
SPECIFICATION OF
CONCURRENT EUCLID

(Version 1)

James R. Cordy
Richard c. Holt

Technical Report CSRG-133
August 1981

SPECIFICATION OF
CONCURRENT EUCLID

(Version 1)

James R. Cordy
Richard c. Holt

Technical Report CSRG-133
August 1981

Computer Systems Research Group
University of Toronto

Toronto, Canada
MSS lAl

The Computer Systems Research Group (CSRG) is an interdisci
plinary group formed to conduct research and develop~ent relevant
to computer systems and their application. It is jointly admin
istered by the Department of Electrical Engineering and . the
Department of Computer Science of the University of Toronto, and
is supported in part by the Natural Sciences and Engineering
Research Council of Canada •.

ABSTRACT

Concurrent Euclid (CE) is a programming language designed for
implementing software that is effic.ient, reliable and portable.
It is particularly suited for implementing ope~ating systems,
compilers and specialized microprocessor applications. It can
serve as the basis for producing verifiable system software.

CE has been designed to allow its compiler to be small, fast
and portable. Such a compiler exists, with replaceable high
quality code generators for various target machine architectures
including the PDP-11, MC68000 and MC6809.

Copyright (C) 1980, 1981 by the authors.

CONTENTS

INTRODUCTION 1

I ~ THE SE LANGUAGE 2

Identifiers and Literals 2
Source Prag ram Fa rm at 3
Syntactic Notation 3
Prag rams 3
Modules 4
Declarations 5
Constant Declarations 5
Variable Declarations 6
Types and Type Declarations 6
Type Equivalence and Assignability 9
Variable Bindings 9
Collections 10
Procedures and Functions 11
Type Converters 13
Statements , 14
Variables and Constants 16
Expressions 17
Built-in Functions 18
Standard Components 19
Manifest Expressions 19
Precision of Arithmetic 19
Source Inclusion Facility 20

II. CONCURRENCY FEATURES 21

Processes 21
Monitors 22
Conditions 23
The Busy Statement 25

III. SEPARATE COMPILATION 26

External Declarations 26
Compilations 27
Linking of Compilations 28

APPENDIX 1. COLLECTED SYNTAX OF CONCURRENT
EUCLID . 29

APPENDIX 2. KEYWORDS AND PREDEFINED IDENTIFIERS 41

APPENDIX 3. INPUT/OUTPUT IN CONCURRENT
EUCLID 42

IO/l: Terminal Formatted Text I/O 42
I0/2: Sequential Argument File I/O 43
I0/3: Temporary and Non~Argument Files 45
I0/4: Structure Input/Output and

Random Access Files 46
Interfacing to Unix 46

APPENDIX 4. PDP-11 IMPLEMENTATION NOTES 47

Data Representation 47
Register Usage 47
Calling Conventions 48
External Names 49
Parameter Passing 49
Run-time Checking 50

REFERENCES 51

INDEX 52

INTRODUCTION

This report defines the programmming language. Concurrent Eu
clid, or CE. CE is designed for implementing software, and is
particularly suited to implementing operating systems, compilers
and specialized microprocessor applications. Because it is based
on Euclid [l], it can also serve as the basis for implementing
software which is to be formally verified.

CE consists of a subset of the Euclid programming language
called Sequential Euclid or SE and a set of concurrency exten
sions to Euclid based on monitors [2]. The first section of this
document defines the SE language independently of Euclid. The
second section describes the concurrency features added to form
CE. The last section describes CE features that support separate
compilation of procedures, functions, modules and monitors. A
thorough understanding of the basic concepts of the Pascal family
of programming languages is assumed throughout.

- 1 -

I. THE SE LANGUAGE

This section describes the SE subset of Euclid. SE is defined
independently of Euclid and no previous knowledge of the Euclid
programming language is required. An understanding of the basic
concepts of the Pascal family of programming languages is as
sumed. -

IDENTIFIERS AND LITERALS

An identifier consists of any string of at most 50 letters,
digits and underscores () beginning with a letter. Upper and
lower case letters are considered identical in identifiers and
keywords, hence aa, aA, Aa and AA all represent the same identi
fier. Keywords and predefined identifiers of Euclid, SE and CE
must not be redeclared. A list of these is given in Appendix 2.

A string literal is any sequence of one or more characters not
including a quote (') surrounded by quotes. Within strings, the
characters quote, dollar sign, new line and end of tile are
represented as $', $$, $N and $E respectively. As well, $T, $8
and $F may be used for tab, space, and form feed respectively.

A character literal is a dollar sign ($) followed by any
single character. The character literals corresponding to quote,
dol~ar sign, space, tab, form feed, new line and end of file are
$$', $$$, $$S, $$T, $$F, $$N and $$E respectively.

In every implementation, the character set for string and
character literals will contain at least the upper and lower case
letters A-Z and a-z, the digits 0-9 and the special characters
" • , : ; ! ? () [] { } +-*I< = > ' $ # " I & % " , s pa c e , t ab , f o rm feed , new 1 in e a n d
end of file. Character values are ordered such that A<B<C< ••• <Z,
a<b<c< ••• <z and 0<1<2< ••• <9. Ordering of character values is
implementation dependent otherwise.

An integer literal is a decimal number, an octal number or a
hexadecimal number. A decimal number is any sequence of decimal
digits. An octal number is any sequence of octal digits followed
by #8. A hexadecimal number is any sequence of hexadecimal di
gits (represented as the decimal digits plus the capital letters
A through F) beginning with a decimal digit and followed by #16.
Negative values are obtained using the unary operator; see
"Express ions" •

In every implementation, the range of integer literals will
include at least 0 through 65535.

- 2 -

SOURCE PROGRAM FORMAT

A comment is any sequence of characters not .including comment
brackets surrounded by the comment brackets { and }. Comments
may cross line boundaries.

A separator is a comment, blank, tab, form feed or source line
boundary. Programs are free-format; that is, the identifiers,
keywords, literals, operators and special characters which make
up a program may have any number of separators between them.
Separators cannot be embedded in identifiers, keywords, literals
or operators, except that blanks may appear as part of the value
of a string literal. Identifiers, keywords and literals must not
cross line boundaries. At least one separator must appear
between adjacent identifiers, keywords and literals.

SYNTACTIC NOTATION

The following sections define the syntax of SE.

The following notation is used:

{item} means zero or more of the item
[item] means the item is optional

Keywords are given in lower case. Special symbols are enclosed
in double quotes (").

The following abbreviations are used:

id for identifier
expn for expression
typeDefn for typeDefinition

Semicolons are not required, but they may optionally appear
following statements, declarations and import, export and checked
clauses.

PROGRAMS

A main program consists of a module declaration.

A program is:

moduleDeclaration

Execution of a program consists of initializing the main module,
see "Modules".

Modules, procedures and functions can be compiled separately;
see "Separate Compilation".

- 3 -

MODULES

A moduleDeclaration is:

var id":"
module

[imports " (" [var] id { "," [var] id} ") "]
(ex ports " (" id { " , " id} ") "]
((not] checked]
{declarationinModule}
[initially

procedureBody]
end. module

Execution of a module declaration consists of executing the
declarations in the module and then the "initially" procedure of
the module. Execution of a program consists of executing the
main module declaration in this way.

Module declarations may be nested inside other modules but
must not be nested inside procedures and functions.

A module defines a -package of
procedures and functions. The
rest of the program is defined
clauses.

variables, constants, types,
interface of the module to the
by its imports and exports

~he imports clause lists the global identifiers which are to
be visible inside the module. Variable, collection and module
identifiers may be imported "var" (or not). Imported variables
can be assigned to or passed as var parameters within the module
only if they are imported "var". Elements of an imported collec
tion can be allocated, freed, assigned to or passed as var
parameters only if the collection is imported "var". Procedures
of an imported module can be called only if the module is impor
ted "var". Imported identifiers must not be redeclared inside
the module.

The exports clause lists those identifiers defined inside the
module which may be accessed outside the module using the "."
operator. Exported variables cannot be assigned to or passed as
var parameters outside the module. Elements of exported collec
tions cannot be allocated, freed, assigned to or passed as var
parameters outside the module. Unexported identifiers cannot be
referenced outside the module.

Named types declared inside a module are opaque outside the
module, that is, they are not considered equivalent to any other
type. Variables and constants whose type is opaque cannot be
subscripted, field selected or compared.

Modules may be "checked"; this causes all assert statements,
subscripts and case statements in the module to be checked for
validity at run-time. In addition, a particular implementation
may check other conditions such as ranges in assignments and
overflow in expressions. Modules not already nested inside an

- 4 -

unchecked module are checked by default and must be explicitly
declared "not checked" to turn off run-time checking.

Even though declared like variables, modules are not variables
and cannot be assigned, compared, passed as parameters or expor
ted.

Modules can be separately compiled if desired; see "Separate
Compilation".

DECLARATIONS

A declarationinModule is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. moduleDeclaration
f. collectionDeclaration
g. procedureDeclaration
h. functionDeclaration
i. converterDeclaration
j. assert["(" expn ")"]

F o r:m s (a) through (i) are d ec 1 a rat ions f o r new i dent i f i er s a s
explained in the following sections. Form (j) is an assert sta
tement; see "Statements". An identifier must be declared textu
ally preceding any references to it.

CONSTANT DECLARATIONS

A constantDeclaration is one of:

a. [pervasive] const id ":=" manifestExpn
b. [pervasive] const id ":" typeDefn ":=" expn
c. [pervasive] const id ":" typeDefn ":="

" (" man i f e st Ex pn { " , " man i f e st Ex pn } ") "
d. [pervasive] const id ":=" stringLiteral

A constantDeclaration gives a name to a value which is con
stant throughout the scope of the declaration. The value of a
scalar constant can be manifest or nonmanifest. A manifest ex
pression is one whose value is known at compile-time (see "Mani
fest Expressions"). A nonmanifest expression must be evaluated
at run-time. Non-scalar values are always considered nonmani
fest.

Form (a) defines a.manifest named constant. The type of the
constant is the type of the value expression, which must be mani
fest. Manifest named constants are not represented at run time
since their values are always known at compile time.

Form (b) declares a nonmanifest named constant of the

- 5 -

specified type. The value of the expression may be manifest or
nonmanifest, and must be assignable to the constant's type.
References to nonmanifest named constants are always considered
norunanifest even if their value is manifest.

Form (c) declares an array constant. The typeDefn must be an
array type or named array type whose component type is scalar.
The list of expressions gives the values of the elements of the
array constant. The element values must be manifest expressions
assignable to the element type of the array. The number of
element values specified must be exactly the number of elements
in the array.

Form (d) allows declaration of an array constant using a
string literal value. The type of the constant is "packed array
1. .n of Char" where n is the length of the string literal.

Constants declared using "pervasive" are automatically impor
ted into all subscopes of the scope in which they are declared.
Such constants need not be explicitly imported.

,VARIABLE DECLARATIONS

A variableDeclaration is:

[register] var id["(" at manifestExpn ")"] ":" typeDefn
[": =" ex pn]

A variableDeclaration declares a variable of the specified
type. The "at" clause declares a variable at an absolute machine
location. Variables may optionally be declared with an initial
value which is assigned to the variable when the declaration is
executed. The initial value expression must be assignable to the
variable's type.

Local variables in procedures and functions may optionally be
declared "register". This is a hint to the compiler that it
should attempt to allocate the variable to a register. Register
variables cannot be bound to nor passed to a reference parameter.
A register variable declaration cannot have an "at" clause.

TYPES AND TYPE DECLARATIONS

A typeDeclaration is:

[pervasive] type id "=" typeBody

The typeBody is one of:

a. typeDe fn
b. forward

A typeDeclaration gives a name to a type. The type name can
subsequently be used in place of the full type definition. A

- 6 -

named type is equivalent to the type that it names (except when
exported, see "Type Equivalence and Assignability").

Named types may optionally be declared "pervasive". Type
names declared using "pervasive" are automatically imported into
all subscopes of the scope in which- they are declared. Such
types need not be explicitly imported.

Form (b) declares a forward type. A forward type declares a
type name whose definition will be given in a later type declara
tion in.the scope. A forward type can be used only as the
element type of a collection until its real type definition is
given. This allows the declaration of collections whose elements
contain pointers to other elements in the collection.

A typeDefn is one of the following:

a. standardType
b. manifestConstant " •• " manifestExpn
c. [packed] array indexType of typeDefn
d. set of baseType
e. [packed] recordType
f. pointerType
g. namedType

The standardTypes are:

Signedint

Unsignedint

Long Int

Shortint

Boolean
Char
Storag eUn it

AddressType

- signed integer, implementation
defined range (at least -32768 •• 32767)

- unsigned integer, implementation
defined range (at least o •• 65535)

- signed integer, implementation
defined range (typically 32 bits)

- unsigned integer, implementation
-~

defined range (typically a byte)
- values are "true" and "false"
- single character
- no operations or literals, smallest

addressable memory unit (typically a
byte)

- implementation defined integer range

The standard types and the constants true and false are impli
citly declared pervasive in the global scope and need not be
irnpo r ted.

Form (b) is a subrange type. The leading constant must be a
(possibly negated) literal or manifest named constant and gives
the lower bound of the range of values of the type. The expres-
sion, which must be manifest, gives the upper bound of the range.
The bounds must be both. integer values or both character values.
The lower bound must be less than or equal to the upper bound.

A scalar type is a subrange, pointer or one of the standard
types.

- 7 -

Form (c) is an array type. The indexType must be a subrange
type, Char or a named type which is an indexType. The indexType
gives the range of subscripts. The typeDefn giv.es the type of
the elements of the array.

Elements of an array variable are referenced using subscripts
(see "Variables and Constants") and themselves used as variables.
Array variables and constants may be assigned (but not compared)
as a whole.

Arrays can be "packed", which allows the compiler to pack the
elements more efficiently. The type of string literals is "pack
ed array l •• n of Char" where n is the length of the string.

Form (d) is a set type. The baseType of the set must be a
subrange of integer with lower bound 0 or a namedType which is a
baseType. An implementation may limit the upper bound of a set
type to insure efficient code; this limit will be at least 15.

A recordType is:

record
var id":" typeDefn
{var id ":" typeDe fn}

end record

Variables declared using a. record type have the fields given
by the variable declarations in the recordType. Fields of a
record v~riable may be referenced using the "." operator (see
"Variables and Constants") and themselves used as variables.
Record variables may be assigned (but not compared) as a whole.

The variable declarations in a record type must not have ini
tial values and cannot be declared using "register" or "at"
clauses.

Records can be "packed", which allows the compiler to pack the
elements more efficiently.

A pointerType is:

"""'" coll ec tionid

Variables declared using a pointerType are pointers to dynami
cally allocated and freed elements of the specified collection;
see "Collections". Pointer variables are used as subscripts of
the specified collection to select the element to which they
point. The selectad element can be used as a variable. Pointer
variables may be assigned, compared for equality and passed as
pa ram et e r s •

A namedType is:

[moduleid "."] type Id

The typeid must be a previously declared type name. Type

- 8 -

names exported from a module are referenced outside the module
using the "." operator.

TYPE EQUIVALENCE AND ASSIGNABILITY

Two· types are defined to be equivalent if they are

(a) subranges with equal first and last values

(b) arrays (both packed or both unpacked) with
equivalent index types and equivalent component
types

(c) sets with equivalent base types

(d) pointers to the same collection

A declared type identifier is equivalent to the type it names,
with the following exception. When an exported type identifier
is used outside its module, as "moduleid.typeid", it is a unique
type, equivalent to no other type.

Each type definition for a record type creates a new type that
is not equivalent to any other record type definition.

An array value can be assigned to an array variable, a record
value assigned to a record variable, a set value assigned to a
set vari~ble and a pointer value assigned to a pointer variable
only if the source and target of the assignment have equivalent
types.

An expression can be assigned to a scalar variable only if (i)
the "root" type of the expression and the "root" type of the
variable are equivalent, and (ii) the value of the expression is
in the range of the variable's type. The "root" type of Char and
character subrange types is Char. The root type of Signedint,
Unsignedint, Longint, Shortint, AddressType and integer subranges
is integer. The root type of any other type is the type itself.

A variable can be passed to a reference parameter only if its
type is equivalent to the parameter type. An expression can be
passed to a value parameter only if it is assignable to the
parameter type; see "Procedures and Functions".

VARIABLE BINDINGS

A variableBinding is one of:

a. bind [register] [var] id to variable
b • b ind " (" [r eg i st e r] [var] id to var i ab 1 e

{ "," [register] [var] id to variable} ")"

A variableBinding declares a new identifier for an arbitrary
variable reference which may contain subscripts and "."

- 9 -

operators. The new identifier is subsequently used in place of
the variable reference within the scope in which the binding
appears. If the bound variable is to be assigned to or passed to
a var parameter, the binding must be declared using "var". SE
does not allow "aliasing" of variables (i.e., having two names
for the same variable in a scope). ·Hence the "root" variable
(the first identifier in the variable reference) becomes inacces
sible for the scope of the binding.

Form (b) allows bindings to different elements or fields of
the same variable or module. Since SE does not allow aliasing of
variables, bindings to the same field, element or variable are
not al lowed.

Local binds in procedures and functions may optionally be
declared "register". This is a hint to the compiler to attempt
to allocate the bind to a register.

Elements of packed arrays and fields of packed records cannot
be bound to.

COLLECTIONS

A collectionDeclaration is:

var id":" collection of typeDefn

A collection is essentially an array whose elements are dynam
ically allocated and freed at run-time. Elements of a collection
are referenced by subscripting the collection name with a varia
ble of the collection's pointer type. This subscripting selects
the particular element of the collection located by the pointer
variable.

Elements of a collection are allocated and freed dynamically
by calls to the built-in operations New and Free. "C.New(p)"
allocates a new element in the collection C and sets p to point
at it. If no more space is available then p is set to "C.nil".
" C • Fr e e (p) " fr e es the el em en t o f C po in te d at by p and sets p to
"C.nil". In each case pis passed as a var parameter and must be
a variable of the pointer type of C. These operations are invok
ed as statements in procedures, see "Statements". They cannot be
used in functions.

The built-in constant "C.nil" is the null pointer value for
the collection.

Collections themselves cannot be assigned, compared or passed
as parameters.

- 10 -

PROCEDURES AND FUNCTIONS

A procedureDeclaration is:

procedure id [11
(

11 [var] id":" parameterType
{ "," [var] id "·" parameterType} ") "] "="

procedure Body

A functionDeclaration is:

function id ["(" id":" parameterType
{"," id":" parameterType} ") "]

returns id 11
:

11 resultType "="
procedureBody

A procedure is invoked by a procedure call statement, with
actual parameters if required. A function is invoked by using
its name, with actual parameters if required, in an expression.

A procedure may return explicitly by executing a return sta
tement or implicitly by reaching the end of the procedure body.
A function must return via "return(expn) ".

Procedures and functions may optionally take parameters, the
types of which are defined in the header. The parameters can be
referred to inside the procedure or function using the names
declared in the header. Parameters to a procedure may be de
clared using "var", which means the parameter may be assigned to
or further passed as a var parameter inside the procedure.
Parameters declared without using "var" are constants and cannot
be assigned to or passed as var parameters. Functions are not
allowed to have any side-effects and cannot have var parameters.
Only variable references can be passed to var parameters.

A parameter is a reference parameter if it is declared using
"var" or if its type is an array or record. Other parameters are
value parameters. Hence, a value parameter is a non-var
parameter whose type is a scalar or set.

A parameterType is one of:

a. typeDe fn
b. [packed] array manifestConstant 11 11 parameter of

typeDefn
c. universal

The type of a variable, record or array passed to a reference
parameter must be equivalent to the parameter's type with the
following exceptions. (1) The upper bound of the index type of
an array parameter can be declared using the keyword "parameter"
in which case any array whose element type and index type lower
bound are equivalent to the parameter's can be passed to the
parameter. (2) The type of a parameter can be specified as
"universal", in which case a variable or non-mani.fest named con
stant of any type can be passed to the parameter. Inside the
procedure, a universal parameter is equivalent to a parameter of

- 11 -

type "array ! .. parameter of StorageUnit", where the
is the size of the actual parameter in StorageUnits.
declared using "parameter" or "universal" do not have
standard component and cannot be assigned or compared
(Note: Full Euclid does not allow forms (b) and (c) .)

upper bound
Parameters

the ".size"
as a whole.

The· type of an expression passed to a value parameter must be
assignable to the parameter's type.

SE does not allow "aliasing" of variables (i.e., having two
names for a given variable or part of a given variable in the
same scope). Hence a variable or part of a variable which is
imported directly or indirectly into a procedure cannot be passed
to a reference parameter of the procedure. (A variable is
directly imported if it appears in the procedure's import list.
It is indirectly imported if an imported module or procedure
directly or indirectly imports it.)

Elements of packed arrays and fields of packed records cannot
be passed to reference parameters.

The returns clause defines the result type of a function. The
return identifier is, required for compatibility with full Euclid
but cannot be referenced.

A resultType is one of:

a. s tandard'fype
b. manifestConstant " " manifestExpn
c. set of baseType
d. pointerType
e. named Type

The result type of a function must be a scalar type or set.
The expression in a function's return statement must be assigna
ble to the result type.

A procedureBody is:

[i m po r ts " (" [v a r] id { " , " [var] id } ") "]
beg in

[[not] checked]
{declarationinRoutine}
{statement}

end [id]

The identifier following the "end" must be the procedure or
function identifier. If the procedure is the initially procedure
of a module then the end identifier must not be present.

The imports clause of a procedure or function specifies those
global identifiers which are to be visible inside the procedure
or function. Only those variables imported into a procedure
using "var" may be assigned to or passed to a var parameter in
side the procedure. Functions are not allowed to have side
effects and cannot import anything "var". This restriction is

- 12 -

transitive; hence a function cannot import a procedure which
imports anything "var". A procedure or function which is recur
sive must explicitly import itself.

Procedures and functions may be "checked"; this causes assert
statements, subscripts and case statements to be checked for
validity at run-time. In addition, a particular implementation
may check other conditions, such as ranges in assignments and
overflow in expressions. Procedures and functions not nested
inside an unchecked module are checked by default and must be
explicitly declared "not checked" to turn off run-time checking.

A procedure returns when it executes a return statement or
reaches the end of the procedure. A function is executed simi
larly but must return via "return(expn) "·

Procedures and functions can be separately compiled; see
"Separate Compilation".

A declarationinRoutine is one of:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. collectionDeclaration
f. converterDeclaration
g. assert [ti ("expntl) "]

Modules, procedures and
procedure or function. Form
appear in declaration lists.

functions cannot be nested inside a
(g) allows assert statements to

TYPE CONVERTERS

A converterDeclaration is:

converter id " (" type Id ") ti returns type Id

A converterDeclaration declares a type converter. A type con
verter can be used to convert a variable or nonmanifest named
constant to a type other than its declared type. Both the
parameter and result type of a type converter must be named or
standard types. An implementation is not expected to generate
any code for a type conversion.

The type of a converted variable or constant must be
equivalent to the converter's parameter type. Expressions,
literals, manifest values, elements of packed arrays and fields
of packed records cannok be type converted.

If the size of the target type is larger than the size of the
source type, or the alignment of the target type is more con
strained than the alignment of the source type, then the conver
sion may be meaningless.

- 13 -

STATEMENTS

A statement is one of:

a. variable":=" expn
b. [module!d"."] procedure!d. ["{" expn {"," expn} ") "]

- c. assert [" { "expn") "]
d. return [" { "ex pn") "]
e. if expn then

{statement}
{elseif expn then

{statement}}
[else

{statement}]
end if

f. loop
{statement}

end loop
g. exit [when expn]
h. case expn of

manifestExpn {"," manifestExpn} "=>"
{statement}
end mani festExpn

{manifestExpn {"," manifestExpn} "=>"
{statement}
end manifestExpn}

[otherwise "=>"
{statement}]

end case
i. beg in

{declarationinRoutine}
{statement}

end
j. collectionid ""New"{" variable")"
k. collectionid "." Free"{" variable")"

Form {a) is an assignment statement. The expression is
evaluated and the value assigned to the variable. The expression
must be assignable to the variable type; see "Type Equivalence
and Assignability".

Form {b) is a procedure call. An exported procedure is called
outside the module in which it was declared using the"." opera
tor.

The type of an expression passed to a value parameter must be
assignable to the parameter's type. The type of a variable or
value passed to a reference parameter must be equivalent to the
parameter's type. If the upper bound of the type o~ an array
parameter is declared using "parameter", any array whose element
type and index type low~r bound are equivalent to the parameter's
can be passed to the parameter.

An actual parameter passed to a var parameter ,must be a varia
ble, a bound variable or a var formal parameter. If it is an
imported variable, it must have been imported using "var". Since

- 14 -

SE does not allow aliasing of variables, a variable or part of a
variable which is passed to a reference parameter cannot be
passed to another reference parameter of the same call.

Form (c) is an assert statement. The parenthesized expression
is optional; if it is omitted, .it can be replaced by a comment.
If present, it must be of type Boolean. The expression is
evaluated and checked at run time if it appears in a checked
scope. Assert statements may appear in both statement lists and
declaration lists. They cannot appear inside records.

Form (d) is a return statement. The return statement causes
an immediate return from the procedure or function when executed.
The optional parenthesized expression gives the value to be re
turned from a function. The return expression must be assignable
to the function's result type. The return expression is required
for function returns. It is forbidden for procedure returns. A
function must return via a return statement and not implicitly by
reaching the end of the function body. A procedure may return
either via a return statement or implicitly by reaching the end
of the procedure body.

Form (e) is an if ,statement. The conditional expression fo 1-
lowing "if" and each "elseif" is evaluated until one of them is
found to be true, in which case the statements following the
corresponding "then" are executed. If none of the expressions
evaluates to true then the statements following "else" are execu
ted; if no "else" is present then execution continues following
the if statement. The conditional expressions must be of type
Boolean.

Form (f) is the looping construct. The statements within the
loop are repeated until one of its "exit" statements or a "re
turn" statement is executed.

Form (g) is a loop exit. When executed, it causes an immedi
ate exit from the nearest enclosing loop. The optional "when"
expression makes the exit conditional. If the expression, which
must be Boolean, evaluates to true then the exit is executed,
otherwise execution of the loop continues. An exit statement
cannot appear outside a loop.

Form (h) is a case statement. The case expression is evalua
ted and used to select one of the alternative labels. The sta
tements which follow the matching label value are executed. If
the case expression value does not match any of the label values
then the statements following "otherwise" are executed. If no
"otherwise" is present, the case expression must match one of the
label values. When execution of the statements following the
selected label is completed, execution continues following the
case statement.

The root type of th~ case expression must be integer or Char.
All of the label expressions must have the same· root type as the
case expression. Label expressions must be manifest, i.e., their
values must be known at compile time. The values of all label

- 15 -

expressions in a given case statement must be distinct. The
value of the manifest expression following the end of an alterna
tive must be equal to the first label expression of the alterna
tive.

An implementation may limit the range of case label expression
values· to insure efficient code; this range will include at least
the ranges of Char and Short!nt.

Form (i) is a begin block. Begin blocks can be used to group
local declarations within a procedure or function. In particu
lar, they can be used to make local binds.

Forms (j) and (k) are the built-in collection operations New
and Free (see "Collections").

VARIABLES AND CONSTANTS

A variable is:

[module!d "."] id { componentSelector}

The syntax for variables includes variable and constant re
ferences. An exported variable or constant is referenced outside
the module in which it is declared using the"." operator.

A componentSelector is one of:

a • " (" expn ") "
b. "." id

Form (a) allows subscripting of variable and constant arrays.
The type of the subscript expression must be assignable to the
index type of the array. The value of the subscript expression
must be in the declared range of the index type of the array.
Subscripts which appear in checked scopes are checked for validi
ty at run-time.

Form (a) also allows references to elements of a collection.
In this case, the subscript expression must be a pointer to an
element of the collection.

Form (b) allows record field selection. Fields of a record
variable are referenced using the "." operator.

Form (b) also allows standard component references (see "Stan
dard Components").

- 16 -

EXPRESSIONS

An expn is one of the following:

a. variable
b. literalConstant
c. setTypeid " (" el ementLi st ") "
d. collection!d " " nil .
e. [module!d II •II] functionid ["(" expn {"," expn} II) II]
f. [module!d " . "] converterid II (II expn ") "
g. " (" expn II) II

h. " - " expn
i • expn arithmeticOperator expn
j • expn comparisonOperator expn
k. not expn
l. expn booleanOperator expn
m. expn setOperator expn

The arithmeticOperators are+, -, * (multiply), div (trunca
ting integer divide) .and mod (integer remainder). The mod opera
tor is defined by "x mod y = x - y*(x div y) ". Operands of the
arithmetic operators and unary minus must be integers or expres-
sions having root type integer. The arithmetic operators yield
an integer result. (Note: +, - and * are also set operators; see
below.)

The comparisonOperators are<, >, =, <=, >= and "not =".
Operands of comparison operators must either have equivalent
types or the same root type; see "Type Equivalence and Assigna
bil ity". The comparison operators yield a Boolean result.
Arrays and records cannot be compared. Sets and Boolean expres
sions can be compared for equality only. (Note: <= and >= are
also set operators; see below.)

The booleanOperators are "and" (intersection) , "or" (union)
and -> (implication). The Boolean operators and the "not" opera
tor take Boolean operands and yield a Boolean result. The
Boolean operators are conditional; that is, if the result of the
operation can be determined from the value of the first operand
then the second operand is not evaluated.

The set operators are + (set union), - (set difference), *
(set intersection), <= and >= (set inclusion), and "in" and "not
in" (element containment). The set operators +, - and * take
operands of equivalent set types and yield a set result. The set
operators <= and >= take operands of equivalent set types and
yield a Boolean result. The operators "in" and "not in" take a
set as right operand and an integer expression as l~ft operand.
They yield a Boolean result.

The order of prec.edence is among the following classes of
operators (most binding first):

l. unary -
2 • * , d iv , mod
3. +, -

- 1 7 -

4. < , >, =, < =, >=, not =, in, not in
5. not
6. and
7. or
8. ->

Expression form (a) includes references to constants and vari
ables including elements of arrays and collections, fields of
records, and constants and variables exported from a module.

Form (b) includes integer, character and string literal con
stants.

Form (c) is a set constructor. The setTypeid must be the name
of a set type. The set constructor returns a set containing the
specified elements.

An elementList is one of:

a • [ex pn { 11
, " ex pn}]

b. all

The element list is a (possibly empty) list of expressions of
the base type of the set, or "all". If "all" is specified, the
constructor returns the complete set. If no elements are speci
fied, the constructor returns the empty set.

Expression form (d) is the null pointer value of the specified
collection.

Form (e) is a function call. Functions exported from a module
are referenced outside the module using the 11

•
11 operator. An

actual parameter to a function must be an expression assignable
to the parameter type.

Form (f) is a type conversion. The type of the actual
parameter is changed to the result type of the type converter.
The actual parameter must be a variable or nonmanifest named con
stant whose type is equivalent to the source type of the conver
ter. Type converters exported from a module are referenced out
side the module using the 11

•
11 operator.

BUILT-IN FUNCTIONS

SE has three built-in functions, Chr, Ord and Long. "Chr (i) 11

returns the character whose machine representation is the posi
tive integer value i. 11 0rd(c) 11 returns the positive integer
machine representation of the character c. Chr and Ord are de
fined such that for all characters "c" in the machine character
set, Chr(Ord(c)) = c. '.'Long (i)" forces the integer expression i
to be extended to Longint precision; see "Precision of Arithmet
ic". (Note: In full Euclid, the Ord built-in function is called
"Char . Ord" •)

- 18 -

STANDARD COMPONENTS

SE defines two standard components, size and address.
"T.size" returns the length in StorageUnits (typically bytes) of
the machine representation of the variable or type T.
"V.address" returns the AddressType ~achine address of the varia
ble V~ The size and address standard components are not allowed
for elements of packed arrays and fields of packed records. The
address standard component is not allowed for variables declared
"register". (Note: In ful 1 Euclid, the address standard com-
ponent is allowed only for variables of type StorageUnit.)

MANIFEST EXPRESSIONS

A manifest expression is an expression whose value can be com
puted as a literal constant at compile time. The extent of such
compile-time computation is implementation dependent, but every
implementation will consider at least the following to be mani
fest:

1. Integer and Char literal constants
2. The Boolean values "true" and "false"
3. Manifest named constants
4. The arithmetic operations unary -, +, -, *, div

and mod when both operands are manifest and both
the operands and result lie in the range of
Signedint (at least -32768 •• 32767)

5. The built-in functions Chr and Ord when
the actual parameter is manifest

A manifestExpn is an expression whose value is manifest. A
manifestConstant is a (possibly negated) literal constant or man
ifest named constant.

PRECISION OF ARITHMETIC

The precision of an arithmetic operation or comparison is
determined by the precision of the operands. Operands have one
of three precisions which correspond to the standard types Sig
nedint, Unsignedint and Longint.

The precision of a variable or non-manifest named constant
operand is determined by its declared type. If its type is Sig
nedint, Short!nt or any subrange whose bounds both lie in the
range of Signedint then its operand precision is Signedint. If
its type is Unsignedint or any subrange whose bounds. both lie in
the range of Unsignedint but not in Signed!nt then its precision
is Unsignedint. Otherwise, its precision is Longint.

The precision of a literal or manifest named constant operand
is Signedint if its value lies in the range of Signedint, Unsig
nedint if its value lies in the range of Unsignedint but not of
Signedint, and Long Int otherwise.

- 19 -

The precision of an arithmetic operation or comparison is
Longint if at least one operand has Longint precision, Unsig
nedint if at least one operand has Unsignedint prec1s1on and
neither has Longint precision, and Signedint otherwise.

The precision of the result of an arithmetic operation is the
precision of the operation. Every implementation will guarantee
to obtain the arithmetically correct result if the result of an
operation lies within the range of the result precision. If the
arithmetically correct result lies outside the range of the
result precision then the result may be meaningless.

Note that the precision of an operation or comparison can
always be forced to Longint by extending the precision of one or
both of the operands using the Long built-in function (see
"Built-in Functions").

SOURCE INCLUSION FACILITY

Other source files may be included as part of a program using
the "include" statement.

An includeStatement is:

include stringLiteral

The stringLiteral gives the name of a source file to be inclu
ded in the compilation. The include statement is replaced in the
program source by the contents of the specified file.

Include statements can appear anywhere in a program and can
contain any valid source fragment. Included source files can
themselves contain include statements.

- 20 -

II. CONCURRENCY FEATURES

The Concurrent Euclid (CE) language is an .extension
designed to allow concurrent programming with monitors.
subset of Euclid but CE is not, because concurrency and
are not features of Euclid. ·

of SE
SE is a

monitors

The concurrency features of CE will be presented in the fol-
lowing order:

(l) processes, reentrant procedures and modules;
(2) monitors, entry procedures and functions;
(3) conditions, signalling and waiting;
(4) simulation and the busy statement.

PROCESSES

Each CE module (including the main module) can have any number
of concurrent processes in it.

A moduleDeclaration is:

var id":"
module

[i m po r ts 11
(

11
[var] id { 11

,
11

[var] id } 11
) "]

[ex po r ts 11
(" i d { " , 11 i d } 11

) "]

[[not] checked]
{declarationinModule}
[initially

pr oced ureBody]
{process id ["(" memoryRequirement ")"]

procedureBody}
end module

Each process is like a parameterless procedure. Concurrent
execution of the processes of the module begins following execu
tion of the initially procedure of the module. A process ter
minates by executing its last statement or by executing a return
statement in its body. The process identifier is for documenta
tion only since processes cannot be called.

Processes can communicate with each other by changing and
inspecting variables declared in the module or imported into it.
Generally, however, processes communicate by means of monitors.

Each process requires a certain amount of memory space for its
variables. When the process calls a procedure or function, the
requirement increases to provide space for the new local varia-
bles. When the procedure or function returns, the requirement
decreases to its former.amount. The programmer can provide his
own estimate of the process's required space as a parenthesized
manifest integer expression following the keyword "process".
This estimate is in StorageUnits (normally bytes) and can be
based on previous program executions. If this estimate is omit
ted, the implementation provides a default space allocation.

- 21 -

All procedures and functions declared in a CE program are
reentrant, meaning that they can be executed simultaneously by
more than one process.

Modules, monitors, procedures and functions cannot be nested
inside a process.

MONITORS

A monitor is essentially a special kind of module which im
plements inter-process communication with synchronization.

A declarationinModule is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. moduleDeclaration
f. monitorDeclaration
g. collectionDeclaration
h. procedureDeclaration
i. functionDeclaration
j. converterDeclaration
k. assert["(" expn ")"]

Monitors may only be declared inside modules. Monitors cannot
be nested inside procedures, functions or other monitors.

A monitorDeclaration is:

var id":"
monitor

[imports"(" [var] id{"," [var] id}")"]
[ex po r ts " (" i d { " , " i d } ") "]
[[not] checked]
{declarationinMonitor}
[initially

pr oced ureBody]
end monitor

The imports list of a monitor specifies the global identifiers
which are accessible inside the monitor, exactly like the imports
list in a module.

The exports 1 ist of a monitor specifies those identi_fiers
defined inside the monitor which may be accessed outside the mon
itor using the " " operator. Unlike modules, monitors cannot
export variables.

Procedures and functions which are exported from a monitor are
called monitor entries. Entry procedures and functions of a mon
itor cannot be invoked inside the monitor. Outside the monitor,
entry procedures and functions can be invoked exactly like the
procedures and functions of a module, using the"." operator.

- 22 -

Procedures and functions which are entries of a monitor cannot
be separately compiled except as part of the entire monitor.

It is guaranteed that only one process at a time will be exe
cuting inside a monitor. As a result, mutually exclusive access
to a monitor's variables is implicitly provided, since a monitor
cannot· export any variables. If a process calls an entry of a
monitor while another process is executing in the monitor, the
calling process will be blocked and not allowed in the monitor
until no other process is executing in the monitor.

A declarationinMonitor is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. conditionDeclaration
f. collectionDeclaration
g. procedureDeclaration
h. functionDeclaration
i. converterDeclaration
j. assert [" (-'' expn ") "]

Modules and monitors cannot be declared inside a monitor. A
monitor cannot contain a nested process.

Monitors can be separately compiled; see "Separate Compila
tion".

CONDITIONS

A conditionDeclaration is one of:

a. var id":" [priority] condition
b. var id":" array indexType of [priority] condition

The only place a condition can be declared is as a field of a
monitor. The only allowed use of conditions is in the "wait" and
"signal" statements and in the "empty" built-in function. Condi
tions cannot be assigned, compared or passed as parameters.
Arrays of conditions are allowed. Conditions may be imported
" var" (o r no t) • An i m po r t ed co nd it ion c an be used in a wa i t o r
signal statement only if it is imported "var".

Two new statements are introduced:

wait "(" conditionVar ["," priorityValue] ")"
signal"(" conditionVar ")"

Where a conditionVar is:

cond i tionid [" (" expn ") "]

The wait and signal statements each specify a conditionVar.

- 23 -

Each of these must be a condition!d or a subscripted condition
array. These statements can appear only in monitors, but not in
a monitor's initially procedure.

When a process executes a wait statement for condition C it is
blocked and is removed from the monitor. When a process executes
a signal statement for condition C, one of the processes (if
there are any) waiting for condition C is unblocked and allowed
immediate~y to continue executing the monitor. The signalling
process is temporarily removed from the monitor and is not al
lowed to continue execution until no processes are in the moni
tor. If no processes were waiting for condition C, the only
effect of the signal statement is that the signalling process may
be removed from the monitor. The signalling process cannot in
general know whether other processes have entered the monitor
before the signaller continues in the monitor.

If the condition variable is declared with the "priority"
option, the wait statement must specify a priority value; oth
erwise the priority value is not allowed in wait. The
priorityValue is a Signedint expression that must evaluate to a
nonnegative integer value. The processes waiting for a priority
condition are ranked in order of their specified priority values,
and the process with the smallest priority value is the first to
be unblocked by a signal statement.

In the case of processes waiting for non-priority conditions,
or waiting with identical priorities for a priority condition,
the scheduling is "fair", meaning that a particular waiting pro
cess will eventually be unblocked given enough signals on the
condition.

A predefined function named "empty" accepts a condition as a
parameter. It returns the Boolean value "true" if no processes
are waiting for the condition, otherwise "false". Like wait and
signal, "empty" can appear only inside a monitor, but not in the
initially procedure of a monitor.

The variables in a monitor represent its state. For example,
if a monitor allocates a single resource, only one variable in-
side the monitor is needed and it can be declared as Boolean.
When this variable is true, it represents the state in which the
resource is available, when false it represents the state of
being allocated. When a process enters the monitor and finds
that it does not have the desired state, the process leaves the
monitor and becomes blocked by executing a wait statement on a
condition. The condition corresponds to the state that the pro
cess is waiting for. Suppose a process enters a.monitoi and
changes its state to a state that may be waited for by other pro
cesses. The process should execute a signal statement for the
condition corresponding.to the new state. If there are processes
waiting for this state transition, then they will be blocked on
the condition, and one of them will immediately resume execution
in the monitor. Because of this immediate resumption, the sig
nalled process knows the monitor is in the desired state, without
testing monitor variables. The signalling process is allowed to

- 24 -

continue executing only when no other processes are in the moni
tor. If no processes were waiting on the condition, the only
effect of the signal statement is to temporarily remove the sig
naller from the monitor.

As specified by Hoare, monitors and conditions are intended to
be used in the following manner. The programmer should associate
with the monitor's variables a consistency criterion. The con
sistency criterion is a Boolean expression that should be true
between monitor activations, or whenever a process enters or
leaves a monitor. Hence, the programmer should see that it is
made true before each signal or wait statement in the monitor and
before each return from an entry of the monitor. The programmer
should also associate a Boolean expression, call it Ei, with each
condition Ci. The expression Ei should be true whenever a signal
is executed for condition Ci. A process that is unblocked after
waiting for a condition knows that Ei is true because the signal
led process (not the signal 1 ing process) executes fir st. (The
consistency criterion and each Ei for a condition do not neces
sarily appear as executable code in the monitor.) In general,
when a process changes the monitor's state so that one of the
awaited relations Ei becomes true, the corresponding condition Ci
sh o u 1 d be s i g na 11 ed • ,

THE BUSY STATEMENT

A statement is introduced to allow simulation using timing
delays:

b us y " (" t i m e ") "

The time must be a nonnegative Signedint expression. The busy
stateme~can be understood in terms of simulated time recorded
by a system clock. This clock is set to zero at the beginning of
execution of a program. With the exception of the busy statement
(or wait statements causing an indirect delay for a busy sta
tement), statements take negligible simulated time to execute.
When the programmer wants to specify that a certain action takes
time to complete, the busy statement is used. The process that
executes the busy statement is delayed until the system clock
ticks (counts off) the specified number of time units.

- 2 5 -

III. SEPARATE COMPILATION

This section describes the extensions made to CE to allow
separate compilation of procedures, functions, modules and moni
tors.

EXTERNAL DECLARATIONS

Procedures, functions, modules and monitors may be declared
"external", which means that they are to be separately compiled
and joined with the program at link time. Due to linker restric
tions, a particular implementation may be forced to place a limit
on the number of significant characters in external module, moni
tor, procedure and function identifiers.

An externalProcedureDeclaration is:

procedure id("(" [var] id":" parameterType
{ "," [var] id ":" parameterType} ") "] "="

external

An externalFunctionDeclaration is:

function id ["(" id":" parameterType
{ "," id ":" parameterType} ") "]

returns id":" resultType "="
external

An externalModuleDeclaration is:

var id " : "
external module

[imports " (" [var] id { "," (var] id} ti) "]

[ex ports ti (ti id { 11
,

11 id} ") 11
]

{declarationinExternalModule}
end module

A declarationinExternalModule is one of:

a. manifestConstantDeclaration
b. typeDeclaration
c. collectionDeclaration
d. converterDeclaration
e. externalProcedureDeclaration
f. externalFunctionDeclaration

An externalMonitorDeclaration is:

var id ": 11

external monitor
[i m po r ts 11

(
11

[var] id { " , 11
[var] id } ") 11

]

- 26 -

[exports"(" id{"," id}")"]
{declarationinExternalMonitor}

end monitor

A declarationinExternalMonitor is one of:

a. manifestConstantDeclaration
b. typeDeclaration
c. collectionDeclaration
d. converterDeclaration
e. externalProcedureDeclaration
f. externalFunctionDeclaration

An external declaration can appear in place of the real de
claration and specifies that the corresponding procedure, func
tion, module or monitor is to be compiled separately.

Processes and initially procedures of modules cannot be de
clared external. Procedures and functions which are entries of a
monitor cannot be declared external except as part of an external
monitor declaration. 'Nonmanifest and array named constants can
not be declared in an external module or monitor.

COMPILATIONS

A compilation can consist of a main program (see "Programs")
or a separate compilation.

A separateCompilation is:

{separateDeclaration}

Each separateDeclaration is one of the following:

a. manifestConstantDeclaration
b. typeDeclaration
c. collectionDeclaration
d. converterDeclaration
e. procedureDeclaration
f. functionDeclaration
g. moduleDeclaration
h. monitorDeclaration

Each separateDeclaration can be a manifest constant declara
tion, a type declaration, a collection declaration,·a procedure
or function declared as "external" in another compilation, or a
module or monitor declared as "external" in another compilation.

Separately compiled procedures, functions, modules and moni
tors can be linked to form a complete program. Variables cannot
be separately compiled and are not linked across compilations.
Consistency of constants, types and collections is not automati
cally checked across compilations. Consistency of the type and

- 2 7 -

number of formal parameters and function results between the
external declaration and the separate compilation of separately
compiled procedures and functions is not automatically checked.

Separately compiled modules and monitors will be initialized
at the point of the corresponding "external" declaration. Note
that since execution of a program consists of initializing the
main module (see "Programs"), only those modules and monitors
which are declared in the main module or a module nested within
it will be initialized.

LINKING OF COMPILATIONS

A complete program will typically consist of a main module
compilation linked together with the separate compilations of any
procedures, functions, modules and monitors declared as "exter
nal" in it. The compilations must be linked such that the entry
point of the program is th~ beginning of the main module compila
tion. (Under many systems, this means simply that the main modu
le compilation must be the first in the list of object modules to
be linked together.)

- 28 -

APPENDIX 1.
COLLECTED SYNTAX OF CONCURRENT EUCLID

The syntax of SE is given first. Throughout the following,
{item} means zero or more of the item, and [item] means the item
is optional.

The following abbreviations are used:

id for identifier
expn for expression
typeDefn for typeDefinition

Semicolons are not required, but they may optionally appear
following statements, declarations and import, export and checked
clauses.

A program is:

rooduleDeclaration

A moduleDeclaration is:

var id " : "
module

[imports"(" [var] id{"," [var] id}")"]
[e x po r ts " (" i d { 11

,
11 i d } ") 11

]

[[not] checked]
{declarationinModule}
[initially

procedureBody]
end module

A declarationinModule is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. moduleDeclaration
f. collectionDeclaration
g. procedureDeclaration
h. functionDeclaration
i. converterDeclaration
j • assert [" (" expn ") "]

A constantDeclaration is one of:

a. [pervasive] con st id " : =" mani fe stEx pn
b. [pervasive] const id ":" typeDefn ":=~· expn
c. [pervasive] const id ":" typeDefn ":="

"(" manifestExpn {"," manifestExpn} ")"

- 29 -

d. [pervasive] const id 11 :=" stringLiteral

A manifestExpn is:

expn

A variableDeclaration is:

[register] var id["(" at manifestExpn ")"] ":" typeDefn
[": =" ex pn]

A typeDeclaration is:

[pervasive] type id "=" typeBody

The typeBody is one of:

a. typeDefn
b. forward

A typeDefn is one of the following:

a. standardType
b. manifestConstant " •• " manifestExpn
c. [packed] array indexType of typeDefn
d. set of baseType
e. [packed] recordType
f. pointerType
g. namedType

A s tandardT:tEe is one of:

a. Signed Int
b. Unsig nedin t
c. Long Int
d. Shortint
e. Boolean
f. Char
g. StorageUnit
h. AddressType

A manifestConstant is one of:

a.
b.

[11_ II]
[11_ II]

literalConstant
[moduleid] 11

." mani festConstantid

- 30 -

A manifestConstantid is:

id

An indexType is one of:

a. Char
b. manifestConstant " " manifestExpn
c. namedType

A baseType is one of:

a • 0 " •• " man i f e s tEx pn
b. namedType

A recordType is:

record
var id":" typeDefn
{var id "· "' typeDe fn}

end record

A pointerType is:

11
"'

11 collectionid

A collectionid is:

id

A namedType is:

[moduleid 11
•

11
] type Id

A mod u 1 e Id i s :

id

A type Id is:

id

A variableBinding is one of:

a • b ind [reg is t e r] [var] id to v a r i ab 1 e ·
b • b ind " (" [r eg i st e r] [var] id to v a r i ab 1 e

{ " , " [reg i st e r] [var] id to v a r i ab 1 e } ") "

- 31 -

A collectionDeclaration is:

var id":" collection of typeDefn

A procedureDeclaration is:

procedure id [" (11 [var] id 11
:

11 parameterType
{

11
," [var] id ":" parameterType} ") "]

procedureBody

A functionDeclaration is:

function id ["(" id 11
:" parameterType

{
11

, " id " : " par am ete rType} ") "]
returns id ":" resultType "="

procedureBody

A parameterType is one of:

a. typeDe fn

"="

b. [packed] array manifestConstant 11
" parameter of

typeDefn
c. universal

A resultType is one of:

a. standardType
b. manifestConstant 11

" manifestExpn
c. set of baseType
d. pointerType
e. named Type

A procedureBody is:

[imports"(" [var] id {", 11 [var] id} 11
)

11
]

beg in
[[not] checked]
{declarationinRoutine}
{statement}

end [id]

A d ec 1 a rat ion In Ro ut in e i s o n e o f :

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. collectionDeclaration
f. converterDeclaration
g. assert ["(11 expn") 11

]

- 32 -

A converterDeclaration is:

converter id"(" typeid ")"returns typeid

A statement is one of:

a. variable":=" expn
b. [moduleid"."] procedureid ["(" expn {"," expn} ")"]
c. assert ["("expn")"]
d. return ["("expn")"]
e. if expn then

{statement}
{elseif expn then

{statement}}
[else

{statement}]
end if

f. 1 oop
{statement}

end loop
g. exit [when expn]
h. case expn of

manifestExpn {"," manifestExpn} "=>"
{statement}
end manifestExpn

{manifestExpn {"," manifestExpn} "=>"
{statement}
end manifestExpn}

[o the r w i s e " = > "
{statement}]

end case
i. beg in

{declarationinRoutine}
{statement}

end
j. collectionid ""New"(" variable")"
k. collectionid "."Free"(" variable")"

A procedureid is:

id

A variable is:

[moduleid ". 11
] id {componentSelector}

A componentSelector is one 0 f:

a • " (" expn II) II

b. " II id .
c. II II size
d. II II address .

- 33 -

An expn is one of the following:

a. variable
b. literalConstant
c. setTypeid "(" elementList ")"
d. collectionid "." nil
e • [mod ul e Id 11

• "] fun c t i o n Id [" (" exp n { " , " exp n} ") "]
f. [moduleid "."] converterid "(" expn ")"
g. 11

(" expn ") "
h. "-" expn
i. expn arithmeticOperator expn
j. expn comparisonOperator expn
k. not expn
1. expn booleanOperator expn
m. expn setOperator expn

A setTypeid is:

id

A elementList is one of:

a. [expn {"," expn}]
b. all

A functionid is one of:

a. id
b. Chr
c. Ord
d. Long

A converterid is:

id

An arithmeticOperator is one of:

a• +
b.
c. *
d. div
e. mod

A comparisonOperator is.one of:

a. <
b. >
c. =
d. <=

- 34 -

e. >=
f. not =

A booleanoperator is one of:

· a. and
b. or
c. ->

A setOperator is one of:

a. +
b.
c. *
d. <=
e. >=
f. in
g. not in

Note: The order of precedence is among the following classes of
operators (most binding first):

l. unary -
2 • * , d iv , mad
3. +, -
4. <, >, =, <=, >=, not=, in, not in
5. not
6. and
7. or
8. ->

An includeStatement is:

include stringLiteral

Note: Include statements can appear anywhere in a program.

- 3 5 -

The following changes and additions are made to form CE:

A moduleDeclaration is:

var id " : "
module

[imports"(" [var] id{"," [var] id}")"]
[ex ports " (" id { " , " id} ") 11

]

[[not] checked]
{declarationinModule}
[initially

procedureBody]
{process id ["(" memoryRequirement ")"]

procedureBody}
end module

A memoryRequirement is:

mani festEx pn

A declarationinModule is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. moduleDeclaration
f. monitorDeclaration
g. collectionDeclaration
h. procedureDeclaration
i. f unctionDe·cl aration
j. converterDeclaration
k. assert["(" expn ")"]

A monitorDeclaration is:

var id 11
: "

monitor
[imports " (" [var] id {"," [var] id} ") "]
[ex po r ts II (II i d { " ' II i d } II) "]

[[not] checked]
{declarationinMonitor}
[initially

procedureBody]
end monitor

A declarationinMonitor is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration

- 3 6 -

d. variableBinding
e. conditionDeclaration
f. collectionDeclaration
g. procedureDeclaration
h. functionDeclaration
i. converterDeclaration
j. assert["(" expn ")"]

A conditionDeclaration is one of:

a. var id ":" [priority] condition
b. var id":" array indexType of [priority] condition

A statement is one of:

a. variable":=" expn
b • [mod u 1 e Id 11

• "] p r o c ed u re Id [11
(

11 exp n { 11
,

11 exp n } ") 11
]

c. assert [" (11 expn") "]
d. return [11 ("expn 11

)"]

e. if expn then
{ statem'ent}

{elseif expn then
{statement}}

[else
{statement}]

end if
f. loop

{statement}
end loop

g. exit [when expn]
h. case expn of

manifestExpn { 11
,

11 manifestExpn} "=> 11

{statement}
end mani festEx pn

{ man i f es tEx pn { " , 11 man i f es tEx pn} "= >"
{statement}
end manifestExpn}

[o the r w i s e 11 = > "
{statement}]

end case
i. beg in

{declarationinRoutine}
{statement}

end
j. collectionid 11

•
11 New 11

(
11 variable 11

)"

k. collectionid 11
•

11 Free 11
(" variable 11

)"

1. wait 11
(

11 conditionVar ["," priorityValue] ")"
m. signal " (" conditionVar 11

)"

n. busy 11
(" t im·e 11

) "

A mod u 1 e Id i s :

moduleOrMonitorid

- 37 -

A moduleOrMonitorid is:

id

A conditionVar is:

condition!d ["(" expn ")"]

A condition!d is:

id

A priori tyVal ue is:

expn

A time is:

expn

A f unctionid is one of:

a. id
b. Chr
c. Ord
d. Long
e. empty

- 3 8 -

The following extensions allow separate compilation of pro
cedures, functions, modules and monitors:

An externalProcedureDeclaration is:

·procedure id [" (" [var] id ": 11 parameterType
{ "," [var] id 11

·" pararneterType} ") "]
externa·l

An externalFunctionDeclaration is:

function id [11
(

11 id 11
:

11 parameterType
{

11
,

11 id 11
:

11 parameterType} 11
)

11
]

returns id 11
•

11 resultType 11 = 11

external

An externalModuleDeclaration is:

var id 11
:

11

external module
[imports 11

(
11 [var] id { 11

,
11 [var] id} ") "]

[exports 11
(" id { 11

," id} ") "]
{declarationinExternalModule}

end module

A declarationinExternalModule is one of:

a. manifestConstantDeclaration
b. typeDeclaration
c. collectionDeclaration
d. converterDeclaration
e. externalProcedureDeclaration
f. externalFunctionDeclaration

An externalMonitorDeclaration is:

var id ":"
external monitor

[i m po r ts 11
(" [var] i d { " , 11

[var] i d } 11
)

11
]

[ex po r ts II (II i d { II ' II i d } II) II]

{declarationinExternalMonitor}
end monitor

A declarationinExternalMonitor is one of:

a. manifestConstantDeclaration
b. typeDeclaration
c. collectionDeclaration
d. converterDeclaration
e. externalProcedureDeclaration

- 39 -

II: II

f. externalFunctionDeclaration

Note: An external declaration can appear in place of the real
declaration anywhere in a program.

A manifestConstantDeclaration is:

(pervasive] const id ":=" manifestExpn

A separateCompilation is:

{separateDeclaration}

Each separateDeclaration is one of the following:

a. manifestConstantDeclaration
b. typeDeclaration
c. collectionDeclaration
d. converterDeclaration
e. procedureDeclaration
f. functionDeclaration
g. moduleDeclaration
h. monitorDeclaration

- 40 -

APPENDIX 2.
KEYWORDS AND PREDEFINED IDENTIFIERS

The following are reserved words of Euclid. These must not be
used as identifiers in SE and CE programs. Those which are not
in the SE subset are marked with an *

*abstraction *aligned all and
*any array assert at
beg in bind *bits *bound
case *checkable checked *code
collection canst converter *counted
*decreasing *default *dependent div
else elseif end exit
exports *finally *for forward
*from function ·if imports
in include initially *inline
*invariant loop machine mod
not of or otherwise
packed parameter pervasive *post
*pre procedure *read only record
return returns set then
*thus to type *unknown
var when *with *xor

The following are additional reserved words of SE and CE.
These al so must not be used as identifiers in SE and CE programs.

busy condition empty monitor
priority process register signal
universal wait

The following are predefined identifiers of Euclid. In gen
eral, these are pervasive and must not be redeclared in SE and CE
programs. Those which are not in the SE subset are marked with
an *.
*Abs address AddressType *alignment
*Base Type Boolean Char Chr
*ComponentType false *first Free
*Index *IndexType *Integer *itsTag
*ItsType *last *Max *Min
New nil *ObjectType *Odd
Ord *Pred * refCount Signed!nt
size *sizeinBits StorageUnit *String
*String Index *str ingMaxLength *Succ
*SystemZone true Unsigned!nt

The following are additional predefined identifiers of SE and
CE. These also must not be redeclared in SE and CE programs.

Long Long Int Shortint

- 41 -

APPENDIX 3.
INPUT/OUTPUT IN CONCURRENT EUCLID

This paper presents the standard input/output package for SE
and CE. The user can access the I/O facility by including in his
program the stub input/output module which corresponds to the
level of I/O which his program requires. In this way, the user's
compiled and linked program will include code only for the I/O
facilities required.

The package provides four levels of sophistication, which are
called "IO/l" through "I0/4 ". Each level includes all the fac il
i ties of the previous levels plus certain new features. The
levels are as follows:

IO/l: Te rm inal (standard) input and output; Formatted text
- - input/output of integers, characters and strings (Get and

Put) •

.!.£!~: Program argument sequential files; Open and close on ar
gument files; Formatted text input/output of integers,
characters and strings to files (FGet and FPut); Internal
representation input/output of integers, characters and
strings to files (Read and Write); End of file detection
(EndFile).

I0/3: Temporary and non-argument sequential files {Assign, Deas
- - sign, Delete); Program arguments {FetchArg); Program error

exit {Sys Ex it) •

I0/4: Record, array and storage input/output (Read and Write);
- - Random access files (Tell and Seek); Error detection

(Error).

The procedures and functions of the input/output system are
all part of the module "IO" and must be referenced using "IO.".
The types and constants which form the interface to the module
are global. The user can access the level n facilities of the
input/output module by including the statement

include '/usr/lib/coneuc/IOn'

as the first declaration in his main module.

We now describe the input/output facilities in detail.

!Q./1: Terminal Formatted Text £/~

pervasive const newLine := $$N
pervasive const endOf File := $$E
pervasive const maxStringLength :=

{ Implementation defined; >= 128 }
Strings read and written by the input/output routines may be
up to maxStringLength characters in length.

- 42 -

IO.PutChar (c: Char)
Prints the character c on the terminal.

IO.Putint (i: Signedint, w: Signedint)
Prints the integer i on the terminal, right justified in a
field of w characters. Leading blanks are supplied to fill
the field. If w is an insufficient width, the value is
printed in the m1n1mum possible width with no leading
blanks. In particular, if w is 1 then the exact number of
characters needed is used. The specified width must be
greater than zero and less than maxStringLength.

IO.PutLong (i: Longint, w: Signedint)
Same as IO.Putint for long integers.

IO.PutString (s: packed array l •• parameter of Char)
Prints the string s on the terminal. The string must be
terminated by an endOfFile character ('$E'), which is not
output. It can contain embedded newLines ('$N') if desired.
(Note: An endOfFile character ($$E) can be output using
PutChar.)

IO.GetChar (var c:Cha~)
Gets a the next input character from the terminal. End of
file is indicated by a return of endOfFile ($$E).

IO.Getint (var i: Signedint)
Gets an integer from the terminal. The input must consist
of any number of optional blanks, tabs and newlines, fol
lowed by an optional minus sign, followed by any number of
decimal digits.

IO.GetLong (var i: Longint)
Same as IO.Getint for long integers.

IO.GetString (vars: packed array ! .. parameter of Char)
Gets a line of character input from the terminal. The re
turned string may be up to maxStringLength characters in
length. The string returned is ended with the newLine
character ('$N') followed by an endOfFile character ('$E')
if it is a complete line, and by the endOfFile character
only if it is a partial line (i.e., if the input line ex
ceeds maxStringLength characters in length). End of file is
indicated by returning a string containing endOfFile ('$E!)
as the first character.

IO/~: Sequential Argument File ~/~

pervasive const stdinput := -2
pervasive const stdOutput := -1
pervasive const stdError := 0
pervasive const maxArgs := { Implementation defined; >= 9 }
pervasive const maxFiles :=

{ Implementation defined; >= maxArgs+S }
type File= stdinput •• maxFiles

- 43 -

Concurrent Euclid input/output refers to files using a file
number. Certain file numbers are preassigned as follows: -2
refers to the terminal input; -1 is the terminal output; 0
is the standard diagnostic output. The file numbers
l •• maxArgs refer to the program arguments. The rema1n1ng
file numbers (maxArgs+l •• maxFiles) can be dynamically assig
ned to files using the "IO.Assign" operation; see "I0/3".

pervasive const inFile := 0
pervasive const outFile := 1
pervasive const inOutFile := 2
type FileMode = inFile •• inOutFile

Files can be opened for input, output, or input/output using
modes inFile, outFile and inOutFile respectively. (Note:
The input/output mode is not available under Unix V6.)

IO.Open (f: File, m: FileMode)
IO.Close (f: File)

With the exception of terminal input/output and the standard
diagnostic output, files must be opened before they are used
and closed before the program returns. Open opens an exis
ting file for the operations specified by the mode. If the
opened file does, not exist, it is created. The file number
specified must be a preassigned file number or a file number
returned from a call to "IO.Assign"; see "I0/3".

IO.FPutChar (f: File, c: Char)
IO.FPutint (f: File, i: Signedint, w: Signedint)
IO.FPutLong (f: File, i: Longint, w: Signedint)
IO.FPutString (f: File, s: packed array l •• parameter of Char)
IO.FGetChar (f: File, var c: Char)
IO.FGetint (f: File, var i: Signedint)
IO.FGetLong (f: File, var i: Longint)
IO.FGetString (f: File, vars: packed array ! .. parameter of Char)

These operations are identical to the terminal input/output
operations of IO/l except that the put or get is done on the
specified file.

IO.WriteChar (f: File, c: Char)
Writes the internal representation of character c to the
specified file.

IO.Writeint (f: File, i: Signedint)
Writes the internal representation of integer i to the
specified file.

IO.WriteLong (f: File, i: Longint)
Writes the internal representation of long integer i to the
specified file.

IO.WriteString (f:File,,s: packed array ! .. parameter of Char)
Writes the internal representations of the characters in the
string s to the specified file.

IO.ReadChar (f: File, var c:
Reads a character in

Char)
internal

- 44 -

representation from the

specified file into c.

IO.Readint (f: File, var i: Si·gnedint)
Reads an integer in internal representation from the speci
fied file into i.

IO.ReadLong (f: File, var i: Longint)
Reads a long integer in internal representation from the
specified file into i.

IO.ReadString (f: File, vars: packed array ! .. parameter of Char)
Reads a string of characters terminated by a newLine charac
ter ('$N') in internal representation from the specified
file into s. The returned string may be up to max
StringLength characters in length. The string returned is
ended with the newLine character ('$N') followed by an
endOfFile character ('$E') if it is a complete line, and by
the endOfFile character only if it is a partial line (i.e.,
_if the input line exceeds maxStringLength characters in
length). End of file is indicated by returning a string
containing endOfFile ('$E') as the first character.

IO.EndFile (f: File)
A function which returns true if the last operation on the
specified input file encountered end of file and false oth
erwise.

IO/~: Temporary and Non-argument Files

pervasive const maxArgLe ng th : =
{ Implementation defined; >= 32 }

File names and arguments to a program may be up to maxAr
gLength characters in length.

IO.Assign (var f: File, s: packed array ! .. parameter of Char)
A file number is assigned to the file name supplied in s.
The file name is given as a string terminated by the endOf
File character ('$E'), which is not part of the name. Be
fore the file can be used it must be opened using "IO.Open".

IO.Deassign (f: File)
The specified file number is freed for assignment to another
file name. An open file cannot be deassigned.

I 0 • De l et e (f : Fi l e)
The specified file is destroyed. An open file cannot be
deleted. Note that a program can have temporary files using
"IO.Assign" and "IO.Delete".

IO. FetchArg (n: I. .maxArgs, var s: packed array 1. .parameter of
Char)
The program argument specified by "n" is returned in string
s. The returned string is terminated by the endOfFile
character ('$E') and may be up to maxArgLength characters in
1 eng th.

- 4 5 -

IO. SysEx it (n: Signed Int)
Terminate program execution with the specified return code.
(ConEuc programs return O· by default.)

IO/!: Structure Input/Output and Random Access Files

IO.Write (f: File, u: universal, n: Signedint)
The number of StorageUnits specified by "n" are written to
the file from u. Write can be used to write out whole ar
rays and records using a call of the form "IO.Write (f, v,
v.size) ". The value of n must be positive or zero.

IO.Read (f: File, var u: universal, n: Signedint)
The number of StorageUnits specified by "n" are read from
the file into u. Read can be used to read in whole arrays
and records using a call of the form "IO.Read (f, v,
v.size) ". The value of n must be positive or zero.

type Fileindex = Longint
IO.Tell (f: File, var x: Fileindex)
IO.Seek (f: File, x: Fileindex)

These operations-provide random access input/output by al
lowing the program to sense a file position, represented as
a long integer, and reset the file to a remembered position.
Tell returns the current position of the specified file.
Seek sets the current position of the specified file to the
position specified by the value of x. The representation of
file indices is implementation-dependent. (Note: "IO.Tell"

·and "IO.Seek" are not supported under Unix V6.)

IO.Error (f: File)
A function which returns true if the last operation on the
specified file encountered an error and false otherwise.

Interfacing to Unix*

The input/output package is based on standard Unix
input/output and is designed to be interfaced to Unix with a
minimum of overhead. The Unix implementation is written in C and
uses only facilities of the C "stdio" package. This implementa
tion can be compiled unchanged under both VG and V7 Unix.

Unix* is a trademark of Bell Laboratories.

- 4 6 -

APPENDIX 4.
PDP-11 IMPLEMENTATION NOTES

This section gives details of the implementation of CE for the
PDP-11 under Unix* and provides information necessary for inter
facing with CE programs.

DATA REPRESENTATION

The following gives the storage representations of the various
CE data types used by the PDP-11 implementation.

Signedint and
subranges contained
in -32768 •• 32767

Unsig nedin t and
subranges contained
in O .• 65535 but
outside -32768 •• 32767

Longint and
subranges outside
the above

Short!nt and
packed subranges
in o •• 255

Boolean

Char

Storag eUn it

AddressType,
pointers and binds

sets of O •• 7

sets of O •. 15

Representation

16-bit signed word

16-bit unsigned word

32-bit signed doubleword, word
aligned; high order word has
the lower address

8-bit unsigned byte

8-bit unsigned byte; true = 1,
false = 0

8-bit unsigned byte

8-bit unsigned byte

16-bit unsigned word

8-bit unsigned byte; element 0
is low order bit, element 7 is
high order bit

16-bit unsigned word; element 0
is low order bit, element 15 is
high order bit

REGISTER USAGE

The following register assignments are used by the PDP-11
implementation.

- 4 7 -

Register

RO, Rl

R2, R3

R4

RS

Use

function results, s~ratch

scratch

line number, register variables
and binds

register variables and binds

Since the CE implementation uses the stack pointer register (SP)
to address local variables in procedures and functions, there is
no local base register.

Function results whose data representation is a byte or word
are returned in RO. Doubleword results are returned in RO and
Rl, with the high order word in RO.

In order to attain highly efficient code for non-scalar as
signments, subscripting and Longint arithmetic, the CE compiler
uses four scratch registers rather than the two used by the C
compiler. In particular, CE uses R2 and R3 for scratch and hence
does not save and restore them at procedure and function entry
and exit. Since the PDP-11 C compiler uses R2 and R3 for re
gister variables, C routines which call CE procedures and func
tions can use at most one register variable. There is no such
restriction on C routines called from CE programs.

Register RS (and R4 when line numbering is turned off, see
below) are used for user variables and binds which are explicitly
declared "register".

When run-time line numbering is turned on (which is the de
fault), the CE compiler generates code to maintain the source
file and line number in the line number register (R4) during exe
cution. This aids in debugging since the "cedb" program can
obtain the source file name and line number from the core dump
following a run-time program failure (e.g., assertion failure,
subscript or case tag out of range, etc.).

The contents of the line number register is interpreted as a 5
digit unsigned decimal number, the first two digits of which give
the source include file number and the last three of which give
the source line number within file. Source file numbers are
assigned sequentially starting with 1 for the main source file.
Source files longer than 999 lines are assigned a new file number
for each 1000 lines of source.

Run time 1 ine numbering can be turned off using the "-1" com
piler toggle.

CALLING CONVENTIONS

CE procedures and functions which are (a) declared "external",

- 4 8 -

(b) separately compiled, or (c) exported from a separately com
piled module or monitor, are called using the C calling conven
tion. A more efficient calling convention .is used for calls
between CE routines within a single compilation.

Unlike C routines, CE procedures and functions do not save and
restore all of the caller's registers, but rather save and res
tore only those registers which they actually use. Note that
since registers RO-R3 are considered scratch registers by the CE
compiler, CE routines never save and restore RO-R3. This means
that C routines which call CE routines can use at most one re
gister variable. C routines which are called from CE may of
course use as many register variables as they wish. Assembly
routines called from CE can use RO-R3 as scratch and need not
save and restore them. (Exception: the CE built-in routines are
called using a special calling convention and must save and res
tore all registers which they use).

EXTERNAL NAMES

CE procedures and functions which are (a) declared "external",
(b) separately compiled, or (c) exported from a separately com
piled module or monitor, are assigned external names so that they
may be linked with and/or called from other compilations and pro
grams. On the PDP-11 under Unix, these names consist of the
routine name preceded by an underscore character. Because of
Unix linker restrictions, only the first seven characters of
external names are significant and hence care must be taken to
avoid confilicts. The "initially" routine of an external module
or monitor is given the name of the module/monitor.)

PARAMETER PASSING

Like C, CE passes parameters on the PDP-11 stack. Unlike C,
however, CE pushes parameters onto the stack in the order in
which they appear in the call (C reverses this order). Hence C
procedures and functions which are called from CE (and CE pro
cedures and functions which are called from C) must declare their
formal parameters in reversed order.

Value parameters as defined in the CE language specification
are passed as values on the stack. Byte values are passed in the
low order byte of a 16-bit word. Reference parameters are passed
as 16-bit word addresses.

A parameter passed to array formal parameter declared using
the "parameter" keyword as upper bound is passed with an extra
unsigned word parameter following the array address. This extra
parameter gives the number of elements in the array minus one. A
parameter passed to a "universal" formal parameter is passed as
an address only.

- 49 -

RUN-TIME CHECKING

When run-time checking is turned on (which is the default),
the CE compiler will generate code to check assert statements,
subscript ranges and case selector ranges during execution. It
will not generate code to check ranges in assignments and over
flow in expressions at run-time. The checking code uses an il
legal instruction of the form "jsr rO,rN" to abort the program
when a run-time check fails. The second register number in the
instruction is an abort code indicating the reason for the abort.
The following table gives the abort codes used by the PDP-11
implementation.

Aborting instruction

jsr rO,rO

jsr rO,rl

jsr r0,r2

jsr r0,r3

Reason for abort

assertion failure

subscript out of range

case selector out of range

function failed to return a value

The "cedb" utility will automatically determine the source
file name, source line number and reason for abort from the core
file produced by a run-time abort.

All run-time checking can be turned off using the "-k" com
piler toggle.

Unix* is a trademark of Bell Laboratories.

- 50 -

REFERENCES

1. Lampson, B.W., Horning, J.J., London, R.L.,
Popek, G.J., Report on the Programming
SIGPLAN Notices 12,l (February 1977).

Mitchell, J.G. and
Language Euclid.

2. Hoare, C.A.R., Monitors: An Operating System Structuring Con
cept. Comm. ACM 17,10 (October 1974), 549-557.

- 51 -

absolute address,
variable at 6

actual parameter 14
address

standard component 19
AddressType 7
aliasing 10, 12, 15
all, in set constructor 18
allocate 10
alternative label 15
and operator l 7
arithmetic operation,

precision of 19
arithmetic operator 17
array constant 6
array type 8
assert statement 15
assig nab il i ty 9
Assign file utility 45
assignment statement , 14
at clause 6
base type 8
begin block 16
bind 9
blocked process 24
Boolean 7
boolean operator 17
built-in function 18
busy statment 25
calling conventions,

of PDP-11
implementation 48

case alternative label 15
case statement 15
Char 7
character literal 2
character set 2
checked,

module or monitor 4
procedure or

function 13
Chr built-in function 18
Close file utility 44
collection 8, 10
collection declaration 10
collection element 10, 16
comment 3
comparison operator 17.
com pi 1 at ion 2 7
concurrency 21
concurrent process 21
condition 23

INDEX

condition declaration 23
consistency criterion 25
constant declaration 5
data representation,

PDP-11
implementation 47

Deassign file utility 45
declaration,

external 26
in external module 26
in external monitor 27
in module 5, 22
in monitor 23
in procedure

or function 13
separate 27

Delete file utility 45
difference, set operator 17
div operator 1 7
dynamic allocation,

of collection elements 10
empty built-in function 24
empty set 18
entry, monitor 22
exit statement 15
exports clause,

of module 4
of monitor 22

expression 17
external declaration 25
external names,

PDP-11 implementation 49
FetchArg,

pr og ram a rg um en t
utility 45

FGetChar 44
FGe tint 44
FGetLong 44
FGetString 44
field selection, record 16
file input/output 43
file, random access 46
file, sequential 43
file, temporary 45
formal parameter 11
forward type 7
FPutChar 44
FPutint 44
FPutLong 44
FPutString 44
Free, built-in operation 10
function call 18

- 52 -

function declaration 11
GetChar 43
Getint 43
GetLong 43
Ge ts tr i ng 4 3
hexadecimal number 2
identifier 2
identifier, predefined 2, 41
if statement 15
implication, Boolean 17
imports clause,

of module 4
of monitor 22
of procedure or

function 12
include statement 20
index type 8
initialization,

of modules and monitors 4
initially procedure,

of modules and monitors 4
initial value, of variable 6
input/ output 42
in, set operator 17
integer literal 2
intersection, Boolean 17
intersection, set 17
IO/l 42
I0/2 43
I0/3 45
I0/4 46
IO package 42
keyword 3, 41
label, case alternative 15
1 ine numbering,

run-time, PDP-11
implementation 48

linking,
of compilations 27, 28

literal 2
Long built- in function 18
Longint 7
loop exit 15
loop statement 15
main program 3
manifest 5
manifest constant 19
manifest expression 19
manifest named constant 5
memory requirement,

of process 21
mod operator 17
module 4
module declaration 4

monitor 22
monitor declaration 22
monitor entry 22
mutual exclusion,

in monitor 23
named constant 5
named type 7, 8
New, built-in operation 10
nil, collection component 10
non-aliasing,

in binds 10
in imports 12
in reference actual

parameters 15
nonmanifest 5
nonmanifest named constant 5
notation, syntactic 3
not in, set operator 17
not= operator 17
not operator 17
n ul 1 po int e r 1 0
octal number 2
opaque type 4
Open file utility 44
operator,

arithmetic 17
Boolean 17
com par i so n 1 7
set 17

operator precedence 17
Ord built-in function 18
or operator 1 7
packed,

array 8
record 8

parameter,
actual 14
formal 11
reference 9, 11
value 9, 11

parameter passing,
PDP-11 implementation 49

parameter type 11
PDP-11 implementation 47
pervasive,

constant 6
type 7

pointer type,
of collection 8

precedence, operator 17
precision,

of arithmetic 19
predefined identifier 2, 41
priority condition 24

- 53 -

priority value 24
procedure body 12
procedure call 14
procedure declaration 11
process, concurrent 21
program 3
PutChar 43
Putin t 43
PutLong 43
PutString 43
random access files 46
Read, structure input 46
ReadChar 44
Read!nt 45
ReadLong 45
ReadString 45
record field 8, 16
record type 8
recursive,

procedure or function 13
reentrant procedure

or function 22
reference parameter 9, 11
register,

bind l O
variable 6

register usage,
PDP-11 implementation 47

reserved word 41
result type 12
return identifier 12
return,

procedure and function 13
returns clause 12
return statement 15
root type 9
run-time checking,

PDP-11 implementation 50
run-time line numbering,

PDP-11 implementation 48
scalar type 7
Seek file utility 46
semicolon 3
separate compilation 27
separate declaration 27
separator 3
set, complete 18
set constructor 18
set difference 17
set element containment 17
set, empty 18
set inclusion 17
set intersection 17
set operator 17

- 54 -

set type 8
set union 17
Shortint 7
side-effects, function 12
signal statement 23
Signedint 7
simulation 25
size standard component 19
source file inclusion 20
special symbol 3
standard component 16, 18
standard type 7
statement 14
Storag eUn it 7
string constant 6
string literal 2
structured types 8, 16
structure input/output 46
subrange type 7
subscript, array 16
subscript, collection 16
synchronization 22
Sys Ex it,

program return
code utility 46

Tell file utility 46
temporary files 45
terminal input/output 42
type conversion 18
type converter 13
type declaration 6
type definition 7
type equivalence 9
union, Boolean 17
union, set operator 17
universal 11
Unsig nedin t 7
value parameter 9, 11
variable declaration 6
variable reference 16
wait statement 23
Write; structure output 46
WriteChar 44
Writeint 44
Wr i teLong 44
WriteString 44

University of Toronto
Computer Systems Research Group

BIBL!OGRAPHY OF CSRG TECHNICAL REPORTS+

• CSRG-1 EMPIRIC..-\L COMPARISON OF LR(k) AND PRECEDENCE PARSERS
LT. Horning and W.R. Lalonde, September 1970
f ACM SIGPLA.i'J Notices, November 1970]

« CSRG-2 Al~ EFFIClENT LALR PARSER GENERATOR
W.R. Lalonde, February 1971
[M.A.Sc. Thesis, EE 1971]

* CSRG-3 A PROCESSOR GENERATOR SYSTEM
J.D. Gerrie, February 1971
[M.A.Sc. Thesis. EE 1971]

:.• CSRG-4 DYLAN USER'S MANUAL
P.E. Bonzon, March 1971

CSRG-5 DIAL -A PROGRAMM1NG SYSTEM FOR INTERACTIVE ALGEBRAJC MANIPULATION
Alan C.M. B1·own and J.J. Horning, March 1971

1:CSRG-6 ON DEADLOCK IN COMPUTER SYSTEMS
Richard C. Holt. April 1971
[Pb. D. Thesis, Dept. of Computer Science,
Cornell University, 1971]

CSRG-7 THE STAH.·RlNG SYSTEM OF LOOS.~LY COU.PLl!.:D D1G1TAL 1Ji:V1C~S
.Tohn Ne\11 Thomas Potvin. August 1971
[M..A.So. Thesis. EE 1971]

* CSRG-8 FILE ORGAl\JTZATION AN'D STRUCTURE
G.M. Stacey, August 1971

CSRG-9 DESIGN STUDY FOR A TWO-DIMENSIONAL COMPUTER-ASSISTED
ANIMATION SYSTE:M
Kenneth B. Evans, January 1972
[M.Sc. Th~~is. DCS, i972]

,., CSRG-10 HOW A PROGRAMMING LAJJGUAGE IS USED
William Gregg Alexander, February 1972
[M.Sc. Thesis, DCS 1971; Computer, v,tj, n.11, November 1976]

~ CSRG--11 PROJECT SUE STATUS REPORT
.T. W. At.woorl (ed.), A prH 1872

+ Abbreviations:
DCS - Department' of CompuL:~r Science, Unhrersity cf Tcm::nto
EE - Department of Electrical Engineering. Univer-si1:.y o[

Toronto
"' - Out of print.

- 2 -

* CSRG-12 THREE DIMENSIONAL DATA DISPLAY WITH HIDDEN LINE R.E.MOV AL
Rupert Bramall, April- 1972
[M.Sc. Thesis, DCS, 1971 J

• CSRG-13 A SYNTAX DIRECTED ERROR RECOVERY METHOD
Lewis R. James, May 1972
[M.Sc. Thesis, DCS. 1972]

CSRG-14 THE USE OF SERVICE TIME DISTRIBUTIONS IN SCHEDULING
Kenneth C. Sevcik, May 1972
[Ph.D. Thesis, Committee on Information Sciences,
University of Chica~o. 1971; JACM, January 1974]

CSRG-15 PROCESS STRUCTURING
J.J. Horning and B. Randell, June 1972
[ACM Computing Surveys. March 1972]

*CSRG· 16 OPTIMAL PROCESSOR SCHEDULING WHEN SERVICE TIMES ARE
HYP ERii;XPON~N'l'lALLY Di:::ff1"1.l:HJTED AND PHEEM.PTiON OVERHEAD
lS NOT NEGLIGIBLE
Kenneth C. Sevcik, June 1972
[Proceedings of the Symposium on Computer-Communication,
Networks and Teletraffi.c, Polytechnic Institute of Brooklyn, 1972]

* CSRG-17 PROG&\.MHL\iG LANGUAGE THANSLAT!ON TECHNIQUES
W . .M .• t.'1.cKeeman, July H.;?t.!

CSRG-18 A COMPARATIVE A.L~ALYSTS OF SEVERAL DJSK SCHEDULING ALGORIT1-11{S
C.J.M. Turnbull, September 1972

CSRG-19 PROJECT SUE AS A LEARNING EXPERIENCE
KC. Sevcik et al. Seotember 1972
[Proceedings AFIPSFall Joint Computer Conference,
v. 41, December 1972]

"' CSRG-20 A STUDY OF LA.i~GUAGE DIRECTED COMPUTER DESIGN
Dn..,·id B. Wort.man, December 1972
[Ph.D. Thesis. Computer Science Department,
Stanford University, 1972]

CSRG-21 AN A.PL TERMlNAL APPROACH TO COMPUTER MAPP1NG
R. Kvaternik, December 1972
[M.Sc. Thesis, DCS, 1972]

* CSRG-22 A.i\I IMPLEMENTATION LA.i'iGlI AGE FOR MfrJ1COMFUTEES
G.G. K~lmar, January 1973
[~LSc. Thesis, DCS. 1972]

CSRG-G:.:3 COMPILER STR.UCTURE
W.~L McKecman, January 1973
[Proceedings of the lJS.A·Japan Computer Conference, 1972]

- 3 -

* CSRG-24 A.7'1, ANNOTATED BIBLIOGRAPHY ON COMPUTER PROGRAM
ENGlNEERING
J.D. Gannon (ed.), March 1973

CSRG-25 TEE INVESTIGATION OF SERVICE T1ME DISTRIBUTIONS
Eleanor A. Lester, April .1973
[M.Sc. Thesis, DCS, 1973]

* CSRG-26 PSYCHOLOGICAL COMPLEX1TY OF COMPUTER PROGRAMS;
A.l\J INITIAL EXPERIMENT
Larry Weissman. August 1973

. * CSRG-27 STRUCTURED SUBSETS OF THE PL/I LANGUAGE
Richard C. Holt and David B. Wortman, October 1973

* CSRG-28 ON REDUCED MATRIX REPRESENTATION OF LR(k)
PARSER TABLES
Marc Louis J oliat. October 1973
[Ph.D. Thesis, EE 1973]

* CSRG-29 A STUDENT PROJECT FOR AN OPERATING SYSTEMS COURSE
E. Czarnik and D. Tsichritzis (eds.), November i973

!ll CSRC-30 A PSEUDO-MACHINE FOR CODE GENERATION
Henry John Pasko. December 1973
LM.Sc. ThesisJ DCS 1973 J

* CSR.G-31 Al~ ANNOTAED BIBLIOGRAPHY ON COMPUTER PROGRA1rl: ENGINEERiNG
J.D. Gannon (ed.). Second Edition, March 1974

"' CSRG-32 SCHEDULING MULTIPLE RESOURCE COMPUTER SYSTEMS
E.D. Lazowska, May 1974
[M.Sc. Thesis, DCS, 1974]

* CSRG-33 AN EDUCATIONAL DATA BASE MAI~-JAGEMENT SYSTEM
F. Lachovsky and D. Tsichritzis, May 1974
[INFOR, 14 (3), pp.270-278, 19'76]

* CSRG-34, ALLOCATING STORAGE IN HIERARCHICAL DATA BASES
P. Bernstein and D. Tsichritzis, May 1974
[Information Systems Journal. v.1. pp.133-140]

* CSRG-J5 ON IMPLEMENTATTON OF RELATIONS
D. Tsichritzis, May 1974

• CSRC-38 SIX PL/I COMPILERS
D.B. Wortman, .P.J .. Khaiat, and D.M. Lasker, Au,gust 1974
[Software Practice and Experience, v.6, n.3, .
July-Sept. 1976]

* CSRG-37 A METHODOLOGY FOR STUDYJNG THE PSYCHOLOGlCAL COMPLEXITY
CF COMPUTER PROGRAMS
Laurence M. Wcissrnan. Augu.~L J 974-
[Ph. D. Thesis! DCS, HY74]

·- 4 -

* CSRG-38 AJ'i IN'VESTlGATION OF A NEW METHOD OF CONSTRUCTING SOFTWARE
David M. Lasker, September 1974
[M.Sc. Thesis, DCS, 1974]

CSRG-39 AN ALGEBRAIC MODEL FOR STRING PATTERNS
Glenn F. Stewart~ September 1974
[M.Sc. Thesis. DCS, 1974]

• CSRG·40 EDUCATIONAL DATA BASE SYSTEM USER'S MANUAL
J. Klebanoff. F. Lochovsky. A. Rozitis, and
D. Tsichritzis, September 1974

• CSRG-41 NOTES FROM A WORKSHOP ON THE ATTAINMENT OF
RELIABLE SOFTWARE
David B. Wortman (ed.), September 1974

• CSRG-·!2 TIIE PROJECT SUE SYSTEM LANGUAGE REFERENCE MANUAL
B.L. Clark and F.J.B. Ham, September UJ74

-11 CSRG-43 A DATA BASE PROCESSOR
E.A. o~lkc-.. rahan, S.A. Schuster and K.C. Smith,
November 1974 f Proceedings National Computer
Conference 1975, ·v.44. pp.379-388]

• CSRG-44 1Ll\.TCHING PROGRA.M AND DATA REPRESENTATION TO A
COMPUTJNG ENV1RONMEN1'
Eric C.R. Hehner, Noitemver 1974
[Ph.D. Tbesis, DCS, 1974]
See Computer. Vol.9, No.9, August 1976, pp.55-70.

• CSRG-45 THREE APPROACHES TO RELIABLE SOFTWARE; U\NGUAGE DESIGN,
DYA.DJC SPECI.F'ICATIONS, COMPLEMENTARY SEMANTICS
J.E. Donahue, J.D. Gannon. J.V. Guttag and
J.J. Horning, December 1974

CSRG·-46 THE SYNTHESIS OF OPT.i.MAL DLClSlO.N 'l'~.h;S 11'1WM
DECISION TABLES
Helmut Schumacher, December 1974
[1LSc. Thesis. DCS, 1974; CACM. v.19, n.8, June 19?6j

• CSRG-4 7 LA.l\lGUAGE DESIGN TO ENHANCE PROGRAMMING RELIABIL1TY
fohn D. Gannon. January 1975
[Ph.D. Thesis. DCS, 1975]

CSRG-48 DETERMJNIST1C LEFT TC RIGHT PARSING
Christopher J.M. Turnbull, Janu~.ry 1975
·Ph D r~ · ,..,..,., 1°-· 1 I L . . ncs1s, .61..t, ;:J 14_

"' CSRG·-49 A NETWOHK FRAMEWORK FOR REl.J\TIONAL IMPLEMENTATION
D. Tsichritzis, February 1975 [in Data. Base Desc;~iption,
Dungue a.ml Nij::::::it!!l (tnh.), NurLh Eulldl1u Publit:hir.:;.; Co.]

- 5 -

• CSRG-50 A UNIFJED APPROACH TO FUNCTIONAL DEPENDENCIES
AND RELATIONS
P.A. Bernstein .. J.R. Sw·enson and D.C. Tsichritzi's
February 1975 [Proceedings of the ACM SIGMOD
Conference. 19?5]

• CSRG-51 ZETA: A PROTOTYPE RELATIONAL DATA BASE MANAGEMENT SYSTEM
M. Brodie ('ed). February 1975 [Proceedings Pacific ACM
Conference, 1975]

CSRG-52 AUTOMATIC GENERATION OF SYNTAX-REPAIRING AND
PARAGRAPH1NG PARSERS
David T. Barnard, March 1975
[1LSc. Thesis, DCS. 1975]

• CSRG-53 QUERY EXECUTION AND INDEX SELECTION FOR RELATIONAL
DATA BASES
J.H. Gilles Farley and Stewart A. Schuster, March 1975

CSRG-54 AN Ai~NOTATED BIBLIOGRAPHY ON CO.MPUTEH PROGRAM
ENGINEERING
J. V. Guttag, (ed.), Third Edition, April 1975

CSRG-55 STRUCTURED SUBSETS OF THE PL/1 LA.N"GUAGE
Richard C. Holt. and Uavid H. Wortman. May 1975

~ CSRG-56 FEATURES OF A CONCEPTUAL SCHEMA
D. l'sichritzis. June 1975 [Proceedings Very Large
Data Ease Conference, 1975]

• CSRG-57 MERLIN; TOWARDS AN IDEAL PROGRAl\fMING LANGUAGE
Eric C.R. Hehner, July 1975
see ~<\eta Informatica Col.10. No.3, pp.229-243, 1978

CSRG-58 ON TEE SEMAl'JTICS OF THE RELATIONAL DATA MODEL
Hans Afbrecht Schmid and J. Richard Swenson,
July 1.975 [Proceedings of the ACM SIGMOD Conference. 1975]

• CSH.G·59 T!i.t; S.P.l:!:Cllt'lCATlON AND APPLICATTON TO PROGRA..i\(MING
OF ABSTRACT DATA TYPES
John V. Guttag. September 197G
[Ph.D. Thesis, DCS. 1975]

• CSRG-50 NORMA.LlZATION A.ND FUNCTlONAL DEPENDENCIES !N TEE
RELATION.i:-'\.L DATA BASE lvfODEL
Phillip Alan Bernstein. October 1975
[Ph.D. Thesis, DCS, 1975]

• CSRG-61 LSL: A Lil\TK lu"\ID SELECTION LANGUAGE
D. Tsichritzis, :November 1975 [Proceedings ACM
SIGMOD Conf~frence, 1976]

- 6 -

"' CSRG-62 COMPLEMENT.ARY DEFlNITIONS OT PROGRAMMING Lfu'JGUAGE
SEMAN'TICS
James E. Donahue, November rn75
[Ph.D. Thesis, DCS, 1975]

CSRG-63 AN EXPERIMENTAL FiVALUATION OF CHF.SS PT.AY1NG HEURISTICS
Lazio Sugar, December 1975
[M.Sc. Thesis, DCS, 19,..15]

CSRG-64 A V1RTUAL MEMORY SYSTEM FOR A RELATIONAL ASSOCIATIVE
PROCESSOR
S.A. Schuster, E.A. Ozkarahan, and K.C. Smith,
February 1976 [Proceedings National Computer
Conference 1976, v.45, pp.855-862]

CSRG-65 PEP.FORMAN.CE EVALUATION OF A RELATION.!Ui ASSOCIATIVE
PROCESSOR
E.A. Czkarahan, S.A. Schuster, and K.C. Sevcik,
February 1976 [AC}vf Transactions on Database
Systems. v.1, nA, Decemb~r 1976]

CSRG-66 EDITING COMPUTER ANI1L;\TED FILM
Michael D. Tilson, February 1976
[M.Sc. Thesis, DCS, 1975]

CSRG-67 A DIAGRAMMATIC APPROACH TO PROGRAMMING LANGUAGE
SEMA.~~TICS
James R. Cordy, March 1975
[M.Sc. 'rh~::;i~. ncs. 1976]

:.r CSRG-88 A SYNTHETIC ENGLISH QUERY ~"lt{GUAGE FOR A RELATIONAL
ASSOCIATNE PROCESSOR
L. Kerschberg, E.A. Ozkarahan, and J.E.S. Pacheco,
April 1976

CSRG-69 tu'J ANNOTATED B1BLIOGRAPHY ON COMPUTER PROG&~·.if
ENC1NEERINC
D. Barnard and D. Thompson (eds.). Fourth Edition.
May 1976

* CSRG-70 A TAXONOMY OF DATA MODELS
L. Kerscbberg, .. A... Klug. anti D.Tsichritzls, May 1976
[Proceedings Very Large Data Base Confenmce, 1976]

~ CSRG-71 OPTIM1ZATION FEATURES FOR THE ARCHITECTURE OF A
DATA BASE MACHINE
E.A. Oz:kc-.ra.ha..11 and K. C. Sevcik, May 1976
[ACM Transactions of Database Systems, v.2, n.41 December 1977]

CSRG-72 THE RELATIONAL DATA BASE SYSTEM OMEGA - PROGRESS REPORT
H.A. Schmi.d (ed.), P.A. Bernstein (ed.), B. A.rlmv,
R. lhl.:..t::r tuHl S. Puz!4ti.j, July 1970

- 7 -

~ CSRG-73 AN ALGORITHM.IC APPROACH TO NORMALIZATION OF
RELATIONAL DATA BASE SCHEMAS
P.A. Bernstein and C. BeerC September 1976

CSHG-74 A HIGH-LEVEL MACHINE-ORIENTED ASSEMBLER LANGUAGE
FOR A DATA EASE MACHlNE
E.A. Ozkarahan and S.A. Schuster, October 1976

" CS1~G-75 DO CONSIDERED OD: A CONTRIBUTION TO THE PROGRA .. MMING
CALCULUS
Eric C.R. Hehner, November 1976
Acta Informatica lo appear 1979 .,

CSRG-76 SOFTI'Y ARE HUT: A COMPUTER PROGRfu\! ENGINEERING
PROJECT IN THE FORM OF A GA.i\fE
J.J. Horning and D.B. Wortman, November 1976
[lk:.h.:.l!: 'l'nmsactions on Software Engineering, v.SE-3, n.4, July 1977]

CSRG-77 A SHORT STUDY OF PROGRAM AND MEMORY POLICY BEHAVIOUR
G. Scott Graham. January 1977

• CSRG-78 A PAN ACHE OF DBMS IDEAS
D. Tsichril~is (etl.) 1 Ft-;bn.u1.ry 1977

CSRG-79 THE DESIGN AND IMPLEMENTATION OF A."'l ADVA .. N'CED LALR
PARSE TABLE CONSTRUCTOR
David H. Thompson. April 197'7
[M.Sc. Thesis. DCS, 1976)

CSRG-80 AN Ai1\INOTATED BiBLIOGRAPHY ON COMPUTER. PROGRAM
ENGINEERING
D. Barnard (ed.), Fifth Edit.ion, May i977

• CSRG··81 PROGRA.MMiNG METHODOLOGY~ A.N ANNOTATED BIBLIOGRAPHY
FOR JFIP WORK1NG GROUP 2.3
Sol J. Greenspan and J.J. Horning (eds.), First Edition. :May 1977

CSRG-82 NOTES ON EUCLID
edited by W. David Elliott and David T. Barnard, August 1977

CSJW-83 TOPICS IN QUEUEING NETWORK MODELING
edited by G. Scott Graham, ,July 1977

CSRG-34· TOWARD PROGRAM ILLUSTRATTON
Echvard Yanvood, September 1977
[1LSc. Thesis, DCS, 1974j

CSRG-85 CI-IA.AP,.ACT'ER1ZING SERVICE TIME Al~D RESPONSE TIME
DISTR1EUTJONS IN QtJEUEING NETWORK MODELS OF COMPUTER
SYSTEMS
Edward D. Lazowska. Septen1ber 1977
ru.,_ D 'f'b · D , ... <:::! 1 n7"f] Li Ll. es1s, vJ. ~ r

- 6 -

CSRG-86 MEASUREMENTS OF COMPU'TER SYSTEMS FOR QUEUEING
NETWOPJ< MODELS
Mart.in G. Kienzle, October 1977
[M.Sc. Thesis, DCS. 1977; Proc. Int. Symp. on Modelling and Performance
Evaluation of Computer Systems; Vienna, 1979]

CSRG-67 'OLGA' LANGUAGE REFERENCE MANUAL
E. Abourbih. H. Trickey, D.M. Lewis, E.S. Lee,
P.l.P. Boulton, November 19?"'1

~ CSRG-~8 USING A GRAMMATICAL FORJ~ALISM AS A PROGRAMMING LANGUAGE
Brad A. Silverberg. JBnuary 1978
[M.Sc. Thesis, DCS. 1976]

CSRG-89 ON THE IMPLEMENTATION OF RELATIONS: A KEY TO EFF!C!ENCY
Joachim W. Schmidt, January 1978

CSRG-90 DATA BASE MANAGEMENT SYSTEM USER PERFORMA.~CE
Frederick E. LochoYsky, April 1978-
[Ph.D. Thesis, DCS, 1978]

CSRG-91 SPEClF'ICATION AND VERIFICATION OF DATA BASE
SEMANTIC INTEGRITY
Michael La-;¥Tence Brodie, April 1978
[Ph.D. Thesis. DCS. 1978]

CSRC-92 STRUCTURED SOUND SYNTHESIS .PROJECT (SSSP):
AN I:N""TRODUCTION
by William Buxton, Guy Fedorkow. with Ronatd Haecker,
Gustav Ciamaga, Leslie Mezei and K. C. Smith, June 1978

<- CSRG-93 A DEVICE-INDEPENDENT.GENERAL-PURPOSE GRAPHICS SYSTEM
IN A MINlCOMPUTER TIME-SHARING ENVIRONMENT
William T. R.eeves, August 1978
[M.St:. Tht!~is, DCS, 1976]

* CSRG-94- ON THE AXIOMATIC VERIFICATION OF
CONCURRENT ALCOR1THMS
Christian Lengauer. August 1978
[M.Sc. Thesis, DCS, 1978]

CSRG-95 PISA: A PROGRAMM1NG SYSTEM FOR INTERAC1'1VE
PRODUCTION OF APPLICATION SOFTI'iARE
Rudolf Marty, August 1970

CSRG-96 ADAPTIVE M!CROPROGR.A ... ~MlNG .AND PROCESSOR MODELING
Vfalter G. Rosocha
[Ph.D. Thesis, EE. August 1978]

* CSRC-97 DESIGN ISSUES IN TEE FOUNDAT10N OF A cm.tPUTER-BASED
TOOL FOR MUSIC COMPOSITION

- 9 -

CSRG-98 THEORY OF DATABASE MAPPINGS
Anthony C. Klug
[Ph.D. Thesis, DCS, December 1978]

CSRG-99 HIERARCHICAL COROUTINES: A MECHfu'JlSM FOR IMPROVED
PROGRAJJ STRUCTURE
Leonard 1. Vanek. F'ebruary 19'"(9

CSRG-100 TOPICS IN PERFORMANCE EVALUATION
G. Scott Graham (ed.), .Tuly 1979

., CSRG-101 A P A.!1\JACHE OF DBMS IDEAS II
F.H. Lochovsky (ed.), May 1979

CSRG-102 A SIMPLE SET THEORY FOR COMPUTING SCIENCE
Eric C.R. Hehner, May 1979

CSRG-103 THE CENTRALIZED ALGORlTHM IN DISTRIBUTED SYSTEMS
Ernest J.H. Chang
[Ph.D. Thesis. DCS. July 1979]

CSRG-104 ELIMINATING THE VARlAB.LE FROM DIJKSTRA'S
MINI-LA.NGUAGE
D. Hugh Redelmeier. July 1979

CSRG-105 A LANGUAGE FACILITY FOR DESIGNiNG INTERACTIVE
DATABASE~INTENSIVE APPLICATIONS
John Mylopoubs. Philip A. Bernstein. Harry K.T. Wong,
July 1979

CSRG-106 ON APPROXIMATE SOLUTION TECHNIQUES FOR
QUEUEING NETWORK MODELS OF COMPUTER SYSTEMS
Satish Kumar Tripathi, July i 979

CSEG-107 A FRAMEWORK FOR VISUAL MOTION TJNDERSTAN"DING
John K. Tsotsos, John Mylopoulos, H. Dominic Covvey
Steven W. Zucker, DCS. June J.979

* CSRG-108 DIALOGUE ORGANIZATION AND STRUCTURli~ FOR
INTERACTIVE INFORMATION SYSTEMS
John Leonard Barron
[M.Sc. Th!~si~. DCS, 1.980]

* CSRG-109 A UNIFYING MODEL OF PHYS1CAL DATABASES
D.S. Datory, C.C. Gotlieb, April 1980

* CSRG-110 OPTIMAL FlLE DESIGNS A.ND HEORGANIZAT10N POINTS
D.S. Batory, April 1980

* CSRG-111 A PANACEE OF DB:.1s 1DEAS m
D T . ('> h ; J., ,.., • - 1 ' ..\ i j 1 9 80 • si.... LL.:.1s ~ ew..), ••. pr.. .. -

- 10 -

CSRG-112 TOPICS IN PSN - iI: ~;CCEPTIONAL CONDITION
HA .. "N'DLING IN PSN; REPRESENTING PROGRAMS IN PSN;
CONTENTS IN PSN
Yves Lesperance, Byran M. Kramer, Peter F. Schneider
April, 1980

CSRC-113 SYSTEM-ORIENTED MACRO-SCHEDULING
C.C. GrJtlieb and A. Schonbach
May 1980

CSRG-114 A FRAMEWORK FOR VISUAL MOTION UNDERSTANDING
John Konstantine Tsetses
[Ph.D. Thesis, DCS, June 1980)

CSRG-115 SPEClF'ICATION OF CONCURRENT EUCLID
James R. Cordy and Richard C. Holt
July 1980

CSRG-116 THE REPRESENTATION OF PROGRAMS 1N THE
PROCSDURAL SEMANT1C NETWORK FOH1{ALISM
Bryan :M. Kramer
LrM.Sc. The~i~. ncs. 19801

' _.

CSRG-117 CONTEXT-FREE GRAMMARS AND DERrvAT10N TREES AS
PROGRAM.MING TOOLS
Volker Linnemann
September 1900

CSRG-118 S/SL: SYNTAX/SEMANTIC LA~~GUAGE
INTRODUCTION AND SPECIFlCATION
RC. Holt, J .R. Cordy, D.B. Wortman
CSR.G. Sep tern ber 1980

CSRG-119 PT: A PASCAL SUBSET
Alan Rosselet
... M ~ 'r" • nc~ 0 I }.. 1980] l> .uc. t nes1s, ... ~, ' c\'.o er

CSRG-120 PTED: A STA.i~D..A .. H.D PASCAL TEXT EDITOR BASED ON
THE KERNIGHAN A.~D PLAUGER DESIGN
Ken Newman. DCS
October 1980

CSRG-121 TERMINAL CONTEXT GRA.\i:M~~S
E.:J'trard W. Trickev
[~f.Sc. Thesis, EE,· Sept.ember 1980]

CSRG-122 THE APPROXIMATE SOLUTION OF LARGE QC'EUEING
NETWORK MODELS
John Z-3.horjan
rPh. D. TlL;sis, DCS, AU2:USt 1980] ... ',

- 11 -

CSRG-123 A FORMAL TREATMENT OF IMPERFECT lNFORMATlON
IN DATABASE MA~~AGEMENT
Yannis Vassiliou
[Ph.D. Thesis, DCS, September 1980]

CSRG-124 /u\1 ANALYTIC MODEL OF PHYSICAL DATABASES
Don S. Eatery
[Ph.D. Thesis, DCS, January 1981]

CSRG-125 MACHINE-INDEPENDENT CODE GENERATION
Richard H. Kozlak
[M.Sc. Thesis, DCS, January 1981]

C~RG-126 COMPUTER MACRO-SCHEDULING FOR HIGH PRODUCTIV1TY
Abraham Schonbach
[Ph.D. Thesis, DCS, March 1981]

CSRG-127 OMEGA ALPHA
D. Tsichritzis (ed.), March 1981

CSRG-128 DIALOGUE AND PROCESS DESIGN FOR INTEP .. ACTIVE
INFORMATION SYSTEMS USING TAXIS
John Barron, April 1981

CSRG-129 DESIGN AND VERIFICATION OF' INTERACTIVE INFORMATION
SYSTEMS USING TAXIS
Harry K.T. Wong
[Ph.D. Thesis, DCS, to be submitted]

CSRG-130 ff .. "NA}A:IC PROTECTION OF OBJECTS IN A COMPUTER UTILITY
Leslie H. Goldsrnilh, April, 1981

CSRG-131 lNTEGRITY ANALYSIS: A METHODOLOGY FOR EDP AUDIT
AND DATA QUALITY CONTROL
Maija Irene Svanks
[Ph.D. Thesis, DCS, February 1961]

CSRG-132 A PROTOTYPEK?-IOWLEDGE-BASED SYSTEM
FOR COMPUTER-ASSISTED MEDICAL DIAGNOSIS
Stephen A. Ho-Tai
[M.Sc.Thesis, DCS, January 1981]

CSRG-133 SPECIFiCATION OF CONCURRENT EUCLID
James R Cordy, Richard C. Holt
August 1981 (Version 1)

/ __

