
SPECIFICATION OF
CONCURRENT EUCLID

(Preliminary Version)

James R. Cordy
Richard C. Holt

Technical Report CSRG-115
July 1980

SPECIFICATION OF
CONCURRENT EUCLID

(Preliminary Version)

James R. Cordy
Richard c. Holt

Technical Report CSRG-115
July 1980

~omputer Systems Research Group
University of Toronto

Toronto, Canada
MSS lAl

The Computer Systems Research Group (CSRG) is an interdisci
plinary group formed to conduct research and development relevant
to computer systems and their application. It is jointly admin
istered by the Department of Electrical Engineering and the
Department of Computer Science of the University of Toronto, and
is supported in part by the Natural Sciences. and Engineering
Research Council of Canada.

ABSTRACT

Concurrent Euclid (Euclid-C) is a programming language
designed for implementing system software. It consists of a sub
set of the Euclid programming language [l] called Euclid-S plus
concurrency features based on monitors (2].

This paper defines Concurrent Euclid independently of Euclid.
It begins with a definition of Euclid-S and then describes the
concurrency features to give Euclid-C. An understanding of the
basic concepts of the Pascal family of programming languages is
assumed.

Copyright (C) 1980 by the University of Toronto.

CONTENTS

INTRODUCTION

I. THE EUCLID-S SUBSET

Identifiers and Literals
Source Program Format
Notation
Programs
Modules
Declarations
Constant Declarations
Variable Declarations
Types and Type Declarations
Type Equivalence and Assignability
Variable Bindings
Collections
Procedures and Functions
Type Converters
Statements
Variables and 'constants
Expressions
Built-in Functions
Standard Components
Source Inclusion Facility

II. CONCURRENCY FEATURES OF EUCLID-C

Processes
Monitors
Conditions
The Busy Statement

III. SEPARATE COMPILATION

External Declarations
Compilations

REFERENCES

APPENDIX 1. COLLECTED SYNTAX OF EUCLID-S
AND EUCLID-C

APPENDIX 2. KEYWORDS AND PREDEFINED
IDENTIFIERS OF EUCLID-S AND
EUCLID-C

APPENDIX 3. INPUT/OUTPUT IN CONCURRENT
EUCLID

1

2

2
2
3
3
3
4
5
5
6
8
9
9

10
12
13
14
15
17
17
17

18

18
19
20
22

23

23
24

25

26

35

36

INTRODUCTION

This paper defines a subset of the Euclid programming language
[l] called Euclid-S and a set of concurrency extensions to Euclid
based on monitors [2). Euclid-S plus the concurrency features
combine to form a new language called Concurrent Euclid or
Euclid-C. Euclid-C has been designed specifically for implement
ing system software, and in particular for implementing operating
systems and compilers.

The first part of this document defines of the Euclid-S subset
independently of Euclid. The second section describes the con
currency features added to form Euclid-C. The last section
describes extensions to Euclid-C designed to allow separate com
pilation of procedures, functions, modules and monitors.

- 1 -

I. THE EUCLID-S SUBSET

This section describes the Euclid-S subset of Euclid.
Euclid-S is defined independently of Euclid and no previous
knowledge of the Euclid programming language is required. An
understanding of the basic concepts of the Pascal family of pro
gramming languages is assumed.

IDENTIFIERS AND LITERALS

An identifier consists of any string of at most 50 letters,
digits and underscores () beginning with a letter. Upper and
lower case letters are considered identical in Euclid-S, hence
aa, aA, Aa and AA all represent the same identifier. Keywords
and predefined identifiers of Euclid must not be redeclared in a
Euclid-S program. A list of these is given in Appendix 1.

A string literal is any sequence of characters not including a
single quote (') surrounded by quotes. Within strings, the char
acters quote, dollar sign, new line and end of file are
represented as $', $$, $N and $E respectively. As well, $T, $S
and $F may be used for tab, space, and form feed respectively.

A character literal is a dollar sign ($) followed by any sin
gle character. The Euclid-S character literals corresponding to
quote, dollar sign, space, tab, form feed, new line and end of
file are$$', $$$, $$S, $$T, $$F, $$N and $$E respectively.

A i nte¥ er 1 i teral is a decimal number, an octal number or a
hexadecima number. A decimal number is any sequence of decimal
digits. An octal number is any sequence of octal digits followed
by 18. A hexadecimal number is any sequence of hexadecimal di
gits (represented as the decimal digits plus the capital letters
A through F) beginning with a decimal digit and followed by tl6.

SOURCE PROGRAM FORMAT

A comment is any sequence of characters not including comment
brackets surrounded by the comment brackets { and}. Comments
may cross line boundaries.

A separator is a comment, blank, tab, form feed or source line
boundary. Euclid-S programs are free-format; that is, the iden
tifiers, keywords, ~iterals, operators and special characters
which make up a program may have any number of separators between
them. Separators cannot be embedded in identifiers, keywords,
literals or operators, except that blanks may appear as· part of
the value of a string literal. Identifiers, keywords and
literals must not cross line boundaries. At least one separator
must appear between adjac~nt identifiers, keywords and literals.

- 2 -

".

NOTATION

The following sections define the syntax of Euclid-S.

The following notation is used:
{item} means zero or more of the item
[item] means the item is optional

Keywords are given in lower case. Special symbols are enclosed
in double quotes (").

The following abbreviations are used:
id for identifier
expn for expression
typeDefn for typeDefinition

In both
optional.

Euclid-S and Euclid-C, all specified semicolons are
Whenever •;" appears, it can be omitted.

PROGRAMS

A main program 'consists of a module declaration.

A program is:

moduleDeclaration

Execution of a program consists of initializing the main module,
see "Modules".

Modules, procedures and func~ions can be compiled separately;
see "Separate Compilation".

MODULES

A moduleDeclaration is:

var id":"
module

[imports"(" [var] id{"," [var] id}")"";"]
[ex ports " (11 id { " , 11 id} ") " "; "1
[[not] checked "; "]
{declarationinModule "; "}
[initially

procedureBody "; "]
end module

Execution of a module declaration consists of executing the
declarations in thi module and then calling the "initially" pro
cedure of the module. Execution of a Euclid-S program consists
of executing the main module declaration in t~is way.

Module declarations may be nested inside other modules but
must not be nested inside procedures and functions.

- 3 -

A module defines a package of
procedures and functions. The
rest of the program is defined
clauses.

variables, constants, types,
interface of the module to the
by i ts i m po r ts and ex ports

The imports clause lists the global identifiers which are to
be visible inside the module. Variable identifiers may be im
ported "var" (or not). Only those variable identifiers which are
imported "var" may be assigned to or passed to var parameters
within the module. Imported module and collection identifiers
must be imported using •var". Imported identifiers must not be
redeclared inside the module.

The exports clause lists those identifiers defined inside the
module which may be accessed outside the module using the • "
operator. Exported variables cannot be assigned to or passed as
var parameters. Unexported identifiers cannot be ref.erenced out
side the module.

Named types declared inside a module are opaque outside the
module, that is, they are not considered equivalent to any other
type. Exported variables and constants whose type is opaque can
not be subscripted, field selected or compared for other than
equality.

Modules may be "checked"; this causes all assert statements,
subscripts and case statements in the module to be checked for
validity at run-time. In addition, a particular implementation
may check other conditions such as ranges in assignments.
Modules not already nested inside an unchecked module are checked
by default and must be explicitly declared using "not checked" to
turn off run-time checking.

Even though declared like variables, modules are not variables
and cannot be assigned, compared, passed as parameters or export
ed. Module identifiers must be imported using "var".

Modules can be separately compiled if desired; see "Separate
Compilation•.

DECLARATIONS

A declarationinModule ·is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. moduleDeclaration
f. collectionDeclaration
g. procedureDeclaration
h. functionDeclaration
i. converterDeclaration
j. assert["(" expn ")"]

- 4 -

Forms (a) through (i) are declarations for new identifiers as
.explained in the following sections. Form (j) is an assert
statement; see "Statements". An identifier must be declared tex
tually preceding any references to it.

CONSTANT DECLARATIONS

A constantDeclaration is one of:

a. [pervasive] const id ":=" expn
b. [pervasive] const id • :• typeDefn ":="

" (" manifestExpn { "," manifestExpn} ")"

A constantDeclaration gives a name to a value which is con
stant throughout the scope of the declaration. The value of a
scalar constant can be manifest or nonmanifest. A manifest con
stant or expression is one whose value is known at compile-time.
A nonmanifest constant or expression must be evaluated at run
time.

Form (a) names a scalar constant or string literal. The type
of the constant is the type of the value expression. The value
of the scalar expression may be manifest or nonmanifest.

Form (b) declares an array constant. The typeDefn must be an
array type or named array type whose component type is scalar.
The list of expressions gives the values of the elements of the
array constant. The element values must be manifest expressions
assignable to the element type of the array. The number of ele
ment values specified must be exactly the number of elements in
the array.

Constants declared using "pervasive" are automatically i.mport
ed into all subscopes of the scope in which they are declared.
Such constants need not be explicitly imported·.

VARIABLE DECLARATIONS

A variableDeclaration is:

[register] var id ["(11 at manifestExpn ") "] ":" typeDefn
[": =" expn]

A variableDeclaration declares a variable of the specified
type. The "at" clause declares a variable at an ab~olute machine
location. Variables may optionally be declared with an initial
value which is assigned to the variable when the declaration is
executed. Fields of records cannot have initial values or •at"
clauses.

Local variables in procedures and functions may optionally be
declared "register•. This is a hint to the compiler that it
should attempt to allocate the variable to a register. Register
variables cannot be bound to nor passed to a reference parameter.

- 5 -

TYPES AND 'fYPE DECLARATIONS

A typeDeclaration is:

[pervasive] type id "=" typeBody

The t~peBody is one of:

a. typeDefn
b. forward

A typeDeclaration gives a name to a type. The type name can
subsequently be used in place of the full type definition. A
named type is equivalent to the type that it names.

Named types may optionally be declared "pervasive". Type
names declared using "pervasive• are automatically imported into
all subscopes of the scope in which they are declared. Such
types need not be expl'icitly imported •.

Form (b) declares a forward type. A forward type declares a
type name whose definition will be given in a later type declara
tion in the scope. A forward type can be used only as the ele

. ment type of a col~ection until its real type definition is
given. This. allows the declaration of collections whose elements
contain pointers to other elements in the collection.

A txpeDefn is one of the following:

a. standard Type
b. manifestConstant • •• " manifestExpn
c. [packed] array indexType of typeDefn
d. set of baseType
e. [packed] record Type
f. po inte·rType
g. named Type

The following are standardTypes of Euclid-S:

Signed Int

Unsigned Int

Long Int

Shortint

Boolean
Char
Storag eUn it

AddressType

- signed integer, implementation
defined range

- unsigned integer, implementation
defined range

- signed integer, implementation
defined range

- unsigned integer, implementation
defined range

- values are "true• and "false•
- single character

I

- no operations or literals, smallest
addressable memory unit (typically a
byte)

- implementation defined integer range

The standard types and the constants tru~ and false are impli
citly declared pervasive in the global scope and need not be

- 6 -

imported.

Form (b) is a subrange type. The leading constant must be a
literal or manifest named constant and gives the lower bound of
the range of values for variables declared using the type. The
expression, which must be manifest, gives the upper bound of the
range. The bounds must be both integer values or both character
values. The lower bound must be less than or equal to the upper
bound. .

A scalar type is a subrange, pointer or one of the standard
types.

Form (c) is an array type. The indexType must be a subrange
type, Char or a named type which is an indexType. The indexType
gives the range of subscripts. The typeDefn gives the type of
the elements of the array.

Elements of an array variable are referenced using subscripts
(see "Variables and Constants") and themselves used as variables.
Array variables and constants may also be assigned (but not com
pared) as a whole.·

Arrays can be "packed", which allows the compiler to pack the
elements more efficiently if possible. The type of string
literals in Euclid-S is "packed array l •• n of Char" where n is
the length of the string.

Form (d) is a set type. The baseType of the set must be a
subrange of integer with lower bound O or a namedType which is a
baseType. An implementation may limit the upper bound of a set
type to insure efficient code; a typical limit could be 15.

A recordType is:

record
{var id":" typeDefn ";"}

end record

Variables declared using a record type have the fields given
by the variable declarations in the recordType. Fields of a
record variable may be referenced using the "." operator (see
"Variables and Constants") and themselves used as variables.
Record variables may be assigned (but not compared) as a whole.

The variableDeclarations in a record type must not have ini
tial values and cannot be declared to be at absolute locations.

A pointerType is:

11
""'" collectionld.

Variables declared using a pointerType are po~nters to dynami
cally allocated and freed elements of the specified collection
(see "Collections"). Pointer variables are used as subscripts of
the specified collection to select the element to which they

- 7 -

point. The selected element can be used as a variable. Pointer
variables may be assigned, compared for equality and passed as
parameters.

A named Type is:

[moduleld "."] typeid

The typeld must be a previously declared type name. Type
names exported from a module are referenced outside the module
using the "." operator.

TYPE EQUIVALENCE AND ASSIGNABILITY

Two types are defined to be equivalent if they are

(a) subranges with equal first and last values

(b) arrays (both packed or both unpacked) with
equivalent index types and equivalent component
types

(c) sets wit~ equivalent base types

(d) pointers to the same collection

A declared type identifier is equivalent to the type it names,
with the following exception. When an exported type identifier
is used outside its module, as •moduleid.typeid", it is a unique
type, equivalent to no other type.

Each type definition for a record type creates a new type that
is not equivalent to any other record type definition.

An array value can be assigned to an array variable, a record
value assigne~ to a record variable, a set value assigned to a
set variable and a pointer value assigned to a pointer variable
only if the source and target of the· assignment have equivalent
types.

An expression can be assigned to a scalar variable only if (i)
the •root• type of the expression and the •root• type of the
variable are equivalent, and (ii) the value of the expression is
in the range of the variable's type. The "root• type of Char and
character subrange types is Char. The root type of Signedint,
Unsignedint, AddressType and integer subranges is integer. The
root type of any other type is the type itself.

A variable can be passed to a reference parameter only if its
type is equivalent to the parameter type. An expression can be
passed to a value parame~er only if it is assignable to the
parameter type.

- 8 -

VARIABLE BINDINGS

A variableBinding is one of:

a. bind [var] id to variable
b. bind "(" [var] id to variable

{ "," [var] id to variable} ")"

A variableBinding declares a new identifier for an arbitrary
variable reference which may contain subscripts and "." opera
tors. The new identifier is subsequently used in place of the
variable reference within the scope in which the binding appears.
If the bound variable is to be assigned to or passed to a var
parameter, the binding must be declared using "var". Euclid-S
does not allow "ali~sing" of variables (i.e., having two names
for the same variable in a scope).. Hence the "root" variable
(the first identifier in the variable reference) becomes inacces
sible for the scope of the binding.

Form (b) allows bindings to different.elements or fields of
the same variable or module. Since Euclid-S does not allow
aliasing of variables, bindings to the same field, element or
variable are not allowed.

COLLECTIONS

A collectionDeclaration is:

var id":" collection of typeDefn

A collection is essentially an array whose elements are dynam
ically allocated and freed at run-time. Elements of a collection
are referenced by subscripting the collection name with a vari
able of the collection's pointer type. This subscripting selects
the particular element of the collection located by the painter
variable.

Elements of a collection are allocated and freed dynamically
by calls to the built-in operations New and Free. "C.New(p)"
allocates a new element in the collection C and sets p to point
at it. "C.Free(p)" frees the element of C pointed at by p. In
each case p must be a variable of the pointer type of c. These
operations are invoked as statements in procedures, see "State
ments". They cannot be used in functions.

The built-in constant "C.nil" is the null pointer value for
the collection.

Collections themselves cannot be assigned, compared, passed as
parameters or exported. A collection must be imported using
"var".

- 9 -

PROCEDURES AND FUNCTIONS

A procedureDeclaration is:

procedure id [" (" [var] id ":" parameterType
{ "," [var] id ":" parameterType} ") "] "="

proced ureBody

A functionDeclaration is:

function id ["(" id ":" parameterType
{"," id":" parameterType} ")"]

returns id "·" resul tType "="
pro c ed ur e Body

A procedure is invoked by a procedure call statement, with
actual parameters if required. A function is invoked by using
its name, with actual pa~ameters if required, in an expression.

A procedure may retutn explicitly by executing a return stat~
ment or implicitly by reaching the end of the procedure body. A
function must return via "return(expn)".

Procedures and functions may optionally take parameters, the
types of which are defined in the header. The parameters can be
referred to inside the procedure or function using the names
declared in the header. Parameters to a procedure may be de
clared using •var" , which means the parameter may be assigned to
or further passed as a var para~eter inside the procedure.
Parameters declared without using "var" are constants and cannot
be assigned to or passed as var parameters. ·Functions are not
allowed to have any side-effects and cannot have var parameters.
Only variable references can be passed to var parameters.

A parameter is a reference parameter if it is declared using
"var" or if its type is an array or record. Other parameters are
value parameters. Hence, a value parameter is a non-var parame
ter whose type is a scalar or set.

A parameterType is one of:

a. typeDefn
b. [packed) array manifestConstant • " parameter of

typeDefn
c. universal

The type of a variable, record or array passed to a reference
parameter must be equivalent to the parameter's type with the
following exceptions. (1) The upper bound of the index type of
an array parameter can be declared using the keyword "parameter"
in which case any array value whose element type and index type
lower bound are equivalent to the parameter's can be passed to
the parameter. (2) The type of a parameter can be specified as
"universal", in which case a value of any type can be passed to
the parameter. Inside the procedure, a universal parameter is
equivalent to a parameter of type "packed array ! •• parameter of

- 10 -

StorageUnit", where the upper bound is the size of the actual
parameter in StorageUnits. Parameters declared using "parameter"
or "universal" cannot be assigned or compared as a whole. (Note:
Full Euclid does not allow ·forms (b) and (c) .) Elements of packed
arrays and fields of packed records cannot be passed to a refer
ence parameter.

The type of an expression passed to a value parameter must be
assignable to the parameter's type.

Euclid-S does not allow "aliasing" of variables (i.e·., having
two names for a given variable or part of a given variable in the
same scope). Hence a variable or part of a variable which is
imported directly or indirectly into a procedure cannot be passed
to a reference parameter of the procedure. (A variable is
directly imported if it appears in the procedure's import list.
It is indirectly imported if an imported module or procedure
d i rec t 1 y or ind i r ec t 1 y i m po r ts i t •)

The returns clause defines the result type of a function. The
return identifier is required for compatibility with full Euclid
but cannot be used in Euclid-S.

The resultType of a function must be a scalar type or set.
The expression in a function's return statement must be assign
able to the result type.

A procedureBody is:

[imports"(" [var] id{"," [var] id}")"";"]
beg in

[[not] checked";"]
{declarationinRoutine ";"}
{statement "; "}

end [id]

The identifier following the "end" must be the procedure or
function identifier. If the procedure is the initially proced·ure
of a module then the end identifier must not be present.

The imports clause of a procedure or function specifies those
global identifiers which are to be visible inside the procedure
or function. Only those variables imported into a procedure
using "var" may be assigned to or passed to a var parameter in
side the procedure. Functions are not allowed to have side
effects and cannot import modules, collections and "var" vari
ables. This restriction is transitive; hence a function cannot
import a procedure which imports anything "var".·

Procedures and functions may be "checked"; this causes assert
statements, subscr'ipts and case statements to be checked for
validity at run-time. In addition, a particular implementation
may check other conditions., such as ranges in assignments. Pro
cedures and functions not nested inside an unchecked module are
checked by default and mu~t be explicitly declared using "not
checked" to turn off run-time checking.

- 11 -

A procedure returns when it· executes a return statement or
reaches the end of the procedure. A function is executed simi
larly but must return via "return(expn)".

Procedures and functions can be separately compiled; see
"Se pa rate Com pi 1 at ion".

A declarationinRoutine is one of:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. collectionDeclaration
f. converterDeclaration
g. assert ("("expn")"]

Modules, procedures and
procedure or function. Form
appear in declaration lists.

functions cannot be nested inside a
(g) allows assert statements to

TYPE CONVERTERS

A converterDeclaration is:

conv.erter id " (• type Id ")" returns type Id

A converterDeclaration declares a type converter. A type con
verter is a special function which converts an expression to a
type other than its declared type. Both the parameter and result
type of a type converter must be named types. An implementation
is not expected to generate any code for a type conversion.

A type converter may be used to convert a variable that is
passed to a reference parameter.

If the size of the target type is larger than the size of the
source type, the conversion may be meaningless.

STATEMENTS

A statement is one of:

a. variable":=• expn
b. (moduleid"."] procedure!d c·c· expn {"," expn} ")"]
c • assert [• (11 ex pn") "]
d • r e t u r n [" (" ex pn ") " J
e. if expn then

{statement "; "}
{else if expn thei:i

{statement "; "}}
[else

{statement "; "}]
end if

- 12 -

f. loop
{statement "; "}

end loop
g • ex it [when ex pn]
h. case expn of

{ man i fest Ex pn { " , " man i fest Ex pn } "= > "
{ statement " ; " }
end manifestExpn ";"}

[otherwise "=>"
{ statement " ; " }]

end case
i. beg in

end

{declarationinRoutine ";"}
{statement "; "}

j. collectionid"" New"(" variable")"
k. collectionid "." Free"(" variable")"

Form (a) is an assignment statement. The expression is
evaluated and the value assigned to the variable. The expression
must be assignable to the variable type (see "Type Equivalence
and Ass ig nab il i ty") •

Form (b) is a procedure call. An exported procedure is called
outside the module in which it was declared using the "." opera
tor.

The type of an expression passed to a value parameter must be
assignable to the parameter's type. The type of a variable or
value passed to a reference parameter must be equivalent to the
parameter's type. If the upper bound of the type of an array
parameter is declared using "parameter", any array whose element
type and index type lower bound are the same as the parameter's
can be passed to the parameter.

An actual parameter passed to a var parameter must be a vari
able, a bound variable or a var formal parameter. If it is an
imported (or exported) variable, it must have been imported (or
exported) using "var".

Form (c) is an assert statement. The parenthesized expression
is optional; if it is omitted, it can be replaced by a comment.
If present, it must be of type Boolean. The expression is
evaluated and checked at run time if it appears in a checked
scope. Assert statements may appear in both statement lists and
declaration lists. They cannot appear inside records.

Form (d) is a return statement. The return statement causes
an immediate return from the procedure or function when executed.
The optional parenthesized expression gives the value to be re
turned from a function. The return expression is required for
function returns. It is forbidden for procedure returns. A
function must return via a return statement and not implicitly by
reaching the epd of the function body. A ptocedure may return
either .via a return statement or implicitly by reaching the end
of the procedure body.

- 13 -

Form (e) is an if statement. The conditional expression fol
lowing •if• and each "elseif" is evaluated until one of them is
found to be true, in which case the statements following the
corresponding "then" are executed. If none of the expressions
evaluates to true then the statements following "else" are exe
cuted; if no "else" is present then execution continues following
the if statement. The conditional expressions must be of type
Boolean.

Form (f) is the looping construct of Euclid-S. The statements
within the loop are repeated until one of its "exit" statements
or a "return" statement is executed.

Form (g) is a loop exit. When executed, it causes an immedi
ate exit from the nearest enclosing loop. The optional "when"
expression makes the exit conditional. If the expression, which
must be Boolean, evaluates to true then the exit is executed,
otherwise execution of the loop continues. An exit statement
cannot appear o~tside a loop.

Form {h) is a case statement. The case expression is evaluat
ed and compared with each of the label values. The statements
which follow the matching label value are executed. If the case
expression value do~s not match any of the label values then the
statements following "otherwise" are executed. If no "otherwise"
is present, the case expression must match one of the label
values. When execution of th~ atatements following the selected
label is completed, execution continues following the case state
ment.

The type of the case expression must be Signed Int or Char.
All of the label expressions must be ~f the same type as the case
expression. Label expressions must be manifest, i.e., their
values must be known at compile time. The values of all label
expressions in a given case statement must be distinct. The
value of the mani~est expression following the end of an alterna
tive must be equal to the first label expression of the alterna
tive.

Form (i) is a begin block. Begin blocks can be used to group
local declarations within a procedure or function. In particu
lar, a they can be used to make local binds.

Forms (j) and (k) are the built-in collection operations New
and Free (see •collections").

VARIABLES AND CONSTANTS

A variable is:

[moduleld 11
."] id {componentSelector}

The syntax of variable includes variable and constant refer
ences. An exported variable or constant is referenced outside
the module in which it is declared using the".• operator.

- 14 -

A componentSelector is one of:

a ~ " (" ex pn ") •
b. " •" id

Form (a) allows subscripting of variable and constant arrays.
The type of the subscript expression must be assignable to the
index type of the array. The value of the subscript expression
must be in the declared range of the index type of the array.
Subscripts which appear in checked scopes are checked for validi
ty at r un - time •

Form (a) also allows references to elements of a collection.
In this case, the subscript expression must be a pointer to an
element of the collection.

Form (b) allows record field selection. Fields of a record
variable are referenced using the"." operator.

EXPRESSIONS

An expn is one of the following:

a. variable
b. literalConstant
c. set Type Id .. (" el ementLi st ") "
d. collection!d " " nil .
e. [moduleid n • M] function Id [.. (" expn { " , " expn} ") "]
f. [moduleid .. . "] converter Id " (" expn II) H

g. " (" expn ") n

h. "-" expn
i • expn arithmeticOperator expn
j • expn comparisonOp~rator expn
k. not expn
1. expn booleanOperator expn
m. expn setOperator expn

The arithmeticOperators are +, -, * (multiply), div (integer
divide) and mod (integer remainder). Operands of the arithmetic
operators and unary minus must be integers -0r expressions having
root type integer. The arithmetic operators yield an integer
result. (Note: + and - are also set operators; see below.)

The compar isonOperators are <, >, =, <=, >= and "not =".
Operands of comparison operators must either be the same type or
have the same root type; see "Type Equivalence and Assignabili
ty". The comparison operators yield a Boolean result. Arrays
and records cannot be compared. Sets and Boolean expressions can
be compared for equality only. (Note: <= and >= are also set
operators; see below:)

The booleanOperators are "and" (interse~tion), "or" (union)
and -> (implication). The Boolean operators and the "not" opera
tor take Boolean operands and yield a Boolean result.

- 15 -

The setOperators are * (set intersection) , + (set union) ,
(set difference), <= and >= (set inclusion), and "in" and "not
in" (element containment). The set operators + and take
operands of equivalent set types and yield a set result. The set
operators <= and >= take operands of equivalent set types and
yield a Boolean result. The operators "in" and "not in" take a
set as right operand and an integer expression as left operand.
They yield a Boolean tesult.

The order of precedence is among the following classes of
operators (most binding first):

1. unary -
2. *, div, mod
3. +, -
4. <, >, =, <=, >=, not=, in, not in
5. not
6. and
7. or
a. ->

Expression form (a) includes references to constants and vari
ables including elements of arrays and collections, fields of
records, and constants and variables exported from a module.

Form (b)
stants.

includes integer, character and string literal con-

Form (c) is a set constructor. The setTypeid must be the name
of a set type. The set constructor returns a set containing the
specified elements.

A setElementList is one of:

a • [ex pn { " , " ex pn }]
b. all

The element list can be a (possibly empty) list of expressions
of the base type of the set, or "all". If "all" is specified,
the constructor returns the complete set. If no elements are
specified, the constructor returns the empty set.

Expression form (d) is the null pointer value of the specified
collection.

Form (e) is a function call. Functions exported from a module
are referenced outside the module using the "." operator. An
actual parameter to a function must be an expression assignable
to the parameter type.

Form (f) is a type conversion. The type of the actual parame
ter is changed to the result type of the type converter. The
actual parameter must be an expression assignable to the source
type of the converter. Type converter~ exported from a module
are referenced outside the module using the"." op~rator.

- 16 -

BUILT-IN FUNCTIONS

Euclid-S has two built-in functions, Chr and Ord. "Chr(i)"
returns the character whose machine representation is the posi
tive integer value i. "Char.Ord(c)" returns the positive integer
machine representation of the character c. Chr and Ord are de
fined such that for all characters "c" in the machine character
set, Chr(Char.Ord(c)) = c.

STANDARD COMPONENTS

Euclid-S defines two standard components, size and address.
"T.size" returns the length in StorageUnits (typically bytes) of
the machine representation of the variable or type T.
"V.address" returns the unsigned integer machine address of the
variable V. (Note: In full Euclid, "V.address" is legal only for
variables of type StorageUnit.)

SOURCE INCLUSION FACILITY

Other Euclid-S source files may be included as part of a pro
gram using the "include" statement.

An includeStatement is:

include stringLiteral ". " ,

The stringLiteral gives the name of a Euclid-S source file to
be included in the compilation. The include statement is re
placed in the program source by the contents of the specified
file.

Include statements can appear anywhere in a program and can
contain any val id source fragment. Included source files can
themselves contain include statements.

- 17 -

II. CONCURRENCY FEATURES OF EUCLID-C

The Euclid-C language is an extension to Euclid-S designed to
allow concurrent programming with monitors. Euclid-S is a subset
of Euclid but Euclid-C is not, because concurrency and monitors
are not features of Euclid.

Th.e concurrency features of Euclid-C will be presented in the
following order:

(1) processes, reentrant procedures and modules;
(2) monitors, entry procedures and functions;
(3) conditions, signalling and waiting;
(4) simulation, the busy statement.

PROCESSES

Each Euclid-C module (including the main module) can have any
number of concurrently run processes associated with it.

A moduleDeclaration is:

var id":"
module

[imports"(" [var] id{"," [var] id}")"";"]
[ex po r tS H (ff id { " I H id} · n) n ff; ff]
[[not] checked";"]
{declarationinModule ";"}
[initially

procedureBody ";"]
{process id [" (" memoryRequi rement ") "]

procedureBody ";"}
end module

Each process is like a parameterless procedure. Concurrent
execution of the processes of the module begins following execu
tion of the initially procedure of the module. A process ter
minates by executing its last statement or by executing a return
statement. The process identifier is for documentation only
since processes cannot be called.

Processes can communicate with each other by changing and
inspecting· variables declared in the module or imported into it.
Generally, however, processes communicate by means of monitors.

Each process requires a certain amount of memory space for its
variables. When the process calls a procedure or function, the
requirement increases to provide space for the new ·local vari
ables. When the procedure or function returns, the requirement
decreases to its former amount. The programmer can provide his
own estimate of the process's required space as a parenthesized
manifest integer expression following the keyword "process".
This estimate is in StorageUnits (normally bytes). and can be
based on previous program executions. If this estimate is omit
ted, the implementation provides a default space allocation.

- 18 -

All procedures and functions declared in a Euclid-C program
are reentrant, meaning that they can be executed simultaneously
by more than one process.

Modules, monitors, procedures and functions cannot be nested
inside a process.

MONITORS

A monitor is essentially a special kind of module which imple
ments inter-process communication with synchronization.

A declarationinModule is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. modulebeclaration
f. monitorDeclaration
g. collectionDeclaration
h. procedureDeclaration
i. functionDeclaration
j. converterDeclaration
k. assert["(" expn ")"]

Monitors may only be declared inside modules. Monitors cannot
be nested inside procedures, functions or other monitors.

A monitorDeclaration is:

var id":"
monitor

{imports"(" [var] id{"," [var].id} ")" ";"]
[ex ports " (" id { " , " id} ") " "; "]
[[not] checked "; "]
{declarationinMonitor ";"}
[initially

pro c ed ur e Body " ; "]
end monitor

The imports list of a monitor specifies the global identifiers
which are accessible inside the monitor, exactly like the imports
list in a module.

The exports list of a monitor specifies those identifiers
defined inside the monitor which may be accessed outside the mon
itor using the"." operator. Unlike modules, monitors cannot
export variables.

Procedures and functions which are exported from a monitor are
called monitor entries. Entry procedures and functions of a mon
itor cannot be invoked inside the monitor. O~tside ~he monitor,
entry procedures and functions can be invoked exactly like the
procedures and functions of a module, using the"." operator.

- 19 -

Procedures and functions which are entries of a monitor cannot
be separately compiled except as part of the entire monitor.

It is guaranteed that only one process at a time will be exe
cuting inside a monitor. As a result, mutually exclusive access
to a monitor's variables is implicitly provided, since a monitor
cannot export any variables. If a process calls an entry of a
monitor while another process is executing in the monitor, the
calling process will be blocked and not allowed in the monitor
until no other process is executing in the monitor.

A declarationlnMonitor is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. conditionDeclaration
f. collectionDeclaration
g. procedureDeclaration
h. functionDeclaration
i. converterDeclaration
j • a s s e r t [" { " ex pn ") "]

Modules and monitors cannot be declared inside a monitor. A
monitor cannot contain a nested process.

Monitors can be separately compiled; see "Separate Compila
tion".

CONDITIONS

Euclid-C introduces conditions.

A conditionDeclaration is one.of:

a. var id":" [priority] condition
b. var id":" array indexType of [priority] condition

The only place a condition can be declared is as a field of a
monitor. ·The only allowed use of conditions is in the "wait" and
"signal" statements and in the "empty" built-in function. Condi
tions cannot be assigned, compared or passed as parameters.
Arrays of conditions are allowed. Conditions must be imported
us i ng "var" •

Two new statements are introduced:

wait " {" conditionVar [" ," priorityValue] ")"
signal"{" conditionVar ")"

Where a conditionVar is:

conditionid ["(" expn ")"]

- 20 -

The wait and signal statements each specify a condition Var.
Each of these must be a conditionld or a subscripted condition
array. These statements can appear only in monitors, but not in
a monitor's initially procedure.

When a process executes a wait statement for condition C 'it is
blocked and is removed from the monitor. When a process executes
a signal statement for condition C, one of the processes (if
there are any) waiting for condition C is unblocked and allowed
immediately to continue executing the monitor. The signalling
process is temporarily removed from the monitor and is not al
lowed to continue execution until no processes are in the moni
tor. If no processes were waiting for condition c, the only
effect of the signal statement is that the signalling process may
be removed from the monitor. The signalling process cannot in
general know whether other processes have entered the monitor
before the signaller continues in the monitor.

If the condition variable is declared with the "priority"
option, the wait statement must specify a priority value; other
wise the priority value is not allowed in wait. The priority
value is a Signedint expression that must evaluate to a nonnega
tive integer value. The processes waiting for a priority condi
tion are ranked in order of their specified priority values, and
the process with the smallest priority value is the first to be
unblocked by a signal statement.

In the case of processes waiting for non-prior_ity conditions,
or waiting with identical priorities for a priority condition,
the scheduling is "fair", meaning that a particular waiting pro
.cess will eventually be unblocked given enough signals on the
condition.

A predefined function named "empty" accepts a condition as a
parameter. It returns the Boolean value "true" if no proc~sse~
are waiting for the condition, otherwise "falsei•. Like wait and
signal, "empty" can appear only inside a monitor, but not in the
initially procedure of a monitor.

The variables in a monitor represent its state. For example,
if a monitor allocates a single resource, only one variable in
side the monitor is needed and it can be declared as Boolean.
When this variable is true, it represents the state in which the
resource is available, when false it represents the state of
being allocated. When a process enters the monitor and finds
that it does not have the desired state, the process leaves the
monitor and becomes blocked by executing a wait statement on a
condition. The condition corresponds to the state that the pro
cess is waiting for. Suppose a process enters a monitor and
changes its state. to a state that may be waited for by other
processes. The process should execute a signal statement for the
condition corresponding to the new state. If there are processes
waiting for this state transition, then they will be blocked on
the condition, and one of them will immediat~ly resume execution
in the monitor. Because of this immediate resumption, the sig
nalled process knows the monitor is in the desired state, without

- 21 -

testing monitor variables. The signalling process is allowed to
continue executing only when no other processes are in the moni
tor. If no processes were waiting on the condition, the only
effect of the signal statement is to temporarily remove the sig
naller from the monitor.

As specified by Hoare, monitors and conditions are intended to
be used in the following manner. The programmer should associate
with the monitor's variables a consistency criterion. The con
sistency criterion is a Boolean expression that should be true
between monitor activations, or whenever a process enters or
leaves a monitor. Hence, the programmer should see that it is
made true before each signal or wait statement in the monitor and
before each return from an entry of the monitor. The programmer
should also associate a Boolean expression, call it Ei, with each
condition Ci. The expression Ei should be true whenever a signal
is executed for condition Ci. A process that is unblocked after
waiting for a condition knows that Ei is true because the sig
nalled process (not the signalling process) executes first. (The
consistency criterion and each Ei for a condition do not neces
sarily appear as executable code in the monitor.) In general,
when a· process changes the monitor's state so that one of the
awaited relations Ei becomes true, the corresponding condition Ci
should be signalled.

THE BUSY STATEMENT

A statemeht is introduced to allow simulation using timing
delays:

busy"(" time")"

The "time" must be a nonnegative Signedint expression. The
busy statement can be understood in terms of simulated time
recorded by a system clock. This clock is set to zero at the
beginning of execution of a program. With the exception of the
busy statement (or wait statements causing an indirect delay for
a busy statement), statements take negligible simulated time to
execute. When the programmer wants to specify that a certain
action takes time to complete, the busy statement is used. The
process that executes the busy statement is delayed until the
system clock ticks (counts off) the specified number of time
uni ts.

- 22 -

III. SEPARATE COMPILATION

This section describes the extensions made to Euclid-C to
allow separate compilation of procedures, functions, modules and
monitors.

EXTERNAL DECLARATIONS

Procedures, functions, modules and monitors may be declared
"external", which means that they are to be separately compiled
and joined with the program at link time.

An externalProced-ureDeclaration is:

procedure id["(" [var) id":" parameterType
{ "," [var) id ":" parameterType} ") "] "="

external

An externalFunctionOeclaration is:

function id["(" id":" parameterType
{ n·,• id ":" parameterType} ") "]

returns id":" resultType "="
ex-tnrnal

An externalModuleDeclaration is:'

var id":"
external module

[imports"(" [var] id{"," [var) id}")"";"]
[ex ports " (" id { " , " id} ") " "; "1
{declarationinExternalModule ";"}

end module

A declarationinExternalModule is one of:

a. constantDeclaration
b. typeDeclaration
c. collectionDeclaration
d. externalProcedureDeclaration
e. externalFunctionDeclaration

An externalMonitorDeclaration is:

var id ":"
external monitor

[imports"(" [var] id{"," [var] id} ")" ";"]
[ex ports " (" id { " , • id} ") " "; "]
{declarationinExternalMonitor ";~}

end monitor

- 23 -

A declarationinExternalMonitor is one of:

a. constantDeclaration
·b. typeDeclaration
c. collectionDeclaration
d. externalProcedureDeclaration
e. externalFunctionDeclaration

An external declaration can appear in place of the real de
claration and specifies that the corresponding procedure, func
tion, module or monitor is to be compiled separately.

Processes and initially procedures of modules cannot be de
clared external. Procedures and functions which are entries of a
monitor cannot be declared external except as part of an external
monitor declaration. Constants declared within an external
module or monitor must have manifest values.

COM PI LAT IONS

A compilation can qonsist of a main program (see "Programs")
or a separate compilation.

A separateCompilation is:

{separateDeclaration ";"}

Each separateDeclaration is one of the following:

a. constantDeclaration
b. typeDeclaration
c. collectionDeclaration
d. procedureDeclaration
e. functionDeclaration
f. moduleDeclaration
g. monitorDeclaration

Each separateD~claration can be a manifest constant declara
tion, a type declaration, a collection declaration, a procedure
or function declared as "external" in another compilation, or a
module or monitor declared as "external" in another compilation.

Separately compiled procedures, functions, modules and moni
tors can be linked to form a complete program. Constants, types,
collections and variables are not linked across compilations; it
is the programmer's responsibility to insure that the number and
type of formal parameters agree across compilations.

- 24 -

REFERENCES

1. Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G. and
Popek, G.J., Report on the Programming . Language Euclid.
SIGPLAN Notices 12,1 (February 1977).

2. Hoare, C.A.R., Monitors: An Operating System Structuring Con
cept. Comm. ACM 17,10 (October 1974), 549-557.

- 25 ·-

APPENDIX 1.
COLLECTED SYNTAX OF EUCLID-S AND EUCLID-C

The co.llected syntax of Euclid-S is given first. Throughout
the following, {item} means zero or more of the item, and [item]
means the item is optional.

The following abbrevia~ions are used:
id for identifier
expn for expression
typeDefn for typeDefinition

A program is:

moduleDeclaration

A moduleDeclaration is:

var id":"
module

". " I

[imports"(" [var] id{"," [var] id}")"";"]
[ex ports " (" id { " , " id} ") " "; "]
[[not] checked "; "]
{declarationinModule ";"}
[initially

procedureBody "; "]
end module

A declarationinModule is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. moduleDeclaration
f. collectionDeclaration
g. procedureDeclaration
h. functionDeclaration
i. converterDeclaration
j. assert["(" expn ")"]

A constantDeclaration is one of:

a. [pervasive] const id ": =" expn
b. (pervasive] const id ":" typeDefn ":="

"(" manifestExpn_ {"," manifestExpn} ")"

A variableDeclaration is:

[reg is t e r] var id [" (• at man i f es t Ex pn ") "]' " : " type De f n
[": =" expn]

- 26 -

A typeDeclaration is:

[pervasive] type id "=" typeBody

The typeBody is one of:

a. type De fn
b. forward

A typeDefn is one of the following:

a. standardType
b. manifestConstant " •• " manifestExpn
c. [packed] array indexType of typeDefn
d. set of baseType
e. [packed] record Type
f. pointerType
g. named Type

Note: The following, are standardTypes of Euclid-S:
Signedint, Unsignedint, Longint, Shortint, Boolean, Char,
StorageUnit, AddressType.

A recordType is:

record
{var id":" typeDefn ";"}

end record

A pointerType is:

"""" collectionid

A named Type is:

[moduleid "."] typeld

A variableBinding is one of:

a. bind [var] id to variable
b. bind " (" [var] id to variable

{ " , " [var] id to var i ab 1 e } ") "

A collectionDeclaration is:

var id":" collection of typeDefn

- 27 -

A procedureOeclaration is:

procedure id("(" [var] id":" parameterType
{ " , " (v a r 1 id " : " pa r am et e r Type } ") •] "= "

procedureBody

A·functionDeclaration is:

function id ["(" id":" parameterType
{ " , " id " : " pa ram et e r Type } ") "]

returns id":" resultType "="
proced ureBody

A parameterType is one of:

a. typeDefn
b. [packed] array manifestConstant • •• " parameter of

typeDefn
c. universal

A procedureBody is:

[imports"(" [var] id{"," [var] id} ")" ";"]
beg in

([not) checked";"]
{declarationinRoutine ";"}
{statement "; "}

end [id]

A declarationinRoutine is one of:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. collectionDeclaration
f. converterDeclaration
g. assert [" ("expn") "]

A converterDeclaration is:

converter id " (" type Id ")"·returns type Id

A statement is one of:

a. variable":=" expn
b. [rnoduleid" ."] procedureid ["(" expn { "," expn} ") "]
c. assert ["("expn")"]
d • return [" ("ex pn") "]
e • i f ex pn then

- 28 -

{statement";"}
{elseif expn then

{ st a t em en t " ; " } }
[else

{statement "; "} l
end if

f. loop
{statement "; "}

end loop
g • ex i t [when ex pn]
h. case expn of

{manifestExpn {"," manifestExpn} "=>"
{statement •; "}
end manifestExpn "; "}

[otherwise "=>"
{statement "; "}]

end case
i. beg in

{declarationinRoutine ";"}
{ st a t em en t " ; " }

end
j. collectionid"" New"(" variable")"
k. collectionid "." Free"(" variable")"

A variable is:

a. moduleld "." id
b. id { componentSelector}

A componentSelector is one of:

a • " (" ex pn ") "
b. " • " id

An expn is one of the following:

a. variable
b. literalConstant
c. set Type Id " (" el ementLi st ") "
d. collectionid II " nil .
e. [moduleid " • It 1 function Id [" (" expn { tt I ff expn} ") "]
f. [moduleid " . "] converter Id " ("
g. " (" expn ") "
h. "-" expn
i • expn arithmeticOperator expn
j • expn comparisonOperator exp11
k. not expn
1 • expn booleanOperator expn
m. expn set Operator expn

Note: The arithmeticOperators are +, -, *
teger divide) and mod (integer

- 29 -

expn ") "

(multiply) , div
remainder) •

(in
The

comparisonOperators are <, >, =, <=, >= and "not =". The
booleanOperators are "and" (intersection), "or" (union) and ->
(implication) • The setOpe ra tors a re * (set inter section) , + (set
union), (set difference), <=.and >= (set inclusion), and "in"
and "not in" (element containment).

The order of precedence is among the following classes of opera
tors (most binding first):

1. unary -
2. *, div, mod
3. +, -
4. <, >, =, <=, >=, not=, in, not in
5. not
6. and
7. or
8. ->

A setElementList is one of:

a • [ex pn { " , " ex pn}]
b. all

An includeStatement is:

include stringLiteral ". " ,

Note: Include statements can appear anywhere in a program.

- 30 -

The following changes and additions are made to form Euclid-C:

A moduleDeclaration is:

var id ":"
module

[imports"(" [var] id{"," [var] id}")"";"]
[ex ports " (" id { " , " id} ") " "; "]
[[not] checked";"]
{declarationinModule ";"}
[initially

procedureBody "; "]
{process id ["(" memoryRequirement ")"]

procedureBody ";"}
end module

A declarationinModule is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. moduleDeclaration
f. monitorDeclaration
g. collectionDeclaration
h. procedureDeclaration
i. functionDeclaration
j. converterDeclaration
k. assert [" (" ex pn ") "]

A monitorDeclaration is:

var id":"
monitor

[imports " (" [var] id { "," [var] id} ")" "; "]
[ex ports " (" id { " , " id} ") " "; "]
[[not] checked "; "]
{declarationinMonitor ";"}
[initially

pro c ed u re Body " ; "]
end monitor

A declarationinMonitor is one of the following:

a. constantDeclaration
b. variableDeclaration
c. typeDeclaration
d. variableBinding
e. conditionDeclaration
f. collectionDeclaration
g. procedureDeclaration
h. functionDeclaration

- 31 -

i. converterDeclaration
j • assert [" (" ex pn ") "]

A conditionDeclaration is one of:

a.
b.

var id
var id

II •ff

" . " .
[priority] condition
array index Type of [priority] condition

A statement is one of:

a. variable":=" expn
b. [moduleid"."] procedureid ["(" expn {"," expn}")"]
c. assert [" ("ex pn") "]
d • r e t u r n [" (" ex pn") "]
e. if ex pn then

{statement "; "}
{else if expn then

{statement "; "}}
[else

{statement "; "}]
end if

f. loop
{ statement "; "}

end loop
g • ex it [when ex pn]
h •. case expn of

{manifestExpn { "," manifestExpn} "=>"
{Statement n; II}}

[otherwise "=>"
{statement "; "}]

end case
i. beg in

{declarationinRoutine ";"}
{statement "; "}

end
j. collectionid "·"New"(" variable")"
k. collectionid "."Free"(" variable")"
1. wait "(" conditionvar ["," priorityValue] ")"
m. signal "C" conditionVar ")"
n. busy"(" time")"

A conditionVar is:

co nd i t ion Id [" (" ex pn ") "]

- 32 -

The following extensions allow separate compilation of pro
cedures, functions, modules and monitors:

An externalProcedureDeclaration is:

procedure id [" (" [var] id ":" parameterType
{

11
, " [var] id " : " pa r am et e r Type } ") "] "= "

external

An externalFunctionDeclaration is:

function id["(" id":" parameterType
{ " , " id " : " pa ram et e r Type } ") " 1

returns id":" resultType "="
external

An externalModuleDeclaration is:

var id " : " .
external module

[imports"(" [var] id{"," [var] id}")"";"]
[ex ports " (" id { " , " id} ") " "; "]
{declarationinExternalModule ";"}

end module

A declarationinExternalModule is one of:

a. constantDeclaration
b. typeDeclaration
c. collectionDeclaration
d. externalProcedureDeclaration
e. externalFunctionDeclaration

An externalMonitorDeclaration is:

var id " : "
external monitor

[imports " (" [var] id { " , " [var] id} ") " "; "]
[ex po r ts II (" id { II I" id } ") II II ; II]

{declarationinExternalMonitor ";"}
end monitor

A declarationlnExternalMonitor is one of:

a. constantDeclaration
b. typeDeclaration
c. collectionDeclaration
d. externalProcedureDeclaration
e. externalFunctionDeclaration

- 33 -

Note: An external declaration can appear in place of the real
declaration anywhere in a program.

A separateCompilation is:

{separateDeclaration ";"}

Each separateDeclaration is one of the following:

a. constantDeclaration
b. typeDeclaration
c. collectionDeclaration
d. procedureDeclaration
e. functionDeclaration
f. moduleDeclaration
g. monitorDeclaration

- 34 -

APPENDIX 2.
KEYWORDS AND PREDEFINED IDENTIFIERS OF EUCLID-S AND EUCLID-C

The following are reserved words of Euclid. These must not be
used as identifiers in Euclid-S and Euclid-C programs. Those
which are not in the Euclid-S subset are marked with an *

*abstraction *aligned all and
*any array assert at
beg in bind *bits *bound
case *checkable checked *code
collection con st converter *counted
*decreasing *default *dependent div
else else if end exit
exports *finally *for forward
*from function if imports
in include initially *inline
*invariant loop machine mod
not of or otherwise
packed parameter pervasive *post
*pre procedure *readonly record
return returns set then
*thus to type *unknown
var when *with *xor

The following are additional reserved words of Euclid-S and
Euclid-C. These also must not be used as identifiers in Euclid-S
and Euclid-C programs.

busy
priority
wait

condition
process

empty
register

monitor
signal

The following are predefined identifiers of Euclid. In gen
eral, these are pervasive and must not be redeclared in Euclid
programs. Those which are not in the Euclid-S subset are marked
with an *

*Abs
*BaseType
*Componen tType
*Index
*ItsType
New
Ord
size
*String Ind ex
*System Zone

address AddressType
Boolean Char
fa l se * f i r st
*IndexType *Integer
*last *Max
nil *ObjectType
*Pred * refCoun t
*sizeinBits StorageUnit
*string Max Leng th
true Unsigned Int

*alignment
Chr
Free
*itsTag
*Min
*Odd
Signed Int
*String
*Succ

The following are additional predefined identifiers of
Euclid-S and Euclid-C. These also must not be redeclared in
Euclid-S and Euclid-C programs.

Long Int Shortint

- 35 -

APPENDIX 3.
INPUT/OUTPUT IN CONCURRENT EUCLID

This paper presents the standard input/output package for
Euclid-S and Euclid-C. The user can access the I/O facility by
including in his program the stub input/output module which
corresponds to the level of I/O which his program requires. In
this way, the user's compiled and linked program will include
code only for the I/O facilities required.

The package provides four levels of sophistication, which are
called •10/l" through "I0/4". Each level includes all the facil
ities of the previous levels plus certain new features. The lev
els are as follows:

IO/l: Terminal (standard) input and output; Formatted text
~ - input/output of integers, characters and strings (Get and

Put) •

I0/2: Program argument sequential files; Open and close on argu
ment files; Formatted text input/output of integers, charac
ters and strings to fi,les (FGet and FPut); Internal
representation input/output of integers, characters and
strings to files (Read and Write); End of file detection
(EndFile).

I0/3: Temporary and non-argument sequential files (Assign, Deas
~ - sign, Delete); Program arguments (FetchArg).

I0/4: Record, array and storage input/output (Read and Write);
~ - Random access files (Stat and Seek); Error detection

(Error) •

The procedures and functions of the input/output system are
all part of the module "IO" and must be referenced ·using "IO.".
The types and constants which form the interface to the module
are global. The user can access the level n facilities of the
input/output module by beginning his program with the statement

inc 1 ud e ' I On '

We now describe the input/output facilities in detail.

IO/!.: Terminal Formatted Text ,!_/0

pervasive const newLine := $$N
pervasive const endOf File := $$E
pervasive const maxStringLength :=

{ Implementation defined; >= 128 }
Strings read and written by the input/output routines may be
up to maxStringLength characters in length.

IO.PutChar (c: Char)
Prints the character con the terminal.

- 36 -

IO.Putint (i: Signedint, w: Signedint)
Prints the. integer ion the terminal, right justified in a
field of w characters. Leading blanks are supplied to fill
the field. If w is an insufficient width, the value is
printed in the m1n1mum possible width with no leading
blanks. In particular, if w is 1 then the exact number of
characters needed is used. The specified width must be
greater than zero and less than maxStringLength.

IO.PutString (s: packed array !..parameter of Char)
Prints the string s on the terminal. The string must be
terminated by an endOfFile character ('$E'), which is not
output. It can contain embedded newLines ('$N') if desired.
(Note: An endOfFile character ($$E) can be output using
Putcha r.)

IO.GetChar (var c:Char)
Gets a the next input character from the terminal. End of
file is indicated by a return of endOfFile ($$E).

IO.Getint (var i: Signed!nt)
Gets an integer from the terminal. The input must consist
of any number 'of optional blanks, tabs and newlines, fol
lowed by an optional minus sign, followed by any number of
decimal digits.

IO.GetString (var s: packed array l •• parameter of Char)
Gets a line of character input from the terminal. The
string returned is ended with the newLine character ('$N')
followed by an endOfFile ·character ('$E'). The returned
string may be up to maxStringLength characters in length.
End of file is indicated by returning a string containing
endOfFile ('$E') as the first character.

IO/~: Sequential Argument File l/Q

pervasive const stdinput := ~2
pervasive const stdOutput := -1
pervasive canst stdError := 0
pervasive const maxArgs := { Implementation defined; >= 9 }
pervasive const maxFiles :=

{ Implementation defined; >= maxArgs+S }
type File = stdError •• maxFiles

Concurrent Euclid input/output refers to files using a file
number. Certain file numbers are preassigned as follows: -2
refers to the terminal input; -1 is the terminal output; O
is the standard diagnostic output. ·rhe fii"e numbers
1. .maxArgs refer to the program arguments. The remaining
file numbers (maxAr,gs+l •• maxFiles) can be dynamically as
signed to files using the "IO.Assign" operation; see "I0/3".

pervasive const inFile := O
pervasive const outFile := 1
pervasive const inOutFile := 2
type FileMode = inFile •• inOutFile

- 37 -

Files can be opened for input, output, or input/output using
modes inFi 1 e, o utFil e and inOutFi 1 e respectively. (Note:
The input/output mode is not av.1ilable under Unix V6.)

IO.Open (f: File, m: FileMode)
IO.Close (f: File)

With the exception of terminal input/output and the standard
diagnostic output, files must be opened before they are used
and closed before the program returns. Open opens an exist
ing file for the operations specified by the mode. If the
opened file does not exist, it is created. The file number
specified must be a preassigned file number or a file number
returned from a call to "IO.Assign"; see "I0/3".

IO.FPutChar (f: File, c: Char)
IO.FPutint (f: File, i: Signedlnt, w: Signedlnt)
IO.FPutString (f: File, s: packed array ! .. parameter of Char)
IO.FGetChar (f: File, var c: Char)
IO.FGetint (f: File, var i: Signedint)
IO.FGetString (f: File, var s: packed array ! •• parameter of Char)

These operations are identical to the terminal input/output
operations of IO/l except that the put or get is done on the
specified f i 1 e.

IO.WriteChar (f: File, c: Char)
Identical to FPutChar.

IO.Writeint (f: File, i: Signed Int)
Writes the internal representation of integer i to the
spec i f i ed f i 1 e •

IO.WriteString (f:File, s: packed array ! .. parameter of Char)
Identical to FPutString.

IO.ReadChar (f: File, var c: Char)
Identical to FGetChar.

IO.Readint (f: File, var i: Signedint)
Reads an integer in internal representation from the speci
f i ed f i 1 e i n to i .

IO.ReadString (f: File, var s: packed array ! .. parameter of Char)
Identical to FPutString.

I 0 • End Fi 1 e { f : Fi 1 e)
A function which returns true if the last operation on the
specified input file encountered end of file and false oth
erwise.

- 38 -

IO/l: Temporary and Non-argument Files

pervasive const maxArgLength :=
{ Implementation defined; >= 32 }

Fi 1 e names and arg um en ts to a· program may be up to maxAr
gLeng th characters in length.

IO.Assign (var f: File, s: packed array l •• parameter of Char)
A file number is assigned to the file name supplied in s.
The file name is given as a string terminated by the endOf
File character ('$E'), which is not part of the name. Be
fore the file can be used it must be opened using "IO.Open".

IO. De a s s i g n (f : Fi 1 e)
The specified file number is freed for assignment to another
file name. An open file cannot be deassigned.

IO.Delete (f: File)
The specified file is destroyed. An open file cannot be
deleted. Note that a program can have temporary files using
"IO.Assign" and "IO.Delete".

IO.FetchArg (n: 1. .max'Args, var s: packed array 1. .parameter of
Char)
The program argument specified by "n" is returned in string
s. The returned string is terminated by the endOfFile char
acter ('$E') and may be up to maxArgLength characters in
length.

IO/!: Structure Input/Output and Random Access Files

IO.Write (f: File, u: universal, n: Signedint)
The number of StorageUnits specified by "n" are written to
the file from u. Write can be used to write out whole ar
rays and records using a call of the form "IO.Write (f, v,
v.size) "· The value of n must be positive or zero.

IO.Read (f: File, var u: universal, n: Signedint)
The number of StorageUnits specified by "n" are read from
the file into u. Read can be used to read in whole arrays
and records using a call of the form "IO.Read (f, v,
v.size)". The value of n must be positive or zero.

type E'ileindex =
record

var b: Signedlnt
var c: Signedlnt

end record
IO.Stat (f: File, var x: Filelndex)
IO.Seek (f: File, x: Fii'elndex)

These operations provide random access input/output by al
lowing the program to sense a file position, represented as
two integers, and reset the file to a remembered position.
Stat returns the current position of the specified file in
x.b and x.c (conceptually, the "block number• and "character

- 39 -

nui.1ber within block"). Seek sets the current position of
the specified file to th~ position specified by the values
of x.b and x.c. In both cases, the values of b and c are
integers whose meaning is implementation-dependent. The
programmer should not assume that the values of b and c are
restricted to any particular range. (Note: "IO.Stat" and
"IO.Seek" are not supported under Unix V6.)

IO.Error (f: File)
A function which returns true if the last operation on the
specified file encountered an error and false otherwise.

Inter fa c i ng to Un ix *

'fhe input/output package is based on standard Unix
input/output and is designed to be interfaced to Unix with a
minimum of overhead. The Unix implementation is written in c and
uses only facilities of the C "stdio" package. This implementa
tion can be compiled unchanged under both V6 and V7 Unix.

Using Euclid-~ Standard I/£ with Toronto Euclid

Euclid-S programs may be compiled using Toronto Euclid by
wrapping the entire Euclid-S program (including all "include"
~tatements) in a module type, thus:

type EuclidS = module

include '!On'
{ The Euclid-S program goes here }

end module {EuclidS};

The program can then be compiled using the command
prog.e". The "-E" option specifies that the program is
linked with the Euclid-S standard I/O library.

"euc -E
to be

The Euclid-S input/output facility has been install.ed in the
Toronto Euclid library and can be referenced directly using

include 1 /lib/euclid/IOn'

if desired. In this way, the user n~ed not have his own copies
or links to the input/output package.

* "Unix" is a trademark of Bell Telephone Laboratories.

- 40 -

University of Toronto
Computer Syslema Research Group

BIBIJOGRAPHY OF CSRG TECHNICAL REPORTS+

• CSRG-1 EMPIRICAL COMPARISON OF LR(k) AND PRECEDENCE PARSERS
J.J. Horning and W.R. Lalonde, September 1970
[ACM SIGPLAN Notices, November 1970]

* CSRG-2 AN EFFICIENT LA.LR PARSER GENERATOR
W.R. Lalonde, February 1971
[M.A.Sc. Thesis, EE 1971]

$ CSRG-3 A PROCESSOR GENERATOR SYSTEM
J.D. Gorrie, February 1971
[M.A.Sc. Thesis, EE 1971]

* CSRG-4 DYLAN USER'S MANUAL
P.E. Bonzon, March 1971

CSRG-5 DIAL - A PROGRAMMING SYSTEM FOR INTERACTIVE ALGEBRAIC MANIPULATION
Alan C.M.· Brown and J.J. Horning, March 1971

CSRG-6 ON DEADLOCK IN COMPUTER SYSTEMS
Richard C. Holt, April 1971
[Ph.D. Thesis, Dept. of Computer Science,
Cornell University, 1971]

CSRG-7 THE STAR-RING SYSTEM OF LOOSELY COUPLED DIGITAL DEVICES
John Neill Thomas Potvin, August 1971
[M.A.Sc. Thesis, EE 1971]

• CSRG-8 FILE ORGANIZATION AND STRUCTURE
G.M. Stacey, August 1971

CSRG-9 DESIGN STUDY FOR A TWO-DIMENSIONAL COMPUTER-ASSISTED
ANIMATION SYSTEM
Kenneth B. Evans, January 1972
(M.Sc. Thesis, DCS, 1972]

* CSRG-10 HOW A PROGRAMMING LANGUAGE IS USED
William Gregg Alexander, February 1972
[M.Sc. Thesis, DCS 1971; Computer, v.B, n.11, November 1975]

• CSRG-11 PROJECT SUE STATUS REPORT
J.W. Atwood {ed.), April 1972

+ Abbreviations:
DCS - Department. of Computer Science, University of Toronto
EE - Department of Electrical Engineering, University of

Toronto
ice - Out of print

- 2 -

• CSRG-12 THREE DIMENSIONAL DATA DISPLAY WITH HIDDEN LlNE REMOVAL
Rupert Bramall, April 1972
(M.Sc. Thesis, DCS, 1971]

* CSRG-13 A SYNTAX DIRECTED ERROR RECOVERY METHOD
Lewis R. James, May 1972
[M.Sc. Thesis, DCS, 1972]

CSRG-14 THE USE OF SERVICE TIME DISTRIBUTIONS IN SCHEDULING
Kenneth C. Sevcik, May 1972
[Ph.D. Thesis, Committee on Information Sciences,
University of Chicago; 1971; JACM, January 1974]

CSRG-15 PROCESS STRUCTURING
J.J. Horning and B. Randell, June 1972
[ACM Computing Surveys, March 1972]

CSRG-16 OPTIMAL PROCESSOR SCHEDULING WHEN SERVICE TIMES ARE
HYPEREXPONENTIALLY DISTRIBUTED AND PREEMPTION OVERHEAD
IS NOT NEGLIGIBLE
Kenneth C. Sevcik, June 1972
[Proceedings of the Sympo5ium on Computer-Communication,
Networks and Telelraffi.c, Polytechnic Institute of Brooklyn, 1972]

• CSRG-17 PROGRAMMING LANGUAGE TRANSLATION TECHNIQUES
W.M. McKeeman, July 1972

CSRG-18 A COMPARATIVE ANALYSIS OF SEVERAL DISK SCHEDULING ALGORITHMS
C.J.M. Turnbull, September 1972

CSRG-19 PROJECT SUE AS A LEARNING EXPERIENCE
K. C. Sevcik et al, September 1972
[Proceedings AFIPS Fall Joint Computer Conference,
v. 41, December 1972]

* CSRG-20 A STUDY OF LANGUAGE DIRECTED COMPUTER DF;SJGN
David B. Wortman, December 1972
[Ph.D. Thesis, Computer Science Department,
Stanford University, 1972]

CSRG-21 AN APL TERMINAL APPROACH TO COMPUTER MAPPING
R Kvaternik, December 1972
[M.Sc. Thesis, DCS, 1972]

• CSRG .. 22 AN IMPLEMENTATION LANGUAGE FOR MINICOMPUTERS
G.G. Kalmar, January 1973
[M.Sc. Thesis, DCS. 1972]

CSRG-23 COMPILER STRUCTURE
W.M. McKeeman, January 1973
[Proceedings of the USA-Japan Computer Conference, 1972]

- 3 -

• CSRG-24 AN ANNOTATED BIBLIOGRAPHY ON COMPUTER PROGRAM
ENGINEERING
J.D. Gannon (ed.), March 1973

CSRG-25 THE INVESTIGATION OF SERVlCE TIME DISTRIBUTIONS
Eleanor A. Lester. April 1973
[M.Sc. Thesis, DCS. 1973]

* CSRG-26 PSYCHOLOGICAL COMPLEXITY OF COMPUTER PROGRAMS:
AN INITIAL EXPERIMENT
Larry Weissman, August 1973

* CSRG-27 STRUCTURED SUBSETS OF THE PL/I LANGUAGE
Richard C. Holt and David B. Wortman, October 1973

* CSRG-28 ON REDUCED MATRIX REPRESENTATION OF LR(k)
PARSER TABLES
Marc Louis Joliat, October 1973
[Ph.D. Thesis, EE 1973]

• CSRG-29 A STUDENT PROJECT FOR AN OPERATING SYSTEMS COURSE
B. Czarnik and D. Tsichritzis (eds.), November 1973

* CSRG-30 A PSEUDO-MACHINE FOR CODE GENERATION
Henry John Pasko, December 1973
[M.Sc. Thesis, DCS 1973]

* CSRG-31 AN ANNOTAED BIBLIOGRAPHY ON COMPUTER PROGRAM ENGINEERING
J.D. Gannon (ed.), Second Edition, March 1974

* CSRG-32 SCHEDULING MULTIPLE RESOURCE COMPUTER SYSTEMS
E.D. Lazowska, May 1974
[M.Sc. Thesis, DCS, 1974]

"'CSRG-33 AN EDUCATIONAL DATA BASE MANAGEMENT SYSTEM
F. Lochovsky and D. Tsichritzis, May 1974
[INFOR, 14 (3). pp.270-278, 1976]

I) CSRG-34 ALLOCATING STORAGE IN HIERARCHICAL DATA BASES
P. Ilernstein and D. Tsichritzis. May 1974
[Information Systems Journal. v. l. pp.133-140]

* CSRG-35 ON IMPLEMENTATION OF RET.ATIONS
D. Tsichritzis, May 1974

* CSRG-36 SIX PL/I COMPILERS
D.B. Wortman, P.J. Khaiat, and D.M. Lasker, August 1974
[Software Practice and Experience, v.6 1 n.3,
July-Sept. 1976]

* CSRG-37 A METHODOLQGY FOR STUDYING THE PSYCHOLOGICAL COMPLEXITY
OF COMPUTER PROGRAMS
Laurence M. Weissman, August 1974
[Ph.D. Thesis, DCS, 1974]

- 4 -

• CSRG-38 AN INVESTIGATION OF A NEW METHOD OF CONSTRUCTING SOF,TW ARE
David M. Lasker, September 1974-
[M.Sc. Thesis, DCS, 1974)

CSRG-39 AN ALGEBRAIC MODEL FOR STRING PATTERNS
Glenn F. Stewart, September 1974
[M.Sc. Thesis, DCS, 1974]

* CSRG-40 EDUCATIONAL DATA BASE SYSTEM USER'S MANUAL
J. Klebanoff, F. Lochovsky, A. Rozitis, and
D. Tsichritzis, September 1974

.:. CSRG-41 NOTES FROM A WORKSHOP ON THE ATTAINMENT OF
RELIABLE SOFTWARE
David B. Wortman (ed.), September 1974

• CSRG-42 THE PROJECT SUE SYSTEM LANGUAGE REFERENCE MANUAL
RL. Clark and F.J.B. Ham, September 1974

* CSRG-43 A DATA BASE PROCESSOR
E.A. Ozkarahan, S.A. Schuster and K. C. Smith,
November 1974 [Proceedings National Computer
Conference 1975, v.44, pp.379-388]

* CSRG-44 MATCHING PROGRAM AND DATA REPRESENTATION TO A
COMPUTING ENVIRONMENT
Eric C.R. Hebner, Novemver 1974
[Ph.D. Thesis, DCS, 1974]
See Computer, Vol.9, No.9, August 1976, pp.65-70.

* CSRG-45 THREE APPROACHES TO RELIABLE SOFTWARE; LANGUAGE DESIGN,
DYADIC SPECIFICATIONS, COMPLEMENTARY SEMANTICS
J.E. Donahue, J.D. Gannon, J.V. Guttag and
J.J. Horning, December 1974

CSRG-46 THE SYNTHESIS OF OPTIMAL DECIS10N TREES FROM
DECISION TABLES
Helmut Schumacher, December 1.974
[M.Sc. Thesis, DCS, 1974; CACM, v.19, n.6, June 1976]

* CSRG-47 LANGUAGE DESIGN TO ENHANCE PROGRAMM1NG RELIABILITY
John D. Gannon, January 1975
[Ph.D. Thesis, DCS, 1975]

~·· CSRG-48 DETERMINISTIC LEFT TO RIGHT PARSING
Christopher J.M. Turnbull, January 1975
[Ph.D. Thesis, EE, 1974]

ljl CSRG-49 A NETWORK FRAMEWORK FOR RELATIONAL IMPLEMENTATION
D. Tsichritzis, February 1975 [in Dala Base Description,
Dongue u.nd Nijsseu (eds.), North Holland Publishing Co.]

- 5 -

* CSRG-50 A UNIFIED APPROACH TO F'UNCTIONAL DEPENDENCH~S
AND RELATIONS
P.A. Bernstein, J.R. Swenson and D.C. Tsichritzis
February 1975 [Proceedings of the ACM SIGMOD
Conference. 1975]

"'CSRG-51 ZETA: A PROTOTYPE RELATIONAL DATA BASE MANAGEMENT SYSTEM
M. Brodie (ed). February 1975 [Proceedings Pacific ACM
Conference, 1975]

* CSRG-52 AUTOMATIC GENERATION OF SYNTAX-REPAIRING AND
PARAGRAPHING PARSERS
David T. Barnard, March 1975
[M.Sc. Thesis, DCS, 1975]

* CSRG-53 QUERY EXECUTION AND INDEX SELECTION FOR RELATIONAL
DATA BASES
J.H. Gilles Farley and Stewart A. Schuster, March 1975

CSRG-54 AN ANNOTATED BIBLIOGRAPHY ON COMPUTER PROGRAM
ENGINEERING
J.V. Gutt<:1g (ed.), Third Edition, April 1975

CSRG-55 STRUCTURED SUBSETS OF THE PL/1 LANGUAGE
Richard C. Holt and David B. Wortman, May 1975

• CSRG-56 FEATURES OF A CONCEPTUAL SCHEMA
D. Tsichritzis, June 1975 [Proceedings Very Large
Data Base Conference, 1975]

* CSRG-57 MERLIN: TOWARDS AN IDEAL PROGRAMMING LANGUAGE
Eric C.R. Hebner, July 1975
see Acta Informatica Col.10, No.3, pp.229-243, 1978

CSRG-58 ON THE SEMANTICS OF THE RELATIONAL DATA MODEL
Hans Albrecht Schmid and J. Richard Swenson,
July 1975 [Proceedings of the ACM SIGMOD Conference, 1975]

* CSRG-59 THE SPECIFICATION AND APPLICATION TO PROGRAMMING
OF ABSTRACT DATA TYPES
John V. Gutlag, September 1975
[Ph.D. Thesis, DCS, 1975]

* CSRG-60 NORMALIZATION AND FUNCTIONAL DEPENDENCIES IN THE
RELATIONAL DATA BASE MODEL
Phillip Alan Bernstein, October 1975
[Ph.D. Thesis, DCS, 1975]

• CSRG-61 LSL: A LINK AND SELECTION LANGUAGE
D. Tsichrilzis, November 1975 [Proceedings ACM
SIGMOD Conference, 1976]

- 6 -

* CSRG-62 COMPLEMENTARY DEFINITIONS OF' PROGRAMMING LANGUAGE
SEMANTICS
James E. Donahue, November 1975
[Ph.D. Thesis, DCS, 1975]

CSRG-63 AN EXPERIMENTAL EVALUATlON OF CHESS PLAYING HEURISTICS
Lazlo Sugar, December 1975
[M.Sc. Thesis, DCS, 1975]

CSRG-64 A VIRTUAL MEMORY SYSTEM FOR A HELATIONAL ASSOCIATIVE
PROCESSOR
S.A. Schuster, E.A. Ozkarahan, and K. C. Smith,
February 1976 [Proceedings National Computer
Conference 1976, v.45, pp.855-862]

CSRG-65 PERFORMANCE EVALUATION OF A RELATIONAL ASSOCIATIVE
PROCESSOR
E.A. Ozkarahan, S.A. Schuster, and K.C. Sevcik,
February 1976 [ACM Transactions on Database
Systems, v.1, n:4, December 1976]

CSRG-66 EDITING COMPUTER ANIMATED FILM
Michael D. Tilson, February 1976
[M.Sc. Thesis, DCS, 1975]

CSRG-6? A DIAGRAMMATIC APPROACH TO PROGRAMMING LANGUAGE
SEMAL~TICS
James R. Cordy, March 1976
[M.Sc. Thesis, DCS, 1976]

* CSRG-68 A SYNTHETIC ENGLISH QUERY LANGUAGE FOR A RELATIONAL
ASSOCIATIVE PROCESSOR
L. Kerschberg, E.A. Ozkarahan, and J.E.S. Pacheco,
April 1976

CSRG-69 AN ANNOTATED BIBLIOGRAPHY ON COMPUTER PROGRAM
ENGINEERING
D. Barnard and D. Thompson {eds.), Fourth Edition,
May 1976

* CSRG-70 A TAXONOMY OF DATA MODELS
L. Kerschberg, A. Klug, and D~Tsichritzis, May 1976
[Proceedings Very Large Data Base Conference, 1976]

• CSRG-71 OPTIMIZATION FEATURES FOR THE ARCHITECTURE OF A
DATA BASE MACHINE
E.A. Ozkarahan and K.C. Sevcik, May 1976
[ACM Transactions of Database Systems, v.2, n.4, December 1977]

• CSRG-72 THE RELATIONAL DATA BASE SYSTEM OMEGA - PROGRESS REPORT
H.A. Schmid (ed.), P.A. Bernstein (ed.), B. Arlow,
R. Baker and S. Pozga.j, July 1976

- 7 -

CSRG-73 AN ALGORITHMIC APPROACH TO NORMALIZATION OF
RELATIONAL DATA EASE SCHEMAS
P.A. Bernstein and C. Beeri, September 1976

• CSRG-74 A HIGH-LEVEL MACHINE-ORIENTED ASSEMBLER LANGUAGE
FOR A DATA EASE MACHINE
E.A. Ozkarahan and S.A. Schuster, October 1976

CSRG-75 DO CONSIDERED OD: A CONTRIBUTION TO THE PROGRAMMING
CALCULUS
Eric C.R. Hehner, November 1976
Acta Informatica to appear 1979

CSRG-76 SOF'TWARE HUT: A COMPUTER PROGRAM ENGlNEERING
PROJECT IN THE FORM OF A GAME
J.J. Horning and D.B. Wortman, November 1976
[IEEE Transactions on Software Engineering, v.SE-3, n.4, July 1977]

CSRG-77 A SHORT STUDY OF PROGRAM AND MEMORY POLICY BEHAVIOUR
G. Scott Graham, January 1977

CSRG-78 A PANACHE OF DBMS IDEAS
D. Tsichritzis (ed.), February 1977

CSRG-79 THE DESIGN AND IMPLEMENTATION OF AN ADVANCED LALR
PARSE TABLE CONSTRUCTOR
David H. Thompson, April 1977
[M.Sc. Thesis, DCS, 1976]

CSRG-80 AN ANNOTATED BIBI~IOGRAPHY ON COMPUTEit PROGRAM
ENGINEERING
D. Barnard {ed.}, Fifth Edition, May 1977

CSRG-81 PROGRAMMING METHODOLOGY: AN ANNOTATED BIBLIOGRAPHY
FOR IFIP WORKING GROUP 2. 3
Sol J. Greenspan and J.J. Horning (eds.), First Edition, May 1977

CSRG-82 NOTES ON EUCLID
edited by W. David Elliot and David T. Barnard, August 1977

CSRG-83 TOPICS IN QUEUEING NETWORK MODELING
edited by G. Scott Graham, July 1977

CSRG-84 TOWARD PROGRAM ILLUSTRATION
Edward Yarwood, September 1977
[M.Sc. Thesis, DCS, 1974]

CSRG-85 CHARACTERIZING SERVICE TIME AND RESPONSE TIME
DISTRIBUTIONS IN QUEUEING NErNORK MODELS OF COMPUTER
SYSTEMS
Edward D. l'Jazowska, September 1977
[Ph.D. Thesis, DCS, 1977]

- 8 -

CSRG-88 MEASUREMENTS OF COMPUTER SYSTEMS FOR QUEUEING
NETWORK MODELS
Martin G. Kienzle, October 1977
[M.Sc. Thesis, DCS, 1977; Proc. Int. Symp. on Modelling and Performance
Evaluation of Computer Systems, Vienna, 1979]

CSRG-87 'OLGA' LANGUAGE REFERENCE MANUAL
B. Abourbih, H. Trickey, D.M. Lewis, E.S. Lee,
P.I.P. Boulton, November 1977

CSRG-88 USING A GRAMMATICAL FORMALISM AS A PROGRAMMING LANGUAGE
Brad A. Silverberg, January 1978
[M.Sc. Thesis, DCS, 1978]

CSRG-89 ON THE IMPLEMENTATION OF RELATIONS: A KEY TO EFFICIENCY
Joachim W. Schmidt, January 1978

CSRG-90 DATA BASE MANAGEMENT SYSTEM USER PERFORMANCE
Frederick H. Lochovsky, April 1978
[Ph.D. Thesis, DCS, 1978]

CSRG-91 SPECIF'ICATION AND VERIFICATION OF DATA BASE
SEMANTIC INTEGRITY
Michael Lawrence Brodie, April 1978
[Ph.D. Thesis, DCS, 1978]

CSRG-92 STRUCTURED SOUND SYNTHESIS PROJECT (SSSP):
AN INTRODUCTION
by William Buxton. Guy Fedorkow, with Ronald Haecker,
Gustav Ciamaga, Leslie Mezei and K.C. Smith, June 1978

CSRG-93 A DEVICE-INDEPENDENT.GENERAL-PURPOSE GRAPHICS SYSTEM
IN A MINICOMPUTER TIME-SHARING ENVIRONMENT
William T. Reeves, August 1978
[M.Sc. Thesis, DCS, 1976]

CSRG-94 ON THE AXIOMATIC VERIFICATION OF
CONCURRENT ALGORITHMS
Christian Lengauer, August 1978
[M.Sc. Thesis, DCS, 1978]

CSRG-95 PISA: A PROGRAMMING SYSTEM F'OR INTERACTIVE
PRODUCTlON OF APPLJCATION SOFTWARE
Rudolf Marty, Augusl 1978

CSRG-96 ADAPTIVE MICROPROGRAMMING AND PROCESSOR MODELING
Walter G. Rosocha
[Ph.D. Thesis, EE, August 1978]

CSRG-97 DESIGN ISSUES lN THE F'OUNDATION OF A COMPUTgR-BAsgn
TOOL FOR MUSIC C.OMPOSITION
William Buxton
[M.Sc. Thesis, CSRG, October 1978]

- 9 -

CSRG-98 THEORY OF DATABASE MAPPINGS
Anthony C. Klug
[Ph.D. Thesis, DCS, December 1978]

CSRG-99 HIERARCHICAL COROUTINES: A MECHANISM FOR IMPROVED
PROGRAM STRUCTURE
Leonard I. Vanek, February 1979

CSRG-100 TOPICS IN PERFORMANCE EVALUATION
· G. Scott Graham (ed.), July 1979

CSRG-101 A PAN ACHE OF DBMS IDEAS lI
F.H. Lochovsky (ed.), May 19?9

CSRG-102 A SIMPLE SET THEORY 1',0R COMPUTJNG SCJENCE
Eric C.R. Hebner, May 1979

CSRG-103 THE CENTRALIZED ALGORITHM IN DISTRIBUTED SYSTEMS
Ernest J.H. Chang
[Ph.D. Thesis, DCS. July 1979]

CSRG-104 ELIMINATING THE VARIABLE FROM DIJKSTRA'S
MINI-LANGUAGE
D. Hugh Redelmeier, July 1979

CSRG-105 A LANGUAGE FACILITY FOR DESIGNING INTERACTIVE
DATABASE-INTENSIVE APPLICATIONS
John Mylopoulos, Philip A. Bernstein, Harry K. T. Wong,
July 1979

CSRG-106 ON APPROXIMATE SOLUTION TECHNIQUES FOR
QUEUEING NETWORK MODELS OF COMPUTER SYSTEMS
Salish Kumar Tripathi, July 1979

CSRG-107 A FRAMEWORK FOR VISUAL MOTION UNDERSTANDING
John K. Tsotsos, John Mylopoulos, H. Dominic Covvey
Steven W. Zucker. DCS, June 1979

CSRG-108 DIALOGUE ORGANIZATION AND STRUCTURE FOR
INTERACTIVE INFORMATION SYSTEMS
John Leonard Barron
[M.Sc. Thesis, DCS, 1980]

CSRG-109 A UNIFYING MODEL OF PHYSICAL DATABASES
D.S. Batory, C.C. Gotlieb, April 1980

CSRG-110 OPTIMAL Ii,ILE DESIGNS AND REORGANIZATION POINTS
D.S. Batory, April 1980

CSRG-111 A PANACHE OF DBMS IDEAS lII
D. Tsichritzis (ed.), April 1980

- 10 -

CSRG-112 TOPICS IN PSN - II: EXCEPTIONAL CONDITION
HANDLING IN PSN; REPRESENTING PROGRAMS IN PSN;
CONTENTS IN PSN
Yves Lesperance, Byran M. Kramer, Peter F. Schneider
April, 1980

CSRG-113 SYSTEM-ORIENTED MACRO-SCHEDULING
C.C. Gotlieb and A. Schonbach
May 1980

CSRG-114 A FRAMEWORK FOR VISUAL MOTION UNDERSTANDING
John Konstantine Tsotsos
[Ph.D. Thesis, DCS, June 1980]

CSRG-115 SPECIFICATION OF CONCURRENT EUCLID
James R. Cordy and Richard C. Holt
July 1980

