
PROGRAMMER'S REFERENCE MANUAL .
September 1990

Operating System 2.0

HOME PROCESSOR
Version 2.0

1-1
November 1990

HOME PROCESSOR
Operating System 2.0

This release notice contains changes specific to the Home processor. Refer to the appropriate
User/Progammer's Manual Update for a list of application specific changes.

1.1 General Enhancements

fl' New Machine Configurations
Two new machine configurations: BRA and D-Channel are now supported on the Home
Processor.

fl' Automatic Printer and Remote Port Configuration
The HOME.D configuration file has been added which automatically executes default ITL
commands to configure the printer and remote ports at bootup. The default configuration
can be edited to match the users environment.

fl' Application Load Menus
The loading menu for WAN applications has been split into a WAN Monitor and a WAN
Emulation Applications Menu. The WAN Emulation Applications Menu now includes
selections for conformance testing software.

The BRA D-Channel Emulation Applications Menu has been added which includes
selections for both emulation and conformance testing software.

The APPLCONF.F file has been added to dynamically create these application loading
menus, and must be installed on WOO.

fl' Fast Topic Select
Type the first letter of the desired topic to advance to that topic. Wraparound scan is
implemented from left to right.

fl' Copy and Verify Files
Filenames are now displayed as they are copied and verified.

fl' Pause on Error
The Pause on Error function key has been added to both the copy and compare functions
under the Files topic. When highlighted, the copy and compare functions pauses when an
error occurs. The user can note the filename and choose whether or not to continue. If the
error Indicates a problem with remaining files, the copy operation will be aborted.

fl' Backup Using Wildcards
Wildcards (*) can now be specified to back up a single file or group of files.

IDACOM Release Notice

1-2
November 1990

HOME PROCESSOR
Version 2.0

fl' Printing Files
When printing multiple files specified by a wildcard (*}, filenames are now displayed as they
are printed.

fl' Editor
It is no longer necessary to confirm an exit from the editor when no changes have been
made to a file.

fl' Test Ports Status Display
The filename is displayed on the Test Ports Status Display when a data recording is in
progress, and displayed as 'Suspended' when a data recording is suspended.

fl' Printer and Modem Port Flow Control
CTS/RTS flow control has been added. In addition, XON/XOFF, DTR, and CTS/RTS flow
control can be combined to match the user's configuration.

1.2 PRA Enhancements

fl' Channel Setup Menu
In emulation mode, Current Parameters for the selected test channel now displays an
ACTIVE status indicating that the test channel is currently connected to the specified
timeslot. A SUSPENDED status indicates the test channel is temporarily disconnected due
to a change on the Ports Setup Menu.

~NOTE
No status is displayed in monitor mode.

fl' System Setup Menu
The T1 04 4F/M framing format has been added which is the same as T1 04 framing
format except the Fs (signalling channel framing bit) is set to 1 on the transmitter and is
ignored by the receiver. This results in a 4 frame multiframe.

~NOTE
This requires a special hardware modification and may not be supported on all units.

1.3 General Changes

fl' Preference Menu
This menu has been removed.

fl' Loading Applications
An application, reloaded from an application loading menu, now actually reloads from disk.

fl' OTHERS Key
After exiting from a menu when the OTHERS function key was pressed, returning to the
same menu results in a display of the original keys not the OTHERS set of keys.

Release Notice IDACOM

HOME PROCESSOR
Version 2.0

' Parallel Printer

1-3
November 1990

The Parallel function key replaces the Centronics function key on the Printer Port Setup
Menu.

1.4 PRA Changes

' Channel Setup Menu
Channel Type has been removed from the menu. The channel type is now assigned
automatically when an application loads.

The default for Inverted HDLC (IHDLC) has been changed to YES for T1 framing formats (04
or ESF), and NO for CEPT framing formats.

' Loopback
The Transmit Loopback function has been removed.

' All references to BRI and PRI have been changed to BRA and PRA respectively.

' System Setup Menu
RJ45 Configuration has been changed to RJ45(DB9) Config. to include CEPT connectors.

Line Buildout on the System Setup Menu has been changed to Transmit Equal to correctly
reflect its intended functionality of transmit pulse equalization.

' Layer 1 Error Generation Menu
Yellow Alarm and Blue Alarm have been changed to Yellow Alarm/RA! and Blue Alarm/AIS
to reflect CEPT functionality.

' Remote Alarm Indication
The 'Remote Alarm Indication' status has been changed to 'RAI' to reflect CEPT
functionality.

' Configuration
Changing PRA configuration (eg. PRA speed between 56 and 64 kbps) unloads the
application to prevent unpredictable results when traffic is being received by the
application.

1.5 General Problems Fixed

~ Large Number of Files
Directory listings, printing, copying, comparing, backup, and restoring backup can now be
done on floppy disks and hard disk partitions that contain more than 283 files.

~NOTE
A directory listing for a large number of files (more than 500) can take time. The disk
LED will flicker indicating activity.

IDACOM Release Notice

1-4
November 1 990

HOME PROCESSOR
Version 2.0

© Backup
Pressing the RETURN key instead of the Execute function key, when prompted to insert a
new blank diskette, no longer terminates the backup operation.

A file, open on another partition for data recording, printing, playback, or editing, no
longer closes without warning. Only files opened during backup are closed.

© Restore
During a single file restore, an existing file can now be restored on the selected
partition.

Copies of backup diskettes created with this and future versions can now be restored.

Workaround:
To restore copies from previous versions:
Format a new floppy diskette.

Create a filesystem on this diskette using the following format for the filesystem name:

WDx_Backup_#_nN

Where x can be 0 to 7. Originally, it was the number of the partition from which the
backup was created and is used in a full restore to create a new filesystem.

Where n is the number of the diskette in the backup set starting with 0 for the first
diskette, 1 for the second diskette, and so on.

Copy the corresponding backup diskette onto this new diskette.

© Directory Listing
Changing the filename, several pages into the directory listing, no longer results in a
system crash.

Changing the filename, during a long directory listing, now displays file sizes correctly
(in Kbytes).

© Directory Printing
When printing a directory, a filename containing 14 characters, no longer repeats the
14th character as the 15th character.

© Hard Disk Partitioning
WOO on a 40 MByte drive can now be partitioned to use the entire 40 MBytes.

© Comparing Files
Comparing identical small test manager binary files no longer results in a verification
failure.

© Editor
The 'last modified date' is updated only when the file is saved.

Files which are greater than 409 lines and have been transferred to the PT using RFILEX,
cannot be edited.

Release Notice IDACOM

HOME PROCESSOR
Version 2.0

@ Loading an Application

1-5
November 1990

It is no longer necessary to reboot to reload an application after an application has
failed to load.

@ Remote Port
The Remote (To Modem) port is now configured on machine bootup.

@ Setting Date and Time
An error message is now displayed if date and time entries are invalid.

1.6 PRA Problems Fixed

@ The test channel 2 receiver is fully functional and is no longer affected by layer 1
transitions on Port B.

@ PAA Drop & Insert is now fully operational and reliable.

@ The PT is no longer flooded with layer 1 transitions.

@ CEPT CRC4 framing format is now fully supported.

~NOTE
The use of CEPT CRC4 may require a hardware upgrade. An error message will be
displayed on the screen if CEPT CRC4 is selected and the hardware cannot support it.

~ Timeslot allocation in the PAA Monitor is fixed.

~ PAA Drop & Insert functions are fixed.

@ PAA receive loopback with regeneration on is fixed.

@ Selection of 75 ohm impedance in PAA CEPT modes is now fully operational.

1. 7 General Known Problems

~ Configuration Diagram
The online connection for the D-Channel on the Configuration Diagram on the Home
processor is always on after an application is loaded. Also, the online connection for the
B-Channels not only has an effect on the application processors but on the voice and
external paths as well.

~ A crash will occur if the power source is changed repetitively on a BRA configured tester
with D-Channel software and there is continuous traffic with another tester.

IDACOM Release Notice

1-6
November 1990

HOME PROCESSOR
Version 2.0

~ FILEX
A disk error will result when downloading more than one file, in one pass, with the receive
name not specified. The disk error 'error during closing' is displayed after the second file is
received.

1.8 Known Hardware Problem

~ Remote and printer speeds are not totally independent. Changing speed for one can affect
the other. However, the following speeds do not cause this problem: 110, 135.5, 300, 600,
1200, 2400, 4800, 9600.

1.9 Known PRA Problems

~ In Drop & Insert mode with T1 ESF framing, buffer synchronization might not occur
immediately. This loss of buffer synchronization can be identified if the status quickly
changes from 'Synchronized' to 'Buffer Overflow' and back to 'Synchronized'.

Workaround:
After synchronizing for about one minute, switch to monitor mode and then back to Drop &
Insert mode.

® High levels of traffic can result in the inability to change PAA configurations.

Workaround:
For those applications with an Online function key, turn the application offline before
changing the configuration on the Home Processor.

Release Notice IDACOM

APPLICATION INDEPENDENT 2-1
November 1990

APPLICATION INDEPENDENT

The following enhancements and/or problems fixed are common to all of the following software
applications.

Universal Monitor 2.0 Rev. 0

Universal Simulation 2.0 Rev. 0

X.25 Monitor 2.0 Rev. 0

X.25 Emulation 2.0 Rev. O
SDLC/SNA Monitor 2.0 Rev. 0

SDLC Emulation 2.0 Rev. 0

BSC 3270 Monitor 2.0 Rev. 0

BSC 3270 Emulation 2.0 Rev. O
ISDN D-Channel Monitor 2.0 Rev. 0

ISDN D-Channel Emulation 2.0 Rev. 0

SDLC/SNA Verification 2.0 Rev. O
SNA Network Performance Analysis 2.0 Rev. 0

X.25 Network Performance Analysis 2.0 Rev. O
X.25 Load Generator 2.0 Rev. O

X.25/Q Monitor 2.0 Rev. O
Teletex/Fax Gr. IV Monitor 2.0 Rev. 0

Remote Test Package 2.0 Rev. O
X.75 Monitor 2.0 Rev. O
X.75 Emulation 2.0 Rev. O
ISDN Conformance Testing 2.0 Rev. O
X.25 Conformance Testing 2.0 Rev. 0

2.1 Enhancements

~ Configuration File
When a monitor or emulation application is loaded from the Home processor, a
corresponding default configuration file is executed which automatically configures the
application. These files are uniquely named depending on the application and machine
configuration. Refer to the Programmer's Reference Manual for valid filenames.

Example:
The following default configuration file can be edited on AP#1 on a BRA/WAN machine to
customize the Bisync Emulation program.
BSC_EMUL.Dl

IDACOM Release Notice

2-2 APPLICATION INDEPENDENT
November 1990

' Fast Topic Select
Type the first letter of the desired topic to advance to that topic. Wraparound scan is
implemented from left to right.

' Format Topic
The Format topic has been moved next to the Display topic.

' Search for Timestamp
When the MM:SS:ssss timestamp format is selected, a prompt for MM:SS:ssss is displayed
when searching for timestamps.

' Clear Capture RAM
The Clear function key and the CLEAR_CAPT command have been added to clear the
capture RAM buffer anytime.

' Trace Display Format
Trace Display Format has been added to the Display Format Menu to control the display
format for trace statements, independent of the data format.

' WAN Interface Control Leads
Interface Control Leads has been added to the configuration menus to enable and disable
the WAN interface control leads. Refer to the appropriate Programmer's Manual for
corresponding commands.

' Bit Rate
When clocking is provided by the interface, the bit rate can only be measured. When
clocking is provided by the tester, the bit rate must be selected.

~NOTE
For accurate throughput measurement, the bit rate (line speed) must be measured or set
to match the actual line speed.

' Display of Invalid Data
When hex and character display formats are selected, invalid data conditions are now
reported.

' Frame/Block Errors
The STATUS_ERR? command has been added to indicate a frame/block error has been
detected in the currently processed frame.

' RAM or Disk Playback with Filtered Display
When playing back data with a large sequential series of frames filtered out of the display,
notices are displayed to indicate when searching/filtering is progressing and completed.

' Test Manager Buffer Commands
The following commands have been added to allocate memory and manipulate text in
buffers: ALLOT_BUFFER, FILLBUFFER, APPEND_TOJ3UFFER, and CLEAR_BUFFER.

Release Notice IDACOM

APPLICATION INDEPENDENT

2.2 Changes

~ Print On/Off

2-3
November 1990

The Print On/Off function keys have been moved from the Display Format Menu to the Print
topic.

~ Printing
Printing a data file, source file, or saving RAM to disk operations must now run to
completion or be stopped via function key before accessing any other topics.

~ Playback Source
Using the control shift up and down arrows, now indicates whether the data source is
capture RAM or disk.

2.3 Problems Fixed

® Response Time Measurement
The start and end data blocks must now be specified to accurately calculate the response
time between two frames.

® Loading Test Script Error
Loading a test script no longer results in the display of a double error message when a disk
error occurred.

® Data Recording Suspend/Resume
The Connection Diagram now updates correctly when suspending or resuming a recording.

@ Error Handling for Buffer Usage
FILE->BUFFER no longer displays an incorrect message when unsuccessful.

An error message is displayed when attempting to send a buffer which has not been filled
with the STRING->BUFFER or FILE->BUFFER command.

® Save RAM to Disk
If Save RAM to Disk is selected during Playback Disk mode, the data display now changes
from disk to RAM to select start and end transfer blocks.

® Decode Variables
The REC-POINTER and REC-LENGTH variables now maintain the correct values for the
current data event even if the test script or trigger had generated a trace statement.

Received timestamps are no longer altered when an emulation/simulation transmits a
frame/block.

@ Throughput Graph
The throughput graph is now displayed accurately when long or short interval values are
changed while the graph display is active.

IDACOM Release Notice

2-4 APPLICATION INDEPENDENT
November 1990

@ Playback Disk Errors
The correct error message is now displayed when attempting to play back data from a
nonexistent disk drive or partition.

@ Scrolling through playback RAM in continuous mode, is severely slowed down when
running background tasks.

~NOTE
This is more noticeable when the display filter is turned on.

Release Notice IDACOM

PREFACE

Each application program can run a test script that consists of general and protocol specific
commands. This manual is intended to provide a programming reference for these general
commands and assumes some familiarity with basic programming concepts. Commands are
organized according to the major components of the Interactive Test Language (ITL). Information
contained in this manual is machine independent.

This manual is not intended to provide basic user instruction, but rather addresses the methods
of writing test programs. Refer to the machine specific User Manual for a quick reference to the
basic operation of the protocol tester.

IDACOM reserves the right to make any required changes in this manual without prior notice, and
the user should contact IDACOM to determine if any changes have been made. No part of this
manual may be photocopied, reproduced, or translated without the prior written consent of
ID ACOM.

IDACOM makes no warranty of any kind with regard to this material, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose.

Copyright © IDACOM 1990

P /N 6000-1201

IDACOM Electronics Ltd.
A division of Hewlett-Packard

4211 - 95 Street
Edmonton, Alberta
Canada TSE 5R6
Phone: (403) 462-4545
Fax: (403) 462-4869

ITL and R-FILEX are trademarks of IDACOM Electronics Ltd.

TABLE OF CONTENTS

TABLE OF CONTENTS

PREFACE

1 INTRODUCTION

1.1

1.2

Stack Notation .

Command Format

2 DATA TYPES

2.1

2.2

Numeric Entry

String Entry .

3 MEMORY ACCESS AND VARIABLES

3.1

3.2

3.3

Access Commands .
32 Bit Operations
16 Bit Operations
8 Bit Operations .

Creating New Variables .

Filling and Copying Memory

v
September 1990

1-1

1-2

1-3

2-1

2-1

2-1

3-1

3-1
3-1
3-2
3-3

3-3

3-5

4 ARITHMETIC OPERATIONS . 4-1

5 BIT MANIPULATION . 5-1

6 PROGRAM CONTROL . 6-1

7 LOGICAL COMPARISONS . . . 7-1

7.1

7.2

7.3

Combining Expressions .

Logical Negation .

Miscellaneous

8 STRINGS

8.1

8.2

IDACOM

String Manipulation

Converting Numbers to Strings

7-3

7-4

7-5

8-1

8-1

8-5

Programmer's Reference Manual

vi
September 1 990

TABLE OF CONTENTS [continued]

8 STRINGS [continued]

8.3 Converting Strings to Numbers

9 SCREEN DISPLAY

9.1

9.2

9.3

Trace Reporting in the Data Window

Displaying in the User Window
Accessing the User Window
Creating Text
Cursor Control
Clearing Text
Color and Character Sets

Displaying in the Test Script Window

10 PRINTER PORT CONTROL

10.1 Configuring the Printer Port
Printer Output Commands

11 REMOTE PORT CONTROL

11.1 Configuring the Remote Port

11.2 ASCII Terminal
Sending Strings
IDACOM Logo
Remote Screen Display .
Remote Directory Listing
Data Playback

11.3 File Transfer
Sending and Receiving Files

12 TIMESTAMPS

12.1 Timestamp Conversion

12.2 Timestamp Arithmetic

12.3 Copying Timestamps

12.4 Miscellaneous . . .

Programmer's Reference Manual

TABLE OF CONTENTS

8-6

9-1

9-1

9-5
9-6
9-6
9-7
9-9
9-9

9-14

10-1

10-1
10-3

11-1

11-1

11-3
11-3
11-4
11-4
11-5
11-5

11-7
11-8

12-1

12-3

12-4

12-5

12-5

IDACOM

TABLE OF CONTENTS vii
September 1 990

TABLE OF CONTENTS [continued]

13 OPERATING SYSTEM

13.1 Port Identification

13.2 Audible Alarms ..

13.3 Machine Shutdown .

13.4 Drive Selection

13.5 Fi le Access . .

13.6 Switching Between Processors

14 COMPILER CONTROL

14.1 Conditional Compilation

14.2 Conditional Definition

13-1

13-1

13-3

13-4

13-4

13-4

13-8

14-1

14-1

14-2

15 STACK OPERATIONS. 15-1

16 CREATING NEW COMMANDS 16-1

16.1

16.2

Pointers to Commands (Vectored Operation)

Remote Processor Execution

17 TEST MANAGER

17.1 Developing Source Code

17.2 Finite State Machine Concept

17.3 Symbol Definitions

17.4 Introduction to ITL Test Script Structure
Test Manager Theoretical Example
Test Script Structural Components

17.5 Event Recognition
Layer 1 Events
Received Frames
Timeout Detection ...
Function Key Detection .
Interprocessor Mail Events
Wildcard Events

17.6 General Actions
Display, Capture, or Record

IDACOM

16-2

16-3

17-1

17-1

17-3

17-3

17-5
17-5
17-6

17-7
17-8

17-10
17-10
17-11
17-12
17-14

17-15
17-16

Programmer's Reference Manual

viii
September 1 990

TABLE OF CONTENTS ccontinued1

17 TEST MANAGER [continued]
Audible Alarms
Input
Output - Notices and Errors
Starting or Stopping Timers
Manipulating Counters
Mailing to Another Processor .
Protocol Specific Actions .

17. 7 Additional ITL Structures .

17.8 Test Scripts
Loading a Test Script .
Starting a Test Script .
Stopping a Test Script . .
Saving a Test Script Binary

18 CONFIGURATION FILE .

APPENDICES

A TEST SCRIPT COMPATIBILITY

A.1 ?KEYBOARD

A.2 Numerical Value Entry

A.3 Output
A.4 Detecting Cursor Keys

B ERROR RECOVERY

B.1 Description .

B.2 Recovery .

c CODING CONVENTIONS

C.1 Stack Comments

C.2 Stack Comment Abbreviations

C.3 Program Comments

C.4 Test Manager Constructs .

C.5 Spacing and Indentation Guidelines

Programmer's Reference Manual

TABLE OF CONTENTS

17-18
17-18
17-24
17-26
17-28
17-31
17-33

17-33

17-39
17-39
17-39
17-41
17-41

18-1

A-1

A-1

A-2

A-2

A-4

B-1

8-1

8-2

C-1

C-1

C-2

C-2

C-2

C-3

IDACOM

TABLE OF CONTENTS ix
September 1990

TABLE OF CONTENTS rcontinuedJ

C CODING CONVENTIONS [continued]

C.6 Colon Definitions C-4

D ASCII/EBCDIC/HEX CONVERSION TABLE D-1

E COMMAND CROSS REFERENCE LIST E-1

INDEX

IDACOM Programmer's Reference Manual

x
September 1 990

1-1
3-1
3-2
9-1
9-2
12-1
13-1
17-1
17-2
17-3
17-4
8-1

LIST OF FIGURES

Sample Stack Notation
Copy Direction Using CMOVE .
Copy Direction Using <CMOVE
Example of a Trace Report ..
Statistics Display
Data Queuing
Port Identifier Variable
Development System Environment
File Transfer Using R-FILEX
IDACOM's SDL Direction Conventions
SOL Representation for One State . .
Address Error Screen Display

Programmer's Reference Manual

TABLE OF CONTENTS

1-2
3-5
3-6
9-1

9-14
12-2
13-1
17-1
17-2
17-4
17-5
8-1

IDACOM

TABLE OF CONTENTS

1-1
9-1
9-2
9-3
9-4
9-5
13-1
13-2
16-1
17-1
17-2
17-3
17-4
17-5
17-6
18-1
C-1

LIST OF TABLES

ITL Symbols
Color Attributes
Monochrome Attributes
Color to Monochrome Mapping
Monochrome to Color Mapping
Character Sets
Port Identifier Values
Processor Identifier Values
Processor Identifier Values .
TOJ)CE Control Lead Identifiers .
TOJ)TE Control Lead Identifiers .
Mail Commands
MAILCMD Partners
Binary Filename Prefixes
Binary Filename Extensions
Configuration File Name Extensions
ITL Symbols

IDACOM

xi
September 1990

1-2
9-3
9-3
9-4
9-4
9-9

13-2
13-8
16-3
17-9
17-9

17-32
17-32
17-42
17-42

18-1
C-2

Programmer's Reference Manual

INTRODUCTION 1-1
September 1990

1
INTRODUCTION

IDACOM has developed a comprehensive set of tools specifically for the development of test
scripts. These test scripts control the operation of one of IDACOM's monitor or emulation
programs. These tools include:

• a visual editor to prepare source code;
• an on-board compiler which compiles the test script while the monitor or emulation

program is running; and
• IDACOM's Interactive Test Language (ITL) which consists of:

- a set of high-level test manager constructs to provide the structure;
- a set of events that the test script is programmed to recognize;
- user-defined action sequences; and
- primitive constructs that can be used either in test scripts or command mode.

ITL has rich complement of primitive commands. However, because ITL is an extensible language,
new commands can be defined and used within ITL programs.

The Last In First Out (LIFO) stack as well as the ITL commands are modeled after the FORTH
language. Users familiar with this language will quickly recognize many characteristics of FORTH
within ITL.

All command definitions in this manual are described in terms of:
• input parameters (values removed from the stack);
• the operation performed on those values; and
• output parameters (results placed onto the stack).

Each command, or word in ITL, accepts zero or more parameters as input and in turn, outputs
zero or more results. Both input parameters and output results are stored in a stack.

IDACOM Programmer's Reference Manual

1-2 INTRODUCTION
September 1990

1.1 Stack Notation

The stack notation for a command which neither accepts nor produces parameters is written as
(--). The following figure shows the notation for representing input and output parameters.

Input
Parameters

Output
Parameters

(Par 1 \ Par2 Par3 \ Par4 \ Par5)

t i t
Item on top of stack Item on top of stack

Input/Output Separator

Figure 1-1 Sample Stack Notation

Stack notation can be described verbally by reading ' \ ' as under, and ' -- ' as leaves. The
previous example would then be read as Par, under Par2 leaves Par3 under Par4 under Par5 • The
stack can be visualized as growing from bottom to top, with the last entry being on top.

Parameters within the stack comment often use a standard set of symbols. These symbols
describe the data type of each parameter.

·:·:-m~~m:=t
a Memory address

b 8 bit byte

c 7 bit ASCII character

n 16 bit signed integer

d 32 bit signed integer

u 32 bit unsigned integer

f Boolean flag (0-false, non-zero-true)

ff Boolean false flag (zero)

tf Boolean true flag (non-zero)

s String (actual address of a character string
which is stored in a count prefixed manner)

Table 1-1 ITL Symbols

Programmer's Reference Manual IDACOM

INTRODUCTION

1.2 Command Format

1-3
September 1990

The standard format for most commands and variables in this manual is as follows:

COMMAND (in -- out)
(pronunciation)

Where: in = input parameters
out = output parameters

Description

Example: (where applicable)

For example, the less than command is described as follows:

< (d, \d2 -- f)
(less than)
Where: d1 , d2 = values to compare

f = result of comparison

Compares values 'd 1' and 'd 2 ' and returns a true (1) flag if 'd 1' is less than 'd 2'.

Example:
Check the length of a received frame to see if it is less than 4. If true, print a trace message.

L2-LENGTH @ 4 <
IF

T.- Frame is very short• TCR
END IF

IDACOM Programmer's Reference Manual

DATA TYPES 2-1
September 1990

2
DATA TYPES

ITL uses a single storage type, 32 bit (4 byte) signed integer, to represent all objects that are used
by the programmer. Thus, other data types used by the programmer are converted by ITL into a
32 bit signed integer representation for storage on the stack or in memory.

2.1 Numeric Entry

There are four possible bases for numeric entries. Each number base uses a special identifier
before the number to specify decimal (base 10), hexadecimal (base 16), octal (base 8), or binary
(base 2).

Decimal

Hexadecimal

Octal

Binary

NONE -2,147,483,648 to
+2,147,483,647

Ox OxOO to
OX OXFFFFFFFF

Oc oco to
OC Ox37777777

Oc ObO to
OC Ob11111111111111111111111111111111

2.2 String Entry

Strings, of either ASCII or hexadecimal characters, can be entered to send data or to match
incoming data.

Example:
ASCII strings are enclosed in quotes.
• The quick brown fox·

Hexadecimal strings are enclosed as follows:
x· 3031323A3B.

~NOTE
There must be at least one space after the opening quotation mark.

IDACOM Programmer's Reference Manual

2-2 DATA TYPES
September 1 990

Strings are stored in memory as a one byte length field (see below), followed by a sequence of
bytes containing ASCII characters.

H E L 0

Sequence of Characters

Length of String

To reference a string using an entry on the 32 bit stack, ITL puts only the address of the string
onto the stack. This address (or pointer) points to the first byte, or length field, of the string. For
more information, see Section 8.

Programmer's Reference Manual IDACOM

MEMORY ACCESS AND VARIABLES 3-1
September 1 990

3
MEMORY ACCESS AND VARIABLES

ITL provides commands to store and recall values to predefined memory locations called
variables. Variables are either supplied as part of a protocol application (i.e. COUNTER4,
COUNTER10, L2-LENGTH, $MSG-CRVALUE, etc.) or defined by the user with the VARIABLE
command.

By default, variables occupy four bytes of memory. However, the same commands which operate
on variables can operate on a large memory area (or buffer) consisting of hundreds or thousands
of bytes.

3.1 Access Commands

Memory access commands are divided into two classes of operation: read and store, and operate
on 8, 16, and 32 bit data sizes.

32 Bit Operations

(d\a --)
(store)
Stores a 32 bit value at the specified address.

Example:
Put the value '5' into the memory location as defined by COUNTER8.
5 COUNTERS

~WARNING
Address 'a' must be an even value. An odd address causes an address violation. Refer to
Appendix B for error recovery procedures.

@ (a -- d)
(fetch)
Fetches a 32 bit value 'd' (read) from address 'a'.

Example:
Read the value in the memory location specified by L2-LENGTH and place it on the top of the
stack.

L2-LENGTH @

IDACOM Programmer's Reference Manual

3-2 MEMORY ACCESS AND VARIABLES
September 1 990

'\f; WARNING
Address 'a' must be an even value. An odd address causes an address violation. Refer to
Appendix B for error recovery procedures.

+! (d\a --)
(plus-store)
Increments/decrements a 32 bit value 'd' to the contents of address 'a'.

Example:
Increment the contents of COUNTER4 by 10.
10 COUNTER4 +!

Decrement the contents of COUNTER4 by 5.
-5 COUNTER4 +!

16 Bit Operations

W! (n\a --)
('w' store)
Stores a 16 bit value 'n' in address 'a'.

Example:
Store a hex pattern 'AA55' into the first two bytes of 'data-but'.
OXAASS data-buf W! .

'\f; WARNING
Address 'a' must be an even value. An odd address causes an address violation. Refer to
Appendix B for error recovery procedures.

W@ (a -- n)
('w' fetch)
Fetches a 16 bit value 'n' from address 'a'.

'\f; WARNING
Address 'a' must be an even value. An odd address causes an address violation. Refer to
Appendix B for error recovery procedures.

~ NOTE
If the address 'a' is a variable, the most significant 16 bits are accessed.

Programmer's Reference Manual IDACOM

MEMORY ACCESS AND VARIABLES

8 Bit Operations

C! (b\a --)
('c' store)
Stores an 8 bit character value 'b' in address 'a'.

Example:
Store a 1 into the first byte of the data buffer.
OXOl data-buf C!

C@ (a -- b)
('c' fetch)
Fetches an 8 bit character value 'b' from address 'a'.

~NOTE

3-3
September 1990

If address 'a' is a variable, the most significant 8 bits are accessed.

3.2 Creating New Variables

In addition to the variables supplied by application software, other variables can be defined and
named by the user. These variables occupy four bytes of memory (default), but can be expanded
to any size.

When executed in a program, a variable places the address of the actual memory location on the
stack.

Example:
Assuming the variable 'too' has been defined, place the address of 'too' on the top of the stack
as shown.
foo

Memory
,...

n

'~
,_. t-

Contents

-

-
foo tpush

onto
address
stack

/////

Stack

Therefore, the action of the '!' (store) command takes the address and the value and performs a
write operation.

IDACOM Programmer's Reference Manual

3-4 MEMORY ACCESS AND VARIABLES
September 1990

Example:
Change the contents of 'too' to 5.
5 foo !

Memory
,..... - -

5 foo

....... -
VARIABLE (n --)

Where: n = the initial value

store in
address

Defines the following word as a 32 bit variable.

Example:
Define a 4 byte variable called 'packets' with the initial value of 15.
15 VARIABLE packets

When the word 'packets' is encountered in a program, the address of 'packets' is placed on
the stack.

~NOTE
The initial value must always be specified, even if zero.

ALLOT (d --)
Allocates additional memory space for a variable; used in conjunction with the VARIABLE
command. The parameter for ALLOT allocates in excess of the four bytes already reserved by
the VARIABLE command.

Example:
Create a variable called 'data-buf' with a total length of 256 bytes (4+252).
0 VARIABLE data-buf 252 ALLOT

~NOTE
Only the first four bytes are initialized to zero. The contents of the rest of memory is
unknown.

Programmer's Reference Manual IDACOM

MEMORY ACCESS AND VARIABLES

3.3 Filling and Copying Memory

FILL (a \d\b --)
Fills 'd' bytes, starting at address 'a', with the 8 bit value 'b'.

Example:
Fill the buffer (defined above) with zeros.
data-buf 256 0 FILL

FILLW (a\d\n --)
Fills 'd' words, starting at address 'a', with the 16 bit value 'n'.

Example:
Fill the memory area with an alternating OOFF pattern.
data-buf 128 OXOOFF FILLW

~NOTE

3-5
September 1 990

Since F/LLW uses the number of 16 bit words for the quantity, only one half of the buffer
size is required (128 instead of 256).

~WARNING
Address 'a' must be an even value. An odd address causes an address violation.
Appendix B for error recovery procedures.

CMOVE (a, \a 2 \n --)
(c move)
Copies the specified number of characters from one memory block starting at address 'a 1' to
another memory block starting at address 'a 2'.

Memory

t

Figure 3-1 Copy Direction Using CMOVE

IDACOM Programmer's Reference Manual

3-6 MEMORY ACCESS AND VARIABLES
September 1 990

Example:
Copy the received data from the application software buffer 'L2-POINTER @' to the user's
'data-but' variable.
L2-POINTER @ data-buf 256 CMOVE

VJ WARNING
Do not overwrite the buffer boundaries. In this example, the size of 'data-but' must be at
least 256 bytes.

~ NOTE
This command is also useful for copying the contents of a string into a buffer (see Section
8).

<CMOVE (a1 \a 2\n --)
Performs a block memory copy starting at the high end of the block defined by a1 and
proceeds downwards. This is used to shift the contents of a buffer upwards within the same
buffer, thus preventing problems with memory overlap.

Memory

a,

Figure 3-2 Copy Direction Using <CMOVE

Example:
Shift the contents of 'data-but' 4 bytes upwards.
data-buf data-buf 4+ 252 <CMOVE

VJ WARNING
Do not overwrite the buffer boundaries. In this example, data-but must be at least 256
bytes.

Programmer's Reference Manual IDACOM

ARITHMETIC OPERATIONS 4-1
September 1990

4
ARITHMETIC OPERATIONS

ITL provides a standard set of operators to perform arithmetic functions. All of these operators
modify values on the stack and in no way affect the contents of memory (i.e. all parameters are
taken from the stack and the operator returns the results to the stack).

+ (d, \d2 -- d3)
(Add)
Where: d 1 , d2, d3 = signed 32 bit integers

Adds 'd,' and 'd 2' and leave the sum 'd 3' on the top of the stack.

+ ! (d\a --)
(plus-store)
Increments/decrements a 32 bit value 'd' to the contents of address 'a'.

Example:
Increment the contents of COUNTER4 by 10.
10 COUNTER4 +!

Decrement the contents of COUNTER4 by 5.
-5 COUNTER4 +!

(d, \d2 -- d3)
(Subtract)
Where: d 1 , d2, d3 = signed 32 bit integers

Subtracts 'd 2' from 'd 1 ' and leaves the difference 'd 3' on the top of the stack.

Example:
Leave the number '4' on the top of the stack.
7 3

* (n1 \n 2 -- d)
(Signed Multiply)
Where: n,, n2 = 16 bit signed integers

d = 32 bit signed product of n1 and n2

Multiplies 'n 1 ' by 'n 2' together and leaves the product 'd' on the top of the stack.

IDACOM Programmer's Reference Manual

4-2 ARITHMETIC OPERATIONS
September 1 990

M* (d,\d2 -- d3)
(32 Bit Signed Multiply)
Where: d1 , d2 = 32 bit signed integers

d3 = 32 bit signed product of d 1 and d2

Performs 32 bit x 32 bit multiplications, however, the result remains a 32 bit product.

U* (u, \u2 -- U3)
(Unsigned Multiply)
Where: u1 , u2 = 16 bit unsigned integers

u3 = 32 bit unsigned product of u 1 and u2

Performs an unsigned 16 bit multiplication, resulting in a 32 bit product.

I (d1 \n2 -- n3)
(Signed Divide)
Where: d1 = 32 bit signed dividend

n2 = 16 bit signed divisor
n3 = 16 bit signed quotient

Divides 'd,' by 'n 2', producing quotient 'n 3'. This command should not be used for 32 bit
division.

M/ (d, \d2 -- d3\d4)
(32 Bit Signed Divide)
Where: d1 = 32 bit signed dividend

d2 = 32 bit signed divisor
d3 = 32 bit signed remainder
d4 = 32 bit signed quotient

Divides 'd' by 'n,' and produces two 32 bit values: the remainder and the quotient. The sign
of the remainder is the same as that of 'd'.

U/ (u, \u2 -- u3\U4)
(Unsigned Divide)
Performs the equivalent unsigned operation of Ml.

MOD (n,\n2 -- d3)
Where: n1 , n2 = 16 bit signed integers

d3 = 32 bit signed remainder of (n 1 + n2)

Leaves the remainder of 'n,' divided by 'n 2'. This remainder has the same sign as 'n,'.

ABS (d -- u)
Where: d = 32 bit signed integer

u = 32 bit unsigned integer

Returns the absolute value of 'd'.

Programmer's Reference Manual IDACOM

ARITHMETIC OPERATIONS 4-3
September 1 990

To improve program performance, a number of common functions have been specially defined.

IDACOM

Addition
1+
2+
3+
4+
6+
8+

10+
12+
14+
16+
18+
20+
22+
24+

Multiplication/Division

2*
2/
4*
4/

Programmer's Reference Manual

BIT MANIPULATION 5-1
September 1 990

5
BIT MANIPULATION

Bit operations, using 32 bit operands, are performed using standard logical operators.

These operations can be used to mask out bits in a variable to isolate specific fields. All of these
operators modify values on the stack and in no way affect the contents of memory (i.e. all
parameters are taken from the stack and the operator returns the result to the stack).

OR (d,\d2 -- d3)
(logical OR)
Where: d1 , d2, d3 = 32 bit integers

Performs a bitwise logical OR on 'd 1' and 'd 2' and leaves the result 'd 3' on the top of the
stack.

Example:
OxE45A Ox957C OR

1110 0100

1001 0101

OR

1111 0101

IDACOM

0101

0111

0111

1010

1100

1110

(E45A)

(957C)

(F57E)

Programmer's Reference Manual

5-2
September 1 990

AND (d 1 \d2 -- d3)
(logical AND)
Where: d 1 , d2, d3 = 32 bit integers

BIT MANIPULATION

Performs a bitwise logical AND on 'd 1 ' and 'd 2' and leaves the result 'd 3' on the top of the
stack.

Example:
OxE45A Ox957C AND

XOR (d,\d2 -- d3)
(exclusive OR)

1110

1001

1000

0100

0101

0100

Where: d1 , d2, d3 = 32 bit integers

0101

0111

AND

0101

1010

1100

1000

(E45A)

(957C)

(8458)

Performs a bitwise exclusive OR on 'd 1 ' and 'd 2' and leaves the result 'd 3' on the top of the
stack.

Example:
OxE45A Ox957C XOR

<< (d, -- d2)
(logical shift left)

1110 0100

1001 0101

0111 0001

0101

0111

XOR

0010

1010

1100

0110

(E45A)

(957C)

(7126)

Shifts input parameter 'd 1 ' one bit to the left (towards the MSB - most significant bit) and
leaves the result on the top of the stack. Overflow bits past the MSB are discarded. This
instruction is equivalent to an unsigned multiply by 2.

Example:
Leave a value of Ob0010 on the stack.
ObOOOl <<

Programmer's Reference Manual IDACOM

BIT MANIPULATION

>> (d1 -- d2)
(logical shift right)

5-3
September 1 990

Shifts input parameter 'n 1' one bit to the right (towards the LSB - least significant bit) and
leaves the result on the top of the stack. Overflow bits past the LSB are discarded. This
instruction is equivalent to an unsigned divide by 2.

Example:
Leave a value of Ob0010 on the stack.
Ob0101 >>

<<# (d1\b -- d2)
(variable shift left)
Where: d1= number to be shifted

b = number of positions to shift
d2 = result

Shifts a 32 bit value 'd 1' to the left a specified number of bits. Overflow bits past the MSB are
discarded.

Example:
Shift the first parameter to the left by 5 bits producing Ob01100100000.
Ob00110010 5 <<#

>># (d,\b -- d2)
(variable shift right)
Where: d, = number to be shifted

b = number of bits to shift
d2 = result

Shifts a 32 bit value 'd,' to the right a specified number of bits. Overflow bits past the LSB
are discarded.

Example:
Shift the first parameter to the right by 5 bits producing Ob00000001.
Ob00110010 5 >>#

IDACOM Programmer's Reference Manual

PROGRAM CONTROL 6-1
September 1990

6
PROGRAM CONTROL

Several ITL primitives exist which dynamically modify the execution flow of a running program.
They can be used to perform different command sequences based on the result of a current
calculation or variable contents.

Generally, two categories of program control commands are available:
• selection-oriented (IF/ENDIF, DOCASE/CASE/ENDCASE) and,
• looping (DO/LOOP, REPEAT/UNTIL etc.).

IF ... ENDIF (f --)
Conditionally executes any commands between the IF and ENDIF depending on the value of
the input flag 'f'.

The enclosed commands are executed for any value of 'f' not equal to zero. If 'f' is equal to
zero (false), then program execution branches to the first statement after the ENDIF.

See Section 7 for valid expressions before an IF statement.

Example:
Check the value of COUNTER2, and if equal to eight, set COUNTER1 to equal 4 and produce
an audible beep.

COUNTER2 @ 8 =
IF

END IF

4 COUNTERl
BEEP

IF ... ELSE ... ENDIF (f --)

(Fetch counter 2 and compare to 8

(If true, set counter 1 and beep

Allows two action paths to be followed: one if the comparison is true, another if the
comparison is false.

Example:
Show the logic for implementing a modulo 8 sequence number scheme. If the current value
of NR (the received sequence number) is equal to seven, then set it to zero; if not, then
increment its value by one.

NR @ 7 =

IF
0 NR Set sequence no. to 0)

ELSE
1 NR +! Increment sequence no.)

END IF

IDACOM Programmer's Reference Manual

6-2 PROGRAM CONTROL
September 1990

Both IF/ENDIF and IF/ELSE/ENDIF statements can be intermixed and nested. Nesting allows
decisions within decisions so that more powerful control structures can be built up.

Example:
Check the contents of the FRAME-TYPE variable, and if equal to an RR frame, increment the
sequence number according to the modulo 8 procedure. If the frame is not an RR, the ELSE
portion of the outer IF/ELSE/ENDIF structure is executed and a warning message plus a beep is
produced.

FRAME-TYPE @ R*RR =
IF

NR @ 7 =
IF

0 NR
ELSE

1 NR
END IF

Set sequence no. to 0)

Increment sequence no.)

ELSE
T." RR not received" TCR (Output a trace)
BEEP

END IF

DOCASE ... CASE/ORCASE ... ENDCASE (d --)
Where: d = the value to use for selection criteria.

Selects one of many possible code segments to execute based on an input value.

Compares the input parameter 'd' with each item listed until a match is found. Once a match
is found, the commands enclosed in the brackets are executed. Once the action sequence
has completed, execution branches to the first statement following 'ENDCASE'.

Example:
ORCASE can be used when two values execute the same actions. Action 3 is executed if the
input value, d, matches either d 4 or d5• In the event that none of the items match, the
DOCASE construct normally exits without taking any action. 'CASE DUP' causes the
execution of the default action if none of the previous conditions are met.

DOCASE
CASE d2
CASE d3

CASE d4
ORCASE ds

CASE DUP
ENDCASE

... action 1 .. .

... action 2 .. .

... action 3.. .)

... default action ...

Programmer's Reference Manual IDACOM

PROGRAM CONTROL

Example:

6-3
September 1990

This example is taken from a large test program for BSC 3270 testing and collects statistics
on polling activity. Upon reception of a general poll, a different counter (1 to 6) is
incremented depending on the contents of the 'LogicalUnit' variable. If the poll is to a station
other that O through 5, then counter seven is incremented.

LogicalUnit @
DOCASE

CASE 0 { 1 COUNTERl +! }

CASE 1 { 1 COUNTER2 +! }

CASE 2 { 1 COUNTER3 +! }

CASE 3 { 1 COUNTER4 +! }

CASE 4 { 1 COUNTERS +! }

CASE 5 { 1 COUNTER6 +! }

CASE DUP { 1 COUNTER7 +! } (default case)
ENDCASE

DO ••• LOOP (d1\d2 --)
Where: d1 = the ending value of the index

d2 = the starting value of the index

Repeats a given section of ITL commands a specified number of times. The body of the
DO/LOOP executes once if 'd2' is greater than 'd1'·

Example:
Produce ten beeps in succession.

10 0
DO

LOOP

I (-- d)

BEEP

(loop index)
Where: d = the current loop index

Obtains the current count of the loop index inside the body of a DO/LOOP.

Example:
10 0
DO

w.· index=· I W. WCR
LOOP

IDACOM Programmer's Reference Manual

6-4 PROGRAM CONTROL
September 1 990

The following output is produced:
index=O
index=l
index=2
index=3
index=4
index=S
index=6
index=7
index=B
index=9

~NOTE
The body of the loop is executed ten times starting at 'd/ and ending at (d1-1)

Advanced test programs, using nested DO/LOOP constructs, can also use the 'J' command to
access the second index of a DO/LOOP.

J (-- d)
(outer loop index)
Where: d = outer loop index

Obtains the current loop index of the outer DO/LOOP when nesting is used.

Example:
23 20
DO

5 0
DO

w. - J= - J w.
w. -
w. - I= - I w.
WCR

LOOP
LOOP

The following output is produced:
J=20 I=O
J=20 I=l
J=20 I=2
J=20 I=3
J=20 I=4
J=21 I=O
J=21 I=l
J=21 I=2
J=21 I=3
J=21 I=4
J=22 I=O
J=22 I=l
J=22 I=2
J=22 I=3
J=22 I=4

Programmer's Reference Manual

Print value of outer index
Leave some blank space)
Print value of inner index
. . and a carriage return)

IDACOM

PROGRAM CONTROL

DO ... d3 +LOOP (d1\d 2 --) - DO
(d3 --) - +LOOP

Where: d 1 = the ending value of the index
d2 = the starting value of the index
d 3 = increment/decrement value

6-5
September 1990

Increments/decrements the value of 'd 3 ' other than one to the current loop index upon each
iteration.

Example:
Count backwards by 20 from 100 and output to the screen.
0 100
DO

w.· I=· I W. WCR
-20 (Count backwards by 20 from 100)
+LOOP

The following output is produced:
I=lOO
I= 80
I= 60
I= 40
I= 20
I= 0

LEAVE (--)
Forces the premature termination of a DO/LOOP. This is implemented by setting the value of
the loop limit to the current value of the index .

. ~ NOTE
Execution continues within the body of the loop until either LOOP or +LOOP is reached.
This means that the termination of the DO/LOOP structure is deferred until the next
evaluation of the index and limit.

Example:
Check each byte in the received data frame until an 'FF' is found. When found, print its
position and exit the loop.

REC-LENGTH @ 0
DO

LOOP

IDACOM

REC-POINTER @ I + @
C@
OxFF =
IF

T.· Found 'FF' at position· IT.
TCR
LEAVE

END IF

Index into frame
Get data byte)

Programmer's Reference Manual

6-6 PROGRAM CONTROL
September 1990

BEGIN ... AGAIN (--)
(unconditional looping)
Iteratively executes the enclosed block of commands continuously.

Example:
Increment counter number one and print its new value endlessly.

BEGIN
1 COUNTERl +!
w.· Counter=· COUNTERl @ W. WCR

AGAIN

9 WARNING
Because there is no programmed way to exit from a BEGIN/AGAIN loop, this structure
should not be used within test scripts. This command sequence is of more interest to
protocol application developers. If an infinite BEGIN/AGAIN loop is inadvertently started,
press CTRLISHIFT/f8 and enter MENU.

BEGIN ... f UNTIL
(conditional looping)
Where: f = a flag to determine if looping should terminate.

Iteratively executes the enclosed commands as long as 'f' is false (equal to zero). Once 'f'
becomes true (or non-zero), the BEGIN-UNTIL loop terminates, and execution continues
starting with the next statement following the UNTIL.

Example:
0 COUNTERl
BEGIN

COUNTERl @ W. WCR
1 COUNTERl +!

COUNTERl @ 5 =
UNTIL

The following output is produced:
0

1

2

3
4

Programmer's Reference Manual IDACOM

PROGRAM CONTROL

BEGIN ... f WHILE ... REPEAT
(conditional looping)

6-7
September 1 990

Where: f = a flag to determine if looping should continue

Executes the test in the middle of the loop. The body of the loop is split into two parts: a
pre-test block and a post-test block.

Any commands contained within the pre-test block are always executed at least once. Any
commands in the post-test block are executed if the expression resulting in 'f' is non-zero.

Example:
Transmit X.25 data packets until the packet window closes. The status of the packet window
is determined by executing an application command which returns a one if the window is still
open.

BEGIN
WINDOW? Is the X.25 packet window open?

WHILE
DATA Yes, send a data packet)

REPEAT

If the window is open, the DATA command queues a data packet to the automatic layer 2 for
transmission.

IDACOM Programmer's Reference Manual

LOGICAL COMPARISONS 7-1
September 1990

7
LOGICAL COMPARISONS

Logical comparison operators can be used to decide the _path of program execution as well as
test values for certain bounds. These operators can be grouped together into expressions when
combined with the 'OR' and 'AND' operators to widen the possibility for complex or multiple
testing and comparison.

Most comparison operators return a boolean true/false flag. As explained in the previous section
on program control, true is any non-zero value while false is a zero value. These true and false
values are used by the program control commands (IF/ENDIF, BEGIN/UNTIL, etc.) to modify the
behavior of programs.

= (d, \d2 -- f)
(equality)
Where: d1 , d2 = 32 bit numeric value to compare

f = result of comparison

Returns true if 'd 1' and 'd 2 ' are equal.

Example:
Compare the value in COUNTER4 to number five.

COUNTER4 @ 5=
IF

T." values are equal" TCR
END IF

> (d, \d2 -- f)
(greater than)
Where: d1 , d 2 = values to compare

f = result of comparison

Returns true if 'd 1' is greater than 'd 2 '.

Example:
Test if the value of the MTEI* variable is greater than 63. If so, execute the first trace
statement.

MTEI* @ 63 >
IF

T. . Manual TEI frame received" TCR
ELSE

T. . Automatic TEI frame received" TCR
END IF

I DA COM Programmer's Reference Manual

7-2 LOGICAL COMPARISONS
September 1 990

< (d, \d2 -- f)
(less than)
Where: d1 , d2 = values to compare

f = result of comparison

Returns true if 'd,' is less than 'd 2'.

Example:
Check the length of a received frame to see if it is less than 4. If true, print a trace message.

L2-LENGTH @ 4 <
IF

T.· Frame is very short• TCR
END IF

BETWEEN? (d1 \d2\d3 -- f)
Where: d, = value to compare

d2 = lower bound
d3 = upper bound
f = result of comparison

Returns true if 'd,' falls between or is equal to the range parameters 'd 2' and 'd 3'.

VJ WARNING
The boundary value 'd2 ' must be less than 'd3 '. If not, BETWEEN? always returns false
regardless of the input value 'd 1 '.

Example:
Check the length of the received frame and, depending on what range the length falls into,
increment a different counter. This code fragment forms the core of many statistics
applications.

REC-LENGTH @
DUP 1 10 BETWEEN? IF 1 COUNTERl +! ENDIF
DUP 11 20 BETWEEN? IF 1 COUNTER2 +! ENDIF

21 30 BETWEEN? IF 1 COUNTER3 +! ENDIF

Programmer's Reference Manual IDACOM

LOGICAL COMPARISONS

7.1 Combining Expressions

7-3
September 1990

Comparison expressions can be combined into more complicated forms by using the AND and OR
operators.

Example:
Execute the action clause if both an ISDN SETUP message is received and its call reference is
equal to one.

M#SETUP ?L3 MSG
$MSG-CRVALUE @ 1
AND

ACTION(

)ACTION

Example:
Check if both the contents of the received SAPI variable and the TEI are equal to O and 127,
respectively.

MSAPI* @ 0
MTEI* @ 127 = AND
IF

T.· Broadcast frame received· TCR
END IF

Example:
Check if at least one comparison is true.

MSAPI* @ 0 =
MSAPI* @ 16 OR
MSAPI* @ 63 = OR
IF

T. - Valid SAP! received· TCR
END IF

IDACOM Programmer's Reference Manual

7-4 LOGICAL COMPARISONS
September 1 990

7.2 Logical Negation

Because boolean values (true and false) are represented by a value of non-zero for true and zero
for false, the sense of an expression can be inverted using the 0= command.

0: (d -- f)
(fast zero equality)
Where: d = value to compare to zero

f = result of comparison

Returns true if a value of 0 is received.

~NOTE
0= is equivalent to the 'NOT' operator used in other languages.

Example:
Print a trace message if a O SAPI frame is received.
MSAPI* @ O=
IF

T." Signalling Frame received" TCR
END IF

Example:
Use the same construct to detect inequality.

MSAPI* @ 0 =
MSAPI* @ 16 OR
MSAPI* @ 63 = OR
O=
IF

T." Invalid SAP! received" TCR
END IF

Example:
Execute the trace statement if COUNTERS is not equal to 255.

COUNTERS @ 255 = O=
IF

T." Wrong value received" TCR
END IF

Programmer's Reference Manual IDACOM

LOGICAL COMPARISONS

7 .3 Miscellaneous

7-5
September 1990

There are two commands that are particularly useful for range checking:

MAX (d1\d2 -- d3)
(check maximum)
Where: d1 , d2 = values to compare

d3 = the larger of either d 1 or d2

Returns the larger 'd3' of two input values 'd 1' and 'd 2'; signed comparisons are used.

MIN (d,\d2 -- d3)
(check minimum)
Where: d1, d2 = values to compare

d3 = the smaller of either d1 or d2

Returns the smaller 'd 3' of two input values 'd 1 ' and 'd 2'; signed comparisons are used.

IDACOM Programmer's Reference Manual

STRINGS 8-1
September 1 990

8
STRINGS

Strings are stored in memory as a one byte length field (see below), followed by a sequence of
bytes containing ASCII characters. The one byte length field means that all strings have a
maximum length of 255 characters.

H E L L 0

Sequence of Characters

Length of String

Any references to the string returns an address pointing to the first byte of the string (i.e. the
length byte).

Memory space for the string is reserved when the string is initially defined. Since memory
surrounding the allocated string is reserved for other objects, the first time the string is defined
fixes the maximum possible length of the string. This means that the length of a string cannot be
expanded after it has been defined, nor should the length of the string be decreased.

8.1 String Manipulation

Strings can be defined with either ASCII or hexadecimal characters.

" xxxxx" (-- a)
(quote space)

Contains the address of a count-prefixed string of a length less than or equal to 80
characters if input directly from the keyboard, and 255 characters if created within an ITL
program. All characters after the space character, following the opening quotation mark and
before the closing quotation mark, are included in the string. If used within an ITL test
program, the compiler reserves sufficient memory space to store the complete string and its
length.

Example:
Transmit the ASCII contents of the string.

H This is a test message# SEND

I DA COM Programmer's Reference Manual

8-2 STRINGS
September 1 990

X" xxxxx" (-- a)
(X quote space)

Contains the address of a count-prefixed string of hexadecimal digits of a length less than or
equal to 80 characters if input directly from the keyboard, and 255 characters if created within
an ITL program. Valid hex characters are 'O' through '9' and 'A' through 'F'. Lower case
letters are also allowed.

Example:
Send a frame containing the specified hex data.
X" 0802000025" SENDF

~NOTE
X" xxxxx" is left justified, eg. X" 123" SENDF (use 12 bits) has the same result as X" 1230"
SENDF.

COUNT (a1 -- a2\b)
Where: a1 = pointer to count-prefixed string

a2 = pointer to first character of the string (a1 + 1)

b = length of string

Converts a count-prefixed string to an address/length pair. Many commands used by
protocol applications require a buffer address and a length as parameters.

Example:
Copy the contents of the string into a defined buffer called data-keep. COUNT is used to
change the address of the string into two numbers: a pointer to the first character in the
string and the length of the string.

0 VARIABLE data-keep 100 ALLOT
• This is a test string" COUNT
data-keep
SWAP
CMOVE

Example:
Use the T.TYPE command to print a trace report.
• This is another test" COUNT T.TYPE TCR

CMOVE (a1 \a 2\n --)
(c move)

declare a buff er)
obtain src-addr and len)
now have src-addr len dest-addr
now have src dest len)

Copies the specified number of characters from one memory block starting at address 'a 1' to
another memory block starting at address 'a 2' (see Figure 3-1).

This command is useful for copying the contents of a string into a buffer. For an example of
this function, see the example under COUNT.

Programmer's Reference Manual IDACOM

STRINGS

$! (string1\string2 --)
Copies string1 into string2.

Example 1:

8-3
September 1 990

Initialize the string DNA-A to the ASCII string 012345. The first quotation mark must be
followed by one space. The space is not part of the string contents.

" 012345" DNA-A$!

Example 2:
Copy the contents of the string DNA-A to DNA-B.

DNA-A DNA-B $!

+$ (string\address\count --)
Appends count bytes from address to string and increments the count in string accordingly.

Example:
Add the characters 01 to the string DNA-A.

DNA-A" 01" COUNT+$

$= (string1\string2 -- flag)
Returns true if string1 and string2 are an exact match.

Example:
DNA-A DNA-B $=
IF < code which should be executed if strings are identical >
ELSE < code which should be executed if strings are not identical >
END IF

?*SEARCH (a 1 \n\s -- a2\f)
(question star search)
Where: a 1 = address of search area

n = size of search area
s = count-prefixed string to search for
a2 = pointer within the search area where s was found
f = true/false flag

Returns true if a user-defined string is found anywhere within a buffer area of specified
length. If the search was successful, address 'a 2' points to the first byte after the desired
string.

~NOTE
Single character wildcards can be specified within the string by using the '?' character or
hex 3F.

IDACOM Programmer's Reference Manual

8-4 STRINGS
September 1990

Example:
Search for the string login within the received data buffer of a protocol application. If the
string is found, a text message is printed together with the address of where login occurs
within the buffer.

L2-POINTER @ L2-LENGTH @ • login· ?*SEARCH
IF

w.· Match was found at position· W. WCR
ELSE

w.· No match was found· WCR
DROP (get rid of address a2)

END IF

Wildcards are used by substituting '?' with particular characters in the key string(s). For
example, '?ogin' matches a sequence beginning with any character and terminating with
'ogin'. This is useful for searching for either Login or login within the data buffer.

?MATCH (a\n\s -- f)
(question match)
Where: a = address of match area

n = size of match area
s = count-prefixed string to match
f = true/false flag

Returns true if a user-defined string is found starting at the first byte within a buffer area of
specified length.

~ NOTE
Single character wildcards can be specified within the string by using the '?' character or
hex 3F.

CONV_STR (string\code -- flag)
Returns true if the specified string is converted from one code to another. The four
conversion codes are:

• ASCII-TO-EBCDIC
• EBCDIC-TO-ASCII
• ASCII-TO-HEX
• HEX-TO-HEX

Example:
Convert the ASCII string "G-day mate" to EBCDIC.
• G-day mate· ASCII-TO-EBCDIC CONV_STR

Programmer's Reference Manual IDACOM

STRINGS

8.2 Converting Numbers to Strings

8-5
September 1990

A 32 bit signed number can be converted into an ASCII string representing one of four number
bases for output to the screen, printer, or remote port by using the <# ... #> construct.

ITL supports four number bases for converting numbers to strings:
• Decimal (default)
• Hexadecimal
• Octal
• Binary

BASE (-- a)
Contains a pointer to the current numerical base.

Example:
BASE @

Valid values after the @ include:
• 2 - binary
• 8 - octal
• 10 - decimal
• 16 - hexadecimal

DECIMAL (--)
Sets the current numerical base to decimal (default).

HEX (--)
Sets the current numerical base to hexadecimal.

OCTAL(--)
Sets the current numerical base to octal.

BIN (--)
Sets the current numerical base to binary.

IDACOM Programmer's Reference Manual

8-6
September 1990

#>STR (value\strlng address\base --)
(number to string)
Converts a value to ASCII representation in the specified base.

Example:
Attempt a conversion to binary.
21 prompt 2 #>STR

Attempt a conversion to octal.
21 prompt 8 #>STR

Attempt a conversion to decimal.
21 prompt 10 #>STR

Attempt a conversion to hex.
21 prompt 16 #>STR

'1J WARNING

STRINGS

Sufficient memory must be reserved for storing the ASCII representation of the value (i.e. If
the value to be converted is 65535 and the base is 2, a minimum of 17 bytes must be
reserved).

8.3 Converting Strings to Numbers

STR># (address\n -- O I converted number\ 1)
(string to number)
Converts an address containing a count prefixed string of ASCII characters to any base. If
the conversion was successful, the converted value and a true flag is returned.

Example:
Attempt a conversion to binary.
prompt 2 STR>#

Attempt a conversion to octal.
prompt 8 STR>#

Attempt a conversion to decimal.
prompt 10 STR>#

Attempt a conversion to hex.
prompt 16 STR>#

Programmer's Reference Manual IDACOM

SCREEN DISPLAY 9-1
September 1990

9
SCREEN DISPLAY

This section describes the commands used to output to the User, Data, or Test Script Window.

9.1 Trace Reporting in the Data Window

A trace report is a user-generated message or comment inserted into the Data Window that can
be captured to RAM or disk as well as displayed on the screen.

Trace report messages contain a unique block number, the time of creation, and user-defined
text. Figure 9-1 shows an example of a trace report consisting of a two line display in the Data
Window.

MM:SS Source Character (ASCII l Display of Franes

20:32.8581 TRACE REPORT BLOCK NUMBER 4
This is e trece report.

>

Figure 9-1 Example of a Trace Report

~NOTE
Only the first 38 characters of a trace statement are displayed when split display format is
selected.

The Data Window can be accessed for background display under the Background topic or by
using the following command:

SHOW_DATA (--)
Displays the Data Window.

IDACOM Programmer's Reference Manual

9-2 SCREEN DISPLAY
September 1990

The following commands can be used to create text in trace reports:

T." string" (--)
Inserts a character string into the trace report buffer. Maximum length of this string is 255
characters. Refer to the TCOLOR command for mixing both text and numerical information in
trace reports.

Example:
Create the trace report shown in Figure 9-1.
T.· This is a trace report.· TCR

~NOTE
T." must be followed by a single space before the string and concluded with a " (quote).

T. (n --)
Prints a value, followed by a single space, to the trace report buffer. Valid values are O
through 4294967295 (hex FFFFFFFF).

Example:
Print the numeric value '41', followed by a space, into the trace report buffer.
41 T.

T.H (n --)
Prints a 4 byte hex value, followed by a single space, to the trace report buffer. Valid values
are O through 4294967295 (hex FFFFFFFF).

Example:
Print the hex value '29', followed by a space, into the trace report buffer.
41 T.H

T.TYPE (string\count --)
Inserts a string of 'count' characters into the trace report buffer.

Example:
Insert 'ABC' into the trace buffer .
• ABC. COUNT T.TYPE

TEMIT (character --)
Inserts a single character into the trace report buffer.

Example:
Insert the letter 'A' in the trace buffer.
OX41 TEMIT

~NOTE
Hex 41 is converted to ASCII character 'A'.

Programmer's Reference Manual IDACOM

SCREEN DISPLAY

TCR (--)

9-3
September 1 990

Produces a carriage return in the trace report. When TCR is called, a timestamp for the trace
buffer is created and the trace report is put in the display, capture RAM, and/or disk
recording.

~ NOTE
The number of character outputs to the screen is limited by the size of the Data Window.

TCOLOR (attribute --)
Changes the color or highlighting of trace reports.

WHLFG White Black

RED_FG Red Black

GRN_FG Green Black

BLU_FG Blue Black

YELFG Yellow Black

MAG_FG Magenta Black

CYA_FG Cyan Black

RED_BG Black Red

GRN_BG Black Green

BLU_BG White Blue

YELBG Black Yellow

MAG_BG Black Magenta

CYA_BG Black Cyan

BLK_BG White Black

WHLBG Black White

REV_VIDEO Reverse Reverse

Table 9-1 Color Attributes

These attributes can be OR'ed together to independently specify the foreground and
background color, however, the ensuing combination might produce unpredictable results.

Example:
Print text with a red foreground and yellow background.
YEL_BG RED_FG OR TCOLOR

The following attributes can be used to modify the highlighting on units with a monochrome
CRT.

_;:i:i;:::::::::::::::::1nr'-•''=::::;;;;::::::::::::i =::::::::;::::::::::::::::::;;:::::;1t1::::~::::::::::::;::::91:!sr!P.'t!~m::::;::;:::::::::::::1:1::::::::::::i:1,::::::::::::::::::::::i:=iii\j
DIM Dim foreground with black background

BRITE Bright foreground with black background

DIM INVERSE Black foreground with dim background

BRITE INVERSE Black foreground with bright background

Table 9-2 Monochrome Attributes

IDACOM Programmer's Reference Manual

9-4 SCREEN DISPLAY
September 1990

If a test script has been developed for a unit with a color CRT, it can still be used on a unit
with a monochrome CRT. The following table lists the mapping of colors to highlighting
attributes on a monochrome unit.

WHLFG BRITE

RED_FG BRITE

GRN_FG DIM INVERSE

BLU_FG DIM

YELFG BRITE INVERSE

MAG_FG DIM

CYA_FG DIM

RED_BG BRITE INVERSE

GRN_BG DIM

BLU_BG BRITE INVERSE

YELBG BRITE

MAG_BG DIM INVERSE

CYA_BG DIM INVERSE

BLK_BG BRITE

WHLBG BRITE INVERSE

REV_VIDEO BRITE INVERSE

Table 9-3 Color to Monochrome Mapping

Likewise, a test script developed for a unit with a monochrome CRT can be used on a unit
with a color CRT. The following list maps monochrome highlights to color.

DIM CYA_FG

BRITE WHLFG

DIM INVERSE GRN_FG

BRITE INVERSE YELFG

Table 9-4 Monochrome to Color Mapping

Trace reports can be turned on (default) or off in test scripts using the following commands:

RTRACE (flag --)
YES RTRACE turns the display trace reports on. NO RTRACE turns them off.

CTRACE (flag --)
YES CTRACE turns the RAM capture trace reports on. NO CTRACE turns them off.

Programmer's Reference Manual IDACOM

SCREEN DISPLAY

DTRACE (flag --)

9-5
September 1990

YES DTRACE turns the disk recording trace statements on. NO DTRACE turns them off.

~NOTE
The appropriate filter must be activated.

Example:
2 STATE(

TIMEOUT
ACTION(

BLU_BG TCOLOR
YES RTRACE
YES CTRACE
YES DTRACE
BEEP
T. • Timer·
TIMER-NUMBER @ T.
T.· has occurred.·
T.· Going to STATE 3•
TCR

)ACTION
)STATE

~NOTE

Highlight trace in blue background)
Turn display trace reports on)
Send trace reports to capture RAM)
Send trace reports to disk recording
Generate audible alarm)

Display - the timer that has expired)
Display - going to STATE 3)
Output display)

Trace reports can also be selected from the Filter Setup Menu.

9.2 Displaying in the User Window

A sixteen line window is reserved for user-created displays, statistics, graphs, etc. This window
completely overlays the Data Window making only one window visible at one time.

There are two distinct conditions of the User Window:
• Visible

The User Window completely overlays the Data Window. No monitored data is shown - only
information which has been created by writing to the User Window.

•Open
Output to the User Window can only occur when the window is open. Once open, output
commands direct output to the current cursor position within the User Window. It is not
necessary for the window to be visible to insert data.

IDACOM Programmer's Reference Manual

9-6 SCREEN DISPLAY
September 1 990

Accessing the User Window

The User Window can be selected for display under the Background topic or by using the
following commands.

SHOW_USER (--)
Displays the User Window.

OPEN_USER (--)
Opens the User Window to create and position text in the User Window.

POP _USER (--)
Displays and opens the User Window. This command is equivalent to SHOW_USER followed
by OPEN_USER.

CLOSE_WINDOW (--)
Closes the currently open window. When used with OPEN_USER or POP _USER, the User
Window is closed and any further window commands go to the Command Window.

Creating Text

Text can be created using commands similar to those in trace reporting. Unlike trace reporting,
there is no timestamp and no block number. The POP _USER command must be called first to
make the text visible.

W." string" (--)
Displays a character string (maximum length is 255 characters).

Example:
Create the text in the title in Figure 9-2.
W." Statistics Display After One Minute"

~NOTE
W." must be followed by a single space, then the desired string, and concluded with a "
(quote).

W. (n --)
Displays a value followed by a single space. Valid values are hex O through hex FFFFFFFF.

Example:
Print '20' followed by a space.
20 W.

Programmer's Reference Manual IDACOM

SCREEN DISPLAY

W.H (n --)

9-7
September 1 990

Displays a 4 byte hex value followed by a single space. Valid values are hex O through hex
FFFFFFFF.

Example:
Print hex '29' followed by a space.
41 W.H

W.TYPE (string\count --)
Displays a string of 'count' characters.

Example:
Display the ASCII letters 'ABC' .
• ABC. COUNT W.TYPE

W.TYPE_A (string\count\color --)
Displays a string of the length specified with the attribute specified (see Section 9.1, under
TCOLOR, for a list of attributes).

Example:
Display the letters 'ABC' with a blue background in the currently active window .
• ABC. COUNT BLU_BG W.TYPE_A

WEMIT (character --)
Displays a character.

Example:
Display the letter 'A' (hex value 41).
OX41 WEMIT

WCR(--)
Prints a carriage return.

Cursor Control

The defaults for cursor control are:
• the cursor is not displayed; and
• scrolling is in the downwards direction (i.e. after 16 lines of text are displayed, any

subsequent lines push the display up).

The following commands can be used to position text or control the cursor.

CURSOR_ON (--)
Turns on the display of the cursor which indicates the position of the next displayed
character.

CURSOR_OFF (--)
Turns off the display of the cursor.

IDACOM Programmer's Reference Manual

9-8 SCREEN DISPLAY
September 1990

THERE (row\column --)
Positions the text to the specified row and column specified. This command can be used to
align text (see Figure 9-2).

The User Window has 16 rows and 80 columns available. Valid values are 0 through 15 for
row position and O through 79 for column position.

Example:
0 20 THERE
w.· Statistics Display After 1 Minute•

WHERE (-- row\column)

Position the title in Row O, Column 20)
Create the text)

Returns the row and column position of the cursor.

Example:
Position the cursor at row O and column 3, print three letters, and return the position of the
cursor (row 0 and column 6).

0 3 THERE
W. • abc"
WHERE

WSCROLL (--)
Converts the currently selected window into a scrolling window. Text is moved upwards when
the cursor reaches the bottom of the window.

WRAP (--)
Converts the currently selected window into a wraparound window. New text is inserted in the
top of the window when the cursor reaches the bottom of the window.

WUP (--)
Sets the direction of cursor movement to upwards. If WCR is called, the next line of text is
above the current line.

WDOWN (--)
Sets the direction of cursor movement to downwards. If WCR is called, the next line of text is
below the current line.

Programmer's Reference Manual IDACOM

SCREEN DISPLAY

Clearing Text

CLEAR_ROW (row --)

9-9
September 1990

Clears text from the specified row. The cursor is placed at column O of the specified row. The
color and character attributes remain and any future text entry in this row is in the original
color and character set unless the attributes have been changed. Any background color
remains visible as a solid color bar.

CLEAR_ TEXT (--)
Removes all text from the currently active window. The cursor is placed at row 0 and column
0. The attributes remain as in CLEAR_ROW.

AUTO_CLEAR_ON (--)
Removes text in the line following a WCR (default). The attributes remain as in CLEAR_ROW.

AUTO_CLEAR_OFF (--)
Opposite of AUTO_CLEAR_ON. Text is not removed in the line following a WCR.

CLEAN_WINDOW (--)
Erases the text and color of the current window.

Color and Character Sets

PAINT (color --)
Changes the color of the entire active window leaving the text unchanged (see Section 9.1,
under TCOLOR, for a list of valid color attributes).

Example:
Paint the window with a blue background.
BLU_BG PAINT

PAINT can also be used to change the character set. The default color for character sets is
white foreground on a black background. Attributes which can be used to change character
sets are:

ASCII (default) Returns value for ASCII character set

EBCDIC Returns value for EBCDIC character set

HEXSET Returns value for hex character set

TTX Returns value for teletex character set

JSB Returns value for JISB character set

Table 9-5 Character Sets

A combination of change in color attribute and character set can be accomplished using the
OR command.

IDACOM Programmer's Reference Manual

9-10 SCREEN DISPLAY
September 1 990

Example:
Change the color attribute to a red background and the text to hex character set.
RED_BG HEXSET OR PAINT

PAINT _ROW (row\color --)
Paints the specified row. Color and character set attributes can be specified (refer to the
PAINT command).

PAINT _FIELD (row\column\length\color--)
Paints an area of the specified length starting at the location given in the row and column
numbers. PAINT _FIELD paints to a maximum of one screen row. Color and character set
attributes can be specified (refer to the PAINT command).

Example:
Change the character set to hex in row 1 starting at column 5. The length specified in the
example is greater than the number of columns remaining in row 1. The paint ends at column
79 and does not spill over into row 2.

1 5 90 HEXSET PAINT_FIELD

The following example is from an ISDN test script. Look for frames and keep statistics on the
different frame types received for one minute. At the end of one minute, the user is prompted to
press a function key to see the results. The screen created in state 2 is shown in Figure 9-2.

TCLR

0 STATE(
?WAKEUP
ACTION(

0 COUNTERl
0 COUNTER2
0 COUNTER3
0 COUNTER4
0 COUNTERS
0 COUNTER6
0 COUNTER?
0 COUNTERS
0 COUNTER9
0 COUNTERlO
0 COUNTERll !
0 COUNTER12 !

21 600 START_TIMER
SHOW DATA
1 NEW_STATE

}ACTION
}STATE

Programmer's Reference Manual

(Initialize counters)

Start timer 21 for 1 minute
Show the Data Window)

IDACOM

SCREEN DISPLAY

1 STATE[
R#I ?RX FRAME
ACTION[

1 COUNTERl +!
)ACTION

R#RR ?RX_FRAME
ACTION[

1 COUNTER2 +!
)ACTION

R#RNR ?RX_FRAME
ACTION[

1 COUNTER3 +!
)ACTION

R#REJ ?RX_FRAME
ACTION[

1 COUNTER4 +!
)ACTION

R#SABM ?RX_FRAME
ACTION[

1 COUNTERS +!
)ACTION

R#SABME ?RX_FRAME
ACTION[

1 COUNTER6 +!
)ACTION

R#DISC ?RX_FRAME
ACTION[

1 COUNTER7 +!
)ACTION

R#UA ?RX_FRAME
ACTION[

1 COUNTERS +!
)ACTION

R#DM ?RX_FRAME
ACTION{

1 COUNTER9 +!
)ACTION

R#FRMR ?RX_FRAME
ACTION[

1 COUNTERlO +!
)ACTION

IDACOM

Check event field for I Frame)

Increment counter

Check event field for RR Frame)

Increment counter

Check event field for RNR Frame)

Increment counter

Check event field for REJ Frame)

Increment counter

Check event field for SABM Frame)

Increment counter

Check event field for SABME Frame

Increment counter

Check event field for DISC Frame

Increment counter

Check event field for UA Frame)

Increment counter

Check event field for DM Frame)

Increment counter

Check event field for FRMR Frame

Increment counter

)

)

)

9-11
September 1990

Programmer's Reference Manual

9-12
September 1 990

R#UI ?RX_FRAME
ACTION[

1 COUNTERll +!
)ACTION

R#XID ?RX_FRAME
ACTION[

1 COUNTER12 +!
)ACTION

SCREEN DISPLAY

Check event field for UI Frame)

Increment counter

Check event field for XID Frame)

Increment counter

21 ?TIMER
ACTION[

BEEP_ON

Check for expiration of the T21 timer)

2

Give audible alert)
• Press UFl function
W.NOTICE

key to see results•

BEEP_OFF
2 NEW_STATE

)ACTION
)STATE

STATE[
UFl ?KEY
ACTION{

POP_USER

(Inform user with notice
(Turn alarm off)
(Go to next state

(Open the User Window)
CLEAR TEXT WHI_FG PAINT (Clear screen text and color
0 20 THERE w. -
2 30 THERE W .•

3 30 THERE w. -
4 30 THERE w. -
5 30 THERE w."
6 30 THERE W. •
7 30 THERE W .•
8 30 THERE W. •
9 30 THERE W. •
10 30 THERE W. •
11 30 THERE W. •
12 30 THERE W .•
13 30 THERE W .•
CLOSE_WINDOW
TM_STOP

)ACTION
)STATE

Statistics Display after 1 minute•
I • COUNTERl @ w.
RR COUNTER2 @ w.
RNR COUNTER3 @ w.
REJ • COUNTER4 @ w.
SABM • COUNTERS @ w.
SABME COUNTER6 @ W.
DISC • COUNTER7 @ w.
UA COUNTERS @ w.
DM • COUNTER9 @ w.
FRMR • COUNTERlO @ w.
UI COUNTERll @ w.
XID • COUNTER12 @ w.

Programmer's Reference Manual IDACOM

SCREEN DISPLAY

An alternate implementation of state 1 is:

1 STATE{
EVENT-TYPE @ FRAME#
ACTION{

FRAME-ID @
DOCASE

CASE R#I [1 COUNTERl +!)
CASE R#RR { 1 COUNTER2 +!)

CASE R#XID 1 COUNTER12 +!
ENDCASE
1 SWAP

)ACTION

9-13
September 1990

21 ?TIMER
ACTION[

BEEP_ON

Check for expiration of the T21 timer)

H Press UFl function
W.NOTICE
BEEP_OFF
2 NEW_STATE

)ACTION
)STATE

IDACOM

Give audible alert)
key to see results#

(Inform user with notice
(Turn alarm off)
(Go to next state

Programmer's Reference Manual

9-14 SCREEN DISPLAY
September 1990

For either method, the User Window is displayed as shown in Figure 9-2.

0 Chennel 0-Chen Mani tor 14l§$tlfib 1988-09-29 09:31:34
Stetistics Oispley efter 1 Minute

= 0
RR = 0
RNR = 0

REJ 0

SABN = 0

SABME 0

DISC = 0
UA = 0

OM = 0
FRMR = 0
UI 0

XID = 0

Figure 9-2 Statistics Display

9.3 Displaying in the Test Script Window

A three line window is reserved for user-created displays, statistics, graphs, etc. This window
overlays the lower three lines of the Data Window.

There are two distinct conditions of the Test Script Window:
• Visible

The Test Script Window overlays the lower three lines of the Data Window. No monitored
data is shown - only information which has been created by writing the Test Script
Window.

•Open
Output to the User Window can only occur when the window is open. Once open, output
commands direct output to the current cursor position within the Test Script Window. It is
not necessary for the window to be visible to insert data.

Text can be created using the same commands available for the User Window. Refer to Section
9.2 for a description of these commands.

Programmer's Reference Manual IDACOM

SCREEN DISPLAY 9-15
September 1 990

The Test Script Window can be selected for display under the TestScript topic or by using the
following commands:

SHOW_TEST (--)
Displays the Test Script Window.

OPEN_ TEST (--)
Opens the Test Script Window to create and position text in the Test Script Window.

DROP_TEST (--)
Closes the Test Script Window.

IDACOM Programmer's Reference Manual

PRINTER PORT CONTROL 10-1
September 1990

10
PRINTER PORT CONTROL

Information can be sent to an attached printer in almost the same way as to a CRT device.

~NOTE
Before using any printer commands, ensure that the printer is connected on-line, and that the
tester has been properly configured for baud rate, handshaking, etc.

10.1 Configuring the Printer Port

When the menu system software is loaded, the default configuration source file (HOMED) is
executed which automatically configures the printer port. Refer to Section 18.

l/F _TYPE (port\ printer type --)
Where: port = PRINTER

printer type = V28 (serial printer)
PARALLEL (parallel printer)

Sets the printer port to serial (default) or parallel.

PRINTER (-- value)
Identifies the printer port for configuration commands.

TX_SPEED (port \ speed --)
Where: port = REMOTE (modem port)

PRINTER (printer port)

Sets the transmitter baud rate for the specified asynchronous port. Valid speed values are 50
through 19200 (default value is 1200).

RX_SPEED (port \ speed --)
Where: port = REMOTE (modem port)

PRINTER (printer port)

Sets the receiver baud rate for the specified asynchronous port. Valid speed values are 50
through 19200 (default value is 1200).

IDACOM Programmer's Reference Manual

10-2 PRINTER PORT CONTROL
September 1990

TX_CONTROL (port \ control type --)
Where: port = REMOTE (modem port)

PRINTER (printer port)

Sets the transmitter control mode for the specified asynchronous port. Valid control modes
are:

OFF
DTR
XOF
CTS_FLOW

~NOTE

Flow control is off {default)
Reads DTR for printer; asserts DTR for modem
XON I XOFF control
CTS/RTS control (CTS for modem; RTS for printer)

Combinations of DTR, XON/XOFF, and CTS/RTS are allowed.

Example:
Configure the printer to use DTR and XON/XOFF control.
PRINTER DTR XOF OR TX_CONTROL

PRINTER_EOL (end of line condition --)
Determines the sequence generated for an end of line condition. Valid conditions are:

LFCR
NONE_EOL
CR_EOL

Line feed is generated followed by a carriage return (default)
End of line is not generated automatically
A carriage return is generated

PRINTER_MODE (mode --)
Determines the format of printer output. Valid modes are:

CHAR_DISPLAY

RAWJ)ISPLAY
HEX_DISPLAY

Outputs all unprintable characters in the form <AB>, where
AB are the two nibbles represented in hex notation (default)
Outputs all characters without any range checking
Outputs all characters in hex format <AB>

CHARS/LINE (port I # of characters --)
Where: port = PRINTER

of characters = a decimal value

Sets the number of characters per line (default 80) and generates an end of line sequence
after the specified number of characters.

LINES/PAGE (port I # of lines --)
Where: port = PRINTER

of lines = a decimal value

Sets the number of lines per page and generates a form feed after the specified number of
lines.

CONFIG (port --)
Configures the specified port.

Programmer's Reference Manual IDACOM

PRINTER PORT CONTROL

Example:

10-3
September 1990

Configure the printer port for a serial printer with 9600 baud rate, XON/XOFF flow control, hex
output, 132 characters per line and 40 lines per page.

PRINTER >
R V28 I/F_TYPE
R 9600 TX_SPEED

Pinter port to return stack)
Configure for a serial printer
Set transmitter speed

R 9600 RX_SPEED
R XOF TX CONTROL
HEX_DISPLAY PRINTER_MODE
R 132 CHARS/LINE
R 40 LINES/PAGE
R> PRINTER CONFIG

Printer Output Commands

Set receiver speed)
XON/XOFF control)
Hex output)
132 characters/line
40 lines per page)

The printer output commands are similar to the trace report commands. Text is collected in a
print buffer until a PCR command is issued. The maximum size of this buffer is 136 characters
and the default number of characters printed on one line is 80.

P." string" (--)
Inserts a character string into the print buffer.

~NOTE
P." must be followed by a single space before the string and terminated with a " (quote).

P. (n --)
Prints a value, followed by a single space, to the print buffer.

P.H (n --)
Prints a 4 byte hex value, followed by a single space, to the print buffer.

P.TYPE (string\count --)
Inserts a string of 'count' characters into the print buffer.

Example:
Insert the string 'Job complete' in the print buffer.
• Job complete• COUNT T.TYPE

PCR (--)
Forces a carriage return. When PCR is called the contents of the print buffer are sent to the
printer.

PEMIT (character --)
Inserts a single character into the print buffer.

PRINT _SCREEN (--)
Transmits an image of the current CRT screen to the attached printer.

IDACOM Programmer's Reference Manual

10-4 PRINTER PORT CONTROL
September 1 990

PRT-L (-- address)
Contains the number of characters per line. Once this number has been reached, the tester
automatically issues a PCR.

Example:
Set the value in PRT-L to the same number of characters/line as selected on the Home
processor.
60 PRT-L !

Programmer's Reference Manual IDACOM

REMOTE PORT CONTROL 11-1
September 1990

11
REMOTE PORT CONTROL

IDACOM's testers have four methods of remote control:
• ITL command entry from a terminal or PC
• Remote Test Package (RTP)
• R-FILEX™
• FILEX

This section of the manual applies only to ITL commands entered remotely from a terminal or PC
and cannot be used with the other three methods of remote control.

The remote control/modem port on the back of the tester is used to transmit and receive
asynchronous data on the Home processor or application processor. This port supports
asynchronous serial RS-232C modems. To use an application processor, load an application
and switch to that processor.

~NOTE
The tester behaves like a terminal. If remote control is performed by a DTE device, a null
modem is required.

11.1 Configuring the Remote Port

When the menu system software is loaded, the default configuration source file (HOME.D) is
executed which automatically configures the remote port. Refer to Section 18.

REMOTE (-- value)
Identifies the remote port for configuration commands.

TX_SPEED (port \ speed --)
Where: port = REMOTE (modem port)

PRINTER (printer port)

Sets the transmitter baud rate for the specified asynchronous port. Valid speed values are 50
through 19200 (default is 1200).

RX_SPEED (port \ speed --)
Where: port = REMOTE (modem port)

PRINTER (printer port)

Sets the receiver baud rate for the specified asynchronous port. Valid speed values are 50
through 19200 (default is 1200).

IDACOM Programmer's Reference Manual

11-2
September 1 990

TX_CONTROL (port \ control type --)
Where: port = REMOTE (modem port)

PRINTER (printer port)

REMOTE PORT CONTROL

Sets the transmitter control mode for the specified asynchronous port (REMOTE indicates to
modem port or PRINTER indicates to printer port). Valid control modes are:

OFF
DTR
XOF
#CTS_FLOW

~NOTE

Flow control is off (default)
Reads DTR for printer; asserts DTR for modem
XON I XOFF control
CTS/RTS control (CTS for modem; RTS for printer)

Combinations of DTR, XON/XOFF, and CTSIRTS are allowed.

Example:
Configure the remote port to use DTR and XON/XOFF control.
REMOTE DTR XOF OR TX_CONTROL

CONFIG (port --)
Configures the specified port.

Example:
Configure the remote port for 9600 baud rate with XON/XOFF flow control.

REMOTE 9600 TX_SPEED
REMOTE 9600 RX SPEED
REMOTE XOF TX CONTROL
REMOTE CONFIG

TURN_ON (port \ lead Id --)

Set Transmitter speed
Set receiver speed)
XON/XOFF control)

Where: port = REMOTE (modem port)
RMT __DTR (data terminal ready)
RMT _RS (request to send)

Turns on the specified lead on the remote port.

Example:
Turn on the request to send leads.
REMOTE RMT_RS TURN_ON

TURN_OFF (port\ lead id --)
Where: port = REMOTE (modem port)

RMT __DTR (data terminal ready)
RMT _RS (request to send)

Turns off the specified lead on the remote port.

Programmer's Reference Manual IDACOM

REMOTE PORT CONTROL

11.2 ASCII Terminal

11-3
September 1 990

The remote control line is configured to use async, ASCII, 8 bits, no parity, and 1200 baud. The
tester does not echo received characters. The terminal should be set to half duplex for local
display.

Commands on the ASCII terminal are entered, followed by a carriage return. The program
processes the input, and sends the command line display to the remote site followed by the
prompt 'ROK' and the carriage return and linefeed characters. The application processes the
remote commands the same way as if they had been entered on the local keyboard. Either
'R-OK' or '???' and a carriage return and linefeed are sent to the terminal.

Sending Strings

Text can be transmitted to the remote port from either the Command Window or a test script (on
an application processor).

REMOTE_OUT (a 1 \n\flag -- f
Transmits the string 'a 1 ' of length 'n' out the remote port. The 'flag' indicates the data format
as either one byte (flag=1) or two byte (flag=O) characters. A O is returned if the transmission
was successful.

W WARNING

(string of bytes)

flag =1 n (length=14)

JT h I iTs1 I 1fila I Ofe I s RJ
pointer,......_.____._....._........__.__...__.....___.___.__.___,____.___,

a,

)!Ti
po;nte'

a,

(16-bit word format)

flag =O n (length= 7)

IE I Isl IT I I I I

The status is returned on the computational stack. If never used, the stack grows by one
each time REMOTE_OUT is called.

IDACOM Programmer's Reference Manual

11-4 REMOTE PORT CONTROL
September 1 990

REMOTE_OUT _W (a, \n\flag --)
Transmits the string 'a,' of length 'n' out the remote port and waits for transmission to
complete. The 'flag' indicates the data format as either one byte (flag=1) or two byte (flag=O)
characters. This command is used when internal flow control is desired.

RCR (-- }
Transmits a carriage return and line feed to the remote port.

Example:
Send the text 'abc' via the remote port.

" abc" COUNT YES REMOTE_OUT RCR
" abc" COUNT YES REMOTE_OUT_W RCR

IDACOM Logo

The initial display of the IDACOM logo, requiring the user to press ~ (RETURN), can be disabled.

UNLOCK..LOGO (-- }
Displays the IDACOM logo at boot-up and directly enters the Home menu.

LOCK..LOGO (-- }

Displays the IDACOM logo at boot-up. The user must press ~ (RETURN), to continue
(default}.

Remote Screen Display

ALINE (b --)
Where: b = the row number

Transmits the specified line on the screen to the remote port. Valid rows are O through 22,
where O is the top line and 22 the bottom line.

RSCREEN (-- }
Transmits the entire 23 line display to the remote port.

W WARNING
Special characters have been used in creating the screen display. Thus, the display at the
remote end might not match exactly.

Programmer's Reference Manual IDACOM

REMOTE PORT CONTROL

Remote Directory Listing

11-5
September 1 990

A listing of the directory of the selected drive on the remote machine can be obtained in short or
long form.

AMT _DIR (--)
Produces a short form listing of the selected directory.

RMT_DIRL (--)
Produces a complete (long) form listing of the selected directory.

Data Playback

Data files or capture RAM data from an application processor can be played back via the remote
port. The RMT _ON command must be executed first.

RMT_ON (--)
Enables data playback via the remote.

AMT _OFF (--)
Disables data playback via the remote.

Example:
Obtain data playback from the capture RAM.

FROM_CAPT
HALT

Obtain data playback from disk.
PLAYBACK

Capture RAM is source
Go to off-line mode)

To change the default disk drive and playback title, the PLAYBACK command must be followed
immediately by the filename.

Example:
Playback a file on drive O with the filename of DATA1.
PLAYBACK DRO:DATAl

The following commands control display scrolling.

TOP (--)
Positions the display at the beginning of the playback source

BOTTOM (--)
Positions the display at the end of the playback source.

FORWARD or F (--)
Scrolls one line forward on the screen.

IDACOM Programmer's Reference Manual

11-6 REMOTE PORT CONTROL
September 1 990

BACKWARD or B (--)
Scrolls one line backward on the screen.

SCRN_FWD or FF (--)
Scrolls one page forward on the screen.

SCRN_BACK or BB (--)
Scrolls one page backward on the screen.

~NOTE
Reports are displayed correctly when scrolling forward but appear reversed when scrolling
backward.

The entire contents of a data file or capture RAM can be sent via the remote.

TRANSFER (--)
Transfers data from the selected data source.

QUIT_TRA (--)
Abruptly terminates the transfer of data from capture RAM to disk.

See the appropriate Programmer's Manual for more information on these commands.

FULL_DUPLEX (--)
Sets the communication mode to full duplex (default). Keyboard input is not locally echoed to
the terminal screen. The host must be set up to echo the keyboard input back to the
terminal.

HALF _DUPLEX (--)
Sets the communication mode to half duplex. Keyboard input is locally echoed to the
Terminal Emulator screen.

EOL:CR (--)

Transmits a carriage return character when +i (RETURN) is pressed.

EOL:CRLF (--)

Transmits both a carriage return and a linefeed character (default) when +i (RETURN) is
pressed.

Programmer's Reference Manual IDACOM

REMOTE PORT CONTROL

11.3 File Transfer

DEST _DRIVE (--)

11-7
September 1990

Sets the current device as the destination drive to store files received over the remote port
(default is ORO).

Example:
WD3 DEST_DRIVE

CRC_CORRECTION (--)
Uses the CRC error correction scheme (default) during receive file transfers.

CH ECKSU M_CORRECTION (--)
Uses the CHECKSUM error correction scheme during receive file transfers.

TRANSLATE_ON (--)
Translates files during file transfer. When transmitting files from the tester, end-of-line
markers are added and IDACOM character attributes are removed. When receiving files on the
tester, end-of-line markers are replaced with blank character padding and character attribute
bytes are added.

~NOTE
Translate should only be used when transferring ASCII files between a tester and another
computer/tester.

TRANSLATE_OFF (--)
Files are not translated during file transfer (default).

CONTROL-Z=EOF(--)
Uses the control-Z character as the end-of-file marker for a receive file transfer (default). All
characters after control-Z are dropped.

CONTROL-Z<>EOF(--)
The control-Z character is not recognized as the end-of-file marker for a receive file
transfer.

RCV-TIMEOUT (-- address)
Contains the time, in tenths of seconds, the tester waits for another computer/tester to
transmit a data packet during a receive file transfer (default is 8 seconds).

Example:
Set the timeout for a receive file transfer to 10 seconds.
100 RCV-TIMEOUT !

SEND-TIMEOUT (-- address)
Contains the time, in tenths of seconds, the tester waits for another computer/tester the
acknowledge after transmitting a data packet. (default is 80 seconds).

Example:
Set the timeout for a send file transfer to 60 seconds.
600 SEND-TIMEOUT !

IDACOM Programmer's Reference Manual

11-8 REMOTE PORT CONTROL
September 1990

T-LIMIT (-- address)
Contains the number of times to retransmit files after receiving no acknowledgement (default
is 10).

Example:
Set the number of retries to 20 attempts.
20 T-LIMIT !

Sending and Receiving Files

Disk files can be transmitted from the tester through the remote modem port to a remote
computer. The remote computer must use the XMODEM protocol to receive files. The source file
is unaffected by the transfer.

Files received over the remote port from a remote computer can be stored on a tester.

SEND_FILEX (filename --)
Transmits the specified file over the remote port using the XMODEM protocol.

RECEIVE_FILEX (filename --)
Specifies the filename in which to store received files.

W WARNING
If the specified file already exists on the destination drive, the old file will be overwritten.

~NOTE
If the destination filename is not specified, a filename will automatically be assigned by the
tester. For files transferred between two testers (with TRANSLATE_OFF), the source filename
is used as the destination filename. Other files are assigned the filename 'USER.nn', where
'nn' is a unique and sequential number.

Programmer's Reference Manual IDACOM

TIMESTAMPS 12-1
September 1990

12
TIMESTAMPS

All IDACOM testers record the exact starting and ending time of each received frame, lead
change, and trace message. These timestamps are derived from a central timebase on the Home
processor and upon receipt of a frame, the application processor requests the time from the
central timebase as illustrated below.

SIT

RS-232/V.28

request for
time

SDLC/SNA
Monitor AP #1

time
returned

Home
Processor

time
returned

ISDN D-Channel D-Channel

All received data is stored into a buffer by the operating system. A pointer to this buffer is placed
into a queue between the operating system and the application program.

When the first byte of a frame is received, the time is recorded in the buffer. As data is received
by the operating system it is stored into the buffer and the time of the last character is recorded.

~NOTE
By default, recording of start of frame timestamps is on for all applications except SS#7.

IDACOM Programmer's Reference Manual

12-2
September 1 990

Internal
Data

Buffer

Operating
System

HW

Data Line

Figure 12-1 Data Queuing

Upon reception of a frame, the stored information includes:
• port identifier;
• start of frame timestamp;
• data length;
• data;
• data status; and
• end of frame timestamp.

~ NOTE
Additional information stored in the buffer depends upon the event type.

TIMESTAMPS

The application program stores this entire buffer into RAM or disk during recording and therefore,
all information is available for analysis during playback. Each time a frame, lead change, or
trace statement is received, or the cursor is placed over it during playback, the application
software decodes all the data within the buffer. This includes setting protocol and layer 1
variables such as START-TIME.

Since all timestamping information comes from a centralized source, there is a high degree of
time correlation between data streams on different interface ports.

Programmer's Reference Manual IDACOM

TIMESTAMPS 12-3
September 1990

Internally, timestamps are represented as a 48 bit/6 byte value which equal the number of 0.5
microsecond increments from a base value. The timebase increments the master clock once every
half microsecond.

Because the stack used in ITL can only manipulate 32 bit values at one time, all timestamp
manipulation is done using pointers to timestamps which are stored in memory.

12.1 Timestamp Conversion

The following commands convert between 48 bit timestamp format and other formats.

GET_TSTAMP_MICRO (a -- n1\n2\n3\n4\n5\ns\n1)
Where: a = address of timestamp

n1 = microseconds
n2 =seconds
n3 =minutes
n4 = hours
ns =day
n6 = month
n7 = year

Converts a 48 bit value into seven values on the stack which correspond to the real calendar
time.

GET _TSTAMP _MILLI (a -- n1 \n2\n 3\n4\n5\n 6\n1)
Where: a = address of timestamp

n1 = milliseconds
n2 =seconds
n3 = minutes
n4 = hours
ns =day
n6 = month
n1 = year

Converts a 48 bit value into seven values on the stack which correspond to the real calendar
time.

Example:
Print the full date of the last character of the last received frame. i.e. 1989 5 15 11 45 55 76
(15 May 1989, 11 :45:55:076)

END-TIME GET_TSTAMP_MILLI
T. T. T. T. T. T. T. TCR

IDACOM Programmer's Reference Manual

12-4
September 1990

12.2 Timestamp Arithmetic

TSTAMP _ADD (a, \a 2\a 3 --)

Where: a, = address of first timestamp
a2 = address of second timestamp
a3 = address to put sum

TIMESTAMPS

Adds two timestamps in addresses 'a,' and 'a 2' and stores the result into the memory location
pointed to by 'a 3 '.

W WARNING
Pointer 'a3 ' must point to memory space which has been previously reserved.

Example:
Sum the timestamps in the END-TIME and START-TIME variables and place the answer into
result.

0 VARIABLE result 2 ALLOT
END-TIME START-TIME result TSTAMP ADD

TSTAMP_SUB (a1\a2\a3 -- f)
Where: a, = address of first timestamp

a2 = address of second timestamp
a3 = address of difference a1-a2

f = success flag

(Reserve 6 bytes for answer)

Subtracts timestamps 'a 2' from 'a,' and forms the difference 'a 3 ' and stores the result into the
memory location pointed to by 'a 3'. TSTAMP_SUB returns O if (a 1-a2) ~ 0. If (a 1-a2) < 0, the
subtraction is not performed and -1 is returned.

W WARNING
Pointer 'a 3 ' must point to memory space which has been previously reserved.

Example:
Subtract the timestamps in the END-TIME and START-TIME variables and place the answer
into result.

0 VARIABLE result 2 ALLOT (Reserve 6 bytes for answer)
END-TIME START-TIME result TSTAMP SUB

Programmer's Reference Manual IDACOM

TIMESTAMPS

12.3 Copying Timestamps

12-5
September 1 990

Timestamps are sequences of six bytes stored in memory and can be manipulated just as any
other memory data is manipulated.

To copy a timestamp, all six bytes must be moved from their current location to the destination
location. Use the CMOVE command to copy a timestamp as described in Section 3.3.

Example:
Reserve space to hold the timestamp and then copy the timestamp from the area pointed to by
END-TIME to the newly declared ts-save variable.

0 VARIABLE ts-save
END-TIME ts-save 6

12.4 Miscellaneous

GET_TS (a --)

2 ALLOT
CMOVE

Where: a = pointer to 6 byte space

Reserve six bytes for timestamp
Move value of tirnestamp)

Stores the current time of day, using the 48 bit timestamp format, at the memory address as
specified by the pointer 'a 1 '. This command is useful when the current time must be
compared to the time of a received event.

Example:
Reserve space for the current time of day and then use the GET_ TS command to store the
current time of day into the reserved memory area. Compare to determine which timestamp is
greater.

0 VARIABLE time 2 ALLOT
time GET TS

(Reserve space)

END-TIME time TSTAMP_COMP
-1

IF
T." End time is less than the current time" TCR

END IF

TSTAMP_COMP (a1\a 2 -- n)
Where: a,, a2 = pointers to timestamps for comparison

n = result of comparison

Compares the timestamps pointed to by 'a 1 ' and 'a 2 ' and returns the result 'n'.

-1 if timestamp1 < timestamp2

o if timestamp, = timestamp2

+1 if timestamp, > timestamp2

IDACOM Programmer's Reference Manual

OPERATING SYSTEM 13-1
September 1 990

13
OPERATING SYSTEM

This section describes operating system commands which might be of interest to ITL
programmers.

W WARNING
The commands in this section might cause the application to crash or cause unpredictable
results if used improperly.

13.1 Port Identification

Events (frames, lead changes) received at the physical interface are passed by the operating
system to the application program. The application extracts information for each received
frame/lead and stores it in a set of variables, one of which is a port identifier variable (PORT-ID).
The lower two bytes of the port identifier variable contain a one-byte processor identifier and a
one-byte line side indicator.

~NOTE

not used Processor
Identifier

Line side
Indicator

Figure 13-1 Port Identifier Variable

The PORT_ID variable is not available in SS#7. Refer to the SS#7 Programmer's Manual.

IDACOM Programmer's Reference Manual

13-2 OPERATING SYSTEM
September 1990

The contents of the processor ID vary depending on the machine configuration. Table 13-1
shows the relationship between machine configuration, application processors, and port ID value.

OxOO Ox02 OxOO OxOO OxOO OxOO OxOO OxOO
Ox03 Ox02 Ox01 Ox01 Ox01 Ox01 Ox01

Ox03 Ox07 Ox07 Ox07 Ox07
Ox02 Ox02
Ox03 Ox03
Ox04

Table 13-1 Port Identifier Values

For line side identification, two system constants are defined.

TO_DCE_RX (-- d)
Indicates received data was destined for the DCE (or NT in the case of ISDN) if contained in
the line side indicator byte of the PORT -ID variable.

TO_DTE_RX (-- d)
Indicates received data was destined for the DTE (or TE in the case of ISDN) if contained in
the line side indicator byte of the PORT -ID variable.

~ NOTE
The PORT -ID variable is set by the application each time a frame is received or the cursor is
placed over it during playback. See the appropriate Programmer's Manual for a description of
PORT-ID.

For a test script to identify which port and side a particular frame came from, it is necessary to
mask either the processor ID or the side ID and then perform a comparison test on the result.

Example:
Identify which side of the line any type of frame was received on using the Universal
Simulation/Monitor application and print a trace report in the Data Window.

" ?" ?RECEIVED
ACTION[

PORT-ID @ OxFF AND
TO_DCE_RX =
IF

(Get variable, mask upper byte)

T." Frame received from the TO_DCE side" TCR
ELSE

T." Frame received from the TO_DTE side" TCR
END IF

)ACTION

Programmer's Reference Manual IDACOM

OPERATING SYSTEM

Example:
Print the processor ID value for each received frame.

N ?N ?RECEIVED
ACTION{

T.· Frame from port•
PORT-ID @ 8 »#
OxFF AND

T.
TCR

)ACTION

13.2 Audible Alarms

Shift value)
Mask value)
Print value)

13-3
September 1990

The beeper operates with a variable frequency tone and an adjustable duration. When the BEEP
or BEEP _ON commands are executed, the frequency and duration are read from the BEEP_ TONE
and BEEP _DUR variables.

BEEP (--)
Generates a single beep.

BEEP _ON (--)
Generates a continuous sequence of beeps.

BEEP _OFF (--)
Stops the continuous sequence of beeps.

BEEP_TONE (-- a)
Contains the value used to set the tone of the beeper.

Example:
Set the frequency to 30 units.
3 0 BEEP_ TONE

BEEP _DUR (-- a)
Contains the value, in tenths of seconds, used to set the duration of the beeper tone
(i.e. On/Off timer).

Example:
Set the duration to 500 msec.
5 BEEP_DUR

TONE (n --)
Sets the tone of the beeper directly in hardware without affecting the value saved in
BEEP_TONE.

IDACOM Programmer's Reference Manual

13-4 OPERATING SYSTEM
September 1990

13.3 Machine Shutdown

SHUTDOWN (--)
Halts all activity on all application processors, returns the hard disk head to track zero
{parked position), and resets all peripheral devices to their inactive state.

REBOOT (--)
Reboots the tester by reloading the operating system and initial Home processor software.
This is equivalent to pressing the reset button with the exception that self test procedures are
not performed.

13.4 Drive Selection

IDACOM testers come with a variety of options for disk storage. Units can have one or two 3.5
inch floppy drives (depending on the model and configuration) and, optionally, a 10, 20, or 40 Mb
hard disk drive.

The hard disk, regardless of total size, can be partitioned Into up to eight logical partitions. These
partitions appear to the user as separate devices or directories.

Disk operations can have the actual drive explicitly specified (as part of the filename) or the
operations can use the currently selected drive or drive partition.

The following commands select which drive or hard disk partition is used with subsequent disk
operations.

ORO, OR1 (--)
Selects either floppy drive 0 or 1

WOO, WD1, WD2, WD3
WD4, WD5, WD6, WD7 (--)

Selects the corresponding hard disk partition.

These commands are available on all machine configurations. However, if a particular device or
partition does not exist, the message 'Non-existent 1/0 device' is displayed and the command
fails.

13.5 File Access

Disk files can be used to store information specific to a user's application. These files, called
'user' files, are organized as one or more 'blocks' of 512 bytes.

The file size can be specified upon creation. If not specified, a file is created which occupies the
largest contiguous free space on the disk.

Programmer's Reference Manual IDACOM

OPERATING SYSTEM 13-5
September 1990

The contents of a file can only be accessed if the file is either opened or created. Once done,
the file is subsequently referenced by a file descriptor (an integer assigned by the operating
system to keep track of each open file).

Read and write operations require the file descriptor to identify the file. Data to read/write must
be stored in a buffer of at least 512 bytes.

The success or failure of all file operations is stored as a status number in FDST ATUS.

FDSTATUS (--status)
Returns the status of the previous disk command; O indicates no error, and a negative number
is an error indication. These values are:

Status Code
-3

Description
File does not exist
Unrecoverable physical 1/0 error
Nonexistent 110 device

-4
-5
-6
-7
-8
-9

-10
-11
-12
-13
-14
-15
-16
-17
-18
-19
-20
-21
-22
-23

Bad file descriptor
File access prohibited
File already exists
Error in DIO
File name error
End of file
No space in filesystem for another file
Too many files open
Cannot create a new filesystem - existing filesystem has open files
Floppy disk not loaded
No RTE file system
Disk is write protected
Can't copy file to itself
Bad source device
Bad destination device
No match for wildcards
Compared files are different
File system is write protected

CREATE_FILE (filename\access\size\type -- file desc)
Where: filename = string containing the name of the file

access = the access mode (one of the following)
• RE - read only
• WR - write only
• REWR - read/write

size= the number of 512 byte blocks. If O is used, the maximum contiguous free
space is used.

type = one of the following constants:
• DAT A._FILE (data file)
• SRC_FILE (source file)
• USR_FILE (user file)

file desc = the file descriptor (if the operation fails the returned value is undefined)

Creates a 512 byte (1 block) file on the currently selected device.

IDACOM Programmer's Reference Manual

13-6 OPERATING SYSTEM
September 1 990

OPEN_FILE (filename\access -- file desc)
Where: filename = the name of the file

access = the access mode
file desc =the file descriptor (if the operation fails the returned value is undefined)

Opens an existing file for subsequent read/write operation.

CLOSE_FILE (truncate flag\file desc --)
Where: truncate flag =

• TRUNCATE - truncates the file at the number of written blocks.
• NO_TRUNCATE - maintains the file length as specified in the CREATE._FILE

command.
file desc = the file descriptor

Closes a file and ensures all data is properly written to the disk.

WRITE_BLOCKS (file desc\buffer address\no. of blocks --)
Where: file desc = the file descriptor

buffer address= the starting address of the memory to be written to the file
no. of blocks = the specified number of blocks

Writes the specified number of blocks from memory to the indicated file.

READ_BLOCKS (file desc\buffer address\no. of blocks --)
Where: file desc = the file descriptor

buffer address = the starting address of the memory block to copy into
no. of blocks = the specified number of blocks

Reads the specified number of blocks.

SEEK (file desc\offset --)
Where: file desc = the file descriptor

offset= the number of blocks from the start of the file

Positions a number of blocks from the start of the specified file.

CLOSE (--)
Closes and truncates to the number of written blocks the last opened file.

Programmer's Reference Manual IDACOM

OPERATING SYSTEM

RENAME (old\new --)

13-7
September 1990

Where: old = a string containing the name of the file
new - a string containing the new name of the file

Changes the name of a file. If the drive is not specified in the string, the currently selected
device is used.

Example:
Change the name of the files: TST.F and JUNK to TST.F.OLD and JUNK2, respectively.

• TST.F• •TST.F.OLD. RENAME
• DRO:JUNK. • DRO:JUNK2. RENAME

~NOTE
The specified drive must be the same for both the old and new names
(i.e. ,, DRO:JUNK" ,, WDO:JUNK.OLD" RENAME is illegal).

REMOVE (filename --)
Removes the specified file. This command does not remove system files or files on a
protected file system.

Example 1:
Create a user file containing the text 'ABC'.

0 VARIABLE USER_BLOCK 508 ALLOT
• ABC. COUNT USER_BLOCK

SWAP CMOVE
• MYFILE. REWR

USR_FILE CREATE_FILE
FDSTATUS O=
IF

USER_BLOCK 1 WRITE_BLOCKS
TRUNCATE SWAP CLOSE_FILE

ELSE
DROP

END IF

~NOTE
One block is 512 bytes in length.

Example 2:
Open and read 'MYFILE'.

• MYFILE• RE OPEN_FILE
DROP
FDSTATUS O=
IF

USER_BLOCK 1 READ_BLOCK
CLOSE

END IF

IDACOM

Allot a 512 byte buffer

Move text to buffer

Create file
Was there a disk error
No)
Write one block)
close the file)
Disk error occurred
Remove file descriptor from stack)

Open the file)
Remove file descriptor from stack
Was there a disk error

Read one block
Close the file

Programmer's Reference Manual

13-8 OPERATING SYSTEM
September 1 990

13.6 Switching Between Processors

SWITCH (processor id --)
Transfers complete control of keyboard, remote port, and display to the designated processor.
The following table shows the relationship between processor id, application processors, and
machine configuration.

Al.:M#t FEF _ 1 FEF _3 FEF _ 1 FEF_ 1 FEF_1 FEF_1

FEF_3 FEF_2 FEF_2 FEF_2

FEF_4 FEF_7 FEF_7 FEF_7

FEF_3

FEF_4

FEF_5

MFTH

Table 13-2 Processor Identifier Values

Example:
Switch to AP #2 on a WAN/WAN machine.
FEF_2 SWITCH

FEF_1

FEF_2

FEF_7

FEF_3

FEF_4

All application programs provide the following commands to switch to other processors.

MAIN (--)
Switches to the Home processor.

CPU1 (--)
Switches to FEF _ 1 processor.

CPU2 (--)
Switches to FEF -2 processor.

CPU3 (--)
Switches to FEF _3 processor.

CPU4 (--)
Switches to FEF _4 processor.

CPUS (--)
Switches to FEF _5 processor.

CPU7 (--)
Switches to FEF _7 processor.

Programmer's Reference Manual

FEF_ 1

FEF_2

IDACOM

OPERATING SYSTEM

FTH (-- processor id)
Returns the processor id of the current application processor.

Example:

13-9
September 1 990

Switch to the other application processor on a WAN/WAN machine.

FTH FEF 1 =
IF

FEF_2 SWITCH
ELSE

FEF_l SWITCH
END IF

IDACOM Programmer's Reference Manual

COMPILER CONTROL 14-1
September 1990

14
COMPILER CONTROL

There are a number of program control statements which affect the execution of the ITL compiler
as opposed to the run-time execution of the program itself.

These commands are useful for eliminating duplicate definitions of commands and variables to
be used in a program.

14.1 Conditional Compilation

#IF (expression) #IS_TRUE

#ELSE

#ENDIF

This structure allows the evaluation of expressions during compile-time, and based on the
outcome of those expressions, the execution flow of the compiler can be modified. The
expression must return a single true/false flag on the top of the stack.

The #IF command must be combined with either the #IS_ TRUE or #IS_FALSE commands in order
to complete expression evaluation.

Example:
#IF FTH FEF_l = #IS_TRUE

1 1 CPU2_MAIL
#ELSE

1 1 CPUl_MAIL
#ENDIF

IDACOM

are we using AP #1 now?)
yes)

no)

Programmer's Reference Manual

14-2 COMPILER CONTROL
September 1 990

14.2 Conditional Definition

#IFDEF command

#ELSE

#ENDIF

#IFNOTDEF command

#ELSE

#ENDIF

These structures allow the definition of commands that have not yet been defined, or the
prevention of multiply defined commands and/or variables.

Example:
Check if the variable 'result' exists; if not previously defined, proceed to execute the enclosed
code. The enclosed code defines the variable.

#IFNOTDEF result
0 VARIABLE result

#ENDIF

Programmer's Reference Manual IDACOM

STACK OPERATIONS 15-1
September 1 990

15
STACK OPERATIONS

As previously discussed, the ITL language is based upon the primitives and computational model
of FORTH. Like FORTH, ITL has two Last In First Out (LIFO) stacks which are integral to its
operation.

The computational stack is used to transfer all parameters in and out of ITL commands. When
passing parameters to a command, parameters are entered into the stack for later processing by
the command.

Additionally, the return stack can be used for occasional storage of temporary values during
program execution. Several parameters can be pushed onto the return stack, however, it is
extremely important that all values placed onto the return stack be removed before the current
code segment finishes.

STACK (--)
Displays all values, currently on the computational stack, in the Command Window.

DUP (d1 -- d1\d1)
Duplicates the value on the top of the stack.

DROP(d1 --)

Deletes the value on the top of the stack.

2DUP (d1 \d2 -- d1 \d2\d1 \d2)
Duplicates the pair of values on the top of the stack.

2DROP (d 1 \d2 --)
Deletes two values on the top of the stack.

3DUP (d1 \d2\d3 -- d1 \d2\d3\d1 \d2\d3)
Duplicates the top three values on the top of the stack.

3DROP (d 1 \d2\d3 --)
Deletes the top three values on the top of the stack.

?DUP (d1 -- d,\d1 I 0)
Duplicates the value on the top of the stack if it is non-zero; otherwise returns 0.

SWAP (d1\d2 -- d2\d1)
Switches the places of the first two entries on the stack.

ROT (d1 \d2\d3 -- d2\d3\d1)
Reorders the first three elements on the stack such that the third element 'd 1 ' is brought to
the top of the stack.

IDACOM Programmer's Reference Manual

15-2 STACK OPERATIONS
September 1990

OVER (d1 \d2 -- d1 \d2\d 1)

Copies the second element on the stack to the top of the stack.

PICK (n -- copy of nth stack entry)
Copies the nth stack entry to the top of the stack.

Example:
Assuming the values on the stack are: 1 2 3 4, copy the bottom value (1) to the top of the
stack.

3 PICK

The stack would then be: 1 2 3 4 1.

>R (n --)
(Push R)
Pushes the value 'n' onto the return stack for temporary storage. The value is removed from
the computational stack.

R (-- n)
Copies the top value on the return stack to the main stack, leaves the return stack unaffected.

R> (-- n)
(Pop R)
Moves the top value on the return stack to the main stack.

VJ WARNING
Any values placed on the return stack using '>R' must be removed from the return stack
using 'R>' before the end of the ACTION{ }ACTION or 'colon-definition' clause.

Improper use of the return stack can cause system failure and/or program malfunction.
See Appendix B for error recovery.

Programmer's Reference Manual IDACOM

CREATING NEW COMMANDS 16-1
September 1990

16
CREATING NEW COMMANDS

New commands are created via a 'colon-definition' using the following syntax:

new word
existing commands ...

A new command is defined by entering a ':' (colon) followed by a space and the name of the
command (maximum of 31 characters).

Following that, a sequence of previously defined commands separated by spaces can be entered.
Finally, the definition is terminated with a ';' (semicolon).

Example:
Define the SEND_DACTPU command (which transmits information in the SDLC/SNA application
program).

SEND_DACTPU
x· 2D00000004D96B80001202. SEND_BTU

This command can be used in any action clause where the full expression is valid. That is, the
following clauses are equivalent forms of the same action.

ACTION(
x· 2D00000004D96B80001202. SEND BTU

}ACTION

and

ACTION(
SEND_DACTPU

}ACTION

IDACOM Programmer's Reference Manual

16-2 CREATING NEW COMMANDS
September 1 990

16.1 Pointers to Commands (Vectored Operation)

Many programming languages allow pointer variables which point to executable functions. This
is also the case with ITL.

In ITL, a pointer to a function (or command) is called a DOER. This pointer must first be defined
and then assigned to point at some existing command or sequence of ITL commands.

DOER 'command name'
Defines a pointer to a command.

Example:
DOER PRINT

~ NOTE
The pointer is not assigned to any sequence of /TL commands.

MAKE name
ITL commands ...

;AND
Assigns a sequence of ITL commands to a pointer.

\{;WARNING
If a MAKE is defined within a colon definition, the terminator ';AND' must be used. Outside
colon definitions and state definitions the terminator ';' must be used.

Example:
Define a new pointer command 'PRINT' which sends information to both the printer and
screen when executed within a colon definition.

(s--)
MAKE PRINT

DUP

;AND

COUNT W.TYPE WCR
COUNT P.TYPE PCR

Execute the new command.
• This is a test• PRINT

Output to screen)
Output to printer)

Since vectored operation implies the ability to change the pointer, this can be done here as
well.

Example:
Disable the printing as enabled above.
MAKE PRINT DROP ; (Where DROP deletes the input string from the stack)

Programmer's Reference Manual IDACOM

CREATING NEW COMMANDS

16.2 Remote Processor Execution

FEF _DO_ WORD (s\n --)
Where: s = the command sequence entered in string format

n = the application processor designator

16-3
September 1990

Executes commands on another application processor without switching to that processor.
The designator used for the processor depends on the interface configuration of the machine.
Consult the following table to obtain the proper designator.

Example:
Execute an SABM command on AP #1.
" SABM" FEF_l FEF_DO_WORD

Command strings containing quotation marks must be delimited with a CTRL Q.

Example:
Send a string on AP #1.
" d1Hello Thered1 SEND" FEF 1 FEF DO WORD

!6.~J FEF_1 FEF_3 FEF_1 FEF_1 FEF_1 FEF_1 FEF_1 FEF_1

'*p~ FEF _4 FEF _3 FEF _2 FEF _2 FEF _2 FEF_2 FEF_2

Aew~ FEF _7 FEF _4 FEF _7 FEF _7 FEF_7 FEF_7

FEF_3 FEF_3

FEF_4 FEF_4

FEF_5

MFTH

Table 16-1 Processor Identifier Values

IDACOM Programmer's Reference Manual

TEST MANAGER

17.1 Developing Source Code

17-1
September 1 990

17
TEST MANAGER

Source code can be prepared using the onboard visual editor or under a UNIX® environment and
then transferred to the tester by using IDACOM's R-FILEX™ utility. PC's can also be used, with
IDACOM's FILEX utility (XMODEM compatible), to transfer the files.

Workstation Environment
Characteristics

Networked LAN
- Ethernet
- Token Ring

Windowed User Interface

Powerful Editing Capability

Hierarchical filesystem

Access control and protection

Source code development
tools and revision control

PC Environment
Characteristics

Economical

Good expansion possibility

Flexible

Accessible from common PC
application software

Sun

I DA COM
Protocol Tester

Apollo

PC

Vax

R-FILEXTM Protocol

XMODEM Protocol

Figure 17-1 Development System Environment

IDACOM Programmer's Reference Manual

17-2 TEST MANAGER
September 1 990

Test scripts can be saved as source code to be compiled each time the test script is loaded, or in
binary format. The loading operation automatically determines whether compilation is required.

The maximum size of the compiled test script is approximately 50 Kbytes. In order to create large
test scripts, multiple source files can be compiled sequentially.

The following figure illustrates a typical file transfer on a UNIX® system using R-FILEX"'.

tl1t::' t ! 1l! l !IL I 0 l:l

Almost Five Past EI even

Frc'' lll B l:J
;. rfl le>< pt
FIFILEX Version 1.B <C> Copyright 1985, 1988 IDACON Electronics Ltd.
Al 1 Rights Reserved.
S11ltchlng Data length to 64 bytes
Working directory: 1usr2/danny
Unix port: /devlttyb
Re•ot• PT Id: pt
Speed: 9688 baud
Drive selected: dr9

-r Data length: 64 bytes •axl•u•
-r Tl H out per I od : 5 seconds
-r connected
-r CoHand: take -c UPLINK_F .F
-r UPLINK_F .F: tHpor1ry fl le created and ready! Estl .. te 1'49 det1 packets
-r 25

-r11>er-xr-x 3 root staff 19968 Dec 9 1998 1111at1s
-r11>er->er-x 1 root staff 6954 Dec 9 1988 11nere Is
-r11xr-xr-x 1 root staff 672 Dec 9 1988 11hlch
-r11xr-1Cr-x l root staff 1166 Dec 9 1988 llhOHI
-r11xr-1Cr->e l root staff 8566 Dec 9 1988 xstr
-r11>1r-1er->e l root staff' 91'4 Dec 9 1988 yes

parls% p•d

Figure 17-2 File Transfer Using R-FILEX

Source files are compiled into object code which is stored in memory. The size of memory
available for the test script object code varies between application programs.

TM.RAM (--)
Prints the size of memory available for test programs.

Example:
TM.RAM
Test Manager DICTIONARY Used= 34 Free= 50334 Largest File= 98 blocks

Programmer's Reference Manual IDACOM

TEST MANAGER

17.2 Finite State Machine Concept

17-3
September 1990

Test scripts are built as finite state machines. An ITL program contains one or more states each
of which wait for one or more events to occur. Event recognition within a particular state leads
to a set of actions which in turn could lead to the transition to another state.

The components of both the action and event clauses of the test program are built up using the
ITL commands. These commands are divided into a protocol specific set of operations, where the
power of the emulation or monitor software is utilized, and a common command set which can be
used with all application software.

Both types of commands can be intermixed in a single program to detect incoming events and
form the corresponding action.

The program remains in a state until the NEW_STATE command is executed and a different state
is entered.

17.3 Symbol Definitions

The symbols used to represent SDL diagrams are defined by the CCITT Recommendations Z.101
through Z.104.

A state is a condition in which the action of the test manager is suspended awaiting the
occurrence of an incoming event.

An input is an incoming event which is recognized by the test manager.

A task is any action following an event recognition that is neither a decision or an output.

An output is an action that results in the generation of an output to another entity.

A decision is an action which asks a question which results in the choice of following one of two
paths.

The direction shown by the graphical description of inputs and outputs are valuable when
representing a layered protocol state machine. Figure 17-3 shows IDACOM's SDL direction
conventions.

IDACOM Programmer's Reference Manual

17-4 TEST MANAGER
September 1 990

) An input received from a lower layer

< An input received from an upper layer

An output going to an upper layer

< __ ____, An output going to a lower layer

Figure 17-3 IDACOM's SOL Direction Conventions

Programmer's Reference Manual IDACOM

TEST MANAGER

17.4 Introduction to ITL Test Script Structure

17-5
September 1990

The high-level constructs used in building test scripts are illustrated in the following theoretical
example. The SOL diagram for this example is shown in Figure 17-4.

Test Manager Theoretical Example

0

0

Figure 17-4 SOL Representation for One State

TCLR

0 STATE_INIT{
actions

}STATE_INIT

0 STATE{
EVENTl
ACTION{

Task
Decision
IF

1 NEW_STATE
ELSE

Output
END IF

}ACTION

IDACOM Programmer's Reference Manual

17-6
September 1 990

EVENT2
ACTION{

Output
)ACTION

)STATE

Test Script Structural Components

TEST MANAGER

The previous theoretical example utilizes some of the ITL structural components. These are
described below. For additional structures, see Section 17. 7.

TCLR (--)
Initializes the test manager and clears any existing test suites already in memory. The current
state is set to O. All test scripts should start with TCLR.

W WARNING
When compiling multiple test scripts, TCLR must be used only in the first test script.

STATE_INIT{ }STATE_INIT (n --)
Brackets the execution sequence performed prior to entering a state. The initialization logic
for a state is executed independently of how it was called.

This initialization procedure can be used for any state but is not compulsory. STATE...JNIT{
must be preceded by the number of the state being initialized, eg. O ST ATE....JNIT {. Valid
values are O through 255.

If the ACTION{ }ACTION sequence does not result in a change of state, the STATE._INIT{
}STATE_INIT will not be re-executed.

STATE{ }STATE (n --)
Brackets a state definition. STATE{ must be preceded by the number of the state. Valid
values are 0 through 255. State 0 must be defined within an ITL program. If not, the test
manager will not run the script. If multiple states are defined with the same number in the
test script, the test manager will use the latest definition.

Example:
1 STATE{

)STATE

ACTION{ }ACTION (--)

Event - action sequences)

Brackets the set of tasks, decisions, and outputs which execute once the expected event is
received by the test manager. There must be at least one action defined for each expected
event. The action is executed when the flag is true (non-zero).

Programmer's Reference Manual IDACOM

TEST MANAGER

NEW_STATE (n --)

17-7
September 1 990

Executes the initialization logic of the specified state (providing STAT_INIT{ }STAT_INIT is
defined) and establishes the state to be executed for the next event. Any remaining action
code for the current state is then executed. It must be preceded with a valid state number
and be inside the ACTION{ }ACTION brackets. This command is not mandatory if no state
change is desired.

Example:
ACTION{

1 NEW_STATE
}ACTION

TM_STOP (--)
Stops the execution of the test script. The test suite remains in memory and can be
re-executed until another test script is loaded or TCLR is called.

17.5 Event Recognition

During test script execution, any event received by the test manager is evaluated to determine if
the accompanying action should be performed. If the evaluation does not return a true value,
the following events are evaluated in a sequential manner. Once an event evaluates true, the
remaining events in that particular state are not examined.

In state 0 of the theoretical example (shown on page 17-5), EVENT1 is examined first. If the
received event matches EVENT1, the actions defined are performed and the test manager does
not look for EVENT2. If the received event does not match EVENT1, the test manager examines
EVENT2. If the received event matches neither EVENT1 or EVENT2, the test manager performs no
actions. No further processing takes place in that state until another event is received.

All received events are passed to the test manager via a FIFO queue. The test manager handles
one event at a time on an equal priority basis.

To provide more flexibility, events can be logically OR'ed or AND'ed with other conditions or
manipulated in other ways.

Example:
EVENTl EVENT2 OR
ACTION[

)ACTION

Example:
EVENTl EVENT2 AND
ACTION[

)ACTION

IDACOM Programmer's Reference Manual

17-8 TEST MANAGER
September 1 990

Events can be categorized as follows:
• Layer 1 Events
• Received Frames
• Timeout Detection
• Function Key Detection
• Interprocessor Mail Events
• Wildcard Events

Layer 1 Events

All applications running on WAN interfaces have a common set of commands. Layer 1 events for
ISDN and SS#7 are specific to the respective protocols (see the appropriate Programmer's
Manuals).

Individual or all interface leads can be enabled or disabled. Leads must be enabled for test
manager detection.

ENABLE_LEAD (lead identifier --)
Enables the specified lead. Refer to Tables 17-1 and 17-2 for a list of supported leads.

Example:
Enable the request to send lead.

IRS ENABLE_LEAD

DISABLE_LEAD (lead identifier -- }
Disables (default} the specified lead. Refer to Tables 17-1 and 17-2 for a list of supported
leads.

Example:
Disable the clear to send lead.

ICS DISABLE LEAD

ALL_LEADS (-- lead identifier }
Enables/disables leads supported on the currently selected WAN interface. ALLLEADS must
be used with ENABLE _ _LEAD or DISABLE._LEAD.

Example 1:
Enable leads for the current interface.

ALL_LEADS ENABLE_LEAD

~ ENABLE function key

Programmer's Reference Manual IDACOM

17-10
September 1 990

Received Frames

TEST MANAGER

The test manager provides recognition of protocol specific frames. Recognition of the frame can
include anchored or unanchored comparisons of user-specified octets, frames with CRC errors,
and/or aborted frames.

Any frames received by the monitor or emulation are decoded and the decoded information is
stored in various communication variables (see the appropriate Programmer's Manual). The
decoded Information Is used by the test manager to Identify a particular event.

Timeout Detection

There are 128 user programmable timers available. Specific timers are reserved for use with the
test manager in each program (see the appropriate Programmer's Manual). The remaining timers
are used in the applications and should not be started or stopped in a test script.

TIMEOUT (-- f)
Returns true if any timer has expired.

Example:
In State 8, look for the expiration of any timer. The action is to display a trace statement.

B STATE{
TIMEOUT (Check for timeout of any timer)
ACTION{

T.· A Timer has expired.· TCR
)ACTION

)STATE

TIMER-NUMBER (-- a)
Contains the number of the expired timer. Valid values are 1 through 128.

Example:
In State 8, the test manager looks for the expiration of any timer. The action displays a trace
statement listing the specific timer.

8 STATE(
TIMEOUT
ACTION(

T. • Timer·
TIMER-NUMBER @
T.
T.· has expired.· TCR

)ACTION
)STATE

Programmer's Reference Manual

(Check for timeout of any timer)

Get ti.mer #)
Display timer #)

IDACOM

TEST MANAGER

?TIMER (n -- f)

17-11
September 1990

Returns true if the specified timer has expired. Valid timer numbers are those reserved in each
application package.

Example:
In state 8, look for the expiration of timer 21. The action is to display a trace statement.

8 STATE[
21 ?TIMER
ACTION[

(Check for timeout of timer 21)

T." Timer 21 has expired." TCR
}ACTION

}STATE

?WAKEUP (-- f)
Returns true if the wakeup timer has expired. The wakeup timer can be used to initiate action
sequences immediately upon the test manager starting. Timer 34 is started for 100
milliseconds when the test manager is started after a WAKEUP _ON command has been issued.
The default is WAKEUP _OFF. Refer to the 'Starting a Test Script' section on page 17-39 for
further description of these commands.

Example:
When the wakeup timer expires, prompt the user to press a function key and go to state 1.

0 STATE[
?WAKEUP
ACTION[

Check for timeout of wakeup timer)

T." To start the test, press UFl." TCR
1 NEW_STATE

}ACTION
}STATE

Function Key Detection

Eight keyboard function keys are available in the test manager when running test scripts.

I TestKeysl

@] @J @] §] @] ~ @] ~
UFl UF2 UF3 UF4 UF5 UF6 UF7 UFB

IDACOM Programmer's Reference Manual

17-12
September 1 990

TEST MANAGER

The following rules apply:
• Shifted control function keys and shifted function keys are never passed to the test

manager.
• Control function keys are always passed to the test manager.
• Unshifted function keys are passed to the test manager only when the TestKeys topic is

selected.

?KEY (n --)
Detects the specified function key when the TestKeys topic is selected.

Example:
UFl ?KEY

Valid parameters for ?KEY are:
• UF1
• UF2
• UF3
• UF4
• UF5
• UF6
• UF?
• UFS

Example:
In State o, look for function key 1. The action is to start timer 21 and go to state 1.

TCLR
0 STATE_INIT[

·Press UFl to start test.• W.NOTICE
}STATE_INIT

0 STATE[
UFl ?KEY
ACTION[

21 1 START TIMER
1 NEW_STATE

}ACTION
)STATE

Interprocessor Mail Events

Start the test?)
Yes)
Start timer 21 to expire in 1/10 second)
Go to state 1)

Messages (mail) can be transmitted from a test script to another running test script on a different
interface port.

This functionality is useful for the synchronization of test scripts running on different ports.
Information or parameters can also be passed from one test script to another. The test manager
recognizes the reception of this mail and the test script is responsible for decoding the mailed
message.

Programmer's Reference Manual IDACOM

TEST MANAGER

?MAIL (-- f)

17-13
September 1990

When mail is received from another processor, returns true and executes the ACTION{
}ACTION sequence.

Examples of interprocessor mail include the starting and stopping of X.25 8-Channel data
under the control of the 0-Channel in ISDN. Another example is performing transit delay
measurements across a protocol converter.

Parameters within a mailed message, can be extracted with the EXTRACT_FTH_DATA
command. Situations requiring only signalling (i.e. synchronization) do not require the use of
this command.

For an explanation of the CPULMAIL command, refer to the 'Mailing to Another Processor'
section on page 17-31.

EXTRACT_FTH_DATA (-- dn\ ••• \d1\n)
Unpacks the received message buffer and returns a variable number of items where the top
number on the stack indicates the number of 32 bit values in the mail message. These values
could include constants, variables, or addresses. The maximum number of items is 12.

Example:
Print the values in any received messages.

TCLR

0 STATE{
?MAIL
ACTION{

EXTRACT_FTH DATA
DUP 1 >
IF

1 - 0
DO

T.
LOOP
TCR

ELSE
DROP

END IF
}ACTION

}STATE

IDACOM

(Check event field for mail)

Any remaining?)
Yes - print them

(Print all values on the stack)

(Drop count)

Programmer's Reference Manual

17-14
September 1 990

Wildcard Events

TEST MANAGER

Wildcard events can be used for a "don't care" situation when the test script is not looking for a
specific event.

OTHER_EVENT (-- f)
Returns true for any incoming event.

'fl NOTE
OTHER_EVENT must be the last event listed within the action sequence.

The actual type of received event is in the EVENT-TYPE variable. Possible values for
EVENT - TYPE vary according to specific application and protocol (see the appropriate
Programmer's Manual).

Within an action which uses OTHER_EVENT, the IF statement can be used to perform actions
based on the actual event type.

Example:
This example comes from an ISDN test script.

OTHER_EVENT
ACTION(

EVENT-TYPE @ TIME-OUT#
IF

T.· Timer expired· TCR
END IF

)ACTION

Example:
Look for the UF1 function key (which stops the test) and then for any other event but an
incoming frame. The following example is taken from an ISDN test script.

TCLR

5 STATE(
UFl ?KEY
ACTION(

T.· Test has stopped.· TCR
TM STOP

)ACTION

Programmer's Reference Manual

Display trace)
Stop test manager

IDACOM

TEST MANAGER

OTHER_EVENT
ACTION(

EVENT-TYPE @ DUP
FRAME# =
IF

ELSE
DROP

T." Event is"
DOCASE

CASE TIME-OUT#
(

17-15
September 1 990

Fetch the event)
Is it a frame?)
Yes, clean up the stack

No, display trace

T." a timeout of timer"
TIMER-NUMBER @

Display timeout)
Fetch timer number
Display timer number T.

CASE FUNCTION-KEY#
[

T." a function key"

CASE COMMAND_IND
[

T." a mail"

CASE DUP
(

T. • undefined·

ENDCASE
TCR

END IF
)ACTION

)STATE

17 .6 General Actions

(Display event is function key)

(Display event is a mail)

(Display event is undefined)

Actions can be executed when an event is recognized. The following actions can be performed
by either the monitor or the emulation:

• Starting or stopping data display, capture to RAM, or recording to disk
• Alarm generation, eg. beeping or displaying highlighted messages
• Trace reporting in the Data Window
• Reporting in the User Window
• Output to printer or remote ports
• User input
• User output
• Starting or stopping timers
• Manipulating counters
• Mailing to another processor

IDACOM Programmer's Reference Manual

17-16
September 1990

The following actions can only be performed by the emulation:

TEST MANAGER

• Layer 1 actions, i.e. activating/deactivating the SIT Bus for ISDN or turning on and off
control leads on a WAN Interface

• Generating protocol specific action (transmitting frames or messages)

Display, Capture, or Record

~NOTE
The following commands are not common to all applications.

REP_ON (--)
Turns on data display.

REP _OFF (--)
Turns off data display.

CAPT _ON (--)
Saves live data in capture RAM.

CAPT _OFF (--)
Live data is not saved in capture RAM.

=TITLE (filename--)
Specifies the name of the file to be opened for disk recording or disk playback.

Example:
Obtain playback data from disk
HALT (Place the monitor in playback mode)
FROM DISK (Identify a disk file as data source)
• X25DAT" =TITLE (Create a title for next data file to be opened)
PLAYBACK (Playback data)

RECORD (--)
Opens a data recording file. Default values are as chosen in the Recording Menu. When
used in the Command Window, the filename can be specified as part of the command.

Example 1:
RECORD DATAl

Example 2:
Specify the 'DATA1' filename to open for recording.

" DATAl" =TITLE (Change title of file to DATAl
RECORD (Open the recording)

Programmer's Reference Manual IDACOM

TEST MANAGER

Example 3:
Specify drive DAO and the 'DATA1' filename to open for recording.

• DRO:DATA1• =TITLE
RECORD

~NOTE

File on drive 0 named DATA1)
Open the recording)

17-17
September 1990

When RECORD is used in a test script, the filename must be specified with =TITLE.

W WARNING
Because of the relatively long time required to open a disk file (especially on a floppy
drive), the RECORD command should not be used within time critical portions of a test
script.

DISK_OFF (--)
Live data is not recorded to disk. The current disk recording is closed. This must be done
prior to opening a different file with RECORD. For multi-processor recording (same file open
on more than one processor), data from the current processor is no longer recorded.

The file is closed when DISK_OFF is issued on the last processor recording to disk.

PLAYBACK (--)
Opens a data recording file for playback. When used in the Command Window, the filename
can be specified as part of the command.

Example:
PLAYBACK DATA1

~NOTE
When PLAYBACK is used in a test script, the filename must be specified with =TITLE.

STATE_ON (--)
Generates a report line for every change of state in the automatic protocol state machine of
the emulation or in the test manager.

ST ATE_ OFF (--)
Disables the reporting of protocol and test manager state changes.

Example:
When Timer 21 expires, tum on the display, capture data to RAM, and open a disk recording on
drive 0 with the title DATA2. When Timer 22 expires, tum off the display, cease capture of data,
close the disk recording, and enter a new state.

4 STATE[
21 ?TIMER
ACTION{

REP_ON
CAPT_ON
• DRO:DATA2• =TITLE
RECORD

)ACTION

IDACOM

Check event field for timeout of timer 21)

Turn on the data display)
Start capturing data)
Select drive 0 with titlename DATA2)
Open recording)

Programmer's Reference Manual

17-18
September 1 990

TEST MANAGER

22 ?TIMER
ACTION{

REP_OFF
CAPT_OFF
DISK_OFF

Check event field for timeout of timer 22)

5 NEW STATE
}ACTION

}STATE

Audible Alarms

Turn off the data display
Stop capturing data)
Close disk recording)
Go to State 5)

There are three commands available to alter audible alarms.

BEEP (--)
Generates a single beep.

BEEP _ON (--)
Generates a continuous sequence of beeps.

BEEP _OFF (--)
Stops the continuous sequence of beeps.

Input

Test scripts can accept input from the user in the following ways.
• text
• numerical
• function key

For text and numerical input, the PROMPT command displays a user-defined message and waits
for input. Full type checking is provided for all inputs.

PROMPT" string" action END_PROMPT
Defines a keyboard input prompt. The prompt function keys appear on the screen. There
must be one space after the first quotation mark before the text.

[!] ~ @] ~
Cleer Delete Execute Exit

Programmer's Reference Manual IDACOM

TEST MANAGER

Example 1:

17-19
September 1 990

Create a prompt that asks the user to enter a number from 1 to 100 and store this value in the
COUNTER variable. The text in the prompt must be entered between the quotation marks in
the PROMPT" string".

PROMPT- Enter number of repeats (1-100):·
prompt
10 STR>#

Display the prompt)
Get the keyboard entry
Convert it to decimal)

The keyboard input is temporarily stored in the 'prompt' variable as an ASCII string with the
count of the number of characters entered stored in the first byte.

W WARNING
'prompt' can be called only once in each PROMPT" string" action END_PROMPT
sequence.

Translate the keyboard entry to a number in the decimal base using the STA># command
(pronounced string to number). This command must be preceded by 'prompt' and the number
10 which represents decimal base. If the conversion is successful, STA># returns the
converted value and a success flag. If the conversion fails, a false flag is returned.

The entire code for this example is:
ACTION{

PROMPT- Enter number of repeats (1-100):·
prompt

Display the prompt)
Get the keyboard entry
Convert it to decimal)
Conversion is successful
Check the range)

10 STR>#
IF

DUP 1 100 BETWEEN?
IF

COUNTER !

1 NEW_STATE
ELSE

DROP
• Invalid entry•
W.ERROR

ENDIF
ELSE

• Invalid entry·
W.ERROR

END IF
END_PROMPT

}ACTION

W WARNING

Store it in COUNTER

Not between 1 and 100

(Invalid entry - non-numeric
characters)

The PROMPr string" action END_PROMPT sequence must be the last command called in
an ACTION{ }ACTION sequence of the test manager. Otherwise, any following commands
are executed without waiting for the keyboard input in answer to the PROMPT.

IDACOM Programmer's Reference Manual

17-20
September 1 990

Example 2:

TEST MANAGER

The following test script is an example from X.25. These are separate prompts.

Decide how many channels to configure and ask for the LCN number, called and calling
addresses. Assign these values starting at CH1.

~ NOTE
The last of the commands including the NEW_STATE command for each ACTION{
}ACTION sequence is contained in the PROMPr action.

TCLR
WAKEUP ON
#IFNOTDEF #LCNS Define the variable and colon definition once only

(Counter used for assigning LCN- 1-64 valid
(Prompt user for number of LCN's and set it
(--)

0 VARIABLE #LCNS

GET LCNS_REQ
PROMPT. ENTER THE# OF LCN'S REQUIRED (1-64):· (Display prompt
prompt
10 STR>#
IF

ELSE

DUP 1 64 BETWEEN?
IF

ELSE

#LCNS !
21 1 START_TIMER
1 NEW_STATE

DROP
• Invalid entry· W.ERROR

END IF

• Invalid entry• W.ERROR
END IF
END_PROMPT

Convert to decimal)
Valid decimal value)
Between 1 & 64?)
Yes)

Store number)
Go to new state
Not between 1 and 64)
Clean up stack
Generate error message

Not a decimal value)
Generate error message

(Prompt user for calling address and set it)
GET_CALLING (--) (LCNCALLING is a 16 byte string

PROMPT• ENTER THE CALLING ADDRESS: • (Display prompt
prompt LCNCALLING 16 CMOVE Move 1st 16 characters to

LCNCALLING)
LCNCALLING C@ 15 MIN LCNCALLING C!

21 1 START_TIMER
3 NEW_STATE
END_PROMPT

Put smaller of # of digits
entered or #15 as 1st byte of
LCNCALLING)

Go to new state

(Prompt user for LCN and set it)

Programmer's Reference Manual IDACOM

TEST MANAGER 17-21
September 1990

GET_CALLED (--)
PROMPTH ENTER THE CALLED ADDRESS:
prompt LCNCALLED 16 CMOVE

LCNCALLED C@ 15 MIN LCNCALLED C!

21 1 START_TIMER
4 NEW_STATE
END_PROMPT

SET_LCN

(LCN called is a 16 byte string
H(Prompt user)

(Move first 16 characters to
LCNCALLED)
Put smaller # of digits entered
and 15 as first byte of
LCNCALLED

Go to new state

Prompt user for LCN and set it)

PROMPT. ENTER THE LCN NUMBER (1-4095): H (Prompt user
10 STR># (Convert to decimal)
IF

DUP 1 4095 BETWEEN?
IF

COUNTERl @ CH =LCN

(Valid decimal value)
(Between 1 and 4095?)
(Yes)
(Set of channel and LCN
(Go to new state) 21 START_TIMER 2 NEW_STATE

ELSE (Not between 1 and 4095
H Invalid LCN No.H W. ERROR DROP

(Clear up stack and create error message
END IF

ELSE
H Invalid LCN NO.H W. ERROR

END IF
END_PROMPT

Not a decimal value)
Create error message)
Not a decimal value)

#ENDIF (End conditional compile)

0 STATE_INIT(
0 COUNTERl

)STATE_INIT

0 STATE(
?WAKEUP
ACTION(

GET_LCNS_REQ
)ACTION

)STATE

1 STATE(
21 ?TIMER
ACTION(

1 COUNTERl +!
SET_LCN

)ACTION
)STATE

IDACOM

(Initialize counter)

Start test script automatically

Get # of channels

Increment counter)
Set channel and LCN

Programmer's Reference Manual

17-22
September 1 990

2 STATE{

TEST MANAGER

2l?TIMER
ACTION{

GET_CALLING
}ACTION

(Set calling address for this channel)

}STATE

3 STATE{
21 ?TIMER
ACTION{

GET_CALLED
}ACTION

(Set called address for this channel)

}STATE

4 STATE{
21 ?TIMER
ACTION{

COUNTERl @ #LCNS @ = O=
IF

21 1 START TIMER
END IF

}ACTION
}STATE

User-Defined Function Keys

(Are all LCN's assigned?)

The labels on the following default function keys can be changed in a test script or by typing in
commands. The area provided is 80 columns; however, nine of these columns are taken up by
the function key dividing lines.

I TestKeysl

[!]
UFl

@]
UF2

@]
UF3

[El
UF4

[!§
UFS

~
UF6

@]
UF7 §] I UF8

The following commands are used to change the default function keys.

LABEL_KEY (string\n --)
Displays a string of up to 10 characters on the specified key. Valid key values are 1 through
8.

Example:
Change the display of function key 1 to 'Continue' .
• Continue" 1 LABEL_KEY

~ NOTE
Not all keys can be 10 characters wide due to the 9 function key separators on the display.
Once the total space available for keys has been used, LABELKEY truncates the latest
key labeled.

Programmer's Reference Manual IDACOM

TEST MANAGER

HILITE_LABEL (yesjno\fk# --)

17-23
September 1 990

Tums highlighting on/off on the specified function key under the TestKeys topic.

Example:
YES 1 HILITE LABEL
NO 2 HILITE LABEL

CLEAR_KEY (n --)
Clears the text for the specified function key. Valid key values are 1 through 8.

Example:
Clear all text from function key 6.
6 CLEAR_KEY

It is not necessary to label a key to detect it within a test program.

CLEAR_KEYS (--)
Removes the text from all eight function keys.

DEFAULT_KEYS (--)
Restores the labels of all test keys to their default values. The default labels are "UF1",
"UF2", ... "UF8".

SET_CURR_TOPIC (string --)
Moves the topic box to the specified topic.

~ NOTE
To move to a topic, the spelling must match the display on the topic bar.

Example:
Move the topic box to the TestKeys topic.

0 STATE_INIT[
• TestKeys· SET_CURR_TOPIC

}STATE_INIT

IDACOM Programmer's Reference Manual

17-24
September 1990

Direct Key Actions

TEST MANAGER

Actions can be assigned to keys that are executed, without the test manager looking for a
function key event.

F1_ACTION
Defines the action of UF1 using the MAKE ... ;AND construct and executes the action
independent of what state the program is in. When assigning a new action to a key, it is
advisable to relabel the key.

~NOTE
No stack comments are shown, as these are dependent on user definition.

~NOTE
TestKeys UF2-UFB can be set using the commands F2.....ACTION through FB__ACTION,
respectively.

Example:
Define the action for UF1 as BEEP.
MAKE Fl_ACTION BEEP ;AND

The previous example is equivalent to:
UFl ?KEY
ACTION{

BEEP
)ACTION

Output - Notices and Errors

Notices or error messages can be created using the W.NOTICE or W.NOTICES commands.

Notices are displayed in the Notice Window (Row 17 of the screen) and must not be longer than
79 characters. Press any key to clear the message. When a new notice is displayed, the previous
one is overwritten.

W.NOTICE (string --)
Displays a single string in the Notice Window.

Example:
" Invalid number" W.NOTICE

Programmer's Reference Manual IDACOM

TEST MANAGER

W.NOTICES (stringn\ ... \string1\n --) or (stringn\ ... \#arg\number\n --)

17-25
September 1 990

Where: n = the total number of strings and numbers including the #arg to display

Displays a string and/or number in the Notice Window. If a number is included, it must be
preceded by the #arg command.

Example:
• Invalid number • #arg 7 3 W.NOTICES

Inv8l1d nuMber = 7

Example:
Print the values of two counters together with descriptive text. The six arguments are
identified by the numbers below .

• LCN numbers· #arg COUNTERl @ . WINDOW=· #arg COUNTER2 @ 6 W.NOTICES

T T T T T T
1 2 3 4 5 6

Assuming COUNTER1 and COUNTER2 contain 1 and 2 respectively, the resulting output is:
LCN numbers 1 WINDOW=2.

'1' NOTE
Arithmetic expressions can be used following an #arg, however, the result of the
computation counts as one argument (as illustrated above).

Error messages are displayed in the Error Window in the center of the screen. The message must
be no more than 74 characters.

Use the W.ERROR and W.ERRORS commands to display error messages.

W.ERROR (string --)
Displays a single string in the Error Window.

Example:
• Invalid number· W.ERROR

IDACOM Programmer's Reference Manual

17-26
September 1990

W.ERRORS (stringn\ ... \string 1 \n --) or (stringn\ ... \#arg\number\n --)

TEST MANAGER

Displays a string and/or numbers in the Error Window. If a number is included, it must be
preceded by the #arg command.

Example:
• Invalid number • #arg 7 3 W.ERRORS

Error Message
Invel1d nu"ber = 7

Press eny key to clear this "essege end continue.

Starting or Stopping Timers

Interval timers can be started or stopped within the action field. There are 128 user
programmable timers available of which only some can be used within user test script programs.
Others are used by the emulation program for the protocol implementation. Protocol specific
timers are described in the Programmer's Manual for each application.

START_TIMER (timer#\time --)
Starts the specified timer which, if not stopped or restarted, provides a timeout indication.
Valid values for the timeout, in tenths of seconds, are 1 through 2147483647 (7FFFFFFF16).

The resolution is approximately 30 milliseconds.

Example:
Start timer 21. The timeout indication occurs in one minute.
21 600 START_TIMER

STOP_TIMER (timer# --)
Stops the specified timer.

Example:
Stop timer 21.
21 STOP_TIMER

In addition to the interval timers, there are 256 lapse timers which can be started and read at any
time. Lapse timers are similar to a stop watch and can be used to measure the duration of
events.

START_LAPSE_TIMER (timer# --)
Starts the specified timer. Valid values are O through 255. If an invalid value is specified, a
notice appears stating that the lapse timer number is out of range.

MINUTES_ELAPSED (timer# -- minutes)
Returns the number of minutes elapsed since the timer was started. Valid values for the timer
number are 0 through 255.

Programmer's Reference Manual IDACOM

TEST MANAGER

SECONDS_ELAPSED (timer# -- seconds)

17-27
September 1990

Returns the number of seconds elapsed since the timer was started. Valid values for the timer
number are O through 255.

MILLISECONOS_ELAPSED (timer# -- milliseconds)
Returns the number of milliseconds elapsed since the timer was started. Valid values for the
timer number are O through 255.

Example:
This example comes from an ISDN test script. In State 0, when an SABM frame is received,
the test manager start lapse timer 2 and timer 21 and go to State 1. In State 1, look first for a
DISC frame, then timer 21. If the DISC frame is received prior to timeout of timer 21, the test
script determines the interval between the SABM and the DISC and reports it.

0 STATE{
R#SABM ?RX FRAME
ACTION{

2 START_LAPSE_TIMER
101 6000 START_TIMER
1 NEW_STATE

}ACTION
}STATE

1 STATE{
R#DISC ?RX FRAME
ACTION{

Start lapse timer)
Start timer 21 for 10 minutes)
Go to state 1)

(Measure and print how long the DISC took)

T." Interval between SABM and DISC
2 MILLISECONDS_ELAPSED T.
T." milliseconds"
TCR

}ACTION

101 ?TIMER
ACTION{

The DISC never came - test fails)

T." Disc not received in 10 minutes.·
TCR
TM_STOP

}ACTION
}STATE

IDACOM Programmer's Reference Manual

17-28
September 1990

Manipulating Counters

TEST MANAGER

There are 32 (or more) counters supplied with each protocol application software: COUNTER1,
COUNTER2, ... , COUNTER32.

These counters can be read, written to, incremented, decremented, and used in decision making.
A review of the mechanism for performing these operations is provided below using COUNTERS as
an example.

Further explanation on using and manipulating counters may be found in Sections 3, 4, and 7.

@ (a -- d)
(fetch)
Fetches a 32 bit value 'd' (read) from address 'a'.

Example:
Assume the variable COUNTERS contains the hex value 08040201. Place 08040201 on the
stack.
COUNTERS @

! (d\a --)
(store)
Stores a 32 bit value at the specified address.

Example:
Store 127 (7F hex) in COUNTERS.
127 COUNTERS

+! (d\a --)
(plus-store)
Increments/decrements a 32 bit value 'd' to the contents of address 'a'.

Example:
Increment the contents of COUNTERS by one. Assuming it initially contained 08040201,
COUNTERS would now contain the hex value of 08040202.
1 COUNTERS +!

Decrement the contents of COUNTERS by five. COUNTERS would now contain the hex value
of 080F01 FC.
-S COUNTERS +!

Programmer's Reference Manual IDACOM

TEST MANAGER

Using Counters in Decision Making

= (d, \d2 -- f)
(equality)
Where: d1 , d2 = 32 bit numeric value to compare

f = result of comparison

Returns true if 'd 1', and 'd 2 ' are equal.

Example:

17-29
September 1 990

Remain in a state until an event has occurred 10 times. The underlying presumption in the
following example, is that the COUNTER variable was initialized to the value of zero before
entering this state.

ACTION{
1 COUNTER+!
COUNTER @ 10
IF

5 NEW STATE
END IF

)ACTION

> (d, \d2 -- f)
(greater than)

Increment the counter
Counter contents = 10 ?
Yes)
Go to state 5)

Where: d1 , d2 = values to compare
f = result of comparison

Returns true if 'd 1' is greater than 'd 2'.

Example:
Remain in the same state until an event occurs more than 9 times. The underlying
presumption is that the COUNTER variable was initialized to the value of zero before entering
the state.

ACTION{
COUNTER @ 9 >
IF

Is COUNTER bigger than COUNTERl ?

Yes)
2 NEW_STATE

ELSE
1 COUNTER +!

END IF
)ACTION

< (d, \d2 -- f)
(less than)

Go to state 2)

Increment COUNTER

Where: d 1 , d 2 = values to compare
f = result of comparison

Returns true if 'd,' is less than 'd 2'.

IDACOM Programmer's Reference Manual

17-30
September 1990

Example:

TEST MANAGER

Remain in the same state for at least 10 occurrences of an event. The underlying
presumption is that the COUNTER variable was initlalized to the value of zero before entering
this state.

ACTION{
COUNTER @ 11 <
IF

1 COUNTER +!
ELSE

4 NEW_STATE
END IF

)ACTION

~NOTE

Counter contents < 11 ?)

Yes)
Increment COUNTER by one

Go to state 4)

The previous three examples result in the same actions being taken.

AND (d,\d2 -- d3}
(logical AND)
Where: d1, d2, d3 = 32 bit integers

Performs a bitwise logical AND on 'd,' and 'd 2' and leaves the result 'd3' on the top of the
stack.

Example:
Assume COUNTER1 contains the value 5 (binary 101) and COUNTER2 contains the value 3
(binary 011). The result of the AND operation leaves the value 1 (binary 001) on the stack.
COUNTERl @ COUNTER2 @ AND

OR (d,\d2 -- d3}
(logical OR)
Where: d1 , d2, d3 = 32 bit integers

Performs a bitwise logical OR on 'd,' and 'd 2' and leaves the result 'd 3' on the top of the
stack.

Example:
Assume COUNTER1 contains the value 5 (binary 101) and COUNTER2 contains the value 3
(binary 011). The result of the OR operation leaves the value 7 (binary 111) on the stack.
COUNTERl @ COUNTER2 @ OR

XOR (value, \value2 -- value3)
(exclusive OR)
Where: d1 , d2, d3 = 32 bit integers

Performs a bitwise exclusive OR on 'd,' and 'd 2' and leaves the result 'd3' on the top of the
stack.

Example:
Assume COUNTER1 contains the value 5 (binary 101) and COUNTER2 contains the value 3
(binary 011). The result of the XOR operation leaves the value 6 (binary 110) on the stack.
COUNTERl @ COUNTER2 @ XOR

Programmer's Reference Manual IDACOM

TEST MANAGER

Mailing to Another Processor

17-31
September 1 990

Mail commands allow communication between test scripts that are running on different
application processors in the same tester. This functionality is useful for the synchronization of
test scripts running on different ports, and to pass information or parameters from one script to
another.

Examples of inter-processor mail include the starting and stopping of X.25 B-Channel data under
the control of the D-Channel in ISDN. Another example is performing transit delay measurements
across a protocol converter.

Up to 12 numerical items can be sent to another processor. The last parameter listed must be a
count Indicating how many parameters to mail.

~NOTE
These commands vary according to machine configuration and are not applicable to single
port WAN units.

Example:
To provide synchronization between two running test scripts, the flow chart below would illustrate
the necessary technique.

D-Channel

I send

D-Channel Test Program
0 STATE{

UFl ?KEY
ACTION{

1 1 CPUl_MAIL
}ACTION

}STATE

CPU1_MAIL (d 1 \ ••• \d2\n --)

81 -Channel (AP #1)

y

Continue

Execution

81-Channel Test Program
0 STATE{

?MAIL
ACTION{

1 NEW_STATE
}ACTION

}STATE

Transmits a list of parameters (maximum 12) plus the count of the number of these parameters
to FEF _ 1. When the application processor receives this mail, the user program must check for
this event via ?MAIL and unpack the message by calling EXTRACT_FTH__DATA. See Table
16-1 for the relationship between application processor and the FEF number.

IDACOM Programmer's Reference Manual

17-32
September 1 990

TEST MANAGER

Example:
Transmit the mail commands which are shown in the example under the EXTRACT_FTH_DATA
command to AP #1.

TCLR
0 STATE{

?WAKEUP

ACTION{
2 4 6 3 CPUl_MAIL
21 1 START_TIMER

}ACTION

(The test script on AP #1 will display the following in a trace statement:
'The mail parameters are 6 4 2')

}STATE

Table 17-3 lists other mail commands which transmit messages to different application
processors. The input parameters are identical to CPULMAIL as previously described.

CPULMAIL FEF_1

CPU2_MAIL FEF_2

CPU3_MAIL FEF_3

CPU4_MAIL FEF_4

CPUD_MAIL FEF_7

CPUDB_MAIL FEF_S

Table 17-3 Mail Commands

MAIL_CMD (d1\ ... \d2\n --)
Transmits a message to the partner of the current application processor. Partner processors
are defined in Table 17-4. This command is useful for writing a test program that operates
independent of the processor it is running on. For example, MAILCMD on port 1 of a
WAN/WAN machine mails to port 2, while the same command executed on port 2 does the
opposite.

FEF_1 FEF_2

FEF_3 FEF_4

FEF_S FEF_7

Table 17-4 MAIL_CMD Partners

See the 'Interprocessor Mail Events' section on page 17-12 for information concerning the
detection of mail events and their subsequent interpretation.

Programmer's Reference Manual IDACOM

TEST MANAGER

Protocol Specific Actions

17-33
September 1990

Each IDACOM application software program provides protocol dependent commands which can
be used within action sequences. These commands include turning on and off control leads,
activating the SIT Bus (BRA), plus the construction and transmission of higher layer protocol
information. For more details about protocol dependent commands, consult the appropriate
Programmer's Manual.

17. 7 Additional ITL Structures

SEQ{ }SEQ (number --)
Brackets a definition of tasks and outputs which execute as part of the state machine action,
and declares them to be a sub-routine. SEQ{ expects a single integer which is the sequence
number. Up to 256 sequences are supported. Valid values are O through 255. The SEQ{
}SEQ partners are extremely useful when more than one action sequence calls the same tasks
and outputs. The SEQ{ }SEQ definition is defined outside the STATE{ }STATE definition
and then called using the RUN_SEQ command.

This is an alternate mechanism to generate colon definitions. This mechanism causes the
equivalent of a colon definition (now accessed via a numeric identifier) to be compiled into
the test script dictionary rather than the user dictionary.

RUN_SEQ (number --)
Executes a specified set of tasks defined in a SEQ{ }SEQ definition. It is called inside an
ACTION{ }ACTION definition and must be preceded with a defined sequence number.

Example:
The following program operates in conjunction with either the ISDN Monitor or Emulation
software to collect statistics on types of received frames within a certain interval.

In state 0. set the topic bar to the TestKeys topic, label three of these keys, initialize
counters, expose the Data Window, and call State 1. The test manager now remains in State
1 until the test script is stopped. The user can choose, via the three test keys, to view the
Data Window or the User Window without moving the topic bar to the Background topic. The
counters can be re-initialized with the third function key.

IDACOM Programmer's Reference Manual

17-34
September 1990

TCLR
WAKEUP_ON

0

1

SEQ{

)SEQ

SEQ{

0 COUNTERl (Initialize counters)
0 COUNTER2
0 COUNTER3
0 COUNTER4
0 COUNTERS
0 COUNTER6
0 COUNTER?
0 COUNTERS
0 COUNTER9
0 COUNTERlO
0 COUNTERll
0 COUNTER12

POP_USER Open the User Window)
CLEAR_TEXT WHI FG PAINT Clear screen text and color
0 20 THERE w.· Statistics Display after 1 minute•
2 30 THERE w.· I • COUNTERl@ W.
3 30 THERE
4 30 THERE
5 30 THERE
6 30 THERE
7 30 THERE
s 30 THERE
9 30 THERE
10 30 THERE
11 30 THERE
12 30 THERE
13 30 THERE
CLOSE_WINDOW

W. • RR • COUNTER2 @ W.
W. • RNR COUNTER3 @ W.
W .• REJ • COUNTER4 @ W.
W. • SABM • COUNTERS @ W.
w.· SABME • COUNTER6@ W.
w.· DISC • COUNTER?@ W.
W. • UA • COUNTERS @ W.
W. • DM • COUNTER9 @ W.
W. • FRMR • COUNTERlO @ W.
w.· UI COUNTERll@ W.
w.· XID • COUNTER12@ W.

)SEQ

0 STATE{
?WAKEUP
ACTION{

0 RUN_SEQ
• TestKeys· SET_CURR_TOPIC
• SHOW_DATA• 1 LABEL_KEY
• SHOW_STATS. 2 LABEL_KEY
• RESTART• 3 LABEL KEY
SHOW_DATA
1 NEW_STATE

)ACTION
)STATE

Programmer's Reference Manual

Zero counters
Label keys 1, 2, and 3)

(Show the Data Window)

TEST MANAGER

IDACOM

TEST MANAGER

1 STATE{
R#I ?RX_FRAME
ACTION{

1 COUNTERl +!
OPEN_USER
2 38 THERE
COUNTERl @ w.
CLOSE_WINDOW

}ACTION

R#RR ?RX_FRAME
ACTION{

1 COUNTER2 +!
OPEN_ USER
3 38 THERE
COUNTER2 @ W.
CLOSE_WINDOW

}ACTION

R#RNR ?RX_FRAME
ACTION{

1 COUNTER3 +!
OPEN_ USER
4 38 THERE
COUNTER3 @ W.
CLOSE_WINDOW

}ACTION

R#REJ ?RX_FRAME
ACTION{

1 COUNTER4 +!
OPEN_USER
S 38 THERE
COUNTER4 @ W.
CLOSE_WINDOW

}ACTION

R#SABM ?RX_FRAME
ACTION{

1 COUNTERS +!
OPEN_ USER
6 38 THERE
COUNTERS @ W.
CLOSE_WINDOW

}ACTION

IDACOM

17-35
September 1 990

Check event field for I Frame)

Increment counter
Open User Window)
Position text at row 2, column 38)
Display number of I frames received

(Check event field for RR frame)

(Display number of RR frames received)

(Check event field for RNR frame)

(Display number of RNR frames received)

(Check event field for REJ frame)

(Display number of REJ frames received)

(Check event field for SABM frame)

(Display number of SABM frames received)

Programmer's Reference Manual

17-36
September 1 990

R#SABME ?RX_FRAME
ACTION{

1 COUNTER6 +!
OPEN_ USER
7 3S THERE
COUNTER6 @ W.
CLOSE_WINDOW

)ACTION

R#DISC ?RX_FRAME
ACTION[

1 COUNTER7 +!
OPEN_ USER
S 3S THERE
COUNTER7 @ W.
CLOSE_WINDOW

)ACTION

R#UA ?RX_FRAME
ACTION[

1 COUNTERS +!
OPEN_ USER
9 3S THERE
COUNTERS @ W.
CLOSE_WINDOW

)ACTION

R#DM ?RX_FRAME
ACTION{

1 COUNTER9 +!
OPEN_ USER
10 3S THERE
COUNTER9 @ W.
CLOSE_WINDOW

)ACTION

R#FRMR ?RX_FRAME
ACTION{

1 COUNTERlO +!
OPEN_ USER
11 3S THERE
COUNTERlO @ W.
CLOSE_WINDOW

)ACTION

R#UI ?RX_FRAME
ACTION{

1 COUNTERll +!
OPEN_USER
12 3S THERE
COUNTER11 @ W.
CLOSE_WINDOW

)ACTION

Programmer's Reference Manual

TEST MANAGER

(Check event field for SABME frame)

(Display number of SABME frames received)

(Check event field for DISC frame)

(Display number of DISC frames received)

(Check event field for UA frame)

(Display number of UA frames received)

(Check event field for DM frame)

(Display number of DM frames received)

(Check event field for FRMR frame)

(Display number of FRMR frames received)

(Check event field for UI frame)

(Display number of UI frames received)

IDACOM

TEST MANAGER 17-37
September 1990

R#XID ?RX_FRAME
ACTION{

(Check event field for XID frame)

1 COUNTER12 +!
OPEN_ USER
13 38 THERE
COUNTER12 @ W.
CLOSE_WINDOW

}ACTION

UFl ?KEY
ACTION{

SHOW_DATA
}ACTION

UF2 ?KEY
ACTION{

1 RUN_SEQ
}ACTION

UF3 ?KEY
ACTION{

0 RUN_SEQ
}ACTION

}STATE

LOAD_RETURN_STATE (number --)

(Display number of XID frames received)

Event is function key #1

Show the Data Window)

(Show statistics)

(Zero counters)

Permits the test script writer to program the equivalent of subroutine calls (used with
RETURN_STATE). LOAD_AETURN_STATE sets the state to which control is to be returned.
LOAD_AETURN_STATE must be within the action field; nesting is not permitted.

RETURN_STATE (--)
Returns control to the state specified by LOAD_RETURN_ST ATE from a state subroutine call.

Example:
This example is taken from an ISDN test script. State 250 can be called from more than one
action sequence. In the portion of code shown, state O calls '1 LOAD_RETURN_STATE' then
'250 NEW_STATE'. After the execution of SJ)ISC in state 250, the program returns to state 1
when RETURN_ST ATE Is executed.

TCLR
WAKEUP_ON

0 STATE{
?WAKEUP
ACTION{

T.· Test started· TCR
0 COUNTER !
1 LOAD_RETURN_STATE
21 1 START_TIMER
250 NEW_STATE

}ACTION
}STATE

IDACOM Programmer's Reference Manual

17-38
September 1 990

1 STATE{
R#UA ?RX FRAME
ACTION{

BEEP
·Press UFl to release,·
• UF2 to send packet,·
• UFJ to send invalid packet•
3 W.NOTICES
2 NEW_STATE

)ACTION
)STATE

250 STATE{
21 1 ?TIMER
ACTION{

S_DISC
RETURN_STATE

)ACTION
)STATE

NEW_TM (filename --)

(Send a disconnect)

TEST MANAGER

Loads and compiles the specified file and then starts the test manager at state 0. It can be
included as part of the action field to load and execute another scenario.

Example:
In state 15, the file TEST2.F is called to start the execution of the next test which originates in
state O of file TEST2.F.

15 STATE{
21 ?TIMER
ACTION{

T.· Test 1 is complete• TCR
• TEST2.F• NEW TM

}ACTION
}STATE

Programmer's Reference Manual

Display Test 1 completion
Load in Test 2)

IDACOM

TEST MANAGER

17.8 Test Scripts

17-39
September 1990

Test scripts can be loaded, run, stopped, and saved from the Command Window or from within
other test scripts. Corresponding commands are described in the following sections.

Loading a Test Script

To run a test script, the file or a test script binary containing either source code must be loaded
from a floppy or hard disk and run on an application processor.

The equivalent function key sequence (if applicable) is shown after the command.

EXECF (filename --)
Loads a source format test script. The filename must be entered in quotes.

Example:
H DRO:TEST_SEQ.FH EXECF

If there are no errors in the test script, the following notice message is displayed:
The (DRO:TEST_SEQ.F) test script is loaded.

~ TestScript topic
Load Script function key

EXECTS (filename --)
Loads a binary format test script. The filename is entered in quotes.

Example:
H DRO:TEST_SEQ.BH EXECTS

If there are no errors in the test script, the following notice message is displayed:
The (DRO:TEST_SEQ.F) test script is loaded.

Starting a Test Script

To start the test script:

I TestScript I

ID ACOM Programmer's Reference Manual

17-40
September 1990

TEST MANAGER

If the following error message is displayed, either the test script was not loaded or the test script
is incomplete:

State 0 is undefined: ...

The Run Script function key remains highlighted while the test script is running.

The test manager can also be started by typing the following command in the Command Window:

TM_RUN (--)
Starts the execution of the test script. If a test script was not loaded or the test script was
incomplete, the following error message is displayed:

State 0 is undefined: ...

Because ITL's state machine architecture requires an event to occur before any actions execute,
eg. function key, received frame, etc., the wakeup mechanism provides a single event upon test
program startup.

When either the Run Script function key is pressed or the TM_RUN command is issued, the
wakeup timer is started for 100 milliseconds. This allows sufficient time for any initialization code
to execute, after which time, the test program detects the expired timer and performs the required
actions.

WAKEUP _ON (--)
Activates the wakeup timer (timer 34) for 100 milliseconds when either the Run Script function
key is pressed or the TM_RUN command is issued. If ?WAKEUP is used in State O, the
scenario execution starts. The default is WAKEUP _OFF.

Example:
Upon expiry of the wakeup timer, label four keys, and go to State 1.

TCLR
WAKEUP_ON

0 STATE{
?WAKEUP
ACTION{

• Show Stat• 1 LABEL KEY
• Show Data• 2 LABEL_KEY
• Clear· 3 LABEL KEY
• Stop Test• 4 LABEL_KEY
1 NEW_STATE

}ACTION
}STATE

WAKEUP _OFF (--)
Deactivates the wakeup timer (default). With WAKEUP _OFF, the wakeup timer is not started
when the test script is run.

Programmer's Reference Manual IDACOM

TEST MANAGER

Stopping a Test Script

TM_STOP (--)

17-41
September 1990

Stops the execution of a test script. The test suite remains in memory and can be
re-executed using TM_RUN.

Saving a Test Script Binary

There are two methods of saving a test script binary. The first method uses the SAVETS
command and saves a binary which can be loaded using the Load Script function key. The
second method uses the ASTART_ON command which automatically runs a test scenario at
program startup.

SAVETS (filename --)
Saves the compiled test script as a binary with the specified filename. To save a test script
binary:

o Load a source test script as instructed in the 'Loading a Test Script' section on page
17-39.

o Press the ESC key to open the Command Window.
o Type: " filename" SAVETS.

AST ART _ON (--)
Automatically executes a test scenario at program startup.

o Load the emulation.
o Change to the desired parameters.
o Load the test scenario.
o Press the ESC key to open the Command Window.
o Type: AST ART _ON.
o Resave the binary by typing: " Program Name" SAVES.

IDACOM Programmer's Reference Manual

17-42
September 1 990

TEST MANAGER

The binary is saved as 'filename.extension' where valid filenames are listed in Table 17-5, and
valid extensions in Table 17-6 (depending on machine configuration).

ISDN Monitor ISDN_MON

ISDN Emulation ISDN_EMUL

Universal Monitor USM_MON

Universal Simulator USM_SIM

X.25 Monitor X25_MON

X.25 Emulation X25_EMUL

X.25 MLP Emulation X25_EMUL

X.25 Load Generator X25_LOAD

SNA Monitor SNA__MON

SDLC Emulation SDLC_MON

8isync Monitor 8SC_MON

8isync Emulation 8SC_EMUL

X.75 Monitor X75_MON

X.75 Emulation X75_EMUL

SNA Verification SNA__VER

Teletex Monitor TTX_MON

X.25 Network Performance Analysis X25_STAT

SNA Network Performance Analysis SNA__STAT

SS#7 Monitor SS7_MON

SS#7 Simulation SS7_SIM

Table 17-5 Binary Filename Prefixes

81 83 81 81 81 81 81 81

84 83 82 82 82 82 82

8 84 8 8 8 8

93 93

84 84

85

Table 17-6 Binary Filename Extensions

Programmer's Reference Manual IDACOM

TEST MANAGER 17-43
September 1 990

Whenever this binary is loaded, the configuration Is set as previously defined and the test
manager executes automatically.

The same steps are followed for the monitor but the binary would be saved by typing:
"X25_EMUL.B1" SAVEB.

~NOTE
The AST ART feature is not available in ISDN or SS# 7 applications.

AST ART _OFF (--)
Disables the automatic execution of a test script at program startup (default).

IDACOM Programmer's Reference Manual

CONFIGURATION FILE 18-1
September 1 990

18
CONFIGURATION FILE

When the menu system software is loaded, the default configuration source file (HOME.D) is
executed which automatically configures the remote and printer ports.

Similarly, when a monitor or emulation application Is loaded from the Home processor, a
corresponding default configuration file is executed which automatically configures the
application. These configuration files are named 'filename.extension' where valid filenames are
listed in Table 17-5, and valid extensions in Table 18-1 (depending on machine configuration).

These default configuration files contain executable ITL commands and can be customized using
the editor under the Files topic.

Example:
The following default configuration file can be edited on AP#1 on a BRA/WAN machine to
customize the Bisync Emulation program:
BSC_EMUL.Dl

01 03 01 01 01 01 01

04 03 02 02 02 02

0 04 0 0 0 0

03 03

04 04

05

Table 18-1 Configuration File Name Extensions

The status of the configuration file, is displayed as either a notice or error message.

For example, one of the following notices could be displayed for emulation:
•Executed configuration file : X25_EMUL.Dl

Indicates that the configuration file is loaded and all commands are executed.
•Not able to find configuration file : X25_EMUL.Dl

01

02

Indicates that the configuration file Is not found on any of the floppy disk drives or hard
disk partitions.

~NOTE
If the configuration file does not exist, the flow of the program will not be affected.

IDACOM Programmer's Reference Manual

18-2 CONFIGURATION FILE
September 1 990

For example, one of the following error messages could be displayed for the emulation:
• Code error in configuration file : X25_EMUL.Dl

Indicates that the configuration file is loaded, but contains a coding error.
• File : X25_EMUL.Dl Unrecoverable Physical I/O Error! Disk not formatted?

Indicates that a disk error occurred during loading.

See the appropriate Programmer's Manual for protocol specific configuration commands. See
Sections 9.1 and 10 in this manual for printer and remote port configuration commands.

Programmer's Reference Manual IDACOM

TEST SCRIPT COMPATIBILITY A-1
September 1990

A
TEST SCRIPT COMPATIBILITY

This appendix describes commands available in previous versions of the test manager. These
commands are still supported but are not recommended for use with the current version of the
test manager. The procedure for using these commands might have changed.

A.1 ?KEYBOARD

?KEYBOARD (--)
~NOTE

It is recommended that all occurrences of ?KEYBOARD be replaced with the PROMPT"
string" END_PROMPT partners.

Detects keyboard entry of character strings or numerical values within the event field.
?KEYBOARD requires no parameters. The interpreter does not process keyboard entries in
states which contain ?KEYBOARD. A true flag is returned when a keyboard entry is
terminated with the RETURN key.

-tJ WARNING
To use ?KEYBOARD, follow this procedure:

o Move the topic box to the TestScript topic.
o Press the Script Window function key.
o Press the Script Keys function key.

Any characters typed on the keyboard are echoed in the Test Script Window. Pass the string
to the test script by pressing ~ (RETURN). While the Script Keys function key is highlighted,
the topic bar is removed from the screen.

IDACOM Programmer's Reference Manual

A-2 TEST SCRIPT COMPATIBILITY
September 1 990

A.2 Numerical Value Entry

Numerical entry can be accessed by the EXPECT _NUM command.

EXPECT _NUM (-- d\f)
Converts a character entry into a numerical value and returns a value and a true flag if
successful.

Example
Set timer 21 to the value of time entered.

2 STATE{
?KEYBOARD
ACTION{

EXPECT_NUM
IF

ELSE

21 SWAP START_TIMER
3 NEW_STATE

Check for keyboard entry)

Get value and flag on stack

Start timer 21)
Go to state 3)

DROP
H Invalid entryH W.NOTICE

END IF

If invalid, remove value from stack)
Advise user of invalid entry)

}ACTION
}STATE

A.3 Output

The following commands generate comments or prompts to either the Script Window or the
Command Window.

~ NOTE
It is recommended that all occurrences of these commands be replaced with the
PROMPT" string" END_PROMPT partners.

\(;WARNING
To use these commands, use one of the following procedures:

To direct text to the Script Window:
CJ Move the topic box to the TestScript topic.
CJ Press the Script Window function key.

To direct text to the Command Window:
ci Press the ESC key.

Programmer's Reference Manual IDACOM

TEST SCRIPT COMPATIBILITY

DISPLAY (string\attr --)

A-3
September 1990

Prints the string in the active window using the color specified by 'attr'. See Table 9-1 for
valid attributes.

~ NOTE
There must be a single space inserted after the first quotation mark prior to the text.

Example:
Display text using a red background in the active window.
·Do you wish to continue? (Y/N] :· RED_BG DISPLAY

." text" (--)
(dot quote)
Prints the enclosed text in the currently open window. The maximum number of characters is
255.

~ NOTE
There must be a single space inserted after the first quotation mark prior to the text.

Example:
Print the text in the currently open window .
. ·Do you wish to continue? [Y/N] :·

. (d --)
(dot)
Prints a signed 32 bit from a two's complement value converted to the current numeric base.
The default numerical base is decimal. A trailing space follows the display of the number.

Example:
Display the contents of COUNTERS in the currently active window.
COUNTERS @ .

. H (d --)
(dot H)
Displays a 4 byte (32 bit) hex value.

Example:
Display 0001 E240 in the currently open window.
123456 .H

.HB (d --)
(dot HB)
Displays a one byte (8 bit) hex value.

Example:
Display 7F in the currently open window.
127 .HB

IDACOM Programmer's Reference Manual

A-4
September 1 990

.HH (d --)
(dot HH)
Displays a half byte (4 bit) hex value.

Example:
Display F in the currently open window.
127 .HH

A.4 Detecting Cursor Keys

VJ WARNING

TEST SCRIPT COMPATIBILITY

Cursor keys are passed to the test manager only when the Script Keys function key under the
TestScript topic has been pressed.

Cursor keys can be detected with the ?KEY command. Appropriate values passed to ?KEY to
detect cursor movements are listed below.

CUP
CD OWN
CLEFT
CRIGHT

Up cursor key
Down cursor key
Left cursor key
Right cursor key

The HOME key and ESC key cannot be detected. HOME always returns the user to the Home
processor. ESC always opens the Command Window.

Example:
Detect the pressing of the UP arrow key (11').

CUP ?KEY
ACTION{

}ACTION

Programmer's Reference Manual IDACOM

ERROR RECOVERY B-1
September 1 990

B
ERROR RECOVERY

IDACOM testers are built around the Motorola MC68000 family of processors and contain from
three to seven CPU's, depending on machine configuration.

B.1 Description

Bugs in user test scripts or improperly used ITL commands might cause program malfunction or a
system crash. These errors generally fall into two categories: memory and arithmetic.

The MC68000 views memory as a continuous sequence of bytes O through OxFFFFFF, or 16 Mb.
Operations on this memory space must use a 32, 16, or 8 bit operand size.

All memory addresses, with the exception of 8 bit operations, must be specified as an even
number. Passing an odd address to '@' or 'W@' creates an address error exception. This causes
all activity on the application processor to halt and a traceback of the error to print on the
screen (see Figure B-1).

IDACOM

Address_error: PC=C06EAO Address= 1
Source Fr" Len Pecket Oete
DCE 03 SABM
LAYER 2 LINK
DTE 03 UA
LAYER 2 LINK

STATE = 3

STATE • 6
LAYER 3 NETWORK STATE • 4
DCE 03 I 0 RESTART INDICATION
DTE 03 RR

1gee-03-26 23:41:se

Return Steck: • TN-START TS_RUN DO_X25_MAKES TESTKEYS FK_HANDLER.F FEF_DO_WORO
0 REFRESH_KEYS REFRESH_KEYS REFRESH_KEYS RESET_VECTDRS RESET_VECTORS MENU

Perefteter Steck: 1
To reftove thls wlndow. type: ZAP I •AYER 3 LCN 1 STATE • 2

Prlnt Forl'let MessegeSet Fllters Trlggers NsgBullder TestScrlpt TestKeys

I Scr1p'f!lw1ndow I Serl~ Keys I Laed~crlpt I t:INW!iJj,'iJd I

Figure B-1 Address Error Screen Display

Programmer's Reference Manual

B-2 ERROR RECOVERY
September 1 990

A memory operation on an address where no actual memory exists generates a bus error
exception. This usually indicates a pointer variable within a test program that is not being set or
referenced correctly.

Attempting to divide by zero generates a zero divide exception.

All exceptions produce a similar screen display and halt all activity on the application processor.
The emulation and test script stop running while the error message is displayed.

B.2 Recovery

Whenever an exception halts all processor activity, the application program must be reset and
restarted.

a Press SHIFT/CONTROL f8 simultaneously.

The screen should clear and display a blank window.

a Type MENU and press .,i (RETURN) to re-initialize the application program.

If this operation fails to clear the screen, reboot the unit by pressing the reset switch.

Programmer's Reference Manual IDACOM

CODING CONVENTIONS C-1
September 1 990

c
CODING CONVENTIONS

This section outlines some coding and style conventions recommended by IDACOM. Although
you can develop your own style, it is suggested to stay close to these standards to enhance
readability.

C.1 Stack Comments

A stack comment is surrounded by parentheses, and shows two stack pictures. The first picture
shows any items or 'input parameters' that are consumed by the command; the second picture
shows any items or 'output parameters' returned by the command.

Example:
The '=' command has the following stack comment.

In this example, n1 and n2 are numbers and the flag is either 0 for a false result, or 1 for a true
result. This same example could also be written as follows.

The '\' character separates parameters when there is more than one. The parameters are listed
from left to right with the leftmost item representing the bottom of the stack and the rightmost
item representing the top of the stack.

The 'I' character indicates that there is more than one possible output. The above example
indicates that either a O (false result) or a 1 (true result) is returned on the stack after the '='
operation.

IDACOM Programmer's Reference Manual

C-2 CODING CONVENTIONS
September 1990

C.2 Stack Comment Abbreviations

Following is a list of commonly used abbreviations. In most cases, the stack comments shown in
this manual have been written in full rather than abbreviated .

. :::=::§§~9~,:::::,:: ,::::[::::::::::::::,:::::,:::,,,:=:::=:::::,:,:::::rt,=.:1:==:::=:1i!F.~P~!9?..:.:_ ·:::·=·:,~=:=:.:?tmr,,:;·· . : :: .
a Memory address

b 8 bit byte

c 7 bit ASCII character

n 16 bit signed integer

d 32 bit signed integer

u 32 bit unsigned integer

f Boolean flag (O=false, non-zero=true)

ff Boolean false flag (zero)

tf Boolean true flag (non-zero)

s String (actual address of a character string
which is stored in a count prefixed manner)

Table C-1 ITL Symbols

C.3 Program Comments

Program comments appear in source code surrounded by parentheses. These describe the intent
or purpose of the definition or line of code.

There must be at least one space on each side of the parentheses.

Example:
HELLO (-­

HELLO#

W.NOTICE

Display text Hello in Notice Window)
Create string)
Output to Notice Window)

The program comment should be kept to a minimum and yet contain enough information that
another programmer can tell the intent at a glance.

C.4 Test Manager Constructs

Coding conventions for user test scripts should generally follow the style presented throughout
this manual.

Indenting nested program structures should be done using the tab key in the editor. The use of
many meaningful comments is highly recommended to enhance the continued maintainability of
the program.

Programmer's Reference Manual IDACOM

CODING CONVENTIONS

Example:
(State definition purpose comment)

0 STATE{
EVENT Recognition Commands
ACTION{

Action Commands
IF

END IF
)ACTION

)STATE

Comment

Comment

Comment
Comment

C.5 Spacing and Indentation Guidelines

The following list outlines the general guidelines for spacing and indentations:
• One space between colon and name in colon definitions.
• One space between opening parenthesis and text in comments.
• One space between numbers and words within a definition.

C-3
September 1990

• One space between initial H in strings (i.e. with H string", w.n string", T.H string\ P." string",
X" hex characters", etc ...)

• One or more spaces at the end of each line unless defining a string which requires
additional characters.

• Tab for nested constructs.
• Carriage return after colon definition and stack comment.
• Carriage return after last line of code in colon definition and semi-colon.

See the examples in Appendices C.6 and C.4.

IDACOM Programmer's Reference Manual

C-4 CODING CONVENTIONS
September 1 990

C.6 Colon Definitions

The colon definition should be preceded by a short comment and should start at the first column
of a line. All codes underneath the definition name should be preceded by one tab. Each
element within the colon definition should be well defined.

Example:
{ Description of command)

COMMANDNAME

IF

DOCASE
CASEX ... }
CASEY ... }
CASE DUP { ... }

ENDCASE
ELSE

BEGIN

UNTIL
END IF

Programmer's Reference Manual

Stack description
Comment for first line of code)

Comment

Comment
Comment
Comment

Comment
Comment

•

IDACOM

ASCII/EBCDIC/HEX CONVERSION TABLE D-1
September 1990

D
ASCII/EBCDIC/HEX CONVERSION TABLE

HEX DEC OCT ASCII EBCDIC HEX DEC OCT ASCII EBCDIC
00 0 00 NUL NUL 30 48 60 0
D1 1 D1 SOH SOH 31 49 61 1
02 2 02 STX STX 32 so 62 2 SYN
03 3 03 ETX ETX 33 S1 63 3 IR
D4 4 04 EOT PF 34 S2 64 4 pp
OS s OS ENO HT 3S S3 6S s TRN
06 6 06 ACK LC 36 S4 66 6 NBS
07 7 D7 BEL DEL 37 SS 67 7 EOT
08 8 10 BS GE 38 S6 70 8 SSS
09 9 11 HT SPS 39 S7 71 9 IT
DA 10 12 LF RPT 3A S8 72 RFF
OB 11 13 VT VT 38 S9 73 CU3
DC 12 14 FF FF 3C 6D 74 < DC4
OD 13 1S CR CR 30 61 7S NAK
OE 14 16 so so 3E 62 76 >
OF 1S 17 SI SI 3F 63 77 ? SUB
10 16 20 OLE OLE 4D 64 1DO @ SP
11 17 21 DC1 DC1 41 6S 101 A
12 18 22 DC2 DC2 42 66 102 B
13 19 23 DC3 DC3 43 67 103 c
14 20 24 DC4 RES 44 68 104 D
1S 21 2S NAK NL 4S 69 10S E
16 22 26 SYN BS 46 70 1D6 F
17 23 27 ETB POC 47 71 107 G
18 24 30 CAN CAN 48 72 110 H
19 2S 31 EM EM 49 73 111 I
1A 26 32 SUB UBS 4A 74 112 J cent
18 27 33 ESC CUI 48 7S 113 K
1C 28 34 FS IFS 4C 76 114 L <
10 29 3S GS IGS 40 77 11 S M (
1E 30 36 RS IRS 4E 78 116 N +
1F 31 37 us IUS 4F 79 117 0 I
2D 32 40 SP OS SD 8D 12D p &
21 33 41 sos S1 81 121 0
22 34 42 II FS S2 82 122 R
23 3S 43 # wus S3 83 123 s
24 36 44 $ BYP S4 84 124 T
2S 37 4S % LF SS 8S 12S u
26 38 46 & ETB S6 86 126 v
27 39 47 ESC S7 87 127 w
28 40 so (SA S8 88 13D x
29 41 S1) SFE S9 89 131 y

2A 42 S2 . SM/SW SA 9D 132 z !
28 43 S3 + CSP SB 91 133 [$
2C 44 S4 MFA SC 92 134 \
20 4S SS ENO SD 93 13S]
2E 46 S6 ACK SE 94 136
2F 47 S7 I BEL SF 9S 137 ...,

IDACOM Programmer's Reference Manual

D-2 ASCII/EBCDIC/HEX CONVERSION TABLE
September 1 990

HEX DEC OCT ASCII EBCDIC HEX DEC OCT ASCII EBCDIC
60 96 140 .

90 144 220
61 97 141 a I 91 145 221 j
62 9B 142 b 92 146 222 k
63 99 143 c 93 147 223 I
64 100 144 d 94 14B 224 m
65 101 145 e 95 149 225 n
66 102 146 f 96 150 226 0

67 103 147 g 97 151 227 p
6B 104 150 h 98 152 230 q
69 105 151 i 99 153 231
6A 106 152 j 9A 154 232
6B 107 153 k

'
9B 155 233 }

6C 108 154 I % 9C 156 234 CJ

60 109 155 m 90 157 235)
6E 110 156 n > 9E 158 236 ±.
6F 111 157 0 ? 9F 159 237 •
70 112 160 p AO 160 240
71 113 161 q A1 161 241 0
72 114 162 r A2 162 242 s
73 115 163 s A3 163 243 t
74 116 164 t A4 164 244 u
75 117 165 u AS 165 245 v
76 118 166 v A6 166 246 w
77 119 167 w A7 167 247 x
7B 120 170 x AB 168 250 y
79 121 171 y \ A9 169 251 z
7A 122 172 z AA 170 252
7B 123 173 { # AB 171 253 L
7C 124 174 I @ AC 172 254 r
70 125 175 } I AD 173 255 [
7E 126 176 AE 174 256 .:::.
7F 127 177 DEL II AF 175 257 •
BO 12B 200 BO 176 260 0
B1 129 201 a B1 177 261 1
B2 130 202 b B2 178 262 2
B3 131 203 c B3 179 263 3
B4 132 204 d B4 1BO 264 4
B5 133 205 e B5 181 265 5
B6 134 206 f B6 1B2 266 6
B7 135 207 g B7 1B3 267 7
BB 136 210 h BB 1 B4 270 B
B9 137 211 B9 1B5 271 9
BA 138 212 BA 186 272
BB 139 213 { BB 187 273 J
BC 140 214 < BC 1B8 274 ,
BO 141 215 (BO 1B9 275 l
BE 142 216 + BE 190 276 ;!

BF 143 217 t BF 191 277

Programmer's Reference Manual IDACOM

ASCII/EBCDIC/HEX CONVERSION TABLE D-3
September 1 990

HEX DEC OCT ASCII EBCDIC HEX DEC OCT ASCII EBCDIC
co 192 300 { FO 240 360 0
C1 193 301 A F1 241 361 1
C2 194 302 B F2 242 362 2
C3 19S 303 c F3 243 363 3
C4 196 304 D F4 244 364 4
cs 197 30S E FS 24S 36S s
C6 198 306 F F6 246 366 6
C7 199 307 G F7 247 367 7
ca 200 310 H FB 248 370 8
C9 201 311 I F9 249 371 9
CA 202 312 FA 2SO 372
CB 203 313 FB 2S1 373
cc 204 314 FC 2S2 374
CD 20S 31S FD 2S3 37S
CE 206 316 FE 2S4 376
CF 207 317 FF 2SS 377
DO 208 320 }
D1 209 321 J
D2 210 322 K
D3 211 323 L
D4 212 324 M
DS 213 32S N
D6 214 326 0
D7 21S 327 p
DB 216 330 a
D9 217 331 R
DA 218 332
DB 219 333
DC 220 334
DD 221 33S
DE 222 336
DF 223 337
EO 224 340 \
E1 22S 341
E2 226 342 s
E3 227 343 T
E4 228 344 u
ES 229 34S v
E6 230 346 w
E7 231 347 x
EB 232 3SO y
E9 233 3S1 z
EA 234 3S2
EB 23S 3S3
EC 236 3S4
ED 237 3SS
EE 238 3S6
EF 239 3S7

IDACOM Programmer's Reference Manual

COMMAND CROSS REFERENCE LIST E-1
September 1990

E
COMMAND CROSS REFERENCE LIST

This appendix cross references old commands and variables, not appearing in this manual, with
new replacement commands. Reference should be made to the previous versions of this manual
for description of the old commands. The new commands achieve the same function, however,
the input/output parameters may have changed.

<# ... #> #>STR

#>STR

#S #>STR

HOLD #>STR

SIGN #>STR

IDACOM Programmer's Reference Manual

INDEX

@. 3-1. 17-28
>>#, 5-3
>>. 5-3
>. 7-1, 17-29
-. 7-1, 17-29
<<#, 5-3
<<, 5-2
<, 7-2, 17-29
;. 16-1
:. 16-1
/, 4-2
.•, A-3
., A-3
-. 4-1
+$, 8-3
+I, 3-2, 4-1, 17-28
+, 4-1
•• 4-1
s-. 8-3
$1, 8-3
I, 3-1, 17-28

o-. 7-4

2DROP, 15-1
2DUP, 15-1

3DROP, 15-1
3DUP, 15-1

ABS, 4-2
Absolute value, 4-2
ACTION{ }ACTION, 17-6
Addition, 4-1

high speed, 4-3
timestamps, 12-4

Address Error, see Error(s)
Alarms, 13-3, 17-18
ALLOT, 3-4
ALLLEADS, 17-8
Anchored Match, see Search
AND, 5-2, 17-30

combining expressions, 7-3
;AND, 16-2
#arg, 17-25, 17-26
Arithmetic Operations, 4-1 to 4-3

addition, 4-1, 4-3
division, 4-2, 4-3
multiplication, 4-1 to 4-3
subtraction, 4-1
timestamps, 12-4

ASTART_OFF, 17-43
ASTART_ON, 17-41
Attribute(s)

character sets, 9-9
color, 9-3
color to monochrome, 9-4
in user window, 9-7, 9-9 to 9-14
monochrome, 9-3
monochrome to color, 9-4

AUTO_CLEAR_OFF, 9-9
AUTO_CLEAR_ON, 9-9

B, see BACKWARD
Background

data window, 9-1
user window, 9-6

BACKWARD, 11-6
BASE, 8-5
BB, see SCRN_BACK
BEEP, 13-3, 17-18
BEEP _OUR, 1 3-3
BEEP_OFF, 13-3, 17-18
BEEP_ON, 13-3, 17-18
BEEP_TONE, 13-3
BEGIN/AGAIN, 6-6
BEGIN/UNTIL, 6-6
BEGIN/WHILE/REPEAT, 6-7

IDACOM

INDEX

BETWEEN?, 7-2
BIN, 8-5
Bit Manipulation, 5-1 to 5-3
BLK_BG, 9-3
BLU_BG, 9-3
BLU_FG, 9-3
Boolean Operators

AND, 5-2. 17-30
exclusive OR, 5-2, 17-30
OR, 5-1, 17-30

BOTTOM, 11-5
Boundaries, checking, 7-2, 7-5
BRITE, 9-3
BRITE INVERSE, 9-3
Buffer(s)

allocating, 3-4
copying, 3-5
searching, 8-3
timestamps, 12-2

Bus Error, see Error(s)

Cl, 3-3
C@, 3-3
Capture RAM

playback from remote port, 11-5, 11-6
saving data to, 17-16
trace statements, 9-4
transferring from, 11-6

CAPT_OFF, 17-16
CAPT_ON, 17-16
Carriage Return

during printing, 10-3
in trace statements, 9-3
in user window, 9-7
remote port, 11 -4

Carrier Detect, see Leads, interface
CDOWN, A-4
Character

displaying, 9-2, 9-7
fetch, 3-3
printing, 10-3
store, 3-3

Character Sets, 9-9
CHARS/LINE, 10-2
CHECKSUM_CORRECTION, 11-7
CLEAN_WINDOW, 9-9
Clear to Send, see Leads, interface
CLEAR_KEY, 17-23
CLEAFLKEYS, 17-23
CLEAR_ROW, 9-9
CLEAFLTEXT, 9-9
CLEFT, A-4
CLOSE, 13-6
CLOSE...FILE, 13-6
CLOSE...WINDOW, 9-6
CMOVE, 3-5, 8-2
<CMOVE, 3-6
Colon Definitions, 16-1
Color

attributes, 9-3
in trace statements, 9-3
in user window, 9-9 to 9-14
to monochrome, 9-4

Column Number, 9-8
Command Window

output, A-2
Command(&)

creating, 16-1
format, 1-3
pointers to, 16-2
remote processor execution, 16-3

Comparison, 7-1 to 7-5
boolean negation, 7-4
combining expressions, 7-3
equality, 7-1, 17-29
false flag, 7-1
fast zero equality, 7-4
greater than, 7-1, 17-29

lndex-1
September 1 990

Programmer's Reference Manual

lndex-2
September 1990

Comparison [continued]
in test manager, 17-7
Jess than, 7-2, 17-29
maximum, 7-5
minimum, 7-5
range checking, 7-2
timestamps, 12-5
true flag, 7-1

Compiler Control, 14-1, 14-2
conditional compilation, 14-1
conditional definition, 14-2
#IF/#ELSE/#ENDIF, 14-1
#IFDEF/#ENDIF, 14-2
#IFNOTDEF/#ENDJF, 14-2

Computational Stack, see Stack(s)
CONFJG, 10-2, 11-2
Configuration

printer port, 10-1
remote port, 11-1, 11-2

Control Structures, 6-1 to 6-7
BEGIN/AGAIN, 6-6
BEGIN/UNTIL, 6-6
BEGIN/WHILE/REPEAT, 6-7
compiler, 14-1, 14-2
00/+LOOP, 6-5
DO/LOOP, 6-3
DOCASE/ENDCASE, 6-2
JF/ELSE/ENDIF, 6-1
JF/ENDJF, 6-1
index, 6-3
mixed, 6-2
nested, 6-2, 6-4

CONTROL-Z<>EOF, 11-7
CONTROL-Z-EOF, 11-7
Conversion

strings to numbers, 8-6
timestamps, 12-3

CONV_STR, 8-4
Copy

block in memory, 3-5, 3-6
strings, 8-2, 8-3
timestamps, 12-5
value on stack, 15-1

COUNT, 8-2
COUNTER1, 17-28
Counters, 17-28 to 17-30
CPU1, 13-8
CPU1_MAIL, 17-31
CPU2, 13-8
CPU3, 13-8
CPU4, 13-8
CPUS, 13-8
CPU7, 13-8
CRC_CORRECTJON, 11-7
CREATE_FJLE, 13-5
Creating Commands, 16-1 to 16-3
CRIGHT, A-4
CTRACE, 9-4
CUP,A-4
Cursor

control, 9-7
keys, A-4

CURSOR_OFF, 9-7
CURSOR_ON, 9-7
CYA_BG, 9-3
CYA_FG, 9-3

Data Set Ready, see Leads, interface
Data Signal Rate Select, see Leads, interface
Data Terminal Ready, see Leads, interface
Data Types

numbers, 2-1
strings, 2-1, 2-2

Data Window
displaying, 9-1
trace reporting, 9-1 to 9-5

DCE/DTE, see Port Identifiers
DECIMAL, 8-5

Programmer's Reference Manual

INDEX [continued]

Decrement Number, see Memory
DEFAULT_KEYS, 17-23
Delete Value(s) on Stack, 15-1
DEST_DRIVE, 11-7
DIM, 9-3
DIM INVERSE, 9-3
Directory Listing, 11-5
DISABLE..LEAD, 17-8
Disk Files, see File(s)
Disk Recording, see Recording to Disk
DISK_OFF, 17-17
DISPLAY, A-3
Display

32 bit hex number, 9-2, 9-7, A-3
4 bit hex number, A-4
8 bit hex number, A-3
errors, 17-25, 17-26
notices, 17-24, 17-25
numbers, 9-2, 9-6, A-3
remote screen, 11-4
single character, 9-2, 9-7
starting/stopping, 17-16
test manager RAM, 17-2
trace statements, 9-4

Division
32 bit, 4-2
high speed, 4-3
remainder only, 4-2
signed, 4-2
unsigned, 4-2

00/+LOOP, 6-5
DO/LOOP, 6-3

index, 6-3
nested, 6-4
terminate, 6-5

DOCASE/ENDCASE, 6-2
DOER, 16-2
ORO, 13-4
DR1, 13-4
Drive Selection, 13-4
DROP, 15-1
DROP_TEST, 9-15
DTRACE, 9-5
DUP, 15-1
Duplicate, 15-1

ENABLE..LEAD, 17-8
EOL-CR, 11 -6
EOL-CRLF, 11-6
Equal To, 7-1, 7-4, 17-29
Error(s)

address error, B-1
bus error, B-1
displaying, 17-25, 17-26
file, 13-5
messages, 17-25
recovery, B-2
traceback, B-1
window, 17-26
zero divide, B-2

Errors
during file transfer, 11-7

Event Recognition, 17-7 to 17-1 5
cursor keys, A-4
frame, 17-10
function keys, 17-11, 17-12
layer 1, 17-8, 17-9
mail, 17-12
timer, 17-10, 17-11
wildcards, 17-14, 17-15

EVENT-TYPE, 17-14
EXECF, 17-39
EXECTS, 17-39
EXPECLNUM, A-2
Expressions, 7-3
EXTRACT_FTH_DATA, 17-13

F, see FORWARD

INDEX

IDACOM

INDEX

FLACTION, 17-24
False Flag, see Comparison
FDSTATUS, 13-5
FEF _DO_ WORD, 16-3
Fetch

16 bit value, 3-2
32 bit value, 3-1, 17-28
8 bit value, 3-3

FF, see SCRN_FWD
File Transfer

configuration, 11-7
File(s)

accessing, 13-4 to 13-7
closing, 13-6
creating, 13-5
disk recording, see Recording to Disk
errors, 13-5
opening, 13-6
reading, 1 3-6
removing, 13-7
renaming, 13-7
status, 1 3-5
transferring, 17-1
writing, 13-6

FILEX, 17-1
FILL, 3-5
FILLW, 3-5
FORWARD, 11 -5
Frame(s)

event recognition, 17-10
timestamps, 12-1

FROM_CAPT, 11-5
FTH, 13-9
FULL_DUPLEX, 11-6
Function Key(s)

actions, 17-24
event recognition, 17-11, 17-12
labelling, 17-22
user-defined, 17-18 to 17-24

GELTS, 12-5
GET_TSTAMP_MICRO, 12-3
GET_TSTAMP_MILLI, 12-3
Greater Than, 7-1, 17-29
GRN_BG, 9-3
GRN_FG, 9-3

.H, A-3
HALF _DUPLEX, 11 -6
HALT, 11-5
Hard Disk

partitions, 13-4
selection, 13-4
shutdown, 13-4

.HB, A-3
HEX, 8-5
Hex Number(s)

displaying, A-3, A-4
in trace statements, 9-2
in user window, 9-7
printing, 1 0-3

.HH, A-4
HILITE....LABEL, 17-23

l/F _TYPE, 10-1
#IF/#ELSE/#ENDIF, 14-1
IF/ELSE/ENDIF, 6-1
IF/ENDIF, 6-1
#IFDEF/#ENDIF, 14-2
#IFNOTDEF/#ENDIF, 14-2
Increment Number, see Memory
Index

loop counter, 6-3
nested loop counter, 6-4

Input, 17-18 to 17-24
keyboard entry, A-2
prompts, 17-18

Interprocessor Mail, 17-12

IDACOM

INDEX [continued]

ITL, 1-1

J, see Index, nested

?KEY, 17-12
?KEYBOARD, A-1

LABEL_KEY, 17-22
Lapse Timer(s)

milliseconds elapsed, 17-27
minutes elapsed, 17-26
seconds elapsed, 17-27
starting, 17-26

Layer 1
event recognition, 17-8, 17-9

Leads
interface, 17-9

LEAVE, 6-5
Less Than, 7-2, 17-29
LINES/PAGE, 10-2
Listing Directory, 11-5
Loading Test Scripts, 17-39
LOAD_RETURN_STATE, 17-37
LOCK_LOGO, 11-4
Logical Operations

AND, 5-2, 17-30
boolean negation, 7-4
combining expressions, 7-3
comparison words, see Comparison
exclusive OR, 5-2, 17-30
OR, 5-1, 17-30
shift left, 5-2, 5-3
shift right, 5-3
test manager, 17-7

M•, 4-2
Ml, 4-2
MAG_BG, 9-3
MAG_FG, 9-3
Mail

between processors, 17-31, 17-32
event recognition, 17-12, 17-13

?MAIL, 17-13
MAILCMD, 17-32
MAIN, 13-8
MAKE, 16-2
?MATCH, 8-4
MAX, 7-5
Maximum, 7-5
Memory

accessing, see Fetch
allocating, 3-4
decrement number in, 3-2, 4-1
filling, 3-5
increment number in, 3-2, 4-1
moving/copying block, 3-5
operations, 3-1 to 3-3
storage, 2-1
strings, 8-1
test manager, 17-2

MENU, B-2
MILLISECONDS_ELAPSED, 17-27
MIN, 7-5
Minimum, 7-5
MINUTES_ELAPSED, 17-26
MOD, 4-2
Monochrome

attributes, 9-3
to color, 9-4

Move
block in memory, 3-5
strings, 8-2

Multiplication
32 bit, 4-2
high speed, 4-3
signed, 4-1
unsigned, 4-2

lndex-3
September 1 990

Programmer's Reference Manual

lndex-4
September 1990

Negation, 7-4
Nested

DO/LOOP, 6-4
IF/ENDIF, 6-2

NEW_STATE, 17-7
NEW_TM, 17-38
Notice Window, 17-24
Notice(s)

displaying, 17-25
Notices, displaying, 17-24
NO_TRUNCATE, 13-6
Number(s)

bases, 8-5
converting to strings, 8-5
data types, 2-1
displaying, 9-2, 9-6, A-3
in user window, 9-6
printing, 10-3
trace statements, 9-2

OCTAL, 8-5
OPEN_FILE, 13-6
OPEN_ TEST, 9-15
OPEN_USER, 9-6
OR, 5-1, 17-30

combining expressions, 7-3
OTHER_EVENT, 17-14
Output, 9-1 to 9-15, A-2

errors, 17-26
notices and errors, 17-24 to 17-26
to the data window, 9-1 to 9-5
to the remote port, 11-3, 11-4
to the Test Script Window, 9-14, 9-15
to the user window, 9-5 to 9-14

OVER, 15-2

p ., 10-3
p .•• 1 0-3
P.H. 10-3
P .TYPE, 10-3
PAINT, 9-9
PAINLFIELD, 9-1 O
PAINT_ROW, 9-10
Parameters, see Stack(s)
Partners, MAILCMD, 17-32
PCR, 10-3
PEMIT, 10-3
PICK, 15-2
PLAYBACK, 11-5, 17-17
Playback, Remote Port

from capture RAM, 11-5
from disk recording, 11-5
scrolling, 11-5
transferring data, 11 -6

POP _USER, 9-6
Port Identifiers, 13-1 to 13-3
PORT-ID, 13-1
PRINTER, 10-1
Printer Port

configuration, 10-1 to 1 0-4
PRINTER_EOL, 10-2
PRINTEFLMODE, 10-2
Printing

32 bit hex number, 1 0-3
a screen, 1 0-3
a single character, 10-3
carriage return, 1 0-3
character string, 10-3
numbers, 10-3

PRINT_SCREEN, 10-3
Processor(s)

FEF DO words, 1 6-3
identifiers, 13-2, 16-3
mailing between, 17-12, 17-31, 17-32
restarting, B-2
switching, 13-8, 13-9

PROMPT/END_PROMPT, 17-18
Prompts, 17-18

Programmer's Reference Manual

INDEX [continued]

PRT-L, 10-4

Queue, 12-1
QUIT_ TRA, 11 -6
Quote Space, 8-1

R, 15-2
>R, 15-2
R-FILEX, 17-1
R>, 15-2
Range Checking, 7-2, 7-5
RCR, 11-4
RCV-TIMEOUT, 11-7
RE, 13-5
READ_BLOCKS, 13-6
Real-Time Clock, 12-5
REBOOT, 13-4
RECEIVE....FILEX, 11-8
RECORD, 17-16
Recording to Disk

closing, 17-17
drive selection, 13-4
filename, 17-16
opening, 17-16
playback from remote port, 11-5, 11-6
trace statements, 9-5

RED_BG, 9-3
RED_FG, 9-3
Remainder, 4-2
REMOTE, 11 -1
Remote Command Execution, 16-3
Remote Port, 11-1 to 11-8

carriage return, 11-4
configuration, 11 -1, 11-2
data playback, 11-5, 11-6
directory listing, 11-5
file transfer, 11-7
screen display, 11-4
scrolling, 11-5
sending strings, 11-3, 11-4
transferring data, 11-6

REMOTE..._OUT, 11-3
REMOTE..._OUT _ W, 11 -4
REMOVE, 13-7
RENAME. 13-7
REP_OFF, 17-16
REP_ON. 17-16
Request to Send, see Leads, interface
Return Stack, see Stack(s)
RETURN_STATE. 17-37
REV_VIDEO, 9-3
REWR, 13-5
Ring Indicate, see Leads, interface
ALINE, 11-4
RMLDIR, 11-5
RMT_DIRL, 11-5
RMT_OFF, 11-5
RMT_ON, 11 -5
ROT, 15-1
Row Number, 9-8
RSCREEN, 11-4
RTRACE, 9-4
RUN_SEQ, 17-33
R)(_SPEED, 1 0-1, 11-1

SAVES, 17-41
SAVETS, 17-41
Saving

a binary, 17-41
data to capture RAM, 17-16
test scripts, 17-41to17-43

SCRN_BACK, 11 -6
SCRN_FWD, 1 1 -6
Scrolling

line backward, 11-6
line forward, 11-5
page backward, 11 -6
page forward, 1 1 -6

INDEX

IDACOM

INDEX

Scrolling {continued]
to bottom screen, 11 -5
to top screen, 11-5

SDL Diagrams, 17-3
Search

anchored match, 8-4
for a string, 8-3
unanchored match, 8-3

?•SEARCH, 8-3
SECONDS_ELAPSED, 17-27
SEEK, 13-6
SEND-TIMEOUT, 11-7
SEND_FILEX, 11-8
Sequences, 17-33
SEQ{ }SEQ, 17-33
SET_CURFLTOPIC, 17-23
Shift

left, 5-2
right, 5-3
variable left, 5-3
variable right, 5-3

SHOW_DATA, 9-1
SHOW_TEST, 9-15
SHOW_USER, 9-6
SHUTDOWN, 1 3-4
Signal Quality, see Leads, interface
STACK, 15-1
Stack(s), 1-1

computational, 15-1
copy to return, 15-2
delete value(s), 15-1
display contents, 15-1
duplicate a value, 15-1
LIFO, 1-1
notation, 1 -2
parameters, 1 5-1
pop from return, 15-2
push to return, 15-2
reorder values, 15-1
return, 15-1
switch places, 15-1

START_LAPSE_TIMER, 17-26
START_ TIMER, 17-26
State(s)

definition, 17-6
initialization, 17-6
machine, 17-3
messages, 17-17
symbols, 17-3
transition, 17-7

STATE....INIT{ }STATE....INIT, 17-6
STATE....OFF, 17-17
STATE....ON, 17-17
STATE{}STATE, 17-6
Status

data, 12-2
file, 13-5

STOP _TIMER, 17-26
Store

16 bit value, 3-2
32 bit value, 3-1, 17-28
8 bit value, 3-3
plus, 3-2, 4-1, 17-28
timestamps, 12-5

#>STA, 8-6
STA>#, 8-6
String(s), 8-1 to 8-6

converting to numbers, 8-6
copying, 8-3
data type, 2-1, 2-2
definition, 2-1
dot quote space, A-3
in user window, 9-6
length, 8-2
moving/copying, 8-2
printing, 10-3
remote port, 11-3, 11-4
searching for, 8-3

IDACOM

INDEX [continued]

trace statements. 9-2
user window, 9-7

Subtraction, 4-1
timestamps, 12-4

SWAP, 15-1
SWITCH, 13-8
System Crash, B-1

T-LIMIT, 11-8
T., 9-2
T.", 9-2
T.H, 9-2
T.TYPE, 9-2
TCLR, 17-6
TCOLOR, 9-3
TCR, 9-3
TEMIT, 9-2
Terminate

BEGIN/AGAIN, 6-6
BEGIN/UNTIL, 6-6
DO/LOOP, 6-5

Test Manager, 17-1 to 17-43
actions, 17-6, 17-15 to 17-33
automatic start, 17-40, 17-41
comparison, 17-7
counters, 17-28 to 17-30
event recognition, 17-7 to 17-15
initializing, 17-6
input, 17-18 to 17-24, A-1
logical operations, 17-7
memory, 17-2
output, 17-24 to 17-26
protocol specific actions, 17-33
sequences, 17-33
state definition, 17-6
state display, 17-17
state initialization, 17-6
state transition, 17-7
stopping, 17-7, 17-41
subroutines, 17-37
timers, 17-26, 17-27
wakeup timer, 17-11, 17-40

Test Script Window, 9-14, A-1
Test Script(s)

automatic start, 17-41
binary, 17-39, 17-41
chaining, 17-38
clearing, 17-6
constructs, 17-6, 17-33 to 17-38
loading, 17-39
multiple, 17-2, 17-38
prompts, 17-18
running, 17-39, 17-40
saving, 17-41 to 17-43
stopping, 17-7, 17-41
structure, 17-5 to 17-7

THERE, 9-8
TIMEOUT, 17-10
TIMER, 17-10
?TIMER, 17-11
Timer(s)

decoding, 17-10
event recognition, 17-10, 17-11
lapse, see Lapse Timer(s)
starting/stopping, 17-26
wakeup, see Wakeup Timer

TIMER-NUMBER, 17-10
Timestamp(s), 12-1 to 12-5

addition, 1 2-4
beginning/end of frame, 12-2
comparison, 12-5
conversion, 12-3
copying, 12-5
format, 12-3
frames, 12-1
in the data buffer, 12-2
microseconds, 12-3
milliseconds, 12-3

lndex-5
September 1 990

Programmer's Reference Manual

lndex-6
September 1990

Timestamp(s) [continued)
storing, 12-5
subtraction, 12-4

•TITLE, 17-16
TM.RAM, 17-2
TM_RUN, 17-40
TM_STOP, 17-7, 17-41
TONE, 13-3
TOP, 11-5
Topics, 17-23
TO_DCE...RX, 13-2
TO_DTE...RX, 13-2
Trace Statement(s), 9-1 to 9-5

capturing, 9-4
carriage return, 9-3
character string, 9-2
displaying, 9-4
displaying numbers, 9-2
recording to disk, 9-5
single character, 9-2
turning on/off, 9-4, 9-5, 17-17
using color, 9-3

TRANSFER, 11-6
Transfer

files, 17-1
from capture RAM, 11-6

TRANSLATE...OFF, 11-7
TRANSLATE...ON, 11-7
True Flag, see Comparison
TRUNCATE, 13-6
TSTAMP_ADD, 12-4
TSTAMP_COMP, 12-5
TSTAMP_SUB, 12-4
TURN_OFF, 11-2
TURN_ON, 11-2
TX..CONTROL, 1 0-2, 11-2
TX..SPEED, 10-1, 11-1

u·. 4-2
U/, 4-2
Unanchored Match, see Search
UNLOCK_LOGO, 11-4
User Window, 9-5 to 9-14

accessing, 9-6
carriage return, 9-7
character sets, 9-9 to 9-1 4
character string, 9-7
clearing text, 9-9
color, 9-9 to 9-14
creating text in, 9-6, 9-7
cursor control, 9-7, 9-8
number in, 9-6
row/column number, 9-8
scrolling mode, 9-8
single character, 9-7
wraparound mode, 9-8

VARIABLE, 3-4
Variables, Creating, 3-3
Vectored Operation, 16-2

WI, 3-2
W., 9-6
w.·. 9-6
W.ERROR, 17-25
W.ERRORS, 17-26
W.H, 9-7
W.NOTICE, 17-24
W.NOTICES, 17-25
W.TYPE, 9-7
W.TYPE...A, 9-7
W@, 3-2
?WAKEUP, 17-11
Wakeup Timer

event recognition, 17-11
starting, 17-40
turning off, 17-40

WAKEUP_OFF, 17-40

Programmer's Reference Manual

INDEX [continued]

WAKEUP _ON, 17-40
WCR, 9-7
WD0-7, 13-4
WDOWN, 9-8
WEMIT, 9-7
WHERE, 9-8
WHl_BG, 9-3
WHLFG, 9-3
Wildcards

event recognition, 17-14, 17-15
match, 8-4

Window(s)
command, see Command Window
data, see Data Window
error, see Error Window
notice, see Notice Window
test script, see Test Script Window, User Window
user, see User Window

Word
fetch, 3-2
store, 3-2

WR, 13-5
WRAP, 9-8
WRITE...BLOCKS, 13-6
WSCROLL, 9-8
WUP, 9-8

X Quote Space, 8-2
XMODEM, 17-1
XOR, 5-2, 17-30

YELBG, 9-3
YELFG, 9-3

Zero Divide, see Error(s)

INDEX

IDACOM

