
USM
PROGRAMMER'S MANUAL

~
IDACOM®
PRaIOCOL TESTING SPECIALISTS

USM PROGRAMMER'S MANUAL

September 1990
Version 2.0

UNIVERSAL MONITOR/SIMULATION
Version 2.0

1-1
November 1990

UNIVERSAL MONITOR/SIMULATION
Version 2.0

1.1 Enhancements

' Display Format
The Baudot character set can now be selected for data display in ASYNC framing with 5
bits/character.

' Configuration Menu
Mark and space parity settings have been added (maximum 7 data bits) for ASYNC and
CHARACTER SYNC framing.

New configuration commands have been added for test script simplification for:
- Bit Rate;
- Sync Character;
- Message Length; and
- Message Timeout.

Refer to the Configuration section of the USM Programmer's Manual for more information.

' Receive Data Lead Transitions
Commands have been added to recognize data lead changes for display, RAM capture, or
disk. Data lead transitions must be requested in a test script before they can be detected.
The received frame indications are not affected by data lead indications. See the USM
Programmer's Manual for more information.

VJ WARNING
All configuration changes must be done prior to requesting recognition of received data
lead transitions.

~NOTE
Received data lead transitions are reported as ON when the line remains in a high state
(i.e. a steady space has been received).

Received data lead transitions are reported as OFF when the line remains in a low state
(i.e. a steady mark has been received).

' Transmit Data Lead Transitions (Simulation Only)
Commands have been added to set the transmit data lead high or low. The line remains in
the set state until the next TXD_ON, TXD_FF, or send data command. Refer to the USM
Programmer's Manual for details.

' Data Leads
Received data leads (available in release 1.4) are now captured to RAM and data recordings
for later playback.

IDACOM Release Notice

1-2
November 1990

UNIVERSAL MONITOR/SIMULATION
Version 2.0

' Message Length
Message length in CHARACTER SYNC and ASYNC can now be disabled. Previously in
CHARACTER SYNC, this was referred to as unlimited.

' Message Timeout
Message timeout in ASYNC can now be disabled.

' End of Frame Character
End of Frame Character has been added to the Configuration Menu (valid in ASYNC only).
Up to 4 separate characters can be defined to terminate the end of a received data block.
Refer to the USM Programmer's Manual for the corresponding commands.

' Saving Configurations
The interface type and end of frame characters are now saved in the specified
configuration file created using the Save Config function key.

' The MAKE._DATA1 through MAKE._DATA8 commands are now available in the monitor.

1.2 Changes

' Variables
The BYTE-TIME variable is no longer available. Contact IDACOM/HP customer support if
your test script requires this variable.

The ST ART - TIME variable must be used instead of the T /RXD-TIME variable (Version 1.4) for
received data lead transitions in test scripts. T /RXD-TIME still must be used for the
timestamp of transmitted data lead indications.

' Setting Message Length in ASYNC
Any test scripts written using the EOF _COUNT command in the ASYNC protocol must be
modified.

Example:
Set the message length to 1 character.

For versions prior to 2.0:
PORT @ 0 EOF_COUNT
CHANGE_CONFIG

For this and subsequent versions:
l=EOF_COUNT

or

PORT @ 1 EOF_COUNT
CHANGE_CONFIG

Release Notice

(Pref erred method

IDACOM

UNIVERSAL MONITOR/SIMULATION
Version 2.0

~ Reset Enable

1-3
November 1990

Rest Idle on the Configuration Menu has been changed to Reset Enable to reflect correct
functionality.

~ lnterframe Fill
lnterframe fill cannot be selected in Character SYNC, BISYNC EBCDIC, BISYNC ASCII, or
ASYNC.

1.3 Problems Fixed

~ Defining Strings
The MAKE_DATA1 through MAKE_DATA8 commands no longer overwrite the passed string
and now work with parity settings of mark and space.

~ Error Reporting
ASYNC parity errors are now reported as parity errors rather than BCC errors.

BISYNC abort errors are now reported as "ENQ in text" errors.

~ Trigger Actions
The trigger action of opening a disk recording no longer locks the tester when a disk error
occurs. All triggers are now disarmed and an error message is displayed.

'D Simulation Only
The following notice is displayed when parity is set to none, ASYNC is chosen, and
SEND_WITH_ERROR is called: 'String sent without parity error. Parity is set to none.'

When no characters are entered while constructing String1, the following message is
displayed: 'String1 has not been entered'. Similar messages are displayed for String2,
String3, and String4.

1.4 Errata

Page 10-3, USM Programmer's Manual
The following command should be worded as follows:

RXD_ TRANS (-- address)
Contains the direction of the last received data lead transition. Possible values are N_TRANS
(high state, a steady space has been received) or P _TRANS (low state, a steady mark has been
received).

IDACOM Release Notice

1-4
November 1 990

UNIVERSAL MONITOR/SIMULATION
Version 2.0

The following two commands have been added for data transmission control:

WAIT _ON (-- }
Queues a frame/block for transmission and pauses the application until the entire
frame/block is transmitted.

~NOTE
Use WAIT_ON whenever leads are for flow control.

~NOTE
The TO DTE Simulator with DCD Control set to ON, automatically queues a frame/block
for transmission and pauses until the entire f ramelblock is transmitted.

WAIT _OFF (--)
Queues a frame/block for transmission and continues the application.

Release Notice IDACOM

PREFACE

This manual is intended to provide a programmer's guide to the Universal Simulation/Monitor
programs, hereafter referred to as USM. General programming information is provided in the
Programmer's Reference Manual. Information contained in this manual is machine independent.

This manual is not intended to provide basic user instruction, but rather addresses the issues of
writing test programs using the Interactive Test Language (ITL). Refer to the machine specific
User Manual for a quick reference to the basic operation of the protocol tester.

IDACOM reserves the right to make any required changes in this manual without prior notice, and
the user should contact IDACOM to determine if any changes have been made. No part of this
manual may be photocopied, reproduced, or translated without the prior written consent of
IDACOM.

IDACOM makes no warranty of any kind with regard to this material, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose.

Copyright © IDACOM 1989

P /N 6000-1202

IDACOM Electronics Ltd.
A division of Hewlett-Packard

4211 - 95 Street
Edmonton, Alberta
Canada T6E 5R6
Phone: (403) 462-4545
Fax: (403) 462-4869

TABLE OF CONTENTS

TABLE OF CONTENTS

PREFACE

1

2

3

INTRODUCTION

CONFIGURATION ..

2.1 Interface Type

2.2 Simulation Mode .

2.3 Interface Leads . .

2.4 Protocol Configuration

2.5 Autoconfiguration

MONITOR ARCHITECTURE .

3.1

3.2

3.3

Live Data

Playback
Playback Control .

Simultaneous Live Data and Playback

4 CAPTURE RAM

5

4.1

4.2

Capturing to RAM

Transferring from RAM
To Disk .
To Printer

DISK RECORDING .

v
September 1 990

1-1

2-1

2-2

2-2

2-3

2-4

2-13

3-1

3-1

3-2
3-3

3-4

4-1

4-1

4-2
4-3
4-4

5-1

6 DISPLAY FORMAT . 6-1

7 FILTERS . 7-1

8 DECODE. 8-1

IDACOM USM Programmer's Manual

vi TABLE OF CONTENTS
September 1990

TABLE OF CONTENTS [continued]

9 SIMULATION ARCHITECTURE 9-1

9.1 Live Data. 9-1

9.2 Playback . 9-2

9.3 Simultaneous Live Data and Playback 9-3

10 TEST MANAGER . .. 10-1

10.1 ITL Constructs 10-1

10.2 Event Recognition 10-2
Layer 1 10-3
Received Frames 10-4
Timeout Detection .. 10-7
Function Key Detection . 10-8
Interprocessor Mail Events 10-8
Wildcard Events 10-8

10.3 USM Actions 10-9
Layer 1 Actions 10-9
Transmitting Data 10-11

10.4 Using Buffers . 10-12

11 TEST SCRIPTS . 11-1

11.1 TEST1 11-1

11.2 TEST2 11-2

11.3 TEST3 11-3

11.4 TEST4 11-4

11.5 TESTS 11-6

11.6 TEST6 11-7

11.7 TEST? 11-8

11.8 TEST_BSC_E 11-9

11.9 PT_TEST_PAR 11-10

11.10 PT_TEST_PAR1 11-11

APPENDICES

USM Programmer's Manual IDACOM

TABLE OF CONTENTS vii
September 1990

TABLE OF CONTENTS [continued]

A DATA FORMATS

B COMMAND SUMMARIES .

C CODING CONVENTIONS .

D

E

F

C.1

C.2

C.3

C.4

C.5

C.6

Stack Effect Comments .

Stack Comment Abbreviations

Program Comments

Test Manager Constructs .

Spacing and Indentation Guidelines

Colon Definitions

ASCII/EBCDIC/HEX CONVERSION TABLE

BAUDOT CHARACTER SET

COMMAND CROSS REFERENCE LIST

INDEX

IDACOM

A-1

8-1

C-1

C-1

C-2

C-2

C-3

C-3

C-4

D-1

E-1

F-1

USM Programmer's Manual

viii
September 1990

1-1
2-1
3-1
3-2
3-3
4-1
5-1
6-1
6-2
7-1
8-1
9-1
9-2
9-3
10-1
11-1
A-1
A-2
A-3
A-4
A-5
A-6

LIST OF FIGURES

Sample Stack Comment
Simulation Configuration Menu
Universal Monitor Data Flow Diagram - Live Data
Universal Monitor Data Flow Diagram - Offline Processing
Universal Monitor Data Flow Diagram - Freeze Mode .
Universal Data Flow Diagram - Capture to RAM .
Universal Data Flow Diagram - Recording to Disk . .
Universal Data Flow Diagram - Display and Print . .
Display Format Menu
Filter Setup Menu .
Universal Simulation/Monitor Data Flow Diagram - Decode
Universal Simulation Data Flow Diagram - Live Data
Universal Simulation Data Flow Diagram - Offline Processing
Universal Simulation Data Flow Diagram - Freeze Mode
Buffer Structure
SOL Representation of TEST 4
Bit-Oriented Protocol Frame Format (BOP}
BISYNC Frame Formats
Control Character Descriptions
Character-Oriented Protocol Transmission (COP}
ASYNC Data Character Format
NRZ and NRZI Data Encoding

USM Programmer's Manual

TABLE OF CONTENTS

1-1
2-1
3-1
3-2
3-4
4-1
5-1
6-1
6-2
7-1
8-1
9-1
9-2
9-3

10-12
11-4
A-1
A-2
A-2
A-3
A-4
A-4

IDACOM

TABLE OF CONTENTS

2-1
2-2
6-1
8-1
10-1
10-2
10-3
10-4
10-5
A-1
B-1
B-2
8-3
8-4
B-5
B-6
8-7
8-8
8-9
C-1
E-1

LIST OF TABLES

Autoconfiguration Parameters .
Autoconfiguration Times . . .
Dual Window Commands . . .
Error Detection
ASCII Character Conversion
V.28/RS-232C Interface Lead Transitions
V.35 Interface Lead Transitions
V.36/RS-449 Interface Lead Transitions
V.11/X.21 Interface Lead Transitions .
Clocking Modes .
Physical Events .
Setting Leads . .
Frame Events . .
Sending Frames .
Creating Buffers
Starting & Examining Timers .
Timer Events
Creating User Output .
Program Control Events
ITL Symbols
Baudot Character Set .

IDACOM

ix
September 1990

2-13
2-14
6-5
8-3

10-4
10-9

10-10
10-10
10-10

A-5
8-1
8-2
8-2
8-3
8-3
8-4
8-4
8-4
8-5
C-2
E-1

USM Programmer's Manual

INTRODUCTION 1-1
September 1990

1
INTRODUCTION

USM supports monitoring and testing of most internationally used synchronous and
asynchronous data communication protocols. These include bit oriented protocols such as
HDLC, SDLC, X.25, SNA, Teletex, Fax Group IV, and X.75; character oriented protocols such as
Bisync ASCII, Bisync EBCDIC, and Async data. Only layer 1 information is decoded; no automatic
protocol decoding is performed but can be implemented in user-written test scripts. Data is
displayed in character or hex format. Triggers, RAM capture, disk recording, and some filters are
provided. An autoconfiguration feature is available in the monitor.

The simulation provides responses to received events through user-written test scripts. For
built-in automatic responses to received events, the appropriate IDACOM emulation application
should be used (eg. X.25 Emulation).

All user test scripts are written in the ITL language. Test programs are made up of sequences of
ITL commands (or 'words') which exchange data and parameters via a Last In First Out (LIFO)
stack. All commands consume zero or more parameters from the stack (input) and/or leave
results on the stack (output). These commands have a stack effect comment shown beside the
definition of the command to define its input and output parameters.

~NOTE

Input
Parameters

(Par1 \ Par2

t
Item on top of stack i

Input/Output Separator

Output
Parameters

Par3 \ Par4 \ Par5)

t
Item on top of stack

Figure 1-1 Sample Stack Comment

See Appendix C for further explanation of stack parameters.

Sample complete test scripts are supplled In Section 11. These test scripts are also supplied on
disk with the application program.

The USM application can be controlled remotely from a terminal. All commands described in this
manual can be entered from a remote terminal's keyboard followed by a .,i (RETURN). The
application processes the remote command and returns the 'ROK' prompt to the remote terminal.
The remote terminal must be connected to the modem port on the back of the tester. To
configure the application for remote control, refer to the Programmer's Reference Manual.

IDACOM USM Programmer's Manual

CONFIGURATION 2-1
September 1990

2
CONFIGURATION

Simulation and monitor configuration is identical with two exceptions:
• Autoconfiguration is not available in the simulation
• Simulation mode is not available in the monitor

W WARNING
The Universal Simulation/Monitor should be in offline mode when making configuration
changes to prevent reception of invalid data or problems on the line.

GO_ONLINE (--)
Turns the interface data and lead receivers on, and returns the simulation to the selected
simulation mode.

!i9 Online function key (highlighted)

GO_OFFLINE (--)
Turns the interface data and lead receivers off (default). The simulation goes into passive
monitor mode.

!i9 Online function key (not highlighted)

S1mulat1on Conf1gurat1on Menu

~Interface Type RS232C/V.28 Interface Leads DISABLED
SiMulation Mode TO DCE

Protocol Configuration:
FraM1ng HDLC/SDLC Reset Enable
Clocking NRZ WITH CLOCK Sync Reset Character
Bit Rate 64000 DCD Control OFF
Bits/Character B CRC CCITT
Stop Bits Strip Sync ON
Part ty NONE Message Length
Sync Character HEX 7E Message T1Meout
InterfraMe Fill SYNC End of FraMe Character

Figure 2-1 Simulation Configuration Menu

IDACOM USM Programmer's Manual

2-2
September 1990

2.1 Interface Type

IF:V28 (--)

CONFIGURATION

Selects the V.28/RS-232C connector (default) and electrically isolates the other connectors on
the port.

~ RS232CIV.28 function key

IF=V11 (--)
Selects the V.11/X.21 connector and electrically isolates the other connectors on the port.

~ RS422/V. 11 function key

IF=V35 (--)
Selects the V.35 connector and electrically isolates the other connectors on the port.

~ V.35 function key

IF=V36 (--)
Selects the V.36/RS-449 connector and electrically isolates the other connectors on the port.

~ RS449/V.36 function key

~NOTE
A WAN tester has a V.28, V.11, and either a V.35 or V.36 connector. These commands are
only applicable if the program is running on a WAN interface.

2.2 Simulation Mode

Selects the physical type of simulation and determines whether the tester generates or expects to
receive clocking, as well as setting which pins transmit and receive data.

=SIM_DTE (--)
Selects the 'to DTE' interface. Clocking must be supplied by the attached equipment.

~ TO DTE function key

=SIM_DCE (--)
Selects the 'to DCE' interface. The tester supplies all necessary clocking information to the
interface connector.

~ TO DCE function key

~NOTE
When the simulation is running on a a-Channel, only the TO DCE interface is allowed. Thus,
the command =SIM_DCE is ignored.

USM Programmer's Manual IDACOM

CONFIGURATION

2.3 Interface Leads

~ Interface Leads

2-3
September 1990

Individual or all interface leads can be enabled or disabled (default). Leads must be enabled for
test manager detection.

ENABLE_LEAD (lead identifier --)
Enables the specified lead. Refer to the Programmer's Reference Manual for a list of
supported leads for each interface type.

Example:
Enable the request to send lead.
IRS ENABLE_LEAD

DISABLE_LEAD (lead identifier --)
Disables (default) the specified lead. Refer to the Programmer's Reference Manual for a list of
supported leads for each interface type.

Example:
Disable the clear to send lead.
ICS DISABLE_LEAD

ALL_LEADS (-- lead identifier)
Enables/disables all leads supported on the currently selected WAN interface. ALLLEADS
must be used with ENABLE_LEAD or DISABLE_LEAD.

Example 1:
Enable all leads on the current interface.
ALL_LEADS ENABLE_LEAD

~ ENABLED function key

Example 2:
Disable all leads on the current interface.
ALL_LEADS DISABLE_LEAD

~ DISABLED function key

IDACOM USM Programmer's Manual

2-4 CONFIGURATION
September 1990

2.4 Protocol Configuration

~Framing

W WARNING
Framing must be the first item selected. All other items, except bit rate, change to the default
configuration for each framing type. See Appendix A for framing formats.

P:BOP[HDLC/SDLC] (--)
Selects bit-oriented procedure (default) with the following defaults:

• NRZ clocking
• 8 bits per character
• No parity
• Sync character of hex 7E
• lnterframe fill character is the sync character
• DCD control is off
• CRC calculation according to CCITT
• Strip sync is on
• ASCII character set

~ HDLC/SDLC function key

P=COP_SYNC (--)
Selects character-oriented procedure with the following defaults:

• NRZ clocking
• 8 bits per character
• No parity
• Sync character of hex 16
• lnterframe fill is marking
• Reset enable is on
• Sync reset character of hex FF
• DCD control is off
• No CRC calculation
• Strip sync is on
• Message or block length is disabled
• ASCII character set

~ CHARACTER SYNC function key

USM Programmer's Manual IDACOM

CONFIGURATION

P:EBCDIC_BISYNC (--)
Selects Bisync EBCDIC framing with the following defaults:

• NAZ clocking
• 8 bits per character
• No parity
• Sync character of hex 32
• lnterframe fill is marking
• DCD control is off
• CAC calculation according to CAC-16
• Strip sync is on
• EBCDIC character set

~ BISYNC EBCDIC function key

P=ASCll_BISYNC (--)
Selects Bisync ASCII framing with the following defaults:

• NAZ clocking
• 7 bits per character
• Odd parity
• Sync character of hex 16
• lnterframe fill is marking
• DCD control is off
• CAC calculation according to VAC/LAC
• Strip sync is on
• ASCII character set

~ BISYNC ASCII function key

P:ASYNC (--)
Selects asynchronous framing with the following defaults:

• 8 bits per character
• 1 stop bit
• No parity
• DCD control off
• Message or block length is limited to 60 characters
• Timeout when 17 milliseconds occur between characters
• End of frame character is disabled
• ASCII character set

~ ASYNC function key

~NOTE
P=ASYNC is ignored on the /SON interfaces.

IDACOM

2-5
September 1990

USM Programmer's Manual

2-6 CONFIGURATION
September 1990

~Clocking
IDACOM testers support four different clocking modes on a WAN interface. See Table A-1 for
clocking modes and Figure A-6 for NAZ and NAZI data encoding.

CLK:STD (--)
Selects NAZ (non-return to zero) encoding with modem provided clocks (valid for all framing
methods excluding ASYNC).

~ NRZ WITH CLOCK function key

CLK=EXT_CLK (--)
Selects a DTE provided transmit clock on pint 24 of an RS-232C connector (valid for all
framing methods excluding ASYNC).

ttJ EXTERNAL TX CLOCK function key

CLK:NRZI (--)
Selects the non-return to zero Inverted method of encoding with timing Information extracted
from the data signal (valid for HDLC/SDLC framing only).

~ NRZI function key

CLK=NRZIC (--)
Selects the non-return to zero Inverted method of encoding with timing information extracted
from the provided clock signal (valid for HDLC/SDLC framing only).

~ NRZI WITH CLOCK function key

~Bit Rate
Monitor:
When asynchronous framing or NAZI clocking is selected, the interface speed must be selected
from preset values on the Interface Port Speed Menu or set to a user-defined speed.

When synchronous framing and any other clocking mode is selected, the interface speed is
measured, in bits per second, directly from the physical line.

Simulation:
The interface speed can be selected from preset values on the Interface Port Speed Menu, set to
a user-defined speed, or measured depending on the emulation interface and clocking
selections.

~NOTE
When asynchronous framing or a 'to DTE' interface is selected, the interface speed can only
be selected from preset values on the Interface Port Speed Menu or set to a user-defined
speed.

USM Programmer's Manual IDACOM

CONFIGURATION

NRZ WITH CLOCK Measure Measure Measure

EXTERNAL TX CLOCK Select Select Select

NAZI Select

NAZI WITH CLOCK Measure

Effect of Clocking and Simulation Mode Selections on Bit Rate

~NOTE
Clocking is provided by the attached equipment when the bit rate can be selected.

:SPEED (bit rate--)

2-7
September 1990

Measure

Select

Specifies the number of bits per second and is used by the monitor to calculate throughput
measurements. The port identifier can be obtained from the contents of the PORT variable.

Example:
Set the interface speed to 1200.
1200 =SPEED (Set the bit rate

~NOTE
The only interface speed allowed when the application is running on a a-Channel is 64000
bps.

~ Bits/Character
Selects the number of bits per character.

BITS/CHAR=8 (--)
Selects 8 bits per character (valid in HDLC/SDLC, CHARACTER SYNC, BISYNC EBCDIC, and
ASYNC).

~ 8 function key

BITS/CHAR:7 (--)
Selects 7 bits per character (valid in BISYNC ASCII, CHARACTER SYNC, and ASYNC).

~ 7 function key

BITS/CHAR=6 (--)
Selects 6 bits per character (valid in CHARACTER SYNC and ASYNC).

~ 6 function key

BITS/CHAR=5 (--)
Selects 5 bits per character (valid in CHARACTER SYNC and ASYNC).

~ 5 function key

IDACOM USM Programmer's Manual

2-8 CONFIGURATION
September 1990

~Stop Bits
Selects the number of stop bits per character (valid in ASYNC).

STOP _BITS= 1.0 (--)
Selects 1 stop bit per character.

~ 1 function key

STOP _BITS= 1.5 (--)
Selects 1.5 stop bits per character.

~ 1.5 function key

STOP _BITS:2.0 (--)
Selects 2 stop bits per character.

~ 2 function key

~Parity
Selects the checking method for character integrity during transmission. The parity is set during
transmission and checked on reception.

PARITY=NONE (--)
Character Integrity is not checked (valid in HDLC/SDLC, CHARACTER SYNC, BISYNC EBCDIC,
and ASYNC).

~ NONE function key

PARITY:ODD (--)
Uses odd parity for checking character integrity (valid in CHARACTER SYNC, BISYNC ASCII,
and ASYNC).

~ ODD function key

PARITY: EVEN (--)
Uses even parity for checking character integrity (valid In CHARACTER SYNC and ASYNC).

~ EVEN function key

PARITY:MARK (--)
Uses mark parity (parity bit Is always equal to 1)), for checking character Integrity (valid for
CHARACTER SYNC and ASYNC).

~ MARK function key

PARITY=SPACE (--)
Uses space parity (parity bit Is always equal to 0) for checking character integrity (valid for
CHARACTER SYNC and ASYNC).

~NOTE
Mark, space, and odd or even parity are not available when B bits per character is selected.

USM Programmer's Manual IDACOM

CONFIGURATION

~ Sync Character

2-9
September 1990

Selects the bit pattern which identifies the start and end of a block of data (not applicable in
ASYNC).

SYNC:7E (--)
Sets the sync character to hex 7E (valid in HDLC/SDLC).

~ HEX 7E function key

SYNC=16 (--)
Sets the sync character to hex 16 (valid in BISYNC ASCII and CHARACTER SYNC).

~ HEX 16 function key

SYNC:32 (--)
Sets the sync character to hex 32 (valid in BISYNC EBCDIC and CHARACTER SYNC).

~ HEX 32 function key

SYNC:96 (--)
Sets the sync character to hex 96 (valid in CHARACTER SYNC).

~ HEX 96 function key

=SYNC (sync character --)
Specifies the sync character. Valid values for sync character are hex o through FF (valid in
CHARACTER SYNC).

Example:
Set the sync character to hex FF.
OxFF =SYNC (Set the sync character

~ SYNC function key

~ lnterframe Fill
Selects the bit pattern transmitted between blocks of data.

IF _FILL=SPACE (--)
Transmits the space bit pattern (all O's) between blocks of data (valid in ASYNC).

IF _FILL:MARK (--)
Transmits the mark bit pattern (all 1's) between blocks of data (valid in all framing methods).

g; MARK function key

IF _FILL:SYNC (--)
Transmits sync characters between blocks of data (valid in HDLC).

~ SYNC function key

IDACOM USM Programmer's Manual

2-10 CONFIGURATION
September 1990

7 Reset Enable
Selects whether the sync reset character is enabled (valid in CHARACTER SYNC).

RESET _ENABLE_ON (--)
Enables the sync reset character.

~ ON function key

RESET _ENABLE_OFF (--)
Disables the sync reset character.

~ OFF function key

7 Sync Reset Character
Sets the character which causes the receiver to start a new sync search (valid in CHARACTER
SYNC).

SYNC_RESET=FF (--)
Sets the sync reset character to hex FF (default).

~ HEX FF function key

=RESET (sync reset character--)
Specifies the sync reset character. Valid values are hex O through FF.

Example:
Set the sync reset character to hex 16.
Ox16 =RESET (Define the sync reset character

~ Modify Sync Reset function key

7 DCD Control
DCD_ON (--)

Turns on DCD control. The carrier detect lead must be on to receive data (valid in all but
A SYNC).

~ ON function key

~NOTE
The Universal Simulation 'to DTE' Simulation mode automatically turns on the carrier
detect lead prior to transmitting data, and off after transmitting (when DCD control is
turned on).

DCD_OFF (--)
Turns off DCD control (default). The state of the carrier detect lead does not affect data
reception (valid in all framing methods).

~ OFF function key

USM Programmer's Manual IDACOM

CONFIGURATION

~CRC
CRC=CCITT (--)

2-11
September 1990

Uses the CCITT Recommendation method for determining errors. A calculation is performed
by the transmitter and a sixteen bit field (FCS) is attached to the end of the frame. The
receiver performs the same calculation and the results should match those in the transmitted
FCS bytes (valid in HDLC/SDLC).

~ CC/TT function key

CRC:NONE(--)
The received frame is not checked for errors (valid in CHARACTER SYNC).

~ NONE function key

CRC:CRC_16 (--)
Uses the IBM BISYNC EBCDIC method for determining errors. A calculation is performed by
the transmitter and a 16 bit field or BCC (block check character) is attached to the
transmission block. The receiver performs the same calculation and the results should match
those in the transmitted BCC (valid in EBCDIC BISYNC).

~ CRC-16 function key

CRC=VRC/LRC (--)
Uses the IBM BISYNC EBCDIC method for determining errors. VRC (vertical redundancy
checking) is used to check each character as it Is received. LAC (longitudinal redundancy
checking) is used to check the entire block of data. The LAC character is calculated by the
transmitting station and inserted at the end of the block as the BCC (valid in BISYNC ASCII).

~ VRCILRC function key

~Strip Sync
Selects whether SYNC characters are stripped by the receiver.

STRIP _SVNC_ON (--)
Strips sync characters (valid In all but ASYNC).

~ ON function key

STRIP _SYNC_OFF (--)
Sync characters are not stripped (valid in CHARACTER SYNC).

~ OFF function key

IDACOM USM Programmer's Manual

2-12 CONFIGURATION
September 1990

-7 Message Length
Determines the length of a received data block (valid in ASYNC or CHARACTER SYNC).

NO_EOF _COUNT (--)
Character count is not used to determine the length of the received data block.

Example:
Turn off end of frame character count in ASYNC.
P=ASYNC (Specify ASYNC
NO_EOF_COUNT (Turn off end of frame character count)

~ DISABLED function key

=EOF _COUNT (#of characters --)
Specifies the number of characters received before terminating a received data block.

Example:
Set the message length to 400 characters in ASYNC.
P=ASYNC (Specify ASYNC)
400 =EOF_COUNT (Specify 400 characters

~ Modify Message Length function key

-7 Message Timeout
ASYNC_TIME (milliseconds --)

Specifies the maximum elapsed time between characters before terminating a received data
block (valid in ASYNC). Valid values are 1 through 65535 milliseconds.

Example:
Set the message timeout to 1000 milliseconds.
1000 ASYNC_TIME (Set the timeout

~ Modify function key

NO_ASYNC_ TIME (--)
Elapsed time between characters is not used to terminate a received data block (valid in
ASYNC).

~ DISABLED function key

-7 End of Frame Character
ENABLE_EOF _CHAR (character -- flag)

Enables a specified character used to terminate a received data block in ASYNC. Up to four
different characters can be specified with values of hex 00 through FF. A true flag (1) is
returned if successful, and a false flag (0) if an invalid character value or more than four
characters have been enabled.

~ Specify Character function key
ENABLED function key

USM Programmer's Manual IDACOM

CONFIGURATION

DISABLE_EOF _CHAR (character -- flag)

2-13
September 1990

Disables a specified character used to terminate a received data block in ASYNC.

~ DISABLED function key

Example:
Specify and enable the first end of frame character as a carriage return (hex OD).
OXOD 1 ASSIGN_EOF_CHAR (Specify character)
1 ENABLE_EOF_CHAR (Enable)

CLEAR_EOF _CHAR (--)
Disables all characters used to terminate a received data block in ASYNC (default).

2.5 Autoconfiguration

Autoconfiguration can be used when the line being monitored on a WAN interface has an
unknown protocol to determine whether the protocol is bit-oriented (HDLC/SDLC),
character-oriented (COP), BISYNC, or ASYNC. The characteristics are determined as shown in
Table 2-1.

AUTO_CONF (--)
Automatically configures protocol parameters from the received data.

~ Monitor topic
Autoconfigure function key

HDLC/SDLC

Character SYNC

BISYNC

ASYNC

Baud Rate
Encoding scheme (NAZ or NRZIC)

Baud Rate
SYNC Character (Ox16, Ox32, Ox96)

Baud Rate
Character Set (ASCII, EBCDIC)

Baud Rate
Bits/Character (5, 6, 7, 8)
Parity (NONE, ODD, EVEN)

Table 2-1 Autoconfiguration Parameters

Recognized baud rates for synchronous framing are 300, 1200, 2400, 4800, 7200, 9600, 14400,
16000, 19200, 38400, 56000, and 64000.

Recognized baud rates for asynchronous framing are 300, 1200, 2400, 4800, 7200, 9600, 14400,
and 19200.

~NOTE
If the line has a baud rate other than those listed previously, autoconfigure selects the closest
supported speed.

IDACOM USM Programmer's Manual

2-14 CONFIGURATION
September 1990

During autoconfiguration, notices appear Indicating the progress of the procedure. If
autoconfiguration is successful, the monitor goes online and received data is displayed on the
screen and captured to RAM; if autoconfiguration is unsuccessful, the following notice is
displayed:

Configuration not found.

111111\lllill.llll i!!!!!!!!!l!!!!!!!!!!!!!~~T•!(!!!!!!!!!!!
SYNC 30 sec. 15 sec. 12 sec.

ASYNC 25 sec. 20 sec. 12 sec.

Table 2-2 Autoconfiguration Times

Autoconfiguration might fail to determine the configuration if the data circuit:
• is idle;
• contains small bursts of data;
• uses space for interframe fill or space for rest idle;
• contains synchronous data and the DCE clock line is not a one times (1x) clock; or
• carries a non-supported protocol.

USM Programmer's Manual IDACOM

MONITOR ARCHITECTURE 3-1
September 1990

3
MONITOR ARCHITECTURE

The Universal Monitor program monitors live data, saves data to capture RAM or disk, and
displays data in a number of different formats. Triggers can perform specific actions when a
specified event occurs.

3.1 Live Data

The monitor application receives events from the interface or from the internal timer and
processes them as shown in Figure 3-1 .

• • . .
••

• •
Interface

Decode

Internal Timers

Test
Manager

••OD Disk CRT
Capture RAM

Figure 3-1 Universal Monitor Data Flow Diagram - Live Data

By default, the Universal Monitor captures data in the capture RAM buffer and displays it on the
screen in a short format report.

~ Display topic
Live Data function key

MONITOR (--)
Selects the live data mode of operation. All incoming events are decoded and displayed in
real-time.

IDACOM USM Programmer's Manual

3-2 MONITOR ARCHITECTURE
September 1990

3.2 Playback

Data (both protocol and lead information) can be examined in an offline mode using either the
capture RAM or disk file as the data source.

Disk

'--Mo_n_it_or_,,, t---,..--1~(T'1ggMO J
Test

Manager

CRT

Figure 3-2 Universal Monitor Data Flow Diagram - Offline Processing

~ FROM_CAPT HALT
Display topic
Playback RAM function key

~ FROM_DISK HALT PLAYBACK
Display topic
Playback Disk function key

HALT (--)
Selects the playback mode of operation. Data is retrieved from capture RAM or a disk file,
decoded, and displayed or printed. Capture to RAM is suspended in this mode.

FROM_CAPT (--)
Selects the capture buffer as the source for data transfer.

FROM_DISK (--)
Selects a disk file as the source for data transfer.

USM Programmer's Manual IDACOM

MONITOR ARCHITECTURE

PLAYBACK (--)

3-3
September 1990

Opens a data recording file for playback. When used in the Command Window, the filename
can be specified as part of the command.

Example:
PLAYBACK DATAl

~NOTE
When PLAYBACK is used in a test script, the filename must be specified with =TITLE.

=TITLE (filename --)
Specifies the name of the file to open for disk recording or disk playback.

Example:
Obtain playback data from disk.
FROM_DISK (Identify a disk file as data source)
HALT (Place the monitor in playback mode)
• ASYNc.1· =TITLE (Create title for next data file to be opened
PLAYBACK (Playback data)

Playback Control

The following commands control display scrolling.

FORWARD or F (--)
Scrolls one line forward on the screen.

~ .U. (Down arrow)

BACKWARD or B (--)
Scrolls one line backward on the screen.

~ It (Up arrow)

SCRN_FWD or FF (--)
Scrolls one page forward on the screen.

~ CTRL il

SCRN_BACK or BB (--)
Scrolls one page backward on the screen.

~ CTRL It

TOP (--)
Positions the display at the beginning of the playback source.

gj CTRL SHIFT It

IDACOM USM Programmer's Manual

3-4 MONITOR ARCHITECTURE
September 1 990

BOTTOM (--)
Positions the display at the end of the playback source.

~ CTRL SHIFT .U

3.3 Simultaneous Live Data and Playback

Live data can be recorded to disk while playing back data from capture RAM .

.
• ·1----•1

Interface

!1•··:·:·:·:·:·.1·:·:·:·:·yj7j ld¥J'1·~?· ___ ,.., Decode
·····i···:::

Capture RAM

Test
Manager

Disk

Triggers

OP
CRT

Printer

Figure 3-3 Universal Monitor Data Flow Diagram - Freeze Mode

~ FROM_CAPT FREEZE
Capture topic
Record to DISK function key
Display topic
Playback RAM function key

FREEZE (--)
Enables data to be recorded to disk while data from capture RAM is played back.

USM Programmer's Manual IDACOM

CAPTURE RAM 4-1
September 1990

4
CAPTURE RAM

This section describes the data flow diagram for capture to RAM and lists the commands
available for test scripts. Data stored in either capture RAM or disk can be played back as
described in Section 3.2. Data stored in capture RAM can be transferred to disk.

Interface

Capture
Setup

l
•

.
... . .

Capture RAM

Figure 4-1 Universal Data Flow Diagram - Capture to RAM

4.1 Capturing to RAM

CAPT _ON (--)
Saves live data in capture RAM (default).

~ Capture topic
Capture to RAM function key (highlighted)

CAPT _OFF (--)
Live data is not saved in capture RAM.

~ Capture topic
Capture to RAM function key (not highlighted)

CAPT _WRAP (--)
Initializes capture RAM so that new data overwrites (default) old data after the capture buffer
is full (endless loop recording).

~ Capture topic
Recording Menu
~ When Buffer Full

WRAP function key

IDACOM USM Programmer's Manual

4-2
September 1990

CAPT_FULL (--)
Initializes capture RAM so that capturing stops when the buffer is full.

~ Capture topic
Recording Menu
~ When Buffer Full

STOP function key

'\(;WARNING
CAPT_FULL and CAPT_WRAP erase all data in capture RAM.

CLEAR_CAPT (--)
Erases all data currently in capture RAM.

~ Capture topic
Clear function key

4.2 Transferring from RAM

CAPTURE RAM

Data can be transferred from capture RAM to disk, and printed as it is played back. To transfer
data to disk, a data recording must be opened using RECORD and CTOD_ON commands prior to
using TRANSFER. To transfer data from capture RAM to the printer, the PRINT _ON command
must first be issued. The data being transferred is displayed on the screen.

TRANSFER (--)
Transfers data from the selected data source.

~ Capture topic
Save RAM to Disk function key (highlighted)

QUIT_TRA (--)
Abruptly terminates the transfer of data from capture RAM to disk.

~Capture topic
Save RAM to Disk function key (not highlighted)

TRA_ALL (--)
Transfers the entire contents of capture RAM (default) when the TRANSFER command is used.

~ Capture topic
Save RAM to Disk function key
All function key

USM Programmer's Manual IDACOM

CAPTURE RAM

TRA_ST ART (--)

4-3
September 1 990

Selects the starting block for transfer and is used with TRA_END when a partial transfer is
desired. Use the cursor keys to locate the desired starting block prior to calling TRA_START.
TRA_START selects the last scrolled block as the initial starting block for transfer.

~ Capture topic
Save RAM to Disk function key
Set Start function key

TRA_EN D (--)
Selects the final block for transfer and is used with TRA_ST ART when a partial transfer is
desired. Use the cursor keys to locate the desired final block prior to calling TRA_END.
TRA_END selects the last scrolled block as the final starting block for transfer.

~ Capture topic
Save RAM to Disk function key
Set End function key

SEE_ TRA (--)
Displays the port identifier and block number for the initial and final blocks selected for
transfer in the Command and Test Script Windows.

Example:
Open a data file with the filename 'DATA1' and transfer all data from capture RAM to disk. After
the transfer is complete, turn off data recording.

FROM_CAPT
HALT
• DATAl• =TITLE
RECORD
CTOD ON
TRA_ALL
TRANSFER
DISK_OFF

To Disk

CTOD_ON (--)

Designate Capture RAM as data source)
Enter playback mode)
Assign filename DATAl)
Open data recording)
Enable Capture Transfer to disk)
Transfer all data)
Transfer data from Capture to disk
Turn off data recording)

Enables transfer of data from capture RAM to disk when data source is playback RAM and a
data recording file is open.

CTOD_OFF (--)
Disables transfer of data from capture RAM to disk (default) when data source is playback
RAM.

IDACOM USM Programmer's Manual

4-4 CAPTURE RAM
September 1990

To Printer

PRINT _ON (--)
Prints data lines as displayed during playback from either capture RAM or disk. No printout is
made when the source is live data. The printer must be configured from the Printer Port
Setup Menu under the Setup topic on the Home processor.

~ Print topic
Print On function key

PRINT _OFF (--)
Data is not printed during playback (default).

~ Print topic
Print Off function key

Example:
Transfer all data from capture RAM to the printer.

FROM_CAPT (Designate Capture RAM as data source)

HALT (Enter playback mode
PRINT ON (Enable printing)
TRA ALL (Tran sf er all)

TRANSFER (Transfer data to printer

USM Programmer's Manual ID ACOM

DISK RECORDING 5-1
September 1 990

5
DISK RECORDING

Live data from the Interface can be recorded to either a floppy or hard disk. Data stored In either
capture RAM or disk can be played back as described in Section 3.2. Data stored In capture
RAM can be transferred to disk as described in Section 4.2.

Disk Recordi09
Setup

.. ..
Interface

l

Capture RAM

Disk Filter
Setup

l
Disk

Figure 5-1 Universal Data Flow Diagram - Recording to Disk

DISK_WRAP (--)
Selects disk recording overwrite (default).

~ Capture topic
Recording Menu
-? When File Full

WRAP function key

DISK_FULL (--)
Tums off disk recording overwrite. Recording continues until the data recording file is full.

~ Capture topic
Recording Menu
-? When File Full

STOP function key

W WARNING
DISK_WRAP and DISK_FULL must be called prior to opening a recording with the RECORD
command. If called while recording is in process, the status of the disk recording overwrite for
this recording session will not change.

IDACOM USM Programmer's Manual

5-2 DISK RECORDING
September 1990

RECORD (--)
Opens a data recording file. When used in the Command Window, the filename can be
specified as part of the command.

Example:
RECORD DATAl

~ Capture topic
Record to Disk function key (highlighted)

~NOTE
When RECORD is used in a test script, the filename must be specified with =TITLE. Because
of the relatively long time required to open a disk file (especially on a floppy drive), RECORD
should not be used within time critical portions of a test script.

Trace report lines are included in the data file when an application requests start and end
recording. The information in these traces identifies the traffic type and application program
used while the data was being recorded.

Example:
Recording Start Universal Mon
Vl. 3-1. 3 Rev 0

Recording End Universal Sim
Vl.3-1.3 Rev 0

DISK_OFF (--)

WAN RS232-C
PTSOO - 24

WAN RS232-C
PTSOO - 24

SN# 03-1

SN# 03-1

Live data is not recorded to disk. The current disk recording is closed.

~ Capture topic
Record to Disk function key (not highlighted)

~NOTE
Refer to the Programmer's Reference Manual for multi-processor disk recording.

D IS_REC (--)
Momentarily suspends data recording. The data recording file remains open but no data is
saved to disk.

~ Capture topic
Record to Disk function key (highlighted)
Suspend Recording function key (highlighted)

EN B_REC (--)
Enables data recording. The data recording file remains open and live data is recorded to
disk.

~ Capture topic
Record to Disk function key (highlighted)
Suspend Recording function key (not highlighted)

USM Programmer's Manual IDACOM

DISPLAY FORMAT 6-1
September 1990

6
DISPLAY FORMAT

The Universal Monitor and Simulation applications can display data from the line (live data), from
capture RAM, or from a disk recording in the following display formats:

• Hexadecimal
• Character
• Short
• Split
• Trace Statements

The data flow diagram for displaying and printing data, as well as commands available for test
scripts, are described in this section.

Capture RAM i
• Disk

Display: and Print

T
CRT

l
~
Printer

Figure 6-1 Universal Data Flow Diagram - Display and Print

~NOTE
Data can only be printed in playback mode.

IDACOM USM Programmer's Manual

6-2
September 1990

Display Format Menu

~Display ForMet SHORT Duel Window

TiMesteMp OFF Trace Display ForMet
Character Set ASCII

Throughput Graph
Short Interval Csec)
Long Interval Csec)

Figure 6-2 Display Format Menu

~ Display Format
REP_ON (--)

Turns on data display (default).

~ OFF function key (not highlighted)

REP _OFF (--)
Turns off data display.

~ OFF function key (highlighted)

REP _SHORT (--)

DISPLAY FORMAT

OFF

SHORT

OFF
10

600

Displays data in condensed report (def a ult). This includes the port identifier or timestamp, the
length, and the first ten characters of data. This format is useful for higher speed monitoring
as more frames per screen are displayed and processing is kept to a minimum.

~ SHORT function key

REP _HEX (--)
Displays timestamps or block sequence numbers and the port identifier in text. Frame
contents are displayed in hex.

~ HEX function key

REP _CHAR (--)
Displays timestamps or block sequence numbers and the port Identifier in text. Frame
contents are displayed in the currently selected character set.

~ CHARACTER function key

USM Programmer's Manual IDACOM

DISPLAY FORMAT

REP_NONE (--)
Displays only trace statements.

~ TRACE function key

SPLIT _ON (--)

6-3
September 1990

Displays data in short format with a split screen display. The screen is divided in half with
frames received from the DCE interface displayed on the left (Rx) and frames received from the
DTE interface on the right (Tx).

~ SPLIT function key

SPLIT _OFF (--)
Sets the data display to the full screen short format display (default).

~ SHORT function key

REP_NONE (--)
Displays only trace statements.

~ TRACE function key

7 Timestamp
Timestamp reporting is available when the display format is not in split mode.

TIME_OFF (--)
Timestamps are not displayed (default). Block sequence numbers are displayed for each
received frame.

~ OFF function key

TIME_ON (--)
Displays the start and end of frame timestamps as minutes, seconds, and tenths of
milliseconds. Block sequence numbers for received frames are not displayed.

~ MM:SS.ssss function key

TIME_DAY (--)
Displays the start and end of frame timestamps as days, hours, minutes, and seconds. Block
sequence numbers for received frames are not displayed.

~ DD HH:MM:SS function key

IDACOM USM Programmer's Manual

6-4 DISPLAY FORMAT
September 1990

7 Character Set
Selects the character set for data display.

R=ASCll (--)
Sets the character set for data display to ASCII (default).

~ ASCII function key

R:EBCDIC (--)
Sets the character set for data display to EBCDIC.

~ EBCDIC function key

R=HEX (--)
Sets the character set for data display to hex.

~ HEX function key

R=TELETEX (--)
Sets the character set for data display to TELETEX.

~ TELETEX function key

R:JIS8 (--)
Sets the character set for data display to JIS8.

~ JISB function key

R=BAUDOT (--)
Sets the character set for data display to Baudot (available in ASYNC framing with 5
bits/character).

CLEAR_CRT (--)
Clears the display in the Data Window.

~ Display topic
Clear function key

USM Programmer's Manual ID ACOM

DISPLAY FORMAT

~ Dual Window

6-5
September 1990

If two applications have been loaded, the screen can be divided horizontally to display data from
both applications. The current application is always displayed in the top window.

FULL (--)
Uses the entire Data Display Window for the current application.

Dual window commands vary depending on the machine configuration. Table 6-1 shows the
relationship between machine configuration, application processors, and dual window
commands.

,:::11:;n!11:::rnimM: ::,:::::::::191m1n1:]:=:r,:=::::::=:::::=191"=·::w~n;e1.=11: .. ,1·=.:=:=:==,:::::
WAN/WAN DUAL1+2 AP #1 AP #2

BRA/WAN DUAL1+2 AP #1 AP #2

DUAL1+7 AP #1 AP #3

DUAL2+7 AP #2 AP #3

PRA DUAL3+4 AP #1 AP #2

PRA/BRA/WAN DUAL1+2 AP #1 AP #2

DUAL1+3 AP #1 AP #4

DUAL1+4 AP #1 AP #5

DUAL1+7 AP #1 AP #3

DUAL2+3 AP #2 AP #4

DUAL2+4 AP #2 AP #5

DUAL2+7 AP #2 AP #3

DUAL3+4 AP #4 AP #5

DUAL3+7 AP #4 AP #3

DUAL4+7 AP #5 AP #3

BRA/BRA DUAL1+2 AP #1 AP #2

DUAL1+3 AP #1 AP #4

DUAL1+4 AP #1 AP #5

DUAL1+5 AP #1 AP #6

DUAL1+7 AP #1 AP #3

DUAL2+3 AP #2 AP #4

DUAL2+4 AP #2 AP #5

DUAL2+5 AP #2 AP #6

DUAL2+7 AP #2 AP #3

DUAL3+4 AP #4 AP #5

DUAL3+5 AP #4 AP #6

DUAL3+7 AP #4 AP #3

DUAL4+5 AP #5 AP #6

DUAL4+7 AP #5 AP #3

DUAL5+7 AP #6 AP#3

PRA/WAN DUAL1+3 AP #1 AP #2

DUAL1+4 AP #1 AP #3

DUAL3+4 AP #2 AP #3

Table 6-1 Dual Window Commands

IDACOM USM Programmer's Manual

6-6 DISPLAY FORMAT
September 1 990

~ Trace Display Format
Selects the display format for trace statements.

TRACE_SHORT (--)
Displays the trace statement on one line (short format) containing only user-defined text.

~ SHORT function key

TRACE_COMP (--)
Displays the trace statement on two lines (complete format). Block sequence numbers or
timestamps are displayed on the first line, and user-defined text on the second line.

~ COMPLETE function key

~Throughput Graph
The throughput rate can be calculated, displayed as a bar graph, and printed out. The Universal
Monitor calculates throughput by counting the number of bytes on each side of the line during
two intervals - one short, one long. This figure is divided by the time interval to arrive at a bits
per second figure for each time interval (for both DTE and DCE data).

~NOTE
For accurate throughput measurement, the bit rate (line speed) must be set on the
Monitor/Simulation Configuration Menu or in the INTERFACE-SPEED variable to match the
actual line speed.

The baud rate, as stored in the INTERFACE-SPEED variable, is used to calculate a percentage
throughput based on theoretical limits.

INTERFACE-SPEED (-- address)
Contains the current bit rate (default value is 64000).

Example:
Set the throughput measurement speed to 2400.
2400 INTERFACE-SPEED
TPR_ON

TPR_ON (--)
Calculates and displays the throughput rate as a bar graph.

~ DISPLAY function key

'\f/ WARNING
If the short interval, long interval, or speed is changed, TPR_ON must be called after the
changes are made.

TPR_OFF (--)
The throughput rate is not calculated or displayed.

~ OFF function key

USM Programmer's Manual IDACOM

DISPLAY FORMAT

PRINT_ TPR { --)

6-7
September 1990

Calculates and displays the throughput rate as a bar graph and prints the long term interval
measurements.

~ DISPLAY AND PRINT function key

~ Short Interval
Sets the short time interval, in seconds, for measuring, displaying, and printing the throughput
results.

SHORT-INTERVAL { -- address)
Contains the current duration of the short interval {default value is 10 seconds).

Example:
Set the short interval to 20 seconds.
20 SHORT-INTERVAL !

TPR_ON

~ Modify Short Interval function key

~ Long Interval
Sets the long time interval in seconds for measuring, displaying, and printing the throughput
results.

LONG-INTERVAL { -- address)
Contains the current duration of the long interval {default value is 600 seconds).

Example:
Set the long interval to 300 seconds.
300 LONG-INTERVAL !
TPR_ON

~ Modify Long Interval function key

IDACOM USM Programmer's Manual

FILTERS 7-1
September 1990

7
FILTERS

Filters provide the capability of passing or blocking specific events from the display, capture
RAM, or disk recording. These three sets of filters act independently. This section describes the
commands used to pass or block trace statements and lead changes.

Filter Setup Menu

Filter Type DISPLAY
Trace StateMents ON

~Lead Changes BLOCK

Figure 7-1 Filter Setup Menu

7 Filter Type
There are three separate filter processes which act independently of each other: DISPLAY, RAM,
and DISK.

7 Trace Statements
Trace statements can be blocked or passed (default).

YES RTRACE (--)
Passes trace statements to the display.

~ 7 Filter Type
DISPLAY function key

7 Trace Statements
ON function key

NO RTRACE (--)
Blocks trace statements from the display.

~ 7 Filter Type
DISPLAY function key

7 Trace Statements
OFF function key

IDACOM USM Programmer's Manual

7-2
September 1 990

YES CTRACE (--)
Passes trace statements to capture RAM.

~ 7 Filter Type
RAM function key

7 Trace Statements
ON function key

NO CTRACE (--)
Blocks trace statements from capture RAM.

~ 7 Filter Type
RAM function key

7 Trace Statements
OFF function key

YES DTRACE (--)
Passes trace statements to disk.

~ 7 Filter Type
DISK function key

7 Trace Statements
ON function key

NO DTRACE (--)
Blocks trace statements from disk.

~ 7 Filter Type
DISK function key

7 Trace Statements
OFF function key

7 Lead Changes
Lead changes can be blocked (default) or passed.

R1=ALL (--)
Passes lead changes to the display.

~ 7 Filter Type
DISPLAY function key

7 Lead Changes
PASS function key

R1=NONE (--)
Blocks lead changes from the display.

~ 7 Filter Type
DISPLAY function key

7 Lead Changes
BLOCK function key

USM Programmer's Manual

FILTERS

ID ACOM

FILTERS

C1=ALL (--)
Passes lead changes to capture RAM.

~ ~ Filter Type
RAM function key

~ Lead Changes
PASS function key

C1=NONE (--)
Blocks lead changes from capture RAM.

~~Filter Type
RAM function key

~ Lead Changes
BLOCK function key

D1:ALL (--)
Passes lead changes to disk.

~ ~ Filter Type
DISK function key

~ Lead Changes
PASS function key

01 =NONE (--)
Blocks lead changes from disk.

~ ~ Filter Type
DISK function key

~ Lead Changes
BLOCK function key

IDACOM

7-3
September 1990

USM Programmer's Manual

DECODE 8-1
September 1990

8
DECODE

This section describes the data flow diagram for decoding, and lists the variables in which
decoded information is saved. Only layer 1 decoding is performed .

.

. . . .
Interface

Layer 1
Decode II!/ >

Caphre RAM --,. /--.--

w Layer 1
Disk Variables

Figure 8-1 Universal Simulation/Monitor Data Flow Diagram - Decode

The layer 1 decode operation saves information concerning frame/block length, timestamps, port
identifier, and block sequence number. For lead transitions, information is saved concerning the
changed leads; and for timers, the number of the expired timer.

~NOTE
These variables can be read with the @ (fetch) operation.

PORT- ID (-- address)
Contains a 2 byte value identifying the received direction for data. The lower byte indicates
the TO_DCE (hex value 08) or TO_DTE (hex value 20) receive stream. The upper byte indicates
the application processor that received the frame.

IDACOM USM Programmer's Manual

8-2 DECODE
September 1 990

Example:
Determine the direction of the received stream.
PORT-ID @
OXFF AND (The AND operation eliminates the upper byte)

This operation leaves the received stream direction on the stack. It is 0 for a trace statement,
or equal to one of the following pre-defined constants: TO_DTE-RX for data to the terminal
or TO_DCE-RX for data to the network. For further explanation of port identification, consult
the Programmer's Reference Manual.

ST ART-TIME (-- address)
Contains the 48 bit start of frame timestamp for data. Use with the GET_TSTAMP _MILLI or
GET_TSTAMP_MICRO commands. See the Programmer's Reference Manual.

Example:
Obtain the start of frame timestamp including year, month, day, hour, minute, second, and
millisecond.
START-TIME GET_TSTAMP_MILLI

~NOTE
The @ (fetch) operation is not performed. Seven values are left on the stack as described
in the Programmer's Reference Manual.

END-TIME (-- address)
Contains the 48 bit end of frame timestamp for data. Use with the GET_TSTAMP_MILLI or
GET_TSTAMP_MICRO commands. See the START-TIME example.

BLOCK-COUNT (-- address)
Contains the sequential block sequence number for live data. Every received frame/block is
assigned a unique sequence number. Each side, DTE or DCE, maintains a separate set of
sequence numbers. Initially contains a value of zero and is incremented by one each time a
new block is received.

REC-LENGTH (-- address)
Contains the length of the received frame. This does not include the FCS (frame check
sequence) bytes.

REC- POINTER (-- address)
Contains the pointer to the frame address field (first byte) in the received frame. Since this
variable contains the address of the first byte, a double fetch operation is necessary to obtain
frame contents.

Example:
Obtain the second byte of the received frame (the control field).
REC-POINTER @ 1+ C@

~NOTE
The @ command gets the address of the first byte in the received frame. This first value
is then incremented by one and one byte is fetched from the resulting address.

LEAD-NUMBER (-- address)
Contains the received lead identifier used in the test manager.

USM Programmer's Manual IDACOM

DECODE

TIMER-NUMBER (-- address)

8-3
September 1990

Contains the number of the expired timer. Valid values are 1 through 128.

STATUS_ERR? (-- FLAG)
Returns true if an error is detected in the currently processed frame. Use the following
commands to detect a particular error.

OVERRUN_ERR?

CRC_ERR?

ABORT_ERR?

LONG_FRM_ERR?

SHORT_FRM_ERR?

IDACOM

Receiver overrun

CRC error

Abort Error

Frame is longer than supported by operating system buffers

Frame is shorter than 4 bytes including 2 CRC bytes (BOP)
Improper framing (ASYNC)

Table 8-1 Error Detection

USM Programmer's Manual

SIMULATION ARCHITECTURE 9-1
September 1 990

9
SIMULATION ARCHITECTURE

This section describes the structure of the Universal Simulation. The Universal Simulation
program is a combination of the Universal Monitor application plus the capability of transmitting
frames/blocks, lead changes, etc. via user-written test scripts.

9.1 Live Data

The simulation receives events from the interface and processes them as shown in Figure 9-1.

Rx Data

l • Tx Data I

Decode

Test
Manager

Capture RAM

• Disk

OP
CRT

Figure 9-1 Universal Simulation Data Flow Diagram - Live Data

By default, the Universal Simulation captures the received/transmitted data in the capture RAM
buffer and displays it on the screen in short format report.

~ Display topic
Live Data function key

MONITOR (--)
Selects the live data display mode of operation. All incoming events and transmitted frames
are decoded and displayed in real-time.

IDACOM USM Programmer's Manual

9-2 SIMULATION ARCHITECTURE
September 1990

9.2 Playback

Data can be played back from either capture RAM or disk without interfering with an active test
(i.e. dropping the link) as shown in Figure 9-2.

Rx Data

Tx Data

Test
Manager

Ill" Capb.re RAM ~ ----
Decode

• Disk

Triggers

Printer

Figure 9-2 Universal Simulation Data Flow Diagram - Offline Processing

~ FROM_CAPT HALT
Display topic
Playback RAM function key

~ FROM_DISK HALT PLAYBACK
Display topic
Playback Disk function key

USM Programmer's Manual IDACOM

SIMULATION ARCHITECTURE

HALT (--)

9-3
September 1990

Selects the playback mode of operation. Data is retrieved from capture RAM or a disk file,
decoded, and then displayed or printed. Capture to RAM is suspended in this mode.

9.3 Simultaneous Live Data and Playback

Live data can be recorded to disk while playing back data from capture RAM.

Rx Data

Tx Doto

Tx Doto Test
Manager

!Ml /JJ$J;)Ffj/~--->•1 Decode

Capture RAM

Triggers

Printer

Figure 9-3 Universal Simulation Data Flow Diagram - Freeze Mode

Gf9 FROM_CAPT FREEZE
Capture topic
Record to Disk function key
Display topic
Playback RAM function key

FREEZE (--)
Enables data to be recorded to disk while data from capture RAM is played back.

IDACOM USM Programmer's Manual

TEST MANAGER 10-1
September 1990

10
TEST MANAGER

IDACOM has developed a comprehensive set of tools for the development of test scripts. These
test scripts, written using the ITL language, control the operation of the Universal Simulation and
Monitor applications.

For a complete explanation of the test manager and tools available, see the Programmer's
Reference Manual.

This section reviews basic ITL components and describes the event and action commands
specific to the USM.

10.1 ITL Constructs

Following is a brief description of test manager constructs. For more details and examples, refer
to the Programmer's Reference Manual.

TCLR (--)
Initializes the test manager. Any existing test suites already in memory are cleared. The
current state is set to 0. All test scenarios should start with the TCLR command.

STATE_INIT{ }STATE_INIT (number --)
Brackets the execution sequence performed prior to entering a state. The initialization logic
for a state is executed independently of how it was called.

This initialization procedure can be used for any state but is not compulsory. STATE._INIT{
must be preceded by the number of the state being initialized, eg. O STATE...JNIT{.

The STATE...JNIT{ }STATE...JNIT clause is executed only once each time the state is entered
from another state.

STATE{ }STATE (number --)
Brackets a state definition. STATE{ must be preceded by the number of the state. Valid
values are O through 255. State O must be defined within an ITL program. If not, the test
manager will not run the script. If multiple states are defined with the same number in the
test script, the test manager uses the latest definition.

ACTION{ }ACTION (f --)
Brackets the set of tasks, decisions, and outputs which execute once the expected event is
received by the test manager. There must be at least one action defined for each expected
event. The action is executed when the flag is true (non zero).

IDACOM USM Programmer's Manual

10-2 TEST MANAGER
September 1990

NEW_STATE (n --)
Executes the initialization logic of the specified state (providing STAT_INIT{ }STAT_INIT is
defined) and establishes the state to be executed for the next event. Any remaining action
code for the current state is then executed. It must be preceded with a valid state number
and be inside the ACTION{ }ACTION brackets. This command is not mandatory if no state
change is desired.

TM_STOP (--)
Stops the execution of the test script. The test suite remains in memory and can be
re-executed until another test script is loaded.

SEQ{ }SEQ (number --)
Brackets a definition of tasks and outputs which execute as part of the state machine action.
SEQ{ expects a single integer which is the sequence number. Up to 256 sequences are
supported. Valid values are 0 through 255. The SEQ{ }SEQ partners are extremely useful
when more than one action sequence calls the same tasks and outputs. The SEQ{ }SEQ
definition is defined outside the ACTION{ }ACTION definition and then called by the RUN_SEQ
command.

This is an alternate mechanism to generate colon definitions. This mechanism causes the
equivalent of a colon definition (now accessed via a numeric identifier) to be compiled into
the test script dictionary rather than the user dictionary. Refer to the Programmer's Reference
Manual.

RUN_SEQ (number --)
Executes a specified set of tasks defined in a SEQ{ }SEQ definition. It is called inside an
ACTION{ }ACTION definition and must be preceded with a defined sequence number.

LOAD_RETURN_STATE (number--)
Permits the test script writer to program the equivalent of subroutine calls (used with
RETURN_STATE). LOAD_RETURN_STATE sets the state to which control is to be returned.
LOAD_RETURN_STATE must be within the action field; nesting is not permitted.

RETU RN_ST ATE (--)
Returns control to the state specified by LOAD_RETURN_STATE from a state subroutine call.

NEW_ TM (filename --)
Loads and compiles the specified file and then starts the test manager at state 0. It can be
included as part of the action field to load and execute another scenario.

10.2 Event Recognition

During test script execution, any event received by the test manager is evaluated to determine if it
matches the event-specifier of the first action within that state. If the evaluation does not return
true, the following action clauses are evaluated in a sequential manner. Once an event evaluates
true, the subsequent action clauses in that particular state are not examined.

USM Programmer's Manual IDACOM

TEST MANAGER

Layer 1

10-3
September 1990

If the Universal Simulation/Monitor is running on a B-Channel, no layer 1 events will be received
by the test manager. See the Programmer's Reference Manual for a description of layer 1 events,
i.e. control lead transitions, when the application is running on a WAN interface.

~NOTE
Interface leads must be enabled.

The following commands are used to recognize data lead changes. Data lead transitions must
be requested before they can be detected in a test script. The received frame indications are not
affected by data lead indications.

REQ_RXD_TRANS(number--)
Requests the next specified transitions (both positive and negative) on the data lead be
reported and passed to the test script. Valid values are 1 through 65535.

REQ_RXD_ON_ TRANS (number --)
Requests the next specified positive transitions on the data lead be reported and passed to
the test script. Valid values are 1 through 65535.

REQ_RXD_OFF_TRANS (number --)
Requests the next specified negative transitions on the data lead be reported and passed to
the test script. Valid values are 1 through 65535.

~NOTE
These three request transition commands are mutually exclusive. Executing one of these
commands nullifies any previous request transition command.

~NOTE
Receiver overflow is possible when several data lead transitions are requested and the monitor
is operating at high speed.

?RXD_ON (-- flag)
Returns true if a positive transition on the data lead is received.

?RXD_OFF (-- flag)
Returns true if a negative transition on the data lead Is received.

RXD-TRANS (-- address)
Contains the direction of the last data lead transition. Possible values are P _TRANS
(positive transition) and N_ TRANS (negative transition).

RXD_STATE (-- state)
Returns 1 If the received data lead is high, and O if the received data lead Is low.

IDACOM USM Programmer's Manual

10-4 TEST MANAGER
September 1 990

Received Frames

ITL provides recognition of CRC/parity errors, aborted frames, and anchored or unanchored
comparison of user-defined octets.

Octets for comparison can be specified using:
• an ASCII (7 bits/no parity) string using " string";
• hex character string using X" string";
• an ASCII string sensitive to bits/character and parity. Use the MAKEJ)ATAn commands; or
• an EBCDIC string converted from an ASCII string using the A_TO_E command.

DATA1 (-- address)
Contains the string converted by MAKE....DATA1. This buffer contains a maximum of 255
characters.

~NOTE
Similarly, the DATA2 through DAT AB buffers contain the string converted by the
corresponding MAKE_.DATAn command.

MAKE_DATA1 (" string"--)
Converts the specified string according to the current configuration for bits/characters and
parity and stores the converted string in the DATA1 buffer. Maximum length of the string is 80
characters if entered from the keyboard and 255 characters if entered in a test script.

Example:
• HELLO• MAKE DATA!

~Send topic
String 1 function key

The following table shows the hex values for this string after conversion with different
configurations.

/!a~!J.iiit 48454C4C4F C8454C4C4F 48C5CCCCCF

}1,4?iitt 08050COCOF 08454C4C4F 48050COCOF

Il!)i~l~ii!t 08050COCOF 08252C2C2F 28050COCOF

Table 10-1 ASCII Character Conversion

~NOTE
Similarly, the MAKE_DATA2 through MAKE_DATAB commands convert and store the string in
the corresponding DAT An buffer.

USM Programmer's Manual IDACOM

TEST MANAGER 10-5
September 1990

A_TO_E (" string"--count\O) for successful conversion
(" string"-- -1) for failed conversion

Converts the specified string to EBCDIC and, If successful, returns the number of converted
characters and 0. If unsuccessful, -1 is returned. The converted string is stored in the
EBCDIC-BUF variable. The maximum string length is 80 characters if entered from the
keyboard, and 255 if used in a test script.

EBCDIC-BUF (-- address)
Contains the EBCDIC string converted with the A._TO_E command. The first byte of
EBCDIC-BUF is left unchanged (i.e the converted character count is not stored). .The count
can be stored in the first byte after conversion.

Example:
Convert the ASCII string " HELLO" to an EBCDIC " HELLO".
• HELLO. A_TO_E O= (Perform conversion
IF

EBCDIC-BUF C!
ENDIF

Example:

Conversion was successful
(Store the count)

Convert the ASCII string " HELLO" to an EBCDIC " HELLO" and then move the converted string
to DATA1.
• HELLO• A_TO_E O=
IF

ENDIF

DUP

DATA! C!
EBCDIC-BUF 1+
DATA! 1+ ROT CMOVE

~Send topic
String 1 function key

IDACOM

Perform conversion)
Conversion was successful
Duplicate the count)
Put count in first byte of DATA!
Get converted string)
Move to DATA!)

USM Programmer's Manual

10-6 TEST MANAGER
September 1 990

?RECEIVED (string -- flag)
Returns true if a user-defined character string is found in the received frame or block.

This is an anchored match, i.e. a byte-to-byte match starting at the first byte of the received
frame or block.

Example:
Search for the string 'HELLO' starting at the first byte of the received frame using one of the
following methods.

• H HELLO# ?RECEIVED ASCII string

• XH 48454C4C4FH ?RECEIVED

• H HELLO# MAKE_DATA1
DATA1 ?RECEIVED

• H HELLO# A_TO_E O=
IF

EBCDIC-BUF Cl
END IF
EBCDIC-BUF ?RECEIVED

~ NOTE

Hex string)

(Convert ASCII string
(Use converted string

Convert string to EBCDIC

(Use converted string)

To accommodate "don't care" character positions, the question mark character for ASCII or
hex 3F character can be used. The maximum string length is BO characters. The received
string can be longer than the specified string.

W WARNING
These wildcard characters should not be used with the MAKE_DATAn or A_TO_E
commands.

Example:
Search for the letter 'E' as the second character in a received frame or block using one of the
following methods.

• H ?EH ?RECEIVED ASCII string

• XH 3F45H ?RECEIVED Hex string)

?RECEIVED_DTE (string -- flag)
Returns true if a user-defined character string is found in the frame or block received from
the DTE.

This is an anchored match, a byte-for-byte match starting at the first byte of the received
frame or block.

?RECEIVED_DCE (string -- flag)
Returns true if a user-defined character string is found in the frame or block received from
the DCE.

This is an anchored match, i.e. a byte-for-byte match starting at the first byte of the received
frame or block.

USM Programmer's Manual IDACOM

TEST MANAGER

?SEARCH (string -- flag)

10-7
September 1990

Returns true if a user-defined character string is found in the received frame or block.

This is an unanchored match, i.e. searches for an exact match anywhere in the received frame
or block, regardless of position.

Example:
Search for the string 'IDACOM' which could be located starting at any position within the
received frame or block.
H IDACOMN ?SEARCH

?SEARCH_DTE (string -- flag)
Returns true if a user-defined character string is found in the frame or block received from
the DTE.

This is an unanchored match, i.e. searches for an exact match anywhere in the received frame
or block, regardless of position.

?SEARCH_DCE (string -- flag)
Returns true if a user-defined character string is found in the frame or block received from
the DCE.

This is an unanchored match, i.e. searches for an exact match anywhere in the received frame
or block, regardless of position.

?ABORT (-- flag)
Returns true if an abort frame is received.

?CRC_ERROR (-- flag)
Returns true if a frame with a CRC or parity error is received.

Timeout Detection

There are 128 user programmable timers available. Timers 1 through 24 and 30 through 128 can
be used in the test manager. Timer 34 is the wakeup timer. The remaining timers are used in the
application and should not be started or stopped in a test script.

?TIMER (timer# -- flag)
Returns true if the specified timer has expired. Valid input parameters are timers 1 through 24
and 30 through 128.

Example:
In State 8, look for the expiration of timer 21. The action is to display a trace statement.

8 STATE{
21 ?TIMER
ACTION{

(Check for timeout of timer 21)

T.· Timer 21 has expired.· TCR
}ACTION

}STATE

I DA COM USM Programmer's Manual

10-8 TEST MANAGER
September 1990

?WAKEUP (-- flag)
Returns true if the wakeup timer has expired. The wakeup timer can be used to initiate action
sequences immediately upon the test manager starting. Timer 34 is started for 100
milliseconds when the test manager is started after a WAKEUP _ON command has been issued.
The default is WAKEUP _OFF.

Example:
In State O look for the expiration of the wakeup timer. The action is to prompt the user to
press a function key, and then the test manager goes to State 1.

0 STATE{
?WAKEUP (Check for timeout of wakeup timer
ACTION[

T, 8 To start the test, press UFl. 8 TCR
1 NEW_STATE

}ACTION
}STATE

Function Key Detection

Refer to the Programmer's Reference Manual.

Interprocessor Mail Events

Refer to the Programmer's Reference Manual.

Wildcard Events

USM supports the OTHER_EVENT test manager command and the EVENT - TYPE variable. Refer to
the Programmer's Reference Manual.

The EVENT - TYPE variable contains one of the following constants: FRAME, TIME*OUT,
LEAD*CHANGE, FUNCTION*KEY or COMMAND_IND.

FRAME (-- value)
A constant value in the EVENT-TYPE variable when the received event is a frame. See the
'Received Frames' section on Page 10-4.

TIME*OUT (-- value)
A constant value in the EVENT -TYPE variable when the received frame is a timeout. The
actual timer is in the TIMER-NUMBER variable. See the 'Timeout Detection' section on Page
10-7.

LEAD*CHANGE (-- value)
A constant value in the EVENT-TYPE variable when the received event is a control lead
transition. The actual lead transition is in the LEAD-NUMBER variable.

USM Programmer's Manual IDACOM

TEST MANAGER

FUNCTION*KEY (-- value)

10-9
September 1990

A constant value In the EVENT -TYPE variable when a function or cursor key is detected.

~NOTE
To detect function keys, it is advisable to use the ?KEY command. Refer to the
Programmer's Reference Manual.

COMMAND_IND (-- value)
A constant value in the EVENT -TYPE variable when an interprocessor mail indication is
received. Refer to the Programmer's Reference Manual.

10.3 USM Actions

All of the general actions explained in the Programmer's Reference Manual are supported in USM.

Layer 1 Actions

The following simulation commands turn control leads on and off.

~NOTE
The simulation can be configured as TO DCE or TO DTE. The commands applicable to the
actual configuration are the only ones which result in a control lead transition.

IDACOM

:1:1:1:1:1:1:1:1:1:1:1:::1:1:1:1::::1;:::1:1:::1:1::1:::::1:::::1:1:::1:::::::::1~11111a111::::11111i1:1:1:1:1:1:1:1:i:::::::::1:::1:1:1:1:::::::::::::1:::::::1:1:1:1:1:1:1:::1:::1::::::
::::::::::211::11::11::::::::::a::::::::21::11:::111:::::::in:::::::::::::::::::i::::::::::1::::i:::::1111;~11::::::::::::::::::::::::::::i::::::::::::::::
RTS_ON RTS_OFF Request to send

CTS_ON CTS_OFF Clear to send

DSR_ON DSFLOFF Data set ready

CD_ON CD_OFF Carrier detect

DTFLON DTFLOFF Data terminal ready

SQ_ON SQ_ OFF Signal quality

ALON RLOFF Ring indicate

DRS_ ON DRS_OFF Data signal rate select

TM_ON TM_OFF Test indicator

LLON LLOFF Local loopback

SRTS_ON SRTS_OFF Secondary request to send

Table 10-2 V.28/RS-232C Interface Lead Transitions

USM Programmer's Manual

10-10
September 1990

.:::l!~r1:::!0~111m::::::::::::::::::'::,==::::::::=:::=:::::::::::::::::'::::::::::::::::::::::::==::::::::::::=::::!

.]::::2r;1::1:::1n:::::::::::: :::::::::::1'-::::,1:]?;r;1::::::::u::=:::::::::::::::::::::=:::::::9111~1119:::::]:::::::]:::::::::::
RTS_ON RTS_OFF Request to send

CTS_ON CTS_OFF Clear to send

DSR_ON DSR_OFF Data set ready

CD_ON CD_OFF Carrier detect

DTR_ON DTR_OFF Data terminal ready

RLON RLOFF Ring indicate

Table 10-3 V.35 Interface Lead Transitions

RS_ON RS_ OFF Request to send

CS_ON CS_ OFF Clear to send

DM_ON DM_OFF Data set ready

TR_ON TR_OFF Data terminal ready

IC_ON IC_OFF Calling indicator

SR_ON SR_OFF Data signal rate select

RR_ON RR_OFF Data channel received line signal

TM_ON TM_OFF Test indicator

LLON LL OFF Local loopback

SRTS_ON SRTS_OFF Remote loopback

Table 10-4 V.36/RS-449 Interface Lead Transitions

,:::::::::::::::::::::::::1:1:::::::::::1:::::::::=:::::1~"=1=11~::::1!11!11:::::::':::::::::::::::::::::::::::::::::1:.::::::::::::::
:::::111:::11:::91,::::::: ::::::1~:::11:::211::::::: ::::::::::::::111!r~e!111:::::::,:::=:.
C_ON C_OFF Control lead

LON LOFF Indicate lead

Table 10-5 V.11/X.21 Interface Lead Transitions

TEST MANAGER

The transmit data lead can be set high or low. The line remains in the set state until the next
TXD_ON, TXD_OFF, or send data command.

TXD_ON (--)
Transmits a steady space and keeps the line high.

TXD_OFF (--)
Transmits a steady mark and keeps the line low.

START-TIME (-- address)
Returns the address of the 48 bit timestamp associated with the last received data lead
transition indication.

USM Programmer's Manual ID ACOM

TEST MANAGER

T/RXD-TIME (-- address)

10-11
September 1990

Returns the address of the 48 bit timestamp when the last TXD_ON or TXD_OFF command was
executed.

Transmitting Data

The following simulation commands are used to transmit frames (when the simulation is online).
In HDLC/SDLC, BISYNC ASCII, or BISYNC EBCDIC framing, a CRC is calculated and appended to
the transmitted frame. In ASYNC or CHARACTER SYNC framing, no CRC is calculated.

These frames can be specified using:
• an ASCII (7 bits/no parity) string using " string";
• a hex character string using X" string"; or
• a conversion of an ASCII (7 bits/no parity) string to match the current configuration for bits

per character and parity using the MAKE....DATAn commands (see the 'Received Frames'
section on page 10-4).

SEND (string --)
Transmits the specified string. The string is limited to 80 characters when entered from the
keyboard and 255 when used in a test script.

Example:
Transmit the string " HELLO" using one of the following three methods:

H HELLOH SEND (Use ASCII string)
or
XH 48454C4C4FH SEND
or
H HELLOH MAKE_DATAl
DATAl SEND

Use hex string)

Convert ASCII string

The third method using DATA1 has the following function key equivalent.

~Send topic
Send 1 function key

~NOTE
For Bisync, control characters must be used for successful transmissions (refer to Figure
A-3). To enter these control characters from the keyboard, precede each character by '\ '.

SEND_WITH_ERROR (string --)
Transmits the specified string with a CRC error in HDLC/SDLC, Bisync ASCII, or Bisync EBCDIC
framing and a parity error in async. In character sync framing, no CRC is transmitted. The
maximum string length is 80 characters if entered from the keyboard, and 255 if used in a test
script.

~NOTE
Refer to the examples under SEND.

IDACOM USM Programmer's Manual

10-12
September 1990

SEND_WITH_ABORT (string --)

TEST MANAGER

Transmits the specified string with an abort status byte. The frame is truncated to a maximum
of 4 characters.

~ NOTE
Refer to the example under SEND.

A_TO_E_SEND (string --)
Converts the specified string to EBCDIC and, if successful, transmits the converted string. If
unsuccessful, the string is not transmitted and a notice is displayed. The maximum string
length is 80 characters if entered from the keyboard, and 255 if used in a test script.

~NOTE
Use in the same manner as SEND.

A_TO_E_SEND_WITH_ERROR (" string"--)
Converts the specified string to EBCDIC and, if successful, transmits the converted string with
a CRC error (HDLC/SDLC, BISYNC ASCII, or BISYNC EBCDIC), a parity error (ASYNC), or no
CRC error (CHARACTER SYNC). If unsuccessful, the string is not transmitted and a notice is
displayed. The maximum string length is 80 characters If entered from the keyboard, and 255
if used in a test script.

~NOTE
Refer to the example under SEND.

10.4 Using Buffers

IDACOM's test manager has 256 buffers available for creating customized frames. These buffers
are numbered from 0 to 255 and can be created any size desired. However, the Universal
Simulation limits the number of bytes that can be transmitted to 4170.

A buffer consists of four bytes with values of 0, two bytes containing the length of the text, and
the remaining bytes consist of user-defined text.

Text Bytes

Bytes 1 to 4 Bytes 5 &: 6

Figure 10-1 Buffer Structure

~NOTE
All buffers are cleared when the TCLR command is issued. TCLR is usually the first command
compiled when loading a test script.

USM Programmer's Manual IDACOM

TEST MANAGER

There are three methods of moving text into a buffer.

10-13
September 1990

Methods 1 and 2 automatically allocate memory for the specified text. Method 3 requires the user
to allocate memory before moving text into the buffer. Use the TCLR command to clear all
buffers.

Method 1

STRING->BUFFER (string\buffer number -- }
Loads a quoted string into the specified buffer. The length is limited to 80 bytes if typing
directly on the keyboard and 255 bytes If used within a test script. Either an ASCII or hex
string can be specified. Valid buffer numbers are O through 255.

Example:
• IDACOM• 1 STRING->BUFFER ASCII text moved to Buffer #1)
x· 0100100100434445. 2 STRING->BUFFER Hex string of 8 bytes moved to Buffer #2)

Method 2

FILE->BUFFER (filename\buffer number -- }
Transfers a text file into the specified buffer (for text greater than 80 bytes}. The file is created
using the Edit function available on the Home processor. At this time, only ASCII text can be
created. The last character to be transferred should be followed immediately by a CTRL 'p'
character in the file. This special character is displayed as a pi I crow (q } character. The file
is transferred into the buffer until the ASCII control 'p' character is found or until the end of
the file.

Example:
Create a file with the name CUSTOM.F and transfer to Buffer #3.
• CUSTOM.F• 3 FILE->BUFFER

Method 3

The following commands should not be used with FILE->BUFFER or STRING->BUFFER.

ALLOT_BUFFER (size\ buffer number -- flag}
Allocates memory for the specified buffer. ALLOT_BUFFER returns O if an error occurred, or 1
if correct.

~NOTE
ALLOLBUFFER should not be used repetitively with the same buffer number in the same
test script.

FILL_BUFFER (data address \ size \ buffer number -- }
Moves data, of a specified size, into a buffer. Previous contents are overwritten.

APPEND_ TO_BUFFER (data address \ size \ buffer number -- }
Appends data, of a specified size, into a buffer.

IDACOM USM Programmer's Manual

10-14
September 1990

CLEAR_BUFFER (buffer number --)

TEST MANAGER

Stores a size of O in the buffer. CLEAR_BUFFER has no effect on the allocated memory
defined with ALLOT J3UFFER.

Example:
0 VARIABLE tempstring 6 ALLOT
" A TEST " tempstring $!
16 3 ALLOT BUFFER
IF

tempstring 4+ 5 3 FILL_BUFFER
" FAIL" COUNT 3 APPEND_TO_BUFFER

END IF

BUFFER (buffer number -- address I O)

Initialize the string)
Allocate 16 bytes of memory

Move 'TEST · to buffer)
Append 'FAIL' to buffer)

Returns the address of the first byte of the specified buffer. The buffer must have been
previously created by FILE->BUFFER, STRING->BUFFER, or ALLOT_BUFFER. A 'O' is returned
when the buffer is not created or an invalid buffer number is specified. Valid buffer numbers
are 0 through 255.

Sending a Buffer

The text must first be stored in the buffer using STRING->BUFFER or FILE->BUFFER. Once the
text is in place, the buffer can be transmitted repetitively.

SEND_BUFFER (buffer number --)
Transmits the specified buffer. Valid buffer numbers are O through 255.

Example:
Create text to be included in the buffer, then transmit the buffer.
X" 0100100100434445" 2 STRING->BUFFER (Create text
2 SEND_BUFFER (Send buffer

SEND_BUFFER_ERROR (buffer number --)
Transmits the specified buffer with a CRC error (HDLC/SDLC, BISYNC ASCII, or BISYNC
EBCDIC), a parity error (ASYNC), and no CRC (CHARACTER SYNC).

TX-SEND-WAIT (--address)
Contains transmission queuing identifier for SEND_BUFFER and SEND_BUFFER_ERROR. When
set to 0 (default), the frame is queued for transmission and the application continues. When
set to 1, the application pauses until the entire buffer is transmitted.

USM Programmer's Manual IDACOM

TEST SCRIPTS 11-1
September 1990

11
TEST SCRIPTS

This section contains sample complete test scripts. These test scripts have also been supplied on
disk and can be loaded and run as described in the Programmer's Reference Manual.

11.1 TEST1

This script is used in the simulation with either HDLC/SDLC or async framing. Set the character
set to 7 or 8 bit/no parity ASCII and put the simulation online.

In state O, on reception of a frame containing the text 'HELLO' starting at the first received
character, the simulation transmits a frame containing the text 'GOODBYE' and the test manager
changes to state 1.

In state 1, the reception of any frame results in the creation of a trace statement.

TCLR

0 STATE{
• HELLO• ?RECEIVED
ACTION{

• GOODBYE. SEND
1 NEW_STATE

}ACTION
}STATE

1 STATE{
• ??. ?RECEIVED
ACTION{

T.· Frame ignored·
TCR

}ACTION
}STATE

ID ACOM

(Clear test manager memory)

Anchored match for 'HELLO' ?

Transmit 'GOODBYE'
Go to state 1)

Any frame received ?)

Create trace statement

USM Programmer's Manual

11-2 TEST SCRIPTS
September 1990

11.2 TEST2

This script is used in the simulation with either HDLC/SDLC or async framing. Set the character
set to 7 or 8 bit/no parity ASCII and put the simulation online.

In state 0, on reception of a frame containing the text 'HELLO' starting at the first received
character, the simulation transmits a frame containing the text 'GOODBYE' and the test manager
changes to state 1.

In state 1, on reception of a frame containing the text 'GOODBYE' starting at the first received
character; the state manager returns to state O waiting for reception of another 'HELLO'.

TCLR

0 STATE{
H HELLON ?RECEIVED
ACTION{

H GOODBYEN SEND

1 NEW_STATE
}ACTION

}STATE

1 STATE{
H GOODBYEN ?RECEIVED
ACTION{

0 NEW_STATE
}ACTION

}STATE

USM Programmer's Manual

(Clear test manager memory)

Anchored match for 'HELLO' ?

Transmit 'GOODBYE'
Go to state 1)

Anchored match for 'GOODBYE'

Return to state 0)

IDACOM

TEST SCRIPTS

11.3 TEST3

11-3
September 1990

This test script behaves in a similar manner to TEST2 except that the state machine waits for
three seconds before responding to a received 'HELLO'.

TCLR

0 STATE{
• HELLO. ?RECEIVED
ACTION{

• GOODBYE• SEND
1 NEW_STATE

}ACTION
}STATE

1 STATE{
• GOODBYE. ?RECEIVED
ACTION{

1 30 START_TIMER
2 NEW_STATE

}ACTION
}STATE

2 STATE{
1 ?TIMER
ACTION{

0 NEW_STATE
}ACTION

}STATE

IDACOM

(Clear test manager memory

Anchored match for 'HELLO' ?

Transmit 'GOODBYE'
Go to state 1)

Anchored match for 'GOODBYE')

Start timer 1 for 3 seconds)
Go to state 2

Timer 1 expired ?

Return to state 0

USM Programmer's Manual

11-4 TEST SCRIPTS
September 1 990

11.4 TEST4

This script is used in the simulation with either HDLC/SDLC or async framing. Set the character
set to 7 or 8 bit/no parity ASCII and turn the simulation online.

Figure 11-1 shows the SOL representation of this script. In state o, there are two valid events: an
anchored match for either 'HELLO' or 'BONJOUR'.

State 1

State 1

Start Timer 1
For 3 Seconds

State 3

State 0

State 2

State 2

Start Timer 1
For 3 Seconds

State 3

Figure 11-1 SOL Representation of TEST4

USM Programmer's Manual

State 3

State 0

IDACOM

TEST SCRIPTS

TCLR

0 STATE{
• HELLO• ?RECEIVED
ACTION{

• GOODBYE. SEND
1 NEW STATE

}ACTION

• BONJOUR• ?RECEIVED
ACTION{

• AU REVOIR• SEND
2 NEW STATE

}ACTION
}STATE

1 STATE{
• GOODBYE• ?RECEIVED
ACTION{

1 30 START_TIMER
3 NEW STATE

}ACTION
}STATE

2 STATE{
• AU REVOIR• ?RECEIVED
ACTION{

1 30 START_TIMER
3 NEW_STATE

}ACTION
}STATE

3 STATE{
1 ?TIMER
ACTION{

0 NEW_STATE
}ACTION

}STATE

IDACOM

(Clear test manager memory)

Anchored match for 'HELLO' ?

Transmit 'GOODBYE'
Go to state 1)

Anchored match for 'BONJOUR' ?

Transmit 'AU REVIOR'
Go to state 2)

Anchored match for 'GOODBYE' ?

Start timer 1 for 3 seconds)
Go to state 3

Anchored match for 'AU REVOIR' ?

Start timer 1 for 3 seconds)
Go to state 3

Timer 1 expired ?

Return to state 0

11-5
September 1990

USM Programmer's Manual

11-6 TEST SCRIPTS
September 1 990

11.5 TESTS

This script demonstrates the detection of control lead transitions in the simulation. Configure the
simulation as TO DTE. Set the character set to 7 or 8 bits/no parity ASCII, put the simulation
on line.

In state 0, when the request to send lead turns off, the simulation turns the clear to send lead off,
and the carrier detect lead on; starts timer 1 for one second and enters state 1.

In state 1, the test manager waits for one of two defined events. When a timeout indication is
received from timer 1, the simulation transmits a frame containing the text 'HELLO WORLD' and
restarts timer 1. When the request to send lead turns on, the simulation turns the clear to send
lead on; the carrier detect lead off, and the test manager returns to state 0.

TCLR

0 STATE[
?RTS_OFF
ACTION[

CTS OFF
CD_ON
1 10 START_TIMER
1 NEW_STATE

}ACTION
}STATE

1 STATE
1 ?TIMER
ACTION[

H HELLO WORLD# SEND
1 10 START TIMER

}ACTION

?RTS_ON
ACTION[

CTS_ON
CD_OFF
0 NEW_STATE

}ACTION
}STATE

USM Programmer's Manual

(Clear test manager memory)

Request to send lead turning off ?

Turn clear to send lead off)
Turn carrier detect lead on)
Start timer 1 for 1 second)
Go to state 1)

Timer 1 expired ?)

Transmit 'HELLO WORLD'
Start timer 1 for 1 second

Request to send lead turning on ?

Turn clear to send lead on)
Turn carrier detect lead off
Return to state 0)

IDACOM

TEST SCRIPTS

11.6 TEST6

11-7
September 1 990

This script is used in the USM when configured as 'TO DCE'. Put the application online. The
request to send control lead changes from OFF to ON are counted. Once forty transitions occur,
a beeper is sounded and a trace statement is displayed.

TCLR (Clear test manager memory)

0 STATE{
?RTS_ON Request to send lead turning on ?
ACTION{

1 COUNTER+! Increment counter)
COUNTER @ 40 Does counter contain a value of 40 ?
IF Yes)

0 COUNTER ! Initialize counter
BEEP Give audible alarm
T." 40 RTS leads changes"
TCR (Create trace statement

END IF
}ACTION

}STATE

IDACOM USM Programmer's Manual

11-8 TEST SCRIPTS
September 1990

11.7 TEST7

This script is used in the simulation with either HDLC/SDLC or async framing. Set the character
set to 7 or 8 bit/no parity ASCII and put the simulation online.

This script shows the method of sending frames of length greater than 255 characters by using
the FILE->BUFFER command.

TCLR

H TEST256" 0 FILE->BUFFER

0 STATE{
H HELLO" ?RECEIVED
ACTION{

0 SEND_BUFFER
1 NEW_STATE

}ACTION
}STATE

1 STATE{
H HELLO" ?RECEIVED
ACTION{

0 NEW_STATE
}ACTION

}STATE

USM Programmer's Manual

Clear test manager memory

Transfer text into buffer 0

Anchored match for 'HELLO' ?

Transmit buffer 0)
Go to state 1)

Anchored match for 'HELLO' ?

Return to state 0)

ID ACOM

TEST SCRIPTS

11.8 TEST _BSC_E

11-9
September 1990

This script has the same effect as TEST2. In this case, configure the simulation for Bisync
EBCDIC and an unanchored match.

TCLR

0 STATE{
• HELLO. ?SEARCH
ACTION{

• SH11SxGOODBYEEx· SEND

1 NEW_STATE
}ACTION

}STATE

1 STATE{
• HELLO• ?SEARCH
ACTION{

0 NEW STATE
}ACTION

}STATE

IDACOM

(Clear test manager memory)

Unanchored match for 'HELLO')

Transmit 'GOODBYE'

Go to state 1)

Unanchored match for 'HELLO' ?

Return to state 0)

USM Programmer's Manual

11-10
September 1 990

11.9 PT_ TEST _PAR

TEST SCRIPTS

This test script is used with the simulation in Bisync ASCII framing. Convert the string 'HI THERE'
to 7 bit ASCII/odd parity and store in DATA1. Convert the string '5 xHI THEREEx' and store in
DATA2.

In state 0, on reception of a frame containing the converted string 'HI THERE', the simulation
transmits the converted string 'SxHI THEREEx'·

TCLR

" HI THERE" MAKE_DATAl

• sxHI THEREEx· MAKE DATA2

0 STATE{
DATAl ?SEARCH
ACTION{

DATA2 SEND
}ACTION

}STATE

USM Programmer's Manual

Clear test manager memory)

Convert string to 7 bit/odd parity

Convert string to 7 bit/odd parity

Unanchored match for text in DATAl)

Transmit text in DATA2)

IDACOM

TEST SCRIPTS

11.10 PT_TEST_PAR1

11-11
September 1 990

This script is used with the simulation with async framing. Set the character set to ASCII and put
the simulation online.

Convert the string 'HI THERE' to match the current configuration for bits per character and parity.
Use the converted string both for an anchored comparison and for transmission of data.

TCLR

• HI THERE• MAKE_DATAl

0 STATE{
DATAl ?RECEIVED
ACTION{

DATAl SEND
}ACTION

}STATE

IDACOM

Clear test manager memory)

Convert string according to current configuration)

Anchored match for text in DATAl)

Transmit text in DATAl)

USM Programmer's Manual

DATA FORMATS A-1
September 1990

A
DATA FORMATS

Figures A-1 through A-5 describe the general data formats for BOP, COP, BISYNC, and ASYNC
transmissions.

I DA COM

0
L
Q)
c
Q)

O'l

c

LL

.........

.,....

LL

}

J

)
"'T'-1

I<

>

I,

}

~-.c 0
(Jc

e~ oJI ...
I&.

.,
'O ...
I;:

0 ...
~
0
(J

... - "' .a 0

ab-=

(!>

<
...J
u..

en
(.)
u..

<
I-
<
Cl

I

...J
0
0::

!z
0
(.)

en --en
w
0::
Cl

Q) Cl
<

0..
E
0

(!>

<
...J

x u..
Q)

L
0

LL

t .. r i
I

g
z

I&.
......
Q.

§:
z

0

...

c
0
'.ij
E ...
2.
£

-

g
z

i....
Q.

Ill

0

-

~ ..
"E
l
tii

::::E

i....
......
Q.

::::E

-

-
'O • ...
11
E
2
c
::>
:;

-+-'
0

E
L
0

LL

Q)

E
0
!.....

LL

u
_J

0
I

Figure A-1 Bit-Oriented Protocol Frame Format (BOP)

USM Programmer's Manual

A-2
September 1990

Control/response formats:

Mnemonic

SYN

SOH

STX

ETX

ETB

OLE

BCC

EOT

ENQ

SYN SYN

SYN SYN

Control
Characters

Leading
Character

Text/ header formats:

I SYN I SYN I SOH I Header

I SYN I SYN I SOH I Header

Control
Characters

I ETB I
BCC

I STX I Text IEET::1 BCC

I SYN I SYN I STX I Text IEET::1 BCC

SYN SYN OLE STX
Transparent

OLE
ETB/

BCC Text EXT

Figure A-2 BISYNC Frame Formats

Name ASCII EBCDIC
HEX HEX Mnemonic Name

Synchronous
Idle

16 32 NAK Negative
Acknowledgement

Start of 01 01
Headirig_
Start of 02 02
Text

End of
Intermediate

ITB Block
Transmission

End of 03 03
Text ACK 0 Acknowledgement

0
End of 17 26
Transmission ACK 1 Acknowledgement

1
Block Wait for
Data Link 10 10
Esc'!.e_e
Block Check
Character
End of 04 37 Transmission
Enquiry 05 20

WACK positive
acknowledgement

RVI Reverse
Interrupt

no Temporary
Text Delay

Figure A-3 Control Character Descriptions

USM Programmer's Manual

DAT A FORMATS

ASCII EBCDIC
HEX HEX

15 30

1F 1F

1000 1070

1001 1061

103B 106B

103C 107C

0205 0220

ID ACOM

c
)>
(')
0
3::

c
(/)

s::
"U,
0

<O,
Ql
3
3
Cl),
en~

s::
Ql
::I
c
~

'T1
iiJ'
c ...
CD
)loo
I .,..

0
::r
I» ...
I»
n ...
CD ...
I
0 ...
iii'
::s ...
CD
Q. ,, ...
0 ...
0
n
0

-f ...
I»

iii
3 ;·
U> c;·
::s -0
0 ,, -

In general:

FF! IT I I I I I I I I I
~ ' v ~

One or more

SYN characters

For example:
B B

SYN I I SYN

Control characters Data characters

B 14 8 8 16

SOH
or Count

Seq-Res- Add- Header

ENQ or
ponse uence ress checksum

or control # # CRC-16
DLE code

/' Sync Select

DDCMP Frame Format

Control characters

8-131,064
16

Data
Data checksum

CRC-16

en
CD
'C
r+
Cl)

3
O'
CD,

0

~
)>

"Tl
0
::D
s::
~
(/)

cc;)>
co I
ow

A-4 DATA FORMATS
September 1990

Rest
Idle

MARK 1 ___.....___,

Bits/ character
5 to 8 data bits

Parity Bit
(Odd, Even
or Unused)

Rest Idle
or next

start bit

! ,1

SPACE 0 I ~S-t-rt~~~~~~~~~~~~~~~~~~~-~. I 1-----
a ~1~. I

Bit i- 1.5 _J I
I I I

I 2 I r--- --i
Stop Bit

Figure A-5 ASYNC Data Character Format

The Universal Simulation and Monitor applications support two different digital signal encoding
formats:

0 0 0 0 0 0

NRZ Signal

NRZI Signal (1)

NRZI Signal (2)_ _ __,_ _ __,

Figure A-6 NRZ and NRZI Data Encoding

USM Programmer's Manual ID ACOM

DATA FORMATS A-5
September 1990

Four different clocking modes are supported:

IDACOM

NRZ with Clock

External Tx Clock

NRZI With Clock

NRZI

NRZ (Non-Return
to Zero)

NRZ

NRZ

NAZI

NAZI

,..---,

DTE

r-­
DCE

15 -.....,
------17 l
24-----../

.____ .____

r--- ~ DTE

-~~

Clock speed is extracted
from the data signal.

A 1-bit maps to a mark signal.
A 0-bit maps to a space signal.

NRZI (Non-Return A 1-bit maps to no transition.
to Zero Inverted) A 0-blt maps to a transition.

15 - Transmit clock from DCE (DCE provided) CCITT circuit 114
17 - Receive clock from DCE (DCE provided) CCITT circuit 115
24 - Transmit clock to DCE (DTE provided) CCITT circuit 11

The pin numbers shown are for the RS-232C interface.

Table A-1 Clocking Modes

USM Programmer's Manual

COMMAND SUMMARIES B-5
September 1990

,:,::::::',:::,,::::::::::,:::,:::::::::::::::::::::::::::=:::::':::::':,:::::::::::::=:::':::::::-:,:::,::·:::.,_:::::::::·:,:·:.:::::::::':·:::::::::,:::::·:·::::1!1r11:_:·egn~rit.':~1!n1::::.:,:::,:1:·:,,,,-::::1 :\::=:::::::::::t:::,:::::::·:,::::::::::::;::1:::]:'-,:::':-:,,,_,:.t,!:.:::: .. :·:.··'.'

:::::::::-',,:':::'i''::':::'~!mm!"~:':::::t:::::=:r::m: .. :::::::::::,=:::,:.:_:,:::,i~1~·,,~~$r~11~u.-:::::::::::::::,::,,::::::_::.::::::::::::::::::::r:::r':':::::::::=:::J:::::Jl~~r~e1,,rw:::':J=-.:: .. :: .. ::-.:,::. ·.:. ,:: =
?KEY

PROMPT" text"
actions to be taken
using string at
address= prompt
END_PROMPT

?MAIL

IDACOM

(user function key # --)

(--)

(-- flag)

Detects a function key

Prompts the user for keyboard input

Detects a signal from another ITL
program

Table B-9 Program Control Events

USM Programmer's Manual

CODING CONVENTIONS C-1
September 1990

c
CODING CONVENTIONS

The following section outlines some coding and style conventions recommended by IDACOM.
Although the user can develop his own style, it is suggested to stay close to these standards to
enhance readability.

C.1 Stack Effect Comments

A stack effect comment is surrounded by parentheses, and shows two stack pictures. The first
picture shows any items or 'input parameters' that are consumed by the command; the second
picture shows any items or 'output parameters' returned by the command.

Example:
The '=' command has the following stack comment:

(n, \n 2 -- flag)

In this example, n, and n2 are numbers and the flag is either 0 for a false result, or 1 for a true
result. This same example could also be written as follows:

(n1\n 2 -- 011)

The '\' character separates parameters when there is more than one. The parameters are listed
from left to right with the leftmost item representing the bottom of the stack and the rightmost
item representing the top of the stack.

The 'I' character indicates that there is more than one possible output. The above example
indicates that either a O or a 1 is returned on the stack after the '=' operation, with O being a
false result, and 1 a true result.

IDACOM USM Programmer's Manual

C-2 CODING CONVENTIONS
September 1 990

C.2 Stack Comment Abbreviations

Following is a list of commonly used abbreviations. In most cases the stack comments shown in
this manual have been written in full rather than abbreviated.

:11:::m111m: m:m1:1l::mit;m:~~111111M:m:muii1=sJ.~11.:::::1:::1:::m:1i:i:1mt::;:m11::1:;m:.
a Memory address

b 8 bit byte

c 7 bit ASCII character

n 1 6 bit signed integer

d 32 bit signed integer

u 32 bit unsigned integer

f Boolean flag (O-false, non-zero-true)

ff Boolean false flag (zero)

tf Boolean true flag (non-zero)

s String (actual address of a character string
which is stored in a count prefixed manner)

Table C-1 ITL Symbols

C.3 Program Comments

Program comments appear in source code surrounded by parentheses. These describe the intent
or purpose of the definition or line of code.

There must be at least one space on each side of the parentheses.

Example:

HELLO (-­
• HELLO.
W.NOTICE

Display text Hello in Notice Window
Create string)
Output to Notice Window)

The program comment should be kept to a minimum and yet contain enough information that
another programmer can tell the intent at a glance.

USM Programmer's Manual IDACOM

CODING CONVENTIONS

C.4 Test Manager Constructs

C-3
September 1990

Coding conventions for user test scripts should generally follow the style presented throughout
this manual.

Indenting nested program structures should be done using the TAB key in the editor.
Furthermore, using meaningful comments is highly recommended and will enhance the continued
maintainability of the program.

Example:
(State definition purpose comment)

0 STATE{
EVENT Recognition Commands
ACTION{

Action Commands
IF

END IF
}ACTION

}STATE

C.5 Spacing and Indentation Guidelines

Comment

Comment

Comment
Comment

The following outlines the general guidelines for spacing and indentations:
• One space between colon and name in colon definitions.
• One space between opening parenthesis and text in comments.
• One space between numbers and words within a definition.
• One space between initial " in strings (i.e. with " string", W." string", T." string", P." string",

X" hex characters", etc ...)
• Tab for nested constructs.
• Carriage return after colon definition and stack comment.
• Carriage return after last line of code in colon definition and semi-colon.

See the examples in Appendixes C.6 and C.4.

IDACOM USM Programmer's Manual

C-4 CODING CONVENTIONS
September 1 990

C.6 Colon Definitions

Colon definition should be preceded by a short comment. The colon definition should start at
the first column of a line. All code underneath the definition name should be preceded by one
tab. Each element within the colon definition should be well defined.

Example:
(Description of command

COMMAND NAME

IF

DOCASE
CASE X { ... }
CASE Y { ... }
CASE DUP { .. .

ENDCASE
ELSE

BEGIN

UNTIL
END IF

USM Programmer's Manual

Stack description
Comment for first line of code)

Comment

Comment
Comment
Comment

Comment
Comment

IDACOM

ASCII/EBCDIC/HEX CONVERSION TABLE D-1
September 1990

D
ASCII/EBCDIC/HEX CONVERSION TABLE

HEX DEC OCT ASCII EBCDIC HEX DEC OCT ASCII EBCDIC
00 0 00 NUL NUL 30 48 60 0
01 1 01 SOH SOH 31 49 61 1
02 2 02 STX STX 32 so 62 2 SYN
03 3 03 ETX ETX 33 S1 63 3 IR
04 4 04 EOT PF 34 S2 64 4 pp
OS s OS ENO HT 3S S3 6S s TRN
06 6 06 ACK LC 36 S4 66 6 NBS
07 7 07 BEL DEL 37 SS 67 7 EOT
08 8 10 BS GE 38 S6 70 8 SBS
09 9 11 HT SPS 39 S7 71 9 IT
OA 10 12 LF RPT 3A S8 72 RFF
OB 11 13 VT VT 3B S9 73 CU3
oc 12 14 FF FF 3C 60 74 < DC4
OD 13 1S CR CR 3D 61 7S NAK
OE 14 16 so so 3E 62 76 >
OF 1S 17 SI SI 3F 63 77 ? SUB
10 16 20 DLE DLE 40 64 100 @ SP
11 17 21 DC1 DC1 41 6S 101 A
12 18 22 DC2 DC2 42 66 102 B
13 19 23 DC3 DC3 43 67 103 c
14 20 24 DC4 RES 44 68 104 D
1S 21 2S NAK NL 4S 69 10S E
16 22 26 SYN BS 46 70 106 F
17 23 27 ETB POC 47 71 107 G
18 24 30 CAN CAN 48 72 110 H
19 2S 31 EM EM 49 73 111 I
1A 26 32 SUB UBS 4A 74 112 J cent
1B 27 33 ESC CUI 4B 7S 113 K
1C 28 34 FS IFS 4C 76 114 L <
1D 29 3S GS IGS 4D 77 11 S M (
1E 30 36 RS IRS 4E 78 116 N +
1F 31 37 us IUS 4F 79 117 0 I
20 32 40 SP DS so 80 120 p &
21 33 41 sos S1 81 121 0
22 34 42 " FS S2 82 122 R
23 3S 43 # wus S3 83 123 s
24 36 44 $ BYP S4 84 124 T
2S 37 4S % LF SS 8S 12S u
26 38 46 & ETB S6 86 126 v
27 39 47 ESC S7 87 127 w
28 40 so SA S8 88 130 x
29 41 S1 SFE S9 89 131 y
2A 42 S2 SM/SW SA 90 132 z
2B 43 S3 + CSP SB 91 133 [$
2C 44 S4 MFA SC 92 134 \
2D 4S SS ENO SD 93 13S l
2E 46 S6 ACK SE 94 136
2F 47 S7 I BEL SF 9S 137,

IDACOM USM Programmer's Manual

D-2 ASCII/EBCDIC/HEX CONVERSION TABLE
September 1 990

HEX DEC OCT ASCII EBCDIC HEX DEC OCT ASCII EBCDIC
60 96 140 90 144 220
61 97 141 a I 91 145 221 j
62 98 142 b 92 146 222 k
63 99 143 c 93 147 223 I
64 100 144 d 94 148 224 m
65 101 145 e 95 149 225 n
66 102 146 f 96 150 226 0

67 103 147 g 97 151 227 p
68 104 150 h 98 152 230 q
69 105 151 99 153 231
6A 106 152 j 9A 154 232
6B 107 153 k . 9B 155 233 }
6C 108 154 I % 9C 156 234 D

60 109 155 m 90 157 235)
6E 110 156 n > 9E 158 236 .±.
6F 111 157 0 ? 9F 159 237 •
70 112 160 p AO 160 240
71 113 161 q A1 161 241 0
72 114 162 r A2 162 242 s
73 115 163 s A3 163 243 t
74 116 164 t A4 164 244 u
75 117 165 u A5 165 245 v
76 118 166 v A6 166 246 w
77 119 167 w A7 167 247 x
7B 120 170 x A8 168 250 y
79 121 171 y \ A9 169 251 z
7A 122 172 z AA 170 252
7B 123 173 { # AB 171 253 L
7C 124 174 I @ AC 172 254 r
70 125 175 } AD 173 255 [
7E 126 176 AE 174 256 >
7F 127 177 DEL AF 175 257 •
80 12B 200 BO 176 260 0
B1 129 201 a B1 177 261 1
82 130 202 b B2 17B 262 2
B3 131 203 c B3 179 263 3
B4 132 204 d B4 180 264 4
B5 133 205 e B5 1 B1 265 5
86 134 206 f B6 1B2 266 6
87 135 207 g B7 183 267 7
88 136 210 h B8 184 270 8
B9 137 211 B9 1B5 271 9
BA 138 212 BA 186 272
8B 139 213 { BB 187 273 J
BC 140 214 < BC 18B 274 ,
BD 141 215 (BO 189 275]
BE 142 216 + BE 190 276 *
BF 143 217 t BF 191 277

USM Programmer's Manual IDACOM

ASCII/EBCDIC/HEX CONVERSION TABLE D-3
September 1990

HEX DEC OCT ASCII EBCDIC HEX DEC OCT ASCII EBCDIC
co 192 300 { FO 240 360 0
C1 193 301 A F1 241 361 1
C2 194 302 B F2 242 362 2
C3 19S 303 c F3 243 363 3
C4 196 304 D F4 244 364 4
cs 197 30S E FS 24S 36S s
C6 19B 306 F F6 246 366 6
C7 199 307 G F7 247 367 7
CB 200 310 H FB 24B 370 B
C9 201 311 I F9 249 371 9
CA 202 312 FA 2SO 372
CB 203 313 FB 2S1 373
cc 204 314 FC 2S2 374
CD 20S 31S FD 2S3 37S
CE 206 316 FE 2S4 376
CF 207 317 FF 2SS 377
DO 20B 320 }
D1 209 321 J
D2 210 322 K
D3 211 323 L
D4 212 324 M
DS 213 32S N
D6 214 326 0
D7 21S 327 p
DB 216 330 Q
D9 217 331 R
DA 21B 332
DB 219 333
DC 220 334
DD 221 33S
DE 222 336
DF 223 337
EO 224 340 \
E1 22S 341
E2 226 342 s
E3 227 343 T
E4 22B 344 u
ES 229 34S v
E6 230 346 w
E7 231 347 x
EB 232 3SO y
E9 233 3S1 z
EA 234 3S2
EB 23S 3S3
EC 236 3S4
ED 237 3SS
EE 23B 3S6
EF 239 3S7

IDACOM USM Programmer's Manual

BAUDOT CHARACTER SET

0 0 0000 00

1 0 0001 01

2 0 0010 02

3 0 0011 03

4 0 0100 04

5 0 0101 05

6 0 0110 06

7 0 0111 07

8 0 0100 08

9 0 1001 09

10 0 1010 OA

11 0 1011 OB

12 0 1100 oc
13 0 1101 OD

14 0 1110 OE

15 0 1111 OF

16 1 0000 10

17 1 0001 11

18 1 0010 12

19 1 0011 13

20 1 0100 14

21 1 0101 15

22 1 0110 16

23 1 0111 17

24 1 1000 18

25 1 1001 19

26 1 1010 1A

27 1 1011 1 B (figs)

28 1 1100 1C

29 1 1101 10

30 1 1110 1E

31 1 1111 1 F (LTRS)

Table E-1

IDACOM

E-1
September 1990

E
BAUDOT CHARACTER SET

NU NU

E 3

LF LF

A

(space) (space)

s
I 8

u 7

CR CR

D $

R 4

J BL

N

F

c
K

T 5

z T

L

w 2

H #
y 6
p 0

Q 1

0 9

B ?

G &

SO (shift out) SO (shift out)

M

x I

v
SI (shift in) SI (shift in)

Baudot Character Set

USM Programmer's Manual

COMMAND CROSS REFERENCE LIST F-1
September 1990

F
COMMAND CROSS REFERENCE LIST

This appendix cross references old commands and variables, not appearing in this manual, with
new replacement commands. Reference should be made to the previous versions of this manual
for description of the old commands. The new commands achieve the same function, however,
the input/output parameters may have changed.

BYTE-TIME

ONLINE

ON_LINE

PLAY-COUNT

PLAY-ETIME

PLAY-ID

PLAY-STIME

PORT @ char SYNC_CHAR

PORT @ length EOF _COUNT

PORT @ n SPEED

PORT@ time ASYNC_TIME

REC-STATUS/DATA-STATUS

REST-MARK

REST-SPACE

SELLONG

SELSHORT

SELSPEED

T /RXD_ TIME (received)

IDACOM

Contact IDACOM
(Customer Support)

GO_ONLINE

GO_OFFLINE

BLOCK-COUNT

END-TIME

PORT-ID

START-TIME

char -SYNC
char - sync character

length =EOF _COUNT
length = # of characters

n =SPEED n = bit rate

time -ASYNC_TIME
time = timeout in tenths
of seconds

ST ATUS_ERR?

RESET_ENABLE_ON

RESET_ENABLE_OFF

LONG-INTERVAL

SHORT-INTERVAL

INTERFACE-SPEED

START-TIME

USM Programmer's Manual

INDEX

Abort
detecting, 1 0-7
transmitting, 10-12

?ABORT, 10-7
ABORLERR?, 8-3
ACTION{ }ACTION, 1 0-1
ALLOT_BUFFER, 10-13
ALLLEADS, 2-3
APPEND_TO_BUFFER, 10-13
Architecture

monitor, 3-1 to 3-4
simulation, 9-1 to 9-3

ASCII, 6-4
ASCII to EBCDIC Conversion, 10-5, 10-12
Asynchronous, see Framing
ASYNC_ TIME, 2-12
Autoconfiguration, 2-13, 2-14
AUTO_CONF, 2-13
A__ TO_E, 1 0-5
A__TO_E__SEND, 10-12
A__ TO_E__SEND_WITH_ERROR, 1 0-12

B, 3-3
BACKWARD, 3-3
Baudot, 6-4, E-1
BB, 3-3
BISYNC ASCII, see Framing
BISYNC EBCDIC, see Framing
Bit Rate

setting, 2-7
throughput graph, 6-6

BITS/CHAR-5, 2-7
BITS/CHAR-6, 2-7
BITS/CHAR-7, 2-7
BITS/CHAR-8, 2-7
Bits/Character, setting, 2-7
Block Number

decode, 8-2
display, 6-3

BLOCK-COUNT, 8-2
BOP, see Framing
BOTTOM, 3-4
BUFFER, 1 0-14
Buffer(s), 1 0-12 to 1 0-14

allocating memory, 10-13
appending text, 1 0-13
clearing, 10-14
CRC error, 10-14
moving text, 10-13
number, 10-12
queuing, 10-14
sending, 10-14
size of, 1 0-12
structure, 10-12

C1-ALL, 7-3
C1 -NONE, 7-3
Capture RAM

capturing to RAM, 4-1, 4-2
clearing, 4-2
configuring, 4-1, 4-2
playback, 3-2, 9-2
printing, 4-4
saving to disk, 4-3

CAPLFULL, 4-2
CAPLOFF, 4-1
CAPLON, 4-1
CAPLWRAP, 4-1
Character Set

ASCII, 6-4
baudot, 6-4
EBCDIC, 6-4
hex, 6-4
JIS8, 6-4
teletex, 6-4

CHARACTER SYNC, see Framing
CLEAR_BUFFER, 10-14
CLEAR_CAPT, 4-2

IDACOM

INDEX

CLEAR_CRT, 6-4
CLEAR_EOF_CHAR, 2-13
CLK-EXLCLK, 2-6
CLK-NRZI, 2-6
CLK-NRZIC, 2-6
CLK-STD, 2-6
Clocking, A-5

external, 2-6, A-5
NRZI, 2-6, A-5
NRZI with clock, 2-6, A-5
standard, 2-6, A-5

COMMAND_IND, 1 0-9
Comparison

anchored, 1 0-6
unanchored, 1 0-7
wildcard, 10-6

Configuration
autoconfiguration, 2-13, 2-14
bit rate, 2-7
bits/character, 2-7
capture RAM, 4-1, 4-2
clocking, 2-6
CRC checking, 2-11
DCD control, 2-1 O
framing, 2-4, 2-5
interframe fill, 2-9
message length, 2-12
message timeout, 2-12
monitor, 2-1 to 2-14
parity, 2-8
protocol, 2-4 to 2-13
rest idle character, 2-1 0
simulation, 2-1 to 2-14
stop bits, 2-8
strip sync, 2-11
sync character, 2-9
sync reset character, 2-1 0

Connectors
V.11, 2-2
V.28, 2-2
V.35, 2-2
V.36, 2-2

Control Character
descriptions, A-2
keyboard entry, 1 0-11

Control Lead
decode, 8-2
filters, 7-2, 7-3
turning on/off, 10-9, 11-6

Conversion, string, 10-4
COP, see Framing
CRC Error(s)

CCITT, 2-11
checking, 2-11
CRC 16, 2-11
test manager event, 10-7
transmitting, 10-11, 10-12, 1 0-14
VRC/LRC, 2-11

CRC-CCITT, 2-11
CRC-CRC_16, 2-11
CRC-NONE, 2-11
CRC-VRC/LRC, 2-11
CRC_ERR?, 8-3
?CRC_ERROR, 10-7
CTOD_OFF, 4-3
CTOD_ON, 4-3
CTRACE, 7-2

D1-ALL, 7-3
D1-NONE, 7-3
Data Formats, A-1 to A-5
Data Lead

request report, 10-3
test manager event, 1 0-3
timestamp, 10-1 o

DATA1, 10-4
DCD Control, 2-10
DCD_OFF, 2-1 0

lndex-1
September 1990

USM Programmer's Manual

lndex-2
September 1 990

DCD_ON, 2-10
DDCMP, A-3
Decode

block number, 8-2
monitor, 8-1 to 8-3
physical layer, 8-1 to 8-3
simulation, 8-1 to 8-3
timer, 8-3
timestamp, 8-2

DISABLE__EOF _CHAR, 2-13
DISABLE....LEAD, 2-3
DISK_FULL, 5-1
DISK_OFF, 5-2
DISK_WRAP, 5-1
Display Format, 6-1 to 6-7

character, 6-2
character set, 6-4
dual, 6-5
full, 6-5
hex, 6-2
short, 6-2
split, 6-3
timestamp, 6-3
trace statements, 6-3, 6-6

DIS_REC, 5-2
DTRACE, 7-2
Dual Window, 6-5

EBCDIC
conversion from ASCII, 10-5
display, 6-4
string, 10-12

EBCDIC-BUF, 10-5
ENABLE__EOF_CHAR, 2-12
ENABLE....LEAD, 2-3
ENB_REC, 5-2
Encoding, 2-6, A-4
End of Frame Character, 2-12
END-TIME, 8-2
-EOF _COUNT, 2-12
Event Recognition, 10-2 to 1 0-9

anchored comparison, 10-6
CRC error, 10-7
frames, 1 0-4 to 1 0-7
from DCE, 10-7
from DCE/DTE, 1 0-6
from DTE, 1 0-7
physical layer, 10-3
timers, 10-7, 10-8
unanchored comparison, 10-7
wildcard, 10-8, 10-9

EVENT-TYPE, 10-8

F, 3-3
FF, 3-3
FILE-> BUFFER, 10-13
Filename, recording, 3-3
FILLBUFFER, 10-13
Filters, 7-1 to 7-3

lead changes, 7-2, 7-3
trace statements, 7-1, 7-2

FORWARD, 3-3
FRAME, 10-8
Frame(s)

abort, 10-7, 10-12
length, 8-2
test manager events, 10-4 to 10-7
transmitting, 1 0-11, 10-12, 1 0-14
user-defined, 10-11

Framing
ASYNC, 2-5, A-4
BISYNC ASCII, 2-5, A-2
BISYNC EBCDIC, 2-5, A-2
CHARACTER SYNC, 2-4, A-3
DDCMP, A-3
HDLC/SDLC, 2-4, A-1

FREEZE, 3-4, 9-3
FROM_CAPT, 3-2

USM Programmer's Manual

INDEX [continued]

FROM_DISK, 3-2
FULL, 6-5
FUNCTION*KEY, 10-9

GO_OFFLINE, 2-1
GO_ONLINE, 2-1

HALT, 3-2, 9-3
HDLC, see Framing
Hex, see Display Format

IF-V11, 2-2
IF-V28, 2-2
IF-V35, 2-2
IF-V36, 2-2
IF _FILL-MARK, 2-9
IF _FILL-SPACE, 2-9
IF _FILL-SYNC, 2-9
Interface

bit rate, 2-7
clocking, 2-6
lead transitions, 10-9
leads, 2-3
to DCE/DTE, 2-2, 8-1
V.11 /X.21, 2-2
V.28/RS-232C, 2-2
V.35, 2-2
V.36, 2-2

INTERFACE-SPEED, 6-6
lnterframe Fill, 2-9

JIS8, 6-4

Layer 1, see Physical Layer
Lead Transition(s), see Control Lead
LEAD.CHANGE, 10-8
LEAD-NUMBER, 8-2
Live Data

capturing to RAM, 4-1, 4-2
monitor, 3-1
port identifier, 8-1
recording, 5-1, 5-2
simulation, 9-1
simultaneous playback, 3-4, 9-3

LOAD_RETURN_STATE, 10-2
LONG-INTERVAL, 6-7
LONG_FRM_ERR?, 8-3

MAKE....DATA 1 , 1 0-4
Message

end of frame character, 2-12
length, 2-12
timeout, 2-12

MONITOR, 3-1, 9-1
Monitor

architecture, 3-1 to 3-4
configuration, 2-1 to 2-14
decode, 8-1 to 8-3
live data, 3-1
online/offline, 2-1
playback, 3-2 to 3-4

NEW_STATE, 10-2
NEW_TM, 10-2
NO..ASYNC_TIME, 2-12
NO_EOF _COUNT, 2-12
NRZ, 2-6, A-4
NRZI, 2-6, A-4

OVERRUN_ERR?, 8-3

P-ASCll_BISYNC, 2-5
P-ASYNC,2-5
P-BOP[HDLC/SDLC], 2-4
P-COP _SYNC, 2-4
P-EBCDIC_BISYNC, 2-5
Parity, 2-8
PARITY-EVEN, 2-8

INDEX

IDACOM

INDEX

PARITY-MARK, 2-8
PARITY-NONE, 2-8
PARITY-ODD, 2-8
PARITY-SPACE, 2-8
Physical Layer

configuration, 2-2
decode, 8-1 to 8-3
filters, 7-2
test manager actions, 10-9 to 10-11
test manager events, 10-3

PLAYBACK, 3-3
Playback

capture RAM, 3-2, 9-2
control, 3-3, 3-4
disk recording, 3-2, 9-2
monitor, 3-2 to 3-4
simulation, 9-2, 9-3
simultaneous live data, 3-4, 9-3

Port Identifier, 8-1
PORT-ID, 8-1
Printer Configuration, 4-4
Printing

capture RAM, 4-4
disk recording, 4-4
throughput graph, 6-7

PRINT_OFF, 4-4
PRINT_ON, 4-4
PRINLTPR, 6-7
Protocol

configuration, 2-4 to 2-13
framing, 2-4 to 2-13

QUIT_TRA, 4-2

R1•ALL, 7-2
R1 •NONE, 7-2
R•ASCll, 6-4
R•BAUDOT, 6-4
R•EBCDIC, 6-4
R•HEX, 6-4
R•JIS8, 6-4
R•TELETEX, 6-4
REC-LENGTH, 8-2
REC-POINTER, 8-2
?RECEIVED, 1 0-6
?RECEIVED_DCE, 1 0-6
?RECEIVED_DTE, 1 0-6
RECORD, 5-2
Recording

captured data, 4-3
filename, 3-3
live data to disk, 5-1, 5-2
overwrite, 5-1
playback disk, 3-2, 3-3, 9-2
stop, 5-2
suspend, 5-2

Remote Control, 1-1
REP _CHAR, 6-2
REP _HEX, 6-2
REP _NONE, 6-3
REP_OFF, 6-2
REP_ON, 6-2
REP _SHORT, 6-2
REQ_RXD_OFF_TRANS, 10-3
REQ_RXD_ON_TRANS, 10-3
REQ_RXD_TRANS, 10-3
•RESET, 2-10
RESET_ENABLE....OFF, 2-10
RESET_ENABLE....ON, 2-10
RETURN_STATE, 10-2
RTRACE, 7-1
RUN_SEQ, 10-2
RXD-TRANS, 10-3
?RXD_OFF, 1 0-3
?RXD_ON, 1 0-3
RXD_STATE, 10-3

IDACOM

INDEX [continued]

Screen(s)
clearing, 6-4
scrolling, 3-3, 3-4
split, 6-3

SCRN_BACK, 3-3
SCRN_FWD, 3-3
SDLC, see Framing
?SEARCH, 10-7
?SEARCH_DCE, 10-7
?SEARCH_DTE, 10-7
SEE_ TRA, 4-3
SEND, 10-11
SEND_BUFFER, 10-14
SEND_BUFFER_ERROR, 10-14
SEND_WITH_ABORT, 10-12
SEND_WITH_ERROR, 1 0-11
SEQ{ }SEQ, 10-2
SHORT-INTERVAL, 6-7
SHORLFRM_ERR?, 8-3
Simulation

architecture, 9-1 to 9-3
configuration, 2-1 to 2-14
decode, 8-1 to 8-3
live data, 9-1
online/offline, 2-1
playback, 9-2, 9-3
to DCE/DTE, 2-2

•SIM_DCE, 2-2
•SIM_DTE, 2-2
·SPEED, 2-7
SPLIT_OFF, 6-3
SPLIT_ON, 6-3
START-TIME, 8-2, 10-10
State Machine, 10-1
STATE....INIT{ }STATE....INIT, 10-1
STATE{ }STATE, 10-1
STATUS_ERR?, 8-3
STOP _BITS•1 .0, 2-8
STOP _BITS•1 .5, 2-8
STOP _BITS•2.0, 2-8
String(s)

conversion, 1 0-4, 1 0-12
transmitting, 1 0-11

STRING-> BUFFER, 10-13
STRIP _SYNC_OFF, 2-11
STRIP _SYNC_ON, 2-11
•SYNC, 2-9
Sync Character

setting, 2-9
stripping, 2-11
user-defined, 2-9

Sync Reset Character
enabling/disabling, 2-1 o
setting, 2-1 o
user-defined, 2-1 O

SYNC•l 6, 2-9
SYNC•32, 2-9
SYNC-7E, 2-9
SYNC•96, 2-9
SYNC_RESET-FF, 2-10

T/RXD-TIME, 10-11
TCLR, 10-1
Test Manager

action definition, 1 0-1
actions, 10-9 to 10-12
event recognition, 10-2 to 10-9
Initializing the, 10-1
sequences, 10-2
state initialization, 10-1
state transition, 10-2
stopping the, 10-2
subroutines in, 1 0-2
using buffers, 10-12 to 10-14

Test Script(s), 11-1 to 11-11
BISYNC ASCII, 11-1 0
BISYNC EBCDIC, 11 -9
control lead transitions, 11 -6

lndex-3
September 1 990

USM Programmer's Manual

lndex-4
September 1 990

Test Script(s) [continued]
monitor, 11 -7
multiple, 10-2
simulation, 11-1 to 11-5, 11 -8

Throughput Graph
display, 6-6
long interval, 6-7
printing, 6-7
short interval, 6-7

TIME*OUT, 10-8
?TIMER, 10-7
Timer(s)

decode, 8-3
test manager events, 1 0-7, 1 0-8
wakeup, 10-8

TIMER-NUMBER, 8-3
Timestamp

data lead transition, 10-10
decode, 8-2
display format, 6-3

TIME_DAY, 6-3
TIME_OFF, 6-3
TIME_ON, 6-3
•TITLE, 3-3
TM_STOP, 10-2
TOP, 3-3
TPR_OFF, 6-6
TPR_ON, 6-6
Trace Statements

display format, 6-6
displaying, 6-3
filters, 7-1, 7-2

TRACE_COMP, 6-6
TRACE_SHORT, 6-6
TRANSFER, 4-2
Transmitting

abort, 10-12
buffers, 10-14
CRC error, 10-11, 1 0-12, 10-14
EBCDIC string, 10-12
string(s), 10-11

TRA__ALL, 4-2
TRA__END, 4-3
TRA__START, 4-3
TX-SEND-WAIT, 1 0-14
TXD_OFF, 10-10
TXD_ON, 1 0-1 0

?WAKEUP, 10-B
Wildcard(s)

comparison, 1 0-6
test manager events, 1 0-8

USM Programmer's Manual

INDEX

INDEX [continued]

IDACOM

