.PAGE 

DJNZ R2, Ini tllndDefBlk 

23 

Initial ize the Message lIindow Definition Block 

MOV 

MOV 

MOV 

MOVX 

Hic 
INC 

INC 

IN~ 

MOV 

MOVX 

INC 

MOV 

MOVX 

INC 

MOV 

MOVX 

INC 

MOV 

MOVX 

INC 

CLR 

MOVX 

INC 

MOV 

MOVX 

P2,#MsgIIDB. SR. PAGE 

·RO ,#MsglIDB .AN .OFST +IIDB _ RowPag 

A,#MsgRCB.SR.PAGE 

ii1RO,A 

RO 

RO 

RO 

RO 

A,#TrmllDB.SR.PAGE 

ii1RO,A 

RO 

A,#TrmllDB.AN .OFST 

ii1RO,A 

RO 

A,#24 

ii1RO,A 

RO 

A,#24 

ii1RO,A 

RO 

A 

ii1RO,A 

RO 

A,#128 

ii1RO,A 

;P2 is page of msg wnd block 

;Set row page (offset is 0) 

;next window is term 'wind 

; a l so set term offset 

;msg begins at row 24 

;msg ends at row' 24 

;msg starts in col 0 

';msg ends in column 80 

Initial ize Termination lIindow Definition Block 

HOV 

MOV 

MOV 

MOVX 

INC 

MOV 

MOVX 

!'l0V 

MOV 

MOVX 

P2,#T rmllDB. SR ,PAGE 

RO ,#TrmllDB .AN .OFST +IIDB _RowPag 

A, TrlilRow 

ii1Rd,A 

RO 

A, Trn()ff 

ii1RO,A 

RO, #TrmllDB .AN .OFST +IIDB _ BgnRow 

A,#24 

ii1RO, A 

24 

I 

;P2 = page of term wind block 

; I ts row is the term row 

Start and end on bottom row 



INC 110 

MOV A,#24 

MOVX CilRO,A 

INC RO 

MOV A,#O 

MOv)( iilRO,A 

INC RO 

MOV A,#131 
MOv)( iilRO,A 

Initial ize the Row Redefinition blocks (one normal, 15 for font loading) 

, MOV P2,#NrnlRB.SR.PAGE ;start with the normal one 
NOV RO,#NrmRRB.AN .OFST 

MOV R2,#OOFH ;cursor start, end 
MOV R1,#16 ; 16 redef blocks total 

InitRdfBlk: 

t:I MOV A,#034H ;scan line, char start and end 
I 

MOVX iilRO;A ... 
\D 

INC RO 
NOV' ,A,#04DH 

MOv)( iilRO,A 

INC RO 

MOV A,#OOOH ;row attr, super start and end 
MOVX iilRO,A 

INC RO 

MOV A,fiOODH 

MOVX iilRO,A 

I,NC RO 

MOV A,#OOOH ; row attr, sub start and end 
,MOv)( iilRO,A 

INC RO 

MOV A,#08DH 

MOVX iilRO,A 

INC RO 

MOV A,R2 ;cursor start, end (5 bits ea.) 

ANL A,#OF8H 

RR ,A 

RR A 
RR, A 

25 

MOv)( CilRO,A 

INC RO 

MOV A,R2 

MOV 'R3,A 

ANL A,#07H 

SWAP A 

RL A 

ORL A,R3 
MOv)( ii1RO,A 

INC RO 

MOV A,#001H 

MOVX iilRO,A 

-INC RO 

MOV A,#086H 

MOv)( ii1RO,A 

INC P2 

INC R2 

CJNE R1 ,#16, IRB1 

MOV P2, #FntRRBO. SR. PAGE 

MOV" R2,#O 

IRB1: 

MOV RO i#FntRRBO.AN .OFST 

DJNZ Rf,lnitRdfBlk 

Initial ize 8052 Registers 

MOV R1,#TOPHrdLolnd 

MOV R2,#BgcMlBO.SR.PAGE 

MOV R3,#BgcMlBO.AN.OFST 

LCALL WrAm8052Reg 

MaV R1,#TOWHrdLolnd 
MOV R2,#TnmmB.SR.PAGE 

MOV R3,#T~B.AN.OFST 

LCALL IIrAmllQ52Reg 

MOV Rt ,#ModRegllnd 

MOV R2,#OCSH 

MOV R3,#001H 

LCALL WrAm8052Reg 

MOV R1,#ModReg2Ind 

26 

;double height and underl ine 

; swi tch to font redefs 

;no cursor 

; offset of font redef 

;continue with font redefs 

;Top of Page Hard points to 

main definition 

;Top of Window, Hard points to 
- termination window 

;Mode, register 1 

;Mode register 2 



? 
N 
o 

'MOV R2,#OI6H ~ 

MOV R3,#OD2H 

LCALL WrAmB052Reg 

Now ready to enable interrupts and load font 

MOV' IE,,#097H 

MOV 'DPTR.#Fnt_5x7 

MOV DisStt,#1 

!FO: 

CLR A 

MOVC A,lilA+DPTR 

MOV RO,#PrmBuf 

MOV 'iaRO,A 

CLR A 

INC DPTR 

INC RO 

MOVC A,lilA+DPTR 

MOV ' OIRO,A 

CLR A 

INC DPTR 

INC RO 

MOVC A,lilA+DPTR 

JZ IF2 

INC DPTR 

MOV R2,A 

IF1 : 

CLR A 

MOVC A,lilA+DPTR 

INC DPTR 

MOV iaRO,A 

. INC RO 

DJNZR2,!F1 

MOV A;RO 

ClR' C 

SUBB" A,#PrmBuf 

MOV PrmCnt,A 

PUSH DPH 

27 

;enable interrupts 

;point to 5x7 font 

and set up to load it 

initialize font ram 

each character font in turn is 

loaded into the char gen 

PUSH DPL 

MOV A,Di sStt 

LCALL WrFntCe I 

POP DPL 

,POP DPH 

SJMP !FO 

IF2~ 

MOV 'A,DisStt 

JZ C_lntl 

MOV DPTR,#FntJx9 

MOV DisStt,#O 

SJMP !FO 

C_lntl: 

LCALL ShwCsr 

CLR HstRcvBsyFlg 

LJMP DisCon 

Indicate font type being loaded 

and write to one cell 

Finished loadi.ng a font 

Check font that was just loaded 

Jump if just finished 7x9 

Point to 7x9 font a~ 

,set up to load it 

Go load font 

;make cursor visible 

; ready for host data 

;wait for host ,data 

;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

end of C_lni t 

28 

''-.. 



t;; 
I 

I'V 
....... 

118051 il 

TITLE" CALEB 0.00 Dispatch Control" 
:+++++++++++++++~++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++ 

C_Switch CALEB 0.00 

Copyright 1985 Advanced Micro "Devices, Inc. 
r," 

This "fi Ie contains the central input stream decoder and control dispatcher_ 

It is a simple state machine wh"ich parses single characters (graphics and 

controls), escape sequences and" control "sequences. These typeS of control!! 
are defined in ANSI X3.4-1977, ANSI X3.4f-1974 and ANSI X3.64-1979 docunents. 

"' The parameters included in control sequences are also decoded and stored as 
a sequence of 8-bit "unsigned binary values. 

NAME "Dispatch Control" 
PROG 

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I I I I I I I I I 

GLB OisCon Dispatch ,?ontrol procedure 
GLB UnlmpCtl Unimplemented control (conmon) , 

GLB Escape Escape 

GlB Ct!SeqIntro Control sequence Introducer 

GLB PiltMapO Checks for font remapi ng of lower 32 

GlB PutMap1 Checks for font remaping of 3FH & OBFH 

GLB PutChr IIrite cell address and attribute. 

EXT LoOi rChrTbl,HiDi rChrTbl,Di rEscSeqTbl,X3_64Di rSeqTbl in C_Tables 
in C_lIork 

in C_UtH 
EXT Scrollleft,serollRight 

EXT PlcCsr 

; ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

SKIP 
INCLUDE C_Menf4ap 

SKIP 
:++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

"I 

Di rChrSttHdl: 

Handles all direct character graphics and controls. It uses two, 128'entry 
tables, indexed by the received character, to dispatch control quickly. 

,NOTE: THIS PART "OF THE PROCEDURE IIlST BE LOCATED DIRECTLY BEFORE "DisCon". 

MOV A,R2 ; Use "the character as an index 

MOV PrnSuf,A Save for use in" repeat case 
JBC ACC.i ,DCSH1 High bit selects table (and is 

cleared in the process) 
MOV DPTR,#LoOi rChrTbl Select low table (OO'7F) and 
SJMP DCSH2 go use it 

DCSH1: 
MOV DPIR,#HiDirChrTbl Select high table (80,FF) 

DCSH2: 
LCAll DoWrk General address table handler 

NOTE: I nstead of j ~i ng back to "D i sCan", th i s part of the procedure is 
located directly before it; therefore, we can sin.,ly fall through. 

; ~ .. ..,- ............................................... -_ .............................................................. -_ ........................ -.- .... .. 

DisCon: Dispatch control procedure 

lIaits for a character to be available in the host reception bUffer then 
extracts it and processes it according to the current state; 

MOV DPH,#HstRcvBuf .SR.PAGE 

MOV DPl, HstRcvExtOff 

DCt: 
MOV A, HstRcvCnt 

JZ DC1 
MOVie A,iiDPTR 

MOV R2,A 

DEC HstRcvCnt 

MOV A, #NEAR_EMPTY _ CNT 

SUBB A,HstRcvCnt 

JC DC2 

ClR YstRcvBsyFlg 

2 

; Address (page and 
offset) of next character 

Idle while waiting for a character 
Check nlQber of chars in buffer 
loop if none 
Get character from buffer 

and keep it safe . 

Reduce buffer contents count 
Check for 

near l y en.,ty buffer 

J~ if still plenty to do 
Ready to accept more 



t:1 
I 

N 
N 

DC2: • 

MOV 
INC 

JlIZ 

MOV 
DC3: , 

A, HstRcvExtOff 
A 

DC3 
A,#HstRcvBuf .AN.OFST 

,MQV. HstRcVExtOH ,A 

NOV A,DisStt 
JZ Di rChrSttHdl 
CLR C 
MOV' DPTR,#SttJmpTbl 

JMP IilA+DPTR 

Poi nter to next character 
advanced 

Jump if still in buffer 
Reset ·to start if went past end 

Keep new next char po inter 

Get current state 
and jump directly if direct 

Clear carry for other parts 
Use jump table to continue with 

correct part of procedure 

i--- ---- -_ .. --- .. --_ .... --- -.--- ................ -- ........ -_ .. --- -- .......... -. -- .... --_ .. _ .... --- ... - .... -.... ---

SttJmpTbl: 

This jump table and the· state constants de{ined in "C_Mentlap" DUSt· 

correspond. The state constants represent oHsets into this table 
,.rather than indices (i.e. they increase by three's, not by~'s). 

NOTE: 

LJMP 
LJMP 

LJMP 
LJMP 
LJMP 
LJMP 
LJMP 

The. first entry in the table is for'direct, character state, 
as it IILIst be to ensure proper offsets for the other jumps, 
but direct state is afways handled s~iany rather than 
through this table; 

Di rChrSttHdl Di rect character state 
lIgnEscSttHdl Beginning escape state 

ExtEscSttHdl Extended escape state 
BgnCSISttHdl 'Beginning control sequence state 
PrmtSISttHdl ; 'Parameter string (in ctl seq) stat~ 
ExtCSISttHdl ; Extended control sequence state 
UnlmpeSlSttHdl ; Unimplemented control sequence state 

HOY A,R2 
SUBB A," I 

JNC BESK2 
BESH1: 

CLR A 
HOY . CtlPtrKi ,A 

MOY CtlPtrLo,A 
SJMP BESH4 

BESH2: 
SUBB A,#('O'" ') 
JNC BESK3 
HOY DisStt,#EXT_ESC_STT 
LJMP DisCon 

BESH3: 

HOY R7,A 
SUBB A,#(DEL' '0') 

JNC BESHl 

MOY A,R7 
HOY DPTR,#Di rEscSeq1'bl 
LCALL DoWrk 

BESH4: 
MOV DisStt,#DIR_CHR_STT 
LJMP DisCon 

Get character and check 

for a CO control character 

J~ if not a control char 
I nva lid escape sequence 

Clear 
control routine address 
(makes it unrepeatable) 

Fi ni sh escape sequence 
Ched, for i ntermedi ate character 

Reduce by intermediate range 
Jump i r not an i nterme\:{i ate 

. Set state for extended escape 
seqUences and continUe· .. 

ChllCk for final charac,ter 
Save index teqlOrari ly 
ChllCk for inval id character 
Jump if invalid sequence 
Restore control routine . index 
Use di reet escape sequence 

table and do control routine 
Coqlleted escape sequence 

Set state for'single, direct 
characters and cont i riue 

~~~~~~~~~~~~; .... ' ............................................................ . 

Processes the characters in an extended escape sequence. Currently, no

such controls are implemented, so this part. only passes over intermediates
unti l either a final character or an invalid ,character is encountered. At·
that time. the state is set back to handle dirllCt characters and controls.

NOTE: Further implementations could be accoqll ishect with the addition of
; ••••.••••••..••••.... ~.. other.tables of control routine addresses. When a flnal'character

BgnEscSttHdl: is foln!, the corresponding control routine wOuld be executE.d 'using ~

'; Processes the character 'illlllediately foL.Lowing an ESC. It may be a final
character, in which case the corresponding control routine is executed

using the direct escape sequence table. If an intermediate character is
encountered then the state changes,to handle extended escape sequences.
An inValid character ends the escape sequence and causes ,both characters
(this one and the ESC) to be disregarded; the state is set back to handle
di reet characters and ·controls.

3 •

the appropriate table. Which table is appropriate would depend on
the sequence of··intermediate characters, which could be interpreted
by changing to additional· states, or using another state varIable;

MOY A,R2 Get character and check
SUBB A,#' , .; for a CO control character.
JC EESH1 Jump if it is a cont~ol char

4

t:j
I

N
W

SUBB A,#('O'_' ,) ; Reduce by intermediate range

JC EESH2 ; Jump if it is an i ntermedi ate

EESHl : Completed escape sequence

ClR A Clear

MOV CtlPtrHi ,A cont rol routi ne address

MOV CtlPtrlo,A (makes it unrepeatable)

MOV Dis.Stt,#OIR_CHR_Sn Set state for di rect chars

EESH2:

lJMP DisCon Continue

BgnCSISttHdl:

Processes the character illlllediately following a Control Sequence Introducer,

whether the cst is a single, 8-bit character or an "ESC [II escape sequence.

H may be a final character, in which case the corresponding control routine

is executed using the X3.64 direct sequence table, with the parameter state

indicating a null parameter' string. If an intermediate is encountered then

the state is changed to handle, extended control sequences, if it is a space,

and unimplemented control sequences for any o'ther intermediate. This case

also indicates a null parameter. Any parameter character isdecOded and

changes state to decode the rest of .the parameter string after initial izing

parameter acctmllation. An inval id character ends the sequence and discards

the CSI as well.

MOV A,R2

SUBB A, #' I

JNC BCSH2

BCSHl :

ClR A

MOV CtlPtrHi ,A

MOV CtlPtrlo,A

lJMP BCSH13

BCSH2:

SUBB A,#('O'·' ')

JNC . BCSH4

CJNE R2,#' ',BCSH3

ClR PrmBadFlg

MOV PrmPvt,.#O

HOV PrmCnt,#O

ClR PrmMaxFlg

MOV Di sStt,#EXT_CSI_ STT

lJMP DisCon

Get character and check

for a CO control character

Jump if not a control character

Inval id sequence

Clear

control routine address

(makes it unrepeatable)

Finish sequence

Check for intermediate character

,Reduce by intermediate range'

Jump if not an intermediate

Jump if unimplemented

I ndi cate no error

not a private parameter,

null parameter string, and

not too many

Change state for extended CSI

sequences and cont i nue

BCSH3:

MOV . DisStt,#UNIMP _CSI_STT

lJMP DisCon

BCSH4:

SUBB A,#('@'-'O')

JNC BCSHll

ADD A,#('?'·19')

JC BCSH6

MOV PrmPvt,#O

ADD A,#10

MOV PrmAcc,A

SETB PrmBgnFlg

IIcSH5:

MOV Di sStt,#PRM_CSI_STT

lJMP DisCon

BCSH6:

CJNE R2,#';' ,BCSH9

ClR PrmBadFlg

BCSH7:

MOV PrmPvt, #0

MOV PrmCnt,#l

MOV PrmBuf,,#O

BCSH8:

MOV PrmAcc,#O

ClR PrmBgnFlg

ClR PrmMaxFlg

SJMP BCSH5

BCSH9:

CJNE R2,#':' ,BCSH10

SETB PrmBadFlg

SJMP BCSH7

BCSH10:

ClR PrmBadFlg

MOV PrmPvt,R2

MOV PrmCnt,#O

SJMP BCSH8

BCSHll :

MOV R7,A

SUBB A,#(DEl·'@')

JNC BCSHl

CJNE R2,#'b' ,BCSHl2,

Unimplemented intermediate, characters

S"t state for unimplemented

cin sequences and cont i nue

Check for parameter character

Reduce by parameter range

Jump if not a parameter

Check for special param char

Jump if not a digit parameter

Indicate not private Pl'rams

Readjust decoded param digit

and start accunulator

Indicate start of param string

Peform parameter decoding

; Change state to decode CSI

parameters and cont i nue

Special parameters

; Jump if not good separatoT

; Indicate no errots if good

Initial def.ault parameter

Indi cate not private params

One parameter so far and

it is zero (default)

Set up for parameter accunulation

Clear accl.fllJlator

Indicate start of parameter

string and not too many

Continue with new state

Special parameters (not semi -colon)

Jump if not unused separator

I ndi cate an error if found

Treat as initial defaul t

SpeciaL private parameters

"; I ndi cate no error and.

save speci al parameter

Indicate empty param buffer

Get ready to accl.fllJlate params

Check for final character

Save index temporarily

Check for inval id character

Jump if inval id seque.nce

Jump if not REP sequence

t:I
I

N ..,..

MOV p~ep,f#1

LCALL Repeat

SJMP SCSH13

BCSH12:

CLR PrmBadFlg

MOV PrmPvt,#O

MaV PrmCnt,#O

CLR PrnfllaxFlg

MaV A,R7

MOV DPTR,#X3_64Di rSeqTbl

LCALL DoWrk

BCSHt::S:
Moll DisStt,#DIR_CHR_STT

"LJMP DisC~ln

Set default parameter and do

special repeat (if" possible)
Finish sequence

Normal final. character

I ndi tate no error

not a private parameter,

null parameter string, and
not too many

Restore controlrol,ltine index
Use CS'I di rect sequence table

arid do the control routine

Coqlleted CSlsequence

Set state for single, direct

characters and cont i nue

... ----_.- _ .. -- .. ----_.-- .. -------_ - ---_ .. -- -- -- ... - _ _-_ .. ,
PrmCSISttHdl:

Decodes the paramet'ers in, a control sequence untU a non· parameter character

is encountered. If it is a final character then the corresponding control

routine is executl!d using the X3.64 direct'sequence table. An intermediate
changes state to handle extended control sequences, if it is a space, and to

uiif~l!!fll<!r1ted control 'sequences for any lither intermediate. An inval id

character ends the sequence and discards the e[ltii'e control sequence.

MOV A,R2

SUBB Ai#- I

JNC PCSH2

peSH1:

CLR A

MaV CtlPtrHi ,A

MaV CtlPtrLo,A

SJMP PCSH12

PCSH2:
SUBB' A,#('O'·' ')

JNC PCSHi.

CJNE li2,#' ',PCSH3

MaV DisStt,#EXT_CSI_STT

JNB PrmBgnFlg,PCSH5

MOV PrmCnt,#O

SJMP PCSH5

7

Get character and che,ck

for Ii co control character

J~ if not a control character

Ilwal id control sequence

Clear

cont ro l rout i ne address

(makes it unrepeatable)

Finish sequence

Check for i ntermedi ate character
Reduce by intermedi at,: range

J~ if' not an' intermediate

J~ if uni~lemented
Set state for extended CSI seqs

J~ if not first parameter

init'ialize paralil cnt
Go handle parameter

PCSH3:
,MOV DisStt,#UNIMP _CSI_STT
SJMP PCSH5

PCS'H4: '

SUBB A,#('iii'· '0')
JNC PCSH9

,ADD 'II,#('?'·'9')

JNC PCSH7

CJNE R2,#';' ,PCSH6

PCSH5:

(CALL SavPrm

LJMP DisCon
,PCSH6:

SETS PrmBadFlg

SJMP PCSH5

PCSH7:

ADD A,#10

MOV R7,A

MOV B,#10

MOV A,PrmAcc

MUL AB

JB OV,PCSH8

ADD A,R7

JC PCSH8

MOV PrmAcc,A

LJMP DisCon

PCSH8:

MOV PrmAcc, #255

LJMP DisCon

PCSH9:

MOV R7,A
SUBB A,#(DEL·'iiI')

JNC PCSH1

CJNE R2,#'b' ,PCSH10

MOV PrmRep,PrmAcc
_ LCALL Repeat

SJMP PCSH12

PCSH10:

LCALL SavPrm
MOV 'A,R7

MOV DPTR,#X3_64DirSeqTbl

LCALL -DoWrle
8

Uni""lemented intermediate characters

Set state'for unimplemented

CS I seCiUences and cont i nue

Check for parameter character
Reduce by par8niet'ej.' range

-; J~ if nota p8ra~ter
Check for special param char

J~ if 'a digit parameter

J~ irnot avalic:i separator

Parameter separator

; Save latest parameter

and cont i nue
Inval id special -parameter-character

; Signa l bad parameters

; Treat as a separator & continue

Parameter di gi t

Readjust decoded param digit

and saVR it t~rarily

Multiply (by 10)

current parameter valUe

'to account for another digit
J~ if param greater than 255

'Accl.IIIJlate lateSt digit
J~-ff pararil greater than 255

Save acct.irulat~ paralil value

and conti nue

Parameter too large

; Save largest possible value

and continue

Check for final character

Save index t~rarily

Check for invalid character

J~ if invalidsequenc'i
J~if not REp'sequence

; Do special rePeat (if pOss'ibre)

; F i ni sh sequenCe

Normal final character

Save latest parameter

Restore controlr'outine index
Use CSI di reC't seqUence table

, and do the' control routine

t::I
I

'" VI

PCSH12: Completed CSI sequ~nce

!'IOV DisStt,#DIR_CHR_STT

LJMP DisCon
Set state for single, di rect

characters and continue

.. ---------------------------------------,
ExtCSISttHdl:

Processes the character inrnediately following the first space intermediate
in a control sequence; no other intermediates are i~lemented. It does a
special check for the two acceptable final characters which are i~lemented
and executes their control routines directly if found. Any other valid final
character or, an inval id character ends the sequence with the entire sequence
being discarded. If an intermediate character is encountered then the state
is changed to handle unimplemented control sequences.

NOTE: Further i~lementations could be accompl ished with the addition of
other tables of control routine addresses. IIhen a finat character
is found, the corresponding control routine would be executed using
the appropriate table. IIhich table is appropriate would depend on
the sequence of intermediate characters, which could be interpreted

by changing to addit'ional states, or using another state variable.

CJNE R2,#IQ)',ECSHl
LCALL Scroll Left
SJMP ECSH4

ECSHl :
CJNE R2,#.IA',ECSH2

LC~L ScrollRight
SJMP ECSH4

ECSH2:
MOV A,R2

SUBB A, #' I

JC ECSH3
SUBB A,#('O'.' I)

JNC ECSH3

MOV DisStt,#t)NIMP _CSI_STT

LJMP DisCon

ECSH3:
CLR A
HOV CtlPtrHi ,A

MOV CtlPtrLo,A

J~ if not SL final character
Do scroll left control then

continue with direct state

J~ if not SR f,inal character
Do scroll right control then

continue with direct state
Unimplemented or inval id character

Get character and check

for a CO control character
J~ if it is a control char
.Reduce by i ntermedi ate range
J~ if not an i ntermedi ate
Change state for uni~lemented

CS I sequences and cont i nue
Inval id CSI sequence

Clear

cont ro l rout j ne address
(makes' it unrepeatable)

ECSH4:
MOV DisStt,#DIR_CHR_STT

LJMP DisCon

Unl~SISttHdl :

Completed extended CSI sequence
Set state for single, di rect

characters af!d cont i nue

Processes uni~lemented CSI sequences with intermediate cha~acters by passing
over intermediates untU either a final character or an invalid charact'1r is
encountered. It then changes the state back to handle direct characters.

NOTE: Further i~lementations could be accompl ished with the addition of
other tables of control routine addresses. IIhen a final character
is found, the corresPonding control routine would be executed using
the appropriate table. IIhich table is appropriate would depend on
the sequence of intermediate characters, which could be interpreted
by changing to additional states, or using another state variable.

MOV
SUBB

JC
SUBB

JC

UCSHl :
CLR
MOV
MOV
MOV

UCSH2:
LJMP

A,R2
A,'I I

UCSHl
A,#('0 ' • ' I)

UCSH2

A
CtlPtrHi ,A
CtlPtrLo,A
DisStt,#DIR_CHR_STT

DisCon

Get character' and check

for a CO control character
J~ if it is a control char
Reduce by i ntermedi ate range

J~ if it is an intermediate

Completed CSI sequence
Clear

control routine address
(makes it unrepeatable)

Set state for di rect characters

Continue

; ++

SavPrm:

Saves the current contents of the parameter accumulator in the parameter

buffer and increments the parameter count, provi>led the parameter buffer
is not full. If this is a first para,meter then ,the parameter accumulator
is saved as the special repeat parameter; otherwise, the special repeat
parameter is checked and, if present (i.e. this is the second parameter),

it is saved before the parameter accumulator and then cleared. Finally,
the parameter buffer is checked to see if it has become full.

10

t:I
I

'" '"

; Bad:

JB

JNB
MOV

SP1:

CLR

'!OV
CJNE

SETB
SJMP

SP3:

MOV
ADD
HOV
HOV
INC

SP4:

MOV
RET

A.RO

P axFlg.SP3
PrmBgnFlg.SP1

PrmCnt.#O

PrmBgnF!g
A.PrmCnt

A.#PRM_CNT _I!AX.SP3
PrmMaxFlg
SP4

A.#PrmBuf
A.PrmCnt,

RO.A
Qi!O.PrmAcc
PrmCnt

PrmAcc.#O

JUIp if param buffer is full

Check count and
jUlp, if maximum not reached

Indicate full if I1I!IX is reached
lind di scard parameter

Reset for more parameters
Point into parameter buffer

at location where next
parameter is to be stored

Store latest parameter
Account for latest parameter

Get ready Jor next parameter
Clear parameter accumulator

and exit

; ++++++++++++++++++++-1:+++:,"+++++++++++

DoI/rk:

Transfers control to the subroutine 'indicated by the index into the given
address table. The addr,!ss is also saved for possible repetition.

In: A

DPTR

HOiI RO.CtlPtrHi

HOV R1.CtlPtrLo

RL A

HOY R7.A
MOVC A.IiIA+DPTR

MOV CtlPtrHi.A
HOY' A.R7
INC A
MOVC A.IiIA+DPTR
MOV CtlPtrLo.A
MOV DPH.CtlPtrHi'
MOV DPL.A

control routine index
base of control routine address table

Save previous control routine
so ESC' and CSI can restore

Turn 'i ndex 'j nto offset into tbl

and save it temporari l y
Get high byte of address and

save it

Restore offset and
adjust for next location

Get low byte of address and
save it

Set indirect pointer's high and
low bytes '

NOTE: ' This routine falls through to the next
11

DolndRtn:

Provides an entrypoint for indirect subroutine .. calls.

In: llPTR ' address of indirect subroutine
(and whatever the indirect subroutine needs)

OUt: (whatever the inc!irect subroutine returns)
Bad: A (and whatever the indi rect swt>routine affects)

NOTE: This ma)' not ,be used to cal'l a subroutine'which, requires either
the accumulator (A) or the data pointer (DPTR) as input.

CLR A
JMP IiIA+DPTR

• ,Clear indirect.offset and
transfer control

;++-M++++++~++++++++++++++

UnlmpCtl.:

Catch all for unimplemented controls.

CLR A
HOV CtlPtrHi.A
HOV CtlPtrLo.A
RET

Clear
cont ro l rout i ne address
(makes it unrepeatable)
and exit

-++ . ' ,

Escape:

Control routine for ESC control character- -changes state to handle escape
sequences. ,

HOV CtlPtrHi .RO

HOY CtlPtrLo.R1
MOV DisStt.#BGN_ESC_STT

RET

Restore previ ous

control routine pointer
Set state for escape sequences

and exit

;++++++++++++++++++++++++++t+++

CtlSeqlntro:

Control routine for' CSI control character or escape sequence- -changes state'
to handle 'control sequences.

12

t::I
I
tv
......

HOY CtlPtrHi ,RO
,',

Restore previ ous
MOV Ctl PtrLo, R 1 control routine pointer
HOY DisStt,#BGIt_CSI_STT Set state for C,SI sequences

DEC SP Remove return addres's
DEC SP from stack and
lJMP' DisCon continue

;++++++++++++++++++++++++++++++~++++++++++~~+++++++++++++++++++++++++++++++++

PutMapl:

JNB FntMapFtg,PutChr

MOV A,PrmBuf

ADD A,#040H

SJMP PCO

;+++++++++++++++++++-t:++++++++++++++++++++_+++++++++++++++++:H-+++++++++++++++++++

PutMapO:

JNB' FntMapFlg,PutChr

MOV A,Prnluf

CLR C

SUBB A,#040H

SJMP PCO

;++

PUtChr:

Writes a character generator cell address and the current attribute to, the

appropriate locations in display memory indicated by the active position.,

It advances the active position provided it is not at the rightmOst coh.nn.

The cursor' positron is also updated using the cursor zone information.

In: PrmBuf

HOY A,PrmBuf

PCO:

HOY R2,A

HOY P2,CurR!*

MOV A,ChrOff

ADD A,ActCol

MOV. RO,A'

'13

cell address (i .e. character code)

Get the UI1III8pped character c~e

Conmon character placement entrypoint

Save ce II address

Page of active. row and

offset to base of characters

Add active colum to determine

offset for location to write

MOV A,R2

MOVle- ii1RO,A

MOV A,AtrOff

ADD A,ActCol

ADD A,ActCoL

INC A

HOY RO,A

JNB WndActFlg,PCl

SETB p2.4

SJMP PC2

PC1:

SETB P2.5

PC2:

HOY A,CurAtr

MOVX ii1RO,A

MOV P2,#NsgActCnt .SR • PAGE

JNB MsgActFlg,PC3

MOV A,#MsgActCnt .AN .OFST

SJMP PC5

PC3:

JNB WndActFlg,PC4

MOV A,CurRow

ANL A,#OOFH

ADD A,#WndActCntBuf .AN .OFST

SJMP PC5

PC4-:

MOV A,CurR!*

ANL A,#OlFH

ADD A,#BgdActCntBuf .AN .OFST

PC5:

HOV RO,A

.MOVX A,ii1RO

INC ActCol

SUBB A,ActCol

HOY A,ActCol

JNC PC6

MI!lVX ii1RO,A

PC6:

JNB WndAct F l g, PC7

CJNE A,#40,PCB

DEC ActCol

RET

1"

Get cell address' and

write it to display memory

Offset to base of attributes

Add active colum

twice and

adjust for attribute byte to

get offset for loe to write

JUJl) if window disp not active

Adjust page for window display

and go on

Adjust page for bgd/msg display

Wri te current attribute

Get current attribute and

;" write it

Page containing active counts

JUJl) if message disp not actiVe

Offset of message activB- count

and go use it

JUJl)'if wind!* disp not active

Page of current r!* converted '

to physical numer and

, added to base of window

act i ve count buffer

Page of current r!* converted

to physical numer and added
to- base of bgd act cnt buf

Update active count

Offset of th i s row I s act i ve cnt

Get current act i ve count,

new act i ve count and

compare them

Get new active colum for later

JlIIP if old ,active cnt is OK

Write new active cnt if greater

Check for end of r!* (rillhtmost col)

JUJl) if wind!* disp not active

JUJl) if not at right of wind!*

Re~tore active collim if at end
and exit

~
I

N
00

PC7:
CJNE A;#1ZB.PCB
QEC Ac:tCol

RET
PCB:

DJNZ CsrZOncnt,PC9
'r LCALL PlcCsr

RET
PC9:

JNB CsrZonFlg,PC10

MOV PZ,#BgcI4OBO.SR.PAGE
,MOV • RO,#BgcllDBO.AN.OFSltMllB_Cux
MOVX • A,QRO

INC A

MOVX QRO,A
MOV RO, #BgdMDB 1. AN. OFST +MOB _ Cux
MOVX, GlRO,A

PC10:
RET

J~ if not at right of bgd/msg
,; Restore active colunn ,if at end

and exit
Advance cursor locat ion

J~ if stil'l in same zone

; Place cursor in new zone
and exit

Speedy update of cursor l ocat i on

J~ if cursor is invisible
Page of MIlBs and

offset to cursor l ocat i on
Curreht location (both MOBs)

advanced ,rightward and
put back then
other MDB
gets same locati on

Exit

;+++t++

Repeat:

; Repeats the 'previous control routine if it is repeatable. The parameter
; decoding part of the s~ate machine is careful to preserve the previous
; 'paramete~ buffer and provides ,a special repeat parameter for this control

routine, which is checked for and executed directly. This is necessary to

prevent this control's lIequence' from interfering with the previous cdntrol's
parameters. If the spec i a l ,repeat parameter is zero then the previ ous .
information has been lost and this sequence is ignored.

JNB PnnBgnF 19, RpZ
MOV A,CtlPtrHi
ORL A,CtlPtrLo
JZ Rp3
MOV A,PrmRep

JNZ Rp1

HOY PrmRep,-#1
Rp1:

MOV DPH,Ctlf>trHi

MDV DPL,CtlPtrLo
LCALL DolndRtn
DJNZ PrmRep,Rp1

15

Check previ ous
control routine address

J~ if not repeatable,

For each repetition

Get previ OtIS control rout i ne
address into indirect ptr

Execute the control routine
Loop'specified I1I.IIIber of times

RpZ:

CLR A.
MDV CtlPtrHi ,A
lIOII CtlPtrLo,A

Rp3:

RET

Clear

control routine address
(may only be REP'd once)

Exit

~;++

End of C_Switch

J

16

"805'" I DII UnI...,ctl OOH NUL Null

TITLE" CALEB 0.00 Control Tables" 011 UnI...,ctl 01H SOH Start of Headi ng

;++ DII UnI...,ctl 02H STX Start of Text

DII UnI...,ctl 03H' ElX End of Text

C_Tables CALEB 0.00 011 UnI...,ctl 04H EDT End of Transmission

011 UnI...,ctl 05H ENQ Enquiry

Copyright '1985 Advanced Micro Devices, Inc. DII Unl...,ctl O6H ACK Acknowledge

DII UnI...,ctl 07H BEL Bell

DII Backspace 08H BS Backspace

This file contains the address tables used by 1:he state machine to dispatch DII Unl,ctl O9H HT Horizontal Tabulation

control to the various control routines. DII Newline OAH LF/NL Line Feed (New Line)

DII Unl...,ctl OBH VT Vertical Tabulation

NAME IIControl Tablesll DII Unl...,ctl OCH FF FonnFeed

PROG DII CarriageReturn' OIlH CR Carriage Return

DII Unl...,ctl OEH SO Shift OUt

; ++++++++++++++++++++++,++ DII Unl...,ctl OFH SI Shift In

GLB LoOirChrTbl First 128 entries for direct state DII Unl...,ctl 10H OLE Data Li nk Escape

GLB HiDi rChrTbl Second 128 entri es for di rect state DII Unl...,ctl llH DCl Device Control 1

GLB D i rEscSeqTbl Non- i ntermedi ate escape sequences 011 Unl...,ctl 12H DC2 Oevice Control 2

t:1 GLB X3 _ 640 i rSeqTb l Non- intermediate control sequences 011 Unl...,ctl 13H DC3 Oevice Control 3
I DII Unl...,ctl 14H OC4 Oevi ce Cont ro I 4 N

\0 -------------------- ------------------- -- ---- -------- ------ -- --- ---- 011 Unl...,ctl 15H NAK Negative Acknowledge

EXT Unl...,ct l, Escape,CtlSeqlntro,PutMapO,PutMapl,PutChr in C_Switch 011 Unl...,ctl 16H SYN Synchronous Idle

EXT ·Backspace, Carri ageReturn, NewL i ne in C_lIork 011 Unl...,ctl ;' 17H ETB End of Transmission Block

EXT ResetinitState in C_lIork 011 Unl...,ctl 18H CAN Cancel

EXT CursorBackward, Cursoroown, CursorForward in C_lIork 011 Unl...,ctl 19H EM End of Medium

EXT CursorPos it ion, CursorUp,OeleteL i ne, Erasel nDi splay in C_lIork 011 Unl...,ctl lAH SUB Substitute

EXT EraselnL ine,lnsertL ine,ResetMode,ScrollDown in C_lIorl< 011 Escape lBH ESC Escape

EXT SelGrfRendi ti on,SetMode,ScrolLUp inC_lIork 011 Ufll...,ctl lCH FS Fi Ie Separator

EXT CharBI inkRate, LoadFontCell,Si!lActiveDi sp in C_lIorl< 011 Unl...,ctl 10H GS Group Separator

EXT SelCursorAppear, SmoothScrlRate, SelllindowVis in C_lIork 011 Unl...,ctl lEH RS Record Separator

EXT SelMessageVi s in C_lIorl< 011 Unl...,ctl lFH US Unit Separtor

011 PutChr 20H Space

; ++ I 011 PutChr 21H Start of GO Characters

SKIP 011 PutChr 22H "
; ++ 011 PutChr 23H #

011 PutChr 24H $

LoO i rChrTbl : First 128 entries for direct state 011 PutChr 25H %

011 PutChr 26H &

011 PutChr 27H

011 !'utChr 28H

011 PutChr 29H l

2

01/ PutChr 2AH * 01/ PutMapO 55H U

01/' PutChr 28H + 01/ PutMapO 56H V

DI/, PutChr 2CH 01/ PutMapO 5711 ,1/

01/ PlItChr 20H OIl PutMapO 58H X'
01/ PutChr ; 2EH 01/ PutMapO , 59H y

01/ PutChr ; 2FH I OIl putMapO 5AH Z

01/ PutChr ; 30H 0 01/ PutMapO 58H [

01/ PutChr ; 31H 01/ PutMapO 5CH \
01/ PutChr ; 32H 2 01/ PutMapO SOH

01/ PutChr ; 3,H' 3, 01/ PutMapO ; 5EH A

01/ PutChr ; 34H 4 01/ PutMapO ; 5FH

01/ PlitChr ; 35H 5 01/ PutChr ; 60H I

01/ PutChr ; 36H 6 01/ PutChr ; 61H a

,01/ PutChr ; 37H 7 pl/' ,PutChr ; ~2"H b

OW PutChr ; 38H 8 OW PutChr ; 63H c

01/ PlItChr ; 39H 9 ow PutChr ; 64H d

01/ PutChr "; 3AH OW PutChr ; 65H e

," 01/ PutChr ; 38H 01/ PutChr ; 66H

.ow putChr ; 3CH < ow' putChr ; 67H 9

t:j 01/ PutChr ; 3DH 01/ PutChr :,68H h
I ,PutChr ; 3EH 01/ PutChr " w 01/ > 69H i

0 OW PutMap1 ; 3FH l' 01/ PutChr 6AH j

OW PutMapO 40H iii 01/ PutChr 6BH k

OW PutMapO 41H A OW PutChr ; 6CH

OW PutMapO 42H 8 01/ PutChr ; 6DH m
01/ PutMapO 43H C OW PutChr ; 6EH n

01/ putMapO 44H 0 OW PutChr 6FH 0

01/ PutMapO 45H E 01/ PutChr 70H p

OW PutMapO 46H 01/ PutChr 71H q

01/ PutMapO 47H G OW PutChr 72H 1"

01/ PutMapO 48H H 01/ PutChr 73H s
01/ PutMapO 49H 01/ PutChr 74H

01/ PutMapO 4AH ,OW PutChr' 75H u

01/ PutMapO 48H K OW PutChr 76H v

01/ PutMapO '4CH OW PutChr ' 77H w

01/ putMapO 40H M 01/ PutChr 78H x
OW PutMapO 4EH N OW PutChr 79H y

OW PutMapO 4FH 0 OW PutChr 7AH z

01/ PutMapO SOH P 01/ PutChr 18H {

01/' putMapO 51H Q 01/ PutChr 7CH I
_-01/ PutMapO 52H R 01/ PutCh;' 10H }

0,1/ PutMapO 53H S 01/ PutChr 7EH - ,End' of GO Characters

0,1/ , PutMapO 54H 01/ UnlqJCtl 7FH DfL Delete

"

c;
I

W

· ~ ~ ~ -~ -_. ~. ~ ~. ~ ~.~ ~ ~. ~ ~ ~. ~ .. ~ ~ ~ ~. ~ ~. ~ ~ ~ --~ ... --_. ~ ... -~ ~ ~. ~ ~ --~ _ · SKIP
· - ~ ~ --~ ~~ ~ ~ -_.- - - - -- ~ ~ ~- ~ -_. _. ---_. -_. ---~ - ~ ~ ~ -- -- - ~ ---· HiOi rChrTbl:

011 UnlmpCtl

011 UnlmpCtl

011
011

011
011

011
011
011
011
011
011
011

011
011
011

011
011

011
011

011
011
011
011
011
011
011
011

011
011

011
011

011
OW

011
011
011
011

Un I mpCt I

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl'

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

CtlSeqlntro

UnlmpCtl

unlmpCtl

UnlmpCtl

UnlmpCtl

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

80H

81H

Second 128 entries for direct state

fut. std.

fut. std.

82H fut. std.

83H fut. std.

84H INO Index

85H NEl

86H SSA

87H ESA

88H HTS

89H HT J

8AH VTS

8SH PlO

8CH PlU

SOH RI

'8EH SS2

8FH SS3

90H OCS

91H PU1

92H PU2

93H STS

94H CCH

95H Mil

96H SPA

97H EPA

98H

99H

9AH

9SH CSI

9CH ST

90H OSC

9EH PM

9FH APC

AOH

A1H

A2H

A3H

A4H

ASH

Next line

Start of Select Area

End of Selected Area

Horizontal Tabulation Set

Horizontal Tab with Justify

Vertical Tabulation Set

Partial Line Oown

Partial Line Up

Reverse Index

Single Shift Two

Single Shift Three

Oevi ce Control Stri ng

Private Use One

Private Use Two

~et Transmit State

Cancel Character

Message lIa i t i ng

Start of Protected Area

End of Protected Area

fut. std.

fut. std.

fut. std.

Control Sequence Introducer

String Terminator

Operating System Conmand

Privacy Message

Appl ication Program Conmand

Start of G1 Characters

011
011
011
011
011

011
011
011

011
011
011
011

011
011
011
011
011
011
011
011
011
011
011

011
011
011
011
011
011
011
011
011
011

011
011

011
011

011
011
011
011
011

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

Pl,ltChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

PutMapl

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapD

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

A6H

A7H

A8H

; 1\9H

AAH
ABH

ACH

ADH
AEH

AFH

BOH

B1H

B2H

B3H

B4H

B5H

B6H

B7H

.. B8H

B9H

BAH

BBH

BCH

BOH
BEH

BFH

COH

C1H

C2H

C3H

C4H

C5H

C6H

C7H

C6H

C9H

CAH

CSH

CCH

CDH
CEH

CFH

t::1
I

(..J
N

Oil

Oil

011

Oil

Oil

Oil

Oil

Oil
0.11

Oil

Oil

Oil

Oil

Oil

Oil

Oil

Oil

Oil

Oil

Oil

Oil

Oil

Oil

Oil

PutMapO

PutMapO

PutMapO
putMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

PutMapO

putMapO

.PutChr

PutCllr

PutChr

PutChr

PutChr

PutChr

PutChr

PutChr

OW PutChr

DW PutChr

OW PutChr

OW PutChr

OW PutChr

OW PutChr

OW PutChr

Oil ,PutChr

OW. putChr

OW PutChr

·[)W PutChr

OW PutChr

OW PutChr

OW PutChr

OW PutChr

Oil PutChr

OW PutChr

OW PutChr

DOH

olH

02H

D3H

D4H

05H

06H

07H

08H

09H

OAH

OBH

OCH

DOH

OEH

OFH'

EOH

E1H

E2H

E3H

E4H

E5H

E6H

ElH
E8H

E9H

EAH

EBH

ECH

EOH

EEH

EFH

FOH

F1H

F2W

• F3H

F4H

F5H

F6H

F7H
F8H

F9H

7

Oil

Oil

Oil

Oil

Oil

Oil

PutChr

PutChr

PutChr

PutChr

PutChr

UnlmpCtl

FAH

FBH

FCH

FOH

FEH

FFH

End of Gl Characters

; +t++

SKIP
; ++

o i rEscSeqTbl :

Oil UnlmpCtl

Oil UnlmpCtl

Oil

Oil

Oil

OW

OW

OW

OW

OW

O,W

OW

DW

OW

OW

OW

OW

OW

OW

OW

OW

OW

OW

OW

OW

OW

OW

Oil

OW

Oil

Oil

OW

UnlmpCtl

UnlmpCtl

Unlq:>Ctl,

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl '

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

unlmpCtl

UnlmpCtl

UnlmpCtl

unlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

Un I mpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

30H

31H

32H

33H

34H

35H

36H

37H

38H

39H

3AH

38H

3CH

30H

3EH

3FH

40H

41H

42H

43H

44H INO

45H NEl

46H SSA

47H ESA

48H HTS

49H HT J

4AH VTS

4BH PLO

4CH PLU

40H RI

4EH SS2

4FH SS3

; Non- i ntermedi ate escape sequences

priv_ use

priv. use

priv. use

priv. use
priv. use

priv. use

priv. use

priv. use

priv. use

priv. use

priv. use

priv. use

priv. use

priv. use

priv. use

priv. use

fut. std.

fut. std.

fut. std.

fut. std.

Index

flext Line

Start of Select Area

End of Selected Area

Horizontal Tabulatiol1 Set

Horizontal Tab with Justify

Vertical Tabulation Set

Partial Line Down

Partial Line Up

Reverse I nctex

Single Shift Two

Single Shiff Three

t::I
I

W
W

OW

OW

OW

DW

OW
OW

OW

OW

OW

OW

OW

OW

OW

OW

OW

OW

OW

OW

OW
OW

OW

OW
OW

OW

OW

OW

OW

011

OW

OW

OW

OW

OW

OW
OW

OW

OW

OW

OW

OW
OW
OW

OW

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

Ctlseqlntro

UnlmpCtl

UnlmpCtl

UnlmpCtl

Un I mpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

ResetlnitState

UnlmpCtl

UnlmpCtl
unlmpCtl·

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl
UnlmpCtl

UnlmpCtl,

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl
UnlmpCtl

50H OCS Device Control String

51H PU1 Private Use One

52H. PU2 Private Use Two

53H STS Set Transmi t State

54H CCH Cancel Character

55H MW Message Waiting

56H SPA Start of Protected Area

57H EPA End of Protected Area

58H fut. std.

59H fut. std.

5AH fut. std.

5BH CSI Control Sequence Introducer

5CH ST String Terminator

50H OSC Operating System Command

5EH PM Privacy Message

5FH APC Appl ication Program Command

60H OM I 0 i sabl e Manua l Input

61H INT

62H EMI

; 63H RIS
64H

65H

66H
67H

68H

69H

6AH

6BH

., 6CH

60H

6EH

6FH

70H

71H
72H

73H
74H

75H
76H

77H
78H

79H

7AH

Interrupt

Enable Manual Input

Reset to Initial State

fut. std •.
fut. std.

fut. std.

fut. std.

fut. std.

fut. stc!.

fut. std.

fut. std.

fut. std.
fut. std.

fut. std.

fut. std.

fut. std.

fut. std.
fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

fut. std.

OW
OW

OW

OW

UnlmpCtl

UnlmpCtl

UnlmpCtl

unlmpCtl

7BH

7CH

7DH
7EH

fut. std.

fut. std.

fut. std.

fut. std.

; ++

SKIP
;++

X3_64oirseqTbl:

OW

OW

OW

OW

OW

OW

OW

OW
OW

OW

OW

OW

OW

OW
OW

OW

OW

OW

OW

OW

OW

OW

OW
OW

OW

OW

OW

OW

OW

OW
OW

OW

UnlmpCtl

CursorUp

CursorOown

Cursor Forward

CursorBackward

UnlmpCtl

UnlmpCtl

UnlmpCtl

CursorPos i t i on

unlmpCtl
EraselnDisplay

EraselnL ine

InsertL ine

OeleteL ine

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

Un I mpCtl
ScrolLUp

ScrollOown

UnlmpCtl

UnlmpCtl
UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

UnlmpCtl

.40H ICH

41H CUU

42H CUD

43H CUF

44H CUB

45H CNL

46H CPL

47H CHA
48H CUP

49H CHT

4AH EO

4BH EL

4CH IL

4DH OL

4EH EF

4FH EA

50H OCH

51H SEM
52H CPR

53H SU

54H SO

55H NP

56H PP
57H CTC

58H ECH

59H CVT

5AH CBT

5BH

5CH
50H

5EH

5FH

Non·intermediate control sequences

Insert Character

Cursor Up

Cursor Oown

Cursor Forward

Cursor Backward

Cursor Next Li ne

Cursor Precedi ng Li ne

Cursor Horizontal Absolute
Cursor Position

Cursor Horizontal Tabulation

Erase in Oisplay

Erase in Line

Insert Line

Oelete Line

Erase in Field

Erase in Area

Oelete Character

Select Editing Extend Mode

Cursor Position Report

Scroll Up

Scroll Down

Next Page

Preceding Page
Cursor Tabulation Control

Erase Character

Cursor Vertical Tabulation

Cursor Backward Tabulati on

fut •. std.

fut. std.

fut. std.

fut. std.

fut. std.
10

011 UnlmpCtl 60H HPA Horizontal Position Absolute

011 UnlmpCtl 61H HPR Ho,-izontal Position Relative

011 UnlmpCtl 62H REP Repeat

VY UnlmpCtl 63H OA Device Attributes

OY UnlmpCtl 64H VPA Vertical Posifion Absolute

OY UnlmpCtl 65H VPR Vertical Position Relative

OY Un I mpCtl 66H HVP . Horizontal and Vertical Position

OY Unl~tl 67H TBC Tabulation Clear

OY SetMode 68H SM Set Mode

OY . UnlmpCtl 69H MC Media Copy

OY UnlmpCtl 6AH fut. std.

011 UnlmpCtl 6BH fut; std.

OW ResetMode 6CH RM Reset Hode

OW SelGr'fRendition 6DH SGR Select Graphic Rendition

OW UnlmpCtl 6EH OSR Oevi ce Status Report

OW UnlmpCtl 6FH OAQ Define Area Qualification

011 SelAct i veO i sp 70H AmSAO Select Active Display

OW SelMessageVis 71H AmSMV Select Message Visibility

OW SelWindowVis 72H AmSWV Select Winelow Visibi 1 ity
t:1 OW
I

UnlmpCtl 73H priv. use
w OW SmoothScrl Rate 74H AmSSR Smooth Scroll Rate
.p-

OW CharBl inkRate 75H· AmCBR Character B link Rate

OW SelCursorAppear 76H AmSCA Se 1 ect Cursor Appearance

OW UnlmpCtl 77H priv. Use

OW UnlmpCtl 78H priv. use

OW UnlmpCtl 79H priv. use

OW UnlmpCtl 7AH priv. use

OW UnlmpCtl 7BH priv. use

011 UnlmpC,tl 7CH priv. use

OW UnlmpCtl 7DH priv. use

011 LoadFontCell 7EH AmLFC Load Font Cell

; ++ .. +++++++++++++++++++++++++++++++++++++

; end of C_Tables

11

tj
I

W
, lJ1

11805111

TITLE" CALEB 0.00 Control Routines"
; ++

C_lIork CALEB 0.00

Copyright 1985 Advanced Micro Devices, Inc.

This file contains all of the control routines supported by CALEB. Both

ANSI standard and AMD private controls are included.

NAME "Control Routines"

PROG

; ++

ANSI Standard Control Routines

GLB Backspace

GLB Carri ageReturn

GLB Newline

GLB Reset I ni tState

GlB CursorBackward

GLB CUrsorDown

GLB Cursor Forward

GLB Cur-sorPos it i on

GLB CursorUp

GLB DeleteL ine

GLB EraselnDisplay

GLB EraselnLine

GLB InsertLine

GlB ResetMode

GLB ScrollDown

GlB Se l GrfRendi t i,on

GLB ScrollLeft

GLB SetMode

GlB ScrollRight

GLB ScrollUp

AMD Private Control Routines

GLB CharBl inkRate

GLB LoadFontCell

Backspace

Carri age Return

New Line

Reset to Initial State

Cursor Backward

Cursor Down

Cursor Forward

Cursor Pos it i on

Cursor Up

Delete Line

Erase in Display

Erase in Line

Insert Line

Reset Mode

Scroll Down

Select Graphic

Scroll Left

Set Mode

Scroll Right

Scroll Up

Rendition

Character B link Rate

Load Font Cell

GLB SelActiveDisp Select Active Display
GLB SelCursorAppear Se l ect Cursor Appearance
GLB· SmoothScrlRate Smooth Scroll Rate
GLB SelliindowVis Select lIindow Visibil ity
GLB SelMessageVi s Select Message Visibi l ity

EXT Reset ;in C_lnit

EXT EraActEnd,EraBgnAct, ChgBlnkSpd, SwpVar, ChgCsrSiz,ChgCsrTyp

EXT HidCsr ,NewCsr ,PlcCsr ,lIrAmB052Reg,BldTrmRcb

EXT FrcEraRow, EraRow,DelRow _MoYDn, I nsRow _MoYDn,DelRow _ MovUp

EXT I nsRow _ MovUp, Scr LUpNewRow, ScrLUpDSp, Sc:rlDnDsp, Scr lRtDsp, Scrl L tDsp

-eXT DlyTi lEndFrm, Hidllnd,Shwllnd

EXT ShWCsr ,SetCelllid,lIrFntCel ,SetlindPos

; ++++++++++-t:++++++++++++++++++++++++++++t++++++++++++++++++++++++++++++++++++++

SKIP

INCLUDE C _ Menf!ap

SKIP

; ++++++++++++++++ ... ++++++++++++ ... ++++++++++++++++++++++++++++++++++'T+++++++++++++

Backspace:

Moves the active position left one position on the screen. Backspace does

not support auto wrap therefore the active position can be moved left only

until it reaches the first memory location of the active row.

inp none

out ActCol updated
bad A

MOV A,ActCol Get the current active col
JZ BS1 decrement its value and
DEC ActCol test for 0, if 0 do nothing

BS1: else decrement ActCol

LCALL PlcCsr

RET

t:I
I

LA>
0'

CarriageReturn:

i····· .. ············ ··········· .. ·················· .. ··
Forces a movement of the active position to the first location on the

current row.

Inp ActCol

OUt ActCol loaded to 0

bad none

; .. '"

MOV ActCol,#OOH

LCALL PlcCsr

RET

; +++-+++

Newline: .

;
Moves the active position to move down one row. If the curr.ent row is the

at the bottom of the screen then a scroll of the screen IS ,done.

Inp CurRow

BtmRow

Out ActRow incremented to next row page

BtmRow changed if a scroll has occurred

bad A,RO,P2
; ~ ... ~

JB MsgActFlg,NL4

MOV ActCol,#O

MOV A,CurRow

CJNE A,EndRow,NL 1

MOV CurRow, ExtRow

LCALL ScrlUpNewRow

RET

NL1:
INC ActRow.

CJNE· A,BtmRow,NL2

MOV A,RemRow

SJMP NL3

NL2:

MOV P2,CurRow

MOV A,#RCB_RowPag

Newl ine has no action in msg

In all cases ActCol goes to 0

I f we are not at the end of the

l inked. list just move to

next row

else make the extra row our

current row and scroll

Inc ActRow and test which row

, next row pointer to use

if bottom of screen use RemRow

else l,lSe next row in list

ADD A,RcbOff

MOV RO,A

MOVX A,@RO Ace now 'has next row page ptr

NL3:

MOV CUrRow,A Update CurRow and cursor pos
LCALL PlcCsr

NL4:

RET and leave

; ++++++++++++++++.++

ResetinitState,

Blanks the Am8052.(Mode Register l--VB=l) without disabling it and waits

until vertical retrace ·time. Then it jumps to the power-up procedure •.

inp

out

bad

none

none

A,RO,Rl,R2,R3,

LCALL OlyTilEndFrm

MOV Rl,#ModRegllnd

MOV R2,#OCCH

MOV R3,#OOlH

LCALL WrAm8052Reg

MOV RO,#4

CLR A

RISl :

DJNZ ACC,RISl

DJNZ RO,RISl

LJMP Reset

Wait unti l near end of frame

In Mode Register 1

set normal bits ,plus VB·

and leave Am8052 enabled

Wait for approximately

two mill i seconds

Go do power-up procedure

-++ , ,

CursorBacKward:

Moves the active position bacKward on the screen the indicated number

of positions. If no count is suppplied then one position is moved .• Also

if theamoun,t moved is beyond 0 then movement stops at O.

Inputs: PrmCnt

PrmBuf

ActCol

OUtputs: ActCol al tered by the appropri ate amount
bad A

4

t::J
I
w

"

JB PrmBadFlg,CBWZ

HOV A,PrmCnt

JNZ CBII_OO

CBII_99:

HOV A,#l

HOV PrmBuf ,A

SJHP CBII 01

CBII_OO:

'DEC A

JNZ CBIIZ

HOV A,PrmBuf

JZ CBII_99

CBII~Ol :
CLR C

XCH A,ActCol

SUBB A,ActCol

JNC CBWl

HOV A,#OOH

CBlll :

MOV ActCol,A

SJMP CBII3

CBIIZ:

MOV A,#OOH

HOV CtlPtrHi ,A

MOV CtlPtrLo,A

CBII3:
, LCALL PlcCsr

RET

I f a bad parameter buffer is present

get wi th an error return

Test if no parameters
if none then the default is move

one_coloum left

Then test for only one parameter

any more parameters is considered

an error return

lie must subtract the requested
amount from ActCol and then test

that we have not moved the

cursor be l ow ()

I f so make ActCol 0

Otherwise restore adjusted ActCol

On an error return remove all traces

of this control

Set new cursor pos it i on and zone

; ++++++++ ... +++

CursorDown:

; ,; '
Moves the active position down on the screen the indicated number

of rows. If no count is suppplied then one row is moved. Also
if the amount moved is beyond the bottom row then movement ·stops.

Inputs: PrmCnt

PrmSuf

ActRow
Outputs: ActRow 5 al tered by the appropriate amount

bad A,RZ,R3

JB ·PrmBadFlg,C06

MOV A,PrmCnt
JNZ COl

COO:

HOV PrmBuf,#l

SJMP COZ

COl:

DEC A

JNZ C06

MOV A,PrmBuf

JZ COO

COZ:

JNB IIndActFlg,C03

MOV A,#13
SJMP C04

C03:

HOV A,#Z9,

C04:

CLR C
SUBB A,ActRow
HOV' RZ,A

SUBB A,PrmBuf

JC COS

MOV RZ,PrmBuf

CDS:

MOV A,ActRow

ADD A,R2
MOV RZ,A

MOV R3,ActCol
LCALL NeWCsr

SJHP COl

C06:

MOV A,#OOH

MOV CttPtrHi ,A

HOV CtlPtrLo,A

COl:

RET

If a bad parameter buffer is indicate

error return
Test for zero parameters indicating

a defaul t value of 1

If more then 1 parameter this is an

error return

If window is active limit of

movement is 14

If background is active limit

of movement ! s 30

Set input values for NewCsr
Setup new cursor variables

(CurRow ,ActRow,ActCol)

and pl ace cursor

On error remove all traces

of control

t;:j
I

w
00

CursorForward:
; .. , ... " a- .. .

-Moves the act i ve pos i t i on forward on the screen the i ndi cated number

of positions. If no count is supppl ied then one position is moved. Also

if the amount moved is beyond the last column then movement stops.

Inputs: PrmCnt

PrmBuf

ActCol

Outputs: ActCol

bad A,R3

al tered by the appropriate amount

i······· .. ········ ······· .. ·· .. ········· .. · ······ .. ····

JB PrmBadFlg,CFlI6

MOV A,PrmCnt

JNZ CFII1

CFIIO:

MOV prmBuf,#1

SJMP CFII2

CFII1 :

DEC A

JNZ CFII6

MOV A,PrmBuf

JZ CFIIO

CFII2:

JNB IIndActFlg,CF1i3

MOV A,#39

SJMP CFII4

CFIi3:

MOV A,#127

CFII4:

CLR C

SUBB A,ActCol

MOV R3,A

SUBB A,PrmBuf

JC CFII5

MOV R3,PrmBuf

CFII5:

MOV A,R3

ADD A,ActCol

MOV ActCol,A

Indicates a bad parameter buffer

error return

No parameters indicate a

movement of 1

If inore than 1 parameter

error return

If window is currently active

limit is 40 character pos.

Else if either Bgd. or Msg

is active limit is 128

The maxinun amount we may move

is Limit·ActCol = MAx

To determine whether to use Max

or requested is Max-Req, if

Max >' Req then move Req

else move Max

Add our relative movement to

our current position

SJMP CFII7 anet- we I re done

~FII6:

MOV A,#OOH I f an errori s di scovered

MOV CtlPtrHi ,A remove all t races of th i s

MOV CtlPtrLo,A control

CFII7:

LCALL PlcCsr Relocate our cursor before we

RET leave

; ++

CursorPos i t i on:

Moves the active position to the position on the screen as specrtied

If no valus are suppplied then the active position is moved to the home

position~ Also if a.ither of the parameters are lacking lite the. value

of 0 is defaul ted to.

Inputs: PrmCnt

PrmBuf

~ctCol

ActRow

Outputs: ActCol

ActRow

bad A,R2,R3,R4'

JB P rmBadF l g, CP9

CLR A

MOV R2,A

MOV R3,A

MOV A,PrmCnt

JZ CP8

DEC A

JZ CP4

CP1 :

MOV A,Prll)Cnt

CJNE A,#02H,CP9

MOV .A,PrmBuf+1

J~ CP91

DEC A

al tered by the appropriate amount

Indi cates a bad param buffer

error return

Establish default values

Determine defaul t case

default if jump taken

;. Set buffer poi nter for next prm

Test if first param is default

iLl1l' if true

Last test for only 2 par"meters

error if jump taken

I

CP91 :

MOV R3,A

JB WndAct FIg, CP2

MOV A,#127

SJMP CP3

CP2:

MOV A,#39

CP3:

CLR C

MOV R4,A

SUBB A,R3

JNC CP4

MOV A,R4

MOV- R3,A

CP4:

MOV A,PrmBuf

JZ CP92

DEC, A

CP92:

t::1 MOV R2,A
I

w JB WndActF I g, CP5

'" JB MsgActFlg,CP6

MOV A,#29

SJMP CP7

CP5:

MOV A,#13

SJMP CP7

CP6:

MOV A,#D

CP7:

CLR "C

MOV R4,A

SUBB A,R2

JNC CP8

MOV A,R4

MOV R2,A

CP8:

LCALL NewCsr

SJMP CP10

CP9:

CLR A

MOV CtlPtrHi ,A

y

Limit for window is 40 cols.

Limit for bgd and msg is

128 columns

Decide if maximum value or

requested value is used

for the new cursor column

Calculate new row position

Limit for Window is 15 rows

Li mit for Message is 1 row

Limi t for Background is 30 rows

Decide ,if maximum value or

requested va I ue is used

for the new cursor row

Establ ish new cursor variables

and we're finished

I f an error has been detected

remove all traces of this

MOV Ct IPtrLo,A control

CP10:

RET

; ++",+

CursorUp:

,
MOves the active position up on the'screen the indicated number

of rows. If no count is supppl ied then one row is moved. Also

if the amount moved is beyond the top row then movement stops.

Inputs: PrmCnt

PrmBuf

ActRow

Outputs: ActRow

bad A,R2,R3

JB PrmBadFlg,CU4

MOV A,PrmCnt

JNZ CU1

CUO:

MOV PrmBuf,#1

SJMP CU2

CU1:

DEC A

JNZ CU4

MOV A,PrmBuf

JZ CUO

CU2:

MOV A,ActRow

"CLR C

SUBB A,PrmBuf

JNC CU3

CLR A

CU3:

MOV R2,A

MOV R3,ActCol

LCALL NewCsr

SJMP CU5

al tered by the appropriate amount

I ndi cates bad param buffer

error return

If not zero test if more then 1 param

Oefaul t (no Parameters)

Move cursor up 1 row

I f not zero too many parameters error

10

Insure that requested'cursor

movement doesn I t -move cusor
below 0

Absolute minimum cursor vert.

position

Set new cursor vert. pos i t i on

Maintain current horz. position

Establ ish new cursor variables

t:I
t ..,..
o

CU4,

C.lR A I f an error occurs remove·

MOV CtlPtrHi ,A all traces of this control _

MOV CtlPtrlo,A

CU5: -

RET

: ++

DeleteLine:
, .. .
, Deletes· the nll1ber· of rows specified by the single allowed parameter. The

Vertical. Editing Mode (VEM) determines whether blank rows are shifted into

the bottom or the top of the display. If more rows are specified than can

be deletec! then the maximum amount is deleted. After ensuring parameter

·validity this routine waits for vertical smooth scrol~ing to finish before

beginning its worle. This control is not al.lowed when the message display

is .!lctive.

'. , inp

out

bad

none
Display dependent variables may change

A,R?
;; .. .

JB MsgActFlg,Dl9

JB J>rmBadFlg,DL9

MOV A,prmcnt

JNZ DLZ

DL 1:

Mev PrmBuf,#1.

SJMP Dl3

DLZ:

DEC A

JJIZ Dl9

NOV A,PnnBuf

.tz Dl1

DL3:

JB V.rtScrlFlg;S

JB VEMBit,Dl7

JN8 WndActFlg,DL4

MOV A,#14

SJMP DL5

11

Dl4:

HOV A,flO

Dl5:

CLR C

SUBB A,ActRow

NOV RZ,A

SUBB A,PnnBuf

JC DL6

Mev RZ,PrmBuf

D~6:

lCAll DelRow_MovUp

DJNZ RZ,Dl6

RET

DL7:

ClR C

Mev A,ActRow

INC A

Mev RZ,A

SUBB A,PnnBuf

JC Dl8

HOV RZ,PrmBuf

Dl8:

lCAll DelRow_MovDn

DJNZ RZ,DL8 -

RET

Dl9:

ClR A

Mev CtlPtrHi ,A

Mev CtlPtrLo,A

RET

; +++1:++

EraselnDisplay:
.. .' _. ',-",

, •••••• !- .. .

Depending on the parameter sent this control erases frcim the top of the

display to the-active postion, the act·ive postion· to'Jhe bottom of the

dispplay, or the entire display.

inp prmcnt

PnnBuf

out none

bad A,RO,R1;R5,PZ

the count of parameters·

buffer containing parameters·

12

o
I .,..

.....

JB PrmBadFlg,EI017

JB Prnt-laxFlg,ElO17

MOV Rl,#PrmBuf

MOV A,PrmCnt

JNZ EIOO

MOV

INC

EIOO:

MOV

E101:

iilRl,A

A

R2,A

CJNE iilRl,#OOH,EI06

LCALL EraActEnd

MOV A,curRow

E102:

CJNE A,EndRoW,EI03

LJMP EI&16a

EID3:

CJNE A,BtmROW,EI04

MOV A,RemRow

SJMP EI05

Elp4:

MOV P2,A

MOV A,RcbOff

ADD A,#RCB_RowPag

MOV RO,A

MOVX A,iilRO

E105:

MOV R5,A

LCI\LL FrcEraRow

MOV

SJMP

EID6:

A,R5

EI02

CJNE iilRl,#OlH,ElOll

MOV A,BgnRow

13

Indicates a bad param buffer

error return

Indicates too many parameters

error return

parameter buffer

Prepare for progression thru

If 0 (default) then erase from

active pos to last position

in display

First erasethe remainder of

th i s row and get poi nter

If ptr is last row quit

If ptr is last row in visible

dsp start erasing rows below

Otherwi se get next row ptr to

erase

Save row poi nter

Erase row

Restore pointer

Prepare for next row

If 1 then erase from beginning

of display, thru active pos

Start at the beginning of the

E107:

CJNE A,CurRo,,!,EI08

LCALL EraBgnAct

SJMP EI016a

EID8:

MOV R5,A

LCALL FrcEraRow

MOV A,R5

CJNE A,BtmRow,EI09

MOV A,RemRow

SJMP EID7

E109:

HOV P2,A

HOV A,RcbOff

ADO A,#RCB_RowPag

HOV RO,A

HOv)(A,iilRO

SJHP EI07

E1011:

CJNE iilRl,#02H,EID16

MOV A,BgnRow

EID12:

MOV R5,A

LCALL FrcEraRow

HOV A,R5

CJNE A,EndRow,EID13

SJMP EID16a

EID13:

CJNE A,BtmRow,EI014

MOV A,RemRow

SJMP EI012

EID14:

HOV

MOV

P2,A

A,RcbOff

ADD A,#RCB_RowPag

MOV RO,A

MOv)(A,@RO

SJMP EID12

14

linked list

I f not at top get erase first

first row

Finally erase current row to

active pos. and get next p~m

P reserve erased page pt r

erase th i s row

Test for bottom of di spl ay

if true, next row is RemRow

Otherwise gef'next row in list

Proceed to erase it

If 2 then erase from top to

bottom

Start at the beginning

crase th i s row then proceed

to the next appropri ate

Continue til last row is done

then procedd wi th next param

IIhen we reach the bottom of the

dsp start wi th RemRow and

continue

Otherwise just continue with

the next row

t::I
I

.l>
I'-)

E1D16a:

MOV A,ExtRow

LCALL FrcEraRow

E1D16:

INC R1

DJNZ R2,E1D1

LCALL PlcCsr

RET

E1D17:

CLR A

MOV CtlPtrHi ,A

MOV CtlPtrLo,A

EID18:

RET

done wi th th i s parameter

Poi nt to next parameter

I f more parameters proceed

else return

; ++~+++++++++++++++++++++++++++++++++

EraselnL ine:

, ~ "' .. " a

Denpending on the parameter sent this control 'erases from the begi"nning

of the row to the active position, the activ,:, position to the end of

the row, or the entire row.

inp PrmCnt
~

Prlnbuf

the count of parameters

buffer containing control params

out none

bad A,R1,R2

, .. .

JB PrmlladFlg,EI L5

JB Prnt4axFlg,EIL5

MOV R1,#PrmBuf

HOV A,PrmCnt

JNZ EILO

"MOV . GlR1,A

INC A

EILO:

MOV R2,A

EIL1 :

CJNE GlR1,#OOH,EIL2

15

Indicates a bad param buffer

error return
Indi cates too many parameters

error return

Point to fi rst parameter value

and funct i on to 0 "

If default, set count to 1

Test for each of the allowed params

Each in turn

LCALL EraActEnd

SJMP EIL4

EIL2:

CJNE GlR1,#01H,EIL3

LCALL EraBgnAct

SJMP EIL4

EIL3:

CJNE GlR1,#02H,EIL4

MOV A, CurRow

LCALL FrcEraRow

EIL4:

INC R1

DJNZ R2,EIL1

SJMP EIL6

EIL5:

CLR A

MOV CtlPtrHi ,A

MOV CtlPtrLo,A

EIL6:

RET

If 0 (default) then erase from

active pos to end of row

If 1 then erase from beginnin!!

of row unti l the active pos

If 2 th!!n erase the whole line

; _ Update our pointer Into PrmBuf

and get all the parameters

I f an error was detected remove

all traces of this control

; ++

InsertL ine:

Inserts the m.",ber of rows specified by the single allowed parameter. The

Vertical Editing MOde (VEM) determines'whether blank rows are shifted into

the bottom or the top of the display. If more rows are specified than can

be inserted then the maxinun amount is inserted. After ensuring parameter

val idity this routine waits for vertical smooth scroll ing to finish "before

beginning its work. This control is not allowed when the message display

is active.

inp PrmCnt parameter count

Prmlluf buffer containing parameter(s)

out none

bad A,R2

, ... ,-" ~ ~ . ~ . ~

16

J8 MsgActFlg,IL9 Insert line is not functional

in message window

i8 Pndladflg,IL9 8ad parameter buffer

MOV A,PrmCnt Test for defaul t parameter

JNZ IL2 j~ if not default

ILl:

MOV Pndluf,#l- Else setup variables fO.r

SJMP IL3 default

IL2:

DEC A Test for only one parameter

JNZ IL9 if not zero too many prms

NOV A,PrmBuf ° is handled as, a prm of 1

JZ IL 1

IL3:

J8 VrtScrlFlg,$ If a scroll is in 'progress

wait ti l finished to cont.

JB VEMBit,IL7 Dec i de wh i ch way to move rows

JNB IIndActFlg,IL4 Bgd is active if -taken

MOV A,#14 Limit of insert in window

t:1 SJMP ILS is fourteen
-. IL4: +:-
w

MOV A,#30 Limit for background is thirty

ILS:

ClR C Maximum amount able to move

SUBB A,ActRow Max=Limit·Current

MOV R2,A Preserve maximum

SUBB A,Pndluf

JC IL6 If taken move maximum

. MOV R2,Pndluf el se move request'ed

IL6:

LCALL InsRow_MovDn Insert rows

DJNZ R2,IL6 .; C-ount times

RET

IL7:

CLR C

NOV ·A,ActRow !lith VEM bit set we just check

INC A hoil far it is to the top

'MOV R2,A ·and use the smaller value

SUBB- A-,PrmBuf

JC Its -NOV R2,PrmBuf

17

IL8:

LCALL InsRow_MovlJp

DJNZ R2,IL8

RET

IL9:

CLR A

NOV CtlPtrHi ,A

MO\t CtlPtrLo,A

RET

I nsert count rows

If an error was i ndi cated

remove all traces of this

controll

:++~+++

ResetMode:

;
Reset the modes indicated by the selective parameters to,their initial

states.

Parameters

7
?3
?4

- ?5

inp PrmCnt

PrmBuf

out ~

'bad A,RO,i!1"R2,R3,R6,DPTR

Meaning

YEM (insl!rt/delete above active row)

AMDDIIM (compressed)

AMDSCM (smooth scroll ing)

AMDSPM (reversed screen)

count of, parameters sent

buffer containing parameters

. , .,

JB PndladF 19, RSTMD7 1 ndi cates a bad param buffer

error return .
JB PrmMaxFlg,RSTMD7 Indicates too many parameters

; error return

NOV A,prmCn~

JZ RSTMD8

MOV R6,A
NOV, RO,#PrmBuf

RSTMD1:

MOV A,PrmPvt

JZ RSTMD5

18

RSTMD2: LCALL SetCelllid

CJNE @RO,#03H,RSTMD3 AMDDIIM (norma l iIIode) MOV VisCol,#O

JNB AMDDIIMB it, RSTMD6 LCALL SetllndPos

[CALL RMdSup JB MsgAct F l g, RHdO

SJHP RSTMD6 JB IIndActFlg,RHdO

RSTMD3: HOV A,BgnRow

CJNE @RO,#04,RSTMD4 AHDSCM (j..up scroll ing) SJHP RMdl
/CLR AMDSCHBit RMdO:

SJMP RSTMD6 MOV DPTR,#BgdVarBuf+(BgnRow-CurAtr)

RSTMD4: HOVX A,@I)PTR ,

CJNE @RO,#05H,RSTMD6 ' ; AMDSPH (normal screen) RMdl:

CLR A~DSPHBit HOV DPH,A

SJHP RSTMD6 HOV DPL,#BgdRcBO_AN_OFST+RCB_RowPag

RSTMD5: MOV Rl,,#6

CJNE ' @RO,#07H,RSTHD6 VEM (insert/delete below active RHd2:

row) MOVX A,@I)PTR

CLR VEMBjt HOV DPH,A

RSTMD6: DJNZ Rl,RMd2

INC RO HOV DPTR,#BgdVarBuf+(TopRow-CurAtr)

t:l DJNZ R6,RSTMDl CLR EXO
I .,. SJMP RSTMD8 .,. HOVX @l)PTR,A

RSTMD7: HOV DPTR,#BgdMDBO+MDB_RowPag'

CLR A If an error is i ndi cated MOVX @l)PTR,A

MOV CtlPtrHi ,A remove all traces of HOV DPTR,#BgdMDB1+HDB_RowPag

MOV CtlPtrLo,A ; this control MOVX @l)PTR,A

RSTMD8: JB MsgActFlg,RMd3

RET JB IIndActFlg,RMd4

MOV TopRow,A

-------------------------- ----------------- --- ---,
)

MOV VisRow,#6

RMdSup: HOV DspHgt,#24 ..
RMd3:

JB • VrtScrlFlg,$ 'MOV Dsp\lid,#80

JB HrzScrlFlg,$ RHd4:

MOV HrzFrmSet,RO HOV DPTR,#BgdVarBuf+(Vi sCol-CurAtr)

HOV HrzPxlShf ,R6 CLR A

LCALLDlyTi lEndFrm HOVX @l)PTR,A

HOV 1l1,#ModRegllnd INC DPL

MOV R2,#OCCH HOV A,#6

HOV R3,#OOlH ' HOVX @l)PTR,A

LCALL IIrAm8Q52Reg HOV DPTR,#MsgVarBuf+(VisCol-CurAtr)

CLR AMDDIIMBit CLR A

HOV A,#OO7H

19 20

MOVX CilPPTR,A

MOV A,#034H

MOV OPTR,#SgdMOBO+MOB_Tslc

MOVX iilDPTR,A.

MOV OPTR,#BgdMOB1+MOB _Tslc

MOVX iilDPTR,A

MOV OPTR,#NrmRRB+RRB _ Ts lc _ NcsH i

MOVX OOPTR,A

INC OPL

MOV A,#040H

MOVX OOPTR,A

INC OPl..

CLR A

HOVX OOPTR,A

INC OPL

MOV A,#OOOH

MOVX iilDPTR,A

INC OPt

CLR A
t:::1 MOVX @OPTR,A
I

.JO- INC OPL
l.n

MOV A ,#080 H"

MOVX iilDPTR,A

INC OPL

INC OPt

INC OPL

MOV A,#OOlH

MOVX OOPTR,A

INC OPL

MOV A,#OB6H

MOVX iilDPTR,A

JNB MsgVi sF 19,RMd9'

MOV A,#26

SJMP RMdl0

RMd9:

MOV A,#24

RMdl0:

MOV DPTR, #T rmIIDB+I/DB _ BgnRow

MOVX OOPTR,A

INC DPL

MOVX IilDPTR,A

MOV A,#24

21

HOV OPTR, #MsgI/DB+I/DB _ BgnRow

MOVX OOPTR,A

INC OPL

MOVX OOPTR,A

SETB EXO

JNB MsgActFlg,RMdll

HOV RowAdd,#24

RMdll:

HOV A,CsrSiz

CJNE A, #09AH, RMd5

MOV CsrSiz,#OBCH

SJMP RMdB

RMd5:

CJNE A;#OAAH,RMd6

MOV CsrSi z,#OCCH

SJMP RMdB

RHd6:

CJNE A, #05BH, RMd7

MOV CsrSi z,#06AH

SJMP RHdB

RMd'7:

MOV CsrSiz,#OODH

RMdB:

LCALL ChgCsrSi z

MOV Rl,#ModReg1ind

MOV R2, #OCBH

MOV R3,#OOlH

LCALL WrAm8052Reg

LCALL PlcCsr

MOV RO,HrzFrmSet"

MOV R6,HrzPxlShf

RET

i++

ScrolLDown:

I··············· .. ·····································
Scrolls number of rows specified by the single allowed parameter.

If more rows are specified than can be scrolled then the maxinun amount is

scrolled.

inp PrmCnt parameter count

PrmBuf buffer containing parameter(s)

22

"

t;:j
I ..,..

(j\

out none

bad A;R2

..

JB P'rnSadF 19, S05

ClR C
dB MsgActFlg,S06

MOV A,PMncnt

JNZ SOl

MOV' PrnSuf,#l

SJMP S02

SOl:

OEC A

JNZ S05

SD2:
, MOV A,PrmBuf

,sUBB A,VisRow

JC S03

MOV A,VisRow

JZ S06
, SJMP S04

S03:

MOV A,PrmBuf

SD4:

lCAll ScrlOnDsp

SJMP S06

SD5,

ClR A

MaY CtlPtrHi ,A

MOV CtlPtrlo,A

S06,

RET

\

23

Indicates a bad param buffer,

error return

Message window cannot scroll

vertically

If count = 0 default, to 1 row

I f more then one parameter

error return

Amount to scroll is the smaller lof

requested rows Vs. VisRow ,

Scroll in progress

and we're finished

; 1ln an error remove all, traces

of this control

SelGrfRendition:

r···
After checking parameter val idity tests this control changes the following

character attributes depending on the selective parameter(s) sent •

Parameters

o

4

5
7
9
10

11

22

24

25

27
29

?91

792 ,

193
any other parameter is i griered

inp PrmCnt

PrnSuf

out none

bad A,Rl,R3

meaning

'Steady, initial attributes

Bold, hi intensity

Underl ined

Blinking

Negative image

Crossed out

Primary Font

Secondary Font

tlormal intensity

Not under lined

,Steady (not bl inking)

Positive image

Not crossed out

Superscript al i gnuent

Subscript al igrnent

Normal al ignment

number 'of Parameters to work on'

buffer '.containing' the parameter(s)

, .. .

jNB PrnSadFlg,SGR01

lJMP SGR16

SGR01:

JNB PrmMaxFlg,SGR02

lJMP SGR16

SGR02:

MOV A,PrmCnt

JNZ SGRXX

lJMP SGR16

2 ..

Indicates a' bad param buffer

error return

Indicates too many parameters

error 'return

SGRX)(: SGR9:
MOV R3,A CJNE QR1,#09,SGR_09 Crossed out

Mbv Rl,#PrmBuf SETB SundBit
SGRl : SJMP SGR15

MOV A,PrmPvt Test if AMD private control SGR_09:
JZ SGR4 CJNE QR1,#10,SGR_Ol0 Primary font

CJNE QR1,#91,SGR2 Superscript al ignment ClR FntMapFlg

SETB SpsBit SJMP SGR15
ClR SbsBit SGR_Ol0:

SJMP SGR15 CJNE QR1,#11,SGR10 Seconda ry font

SGR2: SETB FntMapFlg

CJNE QR1,#92,SGR3 Subscript al ignment SJMP SGR15

SETB SbsBit SGR10:

CLR SpsBit CJNE QR1,#22,SGR11 Normal intensity

SJMP SGR15 ClR LitBit

SGR3: SJMP SGR15

CJNE @Rl,#93,SGR4 Normal al ignment SGR11:

ClR SpsBit CJNE QR1,#24,SGR12 Not underlined

ClR SbsBit ClR UndBit
t:l SJMP SGR15 SJMP SGR15 I
.I>- SGR4: SGR12:

CJNE @Rl,#OO,SGR5 ; Steady initial attribute CJNE @Rl,#25,SGR13 Steady (not bl inking)

MOV CurAtr,#OO ClR BlnkBit

SJMP SGR15 SJMP SGR15

SGR5 SGR13:

CJNE @Rl,#Ol,SGR6 Bold CJNE @Rl,#27,SGR14 positive image

SETB LitBit ClR RevBit

SJMP SGR15 SJMP SGR15

SGR6: SGR14:

CJNE @Rl,#04,SGR7 llnderlined ,CJNE @Rl,#29,SGR15 Not crossed out

SETB UndBit ClR SundBit

SJMP SGR15 SGR15:

SGR7: INC Rl

qNE @Rl,#05,SGR8 Bl inking DJNZ R3,SGRl

SETB BlnkBit RET

SJMP SGR15 SGR16:

SGR8: ClR A If an error was indicated

CJNE @Rl,#07,SGR9 Negative image MOV CtlPtrHi ,A remove a II traces of

SETB RevBit MOV CtlPtrlo,A this routine

SJMP SGR15. RET

25 26

t::I
I

.po
00,

ScrollLeft:

, .. "
Scrollsthe display leftward the nlIlIber of colums specified by the single

mineric parameter .. An attelJ1)t to scroll the rightmost collml of the display

leftward beyond the rightmost collml on the monitor leaves it at the right·

mOst colm.

inp PrmCnt count of parameters

Pn1lBuf buffer containing the parameters

out none

;'. bad A,R1,R2

,

JB' Pn1lBadFlg,SL7

JB ilndActFlg,SL8

MOV A',PrmCnt

JNZ SL1

MOV PrmBuf,#l

SJMP SL2

SL 1:

DEC A

JNZ SL7

SL2:

JNIi AMDDWMili t, SL3

MOV R2,f18

SJMP SL4

SL3:

HOV R2,#48

SL4:

CLR C

MOV A,VisCol

xcit A,R2

SUBB A,R2

JZ SL8

MOV R7;A

'MOV A,Pn1lBUf

ClR C

SUBB A,R7

JNC SL5

MOV R7,Pn1lBuf

27

; indicates·a bad param buffer

error return

if lIindow Horz. scrolling is not

allowed

If no parameters default to 1 collml

If more ~hen one parameter errorrtn

If cClq)ressed mode max i nun number

; . of COllmlS to be scrolled is 48

Else collmls = 8

-, of ~,- _H .. '. fu, J
scroll ing = Maxinun • VisCol

smaller of Available Vs. request

SL5:

MOV A,R7

LCALL ScrlLtDsp

RET

SL7:

CLi A

MOV CtlPtrHi ,A
'f: MOV CtlPtrLo,A

SL8:

RET

;' if error remove all 'traces of

control routine

; +++ I I I I I I I I I I I I .-. I I I I I I I I 1++++++

Setllode:
; .. ": ... ~

Set the modes indi cated by the selective parameters to thei r alternate

states.

Parameters

7
, 13

74

?5

inp PrmCnt

Pn1lBuf

out none

bad A,RO,R1,R2,R3,R6,DPTR

Meaning

VEM (insert/delete above active row)

AMODWM (cClq)ressed)

AMDSCM (smOoth scroll ing)

AMDSPM (reversed screen)

count of parameters sent

buffer containing parameters

; .. ~ ... ;;. ~

JB PrmBadF 19, STMD 7

JB PrDllaxFlg, STMD 7

MOV A,PrmCnt

JZ STMD8

MOV R6,A

MOV RO;#PrmBuf,

STN01 :

MOV A,PrnPvt

JZ STMD5

28.

Indicates a,bad param buffer

error return

, Indicates too many parameters

, error ·return

If zero no ac,tion just return

Establ ish loop count from PrmCn

Establ ish pointer for param

cClq)8ri sons

Test' if private selective

parameter

STMD~ LCALL SetCelWid
CJNE liIRO,#03H,STHD3 AHDDWH Compressed mode HOV VisCol,#O
JB AMDDWHB it, STMD6 LCALL SetWndPos
LCALL SMdSup JB . MsgActFlg,SMdl
SJMP STMD6 JB WndActFlg,SMdl

STHD3: MOV R4,BgnRow
CJNE liIRO, #04H, STMD4 ; AMDSCM Smooth scroll ing MOV Rl,BtmRow
SETB AMDSCMBi t MOV R2,RemRow
SJMP STMD6 MOV R3,EndRow

STMD4: SJMP SMd2
CJNE liIRO,#05H,STMD6 AHDSPM reversed screen SMdl:
SETB AMDSPMBit MOV DPTR ,#BgdVarBuf+(BgnRow-CurA t r)

SJHP STMD6 CLR EXO
STMD5: MOVX A,liIDPTR

CJNE liIRO ,#07H, STMD6 VEM mode HOV R4,A
SETB VEMBit INC DPL

STMD6: INC DPL
INC RO MOVX A,liIDPTR
DJNZ R6,STMDl INC DPL

t:I SJMP STMD8 MOY Rl,A
I

STMD7: A,liIDPTR ~ MOVX
\0

CLR A If an error is indicated INC DPL
HOV CtlPtrHi ,A remove all traces of MOV R2,A
MOV Ctl~trLo,A this control MOVX A,liIDPTR

STMD8: MOV R3,A
RET SMd2:

MOV DPH,Rl

; - - - - -.- -- I MOV DPL ,#BgdRCBO _AN _OFST +RCB _RowPag

MOV A,R2

SMdSup: MOVX liIDPTR,A

INC DPL
JB VrtScrlFlg,$ MOV A,#BgdRCBO_AN _OFST

JB HrzScrl Flg,$ MOVX liIDPTR,A

HOV HrzFrmset,RO MOV DPH,R3,
MOV HrzPxlShf ,R6 MOV A,TrrnOff
LCALL D l yTilEndFrm MOVX liIDPTR,A
MOV Rl,#ModRegllnd DEC DPL
MOV R2,#OCCH MOV A, TrmRow
HOY R3,#OOlH MOVX liIDPTR,A
LCALL WrAmB052Reg MOV DPTR,#BgdVarBuf+(TopRow-CurAtr)

SETB AMDDWHBit MOV A,R4·
MOV A,#OO4H MOVX liIDPTR,A

29 30

MOV DPTR, #BgdMDBO+MDB _ RowPag CLR A

MOVX IilDPTR,A MOVX iilDPTR,A

NOV DPTR,#BgdMOB1+MDB_RowPag INC DPL

MOVX iilDPTR,A MOV A,#OOAH

JB MsgActFlg,SMd3 MOVX iilDPTR,A

JB IIndActFlg,SMd4 INC OPL

Mav TOpROlf,A CLR A

MOV ViSRow;#O MOVX iilDPTR,A

NOV BtldloWi R3 INC DPL

'Moll ReDRoII, R3 MOV A,#08AH

NOV DSpH9t , #30 MOVX iilDPTR,A

SMd3: INC OPL

NOV' Ospllid,#120 INC OPL

SMd4: INC OPL

NOV OPTR,#BgdVarBuf+(Vi sCol-CurAtr) MOV A,#001H

CLR A MOVX iilDPTR,A

MOVX OIDPTR,A INC OPL

INC OPL MOV A,#045H

'MOVX OIDPTR,A Movx OIDPTR,A
t::j INC DPL JNB MsgVisFlg,SMd9
I

V1 INC OPL NOV A,#32
0

NOV A,R4 , SJMP SMd10

MOVX OIDPTR,A SMd9:

INC OPl MOV A,#30

NOV A,R3 SMd10:

MOVX IlDPTR,A MOV OPTR, #T ndoIIlB+llDB _ BgnRow

INC OPL MaVX iilDPTR,A

MOVX IilDPTR,A INC OPl

MOV OPTR,#MsgVarBuf+(VisCol-CurAtr) MOVX iilDPTR,A

CLR A MOV .A,#30

MOVX IlDPTR,A MOV 9PTR,#MsgI/DB+IIDB_BgnRow

• 'MOV ,A, #028H MOVX OIDPTR,A

MO.V OPTR,#BgdMDBO+MDB_Tslc INC OPL

MOVX OIDPTR,A MOVX OIDPTR,A
• MOV DPTR,#Bgd40B1+MOB_Tslc SETB EXO

MOVX a>i>TR,A 'JNB MsgActFlg,SMd11

MOIi DPTR.#NrIdlRB+RRB_Tslc_NCSHi MaV RowAdd,#30

MOVX IlDPTR,A SMd11:

INC- OPl MOV A.CsrSiz

NOV A;#04AH CJNE A! #OBCH, SMdS

MOVX IlDPTR;A, MaV CsrSiz,#09AH

INC OPL SJMP SMdS.

31 32

t::j
I

\.n

SMd5:·

CJNE A,#OCCH,SMd6

MOV CsrSiz,#OAAH

SJMP SMdB

SMd6:

CJNE A,#06AH,SMd7

MOV CsrSi z,#05BH

SJMP SMdB

SMd7:

MOV CsrSiz,#OOAH

SMdB:

LCALL ChgCsrS i Z

MOV R1,#ModRegllnd

MOV R2,#OCBH •
MOV R3,#OO1H

LCALL IIrAm8052Reg

LCALL PlcCsr

MOV RO,HrzFrmSet

MOV R6,HrzPxlShf

RET

; ++

ScrollRight:

Scrolls the display rightward the nllllber of columns specified by the single

numeric parameter. An attenpt to scroll the leftmost colum of the display

rightward beyond the leftmost column on the monitor leaves it at the left·

most colum.

inp PrmCnt count of parameters

Prm8uf buffer containing the parameters
out none

bad A

, ," ~ fo

MOV PrmBuf ,#1

SJMP SR2

SR1 :

DEC A

JNZ SR5

SR2:

MOV A,Prm8uf

SUBB A,VisCol

JC SR3

MPV A,VisCol

JZ SR6

MOV R7,A

SJMP SR4

SR3:

MOV ' R7,J>rm8uf

SR4:

MOV A,R7

LCALL ScrlRtDsp

RET

SR5:

CLR A

MOV CtlPtrHi,A

MOV CtlPtrLo,A

SR6:

RET

;one row

; If more then one parameter this

is an error return

;Amount scrolled is equal to the

'small of requested colums

Vs.Vis.Col

;Scroll 'in Progress

; I f' error remove alit races of

of control

; ++

ScrolLUp:

,
Sc'rolls the display upward the nlIIlber, of columsspecified by the single'

numeric parameter. An attempt to scroll the bottom row of the display

upward beyond the bottom row'on the monitor leaves it at the bottom of the

display.

inp PrmCnt count of parameters
JB Prm8adFlg,SR5 Indicates a bad param buffer PrmBuf buffer containing the parameters

error return
CLR C

JB IIndAct Fl g, SR6 ;lIindow cannot scroll horz.

MOV A,PrmCnt , ;Zero Parameters defaul t to

JNZ SR1

33

out none

bad A,R1,R2
. ' ,

JB PrmBadFlg,SU6

34

Indicates a bad param buffer

error return

JB MsgActFlg,SU7

MOV A,PrmCnt
JNZ, 'SU1

,MOV PrmBuf,#1

SJMP SU01

SU1:

DEC A

jNZ SU6

SU01:

JB IIndActFlg,SU2

MOV R2,#6

JB AMDDIIMB it, SU7

SJMP SU3

SU2:'

MOV R2,#7

'SU3:

CLR C
:'MOV A,VisRow

t:;j I XCH A,R2
I

\J1 -SUBB' A,R2
N

JZ SU7

MOV R1,A'

MOV A,PrmBuf

CLR ~
'SUBB' A,R1

Je SU4
MOV A,R1

SJMP SU5

SU4:
MOV A,PrmBuf

SUS:

Lt;ALL ScrLUpDsp,

SJMP SU7

SU6:
CLR A

MOV CtlPtrHi ,J(

MOV CtlPtrLo,A

SU7:

RET

lit

35

'; If message acti,ve vert scroll

nO,t a II Owed'
; If no parameter, default the

one row

;If more than'One parameter this

is an error retl.lrn

,; If window is active maxinun

scroll value is 7

or background max is 6

;Ifirt c~ressedmode scroli is

nOt allo~

;The' current allowed is maxinun

_VisCut

save max to move for later

;Request amoun.t to scroll

;Move either requested amount or

max inun a II owed

; If requested is less then

allowed do that many

Scroll in progress

we're done

;If an error clear history ptr

. ;Done

CharB l i nkRate:

............ _-- ------
'Selects the rate and duty cycle for characters dispalyed with the bl ink

attribute

Parameters
---- --.--
o
11

12

20

21

22

23

inp

out

bad

PrmCnt

PrmBuf

none

A,R1,R2

Meaning,

Initial bl ink, fastest , 25/75 cycle

Bl ink SO/50 cycle

Blink 25/75 cy~le
, Fastest· bl ink rate

Fast blink ,rate

Slow bl ink rate

Slciwest blink rate

count of parameters

buffer containing the parameters .1:'

,, .. .

JB PrmBadFlg,CBR9

JB PrnfolaxFlg,CBR9

MOV R1,#PrmBuf

MOV A,Pn1ICnt

JNZ CBRO

MOV QR1,A

INC A
CBRO:

'!O" R2,A

CBR1:

CJNE iilR1,#OO,CBR2

SETB ChdBit

CLR ChbBit1

CLR ChbBitO

SJMP CBR8

CBR2:

CJNE ,iilR1,#11,CBR3

SETB ChdBit
SJMP ,CBR8'

36

I ndi cates a bad param Il!Iffer'

error return

Indicates too many parameters

error return

initial type

Bl ink SO/50

t:j

I I
\J1
w

CBR3:

CJNE @Rl,#12,CBR4

ClR ChdBit

SJMP CBR8

CBR4:

CJNE @Rl,#20,cElR5

ClR- ChbBitl

ClR ChbBitO

SJMP CBR8

CBR5:

CJNE @Rl,#2l,CBR6

ClR ChbBitl

SETB ChbBitO

SJMP CBR8

CBR6:

CJNE @Rl,#22,CBR7

SETB ChbBitl

ClR ChbBitO

SJMP CBR8

CBR7:

CJNE @Rl,#23,CBR8

SETB ChbBitl

SETB ChbBitO

CBR8:

INC Rl

DJNZ R2,CBRl

lCAll ChgBlnkSpd

SJMP CBR10

CBR9:

ClR A

HOV CtlPtrHi ,A

MOV CtlPtrlo,A

CBR10:

RET

Bl ink 25175

Fastest rate

Fast rate

Slow rate

Slowest rate

I f an error is detected remove

all traces of this control

; ++

loadFontCeLl:
. -, ~

loads a cell of the character generator RAM at the location, and with the

pattern, specified in the parameters. The first parameter is the cell

address (0·255), the second is the starting sl ice (counting downward from

zero) and the remaining parameters are the patterns for eachsl ice working

37

downward. Unspecified slices are loaded with zeroes. After checking fo

parameter val idity this routine waits unti l all smooth scroll ing is finished

before beginning its work. The Display lIidth Mode (AMDDIIM) determines which

type of font (normal or compressed) is to be loaded.
. . , .. .

JB PrmBadFlg,lFC5

MOV A,PrmCnt

JNZ lFCl

MOV PrmBuf ,#0

SJMP lFC2

lFCl :

DEC A

JNZ lFC3

lFC2:

MOV PrmBuf+l,#O

MOV PrmCnt,#2

SJMP tFC4

lFC3:

ClR C

SUBB A,#17

JNC LFC5

lFC4:

CJNE A,#' ',LFC6

LFC5:

CLR A

HOV CtlPtrHi,A

MOV CtlPtrLo,A

RET

lFC6:

MOV A,PrmBuf+l

ADD A,PrmCnt

Cll!> C

SUBB A,#18

JNC LFC5

LCAll HidCsr

JB VrtScrlFlg,$

JB HrzScrlFlg,$

CLR A

JNB AMDDIIMBit,lFC7

INC A

38

I ndi cates a bad param buffer

error return

t::I
I

\J1
-I>-

LFC7:

LCALL IIrFntCel

LCALL ShwCsr

RET

; ++

SelActiveDisp:
, .. .

Selects the currently active display, background, window, or message.

attribute

Parameters
-_ .. _ ... _- ..

0

2

inp PrmCnt

PrmBuf

out none

bad A,Rl,R2,R4,R5

Meaning

makes the background display active

makes the message display active·

makes the window display active

count of parameters
buffer containing the parameters

; .. . '

JNB

LJMP
SAD1:

JNB

LJMP

SAD2:

JB

JB

MOV
HOV

IN,Z

MOV

mc
SAD2a:

MOV

SAD3:
CJNE

SJMP.

SA03a:
LJMP

PrmBadF 19,5AOl

SA019

Prnt4axFlg,SA02

SAO 19

VrtScrlFlg,$

HrzScrlFlg,$

Rl,#PrmBuf

A,PrmCnt

SAD2a

IilRl,A

A

R2,A

IilR1,#OOH,SAD3a

SA03b

SA09

39

; J ndi cates a bad param buffer
.,> error return

Indicates too many parameters

error return

Make the background display

active

If Background is already active

do noth i ng further

If the wnd window was active

move its dsp. vars. out

If the R1Sg window was active

move itsdsp. vars. out

indicate current active statl!
with internal flags

Update non-moving display vars

Set page address to extr" row
Bui ld offset into RCB at

next row pointer

Use· RO as index poi nter

Next row pointer = ExtRow

Store it in RCB

Get index to offset

Move current rcb offset
Store it

INC RO Set hidden count CLR A
CLR A MOVX iilRO,A Extra RCB is now rebuil t
Hov)(GlRO,A Store hidden count LJHP SAD18
INC RO Index to vi"sible count.
INC A Set visible count to 1 ' SAD9:

MOVX GlRO,A Store it CJNE GlR1,#02,SAD13
INC RO HOV R5,#WndVarBuf .SR.PAGE Hake the wnd window attive
HOV A,#OBOH Continue bit set HOV R6,#WndVarBuf .AN .OFST
HOVX GlRO,A JB MsgActFlg,SAD11
INC RO JNB WndActFlg,SAD10 If wnd window is already active
CLR A do noth i ng further
MOVX iilRO,A Store always zero byte LJHP SAD18

, INC RO Index to chr ptr page SAD10:
NOV A,flBgdFncChrO.SR.PAGE Set to current function char NOV R3,ilBgdVarBuf .SR. PAGE I f the background was act i ve
MOVX iilRO,A Store it in RCB NOV R4,flBgdVarBuf .AN.OFST move its dsp. vars. out
INC RO Index to chr ptr offset SJMP SAD12
MOV A,flBgdFncChrO .AN .OFST Offset of funct i on character SAD11:
MOVX iilRO,A Stored NOV R3 ,lIMsgVarBuf • SR. PAGE If the msg window was active
IIlC RO NOV R4, IIMsgVarBuf .AN .OFST move its dsp. vars. out

tj
CLR A SAD12:

I Hov)(iiIR.o,A Store eq>ty word in RCB LCALL BldTnd!cb
VI
VI INC RO ' NOV Dspllid,#40 Update non-moving display vars

HOVX iilRO,A ' NOV DspHgt,#7
INC RO Index to atr page NOV A,lIndCol
NOV A,tlBgdFncAtrO.SR.PAGE Bui ld Attribute page SUSB A,VisCol
MOVX iilRO,A Store page to atr INC A
INC RO Index to atr offset NOV ColAdd,A
NOV A,flBgdFncAtrO.AN.OFST NOV RowAdd,#6
MOVX GlRO,A Store it NOV RcbOff ,#llndRCBO.AN.OFST
INC itO MQV Chraff ,#llndChrBufO.AN.OFST
NOV A,VisCol Length of hidden 2nd seg=VisCol NOV Atraff ,illlndAtrBufO.AN.OFST

MOVX iilRO,A Store it " LCALL SWpVar
INC RO Index to visible 2nd se900flt CLR HsgActFlg Indicate current active state
SETB, C, SETB ~ctFlg by internal flags
SUBB A,lIndCol ViSible count = lIndCol-VisCol HOV P2,ExtRow Set page address to ext ra row
CPL A lie get negat i ve so coq>l ement NOV A,RcbOff Build offset into RCB at
MOVX GlRO,A

.../
Store it ADD A,ftRCB_RowPag next row poi nter

INC RO Index to continue bit NOV RO,A Use RO as index pointer
NOV A,#80H Set cont i nue bi t 0 rest of byte HOV A, ExtRow Next row pointer = ExtRow
MOVX iilRO,A Store it MOVX. iilRO,A Store it in RCB
INC RO and 1 eq>ty byte INC RO Get fndex to offset

HOV" A,RebOff Hove current rcb offset

'41 42

MOVX 6lRO,A Store it SAD13:

INC RO Set hidden count CJNE 6lRl,#OIH,SADI8

ClR A MOV RS, #MsgVarBuf • SR. PAGE Malee the Msg window active

MOVX 6lRO,A Store hidden count MOV R6, #MsgVarBuf • AN .OFST

INC - RO Index to visible count JB IIndAct Fl g, SAD 14

MOV A,#40 Visible count is wnd width JB MsgActFlg,SADl8 If Msg window already active

MOVX 6lRO,A Store it do noth i ng further

INC RO MOV R3 ,#BgdVarBuf • SR. PAGE If background was act i ve

ClR A No continue bit MOV_ R4,#BgdVarBuf .AN .OFST move its dsp. vars. out

MOVX 6lRO,A SJMP SADIS

INC RO SADI4:

ClR A MOV R3,#llndVarBuf .SR.PAGE If lind window was active

MOVX 6lRO,A Store always zero byte -MOV R4,#llndVarBuf .AN.OFST move its asp. vars. out

INC RO Index to chr ptr page LCAll BldTrnlcb

MOV A,ExtRow Set to char buffer SAD1S: wi II be updated

MOVX 6lRO,A Store it in RCB JB AMDDIIMB it, SAD 16

INC RO Index to chr ptr offset HOY Dspllid,#80 Update non'moving display vars

MOV A ,#IIndCh rBufO .AN. OFST Offset of character buffer SJMP SAD17

MOVX 6lRO,A Stored SADI6:

t:1 INC RO MOV Dspllid.#120
I SADI7: VI CLR A
0\

MOVX 6lRO.A Store empty word in RCB MOV DspHgt.#OI

INC RO MOV ColAdd,#01

MOYX .61RO,A JNB AMDDIIMB it, SAD 17a

INC RO Index to atr page MOV RowAdd,#30

MOV A,ExtRow Bui ld Attribute page SJMP SADl1b

SETB ACC.4 SADI7a:

MOVX 6lRO.A Store page to atr MOV RowAdd,#24

INC RO Index to atr offset SADI7b:

MOV A, #lindA trBufO .AN .OFST MOV RcbOff ,#BgdRCBO.AN .OFST

MOVX 6lRO.A Store it . MOV Ch rOff ,#BgdCh rBufO. AN .OFST

INC RO MOV AtrOff ,#BgdAtrBufO.AN.OFST

CLR A LCALL SwpVar

MOVX 6lRO,A Store empty word in RCB CLR IIndActFlg Indicate current active state
--

INC RO SETB MsgActFlg with internal flags

MOVX 6lRO.A- SAD18:

INC RO Index to atr page INC R1 Test if we are at the end

HOV A.#NrmRRB.SR.PAGE Page -of normal RRB DEC R2 of our parameters

MOVX GlRO,A Store it HOV A.R2

INC RO JZ SAD20 If true get out

MOV A,#NrmRRB.AN.OFST Offset of norma I RRB LJMI' SAD3 Else proceed with the next

MOVX 6lRO.A Extra RCB is now rebuil t

SJMP SAD18

43 44

t:I
I

VI

"

SAD19:

CLR

MOV
MOV

SAD20:

A

CtlPtrHi ,~A
CtlPtrLo,A

LCALL PlcCsr

RET

•

If an error was detected
remove all traces of this

control

Relocate our cursor

; +++++++++++++++++++++++++++++~+++

SelCursorAppear:

I·· ········ .. ·································· .. ···
Selects the type and appearance of the cursor_

Parameters
................ _ ..
0

1
2

3

4
S

10

11

12

20

21

22

23

inp PrmCnt

PrmBuf
out none

btJd A,RO,R2,R4,RS,R6

Meaning

Steady reversed full block, initial

Reversed full block

Reversed block half of character cell

Sol id block hal f character cell

Underscore
Th i ck underscore

Steady, non-bl inking

Bl ink SO/50 cycle

Blink 2S/74 cycle

Fastest bl ink

Fast bl ink

Slow bl ink
Slowest bl ink

count of parameters
buffer containing the parameters

I···

JNB PrmBadFlg,SCAl

LJMP SCA20

SCAl :

JNB PrntlaxFlg, SCA2

. LJMP SCA20

"~5

I ndi cates a bad param buffer

; - error return

I ndi cates too many parameters

error return

SCA2:

MOV RO,#PrmBuf
MOV A,PrmCnt
JNZ SCA2a

MOV iilRO,A

INC A
SCA2a:

MOV R6,A
SCA3:

CJNE GlRO ,#00, SCA4 Initial cursor

CLR CxybeBit

LCALL ChgBlnkSpd

MOV RS,#06H

MOV CsrSiz,#OODH

JNB AMDDWMB it, SCA9

MOV CsrSiz,#OOAH

SJMP SCA9
SCA4:

CJNE GlRO,#Ol,SCAS Reversed full block

MOV RS,#006H

MOV CsrSiz,#OODH

JNB AMDDWMB it, SCA9
MOV CsrSiz,#OOAH
SJMP SCA9

SCAS:

CJNE GlRO,#02,SCA6 Reversed hal f block

HOV RS,#06H

MOV CsrSiz,#06AH

JNB AMDDWMB it, SCA9

MOV CsrSi z,#OS8H
SJMP SCA9

SCA6:

CJNE GlRO,#03,SCA7 Solid half block

MOV RS,#04H
MOV CsrSiz,#06AH

JNB AMDDWMBit,SCA9

MOV "CsrS i z, #058H

SJMP SCA9
SCA7:

CJNE GlRO,#04,SCA8 Underscore
MOV RS,#04H
MOV ~ CsrSi z,#OCCH
JNB AMDDWMB it, SCA9

46

MOV , CsrSiz,#OAAH

SJMP SCA9

SCA8:
CJNE aRO,#05 ,SCAI 0 Th i ck inferscore

·MOV R5,#04H

MOV CsrSiz,#OBCH
JNB AMDDWMB it, SCA9
MOV CsrSiz,#09AH

SCA9:·
LCALL ChgCsrSiz
LCALL ChgCsrTyp'

·SJMP SCAI8

sCAIO:
CJNE GlRO,#IO,SCAII S"teady non-bl inking

CLR CxybeBit

SJMP SCAIl
SCAlI:

CJNE IilRO,#II,SCAI2 BI ink SO/50 cycle
t;j SETB CXYbeBit
I

V1 SETB CudBit
00

SJMP SCAIl

SCAI2:
CJNE IilRO,#12,SCAI3 BI ink 25/75 cycle

SETB CxybeBit

CLR CudBit

SJMP SCAIl
SCAI3:

CJNE 1ilR0,#20,SCAI4 Fastest rate

CLR CUbBitl
CLR CubBitO
SETB CxybeBit

SJMP SCAIl
SCAI4:

CJNE GlRO,#21,SCAI5 Fast rate

CLR CubBitl •
·SETB CubBitO
SETB CxybeBit
SJMP SCAIl

SCAI5:
CJNE IilRO,#22,SCAI6 Slow rate

SETB CubBitl

'+7

CLR CubBitO
SETB CxybeBit
SJMP SCAll

SCAI6:
CJNE ·GlRO,#23,SCAI8 ;. S(owest rate
SETB CubBitl
SETB CubBitO
SETB CxybeBit

SCAll:

LCALL ChgBlnkSpd
seA18:

INC RO
DEC' R6
MOV A,R6
JZ SCA21
LJMP SCA3

SCA20:
CLR A
MOV CtlPtrHi,A
MOV CtlPtrLo,A

SCA2I:
RET

;++
SmoothScrlRate:

Selects the rate at which smooth scroll ing occurs.

Parameters

o

2

3

4
5.

6
1

8
12
13

Meaning

1 scan line / pixel / fr~
I scan line / pixel/frame
2 scan line / pixel/frame
3 scan line / pixel/frame
4 scan line / pixel I frame
5 scan line / pixel/frame
6 scan line / pixel/frame
1 scan line 7 pixel/frame

8 scan line / pixel/frame
scan line / pixel I 2 frames

1 scan line / pixel / 3 frames

'+8

t::I
I

lJ1
\0

/

14 scan line, pixel , 4 frames

IS scan line' pixel ,'S frames
;. 16 scan line, pixe.1 , 6 ·frames

17 scan line, pixel, 7 frames

18 scan line, pixel' 8 frames

inp PrmCnt Ccx.lt of parameters

PnnBuf. buffer containing the parameters

out none
bad A,Rl,R2,R3

,

JB PnnBadFlg,SSR6

JB PrnflaxFlg,SSR6

MOV Rl,#PnnBuf

MOV A,PrmCnt

JNZ SSRO

MOV IiIR1,A

INC A

SSRO:

MOV R2,A
SSR1: .

MOV A,IiIRl

JZ SSR4

MOV R3,A
ClR C

SUBB A,tI09
JNC SSR3

MOV A,R3

DEC A

SJMP SSR4·

SSR3:

MOV A,R3

ClR C

SUBB A,#12

JC SSRS

MOV A,R3

SUBB A,fI3.
SSR4:

SIIAP A
RR A

.. 9

Indicates a bad param buffer
error return

Indi cates too many parameters

error return

work on current parameter

test if in first group of

parameters

If true adjust for calculation

Test· if between groups 9-11

If true exit

else adjust for calculation

work on hi nibble fi rst
isolate hi byte

MOV

ANl

JNZ

MOV

ANl

ORl

MOV
SSRS':

INC

DJNZ

SJMP

SSR6:

ClR

HOV

MOV

SSR7:

RET

R3,A
A,#_NT _SCRl_RAT_MASK

SSRS

A,ScrlByt

A,#_IH _SCRl_RAT_MASK

A,R3

ScrlByt,A

Rl

R2,SSRI

SSR7

A·
CtlPtrHi,A

CtlPtrlo,A

Store for' future use

Mask off unused bits

bring in scroll byte

Mask balance of byte to write'

generate combine Scrlbyt parts

return new va I ue

Continue unti I last parameter'

If an error was indicated

remove all traces of

control

;++

SelWindowVis:

Selects window ·visibl i ity.

Parameters
-- .. --- ----

0
,

inp PrmCnt

PrReuf

out none
bad Rl,R4

Meaning

make window invisible
make window visible

Ccx.lt of parameters

buffer conta i ni ng the parameters

, -00 •••

JB

JB

JB

JB

MOV

PnnBadFIg,SWVS

PrllMaxF I g, SWV8

VrtScrIFIg,$

HrzScrIFIg,$
RO ,#PnnBuf'

50

Indicates a bad param buffer

error return
'; Indicates too many parameters

error return

t:::1
I

'" 0

HOV ' A,PrmCnt

JNZ SWVO
HOV iilRO,A
INC A

SWVO:
MOV' ,R4,A

SWVl:
CJNEiilRO,#OO,SWV3 Malee window invisible if not taken

JNB IIndVi sFlg, SWV7
LCALL Hidllnd

C,LR IIndVisFlg

SJMP SIIV7

SWV3:
CJNE iilRO;#Ol,SIIV7 Make ,window visible

JB ' lIndVisF Ig,SWV7

LCALL Shwllnd '

SETB IIndVisFlg

SWV7:
INC RO

DJNZ R4,5WVl
LCALL PlcCsr

RET
SWV8:

CLR A if an error was indicated

MOV CtlPtrHi ,A remove all trl!ces of,

MOV CtlPtrLo,A this control

RET

;++++++++++++*+++++++.+++++++++++++++++++++++++++++++++++1:++++++++++.++++++++++++

SeIMesl;ageVis:
. ' , ... '!'

Selects message windoW visibl iity.

Parameters

o

inp PrmCnt

out
bad'

PrQluf

none
A;Rl,R2,R3,R4

51

Meaning

make message window invi&ible
make meS&8ge window visible

count of par8meters '
buffer' containing the parameters,

JB PrQlac!Flg,SMVll

JB Prnf4axFlg,SMVll

JB VrtScrlFlg,S

JB HrzScrlFlg,S
MOY Rl,#PrQluf

MOV A,PrmCnt
JHZ SMVl

'MOY iilRl,A
INC A

SMV1:

HOV R4,A
SMV2:

CLR EXO
CJNE iilRl,#OO,SMV5

JNII' MsgVisFlg,SMV10
MOY OPTR, #T ndjOB+IIDB _ BgnRow

JB AMDOIIMB it, SMV3
MOY A,#24
SJMP SMV4

SMV3:
MOY A,#30

SMV4:
MOVX iilDPTR;A

INC DPTR
MOVX. iilDPTR,A

CLR MsgVisFlg

MOV R2, #TndjOB. SR. PAGE

JB IIndVisFlg,SMV9

'MOV R3,#TndjOB.AN.OFST
SJMP SMV8

SMV5:
CJNE iilRl ,#01 ,SMV10
JB MSgVi&Flg,SMV10

MOV , OPTR,#TndjOB+llDB_BgnRow
JB AMDDIIMB it, SMV6
MOV A,#26
SJMP SMV7

SMV6:
MOV, 1.,#32

52

Indicates a bad Param buffer
Indicates too..many parameters

error return '

Make message window invisible

if not taken

Adjust Termination start and

end row count

if cOl1l>ressed mode

Termination Oef. Bile. Ptr

lIindow is visible if taken

Make message window visible
If msg window 'is already

showing just return

In both nonllal and ~e&&ed
mode rows' are just after

; Msg row in display

t:J
I

'"

SHV7:

HOVX GlDPTR,A

INC DPTR

HOVX GlDPTR,A

SETB HsgVisFlg

HOV R2, #MsgWDB. SR. PAGE

JB WndVi sFl 9 ,SMV9

HOV R3,#MsgWDB.AN.OFST,

SHV8:

HOV ,Rl,#TOWHrdLolnd

LCALL WrAm8052Reg

SJMP SMV10

SHV9:

HOV OPTR,#WndWDBO+WDB_NxtPag

MOV A,R2

HOVX GlDPTR,A

INC OPH

HOVX GlDPTR,A

SHYlO:

SETB EXO

INC Rl

OJNZ R4,SMV2

LCALL PlcCSr

RET

SMVll :

CLR A

HOV CtlPtrHi ,A

MOV CtlPtrLo,A

RET

Write new TOWHrdLo Ptr

If an error was indi cated

remove all traces of this

control

• ++ , ,

end of C_lIork

53,

t:I
. I

er
N

"8051"

TITLE" CALEB 0.00 System Util ities"
; ++++++,++

C_Uti I CALEB 0.00

Copyright 1985 Advanced Micro Devices, Inc.

This fi Ie contains the various system util ities used by the control routines.

NAME "System Util ities"

PROG

; ++

GLB Dl yTi IEndFrm,PlcCsr ,EraActEnd,EraBgnAct,ChgBlnkSpd,SwpVar ,ChgCsrSiz

GLB SetCelllid,ChgCsrTyp

GLB DelRow _MovOn,Del Row _MovUp, H i desr ,ShwCsr

GLB InsRow_MovOn,lnsRow_MovUp

GLB IIrAm8052Reg, RdAm8052Reg,lIrFntCel

GLB EraRow, Scr IUpDsp, ScrlDnDsp, Scr LUpNewRow,Scr lRtDsp, Scr I L tDsp

GLB SetForScr lOn, Set ForScr LUp, Scrl L tOne, ScrlRtOne, FrcEraRow

GLB SetAftScrlDn

GLB SetllndPos, NewCsr, Hallswap,BldTrmRcb,Hidllnd, Shwllnd

; ++

SKIP

INCLUDE C_MemMap

SKIP
; ++

DlyTi IEndFrm: Delay unti I end·of·frame time starts

Ensures two character row times of nearly unimpeded processing time. This

routine works with the timer 0 interrupt to wait until near the end of the

frame (28 scan lines from the bottom). During this end·of·frame time the

Am8052 is displaying information it has already fetched and needs the bus

only twice, each time to fetch only the termination row control block with

its single character and single latched attribute. Changes accompl ished

during this time will not be visible until the next frame starts (at blank
time.at the bottom of the screen). Thus, there will be no distracting

interference with the Am8052.

In:
'OUt:

JB

JNB

RET

none
none

EndFrmFlg,$

EndFrmFlg,$
Ensure we're in middle of frame

lIait for end·of·frame interrupt

Exit

; ++

FndCsrZon:
. . , .. .

Determines the type of zone (visible or invisible) containing the active

position. It also calculates the number of columns to the first column

of the next zone to the right. This value is used to speed advancing the
cursor following a si""le character input.

In: ActCol

ActRow

Out: CsrZonFlg

CsrZonCnt

Bad: A,RO,PSW

JB MsgActFlg, FCZ3

CLR C

MOV . A,ActRow
SUBB A,VisRow
JC FCZ5
JB IIndActFlg, FCZ2

JNB IIndVisFlg, FCZ2

MOV RO,A

SUBB A,IIIIND_TOP_MRG

JC FCZ3

SUBB A,IIIIND_VIS_HGT

JNC FCZl

CLR C

MOV RO,ActCol

MOV A,RO

SUBB A,VisCol

JC fCZ8

active position's column within display

active position's row within display

set if cursor is visible, cleared if invisible
di stance to next zone' ri ghtward

;skip if in message

;A = # rows down from top
of screen

; sk i P if "above" top of screen
;skip if in window

;skip if window not visible
;in background, window visible

;RO = # screen row

;A = # rows down in window
;skip if above top of window

;A = # rows down below window

;skip if below window

; in background, in window row range

2

;RO = current column'

;A = # columns right. of visible

left side
;done if left of screen

XCH A,RO ;hold visible col in RO

SUBB A,lIndCol ;A = Ii cols into window

JC FCZ9 ;done if left of window

SUBB A,#IIND_VIS_IIID ;A = # cols right of window

JC FCZ8 ; done if beneath window

HOV A,RO ;A = visible collll1l1

SJHP FCZ4 ;skip to check vs screen right

FCZ1: ; reset A for linkage

HOV A,RO ;A = screen row

FCZ2: ; check if beneath screen

SUBB A,DspHgt ;A = # rows beneath screen

JNC FCZ6 ;skip if beneath screen

; row is visible background or message

FCZ3: ;check if left of screen

CLR C

MOV A,ActCol ;A = visible column

SUBB A,VisCol

JC FCZ8 ;done if lef~ of screen

FCZ4: ; check if ri ght of screen

t:l SUBB A,Dspliid ;A = # cols right of screen
I

'" JC FCZ9 ;done if visible on screen
w

FCZ5: ;not in visible screen row

CLR C ; buffer wi dths bound zones

FCZ6:

MOV A,ActCol ;A = current coll..ll'l1

JNB IIndActFlg, FCZ7 ;skip if window is not active

;window is active
, SUBS A ,#liND _BUF _IIID ; zone extends to wi ndow end

SJHP FCZ8

FeZ7: ;window is not. active
SUBB A,#BGD_BUF _IIID ; zone extends to buffer end

FCZ8:

CLR CsrZonFlg icursor is not visible

SJMP FCZ12
FCZ9;

JNB MsgActHg, FCZ10 ;if msg is active check if
JNB MsgVisFlg,FCZ8 visible, adjust CsrZonFlg

accordingly

FCZ10:

JNB IIndActFlg, FCZll do the same for the window

JNB IIndVisFlg, FCZ8

FCZ11 :

SETB CsrZonFlg ;cursor is visible
FCZ12:

CPL A ; -A is zone remaining count

INC A

MOV CsrZonCnt,A

RET

; ++++++++++++++++++++++++++++.f:+++

NewCsr:

Assigns the new active position from the given location and updates the

current row page address_

In: R2 new active row position

R3 new active collll1l1 position

OUt: ActCol active collll1l1 position

ActRow active row pos'ition

CurRow act i ve row page address

Bad: A,P2,RO,R1,PSII

NOTE: This routine must be located inmediately before "plcCsr"_

CLR C

MOV A,R2

JNZ NC1

HOV A,BgnRow

SJHP NC7

NC1:

SUBB A,ActRow

JZ NC8

JNC

HOV

HOV

SJMP

NC2:

HOV

NC3:

HOV

MOV

ADD

MOV

NC2

P2,BgnRow

A,R2

NC3

P2,CurRow

R1,A

A,RcbOff

A,#RCB_RowPag

RO,A
4'

Ready for compari son below

Check new active row

JUI1' if not at first row

Get page address of fi rst row

and go assign new position

Determine direction of movement

Compare new row to old

JUI1' if they are the same

,; JUI1' if new is below old

Start at first row if new is

above old and count down to

new row

Count difference from old row

Set up for search

Save number of rows to skip

Get offset into active RCBs

of next RCB' s page address

ready for search

t::I
I

'" .po

NC4:, For each row skipped

CJNE A,BtmRow,NCS Jump if row is not bottom vi s

MOV A,RemRow Set for remaining rows

S~MP NC6 and cont i nue search

NCS:

MOv)(A,@RO Get next row page address

NC6:

MOV P2,A Point to row

DJNZ R1,NC4 Loop if more to skip

NC7: Assign new position

MOV CurRow,A ; New current row page address

MOV ActRow,R2 ; New ~ctive row position

NC8: New row same as 0 ld

MOV ActCol,R3 ; New active colLKlV1 position

NOTE: This routine falls through to "PlcCsr" below.
;.a _____ .. ____ . _________ . ______________________________ -----------.----------- ...

PlcCsr:

i·· ······························ .. ······ .. ···········
Sets the cursor in the main definition block. The cursor is shown (enabled)

or hidden (disabled) depending on the type of zone, (visible or invisible)

containing the active position. However, nothing is done if a smooth scroll

operation 'is in progress.

In: ActCol

ActRow

Out: BgdMDBO

BgdMDB1

active poSition's column within display

active position's row within display

main definition blocks modified

(see also FndCsrZon)

Bad: A,DPTR,RO,R1,R2,R3,PSII

NOTE: This routine IWSt immediately follow "NewCsr" and immediately

precede "ShwCsr", with "HidCs-r" immediately after that.

i .. .;, ~ _"' -." .. ~

JB VrtScr1Flg,PC1

JNB HrzScrlFlg,PC2

PC1:

RET

PC2:

LCALL FndCsrZon

JNB CsrZonFlg,HidCsr

;exit if vert smooth scroll

;skip if, not horz smooth scroll

;need to recalculate zone

; jump if cursor not visible

MOV DPH i#BgdMDBO. SR. PAGE ;set page for main blocks

MOV RO ,#BgdMDBO .AN .OFST +MDB _ Cux ;RO -> cursor x, block 0

MOV R1,#8gdMDB1_AN.OFST+MDB_Cux ;R1 -> cursor x, block 1

CLR C

MOV A,ActCol ;A = # columns right of visible

SUBB A,VisCol left margin

ADD A,ColAdd iA = screen collllll
MOV DPL,RO

MOv)(@OPTR,A ;set the x position of cursor

MOV DPL,R1

MOv)(@OPTR,A

INC RO ; advance ptrs to cursor y

INC R1

MOV A,ActRow ;A = # rows down from top

SUBB A,VisRow of screen

ADD A,RowAdd

MOV DPL,RO

MOVX @OPTR,A ;set the y position of cu~sor

HOV DPL,R1

MOv)(@OPTR,A

NOTf.< This routine falls through to "ShwCsr" below.

ShwCsr:

, .. ~
'Sets up for, but defers, enabl ing the AmBOS2X-Y cursor.

In:

OUt:

(none)

(none)

Bad: (none)

NOTE: This routine IWst ilrmediately follow "PlcCsr".

JB VrtScr1Flg,SC1

JB HrzScrlFlg,SC1

SEJB CsrShwFl g

SC1:

RET

Exit if vertical or

horz smooth scroll going on

Defer until vertical retrace

'i ·Exit
---------------------_ .. _------------------------

t:I
I
0\
Vt,

HidCsr: Remove cursor for hidden positions

, ~ ~
Disables the Am8052 x·y cursor so that the active position is not marked.

In: (none)

Out: (none)

Bad: A,DPTR,Rl,R2,R3

NOTE: This routine must illllK!diately follow "ShwCsr".

, .. ~

CLR CsrShwFl 9

CLR CsrSetFlg'

MOV Rl,#ModReg2Ind

LCALL RdAm8052Reg

MOV A,R2

CLR ACC.?

MOV R2,A

LCALL IIrAm8052Reg

RET

Ensure no cursor

Need Mode Reg i ster 2

read from Am8052

Get high byte and

reset CUE bi t 'to di sable the

X·Y cursor then put it back

and write it to Am8052

Exit

; +++t++

EraActEnd:

, ... ,
Erases from, and including, the active position through the end of the

active row. The erased positions will contain spaces with the current

attribute.

, .. - '

MOV A,CurRow

MOV P2,A

JNB IIndActFlg,EAEl rest if in window or Background

SETB ACC.4 Buildwindow attribute page ptr

MOV R5,A

MOV A,#40 max count for window row

SJMP EAE2

EAE1:

SETB ACC.5 Bui ld Bgd attribute page ptr

MOV R5,A

MOV A,#128 Max count for background row

EAE2:

CLR C

SUBB A,ActCol

MOV R6,A

MOV R7,A

MOV A,ChrOff

ADD A,ActCol

MOV RO,A

MOV A,#' I

EAE3:

MOVX iilRO,A

INC RO

DJNZ R6,EAE3

HOV P2,R5

MOV A,AtrOff

ADD A,ActCol

ADD A,ActCol

INC A

MOV RO,A

MOV A,CurAtr

EAE4:

HOVX IilRO,A

INC RO

INC RO

DJNZ R7,EAE4

MOV P2,#BgdActCntBuf .SR.PAGE

MOV A,R5

JNB MsgActF 19,EAE5

MOV RO, #MsgActCnt • AN .OFST

SJMP EAE8

EAE5:

JNB IIndActFlg,EAE6

MOV RO,#IIndActCntl\uf .AN .OFST
ANL \ A,#OOFH

SJMP EAE7

EAE6:

MOV RO,#BgdActCntBuf .AN.OFST

ANL A,#OlFH

EAE7:

AOD A,RO

MOV RO,A

EAE8:

MOVX A,iilRO

CLR C

SUBB A,ActCol

t:j
I

'" '"

JC EAE9

MOV A,Acteol

MOVX @RO,A

EAE9:

RET

; :++

EraBgnAct:

; a .. ,,' -..... "

Erase from, and including, the first position in the active row through the

active position. The erased positions wi II cO()tain spaces with the current

attribute.

; ": .. "

MOV A,CurRow

MOV P2,A

JNB '\lr\dActFlg,EBA1

SETB ACC.4

SJMP EBAZ

EBA1 :

SETB ACC.5

EBA2:

MOV R5,A

MOV A,ActCol

INC A

MOV R6,A

MOV R7,A

MOV RO,ChrOff

MOV A,ii t

EBA3:

MOVX @RO,A

INC RO

DJNZ 'R6,EBA3

MOV P2,R5

MOV RO,AtrOff

INC RO

MOV A,CurAtr

EBE4:

MOVX @RO,A

INC RO

INC- , RO

DJNZ R7,EilE4

9

MOV P2 ,#BgdActCntBuf • SR. PAGE

MOV A,R5

JNB MsgActF 19, EBE5

MOV RO, #MsgActCnt .AN. OFST

SJMP EBE8

EBE5:

JNB, \lndActFlg,EBE6

MOV RO,#IIndActCntBuf .AN.OFST

ANL A,#OOFH

SJMP EBE7

EBE6:

MOV RO,#BgdActCntBuf .AN.OFST

ANL A,#01FH

EBE7:

ADD A,RO

MOV RO,A

EBE8:

MOVX A,@RO

SETB C

SUBS A,ActCol

JNC EBE9

CLR A

MOVX @RO,A

ESE9:

RET

; ++

FrcEraRow:

, " .. "
Forces an entire erasure of a row for Erase In Display or Erase In Line.

NOTE: This routine must inmediately precede "EraRow".

MOV R6,A

MOV DPH ,#BgdActCntBuf • SR. PAGE

JNB MsgActFlg,FER1

MOV DPL ,#MsgActCnt .AN .OFST

MOV R7,#128

SJMP FER4

FER1 :

JNB \lndActFlg, FER2

MOV DPL,#IIndActCntBuf .AN.OFST

10

t:I
I
a....,

MOV R7,#40

SJMP FER3

FER2.:

MOV DPL ,#BgdActCntBuf .AN. OFST

HOV R7,#128

FER3:

ANL A,#OlFH

ADD A,DPL

MOV DPL,A

FER4:

MOV A;R7

MOVX iilDPTR,A

MOV A,R6

NOTE: This routine falls through to "EraRow" below.

EraRow:

;

:

Erases the given row to a blank conditfon (i.e. all spaces with the current

attributes).

.In: A

OUt:

Bad: A,DPTR,P2,RO,R4,R6,R7

page address of row

active count update

, .. .

MOV P2·,A . ; put page addres.s in ptr

JNB MsgActFlg,ERl ;skip if not msg row

; message row

SETB ACC.5 ;R2 = attribute page

1010)' R4,A

MOV DPTR,#MsgActCnt ;ptr to active char count

SJMP ER4 ; do the erase

ERl : ;check for window

MOV R4,A ; put character page in R2

JNB IIndActFlg,ER2 ;skip if not in window

;window row

SETB ACC.4 ;A = attribute page

MOV DPTR. #IIndActCntBuf ;ptr to active character counts

SJMP ER3

1 1

ER2: ;must be background

SETB ACC.5 ;A = attribute page

MOV DPTR, #BgdActCntBuf ;ptr to active character counts

ER3:

XCH A,R4 ;put attrib page in R2

CLR ACC.7 ;get row number in A

ADD A,DPL ; index DPTR to correct count

MOV DPL,A for this row

ER4:

MOVX A,OOPTR ; fetch the act i ve character cnt

JZ ER7 ;skip if none

MOV R6,A ;R6 = R7 = Active count

HOV R7,A ;(one for char and one for attr)

CLR A ;Active count set to 0

MOVX OOPTR,A

MOV RO,ChrOff ;RO = offset of fi rst char

MOV A,#u II ;A = blank character

ER5: ;blank characters loop

MOVX iilRO,A ;blank one character

INC RO ;next character

DJNZ R6,ER5

;done with character blanking

MOV P2,R4 ;attribute page selected

HOV RO,AtrOff ;attribute offset in RO

INC RO ;select lower attribute byte

MOV A,CurAtr ;current attributes

ER6:

MOVX iilRO,A ;set lower attribute byte

INC RO ;next attribute

INC RO

DJNZ R7,ER6

;done with attribute clear

ER7:

RET

; ++

Hidllnd:

Hides the window if window is visible, if the message window is visible

it maintains its visibl i ity.

Bad: Rl,R2,R3

12

t;:j
I
~
00

JB MsgVisFlg;HlI1

MOV R2. #T rmllDB. SR. PAGE

MOV R3,#TrmllDB;AN.OFST

SJMP HII2

HII1 :

MOVR2,#MsgIIDB. SR .PAGE

MOV R3,#MsgIIDB.AN.OFSl

H1I2:

MOV R1,#TOIIHrdLolnd

LCALL IIrAmB052Reg

RET

; ++":+++++++++++++++++++++++

ShWllnd:

; "-" ... ~ ,
Makes the window visible, if the messa~e window is visible it is maintained.

Bad: A,OPTR,R1,R2,R3

; _ - .. .

JB MsgVisFlg,SlI1

MOV R2,#TrmllDB .SR .PAGE

MOV R3,#TrmllDB.AN .OFST

SJMP SII2

SII1,

MOV R2,#MsgIIDB .SR.PAGE

MOV R3 ,#MsgIIDB.AN .OFST,

S1I2:

,MOV DPTR, #IIndllDBO+IIDB _ NxtPag

MOV A,R2

CLR EXO

MOVX @QPTR,A

,INC DPTR

MOY A,R3

MOv)(@DPTR,A

INC DPH

MOv)(@DPTR,A

DEC DPL

MOV A,R2

MOVX CilDPTR,A

SETB EXO

JB CurIlDBFlg,SII3

MOV R2,#IIndIlDBO. SR • PAGE

13

MOV R3,#IIndllDBO.AN.OFST

SJMP 5114

S1I3:

MOV R2,#IIndllDB1.SR.PAGE

MOV R3,#IIndliDB1.AN.OFST

S1I4:

MOV R1,#TOIIHrdLolnd

LCALL IIrAmB052Reg

S1/5:

RET

; +++~++++++++++++++++++++++++++

BldTrmRcb:

I····· .. · .. ·· .. ············· .. · .. ··········· .. · .. ·· .. ······ .. ··
IIrites a-new termination row control block when activating a different

display.

Bad: P2,A,RO

, .. ~

JNB MsgActFlg,BTR1

MOV DPTR,#8gdVarBuf+(ExtRow-CurAtr)

MOv)(A,@DPTR

MOV TrmRow,A

SJMP BTR2

BTR1:

MOV TrmRow, ExtRow

BTR2:

MOV TrnOff ,RcbOff

MOV P2, TrmRow IIhen the background is to be

MOV RO,RcbOff active it must have a

MOV A,#80H

MOVX iilRO,A properly initialized Term.

INC RO this will be the lIindow dsp

INC RO ExtRow.

MOV A, TrmRow Termination RCBs point 1:0

MOv)(CilRO,A themselves, with a segment

count of one, a hidden

INC RO count of zero, and a visible

MOV A, TrnOff count of one.

MOv)(CilRO,A

INC RO

CLR A

14

HOVX iilRO,A MOV A, TrmRow

INC RO HOVX iilDPTR,A

INC A SETB EXO

HOVX iilRO,A JB IIndActHg,BTR3

INC RO JB MsgActFlg,BTR3

CLR A MOV A,BtmRow

HOVX iilRO,A SJMP BTR4

INC RO BTR3:

INC RO MOV DPTR,#BgdVarBuf+(BtmRow-CurAtr)

HOVX iilRO,A MOVX A,iilOPTR

INC RO BTR4:

MOVX iilRO,A HOV DPH,A

INC RO MOV DPL ,#BgdRCBO _AN _OFST+RCB _ RowPag

INC RO MOV A, TrmRow

INC RO CLR EXO

MOV A,#TrmAtr_SR_PAGE MOVX iilDPTR,A

MOVX iilRO,A INC DPTR

'INC RO MOV A, TrmOff

MOV A,#TrmAtr_AN _OFST MOVX iilDPTR,A

t:;I. MOVX iilRO,A SETB EXO
I

cr-- INC RO JB MsgActFlg,BTR5

'" CLR A JNB IIndActFlg,BTR5

MOVX iilRO,A HOV A,BtmRow

INC RO SJMP BTR6

MOVX iilRO,A BTR5:

INC RO MOV DPTR, #IIndvarBuf+(B tmRow- Cur~ t r)

MOV A,#NrmRRB_SR_PAGE MOVX A,iilDPTR

MOVX @RO,A BTR6:

lNC RO MOV DPH,A

MOV A,#NrmRRB_AN_OFST MOV DPL ,#IIndRCBO _AN _OFST+RCB_ RowPag

MOVX iilRO,A MOV A, TrmRow

MOV DPTR, #T rmllDB+\lDB _ RowPag CLR EXO

MOV A, TrmRow MOVX iilDPTR,A

CLR EXO INC DPTR

MOVX @DPTR,A HOV A, TrmOtt

INC DPTR HOVX iilDPTR,A

MOV A, TrmOff SETB EXO

MOVX iilDPTR,A RET

SETB EXO

MOV DI'TR ,#MsgRCB+RCB _Rowatt

CLR EXO

MOVX @DPTR,A

DEC DPL
15 16

t::!
I

---J
0

;++

Hal fSwap:

Copies display dependent variables to external memory

In:

Out:

Bad:

MOV·

MOV

MOV

MOV

MOV

HS1 :

MOV

MOVX

INC

INC

DJNZ

RET

R3

R4

external memory at R3:R4

P2,A,RO,R1,R2

P2,R3

A,R4

RO,A

R1,#CurAtr

R2,#(Dsplli d· CurA t r)

A,@R1

@RO,A

RO

R1

R2,HS1

Out going pointer page

Out going pointer offset

;set page register

; set externa l offset

;set internal pointer

;count of dependent var

; move one byte

;next byte

; ++-++++++++++++++++++++++++++++++++++++

SwpVar: .
Moves a set of display dependent variables to external storage

then moves in a new set of dependent variables from a another

external location.

In: R3 Out going pointer hi

R4 Out going pointer lo

R5 In coming pointer hi

R6 In coming pointer lo

Out: internal .display dependent variables

externa l memory at R3: R4

Bad: P2,RO,R7

NOTE: R1 is preserved

MOV A,R1 ;save Rl

PUSH ACC

MOV P2,R3 ; set ouput page.

MOV A,R4 ; set output offset

MOV RO,A
17

MOV Rl,#CurAtr ; set i nterna l address

MOV R7,#(Dspllid·CurAtr) ;count of variables

SV1 : ; move out loop
MOV A,@Rl imove one byte

MOVX @RO,A

INC RO ;next byte

INC R1

DJNZ R7,SV1

; done with move out

MOV P2,R5 ;set iriput page

MOV A,R6 ;set input offset

MOV RO,A

MOV R1,#CurAtr ; set i nterna l address

MOV R7,#(DSpllid·CurAtr) ;count of variables

SV2: ;move in loop

MOVX A,@RO ;move one byte

MOV @R1,A

INC RO ;next byte

INC R1

DJNZ R7,SV2

; done

POP ACC ;restore R1

MOV R1,A

RET

; ++

SetCelllid:

,
Sets the upper attribute byte for all positions thus changing the character

widths uniformly.

In: A

Out: all attributes

R1

Bad: P2,RO,R2,R3

MOV R1,A

MOV P2,#BgdAtrBufO. SR. PAGE

MOV R2,#32

SCII1 :

MOV RO,#BgdAtrBufO.AN.OFST

HOV . R3,#128

upper attribute byte

(upper byte only)

set to th i s byte

;set R1 to attribute byte

;bacground start page

;31 backgrd + msg rows

;bgrd and msg row loop point

;attribute offset

; character count

18

t:I
I

sCW4: ;bgr<tand msg char loop paint'

MOVX SRO,A ;set attribute byte

INC RO ;next attribute

INC RO

DJNZ R3,SCW4

; done wi th row

INC ,P2

DJNZ R2,SCW1 ;next row

;done wi th bgrd lind msg

MOV P2, #lIndA trBufO. SR. PAGE ;window start page

MOV R2,#15 ;window row count

SCW2: ;window row loop point
. MOV RO,#llndAtrBufO.AN .OFST ;attribute offset

MOV R3,#40 , ; character count

SCW3: ;window character loop 'point

MOVX SRO,A ;set'attribute byte

INC RO ;next attribute

INC RO

DJNZ R3,SCW3

;done with row

,~NC P2 ..
;next row DJNZ R2,SCW2

;done with window

RET

:+++H+++++++++++,+++i+t++++++++++++++

ChgBlnkSpd:

i·············;·······································
Changes the bl ink rates for the cursor and bl inking character attribute.

In: I!lnkByt new bl ink control byte

oUt: (none)

B~: P2,RO,R1.A

;

MOV A,BlnkByt

Io1OV DPTR, ilBgdMDBO+MDB. _ B l nk

MOVX iilDPTR,A

MOV ~PTR;#B9dMDB1+MDB_Blnk

MOVX &lDPTR ,A

RET

;r-eplace bl ink contr-ol

;++

19

ChgCsrSiz:

;
Trans l ates the i nterna l cursor size representat i on (i n the form of 2

nibbles) to the row redefinition block representation of two five·bit

fields stored in a 16·bit word;

In: CsrSiz var-iable defining new size

OUt: normal r-ow redefinition block cur-sor- bytes

Bad: A,P2,RO,R1,R2

; a' ~

MOV DPTR,#NrDlRB+RRB _ Cur-sH i ;set r-wo r-edef lOcation

MOV A,Csr-Siz ; R2 = C!lr-sor- end

ANL A,#OFH

MOV R2,A

MOV A,CsrSiz ;R1 = CsrSiz r-otated left 1

RL. A

MOV Rt,A

ANL A,#001H ;most sig cur-sor star-t bit

MOVX iilDPTR,A ;written in high byte

INC DPL ;next byte

MOV A,R1 ;upper- thr-ee bits of star-t in A

ANL A,#OEOH

ORL A,R2 ;cursor- end joined in

MOVX iilDPTR,A ;write lower- byte

RET

;++++++.+++

ChgCsr-Typ:

; .. "! o.o. o.o.o.o..o. •••• o.o..o. •• o. •••

Changes the. cur-sor- type bits in mode r-egister 2

In: R5

Out: Mode Register- 2·

Bad: A,Rl,R2,R3

cur-sor- ·type bits (bits 1 and 2)

bits 9 and 10 modified

,

MOV R1 ;#ModReg2Ind

LCALL RdAm8052Reg

MOV- A,R2

ANL A,#OF9H

ORL A,R5

MOV. R2,A

20

;mode register- 2 index

;high byte of mode register- 2

;keep all but bits 1 and 2
;get these from R5

;write it back

t:j
I,

N

LCALL WrAm8052Reg'

RET

• ++++++++++ +++++++++++++++++++++++++++++ ... +++++++++++++++++++++++++++++ .. ++++++
, ,-q

DelRow_MovUp:

MOV A,ExtRow

LCALL FrcEraRow

MOV A,RcbOff

ADD A,#RCB_RowPag

MOV DPL,A

MOV A,ExtRow

HOV DPH,A

CLR EXO

MOVX OlDPTR,A

INC DPL

MOV A,RcbOff

MOVX iilDPTll,A

MOV DPH,EndRow

MOVX iilDPTR,A

DEC DPL

MOV A,ExtRow
.'"""--

MOVX OOPTR,A

SETB .EXO

MOV EndRow,A

MOV A,DPH

CJNE A;BtmRoW,DRMUl

MOV, A,EndRow

MOV RemRow,A

DRMU1:

MOV A,BgnRow

CJNE A,CurRow,DRMU2

MOV ExtRow,A

MOV DPH,A

MOVX A,iilDPTR

MOV BgnRow,A

MOV CurRow,A

MOV A,Extkow

CJNE A,TopRow,DRMU5

,SJMP DRMU7

DRMU2:

MOV DPH,A

MOVX A,iilDPTR

21

; .

Erase extra row

Make extra row point to itself

Make end row point to extra row

thereby adding extra row to

end of di splay

Extra row becomes new end row

Compare old end row to bottom

visible row, jLll1P if differ

New end row

is also new remaining rows

Bottom rOW not at end of display

Start at first row of display

JLII1P if not currently at begin

New extra row is old begin row

Point to it

and get row following it

as new first row of display

and new current row

Compare old begin row to top

visible row, jLll1P if differ

Else handle non'critical cases

Cunent row not at top of display

Point to row

and find row following it

CJNE A,CurRow,DRMU4

MOV ExtRow,A

CJNE A,BtmROW,DRMU3

MOV A,RemRow

MOV BtmRow,A

MOV CurRow,A

CLR EXO

MOVX iilDPTR,A

MOV DPH,A

MOVX A,iilDPTR

MOV RemRow,A

MOV Ai TrmRow

MOVX OIOPTR,A

INC DPL

MOV • A, TrmOff

MOVX OIOPTR,A

SETB EXO

RET

DRMU3:

MOV R6,DPH

HOV DPH,A

MOVX A,OIOPTR

MOV DpH,R6

MOVX OIOPTR,A

MOV CurRow,A

MOV A, ExtRow

SJMP DRMU6

DRMU4:

CJNE A,BtmRow,DRMU2

MOV A,RemRow

CJNE A, CurRow,DRMU2

HOV ExtRow,A

MOV DPH,A

MOVX A,OIOPTR

MOV RemRow,A

RET

DRMU5:

MOVX A,OIOPTR

DRMU6:

MOV DPH,A

CJNE A, TopRow,DRMU10

22

JLII1P if not current row

Old curr. row is new extra row

JLII1P if not at btm visible row

Special case at bottom, old

remaining row to new bottom

and new current rows

Make row before bottom poi nt

to new bottom (Le. old

; remaining row) and following

row becomes new rem row

Make new bottom row point

to termination row

Exit

Current row found, not at bottom

Following row is

new current row

Change linked list to delete

Ass i gn new current row

Set up to'

scan rest of list

Current row not found yet

;.

JLII1P if not at bottom visible

Compare old remaining row

to current, jLll1P if differ

Old curr row is new extra row

Point to it

and following row

is new remaining row

Exit after special case

Adjust rest of linked list

Getfollowing'row

Point to foUowing row

JLII1P if not top visible row

DRMU7:

MOV R7,DPL

MOv)(A,CilDPTR

MOV TopRow,A

JNB IIndActFlg,DRMU8

MOV DPTR, #IIncll.iDBO+IIDB _ RowPag

MOv)(CilDPTR,A

MOV DPTR ,#llncll.iDB f+WB _RowPag

MOv)(CilDPTR,A

SJMP DRMU9

DRMU8:

MOV DPTR ,#Bgct4DBO+MDB _ RowPag

HOVX CilDPTR,A

MOV DPTR,#Bgct4DBf+MDB_RowPag

, MOv)(CilDPTR,A

DRMU9:

MOV DPH,A

MOV DPL,R7

SJMP DRMU5
t::! DRMUfO: I ...,

CJNE A,BtmRow,DRMUf1 w
MOV A,RemRow

MOV BtmRow,A

CLR EXO

MOVX CilDPTR,A

INC DPL

MOV A,RcbOff

MOVX CilDPTR ,A

MOV ,DPH,RemRoW

MOV A, TrmOff

HOv)(CilDPTR,A

DEC DPL

MOv)(A,CilDPTR

MOV RemRow,A

MOV A, TrmRow

MOv)(' CilDPTR,A

SETB EXO

RET

DRMU11 :

CJNE _A,EndRow,DRMU5

RET
23

Adjust new top visible row

and make appropri ate block

(MOB or WB) point to it

Set up 'to

scan th rough and

adjust rest of l inked list

Scanning, not at top

JlIIIP if not bottom visible row

Old remaining roW is

new bottom visible row

Make old bottom row point to

old remaining row

Make new bottom row point to

termination row

Row following old remaining row

is new remaining row

Exit

Scanning, not at top or bottom

JlIIIP if not at end row

Ex it when we get to the end

; +++:t-++++

DelRow_MovDn:

Deletes the current active row from the display and moves rows above it

downward. An erased row is inserted at the top of the display.

In:

Out:

Bad:

MOV

CurRow, BgnRow, TopRow,

BtmRow, RemRow, EndRow,

ExtRow

A,DPTR,R6,R7,PSII

A,ExtRow

LCALL FrcEraRow

HOV DPH,ExtRow

HOV A,RcbOff

ADD A.#RCB_RowPag

MOV DPL,A

MOV A,BgnRow

MOv)(OIDPTR,A

INC DPL

MOV A,RcbOff

MOv)(CilDPTR,A

DEC DPL

MOV A,DPH

MOV BgnRow,A

DRMD1 :

MOV DPH,A

MOVX A,OIDPTR

CJNE A, TopRow,DRMD4

MOV TopRow,DPH

MOV R6,A

MOY R7,DPL

MOV ' A,DPH

JNB IIndActFlg,DRMD2

MOV DPTR, #IIndllDBO+WB _ RowPag

MOv)(OIDPTR,k

MOV DPTR,#IIncll.iDB 1 +WB _RowPag

MOv)(CilDPTR,A

SJMP DRMD3

row variables

updated row variables

24

Extra row is

erased and

then its

RCB next

row field

is set so the

old beginning row

follows it

; Old extra row

becomes new beginning row

For each rOil above top visible row

Poi nt to the row

Get page of, next row

JlIIIP if next is not .top row

New top row is precedi ng row

Save next row page address and

display's offset to next row

This row is new top row

JlIIIP if not in window

Point into first window block

and set new top row

Point into second window block

and set new top row

Continue

t:I
I

" -I'-

DRMD2:

MOV DPTR,#8gdMDBO+MDB _ RowPag

MOv)(OlOPTR ,A

MOV DPTR,#8gdMDB1+MDB_RowPag

MO\tXOlOPTR,A

DRMD3:

MOV' DPH,A

MOV DPL,R7

MOV A,R6

SJMP DRMD8

DRMD4:

CJNE A, CurRow,DRMDl

SJMP DRMD11

DRMD5:

MOV DI'H;A

MOVX A,OlOPTR

CJNE A,BtmRow,DRMD8

MOV BtmRow,DPH

CJNE A,curRow,DRMD7

MOV CurRow,DPH

.MOV ExtRow,A

CJNE A,EndRow,DRMD6

MOV EndRow,DPH

MOV RemRow,DPH

DRMD6:

MOV A, TrmRow

CLR EXO

HOVX OlOPTR ,A

INC DPL

MOV A, TrmOff

MOv)(OlOPTR,A

SETB EXO

RET

DRMD7:

MOV DPH,A

HOV A,RemRow

CLR EXO

MOv)(OlOPTR,A

INC DPL

HOV A,RcbOff

MOVX OlOPTR,A

MOV RemRow,DPH
2S

Point into first bgd block

and set new top row

Point into second bgd block

and set new top row

Point to t'his row's next

row pointer again

Restore page of next row

Go check for row to delete

Still above top visible row

Loop if not row to delete

Go delete row

For each row between top. and btm vi s

Poi nt to the row

Get page of next row

Jump if next is not bottom row

New bottom row is precedi ng row

Jump if next is not row to del

New current row is precedi ng

New extra row is one to delete

Jump if next is not end row

New end row is preceding.row

New remaining row is set same

Delete old bottom row

Hake. new.

bottom row

point to

display's

termination row

Exit

New btm row (haven't found del row)

Hake

old ·bottom

row point

to old

remaining

row'
New rem row follows new btm row

MOV DPH, BtmRow Make new

MOV A, TrmOff bottom row

MOVX OlOPTR,A point to

DEC DPL display's

MOV A, TrmRow termination

MOv)(OlOPTR,A row

SETB EXO

MOV A,RemRow Resume with new rema i ni ng row.

SJMP DRMD9 and go check for row to de 1

DRMD8: 'St ill between top and btm vi s' rows

CJNE A,CurRow,DRMD5 Loop 'i f not row to delete

SJMP DRMD11 Go delete row

DRMD9: Below bottom visible row

MOV DPH,A Poi nt to the row

MOv)(A,OlOPTR Get page of next row

CJNE A,EndRow,DRMD10 Jump if next is not end row

MOV CurRow,DPH New current row is precedi ng

MOV EndRow,DPH New end row is precedi ng row

MOV ExtRow,A New extra row is one to delete

HOV A,DPH Hake end row

MOVX OlOPTR,A point to itself

RET Exit

DRHD10: St ill not to end row

CJNE A,CurRow,DRMD9 Loop if not row to delete

DRMD11: Delete row (no special updates) .

HOV CurRow,DPH New current row is precedi ng

MOV ExtRow,A New extra row is one to delete

MOV DPH;A Get

MOVX A,OlOPTR page of following row

MOV DPH,CurRow New current row poi nts to row

MOv)(OlOPTR,A after old current (deleted)

. RET Exit

; ++

InsRow_MovUp:

MOV A,ExtRow

LCALL FrcEraRow

MOV DPH, CurRow

MOV A,RcbOff

ADD A,#RCB_RowPag

MOV DPL,A
26

MOv)(A,@DPTR MOV DPH,A

MOV R6,A CJNE A, TopRow, IRMU9

INC DPL MOV R6,A

MOv)(A,@DPTR MOV R7,DPL

MOV OPH,ExtRow CJNE A,CurRow,IRMU5

MOv)(@DPTR,A MOV A,R5

DEC DPL SJMP IRMU6

MOV A,R6 IRMU5:

MOv)(@DPTR,A MOv)(A,iilDPTR

MOV R5,ExtRow IRMU6:

MOV A.BgnRow MOV TopRow,A

MOV ExtRow,A JNB WndActFlg,IRMU7

CJNE A,CurRow,IRMU3 MOV DPTR ,flllndllDBO+WDB _ RowPag

MOV CurRow,R5 MOv)(iilDPTR,A

MOV BgnRow,R5 MOV DPTR,#WndllDB1+WDB_RowPag

CJNE A, TopRow, IRMU2 MOv)(iilDPTR,A

TopRow,R5
/

IRMU8 MOV SJMP

MOV A,R5 IRMU7:

JNB WndActFlg,IRMU1 MOV DPTR,#8gcfolDBO+MDB_RowPag
t:j MOV DPTR ,#WndllDBO+WDB _ RowPag MOv)(iilDPTR,A
I

'-J MOv)(@DPTR,A MOV DPTR,#8gcfolDB1+MDB_RowPag
\J1

MOV DPTR ,flllndllDB1 +IIOB _ RowPag MOv)(iilDPTR,A

MOv)(@DPTR,A IRMU8:

RET MOV DPH,R6

MOV DPL,R7

IRMU1: MOV A,R6

MOV DPTR ,#BgdMDBO+MDB _ RowPag SJMP IRMU13

MOv)(@DPTR,A 'IRMU9:

MOV DPTR,#8gdMDB1+MDB_RowPag CJNE A,CurRow,IRMU4

MOv)(@DPTR,A SJMP lRMU17

IRMU2: IRMU10:

RET MOv)(A,@DPTR

IRMU3: MOV DPH,A

MOV DPH,A CJNE A,BtmROW,IRMU13

. MOv)(A,@DPTR CJNE A,CUrRow,IRMU11

MOV BgnRow,A MOV BtmRow,R5

MOV A,DPH CJNE A,EndRow,IRMU17

CJNE A, TopRow, IRMU4 MOV RemRoW,R5

MOV R6,A SJMP IRMU15a

HOV R7,DPL IRMU11 :

SJMP IRMU5 MOV A,RemRow

IRMU4: MOV BtmRow,A

MOVX A,@DPTR CLR EXO

27 28

MOVX OOPTR,A MOV A,RcbOff

INC DPL MOVX OOPTR,A

MOV A,RcbOff SETB EXO

MOVX OOPTRiA -RET

MOV OPH,RemRow

MOV A, TrmOff ; ++

MOVX OOPTR,A I nsRow _ MoVOn:

DEC OPL

MOVX A,OOPTR MOV A,ExtRow

MOV R6,A LCALL FrcEraRow

MOV A, TrmRow MaV 'R5,ExtRow

MOVX OOPTR,A MOV OPH,R5

SETB EXO MOV A,Rcboff

MOV A,RemRow MOV R7,A

CJNE A,CurRow,IRMU12 ADD A,#RCB_RowPag

MOV RemRow,RS MOV OPL,A

MOV CurRow,R5 MaV . A,CurRow

RET MaVX iilOPTR,A

INC OPL

t:;j IRMU12: MOV A,R7
I MOV RemRow,R6 MOVX iilOPTR;A
" '" MOV OPH,R6 DEC DPL

MOV A,R6 MOV A,BgnRow

SJMP IRMU1S CJNE A,CurRow,IRH01

IRMU13: MOV BgnRow,RS

CJNE A,CurRow,IRMU10 SJMP IRM04

SJMP IRMU17 IRH01:

IRMU14: MOV DPH,A

MOVX A,iilOPTR MOVX A,iilOPTR

MOV OPH,A CJNE A,CurRow,IRM03

IRMU1S: MOV R6,A

CJNE A,EndRow,IRMU16 MaV A,R5

IRMU1Sa: MOVX iilOPTR,A

MOV EndRow;RS SJMP IRH04

SJMP IRMU17 IRMD3:

IRMU16: CJNE A,BtmRow,IRM01

CJNE A,CurRow,IRMU14 MOV A,RemRow

IRMU17: CJNE A,CurRow,IRM01

MOV A,RS . MOV RemRow,RS

MOV CurRow,A IRH04:

ClR EXO MOV Cur.Row,RS

MaVX @OPTR,A MOV A,RS

INC DPTR

29 30

IRMD5:

MOV OPH,A
, MOv)(A,@OPTR

CJNE A~ TopRow, IRM08

MOV TopRow,OPH

MOV R6,A

MOV R7,OPL

MOV A,OPH

JNB WndAct F l g, I RM06

MOV OPTR,#WndWDBO+IIDB_RowPag

MOVX IilDPTR,A

MOV OPTR ,#WndllDB1 +IIDB _ RowPag

MOv)(IilDPTR,A

SJMP IRM07

IRM06,
!

MOV OPTR,#BgdMOBO+MDB_RowPag

MOVX IilDPTR,A
, MOV OPTR ,#BgdMOB 1 +MOB _ RowPag

MOVX IilDPTR,A

t:I IRM07:
I

MOV OPH,A " " MOV OPL,R7

MOV A,R6

SJMP IRM05

I Rfo1D8:

CJNE A,BtmRow,IRM012

IRM09:

MOY BtmRow,DPH

CJNE A,EndRow,IRM011

IRMD10:

MOV RemRow,OPH

MOV EndR9I/,DPH

MOV ExtRow,A

MOV A, TrmRow

CLR EXO

MOVX IilDPTR,A

INC OPL

MOV A, TroOff

MOv)(IilDPTR,A

SETB EXO

RET

31

IRMD11:

MOV OPH,A

MOV A,ReOJRow

CLR EXO

MOv)(IilDPTR,A

INC DPL

MOV A,RcbOff

MOv)(IilDPTR,A

MOV RemRow,OPH

MOV OPH,BtmRow

MOV A, TroOff

MOv)(IilDPTR,A

DEC DPL

MOV A, TrmRow

MOv)(IilDPTR,A

SETS EXO

MOV DPH,RemRow

MOv)(A,IiIDPTR

IRMD12:

CJNE A,EndRow,IRM05

IRMD13:

MOV EndRoW,OPH

MOV ExtRow,A

MOV A,DPH

MOv)(IilDPTR,A

RET

; ++

ScrLUpOsp:

ScrQ.ll the display upward the given nunber of rows.

In: A

Out: VrtScrlFlg

swb6it

SudBit

VrtScrlCnt

. main and window def blocks

Bad: OPTR,P2,A,RO,R4,R7

JNB MsgActFlg,SUD1

RET

nll1ber of rows to scroll

vertical scroll flag

window/bgrd scroll flag

up/down scroll flag

smooth scroll row count

top row page and smooth scroll ctrl

;message area does not scroll

32

t:::I'
I

00

SUD1:

MOV R7,A

JB AMDSCMBit,SUD4

JB VrtScrlFlg,S

LCALL HidCsr

SUD2:

,LCALL SetForScrLUp

DJNZ R7,SUD2

LCALL PlcCsr

MOV A,R4

JNB WndActFlg,SUD3

MOV DPTR, #llndllDBO+IIDB _ RowPag

MOVX iilDPTR;A

INC DPH

MOVX iilDPTR,A

RET

SUD3:

MOV > DPTR, #BgdMDBO+MOB~RowPag

.MOVX QoPTR, A

;save scroll count

;skip if smooth scrool

; iLIIP scroll
;wait for scroll in progress

;cursor hidden while scroll ing

;call ·SetForScrlUp R7 times

;put the cursor back
;A = top visible row

;skipif not window

;scroll ing in window

; set DPTR to poi nt to one IIDB

; row page is top visible

; now the other WaB

; scroll ing in background

;set DPTR to main def first row

. ;set this to top .visible page

MOV DPL,#BgdMDB1.AN.OFST+MOB_RowPag ; repeat for 'second main def

MOVX iilDPTR,A ~

RET

SUD4':

JNB WndActFlg,SUD5.

JB, SilbBit,SUD6

JB VrtScrlFlg,S

SETB SwbBit

SJMP SUD7

SUDS:

JNB SwbBit,SUD6

JB VrtScrlFlg,S

CLR SwbBit

SJMP SUD7

SUD6:

JB

JB

SUD?:

SudBit,SUDB

VrtScr l Fl g, S

SETB Stdlit

SUDS:·

LCALL Hi dCsr

MOV A,R7

33

;smooth scroll ing

;skip if not in window

;skip if scrolling in window now

;wait for scroll in progress

;set flag for scroll in wnd
; initiate scroll

;smooth scroll ing in background

;skip if scroll ing in bgrd

;wait for scroll in progress

;clear flag for scroll in bgrd

;initiate scroll

';scroll in progress

;skip if scroll ing up in prog

;wait for scroll down in prog

;initiate scroll
; indicate scrolling up

; add to scroll count

;cursor hidden while scroll ins

; restore requested scroll count

ADD

MOV

JB

JNB

MOV

SJMP

SUD9:

MOV

SUD10:

MOV

MOV

SETB

MOVX

JNB

SUD11:

RET

A, VrtScr lCnt

VrtScr.LCnt,A,

VrtScrlF.lg,SUD11

CurMDBf l g, SUD9

RO,#BgcH>B1.AN.OFST+MDB_Scrl

SUD10

RO,#BgdMDBO.AN.OFST+MDB_Scrl

P2,#BgdMDBO.SR.PAGE

A,ScrlByt

ACC.O

&lRO,A

VrtScrlFlg,S

i exit

;get new total vert scrl count

;skip if scroll in progress

; sk i P to se l ect current MoB

;MDB1 if flag was set

;MDBO if flag was clear

;background MDB page' in P2

;set the scroll byte ill MOB

;wait here for scroll to start

; ++
SetForScrLUp:

Sets the vertical scroll row variables for a scroll up. This routine may

be called frOm an interrupt' handler.

In:

OUt:

(none)

R4

VisRow

row control blocks

TopRow

BtmRow

RemRow

Bad: DPTR,A

INC VisRow

MOV A,RcbOff

ADD A,#RCB_RowOff

MOV DPL,A

MOV DPH, BtmRow

MOV A,RcbOff

CLR EXO

MOVX mPTR,A'

DEC DPL

MOV .A,RemRow

top visible row

incremented

threadi ng changed

advanc"ed vi a thread

changed to old RemRow

advanced vi a thread

;move the top visible down

;DPL = offset of the field in the

row control block which

poi nts to offset of next RCB

;DPH = bottom row page

;A = offset of row control block

;no, 8052 access for a moment

; set offset of next RCB

;now point to page of next RCB

;set page to rows remaining

34.

t::l
I

" \D

MOVX @DPTR,A

MOV BtmRow,A

MOV DPH,A

CJNE A,EndRow,SFSUl

SJMP SFSU2

SFSU1:

MOVX A,@DPTR

SFSU2:

MOV RemRow,A

MOV A, TrmRow

MOVX iilOPTR,A

INC DPL

MOV A, TrnOff

MOVX- @DPTR,A

SETB EXO

DEC OPL

MOV DPH, TopRow

MOVX A,@DPTR

MOV TopRow,A

HOV R4,A

RET

beneath bottom

;first of old rem is new ~t

;setDPTR to new bottom

;fetch page of following row

i-this is new remalnlng row start
;set bottom RCB ptr to

termi nat i on RCB

;can allow 8052 access now

; set DPTR to top row RCB

;old next row is new top row

-; return new top row

; ++:'"++++++++++++++++++++++++++:++

ScrlUpNewRow:

i·· .. ··
Scrolls the enti're display up one row, inserting a blank row at the bottom

and deleting the row at the top. Either a jl.lllp scroll or a smooth scroll

is done~ depending on the Scroll Mode.

; ~ .. ".'"

JNB MsgAct Fl g, SUNR 1

RET

SUNRl ;

MOV A,ExtRow

LCALL EraRow

MOV A,RcbOff

ADD A,#RCB_RowPag

HOV RO,A

MOV A,EndRow

CJNE A,BtinRow,SUNR2

HOV A,ExtRow

MOV EndRow,A

35

;no scroll ing in message row

ierase the extra row

; RO = offset of next RCB offset

;check if last RCB is bottom

;skip if not

; if so, make the extra

the new last row

HOV RemRolj,A

SJMP SUNR3

SUNR2:

MOV -P2,EndRow

HOV A,RcbOff

INC RO

CLR EXO

MOVX iilRO,A

-DEC RO

MOV A,ExtRow

HOVX iilRO, A

SETB EXO

MOV EndRow,A

SUNR3:

DEC VisRow

JB AMDSCMB it, SUNR5

JB VrtScrlFlg,$

LCALL HidCsr

LCALL SetForScrLUp

LCALL PlcCsr

MOV A,R4

JNB WndActFlg,SUNR4

MOV DPTR, #IIndllDBO+IIDB _ RowPag

MOVX iilDPTR,A

INC DPH

MOVX iilDPTR,A

SJMP SUNR12

SUNR4:
MOV DPTR,#BgdMDBO+MDB_RowPag

MOVX iilDPTR,A

and thus a remaining row

; last RCB is not bottom

; P2 is current end row

;A = row control block offset

;no 8052 access for a moment

;set offset in old end row

;setpage in old end rOw

to point to extra row

; 8052 access OK now

;extra row is new end row

;skip if smooth scroll

;wait for scroll in progress

;curso~ hidden whi le scroll ing

;can now set for scroll up

;and replace cursor

;A = top row page

;skip if in background

; jl.lllp scroll ing in window

;set top row in one window
definition block 0

; now other IIDB

;make new extra row

MOV DPl,#BgdMDB1.AN.OFST+HDB_RowPag

; jl.lllp scroll ing in background

iset top row in main
definition block 0

;repeat for main definition

bl-ock 1 HOVX iilDPTR,A

SJMP SUNR12

SUNR5:

JNB WndActFlg,SUNR6

JB

JB

SwbB it, SUNR7

VrtScrlFlg,$

SETB SwbBit

SJMP SUNR8

SUNR6:

JNB SwbBit,SUNR7

imake new extra row

;skip if scroll ing in background

;smooth scrolling in window

;skip if window scroll in prog

;wait for scroll in progress

;set scrolling in window flag

; smooth scro II i ng in backg round

;skip if bgrd scroll in prog

36

JB VrtScrIFlg,$

CLR SwbBit '

SJMP SUNRS

SUNR7:
JB SudBit,SUNR9

JB IirtScrl FIg,S

SUNRS:
SETB SUdBit

SUNR9:
LCALL HidesI'

INC VrtScrlCnt

JNB CurMDBFlg,SUNR10
MOY' RO,flBgcMlB1.AN;OFST+MDB_Scrl

SJMP SUNRll

SUNR10:
MOV 'RO,#Bgc!MDBO.AN'.OFST+MDS_Scrl

SUNR1';
MOV P2, #BgcMliiO. SR. PAGE

MOV A,ScrlByt
t:;I SETS ACC.O I
OQ MOVX iilRO,A
0

JNB VrtScrIFlg,$

JB VrtSci-lNewFlg,$

SETB VrtScrlNewFlg,

SUNR12:
MOV A,RCboff

ADD A,ilRCB_RowPag

Mov 'Rll,A

MOV A~EndRow
CJNE A,iltlnRow,SUNR13

SJMP SUNR14

SUNR13:
MOV P<!',A

MOVX iilRO,A
INC RO
MOV A,RcbOff

HOvX iilRO, A

DEC RO

SUNR14:
MOV A,BgnRoW

HOV ExtRow,A

MOV P2,A
,Moine A;QRO

37

;wait for scroll in prog
;clear to indicate bgrd scroll

;same area scroll' in progress
;skip if same type of scroll
;wait for scroll in progress

;initiate scroll
;mark scroll up in progress

;cursor hidden whi Ie scrol,l ing

;one more row to scroll
;skip to correct main def

;RO = main def offset

;RO = main def offset

;P2 = main def page
;set scroll byte in main def

;wait for, scroll to start,
;wait for begiming row free
;mark begiming row not free

;RO = offset of nex row page

;old begiming row becomes
the extra row

; P2 = new ext ra row
; fo II owi ng row becomes new

MOV BgnRow,A begiming row '

RET

;+++++IIIIIIIIIII~++t+.t:+++++
ScrlDrilsp:
,

Scrolls the display downward the given fIII1iler of rows.

In: A
OUt: VrtScrlFlg

SwbBit
Sucllit

VrtScrlCnt
main and window def blocks

Bad: DPTR,P2,A,RO,R4,R7

fIII1iler of rows to scroll
vertical seroll flag
windoil/bgrd scroll flag
up/down scroll flag,

smooth scroll row count
top row page and smooth'scroll ctrl

, ... '

JNB "sgActF Ig, SODl
RET

SOD1:
MOV R7,A
·JB AMoSCMB it, SOD4

JB VrtScrIFIg,$

LCAL!. Hidesr
SDD2:

LCALL SetForScrlDn

LCALL SetAftScrlDn
DJNZ R7,SDD2
LCALL, PlcCsr
MOV -A,R4

iNB WndActFlg,SOD3

MOV DPTR,#I/ndIjI)BD+WOB_RowPag
MOVX iilDPTR,A
INC DPH
MOVX iilDPTR,A
RET

SDD3:
MOV DPTR,#BgcMlBD+MDB_RowPag
MOVX iilDPTR,A

; message area does not scro II

; save scroll COU'lt
;skip if smooth scroll

;j~scroll

;wait for scroll in progress
;cursor hidden whlle scroll ing

;call SetForScrDn R7 times

; put the cursor back
;A = top visible row
;skip if not in winoow

;j~ scrolling in window
; set DPTR to poi '!t to one WOB
; row page is top visible

; now other WOB

; j~ scroll ing in background
;set DPTR to main;' def fi rst row

;set this to top visible
'MOV DPL,#BgcMlBl.AN.OFST+MDB_RowPag ; repeat for second ma i n def

MOVX iilDPTR,A
RET

38

SDD4:
JNB IIndActFlg,SDD5

JB SwbBit,SDD6

JB VrtScrLFlg,$

SETB SwbBit

SJMP SDD7

SDD5:
JNB SwbBit,5OD6
JB VrtScrLFLg,$

CLR SwbBit

SJMP SDD7
SDD6:

JNB SudBit,SDD8

JB VrtScrLFlg,$

SDD7:
CLR SudBit

SDD8:
LCALL H idCsr

t:I MOV A,R7
I
co ADD A, VrtScrLCnt
......

MOV VrtScrLCnt,A

JB VrtScrL FLg,SDD13
LCALL SetForScrLDn

JNB IIndAct Fl g, SOD 1 0

MOV R1,#TOIISftLOlnd
MOV R3 ,#IIndllDBO .A-N. OFST+IIDB _ RowPag

JB CurllDBF L g, SDD9

SETB CurllDBFLg

MOV R2,#IIndllDB1.SR.PAGE

SJMP SDD12
SDD9:

CLR CurllDBFlg

MOV R2,#IIndllDBO. SR. PAGE
SJMP SDD12

SDD10:

MOV R1,#TOPSftLol nd

MOV R2,#BgdMDBO.SR.PAGE

JB CurMDBFlg,SDD'L1
- _ SETB CurMDBFlg

MOV R3, #B9dMDB1' .AN. OFST +MDB _RowPag

SJMP SDD12

39

;smooth scroL Ling
;skip if not in window

;smooth scroll ing in window
;skip if scroll ing in window now
;wait for scroll in progress
;set flag fro scroll in wnd
; initiate scroll

;smooth scroL Ling in background
;skip if scroll ing in bgrd now
;wai t for scroll in progress
;set flag for scroL L in bgrd

;initiate scroLL

;scroLL in progress
;skip if scroL Ling down in prog
;wait for scroll in progress

;initiate scroLL
;indicate scrolling down

;add to scroll count
;cursor hidden. whi Le scroL Ling
; restore requested scroL L count
; get new totaL vert scrL count

;skip if scroll in progress
; prepare new top row
; jump if not in window

;setup for write to Am8052 reg
;offset into IIDB top row ptr
;seLect aLternate IIDB page

;setup for write to Am8052
; backgr~ MOB page in P2

;seLect aLternate MOB top row off

;MDB1 if flag was set

\

SDD11 :
CLR CurMDBFlg
MOV R3 ,#BgdMDBD .AN:OFST+MDB _ RowPag

50012:

MOV A,R4
MOV DPH,.R2
MOV DPL,R3
MOVX iilDPTR,A
DEC R3
DEC R3
LCALL IIrAmS052Reg

MOV P2,#BgdMDBO.SR.PAGE
MOV A,ScrlByt
SETB ACC.O
MOV RO, #BgdMDBO .AN .OFST +MDB _ Scrl
MOV R1,#BgdMDB1.AN.OFST+MOB_Scrl
CLR EXO
MOVX iilRO,A
MOVX iilRl,A
SETB EXO
JNB VrtScrlFlg,$

50013:
RET

;exit

;MDB2 if flag was clear

;new top visible row

;MOB page in P2
;update scroll byte in both

MOil's

;no 8052 access while doing this

;++

SetForScrLDn:

Sets the verticaL scroll row-variabLes for a scroll down. This routine may

be· caLled from an interrupt handler.

In: (none)

OUt: R4
VisRow
row control blocks
TopRow
BtmROW

RemRow
Bad: DPTR,A

. .

top visible row
decremented
threading' changed

moved up vi a thread

moved up via thread
changed to old reamining row

, ~ •• a • ~ a •• a • a a •• ~ • a a •• a •••••• a ••••••••• a ••••••••••••• a • a a a a a ••••• a ••• a • a a a a.a • a •

DEC VisRow
HOV A,RcbOff
ADD A,#RCB_RowPag

40

;move the top visible up
;DPL = offset of the field in the

row control block which

t:1
I

00
N

MOV DPl,A poi nts to offset of next RCB

MOIl A,.B9nROW ;A = beginning row page

SFSD1:
MOV DPH,A ; DPH = row page

MOVX A;iilDPTR ; fetch' the next row page

CJNE A, ToPRow,SFSD1 ;cont unti l the top row is next

MOV R4,DPH ;make row before top

MOV TopRow,R~ the new top row

RET

;++++t+++

SetAftScrlDn:
; ... -................................. .

Sets the vertIcal scrol L variables after a scroll down. ThIs routine may

bE! called from an interrupt routine.

; ~1·"·""·"··"·"···""·"·"·"·""·"··"····"······""·"·"····"··

MOV A,RcbOff

ADD A,#RCB_RowPag

MOil DPL,A

MOV A, TopRow

SASD1:
MOV DPH,A

MOVX A,iilDPTR

CJNE A,BtmROW~SASD1

MOV BtmRow,DPH

XCH A, TrmRow

CLR EXO

MOVX OlDPTR,A

INC DPL
XCH A, TrmOff

IIOVX iilDPTR,A

SETa EXO

XC" A, TrmOff

XCH A, TrmRow

MOV DPH,A

MOV A,RcbOff

MOVX IilDPTR,A
DEC DPL

MOV A,RemRow

MOVX iilDPTR,A
MOV RemRow,DPH
RET

.. 1

;++'++++++-++++++++++++++++.++++++++++

ScrlLtDsp:
, .. _

Scrolls the active display (background or message) left the given nU.ber of
, collJlllls.

In: A

Oyj:: IrrzScr l Flg

HrzDirFlg
HrzDspFlg
HrzPxlShf
HrzFrmCnt '

HrzFrmSet
HrzScrlCnt
(see lilso ScrlLtOne)

Bad: A,RO,R1,R2,R3,R4,R5,R7

JNB IIndActFlg,SL'D1
RET

SLD1:
MOV R7,A
J·B AMDSCMB i t, SLD3
JB HrzScrlFlg,S
LCALL Hi dCs.r
JB MsgActFlg,SLD2
JNB IIndVisFlg,SLD2
LCALL Hi dIInd
LCALL DlyTilEndfrm

SLD2:
LCALL ScrlLtOne

DJNZ R7,SLD2
JB MsgActFlg,SLD2a
LCALL SetllnclPos
JNB lIncIVisFlg,SLD2a
LCALL Shwllnd

SLD2a:
LCALL PlcCsr
RET

SLD3:
JNB MsgAct Fl g, SLD4.

JB H rzDspF l g, SLD5

,...
nunber of colums to scroll

;can't scroll horz in window

;save scroll count in R7

; sk i P if smooth scro II
;wait for scroll in progress
;hide cursor while scroll ing

;call ScrlLtOne R7 times

; replace the cursor

; smooth sero II
;skip if not message area

;message area is active
;skip if scroll ing message area

.. 2

. JB· HrzScrtFlg,S

SETB HrzDspFlg
. SJMP SLD6

SlO4:
JNB Hl'zOspFlg,SlO5

JB HrzScrlFlg,S

ClR HrzDspFlg
.SJMP SlO6

SlO5:
JNB HrzDirFlg,SlO7

JB HrzScrlFlg,S.

SlO6:

CLR HrzOirFlg

SL07:
lCAlL HidCsr
JB MsgActFlg,SlD7a

JNB lInd\IisFlg,SlO7a

LCALL Hidllnd
SlO7a:

t:I MDV A,ScrlByt I
00 ANL A,#SCRl_RAT_MASK w

Rl A
SWAP .A

JBC ACC.3,SlD1O

MOV HrzFrmSet,#l

INC A
JNB AMDOWMB it, SlO9

ClR C.
SUBB A,#7
JC SL08

MOV A,#·l·

SlO8:
·ADD A,iCl

SlO9:
MOV HrzPxlShf ,A

SJMP SL011

SL01O:
INC A
MOV HrzJrmSet,A .

MDV HrzPxlShf ,#1

, .

'13

;wait for scroll in progress

;mark scroll ing in message
;set scroll rates

;background is active

,.

;skip if scroll ing in bgrd
;wait for scroll in . progress

; mark· now scroll in in bgrd
;set scr.oll rates .

;skip if now scroll ing left
;wait for scroll in progress

;lI8rk scroll ing left now

;A <= old scroll byte
;extract scroll rate bits
;move rate to upper nibble
;move rate to lower nibble
;skip if pixel every n frames

;scroll ing n ·pixels per .frame

;mark nun· frames to next move
; convert to I'IUItler per frame

;skip if· normal width
;ocClq)/"essed di splay

; check for 7 or 8 per frame

;skip if 6 or fewer
; limit to 6 for frame

;convert back ~to pixels per ·frame

. ;set this in the variable

;initiate. the scroll
;scroll ing ,. pixel every n frames

; A = nunber of frames
;mark nun frames to next move
;mark single pixel shift

SlO11:
ClR ETO
JB HrzScrlFlg,SlO12

MOV HrzFrmCnt,#1
SETB HrzScrlFlg

SlO12:

MOV A,R7

ADD· A,HrzScHcnt
. MDV . HrzScrlCnt,A

SETB ETO
RET

~ ~ I ~

;ensure no interruptions

.:skip if scroll in progress
;now starting a scroll

;initiate on next frame
;mark scroll in progress

;add new request to old count

iallow horz smooth scroll intr

;+++++++++++++++++++++11111111111++

ScriLtOne:
... 0"' S·. ~

Scrolls the active display (background or ~sage) left one character
position. This· routine may be called from an interrupt handler.

In: (none)

OUt: VisCol incremented

row control. blocks
attribute of old leftmost visibles

Bad: OPTR,A,RO,R1,R2,R3,R4,R5
, .. .

JNB MsgActFlg,SL01 ;skip if scroll ing bgrd
; scro II the message

MOV DPTR,#MsgRCB+RCB_2nd+SEG_NumHid ;A = 2nd seg, I1UIIber hidden
MOVlC A,OIDPTR in message area
MDV R1,A . ; save old nunber hidden in R1
Rl A ;double old nuniler hidden

XCH A,R1
INC A
ClR ElIO
MOVX &1DPTR,A

INC DPL
MOVX A,&1DPTR
DEC A

MOVlC &1DPTR,A

MDV DPH,#MsgAtrBuf .SR.PAGE
MOV DPl,R1
MOVlC A,OIDPTR

44

;old 1'IUItlei" back in A

;one more hidden column
·;no 8052 access while changing

·to new hidden col count

;now decrement nunber visible

in this segment

;now set the ignore bit
in the attribute of the
previously leftmost visible

t::!
I

00
-I'-

SETB ACC.5

MOVX @OPTR,A

SETB EXO

,INC VisCol

RET

character

;now allow 8052 access

;update horz ,!croll position

SL01: ;scroll the background

MOV DPH,CurRow ;use current row

·MOV DPL,#SgdRCBO.AN .OFST+RCB_2nd+SEG_NumVi s

MOVX A,@OPTR ;get nll1lber visible in 2nd seg

'JNZ SL02 ;skip if not zero

MOV DPL,#BgdRCBO.AN .OFST+RCB_3rd+SEG_ NumVi s

MOVX ' A,@DPTR ;get nll1lber visible in. 3rd seg

SL02:

DEC A ;reduce nll1lber visible

MOV R5,A ;keep nlI1lber visible in R5

DEC DPL ;point back to nll1lber hidden

MOV RO,DPL ;save this ptr in'RO

MOVX A,@OPTR ;A = old nll1lber hidden

MOV R4,A ;R4 = old nll1lber hidden

INC R4 ;R4 = new nlI1lber hidden

MOV A,VisCol ;horz scroll position

RL A ~
;A = double above for attr offset

MOV R1,A. ;save old attrib offset in R1

MOV R2,#BgdRCBD.SR.PAGE ;R2 "is ptr to first RCB

MOV ,R3 ,#BgdA trBufO. SR. PAGE ;R3 is ptr. to first attribute

SL03: ;row loop point

MOV DPH,R2 ;DPTR points to nll1lber hidden

MOV DPL,RO in this row.

MOV A,R4 ; A = new nll1lber hidden

CLR EXO ;no 8052 access white changing

MOVX @DPTR,A ;set new number hidden

INC DPL ';point to number visible

MOV A,Re5 ;set new number visible

MOVX @OPTR,A

MOV DPH,R3 ;DPTR points to attribute of

MOV DPL,R1 old leftmost vi"sible

MOVX A,@OPTR ;change to 'ignore this character

SETB ACC.5

MOVX @OPTR,A

SETB EXO ;OK for 8052 access now

INC R3 ;next row control block

INC R2 ;next block of attributes

CJNE R2,#BgdRCB30.SR.PAGE+1,SL03 ;continue unti l al 31 are done

45

INC VisCol' ;updatehorz scroll pos i t i on

RET

; +++:++++++++

ScrlRtDsp:

; ~ -,'
Scrolls the active display (background or message) right the given nll1lber of

colLll1l1s.

In: A

Out: HrzScrlFlg

HrzDirFlg

HrzDspFlg

HrzPxlShf

HrzFrmCnt

HrzFrmSet

HrzScrlCnt

(see also ScrlRtOne)

Bad: A,RO,R1,R2,R3,R4,R5,R7

number of colLll1l1s toscrol I

, ... --.,

JNB IIndActFlg,SRDl

RET

SRDl :

MOV R7,A

JB AMDSCMBi t,SRD3

JB HrzScrtFtg,$

LCALL HidCsr

JB MsgActFlg,SRD2

JNB IIndVisFlg,SRD2

LCALL Hidllnd

LCALL DlyTitEndFrm

SRD2:

LCALL ScrlRtOne

DJNZ R7, SRD2

JB MsgActFlg,SRD2a

LCALLSetllndPos

JNB lIndVisFlg,SRD2a

LCALL ShWllnd

SRD2a:

LeALL PlcCsr

RET

;can·t scroll horz in window

; save scroll count inR7 ~

;skip if smooth scroll

;wait for scrol lin progress

;cal l ScrlRtOne R7 tiliJes

. ; reptace the currsor

46

~D3:

JNB MsgActF r g, SRD4

JB HrzDspFtg,SRD5

JB Hr):ScrIFlg,S

SETB Hrzl)spFlg

sJMP SRD~

SR04:.

JNB HrzDspFlg,SRD5

JB HrzScrlFlg •. S

CLR HrzDspFlg

SJMP SRD6

SRD5:

JB HrzDirFlg,SRD7

JB HrZScrlFlg,S .

SRD6:

SETB HrzDirFlg

SRD7:.

LCALL Hidesr
t;j 'I JB MsgActFlg,SRD7a I
00 JNB WndVisFlg,SRD7a \J1

LCALL. Hidl/nd

SRD7a:

MOV A,ScrlByt

ANL A,#SCRL_RAT_MASK

RL A

SWAP A

JBC ACC.3,SRD1D

MOV Hr~F,rmSet,#1

INC A

JNB AMODWMB it, SRD9

CLR C'

SUBB. A,#7

JC SRD8

MOV A,#·1

SRD&:

ADD A,#7

SRD9:

MOV HrzPxlShf.,A

SJMP SRD11

.. 7

;slcip if background active

; scroll ing in message

;skip if scrolling ,in msg

;wait for scroll in progresll

, ;mark scroll ing in msg

; set scroll rates

;scrolling in background

;slcip if scrolling in background
;wait' for scroll in'progress -

;mark sc~olling in bgrd
; set scroll rates

;now scroll ing

;skip if now scroll ing right

;wait for scroll in progress

; initiate scroll ing·

;mark scroll ing right

; fetch scroll byte

;get rate in lower nibble

;slcip if·1 pixel. per n frames

;Scroll ing n pixels per frame

; 1 frame per scroll

;11' .= niamer of pixels per frame

;skip if normal

;c~ressect

; check for rate of 7 or 8

; limit rate to 6

;convert back to rate

;set pixels per frame

;initiate scroll

SRD10:

INC

MOV

MOV

SRD11:

CLR

JB

NOV

SETB

SRD12:

NOV

ADD

MOV

SETB

RET

A

HrzFrmSet,A

HrzPxlShf ,#1

ETO

HrzscrLFlg,SRD12

HrzFrmtnt,#1

HrzScrlFlg

A,R7

A,HrzScrlCnt

HrzScrlCnt,A

ETO

; scroll ing 1 pixel per n frames

;11' = frames per pixel

;set nllltler of frames per serl

;always one pixel shifted

;start scrolling ,

; ensure no interrupt i ons

;skip if scroll· in progress

;now starting a scroll •

; initiate on next frame

;mark scroll in progress

; add new request to old count

;allow horz smooth scroll intr

:+++++++++++++++++++++~++.

ScrlRtOne:'

, .. .
Scrolls the active display (background or message) right one character

position.' This routine may be called from an interrupt handler. ..
In: (none)

Out: VisCol decremented

row control blbcks

attribute of old rightmost ignored

Bad: DPTR,A,RO,R1,R2,R3,R4,R5

:

DEC VisCol

JNS" MsgActFlg,SR01

·;.visible column decremented

;skip if not in msg

; scroll ing message

MOV DPTR,#MsgRCB+RCB_2nd+SEG_NumHid ;ptr to IIl.I11ber hidden .. 2nd seg

MQVX A,iilDPTR ;A = old nLIJIber hidden

DEC A ; reduce nl.titler hidden

MOV R1,A ;R1 = old nLIJIber hidden

RL A ';double for attr offset

XCH A,R1 ;save attribute offset in R1

CLR EXO ; no· 8052 access whi le changing

MOVX iilDPTR,A

INC DPL ;-increment nLIJIber visible

MOVX A,iilDPTR
.. a

INC
MOv)(

MOV

MOV

MOv)(

CLR
MOv)(

SETB

RET

SR01:

MOV

MOV
MOv)(

JNZ

MOV
MOv)(

SR02:

MOV

DEC
t::I MOV I
00 ,MOV 0\

RL

MOV

INC
MOv)(

INC

MOV

MOV

MOV

SR03:

MOV

MOV

MOV

CLR_

MOv)(

INC

MOV
MOv)(

MOV

MOV
MOv)(

CLR
MOv)(

A

iilDPTR,A

DPH,1IMsgAtrBuf .SR .PAGE

DPL,Rl

A,iilDPTR

ACC.5

iiJl)PTR,A

EXO

inow, point to attribute

of old rightmost hidden

;make it visible

;OK for 8052 access now

;scroll ing in background

DPH,CurRow ;use current row (any would do)

DPL ,#BgdRCBO .AN .OFST +RCB _ 3rd+SEG _ NumH id

A,OlDPTR. ; check 'for hidden in 3rd seg

SR02 ;skip if some hidden there

DPL ,#BgdRCBO .AN .OFST +RCB _2nd+SEG _ NumH i d

A,OlDPTR

RO,DPL

A

R4,A

A,VisCol

A

R1,A

DPL
A,iiJI)PTR

A

R5,.A
R2,#BgdRCBO.SR .PAGE

R3,#BgdAtrBufO. SR. PAGE

DPH,R2

DPL,RO

A,R4

EXO
iiJl)PTR,A

DPL

A,R5

iiJl)PTR,A

DPH,R3

DPL,Rt
A,iiJI)PTR

ACC.5
iiJl)PTR,A

49

; else use 2nd segment

;save the pointer to hidden

;decrement the number hidden

; save number in R4

;horz scroll position

;R1 = offset of attribute

for new first visible

;point to number visible

;R5 new number. visible

;R2 = first RCB

;R3 = first attribute vlock

; Sero II row loop

;DPTR->number hidden in RCB

; A = new number hi dden

;n08052 access while changing

;update number hidden

;pointtonumber visible

;set that from R5

;point to attribute of new 1st

visible

;mark it visible

SETB EXO

INC R3

INC R2

CJNE R2,#BgdRCB30.SR.PAGE+1,SR03

RET

;OK for 8052 access now

;next attribute block

;next RCB

;continue through 31st row

; ++++++++++++t+++.

SetlindPos: ; Set new window position

Determines the current window position and sets the background's row control

block segments accordingly.

In: VisCol. background horizontal scroll posHion

segments updated Out: BgdRCBO-BgdRCB30

Bad:

MOV
MOv)(

JB

JB

MOV

SIIPO:

MOV

JNB

MOV

SJMP

SIIP1 :

MOV

SIIP2:

ADD

CLR

MOV

SUBB

MOV .

INC

MOV
MOv)(

MOV
MOv)(

JNB

MOV

IIndCol

ColOff

window position relative to background

updated when window is active

A,DPTR,RO,R1,R2,R3,R4,R5 ,R6,R7 ,PSII

DPTR,#BgdVarBuf+(VisCol-CurAtr)

A,iiJI)PTR

MsgifctFlg,SIIPO

IIndActFlg,SIIPO

A,VisCol

~O,A

AMDDIIMBit,SIIP1

A,#68

SIIP2

A,#28

A,RO

ACC.O

IIndCol,A

A,RO

Rl,A

A
DPTR, #IIndllDBO+I/DB _ BgnCol

iilDPTR,A

DPTR, #IIndllDB 1 +I/DB _BgnCol

OlDPTR,A
IIndActFlg,SIIP3

ColAdd,A

50

Juq:> if normal mode

Coq:>ressed window position

and continue

Kormal window position

,. C~te actual total offset

aligned on word boundary

and keep it

C~te actual visible offset

and keep it

Add one for invisible function

Jump if window not active

else save offset

t::I
I

00
......

SIIP3:

MOV

ADD

DEC

MOV
MOv)(

MOV

MOv)(

HOV

ADD

MOV

ADD

MOV

MOV

ADD

ADD

MOV

ADD

ADD

MOV

CLR

MOV

SUBB

SUBB

MOV

MOV

SIIP4:

R2,#40

A,R2

A

DPTil, #IIndl.'DBO+IIDB _ EndCo l

iilDPTR,A

DPTR, #IIndl.'DB 1 +IIDB _ EndCo l

iilDPTR,A

A,#BgdChrBufO.AN .QFST

A,lIndCol

R4,A

A,R2

R6,A

A, #BgdA trBufO .AN .OFST

A,lIndCol

A,lIndCol

RS,A

A,R2

A,R2

R7,A

C

A,#128

A,lIndCol

A,R2

R3,A
DPH,#BgdRCBO.SR.PAGE

Set visible width of window

Start of bgd chr buffer

plus total offset is

3rd seg chr ptr offset;'

plus 3rd seg width is

4th seg chr ptr offset

Start of bgd aU buffer

plus twice

tota l offset is

2nd seg atr ptr offset;

plus twice

3rd seg width is

4th seg atr ptr offset

Clear for below

Width of background buffer

minus total offset to window

mi nus wi dth of wi ndow is

width of 4th segment

Start at first RCB in memory

For each background row control block

CLR EXO .; No interference from Am8052

MOV DPL ,#BgdRCBO .AN .OFST+RCB _2nd+SEG_ NumH i d

MOV A,RO Horizontal scroll offset into

MOv)(iilDPTR,A 2nd seg hidden count

INC DPL

MOV A,Rl Offset to wi ndow boundary into

MOv)(iilDPTR,A 2nd seg visible count

The second segment's character and attribute pointers never change.

MOV DPL,#BgdRCBO.AN.OFST+RCB_3rd+SEG_.NumHid

CLR A : .Zero into

MOv)(iilDPTR,A 3rd seg hidden count

INC DPL

MOV A,R2 Width of window into

MOVX iilDPTR,A 3rd seg visible count
51

MOV DPL,#B9dRCBO.AN.OFST+RCB_3rd+SEG_ChrOff
HOV A,R4 ; Even boundary offset into

MOVX iilDPTR,A 3rd seg character pointer

MOV DPL,#BgdRCBO.AN.OFST+RCB_3rd+SEG_AtrOff

MOV
MOv)(

MOV

A,R5 ; Corresponding offset into

iilDPTR,A 3rd seg attribute pointer

DPL, #BgdRCBO .AN. OFST +RCB _4 th+SEG _ NlIIlV i s

MOV A,R3

MOv)(iilDPTR,A

Remaining character count into

4th seg visible count

The fourth segment's hidden count is zero and never changed.

MOV

MOV

DPL ,#BgdRCBO .AN .OFSJ +RCB _4 th+SEG_ ChrOff

A,R6 Next boundary offset into

4th seg character pointer MOv)(iilDPTR,A
MOV DPL,#BgdRCBO .AN.OFST+RCB_ 4th+SEG_AtrOff

MOV A,R7

MOv)(iilD~TR,A

SETB EXO

'INC DPH

MOV A,DPH
CJNE A,#BgdRCB30.SR.PAGE+l,SIIP4

RET

Correspondi ng offset into

4th seg attribute pointer

Allow Am8052 bus requests

Next row control block

Check it and

jump if not finished

Exit

; ++

. RdAm8052Reg:
;

Reads from the specified register in the Am8052.

In: Rl Am8052 regi ster I1II1tler

OUt: R2 high byte of value read

R3 low byte of value read

Bad: A,DPTR
;

CLR Exl

CLR EXO

CLR Am8052XfrF 19

HOV D.PTR,#Am8052Ptr

HOV A,Rl
MOv)(iilDPTR,A

MOV DPTR, #Am8052RegLo

;ensure no Am8052 interruptions

;give Am8052 address strobe

;point to Am8052 control reg

; indicate register to be read

;point to low data byte

52

t:I
I

00
00

MOVX . A,IilDPTR ;read low data byte

MOV R3,A

DEC DPl ;point to high data byte

MOVX A,IilDPTR r ; read high data byte

MOV R2,A

SETB Alil8052Xf rFl g ;remove Am8052 address strobe

SETB EXO ;allow Am8052 interrupts

SETB EXl

RET

; ++

WrAm8052Reg:
.. ,

Writes the given value to the specified register in the AmB052.

In: Rl
R2
R3

Out: (none)

Bad: A,DPTR

Am8052 register nlJllber
high byte of value to. be written
low byte of value to be written

, .. _

ClR EXl

ClR EXO

ClR AmB052XfrFlg

MOV DPTR,#Am8052Ptr

MOV A,Rl

MOVX IilDPTR,A

MOV DPTR; #AmB052RegHi

MOV A,R2

MOVX IilDPTR,A

INC DPl

MOV A,R3
MOVX IilDPTR,A
SETB Am8052XfrFlg

SETB EXO
SETB EXl

RET

;ensure no Am8052 interruptions

;give address strobe to 8052
;set pointer to 8052 control

;select register

;set ptr to 8052 data

;set high byte

;set ptr to low data

;set low byte

; remove 8052 address strobe
;allow Am8052interrupts

; +++ ... +++++++++++++++++++++++++++++++~++

S3

SetRowFntRdfPtr:
: '"

Sets the first· 15 visible row redefinition block. pointers to the
font loading· redifinition blocks

inputs none
outputs none

, .. ,," ...

MOV P2, TopRow

MOV R2,#FntRRBO.AN.OFST

MOV R3,#FntRRBO.SR.PAGE

MOV RO,#BgdRCBO.AN.OFST+RCB_BgdRdfPag

MOV Rl,#BgdRCBO.AN .OFST+RCB_RowPag

MOV R4,#15

SRFRP1:
MOV A,R3
MOVX GlRO,A Change page poi nter in RCB

INC RO

INC R3

MOV A,R2

MOVX GlRO,A Change offset of pointer in RCB

DEC RO

MOVX A,GlRl

MOV P2,A

DJNZ R4,SRFRPl

RET

; ++ ++ ... +++++++++++++++++++++++++++++

SetRowNmlRdfPtr:
; _ _ _ -.......... _ -....... -_ , _ -........... ..

Sets the first 15 visible .row redefinition block pointers to the

normal redifinition blocks

inputs none
outputs 'none

; _ _ -.. -_ -: _ _

·MOV P2, TopRow
MOV RO,#BgdRCBO.AN.OFST+RCB_BgdRdfPag~

MOV Rl,#BgdRCBO.AN.OFST+RCB_RowPag

MOV R2,#15 NlJllber of rows to update

S4

tj
I

00

'"'

SRNRPI :

MOV A,#NrmRRB.SR.PAGE

MOVX "ilRO,A Change page pointer in RCB

INC RO

HOV A,#NrmRRB.AN.OFST

MOVX CilRO,A Change offset of pointer in RCB

DEC RO

HOVX A,iilRl

HOV P2,A

DJNZ R2,SRNRPI

RET

; ++++++++++++++++++++++++++++++++++~+++

IIrFntCel:

, .. .
IIrites to a single character generator cell the pattern specified in the

parameter buffer.

In: A

PrmCnt

PrmBuf

font select (=0 normal, <>0 c~ressed)

parameter count

list of parameters

;,'iii .. ": ,

MOV R4,A

MOV R6,CsrSiz

HOV CsrSi z,#OFFH

lCAll ChgCsrS i Z

MOV CsrSiz,R6

MOV .P2,#FntRRBO.SR.PAGE

HOV R6,#15

HOV Rl,#PrmBuf

MOV R2,PrmCnt

MOV A,CilRl

INC Rl

DEC R2

HOV R3,A

HOV A,CilRl

INC Rl

DEC R2

JZ IIFC2

MOV R5,A

IIFCI :

HOV RO,#FntRRBO.AN.OFST+RRB_ApHi_SpcsHi

55

ClR A

MOVX iilRO,A

HOV RO,#FntRRBO.AN.OFST+RRB_ApLo_SbcsHi

ClR A

MOVX CilRq,A

INC P2

DEC R6

DJNZ R5,IIFCI

IIFC2:

HOV A,R2

JZ IIFC4

IIFC3:

MOV A,CilRl

INC Rl

MOV R7,A

ANL A,#OF8H

RR A

HOV RO,#FntRRBO.AN.OFST+RRB_ApHi_SpcsHi

HOVX CilRO,A

HOV A,R7

ANl A,#07H

SIIAP A

HOV RO,#FntRRBO.AN .OFST+RRB_ApLo_SbcsHi

HOVX CilRO,A

INC P2

DEC R6

D.JNZ R2,IIFC3

IIFC4:

ClR A

MOV RO,#FntRRBO.AN.OFST+RRB_ApHi_SpcsHi

HOVX iilRO,A

ClR A
MOV RO, #F ntRRBO .AN • OFST +RRB _ApLo _ SbcsH i

HOVX IIRO,A

-INC P2

DJNZ l!6,IIFC4

HOV DPTR,#8gdFncChrO

HOV A,R3

HOVX iilDPTR,A

HOV A,R4

JZ IIFC5

MOV R6,#044H

MOV R7,#010H

SJMP IIFC6
56

Set character cell value in

duIIny character

t::1
I

\0
0

IIFC5:

MOY R6,#04ZH

MOV R7,#090H'

IIFC6:

MOV DPTR,flBgdFncAtrD

MOVX A,iilDPTR

MOV RS,A

LCALL DlyTilEndFrm lIait Lntil ready

L~L SetRowFntRdfPtr Reset RDFptrs to font RDF's

MOV DPTR,flBgdFncAtrO

MOV A,R6

CLR EXO

MOVX iilDPTR,A

INC DPL

1I0Il A,R7

MOVX ~PTR,A

SETB' EXO

LCALL DlyTilEndFrm it's thing, when known to

CJNE R5, #004" ,IIFC7

MOY A,#010H

SJMP IIFC8

IIFC7:

MOY ~.tlO9OIt

IIFC8:

CLR EXO

MOVX iilDPTR,A

DEC DPL

MOY . A~RS "

MOVX iilDPTR,A

SETB EXO

LCALL SetRowNml RdfPt r Clean up after ourselves

LCALL ChgCsrSi z'

RET
\

;
;+++++++++++++++++.++

end of "_Util

/'

57

•

(

t::I
I

'"

118051"

TITLE" CALEB 0;00 Ini tial Font"
; +++++++++++++++++++~+++

CJont CALEB 0.00

{;opyl-ight 1985'Advanced Micro Devices, Inc.

This is the compact, binary representation for the default font to be loaded

duri ng i ni t i ali zat ion.

NAME "Initial-- Font"

PROG
;.++

GLB Fnt_5x7

GLB FntJx9

Initial compressed mode font

Initial normal mode font

; ++

SKIP
; +++,+++++++++++++++++++++++++++++

Fnt_5x7: Initial compressed mode font

DB 041 H, OOOH, 007H, 070H, 088H, 088H, 088H, OF8H, 088H, 088H

08 04~,ooOH,oon,ri~,~H,~H,~OH,O~,O~,O~
DB OOOH,OOOH,OOOH

A

B

end

; ++++++++++++++++++++++,++++++++++++++'+,+++

SKIP
; ++

FntJx9: -; Initial normal mode font

DB 021 H, OOOH, 009H, 010H, 01 OH, 01 OH, 01 OH, 01 OH, OOOH, OOOH, 01 OH, 01 OH

DB 022H, OOOH, 003H, 048H, 048H, 048H

DB 023H, OOOH, 009H, 038H, 044H, 040H, 040H, OEOH, 040H, 040H, 042H, OFCH

DB 024H, OOOH, 009H, 01 OH, 07EH, 090H, 090H, 07CH, 012H, 012H, OFCH, 01 OH

DB 025H, OOOH, 009H, 040H, OA2H, 044H, 008H, 01 OH, 020H, 044H, 08AH, 004H

. DB '026H ,OOOH,009H,070H ,088H, 088H,050H,020H, 052H, 08CH,OBCH,072H

; II

$

%

&

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

J

027H, OOOH, 004H, 018H, 018H, 01 OH, 020H

028H ,OOOH, 009ij, 008H, 01 OH, 020H ,020H, 020H, 02OH, 020H, 01 OH ,008H

029H ,OOOH, 009H ,020H, 01 OH, 008H, 008H ,008H, 008H, 008H, 01 OH, 020H

02AH,OOlH,007H,010H,092H,054H,038H,054H,092H,010H

02BH,OOlH,007H,010H,010H,010H,OFEH,010H,010H,010H

02CH, 004H, 004H, 030H, 030H, 020H, 040H

02DH,004H,OOl H, OFEH

02EH, 006H, 002H, 030H, 030H

02FH ~ 001 H, 007H, 002H, 004H ,008H, 01 OH, 020H, 040H ;080H

030H ,OOOH, 009H ,07CH, 082H ,086H ,OBAH ,092H ,OA2H ,OC2H ,OB2H, 07CH

0~1 H ,OOOH, 009H ,01 OH, 030H ,050H ,01 OH, 010H ,01 OH, 01 OH, 010H, 07CH

032H,OOOH,009H,07CH,OB2H,082H,004H,038H,040H,OBOH,080H,OFEH

033H, OOOH, 009H, 07CH, 082H, 002H, 002H, 03CH, 002H, 002H, 082H, 07CH

034H, OOOH, 009H, 004H, OOCH, 014H, 024H, 044H, 084H, OFEH, 004H, 004H

035H, OOOH, 009H, OFEH, OBOH, 080H, OF8H, 004H, 002H, 002H, 084H, 078H

036H,OOOH,009H,03CH,040H,080H,080H,OFCH,082H,082.H,OB2H,07CH

037H,OOOH;009H,OFEH,082H,004H,008H,010H,020H,020H,020H,020H

038H ,OOOH, 009H, 07CH, 082H, 082H, 082H, 07CH, OB2H, 082H, 082H, 07CH

039H,OOOH,o09H,07CH,082H,OB2H,082H,OlEH,002H,002H,004H,O78H

03AH ,003H, 006H, 030H, 030H ,OOOH ,OOOH, 030H, 030H

03BH ,OOOH ,008H ,030H, 030H ,OOOH, OOOH, 030H ,030H, 020H, 040H

03CH ,OOOH ,009H ,008H ,010H ,020H, 040H, 080H, 040H, 020H, 01 OH ,008H

03DH ,003H, 003H, 07CH, 000H,07CH

03EH, OOOH, 009H, 020H, 01 OH, 008H,004H, 002H, 004H, 008H, 010H, 020H

03FH, OOOH, 009H, 03CH, 042H ,042H, 042H, 002H, OOCH, 01 OH, 000H,010H

O4OH,OOOH,OO~,~~,04~,mH,~H,~H,OO~,OBOH,04OH,~~

041 H, OOOH, 009H, 038H, 044H, 082H, 082H, 082H, OFEH, OB2H, 082H, 082H

042H,OOOH,009H,OFCH,042H,042H,042H,07CH.042H,042H,042H,OFCH

043H ,OOOH, 009H, 03CH ,042H, 080H, 080H, 080H, 080H ,080H, 042H ,03CH

044H ,OOOH, 009H ,OF8H, 044H ,042H ,042H, 042H, 042H ,042H, 044H ,OF8H

045H ,OOOH, 009H, OFEH, 080H,OBOH ,080H,OFOH, 080H ,OBOH, OBOH, OFEH

04~,OOOH,OO~,mH,OBOH,OBOH,~H,~OH,~H,OBOH,OBOH,OBOH

04n,OOOH,OO~,~~,04~,OBOH,OBOH,OBOH,~H,~H,04~,~~

048H, OOOH, 009H,08~, 082H,082H, 082H, OFEH, OB2H, 082H, 082H ,082H

049H, OOOH, 009H, 07CH, 010H, 01 OH, 010H, 01 OH, 010H, 010H, 010H ,07CH

04AH, OOOH, 009H, 03EH, 008H, 008H, OOBH, 008H, 008H, OOBH, 088H ,070H

04~,OOOH,OO~,OB~,~H,~H,WM,MOH,OOOH,O~,~H,OB~

2

*
; +

I

o
.1
2

3
4
5
6

7
8

9

; <

; >

iii

A

B

C

o
E

G

J

K

DB 04CH, 0001\, 009H, 080H ,080H, 080H, 080H, 080H, 080H, 080H, 080H, OFEH l DB 070H:003H,009H,OB8H,OC4H,084~~084H,OC4H,OB8H,080H,080H,O80H p

DB ~~,OO~,OO~,~~,OCM,M~,~~,~~,~~,~~,~~,~~ M DB 071 H ,003H, 009H, 074H, 08CH ,084H, 084H, 08CH, 074H, 004H, 004H, 004H q

DB 04EH, OOOH, 009H, 082H ,OC2H, OA2H, 092H, 08AH, 086H ,082H, 082H, 082H N DB 072H, 003H, 006H ,OB8H, OC4H, 080H, 080H, 080H ;08OH r

DB 04FH ,OOOH, 009H, 038H, 044H, 082H, 082H, ~2H, 082H, 082H, ~4H, 038H 0 DB 073H,003H,006H,078H,084H,06OH,018H,084H,078H s
DB 074H, 001 H, 008H, 020H, 02OH, OF8H, 020H, 020H, 020H, 024H, 018H

DB 050H ,OOOH ,00911 ;OFCH ,082H, 082H, 082H ,OFeit: 080H,080H ,080H, 080H P DB 075H,003H,006H,084H,084H,084H,084H,08CH,074H. u

DB 051 H, OOOH, 009H, 038H ,044H, 082H, 082H, 082H, ~2H, OBAH, 044H, 03AH Q DB 076H, 003H, 006H, 082H, 082H, 082H, 044H, 028H, 01 OH v

DB 052H, OOOH, 009H; OFCH,082H, 082H, 082H, OFtH ,090H, 088H, 084H ,082H R DB 077H,003H,006H,082H,092H,092Hi092H,092H,06CH w
DB ~~,OO~,OO~,O~,~~,~~,~~,W~,OO~,OO~,~~,O~ S DB om,OO~,O~,084H,~~,~~,~~,~~,084H x

DR 054H,OOOH,009H,OFEH,010H,010H,010H,010H,010H,010H,010H,010H T DB 079H,003H,009H,084H,084H,084H,084H,08CH,074H,004H,084H,078H y

DIl 055H ,OOOH, 009H, 082H ,082H, 082H, 082H, 082H ,082H, 082H, 082H ,07CH U DB 07AH,003H,006H,OFCH,008H,010H,020H,040H,OFCH

DB 056H,OOOH,009H,082H,082H,082H,044H,044H,028H,028H,010H,010H V DB 078H,OOOH,009H,018H,020H,020H,020H,040H,020H,020H,020H,018H {

DB M~,OO~,OO~,~H,~~,~~,~~,~~,~~,~H,OCM,~~ \I DB 07CH,OOOH,008H,010H,010H,010H,OOOH,OOOH,010H,010H,010H

DB 058H, OOOH, OO~, 082H, 082H, 044H, 028H, 01 OH, 028H, 044H, 082H, 082H X DB OlDH, OOOH i 009H, 030H, 008H, 008H, 008H, 004H, 00811, 008H, 008H ,030H }

DB 059H ,OOOH, 009H, 082H, 082H, 044H, 028H, 01 OH, 01 OH, 01 OH, 01 OH, 01 OH y DB 07EH, 001 H, 003H, 060H, 092H, O~CH

DIl 05AH, 00011, 009H, OFEH, 002H, 004H, 008H, 01 OH, 020H ,040H, 080H, OFEH Z DB 07FH, 001 H, 007K ,OFEH, 07EH, 006H, 046H, OC6H, OF6H, OE211 Logo

DB 05BH,OOOH,009H,078H,040H,040H,040H,040H,040H,040H,040H,078H [DB OOOH,OOOH,OOOH end

t::J DB 05CH, 001 H, 007H, 080H, 040H, 020H ,01 OH, 008H, 004H ,002H \
I DB M~,OO~,OO~,om,oo~,oo~,OO~,OO~,OO~,OO~,oo~,om

'"
; ++

N DB 05EH, OOOH, 003H, 01 OH, 028H, 044H

DB 05FH. 008H, 001 H, OFEH end of CJont

DB 060H, OOOH, 004H, 030H, 030H ,01 OH, 008H ; I

DB 061H, 003H, 006H, 078H, 004H, 07CH, 084H, 084H, 07AH a

DB 062H ,OOOH, 009H, 080H, 080H, 080H, OB8H, OC4H, 084H, 084H, OC4H, OB8H b

DB ~H,OO~,OOM,Om,_H,~~,~~,_H,Om c

DB ~H,OO~,OO~,OO~,oo~,OO~,mH,~~,O~,_H,~~,mH d

DB 065H, 003H, 006H, 078H, 084H, OFCH, 080H, 080H, 078H e
DB 066H, OOOH ~ 009H, 018H, 024H, 020H, 020H, OF8H, 020H, 020R, 020H, 020H

DB 067H, OOiH, 009H, 074H, 08CH,084H, 08CH, 074H, 004H, 004H, 084H, 07~ g

DB ~H,OO~,O~,~~,~~,~~,OO~,OC~,O~,_H,_H,_H h

DB 069H,OOlH,008H,010H,OOOH,030H,010H,010H,010H,010H,038H

DB 06AH,003H,009H,OOCH,004H,004H,004H,004H,004H,O~H,044H,038H j

DB 06BH,OOOH,009H,080H,080H,080H,088H,090H,OAOH,ODOH,088H,084H k

DB 06CH ,OOOH, 009H ,030H, 01 OH, 01 OH; 010H, 01 OH ~010H, 010H, 01 OH, 038H

DB 06DH,003H,006H,OECH,092H,092H,092H,~2H,092H m

DB 06fH,003H,006H,OB8H,OC4H,_H,084H,084H,084H n

DB O6~,OO~,OOM,Om,O~,_H,_H,~H,Om 0

~

t::I
I

so
W

"805-1"

TITLE" CALEB 0.00 Conf i gurat i on"
; ++

C_Config CALEB 0.00_

Copyright 1985 Advanced Micro Devices, Inc.

This fi Ie contains the extra -EEPROM copyright claim -as well as the

serial port configuration data. Th~ locations defined in this module

currently assume that the extra EEPROM is a 27128 (i .e. 16 Kbytes).

NAME "Conf i gurat ion"

GLB ExtraCpyRghtMsg

GLB DblBaudOpt

GLB BaudRatCnt

Resident claim in extra EEPROM

PCON contents

Timer one value

; ++++++++++++++"++

ORG 03FCOH

Ext raCpyRgh tMsg: Resident claim in extra EEPROM

DB " Copyright 1985 Advanced Micro Devices, Inc. "

; ++

ORG 03FFOH

ObI BaudOpt : DB OOOH
BaudRatCnt: DB OFDH

; +++·+++++++++++++++++++++++++++++++t+++

end of C_Config

t:!
I

'-0

"'"

; ++

C_Men1>lap CALEB 0.00

copyright 1985 Advanced Micro Devices, Inc.

This file, which is included in the other source files, defines several

constants of use in this implementation. It also defines the addresses

of all internal RAM variables, all external data struCtures required by

the (lm8052 and other external data control information.

; +++,++++++++

These are a few constants representing fundamental parameters of the system.

DBL_BAUD_OPTION EQU aaaH

RATE_9600_BAUD EQU OFDH

ENDJRM_CNT_HI

ENDJRM_CNT_LO

EQU OFEH

EQU OBEH

--------------.------------------.--------------.---------,

Some miscellaneous constants

'DEL EQU 07FH

; ++

SKIP
; ++

The following define the structures used by the'Am8052. The element symbol

is added to the address of the desired structure to obtain the address of

the partic~lar byte to be processed.

-......... ---,

~ain Definition Block

MOB_xO EQU 0
MOB _ RowAdrH i EQU 1

MDB~RowPag EQU 2
MDB_RoWOff EQU 3

MDB_Cux EQU 4

MDB_Cuy EQU

MDBJat EQU 6

MDBJilChr 'EQU 7

MDB_Btnk EQU 8

MDB_Scrl EQU 9

MDB_VrtVec EQU 10

MDB_ScrIVec EQU 11

MDB_Tslc EQU 12

MOB_xU EQU 13
-.---------------,
•

; Window Definition Block

IIDB_Scw EQU 0
IIDB _ RowAdrH i EQU

IIDB_RowPag EQU 2

IIDB_RoWOff EQU 3

IIDB_x4 EQU 4

IIDB _ NxtAdrH i EQU 5
IIDB_NxtPag EQU 6

IIDB_NxtOff EQU 7

IIDB_BgnRow EQU 8

IIDB_EndRow EQU 9

IIDB_BgnCol EQU 10

IIDB_EndCol EQU 11

--------------,

Row Control Block

RCB_RdfLnk EQU 0

RCB_RowAdrHi EQU

RCB_RowPag EQU 2

RCB_RoWOff EQU 3

RCB_Seg EQU 4

2

Unused in linea r address mode

Unused high byte of 24-bit address

Page of top visible background row

Offset of top visible background row

Horizontal position of cursor

Vertical position of cursor

Fetch fill attribute flag

F ill character code

Bl ink control fields

Smooth scroll control fields

Vert i ca l interrupt vector

Smooth scroll interrupt vector

Scan line count for top visible row

Unused

Scroll window flag

Unused high byte of, 24-blt address

Page of top visible window row

Offset of top visible window row

Unused in I inear address mode

Unused high byte of 24 -bi t address

Page of next window definition block

Offset of next window definition blk

Window placement first row

Window placement last row

lIindow placement fi rst coll.lln

Window placement last coll.lln

link to row redefiniton block flag'

Unused high byte of 24-bit address

Page of next row control block

Offset of next row control block

Start of segments

t:I
I

\0
Ln

RCB_1st

RCB_2nd

RCB.;.3rd

RCB_ 4th

EQU 4

EQU 14

EQU 24

EQU 34

Start of fi rst segment (= RCB_Seg~

Start of second segment (i fpresent)

Start of thi rd segment (if present)

Start of fourth segment (if present)

NOTE: The segment element symbol (defined below) is added to the element

symbol defining the start of the desired segment (defined above).

SEG_NLmHid EQU

SEG_NLmVis EQU

SEG_Cont EQU

SEG _ Ch rAdrH i EQU

SEG_ChrPag EQU

SEG_ChrOff EQU

SEG_x6 EQU

SEG_AtrAdrHi EQU

SEG_AtrPag EQU

SEG_AtrOff EQU

0

1

2

3

4

5

6

7

8

9

NLlnberof hidden chars in this seg

NLlnber of visible chars in this seg

Continue flag (set if a seg follows)

Unused high byte of 24-bit address

Page of th i s seg' s character buffer

Offset of th i s seg' s character buffer

Unused in linear address mode

Unused high byte of 24-bit address

Page of this seg's attribute buffer

Offset of this seg's attribute buffer

NOTE: The element symbol for the row redefinition block: pointer (at the

end of each row control block:) depends on the type of row control

block.' Each display has a different size row control block (i .e.

they have diHerent nLlnbers of segments).

RCB_x44 EQU 44 Unused in linear address mode
RCB _BgdRdfAdrH i EQU 45 Unused high byte of 24-bit address
RCB _ BgdRdfPag EQU 46 Page of redef block: for bgd RCBs
RCB_BgdRdfOff lOQU 47 Offset of redef block for bgd RCBs

RCB_x26 EQU 24 Unused in linear address mode
RCB _ MsgRdfAdrH i EQU 25 Unused high byte of 24'bit address
RCB _ MsgRdfPag EQU 26 Page of redef block for message RCB
RCB _ MsgRdfOff EQU 27 Offset of redef block for message RCB

RCB_x16 EQU 14 Unused in linear address mode
RCB_IIndRdfAdrHi EQU 15 Unused high byte of 24-bit address
RCB _ IIndRdfPag EQU 16 Page of redef block for window RCBs
RCB _ IIndRdfOff EQU 17 ·Offset of redef block for window RCBs

;RCB_x16

RCB_ClrRdfAdrHi

RCB_ClrRdfPag

RCB _ C l rRdfOff

(already defined) Unused in linear address mode
EQU 15

EQU 16

EQU 17

... ------------,

; Row Redefinition Block

RRB_Tslc_NcsHi EQU 0

RRB_NcsLo_Nce EQU

RRB_ApHi_SpcsHi EQU 2

RRB _ SpcsLo _ Spce EQU 3

RRB _ ApLo _ SbcsH i EQU 4

RRB _ SbcsLo _ Sbce EQU

RRB_CursHi EQU 6

RRB _ CursLo _Cure EQU 7,

RRB_Dr .:.UndHi EQU 8
RRB _ UndLo _ Sund EQU 9

Unused high byte of 24-bit address

Page of redef bUe for cl r font RCBs

Offset of redef blk for clr font RCBs

Scan line count/part of normal char start

Rest of normal char start/normal char end

Part of row attrs/part of superscript start

Rest of ·superscript start/superscript end

Rest of row attrs/part of subscript start

Rest of subscript start/subscript end

Part of cursor start

Rest of cursor start/cursor end

Double height flags/part of underline

Rest of Ulderl i ne/sh if ted underl ine

; ++

SKIP
: +++++++++++++t++

Jnternal RAM Variables

The definitions of the internal RAM variables are given below. These are

used for all control values during normal operations on the active display

and also for all system wide controls.

. -----------_. ------,

Variables used for fundamental system operations ,are defined here.

StkBas DATA 067H

EndFrmFlg BIT OOCH

Am8052BusReqFlg BIT P3.2

Am8052BusAckFlg BIT P1.2

4

Base of stack

Set by timer 0 (end-of-frame) intr

Low when Am8052 wants bus (I NTO*)

Cleared to give bus to Am8052

t::I
I

\l)
0-

MemTstTql DATA 010H Used only during memory tests

The variables that are used for dispatching control to the various control
routines a~ special purpose routines (e.g. graphic character placement> .

are defined below. The dispatcher is als,o responsible for parsing control
sequences and decodi ng parameters.

DisStt DATA 010H ; Current state of di spatcher
(the states are defined below)

DIR_CHR_STT EQU OOOH Direct (single-char level)

BGN_ESC_STr EQU 003H Escape sequence (after ESC)

EXT_ESC.:.STT EQU 006H Extend ESC seq (w/intermediate)
BGN_CSI_STT EQU 009H contr.oi Sequence (after CSI)
PRM_CSl_STT EQU OOCH Sequence (params in CSI lIeq)
EXT_CSI_STT EQU OOFH Extend CSI seq '(w/intermediate)
UNIMP ,:,CSI_STT EQU . 012H Uniqllemented (Ix!t valid) seq

PrmAcc DATA 011H ; -IeqlOrary . parameter acclllUlator.
Prld'vt DATA 012H Private parameter string introducer
Prnlep DATA 013H Speci at, repeat (fi rst) parameter

PMncnt DATA 014H Nunber of 98rameters in sequence
ProHaxFlg BIT OOFH 'Set when parameter' buffer overflows
PnrIladFlg BIT OOEH' Set when a bad parameter is decoded
PnrIlgnFlg BIT OOOH Set when beginning parameter string
PnrIluf pATA 04EH ; Decoded parameters
PRM_CNT_MAX , EQU 18 ; Maxinun nunber of· parameters allowed
CtlPtrHi DATA 016H ; Address of control.or· special
CtlPtrLo DATA 017H routine last executed (for REP)

,; .. ;1. _._ ~

·SKIP
;" -.- ~ .. "", .. -'_

These variables maihtaifl the cOlJllU'lications ring buffers. Three buffers
are defined: a host reception buffer for characters from the host, a host
transmission ~ffer for, characters being sent 1:0 the host, and a keyboard
reception buffer for .characters from the keyboard.

;·t,

5,

HstRcvCnt DATA 04BH Nunber of chars received from,host
HstRcvlnsOff DATA 04CH Place to insert next char into ring
HstRcvExtOff DATA 04DH Place to extract next char from ring

NEAR_FULL_CNT EQU 3 Stop if less space remailii ng
NEAR_EMPTY_CNT EQU 12 ; Start if fewer characters avai lable

NOTE: The actual host reception buffer is too large to place in internal?
'RAM, so it is defined (later in this file) in external data memory.

HstRcvBsyFlg BIT P1.6 Set if too busy to rcv, cle,ar' if .rdy
NOTE: This signal is inverted by

the RS232 drivers so thai:
a positive level indicates
ready, negat i ve l eve l means
don't send chars from heist

NOTE: There is currently no software. support for the following variables.
They have only been defined for possible extensions. The affect
these new capabilitieS would have on existing operations, and any'

necessary restrictions on their use, .wi II neect to be considered.

HstXmtFlg BIT, 017H

HstXmtcnt· DATA - 025H

HstXmtlnsOff DATA 026H
HstXmtExtOff DATA 027H
HstXmtBuf DATA O64H

HstXmtBsyFlg BIT P1.7

6

Semaphore to ,lock out, keyboard lIource
characters whi ,le a software source
sequence is being transmitted

Nunber of chars to send to host'
i-Place to insert next char into ring

Place to extract next char from ring
Host transmission -ring buffer~

Set when host is too busy to' receive
NOTE: This signal is inverted by

the RS232 drivers so that,

a positi"e level·.indicates
ready, negative level means
don',t send chars to host

~ I

t::I
I

\!)

"

KbdRcvCnt DATA

KbdRcvI nsOff DATA

KbdRcvExtOff DATA

KbdRcvBuf DATA
KbdRcvRdyF l g BIT

...................... ' ,
SKIP

028H

029H

02AH

060H

Pl.S

N!JIIlber of chars received from keybrd

Place to insert next char into ring

Place to extract next char from ring

K~yboard reception ring buffer

Set when char ready from keyboard

-----------------------------------_ .. _---- .. --- .. ----_ .. - ____ a_a_a. ,

These are the display dependent variables. The first twelve are those which

must be copied out to and in from external data memory with each change of

the active display. An index variable is one which represents a zero origin

count from the beginning of something, a page variable contains a page

address, an offset variable contains an offset into a page and a 'count

variable represents a quantity (counting from one).

CurAtr DATA 02FH Attribute byte written to memory

(c~sed of the following bits)

LitBit BIT 07EH Highlight

RevBit BIT 07DH Reverse

SpsBit BIT 07CH Superscri'pt

SbsBit BIT . 07BH SubScript

SundBit BIT 07AH Strike·out (shifted underline)

andBit BIT 079H Underscore

BlnkBit BIT 078H Blink

ActCol DATA 030H Active position horiz~ntal (index)

ActRow DATA 031H Active position vertical (index)

CurRow DATA 032H Active row control block (page)

VisCol DATA 033H Horizontal scroll position (index)

V{SRow DATA 034H Vertical scroll position (index)

BgnRow DATA 035H First RCB in display (page)

TopRow DATA 036H First visible RCB (page)

BtmRow DATA 037H last visible RCB (page)

RemRow DATA 038H Remaining ReBs below BtmRow (page)

EndRow DATA 039H last RCB in display (page)

Ext Row DATA 03AH Extra row (page)

7

The remaining display dependent variables are not copied. They are set

after each change of active display.

Dspllid DATA 03BH Visible width of display (count)

DspHgt DATA 03CH Visible height of display (count)

ColAdd DATA 03DH ; Aids horz. cursor placement (index)

RowAdd DATA 03EH ; Aids vert. cursor placement (index)

RcbOff DATA 03FH Offset of display's RCBs (offset)

ChrOff DATA 040H Offset of character buffer (offset)

AtrOff DATA 041H Offset of attribute buffer (offset)

TrmRow DATA 042H Termination RCB (page)

TrmOff DATA 043H Termination RCB (offset)

.- .. ,
SKIP

,

The following variables are used to control various special features. The

first two are used to switch between two definition blocks in support of

the Am8052 vertical smooth scroll feature.

CurMDBFlg

CurllDBFlg

BIT OOOH

BIT 001H

Set when alternate HOB is current

Set when alternate IIDB is current

This group supports the message and window displays.

MsgActFlg BIT 004H Set when message display is active

MsgVisFlg BIT 005H ;' Set wh<;n message display is visible

IIndActFlg BIT 006H Set when window display is active

IIndVisFlg BIT 007H Set when window display is visible

IIndCol .DATA 044H Current bgd col of left window bound

t:J
I

'"' 00

The next group supports vertical and horizontal smooth scroll ing.

VrtScrlCnt

VrtScrlNewFlg

ScrlByt

Sr3Bit

Sr2Bi t

Sr1Bit

SrOBit

SwbBit

SudSit
VrtScrlFlg

SCRL_RAT_MASK

HrzScrlCnt

HrzFrmSet

HrzFrmCnt
HrzPxlShf

HrzCurPxl
HrzOspFlg

HrzOi rFlg

HrzscrlFlg

DATA 045H

BIT OOBH

OATA020H

BIT 06EH

BIT 060H

BIT 06CH

BIT 06BH

BIT 06AH

BIT 069H

BIT 068H
EQU 078H

DATA 046H

DATA 047H

DATA 048H
DATA 049H

DATA 04AH

BIT OOAH
BIT 009H

BIT 008H

Nunber of rows to scroll

Used for new·l ine scroll ing

Image of byte written to the MOBs
(composed of the following bits)

Four bit field holding ·current

smooth scroll rate (normally

the rate·i s changed by mask

and these names are unused)

Wnd/bgd vert smooth scroll

Up/down vertical smooth scroll

Set during vert smooth scroll

Mask for manipulating scroll rate

Number of characters to scroll

Number of frames per scroll
Number of frames until next scroll

Number of pixels each scroll

Current pixel shift
Set when scroll ing message display

Set when scrolling right

Set while doing horz smooth scroll

The following flag is used to indicate the current font selection for

remapping character codes to character font cell addresses.

FntMapFlg BIT 014H Set when al ternate font selected

SKIP

The next two vari ables support the al terable cursor appearance and character

bl i nk features.

CsrSiz DATA 02BH Cursor start/end lines (in nibbles)

BlnkByt DATA 02EH Image of byte written to the MOBs
(composed of the following bits)

ChdBit BIT 077H Character bl ink duty cycle

ChbSit1 BIT 076H Character bl ink rate high and.

ChbSitO BIT 075H low bits (two-bit field)

CatbeBit BIT 074H Attribute cursor bl ink enable
CxybeBit BIT 073H X-Y cursor bl ink enable
CudBit BIT 072H Cursor bl ink duty cycle
CubSit1 BIT 071H Cursor bl ink rate high and

- CubSitO BIT 070H low bits (two-bit field)

These aid in cursor placement in the special advance cursor code used

after placing a character/attribute in display memory.

CsrZonFlg BIT 010H Set when cursor is in a visible zone
CsrZonCnt DATA 015H Amount cursor may be advanced unt i l

it moves into the next zone
CsrShwFlg BIT 011H Defers showi ng the cursor unt i l
CsrSetFlg BIT 012H second vertical retrace time.

The following support the modes which are software selectable.

ModByt DATA 02CH Provi des byte access to modes

VEMBit BIT 067H Vertical editing (downward/upward)
AMDOWMBit, BIT 066H Display width (normal/compressed)
AMOSCMBit BIT 065H ;i Scroll (normal jump/smooth)
AMDSPMBit BIT Pl.1 Screen polarity (normal/reversed)

(n,ot part of regular mode byte)
; +++i:++++++:+-+++++++++++

SKIP
; ++

The following address is used when accessing the keyboard. It .is only

possible to read from the keyboard.

Keybrd XDATA 00001H Read character from keyboard

The keyboard is enabled by holding a high level on a port 1 pin, When
there is a character available from the keyboard, this fact is signalled

by a high level on another port 1 pin (configured for input). The two
pins are defined below_

KeybrdEnbFl g BIT P1.4 High level enables the keyboard

10

t::I
I

'!)
'!)

i ++

SKIP
; ++

The following addresses are used in accessing the Am80S2 registers. The
order of operations is critical. First, regardless of access type, the
register number should be written to the Am80S2 register pointer. Then
to write to", register, the high byte of the 16·bit register value must
be written first followed by the low byte. To read from a register, the
low byte must be read first followed by the high byte.

Am80S2Ptr
Am80S2RegH i
Am80S2RegLo

XDATA 04003H
XDATA 04000H

XDATA 04001H

Address of pointer register
Address of high byte of data register
Address of low byte of data register

IIhen reading or writing the Am80S2, Lts address strobe (AS*) must be held
low. This is accompl ished by clearing the port 1 pin which is connected

to it before beginning the access and setting this pin when finished.

Am80S2XfrFlg BIT P1.3 Connected to Am80S2 pi n AS*

The register numbers which are written to the Am80S2 pointer register are

defined below.

ModRegllnd EQU OOOH Mode Register 1
ModReg21nd EQU 001H Mode Register 2

AtrEnblnd EQU 002H Attribute Port Enable
AtrRdflnd EQU 003H Attribute Redefinition
TOPSftHi Ind EQU' 004H Top of Page Soft Pointer (hi word)

TOPSftLolnd EQU OOSH Top of Page Soft Pointer (lo word)

TOIISftHi Ind EQU 006H Top of lIindow Soft Pointer (hi word)

TOIISftLolnd EQU 007H Top of lIindow Soft Pointer (lo word)

AtrFlglnd EQU 008H Attribute Flag

T<;lPHrdHi Ind EQU 009H Top of Page Hard Pointer (hi word)
TOPHrdLoind EQU OOAH Top of Page Hard Pointer (lo word)

TOIIHrdHi Ind EQU OOBH Top of lIindow Hard Pointer (hi word)

TOIIHrdLoind EQU OOCH Top of lIindow Hard Pointer (10 word)

DMABstlnd EQU 010H DMA Burst and Space
Vrtllthlnd EQU 011H Vert Sync lIidth/Vert Scan Delay Reg

VrtActLnelnd EQU 012H Vertical Active Lines

11

___ 1-

VrtTotLnelnd EQU 013H Vertical Total Lines
HsyncVlntlnd EQU 014H Horz Sync lIidth/Vertical Event Row
HDrvlnd EQU 01SH Horizontal Drive
HScnDlylnd EQU 016H Horizontal Scan Delay
HTotCntlnd EQU 017H Horizontal Total Count
HTotDsplnd EQU 018H Horizontal Total Display

; ++

SKIP

i ++

The following are the locations of the structures used during normal Am80S2

operations. There are three displays: background, message and window. The
background display is implemented as the' Am80S2 background and the others
are implemented as Am80S2 windows. The latter can be enabled (made visible)
or disabled (made invisible). Structures to support these displays, as well
as others to support vertical smooth scrolling, horizontal smooth scroll i09

and a loadable character font are all allocated at fixed locations and
initialized following the reset/self-test procedure and after the character
generator RAM has been initially cleared.

The background display contains 30 rows of 128 characters each. In normal
mode, only 24 rows of 80 characters each are displayed. In compressed mode
all 30 rows, but only 120 characters, are shown. The undisplayed characters
are stored in display memory and can be viewed by scrolling. The background
display can be scrolled both vertically and horizontally. There is also an
extra row to support vertical smooth scroll ing.

The message display has a single row of 128 characters. Like the background
display, 80 characters are shown in ~ormal mode (provided the message display

is enabled) and 120 characters ar.e visible in compressed'mode. The message
display can be scrolled horizontally to view all of its characters. Since
it 'is not vertically scrollable it has no need for an extra row. The message

display is implemented as an Am80S2 window placed at the lowest row on the
monitor screen.

12

tj
I

I-'
o
o

The window display has 14 rows of 40 characters ea~h. Regardless of ioode,

only 7 rows and all 40 characters are shown. It can be scrolled vertically

to yiew all of its rows. It cannot be scrolled horizontally. IIhen enabled,

it is shown near the,upper right corner of the monitor screen with portions

of the bac~grounddisplay surrounding it.

SKIP

Memory allocation is shown diagramatically in the figures below.

+------- --------------------------+-------------------+

,8000·>

BRCBO BCHRO

(see next figure)

BRCB30 BCHR30

9EOO·>
+- - - - - -+-+- -+- --+

9FOO·> I MRCB 1*1** I MCHR
+- - - - - -+-+- -+- -+- - - - - - -- .+

AOOO·>

BATRO

BATR30

BEOO·>

+. -------------------+

BFOO·> I

*

MATR

message function character (1 bYte),

message active count (1 byte),

message function attribute (2 bytes)

** message tab table (16 bytes)

13

+---------+-------------- --------+-----------+

80BO·> I I IIIIDBO

I +-----------+

81BO·> I I IIIIDBl

I +-----------+

82BO·> I I MIIOB

I +-----------+

83BO·> I I TIIOB

84BO·>

85BO·>

86BO·>

87BO·>

88BO·>

89BO·>

8ABO·>

8BBO·>

8CBO·>

80BO·>

8EBO·>

FRRBO IIRCBO

FRRB14 IIRCB14

+---------+----------

I
I
I
I
I
I
I
C

+---------+-+

NRRB 1#1
+---------+-+

I ONRRB Ixl
+---------+-+

SURRB Ixl
IICHRO + ••••...•• +.+

SlRRB Ixl

IICHR14 +---------+-+

I,OURRB Ixl
+------,---+-+

I OlRR8 Ixl
+---------+-+

BTL

+-.-+--+----+ ~

11m Ixxl IITB I
+- - -+- -+- -+-+

BGOVARS

+-----------+

I MSGVARS
+----- .. _----+

IINOVARS

---.-----+

SFBO·> I HRCV

90BO·>

9EBO·>

9fBO·>

+------------------------ --------------------+

.IIATRO

IIATR14

---+-+---+----

BMOBO BMOBl 1*1** I BACT IIACT

+- - - - - - - -- - - - -+- - - - - - - - - - - - -+-+- - -+-- - - - - :; - - - -+- - - - - - - - -- - - --+

*
**

x

two background function characters (2 bytes)

two background function attributes (4 bytes)

one termination blank attribute (2 bytes)

unused- (13 bytes total)

14

t::I
I

I-'
0

SKIP

. -----------------------------------_. -------,

These are the definitions used for all display memory. They are related to

the actual, physical parameters of our external data RAM (1.e~ amount and

location). In this 'implmentation, display memory is organized as 64 pages

of 256 bytes each. Th i sis the eas i est way for the Am8751 processor to

treat external data. Each byte has an address consisting of two components,

its page and its offset ,within that page. By allocating similar structures

at the same offset jn different pages, and gl'aranteeing that none of them

cross a page boundary, we are able to manipulate addresses one byte at a

time. This is important since the processor has no 16·bit arithmetic

operat ions.

OspMemBas XOATA 08000H Base of external (display) memory

OSP c.MEM_SIZ EQU 04000,H Number of bytes of external memory'

PAG_SIZ EQU 00100H Number of bytes ina. page of memory

PAGE EQU 8 Shift right by this value extracts a

page address from a 16·bit addr

OFST EQU OOOFFH Mask (and) with this value extracts

an offset from a 16-bit address

. -.. --------,

Here we define the main definition blocks. These control operations that

can be changed fro," one frame to the next. lie need two of them to switch

'between when doing a vertical smooth scroll of the background display.

BgdMDBO

BgdMOB1

1<OATA.09FBOH

XOATA 09FBEH

Parameterizes the background display

(and supports smooth scrolling)

; __ _________ D _______ _

Next we define the four window definition blocks in the system. These

control AmB052 window operations. There are two of them to switch between

when doing a vertical smooth scroll of the window display. Another is used

for the message display~, The last one is used to terminate the linked list

of window definition blocks (as required by the AmB052).

15

IInd11OBO

IInd11OB1

MsglIDB

TrJDIIDB

XOATA 080F4H

XOATA 081F4H

XOATA 082F4H

XOATA 083F4H

. ------------------------------------,
SKIP

Parameterizes the window display

(and supports smooth scroll ing)

Parameterizes the message display

Terminates the list of \lOBs

These are the row control blocks for the background display, There' are 31

of them, one for each displayable row and an extra one for use with the

insert and delete line controls and bottom-of-display scroll ing.

BgdRCBO XOATA 08000H NOTE: Each row cont ro l block

BgdRCB1 XOATA 08100H is at the same offset in

BgdRCB2 XOATA OB200H different pages. They are

BgdRCB3 XOATA 08300H named for thei r order in

BgdRCB4 XOATA 08400H memory. Thei r apparent

BgdRCB5 XOATA OB500H order (1. e, as they are

BgdRCB6 XOATA 08600H shown on the moni tor) will

BgdRCB7 XOATA 08700H depend on the linked list

BgdRCBB XOATA 08800H pointers they contain.

BgdRCB9 XOA TA 08900H Th i s order wi II change

BgdRCB10 XOATA 08AOOH during normal operations

BgdRCB11 XOA T A 08BOOH as a result of inserting

BgdRCB12 XOATA 08COOH and deleting rows. The

BgdRCB13 XOATA 08DOOH order will a l so be changed

BgdRCB14 XOATA 08EOOH by bottom-of-display

BgdRCB15 XOATA 08FOOH scroll ing.

BgdRCB16 XOATA 09000H

BgdRCB17 XOATA 09100H There is a correspondence

BgdRCB18 XOATA 09200H between a particular row

BgdRCB19 XOATA 09300H control block and the same

BgdRCB20 XOATA 09400H numbered character and

BgdRCB21 XOATA 09500H attribute buffers. This

BgdRCB22 XOAlA 09600H correspondence is kept in

BgdRCB23 XOAlA 09700H spite of any logical order.

16

t:j
I

0
r->

BgdRCB24 XDATA 09800H Therefore, the characters

BgdRCB25 XDATA 09900H and attributes- which are

BgdRCB26 XDATA O9AOOH refered to by a particular

BgdRCB27 XDATA 09BOOH row control block can be

BgdRCB28 XDATA 09COOH eas it y determi ned at any

BgdRCB29 XDATA 09000H time.

BgdRCB30 XDATA 09EOOH

BGO_BUF _WID EQU 128 Width of background (and message)

di splay buffers

These are the character buffers for the background di splay. There is one

for each row control block and each contains 128 characters.

BgdChrBufO XDATA 08030H NOTE: Each buffer is at the same

BgdChrBufl XDATA 08130H offset in di fferent pages.

BgdChrBuf2 XDATk 08230H Each is in the same page as

BgdChrBuf3 XDATA 08330H the -row control block which

BgdChrBuf4 XDATA 08430H refers to it.

BgdChrBuf5 XI)A TA 08530H

BgdChrBuf6 XDATA 08630H

BgdChrBuf7 KDATA 08730H -
_ BgdCh rBuf8 XDATA08830H

BgdChriluf9 XDATA 08930H

BgdChrBufl0 XDATA 0OO0H

BgdCh rBuf 11 XDATA 08B30H

BgdCh rBuf 12 XDATA 08C30H

BgdChrBuf13 KDATA 08030H

BgdCh rBuf 14 XDATA {)8E30H

~BgdCh rBuf 15 XDATA 08F30H

BgdCh rBuf 16 XDATA 09030H

BgdChrBuf17 XDATA 09130H

BgdCh rBuf 18 ·XDATA 09230H

BgdCh rBuf 19 XDATA 09330H

BgdChrBuf20 XDATA 09430H

BgdChrBuf21 XDATA 09530H

BgdChrBuf22 XDATA 09630H

BgdChrBuf23 .XDATA 09730H

BgdChrBuf24 XDATA .09830H

BgdChrBuf25 XDATA .o9930H

BgdChrBlif26 XDATA 09A30H

BgdChrBuf27 XDATA 09B30H

BgdChrBuf28 XDATA 09C30H

BgdChrBuf29 XDATA 09030H

BgdCh rBuBO XDATA 09E3OH

17

These are the attribute buffers for the background display. There is one

for each row control block and each contains 128 attributes.

BgdAtrBufO XDATA OAOOOH NOTE: Each buffer is at the same

BgdAtrBufl XDATA OA100H offset in different pages.

BgdAtrBuf2 . XDATA OA200H Each is/In a page wltich. is

BgdAtrBuf3 XDATA 0A300H 32 pages beyond the page

BgdAtrBuf4 XDATA OA400H containing the row control

BgdAtrBuf5 XDATA OA500H block which refers to it.

BgdAtrBuf6 XDATA OA600H

BgdAtrBuf7 XDATA OA700H

BgdAtrBuf8 XDATA OA800H

BgdAtrBuf9 XDATA OA900H

BgdA trBuf 1 0 XDATA OAAOOH

BgdAtrBufll XDATA OABOOH

BgdAtrBuf12 XDATA OACOOH

BgdAtrBuf13 XDATA OADOOH -

BgdAtrBuf14 XDATA OAEOOH

BgdAtrBuf15 XDA t A OAFOOH

BgdAtrBuf16 XDATA OBOOOH

BgdAtrB,:,f17 XDATA OB100H

BgdAtrBuf18 XDATA OB200H

BgdAtrBuf19 XDATA 08300H

BgdA trBuf20 - XDATA OB400H

BgdA t rBuf21 XDATA OB500H

BgdAtrBuf22 XDATA OB600H

BgdAtrBuf23 XDATA OB700H

BgdAtrBuf24 XDATA 08800H

BgdAtrBuf25 XDATA OB900H

BgdAtrBuf26 XDATA OBAOOH

BgdAtrBuf27 XDATA OBBOOH

BgdAtr8uf28 XDATA OBCOOH

. BgdAtrBuf29 XDATA OBDOOH

BgdA t rBuf30 XDATA OBEOOH

i 8

t:::1
I

I-'

o
W

-.. -------,
SKIP

This is the row control block for the message display. Only one is needed

since the insert and delete line controls and vertical scroll ing are not

allowed in this display.

MsgRCB XOATA 09FOOH

This .is the character buffer for the message display. It is at the same

offset as the background display character buffers and is in the same page

as its row control block.

MsgChrBuf XOATA 09F30H

This is the attribute buffer for the message display. It bears the same

relationship to its row control bloc!< as the background attribute buffers

bear to their row control blocks (i .e. 32 pages beyond it).

MsgAtrBuf XOATA OBFOOH

;-------------------.------------------------------

These are the row control blocks for the window display. There are 15

of them, one for each di splayable row and an extra one for use wi th the

insert and delete line controls and bottom·of·display scroll ing.

IIndRCBO XOATA 080BAH NOTE: Each row control block

IIndRCBl XOATA 081BAH is at the same offset in

IIndRCB2 XOATA 082BAH different pages. They are

IIndRCB3 XOAlA 083BAH named for thei r order in

IIndRCB4 XOATA 084BAH . ,- memory • Thei r apparent

IIndRCB5 XOATA 085BAH order (i .e •. as they are

IIndRCB6 XOATA 086BAH shown on the monitor) will

IIndRCB7 XOATA 087BAH depend on the linked list

IIndRCB8 XOATA 08SBAH pointers they contain.

IIndRCB9 XOA T A 089BAH Th i s order will change

IIndRCB10 XOATA 08ABAH during normal operations

IIndRCBll 'XOATA 08BBAH as a result of inserting

IIndRCB12 XOATA 08CBAH and deleting rows and by

IIndRCB13 XOATA OSOBAH bottom-of-display scroll ing_

IIndRCB14 XOATA OSEBAH

19

IINO _ BUF _IIID EQU

IINO_VIS_IIID EQU

IINO_VIS_HGT EQU

IINO _ TOP _ MRG EQU

SKIP

40

40

·7

6

__ I

lIidth of window display buffers

lIidth of visible window display

Height of visible window display

BackgrO';'nd rows above window display

; These are the character buffers for the wnidow display. There is one

; for each row control· block and each contains 40 characters.

IIndChrBufO XOATA 080CCH ; NOTE: Each buffer is at the same

IIndChrBufl

IIndChrBuf2

IIndChrBuf3

IIndChrBuf4

IIndChrBuf5

IIndChrBuf6

IIndChrBuf7

IIndChrBuf8

IIndChrBuf9

IIndChrBufl0

IIndCh rBuf 11

IIndCh rBuf 12

IIndChrBuf13

IIndChrBuf14

XOATA 081CCH

XOATA 082CCH

XOATA 083CCH

XOATA 084CCH

XOATA 085CCH

XOATA 086CCH

XOATA 087CCH

XOATA 088CCH

XOATA 089CCH

XOATA 08ACCH

XOATA 08BCCH

XOA TA 08CCCH

XOATA 080CCH

XOATA 08ECCH

offset in di fferent pages.

Each is in the same page as

the row control block which

refers to it.

; These are the attribute buffers for the window display. There is one

; for each row control block and each contains 40 attributes.

IInclAtrBufO XOATA 090BOH ; NOTE: Each buffer is at the same

IInclAtrBufl

IInclAtrBuf2

IInclAtrBuf3

IInclAtrBuf4 -

IInclAtrBuf5

IIndAtrBuf6

IInclAtrBuf7

IIndAtrBuf8

IInclAtrBuf9

IIndAtrBufl0

IIndAtrBufll

IInclAtrBuf12

IIndAtrBuf13

IInclAtrBuf14

XOATA 091BOH

XOATA 092BOH

XOATA 093BOH

XOATA 094BOH

XOATA 095BOH

XOATA 096BOH

XOATA 097BOH

XOATA 098BOH

XOATA 099BOH

XOATA 09ABOH

XOATA 09BBOH

XOATA 09CBOH

XOATA 090BOH

XOATA 09EBOH

20

offset in different pages.

Each is in a page which is

16 pages beyond the page

containing the row control

block which refers to it.

'--

7
t
o
"""

SKIP

;' These are the row redefinition blocks used during normal operations. They
control the vertical placement of characters and attribc,ites within the
character row.' In particular, a change of cursor appearance requires a
change of the cursor start and end lines.

NmlRB XDATA 084F4H Normal row 'redefinition block

NDTE: Only the pre'ceding definition hti~ current software s';'PPOrt. The
following definitions ·are foSpossible extensions to support rows

of double width and/or double hei ght characters. How these extra
capabi l ities would .affect existing operations, and any necessary
restrictions on their use, will need to be considered.

DwNhRRB

SwUhRRB
~wlhRRB

DwUhRRB
DwlhRRB

XDATA 08SF4H

XDAT~ 086F4H
XDATA 087F4H
XDATA 088F4H
XDATA 089F4H

Double width/normal height
Single width/upper half of dbl height
Single width/lower half of dbl height
Double width/upper half of dbl height
Double width/lower half of dbl height

i-"" -- -_ -- --- -- -_ .. _ -- -- -- ------ .. --- .. - _ .. _ .. -_ --- .. -_ .. - -

These are the row redefinitoh blocks used' for l.oading. the character
generator (font) RAM. ck!ring normal operations. There is one for each
slice of a character cell which can be programmed by a user.

FntRRBO
FntRRB1

FntRRB2
FntRRB3

FntRRB4
FntRRBS
FntRRg6
FntRRB7

,Fnt.RRBB

FntRRB9
FntRRB10
FntRRB11
FntRRB12
FntRRB13
FntRRB14

XDATA 080BOH
XDATA 081B.oH

XDATA 082BOH
XOATA 083BOH

XOAJ A 084BOH
XOATA Q8SBOH
XDATA 086BOH
XDATA 08780H
XDAlA 08llB0H'
XDATA 08980H
XOATA OBABOH
XOATA, OBBBOH

XOATA OBeBOH
XDATA D8DBOH
XDATA OBEBOH

. 21

NOTE: A user is only allowed to
change the first fifteen

slices of a character cell.
Th i sis because the AmBOS2
requi res that the last slice

be cleared for use above and
.below the lines specified
in the-row redefinition
block. Actually, in this
implementation, only the
first fOurteen can be
changed in normal mode,
and only, the first eleven
in compressed mode.

SKIP
;_ -"'1-- -,-- --- ----- - - -- -_ .. ---- ------ -- --- .. -- --_ .. -- -_ .. -- ----

: These are the special characters which support the feat rues of this

: implementation. They support horizontal smooth scroll ing, the loadable
1 font and ensure ... ximal processing .time by reducing unnecessary DMA

activi ty by the Am8OS2.
Firs.t, the background function character which supports horizontal smooth
scroll ing in the background and the loadable font. There are two of them,
and two associated attributes, to allow font loading of both normal and

, compressed mode characters.
BgdFncChrO XDATA 09FCCH
BgdFncChr1

. BgdFncA t rO
BgdFncAtr1

XDATA 09FCDH

XDATA 09FCEH
XDAlA 09FDOH

Next, the message function character character' which supports horizontal
smooth scrolling in the message display and its associated attribute.

MsgFneChr XDATA 09F.1CH
MsgFncAtr XDATA 09F1EH

Next, 'a latched attribute for use· with the termination row control block is
defined. This is the extra row control block in the window display when it
is not otherwise being \.!Sed. If the window display is active then the extra.'
row control block in the background is used as the termination row control
block. It is pointed to by the last visible row in the background display,
the last visible row' in the window display, the message display row and the

termination window definition block. The termination row control block is
; ,set to point t.o itself. By setting the char~&ter pointer to zero we force

the AmBOS2' to use the' fill code (Clefined in the main definition block) for

the entire row. Becal.!Se the FAT bit (also in the' main d!!fi~ition ,block) is

set, the termination attribute is fetched. Since this attribute is latched
(the only .latched attribute in the' system), it forces 'all fHl characters to

., have the same,. blank attribute. By using this 'te..milllltion rllW we avoid DMA
.: activity by the Am8OS2 almost entirely during the time that the last two

character rows are being displayed. COMA occurs when the Am8OS2 pre·fetchs
; up to two extra rows.) Therefore, the processor has a nearly: uninterrupted

one·and·a-half. mfll iseeonds just prior to the time when the main definition
IIlock is fetched tQ begin the next frame. Any accesses made to, display
memory during this. end-of-frame time cannot interfere with video refreSh_
The timer 0 interrupt has been set to tell us when this time .begins.

TrmAtr 084FEH

'22 .

t::I
I ,....

o
VI

;,-" --_ -_ ... ----_ -- --- -- - -_ .. -" .. -_ -_ -_ --_ -_ .. -_
SKIP

-------- __ _ ... _ .. _---------- __ .. _------------ - ---- .. -----------

These are the active counts assocjated with each row in the system •. They
teil us where the farthest right, non·blank character is in each row (i.e.
how nu:h of the row we may need to erase).

BgdAct.CntBuf
IIndAdCntBuf
MsgActCnt

XOATA 09F02H
XDATA 09FF1H
XDATA 09Fl0H

One byte for each backgrOU'ld row
One byte for each wi ndow row
One byte for the one message row

i--"" ----- .. ~ _oo-- .. "Oo"" -_ .. -_ .. -- -- .. _ .. - -_ .. -- --- .. -- -- .. -- __ __ .. _ ---- ---- --- ..

These are the bit tables for tab position stor"age. There is one table for
each display, although the background table is actually in two parts. Each'
bit in a table corresponds to a collJll! in the display. If the bit is set,
then that col~ is a tab location.

NOTE: The following definitionS are not supported by current software.
They ·are for possible extensions to support hor.izontal tabulatiCl!'.
'Vertical tabulation could also be supported by using an unused bit
in each row controL block (addressed in thei r physical memory order
rather than their loilical display order). The affect of these new
capabi i ites on existing operations, and any necessary restrictions
on th'eir use, will need to be considered.

BgdTabTblLt
BgdTabTblRt
MsgTabTbl
WndTabTbl

XDATA 08AF4H
XOATA 08BF4H
XOATA 09F20H
XDATA 08BFBH

For left 96 colums of background
For ri ght 32 calums of background
For all 128 colums of message
For all 40 col~s of window

These. are the display dependent variable buffers. Whi le a particular display
is active its variables are kePt in internal RAM. When a different display
becomes active the old display's variables are copied out to their external
RAM location an? the new display's variables are copied in.

BgdVarBuf
MsgVarBuf
WndVarBuf

XOATA 08CF4H
XOATA 080F4H
XOATA 08EF4H

23

.. ... -_ ,

This is the serial conmmications ring buffer for receiving characters frOll
the host coqlUter.

HstRcvBuf XDAlA. 08j:BOH

;+++++++++++++++++++++++1111' III.~ III1III U 1111111+++111111111111111++++++++++++

SKIP
;+++++++++++++++++++++++++++ I I I I I I I I I I 1++++ I I I I I I I I I I I I 1+++++++++++++++++++++++

These are the locations of the' various strUctures used in the initial
clearing- of the. character generator RAM. They are in the same memory
area where the background character buffers are located. When these
bUffers are initialized, the font clearing information (which will no
longer be need!!d) will be overwritten with spaces.

ClrFntMDB

ClrFntRCBBas
C l rFntChrBas'

XDAlA 09030H

XOATA 08030H
XDATA 08080H

Main definition block

Fi rst row control block
First character

NOTE: The remaining fifteen ReBs and charact'ers are at the same·
offsets in subsequent pages.

ClrFntAtr XOATA 09080H COIIIIIOn attributes

ClrFntRRB XOATA 09130H Conmon row redefinition block

ClrFntWDB XDATA 09230H Termination window definition block

; +++++++++++++++++ .. ++

end of C _ Menf.lap .

/

2 ..

05098-6

ADVANCED
MICRO

DEVICES, INC.
901 Thompson Place

P.O. Box 3453
Sunnyvale,

California 94088
(408) 732-2400

TWX: 910-339-9280
TELEX: 34-6306

TOLL FREE
(800) 538-8450

IH-RRO-' 5M-7/86-0

