
• & ~ 0 0 0 • • • e 0 * • 0 • • • • • ~ • •

Chapter 1 GAME History ~

GAME 101

Chapter 1 GAME History
Approximate time to cover: 1 hour?

1. The Situation circa 1991

Wellfleet was selling three hardware products based on VME router
architecture and VRTX-based software:

• CN: 13 slots

LN: 4 slots

• FN: 1 slot

Software: V5.xx software and its predecessors ran on a VRTX kernel.
There were several problems with VRTX:

• The code was buggy.

• We could not support it ourselves - no source code (we patched
binary code in some instances!).

• We ended up using single process (dev_idle) to avoid context
switches in order to get acceptable forwarding perfonnance -
were not using real features of OS.

The forwarding loop was implemented by a function called dev _idleO.
There were several aspects to this:

• No VRTX context switches occurred between forwarding layer
code segments.

Each layer processed lists of packets in order to execute cached
instructions (reduce I-cache thrash)

• This traded off per-packet latency for overall throughput.

• (need picture of packet processing through driver, dIs, IP dIs,
driver. Show example with one packet and then several)

• Instruction cache sizes:

020/030: 256 bytes <- existing VME hardware

040: 4K bytes <-- target for new hardware

e

Guide Name 1-1 •

• • • • & & • e e _ e 0 e 0 0 0 • • c • • c
c Chapter 1 GAME History
(>

604: 16K bytes <- didn't exist at the time

Wellfleet decided that the existing VME architecture and VRTX-based
software needed to be replaced for several reasons:

•

•

•
•

better performance

hot-swap (VME hardware could do it - software souldn't)

dynanricreconfiguration

fault isolation (resource reclamation)

remove slot-2 as a single point of failure

2. Considerations in designing a new multiprotocol router
OS

These are the key points considered when the new OS search was
conducted.

1. EncapsulationIDecapsulalion.

Encapsulation and decapsulation of data needs to be efficient.
These are tasks pertormed on every packet in layer 3 forwarding.
The incoming layer-2 header is stripped and a new one is added for
the outgoing interface.

It important to note that you may need to add more header info than
is removed (e.g. remove an FDOI SNAP MAC but then encapsulate
for ENET transmiSSion.)

2. Performance via caches.

The router needs to be high pertormance. One way to achieve this is
to make good use of the processor's instruction and data caches.

On the instruction side, locality of reference is key. If you keep
executing the same code, it's likely that the next instruction will
already be in the instruction cache (i-cache). However, the code that
you execute repeatedly has to fit in the i-cache footprint. Remember,
the time is 1991 you've been writing code for a 68020 with a 256 byte
i-cache. Luckily, the new target architecture has a 4K cache.

.. 1-2 Guide Name

e ~ • • • • • • 0 .. • .. • • .. • 0 • .. •

Chapter 1 GAME History •

For the data cache (d-cache), there are two "hot" areas: the stack
and whatever data the running functions are using. For a router, the
hot data is often the routing table. Once we figure out where one
packet is going, it is in our best interest to do the lookup for the next
packet, because we're likely to have a good portion of the routing
table already in the d-cache. There is also a good chance that
consecutive packets are going to similar locations (e.g., traffic
burstiness; or local workstations all going to the same server). Note
that this trades off individual packet forwarding latency for overall
throughput.

3. Packet accesses.

Caching accesses to actual data packets is problematic. The packet
memory is shared between the CPU, link module and PPX. If the
CPU caches the packet memory, any accesses by these other
entities needs to be done "cache coherently·"

The CPU could flush packets from its cache, but the CPU usually (for
forwarded packets) doesn't care much about the packet contents
other than the header. However, packets addressed to the router
(such as Telnet packets or routing updates) _wilL be examined more
thoroughly. This means the CPU would be forced to go through the
motions of flushing _aiL data from a packet to handle every possible
case. Rushing isn't free, so this would impact performance.

Another aspect about packet accesses is that the header fields are
usually read just once. That is, you look at the MAC header, then the
IP header, etc. You don't look at the MAC header multiple times. .
Therefore, caching the headers isn't very useful.

Yet another consideration is with data corruption. If you get the flush
wrong or miss something you'll wind up with bugs that are really hard
to track down.

Bottom line: Cache coherency without HW support is a scary
proposition.

For these reasons, caching the packets wasn't a requirement.
However, there are those areas of packets which are accessed a lot
during forwarding (packet headers). If we could improve the
non-cached access performance to just those areas, we would get
some bang for our buck.

4. Multi-slot forwarding issues.

<1'1

Guide Name 1-3 •

e e e ~ ~ 0 e e e & ~ e e e e 0 e 0 ~ e 0 e
~. Chapter 1 GAME History

c

We were building a multi-slot box where packets may come in on one
slot but need to go out another. Should every piece of code which
routes a packet need to figure out if a buffer is being delivered to the
local slot or off-slot? Obviously, it would be advantageous if each
one didn't. If this decision was isolated in one place, it would make
most of the code simpler.

This would also improve code performance becau~e instead of
having to check and branch in all the forwarding code, the code could
just say "this packet goes here" where "here" may be either local or
remote (or both) and is not something the forwarding code cares
about.

5. High availability.

"No single point of failure" was a design goal. So, having tightly
coupled slots, where one slot could corrupt the memory of another
slot, was considered a bad idea. The slots should be as independent
as possible.

However, communication between processes across slots was still
important. A method was necessary to know about other slots and
the processes on them - when they appear and when they go away.

Software failur~s (e.g., bus errors) should only affect the portion of
the code where the failure occurred. Taking a whole slot or box down
for anything but a catastrophic software failure is not an option.

S. Dynamic reconfiguration.

Dynamic reconfiguration is somewhat like isolating software failures
to particular pieces of code. The idea is that we can add, remove, or
reconfigure a protocollinterface/slotietc. and limit the effects of that
reconfiguration.

7. Internal code structure.

We wanted to get away from one big function call tree (dev_idle) for
forwarding. This is bad for maintenance and future development.
This also defeats the goal of isolating the software failures to the
threads that caused the problem. Ditto for reconfiguration.

3. Harpoon Project:

o 1-4

Where did the name come from? One developer was reading Moby Dick
at the time. Lots of things were getting named after things related to the
novel and whaling (best example: the workstation "ambergris", which

Guide Name

• Q • • • • • • $ • • • • • • • • • • • • •

Chapter 1 GAME History •

means "whale puke"). This evolved into the "fish" theme that still persists
today.

Hardware:

Backbone architecture: faster, more redundant use BCNIBLN
architecture picture

Software:

The decision to go with GAME reflected the need to meet the.aggressive
goals of Harpoon project. We needed an as especially geared to the
needs of a packet forwarder, as described previously.

Performance (throughput), reliability, scalability

Performance

75,000 pps forwarding on FRE-I (68040) to do a forwarding path
that could perform better than dev _idle: t

• ask switching in 6 us on FRE-I: PSOS & VRTX could only do
35-40 us work to completion scheduling

• Efficient handling and delivery of lists of buffers wanted as to
track process state: instead of having processes do it (didn't
com,pletely make this goal)

• isolate software and hardware failures

fault recovery from software failure!): recover memory,
timers, buffers, etc.

• wanted control over source code and good knowledge base of
how the OS worked.

• no "master" slot needed an architecture where you can "just add
more boards" (up to 14) and have it scale

• ability to port as to other platforms multi-slot simulation

How was the OS shaped by the earlier considerations?

1. EncapsulationIDecapsulation.

Guide Name 1-5 •

e e e e e • • e • e • • • • • • e • • • • e
• Chapter 1 GAME History

•

• 1-6 Guide Name

The buffer format allows the data to be "suspended" anywhere in the
buffer (caveat: on the FRE hardware, the start of the data must be
within the first 255 bytes of the buffer). When receiving or sending a
packet, there is always sufficient "headroom" left at the start of the
buffer to add a larger encapsulating header. It is easy to change the
start or end offset and no data copying is necessary.

2. Performance via caches.

Each gates performs a single "step" in packet processing, and that
step fits in the cache footprint (on the 040, that is). A gate gets a
Iist of packets because this allows us to stay in the i-cache.

A buffer's destination (within the router) is written into buffer so that
the forwarding code does not have to waste time clipping packets out
of the list to send to different destinations.

3. Data packet accesses.

The FRE-1 and -2 provide HW assist to make packet headers faster
to access. This is done by mapping SRAM onto portions of the buffer
space (where the headers live) and onto the buffer headers.

4. Multi-slot forwarding issues.

The destination stored in ~packet is a 32-bit "gate handle" that
describes both the destination slot(s} and process. The protocol can
do a lookup and get a 32-bit result which it doesn't have to interpret.
The OS does the interpretation about what this means.

5. High availability.

Gate handles and mappings are used to track the existance of other
processes in the router.

GAME provides resource tracking in order to clean up resources
when a process dies.

GAME maintains parent/child relationships 'between gates. Only the
offending gate and its offspring are terminated upon software
failures.

6. Dynamic reconfiguration.

Basically the same as high availability. If gates restart, only that
portion of the gate hierarchy is affected.

7. Internal code structure.

Gates are lightweight and context switching is fast. This, along with
the ancestral hierarchy and resource tracking, allows software
isolation.

e & ~ G • e • • • e • • • • • • • • • • • e
Chapter 1 GAME History e

3. What's changed?

Some things that were not considered:

1. zero-packet-Ioss: high throughput numbers are useless if you
drop a lot of packets along the way. the effects of the control
path on the forwarding path (both use the same CPU) had to be
taken into accounL We now do a lot of painstaking work to
reduce the run times of the control path. In some cases (ANS),
we locate the control processes on separate, non-forwarding
slots.

2. application portability: GAME is not an easy platform to port to.
Several packages have been ported to GAME with varying levels
of success.

3. Gates are not as ·cheap" as once thought. With the advent of
high density link modules, such as the MCn, protocols that
used lots of processes per interface broke.

•

Guide Name 1-7 •

1. definitions

• • • • • • • • • • • • • e • • • • • • • •
Chapter 1 Concepts: GAME •

GAME 101

Chapter 1 Concepts: GAME
Approximate time to cover: 15 minutes.

GAME: Gate Access Management Entity

Gate: a processing entity within GAME similar to a process or thread in
other operating systems, but significantly less .~te

•

2. Properties of GAME

multi-process OS - thousands of gates

multi-processor -

loosely coupled: inter-slot communications via messages

tightly coupled: multiple CPUs on same slot (SMP)

non-preemptive - gates run to completion or until they give up the CPU

FIFO scheduling - no priorities (except fo~ mappings and some signal
deliveries) hardware and software fault management support and
isolation support for dynamic reconfiguration

TInS IS AN EMBEDDED SYS1EM!!

3. a few comparisons to UNIX

similarities

processes have an ancestral hierarchy

Guide Name 1-1 •

• • • • • • & • • • • • e • • e • • • • • ~

tI Chapter 1 Concepts: GAME

•
differences

no user-mode in GAME. all code runs in supervisory mode with no
protection from other processes

UNIX kernel code doesn't give up the CPU except for interrupts In
GAME, there is no context switching unless a gate gives up the CPU
(except for CPU and hardware exceptions, obviously)

• GAME can handle a large number of threads/processes more
efficiently

• UNIX has process priorities; GAME schedules first-come,
first-served

• UNIX can time-slice; GAME does not time-slice.

• UNIX handles device interrupts asynchronously; GAME only
enablesdevice interrupts at specific times.

• 1-2 Guide Name

• • • • • • • • • e e • • • • • • • • • • •
Chapter 1 Concepts: Gates •

GAME 101

Chapter 1 Concepts: Gates

Approximate time to cover: 3 hours.

Instructor's note: In this section, an adequate explanation of the topics
has to include mention of mappings and scheduling. So, these have to be
defined, but put off detailed questions to the sections that directly address
these topics.

1. attributes of gates

ancestry

a spawned gate becomes a "child" of the creator

spawning gate is the "parent" the "loader" gate lives at the top of the
hierarchy upon gate termination, all offspring also terminate. the parent
of a dyning gate is not notified unless it has mapped the child gate (see
the Mapping section)

identification

a gate ID "names" a gate. there can be multiple instances of a gate
(one per slot)

a gate handle addresses one or more specific instances of a gate (more
on this later)

jj's bad analogy: a gate ID is like saying "Dunkin Donuts". A gate
handle tells which one(s) you are talking about (e.g., on Great Road in
Bedford, comer ofWobum St. and Lowell St. in Lexington ...).

GAME maintains a gate ID table (GID Table): 4 bytes per gate

GATE structure: 128 bytes

•

GU;deName 1-1 •

e e e e e e • e e • • • • • e e • • • • • •
• Chapter 1 Concepts: Gates

"
(make a picture of the gate structure as defined in game/game_pri.h)

The most accessed parts of the structure are in the first cache

line (16 bytes on 040) :

BUF *head; /* outstanding gate message queue */

BUF *tail; /* outstanding gate message queue */

void (*act) (); /* gate's action routine ptr */

/* gate's state data area ptr */

parent, sibling, child links are also included

not allocated for ensigns or davidians (same for everything that follows)

an activation routine: a function that executes in the context of the gate
instance when buffers or signals are delivered

an environment pointer: As far as GAME is concerned, this is just a
32-bit number to pass to the aG..tivation routine. In practice, it's usually a
pointer to a slab of memory allocated by the gate or an ancestor. This
slab is referred to as the gate's environment. One of the reasons a gate

environment is needed because GAME does not allow global datal
variables. (stress: a gate does not necessarily own its environment. If
it doesn't, the env doesn't go away when the gate dies.)

a state: Note that you will not find a "state" variable in the GATE
structure. A gate's state is determined by a number of things, like if it is
has buffers/signals to be delivered, if it is using the CPU, etc.

donnant: The gate is not executing and is not scheduled to run.

awake: The gate has been scheduled for execution due to an event but
has not yet run.

active: The gate is executing. Since the scheduler is non-preemptive,
there is at most one such gate at any given time per CPU.

pended: The gate has voluntarily given up CPU ownership and is
waiting for an un-pending event.

• 1-2 Guide Name

•
Chapter 1 Concepts: Gates •

zombie: The gate has been deactivated but not yet removed from the
system.

resources: a gate can allocate and free:

•
•

memory

buffers

• semaphores

one may think of child gates as resources, but they are notrea1ly "owned"
in the same manner as the above resources.

"mappings" may similarly be thought of as resources, as the gate does
own them.

a gate can also act as a well-known signal handler. while not really a
resource, it is a state associated with the gate

These resources are reclaimed by GAME when a gate instance
tenninates.

Each gate also has one periodic timer.

2~ identification: gate ids and handles

pastein gate handle picture

gate IDs

a gate ID provides a "name" for a gate that can exist anywhere on the box.

a gate ID is 17-bits long

bits 12-0: the Gate Number

bits 16-13: the Keeper's slot number

values:

0: used to identify a well-known gate ID, as defined in include!
known_id.h

•

Guide Name 1-3 •

& & G ~ • • • • • • • • 0 • • • • • • • • •

• Chapter 1 Concepts: Gates

e

1-14: used to identify dynamically allocated gate IDs. the value is
the slot number where the gate ID was allocated. prevents mUltiple slots
from allocating the same GIDs

15: used to identify gate aliases and davidians for aliases, bits 12-9 are
the local slot number for davidians, bits 12-9 are "15".

gate handle

a gate handle contains both a gate ID (name) and its instantiation
infonnation

a gate handle is 32-bits long

bits 16-0: the gate ID

bits 30-17: the slot MAP; a bit mask of slots where this gate is
instantiated

bit 30: slot 1

bit 29: slot 2

bit 17: slot 14

bit 31: FLAG bit.

in mappings, this indicates that the GID is allocated in buffers, this
indicates a reliable transport primitive

the fonnat of a davidian gate handle is slightly different (later)

Note the difference between the keeper ID in a gate ID and slot bit in the slot
map. The keeper ID tells you from which slot's space the GID came from.
The bit in the slot map tells you which slots have an instantiation of the gate.
10 practice, multiple slot instances only occur for well-known gates, which
have a keeper ID of zero, and aliases, which have a keeper ID of 15. For
dynamic gates, the only map bit you will see set is the one corresponding to
the keeper ID.

.. 1-4 Guide Name

& • _ • • • • • e _ • • • • • • • • 0 • • 0

Chapter 1 Concepts: Gates •

Some important macros for processing gate handles

(include/kernel.h and include/game.h)

examining gate ~andles:

GH_IS_LOCAL (gh)is the gate instantiated on my slot?

GH_IS_PRESENT (gh) is the gate instantiated on any slot?

GH_IS_REMOTE (gh) is the gate instantiated on any non-local
slot?

GH_IS_USED (gh)is the GID allocated? (in the GID table)

GH_GET_SLOT_MAP (gh)isolate the slot bits (30-17)

GH_GET_GID {gh)isolate the GID bits (16-0)

GH_IS_ALIAS (gh is this an alias GID?

GH_IS_DAVIDIAN (gh)is this a davidian GH?

setting gate handles:

GH_SET_LOCAL (gid) fom a GH with the local slot bit and the gid

3. 'gate instance management

The ~reqO system call implements almost all aspects of gate instance
management.

GID g_req (GID gid, void (*action)' (void *. BUF *, SIG).

void *environment. u_int32 flags)

gid: the gate ID that the call applies to

G_REQ..NEW_GID: allocates a new gate ID from the slot' s space

G_SELF_ID: the calling gate

A valid gate id (instantiated dynamic gate ID or well-known)

action: routine that is called when the gate instance is activated

G_NOACT: if gid == G_REQ..NEW_GID, create an ensign
gate (more on ensigns later)

4)

Guide Name 1-5 •

e • e • • e • • • e • • • • • • e • • • • •
• Chapter 1 Concepts: Gates
(I

G_DAVIDIAN: if gid == G_RE~NEW_GID, create a davidian
gate (more on davidians later)

G_RE~KILL: terminate the local instance of this gate

A valid function address: the new action routine for the gate instance

environment: A 32-bit value. This is passed to the gate !nstance upon
activation. In practice, this is a pointer to a slab of memory (the
environment) associated with the gate.

flags: optional gate management functions

G_SIG_INI: send an initialization signal (SIG_INI) to a
newly instantiated gate instance

G_RE~INI: send an initialization signal (SIG_INI) to an
existing gate instance (not a good idea to use this)

G_RE~SOLO: perform the soloist election procedure prior
to creating the gate instance (more on soloists later)

(there are some additional flags associated With SMP which will be
discussed in the section on the Scheduler.)

return values:

For all successful calls, the gate ID of the created/modified/terminated
gate instance is returned.

If you tried to kill a gate that is already dead, ~ zero is returned. For
severe errors. the calling gate is tenninated.

Examples:

This is how the IP routing table nlanager (RTM) creates a network
interface (NWIF) gate:

gid = g_req (G_RE~NEW_GID, ip_nwif_init_act, nwif_env,
G_SIG_INI) ;

til 1-6 Guide Name

• • • • • • • 0 0 • 0 0 0 e 0 e e • • • • •
Chapter 1 Concepts: Gates •

Note that the RTM has already allocated the NWlFs environment. The
NWIF gate never changes its action routine or environment (unfortunate
name used for this routine ...).

This is how the RTM starts BGP in both ISP (soloist) and non-ISP modes:

{

{

/* We are in soloist mode, and a soloist is already
running on another * slot, don't start the soloist on the
local slot

*/

returni

}

/* start the soloist BGP */

}

else

{

/* start the replicant BGP */

}

When the BGP init strip runs. it changes both its action routine and
environment:

RTM will kill the BGP gate if it learns that the BGP code base is being
unloaded:

•

Guide Name 1-7 •

e • e e e • • • • • • • • • • • • • • • • e
• Chapter 1 Concepts: Gates

•
4. normal activation

II 1-8

A gate can be activated via its action routine for two reasons:

buffer delivery (multiple buffers can be delivered in a list)

signal delivery (a single signal can be delivered in one activation)

Both cannot happen at the same time. Two separate gate activations will
occur if this is the case.

A gate action routine must be of the following form:

void gate_act (void *environment, BUF *buffers, SIG signal)

environment: a pointer to a slab of memory. as set by the most recent
~reqO call.

buffers: a pointer to a list of buffers that were sent to the gate. or Nfl..

signal: if "buffers" is Nll... the value of the signal delivered to this gate

The type of activation is determined by the value of the "buffers"
parameter. which MUST be checked first. If buffers is NIT.... a signal is
being delivered via the "signal" parameter:

if (buffers)

/* process list of buffers */

}

else

{

/* process signal */

Once activated, the gate holds the CPU until it does one of the following
things:

Guide Name

• • • • • • • • • • • • • • • • 0 • • • • •

Chapter 1 Concepts: Gates "

1. It exits the activation routine. This completes the current
activation of the gate. It will not be activated again until buffers
or a signal is sent to it. If buffers or a Signal were sent during
the current activation, the gate is immediated rescheduled, at
the end of the scheduler queue.

2. It relinquishes the CPU either explicitly or implicitly through a
system call. The gate will go into npended': state until
re-awakened by GAME.

3. It terminates itself either via 9-reqO or a system FAULT. In this
case, GAME cleans up all resources owned by the gate and the
instance no longer exists.

Some important things that will be covered more throughly later:

A gate must "do something" with each buffeLdelivered in an activation.

A gate must not hold the CPU for more than 4ms.

5. Classes of gates

• There are several classes of gates in GAME:

• well-known

• dynamic

• ensigns

• davidians
.• aliases

Well-known gates

usually at or near the top of a subsystem hierarchy of gates ID has to
be fixed so that communication can occur between slots (example: IP
Routing Table Manager) Circuit gates are also well-known (circuit
number + 1024) 1023 IDs available, not including circuit numbers
(about 360 used) The gate ID always has the "keeper" bits set to zero.

Picture: Gate ID, where keeper ID is zero

Dynamic gates

te'

Guide Name 1-9 •

D R e 8 e e e 8 • • e ~ e e e • e • • .0.

v Chapter 1 Concepts: Gates

e

comprise the bulk of running gate instances in a system 8191 gate IDs
per slot

The gate ID always has the "keeper" bits set to the slot number.

Picture: Gate ID, keeper ID is slot number

Ensign gates

Originally created for the MIB service to represent states in the MIB
(e.g., the current values of the read/write objects in a row of a table). The
name was derived from the usage - it's a "flag" to indicate the presence
of something.

Allocates a gate ID but does not create an instance

Can be used to represent state (e.g. Mm service)

Visible across slots via mappings

Not hierarchically attached to creator gate (no GATE structure)

Therefore, GAME cannot reclaim ensigns if the creator dies (not a
problem with MIB service - whole slot resets anyway)

Uses same GID pool as dynamic gates (well-known IDs can't be
ensigns).

The gate ID always has the "keeper" bits set to the slot number.

to create:

to kill:

Davidian gates

a lot like ensigns except:

• a whole lot more are available (about 8 Million per slot)

11> 1-10 Guide Name

6. soloists

e •
Chapter 1 Concepts: Gates 0

• Not visible across slots via mappings

• Invented to replace ensigns for the MIB service:

Davidians allow representation of many more "states".

Davidians don't use/waste the slot's limited dynamic gate ID space.

Gate Handle: slot map space is used for extention of the Gate ID

Gate ID: keeper bits set to 15; bits 12-9 of gate number are also 15

(picture)

to create:

davidian-9'id = g_req (G_RE~NEW_GID, G_DAVIDIAN, 0, 0);

to kill:

Aliases

Used to group instantiated gates. When a message gets sent to an alias,
a copy of that message is made for each member of the alias. This works
only for unreliable messaging. Reliable messaging to aliases isn't
supported. (covered throughly later)

In practice, only well-known gates and aliases will appear with instances
on multiple slots.

Some well-known GAME gates require that only one instance runs in the
box at a time.

Examples:

• circuit gates (multi-line scenario)

• Technician Interface (TI)

• OSPF

• BGP in ISP-mode

~

Guide Name 1-11 •

e ~ e ~ 0 e e Q • 0 c e & & & e e e eo. 0

~ Chapter 1 Concepts: Gates

•
When a gate wishes to create a soloist, it must first ensure that the gate
does not exist currently on any other slot. This is done via a mapping
(covered exhaustively soon!). If the gate does not exist on another slot.
the ~req call is made with the G_RE<LSOLO flag to start the soloist
election.

(BGP example above shows this!)

GAME formats a message that contains the proposed gate handle of the
soloist and the gate handle of the prospective parent of that soloist (the
one that called ~req). This is sent to the KEEPER gate on every live slot
(including the local slot).

When each KEEPER gate receives this message, it first checks to see if
the GID is locally instantiated. If so, it replies to the message with the
gate handle for that gate PLUS the FLAG bit (bit 31 - this is key later!).
Otherwise, it checks to see if there is a soloist election active for that GID.
If so, it replies with the gate handle of the FIRST parent gate that it heard
from. If there is no current election, a structure is created to represent
the soloist election for that GID. The KEEPER replies with the parent
gate handle it received in the message.

The calling slot examines the replies, ORing together the slot bits of the
gate handles. If the local slot is the only bit set or the lowest numbered
(leftmost) slot bit set, the soloist gate is created. After the election is lost
or the soloist gate is created, another message is sent to all KEEPER gates
to clean up the soloist election state.

If one of the KEEPER gates indicated that it had a local instantiation of
the GID, the setting of bit 31 prevents any other slot from winning the
election. This is because bit 31 looks like slot "0", which is a lower slot
number than a real slot.

show gate handle picture again, indicating the slot bits:

bit 31: FLAG bit (acts like "slot 0")

bit 30: slot 1

bit 29: slot 2

5 1-12 Guide Name

7. aliases

•
Chapter 1 Concepts: Gates _

etc.

Dueling soloists: There is a chance, especially on a busy router, that the
soloist election mechanism will fail and allow multiple soloists to be
created. This was first discovered when multiple TI processes would arise
and try to control the console, a situation known as "dueling TIs" .

.
To guard against this, a gatethatcreates a soloist must maintain a mapping
of the soloist GID and kill its local soloist if another soloist appears that
has a lower slot number (details when we get into mappings).

Note: Soloist elections are independent per Gate 10.

Note: In a booting router with one flash card, all soloists appear on the slot
with the flash card (unless that slot is not "eligible" to run a particular soloist
- controlled by configuration information). This is merely because that slot
gets the code running first.

GAME can associate a single gate ID with multiple gate instances on the
same slot and across slots. This allows unreliable buffer delivery to
multiple gates using a single delivery primitive. A gate can become a
member of an alias using the call ~aliasO. The same call is used to
remove a gate as a member. Members can b,e added or removed only on
the slot where the "real" gate instance lives. "Note that the member gate
itself does not have to be the one to call ~aliasO.

Gate ID of an alias:

keeper ID contains 15

bits 12-9 contain the slot number of the allocating slot
(i.e., the keeper bits shifted right 4 bits).

When the first member of an alias is added on a slot, GAME will "turn
on" that slot bit for any mappings of the alias gate id (GID_GAME is a

•

Guide Name 1·13 •

e e & & • e • e & ~ e e e e e e e • e e • e
e Chapter 1 Concepts: Gates

•

• 1-14

legitimate first member). When all members are removed from the alias
on a slot, GAME "turns off' the slot bit.

WARNING: When all members are removed from the slot on"which the alias
was created, GAME frees the alias gate ID. Therefore, when using aliases
across slots, the recommended method is to use "aliases of aliases", as
described below.

GID g_alias (GID alias, GID gid, u_int32 model

alias:

G_ALIAS_NEW: allocate a new alias GID

G_ALIAS_ALL: requests removal from all aliases ("mode" must
be G_ALIAS_DELl existing alias ID

gid:

GID of "real" member gate instantiation on local slot

GID _GAME: this can be used as the first member when creating an alias
in order to create a "permanent"· alias that stays around even when all of
the "real" members have gone away.

mode:

G_ALIAS_KILL: destroy entire alias set on the local slot

G_ALIAS_DEL: delete member from a given alias set or all
sets

G_ALIAS_COUNT: count and return number of members of an alias

G_ALIAS_NUM: returns the number of free aliases remaining
on the local slot .

G_ALIAS_ALIAS: add an alias to an alias (see below)

The idea of adding an alias to an alias was created for the bridge code to
simplify multi-slot alias maintenance. There are a couple of caveats about
an alias that contains aliases as members:

It can only have one alias as a member on a given slot.

Guide Name

• e e e _ Q • e 9 • • • • e • e • e e • • e
Chapter 1 Concepts: Gates 6

It cannot have any "real" gates as members on that slot.

Here's how the bridge uses it:

All of the bridge encaps gates on a slot are added to a local alias. Suppose
we have slots 2, 3, and 4, and they create the aliases A2, A3, and A4,
respectively. All of slot 2's encaps gates are members of A2. Ditto for
slot 3 I A3 and slot 41 A4.

The alias IDs are broadcasted to the bridge gates on each slot, and each
slot then adds its local alias to the other slots' aliases:

slot 2: adds.A2 to aliases A3 and A4

slot 3: adds A3 to aliases A2 and A4

slot 4: adds A4 to aliases A2 and A3

When slot 2 wants to flood a packet, it sends it to alias A2. Since all of
the local encaps gates belong to A2, they each get a copy of the packet.
Since A3_ and A4 belong to A2, a copy of the packet is sent to slots 3 and
4. When the packet arrives on the remote slot, it is replicated and sent to
all of the members of the local alias.

Example:

This creates a local bridge flood alias. Note the use of GID_GAME as
the first member. This ensures that the alias will not go away. Since
GID _GAME is 0, no packets actually get delivered to this "member".

dp_env->enet_flood_gh = g_alias (G_ALIAS_NEW, GID_GAME,
G_ALIAS_ADD) ;

This call adds an "encaps gate" to an existing flood alias:

g_alias {GH_GET_GID (dp_env->enet_flood~h),

GH_GET_GID (ccb->lb_encaps [enet_indexJ . isap_handle) ,

G_ALIAS_ADD) ;

Members are never explicitly removed from this alias. GAME removes
the encaps gates if they die.

Here's how the local alias is added to the flood alias of another slot:

e

Guide Name 1-15 •

& ~ e & 0 & • & • & e Q • • • e • e • • • •
eo Chapter 1 Concepts: Gates

e

switch (flood_info->domain_id)

break;

{

}

There is a special version of the unreliable buffer delivery primitive
(~xmcim) that sends buffers to all members of an alias except one (the
exception is usually associated with the sender). This is covered in the
Inter-Gate Communication section.

• 1-16 Guide Name

e e •
Chapter 1 Concepts: Mappings •

GAME 101

Chapter 1 Concepts: Mappings
Approximate time to cover: 2.5 hours.

Instructor's notes: you will typically have to jump ah~ into the examples
to answer questions. Also, scheduling has to be mentioned.

•

1. Whatls a mapping?

2. Why?

A mapping is a way that a gate can keep track of the state of any and all
instances of a particular gate ID. Simply put, a.mapping lets a gate know
when an instance of some gate is created or tenninated.

Mappings are the primary way to deal with software and hardware
reconfigurations and failures.

Examples:

MIB service uses davidians to represent current database state Instances
of a well-known gates map each ot.~er to learn "slot-up/down" events
Per-interface gates map the underlying circuit to learn about "circuit up/
down" events Parent gates map their children to learn of their demise and
possibly do clean-up and restart. .

3. Function Call

A mapping exists independently in the gate of its creator
(somet~es known as the ·owner" of the mapping). It is
created via the g.-map () call:

void g_map (GID gid, GH *gh, void (*map_activation) (GH *,
GH))

gid: the gate ID to map

Guide Name 1-1 •

~ ~ ~ • • ~ e e e e & & e e & e e & & • & •
ill Chapter 1 Concepts: Mappings

•
gh: a pointer to the local copy of a gate handle

map_activation: "mapping activation" routine to call when
a change occurs

G_NO~CT: no activation routine

G_UNMAP: terminate an existing mapping

G_CURRENT_GH: just return the current gate handle
without creating a mapping

~ valid function address: the activation routine for
the mapping

4. Mapping to retrieve the current GH

It 1-2

Sometimes a gate just needs to know where the current instances of a gate
exist. This is normally used if you want to send a message to a gate whose
state you don't track continuously.

GAME writes the gate handle for some~id at the time of the call into
env->some~h.

GAME maintains no further state.

This example is from the RSVP Interface (RIP) gate, where buffers have
to be delivered to a control gate (GID_RSVP _CONTROL) on one slot
(the soloist) only. A second gate (GID_RSVP _SOLO) exists to mark this
slot.

/* find out where is the SOLOIST */ g_map(GID_RSVP_SOLO,
&solo_control_gh, G_CURRENT_GH);

/* send these buffers to the CONTROL gate on the soloist slot
*/ solo_control_gh = (solo_control_gh & -GID_RSVP_SOLO)
I GID_RSVP_CONTROL; rif_env->fwdlist_id = g_fwd_list
(solo_control_gh, fwd_blist, fwd_blist_tail, 0);

Guide Name

•
Chapter 1 Concepts: Mappings 0

5. Mapping with no activation routine:

A gate can instruct GAME to maintain a gate handle for a particular gate
id, updating that gate handle whenever there is a state change. This is
norrnally used when a gate sends messages to instances of a well-known
gate but does not need to do any processing based on the up/down state
transitions of those gate instances.

GAME creates state regarding the mapping, including:

the gate handle pointer (*)

GID of the mapped gate (*)

GID of the owner gate

the mapping activation routine (G_NOACT, in this case)

(*) These are the items that index the mapping state. Therefore you cannot
have multiple owner gates mapping the same target gate using the same
physical gate handle.

Upon initial mapping, GAME fills in gate handle:

Gate ID: equals the gate ID requested

Slot map: each bit is set if corresponding slot contains an
instance of the gate

FLAG bit: set if any slot has allocated the GID

caveats:

ensign gates: slot bits appear for remote instances even though there really
is no "instance" of the gate on that slot. this was the only way to get
multi-slot mappings of ensign gates to work

davidians: slot map field is not applicable (part of gate ID)

Game updates the FLAG and slot bits whenever there is a state change:

instance terminates: slot bit is cleared instance created: slot bit is set

•

Guide Name 1-3 •

eo. • & e & • • • e e • • • & • • e e • •
e Chapter 1 Concepts: Mappings

e

all instances terminate/GID not allocated: FLAG bit reset IMPORTANT:
The memory used to hold the gate handle MUST be in a block

allocated via ~mallocO. The only case where you can use stack space'
for a mapped gate handle is for a G_CURRENT_GH call.

IMPORTANT: When the mapping owner no longer cares about the gate
handle of the mapped gate, it MUST call ~mapO to remove the mapping:

Otherwise, GAME will continue to update the memory where the gate
handle was located. This is particularly dangerous if that memory was
freed and then allocated by another gate!

GAME will clean up after mappings if the owner dies.

This example is from the IP Policy gate, which doesn't really care if

BGP or OSPF are up, other than to be able to send messages about changes
in routing policies:

g_map (GID_IP_OSPF. &(ip-policy_env->ospf~h). G_NOACT);

g_map (GID_BGP. &(ip-policy_env->Dgp_gh). G_NOACT);

6. Mapping with an activation routine

11\ 1-4

Usually, a mapping is done because a gate wan~ to perform specific
actions when another gate instance goes up or down. This can be done
by specifying an action routine to execute upon a state change.

GAME again creates mapping state, including the action routine.

During the initial gJIlapO call, GAME suspends the current gate context,
creates a temporary gate to run the initial mapping activation, and
executes that gate IMMEDIATELY. This means that
"mappin~activation" runs BEFORE the ~mapO call returns!

A mapping activation routine must be of the following form:

Guide Name

o • eo. • • • e 0 0 • • • • • • • • • e 0

Chapter 1 Concepts: Mappings 1;

mappin~activation (GH *gh, GH new~h)

gh: a pointer to the gate handle, as passed in the second parameter to the
~mapO call new ~h: the new value of the gh

Unlike a mapping without an activation routine, GAME does NOT set
*gh to the new gate handle value. It is up to the activation routine to do
this after comparing the new value to the previous value (to see what
changed). GAME _does_ set *gh equal to the GID (no slot bits set) before
calling the activation routine for the first time. new ~h is set to the current
state of the GID. This will include the FLAG bit (31) if the GID is
allocated on any slot.

Suppose a gate maps GID _DP _INI (16), and that gate currently exists on
slot 2, 3, and 4. The initial activation parameters would be:

*gh Ox00000010

new_gh = Oxb8000010

(GID only; no slot bits set)

(FLAG bit, slots 2-3-4, GID)

Suppose an ensign gate with gate id 16400 (Ox401O) is mapped on slot
2, and that ensign gate is currently allocated (but, obviously, not
instantiated) on slot 2. The initial activation parameters would be:

*gh Ox00004010 (GID only)

new_gh = Ox80004010 (FLAG bi t turned on)

If the mapping is done on another slot:

*gh Ox00004010 (GID only)

new_gh = Oxa0004010 (FLAG bit turned on + slot 2)

The presence of the slot bit is an unfortunate side-effect of being able to
map ensigns across slots. The mapping routine should only check for the
presence of the flag bit (see the GH_IS_USED macro later) and ignore
the slot bits.

From this point on, GAME will call the activation routine every time an
instance of that gate is created or destroyed. For ensigns/davidian, the
routine is called when the GID is allocated or deallocated. Mapping

"

Guide Name 1-5 •

• • ~ • • • • e • 0 • • • • , • ~ • • * • ~

c Chapter 1 Concepts: Mappings
(!

" 1-8

activation routines get scheduled ahead of any other gates scheduled for
buffers or signals (more on this in the Scheduler section).

A single mapping activation for a well-known gate or an alias can contain
MULTIPLE slot bit transitions. For example, a later activation of the
mapping for GID _DP _INI might receive the parameters:

*gh = Oxb8000010 (FLAG bit, slots 2-3-4, GID)

new_gh = Oxb2000010 (slot 4 instance went away,
slot 6 instance came alive)
IMPORTANf: The memory used to hold the gate handle MUST be in a
block allocated via ~mallocO. The only case where you can use stack
space for a mapped gate handle is for a G_CURRENT_GH call.

IMPORTANf: When the mapping owner no longer cares about the state
of the mapped gate, it MUST call ~mapO to remove the mapping:

Otherwise, GAME will continue to call the mapping activation routine.
If the unmap is done _ within_ the mapping routine itself (not uncommon),
the activation terminates before the return from ~mapO. That's right,
you don't return.

Within a mapping activation routine, there are a collection of macros that
are used to examine and compare the old *gh and the new ~h:

GH_IS_USED (new_gh)is this ensign/davidian allocated?

GH_BECAME_LOCAL (*gh, new_gh) was an instance created on
this slot?

GH_BECAME_REMOTE (*gh, new_gh) was an instance created on
another slot?

GH_BECAME_PRESENT (*gh, new_gh) was an instance created on
any slot?

GH_CEASED_LOCAL (*gh, new_gh) did an instance die on this
slot?

GH_CEASED_REMOTE (*gh, new-9h) did an instance die on
another slot?

GH_CEASED_PRESENT (*gh, new_gh) did an instance die on any
slot?

Guide Name

e ~ • • • 0 • • • • • • • • • • • • • • • •

Chapter 1 Concepts: Mappings •

The return values of these macros are the slot bits of the applicable gate
instances.

When a mapping activation routine runs. it is a separate "thread" from
the base context of the gate. In some cases. resources allocated by the
mapping activation belong to the owner gate. In other cases. the
temporary mapping gate owns them:

Memory: All allocated memory becomes property of the owner gate.
Buffers: Transient buffers are part of the mapping gate. However. any
use of the private pools (e.g .• Lbsave) are in the context of the owner
gate. A mapping gate cannot exit with buffers on its transient pool. The
owner gate will be terminated if this happens: (Note that this is a more
drastic punishment than if a normal gate activation orphans buffers. In
that case, only a message is logged.).

Semaphores: A created semaphore is the owner's property. A token
acquired by a mapping gate belongs to that gate.

g...reqO calls: Any gates created in a mapping routine are children of the
owner gate.

g...mapO calls: Any mappings created in a mapping routine are owned by .
the owner gate.

LisrO calls: Any signal handling requested in a mapping routine is
registered in the context of the owner gate.

Also:

If you call LmyidO. you get the owner's gate ID.

If you call LenvO, you get a pointer to the owner's environment. A
mapping gate cannot have its own environment.

A single gate can have its base context and several mapping contexts in
the active/pending states at once. Watch out for races if accessing data
structures shared between these contexts! Semaphores or other locking
mechanisms are necessary in these case (and the know-how to use them!).

e

Guide Name 1-7 •

& e ~ e • e e e e e & • e e e e e e e ~ e e
" Chapter 1 Concepts: Mappings

~

Finally, before a mapping activation routine exits, it must update the
allocated gate handle:

7. Mapping an alias

Since alias gate instances don't really exist, GAME handles the mapping
of alias gate IDs somewhat different from "real" gates. However, to the
application using the gate handle supplied by a mapping, it doesn't make
any difference.

When the first gate on a slot joins an alias, GAME considers this an "up"
event for the alias instance on that slot and turns on the slot bit in the gate
handles for any mappings of the alias gid. Further member additions on
that slot do not cause any state change. When the last member removes
itselffrom the alias on a slot, game considers this a "down" event and it
removes the slot bit from the gate handles for any mappings of the alias
gid.

Example: Suppose, on slot 2, ~alias() is called to add gate A to alias
OxOOOl e40 1 , the first member on the slot and on the box. Any gate
mapping gid OxOOOle401 would see the following state change:

*gh = OxOOOle401, new_gh = Ox2001e401

Gates B, C, and D also join on slot 2. No state change occurs.

Now suppose gate E on slot 5 was added:

*gh = Ox2001e401, new_gh = Ox2401e401

Finally, gate E on slot 5 is removed:

*gh = Ox2401e401, new_gh = Ox2001e401

8. Some frequently asked questions.

*** Can I map "myself"?

$ 1-8 Guide Name

e & •
Chapter 1 Concepts: Mappings c

Yes. Self-mappings are not only allowed but are even subject of a special
treatment. They execute ahead <;>f all the other mappings that may be
triggering at the same time and ahead of gate termination clean-up. Due
to the fact that a it is owned by a gate that has been marked "dead" and
will soon be removed from the system, a self-mapping is restricted in
what it can do. For instance, it may not pend, which}t would do if it tried
to create a gate or a mapping, attempt to allocate a buffer with a pending
option, call !LdelayO or g...idleO, or send a reliable message. It may send
an unreliable message, however. Usually, all a self-mapping does is log
a message andlor update some MIB statistics.

*** Can I map across slots?

Yes. Mappings were invented specifically to track gate state changes
occurring on all slots and to update gate pandles.

*** Can I map "ensign" and "davidian" gates?

Yes. Ensign and davidian gates were invented specifically to be mapped.
There is little else they can do for you.

*** If I have two mappings, which one runs first?

The order of ~pping triggering and execution is inherently
unpredictable. GAME does not specify which mappings run first except
for the self-mapping's special treatment described above.

*** Will a mapping trigger while the owner gate pends?

Yes. Mappings with activation routines exec.ute as temporary gates which
are children of the mapping owner gate. After the initial activation, the
rest of triggered mapping life is just a life of a gate. This may also lead
to certain race conditions when the triggered mapping affects an
environment shared with its owner gate (or other gates, for that matter).

*** Can my mapping activation combine several state changes?

Yes. In larger configurations it is possible, even likely,
that one trigger activation will cover almost-simultaneous
gate instantiation on several slots. Note that one given
mapping activation may SIMULTANEOUSLY cover gate instance
creation and disappearance on different slots (both
GH_BECAME_PRESENT and GH_CEASED_PRESENT may be non-zero!).

e

Guide Name 1-9 •

& & • • ~ • • • & e • e • • • • • • • • • •
• Chapter 1 Concepts: Mappings

•

*** Will my mapping run twice with the same
"new_gh"?
No. This used to be possible, but it has been fixed. However, your
mapping routines should work correctly if this should happen (i.e.,

bulletproofing is a good thing).

*** Can I miss a trigger?

No. The events for a map trigger are queued up and the mapping is
guaranteed to see every transition. However, if triggerings are queued
up, the state given ~ new...gh is not necesarily the current state.

*** What happens if I do a suicide in a mapping routine?

This terminates the current mapping, the owner gate, and all other
mappings. Effectively, all context related to the owner gate is terminated.
This is true for any gate termination encountered by a mapping gate (other
than a normal, clean exit).

9. Activation routines for well-known gates .

til 1-10

. A mapping of a well-known gate is usually one that hangs around for the
life of the owner. The typical use is within a subsystem. It allows the
local subsystem component to learn when the subsystem comes up or
goes down on other slots. The "up" processing usually involves
synchronizing the data between slots. "Down" processing cleans up
information learned from that slot.

A side-effect of the mapping is that it provides a gate handle to use when
the subsystem wants to send something to all other slots. The local slot
bit is first removed via an AND with -G_MY_SLOT_MASK.

There are two approaches that are used for well-known gate mappings
(actually, this applies to all mappings) to deal with synchronization issues
with the base gate context and other mapping contexts. Each of these has
its pros and cons:

Guide Name

• • • • eo. • • • • • • • • • • • • • • •
Chapter 1 Concepts: Mappings 0

1. The mapping does nothing other than send a data signal to the
owner gate (most common approach).

Advantages:

You don't have to.wony about multiple gate threads accessing and
modifying the same data.

The gate handle maintenance is separated from the up/down processing,
resulting in timely updates of the gate handle (although, in some cases,
having the GH out of sync with the up/down processing can cause
problems).

This fits in well with how GAME expects mappings to act (short lived,
no pending).

Disadvantages:

A temporary resource (memory) has to be allocated.

The event does not get processed until the base gate context is scheduled
for the signal. If the gate is currently active or has another activation on

. the scheduler queue, it may not get the signal in a timely fashion.

The base gate context becomes a bottleneck. having to do all of the
normal buffer and signal processing along with the mapping events.

The Irnleonitude of these downsides all depends on the workload of the
gate. It may not matter if there is little work to do. In any case, if the
developer has no experience in developing multi-threaded code (the test:
do you know what a "critical section" is?), they must use this approach.

The well known gate GID_IP _RTM uses this approach. It maps a second
well-known gate called GID _IP _RTM_ UP to detennine connectivity to
its peers on other slots. The mapping routine:

void

ip_rtm_up_self_map(gh, new_gh)

GH *ghi

GH neW-9'hi

•

Guide Name 1-11 •

• • & ~ • 0 e • • • • • • • • • • • • • • •
" Chapter 1 Concepts: Mappings

co

1-12

char cbuf [80];

RTM_ENV *rtm_env = (RTM_ENV *) g_env () ;

if (GH_CEASED_LOCAL(*gh, new_gh))

{

/* If local GID_IP_RTM_UP panic'ed,. local RTM must go
down. *

*

* In the future this may change in the cases, when
problems *

* in RECEIVING new information were detected on the
local slot,*

* s.t. by bouncing local IP_RTM_UP gate (requesting
info from *

* remote slots) can cure the problem. */

}

else

/ * correct for rtm_env->gh * /

sprintf (cbuf, ·RTM up self map old %lx, new %lx·,
*gh, new_gh);

/* Process remote slots going down, as if in
ip_rtm_self_map(} */

Guide Name

/* Process any slot that comes up: local or remote

if (GH_CEASED_REMOTE{*gh, new_gh) II

GH_BECAME_PRESENT(*gh, new-9h))

*/

& e • ~ • & • 0 0 0 • • eo. • • • • • 0 •

Chapter 1 Concepts: Mappings s
¢

}

BAD CODING PRACTICE ALERT!!! The log message should be
defined in an EDL file and not dynamically produced within the code.
This wastes CPU and log space, and the string is not a candidate for
compression in the image file.

2. Perform all necessary processing in the mapping thread.

Advantages:

Allows concurrent processing of the base gate context and up/down
processing, avoiding a bottleneck in the base gate.

Does not require any messaging to the main gate context.

Up/down processing occurs in a timely manner.

Disadvantages:

If the mapping pends, this mapping's execution can overlap with
activations of the base gate and other mappings of the gate.

This usually requires access/modification of data structures by mUltiple
threads. This can be dangerous if not done by experience hands andlor
if the code is not documented well.

Guide Name 1-13 •

~ & * e • • • • e e Q 0 • • e e e e e e • •
e Chapter 1 Concepts: Mappings

e

., 1-14

Long lived up/down processing that has to give up the CPU delays the
reception of further mapping activations. The gate handle can get stale.

BGP uses this approach. The (somewhat abbreviated) activation routine:

void

GH*gh;

{

/* BGP gate's environment */

/* see if we're dying */

/* set our mib state to not-present and log our goodbye */

if (BGP_LEVEL_LOG(bgp_env, INFO_MSG)}

g_log {BGP_TERM_MSG};

/* some counter zeroing edited-out here ... */

} /* end if dying locally */

else

{

/* some soloist stuff edited out here ... */

/* check for remote instances dying - we have to clean up
its routes */

if {GH_CEASED_REMOTE{*gh, new-9'h} && BGP_LEVEL_LOG(bgp_env,
WARNING_MSG} }

Guide Name

• • • • • • • • • • • • • • e • • • • • • •
Chapter 1 Concepts: Mappings III

bgp_slot_down (GH_CEASED_REMOTE (*gh, new_gh»;

} /* end if died remotely */

/* check for new instances - we have to send them update
messages */

{

} /* end if remote instance came alive * /

} /* end else didn't die locally */

/* save the gate handle */

BAD COnING PRACTICE ALERT: The values for
GH_CEASED_REMOTE and GH_BECAME_REMOTE should be
cached in stack variables. (For various reasons, mostly due to access of
hardware registers, the compiler doesn't optimize this).

10. Activation routines for dynamic gates.

Mappings of dynamic gates are different from well-known gates in two
important respects:

The mapped gate is only instantiated on on~ slot. In most cases, this is
the local slot.

When the mapped gate dies, the mapping owner un-maps the gate. TInS
IS CRITICAL, as the GID will be recycled.

Always unmap a ceased dynamic gate in the mapping routine itself, even
if a signal or a message is sent to the owner gate. The reasons are:

1. Not unmapping causes an annoying "mapping survived"
message to appear in the log. This wastes precious log space.

2. Not unmapping means that the base gate context must do the
unmap.

e

Guide Name 1-15 •

& • 0 & ~ • • & • e e e e e eo. • • & • •
l\ Chapter 1 Concepts: Mappings

e

o 1-16

This is not as intuitive as doing it in the mapping routine, and
experience has shown that people often forget about the unmapping
or some conditional code gets added later that skips the unmapping.
A lingering mapped dynamic gate is not a fun thing to debug.

When unmapping a ceased dynamic gate in the mapping routine, always
use the "new-..,gh" argument to derive the gate id and the "gh" argument
for the memory pointer:

g_map (GH_GET_GID(new_gh), gh, G_UNMAP);

and not the a gid or gh derived from gate's environment or a casted "*gh"
pointer. The reason is that GAME guarantees that "new -..,gh" and "gh"
are valid. "*gh" and the environment could have been changed by another
gate or thread or could even be referencing memory l!0t owned.

Often, the only reason for mapping a dynamic gate is to restart that gate
if it dies. This is the case when an IP NWIF gate maps its forwarding
cache gate, as shown here. Note that there will be no return from the
G_ UNMAP call!

void

GH *gh;

GID gid;

GID old_gid;

Guide Name

• • • e _ • e • ~ • 0 0 • 0 0 0 • • • • • •

Chapter 1 Concepts: Mappings •

nwif_env->fft = NIL (TBL); /* No more FFT */

nwif_env->cfg_rec->wfIpInterfaceCacheNetworks = 0;

gid = g_req (G_REQ..NEW_GID, ip_nwif_rt_cache_init, nwif_env,
G_SIG_INI) ; •

/* un-map the mapping that got us here ! */

}

A non-obvious characteristic of this mapping routine: When the ~mapO
call is made to map the new gid, the current mapping gate context pends
and _anothec is immediately scheduled to process the first activation for
the newgid.

BAD CODING PRACTICE ALERT: As mentioned previously, the
G_UNMAP call should use the "gh" parameter instead of the address of
the gate handle in the environment. Using" gh" would run faster, too! .

BAD CODING PRACTICE ALERT: This one isn't so bad! There's no
need for the GH_BECAME_LOCAL check. *gh can be set
unconditionally at the end of the routine.

Other dynamic gate mappings are more complicated, and the developer
often has to make the choice of sending a data signal to the base context
or deal with the multi-thread situation. This snippet is BGP's mapping
of one of its peer gates (highly edited again). Note the use of a
non-so-ensign ensign gate (i.e., it has a real, but unused, activation
routine) to indicate that cleanup is happening for this peer. This prevents
the base context from re-starting this peer until the cleanup is finished.

void

bgp_map.....peer(gh, new_gh)

GH *gh;

..

Guide Name 1-17 •

@ GO. 0 e • • • e • • • • e • • • • • • •
e Chapter 1 Concepts: Mappings

e

1-18

BGP_ENV*bgp_env; /* BGP gate's environment */

BGPN_PEER*bgpn-peer; /* BGP peer structure */

BGP_CLEANUP*bgp_cleanup;/* cleanup block */

BGP_CLEANUP*prev_cleanup;/* previous cleanup block */

/* gate id of connection gate */

char message [128];

/* see if the connection gate died */

bgp_env= (BGP_ENV *) g_env ();

if(! (GH_IS_LOCAL{bgp_env->self~h) »

/* bgp main gate has just died, unmap this mapping */

g_map {GH_GET_GID (new_gh), gh, G_UNMAP}; /* does not return
*/

}

/*

* create an "ensign" gate and structure that indicates

* we're busy cleaning this up. a t tach it to the bgp env

*/

bgp_cleanup->ensign_gid = g_req {G_RE~NEW_GID,
bgp_dummy_act,

Guide Name

" • " e
Chapter 1

" e • 0: 0: 0: "
Concepts: Mappings ~

bgpn~eer->flags 1= PEER_IS_DOWN;

if (bgpn-peer->flags & IBGP_PEER)

{

--bgp_env->ibgp-peersj

}

else

--bgp_env->ebgp-peersj

IP_PRINT_ADDRESS (BGP_PEER_LOCAL_IP(bgpn-peer»,

P_PRINT_ADDRESS (BGP_PEER_REMOTE_IP(bgpn-peer», *gh) j

/* prevent RIB processing by other mappings */

/* LOTS of cleanup code edited out here */

conn_gid = GH_GET_GID (bgpn-peer->peer_recv-sh);

/* clean up our ·cleanup· block and kill the assocated gate * /

for (prev_cleanup = (BGP_CLEANUP *)
(&bgp_env->bgpn_cleanup)j

prev _cleanup->next ! = bgp_c1 eanup ;

prev_cleanup = prev_cleanup->next)

i /* do nothing */

prev_cleanup->next = bgp_cleanup->nextj

g_req (bgp_cleanup->ensign_gid, G_RE~KILL, O,G_NO_SIG_INI) j

g_mfree (bgp_cleanup)i

..

Guide Name 1-19 •

& e & ~ & e ~ e e • e • & e e e e e e • e •
e Chapter 1 Concepts: Mappings

c

«I 1-20

if«bgpn-peer->flags & PEER_IS_DOWN) &&

queue_isempty(&bgpn-peer->path_queue»

/* no use for it - remove from the table */

if (u_delete (bgp_env->bgp-peers, (OCTET
*)BGP_PEER_KEY(bgpn-peer),

{

/* free the semaphore (after the KILL for CR16894) */

BGP_FREE_SEMA (bgp_env->bgp_semaphore);

/* unmap this mapping */

} /* end if not present */

/* save the gate handle */

BAD CODING PRACTICE ALERT: The gate id for the G_UNMAP
should be derived from "new~h".

BAD CODING PRACTICE ALERT: It's a good idea to zero out pointers
after their referenced memory had been freed. It catches the bugs a lot
faster. In this case, bgp_c1eanup should be set zero after the 1LmfreeO.

Also: there is really no reason for the "self~h" check. GAME will not
schedule the owner gate of a mapping if that owner gate has been killed.

Guide Name

~ • • • • • • • • C • G • • • • G • • • • •
Chapter 1 Concepts: Mappings •

10. Activation routines for ensignldavidian gates.

An ensignldavidian mapping is somewhat like a dynamic gate mapping
for the two reasons listed in the previous section. It differs in that the
mapping activation routine can only examine the FLAG bit (31) of the
gate handle to determine if the gate is "up" (allocateq) or not. You usually
see this type of mapping in association with a MIB resource.

This example is the BGP gate's mapping of the davidian gate representing
the wfBgpPeerEntry object (when this mapping triggers down, it means
a new row of this table exists). When this code was written, the MIB still
used ensigns (davidians hadn't been invented yet), so the comments are
wrong.

Note that when the existing davidian dies, the MIB is queried for a the
davidian representing the new state. The new mapping is set up before
this one exits (via G_UNMAP). Again, you don't want to confuse the
old and new GIDs!

void

bgp_map_wfBgpPeerEntry_obj{gh, new_gh)

GH *gh;

{

/* ptr to BGP's environment */

OBJ_IDwfBgpPeerEntry_obj_id;/* object id of wfBgpPeerEntry
*/

INST_IDwfBgpPeerEntry_inst_id;/* instance id of
wfBgpPeerEntry * /

/* see if the ensign gate died */

<:

Guide Name 1-21 •

., • '" Q 4'<

G Chapter 1

•

1-22

4'< " • " " " " " " " e . "
Concepts: Mappings

/* bgp main gate has just died, unmap this mapping */

g_map {GH_GET_GID (new_gh), gh, G_UNMAP}; /* does not return
*/

/* re-bind to the object and re-map */

mib_ascii2obj
(BGP_PEER_ENTRY_ASCII_ID,wfBgpPeerEntry_obj_id);

bgp_env->wfBgpPeerEntry_obj_gh =
mib_bind_obj (wfBgpPeerEntry_obj_id, PRIMARY);

g_map (bgp_env->wfBgpPeerEntry_obj-9h,

& (bgp_env->wfBgpPeerEntry_obj_gh),
bgp_map_wfBgpPeerEntry_obj);

/* process all of the existing instances */

while (mib-get_new_inst (wfBgpPeerEntry_obj_id,
wfBgpPeerEntry_inst_id))

{

bgp_new_wfBgpPeerEntry_inst (bgp_env,
NIL (BGP_CONN_GATE_MAP) ,

wfBgpPeerEntry_obj_id,

wfBgpPeerEntry_inst_id);

}

/* un-map this mapping */

} /* end if ensign gate died */

else

{

/* end else ensign gate didn't die */

Guide Name

• e 0 e e e e e e 0 e e • • • • • e e 0 e e
Chapter 1 Concepts: Mappings "

11. Changing a mapping activation routine.

It's not very common, but you can change the activation routine of an
existing mapping. This is done by calling ~mapO with the new routine:

BOP connection gates do this. They first map the well known TCP gate
with no action routine. If the configuration information is valid, the gate
changes the mapping to use an activation routine (whether the connection
is going active or not).

FALSE)

{

/* remain disabled */

} /* end if validation failed */

/* if the entry is disabled or TCP is not active, we just
hang out */

else if (
(bgp_conn_env->wfBgpPeerEntry_inst->wfBgpPeerDisable --

BGP _PEER_DISABLED) II
(!(GH_IS_LOCAL(bgp_conn_env->tcp_gh» &&

lbgp_conn_env->bgp_env->bgp_soloist) 11

(bgp_conn_env->bgp_env->bgp_soloist &&
!(GH_IS_PRESENT(bgp_conn_env->tcp~h»)

{

/* use a real mapping routine for the TCP gate */

c

Guide Name 1-23 •

· ~ ~ e ~ * • * e • • e e _ e e e • e e e • e
ft Chapter 1 Concepts: Mappings

e

}

else

/* use a real mapping routine for the TCP gate */

12. Soloist mapping by the parent

fj> 1-24

The gate that creates a soloist gate must map the soloist and perform
specific tasks if the soloist appears on mUltiple slots or if all instances of
the gate die.

Specifically, before making the ~reqO call to create a soloist, the
mapping should be done to see if the soloist exists on another slot. If so,
no attempt should be made to create the soloist.

If the mapping routine ever detects more than one slot bit set in the soloist's
gate handle, and if one of those bits is the local slot, the soloist should be
terminated if the local slot bit is not the lowest slot bit (leftmost) in the
gate handle.

If a mapping activation occurs where the new gate handle has no slot bits
set, it is time to start a new soloist election. The mapping routine needs
to make the ~reqO call to start the new soloist.

Here's an example (again from BGP) of how to do a soloist mapping from
the parent gate. Note that the "real" mapping activation routine sends a
message to the base RTM context. This is the routine that runs in the base

Guide Name

" " " " " Chapter 1
"

Concepts: Mappings _

context. Also note that BGP can run in both soloist and replicant mode
(as indicated by rtm_env->bgp_soloist).

void

ip_rtm_map_chg_bgp (gh, old_gh, new_gh

GH *gh;

GH new-9'h;

{

1* RTM's environment *1

GH temp;

char

{

1* BGP soloist gate exists on local slot *1

temp new_gh & -(G_MY_SLOT_MASK); 1* Strip off my slot bits
*1

1* soloist exists on another slot with a lower slot number,

* kill local soloist

*1

sprintf { d_str, "killing local BGP soloist Ox%08", new_gh };

return;

}

IP_DBG_INFO_MSG, d_str };

GID_BGP, G_REQ....KILL , 0 , 0 };

"

Guide Name 1-25 •

~ • • • • • • • • • • • • • • • e • • • • c
e Chapter 1 Concepts: Mappings

•

/* BGP gate died locally, remove the locally authored routes * /

ip_rtm_remove_bgp_routes(rtm_env);

{

/* BGP gate is not present on this slot */

{

{

/* BGP route server code is loaded on local slot */

}

}

Just one comment here: the "temp" variable isn't really necessary. There
is no reason to remove the local slot bit to do the comparison.

In case you are curious: The routine ip_rtm_starCbgpO check to see if
BGP is running in soloist mode. IT so, and if it's running on another slot,
it is not started.

13. Some general warnings about mappings:

.. 1-26

Change the base gate's env before calling ~map() if you use ~env() in
the mapping. Otherwise, a mapping that fires before the ~req() that
changes the environment will get the wrong environment pointer.

Guide Name

•
Chapter 1 Concepts: Buffers &

GAME 101

Chapter 1 Concepts: Buffers
Approximate time to cover: 2 hours

1. What are buffers used for?

Buffers can be used for communication between gates on the same slot
or different slots. For cross-slot communication, this is the only choice
(besides the limited information that a mapping conveys).

2. Fast facts about buffers

Memory on a slot is divided between what is called "local memory" and
.. global memory". Local memory is used for code, stacks, allocated
memory, etc. Global memory is used exclusively for buffers.

On most platforms (including FREl, FRE2, ASN), local and global
memory is carved out from a common DRAM pool. The amounts to use
are based on configuration parameters. Once carved, however, only the
CPU can access local memory. The memory decoding scheme employed'
by the backbone and link module interfaces only allows access to global
memory ..

Excluding ANs and ASNs without SRAM installed, portions of each
buffer (one cache line for the buffer header and four cache lines where
the link and network headers would usually reside) are mapped to fast
SRAM memory. Access to this memory is faster than a
non-(processor-)cached DRAM access, but slower than a
(processor...;)cached DRAM access. This accounts for a major portion of
the box's forwarding performance.To avoid cache coherency problems,
none of the buffer memory is cachable by the pr~ssor.

On an ARE and FRE3, local and global memory are physically separate.
The DRAM is used exclusively for local memory. Global memory is
managed by a VIrtual Buffer Memory (VBM) system. With VBM,
physical memory is not statically assigned to buffers as on the FRE. VBM

•

Guide Name 1-1 •

~ ~ ~ • ~ e ~ • • c e • ~ • • ~ e e e e ~ e
to Chapter 1 Concepts: Buffers

e

uses a separate physical memory (between 1 and 7 MB) which is mapped
as needed to manage up to 32MB of virtual buffer space. The physical
memory is organized into 256 byte pages and is assigned upon a "write"
operation into a buffer.

In either case, the following "fast facts" are true;

Each buffer on a slot has the same maximum size (5K on a FRE. up to
10K on an ARE). Buffer memory is separate from the memory free pool.
GAME maintains a single free buffer pool. Service is FCFS. A single
gate can "own" an unlimited amount of buffers. to the point where it
can exhaust the buffer pool.

The following facts apply only to the FRE1/2, ASN, AN:

Each slot has a fixed number of buffers. Each buffer on a slot is exactly
the same size (usually 5K). The last cache line of a buffer is set to "no
access" if tags are supported.

The following facts apply only to the ARE, FRE3:

The free buffer pool is maintained by hardware. but the GAME buffer
primitives still work. There are a finite number of virtual buffers.
However. availability may also be constrained by lack of physical pages.
Reading unmapped VBM virtual space causes a fatal error. Note that
this isn't a problem on the FRE. since the physical memory is always
there. It's usually still a bug. though, since uninitialized data is being
read. The difference between access times of a cached DRAM access
and a buffer access on an ARE is much greater than on a FREII2

3. Buffer format (good picture in

file:/rtellharpoonldoc/gamelhtmlgame_overview.html):

typedef struct BUF

II> 1-2 Guide Name

•
Chapter 1 Concepts: Buffers .,

struct BUF *next; /*next buffer on the list */

struct BUF *next_l; /* next list's head buffer */

u_int32 dest_gh; /* destination gate handle */

u_int16 start; /* start offset */

u_int16 end; /* end offset */

} BUF;

next: A pointer to the next buffer on the list. Nil.. pointer indicates the
end of list.

nexCl: A pointer to the head of the next list in a transient buffer pool
(later).

descgh: The gate handle of the destination gate. The FLAG bit (31) is
set if the buffer transmission is reliable and reset otherwise.

start: The byte offset, relative to the start of the buffer header, to the
beginning of the floating message body. Buffers sent over the backplane
must have a start offset less than 256. If reliable transmission is used, a
4-byte source gate handle and a 4-byte sequence stamp precede the
message body while the buffer is in transit. Even though the start offset,
is adjusted before the buffer is delivered to the gate, the source gate handle
can still be retrieved via the ~srcO calL

end: The byte offset of the first byte after the message body, relative to
the start of the buffer header.

There are macros that are used. to access these fields in a buffer (includel
buffer.h):

#define G_BUF_NEXT(buf) « (BUF *) (buf)) ->next)

#define G_BUF _NEXT_L (buf ({ (BUF *) (buf» ->next_l)

#define G_BUF_DEST_GH{ buf « (BUF *) (buf)) ->dest_gh)

#define G_BUF_START(buf ({(BUF *) (buf)) ->start)

#define G_BUF_END(buf) («BUF *) (buf»->end)

Normally, the message body should begin after nominal headroom space
(G_BUF _START_PKT or G_BUF _START_MSG) in order to maximize

e

Guide Name 1-3 •

• • e ~ • e eo. & e & • • • • & e eo. •
e Chapter 1 Concepts: Buffers

c

use of special hardware accelerators that may be available on some
versions of hardware. Specifically, on the FRE, this allows the link and
network layer headers to reside in SRAM.

4. Buffer Pools I Lists

fI' 1-4

Buffers change ownership very often and it is paramount to minimize the
system overhead required to track them. The scheme is based on three

buffer pools:

1. A free buffer pool.

2. A transient buffer pool containing buffers own.~d by a gate only
temporarily.

3. A set of private buffer pools containing buffers owned by a gate
for a greater length of time (over multiple activations).

4.1 The Free Buffer Pool

Buffers that are not owned by any gate are maintained in the free buffer
pool. On non-VBM systems, this is a simple linked list of buffers,
connected by the "next" pointers. On VBM systems. the free buffer pool
is maintained by VBM hardware. The same GAME calls. such a

!LballocO and !LbreplenO. work on both systems.

4.2 The Transient Buffer Pool

A transient buffer pool only exists for gates that are in the active or pended
states. That is. a gate only has a transient pool if it has been activated for
buffer delivery, signal delivery. or a mapping (each mapping context has
its own transient pool). When a gate exits an activation. it must have an
empty transient pool. Otherwise. it is said to "orphan" buffers. The
punishment in this case is mild (a message is logged), but this is an

indication of an error in the application - the buffer was meant to go
"somewhere". As discussed in the Mapping section, the punishment for
leaving buffers on the transient queue after exiting a mapping activation
is more severe (the gate is terminated).

Guide Name

• & • • • • • • • • • • • • • • • • 0 • • •

Chapter 1 Concepts: Buffers 0

e

Buffers can be placed into the transient buffer pool for three reasons:

1. Buffers can be sent to a gate using unreliable (g_xmt, g_xmUm,
9-fedex, g_fedex_clean) or reliable (9-fwd, g_fwd_list, g_rpc)
GAME buffer transport functions. GAME puts these buffers
onto a gate's Ddelivery" list (managed by ahead" and "tail" in the
GATE structure). This is a linked list, using the "nexta field in the
buffer header. When a gate is activated for bUffer delivery, the
delivery list is transferred to the transient pool. This simple
linked list comprises the entire transient pool and its head is
passed in the abuffersa parameter of the gate's activation
routine.

2. Any GAME buffer allocation primitive (9-balloc, 9-breplen,
9-copy) will create a separate list of buffers in the transient
pool. Note that a single buffer can con~tute an entire list if the
primitive only returns one buffer (9-balloc). The relationship
between this list and the activation list is covered just ahead •••

3. 3) The g_rpc(} call can also return a list of buffers which are
placed in the transient pool.

Buffers can be removed from the transient pool via any of the following
methods:

1. A bounded list of buffers can be explicitly freed via 9-bfree().

2. An entire list of buffers can be delivered to other gates via
9-xmtO or 9-xmCimO. If all of the buffers are going to the same
gate, 9-fedexO or g_fedex_cleanO can be used.

3. 3) A single buffer can be reliably delivered to one or more
instances of a gate via g_fwdO. If a reply is needed, g-rpcO can
be used. .

4. g_fwd_listO reliably delivers a list of buffers to the same
destination.

5. GAME will return all of the transient pool buffers to the free pool
should a gate die in the active or pended states.

(get picture of transient pool from

file:/rtel/harpoon/doc/game/htmllgame_overview.html)

The transient pool is managed as a linked list of linked lists. The "next"
pointer is used to fOnD the independent linked lists. In the head buffer of
each list, the "nexCI" pointer is used to link the lists together.

Guide Name 1-5 •

• e • • e 0 & • e e • • • e • • • • • • • e
• Chapter 1 Concepts: Buffers

•
The order of the list of lists is "most recently acquired". For example,
suppose a gate is activated with 10 buffers on its activation list. The
transient pool pointer points to the head buffer on that list. That buffer's
"nexcl" is NIL and "next" points to the 2nd buffer in the list. The gate
then does a g...ballocO. Now, the transient pool pointer points to the newly
allocated buffer. That buffer's "next" pointer is NIL, ~d its "nexCI"
points to the head of the activation list. (picture ...)

GAME functions that remove buffers from the transient pool maintain
the integrity of the transient pool. To continue the above example,
suppose the gate now frees the first buffer on the activation list. Here's
what happens: The "next" pointer of the buffer being freed is used to find
the next (2nd) buffer in that list, which becomes the new head of the list.
The "nexcI" pointer from the freed buffer is written into the new head's
"nexcl" pointer (which, in this case, is NIL). Finally, the other list head
buffer (the one acquired via g...balloc) is modified so that its "nexcl"
pointer points to the the new head of the initial list. (pictures ...) .,
IMPORTANT: A gate must never directly modify the "next" or "nexcl"
pointers in a buffer. Only GAME functions can do this. Otherwise, the
transient pool may become corrupted. g...bmoveO can be used to
re-arrange the order of buffers within the transient pool.

During an activation of a gate, lists in the transient pool.are usually
traversed via one of the following methods:

1. Each buffer is processed and modified but remains linked in its
place in the transient pool. This is a normal case for the data
path forwarding code and results in the best performance,
assuming that the gate does not pend. The list of buffers, either
delivered or allocated, is batch-processed first and then
wholesale-shipped to other gates using 9-.xmtO, g_xmCimO, or
9-.fedexLclean10.

• 1-6 Guide Name

eo. • • • • • • • 0 • e • • • • • • • • •
Chapter 1 Concepts: Buffers ,.

2. Each buffer is reliably transmitted elsewhere (an involved
process during which the ownership of the buffer may change
several times) via 9-fwdO or 9-rpcO. This process begins with
the buffer's removal from the transient pool. At this point, the
gate CANNOT reference that buffer any more (this is true for all
of the buffer transport functions). A gate must obtain the next
buffer pointer (G_BUF _NEXT) before submitting the prior buffer
for transmission. •

3. 9-repeatQ removes the current head buffer from the the list,
puts it in its own list, and spoon-feeds it into an
application-supplied routine. THIS METHOD IS HIGHLY
DISCOURAGED!! It is much more effiencient for a gate to walk
the buffer list itself (method 2).

Finally, the transient buffer pool structure is internal to GAME and must
not be manipulated by an application. It is explirined in some detail here
so that application writers understand the underlying structure and also
as an aid to debugging.

Application writers must ignore the "nexCI" chaining aspects of the
transient pool in their code and simply deal with the independent buffer
lists. The GAME system calls will maintain the appropriate chaining on
behalf on an application. This implies that applications should only walk
buffers lists via the "next" pointer. The following are the GOLDEN
RULES of buffer usage:

Never write a "next" pointer.

Never read or write a "nexCI" pointer.

4.3 Private Buffer Pools

As mentioned previously, a gate cannot have any buffers in its transient
pool when it exits an activation. However, there are some cases where a
gate must take ownership of buffers over multiple activations. For
example, a device driver must hold on to buffers that are assigned to the
driver rings (either waiting for transmission or available for receiving
incoming frames). For this reason, GAME provides private buffer pools
to each gate.

•

Guide Name 1-7 •

e e ~ c ~ C & ~ e e 0 C • e e e & • • • • •
~ Chapter 1 Concepts: Buffers

e

Each gate has. by default. two private pools (designed for the driver gates).
Additional private pools can be allocated. Buffers can be transferred from
the transient pool to either private pool and vice versa. No other buffer
manipulation can occur when a buffer is on a private pool! For example.
you cannot ~bfreeO a buffer unless you first move it onto the transient
pooL You cannot move buffers directly between privat<: pools.

The private pools are organized as simple linked lists (one caveat is
covered later). Buffers moved from the transient pool to a private pool
are put at the end of the list. Buffers can be retrieved back into the transient
pool from anywhere in the private pool list (the head and tail of the desired
private pool buffers are specified). Each retrieval creates a new list in the
transient pooL

The functions that manipulate the default private pools are:

g_bsave (head, tail) save a list of buffers from the transient
pool to the end of private pool 1

g_bsave2 (head, tail)save a list of buffers from the
transient pool to the end of private pool 2

g_brestore (head, tail) restore a list of buffers from
private pool 1 to the transient pool

g_brestore2 (head, tail)restore a list of buffers from
private pool 2 to the transient pool

g_bhead () returns the head of private pool 1

g_btail () returns the tail of private pool 1

g_bhead2 {)returns the head of private pool 2

g_btai12 {)returns the tail of private pool 2

The ~bheadXO functions do not remove the head buffer from the private
pool. Ditto for ~btaiIXO.

The following functions allocate and manipulate additional private pools.
Up to 32 pools (an arbitrary maximum) can be allocated.

~npools (num)a1locate "num" private pools. "num" indicates the _total_
number of private pools needed, not the increment beyond the first two.
"num" must be greater than 2.

o 1-8 Guide Name

e .. e e e 0 0 • e e .. • • • • • • •
Chapter 1 Concepts: Buffers _

~bsaven (n, head, tail)save a list of buffers from the transient pool to the
end. of private pool "n"

~brestoren (n, head, tail) restore a list of buffers from private pool "n"
to the transient pool

~bheadn (n) returns the head of private pool "n" ~

~btai1n (n) returns the tail of private pool "n"

A gate can only call ~npoolsO once, so it must determine the maximum
number of pools it needs for its entire life before making the calL A gate
can call ~npoolsO even after it has saved buffers on pools 1 and 2 (this
was a error condition once upon a time), but this is not recommended.

After calling ~npools0, the pools numbered I and 2 are the first two
private pools, usually accessed by ~bsave() and ~bsave20. The
following function calls are equivalent (but only after calling ~npools !):

g_bsave(...) -- g_bsaven (1, ...)
g_bsave2 (...) -- g_bsaven (2, ...)

g_brestore (...) -- g_brestoren (1, ...)

g_brestore2(...) -- g_brestoren (2, - ..)
g_bhead() g_bheadn (1)

g_bhead2 () -- g_bheadn (2)

g_btail () -- g_btailn (1)

g_btail2 () -- g_btailn (2)

4.3.1 Doubly linked private pool

Private pool #1 can be organized into a list that is doubly-linked instead
of a single-linked list. This was done to support the Tsunami ATM driver.
This driver uses private pool I to save buffers on the driver receive ring.
Unlike other drivers, data reception can complete out-of-order in respect
to the buffer list. Because of this, a method was needed to remove buffers
from the free pool without requiring a walk of the list (performance!).
So, the following two calls were invented:

..

Guide Name 1-9 •

~ e e & e e e e & 0 ~ e • & & • e _ & & • e
G- Chapter 1 Concepts: Buffers

o

tLbsave_dbl (head, tail) save a list of buffers from the transient pool
to the end of private pool 1, doubly-linked

tLbrestore_dbl (head, tail) restore a list of doubly-linked buffers from
private pool 1 to the transient pool

The back-link of buffers on the pool is done using the "nexcl" pointer.
This is hidden within the function call code, however. The caller MUST
NOT reference the "nexCI" pointer of the buffers for any reason.

NOTE: Manipulations of private pool 1 must be exclusively-single-linked or
double-linked. If ~bsave_dbl() is used, ~brestore_dbl() is the only other
call that can be used to manipulate private pool 1 (g...bsave, ~brestore,
~bsaven, and ~brestoren CANNOT be used).

The Tsunami driver is the only user of this feature.

5. Buffer allocation

Ii> 1-10

A gate can allocate buffers via the following function calls:

tmo: The amount of time to wait for a buffer, if none are available. The
units are roughly milliseconds (1/1024). The actual time used for timer
expiration is not necessarily what was entered arid usually is longer. The
FREI, FRE2, ASN, ACE25, ACE32, AFN, and ARE round this time up
to mUltiples of 16 ms. The AN and the ARN round this time up to
mUltiples of 64ms.

These macros are available for use in setting "tmo":

G_TMO_SECONDS (sec) yields a value representing 'sec'
seconds

yields 1/2 second

yields a zero

Guide Name

•
Chapter 1 Concepts: Buffers 0

If "tmo" is set to G_NO _WAlT, ~ballocO will not wait for a buffer when
none are available.

The return value is a pointer to a single buffer on its own list in the transient
pool. NIL(BUF) is returned if no buffer could be allocated. YOU MUST
CHECK FOR THIS CONDmON AFfER ALL CALLS TO ~ballocO!

The caller cannot assume anything about the contents of the returned
buffer or its start and end offsets.

u_int32 g_breplen (u~int32 num, BUF **head, BUF **tail)

num: The number of buffers desired.

head: A pointer to a location where the head poiliter of the returned buffer
list can be written.

tail: A pointer to a location where the tail pointer of the returned buffer
list can be written.

The return value is the number of buffers actually allocated. Unlike
~ballocO, there is no way to wait for additional buffers if less than "num"
are available. If the return value is not zero, the list of buffers resides on
it's own list in the transient pool.

BUF *g_copy (BUF *buf)

buf: pointer to a buffer to be copied. This buffer must reside in the
caller's transient pool or in a private pool.

The return value is a pointer to a single bufferon its own list in the transient
pool. The start and end offsets match those in "buf", and the contents of
the message body (between the offsets) matches "buf'. Nothing else from
the buffer is copied (specifically, "next", "nexCI", and the gate handle are
NOT copied).

N1L(BUF)isreturnedifnobuffercouldbeallocated. YOUMUSTCHCK
FOR THIS CONDmON AFfER ALL CALLS TO LCOPYO!

~coPyO provides no provision for waiting for a buffer.

•

Guide Name 1-11 •

~ ~ ~ & e & e & e & eo. • e • • • e • • •
" Chapter 1 Concepts: Buffers

~

BEATING 1HE DEAD HORSE DEPARTMENT: Always check for a

NIL return value from ~ballocO and ~copyO! This is a common
mistake. Code that does not check for Nil.. has been released - and it
crashes due to an invalid memory reference when the buffer supply is low!

6. Buffer manipulation

• 1-12

Besides those discussed previously for the buffer headers, there are some

other useful macros and functions for buffer manipulation (include/

buffer.h):

(type *) G_BUF_INI

(type *) G_BUF _PDU

(BUF *buf, type)

(BUF *buf, type)

(BUF *buf)

buf: The pointer to the buffer. type: The C data type that will be held in
the buffer.

G_BUF _00 is used by a gate that creates a message in a buffer. The

macro sets the start offset of "buf' to G_BUF _START _MSG, sets the end

according to the structure size, and returns a casted pointer to the structure
within the buffer.

G_BUF _PDU is used by a gate that is reading a buffer that contains a
message. The macro can only act on a previously initialized buffer. It

returns a casted pointer to the structure within the buffer.

G_BUF _PDU_START also acts on a previously initialized buffer. It
returns a simple char pointer to the data within the buffer. This is used
when the buffer contains a data stream rather than a structure.

G_BUF _PDU _END returns a simple char pointer to the space following
the data within the buffer.

G_BUF _PDU_SIZE returns the number of bytes of data in the buffer, as
indicated by the start and end offsets.

Guide Name

~ eo 0 0 • 00 0 • • ¢ eo • • • • • • • e
Chapter 1 Concepts: Buffers "

G_BOP_MAX_END

g_blen()

These two primitives can be used to detennine the amount of data that
can be written into a buffer.

G_BUF _MAX_END returns the maximum G_BUF <,-END value that can
be used for buffers that is guaranteed to work for delivery to any other
slot in the machine. Currently this is 2000, except for the AN and ARN
(1776).

15-blenO returns the maximum G_BUF _END value that can be used on
the local slot. Note that if a buffer is filled to this size, sent to another
slot, and that slot has a smaller buffer size, the buffer will not be delivered.
15-blenO returns slightly less than 5K on a FRE. On an ARE, the value
is configurable and can be as much as 10K.

If an application does not want to be limited to the small
G_BUF _MAX_END buffer size for multi-slot communication, it can
query the buffer size locally on each slot, communicate that infonnation
to other slots, and use the minimum value seen.

7 ~ Freeing buffers

Buffers can be freed in three different ways:

1. A bounded list of buffers in the transient pool can be explicitly
freed via 9_bfreeO.

void g_bfree (BOP *head, BOP *tail)

head: A pointer to the first buffer a the list in the transient pool to be freed.

tail: A pointer to the last buffer in the list to be freed. This must be on
the same list in the transient pool as "head" and must follow "head" in
that list.

Note that head can equal tail, freeing exactly one buffer.

•

Guide Name 1-13 •

e e e e e e e e • e & • e e e • • e e e e e
G Chapter 1 Concepts: Buffers

c

Any pointers referencing the free buffers should be modified. If no more
buffers exist on the original list, the pointer(s) should be set to zero. If
buffers exist after tail, the pointer to the buffer after tail must be saved
before ~bfreeO is called.

2. Buffers given to a reliable or unreliable transmission function
will be freed if the buffer's gate handle contains-zero:

G_BUF_DEST_GH (buf) = 0;

The only case where this makes sense is when a gate processes an entire
list of buffers without pending. In this case, the gate sets the gate handles
to real values or zero and uses ~xmtO or ~xmCimO to deliver the list.

3. GAME will return all of a gate's buffers to the fr~ pool should a
gate die in the active or pended states. Killing a gate is the most
drastic way to free its buffers •••

8. Moving buffers around (g_bmove)

tI> 1-14

-
To move one or more buffers into a specific location within a transient
pool list, use ~bmoveO.

void g_bmove (BUF *ins, BUF *head, BUF *tail)

ins: a pointer to a buffer in a transient pool list that serves as the insertion
point. The buffers are inserted _aftec this buffer.

head: pointer to the first of a list of buffers to be moved.

tail: pointer to the last of a list of buffers to be moved.

"head" and "tail" obviously must belong to the same list within the
transient pool. "ins" cannot be "head", "tail" or any buffer in between.

GAME will take the list of buffers, remove it from its current place in the
transient pool, and splice it into the list that "ins" belongs to, directly after
"ins".

Picture

Guide Name

•
Chapter 1 Concepts: Buffers •

9. Removing/Adding buffers from GAME

This feature is quite dangerous and not something that you will commonly
use. unless you do platform development.

It is possible to remove buffers from a gate's transie!lt pool. effectively
disconnecting them from GAME completely. Similarly, you can pull into
the transient pool buffers that do not belong to GAME. This feature exists
because some hardware. such as the ARE ATMizer, needs to take
complete control over the buffers it is using.

buf_list: A pointer to a list of buffers on the transient
pool.

GAME will remove the indicated list from the transient pool and leave
the buffers in an "unowned" condition. The caller usually delivers the
buffers to another piece of hardware.

void g_import-pufs (BUF *buf_list>

buClist: A pointer to an unowned list of buffers.

GAME will put the owned buffers into the transient pool. creating its own .
list. The caller usually gets these buffers from another piece of hardware.

10. Performance tips

Across all platforms. accesses to buffer memory is more expensive than
accesses to DRAM locations that are cached by the local processor.
Therefore. one should always follow the rule "read once, write once"
when it comes to data in a buffer.

This includes the buffer header structure BUF. and the macros that
reference it. A common bad practice is to continually reference the start
and end offsets via the G_BUF _PDU_SIZE macro. Instead. the value
should be cached in a stack variable.

•

Guide Name 1-15 •

• • • ~ ~ • • e • • e • • • • e ~ e 0 • e e
e Chapter 1 Concepts: Buffers

e

" 1-16

A code strip may need to add data to a buffer a little bit at a time. An
example would be a protocol like RSVP. which builds a message out of
multiple" objects". A bad way to code this would be to set the end offset
after adding each object and then reading it again when adding the next
object:

/* add object 1 */

/* add object 2 */

G_BUF_END (buf) = ((u_int32) object2) + sizeof (OBJECT2);

/* etc ... */

The problem here is that we are constantly reading and writing into
memory that is slower than cached DRAM. A better way to code this
would be:

(char *) /* end of header */

/* add object 1 */

objectl = (OBJECTl *) local_buf_end;

((char *) objectl) + sizeof (OBJECT1);

/* add object 2 */

object2 = (OBJECT2 *) local_buf_end;

Guide Name

11. Debug tips

•
Chapter 1 Concepts: Buffers •

local_buf_end = ((char *) object2) + sizeof (OBJECT2)i

1* etc ... after all objects are added: *1

G_BUF _END (buf) = local_buf_end - ((cll¥" *) buf) i

This way, we meet the "read once, write once" criteria.

The 'debug krnl' command provides a few settings of use for debug buffer
problems (note that the "debug" module must be loaded). The use of
"debug krnI" is discussed in file:/rtel/harpoon/doclgame/html/
game_debug.htmL

buCchk Verifies buffers are valid, on the same list and owned by the
caller. Applicable to ~bfreeO, ~bmoveO, ~bsaveO, ~bsave20,

~bsaven().

buCpool Verifies private pool is valid and the head and tail arguments
to the restore syscalls are fcr buffers actually in the private pooL
Applicable to ~brestoreO. ~brestore20, ~brestoren().

alCbuf The combination of buCchkO. buCpoolO, buCsizeO,
buCxmtO. The latter two settings are discussed in the Inter-Gate
Communication section.

The contents of a buffer can be dumped to the event log via the
buCdumpO call:

void buf_dump (BUF *buf)

buf: Pointer to the buffer to be dumped to the event log

The buffer headers and the first 64 bytes of data (beginning at the start
offset) are dumped, in hex, to the log. A checksum of the buffer is also
done and displayed.

•

Guide Name 1-17 •

o e e e 0 e e e e 0 e e • e e 0 e e • • • 0

f> Chapter 1 Concepts: Buffers

e

.. 1-18

This call is useful for debugging cases where a gate receives a buffer that
it doesn't expect.

Guide Name

1. Overview

e • • e • • • • eo. • • • • eo. • • • •
Chapter 1 Concepts: Memory Management _

GAME 101

Chapter 1 Concepts: Memory
Management

Approximate time to cover: 1 hour.

GAME has a single pool from which all memory is allocated, except for

buffers. In addition to the typical malloclfree memory, this also includes
the memory used for stacks and the memory iii which an application
executes.

The memory pool is composed of slabs and segments. A "slab" is a single
large chunk of memory which gets divided up into smaller pieces called
"segments". Normally, there is only one slab of memory in the system.
It runs from the end of the kernel image to the end of normal memory, or
to the beginning of buffer memory on systems, such as the AN, where
buffer memory isn't implemented in separate hardware.

Each memory segment contains a header, called a MSEG, at its beginning.
This contains previous and next pointers to link the MSEG onto a doubly
linked list. It also indicates the size of the MSEG. The MSEG occupies
the first cache line of a segment. All MSEGs are cache line aligned. (A
cache line is 16 bytes for the 68k, 32 bytes for the PPC.) This alignment
is required by tags (see below). This alignment also results in the rounding
up of the . size of a MSEG to whole cache line increments.

The MSEG is shown below. The flag bit is a way for the kernel to mark
certain MSEGs as special so that they can be found on a gate's memory
list. For example, if a gate owns a semaphore token, that token is actually
represented by an MSEG linked into the gate's memory list. That MSEG
will have flag set and the first word of the MSEG body will tell the kernel
that it's a semaphore token. This was implemented in this manner to avoid
having to double the size of the gate control block (64 bytes at the time).

e

Guide Name 1-1 •

o e e e & • e • • e e • e _ e • • 0 e e • •
• Chapter 1 Concepts: Memory Management

e

C> 1-2

That has since become unavoidable, so we now have room to track these
on their own list, if we so desired.

The PowerPC has a larger cache line size than the 68k does. That explains
the extra padding when PPC is set.

typedef struct MSEG { struct MSEG *next;. /* next
seg on singly/doubly linked list */

struct MSEG *prev; /* previous seg on doubly linked
list */

unsigned flag: 1; / * See note below */

unsigned size:31; /* segment length */

struct MSEG *resv; /* reserved */

#ifdef PPC

pad[4]; /* Pad to 32 byte cache line */

#endif /* PPC */

} MSEG;

An MSEG can be linked in one of two places: the free memory pool or
onto a gate's memory list.

The free memory pool is a list of all the MSEGs which are available for
allocation. This list is always arranged in order of increasing memory
address. When a gate asks to allocate some memory, the free memory
pool is linearly searched until a big enough MSEG is found (first fit). If
this MSEG is larger than what was asked for, it is split into two pieces.
One piece goes to the gate and the other remains in the free pool.

When memory is freed, it is inserted back into its place in the free memory
pool. This insertion is aided by a binary tree whose pointers occupy the
2nd cache line of MSEGs in the free memory pool. Once the appropriate
place in the free memory pool is found, a check is made to see if the range
of memory covered by the MSEG being freed abuts the memory of its
neighbors in the free memory pool. If this is the case, then the MSEG is

Guide Name

~ 0 Q 0 QQ. 0 0 • 0 • • e e e • .00 0 e
Chapter 1 Concepts: Memory Management .,

merged in with its neighbor(s), resulting in a single, larger, MSEG in the
memory pool.

This memory allocation scheme results in the beginning of the pool
containing many smaller memory segments while the end of the pool
contains the larger segments. This happens because we always start
searching from the same end and will take the first segment which fullfills
the allocation requirements.

When a gate allocates memory, it is placed on a list of memory owned
by that gate which is anchored in the gate control block.

typedef struct GATE

MSEG *mem; /* gate' s reserved memory */

} GATE;

This list is used to reclaim the memory a gate has allocated should that
gate die or be killed. There is no particular ordering to elements on the
list. For simplicity, new segments are put at the head of the list.

The first element's "prev" pointer points to the "mem" field of the GAlE
structure.

An allocated memory segment is actually larger than the size requested.
As stated above, an MSEG precedes the block. The entire block is always
padded out to the end of the current cache line. Therefore, the size of an
allocated block is:

size + (size mod cache-line-size) + cache-line-size

•

Guide Name 1-3 •

e ~ • e e & • • • & & e & • • & e e • • • •
• Chapter 1 Concepts: Memory Management

e

2. Tags

• 1-4

This is the size stored in the "size" field of the MSEG header.

All this memory segment management is typically ignored by a gate.
When a gate allocates memory. it recieves a pointer to the first useable
location (after the MSEG). GAME wants this same pointer back when
memory is freed. It is the application's responsibility to limit both read
and write accesses to the allocated memory segment. ~

An application must NEVER access the MSEG header preceeding a
memory segment There are at least two good reasons not to do this:

1. The format may change under the application.

2. On hardware that supports tags. you'll get a tag violation (see
the

next topic).

Since all addresses in GAME are logical=physical and no MMU is used.
it some type of memory protection was needed to help with. the debugging
of bad pointers. The memory protection is called 'tags'.

Tags are implemented in specialized hardware on the following
platforms:

FRE. ASN. ARE. Tags allow the kernel to mark each cache line with an
attribute describing its readabilty or writeability. Cache lines can be
marked read/write. read-only. or no-access. If an illegal access is made
(e.g. writing a read-only cache line) an exception occurs.

The MSEG header is marked read-only. The intention of marking the
beginning of a memory segment read-only is to catch errant code which

Guide Name

e • • • • • e • • • • • • • • • • • • • • •
Chapter 1 Concepts: Memory Management ..

walks past the end of the memory its allocated. This can also happen if
a stack grows too large, since a stack is simply a memory segment.

Tags will not prevent a truly errant pointer from causing problems. It is
possible for that pointer to miss a read-only cache line and successfully
modify data. To help combat this, it is possible to have all freed memory
(except the headers) marked no-access. This helps if the bad pointer
happens to hit freed memory. However, this debug feature results in a
performance hit as the whole memory segment needs to be walked
whenever memory is allocated or freed. Obviously, this is turned off by
default. See Debugging Strategies for more details. This does not help
if the bad pointer points to memory owned by another gate.

One of the things to keep in mind about tags isihat they are implemented
by HW extraneous to the processor. Therefore, a tag violation won't occur
until the data is flushed out of the data cache.

Usually (on a FRE2) this happens well after the fact and it is not possible
to.say where the bad access happened. To combat this, it is possible to
run the processor in write-thru mode where all writes will immediately
go to the memory system. When running in write-thru mode, the tag
violation will occur before the program counter advances too far beyond.
the instruction that caused the violation. Write-thru mode is not the
default and needs to be enabled. See Debugging Strategies below to see
how to do this.

Note that the ASN is the only platfonn that reports (via the log) the memory
address used to cause the tag violation.

3. Ownership and memory sharing implications

As mentioned above, when agate allocates memory, that memory is added
to a list of all the memory allocated by the gate. Upon gate death, all this
memory is freed. This has implications with memory sharing between
gates.

The preferred way to share memory is downward, where a parent owns
the memory shared with its children. This works nicely because if a

•

Gu;deName 1-5 •

~ ~ & ~ e & e & • 0 • • • • e & • • e & 0 •

f1 Chapter 1 Concepts: Memory Management

~

4.Syscalls

parent dies, all its children will also die. Sharing memory upward, where
the children own memory manipulated by its ancestors, as well as memory
sharing between unrelated gates, is dangerous because that memory may
be freed without warning. This can leave a gate with a memory pointer
to what is now free memory. Or worse, the memory may have been
re-assigned to some other gate.

The chance of this can be somewhat minimized if the gate which is sharing
memory maps the memory owner gate. But even a mapping isn't fool
proof because you need to remember that the memory could be freed
while you're pended in the middle of a function. That function may have
pointers to the now freed memory cached in local variables. Using these
variables becomes dangerous.

There are some ways around this. If a few children of a gate need to share
memory, it is possible for them to use ~ma1loc~idO to allocate memory
on behalf of the parent. When doing this, the parent will become the
owner of the memory segment, so all children can access it freely. The
tbI, rtbl, and utbl utilities all use ~malloc~idO. All memory is allocated
in the context of the gate that creates the table.

Another method is to use ~sig...dataO to move memory ownership from
gate to gate.

The g...mallocO and g...rofreeO system calls are the normal way to allocate
and free memory. A gate must own the memory to be able to free it.
Otherwise, ~mfree~idO needs to be used.

g_malloc () - allocates memory segments

size: Requested segment size in bytes.

., 1-6 Guide Name

•
Chapter 1 Concepts: Memory Management _

The returned value points to the first usable byte in the segment.

If adequate memory is not available, the gate will betenninated due to
an out-of-memory condition. Because of this, there is NO NEED to check
the return value of ~ma1locO. Doing so is just a waste of instruction
space and CPU.

9_mfree () - frees memory segments

(void) 9_mfree (void *mem)

mem: Pointer to a memol:y being freed. This must be
the same value as returned by a previous g_malloc().

4.29_mlen

The ~mlenO call returns the size, in bytes, of the largest memory segment
available. This is the largest ~mallocO request which can be satisified.
If a ~ma11ocO call is made and not enough memory is available to satisify
that request, the slot will restart due to an out of memory condition. To
avoid that, this type of code can be used:

if(9_mlen() > amount_I_need)
{

}

else

{

/* Couldn't get the memory I wanted .. now what? */

}

The only time where this is helpful is when the memory allocation is not
crucial to the continuance of the application. Otherwise, the ~mlenO call
isn't much help.

•

Guide Name 1-7 •

e ~ • • • • • • • • • • • • • e & & e & ~ •
~ Chapter 1 Concepts: Memory Management

c

• 1-8

Note: there is a small window on SMP systems where a processor can
allocate memory between ~mlenO and ~mallocO calls executed by another
processor. Therefore, a positive result from ~mlenO does not guarantee that
the ~mallocO will succeed.

The ~malloc-.,gidO and ~mfree~dO syscalls work just like the
~mallocO and ~mfreeO calls except that the gate ID of the owner gate
can be specified. Care should be used when using these calls since its
possible to abuse them. For example. a child can ~malloc-.,gidO memory
and have its parent own the memory. If that child dies. the parent may
need to clean up the memory which was allocated. The kernel isn't going
to do it because the parent owns it. Failure to handle such scenarios
correctly this could result in a memory leak.

~malloc-.,gidO - malloc memory for another gate

void *~malloc-.,gid (u_int32 size. GID gid)

size: Size of memory segment to allocate.

gid: Gate id 6f the gate to own the memory.

The returned value points to the first usable byte in the segment.

Calling ~malloc-.,gidO with an invalid gid will tenninate the calling

gate.

The calling gate does not own the memory segment unless gid is its
owngate id. The calling gate must realize this and use care when using
this memory (freeing. etc.).

~mfree-.,gidO - Frees a memory owned by another gate

void ~mfree-.,gid(void *mem. GID gid)

mem: Pointer to the memory segment to be freed. This must be the same
value as returned by a previous ~malloc-.,gidO.

Guide Name

• • • • • e • • • • • • e _ e • • • _ • • •
Chapter 1 Concepts: Memory Management •

gid: Gate id of the gate owning the memory.

Calling ~mfree~dO with an invalid gid will tenninate the calling

gate.

4.4 9_mrealloc

The ~mreallocO call copies the contents of one memory segment to a
new one, frees the old one, and returns the new one.

~mrealloc - Re-allocate a memory segment

old_mem: Pointer to currently allocated segment. The calling gate must
own the segment.

size: Byte length of new segement to allocate.

The return value is the pointer to the newly allocated segment. The
contents up to MIN(size, sizeof(old_mem)) from old_mem will have been
copied to new_memo

If adequate memory is not available, the calling gate will be tenninated
due to an out-of-memory condition.

The ~maddO call is used to add a new slab to the free memory pool.
This is rarely used. The only example to date is with netboot where the
config file is stored in memory while the mission code starts. Once the
config file has been read, its memory can then be used as a nonnal part
of the memory pool.

~maddO - adds new memory slab

new: Pointer to the memory slab.

•

Guide Name 1-9 •

• e e • • • & e • e e e e e • • • • • • • •
• Chapter 1 Concepts: Memory Management

•
size: Byte length of the new memory slab.

The !Lsi!LdataO call really serves two purposes. It is a way to send
mUltiple signals to a single gate as well as a way to move memory
segments between gates. These function calls are discussed fully in the
Inter-Gate Communications section.

5. Debugging stragties

• 1-10

There are a few strategies which are useful for debugging memory
problems.

5.1 Zero out those stale pointers!

When you free memory (or send it via !Lsi!Ldata()) set that memory
pointer to O. This way, if you subsequently try to use that pointer you'll
get a bus error from the NULL pointer instead of corrupting memory. A
bus error is _much_ easier to debug than memory corruption.

5.2 debug kml

The "debug krnl" command provides a few settings
useful for memory debug (note that the "debug"
module must be loaded). The use of "debug krnl" is
discussed in file:/rtel/harpoon/doc/game/html/
game_debug.html.

mem_free_chk WIllcheckthatmemoryyoufreeisindeedmemory
you own. GAME normally doesn't check this. If you free memory you
don't own, it is possible for parts of the gate control block to become write
protected (because GAME thinks they're another MSEG header when
they're not). This can lead to tag violations in strange places. This is
applicable to calls to !LmfreeO.

Guide Name

e e 0 0 0 • • • • • • • • • • • • • • • • •

Chapter 1 Concepts: Memory Management e

mem3ulCtags This will mark freed memory as no-access. It
makes the box run really slow. It can be useful for catching stale pointers
assuming. of course, that you're lucky enough to have the pointer point
to freed memory and not some other gate's allocated memory. (If you set
your freed pointers to 0 you wouldn't have this problem.) You need to
restart the slot after setting this for it to take effect.

wrcthru This will cause the processor to run in write-thru mode
and is the first thing you should do when debugging a tag violation. You
need to restart the slot after setting this for it to take effect.

serial This is only for Power PC machines. It forces the processor
to run in seri3.l mode, which will give more accurate stacks when a tag
violation occurs. You need to restart the slot after setting this for it to take
effect

mem_all The combination of mem_free3hk. mem_fulCtags, and
wrcthru.

Sometimes its desirable to have the processor default to write-thru. This
is especially true if the tag violation happens before the 11 is up and
running. This is easy to do.

ForTIB:

1. cd tib.

2. In Makefile, uncomment the CACHE_MODE symbol.

3. rm _tibiseCcts-.regs.o.

4. build tib seCcfg_regs.o

5. cd buildtib

6. build tib link archive -nr

ForBF:

1. cd bf ••

2. In Makefile, uncomment the CACHE_MODE symbol.

3. build bf cache.o

4. cd buildbf

5. build bf link archive -nr

e

Guide Name 1-11 •

~ 0 • & & • C Q ~ • • • • e & e & e coo @

e Chapter 1 Concepts: Memory Management

"
6. Private Memory Management

G 1-12

One aspect of the GAME memory system which is not so good is that is
isn't very efficient dealing with many small memory pieces. First of all,
the size of each piece is always rounded up to a cache line. Then an MSEG
header and guard line are included. So, for a small request (say, 4 bytes),
48 bytes of memory are actually required.

Then, there is the additional processing of allocating and freeing the
memory. If many allocs and frees are done, this processing starts to be
non-trivial and can really affect performance.

To help overcome these shortcomings, a series of Private Memory
Managers (PMM) have been created. These are composed of a family of
macros which work above GAME's MSEG allocation and allow a gate
to allocate one larger segment from GAME and partition it up into little
pieces.

Allocating a single segment satisifies GAMEs requirement of re-claiming
all a gate's memory. Alloc and frees are then much more efficient since
there is no need for cache line sized allocates or MSEG headers, since all
the allocs and frees take place from within the single MSEG.

There are a few different flavors of PMMs available. Details for these
can be found in include/pmm.h. [There is also the original Jan spec which
we need to update and get online.]

Here is a quick list of the available PMMs and where they can be used:

Simple Private Memory Manager

Suggested When:

Guide Name

1. Allocations are of a fixed size (ex. table entries)

2. Space is not a concern, since slabs are not freed
(slabs are freed only when PMM_S_END is called)

3. Memory utilization tends not to decrease in time

4. Freeing of segments is infrequent

• e 0 0 eo. • 0 • • • • • • • • • 0 0 • •

Chapter 1 Concepts: Memory Management ,...

Space-Recovering Private Memory Manager

Suggested When:

1. Allocations are of a fIXed size (ex. table entries)

2. Allocating and freeing segments occurs regularly

3~ Memory space is to be freed back to GAME-regularly

Space-Compacting Private Memory Manager

Suggested When:

1. Allocations are of a fixed size (ex. table entries)

2. Allocating and freeing segments varies greatly

3. Most efficient use of memory resources is needed, but has
these drawbacks:

- Performance suffers due to relocating/copying segments into as few
slabs as possible.

- Segment pointers should not be cached since what is returned by
PMM_C_GETO is simply a handle to the segment.

- Client variables pointing to PMM_C segments must be declared as:
<data type> **<vaz>; since the segment handle returned is a pointer to a
pointer.

- Requires use ofPMM_C_REFO. Note, always use
PMM_x_REFO if switching between PMM_C and other PMM

managers.

Pool-Of-Private-Pools Memory Manager

Suggested When:

1. Allocations are of a variable size

2. Allocating and freeing segments occurs regularly

3. Memory space is to be freed back to GAME regularly

4. The demand is a small number of popular segment sizes

•

Guide Name 1-13 •

e • • 0 • • 0 C • • • • • • • • • • • • • •

e Chapter 1 Concepts: Memory Management

•

7 . free_pool

Variable Size Segment Private Memory Manager

Suggested When:

1. Allocations are of a variable size

2. Allocating and freeing segments occurs regularly

3. Memory space is to be freed back to GAME regularly

4. Requested segment sizes are randomly spread

Note, this scheme could be slower due to its splitting, merging and chaining.
It can also suffer from fragmentation, unpredictably, based on its use. The
tradeoff is an increase in buckets makes for a larger hash table thus
increasing PMM_ V overhead space. But, this increase also reduces
fragmentation and speeds up the search process when fetching for free
segments.

Another effort overlapped the development of PMM. The files include!
free_pool.h and rtlIfree_pooLc implement a private memory manager
similar to the "Simple Private Memory Manager" above.

• 1-14 Guide Name

•
Chapter 1 Concepts: Inter-gate communication 0

GAME 101

Chapter 1 Concepts: Inter-gate
communication

Approximate time to cover: ?

1. Types of inter-gate communication

There are three types of inter-gate communication in GAME:

1. Buffer delivery: Works locally and across slots.

2. Signals: Works locally only. can be accompanied by memory
transfer (G_SIG_DATA).

2. Buffer delivery

3. Mappings: Works locally and across slots. A gate can be killed
to indicate an event.

GAME provides seven functions that deliver buffers to other gates. Four
of these are unreliable and three provide reliability through
acknowledgment and retry mechanisms.

A few common iuIes regarding all buffer delivery mechanisms:

1. The buffer must have a valid gate h~ndle set via
G_BUF _DEST_GHO. This can be a zero if the buffer is to be
freed.

2. The start and end offsets must be set properly to point to the
first byte of data and the byte follOwing the last byte of data,
respectively.

3. On VBM systems, data must have been written to all memory
indicated by the start and end offsets.

4. After calling the GAME function, the calling gate no longer owns
the buffer and it must not reference it. It's a good idea to zero
out buffer pointers once a buffer is delivered in order to surface
such bugs early in the testing process.

•

Guide Name 1-1 •

& & • e & & 0 & e & • • • 0 0 • & • 0 • ¢ 0

f.; Chapter 1 Concepts: Inter-gate communication

"

.. 1-2

2.1 Unreliable buffer delivery

Unreliable buffer delivery is analogous to a network datagram service.
The data will be delivered in a best-effort manner, it will most likely get
to where it has to go, but there is no guarantee. This provides a very
efficient. low overhead transfer of data. Not surprisingly, it is used to
provide datagram forwarding.

In the current BN implementation, unreliable delivery to a gate on the
same slot is actually 100% reliable, assuming the destination gate exists.
However, there are two reasons to not rely on this:

1. There has long been discussion of implementing a "buffer
clipping" mechanism that would remove unreliable buffers from
gates' delivery lists when the free buffer pool empties.
However, the chance of clipping ever getting implemented is
almost nil.

2. On a VBM system, there _is_ the possibility of dropping a
unreliable buffer between gates on the same slot. H the sending
gate allocates and writes to a buffer, there is a possibility of
running out of physical buffer space and acquiring a
wastebasket page (more on this later - see g_fedex_clean).
When this happens, the buffer is dropped when delivered.

The fonnat of a message in a buffer must be agreed upon by the sender
and the receiver (i.e., located in a *.h file). GA.'v1E knows nothing about
the data contents, other than its size.

2.1.1 9_xmtO - unreliable delivery of a list of buffers

buf_list: the pointer to the head of a list in the transient
pool (i.e., linked by the "next" pointers).

Every buffer in the list will be processed by GAME (i.e., until it gets to
a Nil.- "next" pointer). GAME will deliver each buffer according to the
gate handle in the buffer. An individual gate handle can indicate zero,
one, or mUltiple gates. If the GH is zero, GAME merely frees the buffer.
If one slot bit is set. the buffer goes to exactly one gate instance. If multiple
slot bits are set. the buffer goes to the instances on the indicated slots.

Guide Name

• e •
Chapter 1 Concepts: Inter-gate communication 0

GAME will silently disregard any request to send a buffer to a gate
instance that does not exist.

!t-xmtO is intended to be used when the sending gate is transmitting
buffers to many different destinations (e.g., L2 or L3 forwarding code).
If all of the buffers on the list will_always_ have the same gate handle,
!t-xmtO can be used, but !t-fedexO is much more efficient.

Here is a very edited version of the ip_xmit() function. This gate receives
packets from IP applications on the router and transmits them out the
appropriate interface. Shown here is the loop and the various places that
the gate handle can be set in the packet. Finally, the entire list is delivered

via!t-xmtO

FOR-BACH_BUF (rx-pkt, buflist)
{

rX"pkt->dest-9'h = {{GH_SLOT_MAP_MASK &
dest_nwif->nwif_map.gh} I GID_IP_XMIT};

rX"pkt->dest-9'h = 0;

rx"pkt->dest-9'h = 0;

rx"pkt->dest-9'h = 0;

rx"pkt->dest-9'h = 0;

•

Guide Name 1-3 •

e e 0 0 e • e • & • • • • • • • • • • • • •
c Chapter 1 Concepts: Inter-gate communication

•

.. 1-4

ip_xmit_final_considerations{dest_nwif, fwd_entry, dest_gh,
rx-1)kt, rtnLenv);

/* end for each buf in buflist */

/* Send it on it's way */

9_xmt (buflist);

BAD CODING PRACTICE ALERT: The macro G_BUF_DEST_GH{rx-pkt)
should be used instead of referencing rx-pkt~>dest_9h
directly_

2.1.2 9_fedexO - efficient unreliable delivery to one destination

void 9_fedex (GH dest-9h, BUF *head, BUF *tail)
-

dest~h: the destination gate handle for all buffers in the list represented
by "head" and "tail"_

head: the head of a list of buffers in the transient pooL

tail: the tail of a list of buffers in the transient pooL

Fedex should be used when all of the buffers in a list are going to the
same destination gate_ The dest~h parameter must _exactly_match the
GH in _every_buffer in the list (caveat below)_ This allows GAME to
avoid a list walk and deliver the buffers in the most efficient manner_

Don't call g...fedexO with the FLAG bit set in the GH. It will call g...xmtO
to remove the FLAG bit in the buffers, which requires a buffer walle

Don't call g...fedexO with multiple slot bits set in the GH. Fedex can't
deliver local and remote copies, so it punts the multicast scenario entirely_

Don't call g...fedexO with a zero gate handle_ It's much more efficient to
just call g...bfreeO_

Guide Name

. . .0.
Chapter 1 Concepts: Inter-gate communication &

This example is from the sync (mk50) driver's receive interrupt
processing. Buffers have been assigned to the driver receive ring. and
now some of them contain received packets. Most of these will be
delivered to the DP decaps gate for the circuit (some get processed locally
- details left out for brevity).

for (pkt=head,tail=NIL(BUF); pkt;) {

/* if current desc is owned by the MKSO, stop! */

if «data = rd->addr) & MKS02S_0WN) {

/* AND this is the 1st packet, spurious int, bag out! */

if (! tail) {

head = NIL(BUF);

break;

}

/* make tail previous pkt, get next pkt */

tail=pkt;

} /* end of for RINT loop */

/* if we have a valid list to forward */

if (head) {

/* restore buffers to transient pool for delivery */
g_brestore(head, tail);

g_fedex(env->decaps~h & - GH~MSG_FLAG, head, tail);

A g_fedex() trick:

If you have a list of buffers with various gate handles, none of which
contain the local slot bit, you can trick ~fedexO into delivering them for
you. If the "dest~h" parameter is set with a single slot bit for another

•

Guide Name 1-5 •

~ e e • ~ • e & e & eo. • • • • ~ 0 • • 0

" Chapter 1 Concepts: Inter-gate communication

e

II' 1-6

slot, GAME simply tacks the list onto the backbone transmit queue
(~xmt() would do a list walk). The receiving slots parcel out the buffers
to the proper gates, and have no clue whether the original sender used
~xmtO or ~fedex() (nor do they care). This can be a big win for
forwarding code in a multi-slot box where a slot contains a single interface
or a small percentage of the interfaces on the entire ro~ter.

An example of this is contained in the IP forwarding code. The
destinations GHs of all packets are 'or'ed together. If all of the packets
are going to a remote slot, ~fedexO (actually, ~fedex_cleanO; see next
section) is used.

(dest_9h gets set to current buffer's 9h)

/*end for ... * /

/*

* If all buffers in the list are destined for a remote slot
or * are being freed 9_fedex can be called for performance gain

*/

if ((int) dest_9h < 0)

Guide Name

•
Chapter 1 Concepts: Inter-gate communication _

2.1.3 9-fedex_clean() - special 9_fedexO for VBM systems

This function is a special version of ~fedex() that provides faster delivery
on systems with Vutual Buffer Memory (VBM), such as the ARE. The
parameters are exactly the same as ~fedex(). On non-VBM systems,
~fedex() and ~fedex_cleanO are equivalent.

Since VBM allocates physical pages in 256-byte clumps, it is possible
for the owner of a buffer to write over a page boundary, requiring a new
physical page. The VBM hardware handles this, and you normally get
another page. However, if the free page pool is depleted, a "wastebasket"
(WB) page is assigned to the buffer. The owner can continue writing to
the buffer, but the writes go to the equivalent of!~ev/null. Reading a WB
page is a fatal error. If you send a buffer with a WB page to another gate,
it will be dropped.

I/O devices and the backbone check for WB pages in received buffers so
that only "good" buffers actually get delivered to gates. If a packet is
simply forwarded through the system without adding any data (adding
new link level headers is OK, as that page is real), that buffer can never
acquire a WB page.

When using ~fedexO ona VBM system, GAME has to check each buffer
to ensure that no WB pages are present. ~fedex_cleanO skips this check
and avoids walking the buffer list.

~fedex_clean() cannot be used if any buffers in the list have been
acquired via ~balloc().

2.1.4 9_xmt_imO - g_xmtO with alias member ignore

buf_list: the pointer to the head of a list in the transient
pool (i.e., linked by the "next" pointers).

im: the gate id of a local member of one or more aliases.

This function was created to efficiently handle the case where multiple
interfaces on the box belong to the same "broadcast domain". All of the
DP encaps gates used in this domain can join a single alias. When one

•

Guide Name 1-7 •

¢ e e R & e ~ & e e e _ & e e • e e e & e &
!:, Chapter 1 Concepts: Inter-gate communication

e

eo 1-8

interface receives a packet, and it has to broadcast it out all of the other
interfaces, it uses ~xmcimO, setting nim" to its own encaps gate. This
way, the packet goes out all interfaces except the one it came it.

This behavior only applies to buffers in "buClist" that contain alias gate
handles, and only if "imn is a local member of a particular alias.

Setting "im" to zero is equivalent to calling ~xmtO. In fact, that's what
~xmtO does.

Here's another forwarding loop. This one is from the DP decapsulation
routine dp_decaps:-Ian_actO. Since some of the packets may be bridged,
and bridged packets can be flooded, ~xmcimO is used so that the encaps
gate for the local circuit is not included in the flooding-.

/* loop for each packet */

/* DP table lookup */

G_BUF_DEST_GH{rx-pkt)
cc_env->sr_env->sr_fwd_isap.isap_handle;

G_BUF_DEST_GH{rx-pkt) =
cc_env->sr_env->sr_fwd_isap.isap_handle;

Guide Name

eo. • • • • • • • • • • • • • • • • • • •
Chapter 1 Concepts: Inter-gate communication _

} /* end for all packets */

/* Call the g_xmt ignore member function in case we're
flooding. 10/13/94 Ip */

g_xmt_im (head, GH_GET_GID(*cc_env->im~h))i /* send list
to isaps */

2.2 Reliable buffer delivery

IMPORTANT NOTE: The operation of reliable buffer delivery is quite
different on the new Strangelove platfonn. While the function calls
described here operate the same, the underlying details are different.
Color everything here with the phrase" on the BN" .

GAME's reliable buffer delivery really means "acknowledged delivery
with retry and timeout". That is, after sending a reliable buffer
"unreliably", if no acknowledgment is received within a certain time
period, GAME will retry the transmission. After so many
retransmissions, GAME gives up and returns a failure indication to the
caller.

•

Guide Name 1-9 •

• • 0 0 e & • 0 • • • • • • 0 • • • • • • •

t Chapter 1 Concepts: Inter-gate communication

•

e 1-10

2.2.1 9_fwdO - reliably transmit a buffer

dest~h: The destination gate handle for the buffer.

buf: The buffer requiring reliable delivery.

This function reliably delivers a single buffer to one or more instances of
a gate (depending on how many bits are set in the gate handle). The gate
is put into the pended state while waiting for acknowledgments. Note that
the function pends even if delivery is to a local gate. This is so that the
callers can be ensured that they give up the CPU when they call ~fwdO
(some applications rely on this).

The function returns when a copy of the buffer has been placed on the
delivery list of every requested destination gate instance or upon failure
to reliably deliver the buffer to all instances.

The return value is zero if all intended recipients received the buffer.
Otherwise, it contains the slot bits of the gate instances that did n~t
acknowledge receipt of the buffer.

For local delivery, GAME puts the buffer on the destination gate's delivery
list, calls ~idle (G_IDLE_TAll...), and returns (successfully).

For remote delivery, after sending the buffer, GAME waits roughly 1116
of a second for an acknowledgment from a destination slot. If an ACK
is received, it then repeatedly waits to collect up any other outstanding
ACKs, if the descgh indicated delivery to multiple slots. It then waits
about 16 seconds (!) for the backbone to return the original buffer. If the
buffer does not corne back, a PANIC occurs (this indicates a GAME bug).
In practice, this takes much less time. In fact, on the BN, the original
buffer is usually returned before the ACKs.

If all ACKs and the original buffer were received, a zero is returned to
the caller. If some ACKs were not received, the buffer is transmitted
again (only to the applicable slots) and the whole deal is repeated. After
128 failures, the error will be returned to the caller.

Guide Name

•
Chapter 1 Concepts: Inter-gate communication 6\

[include FWD picture from file:/rtellharpoon/doc/gamelhtm1/
game_overview.html]

The return value of LfwdO MUST be examinedll Failure means that
the one or more indended receipients did not get the message. The return
value should be checked against the current mapped GH for the receipient
gate to detect a slot-down event.

Some other details:

If game knows a slot is down or that an instance of a gate does not exist
on that slot, or if it discovers one of these situations after some amount
of retrying, it will immediately mark that slot as failed and will not do
any further transmissions/retries.

In a situation where a remote gate instance goes down at the same time
a LfwdO is being attempted, there is a race condition between the
following events:

• The return of the LfwdO indicating a failure.

• The local gate's mapping activation for that gate.

In other words, if the calling gate maintains a mapping for the gate it is.
sending to (which it _should..), it may receive a LfwdO failure before it
learns of the destination gate's untimely death.

This example is from the IP code that sends routing information changes
to remote slots. Having this information synchronized across slots is very
important. If the operation fails, IP terminates itself. Notice that it takes
the current RTM_UPDATE gate handle (up~h) into account.

failed_slots = g_fwd (dest_slots I GID_IP_RTM_UPDATE,

rtm_env->rtm_huf);

/* If somebody didn't get the message, CRASH! */

{

g_log (IP~TM_G_FWD_FAILURE, (dest_slots & rtm_env->up~h),

failed_slots) i

•

Guide Name 1-11 •

• & & & ~ & • e • e • • • • e e • • • • • •
~ Chapter 1 Concepts: Inter-gate communication
¢

I\' 1-12

NOTE: The "and" with descsiots in the "if' isn't really necessary, as no bits
can show up in "failed_slots" that were not set in "descslotg1'.

2.2.2 9-rpc() - remote procedure call

BUF *g_rpc (GH dest--9"h, BUF *buf)

dest~h: The destination gate handle for the buffer.

buf: The buffer requiring reliable delivery with replies:

As the name suggests, this call is used for implementing remote procedure
calls. For purposes of discussion here, we'll assume a client-server
relationship between gates.

When the client gate calls ~rpcO, "buf' is reliably delivered to each
instance of the server gate (dest~h), exactly like ~fwdO. After a server
gate processes the buffer (possibly modifying it), it must return the buffer
to the client gate via the ~replyO call:

void g_reply (BUF *buf)

The reply buffer is also delivered exactly like a ~fwdO.

GAME will wait until all replies are received or a time-out occurs. The
return value from ~rpcO is a pointer to the head of the list of returned
buffers. A successful call results in a returned buffer from each requested
instance of the server gate. The client gate can identify which server sent
a particular reply by using the ~src() call (the application can include
this information in the message within the buffer, making the ~srcO
unnecessary). If a buffer is not received from a particular slot, no reply
buffer will be included on the list. If no replies are received, the return
value is NIL(BUF).

The client will wait up to 16 seconds for a single reply.

Guide Name

~ & •••••• e' ••••••• e _ e e ••
Chapter 1 Concepts: Inter-gate communication _

~rpcO is implemented using the same mechanisms as ~fwdO. In this
case, there are two or more reliable buffer transfers: one for the request
buffer, and one or more for the replies.

(include RPC picture from file:/rte1/harpoon/doc/game/htmll
game_overview.html]

Whereas a ~fwdO can only fail due to the inability to deliver a message
to a destination gate, a ~rpcO can time out even if the receiving gate is
up and healthy_ If the receiving gate has a large backlog of messages to
process and that processing is very CPU intensive, it may not process the
sender's buffer in time to avoid the 16 second timeout (really. we've seen
it). Worse, the receiver will eventually process~e buffer and send a reply.
GAME will then throwaway the reply because the transaction has timed
out.

A gate that can get backlogged in this manner must not be used as a server
gate for a ~rpcO.

The API calls for the MIB service use ~rpcO. This is the mib_bind_objO
call:

mib_bind_obj(obj_id, type}

OBJ_ID obj_id;

{

BUF *buf; /* message buffer pointer */

/* pointer to message contents */

ensign_gate;/* returned */

/* first get a message buffer */

if «buf = g_balloc(BALLOC_TMO)} == NIL(BUF)} {

g_log(MIB_BALLOC_ERR, g_myid(»;

CRASH(MIB_CRASH};

•

Guide Name 1-13 •

€' e, Q

Chapter 1

1-14

~ ~ • • • & • • • • •
Concepts; Inter-gate communication

•

1* get pointer to message contents *1

1* fill message with arguments *1

msg->source-9id = g_myid();

msg->bind_type = type;

1* if PRIMARY binding, get the binding entity's gate id -->
mapping *1

if (type == PRIMARY) {

1* for SECONDARY and OMNI bindings, set bind_gate to zero
--> no mapping *1

} else {

msg->bind_gate 0;

1* send message to MIB manager *1

g_log(MIB_RPC_ERR, g_myid(»;

CRASH (MIB_CRASH) ;

/* get pointer to reply message contents *1
G_BUF_PDU(buf, MIB_ENT_MSG);

Guide Name

msg=

(' Cl 0 ~

Chapter 1
Q 0 • eo. • • • Q •

Concepts: Inter-gate communication 10

/* successful? */

/* error - kill calling entity's gate */
g_log(MIB_BIND_OBJ, g_myid(), msg->ret_cooe);
CRASH (MIB_CRASH) i

}

/* get ensign gate */

ensign_gate = msg->ensign~atei

/* free message buffer */

g_bfree(buf, buf);

/* done - return ensign gate */

return(ensign_gate)i

}

<I

This is the code in the MIB gate that serves the mib_bind_objO request

in ent_dispatch() :

/* get pointer to message contents */
G_BUF_PDU(buf, MIB_MSG)i

/* dispatch on op_code */

break;

Guide Name 1-15 •

~ e • ~ e G ~ & • e • e • • e • • • • • • •
G Chapter 1 Concepts: Inter-gate communication

•

• 1-16

/* send reply message g_rpc initiator */ if (buf) {

}

2.2.3 9_fwd_list() - forward a list of buffers reliably

u_int32 g_fwd_list (GH dest_gh, BUF *head, BUF *tail, u_int32
pipe_id)

dest~: The destination gate handle for the buffers. ONLY 1 slot bit can
be set.

head: The head of a list of buffers in the transient pool.

tail: The tail of a list of buffers in the transient pool.

pipe_id: The return value from a previous ~fwd_listO call to the same
gate, or zero.

This function provides a mechanism to reliably deliver multiple buffers
to a single instance of a gate without putting the sending gate into the
pended state. This is done by creating a new gate that forwards the buffers
using ~fwdO. Since this can facilitate asynchronous delivery of lists of
buffers, a "piping" feature allows the caller to assure that buffers from
different g...fwd_IistO calls to the same gate are delivered in order.

When called with a zero "pipe_id", or if the operation corresponding to
anon-zero "pipe_id" is finished, GAME creates a child gate for the calling
gate and puts the buffers into its first private pool. The gate is then
scheduled with a SIG_INI signal. When that gate runs, it pulls the buffers
off the private pool and does a g...fwdO for each one. After finishing, or
if one of the g...fwdO calls fails, a data signal (data signals are explained
in detail later) is sent to the calling gate to report the status. The format
of the data delivered is found in includelkeme1.h:

{

u_int32 id; /* the Id from the g_fwd_IistO call */

u_int32 status; / * O=successful, non-zero=failure * /

Guide Name

• • 0 e • • • • • • • eo. 0 • • • • • • ,.

Chapter 1 Concepts: Inter-gate communication ,.

GH dest-.Q"h; /* the destination gatehandle */

/* how many msgs were successfully sent */

} FWD_LIST_STATUS;

The gate then terminates itself, unless another ~fwd_IistO was done for
the same pipe (see next few paragraphs).

The return value from ~fwd_listO is a pipe identifier that can be used to
synchronize deliveries to the same gate via separate ~fwd_list() calls.
By using the returned pipe ID from the previous call, the caller is ensured
that the next list of buffers will not be delivered before the previous list.
This is accomplished by using the same child gate for delivery, if it still
exists (if it doesn't exist, the previous buffers h~ve obviously been
delivered).

When the function is called with a non-zero "pipe_id" and the gate
performing that pipe's ~fwd() calls still exists, GAME adds a structure
to that gate's environment for the additional buffers and puts the buffers
at the end of the first private pool. When the gate finishes the previous
list of buffers, it checks for more lists before terminatiIig. If found, it
repeats the process of sending the buffers and delivering a signal to the
calling gate.

Once there are no more buffers to deliver, the gate terminates itself.

. Note that a separate status signal is sent for each g..fwd_listO call.

This highly edited example is from the DLS transmit code:

for (buf = buf_head; buf; buf = buf_next)

{

/ * we have to keep the next buffer in case we delete or send * /

•

Guide Name 1-17 •

e e & e e ~ e ~ e e & & • • • • • • • • • •
t\ Chapter 1 Concepts: Inter-gate communication

e

• 1-18

/* set the destination GH */

buf_end = buf; /*DF CR20602*/

} /* for each buffer */

/* send the list onward */

{

/* do the reliable forward */
sock->loc-pipe_id = g_fwd_list(rem_gh, buf_head,
bUf_end, sock->loc-pipe_id)i
}

/* we don't need to set the timer here because we
will get a */
/* signal back from g_fwd_list which will wake us
up */

2 .. 3 Debug tips

The "debug krnl" command provides a few settings of use for buffer
delivery debug (note that the "debug" module must be loaded). The use
of "debug krnl" is discussed in file:/rtel/harpoonJdoc/game/htm1/
game_debug.html.

ms~xmt Logs messages if xmt buffers are being sent to gates which
we don't think exist on remote slots. Applicable

ms~deliverLogs message and dumps buffer if message is received for a
gate which is not present on the receiving slot.

Guide Name

3. Signals

• 0 • • • • • 0 • • • .e • • • • ¢ • • • • •

Chapter 1 Concepts: Inter-gate communication e
CI

buCchk erifies buffers are valid, on the same list and owned by the
caller. Applicable to g.JwdO, ~replyO, ~rpcO, ~fwd_IistO.

buCsize Verifies the buffer end is less than the max buffer size and
that start is less than end. Applicable to ~fwdO, ~replyO, ~rpcO,
~fwd_listO·

buCxmt Verifies xmt buffers are valid and the start and end offsets are
correct. Applicable to ~xmtO.

alCmsg The combination of ms~xmt and ms~deliver.

alCbuf The combination of buCchkO, buCpoolO, buCsizeO,
buCxmtO. The former two settings were discussed in the Buffers section.

Buffer delivery, as described in the previous section, is a general purpose
mechanism that has one down side: it requires dedicated resources
(buffers) to function.

Buffer delivery is the only option when data has to be sent across slots.·
When communicating between gates on the same slot, there are cases
where buffers are overkill for several reasons:

1. Only a small amount of information needs to be conveyed.

2. The communication has to happen frequently.

3. There is a short latency requirement.

4. Buffers are a more precious resource than memory.

3.1 Uses of Signalling

Signalling is used primarily for four purposes: interrupts, timer
expirations, software signals, and memory passing.

Guide Name 1-19 •

Q e e ~ • ~ 0 ~ & e & 6 e • e • • • • .0.

«, Chapter 1 Concepts: Inter-gate communication

$ 1-20

3.1.1 Interrupts

Hardware interrupt delivery is strictly controlled by GAME (see the
Scheduler section). Interrupts are intercepted by the kernel and translated
to software signals, allowing GAME to schedule interrupt handlers just
like all the other gates.

3.1.2 Timer Expirations

Timer expirations (see the Timer section) are conveyed via delivery of
the SIG_TMO signal (see include/vectors.h).

3.1.3 Software Signals

A limited number of simple software signals are supported (see include/
vector.h). The receiving gate gets activated with the signal number and
no additional information.

3.1.4 Memory Passing

The SIG_DATA signal is used to pass a memory segment (obtained via
~malloc) from one gate to another. This allows arbitrary amounts of
data to be transferred without using buffers.

3.2 Signal Handling Urgency

From the GAME scheduler point of view, there are two classes of signal
handling gates:

1. Normal, "base level" handlers that are scheduled for signal
delivery in a FIFO fashion among all other base level gates.

2. low latency, -interrupt level" handlers that are scheduled to run
at the nearest opportunity (when the currently active gate
completes or pends).

There is a strict prioritization between signal handing gates. Interrupt
level handlers are scheduled ahead of base level handlers and all other
gates. However, once activated, the gate handling a signal is never
interrupted or preempted (unless it voluntarily gives up the CPU).

Guide Name

•
Chapter 1 Concepts: Inter-gate communication •

3.3 Using Signals

A single gate instance can register to receive one signal (as defined in
inclu~e/vectors.h) and a single signal can, in most cases, be handled by
only one gate. In some cases, the gate does not need to explicitly register
for the signal, but it can still receive only one. The.caveat is that a gate
can always receive two additional special signals, which are always
delivered in a "base level" fashion:

1. SIG_INI. This signal is delivered upon the creation of a gate
instance if the creator set the G_SIG_INI flag in the 9-reqO call.

2. SIG_ TMO. This signal is delivered every time the gate's periodic
timer expires.

A gate that is activated due to a signal delivery, whether at the base or
interrupt level, is passed a signal vector number instead of a buffer pointer
(the "buffer list" parameter is NTI...). Besides this difference in passed
arguments, the two gate activation modes are identical (run to completion
uninterrupted, full access to system resources, etc ...).

A single gate instance cannot have both a buffer and a signal activation
(active/pended) at the same time. As discussed later in the Scheduling
section, if a signal activation is scheduled while the gate is.pended during
a buffer activation (or vice versa), GAME remembers this and schedules
the gate for the new activation when the old one exits.

3.3.1 Registering for a Signal

void g_isr (GID gid, SIG sig, u_int32 f1ag)

gid: gate id of the signal handler gate

sig: signal number to be hand1ed (from include/vector.h)

flag: signa1 handling option f1ag; one of:

G_ISR_SIG - interrupt (high priority) signal handler

G_BASE_SIG - base 1evel (low priority) signal handler

G_CANCEL - cancel signa1 handling

..

Guide Name 1-21 •

o e ¢ e & • • 0 ~ C 0 & e _ • ~ ~ C 0 • & 0

e Chapter 1 Concepts: Inter-gate communication

o

fiI 1-22

This function call tells GAME which gate is handling the particular signal
on the local slot. The calling gate will be terminated for any of the
following offenses:

1. The gate ugidU is not instantiated on the local slot.

2. The gate "gid" is registered to handle a different signal.

3. Some other gate is registered to handle "sign.

4. "flag" was set to G_CANCEL and the gate is not handling "sig".

Otherwise, whenever a gate calls ~sig("sig"), the signal will be
deliveredto "gid". The scheduling of the signal delivery depends upon
the "flag" paramet~r.

If "flag" is set to G_CANCEL, the gate will no longer be scheduled for
"sign.

A gate never registers for SIG_INI, SIG_TMO, or SIG_DATA signals.
It also does not register for signals sent via ~si~id() (later ...).

3.3.1 Sending Signals

There are three functions calls in GAME that result in a signal delivery.
GatescannotsendSIG_INIorSIG_TMO signals; onlyGAMEcandothis
(SIG_INI delivery _is_ initiated by some gate's ~reqO call, however).

3.3.1.1 Sending registered signals

void g_sig (SIG sig)

sig: The signal to be delivered.

This function is only used for signals where the receiver does an explicit
~isrO call. The registered gate is scheduled to receive the signal, based
upon the "flag" parameter used in the ~isr() call.

If no gate is registered for the signal, or if the signal has been previously
delivered with the R-siWid() call, no signal is delivered.

The driver for the n..,ACC chip, which is used on the quad ethemet boards,
registers for an interrupt associated with the connector the driver services:

Guide Name

& ~ • • 0 ~ • e e e e • • • • • • e e e • •
Chapter 1 Concepts: Inter-gate communication &

(SIG) (SIG_CSMACD + env->line);

/* Register for interrupts. */

g_isr(env->gid, env->line_sig, G_BASE_SIG);

The QENET hardware interrupt handler (real interrupts) sends a signal
when an interrupt is received from the chip:

/* dispatch off MISR signaling Line Drivers */

misr = *(u_int8 *) (hwrec->wfModMisr);

if (! (misr & lLACC1})

g_sig(SIG_CSMACD + CSMACD_CONN_ONE) ; __

if (! (misr & lLACC2»

g_sig(SIG_CSMACD + CSMACD_CONN_TWO);

if (! (misr & lLACC3»

g_sig(SIG_CSMACD + CSMACD_CONN_THREE);

if (!(misr & lLACC4})

The ILACe driver gate is eventually scheduled for the signal:

void

ilacc_up_state(env, buf, signal)

REG lLACC_ENV *env;/* ptr to parent~ environment */

REG BUF *buf, /* buffer pointer list, packets to xmt */

REG SIG signal; /* lLACC int signals or watchdog SIG_TMO's */

/* if there are buffers to be transmitted */

if (buf != NIL(BUF» {

ilacc_xmt(env, buf);

}

/* OR, if this is an interrupt signal from device */

•

Guide Name 1-23 •

e ~ e ~ ~ • e ~ • e.e e e •• e & •• e • e
f1 Chapter 1 Concepts: Inter-gate communication

C!

" 1-24

else if (signal == env->line_sig)

ilacc_intr (env) ;

3.3.1.2 Sending a single signal to multiple gates

Given that the number space for signals is small (256), it is desirable to
be able to use the same signal for multiple gates that are running
essentially the same code. As shown in the previous section's example,
multiple copies of a device driver may run on the same slot due to the
number of physical interfaces on the link module, potentially using a
signal per interface. Therefore, ~si~dO was born ...

target~d: The gate id of the destination gate on the local slot.

sig: The signal to be delivered.

option: G_BASE_SIG (base level delivery) or G_ISR_SIG
(interrupt)

The return value is non-zero if "target~d" doesn't exist and zero
otherwise.

Nom: The receiving gate must NOT register for the "sig" or any other
signal. It also cannot receive data via ~si~dataO:

The calling gate will be terminated for any of the following offenses:

1. The receiving gate has registered for any signal.

2. The receiving gate has received data via 9-sig_dataO.

The munich driver, used for the multi-channel Tl and El boards, uses
~si~dO in order to save on signals. Otherwise, with 96 logical lines
possible per slot, that many signal numbers would be necessary.

There are many calls in the driver similar to this:

Guide Name

Q •

Chapter 1 Concepts: Inter-gate communication .,

"ldg_gid" is an array of the gate ids for the "line driver
gates' .

3.3.1.3 Sending data with a signal.

The g...sig...dataO call really serves two purposes. Its a way to send
mUltiple signals to a single gate as well as a way to.move memory
segments between gates.

The first step is for the sending gate to call g...si~dataO and pass in the
address of a memory segment. This _muse be the same address as was
returned by a ~mallocO. Its not possible to send partial segments. If the
~si~dataO call is successful, the sender no longer owns the memory.
Any pointers to that memory should be nulled-out.

dest:~id: Tne gate id of the destination gate on the loeai slot.

type: The data signal type, as defined in includeldata_sig.h

data: The pointer to the memory segment to transfer. If NIL, "type" is
the only information delivered to "dest~id". This is how ~si~dataO is
used to deliver multiple signals.

The return value is zero if the memory was delivered and non-zero
otherwise. The only reason for the non-zero return is if the destination
gate does not exist locally. The calling gate still owns the memory
segment in this case.

The calling gate will be terminated for any of the following offenses:

1. "dest-9id" is zero.

2. "dest-9id" is scheduled to receive a different signal (other than
SIG_INI, SIG_ TMO).

3. "dest-9idu is registered to handle a signal (DEBUG only).

4. The calling gate does not own the memory segment (DEBUG
only).

•

Guide Name 1-25 •

D D • • • ~ • • e • • • 0 ~ • • • ~ ~ • e 0

Il' Chapter 1 Concepts: Inter-gate communication

e

9 1-26

GAME gives the memory segment to the receiving gate and schedules it
for a SIG_DATA signal (unless already scheduled).

When the receiving gate is invoked with the SIG_DATA signal, it must
g...,gecsig...dataO to retrieve the memory. It is possible to have multiple
data deliveries before the reciever gets scheduled. The receiver will only
see one SIG_DATA activation. Therefore, it needs to do Uecsig...dataO
in a loop until told there is no more data available (zero return). The order
of signal delivery is preserved.

u_int32 g-get_sig_data (GID *send_gid, u_int32 *type, u_int32
**data, u_int32 *size)

send~d: pointer to a (GID) where the gid of the gate iliat sent the signal
can be written.

type: pointer to a (u_int32) where the data signal type, as defined in
include/data_sig.h, can be written.

data: pointer to a (u_int32 *) where the data pointer can be written.

size: pointer to a (u_int32) where the data size (in bytes) can bewritten.
The size returned is the total size of the memory segment. This is rounded
up to a cache line size and may not be the size of the actual data contained
within the segment. This is to aid in the reuse of memory segments for
different purposes.

The return value is non-zero if data was delivered and zero if not.

As with buffer delivery, the format of the messages delivered must be
agreed upon by the sender and the receiver (i.e., located in a *.h file).

If g...sig...dataO is being used for message delivery (as opposed to transfer
of "permanent" memory ownership), the receiving gate must free the
memory segment when it is finished examining it.

DP implements a generic service that will allocate a "resource" and
deliver it to destination gates, using memory if the destination is local

Guide Name

•
Chapter 1 Concepts: Inter-gate communication 0

and a buffer otherwise. This is the routine that allocates either a memory
chunk or a buffer:

{

/* Allocate a buffer, adjust to point to data and return */

BUF *buf;

{

g_log(DP_NO_BUF);

CRASH(DP_CRASH);

} /* if ! buf ~ g_balloc */

return(IS_BUFFER);

}

else

{

/* Allocate a piece of memory and return it */

/* This will eventually be optimized to use free pools */

*ptr = 9_malloc(struct_size);

zero«u_intS *)(*ptr), struct_size)i

}

•

Guide Name 1-27 •

4. Mappings

& ~ • • ~ • • G • • • • • • • • • • • • • •

Chapter 1 Concepts: Inter-gate communication G

if (g_sig_data(GH_GET_GID(gh), (u_int32) (**ptr), (void
*) *ptr))

/* Set our local slot bit to indicate that signalling failed
to our slot */

}

/* Remember, your ptr will not be valid anymore */

} /*send_sigbuf */

BAD CODING PRACTICE ALERT: Theretum value from ~si~dataO
should be examined. If non-zero, ~fwd_rtn_mask should be set to the
local slot bit.

Also, copyO should be used rather than bcopyO. This function attempts
to optimize the data copy if the data alignment allows.

Mappings can be used as a messaging mechanism to indicate events to
gates on the same or on remote slots.

The basic idea is that a gate is created to indicate a particular state. Gates
interested in that state map the "state" gate. When the state is no longer
valid, the "state" gate is killed, causing the mappings to trigger.

Note that the creating and killing of gates involves a non-trivial amount
of CPU. This procedure should be avoided for frequent events.

The prime example of this is the MIB service. It uses davidian gates
(which limits the "messaging" to local slots) to represent:

•

Guide Name 1-29 •

•
., Chapter 1 Concepts: Inter-gate communication

•

• 1-28

} /* get_sigbuf */

This is the routine that sends the memory or buffer:

GH send_sigbuf (GH gh, u_int32 m_type, u_int32 m_size, u_int32
**ptr)

char log_buf[120];

GH g_fwd_rtn_mask = 0;

/* Is remote */

/* Get back to your buf pointer * /

*ptr = (u_int32 *)«char *)*ptr - G_BUF_START_MSG);

}

else

{

/* GH became remote on us .. Aaaaaagh! Copy it into a buffer
fast... */

bcopy«u_int8 *) (*ptr),(u_int8 *)b-ptr,m_size);

g_mfree(*ptr) ;

}

else

Guide Name

e e & 0 & e & e 0 e eo. e • e e ~ • e ~ e
e Chapter 1 Concepts: Inter-gate communication

•

.. 1-30

1. The contents of a row instance of a table. Whenever a "restart"
variable in the row is changed, the davidian gate is killed.

2. The creation of a table row instance. Whenever a new row is
added to a table, the davidian is killed. It is not killed when a
row is removed (the application has to do the removal, so
there's no need to tell it).

WARNING: The use of ensigns or davidians for this purpose is problematic,
since GAME does not clean up these gates when the creator dies (there's DO

GATE structure, and hence, no ancestry information). The MIB can get away
with this because if the MIB dies, the whole slot goes down. Therefore, use
real gates with dummy activation routines instead until told otherwise.

Guide Name

1. Motivation

•
Chapter 1 Concepts: System Loader •

GAME 101

Chapter 1 Concepts: System Loader
Approximate time to cover: ? hours.

Instructor's note: Prior exposure to the Bay develop !Dent environment.
build process, and GAME concepts (gates, mappings, etc.) would be
helpful.

GAME and its applications were originally linked as a single slab of code
(like the simulator). This became unweildy as more and more software
was developed for the router. Therefore, a mechanism was needed to
separate applications from the kernel and each other.

The following goals were established:

• mechanism for conditionally (via configuration) loading!
spawning applications

• provide fault isolation/recovery in conjunction with the kernel

• extensible to easily support new kernel elements and
applications

• minimize DRAM memory consumption on all slots

• allow for tailored S/W image to reduce file system memory
consumption, and only ship the specific software modules which
customer ordered

• hooks for releasing software modules independently, if we ever
decide to do so

•

2. Linking/Loading Options

A couple of options were considered to solve this problem:

Guide Name 1-1 •

& ~ • & 0 0 0 e _ & e & • e e • Q & e e 0 e
e Chapter 1 Concepts: System Loader
(!

Memory reclamation (5-series method) - image still linked as a slab, but
unconfigured applications would have their code space reclaimed and
placed in the dynamic allocation pool at run-time.

Dynamic loading

• GAME's dynamic config capability disqualified memory
reclaimation because an entity could be loaded at any time

• targeted a separate-linking approach where the kernel is
linkedstatically (as a slab) and applications (drivers, routers,
etc.) are linked as their own executables

• wanted code to be relocatable so it could run anywhere in
memory

• Oasys compiler supported position-independent code (PIC)
where al offsets are calculated relative to the PC

• access to kernel system calls via jump tables

• linking loader option was considered, but deemed overkill for an
embedded environment... concerns about increased image size
(because of reloc info), performance (depending on
implementation), and boot time (re-linking); also, modified
image not easily servable to neighbors because it's not virgin

• archive file format holds all the executables in a single file
(bn.exe, ace.exe, etc.)

3. Kernel Loader:

111 1-2 Guide Name

• after the bootstrap acquires the kernel image, GAME initializes
the hardware and itself, and then starts the kernel loader

• kernel loader is really just a gate spawner that works in two
phases

• phase 1 - "core" kernel services are brought up first ... GAME,
file system, MlBlEmanate, loader gates, timekeeper ... MIB must
obtain config and initialize first before any other subsystems can
start

• phase 2 - system services are then brought up ... DP, event
logger,kemel MIBs, etc ... and finally the dynamic loader is
launched

& 0 0 ~ e c • • • • • e • • • e • • • • • •
Chapter 1 Concepts: System Loader e

• one of the gates spawned in phase 2 is an image server gate,
which serves the kernel and application images to remote boot
clients

4. Dynamic Loader:

• mechanism for conditionally (via configuration) loading!
spawning applications

• the dynamic loader retrieves its configuration records
(wfLinkModules wfDrivers, wfProtocols) from the MIB

• applications are loaded on a per-slot basis, as dictated by the
configuration records

• monitors dynamic changes to the MIB records so it can load or
unload applications on demand

Acquiring application executables:

• for each application that's configured, the loader spawns a
downloader gate which attempts to acquire the application
image

• the downloader gate first tries to load the image from a neighbor
slot (straight from DRAM) by sending broadcast messages to
the image server gate

to expedite the boot process, each image server can serve
multiple down loader clients simultaneously

• if no neighbor slot has the desired image, then loader attempts to
get it from the active boot image on the file system (flash on BN)

• a file system control gate serializes access to FS to minimize
disk thrashing

• executable files which come from the FS are compressed, so the
loader must decompress them ... images obtained from a
neighbor slot are already decompressed

• each image has a compressed & uncompressed checksum that
the loader validates

Guide Name

•

1-3 .,

e ~ e e 0 e • c ~ • • • e • • • • • • • • •
~ Chapter 1 Concepts: System Loader

fI

tI> 1-4

• the dynamic loader supports image revision checking to ensure
that the kernel and application images are from the same release.
it enforces this check on all 'reI', 'int', 'fix', etc. images; however,
it allows anything with a'dev' stamp to run with anything else so
developers can make workspaces and debug in the lab

• on platforms that support TAG protection, the loader sets the
code section to read-only to prevent inadvertant corruption. the
data section can't be protected because that would require it to
be 'uncachable'. this would have a detrimental effect on
performance.

Jump tables

• kernel system calls and inter-module API calls go through a
central kernel dispatch table (the GAME dispatch table). the
magic structure 'gamejldr' is the place-holder for the dispatch
table

• in the kernel, the 'game_hdr' structure is declared in the game
subsystem and linked in!o the kernel image. each application
which links independently has its own copy of 'garne_hdr',
which is declared in the subsystem's '<subsys> _hdr.c' file

• the loader plugs the address of GAME's dispatch table pointer
into each application's 'garne_hdr' structure at load-time

**** PICTURE HERE FROM IrtelJharpoon/dodsysman/
dyn_Ioad_user.ps (pg4)

• each GAME system call is defined as a macro in the include!
garne.h

header file:

#define g_req
(*act) (),

(GID) (DsP (G_REQ»

where DsP is defined as:

/* GID gid, void

#define DsP(call_num) (* (game_hdr.dispatch [call_nurn))

the "call_num"is simply a constant from 1 to G_END_SCALL, which
represents each system call's location in the dispatch table

Guide Name

~ & • • • • • • 0 • • • • • • • • • • • • 0

Chapter 1 Concepts: System Loader 0

• example compilation of a call to Lreq shows four args being
pushed. the jump table pointer being loaded. and eventually a
JSR through the function pointer:

ld_app.c: 168

ld_app.c: 169
init_act, init_env, signal)i

787 9:00000120 2F04

788

789 9:00000122 2F2EOO14

790

791 9:00000126 2F2E0010

792

793 9:0000012A 2F02

794

795 9:0000012C 2053

796 9:0000012E 20680010

797 9:00000132 4E90

/* Log message and start gate * /

*

*

*

*

gid = g_req(gid,

MOVE.L D4,-(SP)

STACK OFFSET 4

MOVE.L 20(A6),-(SP)

STACK OFFSET 8

MOVE.L 16 (A6) , - (SP)

STACK OFFSET 12

MOVE.L D2,-(SP)

STACK OFFSET 16

MOVE.L (A3) ,AO

MOVE.L 16 (AO) ,AO

JSR (AO)

• system services (mib. tbl. etc.) and dynamically loaded
applications (ip. tcp. etc.) use a second level of indirection
through the jump table to accomplish function calls; by
convention. sys service calls are defiued in <subsys>.h (mib.h.
tbl.h, etc.) and app service calls are defined in <subsys> _dsp.h
(ip_dsp.h. tcp_dsp.h. etc.). notice the extra level of indirection
required to load the function pointer

(3 MOVE.L instead of 2):

#define mib-SJet_new_inst (u_int32) (AppDsP (MIB_INDEX,
MIB_GET_NEW_INST»

#define AppDsP(index, call_num) (* «(int
«**) (») (game_hdr.dispatch [index]» + call_num»

Id_get_cfg.c: 79
inst_id) i) {

•

Guide Name 1-5 •

• e e e • • • • • • • • • • • • • • • • • •
• Chapter 1 Concepts: System Loader

•

fiI 1-6

575 9:00000076 2FOC

576 *

577 9:00000078 486EFFBC

578 *

579 9:0000007C 2053

580 9:0000007E 20680200

581 9:00000082 20680014

582 9:00000086 4E90

and for a dynamically loadable application:

idefine ip_register
IP_REGISTER))

MOVE.L A4,-(SP)

STACK OFFSET 4

PEA -68 (A6)

STACK OFFSET 8

MOVE.L (A3) ,AO

MOVE.L 512 (AO) ,AO

MOVE.L 20 (AO) ,AO

JSR (AO)

idefine DynDsP(index, call_num) (* «(int
((**) ())) (game_hdr. dispatch [indEpC+G_END_SCALL]» +
call_num))

tcp_mgr.c: 756
&twait_env->local_ip,

ret = ip_register (
(u_int32)NULL,

2483 9: 000004E4 48780001

2484

2485 9:000004E8 2F2A0028

2486

2487 9:000004EC 42A7

2488

2489 9:000004EE 486A0020

*

*

*

2490 *

2491 9:000004F2 207B017000000002
(game_hdr,PC),AO

2492 9: 000004FA 2068027C

Guide Name

PEA $00000001

STACK OFFSET 40

MOVE.L 40(A2) ,-(SP)

STACK OFFSET 44

CLR.L - (SP)

STACK OFFSET 48

PEA 32(A2)

STACK OFFSET 52

MOVE.L

MOVE.L 636(AO) ,AO

eo. • • • • • • • • • • • • • • • • • • •
Chapter 1 Concepts: System Loader 0

2493 9: 000004FE 20680020

2494 9:00000502 4E90

MOVE.L 32 (AO) ,AO

JSR (AO)

API calls between loadable modules

• an application may publish a public jump table (example, TCP)

• the loader plugs the app jump table pointer iRto the appropriate
location in the second level dispatch table and "relocates" the
pointer address

• clients which make calls through a dynamically loaded app's
jump table must synchronize with that application ..• note that
the code for the

API function may be unloaded at any time by modifying the
configuration--

• synchronization is accomplished by mapping the parent gate of
the service-providing application

• ensuring that the mapping routine DOES NOT PEND will leave
your code free of race conditions ... note that if

• your gate is pended inside an API call, and

-the API owner and its code are unloaded, and

• your mapping routine pends your gate may resume execution
inside the API code space that has already been unloaded

- a fairly simple, correct mapping routine:

GH *ghi

if (GH_CEASED_LOCAL{*gh, new-9'h)) {

tnc_env = (TNC_ENV *)g_env();

•

Guide Name 1-7 •

e ~ e 0 0 ~ e • • • • • • • • • • 0 • • 0 •

e Chapter 1 Concepts: System Loader

G

• 1-8

}

Application requirements

• no global, writable data (.BSS)

• globals are not very "clean" ...

• 5-series code was riddled with bugs that resulted from
mis-managed global variables globals don't work across slots
in a true distributed system globals don't work in the current
implementation of the multislot

GAME simulator

- .BSS location/size info not carried in the image header

• all code and data "PIC-able"

• 0 use jump tables to publish APls

Application interfaces

• applications may load an executable module from the boot
image archive via the !Lload_archiveO system call. this is
typically used by drivers which must download a coprocessor
(cop) image. note that the caller owns the memory, which it
may free at its own discression

• applications may also load an 'overlay' version of an executable
module. this enables multiple calling gates to share a single
copy oadable code, rather than each gate loading it's own
version

Fauttmanagement

Guide Name

• loader maintains a mapping on each gate it spawns so it can
restart any gate that PANICs or crashes

~ e e e e • e e • e _ • • • • • e e • • • e
Chapter 1 Concepts: System Loader ..

• two system gates are special because they provide shared
memory pointers to their clients: the MIB and DP ... if they ever
crash, the entire slot restarts because apps are not coded to deal
with the loss of these services (stale pointers)

• gamelloader maintain a history of each subsystem's crashes, and
if the subsystem appears to be 'broken' it will not be restarted ...
this keeps mis-configured or broken gates fr6m hogging the
CPU

• historical data is maintained for:

• children of subsystem - if a child or multiple children are
'broken', then the subsystem will be restarted

• subsystem itself - if subsystem is 'broken', then it will not
be restarted

• 'broken' is defined by the number of crashes which occur in
a given time period (see the Fault Management section)

Shortcomings

• restrictive (no .BSS, all code "PIC-able", etc.). at the time, most
of our code was built in-house, and the requirements seemed
reasonable. unfortunately, we now port a lot more code 3rd party
code, so the requirements have become an impediment ...

• simulator was not addressed, image is tailored via stubs.c file

BCCwork

• the above requirements were deemed too restrictive for an
application which is data-driven and is largely composed of 3rd
party code .

• added hooks to allow .BSS section

• relocated non-PICable data structures directly in .DATA section
and marked the image as "not servable" to other slots

ultimately, they want a more standard-OS approach (i.e. linking
loader support) - they're working on a true run-time linking
loader

Guide Name

.,

1-9 •

o • • • • • • • • (I • e • • • • • • • • • ~

fl Chapter 1 Concepts: System Loader

•

5. Process issues

e 1-10

NOTE: this may go away or be modified, due to the conversion to clearcase.

Builds

• the kernel must be re-linked in the global build directories
(buildtib, buildace, etc.) whenever one of its modules has been
re-compiled; a new archive file is automatically created when
the kernel is linked

• when a module within a dynamically loadable application is
modified, the application must be re-linked in its own subsystem
directory

• after re-linking an application, a new archive file (bn.exe,
asn.exe, ace.out, etc.) must be generated in the global build
directory; this must be done manually when an application has
been re-linked

** EXAMPLE 2 - rebuilding a kernel subsystem **

** Compile kernel module **

intruder->cd loader

intruder->touch ld_boot.c

intruder->build tib -nr

Mon Dec 30 11:15:18 EST 1996

make -r TOOL=ghs TARG=tib PLAT=m68k GROUP=tib

loader: Mon Dec 30 11:15:23 EST 1996

Guide Name

o e 0

Chapter 1
.0. 0 0 • • e ~

Concepts: System Loader e ..
gcc68 -OLA -Z54 -c -ANSI -68040 -ga -unsignedptr -Xredefine
-useDS -align4 -X89 -X325 -X380 -Z551 -Onounroll -I .. /
include -I .. /edl/_tib -I .. /cdl/_tib -Io./mdl_inc
-DTIMEKEEPER -DTIB_ONLY -0 _tib/ld_boot.o ld_boot.c

C-68000 1.8.7 Copyright (C)
1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,199
4 Green Hills Software, Inc. All rights reserved.

lib68 -crvy _tib/1ibloader.a _tib/1d_boot.o

Deleted file: ld_bootoo

Added file: _tib/ld_boot.o

Mon Dec 30 11:15:43 EST 1996

** Re-link TIB kernel **

intruder->cd .. /buildtib

intruder->build tib -nr

Mon Dec 30 11:17:02 EST 1996

make -r TOOL=ghs TARG=tib PLAT=m68k GROUp=tib

game: Mon Dec 30 11:17:05 EST 1996

wsp='echo ${WSPACE} I sed 's/A\(.*\)router[0-9)*\///' I sed
·s/A\(.*\)harpoon\///" i echo "char Image_directory[] =
\"${WSp}\"i" > _tib/stamp.c

echo 'char Image_date[) = "'date' '"i' »_tib/stamp.c

gcc68 -OLA -Z54 -c -ANSI -68040 -ga -unsignedptr -Xredefine
-useDS -align4 -X89 -X325 -X380 -Z551 -Onounroll -I .. /
include -1. . /edl/ _tib -1. . /cdl/ _tib -1. . /mdl_inc -DTIB_ONLY
-0 _tib/stamp.o _tib/stamp.c

Guide Name 1-11 ..

e & ~ • • • • & • • e • • • • • • • • e • •
c- Chapter 1 Concepts: System Loader

e

til 1-12

C-68000 1.8.7 Copyright (C)
1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,199
4 Green Hills Software, Inc. All rights reserved.

168 _tib/
game.cfe-z-g-y-y1:14:16-y3-t:\"start\"-sl:9:x-s1:13:d-s1:1
4:b-U:14,_tib/kernel.map,_tib/game.crf=_tib/start.o _tib/
game-poot.o _tib/stamp.o _tib/libgame.a /rtell/harpoon/devl
tpearson/11/1oader/_tib/libloader.a /rte11/harpoon/dev/
tpearson/11/game/_tib/libgame.a Irte11/harpoon/dev/
tpearson/11/hwf/_tib/libhwf.a

_tib/liblast.a ./gamelink.dir

*** WARNING *** -Sl IGNORED, CONFLICTS WITH SECTION CONTENTS:
14

mapconv.pl _tib/kernel.map > _tib/kernel.nm

cd _tib; \

cofftoexe -K -r11.00 -i game.cfe -0 game_bn.exe -k
TIBFRES ; \

Parsing Input File: game.cfe

Program execution address space:

Load Address: Ox30020000 Rom Address: Ox30020000 Size:
Ox0017C644 Bytes Entry point: 0x30024000

Input file information:

Input file: game.cfe

File type: Kernel file.

Tool name: Oasys Linker

OUtput file information:

Image Name: dev/tpearson/11

Guide Name

•
Chapter 1 Concepts: System Loader _

Output file: game_bn.exe

Platform Key: (0101000B) BB M68000 MotherBoard (FRE FRE2
FRE2_60J

Rev.ision: 11. 00

Date Created: Monday December 30 11:18:00 1996

compressing ldapp.nohdr to ldapp.cmp

Using LZSS Encoder

............•......•.. Inpu t bytes:

OUtput bytes: 806321

Compression ratio: 49%

cd _tib ; \

1558084

cd exes; archive -av bn. exe krnl_bn. exe snmp. exe pcap. exe
fsLexe tms380.exe drs.exe osLexe vines.exe lapb.exe x2S.exe
xns.exe ipx.exe ip.exe fr.exe atm_dxLe ...

Creating new archive: bn.exe

Platform: BB

-- Adding krnl_bn. exe

-- Adding snmp.exe
ASN FRE2_60 ISP_60

-- Adding hdwanlm. exe

-- Adding de100.exe

Adding hdwancop.exe

Adding mctlcop.exe

FRE FRE2 FRE2_60

FRE FRE2

FRE FRE2 FRE2_60

FRE2 FRE2_60

HDW.ANLM

•

Guide Name 1-13 •

e e e
Chapter 1

1-14

e e e • It It «it «it

Concepts: System Loader
• It It It

** End EXAMPLE 1 **

It • It

**********~********************************

** EXAMPLE 2 - rebuilding an application **

** Compile and re-link application **

intruder->cd ilacc

intruder->touch ilacc_ctrl.c

intruder->build tib -nr

Mon Dec 30 11:07:19 EST 1996

make -r TOOL=ghs TARG=tib PLAT~68k GROup=tib

ilacc: Mon Dec 30 11:07:22 EST 1996

gcc68 -OLA -Z54 -c -ANSI -68040 -ga -unsignedptr -Xredefine
-useDS -align4 -X89 -X325 -X380 -Z551 -Onounro11 -pic32
-pid32 -I .. /include -I. . /edl/ _tib -I. . /cdl/_tib -I. . /mdl_inc
-DTIB_ONLY -0 _tib/ilacc_ctrl.o ilacc~ctrl.c

C-68000 1.8.7 Copyright (C)
1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,199
4 Green Hills Software, Inc. All rights reserved.

lib68 -crvy _tib/libilacc.a _tib/ilacc_ctrl.o

Deleted file: ilacc_ctrl.o

Added file: _tib/ilacc_ctrl.o

Guide Name

· ((:
Chapter 1 Concepts: System Loader •

168 _tib/
i1acc.cfe-z-g-y-y3-t:\"i1acc_entry\"-s1:9:x-s1:13:d-s1:14:
b-U:14,_tib/i1acc.map,_tib/i1acc.crf=_tib/i1acc_hdr.o_tib/
libi1acc.a/rte11/harpoon/dev/tpearson/11/hwf/_tib/1ibhwf.a
/rte11/harpoon/dev/tpearson/ll/snmp/_tib/libsnmp.a /rte11/
harpoon/dev/tpearson/11/tib/_tib/libtib.a /rte11/harpoon/
dev/tpearson/11/pcap/_tib/libpcap.a /rte11/harpoon/dev/
tpearson/11/prioq/_tib/libprioq.a /rtell/harpoon/dev/
tpearson/11/rt1/_tib/librtl.a ./ilacclink~dir

mapconv.pl _tib/ilacc.map > _tib/ilacc.nm

Parsing Input File: ilacc.cfe

Program execution address space:

Load Address: OxOOOOOOOO Rom Address: OxOOOOOOOO Size:
Ox0000825C Bytes Entry point: Ox00002140

Input file information:

Input file: ilacc.cfe

File type: Loadable Application file.

Tool name: Oasys Linker

OUtput file information:

Image Name: dev/tpearson/11

Output file: ilacc_ucmp.exe

Platform Key: (0101000B) BB M68000 MotherBoard (FRE FRE2
FRE2_60)

Revision: 11.00

Date Created: Monday December 30 11:07:46 1996

(f:

Guide Name 1·15 •

(I C Q

Chapter 1

1-16

& e Q • e Q e ~

Concepts: System Loader

Compressing Idapp.nohdr to Idapp.cmp

Using LZSS Encoder

Input bytes: 33372

Output bytes: 18823

Compression ratio: 44%

Mon Dec 30 11:07:50 EST 1996

** Regenerate the archive file **

intruder->cd .. /buildtib

intruder->build tib -nr archive

Mon Dec 30 11:09:41 EST 1996

make archive -r TOOL=ghs TARG=tib PLAT=m68k GROUP=tib

cd exes; archive -av bn.exe krnl_bn.exe snmp.exe pcap.exe
fsLexe tms380.exe drs .exe osLexe vines.exe lapb.exe x25.exe
xns. exe ipx. exe ip. exe fr. exe atm_dxi. exe wan. exe lIe. exe
at.exe bgp.exe egp.exe ospf2.exe rarp.exe tcp.exe dls.exe
appn_cp.exe appn_ls.exe sdlc.exe nbase.exe tftp.exe Inm.exe
tn.exe ppp.exe debug.exe tnc.exe nbip.exe wcp.exe ntp.exe
isdn.exe lm.exe ping.exe atm.exe atmsig.exe atm_le.exe
igmp. exe dvmrp. exe ftp. exe quicsync. exe arp. exe xm. exe
sysl.exe crm.exe bgprs.exe st2.exe nsc_100m.exe ipex.exe
rredund. exe npt. exe run. exe ip6 . exe sh_csmac. exe sh_sync. exe
sh_tcp.exe sh_tftp.exe sh_snrnp.exe sh_fr.exe sh_ip.exe
munich.exe fmpb.exe pim.exe hwcomp.exe bot.exe hwf.exe
fddi.exe dsde2.exe dst.exe dtok.exe enet2.exe qenet.exe
qsync.exe hdlc.exe hssi.exe ilacc.exe lance.exe ds2180.exe
ds2181.exe el.exe tl.exe hfsi.exe mct1e1.exe atmalc.exe
atmalcop.exe hdwanlm.exe de100.exe hdwancop.exe mctlcop.exe

Creating new archive: bn.exe

Guide Name

eo. • • e e e • • e e • • • • • • • • • •
Chapter 1 Concepts: System Loader •

Platform: BB

-- Adding krnl_bn. exe

-- Adding snmp.exe
ASN FRE2_60 ISP_60

-- Adding pcap.exe
ASN FRE2_60 ISP_60

-- Adding fsi.exe
ASN FRE2_60 ISP_60

-- Adding hssi. exe

-- Adding ilacc. exe

-- Adding lance.exe

-- Adding ds2180 .exe

-- Adding ds2181.exe

-- Adding el. exe

-- Adding tl.exe

-- Adding hfsi.exe

-- Adding mct1el.exe

-- Adding atmalc.exe

-- Adding atmalcop.exe

-- Adding hdwanlm. exe

-- Adding de100.exe

Adding hdwancop.exe

Adding mct1cop.exe

** End EXAMPLE 2 **

FRE FRE2 FRE2_60

FRE FRE2

FRE FRE2

FRE FRE2

FRE FRE2 FRE2_60

FRE FRE2 FRE2_60

FRE FRE2 FRE2_60

FRE FRE2 FRE2_60

FRE FRE2 FRE2_60

FRE FRE2 FRE2_60

FRE FRE2 FRE2_60

FRE FRE2 FRE2_60

FRE FRE2 FRE2_60

FRE2 FRE2_60

ATMALC

FRE FRE2 FRE2_60

FRE2 FRE2_60

HDWANLM

MCT1_COP

•

GuideNarne 1-17 •

e 0 e & .00 e 0 e e e e • • e e • • .0.

o Chapter 1 Concepts: System Loader

e

f) 1-18

• for a list of kernel subsystems, see buildtiblMakefile, and look at
the PROGLIBS list; applications can be found in the
PROGEXES list

Debugging

Guide Name

• there are some special considerations for debugging
dynamically loadable applications because their load address is
not known until they are actually loaded

• the application load address must be read from the TI console
via the 'loadmap' command (after the loader has loaded it), and
then fed nto the debugger (see the manual for your debugger of
choice) when you load the application symbol table:

[2:TN]$ loadmap 2

Loadmap from SLOT 2:

--> arp.exe Ox304ecddO 0008944
--> tcp.exe Ox30508dfO 0057776
--> tftp.exe 0x304efOdO 0020488
--> snmp.exe Ox304ff730 0030360
--> tn.exe Ox304f40fO 0038424
--> ip.exe Ox304cOf70 0179780
--> hdlc.exe Ox30491560 0058368
--> lance.exe Ox30522fOO 0008840
--> dsde2.exe Ox305251aO 0005232

alternatively, this step can be avoided by linking the application
into the kernel slab for debugging pwposes

,
• loadmaps are available on-demand from the TI; they are also

dumped into the system log so that dynamic addresses found in
stack dumps can be resolved post-mortem

• the 'stkscan' and 'logscan' tools assist in the post-processing of
log information:

• Cut/paste the loadmap info into a temporary file (ltmp/stk)

• Move to the directory that containing the linker map files $ cd
buildtib/maps

• stkscan the faulting address $ stkscan Itmp/stk Ox327clla8

The output looks something like:

•
Chapter 1 Concepts: System Loader "

intruder->stkscan /tmp/stk 0x327clla8

Ox327clla8 [fsi

Software release

• we have the potential to release each executable module
independently, and then have a compatibility matrix in the
loader to enforce compatibility rules

• while the benefit of this software release model is great, it
presents nightmare-ish test and processing matrices for the SQA
and Manufacturing departments

6. Adding a new subsystem

Kernel subsystems

• add code to spawn the kernel application in Id-phase2.c

/* Create the Data Path gate */

ld_svc (GID_DP_INI, LDF -,-NONE, dp_ini t_act, 0);

this reference to the subsystem's entry point causes the subsystem to be

linked into the kernel

• add subsystem to PROGLIBS line in the global build directories
(buildtib, buildace, buildpir •...)

Application subsystems (dynamically loadable)

• make sure application conforms to requirements listed above

• modify the Makefile in your subsystem to specify PIC and any
PROGLIBS required for linking

• add your subsystem to the PROGEXES line in the global build
directories (buildtib. buildace, buildpir •...)

• <subsys> _hdr.c file must be updated (see doc list below)

• "register" application with dynamic loader by grabbing an index
in the loader's global include file. and then adding the subsystem
name to the loader's

• add attribute to loader MIB record and add code to loader files to
load/unload new application

• see 'dyn_load_user.ps' document below for all the details

•

Guide Name 1-19 •

& c • • • eo. • • • • • • • • • • e eo.
e Chapter 1 Concepts: System Loader

e

7. Related documentation

• 1-20

/rtel/harpoon/doc/sysman/dyn_load.ps

/rtel/harpoon/doc/sysman/dyn_load_user.ps

/rtel/harpoon/doc/sysman/Email-archive/
dynamic_loadr_rel.txt (somewhat outdated)

Guide Name

o •
Chapter 1 Concepts: Semaphores .,

GAME 101

Chapter 1 Concepts: Semaphores
Approximate time to cover: ?

1. Semaphore Overview

Game implements a fairly straightforward semaphore capability with
some additional requirements due to GAME's high-availability nature.

A semaphore is used to control access to a critical resource. This may
be a shared data structure or a piece of hardware: Another use is to limit
the number of instances of a certain task being performed.

Each semaphore has a number of "tokens" associated with it. Each token
allows one gate to enter the critical section guarded by a semaphore. A
"binary semaphore" is simply a semaphore with I token.

The number of tokens which a semaphore has is specified when that
semaphore is created. Its possible to add or remove tokens from a
semaphore while executing.

There are two types of semaphores: well-known and dynamic. These
work much like gate IDs. The well-known semaphores are defined at
compile time in a header file (includelknoWD_sema.h). The dynamic
semaphores are allocated at run time.

When a gate tries to get a token it will pend if one is not available. As
tokens are freed, the pending gates will acquire the token and unpend.
This is done in a FIFO order.

GAME tracks the ownership and creation of semaphores and tokens like
any other resource and will automatically free tokens or remove un-used
semaphores when gates die. In order to know which gates are using which
semaphores, GAME requires a gate to register for a semaphore before
using it.

Semaphores are local to a single slot and cannot be used across slots.

.,

Guide Name 1-1 •

e e e ~ e ~ e e D • ~ e e e e ~ e e e • ~ e
f' Chapter 1 Concepts: Semaphores

2. Well-known vs. Dynamic Semaphores

GAME semaphores come in two flavors; well-known and dynamic. Each

of these has the following characteristics:

Well-known Semaphores:

• The ID is defined in includelknown_sema.h.

• It may be used by a gate without the burden of passing around a
semaphore ID.

Multiple gates can "create" the well-known semaphore.
Provided the number of tokens remains the same, the 2nd and
subsequent creations just become registrations.--

Dynamic Semaphores:

• Created at run time by a gate.

The semaphore ID is assigned by GAME and must be passed to
any other gates which want to use that semaphore.

3. S~maphore creation and registration

9; 1-2

The g_semaO system call is used to create and/or register to use a
semaphore.

serna: handle of the semaphore being managed:

an existing semaphore will change the number of tokens associated with
that semaphore to n, or register for usage of that semaphore

G_SEMA_CREATE

to create a new dynamic semaphore otherwise well-known semaphore to
create

n: total number of tokens for a new semaphore OR
G_SEMA_REGISTER to register to use a semaphore.

Guide Name

e e ~ ~ 0 • ~ • 0 0 0 00. • 0 • e e • 0 ~

Chapter 1 Concepts: Semaphores •

The return value is is the semaphore handle to use in subsequent
~sema_XXXO calls. It will be a newly allocated 10 if "serna" is
G_SEMA_CREATE. Otherwise, it is the same value as the "serna"
parameter.

Creation of a semaphore automatically registers th~creating gate to use
that semphore.

If the semaphore already exists and G_SEMA_REGISTER is not
specified, ~semaO will change the number of tokens associated with the
semaphore to n. Adding tokens will not pend. Decreasing the number of
tokens ("n" is less than in the original creation call) may pend because a
token first needs to be acquired before the max count can be decremented.

As mentioned above, its possible to do multiple creations of a well-known
semaphore. The 2nd and subsequent ~semaO calls simply look like calls
to change the number of tokens. If all creators initialize the number to
the same value, then no change happens. The net result is that the creator
is only registered for the semaphore.

4.:Getting a token.

The !Lsema~et() call is used to obtain a semaphore token. If a token is
available in the free token pool of the semaphore, one is removed from
the pool and assigned to be owned by the calling gate. If there are no free
tokens at the time, the calling gate PENDS until one is freed by some
other gate. Note that if the caller owns all tokens, a deadlock is certain!

When there are no free tokens, multiple pending gates are served on
first-come first-serve basis. This rule includes callers of ~sema() that are
trying to reduce number of tokens.

Death of an owner of the token will cause the token to be returned to the
semaphore it came from so that applications need not be concerned with
the clean-up.

serna: the semaphore from which a token is desired

e

Guide Name 1-3 ..

& e ~ & • e 0 e ~ ~ e e e e e e e e e • • •
c Chapter 1 Concepts: Semaphores

e

5. Returning a token

The ~serna_putO call frees one semaphore token back to its free pool
without any pending. If there are other gates waiting for a token (due to
~sema or ~sema-set calls), the first one is scheduled to run at the end
of the current activation queue (just as a message delivery would).

A caller that has no token belonging to that semaphore is terminated.

void g_sema..,put . (SEMA sema)

serna: the semaphore to which the token is returned

6. Checking a semaphore1s state

It is often helpful to know if there are any tokens available before calling
~sema-setO. This way, a gate can avoid pending if none are available.
The ~sema_state() call provides this information.

serna: the semaphore whose status is desired

The returned status rnay be:

> 0

a positive number indicates number of free tokens available

<= 0

zero and negative indicate lack of tokens and number of already pending
waiters (in a sense a negative token count ...). i.e. 0 means there are no
tokens left, -2 means there are no tokens and 2 gates are already waiting
fora token.

Note: The following is guaranteed not to pend on uni-processor systems.

if (g_sema_state(s) > 0)

~ 1-4 Guide Name

•
Chapter 1 Concepts: Semaphores 0

g_sema_get(s)i

For S:MP, the issue is a bit tricker. Depending upon what gates are using
the semaphore and their SMP type, the above may be work. This is the
case- if all users of the semaphore can't be scheduled to run in parallel.
To fix this for SMP would probably require the addition of a new syscall.
At the moment its felt that there's not any demand-for this functionality.

7. Gate Death and Cleanup

Whenever gates die, any tokens it has acquired are returned to the
semaphore. Tills will allow a waiting gates to acquire a token.

When the last user of a semaphore dies, the control block for that
semaphore is also freed. This means that the semaphore will have to be
re-created before it can be used again.

8. Semaphores and Mappings

Mappings don't inherit a creator's registration for a semaphore. If a
mapping needs access to a semaphore (even one created by its owner) it
must first register to use that semaphore. The reason for this is so that if
that mapping completes while still holding onto a token, that token will
be returned to the semaphore.

9. Are semaphores really needed?

Due to GAME run to completion scheduling and SMP implementation
the need for semphores is actually pretty smalL

Typically a semaphore would be used to lock a data structure. On a single
processor system, as long as a gate doesn't pend during its critical section
(while modifying the data structure) no other gate will run. So in this
situation a semaphore isn't necessary. The important part is that the critical
section is non-pending.

•

Guide Name 1-5 •

• • • • • • ~ • • • ~ • ~ • e _ • e ~ • • Q

'" Chapter 1 Concepts: Semaphores
(i'

$ 1-6

On SMP systems, the SMP type of the gates which access the data
structure will control if those gates can run in parallel. If gates are
configured such that they won't run in parallel, then semaphores aren't
needed. Essentially, in this situation, the SMP system looks like a single
processor system as far as a gate's ancestory is concerned.

SMP also provides a spin-lock capability. This may be more efficient at
protecting a data structure then semaphores as described here. Especially
if its unlikely that multiple concurrent accesses to the data structure will
happen. However, spin-locks can only be asserted for short periods of
time, and a gate cannot pend while it has one.

The primary use of semaphores in GAME applications iSJo protect data
accesses between a gate and its mappings. This is only necessary if a
gate's mapping routines perform "real work", as opposed to just sending
a signal to the gate's base context. This was discussed in the Mappings
section.

Guide Name

1. Overview

& e • • • • 0 • • eo. e • • e • • • • e 0

Chapter 1 Concepts: Timer and Time of Day Services "

GAME 101

Chapter 1 Concepts: Timer and Time
of Day Services

The GAME Timer Service (AKA timers) provides functionality to allow
gates to be periodically scheduled and to sleep. The GAME Time of Day
Service (AKA time) provides functionality that allows gates to set and
get system time.

e

2. Timer Overview

Some applications (like those that implement the RIP, SAP, HELLO,
LMI, LQR, or BOFL protocols) need to be able to execute the same code
on a periodic basis.

Each gate can have one periodic timer. When the timer expires, the gate.
will be scheduled for a SIG_TMO signal as long as the gate is not already
scheduled by a SIG_TMO signal from a previous timer expiration.

The ~tmoO kernel system call is used to start, adjust, and cancel a gate's
periodic timer. Once the timer has been started, it will expire every
time-out period until the timer is cancelled.·

Some applications execute part of their code and then wish to sleep for a
period of time before continuing on with the rest of their code. The
~delay() kernel system call or a combination of the ~idleO and
~timer~etO kernel system calls can be used to achieve these results.

3. 9_tmoO kernel system call.

Applications start, adjust, and cancel a gate's periodic timer by calling
the ~tmoO kernel system call:

Guide Name 1-1 •

• e e e e e e e 0 e e e e • • • • • • • • •
e Chapter 1 Concepts: Timer and Time of Day Services

•

II' 1-2

gid: gate id whose timer is being manipulated

time: timeout period [1/1024 seconds]

G_CANCEL or 0 cancels the timer

The return value is the timer's previous "time" value.

~tmoO is easy to use but because you can specify any gid, you must be
careful or you might start or cancel the wrong gate's timer.

The actual time used for timer expiration is not necessarily what was
entered and usually is longer. The FRE, FRE-IT, ASN, ACE25, ACE32,
AFN, and ARE round this time up to multiples of 16 ms..- The AN and
the ARN round this time up to multiples of 64ms.

Because timer interrupts are serviced in between gates, some drifting can
occur when gates run longer than the platfonn's Real Time Clock (RTC)
interrupt granularity.

GAME's code refers to RTC in two different ways:

1. calendar or wall clock time.

2. A timer that increments in fractions of seconds that asserts an
interrupt that GAME can use to internally manage the periodic
software timers.

"RTC" within this section refers to #2 as described in the FRE spec
(described in the FRE address space document /usr9/harpoonJdoc/
hardware/freLtxt) .

Reliable messages and ~delayO save, steal, and restart a gate's timer (if
it exists) which results in a timer expiration delay.

The macros G_TMO_SECONDS and G_TMO_DEFAULT can be used.
They are defined in incIudelkemeLh.

Examples.

1. 1. Start a timer for the current gate.

Guide Name

• • • • • • • • •
Chapter 1

• • • • • • • • • • • • •
Concepts: Timer and Time of Day Services ..

/*

* some existing application

*/

}

2. cancel a timer for the current gate.

{

/*

* some existing application

*/

}

3. Start and Cancel a timer for another gate.

{

/*

* some existing application

*/

/*

* Start up a test gate.

*/

Guide Name

•

1-3 •

~ e • e e • • • • • • • • • • • • • • • • •
tf Chapter 1 Concepts: Timer and Time of Day Services

•

/*

* Mapping should go here.

*/

/*

* Start 1 second timer for gid.

*/

/*

* Cancel gid's timer.

*/

}

4. What TestA might look like.

TestA (env, BufList, sig)

BUF *BufList;

SIG sig;

{

if (BufList)

{

BUF *CurrentBuf;

• 1-4 Guide Name

• e e 0
Chapter 1

e • e e • • • • • • • e
Concepts: Timer and Time of Day Services

BUF *NextBuf;

NextBuf = CurrentBuf BufList;

while NextBuf)

NextBuf

/*

* Process CUrrentBuf.

*/

else if (sig -- SIG_TMO)

/*

* Do Periodic processing.

*/

else if (sig

/*

* Initialize.

*/

else

/*

* Other signal processing.

*/

Guide Name 1-5 •

o • • ~ • • 0 e e • • e • • • • • • ~ • • e
• Chapter 1 Concepts: Timer and Time of Day Services

c

• 1-6

NOTE 1. GAME will ensure that the gate will only be
activated with either a buffer list OR a.signal.

NOTE 2. When code is written to receive both buffers and signals, buffers
must be checked for first. SIG_ TMO has a value of O.

5. TestB will upon initialization start a timer with a time value of 1

(111024) of a second. OldTime will return a value of 0 since no timer is
started. The timer will fire 16ms or 64ms later and signal TestB with a
SIG_1MO. When TestB handles the signal it will res~ the timer with
a time value of 2 and OldTime will return a value of 16 or 64. Using a

FREas an example, a time value of 1-16will mean 16, 17-32 will mean 32,

etc. Upon reaching 2048, the timer is cancelled.

/* some existing application */

{

/*

* Start up a test gate.

*/

/*

* Mapping should go here.

*/

}

TestB (env, BufList, sig)

Guide Name

• • • • • • • • • • • • • • • • • • eo. ~

Chapter 1 Concepts: Timer and Time of Day Services e

BUF *BufList;

SIG sig;

u_int32 OldTime;

if (BufList)

{

BOP *head;

BUF *tail;

BUF *NextBuf;

/*

* Find head and tail. Then free them buffers.

*/

NextBuf = head = BufList;

tail = NIL(BUF);

while NextBuf)

{

tail = NextBuf;

}

g_bfree(head, tail);

}

else if (sig -- SIG_TMO)

if (*env -- 2048)

{

/*

* Cancel timer. Technically the g_req() would
cancel the timer.

e

Guide Name 1-7 •

&.& •••••• e e ••••••••••••
• Chapter 1 Concepts: Timer and Time of Day Services

o

1-8 Guide Name

}

*/

OldTime = g_tmo(G_SELF_ID, G_CANCEL);

g_req(G_SELF_ID, G_RE~KILL, 0, 0);

else

{

/*

* Adjust t~er.

*/

time = *env++;

}

else if (sig

{

u_int32 *NewEnv;

NewEnv = (u_int32 *)g_malloc(sizeof(u_int32»;

*NewEnv 0;

/*

* Start the timer.

*/

time = 1;

else

{

/*

* Other Signals would be received here.

• • • • 0 • • • • • • • • • • • • • • • • •

Chapter 1 Concepts: Timer and Time of Day Services •

*/

}

4. 9_delayO kernel system call.

Applications can execute some code and then sleep before executing some
more code by calling the ~delayO kernel system call:

void g_delay (u_int32time)

time: timeout period [1/1024.seconds]

The actual time used for timer expiration is not necessarily what was
entered and usually is longer. The FRE, FRE-II, ASN, ACE25, ACE32,
AFN, and ARE round this time up to multiples of 16 ms. The AN and
the ARN round this time up to multiples of 64ms.

Because timer interrupts are serviced in between gates, some drifting can
occur when gates run longer than the platform's RTC interrupt granularity.

The macros G_lMO_SECONDS and G_lMO_DEFAULT can be used.
They are defined in inc1udelk:emeLh.

Examples.

1. Using 9-delayO to sleep for 1 second.

{

/*

* some existing application

*/

}

•

Guide Name 1-9 •

~ ~ • e e ~ • e • c e e e • e • e 0 e • • e
e Chapter 1 Concepts: Timer and Time of Day Services

•

• 1-10 Guide Name

2. Using g_delayO to wait for a resource and implement a form of
locking.

/*

* some existing application

*/

while (env->DataBaseFlag)

/*

* Lock data base.

*/

env->DataBaseFlag = TRUE;

/*

* Modify data base.

*/

/*

* Unlock data base.

*/

env->DataBaseFlag = FALSE;

•
Chapter 1 Concepts: Timer and Time of Day Services e

NOTE. A dual processor like an ARE could have problems with the above if
both processors can run the same code.

5. Time Overview.

Applications sometimes need to be able to retrieve the system's notion of
time, such as calendar and wall clock time. The kernel system call
g...tget() is used to get system time. A library function time2wclkO is
used to convert the returned system time into wall clock time.

A few chosen ~pplications will need to be able to set the system time.
The kernel system call g...tsetO is used to set s~~tem time. A library
function wclkl2timeO is used to convert from wall clock time to system
time.

A problem can occur if an application uses g...tgetO to try to implement
periodic processing. If the user sets the systemtime backwards, the more

_ recent time returned by g...tgetO may be less than a previous time. A kernel
system call g...timer...getO can be used to ensure than time does not go
backwards. g...timer...,getO only keeps track of time starting from slot
restart and does not include calendar time.

The include file includelwclock.h contains definitions of the structures
used by the time functions.

/**/

/* WALL CLOCK/CALENDAR BLOCK */

/
***/

typede£ struct iiCLOCK

{ / * all are binary numbers */

u_intS year; /* 0 - 99 */

u_intS month; /* 1 - 12 */

u_int8 date; /* 1 - 31 */

u_int8 wday; /* 1 - 7 (1 is Sunday) */

u_int8 hour; /* 0 - 23 */

Guide Name 1-11

•

•

~ " "
Chapter 1

1-12

• & lit e lit lit lit lit • lit lit •

Concepts: Timer and Time of Day Services

u_int8 minute;

u_ int8 second;

u_int8 pad;

u_int16 msec;

u_ int16 usec;

u_int32 t_zone;
zone *1

} WCLOCK;

/

lit lit lit lit

/* 0 59 */

1* 0 59 */

/* 0 - 59 */

/* 0 - 999 */

/* o - 999 */

1* 0 86400 local time

1* in seconds from date change line *1

1* (ex. GMT = 43200, EST = 61200) *1

***/

/ * ABSOLUTE TIME BLOCK *1

/
***/

typedef struct TBLOCK

u_int32 frac;
bit 31 is 1/2 sec *1

TBLOCK;

1

*

*

/* g_tget () - seconds since

midnight Jan 1, 1900

g_timer-9"et () - seconds since

* restart

*1

1* fraction of sec:

***/

1 * LOCAL TIME BLOCK */

1
***/

Guide Name

•
Chapter 1 Concepts: Timer and Time of Day Services ,

typedef struct LOC_TIME

{

TBLOCK time; / * absolute time */

u_int32 zone; /* time zone offset
[seconds] */

/* flags */

6. g_tgetO kernel system call.

Applications get system time by calling the g;;,.tgetO kernel system call:

tb: a pointer to the location where GAME can write the current system
time.

Applications can convert system time to wall clock time by calling the
time2wclkO library function:

WCLOCK *time2wclk {LOC_TIME *tb, WCLOCK *wb}

tb: pointer to system time to convert

wb: a pointer to the location where GAME can write the wall clock time

The return value equals the "wb" parameter passed in.

Examples.

1. Using g_tgetO.

{

LOC_TIME TimeStamp;

g_tget{&Timestamp);

/*

* Timestamp. time. sec - seconds since midnight
Jan 1, 1900.

* Timestamp.time.frac fraction of seconds.

•

Guide Name 1-13 •

o e e ~ e e e e • • e * e e e ~ e e 6 e e •
~ Chapter 1 Concepts: Timer and Time of Day Services

c

*/

2. Using g_tgetO and time2wclkO.

LOC_TIME TimeStamp;

WCLOCK WallClockTime;

g_tget(&TimeStamp);

time2wclk(&TimeStamp, &WallClockTime);

/*

* WallClockTime.year

* WallClockTime.month

* etc.

*/

7. 9_tsetO kernel system call.

., 1-14

Applications set system time by calling the ~tgetO kernel system call:

void g_tset (LOC_TIME *tb)

tb: pointer to the structure containing the desired system time

NOTE: Only special applications, like the 11 date command, should use this
function to set system time. All slots calendar times and calendar chips are
updated when using this function.

Applications can convert wall clock time to system time by calling the
wclk2timeO library function:

LOC_TIME *wclk2time (LOC_TIME *tb, WCLOCK *wb)

Guide Name

• e •
Chapter 1 Concepts: Timer and Time of Day Services •

tb: a pointer to the location where GAME can write the current system
time.

wb: a pointer to the wall clock time to convert

Examples.

1. USing 9-tsetO.

{

}

LOC_TIME T~eStamp;

g_tset(&Timestamp);

2. Using g_tsetO and wclk2timeO.

{

} .

LOC_TIME TimeStamp;

WCLOCK WallClockT~e;

wcIk2t~e(&T~eStamp, &WallClockTime);

g_tset(&TimeStamp);

8. 9_timer_getO kernel system call.

Applications can retrieve time since slot restart by calling the
~timecgetO kernel system call:

void g_timer-set (TBLOCK *tb)

tb: a pointer to the location where GAME can write the time.

Example: Using ~timer...,getO.

{

TBLOCK TimeBlock;

g_timer~et(&TimeBlock);

/*

•

Guide Name 1-15 •

e & ~ e e & e e e • • & e eo. e & • • • •
e Chapter 1 Concepts: Timer and Time of Day Services

o

* TimeBlock.sec - seconds since slot restart.

* TimeBlock.frac - fractions of seconds

*/

9. Using 9_id1e{} and 9_timer -get() for very shortf accurate
delays.

Sometimes applications need to sleep for time periods much shorter than
GAME timer granularities, or need a timer much more accurate than
GAME can provide. A combination of ~timer~etO and ~idleO can
accomplish this.

An example of this is in the IPX protocol where the inter-packet delay of
RIP and SAP packets should be set to 55 ms. ~delayO would return 6ms.

void ipx_delay (u_int32 delay) / * time to delay in ms * /

{

TBLOCK timel,time2,time3;

if (delay < 2000 && delay >= 1)

{

g_timer-get (&timel);

while (1)

{

g_timer-get (&time2);

dsub (&time2, &time1, &time3);

if ««time3.sec & OxOOOOOOff) * 1000) +
(time3.frac / 4294968»

>= delay)

break;

}

• 1-16 Guide Name

e e •
Chapter 1 Concepts: Timer and Time of Day Services •

}

10. Grain tables and tmo_expO

GAME manages each gate's periodic timer by storfug the gate's control
block pointer in a time grain table. There are one or more time grain
tables (always a power of two - 1.2.4.8.16 •...) with each time grain table
containing a maximum of "1MO_GRAIN_SIZE - 1" (currently 15)
entries.

Whenever a gate calls !L,.tmoO to start a timer~_

1. 1.the timeout value is rounded up to to be a multiple of the
hardware periodic timer's expiration time {16ms or 64ms (AN
andARN».

2. a repetition count is calculated based upon the timeout value
and the number of time grain tables.

3. an entry is added to one of the time grain tables containing the
gate's control block pointer. Fields within the gate's control
block pointer are filled in to depict the timeout value and the
repetition count.

Entries within a grain table are added one after the other with no holes.
If an entry is deleted then the grain table is reordered. If a grain table fills
then the next grain table is used. If all grain tables are filled then the
number of grain tables is doubled and the entries are sorted into the tables
based upon the modulus of the number of tables and repetition count of
the entry.

Every RTC (Real Time Clock) interrupt (16ms or 64ms) the function
tmo_expO is executed and one time grain is fully inspected. The repetion
count for each entry is decremented by the number of time grain tables.
If the repetion count is less than or equal to zero then the gate is scheduled
for a SIG_1MO signal. unless it has not as of yet serviced a previous
SIG_1MO signal. tmo_expO restarts the timer for expired entries by
re-adding an entry to a time grain table.

e

Guide Name 1-17 •

e e .. e • & • • • • • • • .. • e • • • • • •
e Chapter 1 Concepts: Timer and Time of Day Services

e

GAME is architected so that many timers can be handled quickly. The

accuracy of the timers is not that precise when small values are used.

Since most timers are in increments of seconds, a timer expiring a fraction

of a second later usually does not make much of a difference.

NOTE 1. The actual time used for timer expiration is not necessarily what
was entered and usually is longer. The PRE, FRE-n, ASN, ACE25, ACE32,
AFN, and ARE round this time up to multiples of 16 The AN and the ARN
round this time up to multiples of 64ms.

NOTE 2. Because timer interrupts are serviced in between gates, some
drifting can occur when gates run longer than the platform's RTC interrupt
granularity. A change has been made to tInO_expO to detect this by using
~timer~etO and to catch up by servicing more than one timer grain table.

NOTE 3. Reliable messages and ~delay() save, steal, and restart a gate's
timer (if it exists) which results in a timer expiration delay.

NOTE 4. When the calculated grain table is full and the next free grain table
is used, the timer expiration is delayed by one RTC interrupt time for each
grain table it must skip over.

NOTE 5. Usually the first expiration of a timer will occur at timeout plus the
remainder of the current RTC interrupt.

NOTE 6. The timer code is flawed in that it is possible for a timer to be
delayed (by RTC interrupt timer times the number of grain tables) for its first
expiration, with all later expirations occuring when expected.

NOTE 7. The timer code is flawed in that it is possible for a timer to expire
too soon (not greater than RTC interrupt timer timeS the number of grain
tables) for its first expiration, with all later expirations occuriilg when
expected. This happens mostly when timer grains are full.

11. Summary of How Timers and Time are implemented.

• 1-18

GAME runs on various hardware platfonns such as the ACE, ACE32.

AFN, FRE, PRE-IT, ASN, ARN, AN, and ARE. These hardware

platfonns are the name given the the processing engine that populates a

slot. Each processing engine contains a main microprocessor that

executes most of GAME's code and other support hardware such as timer

Guide Name

e _ 0 • * 0 0 ~ 0 0 0 • • e 0 0 • • • • • 0

Chapter 1 Concepts: Timer and Time of Day Services e
e

chips. The granularity, accuracy, and reliability of the timer services
provided by GAME will all be dependent on the hardware that GAME
is running on.

The FRE, FRE-II, and ASN are similar and will referred to as the FRE.

The ACE, ACE32, and AFN are similar and will be'referred to the ACE.

The ARN is similar to the AN and will be covered under the AN.

The ARE is similar to the FRE (somewhat).

The Watchdog Timers are covered in a separate section.

11.1 Periodic Timer

The FRE contains a fixed real time clock (RTC) timer that increments
256 times per second and updates the single byte STAMP register (see
tib/tib_pri.h). Every 16 ms (64 times..per second), a level 3 interrupt will
be asserted, if level 3 interrupts are enabled, or as soon as level 3 interrupts
are enabled. The scheduler enables level 3 interrupts by calling ~pollO
in between gates and by calling ~ waitO when the scheduler is idle. Whet)
this RTC level 3 interrupt is asserted, ~isC30 will execute. When
~isr_30 executes, it looks at certain hardware registers located on the
FRE to determine which hardware device requested the interrupt. If it
determines that the RTC was the reason for asserting the interrupt, a bit
is cleared telling the FRE that we have handled the RTC. The function
tmo_expO is executed.

The ACE contains six programmable timers. One is set to expire after
16 ms (64 times per second). When this interval timer expires, the
1MRB 1 pending bit is set in the ACE Status Register (ASR; see ace!
ace_pri.h). The expiration of TMRB 1 will be checked by the scheduler
in between gates by executing ~po110 and when the scheduler is idle by
executing ~ waitO. If TRMB 1 is set, clock_isrO is executed. Within
clock_isrO, the timer chip is reprogrammed to expire after 16 ms and the
function tmo_expO is executed.

Guide Name 1-19 •

• • ~ • ~ ~ ~ e _ e & e _ • • • • • • • e •
z Chapter 1 Concepts: Timer and Time of Day Services

e

tI 1-20

The MC68360 (QUICC) chip used on an AN contains four programmable
timers. Timer number 2 is programmed to expire every 64 ms (16 times
per second). When timer number 2 expires, a bit is set in the CPM
Interrupt Pending Register (CIPR). The CIPR is checked by the scheduler
in between gates by executing g_pollO and when the scheduler is idle by
executing ~ waitO. If timer 2 did expire, the function tmo_expO is
executed.

11.2 Time - 9_timer_getO.

An application calls the function ~timer~et() to retrieve the amount of
time since the slot restarted. ~timer~etO uses information stored in
GAME's environment by ~pollO, g_ waitO, and ISRs, to derive seconds.
~timer~et() calls ~timecreadO to read a hardware timer to retrieve
fractions of seconds.

On the FRE, seconds are incremented in ~isC 40 when servicing the
watchdog interrupt. To derive fractions of seconds, theRTC timer is read.
The granularity of the RTC timer is 4ms.

On the ACE, seconds are incremented by either ~pollO or ~ waitO
calling clock_isrO. clock_isrO checks the ASR for the 1MRA2 expiring.
TMRA2 is set each second by the free running clock. To derive fractions
of seconds, the free running clock-is read to determine how much time
has elapsed since the last second. The granularity of the free running
clock is 1164000 of a second.

On the AN, seconds are incremented in rtc_isr_ 40 when servicing the
watchdog interrupt. Timer number 1 increments 65104 times per second
and asserts a level 4 interrupt each second. Fractions of seconds are
derived by reading timer 1.

11.3 Time - Calendar Chip.

All platforms, with the exceptions of some older ANs, contain a battery
backed up calendar chip that also contains 2 KB of non-volatile storage.
The AFN, AN, ASN, and ARN contain this chip on the mother board.

Guide Name

e ~ ~ ~ ~ ~ 0 & • & • • & • • • • 0 • • • ~

Chapter 1 Concepts: Timer and Time of Day Services e
(.'

The ACE and ACE32 that run within the VME chassis contain this chip
on the SYSCON board. Each FRE and ARE contain one of these chips.

At some point of time, the TI date command will be used to reset calendar
time. When this happens, the calendar chip will be updated. Year, month,
date, week day, hour, minute, and second can be se~ and retrieved from
this chip. The chip then independently keeps track of time even if AC
power is not applied to the system.

NOTE 1. This chip does not keep fractions of seconds or timezone
infonnation.

NOTE 2. The passwords for U's Manager and User are stored in this chip's
non-volatile memory.

NOTE 3. The reason the original AN's did not contain a calendar chip was
due to cost cutting procedures. However, this backfired in many ways
because it caused heartaches for customers and software engineers.

11.4 Time - g_tget().

Reading the calendar chip is not cheap. Because of this, the calendar chip
is usually only read when a slot restarts and the retrieved calendar time
is stored. Whenever ~tget() is called, it calls ~timer...,getO and adds the
output from ~timer...,getO to the stored calendar time.

11.5 Internal Waliclock Service.

Keeping accurate wallc10cklcalendar time on the various platforms
running

GAME is not trivial. One problem that occurs is that the FRE and ARE
platforms contain one calendar chip per slot and time must be
synchronized between slots. A second problem occurs in that the
calculated calendar time kept by a slot can drift.

Guide Name 1-21 •

e a e • 0 e & • e • • ~ & • ~ ~ ~ ~ • e 0 e
" Chapter 1 Concepts: Timer and Time of Day Services
¢

12. Other

f!> 1-22

To work around the first problem, the LOADER gate creates a master
timekeeper soloist gate (GID_MASTERTIMEKEEPER; see include/
known_id.h). This gate sends its time to the other slots when they start,
and the receiving slots sets their time to the time that was sent by the
master slot. The soloist also sends the time to the other slots every 12
hours.

To work around for the second problem., the LOADER gate creates a
timekeeper gate per slot (GID_TIMEKEEPER). This gate receives
messages from the GID _MASTERTIMERKEEPER gate (FRE aQd ARE
only) and, through a varying periodic timer, it will adjust the wallclock
time on its slot if needed. The periodic timer initializes to 1 minute, and
then is set to one hour. If, at timer expiration, no adjustment is needed,
then the timeout doubles to maximum of 24 hours. If time adjustmust is
needed, the timeout halfs to a minimum of 1 hour.

Backbone BOFL's are highly tied into tmo_expO. They are not covered
here.

Guide Name

& e ~ ~ e 0 & ~ & ~ ~ • • e & • 0 • & • • Q

Chapter 1 Concepts: Watchdogs e
(:

GAME 101

Chapter 1 Concepts: Watchdogs

1. Watchdog overview.

GAME implements a simple non-preemptive, FIFO scheduler where a
gate runs to completion unless it voluntarily gives up execution by calling
a kernel system call that pends the gate. The kernel system calls that pend
are: ~fwd(), ~rpcO, ~replyO, ~delayO, ~sema~etO (sometimes),
~balloc() (sometimes), and ~idleO. (See the Scheduler section for a
discussion of CPU Hogging).

NOTE. The mib interface uses many of these pending functions and many
engineers have not taken this into account in their original designs.

Within the forwarding path, the currently executing gate runs its action
routine to completion quickly. Non-forwarding path gates do one of th~
following:

1. run the current action routine to completion quickly.

2. pend themselves one or more times before completing the
current action routine.

3. call g_idleQ one or more times before completing the current
action routine. This is a crude form of time slicing.

Questions:

1. "What happens if the current executing gate is stuck in an
infinite loop or appears to be in an infinite loop {it will eventually
finish)"?

The slot would hang, unless GAME's fault management system
could detect this condition.

2. "Can GAME's fault management recovery system detect and
correct this condition"?

Guide Name 1-1 •

& ~ G ~ e t • e e e e • eo. & e e • e e •
\I' Chapter 1 Concepts: Watchdogs
¢

This condition can be detected by another piece of hardware other
than the microprocessor.

3. "How can the fault management code execute if the scheduler is
currently running"?

Microprocessors can execute code as exceptions (interrupts), with
the exceptions preempting the normal running scheduled code.
So the basis for GAME's watchdog mechanism is tcrhave a piece of
hardware, other than the microprocessor, watch over the
microprocessor for the purpose of detecting and correcting a
hang-like condition.

2. How the watchdog works on a FRE.

Ii> 1-2

(If you are not familiar with how interrupts work on a FRE, review the
"Interrupts" portion of the Scheduler section).

There is a timer chip on the FRE that expires once every second. When
this timer expires, a level 4 interrupt is asserted and ~isC 40 will execute.
When ~isr_ 40 execntes, it looks at certain hardware registers located
on the FRE to detennine which hardware device requested the interrupt.
If it is determined that the watchdog timer was the reason for asserting
the interrupt, then a bit within a register on the FRE is cleared telling the
FRE that we are servicing the watchdog timer. If this bit is not cleared
within one watchdog timer period, then the FRE does a hardware reset
(this is a "hardware watchdog").

When the scheduler idles, the watchdog detection code is disabled. When
the scheduler goes from idle to non idle (~isc30 schedules agate) the
watchog detection code is enabled. If ~isC 4() sees that the watchdog
is disabled, then ~isC 40 just exits. Otherwise, ~isc 40 executes
trno_ wdogO. tmo_ wdogO checks to see if the current running gate is the
same gate and same invocation of the gate as the last time thattrno_ wdogO
was run one second ago. If the gates differ, a limit count is set to 3,
information that distinguishes this gate invocation is saved, and
trno_ wdogO returns. If the gates are the same then the counter is
decremented. If the counter reaches zero the slot is restarted (this is a
"software watchdog"). Otherwise, trno_ wdogO returns. This means that

Guide Name

• & 0 • • • • • • • • • • • • • • • • • • •

Chapter 1 Concepts: Watchdogs &

a gate can run between 3 and 4 seconds before the slot is reset due to a
watchdog.

Nom. If a gate runs more than a couple of millisecondS then either
something is drastically wrong. &-.idleO calls should be placed into the code
at determined points to allow servicing of link module interrupts.

3. Platform differences.

The idea for having a watchdog timer was introduced with the FRE. The
FRE, FRE2, and ASN basically work in the same manner, due to the
common architecture.

The ACE25, ACE32, and AFN predate the FRE. No watchdog timer was
added to the processor. Because of this, no watchdog support exists on
the ACE25 or AFN. The ACE32 does implement watchdog support, but
in a way very different than any other platform. The ACE32 contains
two microprocessors: one for GAME processing and one for interslot
communication (DMAP) (this is also true for the ACE25). The ACE
exception vector table also contains routines for servicing level 7, level
6, and level 5 interrupts, with level 6 handling cascade interrupts. The
DMAP processor runs code separate from GAME. When it enters its
timecisr() function, it determines whether or not the main
microprocessor is hung. If the DMAP determines that the main
microprocessor is hung, it creates a Late Bus Error that will result in the
main microprocessor's level 6 ISR executing .. Even though the ACE32
and ACE25 have some common architecture, the ACE25 could not
reliably use the SYSFAll.. signal to achieve like results.

The AN and the ARN both have MC68360 (QUICC) chips that internally
contain a lot of programable hardware support, including timers (note
that the ARN also contains a 68040 for processing). The exception vector
tables on the AN and ARN are similar to each other, but differ from the
FRE and ACE platforms. This exeception vector table contains a number
of hardware vectored interrupts that contain their own entries in the table

e

Guide Name 1-3 •

eo. & • • eo. • • e ceo • • • • c • e
c Chapter 1 Concepts: Watchdogs

•

• 1-4

and are not part of the 7 prioritized interrupt levels. TIMER l's vector
entry has the address of rtc_isc 40 and is programmed for interrupt level
4. rtc_isr_ 4() will run every second and, unlike ~isc 40, this routine
exists only for watchdog support and executes tmo_ wdogO. The
MC68360's internal watchdog is not used.

The ARE uses two power pc processors, both of which run (SMP) GAME.
interrupchandlerO is the main interrupt handler. When the watchdog
timer expires, calCihandlerO is executed to detennine which of the two
processors will run the tmo_expO routine.

Guide Name

1. Overview

•
Chapter 1 Concepts: Miscellaneous function calls •

GAME 101

Chapter 1 Concepts: Miscellaneous
function calls

Approximate time to cover: ?

This section covers function calls that were not covered throughly in other
sections.

•

2. 9_appbaseO - returns base load address

The linker that builds dynamically loadable images (files labelled .exe)
does not preserve relocation infonnation. When an image is loaded into
memory at run-time by the Dynamic Loader, any pointer or memory
reference contained within the image is not adjusted to reflect the actual
base address of that image. The result is that after load-time, all pointers
that are not relative to the PC location will be relative to location 0, just­
as they appear in the image before load-time.

An example of this is an array of compile-time initialized literals:

char *strings[3] = { "one", "two", "three" };

In this case, the array elements will be pointers to the literals which are
stored in the literal section of the image, and each pointer will be relative
to O. Another typical example of this can be seen with a Finite State
Machine implemented using arrays of function pointers to represent
action routines.

To compensate for this, the pointers must be adjusted by the application
at run-time. ~appbaseO returns the location in memory where the image
is loaded (its base address). The returned address must be added to each
pointer before it is used.

Gu;deName 1-1 •

~ & c & ~ e e • • • • • • • • • .. • • • c e
(I Chapter 1 Concepts: Miscellaneous function calls ..

app_name: Pointer to a string with the application name (as defined in
loaderlld_exec_names.c) or NIL to signify the current application.

This function is used to find the base address for a code segment (* .exe).
The return value is this address.

This function call is not very efficient. It needs to walk a list of all loaded
applications, performing a string compare at each entry. For that reason.
the caller should perfonn this call once at initialization and store the
results in their local environment.

This example uses the load address to offset an entry in an FSM table:

/* fetch the base address of where we're loaded */
u_int32 *appbase = g_appbase("isdn.exe");

/ * adjust the pointer table by our load address * /
((pfi) ((int) (table->EventFunc) + (int)appbase)) ();

3. g..;..bcfgO - environment configuration

51 1-2

#include "kernel.h"

befg: This structure is defined in inc1udelkemel.h. It contains a collection
of system information maintained by the GAME kernel.

Although originally billed as a call to allow applications to influence this
information, this call only allows examination of the parameters. The
most common use is by device drivers,·which check to see if the local
buffer size is big enough (if not, they crash or log a message and exit).

Guide Name

• 0 • 0 • • • • 0 • • 0 0 • • • • • • • • Q

Chapter 1 Concepts: Miscellaneous function calls •

4. 9_buf2memO, 9_mem2bufO - Copy a buffer's contents
to memory I back to a buffer

These functions are only used in the application-level version of Priority
Queueing. They help to implement congestion control for DLS,
providing a place to temporarily hold data other than in a buffer. Their
use is discouraged unless needed for a similar purpose (i.e .• don't use this
casually).

#include "kernel.h"

u_int32 g_b~f2mem (BUF *buf, u_int32 *mem, u_int32 mem_len)

buf: Pointer to buffer to copy to memory.

mem: Pointer to memory where buffer is to be copied. "memO
must be word aligned.

mem_len: Number of bytes available after -mem" to
save the buffer. The minimum this may be is:

G_BUF_END(buf) - G_BUF_START(buf) + G_BUF2MECPN)

The return value is the number of bytes actually used to save the buffer.

Applications must not modify the saved buffer image. The saved image'
includes the BUF header and all of the data between the start and end
offsets.

#include "kernel.h"

void g_mem2buf (BUF *buf, u_int32 *mem)

buf: Pointer to the buffer that will receive the data.

mem: Pointer to memory set up by a previous ~buf2memO call.

This call restores the saved buffer image to a buffer. The calling gate will
be terminated if the save buffer has been corrupted.

5. 9_envO, 9_env _9id - returns environment of a 9ate

t1

Guide Name 1-3 •

$ Q • • • • • • • • • • • • • 0 0 e • • • •
fl Chapter 1 Concepts: Miscellaneous function calls

e

This function returns the current environment for the running gate. The
return value needs to be cast to whatever the environment represents.

gid: Gate ID of the gate whose environment is desired.

This utility returns the current value of the environment of a gate on the
local slot, given a GID. Using another gate's environment is generally a
dangerous thing to do and extra care must be taken. See the Memory
section for a discussion of memory sharing between gates.

6. 9_i_die(), 9_u_dieO - Commit suicide I Kill an9ther 9ate

These functions are morbidly referred to as the suicide and murder
functions. ~u_dieO was created during a debugging session when
someone wanted to set a breakpoint when any gate was killed. ~i_dieO
was created as a shorthand. All that each routine does is call ~reqO with
the proper parameters.

This tenninates the calling gate.

void g_u_die {GID gid, void {*actl (void *, BUF *, u_int32l,

void *env, SIG sig)
The parameters match exactly what is passed to ~reqO.· However. the
only parameter actually needed (or used) is "gid".

7. 9_load_archiveO - Archive Loading

archive_name: The name of the archive in the boot image (e.g.,
"ip.exe" , "dict.str")

The return value is the address where archive has been loaded. This is
an memory segment which is owned by the calling gate. Zero is returned
if there were any errors.

5 1-4 Guide Name

• ~ 0 • • • • • • • • • • e • • • • • • • e
Chapter 1 Concepts: Miscellaneous function calls •

This call allows an application to load an archive segment from the boot
image. The archive segment is placed into memory which is owned by
the calling gate and thus may be freed when the application is finished
with it (g...mfree). The call handles retrieval of local or remote archives
and will also take care of image decompression.

Caveats:

Only the body of the archive is returned by g...load_archiveO. This implies
that if the caller needs to know additional information about the data (i.e.
its size) there needs to be an application specific header within the body.

Since the memory is owned by the caller and may be freed at any time,
it is up to the caller to perform any caching which may be required for
performance reasons. Every call to g...load_archiveO will result in the
boot media being read.

It is recommended that a new extension be created for different archive
types. This will serve to keep it clear to us and to custome.!s what type of
data is contained in each segment. Perhaps ".MIC" for microcode?

The archive which is loaded by g...load_archiveO should be created by
the Idgen30mpress utility. This utility has the following command line
arguments:

%ldgen_compress input-file output-file

This utility takes the input-file, compresses it and generates an archive
header for it. No special format is required of the input-file. The filename
stamped in the archive header is the same as output-file. After a call to
g...load_archiveO, the caller will have an exact duplicate of input-file.

8. 9_memop() - Special Memory Operation

The g...memopO system call is used to perform a memory operation that
mail fail (e.g., bus error). The role of this syscall is to ensure that if the
operation does fail, it does so in a silent manner so that the caller doesn't
get killed due to a bus error. One use of is to probe a memory location
to find out whether or not a piece of hardware was installed.

•

Guide Name 1-5 •

e e • & • e _ e e • • • • • • • • • • • e e
~ Chapter 1 Concepts: Miscellaneous function calls

o

Currently, this silent failure is only implemented on the PRE and ARE.
The call can still be made on other platforms, but no protection is
provided.

#include "kernel.h"

u_int32 g_rnemop (u_int32 type, u_int32 size, void *addr, void
*data) •

type: type of operation

size: size of the data to read/write

G_MEMOP_16: 16 bits

G_MEMOP_32: 32 bits

addr: address to read or write

The return value is TRUE if the operation failed and FALSE if it
succeeded.

The size of the data parameter must match the size of the operation.
Failure to do so could result in some unexpected return values (i.e., if data
is a u_int32 and the op is a byte, that byte will get loaded into the _top_
of the u_int32).

9. 9_myid() - returns caller gate id

This function returns the gate ID of the running gate. If this is called in
a mapping context. the GID of the base gate is returned, not the GID of
the temporary mapping gate.

10. 9_platformO - gets platform type

#include ·platform.h"

" 1-6 Guide Name

•
Chapter 1 Concepts: Miscellaneous function calls ..

u_int32 g-platfor.m{)

This routine returns the platfonn type on which GAME is running. The
values are defined in inc1udelplatfonn.h. The values as of this writing are:

PLATFORM_UNKNOWN No clue ...

PLATFORM_SIM Simulator

PLATFORM_FRE FRE-I

PLATFORM_FRE2 FRE-II

PLATFORM_ACE ACE (VME hardware)

PLATFORM_ACE32 68030 ACE

PLATFORM_FNS AFN (68030 ACE, s.:ingle-board)

PLATFORM_IN AFN special (single-board plugs into many
vendor's hubs)

PLATFORM_PIR AN (Piranha, QUICC-based)

PLATFORM_CUDA ASN (Barracuda)

PLATFORM_BF ARE (Bluefish)

PLATFORM_BF_5000 5000 (Blackfish)

PLATFORM_NEPT ARN (Neptune) [next-gen AN, 040-based]

11. 9_reset{) - restarts slot{s)

void g_reset (GH gh)

gh: Bit-map of slots to reset, in gate-handle format.

This function call will cause each of the indicated slots to reset (i.e., restart
GAME). The only application that has a legitimate reason to call this is
a management application (e.g., 11, BCC).

12. 9_slotO - returns caller slot number

This function returns the local slot number.

•

Guide Name 1-7 •

• • 0 • • • • • • • • • • • • • • • • • • •

• Chapter 1 Concepts: Miscellaneous function calls

•
13. 9_SrcO - retrieves source of reliable message

GH g_src (BUF *buf)

buf: pointer to the buffer to examine.

When "buf' points to a buffer that was received via a reliable transport
primitive, this function returns the gate handle of the sending gate
instance.

If "buf' points to a buffer that has not yet been delivered or was received
via a non-reliable transport primitive, FINGER (0) is returned.

14. 9_stkO - saves current stack in system 109

iinclude "kernel.h"

void g_stk (u_int32 level, u_int32 opt, TBLOCK *t~e)

- level: The maximum number of stack frames logged, but fewer may be
saved

if stack is not deep enough.

opt: Dumping options are as follows:

G_STK_DBG: Print saved events on the debug port.

G_STK_GAME_STK: dumps GAME stack that is always linked below
gate stack (by default, only gate stack is dumped)

time: optional. if not NIL, the TBLOCK referenced by time will be used
to time-stamp all stack dump entries (by default, current time is used).

This utility generates several entries in the system log based on the current
stack. All stack un-roll events are "TRACE" level and carry the same
time stamp for easy spotting. The same stack dump utility is also used
by the CRASH macro and other fatal exception handlers.

11\ 1-8 Guide Name

• • e • • • • • • • • • e • • • e • • • • •
Chapter 1 Concepts: Miscellaneous function calls •

15. get_unqidO - Get a unique ID

bits: Size in bits of unique ID to return. Must be between 21 and 24.

This call returns an ID which is unique across all Bay systems. The
number is usually related to a serial number. If a unique number cannot
be obtained, zero is returned.

..

Guide Name 1-9 •

• e • e • e e e • • • • e • • • • • • e • •
Chapter 1 Concepts: Fault Management e

GAME 101

Chapter 1 Concepts: Fault
Management

Approximate time to cover: ?

1. Types of faults and system reactions

1.1 Hardware reset

The following faults cause a slot to do a hardware reset:

hardware watchdog NMI button (pressed for greater than one second)

Hardware reset implies that the slot goes through the cold start process
(diags, boot, GAME). The diagnostics run a full set oftests upon cold
start, one of which is a DRAM memory test. This test wipes out the
system log, so when you come back from this type of crash, there is
nothing left in the log, making it particularly tough to debug.

DEBUG HINT: If you hit the NMI button for less than one second during
diagnostics, it interrupts the current test and gets you to the diagnostics
prompt (you obviously have to have something plugged into the diag port
to see this). If you hit it_before_ the DRAM memory test is run and then
type "boot", the log will remain intact. It can then be viewed when GAME
comes up.

Note that a short (less than 1 second) push of the NMI button while GAME is
running will not cause a hardware reset As indicated above, this gets you to
the diagnostics prompt

•

Guide Name 1-1 •

Chapter 1 Concepts: Fault Management

1.2 GAME Reboot

The f()Jlo~ving faults cause GAME to "restart" or "reh001":

software watchdog
memory parity error
tag violation

Here, "restart" or "reboot" means that the bootstrap is executed, which
re-loads GAME (because it may have been code space that was
corrupted). Diagnostics are _not_ run. so the log is preserved in this case.

1.3 Gate termination or GAME reboot

The action taken for the following errors depends on whether a gate is
executing or GAME is running (e.g., in the scheduler). In the former
case, only the offending gate is terminated. Otherwise, GAME restarts.

processor error (illegal instruction, divide by 0 ...)

illegal memory reference

GAME detected error (e.g., bad parameters to a function
call)

VBM error (PPC only)

Page fault (PPC only)

2. II Problem" gates.

, 1-2

If an application has a persistant bug that causes its gate or gates to
repeatedly crash, GAME detects this and takes actions to protect the other
applications on the slot.

GAME keeps track of gate crashes in three timescales. If a gate dies too
many times within a time period, GAME will not restart the gate. It
instead terminates the parent (If you can't control your children, GAME
comes after -you_ :"). The timescales and the allowable number of
crashes are:

Guide Name

Chapter 7 Concepts: Fault Management

short term
medi U!!l t.errr.
10:"19 te!'"rr~

:. sec

:0

GAME also keeps track of crashes on a subsystem basis. Each time the
parent gate of a subsystem dies (the gate started by the loader), or when
game has to kill a gate's parent for violating one of the crash limits
discussed above, GAME records a subsystem failure. GAME compares
the numberofthese failures against limits forthree timcscales. Whenever
the number of failures exceed the limit, the subsystem is terminated and
not restarted. The timescales and thc allowable numbcr of failures are:

time

short terTII 2 sec
medium term 4 min
long term 1 hour

There are a couple of special cases:

failures allowed

2
5
10

1. If the MIS subsystem dies, the entire box immediately restarts.
The life of all other subsystems depend on a live and healthy
MIS.

2. If the DP service exceeds the number of failures allowed for a
timescale, the entire box restarts. No packets can be forwarded
without DP, so there is no value in keeping everything else alive.

The hope here is that if a gate constantly crashes, killing its parent may
remove the reason (e.g., corrupt data in the parent's environment) that is
causing the crash. If that doesn't work, the subsystem is eventually shut
down.

Obviously. information is put into the log when any of this happens.

Guide Name 1-3 ..

1. Overvie\1V

Chapter 1 Concepts.' Scheduler and Symmetric: Muii/-Processlng

GAME JOJ

Chapter 1 Concepts: Scheduler and
Symmetric Mufti-Processing

Approx.imate time to cover: ?

The GAME gate scheduler is a simple, non-premptive, first in/first out
(FIFO) scheduler. This means that a gate executes until it gives up the
CPU by either pending or returning from its activation routine. It also
means that gates will execute in the order in which they arc placed onto

the scheduler queue (with a few exceptions).

2. Scheduler Queues

There are two scheduler queues in GAME. These are the Activation
queueand the Idle queue. Each queue element contains a pointer to the
gatecontrol block of the gate to activate as well as the reason for

theactivatio!1.

The Activation queue is a list of gates which are ready to be run. The
scheduler will walk though this list activating each gate in tum. When a
running gate either pends or returns from its activation routine, the next
gate in the list is activated.

Once the activation queue is empty, the system is said to go "idle". At
this point in time module interrupts are handled. If there are indeed
module interrupts pending this will result in some gates (such as a link
driver) being added to the activation queue. Once all gates needed for
interrupt processing are added to the activation queue, the contents of the
Idle queue are copied to the activation queue. Then the scheduler starts
executing the gates on the activation queue.

The Idle queue serves as a place for application gates to go when they
want to be "fair" (or put another way, when they don't wish to kill the

Guide Name 1-1 ..

Ch?ptc! 1 Concepts. Scheduler and Symmetric Multi-Processing

~Iot'~ forwarding performance). Since the ~chcduler is non-precmptivc_
it is possihk for a single gate to usurp all of the processing resource~ of
the system for a long time. Thi~ is undesirahle in a system which is also
trying 10 passdat<l traflie. The idle queue allows a gate to timeslicc itself
\·ia the g_idlc() syscall. By calling g_idle() a gate will allow marc network
traffic to he processed after \vhich it will continue exec~tion.

There is a CPU watchdog which will prevent a gate from running forever.
After some large amount of time (3-4 seconds on most systems), if the
same gate is still running, this gate will be killed and a "cpu hog" event
will be placed in the error log. But, the CPU watchdog is really only
there to prevent runaway gates from hanging the system. Packets will be
dropped we)) before the CPU watchdog goes off. so it is-up to the gate to
idle itself we)) before the CPU watchdog limit. Sec "CPU Hogging"
ahead. Watchdogs are discussed more in the Watchdog section.

3. Activation Reasons

ii' 1-2

A gate can only be activated for a small number of reasons. These include:

Message delivery

This is the delivery of a new list of buffers for the gate to process.

An initialization signal, usually the result of creating a gate with the
G_SIG_INI option of ~reqO_ This signal can also be sent to an existing
gate by using the G_REQ_INI option of g_reqO (only recommended if
the semantics of sending the signal is "initialize")_

SIG_TMO

A timeout signal sent to a gate when a timer set via g_tmoO has expired.
Each gate can only have one timer.

User defined signal

Each gate is allowed a _single_ user defined signal. This is either the
signal registered for via ~isrO, the signal being sent by g_si~idO, or

Guide Name

Chapter 1 Coneeo;s· Scheduler and Symmetric Multi-Processing

a SIG_DATA if the gate is the target ora g_sig_Jata(). This wascovcrcd
in detail in the Inter-Gatc Communication section.

There an: some addition;!! activ,!tion re<.!sons which only apply 10 pended
gate< When <i gate pends. it docs so within the context of GAME. Thus.
thcse signals will never be seen directly by a gate as they are consumed
hy GAME. They arc listed here only for cOlllplctelless.

Originally. this signal was used to unpend a gate after it idle~ itself on
the idle queue. More recently it has been used as a generic unpend signal
used for such things as unpending a gatc which was waiting for a
semaphore token. What exactly a SIG_IDLE implies is dependcnt upon
where within GAME a gate pends (since that is where it will resume
execution when it unpends).

Used when creating and firing mapping routines.

Used when new buffers are delivered to a pended gate. This is utilized by
the messaging system so it can collect acknowledgements or RPC replies
within the context of a gate.

These 7 reasons are the only reasons a gate will be scheduled. There isan
additional restriction that scheduling reasons do not nest. Thismeans that
if a gate can appear at most one time in either the idlequeue or the
activation queue for each reason.

For example, the first time a gate recieves buffers, the buffers are placed
on its delivery list and the gate is scheduled for message delivery. If more
buffers arrive before the gate is activated (because there are many other
gates ahead of it), those additional buffers do not result in another
scheduling. Rather, they are tacked onto the end the existing delivery list.

With signals, the result of no nesting is somewhat different. The first time
a gate's timer expires, the gate is scheduled for a SIG_TMo. If the gate
doesn't get activated for that SIG_TMO before the timer expires again,

Guide Name 1-3 ..

Chaprer ; Concepts: Scheduler and Symmernc Mulri-Processing

4. Pendino ..,

., 1-4

!h~ next timeout do~s nm_ result in a SIG_TMO. The gate will sl!e only
nne SIG_ T!'.10 aithough 2 timeout periods have actually occurred.

\lv'hen a gate pends within GAME. it \vaits for some event to occur. For
example, when a gate does a g_idleO. it is waiting to get a SIG_IDLE in
order to continue. But, what happens if that gate recieves a message?

In order to be efficient. the message delivery code doesn't look at the state
of each gate which is rccieving a message to see if it is currently pended.
It just schedules a gate for message delivery whenever it starts a new
delivery list for a gate. This means that the g_idle(rmay actually get
unpended for reasons otherthan a SIG_IDLE. and it needs to handle those
reasons correctly.

An example of how the queues really work would help here ...

Say we have 3 gates, A, Band C which are being scheduled (we won't
worry about why Band C are on the queues). The chart below shows the
state of the activation queue and the idle queue at a particular point in
time. The gate at the top of the activation queue is the one which is
currently running.

Activation queue Idle queue

Gate Reason Gate Reason

Running gate --> A

B ?

C ?

So gate A is running its SIG_INI. For whatever reason this takes a long
time, so A needs to timeslice itself by calling ~idleO. The g,...idleO call
results in gate A being placed on the Idle queue for delivery of a
SIG_IDLE after the system goes idle_ Once this is done, the gate pends
allowing the next gate to run:

Guide Name

f' Chapter 1 Concepts: System Event Log

These should be the only INFO events you log. Again, not every
application fits the mold exactly, but this is the model.

8.4 DeBUG messages

There are no guidelines for DEBUG messages. Your DEBUG events are
your own, but remember that the memory reserved for logging events is
a limited resource. Don't go wild filling up the log with DEBUG events
and cause it to wrap, thereby losing potentially important information.

Also, remember that although DEBUG events are not documented,
customers can see them. Maintain a professional tone and and provide
enough coherent information so that a customer can-use the information
when talking with customer support (i.e., don't just dump a bunch of hex
numbers!).

9. Logging" tips & miscellaneous info

II> 1-14

Physical log sizes:

FRE, FRE2, ASN 64k

ACE25 , ACE32 , AFN 64k (Some older revs 32k)

ARE 64k

ARN 32k

AN > 2MB DRAM 32k

AN 2MB DRAM 16k

At many sites the log wraps quickly during certain failures. Much of this
wrapping is due to applications being too chatty.

Some customers who have free memory have requested that the log size
be increased to a size as large as 4 MB.

A common mistake made is to save the log too quickly after a failure.
Unless the System Event Logger gate is up, the log cannot be retrieved
from that slot.

Guide Name

Chapter 1 Concepts. Scheduler and Symmetric Multi-Processing

as the message. When control returns to the g_idlcO caller. the queues
look like this:

;.. message

A is running after the g_idleO. Assuming it then return~ from its
activation routine it will immediately execute again. but this time for the
messages it received while idle.

This may seem confusing. but applications normally don't worry about
it. From an application point-of-view, it recieved a SIG_Il'\L idled and
then rccieved buffers. What applications. especially in the control path.
do need to be aware of is the importance of allowing the system to go idle
so that new data traffic can be processed (more on this later).

5. FonJllarding Path Notes

6. Mappings

The scheduler may seem somewhat convoluted, but it is important to keep
in mind that GAME was designed for the efficient _forwarding_ of data.
In the forwarding path, gates do not pend. Forwarding gates typically
receive a continuous stream of buffers. Pending would cause buffers to
pile up on the gate's delivery list, possibly depleting the buffer free pool
on the slot.

The burden of handling pending was moved from scheduling time to
unpending time, since we schedule _much_ more than we unpend.

The scheduling of mapping activation routines is somewhat speciaL Here
is the sequence of events:

1. A -target" gate is created or killed, requiring mappings to
trigger. This occurs in the context of some gate (e.g., a gate
calling 9-reqO, or GAME's MAPPER gate, which receives
updates from other slots). We'll refer to this as the ~riggering"
gate.

It 1-6 Guide Name

Chaprer: Concems· Scheduler and Symmemc Mlliti-Processm,.

":;c:.:!.vat.~o~ queue

Gc.~e ?\easc::

2. The triggering gate reschedules itself at the _head_ of the
activation queue with a SIG_MAP. This is effectively a "push"
onto the queue to continue the triggering gate's execution once
the mappings have all run.

Ru~~ing ga~e -->trigge~ ?

trigger

?

3. The triggering gate creates a gate (which, through some
trickery, becomes a child of the MAPPER gate) which runs the
map_mapO routine and schedules it at the head of the activation
queue. Note that many map_map gates can exist at any time.
map_map gates are also responsible for the cleanup of dying
gates.

Ru~~ing gate -->t=igger ?

trigger

A ?

4. The triggering gate pends, allowing the map_map gate to run.

Running gate -->map_map

trigger

A ?

5. The map_map gate also reschedules itself at the current head of
the activation queue with a SIG_MAP.

Running gate -->map_map

trigger

A

SIG_MAP

SIG_MAP

SIG_MAP

?

Guide Name 1-7 •

Cha;:ner 1 Concepts: Scheduler and Symmerr:c Multi·Processing

~ 1-8 Guide Name

6. The map_map gate creates the gates that run the actual
mapping activation routines. Their activation routine is
map_gate_actO, a kernel routine, which will call the user's
mapping routine. These mapping gates are scheduled at the
heac of the queue, before the map_map gate's SIG_MAP
position in the queue (see step 5). The scheduling reasons for
these gates are also SIG_MAP.

roo. ?

7. The map_map gate pends, allowing the mapping gates to run.

A ?

8. The scheduler runs the mapping gates. Note that if a mapping
causes other gates to die, additional mapping activations get
scheduled _ahead_ of those already scheduled. H the mapping
gate pends, it is possible for the state of the "target" gate to
change. GAME does _noC initiate the mapping for the new
state immediately. It instead stores the new state in the
mapping gate's environment. This may happen multiple, times
during the life of a mapping. When the current mapping
activation completes, the map-9ate_act() routine checks for this
changed state. If any exists, it re-runs the mapping with the first
changed state (and repeats this for each stored state). This way,
a gate will never miss a state change.

7.' Interrupts

Chapter i Conceats: ScneduJe r and Symmetric MU!tJ-?rocessrn;;:

9. Once all the mapping gates have been run, the next thing on the
activation queue will be the SIG_MAP activation for the
map_map gate. This resump.s the map_map gate's execution. If
the mapping was for a dying gate, it then cleans up the gate's
memory. Finally, the map_map gate kills itself.

?

10. The next thing on the activation queue will now be the SIG_MAP
activation for the triggering gate. This resumes the triggering
gate's execution. It finishes the mapping processing (which
isn't much) and returns to the application code.

Run~ing gate -->trigger

A ?

Note that if a mapping activation routine pends, it's continued execution
can be intenwined with ihe activations of the base g~te and other
mappings in the context of the base gate, However. these other mappings
can never be mappings for the SAME target gate of the still-running
mappmg,

The details oflow-level interrupt handling are specific to agiven hardware
platform, GAME isolates these hardware dependencies from the device
driver gates and delivers interrupt events via signals.

GAME runs on various hardware platfonns such as the ACE, ACE32,
AFN, FRE (1, 2, 3), ASN, ARN, AN, and ARE. These hardware
platfonns are the name given the the processing engine that populates a
slot. Each processing engine contains a main microprocessor that
executes most of GAME's code and other support hardware such as timer
chips, UARTS, TAGS, memory parity logic, and hardware that is used
for interslot communication. Each slot also contains hardware devices
such as ethernet, fddi, token ring, and synchronous chip sets that
interoperate with the microprocessor on that slot.

Guide Name 1-9 •

Chapter 1 Concepts: Scheduler and Symmetric Mu/ii·ProcessJng

~ 1-10

\1ost of hardware platforms that GAME runs on arc hased on the
Motorola MC680xO microprocessor family. For the rest of this sccti~'11
we will talk ahout how the 68040 microprocessor on a FREII2 worb.

The 6~()4() has thrc:.:: main states.

Halted. - Awaiting a reset signal.

Running - Executing code normally such as thru a scheduler.

• Exception - Processing an exception such as errors and external
interrupts.

Exceptions can be caused by cxecuting an instruction or by external
hardware events. such as interrupts. and hardware errors. Exceptions
caused by executing an instruction wi II be detected by ~he microprocessor.
Some exceptions are predefined and some can be user defined. Predefined
exeptions include unimplcmented instruction, illegal instruction, address
error. bus error and divide hy zero. Motorola also defines seven prioritized
levels for processing interrupt requests.

When the processor is initialized, code populates an exception vector
table with addresses of routines that will run when a particular exception
occurs. When an exception occurs that is not due to an interrupt request,
the current running code will be preempted after it finishes its current
instruction and the routine for that particular exception will execute. All
of the interrupt levels, other than level 7, can be disabled. Disabling a
level also disables all levels below. If an interrupt request occurs for a
level that is enabled, the current running code will be preempted once the
current instruction has finished. The interrupt service routine (ISR) for
this interrupt level will run. If an interrupt request occurs for a level that
is disabled, the exception does not occur until the level is enabled.

The FRE hardware was designed so that only two of the seven interrupt
levels are used (levels 3 and 4). The initialization code popUlates the
interrupt vector table so that the entry for the level 4 interrupt will contain
the address of g...isC 40, the entry for the level 3 interrupt will contain
the address of g...isr_30, the address of exception vector #2 will will
contain the address ofBusError(), and all other entries contain the address
of excepcentryO (there are a couple of minor exceptions).

Guide Name

Cnepler 1 Concep:s: Scheduler and Symmetric Mul;i-Process:n;::

Interrupt Icvel4 is always enabled_ Because of this. g_isr_ 4() can preempt
any current nnming code. The watchdog timer. TAGS. mCJllor~ p;!rit~

errors and the !'~11 hution result in a lc\"el4 interrupt request. Interruri
!eyel .:; is enahied \,,'hl~11 the scheduler is idle and in hetween gates. hUl
disabled while <.J ~atc !s executing. This mcan~ that f!_isr_3() does IHll
always service Interrupts Immedialely and it does m~l preempt gate~. Til,'
RTC used by the periodic timer. the backbone. UARTs forthe TI con~ok.
and the link modules. which contain de\"ices such as the ethernet chip.
all assert level 3 interrupts.

When a level 3 interrupt occurs. g_isr_3() examines the pending interrupts
register and masks out interrupts that are not to be handled at the current
time. This is currently used to postpone the_processing of link-module
interrupts when the scheduler is not idle (i.e .. between gate schedulings).
For each pending interrupt remaining. a g_isrO call is made to schedule
the appropriate signal. As discussed in the Inter-Gate Communications
section, the gate that handles the signal indicates whether It shouid be
scheduled at the head of the activation queue (G_ISR_SIG) or the end
(G_BASE_SIG).

8 .. CPU Hogging

Since GAME uses a non-preemptive scheduler, it is very easy for a single
gate to disrupt an entire slot, or even an entire box, by tying up the CPU
for more than a few milliseconds at a time. When a gate or collection of
gates "hog" the CPU, the scheduler may not go idle soon enough to handle
the link-module interrupts. In this case, packets are dropped, and, for
some reason, this makes customers unhappy.

Unfortunately, the onus is put on the application programmer to make
sure their gates are well-behaved. Therefore, an analysis of each gate's
execution time has to be done to ensure that the CPU is surrendered often
enough.

~idleO is the most common vehicle used to ensure a gate is not a CPU
hog. Normally, ~idle(G_IDLE_POLL) is placed in an iteration loop.
One example is RIP receive processing. ~idleO is used so that the CPU

Guide Name 1-11 •

Chapter 1 COnCE;Jts· Scheduler and Symmemc Multl-ProcessInQ

Q 1-12

intensive operation of adding / deleting / updaiin.s networks docs not

result in drivers dropping frames.

nag: G_IDLE_POLL - place current gate on idle queue. Tllc ptc t!eb

reschedukd after the next time the scheduler goes idle.

G_IDLE_ CHECK - check to see ifthe backbone or drivers need servicing

or if the watchdog count is nearing expiration. If TRUE then g_idleO acts
as if G_IDLE_POLL was used as a flag. Otherwise. g_idJeO returns

allowing the gate to continue executing.

"t1ag" can also take the value G_IDLE_TAIL. In older versions of

GAME. this would schedule the gate at the end of the"activation queue.

This feature was removed because it allowed a gate to hold out module

interrupts for too long. G_IDLE_TAIL now equals G_IDLE_POLL.

Exar;;.ple:

FOR EAC;': NET1riORK UPDATE

/*

* Process update.

*/

Note that if other gate activations can access andlor modify data used by

this gate (e.g., mappings or other gates in the hierarchy), the gate should
ensure that the data is in a state that allows access/modification when

idling (or it has to protect the data via semaphores).

Other function calls also give up the CPU. However, it is possible for the
gate to regain the CPU before the slot has gone idle.

Guide Name

Chapler i ConceOls' Scheduler ar.d Symmetric M:.:!ii·Processrn;:

Th\!!'c Ciil!S <J.li usc an imernal GAME funciion calicd msS_f\\J(). For
Delivcry of a mcssage to thc local sIaL an cxplicit ~_iJk() call i~ m;!(.k
to <..!l1O\v module interrupts to run. For remote Jcli\'cry, h()\\'e\cL ;h~' Pl;.'

is only pended until an ACK buffer i!' r\!cei\'cJ from the remute slot. It"

the local slot is busy enough and the remotc siot qUIckly sends the ACK.
there is a chance of receiving the ACK before the local activation queue
goes empty. This chance is much lower with g_rpcO, which requires a
g_replyO buffer from a gate on the remote slot before the local gate
unpends.

For purposes of application writing, assume that these calls \\'ill allow
module interrupt service. If the frequency oLthe "exceptional case<'
becomes a problem, the functions can be changed to do explicit g_idld)
calls.

For any parameter values greater than 16 ticks, it is fairly certain that the
slot will go idle before the unpend timer expires. For a delay of 16 or
smaller, there is a very slight chance of servicing the timer interrupt
(between gate activations) that will unpend the gate. For purposes of
application writing, assume that this call will allow module interrupt
service.

These calls give upthe CPU only if the requested resource is not available.
An application should not rely on these to perform time-slicing.

In addition, most MIB interface calls use ~rpcO to a local gate.
Therefore, these MIB calls result in module interrupt service.

9. Symmetric Multi-Processing

Symmetric Multi-Processing (SMP) was added as part of the Bluefish
(ARE) project. In order to meet the agressive forwarding rates needed
for Bluefish, it was determined that a single processor wouldn't work.

Guide Name 1-13 •

CnaDief; ConceDis: Scheduler ana SymmetrIc Mull/-Processmg

t). 1-14

Therefore_ Bluelish was desi~ned as a dual processor system, To date,
only Billctish and its deri\'alivcs (Bbckiish. FRE-:; I ,..;upport S\iP.

The challcn~c in addin~ SMP to GAME was ii~urin~ out h()\\ to do it
without ha\'in~ a huge impact on the :2 million or so lines of code already
in existence,

The major problem when applying SMP to an existing code base is how
to protect data that may be modified by both processors at the same time.
This means you either need to add locks to all data stuctures or you can't
concurrently schedule gates which modify the same data structure,

Obviously. adding loeb to all data structures would have a huge impact
on the existing code. not to mention all the new deadlock bugs it would
introduce.

Since GAME already organizes gates into family trees. this seemed to be
a logical way to make an educated guess about who shares data structures.
For example, it is not likely that IP and Appletalk share memory. This
is the approach that was used.

There is also one critical observation v.:hich can be made: In orderto meet
the Bluefish performance goals, is isn't necessary to have all gates running
in parallel. Only the forwarding path really needs to be SMP. If the
control path isn't that optimal, it is still ok,

9.1 Gate Classification

Out of the above came the notion of classifying gates into one of 5 types
based upon how they share memory. This, in conjunction with a gate's
ancestry, allows the SMP scheduler to avoid scheduling two gates which
may modify shared memory concurrently. A gate's ancestry starts with
the first gate in a family tree created by the loader.

A gate's classification is set by an option to the ~reqO syscall. This may
be set when the gate is created or by the gate itself. A gate can change
its classification by another call to ~reqO. This change takes effect the
next time a gate gets scheduled.

Guide Name

G.'Japter 1 Concepts: Scneduier anc Symmetric Mult!'ProcesSing

Here is the list of the different gale c1assijicalions. the associated g_req()
option. and a description.

Global

The most excusivc category_ A Global gale will he the only gate execulin~
in the system. The 2nd processor \vill be held in a light idle loop. This is
used for gates such as the MIB (which shares memory with practically
every application on the box). Applications are strongly discouraged from
declaring their gates as Global.

Ancestor exclusive G_REQ_ANCESTOR

This is the default gate type. An Ancestor exclusive gate will not run with
any other ancestor exclusive gate. This islhe default type because we
can't be sure which gates do or don't share memory outside of their
ancestory. These gates are assumed to share memory outside their
ancest0T}'. The first step to SMPize a subsystem is to determine if it ever
goes outside its ancestory. If it doesn't, its type can be changed to Clean
Ancestor.

Clean Ancestor

Clean Ancestor gates do not share memory outside of their own ancestory:
Therefore, it is ok to run them with other Clean Ancestor or Ancestor
Exclusive gates, provided those gates come from a _differenc ancestory.
Ideally, most of the control path would be of this type.

Clean Reader

The Clean Reader type was created to aid in making the forwarding path
efficient. The Clean Reader should be used when the gate only reads data
structures owned by the rest of its ancestory (i.e. the forwarding table).
A Clean Reader will run concurrently with another Clean Reader from
the same ancestory. This is ok as both are only reading data. A clean
reader will not execute if a non-Clean Reader from the same ancestory
is running. This is because the other gate may be modifying the shared
data structure.

Clean

Guide Name 1-15 •

Chaprer 1 ConceDiS: Scheduler and Symmetric Multi.Processing

9 1-16

This is the ideal gate for the forwarding path. A Clean gate is free to run
with any other gate (except for Glob;:!). It doesn't share any dat;.! or the
d;.!ta it docs share is read only and never modilicd. Clean gates can achieve
their 'clcanlines< hy using the atomic operations descrihed he low. But
since Clean' usually implics the datapath. you usually need to ensun: that
a clean gate doesn't get hlocked for any suhstantial per~od of time.

9.2 SMP Scheduler

The SMP scheduler makes use of a single activation queue and idle queue
as the standard schedukr does. Each processor decides what gate it wants
to run next by looking at all the gates available in the activation queue as
well as what gate the othcrprocessor(s) is (are) currenfly running (if any).
When it finds a gate which satisifies the scheduling requirements. it
executes that gate.

This means that, unlike single-processor GAME, gates may not execute
in the strict order they appear in the activation queue. However. all gates
in the activation queue still need to be executed before the slot goes idle
(allowing module interrupts).

If a processor can't find a gate to execute, possibly because it would
conflict with the gate already running on the other processor, it idles itself
waiting for the other processor to complete. Once the other processor
completes, one of the processors (which one depends upon which
acquires the lock first) _ wilI_ start running the next gate on the activation
queue (the next gate will always be eligible as both of the processors will
have been idle).

The scheduling rules for two-processor SMP are summarized in the
following chart.

The SMP types are:

G Global

A Ancestor exclusive

CA Clean Ancestor

Guide Name

Chapter 1 Concepts: SCheduler arId Symmetrrc Multi-ProcessJnC;

CR Clean Reader

C Clea::.

Across the top of this chart is the typ~ of g:.nc current Iy running all thL'

other processor. Down the side is the lype of ptt? the current CPl: wou Id
like to run. A 'Y' indicates that, yes, the gaw heing scheduled will executL'

in parallel with the currently running gate. A '-' means the gate will not

run. A '*' indicates the other scheduler will be idle. so this state will never

happen.

In places where it matters, it is indicated ~hethe~ the gate
being scheduled is i~ the same or d~ffe=net a~cest~y. If
"same" 0'::- "d·if=" isn't indicated, the:: it doesn'~ matte.:-.

Ru::::iI?-9 Gate

Gate being scheduled G C."". CR C

G y = Gate :ill r1.!n

I - = Gate won't: run

1'-. sa'l\e I .. y .. = other scheduler

> diff I y y y is idle

CA same .. y

CA diff .. y y y y

CR same .. Y Y

CR diff .. y y y y

C .. y y y y

Guide Name 1-17 •

Chapter 1 Concepts: Scheduler and Symmetric Muli,-ProcessinQ

11- 1-18

9.3 The Kernei Leek

The kernel IS one place \,·here memory sh:..lring across processors i" \CI";­

likcly. This could happen if the gates running concurrently happcll W

make overlapping systcm calis.

To prevent problems here, the kernel is protected by one lock. Only one
processor may be in the kernel code at any point in time. This includes
the scheduler, implying that only one processor will be picking a gate to
run at any time.

9.4 interrupts

With multiple processors, interrupt handling becomes more interesting.
GAME solves the issue by requiring the kernel lock before entering the
interrupt processing code. Therefore, only one CPU can handle interrupts
at a time.

Interrupts are only enabled when the CPU is in the scheduler. In order
to be in the scheduler. the processor must first have acquired the kernel
lock. Each processor will enable interrupts between each gate it executes.

On the interrupt handler side, the kernel lock must be acquired before
interrupt processing makes its way into the kernel. This is necessary
because some error interrupts will be seen by both processors and we
need to serialize their handling.

This an can work because the kernel lock is special - it can nest. The
owner of the lock is monitored, so when a CPU goes to request the lock,
the lock code knows if that CPU already owns the lock. This information
returned from the locking call informs the caller as to whether or not a
nested lock has occurred. This lets the caller knows whether or not it
should free the lock when it is done. If the CPU already had the lock, it
doesn't free it.

The only time the interrupt code executes under a non-nested lock on a
FRE is for level 4 interrupts. Level 3 interrupts are always serviced with
a nested lock because the CPU has to enable the interrupts.

Guide Name

(::'. ~

Chaater i Concepts: Scheduler and Symmetric Mufii·Processir.;

Thl! st!gl1~nce of events is as follows for "between-gate" intl!rrupts:

... ..
2.

3.

4.

5.

6.

7.

8.

9.

Get the kernel lock .

Enter scheduler.

Call 9_pollO to enable between gate interrupts.

Interrupt occurs.

Enter interrupt_handler.

Get the kernel lock, finding out that it is currently owned by this
CPU.

Call the interrupt service routine.

Return from interrupt processing (note the lock was not freed).

Pick the next gate to run.

10. Free the kernel lock.

11. Run the selected gate.

9.S Gate creation, death~ and mappings

Since the kernel lock has to be obtained to enter kernel code. it is
impossible for multiple processors to create or kill a gate at the same time.
However, it is possible for a gate on one processor to kill the gate that ig
currently active on the other processor. This race is handled by making
the map_mapO gate a Global gate.

As explained earlier, when a gate is killed, the head of the scheduler's
activation queue is modified such that the first entry is the map_map gate.
When the map-triggering gate pends, the scheduler runs and sees that the
first entry on the queue is a Global gate. It therefore idles the CPU, waiting
for the other CPU (which may be running the newly killed process) to
finish. Once the other CPU finishes, one of the CPUs runs the map_map
gate (while the other idles), which cleans up the dead gate's resources and
schedules the mapping activations.

Guide Name 1-19 •

Chapter 7 ConCepts: Schec:Jie,' End Symmetric Muw-ProceSSIng

\\> 1-20

9.6 Atomic Locks

There are two RTL rOlltinl.'s which implement atomic operation:-,. The~e
arc atol11_incr_int32() and atom_updat::_int32(). Th::,,:: can he u"l.'d t(l
make ~ate~ clean even if the:' share memory.

The atom_incr _int320 is used to update MlB stah. It would be a shame
to not be able to mark a gate Clean only because it needs to count stats.
The atom_incr_int320 provides an atomic increment so that multiple
Clean gates can update the same stat.

The atom_update_int320 can be used to perform an atomic updatl.' of a
value. This can be used to implement a busy-wait loop to serialize access
to a data strucure.

Under the PowerPC architecture. atomic operations are not performed by
doing an atomic read-modify-write operation on thl.' bus as you may
expect. Rather, the PPC has what it calls a 'reservation'. To do an atomic
operation. you first perform a load with reservation. This causes to PPC
to remember which cache line your load came from. Once a new value
is ready to write, be it an increment or setting of a lock. the processor
does a store w/ reservation. Unlike other stores, this store will only
complete if some other processor hasn't modi fied the reserved cache line.
If the store fails. another load/store cycle needs to be done. All this work
is what the atom_incr_int320 and atom_update_int320 are doing.

Notice how the reservation happens on a cache line boundary. This means
that in order to get the highest likelyhood for the store to complete, that
cache line shouldn't be in high use.

To help with atomic locks, a number of macros have been defined in
include/atom.h. A brief summary of these is:

Allocates a block of memory and returns the lock_ptr which will be
properly aligned within it for atomic operations.

Guide Name

Cnapter 7 Concepts: Scheduler anc Svmme7rJc MU/II-Process:n;

Frees the memory acquired by SMP _LOCK_,-\LLOC

Uses atoI11_updatc_int32() to facilitate a busy-\\ait hinary Jock, This \\ill
return only after the lock has been acquired, But- it i, a husy-\\'aiL ~OT

a pending call. Therefore. while you OWI1 the lock. '''~hou shalt lwt pend:"

Releases the lock acquired by SMP _LOCK_ACQUIREO.

9.7 SMP operations on non-SMP systems

Applications arc free to use the SMP g_req() options. atomic routines.
etc, on non-SMP systems. These are all appropriately stubbed out. For
example, atom_incr_int320 will still perform an increment, but not
atomically (since there is only one processor).

Guide Name 1-21 •

1. Overview

Chapter i Concep!s: Scheduler and Symmetric Multi-Processm[:

GAME 101

Chapter 1 Concepts: Scheduler and
Symmetric Multi-Processing

Approximate tiJl1~ to cover: ?

The GAME gate scheduler is a simple, non-premptive, first in/first out
(FIFO) scheduler. This means that a gate executes until it gives up the
CPU by either pending or returning from its activation routine. It also
means that gates will execute in the order in which they are placed onto
the scheduler queue (with a few exceptions).

2. Scheduler Queues

There are two scheduler queues in GAME. These are the Activation
queueand the Idle queue. Each queue element contains a pointer to the
gatecontrol block of the gate to activate as well as the reason for
theactivation.

The Activation queue is a list of gates which are ready to be run. The
scheduler will walk though this list activating each gate in tum. When a
running gate either pends or returns from its activation routine, the next
gate in the list is activated.

Once the activation queue is empty, the system is said to go "idle"_ At
this point in time module interrupts are handled. If there are indeed
module interrupts pending this will result in some gates (such as a link
driver) being added to the activation queue_ Once all gates needed for
interrupt processing are added to the activation queue, the contents of the
Idle queue are copied to the activation queue_ Then the scheduler starts
executing the gates on the activation queue_

The Idle queue serves as a place for application gates to go when they
want to be "fair" (or put another way, when they don't wish to kill the

Guide Name 1-1 •

Chapter 1 Concepis· Scheduler and Symmetric Muiti-Processing

slot's forwarding performance). Since the scheduler is non-preemptive.
it is possihle for a single gate to usurp all of the processing rl!sourCl!S of
the system for a long time. This is undesirable in a system \\·hich is al.,p

trying to pass data trafiic. The idle queue allo\\s a gate to tim~slice ihCl(
\·ia tht? g_idle() syscall. By calling g_idJeO a gate wi II allow more net work
trartie to be processed after which it will continue execytion.

There is a CPU watchdog which will prevent a gate from running forever.
After some large amount of time (3-4 seconds on most systems). if the
same gate is still running. this gate will be killed and a "cpu hog" event
will be placed in the error log. But, the CPU watchdog is really only
there to prevent runaway gates from hanging the system. Packets will be
dropped well before the CPU watchdog goes of!., so it is up to the gate to
idle itself well before the CPU watchdog limit. See "CPU Hogging"
ahead. Watchdogs are discussed more in the Watchdog section.

3. Activation Reasons

p 1-2

A gate can only be activated for a small number of reasons. These inel ude:

Message delivery

This is the delivery of a new list of buffers for the gate to process.

An initialization signal. usually the result of creating a gate with the
G_SIG_INI option of ~reqO. This signal can also be sent to an existing
gate by using the G_REQ_INI option of ~reqO (only recommended if
the semantics of sending the signal is "initialize").

SIG_TMO

A timeout signal sent to a gate when a timer set via ~tmoO has expired.
Each gate can only have one timer.

User defined signal

Each gate is allowed a _single_ user defined signal. This is either the
signal registered for via ~isrO, the signal being sent by ~sig,..gidO. or

Guide Name

Chapter 1 Conceats: Schedule; and SymmetriC Multi-Processmp

a SIG_D.-\TA if the gate is the target of a g_sig_data(J. This was covered
in detail in the lnter-Gat;:- Communication seclion.

There are some additional activation reasons which only apply to pcndcd
gales. When a gak pends. n does so within the context of GAME. TI1U:-.
these signals will neyer k seen dirc::ctly by a gate as they are consumed
bv GAME. They are listed here only for completeness.

Originally. this signal was used to unpend a gate after it idled itself on
the idle queue. More recently it has been used as a generic unpend signal
used for such things as unpending a gate which \Vas waiting for a
semaphore token. What exactly a SIG_IDLE imrlies is dependent upon
v,,'here within GAME a gate pends (since that is where it will rc::sume
execution when it unpends).

Used when creating and firing mapping routines.

Used when new buffers are delivered to a pended gate. This is utilized by
the messaging system so it can collect acknowledgements or RPC replies
within the context of a gate.

These 7 reasons are the only reasons a gate will be scheduled. There isan
additional restriction that scheduling reasons do not nest. Thismeans that
if a gate can appear at most one time in either the idlequeue or the
activation queue for each reason.

For example, the first time a gate recieves buffers, the buffers are placed
on its delivery list and the gate is scheduled for message delivery. If more
buffers arrive before the gate is activated (because there are many other
gates ahead of it), those additional buffers do not result in another
scheduling. Rather, they are tacked onto the end the existing delivery list.

With signals, the result of no nesting is somewhat different. The first time
a gate's timer expires, the gate is scheduled for a SIG_TMO. If the gate
doesn't get activated for that SIG_TMO before the timer expires again,

Guide Name 1-3 •

Chapter 1 Concepts.' Scheduler and Symmetric MU//I·Processinr;

4. Pendina
~.

• 1-4

the next timeout docs _not_ result in a SIG_ TVtO. The &aiC will scc onl:
onc SIG_ TMO <!lthough :2 timeollt periods ha\'c actual I: (KClllTcd.

When a gate pends within GAME. it waits for somc cvc'nt to occur. For

example, when a gate does a g_idleO. it is waiting to get a SIG_IDLE in

order to continue. But what happens if that gate recieves a message?

In order to be efficient, the message delivery code doesn't look at the state

of each gate which is recieving a message to see if it is currently pended.

It just schedules a gate for message delivery wheneva it starts a new

delivery list for a gate. This means that the &_idteO may actually get

unpended for reasons other than a SIG_IDLE. and it needs to handle those

reasons correctly.

An example of how the queues really work would help here ...

Say Vie have 3 gates, A. Band C which are being scheduled (we won't
worry about why Band C are on the queues). The chart below shows the

state of the activation queue and the idle queue at a particular point in

time. The gate at the top of the activation queue is the one which is
currently running.

Activation queue Idle queue

Gate Reason Gate Reason

Running gate --> A

B ?

C ?

So gate A is running its SIG_INI. For whatever reason this takes a long

time, so A needs to timeslice itself by calling lLidleO. The lLidleO call
results in gate A being placed on the Idle queue for delivery of a
SIG_IDLE after the system goes idle. Once this is done, the gate pends
allowing the next gate to run:

Guide Name

..
Cnapler 1 Concepts· Scheduler and Symmetric Multi.ProceSSin9

~u~~i~g gate --> E ?

c

Now B runs. It sends a mcssag:e to A. This causes A to hI: scheduled for

a message delivery. Once B completes. C will run and the queues look

like this:

Ru~ning gate --> C ?

.J;. message

Notice that the activation for A's message is on the activation queue. This
means that as gates send buffers to other gates on the same slot, the
activation queue never goes empty (Note that reliable messaging to the
same slot will idle the sender. This is covered lilJer). This is intentional
since this is exactly what happens when we're forwarding traffic - and we
want that to go fast.

Once C completes the queue looks like this:

Running gate --> message A

A now executes. Since it was pended, it unpends at that same point in
the code. In this case, that is in the g_idleO syscall. The g_idleO unpends
with a message. This isn't what it wants so it remembers that the gate·
received messages and pends again. The system goes idle since there are
no more gates on the activation queue.

Module intenupts are now enabled. Lets assume there are intenupts
pending and gate D is a driver which will handle one of those intenupts.
The intenupt handler will send a ~sig(SIG_MODO) causing gate D to
be scheduled. Next the idle queue is copied to the activation queue and
scheduling begins with gate D running.

Running gate --> D

Gate D runs to completion and then Gate A gets scheulded. Gate A
unpends in the ~idleO syscall. It sees a SIG_IDLE, which is what it was
waiting for so it can continue on. But, before returning to the application
code, it needs to reschedule any activations it saw but didn't want, such

Guide Name 1-5 •

Chapter 1 Concepts: Schea'ufer ana Symmernc Mufii-Processmg

as the message". \VhC'n control returns to thC' g_idk() calkr. thC' queues
look like this:

:r.essag-e

A is running after the g_idJc(). Assuming it thl.!ll returns from ih

activation routine it will immediately execute again. but this time for thl.!
messages it received while idle.

This may seem confusing. but applications normally don't worry about
it. From an application point-of-view. it recieved a SIG_INL idled and
then recieved buffers. What applications. especially in the control path.
do need to be aware of is the importance of allowjng the system to go idle
so that nev,,' data traffic call be processed (more on this later).

5. Forv\farding Path Notes

6. Mappings

The scheduler may seem somewhat convoluted. but it is important to keep
in mind that GAME was designed for the efficient Jorwarding_ of data.
In the forwarding path, gates do not pend. Forwarding gates typically
receive a continuous stream of buffers. Pending would cause buffers to
pile up on the gate's delivery list. possibly depleting the buffer free pool
on the slot.

The burden of handling pending was moved from scheduling time to
unpending time, since we schedule _much_ more than we unpend.

The scheduling of mapping activation routines is somewhat special. Here
is the sequence of events:

1. A "target" gate is created or killed, requiring mappings to
trigger. This occurs in the context of some gate (e.g., a gate
calling g_reqO, or GAME's MAPPER gate, which receives
updates from other Slots). We'll refer to this as the "triggering"
gate.

"', 1-6 Guide Name

Chapter 1 Concepts: Scheduler and Symmetric Multi-Processlnq

Activatior. queue

2. The triggering gate reschedules itself at the _head_ of the
activation queue with a SIG_MAP. This is effectively a "push"
onto the queue to continue the triggering gate's execution once
the mappings have all run.

Ru~ning gate -->t~igger ?

trigger

A ?

3. The triggering gate creates a gate (which, through some
trickery, becomes a child of the MAPPER gate) which runs the
map_map() routine and schedules it at the head of the activation
queue. Note that many map_map gates can exist at any time.
map_map gates are also responsible for the cleanup of dying
gates.

Running gate -->trigger ?

trigger

A ?

4. The triggering gate pends, allowing the map_map gate to run.

Running gate -->map_map

trigger

A ?

5. The map_map gate also reschedules itself at the current head of
the activation queue with a SIG_MAP.

Running gate -->map_map

trigger

A ?

Guide Name 1-7 •

Chapter 1 Concepts: Scheauier and SymmeTrIc Multi-Processing

1-8 GUide Name

6_ The map_map gate creates the gates that run the actual
mapping activation routines. Their activation routine is
map_gate_actO, a kernel routine, which will call the user's
mapping routine_ These mapping gates are scheduled at the
head of the queue, before the map_map gate's SIG_MAP
position in the queue (see step 5). The scheduling reasons for
these gates are also SIG_MAP.

trigge!"

?

7. The map_map gate pends, allowing the mapping gates to run.

A ?

8_ The scheduler runs the mapping gates. Note that if a mapping
causes other gates to die, additional mapping activations get
scheduled _ahead_ of those already scheduled. H the mapping
gate pends, it is possible for the state of the "target" gate to
change. GAME does _noC initiate the mapping for the new
state immediately. It instead stores the new state in the
mapping gate's environment. This may happen multiple times
during the life of a mapping. When the current mapping
activation completes, the map-9ate_actO routine checks for this
changed state. If any exists, it re-runs the mapping with the first
changed state (and repeats this for each stored state). This way,
a gate will never miss a state change.

7.·'nterrupts

Chapter 1 Concepts: Scheduler ar:C: Symmernc Multi·Processmp

9. Once all the mapping gates have been run, the next thing on the
activation queue will be the SIG_MAP activation for the
map_map gate. This resumes the map_map gate's execution. If
the mapping was for a dying gate, it then cleans up the gate's
memory. Finally, the map_map gate kills itself.

~:-igge!'"

A ?

10. The next thing on the activation queue will now be the SIG_MAP
activation for the triggering gate. This resumes the triggering
gate's execution. It finishes the mapping processing (which
isn't much) and returns to the application code.

Ru~~ir.g gate -->t=igger

A ?

Note that if a mapping activation routine pends. it's continued execution
can be intertwined with the activations of the base gate and other
mappings in the context of the base gate. However, these other mappings
can never be mappings for the SAME target gate of the still-running
mapping.

The details oflow-level intenupt handling are specific to a given hardware
platform. GAME isolates these hardware dependencies from the device
driver gates and delivers intenupt events via signals.

GAME runs on various hardware platforms such as the ACE, ACE32,
AFN, PRE (1, 2, 3), ASN, ARN, AN, and ARE. These hardware
platforms are the name given the the processing engine that populates a
slot. Each processing engine contains a main microprocessor that
executes most of GAME's code and other support hardware such as timer
chips, DARTS, TAGS, memory parity logic, and hardware that is used
for interslot communication. Each slot also contains hardware devices
such as ethernet, fddi, token ring, and synchronous chip sets that
interoperate with the microprocessor on that slot.

Guide Name 1-9 •

Chapter j Concepts' Scneduler ana Syrr.metnc Mulii-Processmg

Q 1-10

MoS! of hardware piatforms that GAME runs on arc based on the
l\1otoroJa !v1C68()xO microprocessor family. for the rest of this section
\\\? will talk ahoul how the 680.10 microprocessor on a FRE1/:2 \\nrb.

The 6S()40 has three main states:

Halted. - Awaitinb' a reset signai.

Running - Executing code normally such as thru a scheduler.

Exception - Processing an exception such as errors and external
interrupts.

Exceptions can be caused by executing an instruction or by external
hardware events, such as interrupts, and hardware errors. Exceptions
caused by executing an instruction will bedetected~by the microprocessor.
Some exceptions are predefined and some can be user defined. Predefined
exeptions include unimplemented instruction, illegal instruction, address
error. bus error and divide by zero. Motorola also defines seven prioritized
levels for processing interrupt requests.

\Vhen the processor is initialized, code populates an exception vector
table with addresses of routines that will run when a particular exception
occurs. When an exception occurs that is not due to an interrupt request,
the current running code will be preempted after it finishes its current
instruction and the routine for that particular exception will execute. All
of the interrupt levels, other than level 7, can be disabled. Disabling a
level also disables all levels below. If an interrupt request occurs for a
level that is enabled, the current running code will be preempted once the
current instructioll has finished. The interrupt service routine (ISR) for
this interrupt level will run. If an interrupt request occurs for a level that
is disabled, the exception does not occur until the level is enabled.

The PRE hardware was designed so that only two of the seven interrupt
levels are used (levels 3 and 4). The initialization code populates the
interrupt vector table so that the entry for the level 4 interrupt will contain
the address of ~isr_ 40, the entry for the level 3 interrupt will contain
the address of ~isr_30, the address of exception vector #2 will will
contain the address of Bus Err orO, and all other entries contain the address
of excepCentryO (there are a couple of minor exceptions).

Guide Name

Chapier 1 Concects. Scneduler and Symme;rrc Mulrl·Processrng

Interrupt level4 is always enabkd. B~cause of this. g_isr_ 4() can preempt
any currcnt running codc. Th~ watchdog timer. TAGS. mcmory parit~
crrors and the NMI button result in a kvd 4 intcrmpt r~quest. Interrupt
kvcl:; is enabled whcn th~ scheduicr is idle and in hetween ptcs. hut
disabled while a g.atc is cxecuting. This means that g._isr_3() doc~ O('t

always service interrupts immediately and it does oO.t pr~empt gates. Th~'
RTC used by the periodic timer. the backbone. UARTs forthe TI console.
and the link modules. which contain devices such as the ethernet chip,
all assert level 3 interrupts.

When a level 3 interrupt occurs. g_isr_30 examines the pending interrupts
register and masks out interrupts that are not to be handled at the current
time. This is currently used to postpone the pro.cessing of link-module
interrupts when the scheduler is not idle (i.e., between gate schedulingst
For each pending interrupt remaining. a g_isrO call is made to schedule
the appropriate signal. As discussed in the Inter-Gate Communications
section, the gate that handles the signal indicates whether it should be
scheduled at the head of the activation queue (G_ISR_SIG) or the end
(G_BASE_SIG).

8. CPU Hogging

Since GAME uses a non-preemptive scheduler, it is very easy for a single
gate to disrupt an entire slot, or even an entire box, by tying up the CPU
for more than a few milliseconds at a time. When a gate or collection of
gates "hog" the CPU, the scheduler may not go idle soon enough to handle
the link-module interrupts. In this case, packets are dropped, and, for
some reason, this makes customers unhappy.

Unfortunately, the onus is put on the application programmer to make
sure their gates are well-behaved. Therefore, an analysis of each gate's
execution time has to be done to ensure that the CPU is surrendered often
enough.

~idleO is the most common vehicle used to ensure a gate is not a CPU
hog. Normally, ~idle(G_IDLE_POLL) is placed in an iteration loop.
One example is RIP receive processing. ~idleO is used so that the CPU

Guide Name 1-11 e

Chapter 1 Concepts: SCheduler and Symmetric Multi-Processing

{) 1-12

intensive operation of adding / deleting / updating networks does not
result in drivers dropping frames.

flag: G_IDLE_POLL - place current gate on idle queue. The gate geb
rescheduled after the next time the scheduler goes idle.

G_IDLE_CHECK - check to see if the backbone or drivers need servicing
or if the watchdog count is nearing expiration. If TRUE then g_idleO acts
as if G_IDLE_POLL was used as a flag. Otherwise. g_idleO returns
allowing the gate to continue executing.

"flag" can also take the value G_IDLE_ TAIL. In older versions of
GAME. this would schedule the gate at the enciof the activation queue.
This feature was removed because it allowed a gate to hold out module
interrupts for too long. G_IDLE_ TAIL now equals G_IDLE_POLL.

Exalnple:

FOR EACH ~~TWORK UPDATE

/~

* Process update.

* /

Note that if other gate activations can access and/or modify data used by
this gate (e.g., mappings or other gates in the hierarchy), the gate should
ensure that the data is in a state that allows access/modification when
idling (or it has to protect the data via semaphores).

Other function calls also give up the CPu. However, it is possible for the
gate to regain the CPU before the slot has gone idle.

Guide Name

Chapter 1 Concepts. Scheduler and Symmetric MUlti-Processrng

Thesc calls all use an internal GAME function called msg_fwdO. For
ddivcry of a message to the local slot. an cxplicit g_idk() call is made
to allow module interrupts to run. For remote dclivery. however. the gate
is only pended until an ACK buffer is received from thc remote slot. If
the local slot is busy enough and the remote slot quickly sends the ACK.
there is a chance of receiving the ACK before the local activation queue
goes empty. This chance is much lower with g_rpcO, which requires a
gJeplyO buffer from a gate on the remote slot before the local gate
unpends.

For purposes of application writing, assume that these calls will allow
module interrupt service. If the frequency of the.." exceptional cases"
becomes a problem. the functions can be changed to do explicit g_idleO
calls.

For any parameter values greater than 16 ticks, it is fairly certain that the
slot will go idle before the unpend timer expires. For a delay of 16 or
smaller, there is a very slight chance of servicing the timer interrupt
(between gate activations) that will unpend the gate. For purposes of
application writing, assume that this call will allow module interrupt
service.

These calls give up the CPU only if the requested resource is not available.
An application should not rely on these to perform time-slicing.

In addition, most MIB interface calls use £-rpc() to a local gate.
Therefore, these MIB calls result in module interrupt service.

9. Symmetric Multi-Processing

Symmetric Multi-Processing (SMP) was added as part of the Bluefish
(ARE) project. In order to meet the agressive forwarding rates needed
for Bluefish, it was determined that a single processor wouldn't work.

Guide Name 1-13 •

Chapter 1 Concepts: Scheduler ana' Symmetric Multi·Processing

" 1-14

Therefore. Bluefish was designed as a dual processor system. To date.
only B1uelish and its derivatives (Blackl1sh. FRE-3) SUppC)J1 Sl\1P.

The challenge in adding SMP to GAME was liguring out how lO Jo it
without having a huge: impact on the:2 miIJion or so lines of code already
m eXIstence.

The major problem when applying SMP to an existing code base is how
to protect data that may be modified by both processors at the same time.
This means you either need to add locks to all data stuctures or you can't
concurrently schedule gates which modify the same data structure.

Obviously. adding locks to all data structures would have a huge impact
on the existing code. not to mention all the new-cleadlock bugs it would
introduce.

Since GAME already organizes gates into family trees. this seemed to be
a logical way to make an educated guess about who shares data structures.
For example, it is Dot likely that IP and Appletalk share memory_ This
is the approach that was used.

There is also one critical observation which can be made: In orderto meet
the Bluefish performance goals, is isn't necessary to have all gates running
in parallel. Only the forwarding path really needs to be SMP. If the
control path isn't that optimal, it is still ok.

9.1 Gate Classification

Out of the above came the notion of classifying gates into one of 5 types
based upon how they share memory. This, in conjunction with a gate's
ancestry, allows the SMP scheduler to avoid scheduling two gates which
may modify shared memory concurrently. A gate's ancestry starts with
the first gate in a family tree created by the loader.

A gate's classification is set by an option to the g_reqO syscall. This may
be set when the gate is created or by the gate itself. A gate can change
its classification by another call to ~reqO. This change takes effect the
next time a gate gets scheduled.

Guide Name

Ch2Drer; ConceD,s: Scneduler and Syr::me:nc MUI:·P'ocess;n;:

Here is the list of the differcnt gate classification~. the :1ssoi.:iah.'d :-:_rcql. I

option. and a description.

The most excusivc category. A Global galc will he thc only ~ah.' oecutlll::
in the system. Thc 2nd processor wiII be held in a tight idk l()~)p. Thi.' i~
used for gates such as the MlB (which shares memory with practICall:
every application on the box). Applications are strongly discouragcd from
dec laring their gates as Global.

Ancestor exclusive G_REQ_ANCESTOR

This is the default gate type. An Ancestor exclusive gate will not run with
any other ancestor exclusive gate. This is the default type bccause we
can't be sure which gates do or don't share memory outside of their
ancestor)'. These gmes are assumed to share memory outside their
ancestor),. The first step to SMPize a subsystem is to determine if it ever
goes outside its ancestory. If it doesn't. its type can be changed to Clean
Ancestor.

Clean A.'"lcesto:!:"

Clean Ancestor gates do net share memory outside of their own ancestor)'.
Therefore, it is ok to run them with other Clean Ancestor or Ancestor
Exclusive gates, provided those gates come from a _different_ ancestory.
Ideally, most of the control path would be of this type.

Clean Reader

The Clean Reader type was created to aid in making the forwarding path
efficient The Clean Reader should be used when the gate only reads data
structures owned by the rest of its ancestory (i.e. the forwarding table).
A Clean Reader will run concurrently with another Clean Reader from
the same ancestory. This is ok as both are only reading data. A clean
reader will not execute if a non-Clean Reader from the same ancestory
is running. This is because the other gate may be modifying the shared
data structure.

Clean

Guide Name 1-15 ..

Chapter 1 Concepts: $cl7eduler and Symmetric Multi-Processing

G 1-16

This is the ideal gate for the forwarding path. A Clean gate is free to run
with any other gate (except for Global). It doesn't share any dat;l or the
data it docs share is read only and never modified. Clean gates can achieve
their 'ckanlincs:O: by using the atomic operations described hel(m. But
since Clean usually implies the datapath, you usually need to ensure that
a clean gate doesn't get blocked for any substantial peri.od of time.

9.2 SMP Scheduler

The SMP scheduler makes use of a single activation queue and idle queue
as the standard scheduler does. Each processor decides what gate it wants
to run next by jooking at all the gates available in the acti\'ation queue as
well as what gate the other processor(s) is (are) cuYrently running (if any).
When it finds a gate which satisifies the scheduling requirements. it
executes that gate.

This means that. unlike single-processor GAME, gates may not execute
in the strict orderthey appear in the activation queue. However, all gates
in the activation queue still need to be executed before the slot goes idle
(allowing module interrupts).

If a processor can't find a gate to execute. possibly because it would
conflict with the gate already running on the other processor, it idles itself
waiting for the other processor to complete. Once the other processor
completes, one of the processo:-s (which one depends upon which
acquires the lock first) _ will_ start running the next gate on the activation
queue (the next gate will always be eligible as both of the processors will
have been idle).

The scheduling rules for two-processor SMP are summarized in the
following chart.

The SMP types are:

G Global

A Ancestor exclusive

CA Clean Ancestor

Guide Name

Chapter i Concepts: Scneduler and Symmetric Multi-Processrng

CR Clean Reade::-

Clea:1

Across the top of this chan is the type of gate currently running on the

other processor. Down the side is the type of gate the current epe \,'OU IJ

like to run. A 'Y' indicates that. yes. the gate being scheduled will eXCCll!\.'

in parallel with the currently running gate_ A '-' means the gate will not

run. A '*' indicates the other scheduler will be idle. so this state will never

happen.

In places where it matters, it is indicated whether the gate
being sched~led is in the same O~ di:fernet a~cest~y. ~~

"sar:te" 0::- "diff" isn't i~dicated, then it doesn't mat't.er.

Gate being scheduled G A CA CR. C

G * Y = Gate will ::-u::

- = Gate won't run

A same * Y * other scheduler

.... difi I Y y Y is idle

CA same y

CA diff * y y y y

CR same * y y

CR diff * y y y y

C * y y y y

Guide Name 1-17 •

Chapter 1 Concepts: SctJedu/er and Symmetric Mulii-Processing

~ 1-18

9.3 The Kernel Lock

The kernel is one place where memory sharirg across processors is \'~r:
Iikely_ This could happen if the gates running concurrently happell to

make o\'erlapping system calls.

To prevent problems here. the kernel is protected by one Jock. Only one
processor may be in the kernel code at any point in time. This includes
the scheduler, implying that only one processor will be picking a gate to
run at any time.

9.4 Interrupts

With multiple processors, interrupt handling becomes more interesting.
GAME solves the issue by requiring the kernel lock before entering the
interrupt processing code. Therefore, only one CPU can handle interrupts
at a time.

Interrupts are only enabled when the CPU is in the scheduler. In order
to be in the scheduler, the processor must first have acquired the kernel
lock. Each processor will enable interrupts between each gate it executes.

On the interrupt handler side, the kernel lock must be ccquired before
interrupt processing makes its way into the kernel. This is necessary
because some error interrupts will be seen by both processors and we
need to serialize their handling.

This all can work because the kemellock is special - it can nest. The
owner of the lock is monitored, so when a CPU goes to request the lock,
the lock code knows if that CPU already owns the lock.. This information
returned from the locking call informs the caller as to whether or not a
nested lock has occurred. This lets the caller knows whether or not it
should free the lock when it is done_ If the CPU already had the lock, it
doesn't free it.

The only time the intemIpt code executes under a non-nested lock on a
FRE is for level 4 interrupts_ Level 3 intemIpts are always serviced with
a nested lock because the CPU has to enable the intemIpts.

Guide Name

Chapter 1 Concepts.· Scheduler and Syrr.metnc Multi·Processing

The sequence of events is as follows for "between-gatc" intcrrupts:

1. Get the kernel lock.

2. Enter scheduler.

3. Call 9_pollO to enable between gate interrupts.

4. Interrupt occurs.

5. Enter interrupt_handler.

6. Get the kernel lock, finding out that it is currently owned by this
CPU.

7. Call the interrupt service routine.

8. Return from interrupt processing (note the lock was not freed).

9. Pick the next gate to run.

10. Free the kernel lock.

11. Run the selected gate.

9.5 Gate creation, death, and mappings

Since the kernel lock has to be obtained to enter kernel code, it is
impossible for multiple processors to create or kill agate at the same time.
However. it is possible for a gate on one processor to kill the gate that is·
currently active on the other processor. This race is handled by making
the map_mapO gate a Global gate.

As explained earlier, when a gate is killed, the head of the scheduler's
activation queue is modified such that the first entry is the map_map gate.
When the map-triggering gate pends, the scheduler runs and sees that the
first entry on the queue is a Global gate. It therefore idles the CPU, waiting
for the other CPU (which may be running the newly killed process) to
finish. Once the other CPU finishes, one of the CPUs runs the map_map
gate (while the other idles), which cleans up the dead gate's resources and
schedules the mapping activations.

Guide Name 1-19 '"

Chapter 1 Concepts: Scheduler and Symmetric Multi-Processing

~ 1-20

9.6 Atomic Locks

There are two RTL routines which implement atomic operations. The~c
are atom_incr_int320 and atom_update_int320. These can he used to

make gates clean even if they share memory.

The atom_incr_int320 is used to update MIB stats. It would be a shame
to not be able to mark a gate Clean only because it needs to count stats.
The atom_incr_int320 provides an atomic increment so that multiple
Clean gates can update the same stat.

The atom_update_int320 can be used to perform an atomic update of a
value. This can be used to impiement a busy-wait loop to serialize access
to a data strucure.

Under the PowerPC architecture, atomic operations are not performed by
doing an atomic read-modify-write operation on the bus as you may
expect. Rather, the PPC has what it calls a 'reservation'. To do an atomic
operation, you first perform a load with reservation. This causes to PPC
to remember which cache line your load came from. Once a new value
is ready to write, be it an increment or setting of a lock, the processor
does a store w/ reservation. Unlike other stores, this store will only
complete if some other processor hasn't modified the reserved cache line.
If the store fails, another load/store cycle needs to be done. All this work
is what the atom_inccint320 and atom_update_int320 are doing.

Notice how the reservation happens on a cache line boundary. This means
that in order to get the highest likelyhood for the store to complete, that
cache line shouldn't be in high use_

To help with atomic locks, a number of macros have been defined in
include/atom.h. A brief summary of these is:

Allocates a block of memory and returns the lock_ptr which will be
properly aligned within it for atomic operations.

Guide Name

Chapter 1 Concepts. Schedule.- and Symmetnc Multi-Processing

Frees the memory acquired by SMP _LOCK_ALLOC.

Uses atom_update_int32() to facilitate a busy-wait binary lOCK. This will
return only after the lock has been acquired. But. it is a busy-wait. NOT
a pending call. Therefore. while you own the lock. "Thou shalt not pcnd~"

Releases the lock acquired by SMP _LOCK_ACQUIREO_

9.7 SMP operations on non-SMP systems

Applications are free to usc the SMP g_reqO options. atomic routines_
etc. on non-SMP systems. These are all appropriately stubbed out. For
example. atom_incr_int320 will still perform an increment. but not
atomically (since there is only one processor).

Guide Name 1-21 •

Chapter 1 Concepts: System Event Log

GAME 101

Chapter 1 Concepts: System Event
Log

1. System Event Log Overview.

Event logging can be used for debugging and network management. Each
slot that contains a processor (ACE, FRE, etc.) maintains its own fixed
size event Jog that is located at a fixed location within volatile memory
(DRAM). Applications only write to the physical log located on the slot
the application is executing on. This log wiil survive system reboots.
software restarts. and crashes unless the hardware is (re)initialized. The
hardware is initialized during power up, hot swaps, diagnostics, hardware
reset, and certain hardware specific failures (on a FRE, the ISR handing
the Watchdog timer must clear the Watchdog pending bit before the next
Watchdog timer interval or else the FRE hardware will reset).

Events that are written into the log vary in size. Most events that contain
strings have a defined code that is stored in the log entry instead of the.
string. This practice allows for more events to be written into the fixed
size log. When the log is viewed, the code is replaced by a string from
other entities such as string services or Site Manager. Strings still can be
written directly into the log, but this practice limits the number of events
that can be stored in the log. When the log is full and a new event needs
to be added, the oldest entry or entries are removed and replaced with the
most recent entry.

NOTE. It is NOT a good practice to log a message by using a sprintf to
format a string and use a "generic" EDL event code. Unless you are adding a
message that will be removed when a defined problem is fixed, modify the
EDL file to add a new EDL event code. "generic" EDL event codes waste too
much log space.

Guide Name 1-1 •

t: c '-

Chapter 1 Concepts: System Event Log

2. Log Entry Format

~-------.--------~--------~--------T

: Size I Ty-pe ! Er.ti ty I Eve:1t ~ byt:es

S bytes

Time Stamp

+----------------------------------+

Sequence Number ISlot! 4 bytes

+----------------------------------+

x Data x o - 251 long words

Size - Size of log entry in long words (4 - 255)

Type - Log entry type

DEBUG 1

INFO 2

WARNING 4

FAULT 8

TRACE 16 (Ox10)

Entity - Who logged the event (see include/edl_types.h)

• 1-2 Guide Name

(

Chapter 1 ConCepts: System Event Log

- ::"og message r:.u::-.be::- ,,;:. t.::'i:-: e:-::t.:':y

I see edl/".edl; :-:.ec:" L5.ec:i:., :?edl, et.c

Time Stamp - Time that event was logged.

First 4 bytes - number of seconds since January 1, 1900. Second 4 bytes
- fraction of seconds (NOTE. The number of bits used is hardware specific
and left justified). See timer section.

Sequence Sequence nlli~er of event on Slot..

Numbe::-

Slot Slot number event. occured on.

3. Quick Example of EDL

Each numeric event code is defined using the "Event Definition
Language" and a preprocessor tooL Entity specific log messages are
created by adding the entity to "include/edl_types.h" and a corresponding
"<entity>.edI" file to the "edl" directory. For example, when NetBios .
over IP was added to the system

#define NBIP_EDL 77

was added to the file "include/edl_types.h" and the file "edllNBIP.edl"
was created. The contents of "NBIP.edl" is

/* @(#)WSCCS c/edl-NBIP.edl 1.1 6/27/94 */

RECORD NBIP_EDL

NBIP_CRASH
attempting restart."

NBIP_BAD_PKT
packet received"

"System error, service

"invalid NetBIOS over IP

Guide Name 1-3 •

{. ..
,0 Chapter 1 Concepts: System Event Log

• 1-4

NBIP_BAD_NAME
name"

NBIP INIT
initializing. "
NBIP_I?_u? INFO_MSG
%a.%c.%c.%c up."
NBIP_I?_DO\\JN INFO_MSG
%d.%d.%c.%d down."
NBIP_TERM INFO_MSG
terminating ...

NBIP_UNK_PKT DEBUG_MSG
Pyotocol received"
NBIP_CACHE_INIT DEBUG_MSG
NetBIOS name cache"
NBIP_CACEE_DOWN DEBUG_MSG
NetBIOS name cache"
NBIP_CACHE_FULL DEBUG_MSG
cachc= is full"
NBIP_AGE_NAME DEBUG_MSG
NetBIOS name cache"
NBIP_GENERIC_DBG DEBUG_MSG

"invalic NetBIOS over IP

"Seyvice

"Intey£ace

" Ir..t6-yiace

"Service

"unknown

"initializing

"killing

"NetBIOS name

"aging from

"%S"

From "NBIP. edl" and "edl_types. h", the preprocessor tool will
create the file NBIP_edl.h. The contents of "NBIP_edl.h" is

#include "edl_types.h"

#define NBIP_CRASH
8) I 1)

#define NBIP_BAD_PKT
8) I 2)

Guide Name

Cnapter 1 Concepts: System Event Log

#define NBIP_BAD_NAME (u_int32) (WARNING_~SG I (NEIP_EDL«
8) I 3)

~define NEI?_INIT
i 4)

#define NBI?_IF_D?
I 5)

#def ine NBI? _IF _Dm'm
I 6)

#define NBIP_TERM
I 7)

#pefine NBIP_UNK_PKT (u_int32) (DEBUG_MSG
8) I 8)

#define NBIP_CACHE_INIT (u_int32) (DEBUG_MSG
8) I 9)

#def ine NBIP _CACEE_DmoJN (u_int3 2) (DEBUG_MSG
8) I 10)

#define NBIP_CACHE_FULL (u_int32) (DEBUG_MSG
8) I 11)

(NBI?_EDL «

#define NBIP_AGE_N&~ (u_int32) (DEBUG_MSG I (NBIP_EDL«
8) I 12)

#define NBIP_GENERIC_DBG (u_int32) (DEBUG_MSG I (NBIP_EDL
« 8) I 13)

NOTE 1. The preprocessor tool only allows 255 TOTAL messages per entity,
not 255 DEBUG messages, 255 WARNING messages etc.

NOTE 2. All new messages MUST be added to the END of the ... edl" file. So
if you add a FAULT_MSG:

FAULT_MSG • Oh NO·

you would add this after NBIP _GENERIC_DBG, not NBIP _CRASH.
The reason for this is that newer versions of tools that format the log (like

Guide Name 1-5 •

,.
Chapter 1 Concepts: System Evem Log

Site Manager) would get mixed up when reading a log from an older
version of router software.

4. 9_1090 system call.

o 1-6

Applications add entries to the log by calling g_log system call:

code: the numeric event code

args: variable length array of event arguments

Examples.

a. In order to log the message "invalid NetBIOS over IP packet received",
the following lines can be added to the appropriate function:

#include "NBIP_edl.h"

Phyically, 16 bytes would be consummed by this log entry.

Ox04 04 4d 02
NBIP code 2

Oxb6 58 88 d4

Ox80 00 00 00

OxOO 00 12 34

16 bytes (4 long words) WARNING

12/09/96 13:11:48

.5 sec

Sequence Number 291 Slot 4

b. In order to log the message "this is boring", the following lines can be
added to the appropriate function:

#include "NEIP_edl.h"

char my_msg[801;

sprintf{my_msg, "this is boring");

Physically, 32 bytes would be consummed by this log entry.

Ox08 01 4d Dc 32 bytes (8 long words) DEBUG NEIP code 12

Guide Name

Chapter 1 Concepts: System Event Log

Oxb6 58 88 cic 12/09/96 13:11:56

OxO:' 00 00 00 L, ms

OxOc 00 3..2 4~ Sequence Numbe~ 29: s:o:

Ox7L, 68 69 . ~ :: his

Ox20 69 73 2C <sp> ::. s <sp>

Ox6: 6f 72 69 b 0

Ox6e 67 00 00 n g <null> <null>

\v
NOTE. If a new EDL event code was added tQ_display this message. only

4 long words of log space would be consumed instead of 8. Even if the text
string length was much larger. only 4 long words would be used instead of a
much larger length.

c. In order to log the message "Interface 1.0.0.1 down.", the following
lines can be added to the appropriate function:

#include "NBIP_edl.h"

ip_acidress = Ox01000001;

g_log(NBIP_IF_DOWN,

(ip_address » 24) & Oxff) ,

(ip_address » 16) & Oxff) ,

(ip_address » 8) & Oxff} ,

ip_address & Oxff)) ;

Physically 32 bytes would be consumed by this log entry.

Ox08 02 4d 06 32 bytes (8 long words) INFO NBIP code 6

Oxb6 58 88 e4 12/09/96 13:12:04

Ox02 00 00 00 8ms

OxOO 00 12 54 Sequence Number 293 Slot 4

OxOO 00 00 01 1

Guide Name 1-7 •

~,' e c: c:

, Chapter 1 Concepts. System Event Log

OxOO 00 00 00 o

OxOO 00 00 00 o

OxOO 00 00 01 1

5. System Event Logger Gate

• 1-8

Applications directly add entries to the log thru the kernel system call
g_logO. The System Event Logger Gate is a well-known gate that runs
on each slot. The primary purpose of this gate is to handle requests for
retrieving events from the log so that the log can be viewed or stored.

TI, TeRUI, TFfP, FfP, and SNMP all communicate with the System
Event Logger Gate on one or more slots by using g~fpcO. The gate
requesting the log entries will receive replies from one or more slots and
sort the log entries received via the timestamp field of each log entry.
These gates may also perform filtering so that entries physically contained
in the log do not have to be viewed or stored. Filtering can be done by
date, time, entity, severity (event type), and code (event code). Slot
filtering can also be done, but in this case the ~rpcO just sends the request
to one slot.

The complete log cannot usually fit in one ~replyO. Because of this,
numerous g_rpcOs will be sent from the requesting application to the
System Event Logger Gate. The data portion of the ~rpcO contains a
field that is a requested sequence number. The Event Logger Gate returns
entries greater than the requested sequence number and not greater than
the log's current sequence number. When the requesting gate sends the
first ~rpcO, the sequence number is usually set to zero so that every entry
starting at the logs lowest sequence number will be returned. The
~replyO will contain a number of log entries and the sequence number
that the next ~rpcO should use. The log can also be polled for only new
log events by not always using zero as the initial sequence number. This
procedure is used by SNMP for traps and optionally can be used by TI's
log command.

Guide Name

Chapter 1 Concepts: System Event Log

6. How the Log becomes useless at times.

The 5 series as had a small log that was resident only on slot 2. Each
entry had a fixed size of about 80 bytes. The system had no fault
management and debug log messages did not really exist. The log did
not survive reboots, but it could be periodically sav~d to floppy.

When GAME are designed, a number of DEBUG messages are typically
added. These DEBUG messages are not documented and, by default, the
TI log command filters out DEBUG messages so that they are not seen.
Two problems arise from using this procedure. First, customers, and even
engineers, can have a hard time figuring out what these debug messages
mean (they are often very cryptic). Second,~Jhe DEBUG messages still
take up log space, so they limit what can be physically placed in the log.

Some applications are much too chatty (they log too much). When it
became necessary for routers to scale to a large number of interfaces per
slot (precipitated by the release of the MeTl link module) the log started
to wrap frequently during certain critical periods (like boot time) and the
useful information in the log was lost.

IPX and some other protocols allow the user to set a filter via the MIB to·
control which log messages are written into the 10g, but most applications
do not have this functionality.

Another form of log filtering was added to the
system for debugging purposes. This log filtering
filters out the g_log() kernel system call so that
the message is not written physically into the
log. This was accomplished by increasing the log
header that manages the log to add a bitmask that
allows each severity type for each entity to be
filtered.

N01E. Some important GAME messages cannot be filtered.

Examples.

Guide Name 1-9 •

Chapter 1 Concepts: System Event Log

a. Exclude

S log -x /* Exclude all log messages all slots * . I

S log -x -s2 /* Exclude all log messages on slot 2 * , ,

S log -x -s2 -eLAPB /* Exclude all LAPB log message on slot
2 */

S log -x -s2 -eIP -fd /* Exclude all IP DEBUG messages on
slot 2 * /

b. Include

Slog -i

Slog -i -s2

/* Include all log messages all slots */

/ * Include all log messages on slot 2 */

Slog -i -s2 -eIPX /* Include all IPX log messages on slot
2 */

Slog -i -s2 -eIP -ffw /* Include all IF FAULT and WARNING
messages */

/* on slot 2 */

NOTE 1. When the log is saved, a template is printed to show how the filters
are set.

NOTE 2. The filters are active until they are modified or until the hardware is
reset.

NOTE 3. From the TI, "log -z" is used to display the current filter settings.

7. Log Crash Points

" 1-10

Sometimes. debugging problems that occur on-site infrequently becomes
a long and tedious affair. A crash dump tool was developed for saving a
slots complete memory image at the time that an application panics or
experiences a system fault.

The Log Crash Points feature was added to the system so that the
application would indirectly PANIC upon calling ~logO if the ~log

Guide Name

oi·4$.:~et.i;.~";" #>. ::.L-<t"l., ... ~~

Cnapter 1 Conceprs: System Event Log ~

event code matched a predefined filter. Previously, to get the same effect,
you'd have to recompile the code with the PANIC added.

Examples.

a. Set Log Crash Points

$ debug slcp 2 NBIP 8 /* Set a log crasr. poine o~ slot ~

/* for NBIP code 8 */

b. Clear Log Crash Points

S debug clcp 2 NBIP 8 /* Clear a log crash poine on slot 2 "/

/* for NBIP code 8 */

*j

c. List Log Crash Points

S deblfg llcp 2

Ox00004d08 NBIP

/* List log crash points on slot 2

Event : 8

NOTE 1. The debug system does not have to be loaded to use log crash
points.

NOTE 2. Log crash points are one-shots. They are cleared upon taking the
PANIC.

NOTE 3. 8 log crash points can be set per slot.

NOTE 4. The interface requires you to have the EDL files handy.

8. Choosing the appropriate event severity

*j

The following are the definitions of the severity levels that you can assign
to a log event:

FAULT Something is about to crash

Guide Name 1-11 •

Chapter 1 Concepts: System Event Log

• 1-12

WARNING - Recoverable error that should be flagged for the
user, i.e. something potentially dangerous occurred, but the
box stayed up e.g. link module not verified with diagnostic)

I~rO Normal operations that user should kno~ about
(e.g. Spanning Tree is up)

TRACE Events that happened as a resu~t of network
activity (e.g. DECnet adjacency up)

DEBUG Events that aid in debugging problems.

8.1 FAULT messages

Every entity must have an event of the following type defined in its edl
file:

xx_CRl>.SE
restart .•

FAUL'!'_MSG "Systerr. error, service attempting

where "xx" is the entity string.

When you decide to PANIC for any reason in your code, you must use
the macro CRASH(xx_CRASH). This causes the above FAULT event to
go into the log immediately before the crash, making it evidently clear
which application lost its cookies.

You may choose to log other events before crashing, to aid in debugging.
These must be DEBUG events. The only FAULT events in the log should
be xx_CRASH events, along with PANICs, bus errors, tag violations, etc.

8.2 WARNING messages

This is ajudgment call. If you detect something bad that doesn't cause a
FAULT, but that you feel is important enough to call the user's attention
to it, log a WARNING event. Examples from the current revision include
duplicate IP address detection, file system corruption, diagnostic failures,
unreadable config file, ethernet carrier loss.

Guide Name

r ~ ~ e e e c e ~ ~ • ~ ¢ ~ • e ~ ~ ~ t

Chapter 1 Concepts: System Event Log

8.3 INFO messages

I:t-.TFO events should be kept consistent across all applications, meaning
that DECnet coming up should look very similar to IPX coming up,
CSMACD lines register the same events as FDDI lines, etc. This goes
all the way down to exact wording of universal events. Obviously, not
every entity in the box fits the mold exactly, but please make an effort to
adhere the existing styles.

Another goal is to keep the number ofINFO events down to a manageable
leveL

Guidelines for logging application INFO events:

1. At the beginning of your init strip for your entity, log one of the

following events:

event_name INFO "Protocol initializing."

event_name INFO "Service initializing."

2. When your entity terminates for any reason (even if it is
bouncing right back up again), log one of the following events:

event_name INFO "Protocol terminating."

event_name INFO "Service terminating."

3. When your entity comes up on a given circuit, log the following
event:

name INFO "Interface <??> up on circuit <n>."

where: ?? is your identifier for the interface on that circuit, (e.g.
192.32.1.56 for IP. NIL (empty string) for LB) and "n" is a %d for circuit
number.

4. When your entity goes down on a given circuit, log the following
event:

name INFO "Interface <??> down on circuit <n>."

where: ?? is your identifier for the interface on that circuit, (e.g.
192.32.1.56 for !p. NIL (empty string) for LB) and n is a %d for circuit
number.

Guide Name 1-13 •

~ ~ ~ $ • ~ ~ , ~ • • ~

Chapter 1 Concepts: System Event Log

These should be the only INFO events you log. Again, not every
application fits the mold exactly, but this is the model.

8.4 DEBUG messages

There are no guidelines for DEBUG messages. Your DEBUG events are
your own, but remember that the memory reserved for logging events is
a limited resource. Don't go wild filling up the log with DEBUG events
and cause it to wrap, thereby losing potentially important infonnation.

Also, remember that although DEBUG events are not documented,
customers can see them. Maintain a professional tone and and provide
enough coherent infonnation so that a customer caQuse the infonnation
when talking with customer support (i.e., don't just dump a bunch of hex
numbers!).

9. Logging tips & miscellaneous info

• 1-14

Physical log sizes:

FRE, FRE2, ASN 64k

ACE25 , ACE32 , AFN 64k (Some older revs 32k)

&BE 64k

ARN 32k

AN > 2MB DRAM 32k

AN 2MB DRAM 16k

At many sites the log wraps quickly during certain failures. Much of this
wrapping is due to applications being too chatty.

Some customers who have free memory have requested that the log size
be increased to a size as large as 4 MB.

A common mistake made is to save the log too quickly after a failure.
Unless the System Event Logger gate is up, the log cannot be retrieved
from that slot.

Guide Name

C e * ~ • ceo e ~ • ~ ~ e e e c' ~

Chapter 1 Concepts: System Event Log

The wallclock time kept between slots is not totally in sync. When
following an event that crosses slots it is possible that for the log too show
them out of order absolute time wise.

Guide Name 1-15 '

