
88#7 PROGRAMMER'S MANUAL

November 1990
Version 2.0

PREFACE

This manual is intended to provide a programmer's guide to the SS#? Monitor/Simulation
programs. General programming information is provided in the Programmer's Reference Manual.
Information contained in this manual Is machine independent. Refer to the appropriate Protocol
Set Reference Manual for a list of valid tokens which can be used in test scripts.

This manual is not intended to provide basic user instruction, but rather addresses the issues of
writing test programs using the Interactive Test Language (ITL). Refer to the SS#? Monitor and
Emulation User Manuals for instructions to load and operate the software. Refer to the machine
specific User Manual for a quick reference to the basic operation of the protocol tester.

IDACOM reserves the right to make any required changes in this manual without prior notice, and
the user should contact IDACOM to determine if any changes have been made. No part of this
manual may be photocopied, reproduced, or translated without the prior written consent of
IDACOM.

IDACOM makes no warranty of any kind with regard to this material, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose.

Copyright© Hewlett-Packard Company 1989, 1990

P/N IDAC-601238

IDACOM
A division of Hewlett-Packard

4211 - 95 Street
Edmonton, Alberta
Canada T6E 5R6
Phone: (403) 462-4545
Fax: (403) 462-4869

TABLE OF CONTENTS

TABLE OF CONTENTS

PREFACE

1 INTRODUCTION

2 MONITOR ARCHITECTURE .

2.1

2.2

2.3

Live Data

Playback
Playback Control .

Simultaneous Live Data and Playback

3 MONITOR CONFIGURATION

3.1

3.2

3.3

3.4

Level 1 .

Level 2 .

Configuration Storage

Protocol Set Selection

4 CAPTURE RAM

5

6

4.1

4.2

Capturing to RAM

Transferring from RAM
To Disk .
To Printer

DISK RECORDING

DISPLAY FORMAT

7 MESSAGE DECODE

7.1 Tokens
Constructed Tokens

8 ROUTING LABELS

IDACOM

v
November 1990

1-1

2-1

2-1

2-2
2-3

2-4

3-1

3-1

3-3

3-4

3-5

4-1

4-1

4-2
4-3
4-4

5-1

6-1

7-1

7-2
7-5

8-1

SS#7 Programmer's Manual

vi
November 1990

TABLE OF CONTENTS ccontinuedJ

9 FILTERS

9.1

9.2

Filter Activation

Filter Conditions

10 TRIGGERS

10.1 Trigger Control .

10.2 Trigger Conditions
Message and Parameter Triggers
Other Triggers

10.3 Trigger Actions .

10.4 Call Tracing

TABLE OF CONTENTS

9-1

9-1

9-2

10-1

10-1

10-2
10-3
10-6

10-6

10-7

11 LEVEL 1 DECODER 11-1

12 SIMULATION ARCHITECTURE

12.1 Live Data .

12.2 Playback .

12.3 Simultaneous Live Data and Playback

13 SIMULATION CONFIGURATION

13.1 Level 1 .

13.2 Level 2 .

13.3 Configuration Storage

13.4 Protocol Set Selection

14 LEVEL 2 SIMULATION

14.1 Sequence Numbering .

14.2 Send Commands .

15 TEST MANAGER . . .

15.1 ITL Constructs

SS#7 Programmer's Manual

12-1

12-1

12-2

12-3

13-1

13-1

13-4

13-8

13-8

14-1

14-1

14-1

15-1

15-1

IDACOM

TABLE OF CONTENTS vii
November 1990

TABLE OF CONTENTS [continued]

15 TEST MANAGER [continued]

15.2 Event Recognition
Level 1 .. .
Level 2 .. .
Other Events

16 TEST SCRIPTS . .

16.1 LINK._UP.F

16.2 COO_CCITT.F.

APPENDICES

A CODING CONVENTIONS

B

c

D

A.1

A.2

A.3

A.4

A.5

A.6

Stack Comments .

Stack Comment Abbreviations

Program Comments

Test Manager Constructs .

Spacing and Indentation Guidelines

Colon Definitions

ASCII/EBCDIC/HEX CONVERSION TABLE

COMMAND CROSS REFERENCE LIST

SAMPLE CONFIGURATION FILE

INDEX

IDACOM

15-3
15-3
15-4
15-6

16-1

16-1

16-6

A-1

A-1

A-2

A-2

A-3

A-3

A-4

B-1

C-1

D-1

SS#7 Programmer's Manual

viii
November 1990

1-1
2-1
2-2
2-3
3-1
3-2
4-1
5-1
6-1
12-1
12-2
12-3
13-1
13-2

LIST OF FIGURES

Sample Stack Comment
SS#? Monitor Data Flow Diagram - Live Data
SS#? Monitor Data Flow Diagram - Offline Processing
SS#? Monitor Data Flow Diagram - Freeze Mode
Level 1 Monitor Configuration Menu
Level 2 Monitor Configuration Menu
SS#? Data Flow Diagram - Capture to RAM . . .
SS#? Data Flow Diagram - Recording to Disk . .
Display Format Menu
SS#? Simulation Data Flow Diagram - Live Data
SS#? Simulation Data Flow Diagram - Offline Processing
SS#? Simulation Data Flow Diagram - Freeze Mode .
Level 1 Simulation Configuration Menu
Level 2 Simulation Configuration Menu

SS#7 Programmer's Manual

TABLE OF CONTENTS

1-1
2-1
2-2
2-4
3-1
3-3
4-1
5-1
6-1

12-1
12-2
12-3
13-1
13-4

IDACOM

TABLE OF CONTENTS

6-1
6-2
6-3
7-1
13-1
A-1

LIST OF TABLES

Functional Part Tokens
Detail Formats and Tokens
Dual Window Commands
Mapping Port Identifiers to Application Processors .
Simulation Timers
ITL Symbols .

IDACOM

ix
November 1990

6-2
6-3
6-4
7-1

13-7
A-2

SS#7 Programmer's Manual

INTRODUCTION 1-1
November 1990

1
INTRODUCTION

The SS#? Monitor/Simulation is implemented as a layered set of protocol specifications. A
partial or complete protocol set can be assembled by loading the appropriate national or
international specification.

The SS#? Monitor is not a state-driven monitor, i.e. it does not have knowledge of expected
events. Rather, the monitor decodes the data and reports information on received events. Filters,
triggers, RAM capture, and disk recording are also available.

The SS#? Simulation provides additional tools necessary to build and transmit SS#? messages
on a transmit channel. All monitor functions are available for the receive channel.

All user test scripts are written in the ITL language. Test programs are made up of sequences of
ITL commands or 'words' which exchange data and parameters via a Last In First Out (LIFO)
stack. All commands consume zero or more parameters from the stack (input) and/or leave
results on the stack (output). These commands have a stack effect comment shown beside the
definition of the command to define its input and output parameters.

Input
Parameters

Output
Parameters

(Par1 \ Par2 Par3 \ Par4 \ Par5)

t i t
Item on top of stack Item on top of stack

Input/Output Separator

Figure 1-1 Sample Stack Comment

~NOTE
See Appendix B for further explanation of stack parameters.

ID ACOM SS#7 Programmer's Manual

MONITOR ARCHITECTURE 2-1
November 1990

2
MONITOR ARCHITECTURE

The SS#? Monitor program monitors live data, saves data to capture RAM or disk, and displays
data in a number of different formats. Data can be passed through filters which limit the
displayed, captured, recorded, or test manager data. Triggers perform specific actions when a
specified event occurs.

2. 1 Live Data

The monitor application receives events from the interface or from the internal timer and
processes them as shown in Figure 2-1.

Decode

Interface

Internal Timers

"L?
RAM Filter Disk Filter Display Filter Test Manager

Filter

~ ~ ~ ~

• it OD
Capture RAM Disk CRT

Test
Manager

Figure 2-1 SS#7 Monitor Data Flow Diagram - Live Data

By default, the SS#? Monitor simultaneously captures data in the capture RAM buffer and
displays it on the screen in a short format report.

~ Display topic
Live Data function key

IDACOM SS#7 Programmer's Manual

2-2 MONITOR ARCHITECTURE
November 1990

MONITOR (--)
Selects the live data mode of operation. All incoming events are decoded and displayed in
real time.

2.2 Playback

Data can be examined in an offline mode using either the capture RAM or the disk file as the
data source.

• Disk

'--oe_c_od_e/~~~~~(~;·~~)

Test Manager
Filter

Test
Manager

Figure 2-2 SS#7 Monitor Data Flow Diagram - Offline Processing

~ FROM_CAPT HALT
Display topic
Playback RAM function key

~ FROM_DISK HALT PLAYBACK
Display topic
Playback Disk function key

HALT (--)
Selects the playback mode of operation. Data is retrieved from capture RAM or a disk file,
decoded, and displayed or printed. Capture to RAM is suspended in this mode.

FROM_CAPT (--)
Selects the capture buffer as the source for data transfer.

FROM_DISK (--)
Selects a disk file as the source for data transfer.

SS#7 Programmer's Manual IDACOM

MONITOR ARCHITECTURE

PLAYBACK (--)

2-3
November 1990

Opens a data recording file for playback. When used in the Command Window, the filename
can be specified as part of the command.

Example:
PLAYBACK DATAl

~NOTE
When PLAYBACK is used in a test script, the filename must be specified with =TITLE.

=TITLE (filename --)
Specifies the name of the file to open for disk recording or disk playback.

Example:
Obtain playback from disk.

FROM_DISK
HALT

Identify a disk file as data source)
Place the monitor in playback mode)

• DATA3• =TITLE
PLAYBACK

Create title for next data file to be opened
Playback data)

Playback Control

The following commands can be used to control display scrolling.

FORWARD or F (--)
Scrolls one line forward on the screen.

~ JJ. (Down arrow)

BACKWARD or B (--)
Scrolls one line backward on the screen.

~ rt (Up arrow)

SCRN_FWD or FF (--)
Scrolls one page forward on the screen.

~ CTRL JJ.

SCRN_BACK or BB (--)
Scrolls one page backward on the screen.

~ CTRL rt

TOP (--)
Positions the display at the start of the playback source.

~ CTRL SHIFT rt

IDACOM SS#? Programmer's Manual

2-4 MONITOR ARCHITECTURE
November 1990

BOTTOM (--)
Positions the display at the end of the playback source.

~ CTRL SHIFT U

2.3 Simultaneous Live Data and Playback

Live data can be recorded to disk while playing back data from capture RAM.

Interface

Test Manager
Filter

Disk Filter

Test
Manager

Disk

::·:·:·:·:-:·:·:·:·:·:·:·:·:·:·:7 l::::.i::..::.:<J 8 8 /j]f//f/J,_:· ---1>• Decode ---..--_. Triggers

Capture RAM

~/qp
Dlop~y~
Filter ~

Printer

Figure 2-3 SS#7 Monitor Data Flow Diagram - Freeze Mode

~ RECORD FROM_CAPT FREEZE
Capture topic
Record to Disk function key
Display topic
Playback RAM function key

FREEZE (--)
Enables data to be recorded to disk while data from capture RAM is played back.

SS#7 Programmer's Manual IDACOM

MONITOR CONFIGURATION 3-1
November 1990

3
MONITOR CONFIGURATION

This section describes the commands associated with each item on the Level 1 and Level 2
Configuration Menus and the Protocol Set Selection Menu.

3.1 Level 1

This section describes the commands to configure the physical interface and route data to the
appropriate application processor or output device for WAN (wide area network) or PRA (primary
rate access).

The Primary Rate interface is configured on the Home processor prior to loading the application.

The WAN interface is configured on the application processor after loading and switching to the
SS#? Monitor.

Level I Conf1gurat.1on Menu

Signelling Dete Link Level

~ lnterfece Type

Bit Rete
BOF T1MesteMp

RS232C/V.28
64000

OFF

Figure 3-1 Level 1 Monitor Configuration Menu

Signalling Data Link Level
~ Interface Type
IF=V28 (--)

Selects the V.28/RS-232C connector (default) and electrically isolates the other connectors on
the port.

~ RS232C/V.28 function key

IF=V11 (--)
Selects the V.11 connector and electrically isolates the other connectors on the port.

~ RS422/V. 11 function key

IDACOM SS#7 Programmer's Manual

3-2 MONITOR CONFIGURATION
November 1990

IF:V35 (-- }
Selects the V.35 connector and electrically Isolates the other connectors on the port.

~ V.35 function key

IF:V36 (-- }
Selects the V.36 connector and electrically isolates the other connectors on the port.

~ RS449/V.36 function key

-7 Bit Rate 0-NAN and PRA Interface}
The interface speed is measured, In bits per second, directly from the physical line.

SPEED@ (-- speed }
Returns the current interface speed.

~ Measure Speed function key

-7 BOF Timestamp 0-NAN and PRA Interface}
BOF-TSTAMP! (flag -- }

Specifies whether beginning of frame timestamps are recorded on incoming messages.

~ ON/OFF function key

The following commands control the flow of data to the application program.

OFF-LINE (-- }
Turns the receivers off.

~ Monitor topic
Online function key (not highlighted}

ON-LINE (-- }
Turns the receivers on.

~ Monitor topic
Online function key (highlighted}

SS#7 Programmer's Manual IDACOM

MONITOR CONFIGURATION

3.2 Level 2

3-3
November 1990

This section describes the commands and variables to configure level 2 of the SS#7 Monitor.

~ SU CoMpression

Level 2 Conf1gurat1on Menu

Signalling Link Level
MAX

SUERM Function
T Threshold

ON
64

Octet Counting Mode AUTO
Max1MUM SIF 272

Figure 3-2 Level 2 Monitor Configuration Menu

Signalling Link Level
~ SU Compression
COMPRESS-SU! (value --)

Sets the compression ratio of identical FISU's or LSSU's on live data to a specified value.
The SU_MAX value sets the maximum compression at 99,999,999 (default). The OFF value sets
the compression to off.

~ Modify Count/MAX Compression/OFF function key

COMPRESS-SU@ (-- value)
Returns the current SU compression ratio.

~SU ERM Function
SUERM-FUNCTION! (flag --)

Selects whether the SUERM (signal unit error rate monitor) will be active (default Is on). When
turned on, the error counter is reset to zero.

~ ON/OFF function key

SUERM-FUNCTION@ (-- flag)
Returns true if the SUERM is active.

~ T Threshold
SUERM-THRESH! (value --)

Sets the SUERM threshold for determining a link failure indication. Valid values are 1 through
65535 (default is 64).

~ Modify Value function key

SUERM-THRESH@ (-- value)
Returns the current value of the SUERM threshold.

IDACOM SS#7 Programmer's Manual

3-4 MONITOR CONFIGURATION
November 1990

SUERM-COUNT! (value --)
Sets the SUERM error counter.

SUERM-COUNT@ (-- value)
Returns the current value of the SUERM error counter.

-7 Octet Counting Mode
OCTET-MODE! (mode --)

Selects the octet counting mode used by the monitor to ON, OFF, or AUTO (default).

~ ON/OFF/AUTO function key

OCTET-MODE@ (--mode)
Returns the current state of the octet counting function.

~Maximum SIF
SIF-MAXSIZE! (value --)

Specifies the maximum SIF (signalling information field) size to turn octet counting off when
the octet counting mode is set to AUTO. Valid values are 1 through 999 (default is 272).

~ Modify SIF function key

SIF-MAXSIZE@ (-- value)
Returns the current value of the maximum SIF size.

3.3 Configuration Storage

The current settings of the level 1 and level 2 monitor configurations can be saved to disk for
future retrieval.

SAVE_CONFIG (filename --)
Saves the current configuration.

Example:
Save the current configurations in a file named 'Config' on floppy drive ORO.
• DRO:Config• SAVE_CONFIG

~ Monitor topic
Save Config function key

LOAD_CONFIG (filename --)
Loads a previously saved configuration.

~ Monitor topic
Load Config function key

SS#7 Programmer's Manual IDACOM

MONITOR CONFIGURATION

3.4 Protocol Set Selection

3-5
November 1990

The decoder can be configured to use a particular set of protocol files. Refer to the appropriate
Protocol Set Reference Manual for valid filenames.

LOAD_PROTOCOL_SET (filenames\number --)
Loads the specified protocol file(s). In addition, playback from a disk file is stopped and the
display format, trigger, filter, and routing label settings are restored to their default
configurations.

Example:
Load the CCITT TUP protocol with supporting lower layers .
• CCITT_TUP88.T. ·ccITT_NET88.T. ·ccrTT_LINK88.T. 3 LOAD_PROTOCOL_SET

~ Monitor topic
Protocol Set Selection Menu
~ CCITT_TUPBB

Select function key
~ CCITT_NETBB

Select function key
~ CCITT_LINKBB

Select function key
Load Protocols function key

~NOTE
LOAD_PROTOCOLSET should be used before loading test scripts. When a protocol set is
loaded, test scripts are cleared.

W WARNING
Colon definitions which compile message tokens will crash if the protocol set is changed after
creating the colon definition.

SELECT_VAR (protocol set --)
Selects the specified protocol set.

~ Protocol Variance Menu
Select function key

LOAD_ALL (--)
Loads all functional parts of the protocol set selected with SELECT _VAR.

~ Protocol Set Selection Menu
All function key
Load function key

Example:
Load all available CCITT 1988 functional parts .
• CCITT_88. SELECT_VAR (Selects the CCITT 1988 protocol set)
LOAD_ALL (Loads all functional parts)

IDACOM SS#7 Programmer's Manual

CAPTURE RAM 4-1
November 1990

4
CAPTURE RAM

This section describes the data flow diagram for capture to RAM and lists the commands
available for test scripts. Data stored in either capture RAM or disk can be played back as
described in Section 2.2. Data stored in capture RAM can be transferred to disk.

RAM Filter
Seti.p

Capture
Seti.p

Interface

~/
~i----~Mfff!J

RAM Filters t:i/iJi!iifl
Capture RAM

Figure 4-1 SS#7 Data Flow Diagram - Capture to RAM

4.1 Capturing to RAM

CAPT _ON (--)
Saves live data in capture RAM (default).

~ Capture topic
Capture to RAM function key (highlighted)

CAPT _OFF (--)
Live data is not saved in capture RAM.

~ Capture topic
Capture to RAM function key (not highlighted)

CAPT _WRAP (--)
Initializes capture RAM so that new data overwrites (default) old data after the capture buffer
is filled (endless loop recording).

~ Capture topic
Recording Menu
~ When Buffer Full

WRAP function key

IDACOM SS#7 Programmer's Manual

4-2
November 1990

CAPT _FULL (--)
Initializes capture RAM so that capturing stops when the buffer is full.

~ Capture topic
Recording Menu
~ When Buffer Full

STOP function key

VJ WARNING
CAPT_WRAP and CAPT_FULL erase all data in capture RAM.

CLEAR_CAPT (--)
Erases all data currently in capture RAM.

~ Capture topic
Clear function key

4.2 Transferring from RAM

CAPTURE RAM

Data can be transferred from RAM to disk, and printed as it is played back. To transfer data to
disk, a data recording must be opened using the RECORD and CTOD_ON commands prior to
using TRANSFER. To transfer data from capture RAM to the printer, the PRINT _ON command
must first be issued. The data being transferred is displayed on the screen.

TRANSFER (--)
Transfers data from the selected data source.

~ Capture topic
Save RAM to Disk function key

QUIT_TRA (--)
Abruptly terminates the transfer of data from the selected data source.

TRA_ALL (--)
Transfers the entire contents of capture RAM (default) or disk when the TRANSFER command
is used.

~ Capture topic
Save RAM to Disk function key
All function key

TRA_ST ART (--)
Selects the starting block for transfer and is used with TRA_END when a partial transfer is
desired. Use the cursor keys to locate the desired starting block prior to calling TRA_START.
TRA_START selects the last scrolled block as the initial starting block for transfer.

~ Capture topic
Save RAM to Disk function key
Set Start function key

SS#7 Programmer's Manual IDACOM

CAPTURE RAM 4-3
November 1990

TRA_END (--)
Selects the final block for transfer and is used with TRA_ST ART when transfer is desired. Use
the cursor keys to locate the desired final block prior to calling TRA_END. TRA_END selects
the last scrolled block as the final starting block for transfer.

~ Capture topic
Save RAM to Disk function key
Set End function key

SEE_ TRA (--)
Displays the port identifier and block number for the initial and final blocks selected for
transfer in the Command and Test Script Windows.

Example:
Open a data file with the filename 'DATA3' and transfer all data from capture RAM to disk. After
the transfer is complete, turn off data recording.

FROM_CAPT
HALT

H DATA3H =TITLE

RECORD
TRA_ALL
CTOD ON
TRANSFER
DISK_OFF

To Disk

CTOD_ON (--)

Designate capture RAM as data source)
Enter playback mode)
Assign filename DATA3
Open data recording)
Select all blocks for transfer
Enable capture transfer to disk)
Transfer data from capture to disk
Turn off data recording)

Enables transfer of data from capture RAM to disk when data source is playback RAM and a
data recording file is open.

CTOD_OFF (--)
Disables transfer of data from capture RAM to disk (default) when data source is playback
RAM.

IDACOM SS#7 Programmer's Manual

4-4 CAPTURE RAM
November 1990

To Printer

PRINT _ON (--)
Prints data lines as displayed during playback from either capture RAM or disk. No printout is
made when the source is live data. The printer must be configured from the Printer Port
Setup Menu under the Setup topic on the Home processor.

~ Print topic
Print On function key

PRINT _OFF (--)
Data is not printed during playback (default).

~ Print topic
Print Off function key

Example:
Transfer all data from capture RAM to the printer.

FROM_ CAPT (Designate capture RAM as data source)
HALT (Enter playback mode)

PRINT_ON (Enable printing)

TRA ALL (Transfer all)

TRANSFER (Transfer data to printer

SS#7 Programmer's Manual IDACOM

DISK RECORDING 5-1
November 1990

5
DISK RECORDING

Live data from the interface can be recorded to either a floppy or hard disk. Data stored in either
capture RAM or disk can be played back as described in Section 2.2. Data stored in capture
RAM can be transferred to disk as described in Section 4.2.

Disk Recording
Setup

\
Disk Filter

Seti£

I
~~->·

Disk Filters Disk

t •

... .

Interface

Capture RAM

Figure 5-1 SS#7 Data Flow Diagram - Recording to Disk

DISK_WRAP (--)
Selects disk recording overwrite.

~ Capture topic
Recording Menu
~ When File Full

WRAP function key

DISK_FULL (--)
Turns off disk recording overwrite (default). Recording continues until the data recording file
is full.

~ Capture topic
Recording Menu
~ When File Full

STOP function key

VJ WARNING
DISK_WRAP and DISK_FULL must be called prior to opening a recording with the RECORD
command. If called while recording is in process, the status of the disk recording overwrite for
this recording session will not change.

IDACOM SS#7 Programmer's Manual

5-2 DISK RECORDING
November 1990

RECORD (--)
Opens a data recording file. When used in the Command Window, the filename can be
specified as part of the command.

Example:
RECORD DATAl

~ Capture topic
Record to Disk function key (highlighted)

~NOTE
When RECORD is used in a test script, the filename must be specified with =TITLE.
Because of the relatively long time required to open a disk file (especially on a floppy
drive), RECORD should not be used within time critical portions of a test script.

Trace report lines are included in the data file when an application requests start and end
recording. The information in these traces identifies the traffic type and application program
used while the data was being recorded.

Example:
Recording Start SS#7 Mon
V2.0-2.0

Recording End SS#7 Mon
V2.0-2.0

DISK_OFF (--)

WAN Port 1 RS232-C
PTSOO - 19 SN# 01-261

Wan Port 1 RS232-C
PTSOO - 19 SN# 01-261

Live data is not recorded to disk (default). The current disk recording is closed.

~ Capture topic
Record to Disk function key (not highlighted)

DIS_REC (--)
Momentarily suspends disk recording. The data recording file remains open but no data is
saved to disk.

~ Capture topic
Record to Disk function key (highlighted)
Suspend Recording function key (highlighted)

EN B_REC (--)
Enables data recording. The data recording file remains open and live data Is recorded to
disk.

~ Capture topic
Record to Disk function key (highlighted)
Suspend Recording function key (not highlighted)

88#7 Programmer's Manual IDACOM

DISK RECORDING 5-3
November 1990

Data from two or more channels can be recorded to the same file. The data file must be opened
from each application and the filename, as specified by =TITLE, must be the same for each
application. When the RECORD command is issued, data from that application's channel is
included in the file.

The DISK...OFF command must be executed from each application to end that data recording.
The file is closed when the last DISK...OFF command is executed.

IDACOM SS#7 Programmer's Manual

DISPLAY FORMAT 6-1
November 1990

6
DISPLAY FORMAT

The 88#7 Monitor and Simulation applications can display live data or data played back from
capture RAM or a disk recording in a variety of formats. This section describes the commands to
select the display format.

Display Format Menu

~ Displey Forl'let COMPLETE Duel Window OFF

Heeder Trece Displey Forl'let SHORT
Link MNEMONIC
Network MNEMONIC Til'lestel'lp OFF

Deteil
Network COMPLETE Cherecter Set
SCCP COMPLETE
TUP COMPLETE Throughput Greph OFF
ISLIP COMPLETE Short Intervel Csec) 10

TCAP COMPLETE Long Intervel Csec) 600

Other HEX MexiMUM Scele 00 100

Figure 6-1 Display Format Menu

~ Display Format
The default display is short format. Header and detail control formats can only be modified when
Display Format is set to COMPLETE.

REP_ON (--)
Turns on data display (default).

~ OFF function key (not highlighted)

REP _OFF (--)
Turns off data display.

~ OFF function key (highlighted)

REP _SHORT (--)
Displays data in a condensed report (default).

~ SHORT function key

IDACOM SS#7 Programmer's Manual

6-2 DISPLAY FORMAT
November 1 990

REP _COMP (--)
Displays data In a comprehensive report.

~ COMPLETE function key

~NOTE
In complete format, protocol specific formats can be modified with the HEADER_FORMAT
and DETAILFORMATcommands.

REP _CHAR (--)
Displays data In the currently selected character set.

~ CHAR function key

REP_HEX
Displays data in hexadecimal format.

~ HEX function key

REP_ TRACE (--)
Displays only trace statements.

~ TRACE function key

REP _SPLIT (--)
Displays data in short format with a split screen display.

~ SPLIT function key

Tokens referring to entire functional parts (eg. <SU>, <MSU>, etc.) can be used with the
HEADEFLFORMAT and DETAILFORMAT commands to change display formats. The following
table shows the relationship between these commands and each functional part.

Link <SU> x
Network <MSU> x x
SCCP <SCCP> x
TUP <TUP> x
ISUP <ISUP> x
TCAP/OMAP <TCAP> x

Table 6-1 Functional Part Tokens

SS#7 Programmer's Manual IDACOM

DISPLAY FORMAT

Header
Selects the format for the first display line.

7Link
7 Network
HEADER_FORMAT (token\ format --)

Selects the header format for the specified protocol level.

6-3
November 1990

Valid tokens are <SU> for link level, or <MSU> for network level. The format can be any of
the following: #OFF, #HEX, #MNEM, or #TEXT.

~ OFF/HEX/MNEMONIC/TEXT function keys

Detail
Selects the format for the second and subsequent display lines.

7 Network
7SCCP
7TUP
7/SUP
7TCAP
DETAIL_FORMAT (token \format --)

Selects the detail format for the specified protocol level. Valid formats and tokens are listed
in the following table.

Network <MSU> v v v v

SCCP <SCCP> v v v v v v

ISUP <ISUP> v v v v v v

TUP <TUP> v v v v v

TCAP <TCAP> v v v v v

Table 6-2 Detail Formats and Tokens

7 Other
Selects the format for undecoded protocol information.

OTHER_FORMAT (format --)
Selects the display format for undecoded protocol information. Valid values are #OFF, #HEX,
or #CHAR.

~ OFF/HEX/CHAR function keys

IDACOM SS#? Programmer's Manual

6-4 DISPLAY FORMAT
November 1990

7 Dual Window
If two applications have been loaded, the screen can be divided horizontally to display data from
both applications. The current application is always displayed in the top window.

FULL (--)
Uses the entire Data Display Window for the current application (default).

Dual window commands vary depending on the machine configuration. Table 6-3 shows the
relationship between machine configuration, application processors, and dual window
commands.

::::111111!:::;1111 trn:211m1.11::::m:: !::::::::1:111:~:~:r11111:::~i::1!::;:::::::::=
WAN/WAN DUAL1+2 AP #1 AP #2

BRA/WAN DUAL1+2 AP #1 AP #2

DUAL1+7 AP #1 AP #3

DUAL2+7 AP #2 AP #3

PRA DUAL3+4 AP #1 AP #2

PRA/BRA/WAN DUAL1+2 AP #1 AP #2

DUAL1+3 AP #1 AP #4

DUAL1+4 AP #1 AP #5

DUAL1+7 AP #1 AP #3

DUAL2+3 AP #2 AP #4

DUAL2+4 AP #2 AP #5

DUAL2+7 AP #2 AP #3

DUAL3+4 AP #4 AP #5

DUAL3+7 AP #4 AP #3

DUAL4+7 AP #5 AP #3

BRA/BRA DUAL1+2 AP #1 AP #2

DUAL1+3 AP #1 AP #4

DUAL1+4 AP #1 AP #5

DUAL1+5 AP #1 AP #6

DUAL1+7 AP #1 AP #3

DUAL2+3 AP #2 AP #4

DUAL2+4 AP #2 AP #5

DUAL2+5 AP #2 AP #6

DUAL2+7 AP #2 AP #3

DUAL3+4 AP #4 AP #5

DUAL3+5 AP #4 AP #6

DUAL3+7 AP #4 AP #3

DUAL4+5 AP #5 AP #6

DUAL4+7 AP #5 AP #3

DUAL5+7 AP #6 AP #3

PRA/WAN DUAL1+3 AP #1 AP #2

DUAL1+4 AP #1 AP#3

DUAL3+4 AP #2 AP#3

Table 6-3 Dual Window Commands

SS#7 Programmer's Manual IDACOM

DISPLAY FORMAT

7 Trace Display Format
Selects the display format for trace statements.

TRACE_SHORT (-- }

6-5
November 1990

Displays the trace report on one line (short format} containing only user-defined text (default}.

~ SHORT function key

TRACE_COMP (-- }
Displays the trace report on two lines (complete format}. The block sequence numbers or
timestamps are displayed on the first line, and user-defined text on the second line.

~ COMPLETE function key

7 Timestamp
Timestamp reporting is available when the display format is not in split mode.

TIME_ON (-- }
Displays the start and end timestamps as minutes, seconds, and tenths of milliseconds.

~ MM:SS.ssss function key

TIME_OFF (-- }
Timestamps are not displayed (default}. Block sequence numbers are displayed for each
received frame or physical event.

~ OFF function key

TIME_DAY (-- }
Displays the start and end timestamps as days, hours, minutes, and seconds.

~ DD HH:MM:SS function key

7 Character Set
Selects the character set for data display.

CS:ASCll (-- }
Sets the character set for data display to ASCII.

~ ASCII function key

CS=EBCDIC (-- }
Sets the character set for data display to EBCDIC.

~ EBCDIC function key

CS=HEX (--}
Sets the character set for data display to hex (default}. Each character is composed of two
hexadecimal digits indicating the byte value of the character.

GfJ HEX function key

IDACOM SS#7 Programmer's Manual

6-6 DISPLAY FORMAT
November 1 990

CS:JIS8 (--)
Sets the character set for data display to JIS8.

Gfj JISB function key

7 Throughput Graph
The throughput rate can be calculated, displayed as a bar graph, and printed out. The SS#?
Monitor calculates throughput by totalling MSU bytes received, including one flag per MSU.

~NOTE
For accurate throughput measurement, the bit rate (line speed) must be set to match the
actual line speed.

TPR_ON (-- }
Calculates and displays the throughput rate as a bar graph.

Gfj DISPLAY function key

TPR_OFF (-- }
The throughput rate is not calculated or displayed (default}.

Gfj OFF function key

PRINT_ TPR (-- }
Calculates and displays the throughput rate as a bar graph, and prints the long term interval
measurements.

Gfj DISPLAY AND PRINT function key

7 Short Interval (sec)
Sets the short time interval, in seconds, for measuring, displaying, and printing the throughput
results.

SHORT-INTERVAL! (value -- }
Changes the current duration of the short interval (default is 1 O seconds}.

Gfj Modify Short Interval function key

7 Long Interval (sec)
Sets the long time interval, in seconds, for measuring, displaying, and printing the throughput
results.

LONG-INTERVAL! (value -- }
Changes the current duration of the long interval (default is 600 seconds}.

Gfj Modify Long Interval function key

SS#7 Programmer's Manual IDACOM

DISPLAY FORMAT

~ Maximum Scale (%)
Specifies the display size (percentage) of the throughput graph.

SCALE! (value --)

6-7
November 1990

Modifies the current value of the maximum scale (default is 100 percent).

~ Modify Maximum Scale function key

The followlng commands are used to select the display format for point codes and signalling link
selection Information.

RL_ TEXT (--)
Displays point codes in decimal format (default).

~ Labels topic
DECIMAL function key

RL_HEX (--)
Displays point codes in hexadecimal format.

~ Labels topic
HEX function key

IDACOM SS#7 Programmer's Manual

MESSAGE DECODE 7-1
November 1990

7
MESSAGE DECODE

The message decoder disassembles signal units into parts. The following variables are set each
time a signal unit (frame) Is received.

REC-POINTER (-- address)
Contains the memory address of the first byte of the received SU (i.e. backward
sequence/indicator byte).

Example:
Store the first two bytes of the received SU into a variable.
0 VARIABLE BSN-FSN
<FIB> ?RX_FRAME
IF

REC-POINTER @ W@ BSN-FSN
ENDIF

REC-LENGTH (-- address)
Contains the number of bytes in the received SU. This number does not include any flags or
CRC bytes.

PORT-ID@ (-- direction\port)
Returns the direction and port identifier for live or recorded data. Direction is dependent on
whether the application is in monitor or simulation mode:

:::::::e~rmJ,91:::::::: :::::::::'::::::::1en!~er:::::::::::=::::: =::::::::::=:::::1~me!~!:en:==:::::':::::·:.
O data stream 1 received data

1 data stream 2 transmitted data

The port identifier is dependent on the machine configuration:

]jjj]i!f!fj Main Main Main Main Main Main Main Main Main

AP#1 AP#1 AP#1 AP#1 AP#1 AP#1 AP#1

AP#2 AP#2 AP#2 AP#2 AP#2

AP#1 AP#2 AP#4 AP#4

AP#2 AP#3 AP#S AP#S

AP#6

AP#3 AP#3 AP#3

Table 7-1 Mapping Port Identifiers to Application Processors

IDACOM SS#7 Programmer's Manual

7-2 MESSAGE DECODE
November 1990

BLOCK-COUNT (-- address)
Contains the block sequence number for the frame. Every received frame is assigned a unique
sequence number. BLOCK-COUNT initially contains zero and is incremented by one each
time a frame is received.

<COPIES>@ (-- value)
Returns the number of copies of identical FISU or LSSU frames received when SU
compression is active. In this case, BLOCK-COUNT contains the first block sequence number
of the compressed group. For uncompressed SU's the value returned is 1.

START-TIME (-- address)
Contains the 48 bit timestamp for the start of signal unit or compressed frame groups.
START-TIME can be used with the GET_TSTAMP_MILLI or GET_TSTAMP_MICRO commands as
described in the Programmer's Reference Manual.

~NOTE
The start time is not valid unless BOF timestamps were on when receiving live data.

END-TIME (-- address)
Contains the 48 bit timestamp for the end of frame or compressed frame group.

7.1 Tokens

The SS#? Protocol contains unique words which can be used in ITL commands to reference
protocol related information. Each of these words return a single unique value and are referred
to as tokens. Tokens are identifiers for the basic lexical units of a protocol.

The SS#? tokens identify the following structures in the protocol:
• The entire signal unit
• Each protocol level or functional part
• Messages within each functional part
• Parameters within each message
• Fields within each parameter
• Value instances within each field

Where appropriate, tokens are different for optional and mandatory parameters. Structures
within the protocol are identified using more than one token when a single token is insufficient
to perform the required functions.

~NOTE
Although the TCAP nomenclature differs from other parts of SS#7, the concept of messages
and parameters applies equally to TCAP transactions, components, and information elements.

Tokens are named using acronyms surrounded by angular brackets (eg. <CDPA>). Spare bits are
often identified with a O appended to the associated token acronym (eg. <SLSO>).

SS#7 Programmer's Manual IDACOM

MESSAGE DECODE 7-3
November 1990

Specific instances of tokens are identified by separating the field name and the instance name
with an equal sign (eg. <SSN=ISUP> identifies the ISDN User Part instance of the Subsystem
Number field).

Token qualifications are identified by separating the qualifier and the token acronym with a
period (eg. <CDPA.SSN> identifies the Subsystem Number in the Called Party Address).

Specific instances and qualifications can also be combined (eg. <CDPA.SSN=ISUP> identifies
the ISDN User Part instance of the Subsystem Number within the Called Party Address).

No token is named In instances where the protocol element would provide only a small benefit
(eg. the token for the 1 bit odd/even indicator field in the SCCP Called Party Address is
<COPA.OE>. The addition of Instance names for each value of this field are not included).

Tokens can be used in SS#? test scripts to:
• change display formats for protocol related information;
• set and reset filter and trigger information;
• test for the presence and error status of fields within a received message;
• access field values within a received message; and
• access constants associated with fields within the protocol.

Refer to the appropriate Protocol Set Reference Manual for a list of usage symbols and valid
tokens.

'\fJ WARNING
Colon definitions which compile message tokens will crash if the protocol set is changed after
creating the colon definition.

For decoding, tokens generally fall into one of two categories:
• Tokens refer to a protocol element with a value extracted by the message decoder.

These tokens are identified with either the '?' or '@' usage symbols. When identified with
'?' or'@', the <>L@ command returns the length (in bits) of the element. When identified
with '?', the <>@and <>@_ALL commands return the address of the extracted
information's location. When identified with '@', the <>@and <>@_ALL commands return
the value of a 32 bit (or less) fixed length protocol element.

• Tokens refer to an instance of a protocol element.
Tokens which are not identified with '?' or'@', can be used with the <>#command to
return the value of the instance. The '#' usage symbol marks an exception (i.e. the token
can be used with commands from both categories).

<># (token -- value)
Returns a constant identifying the bit mask used by the decoder to detect a token (eg. the bit
mask for <COA> is 0010 which corresponds to the decimal value 2).

Example:
Send an LSSU message of type SIO with no error.
CRC <SIO> <># SEND_LSSU

IDACOM SS#7 Programmer's Manual

7-4 MESSAGE DECODE
November 1990

<>@ (token -- [value]\flag)
Returns a value and a true flag if a valid value is received for the specified token. The flag is
used to ensure that the value is valid. A false flag is returned if the specified token is invalid
or not present in the received SU. For variable length tokens, or tokens exceeding 32 bits, the
value is the address where the token is located. In these cases, the command <>L@ can be
used to determine the token length.

Example 1:
Define the actions for each CHM message. The <CHM> token is identified with the '@' usage
symbol.

<CHM> <>@
IF

DOCASE
CASE <COO> <>#
CASE <COA> <>#

CASE <CBD> <>#
CASE <CBA> <> #

CASE DUP
ENDCASE

END IF

Example 2:

action 1
action 2

{ action 3
{ action 4

error action)

action on receipt of changeover message}
action on receipt of changeover
acknowledgement)
action on receipt of changeback
action on receipt of changeback
acknowledgement

Store the contents of the called party number address field into the DEST_STRING variable.
<CDPN.ADDI> is the token for the address field and is identified with the '?' usage symbol.

<CDPN.ADDI> <>@
IF

END IF

DEST_STRING
<CDPN.ADDI> <>L@ 8 I
CMOVE

<>@_ALL (token -- [value\ ... \value]\count)
Returns all values of the specified token and a count of the total number found. If no tokens
are found in the decoded frame, the count is 0. <>@_ALL is used where more than one
token can be present in a message (eg. TCAP components).

<>L@ (token -- length)
Returns the length, in bits, of the specified token.

SS#7 Programmer's Manual ID ACOM

MESSAGE DECODE

Constructed Tokens

7-5
November 1990

When more than one copy of a token is present in a message, tokens can be constructed using
the following set of commands.

<: value token [OF value token] :> (-- token)
Returns a constructed token.

Constructed tokens can be used when more than one copy of a token is present in a
message. A constructed token identifies the nth occurrence of the token, relative to the start
of a message or an embedded constructed token. Constructed tokens can be embedded to
any depth by separating each value/token pair with the OF command. The constructed token
can then be used as input to the <>@and <>L@ commands. If the nth occurrence cannot
be found, the result is O.

Examples:
<: 2 <INIGD> : >
<: 1 <INKID> OF 1 <RER> :>

IDACOM

Second occurrence of <INKID> invoke id)
First occurrence of <INKID> following first
Occurrence of <RER> - return error component)

SS#7 Programmer's Manual

ROUTING LABELS 8-1
November 1990

8
ROUTING LABELS

Up to ten routing labels can be configured for both triggers and filters. Routing labels can be
edited, stored, and retrieved from disk.

->PC (msp\isp\lsp -- point_code)
Converts the subfields of a point code into a single point code. The subfields are ordered as
most significant part to least significant part. The size of each subfield partition corresponds
to the partition display option under the Labels topic.

PC-> (point_code -- msp\isp\lsp)
Converts a single point code into individual subfields.

SET _OPC (maslLsubfields\poinLcode_subfields\label# --)
Sets the OPC (origination point code) of the specified label (1 through 10) according to the
point code subfields, and sets the label's mask according to the mask subfields. The mask
subfields are used to indicate which bits in the label are "don't care". Mask bits set to 1
imply "don't care".

Example (CCITT format):
Set the label 1 origination code for zone 2 (msp), network identifier 036 (isp), and a "don't
care" signalling point identifier (lsp).
0 0 7 2 36 0 1 SET_OPC

~ Labels topic
Routing Label Selection Menu
~an OPC Value

Set Point Code function key

SET _DPC (maslLsubfields\poinLcode_subfields\label# --)
Sets the DPC (destination point code) of the specified label (1 through 10) according to the
point code subfields, and sets the label's mask according to the mask subfields.

~ Labels topic
Routing Label Selection Menu
~a DPC Value

Set Point Code function key

IDACOM SS#? Programmer's Manual

8-2 ROUTING LABELS
November 1990

SET _SLS (maslLvalue\SLS_value\label# --)
Sets the SLS (signalling link selection) and the mask of the specified label (1 through 10).

Example:
Set the SLS of label 3 to binary value 01111 (in ANSI format) with the most significant bit set
to "don't care".

OblOOOO ObOllll 3 SET_SLS

~ Labels topic
Routing Label Selection Menu
7 an SLS Value

Set SLS function key

~NOTE
The menu limits "don't care" values to a single field whereas the previous commands allow
"don't care" specifications on each bit. If any bits of a field are set to "don't care", the entire
field will be displayed with x's.

SAVE_LABELS (filename --)
Saves the current set of labels into the specified file.

~ Labels topic
Save Routing Labels function key

Example:
Save the current set of labels in a file named 'Labels1' on disk drive WD1.

" WDl:Labelsl" SAVE_LABELS

LOAD_LABELS (filename --)
Loads the contents of the specified file into the current set of labels.

~ Labels topic
Load Routing Labels function key

RESET_ROUTING_LABELS (--)
Resets all routing label fields to o.

SS#7 Programmer's Manual IDACOM

FILTERS 9-1
November 1990

9
FILTERS

Filters provide the capability of passing or blocking specific events from the display, capture
RAM, disk recording, or test manager. These four filters act independently. This section
describes the commands used to pass or block individual events, and activate or deactivate each
of the four filters. When used with triggers, filters can be used to trace a call (see Section 10.4).

9.1 Filter Activation

Each filter can be activated or deactivated (default). When a filter is deactivated, the pass or
block settings for individual events are ignored so that all events are passed. When a filter is
activated, any previous settings are in effect.

ACTIVATE_REPORT (--)
Activates the display (report) filter.

~ Filters topic
Activate Display Filter function key (highlighted)

DEACTIVATE_REPORT (--)
Deactivates the display filter.

~ Filters topic
Activate Display Filter function key (not highlighted)

ACTIVATE_CAPTURE (--)
Activates the capture RAM filter.

~ Filters topic
Activate RAM Filter function key (highlighted)

DEACTIVATE_CAPTURE (--)
Deactivates the capture RAM filter.

~ Filters topic
Activate RAM Filter function key (not highlighted)

ACTIVATE_DISK (--)
Activates the disk filter.

~ Fiiters topic
Activate Disk Filter function key (highlighted)

IDACOM SS#7 Programmer's Manual

9-2
November 1 990

DEACTIVATE_DISK (--)
Deactivates the disk filter.

~ Filters topic
Activate Disk Filter function key (not highlighted)

ACTIVATE_ TEST (--)
Activates the test manager filter.

~ Filters topic
Activate Test Manager function key (highlighted)

DEACTIVATE_TEST (--)
Deactivates the test manager filter.

~ Filters topic
Activate Test Manager function key (not highlighted)

~NOTE
The test manager filters reduce the processing duration of test scripts.

9.2 Filter Conditions

FILTERS

Filter conditions are set using a common set of commands for display, capture RAM, disk, and
test manager. A filter must be selected before the conditions are specified.

R_FIL TER (--)
Selects the display (report) filter.

C_FIL TER (--)
Selects the capture RAM filter.

D_FIL TER (--)
Selects the disk filter.

T _FILTER (--)
Selects the test manager filter.

The following commands are used to pass/block messages and parameters in the currently
selected filter by identifying specific tokens. Refer to the appropriate Protocol Set Reference
Manual for a list of usage symbols and valid tokens.

Tokens identified with a 'V' usage symbol and:
• a '?' (eg. variable length fields) can be used with the F _STRING command.
• a '@' can be used with the F _VALUE command. Tokens which are used with fields

formatted with point codes can also be used with the F _PC_VALUE command.

SS#7 Programmer's Manual IDACOM

FILTERS 9-3
November 1990

Tokens identified with a 'G' can be used with the F+ALL and F-ALL commands. Tokens
identified with an 'F' can be used with the F+, F-, and F* commands.

~NOTE
In some cases, not all three of the F+, F-, and F" commands are relevant. In general,
parameter fields can be used with all of these commands, whereas message tokens and
parameter instance tokens cannot be used with F".

F+ (token --)
Passes the specified token.

F- (token --)
Blocks the specified token.

F* (token --)
Turns off the specified token.

F+ALL (token group --)
Passes all valid token values within the specified token group.

F-ALL (token group --)
Blocks all valid token values within the specified token group.

Example:
Set the display filter to block FISU's, all valid 1 byte LSSU's, and all SNMM's.

R_FILTER
<FISU> F­
<LSSU> F-ALL
<SNMM> F-

F _VALUE (mask\value\token --)
Sets the filter value for the specified token when the mask is O; sets the filter value to "don't
care" when the mask is -1.

Example:
Set the CIC (circuit identification code) filter value to "don't care".
-1 0 <CIC> F_VALUE

F _STRING (mask\string\token --)
Sets the filter string for the specified token when the mask is O; sets the filter string to "don't
care" when the mask is -1.

Example:
Set the digits filter in the SCCP called party address to 4624545.
0 x· 4624545• <COPA.ADDI> F_STRING

IDACOM SS#7 Programmer's Manual

9-4 FILTERS
November 1 990

F _PC_VALUE (mask sub fields\point code sub fields\token --)
Sets the filter value for point code formatted tokens. See Section 8 for point code formats.

Example:
Set the signalling point code filter in the SCCP called party address to 3-45-1.
0 0 0 3 45 1 <CDPA.SPC> F_PC_VALUE

F+ALL_OTHERS (--)
Passes all tokens in undecoded protocol levels.

F-ALL_OTHERS (--)
Blocks all tokens in undecoded protocol levels.

Complete levels of filtering can be reset to their initial state using the following commands.
Tokens used to identify protocol levels are listed in Table 6-2.

F _RESET (token --)
Resets all filter items in the specified protocol level.

F _RESET _ALL (--)
Resets all filters.

TF _RESET (token --)
Resets all triggers and filters in the specified protocol level.

TF _RESET _ALL (--)
Resets all triggers and filters.

~NOTE
TF_RESET and TF_RESET ...ALL do not require a trigger of filter to be initially selected.

These reset commands do not affect routing labels. Refer to the RESET_ROUTING_LABELS
command to reset labels to O; and TURN_OFF_LABELFIL TERS to turn off label filters.

Routing labels (1 through 10) can be filtered using the following commands.

F+PC (label# --)
Passes the specified routing label.

F-PC (label# --)
Blocks the specified routing label.

F*PC (label# --)
Turns off filtering (default) for the specified routing label.

SS#7 Programmer's Manual IDACOM

FILTERS

Example:

9-5
November 1990

For the display filter, block routing labels 2 and 3, and turn off filtering on routing label 7.

R FILTER
2 F-PC
3 F-PC
7 F*PC

TURN_OFF _LABEL_FIL TERS (--)
Turns off all routing label filters.

Example:
Turn off all routing label filters to the display.

R_FILTER
TURN_OFF_LABEL_FILTERS

Trace reports can be turned on (default) or off using the following commands.

RTRACE (flag --)
YES RTRACE turns the display trace reports on. NO RTRACE turns them off.

CTRACE (flag --)
YES CTRACE turns the RAM capture trace reports on. NO CTRACE turns them off.

DTRACE (flag --)
YES DTRACE turns the disk recording trace statements on. NO DTRACE turns them off.

IDACOM SS#7 Programmer's Manual

TRIGGERS 10-1
November 1990

10
TRIGGERS

Four independent triggers provide the capability of performing specific actions when a certain
event occurs. This section describes the commands to set the events and actions for each
trigger.

10.1 Trigger Control

TR1_0N (--)
Turns on trigger 1.

~ Triggers topic
Arm Trig #1 function key (highlighted)

TR2_0N (--)
Turns on trigger 2.

~ Triggers topic
Arm Trig #2 function key (highlighted)

TR3_0N (--)
Turns on trigger 3.

~ Triggers topic
Arm Trig #3 function key (highlighted)

TR4_0N (--)
Turns on trigger 4.

~ Triggers topic
Arm Trig #4 function key (highlighted)

TR1 _0FF (--)
Turns off trigger 1.

~ Triggers topic
Arm Trig #1 function key (not highlighted)

IDACOM SS#7 Programmer's Manual

10-2 TRIGGERS
November 1990

TR2_0FF (--)
Turns off trigger 2.

~ Triggers topic
Arm Trig #2 function key (not highlighted)

TR3_0FF (--)
Turns off trigger 3.

~ Triggers topic
Arm Trig #3 function key (not highlighted)

TR4_0FF (--)
Turns off trigger 4.

~ Triggers topic
Arm Trig #4 function key (not highlighted)

10.2 Trigger Conditions

A trigger must be selected before the conditions can be specified. Trigger conditions can be
specified for a specific event or any combination of events.

TR1 (--)
Selects trigger 1.

TR2 (--)
Selects trigger 2.

TR3 (--)
Selects trigger 3.

TR4 (--)
Selects trigger 4.

=RX (--)
Triggers on events from the RX interface direction.

~ Triggers topic
Trigger Conditions Menu
~ Trigger Direction

FROM RX function key

SS#7 Programmer's Manual IDACOM

TRIGGERS

:TX (--)
Triggers on events from the TX interface direction.

~ Triggers topic
Trigger Conditions Menu
~ Trigger Direction

FROM TX function key

=BOTH (--)
Triggers on events from both interface directions (default).

~ Triggers topic
Trigger Conditions Menu
~ Trigger Direction

FROM BOTH function key

:PLAYBACK(--)
Triggers on events from capture RAM or disk playback.

~ Triggers topic
Trigger Conditions Menu
~ Trigger Direction

FROM PLAYBACK function key

Message and Parameter Triggers

10-3
November 1990

The following commands are used to include/exclude messages and parameters in the currently
selected trigger by identifying specific tokens. Refer to the appropriate Protocol Set Reference
Manual for a list of usage symbols and valid tokens.

Tokens identified with a 'V' usage symbol and:
• a '?' (eg. variable length fields) can be used with the T _STRING command.
• and a'@' can be used with the T_VALUE command. Tokens which are used with fields

formatted with point codes can also be used with the T _PC_VALUE command.

Tokens identified with a 'G' can be used with the T +ALL and T-ALL commands. Tokens
identified with an 'F' can be used with the T + and T - commands.

T+ (token --)
Sets the specified trigger.

T- (token --)
Clears the specified trigger.

T +ALL (token_group --)
Sets all valid triggers within the specified token group.

T-ALL (token_group --)
Clears all valid triggers within the specified token group.

IDACOM SS#? Programmer's Manual

10-4 TRIGGERS
November 1990

T_VALUE (mask\value\token --)
Sets the trigger value for the specified token when the mask is O; sets the trigger value to
"don't care" when the mask is -1.

Example:
Set the CIC (circuit identification code) trigger value to "don't care".
-1 0 <CIC> T_VALUE

T _STRING (mask\strlng\token --)
Sets the trigger string for the specified token when the mask is O; sets the trigger string to
"don't care" when the mask Is -1.

Example:
Set the digits trigger in the SCCP called party address to 4624545.
0 x· 4624545• <COPA.ADDI> T_STRING.

T _PC_VALUE (mask sub fields\polnt code sub fields\token --)
Sets the trigger value for the point code formatted token. See Section 8 for point code
formats.

Example:
Set the signalling point code trigger In the SCCP called party address to 3-45-1.
0 0 0 3 45 1 <CDPA.SPC> T_PC_VALUE

T+ALL_OTHERS (--)
Sets all tokens in undecoded protocol levels.

T-ALL_OTHERS (--)
Clears all tokens in undecoded protocol levels.

Complete levels of triggers can be reset to their initial state using the following commands.
Tokens used to identify protocol levels are listed in Table 6-2.

T _RESET (token --)
Resets all trigger items In the specified protocol level.

T _RESET _ALL (--)
Resets all triggers.

TF _RESET (token --)
Resets all triggers and filters in the specified protocol level.

TF _RESET _ALL (--)
Resets all triggers and filters.

~NOTE
TF_RESET and TF_RESET...ALL do not require a trigger of filter to be initially selected.

These reset commands do not affect routing labels. Refer to the RESET_ROUTING_LABELS
command to reset labels to 0, and TURN_OFF_LABELTRIGGERS to turn off label triggers.

SS#7 Programmer's Manual IDACOM

TRIGGERS 10-5
November 1 990

Routing labels (1 through 10) can be triggered using the following commands.

T+PC (label# --)
Sets the trigger for the specified routing label.

T-PC (label# --)
Clears the trigger for the specified routing label.

TURN_OFF_LABEL_TRIGGERS (--)
Clears all routing label triggers.

Example:
Clear trigger 1 routing labels.
TRl
TURN_OFF_LABEL_TRIGGERS

A specific string of characters on the received message can be used as a trigger condition.

=STRING (string --)
Specifies the string to trigger on. The string must be defined by enclosing the text characters
in quotes or enclosing hex characters in quotes with a leading 'X' character. The maximum
string length is 64 characters. The trigger condition is an anchored match from the first
character in a received frame.

+STRING (--)
Sets the string trigger.

-STRING (--)
Clears the string trigger (default).

=MASK (string --)
Specifies the string mask. The string mask is used to specify "don't care" positions when
matching strings. Each byte of the compare string and the received frame is ANDed with the
corresponding byte of the string mask before they are compared.

Example:
Set the conditions for trigger 1 to execute when a frame with a length indicator of 60 is received.

TRl
X" 00003C" =MASK
X" 00003F" =STRING
+STRING

IDACOM

(check only length indicator bits)

88#7 Programmer's Manual

10-6
November 1 990

Other Triggers

+CAPT_FULL (--)
Sets the capture RAM trigger. The trigger is activated when the capture RAM is full.

-CAPT _FULL (--)
Clears the capture RAM trigger (default).

+DISK_FULL (--)
Sets the disk trigger. The trigger is activated when the disk recording file is full.

-DISK_FULL (--)
Clears the disk trigger (default).

=TIME (year\month\day\hour\minute --)

TRIGGERS

Specifies the time values for the time trigger. The trigger is activated when the specified
minute is reached.

+TIME (--)
Sets the time trigger.

-TIME (--)
Clears the time trigger (default).

10.3 Trigger Actions

Trigger actions are specified by assigning commands to DOER words with the MAKE command
(see the Programmer's Reference Manual for a complete description of DOER and MAKE). Each
trigger has an associated DOER word for the action to execute when a trigger event occurs.

TA1 (--)
Performs the actions for trigger #1.

Example:
Set the action for trigger 1 to sound an audible alarm and start capture to RAM.
MAKE TAl BEEP CAPT ON

TA2 (--)
Performs the actions for trigger #2.

TA3 (--)
Performs the actions for trigger #3.

SS#7 Programmer's Manual IDACOM

TRIGGERS

TA4 (--)
Performs the actions for trigger #4.

'\fj WARNING

10-7
November 1990

If a trigger is armed, the action code will be reset as specified on the Trigger Action Menu.
Ensure all trigger actions defined with the MAKE command are executed after the trigger is
armed.

The frame or event which causes the trigger action to execute can be highlighted in the Data
Display Window.

HIGHLIGHT (--)
Highlights the report in the Data Display Window.

HIGHLIGHT=RED (--)
Selects a red background for highlighting reports.

HIGHLIGHT=BLUE (--)
Selects a blue background for highlighting reports.

Example:
Set the action for trigger 2 to highlight the trigger event in blue.
MAKE TA2 HIGHLIGHT=BLUE HIGHLIGHT ;

10.4 Call Tracing

Triggers and filters in combination with the message decoder can be used for call tracing.

Example:
Use trigger and filter commands to set up and capture only ISUP messages related to a call to
Called Party Number 4624545.

Trigger 2 action will start capture of the first IAM (initial address message) with the correct called
party number (en-bloc sending) as well as all subsequent ISUP messages with the same CIC
(circuit identification code). Trigger 1 action will stop capture when the next IAM is received with
the same CIC. Since trigger 1 action is performed before trigger 2 action, if the next call on the
same CIC happens to contain the correct called party number, trigger 1 actions will be overridden
by trigger 2.

It is assumed that the trace monitor point is not between two STP's. If It Is, then trigger 2 action
can be enhanced to set trigger 1 and disk filter parameters on the correct OPC/DPC
combinations.

TRl T_RESET_ALL
<CICX> T+

IDACOM

switch control to trigger 1 and reset)
turn on CIC trigger)

SS#7 Programmer's Manual

10-8
November 1 990

TR2 T_RESET_ALL
<IAM> T+ <CDPN> T+
<CDPN.NPLAN> T+ALL
<CDPN.INAI=SN> T+
0 x· 4624545• <CDPN.ADDI> T_STRING

OFF-LINE
TR2_0N

MAKE TA2
<CIC> <>@
IF

TRl
D_FILTER
0 SWAP 2DUP
<CIC> T_VALUE
<CIC> F_VALUE
<IAM> T+
<ISUP> F+
• Capture started· W.NOTICE

END IF

TRl_ON

MAKE TAl
TRl
D_FILTER
<IAM> T­
<ISUP> F-

Capture stopped· W.NOTICE

D_FILTER
F_RESET_ALL
<FISU> F­
<LSSU> F­
<LSS2 > F­
<SNTM> F­
<SNMM> F­
F-ALL_OTHERS
<CIC> F+
<ISUP> F­
ACTIVATE_DISK
RECORD WD3:CALL_TRACE
ON-LINE

SS#7 Programmer's Manual

switch control to trigger 2 and reset)
turn on IAM and CDPN triggers)
set number plan to include all types)
set nature of address)
set CDPN address digits)

TRIGGERS

turn off-line while changing trigger actions)
activate trigger 2)

(trigger 2 action
(check CIC token value
(token exists?)
(switch control to trigger 1)
(switch control to disk filter
(set up CIC parameters)
(set CIC value trigger)
(set CIC value filter)
(turn on IAM trigger)
(pass ISUP messages)

activate trigger 1

(trigger 1 action
(switch control to trigger 1)
(switch control to disk filter
(turn off IAM trigger)
(block ISUP messages to disk)

(switch control to disk filter
(reset filters)

(block FISU's)

(block 1 byte LSSU's
(block 2 byte LSSU's
(block SNTM's)

(block SNMM's)

(block all undecoded messages
(pass CIC parameters)

(block ISUP messages)

(activate disk filter)

(start disk recording)

)

IDACOM

LEVEL 1 DECODER 11-1
November 1990

11
LEVEL 1 DECODER

The level 1 decoder decodes physical events and returns a value corresponding to the event type
on the Primary Rate interface.

L 1-ID@ (-- value)
Contains an identifier for the level 1 event. Possible values are:

R#NORMAL
R#REDALM
R#YELALM
R#LSTSIGL
R#LSTPLOCK
R#OOFALM

Synchronized signal
Red alarm
Yellow alarm
Lost signal
Lost phase lock
Out of frame alarm

In addition, the CEPT -30 framing format can produce the following values:

R#RMYELA
R#RMYELB
R#PCMMNMLA
R#PCMMNMLB

END-TIME (-- address)

Port A Multiframe yellow alarm
Port B Multiframe yellow alarm
Port A Normal multiframe condition
Port B Normal multiframe condition

Contains the 48 bit timestamp for the event. END-TIME can be used with the
GET_TSTAMP_MILLI or GET_TSTAMP_MICRO commands as described in the Programmer's
Reference Manual.

BLOCK-COUNT (-- address)
Contains the block sequence number for the level 1 event. Every received event is assigned a
unique sequence number.

IDACOM SS#7 Programmer's Manual

SIMULATION ARCHITECTURE 12-1
November 1990

12
SIMULATION ARCHITECTURE

The SS#? Simulation program is a combination of the complete SS#? Monitor application,
together with a partial emulation for level 2.

SS#? Simulation provides basic mechanisms for simulation at levels 2, 3, and 4. These
mechanisms include FISU idling, auto sequence numbering, level 2 timer support, and functions
for setting up and sending messages.

12.1 Live Data

Data is passed to the decode section and then through to the triggers or the test manager.
Based on the trigger selection, data is passed through to the filters. The filters permit or restrict
the flow of data into the capture RAM, disk, display, or test manager.

The test manager, if active, processes the received data and generates a response. Finally,
outgoing data is framed by the level 2 simulation and sent out to the physical interface.

Rx Data

Tx Data

Decode

Simulation
......_____. Response

~
Test Manager

Filter

Test
Manager

RAM Filter • Capture RAM

• Disk Filter Disk

.______.~OD
Display Filter CRT

Figure 12-1 SS#7 Simulation Data Flow Diagram - Live Data

~ Display topic
Live Data function key

IDACOM SS#7 Programmer's Manual

12-2 SIMULATION ARCHITECTURE
November 1990

MONITOR (--)
Selects the live data display mode of operation. All Incoming events are decoded and
displayed in real-time.

12.2 Playback

Simulation through the test manager can be run concurrently with playback from disk or capture
RAM. The simulation program can multiplex data coming in from different sources. Figures 12-2
and 12-3 show the separate paths which playback and simulation take in the application.

Data, played back from disk or capture RAM, proceeds through the decode sections, triggers,
filters, and finally the display. At the same time, live data is processed as described in Section
12.1.

Rx Data

Decode

~
Test Manager

Filter

J;/§@:{}{ff}~::' ---~ (oecode)._______.~(Tr"1ggers) :::.·:·::::::::::.,-- ., ~ ., :::.:::.:·:-:-:-:-:-:-:,
········::::.. ~

Capture RAM lWJ/
/ CRT

Displ~
Filter ~

Printer

Figure 12-2 SS#7 Simulation Data Flow Diagram - Offline Processing

SS#7 Programmer's Manual IDACOM

SIMULATION ARCHITECTURE

li8 FROM_CAPT HALT
Display topic
Playback RAM function key

li8 FROM_DISK HALT PLAYBACK
Display topic
Playback Disk function key

HALT (--)

12-3
November 1990

Selects the playback mode of operation. Data is retrieved from capture RAM or a disk file,
decoded, and then displayed or printed. Capture to RAM is suspended in this mode.

12.3 Simultaneous Live Data and Playback

Live data can be recorded to disk while playing back data from capture RAM.

IDACOM

Decode

~
R>c Data ----+- Test Manager

Filter •
,,Dot• t

I

'

Disk Filter Disk

jl::: /, ,.:t;J () () :::::::::::::::::;

_±§Hfff}}.,.... .. ---11>• Decode 1--..---1>.i Trigge~
·······::::.y:·:-:: - - - -~

Capti.re RAM wyi

~ an

Displ~
Filter ~

Printer

Figure 12-3 SS#7 Simulation Data Flow Diagram - Freeze Mode

SS#7 Programmer's Manual

12-4
November 1 990

~RECORD FREEZE FROM_CAPT
Capture topic
Record to Disk function key
Display topic
Playback RAM function key

FREEZE { --)

SIMULATION ARCHITECTURE

Enables data to be recorded to disk while data from capture RAM is played back.

SS#7 Programmer's Manual ID ACOM

SIMULATION CONFIGURATION 13-1
November 1990

13
SIMULATION CONFIGURATION

This section describes the commands associated with each item on the Level 1 and Level 2
Configuration Menus and the Protocol Set Selection Menu.

13.1 Level 1

This section describes the commands to configure the physical interface and route data to the
appropriate application processor or output device for WAN (wide area network) or PAA (primary
rate access).

The Primary Rate interface is configured on the Home processor prior to loading the application.

The WAN interface is configured on the application processor after loading and switching to the
SS#? Simulation.

Level J Conf1gurat.1on Menu

S1gnell1ng Dete Link Level

~ Interface Mode
Interface Type

Clocking
Bit Rate
BOF Ti Mes t eMp

DTE
RS232C/V.28
NRZ WITH CLOCK
64000

OFF

Figure 13-1 Level 1 Simulation Configuration Menu

Signalling Data Link Level
-7 Interface Mode
=SIM_DCE (--)

Selects the DCE interface mode.

~ DCE function key

=SIM_DTE (--)
Selects the DTE interface mode (default).

~ DTE function key

IDACOM SS#7 Programmer's Manual

13-2 SIMULATION CONFIGURATION
November 1990

-+ Interface Type
IF=V28 (--)

Selects the V.28/RS-232C connector (default) and electrically isolates the other connectors on
the port.

~ RS232C/V.28 function key

IF:V11 (--)
Selects the V.11 connector and electrically isolates the other connectors on the port.

~ RS422C/V.11 function key

IF=V35 (--)
Selects the V.35 connector and electrically isolates the other connectors on the port.

~ V.35 function key

IF:V36 (--)
Selects the V.36 connector and electrically isolates the other connectors on the port.

~ RS449/V.36 function key

-+Clocking
CLK:STD (--)

Selects the standard non-return to zero line encoding (default).

~ NRZ WITH CLOCK function key

CLK=EXT_CLK (--)
Provides a transmit by the DTE clock on pin 24 of an RS-232C connector.

gj EXTERNAL TX CLOCK function key

-+Bit Rate (Vo/AN and PRA Interface}
The interface speed can be selected from preset values, set to a user-defined speed, or measured
depending on the emulation interface and clocking selections.

DCE WAN NRZ WITH CLOCK Select

DTE WAN NRZ WITH CLOCK Measure

DCE WAN EXTERNAL WITH CLOCK Measure

DTE WAN EXTERNAL WITH CLOCK Select

PRA Measure

SPEED! (speed --)
Sets the interface speed to the specified value.

~ Modify Speed function key

SS#7 Programmer's Manual IDACOM

SIMULATION CONFIGURATION

SPEED@ (-- speed)
Returns the current interface speed.

~ Measure Speed function key

~ BOF Timestamp CNAN and PRA lnterf ace)
BOF-TSTAMP! (flag --)

13-3
November 1990

Specifies whether beginning of frame timestamps are recorded on incoming messages (default
is off).

gj ON/OFF function key

The following commands control the flow of data to the application program.

OFF-LINE (--)
Turns the receiver off (default). The transmitter continuously sends marks.

~ Simulation topic
Online function key (not highlighted)

ON-LINE (--)
Turns the receiver on. The transmitter continuously sends flags if FISU idling is off, and
FISU's if FISU idling is on (see Section 13.2).

gj Simulation topic
Online function key (highlighted)

The following commands control WAN interface leads.

LEAD_OFF (lead identifier --)
LEAD_ON (lead identifier --)

Turns the specified lead on or off. The complete list of lead identifiers is contained in the
Programmer's Reference Manual.

LEAD_CHECK (lead identifier -- flag)
Returns the current state of the specified lead (on or off). If the lead is invalid for the current
interface mode and type, -1 is returned.

IDACOM SS#7 Programmer's Manual

13-4 SIMULATION CONFIGURATION
November 1990

13.2 Level 2

This section describes the commands and variables to configure level 2 of the SS#7 Simulation.

+ SU CoMpression

SUERM Function
T Threshold

Level 2 Conf1gurat1on Menu

Signalling Link Level
MAX FISU Idling OFF

ON
64

Octet Counting Mode AUTO
MaxiMUM SIF 272

Initial AlignMent Counters
Tin Threshold 4 Tie Threshold 1 M Max Retry 5

Tl 410

T2 750

TiMers ClOth secs>
T3 12

T4n 82
T4e 5
T5 1

T6 46

T7 13

Figure 13-2 Level 2 Simulation Configuration Menu

Signalling Link Level
~ SU Compression
COMPRESS-SU! (value -- }

Sets the number of identical FISU's or LSSU's to compress on live data to a specified value.
The SU_MAX value sets the maximum compression at 99,999,999 (default}. The OFF value sets
the compression to off.

~ Modify Count/MAX/OFF function key

COMPRESS-SU@ (-- value }
Returns the current SU compression ratio.

~SU ERM Function
SUERM-FUNCTIONI (flag -- }

Selects whether the SUERM (signal unit error rate monitor} is active (default Is off}. When
turned on, the error counter is reset to 0.

~ ON/OFF function key

SUERM-FUNCTION@ (-- value}
Returns true if the SUERM is active.

SS#7 Programmer's Manual IDACOM

SIMULATION CONFIGURATION 13-5

~ T Threshold
SUERM-THRESH! (value --)

November 1990

Sets the SUERM threshold for determining a link failure indication. Valid values are 1 through
65535 (default is 64).

~ Modify Value function key

SUERM-THRESH@ (-- value)
Returns the current value of the SUERM threshold.

SUERM-COUNT! (value --)
Sets the SUERM error counter. Valid values are O through 65535.

SUERM-COUNT@ (-- value)
Returns the current value of the SUERM error counter.

~ FISU Idling
AUTO_FISU (flag --)

Selects whether FISU's are automatically sent whenever the transmit channel is idle (default is
off). The forward and backward sequence bytes are set to equal the values in the most
recently sent buffer. By default, transmitted FISU's have BSN and FSN equal to 127, and BIB
and FIB equal to 1.

~ ON/OFF function key

~NOTE
With FISU idling off, flags are automatically sent whenever the transmit channel is idle.

~ Octet Counting Mode
OCTET-MODE! (mode --)

Selects the octet counting mode used by the simulation to ON, OFF (default), or AUTO.

~ON/OFF/AUTO function key

OCTET-MODE@ (-- mode)
Returns the current state of the octet counting function.

~Maximum SIF
SIF-MAXSIZE! (value --)

Specifies the maximum SIF (signalling information field) size to turn octet counting off when
the octet counting mode is set to AUTO. Valid values are 1 through 999 (default is 272).

~ Modify SIF function key

SIF-MAXSIZE@ (-- value)
Returns the current value of the maximum SIF size.

IDACOM SS#7 Programmer's Manual

13-6
November 1990

Initial Alignment Counters
AERM-FUNCTION! (flag --)

SIMULATION CONFIGURATION

Selects whether the AERM (initial alignment error rate monitor) is on (default is off). If on,
SUERM function is automatically disabled.

AERM-FUNCTION@ (-- flag)
Returns true if the AERM function is on.

~ Tin Threshold
AERM-N-THRESH! (value --)

Specifies the normal AERM threshold for determining unsuccessful initial alignment. Valid
values are 1 through 999 (default is 4).

~ Modify Value function key

AERM-N-THRESH@ (-- value)
Returns the normal AERM threshold value.

~ Tie Threshold
AERM-E-THRESH! (value -- }

Specifies the emergency AERM threshold for determining unsuccessful initial alignment. Valid
values are 1 through 999 (default is 1).

~ Modify Value function key

AERM-E-THRESH@ (-- value}
Returns the emergency AERM threshold value.

~Max Retry
MAX-RETRY! (value --)

Specifies the maximum number of retries for determining unsuccessful initial alignment. Valid
values are 1 through 999 (default is 5).

~ Modify Value function key

MAX-RETRY@ (-- value }
Returns the maximum number of retries for determining unsuccessful initial alignment.

SS#7 Programmer's Manual IDACOM

SIMULATION CONFIGURATION

Timers (10th secs)
START_SS7_TIMER (timer# --)

Starts the specified timer. Valid level 2 timers are listed in the following table.

L2#T1 Timer T1 (Timer "aligned/ready")

L2#T2 Timer T2 (Timer "not aligned")

L2#T3 Timer T3 (Timer "aligned")

L2#T4 Timer T4 (Proving period timer)

L2#T4N Timer T4n (Normal proving period timer)

L2#T4E Timer T4e (Emergency proving period timer)

L2#T5 Timer TS (Timer "sending SIB")

L2#T6 Timer T6 (Timer "remote congestion")

L2#T7 Timer T7 (Timer "excessive delay of acknowledgement")

Table 13-1 Simulation Timers

SS7_TIMER@ (timer# -- value)
Returns the value, in tenths of seconds, of the specified simulation timer.

SS7 _TIMER! (timer#/value --)
Sets the simulation timer to the specified value.

~ Modify Value function key

SS7_TIMER_DEFAULT@ (timer# -- value)

13-7
November 1990

Returns the default value of the specified simulation timer. In some cases, the default value
depends on the bit rate of the signalling link.

Example:
Set timer TS to the default.
L2#T6 DUP SS7_TIMER_DEFAULT@ SS7_TIMER!

~ Default function key

PE->T4 (--)
Sets timer T4 equal to timer T4e.

PN->T4 (--)
Sets timer T4 equal to timer T4n.

?T4:PE (-- flag)
Returns true if timer T4 equals timer T4e.

IDACOM SS#7 Programmer's Manual

13-8 SIMULATION CONFIGURATION
November 1990

13.3 Configuration Storage

The current settings of the level 1 and level 2 simulation configurations can be saved to disk for
future retrieval.

SAVE_CONFIG (filename --)
Saves the current configuration.

Example:
Save the current configurations in a file named 'Conflg' on drive DAO •
• DRO:Config• SAVE_CONFIG

~ Simulation topic
Save Config function key

LOAD_CONFIG (filename --)
Loads a previously saved configuration.

~ Simulation topic
Load Config function key

13.4 Protocol Set Selection

The decoder can be configured to use a particular set of protocol files. Refer to the appropriate
Protocol Set Reference Manual for valid filenames.

LOAD_PROTOCOL_SET (filenames\number --)
Loads the specified protocol file(s). In addition, playback from a disk file is stopped and the
display format, trigger, filter, and routing label settings are restored to the def a ult
configurations.

Example:
Load the CCITT TUP protocol with supporting lower layers .
• CCITT_TUPBB.T. ·ccITT_NETBB.T. ·ccITT_LINKBB.T. 3 LOAD_PROTOCOL_SET

~ Simulation topic
Protocol Set Selection Menu
~ CCITT_TUP88

Select function key
~ CCITLNETBB

Select function key
~ CCITT_LINKBB

Select function key
Load Protocols function key

~NOTE
LOAD_PROTOCOLSET should be used before loading test scripts. When a protocol set is
loaded, test scripts are cleared.

SS#7 Programmer's Manual IDACOM

SIMULATION CONFIGURATION

W WARNING

13-9
November 1990

Colon definitions that compile message tokens will crash if the protocol set is changed after
creating the colon definition.

SELECT_ VAR (protocol set --)
Selects the specified protocol set.

~ Protocol Variance Menu
Select function key

LOAD_ALL (--)
Loads all functional parts of the protocol set selected with SELECT _VAR.

~ Protocol Set Selection Menu
All function key
Load function key

Example:
Load all available CCITT 1988 functional parts.
• CCITT_Ss· SELECT_VAR (Selects the CCITT 1988 protocol set)
LOAD_ALL (Loads all functional parts)

IDACOM SS#7 Programmer's Manual

LEVEL 2 SIMULATION 14-1
November 1990

14
LEVEL 2 SIMULATION

This section describes the commands used during level 2 simulation.

14.1 Sequence Numbering

FSNTI (number --)
BSNTI (number --)
FIBTI (number --)
BIBTI (number --)

Specifies a number to be used on the next signal unit transmitted via the SENDJ3UFFER_SU
or SEND_LSSU command. The numbers correspond to the forward sequence number,
backward sequence number, forward indicator bit, and backward indicator bit. The default
value is 127 for FSNTI and BSNTI, and 1 for FIBTI and BIBT!.

FSNT@ (-- number)
BSNT@ (-- number)
FIBT@ (-- number)
BIBT@ (-- number)

Returns a number to be used on the next signal unit transmitted via the SENDJ3UFFER_SU
command.

~NOTE
If AUTO_FSN is set, the FSN used in the FSNT! and FSNT@ commands will be 1 less than in
the value contained in the next transmitted MSU.

AUTO_FSN (flag --)
Selects whether the FSN (forward sequence number) is automatically incremented
(modulo 128) before an MSU is transmitted via the SENDJ3UFFER_SU command.

14.2 Send Commands

Up to 256 buffers are available to create and send messages. These buffers are numbered from O
through 255. All buffers are cleared by the TCLR command.

The buffer structure consists of 4 reserved bytes, followed by 2 bytes containing the 16 bit length,
followed by the signal unit. The value for the forward and backward sequence bytes is not set
until the buffer is transmitted. At that time, the buffer's forward and backward sequence bytes
are set according to the values set via the FSNT, BSNT, FIBT, and BIBT commands (see Section
14.1).

IDACOM SS#7 Programmer's Manual

14-2 LEVEL 2 SIMULATION
November 1990

The buffer does not contain the CRC bytes; instead, these bytes are attached when the buffer is
transmitted.

There are three methods of moving text into a buffer.

Methods 1 and 2 automatically allocate memory for the specified text (stored from the third octet
of the signal unit). Method 3 requires the user to allocate memory before moving text into the
buffer (stored from the first octet of the signal unit). Use the TCLR command to clear all buffers.

AUTO_LI (flag --)
Selects whether the length indicator byte is set automatically according to the length of the
signal unit.

~NOTE
Use with Methods 1 and 2 only.

Method 1

STRING->BUFFER (string\buffer number --)
Loads a quoted string into the specified buffer. The length is limited to 80 bytes if typing
directly on the keyboard and 255 bytes if used within a test script. Either an ASCII or hex
string can be specified. Valid buffer numbers are O through 255.

Example:
• IDACOM. 1 STRING->BUFFER ASCII text moved to Buffer #1)
x· 0100100100434445. 2 STRING->BUFFER Hex string of 8 bytes moved to Buffer #2)

APPEND->BUFFER (string --)
Appends a quote string to the most recently created buffer. This allows messages to be
created with a total length greater than 80 characters. The length indicator is automatically
adjusted if AUTO_LI is set.

Method 2

FILE->BUFFER (filename\buffer number --)
Transfers a text file into the specified buffer (for text greater than 80 bytes). The file is created
using the Edit function available on the Home processor. At this time, only ASCII text can be
created. The last character to be transferred should be followed immediately by a CTRL 'p'
character in the file. This special character is displayed as a pi I crow (q) character. The file
is transferred into the buffer until the ASCII control 'p' character is found or until the end of
the file.

Example:
Create a file with the name CUSTOM.F and transfer to Buffer #3.
• CUSTOM.F• 3 FILE->BUFFER

HFILE->BUFFER (filename\buffer number --)
Similar to the FILE->BUFFER command except only ASCII characters 'O' through '9', 'a'
through 'f', and 'A' through 'F' are allowed. The characters are translated to hexadecimal.
This file can be terminated with the ASCII character 'x' or CTRL 'p'.

SS#7 Programmer's Manual IDACOM

' .

LEVEL 2 SIMULATION

Method 3

The following four commands should not be used with Methods 1 and 2.

ALLOT _BUFFER (size \ buffer number -- flag)

14-3
November 1990

Allocates memory for the specified buffer. ALLOT_BUFFER returns O if an error occurred, or 1
if correct.

~NOTE
ALLOLBUFFER should not be used repetitively with the same buffer number in the same
test script.

FILL_BUFFER (data address \ size \ buffer number --)
Moves data, of a specified size, into a buffer. Previous contents are overwritten.

APPEND_TO_BUFFER (data address\ size\ buffer number --)
Appends data, of a specified size, into a buffer.

CLEAR_BUFFER (buffer number --)
Stores a size of 0 in the buffer. CLEAR_BUFFER has no effect on the allocated memory
defined with ALLOT_BUFFER.

Example:
0 VARIABLE tempstring 6 ALLOT
H A TEST H tempstring $! Initialize the string)

Allocate 16 bytes of memory 16 3 ALLOT_BUFFER
IF

tempstring 4+ 5 3 FILL_BUFFER
H FAIL# COUNT 3 APPEND_TO_BUFFER

Move 'TEST · to buffer)
Append 'FAIL' to buffer)

END IF

BUFFER (buffer number -- address I O)
Returns the address of the first byte of the specified buffer. The buffer must have been
previously created by FILE->BUFFER, STRING->BUFFER, or ALLOT_BUFFER. A 'O' is returned
when the buffer is not created or an invalid buffer number is specified. Valid buffer numbers
are O through 255.

Sending a Buffer

SEND_BUFFER_SU (attribute\buffer number --)
Sends the indicated buffer using the specified attribute. The forward and backward
sequence bytes are modified according to values set with FSNT, BSNT, FIBT, and BIBT. Zero
bit insertion is performed on the transmitted buffer. The attribute can be one of the following:

CRC
CRC_ERR
ABT

REPT

IDACOM

Sends buffer with the correct CRC attached.
Sends buffer with an invalid CRC attached.
Aborts buffer after sending 5 bytes of the buffer (eg. sends 7 continuous
one's without zero bit insertion).
Sends buffer repeatedly until another buffer is sent.

SS#7 Programmer's Manual

14-4 LEVEL 2 SIMULATION
November 1990

The attributes can be OR'd together before executing the SEND-8UFFER_SU command. If the
attribute does not contain REPT and FISU idling is off, flags are continuously transmitted
after sending the message. If the attribute does not contain CRCJ:RR, the CRC attribute is
implied.

Example:
Send buffer 1 repeatedly with the correct CRC value.
REPT 1 SEND_BUFFER_SU

SEND_LSSU (attr\type --)
Sends an LSSU using the Indicated attribute and type. The type can be any of the following
constants:

<SIO>#
<SIN>#
<SIE>#
<SIOS>#
<SIPO>#
<SIB>#

Status Indication "O"
Status indication "W
Status indication "E"
Status indication "OS"
Status indication "PO"
Status indication "B"

The attributes are the same as described for the SEND-8UFFER_SU command.

SF _SIZE (112 --)
Selects the size, in bytes, of LSSU's sent with the SEND_LSSU command (default is 1).

CURRENT_LSSU (--type)
Returns the type of LSSU most recently sent via the SEND_LSSU command.

SEND_MARKS (--)
Sends the mark character continuously.

SEND_SPACES (--)
Sends the space character continuously.

SEND_FLAGS (--)
Sends flags continuously.

SEND_FISU (attribute --)
Sends an FISU using the specified attribute. Refer to the SEND-8UFFEFLSU command for
valid attributes. The attribute can be one of the following:

CRC
CRC_ERR
REPT

Sends FISU with the correct CRC attached.
Sends FISU with an Invalid CRC attached.
Sends FISU repeatedly untll another buffer is sent.

SS#7 Programmer's Manual IDACOM

. ,,

TEST MANAGER 15-1
November 1990

15
TEST MANAGER

IDACOM has developed a comprehensive set of tools for the development of test scripts. These
test scripts, written using the ITL language, control the operation of the SS#? Monitor/Simulation
application.

For a complete explanation of the test manager and tools available, see the Programmer's
Reference Manual.

This section reviews basic ITL components and describes the protocol event and action
commands specific to SS#?.

15.1 ITL Constructs

Following is a brief description of test manager constructs. For more details and examples, refer
to the Programmer's Reference Manual.

TCLR (--)
Initializes the test manager. Any existing test suites already in memory are cleared. The
current state is set to 0. All test scenarios should start with the TCLR command.

STATE_INIT{ }STATE_INIT (number --)
Brackets the execution sequence performed prior to entering a state. The initialization logic
for a state is executed independently of how it was called.

This initialization procedure can be used for any state but is not compulsory. STATE..JNIT{
must be preceded by the number of the state being initialized, eg. 0 STATE..JNIT{.

If the ACTION{ }ACTION sequence does not result in a change of state, the STATE..JNIT{
}ST ATE..JNIT is not re-executed.

STATE{ }STATE (number --)
Brackets a state definition. STATE{ must be preceded by the number of the state. Valid
values are O through 255. State O must be defined within an ITL program. If not, the test
manager will not run the script. If multiple states are defined with the same number in the
test script, the test manager uses the latest definition.

ACTION{ }ACTION (flag --)
Brackets the set of tasks, decisions, and outputs which execute once the expected event is
received by the test manager. There must be at least one action defined for each expected
event. The action is executed when the flag is true (non-zero).

IDACOM SS#7 Programmer's Manual

15-2 TEST MANAGER
November 1990

NEW_STATE (number--)
Executes the initialization logic of the specified state (providing STATE..JNIT { }STATE..JNIT is
defined) and establishes the state to be executed for the next event. Any remaining action
code for the current state is then executed. It must be preceded with a valid state number
and be inside the ACTION{ }ACTION brackets. This command is not mandatory if no state
change is desired.

TM_STOP (--)
Stops the execution of the test script. The test suite remains in memory and can be
re-executed until another test script is loaded.

SEQ{ }SEQ (number --)
Brackets a definition of tasks and outputs which execute as part of the state machine action.
SEQ{ expects a single integer which is the sequence number. Up to 256 sequences are
supported. Valid values are O through 255. The SEQ{ }SEQ partners are extremely useful
when more than one action sequence calls the same tasks and outputs. The SEQ{ }SEQ
definition is defined outside the ACTION{ }ACTION definition and then called by the RUN_SEQ
command.

This is an alternate mechanism to generate colon definitions. This mechanism causes the
equivalent of a colon definition (now accessed via a numeric identifier) to be compiled into
the test script dictionary rather than the user dictionary. Refer to the Programmer's Reference
Manual.

RUN_SEQ (number --)
Executes a specified set of tasks defined in a SEQ{ }SEQ definition. It is called inside an
ACTION{ }ACTION definition and must be preceded with a defined sequence number.

LOAD_RETURN_STATE (number--)
Permits the test script writer to program the equivalent of subroutine calls (used with
RETURN_STATE). LOAD_RETURN_STATE sets the state to which control is to be returned.
LOAD_RETURN_STATE must be within the action field; nesting is not permitted.

RETURN_STATE (--)
Returns control to the state specified by LOAD_RETURN_STATE from a state subroutine call.

NEW_TM (filename --)
Loads and compiles the specified file and then starts the test manager at state 0. It can be
included as part of the action field to load and execute another scenario.

CLEAR_KEYS (--)
Clears all the test keys.

COUNTER1 ••• 128 (-- address)
There are 128 general purpose variables, named COUNTER1 ... COUNTER128, which can be
used by the test manager.

SS#7 Programmer's Manual IDACOM

TEST MANAGER

15.2 Event Recognition

15-3
November 1990

During test script execution, any event received by the test manager is evaluated to determine if it
matches the event-specifier of the first action within that state. If the evaluation does not return
a true value, the following action clauses are evaluated in a sequential manner. Once an event
evaluates true, the subsequent action clauses in that particular state are not examined.

Level 1

?L 1_EVENT (value -- flag)
Returns true if the specified level 1 event has occurred. The Primary Rate event identifiers are:

R#NORMAL
R#REDALM
R#YELALM
R#LSTSIGL
R#LSTPLOCK
R#OOFALM

Synchronized signal
Red alarm
Yellow alarm
Lost signal
Lost phase
Out of frame

In addition, the CEPT -30 framing format event identifiers are:

R#RMYELA
R#RMYELB
R#PCMMNMLA
R#PCMMNMLB

Port A Multiframe yellow alarm
Port B Multiframe yellow alarm
Port A Normal multiframe condition
Port B Normal multiframe condition

Events can be OR'd together before executing the ?_L LEVENT command.

Example:
R#REDALM R#YELALM OR ?Ll_EVENT
ACTION{

code to be executed when the Primary Rate interface is in red or yellow alarm

}ACTION

L 1-EVENT (-- flag)
Returns true if any level 1 event has occurred.

IDACOM SS#7 Programmer's Manual

15-4 TEST MANAGER
November 1990

Level 2

?L2_EVENT (value -- flag)
Returns true if the specified level 2 simulation event has occurred. The level 2 event
identifiers are:

LINK._FAILURE#
LINK.JN_SERVICE#
OCTETMODE_ON#
OCTETMODE_OFF#

L2_EVENT (-- flag)
Returns true if any level 2 simulation event has occurred.

?EOF _IND (-- flag)
Returns true if the event Is a received frame.

The following three commands can be used to test the presence and error status of fields in a
received message. These fields are identified with the tokens listed in the appropriate Protocol
Set Reference Manual. All tokens can be used with the commands. Additionally, a wildcard
token '<*>' can be used to represent any token.

?RX_FRAME (token -- flag)
Returns true if the event is a received frame and the decoded frame contains the specified
token.

?RX_ERROR (token\error -- flag)
Returns true If the event Is a received frame and the decoded frame contains an error of the
type specified. Errors are specified using a combination of tokens and the following error
Identifiers.

General errors:
ANY#
CRC#
ABORT#
RX-OVFL#
FRAMING#
RX-LONG#

Any error (including token specific errors)
CRC error
Abort error (I.e. seven consecutive one's)
Receiver overflow
Framing error (eg. flag not octet aligned)
Frame truncated to 1004 bytes

Token specific errors:
TOKEN# Any token specific error
SHORT# Frame terminated before decode process completed. Error associated with

last decoded token.
LONG# Frame contains unexpected data following successful completion of the

decode process. Error associated with last decoded token.
VIOLATION# Token does not conform to the specification
EXTENSION# Spare bit token not coded with zeros

Error identifiers can be OR'd together. They can also be inverted using the NOT command to
indicate errors other than the ones indicated.

SS#7 Programmer's Manual IDACOM

TEST MANAGER

A token is specified to restrict the search of errors to the Identified token.

Example:

<*> CRC# ?RX_ERROR Returns true if CRC error received)

15-5
November 1990

<LUN> CRC# ?RX_ERROR Returns true if link uninhibit message is received)
with a CRC error)

<*> VIOLATION# EXTENSION# OR ?RX_ERROR (Returns true if any message is received
(with either a violation or extension
(error)

<MIM> ANY# EXTENSION# NOT AND ?RX_ERROR (Returns true if a management inhibit
(message is received with any error
(except extensions)

?RX_GOOD (token -- flag)
Returns true if the event is a received frame, the decoded frame contains the specified token,
and there are no general errors or errors on the token.

?R>LGOOD is equivalent to the following sequence:
DUP ?RX_FRAME SWAP ANY# ?RX_ERROR O= AND

?RECEIVED (string -- flag)
Returns true if a user-defined character string is found in the received frame.

This is an anchored match, i.e. a byte-for-byte match starting at the first byte of the received
frame.

~NOTE
To accommodate "don't care" character positions, the question mark character for ASCII or
hex 3F character can be used.

?SEARCH (string -- flag)
Returns true if a user-defined character string is found in the received frame.

This is an unanchored match, i.e. searches for an exact match anywhere in the received
frame, regardless of position.

Example:
Search for the string 'IDACOM' which could be located starting at any position within the
received frame.

• IDACOM. ?SEARCH

?ABORT (-- flag)
Returns true if an abort frame is received.

?CRC_ERROR (-- flag)
Returns true if a frame with a CRC error is received.

IDACOM SS#7 Programmer's Manual

15-6 TEST MANAGER
November 1990

Other Events

?TIMER (timer_number -- flag)
Returns true if the specified timer has expired. Out of a total of 128 system timers, timers 1 to
100 are available in monitor mode, and timers 1 to 64 are available in simulation mode.

TIMEOUT (-- flag)
Returns true If any timer has expired.

?MAIL (-- flag)
Returns true if mall has been received from one of the other applications.

?KEY (key -- flag)
Returns true if the specified function key has been pressed.

OTHER_EVENT (-- true flag)
Returns true so that an ACTION{ }ACTION statement can check for events that have not been
explicitly programmed into an event field.

EVENT-TYPE@ (-- value)
Returns an event identifier. Valid event Identifiers are:

LEVEL1# Level 1 event identified by L1-ID@ has been received
LEVEL2# Level 2 simulation event has been received
FRAME# Level 2 frame has been received
REPEAT# The application has started to compress frames
TIME-OUT# Timer identified by the TIMER-NUMBER variable has expired
FUNCTION-KEY# Function key identified by the KEY-NUMBER variable has been pressed
COMMAND# Interprocessor mail has been received and can be retrieved through the

EXTRACT_FTHJ>ATA command

Example:

OTHER_EVENT
ACTION{

EVENT-TYPE@ TIME-OUT#
IF

code to be executed if a timer has expired

END IF

)ACTION

SS#7 Programmer's Manual IDACOM

TEST SCRIPTS 16-1
November 1990

16
TEST SCRIPTS

This section contains sample test scripts. These tests have also been supplied on disk and can
be loaded as described in the Programmer's Reference Manual.

16.1 LINK_UP.F

The LINK....UP.F test script simulates one side of the initial alignment process used to bring a link
from the out-of-service state. The simulation is started via function keys or upon receipt of an
SIE or SIO LSSU.

File Title: LINK_UP.F
Version: 1.5

This script simulates an SS#7 switch in order to bring
up a link.

TCLR

#IFNOTDEF LINK_UP.F

0 CONSTANT LINK_UP.F

NO VARIABLE EMERGENCY
NO VARIABLE FURTHER-PROVING

#ENDIF

1 SEQ{ (--)
YES AERM-FUNCTION!
NO FURTHER-PROVING
L2#T4 START_SS7_TIMER

)SEQ

2 SEQ{ (--)
L2#T4 STOP_TIMER
PE->T4
NO AERM-FUNCTION!
1 RUN_SEQ

)SEQ

IDACOM

initialize the test manager)

if this script has not yet been loaded,
the variables have to be compiled.

signature word for this file

local processor in emergency state?
further proving required?)

start further proving
restart the AERM)
cancel further proving)
restart ·proving· timer)

set emergency proving
stop ·proving· timer)
set proving period to emergency

start further proving

SS#7 Programmer's Manual

16-2 TEST SCRIPTS
November 1990

3 SEQ{ (--)
NO EMERGENCY
CRC CURRENT_LSSU SEND_LSSU
0 NEW_STATE

)SEQ

4 SEQ{
COMPRESS-SU@
NO COMPRESS-SU!
COMPRESS-SU!
EMERGENCY @
IF

PE->T4
REPT <SIE> <># SEND_LSSU

ELSE
<SIE> ?RX_FRAME
IF

PE->T4
ELSE

PN->T4
END IF
REPT <SIN> <># SEND_LSSU

END IF
L2#T3 START_SS7_TIMER

)SEQ

stop alignment)
cancel emergency, if marked)

set state 2 conditions)
save current SU compression on stack)
turn SU compression off temporarily)
reset SU compression to previous value
in emergency state?)

set proving period to emergency)
send an emergency alignment ind.)
not in emergency state?)
SIE received?)

set proving period to emergency
everything normal?
set proving period to normal

send a normal alignment ind.

start timer T3)

************************* STATE MACHINE *****************************)

0 STATE_INIT{
NO AUTO_FISU
NO SUERM-FUNCTION!
NO EMERGENCY
CLEAR_KEYS
• Align· 1 LABEL_KEY
• Emergency· 2 LABEL KEY

)STATE_INIT

(stop all traffic)
(cancel SUERM function
(cancel the emergency state
(clear key labels)
(key to initiate initial alignment
(key to use emergency proving periods

0 STATE{ idle state)
<SIO> ?RX_FRAME <SIE> ?RX_FRAME OR <SIN> ?RX_FRAME OR
ACTION{ (automatic start mode

4 RUN_SEQ
1 CLEAR_KEY
• Stop· 1 LABEL_KEY (key to stop initial alignment)
2 NEW_STATE

)ACTION

SS#7 Programmer's Manual IDACOM

TEST SCRIPTS

UFl ?KEY
ACTION{

REPT <SIO> <># SEND_LSSU
L2#T2 START_SS7_TIMER
1 CLEAR_KEY
• Stop· 1 LABEL_KEY
1 NEW_STATE

)ACTION

UF2 ?KEY
ACTION{

YES EMERGENCY
2 CLEAR_KEY

)ACTION
)STATE

start initial alignment procedure?

send out an alignment indication)
start timer T2)

key to stop initial alignment
GOTO Not Aligned state)

16-3
November 1990

set proving periods to emergency?)

mark that currently in emergency
clear the emergency key)

1 STATE{ (Not aligned state
<SIO> ?RX_FRAME <SIE> ?RX_FRAME OR <SIN> ?RX_FRAME OR
ACTION{

L2#T2 STOP_TIMER
4 RUN_SEQ
2 NEW_STATE

)ACTION

UF2 ?KEY
ACTION{

YES EMERGENCY
2 CLEAR_KEY

)ACTION

UFl ?KEY
ACTION{

L2#T2 STOP_TIMER
3 RUN_SEQ

)ACTION

L2#T2 ?TIMER
ACTION{

T.· Alignment not possible.· TCR
3 RUN_SEQ

)ACTION
)STATE

2 STATE{
<SIE> ?RX_FRAME
ACTION{

PE->T4
3 NEW_STATE

)ACTION

IDACOM

stop timer T2

GOTO Aligned state

set proving periods to emergency?)

mark that currently in emergency
clear the emergency key)

stop initial alignment?

(stop timer T2)
(stop alignment procedure

timer T2 expired?)

report alignment error.
stop alignment procedure)

(aligned state)

(set timer T4 to T4E)

SS#7 Programmer's Manual

16-4
November 1 990

<SIN> ?RX_FRAME
ACTION[

3 NEW_STATE
}ACTION

<SIOS> ?RX_FRAME L2#T3 ?TIMER OR
ACTION[

T.· Alignment not possible.· TCR
3 RUN_SEQ

}ACTION

UF2 ?KEY
ACTION{

REPT <SIE> <># SEND_LSSU
PE->T4
2 CLEAR_KEY

}ACTION

UFl ?KEY
ACTION[

L2#T3 STOP_TIMER
3 RUN_SEQ

}ACTION
}STATE

3 STATE_INIT[
L2#T3 STOP_TIMER
YES AERM-FUNCTION!
L2#T4 START_SS7_TIMER
0 COUNTER! !

NO FURTHER-PROVING
}STATE_INIT

3 STATE[
L2#T4 ?TIMER
ACTION[

FURTHER-PROVING @
IF

1 RUN_SEQ
ELSE

NO AERM-FUNCTION!
T.· Alignment complete.· TCR
4 NEW_STATE

END IF
}ACTION

<SIOS> ?RX_FRAME
ACTION[

L2#T4 STOP_TIMER
NO AERM-FUNCTION!
T.· Alignment not possible.· TCR
3 RUN_SEQ

}ACTION

SS#7 Programmer's Manual

report alignment error.)
stop alignment procedure)

TEST SCRIPTS

(set proving periods to emergency?)

set timer T4 to T4E
clear emergency key

stop initial alignment?

stop timer T3)
stop alignment procedure

stop timer T3)
start AERM simulator
start ·proving· timer)
reset abort counter)
cancel further proving)

Proving state)
proving period has expired?

further proving required?

start further proving

turn off the AERM)
notify user of alignment complete
GOTO Aligned Ready state)

stop ·proving· timer)
turn off the AERM)
report alignment error.
stop alignment procedure)

I DA COM

TEST SCRIPTS

<SIO> ?RX_FRAME
ACTION{

L2#T4 STOP_TIMER
NO AERM-FUNCTION!
L2#T3 START_SS7_TIMER
2 NEW_STATE

}ACTION

<SIE> ?RX FRAME
ACTION{

?T4=PE O=
IF

2 RUN_SEQ
END IF

}ACTION

UFl ?KEY
ACTION{

L2#T4 STOP_TIMER
NO AERM-FUNCTION!
3 RUN_SEQ

}ACTION

LINK_FAILURE# ?L2_EVENT
ACTION{

1 COUNTER! +!
COUNTER! @ MAX-RETRY@ =
IF

L2#T4 STOP_TIMER
NO AERM-FUNCTION!
T.· Alignment not possible.· TCR
3 RUN_SEQ

ELSE
YES FURTHER-PROVING

END IF
}ACTION

UF2 ?KEY
ACTION{

REPT <SIE> <># SEND_LSSU
2 RUN_SEQ
2 CLEAR_KEY

}ACTION

 ?RX_GOOD
ACTION{

FURTHER-PROVING @
IF

1 RUN_SEQ
END IF

}ACTION
}STATE

IDACOM

16-5
November 1990

(stop ·proving· timer)
(turn off the AERM)
(start ·aligned· timer
(GOTO Aligned state)

(

(

(

proving period set to emergency?)

move to emergency proving state)

stop initial alignment?

stop . proving timer .)

turn off the AERM)
stop alignment procedure

link failure indicated?)
implies AERM Threshold exceeded)
increment the number of aborts)
proving aborted 5 times?

stop ·proving· timer)
turn off the AERM)
report alignment error.
stop alignment procedure)

further proving is required

send repeating LSSUs)
move to emergency proving state)
clear the emergency key)

correct SU received?)

further proving required?

start further proving)

SS#7 Programmer's Manual

16-6
November 1 990

4 STATE_INIT(
YES AUTO_FISU
YES SUERM-FUNCTION!
CLEAR_KEYS
H RedoH 1 LABEL_KEY

}STATE_INIT

4 STATE{
UFl ?KEY
ACTION(

send FISUs)
start the SUERM

·Ready for initial alignment.• W.NOTICE
0 NEW_STATE

}ACTION
}STATE

16.2 COO_CCITT.F

TEST SCRIPTS

The COO_CCITT.F test script demonstrates the simple exchange of changeover messages. The
simulation is started via a function key or upon receipt of a COO message. As the test script
does not contain the logic to simulate all level 2 or level 3 functions associated with changeover
and changeback, the script can only run on two simulation ports connected back to back.
COO_ANSl.F is identical to this example except for message strings used in the STRING->BUFFER
command.

(--
(

(

(

(

File Title: COO_CCITT.F
2.0 Version:
This script simulates CHM or SNTM message exchange

TCLR (initialize the test manager)

#IFNOTDEF COO_CCITT.F
0 CONSTANT COO_CCITT.F signature flag to avoid recompiling definitions)

0 CONSTANT coo
1 CONSTANT COA
2 CONSTANT CBD
3 CONSTANT CBA
4 CONSTANT SLTM
5 CONSTANT SLTA
Ox12345678 VARIABLE ROUTING_LABEL

#ENDIF

1 SEQ{ (MSU BUFFER ---
<FIB> <>@ DROP BIBT!
<FSN> <>@ DROP BSNT!
CRC SWAP SEND_BUFFER_SU

}SEQ

SS#7 Programmer's Manual

CHM and SNTM Messages)

(default routing label setting)

(set BIB and BSN to be transmitted)

IDACOM

TEST SCRIPTS 16-7

2 SEQ{ (--)
CRC <SIB> <># SEND_LSSU

}SEQ

3 SEQ{ (--)
<OPC> <>@ DROP
5 RUN_SEQ
<DPC> <>@ DROP
6 RUN_SEQ
7 RUN_SEQ

}SEQ

Swap incoming OPC/DPC)
Retrieve OPC)
Copy received OPC into outgoing DPC
Retrieve DPC)
Copy received DPC into outgoing OPC
Copy label into SU buffers)

November 1990

4 SEQ{ (type --) (OPC or DPC prompt, depending on type)

}SEQ

prompt
10 STR>#
IF

DUP 1 Ox3FFF BETWEEN?
IF

SWAP RUN_SEQ
7 RUN_SEQ

ELSE
2DROP

Run the sequence indicated by 'type')
Copy label into SU buffers)

• Value out of range· W.ERROR
END IF

ELSE
DROP
• Invalid decimal number· W.ERROR

END IF

5 SEQ{ (point_code -- Store into DPC region of label)
bits 1-8)

}SEQ

DUP OxFF AND OxOO 0 8 RUN_SEQ
8 >># OxCO 1 8 RUN_SEQ bits 9-14)

6 SEQ{ (point_code --) (Store into OPC region of label)
DUP Ox3 AND 6 <<# Ox3F 1 8 RUN_SEQ (bits 1-2)
DUP 2 >># OxFF AND OxOO 2 8 RUN_SEQ (bits 3-10)

10 >># OxFO 3 8 RUN_SEQ (bits 11-14)
}SEQ

7 SEQ{ (--)
SLTA 1 + COO
DO

(Copy label into SU buffers)

ROUTING_LABEL I BUFFER 10 + 4 CMOVE
LOOP

}SEQ

8 SEQ{ (value\mask\offset --

}SEQ

ROUTING_LABEL + DUP >R C@
AND OR
R> C!

IDACOM

Alter portion of routing label)
Get byte which is to be modified
Modify bits identified by mask)
Replace byte)

SS#7 Programmer's Manual

16-8
November 1990

YES AUTO_LI Automatic LI setting)

x· 0000123456781119# coo STRING->BUFFER (Setup coo TX buffer
x· 0000123456782119# COA STRING->BUFFER (Setup COA Tx buffer
x· 0000123456785112# CBD STRING->BUFFER (Setup CBD TX buffer
x· 0000123456786112• CBA STRING->BUFFER (Setup CBA Tx buffer
x· 00011234567811C054455854204D455353414745• SLTM STRING->BUFFER
Xu 00011234567821C054455854204D455353414745. SLTA STRING->BUFFER

************************* STATE MACHINE ****************************
0 STATE_INIT[

NO AUTO_FISU
YES AUTO_FSN
1 BIBT! 127 BSNT! 1 FIBT! 127 FSNT!
CLEAR_KEYS

Start coo·

Start SLTM•
Set ope·
Set ope·

}STATE_INIT

0 STATE[
UFl ?KEY
ACTION[

1 LABEL_KEY
2 LABEL KEY
3 LABEL_KEY
4 LABEL KEY

CRC COO SEND_BUFFER_SU
1 NEW_STATE

}ACTION

UF2 ?KEY
ACTION[

CRC SLTM SEND_BUFFER_SU
1 NEW_STATE

}ACTION

(Don't repeat FISUs)
(Automatic FSN setting
(Reset BIB, BSN etc. to all one s
(Clear all testkeys)
(Start change over sequence
(Start test sequence)
(Set Originating Point Code
(Set Destination Point Code

Idle state)
Start change over sequence)

(Start test sequence)

UF3 ?KEY (OPC prompt
ACTION[

PROMPT• Enter Originating Point Code: •
6 4 RUN_SEQ

END_PROMPT
}ACTION

UF4 ?KEY (DPC prompt
ACTION[

PROMPT. Enter Destination Point Code: •
5 4 RUN_SEQ

END_PROMPT
}ACTION

SS#7 Programmer's Manual

TEST SCRIPTS

IDACOM

TEST SCRIPTS

<COO> ?RX_FRAME
ACTION{

3 RUN_SEQ
COA 1 RUN_SEQ
1 NEW_STATE

}ACTION

<SLTM> ?RX_FRAME
ACTION{

3 RUN_SEQ
SLTA 1 RUN_SEQ
1 NEW_STATE

}ACTION
}STATE

1 STATE_INIT{
CLEAR_KEYS • Stop· 1 LABEL KEY
YES AUTO_FISU

}STATE_INIT

Set buffers' routing label
Send Change Over Ack

Set buffers' routing label)
Send Test Ack)

16-9
November 1990

1 STATE{ (Change over exchange state)
<CHM> ?RX FRAME
ACTION{

<Hl> <>@ DROP DOCASE
CASE <COO>
CASE <COA>
CASE <CBD>
CASE DUP

ENDCASE
1 RUN_SEQ

}ACTION

<SNTM> ?RX FRAME
ACTION{

<># {

<># {

<># {

{

<Hl> <>@ DROP DOCASE

COA }

CBD }

CBA }

coo }

CASE <SLTM> <># { SLTA }
CASE DUP { SLTM }

ENDCASE
1 RUN_SEQ

}ACTION

<SIB> ?RX_FRAME
ACTION{

0 NEW_STATE
}ACTION

UFl ?KEY
ACTION{

2 RUN_SEQ
0 NEW_STATE

}ACTION
}STATE

IDACOM

(

(

(

(

Send Change Over Ack)
Send Change Back Deel)
Send Change Back Ack)
Send Change Over Order)

Send Test Ack)
Send Test Message

(LSSU type SIB received?)

Stop key)

Send LSSU type SIB)

SS#7 Programmer's Manual

CODING CONVENTIONS A-1
November 1990

A
CODING CONVENTIONS

The following section outlines some coding and style conventions recommended by IDACOM.
Although you can develop your own style, it is suggested to stay close to these standards to
enhance readability.

A.1 Stack Comments

A stack comment is surrounded by parentheses, and shows two stack pictures. The first picture
shows any items or 'input parameters' that are consumed by the command; the second picture
shows any items or 'output parameters' returned by the command.

Example:
The '=' command has the following stack comment.

(n, \n 2 -- flag)

In this example, n1 and n2 are numbers and the flag is either O for a false result, or 1 for a true
result. This same example could also be written as follows.

The '\' character separates parameters when there is more than one. The parameters are listed
from left to right with the leftmost item representing the bottom of the stack and the rightmost
item representing the top of the stack.

The 'I' character indicates that there is more than one possible output. The above example
indicates that either a O or a 1 is returned on the stack after the '=' operation, with O being a
false result, and 1 a true result.

The "[' and 1" characters surrounding a parameter(s) indicates that the parameter is not always
present.

IDACOM SS#7 Programmer's Manual

A-2 CODING CONVENTIONS
November 1990

A.2 Stack Comment Abbreviations

Following is a list of commonly used abbreviations. In most cases the stack comments shown in
this manual have been written in full rather than abbreviated.

:::::::j1•1a~::::::::: ::::i:::::=:::i::::::::::::::::::::j::::::j:i:::::::::::::=:::::::::::§iiir1=e~!e9,:,=:::::t:::t:::::::j:::::::::::::::jj:::::::::::::::::::::::::j:::::::j
a Memory address

b 8 bit byte

c 7 bit ASCII character

n 16 bit signed integer

d 32 bit signed integer

u 32 bit unsigned integer

f Boolean flag (0-false, non-zero=true)

ff Boolean false flag (zero)

tf Boolean true flag (non-zero)

s String (actual address of a character string
which is stored in a count prefixed manner)

Table A-1 ITL Symbols

A.3 Program Comments

Program comments appear in source code surrounded by parentheses. These describe the intent
or purpose of the definition or line of code.

There must be at least one space on each side of the parentheses.

Example:

HELLO (-­
• HELLO•
W.NOTICE

Display text Hello in Notice Window
Create string)
Output to Notice Window)

The program comment should be kept to a minimum and yet contain enough information that
another programmer can tell the intent at a glance.

SS#7 Programmer's Manual IDACOM

CODING CONVENTIONS

A.4 Test Manager Constructs

A-3
November 1990

Coding conventions for user test scripts should generally follow the style presented throughout
this manual.

Indenting nested program structures should be done using the tab key In the editor. Furthermore,
the use of many meaningful comments is highly recommended and will enhance the continued
maintainability of the program.

Example:
(State definition purpose comment)

0 STATE[
EVENT Recognition Commands
ACTION[

Action Commands
IF

END IF
}ACTION

}STATE

Comment

Comment

(Comment
(Comment

A.5 Spacing and Indentation Guidelines

The following list outlines the general guidelines for spacing and indentations:
• One space between colon and name In colon definitions.
• One space between opening parenthesis and text in comments.
• One space between numbers and words within a definition.
• One space between initial " in strings (i.e. with " string", W." string", T." string", P." string",

X" hex characters", etc ...)
• One or more spaces at end of each line unless defining string which requires additional

characters.
• Tab for nested constructs.
• Carriage return after colon definition and stack comment.
• Carriage return after last line of code in colon definition and semi-colon.

See the examples in Appendices A.6 and A.4.

IDACOM SS#7 Programmer's Manual

A-4 CODING CONVENTIONS
November 1 990

A.6 Colon Definitions

Colon definition should be preceded by a short comment. The colon definition should start at
the first column of a line. All code underneath the definition name should be preceded by one
tab. Each element within the colon definition should be well defined.

Example:
(Description of command

COMMAND NAME

IF

DOCASE
CASE X .•.)

CASE Y .••)

CASE DUP [•••
ENDCASE

ELSE
BEGIN

UNTIL
END IF

SS#? Programmer's Manual

Stack description
Comment for first line of code)

Comment

Comment
Comment
Comment

Comment
Comment

IDACOM

ASCII/EBCDIC/HEX CONVERSION TABLE B-1
November 1990

B
ASCII/EBCDIC/HEX CONVERSION TABLE

HEX DEC OCT ASCII EBCDIC HEX DEC OCT ASCII EBCDIC
00 0 00 NUL NUL 30 48 60 0
01 1 01 SOH SOH 31 49 61 1
02 2 02 STX STX 32 so 62 2 SYN
03 3 03 ETX ETX 33 S1 63 3 IR
04 4 04 EOT PF 34 S2 64 4 pp
OS s OS ENO HT 3S S3 6S s TRN
06 6 06 ACK LC 36 S4 66 6 NBS
07 7 07 BEL DEL 37 SS 67 7 EOT
08 8 10 BS GE 38 S6 70 8 SBS
09 9 11 HT SPS 39 S7 71 9 IT
OA 10 12 LF RPT 3A S8 72 RFF
OB 11 13 VT VT 3B S9 73 CU3
oc 12 14 FF FF 3C 60 74 < DC4
OD 13 1S CR CR 3D 61 7S NAK
OE 14 16 so so 3E 62 76 >
OF 1S 17 SI SI 3F 63 77 ? SUB
10 16 20 DLE DLE 40 64 100 @ SP
11 17 21 DC1 DC1 41 6S 101 A
12 18 22 DC2 DC2 42 66 102 B
13 19 23 DC3 DC3 43 67 103 c
14 20 24 DC4 RES 44 68 104 D
1S 21 2S NAK NL 4S 69 10S E
16 22 26 SYN BS 46 70 106 F
17 23 27 ETB POC 47 71 107 G
18 24 30 CAN CAN 48 72 110 H
19 2S 31 EM EM 49 73 111 I
1A 26 32 SUB UBS 4A 74 112 J cent
1B 27 33 ESC CUI 4B 7S 113 K
1C 28 34 FS IFS 4C 76 114 L <
1D 29 3S GS IGS 4D 77 11 S M (
1E 30 36 RS IRS 4E 78 116 N +
1F 31 37 us IUS 4F 79 117 0 I
20 32 40 SP DS so 80 120 p &
21 33 41 ! sos S1 81 121 0
22 34 42 " FS S2 82 122 R
23 3S 43 # wus S3 83 123 s
24 36 44 $ BYP S4 84 124 T
2S 37 4S % LF SS 8S 12S u
26 38 46 & ETB S6 86 126 v
27 39 47 I ESC S7 87 127 w
28 40 so SA S8 88 130 x
29 41 S1 SFE S9 89 131 y
2A 42 S2 SM/SW SA 90 132 z !
2B 43 S3 + CSP SB 91 133 [$
2C 44 S4 MFA SC 92 134 \
2D 4S SS ENO SD 93 13S]
2E 46 S6 ACK SE 94 136 ~

2F 47 S7 I BEL SF 9S 137 - ...,

IDACOM SS#7 Programmer's Manual

8-2 ASCII/EBCDIC/HEX CONVERSION TABLE
November 1990

HEX DEC OCT ASCII EBCDIC HEX DEC OCT ASCII EBCDIC
60 96 140 ' 90 144 220
61 97 141 a I 91 145 221 j
62 98 142 b 92 146 222 k
63 99 143 c 93 147 223 I
64 100 144 d 94 148 224 m
65 101 145 e 95 149 225 n
66 102 146 f 96 150 226 0

67 103 147 g 97 151 227 p
68 104 150 h 98 152 230 q
69 105 151 i 99 153 231 r
6A 106 152 j 9A 154 232
68 107 153 k . 9B 155 233 }
6C 108 154 I % 9C 156 234 D

60 109 155 m 90 157 235)
6E 110 156 n > 9E 158 236 .±.
6F 111 157 0 ? 9F 159 237 •
70 112 160 p AO 160 240
71 113 161 q A1 161 241 0
72 114 162 r A2 162 242 s
73 115 163 s A3 163 243 t
74 116 164 t A4 164 244 u
75 117 165 u AS 165 245 v
76 118 166 v A6 166 246 w
77 119 167 w A? 167 247 x
78 120 170 x A8 16B 250 y
79 121 171 y \ A9 169 251 z
?A 122 172 z AA 170 252
78 123 173 { # AB 171 253 L
7C 124 174 I @ AC 172 254 r
70 125 175 ! AD 173 255 [
7E 126 176 AE 174 256 >
7F 127 177 DEL " AF 175 257 •
80 12B 200 BO 176 260 0
B1 129 201 a B1 177 261 1
82 130 202 b 82 178 262 2
83 131 203 c B3 179 263 3
B4 132 204 d 84 1BO 264 4
BS 133 205 e B5 181 265 5
86 134 206 f B6 182 266 6
87 135 207 g B7 1B3 267 7
88 136 210 h BB 1B4 270 8
89 137 211 I B9 1B5 271 9
BA 138 212 BA 186 272
BB 139 213 { BB 1B7 273 J
8C 140 214 < BC 18B 274 ,
BO 141 215 f BO 1B9 275]
BE 142 216 + BE 190 276 '* BF 143 217 t BF 191 277

SS#? Programmer's Manual IDACOM

ASCII/EBCDIC/HEX CONVERSION TABLE B-3
November 1990

HEX DEC OCT ASCII EBCDIC HEX DEC OCT ASCII EBCDIC
co 192 300 { FO 240 360 0
C1 193 301 A F1 241 361 1
C2 194 302 B F2 242 362 2
C3 195 303 c F4 244 364 4
C4 196 304 D F3 243 363 3
C5 197 305 E F5 245 365 5
C6 198 306 F F6 246 366 6
C7 199 307 G F7 247 367 7
ca 200 310 H F8 248 370 8
C9 201 311 I F9 249 371 9
CA 202 312 FA 250 372
CB 203 313 FB 251 373
cc 204 314 FC 252 374
CD 205 315 FD 253 375
CE 206 316 FE 254 376
CF 207 317 FF 255 377
DO 208 320 }
D1 209 321 J
D2 210 322 K
D3 211 323 L
D4 212 324 M
D5 213 325 N
D6 214 326 0
D7 215 327 p
DB 216 330 Q
D9 217 331 R
DA 218 332
DB 219 333
DC 220 334
DD 221 335
DE 222 336
DF 223 337
EO 224 340 \
E1 225 341
E2 226 342 s
E3 227 343 T
E4 228 344 u
E5 229 345 v
E6 230 346 w
E7 231 347 x
EB 232 350 y
E9 233 351 z
EA 234 352
EB 235 353
EC 236 354
ED 237 355
EE 238 356
EF 239 357

IDACOM SS#? Programmer's Manual

COMMAND CROSS REFERENCE LIST C-1
November 1990

c
COMMAND CROSS REFERENCE LIST

This appendix cross references old commands and tokens, not appearing in this manual, with
new replacement commands. Reference should be made to the previous versions of this manual
for description of the old commands. The new commands achieve the same function, however,
the input/output parameters may have changed.

<token>@ <token> <>@

<token># <token> <>#

<INT> <Nl=INT>

<INTO> <Nl=INS>

<NAT> <Nl=NAT>

<NATO> <Nl=NAS>

<SIB2> <LSS2.SIB>

<SIE2> <LSS2.SIE>

<SIN2> <LSS2.SIN>

<Sl02> <LSS2.SIO>

<SIOS2> <LSS2.SIOS>

<SIP02> <LSS2.SIPO>

IDACOM SS#7 Programmer's Manual

SAMPLE CONFIGURATION FILE 0-1
November 1990

D
SAMPLE CONFIGURATION FILE

The SS#? application can automatically be configured by creating an appropriately named
configuration file (eg. SS? _MON.03 for PRA Monitor application 1). The configuration file is
executed when the application is initially loaded. Refer to the Programmer's Reference Manual
for valid configuration filenames.

The following program is a sample configuration file for SS#?.

Protocol set selection

• CCITT_88. SELECT_VAR

• CCITT_ISUP88.T•
• CCITT NET88.T•
• CCITT_LINK88.T•
3 LOAD_PROTOCOL_SET

(Display Format

TRACE_COMP
TIME_ON
REP_COMP
(!SUP> #MSG DETAIL_FORMAT

(Disk Recording

DISK WRAP
RECORD WDl:DAT

(Filters

D_FILTER
<FISU> F­
<LSSU> F­
<LSS2 > F­
ACTIVATE_DISK

IDACOM

(select the CCITT 1988 Blue Book Variance)

load the !SUP protocol, with supporting underlying
layers)

set the trace mode format to complete
display timestamps)
change display to complete mode)
display !SUP detail in message format

set disk recording mode to overwrite)
start disk recording)

select the disk filter
block FISU's
block 1 byte LSSU's)
block 2 byte LSSU's)
activate disk filter)

SS#7 Programmer's Manual

D-2 SAMPLE CONFIGURATION FILE

November 1 990

(Level 2 configuration

5000 COMPRESS-SU! (set the SU compression ratio)

(Level 1 configuration

ON-LINE (turn application on-line)

SS#? Programmer's Manual IDACOM

INDEX

<>@, 7-4
<>#, 7-3
<: :>, 7-5

Abort
test manager event, 15-4, 1 5-5
transmitting, 14-3

?ABORT, 15-5
ACTION{ }ACTION, 15-1
ACTIVATE....DISK, 9-1
ACTIVATE....RAM, 9-1
ACTIVATE....REPORT, 9-1
ACTIVATE....TEST, 9-2
AERM, see Initial Alignment Error Rate Monitor
AERM-E-THRESHI, 13-6
AERM-E-THRESH@, 13-6
AERM-FUNCTIONI, 13-6
AERM-FUNCTION@, 13-6
AERM-N-THRESHI, 13-6
AERM-N-THRESH@, 13-6
<>@..ALL, 7-4
ALLOT_BUFFER, 14-3
APPEND->BUFFER, 14-2
APPEND_TO_BUFFER, 14-3
Architecture

monitor, 2-1 to 2-4
simulation, 12-1 to 12-4

Arming Triggers, 10-1
AUTO_FISU, 1 3-5
AUTO_FSN, 14-1
AUTO_LI, 14-2

B, see BACKWARD
BACKWARD, 2-3
Backward Sequence Number

setting, 13-5, 14-1
BB, see SCRN_BACK
BIBTI, 14-1
BIBT@, 14-1
Bit Rate

simulation, 13-2
Block Number

decode, 7-2, 11-1
display format, 6-5

BLOCK-COUNT, 7-2, 11-1
BOF-TSTAMPI, 3-2, 13-3
·BOTH, 10-3
BOTIOM, 2-4
BSNTI, 14-1
BSNT@, 14-1
BUFFER, 14-3
Buffer(s)

allocating memory, 14-3
appending, 14-2
appending text, 14-3
clearing, 14-3
moving text, 1 4-2, 14-3
numbers, 14-1
repeated transmission, 14-3, 14-4
structure, 14-1
transmitting, 14-3

Capture RAM
capturing to RAM, 4-1
clearing, 4-2
configuring, 4-1
playback, 2-2 to 2-4
printing, 4-4
saving to disk, 4-2 to 4-4
trigger, 10-6

CAPLFULL, 4-2
-CAPLFULL, 1 0-6
+cAPLFULL, 1 0-6
CAPLOFF, 4-1
CAPLON, 4-1
CAPT_WRAP, 4-1
Character Set

ASCII, 6-5

IDACOM

INDEX

EBCDIC, 6-5
hex, 6-5
JIS8, 6-6

CLEAR_BUFFER, 14-3
CLEAR_CAPT, 4-2
CLEAR_KEYS, 15-2
CLK•EXT_CLK, 13-2
CLK•STD, 13-2
Clocking

external, 13-2
standard, 1 3-2

Comparison
anchored, 15-5
unanchored, 15-5

COMPRESS-SUI, 3-3, 13-4
COMPRESS-SU@, 3-3, 13-4
Compression Ratio, 3-3, 13-4
Configuration

capture RAM, 4-1
interface selection, 3-1
level 1, 3-1, 3-2, 13-1 to 13-3
level 2, 3-3, 3-4, 13-4 to 13-7
monitor, 3-1 to 3-5
restoring, 3-4, 13-8
saving, 3-4, 13-8
simulation, 13-1 to 13-9

Connectors
V.11, 3-1, 13-2
V.28/RS-232C, 3-1, 13-2
V.35, 3-2, 13-2
V.36, 3-2, 13-2

<COPIES>@, 7-2
COUNTER1 , 15-2
CRC Error(s)

test manager event, 15-4, 15-5
transmitting, 14-3, 14-4

?CRC_ERROR, 15-5
CS-ASCII, 6-5
CS-EBCDIC, 6-5
CS•HEX, 6-5
CS•JIS8, 6-6
CTOD_OFF, 4-3
CTOD_ON, 4-3
CTRACE, 9-5
CURRENT_LSSU, 14-4
C_FILTER, 9-2

DEACTIVATE....DISK, 9-2
DEACTIVATE..._RAM, 9-1
DEACTIVATE....REPORT, 9-1
DEACTIVATE....TEST, 9-2
Decoder

level 1, 11-1
signal unit, 7-1 to 7-5

Destination Point Code, see Point Codes
DETAIL.FORMAT, 6-3
DISK_FULL, 5-1
-DISK_FULL, 10-6
+DISK_FULL, 10-6
DISK_OFF, 5-2
DISK_ WRAP, 5-1
Display Format

character, 6-2
complete, 6-2
dual, 6-4
hex, 6-2
short, 6-1
split, 6-2
timestamp, 6-5
trace statements, 6-2, 6-5

DIS_REC, 5-2
DPC, see Point Codes
DTRACE, 9-5
D_FIL TEA, 9-2

ENB_REC, 5-2
END-TIME, 7-2, 11-1
?EOF_IND, 15-4

lndex-1
November 1990

SS#7 Programmer's Manual

lndex-2
November 1990

Event Recognition, 15-3 to 15-6
abort, 15-4, 15-5
CRC error, 15-4, 15-5
errors, 1 5-4
level 1, 15-3
level 2, 15-4
mail, 15-6
signal unit, 15-4
timers, 15-6
using tokens, 15-5
wildcard, 15-6

EVENT-TYPE@, 15-6

F, see FORWARD
F·, 9-3
F•Pc, 9-4
F+, 9-3
F+ALL, 9-3
F+ALL_OTHERS, 9-4
F+PC, 9-4
F-, 9-3
F-ALL, 9-3
F-ALL_OTHERS, 9-4
F-PC, 9-4
FF, see SCRN_FWD
FIBTI, 14-1
FIBT@, 14-1
FILE->BUFFER, 14-2
Filename

disk recording, 2-3
playback, 2-3

FILL_BUFFER, 14-3
Filters

activate, 9-1
deactivate, 9-1
routing labels, 9-4
tokens, 9-3
type, 9-2

FISU
compression, 3-3, 13-4
idling, 13-5

FORWARD, 2-3
Forward Sequence Number

automatic incrementing, 14-1
setting, 13-5, 14-1

FREEZE, 2-4, 12-4
FROM_CAPT, 2-2
FROM_DISK, 2-2
FSNT!, 14-1
FSNT@, 14-1
FULL, 6-4
F _PC_VALUE, 9-4
F _RESET, 9-4
F _RESET_ALL, 9-4
F _STRING, 9-3
F _VALUE, 9-3

HALT, 2-2, 12-3
HEADER_FORMAT, 6-3
Hex, see Display Format
HFILE->BUFFER, 14-2
HIGHLIGHT, 10-7
HIGHLIGHT-BLUE, 10-7
HIGHLIGHT-RED, 10-7

Identifiers
level 1 , 11 -1 , 15-3
level 2, 15-4
receiver port, 7-1

IF-V11, 3-1, 13-2
IF-V28, 3-1, 13-2
IF-V35, 3-2, 13-2
IF-V36, 3-2, 13-2
Initial Alignment Error Rate Monitor

activating, 13-6
emergency threshold, 13-6
maximum number, 13-6
threshold, 13-6

SS#7 Programmer's Manual

INDEX [continued]

Interface
V.11, 3-1, 13-2
V.28/RS-232C, 3-1
v.28/RS-232C, 13-2
V.35, 3-2, 1 3-2
V.36, 3-2, 13-2

?KEY, 15-6

L1-ID@, 11-1
LLEVENT, 15-3
?L 1 _EVENT, 1 5-3
L2_EVENT, 15-4
?L2_EVENT, 15-4
<>L@, 7-4
LEAD_CHECK, 13-3
LEAD_OFF, 13-3
LEAD_ON, 13-3
Level 1

configuration, 3-1, 3-2, 13-1 to 13-3
decoder, 11 -1
identifiers, 11-1, 15-3
test manager events, 15-3

Level 2
configuration, 3-3, 3-4, 13-4 to 13-7
identifiers, 15-4
simulation, 14-1 to 14-4
test manager events, 15-4

Live Data
monitor, 2-1
simulation, 12-1
simultaneous playback, 2-4, 12-3
triggers, 10-2

LOAD_ALL, 3-5, 13-9
LOAD_CONFIG, 3-4, 13-8
LOAD_LABELS, 8-2
LOAD_PROTOCOL_SET, 3-5, 13-8
LOAD_RETURN_STATE, 15-2
LONG-INTERVAL!, 6-6
LSSU

compression, 3-3, 13-4
transmitting, 14-4

?MAIL, 15-6
-MASK, 10-5
MAX-RETRY!, 13-6
MAX-RETRY@, 13-6
MONITOR, 2-2, 12-2
Monitor

architecture, 2-1 to 2-4
configuration, 3-1 to 3-5
live data, 2-1
online/offline, 3-2

NEW_STATE, 15-2
NEW_TM, 15-2

Octet Counting Mode, 3-4, 13-5
OCTET-MODEi, 3-4, 13-5
OCTET -MODE@, 3-4, 13-5

<:OF:>, 7-5

OFF-LINE, 3-2, 13-3
ON-LINE, 3-2, 13-3
OPC, see Point Codes
Origination Point Code, see Point Codes
OTHER_EVENT, 15-6
OTHER_FORMAT, 6-3

->PC, 8-1
PC->. 8-1
PE-> T4, 13-7
PLAYBACK, 2-3
Playback

capture RAM, 2-2
control, 2-3, 2-4
disk recording, 2-2 to 2-4

INDEX

ID ACOM

INDEX

Playback {continued]
monitor, 2-2
simulation, 12-2
simultaneous live data, 2-4, 12-3
triggers, 10-3

-PLAYBACK, 1 0-3
PN-> T4, 13-7
Point Codes, 8-1
PORT-ID, 7-1
Printing

capture RAM, 4-2 to 4-4
disk recording, 4-3
throughput graph, 6-6

PRINLOFF, 4-4
PRINLON, 4-4
PRINT_TPR, 6-6

QUILTRA, 4-2

REC-LENGTH, 7-1
REC-POINTER, 7-1
?RECEIVED, 15-5
RECORD, 5-2
Recording

captured data, 4-3, 4-4
filename, 2-3
live data to disk, 5-2
multi-channel, 5-3
overwrite, 5-1
playback disk, 2-2 to 2-4
stop, 5-2
suspend, 5-2

REP_CHAR, 6-2
REP_COMP, 6-2
REP_HEX, 6-2
REP _OFF, 6-1
REP_ON, 6-1
REP _SHORT, 6-1
REP _SPLIT, 6-2
REP_ TRACE, 6-2
RESELROUTING_LABELS, 8-2
Restoring

configurations, 3-4, 13-8
routing labels, 8-2

RETURN_STATE, 15-2
RLHEX, 6-7
RLTEXT, 6-7
Routing Labels, 8-1, 8-2

filters, 9-4
restoring, 8-2
saving, 8-2
subfields, 8-1
triggers, 10-5

RTRACE, 9-5
RUN_SEQ, 15-2
-RX, 10-2
?R)(_ERROR, 15-4
?R)(_FRAME, 15-4
?R)(_GOOD, 15-5
FLFIL TER, 9-2

SAVE_CONFIG, 3-4, 13-8
SAVE_LABELS, 8-2
Saving

configurations, 3-4, 13-8
routing labels, 8-2

SCALE!, 6-7
Screen, scroll control, 2-3, 2-4
SCRN_BACK, 2-3
SCRN_FWD, 2-3
?SEARCH, 1 5-5
SEE_TRA, 4-3
SELECT_VAR, 3-5, 13-9
SEND_BUFFER_SU, 14-3
SEND_FISU, 14-4
SEND_FLAGS, 14-4
SEND_LSSU, 14-4
SEND_MARKS, 14-4

IDACOM

INDEX [continued]

SEND_SPACES, 14-4
SEQ{ }SEQ, 15-2
SELDPC, 8-1
SET_OPC, 8-1
SET_SLS, 8-2
SF _SIZE, 14-4
SHORT -I NTERVAU, 6-6
SIF, see Signalling Information Field
SIF-MAXSIZEI, 3-4, 13-5
SIF-MAXSIZE@, 3-4, 13-5
Signal Unit(s)

decoder, 7-1 to 7-5
length, 7-1
length indicator, 14-2
test manager event, 15-4

Signalling Information Field, 3-4, 13-5
Signalling Link Selection, 8-2
SIM-DCE, 13-1
SIM-DTE, 13-1
Simulation

architecture, 12-1 to 12-4
bit rate, 13-2
configuration, 13-1 to 13-9
level 2, 14-1 to 14-4
live data, 12-1
online/offline, 13-3
playback, 12-2

SLS, see Signalling Link Selection
SPEED!, 13-2
SPEED@, 3-2, 13-3
SS7-TIMERI, 13-7
SS7-TIMER@, 13-7
SS7-TIMER_DEFAULT@, 13-7
START-TIME, 7-2
START_SS7_TIMER, 13-7
State Machine, 15-1
STATE_INIT{ }STATE_INIT, 15-1
STATE{ }STATE, 15-1
-STRING, 1 0-5
-STRING, 10-5
+STRING, 10-5
STRING->BUFFER, 14-2
SUERM

activating, 3-3, 13-4
counter, 3-4, 13-5
threshold, 3-3, 13-5

SUERM-COUNTI, 3-4, 13-5
SUERM-COUNT@, 3-4, 13-5
SUERM-FUNCTIONI, 3-3, 13-4
SUERM-FUNCTION@, 3-3, 13-4
SUERM-THRESH!, 3-3, 13-5
SUERM-THRESH@, 3-3, 13-5

T+, 10-3
T+ALL, 10-3
T+PC, 10-5
T-, 10-3
T-ALL, 10-3
T-ALLOTHERS, 1 0-4
T-PC, 10-5
?T4-PE, 13-7
T-ALLOTHERS, 10-4
TA1, 10-6
TA2, 10-6
TA3, 10-6
TA4, 10-7
TCLR, 15-1
Test Manager

action definition, 15-1
event recognition, 15-3
execution, 15-2
initialization, 15-1
loading multiple scripts, 15-2
sequences, 15-2
state definition, 15-1
state initialization, 15-1
state transition, 15-2
stopping the, 15-2

lndex-3
November 1990

SS#7 Programmer's Manual

lndex-4
November 1990

Test Manager [continued]
subroutines, 15-2

TF_RESET, 9-4, 10-4
TF_RESET...ALL, 9-4, 10-4
Throughput Graph

displaying, 6-6
long interval, 6-6
printing, 6-6
scaling, 6-7
short Interval, 6-6

•TIME, 10-6
-TIME, 10-6
+TIME, 10-6
TIMEOUT, 15-6
?TIMER, 15-6
Timers

duration, 13-7
setting, 13-7
starting, 13-7
test manager event, 15-6

Timestamp
beginning of frame, 3-2, 13-3
decode, 7-2, 11-1
display format, 6-5

TIME...DAY, 6-5
TIME...OFF, 6-5
TIME...ON, 6-5
•TITLE, 2-3
TM_STOP, 15-2
Tokens

decode, 7-4
filters, 9-3
test manager event, 1 5-5
triggers, 1 0-3

TOP, 2-3
TPR_OFF, 6-6
TPR_ON, 6-6
TR1, 10-2
TRLOFF, 10-1
TALON, 10-1
TR2, 10-2
TR2_0FF, 10-2
TR2_0N, 10-1
TR3, 10-2
TR3_0FF, 10-2
TR3_0N, 1 0-1
TR4, 10-2
TR4_0FF, 10-2
TR4_0N, 10-1
Trace Statements, 6-2

display format, 6-5
TRACE...COMP, 6-5
TRACE...SHORT, 6-5
TRANSFER, 4-2
Transmitting

aborts, 14-3
buffers, 14-3
CRC error, 14-3, 14-4
LSSU, 14-4
mark character, 14-4
space character, 14-4

TRA...ALL, 4-2
TRA_END, 4-3
TRA_START, 4-2
Triggers

actions, 1 0-6
arming, 10-1
capture RAM full, 10-6
conditions, 1 0-2 to 1 0-6
direction, 10-2
disk full, 10-6
highlighting, 10-7
live data, 10-2
playback data, 1 0-3
routing labels, 10-5
selection, 10-2
string, 10-5
string mask, 10-5

SS#7 Programmer's Manual

INDEX [continued]

time, 10-6
tokens, 1 0-3

TURN_OFF _LABELFILTERS, 9-5
TURN_OFF _LABELTRIGGERS, 10-5
•TX, 10-3
T_FILTER, 9-2
T_PC_VALUE, 10-4
T_RESET, 10-4
T_RESET...ALL, 10-4
T_STRING, 10-4
T_VALUE, 10-4

Wildcard(s)
comparison, 15-5
test manager event, 15-6

INDEX

IDACOM

