D814 SYSTEM SOFTWARE MANUAL

Revision: 3

CODEX CORPORATION
July, 1981

CODEX CORPORATION COMPANY CONFIDENTIAL

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS

Section/Title Page

10 INTRODUCTIONS e © o o e o o o o o o o © o o ° o o o o o o o o o o o 1

1.1 PurposSe/SCOPE v v o o o o o o o o o o o o o o o o o s o o o o 1
1.2 Software System Structure . . « « ¢ o ¢ o o o o o o s fo o o o 1
1.3 Document 0rganization . ¢ « o« ¢ o ¢ o o o ¢ o ¢ o o s o o o o 2

2. HARDWARE ENVIRONMENT ® o o e o o ¢ o o o o © o o ©° o o o o s o o o 1

2.1 6000 Mainframe Environment . ¢« ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o« o 1

2. 1.1 Component Parts L] L] . L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] 1
2.1.2 Special FeatuUres . « « o« o o o o o o o o o o o o o o & 3

2. 1 .3 Memory Map L] L] L] L] L] . L] L] L] L] L] . L] L] L] L] L] L] L] L] L] L] 3

2.2 Intelligent Port Environment « « ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o o & O)
2.2. 1 IP PROM L] L] L] L] L] . L] L] L] L] L] L] L] L] L] . . L] . L] L] L] L] L] 7
2.202 D814 IP Memory Map L] L] . L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] 7

3. SOFTNARE SUBSYSTEMS STRUCTURE L] L] L] L] L] L] . L] L] L] . L] . L] L] L] L] L] L] 1
3.1 Software SubsystemsS. « « ¢ ¢« ¢ ¢ ¢ ¢ o ¢ ¢ o o s s 0 000 . 4
3.1.1 Mainframe PROM Subsystem (MFPROMSS) « « « ¢« ¢ ¢ ¢« ¢« « « 4
3.1.2 IP PROM Subsystem (IPPROMSS) =« ¢ ¢ ¢« ¢ ¢ o ¢ o« o o « » 4
3.1.3 Mainframe Software Subsystem (MFSS) ¢« « « ¢« ¢« ¢« ¢« ¢« « « 4
3.1.4 1/CTP Software Subsystem (ICTPSS) v ¢« ¢« « ¢ ¢« ¢« o o« o «» 4
3.1.5 I/NP Software Subsystem (INPSS) ¢« « &« ¢ ¢ ¢« ¢ ¢« ¢« « « « b
3.1.6 1/SSTP-BSC Software Subsystem (ISSTPSS-BSC) « « « ¢« o . 5
3.1.7 [1/SSTP-HASP Software Subsystem (ISSTPSS-HASP) 6
3.1.8 I/BOP Software Subsystem (IBOPSS) « ¢ ¢ ¢ ¢« ¢« ¢« ¢« ¢« o &« b
3.1.9 I/MATP Software Subsystem (IMATPSS) ¢« ¢« ¢« ¢« ¢ ¢ ¢« ¢« ¢« « 6
3.1.10 I/MXP Software Subsystem (IMXPSS) « v ¢ ¢ ¢ ¢ ¢ o o & o 7
3.1.11 I/FDP Software Subsystem (IFDPSS) « v ¢« ¢« ¢ ¢ ¢« o ¢ o o 7
3.1.12 I/DGP Software Subsystem (IDGPSS) « &« ¢« ¢ « o o o o o o 7

3.2 Subsystem Interfaces . L] . L] L] L] L] L] L] L] L] . L] L] L] L] L] L] L] * ‘. 8
3.2.1 Program Load Interface . . « « ¢« ¢ ¢ « ¢« o s o s ¢« « « 8
3.2.2 Addressed Packet Interface . . « « ¢« ¢ ¢« ¢« ¢« ¢ ¢« ¢« o« » 8
3.2.3 High-Speed Data Interface (HSDI) . « ¢ ¢ ¢« ¢« ¢ ¢« o o « 9

3.3 Bus Interface Chip (BIC) Operation . « « ¢« « ¢ o ¢« o o ¢ o o o 22

3.3.1 BIC Operations from the Controller (Mainframe) Side . . 22
3.3.2 BIC Operations from the Port Side « « « ¢« ¢« ¢« ¢« ¢« « o « 23

D814 Software Manual

~ CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS (Cont'd.)

Section/Title Page

4. FIRMwARE ® e 8 e e e o o o © ©° o ° o o o o ° o o © o o ©° o°o o o o 1

4,1 D814 Port IPLROM & v ¢ o ¢ o« ¢ o o o e- 0o o o o o o o o s o« o 1
4,2 D814 I/FDP IPL PROM & & ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o« 3
4.3 Mainframe IPL Module « « ¢« o ¢ ¢ o ¢ o ¢ o ¢ o o o ¢« o o o o o« 4
4,3.0 Introduction . « ¢« ¢« ¢ ¢ o ¢ ¢ ¢ o ¢ s o o o o s o o o+ 4
4.3.1 Functional Overview « « o o« o ¢ o o ¢ o o o« o« o s o o & 5
4,3.2 Operational Overview .« « ¢« « ¢ o o ¢ o o o o o o o o o 1
4.3.3 External Interfaces . « « ¢« ¢« ¢ « o ¢ o o o« ¢ o o« o « o« 15

4.4 Mainframe ROM Resident Diagnostics « « ¢« o o ¢« ¢ o o ¢« « o « « 24

4.4.1 INtroduCtion .« ¢ o o o o o o o o o o o o o o o o o o o 24
4.4.,2 Diagnostic Routines . ¢« ¢« o o o o o o o o o o o o o o« o 24
4.4,3 Front Panel Display « o « o o« ¢ o o o ¢ o o o o o o o o 25
4.4.4 Interface to MIL & & ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o o« o o 26

5‘ MAINFRAME MODULES e o e o e o o o o o o © s o o o © o © © o o o o o 1

5.1 D814 Mainframe Operating System . « ¢« « ¢ ¢ o« ¢ o ¢ ¢ o o« s o 1

.1 Mainframe Task Control . .« ¢« ¢« ¢ ¢ o &

5.1 ° L] L] L] L] ° L] .

5.1.2 Buffer Management Submodule Group (MBM) . . « « « « o« . 9
5.1.3 Mainframe Uti]ities L] L] L] * L] L] L] L] . L] L] ° ® L] * L] ® L] 18
5.1.4 Mainframe Programming . « « « « ¢« o« « o o« o o o o o o« o+ 25

5.2 Mainframe Addressed Packet Control Module (MAP). « ¢« ¢« ¢« « « o« 1

5.2.1 Overview of MAP Addressed Packet Handling« . . 1
5.2.2 MAP External Interfaces . « « « o o o« o« o o o o s o« o o« 3

5.3 Mainframe Statistics and Monitoring, and Reporting, Module . . 1
5.3.1 Function Description . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o 1
5.3.2 Mes Sage Interface L] L] L] L] L] L] * L] L] . ° L] L] L] L] L] L] L] L] 2
5.3.3 Collection of Raw Statistics =« « ¢« o ¢ ¢ ¢ ¢ o o ¢« o & 3
5.3.4 Configuration Parameters . « ¢« ¢« ¢ o ¢« o ¢ ¢ o ¢ ¢« o o 4

5.4 Mainframe Panel Control (MPC) Module « ¢« « ¢ ¢« ¢« « o o« ¢ o o & 1
{

5.4‘1 Introduction L] L] L] L] L] L] L] * L] . L] L] L] L] L] L] L] ° L] L] L] 1
5.4.2 Panel Modes and Commands =« « &« &« o o o o o o o o o o o 1
5.4.3 Functional Submodule Description . . ¢« ¢ ¢ ¢ ¢« ¢« ¢ ¢« o 3
5.4.4 External Interfaces . . « « ¢« « ¢ ¢ o ¢ ¢ o o ¢ s o o ¢« 5

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS (Cont'd.)

Section/Title Page

5.5 Mainframe System Boot (MSB) Module « « « &« « o« « o ¢ o ¢ o o o 1

5.5.1 Introduction . « & ¢ ¢ ¢ o o ¢ o o o o o o o o o o oo 1
5.5.2 Boot RequestS « « o« ¢ o ¢ ¢ ¢ o o o o o o o o o s 0 0 o 1
5.5.3 Boot Synchronization and Arbitration« .+« +« ¢ ¢« . 5
5.5.4 Node Restart . « ¢« ¢« o ¢ o o ¢ o o o o o o o o o o o o 1
5.5.5 Examples of BoOt Process .« « « « « o o o ¢ o o o o o o 7

5.6 Mainframe Path Management, Routing, and Congestion Control
Modu]e (MPMRCCM) L] L] . L] L] L] . . L] L] L] . L] L] . L] L] L] L] L] L] ° L] 1

5.6.1 OverView L] L[] L[] * L] L] [] L] L] L] L] L] . L] L] L] L] L] L] L] L] L] L] 1
5.6.2 External INterfaces « « « « o o o« o o o o o o o o o o o 2

5.7 Mainframe Configuration Manager Module (MCM) « ¢« « « o 1

5.7.1 Hardware and Firmware . « « « « « o« o o o« o o« o o o« o o 1
5.7.2 General Functional Description . « « « ¢ ¢ « ¢« ¢ o o« & 2
5.7.3 Addressed Packet Format . « o « ¢« ¢ ¢ ¢ ¢ o ¢ o o ¢« o o 3 ~
5.7.4 Offline Memory Format « « « o « « ¢ ¢ ¢ s o o s o s o o 5
5.7.5 CMEM Definition . . « ¢« ¢« ¢ ¢« ¢ ¢« ¢« o & e e e o s e o o 13
5.7.6 CMEM Map Table « « o o « o o o o o o o o o o o o o « o 15
5.7.7 Options ROM Port Option Table . . « « v ¢ ¢ ¢ o o o . . 16
5.7.8 Summary of Commands « « « ¢« o ¢ ¢« ¢ o « o« o o s o o« o o 16

5.8 Mainframe Network Link Control Module (MNL) .« « ¢« ¢« ¢« ¢ o o« « 1

5.8.1 Functional Specification . « « ¢« ¢« ¢ ¢« ¢ o ¢ o o o o & 1

—

5.9 Mainframe Downline Load Module « & ¢« ¢« « ¢ ¢ o o o o o o o o o

5.9.1 The MDL Algorithm Main Features . « « « ¢« ¢« ¢ ¢ ¢ o o &
5.9.2 External Interfaces .« « « o« ¢ o o o o o o o o o o o o o
5.9.3 MDL Structure . L] L] L] L] Ll L] L] . L] L] L] L] L] L] L] L] L] * L] L]

o oy -

—

5.10 Mainframe Initialization Module .« ¢ ¢ ¢« ¢ o o o o o o o o o

MSI Entry Conditions « « ¢ ¢« ¢ ¢« o ¢ o o o &
MSI RAM Initialization « « ¢« o« ¢ ¢ o o o o &
MSI Dynamic Routing System Initialization .
Node Configuration Parameter Initialization
MSI System Boot Module Interface . « « « . &
Mainframe Panel Control Module Initialization
MSI Scheduled and Batch Task Initialization
MSI Port Initialization . . . ¢« ¢ ¢« ¢ ¢« « &
MSI Machine Cycle Timing « « « ¢ « ¢ ¢ o « &
Boot Complete System Report . . « « ¢« « « &
MSI Subroutines .« « ¢« o ¢« o ¢ o ¢ o o o o @

.
e o o o o

[] [] L] L] . . . [
L]

== OO NOOTASWN -

[, RGNS NGNS RN NS N NN
- O

L] .

= et et et ek b el =
COOCO0ODOCOO0OOO0OO0O
® o © o o o o o o o o
. . [[L] e o [o o .
® o © o © o o o o o o
A WWLWwNRP PPN NN -

e o o o o

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS (Cont'd.)

Section/Title Page

5-11 MU]ti-Thf‘eadEd POl"t COﬂtPO] MOdU]e @ e o © e o ¢ o o o © o o o 1

5.11.1 MMT Port Control Block Interface « « « ¢ o « ¢« o o o o 1
5.11.2 MMT BIC Interface . o « o« ¢« ¢ o ¢ ¢ o o ¢ o ¢ o o o o 2
5.11.3 Operational Overview of MMT . . . ¢ ¢« ¢« ¢ ¢« ¢« ¢ ¢« o « 5

5.12 Mainframe Diagnostics Monitoring and Physical Port
Contro] Modu]e . L] L] L] L] ° L] L] ° L] L] . L] L] * L] L] L] L] L] L] L] L] L 1

5.12.1 Introduction « ¢« ¢« ¢ ¢ o ¢ ¢ ¢ ¢ o ¢ o o o ¢ ¢ o o o o 1
5.12.2 Detailed Specification of the Addressed Packet

User Interface « o « ¢ o« ¢ o« o o ¢ o o o o o o o o o« o 3
5.12.3 MDM %nterface with Mainframe Downline Load Module

(MDL) 4 4 ¢ ¢ ¢« ¢ ¢ o o o o o s o s s o s o s o 0 o+ 8

5.12.4 MDM Reports and System Reports « « « ¢« « ¢ o ¢« ¢« o « « 8
5.12.5 MDM Interfaces Used in Providing Software Over

a Link to an Unlocked I/NP « ¢ ¢ ¢« ¢« ¢ ¢ ¢ ¢ o ¢« o o o« 9
5.12.6 MDM Local Port Interface O § |
5.12.7 Failure Monitoring « ¢« « « ¢« « o ¢ ¢ o o o o o« o o & o 13
5.12.8 System EPrors . o« o ¢ ¢« ¢ o o o o o s o o o o o o o o 14

5.13 Mainframe Subsystem Data Structures . . . « ¢ ¢ ¢« o ¢ ¢« ¢« o o 1

5.13.1 Port Directory ¢ © o o &6 o & o e © o o s o o o o oo o o 1
5.13.2 Port CO"trOI B]OCkS ® ® e o e e o o o o o o o© o o o o 1

6. INTELLIGENT PORT MODULE DEFINITIONS « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o o 1

6.1 Intelligent Port Operating System . « ¢« + ¢ ¢ ¢ ¢ ¢ o o o o o« 1
6.1.1 Task Scheduler Submodule .« « « ¢« o ¢ o o« o ¢ o o ¢ o o 2
6.1.2 Real-Time Clock Submodule « « « « ¢ ¢« o ¢« ¢« ¢ o o & o o« 13
6.1.3 Batch Processing Submodule . .« « ¢« ¢« ¢ ¢ ¢« ¢ o ¢« o« & o 16
6.1.4 Buffer Management Submodule . « ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o o 17
6.1.5 Queue Utility Submodule .« ¢« ¢ ¢ ¢ ¢ ¢ o o ¢ o o & « » 30
6.1.6 Addressed Packet Handler . « « ¢« ¢ ¢ o ¢ o o o o o « o 32
6.1.7 Utility Submodule « « ¢ « ¢ o ¢ ¢ o o o o o o« o o o & o« 36
6.1.8 IPOS Initialization . ¢« ¢ ¢« ¢ o ¢ ¢ ¢ o ¢ o o o« o« o « « 40
6.1.9 Light Manipulation Submodule . . ¢« ¢ ¢ ¢ ¢ ¢ ¢« « « « o+ 40
6.1.10 Processor Loading Calculation Submodule . . . « « . . . 41
6.1.11 IPOS Memory Modification . ¢« ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o 41
6.1.12 IPOS Software Uploader . « « « ¢« ¢ o o o o o o o o o » 43
6.1.13 Background Checker . « ¢« ¢« o ¢ o o o o o o s s s + o o 44

6.2 Configuration Control . ¢« & ¢ ¢ ¢ o o o o o o o o o o o o o » 1

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS (Cont'd.)

Section/Title Page

603 Ca]] Manager ® o o e o o o 8 o 6 o ° o o o o ° o6 o & o o o & o 1

1 Initialize Call Manager Data Structure
2 Call Manager Main Addressed Packet Handler . .
3 Call Manager Addressed Packet Handler
4 Protocol AP Interface . « v ¢« ¢« ¢ ¢ ¢« o« o o o &
5 Remote Call Manager AP Interface . . . « . . .
6 Path Manager AP Interface . « « ¢ ¢« o + &

e e o o o o
e o © o o o
3

. L] L] L] L] L]
A H N

6.4 Single-Threaded Data Movement . . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o 1
6.4.1 BIC FIFO Handler (Module IP$FIFO0$) . . « ¢ ¢ ¢ ¢ ¢« o o 1
6.4.2 Flow Control and ARQ (Module IP$FLOW) . . . « ¢« « « « « 3
6.4.3 Adaptive Data Compression Scheme . . . « « « &+ « « « o 19

6.5 MU]t'i-Thf‘eadEd Data Movement e o e o e e & e e o o o o o o o o 1

. BIC FIFO Hand]ef‘ ® ©® e o o o e o o o o o o o o o o o o 1

6.5.1
6.5.2 F]ow Modu]e ('IP$MFLOW) L] L] L] . L] L] L] L] . . L] L] . Ld . L] 1

6.6 Intelligent Control Terminal Port (I/CTP) . ¢ ¢« ¢ ¢ ¢« ¢ o « o 1

6.6.1 0Output & & ¢ 4 4 b et e e e e e e e e e e e e e e s 1
6.6.2 Operator Command Processor . « « « « o« o o o o« o« o o & 2
6.6.3 Report Control . & & ¢ ¢ ¢ v o ¢ o o o o o o 3
6.6.4 Statistics e+ e s s s e e s e e e s e s 4
6.6.5 System Services . « ¢ ¢ ¢ ¢ ¢ 4 4t e e s 0 e e e e e e 5
6.6.6 ProtoCol v ¢ ¢ o« ¢ o o ¢ ¢ o ¢ o o 0 o o o o e
6.6.7 Device Control . ¢« & ¢ ¢ ¢ ¢« ¢ ¢ o ¢ o o o o o o o o o 1
6.6.8 Report Formats . « « ¢« ¢« 4 ¢ ¢ ¢ o o o & « e e o e« 8
6.7 Intelligent Floppy Disk Port (I/FDP) & ¢ v v o ¢ ¢ ¢ o o o o & 1
6.7.1 I/FDP Data Structures . « « « ¢« ¢ ¢ ¢« o ¢ ¢ o o o s 1
6.7.2 I/FDP File Structures « « « « « « ¢ o o o o o o o o o o 1
6.7.3 Initialization . ¢« ¢ ¢ ¢« ¢ o ¢ ¢« o o o o o« s o « « « o+ 40
6.7.4 Protocol Management . « « ¢« ¢« ¢« ¢ o o o o o o o o o o o 41
6.7.5 File Management . ¢« o ¢ ¢« o o ¢ o o « o o o o o o o« o o 42
6.7.6 Device Control . & & ¢ ¢ o ¢ o o o o o o s o o o o o« o 44
6.7.7 Line Control .« & ¢« & ¢« o o o o o o o o o o« o o« o o+ + 45

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS (Cont'd.)

Section/Title Page

6.8 Intelligent Network Port (I/NP).

6.8.1 I/NP Data Structures =« « « o« o o o o o o o o o o o o o 1
6.802 Initia]ization L] L] L] L] L] L] L] L] L] ° L] L] L] * L] L] L] L] L] L[] 3
6.8.3 Protocol Management « « o« « ¢ « o o o o s s o ¢« s o o o 4
6.8.4 Device Management Function . e o o o s s s s s s e e b
6.8.5 Mainframe Interface Function (MIF) e |
6.8'6 Stat]stlcs L] . L] L] L] L] L] L] L] L] L] L] . . * L] . L] L] L] L] L] 8
6.8.7 Exceptions Monitoring Function . . « ¢« ¢« ¢ ¢ ¢ ¢ o o o 9
6.8.8 I/NP Initialization Sequences « « « « o ¢« o ¢ o o & » o 11
6.9 Intelligent Group Band Network Port (I/GBNP) . « ¢ ¢ ¢ ¢ ¢« & « 1
6.9.1 Design Considerations « « ¢« « ¢ ¢ o o o o o ¢ o s o o o 1
6.9.2 I/GBNP Data Structu res ® L] L] . L] L] . L] L] L] L] L[] L] L] L) L] 2
6.9.3 I/GBNP Main Modu]es . L] L] L] L] ® L] ® * . L] L] L] e L] L] ° L] 7
6.10 Intelligent Datagram Port (I/DGP) . &« ¢« o ¢ ¢ o o ¢ ¢ o o« ¢« o 1

0.1 Overview . « « « & « &
0.2 Message Manager
0.3 Error Messages
0.4 Statistic Collection .
0 .

6.1
6.1
6.1
6.1
6.10.5 Mainframe Interface .

L] L) L] L] L]
(3 3 N g

.
[
3
.
.

e o o o o
e o o o o
e o o o o
e o o o o
e o o o o
e o o o o
e o e o o
® e o o o
e o o o o
L] [. . .
.] [)]
e o o o o

—

6.11 Intelligent Asynchronous Terminal Port Protocol Software . . .
6.12 Intelligent Synchronous Terminal Port Protocol Software . . . 1

6.13 Intelligent Spoofed Synchronous Terminal Port Protocol
Software (BSC Version) « « ¢« ¢ o o o o o o o o s o s s o o o o 1

3.1 System Initialization (Submodule ISBSC$INIT)
.2 Communications Interrupt Handling

(Submodule ISBSCSCOMM) & & v ¢ ¢ o ¢ o o o o &
.3 Network Spoofing Control (Submodule ISBSC$SPOC§

Inbound Protocol Handling (Submodule ISBSC$IBP
Outbound Protocol Handling (ISBSC$0BP)
Call Manager Interface (ISBSC$CMI)
Statistics and Monitoring (Submodule ISBSC$STAT)

6.1
6.1

oo oyoOYOh
L] L[] [] (] L]
e e e
WWwwww w
NOYOV S

[} . L] L] L]
L] ® L] () L] .
(] [} L] * L] L]
CONNOYW N

['Y (] . L] .

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS (Cont'd.)

Section/Title Page

6.14 Intelligent Spoofed Synchronous Terminal Port Protocol
Software (HASP Version) .« « ¢« ¢ ¢ ¢« o ¢« o o ¢« o o o ¢« o o ¢« « 1

6.14.1 System Initialization (Submodule ISHSP$INIT)
6.14.2 Communications Interrupt Handling

(Submodule ISHSPSCOMM) '+ ¢ v ¢ ¢ ¢« o ¢ ¢ o o &
6.14.3 Network Spoofing Control (Submodule ISHSP$SPOC)
6.14.4 Call Manager Interface (ISHSP$CMI)
6.14.5 Statistics and Monitoring (ISHSP$STAT)

—

e o o o
e o o o
L] L] . L]
e o o o
OoONPBN

6.15 Intelligent Bit-Oriented-Protocol Terminal Port (I/BOP)
Protoco] Modu]e L] . (] L] L] L] L] L] L] L[] L] . L] L] L] L] L[] L] L] . L] L] L]

—

5 1 IntrOduction L] L] L] L] L] L] L] ° L] L] L] L] L] L] L] L] L] L[] L] * L]
5.2 Functional Submodule Description .« « « ¢ ¢« ¢« ¢ o o o« &
5.3 Data Flow and Program Control Flow . « ¢« ¢« ¢« &« o o « &

o Oy O
—
00 =

6.16 MOdU]e ITP ® o o o & 2 0o o o6 0 o s o 0 o o o o o o o o o o s o 1

6.1 Overview and Definition of Terms . .
6.2 Data Structures . . ¢ . ¢ ¢« ¢« o o o &
6.3 ITP$ Entry Points « ¢« ¢« ¢« ¢« ¢« o o o &

(o) e W e,
—
. 3 L]

o

.

o

.

L]

o

o
N =

6.17 Intelligent Multiple Asynchronous Terminal Port
Protocol Software . « ¢« ¢« o o ¢ ¢ ¢ o o o o o o o o o o o o o 1

6.17.1 System Initialization (Submodule IMATP$INIT) 1
6.17.2 Communications Interrupt Handling

(Submodule IMATPSCOMM) . & & v v ¢ ¢ o o o o o o o « & 3
6.17.3 Protocol Handling (Submodules IMATP$IBP & IMATP$0BP) . 5
6.17.4 Call Manager Interface (IMATP$CMI) . . & ¢ ¢ ¢ ¢ ¢ o« o 7
6.17.5 Statistics and Monitoring (IMATP$STAT) . . . « &« ¢ o o 12

6.18 Intelligent Multiple Synchronous Terminal Port
Protoco] Software L . L] L] L] L] L) L] L] L] * L] L] L] L] . L] L] L] L] L] L] 1

6.18.1 System Initialization (Submodule IMSTP$INIT) 1
6.18.2 Communications Interrupt Handling
(Submodule IMSTPSCOMM) . & v v 4 ¢ o o ¢ o o ¢ o o
6.18.3 Protocol Handling (Submodules IMSTP$IBP & IMSTP$OBP).
6.18.4 Call Manager Interface (IMSTP$CMI) . . .
6.18. .

5 Statistics and Monitoring (IMSTP$STAT)

.
.
L] . . L] L] L] L
L d

6.19 Intelligent Multiplex Port (I/MXP) Protocol Module. 1

6.19.1 Introduction L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] [] L] L] L] L] L] 1
6.19.2 Functional Submodule Description . « « ¢« ¢« ¢ ¢ ¢ ¢ o o 2
6.19.3 Overview of Data Flow and Program Control Flow 13

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

1.

INTRODUCTION

1.1

Purpose/Scope

This document describes the D814 software system. Its purpose is to

identify all the elements of the software system, to describe their func-

tion

1.2

The
soft

, and to define the interfaces/relationships between the elements.

Software System Structure

The D814 software system is structured into several hierarchial levels.
names and definitions of these levels are given below. The D814 system
ware will be described in terms of these structural levels.

D814 System Software: All software which resides in the D814 product.

Subsystem: A unique collection of software which resides in one placeQ

ubsystems are made up of modules. The Mainframe software and the I/NP
software are examples of subsystems.

Module: A unique collection of software which performs a single func-

tion and resides in one place. Modules may be used in more than one

subsystem. The configuration control software and IPOS are examples of
modules.

Submodule: A unique collection of software which performs a logical

sub-division of a single system function and resides in one place. The

IPOS queue utility and the BIC FIFO control software are examples of
submodules.

Routine: A collection of instructions to perform a single operation.

Routines have inputs, perform operations, and give outputs. The IPOS

enqueue routine and the addressed packet router are examples of rou-
tines.

System Data Structure: A data structure common throughout the D814 sys-

tem software. The addressed packet format is a data structure at this
level.

Subsystem Data Structure: A data structure common to several modules in

a subsystem.

Module Data Structure: A data structure common to several routines in a

Rev.

module.

1 D814 System Software Manual Rev. 1
Section 1 -1

CODEX CORPORATION COMPANY CONFIDENTIAL

1.3 Document Organization

An overview of this document's organization and content is given below:
Section 2: D814 Hardware Summary

This section describes the basic elements of the D814 hardware. Its
intent is to familiarize the reader with the D814 hardware so that he can
better understand the environment the software runs in.

Section 3: Software Subsystem Structure

In this section, the D814 system is broken down into its component sub-
systems. System data structures, subsystem functions, and interfaces
between subsystems are defined.

Section 4: Firmware

The PROM's contained in the D814 are defined.

Section 5: Mainframe Module Definitions

Each mainframe software module is defined as to its general algorithms,
data structures, and external interfaces.

Section 6: Intelligent Port Module Definitions

Each IP software module is defined as to its general a]gorfthms, data
structures, and external interfaces.

Rev. 1 D814 System Software Manual Rev. 1
Section 1 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

2. HARDWARE ENVIRONMENT

2.1 6000 Mainframe Environment

The fundamental hardware elements of a D814 node consist of a modular
interconnection of mainframe, power supply, display and control panel, and
port nest. Up to 96K bytes of memory can be included, in increments of 16K.
A port nest contains the intelligent nest interface card (I/NIC) and some
customer designated mix of intelligent network and terminal ports.

2.1.1 Component Parts

Microprocessor

The D814 is a general purpose data communications multi-processor com-
puter configured around the Motorola M6800 Microprocessor. Since the M6800
has no explicit I/0 instructions, additional logic has been constructed to
augment the basic instruction set, facilitate a multiprocessor shared memory
environment, and provide bootstrap, control panel primitives, and control
interrupts.

Mainframe Modules

The mainframe system is organized around a common bus system with modular
subsystems attached to it. System configurations differ principally by the
numbers and types of these modules, as well as in the port nest modules and
system software.

Master Controller

This module contains the system master clocks and memory refresh logic;
the necessary bus and interrupt arbitration logic to enable other modules to
use the bus system; and the master I/0 logic for the bus to the port nests,
which are driven by this module. The Master Controller occupies two logic
cards and is organized around an Intel 3000 series microcontroller.

Some primitives implemented by the Master Controller are:

Read Processor Status

Read Panel Keys

Fork a Task

Terminate a Task

Interrupt Enable/Disable

Control Processor

Read Off-Line (Configuration) Memory

Rev. 2 D814 System Software Manual Rev. 2
Section 2 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

Write Off-Line (Configuration) Memory
Test Port

Create Port Request

Read Option PROM (Node Chip)

Processor Card

This module contains a Motorola M6800 Microprocessor, associated bus
access and interrupt logic, and a small amount of local ROM.

RAM Memory

This module contains 16K x 8 bits of semiconductor memory for program,
data and buffer stores for the system.

Option Card

This module is used to contain hardware associated with certain options
and various system memories. Two such functions on the options card are:

1. Control panel logic

2. Memory for storing.the network and terminal configuration informa-
tion

3. Options PROM (Node Chip)

Customer Configuration/Reconfiguration

The information necessary to specify a customer's initial D814 system

consists of configuration data, standard software, and software to support
customer purchased options. These three types of information are stored in
non-destructive (battery backup power) memory.

Configuration Memory

The configuration memory contains the data necessary to specify the D814
as it is configured for the customer. This data includes such information as
number of ports, port types and characteristics, routing parameters, default
parameters for threshold monitoring, etc. Whenever the D814 1is boot-1loaded
and brought on-line, its software will use the data in the configuration
memory to configure the system.

Rev. 2 D814 System Software Manual Rev. 2
Section 2 - 2

CODEX CORPORATION COMPANY CONF IDENTIAL

Port Nest Modules

The port nest is driven by an I/0 bus cable from the mainframe. It, in
turn, via the Intelligent Nest Interface Card (I/NIC), redrives the I/0 bus
to the next port nest, if any. In later versions of the D814, the port nest
may be interfaced to two mainframes by a Dual Mainframe Interface Card (DMIC)
for back-up redundancy use.

Front Panel
The front panel consists of a data entry keyboard, a self-scan display,

an array of processor status indicator lights, and a key switch.

2.1.2 Special Features

Hardware Data Spaces

Each software task in the 6000 is given an area of memory, known as its
data space, which 1is mapped into locations X'0000' through X'00lF'. These
data spaces are assigned by the master controller, which maintains the base
registers pointing to the data spaces for the various tasks. There are a
maximum of 64 data spaces. The memory mapped into the data space is actual
RAM memory and may be accessed directly if the proper base address is known.

Lock Bytes

The 6000 has an area of memory between X'400' and X'4FF' which is known
as the lock byte area. This area is special memory which clears to zero when
it is read. The purpose of the lock byte area is to synchronize tasks in dif-
ferent processors. One processor reads the lock byte. If the contents are
non-zero, it has obtained the resource it is requesting. If the contents are
zero, it must wait. When it is through with the resource, it writes some
non-zero value into the lock byte to release the resource.

2.1.3 Memory Map

The following is a definition of the address space allocation for soft-
ware in the D814 mainframe. The mainframe has an address space of 96K bytes.
This 1includes 32K of high bank memory addressable as locations X'8000'-
X'FFFF' when the high bank has been activated and 32K of low bank memory
addressable as locations X'8000'-X'FFFF' when the low bank is active. On sys-
tem power-up and during downline load the low memory bank is active. After
downline load and during normal system operation the high bank is active and
the low bank is unused. The 6000 mainframe includes a bank switch which will
allow addresses X'8000' through X'FFFF' to refer to either of the two 32K
memory segments.

Rev. 2 D814 System Software Manual Rev. 2
Section 2 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

-0

1F
20

2F

o

Rev. 2

Start of RAM memory
Data space

v
Local Storage - Memory mapped to one of up to eight 16-byte local
storage areas fron X'0' to X'7F' in physical RAM. Each processor
has ‘its own dedicated local storage.

l
v

'Trigger' addresses for Master Controller commands - Mapped to

locations in Local Storage and used to activate Master Controller
functionT
v
Page 0 (defined in file OF$>PGO)
System parameters and scratch storage for mainframe modules

v
Level Request Flags - Each bit corresponds to a priority level and,
if set, implies some hardware device needs service or some software
task is pending at that level

Self-scan message area

I
v

System Area
More system parameters and scratch area

)
Table of Port Control Block (PCB) addresses
I
v
Lock bytes .
|
v

Level Queue Area

Vv
Volatile Memory - Data spaces, dynamic buffers, and memory
allocated at system initialization time

l
v

6000 Program Code - Continues in high bank memory

|
v

D814 System Software Manual Rev. 2
Section 2 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

Start of HIGH BANK RAM memory
8000 Continuation of system executable code

]

MISC$CODEND:HERE-1 Address of last byte of 6000 program code
MISC$CODEND : HERE

Volatile Memory - Dynamic buffers and fixed-size data structures
for system modules

FFF7]
FFF? Interrupt vectors
FFFF]
End of high bank memory
Start of LOW BANK ROM memory
8000 IPL code, downline load bootstrap code, and debugger, all in ROM
| I
FFF7 Vv
FFF8 Interrupt vectors
I I
FFFF v
End of Tow bank memory
Rev. 2 D814 System Software Manual Rev. 2

Section 2 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

2.2 Intelligent Port Environment

The Intelligent Port (IP) is a microprocessor based I/0 or peripheral
driver for the D814 system.

Internally, it consists of a bus interconnecting the following hardware
elements:

1. A microprocessor

2. RAM memory

3. PROM memory

4., A real time clock

5. 2 Bus Interface Chips (BIC)

6. Communications or floppy disk controller chips
7. A map register

8. An auxiliary control signal register, if present
9. A checksum calculation chip, if present

The BIC is the IP's interface to the D814 mainframe and the communica-
tions of floppy disk controller chip is its interface to the I/0 device or
peripheral. The port as a whole will be divided into 2 sections: an engine
(composed of the microprocessor, RAM, PROM, map register, BIC's, and real
time clock), and the card which makes each port the specific type of communi-
cations device that it is, which is called the Comm card. The Comm card con-
tains the communications chip or device controller, as well as any support
circuitry needed, such as Auxiliary Control Signal register, checksum (BCC)
calculator, etc. BIC #0 is used for IPL and addressed packets; BIC #1 is
used as a data path by TPs and NPs.

(Engine) (Comm)
BIC , RAM uP ACS
; COM Terminal
Nest : or |__| or
Bus : FDC Peripheral
\ BIC) ‘ ROM MAP I RTC BCC
I l —_—

The mainframe is capable of deactivating, activating, and resetting an IP
by sending commands to BIC #0. The reset indicates the type of reset to be
performed, so that the IP can perform a predefined function.

Rev. 2 D814 System Software Manual Rev. 2
Section 2 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

Programs that execute in the IP are loaded from the mainframe via BIC #0.
The loading is initiated by using one of the resets listed below.
2.2.1 IP PROM
There are 4 types of resets on the IP, each type causes one of several
PROM based routines to be executed. These are descnibed in detail in Section
4,
The PROM in the IP will contain the following routines:
1. On Reset 0 (power-up or nest reset):
a. Run diagnostic routines
b. Go to debugger if present
c. Set port bit and turn off diagnostic LED
2. On Reset 1:
a. Size RAM
b. Output Port-ID, RAM size and Processor-ID to BIC
¢c. Go to IP Program Load
3. On Reset 2:
a. Enter BIC loopback test
4, On Reset 3:

a. Return failure information.

2.2.2 D814 IP Memory Map

The following is a definition of the standard address space allocation
for IP programs in the D814 system. A1l addresses are in Hex. XXXX, YYYY,
and ZZZ71 are variable depending on the software and hardware requirements for
the particular IP. For all currently planned IPs, ZZZZ will be 3FFF, 7FFF,
or BFFF.

Rev. 2 D814 System Software Manual Rev. 2
, Section 2 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

Start of RAM memory

0 Mapped Area
|
)
F v
1? Page Zero Variables
v
FF)
100 Volatile Memory
I
)
3FF)
400 Program Checksum (Range X'402' to XXXX-1)
401
402 Program ID
403
404 Program Revision Number
- 405
406 Address of the end of program executable code (XXXX-1)
407
408 Entry Point of Program
Program Code
! .
XXXX-1 v
XXXX Program Permanent Storage (IP$CODEND:HERE)
|
v
YYYY-1)
YYYY Program Buffers
I
]
7171-1)
1171 Last byte of RAM (reserved by system)
EUU? 4K Empty or External Diagnostics
v
CFFF v
D000 4K Empty or Peripheral Diagnostics ROM
I
v
DFFF v
EOO? 4K Diagnostic ROM AND M6800 Vectors
)
EFFF)
Rev. 2 D814 System Software Manual Rev. 2

Section 2 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

F000 3.75K Empty or Debugger or External Diagnostics ROM
| (if Debugger, scratchpad RAM from FE7F to FEFF

v I
FEFF v
FFO0 224 byte Remote I/0
|
]
FFDF v
FFE? 16 byte Engine I/0
v
FFEF v
FFFO 16 byte ROM Vectors (mapped to EFFO to EFFF)
I
v
FFFF
Rev. 2 D814 System Software Manual Rev. 2

Section 2 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

D814 Software Manual

CODEX CORPORATION COMPANY CONF IDENTIAL

3. SOFTWARE SUBSYSTEMS STRUCTURE

The D814 functions as a node in data communications network. As can be
seen from Section 2, the D814 hardware is architected as a mainframe (cen-
tral processing element), controlling a hierarchical I/0 bus, and up to 127
intelligent ports (satellite processors) which interface to the I/0 bus. All
external devices and communications lines connect to the D814 via interfaces
on the intelligent ports. The D814 software is structured around this hard-
ware architecture.

As mentioned in the introduction, the software system is structured at
its highest level by subsystems, subsystem interfaces, and global system data
structures. The D814 system consists of PROM subsystems, a Mainframe (MF)
software subsystem and a number of intelligent port (IP) software subsystems.
Only one IP subsystem exists per physical intelligent port. The intelligent
port subsystems can be divided into five basic classes:

* Control Port Subsystems

1. Intelligent Control Terminal Port (ICTP)
2. Intelligent Floppy Disk Controller (IFDC)

* Network Link Subsystems

1. Intelligent Network Port (INP)
2. Intelligent Group Band Network Port (IGBNP)

* Single Threaded Communications Port Subsystems

1. Intelligent Spoofed Synchronous Terminal Port - 2780/3780 BSC
version (ISSTP-BSC)

2. Intelligent Bit Oriented Protocol Port (IBOP)
* Multi Threaded Communications Port Subsystems
1. Intelligent Multichannel Synchronous Terminal Port (IMSTP)
2. Intelligent Multichannel Asynchronous Terminal Port (IMATP)
3. Intelligent Mux Protocol Port (IMXP)
* Message Communications Port Subsystems
1. Intelligent Data Gram Port (IDGP)
Figure 4-1 illustrates the relationship between the mainframe software
subsystem and all intelligent port software subsystems. Note that there is

no direct interface between IP subsystems; all intercommunications between IP
subsystems must be routed through the MF subsystem.

Rev. 2 D814 System Software Manual Rev. 2
Section 3 -1

CODEX CORPORATION COMPANY CONFIDENTIAL

The purpose of the PROM subsystems is to load the appropriate opera-
tional software subsystem into RAM for execution in the mainframe and IPs.

D814 SUBSYSTEM RELATIONSHIPS

- 1P - IrF
Software |---- PROM
Subsystem | Subsystem |
Mainframe IP IP
Software Software |---- PROM
System Subsystem Subsystem
P 3
Software |[---- PROM
| Subsystem Subsystem
Mainframe
PROM
|Subsystem
Figure 3-1
Rev. 2 D814 System Software Manual Rev. 2

Section 3 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The interface between the MF software subsystem and each IP software sub-
system physically consists of the D814 master controller, the hierarchical
I/0 bus, and the IP's BIC(s). Each IP must have a BIC#0, and may have a
BIC#1 depending on the type of IP it is. ‘

IP's operate in one of three modes:

1. Diagnostic Mode
2. Program Load Mode
3. Normal Mode

In diagnostic mode, the IP is under control of its internal PROM and per-
forms BIC Tloopbacks for diagnosability of IP function from the MF software
subsystem. In program load mode, the IP is also under control of its intern-
al PROM. In this mode the IP will load a software subsystem from the MF into
its onboard RAM via BIC#0. On command from the MF, the IP will leave program
load mode and enter normal mode by starting execution of the loaded software
subsystem.

When an IP is running a D814 software subsystem in normal mode, BIC#0 is -
used to support an addressed packet interface between the MF software subsys-
tem and the IP software subsystem. BIC#l is required only for the following
IP subsystem classes: network link subsystems, single threaded communica-
tions port subsystems, and multithreaded communications port subsystems. For
each of these subsystem classes, BIC#1 is used to support a high speed data
interface between the IP software subsystem and the MF software subsystem.

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

3.1 Software Subsystems

3.1.1 Mainframe PROM Subsystem (MFPROMSS)

The MFPROMSS resides on a PROM card in the D814 mainframe. Its function
is to load the mainframe RAM with the mainframe software subsystem which is
the operational software for the D814 mainframe. The MFPROMSS gets this
software from a local floppy disk or via an I/NP from an adjacent node. This
subsystem is detailed in Section 4.1.

3.1.2 IP PROM Subsystem (IPPROMSS)

The IPPROMSS resides in a PROM chip on all IP's. It is activated when-
ever the D814 mainframe issues an IP master reset to the IP. Its basic
function is to load IP software subsystems into IP RAM for execution. For
all IP's except the I/FDC, software is loaded from the mainframe via BIC#0.
For the I/FDC, a bootstrap program is loaded from the mainframe and the I/FDC
loads its software subsystem directly from the disk. This subsystem is
detailed in Section 4.2 and 4.3.

3.1.3 Mainframe Software Subsystem (MFSS)

The MFSS consists of a number of software modules. The mainframe is the
central controller for a D814 node. It performs the following functions:

1. Addressed Packet Control

2. Statistics and Monitoring

3. Configuration Control

4, Node Path, Routing, and Congestion Control
5. IP Program Load Control

6. Network Link Frame Assembly and Disassembly
7. Multithreaded Port Frame Assembly and Disassembly
8. Network Boot Control

9. Down Line Loading of Adjacent Nodes

10. Front Panel Control

11. Node Level System Service Support

3.1.4 1/CTP Software Subsystem (ICTPSS)

The ICTPSS runs on an I/CTP module which consists of a 48K IP engine card
and a Control Terminal Card (CTC). The subsystem is loaded to the I/CTP from
the mainframe using the IPPROMSS resident on the IP engine card.

The I/CTP running the ICTPSS implements the man-machine interface between
the D814 operator and the D814 network. A CRT is the primary human interface
and an optional printer using asynchronous RS232 protocol can be used to log
hardcopy reports. The I/CTP provides the following functions:

[]

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

1. Network Configuration Control

2. Network Report Monitoring

3. Network Statistics Collection

4, System Service Control Point

5. Inter-operator Communications

6. Device Control via RS232 Interface

3.1.5 I/NP Software Subsystem (INPSS)

The INPSS runs on the I/BIT module (card) with 48K of RAM. The software
is loaded to the IP from the mainframe using the IPPROMSS resident on the
I/BIT card.

The I/BIT module running the INPSS implements the low speed (<19.2K bps)
network link functions for the D814. This function includes: _
1. Link Initialization.

2. Receiving internal network link frame from D814 MF and sending them
over the network link.

3. Receiving external network 1link frames from the network link and
sending them to the D814 MF.

4. Managing the network link ARQ protocol.

5. Measuring and reporting statistics about the communications 1link
performance and loading characteristics.

6. Responding to system service commands.

3.1.6 [I/SSTP-BSC Software Subsystem (ISSTPSS-BSC)

The ISSTPSS-BSC runs on the I/BYTE module (card) with 48K of RAM. It is
loaded to the IP from the D814 mainframe using the IPPROMSS resident on the
I/BYTE card.

The I/BYTE module executing the ISSTPSS-BSC implements the RS232 synchro-
nous communications interface function for the Binary Synchronous Communica-
tions protocol for one COMM line on the D814. This function includes:

1. Receiving/transmitting data via RS232 interface.

2. Monitoring/driving control signal lines.

3. Call management.

4. Flow control.

5. Adaptive data compression.

6. Throughput enhancement via BSC protocol intervention.
7. Configuration management for interface.

8. Measuring and reporting COMM line statistics.

9. Responding to system service commands.

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

3.1.7 1/SSTP-HASP Software Subsystem (ISSTPSS-HASP)

The ISSTPSS-HASP runs on the I/BYTE module (card) with at least 48K of
RAM, It is loaded to the IP from the D814 mainframe using the IPPROMSS
resident on the I/BYTE card.

The I/BYTE module executing the ISSTPSS-HASP implements the RS232 synch-
ronous communications interface function for the HASP protocol for one COMM
line on the D814. This function includes:

1. Receiving/transmitting data via RS232 interface.

2. Monitoring/driving control signal lines.

3. Call management.

4, Flow control.

5. Adaptive data compression.

6. Throughput enhancement via HASP protocol intervention.
7. Configuration management for interface.

8. Measuring and reporting COMM line statistics.

9. Responding to system service commands.

3.1.8 I/BOP Software Subsystem (IBOPSS)

The IBOPSS runs on the I/BIT module (card) with 16K of RAM. It is loaded
to the IP from the D814 mainframe using the IPPROMSS resident on the I/BIT
card.

The I/BIT module executing the IBOPSS implements the RS232 synchronous

bit oriented communications interface function for one COMM line on the D814.
This function includes:

1. Receiving/transmitting data via RS232 interface.
2. Monitoring/driving control signal lines.

3. Call management.

4, Flow control.

5. Adaptive data compression.

6. Configuration management for interface.

7. Measuring and reporting COMM line statistics.

8. Responding to system service commands.

3.1.9 I/MATP Software Subsystem (IMATPSS)

The IMATPSS runs on a 48K byte I/ENG card and supports up to 4 QBYTE
cards to interface up to 16 asynchronous RS232 devices to a D814. It is
loaded to the IP.

The IMATPSS executing on an I/ENG card implements a multi-channel asyn-
chronous interface function for the D814.

Rev., 2 D814 System Software Manual Rev. 2
Section 3 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

3.1.10 I/MXP Software Subsystem (IMXPSS)

The IMXPSS runs on a 48K I/BIT card and supports one Codex "Mux Port" in-
terface as defined in the Codex Multiplex Protocol Specification; as well as

the Codex Single Line Interface as defined in the Codex SLI Functional Inter-
face Specification. Communication is bit synchronous via RS232 interface.

The IMXPSS executing on the I/BIT implements a multi-channel synchronous

interface function for the D814. This function includes communications with
Codex 6010, 6030, and 6040 products as well as Codex FEP's.

3.1.11 I/FDP Software Subsystem (IFDPSS)

The IFDPSS runs on a 48K I/ENG and a Floppy Disk Controller card (FDC).
The subsystem is loaded to the I/FDP from an attached floppy disk drive on:
command from the mainframe via BIC #0. The mainframe accomplishes this by
loading a jump instruction in normal load format (see Section 3.2.1). This
jump instruction transfers control to a ROM on the FDC card which loads the
correct software from a specified drive into the I/FDP RAM memory. For
further details see Section 4.3.

The I/FDP running the IFDCSS implements the D814 disk file system and
file system AP protocol. A single I/FDP may control up to 4 disk drives.
The I/FDP provides the following functions:

. File management.

. File system protocol control.

Disk control.

Statistics and monitoring.

Configuration management for disk interface.

AW
D)

3.1.12 1/DGP Software Subsystem (IDGPSS)

The IDGPSS runs on an I/CTP module which consists of a 48K I/ENG card and
a Control Terminal Card (CTC). The subsystem is loaded to the I/DGP from the
mainframe using the IPPROMSS resident on the I/ENG.

The I/DGP running the IDGPSS implements the "datagram" function and the
man-machine interface necessary to implement it. A CRT is the primary human
interface and an optional printer using asynchronous RS232 protocol can be
used to log hardcopy listings of messages. The I/DGP provides the follow-
ing functions:

1. Inter-operator communications.
2. Statistics and monitoring.
3. Device control via RS232 interface.

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

3.2 Subsystem Interfaces

D814 software subsystem interfaces fall into three categories:
1. Program Load

2. Address Packets
3. High Speed Data Streams

3.2.1 Program Load Interface

The program load interface is used for two functions. First, it is used
to load IP software from the mainframe into an IP. Secondly, it is used to
load the mainframe when a downline load of the mainframe is done.

BIC #0 is always used for the program load interface. The format of the
program load data is as follows: :

Load Header:

Bytes 0 - 1: Start address (0 if not last load block)
Bytes 2 - 3: Load address
Bytes 4 - 5: Byte count of load block including header.
Data:
Bytes 6 - n: Object code in binary.
Checksum:

Bytes n+l - n+2: 16 bit end-around carry checksum of load block
including header.

It is up to the sending device to block the data into this format.

3.2.2 Addressed Packet Interface

Addressed Packets (APs) are the primary method of command and control
within the D814. They provide a flexible method of communicating informa-
tion between any two modules in a D814 network.

BIC #0 is used for the AP interface after the program load function is
complete. The format of an AP is as follows:

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

Byte Contents

Total length of packet in bytes
Packet Destination Node Number
Packet Destination Port Number
Packet Destination Module Number
Packet Source Node Number

Packet Source Port Number

Packet Source Module Number

7-n Packet Data

SO WN O

In bytes 2 and 5, port zero is the mainframe at the specified node. 1In
byte 1, if the high order bit (X'80') is set, the packet has experienced an
error condition and is being returned to the sender (source and destination
having been interchanged). When an error is flagged, a byte containing an
error code is appended to the end of the packet and the byte count (byte 0)
is incremented by one.

3.2.3 High Speed Data Interface (HSDI)

The high speed data interface is used for transferring "user data"
between IP's and the D814 mainframe for single-threaded, multi-threaded, and
network link communications subsystems. There are three basic data formats
used, one for each class of communications subsystem. BIC #1 is always used
for this interface.

3.2.3.1 Single Threaded High Speed Data Interface (STHSDI)

The STHSDI is stream oriented and passes data in 4-bit "chunks" called
nibbles. Nibbles are segments of encoded user data. Since the BIC is byte
oriented transfers across the BIC may be packed. The following coding of the
STHSDI is the system standard.

X'00' Not allowed.

X'0a' Single nibble (a #0)

X'ab' Two nibbles (a through b, a#0#b)
X'b0' System In-channel-signal (b#0)

Note that a nibble may not take the value 0 (zero). This is a conse-
quence of the in-channel-signal (ICS) scheme used in the D814. ICS's are
used for system control of virtual channels (paths). They are not coded and
can be interpreted by any entity which processes a data stream. Their de-
tailed use will be explained in later sections of this document.

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 9 '

CODEX CORPORATION COMPANY CONFIDENTIAL

3.2.3.2 Multi Threaded High Speed Data Interface (MTHSDI)

The MTHSDI is a multiplexed stream of STHSDI data. It is used to send
multiple single threaded data streams through one BIC to interface with a
multi-threaded terminal port. The following format is used for the MTHSDI
data:

Slot

e o o | A MIEOS[d | d | d]| eeo | d | AMIEOS| d | d | ...

The data stream is composed of a series of "slots" each of which contains
address and data for one single-threaded data stream. Each slot begins with
an A (address) field containing the thread number used by the port to identi-
fy the single-threaded data stream. Dot data follows the A field and is in
the same format .as the STHSDI. Each slot is terminated by a special Multi-
threaded End-of-Slot (MTEOS) ICS, defined as X'FQO', which is not allowed to
occur in the STHSDI format.

3.2.3.3 Network Link High Speed Data Interface (NLHSDI)

The NLHSDI is a multiplexed stream interface standard for sending multi-
ple single threaded data streams, addressed packets, and control messages to
an I/NP for transmission over a network link. Network link transmission uses
a frame (block) based HDLC-like protocol. The NLHSDI is also frame based
with three possible frame types as follows: '

1. Data Frame
2. Address Packet Frame
3. Control Message Frame

A11 NLHSDI frames have a common general format:

e « o o o | EOF | Frame Data | FTI [EOF [. . . >
<{-- NLHSDI Frame ---|->
] '--> "End-of-Frame" Character
--------- > "Frame-Type-Identifier"

Each frame begins with a "Frame-Type-Identifier":

FTI1 Frame Type

X'40' Data Frame

X'80' Addressed Packet Frame
X'co' Control Message Frame

The EOF character for all NLHSDI frame types is X'0l1'.

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL

3.2.3.3.1 Data Frame Format

The NLHSDI format for data frames is as follows:

X 0L [E0S] d] d 1 d JA[---] E0S T d 1 d [d JAIX 80 X 0] ..o

Slot N ... Slot 1 l-) EOF Prev. Frame
-=EOF -<> FTI = Data Frame

Slot Format:

« o o |ATEOS]| d]d]d]|A]EOS]| >

Data '--End-of-Slot ICS
--End-of-Slot 'e=--w-o Slot Address (2<A<255)

Each slot is address and data for one single threaded data stream. The
format of the data segment of each slot is the same as the STHSDI. Three
"End-of-Slot" (EOS) ICSs are defined for network 1link data streams. They
are:

X'FO' = End slot normal
X'EQ' = End slot & kill channel (Failure)
X'DO' = End slot switch channel

It should be noted that the MTEOS used in the MTHSDI and the normal EOS
used in the NLHSDI have the same value. This causes no confusion since
neither the MTEOS nor the normal EOS is allowed to occur in the STHSDI
format.

Slot addresses may not have the values 0 and 1. Therefore, the EOF value
of X'01' after the last slot cannot be confused with the beginning of a new
slot.

3.2.3.3.2 Addressed Packet Frame Format

The NLHSDI format for Addressed Packet Frames is as follows:

X'0l1" |...ddd | Llnleeef d | d]d]d]LI[f X80 [X0l J....2

Addressed Packet ... Addressed Packet '~> EOF Previous

n 1 , Frame
-=> EOF

—

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

The addressed packet format is as described in 4.2.2. Note that L = AP
length = 1 is illegal for an AP and thus is a valid EOF character.

3.2.3.3.3 Control Message Frame Format

The NLHSDI format for Control Message Frames is identical to the format
for Addressed Packet Frames. Each control message must be greater than two
so the EOF = X'01' is still valid. Control messages are special node-to-
node messages that are handled at high priority. Their detailed use and
format will be explained later in the section on the MFSS data structures.

Rev. 2 ' D814 System Software Manual Rev. 2
Section 3 - 12

CODEX CORPORATION COMPANY CONFIDENTiAL

MAINFRAME SUBSYSTEM

| MAINFRAME OPERATING SYSTEM |

| ADDRESSED PACKET CONTROL |

I STATISTICS, MONITORING AND REPORTING |

| FRONT PANEL CONTROL |

| CONFIGURATION MANAGEMENT |

I SYSTEM BOOT CONTROL |

| PATH, ROUTING AND CONGESTION MANAGEMENT |

| NETWORK LINK CONTROL |

I DOWNLINE LOAD |

| INITIALIZATION |

l MULTI-THREADED PORT CONTROL |

| SYSTEM SERVICE SUPPORT |

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 13

CODEX CORPORATION

I/CTP SUBSYSTEM

COMPANY CONFIDENTIAL

IPOS

CONFIGURATION CONTROL

| REPORT CONTROL I/CTP
| STATISTICS CONTROL I/CTP
| OPERATOR COMMAND PROCESSOR I/CTP
| SYSTEM SERVICE MONITOR I/CTP
| DEVICE CONTROL I/CTP

Rev. 2

D814 System Software Manual
Section 3 - 14

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/NP SUBSYSTEM

| TP0S |

‘ | CONFIGURATION CONTROL |

| MATNFRAME BIC INTERFACE & PROTOCOL I/NP__|

| NETWORK LINK PROTOCOL & DEVICE CONTROL __I/NP__|

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 15

CODEX CORPORATION

COMPANY CONFIDENTIAL

I/MSTP SUBSYSTEM

TP0OS I

CONFIGURATION CONTROL |

CALL MANAGEMENT |

| DATA_ MOVEMENT MUCTI |
| PROTOCOL AND DEVICE CONTROL ___ I/MSTP |

Rev. 2

D814 System Software Manual
Section 3 - 16

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/SSTP-BSC SUBSYSTEM

| TP0S |

| CONFIGURATION CONTROL |

| CALL MANAGEMENT |

| DATA_ MOVEMENT SINGLE |

| PROTOCOL AND DEVICE CONTROL I/SSTP-BSC |

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 17

CODEX CORPORATION

COMPANY CONFIDENTIAL

I/BOP SUBSYSTEM

TP0S |

CONFIGURATION CONTROL |

CALL MANAGEMENT |

DATA MOVEMENT SINGLE |

PROTOCOL AND DEVICE CONTROL T/BOP |

Rev. 2

D814 System Software Manual
Section 3 - 18

Rev. 2

CODEX CORPORATION : COMPANY CONFIDENTIAL

I/MATP SUBSYSTEM

| TP0S 1

| CONFIGURATION CONTROL |

| CALL MANAGEMENT |

| DATA MOVEMENT MULTI |

I PROTOCOL AND DEVICE CONTROL I/MATP |

Rev. 2 D814 System Software Manual Rev, 2
Section 3 - 19

CODEX CORPORATION

COMPANY CONFIDENTIAL

I/MXP SUBSYSTEM

IPOS

CONFIGURATION CONTROL

CALL MANAGEMENT

DATA MOVEMENT MULTI

PROTOCOL AND DEVICE CONTROL 1/MXP

Rev. 2

D814 System Software Manual
Section 3 - 20

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FDP SUBSYSTEM

| IPOS |
. | CONF TGURATION CONTROL |
| FILE MANAGEMENT I[/FDP |
| PROTOCOL & ARQ I/FDP_ |
| DEVICE CONTROL Disk |
Rev. 2 D814 System Software Manual Rev. 2

Section 3 - 21

CODEX CORPORATION COMPANY CONFIDENTIAL

3.3 Bus Interface Chip (BIC) Operation

The Bus Interface Chip (BIC) is used to interface the mainframe nest bus
to the individual I/Ps in the nest(s). A detailed hardware description of
the BIC may be found in the D814 Hardware System Specification. The design
of the software operating the BICs from the mainframe (controller) side may
be found in Sections 5.2, 5.8, and 5.11 of this document and in Sections
6.1.6, 6.4, and 6.5 from the port side. The specifics of the detailed design
of the BIC operating code may be found in the detailed design specs for the
modules described in the sections noted above.

3.3.1 BIC Operations from the Controller (Mainframe) Side

This subsection provides a broad overview of the mainframe side of the
Bus Interface Chip (BIC). The data formats used for addressed packet and
data transmission over the BIC have already been described.

3.3.1.1 BIC Packet FIFO

A1l I/Ps have a BIC number 0. This BIC is used for both downline loading
of operating and diagnostic software and addressed packet communication
between the port and the mainframe (see subsection on Mainframe Addressed
Packet (MAP) Module).

The data format for downline load data is described in Section 3.2.1.
Interrupts are not used when downline loading, and the load block described
there is loaded directly into the outbound FIFO without using any coding for
zero bytes.

The data format for addressed packets is also described in Section 3.2.2.
The BIC #0 FIFOs (called the packet FIFOs) are used to transmit packets in
segments small enough to fit entirely in the FIFO. The reader's and sender's
flags are used to ensure that a segment is not read until it has been com-
pletely loaded. In other words, reading and writing of addressed packet
segments (unlike user data in BIC #1) is strictly synchronous. This is all
described in detail in the subsection on the Mainframe Addressed Packet (MAP)
Module.

After downline load the mainframe packet FIFO control registers are set
to generate service segments only when the port's sender's or reader's flag
is set, and the addressed packet logic is interrupt driven (see subsection on
MAP). ‘

Rev. 2 D814 §ystem Software Manual Rev. 2
Section 3 - 22

CODEX CORPORATION COMPANY CONFIDENTIAL

3.3.1.2 BIC Data FIFO

BIC #1 at an I/P (if it exists) is used for user data transmission using
the High-Speed Data Interface format discussed in Section 3.2.3. Since this
format does not allow the zero byte to be sent, the BIC may be determined to
be empty whenever a zero is read (see BIC Design Specification). This allows
software on both the mainframe and the I/P side to disperse with most BIC
FIFO status checks and therefore run more efficiently.

BIC data FIFOs associated with single-threaded and multi-threaded ter-
minal ports are accessed as needed by the Mainframe Network Link (MNL) Module
and the Mainframe Multi-Threaded Port Control (MMT) Module; interrupts are
not used in accessing the I/TP data FIFOs.

BIC data FIFOs associated with I/NPs, on the other hand, are interrupt
driven. To minimize context-switching overhead at the expense of increased
queueing delay, the BIC inbound and outbound FIFO control registers for an
active port are set to cause mainframe service requests (see subsection on
Mainframe Tack Control (MTC) Module) when the inbound (mainframe-bound) FIFO
goes more than half-full and when the outbound FIFO goes less than half-full.
In addition, an I/NP may force a mainframe data FIFO interrupt using the
inbound FIFO sender's flag on the outbound FIFO reader's flag.

3.3.2 BIC Operations from the Port Side

This subsection provides an overview of the BIC presented from the port
side. The presentation is in two parts: BIC #0 (packet BIC) which is manipu-
lated by the IPOS operating system, and BIC #1 (data BIC) which is manipu-
lated by the IP's to move network user data.

3.3.2.1 IP Packet BIC (BIC #0)

The IP's use BIC-0 to download port software and online diagnostics and
to transmit and receive IPOS addressed packets between the port and main-
frame. Address packet formats are described in Section 3.2.2.

Downline load data formats are described in Section 3.2.1. The port down-
line load algorithm does not require the BIC-0 interrupt flags. Data is
moved directly from the BIC to port RAM without decoding attempts for zero
value bytes.

Exercising facilities and diagnostic information are provided using
BIC-0. See Section 4.1, IPL ROM. :

When used for addressed packets by IPOS, BIC-0 runs under interrupt con-
trol using the senders and receivers flags.

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 23

CODEX CORPORATION ‘ COMPANY CONFIDENTIAL

3.3.2.2 1P Data BIC (BIC #1)

A1l IP's have a data BIC but some, such as the I/CTP, I/FDP and I/DGP,
which do not move network data, do not use this BIC. When utilized by the
IP, BIC 1 transfers data blocks (as described in Section 3.2.3) using the
interrupt-on-half-full and senders/receivers flag interrupts.

The former allows both the port and mainframe to interleave processing
while the latter insures that all data blocks are processed as soon as possi-
ble. This methodology requires encoding of hexadecimal zeroes to distinguish
real zeroes from those read from an empty FIFO. An exception to the encoding
scheme occurs in the I/NP which uses hexadecimal zero as a transparent line
pad character.

Rev. 2 D814 System Software Manual Rev. 2
Section 3 - 24

CODEX CORPORATION COMPANY CONFIDENTIAL

4, FIRMWARE

The term "“firmware" in this document refers to the IPL code in ROM in the
mainframe or IP.

There are four distinct firmware subsystems in D814:
1. General Port IPL ROM

2. I/FDP IPL ROM

3. Mainframe IPL ROM

4, Mainframe ROM-Resident Diagnostics

Each of these are discussed in the following sections.

4.1 D814 Port IPL ROM

The IPL ROM used in the D814 ports supports four IPL functions. The
reset bits in the packet BIC designate what type of reset is being performed.
Any reset causes the port diagnostic LED to go on. The functions of the
resets are:

RESET 0: (Master Reset)

This reset occurs during power up and under software request. When a
reset-f is detected, the engine executes an instruction set test, a ROM
checksum test and two RAM tests, leaving RAM cleared. When these are com-
pleted successfully, control goes to the port debugger if one is present.
Otherwise, the port turns off the diagnostic LED, sets the port bit in
the packet BIC, and then waits for another reset.

RESET 1: (Software Load)

Reset 1 is issued by the mainframe software (MSI, MDL, MIL) when software
is to be loaded into a port. Memory is sized, and the communication card
ID, high order address byte of the highest page of port RAM, and proces-
sor ID (00-6800, 01-6809) are passed to the mainframe using the packet
BIC. The port then awaits software from the mainframe (including a start
of load location, a start of execution address, and a 2 byte checksum).

1tiple individual loads maxu?;1§gBf9LMEdL_ﬁIha—pept—eentinues_tnwexpgggm
software un it Teceives a—1oad block with a start address other than

. e
R

Zero._ Execution then begins at the specified address. ~IF “the “Port
debugger is attached, the start address is saved and control passed to
the debugger ROM.

Rev. 3 D814 System Software Manual Rev. 3
Section 4 -1

CODEX CORPORATION COMPANY CONFIDENTIAL

RESET 2: (Limited BIC Test)

Reset 2 is designed to test the BICs. Half of this test resides in the
mainframe ROM. Reader and sender flags, FIFOs, and port interrupts are
tested. Upon successful completion, the port turns off the diagnostic
LED, indicating that the port is minimally capable of loading software
through its BIC. -

RESET 3:
Reset 3 is used to retrieve information from a port which has failed.

The first 32 bytes of port memory are loaded into the packet BIC, and the
sender's flag is set.

Rev. 3 D814 System Software Manual Rev. 3
Section 4 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

4.2 D814 I/FDP IPL PROM

In addition to the standard D814 IPL ROM, the I/FDP has a 256 byte PROM
on the second card. When a mainframe wishes to boot an I/FDP, it performs a
reset 1 and loads a standard jump instruction as software. The jump, when
executed, will transfer control to the PROM which will bootstrap the port.

The bootstrap PROM will read one byte from the IPL BIC which it uses to
determine on which drive system software should be located. If the drive is
non-existent, a NAK is sent to the mainframe with a cause code indicating
such.

Otherwise, the IPL PROM reads a standard record from the floppy disk and
executes the code read. If, in the process of bootstrapping, an error
occurs, a NAK and appropriate cause code are sent to the mainframe.

If the bootstrap completes without error, the ACK followed by the soft-
ware release and level are stored in the BIC FIFO. The I/FDP is prepared to
start execution; however, execution will not begin until the mainframe sends
a startup indication over the IPL BIC.

The IPL PROM is customized to load the standard record from a particular
location on the floppy. Each type of I/FDP therefore requires a customized
PROM and a boot record on the floppy. Note that while I/FDP boot software is
expected from a software disk, every D814 floppy has the IPL software in the
same standard fixed locations.

Rev. 3 D814 System Software Manual Rev. 3
Section 4 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

4.3 Mainframe IPL Module

4.3.0 Introduction

The mainframe IPL module (MIL) is the ROM resident mainframe system com-
ponent which takes control after any D814 node restart. A firmware restart
causes a nest master reset and causes all mainframe processors to jump to
mainframe ROM through a restart vector. There are four ways to initiate a
firmware restart. These four 'restart types' are:

A. Power-up - Power is restored to the mainframe generating a power-up
sequence.

B. NP Restart (hardware boot) - Interrupt to the master controller gen-
erated by hardware. Triggered by a "restart sequence" received by a
network port.

C. Software Restart - Generated by a master controller instruction
under software control (see Mainframe Module MSB).

D. Reconfig Restart - Type of software restart, used to reload port
software when changing configurations.

When mainframe ROM is entered, Mainframe ROM diagnostics are executed,
after which the MIL entry point MIL$INIT:ENTRY is jumped to.

MIL determines the local source port for mainframe software and super-
vises the loading of that software. The source depends on the restart type
and on parameters passed to MIL. The source of software port may be a floppy
disk port local to the IPL'ing node (node running MIL), a floppy disk emula-
tor port local to the IPL'ing node, or a local network port. Software loaded
through a network port is passed by MDL (see Mainframe Downline Load) of a
running node over a network link.

The following terminology will be used for this discussion:
adjacent node - (or neighboring node) - Node running mainframe

software which is 1linked to the IPL'ing node
through a network link.

IPL'ing node - Node running MIL.

The software level passed to MIL in page @ of
RAM or in CMEM, if specified.

preferred software

The network 1link which communicated the hard
boot command for an NP restart.

preferred link

Rev. 3 D814 System Software Manual Rev. 3
Section 4 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

chosen software - The software level (revision # and release #)
which is actually loaded.

chosen link - Network 1link actually used for Tloading, when
loading through an NP.

loading port - Port used to load software (may be I/NP, I/GBNP,
I/FDP, or I/FDPE). Same as source of software
port.

RNP - ROM Network Port. Network Port code running in

NP (network port) local to IPL'ing node. RNP
performs functions of an NP to enable IPL'ing
node to get software from adjacent node. RNP
code resides in mainframe ROM, and is downloaded
to the NP by MDL or MDM. :

Note that NP refers to both I/NP's and I/GBNP's unless otherwise stated.

4.3.1 Functional Overview

MIL is invoked in the following situations:

A.

c.

Rev. 3

Power-up
When power is restored to the mainframe after a power interruption.
NP Restart (Hardware Boot)

A command by the ICTP operator directs a node to send a special code
over a network link from an operator-specified network port. This
causes an NP restart of the remote mainframe. A hardware boot is
done to cause new software to be loaded into a specified node over a
specified link. It attempts the restart of a node regardless of the
node's state at the time of the boot.

Software Restart
A command by the I/CTP operator initiates the restart of a node and
all nodes of the same connected network (nodes running inconsistent
software are not part of the same connected network). This is used
for two purposes:

1) Network Reboot - To change the software of the entire network.

D814 System Software Manual Rev. 3
Section 4 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

D.

E'

Rev. 3

2) To restart a connected network which is joined to the network
with the I/CTP. For example, if the two joined networks are
running different software versions, the I/CTP operator can
issue a software boot command and restart all of the nodes in
the adjoining network. They will come up with the proper soft-
ware and become part of the ICTP operator's network. The I/CTP
operator communicates the command to the NP in his network
which has a network link to the adjoining network. The command
is communicated over the link by means of a code in the initial
link protocol (see section on MSB).

These two cases are indistinguishable to MIL. The Mainframe System
Boot Module (MSB) communicates to every node in the connected net-
work the new software release and revision level and configuration.
Each node then does a software node restart. Software configuration
parameters are passed in page @ of RAM. .

Reconfig Restart

A reconfig restart occurs when a node is rebooted to change configur-
ations without changing software levels. This may happen automatic-
ally or as a result of an I/CTP operator command. This restart
causes all ports to be reset and subsequently reloaded (see MDM sec-
tion). Mainframe software is not reloaded unless the mainframe
checksum is invalid. An invalid checksum is treated like a system
error in which case mainframe ROM diagnostics are restarted.

System Error (Special case of a software restart)

A system error is a fatal mainframe error. If the mainframe debug-
ger is present when a system error occurs, the mainframe software
traps to the debugger from MDM without causing a restart (see sec-
tions on MDBG and MDM). If the debugger is not present, a SYSERR
code is saved and a software restart is done.

When MIL discovers a SYSERR it delays the number of minutes speci-
fied in CMEM (at EQ$MCM:OF_DELAY) while broadcasting SYSERR messages
on the front panel and in HELP messages which are seat over all
RNP's., When the delay is complete, it clears the error code and
resumes the normal load sequence. Note that while in delay, the
operator can cause a jump to the debugger from the front panel key-
board (see subsection on front panel interface).

D814 System Software Manual Rev. 3
Section 4 - 6

CODEX CORPORATION COMPANY CONF IDENTIAL

Error Handling:

Two types of errors may occur during MIL: fatal errors and non-fatal (or
recoverable) errors. Error messages are communicated by displaying them on
the front panel and sending error codes in HELP messages.

A. Fatal Errors

A fatal error is a serious mainframe error which occurs during MIL.
When a fatal error occurs, the normal load sequence is interrupted,
and a HELP message with an error code is sent across a network link.
The IPL'ing node waits for commands from an adjacent node.

B. Non-fatal Errors
A non-fatal error is an error which does not interrupt the normal
loading sequence. A HELP message with error code is sent. If the

error is a port error, a new loading port is found (see error
handling under loading software).

4,3.2 OQOperational QOverview

After a restart, the node is in the following state:

- A11 ports have been reset and are running ROM-resident engine diag-
nostics (these are started up automatically).

- A11 NIC's are in loopback mode.

- A1l processors are reset, lowbank of memory is selected, all proces-
sors jump to mainframe ROM diagnostic routines (MDAG).

(See section on Mainframe ROM Diagnostics.)

MDAG routines are executed and MIL is jumped to. At entry to MIL, the
following has occurred:

1) Mainframe diagnostics have been successfully completed if run (diag-
nostics not run if mainframe does not require reloading).

2) NIC loopback tests are completed and NIC's are no longer in loop-
back.

3) Processor @ jumps to MIL$INIT:ENTRY (entry point to MIL). All other
processors are halted until restarted by MIL.

Rev. 3 D814 System Software Manual Rev. 3
Section 4 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

MIL does the following:

1) Compute CMEM checksum, compare to value stored in CMEM, store valid/
invalid parameter.

2) Read port bit (for engine diagnostics completion) from BIC-@ of each
engine and keep table of error codes for all ports.

3) Call BIC loopback routine for each working engine and add failures
to port table.

4) Send Reset 1 to each working engine. Keep loading port table of ID
information for I/FDP's, I/FDPE's, I/GBNP's and I/NP's.

5) Determine Restart type. (Details below) -

6) Determine chosen software, chosen link and loading port. (Detai]sA
below)

7) Start up loading port and load mainframe software. Monitors loading
port for errors. If an error occurs goes to step 6 to find another
loading port. (Details below) :

Upon successful completion of MIL the IPL'ing node is in the following

state:
mainframe software is loaded
all ports have completed engine ROM diagnostics and BIC Toopback
tests

Note that no ports are loaded with system software during MIL.

The parameters saved for the mainframe are defined in the section on
interfaces.

At this point the mainframe software is started up by jumping to the Tload
blocks start execution address.

Steps 5, 6 and 7 are explained in more detail:

Step 5: Determining Restart Type

Rev. 3

There are four different restart types:

1. Power Up

2. NP restart (or hardware boot)

3. Software

4, Reconfig - (This is a software restart which changes the con-
figuration without changing software levels.)

D814 System Software Manual | Rev. 3
Section 4 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

MIL uses the following variables to determine restart type:

1. Location EQ$MC:RSRT of Master Controller local memory.

2. The reconfig parameter OF$MIL:RECONFIG stored in RAM, page 0
(by MSB).

3. The attention sequence registers on the NP (passed to MIL by
the RNP).

MIL reads location EQ$MC:RSRT of master controller local memory.
The contents of this location allows MIL to distinguish between a
boot generated by software (either software or reconfig restart) and
a boot generated by hardware (either power-up or NP restart).

If the boot was generated by software, MIL reads OF$MIL:RECONFIG to
determine if restart type was software (EQ$MIL:SFTWR_RSTA) or recon-
fig (EQ$MIL:CONFIG_RSTA).

For a reconfig restart, mainframe software is not reloaded. MIL
checksums mainframe code. If the checksum is invalid, MIL stores
the reconfig parameter for software restart and a system error code;
and ;auses another node restart (in order to run mainframe diagnos-
tics).

If the boot was generated by hardware, MIL polls each network port
to determine if a network port received a remote boot sequence (see
RNP section). If no network port received a remote boot sequence,
then the restart type is power-up (EQSMIL:POWER_RSTA). Otherwise,
the restart type is hardware boot (EQ$MIL:HRDWR_RSTA).

Step 6: Determining Chosen Software, Chosen Link, Loading Port

Rev. 3

The algorithm used to determine these parameters depends on the
restart type (determined in step 5) and is described below.

In the process of selecting a loading port, loadable port diagnos-
tics may be executed. A floppy disk port or floppy disk emulator
port always executes loadable diagnostics.

When a loading port is not specified (not a hardboot) MIL selects a
loading port by referencing the loading port table. This table is
created by MIL and contains the following information for each possi-
ble source of software port (I/FDP, I/FDPE, I/GBNP, I/NP):

1) TPORTNUM

2) TCOMCARD

3) TERROR

4) TFDP_DISP

the port address

the communications card ID code

error information

address of 32 character display buffer
(valid for floppies only)

address of next port in table
(EQ_LAST_PORT if this is last port)

5) TNXT_PORT

D814 System Software Manual Rev. 3
Section 4 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

Load

Rev. 3

I/FDP's are the first entries in the table, this ensures that MIL
tries to get software from its floppy disks before trying to load
through the network. The very first entry in the table is the
floppy disk port emulator, if there is an emulator local to the
IPL'ing node. A node may have at most one I/FDPE. MIL determines
that there is a floppy emulator local to the node by reading a CMEM
node parameter (EQ$MCM:OF_FEAS) which contains the address of the
floppy emulator. If the floppy emulator address is non-zero and the
port plugged into that address is working and is a valid emulator
port, then MIL assumes this is an I/FDPE. MIL tries to load through
this port before trying to load through any other source of software
port. A valid emulator port is a port whose hardware ID is either
CTC or I/BYTE. MIL passes through the table trying to find a port
to load software from. The error information indicates a fatal or
non-fatal error condition. If a fatal error is associated with a
port, that port is not used to load software.

Any Software:
There are two ways of specifying 'load any software available':

1) If the restart type is power up and CMEM is invalid, then pre-
ferred software is EQ$MIL:ANY_REV, EQ$MIL:ANY_REL. This
instructs the node to accept any software available. This
request is not propagated to other nodes.

2) If the operator inputs 'no preferred software' from the front
panel the node loads any software available. In addition, the
instruction to load any software is propogated through HELP
messages to any adjacent nodes which are IPL'ing. If an
IPL'ing mainframe receives a HELP message which specifies no
preferred software it loads any software available and con-
tinues propogating the instruction through HELP messages.

If the restart type is hardware boot then MIL only tries to load
software from the network port which received the remote boot
sequence.

Otherwise, MIL tries each possible source of software port until it
finds a port with an acceptable version of software available. MIL
finds the next possible source of software port by looping through
the loading port table and trying the next port entry which does not
have a fatal error.

D814 System Software Manual Rev. 3
Section 4 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL
MIL determines chosen software and loading port depending on the
restart type, as follows:

1. Restart type is power-up:
a. Chosen Software

If CMEM is valid, the chosen software is the last running
version of software (read from CMEM).

If CMEM is invalid, MIL loads any software available.
b. Loading Port

The loading port is the first port found with the chosen
software available. :

2. Restart type is software restart:
a. Chosen Software

Chosen software 1is the software revision and release
passed to MIL in page @ of RAM,

b. Loading Port

The loading port is the first port found with the chosen
software available.

3. Restart type is hardware boot:
a. Chosen Software

Chosen software is the software available through the load-
ing port.

b. Loading Port
The Tloading port is the network port which received the

remote boot sequence. (In this case the loading port is
known, so MIL goes to step 7.)

Rev. 3 D814 System Software Manual Rev. 3
Section 4 - 11

CODEX CORPORATION | COMPANY CONFIDENTIAL

Rev. 3

MIL determines which port is the next possible source of software
port. Then MIL determines if this port has acceptable software as
follows:

A. If the load port is an I/FDPE or an I/FDP then the following is
done:

1) Floppy diagnostics are run on the port (if this is an
I/FDP the diagnostics are ROM resident. If this is an
I/FDPE, diagnostics and a bootstrap program are loaded
from the host computer and run).

If the diagnostics fail, the error code is stored in the
loading port table and a new loading port is found.

2) MIL reads the floppy directory information to find what
drives are mounted and what level of software is avail-
able.

- If no software disks are present, MIL finds a new
loading port.

- If MIL is looking for any software then the highest
software level available is the chosen software.
This floppy is the loading port.

- If the floppy has the chosen software available then
the floppy disk port is the loading port.

- Else the floppy does not have the chosen software.
MIL finds a new loading port.

B. If the loading port is an I/NP or an i/GBNP then MIL does the
following:

1) Reads the BIC to determine if the network port has ex-
changed 1link inits (LI) with the remote NP (MIL had pre-
viously loaded all Tlocal network ports with loading port
software, and sent STREAM_LI commands to them.)

If NP did not receive an LI from the remote node, MIL
finds a new loading port.

D814 System Software Manual Rev. 3
Section 4 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL

2) MIL sends a command to the local network port instructing
it to send a HELP message to the remote network port, and
waits for network port to get an IPL frame from the remote
node. The 1local network port passes software level to
MIL.

- If the local RNP is talking to another RNP (received
a HELP message) then MIL finds a new loading port.

- If the software level is not the preferred software,
then MIL finds a new loading port.

- Else the software level available is acceptable.
This is the loading port.

Step 7 Start Up Loading Port and Load Software

Rev. 3

This step depends on the type of loading port (floppy disk or net-
work port). If for any reason it becomes impossible to load because
of a loading port failure, the port is marked as non-working in the
loading port table, and MIL goes back to the beginning of Step 6
(determining chosen software and loading port).

A.

Loading Software from a Floppy Disk Port or a Floppy Disk Port
Emulator :

If the loading port is an I/FDP or an I/FDPE, the local node
determines the load sequence. (See subsection on Interfaces.)

MIL receives the software level of each drive. MIL specifies
the drive # followed by one of the following commands:

'Load Mainframe' (EQ$MIL:LOAD_MF)
'Load Floppy' (EQ$MIL : LOAD_FDP)
'Start Floppy' (EQ$MIL : START_PORT)

The normal load sequence when loading through an I/FDP or an
I/FDPE is:

1. Load mainframe software
2. Start mainframe

The loading port is loaded under MDL.

D814 System Software Manual Rev. 3
Section 4 - 13

CODEX CORPORATION COMPANY CONFIDENTIAL

B.

Loading Mainframe through a Network Port:

If the loading port is a network port (either I/NP or I/GBNP)
then the loading sequence is determined by the adjacent node in
response to a software request in the form of a HELP message.

MIL sends HELP, requesting mainframe software without specify-
ing a file (unless Diagnostics Monitor is requested). In
response the adjacent node can send the following commands
followed by appropriate software to the IPL'ing node:

(See RNP section on HELP messages.)

1. Load NP
2. Load and Start NP
3. Load and Start MF

When loading the mainframe through a network port the normal
sequence involves loading ‘and starting mainframe software only.
The loading port is loaded under MDL.

See RNP section for the action taken for each of the three
commands.

Error Handling

Rev. 3

A.

If an error associated with a loading port occurs while loading
and the restart type is not EQ$MIL:HRDWR_RSTA (hardware boot),
the following is done:

1. If the error is non-fatal,
a) display error message on front panel
b) go to Step 6 to find new loading port and chosen soft-
ware.

Note that this port may be tried again as a loading port.

- 2. If the error is fatal,

a) store error code in loading port table

b) display error message on front panel

c) go to Step 6 to find new loading port and chosen soft-
ware.

In the case of a hardware restart, there is only one possible
source of software port. If any error occurs while loading,
fatal or non-fatal, the IPL'ing node sends a HELP message with
error code across the link and waits for a new command from the
running node.

D814 System Software Manual Rev. 3
Section 4 - 14

CODEX CORPORATION COMPANY CONFIDENTIAL

4.3.3 External Interfaces

A. Parameters:

Depending on the type of restart, MIL may access the following
information:

1.

3.

4.

Rev. 3

Mainframe code: On a RECONFIG or SOFTWARE restart, mainframe
code is left intact in RAM. Location OF$MIL:MF_CHCKSUM con-
tains a checksum (two-bytes with wrap-around carry) for the
mainframe code.

Software restart parameters. The following parameters are left
for MIL in page @ of RAM on a SOFTWARE or RECONFIG restart:

OF$MIL :CONF configuration #

OF $MIL : SWLV_REV software revision #

OF$MIL : SWLV_REL software release #

OF$MIL :RSTA_INPT initiating port

OF$MIL :RSTA_INND initiating node

OF$MIL :RECONFIG reconfiguration code

OF$MIL :SYSERR system error code

OF$MIL : START_ADDR mainframe code start address
OF $MIL : CODE_END mainframe code end address
OF$MIL :MF_CHKSUM mainframe checksum

Configuration Memory. MIL always checks the validity of the
checksum in CMEM. If CMEM is valid the following parameters
may be accessed:

a) Software level (EQ$MCM:OF_REV, EQ$MCM:0F_REL) - Used on
power-up to determine last running software.

b) Delay (EQ$JMCM:0F_DELAY) - Used to determine number of
minutes to delay if a SYSERR has occurred.

c) F]opp&fEmulator Port Address and IPL Speed (EQ$MCM:OF_FEAD
and EQ$MCM:OF_FEIS). - These are used to determine the
port address of a local floppy disk emulator port, and the
line speed for the emulator during IPL.

Master Controller. A restart mode is stored in firmware acces-
sible Master Controller Memory. This parameter is read using
the Master Controller RLM command (see 6000 Logic Design
Spec.). This parameter indicates (a) NP or powerup restart, or
(b) software or reconfig restart.

Remote Boot register on I/NP or VBIT card. Register readable
(and clearable) by port software. The contents of these regis-
ters are used to determine the link initiating a hardware boot.
If more than one hardware boot was received, the NP with the
lowest port number is the one used for loading.

D814 System Software Manual Rev. 3
Section 4 - 15

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 3

6.

7.

8.

System Initialization Parameters. The following parameters are
left in page @ of RAM for mainframe system software, on term-
ination of MIL:

OF$MIL :CONF Configuration Loaded

OF$MIL : SWLV_REV Software Revision Loaded

OF$MIL :SWLV_REL Software Release Loaded

OF$MIL :RSTA_INPT Port Initiating Restart

OF$MIL :RSTA_INND Node Initiating Restart

OF$MIL:RSTA_TYPE Type of Restart

OF$MIL : LOAD_PT Port # used to load mainframe

OF$MIL : CMEM_CHK CMEM checksum status

OF$MIL :ERROR ERROR code for load

OF$MIL :RECONFIG Reconfiguration Parameter

OF$MIL : START_ADDRESS Code start address for reconfig
restart ‘

OF$MIL : CODE_END Code end address for reconfig

OF$MIL :SYSERR System error code

OF$MIL :MF_CHKSUM Checksum of load block

Port Status Table. One byte of status information for each of
the 126 possible ports in a node is saved in tabular form for
the. mainframe system software. This port table starts at
OF$MIL:PORT_TBL. The .status of port PORTNUM is 1located at
OF$MIL:PORT_TBL + (PORTNUM/2). The status byte has the follow-
ing possible values:

EQ$MIL : GOOD_PORT No errors in initial diagnostics
EQSMIL :NO_PORT No port present at this address
EQ$MIL :ENG_FAIL Port bit was not set
EQSMIL:BICP_FAIL BIC-@ failed loopback test
EQSMIL:BICI_FAIL BIC-1 failed loopback test
EQ$MIL:BICS_FAIL Both BICs failed loopback test

Floppy Port Status Table. Six bytes of status information for
each floppy disk port in a node 1is saved for wup to
EQ$MIL:FLOPPY_MAX floppy disk ports. This floppy table starts
at OF$MIL:FLOP_TBL. The status of each floppy consists of:

OF$MIL :FLOP_PORTNUM
OF$MIL:FLOP_STAT Status information from diag-
OF$MIL:FLOP_DRIVE @ nostic termination packet

OF$MIL:FLOP_DRIVE 1

OF$MIL:FLOP_DRIVE 2

OF$MIL:FLOP_DRIVE 3

OF$MIL :FLOP_READ Error while trying to read
from floppy

D814 System Software Manual Rev. 3
Section 4 - 16

CODEX CORPORATION COMPANY CONFIDENTIAL

B.

Rev. 3

Load Block Format:

Load Data is sent to MIL in load block format, regardless of the
loading port type (I/NP, I/GBNP, I/FDP or I/FDPE).

Load data is received by MIL encoded.

The load block format (before encoding) is:
(See Section 3.2.1, Program Load Interface.)

Load Header:

Bytes 0 - 1: Start address (0 if not last load block)
Bytes 2 - 3: Load address
Bytes 4 - 5: Byte count of load block including header.
Data:
Bytes 6 - n: Object code in binary.
Checksum:

Bytes n+l - n+2: 16 bit end-around carry checksum of load
block including header.

The data field of the load block is encoded by the sender according
to the scheme:

X'00' --> X'FFFF', X'FF' --> X'FFFE'

This encodes zero bytes in the data. The reason for this is to
allow zeroes to be used as escape characters across a network link
and to facilitate sending data in the BIC.

MIL must decode any load data it receives. (Note that the RNP must
also decode NP load data - see RNP section.)

Diagnostics Interface

1) Mainframe ROM resident diagnostics (MDAG). MIL is entered upon
successful completion of mainframe ROM diagnostics. If the
mainframe fails diagnostics, MIL is never entered. No parame-
ters are passed. Before jumping to MIL, diagnostics halts all
processors other than processor @. (See section on Mainframe
ROM Resident Diagnostics.)

2) ROM resident engine port diagnostics. When a restart occurs,
engine diagnostics are run. Upon successful completion, the
Port Bit in BIC @ is set (other bits may also be set). MIL
reads the port bit for all engines. If the port bit is not
set, MIL does not use this port for loading.

D814 System Software Manual Rev. 3
Section 4 - 17

CODEX CORPORATION COMPANY CONFIDENTIAL

D.

Rev. 3

3) BIC loopback. MIL calls a diagnostic routine which does a BIC
loopback test on the port passed to it and returns an error
code. (See section on Mainframe ROM Resident Diagnostics.)

4) FDP diagnostics. The floppy disk port used to load software
will be instructed to run ROM resident diagnostics under MIL
gsee I/FDP section on IPL ROM). Floppy status information

results of diagnostic) are displayed on the front panel. If
the floppy diagnostics report a fatal error the I/FDP will not
be used as a source of software port. If the floppy diagnostic
reports a non-fatal error condition MIL may retry this port as
a source of software. Floppy status information is saved for
the mainframe system software (Floppy Port Status Table).

The floppy disk port emulator runs diagnostics under MIL. The
MIL interface with the I/FDPE to run diagnostics is the same as-
the interface with the I/FDP. Floppy emulator diagnostics are
not ROM resident but are loaded from the Prime.

5) Diagnostic Monitor. The Diagnostic Monitor can be requested at
the local node during restart (see front panel interface). The
Diagnostic Monitor will be loaded under MIL control.

Floppy Disk Port

MIL may load mainframe software directly from a local I/FDP. MIL
interfaces with the floppy disk port IPL ROM (see section on I/FDP).
MIL sends commands and receives data from the floppy as follows:

1) Run ROM resident diagnostics

a) MIL activates floppy ROM diagnostics by sending a reset 1
to the I/FDP with a software block (see IPL ROM section)
with a starting address equal to OFIPROM:FDP_DIAG.

b) MIL reads from BIC-§ Diagnostic Termination packet (and
displays information on front panel).

2) Run floppy loader

a) MIL activates this by sending a reset 1 to the I/FDP with
a software block with a starting address equal to
OFIPROM:FDP_LOAD.

b) Get directory information. MIL reads a drive.# and soft-
ware level bytes for each ready drive from BIC @. When
there are no more ready drives MIL reads a completion code
(EQ$MIL :FD_NODRIVE) from BIC @.

(Note that at this point MIL may discontinue the load pro-
cess from the I/FDP).

D814 System Software Manual Rev. 3
Section 4 - 18

CODEX CORPORATION , COMPANY CONFIDENTIAL

Rev. 3

c) Load software. MIL puts the drive # (P§-3) to load soft-
ware from in BIC P. MIL follows this with a one byte
command code which specifies

i load mainframe (EQ$MIL:LOAD_MF),
ii load I/FDP (EQ$MIL:START_FDP), or
iii load mainframe with diagnostics monitor
(EQ$MIL :DIAGMNTR)
iv start floppy (EQIPROM:IPL_START).

d) i If the command code was EQ$MIL:LOAD_MF, MIL reads
mainframe software in load block format from BIC @.
Zeroes are encoded. (See load block interface.)

ii If the command code was EQ$MIL:LOAD_FDP, the main-
frame reads a load ACK or NAK. (EQ$MIL:LOAD_ACK or
EQ$MIL :LOAD_NAK) from BIC @.

Floppy Disk Port Emulator

MIL may load mainframe software directly from a local I/FDPE. The
interface to the floppy disk emulator is similar to the interface
with a real floppy disk port. The differences are:

1)

2)

3)

Finding the floppy disk emulator port. MIL does this by read-
ing CMEM for the floppy emulator address (EQ$MCM:OF_FEAD). If
the port at this address passes its ROM diagnostics and its
card ID is either I/CTC or I/BYTE then MIL treats this port as
an I/FDPE. There may be no more than one I/FDPE at a node.

The software blocks sent to the emulator must have a Tload
address of OFIPROM:EMBOOT_SPEED and one byte of data whose
value is that of the CMEM node parameter EQ$MCM:0F_FEIS, in
addition to the start address specified above. (MIL includes
the data byte and load address in the load block for a real
floppy port, even though they are not required.)

The floppy emulator requires some operator intervention to com-
municate with the host computer.

Network Ports

MIL may load mainframe software from an adjacent running node over a
network link. This is done by communicating through a local network
port which may be of either type, I/NP or I/GBNP. The local NP runs
ROM network port (RNP) software: software which enables an NP to com-
municate with a running NP and load software to the IPL'ing main-
frame.

D814 System Software Manual Rev. 3
Section 4 - 19

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 3

The two types of RNP software (RNP or RGBNP) are resident in main-
frame ROM and will be loaded into local NP's by the MIL routine
described below (MDL may also call this routine. See section on
Mainframe Downline Load Module):

MIL$SUBS:LOAD_RNP

Routine in MIL to load RNP software into any network port.

On Entry: Reg A = Port number of NP
Reg B = Comm Card ID
Port has been reset (reset 1) and is ready to load soft-
ware.

On Exit:

If successful Reg A = Load ACK
RNP is loaded and started

If unsuccessful Reg A = Load NAK
This routine does the following:

1. Loads RNP software
2. Reads ACK/NAK from BIC
3. If load successful, starts RNP .

The entry point to this routine is a vector located at
OF $MROM:MIL$LOAD_RNP.

MIL interfaces with the running RNP through the BIC's to load soft-
ware. The MIL-RNP interface is explained in the section on RNP's.
The interface between the RNP and the adjacent NP is also found in
that section.

Note that the data the mainframe receives from the BIC has been
encoded and needs to be decoded as follows:

X'FFFF' —-> X'pp’
X'FFFE' -=> X'FF'
(See load block format.)

D814 System Software Manual o Rev. 3
Section 4 - 20

CODEX CORPORATION

G.

Rev. 3

COMPANY CONFIDENTIAL

Front Panel Interface

1)

Keyboard Entries

a)

b)

Entering Commands

MIL recognizes two commands from the front panel of the
local mainframe.

i Request Diagnostics Monitor (DIAG) (ENTER)
ii No Preferred Software (LOAD) (ENTER)

Note that these commands may only be entered at the begin-
ning of MIL (at the time when the display reads ‘'MF DIAG
COMPLETE') if a power-up restart was done. The display
will echo the commands. '

Changing the Display

Hitting the (ENTER) key on the front panel will cause the
display to change under the following circumstances.

i If a fatal mainframe error has occurred the display
will show all asterisks. Hitting the (ENTER) key
will allow the operator to see the error message.

ii When Tlooking for software, the operator may circle
through status messages for each floppy disk port
(each FDP has a 32 character status message) by
repeatedly hitting the (ENTER) key. Each time the
(ENTER) key is hit the display changes to the next
FDP status message or primary front panel display.
Whenever the primary front panel display changes, the
primary message is displayed.

Jumping to the Debugger

An NMI can be caused from the front panel (at any time) by
turning the key to 'pgm', hitting (ENTER), turning the key
to 'DIAG' and hitting (ENTER). This causes a jump to the
mainframe debugger, if present. (Note that this is done
by the master controller.)

D814 System Software Manual Rev. 3
Section 4 - 21

CODEX CORPORATION COMPANY CONFIDENTIAL

2) Display
a) Primary Messages

Load status will be displayed on the front panel during
MIL. The load status message is the primary message on
the front panel. It is separated into two fields, (i)
current status and, (ii) last error (or load block infor-
mation while loading).

i) Current status will include message such as:

'MF DIAG COMPLETE'
'DIAGNOSTIC MONTR'
(if diagnostics monitor was requested)
'NO PREFERED SFTW'
(if no preferred software was entered)
'CMEM CHECKSUM'
'PORT TESTS##'
'RESTART TYPE RR'
(where RR is the restart type)
'LOOKING SWVV.LL'
(where VV is the revision, LL is the release)
'LOAD FDP FD##'
(where ## is the port #)
'LOAD MF FD##'
'LOAD MF NP##'
'LOAD MF GB##'
'LOAD RNP NP##'
'FLOPPY DIAG FD##'
'MF LOAD COMPLETE'
'BAD KEY!!'

ii) Last error field

Until software is actually being loaded, the second
field will contain a message indicating the last
error condition encountered by MIL including the
following: C

'INVALID CMEM'
NP## LINKDOWN
GB## NO SOFTWR
NP## LOAD BAD
FD## NO RDY DR
FD## NO SOFTWR
FD## ERROR EE :
(where EE is an error code)

Rev. 3 D814 System Software Manual Rev. 3
Section 4 - 22

CODEX CORPORATION COMPANY CONFIDENTIAL

When software 1is actually being loaded, the 1loading
address of the current frame, and the frame number are
displayed instead of a last error field.

Note that the primary message is displayed unless the oper-
ator enters a key. If a secondary message is being dis-
played and the primary message changes, the new primary
message is displayed.

b) Secondary Messages

Secondary messages are messages which give more informa-
tion on status, and are displayed only when an operator
enters a key from the keyboard. There are two types of
secondary messages:

i) Error Message

When a fatal mainframe error occurs, the display will
show all asterisks. When the (ENTER) key is depres-
sed, the secondary message, a 32 character error mes-
sage, will be displayed.

ii) Floppy Disk Port Status

There is a 32 character status message for each
floppy disk port which has run diagnostics. The
floppy disk port status messages are secondary mes-
sages. They are displayed one at a time. The opera-
tor sees the next message by depressing the (ENTER)
key.

Rev. 3 D814 System Software Manual Rev. 3
Section 4 - 23 '

CODEX CORPORATION COMPANY CONFIDENTIAL

4.4 Mainframe ROM Resident Diagnostics

4.4.1 Introduction

The mainframe diagnostics module (MDAG) is the first ROM resident main-
frame systems component to be executed after any D814 node restart. (See
section on Mainframe IPL).

First, it examines data in Master Controller local memory and determines
whether the restart is a reconfiguration restart. If so, it waits 10 sec-
onds, allowing engine ROM diagnostics to run to completion and then jumps to
MIL. If the restart is not a reconfiguration, it executes mainframe diagnos-
tics and then jumps to MIL. Upon detecting any mainframe error, MDAG halts
and displays an error message.

4.4.2 Diagnostic Routines

The tests in MDAG are organized into four functional groups.
A. Processor Tests

The processor test group comprises seven tests, which are designed
to test the hardware on a processor card. All processors execute
these tests simultaneously. The group includes a simple instruction
set test, ROM checksum test, local storage test, base register test,
status initialization test, uniqueness test and run-halt test.

B. Memory Tests

The memory tests test all RAM in the mainframe. Page § RAM is
tested non-destructively. Both Tow memory and high bank RAM are
tested. The locking function of the lockbytes is tested and lock-
bytes are left cleared. These tests are executed only by processor

2.
C. Master Controller Tests

This group tests the Real Time Clock, various task queueing instruc-
tions, and level queue interrupts. The Real Time Clock Tests are
executed only by processor @, and the other tests are executed
sequentially by each processor.

D. NIC Loopback Test

When a node restart occurs, all NICs go into loopback mode. This
test verifies the data paths to a NIC, takes it out of loopback and

continues to the next INIC, repeating until all INICs are tested.
‘ |

Rev. 3 D814 System Software Manual Rev. 3
Section 4 - 24

CODEX CORPORATION COMPANY CONFIDENTIAL

4.4,3 Front Panel Display

The self-scan of the 6050 displays messages while the diagnostics exe-
cute, indicating their progress. The following displays may appear:

A.

B.

D.

Rev. 3

Initially, the screen displays a line of "At" signs (@) for 2 sec-
onds.

If it is a reconfiguration restart, the message "RECONFIGURATION
RESTART" appears for 8 seconds.

During processor tests, the display reads:
MF DIAGNOSTICS: # # # # # #

Each # represents a counter corresponding to a processor. Each
processor increments its counter upon completion of each processor
test. If diagnostics discover a failure, an asterisk is displayed
to the left of the counter corresponding to the processor which dis-
covered the failure. All processors are then halted. The numbers
corresponding to each test are as follows:

0. Simple Instruction Set Test

1. ROM Checksum Test

2. Local Storage Test

3. Base Register Test '

4, Processor Status Initialization Test
5. Processor Uniqueness Test

6. Processor Run-Halt Test

During memory tests, the display reads:
MF DIAGNOSTICS: # [RAM FAIL XXXX]

The # 1is the counter maintained by processor @, which continues to
increment during the memory tests. A failure causes the message in
brackets to appear, along with the address of the failure. Then all
processors are halted. Random data briefly appears on the screen
during the low RAM test. The numbers corresponding to each memory
test are as follows:

7. Page 0 Memory Test
8. Low RAM Test

9. High Bank RAM Test
A. Lockbyte Test

\

D814 System Software Manual Rev. 3
Section 4 - 25

CODEX CORPORATION COMPANY CONFIDENTIAL

E. During master controller tests, the display reads:
MF DIAGNOSTICS: # X X [MC FAILURE]

The # is the counter maintained by processor @, which continues to
increment during the master controller tests. The X's represent two
additional counters for the last two tests, which are executed by
each processor. A failure causes the message in brackets to appear,
and then all processors are halted. The numbers corresponding to
each memory test are as follows:

B. Real Time Clock Timing Test

C. Real Time Clock Interrupt Test

D. X X Fork, Dispatch and Suspend Test

D. X X-1 Interrupt Level and Enqueue Test

F. During the NIC loopback test, the display reads:
MF DIAGNOSTICS: # [NIC n FAILURE]
The # is again the counter maintained by processor @#. A failure
causes the message in brackets to appear and then all processors are
halted. The n represents the number of the failed NIC. The number
corresponding to this test is:

E. NIC Loopback Test

4.4.,4 Interface to MIL

At successful completion of MDAG, only processor @ is running. All other
processors are halted such that when started, they will jump to MIL at Entry
Point MIL$LOAD:START_PROC. Processor @ jumps to MIL at Entry Point
MIL$INIT:ENTRY. If any mainframe failure has been found, MDAG never jumps to
MIL, but remains halted until another node restart occurs.

Rev. 3 D814 System Software Manual Rev. 3
Section 4 - 26

CODEX CORPORATION COMPANY CONFIDENTIAL

5. MAINFRAME MODULES

5.1 D814 Mainframe Operating System

The D814 Mainframe Operating system is divided into three submodule
groups, each of which provides a related set of functions.

1. Mainframe Task Control
2. Mainframe Buffer Manager (MBM)
3. Mainframe Utilities (MUT)

Descriptions of these groups are found in Sections 5.1.1 through 5.1.3.

5.1.1 Mainframe Task Control

Task Control provides much of the most basic interface with the 6000 Mas-
ter Controller (see 6000 Logic Design Specification). It provides the user
with the ability to start and stop tasks, handle interrupts, etc., without
worrying about the complex hardware control commands involved.

Before continuing we need to define some terms. A task is running when
its code is executing on a processor. A task is suspended when it temporar-
ily relinquishes control of the processor. The data space, registers, and
stack of a suspended task are all saved to allow it to pick up where it left
off when it is again allowed to run. A suspended task is said to resume when
it is provided with a processor (not necessarily the one it had been using
before it was suspended) and allowed to run. It should be remembered that,
as long as a task is running with interrupts unmasked, it may be interrupted
at any time and may resume on another processor. This means that a task may
only use local storage when interrupts are masked and that, in general, it is
impossible to make any assumptions about what processor any particular task
is running on. (See 6000 Logic Design Specification for definition of local
storage.)

5.1.1.1 Data Structures for MTC

This section describes the data structures used by MTC to interface with
user code.

5.1.1.1.1 Data Spaces

MTC 1is responsible for providing a data space to each task when it is
started up. Data Spaces are 32-byte blocks of memory which reside in a fixed
region of RAM. While a task is running, the 6000 maps address 0 - 'lF' onto
the task's data space. Data spaces are used in the D814 operating system to
hold the information needed by MTC about each task in the system. There are

D814 System Software Manual
Section 5.1 -1

CODEX CORPORATION COMPANY CONFIDENTIAL

currently 64 data spaces. One data space is dedicated to each of the proces-
sors to be attached to tasks handling hardware service requests (called "hard-
ware tasks"). These "hardware data spaces" are the data spaces at the top of
the data space area. The rest of the data spaces are initially placed on a
Free Data Space Queue and removed and allocated by MTC as needed for tasks
not started by hardware service requests.

Data spaces have the following fields which are used by MTC:

OF$DS:LNK - One-byte field used to 1ink the data space onto the Free Data
Space Queue using the one-byte data space number (see 6000 Logic Design
Spec.). This data space field may be used as scratch storage by user
code only while interrupts are disabled.

0F$DS:SPH'- Two-byte field used to store the saved stack pointer while
the task associated with the data space is suspended. This field may be
used as scratch by user code while interrupts are disabled.

0F$DS:BATCH_SP - Saved stack pointer used in batch task data spaces (see
subsection on MTC$BATCH). This field must not be modified by batch
tasks.

OF$DS:BATCH_TBL - Batch task table entry address used in batch task data
spaces. Also used for scheduled task table entry address (see subsec-
tion on MTC$SCHD). This field must not be modified by batch or scheduled
tasks.

With the exception of the restrictions mentioned above, the user task is
free to use the data space as needed for storage.

5.1.1.1.2 User Stack

MTC also initializes a stack for the user task. For batch tasks (des-
cribed later) the stack register is set to point to a permanent stack alloca-
ted to that task. For all other tasks the stack initially points to the top
of data space. ‘

5.f.1.1.3 Idle Cycle Counter

~MTC maintains a three-byte idle cycle counter, OF$PGO:TCIDLC, for use by
the Mainframe Statistics and Monitoring Module. This field is incremented by
MTC once for every 10 M6800 idle micro-cycles executed. The idle cycle
counter is interlocked by means of lockbyte OF$SYSLCK:TCILK to ensure that
all three bytes are consistent.

D814 System Software Manual
Section 5.1 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

5.1.1.1.4 Local Storage
MTC uses the local storage field OF$LS:MTC as a scratch idle cycle
counter. This field may not be modified by user programs after system ini-

tialization. All other local storage may be used as needed for scratch as
long as interrupts are disabled.

5.1.1.2 MTC Submodule Descriptions

This subsection describes the services provided to the user by each of
the MTC submodules.

5.1.1.2.1 MTC$MAIN, Basic Hardware Interface Code

MTC$MAIN provides the lowest-level task control interface between D814
software and the 6000 Master Controller. Routines in MTC$MAIN are used by
other MTC components as well as by higher-level MTC submodules such as
MTC$BATCH and MTC$SCHD (described later).

MTCS$MAIN performs the following functions:

1. Task startup for forked tasks (tasks not started by hardware service
requests)

2. Task termination
3. Interrupt handling

4, Handling of forked task service requests and hardware service
requests (see 6000 Logic Design Spec.)

Task Startup

The task startup function is provided by the entry points MTC$MAIN:FORK,

MTC$MAIN:FRKO, and MTC$MAIN:FRK1l. Each 1is called slightly differently but
the exit conditions are the same.

Entry Conditions

MTCSMAIN:FORK - A-reg = Contents of A-reg for new task

B-reg = Bit-7: segment, Bit 0-2: priority level of
task to be started
X-reg = Start address-for new task

OF$DS:BFADR = Initial contents of both X-reg and
OF$DS:BFADR for new task

D814 System Software Manual
Section 5.1 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

MTC$MAIN:FRKO - B-reg = Initial contents of B-reg for new task
OF$LS:AR = Bit-7: segment, Bit 0-2: priority level of
task to be started
Interrupts disabled or masked
The rest are the same as MTC$MAIN:FORK

MTC$MAIN:FRK1 - A-reg
B-reg

Data space number for the new task

Bit-7: segment, Bit 0-2: priority level of
task to be started

The rest are the same as MTC$MAIN:FORK

Exit Conditions

If fork successful, CC:Z=0, and A, B, and X-reg destroyed. If fork unsuc-
cessful due to no Data Space, CC:Z=1, and entry parameters are all pre-
served. OF$LS:AR, OF$LS:DR, OF$LS:8, OF$LS:9, and two bytes on the stack
are used. When the new task is started up, processor interrrupts will be
enabled and unmasked. ~

Task Termination

The basic task termination function is provided by entry points
MTC$MAIN:TERMH, MTC$MAIN:TERMQ, and MTCSMAIN:GETASK. The first two of these
entries are invoked by the macros MAC$TSKMAC:TERMH and MAC$TSKMAC:TERMQ, res-
pectively. This allows the MTC debug flag to control whether they are
entered from a JMP or from a JSR instruction. MTC$MAIN:GETASK is invoked by
a JMP,

Entry Conditions

TERMH entry - Called to terminate a hardware task, meaning a task ini-
tiated by an interrupt or system restart and to which a hardware data
space is assigned. The stack pointer must point to the highest address
in data space.

TERMQ entry - Called to terminate a forked (also referred to as "queued")
task. The stack must be empty.

GETASK entry - Called to terminate a task whose data space is not to be
returned to the Free Data Space Queue. This entry is used when a task
wishes to suspend itself until some other task starts it running again
using MTC$MAIN:FRK1. There are no restrictions on the stack for GETASK.

Exit Condition

The calling task no longer exists, and there is no return to the caller.

D814 System Software Manual
Section 5.1 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

Interrupt Handling

The interrupt handling function is provided by entries MTC$MAIN:SWI and
MTC$MAIN: IRQ.

MTC$MAIN:SWI is the D814 system software entry point for software inter-
rupts. MTC checks if the two bytes following the SWI introduction contain
the address of MTC$DELAY:ENTRY and, if so, vectors to that routine. If not,
control is passed to the debugger software interrupt handler at X'FF80'.

MTC$MAIN:IRQ is the D814 system software entry point for IRQ interrupts.
The 6000 Master Controller may interrupt one of the processors in order to
allow a forked task or hardware service task to pre-empt a lower-priority
task. (This is described in the 6000 Logic Design Spec.). The MTC$MAIN IRQ
interrupt handler suspends the task currently running and then handles the
highest priority service request pending.

Service Request Handling

MTC$MAIN service request handling is initiated by MTC whenever an inter-
rupt occurs, whenever a task is terminated normally, and whenever MTC$IDLE
detects a pending request. (It should be noted that even hardware service
requests are frequently handled without generating IRQ interrupts in order to
minimize overhead.) MTC$MAIN suspends the task currently running, decides
what the source of the highest priority service request is, and vectors to
the proper module for service.

5.1.1.2.2 MTC$BATCH, Batch Task Module

MTC$BATCH provides a user interface for the startup and termination of
batch tasks. A batch task in a forked task which processes items taken one
by one from a queue, called the "batch queue", associated with that task.
The important difference between a batch task and one that is directly forked
by the user in that there can never be more than one of any given batch task
in existence (either running or suspended), while the same task may be
forked, and will be started up, regardless of whether or not it is already
running. So there can never be more than one data space assigned to one
batch task, while any number of data spaces may be associated with identical
forked tasks running concurrently.

Another difference between batch tasks and other forked tasks 1is that
batch tasks are set up with a stack in a fixed area of RAM defined by the
Batch Task Table (see below) rather than in data space.

Batch tasks are defined in the Batch Task Table template which is used by
MSI$ to build the Batch Task Table at system initialization. Entries in the
template have the following fields:

D814 System Software Manual
Section 5.1 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

OF$BATCH:TEMADR - Entry point for batch task

OF$BATCH:TEMLVL - Priority level and memory segment for batch task (seg-
ment in high order bit)

OF$BATCH:TEMSTACKSIZE - Batch task stack size

The nth entry in the template is the entry for the batch task with module
number n. (The batch module number is a unique number assigned in file
EQ$BATCH.) ’

A batch task is started by calling routine MTC$BATCH:ENQ as follows:

Entry Conditions

* X-reg - Points to item to be enqueued to the batch task queue. The
address contained in X must be the address of a four-byte queue
element for use by the queue routines. .

* A-reg - Contains module number

Exit Conditions

A1l registers are destroyed
cC:Zz =0 4

The desired entry is enqueued on the batch queue. The batch task will be
forked by MTC$BATCH if necessary to ensure prompt processing of the enqueued
item.

MTC$BATCH provides the following routines for use by batch tasks in
accessing the batch queue:

MTC$BATCH:DEQTERM

Entry Conditions

* Batch task data space fields (described earlier) and stack must be
the same as when started.

Exit Conditions

* If there 1is anything on this task's batch queue, the routine
dequeues the item and returns to the caller with X register pointing
to it. A and B registers are wiped out. Otherwise, the batch task
terminates.

It should be noted MTC$BATCH:DEQTERM is synchronized with MTC$BATCH:ENQ
and any attempt to dequeue items from the batch queue using other means will
make it possible for a queue entry to be missed.

D814 System Software Manual
Section 5.1 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

5.1.1.2.3 MTC$SCHD, Scheduled Task Submodule

A scheduled task is a forked task which is automatically forked periodi-
cally by the operating system. MTC$SCHD provides a user interface for the
startup and termination of scheduled tasks.

Scheduled tasks are defined in the Scheduled Task Table template which is
used by MSI$ to build the Scheduled Task Table at system initialization.
Entries in the template have the following fields:

OF$SCHD:TEMPER - Period (in 20 millisecond units) at which task will run

OF$SCHD:TEMADR - Task entry point

OF$SCHD:TEMLVL - Level (low order bits) and segment (high order bit) at
which module will run

A scheduled task is terminated when the scheduled task calls
MTC$SCHD:TERM as follows:

Entry Conditions

* The scheduled task information in data space must be unmodified and
the stack pointer must be the same as when the scheduled task was
started.

Exit Conditions

Task is terminated.

5.1.1.2.4 MTC$DELAY, Delay Submodule

MTC$DELAY allows the user task to suspend itself for any desired time
period (expressed in milliseconds) and automatically resume when the period
is finished. MTC$DELAY 1is invoked by a software interrupt where the two
bytes following the SWI instruction contain the address of MTC$DELAY:ENTRY.
The calling sequence is as follows:

Entry Conditions

* Called by SWI as noted above. Caller must not be a hardware task.
X-register contains length of desired delay in milliseconds.

Exit Conditions

* Task is resumed at 1location three bytes after the invoking SWI
instruction after the desired delay has expired. All registers are
preserved.

D814 System Software Manual
Section 5.1 - 7

CODEX CORPORATION » COMPANY CONFIDENTIAL

5.1.1.2.5 MTC$RTC, Real-Time Clock Handler

MTC$RTC is the handler vectored to by MTC$MAIN whenever a real-time clock
hardware service request is detected.

MTC$RTC maintains a delay queue (described in the D814 Detailed Design
Specification) for tasks suspended by MTC$DELAY and, when a task's delay
timer has expired, it resumes the task.

MTC$RTC has no software interface external to MTC.

5.1.1.2.6 MTC$IDLE, D814 Idle Code

MTC$IDLE contains the code executed by a processor when MTC$MAIN can find
no work for it to_do. MTC$IDLE contains a loop whose instructions are rough-.
ly representative “in proportion of VMA cycles as well as in proportion of
memory write cycles. This loop is used to maintain the idle cycle counter
(described earlier). At the end of each pass through the loop, MTC$IDLE
checks if there are any service requests pending and, if so, goes to the
MTC$MAIN dispatch logic.

MTC$IDLE's only interface with system components external to MTC is the
idle cycle counter.

D814 System Software Manual
Section 5.1 - 8

CODEX CORPORATION] COMPANY CONFIDENTIAL

5.1.2 Buffer Management Submodule Group (MBM)

Introduction

The Buffer Management Submodule Group is part of the D814 Mainframe oper-
ating system. The MBM contains utility routines for maintaining the main-
frame's free buffer pool. The buffers in this pool are the dynamic memory
units which tasks can obtain and return in real-time to meet such memory
requirements as temporary data storage, input/output character buffering, and
intertask communications message buffers.

General Description

The MBM has two main functions. The first function is to maintain the -
D814 mainframe free buffer pool and to keep the statistical information nec-
essary for determining buffer utilization. The second function is to provide
useful buffer utility features for the system in a central software module.
Two buffering utilities are provided. The first 1is a general byte file
utility and the second is a byte queue buffer utility.

1. Free Buffer Pool Management

The D814 software system maintains a pool of fixed size free buffers so
that tasks in the system may be able to dynamically obtain memory
resources. This pool is created at system initialization time by the Sys-
tem Initialization Module and is maintained during system execution by
the Free Buffer Management Submodule (FBMS). Tasks can obtain and return
buffers from this pool by calling subroutines in the FBMS. The pool is
kept as a queue so that a historical record of buffer use is available
and so that background memory diagnostics which will test all of the buf-
fer pool can be implemented. The buffer manager maintains a count of the
total number of buffers in the free pool and a count of those presently
allocated to software tasks. These numbers are used to calculate buffer
utilization statistics.

The buffer pool has two operating modes - normal and priority. When the
number of free buffers in the pool is less than a specified threshold,
the buffer pool goes into "priority" mode. In this mode, only "“priority"
get buffer requests are allowed to be successful. The purpose of the
priority mode is to control buffer pool underrun. In priority mode, sys-
tem software modules that need buffers but are low priority suspend opera-
tion until the buffer pool builds back up again to an acceptable Tlevel
and the pool reenters normal mode. When the pool goes into priority
mode, a flag is set so that a monitoring task can report the condition at
some later time.

D814 System Software Manual
Section 5.1 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

Fields Defined for System Buffers

0-3 4 -5{6-D|E-F
‘ QUEUE LINKS | LBPTR | ... | LNKPTR I

'QUEUE LINKS - 4 bytes for use by queue utility (see subsection on Main-
frame Utility Submodule Group)

LBPTR - Pointer to last buffer in list

LNKPTR - Pointer to next buffer in list

The following operations are available on the free buffer pool:

Routine GBUF - Obtains one buffer from the free buffer pool
Entry Point - MBM$FBMS:GBUF_PRI - high priority entry
Entry Point - MBM$FBMS:GBUF - low priority entry

Entry Conditions

* None

Exit Conditions

destroyed
unchanged

A-register
B-register

* _If buffer available:

X-reg = address of buffer
CC:2 =20
cC:I =0

* If buffer not available:

CC:Z =1and CC:I =0
A,X-registers = destroyed
B-register = unchanged

D814 System Software Manual
Section 5.1 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL

B.
Routine RBUF - Return one buffer to the free buffer pool
Entry Point - MBM$FBMS:RBUF

Entry Conditions

* X-reg = Address of buffer

Exit Conditions

* CC:I =0

* A,X registers = destroyed
* B-registers = unchanged
Entry Point - MBM$FBMS:RBUF_SP

Entry Conditions

* X-reg = Any address in returned buffer

Exit Conditions

* CC:I =20

Routine RLIST - Returns list of "n" buffers
Entry Point - MBM$FBMS:RLIST

Entry Conditions

* X-reg = Address of list of buffers to be returned
LBPTR of first buffer = pointer to the last buffer in the list
NBUFS of first buffer = count of "n" buffers in the list

Exit Conditions

* CC:I =0
* A1l registers and data space locations OE$DS:BFADR and OR$DS:BFTBP
are destroyed.

D814 System Software Manual
Section 5.1 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

D.
Routine RCHAIN - Returns list of buffers
Entry Point - MBM$FBMS:RCHAIN

Entry Conditions

* X-reg = Address of returned list of buffers
LNKPTR of the last buffer in the 1ist must be null

Exit Conditions

* cC:I =0
* A1l registers and data space locations OF$DS:BFADR and OF$DS:BFTMP
are destroyed.

2. Byte File Buffer Utility

MBM$BF ILE provides a utility submodule for creating, deleting, and main-
taining a byte file buffer system. These byte file buffers are not multipro-
cessor interlocked so only one task may be using a byte file buffer at any
one time.

Byte files are used for many crucial operating system functions and there-
fore use the priority buffer routine MBM$FBMS:GBUF_PRI to obtain buffers as
needed.

The structure of a byte file is that it has a header buffer pointing to a
list of buffers, each linked to the next with the last 2 bytes. The format
of the header buffer is:

BYTES 0 - 3 - Reserved for linking files to lists
BYTES 4 & 5 - Pointer to last buffer in file

BYTE 6 - Total number of buffers making up file
BYTE 7 - Number of bytes allocated in file body
BYTE 8 - Address of highest written byte

BYTE 9 - Address of last byte written

BYTE A - Address of last byte read

BYTES B -> D - Not used
BYTES E & F Pointer to first buffer of file body

The file body is composed of a linked list of buffers where the first 14
bytes of each buffer are byte file data storage, and the last 2 bytes are a
link pointer to the next buffer in the file body. The last link pointer in
the file is zero.

D814 System Software Manual
Section 5.1 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL
The following functions are provided for manipulating byte file buffers:
Routine CREATE - Creates a byte file

Entry Point - MBM$BFILE:CREATE

Entry Conditions

* None

Exit Conditions

* X-reg = File descriptor address
* CC:z=cCC:I =0
* If no priority buffer is available, a system error occurs.

Routine DELETE - Deletes a file
Entry Point - MBM$BFILE:DELETE

Entry Conditions

* X-reg = File descriptor address

Exit Conditions

* cC:I =0

Routine READ - Reads byte "“n" from a given file
Entry Point - MBM$BFILE:READ

Entry Conditions

Byte address "n"
File header address

* B-reg
* X-reg

Exit Conditions

A-reg = Contents of the nth byte

CC:V = "Qut of range" error

X-reg = unchanged

Data space - OF$DS:BFADR points to byte file header. OF$DS:BFTMP
destroyed.

* % % %

D814 System Software Manual
Section 5.1 - 13

CODEX CORPORATION COMPANY CONFIDENTIAL

D.
Routine SREAD - Reads sequentially "next" byte from a file
Entry Point - MBM$BFILE:SREAD
Entry Conditions
* X-reg = File header address
Exit Conditions
* A-reg = Contents of the "next" byte
* B-reg = Address of "next" byte in file
* CC:V = "Out of range" error
* X-reg and data space
* Same as for READ
E.
Routine WRITE - Writes into the nth byte of file
Entry Point - MBM$BFILE:WRITE
Entry Conditions
* A-reg = Data byte to be written to file
* B-reg = Byte address "n"
* X-reg = File header address
Exit Conditions
* CC:V = "Unable to write" message
* CC:I may be cleared to 0
* If no priority buffer is available, a system error occurs
* B-reg = Address of "next" byte in f11e
* X-reg and data space same as for READ.
F.

Routine SWRITE - Writes sequentially into "next" byte of file
Entry Point - MBM$BFILE:SWRITE

Entry Conditions

* A-reg
X-reg

Data byte to be written to file
File header address

D814 System Software Manual
Section 5.1 - 14

CODEX CORPORATION , COMPANY CONFIDENTIAL

Exit Conditions

B-reg = Address of "next" byte

CC:V = “"Unable to write" message

If no priority buffer is available, a system error occurs
CC:I may be cleared to 0

X-reg and data space same as for READ.

* * & * *

3. Byte Queue Buffer Utility

MBM$BQUE provides a utility submodule for creating, deleting, and main-
taining byte queue data structures. The byte queues are multiprocessor inter-
locked so that one task may be putting bytes into a byte queue while another
task may be removing bytes from the queue. Because of interlocking, 0 may
not be stored in the byte queue. Byte queues have no maximum size but, since
they only use low priority buffers, the total amount of memory dedicated to
byte queues is limited by the size of the low priority buffer pool.

The first buffer, known as the queue descriptor, has the following
format:

0-3 4-5 6 7 -8 9 -10 11 - 13 14 - 15
Last # Head Tail Link |
N/A Buffer | Buffers | Pointer | Pointer N/A Pointer I
-1
BYTES 0 - 3 - Are reserved for use by the Queue Utility routines
BYTES 4 & 5 - Point to the last buffer in the list
BYTE 6 - Contains the number of buffers -1 in the 1list
BYTES 7 & 8 - Point to the next byte to be read
BYTES 9 & 10 - Point to the next byte to be written
BYTES 11 - 13 - Currently unused

BYTES 14 & 15 - Standard buffer link to the first data buffer

The next byte to be written (pointed to by tail pointer) always contains
binary zeroes. When a byte is to be written into the byte queue, the next
byte is cleared to zero and then the new data byte is written. This allows
the "get" routine to check for an empty queue without having to disable inter-
rupts and compare head and tail pointers. It simply gets the byte pointed to
be the head pointer; if it is zero, the queue is empty.

D814 System Software Manual
Section 5.1 - 15

CODEX CORPORATION | COMPANY CONFIDENTIAL

B.

C.

The byte queue routines consist of four user called subroutines:

Routine CREATE - Creates a byte queue
Entry Point - MBM$BQUE:CREATE

Entry Conditions

* None.

Exit Conditions

* If available:

X-reg = Address of queue descriptor
cC:Z
CC:1I

0
* If not available:

,CC:Z
CC:I

1
0

Routine DELETE - Deletes a byte queue
Entry Point - MBM$BQUE:DELETE

Entry Conditions

* X-reg = Queue descriptor address

Exit Conditions

* CC:I =0
* A1l registers and data space location OF$DS:BFADR destroyed.

Routine PUTBYT - Puts a byte into a queue
Entry Point - MBM$BQUE:PUTBYT

Entry Conditions

* B-reg
* X-reg

A byte of data
Queue descriptor address

D814 System Software Manual
Section 5.1 - 16

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

CC:Z = "Unable to enqueue" message

CC:I may be cleared to O

X and B-register = unchanged

A-register and data space locations OF$DS:BFADR and OF$DS:BFTMP are
destroyed.

* % * *

D.
Routine GETBYT - Gets a byte from a queue
Entry Point - MBM$BQUE:GETBYT

Entry Conditions

* X-reg = Queue descriptor address

Exit Conditions

B-reg = Dequeued byte from queue

CC:Z = "Empty queue" condition

CC:I may be cleared to 0

X-register = unchanged

A-register and data space location OF$DS:BFADR destroyed.

* * * X *

D814 System Software Manual
Section 5.1 - 17

CODEX CORPORATION COMPANY CONFIDENTIAL

5.1.3 Mainframe Utilities

The Mainframe Utilities (MUT) is a group of submodules providing services
used by various mainframe modules. MUT includes these submodules:

MUT$BUF - Buffer submodule

MUT$DELAY - Delay submodule

MUTSMULT - Multiplication submodule

MUT$DIV - Division submodule

MUT$PCB - Port Control Block submodule
MUT$QUE - Queue manipulation submodule
MUT$AP - Addressed packet submodule

MUT$SPD - Data speed encode-decode submodule

The remainder of this subsection describes the individual submodule com-
popents of MUT.
5.1.3.1 MUT$BUF

MUT$BUF provides routines to wait for a buffer to be available. MUT$BUF
is obsolete and should be deleted as soon as possible. It is presented here
only for the sake of completeness. MUT$BUF has these entry points:

Entry - MUT$BUF:GBW

* Attempts to get a low priority buffer, waiting a specified period
between retries

Entry Conditions

* X-reg = Length of time in milliseconds to wait between retries

Exit Conditions

X-reg = Buffer address

A, B register = Destroyed

Data space = OF$DS:BFTMP destroyed
CC:I1=0

* A F *

Entry - MUT$BUF:GBW10
MUT$BUF :GBW25
MUT$BUF : GBW50

These entries are identical to MUT$BUF:GBW except that a fixed delay
period of 10, 25, or 50 milliseconds, respectively, is used.

D814 System Software Manual
Section 5.1 - 18

CODEX CORPORATION COMPANY CONFIDENTIAL

5.1.3.2 MUT$DELAY

MUT$DELAY provides a convenient interface with MTC$DELAY, the MTC delay
routine. It has these entry points:

Entry - MUT$DELAY:EXEC

Entry Conditions

* X-reg = Contains delay length in milliseconds

Exit Conditions

* Returns to user after task has been suspended for desired period
* A and B registers are preserved
* X-reg is destroyed

Entry - MUT$DELAY:DL10
MUT$DELAY :DL25
MUT$DELAY:DL50

MUT$DELAY:DL100
MUT$DELAY:DL1000

Identical to MUT$DELAY:EXEC except that delay is for fixed period of 10,
25, 50, 100, or 1000 milliseconds, respectively..

5.1.3.3 MUT$MULT

MUT$MULT multiplies two 8-bit unsigned numbers and returns a 16-bit
result. The calling sequence is as follows:

Entry - MUT$MULT:ENTRY

Entry Conditions

* A and B registers each contain one multiplicand

Exit Conditions

* A, B registers contain the 16-bit result
* X-reg = Destroyed
* Two bytes of stack are used for scratch

D814 System Software Manual
Section 5.1 - 19

CODEX CORPORATION COMPANY CONFIDENTIAL

5.1.3.4 MUT$DIV

MUT$DIV divides an 8-bit unsigned integer into a 16-bit unsigned integer
to give an 8-bit remainder and a 16-bit result. The calling sequence is as
follows:

Entry - MUT$DIV:ENTRY

Entry Conditions

* A, B = 16-bit dividend
* Stack = 8-bit divisor on top of stack (must not be 0)

Exit Conditions

* A-reg = Destroyed

* B-reg = Remainder

* X-reg = Quotient

* Stack = Destroys the divisor field but does not pull it off stack.

Uses 5 scratch bytes on stack in addition to divisor field.

5.1.3.5 MUT$PCB

MUT$PCB contains utilities for accessing the D814 Port directory (see sec-
tion on Subsystem Data Structures). These routines provide a convenient
interface with the necessary synchronization for adding and deleting Port Con-
trol Blocks (PCB's) as well for locating the PCB for a port. The remainder
of this subsection describes the entry points into MUT$PCB.

Entry - MUT$PCB:ADR

Returns PCB address (if any) for a given port ID

Entry Conditions

* B-reg = Port ID

Exit Conditions

* A-reg = Port type (see Subsystem Data Structures)

* B-reg = Port ID if port exists; otherwise, destroyed

* X-reg = PCB address if port exists; otherwise, destroyed
* CC:Z = Cleared if and only if the port exists

*

. Data space = OF$DS:BFTMP is destroyed

D814 System Software Manual
Section 5.1 - 20

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry - MUT$PCB:ADDPORT

* Adds a PCB to the port directory, assigning the PCB a port address
(ID))

Entry Conditions

* X-reg = Points to PCB. The PCB and all necessary substructures must
already be set up

Exit Conditions

X,A-registers = Destroyed

Data space = OF$DS:BFTMP destroyed

B-reg = Port ID if room in directory; else, 0

CC:Z = Clear if and only if there was room in the directory

* * % *

Entry - MUT$PCB:DELETEPORT
* Removes a port from the port directory

Entry Conditions

* B-reg = Port ID

Exit Conditions

* Port is removed from directory
* A and X registers are destroyed
* B-reg = Unchanged

5.1.3.6 MUT$QUE

MUT$QUE provides interlocked routines for enqueueing to and dequeueing
from D814 mainframe queues. Each D814 mainframe queue must have a 6-byte
queue descriptor of the following format:

OF$MISC:QTOP - Address of link field of first queue entry (oldest item on
queue); zero if queue empty

OF$MISC:QBOT - Address of link field of last queue entry (newest item on
queue); zero if queue empty

OF$MISC:QLOCK - Address of lock byte for the queue

D814 System Software Manual
Section 5.1 - 21

CODEX CORPORATION COMPANY CONFIDENTIAL

Entries are linked onto the queue by a 2-byte 1link field. Each Tink
field contains the address of the 1link field of the next entry on the queue
or 0 if it is the end of the queue.

MUT$QUE has these entry points:

Entry - MUT$QUE:ENQ

Entry Conditions

* X-reg = Contains address of queue descriptor
* Data space = OF$DS:QUEADR (= OF$DS:BFTMP) contains address of Tlink
field of entry to be enqueued

Exit Conditions

* A, B, and X registers are destroyed
* CC:Z = Set if and only if queue was empty on entry
* Entry is enqueued on the proper queue

Entry - MUT$QUE:DEQ

Entry Conditions

* X-reg = Address of queue descriptor

Exit Conditions

* X-reg = Address of entry dequeued; unpredictable if queue empty on
entry to routine

* A-reg = Destroyed

* B-reg = Set to 1 if queue empty after dequeue; set to 2 if queue
not empty

* CC:Z = Set if and only if queue empty on entry to routine

5.1.3.7 MUT$AP

MUT$AP provides two routines to aid in handling Addressed Packets (see
section on System Data Structures). These are the entry points:

Entry - MUTS$AP : SEND
* Sends an Addressed Packet

Entry Conditions

* X-reg = Points to Addressed Packet byte file header. Packet must
be set up with all necessary fields filled in

D814 System Software Manual
: Section 5.1 - 22

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

X-reg = Unchanged

A, B registers = Destroyed

Data space = OF$DS:BFADR, OF$DS:BFTMP are destroyed
There are no error conditions

* * F *

Entry - MUT$AP:SDSWAP

* Swaps source and destination parameters, resetting delivery error
indicator

Entry Conditions

* X-reg = Address of Addressed Packet byte file header

Exit Conditions

* A, B, and X registers = Unchanged

* Data space = OF$DS:BFTMP destroyed

* Addressed Packet = Contents of offsets OF$MAP:SRCND, OF$MAP:SRCPT,
and OF$MAP:SRCMOD are interchanged with offsets
OF$MAP:DSTND, OF$MAP:DSTPT, and OF$MAP:DSTMOD,
respectively. The error indicator (high order
bit of original OF$MAP:DSTND) is reset.

5.1.3.8 MUT$SPD

MUT$SPD provides routines for encoding and decoding 16-bit link and path
speeds into a l-byte number in a sort of floating point format. The encoded
speed is composed of a four-bit exponent (high order nibble) and a four-bit
mantissa (low order nibble). '

The actual speed is computed as:

S = (16 1/2 + B)2A - 16 (truncated if not an integer)

where

S = Actual speed
A = Exponent

B = Mantissa

The encoded speed exponent and mantissa are computed as:

A = [log2 (S + 16)] - 4 (truncated if not an integer)

B=3St16 _ ¢ (truncated if not an integer)
2A

D814 System Software Manual
Section 5.1 - 23

CODEX CORPORATION COMPANY CONFIDENTIAL
This encoding scheme results in accuracy better than +6.3 percent for
speeds greater than 15 and better than +3.2 percent for greater than 1008.
Encoded speeds are continuous in that, if A and C are encoded speeds and
A < B < C, then B is a valid encoded speed and the actual speed represented
by B is less than that represented by C and greater than that represented by
A.
MUT$SPD has the following entry points:
Entry - MUT$SPD:ENCODE

Entry Conditions

* A, B registers = Contain 16-bit speed

Exit Conditions

* A-reg = Speed in "floating point" format
* B-reg = Destroyed
* X-reg = Preserved

Entry - MUT$SPD:DECODE

Entry Conditions

* A-reg = Speed in "floating point" format

Exit Conditions

* A, B registers = Actual speed (if no overflow)

* X-reg = Preserved

* (CC:C = Set if and only if overflow out of 16th bit occurs in
decoding. If CC:C is set, then A, B contain X'FFFF'

5.1.3.9 MUT$BF

A routine which quickly copies a byte file. It creates a new byte file
and copies an old byte file into it.

Entry - MUT$BF:COPY

Entry Conditions

OF$DS:BFADR = Pointer to old byte file

D814 System Software Manual
Section 5.1 - 24

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

If copy successful:

CC:Z=0 .

X-Reg = Pointer to new byte file
A-Reg & B-Reg are destroyed
OF$DS:BFADR is destroyed

If copy unsuccessful:
CC:Z=1

A-Reg, B-Reg and X-Reg are destroyed
OF$DS:BFADR is destroyed

5.1.4 Mainframe Programming

This subsection is designed to help the new D814 mainframe programmer

write code for the mainframe running under the operating system. It is
assumed that the reader is familiar with the M6800 instruction set and has a
basic understanding of the hardware and operating system environment.

1.

Code and Data Areas in the D814 System

Code and data areas in the D814 mainframe (in fact, in the entire system)
are rigidly separated.

Code may not be modified after system downline load. Code areas are
periodically checksummed by the background diagnostic module, MDM, and
any modified code would throw this checksum off.

Data space (and local storage if interrupts are off) may normally be used
for scratch data storage, with certain restrictions (see subsection on
MTC). Page 0 and System Area (addresses X'80' to X'FE' and X'120' to
X'1FF')may be used for permanently allocated storage. Large blocks of
permanently allocated storage may be reserved in data-only submodules.
Dynamic data storage is provided by system buffers and by byte files (see
subsection on MBM).

Intertask Communication and Synchronization

As in any multiprocessing system, communication and synchronization among
asynchronous tasks is a particularly sticky problem. The most basic
facility for task synchronization is the lock byte (see Subsystem Data
Structures). Messages may be sent among tasks executing in the same
mainframe using batch queues (see subsection on MTC$BATCH). Addressed
packets may be used, although they involve more overhead.

D814 System Software Manual
Section 5.1 - 25

CODEX CORPORATION COMPANY CONFIDENTIAL

3.

5.

Hardware Data Spaces

Special coding rules apply to tasks running in hardware data spaces (see
6000 Logic Design Spec). Interrupts may not be enabled while executing
in a hardware data space because that would allow the data space to be
assigned to another hardware service task.

Stack

MTC is normally responsible for setting up the stack for a task. It is
the user's resonsibility to ensure that stack overflow does not occur.
In particular, the user should remember that if interrupts are not masked
seven bytes of stack must be available for saving the processor state on
interrupt.

Hardware Interface

D814 system components exist to handle many hardware interfaces. Where
such components exist they should not be circumvented. For example, all
panel IO should go through module MPC and starting, stopping, changing of
priority levels, etc., for tasks should be done through MTC. Some simple
hardware functions, on the other hand, are done directly by executing
Master Controller instructions. Among these are memory segment switch-
ing, manipulation of the 6000 Master Controller interrupt mask, and
read-only operations such as reading processor status.

D814 System Software Manual
Section 5.1 - 26

CODEX CORPORATION ' COMPANY CONFIDENTIAL

5.2 Mainframe Addressed Packet Control Module (MAP)

The Mainframe Addressed Packet Control Module is responsible for handling
addressed packets (see section on System Data Structures) within the Main-
frame. MAP has significant interfaces with these system components:

I/P (through the packet FIFQ)

Mainframe Network Link Control Module (MNL)

Mainframe Path Management, Routing, .and Congestion Control Module
(MPMRCCM)

Senders and receivers of addressed packets within the local mainframe

5.2.1 Overview of MAP Addressed Packet Handling

A1l addressed packets except those sent between modules within the same
I/P must pass through MAP for routing.

Addressed packets are received into MAP from three sources:

Addressed packets from remote nodes are received by MNL from the
I/NP through the BIC data FIFO, along with user data (see subsection
on MNL). MNL separates the addressed packets from data and sends
them to MAP.

Addressed packets originating in modules within a local I/P are sent
into the mainframe through the BIC packet FIFO. It should be noted
that even modules within the I/NP send addressed packets destined to
modules external to the I/NP through the BIC packet FIFO. MAP is
responsible for all the physical I/0 involved in handling the BIC
packet FIFO. (See Bus Interface Chip Specification.)

Addressed packets originating within the Mainframe are enqueued
directly to MAP.

Addressed packets leave MAP in these three ways:

Addressed packets having a local mainframe module as destination are
sent directly to the destination module.

Addressed packets having a local I/P as destination are sent there
through the BIC packet FIFO. (This 1includes packets going to
modules within the local I/NP.)

D814 System Software Manual
Section 5.2 -1

CODEX CORPORATION

COMPANY CONFIDENTIAL

ADDRESSED PACKET HANDLING WITHIN A D814 NODE

MAINFRAME
LOCAL I/P LOCAL I/P
(not I/NP) (not I/NP)
MAP |
PACKET ====><<>PACKET-===>*
¥ewmedeme FIFQ «e-edeee- | FIFO
| I I
! -—De- -—e-
1| I
AA
Vv
* I v *
MAINFRAME MAINFRAME
SOURCE v DEST
MODULE MODULE
Vv
LOCAL I/NP LOCAL I/NP
v
1 I 1
DPACKET==eedaeaa)- 'e>eed>e=)>-PACKET-->
FIFO ' FIFO
.___r_. ___T__
————dmaea- Y| adeccaaa DATA===deedmccda! e |decdcacDATARccccmcaa | waa P P
Packet from FIFO FIFO Packet to
remote node MNL remote node
over network over network
link. link.

*Source or destination of a packet.

D814 System Software Manual
Section 5.2 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Addressed packets having a module within a remote node as destina-
tion are passed to MNL for inclusion in the data sent over an I/NP
BIC data FIFO. This data is transmitted by the I/NP over the net-
work link. The included figure illustrates the above.

If an error is detected in an addressed packet, the source and desti-
nation address fields are interchanged, the delivery error bit is
set, one byte error code is appended to the packet bytefile (increas-
ing the packet byte count by one), and the packet is sent back to
the source.

It should be noted that packets leave MAP in the order in which they
are received into MAP. '

5.2.2 MAP External Interfaces

This section describes all significant external interfaces with MAP.

5.2.2.1 MAP I/P Packet FIFO Interface

As already stated, MAP has complete responsibility for handling the main-
frame side of the BIC inbound and outbound packet FIFOs during normal system
operation. (The packet FIFO is also used by MSI during initialization, but
that does not concern us here.)

The inbound and outbound BIC packet FIFOs are used as buffers rather than
as true FIFOs. A packet FIFO may not be read by the reader until the sender
has finished filling it and once reading has begun the sender may not write
until the reader has emptied it.

This protocol is implemented by means of the sender's. and reader's flag
associated with each FIFO. The sender's flag is set by the sender (MAP if
outbound FIFO or I/P software if inbound FIF0) to indicate that it may be
read by the reader (I/P software if outbound FIFO or MAP if inbound FIF0) and
the reader's flag is set by the reader to indicate that the FIF0 has been
emptied. The reader's flag must be cleared by the sender before or at the
same time as the sender's flag is set, and the sender's flag is cleared by
the reader before or at the same time as the reader's flag is set. When the
sender's flag is set, the FIF0 is said to be filled, even though there may be
room for move data in the FIFO.

Packets being sent over a BIC FIFO are broken up into segments whose byte
count is less than or equal to one less than the capacity of the FIFO.

D814 System Software Manual
Section 5.2 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Before writing a segment to a packet FIFO, the sender first writes the
segment byte count. More than one segment may be placed in the packet FIFO
when it is filled, although the reader is not required to read every segment
in the FIFO when the FIFQO is read. But the reader of a packet FIFO may not
leave a segment partially read when it sets the reader's flag and the sender
may not leave a segment partially written when it sets the sender's flag. It
should be remembered that if the sender places more than one segment in the
FIFO it is the sender's responsibility to check after the FIFO is read to see
if the FIFO is empty and, if not, to set the sender's flag again.

MAP services level 4 service requests generated when the inbound -packet
FIFO sender's flag is set and when the outbound packet FIFO reader's flag is
set. These requests are vectored to entry point MAP$PINT:ENTRY by MTC (see
subsection on Mainframe Operating System).

The Packet Structures in I/P PCB's are used by MAP in transmitting and
receiving packet data over the BIC. Rack substructure has both an outbound
and an inbound addressed packet queue. The outbound addressed packet queue
holds packets waiting to be sent to the I/P, the inbound addressed packet
queue holds received packets waiting to be distributed.

5.2.2.2 MAP MNL Interface

This subsection describes the interface between MAP and the Mainframe Net-
work Link Control Module (MNL).

As may be seen from the diagram in the Overview subsection any addressed
packet going to or from a remote node via the local node passes through MNL
between MAP and the I/NP. This interface is implemented through two queues.

When MNL gets an addressed packet in the data stream from the I/NP it
recognizes it as such and enqueues it on the MAP batch queue using utility
MUT$AP:SEND (see subsection on Mainframe Utility Module). This activates MAP
at entry MAP$ROUTE:ENTRY. The packet is then routed as described later in
this subsection.

When MAP gets an addressed packet whose destination node is not the local
node it enqueues it to the Remote Addressed Packet Queue associated with the
proper link (see subsection on MPMRCCM interface). It uses MNL utility entry
MNLSUTIL:Q2RAPQ to do this. MNL then either includes it in the 1link data
stream through the BIC data FIFO (see subsection on MNL) or, if the link goes
down before it can be transmitted, re-routes it through MAP.

5.2.2.3 MAP MPMRCCM Interface
MAP calls MPMRCCM entry point MRM$ROUTE:PACKET to determine the link over

which to route a packet destined for a remote node. MRM$ROUTE:PACKET is des-
cribed in the subsection on MPMRCCM.

D814 System Software Manual
Section 5.2 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

5.2.2.4 MAP User Interface

This subsection describes the MAP interface with senders and receivers of
addressed packets within the local mainframe.

A mainframe module wishing to send an addressed packet enqueues the
packet to the MAP batch queue using subroutine MUT$AP:SEND.

Addressed packets may be delivered to a mainframe module in two ways,
depending on the kind of module:

1)

2)

If the module is a batch task, the packet 1is enqueued to the
module's batch queue, causing the task to start up, if necessary, at
its entry point and process the packet (see MTC subsection for des-
cription of batch tasks). The entry point and the batch queue
address are found by consulting the Module Dispatch Table (see sub-
system Data Structures).

If the module is not a batch task, the module is forked at the entry
point contained in the Module Dispatch Table with the X register con-
taining the address of the bytefile.

Whether or not the module is a batch task is determined by consulting the
Module Dispatch Table.

‘D814 System Software Manual
Section 5.2 - 5

-

CODEX CORPORATION COMPANY CONFIDENTIAL

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

5.3 Mainframe Statistics and Monitoring, and Reporting, Module

The
taining

Mainframe Statistics and Monitoring Module is responsible for main-
statistical information for the node as a whole (but not for the

individual ports), providing that information on request to other local or
remote modules, and routing system reports of various danger conditions to
the designated system report node and port.

5.3.1 Functional Description

The
1.
2.
3.

MSM is responsible for maintaining the following statistics:
Processor loading, the percentage of non-idle processor time.
Buffer utilization, the average percentage of buffer storage in use.

Apparent throughput, the maximum physically constrained channel
capacity of all the terminal ports plus the transfer ports.
(Apparent throughput changes as terminals establish and disconnect
active paths.)

Statistical throughput, the average combined rate for characters
coming into the mainframe from terminal ports and leaving the main-
frame for remote nodes.

MSM performs the following functions:

The MSM runs periodically as a scheduled task every Pm seconds (Pm
defined by equate EQ$MSM:PM) to update statistical accumulations for
the above statistics. Averages of the Pm-second samplings are kept
for a configuration-defined time period called an "averaging
period". Pm 1is currently set at 6 and must evenly divide 360 to
guarantee that there will be an even number of sampling periods in
an averaging period. The scheduled task entry point is
MSM$MONITR:ENTRY.

The MSM monitors some of the above statistical accumulations on its
scheduled run. If certain configuration determined thresholds are
exceeded, it sends a system report(s) (see below). There are thresh-
olds associated with processor loading and buffer utilization.

The MSM maintains weighted time-averages for each of the statistics
it maintains. :

The weighted time-average (WTA) of a quantity at the end of an aver-
aging period N is defined as WTA(N) = (1/2) (WTA (N-1) +S) where WTA
(N-1) is the weighted time-average for the previous averaging period
and S is the average value of the quantity as sampled at Pm-second
intervals during the last averaging period. W(0) is taken to be 0.

D814 System Software Manual
Section 5.3 -1

CODEX CORPORATION COMPANY CONFIDENTIAL

These weighted time-averages are updated periodically at the expira-
tion of each averaging period.

4., The MSM also handles addressed packets requesting statistical data.
It responds to such requests by sending the requestor an addressed
packet containing all its weighted time-averages extrapolated to
reflect as closely as possible the current system state.

5. The MSM routes system reports received from external modules, as

well as from within MSM, to the designated system report node and
port.

5.3.2 Message Interface

MSM interfaces with the modules to which it supplies information by means
of addressed packets. The addressed packets and their contents are described
here.

5.3.2.1 Statistics Request Addressed Packet
The Statistics Request Addressed packet is sent to MSM (module number
EQ$MDT:MSM_STATIS) by a module desiring mainframe statistics. The entry
point for the MSM addressed packet batch task is MSM$AP:ENTRY. The MSM
reverses the source and destination fields and sends the packet back to the
sender with these fields filled in:
OF$MSM:AP_LOADING - Processor loading percentge (1 byte)
OF$MSM:AP_BUFFUTIL - Buffer utilization percentage (1 byte)
OF$MSM:AP_APTHRU - Apparent throughput characters per second (2 bytes)

0F$MS?:AR_STATTHRU - Statistical throughput characters per second (2
bytes

OF$MSM:AP_MFCAP - Mainframe combined processor capacity in K MPU cycles
per millisecond. This number is computed at initialization and does not
change.

A1l but the last of these fields is computed from the WTA at the end of
the last averaging period and extrapolated to the present as:

(1/2KMAX) (WTA*(2KMAX-K)+S*K) where
WTA is the weighted time-average for the previous averaging periods.

S is the average as sampled so far during the current averaging period.

D814 System Software Manual
Section 5.3 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

K is the number of Pm-second samplings which have occurred so far during
the current averaging period.

KMAX is the number of samples in an averaging period.

It can be seen that statistical information provided soon after or soon
before the expiration of an averaging period (assuming the averaging period
is much longer than Pm) will be close to the weighted time-average computed
at the end of the averaging period.

5.3.2.2 System Report Addressed Packet

As already stated, MSM is responsible for routing system reports. MSM
also originates system reports when any of its thresholds are exceeded. A
system report is an addressed packet with these fields:

OF$SYSRPT:CODE - Code for the event being reported. MSM sends reports
for processor loading threshold exceeded (code = EQ$SYSRPT:XPROCLOAD) and
for buffer utilization threshold exceeded (code = EQ$SYSRPT:XBUFFUTIL).

OF$SYSRPT:P1 - First report parameter (some system components may use
more than one parameter). When sending a processor loading or buffer
utilization report, MSM places the offending percentage here.

The system report addressed packet is sent to module number
(EQ$MDT :MSM_SYSRPT where it is handled by the system report router at entry
point MSM$SYSRPT:ENTRY. MSM then routes the packet to module
EQSIPSMDT:REPORT_SPLQ at the designated system report node and port (see
subsection on Configuration Parameters).

5.3.3 Collection of Raw Statistics

The raw data used in computing MSM's statistics is collected, as already
stated, every Pm seconds. This subsection describes the module interfaces
involved in the collection of raw statistics.

Processor Loading Statistic

MTC maintains a count of tens of processor idle cycles executed
(OF$PGO:TCIDLC) which is read and reset by MSM at each scheduled run (see
MTC). MSI, the system initialization module, computes the number of micro-
cycles per millisecond available from each processor, storing it in
OF$SYS:MSM_CPS and the number of processors, storing it in OF$PGO:SY_NOPS.
MSM in its first scheduled run multiplies these numbers and stores the total
microcycles per millisecond back in OF$SYS:MSM_CPS. From OF$PGO:TCIDLC and
OF$SYS:MSM_CRS MSM computes the processor loading statistic, the percentage
of non-idle processor cycles compared to total processor cycles available.

D814 System Software Manual
Section 5.3 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Buffer Utilization Statistic

This is computed from field OF$PGO:BFMAX, the total number of system buf-
fers (computed by MSI), and field OF$PGO:BFCNT, the count of currently avail-
able buffers (maintained by MBM). OF$PGO:BFCNT is interlocked through lock-
byte OF$SYSLCK:BFPOOL.

Apparent Throughput Statistic

Raw data for the apparent throughput calculation comes from the MNL-main-
tained field OF$PCB:XMT_APTHRUPUT in the transmit data substructure of each
I/NP PCB. This field is interlocked through the STATIS lockbyte associated
with the PCB (see Subsystem Data Structures).

Statistical Throughput Statistic

MNL maintains accumulated receive and transmit character counts for each
link in fields OF$PCB:RCV_CHRCNT and OF$PCB:XMT_CHRCNT in the receive and
transmit data substructures, respectively, of each I/NP PCB. These fields
are read and reset by MSM at each scheduled run and are used to update the

statistical throughput accumulation. They are also interlocked through the
STATIS Tlockbyte.

5.3.4 Configuration Parameters

MSM uses various configuration node parameters defined by the user
through the ICTP and read into mainframe memory by MSI at system initiali-
zation. These paramters are:

OF$PGO:SY_BUTH - Buffer utilization threshold. When buffer utilization
percentage (averaged over one Pm-second period) exceeds this number, a
system report is sent.

OF$PGO:SY_PLTH - Processor loading threshold. When processor loading
percentage (again averaged over one Pm-second period) exceeds this num-
ber, a system report is sent.

OF$PGO:SY_AVTC - Averaging Time Constant. This one-byte field controls
the length of the averaging period. If AVTC is 0, then the averaging
period is Pm seconds. Otherwise, the averaging period is five minutes
times the contents of AVTC.

OF$PGO:SY_RPTN - System report node. System report addressed packets are
sent to this node by the MSM system report router, MSM$SYSRPT.

OF$PGO:SY_RPTP - System report port. System report addressed packets are
sent to this port at the above node.

D814 System Software Manual
Section 5.3 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

5.4 Mainframe Panel Control (MPC) Module

5.4.1 Introduction

The Mainframe Panel Control Module interfaces the operator at the front
panel of the mainframe with the local node (Mainframe, BICs and IPs).

Unlike an I/CTP, the Mainframe Panel has a very limited user interface in
hardware which is hardly enough to provide any extensive man-machine dialog
without being much too cumbersome. Therefore, the Mainframe Panel is dele-
gated to perform just simple functions under normal operating conditions.

The Mainframe Panel Control module controls the 32-character Self-Scan,
mode indicator LEDs, and the 18-key keyboard through which Panel commands may
be entered. It also triggers each processor's status to be displayed in turn
by 12 processor LED's. The Panel mode is dictated first by the position of
the keylock switch, and then the most recent mode-selecting Panel command.

5.4.2 Panel Modes and Commands

There are three Panel modes which can be set from the keylock switch:
monitor (MON) mode, program (PGM) mode, and diagnostics (DIAG) mode.

There is also an internal mode called control (CTRL) mode which can be
entered from the PGM mode by the use of a Panel command. Only in this CTRL
mode is it allowed to perform a potentially risky operation. Therefore,
entry into the CTRL mode is protected by a password.

The MON mode is a subset of the PGM mode while the PGM mode itself is a
subset of the CTRL mode.

DIAG mode is the same as monitor mode provided no keystrokes are hit

prior to turning to DIAG mode, otherwise an NMI is generated on the next key-
stroke, which is not serviced by the Mainframe Panel Control Module.

Panel commands are presented in detail in Section 5.1 of the D814 Prod-
uct Functional Specification.

They can be classified into the following three categories.
1. Initialization - Load Commands

1. BOOT command is used to optionally reboot the entire network to a
new configuration.

2. RSET - resets a port that is currently active by clearing paths and
calls used by the port and resetting it causing ROM start-up diagnos-
tics to run.

Rev. 2 D814 System Software Manual Rev. 2
Section 5.4 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

3. DIAG - causes a diagnostic program to be loaded and started in a

port. Diagnostic runs to completion or until a RSET command is
executed for the port.

4. LOAD - load and starts system software in a port previously reset.
A1l Initialization-Load commands are valid in PGM and CTRL modes.

2. Examination-Modification Commands

These commands are used to interrogate the status of the Mainframe or
IP's at the local node.

The following four commands belong to this category:

1. DUMP - Dumps a memory block (Mainframe or IP)

2. EXAM - Reads an IP's BIC status registers

3. MEM - Reads a memory location allowing for the modification of its
content (Mainframe or IP)

4. STEP - Steps through messages.

The DUMP, STEP and EXAM commands are valid in all modes, but the MEM com-
mand is allowed only in the CTRL mode since it will be used in unusual circum-
stances such as a partial system failure as a preliminary step to a full
diagnostics procedure.

3. Auxiliary Commands

The purpose of these commands is to help an operator use the above com-
mands easily, and also to permit him to get into a different Panel mode under
which a different set of Panel commands are allowed.

The following four commands belong to this category:

1. HELP - Displays the local node number and available commands in the
current mode

2. MON - Enters the MON mode

3. PGM - Enters the PGM mode

4. CTRL - Enters the CTRL mode

The first three commands, HELP, MON, and PGM commands, are valid in all
modes, while the CTRL command is allowed only in the PGM mode. Furthermore,
in order to activate the PGM or CTRL mode, the keylock switch must be set at
the PGM position.

The mode command selecting the same mode which is currently in effect is
allowed, but it does nothing.

Rev. 2 D814 System Software Manual Rev. 2
Section 5.4 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

5.4.3 Functional Submodule Description

: There are five functional submodules in the MPC module as described
below:

1. Initialization

Called whenever there is a restarting of the local node; it initializes
the data structures for the Mainframe Panel Control module.

It also displays an initial system message
"NODE xx CONF n : CODEX 6050 INP"

on the Self-Scan, puts the Panel in the initial MON mode, and unlocks the
keyboard.

Entry Point - MPCSINIT:START

Entry Conditions

* None

Exit Conditions

* A-reg = Destroyed
* B-reg = Destroyed
* X-reg = Destroyed

2. Scanning of LED Lights for Processor States

Running as a scheduled task every two seconds (Entry Point -
MPC$SCAN:START), this submodule selects the next processor number so that the
processor state is displayed in the 12 LED indicators at the left side of the
Self-Scan display area by the Mainframe's Master Controller.

3. Interrupt Handler

A key stroke on the keyboard is entered into the Mainframe Master Con-
troller as a Level 1 hardware interrupt which in turn invokes this interrupt
handling hardware task.

When started, the task first locks the keyboard, and then examines the
key value entered. If it is an "ENTER" or "STEP" signaling the completion of
a command line, the task forks the Command Interpreter task and terminates it-
self. If it is a "CLEAR", the command line entered up to that point is
flushed and the Panel is reinitialized. Otherwise, the key value is saved as
part of the command line being assembled, the keyboard is unlocked, and then
the task is terminated.

Rev. 2 D814 System Software Manual Rev. 2
Section 5.4 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL
While building a command line, it also echoes a correct function key or
character for each key pushed by referring to a command table.

When a syntax error is committed for a command by entering a key, a "BAD
COMMAND" error message is displayed on the Self-Scan and the Panel is
reinitialized.

Entry Point - MPCSINTR:HANDLER '
Entry Conditions

* CC:1I
* SR

1
1LLVVVVY

where LL = Keylock switch position
VVYVV = Key value

(Done by the Master Controller.)

Exit Conditions

* CC:I =0
The task is terminated.

4. Command Interpreter

As the main processing body for Panel commands, this queued task is

forked by the MPC Interrupt Handler when a command line is completed by an
"ENTER" key.

It checks the legality of the command, and if it is legal, dispatches to
the command-processing routines for either:

1. HELP message generation

2. Reading of IP's BIC Status Registers
3. Memory Dump/Read/Write

4. Mode Management

5. Boot Interface

6. MDM AP Interface

7. Message Display

If a command is found illegal, an appropriate error message is displayed
on the Self-Scan and the Panel is reinitialized.

At the end of the command processing, the keyboard is unlocked to allow
next command to be entered, and the task is terminated.

Rev. 2 D814 System Software Manual Rev. 2
Section 5.4 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

5. Panel Message Handling

When a message 1is received from the MAP router at entry point
MPCSMES:ENTRY, it is added to the queue of waiting messages. Duplicate mes-
sages are tallied and flushed. The Panel 1is notified that a message is
queued. Messages (including the number of duplicates) are removed from the
queue and displayed at the Destination by a STEP command.

5.4.4 External Interfaces

The auxiliary commands and the EXAM command have no external interfaces.
The interfaces for the other commands are referenced below.

RSET, LOAD AND DIAG

The actions for these routines are carried out by MDM. Therefore, MPC$
sends an addressed packet to MDM passing the port number and default para-
meters. See section on MDM for addressed packet format.

BOOT

The actual processing of the BOOT command is done by the Mainframe System
Boot (MSB) module. Therefore, the MPC module only needs to pass a configura-
tion number to the MSB$MPC:BOOT subroutine (refer to Section 5.5.2.1).

MEM and DUMP

MEM and DUMP commands send a 'nondestructive dump request' addressed
packet to the specified IP or mainframe. The MEM command also sends a
‘patch' addressed packet when the operator elects to modify an IP or main-
frame memory location. The nondestructive dump and patch addressed packet
format is described in IPOS software IP Upload and Memory Modification
Utility (Section 6.1.11). The entry point used for response addressed
packets is MPC$CMES:ENTRY.

MPC uses the same addressed packet interface for both mainframe and IP
memory reference commands. Routing is handled by MAP. MPC merely copies the
port number, memory address and appropriate command code into an addressed
packet in all cases.

Rev. 2 D814 System Software Manual Rev. 2
Section 5.4 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

5.5 Mainframe System Boot (MSB) Module

5.5.1 Introduction ¢

A system boot is the procedure of synchronizing the network and subse-
quently reloading software and/or reconfiguring it in an orderly fashion.

The boot facility is needed when an operator wants to load new sofware
and/or change the configuration in a network, and also when an incompati-
bility in configuration is found in the network. In the latter case, the
incompatibility should be resolved without requiring any operator interven-
tion in order to support the dynamic nature of the D814 network.

The power-up and NP restart are not processed by the MSB module.
Instead, they are handled by the Master Controller which causes the Mainframe
System Initialization (MSI) module to start up the local node with a special
configuration such that the node is disconnected from the network.

The MSB module must handle the following three functions:

1. Boot Request Recognition
2. Boot Synchronization and Arbitration
3. Node Restart

The network may assume any topology including the one consisting of
several disconnected subnetworks which is caused by failures in the network
or by operator commands.

For a connected network, all nodes in it must be running under the same

software and the same configuration indicated by the active software Tlevel
and active configuration number respectively.

5.5.2 Boot Requests

In order to start a boot, a boot request must be made and entered into
the MSB module. A boot request may come from an operator through an I/CTP or
Mainframe Panel, or it may be generated automatically when a link comes up or
goes down.

5.5.2.1 Operator Boot Commands

The boot commands from an I/CTP and a Mainframe Panel are described in
Sections 5.2.2 and 5.1, respectively, of the D814 Product Functional Speci-
fication. Their program interfaces are presented below in detail.

D814 System Software Manual
Section 5.5 - 1

CODEX CORPORATION | * COMPANY CONFIDENTIAL

1. Boot Command from a Local I/CTP

When a boot command is entered at a local I/CTP, the I/CTP module must
send an Addressed Packet of the following format to the 1local node's
MSBSMAIN:START batch task whose module number EQ$BATCH:MSB is to be written
in the packet header as the destination module.

Addressed Packet Format

Following the standard Addressed Packet header, the Command Code of
EQ$MSB:CC_OP is written in the first byte of the text block. Then the boot
request parameters follow.

The second byte contains the boot source code which, in this case, indi-
cates an operator-initiated boot.

The third byte contains the configuration number for the current boot
request at bits 3 - 0, and forced/optional flag bit for reconfiguration (Fc)
at bit 7 (set if forced). The configuration number must be verified to be
legal, i.e., to be within the range of 1 - 6, by the I/CTP.

The fourth byte has the Software Revision number for the current boot
request at bits 6 - 0, and forced/optional flag bit for software reloading
(Fs) at bit 7 (set if forced). The Software Release Level number is in the
fifth byte.

The sixth and seventh bytes contain the node number and port number, res-
pectively, of an I/FDP for the source of new software if a software reloading
is needed.

D814 System Software Manual
Section 5.5 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The text block of the Addressed Packet is depicted below:

EQ$MSB:CC_OP

EQ$MSB : SOURCE_OP

Fc | | | | Conf. Number

Fs | Software Rev. Number

Software Release Number

Software Source Node Number

System Disk Port Number

The boot request from the local I/CTP is accepted if it is not of lower
priority than any other boot request currently being processed by the MSB
module at the local node. Otherwise, the Addressed Packet (with the local
node number appended) is returned to the I/CTP to indicate the rejection of
the command.

The priority rule used to arbitrate multiple boot requests in a network
is specified later in Section 5.5.3.2.
2. Boot Command from the Local Mainframe Panel

The Mainframe Panel Control (MPC) module must call the following entry
point if a legal boot command is entered through the Mainframe Panel.

Entry Point - MSB$MPC:BOOT

Entry Conditions

* A-reg = Configuration number

Exit Conditions

* A-reg = Destroyed
* B-reg = Destroyed
* X-reg = Destroyed

D814 System Software Manual
Section 5.5 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

The boot request is accepted if it is not of lower priority than any
other boot request currently being processed at the local node. In this
case, the control is returned to the caller after a short time which is
needed only to generate a boot request Addressed Packet. Otherwise, this
routine displays a "BOOT n REJECTED" message on the Self-Scan. :

For the priority rule, see Section 5.5.3.2.

5.5.2.2 Automatic Boot Request from the Local Node

There are two entry points provided in the MSB module to be called from
the Mainframe Network Link (MNL) module. The first is called when a local
Tink comes up, and the second is called when a local link goes down. These
are listed below:

Entry Point - MSB$MNL :LINKUP

Entry Conditions

* A-reg = Remote configuration number
* B-reg = I/NP port number

Exit Conditions

* A-reg = Destroyed
* B-reg = Destroyed
* X-reg = Destroyed

The function of this routine depends whether any boot process is already
being served by the local MSB module.

When a boot process is not in progress:

If the remote configuration is the same as the local configuration,
the routine just marks the link to be up and returns.

If the configurations are different, the routine updates the Tlink
status, generates an automatic boot request A.P. (for internal use
in MSB module), and then returns.

When a boot process is already in progress:

The routine updates the current boot process to include the link and
returns.

Entry Point - MSB$MNL:LINKDOWN

Entry Conditions

* B-reg = I/NP port number

D814 System Software Manual
Section 5.5 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

* A-reg = Destroyed
* B-reg = Destroyed
* X-reg = Destroyed

When a boot process is not in progress, the routine just marks the 1link
to be down and returns. Otherwise, it updates the current boot process to
exclude the link and then returns.

5.5.2.3 Boot Request from a Remote Node
Any of the boot requests described so far may have been initiated by the

MSB module at a remote node and propagated to the local node's MSB module as
a part of the synchronization process as described in the following section.

5.5.3 Boot Synchronization and Arbitration

Once a boot procedure is started, it has to be propagated over the entire
network to make the MSB modules at all the nodes synchronized before any one
can initiate a node restart.

When multiple boot requests must be handled by an MSB module, they have
to be arbitrated so that the MSB modules at all nodes in the network agree on
the final boot request when the synchronization is complete.

These are described below in more detail.

5.5.3.1 Boot Synchronization

The synchronization procedure used by the MSB module is a variation of
the Resynch Procedure developed at Codex (see "Resynch Procedures and a
Fail-Safe Network Protocol", Steve Finn, ICC Proceedings, 1979). The
detailed MSB algorithm is presented in Append1x G of the D814 Product Func-
tional Specification.

The synchronization is started when the MSB module at a node accepts a
boot request and broadcasts resynch messages to the MSB modules at all neigh-
boring nodes.

When the MSB module at a node receives such a resynch message, it up-
dates the local information regarding the boot synchronization and further
propagates it to the MSB modules at neighboring nodes in the form of resynch
messages.

D814 System Software Manual
Section 5.5 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

If the boot information kept at the local node indicates that the MSB
modules at all of the nodes have been resynched, the synchronization is
complete as far as the local node's MSB module is concerned. The resynch
procedure quarantees in this case that the MSB modules at the neighboring
nodes will also be synchronized immediately after receiving the last resynch
message from the local node's MSB module if they are not already synchro-
nized. :

When the synchronization is complete over the network, the MSB modules at
all the nodes in the connected network will have the same final boot request,
i.e., the boot request with the same software level and the same configura-
tion number.

If the synchronization was started by an operator, the final boot request
is the winning operator-initiated boot request. If it was automatically
started, the final boot request is the optional reconfiguration with the
majority configuration of the network. See the next section for the defini-
tion of "optional" boot request.

5.5.3.2 Arbitration of Multiple Boot Requests

When multiple boot requests are entered into a network within a short
time span, contentions will arise for the MSB modules at some nodes between
the boot request updated so far at the local node and a newly arrived boot
request. In such cases the following priority rule is applied to resolve the
contention.

1. A "forced" boot wins over an "optional boot."
"Forced" boot means that a node restart will be scheduled at a node
even if the node already has the same software level and the same
configuration number active as the boot request demands. With an
"optional" boot, such a case will not result in a node restart.
2. An operator-initiated boot wins over an automatic boot.
3. For an operator-initiated boot:
a) The higher level software along with the associated source
node/port wins. If they have the same software level, the
lower-numbered source node/port wins.

b) The lower-numbered configuration wins.

D814 System Software Manual
Section 5.5 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

5.5.4 Node Restart

When the MSB module at a node completes the synchronization (and pos-
sibly arbitration) step, it schedules a node restart under the following
conditions:

1. with the software level from the source node/port as indicated by
the final boot request,

a) if the software reloading is forced,
b) or if it is different from the active software level;
2. and with the configuration number of the final boot request,
a) if the reconfiguration is forced,
b) or if it is different from the active configuration number

When a node restart is indeed to be done, the scheduling process is
started which depends on what kind of boot originated the network synchro-
nization.

If it was due to an automatic boot request, the MSB module sends a mes-
sage to all local I/CTP's and schedules a node restart to be triggered in one
minute. The message to the I/CTP's will inform operators that node restarts
will be triggered in one minute over the entire connected network for the
selected majority configuration number. It will also provide the operators
with the information about the source of the boot.

The delay period is facilitated to provide any operator the opportunity
of overriding the pending network restart with an operator-initiated boot
request. At the end of the delay period, the node restart is cancelled if
another boot has gone into effect in the meantime. -

If the completed network synchronization was due to an operator-initi-

ated boot request, a node restart is triggered after allowing a one-second
settling period.

5.5.5 Examples of Boot Process

Since the distributed MSB algorithm is rather complex, the following two
examples, one for an operator-initiated boot and the other for an automatic
boot, are provided to help readers understand the boot process. In order to
depict the process easily, a very simple network was chosen where there are
only 3 nodes and 2 links. There are also assumptions made regarding timing.
However, they do not interfere with following the essence of the algorithm.

For the exact algorithm, Appendix G of the D814 Product Functional Speci-
fication should be consulted.

D814 System Software Manual
Section 5.5 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

The following is the list of state variables and messages used in the MSB
algorithm.

M = Node Mode

R = Resynch Count

B = Boot Request Table

L = Link Table (Link #1 [, Link #2])

N = Node Table (Node #1, Node #2, Node #3)

CONF = Configuration Counter Vector (conf Cl, conf C2)
This is actually a 4-element vector; but for simplicity, only 2
elements are used in the automatic boot process description.

RM1 = Resynch Message of Type 1 (R, boot source)

RM2 = Resynch Message of Type 2 (origin node, origin B, (list of not

yet resynched, but connected neighboring nodes))

D814 System Software Manual
Section 5.5 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

-, D814 System Software Manual
Section 5.5 - 9

- CODEX CORPORATION COMPANY CONFIDENTIAL

1. An Operator-Initiated Boot Process

L12 - L23
Nl =-ecccaaa- tocmmcm———— N2 ~ecmcccea- . N3
— —— — F —
M=0 M=0 M=0
R=20 R=20 R=20
B B B
L= (2) L=(2, 2) L= (2)
B' input
(B* > B)
M<-1
R -1
B <~ B'
N <- (1, 0, 0)
RM1 (1, OP)
P ===
M<1
R <=1
L <~ (2, 1)
N <- (0, 1, 0)
RM1 (1, OP)
{mmemmccmmccccaaaea Fomn¥
L <~ (2 RM1 (1, OP)
N<- (2,1, 0) T +omnd
M<-1
- R<-1
L <=~ (2)
N < (0, 0, 1)
RM1 (1, OP)
{mmmmmmccmccaccca—aa ¥
L <- 52, 2) N<- (0,1, 2)
N<- (1, 2, 1)
RM2 (N2, B, (N1, N3))
PO
N<- (2, 2, 1)
———
I
v v

D814 System Software Manual
Section 5.5 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL

RM2 (N3, B! (N2))
L PO
N <= (1, 2, 2)

-------------------- Ty
B <- B'
N <- (2, 2, 2)
R <=0
RM2 (N1, B', ())
¥ e ccee—c———————- tmma)
M <- 2 B <- B'
R <-0 N <- (2, 2, 2)
M <= 2
R <~ 0

Synchronization is complete.
Delay 1 second before triggering node restart.

D814 System Software Manual
Section 5.5 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

2. An Automatic Boot Process

L12 L23
Nl cecmceeae- Fommmmemaee N2 ~ccmcmmcan . N3
(conf C1) (conf C2) (conf C2)
M=20 M=0 M=0
R=0 R=20 ‘ R=0
B = Bl = (AUTO, C1) B = B2 = (AUTO, C2) B = B3 = (AUTO, C2)
L= (0) L= (0, 2) L= (2)
L12 comes up. L12 comes up.
M<1 M<1
R<-1 R<-1
L <~ (1) L < (1, 1)
CONF <- (0, 0) CONF <- (0, 0)
N < (1, 0, 0) N<- (1, 0, 0)
———¥
RM1 (1, AUTO)
G RO,
L < (2
CONF <- (1, 0; RM1 (1, AUTO)
N< (2,1, 0 R L temad
M<-1
R «-
RM1 (1, AUTO) L <~ (2)
.................... R CONF <~ (0, 0)
L <- (2, 1) . N<- (0, 0, 1)
———* ‘
RM1 (1, AUTO)
T teaa*
L <~ (2, 2) CONF <- (0, 1)
CONF <- (0, 1) N< (0,1, 2)
N < (1, 2, 1)
RM2 (N2, B2, (N1, N3))
................ toma®
CONF <- (1, 1)
N< (2, 2, 1) ———*
RM2 (N3, B3, (N2))
S S
'} '} I

D814 System Software Manual
Section 5.5 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL

CONF <- (0, 2)
N < (1,2, 2)
RM2 (N2, B2, (N1, N3))
--------------------- tewa)
CONF <- (0, 2)
RM2 (N3, B3, ()) N<- (1, 2, 2)
[QR Rpep——
CONF <- (1, 2)
N <- (2, 2, 2)
RM2 (N1, Bl, (N2))
-------------------- tom=)
CONF <- (1, 2)
N < (2, 2, 2)
M<- 2
R<-0 RM2 (N1, B1, ())
PR toma)
B <- (AUTO, C2) M<-2 CONF <- (1, 2)
R<-0 B <- (2, 2, 2)
B <- (AUTO, C2) M<- 2
R<-0 '
B <- (AUTO, C2)

Synchronization is complete.
Send a message to local I/CTP's.
Delay 1 m‘inute.

Trigger No No
node restart node restart. node restart.
with conf C2. :

D814 System Software Manual
Section 5.5 - 13

A\

CODEX CORPORATION COMPANY CONFIDENTIAL

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

5.6 Mainframe Path Management, Routing, and Congestion Control Module

(MPMRCCM)

5.6.1 Overview

The MPMRCCM has complete responsibility for control of data paths used by
customer data and by addressed packets. The MPMRCCM creates, deletes,
routes, and reroutes paths for customer data. It also provides the Mainframe
Addressed Packet Module with the route to be used by each addressed packet.
The MPMRCCM has significant interfaces with the I/P Call Management Module
(I/P CMM), the I/P Protocol Module, the Mainframe Network Link Module (MNL),
the Mainframe Addressed Packet Module (MAP), and the Intelligent Network Port
(I/NP).

The MPMRCCM 1is divided into three functional submodule groups. These
are:

Mainframe Path Manager (MPM) - The MPM handles establishment and deletion
of paths for user data. Paths are established in response to messages
from the I/P CMM (initial path establishment) and messages from the Main-
frame Congestion Controller submodule group (rerouting of existing
paths). “The first sort of path is referred to as a "primary path" while
the second sort of path is referred to as a "secondary path". Paths are
deleted in response to link failure messages from the Network Link Con-
trol Module as well as in response to messages from the I/P CMM. A path
may also be deleted after successful rerouting. But it should be noted
that a primary path being rerouted is never deleted until a secondary
path has been created to replace it.

Mainframe Routing Manager (MRM) - The MRM is responsible for computing
and providing to other system components routing information which is
mutually consistent throughout the connected network. The system com-
ponents using this routing information are the Mainframe Addressed Packet
Module and the MPM. Raw data for routing table computation is gathered
in a network-wide resynch including all MRM's in the connected network
(see Appendix to the D814 Product Functional Specification). Resynchs
are done as requested by MCC (see below) and MNL.

Mainframe Congestion Controller (MCC) - The MCC is responsible for con-
trolling user data traffic congestion by selecting paths as candidates
for rerouting. MPM does the actual rerouting when so instructed by MCC.
The information used in the path selection algorithm is gathered from the
MNL and from the MRM.

D814 System Software Manual
Section 5.6 - 1

CODEX CORPORATION : COMPANY CONFIDENTIAL

5.6.2 External Interfaces

This section describes all interfaces between .MPMRCCM components and
other modules.

5.6.2.1 Interface with MNL

MNL must communicate with the MPMRCCM whenever a path is created or
deleted. In addition MNL gathers link information which is used by all three
components of MPMRCCM. MNL communicates with MPMRCCM by the following means:

Port Control Block (PCB) - Each Network Port, each Terminal Port, and
each path through an intermediate node has a PCB. (See Mainframe Subsys-
tem Data Structures.) All three MPMRCCM groups read data maintained by
MNL in the PCB's. MPM writes data in the PCB Path Substructures of TP
(Terminal Port), VP (Virtual Terminal Port), and XP (Transfer Port --
associated with a path at an intermediate node) PCB's. The Path Substruc-
ture of these PCB's is set up by MPM in the initial stages of path crea-
tion. When a path enters the Active path state (see path state machine
diagram), the PCB is passed to MNL. In general MPM may not modify a PCB
whose path state is Active and MNL may not modify a PCB in any other path
state.

Messages - In addition, various messages flow between the MNL and the
MPMRCCM. These messages are:

LINKFAIL - Informs MPM that a Tink has failed. The message is sent
by calling routine MPM$UTIL:LINKFAIL with the ID of the NP in B
register.

MPMLINKFAILACK - Acknowledges the above. It is sent by calling
routine MNL$RECVRY:MPMFAILACK.

LUP - Informs MRM that a link has been brought up. The message is
sent by calling routine MRM$UPDATE:LINKUP with the NP ID in the A
register.

LDOWN - Informs MRM that a link has gone down. This message is sent
by calling routine MRM$UPDATE:LINKDOWN with the ID of the failed NP
in A register.

MRMLINKFAILACK - Acknowledges the above. It 1is sent by calling
routine MNL$RECVRY:MRMFAILACK.

ADDSLOT - Sent by MPM to tell MNL that a path has become active and
that data for it should be handled by MNL. The message is sent by
calling routine MNL$UTIL :ADDSLOT.

D814 System Software Manual
Section 5.6 - 2

CODEX CORPORATION "COMPANY CONF IDENTIAL

5.6.

CMM.

KILLSLOT - Sent by MPM to tell MNL to end active data traffic so
that the path may be deleted. The message is sent by calling
routine MNLSUTIL:KILLSLOTSWITCH or MNLSUTIL:KILLSLOTFAIL.
SLOTKILLED - Sent by MNL to MPM to signal the termination of active
data transmission over a path. It is sent by placing a message byte
file directly on the MPM batch queue. (See MNL for message format.)
2.2 Interface with I/P CMM
The I/P CMM communicates with the MPMRCCM on the following occasions:

- Initial establishment of each primary or secondary path between a
source and destination

- Termination of any path when no secondary path has been created to
replace it

- Initiation of a call
- Termination of a call

Among the subgroups of MPMRCCM, only the MPM communicates with the I/P
A1l such communication is by means of addressed packets. The message

parameters are described in detail in the Appendix to the D814 Product Func-
tional Specification. The messages are summarized here:

ACTCALL - Sent by I/P CMM to tell MPM to activate a call.

ACTCALLACK - Sent by MPM to tell I/P CMM that the call has been acti-

vated, meaning the ITP's PCB has been initialized for the call.

CALLCLRD - Sent by MPM to tell I/P CMM that a call has been ended or that

the call specified in an ACTCALL could not be activated.

ESTXMTPATH - Sent by I/P CMM to tell MPM to establish a path for an

active call. Establishment of each path of a call is started by an

ESTXMTPATH received by the source MPM.
XMTPATHACT - Sent by MPM to I/P CMM at the source of a path to tell I/P

CMM that the path has been activated.

RCVPATHACT - Sent by MPM to I/P CMM at the destination of a path to tell

I/P CMM that the path has been activated.

XMTPATHERR - Sent by MPM to I/P CMM at the source of a path to tell I/P

CMM that the path has failed or could not be established.
CLRCALL - Sent by I/P CMM to MPM to start terminating a call.

D814 System Software Manual
Section 5.6 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.6.2.3 Interface with I/P Protocol Module

MPMRCCM at the destination node of an active path informs the I/P Proto-
col Module if and when the path is deleted. It does this by inserting an
ICSKILLFAIL ICS sequence into the data stream through the outbound BIC data
FIFO. It should be noted that MPMRCCM (actually the MPM subgroup) only does
this after MNL has informed MPMRCCM that the path is no longer active. This
way it is impossible for both MNL and MPMRCCM to be using the same FIFO con-
currently.

5.6.2.4 Interface with MAP

MAP consults MPMRCCM whenever it must route an addressed packet for a
remote node. The MRM subroutine MRM$ROUTE:PACKET is called with the remote
node ID as argument. The subroutine consults MRM's routing table and returns
the proper network port to use or an error indication if none exists. The
calling sequence for MRM$ROUTE is as follows:

On Entry:

* A-reg = Remote node to route to

On Exit:

* X-reg = Destroyed

* A-reg = Adjacent node packet is to be sent to

* B-reg = I/NP to be used

* CC:Z = Set if and only if node is unreachable

* CC:C = Set if and only if route cannot be returned due to routing
table update in progress

*

Data Space = Routing buffer (OF$MRM:DS_ROUTEBUF) is wiped out

5.6.2.5 Interface with I/NP

The I/NP sends MPMRCCM a STATISTICS addressed packet every 30 seconds.
This packet provides MCC with all the information it needs to compute the
capacity of the link. (See section on the I/NP for the packet format.)

5.6.2.6 Operational Overview of Submodule Groups

This section presents an operational overview of each of the submodule
groups making up the MPMRCCM. Where the detailed algorithm is included in
the Appendix to the D814 Product Functional Specification, reference will be
made to it.

D814 System Software Manual
Section 5.6 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

5.6.2.7 MPM Operational Overview

As noted above, the MPM handles creation and deletion of paths for user
data. MPM is a batch task with entry point MPM$MAIN:ENTRY. Messages placed
on MPM's batch queue may be control frames or addressed packets, or they may
be placed directly on the queue by a MPM utility provided for that purpose.
The various messages which flow between MPM and other MPMRCCM components as
well as external modules are described in the MPM Design Specification.

The operation of MPM may best be understood by considering the major
states associated with a path. These states are the Call State and the Path
State.

5.6.2.7.1 Call State

MPM maintains a call state at each terminal port and virtual terminal
port. There are three allowed call states:

IDLE - This port is not involved in a call and is available for initia-
tion of a call. The call state is initially IDLE. Whenever it is reset
to IDLE from some other state, MPM notifies I/P CMM by means of the
CALLCLRD message.

ACTIVE - This port is involved in a call. If paths both ways are not
currently in existence, they may be established. The call state becomes
active when an ACTCALL is received from I/P CMM and positively acknowl-
edged by MPM with an ACTCALLACK.

DISCONNECTING (DISC) - A call involving this port is in the process of
disconnection. When both paths are deleted, it will inform I/P CMM and
enter the IDLE state. The call state becomes DISCONNECTING whenever a
CLRCALL is received from I/P CMM.

The next subsection includes two diagrams showing the process of estab-
lishment and deletion of a typical call.

5.6.2.7.2 Path State

As a transmit path is built or deleted, it passes through a succession of
path states at each node along the path. The following is a rough descrip-
tion of the path states.

NOPATH - No path currently exists.

EST (Established) - A1l resources needed for the path have been allocated

at this node and an attempt has been made to continue the path to the
next downstream node.

D814 System Software Manual
Section 5.6 - 5

CODEX CORPORATION - COMPANY CONFIDENTIAL

INACT (Inactive) - This node has been notified that the path has been
established all the way to the destination node. An attempt has been
made to so inform the next upstream node (if one exists).

ACT (Active) - Data flowing on this path is included by MNL in the link
traffic. The path state may become ACT only after the path state at each
node in the path has gone successively from NOPATH to EST and from EST to
INACT.

KILLED - Creation of this path cannot proceed beyond the Established
State. A path becomes KILLED when a path error occurs when the state is
Established. MPM must then wait for a MARK message before it can reset
the path state to NOPATH and free up its resources. This ensures that no
path can be created and deleted without at least one MPM message travers-
ing the entire path, from start to finish, in each direction. (Note
“finish" here is taken to mean the 1last connected link in the path to
cover the case of a path with a link failure.)

Every path has a path state at each node along the path except the desti-
nation node. At the destination there is no path state, although the path
may be considered to have the state “path" if it ex1sts and "nopath" if there
is no path to the node.

Path states are stored in the PCB Path Substructure (see section on Sub-
system Data Structures). Each XP PCB contains the path state for the path
(if any) with which it is associated. Each ITP or VP PCB contains the path
state for the primary path (if any) and the secondary path (if any) originat-
ing at the associated port.

It is helpful to consider MPM as a path state machine. The following fig-
ure describes the states a path may have at any node and the causes of transi-
tions between states. These causes are either messages received from neigh-
boring MPM's or external modules or conditions which hold at the local node.
For example, if the path state in a path substructure of a PCB in INACT, it
will become ACT if an ACTPATH message is received. It will also become ACT
automatically, with no external cause, if the local node is determined to be
the destination node and if the path is a primary path.

D814 System Software Manual
Section 5.6 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

PATH STATE MACHINE FOR MPM

CAUSE OF STATE TRANSITION OLD STATE
NOPATH EST INACT ACT KILLED

ESTXMTPATH msg from CMM
(if at source node of path) | EST
ESTPATH msg from neighboring
MPM (if not at source) EST EST**
Request Reroute from MCC or
REROUTE from neighboring
MPM (if source of sec path) | EST

LINKFAIL (incoming link) * KILLED | NOPATH | NOPATH
CLRCALL from CMM KILLED NOPATH NOPATH
LINKFAIL (outgoing link) * NOPATH | NOPATH NOPATH
MARK (no error) received from

MPM INACT NOPATH
MARK (error) received from MPM NOPATH NOPATH
Local node found to be dest.

of path INACT
ACTPATH from downstream MPM ACT
This node found to be dest.

of primary path ACT
USKILL received from MPM or

LINKFAIL from MNL NOPATH
DSKILL received from MPM * NOPATH | NOPATH
SLOTKILLED from MNL NOPATH

The entry in the table for any given state and cause of state transition
is the resultant path state.

* Transition from ACT to NOPATH state occurs after KILLSLOT is sent to MNL
and SLOTKILLED response has been received.

** Fixed path only.

D814 System Software Manual
Section 5.6 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

The following figures show the process of path and call creation, path
and call deletion, and path failure in some typical common situations. It
should be remembered that in real 1life things may not be this simple. For
example, a link may fail when a reroute is in progress or a call may be dis-
connected before it is active. To understand what happens in such cases, the
Appendix to the D814 Product Functional Specification should be consulted.

D814 System Software Manual
Section 5.6 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

CREATION OF PRIMARY PATHS FOR A CALL THROUGH ONE INTERMEDIATE NODE

Path states are in parentheses.
Call states are in brackets.

Source Source Int Node Dest Dest
CMM MPM MPM MPM CMM

I
ACTCALL +--->[ACT]
P + ACTCALLACK

I
- - - CALL IS NOW ACTIVE - - -

I
ESTXMTPATH---> (EST)

ESTPATH -met===>(EST)
ESTPATH mm=t=u=) (EST)
| (INACT) *
(INACT) <-==+--- MARK
(INACT) <-==+--- MARK (ACT) *

RCVPATHACT =-mt-==>
(ACT) <===t=-=- ACTPATH
(ACT) <===t-=- ACTPATH
(mmmmmm +--- XMTPATHACT

I
- = - XMT PATH FROM CALLER IS NOW ACTIVE - - -

|
(EST) <=-=t--= ESTXMTPATH
(EST) <===t--- ESTPATH
(EST) {==-+=-- ESTPATH

(INACT) *
MARK -==t-==>(INACT)
(ACT) * MARK -==t-==>(INACT)
FS— +--- RCVPATHACT ‘
ACTPATH —emt===>(ACT)

ACTPATH ==--+--->(ACT)
XMTPATHACT ===t===>

I
- - - BOTH PATHS NOW OPERATIONAL - - -
l I I l

* Path state for destination port PCB goes from EST to INACT and to ACT
automatically, without waiting for any further messages.

D814 System Software Manual
Section 5.6 - 9

CODEX CORPORATION

COMPANY CONFIDENTIAL

DELETION OF PRIMARY PATHS FOR A CALL THROUGH ONE INTERMEDIATE NODE

Both path states are initially Active.
Transmit path states for source-destination path are in parentheses.

Transmit path states for destination-source path are in brackets ([]).
Call states are in number signs (#).

Source Source Int Node Dest Dest
CMM MPM MPM MPM CMM/Protocol
CLRCALL ---i---> #DISC#
(NOPATH)
ICSKILLFAIL * --==> (NOPATH)
ICSKILLFAIL * ---+---> (NOPATH)
ICSKILLFAIL +-aad
USKILL ———tea)
USKILL ---+---> [NOPATH]
[NOPATH] <---+ ICSKILLFAIL *
[NOPATH] <---+--- ICSKILLFAIL * #DISC#
{===t-=~ ICSKILLFAIL CALLCLRD e
I #IDLE# #IDLE#
<---T--- CALLCLRD

the Tocal MPM. ‘
MPM in that node by sending it a SLOTKILLED message.

- - - CALL IS NOW TERMINATED - - -

These

been eliminated in the interest of simplicity.

D814 System Software Manual

Section 5.6 - 10

This ICSKILLFAIL 1is actually sent by MNL after receiving a KILLSLOT from
It is received by the neighboring MNL which then informs

details have

CODEX CORPORATION COMPANY CONFIDENTIAL

FAILURE OF A PRIMARY PATH FROM SOURCE TO DESTINATION

WITH NO INTERMEDIATE NODE

Path states are initially Active.
Path states are in parentheses.
Only one path of the call is shown.

Source Destination

1/P MPM MNL MNL MPM I/P

l |
(NOPATH) {=m=t--= LINKFAIL | LINKFAIL ---+--=> (NOPATH)
===+ XMTPATHFAIL ICSKILLFAIL l--->

- - - PATH IS DELETED - - =~
- - - CMM MAY NOW TRY TO RE-ESTABLISH - - -

D814 System Software Manual
Section 5.6 - 11

CODEX CORPORATION ' COMPANY CONFIDENTIAL

LINK FAILURE ON A PRIMARY PATH

THROUGH TWO INTERMEDIATE NODES

Path state is initially Active.
Path states are in parentheses.

It is assumed that the failed link is between the intermediate nodes.

The first diagram shows what happens between the failed link and the path
destination:

Intermediate Node Destination Node
MPM MNL MNL MPM I/P
|
{===+--- LINKFAIL
KILLSLOT ==e+t===)
(NOPATH) {===+=-=-- SLOTKILLED

[CSKILLFAIL ===+-=<>
SLOTKILLED ===+--=> (NOPATH)
l | ICSKILLFAIL ---+--=>

The next diagram shows what happens between the failed link and the
source.

Source Node Intermediate Node
I/P MPM MNL MPM MNL

|
| {-==+--- LINKFAIL
R +--- USKILL
KILLSLOTFAIL +--<>
(NOPATH) {===t=== SLOTKILLED |
{-==+-=~ XMTPATHERR | ICSKILLFAIL ===t-cecacacacccax +e=ad
+
l

- - - PATH IS NOW DELETED - - -

D814 System Software Manual
Section 5.6 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL

5.6.2.7.3 MRM Operational Overview

The algorithm used by the MRM is completely explained in Appendix A to
the Product Functional Specification and need not be described further here.

5.6.2.7.4 MCC Operational Overview

The MCC, as noted earlier, is responsible for rerouting of already-estab-
lished paths for any reason other than a link failure in the path. The MCC
monitors the state of congestion of each outgoing link and, as long as there
exist congested links, triggers a congestion resynch by MRM every small time
interval (of the order of 10 seconds). If there are no congested links at
the node, it still triggers congestion resynchs, but at a much longer time
interval (of the order of 2 minutes). The reason for triggering resynchs
when there are no congested links is that a better path with sufficient avail-
able bandwidth for an already-established call can open up due to a change in
network traffic patterns. For example, suppose a link between node A and
node B becomes congested, causing a call from A to B to be rerouted through a
longer path. Once the reroute is done, the previously congested link is no
longer congested. Assume that later on traffic between A and B decreases so
that there 1is now sufficient bandwidth to accommodate the call without
re-introducing link congestion. At this point there may be no congested
links in the network, but the call can still be profitably rerouted.

At the completion of any resynch, whether initiated by MCC or not, MCC at
each node begins a series of reroute attempts. It examines all paths through
the node and classifies each path according to its potential for succcessful
rerouting. It then goes through a subset of the potentially reroutable paths
and, for each path, tells MPM to attempt a reroute and waits for a completion
message from MPM. If no completion message is received, the wait terminates
when the next resynch completes.

Perhaps the most important consideration in the design of the MCC is sys-
tem stability. The algorithm tries to inhibit oscillations and system over-
loading due to repeated unsuccessful reroutes of the same path.

The MCC is a batch task with entry point MCC$EXEC:ENTRY. Messages are
placed on MCC's batch queue in two ways:

1. System components which reside in the local mainframe call subrou-
tines supplied by MCC to place messages in addressed packet format
directly on MCC's batch queue.

2. The I/NP sends addressed packet messages to MCC which are routed to
the MCC batch queue.

It should be noted that MCC receives no messages from non-local modules.

D814 System Software Manual
Section 5.6 - 13

CODEX CORPORATION COMPANY CONFIDENTIAL

This section will describe the interface between the MCC and the other
two MPMRCCM submodule groups in some detail, since this interface is fairly
complex and is not described elsewhere. Next the basic algorithm used by MCC
in choosing paths as candidates for rerouting will be described.

5.6.2.7.4.1 MCC Port Control Block Interface

Port control blocks (described in detail in Section XYZ) provide a data
interface among MCC, MNL, MRM, and MPM. This interface is complicated by the
fact that a PCB may be dynamically allocated (currently only transfer port
(XP) PCB's are allowed to be dynamic). Dynamic PCB creation and deletion is
done by MPM via operating system utility subroutines MUT$PCB:ADDPORT and
MUT$PCB:DELETE_DYNXP.

MCC uses PCB's to gather two sorts of information:

1. Network link throughput data from which link excess capacity may be
computed. This information is taken from the PCB associated with
the links I/NP.

2. Path throughput data for use in rerouter decision-making. This
information is taken from the PCB associated with the path being
considered. This PCB may be an Intelligent Terminal Port (I/TP),
Virtual Port (VP), or Transfer Port (XP) PCB.

The following PCB fields in I/NP PCB's are used by MCC for Link statis-
tics:

Link Speed (XMT_LNKSPD) - This 1is the capacity of the link in bytes/sec,
initialized by MNL at 1link startup to a configuration-set parameter and
updated by MCC from information received in the STATISTICS message. It
is not a long-term average, but merely the Link speed as computed direct-
ly from the TOTAL_BYTES field in the previous STATISTICS message. It is
a two-byte field interlocked through the PCB's STATIS lockbyte.

Link Traffic (XMT_TRAFFIC) - This is a long-term average of the outgoing
user data rate through an I/NP in bytes/sec. It is also a two-byte field
interlocked through the STATIS lockbyte.

Overhead (XMT_OHEAD) - This is a long-term average of the overhead bytes
per second transmitted by the I/NP. It is updated by MCC from the
STATISTICS message. It is read by both both MRM and MCC to compute ex-
cess capacity. It too is a two-byte field interlocked through the STATIS
lockbyte. :

Link Inactive Traffic (XMT_INACT_TRAFFIC) - This 1is the total throughput
in bytes/sec of all paths established but not activated through the 1link.
It is a two-byte field interlocked through the STATIS lockbyte and up-
dated by the Mainframe Path Manager (MPM) module using the MCC utilities
(MCC$UTIL). It is reset by MNL whenever a link comes up.

D814 System Software Manual
Section 5.6 - 14

CODEX CORPORATION : " COMPANY CONFIDENTIAL

The following PCB fields in I/TP, UP, and XP PCB's are used by MCC to
gather information from MNL and MPM about an active path.

Path State (PATH_STATE and PATH_PSTATE) - PCB field PATH_PSTATE in I/TP
and VP PCB's and PCB field PATH_STATE in XP PCB's are read by MCC to
decide if the PCB is associated with an active primary path.

Destination node (PATH.DSTND) - Destination node of path with which this
PCB 1s associated.

Estimated Statistical Speed (SLOT_ESSPD) - This 1is the estimated
long-term speed of the path. It is read by MCC from the PCB slot data
substructure to decide if a path can be rerouted without introducing new
network congestion.

Path Length (PATH_HOPS and PATH_PHOPS) - Field PATH_PHOPS in I/TP and VP
PCB"s and field PATH_HOPS in XP PCB's express the length of the path from
the local node to its destination. It is used by MCC to determine if a
secondary path is shorter than the primary path.

Transmit Network Port (PATH_PXNP and PATH_XNP) - Field PATH_PXNP in I/TP
and VP PCB's and field PATH_XNP in XP PCB's are used to determine the
I/NP in the local node used for the outgoing path. It is used by MCC to
determine if the link used for the primary path is congested.

The above fields, unlike those in the I/NP PCB, may be located in a dynam-
ically allocated PCB. To ensure that the PCB is not deleted while the above
fields are being read, the Path Data Substructure lockbyte OF$SYSLCK:PATH
must be locked while accessing them.

5.6.2.7.4.2 MCC Routing Table Interface
MCC calls MRM$ROUTE_SEC to get routing information used in determining if
an attempt should be made to reroute a path.
5.6.2.7.4.3 MCC Message Interfaces
The following Addressed Packet messages are received by MCC:
Resynch Completed - Sent by MPM at the completion of a resynch. This
message means that network congestion and/or topological information has

just been updated. It causes MCC to initiate the checking of all PCB's
for possible rerouting.

Reroute Attempted - Sent by MPM to indicate that the attempt to reroute a
path 1s complete.

Statistics - Sent every 30 seconds by the I/NP to provide MCC with the
raw information needed to compute capacity of that link.

D814 System Software Manual
Section 5.6 - 15

CODEX CORPORATION COMPANY CONFIDENTIAL

The following message is sent by MCC:

Request Reroute - Sent to MPM. Implies that the primary path associated
with the PCB ID contained in the message is a candidate for rerouting and
requests MPM to being rerouting. MCC commits itself to send no other
such messages and to make no change in the PCB's reroute state until a
Reroute Complete message is received from MPM.

Start Congestion Resynch - Sent to MRM to cause MRM to initiate a conges-
tion resynch.

5.6.2.7.4.4 MCC Algorithm

Initiation of Resynch

As was seen in the Operational Overview Section, MCC must decide when to
initiate a congestion resynch and must, at the end of a resynch (whether or
not it was a congestion resynch), initiate a series of reroute attempts.
This section describes how these two functions are performed.

Initiation of Resynchs

At the start of each series of reroute attempts, MCC sets a timer which
at expiration will cause MCC to initiate a new congestion resynch. This
timer is set to thirty seconds if there are any congested outgoing links at
the local node and two minutes if not. This means that resynchs will occur
roughly every thirty seconds as long as there are congested links in the net-
work and that a resynch will almost always occur within approximately thirty
seconds of the time any congested link becomes uncongested.

Doing a Series of Reroutes

After notification of completion of a resynch, whether initiated by MCC
or not, MCC does a series of reroute attempts. Before starting any reroute
attempts, MCC classifies all active paths. Paths are classified into one of
four priority classes:

Priority 3 - A shorter path with sufficient excess capacity exists from
this node to the path's destination.

Priority 2 - The outgoing link used by the path is congested, but there
is a route longer than the current path with sufficient excess capacity
from here to the destination of the path.

Priority 1 - The outgoing link of the path is congested, but the path is
not priority 2 or 3.

Priority 0 - None of the above. Path is not a candidate for reroute.

D814 System Software Manual
Section 5.6 - 16

CODEX CORPORATION COMPANY CONFIDENTIAL

At this point, MCC checks if a reroute is currently in progress from the
prior series of reroute attempts If so, MCC waits for the reroute completed
message from MPM before continuing with the current series of reroutes.

MCC then tries to reroute these paths, in priority order. Before an
attempt 1is made, the path is checked to verify that its priority has not
changed to a lower priority since the initial classification. If so, it is
reclassified. Otherwise, MPM is sent a Reroute Request for the path and it
is reclassified as priority 0. In order to avoid oscillation the paths are
rerouted one at a time: MCC always waits for notification of completion of
one attempt before requesting another.

5.6.2.7.4.5 Interface with MDL

The MPMRCCM maintains minimum depth spanning trees for use in broadcast-
ing messages throughout the network. A minimum depth spanning tree rooted at
node A is a set of links between adjacent nodes in the network such that:

1. Any node in the connected network may be reached by one and only one
path using links from the spanning tree.

2. There is no path in the network from A to any other node in the
network using fewer links that the one using the spanning tree.

Figure la shows a typical network and Figure 1lb shows the same network
with only those network links on a minimum depth spanning tree rooted at node
1.

R s e e 10
A e 3
4
locmmmeeee o et e el 9
Figure la

D814 System Software Manual
Section 5.6 - 17

CODEX CORPORATION COMPANY CONFIDENTIAL

6 Jmmmmmmaeee 10
|
2-cmmmmmee 3
4
I
R i o ettt e 9
Figure 1b

In order to broadcast a message to all nodes in the network, the broad-
casting node first sends it out over all Tlinks on the spanning tree which go
outwards from itself. In other words, the broadcasting node first sends the
message to each node adjacent to it. Then each node receiving the message
from some adjacent node relays it to all other adjacent nodes on the spanning
tree. In this way, barring any change in network topology, each node in the
connected network receives one and only one copy of the message. If the net-
work topology changes so that different spanning trees are used at different
nodes, it is possible for many nodes either not to receive the message or to
receive duplicates.

Spanning tree information for such a broadcast is obtained as follows:
Subroutine MRM$BROADCAST:ENTRY
On Entry:
A-reg = Node from which messages are to be broadcast
On Exit:

CC:Z = Set if and only if the spanning trees are unuseable because
the network topology is in transition.

X-reg = If CC:Z not set, points to a byte file containing a list of
all adjacent nodes to which the message should be sent in
order to reach the entire connected network.

Messages are broadcast on spanning trees by the Mainframe Downline Load
Module (MDL).

D814 System Software Manual
Section 5.6 - 18

<PORATION COMPANY CONFIDENTIAL

fainframe Configuration Manager Module (MCM)

The purpose of the Mainframe Configuration Management Module (MCM) is to

.0oWw other modules in a D814 Network to access the Configuration informa-

.on located in the mainframe of the D814 node where the MCM resides. This

.nformation is stored online in the mainframe memory and offline in CMOS
RAM's (CMEM).

This document describes the functions performed by the MCM as well as the
command structure, the Addressed Packet Format, and the CMOS Rams (CMEM) used
to store offline parameters.

The configuration information maintained at a D814 node can be broken
down into two parts: node parameters and port parameters. Node parameters
are those parameters common to the node. Port parameters are definitions of
the terminal's and the port's properties. :

The currently active port parameters are located at the port, and there-
fore, are maintained by the port modules. The node parameters are the only
parameters that are maintained online by the MCM. Both node and port para-
meters are maintained offline by the MCM.

{
5.7.1 Hardware and Firmware

This section describes the hardware/firmware and I/0 Communications inter-
face required by the MCM.

1) Options Card

MCM ‘requires an options card on every D814 Mainframe. The MCM
controls all system access to the CMOS RAM residing on the options
card after system initialization. This CMEM stores off-line user
configurations, and is expected to survive power and system fail-
ures. A battery is used to back up the low power CMOS RAM in case
of power down.

2) Firmware

Since the CMEM is not directly mapped in the 6800 address space the
MCM must use the firmware to access it. Up to four configurations
are mapped in the CMEM space depending on the maximum number of
ports required per configuration as defined in the options PROM (see
subsection on CMEM Map Table). Each port currently takes 24 bytes
of dedicated CMEM space. ‘

D814 System Software Manual
Rev. 3 Section 5.7 -1 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.7.2 General Functional Description

The MCM performs two distinct functions. The first function is the main-
tenance of online node parameters. These parameters reside in the mainframe
memory and specify information about the node as a whole, rather than informa-
tion about any particular ports on the node. This function is performed by a
batch task with entry point MCM$NODE:ENTRY.

The second function is the maintenance of offline (CMEM) configuration
parameters. These include node and port information for all the different
configurations. This function is performed by another batch task, with entry
point MCM$CMEM:ENTRY.

Addressed Packets provide the only user interface with MCM. Each Addres-
sed Packet contains a list of commands specifying operations to be performed
on configuration data. If the Addressed Packet is sent to MCM$CMEM only the
offline configuration parameters are modified. A node boot must occur before
any changes made may take effect. If the Addressed Packet is sent to
MCM$NODE the online node parameters are first modified, and the packet is
then sent to MCM$CMEM to modify the corresponding offline parameters.

The online and offline parameter maintenance functions are described in
the following subsections.

5.7.2.1 Online Node Parameter Maintenance (Submodule MCM$NODE)

Since the online node parameters are the only parameters accessible
through this submodule, the configuration and port specified in packets
received by this submodule must be 0. (See subsection on Addressed Packet
format.) If they are not, an error code is placed in the packet error code
and the packet is returned (via the MAP) to its source. The routine examines
and executes each command in the sequence they appear in the packet.

If any errors occur, an appropriate error code is stored in the packet,
the command in error is aborted, and the next command is processed.

If the command is a valid read, the field is obtained from the mainframe

memory and stored in the packet for return to the source. If the command is
a valid write, the field is updated.

If, at the end of the packet, any valid writes have been performed, the
packet is rerouted (via the MAP) to the Offline Maintenance module of MCM for
updating of the CMEM. Otherwise, the packet is returned (via the MAP) to its
source. ,

D814 System Software Manual
Rev. 3 Section 5.7 - 2 Rev. 3

CODEX CORPORATION . COMPANY CONFIDENTIAL

5.7.2.2 O0ffline (CMEM) Parameter Maintenance (Submodule MCM$CMEM)

The configuration specified in packets received by this submodule may be
either 0 or 1 through 4. If the configuration is zero, the online parameters
have already been updated by the IP or Online Maintenance module and this
module is to perform the corresponding offline update. The configuration and
port are checked for an empty configuration, invalid configuration, or
invalid port. If any of these errors occur, an appropriate error code is
placed in the packet error code and the packet is sent back to its source.
The routine then examines and executes each command in the sequence they
appear in the packet.

If a command is detected that already has a non-zero error code other
than "online change not allowed", the command is bypassed. This occurs if
the online update detects an error. Also, if the configuration is zero, only
valid writes contained in the packet are performed, since all reads were
previously executed by the IP or Online Maintenance module and need not be
duplicated.

If any errors occur, an appropriate error code is stored in the packet,
the command in error is aborted, and the next command is processed.

If the command is a valid read, the field is obtained from offline memory
and stored in the packet for return to the source. If the command is a valid
write, the field is updated.

The command may also be a valid copy command, either configuration copy
or port copy, in which case the corresponding operation is performed.

At the end of the packet, the packet is returned to the original source.

5.7.3 Addressed Packet Format

The configuration information is requested and returned in Addressed
Packets (the same packet is used to return information).

One configuration and port can be referenced in a packet. Therefore,
these fields occur only once in the packet. The Command Code, Value, and
Error Code fields, i.e., the Command Field, can occur up to 81 times and are
terminated by a special END command. Any information appearing in the packet
after the END command is ignored, but is maintained intact. The fields in
the packet are defined as follows:

D814 System Software Manual
Rev. 3 Section 5.7 - 3 Rev. 3

CODEX CORPORATION

OF$MAP:
OF$MAP:
OF $MAP:
OF $MAP:
OF$MAP:
OF$MAP
OF $MAP
OF$MAP
OF $MAP
OF$MAP:
OF$MAP:
OF$MAP
OF $MAP:

The AP

'Config

1-

PSIZE
DSTND
DSTPT
DSTMOD
SRCND

:SRCPT
:SRCMOD
:AP_CNFG
:AP_PORT

AP_PKER
AP_CMND

:AP_VALUE

AP_ECODE

Packet Size

Dest Node

Dest Port

Dest Module AP
Source Node Header

Source Port

Source Module

Config Number

Port Number

Packet Err. Code

Command Code

Value Field Command Field

Error Code

Cmnd Code (X'FF') Last Command

Unused

COMPANY CONFIDENTIAL

Header is described in the section on System Data Structures.

Number - 1 byte - configuration to be referenced:

0
4

‘current online configuration
offline configurations 1 through 4

Port Number - 1 byte - Port to be referenced:

2-

Packet

0
1
225

Error

node parameters
illegal
ports 2 through 255

Code - 1 byte - This field contains zero when the packet is

returned to the source if the configuration and port are valid, other-
wise, none of the commands were processed and this field contains one of
the following error codes:

EQ$MEM:EC_IVCNFG
EQ$MCM:EC_IVPORT
EQ$MCM: EC_NLCNFG

Command Field - 3 bytes

Invalid configuration
Invalid port
Null configuration

nonwon

- Occuring up to 81 times, as fo]]ows:

Command Code - 1 byte - High order bit indicates reading or writing

of field (0 = read, 1 =
ticular data item to be referenced (see Summary of Commands).

write).

The remaining bits indicate a par-

For

most, but not all, command codes the data item is a particular para-
meter in CMEM, either a port or a node parameter.

Rev. 3

D814 System Software Manual
Section 5.7 - 4

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Value Field - 1 byte - If the Command Code indicates a read, when
the packet is returned to its source this field will contain the
value (right justified) retrieved from the referenced field. If the
Command Code indicates a write, this field must contain the new
value (right justified) to be placed in the referenced field.

Error Code - 1 byte - This field should be initialized to zero when
the packet is created. It will contain zero when the packet is
returned to the source if the operation was performed successfully, -
otherwise, it will contain an error code indicating why the opera-
tion could not be performed, as follows:

EQ$MCM:EC_ILLCMD
- EQ$MCM:EC_INVCMD
EQ$MCM:EC_INVVAL

I11egal command
Command invalid for config/port
Invalid value

5.7.4 O0ffline Memory Format

The offline CMOS RAM (CMEM), as previously mentioned, contains node and
port parameters. Up to 4 different configurations may be stored in this
CMEM.

The next two subsections describe the formats for node and port paramet-
ers. For each field the following is given:

1) The name of the field

2 The size of the field
3 The command name to access the field
4) A description of the field

CMEM 1is divided into segments each consisting of 24 contiguous bytes.
Parameters for each port use a single segment of CMEM.

5.7.4.1 Node Parameters

This information is maintained in the two segments which would normally
be reserved for ports O and 1. Therefore, ports 0O and 1 cannot be defined in
the configuration.

The following parameters are maintained in this entry:

CMEM Checksum - 2 bytes - EQ$MCM:0F_CHKSM - This field is maintained only
in the first configuration. It contains the end-around carry checksum
for CMEM. There is no command to read or write this field as it is
maintained internal to MCM.

D814 System Software Manual
Rev. 3 Section 5.7 - 5 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Currently Active Configuration - 1 byte - EQ$MCM:CC_ACNF - This field is
maintained only in the first configuration. It is used on a reboot to
determine what configuration was running when the system went down.
Note: There is no command to read or write this field, as it should be
known by all nodes and ports.

Report Node Number - 1 byte - EQ$MCM:CC_RPTN - This field contains the
node to which all system report messages are to be sent.

Report Port Number - 1 byte - EQ$MCM:CC_RPTP - This field contains the
port to which all system report messages are to be sent.

Routing Debug Flags - 1 byte - EQ$MCM:CC_RDBF - Bit flags to control the
routing system trace option (see subsection on Mainframe Path Manager
Module).

Buffer Utilization Threshold - 1 byte - EQ$MCM:CC_BUTH - Threshold value
(1n percent) of the number of buffers used versus the number of buffers
allocated.

Processor Loading Threshold - 1 byte - EQ$MCM:CC_PLTH - Threshold mean
value (in percent) of all processor loading.

Averaging Time Constant - 1 byte - EQ$MCM:CC_AVTC - Value of MSM's averag-
ing time constant (see subsection on MSM).

Active Software Level Revision Number - 1 byte - EQ$MCM:CC_ASWLV_REV -
Revision number of current software.

Active Software Level Release Number - 1 byte - EQ$MCM:CC_ASWLV_RELEASE -
Release number of current software.

Active Software Source Node - 1 byte - EQYMCM:CC_ASWSRCND - Node from
which software is to be loaded.

Active Software Source Port - 1 byte - EQ$MCM:CC_ASWSRCPT - Port from
which software is to be loaded.

5.7.4.2 Port Parameters

Port parameters are defined for each type of port supported by the D814
system. The first two fields always define the type of port and the subtype.

Generic Type - 4 bits - EQ$MCM:CC_GTYP - Defines the type of IP; i.e.,
I/NP, I7SiP, I/ATP, etc.

Subtype - 4 bits - EQ$MCM:CC_STYP - Defines the subtype of the IP; i.e.,
spoofing I/STP, normal I/STP, etc.

D814 System Software Manual
Rev. 3 Section 5.7 - 6 , Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

The rest of the fields vary depending on the Generic Type, as follows:

Processor Loading Threshold - 7 bits - EQ$MCM:CC_PLIP - Threshold value
(1n percent) of processor loading danger level for the port.

Buffer Utilization Threshold - 7 bits - EQ$MCM:CC_BUIP - Threshold value
(1n percent) of buffer utilization danger level for the port.

Time Constant Factor - 7 bits - EQ$JMCM:CC_TIME - A parameter controlling
the statistics collection weighting.

5.7.4.2.1 Intelligent Network Port (I/NP)

Speed - 2 bytes - EQ$MCM:CC_SPDH & EQ$MCM:CC_SPDL - The Tline speed in
binary. This field is broken into two l-byte fields for updating and
retrieval (SPDH being the high order byte and SPDL the low order byte)..

Comm., Node - 2 bits - EQ$MCM:CC_MODE - Specifies whether the IP is oper-
ating in full duplex, local loopback, or remote loopback.

NRZI Mode - 1 bit - EQ$MCM:CC_NRZI - NRZ/NRZI coding specification.

User Density Threshold (USDN) - 8 bits (EQ$JMCM:CC_USDN. Data rate
(divided by 100) above which alarm is issued.

Non-Acknowledgement Timer (NOAK) - 7 bits (EQSJMCM:CC_NOAK). Time (in
seconds) during which an I/NP will wait without receiving any ACKs from
the remote (attached) I/NP before declaring itself dead.

5.7.4.2.2 Transfer Port (XP)

.- Xmit. Adj. Node - 7 bits - EQ$MCM:CC_XADN

Rev.

Recv. Adj. Node - 7 bits - EQ$MCM:CC_RADN
node which will transmit to this port.

Contains the number of the

Recv. Adj. Port - 1 byte - EQ$MCM:CC_RADP
port which will transmit to this port.

Contains the number of the

Contains the number of the

node to which this port will transmit.

Contains the number of the

Xmit. Adj. Port - 1 byte - EQ$MCM:CC_XADP
port to which this port will transmit.

Xmit. Network Port - 1 byte - EQ$MCM:CC_XNTP - Contains the number of the
port at this node used to transmit to the Xmit. Adj. Node/Port. If this
field is zero, the 6050 will choose the NP to be used to transmit to the
Xmit. Adj. Node/Port. ‘ ;

D814 System Software Manual
3 Section 5.7 - 7 Rev. 3

CODEX CORPORATION ‘ | COMPANY CONFIDENTIAL

5.7.4.2.3 Intelligent Synchronous Terminal Port (I/STP)
Speed - 2 bytes - EQ$MCM:CC_SPDH & EQ$MCM:SPDL - (same as for I/NP).

Code Type - 1 byte - EQ$MCM:CC_CODE - Specifies the code type used by the
terminal.

Data Bits - 2 bits - EQ$MCM:CC_DBTS - Specifies the number of bits con-
tained in each character transmitted and received at the terminal (not
including any parity bit). The valid values are: .

5 bits
6 bits
7 bits
8 bits

nononou

0
1
2
3
Parity - 2 bits - EQ$MCM:CC_PRTY - Specifies whether even, odd, mark, or
space parity is used by the terminal.

Delay - 1 byte - EQ$JMCM:CC_DELY - Defines the amount of time to delay
after receiving the first character of a block for the terminal before
sending it.

Comm. Mode - 2 bits - EQ$MCM:CC_MODE - Same as for I/NP.

OP) Mode - 1 byte - EQ$MCM:CC_OPMD - Defines special operating charac-
teristics of the terminal port or modem.

Routing - 3 bits - EQ$MCM:CC_RTNG - Specifies whether dynamic, or fixed
routing is to be used. Also specifies path priority. -

Dest. Node - 7 bits =~ EQ$MCM:CC_DSTN - Defines the node that data from
the terminal is destined for.

Dest. Port- 1 byte - EQ$MCM:CC_DSTP - Defines the port that data from the
terminal is destined for.

Xmit. Adj. Node - 7 bits - EQ$MCM:CC_XADN - Same as for XP.

Xmit. Adj. Port - 1 byte - EQ$MCM:CC_XADP - Same as for XP.

Xmit. Path Priority - 3 bits - EQ$MCM:CC_XPTY - Specifies the network
priority of this terminal (used to calculate the slot weight).

Xmit. Network Port - 1 byte - EQ$MCM:CC_XNTP - Same as for XP.

Security Level - 3 bits - EQ$MCM:CC_SECL - Priority of call for shortest
path routing. 7 = high, 0 = low.

Call Type - 2 bits - EQ$MCM:CC_CALL - Method of call handling within the
D814 network: Leased Line, Autodial, Dialup, contention.

D814 System Software Manual
Rev. 3 Section 5.7 - 8 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

RTS/CTS Delay - 1 byte - EQ$MCM:CC_CTSD - Delay for presenting CTS (in
milliseconds) after detection of RTS.

Comp. Eff. Threshold - 1 byte - EQ$JMCM:CC_CEIP - Threshold value (in
percent) of the number of bits received from the user equipment to the
number of bits sent over the network.

Error Density Threshold - 7 bits - EQ$MCM:CC_EDIP - Threshold value (in
percent) of the number of characters received with bad parity to the
total number of characters received.

5.7.4.2.4 Intelligent Asynchronous Terminal Port (I/ATP)
Code Type - 1 byte - EQ$MCM:CC_CODE - Same as for I/STP.

Speed - 2 bytes - EQ$MCM:CC_SPDH & EQ$MCM:SPDL - The 1line speed in
binary, if external clocking is to be used. Otherwise, if internal clock-
ing is to be used, the high order byte is set to X'FF' and the low order
byte contains an encoded speed (X'00' to X'FF' being the 2651 on-chip
baud rates). This field is broken into two l-byte fields for updating
and {etrieva] (SPDH being the high order byte and SPDL the low order
byte).

Data Bits - 2 bits - EQ$MCM:CC_DBTS - Same as for I/STP.

Stop Bits - 2 bits - EQ$MCM:CC_STPB - Defines the number of stop bits for
asynchronous transmission. The valid values are:

0 =1 bit
1 =1 bit
2 = 1.5 bits
3 = 2 bits
Parity - 2 bits - EQ$MCM:CC_PRTY - Same as for I/STP.

Auto Echo - 1 bit - EQ$MCM:CC_ECHO - Specifies whether chraracters re-
ceived from the terminal are to be echoed back to the terminal.

Flyback - 1 byte - EQ$MCM:CC_FLYB - Defines the character to be searched
for when transmitting to a mechanical printer. When this character -is
detected, PAD characters are transmitted for a defined period of time to
allow the carriage to return. Typically, this field is set to the car-
riage return character. If this character is set to zero, no search
occurs. '

Garble Character - 1 byte - EQ$MCM:CC_GARB - Defines the hex character to
be sent to the terminal when a character is received containing bad
parity.

_ D814 System Software Manual .
Rev. 3 Section 5.7 - 9 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Comm. Mode - 2 bits - EQ$MCM:CC_MODE - Same as for I/NP.
(OP) Mode - 1 byte - EQ$MCM:CC_OPMD - Same as for I/STP.
Routing - 3 bits - EQ$MCM:CC_RTNG - Same as for I/STP.
Dest. Node - 7 bits - EQ$MCM:CC_DSTN - Same as for I/STP.
Dest. Port - 1 byte - EQ$MCM:CC_DSTP - Same as for I/STP.
Xmit. Adj. Node - 7 bits - EQ$MCM:CC_XADN - Same as for XP.

Xmit. Adj..Port - 1 byte - EQ$MCM:CC_XADP - Same as for XP.

Xmit. Path Priority - 3 bits - EQ$MCM:CC_XPTY - Same as for I/STP.

Xmit. Network Port - 1 byte - EQ$MCM:CC_XNTP - Same as for XP.

Error Density Threshold - 7 bits - EQ$MCM:CC_EDIP - Threshold value (in
percent) of the number of characters received with bad parity, framing
error, or overrun to the total number of characters received.

5.7.4.2.5 Intelligent Bit-Oriented-Protocol Port (I/BOP)
Speed - 2 bytes - EQ$MCM:CC_SPDH and EQ$MCM_CC_SPDL - Same as for I/NP.
Data Bits - 2 bits - EQ$MCM:CC_DBTS - Same as for I/STP.
Comm. Mode - 2 bits - EQ$MCM:CC_MODE - Same as for I/NP.
Routing - 3 bits - EQ$MCM:CC_RTNG - Same as for I/STP.
Dest. Node - 7 bits - EQ$MCM:CC_DSTN - Same as for I/STP.
Dest. Port - 1 byte - EQSMCM:CC_DSTP - Same as for 1/STP.

Xmt. Adj. Node - 7 bits - EQ$MCM:CC_XADN - Same as for XP.

Xmt. Adj. Port - 1 byte - EQ$SMCM:CC_XADP - Same as for XP.

Xmt. Path Priority - 3 bits - EQ$MCM:CC_XPTY - Same as for I/STP.

Xmt. Network Port - 1 byte - EQ$MCM:CC_XNTP - Same as for I/NP.

Comp. Eff. Threshold - 1 byte - EQ$MCM:CC_CEIP - Same as for I/STP.

Error Density Threshold - 7 bits - EQ$MCM:CC_EDIP - Threshold value (in
percent) of number of bad frames received versus total number of frames
received. '

4

\D814 System Software Manual
Rev. 3 Section 5.7 - 10 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Proc. Load. Threshold - 7 bits - EQ$JMCM:CC_PLIP - Same as in port para-
meters.

Buff. Util. Threshold - 7 bits - EQ$MCM:CC_BUIP - Same as in port para-
meters.

Security Level - 3 bits - EQ$MCM:CC_SECL - Same as for I/STP.

Call Type - 2 bits - EQ$MCM:CC_CALL - Same as for I/STP.
RTS/CTS Delay - 1 byte - EQ$MCM:CC_CTSD - Same as for I/STP.

NRZ/NRZI Option - 1 bit - EQ$MCM:CC_NRZI - NRZ/NRZI coding.

Bad FCS Option - 1 bit - EQ$MCM:CC_BFCS - disposition of a frame received
with bad FCS (abort ar discard).

Address Field Ext. - 1 bit - EQ$MCM:CC_AEXT - Specifies whether address
field of a frame may be extended.

Control Field Ext. - 1 bit - EQY§MCM:CC_CEXT - Specifies wehther control
field of a frame may be extended.

Logical Control Field - 1 bit - EQ$MCM:CC_LCF - Specifies whether there
is a logical control field in a frame.

Abort Ext. Idle - 1 bit - EQ$JMCM:CC_AIDL - Specifies whether an abort is
to be followed by an idle.

Two Flags Option - 1 bit - EQ$MCM:CC_2FLG - Specifies whether a flag can
act as closing and opening flags at the same time.

5.7.4.2.6 Intelligent Control Terminal Port (I/CTP)
Speed - 2 bytes - EQ$MCM:CC_SPDH & EQ$MCM:SPDL - Same as for I/ATP.
Data Bits - 2 bits - EQ$MCM:CC_DBTS - Same as for I/STP.
Stop Bits - 2 bits - EQ$MCM:CC_STPB - Same as for I/ATP.
Parity - 2 bits - EQ$MCM:CC_PRTY - Same as for I/STP.
Auto Echo - 1 bit - EQJMCM:CC_ECHO - Same as for I/ATP.
Flyback - 1 byte - EQ$MCM:CC_FLYB - Same as for I/ATP.
Garble Character - 1 byte - EQ$MCM:CC_GARB - Same as for I/ATP.

Comm. Mode - 2 bits - EQ$MCM:CC_MODE - Same as for I/NP.

D814 System Software Manual
Rev. 3 Section 5.7 - 11 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.7.4.2.7 Autospeed Definition Poft (ADP)
Code Type ; 1 byte - EQ$MCM:CC_CODE - Same as for I/STP.
§Eggg - 2 bytes - EQ$MCM:CC_SPDH & OF$CMEM:SPDL - Same as for I/ATP.
Data Bits - 2 bits - EQ$JMCM:CC_DBTS - Same as for I/STP.
Stop Bits - 2 bits - EQ$MCM:CC_STPB - Same as for I/ATP.
Parity - 2 bits - EQSMCM:CC_PRTY - Same as for I/STP.
Auto Echo - 1 bit - EQ$MCM:CC_ECHO - Same as for I/ATP.
Flyback - 1 byte - EQ$MCM:CC_FLYB - Same as for I/ATP.
Garble Character - 1 byte - EQ$JMCM:CC_GARB - Same as for I/ATP.

Comm. Mode - 2 bits - EQ$MCM:CC_MODE - Same as for I/STP.
§0P2 Mode - 1 byte - EQ$MCM:CC_OPMD - Same as for I/STP.

Recognition Character - 1 byte - EQ$MCM: CC_RCHR - Def1nes the autospeed
character for this definition.

Substitution Character - 1 byte - EQ$MCM:CC_SCHR - Defines the character
to be sent 1n place of the autospeed character.

5.7.4.3 Special CMEM Commands

Certain CMEM commands perform actions which are more complex than simply
reading or writing one port or node parameter. These commands are listed
here:

Copy Port - EQ$MCM:CC_CPYP - This command causes all the port parameters
for the port to be copied to the port whose number is contained in the
value field. The Copy Port command copies port parameters between port
CMEM entries in the same configuration. It cannot be used to copy data
between different configurations.

List VPs - EQ$MCM:CC_LSTV - This command causes a list of all VPs asso-
ciated with the port (which must be a physical multi-threaded port) to be
appended to the addressed packet. If the list cannot be appended without
overflowing the maximum allowable size of an addressed packet (255 bytes)
an error occurs.

D814 System Software Manual
Rev., 3 Section 5.7 - 12 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

The format of the list is such that the n'th byte in the list is the VP
associated with thread number n. If n is not a valid thread (meaning
there is no VP for that thread number) then an 0 byte is stored if n is
less than the highest valid thread. The last byte in the list is the VP
associated with the highest valid thread number.

The above commands ignore the high order (read/write) bit in the command
code. '

5.7.5 CMEM Definition

The following is a map of the CMEM entries for the D814 system. Note,

all fields with the same name for different port types are assigned the same
relative locations.

Node Parameters

CHKSM |CHKSM | ACMF | RPTN RPTP | RDBF
BUTH | PLTH | AVIC REV REVT | NODE | PORT

I/NP
| GTYP
STYP | NRZI | USDN | NOAK -
SPDH | SPDL
TIMC PLIP | BUIP |
XP
GTYP |

STYP | RADN | RADP | XADN | XADP | XNTP I

D814 System Software Manual
Rev. 3 Section 5.7 - 13 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

I/STP
GTYP CALL | RTNG
STYP | DSTN | DSTP | XADN | XADP | XNTP | SECL | XPTY
RSYN | MODE

SPDH | SPDL | CODE | DELY | SYNC | IDLL | DBTS *1

CTSD PPAD | THRD | CEIP | EDIP | TRNS

S O S —

I/MSTP, I/MATP

GTYP
STYP
TIMC PLIP | BUIP |
VATP
GlYP CALL | RING
STYP | DSTN | DSTP | XADN | XADP | XNTP | SECL | XPTY
ECHO
STPB
MODE
SPDH | SPDL | CODE | GARB | FLYB | FDLY | DBTS *1
CTSD PPAD | THRD | CEIP | EDIP | XONN | XOFF
1/BOP
GIYP | NRZI BFCS RTNG
STYP | DSTN | DSTP | XADN | XADP | XNTP *2 XPTY -
MODE .
SPDH | SPDL | CLCK | AIDL 2FLG | DBTS I
CTSP | TIMC CEIP | EDIP | PLIP | BUIP |

D814 System Software Manual
Rev. 3 ‘ Section 5.7 - 14 . Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

1/CTP
| GTYP PSTPB
STYP | PSPDH| PSPDL| PDBTS| PFLYB| PPRTY
ECHO
STPB
| MODE
SPDH | SPDL GARB | FLYB DBTS | *1
TIMC PLIB | BUIP
ADP
| GTYP I NCRl |
STYP | RCHR | SCHR .
THRT CHR2
|

SPDH | SPDL | CODE | GARB | FLYB | OPMD | (*2) | (*3)

|

*]1 - Contains PRTY, ADCM, LOGG, ASP - for VATP contain DROP also.

*2 - For IBOP contains CALL, SECL.

5.7.6 CMEM Map Table

This table, which is built by MSI at system intialization from informa-
tion stored in the Options ROM, describes where the four different configura-
tions start in CMEM and how many port entries are available in each configur-
ation. The address of this table is set up at OF$SYS:CMCMT. Each entry is-
three bytes long, containing: MP# - this is the number of highest port allow-
ed for the configuration, and CMEM Base Address - this is the base address of
the configuration. The table appears as follows:

_MP# [Base Addr. | - Configuration #1

MP# | Base Addr. ‘ - Configuration #2

MP# | Base Addr. | - Configuration #3

MP# | Base Addr. | - Configuration #4
0 End Addr. l - Ending Address of Config. 4 + 1

D814 System Software Manual
Rev. 3 Section 5.7 - 15 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.7.7 Options ROM Port Option Table

This table resides in the Options ROM and is used to validate a port gen-
eric type and subtype for a particular D814 sub-system. Each entry for a par-
ticular generic type is two bytes long, containing a bit for each subtype,
indicating the validity of that subtype. If a bit is zero, the subtype is in-
valid for the system. The bit position for a particular subtype is deter-
mined from right to left by the subtype value, i.e., the LSB corresponds to
subtype zero, the next higher bit to subtype 1, etc. For the generic port
type to be allowed, the subtype 0 bit in the ports entry in this table must
be set. ’

5.7.8 Summary of Commands

The following is a summary of the command codes passed to MCM in the
addressed packet. The command names given are defined if EQ$MCM and are
prefixed by EQ$MCM:CC_. The commands should be ORed with EQ$MCM:CC_WRITE to
produce a write command.

D814 System Software Manual
Rev. 3 Section 5.7 - 16 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

N I X A I T 1T 1
0 /P D / /|]
D N P S A C B
E P T T T O
Command P P p p [Field Referenced
RPTN X Report Node
RPTP X Report Port
EDTH X Error Density Threshold
CERT X Error Rate Threshold
RRTH X ReXmit. Rate Threshold
CETH X Compress. Eff. Threshold
BUTH X Buffer Util. Threshold
PLTH X Process. Loading Threshold
AVTC X Averaging Time Constant
REV X Current Software Revision Number
REL X Current Software Release Number
NODE X Current Software Source Node
PORT X Current Software Source Port
GTYP X X X X X X X Generic Type
STYP X X X X X X X Subtype
CODE X X X Code Type
SPDH X X X X X X Speed (MS Byte)
SPDL X X X X X X Speed (LS Byte)
DBTS X X X X X Data Bits
STPB X X X Stop Bits
PRTY X X X X Parity
ECHO X X X Auto Echo
FLYB X X X Flyback
GARB X X X Garble Char.
MODE X X X X X X Comm. Mode
OPMD X X X (OP) Mode
DELY X Delay
RTNG X X X X Routing
DSTN X X X Dest. Node
DSTP X X X Dest. Port
XADN X X X X Xmt. Adj. Node
XADP X X X X Xmt. Adj. Port
XPTY X X X Xmt. Path Priority
XNTP X X X X Xmt. Network Port
RADN X Rcv. Adj. Node
RADP X Rcv. Adj. Port
RCHR X Recognition Char.
SCHR X Substitution Char.
CPYC Copy Config.
Ccpyp Copy Port
EMPC Empty Config.

(Continued on next page.)

D814 System Software Manual
Rev. 3 Section 5.7 - 17 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

N I X A I 1T I 1
o , P D / /7 1 /
D N P § A C B
E P T T T O .
Command p p p p Field Referenced

LSTV Append List of VP's associated
with a multi-threaded port
(ordered by thread number)

CTSD X X X X RTS/CTS Delay

SECL X X X X Security Level

CALL X X X X Call Type

TIMC X X X X X X Time Constant Factor (Statistics)

USDN X User Data Rate Threshold (/100)

NOAK X No-Ack Timeout

NRZI X X NRZ/NRZI Coding

BFCS X Bad FCS Option

AEXT X Address Field Extension Option

CEXT X Control Field Extension Option

LCF X Logical Control Field Option

AIDL X Abort followed by Idle

2FLG X 2 Flags/1 Flag Option

CEIP X X X Compression Efficiency Threshold

EDIP X X X Error Density Threshold

PLIP X X X X X Processor Loading Threshold

BUIP X X X X X Buffer Utilization Threshold

PPAD Physical Port Address (valid for

all VP types)

THRD ‘ , Thread Number (valid for all VP

‘ types)

D814 System Software Manual
Rev. 3 Section 5.7 - 18 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8 Mainframe Network Link Control Module (MNL)

5.8.1 Functional Specification

The processing of network link data is divided into two software modules,
one residing in the mainframe and the other residing in the I/NP. The pur-
pose of this section is to describe the functions of the Mainframe Network
Link Control Module (MNL).

This section references the D814 Bus Interface Chip Functional Specifica-
tion and the reader should be familiar with that document.

5.8.1.1 General Description

The MNL module 1is responsible for assembling data into ‘'frames' (or
blocks) to be moved (via the I/NP) across a network link to another node in
the network. It is also responsible for receiving such frames (via the I/NP)
from adjacent nodes and distributing the data contained in these frames to
the appropriate buffers, [/TPs and/or system modules in the local node. The
function of the I/NP is to move the frames of data built by the MNL module
error free across network links. The interface between MNL and the I/NP is
the Bus Interface Chip (BIC), and in particular the BIC data FIFOs. In per-
forming its functions, MNL handles all data passed between the mainframe and
the I/NP via the BIC data FIFOs.

In addition to assembling frames for transmission to other nodes and dis-
tributing frames received from other nodes, the MNL module has responsibility
for the Tlocal 'transmission' of data between I/TPs co-located at a node.
This function will be referred to as the 'Local NP' function. The 'Local NP'
will always exist at a node, and will be automatically configured at system
initialization time. The port address X'0Ol' is the reserved 'Local NP'
address and no other port may be configured at that address.

MNL is also responsible for monitoring for certain system error condi-
tions. These will be explained below.

5.8.1.2 Frame Types

There are three types of frames MNL sends to and receives from other
nodes. These are Control Frames, Addressed Packet Frames and Data Frames.
Control Frames contain system control information such as system boot infor-
mation, routing control, path management control, and link set up and initial-
ization information. Addressed Packet Frames contain system and/or user
packet messages that are to be moved through the network via the 6050 dynamic
packet system. Data Frames contain user data received from I/TPs that must
be moved through the network. Control Frames are always given priority over
Data and Addressed Packet Frames by MNL.

D814 System Software Manual
Section 5.8 -1

CODEX CORPORATION COMPANY CONFIDENTIAL

The 'Local NP' does not use a frame structure and therefore does not
transmit either Control Frames or Data Frames. Furthermore, addressed
packets are not sent via the 'Local NP'.

5.8.1.3 Internal Frame Structure

Information passed between the MNL module and I/NP is transmitted in
frames through the BIC data FIFOs. These frames do not have the same format
as the frames sent over the high speed network link. To distinguish between
these two types of frames, we will call frames which are exchanged between
the MNL module and the I/NP, Internal Frames. The formats of the three types
of Internal Frames are defined below. The first byte of any frame exchanged
between the mainframe and I/NP contains a type identifier which designates
the frame that follows as either control, addressed packet or data.

5.8.1.3.1 Internal Control Frame Format
Internal Control Frames consist of multiple fields as follows:

1. Frame Type Identifier (FTI):
control Frames.

A one byte field equal to X'CO' for

2. Control Message Fields:
fields as follows:

A control message consists of three sub-

a. Length/Terminator Subfield - A one byte subfield. If equal to
X'01' this subfield terminates the control frame. If not equal
to X'01', this subfield equals the total number of bytes in the
current control message field (including the length byte).

b. Control Message Body - A multiple byte field of data which is
passed to the system module which processes the control mes-

sage.
control control control control FTI
X'01' | message | length message | length
llnll Ilnll 1 1 XICOI
body body

Internal Control Frame Format

D814 System Software Manual
Section 5.8 - 2

CODEX CORPORATION

5.8.1.3.2

COMPANY CONFIDENTIAL

Internal Addressed Packet Frame Format

Internal Addressed Packet Frames consist of multiple fields as follows:

1.

2.

5.8.1.3.3

The I
1.

2.

Frame Type Identifier (FTI): A one byte field equal to X'80' for

Addressed Packet Frames.

Addressed Packet Fields:
fields as follows:

An addressed packet consists of two sub-

a. Length/Terminator Subfields - A one byte subfield. If equal to
X'01', this subfield terminates the addressed packet frame. If
not equal to X'Ol', this subfield equals the total number of
bytes in the current addressed packet field (including the

length byte).

Addressed Packet Body - A multiple byte field of data which is
passed to the system router which processes the addressed
packet when it arrives at the remote node.

address | address | address | address FTI
X'01' | packet packet packet packet >
l|nll |lnll 1 1 Xl80l
body length body length
I

Internal Addressed Packet Frame Format

Internal Data Frame Format
nternal Data Frame Format consists of multiple fields as follows:

Frame Type Identifier: A one byte field equal to X'40' for Data

Frames.

Slot Fields:
Subfields.

i)

Multiple byte fields containing one or more Data Slot
The format of the Data Slot subfield is as follows:

Address/Terminator Subfield - A one byte subfield. If equal to
'X'01', the Frame is terminated. If greater than X'01' but
less than or equal to X'FF', then this field specifies the port
address at the remote node to which the nibble Data Subfield is
to be delivered. X'00' is not allowed.

D814 System Software Manual
Section 5.8 - 3

CODEX CORPORATION , COMPANY CONFIDENTIAL

ii) Nibble Data Subfield - A multiple byte subfield where each byte
contains one or two 4 bit code segments, called nibbles. The
format of the bytes is as follows: -

a) X'ab' (a .ne. 0, b .ne. 0) - 2 data nibbles
b) X'Ob' (b .ne. 0) - 1 data nibble

c) X'a0' (0<a<F) =-in-channel control signal (ICS)
d) X'FO' - nibble data slot terminator

e) X'00' is not allowed

X'01'|X'FO'| DATA | ADR |X'FO'| DATA | ADR | FTI
X'40'l >

Internal Data Frame Format

5.8.1.3.4 BIC Data FIFO Coding

The BIC data FIFOs are implemented in hardware in such a way that reading
an empty FIFO will return a value of X'00'. This scheme allows software to
eliminate a status check of a FIFO before a read if X'00' is never stored in
the FIFO. This feature is used by the MNL Module and I/NP to speed up pro-
cessing and reduce I/0 bus overhead (e.g., status reads).

In order to take advantage of this feature, data transferred through the
FIFO must be coded such that X'00' never appears. The following coding
scheme is used for passing data through the BIC data FIFOs:

Data Byte FIFO Code
X'01 --> X'FE' X'01' --> X'FE'
X'00' X'FF' ,X'FE'
X'FF' X'FF',X'FD'

This coding causes approximately a 1 percent increase in bus transfer
overhead, but reduces software overhead by as much as 25 percent per byte
transferred.

D814 System Software Manual
Section 5.8 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8.1.4 Port Control Block Interface

MNL uses the Port Control Block (PCB) both as a shared data interface
with other Mainframe modules and as its own data area for data relevant to a
particular port. The PCB and its various substructures is described in the
section on Subsystem Data Structures. These modules interface with MNL
through the PCB:

Mainframe Path Management, Routing, and Congestion Control Module
(MPMRCCM).

Mainframe Addressed Packet Control Module (MAP).
Mainframe Statistics and Monitoring Module (MSM).
Mainframe Multithreaded Port Control Module (MMP).

The PCB interface with each of these modules is described in the section
of this document devoted to that module and will not be described further
here.

5.8.1.5 Detailed Functional Description

The MNL Module performs several distinct functions. These are listed
below and are discussed in detail in the following subsections.

. Initialization

. Link Start Up

Internal Frame Transmission
Internal Frame Reception

‘Local NP' Processing

Failure Recovery

Miscellaneous Utility Functions

NOOTpH W
.

5.8.1.5.1 Initialization

The MNL initialization routine MNL$INIT:INP is called by the system ini-
tialization module (MSI) at system boot time. It is called once to initial-
ize the 'Local NP' module and once for each I/NP configured in the system.

When the initialization routine is called, the address of the correspond-
ing I/NP PCB 1is passed in the X register. At this time all data structures
and lock byte areas have been allocated for the corresponding I/NP, software
has been loaded to the I/NP, and the D814 mainframe multitasking operating
system is running.

D814 System Software Manual
Section 5.8 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

The initialization of the MNL Module for the I/NP consists of the follow-
ing steps:

1. The I/NP's PCB status bits are initialized for link start up.

2. The Control Frame queue, Remote Addressed Packet queue, and Slot Add
queue are set up and initialized.

3. Two data spaces are obtained from the free data space queue, one for
the transmitter module and one for the receiver module.

4, Exit initialization.

The initialization of the MNL Module for the 'Local NP' consists of the
following steps:

1. A Slot Add queue is set up and initialized for the 'Local NP'.
2. The 'Local NP' PCB is initialized to the start up state.

3. The 'Local NP' software module is started.

4. Exit initialization.

If any error occurs such that the NP cannot be initialized, MNL$INIT:INP
returns to the caller with CC:Z=1. Otherwise it returns with CC:Z=0.

5.8.1.5.2 Link Start Up

When an I/NP starts up, it initializes its software and sends an 'I/NP
Active' packet to the MNL module. Upon receiving this packet MNL initializes
its transmitter and receiver modules and sends the 'Start Up Link' packet to
the I/NP.

When the I/NP receives this packet, it reinitializes the link and tries
to establish communications with the remote node. When communication is
achieved, initialization parameters are exchanged between the 1local and
remote nodes. The I/NP then sends the 'Link Up' packet to MNL with the fol-
lowing initialization parameters included:

1. Remote Node's Number

2. Remote I/NP's Port Address

3. Remote Node's Software Level

4, Remote Node's Configuration Number
5. Local I/NP Line Speed (BPS)

6. Round Trip Link Delay (milliseconds)

D814 System Software Manual
Section 5.8 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

When the 'Link Up' packet arrives, MNL notifies the system Down-Line Load
module of the new link. Then the remote node's software level is compared to
the local node's software level. If they are different, MNL exits. Other-
wise, the system boot module is notified of the new link's presence. Next
the remote node's configuration level is compared to the local node's configu-
ration level. If they are different, MNL exits. If they are the same, the
lTink is brought up normally, the routing manager is informed of the new link
and the node number of the remote node, and MNL exits.

5.8.1.5.3 Internal Frame Transmission

Internal frame transmission to the I/NP is handled by the MNL Transmitter
Module. The basic function of the transmitter is to collect data to be trans-
mitted to the remote node, form that data into internal frames, and transmit
the internal frames to the I/NP through the BIC data FIFOs. In performing
this basic task, the transmitter must also maintain its data structures,
accept commands from its slot Add Queue, and monitor for 'KILL' signals.

5.8.1.5.3.1 MNL Transmitter Data Structures
The MNL transmitter is concerned primarily with four data structures, the
Control Frame Queue, the Remote Addressed Packet Queue, the Slot Add Queue,

and the Transmit Slot List.

Control Frame Queue:

The control frame queue is a queue data structure (see section on MUT,
subsection on MUT$QUE) which contains control messages to be transmitted.
Control messages are stored in Byte File format (see section on MBM, sub-
section on MBM$BFILE).

Remote Addressed Packet Queue:

The Remote Addressed packet Queue is a queue data structure which con-
tains addressed packets to be transmitted. The addressed packets in the
queue are in Byte File format.

Slot Add Queue:

The Slot Add Queue is a Byte Queue (see section on MBM, subsection on
MBM$BQUE) which contains port addresses of slots to be added to the Trans-
mit Slot List.

D814 System Software Manual
Section 5.8 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

Transmit Slot List:

The Transmit Slot List is a linked list of slots which are to be trans-
mitted over the high speed network link. The entries in the list are the
slot substructures of PCB's whose ports MNL scans for data to be included
in the l;nk traffic. (See subsection on PCB in Subsystem Data Structures
section.

5.8.1.5.3.2 MNL Transmitter Functional Description

The MNL Transmitter Submodule sends internal frames to an I/NP through
the outbound BIC data FIFO when the I/NP requests them. For each frame re-
quest, the transmitter will send a control frame if any control messages are
queued. If the queue is empty, MNL will send alternating Addressed Packet
and Data frames. If no addressed packets are queued, only data frames are
sent.

If a data frame is to be sent, the Slot Add Queue is checked and any new
slots to be added to the frame are linked in. Following this, each slot in
the Transmit Slot List is serviced. If no data is to be sent for a slot, the
slot is not included in the frame. If.data is to be sent, up to approximate-
ly a slot weight worth of nibbles are sent. Each slot is monitored for
'KILL' signals as it is serviced. If a 'KILL' signal is detected, special
'KILL' flags are set. When all slots have been processed, the frame termina-
tor is sent. If at the end of a frame 'KILL' flags were set, the transmitter
rescans the Transmit Slot List, unlinks the slots for which 'KILL' signals
were detected, and sends the appropriate messages to the Path Manager Module.
The transmitter than waits for the next frame request from the I/NP.

5.8.1.5.4 Internal Frame Reception

The reception of internal frames from an I/NP is the job of the MNL
Receiver Module. The I/NP delivers frames to the receiver one at a time in
the order in which they are transmitted from the remote node.
5.8.1.5.4.1 MNL Receiver Data Structures

The receiver interacts primarily with three data structures, the control
Frame Dispatch Table, the Port Directory, and XP Byte FIFOs.

Control Frame Dispatch Table:

The Control Frame Dispatch Table defines which system modules are to pro-
cess control messages received over the high speed link. The entries in
the table are indexed by the control frame destination code included in
each control message.

D814 System Software Manual
Section 5.8 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

Port Directory:

The Port Directory is a table of pointers to Port Control Blocks (PCB).
Each port defined in the system must have a PCB. This table is indexed
by port address.

XP Byte FIFO:

XP Byte FIFOs are Byte FIFO data structures (see Section 6.3) used for
buffering path data at intermediate nodes on a path.

5.8.1.5.4.2 MNL Receiver Functional Description

The MNL Receiver Module receives frames in the 'Internal Frame' format
from the I/NP through the inbound BIC data FIFO. Its main function is to dis-
tribute the data contained in the frames to the appropriate system modules
and buffers.

When a Control Frame is received, the control frame distribution code in
each control message is used to dispatch each control message to the proper
module for processing.

When an Addressed Packet Frame is received, all addressed packets in the
frame are sent to the MAP$ROUTE module for processing.

When a data frame is received, slot data must be distributed. Slot data
is distributed differently for XP's and I/TP's. For an XP data slot the data
is stored in the XP Byte queue. For an I/TP, the data is sent directly to
the I/TP via the outbound BIC data FIFO. If the FIFO is full, the receiver
waits for a short time (about 10 milliseconds) for it to go non-full. If it
does not go non-full, the I/TP is declared dead, data to the port is dis-
carded, and 'clear call' message is sent to the PMM.

5.8.1.5.5 ‘'Local NP' Processing

The 'Local NP' Module is responsible for two basic functions. The first
is to move data between co-located I/TPs so that local I/TP - I/TP communica-
tions is possible. The second is to flush data from XP byte queues on paths
whose transmit I/NP link has failed. In performing each of these functions
the 'Local NP' must appear functionally similar to a ‘'real' I/NP and respond
to 'KILL' signals, 'add slot' commands, and send appropriate messages to the
rest of the system as error or failure conditions may require. The 'Local
NP' module does not process either control frames or address packets.

D814 System Software Manual
Section 5.8 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8.1.5.5.1 ‘'Local NP' Data Structures

The 'Local NP' module has several data structures it utilizes in perform-
ing its functions. These include the Slot Add Queue, Transmit Slot List and
Port Directory. (These data structures were described in the previous two
subsections.)

5.8.1.5.5.2 'Local NP' Functional Description

The 'Local NP' services its Transmit Slot List periodically. The period
is dynamically set by the module in response to the 1load requirements
measured during the last service period. In no case will the period be more
than 50 milliseconds between service intervals or less than 20 milliseconds.

At the beginning of each service period the Slot Add Queue is checked and
any new slots to be added are linked onto the Transmit Slot List. Then each
slot in this transit list is processed. If a slot is an I/TP to I/TP path,
data is moved directly from FIFO to FIFO. If any outbound FIFO becomes full,
the 'Local NP' sets a flag in the port's slot data structure and proceeds to
the next slot in its transmit 1list. If the FIFO remains full for 4 scans,
the I/TP is declared dead, and a 'clear call' message is sent to the MPM. If
a full FIFOs worth of data or more is moved during the servicing of any slot,
the 'Local NP' service period is reduced by 1 millisecond. If no slot has a
full FIFOs worth of data to move, the service interval 1is increased by 1
millisecond. If a slot is an XP slot data is flushed from the XP byte queue
until empty or 'KILL' signal is seen.

For all slots, if a 'KILL' signal is encountered, the slot is unlinked
from the transmit list and the appropriate message is sent to the PMM. At
the end of the transmit list processing, the 'Local NP' delays itself until
the next service period is to begin.

5.8.1.5.6 Failure Recovery

There are two basic failure modes associated with an I/NP. The first is
an I/NP failure and the second is a high speed network link failure.

The Mainframe Diagnostic Monitor Module (MDM) is responsible for detect-
ing I/NP failures. When such a failure is observed the MNL failure module is
called so that the appropriate shut down of the link is done. Once this is
finished, the MDM takes over again to perform diagnostics on the IP to test
its hardware viability. If no fault can be detected in the hardware (a soft-
ware failure is assumed), MDM reloads the I/NP software and starts the MNL
high-speed link recovery procedure.

If the I/NP detects a link failure condition, it sends the 'framing lost'
message directly to MNL which then starts the link recovery procedure.

D814 System Software Manual
Section 5.8 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8.1.5.6.1 Failure Interlocks

Before starting failure recovery for any port, all tasks which use the
port data structures must be locked out of those data structures so that they
do not interfere with the recovery. To accomplish this, two lock bytes- are
used to interlock between port failures and user tasks. The first lock byte
is called the Status Lock Byte and the second lock byte is called the User
Lock Byte.

Status Lock Byte

This lock byte contains port status flags. If any fail status bits are
set in this byte a user task may not access the related port data struc-
tures. The format of this byte is as follows:

7 6 5 4 3 2 1 0
L
| .Il
Lock bit,
always 1
Recovery

in progress
1 if recovery
0 if normal

Framing Lost
0 = framing acquired
1 = framing lost

1 not available for user data

Link status availability
= 0 available for user data

IP Failure bit 0 otherwise

1 failure detected

IP up = 0 IP up

1 if waiting for initialization packet

IP loaded bit

0 IP loaded
1 if not loaded

D814 System Software Manual
Section 5.8 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

User Lock Byte

This lock byte contains flags which are set by various user tasks when
they are accessing port data structures. Any user task must lock the
status lock byte before setting a user flag. If the status of the port
is inconsistant with using a desired port data structure, the user task
may not use that data structure and must exit not setting a user flag and
restoring the status lock byte. The format of the MNL user lock byte is
as follows:

I l
7 6 5 4 3 2 1 0 l

Lock bit,
always 1

I
AP bit = 1 if any
AP module
is using PCB
= 0 if no
AP module
is using PCB

MNL Control

1 If an MNL control module is
running
0 otherwise

MNL XMTR = 1 If MNL transmitter is running
= 0 otherwise
MNL RCVR = 1 if MNL receiver is running

0 otherwise

D814 System Software Manual
Section 5.8 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8.1.5.6.2 MNL Hardware Failure Submodule

When this submodule is called, the MDM module has detected an I/NP fail-
ure and has set the IP fail status bit. This submodule is responsible for
the orderly shut down of the link and notifying other system modules of the
failure.

The link shut down procedure consists of the following steps:

1. Notification of the link failure is sent to the MRM, MPM, MSB, and
MDL modules.

2. Wait for all users to stop using the I/NP's data structures.

3. Return all packets on the Remote Packet Queue and IP Outbound Packet
Queue to the router.

4, Throw away all Control Frames in the Control Frame Queue.

5. Transfer all XP slots in the Transmit Slot List and in the Slot Add
Queue to the 'Local NP' via its Slot Add Queue.

6. Set the transmitter and receiver initialization bits so that they
will start up in the correct mode.

7. Set the 'Framing Lost' status bit in the port's status lock byte.
8. Return to the MDM module for IP testing.

5.8.1.5.6.3 Link Failure Recovery

This module may be called from the I/NP via a 'framing lost' message or
from the I/NP after a new software load.

If the 'framing lost' status bit is not set then the link failure was
detected by the I/NP. Set the 'recovery in progress' bit in the status lock
byte and execute Steps 1 through 7 of the link shut down procedure described
in the previous section. Then clear the 'recovery in progress' bit and send
the 'Activate Link' message to the I/NP and terminate.

If the 'framing lost' status bit is already set, link shut down has
already been done. Send the 'Activate Link' message to the I/NP and ter-
minate.

D814 System Software Manual
Section 5.8 - 13

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8.1.5.7 Miscellaneous MNL Utility Functions

The MNL module provides’several utility functions that are used by MNL
and other system modules to perform miscellaneous functions. The entry
points for these functions are described here:

Entry MNL$SUTIL:Q2RAPQ

Queues an addressed packet to a remote addressed packet queue for
transmission by MNL. p

Entry conditions --
X register -- Addressed packed bytefile header address
B register -- Port number of the I/NP
Exit conditions --
X, A registers -- Destroyed
B register -- unchanged
CC:C -- Set if and only if I/NP is down
Data space -- OF$DS:BFADR, OF$DS:BFTMP destroyed
Entry MNLSUTIL:SENDCF --
Enqueues a control frame for transmission by MNL
Entry conditions --
X register -- Points to control frame bytefile header

Exit Conditions

A1l reegisters destroyed
Data space - may be destroyed
If the I/NP is up, the control frame is enqueued. If not, it is
deleted.
Entry MNL$UTIL:DISTCF --
Distributes a control frame or a control-frame format message
Entry conditions --

X register -- Points to header buffer of message bytefile

D814 System Software Manual
Section 5.8 - 14

CODEX CORPORATION : COMPANY CONFIDENTIAL

Exit Conditions

Data space - destroyed
Control 1is passed to message handler (via jmp) with pointer to the
message bytefile stored in OF$DS:BFADR. The message handler must
terminate in a RTS. °
Entry MNLSUTIL:KILLSLOTSWITCH --
Kills a slot and sends ICSKILLFAIL along path
Alternate entry MNLSUTIL:KILLSLOTFAIL --
Kills a slot and sends ICSKILLFAIL
Entry conditions (called by MPM) --
X register -- Points to PCB's path data substructure

Data space -- OF$MPM:DS_PCBPTR points to the port's PCB.
OF$MPM:DS_PATHDSS points to path data substructure.

Exit Conditions

A register -- Destroyed
B register -- unchanged
X register -- unchanged

This routine sets the appropriate fail bits in the slot data
substructure causing MNL to delete the slot.

Entry MNL$UTIL:ADDSLOT --
Adds a slot (called by MPM when a path becomes Active)
Entry conditions --

B register -- Port number of the port (XP, ITP, or VP) whose
data is to be included in the link traffic

A register -- I/NP port number

Exit Conditions

A1l registers destroyed
Port number is queued on the appropriate slot add queue.
EQ$PCB:LOCK_USERS_SLOT 1is set in source port's user lock byte.

D814 System Software Manual
Section 5.8 - 15

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry MNL$RECVRY:MRMFAILACK --
Receives acknowledgement to LDOWN message sent to MRM
Entry conditions --
B‘register -- I/NP address
Called by MRM when processing of LDOWN is complete

Exit Conditions

A1l registers destroyed
Data space - OF$DS:BFADR, OF$DS:MFTMP destroyed

Entry MNL$RECVRY:MPMFAILACK
Called by MPM to acknowledge receipt of the LINKFAIL message
Entry conditions --
B register -- contains I/NP address

Called after MPM has received and processed the LINKFAIL
message from the I/NP in B register

Exit Conditions

A1l registers destroyed
MNL's 1ink failure cleanup is complete and the link is ready to
be brought back up

D814 System Software Manual
Section 5.8 - 16

COMPANY CONFIDENTIAL _ CODEX CORPORATION

5.9 Mainframe Downline Load Module

Introduction

This module will service the following requests from the Mainframe Diag-
nostic Module (MDM): ’

1. Load a local port(s) with the specified software. (Note that I/NP,
I/GBNP, I/FDP are all special cases. See Section 5.9.1.2.)

2. Load a specified software to a remote node through a specified local
port.

3. Upload of mainframe software to a neighboring node, through a speci-
fied local port.

4. Upload of mainframe software to a remote node so that the remote
node can pass it on to its neighbor that is not running.

5. Abort loading of a specified port(s).

MDL will inform MDM upon the completion of each load; and in case a cer-
tain port cannot be loaded due to some unrecoverable error, MDM will be
informed and the request terminated. Otherwise MDL will retry indefinitely
to fulfill the request.

Sources of each software will not be specified by MDM. However, the
following rules will always apply:

1. There will be a list of software names; and if any of these are
requested, MDL will first search for that software in a running port
or mainframe.

2. A1l other software will come from the floppy only.

3. Updated software running in a port or mainframe will not be chosen
as a source of software.

4, In choosing a source of software from a port, the ability of the

port to upload software in terms of resources such as processor
lToading will be taken into consideration.

5.9.1 MDL Algorithm Main Features

Where possible, port software is loaded from an already-loaded 1local
port. A node needing software not available locally locates a source of that

software by a broadcast mechanism combined with a point-to-point addressed
packet protocol.

Rev. 2 D814 System Software Manual Rev. 2
Section 5.9 - 1

COMPANY CONFIDENTIAL ~ CODEX CORPORATION

The algorithm attempts to allocate bandwidth so that usually no more than
one downline load is going through any one link in each direction.

- In general, software should be loaded from a nearby source of the needed
software although the algorithm is not optimal in this respect.

A more detailed description of the algorithm follows.

5.9.1.1 Bandwidth Availability

We say that outbound bandwidth is available to load a remote node B from
local node A if the first link on the shortest path known to the Routing Mana-
ger from A to B is not currently on the shortest path known to the Routing

‘Manager from A to any other node now being loaded.

Similarly, we say that inbound bandwidth is available in the above situa-
tion if the last link on the shortest path from A to B is not currently on
the shortest path from B to any other node now being loaded.

Bandwidth availability is determined from the Inbound and Outbound Load
Lists. The Inbound Load List Tlists all nodes from which the local node is
loading along with the corresponding software types being loaded. The Out-
bound Load List lists all nodes to which the local node is loading along with
the software types being loaded. When inbound or outbound bandwidth is to be
-allocated, the proper load list is scanned and it is determined if sufficient
bandwidth exists, as explained above. If so, the new node and software type
are entered. Bandwidth is de-allocated by simply deleting the proper entry
from the load list.

This scheme does not guarantee at all times that no link will be used for
more than one inbound and one outbound load to/from the local node, but it
does make that infrequent.

5.9.1.2 Loading of Special Ports I/NP, I/GBNP, I/FDP

A1l local ports can be loaded in the same way by the mainframe first
| obtaining the software and then passing it to the port through the BIC.

For I/NP and I/GBNP since there is always another port of the same type
~at the other end of the link, the needed software can be obtained through
~that link. An I/FDP can be loaded from the floppy that may be mounted on one
of its drives. In all three cases, MDL will attempt to load them by all
possible means simultaneously and the method that initiates the loading first
- Will be the chosen method.

Rev. 2 | D814 System Software Manual Rev. 2
' Section 5.9 - 2

COMPANY CONFIDENTIAL CODEX CORPORATION

5.9.1.3 Local Loading

This section and Remote Loading (Section 5.9.1.4) will discuss the algo-
rithm used to locate the best source of software. Best in the sense that it
will complete the load as quickly as possible and with minimal impact on
ongoing network activities, 'if the network is already running.

For each request, MDL will first determine if the software requested must
come from a floppy. If so, a local floppy is searched for. If none exists
or software not on the floppy, then a remote floppy is searched for by broad-
casting a request to MDL in other nodes. If the software can come from a
running port, then a packet is sent to each eligible port in the local node
requesting for possible upload. Responses are then collected over a period
of time, and one is chosen by means of an indicator in the reply packet from
the ports.

If no local ports are available or cannot upload due to some conditions
such as no available resource to upload or software has been edited, then a
remote source is searched for by means of a broadcast mechanism.

5.9.1.4 Remote Loading

In repsonse to a broadcast request for software from another node, MDL
will do the following:

1. Determine if bandwidth is available; if not, then rebroadcast the
request with the requesting node as the root address.

2. If bandwidth 1is available, then search for a source locally in the
similar manner as described in Section 5.9.1.3. If software is not
available, then rebroadcast as above. If software is available,
then a message is returned to the requestor with the information as
to the port address which has the software.

It is then left to the requesting MDL to communicate with the source port
to obtain the software. The source MDL will not intervene other than receive
messages from the requesting MDL at the beginning and the end of an upload.
The purpose of this is to update the bandwidth load table.

The following describes how messages are passed between MDL in different
nodes in locating software.

Rev. 2 D814 System Software Manual Rev. 2
Section 5.9 - 3

COMPANY CONFIDENTIAL CODEX CORPORATION

oL

the

MDL

State

MDL maintains a load state for each software type. This state may have
following values:

Not Interested (NI) - This node neither has nor wants the software.

Loaded - This node can supply the software to remote nodes.
Needy - This node needs and has broadcast a request for the software.
Waiting for Software (WFS) - This node has sent a Send Me Software mes-

sage to a potential source node and is waiting to complete a downline
load.

Messages

MDL

The following messages are sent between MDL modules:

Broadcast Software Request (Software Type, Source Node) - Abbreviated
BSR. Sent as control frame along the minimum depth spanning tree rooted
at originating node. It is a general request for sources of the speci-
fied software to make their whereabouts known.

A BSR received over a link with available inbound bandwidth is retrans-
mitted over all outgoing links with available outbound bandwidth of the
minimum depth spanning tree rooted at the source node of the BSR. If
there 1is no available inbound bandwidth over the source link, then the
BSR is not broadcast. Similarly, the BSR is not sent over any outgoing
link without available bandwidth. This bandwidth checking helps to
minimize congestion while multiple downline loads are in progress.

I Have Software (Software Type, Source Node) - Abbreviated IHS. Addres-
sed packet sent in response to a Broadcast Request indicating that Source
Node has the software and sufficient bandwidth to send it to the receiv-
ing node.

Send Me Software (Software Type, Source Node, Highest Address, so far,

Loaded) - Abbreviated SMS. Addressed packet requesting software. Used
to pace addressed packets containing downline load data.

State Machine

MDL may be thought of as a set of state machines, one for each software

type. The MDL state machine is summarized in the diagram. The entry in the
table corresponding to a given state and event is the action taken by MDL if

the event occurs while in that state. State transitions are shown by placing
the new state in parentheses. ,
Rev. 2 D814 System Software Manual’ Rev. 2

Section 5.9 -4

COMPANY CONFIDENTIAL

Event

BSR
Received

SMS
Received

IHS
Received

Software

Received

Timeout

Port load
requested
by MSI or
MDM

Rev, 2

MDL State Diagram

CODEX CORPORATION

State
Loaded Needy NI WFS

Send IHS if Broadcast on Broadcast Broadcast on

bandwidth originating on spanning spanning tree

available node's tree

spanning tree

Allocate Ignore Ignore Ignore

bandwidth if

not already

allocated.

Send software

if allocation

successful.

Ignore Send SMS Ignore Ignore

(WFS)

Ignore Ignore Ignore If last block,
then (LOADED);
Else send SMS
if needed.

De-allocate Broadcast BR Ignore Broadcast BSR

bandwidth for if bandwidth (NEEDY)

any node not available

heard from for load

since last

time out

Load software Remember that Broadcast Remember that

this port
needs software

BSR (NEEDY)

this port
needs software

D814 System Software Manual
Section 5.9 - 5

Rev. 2

COMPANY CONFIDENTIAL CODEX CORPORATION

5.9.2 External Interfaces

This section describes all the interfaces between MDL and the other modes
in the network. In all cases except for the actual upload of port software
to a remote node from a local port, the local MDL will communicate with the
local port.

5.9.2.1 MDL - MDM Interface

Requests to load software is assumed to come from MDM. All requests are
passed ;n a packet (see MDM specification for a detailed description of these
packets).

Except for the loading of a remote port, through a local I/NP or I/GBNP,
MDL will assume that all destination ports are not running and is ready to
receive reset 1 (see IP ROM Section).

MDL will not check the compatibility of the software and the receiving
port. When loading a local port, MDL will check for the port type to see if

its one of the I/NP or I/GBNP to start a special]oad1ng sequence. Other-
wise, no other check is done.

Unless an unrecoverable error occurs or a request is received to stop
loading a port, MDL will try indefinitely to 1load that port with the
requested software. For each request, MDL will inform MDM when the loading
is complete, via an addressed packet.

5.9.2.2 MDL - MIL Interface

When loading a local I/NP or I/GBNP, MDL will attempt to do this by get-
ting software from the port at the other end of the link, as well as the
normal way. To do this, MIL$LOAD DNP is called to load the port with suffi-
cient software to communicate across the link. MDL will wait for a response
from MIL before doing anything else with the port.

5.9.2.3 MDL - FDP Interface

MDL will interface with I/FDP to obtain software form one of the disks
mounted or to give commands to the I/FDP to load itself. See I/FDP speci-
fication for a detailed description of the commands.
5.9.2.4 MDL - Running Port

MDL will call IPSUTIL:MEMUPD to request for possible software upload or

for specific software. See the section on IP$UTIL:MEMUPD for more detail on
the interface.

Rev. 2 D814 System Software Manual Rev. 2
" Section 5.9 - 6

COMPANY CONFIDENTIAL CODEX CORPORATION

5.9.2.5 MDL - I/NP or I/GBNP

When uploading software to a neighboring node that is not running, MDL
will have to communicate with a local I/NP or I/GBNP that is connected to it.
The format and the sequence of the upload is as follows.

Data passed are split up into blocks and formatted as shown below. The
local port will then reformat this information before passing it to the
neighbor.

Each block will be of the same format, except that the first block will
have a command byte (supplied by MDM) in the first byte. This command will
indicate to the receiving port in the neighboring node as to the type of
software passed. '

Data passed are encoded as follows:

X'00' --> X'FFFF'

X'FF' --> X'FFFE'

Note that M = # of bytes encoded, and this is not included in the byte
count.

FTI

Byte Count N £ 255

Encoded Data, Byte 1

Byte 2

| Encoded Data, Byte N + M |

Rev. 2 D814 System Software Manual * Rev. 2
Section 5.9 - 7

COMPANY CONFIDENTIAL | CODEX CORPORATION

5.9.2.6 MDL and Mainframe Updating Module

There is a requirement that Mainframe software that is already updated
will not be passed to an IPLing mainframe. To accomplish this there will be
a lockbyte which will indicate one of four states: (1) lockbyte not avail-
able; (2) lockbyte available, software already updated; (3) lockbyte avail-
able, software not yet updated; and (4) lockbyte available, uploading in

progress.
5.9.2.7 MDL and Other Mainframe Modules

MRM$BROADCAST:ENTRY is called to get list of neighboring nodes for broad-
casting purposes.

MRM$ROUTE : PACKET is called to send packets.

- 5.9.3 MDL Structure

This module consists of six submodules:

1. MDL$REQUEST
2. MDL$BROADCAST
3. MDL$LOCATOR
4. MDL$LOADER
5.° MDL$XPORTS

6. MDL$TIMER

7

. MDL$EXEC
The descritpion of each submodule and their functions are in Section
5.9.3.1 to 5.9.3.6. In designing this module, the following are the major
goals:

1. Wherever possible, all ports requiring the same software are loaded
at the same time.

2. Any request that requires software that is already in the progress
of downline loading will be delayed until the loading is complete.
This does not apply to software that must come from a floppy disk.

3. MDL controls buffer usage for downline loading. Buffer availability

will be monitored, and request for software will not be generated if
a threshold is exceeded. In all interfaces MDL dictates the flow of
data into the mainframe.

Rev. 2 D814 System Software Manual Rev, 2
Section 5.9 - 8

COMPANY CONFIDENTIAL , CODEX .CORPORATION

5.9.3.1 MDLS$REQUEST Submodule

A1l requests to MDL are assumed to come from the local MDM. All requests
must be initially processed by this submodule. All messages returned to MDM
come from this submodule, and any requests that are rejected are sent back to
this submodule. The following are the major functions of this submodule:

1. Check validity of request, i.e., that the port address is legal and
that it is configured.

2. For each new request, the outstanding requests are checked for any
that include port addresses in the new request. Any downline load-
ing on those ports are then terminated.

3. Requests that require software that need not come from a floppy disk
and are in the process of downline loading will be delayed until the
loading is complete.

4. For special ports, I/NP, I/GBNP and I/FDP, MDL$XPORT is called to
initiate the alternate method of loading.

5. Make up packets and send to local MDM to inform the end of each
request.

5.9.3.2 MDL$BROADCAST

This submodule is responsible for locating the software source that is
nearest to the requestor. It accepts requests from the local MDL as well as
remote MDL.

For remote nodes, MDL$LOCATOR is called to locate a local source. If the
source exists, then the original requestor is informed. If none exists, then
the request is rebroadcast and then deleted.

For Tlocal ports, MDLSLOCATOR is called. If the source exists, then
MDL$LOADER is informed. If not, a request is broadcast and the whole pro-
cedure is repeated every 6 seconds until a source is found.

5.9.3.3 MDL$LOCATOR

This submodule deals with the locating of software at the 1local node.
This includes communicating with local I/FDP and searching for software in
one of the mounted floppy's.

For each request, this submodule performs the search once and reports on
the success or failure and the whereabouts and type of source if found.

Rev. 2 D814 System Software Manual Rev. 2
Section 5.9 - 9

COMPANY CONFIDENTIAL CODEX CORPORATION

In Tocating a source of software from local running ports, this submodule
will choose a source that is most able to upload software.

In all cases a response is sent back to the user whether a source is
found or not. All requests are assumed to come from the local MDL$BROADCAST.

5.9.3.4 MDL$LOADER

This submodule handles the loading of local ports and neighboring nodes
through a local port (I/NP or I/GBNP).

Functionally, this submodule consists of 5 ports:

1. Formatting of incoming data. This is different for a software from
I/FDP and local running ports. :

2. Loading of formatted software through BIC interface to download
local port.

3. Loading of remote node through a 1local port with interface as
described in Section 5.9.2.5. -

4, Maintain flow of incoming software and monitor buffers availability.
This includes repeating of request of software from source.

5. Read BIC status flags at the end of the load and report it to
MDL$REQUEST.

5.9.3.5 MDL$XPORTS

This submodule deals with the loading of I/NP, I/GBNP and I/FDP by their
respective alternate methods. Requests to stop loading of the ports are also
handled here, and there are two types: (1) stop if loading has not started,
and (2) stop under all circumstances.

At the end of the load, a report is sent back to MDL$REQUEST.

Note that requests to stop loading may not be serviced immediately, since
certain functions such as loading I/NP with dummy software have to be com-
pleted before interruptions.
5.9.3.6 MDL$TIMER

This is a schedule task that runs once every 2 seconds. Its only func-

tion is to send a packet to the other submodules to inform them of the elapse
of 2 seconds.

Rev, 2 D814 System Software Manual Rev. 2
Section 5.9 - 10

COMPANY CONFIDENTIAL CODEX CORPORATION

Rev. 2 D814 System Software Manual Rev. 2
Section 5.9 - 11

COMPANY CONFIDENTIAL CODEX CORPORATION

Remote
MDL$BROADCAST

A

Local MDM

*kkhkkkk | kkkkhkhkhkkkkkkkkk | khkkhkhkhkhkhkhkhkhkkkhkhkhkhkkkkkk | kkkkhkkkkkkkkkk

Vv
l
V T B >| MDL$BROADCAST](-----
MDL$REQUEST ‘
------- >
| MDL$UPLOAD {omona
vy
----------- >| MDL$EXEC
- R A
l -------- MDL$TIMER ,
............. >
---------- >| MDL$XPORT C——
Load from A
Remote Node
dhkhkhkhkhkhkhkkhkhkhhkhkkhkrhkhkhhhkkhkhkk | khkkkkkhkkkhkhkhkkkdhhkhkdk | khkkhkkhkhkhkhkkhkhkkk

Vv v

RNP/RGBNP |<-=--| MIL$LOADNP
Local Local

Load
RNP/RGBNP

Rev. 2 D814 System Software Manual
Section 5.9 - 12

Rev. 2

COMPANY CONFIDENTIAL CODEX CORPORATION

A
| Load

Remote
Node

Local/Remote
MF UPDATE | INP/IGBNP
(Get MF Software) A
A

Rhkkhkkkkkkkkkkkhkkkkkhkkhkkhkhkkkkkk | khkkhkkkhkkkhkhkhkkkk | khkkkhkhkhkhkhkhkhkkhhhkkdk

----- >| MDL$LOCATOR
--- >| MDL$LOADER
FDP
Self IPL
(Local)
‘ | Load
Local
Ports
khkkkk | kkkk | khkhkhkhkhkhhkhkhkhhkhkkhkhk | kkhkkkhkhkhkhkhkhkhkhkhkhkhkkk | khkhkhkkhkhkkhkhkkhhkkhkkhkhkkkih
v v Vv Vv
FDP IP UPLOAD IP - ROM
‘ Local/Remote Local/Remote Local
Rev. 2 D814 System Software Manual Rev. 2

Section 5.9 - 13

CODEX CORPORATION COMPANY CONFIDENTIAL

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

5.10 Mainframe Initialization Module

The Mainframe Initialization Module (MSI) is responsible for 1n1t1a11z1ng
the Mainframe hardware and operating system and performing various simple
initial checks for system integrity.

5.10.1 MSI Entry Conditions

MSI is entered by all mainframe processors at MSI$RSTART:ENTRY from the
ROM-resident mainframe IPL Module (MIL) after any system restart. If the
restart was a software restart (initiated by MDL for a software inconsistency
or by MSB for a configuration inconsistency), then configuration and software
information is stored in Local Storage (the fields are described in the MSB
subsection). All mainframe processors but one are halted immediately after
entry into MSI, and one MSI from that point on runs only on that processor.

5.10.2 MSI RAM Initialization

MSI initializes various areas of RAM for use by the mainframe operating
system and other mainframe software components. These are:

1. Lock byte area. Those lock bytes not allocated permanently either
by MSI at runtime or in equate file OF$SYSLCK are allocated by MSI
to a dynamic lock byte pool for use as needed during system opera-
tion. Lock bytes are described in the 6000 Logic Design Specifica-
tion. Individual lock bytes are explained in the subsection des-
cribing the module and data structures using them.

2. Data spaces. MSI allocates the data spaces from RAM and initializes
them as required by Mainframe Task Control. Data spaces are dis-
cussed in the subsection on MTC and in the 6000 Logic Design Specifi-
cation.

3. Fixed RAM. Fixed blocks of RAM are allocated by MSI for tables and
other fixed data structures used by various modules.

4. Dynamic buffers. The dynamic buffer pool used by MBM (see subsec-
tion on Mainframe Operating System) is initialized by MSI. MSI also
sizes memory, verifies that data may be stored in the data area of
memory, clears the data area to 0, and verifies that the lock byte
are starts at address X'400'. If any error is found, the system
halts with an appropriate message displayed on the front panel.

D814 System Software Manual
Section 5.10 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

5.10.3 MSI Dynamic Routing System Initialization

The Mainframe Routing Manager (see subsection on Mainframe Path Manage-
ment, Routing, and Congestion Control Module) provides two initialization
subroutines that are called by MSI. These are MRM$INIT:NONDYNAMIC, called to
initialilze of MRM's fixed data structures, and MRM$INIT:DYNAMIC, called to
initialize all MRM's dynamic data structures. MRM$INIT:NONDYNAMIC uses an
MSI fixed memory allocation routine (described later) and is therefore called
before the free buffer pool is set up. MRM$INIT:DYNAMIC, on the other hand,
uses the free buffer pool and is.called after the free buffer pool has been
initialized.

5.10.4 Node Configuration Parameter Initialization

MSI reads the node-related configuration parameters from CMEM into page 0O
memory at the labels prefixed by OF$PGO:SY_. In addition, the active con-
figuration number, either the previous active configuration stored in CMEM or
the configuration passed by MSB in Local Storage, is both written to location
OF$PGO:SY_ACNF and stored in the ACNF field in CMEM. MSI also sets up the
CMEM map table from configuration information.

The CMEM node parameters and the map table are all described in the sub-
section on the Mainframe Configuration Module.

5.10.5 MSI System Boot Module Interface

MSI leaves complete configuration and software descriptive information in
the system area fields prefixed by OF$SYS:MSB_RESTART_. These fields are dis-
cussed in the subsection on the Mainframe System Boot (MSB) Module.

MSI also calls MSB entries MSB$INIT:START and MSB$MAIN:START to initial-
ize MSB (see subsection on MSB).

5.10.6 Mainframe Panel Control Module Initialization

MSI calls Mainframe Panel Control (MPC) entries MPCSINIT:START and
MPCSINIT:SCAN to initialize MPC (see subsection on MPC).

5.10.7 MSI Scheduled and Batch Task Initialization

MSI constructs from templates the Scheduled Task table and the Batch Task
table used by MTC for Scheduled and Batch Tasks, respectively. (See subsec-
tion on Mainframe Operating System.) These templates are defined in equate
files EQ$SCHD and EQ$BATCH and reside in MSI$MAIN.

D814 System Software Manual
Section 5.10 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

5.10.8 MSI Port Initialization

MSI provides these initialization functions:

1.

2.

Port Control Block (PCB) initialization - a PCB for each permanent
(non-dynamic) configured port is allocated and initialized. This
includes allocation and initialization of all associated data sub-
structures (see PCB discussion in subsection on Mainframe Subsystem
Data Structures).

Port loading - MSI calls Mainframe Downline Load (MDL) routine
MDL$SUBS:LOADIP for each configured I/P. This initiates a load of
each port. When and if the load completes a Load Complete addressed
packet is sent to batch task MSI$INIT. This process is discussed
more completely in the subsection on MDL.

Physical port initialization - MSI leaves the port BIC FIFO regis-
ters in their normal operational state. For further information
about BIC FIFO we consult the subsections on the Mainframe Addressed
Packet Module and the Mainframe Network Link Module.

5.10.9 MSI Machine Cycle Timing

MSI computes the number of M6800 cycles executed per millisecond by a
single processor under approximately normal conditions. It saves this number
in OF$PGO:MSM_CPS for use by the Mainframe Statistics and Monitoring (MSM)
Module (see subsection on MSM).

5.10.10 Boot Complete System Report

When all the mainframe software has been successfully initialized a Boot
Complete system report is sent. (System reports are described in the sub-
section on MSM.) This system report has these parameters:

. Configuration

. Software source node
Software revision

. Software release

. Software source port

L wWwn -~
.

The system report code is EQ$SYSRPT:BOOTCOMP.

D814 System Software Manual
Section 5.10 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.10.11 MSI Subroutines

MSI

submodule MSI$SUBS contains subroutines used both by MSI and by

external mainframe modules. Those subroutines which may be used by external
modules are listed here.

1-

MSI$SUBS :AFMS

This routine is called to allocate 255 or less bytes of free memory
from the free memory list. It may only be called by initialization
routines called by MSI$MAIN before the free buffer pool has been
allocated.

On Entry B-reg = Number of bytes required
Pointer to available memory
Destroyed (unless error)
Destroyed

On Return X-reg
A-reg
B-reg

noun

If the block cannot be allocated, the error code for "OUT OF MEMORY'
is loaded into A-reg and control returned to the caller with CC:C =
1.

MSI$SUBS:AFML

This routine is called to allocate more than 255 bytes of free mem-
ory from the free memory 1list. It uses MSI$SUBS:AFMS to do the
actual allocation and may not be called after free buffer pool
allocation.

On Entry A-reg
B-reg

MSB of number of bytes required
LSB of number of bytes required

Pointer to avai]ab]e memory
Destroyed (unless error)
Destroyed

On Return X-reg
A-reg
B-reg

If the block cannot be allocated, the error code for "OUT OF MEMORY"
is loaded into A-reg and control returned to the caller with CC:C =
1.

MSI$SUBS:ROR

This routine is called to read one byte from the offline ROM resid-
ing on the options card (see subsection on Mainframe Configuration
Module).

On Entry B-reg = Offset into ROM

D814 System'Software Manual
Section 5.10 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

On Return A-reg = Unchanged
B-reg = Value from ROM
X-reg = Unchanged

Note: This routine, at the present time, does not access the ROM.
It reads the bytes from a table in RAM.

D814 System Software Manual
Section 5.10 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

5.11 Multi-Threaded Port Control Module

The Mainframe Multi-threaded Port Control Module (MMT) provides the soft-
ware interface between the mainframe software and the multi-threaded terminal
ports. MMT multiplexes and demultiplexes the data streams for many virtual
ports through the Bus Interface Chip (BIC) interface with a single multi-
threaded I/TP.

MMT is designed to make the virtual port interface with external main-
frame modules resemble as closely as possible the single-threaded interface
so that virtual ports and single-threaded ports may be handled by common
logic.

5.11.1 MMT Port Control Block Interface

Port Control Blocks (PCBs - see sections on Mainframe Subsystem Data
Structures) are the main interface between MMT and other mainframe software
modules. Each physical multi-threaded Terminal Port has a stripped-down PCB
and each Virtual Port has a PCB which is functionally equivalent, from the
point of view of other mainframe software modules, to the PCB of a single-
threaded terminal port.

5.11.1.1 Multi-Threaded Terminal Port PCB

The PCB associated with the Multi-Threaded Terminal Port is needed for
functions which involve the port as a whole rather than an individual virtual
port residing in the physical port. Such functions are implemented by means
of addressed packets sent to the physical port address. The Multi-Threaded
Terminal Port PCB therefore has as its only substructure the Packet Data Sub-
structure (see subsection on Subsystem Data Structures). It should be noted
that the inbound and outbound addressed packet queues for the port are
located in this PCB, not in the individual VP PCB's (described below).

5.11.1.2 Virtual Port (VP) PCB

As already noted, the VP PCB is, from the point of view of external main-
frame modules, functionally similar to the PCB of a single-threaded I/TP.

Since the VP has no physical BIC FIFOs associated with it, inbound and
outbound data byte queues take their place. These byte queues may be located
using pointers in the PCB Slot Data Substructure. All data belonging in the
user data stream (that is, all data which would otherwise flow through the
data BIC) goes through the proper data byte queue between the MMT and any
external mainframe module.

D814 System Software Manual
Section 5.11 -1

CODEX CORPORATION COMPANY CONFIDENTIAL

5.11.2 MMT BIC Interface

The Bus Interface Chip (BIC) data FIFOs are the interface between MMT and
the Multi-Threaded Port software. The data format used is the Multi-Threaded
High-Speed Data Interface described in Section 3 of the System Software Speci-
fication. Data for a particular thread in this format is preceded by a
one-byte VP address and terminated by an ICS called the Multi-Threaded
End-of-Slot (MTEOQS). '

The inbound and outbound data FIFO Reader's and Sender's Flags are used
for control functions: The reader of a data FIFO clears the FIFO's Sender's
Flag and sets the Reader's Flag to signal to the writer that it may begin
sending data; the writer sets the Sender's Flag and clears the Reader's Flag
t? signal to the slot reader that it has completed its transmission of data
slots.

MMT, running every 25 milliseconds, uses this mechanism to control the
timing of inbound (port to mainframe) data transmission so that data is not
sent inbound until MMT is active and ready to read data. The timing and
control sequences involved in slot transmission in both directions is illus-
trated in the following figures.

*

D814 System Software Manual
Section 5.11 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Data Flow from Multi-Threaded Port to Mainframe
Over BIC Inbound Data FIFO

MAINFRAME PORT

Sets Reader's Flag and
Clears Sender's Flag
when ready to read data

<s]0t 1 (A EEXEREXN] S]ot N

Sets Sender's Flag, clears
\ Reader's Flag when all
data is in FIFO.

25 Millisecond delay

Sets Reader's Flag and
Clears Sender's Flag
when ready for next
batch of slots.

etc.

D814 System Software Manual
Section 5.11 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Data Flow from Mainframe to Multi-Threaded Port
Over BIC Outbound Data FIFO

MAINFRAME PORT

S]ot N ®0 0000000 S]ot 1 >

Sets Sender's Flag
Clears Reader's Flag

Sets Reader's Flag, clears
Sender's Flag when done
reading

25 Millisecond delay

S]ot N e 000000 S]ot 1 >

etc.

D814 System Software Manual
Section 5.11 - 4

CODEX CORPORATION » COMPANY CONFIDENTIAL

5.11.3 Operational Overview of MMT

MMT is a low-priority task activated every 25 milliseconds at entry point
MMT$MAIN:ENTRY. There it activates, if possible, one of at most three concur-
rent scanning tasks. The scanning task first reads the inbound BIC data FIFO
for each physical multi-threaded port and fills all the received data byte
queues associated with that port. Next it again goes through the list of
physical multi-threaded ports and, at each port, multiplexes all the data
stored in the transmit data byte queues of VP's associated with it into the
outbound BIC data FIFO.

To aid in the above processing, all multi-threaded port VP PCBs are
linked together by means of the link field in the PCB main data structure,
and access to any single port by MMT tasks is interlocked through the USER
lockbyte. The slot data substructures for VP PCBs associated with each phy-
sical port PCB are linked by means of the VPLINK fields in each slot data sub-
structure and in the physical PCB. This linking together of PCBs is done at
system initialization time in subroutine MMT$INIT.

The data format used for data sent between port software and MMT over a
multiplexed BIC is the Multi-Threaded High-Speed Data Interface (MTHSDI) des-
cribed in Section 3. This interface is designed so that MMT may handle data
for any given VP transparently, scanning for no control characters other than
the slot terminator. It should be noted that MTHSDI provides no "end of
data" signal. As a result the MMT scanning tasks must assume that when an
inbound BIC FIFO is empty, the port has sent all the data it desires to send.
Because of this, the port must be able to keep up with the mainframe the vast
majority of the time or data will back up in the port. Also, to maintain
mainframe efficiency, the port should almost always be able to empty the out-
bound FIFO fast enough to prevent it from becoming full.

D814 System Software Manual
Section 5.11 - 5

CODEX CORPORATION ' COMPANY CONFIDENTIAL

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

5.12 Mainframe Diagnostics Monitoring and Physical Port Control Module

5.12.1

Introduction

The MDM performs the following offline I/P management and failure monitor-
ing functions:

1.

Through an addressed packet user interface, any port may be brought
online or taken offline and any desired software may be loaded to
any offline port, any adjacent I/NP, or any adjacent 6000 Mainframe.
(The term 'offline' is used in this section to refer to a port which
is not available for its normal port functions such as sending and
receiving addressed packets, establishing paths, etc.) The addres-
sed packet user interface also provides various control and monitor-
ing features to be used in conjunction with these functions. :

Automatic Loading - MDM is responsible for supervising the Automatic
Loading process, the means by which an adjacent node or a local port
may be tested (if required) and supplied with the required system
software of the active revision and release level without operator
intervention.

Failure Monitoring - MDM considers an I/P to have failed if no
packet is received from the port for a 12-second period. When this
happens, the port is automatically taken offline by MDM and the
I/CTP operator is notified through a system report. Depending on
the sort of port failure, MDM may then attempt to bring it back
online. MDM also runs various simple online mainframe tests and
sends system reports when errors are found.

System Error Handling - MDM entry point MDM$SYSERR:CRASH is called
whenever a fatal system error occurs. Upon entry, the A register
contains the appropriate error code, as defined in the file
EQ$SYSERR.

Mainframe Code Space Interface - MDM submodule MDM$UPLOAD provides
the only interface by which system components external to the local
mainframe may access the Mainframe RAM code space. The interface is
through addressed packets, with a destination (module dispatch
number) of EQ$MDT:MDM_UPLOAD or queued to batch task number
EQ$BATCH:MDM_UPLOAD. The packet formats are identical to those of
I/P module IP$UPLOAD and will not be described further here.

MDM's most important function is to provide a sort of gateway by which
local and remote user interface modules may interface with ports not actively
running system software. The physical BIC interface with such ports is
handled either directly by MDM or by the Mainframe Downline Load Module (MDL)
in response to commands from its local MDM,

Rev. 3

D814 System Software Manual Rev. 3
Section 5.12 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

The means by which this gateway 1is implemented is the MDM addressed
packet user interface, mentioned in 1 above. The term 'user' in this section
is taken to mean any module invoking this gateway function through the addres-
sed packet user interface. Such modules include:

Mainframe System Initialization Module (MSI) - Submodule MSISINIT uses
MDM to initialize, test, and load a port when it is initially brought up.

I/CTP - The I/CTP, under operator control, may use any of the functions
provided by the MDM addressed packet user interface.

Mainframe Panel Control Module (MPC) - Module MPC allows an operator,

through the mainframe front panel, to perform a subset of the functions
provided by the addressed packet user interface.

5.12.2 Detailed Specification of the Addressed Packet User Interface

The MDM user interface includes commands to be sent in addressed packets
from the user to MDM and various addressed packet messages to be sent from
MDM back to the user during the execution of the command. Packets are sent
to MDM by queueing them to the batch task number "EQ$BATCH:MDM_AP". The
entry point for this batch task is "MDM$COMMAND_ENTRY", and the dispatch
number is "EQ$MDT:MDM_AP".

. For every command executed by MDM, at least one 'MDM Report' is sent back
to the user. The MDM report format is used both for diagnostics packets and
for sending MDM System Reports. It will be discussed in a later subsection.
When an MDM command terminates at a port, the user is always notified with an
MDM Report, but if the user is not local, it cannot be guaranteed that the
message will arrive at its destination (although it is extremely rare for
this not to happen).

MDM command packets contain both fixed-lengfh and variable-l1éngth fields.
Offsets for fields are defined in file OF$MDM and are prefixed by OF$SMDM:AP_.
The first parameter is at offset OF$MDM:AP_CC in all command packets and con-
tains the MDM command code for the part1cu]ar command. Other fields depend
on the command code.

The following commands are supported:

Run Local Port (command code EQ$MDM:CC_RLP).

Run Remote Node (command code EQ$MDM:CC_RRN).
Initiate Automatic Load (command code EQ$MDM:CC_IAL).
Port Failure (command code EQ$MDM:CC_PORTFAIL).

Check Ports for Diagnostics Packets (command code
EQ$MDM: CC_CHECK_DIAGS).

Rev. 3 D814 System Software Manual Rev. 3
Section 5.12 - 2 ’

CODEX CORPORATION COMPANY CONFIDENTIAL

The following subsections detail the packet formats required by each.

5.12.2.1 Run Local Port Command Packet Format

This command is used to perform all the basic MDM local port functions.
It can be used to perform these functions on a list of ports or on a single

port.

The command packet contains the following fields:

Function (at offset OF$MDM:AP_FUNCTION) - This byte specifies the func-
tion(s) to be performed on the port(s) contained in the Port List field
(described later). Each function corresponds to one bit in the byte and
most combinations may be specified. Where more than one function is
specified, they are performed in the order below:

Rev. 3

Reset - If bit EQ$MDM:RESET is set, and the port is on-line, it is
taken offline and certain 'cleanup' functions, described in the sub-
section on the local port interface, are performed. If it is in
diagnostic monitoring mode, the monitoring is cancelled. If a port
is a multi-threaded port, then the cleanup procedures are performed
for each virtual port that is linked to the multi-threaded port.

ROM Diagnostics - If bit EQS$MDM:ROM_DIAG is set, several stages of
diagnostics are performed on the port. If all stages are success-
ful, the port can be loaded with software. If any stage fails, a
system report will be sent with an error code that is unique to the
stage that failed (see EQ$MDM:EC_), and the port is left in a state
that requires a RESET function before MDM will do further process-
ing. The stages of ROM Diagnostics are:

1. Basic diagnostics for the port hardware. This test is
initiated by giving the port a "Reset ¢", and takes 8
seconds to complete. MDM will expect the "Port Bit" to be
set in the port's Packet Bic Status register if the test
was successful.

2. Parity diagnostics. This test is initiated by giving the
port a "Reset 3". MDM expects the Packet Bic Status regis-
ter to equal a value of Hex 84 if the test was successful.
The test is followed by a Reset @, Reset 1, sequence to
leave the port in a non-error state.

3. Basic Bic test. This test checks that the Bic is opera-
tional on a basic level, and can be used to load Software
into the port.

D814 System Software Manual Rev. 3
Section 5.12 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Load - If bit EQSMDM:LOAD is set, the port is loaded with the soft-
ware in the software field, assuming the port is of loadable type,
and in a loadable state.

Set Start Address - If bit EQ$MDM:SET_START_ADDRESS is set, then the
address in the field START is taken to be the start address for the
code currently loaded in all of the referenced ports. This function
can be used to modify the start address from the file (if any) down-
line loaded with the LOAD function.

Monitor - If bit EQ$MDM:MONITOR is set, then the port is started
(assuming a start address has been specified or was passed in the
load block), the parameter list is passed to it in a Diagnostic
Packet, and the port is monitored every 30 seconds for diagnostic
packets which are then passed to the user as will be described
later. (Diagnostic Packets are addressed packets passed between
port diagnostics and the mainframe, whether or not the mainframe is
running D814 system software. They are described in the section on
Subsystem Interfaces). The port is now considered to be in 'diag-
nostic monitoring mode'. The command will -not terminate (meaning
the port leaves diagnostic monitoring mode) until a Diagnostic
Packet with type equal to "termination" is received, or until an MDM
Reset command cancels it.

Set Online - If bit EQ$MDM:ONLINE is set, then MDM will execute the
on-Tine procedures, described in the 'Local Port Interfaces' sec-
tion, after the port has been successfully loaded with operating
software.

(Note: The 'monitor' and 'set on-line' functions are inconsistent
with each other. If both these functions are specified, only moni-
tor is performed. If the reset function is specified, no other func-
tion except ROM diagnostics can be performed unless the load func-
tion is also specified.) "

Software (at offset OF$MDM:AP_SOFTWARE) - 8-byte field identifying the
file to be loaded, if the 'load' bit was set in the function field. The
field must be in one of these formats:

Rev. 3

1. If standard port operating software is to be loaded, it must
contain a 0 in the first byte.

2. If a standard startup diagnostic is to be loaded, it must con-
tain a X'FF' in the first byte.

3. If the file to be loaded is neither the standard startup diag-
nostic nor the standard operating software, the eight byte file
name in ASCII must be specified.

D814 System Software Manual Rev. 3
Section 5.12 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

Monitoring Flags (at offset OF$MDM:AP_MFLAGS) - This contains bits which
specify various options for diagnostic monitoring if the monitor bit was
set in the Function field. 1If bit EQ$MDM:MFLAGS_UPDATE is set, then
update, as well as Termination, Diagnostic Packets are sent to the user;
otherwise, only the Termination Packet is sent. The port is polled every
30 seconds to see if there are any packets to be sent. If bit
EQ$MDM:MFLAGS_ASCII is set, then the ASCII portion of the Diagnostics
Packet will be forwarded to the user. If the bit 'EQ$MDM:MFLAGS_BINARY'
is set, then the binary portion will be forwarded to the user. The user
can select either, both, or neither of these fields to be forwarded.
(See Subsystem Intérfaces for a description of the Diagnostic Packet
format.)

Start (at offset OF$MDM:AP_START) - This is the 2-byte start address to
be set if the 'Set Start Address' function was specified. If 0, the code
in the port will not be allowed to run until a non-zero start address is
set. '

Port List (at offset OF$MDM:AP_PORT_LIST) - This is a variable-length
[7st of ports terminated either by the end of the packet or by a 0 delim-
itor. The functions specified in the FUNCTION field are performed on all
the ports in this list. If more than one port is listed, the command is
handled as if it were really a set of identical command packets each of
which involved one and only one port. Therefore, if a completion message
is sent to the user, for example, when the last function of a command is
successfully completed, one such message would be sent for every port in
the list. The port list can contain different types of ports, but if
standard software is specified, ports requiring identical software will
be grouped together into separate load request packets. Load request
packets are sent to the Down Line Loader (MDL), where the load operation
is actually performed, unless the port is a floppy disk or a floppy disk
emulator port, and standard diagnostics software is requested. MDM
handles the down load operation itself for those two cases.

Parameter List (optionally follows the Port List) - If diagnostic monitor-
ing was specified in the FUNCTION field, the parameter 1ist is sent to
the port (preceded by the number of parameters) after the port's diagnos-
tic software has been successfully loaded and sent a start code.

5.12.2.2 Run Remote Node Command Packet Format

This command is used to manipulate a remote adjacent node through an oper-
ational local I/NP. The command packet contains the following fields:

Function (at offset OF$MDM:AP_FUNCTION) - This byte specifies the func-
tion(s) to be performed on the adjacent node, in a manner similar to that
of the FUNCTION parameter in the Run Local Port command. The following
functions are supported:

Rev. 3 D814 System Software Manual Rev. 3
Section 5.12 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

Hard Boot - If bit EQ$MDM:HARDBOOT is set, then the remote adjacent
INP is sent the NP boot sequence causing it to restart, and then
accept any software it is sent from this node. Once a node is hard
booted it will only accept software from the I/NP which received the
NP boot sequence.

Load Mainframe - If bit EQ$MDM:LOAD_MF is sent, then the remote adja-
cent mainframe is to be loaded and started executing the software
specified in the software field. To be sure that the remote main-
frame will load this software, as opposed to software received over
some other 1ink adjacent to it, the Hard Boot function should also
be specified.

This bit need only be specified if the user wants to specify the
software to be loaded. Otherwise, MDM will respond to help messages
sent by the remote node and will 1oad whatever software it requests.

MDM will send an immediate acknowledge back to the origin of Run Remote
Node command. The acknowledge is the original command, with the source and
destination exchanged.

Software (at offset OF$MDM:AP_SOFTWARE) - 8-byte field identifying the
name of the file to be loaded, if the 'load mainframe' bit is set in the
Function field. The file is specified as follows:

1. If standard Mainframe operating software is to be 1loaded, it
must contain X'0100' in the first two bytes.

2. If the standard Mainframe diagnostic package is to be 1loaded,
it must contain X'O1FF' in the first two bytes.

3. If the file to be 1loaded is neither the standard startup
diagnostic nor the standard operating software, the e1ght byte
file name in ASCII must be specified.

Port Number (at offset OF$MDM:AP_PORT_LIST) - The command must contain a

single port number through which the operations will be performed. The
port must be an up and running I/NP.

5.12.2.3 Initiate Automatic Load Command Packet Format

This command causes MDM to start the standard load sequence for local
ports. If a port is taken offline for some reason, this command may be used
to bring it back online. MDM will then run diagnostic if indicated, load the
port, and set it online. A1l this will happen automatically without any fur-
ther user intervention. When MDM processes this command, it immediately
sends a response back to the user to indicate that the command has been suc-
cessfully received. No message is sent by MDM to the user when loading is
completed, although a system report is normally sent when any node or port
comes up.

Rev. 3 D814 System Software Manual Rev. 3
Section 5.12 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

The diagnostics enable bit (EQ$MDM:IAP DIAG) inside the function byte at
offset OF$MDM:AP_FUNCTION causes MDM to generate a "Run Local Port" command
packet and queue it to the Command Processor batch task. The packet con-
tains:

The Reset Function

The ROM Diagnostics Function

The Load Function

The Monitor Function

The Codes for Standard Diagnostics Software
No Monitoring Flags

AP WN -
e o o o o o

If an error is encountered, a systems report is sent. Otherwise, when a
successful diagnostics termination packet is received by MDM, it generates
another "Run Local Port" command packet. This time the packet contains:

1. The Load Function
2. The ON-LINE Function
3. The Codes for Standard Operating Software

If the diagnostics enable bit is not set in the "Initiate Automatic Load"
command, then the MDM operation is identical to a "Run Local Port" command
with the following contents: .

The Reset Function

The ROM Diagnostics Function

The Load Function

The ON-LINE Function

The Codes for Standard Operating Software

A wWwNn
e o o o o

Beginning at offset OF$MDM:AP_PORT_LIST, the command packet contains a
1ist of the port addresses to be loaded.

5.12.2.4 Declare Port Failure

If an MDM user detects a port failure, this command can be used to inform
MDM of the failure immediately rather than waiting for MDM to time 12 seconds
of inactivity on the port before the failure is declared. The command will
cause MDM to look at the port's BIC status for a parity error, and then send
the appropriate system report. If the failure was due to the first parity
encountered in the last 30 minutes, an "Initiate Automatic Load" command will
be generated for the port entered in the command packet at the offset
OF$SMDM:AP_PORT_LIST. The automatic load command will have the diagnostic
function selected.

Rev. 3 D814 System Software Manual Rev. 3
Section 5.12 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

5.12.3 MDM Interface With Mainframe Downline Load Module (MDL)

As already noted, MDM uses MDL to load software when required. The inter-
face with MDL is described in detail in the subsection on that module. Only
the important features of that interface will be summarized here.

The interface with MDL 1is through addressed packet format messages,
queued to the MDL batch task number "EQ$BATCH:MDL_REQUEST". The command code
in the packet contains one of the following:

Load Local Port - MDM uses this MDL command to locate and down load
formatted load blocks to any port type except floppy disks or floppy
emulators, that are loading standard "diagnostics software. These
load block types have to be down loaded from the MDM submodule
'DOWNLOAD' .

Load Remote Node - Causes MDL to initiate loading of a remote main-
frame through a local operational I/NP. Any load already in pro-
gress is cancelled.

Load Remote Port - Causes MDL to initiate loading of a remote NP,
through a Tocal operational I/NP.

Abort Load - Cause MDL to terminate a load in progress.

MDL's responsibility is strictly to get a port loaded with the proper
software. MDL does not start the port or time out if the port cannot be
loaded. Further, MDL interfaces with no system component other than the
local MDM.

MDL sends a message back to MDM whenever a load of a port listed in one
of the Load Port commands above is completed, whether or not the 1oad was suc-
cessful. Possible reasons for a load failure are port failure and an invalid
port address. A load cannot fail because the software could not be found,
since MDL in such a case retries indefinitely.

MDL also informs MDM whenever an Abort Load command is complete.

5.12.4 MDM Reports and System Reports

MDM system reports as well as messages sent to users of the MDM addressed
packet user interface share a common format and are known collectively as MDM
reports. This format allows MDM to build an error message, for example, be-
fore deciding whether it is to go to a user or be sent as a system report.
A1l system report fields (defined in file OF$RPT) are present in MDM Reports.
The system report code field OF$SRPT:CODE always contains the system report
code EQ$SYSRPT:MDM, which allows the report to be sent as a system report
with no reformatting. Fields in the data area of the report are defined by
offsets in file OF$SMDM as follows:

Rev. 3 D814 System Software Manual Rev. 3
Section 5.12 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

OF SMDM:REPORT_PORT - Port to which the report refers, 0 if Mainframe.
OF$MDM:REPORT_TYPE - Contains the type of report:

EQ$MDM:REPORT_DIAG_UPDATE - Report contains contents of Update Diag-
nostic Packet.

EQ$MDM:REPORT_DIAG_TERM - Report contains contents of Termination
Diagnostic Packet.

EQ$MDM:REPORT_FAILURE - A test run by MDM itself has failed, for
example the BIC loopback. Since the MDM report format is used in
all MDM system reports, one of the errors discussed later under
Failure Monitoring could for example be reported in this packet.

OF$MDM:REPORT_EC - Error code. The meaning of error codes depends on the
report type. If the report is a Termination or Update message, then the
error code is the Summary Status Byte from the Diagnostic Packet (a value
of zero implies no error). Otherwise, it is defined in file EQ$MDM and
prefixed by EQ$SMDM:EC_.

OF$MDM:REPORT_BIN_LEN - This contains the number of bytes of binary data
that follow this byte. The use of the binary data is defined by the
diagnostic software.

String of ASCII Characters - Following the 1ist of binary data, starts

the 1ist of ASCII characters. The length of the packet is used to locate
the last character. :

Undeliverable MDM system reports are returned to MDM at entry point
MDM$SYSRPT:ENTRY by the addressed packet router. These are then rerouted to
the Mainframe Panel Control Module for display on the front panel.

5.12.5 MDM Interfaces Used in Providing Software Over a Link to an Unloaded
I/NP

This subsection describes the MDM interfaces involved in loading software
to a remote adjacent node (referred to as the 'loading node') which is. run-
ning the 'ROM NP', a special bootstrap module loaded through a call to the
Mainframe IPL Module (MIL).

A loading node communicates with an adjacent network node using HELP mes-
sages, described in the sections dealing with I/NP and ROM NP 1ink protocol
sections. The HELP message is used both to bring the l1ink up and to send
parameters from the loading node to the node running system software. When a
HELP message is first received by an I/NP, MNL is informed through the Link
Active addressed packet that the 1ink (which it had previously considered to
be down) is now operational. This message contains all the HELP message's

Rev. 3 D814 System Software Manual Rev. 3
Section 5.12 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

parameters including a possibly empty software specification field. Since

the HELP

is otherwise treated by the I/NP as an AMSTR or ASEC message

(described in the subsection on I/NP software), the 1ink is now up and data
may be sent. MNL calls MDM subroutine MDM$LINK UP as follows to pass it the
HELP message parameters in its received 1ink Active message:

Entry Conditions:

X-register points to the link Active message received by MNL, con-
taining the HELP message parameters. Before calling this routine
MNL must have determined from the message parameters that a HELP
message rather than an ordinary AMSTR/ASEC message was received.

On Exit:

A1l registers and data space fields are destroyed. The message byte
file has been deleted.

Function - The subroutine sets the 'IPL in Progress' bit in the I/NP
PCB's status lockbyte, which is a signal to MNL that the 1ink is in use
by MDM. What MDM does depends on the HELP message's parameters:

Rev. 3

If the 'type' parameters is 'diagnostic result', then it is meant
only to supply information to the ICTP operator. A system report is
sent with the message parameters in the MDM Report format discussed
earlier, and nothing more happens.

If the software revision and release are specified and are different
from the active software, a system report is also sent.

If the restart type is NP-boot, a system report is sent.

If a fatal error is specified as the error code, a system report is
similarly sent.

If the 'type' parameter is 'load', the error code has its high order
bit set (either no error or non-fatal error), the restart type is
'software restart' or 'power-up', and the software revision and re-
lease are consistent with the active software, then software is to
be downline 1loaded without operator intervention. If a specific
software module is requested, then that module is downline 1oaded to
either the remote Mainframe or the remote I/NP, as indicated by the
M and N bits in the HELP message parameter byte. If no specific
module is requested but the mainframe is not loaded (this is indi-
cated by the L bit in the Help Parameters field of the HELP mes-
sage), then the Mainframe software is downline loaded. If the error
code is a non-fatal error (higher than X'7F' but not X'FF'), then a
system report is sent but the proper software is also loaded as
above.

D814 System Software Manual Rev. 3
Section 5.12 - 10

CODEX CORPORATION , COMPANY CONFIDENTIAL

- Once MDM has been informed that a link with a loading node has been
brought up, no mainframe module other than MDM or MDL (Mainframe Downline
Load Module) is allowed to access the I/NP's BIC data FIFO until MDM has been
informed that the same 1ink has gone down. This is guaranteed through the

"IPL in Progress' bit in the I/NP PCB. To implement the interlock, the fol-
lowing subroutine must be called whenever MNL receives a link Failure message
from an I/NP or whenever an I/NP is declared to be down:

Entry Point:
MDM$L INKDOWN
Calling Conditions:

A-Register - Contains address of the I/NP
On Exit:

A1l registers and data space fields are destroyed and the 'IPL in
Progress' bit in the I/NP's status lockbyte is cleared.

Function - The subroutine does nothing if the 'IPL in Progress' bit is

not set. Otherwise MDM terminates any load in progress using the I/NP.
This 1is done by sending MDL an ‘'abort' command and waiting for the
response. Before returning, the IPL in Progress bit is cleared.

It should be noted that this routine and MDMSLINKUP are the only rou-
tines which modify the IPL in Progress bit for an I/NP.

5.12.6 MDM Local Port Interface

This subsection describes the interfaces needed for MDM's local port
functions.

5.12.6.1 Port Control Block (PCB) - Offline Port Cleanup and MDM Local
Storage

This subsection describes those MDM 1local port interfaces implemented
through the PCB of the IP involved. The PCB of a local IP is used by MDM for
local storage of MDM data relating to the port and to implement required
synchronization for the 'cleanup' functions which must be performed by var-
jous mainframe modules when a port is to be brought off-line by MDM. The
remainder of this subsection discusses the above functions.

Rev. 3 ' D814 System Software Manual Rev. 3
Section 5.12 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

Each I/P PCB contains 1in its MAIN data substructure a field,
OF$PCB:MAIN_DDSS, which contains a possibly zero pointer to a Diagnostic Data
Substructure (DDSS). The DDSS is a single buffer which is allocated and
delocated as needed by MDM. It is not referenced by external modules and is

not allocated for a port which is up and running D814 port system software.
The DDSS is used by MDM for storage of data associated with an off-l1ine I/P.

Each I/P also has a STATUS lockbyte which is used for synchronization
with other Mainframe modules when bringing a port on-line or off-line. An
on-line port is assumed to be running system software and may perform all of
its normal system functions, while an off-1ine port may only interface with
the rest of the network through MDM or MDL. The STATUS lockbyte has a DOWN
bit which is set by MDM whenever a port is taken offline. Also in the STATUS
lockbyte are 'busy' bits for each system module for which cleanup must be
done when an I/P is taken offline. The mask for a module's busy bit is
EQ$PCB:LOCK_STATUS: xxx_BUSY where 'xxx' 1is the module name. A module sets
its busy bit whenever it is using the port BIC FIFO's (this may be for an
indefinite period) and MDM may not do physical I0 to the port while any busy
bits are set. On the other hand, no module may set a busy bit while its DOWN
bit is set by MDM. Each module having a busy bit provides to MDM a cleanup
subroutine which may be called after the DOWN bit has been set to do whatever
cleanup the port must do and turn off the busy bit. A module's cleanup sub-
routine has entry point xxx$CLEANUP:ENTRY where 'xxx' is again the module
name. Therefore, to take a port off-line, MDM must do the following:

1. Set the port's DOWN bit.

2. For each busy bit which is set, call the proper module's cleanup
subroutine. There are busy bits and cleanup subroutines for modules
MNL, MAP, MMT, and MPM.

3. Wait for all busy bits to clear.

Once this has been done, MDM may do whatever it wants with the port.

MDM will put a port on-line after it receives a succéssfu] load response
from MDL, and the ONLINE function was specified. The steps are:

1. The down bit in the port's Status lockbyte is reset.
2. The down bit in the port's Packet lockbyte is reset.

3. The pointer to the diagnostics substructure in the port's PCB is
zeroed, and the buffer is returned to the operating system.

4. A start code (Hex 55) is sent to the port's BIC @ FIFO.

5. When the first Wakeup packet is received from the port, the active
configuration is put in Byte 9 of the Packet, and the packet is
queued to the Packet Transmitter. The Senders flags are set in the
BIC status registers to enable the port to read the packet.

Rev. 3 D814 System Software Manual Rev. 3
Section 5.12 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL

The two-bit TIMER field in the PCB Packet lockbyte is used in port fail-
ure monitoring. It contains the number of 6-second monitoring periods since
an addressed packet was last received from a port. The addressed packet
router clears it whenever it receives a packet from the port. Every six
seconds a scheduled MDM task increments the TIMER field and declares the port
to be dead if it is incremented to 2. Since a port is required to send a
packet at least every ten seconds, an operational port cannot be declared
dead. When MDM declares a port dead, it is taken offline and a system report
sent.

5.12.7 Failure Monitoring

MDM periodically runs various port and system diagnostic tests. When an
error is found an attempt is made to report it to the network operator
through a system report. If the system report packet is returned, it is
rerouted to the Mainframe front panel.

The following diagnostic procedures are run by MDM:

Port Failure Monitoring - Any physical port from which no addressed
packet™ is received for roughly twelve seconds is considered to have
failed. When MDM discovers such a timeout, it takes the port offline.
After the port is taken off-line, MDM does a reset-3 to the port data BIC
and reads data from the inbound data FIFO. This data, which must be less
than 128 bytes, is placed.in a MDM Report packet and sent as a system
report with either a 'port time-out' error code (if there was no parity
error) or a 'RAM parity failure' error. If the error was a parity error
and if the port had not failed in the previous 30 minutes, an automatic
load of the port is then initiated.

RAM Test - A memory test is run continuously at priority 0, the lowest
Mainframe priority level. This test consists of a free buffer memory
test and a code space checksum test. If a buffer is found to contain a
bad memory location, a system report containing the bad address is sent.
If the code checksum at location OF$SYS:MIL_CHECKSUM (a 2-byte checksum
computed by adding bytes with wrap-around carry) does not match the check-
sum computed by MDM an error also occurs.

Lockbyte Test - Every three seconds all the lockbytes except the debugger
Tockbyte are tested. If any lockbyte is found to be clear for more than
1000 microcycles, an error occurs and a system report containing the lock-
byte address is sent.

Link Monitoring - Every 30 minutes, starting 30 minutes after system
startup, an system report is sent for every I/NP whose link is down.
A link is considered down if the Framing Lost bit is set in the I/NP's
STATUS Tockbyte.

Rev. 3 D814 System Software Manual : Rev. 3
Section 5.12 - 13

CODEX CORPORATION : COMPANY CONFIDENTIAL

CMEM Test - Every 30 minutes Configuration Memory is checksummed in the
same manner as code space. If the checksum does not match the checksum
stored in the first two bytes of CMEM, an error system report is sent.
CMEM is read using routines provided by the Mainframe Configuration
Manager Module (MCM). :

5.12.8 System Errors

Fatal errors in any Mainframe system module are handled by calling MDM
routine MDM$SYSERR:CRASH with the appropriate error code, defined in file
EQ$SYSERR, in the calling A register. MDM$SYSERR:CRASH first checks if the
Debugger Port is plugged in. The debugger port is always in slot 0, which
is an otherwise invalid port address.) If the Debugger Port is there, the
debugger is invoked. Otherwise a 6000 software restart is done and the error
code is passed to the IPL ROM as described in the Firmware Section on the
Mainframe IPL Module. '

Rev. 3 D814 System Software Manual Rev. 3
Section 5.12 - 14

CODEX CORPORATION COMPANY CONFIDENTIAL

5.13 Mainframe Subsystem Data Structures

This subsection describes all mainframe data structures not attached
specifically to any individual mainframe module and, therefore, not described
elsewhere.

5.13.1 Port Directory

Addresses X'200' to X'3FF' contain the mainframe Port D1rectory. The
address in RAM of the Port Control Block (PCB) for port number i will be
found at offset 2*i into the Port Directory if such a PCB exists. If there
is no port i, then the entry for it will be X'0000'.

The Port Directory is interlocked through lockbyte OF$SYSLCK:PORTDIR and
may be accessed through mainframe utility MUT$PCB.

5.13.2 Port Control Blocks

A Port Control Block (PCB) is maintained in the mainframe for each user
data source or destination. These include all physical IP's as well as
virtual ports (associated with an individual data stream through a multi-
plexed I/TP) and XP's (associated with the data stream for a user path at an
intermediate node).

Fixed PCB's are created by the Mainframe System Initialization Module
(MSI) and dynamic PCB's are created by the Mainframe Path Management, Rout-
ing, and Congestion Control Module (MPMRCCM). The modules having read/write
access to PCB's are MPMRCCM, the Mainframe Addressed Packet Module (MAP), the
Mainframe Network Link Module (MNL), and the Mainframe Statistics and Moni-
toring Module (MSM). In addition, various mainframe modules read static
information from the PCB's.

The structure of a PCB depends on the type of port with which it is asso-
ciated. Each PCB has a top level main data structure containing some fields
common to all PCB's as well as some fields dependent on the type of port.
The PCB has various data substructures depending on the type of port. In
general, each substructure contains data used primarily by one specific
module or submodule. The structure of the PCB is described in the following
subsections.

D814 System Software Manual
Section 5.13 - 1

CODEX CORPORATION

COMPANY CONFIDENTIAL

5.13.2.1 Main Data Structure (A11 Offsets are Prefixed by OF$PCB:MAIN_)

Fields common

TYPE -

PADR -
LOCKS -

to all port types:

Port type (high order nibble) and subtype (low order
nibble)

Port address -
Pointer to port's lockbyte area. Each port has speci-

fic lock bytes associated with it for synchronization
between different tasks accessing the PCB.

Fields only found in I/NP PCB's:

XMT -
RCV -
NPLINK -

Pointer to MNL Transmit Data Substructure
Pointer to MNL Receiver Data Substructure
Link to next I/NP PCB. O if last PCB in linked list.

It should be noted that this linked list is unchang-
ing once normal system operation has begun.

Fields only found in I/TP, XP, and VP PCB's:

SLOT

PATH

Fields common
PACKET -
DDSS -

MDM_LOAD -

PARITY_COUNT

Pointer to Slot Data Substructure (used by MNL$XMT)
Pointer to Path Data Substructure (used by MPMRCCM)
to all PCB's except LNP, VP and XP:
Pointer to Packet Data Substructure (used by MAP)
Pointer to Diagnostic Data Substructure used by Main-
frame Diagnostic and Physical Port Control Module
(MDM) for scratch storage. This field is set to 0 by
MDM when the substructure is unallocated.

MDM;s load control flags (described in subsection on
MDM).

Counter maintained by MDM of port memory parity
errors in a 30-minute time period.

D814 System Software Manual
Section 5.13 - 2

CODEX CORPORATION

COMPANY CONFIDENTIAL

5.13.2.2 MNL Receiver Data Substructure

5.13.2.3

(A11 offsets
DS -
RNODE

FILEINUSE

STACK

are Prefixed by OF$PCB:RCV_):

Data space number for MNL$RCV task for this link
Remote node at other end of link

Address of byte file being received

Stack for MNL$RCV

MNL Transmitter Data Substructure

(A11 Offsets
DS -

SAQ -
CFQ -

CFQDB

RAPQ

RAPQDB

RNODE

RPORT

LNKDLY

LNKSPD

APPTHRUPUT

FILEINUSE

XMTLST

RCONFIG
RSWLVL

are Prefixed by OF$PCB:XMT_):

Data space number for MNL$XMT task for this link. O
if link down. ‘

Pointer to slot add queue

Pointer to control frame queue descriptor block (Used
only to shorten code.)

Control frame queue descriptor block

Pointer to remote addressed packet packet queue
descriptor block A

Remote addressed packet queue descriptor block
Number of node at remote end of this link
Number of I/NP at remote end of this link

Link delay in hundredths of a second

Nominal link speed

Apparent 1link throughput 1in characters per second
(for MPM)

Address of byte file being transmitted. O if none.-

Pointer to Tinked list of slot substructures of ports
included in this 1link's active data traffic.

Remote node's configuration level

Remote node's software revision/release level

D814 System Software Manual
Section 5.13 - 3

——g—
. ~

Sal

(AN

CODEX CORPORATION COMPANY CONFIDENTIAL

5.13.2.4

5.13.2.5

TRAFFIC - Long term outbound 1link traffic (see subsection on
MPMRCCM) .

STACK - Stack for MNL$XMT

Packet Data Substructure, Not Present in I/NP, VP, or XP PCB's

(A11 Offsets are Prefixed by OF$PCB:PACKET.):

XMTLNK - Link used by MAP to queue this substructure to the
MAP Addressed Packet Transmitter queue

RCVLNK - Link used by MAP to queue this substructure to the
MAP Addressed Packet Receiver queue

0OPQTOP, OPQBOT,

and OPQLOCK - Pointers to start of, end of, and lock byte asso-
ciated with the outbound packet queue descriptor:
block for packets sent to this port.

RCVPTR - Pointer to packet currently being received

IPADR - Port address (address of associated physical port in
VP PCB's)

Path Data Substructure, Present in I/TP, XP and VP PCB's

(A11 Offsets are Prefixed by OF$PCB:PATH.):
Fields used by I/TP and VP PCB's:

CSTATE - Call state

RNODE - Remote node for call

RPORT - Remote port for call

PSTATE - Primary transmit path state

SSTATE - Secondary transmit path state

SPD - Path's source port speed

PRIO - Path's priority level

PXAN - Primary transmit path adjacent node

PXAP - Primary transmit path adjacent port (number of XP or
I/TP at next node on path) ,

D814 System Software Manual
Section 5.13 - 4

-CODEX CORPORATION COMPANY CONFIDENTIAL

PXNP - Primary transmit path I/NP
PRAN - Primary receive path adjacent node
PRAP - Primary receive path adjacent port (number of XP or
I/TP in previous node or path)

PRNP - Primary receive path I/NP
SXAN - Secondary transmit path adjacent node
SXAP - Secondary transmit path adjacent port
SXNP - Secondary transmit path adjacent port
SRAN - Secodnary receive path adjacent node
SRAP - Secondary receive path adjacent port
SRNP - Secondary receive path I/NP

- SHOPS - Secondary receive path length

Fields used by XP PCB's:

XSTATE - Path state

DSTND - Path destination node

DSTPT - Path destination port

SRCND - Path source node

SRCPT . - Path source port

SPD - Same as for I/TP

PRIO - Same as for I/TP

XAN - Transmit adjacent node

XAP - Transmit adjacent port

XNP - Transmit path outgoing I/NPO
RAN - Receive path incoming adjacent node
RNP - Receive path incoming I/NP

Congestion Control fields, present in all path substructures:
RRSWITCHPORT- See subsection on MPM$CCM

D814 System Software Manual
Section 5.13 - 5

N\

CODEX CORPORATION COMPANY CONFIDENTIAL

5.13.2.6 Diagnostic Data Substructures, Present in A1l Physical Port PCBs:

The Diagnostic Data Substructure is created by MDM whenever a port is
taken off-line and returned to the free buffer pool if and when it is put
back on-line. It 1is used for scratch storage by MDM. The fields of the
Diagnostic Data Substructure are described in the subsection on MDM.

5.13.2.7 PCB Lock Bytes

In addition to its various substructures, the PCB of each physical or
virtual port has a lock byte area. This is a set of contiguous lock bytes
used for synchronization both among different mainframe modules and among
separate tasks in the same module. Since all lock bytes are allocated perm-
anently at system initialization, a dynamic PCB such as an XP, PCB may not
have a lock byte area. In such cases, the OF$PCB:MAIN_LOCKS field is the
main data substructure in left 0. Lock bytes are defined by offsets prefixed
by OF$PCB:LOCK. and bit fields within a PCB lockbyte are defined by bit masks
prefixed by EQ$PCB:LOCK. The following is a list of all lock bytes used for
all port types:

STATUS - This lock byte exists in every Intelligent Port (I/P) or
Virtual Port (VP) PCB. It is used for synchronization
between MDM and other mainframe modules when bringing a
port on-line or taking it off-line. It contains a DOWN
bit which is set when the port is considered off-line by
MDM and a BUSY bit for each of four different modules.
The BUSY bits are set by the respective modules when they
are using the port. The DOWN and BUSY bits are described
more fully in the subsection on MDM. -

USERS - This Tlock byte 1is currently used only by the Mainframe
Network Link (MNL) Module. It is wused to synchronize
among the MNL transmit and receive tasks and the MNL
addressed packet message handler task when Tlinks are
brought up and down. Its use is described more fully in
the subsection on MNL.

PACKET - This lock byte is used for synchronization between the
Mainframe Addressed Packet (MAP) Module and MDM when a
physical port is brought on-line and when required
addressed-packet cleanup is performed to take a physical
port off-line. It contains the following bit fields
defined by masks prefixed by EQ$PCB:LOCK_PACKET_:

DOWN - Cleanup bit set by MAP$CLEANUP at start of clean-
up and cleared by MDM when the port is brought
back on-line.

D814 System Software Manual
Section 5.13 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

TIMER. - Two bit timer field used by MDM to decide when a-.
port has timed out. The field is reset by MAP?@;g‘
to O whenever a packet is received from the port
and is incremented by MDM every six seconds
while port is on-line. When the timer is incre-
mented to 2, the port is considered to have
failed.

RCV & XMT - MAP addressed packet receiver and transmitter
active bits, in that order. The appropriate bit
is set by MAP$PINT when a packet receive or
transmit interrupt occurs and is reset Dby
MAP$PRCV (RCV bit) or MAP$PXMT (XMT bit) when
handling of the interrupt is completed. The RCV
or XMT bit is set if and only if the inbound or
outbound packet BIC FIFO, respectively, is in by
MAP. When MAP sets a FIFO flag at the end of
interrupt processing, it must do so simultaneous-
ly with the clearing of the RCV/XMT bit.

up - This bit is set if and only if the port is up

for the purpose of receiving outbound packets.

It is set by MDM after the initial wakeup packet

from a newly operational port has been received

and sent back to the port. It is cleared by MDM

when the port is taken off-line. It is needed

to guarantee that the first packet any physical

\ port receives 1is the response to its wakeup
packet.

D814 System Software Manual
Section 5.13 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

6. INTELLIGENT PORT MODULE DEFINITIONS

The D814 intelligent port software consists of software in three general
classes.

1. Intelligent Port Operating System (IPOS)
2. Common Software /
3. Unique Protocol Software :

The operating system software is common to all ports, though certain sub-
modules in this module may not be present in every port subsystem. This
module is described in Section 6.1

The common software consists of a collection of modules which are used by
a general class of ports, but not by all ports. Software of this type is
presented in Sections 6.3 through 6.5.

The unique protocol software is that part of a port which implements its

specific communications personality in interfacing with the outside world.
These modules are presented beginning with Section 6.6.

6.1 Intelligent Port Operating System

The Intelligent Port Operating System Module (IPOS) is organized as a set
of submodules, each of which provides a related set of functions.

. System Scheduler
Real-Time Clock and Timer
Batch Processor

Buffer Utilities

Queue Manipulation

. Addressed Packet Handler
. Utilities

. IPOS Initialization

9. Processor Loading Calculation
10. Light Control

11. Memory Modification

12. Software Uploader

13. Background Checker

CO~NO OB WN -
L]

Descriptions of these modules are found in Sections 6.1.1 through 6.1.10.

IPOS itself 1is maintained as two closely knit units designated as IPOS
and IP0S/09. The designate IPOS supports the M6800 processor and IP0S/09
supports the M6809 processor. While most Operating System modules for both
the 6800 and 6809 are identical in operation, the Initialization, Real-Time
Clock, and Scheduler are different; these modules are provided with separate
descriptions. Task Control Blocks are also different for IPOS and IPQ0S/09.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 -1

CODEX CORPORATION COMPANY CONFIDENTIAL

6.1.1 Task Scheduler Submodule

The scheduler recognizes seventeen software process priority levels. The
lTowest level is zero and the highest level is sixteen.

Before continuing with the description of the scheduler, some terms need
to be defined. A task is RUNNING when it has control of the processor. A
task is INITIATED when it is placed in the task queue of a specific priority
level. A task is STARTED when it is removed from the task queue and given
control of the processor. A task is SUSPENDED when an interrupt is being
serviced or when its machine state is stacked so that a higher level task may
be run. A task is RESUMED when its machine state is unstacked and it is
given control of the processor. A task TERMINATES when it informs the sched-
uler that it has no more work to do, and its actual machine state is removed
from the stack by the scheduler. A FORK occurs when one task causes another
task to be initiated, but the task which causes the initiation does not wish
to be terminated. A TERMFORK occurs when one task wishes to terminate and
wants)another task to be initiated (either at the same or another priority
level).

The functions to be performed by the task scheduler are:

a. Initiate a task (from an interrupt routine) at a specific prior-
ity level and enter scheduler.

b. Fork another task (from process level) at a specific priority
level and enter scheduler.

c. Fork another task (from process level) at a specific priority
level and terminate the forking task, entering the scheduler.

d. Terminate a (process level) task and enter scheduler.

e. Dispatching of hardware interrupt requests.

Task Initiation

Each task which is running or initiated in the system (or in a timer rou-
tine, see 6.1.2) must have a task control block (TCB) associated with it.
Task control blocks will be buffers obtained from the buffer management mod-
ule (see 6.1.4). These buffers will be linked into the task queues when the
task is initiated and will be placed in a table of active TCBs when the task
is started.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The IP software can be running in one of two modes at any instant in
time: interrupt level or process level. Interrupt level is the level at
which interrupts are serviced and tasks are initiated, started, and termi-
nated. At interrupt level interrupts are always masked. Process level runs
almost exclusively with interrupts enabled. nly during delicate operations
like queue manipulation, which could leave a data structure in an unviable
state if interrupted, will interrupts be masked. Note that, using these
definitions of interrupt and process level, it is possible to enter inter-
rupt level from process level without receiving an interrupt. This is the
case when a task terminates and enters the scheduler to pick up a new task.
This is an entry into interrupt level as we have defined it.

The port processor will spend as little time as possible with interrupts
masked. ‘This is accomplished by having the actual interrupt routines typi-
cally set up work for a process level task and enter the scheduler which
decides which task to run next. Any volatile information is captured from
the hardware by the interrupt routine and saved. This is information such as
inbound terminal data from the 2651, 2651 status, BIC status, etc.

When an interrupt occurs, IPOS will dispatch to the proper interrupt
handler. The interrupt handler may service the interrupt directly, or it may
initiate a task to service the interrupt at some software priority level. It
may be necessary to communicate some information to this task. If so, the
information can be passed in the Task Control Block.

When a task is initiated, if the new task is of a higher priority than
the task when was running, the new is started. If the new task is of equal
or lower priority compared to the task which was running, the task which was
running is resumed, and the new task is queued to a task level queue.

The scheduler takes total responsibility for "queued" (initiated) tasks
and the associated priority level task queues. The same entry point may be
successfully initiated and in the task queue more than once concurrently,
even at several different priority levels, if this should be desirable. It
is, however, the job of a multiply queued task to find and manipulate the
correct data each time it is started.

Note that for IP0S/09, all task initiation is performed using system
macros.

Task Termination

When a task runs to completion, it requests termination. At this time
all task queues and the highest priority task which is suspended are scanned.
The highest priority task of the above receives control.

Rev, 2 D814 System Software Manual Rev. 2
Section 6.1 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Task Control Blocks

The format of an IPOS Task Control Block (TCB) is:

0-1 2 -3 4 -5 6 718-9|A-B|C-0D E-F
o TSK_ADR
TSK_LNK IPOS TMR_CNT | LVL | ? 7? 2?7 77 TSK_SP
TMR_LNIC l
IP0S/09

10 - 11 |12 - 13 |14 15 |16 - 17 |18 - 19 |1A - 1B |1C - 1D |1lE - 1F \
RUN
BQTOP BQBOTM | FLG | ? 272 77 ??? ?2?? ?22? ‘

Note that TCBs for IP0S/09 are always 256 bytes long and aligned on a 256
byte boundary. The fields defined above are common to both IPOS and IP0S/09.

The fields are:

TSK_LNK - Used by the scheduler to link the TCB into the job queue. Used
by the timer routines to 1link the TCB into the timer queue. Used as
scratch area by other system routines (IPOS) reserved for scheduler
(IP0OS/09).

TSK_ADR - The entry point address of the task associated with the TCB
when the TCB is queued to either the job queue or the timer queue. Used
as scratch area by other system routines. This field is used only in
reference to IP0S, not IP0S/09, which reserves these bytes for the TIMER
(queuing) at all times.

LVL - This byte is the level byte. The bit assignments in the byte are:

0-4 Software priority level number
5-7 Unused currently

TMR_CNT - The timer delay count for the timer routines. (Used only
during delay operations.)

TSK_SP - Contains a pointer to the task stack.

Rev. 2 D814 System Software Manual Rev. 2
. Section 6.1 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

The above bytes (0 - F) of the active TCB (belonging to the task which is
running) is mapped to locations X'0000" through X'OOOF' at all times by the
IPOS scheduler to decrease IPOS overhead; IP0S/09 uses the 6809 direct page
register to map locations X'0000' - X'OOFF'.

The fields in bytes 10 - 14 of the TCB are used only by batch tasks (see
Section 6.1.3); therefore, they are free and available in all TCBs except
Batch TCBs (BTCBs).

BQTOP - Pointer to top entry queued to BTCB.
BQBOTM - Pointer to bottom entry queued to BTCB.
RUNFLG - Non-zero if BTCB task is running or queued to be run.

The entry points for obtaining TCBs are:

Entry Point - IP$SCHD:GTCB (IPOS, IP0S/09)

Function

Get a TCB of specified length and set it up. This call may be used only
during initialization. Also clears the first 5 bytes of the second buf-
fer in case the TCB is to be used as a Batch TCB (see 6.1.3). IP0S/09

will force 256 byte TCB alignment. Buffers lost in aligning TCBs are
recoverable using IP$SCHD:GTCB_CLEANUP.

Entry Conditions - (JSR IP$SCHD:GTCB)

* A register contains the task priority.

* (IPOS) B register contains the number of buffers to be included in
the TCB in addition to the mapped 16 bytes (may not be zero).

(IPOS/09) B register N/A, all TCBs are 256 bytes long.
* X register contains the task entry point address.

Exit Conditions

* A, B registers destroyed
* X register points to the TCB

Entry Point - IP$SCHD:GTCB1 (IPOS only)
Function

Identical to IP$SCHD:GTCB, except that only one additional buffer is
obtained. The B register need not be set on entry.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Conditions (JSR IP$SCHD:CLEANUP) IP0S/09

None

Exit Conditions

A,B,U,X,Y destroyed.
Function

Release GTCB wasted buffers.

User Program Interface

The IP operating system maintains a job queue for each priority level.
Tasks are removed from the queues on a first-in first-out basis. If there is
a choice between running a suspended task or starting a new task of the same
priority as the suspended task, the decision will always be to resume the
suspended task. The routines for accessing the job queues and terminating
tasks are given below.

Entry Point - IP$SCHD : FORKTCB
Function
Initiate a logically parallel task at a specified priority level (1 - 8).

Entry Conditions - JSR IP$SCHD:FORKTCB (IPOS);
System Macro FORK (IP0S/09)

* X Register points to the TCB to be forked
* TCB contains the entry address and the software level number

Exit Conditions

* A11 registers destroyed (IPOS)
* A,B,X registers destroyed (IP0S/09)
* CC:I= 0

Entry Points - IP$SCHD:TERMFORKTCB

Function

Initiate a task at a specified priority level after terminating the
caller.

Entry Conditions - (JMP IP$SCHD:TERMFORKTCB) IPOS;
System Macros TFORK IP0S/09
TFORKI (Interrupt Level IP0S/09)
* X register points to the TCB to be forked
* TCB contains the entry address (IP0S) and the software level number

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 6

CODEX CORPORATION A COMPANY CONFIDENTIAL

Exit Conditions

* None
NOTE: This routine does not return to the caller.
Entry Point - IP$SCHD:TERM and IP$SCHD:TERM NOTCB
(Note: Entered via SWI3 for IP0S/09)
System Macros TERM and TERMN
Function

Terminates execution of the calling task and enters the scheduler for
selection of the next task.

Entry Conditions

* None

Exit Conditions

* None

NOTE: This entry point does not return to the caller.. *

In addition to the above entry points, there are macro instructions which
generate in-line code for forking task levels 9-16. This is known as a fast
fork.

Two macros are available for performing fast forks, FSTFRK and FSTFRKR.
They reside in MAC$>FRKMAC (IPOS) and MAC$>FORKMC (IP0S/09).

The form of FRKMAC is:

LABEL FSTFRK TCBPTR,LEVEL ,* (IPOS)
LABEL FSTFRK LEVEL (IP0S/09)
Where:

LABEL is an optional label which is to be assigned to the first instruc-
tion generated by FSTFRK.

TCBPTR is the name of a 2 byte location in memory which contains a
pointer to the task control block to fork.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

LEVEL is the number (9-16) of the IPOS software level at which to fork
the TCB.

* Is an optional parameter indicating that the code is to be assembled in
an interrupt routine of that interrupts are masked on entry to FSTFRK and
are NOT to be unmasked on exit from FSTFRK. It is either left unspeci-
fied or is specified as an asterisk. '

The form for FSTFRKR is:

LABEL FSTFRKR TCBPTR,REG,* (IPOS ONLY)
FSTFRKR REG (IP0S/09)
Where:

REG is either A or B, depending on which register contains the IPOS soft-
ware level on entry to FSTFRKR. .

A11 other parameters are as in FSTFRK above.

Fast fork macros destroy the X register (IPOS only; A-reg IP0S/09).
FSTFRKR destroys the register specified as REG.

Examples of proper calls are:

LBL24 FSTFRK OFIPITP:XYZTCB,EQ$IPSITP: XYZLVL
FSTFRKR OFIPITP:ABCTCB,B,*

System Macros

IPOS/09 uses system macros to perform task initiation, task termination,
and timer delay functions. The macros and parameters are:

FASTCB TSKADR, LEVEL

This macro creates a TCB at a fast fork level (9-16) and places the TCB
into the fast job queue. TSKADR is the TCB starting address, LEVEL is
the TCB running level. If TSKADR is omitted, the starting address is
assumed to already be in the X-register. LEVEL must be specified.

FORK TCB, LEVEL

This macro queues a TCB for task initiation (levels 0-16). TCB is a
pointer to a TCB (if specified); if omitted, the X-register is assumed to
already point to the TCB. LEVEL is the task running level (if speci-
fied); if omitted, the task runs at the level last stored in the TCB.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

TFORK TCB, LEVEL, RESTART

This macro terminates the currently active processor level task and forks
another (or the same) processor level task. RESTART, if specified, indi-
cates the next starting address for the task terminating; if not speci-
fied, the next instruction after the TFORK macro will receive control the
next time the task 1is initiated. TCB and LEVEL are as for the FORK
macro.

TFORKI TCB, LEVEL

This macro is equivalent to TFORK but terminates an interrupt level rou-
tine. TCB and LEVEL are as for the FORK macro.

TERM

This macrto terminates an interrupt level routine. There are no para-
meters.

TERMN RESTART

This macro terminates a processor level routine. RESTART is as for the
TFORK macro. --

BTERM

This macro is used by the batch task utility and is equivalent to TERMN
exept that "RESTART" is automatically reset to the original task starting
address. BTERM requires no parameters.

FSTFRK LEVEL

This macro initiates a fast fork processor level (9-16) task. Level
(required) specifies the level at which the TCB was created (FASTCB).

FSTFRKR REG
This macro is equivalent to FSTFRK with the level in Register "REG".
DELAY TIME

This macro causes the processor level routine executing it to be delayed
(suspended) for a specific time period. ""TIME" specifies the suspension
period (in increment of 10 ms) if "TIME" is not specified TMR_CNT is
assumed to be already set in the TCB.

FORKDELAY TIME, TCB, LEVEL

This macro causes a processor level routine to be forked after a delayed
period of time. "TIME" is as for the DELAY macro. "TCB" and "LEVEL" are
as in the FORK macro.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 9

CODEX CORPORATION : COMPANY CONFIDENTIAL

Interrupt Handling (IPOS)

When an interrupt occurs, IPOS determines which device is requesting ser-
vice and dispatches through a table set up at assembly and link time to the
appropriate interrupt routine. A predetermined (by equates) set of addresses
are used to contain the entry point addresses for user program entry points
to service interrupts which are to be handled by the protocol module(s).

Interrupt Handling (IP0S/09)

14

IP0OS/09 interrupt handling makes use of the 6809 expanded capabilities to
allow vectored interrupts. An I/0 area address access immediately determines
the Tocation in a 128 entry vector table of the correct routine to handle all
possible interrupts. The interrupt vector table is defined by user routines
during module assembly. The IP0S/09 related entries (RTC, BIC 0) are handled
by IP0S/09. Prioritization of system interrupts and BIC-1 interrupts are
controlled via an assembled vector control byte.

Example

Last is a scenario, illustrated in Figure 6.1.1, of how this scheme
works. The level assignments shown in the table below are assumed for the
example.

Int. 2651 input, 2651 output, control signal change, real time clock
update

8 Outbound FIFO data through to outbound protocol buffer

7 Outbound protocol through to 2651 output buffer

6 Inbound data from buffer to BIC FIFO

5 Inbound terminal buffer, protocol, to FIFO buffer

4 Outbound packet transfer for BIC packet queue

3 Inbound packet transfer into BIC packet queue

2 Packet processing

1 Real time clock dependent routines (batch)

0 Background diagnostics

The scenario is:

a. The port processor is running background diagnostics at Tevel

b. An interfupt from the BIC initiates a level 4 transfer from the
Packet FIFO. Level 0 is suspended.

c. Before terminating, level 4 forks a level 2 packet processing
task via a software interrupt.

d. Level 4 terminates and level 2 starts.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 2

e.

The real time clock interrupts and schedules a task at level 1.
since we suspended level 2, the clock task at level 1 is flag-
ged as active and level 2 is resumed.

Level 2 TERMFORKs and initiates a packet to be sent inbound at
level 3.

An interrupt from the 2651 is received and a level 5 task is
initiated to handle an inbound transfer. The level 3 task is
suspended and the level 5 task starts.

Let us assume that this is a synchronous terminal and that this
transfer is simply waiting for the end of a message. Level 5
terminates and level 3 is resumed.

Level 3 finishes and terminates and the level 1 clock task is.
started.

Level 1 terminates, no other tasks are active so level 0, back-
ground diagnostics, are resumed.

D814 System Software Manual Rev. 2
Section 6.1 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

—
n

Terminate

—
L]

Initiate

d f h i

Ta ® & o o e e o e 00 o o+ e o o _° o o

Lo ee e oo |ofoae Jole oo Jofole]e]-
S I O T S S O O O Y O Y TR R
N N NN NN A S NN
20 P T 8 [PR Y 8

Figure 6.1.1

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL

6.1.2 Real-Time Clock Submodule

The Real-Time Clock Submodule provides the timing capabilities of IPOS,
including time-of-day, interval timing, timed task initiations, and task
delaying.

Clock Functions

a. Provide an interval timer which continually increments every 10
milliseconds (24 bits).

b. Provide for initiating a task after a period of time has elapsed (in
increments of 10 ms).

c. Provide for delaying a running task for a period of time (in incre-
ments of 10 ms).

Interval Timer

Routines will be provided to set and read the current value of the 24-bit
interval timer for use in recording elapsed time, detecting delays, and any
other need to know how much time has elapsed since a prior event. The user
routine may utilize as many or as few of the 24 bits as it desires, or any
subfie]d, to obtain the time interval/resolution trade-off it requires.

Entry Point - IP$RTC:SETIME

Entry Conditions

* B register
* X register

high 8 bits of 24-bit timer
low 16 bits of 24-bit timer

Exit Conditions

* A1l registers unchanged
Entry Point - IP$RTC:GETIME

Entry Conditions

* None

Exit Conditions

* A register unchanged (U,X IP0S/09)
* B register = high 8 bits of 24 bit-timer
* X register = low 16 bits of 24-bit timer

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 13

CODEX CORPORATION COMPANY CONFIDENTIAL

Timed Task Initiation

A 16-bit timed task initiation is started by setting a non-zero value
into the timer count of a task's TCB and chaining it into the clock timer
list via a routine to be provided. The timers decrement and the associated
entry points are initiated when their timers reach zero. Time specification
is in 10 millisecond units.

Entry Point - IP$RTC:FORKDELAY
Entry Conditions (IPOS)

* X register points to TCB to be forked
* TSK_TMR must be set in the TCB

Entry Conditions (IP0S/09)

Called using system macro FORKDELAY.

Exit Conditions

A, B registers destroyed (IPQS)
A register destroyed (IP0S/09) .

Delaying a Task

A running task may ask to be delayed for a period of time (letting other
tasks, even of the same or lower priority level run in the meantime) by cal-
1ing a routine to be provided. Machine state (registers and condition codes)
will not be preserved during a delay, but the delaying task may leave informa-
tion on the stack or in the TCB.

Entry Point - IP$RTC:DELAY

Entry Conditions (IPOS)

* TSK_TMR must be set in the TCB
Entry Conditions (IP0S/09)

Called using system macro DELAY.

Exit Conditions

* A11 registers destroyed (IP0S)
A,X registers destroyed (IP0S/09)
TSK_ADR destroyed (IPOS)

Rev. 2 D814 System Software Manual Rev, 2
Section 6.1 - 14

CODEX CORPORATION COMPANY CONFIDENTIAL

IP$RTC: CHANGE

This routine alters the value of the OFIPTCB:TMR_CNT field of a task on
the RTC timer queue. This effectively changes the restart time of a delayed
(or delay-forked) task. Interrupts are masked during the procedure.

OFIPTCB:XBYTE is set at termination, and may be used as a 'valid' flag
for routines which are cancellable.

Entry Point - IP$RTC:CHANGE

Entry Conditions:

X-reg - TCB to be updated
OFIPTCB:XSAVE - New delay interval

Processing

1. New TMR_CNT = time elapsed since last RTC interrupt + new delay
interval (OFIPTCB:TMR_CNT = OFIP0S:TVP + OFIPTCB:XSAVE)

2. If this TCB is next to time out (i.e., OFIPTCB:TMR_CNT
<OFIPTCB:XHOLD), then OFIPO0S:THOLD = OFIPTCB:TMR_CNT

3. OFIPTCB:XBYTE = 1

Exit Conditions

A-reg, B-reg - destroyed
X-reg - unchanged
OFIPTCB:XBYTE = 1

Recommendations

Current ISTP$ASCII:BSC_TBL
ISTP$EBCDIC:BSC_TBL
ISTP$TRANSC:BSC_TBL

moved to
IP$BSCTBL:ASCII
IP$BSCTBL:EBCDIC
IP$BSCTBL: TRANSC

Since they will be used by both MSTP and SSTP_BSC.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 15

CODEX CORPORATION COMPANY CONFIDENTIAL

6.1.3 Batch Processing Submodule

The purpose of batch processing is to allow one task with one task con-
trol block to sequentially process information in an order determined by the
first-come first-served principle.

The functions performed by the batch processing submodule are:

a. Enqueue a request to a BTCB and fork the task if it is not
running.

b. Dequeue a request from the current running BTCB and terminate
if none.

Requests are in the form of buffers (or byte files or byte queues) queued
(chained) to the BTCB.

Batch Task Control Blocks (BTCBs) must be obtained at initialization time
because they depend on the ability to obtain contiguous memory buffers from
the free buffer pool (see 6.1.1). BTCBs, however, are a minimum of three
buffers long.

The fields in the second BTCB buffer are:

BQTOP - Pointer to top entry queued to BTCB
BQBOTM - Pointer to bottom entry queued to BTCB
RUNFLG - Non-zero if BTCB task is running (or queued to be run, 6809)

The first 2 bytes of the entry's buffer are used to enqueue it to the
TCB.

The routine for enqueueing a batch request is IP$BATCH:ENQ.

If the BTCB queue is not empty, the last entry is linked to the new entry
and BQBOTM is set to point to the new entry. If the queue was empty, a
pointer to the new entry is also saved in BQTOP. If enqueueing to an empty
queue, the run flag is checked. If the flag is set, control is returned to
the caller. Otherwise, the run flag is set, the BTCB is forked, and then
control is passed to the caller.

Entry Conditions

* X register points to the BTCB to which the enqueue is to be per-
formed

* A, B registers point to the element to be enqueued

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 16

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

* A1l registers destroyed

The routine for dequeueing batch requests (IP$BATCH:DEQTRM) is intended
to be used by the batch tasks to obtain the requests queued to them.

IP$BATCH:DEQTRM - A dequeue is attempted from the current BTCB (pointed
to be OFIP0S:TCBADR). If no entries are present, it pops the return
address off the stack and performs an IP$SCHED:TERM_NOTCB (6800) or
IP$SCHD:BATCH_TERM (6909) to terminate after clearing the run flag in the
BTCB. If an entry is present, its pointer to the next entry is saved as
BQTOP. IF this pointer is zero, the bottom pointer, BQBOTM, is also
cleared.

Entry Conditions

* None

Exit Conditions

* X register points to the dequeued element
* A, B registers destroyed

6.1.4 Buffer Management Submodule

Introduction

The Buffer Management Submodule (FBMS) is part of the D814 IP operating
system. This module contains utility routines for maintaining the port's
free buffer pool. The buffers in this pool are the dynamic memory units
which tasks can obtain and return in real-time to meet such memory require-
ments as temporary data storage, input/output character buffering, and inter-
task communication message buffers.

General Description

The FBMS has two main functions. The first function is to maintain the
D814 1/P free buffer pool and to keep the statistical information necessary
for determining buffer utilization. The second function is to provide use-
ful buffer utility features for the system in a central software module. Two
buffering utilities are provided. The first is a general byte file utility
and the second is a byte queue buffer utility.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 17 /

CODEX CORPORATION COMPANY CONFIDENTIAL

1. Free Buffer Pool Management

The D814 software system maintains a pool of fixed size free buffers so
that tasks in the system may be able to dynamically obtain memory resources.
This pool is created at IPOS initialization time by the System Initializa-
tion Module and is maintained during system execution by the Buffer Manage-
ment Module (FBMS). Tasks can obtain and return buffers from this pool by
calling subroutines in the FBMS. The pool is kept as a queue so that a
historical record of buffer use is available and so that background memory
diagnostics which will test all of the buffer pool can be implemented. The
buffer manager maintains a count of the total number of buffers in the free
pool and a count of those presently allocated to software tasks. These
numbers are used to calculate buffer utilization statistics.

The buffer pool will have two operating modes - normal and priority.
When the number of free buffers in the pool is less than a specified thresh-
old, the buffer pool goes into "priority" mode. In this mode only “priority"
get buffer requests will be allowed to be successful. The purpose of the
priority mode is to control buffer pool underrun. In priority mode, system
software modules that need buffers but are low priority will suspend opera-
tion until the buffer pool builds back up again to an acceptable level and
the pool reenters normal mode. When the pool goes into priority mode, a flag
will be set so that a monitoring task can report the condition at some later
time.

l 0-3 4-5|6-D E-F,

t QUEUE LINKS | LBPTR oo LNKPTR l

QUEUE LINKS - 4 bytes for use by queue utility (see 6.1.5)
LBPTR - Pointer to last buffer in list
LNKPTR - Pointer to next buffer in list

The following operations will be available on free buffer pool:

A.
Routine GBUF - Obtains one buffer from the free buffer pool
Entry Point - IP$FBMS:GBUF_PRI - High priority entry
Entry Point - IP$FBMS:GBUF '
Entry Conditions
* None
Rev. 2 D814 System Software Manual Rev. 2

Section 6.1 - 18

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

B,X registers destroyed
* If buffer available:
X-reg = address of buffer

CC:2 =0
cC:I =0

* If buffer not available:

CC:Z =1 and CC:I =0

Routine GLIST - Get formatted linked list of buffers
Entry Point - IP$FBMS:GLIST

Entry Conditions

* B-reg = number of buffers in list (n<= 255, n=0=256)

Exit Conditions

* X-reg
* B-reg
U-reg
* CC:1I
* CC:Z

pointer to list header
destroyed
destroyed (IP0S/09)

nnu

0
1 if not successful
Routine RBUF - Return one buffer to the free buffer pool

Entry Point - IP$FBMS:RBUF

Entry Conditions

* X-reg = Address of buffer

Exit Conditions

B,X-reg
U-reg
* CC:I

destroyed
destroyed (IP0S/09)
0

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 19

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Point - IP$FBMS:RBUF_SP
* Resets pointer to beginning of buffer

Entry Conditions

* X-reg = Any address in returned buffer

Exit Conditions

* Same as RBUF

D.
Routine RLIST - Returns list of 'n' buffers
Entry Point - IP$FBMS:RLIST
Entry Conditions
* X-reg = Address of list. of buffers to be returned, LBPTR of first
buffer = pointer to the last buffer in the 1list. NBUFS of first
buffer = count of 'n' buffers in the list.
Exit Conditions
A,B,X-reg = destroyed
U-reg = destroyed (IP0S/09)
* CC:I =0
E.
Routine RCHAIN - Returns list of buffers
Entry Point - IP$FBMS:RCHAIN
Entry Conditions
* X-reg = Address of returned list of buffers, LNKPTR of the last
buffer in the 1ist must be null.
Exit Conditions
* CC:I =0
Rev. 2 D814 System Software Manual Rev. 2

Section 6.1 - 20

CODEX CORPORATION COMPANY CONFIDENTIAL

2. Byte File Buffer Utility

IP$BFILE provides a utility submodule for creating, deleting, and main-
taining a byte file buffer system. These byte file buffers are not multipro-
cessor interlocked so only one task may be using a byte file buffer at any
one time.

The structure of a byte file is that it has a header buffer pointing to a
list of buffers, each linked to the next with the last 2 bytes. The format
of the header buffer is:

0:1:2:3|4:5|6|7|819/a B':CED‘E'EF

BYTES 0 - 3 - Reserved for linking files to lists
BYTES 4 & 5 - Pointer to last buffer in file

BYTE 6 - Total # of buffers making up file

BYTE 7 - Number of bytes allocated in file body
BYTE 8 - Address of highest written byte

BYTE 9 - Address of last byte written

BYTE A - Address of last byte read

BYTES B -> D - Not used

BYTES E & F - Pointer to first buffer of file body

The fite body is composed of a linked list of buffers where the first 14
bytes of each buffer are byte file data storage and the last 2 bytes are a
link pointer to the next buffer in the file body. The last link pointer in
the file is zero.

The following functions will be provided for manipulating byte file buf-
fers:

A.
Routine CREATE - Creates a byte file
Entry Point - IP$BFILE:CREATE
Entry Conditions
* None
Rev. 2 D814 System Software Manual Rev. 2

Section 6.1 - 21

CODEX CORPORATION

Exit Conditions

* If available:

B-reg = destroyed
X-reg = file header address
CC:z =CC:I =0

OFIPTCB:XSAVE = ptr to byte file descriptor
* If not available:
B-reg

cC:Z
CCI

destroyed
1
0

Routine DELETE - Deletes a file
Entry Point - IP$BFILE:DELETE

Entry Conditions

* X-reg = File header address

Exit Conditions

* A1l registers destroyed
* OFIPTCB:XSAVE = ptr to byte file descriptor
* CC:I =0

Routine READ - Reads byte 'n' from a given file
Entry Point - IP$BFILE:READ

Entry Conditions

[oy)

Byte address 'n
File descriptor address

* B-reg
* X-reg

Exit Conditions

* A-reg = Contents of the nth byte
* CC:v 'out of range' error
* OFIPTCB:XSAVE = ptr to byte file descriptor

Rev. 2 D814 System Software Manual
Section 6.1 - 22

COMPANY CONFIDENTIAL

Rev.

2

CODEX CORPORATION COMPANY CONFIDENTIAL

D.
Routine SREAD - Reads sequentially 'next' byte from a file
Entry Point - IP$BFILE:SREAD

Entry Conditions

* X-reg = File header address

Exit Conditions

Contents of the 'next' byte

B-reg = Address of 'next' byte in file

CcC:v 'out or range' error

OFIPTCB:XSAVE = ptr to byte file descriptor

A-reg

* & * *

Routine WRITE - Writes into the nth byte of file
Entry Point - IP$BFILE:WRITE

Entry Conditions

* A-reg
* B-reg
* X-reg

Data byte to be written to file
Byte address 'n'
File descriptor address

Exit Conditions

* CC:Z = 'unable to write' message
* CC:I = May be cleared to 0
* OFIPTCB:XSAVE = ptr to byte file descriptor

nou

Routine SWRITE - Writes sequentially into ‘'next' byte of file
Entry Point - IP$BFILE:SWRITE

Entry Conditions

* A-reg
* X-reg

Data byte to be written to file
File descriptor address

Exit Conditions

B-reg = Address of 'next' byte

cC:Z 'unable to write' message

CC:I may be cleared to O

OFIPTCB:XSAVE = ptr to byte file descriptor

* % % *

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 23

CODEX CORPORATION

3.

Byte Queue Buffer Utility

COMPANY CONFIDENTIAL

IP$BQUE provides a utility submodule for creating, deleting, and maintain-

ing byte queue data structures.

The byte queues are multiprocessor inter-

locked so that one task may be putting bytes into a byte queue while another
Because of interlocking X'00' may

task may be removing bytes from the queue.
not be stored in the byte queue.

Byte queues have no maximum size.

The first buffer, known as the queue descriptor, has the following
format:
| 0-3]4-5 6 /7 -8 9 - 10 11 - 13 | 14 - 15
LAST # HEAD TAIL LINK

N/A BUFFER | BUFFERS | POINTER | POINTER N/A POINTER

BYTES O - 3 - Are reserved for use by the Queue Utility routines.

BYTES 4 & 5 - Currently unused.

BYTES 6 & 7 - Contains the number of buffers in the list.

BYTES 8 & 9 - Point to the next byte to get.

BYTES 10 & 11 - Point to the next byte to put.

BYTES 12 - 13 - Point to next byte to be read.

BYTES 14 & 15 - Currently unused.

The next byte to be written (pointed to by tail pointer) always contains
binary zeroes. When a byte is to be written into the byte queue, the next
byte is cleared to zero and then the new data byte is written. This allows
~ the 'get' routine to check for an empty queue without having to disable inter-
rupts and compare head and tail pointers. It simply gets the byte pointed to
be the head pointer; if it is zero, the queue is empty.

The byte queue routines consists of four user called subroutines.

A.
Routine CREATE - Creates a byte queue
Entry Point - IP$BQUE:CREATE
Entry Conditions
* none
Rev. 2 D814 System Software Manual Rev. 2

Section 6.1 - 24

CODEX CORPORATION

Exit Conditions

* If available:

X-reg = Address of queue descriptor

CC:Z2=0

cC:I =0

OFIPTCB:XSAVE = ptr to byte queue descriptor

* If not available:

CcC:Z
CC:I

1
0

Routine DELETE - Deletes a byte queue
Entry Point - IP$BQUE:DELETE

Entry Conditions

* X-reg = Queue descriptor address

Exit Conditions

* cC:I =0

Routine PUTBYT - Puts a byte into a queue
Entry Point - IP$BQUE:PUTBYT

Entry Conditions

* A-reg = A byte of data
* X-reg = Queue descriptor address

Exit Conditions

B-reg = destroyed

CC:Z = 'unable to enqueue' message

CC:I may be cleared to O

OFIPTCB:XSAVE = ptr to byte queue descriptor

* % F *

Rev. 2 D814 System Software Manual

Section 6.1 - 25

COMPANY CONFIDENTIAL

Rev. 2

CODEX CORPORATION ~ COMPANY CONFIDENTIAL

D.

Routine GETBYT - Gets a byte from a queue
Entry Point - IP$BQUE:GETBYT

Entry Conditions

* X-reg = Queue descriptor address

Exit Conditions

A-reg = Dequeued byte from queue

cC:z '"Empty queue' condition

CC:I may be cleared to O

OF$IPSTCB:XSAVE = ptr to byte queue descriptor

* ok * *

Routine READBYT - non-destructive read of byte from a queue
Entry Point - IP$BQUE:READBYT

Entry Conditions

* X-reg - queue descriptor address

Exit Conditions

A-reg = byte read from queue
cC:z '"End of queue' condition
CC:1 may be cleared to 0

OFIPTCB:XSAVE = ptr to byte queue descriptor

* ¥ F *

Routine READBYT_RESET - reset READBYT pointer to beginning of byte queue
Entry Point - IP$BQUE:READBYT_RESET
Entry Conditions

* X-reg = queue descriptor address

Exit Conditions

A-reg
B-reg

byte read from queue before reset or 0 if end
destroyed

CC:z 'End of Queue' condition

CC:I may be cleared to 0

OFIPTCB:XSAVE = ptr to byte queue descriptor

* * * * *

Rev. 2 D814 System Software Manual Rev. 2

Section 6.1 - 26

CODEX CORPORATION COMPANY CONFIDENTIAL

4., Ring Buffer Utility

IP$RING provides a utility submodule for creating and maintaining ring
buffer data structures.

A ring buffer is formed from a 1list of buffers in contiguous memory
spaces. The first buffer is used as a header for the ring. Its fields hold

the pointers and values necessary for ring maintenance as defined below. -
0 -1 2-3 4-5 6 - 7 8 9 10 - 13 14 - 15
GET PUT TOP LINK

l POINTER | POINTER | UNUSED | POINTER | SIZE | COUNT | UNUSED | POINTER |

Bytes

0-1 Point to the next byte to be read.

2 -3 Point to the next byte to be written.

4 - 5: Currently unused.

6 - 7: Point to the Tast byte in the buffer list.
8: Number of data bytes allowed in the ring.
9 Number of data bytes currently in the ring.

10-13; Currently unused.
14-15: Standard buffer link to the first data buffer.

The structure is manipulated in a wrap-around fashion. Data is entered
and removed freom the ring according to FIFO, but emptied buffers are not
released. Instead, the Get and Put pointers follow each other around the
ring. Since the buffers are contiguous, after either kind of access, the
appropriate pointer is updated by merely incrementing it. (Thus, the next
byte to be read is not always in the buffer indicated by the link pointer of
the header.) When either pointer (Get or Put) indicates that the last byte
in the list has been accessed (i.e., pointer = Top Pointer), it is updated to
point to the first byte in the list (i.e., pointer <-- Link Pointer).

Note: A ring buffer may contain at most 255 bytes of data.

The ring buffer routines consist of four user called subroutines:

A.
Routine CREATE: creates a ring buffer
Entry Point - IP$RING:CREATE
Entry Conditions |
B-reg = size of ring buffer to be obtained
Rev. 2 D814 System Software Manual Rev. 2

Section 6.1 - 27

CODEX CORPORATION

X-reg = address of ring buffer header (If CC:Z = 0)
A-reg = destroyed
B-reg = destroyed
CC:Z = 0, successful completion
CC:Z =1, no buffers available
B.
Routine PUT: puts a byte in the ring buffer
Entry Point - IP$RING:PUT
Entry Conditions
B-reg = byte to be put in buffer
X-reg = address of ring buffer header
Exit Conditions
A-reg = destroyed
B,X-regs = unchanged
CC:Z = 0, successful
CC:Z = 1, ring buffer full
CC:C = 0, ring <= half full
CC:C = 1, ring > half full
C.
Routine PUT2: puts 2 bytes in the ring buffer
Entry Point - IP$RING:PUT2
Entry Conditions
A-reg = first byte to be put in ring
B-reg = second byte to be put in ring
X-reg = address of ring buffer header
Exit Conditions
A-reg = destroyed
B,X regs = unchanged
CC:Z = 0, successful
CC:Z = 1, ring buffer full
CC:C = 0, ring <= half full
CC:C = 1, ring > half full
Rev. 2 ' D814 System Software Manual

Exit Conditions

Section 6.1 - 28

COMPANY CONFIDENTIAL

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

D.
Routine GET: gets a byte from the ring buffer
Entry Point - IP$RING:GET
Entry Conditions
X-reg = address of ring buffer header
Exit Conditions
A-reg = destroyed
B-reg = byte from ring buffer (if CC:Z = 0)
X-reg = unchanged
CC:Z = 0, successful
CC:Z =1, ring buffer empty
CC:C = 0, ring <= half full
CC:C =1, ring > half full
Rev., 2 D814 System Software Manual Rev. 2

Section 6.1 - 29

CODEX CORPORATION COMPANY CONFIDENTIAL

6.1.5 Queue Utility Submodule

The Queue Utility Submodule provides a standard and safe (interrupt
masked) method of implementing and manipulating queues in the D814 IP soft-
ware.

Queue Elements

Data structures of any size or shape may be queued by the Queue Utility
Submodule. The only requirement is that the structure to be queued have a
field within it for queueing purposes, and that it have such a field for
every queue that it can be a member of simultaneously. It is helpful if
these fields are at the beginning of the structure, as the queue manipula-
tion routines accept and return pointers (called element pointers) to these
fields.

Queue Descriptor Blocks

A queue descriptor block is a small area of storage used for bookkeeping
on a queue. One is needed for each queue and should be allocated in a fixed
place in memory, as the user will need to supply a pointer to the queue
descriptor block whenever he wishes to manipulate the associated queue.

Entry Point - IP$QUEUE:INITQUEUE

Entry Conditions

* X register points to the queue descriptor to be initialized

Exit Conditions

* A1l registers unchanged

Queue Manipulation Functions

Enqueue an Element

Link a new element into a queue by placing it behind the current tail
element. Pointers are required to the new queue element and the queue block
to which it is to be queued.

Entry Point - IP$QUEUE:ENQUEUE

Entry Conditions

* A, B registers point to the new entry
* X register points to the queue descriptor block

Rev. 2 D814 System Software Manual Rev, 2
Section 6.1 - 30

v

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

* A1l registers unchanged
* CC:C = 1 if queue was formerly empty

Dequeue an Element

Remove an element from the head of a queue. A pointer to the queue des-
criptor block is required. A pointer to the dequeued element is returned, or
null if the queue was empty. The forward and backward pointers of the

dequeued element are zeroed.
Entry Point - IP$QUEUE:DEQUEUE

Entry Conditions

* X register points to the queue descriptor block

Exit Conditions

* X register points to the dequeued element, or zero
* CC:Z =1 if queue was formerly empty
* CC:C =1 if queue is now empty

Access a Queue Element

A routine will be supplied which "“steps through" a queue, returning a
pointer to the "next" element in the queue (starting with the head) each time
it is called. Returns null if the queue is empty or the end has been
reached. Requires a pointer to the queue descriptor block.

There is a routine for resetting the "next" element to be the first ele-
ment in the queue.

Entry Point - IP$QUEUE:QUEUETOP

Entry Conditions

* X register points to the queue descriptor block

Exit Conditions

* A1l registers unchanged

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 31

CODEX CORPORATION COMPANY CONFIDENTIAL

There is an entry point for stepping through the queue.
Entry Point - IP$QUEUE:QUEUENEXT

Entry Conditions

* X register points to the queue descriptor block

Exit Conditions

* X register points to the "next" element
* CC:Z =1 if the queue is empty or the end is reached

Remove Last Element Accessed

Remove the last element accessed by the QUEUENEXT routine and relink the
queue as necessary (as the element removed may have been at any random point
in the queue). Returns null if the queue was empty or the accessing routine
was run to the end of the queue, otherwise returns a pointer to the element
removed. The forward and backward pointers of the element removed are
zeroed. Requires a pointer to the queue descriptor block.

Entry Point - IP$QUEUE:DEQUEUELAST

Entry Conditions

* X register points to the queue descriptor block

Exit Conditions

* X register Points to the element dequeued
CC:Z =1 if the queue was formerly empty
* CC:C =1 if the queue is now empty

*

nwn

6.1.6 Addressed Packet Handler

The Addressed Packet Handler 1is responsible for receiving outbound
packets from the BIC and sending inbound packets to the BIC. The outbound
addressed packets are handled by the Addressed Packed Receiver and the in-
bound packets are handled by the Addressed Packed Transmitter. No logical
connection is required between the two.

In addition, an Addressed Packet Router routine is supplied to distrib-
ute packets to their destination. The reader should be familiar with the
addressed packet format described in Section 3.2.2.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 32

CODEX CORPORATION COMPANY CONFIDENTIAL

The Addressed Packet Handler is comprised of three sections:
1. Addressed Packet Receiver routines

2. Addressed Packet Transmitter routines

3. Packet Router routines

The following sections describe these routines in more detail.

Addressed Packet Receiver

The Addressed Packet Receiver has two entry points.

1. Packet Receiver Interrupt Handler
2. Packet Receiver

The first entry is an interrupt entry initiated when a BIC outbound

packet interrupt occurs. The second entry performs the actual packet recep-
tion and assembly.

Packet Receiver Interrupt Handler

This entry is initiated by the occurrence of an outbound packet inter-
rupt. This routine runs at interrupt level as defined in Section 6.1.1. It
disables the BIC outbound packet interrupt, forks the Packet Receiver, and
exits.

Packet Receiver

This routine (which is forked by the Packet Receiver Interrupt Handler)
reads the addressed packet segments sent through the BIC, assembles the seg-
ments into packets, and calls the distribution routine to distribute the
packet to the appropriate IP routine.

Addressed Packet Transmitter

The Addressed Packet Transmitter contains three entry points:

1. Packet Transmit Queue Routine
2. Packet Transmitter Interrupt Handler
3. Packet Transmitter

The first entry is a subroutine used to queue a packet to the Packet
Transmitter.

The second entry is an interrupt entry initiated when a BIC inbound
packet interrupt occurs. The third entry performs the actual packet trans-
mission.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 33

CODEX CORPORATION ‘ COMPANY CONFIDENTIAL

Packet Transmit Queue Routine

This routine is called by the Packet Router when a packet is to be sent
to the mainframe.

The routine queues the packet to the Packet Transmitter. If the trans-
mitter is not already active, the inbound packet interrupt in enabled. In
either case, the routine returns to the caller.

Entry Point - IP$APKT:XMTQUE

Entry Conditions

* X register points to the packet to be sent

Exit Conditions

?

Packet Transmitter Interrupt Handler

This routine is initiated when a BIC inbound packet interrupt occurs and
it runs at interrupt level. It disables the inbound packet interrupt, forks
the Packet Transmitter, and exits.

Packet Transmitter

This routine sends the addressed packet to the BIC inbound packet buffer.

If no packet is in progress, the routine obtains the first packet queued
to it. If no packets are on the queue, the routine leaves the BIC inbound
packet interrupts masked and terminates. Otherwise, the packet length is
obtained and the Transmitter Packet Pointer is set to first byte of the
packet.

Non-Local Packet Router Routine

This routine may be called by any routine in the IP to distribute a
packet to its destination. It is passed the address of the packet buffer.

\
The routine first checks whether the packet is for a module in this IP.

If the packet is not for a local module, the routine calls the Packet
Transmit Queue routine and returns to the caller.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 34

CODEX CORPORATION COMPANY CONFIDENTIAL

If the packet is for a module at this I/P, meaning it is either addressed
to this physical port or to a virtual port within this port, a thread number
is written in the destination port field of the packet. If the destination
is the physical port the thread number 0 is used. The packet is then deliv-
ered, if possible, to the proper module using the local packet router rou-
tine. If the packet cannot be delivered it is either returned to the sender
or, if that cannot be done, discarded. :

Entry Point - IP$APKT:ROUTE

Entry Conditions

* X register points to the packet to be routed.

Exit Conditions '

* A1l registers destroyed.

Local Packet Router Routine

This routine may be called by any IP subroutine to deliver a packet to a
destination module within the local IP. Packets in a multi-threaded port
being delivered by this routine must have the destination thread number in
the packet destination port field rather than the destination port address.
This routine rather than the non-local packet router must be used when
delivering a packet to a particular thread within a multi-threaded port if
the thread's VP address 1is unknown.

The routine first checks that the packet destination module is valid and,
if not, returns to the caller with an error condition. Otherwise the packet
is enqueued to the proper TCB using the batch enqueue routine of Section
6.1.3 and the routine returns to the caller.

Entry Point - IP$APKT:ROUTE_LOCAL

Entry Condition

X-register points to the packet to be delivered.

Exit Condition

CC:Z = set if and only if the packet could not be delivered

A1l registers destroyed.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 35

CODEX CORPORATION COMPANY CONFIDENTIAL

Address Packet Utilities

There 1is an address packet utility (entry point IP$APKT:SDSWAP) which
will swap the source and destination address fields for an Addressed Packet.
This process is useful for returning a packet.

Entry Point - IP$APKT.SDSNAP

Entry Conditions

* X-register points to address packet header buffer

Exit Conditions

* A1l registers destroyed.

6.1.7 Utility Submodule

Routines in this module are general utility routines that are defined so
as to require no local storage. They are almost totally interruptable. Any
intermediate storage required is allocated on the stack or in the task's TCB
scheduler bytes.

Multiply

The unsigned integer 8 x 8 bit multiply routine is IP$UTIL:MULT. There
are no error returns possible from this operation.

Entry Point - IPSUTIL:MULT
Function
Multiply two 8-bit unsigned numbers to get a 16-bit unsigned number.

Entry Conditions - (JSR IPSUTIL:MULT)

* A-register contains multiplier
* B-register contains multiplicand

Exit Conditions

* A-reg = High order part of product
* B-reg = Low order part of product
* X-reg = Destroyed
»
Rev. 2 D814 System Software Manual Rev. 2

Section 6.1 - 36

CODEX CORPORATION ‘ COMPANY CONFIDENTIAL

Divide
The 16-bit by 8-bit unsigned integer divide routine is IP$UTIL:DIV. An
8-bit quotient and an 8-bit remainder are returned. The possible error

returns are division by zero (C set on return) and quotient overflow by 8
bits exceeded (V set on return).

Entry Point - IP$UTIL:DIV
Function

Divide a 16-bit unsigned number by an 8-bit unsigned number producing an
8-bit unsigned quotient and an 8-bit unsigned remainder.

Entry Conditions - (JSR IP$UTIL:DIV)

* A-reg = Divisor
* X-reg = Dividend

Exit Conditions

* A-reg = Quotient
* B-reg = Remainder
* X-reg = Destroyed

NOTE: (Sets 'V' when quotient overflows 8 bits. The outputs are
unpredictable in this case. 'C' is set for division by zero.
Returned quotient and remainder are zero.)

Block Copy

The block copy routine is IP$UTIL:COPY. It will copy a string on any
length possible in the system to another specified location. The routine is
a little slow setting up and dismissing, but runs reasonably fast once under
way. Thus, this routine is useful to copy blocks longer than about 8 bytes,
but will take, proportionally, a long time to copy only a few bytes. The
main feature of this routine is that it is re-entrant and totally interrupt-
able,

Entry Point - IPSUTIL:COPY
Function

Copy a block of consecutive data bytes from a source area to a destina-
tion area.

Rev. 2 D814 System Software Manual Rev., 2
Section 6.1 - 37

CODEX CORPORATION ' COMPANY CONFIDENTIAL

Entry Conditions - (JSR IPSUTIL:COPY)

* X-reg = Pointer to a 6 byte parameter vector

BYTES 0 - 1 - Number of bytes to copy
BYTES 2 - 3 - Pointer to source area
BYTES 4 - 5 - Pointer to destination area

Exit Conditions

* A-reg = Destroyed
* B-reg = Destroyed
* X-reg = Destroyed
* CC:I =0

NOTE: (ses 2 bytes on stack.)

Line Speed Encode/Decode

The utility package provides routines for encoding and decoding 16-bit
link and path speeds into a l-byte number in a sort of floating point format.
The encoded speed is composed of a four-bit exponent (high order nibble) and
a four-bit mantissa (low order nibble).

The actual speed is computed at:

S = (16 1/2 + B)2A - 16 (truncated if not an integer)
where:

S = Actual speed

A = Exponent

B = Mantissa

The encoded speed exponent and mantissa are computed as:

A

[Togz (S + 16)] - 4 (truncated if not an integer)

S ; 16 . 16 (truncated if not an integer)
2

B

This encoding scheme results in accuracy better than 16.3 percent for
speeds greater than 15 and better than 3.2 percent for greater than 1008.

Encoded speeds are continuous in that, if A and C are encoded speeds and
A < B < C, then B is a valid encoded speed and the actual speed represented
by B is less than that represented by C and greater than that represented by
A.

Rev, 2 D814 System Software Manual Rev. 2
Section 6.1 - 38

CODEX CORPORATION COMPANY CONFIDENTIAL

The package has the following entry points:
Entry Point - IP$UTIL:SPD_ENCODE

Entry Condition

* A, B registers - contain 16-bit speed

Exit Condition

* A-reg = speed in "floating point" format
* B-reg = destroyed
* OFIPTCB:XSAVE = destroyed

Entry Point - IP$UTIL:SPD_DECODE
Entry Condition

* A-reg = speed in "floating point" format

Exit Condition

* A, B registers = Actual speed (if no overflow)

* OFIPTCB:XSAVE = destroyed

* CC:C = Set if and only if overflow out of 16th bit occurs in
decoding. If CC:C is set, then A, B contain X'FFFF'

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 39

CODEX CORPORATION COMPANY CONFIDENTIAL

6.1.8 IPOS Initialization

IPSINIT:IPINIT is the initial entry point of the IPOS. It turns on all
controllable 1lights on the IP rail briefly and then shuts them off. It
initializes IPOS control variables, the task queues, the timer queue, and
sets up the free buffer pool. It sets up TCBs for the timer queue task, the
.background diagnostics task, the addressed packet receiver and transmitter
tasks, and the timeout packet sender task. The timeout packet sender is
forked and the packet transmit queue is created and initialized.

Next the user initialization is started by jumping to OFIPVEC:USERINIT.
The user initailization may perform any IPOS function except a delay at this
time, and must return to IPOS initialization with an RTS instruction.

Next a BTCB is obtained for the software uploader (Section 6.1.11) and an
entry in the Module Dispatch Table (MDT) added.

Next a TCB is obtained for the processor loading calculation task and the
"wake up" initial addressed packet task. Both tasks are forked. A TCB is
obtained for the receiver for the reply to the "wake up" packet is obtained
and set into the AP module dispatch table.

Outbound packet interrupts are enabled and the real-time clock is
started. The map register is enabled (IPOS only). The stack is set to
appear as though the background diagnostic task was running and has been sus-
pended. The scheduler 1is then entered as though an interrupt is being
returned to cause task scheduling.

6.1.9 Light Manipulation Submodule

This module will control the lights on the rail on the D814 IP cards.
The IPOS light control routines (IP$LITE) are as follows:

IPSLITE:ON - Lights corresponding to 1 bits in the A register are turned
on immediately. Lights corresponding to 0 bits are not affected.

IPSLITE:OFF - Lights corresponding to 1 bits in the A register are turned
off immediately. Lights corresponding to 0 bits are not affected.

IP$LITE:CHANGE - Lights corresponding to 1 bits in the A register are
. Changed 1in state (on becomes off, off becomes on). Lights corresponding
to 0 bits are not affected.

IPSLITE:FLASH - Lights corresponding to 1 bits in the A register are
turned on at the next tick for the real-time clock, and are turned off 1
tick later. This routine produces one flash, not continued flashing.
However, if at least one flash is requested between each clock tick, the
light will stay Tighted continuously. Lights corresponding to 0 bits are
not affected.

Rev. 2 D814 System Software Manual ' " Rev. 2
Section 6.1 - 40

CODEX CORPORATION COMPANY CONFIDENTIAL

IPSLITE:FORCE - Lights corresponding to 1 bits in the A register are
turned on immediately. Lights corresponding to 0 bits are turned off
immediately. The entire light register is set according to the contents
of the A register.

IPSLITE:BLINKON - Causes the 1lights corresponding to 1 bits in the A
register to be reversed in state 10 times a second. This action contin-
ues until IP$LITE:BLINKOFF is called for the same light. Lights corre-
sponding to 0 bits are not affected.

IP$LITE:BLINKOFF - Causes the lights corresponding to 1 bits in the A reg-
ister to stop the action initiated by IP$LITE:BLINKON. This routine has
no affect on a light which has not been set blinking by IP$LITE:BLINKON.
Lights corresponding to O bits are not affected. Note that a light which
is in the on state when blinking is stopped by IP$LITE:BLINKOFF will stay
in the on state unless turned off by IP$LITE:OFF. Lights which are off
will stay off unless turned on by IPSLITE:ON. '

A1l of the above routines destroy the A register.

6.1.10 Processor Loading Calculation Submodule

The operating system will assume the responsibility for supplying the IP
M6800 processor loading percentage to the application programs.

The processor loading calculation module will, at six second intervals,
calculate a number which is the percentage of processing potential (0 per-
cent - 100 percent) which is NOT used by the background task in the pre-
ceeding six seconds. This processing time will have been used either by the
applications (user) program or by operating system overhead. A processor
loading of 0 percent should be impossible, since it would imply that the
operating system is not running.

The number will be supplied in a one-byte field, OFIP0S:PROCLOAD, and
should always be between 0 and 100 decimal.

6.1.11 IPOS Memory Modification

IPOS maintains a batch task utility which supports the reading and writ-
ing of on-line port memory, destructively or non-destructively. Nondestruc-
tive operations insert zeros for data whenever I/0 areas are specified.
Destructive operations have no restrictions as to which locations can be
accessed. '

The module requires an operation code in the requesting addressed packets
to indicate which operation is to be performed.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 41

CODEX CORPORATION COMPANY CONFIDENTIAL

Operations:

1) Read memory, non-destructive
2) Read memory, destructive

3) MWrite memory, non-destructive
4) Write memory, destructive.

The requesting packets are of the form:

1) one byte packet length

2) 3 byte destination (node, port, module)

3) 3 byte source (node, port, module)

4) one byte operation code

5) 3 bytes unused by IPOS utility

6) one byte completion code

7) 2 bytes starting location

8) one byte data length (length/AP for read non-destructive)
9) a. one byte number of AP's (only for read non-destructive)

b. reserved (zero) bytes (only for write, 2 bytes)

10) n bytes DATA (only in write case)

The returning packets are of the form:

1) one byte packet length
2) 3 byte destination (node, port, module)
3) 3 byte source (node, port, module)
4) one byte operation code (from request packet)
53 2 byte starting location
one byte data length (length/AP for read non-destructive)
7) twa bytes reflected from requesting packet
8) one byte software designation field (for reads only)
9) one byte sequence number (read non-destructive only)
10) one byte completion code
11) a. one byte number of bytes written (write non-destructive only)
b. n bytes DATA (read cases only)
c. reserved (write destructive only)
12) n bytes DATA (write cases)

Read destructive is not allowed to occur during software uploading or a
read non-destructive. Writes cannot occur during software uploading or dur-
ing any of the operations described above. Attempting to do so will result
in an error code being set in the returned addressed packet completion code
field.

NOTE: This batch task is added as the second slot of the module dis-
patch table (MDT) during IPOS initialization.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 42

CODEX CORPORATION COMPANY CONFIDENTIAL

IPOS maintains timers (set when a read or write request is first accepted
by the receiving port) which are used in conjunction with a software lockbyte
to prevent simultaneous read (non-destructive) and write (destructive and non-
destructive) or read destructive accessing of a port. If the timer expires,
and no further requests have been received from a port, IPOS unlocks the port
for all operations (if only one accessor) or decrements the count of active
port readers (if multiple non-destructive readers).

6.1.12 IPOS Software Uploader

IPOS contains the software upload facility for D814 ports. Software up-
loading involves:

1. The port's standard loadblock header is sent upline (to the main-
frame/node) upon request.

2. After the loadblock header is requested and received, port software
is passed as a series of addressed packets whose number and length
are specified by the requesting node's module. Multiple software
requests are made before all ports software has been uploaded.

The requests and data are passed through the packet BIC. This upload
facility is provided as a batch task which is set up during IPOS initializa-
tion and added as the second slot of the MDT.

Software uploads may be requested at anytime without affecting the opera-
tional port. Once uploading has begun, it will prohibit writes or destruc-
tive reads (Section 6.1.11) from occurring on the software supplying port.
If the port is locked (already committed to write modification or destructive
operation), the initial software upload request will be rejected. '

Addressed Packet formats are found below.
Header Request

. one byte packet length

. 3 byte destination (node, port, module)

. 3 byte source (node, port, module)
. one byte operation code (header request code)

H W

Header Response

1. one byte packet length

2. 3 byte destination (node, port, module)

3. 3 byte source (node, port, module)

4. one byte requested operation code

5. one bytes software designation field (normal port type software,
specialized loadable software, specialized non-loadable software)

6. one byte processor loading

Rev. 2 D814 System Software Manual Rev. 2
Section 6.1 - 43

CODEX CORPORATION COMPANY CONFIDENTIAL

1

6.1.

Rev.

7.
8.
9.

one byte completion code

one byte reserved

8 byte loadblock header (2 byte starting address, 2 byte byte count,
2 byte loading address, 2 byte checksum)

Software Requests

one byte packet length

3 byte destination (node, port, module)

3 byte source (node, port, module)

one byte operation code (non-destructive read code)

2 byte starting location

one byte data length per (maximum 140 bytes) port generated AP
one byte number of APs to be returned

3 bytes to be reflected in response packets

Software Response

1.
2.
3.
4.
5.
6.
7.
8.
9.
0.

13

one byte packet length

3 byte destination (node, port, module)
3 byte source (node, port, module)

one byte operation code

2 byte starting location

one byte data length

3 bytes reflected

one byte sequence number

one byte completion code

n-bytes DATA

Background Checker

IPOS runs a non-terminating task at level 0 which performs checking func-
tions to insure software integrity:

1.

2.

2

Buffers are obtained from the IPOS free buffer pools and checked to
insure parity and RAM failures are detected.

Code space is checksummed to insure software integrity is main-
tained. Checksumming is restarted by the IPOS memory modification
routine after each modification to program space.

D814 System Software Manual Rev. 2
Section 6.1 - 44

CODEX CORPORATION COMPANY CONFIDENTIAL

6.2 Configuration Control

The Configuration Control Module (IPCC$>XMTRCV) must be included in all
I/P's. This module handles the interface with the I/P online (running) con-
figuration. It answers requests for I/P online parameter values and ser-
vices parameter change requests. The format of configuration request pack-
ets 1is described in Section 5.7. The I/P Configuration Control Module
utilizes the same format, of course. All requests are passed along to the
mainframe Configuration Control Module (Section 5.7), which updates the off-
line configuration, if necessary, before returning the request to the sender.
It is important to realize that most I/P parameters are not changeable in the
online configuration. The I/P Configuration Control Module runs as a batch
task with module number EQIPMDT:CHAR_XMTRCV. The entry point s
IPCC$XMTRCV:ENTRY.

Multi-threaded port IPCC request packets may be addressed either to the
physical port or to a virtual port (VP) within the physical port. Packets
addressed to the physical port are used to handle parameters for the port as
a whole (for example buffer utilization threshold) while packets addressed to
a virtual port are used to handle parameters for that particular VP's thread
within the port (for example, compression efficiency threshold).

The parsing of the request packet is driven by tables called Code Lists.
OFIPVEC:CODELIST+1 contains a pointer to the Code List for physical port
requests and OFIPVEC:MT_CODELIST+1 contains a pointer to the code to the
List for the virtual port requests. The pointer at OFIPVEC:MT_CODELIST is
left 0 for single-threaded ports. Each Code List contains a list of applic-
able parameter codes. The write bit (EQ$MCM:CC_WRITE) is set in the code if
the parameter is changeable online and not set if it 1is not changeable
online. :

Each Code List has associated with one or more of the Characteristics
Lists. The Characteristics List contains a one byte entry with the value of
each parameter in its Code List. The parameters in both tables are in
exactly the same order. The physical port Code List has one Characteristics
List. The pointer to this list resides at OFIPVEC:CHARLIST+1l. The virtual
- port Code List, if it exists, has a Characteristics List for each VP in the
port. These lists reside at offset OFIPTHREAD:IPCC_LIST in the thread
structures of the VP's. (The thread structure is a data area for the VP
allocated at port initialization by module ITPS.)

Two command code errors are possible when a request packet is parsed:

a. If an invalid code (one not found in the list of parameter codes) is
encountered, the error code EQ$MCM:EC_INVCMD is set on the command.

b. If a code is valid, but the write bit is set in the request packet,
but not in the 1ist of parameter codes, the error code
EQ$MCM:EC_NOTONLN is set, this indicates that the parameter is not
changeable online. :

D814 System Software Manual
Section 6.2 - 1

CODEX CORPORATION . COMPANY CONFIDENTIAL

Under normal operation, requests for parameter values are filled in, and
requested parameter value changes are made and the request packet is sent to
the mainframe Configuration Control Module. This module ignores value
requests, and value change requests which have been flagged with error codes.
It makes changes in the offline configuration corresponding to all value
changes with no error code. The packet is then returned to the originator.

D814 System Software Manual
Section 6.2 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.3 Call Manager

The CMM is responsible for establishing and terminating calls. In addi-
tion, the CMM also establishes the network transmit path from its port to the
remote port. Call establishment and disconnection is accomplished via addres-
sed packets containing various command codes. The Call Manager is comprised
of three sections:

1. Initialization
2. Addressed Packet Handler
3. Call Initiator and Terminator

The following sections describe these routines in more detail.

6.3.1 Initialize Call Manager Data Structure

The Initialize Call Manager Data Structure routine initializes the CMM
data structure (for every thread connected to this port, if the port is '
multi-threaded) and contains one entry point:

CMM Initialization

This routine is initiated by the protocol initiation routine.

Entry Point - IPCMMINIT:ENTRY

Entry Conditions

Reg Y - Thread structure address - MTP only

-Exit Conditions

Reg Y - Preserved - MTP only
A1l registers destroyed.

6.3.2 Call Manager Main Addressed Packet Handler .

This module receives an addressed packet from the AP router. It first
checks to see if the packet is being returned in error; if so, special handl-
ing is performed. The packet's command code is then looked up in the CC
table and the correct module is called. In the case of a multi-threaded
port, the thread number is obtained fromthe destination port field of the
addressed packet to select the proper call data area. The routine contains
one entry point:

IPCMMMAIN: AP
This entry point is initiated by receiving an AP which is routed on the
basis of the entry in the MDT.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.3 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Point - IPCMMMAIN:AP

Entry Conditions

None

Exit Conditions

A1l registers destroyed.

6.3.3 Call Manager Addressed Packet Handler

This routine contains a few submodules that process the addressed packets
received by the Call Manager Main Packet Handler routine. Each submodule
processes a specific AP command type. In the case of a multi- threaded port,
the thread number is obtained from the destination port field of the
addressed packet to select the proper call data area. The different AP
command types which are processed include:

CREATE CALL AP - from Protocol

CALL ACCEPTED AP - from Protocol
ACTIVATED CALL ACKNOWLEDGE AP - from PMM
INITIATE CALL AP - from CMM

INITIATE CALL ACKNOWLEDGE AP - from CMM
XMIT PATH ACTIVE AP - from PMM

XMIT PATH ERROR AP - from PMM

RECV PATH ACTIVATED AP - from PMM

RECV PATH FAILURE AP - from Pre ARQ-Receive
HANG-UP CALL AP - from Protocol

CALL CLEARED AP - from PMM

Detailed information on the different AP commands are contained in the
D814 Product Functional Specification, Appendix B.

The following two diagrams show call establishment and call termination.
Call establishment is shown in the simplest case, with no errors. It shows
the case where only one side is attempting to establish the call.

Rev. 2 D814 System Software Manual Rev. 2
Section 6.3 - 2

CODEX CORPORATION

COMPANY CONFIDENTIAL

Call Initiator

Call Receiver

Protocol CMM PMM PMM CMM | Protocol
CRECALL-=+--=>(ER) l
INITCALL=mtmmmmmm e L S —— +-==>(EL)
CALLREQe==+===)>
(AV)<---1-CALLACC
{---|---ACTCALL
ACTCALLACK=-|=-==>(IL)
(IR)<mmmm | mmmmmmcmcce [cmccc ;e -INITCALLACK
ACTCALL-=+====>
{---|--ACTCALLACK
ESTXMTPATH-+---->
<----l--XMTPATHACT RCVPATHACT==+=-===>(AC)
{-===+-ESTXMTPATH
CALLCRE--l-—-->
(AC)<{====+-=RCVPATHACT | XMTPATHACT ==+===>
<-==|=--CALLCRE
(ER) = Establishing Remote State
(EL) = Establishing Local State
(AC) = Active State
(AV) = Activating State
(IR) = Inactive Remote
(IL) = Inactive Local
Rev. 2 D814 System Software Manual

Section

6.3 - 3

Rev. 2

CODEX CORPORATION

COMPANY CONFIDENTIAL

Call Terminator

I
(ID)<-=--+--CALLCLRD

pa— +---CALLEND
|

Protocol CMM | PMM PMM CMM Protocol
HANGUP-=+===> (DC) l
l
CLRCALL==+===>

CALLCLRD==+-===>(ID)

CALLEND ===+ m=mmmm >
I

DisConnecting State
ID1e state

~~
—
o
~—
non

6.3.4 Protocol AP Interface

The formats of the body portion of the addressed packets used to
face to the protocol module are given below:

Byte Contents
CRECALL 7 EQIPCMM:CC_CRECALL
8 Protocol Dependenf Characteristics Byte
9 Protocol Dependent Characteristics Byte
10 Protocol Dependent Characteristics Byte
CALLCRE 7 EQIPCMM:CC_CALLCRE
CALLREQ 7 EQIPCMM:CC_CALLREQ
8 Protocol Dependent Characteristics Byte
9 Protocol Dependent Characteristics Byte
10 Protocol Dependent Characteristics Byte
CALLACC 7 EQIPCMM:CALLACC
8 Error Code or Zero
HANGUP 7 EQ$ IP$CMM:CC_HANGUP
CALLEND 7 EQIPCMM:CC_CALLEND
8 Error Code or @
Rev. 2 D814 System Software Manual

Section 6.3 - 4

inter-

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.3.5 Remote Call Manager AP Interface

Byte Contents

INITCALL 7 EQIPSCMM:CC_INITCALL
8 Protocol Dependent Characteristics Byte 1
9 Protocol Dependent Characteristics Byte 2
10 Protocol Dependent Characteristics Byte 3
11 Port Generic Type
12 Local Characteristics

INITCALLACK 7 EQIPCMM:CC_INITCALLACK
8 Error Code or Zero

Rev. 2 D814 System Software Manual Rev. 2

Section 6.3 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

6.3.6 Path Manager AP Interface

The formats of the body portion of the addressed packets used to inter-
face to the Mainframe Path Manager are given below:

Byte Contents

ACTCALL 7 EQ$MPM:CC_ACTCALL

8 Remote Node

9 Remote Port

10 Initial Estimate Effeﬁtive Speed
ACTCALLACK 7 EQIPCMM:CC_CALLACT

8 Error Code or Zero
ESTXMTPATH 7 EQ$MPM:CC_ESTXMTPATH

8 ~ Local Port Speed

9 Path Priority/Routing Option

10 Transfer Adjacent Node

11 Transfer Adjacent Port

12 Transfer Network Port
XMTPATHACT 7 EQIPCMM:CC_XMTPATHACT

8 Number of Hops in Path
XMTPATHERR 7 EQIPCMM:CC_XMTPATHERR

8 Error Code
RCVPATHACT 7 EQIPCMM:CC_RCVPATHACT

8 Number of Hops in Path

9 Path Priority Code
RCVPATHFAIL 7 EQIPCMM:CC_RCVPATHFAIL
CLRCALL 7 EQ$MPM:CC_CLRCALL
CALLCLRD 7 EQIPCMM:CC_CALLCLRD

Rev. 2 D814 System Software Manual Rev. 2

Section 6.3 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4 Single-Threaded Data Movement

Single-threaded data movement refers to the transfer of data between
terminals over a line that is effectively point-to-point, whether it be a
permanent or switched connection. In the D814 system, this implies that no
two physical terminals share a single set of I/TP software, hence messages
are not interleaved.

The D814 1is responsible for upholding data integrity during its movement
across the network. It does not, however, use an explicit end-to-end error
detection scheme in order to maintain acceptable levels of data accuracy.
Instead, an ARQ mechanism has been designed which is activated when a link or
a node failure has been detected. This, in conjunction with the checking
done by the INP, insures minimal data loss across the link.

The ARQ and flow control measures are implemented at those points at

which data is transferred to and from the BIC. The modules which are respons-
ible for this are discussed in the following two subsections.

6.4.1 BIC FIFO Handler (Module IP$FIF0$)

The BIC FIFO Handler is responsible for the transfer of data INTO the BIC
Inbound and OUT of the BIC Outbound FIFQ's. The module is composed of rou-
tines to accomplish the following tasks:

1. FIFO initialization
~ 2. FIFO interrupt handling

The means used to accomplish these tasks are described in the following
sections.
6.4.1.1 FIFO Initialization (Submodule IP$FIFO$INIT)

This submodule is called for two reasons,

1. for original FIFO data structure-initialization, and
2. for reinitialization while the IP is active.

Accordingly, the submodule is comprised of two routines. The first is
called by the protocol module during its own initialization phase, the second
at CALLEND, again being invoked by the protocol module. The entry points and
functions of each are defined below.

Entry Point - IP$FIFO$INIT:ENTRY

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

Function

Gets TCB's for FIFO Interrupt handlers, disables Inbound and enables Out-
bound FIFO0's, and clears FIFO data structures.

Entry Conditions

None

Exit Conditions

A1l registers destroyed.
Entry Point - IP$FIFOSINIT:REINIT
Function

Disables BIC Inbound FIFO and enables BIC Outbound FIFO and clears OB
FIFO of residual data.

Entry Conditions

None

Exit Conditions

A1l registers destroyed.

(In actuality, the second routine is merely a subset of the instructions
of the routine performing the original initialization tasks.)

6.4.1.2 FIFO Interrupt Handling (Submodule IP$FIFO$INT)

This submodule handles Inbound and Outbound FIFO interrupts and contains
two entry points, one to handle each type of IRQ. The first is entered when
a BIC Inbound FIFO interrupt occurs; the second by the occurrence of a BIC
Outbound FIFO interrupt.

Entry Point - IP$FIFO$INT:XMT

Function

Disables BIC Inbound FIFO Interrupts and forks IP$FLOW$XMIT which per-
forms the Inbound FIFO transmit function.

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Conditions

None

Exit Conditions

None

Entry Point - IP$FIFO$INT:RCV

Function

Disables Outbound FIFO interrupts and forks IP$FLOWSRECV which performs
the Outbound FIFO receiver function.

Entry Conditions

None

Exit

Conditions

None

6.4.2 Flow Control and ARQ (Module IP$FLOW)

The Flow control and ARQ module is responsible for controlling data flow
into the network and insuring proper data flow from the network. It con-
tains an ARQ mechanism which is activated when a link or node failure has
been detected or if the free buffer pool becomes exhausted. This mechanism
is linked to the end-to-end flow control procedure.

The Flow Control and ARQ Module is comprised of routines to accomplish
the following five tasks:

1.
2.
3.
4.
5.

Flow control and ARQ initialization
Inbound pre-ARQ flow control
Inbound post-ARQ flow control
Outbound pre-ARQ flow control
Outbound post-ARQ flow control

The following sections describe in more detail the routines which see to
the completion of these tasks.

Rev. 3

D814 System Software Manual Rev. 3
Section 6.4 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.2.1 Flow Control and ARQ Initialization (Submodule IP$FLOWSINIT)
This submodule is called for tWo reasons,

1. for original FLOW data structure initialization, and
2. for reinitialization while the IP is active.

Accordingly, the submodule is comprised of two routines. The first is
called by the protocol module during its own initialization phase, the second
at CALLEND, again being invoked by the protocol module. The entry points and
functions of each are defined below.

¥

Entry Point - IP$FLOWSINIT:ENTRY
Function

Initializes Flow Control and ARQ data structures and creates Inbound and
Outbound data buffers.

Entry Conditions

None

Exit Conditions

A1l registers destroyed.
Entry Point - IP$FLOWSINIT:REINIT
Function

Deletes previous Inbound and Outbound data buffers, reinitializes Flow
Control data structures, and creates new Inbound and Outbound buffers.

Entry Conditions

None

Exit Conditions

A1l registers destroyed.

(In actuality, the first routine is merely a subset of the instructions
belonging to the routine performing the reinitialization task.)

Rev. 3 D814 System Software Manual - Rev. 3
Section 6.4 - 4

CODEX CORPORATION ‘ COMPANY CONFIDENTIAL

6.4.2.2 Inbound Pre-ARQ Flow Control (Submodule IP$FLOWSPXMT)
Function

Called by the Inbound Protocol Module (IBP) at interrupt level on a per
character basis. This submodule moves unencoded data into the IB byte
queue chain, which is composed of blocks of "Alpha" length.

Entry Points - IPSFLOWSPXMT:ENTRY1
IPSFLOWSPXMT:ENTRY2

Entry Conditions

ENTRY1l: A-reg = data byte

ENTRY2: A-reg
B-reg

l1st data byte
2nd data byte

Exit Conditions

A-reg = preserved
A1l other registers destroyed.

6.4.2.3 Inbound Post-ARQ Flow Control (Submodule IP$FLOWSXMIT)
Function

Obtains data from the corresponding Inbound Data Buffer. It vectors to
ADC with the data to be encoded. The encoder returns with an encoded
data byte which is compacted and then written to the BIC IBFIFO. When
the BIC IBFIFO is full, FLOW$XMIT enables BIC IBFIFO half empty inter-
rupts and terminates the task. This submodule is initiated when the BIC
IBFIFO is able to accept a byte of data. It is responsible for sending
ACK ICS's, and for resending unacknowledged blocks, in the event: of 1link
or node failure or buffer overflow. In addition, it is responsible for
signalling processing speed changes to downstream nodes.

Entry Point - IP$FLOWSXMIT:ENTRY

Entry Conditions

None

Exit Conditions

A1l registers destroyed.

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.2.4 Outbound Pre-ARQ Flow Control (Submodule IP$FLOWSRECV)
Function

Obtain data from the BIC OBFIFO and pass it to ADC to be decoded. The
decoder returns the decoded character which is sent to the Outbound Pro-
tocol Module (0BP) to be moved to the corresponding Outbound Data Buffer.
This submodule is responsbile for re-enabling BIC OBFIFO half full inter-
rupt when the BIC IBFIFO is empty, deleting associated buffer and enabl-
ing BIC IBFIFO when a block is acknowledged, and performing outbound
error recovery procedures after the receipt of an OVF (buffer overflow)
ICS or a KILLFAIL ICS which indicates a 1link or node failure at the
remote data transmitter. EBK (end of block) ICS bytes cause this sub-
module to enable the BIC IBFIFO and inform FLOW$XMIT to send an ACK ICS,
via an escape, escape sequence sent to outbound protocol module.

Entry Point - IP$FLOWSRECV:ENTRY

Entry Conditions

None

Exit Conditions

A1l registers destroyed.

M R R R)

Further understanding of the ARQ and Flow Control method used in the D814
system can be achieved by studying the following diagrams. These illustrate
program control flow and briefly describe the processing done in both normal
and recovery modes.

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

FLOW CONTROL MODULES
IPOS IBP PXMT XMIT ADC$ENCODE | FIFO$INT | IPOS
a) IRQ-==t+-=--- >
b) USRame=tmee-- >
c) {e=m--- teommm T
d) <----- T T
e) {==m-m +-=1RQ
f) ememw tommmmmcmeaee +--FSTFRK
Teeme- +eusd
JSR==eeteu==d> @)
h) {ee=-- l----T
Tewm=- l ------------ tommmm—c——a +==> 1)
Inbound Data -- Normal Transmission

Figure 6.4-1
ARQ-FLOW CONTROL

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 8

CODEX CORPORATION . COMPANY CONFIDENTIAL

‘a)

Note:

Note:

Rev. 3

IPOS gets 2651 receiver ready IRQ and vectors to IBP at interrupt
level to obtain receiver data byte.

IBP calls FLOWSPXMT with data byte.

FLOW$PXMT moves the data to the IB ARQ buffer chain.

IBP finishes interrupt handling and returns control to IPOS.

IPOS gets IB FIFO IRQ, routes it to FIFO$INT.

FLOWSXMIT gets data byte from the IB ARQ buffer chain.

FLOWSXMIT calls ADC to encode the data byte.

ADC$DECODE returns with encoded byte which FLOW$XMIT moves to the
BIC IBFIFO and proceeds to step f) as long as IB data buffer is not
empty and BIC IBFIFO is not full.

FLOWSXMIT terminates the task with IB ARQ buffer chain empty, BIC IB
FIFO full, or transmitter metered off.

Where a block in the chain becomes completely transmitted, addi-
tional processing takes place (e.g., insertion of ICS's, metering
off).

7

When the flow control transmitter is called with the "send ACK" flag
set, FLOW$XMIT merely decrements the flag and writes an ACK ICS to
the BIC IBFIFO as data.

D814 System Software Manual Rev. 3
Section 6.4 - 9

CODEX CORPORATION ‘COMPANY CONF IDENTIAL

IPOS FIFO$SINT | FLOWSXMIT

a) IRQ---+---->
| FSTFRK-==#--==>
{momem T----T
b) {===u- T T temeaT
I
c) IRQ-==+-===>
| FSTFRK-=atac==>
{momen +-ea=T
I
d) —=---- toemmmeaan tome=T
I

e) IRQmemtmmm=d
| FSTFRK=mmtemas)

Inbound Data -- Recovery Processing
Figure 6.4-2
ARQ-FLOW CONTROL
(This sequence is initiated whenever the flow control Transmitter is entered

with the transmit recovery flag set to 4. Its function is to retransmit the
data blocks pointed to by the recovery buffer pointer.)

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 10 ‘

CODEX CORPORATION COMPANY CONFIDENTIAL

a)

b)

d)

f)

Rev. 3

Transmit Recovery Flag = 3

IPOS gets BIC IBFIFO IRQ and routes it to FIFO$INT. FIFO$INT dis-
ables BIC IBFIFO IRQ's, FSTFRKS FLOW$XMIT and terminates task.

Recovery Phase 3

FLOWSXMIT sets the transmit recovery flag = 3 and writes a REC ICS
to the BIC IBFIFO, to indicate recovery parameters follow.

Transmit Recovery Flag = 2

Repeat of a) if FIFO was full after step b), otherwise step c) is
omitted and control is continued to step d).

Recovery Phase 2

FLOWSXMIT sets the transmit recovery flag = 2 and writes the status
of the local free buffer pool to BIC IBFIFO.

Transmit Recovery Flag = 1
Repeat of a) if FIFO was full after step d), otherwise omit step e).
Recovery Phase 1

FLOWSXMIT sets the transmit recovery flag = 0 and writes the local
transmitter and receiver status byte to the BIC IBFIFO. The Tlocal
receiver status nibble provides the remote transmitter with the know-
ledge of the last block transmitted in full. The local transmitter
status nibble provides the remote receiver with the knowledge of the
last block the remote receiver acknowledged. The current transmit
block pointer is set to the recovery block pointer and the BQUE read
pointer for this block is reset to the beginning of the block.

FLOWSXMIT is now in normal mode and continuously reads from the cur-
rent block to be retransmitted and writes each byte to the BIC
IBFIFO until the IB data buffer is empty or the BIC IB FIFO is full.

D814 System Software Manual Rev. 3
Section 6.4 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

FLOW CONTROL
MODULE
IPOS FIFOSINT FLOWSRECV ADC$DECODE 0BP
~
a) IRQ-=+---=>
FSTFRK-==t=euua > b)
{emmmtaca=T
C) =mmemmeee- T ----- >
d) emmcemena- T ----- T
JSRemmccaaaa R +-=> e)
I |
f) emmmccaaaa T R —
l
g) {emmeteccccccaaaa ———=T
OQutbound Data -~ Normal Transmission
b Figure 6.4-3
ARQ-FLOW CONTROL

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 12 :

CODEX CORPORATION ' COMPANY CONFIDENTIAL

a)

b)

Rev. 3

IPOS gets BIC OBFIFO IRQ, routes it to FIFO$INT. FIFOS$INT disables
Outbound FIFO interrupts, FSTFRKs FLOW$RECV.

FLOWSRECV gets a byte from the OBFIFO and tests the byte received:
If ACK ICS, updates count for last block ACK'ed, enables the
BIC IBFIFO if necessary, deletes byte queue pointed to by the
recovery buffer pointer and sets next 1link as new recovery
buffer pointer.
If EBK ICS, clears count of Tlast character received, updates
number of blocks received, and calls OBP through vector with
escape, escape sequence.
If KILLFAIL ICS, sets receive recovery flag = 5.

If OVF ICS, causes 1local transmitter recovery initialization
and toggles the remote overflow indicator.

If data:
Calls ADC$DECODE to decode on a per nibble basis.
ADC$DECODE returns with decoded character or asks for next nibble.
FLOWSRECV calls OBP with decoded character.
0BP buffers the character in the appropriate 0B data buffer.

Go to step b) unless BIC OBFIFO is empty. When the FIFO is empty,
re-enables BIC OBFIFO interrupts and terminates the task.

D814 System Software Manual Rev. 3
Section 6.4 - 13

CODEX CORPORATION ’ COMPANY CONFIDENTIAL

IPOS FIFO$INT | FLOWSRECV
a) IRQe==t=u==>
| FSTFRK-==teuz=>
J C—— teeaaT
I
b) <==--- tommmmmcaaa +eeeaT
I
c) IRQe==tau==d "
| FSTFRK-==t=uz=>
{mmmmm +-e==T
l |
d) {~==== tommmcen—ae toeaaT
I
e) IRQe==t====>
| FSTFRK-=mtmm=ad
 C—— teeaaT
I
f) (emme- tecccnnanaa teeaaT
I
g) IRQe==t====>
| FSTFRK-==t=ue=>
{mmmme T----T
h) <===-- tocmcemneaa toeaaT
I
i) IRQ-==+====>
| FSTFRK===t=u==>
Y QR +eeaaT
, I
J) K===-- T ---------- teeaaT
|

Outbound Data -- Recovery Processing
Figure 6.4-4
ARQ-FLOW CONTROL

(This sequence is initiated whenever FLOWSRECV is entered with the receive
recovery flag set to 5. Its. function is to ignore all data received until
the block and character last correctly received is received again.)

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 14

CODEX CORPORATION COMPANY CONF IDENTIAL

a)

d)

Rev. 3

Receive Recovery Flag = 5

IPOS gets BIC OBFIFO IRQ, routes it to FIFO$INT. FIFO$INT disables
BIC OBFIFO IRQ's, FSTFRKS FLOW$RECV and terminates.

Recovery Phase 5

FLOWSRECV discards all data until a REC ICS 1is received, then it
sets receive recovery flag = 4.

Receive Recovery Flag = 4

Repeat of a) if BIC OBFIFO is empty, otherwise control proceeds to
step d).

Recovery Phase 4

FLOWSRECV reads parameter byte from BIC OBFIFO and compares the
remote buffer pool status against the local version. If unequal,
buffer overrun recovery is initiated at the local transmitter; the
receive recovery flag is set to 3.

Receive Recovery Flag = 3

Repeat of step a) if BIC OBFIFO is empty, otherwise, control pro-
ceeds to step f).

Recovery Phase 3

FLOWSRECV reads parameter byte from BIC OBFIFO and computes the num-
ber of blocks to discard and the number of lost acknowledgements.
It deletes the block the recovery pointer is pointing to and trans-
fers the link to the next BQUE to the recovery pointer for each lost
ACK. In addition, the number of blocks not outstanding and the
number of last block ACK'ed are updated for each lost ACK. Finally
the Receive Recovery Flag is set to 2.

Receive Recovery Flag = 2

Repeat of step a), if BIC OBFIFO is empty, otherwise, control pro-
ceeds to step h).

D814 System Software Manual Rev. 3
Section 6.4 - 15

CODEX CORPORATION COMPANY CONFIDENTIAL

h)

J)

Recovery Phase 2

 FLOWSRECV gets data byte from the BIC OBFIFO.

If EBK ICS, tests the number of blocks to discard. If equal to
zero, post end of recovery since EBK was the last byte received prop-
erly. If the number of blocks to discard was not equal to zero, the
number is decremented and control returns to loop check the FIFO for
more data.

-If data byte, and the number of blocks to discard is non-zero, the

byte is discarded and control returns to loop check the FIFO for
more data.

If data byte and the number of blocks to discard is now equal to
zero, the number of nibbles received properly prior to failure
becomes the number of nibbles to discard, and the receive recovery
flag is set to one. If there were no nibbles received this block,
the receive recovery flag is reset and the data is buffered norm-
ally.

Receive Recovery Flag = 1

Repeat of a) if BIC OBFIFO is empty, otherwise, control proceeds to
step j).

Recovery Phase 1

FLOWSRECV gets data byte from BIC OBFIFO and updates the count of
nibbles to discard for a single or double data nibble. If the count
remains non-zero, control returns to loop check the FIFO for more
data. When the count of nibbles to discard becomes zero the receive
recovery flag is set to zero. If the count becomes zero on the
first half of a double data nibble, only the first half is dis-
carded, the high order nibble is shifted to the low order position
and is buffered as good data.

S D e = e e = e e o om e e o e e e S o e e e e S e e o T S e s S e i T S S S S S S S mm S fmm e o = e sm e e
R R S e S S S S S S R S S S S n s s N nNE S EEssEEmEEss=

In order to delineate the path of data transfer for quick reference, the
following diagrams have been supplied. In each, "::::>" indicates data move-
~ment; "--->" shows a change in program control.

Rev. 3

D814 System Software Manual Rev. 3
Section 6.4 - 16

CODEX CORPORATION COMPANY CONFIDENTIAL

‘ BIC IBFIFOQ I

A |IR
e --9---->l FIFOSINT l
FSTFRK
v
;;::::::::::‘ flow xmit I
A A A
N l
[
A ADC
s wsrrisiiiii>| ENCODE
IB BUFFER ‘
CHAIN {:iie
flow pxmt
A A
S : |
IRQ--->| COMM :::::::>' 1BP l
RCVR
ARQ-FLOW CONTROL Operation -- INBOUND
I
| BIC IBFIFOQ
A TIR
RO,
FIFO$INT
’ FSTFRK
i (
e v
IB BUFFER {====>| ADC
CHAIN ci>]| flow xmit |<::::>| ENCODE

ARQ-FLOW CONTROL Operation -- INBOUND RECOVERY

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 17

CODEX CORPORATION COMPANY CONFIDENTIAL

‘ BIC OBFIFOQ |

¢ IRQ
| FIFO$INT |
FSTFRK
l
Vv v _
....... > | 0B DATA
teiei>| flow recv BUFFER
FSTFRK 'I\ A
vy
ogp | PR v
HEEEEES4
------- > | ADCM$DECODE

ARQ-FLOW CONTROL Operation -- OUTBOUND

Rev. 3 D814 System Software Manual Rev. 3
. Section 6.4 - 18

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3 Adaptive Data Compression Scheme

Following is a complete description of the adaptive data compression
algorithm, including timing estimates. There are 5 parts to this section:

1) General Description
2) Transmitter

3) Receiver

4) Initialization

5) Timing Estimates

6.4.3.1 General Description of the Algorithm

The D814 data compression algorithm attempts to encode frequent charac-
ters into short codewords, and less frequent characters into larger code-
words, so as to reduce the average number of bits used per character. It is
adaptive in that it does not require a prior statistical description of the
source but will search for a code matched to the source. This objective
requires two distinct actions.

First, the characters must be kept ordered by relative frequencies (high
frequency <-> low rank). This is done simply by exchanging the ranks of the
ith ranked and (i-1)th ranked characters when the ith ranked character
occurs. The precise algorithm is given in Section 6.4.3.2.2.

Secondly, the best code must be computed and a method must be found to
encode and decode. This section describes the code structure. The encoding
and decoding algorithms are explained in Sections 6.4.3.2.3 and 6.4.3.3.3.

For ease of implementation, codewords are required to have a length of 4,
8 or 12 bits (1, 2 or 3 nibbles). Moreover, the 0 nibble is forbidden, as it
is reserved for control purposes at lower levels in the network structure.

We can view the code as a l5-ary tree, with branches labeled 1 to F and
leaves at levels 1, 2 or 3 (Figure 6.4.3.1).

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 19

CODEX CORPORATION

Rev. 3

1
2
3
4
5
1
________ 2
"""" F
1
2
""""" E
F

Figure 6.4.3.1

COMPANY CONFIDENTIAL

D814 System Software Manual

Section 6.4 - 20

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

N4, N8 and N12 denote the numbers of possible leaves (not necessarily
actual characters) at levels 1, 2 and 3 respectively. We want the tree to be
complete (all nodes have 15 outgoing branches) so that N4 + N8 + N12 has the
form 15 + 14k, for some integer k, chosen so that N4 + N8 + N12 is at least
as large as the number of symbols in the source alphabet.

Also, as the code is complete, Kraft equality must be satisfied, thus N4
(15-1) + N8 (15-2) + N12 (15-3) = 1. This relation, together with the one
about N4 + N8 + N12, leaves only one degree of freedom for the tree. We
choose N4 as that parameter.

From the previous relations, one can see that every time N4 is increased
by 1, N8 decreases by 16 and N12 increases by 15. This suggests that if the
most 1likely character encoded into an 8 bit codeword occurs more frequently
than the 15 least likely characters encoded into 8 bit codewords, then N4
should be increased so as to reduce the average codeword length. Similarly,
if the 15 most likely characters encoded ito 12 bit codewords occur more fre-
quently than the least 1likely character encoded in a 4 bit codeword, then N4
should be decreased. The optimality of this search rule in the quest for the
best code can be established by means of a convexity argument. The precise
implementation is described in Section 6.4.3.2.3.

From the previous discussion, we should maintain:

DRIFT1 = # occurrences of least likely 1 nibble character, minus # of
occurrences of 15 most likely 3 nibble characters.
DRIFT2 = # occurrences of 15 least likely 2 nibble character, minus #

occurrences of most likely 2 nibble character.

when DRIFT1 reaches 0, N4 should be decreased
DRIFT2 reaches 0, N4 should be increased

Instead, the algorithm maintains DRIFT=DRIFT1-DRIFT2.

when it underflows, N4 should be decreased
overflows, N4 should be increased

This increases the speed of convergence, but has the disadvantage that no
steady state code can be reached. This is not a problem, however, as a
source is never really stationary.

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 21

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.2 Transmitter (IP$SADCM$ENCODE:ENTRY)

The transmitter forms a single subroutine. It is entered with the actual

character in Register B, and terminates with the codeword in Registers A and
B as follows:

A B
1 nibble: 00 OH
2 nibble: 00 HM
3 nibble: OH ML

It then jumps to the routine that puts the nibbles in the inbound buffer.

Entry Point - IP$ACDM$ENCODE:ENTRY
Entry Conditions

B Reg contains character to be encoded

The detailed description follows. For simplicity, we divide the transmit-

ter into 3 well defined routines that that are described separately. They
are:

Transmitter Code Update
Transmitter Rank Update
Transmitter Encoding

6.4.3.2.1 Transmitter Code Updating

This is the first transmitter routine. It starts and ends with the
actual character to be encoded in Register A. In between it checks if the
code must be changed due to the transmission of the previous character by com-
paring DRIFT with 128 and 0.

If a code update is necessary, the following parameters must be computed:

N4

N4 + N8 - 15
N4 + N8

N4 + N8 + 15
- N12 - 16
EORF

(N4 + 1) 15

(N4 + 1) 15 + 2 + ‘NB 1!
15

where [] denote integer part.

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 22

CODEX CORPORATION COMPANY CONFIDENTIAL

In addition, DRIFT must be reset to 64. N4 + N8 + N12 is set at initial-
ization and never changes. The algorithm uses the old values of N4 and N4 +
N8 - 15 in order to compute the new ones. It then recomputes all other para-
meters from N4, N4 + N8 - 15 and N4 + N8 + Nl2.

Computations are trivial, except the one of

| N8 -1 |
I_ 15 _|
If N8 = a (16) + b = a (15) + (a + b)
(note that a + b < 30, as N8 < 255)
then | N8 -17] -, if a+b<16
l_ 15 _

a+1lif a+b> 16

-1gl;i£-l is computed as follows:
- 15 _

put N8 in Reg B

transfer Reg B to Reg A

shift Reg B to the right 4 times. Now Reg B = a.
add Reg B to Reg A

If the result is more than 15, increment Register B

Timing (# Cycles)
If DRIFT=0 or 128, no change necessary, 7 cycles.

If DRIFT=0 or 128 but
DRIFT=0 and N4 already O
or DRIFT=128 and N8 already <16 (i.e., (N4 + N8 -15) <15) then no
change is actually made, only 48 cycles are used.

If a change must be made, it requires 162 cycles.

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 23

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.2.2 Transmitter Rank Update Routine

This routine starts with a character in Register A. It updates tables as
explained below and finishes with the character rank in Register B.

The transmitter maintains 2 tables to keep track of the ordering of the
characters. Tables are aligned with page boundaries.

P-table: Indexed by character number.
Contains the rank of a character, with very frequent char-
acters being low rank.

IP-table: Indexed by rank.
' Its ith element contains the name of the ith ranked char-
acter.

When character NCHAR occurs, the routine consults the P-table to find its‘
rank PN, which is used by the transmitter encoding module. .If PN is not
zero, NCHAR is swapped with the next most likely character. Thus,

P(NCHAR) <=-=-PN-1
P(IP(PN-1)) <---PN
IP(PN) ¢-=-IP(PN-1)
IP(PN-1) <---NCHAR

In this way the most Tlikely characters tend to drift to Tow rank posi-
tions.
Timing (# cycles)

Normal character: 76
Character with rank 0: 19

Rev. 3 , D814 System Software Manual Rev. 3
Section 6.4 - 24

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.2.3 Transmitter Encoding

This routine starts with the character rank in Register B. It computes
the codeword and checks if the code should be changed later. It terminates
with the codeword in Registers A and B and returns to the calling program.

Timing (# Cycles)

4 bit codeword normal 20
least likely 30
8 bit codeword most likely 34
normal (15/16) 40
normal (1/16) 56
15 least likely (15/16) 1 50
15 least likely (1/16) 66
12 bit codeword 15 most likely (15/16) 50
15 most likely (1/16) 60
normal (15/16) 40
normal (1/16) 66

Following is a detailed explanation. Numbers refer to the tests in the
flow chart.

N4
N8
N12

1)

Rev. 3

of 1 nibble codewords

of 2 nibble codewords in the completed code tree.

of 3 nibble codewords in the completed code tree. Note that N12
is always a multiple of 15.

Compare B with N4. If less, then B is encoded into a 4 bit code-
word by incrementing it. If it is the least likely 4 bit codeword,
DRIFT is increased.

Uses the Z flag from 1. If set, B corresponds to the most likely 8
bit codeword and DRIFT is increased.

Compare B with N4 + N8. If less, it corresponds to an 8 bit code-
word, else to a 12 bit codeword

Check if B corresponds to one of the 15 least 1ikely codewords. If
so, DRIFT 1is decreased. Note that if N8 is less than 16, the most
likely 8 bit codeword is also one of the 15 least likely 8 bit code-
words. To save processing, this is not checked here, but is taken
care of by the transmitter code update routine which will not change
the code if DRIFT=128 but N8 is less than 16.

D814 System Software Manual Rev. 3
Section 6.4 - 25

CODEX CORPORATION

N

i nibble #
(i) character rank
---- illegal nibble

Rev. 3

Figure 6.4.3.2

n
[A]

Example: N4
N8

[
N

-f‘l
15 | =

D814 System Software Manual
Section 6.4 - 26

COMPANY CONFIDENTIAL

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5)

Rev. 3

An 8 bit codeword is generated by adding B to a base, then checking
if the resulting codeword terminates with the 0 nibble. If so, the
codeword is "folded", see Figure 6.4.3.2. One can show that the
number of folded codewords is the integer part of

I N8 -1 -1 |
15
Thus the most likely 8 bit codeword (B = N4) is encoded into
(N4+1)16+1+|N8 1'
15

so that base to which B should be added is

(N6 +1) 15 + 2 + | N8 -17|
_ 15 _| .

If the codeword must be folded, it is shifted right four times then

added to (N4 +1) 15. It is guaranteed that a folded codeword will

never terminate with the 0 nibble, as

%5

We must generate a 12 bit codeword. If it is one of the most 15
likely, DRIFT is decremented.

The 8 LSB of the codeword are determined by subtracting (N4 + N8 +
N12), so that if B is equal to (N4 + N8 + N12) -1 (i.e., the least
likely character in the completed alphabet), the 8 LSB of the code-
word are FF. The 4 MSB of the result are never 0000, as N12 <240
and B> N4 + N8, thus (256 +) B - (N4 + N8 + N12) >16. The 4 LSB can
be 0000, thus]ead1ng to an illegal codeword.

If the 4 LSB are 0000, B is shifted right 4 times, and the result is
added to X, where X = 240 if N12 = 240, and X = =N12 -16 otherwise.
Thus if the result of the subtraction (in 6) is FO (i.e., the least
1ikely unlawful 12 bit codeword), the resulting codeword is 15 - N12
- 16 = (N4 + N8 -1) - (N4 + N8 + N12), i.e. just above the most
likely 3 nibble codeword (N4 + N8) - (N4 + N8 + N12).

The most significant nibble of 3 nibble codewords is always F,
except if Test 7 is true and N12 = 240, in which case it is E. EORF
contains O or 1, depending on N12.

D814 System Software Manual Rev. 3
Section 6.4 - 27

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.3 Receiver (IP$ADCM$DECODE:ENTRY)

The receiver consists of one subroutine. It is entered‘with a non zero
nibble in the lower part of Register A. It returns either with Z = 0, in
which case no complete codeword has been received, or with A cleared and Z =
1, and a character in B.

Entry Point - IPSADCM$DECODE:ENTRY

Entry Conditions

A Reg with non-zero nibble to be decoded in lower part

Exit Conditions

If complete codeword received:

A Reg = 0

B Reg = decoded character
X Reg = destroyed

JA =0

If not complete codeword:

A Reg = destroyed

B Reg = destroyed

X Reg = intact i
/A =1

The detailed description follows. For simplicity we divide the receiver
into 3 well defined routines that are described separately. They are:

Receiver Decoder
Receiver Rank Update
Receiver Code Update

6.4.3.3.1 Receiver Decoder Routine

This routine starts with a nibble in Register A, and decodes it. If a
complete codeword has been received, the rank of the character is placed in
Register A and the program continues with the receiver rank update routine,
else control is returned to the calling program.

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 28

CODEX CORPORATION COMPANY CONFIDENTIAL

Timing (# Cycles)

First Second Third
Nibble Nibble Nibble

4 bit c.w. normal 24
least likely 32

8 bit c.w. most Tlikely 21 60
normal (15/16) 21 56
normal (1/16) 21 68
15 least likely (15/16) 21 66
15 least likely (1/16) 21 78

12 bit c.w. 15 most likely (15/16) 21 27 64
15 most likely (1/16) 21 27 72/76
normal (15/16) 21 27 54
normal (1/16) 21 27 62/66

The variable STATE is defined as follows:

STATE =

(00) if first nibble H is being processed
(OH) if second nibble M is being processed
(HM) if third nibble L is being processed
Note: If STATE = (H,M) then H = E or F and bit 7 always 1.

Following are the details of the algorithm.

1)

2)

Rev. 3

If the first nibble < N4, we have the complete word. If =N4, it is
the least likely 4 bit codeword and DRIFT1 must be incremented. The
rank is obtained by decreasing by 1.

Compute (H,M). The result is compared with
(N4+1)16+N8+|N8 ll
15
which is the least 1likely 8 bit codeword or an illegal codeword

smaller than the most significant 8 bits of any 12 bit codeword.
This test determines whether we have a complete 8 bit codeword.

Compare with (N + 1) 16 + 1 + l-NS -1

which is the most likely 8 bit codeword.

If =, it is the most likely 8 bit codeword. Decrease DRIFT2 and
set the rank to N4.

D814 System Software Manual Rev. 3
Section 6.4 - 29

CODEX CORPORATION COMPANY CONFIDENTIAL

If less than, we undo the second phase of the encoding by adding N4
+ 1 and multiplying by 16. We thus get the illegal codeword that
was the output of the first phase of the encoding.

We undo the first phase of the encoding by subtracting
(N& + 1) 15 + 2 + ‘—NS -l—l

and obtain the rank.
4) If one of the 15 least likely 12 bit codewords, increase DRIFT2.

5) Check if H was E or F and compute the least significant byte of the
3 nibble codeword.

6) Compares that byte with the final byte of the most likely 12 bit
codeword, N4 + N8 - (N4 + N8 + N12) = - N12.

A "less than" result indicates that the first encoding operation
resulted in an illegal codeword. We can recover that illegal code-
word by subtracting -N12 and multiplying by 16. The first phase of
the encoding is undone by adding N4 + N8 + N12.

7) Finally DRIFT1 is updated if the codeword is one of the 15 most
likely 12 bit codewords.

6.4.3.3.2 Receiver Rank Update Routine

This routine starts with a rank in Register A. It updates a table as
explained below, computes the character corresponding to the rank, places it
in Register B and returns to the calling program with Register A cleared.

The receiver contains only one table, the IP-table. It 1is updated
exactly as in the transmitter. Thus, if rank PN occurs and is not zero,
IP(PN) and IP(PN-1) are swapped, and the old value of IP(PN) is the output.

Timing (# cycles)

Normal : 41
If rank =0 : 12

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 30

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.3.3 Receiver Code Update

This routine performs a role similar to the Transmitter Code Update rou-

tine, using the same algorithm and about the same number of cycles.

If a code update is necessary, the following parameters must be computed:

N4

N4 + N8 + 15

N4 + N8 - 15

- N12

(N +1) 16 +1+ | N8 -1
_ 15 _

(N& +1) 15 +2+ | N8 -1~

T

(N& + 1) 16 + N8 + | N8 -1~

— 15 _

DRIFT must be reset.

The routine has two entries, DECN4 and INCN4, depending whether N4 should

be decreased or increased.

6.4.3.4 Initialization (IP$ADCM$INIT:ENTRY)

The following parameters must be initialized.

6.4.3.4.1 Transmitter

Alphabet Size 32 64 128 256
Parameters
N4 13 12 10 0
N4 + N8 - 15 28 41 66 207
N4 + N8 + N12 43 71 141 11 (= 267)
DRIFT 128 128 128 128
P table Natural Numbering, 255, 0, ... 254
IP table Natural Numbering, 1, ... 255, 0
Rev., 3 D814 System Software Manual

Section 6.4 - 31

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.4.2 Receiver

The initialization is the same as for the transmitter, except that the P
table is not defined for the receiver, but STATE must be set to 0.

In addition the routine INCN4 must be executed to compute all the para-
meters used in the decoder routine. The similar operations in the transmit-
ter routine will be executed automatically when the first character is
encoded, as DRIFT was initialized to 128.

6.4.3.5 Timing Estimates (# Cycles)

. Estimates regarding the transmitter encoder and receiver decoder routines
have been obtained by adding 10 to Linde's original estimates.

Transmitter
Code Update 11
Rank Update 76
Encoder (8 bit code) Uniform alphabet 44
Skewed alphabet 32
Total: 119-131
Receiver
Code Update 1
Decoder (8 bit code) Uniform alphabet 92
Skewed alphabet 57
Rank Update 41
Total: 134-150
Grand Total (Transmit and Receive): 243-281

With a full-duplex 1200 cps terminal, this would mean 336x103 cycles per
second, or 17 percent of the processor capacity. The previous figures are
somewhat pessimistic, simulation results on actual files, averaged over 1000
characters, hover between 93 cycles/character when long strings of 0's are
transmitted and 250 cycles/character for files containing object code, with
210 cycles/character being typical (13 percent of processor capacity).

Rev. 3 D814 System Software Manual Rev. 3
Section 6.4 - 32

CODEX CORPORATION COMPANY CONFIDENTIAL

6.5 Multi-Threaded Data Movement

Multi-threaded data movement refers to the transfer of data between ter-
minals over a line that is effectively shared. In the D814 system, this
implies that many physical terminals share a single set of I/TP software,
hence messages are interleaved.

The D814 is responsible for upholding data integrity during its movement
across the network. It does not, however, use an explicit end-to-end error
detection scheme in order to maintain acceptable levels of data accuracy.
Instead, an ARQ mechanism has been designed which is activated when a link or
a node failure has been detected. This, in conjunction with the checking
done by the INP, insures minimal data loss across the link.

The ARQ and flow control measures are implemented at those points at

which data is transferred to and from the BIC. The modules which are respons-
ible for this are discussed in the following two subsections.

6.5.1 BIC FIFO Handler

The multi-threaded data movement module uses the same BIC handler as the
single-threaded data movement described in Section 6.4.1.

6.5.2 Flow Module (IP$MFLOW)

The multithreaded data flow module is responsible for multiplexing the
data streams of individual threads into the multithreaded data stream format,
MTHSDI (described in Section 3.2.3.2 of this specification).

It is comprised of routines to accomplish the following tasks:

1. Flow module initialization
2. Pre-transmit

3. Transmit

4, Receive

The following sections describe in more detail the routines which see to
the completion of these tasks.

Rev. 3 D814 System Software Manual Rev. 3
Section 6.5 - 1

CODEX CORPORATION

oooooooo
oooooooo

ooooooooooooo
ooooooooooooo

........
oooooooo

Rev. 3

COMPANY CONFIDENTIAL

Inbound Flow Interface

(Section I)

triii>| PXMT - Individual
i IB BQUE
Chains

D814 System Software Manual
Section 6.5 - 2

ooooooo
ooooooo

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Inbound Flow Interface

(Section II)

Scheduler
A
FIFO
FIFO not full full
‘ l
- v - -
I
svese| FLOW IB Jeoseeed> ADC i FLOW tsiii::>| FLOW IB
BUFFER |=~===- >| ENCODER |=====>| NIBBLE |-====-- >| FIFO
|_READER | | | | _COMPACTOR | | ----- >| DRIVER
. I
| | :: A AR ::
T IS
sossi:>| EXCEPTION R R R
PROCESSING
send EOS ICS oW
--------- S| POLL NEXT |s:sszzzzzzszsszzsszsssssssssccsesss l BIC
Buffer empty | THREAD | _IB FIFO
or metered off
none ready
v
Scheduler
Rev. 3 D814 System Software Manual ‘ Rev. 3

Section 6.5 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.5.2.1 Flow Initialization (Submodule IP$MFLOWSINIT)
This submodule is called for two reasons,

1. for original FLOW data structure initialization, and
2. for reinitialization while the IP is active.

Accordingly, the submodule is comprised of two routines. The first is
called by the protocol module during its own initialization phase, the second
at CALLEND, again being invoked by the protocol module. The entry points and
functions of each are defined below.

Entry Point - IP$MFLOWSINIT:ENTRY

Function

Initializes data structures common to physical port and then uses the
thread index table to locate the thread structure addresses of each
thread and sequentially initializes Flow Control and ARQ data structures

and creates Inbound and Outbound data buffers for each potential thread
which may ultimately be connected to this port.

Entry Conditions

None

Exit Conditions

A1l registers destroyed.

Entry Point - IP$MFLOWSINIT:REINIT

Function

Deletes previous Inbound chain and Outbound data buffers, reinitializes
Flow Control data structures, and creates new Inbound and Outbound
buffers for the thread at CALLEND.

Entry Conditions

Y-Reg - points to the thread at CALLEND

Exit Conditions

A1l registers destroyed.

Rev. 3 D814 System Software Manual Rev. 3
Section 6.5 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

6.5.2.2 Inbound Pre-ARQ Flow Control (Submodule IP$MFLOW$PXMT)
Function

Called by the Inbound protocol module when the DTE has generated a char-
acter. This submodule moves the data into the Inbound byte queue chain.
In addition, it performs the function of chaining individual byte queues,
associated with a particular thread, and for maintaining the size of
individual byte queues to the block size dynamically determined by the
network in the form of the network variable "alpha".

Entry Points - IP$MFLOWSPXMT:ENTRY1
IP$MFLOWSPXMT :ENTRY2

Entry Conditions

ENTRY1: A-Reg
ENTRY2: A-Reg
B-Reg
Y-Reg

data byte

MS data byte

LS data byte

Thread structure address

Exit Conditions

A, B, X-Reg
Y-Reg

destroyed
preserved

6.5.2.3 Inbound Post-ARQ Flow Control (Submodule IP$MFLOW$XMIT)
Function

Obtains data from the Inbound byte queue chain corresponding to the
thread polled, calls the data compression encoder and places the result-
ing codeword in the BIC IBFIFO. This submodule is initiated when the BIC
IBFIFO is able to accept at least a half FIFO of data, and is structured
as a loop as typically it will transfer many bytes in one call. It term-
inates when either all the Inbound buffers are empty or are metered OFF,
or when the IBFIFO is full,

Secondary functions include the retransmission of unacknowledged blocks
in the event of link or node failures or buffer overflow, and the trans-
mission of ICS's.

Its function can be decomposed in 5 submodules:

Inbound Buffer Reader
Exception Processing
Next Thread

Compactor

IBFIFO Handler

Rev. 3 D814 System Software Manual Rev. 3
Section 6.5 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

6.5.2.3.1 Inbound Buffer Reader Submodule
Entry Point - IPSMFLOWSXMIT:ENTRY

Entry Conditions

None

Exit Conditions

A-Reg
Y-Reg

Data to encode
Thread structure index

The Inbound Buffer Reader submodule first checks if an exception condi-
tion exists, in which case control is passed to the Exception processing sub-
module.

Its main function is to pass a data byte to the adaptive encoder module.
The data byte is either a leftover form the previous use of the compactor
submodule or is obtained from the IB data buffer.

If none is available, control is transferred to the "Next Thread" sub-
module.

6.5.2.3.2 Exception Processing Submodule

This submodule is normally called by the Inbound Buffer Reader submodule
when an exception condition is detected. Processing the exception can result
in:

Generating an ICS_ACK
—SPDUP or SPDDN
_BUFOV
—REC
- Sending a slot address
- Sending recovery parameters
Reinitializing submodules in case of failure detection

In addition, the submodule interfaces with the Call Manager, statistics
and outbound protocol modules, as those can request the transmission of ICS's
SPDUP, SPDDN, REC and ACK. The processing of those requests consist in set-
ting internal flags. The following entries should be used:

Entry Point - IP$MFLOW$XMIT: SPEED

Entry Conditions

A-Reg set to the number of ICS_SPDUP (if > 0) or ICS_SPDDN (if < 0) to be
sent.

Rev. 3 D814 System Software Manual Rev. 3
Section 6.5 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

A-Reg
Y, B, X-Reg

Wiped out
Unchanged

IPSMFLOWSXMIT : ACK

Entry Point
Entry Conditions

None

Exit Conditions

A-Reg
Y, B, X-Reg

Wiped out
Unchanged

wou

6.5.2.3.3 Next Thread Submodule

This submodule is called by the Inbound Reader submodule when a buffer is
empty or metered OFF. It determines from which thread data should be sent
next. It then generates the ICS_End of Slot and passes it to the IBFIFO
Handler submodule. It sets the exception condition and prepares the Next
Slot address for future -use by the IB BIC FIFO driven routines.

6.5.2.3.4 Compactor Submodule

This submodule processes the return from the adaptive encoder module. It
updates the number of encoded nibbles and removes as many O nibbles as possi-
ble before passing control to the IBFIFO Handler. Its point of entry depends

on the number of nibbles in the codeword.
Entry Point - IP$MFLOWSXMIT:SNGL
IP$MFLOWSXMIT : DBL
IP$SMFLOWSXMIT: TRPL

Entry Conditions

SNGL and DBL: A-Reg is data
TRPL : A-Reg is MS nibble
B-Reg is LS byte

6.5.2.3.5 IB FIFO Handler Submodule
Called by the compactor, exception processing and next thread submodules.

Writes the data in the IBFIFO. Returns control to scheduler if FIFO full,
else to the IB buffer reader submodule.

Rev. 3 ' D814 System Software Manual Rev. 3
Section 6.5 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

6.5.2.4 Receive (Submodule IP$MFLOWSRECV)
Function

Obtains data from the OBFIFO, calls the data compression decoder and
calls the protocol module. This submodule is initiated when the BIC
OBFIFO contains data and 1is structured as a loop, as typically it will
transfer many bytes in one call. It terminates when the OBFIFO is empty.

Secondary functions include the orderly processing of retransmitted data.

Its function can be decomposed in 5 submodules:

Outbound FIFO Reader
Decompactor
- More Nibble
Post Exception Check
Exception Processing

Rev. 3 D814 System Software Manual Rev. 3
Section 6.5 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 3 D814 System Software Manual Rev. 3
Section 6.5 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

Outbound Flow Interface

(Section I)

ooooo
ooooo

Scheduler
| A
FIFO *) FIFO
full | | empty
Vv
byte | | nibble I
BIC :::::>| OB FIFO |:::::>| DECOM- |:::::::>| ADC
l 0B FIFO l I READER l ----- >i PACTER } ------- >| DECODE | decode
m T A A complete
S decode e
2| incomplete :: nibble
I v :
o none saved] CHECK |
SAVED |{-====-=-
i ------------ >| NIBBLE
Trrrriiiiid | ’
----------- >| EXCEPTION |{-==-=mccemmccccmcncanaann
PROCESSING
10> data
----- > control
Rev. 3 D814 System Software Manual

Section 6.5 - 10

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Outbound Flow Interface

(Section II)

1 Scheduler
ISR SED] st
22 | s
IS SRS RN
SESEEREEEN i . :: v
| POST i i |
EXCEPTION |:::::ce tiisi>| OUTBOUND
---------- > CHECK = e PROTOCOL
16 |- :
IR RS SR
||
Rev. 3 D814 System Software Manual Rev. 3

Section 6.5 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

6.5.2.4.1 Outbound FIFO Reader
Entry Point - IP$MFLOWSRECV:ENTRY

Entry Conditions

None

Exit Conditions

A-Reg = Data from FIFO
Y-Reg = Thread structure address

The Outbound buffer reader submodule takes data from the OBFIFO and
passes control to the data decompactor if no exception condition exists, else.
to the exception processing submodule. If no data is present, it returns
control to the scheduler, after enabling Outbound interrupts from the DTE.
6.5.2.4.2 Decompactor

The decompactor disassembles bytes into nibbles and calls the adaptive
data compression decoder.
6.5.2.4.3 Check Saved Nibble

Entry Point - IP$MFLOWSRECV:MORE

Entry Conditions

Y-Reg = Thread structure index

Exit Conditions

Thread structure index
Nibble to decode

Y-Reg
A-Reg

This submodule is called either by the ADC decode or the protocol module
when the previous "nibble has been processed. If there is an outstanding
nibble in the decompactor, it calls the ADC decode, else the Outbound FIFO
reader.

Rev. 3 D814 System Software Manual Rev. 3
Section 6.5 - 12 ‘

CODEX CORPORATION COMPANY CONFIDENTIAL

6.5.2.4.4 Post Exception Check
Entry Point - IP$MFLOWSRECV:CHAR
Entry Conditions

A-Reg = Decoded character

This submodule is called by the ADC decode when a character has been com-
pletely decoded. If the receiver is 1in retransmission mode, control is
passed to the Exceptio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>