IBM Personal Computer - Ethernet (IE)
Controller/Transceiver

External Reference Specifications

3Com Corporation

March 15, 1983

IBM Personal Computer - Ethernet (IE)
Controller/Transcejiver

External Reference Specifications

3Com Corporation

l. Introduction

The IE is a low cost Ethernet controller/transceiver for IBM Personal
Computers and conforms to the Ethernet Specification, Version 1.0, 30
September 1980, as published by DEC, Intel and Xerox. With one minor
exception, it implements levels one and two of the Open Systems Inter-
connect Model of the International Standards Organization.

Level One Functions, Physical Laver

Coax/station electrical isolation.
Bit transmission/reception.
Carrier sense.

Transmit collision detection.
Encoding/decoding.

Preamble generation/removal

Q00000

Level Two Functions, Data Link Laver

Frame check sequence generation/checking.
Carrier deference.

Transmit collision enforcement.

Collision fragment (runt) filtering.

Bad packet filtering.

Address recognition.

000000

- The controller on the IE incorporates a VLSI Ethernet Data Link Con-
troller, the Seeq 8001 or EDLC, and a single, two Kbyte, packet buffer
designed to operate with the 3237A DMA controller found on the 1IBM
System Board. It also has provisions for external loopback and can
use one of the interrupt channels of the B259A interrupt controller on
the system board. 1In addition to a conventional S“thernet controller,
the IE contains an Ethernet transceiver providing complete Level one
and two functionality on one orinted circuit card.

2. Architecture

The IE has a single two Kbvte packet buffer (large enough for the
longest Ethernet packet) shared between transmit And receive. Once a
packet is transferred to the buffer for transmission and a transmit

March 15, 1983

initiated, the software must intervene only in case of a collision.
To receive a packet, software selects one of several address recogni-
tion modes; when a suitable packet arrives, the controller places it
in the packet buffer. When enabled for multicast recognition, address
screening of multicast packets must be performed by the system
software. :

Programs address the IE through a block of sixteen registers in the
I/0 space of the 8088. These registers are used to write commands,

read status information, and access packet data. In contrast with
IBM's practice, the IE's base address is jumper settable (32 values).
The IE also has a four Kbyte ROM for program storage. The base

address of the ROM 1in memory space is also jumper settable (32
values).

Access to the packet buffer switches between the system bus and the
Ethernet under program control. - Ethernet access can be receive,
transmit with automatic rollover to receive, or loopback.

One of the I/0 registers provides ‘a one byte window on the packet

buffer. Another register, GP, the general purpose buffer pointer,
holds the address of the byte visible through the packet ©buffer win-
dow. Reading and writing the window automatically increment Gp per-

mitting sequential access to the packet buffer from the system bus.
Writing GP then reading or writing the window gives the effect of ran-
dom access.

The packet buffer can be loaded and unloaded using the 8237A DMA con-
troller on the system board to repetitively read or write the window.
The IE can request DMA service, detect the end of the transfer and
interrupt when the DMA is done.

All interrupts go through the 8259a interrupt controller on the system
board. Each type of IE interrupt is enabled independently of other
types; however, the IE has only one interrupt line to the system.
This arrangement requires software to scan the IE status registers to
determine the cause of an interrupt. Consistent with IBM PC practice,
both DMA service request and interrupt request line drivers can be
disabled. ‘

3. System Interface

The IE has two sixteen bit buffer address pointers (registers), GP and
the receive buffer pointer, RP. RP is used only by the receive side
of the controller for packet reception. The transmit side of the Eth-
ernet logic and the system bus use 3P for access to the packet buffer.
L.oopback operation uses both.

Transmit packets are end-aligned within the packet buffer. Software
uses OGP when filling the buffer. BRefore transmitting the buffer,
software reloads GP so that it points to the first byte of the packet.

Receive packets are front-aligned in the buffer. Therefore, after the

March 15, 1983

IE receives a packet, RP contains the packet length in bytes. If the
packet length exceeds the legal maximum, the first 2048 bytes will be
saved in the buffer. After the 2n48th byte, RP locks Up preventing
any buffer overwrite; reading a packet length of 2048 (B00 hex) from
RP indicates a packet of at least 2048 bytes.

During loopback, the controller reads the end-aligned transmit packet
from the buffer and writes the received packet front-aligned in the
buffer. A maximum length packet can be looped back. The received
packet may overwrite part of the transmitted packet. Loopback
requires the IE to be connected to an Ethernet by the onboard or
external transceiver, or fitted with special BNC or DA-15 loopback
plugs by the user. '

The IE's Ethernet station address is stored in a PROM, whose contents
are accessible through another one byte window register similar to the
window register used to access the packet buffer. Software uses GP to
address the station address PROM available in locations zero thru five
with station address byte zero at address zero. Unlike access to the
packet buffer, reading the station address does NOT auto-increment GP;
software must explicitly increment it.

The IE provides two sets of registers for the Ethernet station
address. One set is read only; the other set is write only. Software
must program the station address by setting the write only register
set. The station address provided in the PROM serves only to provide
a "hint" about what the station address should bhe.

March 15, 1983

lw

(e

IE Controller Register Map-

READ

Receive Status
Transmit Status
GP Buffer Pointer [LSB]

GP Buffer Pointer fMSB]

RCV Buffer Pointer rLss)

RCV Buffer pPointer (MSB]

Ethernet Address Prom Window

Auxiliary Status

Buffer Window

WRITE
Station Addr 0
Station Addr 1
Station Addr 2
Station addr 3
Station Addr 4
Station Addr 5
Receive Command
Transmit Command
GP Buffer Pointer (LsB]
GP Buffer Pointer fMsSRB]

RCV Buffer Pointer Clear

Auxiliary Command

Buffer Window

March 15, 1983

3.2. Transmit Command Register

f l |
| I 317 2T 117 0]
| N I N
I o
I T T°T°7T
: ; ; : |--=> Detect Underflow
I : e > Detect Collision
l [
I : . > Detect Collision 16
l
: [mmm e > Detect Successful Transmission
[e e e > Unused

A packet transmission can terminate for any of four different reasons:
successful transmission, collision, sixteenth successive collision
without successful transmission, and underf]ow. After each collision,
data remains in the packet buffer undisturbed; but, software must
reset GP and explicitly restart the transmission; once restarted, the
IE delays the appropriate amount of time before actually retransmit-
ting the packet. After the sixteenth consecutive collision further
attempts to retransmit should be abandoned on the assumption that the
network is overloaded or has failed.

Inderflow occurs only when transmitting packets without valid FCS and
should not be seen during routine operation of the controller.

Software can choose whether to ignore or detect any of the four condi-
tions listed above. A one in the corresponding bit position detects
the condition; a zero ignores the condition. Detecting a condition is
not sufficient to geénerate an interrupt. 1In order for the IE to gen-

erate interrupts, software must also set Request Interrupt and DMA
Enable.

See the deScription of the Auxiliary Command Register below for
- details concerning underflow and interrupts.,

March 15, 1983

3.3. Transmit Status Register

| | |
i 31 21 1T 0l
| I S I .
| O T O
I TTT T T
| } : } |---> Underflow
!
{ ! ! - > Collision
i 1
! ! fmmmeeee e > Collision 16
i I
: [P, > Ready for New Frame
e e e > Undefined

The controller loads the transmit status register only after each
transmission or attempted transmission. If interrupts are enabled for
transmit, reading the status register clears the interrupt.

é.i. Receive Command Reqister

|---> Detect Overflow Errors
| ———rm- > Detect FCS Errors
[> Accept Dribble Errors
R . > Detect Short Frames
R > Detect Fraﬁes Without Overflow Error

| e e > Accept Good Frames

— ety — ey . —— —— it e st Sincers i

----------------------- > Address Match Mode

0 - Receiver Disabled

1 - Receive all addresses

2 ~ Receive station address and broadcast
3 - Receive station address anAd multicast

Software can program the IE to detect only certain classes of packets:
all unwanted packets are discarded without intervention. The Address
Match Mode controls whether to accept packets by examining their des-
tination addresses. If the match mode is zero, the IE will not detect
any packet; mode one accepts packets regardless of the contents of

March 15, 1983

“their destination addresses. Modes two and three compare the destina-
tion of each packet with the station address registers stored in IE
registers zero through five.

Other bits in the command register allow software to further qualify
packets before detecting them. The IE accepts only well formed pack-
ets (legal size, no FCsS error, and no overflow):: to receive well
formed packets, software must set the Accept Good Frame bit. Dribble
indicates the packet did not end on a byte boundary; there were a few
extra bits after the last byte. The controller will accept packets
with dribble errors as long as the packet does not have anything else
wrong with it and software sets Accept Dribble Errors. All other bits

are useful only to detect packets with errors. The controller will
not accept packets with errors; but, software can detect them in order
to keep counts for diagnostic purposes. Short frames are packets

whose length is less than 60 bytes, excluding preamble and FCS; these
are probably collision fragments. FCS error means the four byte FCs
computed on receipt did not match the FCS in the packet. (Note that an
Ethernet "alignment error" is equivalent to a packet with dribble ang
FCS errors.) oOverflow errors happen when the controller tries to
accept a packet, but, the packet buffer is not available. The buffer
might already have a packet, or the buffer might belong to the system
bus rather than the Ethernet.

3.5. Receive Status Register

|-=> Overflow error

S > FCS error

emmmmaee > Dribble Error

e T > Short Frame

e > Received well formed packet
‘--'~-j-f-f-ff-—f---> Undefined

e e e > Stale Receive Status

Software defines the class of "interesting" packets by setting the

receive command register. The controller changes the status register

after any packet goes by on the network whether or not it was

interesting. If the controller detects an interesting packet, the

Stale Receive Status goes to zero; once the Stale Recejve Status is

zero the controller discards all packets untijl software reaJs the

status register; this guarantees that software reads the status ASSO-
ciated with the detected packet. Reading the status register sets the

March 15, 1983

Stale Receive Status back to one:; the IE can then detect the next
interesting packet that comes by on the Ethernet. If receive inter-
rupts are enabled, reading the status register also clears the inter-
rupt.

3.6. Auxiliary Command Register

| | l

|77T7 61 5T 4l 2] 1T 0l

I R | I

I I_Tl I l_ 1|

TT T T i T
| T B | | |---> Transmit Packets with Bad FCS
| I R | |
N | R > Unused
| I R |
I R > Packet Buffer Control
I D 0 - System bus has access to the buffer
| I B 1 - Transmit followed by receive
| N | 2 - Receive
R T B 3 - Loopback
| R
Y N N S, > Unused
[
: I BT --> DMA Request
|

e T > Request Interrupt and DMA Enable
l .
R > Reset

Writing a one in Reset, resets all control and status registers in the
IE. Software must explicitly set this bit to zero after setting it to
one; leaving Reset on has the effect of perpetually resetting the
controller.

Request Interrupt and DMA Enable, RIDE, permits the IE to drive both
the interrupt request, IRQ, and DMA service request, DRQ, signals on
the system bus. Jumpers on the IE card select DMA channel (either one
or three), and interrupt channel (either three or five). When RIDE is
zero, the IE cannot generate interrupts or DMA transfers. Bits in the
transmit and receive command registers can be set to detect certain
conditions; however, no interrupts can result until RIDE is a one.

Software must manipulate RIDE with care. When RIDE is zero the state
of the associated IRQ and DRQ lines on the system bus can be unde-
fined. Leaving these lines in an undefined state when their associ-
ated DMA and interrupt channels are active can result in strange and
unpredictable behavior. Software must insure that the associated 1IRQ
and DRQ lines are not used by other peripheral devices before setting
RIDE to one. Neither setting of RIDE is safe under all circumstances!

Setting DMA Request to one starts a DMA transfer. The IE interrupts
at the completion of the transfer. Setting DMA Request to zero,

March 15, 1983

disables DMA Service request, clears DMA Done, and clears the jnter-
rupt.

Bits two and three of the auxiliary command register contro] access to
the packet buffer. If both bits are zero, the buffer "belongs" to the
system bus; software is free to read and write the buffer without
interference from the Ethernet. If either of the bits are not zero
the packet buffer belongs to the Ethernet. 1If bit 3 is one, the con-
troller will accept one packet from the network. The setting of the
receive command register can discard certain classes of packets and
guarantee that only "interesting" packets are detected and reach the
packet buffer. After receiving a packet, the controller leaves the
size, excluding preamble and FCS, in bytes, in RP. If bit 2 goes to
one, the controller transmits the packet buffer. If both bits are
one, the controller transmits the packet buffer and simultaneously
receives from the Ethernet writing the packet back into the beginning
packet buffer.

Setting the low order bit of the auxiliary command register to one
causes the 1IE to transmit packets with bad FCS. This bit is useful
for testing the receive FCS circuitry.

3.7. Auxiliary Status Register

| --=> Receive Busy
!
; e > Unused

R > Packet Buffer Control
P > DMA Done
lmm e > DMA Request
= e > Request Interrupt and DMA Enable
E e S, > Transmit Busy
Software starts a DMA transfer by programming the proper channel of
the 8259A DMA controller on the system board and setting DMA Request
to one on the IE. When the DMA transfer ends, DMA Done goes to one;
software clears DMA Done by setting DMA Request to zero.
Receive Busy goes to one whenever the controller is armed to receijve a
packet; this happens implicitly after transmitting a packet, or,
explicitly by setting the Packet Buffer Control to receive or loop-

back. Receive Busy goes to zero after the controller accepts a
packet. Software must wait 800 nanoseconds after receive busy goes to

Marcﬁ 15, 1983

- 10 =~

zero before reading the receive status register.

Transmit Busy is meaningful only when the packet buffer control is set
“for - loopback or transmit; while the packet buffer is switched to the
bus or is in receive mode Transmit Busy will be set. Transmit Busy
remains at one when software starts a transmit by setting the Packet
_Buffer Control to one. Transmit Busy goes to. zero upon a collision or -
a successful transmission. Software can distinguish between these two
cases by examining the transmit status register. Switching the packet
buffer back to the bus sets Transmit Busy back to one.

4. IE Programming . -

To transmit a packet, first set the Packet Buffer Control to =zero:
this gives the system bus access to the buffer. Load the packet into
the buffer so that the last byte of the packet coincides with the last
byte of the packet buffer. Load GP so that it points to the first
byte of the packet in the buffer. Start the transmission by setting
the Packet Buffer Control to one. The transmission terminates when
Transmit Busy goes to zero; read the transmit status register to
determine whether there was a collision or a successful transmission.

In case of collision, set the Packet Buffer Control to =zero, reload
GP, and set the Packet Buffer Control to one: this retransmits the
packet. Again wait for Transmit Busy toc go to zero: then, read the
transmit status register to determine why the transmission terminated.

Receiving packets requires both one time initialization of the con-
troller and manipulation of the IE for each packet that arrives. The
one time initialization includes reading the station address PROM,
loading the station address registers, and setting the receive command
register. 1In the programming example the routines "getaddr" and
"setaddr", read the station address PROM and write the station address
registers respectively.

To receive a packet clear RP and set the Packet Buffer Control to two;
this initializes the read pointer and gives the packet buffer to the
Ethernet. 800 nanoseconds after Receive Busy goes to zero, the
receive status register has the status of the packet just received.
The size of the packet, in bytes, is in RP. Software must set the
. Packet Buffer Control to zero before reading the packet from the
buffer.

The following code, written in C, initializes the controller,
transmits a single packet of 1000 bytes, and then receives well formed
broadcast and packets addressed only to the station. The main program
is found at the end of the example. The routines "inb", “inw",
"outb", and "outw" read and write words and bytes on the IBM PC's 1I/0
bus; the routine "inbs" reads a byte sign extended into a word. All
of the examples are polled I/0; no use is made of the interrupt circu-
itry. - -

/* the various IE command registers */
#define IE(num) (0x300+0x10*num)

March 15, 1983

__#*define

#define
#define
$define
#define
#define
#define
#define

/* bits
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

#define
#define

/* bits
#define
#define
#define
#define

/* bits
#define
#define
#define
#define

#define
#define
#define
$define

t#define
#define

/* miscellaneous sizes * /

#define BFRSIZ 0x800
60
1514

#define
#define

error(s) char *s;

/* call DOS to test for keystroke, if its

RUNT
GIANT

{print£("3s *,

11

-EDLC_ADDR{num)--——(aum)— /% BBLe station address, 6 bytes gt/
EDLC_RCV (num) ((num)+0x6) /* EDLC receive command and stat{@—
EDLC_XMT (num) ((num)+0x7) /* EDLC transmit command and status
IE GP(num) ((num)+0x8) /* transmit, station address PROM bp */
IE_RP(num) ((num)+0xa) /* receive buffer pointer */
IE_SAPROM(num) ((num)+0xc) /* 1 byte window on station address *
IE_CSR(num) ((num)+Oxe) /* IE command and status */
IE_BFR(num) ((num)+0x¥f) /* 1 byte window on packet buffer */
in EDLC_RCV, interrupt enable on write, status when read */
EDLC_NONE Nx00 /* match mode in bits 5-6, write only */
EDLC ALL 0x40 /* promiscuous receive, write only */
EDLC_BROAD 0x80 /* station address plus broadcast */
EDLC_MULTI 0xcO /* station address plus multicast */
EDLC_STALE Nx80 /* receive CSR status previously read */
EDLC GOOD 0x20 /* well formed packets only */
EDLC ANY 0x10 /* any packet, even those with errors */
EDLC_SHORT 0x08 /* short frame */
EDLC_ DRIBBLE 0x04 /* dribble error */
EDLC FCS 0x02 /* CRC error */
EDLC_OVER 0x01l /* data overflow */
EDLC_RERROR (EDLC SHORT |EDLC DRIBBLE|EDLC_FCS|EDLC OVER)
EDLC_RMASK (EDLC:COODIEDLC_KNYIEDLC_RERRER) B
in EDLC XMT, interrupt enable on write, status when read */
EDLC_IDLE 0x08 /* transmit idle */
EDLC_16 0x04 /* packet experienced 16 collisions */
EDLC_JAM 0x02 /* packet experienced a collision */
EDLC_UNDER 0x0l /* data underflow */
in IE CSR */
IE RESET 0x80 /* reset the controller */
IE RIDE 0x40 /* request interrupt/DMA enable */

IE_DMA 0x20 /* DMA request */
IE_EDMA 0x10 /* DMA done */
IE LooOP Ox0c /* 2 bit field in bits 2 and 3, loopback */
IE RCVEDLC 0x08 /* gives buffer to receive */

TE XMTEDLC 0x04 /* gives buffer to transmit */
IE_SYSBFR 0x00 /* gives buffer to processor */
IE CRC 0x02 /* causes CRC error on transmit */
IE_RCVBSY 0x0l /* receive in progress */

number of bytes in a buffer */
smallest legal size packet, no fcs */
largest legal size packet, no fcs */

s);}

“C get back to pos */

March 15, 1983

sense_key() {char c:
if (dos(0xb)) {if ((c = dos(8)&0177)==3) exit(0Q): return(c):}
else return{0);} ,

/* low level transmit routines */
iereset(base) short base: |
outb(0xa, 5):; /* turn off DMA channel 1 */
outb(0x21, 0xa0n); /* mask interrupt level 5§ */
Outb(IE CSR(base), IE RESET): /* reset them */
Outb(IE CSR(base), 0)3
if (inb{IE CSR(base)) != 0x80) error("Can't reset IE CSR");
1£ ((inb(EDLC_XMT(base))&0x0f) t= o) error(”Can't clear EDLC XMT");
1f ((inb(EDLC_RCV(base))&0x9f) 1= EDLC_STALE) -
error("Can't reset EDLC_RCV");}

xmt_start(base, size) short base; int size; |
" char c= inb(EDLC XMT (base));
Outb(IE CSR(base), IE RIDE); - /* make sure its out of transmit mode * /
outw(IE GP(base), BFRSIZ-size); /* before zapping counter */
outb(EDLC_XMT (base), EDLC 16 |EDLC JAM|EDLC UNDER|EDLC IDLE):
outb(IE_CSR(base), IE_RIDE|IE XMTEDLC);} — B

/* returns 0 for successful transmit
1 timed out
? collision
3 data underflow
4 idle not set after transmit

5 16 collisions */
xmt_wait(base, size, stall) short base: int stall, size:; |
int i; char c:

if ((inb(IE CSR(base))&IE XMTEDLC) == 0)
error("buffer not switched to transmit, xmt_wait");

i = stall;

do

if { inbs(IE CSR(base)) < 0) continue:
C = inb(EDLC XMT(base));
if (c&EDLC UNDER) return(3); /* underflow */
if (c&EDLC™16) return(5); /* 16 successive collisions? */
1f (c&EDLCTJAM) return(2); /* collision? */
if (inw(IE GP(base))==0x800) {
if (tTinb(EDLC XMT(base)) & EDLC_IDLE)) return(4):
return(0);}} ~
while(i-->=0);
return(l);}

retransmit(base, mode, size) short base, mode, size; |
int i = 0, org = BFRSIZ-size, k:
if ((inb(IE CSR(base))&IE XMTEDLC) == Q)
error(“buffer not switched to transmit, retransmit");
while (inbs(IE CSR(base)) < 0)
if (++i > T000) (error("retransmijt timed out"); break:}
Outb(IE CSR(base), IE RIDE); /* make IE idle */
outw(IE GP(base), orgy;
if ((iHb(soLc_XMT(base))&(EDLC_JAmlEDLc_le)) == 0)} return;

March 15, 1983

-~ 13 -

WQQLDLIE;QSRLbase;TMngglgg¢medeyf}wm

/* returns 0 on failure, 1 on success */
xmt _done(base, size, stall) short base, size, stall; {
retry: switch(xmt wait(base, size, stall)) {
case l: error("Transmit timed out"); iereset(base);
case 0: return(l):
case 2:
error("Jam");
retransmit(base, IE XMTEDLC, size);
sense key(); -
goto retry;

case 3: error("underflow on transmit"); iereset(base):; break:
case 4: error("idle not set after xmt"); iereset(base): break:
case 5: iereset(base);

error("excessive collisions"):

break;

default: error("xmt_done: bad argument"); }
return(0);}

/* low level receive routines * /
rcv_start(base, mode) short base; char mode; {
outb(EDLC RCV(base), EDLC NONE) ;
outb(IE_CSR(base), IE RIDE);
outw(IE_RP(base), 0);
inb(EDLC RCV(base)); /* he'll discard until we read the status */
Outb(IE ESR(base), IE RIDEIIE RCVEDLC) ;
outb(EDLC_RCV(base), mode|EDLZ GOOD); }

rcv_wait(base, stall) short base: int stall; f{
char status; int i = stall;
do {
if (inb(IE CSR(base))&IE RCVBSY) continue;
status = inb(EDLC_RCV(base))&(EDLC STALE | EDLC_RMASK) ;
1£ ((status&(EDLC_ANY|EDLC_RERRORY) != 0) return(status);}
while(i-->=0); -
return(0);} /* timed out */

rcv_chk{status) char status: |
if (status&EDLC FCS) error("FCS error");
if (status&EDLC DRIBBLE) error("dribble error");
if (status&EDLC OVER) error("overflow on receive");
if (status&BDLc:SHORT) error("size");}

rcv_done(base, stall) short base: int stall; {
char status:

if ((status = rcv wait(base, stall)) == 0) return(o):

if (status < 0) {error("not fresh status"); return(-1):}

outb(IE CSR(base), IE RIDE]|IE SYSBFR): /* give buffer to orocessor */
outb(EDLC_RCV(base), EDLC NONE): /* shut 4down the EDLC */

rcv chk(status); -

return(statuss&0x£f);) /* guaranteed to be non-zero at *his point */

qetaddr(base, cp) short base: char *cp: fint i;

MAarch 15, 1933

for(i=0; i<6: i++) |

outw(IE GP(base), i):
“Cp++= inp(IE SAPROM(base)):)}

setaddr(base, cp) short base: char *op; {int i,

for(i=0: i<=5; j++) Outb(EDLC_ADDR(base)+i, cplil);}

/* £i11 packet with constant pattern */
€i1l_pkt(base, size, pat) short base, size, pat; f
“int i; char pathji = pat>>8;
/* Watch out! This routine knows that a short is two bytes. */
Outb(IE_CSR(base), IE_RIDE!IE_SYSBFR);

SlzZe=

(size+l) & ~1:

outw(IE_GP(base), BFRSIZ~-size);
for(i=size>>1; i>0; i--) |
Outb(IE_BFR(base), pat): Ooutb(IE_BFR(base), pathi):}}

xmt_pkt{base, size, stall) short base: int size, stall; |
xmt_start(base, size): xmt_done(base, size, stall);}

rcv_pkt(base, rcv mode) |
" int status, Stallcon = 0x400;
rcv_start(base, rcv mode):
while((status = rcv—done(base, stallcon))==0) sense kev();:
return(status):} — -

main()

(

char mvaddrf6]; int je = IE(0), size, i:

/* one time only initialization */

iereset{ie)-
getaddr(ie, myaddr):
"setaddr(ie,

printf("3Com IE Programming Example Version 1.00):
printf("My station address is ");

for (i=0; i<6; i++) printf("$02x ", myaddr[iJ&nx€f):
Outb(EDLC_RCV(ie), EDLC_ALLIEDLC_GOOD) ;

£111_pkt(lie, 1900, Nx5555) . /* £i11 pack et wish
xmt_okt(ie, 1000, 1000): /* transmj- packet of 1990
/* receive those nackets */

printf("Jtart receive looo0);

while (1)

1f (rcv oxt(ie, EDLC_ALLIEDLC_GOOD) > 92) |
size = inw(IE_RP(ie)); /* that's

printf{"3d ", Tsize);}
2lse jereset(ie):}

“arch 15, 1983

/* align packet on word boundary */

/* leaves buffer switched L0 system hus */
/* read station address from PROM */
myaddr) ; * set the station address */

the siz2 in hytes * /

5. Setting the Jumners

The factory se<tings on the IE work with software supplied by 3Ccnm.
Only extraordinrary circumstances or use with non-3Com software woula
require alteraticn of the factory settings.

The IE contains five gets of jumpers. Their functions and factory
settings are summarized in the table below. The BNC/DIX jumper con-
trols which of the two connectors on the backplate supports the Ether-
net. The BNC is the silver cylindrical connector for a coaxial cable;
the DIX connector is the fifteen pPin connector. The DMA1/DMA3 jumpers
select the DMA channel used by IE. The DMA function requires a pair
of jumpers; be sure that the settings of the two jumpers agree. The
INT3/INTS Jjumper selects the interrupt channel used by the IE. T0<9-
4> select the base address for the IE registers; the factory setting
is 300, hex. PROM<19-12> select the base address of 4Kx8 PROM. The
factory address setting is ec000, hex: however, the PROM is disabled.

BRE CAREFUL when changing the jumpers. If the jumpers are improperly
installed, it is possible to short together +5V and GND.

Function Legend Factory Setting

DIX/B’NC SW1 3NC

DMAL /NDMA3 JP1l DMA1l

JpP2 DMAL

INT3/INTS JP3 INTS

I0¢S 1, not selectable

108 JP4 1

107 JPS 0

106 JP6 0

105 JP7 0

I04 JP8 0

PROM19 l, not selectable

PROM1S JP9S 1

PROM17 JP1ln 1

PROM1G 0, not selectable

DROM1 5 1, not selectable

PROM1S JP11 1

PROM13 JP1l2 0

PROML12 JP13 0

PROM ENARLE JPl4 disabhle
6. Ethernet Intorface
The IE orovides twn ontions for connection tno an Fthernet, selectable
by a jumper. The “irst {3 rhe standard, DA-15 DIX outlet, which uses
fully compatible signallinag. =his futlet attaches to a standard tran-

1
sceiver =zable, which in TUrn 1T connectsad +n any Ethernet “ransceiwver.

Mareh 15, 19833

This would presumably be the usage when an REthernet was pre-installed
with "thick" Ethernet cable.

The other Ethernet interface uses the onboard transceiver and is
designed to be wused with, "thin", low-cost (50 ohm) RG-58A/U coax.
The integral transceiver is attached to the Thin Ethernet cable via a
single BNC connector on the box, to be mated with a BNC "T" pre-
installed on the RG-58 coax. The station can be coupled and uncoupled
without affecting network operation. The integral transceiver pro-
vides complete electrical isolation.

The RG-58 Ethernet is electrically compatible with the vellow Ethernet
coax. n fact, the RG-58 Ethernet can be attached to a vellow Ether-
net by simply coupling them with an N-series/BNC adapter, and IEs can
communicate with any other station on the RG-58 or yellow coax. One
drawback of the RG-58 Ethernet is that the distance limitation is more
severe: approximately 300 meters of an RG-S58-only segment.

7. Known BRugs Found on Earlvy Production [Es

Receiving a runt packet can lock.up the controller while in receive
mode regardless of the setting of Detect Short Frames, bit three of
the Receive Command Register. Reading the Receive Status Register
after reception of a runt permits reception of further packets. This
is not a problem for software using polled I0; such scftware can read
the Receive Status Register in the same loop that checks the aAuxilli-
ary Status register for Receive Busy. Interrupt driven software must
set Detect Short Frames +o insure that runts generate interrupts;
interrupt level software can then read the status reqgister in o>r.ier %o
receive subsequent packets.

It is possible tc get one false 1interrupt for each write to =the
Receive or Transmit Command Register. Software can distinguish false
‘interrupts from true ones by examining Receive Busy and Transmit Busy,
bits zero 13ind seven respectively of the Auxilli ry Status Register.
Well written software would routinely check for these conditions
before taking action to disturb the state of the controller.

avent false inter-

Software running at interrupt level can easily or
telv after writing the

rupts by reading the status register immedia:
control register,

Software running at main program level cannot

nravent false interrunts
that way Dbecause an interrupt would occour Befora i

3

2

1in nrogram laeval
1.1 =hen he resnpon-
s .

ragisters.

could read the status register. Interrups 12w
sible for clearing the interrupt by readinz =

March 15, 1993

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16

