

IRMA and Decision Support Interface are Trademarks of
Technical Analysis Corporation

IBM and IBM Personal Computer are Trademarks of
IBM Corporation

General Introduction

Terminal Emulator User's Guide

The IRMA product consists of three major components: a Decision
Support Interface board named IRMA, software on an IBM
Personal Computer compatible floppy disk, and documentation. The
documentation is divided into three sections which are: The
Terminal Emulator User's Guide, BASICA Subroutines, and
Technical Reference. These sections are formatted for insertion into
the IBM supplied ring binders.

The varying needs of different types of users are met by these three
sections of documentation. The non-programming user will find all
necessary instructions for simple terminal emulation in the Terminal
Emulator manual. Programmers will find documentation for
automatic data transfer and custom application software
development in the BASICA Subroutines documentation. The
Technical Reference documentation is intended to provide the
necessary additional information that an assembly language
programmer would need to access IRMA for complex program
development.

The Terminal Emulator User's Guide is designed to aid the general
user in the operation of the IBM PC as an IBM 3278-2 terminal. It
includes step-by-step intructions for operation, a generalized
explanation of the operational theory, and a list of the commands and
functions that are available. The emulator provides all users with the
features of a 3278 model 2 terminal. All keys found on a 3278-2 are
available on the PC when using the emulator; however, there are
some key position changes due to the format differences of the two
keyboards. Normal 3278 screen displays are handled by the emulator
including several cursor types, underline, blink, dim characters, and
status line. Only the status line will appear different than that of the
3278 because the PC character set lacks some of the special status
characters. The emulator offers some additional features, such as
attribute display and null field character display which are not
available on the 3278 terminals.

If the IBM PC has the color terminal adapter, several additional
features become available: 3279 model 2A features, color character,
extended field attributes, and extended character attributes are then
supported. Simulated color is also supported where protected,
unprotected, bright, and dim fields become different colors.

IRMA -1

The emulator program is supplied in two forms: executable code and
source code, so that the emulator may be used as supplied or custom
modified as desired.

All IRMA users and programmers need to be familiar with the
Terminal Emulator and its documentation. The Terminal Emulator
User's Guide is to be inserted into the IBM DOS manual.

For additional information refer to:

IBM Personal Computer DOS manual

IRMA -2

BASICA Subroutines

The BASICA Subroutines section consists of a group of routines
which provide keystroke and field access from a BASICA program to
the 3270 controller. When processing data to or from the controller,
a variety of translations must take place. While the programmer may
write this necessary code, the T AC supplied subroutines eliminate
this task.

The user documentation for the BASICA subroutine consists of a
description of each routine, its entry statement number, the variables
in which the programmer should supply input arguments, and the
variables which are updates for the user. There are two BASICA
programs provided as examples. One program provides a
demonstration routine and the other provides an example of a data
transfer program.

Any programmer intent on developing a program to do automatic
data transfer must become familiar with this manual and its
contents. The BASICA Subroutines documentation is to be inserted
into the IBM supplied BASIC manual.

For additional information, refer to:

IBM Personal Computer BASIC manual

IRMA -3

Technical Reference

The Technical Reference documentation describes in detail the
interface specifications for IRMA. Included are the necessary
specifications required to handle the IBM 3270 protocol. Detailed
descriptions of the commands which access and pass data between
IRMA and the 3270 controller are provided. Also included in this
section are the Key Scan codes for the 3278-2 terminal, definitions
and method of handling the Attribute and Extended Attribute bytes,
and installation of the IRMA board into the IBM Personal
Computer.

This portion of the documentation is designed to aid the assembly
language programmer in the development of specialized software.
The Technical Reference documentation is to be inserted into the
IBM supplied Technical Reference manual.

For additional information, refer to:

IBM Personal Computer DOS manual

IBM Personal Computer Technical Reference

IBM Personal Computer Macro Assembler

IBM GA27 -2849 3270 Information Display System
Configuration

IBM GA23-006J 3274 Control Unit and Programmer's Guide

IRMA -4

IRMA TERMINAL EMULATOR

Contents
Introduction 1

Features 2

Operational Theory 3

Keyboard 6

How to use the Terminal
Emulator 8

Procedures for Using the
Terminal Emulator 10

Commands and Functions 11

System Messages 15

Combination Symbols 17

Summary 18

Copyright ©1983, Technical Analysis Corporation
120 West W ieuca Road N. E.

Atlanta, Georgia 30042
(404) 252-1045

All rights reserved

Document Number: 642-002160-01

This manual is copyrighted and all rights are reserved. The information contained herein shall
not be copied, photocopied, translated or reduced to any electronic medium or machine readable
form, either in whole or in part, without prior written approval from Technical Analysis Corp­
oration (TAC).

TAC reserves the right to make changes to the information contained herein without notice and
shall not be responsible for any loss, cost, or damage, including consequential damage, caused
by reliance on these materials.

TAC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE.

Printed in U.S.A.

Introduction

An integral part of IRMA, the Decision Support Interface (DSI),
is the terminal emulator program. This program makes it possible
for the IBM Personal Computer to emulate an IBM 3278-2
terminal. This allows a PC to serve two functions, as a
stand-alone microcomputer and as part of a 327x network
accessing the full computing power and data base of the host
computer.

IRMA attaches by a coaxial cable to 3274, 3276 or integral type
"A" terminal controllers. The DSI is completely compatible with
the protocol used by the 327x controller; it functions
independently of the Personal Computer's 8088 microprocessor.
The programs and operating system in use by the controller are
completely accessible when using the PC as a 3278-2 terminal.
When the terminal emulator program is active, the PC screen will
contain 25 lines of 80 characters with the 25th as the system
prompt line. The DSI buffers a full 1920 (80 X 24) characters, just
as the 3278-2 does.

The IRMA board operates without dependency upon any program
which may be running on the PC. There is no PC software
required to handle the 327x system protocol; that protocol is
handled completely by IRMA. As soon as IRMA is installed and
receiving power, the 327x system protocol is being accepted. When
the terminal emulator program is activated, the CRT displays the
last screen transmitted over the coax. In other words, the IRMA
board, as long as it is powered up, maintains communication with
the 327x controller without regard to the operational mode of the
PC. However, in order for the user to see the information which
has been received and to send keystrokes to the mainframe host
over the coaxial cable, the terminal emulator program must be
running in the PC. When the PC is operating in the stand-alone
mode, IRMA saves data received from the controller and displays
the most current screen when the emulator is re-activated.

IRMA -1

Features

IRMA-2

1. IRMA enables the PC to emulate a 3278 display with the full
1920 character display and the 80 character status indicator
line.

2. IRMA keeps a complete screen buffer in memory. This
enables the user to alternate between the 3278-2 mode and the
stand-alone mode.

3. IRMA's screen buffer is accessible from user programs. This
feature allows the user to retrieve data from the mainframe
and return the modified screen.

4. Data from the mainframe can be transferred to the diskette or
to a printer.

5. Diagnostics are on-board.

6. IRMA is designed for business people. There is no need to
learn Assembly Language. Screen Print and Screen Save
functions are provided to simplify capturing data.

7. IRMA supports Attribute Characters and Extended Attribute
Characters for the field oriented screens.

8. The keyboard of the PC is redefined to functionally
correspond to the 3278-2 typewriter type keyboard.

Operational Theory

In order for the PC to perform as a 3278-2 terminal, the functions
of the PC keyboard must be redefined to meet the specifications
of the 3278-2 terminal. The theory behind the emulator is
relatively simple. In the stand-alone mode, each key of the mM
Personal Computer generates a particular code sequence, referred
to as BIOS (Basic Input/Output System) key codes. When a key is
pressed, the character is translated into the BIOS key code which
is processed by the PC's CPU. After the character has been
processed, the screen buffer is updated and the new screen is
displayed.

When the PC is used as a 3278-2 terminal, the keystrokes are
translated twice. For the 327x controller to understand the
characters sent from the PC keyboard, the actual keystrokes are
first translated into the PC BIOS by the PC's CPU. The emulator
program then converts the BIOS codes into the key positions and
key scan codes of the 3278-2 terminal. IRMA sends the 3278-2
scan code to the controller where it is processed. The controller
then modifies IRMA's screen buffer accordingly and the displayed
screen is updated.

In 327x operations, the displayed data is organized into fields.
This simplifies data entry for an operator. The key functions that
involve printing the display and storage or transmission of data
are all field oriented. The characters that define the type of data
to be entered in a particular field are called attribute characters.
When an attribute character is encountered, all data following that
character is considered part of the field. IRMA supports the use
of Attribute Characters and Extended Attribute Characters (EAB).

IRMA-3

Attribute Characters define the following:

1. The start of a field,

2. Whether a field is protected or unprotected (A protected field
cannot be modified by the operator. An unprotected field
allows for the entry of data.),

3. Whether an input field (unprotected) will accept alphabetic or
numeric or both types of data,

4. Whether the current field is to be displayed, not displayed, or
intensified,

5. Whether the fields are to be detectable by a light pen,

6. Whether tab stops will correspond to the first character of an
unprotected field (auto skip), and

7. Type of Modified Data Tag (MDT) (The controller searches,
using bit 9, for modified fields. If the field has been
modified, bit 9 will be set to one and the controller updates
that field accordingly.).

IRMA-4

Extended Attribute Characters define the following:

l. Character type (normal, blink, reverse video, or underlined),

2. Character color, and

3. Character set.

Additional information on the handling of Attribute Characters
can be found in the IRMA Technical Reference.

The Attribute Characters are normally displayed as blanks. They
serve as a signal to the controller and the display that a particular
type of field is to follow. If the attribute byte defines a field to be
both protected and numeric, the cursor, is positioned automatically
by the controller to the next unprotected field (auto skip). The
user may display the attribute characters by entering Functions F 1,
F2, or F3. (Function descriptions are found subsequently in the
Section on Commands and Functions.)

The DSI supports all the programming definitions for the attribute
characters and the fields which they define. The keyboard
operations, such as CLEAR or ENTER, function in the same
manner as with the 3278-2 terminals. While the emulator program
handles the translation of the scan codes, IRMA's 8X305
microprocessor handles the 327x controller protocol, such as the
actual transfer of data, handshaking, and screen buffer
maintenance. The 8X305 acts as a supervisor, assigning the data
entered to its proper position and function. It then sends this
ordered data to the controller and, on the return, it sends the
response to the proper source. (For a complete technical
explanation of how the 8X305 handles the protocol and
handshaking techniques, refer to the IRMA insert in the PC
manual, IBM Technical Reference.)

IRMA -5

Keyboard

The chart shown here indicates which PC keys perform particular
3278-2 functions.

To apply the decals:

1. Refer to the following keyboard chart for the location of each
key.

2. Find a sharp tipped item such as a small knife blade, nail file,
toothpick, or similar object.

3. Choose a starting point.

4. With the tip of the tool, carefully lift the decal by its top edge
and position onto the appropriate key.

5. Smooth the decal onto the key with your fingertip or a
smooth blunt object. Avoid touching the adhesive with your
hands.

6. Repeat the process for each remaining key. Be sure to match
the keyboard chart exactly.

IRMA-6

NORMAL LEGEND ~ rAL TERNATE

~
PFI

PFI3
SHIFT ~CONTROL

IBM PC KEYBOARD dcCl
DIgital Communications AssocialeS. Inc.

Fl SYS F2 ReR
REO SEL

SHOW
MOlE ATR

(FOR SOFTWARE REVISION 1.20 & ABOVE)

How To Use The Terminal Emulator

IRMA-8

The first step in converting the PC to a 3278-2 terminal is to
attach a coaxial cable from the system controller (3274, 3276, or
integral type A) to the BNC connector supplied on the IRMA
board. This port must be "sysgen'ed" for a 3278-2 type
terminal with a typewriter keyboard. Since the diskette supplied
is not a bootable diskette, the operating system must be booted
prior to running the emulator program. At this point it is
essential, if you have not already done so, to make a duplicate
copy of the diskette. Use the duplicate copy and not the original
for daily use. Store the original according to the instructions on
the protective sleeve. Next, insert the duplicate diskette into
either drive. To activate the emulator program, enter:

A:E78(filename> or B:E78 (filename>

depending upon the disk drive into which you inserted the
diskette. The filename is optional. It is used to specify a file in
which to store 'Screen Saves'. When IRMA is acknowledged by
the system controller, the screen will exhibit the same system
information that a 3278-2 terminal displays.

After the emulator has been activated, the PC terminal may be
used exactly as any other 3278-2 terminal, making it possible for
you to access system programs, create new files, or any other
function that is part of the 327x network. It is also possible for
the user to switch back and forth between the 3278-2 mode and
the PC stand-alone mode. A simple press of both shift keys will
exit the emulator mode. When you exit the emulator mode, the
current screen is saved in memory; this screen is redisplayed when
the emulator program is reactivated. To re-enter the emulator
mode, type E78 in response to the PC screen prompt and the
saved screen will be redisplayed. If the user wishes, the emulator
program may become "resident" by entering CONTROL-HOME.

(The PC must be equipped with at least 96K of memory.) Making
the emulator "resident" allows the user to exit and re-enter the
emulator with greater speed. Both exiting and re-entering the
resident emulator are accomplished by pressing both shift keys
simultaneously. If using the non-resident emulator, the user must
re-activate the emulator by entering the E78 command.

There is a limitation to using the resident emulator which is
imposed by the PC's operating system; the Disk Operating System
(DOS) does not provide the disk I/O required to save screens
from a resident program. The user can have a copy of both
forms of the emulator active simultaneously to compensate for
this limitation. Refer to the CONTROL & PRINT SCREEN
function in the following section for additional information on the
uses of the resident and non-resident emulators.

IRMA-9

Procedures For Using The Terminal
Emulator

IRMA-tO

1. Install IRMA into the PC. Follow the instructions given
in the mM manual, Guide to Operations, Section 5.

2. Be sure that the port to be used is sysgen'ed for a 3278-2
terminal with a typewriter keyboard.

3. Attach the coaxial cable to the BNC connector provided on
the IRMA board.

4. Boot the PC operating system.

5. Make a duplicate copy of the IRMA diskette.

6. Insert duplicate diskette into either drive A or B.

7. Enter E78 to activate the emulator program.

8. Enter CONTROL & HOME to make a "resident" copy of the
emulator program, providing enough memory (96K) is
available.

Commands And Functions

E78 Activates terminal emulator
program.

For each of the following functions, both keys listed must be
pressed simultaneously.

SHIFT & SHIFT

CONTROL & HOME

CONTROL & PgDn

CONTROL & 4

CONTROL & 6

Exits either the non-resident or
resident emulator. This command is
also used to access the resident
emulator.

Creates the resident emulator.

Causes the system to reset, as if it
has just been powered up. The
equivalent function on the 3278-2
terminal is the test switch located to
the right of the display screen.

«-- moves the cursor to the
left two character positions.
This function is also provided
as the ALT of'D'.

--» moves the cursor to the
right two character positions.
This function is also provided
as the ALT of 'F'.

IRMA -11

CONTROL & Fl

IRMA -12

Assigns attribute color code for
display provided a color display
adapter is in use with the PC.
There are three levels of color
codes. When CONTROL & FI are
first entered, the screen comes up
with a black background and white
characters. No color or
underscoring is attempted. If
CONTROL & FI are entered a
second time, monochrome
application programs are displayed
in the following color scheme:

Unprotected alpha dim white
Unprotected alpha bright red
Unprotected numeric dim yellow
Unprotected numeric bright red
Protected alpha dim green
Protected alpha bright cyan
Protected numeric dim blue
Protected numeric bright blue

If using a 3279 terminal,
CONTROL & FI can be entered a
third time to make use of 3279 type
color codes. Use of color modes
(1,2) with monochrome displays
attached to a color display adapter
may result in unreadable screens.
This situtation is not harmful, just
not useful.

CONTROL & F2 Attributes (display buffer codes
OCOH - OFFH) are displayed as
ASCn characters 040H - 07FH.

For example, Attribute OCOH is
displayed as "@". The following
chart indicates the displayed
characters for each Attribute.

Conversion of Attribute characters to Display symbols

Attr. Char Attr. Char

OCOH @ ODOH P
OCIH A ODIH Q
OC2H B OD2H R
OC3H C OD3H S
OC4H D OD4H T
OC5H E OD5H U
OC6H F OD6H V
OC7H G OD7H W
OC8H H OD8H X
OC9H I OD9H y

OCAH J ODAH Z
OCBH K ODBH [
OCCH L ODCH \
OCDH M ODDH]
OCEH N ODEH /\

OCFH 0 ODFH

CONTROL & F3

Attr. Char Attr. Char

OEOH OFOH P
OEIH a OFIH q
OE2H b OF2H r
OE3H c OF3H s
OE4H d OF4H t
OE5H e OF5H u
OE6H f OF6H v
OE7H g OF7H w
OE8H h OF8H x
OE9H OF9H Y
OEAH j OFAH z
OEBH k OFBH (
OECH I OFCH I
OEDH m OFDH)
OEEH n OFEH "V

OEFH 0 OFFH <

Places dots in unprotected null
fields.

IRMA-13

SHIFT & PRINT SCREEN

CONTROL & PRINT
SCREEN

IRMA -14

Prints the current screen on the
local printer (for both resident and
non-resident)

Copies current screen to diskette.
In order to copy to the diskette, you
must have specified a filename
after the E78 command. (This
command works only with the
non-resident emulator. If using the
resident emulator, you must exit
and enter the E78 filename
command for a copy of the
non-resident emulator. You may
have both versions active
simultaneouly. After typing E78 the
last screen will be displayed and
you can then save it on the diskette
by entering the CONTROL &
PRINT SCREEN command.
Pressing both shift keys will exit
non-resident copy; pressing both
shift keys again will place you back
in the resident emulator with the
same screen you had upon exit.)

System Message Characters

On any 3278-2 terminal the 25th line is reserved for system
messages, for example, the system error codes. Not all of the
characters which make up the symbols are available on the PC.
The following chart indicates the 3278-2 symbol, the
corresponding PC symbol, and where it has been defined, the
message that each one represents.

3278-2

p
S
A
0

A
B

D

I]]

~

0

....
~

0

* ~
0

PC

p

S

a

C

b

6

•
0

--.

¢

+
©
B

•

Message

Program

Used with X - to indicate symbol
keyed is not available

Insert mode

Online to a 3276 controller

U sed in combination with other
symbols
U sed in combination with other
symbols
U sed in combination with other
symbols

Used to indicate 'not working'

Shift lock

Operator

Type B controller

Alpha lock

IRMA-I5

3278-2

ITl

•
-\-
-

z
-
" .

'. I
"

/".

"

X

-....
III
0-

".

@]

A

B
II]

IRMA -16

PC

?

II

+
-

z

-

e
)

x

-
4-

[I
0

fl

4

A

e

e

Message

Unknown response

Operator's program

Used with X and nn to indicate a
communication link error.
U sed in combination with other
symbols,

U sed in combination to form ~

U sed in combination to form other
symbols.

Left half of clock

Right half of clock

System message

U sed in combination to form
other symbols.
U sed in combination to form other
symbols.
Right portion of Printer failure
message

Left half of security key

Right half of security key

Online to a 3274 controller

Online to a type A controller

Symbol for card

System operator

Combination Symbols

X-f

XO .."

XO-0

XO-OC)

xQx

x+Q+

xQ>
XQNUM

X©#?

XO~.

-+z_

O-Onn

o-o??
0-0

o-IJ

0-0--

Function unavailable

Security key off

Printer not working

Printer busy

Operator unauthorized for specified
printer (Must RESET keyboard)

Go elsewhere, action has been
attempted which is invalid for field.

Operator entered too much data
into field

Number lock installed (Must
RESET keyboard)

Operator entered invalid number in
field

Message received from system
operator and rejected (Must RESET)

Communication link producing
errors

Printer assignment

Printer IDENT has been changed

Printer active

Printer failure

Assign printer

IRMA-17

Summary

IRMA -18

This section has explained the theory and procedure for using
IRMA as a 3278-2 terminal. In the additional documentation
supplied with IRMA, you will find the technical information
necessary to write data handling programs, to alter the key
positions, and to more fully understand the technical details of
IRMA.

The Technical Reference insert contains the key scan codes, the
method by which data is accessed, the component definitions, and
the commands used to pass and access data.

The BASICA Subroutines documentation lists a description of
each of the routines supplied with IRMA. These routines have
been designed to handle the more complicated functions required
for automatic data transfer via IRMA. For example, they can be
inserted into a user-written program to read, modify, or write
unprotected fields. The sources for these routines are provided
on the diskette as part of the total software package.

IRMA BASICA SUBROUTINES

Contents
Introduction .

Features

Subroutines

Iteserved ~aEmes

IRMA APPENDIX A

Contents
DEMO. BAS

SAMPLES. BAS

... 1

.. .2

... 3

.. 19

.1

.2

IItMA TABS. BAS 14

Copyright ©1983, Technical Analysis Corporation
120 West Wieuca Road N.E.

Atlanta, Georgia 30042
(404) 252-1045

All rights reserved

Document Number: 642-002160-01

This manual is copyrighted and all rights are reserved. The information contained herein shall
not be copied, photocopied, translated or reduced to any electronic medium or machine readable
form, either in whole or in part, without prior written approval from Technical Analysis Corp­
oration (TAC).

TAC reserves the right to make changes to the information contained herein without notice and
shall not be responsible for any loss, cost, or damage, including consequential damage, caused
by reliance on these materials.

TAC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE.

Printed in U.S.A.

Introduction

The Terminal Emulator User's Guide has shown how screens of
data from the I BM mainframe host computer can be captured in
the IRMA screen buffer and displayed by running the Terminal
Emulator program. That same Guide also outlined how the PC
accepts keystrokes and prepares them for transmission to the host
computer which updates the screen buffer accordingly.

The IRMA screen buffer may be accessed by user-written
programs as well. Since individual needs are quite different, no
single comprehensive PC program is appropriate. There are,
however, predictable data handling routines which have been
formulated into subroutines for use in BASICA programs.

These BASI CA Subroutines provide the foundation for automatic
data transfer via IRMA. A programmer can access the
appropriate routine to handle many of the more complicated
functions of passing data to and from the host. The subroutines
offer the means to generate keystrokes and read and write screens
from within a user program. These routines also serve as a model
for a programmer to write programs which will access IRMA in
PASCAL, FORTRAN, and other languages.

IRMA -1

Features

1. The IRMA subroutines can be used with BASIC, BASICA,
and the I BM BASIC complier.

2. I R M A's subroutines provide access to screen data by
row / column or field number.

3. The subroutines can read, modify, or write unprotected fields.

4. All code conversions between ASCII and 327x display buffer
codes are performed automatically.

5. The full ASC II character set as defined in the IBM
Technical Reference is supported.

6. I R M A's routines check the data type when modifying screen
fields.

7. The character translation tables are easily modified to
support unique customer applications.

X. Fully commented sources are provided for detailed
examination or maintenance. [IRMASUBS.LST]

9. A sparsely commented source is provided for reduced
storage requirements in large user applications.
[IRMASUBS.BAS]

10. Any screen information, including Attributes and Extended
Attribute Buffer (EAB), can be accessed.

II. Easy access to IRMA's status information, including alarm
status, cursor position, and line sync indicator, is provided.

12. I RMA subroutines also provide the capability to trigger user
application program action on screen updates from the host
computer.

IRMA -2

Subroutines

Before any use can be made of the subroutines, an initialization'
call must be made. This call causes all of the parameters to be
set to their starting values. The user must make the initialization
call prior to using any other routine. Include at the beginning of
your program:

GOSUB 50000

Each of the routines are represented in two ways in the following
documentation: Name and Statement number. BASICA can only
call routines by statement number, but remembering the title of
each routine will make its use easier. Note that each routine
begins with a REMark statement which includes the proper
name.

The description of each subroutine includes those variables to
which the user must assign values before calling a routine (Input)
and those variables which are assigned values by the routine
(Output). All input variables MUST be given values by the user.
Reserved variables are listed at the end of this document.

Included as an appendix to this document is a sample BASICA
program written to exemplify the implementation of each
subroutine. It may be used as a guideline for writing a data
handling program to fit your specific needs.

IRMA -3

KEYS
Keystroke Send

Statement
Number: 50600

Routine
Name: KEYS

Input
Variables: I.VST$ String to be sent to host

Output
Variables: I.VER% Error status (device or key timeout)

Remarks: This routine sends strings as keystrokes to the host
computer. The string length is confined to BASICA's
limit of 255 characters. Note: See Reserved Names
section for specification of error status values.

Reference: In Appendix A, the sample program,

IRMA -4

SAMPLES. BAS lines 600-620, provides an example
of sending keystrokes. Line 602 sets the value for the
input variable; line 604 calls the Keystroke Send
subroutine. This subroutine occupies lines 50600-
50660 of the same sample program. Line 612 sets the
input variable to a new value and line 614 calls the
Keystroke Send subroutine.

FIND
Find Unprotected Field

Statement
Number: 50700

Routine
Name: FIND

Input
Variables: I.VFL% Field number to be found

Output
Variables: I.VER% Error status (device timeout, field

error)

I.VCB% Pointer to leading attribute

I.VCE% Pointer to trailing attribute

I.VFS% Current field length

I.VRO% Row address of field data

I.VCL% Column address of field data

I.BUF% (0) Leading attribute character

Remarks: This routine searches IRMA's internal screen buffer
for unprotected fields. As it searches, each
unprotected field is counted until the specified count
is reached. The absolute address of the selected
field's unprotected attribute is returned in I. VCB%.
The field contents are then scanned, counting
characters and searching for another attribute.

IRMA -5

FIND
Find Unprotected Field

I. V CE% is left as an absolute pointer to the trailing
attribute. I. YCB% and I. YCE% are used internally
for the Find Next" routine and for several field type
consistency checks. The following variables
SHOULD NOT be modified by the user: I.YCB%,
I.VFS%, I.VCE%, I.BUF%. They must retain their
values which were assigned by the FIND and
FN EXT subroutines, since they provide the link
between these subroutines as well as between
successive FN EXT subroutine calls.

Reference: In the sample program, SAMPLES. BAS, provided in
the Appendix, note lines 200-240. This portion of the
sample program finds and prints each field. Line 202
sets the value for I.VFL% to one to find the first
field. Line 210 calls the subroutine, FIND. The next
portion of the program reads the found field and
prints ~he specified information. Line 240 calls the
subroutine which finds the next field.

IRMA -6

FNEXT
Find Next Field

Statement
Number: 50800

Routine
Name: FNEXT

Input
Variables: I.VFL%

Output
Variables:

I.VER%

I.VCB%

I.VCE%

I.VFS%

I.VRO%

I.VCL%

I.BUF%

Field number to be found

Error status (device timeout, field
error)

Pointer to leading attribute

Pointer to trailing attribute

Current field length

Row address of field data

Column address of field data

(0) Leading attribute character

Remarks: This routine increments I. V FL %, initializes the
intern~l variables; then goes to the FIND routine.

Reference: For an example of usage see lines 200-240 of
SAMPLES. BAS listed in the Appendix. Line 230
calls FNEXT. This routine can be used only after
FIND has been used, as it depends on the value of
I.VFL% specified in FIND.

IRMA -7

RDFLD
Read Field Contents

Statement
Number: 50900

Routine
Name: RDFLD

Input
Variables: None

Output
Variables: I.VER% Error status (device timeout)

I. BU F% () PC buffer is filled with field contents.
I.BUF%(O) contains the leading
attribute character. I.BUF%(1)
through I.BUF%(I.VFS%) contain
screen data and EAB information.
Screen data is contained in the low
order byte and EAB information is
in the high order byte.

Remarks: RDFLD transfers IRMA's internal screen memory
of screen data and EAB contents to an internal array
within the PC. FIND and FNEXT must be called to
setup buffer pointers before calling RDFLD.

Reference: RDFLD is also used in the lines 200-240 in
SAMPLES. BAS.

IRMA -8

WRFLD
Write Field

Statement
Number: 51000

Routine
Name: WRFLD

Input
Variables:

Output
Variables:

I.BUF%

I.VCB%

I.VFS%

I.VER%

() Internal screen buffer

Initial attribute pointer

Field length

Error status (device timeout, illegal
character)

Remarks: This routine writes the contents from the PC's
internal buffer to IRMA's screen memory. WRFLD
transfers data to the screen memory with error
checking appropriate to the 3270 terminal system.
The field is verified to be non-protected and only
I. V FS% characters are written. The routine will
abort without modifying the screen memory if a non­
numeric character is found in a numeric only field.
This ~outine must be preceded by a FIND.

Reference: SAMPLES. BAS, lines 300-345, gives an example of
how one might use this subroutine. This portion of
the program finds a field; puts a string within that
field into the PC's buffer. WRFLD writes the
contents of the PC's buffer into IRMA's internal
screen memory.

IRMA -9

GTSTR
Get String

Statement
Number: 51100

Routine
Name: GTSTR

Input
Variables:

Output
Variables:

I.BUF%

I.VFS%

I.VOO%

I.VER%

I.VST

I.VOO%

() Internal screen buffer

Field length

Offset within field to begin transfer

Error status (Offset out of bounds)

$ASCII data recovered from buffer

Offset to REMAINDER of field (If
field is longer than 254 characters)

Remarks: The GTSTR routine retrieves the field data from the
PC's internal buffer and converts the characters to
the extended ASCII used by the PC in its display
buffer.

Reference: An example of this subroutine can be found in lines
200-240 of the sample program. GTSTR converts
IRMA's buffer code to the extended ASCII characer
set used by the PC's display buffer. In order to
transfer data from one buffer to another this
conversion must take place before the string can be
read.

IRMA -10

PUSTR
Put String

Statement
Number: 51200

Routine
Name: PUSTR

Input
Variables: I.YST$ String to be placed in buffer

I.YOO% Offset in buffer at which to begin.

Output
Variables: I.YER% Error status (device timeout)

I.YOO% Offset to remainder of field

I.BUF% Screen format buffer

Remarks: PUSTR writes an ASCII string into the PC's
internal display buffer. It moves the ASCII string
into the PC's internal buffer and converts it to 3270
type buffer codes. This routine should be called prior
to a WRFLD in order to place the data to be written
in the internal buffer.

Reference: An e~ample of this subroutine is found in lines 300-
345 of SAMPLES.BAS. PUSTR is used here in
combination with FIND and FNEXT. FIND locates
the field and PUSTR translates the ASCI I string,
I. YST$, into IRMA's buffer code and moves that
string to the internal buffer O.BUF%). WRFLD
takes I. BUF% and writes it in the screen buffer.

IRMA -11

RDABS
Read Absolute Screen

Statement
Number:

Routine
Name:

Input
Variables:

Output
Variables:

51300

RDABS

I.VRO%

I.VCL%

I.VRR%

I.VER%

I.VRO%

I.VCL%

I.VST$

I.VSO$

Row number of starting character

Col umn n urn ber of starting character

Length of area to read

Error status (device timeout)

Row position after last character read

Column position after last character
read

ASCII form of screen data

EAB data

Remarks: This routine moves IRMA's screen memory
characters and EAB data into user strings from a
given row and column screen position for a given
length. Screen characters are translated into ASCII.
The EAB data is unmodified.

Reference: The example for this subroutine is found in lines
400-412 in SAMPLES. BAS. The variables are set
for the row and column at which to begin the read
and the number of columns (characters) to be read
before calling the subroutine in line 406. In this
particular example the procedure will be performed
five times, such that the first 40 characters
(I.VRR%) of the top five lines (I.VRO%) of the
3278 screen are displayed. (Value for I.VRO% is
determined by the FOR/NEXT loop, lines 404 and
412.)

IRMA -12

GTCP
Get Cursor Position

Statement
Number:

Routine
Name:

Input
Variables:

Output
Variables:

51400

GTCP

None

I.VER%

I.VRO%

I.VCL%

Error status (device timeout)

Cursor row position

Cursor column position

Remarks: GTCP reads the 3270 screen cursor position from
IRMA. It should be noted that the row address may
not be within the confines of the normally displayed
screen.

Reference: Lines 500-520 of SAMPLES. BAS provides an
example of GTCP. This portion of the program
retrieves the cursor position and prints the location of
the buffer pointers. It also calls a subroutine listed in
lines 9-00-980 which retrieves and displays the state
of the main and aux status words.

IRMA -13

XPOR
Execute Power-on-reset

Statement
Number: 50100

Routine
Name: XPOR

Input
Variables: None

Output
Variables: I. V ER % Error status (device timeout)

Remarks: The XPOR routine causes the controller to set the
terminal as though it has just been powered up. This
call can be useful in clearing some controller errors,
especially if the coaxial cable has been disconnected.

Reference: This subroutine is not used in the sample program;
however, the subroutine is listed in lines 50100-

IRMA -14

50 108. Its use should be limited to particular
conditions, such as during data transfer if the
controller has sent data which does not appear to be
that which was requested. When all other attempts to
remedy the problem have been exhausted inserting
this subroutine into the program will reset the
terminal. The controller will acknowledge the
terminal as if it has just been powered-on.

GSTAT
Get Status

Statement
Number: 50200

Routine
Name: GSTAT

Input
Variables: None

Output
Variables: I.VST%

I.VAX%
I.VER%

Main device status
Auxiliary device status
Error code

Remarks: GST A T reads the current main and aux status from'
I RMA. Each bit in these status words has a specific
meaning. Parameters are provided (See the list at the
end of this section) to allow the user to 'and' mask
the status with a parameter to test for a specific
condition. For example, to test for the buffer
modified status (I.MDI% from table), the program
would read:

GOSUB 50200
IF I.VST% AND I.MDI% THEN GOTO ...

Bit mask parameters for both I. YST% and I. V AX%
are provided.

Reference: Lines 700-714 contain an example of this subroutine.
The routine reads the status, displays the current
status, clears each of the status bits, and then reads
and displays the status after the clear.

IRMA -15

RSTAT
Reset Status

Statement
Number: 50300

Routine
Name: RSTAT

Input
Variables: I.YST% Bits in status word to be reset

Output
Variables: I. YER % Error status (device timeout)

Remarks: RST A T resets status bits in the main status word. If
a status bit such as I.MPR% (controller reset) is
read in a GST A T, the user program must take any
action needed, then reset the bit. This can be done by
calling RST A T with I. YST% as set by GST AT.
Note that any bit set in I. YST% when RST A T is
called will be reset.

Reference: Lines 700-714 include an example of this subroutine.

IRMA -16

After displaying the status, the status bits are cleared
or reset.

STDNM
Set Trigger Data AND Mask

Statement
Number: 50400

Routine
Name: STDNM

Input
Variables: I.VRO% Row for trigger test

I.VCL% Column for trigger test

I.VMS% Trigger mask value

I.VVL% Trigger test value

Output
Variables: I.VER% Error code on exit

Remarks: STDNM allows the program to declare a location on
the screen, for a delay until a specific value is written
into that location. WTRIG will not return until that
value is found in the requested location. The
location = value test is made only on those bits which
have value of one in the mask. Thus, to make an
exact match test, the value of I. VMS% must be set
to 255 (decimal) which is all one bits. The condition
of I. VMS% = 0 is special. If the mask is zero, then
any CHANGE in the location requested will result in
WTRIG returning. In this case, I.VVL% is unused.

Reference: An example of this subroutine can be found in lines
800-899. Lines 802 and 804 set the input variables.
The row and column are set to (one,one) which
positions the pointer to the upper left corner. The
mask and text values are both set to zero which
makes a trigger occur upon any change in row 1,
column 1.

IRMA-17

WTRIG
Wait Trigger

Statement
Number: 50500

Routine
Name: WTRIG

Input
Variables: I.VTO% Time constant (in seconds)

Output
Variables: I.VER% Error code

I.VTO% Time remaining

Remarks: WTRIG waits until a specific trigger event occurs
(see STDNM). The time constant, I.VTO allows the
programmer to select how long WTRIG will wait for
the event to become true (in seconds).

Reference: This subroutine is used in conjunction with STDNM.

IRMA -18

The WTRIG routine is called in line 824. It allows
a program to wait for a trigger condition specified
by STDNM to occur. If I.VTO% returns with a
value of zero, no trigger event has occurred and the
call to WTRIG has timed out.

Iteserved ~amnes
The BASICA subroutines occupy statement numbers from 50000
to 59999. No user statements should be included in this range.
The variables, flags, and parameters used by these routines are
named so that user routines will not conflict. The following list
shows this usage:

Name Use Type

IRMA commands

I.CRD% Slave read data Parameter
I.CWR% Slave write data Parameter
I.CAC% Slave aux status and cursor update Parameter
I.CCL% Slave main status bit clear Parameter
I.CKY% Slave send keystroke Parameter
I.CSP% Slave selector pen strike Parameter
I.CXP% Slave execute power-on-reset Parameter
I.CMD% Slave load trigger mask and data Parameter
I.CTA% Slave load trigger address Parameter
I.CIM% Slave set attention request mask Parameter

Main status word (I. VST%) bit mask

I.MAX% Auxiliary status change Mask
I.MTG% Trigger event occurred Mask
I.MKY% Slave key scan code buffer empty Mask
I.MXX% * Unused, reserved for future use Mask
I.MPR% Controller requested reset occurred Mask
I.MCC% Last command complete flag Mask
I.MDI% IRMA buffer modified by controller Mask
I.MCM% Cursor position modified by controller Mask

Auxiliary status word (I. V AX%) bit mask

I.MXX% * Unused, reserved for future use Mask
I.MPO% IRMA polled since last status read Mask
I.MAL% Sound alarm request Mask
I.MDD% Display disabled (inhibit) request Mask
I.MCI% Cursor inhibited Mask
I.MRC% Reverse block cursor select Mask
I.MBC% Blinking cursor select Mask
I.MCK% Keyboard clicker enabled Mask

* Known to be duplicates - Reserved

IRMA -19

Reserved Names
Name

I.RGO%
I.RGI%
I.RG2%
I.RG3%
I.RST%
I.RAK%
I.RAF%

I.MAT%
I.MBS%

I.VTO%
I.VT5%
I.VSO$
I.VT5$

I.VER%

IRMA -20

Use

IRMA device code parameters

Device code of register 0
Device code of register 1
Device code of register 2
Device code of register 3
Handshake slave to start select
Handshake ATTN acknowledge
Handshake flag read select

IRMA handshake flag bit masks

IRMA requests System Unit attention
IRMA busy with System Unit request

BASICA internal use temporary variables

Type

Parameters
Parameters
Parameters
Parameters
Parameters
Parameters
Parameters

Mask
Mask

I.VTI % I.VT2% I.VT3% I.VT4% Temp. variable
I.VT8% I.VT9% Temp. variable

I.VSI$ I.VS2$ I.VT3$ I.VS4$ Temp. variable
I.VS6$ I.VS7$ I.VS8$ I.VS9$ Temp. variable

BASICA subroutine I/O variables

Error code returned to user Variable

o -- No error occurred
1 - IRMA did not respond to command
2 - Row number out of range
3 - Column number out of range
4 - Byte value out of range
5 - Invalid field type for operation
6 - Invalid character in NUMERIC only field
7 - Field number out of range
8 - Invalid extended key code
9 - Timeout on key send attempt

10 - Timeout on trigger wait event
11 - Illegal internal buffer pointer
12 - Field or string too long
13 - Found field does not match internal

buffer type
14 - Buffer offset out of range of

internal buffer
15 - Bad key scan code

Iteserved ~anBes
Name

I.VST%
I.VRO%

I.VCL%
I.VMS%
I.VVL%
I.VFG%
I.VST$
I.VFL%
I.VAX%
I.VOO%
I.VRR%
I.VCB%
I.VCE%
I.VFS%
I.VTO%
I.TAB%
I.BUF%

Use

Main status word
Screen row number (0-24 [0 is the
status line, row 1 starts at the top of the
screen])
Screen column number (1-80)
Trigger mask byte
Trigger value byte
General Boolean flag
General string variable
Current field length
Aux status value
Buffer offset pointer for string I/O
Raw screen read data length
Internal pointer to beginning of field
Internal pointer to end of field
Internal field length (size)
Timeout constant
Code conversion tables
Screen format buffer

Type

Variable
Variable

Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

The parameters above are constants. BASICA does not provide
for any parametric declarations, so all of the basic subroutines
use one set of variables which are initialized to the correct value.
Parameters NEVER change during a program execution.

The temporary variables listed above are used by these
subroutines to hold values needed during execution. No data is
guaranteed to be left in any of these variables.

The argument-passing variables are used to pass data to and/or
from the BASICA subroutines. In the description of each routine,
those variables listed as INPUT must be set prior to the GOSUB.
Those variables listed as output are updated during routine
execution. Note that some variables are both input and output.

THE USER IS WARNED THAT THESE ROUTINES
PROVIDE THE PROTECTION NEEDED TO PREVENT
THE SENDING OF ILLEGAL DATA TO THE 3270
NETWORK. THIS PROTECTION IS ONLY AVAILABLE IF
THE ROUTINES REMAIN UNMODIFIED.

IRMA -21

IRMA TECHNICAL REFERENCE

Contents
Introduction 1

Major Component Definitions 3

Operations 4

Programming Considerations 5

Command Descriptions 8

Key Scan Codes 19

DSI Screen Buffer 21

Attribute Characters 23

Installation 27

APPENDIX B

Contents
Product Warranty 1

Information Request 3

Service Information 4

Copyright ©1983, Technical Analysis Corporation
120 West Wieuca Road N.E.

Atlanta, Georgia 30042
(404) 252-1045

All rights reserved

Document Number: 642-002160-01

This manual is copyrighted and all rights are reserved. The information contained herein shall
not be copied, photocopied, translated or reduced to any electronic medium or machine readable
form, either in whole or in part, without prior written approval from Technical Analysis Corp­
oration (TAC).

TAC reserves the right to make changes to the information contained herein without notice and
shall not be responsible for any loss, cost, or damage, including consequential damage, caused
by reliance on these materials.

TAC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE.

Printed in U.S.A.

Introduction

IRMAT,Mthe Decision Support Interface™, is a printed circuit board
which plugs into the IBM Personal Computer System Unit. It
can be installed in any slot in the System Unit and provides a
back panel BNC connector for attachment by a coaxial cable to
either a 3274 controller, 3276 controller, or an integral controller.

IRMA operates in a stand-alone mode, using an on-board
microprocessor to handle the 327x protocol and CRT buffer.
Whenever power is applied to IRMA, it responds to commands
from the controller as if an IBM 3278-2 terminal were attached
to the coaxial cable. The CRT buffer is accessed from the PC
System Unit as an I/O device, the device codes being 220H to
227H. IRMA does not occupy any of the memory address space.

In order to meet the requirements of the 327x protocol, the
Decision Support Interface (DSI) uses high speed microprocessor
technology which is independent of the 8088 microprocessor of
the System Unit. This allows the user to ignore the timing
requirements of 327x, and operate with a buffer of data just as
the 3278 CRT does.

When operating, the DSI takes commands from a four byte dual
ported register array in addresses 220H to 223H. This array is
accessed by I/O commands from the System Unit. The four
single byte words are arranged as the command and up to three
arguments. Command words allow the System Unit program to
read or write bytes in the screen buffer, send
keystrokes, and access the special features available on the DSL
This array is also handled on the DSI by the microprocessor
which manages the 327x protocol. When the DSI is idle between
messages from the controller, any commands left in the array by
System Unit programs are processed as required. This processing
occurs only when the higher priority 327x communication is idle.
This idle state is indicated by a busy/done flag mechanism for
both the DSI and System Unit microprocessors. This allows the
System Unit to declare that a new command is available to the
DSI, and for the DSI to signal the completion of this command.

IRMA-l

IRMA BLOCK DIAGRAM

COAXIAL CABLE

(TO 327X CONTROLLER)

I I
6K RAM COAX COAX
BUFFER TRANSMITTER RECEIVER
MEMORY DP8340 DP8341

MICRO-
PROCESSOR

8X305

DUAL PO~TED ~EGISTER

I I IRMA

I I
SYSTEM UNIT BUS

IRMA-2

Major Component Definitions

8X305 Microprocessor

The 8X305 microprocessor provides the intelligence to handle the
327x protocol. Polling and answering, data transfer, handshaking,
and screen buffer maintenance are performed by this processor.

DP8340 and DP8341 327x Coax Transmitter/Receiver Interface

These two ICs provide the interface from the microprocessor to
the 327x coaxial cable. Serialization and deserialization of data
take place in these two parts.

Screen Buffer

The DSI contains 6K bytes of fast RAM memory for screen
buffers and temporary storage. This is divided into two 2K byte
buffers for the CRT screen and the Extended Attribute buffers,
leaving 2K bytes for local storage used by the 8X305 processor.

Dual Port Register Array

The four byte dual ported register array is shared by the 8X305
and the System Unit 8088 processors. These registers are used for
all communication between the two microprocessors. Data to be
transferred from one processor to the other is written into specific
locations (addresses) in the array (220H-223H) and the
'Command Request' flag (226H) is set. When the receiving
processor has read the register, this flag is cleared. Each processor
can test the state of this flag to see if data transfer can begin and
to determine when the transfer is complete.

IRMA-3

Operation

The dual ported communication array is used to pass commands
from the System Unit and its program to the DSI. The registers
are organized as four I/O addresses (220H to 223H), using one
8 bit word at each address. The base address of the standard DSI
command is 220H. Arguments for the command are placed into
addresses 221 H, 222H, and 223H. Standard command operation
for the DSI requires the user program to set values into the dual
port register as appropriate for each command. First, the user
program sets the 'Command Request' flag. IRMA then reads the
data, performs the operation, and leaves any resulting data in the
dual port array. The Command Request flag is cleared at that
time.

Ten commands are defined for the DSI program. These
commands are given the following values:

Command Code Command Definition

0 Read buffer data
Write buffer data

2 Read status/cursor position
3 Clear main status bits
4 Send keystroke
5 Light pen transmit
6 Execute Power-on-Reset
7 Load trigger data and mask
8 Load trigger address
9 Load attention mask

IRMA-4

Programming Considerations

The DSI is accessed as an I/O device on the System Unit bus. It
uses eight I/O device codes, 220H through 227H. Device codes
220H, 221 H, 222H, and 223H are a dual access register array
which is attached to both processors. The four bytes are used to
pass commands from the 8088 to the DSI and to return any
answers. Device code 224H and 225H are reserved for future use.
Device codes 226H and 227H are used for Command Request
and Attention Request flags.

All commands use word 0, device code 220H, as a command
selection register. To begin a command, the program must set
word 0 equal to the command number. The other 3 words are
used to pass the arguments of the command. When the specified
command is completed, word 0 contains the main status bits and
the other three words contain output data.

A flag is provided to allow the user program to check for a
command in progress. This flag is set by the 'Command Request'
operation, and cleared when the command is finished. Programs
must check this flag before modifying the register array. When
the flag is clear, the array may be modified and a new command
begun. If the program has not cleared the flag, an Invalid
Response/Status may be returned to the user program.

Programmer's Notes on Status Bits

Main Status bits indicate specific conditions. The 'Aux Status
Change' bit is set anytime the Aux Status changes. The 'Trigger
Occurred' bit is set whenever the trigger data match occurs (see
Load Trigger Data and Mask command (7)). The 'Key Buffer
Empty' bit is set when the key scan code buffer is empty (see
Send Keystroke command (4)). The 'Unit Reset' bit is set
whenever the controller sends a 3270 reset command. The 'Buffer
Modified' bit is set when any buffer write occurs. The 'Cursor
Position Set' bit is set whenever the controller positions the
terminal's cursor in the buffer.

The 'Aux Status' bits are defined as follows: the 'Unit Polled' bit
is set by a poll command. This bit clears after reading. Since the
controller polls about 1000 times per second, this status bit will
be set often. The other 6 Aux status bits are defined exactly as
3270 protocol defines them.

The 'Command Interrupt Request' bit should not be used to tell
when another command can be started. The hardware flag

IRMA-5

'Command Request' must be used for this purpose. The
'Command Interrupt Request' bit will clear when a command is
begun, and will be set at the end of the command. However, it is
not cleared immediately upon 'Command Request'.

The 'Key Buffer Empty' bit, which is used to check the buffer
before sending a 'Keystroke' command is only guaranteed valid
if no command is in progress. This is because the empty bit does
not clear immediately upon the keystroke command. Again, use
the hardware flag to check for a command in progress before
checking the empty flag bit.

The Main Status in word 0 is updated each time any of the
conditions specified occurs. This word can be read and used with
the above limitations at any time. The 'Read Status' command is
not necessary except to read the 'Aux Status' or 'Cursor Position'.

The returned Main Status byte consists of 8 bit flags as follows:

Bit Meaning

7 (MSB) Aux Status change has occurred (*)
6 Trigger Occurred (*)
5 Key Buffer Empty
4 UNUSED
3 Unit Reset by controller, (*)
2 Command interrupt request (+)
I Buffer Modified (*)
o Cursor Position Set, or search backward (*)

(*) = Bits which must be cleared by user program
(+) = This bit allows the attention request/interrupt

request mechanism to be used with commands.
Programmed I/O operation should use the hardware
flag for all busy/done checking.

(MSB) = Most Significant Bit

IRMA.-6·

The bit flags in the Aux Status are defined as follows:

Bit Meaning

7 (MSB) UNUSED
6 U nit Polled since last Status Read
5 Sound Alarm
4 Display Inhibited
3 Cursor Inhibited
2 Reverse Cursor Enabled
1 Cursor Blink Enabled
o Keyboard Click Enabled

IRMA-7

Command Descriptions

Read Buffer Data Command (0)
F or a read data command, word 0 is set to zero. Word 1 is the
low order 8 bits of the buffer address to be read. Word 2 is the
high order 3 bits (right justified) of the address. Word 3 is
unused. Upon completion of the command, Word 2 contains the
associated Extended Attribute Data and Word 3 contains the
data from the specified buffer location:

The internal IRMA screen buffer is 2000 characters long. This
corresponds to the 25 lines by 80 characters per line. Even though
the screen is displayed with the status line on the bottom, the
status line is actually the first line in memory. The starting
addresses of each line are listed later in this section.

The Read Data command returns the buffer data, EAB data, and
the main status. Each command returns main status in word o.
Word Value Input Output

0 0 Command Main Status
to DSI

1 ADDR(L) Address UNUSED
(low)
to
read

2 ADDR(H) Address EAB* Data from DSI
(high)
to
read

3 DATA UNUSED Data from DSI

* EAB - Extended Attribute Buffer (Refer to Attribute Character
explanations later in this document and in the Terminal
Emulator User's Guide.)

IRMA-8

Write Buffer Data Command (1)
The write buffer command is used to write (modify) the contents
of the screen buffer. Like read data, Word 1 and Word 2 contain
the address of the buffer location where data is to be written.
Word 3 is the data to be written. At command completion, the
buffer is updated and main status is returned.

Word Value Input Output

0 1 Command to Main status
DSI

1 ADDR(L) Address (low) UNUSED
for write

2 ADDR(H) Address UNUSED
(high) for
write

3 DATA Data for write UNUSED

IRMA-9

Read Status/Cursor Position Command (2)
This command reads the current status and cursor position from
the DSI. The status is returned as two bytes of bit flags. The
cursor address is in the same format as the buffer address in
read/write data commands.

Word Value Input Output

0 2 Command to Main status
DSI

1 ADDR(L) UNUSED Cursor
address (low)

2 ADDR(H) UNUSED Cursor
address (high)

3 DATA UNUSED Aux Status

IRMA-tO

Clear Main Status Bits Command (3)

This command clears one or more of the main status bits.

Word Value Input Output

0 3 Command to Main status
DSI

1 UNUSED UNUSED UNUSED
2 UNUSED UNUSED UNUSED
3 MASK Bit clear mask UNUSED

Five of the main status bits are set by specific conditions, but
cleared only upon command. This allows each of these bits to be
tested and cleared by different sections of the program. The clear
mast controls which bits will be cleared. For each 1 bit in the
clear mask, the corresponding bit in the status is cleared (i.e. set
to 0). The clear mask can be used to reset multiple bits. Note
that the returned status reflects the status AFTER the clear
command has been executed.

For ease of implementation, word 0 is always maintained as the
most current status. The normal program sequence would include
the following: a read and test of word 0, a branch on condition to
a service routine that is specific to the bits found to be set, and
the Clear Main Status Bits command.

IRMA-II

Send Keystroke Command (4)
The send keystroke command causes the DSI to send the
controller a key scan code. This is the function used to simulate a
key active condition. The key scan code is the exact code which a
3278-2 terminal would normally send, NOT an ASCII or
EBCDIC character code.

Word Value Input Output

0 4 Command to Main status
DSI

1 UNUSED UNUSED UNUSED
2 UNUSED UNUSED UNUSED
3 CODE Key scan code UNUSED

to send

This command causes the Key Buffer Empty flag in the status
byte to clear. It also checks the status of the Command Request
flag. The Key Buffer Empty flag is guaranteed to be valid when a
command is not in progress. The Key Buffer Empty flag must
have a value of one before the key scan code can be sent.

IRMA -12

Send Selector Pen Location (5)
This command causes the cursor position of the light pen to be
sent to the controller. This code is NOT in cursor address format.

Word Value Input Output

0 5 Command to Main status
DSI

1 ROW Row on UNUSED
screen

2 FIELD ID Field ID on UNUSED
screen

3 UNUSED UNUSED UNUSED

IRMA -13

Execute Power-On-Reset Command (6)
This command causes the DSI to appear to the controller as if
the terminal has just been reset. This is used to signal the
controller that the DSI needs power-up service and initialization.

Word Value Input Output

o

1
2
3

IRMA -14

6

UNUSED
UNUSED
UNUSED

Command to
DSI
UNUSED
UNUSED
UNUSED

Main status

UNUSED
UNUSED
UNUSED

Load Trigger Data AND Mask Command (7)
This command loads a trigger system with data and mask values.
This system is used to put a "watch" on a specific buffer memory
location. The watch can be set to check for an exact match on a
new value, an inexact (masked) match on a new value, or on any
change to the current value. The mask word determines which
type of test occurs.

For each 1 bit in the mask, the data and the buffer MUST match
for a trigger to occur. To make an exact comapre, the mask is set
to OFFH (all ones) and the data is set to the desired value.
When a match occurs, the Trigger Occurred bit in the main
status will be set. If the mask does not contain all ones, only
those bits which are one will be checked for a match for the
trigger to occur. For example:

Buffer Value 0 1 0 0 1 0 1
Search Value 0 1 0 1 0 1 1 0
Bit by Bit Compare 0 0 0 0 0 0 1 1
(l's = Difference)

(Exclusive OR)
Mask 1 1 1 1 1 1 0
Logical AND of Mask and
Compare 0 0 0 0 0 0 1 0

The result is non-zero; the trigger did not occur

The special case of a mask of all zeros is used to handle a test for
change of state. At the time the mask is set to 0, the current
value of the location in memory is saved by IRMA. This is then
compared and any change is reported as a trigger.

Word Value Input Output

0 7 Command to Main status
DSI

1 DATA Data value for UNUSED
the compare

2 MASK Mask value UNUSED
for the
compare

3 UNUSED UNUSED UNUSED

IRMA-15

Load Trigger Address Command (8)
The load trigger address command sets the buffer position for the
data/mask compare. This address is in the same format as a
cursor position and data read/write. After executing the Load
Data and Address Trigger commands, the Trigger occurred bit
should be cleared. Clear Main Status Bits Command (3) The
Load Address command should follow the Load Data command

Word Value Input Output

0 8 Command to Main status
DSI

1 ADDR(L) Address (low) UNUSED
for checking

2 ADDR(H) Address UNUSED
(high) for
checking

3 UNUSED UNUSED UNUSED

IRMA -16

Load Attention Mask Command (9)
The attention mask is applied to the regular status word. Any
time a bit is SET in the status word, the corresponding bit in the
Attention Mask is checked. If this bit is one, the Attention
request flag is set. This only applies to bits changing from zero to
one.

Word Value Input Output

0 9 Command to Main status
DSI

1 UNUSED UNUSED UNUSED
2 UNUSED UNUSED UNUSED
3 MASK Mask for UNUSED

status change

IRMA-I7

Command Request / Attention Request Flags
There are two flags which allow the 8X305 microprocessor and
the System Unit 8088 CPU to handshake over commands. The
two flags are Command Request and Attention Request. The
8088can set Command Request, indicating that a new command
has been placed in the dual ported memory. The Attention
Request flag is set by the 8X305 processor to indicate a status
change with Attention Mask bit set in the corresponding bit. The
Atttention flag, set by the DSI 8X305 processor can be cleared
only by the 8088. The current status of both flags can be read by
the 8088 (and the 8X305).

The status flag read command is an I/O read on device code
227H. The resulting 8 bit number contains both flags as follows:

Bit Meaning

7 Attention Request flag is set by DSI and cleared by
user program in the System Unit.

6 Command Request flag is set by the user program in
the System Unit to indicate a new command and is
cleared by the DSI after command is accepted

5-0 Unused

To set the Command Request flag, the user program should
execute an I/O write to device code 226H. To clear the Attention
Request flag, the program should execute an I/O write to device
code 227H. In either case, the data written is unimportant.

Device
Code
226H
227H
227H

IRMA-I8

Input
I/O Write
I/O Write
I/O Read

Use
Set Command Request Flag
Clear Attention Request Flag
Read Current Flags

Key Scan Codes

In nornial 327x terminal operation, each keystroke is sent as a
special key scan code to the controller. The controller responds by
updating the screen (or screen buffer) to show the echo of this
new keystroke. In the DSI, keystrokes are sent to the controller
via a keystroke command using a key scan code. The controller
generated screen buffer update occurs just like a terminal, and
the program can read this buffer as desired. Note that some
characters are generated by multiple scan codes, such as shift up,
character, shift down.

Key scan codes are specific to 327x systems, and are NOT ASCII
or EBCDIC. The following table lists the keys and the proper
scan codes:

KEY SCAN CODES (327x)

Scan Code Scan Code
Key (HEX) Key (HEX)

A 4D,60, CD a 60
B 4D,61, CD b 61
C 4D,62, CD c 62
D 4D,63, CD d 63
E 4D,64, CD e 64
F 4D,65, CD f 65
G 4D,66, CD g 66
H 4D,67, CD 67
I 4D,66, CD 66
J 4D,69, CD J 69
K 4D,6A CD k 6A
L 4D,6B, CD I 6B
M 4D,6C, CD m 6C
N 4D,6D, CD n 6D
0 4D,6E, CD 0 6E
p 4D,6F, CD P 6F
Q 4D,70, CD q 70
R 4D,71, CD r 71
S 4D,72, CD s 72
T 4D,73, CD t 73
U 4D,74, CD u 74
V 4D,75, CD v 75
W 4D,76, CD w 76
X 4D,77, CD x 77
y 4D,78, CD y 78
Z 4D,77, CD z 77

IRMA -19

Scan Code Scan Code
Key (HEX) Key (HEX)

) 4D,20, CD 0 20
! 4D,21, CD 1 21
@ 4D,22, CD 2 22
4D,23, CD 3 23
$ 4D,24, CD 4 24
% 4D,25, CD 5 25
1\ 4D,26, CD 6 26
& 4D,27, CD 7 27
* 4D,28, CD 8 28
(4D,29, CD 9 29
PFI 4F,21, CF 11
PF2 4F, 22, CF + 4D, 11, CD
PF3 4F,23, CF 33
PF4 4F,24, CF 32
PF5 4F, 25, CF \ 15
FF6 4F, 26, CF I 4D, 15, CD I

PF7 4F,27, CF Attn 50
PF8 4F, 28, CF Sys Req 4F, 50, CF
PF9 4F,29, CF Cursor 51
PFI0 4F, 20, CF Clear 4F, 51, CF
PF 11 4F,30, CF Erase 53
PF12 4F, 11, CF Blink 54
PF 13 40 Erase EOF 55
PF14 41 Print 56
PF15 42 Click 57
PF16 43 Return 08
PF 17 44 Up OE
PF 18 45 Down 13
PF19 46 Left 16
PF20 47 Right lA
PF21 48 Dup 5F
PF22 49 Mark 5E
PF23 4A Del OD
PF24 4B Reset 34
PAl 4F, 5F, CF Enter 18
PA2 4F, 5E, CF Space 10
PA3 4F, OC, CF Shift down 4D ,

12 Shift up CD
" 4D,12, CD Alt down 4F

7E Alt up CF
4D,7E, CD Tab fwd 36

/ 14 Tab bkwd 35
? 4D,14, CD Home 4F, 35, CF

30 Backspace 31
Underscore 4D,30, CD < 09

> 40, 09, CD

IRMA-20

The DSI Screen Buffer

The screen buffer maintained in the DSI can be read by using the
Read Data command. The user program must supply the address
in the screen buffer as part of the Read Data command, and
receive the data at that location upon completion.

The screen buffer contains the 2000 characters which are
normally displayed on the screen of a terminal. The first line of
the screen begins in buffer location 50H. Each line then consists
of 50H (80 decimal) characters in consecutive order. The starting
address of each line is listed below:

Starting Address
Line # Hex Decimal

1 50 80
2 AO 160
3 FO 240
4 140 320
5 190 400
6 lEO 480
7 230 560
8 280 640
9 2DO 720
10 320 800
11 370 880
12 3CO 960
13 410 1040
14 460 1120
15 4BO 1200
16 500 1280
17 550 1360
18 5AO 1440
19 5FO 1520
20 640 1600
21 690 1680
22 6EO 1760
23 730 1840
24 780 1920
Status 0 0

IRMA -21

Bytes removed from the buffer are translated into characters
using the following table:

0 I 2 3 4 5 6 7 8 9 A B C D E F , , ..
0 p ~ 0 nul sp 0 & a a A A a q A

, ,
E b S I em - 1 - e e E r B R

ff
, ~

, y C A Z 2 2 1 1 I c s S 0

"
, 00

,
5 A 3 nl 3 , 0 0 0 d t D T -

/
, ,

0 B "
4 stp 4 u u U e u E U 0 ".!

\ A A

f [§] /\ 5 cr 5 + a a A A v F V .'
A <3

A

X 6 I 6 .., (5 e E Jl; w G W •
I Y

A. A

h 7 I 7 - 1 Y I x H X 0 -, A A

8 > <) 8 0 a 0 A 0 1 Y I Y -. 4-

9 ! 9
, A

E U j J Z ~ II < e u z
[(3 /\ , , ,

0 A $ e a E A k ae K AE 0-

] ¢ T
~ , ,

0 .0 * B '" 1 e I E I L
C) i #

.. , ~
0

,
0 0

~ ~ 0 1 I m a M A
(y.

@
\ , , ,

C 0 A-D T U 0 U 0 n C N
} I , , - rn E3 E Pts % u u Y U 0 ; 0 ;

F { ~ - !> C n C N p * p * • IE

For example, 2C is '#'; B8 is 'Y'; B3 is 'T'.

IRMA-22

Attribute Characters

Proper interpretation of data from the buffer requires attention to
the attribute bytes. Normally, an attribute byte (byte from the
last 4 columns of the preceding table) will precede and a second
will follow any field on the screen. The byte preceding the field
defines how that field will be handled. The data word bits for
attribute characters are defined as follows:

7 6 543 2 1 0 Bit Number
11 abccde Attribute Character

1,1 Attribute identifier
a 0 Unprotected

1 Protected
b 0 Alphameric

1 Numeric
c,c 00 Normal display, non-detectable

01 Normal display, detectable
10 Bright display, detectable
11 Non display, non-detectable

d Reserved (Must always be zero)
e Modified Data Tag

o - Field has not been modified.
1 - Field has been modified by

the operator.

The Extended Attribute Buffer (EAB) is subdivided into two
types of attributes, the Extended Field Attribute (EF A) and the
Extended Character Attribute (ECA). The EFA defines the field
attributes while the ECA defines each character. The ECA is
dependent upon the most recent EF A. When the ECA is 0, the
attributes defined by the last EFA remain in effect. The chart
shown here indicates this relationship.

IRMA-23

Extended
Attribute
Buffer

Attribute
Buffer

EFA
G
R
E
E
N
U
N
P
R
0
T

ECA ECA

0 0

A B

ECA ECA EFA ECA
B R
L E
U 0 D 0
E

C D P E
R
0
T

Characters 'A' and 'B' are defined to be 'green' and in an
unprotected field. Character 'c' is still part of the same
unprotected field but has been redefined to 'blue'. Character 'E' is
in a protected field and is defined as 'red'. Characters 'A' and 'B'
have an ECA value of 0 and their Extended Attribute
characteristics revert to the most recent EF A. Character 'D' also
has a value of O. Its characteristic reverts to the most recent EF A
of unprotected and green. An ECA is a temporary redefinition of
a character and does not affect ECA characters with a value of O.

IRMA-24

For the Extended Field Attributes (EFA) the data word bits are:

7 6 5 4 3 2 1 0 Bit Number
a a b b b c c c Extended Field Attributes

Bits a,a

Bits b,b,b

Bits C,C,c

00 Normal Mode
01 Blink Character
10 Reverse Video Characters
11 Underline Character
000 Default to Base Color
001 Blue
010 Red
011 Magenta
100 Green
101 Cyan
110 Yellow
111 White
000 Base character set
001 APL
010 PS 2 (191 character)
011 PS 3" "
100 PS 4" "
101 PS 5" "
110 PS 6" "
111 PS 7" "

IRMA-25

For the Extended Character Attributes (ECA) the data word bits
are:

7 6 5 4 3 2 1 a Bit Number
a a b b b c c c Extended Field Attributes

Bits a,a

Bits b,b,b

Bits C,C,c

00 Reverts to most recent EF A
a 1 Blink Character
10 Reverse Video Characters
11 Underline Character
000 Reverts to EF A
001 Blue
010 Red
all Magenta
100 Green
101 Cyan
110 Yellow
111 White
000 Reverts to EF A
001 APL
a lOPS 2 (191 character)
011 PS 3" "
100 PS 4" "
101 PS 5" "
110 PS 6" "
111 PS 7" "

When processing a screen buffer, it is necessary for the
programmer to remember the most recent attribute byte
encountered. Note that the screen is 1920 x 1 characters for
attribute purposes. Ends of lines take no part in attribute
interpretation. Also, attributes are displayed as blanks on the
screen.

Subroutines in BASICA are provided to handle line and field
reads, keystroke sends, and status checks. These routines
implement all necessary tabular character translations and proper
handshaking. Using these subroutines is by far the easiest
approach to this programming since all of the complicated
functions are correctly handled. See the IRMA(TM) insert,
BASICA Subroutines in the PC BASIC manual for these
subroutines.

IRMA-26

Installation

IRMA requires NO pre-installation configuration. The circuit
board may be installed into any available slot in the System Unit.
See general notes in The IBM manual, Guide to Operations,
Section 5, for installation assistance.

INSTALLATION OF ANY BOARD INTO A PC MUST BE
DONE ONLY WHEN UNPLUGGED. TO ENSURE
SAFETY, UNPLUG THE SYSTEM UNIT LINE CORD
BEFORE REMOVING THE COVER. AFTER
INSTALLATION, COMPLETELY RE-ASSEMBLE THE
CABINET BEFORE APPLYING POWER.

After the IRMA board is installed, the PC exterior backpanel
includes a BNC female connector. The BNC connector is
standard for 3270 systems, and for many other types of coaxial
connections.

The BNC connector is a 1/8th turn bayonet type device.
Attachment requires only a gentle insertion push and a 1/8th
turn clockwise to lock. Reverse the procedure to disconnect. The
BNC is normally attached to coaxial cable of the type RG-62AU.
IBM specifications allow up to 1500 meters of cable to the
controller, and the DSI conforms to the specification.

Data on the cable is transferred at a bit rate of 2.3587 MHz. The
data is encoded in a Manchester-like code, and transmitted base
band. The IBM protocol is designed as a single drop (one
terminal per coaxial cable) system.

The 327x controller can be configured via system generation in
several ways. IRMA emulates the 3278-2 command structure,
and thus requires 3278-2 with a typewriter keyboard system
configuration. In particular, terminals (like the 3278) and printers
(like the 3287) are very different and coaxial cables configured
for one will NOT work on the other.

IRMA -27

APPENDIX A

DEMO. BAS - Technical Analysis Corporation - 12-21-1982 09:38:18

10 DEFINT A-Z

100 DIM I.TAB~(1279),I.BUF~11920)

102 GOSUB 50000
104 P~=O
200 CLS

, All integers for speed

'*Dimension IRMA's tables

'*lnitialize IRMA's variables
, Init current display row
, Start with blank screen

202 PRINl "
204 PRlNl "
206 PRINT
208 PRINT "
210 PRINl
212 PRINT "
214 PRINT "
216 PRINT "
218 PRINl "
220 PRINT "
222 PRINT
224 PRINT "

IRMA BASIC Subroutines Demonstration" '*Frame user area
liny Terminal Emulator"

1
2
3
4
5

300 REM Main program loop
302 GOSUB 51400
304 IF I.VRO~<1 THEN 314
306 IF I.VRO~)5 THEN 314
308 IF I.VCL~)20 THEN 314

123456789.123456789.

123456789.123456789.

310 LOCATE 5+I.VRO~,16+I.VCL~,1
312 GOTO 400
314 LOCAlE 4,14,1

400 AS = INKEYS
402 IF AS=CHRS(27) THEN SYSTEM
404 IF LENIAS)=O lHEN 500
406 1. VSlS =AS
40e GOSUB 50600

500
502
504
506
508
510
512

REM Refresh screen
1.VCL~=X : 1.VROJ=PJ+l 1.VRRI=20
GOSUB 51300
LOCATE PI+6,16,0
PRINT I. VSTS
PJ=P\+1 : IF PJ>4 THEN P~=O

A#=FREtIS)

514 G010 300

1
2
3
4
5

'*Main loop, set cursor
, Get 3278 cursor postion
, lest for out of range condo

, Position visible cursor

, Off screen, but visible!

'*Get a user keystroke
, EXIT request is ESC key
, No keystroke here ...

, Send keystrokes

'*Refresh screen

, RDABS
, Move invisible cursor
, Print buffer contents
, I nc row number
, Force string garbage collect

, Goto main loop

tlAMPLES.BAS - Technical Analysis Corporation - 12-21-1982 20:02:15

50 DEFINT A-Z
52 PRINT "IRMA BASIC SUBROUTINES DEMONSTRATION - IRMASUBS DEMO 1.01
54 PRINT: PRINT "Initializing IRMASUBS variables & tables

100 DIM l.lABI(1279},I.BUFI(1920}

102 GOSUB 50000
110 PRINT

'*Dimension IRMA's tables

'*Initialize IRMA's variables

200 REM Field Report '*Field Report
202 I.VFLI=l Start with the first field
204 PRINT "Field Row Column Length Contents" Print field info header
206 FH$=" #### ## 1# IIII &" Print using definition
210 GOSUB 50700 Find the first field
212 WHILE I.VERI=O Until no fields found
214 GOSUB 50900 Read field contents
216 I.VOOI=l Get string from buffer start
218 GOSUB 51100 Read string I.VST$
220 1.VST$=LEFlS(I.VSTS,40} , Limit the length to screen
222 PRINl USING FHSil.VFLI,I.VROI,I.VCLI,I.VFSI,I.VST$
230 GOSUB 50800 ' Find next field
240 WEND

300 REM Modify a few fields
302 I.VFLI=2
310 GOSUB 50700
320 I.VST$="lwo"
322 I. VOOI= 1
324 GOSUB 51200
326 GOSUB 51000
328 IF I.VERlc>O THEN PRINT "Error: "il.VERI
330 GOSUB 50800
332 I.VST$="Three"
334 I.VOOI=1
336 GOSUB 51200

'*Modify field
Second screen field
Find the first field
A simple string
Beginning of data area
Put string in buffer
Write the field
Report possible error
Point to next field
More nice data
Buffer start

338 IF I.VFSI>LEN(I.VST$} THEN I.VFSI=LEN(I.VST$}
340 GOSUB 51000

Put new string in buffer
, Shorten write length
Write the field

345 STOP

400 REM Display part of the screen
402 I.VeLI=l : 1.VRRI=40
404 FOR I.VROI=l TO 5
406 GOSUB 51300

'*Display
, Column one
, lop five lines
, Read a short line

~AMPLES.BAS - Technical Analysis Corporation - 12-21-1982 20:02:15

Jtl0 PRINT 1. VSl$
412 NEXT I.VROI

, Print the line
, Again, with feeling

'*Status info 500 REM General status info
502 GOSUB 51400
50Jt PRINT "Buffer pointer ROW:"iI.VROli"
bl0 GOSUB 50200

, Read cursor postion
COLUMN:"iI.VCli

520 GOSUB 900

600 REM Send some keystrokes
602 1.VSTS=CHR$10).CHR$115)."AAA~
604 GOSUB 50600
612 I.VSTS=CHRSI9)."bbb"
614 GOSUB 50600
620 STOP

700 REM Clear any status
702 GOSUB 50200
706 GOSUB 900
710 GOSUB 50300
'112 GOSUB 50200
714 GOSUB 900

800 REM Trigger stuffs
802 I.VROI=l : I.VClI=l
804 1.VMSI=0 : 1.VVLI=0
806 GOSUB 50JtOO

, Get slave status
, Display status

'*Keystrokes
, Back tab character wi string
, Send keystrokes
, Forward tab
, Send keystrokes

'*Clear status
, Read current status
, Display current status
, Clear all set bits
, Get the status again
, Display the new status

'*Trigger tests
, Upper left corner
, Any change is a trigger
, Set trigger data & addr

808 PRINT ·Waiting for any change in row 1,
820 WHILE LENIINKEYS)=O

column 1"

822 I.VTOI=2
82Jt GOSUB 50500
826 IF 1. VTOI< 0 THEN PRINT "." i
830 PRINT "Trigger! »

836 GOTO 842
840 WEND
8Jt2 1. vsn=6.1t
844 GOSUB 50300

GOTO 840

848 PRINT ·Waiting for an upper case A in row
850 I.VMSI=255 : I.VVLI=160
852 GOSUB 50400
860 WHILE LENIINKEY$)=O
862 I . VTOJ=2
864 GOSUB 50500

, Until a key is pressed
, 2 second timeout
, Wait for trigger event

, Clear trigger bit

1, column 1"
, Specific Upper case A
, Set the trigger again
, Until a key is pressed
, 2 second timeout
, Wait for trigger event

SAMPLES. BAS - Technical Analysis Corporation - 12-21-1982 20:02:15

866 IF I.VTOlcO THEN PRINT "."; : GOTO 870
867 PRINT "Trigger! "
868 GOTO 872
870 WEND
872 I. VSn=64
874 GOSUB 50300
899 END

900 REM Display status words
912 PRINT
918 PRINT "Main status word:"
920 IF (I.VSTI AND I.MAXI) THEN PRINT"
922 IF (I.VSTI AND I.MTGI) THEN PRINT"
924 IF (I.VSTI AND I.MKYI) THEN PRINT"
926 IF (I.VST' AND I.MPRI) THEN PRINT"
928 IF (I.VSn AND I.MCCI) THEN PRINT"
930 IF (I.VSTI AND I.MOII) THEN PRINT"
932 IF (I.VSTI AND I.MCMI) THEN PRINT"
938 PRINT "Aux status word:"
940 IF (I.VAXI AND I.MPOI) THEN PRINT"
942 IF (I.VAX' AND I.MALI) THEN PRINT"
944 IF (I.VAXI AND I.MODI) THEN PRINT"
946 IF (1. VAXI AND I.MCn) THEN PRINT "
948 IF (I.VAXI AND I.MRCI) THEN PRINT"
950 IF (l.VAX' AND I.MBCI) THEN PRINT"
952 IF (I.VAX' AND I.MCKI) THEN PRINT"
980 RETURN

I Clear trigger bit

I !Status display

Aux status change"
Trigger occurred"
Key buffer empty"
Controller issued reset"
Last command complete"
Buffer dirty (modified)"
Buffer pointer moved"

Poll occurred
Alarm requested"
Display disabled (Inhibited)"
Cursor inhibited"
Reverse video cursor"
Blinking cursor"
Keyboard clicker enabled"

SAMPLES. BAS - Technical Analysis Corporation - 12-21-1982 20:02:15

50000 REM Initialize IRMA interface variables
50002 RESTORE 50036
50004 READ I.CRD',I.CWR',I.CACI,I.CCL',I.CKY'
50006 READ I.CSP',I.CXP'£,I.CMD',I.CTA'£,I.CIM'
50008 READ I.MAX',I.MTG'£,I.MKY'£,I.MXX'£,I.MPR'£
50010 READ I.MCC',I.MDI',I.MCM'
50012 READ I.MXXI,I.MPOI,I.MAL'£,I.MDD'£,I.MCI'£
50014 READ I.MRCI,I.MBCI,I.MCK'£
50016 READ I.RGO',I.RG11,I.RG2'£,I.RG3'£
50018 READ I.RST'£,I.RAKI,I.RAF,£
50020 READ I.MAT'£,I.MBS'£
50022 READ I.VER'£,I.VST'£,I.VRO'£,~.VCL%,I.VMS'£
50024 READ I.VVL'£,I.VFG'£,I.VSTS,I.VFLI,I.VTO'
50026 READ I.VT1'£,I.VT21,I.VT3'£,I.VSOS,I.VS1S
50028 READ I.VAX',I.VS2S,I.VS3S,I.VS4S,I.VS5S
50030 READ I.VS6S,I.VS7S,I.VS8S,I.VS9S,I.VT4'£
50032 READ I.VT5',I.VCB',I.VCE'£,I.VT8'£,I.VT9%
50034 READ I.VOO'£,I.VRRI,I.VFS'£,I.VTO'£
50036 DATA 0,1,2,3,4,5,6,7,8,9
50038 DATA 128,64,32,16,8,4,2,1
50040 DATA 128,64,32,16,8,4,2,1
50042 DATA &H220,&H221,&H222,&H223
50044 DATA &H226,&H227,&H227
50046 DATA 128,64
50048 DATA 0,0,0,0,0,0,0,"",0,0,0,0,0,"",""
S0050 DATA 0, II II I "" I II II I II II I II ", II" , II" I II II , 0
50052 DATA 0,0,0,0,0,0,0,0,5
50058 DEF SEG
50060 BLOAD "IRMATABS.OVR",VARPTRII.TAB,£IO))
50062 RETURN

50100 REM Power on reset simulation
50102 I.VER'£=O
50104 OUT I.RGO%,I.CXP,£
50106 GOSUB 58000
50108 RETURN

50200 REM Get slave status
50202 I.VER'£=O
50204 OUT I.RGO'£,I.CAC%
50206 GOSUB 58000
50208 l.VAXI=lNP(l.RG311
50210 1.VST,£=INPI I.RGO,£)

I IINIT - IRMASUBS Rev 1.01
, Point to initial values
, Load command numbers

, Main status masks

, Aux status masks

, Communication registers

, Handshake masks
, General variables

'.XPOR I I.VER')
, Reset error flag
I Set commmand in place
, Start & wait for slave

'*GSTAT I.VST'£, I.VER,£
, Reset error flag
, Get aux status & cursor
, Start & wait for slave
I Get aux
I Get main

SAMPLES. BAS - Technical Analysis Corporation - 12-21-1982 20:02:15

h0212 RETURN • Exit!

50300 REM Reset slave status bits
50302 I.VERl=O
50304 OUT I.RGOI.I.CCli
50306 OUT I.RG3l.I.VSTI
50308 GOSUB 58000
50310 RETURN

50400 REM Set trigger event & address
50401 1. VERl=O
50402 GOSUB 58200
50403 IF I.VERl(>O THEN RETURN
h0404 OUT I.RGOl.I.CTAI
50406I.VTOI=II.VCLl-ll+II.VROl*801
50408 OUT I.RG2'.I.VTOI\&Hl00
50410 OUT I.RG11.I.VTOI AND &HFF
50411 GOSUB 58000

'*RSTAT I I.VST'. I.VfRI
• Reset error flag
• Clear status command
• Status bits to clear
• Start & wait for slave
I Exitl

'*STDNM I I.VROI. I.VCli I
1. VMSI. 1. VVll

• Check row and column values
• Error if bad input

1. VERI
• Compute address
• High part of address
• low part of address
• Start slave

50412 IF III.VVlI OR I.VMS' I AND
50417 IF I.VERI(>O THEN RETURN
50418 OUT I.RGOl.I.CMDI

&HFFOOI(>O THEN I.VERI=4 : RETURN • Bad byte

50419 OUT I.RG11.I.VVlI
50420 OUT I.RG21.I.VMSI
50422 GOSUB 58000
50424 RETURN

50500 REM Wait for trigger event
50502 I.VERI=O
50504 I.VSOS=TIMES

• Give up if dead slave
• Setup mask & data
• Data
• Mask
• Set trigger.
• Exit!

'*WTRIG I I.VTOI. I.VERI
• Reset error flag
• Set the stopwatch

50506 IF IINPII.RGOII AND I.MTGII(>O
50508 I.VERI=10

THEN RETURN' All done!

50510 IF I.VTOI<O THEN RETURN
50512 IF I.VSOS=TIMES THEN 50502
50514 I.VTOI=I.VTOl-l
50516 GOTO 50502

50600
50602
50604
50606
50608
50610
50612

REM Send keystrokes from I.VSTS
I.VERt.=O
1.VTOI=LENIl.VSTSI
1. VTlI=l
WHILE 1. VTOI> 0

I.VT21=ASCIMIDSII.VSTS.I.VT11.11 I
IF I.VT21>0 THEN 50620

I Potential timeout.
I Time has run out.
I Still time. try again
I Drop a grain of sand.
I Do it some more.

'*KEYS I I.VSTS , I.VERI II
• Reset error flag
• Count of remaining chars
I Current pointer
• Only until none remain ...
I Get character value
• Not an extended code ...

SAMPLES. BAS - Technical Analysis Corporation - 12-21-1982 20:02:15

50614
50616
50618
50620
50622
50624
50626
50628
50630
50632
50634
50636
50638
50640
50642
50644
50646
50648
50650
50652
50654
50656
50658
50660

50700
50702
50703
50704
50706
50708
50710
50712
50714
50716
50718
50720
50722
50724
50725
50726
50727
50728

I.VTOI=I.VTOl-1 : I.VT11=I.VT11+1 ' Get set to eat next char
IF I.VTOI<l THEN 50658 ' EXIT if partial char
I.VT21=ASCIMIDSII.VSTS,I.VT11,l))+256 ' Offset into extended table

I.VT2'=I.TAB'II.VT21+&H200) , look up key codes
IF II.VT2' AND &HFF)=O THEN 50634 ' Skip shift key

I.VT3'=I.TAB'III.VT2' AND &HFF)+&H400)' Get scan code of shift
I.VT31=I.VT31 AND &H7F ' Strip up/dn control bit
GOSUB 58100 ' Transmit scan code
IF I.VERI=O THEN 50634 ' Skip error exit

I.VTOI=-l : GOTO 50658 ' Error on key attempt ABORT I
IF II.VT2' AND &HFFOO)=O THEN 50644 ' Handle possible lone shift

I.VT31=I.TAB'III.VT21\&H100)+&H400) 'Get scan code
GOSUB 58100 ' Transmit it.
IF I.VERI=O THEN 50644 ' Skip error exit

I.VTO'=-l : GOTO 50658 ' PUNT.
IF II.VT2' AND &HFF)=O THEN 50654 ' Skip shift key

I.VT31=I.TABIII I.VT21 AND &HFF)+&d400)' Get scan code of shift
GOSUB 58100 ' Transmit scan code
IF I.VERI=O THEN 50654 ' Skip error exit

I.VTOI=-l : GOTO 50658 ' Error on key attempt ABORT I
I.VTOI=I.VTOl-l ' One less character to send
I.VT11=I.VT11+1 ' Point to next character

WEND ' Do until done or error
RETURN

REM Find field I.VFLI '*FIND I I.VFlI, I.VCli))
I.VERI=O I.VROI, I.VERI)
IF II.VFLI<l) OR II.VFLI>1920) THEN I.VERI=7 : RETURN
I.VCEI=80 : I.VCBI=80 : I.BUFIIO)=&HCO 'Start at upper left
OUT I.RGOI,I.CRDI ' Preset the read command
IF I.VFLI=l THEN 50738 ' Default screen condition
I.VT1'=1 ' Current field number
OUT I.RG11,I.VCEI AND &HFF ' Low order address
OUT I.RG21,I.VCEI\&H100 ' High order address
GOSUB 58000 ' Start slave & wait
IF I.VER\()O THEN RETURN ' PUNT if read error.
I.VT21=INPII.RG31) , Get data
IF I.VT21<&HCO THEN 50730 ' Skip if not attribute

IF II.VT21 AND &H20)0 THEN 50730 ' Skip if protected
I.VCBI=I.VCEI ' Save start position
I.VT11=I.VT11+1 ' We've found the next field!
I.BUFIIO)=I.VT21 ' Init buffer attribute
IF I.VT11=I.VFLI THEN 50736 ' Exit the search loop

SAMPLES. BAS - Technical Analysis Corporation - 12-21-1982 20:02:15

50730 I.VCEI=I.VCEI+l
50732 IF I.VCEI>=2000 THEN I.VERI=7
50734 GOTO 50712
50736 I.VCEI=I.VCEI+l
50738 IF I.VCEI>=2000 THEN I.VERI=7
50740 I.VROI=I.VCEI\80
50742 I.VCLI=II.VCEI MOO 801+1
50744 I.VFSI=O
50746 OUT I.RG11,I.VCEI AND &HFF
50748 OUT I.RG21,I.VCEI\&H100
50750 GOSUB 58000
50752 IF I.VERI<>O THEN RETURN
50754I.VT21=INPII.RG311
50756 IF I.VT21>=&HCO THEN RETURN
50758 I.VFSI=I.VFSI+1
50760 I.VCEI=I.VCEI+1
50762 IF I.VCEI>=2000 THEN RETURN
50764 GOTO 50746

50800 REM Find NEXT field I.VFlI+1
50801 I.VERI=O
50802 I.VT11=I.VFLI : I.VFLI=I.VFLI+1

RETURN

RETURN

50804 IF I.VCEI<80 THEN I.VERI=11 : RETURN
50806 IF I.VCEI>=2000 THEN I.VERI=7 : RETURN
50808 OUT I.RGOI,I.CRDI
50810 OUT I.RG11,I.VCEI AND &HFF
50812 OUT I.RG21,I.VCEI\&Hl00
50814 GOSUB 58000
50816 IF I.VERI>O THEN RETURN
508201.VT91=INPII.RG311
50822 IF 1. VT91<&HCO THEN 1. VERI=11 RETURN
50830 GOTO 50712

50900 REM Read field
50902 I.VERI=O : I.VT21=0
50904 IF I.VCBI=80 THEN 50924
50906 IF I.VCBI<80 THEN I.VERI=ll
50908 IF I.VCBI>=2000 THEN I.VERI=ll
50910 OUT I.RGOI,I.CRDI
50912 OUT 1.RG11,I.VCBI AND &HFF
50914 OUT 1.RG21,I.VCBI\&Hl00
50916 GOSUB 58000
509181.VT31=INPII.RG311

, Try next location
, Field not found anywhere!
, Read the next character
, Point to first char of field
, Field at last col/row
, Make the row number
, And column number
, length of field
, Low order address
, High order address
, Start read operation
, Quit if slave is dead
, Get data
, Next attribute found
, Count the chars in field
, Point to next char
, Ran off end of screenl
, Continue eating chars

'*FNEXT I I.VFlI, I.VClI, I
I I.VROI, I.VERI I

, Next field
, Illegal cursor value
, No next field.
, Set read command in place
, Low order address
, High order address
, Get data at current position
, Give up if slave dead
, This should be attribute
, Invalid cursor position
, Enter general FIND code

'*RDFLD I I.VERI II.VClI, I
, Reset error flag & buffer ptr
, Special case of upper corner
, Invalid start address
, Beyond end of screen
, Set read command
, low order address
I High order address
, Read the leading attribute
, Data word

SAMPLES. BAS - Technical Analysis Corporation - 12-21-1982 20:02:15

50920 IF II.VT31 AND &HEOI<>&HCO THEN I.VERi=5
50922 GOTO 50930
50924 1. VT2i=1
50926 I.BUFIIOI=&HCO
50930 OUT I.RGOI,I.CRDi
50934 WHILE I.VT2\<=I.VFSI
50936 I.VT9\=I.VT21+I.VCBi
50938 IF I.VT9\>=2000 THEN I.VERI=ll
50940 OUT I.RGli,I.VT91 AND &HFF
50942 OUT I.RG2i,I.VT9i\&Hl00
50946 GOSUB 58000
50948 IF I.VERi=O THEN 50960
50950 I.VT21=9999
50952 GOTO 50970

GOTO

RETURN ' Bad field type
, Scan and eat field
, Increment buffer pointer
, Fake attribute
, Setup the read command
, Until out of characters
, Offset to character

50950 ' bad field specs
, Set low address
, High address
, Xecute read operation
, Abort if slave dead
, Exit loop

50960 I.BUFIII.VT211=CVIICHRSIINPII.RG3111+CHRSIINPII.RG2111I
50962 I.VT21=I.VT21+1 ' Point to next location
50970 WEI'V
50972 RETURN

51000 REM Write field
51002 I.VERI=O
51004 IF I.VCBI<80 THEN I.VER'=ll
51006 IF I.VCBi>=2000 THEN I.VERI=ll
51008 IF I.VCBI+I.VTli>2000 THEN I.VERI=12
51010 IF I.VER'<>O THEN RETURN
51012 OUT I.RGO',I.CRD'
51014 OUT I.RG11,I.VCBI AND &HFF
51016 OUT I.RG21,I.VCBi\&H100
51018 GOSUB 58000
51020 IF I.VERI<>O THEN RETURN
51022 IF IINPII.RG311 AND &HFEI<>II.BUFIIOI
51024 I.BUFlIOI=I.BUF'IOI OR 1
51026 I.VT21=0
51028 IF II.BUFlIOI AND &H101=0 THEN 51052
51030 1.VT2'=1
51032 WHILE I.VT2'<=I.VT1'
51034 l.VTOI=l.BUFIlI.VT211 AND &HFF

, All done

'*WRFLD I I.VER' II.VCl', I
, Reset error flag
, Illegal address
, Too large
, Field too long for screen
, Quit if bad parameters
, Read attribute from screen
, Low address
, High address

, Xecutel
, Abandon if dead slave

AND &HFEI THEN 1.VERI=13 : RETURN
, Set the MDT flag
, First byte of buffer to write
, Check for numeric only
, First buffer location to chk
, Do until all chars done

51036 IF I.VTOi>=&H20 THEN IF I.VTOI<=&H29
, Mask off any previous EAB

THEN 51048 ' 0-9 is Ok
51038 IF I.VTOI=&H31 THEN 51048
51039 IF I.VTOI=&H32 THEN 51048
51040 IF I.VTOI=&H35 THEN 51048
51042 I.VERi=6 : I.VT2i=9999
51048 I.VT21=I.VT2'+1

, Minus Ok
, Period Ok
, Plus Ok
, "Non-numeric" char
, Next character

SAMPLES. BAS - Technical Analysis Corporation - 12-21-1982 20:02:15

51050
51052
51054
51056
51058
51060
51062
51064
51066
51068
51070
51072
51074

WEND
1. VT2t.=O
OUT I.RGOI.I.CWRI
WHILE I.VT21<=I.VFSI

I.VTO'=I.VCBI+I.VT21
OUT I.RG11.I.VTOI AND &HFF
OUT I.RG21.I.VTOI\&Hl00
OUT I.RG31.I.BUFIII.VT211 AND &HFF
GOSUB 58000
IF I.VERI<>O THEN I.VT21=9999
I.VT21=I.VT21+1

WEND
RETURN

b1100 REM Get string from buffer
51105 1.VERI=0 : I.VT21=0
51108 IF 1.VOOI>1920 THEN I.VERI=12 : RETURN
51110 IF I.VOOI<O THEN I.VERI=12 : RETURN
51112 1. VSTS=""
51114 WHILE Il.VOOI<=I.VFSII AND II.VT21=01

, Loop
, Start from the beginning
, Set write command
, Until all characters written
, Compute address
, Low address
• High address
, Data wlo EAB
, Make slave do it.
, Force exit if slave DOA
, Next location to write
, Do it again
, All done!

'*GSTRI I.VSTS. I.VT1'
I.VTO'

• Offset too large
, Offset negative
, Clear string

51116 I.VSTS=I.VSTS+CHRSII.TABII II.BUFIII.VOOII AND &HFFI+&Hl0011
51118 I.VOOI=I.VOOI+l • Point to next char
51120 IF LENII.VSTSI=254 THEN I.VT21=1 ' Overrun
51122 WEND
51126 RETURN

51200 REM Put string in buffer '*PSTRI I.VSTS. I.VT1'
51202 I.VERI=O I.VTOI I
51204 IF 1.VOOI+LENI1.VSHI-1>I.VFSI THEN I.VERI=12 : RETURN' Too long
51206 I.VT31=LENII.VSTSI : IF I.VT31=0 THEN RETURN' Zero strings easy!
51208 I.VT21=0 ' Offset into buffer
51210 WHILE I.VT21<I.VT31 ' While still characters
51212 I.BUFIII.VOOI+I.VT211=I.TABIIASCIMIDSII.VSTS.I.VT21+1.111+&HOI
51214 1. VT21=I. VT21+1 • Move pointer
51216 WEND
512181.VOOI=I.VOOI+I.VT21 ' Pointer for next
51220 RETURN ' Transfer complete

51300 REM Read screen absolute
51302 I.VERI=O
51304 I.VTOI=I.VROI*80+I.VCLI-1
51306 IF I.VTOI<O THEN I.VERI=11 : RETURN
51308 IF I.VTOI>=2000 THEN I.VERI=11 : RETURN

'*ABSRD I I.VERI. I.VSTS.
I.VSOS. I.VROI.
I.VCLI. I.VRRI I

, Invalid cursor address

SAMPLES. BAS - Technical Analysis Corporation - 12-21-1982 20:02:15

51310 IF I.VTOI+I.VRRI)2000 THEN I.VERI=12 : RETURN' Can't read that much
b1312 I.VT11=0 : I.VST$="" : I.VSO$="" , Offset from start
51314 OUT I.RGO',I.CRDI : I.VT21=I.VTOI+I.VRRI 'Set a read commnad
51316 WHILE I.VTO'<I.VT2' ' Until all characters read
51318 OUT I.RG1',I.VTOI AND &HFF ' low order address
51320 OUT I.RG21,I.VTO"&H100 ' High order address
51322 GOSUB 58000 ' Execute read operation
51324 IF I.VER'<)O THEN I.VTOI=9999 ' Force loop exit
51326 I.VST$=I.VST$+CHR$II.TABIIINPII.RG3'1+&H1001I' Get char & convert
51328 I.VSO$=I.VSO$+CHR$IINPII.RG2111 ' Unmodified EAB
51340 I.VTO'=I.VTOI+1 ' Next character
51342 WEND
51344 RETURN

51400 REM Read 3278 cursor position
51402 I.VERI=O
51406 OUT I.RGOI,I.CACI
51408 GOSUB 58000
51410l.VTO'=IINPII.RG211*&H1001+INPII.RG111
51411 IF I.VERI<)O THEN RETURN
51412 I.VROI=I.VTO"80
51414 I.VClI=II.VTOI MOD 801+1
51416 RETURN

'*CPOSI I.VROI, I.VCl',
I.VER'

, Status & cursor read
, Start the slave
, Get absolute address
, Dead slave, quit action
, Compute row
, And column

SAMPLES. BAS - Technical Analysis Corporation - 12-21-1982 20:02:15

58000 REM Start & wait for slave
58002 I.VS9$=TIME$: I.VT9J=0
58004 OUT l. RSn, 0
58006 l.VT81 = INP(I.RAF'£) AND 1.MBSJ
58008 IF l.VT8' = 0 THEN RETURN
58010 IF I.VS9S=TIMES THEN 58006
58012 I.VS9S=TIME$: I.VT9J=I.VT9J+l
58014 IF I.VT91<3 THEN 58006
58016 I.VERI=l
58018 RETURN

58100 REM Send key scan code from I.VT3J
58102 l.VS9S=TIMES : I.VT9J=0
58104 IF (INP(I.RGOII AND I.MKYJ»O THEN 58114
58106 IF I.VS9S=TIMES THEN 58104
58108 I.VT91=I.VT91+1 : IF I.VT9J<4 THEN 58104
58110 1. VERI=9
58112 RETURN
58114 IF I.VT3'=0 THEN I.VERJ=15 RETURN
58115 OUT I.RGO',I.CKY'
58116 OUT I.RG3',I.VT3'
58118 GOSUB 58000
58120 RETURN

'!Start & wait for slave
I A simulated stopwatch
I Start the slave
, Get slave busy bit
, Return with command complete
, Loop until clock ticks
, Three times

I Slave timeout

'*Send key scan code
, Make stopwatch
, Key buffer is ready
, Loop until clock tick
, Time has not run out
, Keystroke timeout

, Invalid scan code
, Keystroke command
, Scan code
, Fire up the slave
, And we're done!

58200 REM - Verify Rowand Column '*Verify ROW/COL
58206 IF (I.VROI<O) OR (I.VRO'>24) THEN I.VERI=2 RETURN
58208 IF (I.VCLI<l) OR (I.VCLJ>80) THEN I.VERJ=3 : RETURN
58210 RETURN

lRMATABS.BAS - Technical Analysis Corporation - 12-21-1982 17:33:44

100 PRINT "Building IRMATABS.OVR for IRMASUBS package"
110 DEFlNT A-Z
115 DEF SEG
120 DIM I.TAB\112791
130 RESTORE
135 FOR I.VTOI=O TO 1279
140 READ I.TABIII.VTOII
145 NEXT

, 256+256+512+256

200 BSAVE HIRMATABS.OVR",VARPTRII.TABIIOII,2560 ' Save the whole array
210 PRINT "Build complete. "
220 NEW
300 REM Offsets into I.TAB' are as follows:
302 REM
304 REM
306 REM
308 REM
310 REM
312 REM
320 REM

000 - ASCII to buffer code table
256 - Buffer code to ASCII table
512 - Normal keycodes to key no.
768 - Extended keycodes to key no.

1256 entrysl
1256 entrysl
1256 entrysl
1256 entrysl
1256 entrysl 1024 - Key number to scan code

59600 OATA &hOOOO,
59601 DATA &hOOOO,
59602 DATA &hOOOO,
59603 DATA &hOOOO,
59604 DATA &hOOOO,
59605 DATA &hOOOO,
59606 DATA &h001A,
59607 DATA &hOOBF,
59608 DA1A &h0020,
59609 DATA &h0026,
59610 DATA &h0009,
59611 DATA &hOOA1,
59612 DATA &hOOA7,
59613 DATA &hOOAD,
59614 DATA &hOOB3,
59615 DATA &hOOB9,
59616 DATA &h003D,
59617 DATA &h0085,
59618 DATA &h008B,
59619 DATA &h0091,
59620 DATA &h0097,
59621 DATA &h003B,
59622 DATA &hOOOO,
59623 DATA &hOOOO,
59624 DATA &hOOOO,

&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,
&h002E,
&h0035,
&h0021,
&h0027,
&h0011,
&hOOA2,
&hOOA8,
&hOOAE,
&hOOB4,
&hOOOB,
&h0080,
&h0086,
&h008C,
&h0092,
&h0098,
&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,

&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,
&h0010,
&h0030,
&h0033,
&h0022,
&h0028,
&h0008,
&hOOA3,
&hOOA9,
&hOOAF,
&hOOB5,
&h0015,
&h0081,
&h0087,
&h008D,
&h0093,
&h0099,
&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,

&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,
&h0019,
&h0012,
&h0031,
&h0023,
&h0029,
&h0018,
&hOOM,
&hOOAA,
&hOOBO,
&hOOB6,
&hOOOA,
&h0082,
&h0088,
&h008E,
&h0094,
&hOOOF,
&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,

&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,
&h003C,
&hOOOD,
&h0032,
&h0024,
&h0034,
&h002D,
&hOOA5,
&hOOAB,
&hOOBl,
&hOOB7,
&h0036,
&h0083,
&h0089,
&h008F,
&h0095,
&h0017,
&hOOOO,
&hOOOO,
&hOOOO,
&hOOOO,

&hOOOO
&hOOOO
&hOOOO
&hOOOO
&hOOOO
&h002C
&hOOOC
&h0014
&h0025
&hOOBE
&hOOAO
&hOOA6
&hOOAC
&hOOB2
&hOOB8
&h002F
&h0084
&h008A
&h0090
&h0096
&hOOOE
&hOOOO
&hOOOO
&hOOOO
&hOOOO

~

~ IRMA TABS. BAS - Technical Analysis Corporation - 12-21-1982 17:33:44

:.: 59625 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
> 59626 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
I 59627 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

""" 59628 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO ... 59629 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59630 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59631 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59632 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59633 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59634 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59635 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59636 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59637 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59638 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59639 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59640 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59641 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59642 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO
59700 DATA &h0020, &h0020, &h0020, &h0020, &h0020, &h0020 ' EBCDIC
59701 DATA &h0020, &h0020, &h003E, &h003C, &h005B, &h005D
59702 DATA &h0029, &h0028, &h007D, &h007B, &h0020, &h003D
59703 DATA &h0027, &h0022, &h002F, &h005C, &h007C, &h007C
59704 DATA &h003F, &h0021, &h0024, &h0063, &h006C, &h0079
59705 DATA &h0070, &h006F, &h0030, &h0031, &h0032, &h0033
59706 DATA &h0034, &h0035, &h0036, &h0037, &h0038, &h0039
59707 DATA &h0062, &h0073, &h0023, &h0040, &h0025, &h005F
59708 DATA &h0026, &h002D, &h002E, &h002C, &h003A, &h002B
59709 DATA &h002D, &h005F, &h002E, &h0020, &h005E, &h007E
59710 DATA &h0022, &h0060, &h0027, &h0035, &h0061, &h0065
59711 DATA &h0069, &h006F, &h0075, &h0061, &h006F, &h0079
59712 DATA &h0061, &h0065, &h0065, &h0069, &h006F, &h0075
59713 DATA &h0075, &h0063, &h0061, &h0065, &h0069, &h006F
59714 DATA &h0075, &h0061, &h006F, &h0079, &h0061, &h0065
59715 DATA &h0065, &h0069, &h006F, &h0075, &h0075, &h0063
59716 DATA &h0041, &h0045, &h0049, &h004F, &h0055, &h0041
59717 DATA &h004F, &h0059, &h0041, &h0045, &h0045, &h0049
59718 DATA &h004F, &h0055, &h0059, &h0043, &h0041, &h0045
59719 DATA &h0049, &h004F, &h0055, &h0041, &h0045, &h0049
59720 DATA &h004F, &h0055, &h0041, &h0045, &h0049, &h004F
59721 DATA &h0055, &h004E, &h0061, &h0062, &h0063, &hOO64
59722 DATA &hOO65, &hOO66, &hOO67, &h0068, &hOO69, &hOO6A
59723 DATA &hOO6B, &hOO6C, &hOO6D, &h006E, &h006F, &h0070
59724 DATA &h0071, &h0072, &h0073, &h0074, &h0075, &h0076
59725 DATA &h0077, &h0078, &h0079, &h007A, &h0061, &h006F

IRMATABS.BAS - Technical Analysis Corporation - 12-21-1982 17:33:44

59726 DATA &h0061, &h0063, &h003B, &h002A, &h0041, &h0042
59727 DATA &h0043, &h0044, &h0045, &h0046, &h0047, &h0048
59728 DATA &h0049, &h004A, &h004B, &h004C, &h004D, &h004E
59729 DATA &h004F, &h0050, &h0051, &h0052, &h0053, &h0054
59730 DATA &h0055, &h0056, &h0057, &h0058, &h0059, &h005A
59731 DATA &h0041, &h004F, &h0041, &hOO43, &hOO3B, &hOO2A
59732 DATA &h0020, &h0020, &h0020, &h0020, &hOO20, &h0020
59733 DATA &h0020, &h0020, &hOO20, &h0020, &h0020, &h0020
59734 DATA &h0020, &h0020, &h0020, &h0020, &h0050, &h0053
59735 DATA &hOO41, &h001E, &h0042, &h0036, &h0010, &hOO16
59736 DATA &h001A, &hOOE9, &hO!)06, &hOO01, &h0042, &hOO03
59737 DATA &hOOA8, &hOODB, &h0020, &h0020, &h0020, &h0020
59738 DATA &h0020, &h0020, &h0020, &h0020, &h0020, &h0020
59739 DATA &h0020, &h0020, &h0020, &h0020, &h0020, &h0020
59740 DATA &hOO15, &hOO17, &h005A, &h005F, &hOO09, &hOOOA
59741 DATA &h0058, &hOO16, &h001B, &h0025, &hOOFB, &hOOB7
59742 DATA &h0034, &h0041, &hOOE9, &hOO02
59800 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59801 DATA &hOOOO, &hOOOO, &h1000, &h1500, &h3400, &hOOOO
59802 DATA &hOOOO, &h4COO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59803 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59804 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59805 DATA &hOOOO, &hOOOO, &h4AOO, &h2039, &h3239, &h0639
59806 DATA &h0739, &h0839, &hOA39, &h3200, &hOC39, &hOD39
59807 DATA &hOB39, &hOF39, &h4200, &hOEOO, &h4300, &h4400
59808 DATA &hODOO, &h0400, &h0500, &h0600, &h0700, &h0800
59809 DATA &h0900, &hOAOO, &hOBOO, &hOCOO, &h3139, &h3100
59810 DATA &h3AOO, &hOFOO, &h3A39, &h4439, &h0539, &h2839
59811 DATA &h3F39, &h3D39, &h2A39, &h1839 , &h2B39, &h2C39
59812 DATA &h2D39, &hlD39 , &h2E39, &h2F39, &h3039, &h4139
59813 DATA &h4039, &h1E39, &h1F39, &h1639, &h1939, &h2939
59814 DATA &h1A39, &h1C39, &h3E39, &h1739, &h3C39, &h1B39
59815 DATA &h3B39, &h0439, &h2100, &h2000, &h0939, &hOE39
59816 DATA &h0300, &h2800, &h3FOO, &h3DOO, &h2AOO, &h1800
59817 DATA &h2BOO, &h2COO, &h2DOO, &hlDOO, &h2EOO, &h2FOO
59818 DATA &h3000, &h4100, &h4000, &h1EOO, &h1FOO, &h1600
59819 DATA &h1900, &h2900, &h1AOO, &h1COO, &h3EOO, &h1700

~ 59820 DATA &h3COO, &h1BOO, &h3BOO, &h3300, &h2139, &h3339
~ 59821 DATA &h0339, &h1000, &hOOOO, &hOOOO, &hOOOO, &hOOOO

~ 59822 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59823 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

> 59824 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
I 59825 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

""'" 59826 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO u..

~ IRMATABS.BAS - Technical Analysis Corporation - 12-21-1982 17:33:44
~ a: 59827 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

> 59828 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

I 59829 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
~ 59830 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
0\ 59831 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

59832 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59833 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59834 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59835 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59836 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59837 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59838 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59839 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59840 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59841 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59842 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59843 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59844 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59845 DATA &hOOOO, &h2200, &h4DOO, &h4EOO, &h4FOO, &h5000
59846 DATA &h5100, &h5200, &h5300, &h5400, &h5500, &h5600
59847 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &h5700, &h5800
59848 DATA &h464B, &h474B, &h1100, &h1200, &h114B, &h124B
59849 DATA &h234B, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59850 DATA &h3B4B, &h3C4B, &h3D4B, &h3E4B, &h3F4B, &h404B
59851 DATA &h414B, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59852 DATA &hOOOO, &hOOOO, &hOOOO, &h0100, &h024B, &h1300
59853 DATA &h14~B, &h2500, &h2600, &h3700, &h3800, &h3400
59854 DATA &h4800, &hOOOO, &hOOOO, &h224B, &h3500, &h2700
59855 DATA &hOOOO, &h4600, &hOOOO, &h4700, &hOOOO, &hOOOO
59856 DATA &h3600, &h3900, &h2300, &h2400, &hOOOO, &hOOOO
59857 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59858 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59859 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59860 DATA &h014B, &h0200, &h134B, &h1400, &h254B, &h264B
59861 DATA &h374B, &h384B, &hOOOO, &h484B, &hOOOO, &h464B
59862 DATA &h474B, &hOOOO, &hOOOO, &h5900, &h044B, &h054B
59863 DATA &h064B, &h074B, &h084B, &h094B, &hOAltB, &hOB4B
59864 DATA &hOC4B, &hOD4B, &hOE4B, &hOF4B, &hOOOO, &hOOOO
59865 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59866 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59867 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59868 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59869 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59870 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

IRMA TABS. BAS - Technical Analysis Corporation - 12-21-1982 17:33:44

59871 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59872 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59873 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59874 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59875 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59876 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59877 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59878 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59879 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59880 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59881 DATA &hOOOO, &hOOOO, &hOOOO., &hOOOO, &hOOOO, &hOOOO
59882 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59883 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59884 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59885 DATA &hOOOO, &hOOOO
59890 DATA &HOOOO ' SCODE
59900 DATA &h0050, &h0051, &h003D, &h0021, &h0022, &h0023
59901 DATA &h0024, &hOO25, &h0026, &h0027, &h0028, &h0029
59902 DATA &h0020, &h0030, &hOOll , &h0031, &h005F, &h005E
59903 DATA &h0052, &h0053, &h0036, &h0070, &h0076, &h0064
59904 DATA &h0071, &h0073, &h0078, &h0074, &h0068, &h006E
59905 DATA &h006F, &h001B, &hOO15, &h0035, &hOOOC, &hOOOD
59906 DATA &hOO54, &h0055, &hOOCC, &h0060, &h0072, &h0063
59907 DATA &h0065, &hOO66, &h0067, &h0069, &h006A, &h006B
59908 DATA &h007E, &hOO12, &hOOOF, &hOO08, &hOOOE, &hOO13
59909 DATA &h0056, &h0057, &hOOCD, &hOO09, &h0079, &h0077
59910 DATA &h0062, &h0075, &hOO61, &h006D, &h006C, &h0033
59911 DATA &h0032, &hOO14, &hOOCE, &hOO16, &h001A, &h0034
59912 DATA &h0034, &h0010, &hOOCF, &hOO18, &hOO40, &h0041
59913 DATA &h0042, &hOO43, &hOO44, &h0045, &h0046, &h0047
59914 DATA &h0048, &h0049, &h004A, &h004B, &hOOOO, &hOOOO
59915 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
b9916 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59917 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59918 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59919 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59920 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

~
59921 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

~ 59922 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

3: 59923 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59924 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

> 59925 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
I 59926 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
~ 59927 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
.......

~

:::c
~ IRMATABS.BAS - Technical Analysis Corporation - 12-21-1982 17:33:44
>
I 59928 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
~ 59929 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
00 59930 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO

59931 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59932 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59933 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59934 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59935 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59936 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59937 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59938 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59939 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59940 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59941 DATA &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO, &hOOOO
59942 DATA &hOOOO, &hOOOO, &hOOOO

APPENDIXB

Limited Product Warranty

Technical Analysis Corporation (TAC) warrants the Decision
Support Interface™, IRMA™, product hardware, with the exception
of the supplied diskette, to be free from defects in material and
workmanship under normal, proper and intended use in its
unmodified condition for one year from the date of purchase by the
first End User. TAC's sole obligation under this hardware warranty
shall be to furnish parts and labor for the repair or replacement of the
product found by TAC to be defective in material or workmanship
during the warranty period. This obligation applies only to the first
End User Purchaser of the product and does not apply to subsequent
purchasers through resale by the first End User.

Warranty repairs will be performed at the point of manufacture.
Equipment authorized by T AC for return for warranty service shall
be accompanied by a written description of the defect, returned
postpaid to the TAC factory and upon repair or replacement will be
redelivered by TAC freight prepaid to the End User. The warranty of
TAC does not cover normal wear and tear, or damage caused by
accident, negligence, vandalism, alteration, abuse, misuse, improper
installation, environmental stress, or acts of God.

The diskette supplied with the product is covered by the above
provisions for a period of thirty days. The End User is responsible for
making adequate copies of the diskette for back-up and recovery
should a diskette be damaged by the diskette drive mechanism or by
improper handling of the diskette.

TAC warrants that the product firmware will conform to TAC's
product specifications prevailing at the time of product delivery to
the first Purchaser of the product. This firmware warranty makes no
claim of compatibility with equipment or software supplied or to be
supplied in the future by others.

(Continued on Reverse Side)

IRMA-l

Software contained on the diskette supplied with the product is
provided to the End User as a convenience; it has been placed in the
Public Domain by T AC and therefore, comes with no warranty of
any kind.

Generally distributed firmware updates will also be supplied during
the warranty period to those End Users who return their
FIRMWARE/SOFTWARE UPDATE REGISTRATION card to
TAC.

THIS EXPRESS LIMITED WARRANTY IS IN LIEU OF ALL
OTHER WARRANTIES EXPRESS OR IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE OR USE. TAC SHALL NOT
BE LIABLE FOR ANY DAMAGES SUSTAINED BY
PURCHASER OR ANY OTHER PARTY ARISING FROM OR
RELATING TO THE USE OR PERFORMANCE OF THE
PRODUCT, OR TO ANY EQUIPMENT FAILURE,
INCLUDING, BUT NOT LIMITED TO CONSEQUENTIAL
DAMAGES, NOR SHALL TAC HAVE ANY LIABILITY FOR
DELAYS IN REPLACEMENT OR REPAIR OF RELATED
EQUIPMENT OR THE TAC PRODUCT.

IRMA-2

Information Request

In order to provide complete and accurate documentation, your
comments would be greatly appreciated. You are encouraged to
report any discrepancies found in this or any other TAC
manual. T AC will expend its best effort to investigate and
take corrective action on any verified errors.

1. Was the documentation easy to read? If it was not, please indicate
confusing sections.

2. Were you able to find information easily? If not, indicate the
information that was difficult to find.

3. Were the technical terms defined adequately? List any
which were not.

4. Was the information accurate? List any discrepancies.

5. Was the documentation complete in its information? List any
area where further discussion was needed.

6. General comments:

IRMA-3

TECHNICAL ANALYSIS CORPORATION
120 W. WIEUCA RD., N.E.

ATLANTA, GA. 30042 U.S.A.

SOFTWARE UPDATE #1

Revision 1.08, released February 7, 1983, offers two significant
enhancements. The first enhancement supports the PC-DOS MODE
command screen centering commands. E78 now recognizes the
information made available by the MODE command and uses it
appropriately. This will be helpful to users with some types of non­
IBM monitors which were reported to have centering problems.

The second enhancement allows the user to save as many as nine
screen images for later review or recall. This feature requires that
E78 be called with a new command sequence. If the old sequence is
used, the emulator program will work as before with no screen
images available to the user. The new calling sequence is:

E78/n <filename>

where n is the number of screen images the user wishes to have
available. If memory is insufficient for the number of screen images
requested, E78 allocates as many as will fit. This number is
particularly important when E78 is to be made resident. Each screen
image allocated to the resident emulator requires 4K bytes (4096
bytes) of system memory in addition to the normal memory
consumed by the resident emulator.

In the case where both a resident and non-resident emulator are both
active, E78 will share previously allocated resident buffers. For
example, the resident E78 has allocated two screen images and the
non-resident E78 has allocated five. In this case screen images one
and two would be resident and three through five would be non­
resident.

The new sequences for accessing the screen image feature are
described below:
CONTROL & END Provides for the selection of the screen

image to be used. The prompt: Select
screen memory for STORE will appear
on the status line. Press a number key
(1-9) to select the screen image. This
command does not affect the screen
currently displayed.

END Provides the means to RECALL and
display a screen image. The prompt:
Select screen memory for RECALL will
appear on the status line. Press a
number (0-9) to select. Zero is used
here to select the current 3278 screen.

F or the functions press the key or keys listed on the left to use these
features.

While a screen image is being displayed, the message 'Screen
memory n' will be displayed at the right most end of the status line
indicating that screen image 'n' (1-9) is being displayed. Error
messages will appear briefly on the status line for the following
conditions:

- Memory not allocated

- Memory empty

- Invalid number (not 1-9)

To go back to displaying the current 3278 screen after a screen image
has been recalled, press the 'RECALL' key (IBM's END key)
followed by the digit O. Pressing any key that causes a character to be
sent to the host computer/controller will also cause the display to
revert back to the current 3278 screen. These keys include all keys
except those which change screen modes or keys which have no
current function (dead keys).

Display rhode function keys may be used to view the recalled screens
in all the modes available to the normal screen. Be aware that saving
a screen with non-displayed fields present, such as passwords, will
allow someone to later recall that screen with the password displayed.
Users should be cautioned against STOREing screens containing
privileged or secure information in non-displaying fields.

November 2, 1983
IRMA UPDATE - PRELIMINARY

REVISION NOTICE
Revision 1.25 of E78 supercedes all previous
revisions of the E78 program. Revision 1.25 is
an enhancement of the earlier revision of 1.10
which was released in February, 1983.

Revision 1.25 fixes the two known bugs left in
1. 10, screens with no attributes and screens
being displayed backwards. The first bug
occasionally caused screens which contained no
attribute characters to be treated as a
non-displayed field. E78 now properly handles
this situtation. The second bug, in rare
instances, caused E78's screen buffer to be
displayed backwards when entered as resident
from some programs. Running full screen
programs, such as spread sheets and full
screen text editors aggravated the problem.

Revision 1. 25 contains many new features and a
new program "GENX" has also been included in
the release to provide users a simple approach
to modifying the E78 program which does not
require modif~ing the assembl~ language E78
program. In addition to the GENX program, file
transfer utilities for VM/CMS and VMS/TSO
operating systems are also included on the
same diskette as the executable E78 program.
Features added in this revision include the
following:

MOD 4 screen support (SOX43). (IBM PC OR
PC/XT MUST BE EOUIPED WITH A REVISION C
IRMA BOARD.)

File transfer utilities for eMS and TSO

IRMA UPDATE - 1

November 2, 1983
IRMA UPDATE - PRELIMINARY

are now included on the executable E78
diskette.

Revision 1. 25 also remedies the problems
with the screen RECALL ~unction.

Light pen support ~or applications
requiring the IBM 'Selector Pen'. This
feature requires that the E78 be used
with the IBM Color Display Adapter and a
light pen which connects to the display
adapter such as the one sold b~ FTG Data
Sy sterns.

Support
types,
used

o~ all 16 possible IBM ke~board

including IBM 'Reserved' types
by IBM for custom ke~boards.

Two ke~board layouts are also provided.
The standard default ke~board was
designed to accommodate the combination
o-F APL and 3278 -Functions. The
selectable optional keyboard is the same
layout as was initiall~ released with
IRMA. (Pre-I. 20 keyboard) Both of these
keyboards are compatible with so-Ftware
previously developed for IRMA.

ASYNC character input support. This
feature allows data entry to IBM
mainframes using character serial
devices attached to the PC COMt: RS-232
ASYNC card. The interface supports such
options as barcode or OCR readers and
touch input screens, such as the screen
manufactured by Touch Technoloy.

IRMA UPDATE - 2

November 2, 1983
IRMA UPDATE - PRELIMINARY

Complete keyboard reconfiguration
ability. All E78 keyboard sequences are
now controlled by simple tables which
may be user modified through the GENX
utility. (Instructions for this
procedure are available upon request
from the IRMA Technical Support Group.)

Support of IBM APL-I character set and
keyboard when using a display adapter
equipped with TAC or STSC's APL*PLUS/PC
(Trademark of STSC, Inc.) character
generator ROM. In order to support the
3278 and APL functions, the user should
NOT select the pre-t.20 keyboard.

Support of 32 line screens. E78 may be
configured to appear to the mainframe as
a model 2 (24x80) or model 3 (32x80)
3278 or 3279 with full seven color
support. Screens longer than 32 lines
are handled by scrolling key functions
and an automatic cursor tracking system.

Support of PC 'look-similars' using 8086
processors, such as the Eagle 1600.
Also included is support for hybrid
COLOR/MONOCHROME screens, such as used
on the COMPAG portable computer. An
option to accomodate the PCXT monochrome
cursor is also included.

A program function is provided to
completely disable the display of
NON-DISPLAY type fields even when the
'Display Attributes and Non-Display
Fields' mode is selected.

IRMA UPDATE - 3

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

GENX, a generic menu driven program,
provide5 the U5er with the ablit~ to
cU5tomize the . EXE type progT'am~. The
GENX program can be used to create
customized versions o~ E78 with
specialized keyboard, coloT', and
communications defaults.

E78 can now be made resident upon
execution. With this ~eatuT'e an
'auto-resident' E78 could be placed in
the AUTOEXEC. BAT file to make the E78
programs instantly available after
ma chi n e ~ taT' t up.

IRMA UPDATE - 4

GEHX

November 2, 1983
IRMA UPDATE - PRELIMINARY

The GENX utility allows the user to configure
IRMA to accommodate features and function
modes that best suit his/her system
requirements. Calibrating the LIGHT PEN,
enabling COMt: inputs, setting screen and
keyboard types, and selecting PC 'look
similar' modifications are all handled by the
GENX program.

The standard GENX menu provided with this E78
release includes menu items to select all
possible keyboards. It should be noted,
however, that selecting a specific keybo.rd
does not necessarily mean that the resulting
keyboard configuration is useful. For example,
~EXT and APL keyboards should not be selected
unless an extended character set is installed
in the display adapter board. If one of these
keyboards is selected without having the
character set installed, the TEXT and APL
special characters will be di~played as
musical notes and game symbols. Selecting
either of the DATA ENTRY keyboards moves the
numeric and PF keys into bizarre locations.
Making this particular keyboard funtionabla
requires several decisions to be made. These
decisions are based on the specific
applications involved and the layout of the PC
keyboard versus the 3278 keyboard. If DATA
ENTRY keyboards are essential to the
application, instructions for altering the
keyboard and adding menu options are available
upon request from the IRMA Technical Support
Group.

IRMA UPDATE - 5

November 2, 1983
IRMA UPDATE - PRELIMINARY

The GENX program is executable in two ~orms
One ~ormat is ~or the general user who wants
to make use of the normal defaults without
altering the ke~board mappings or altering the
E78 program to accommodate unique
requirements. The second format is for those
users who require special configurations that
are not included in the default selections.
The following discussion describes the first
~ormat. The second format is discussed in
detail in "Application Note GENX". This
second format is for use primarily in creating
specialized ke~board and menu items.

GENX presents the user with a menu of options.
The user selects options from this menu that
describe the parameters necessary fo
operation. Selecting the appropriate option~
causes the GENX program to 'patch' these
options into the executable E78 program. Upon
subsequent power-ups, these selected options
are the default parameters. If different or
additional options are required for other
users, a second version of the GENX program
should be generated. Therefore, it is 'easible
that thE user will have several customizations
of the GENX program to meet each specific
application required. Be sure to label each 0'
the custom versions appropriately.

For GENX to operate properly, several files
must be available in the current directory.
These files are noted below:

IRMA UPDATE - 6

GENX. EXE

E78. MAP

E78.GEN

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

- This file is the actual GENX
program which displays the
menus and patches the program
f i 1 e.

This is the symbol table for
the program to be modified.
This file is produced by the
DOS LINK program and contains
en~rys which tell GENX how to
find the various tables and
switches which it uses to
apply patches to E78. This
file is in a simple format and
may be TYPEd.

- This is a text file initially
prepared by TAC and contains
the information used by GENX
to display the menus and make
the patches required by the
user.

Several files are created in the current
d i rec tory as a resu 1 t of runni ng GENX. Th ese
files are listed below:

CE78.EXE

CE78.LOG

This is the
version of
should use
execute a

users customized
E78. The user
this name to

customized E78.

This is a text file in a
format similar to E78. GEN
mentioned above. This file
contains a listing of all
patches installed in CE78. EXE.

IRMA UPDATE - 7

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

.For this general use of the GENX program, a
file called E78GEN. BAT contains th
instructions to start the GENX program whicn
produces the customized E78 program, CE78.EXE.
Though the above mentioned files are used b~

the GENX utility, their use and modification
is transparent to the user. These same files
are also used by the second format for GENX.
For the second format, some of the
modification of these files must be done by
the user. For example, to create a $pecial
ke~board modification that is not listed among
the d e fa u Its e t tin 9 s , the 9 en f i Ie, E78. GEN,
must be modified by the user before the actual
CE78. EXE can be generated. However, for most
applications, the first format is adequate for
creating the customized vers·ion of E78.

IRMA UPDATE - 8

November 2, 1983
IRMA UPDATE - PRELIMINARY

USING TI£ GEHX PROGRAM WITH MENU FORMAT

1 . I f you h a v e not a 1 l' e a d y don e so, ma k e
several duplicate copies of the E78
diskette.
DO NOT MODIFY THE ORIGINAL DIS~ETTE! !

2. To set the E78 program defaults, you
must be in DOS. After receiving the
DOS prompt, A> or B), or C>, enter
E78GEN followed by the 'Enter' key.

3. F 0 I low i n g the cop y rig h t , t r a d e ma r k ,
and revision information, a menu is
displayed on the CRT. This menu
includes the options available. Those
items preceeded by a dash are complete
as listed; those items preceeded by an
eq,ual sign have submenus. Select the
appropriate items which describe your
system req,uirements. The menus are
listed in the following section, Menu
Options.

4. Once all of the desired options have
been selected, select item # 99.
Exiting the GENX program causes the
selected options to become permanant
patches to the E78.EXE program. From
this point on, to use the customized
version of E78. EXE, the user enters
CE78 to activate the emulator program.
After typing CE78 <ENTER), the
copyright and related information is
again displayed on the CRT, followed
by USER CUSTOMIZED VERSION.

IRMA UPDATE - 9

November 2, 1983
IRMA UPDATE - PRELIMINARY

A~ter completing the GENX routine i~ the
auto-resident patch has not been installed,
the DOS prompt will be displayed. Typing
CE78 <ENTER> will place you directly into
the 3270 mode. Pressing both SHIFT keys
simultaneously will return operational
control to the PC. To return to 3270 mode
CE78<ENTER> must be re-entered.

I~ the option to install auto-residency has
been selected, a~ter exiting the GENX
routine, the DOS prompt will be displayed.
Type CE78<ENTER> to activate the emulator.
The copyright, trademark, and revision
in~ormation is displayed ~ollowed by USER
CUSTOMIZED VERSION. The DOS prompt appear~
again; press both SHIFT keys simultaneousl~
to enter 3270 mode. Pressing the SHIFT keys
again returns the operaitonal control to the
PC mode. This process must be repeated each
time the PC is "booted". (It is not
necessary to re-run the GENX program, only
the subsequent steps.) I~ desired the CE78
command may be place in the AUTOEXEC. BAT
~ile, causing it to automatically execute
each time the system is booted.

The ability to alternate between modes is
available with both non-auto-resident and
auto-resident; however, installing the
auto-resident patch simpli~ies this process
~or the general user.

IRMA UPDATE - 10

Nov@mber 2, 1983
IRMA UPDATE - PRELIMINARY

MENU OPT I OHS

After entering E78GEN, the
information will be displayed on

following
th e CRT:

E78 T@rminal Emulator Customization M@nu

1 - Disabl@ 24th line status display

3 - Mak@ emulator auto-resident

5 - Mak@ 2 color mode default
6 - Make 7 color mode default

8 - Mak@ SHOW COLUMNS default

10 - Select pre 1.20 keyboard

12 = Select KEYBOARD ~ SCREEN type
13 = Set LIGHT PEN corr@ction
14 = PC look-alike patches
15 = Set up COM1: i np ut parameters

99 = Exit GENX program

Your selection:

IRMA UPDATE - 11

November 2, 1983
IRMA UPDATE - PRELIMINARY

Selecting item #2 disables the display 0

the status line.

Selecting item" 3 causes the customized E78
program to become resident upon power up.

Selecting item .. 5 makes 2 color the
def!ault.

Selecting item .. 6 makes 7 color the
def!ault.

Selecting item * 8 causes unprotected null
f!ields to be f!illed with dots, showing the
size of! the f!ield.

Entering item * 10 select~ the pre-l.20
keyboard. This option should not be selecte
if! the user expects to later use
non-typewriter keyboards (eg. APL, TEXT or
DATA ENTRY).

IRMA UPDATE - 12

November 2, 1983
IRMA UPDATE - PRELIMINARY

Selecting item # 12 causes the following
menu to be displayed on the CRT.

Select KEYBOARD ~ SCREEN type

1 - Typewriter (default)
2 - Typewriter wi Numeric lock
3 - Typewriter, PSHICO

5 - APL
6 - APL wi Numeric lock
7 - APL, PSHICO

9 - Text
10 - Text wi Numeric lock

12 - Data Entry r
13 - Data Entry I wi Numeric
14 - Data Entry I I
15 - Data Entry I I wi Numeric

17 - No attached keyboard
18 - Reserved 0000
19 - Reserved 0011
20 - Reserved 1011

22 - Mod 2 Screen (24x80)
23 - Mod 3 Screen (32x80)

98 - Return to previous menu
99 - Exit GENX program

Your Selection:

lock

lock

IRMA UPDATE - 13

November 2, 1983
IRMA UPDATE - PRELIMINARY

Menu item * 13 should be used only when
pressing the LIGHT PEN against the edge of
screen field causes the adjacent field to be
selected. If this occurs on the left edge of
the fie 1 d , use the M I NUS (-) s e 1 e c t ion s . I f
it occurs on the right edge of the field,
use the PLUS (+) selections to calibrate the
LIGHT PEN. If none oT the available
selections results in correct LIGHT PEN
operation, the pen is probably broken or
internally mis-adjusted. To enable the LIGHT
PEN, attach the LIGHT PEN to the display
adapter board.

Set LIGHT PEN correction

l' - -3 X . . 0

2 - -2 X.o
3 - -1 XO
4 - :>0 0

5 - +1 oX ..
6 - +2 o. X.
7 - +3 o .. X

98 : Return to previous menu
99 = Exit GENX program

Your selection:

IRMA UPDATE - 14

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

Selecting item # 14 causes the following
information to be displayed:

PC look-alike patches

1 - Eagle 1600 screen cleanup

3 - Force Horizontal update sync

5 - Disallow 26 line color display

7 - Always set cursor shape on exit

98 = Return to previous menu
99 = Exit GENX program

Your selection:

Item # 1 eliminates the spurious dots that
sometimes appear on the CRT. This selection
also enables '8086' type screen accesses and
should be selected when IRMA/E78 is used in
any 8086 based machine. Item * 3 is
necessary to remove or reduce screen flicker
on some non-IBM machines, notably the EAGLE
pc. Item # 5 should be selected if using the
C OMP AQ color 1m 0 no c h rom e dis P I a y . I t em # 7
solves the PCXT monochrome cursor problem.

IRMA UPDATE - 15

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

Selecting #15 caus@s the following menu t
b@ displayed:

Se tup COMt: i np ut parame t ers

1 - Enab 1 @ COM1: c harac t@r i np ut
2 - Dis a b 1 e COM 1: k @y c I i c k s

4 - Select 4800 baud
5 - Select 2400 baud
6 - Select 1200 baud
7 - S@l@ct 300 baud
8 - Select 110 baud

98 = Return to the previous menu
99 = Exit GENX program

It@m # 1 enables asychronous character
input, such as barcode readers. Item # 2
Disables the key clicks. Items 4 8
establishes the baud rate ~or the device
attached to COM1:.

IRMA UPDATE - 16

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

Remember that once the E78 program has been
customized into CE78, it is permanant. To
change the customization, it is recommended
to begin with an unmodi~ied copy of the
original diskette as some of the patches can
be remodi~ied and some cannot. It is
there~ore essential to make adequate copies
of the original diskette. Once the E78
program has been modified to CE78, to
activate the emulator enter CE78 followed by
th e <ENTER::> key.

If the custom emulator was made resident by
either the auto-resident patch or the
~ONTROL HOME function, alternating between
the 3270 mode and the PC mode is done by
pressing both shift keys simultaneously. To
return to the 3270 mode, enter both shift
keys again. If the custom emulator program,
CE78.EXE, was not made resident, pressing
both shift keys will alternate to the PC
mode. To return to the 3270 mode, re-enter
"CE7S".

IRMA UPDATE - 17

November 2, 1983
IRMA UPDATE - PRELIMINARY

FILE TRANSFER

The IRMA ~ile transfer programs are compatible
wi th both Rev. 1. 1 and 2.0 of DOS and all
Revisions of IRMA software and firmware. There
are five ~iles necessary to execute the file
transfer programs. They are included on the
executable E78 diskette:

1. FT78X.EXE

2. FT78T.EXE

- the executable file
transfer program for
CMS\XEDIT

- the executable file
transfer program for TSO

'3. IRMA. XED - IRMA\XEDIT prof i I e for
us- with the eMS file
transfer utility. This
file must exist on the
host system with the
filename IRMA and the
filetype XEDIT in order
for the FT78X program to
work on the IBM-PC.
See page 11 for a listing
of this file.

4. IRMATABS.OVR - must be on file transfer
diskette

5. FTSAMPLE. TXT - a sample text file for
testing file transfer.

IRMA UPDATE - 18

November 2, 1983
IRMA UPDATE - PRELIMINARY

ENVIRONtEHT

The host environment is limited to:

1. VM/CMS - SP, using XEDIT, or

2. MVS/TSO - Using the EDIT function
of TSO.

The PC environment must include:

1. 128K of memory.

IRMA UPDATE - 19

November 2, 1983
IRMA UPDATE - PRELIMINARY

IRMA FILE TRANSFER UNDER OMS

The file transfer program was designed to be
simple to use. A HELP function, plus a
question and answer format provides the user
with all the in~ormation required to
transfer files. To begin the file transfer
the user must first perform the following:

1. Enter the IRMA. XED pro~ile at main~rame.
This file must exist in each USERID that
will be using the file transfer program.

2. Be logged on to the mainframe.

It would be useful at this time to run the
help function for a listing of the tw~

formats and the switches that can be US!

with the single line format. A printed copy
of this help function is provided on page
28.

ENTER: FT78X/H

Under this file transfer program, it is
possible to transfer binary data. The binary
data is translated into an intermediate text
file format for sending the file to the
host. The lile is stored on the host in a
special lormat. When the file is transmitted
back to a PC, it is received as binary data.

IRMA UPDATE - 20

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

This binary mode was implemented for such
operations as the transfer of BAS type
files from PC to PC. In order to sucessfully
transfer binary data, the IRMA. XEDIT Profile
must include the option to enable lower case
characters or the host filetype must allow
lower case by default.

IRMA UPDATE - 21

Nov@mb@r 2, 1983
IRMA UPDATE - PRELIMINARY

FORMAT 1 - Qu~stion and Ans~.r

P ROMP T : Con fir m s e I e c t ion s prior
transfer? (Y,N)

ENTER: Y ~or Yes, N ~or No

to

This s@l@ction causes a line similar
to the following text line to appear
on the CRT after all the PROMPTS
have been answered listing the
received file and the save file:

"Receive from host <filename), save
as local (~filename:>. "

This confirmation is followed b~

"OK to continue? (YIN)

If the filename~ are listed
correctly, enter Y for Ye~. If they
are not correct, enter N -POl' No and
the FT78X program will be
terminated. Restart the FT78X
program from the beginning to
re-specify the operation.

IRMA UPDATE - 22

November 2, 1983
IRMA UPDATE - PRELIMINARY

P ROMP T : T ran s fer d ire c t ion. (R IS)

R = Receive a file on the PC from
the host

S = Send a file from the PC to the
host

ENTER: R or S

PROMPT: Transfer binary f i 1 e. (YIN)

If it is necessary to
file containing binary
Yes must be entered.

transfer a
data, Y for

P ROMP T : Dis P I a y cop Y to CON: (YIN)

If it is desirable to display the
transferring data to the CRT, enter
Y for Yes. This will slow the
transfer down. It is also not
advisable to alternate between PC
mode and 3278 mode while the
transfer is taking place. Doing 50

may cause interuptions in the
transfer.

IRMA UPDATE - 23

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

For the tran~~er to take place the program
must know the source and de~tination ~ile.

The prompt~ ~or ~upplying in~ormation are in
the ~ame order no matter whether sending or
receiving a ~ile. You must always supply the
local ~ilename and host ~ilename and
~iletype. The FT78X program will interpret
which one i~ the ~ource and which one is the
destination.

PROMPT: What is the local ~ilename? (Must be
one word)

ENTER: (~ilename>

PROMPT: Host ~ilename

ENTER: <~ilename>

PROMPT: What is the ~ile type on the host?

(This is ~pecific to eMS) It i~

suggested to specify SCRIPT as the
file type because it allows a
variable length record up to 132
characters. DATA type files allow
~or a fixed 80 character record
length.

IRMA UPDATE - 24

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

In order to transmit a file from the host to
the PC, the file must already exist at the
host. The destination filename should not
exist prior to the transfer. However, if it
should exist and be determined to be
non-empty, an option to clear the data is
offered after all the PROMPTS have been
answered. The following question is
displayed if the PC is receiving the file
and if the filename already exists:

PROMPT: Do you want to delete and write over
that file? (YIN)

ENTER: Y or N

If Y is
replaced
ma i nframe.

entered, the file will be
with the file from the

If N is entered, FT78X will prompt
the user to respecify the filename.

If the host filename is the destination (on
send) and it is determined to be non-empty,
am option to clear the data is offered.
Unlike the local file which can be deleted,
only the contents of the host file are
deleted, not the actual file.

P ROMP T : H 0 s t f i len a mea Ire a dye xis t s , c lea r
it? (YIN)

ENTER: Y or N

Y will clear the file and allow user
to continue
N will terminate the file transfer
program.

IRMA UPDATE - 25

November 2, 1983
IRMA UPDATE - PRELIMINARY

If the user has specified the confirm
option, the text line specifing the file to
receive and to send will be displayed on the
CRT. At this point the user has the option
of continuing or terminating the file
transfer program.

IRMA UPDATE - 26

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

FORMAT 2 - SinQle co •• and line

ENTER: FT78X{switches} <local_filename>
<ho~t_filename> <host_filetype>

This second format places all the necessary
information in one command line. It also
allows you to add "switches" to the command
line for verification and confirmation of
information used in the transfer. This
second format is also useful with batch
files. The switches are listed on the
following page and in the FT78X/H listing.

IRMA UPDATE - 27

November 2, 1983
IRMA UPDATE - PRELIMINARY

FT78X/H - HELP FILE

There are two formats for using the file
transfer utility.

or
FT78X

FT78X {switches} <local_filename>
<host_filename> <host_filetype>

The first format causes a question and
answer dialogue to be provided to specify
the information. The second format contains
all of the information in the command line
and is useful with batch files. If fewer
than the required number of items are
included with the second format, the user
will be prompted for the remaining items.

Global Switches

IB - Binary transfer mode

IC - Confirm the pending operation
prior to execution

IF - Display host file size on receive

10 - Override the delete-file query
and automatically delete the local
file if it exists on the receive

IR - Receive a file from the host

IS - Send a file to the host

IV - Display data on CON: during the
transfer

IRMA UPDATE - 28

November 2, 1983
IRMA UPDATE - PRELIMINARY

IRMA.XED PROFILE

This is the IRMA\XEDIT profile for use with
the file transfer utility. You must enter
this profile at the host with the filename
IRMA and the file type of XEDIT in order for
FT78X to work on the IBM-PC.
It must be entered exactly as shown here, as
this profile sets up the functions that the
transfer program uses. A copy of this
profile must exist in each USERID using the
file transfer program.

SET SCALE OFF
SET NUMBER ON
SET CURLINE ON 3
SET CMDLINE BOTTOM
SET NULLS ON
SET PF6 GQUIT
SET PF18 GGUIT
SET PF7 FORWARD
SET PF19 FORWARD
SET PF8 TOP
SET PF20 TOP
SET PF9 FILE
SET PF21 FILE

The following are OPTIONAL items which may be
included if desired.

SET CASED MIXED to allow lower
case as the default
(Must be set for
binary transfer.)

IRMA UPDATE - 29

Nov@mb @r 2, 1983
IRMA UPDATE - PRELIMINARY

HaTES ON ASCII TO EBCDIC CONVERSION

GENERAL CONVERSION LOSSES

In all ca15@(], the ~ollowing ASCII charact@rs
are tran15lated b~ IRMATABS.OVR. into the
equivalent EBCDIC characters. The conver15ion
to EBCDIC occurs when a file is sent to the
h015t from the PC.

ASCII

[

]
A

EBCDIC

¢ ,
r

CMS/XEDIT OPERATION LOSSES

Due to the use of POWER INPUT in XEDIT to
improve performance on a SEND. two of the
ASCII characters are not available. Th~ IIAII

and "[U are reserved as special characters.
The A and [characters are effectively
changed to spaces and are NOT recoverable on
15ubsequent receives. A warning to this
effect will b@ displayed on the CRT if
either of these characters are encountered
during a send operation.

IRMA UPDATE - 30

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

IRMA FILE TRANSFER UNDER TSO

The file transfer program for TSO was also
designed to be simple to use. A HELP
function, plus a question and answer ~ormat
provides the user with all the information
required to transfer ~iles. To begin the
~ile trans~er the user must first per~orm
the following:

1. Be log g ed on to th e ma i n~rame.

2. Must be in TSO with READY prompt.

It would be use~ul at this time to run the
help function for a listing of the two
formats and the switches that can be used
wit h the sin g I eli n e for ma t . Apr i n ted cop Y
of the help function is provided on page 40.

ENTER: FT78T/H

Under this ~ile transfer program, it is
possible to trans~er binary data. The binary
data is translated into an intermediate text
~ile format ~or sending the ~ile to the
host. The ~ile is stored on the host in a
special format. When the file is transmitted
back to a PC, it is received as binary data.
This binary mode was implemented for such
operations as the transfer of . BAS type
files from PC to PC. When using the binary
transfer mode, the user must specify the
ASIS operand or select a dataset type which
allows lower case by default.

IRMA UPDATE - 31

Nov@mb@r 2, 1983
IRMA UPDATE - PRELIMINARY

The TSO version of file transfer allows the
user to fully specify the dataset name and
associated operands to be used with EDIT.
The data set name must be a single word with
no imbedded spaces. How@ver, the word can be
as detailed as necessary. This allows easy
specification of partitioned datasets. The
operands can also be as detailed or as
simple as necessary and they are not limited
to a single word. This provides the users
with the means to add items such as, ASIS
(lower case) and/or NONUM (un-numbered
dataset>. Several examples are included
later in this discussion.

IRMA UPDATE - 32

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

Forftat 1 - Question and Ans~er

PROMPT: Confirm selections prior
transfer? (Y,N)

ENTER: Y for Yes, N for No

to

This selection causes the following
text line to appear on the CRT after
all the PROMPTS have been answered
listing the received file and the
save file:

"Receive from host <filename>, save
as local <filename>. II

This confirmation is followed by:

"OK to continue? (YIN)

If the filenames are listed
correctly, enter Y for Yes. If they
are not correct, enter N for No and
the FT78T program will be
terminated. Restart the FT78T
program from the beginning.

IRMA UPDATE - 33

November 2, 1983
IRMA UPDATE - PRELIMINARY

P ROMP T : T ran $ fer d ire c t ion. (R / S)

R = Receive a file on the PC from
the hO$t

S = Send a file from the PC to the
hO$t

ENTER: R or S

binary fil •. (YIN)

If it i$ nece$$ary to tran$fer a
file containing binary data, Y for
Ye$ mU$t be entered.

PROMPT: Di $P lay copy to CON: (YIN)

If it i$ desirable to display th
trans¥erring data to the CRT, enter
Y for Ye~. Thi~ will sloUl th,e
transfer down. It is also not
advisable to alternate between PC
mode and 3278 mode while the
trans¥er is taking place. Doing '50

may cause interuptions in the
transfer.

IRMA UPDATE - 34

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

For the transfer to take place the program
must know the source and destination file.
The prompts for supplying information are in
the same order no matter whether sending or
receiving a file. You must always supply the
local filename and host filename and
filetype. The FT78T program will interpret
which one is the source and which one is the
destination.

PROMPT: What is the local filename? (Must be
one word)

ENTER: <filename>

PROMPT: What is the Data-set-name?

ENTER: (data-set-name)

PROMPT: What are the operands for host?

ENTER: (operands) [none]

The U[none]" is the· default. If no
operands are required, simply enter
a <NL or ENTER>.

IRMA UPDATE - 35

November 2, 1983
IRMA UPDATE - PRELIMINARY

In order to transmit a file from the host to
the PC, the file must already exist at the
host. The destination filename should not
exist prior to the transfer. However, if it
should exist and be determined to be
non-emptq, an option to clear the data is
offered after all the PROMPTS have been
answered. The following question is
displayed if the PC is receiving the file
and if the Pilename already exists:

PROMPT: Do you want to delete and write over
that file? (YIN)

ENTER: Y or N

If Y is
replaced
ma i nframe.

entered, the file wi 11 be
with the file from the

If! N is enter@d, FT78T will prompt
the user to resp@cify the filename.

If! the host filename is the destination (on
send) and it is determined to be non-empty,
an option to clear the data is offered.
Unlike the local file which can be deleted,
only the contents of the host file are
deleted, not the actual file.

PROMPT; Host file already exists, clear it?
(YIN)

ENTER: Y or N

Y will clear the file and allow the
user to continue.
N terminates the file transfer
program.

IRMA UPDATE - 36

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

If the user has specified the confirm
option, the text line specifing the file to
receive and to send will be displa~ed on the
CRT. At this point the user has the option
of continuing or restarting the file
transfer program.

IRMA UPDATE - 37

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

Under TSO files usually contain line
numbers; however, files on the PC do not
have line numbers. Files sent to the host
from the PC will be automatically numbered,
beginning at 10 and incrementing by 10 for a
maximum number of 9,999 lines of text. Files
received by the PC will be temporarily
renumbered, beginning at 1 and incrementing
by 1 for a maximum of 99,999 lines. These
line numbers are automatically removed
before writing the file to the diskette on
the PC.

AdditioDally, un-numbered data sets can be
sent and received by including the NONUM
operand. This causes FT78T to ignore lin~

numbers entirely and not attempt to renumbe
the data set on a receive.

IRMA UPDATE - 38

November 2, 1983
IRMA UPDATE - PRELIMINARY

FORMAT 2 - SinQle co •• and line

ENTER: FT78T{switches} <local_fil@nam@>
<data_set_name> <operands)

This second format places all the necessary
information in one command line. It also
allows you to add "switches" to the command
line for verification and confirmation of
information used in the transfer. This
second format is also useful with batch
files.

For easy reference, a copy of FT78T/H is
included with the update.

IRMA UPDATE - 39

November 2, 1983
IRMA UPDATE - PRELIMINARY

FT78T/H - HELP FILE

There are two ~ormats ~or using the ~ile
tran~~er utility.

or
FT78T

FT78T {switche~} <local_~ilename>
<ho~t_filename> <operand~>

The ~irst format causes a question and
an~wer dialogue to be provided to specify
the information. The second format contain~
all of the information in the command line
and is u~eful with batch files. If fewer
than the required number of items are
included with the ~econd format, the user
will be prompted for the remaining items.

Global Switches

IB - Binary tranger mode

IC - Confirm the pending operation
prior to execution.

10 - Override the delete-file querrq
and automatically delete the local
file if it exi~ts on the receive.
At the host on send, deletes the
only the contents of file, not
actual file.

IR - Receive a file from the host.

IS - Send a ~ile to the host (See note 1)

IV - Display data on CON: during
the transfer.

IRMA UPDATE - 40

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

SAMPLE TSO TRANSFERS

SAMPLE ONE FTSAMPLE. TXT

A copy of the sample test file,
FTSAMPLE. TXT, is to be sent to the hast as
the numbered, sequential data set, TEST. TXT.
The fallowing dialogue would achieve the
transfer:

PROMPT

Confirm selections
prior to transfer (YIN)

Transfer direction (RIS)

Transfer binary file
(YIN)

Display copy to CON:

Local filename:

Data set name:

Operands: (none]:

RESPONSE

FT78T <NL or ENTER>

N <NL or ENTER>

S <NL or ENTER>

N <NL or ENTER:>

N <NL or ENTER>

FTSAMPLE. TXT <NL
or ENTER>

TEST. TEXT
or ENTER>

<NL

<NL or ENTER>

Transfer takes place at this point.

IRMA UPDATE - 41

November 2, 1983
IRMA UPDATE - PRELIMINARY

SAMPLE TWO PARTITION TRANSFER

A copy of
partitioned,
to be stored

the member, MEMI in ttl
numb ered data se t PPS. DATA, is

in the IBM PC as FILE!. DAT.

PROMPT

A)

Confirm selections
prior to transfer (YIN)

Transfer direction (RIS)

Transfer binary file
(YIN)

Display copy to CON:

Local filename:

Data-set-name:

Operands [none]:

RESPONSE

FT78T <NL or ENTER>

N <NL or ENTER:>

R <NL or ENTER)

N <NL or ENTER:>

N <NL or ENTEr

FILE1. DAT <NL
or ENTER:>

1. PPS.DATA(MEMl)<NL
or ENTER)

or
2. PPS(MEM1) <NL

or ENTER)

1. <NL or ENTER>
or

2. DATA <NL or
ENTER)

When entering the data-set-name, the fir'
entry includes the filetype and therefor~

does not require the file type to specified
as an op erand.

IRMA UPDATE - 42

November 2, 1983
IRMA UPDATE - PRELIMINARY

If using the second entry, it is necessary
to enter the file type as an operand. For
this example when entering the data-set-name
and the operands, match the numbered
responses for each entry.

Transfer takes place at this point.

IRMA UPDATE - 43

November 2, 1983
IRMA UPDATE - PRELIMINARY

SAMPLE THREE BINARY TRANSFER

The BASICA program, PROG. BAS, iiS to be sent
to the hOiSt aiS TEMPPROG. DATA. This requireiS
lower caiS on the hOiSt aiS the binary traniSfer
mode will be uiSed.

PROMPT

A>

Confirm selectioniS
prior to transfer (YIN)

TraniSfer direction (RIS)

Transfer binary file
(YIN)

DiiSplay copy to CON:

La cal f i 1 ename:

Data set name:

Operands: [none]:

RESPONSE

FT78T <NL or ENTER>

N <NL 01' ENTER>

S <NL 01' ENTER>

Y <NL 01' ENTER:>

N <NL 01' ENTER>

PROG.BAS <NL
01' ENTER:>

TEMPPROG. DATA <NL
01' ENTER>

ASIS <NL or ENTER>

Transfer takes place at this point.

IRMA UPDATE - 44

November 2, 1983
IRMA UPDATE - PRELIMINARY

SAMPLE FOUR SINGLE COMMAND LINE

To per~orm the same transfer as listed in
the previous example using thesingle command
line ~ormat, enter the ~ollowing data.

FT78T/S/B PROG.BAS TEMPPROG. DATA ASIS

or

FT78T/S/B PROG.BAS TEMPPROG DATA ASIS

Note that in
specified as
case, it is
data-set-name.

the second case,
an operand and in

specified as part

DATA is
the ~irst

of the

IRMA UPDATE - 45

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

SAMPLE FIVE PC TO PC TRANSFER

Using the binary trans~er mode, ~irst uploa
the speci~ied ~ile to the mainframe. Once it
is located on the mainframe in its storage
state, other PC's can access this file and
have it downloaded to a PC using the same
file transfer utility. The file will be sent
to the PC in its original state. <. BAS or
Wordstar(TM) format.)

IRMA UPDATE - 46

November 2, 1983
IRMA UPDATE - PRELIMINARY

SAMPLE SIX TO SPECIFIED DISK DRIVE

To specifiy an alternate disk drive for the
file coming from the mainframe, simply
preceed the destination filename with the
device name, such as :Bfilename or :C
filename.

IRMA UPDATE - 47

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

THE ASCII TO EBCDIC CONVERSION

GENERAL CONVERSION LOSSES

In all cases, the ~ollowing ASCII characters
are translated by IRMATABS.OVR. into the
equivalent EBCDIC characters. The conversion
to EBCDIC occurs when a ~ile is sent to the
host from the PC.

ASCI I

(

]
.....

EBCDIC

¢ , ,
OPERATIONAL LOSSES

The EDIT mode of
characters to

TSO changes the following
a II." during transfer:

\

{

}

This causes a loss
non-recoverable even
ASC I I symbo 1.

IRMA UPDATE - 48

of information which is
though E78 echos the

For

This

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

e xamp 1 e:

is a table on th e IBM/PC as sent to th e
mainframe using TSO/EDIT:

0 1 2 3 4 5 6 7 8 9 A B C D E F

-.. .. $ I. & I (* + / ,
0 1 2 3 4 5 6 7 8 9 < = ... > ?
@ A B C D E F G H I J K L M N 0
P Q R S T U V W X Y Z [\] /'.

a b c d e f g h i J k 1 m n 0

p q r s t u v UI x lJ z { } "-

This is the table as it was received back
from the mainframe on the PC:

0 1 2 3 4 5 6 7 8 9 A B C D E F

-.. .. $ /. 8< I () * + , /
0 1 2 3 4 5 6 7 8 9 < = > ?
@ A B C D E F G H I J K L M N a
p Q R S T U V W X Y Z []

a b c d e f g h i J k I m n 0

p q r s t u v w x lJ z

IRMA UPDATE - 49

Novemb er 2, 1983
IRMA UPDATE - PRELIMINARY

In the event that the transfer is not
accomplished correctly, refer to th
following profile for the proper settings of
various options. Set your profile this way
and try the transfer again. This profile may
or may not be complete for your system; it
is offered here as a suggestion.

CHAR(O)
LINE(O)
PROMPT
INTERCOM
NOPAUSE
NOMSGID
NOMODE
NOWTPMSG
NORECOVER
DEFAULT LINE/CHARACTER DELETE CHARACTERS iN

EFFECT FOR THIS TERMINAL

IRMA UPDATE - 50

PROM INSTALLATION
IT IS RECOMMENDED THAT THIS INSTALLATION
GUIDE BE READ IN ITS ENTIRITY PRIOR TO
BEGINNGING THE ACTUAL INSTALLATION.

1. Never attempt to remove the IRMA board
without first turning off all power to the
IBM PC. Always use care when removing the
board from the card cage.

2.Refer to Figure 1 for the
IRMA firmware proms.

location of the

3. To remove an existing PROM, pry gently and
evenly between the PROM and its socket with
a narrow blades screw driver or small knife
to raise the PROM from its socket. After the
PROM is partially raised from its socket,
take hold of the PROM with your fingers and
carefully withdraw it from the socket.

4. To ins e r t the rep I ace men t PROM (s) I fir s t
determine the PIN 1 location on the PROM.
PIN 1 is indicated by an embossed dot on the
PROM or it is the pin to the left of the
semi~circle notch on the TOP of the PROM.
See Figure II.

5. The PROM s m us t b e ins t a I led wit h PIN 1 i n
the upper left hand coner of the PROM
socket. Be sure the IRMA board is oriented
as indicated in Figure 1.

6.Align the pins of the PROM with the pin
holes in the socket. Be sure that the pins
are aligned properly.

7. Press the PROM gently into its socket.

8. Check the pins on the inserted PROM to
insure that none of the pins were bent or
failed to m~te with the holes in th. socket.
If any pins are bent or not mated, gently
remov@ the PROM from the socket. Staighten
any pins and re-align the pins. Re-insert
the PROM.

Figure I - Location of IRMA firmware PROMS

~TTmm1llJ DOD 0 DO 0
~~ ~ 0 ~ ~ 0 0 0 0 0 0 0 0 0 0

I ~ 0 0 0 0 0 0 ~~2£ 0 0 DOn 0
'111111111111""1,, I

Figure II - Chip Orientation

PIN 1 TOP • 1

	1-001
	1-002
	1-01
	1-02
	1-03
	1-04
	2-001
	2-002
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-001
	3-002
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	4-001
	4-002
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-00
	B-01
	B-02
	replyA
	replyB
	upd-001
	upd-002
	upd-01
	upd-02
	upd-03
	upd-04
	upd-05
	upd-06
	upd-07
	upd-08
	upd-09
	upd-10
	upd-11
	upd-12
	upd-13
	upd-14
	upd-15
	upd-16
	upd-17
	upd-18
	upd-19
	upd-20
	upd-21
	upd-22
	upd-23
	upd-24
	upd-25
	upd-26
	upd-27
	upd-28
	upd-29
	upd-30
	upd-31
	upd-32
	upd-33
	upd-34
	upd-35
	upd-36
	upd-37
	upd-38
	upd-39
	upd-40
	upd-41
	upd-42
	upd-43
	upd-44
	upd-45
	upd-46
	upd-47
	upd-48
	upd-49
	upd-50
	upd-51
	upd-52
	upd-53

