
UNIX PROGRAMMER'S MANUAL

Second Edition

K. Thompson

D. M. Ritchie

Jun e 1 2 , 1 972

Copyright @ 1972
Bell Telephone Laboratories, Inc.

No part of this document may pe reproduced,
_ or distributed outside the Laboratories, without
t.he written permission of Bell Telephone Laboratories.

PREFACE
to the Second Edition

In the months since this manual first appeared, many changes have
occurred both in the system itself and in the way it is used.

Perhaps most obviously, there have been additions, deletions, and
modifications to the system and its software. It is these
changes, of course, that caused the appearance of this revised
manual.

Second, the number of pe::>ple spending an appreciabl e amount of
time writing UNIX software has increased. Credit is due to
L. L. Cherry, M. D. McIlroy, L. E. McMahon, R. Morris, and
J. F. Ossanna for their contributions.

Finally, the number of UNIX installations has grown to 10, with
more expected. None of these has exactly the same complement of
hardware or software. Therefore, at any particular installation,
it is quite possible that this manual will give inappropriate
information. One area to watch concerns commands which deal with
special files (I/O devices). Another is places which talk about
such things as absolute core locations which are likely to vary
with the memory configuration and existence of protection
hardware. Also, not all installations have the latest versions
of all the software. In particular, the assembler and loader
have just undergone major reorganizations in anticipation of a
UNIX for the PDP-11/45.

- ii -

INTRODUCT ION

This manual gives descriptions of the publicly available features
of UNIX. It provides neither a general overview (see "The UNIX
Time-sharing system" for that) nor details of the implementation
of the system (which remain to be disclosed).

Within the area it surveys, this manual attempts to be as com-
pI ete and timely as possibl e. A conscious decision was made to
describe each program in exactly the state it was in at the time
its manual section was prepared. In particular, the desire to
describe something as it should be, not as it is, was resisted.
Inevitably, this mea"ns that many sections will soon be out of
date. (The rate of change of the system is so great that a
dismayingly large number of early sections had to be modified
while the rest were being written. The unbounded effort required
to stay up-to-date is best indicated by the fact that several of
the programs described were written specifically to aid in
preparation of this manual!)

This manual is divided into seven sections:

I.
II.
III.
N.
V.
VI.
VII.

():)mmands
System calls
SUbroutines
Special files
File formats
User-maintained programs
Miscellaneous

Cbmmands are programs intended to be invoked directly by the
user, in contradistinction to subroutines, which are intended to
be called by the user's programs. Commands generally reside in
directory /bin (for binary programs). This directory is searched
automatically by the command line interpreter. Some prog.rams
classified as commands are located elsewhere; this fact is indi
cated in the appropriate sections.

System calls are entries into the UNIX supervisor.
language, they are code:l with the use of the opcode
synonym for the trap instruction.

In assembly
" " sys , a

A small assortment of subroutines is available; they are
described in sect ion III. The binary form of most of them is
kept in the system library /usr/lib/liba.a.

The special files section IV discusses the characteristics of
each system "file" which actually refers to an I/O device.

The file formats section V documents the structure of" particular
kinds of" files; for example, the form of the output of the loader
and assembler is given. Excluded are files used by only one com
mand, for example the assembler's intermediate files.

- iii -

User-maintained progr~s (section VI) are not considered part of
the UNIX system, and the principal reason for listing them is to
indicate their existence without necessarily giving a complete
description. The author should be consulted for information.

The miscellaneous section (VII) gathers odds and ends.

Each section consists of a number of independent entries of a
page or so each. The name of the entry is in the upper right
corner of its pages, its preparation date in the upper left.
Entries within each section are alphabetized. It was thought
better to avoid running page numbers, since it is hoped that the
manual will be updated frequently. Therefore each entry is nun
bered st art ing at page 1.

All entries ha~e a common format.

The ~ section repeats the entry name and gives a very
short description of its purpose.

The synopsis summarizes the use of the program being
described. A few conventions are used, particularly in the
COmmands section:

Underlined words are considered literals, and are typed
just as th ey app ear.

Square brackets ([J) around an argument indicate that the
argument is optional. When an argument is given as

name , it always refers to a file name.

Ell ipses ar e used to show that the pr evious
argument-prototype may be repeated.

A final convention is used by the commands themselves.
An argument beginning with a minus sign - is often tak-
en to mean some sort of flag argument even if it appears
in a position where a file name could appear. Therefore,
it is unwise to have f il es whose names bEgin wi th -.

The description section discusses in detail the subject at
hand.

The files section gives the names of files which are built
into the program.

A ~ ~ section gives pOinters to related information.

A diaqnostics section discusses the diagnostics that may be
produced. This section tends to be as terse as the diagnos
tics themselves.

The ~ section gives known bugs and sometimes deficien
cies. OCcasionally also the suggested fix is described.

- iv -

The owner section gives the name of the person or persons to
be consulted in case of difficulty. The rule has been that
the last one to modify something owns it, so the owner is
not necessarily the author. The owner's nicknames stand
for:

ken K. Thompson
dmr D. M. Ritchie
jfo J. F. Qssanna
rhm R. Morr is
doug M. D. McIlroy
lem L. E. McMahon
llc L. L. Cherry
csr c. s. Robert s

These nicknames also happen to be UNIX user ID's, so mes
sages may be transmitted by the !!!S!l command or, if the
addressee is logged in,' by write.

At the be:.;Jinning of this document is a table of contents, organ
ized by section and alphabetically within each section. There is
also a permuted index derived from the table of contents. Within
each index 'entry, the title of the writeup to which it refers is
followed by the appropriate section number in parentheses. This
fact is important because there. is considerable name duplication
among the sections, arising principally from commands which exist
only to exercise a particular system call.

This manual was prepared using the UNIX text editor ed and the
formatting program ~.

- v -

TABLE OF CONTENTS

I. COMMANDS

•
acct •
ar
as
bas
cat

• •••••••••••••••••••••••••
•

• ••••••••••••••••••••••••
•

cc ••••••••••••••••••••••••••
chd ir •••••••••••••••••••••••
check •••••••••••••••••••••••
chmod •••••••••••••••••••••••
chown •••••••••••••••••••••••
cmp •••••••••••••••••••••••••
cp ••••••••••••••••••••••••••
d at e ••••••••••••••••••••••••
db ••••••••••••••••••••••••••
dc ••••••••••••••••••••••••••
df ••••••••••••••••••••••••••

• dpd
ds •
dsw •••••••••••••••••••••••••
du ••••••••••••••••••••••••••
echo ••••••••••••••••••••••••
ed •
exit •
f c ••••••••••••••••••••••••••
fed •••••••••••••••••••••••••
find ••••••••••••••••••••••••
form ••••••••••••••••••••••••
goto ••••••••••••••••••••••••
if ••••••••••••••••••••••••••
ist at •••••••••••••••••••••••
Id ••••••••••••••••••••••••••
In ••••••••••••••••••••••••••
"logi n •••••••••••••••••••••••
Is ••••••••••••••••••••••••••
mail ••••••••••••••••••••••••
man •••••••••••••••••••••••••
mesg ••••••••••••••••••••••••
rnkd ir •••••••••••••••••••••••
mount •••••••••••••••••••••••
mt ••••••••••••••••••••••••••
mv
m6

• •• •
•

nm ••••••••••••••••••••••••••
nroff •••••••••••••••••••••••
od ••••••••••••••••••••••••••
opr
ov
pr
rew

• ••••••••••••••••••••••••
• •••••••••••••••••••••••••
•

•
rm ••••••••••••••••••••••••••

place 1 abel
get connect-time accounting
archive (combine) files
assembl er
BASIC dialect
concatenate (or print) files
compile C program
change working directory
check consistency of file system
change access mode of files
change owner of files
compare file contents
copy file
get date and time of day
symbolic debugger
desk calculator
find free disk space
spawn data-phone daemon
verify directory hierarchy
delete files interactively
find disk usage
print command arguments
text editor
end command sequence
compile Fortran program
form-letter editor
find file with given name
generate form 1 etter
command transfer
condit'ional command
file status by i-number
link editor (loader)
link to file
log on to system
list contents of directory
send mail to another user
run off manual section
permit or deny messages
create directory
mount d et,achabl e f il e syst em
save/restore files on magtape
move or rename file
macroprocessor
print namelist
format text for printing
octal dump of file
print file off-line
page overlay file print
print file with headings
rewind DECt ape
remove (delete) file

- vi -

rnrl ir •••••••••••••••••••••••
roff ••••••••••••••••••••••••
salv ••••••••••••••••••••••••
sh ••••••••••••••••••••••••••
sort ••••••••••••••••••••••••
st at ••••••••••••••••••••••••
strip •••••••••••••••••••••••
stty ••••••••••••••••••••••••
su ••••••••••••• " •••••••••••••
Sum •••••••••••••••••••••••••
tacct ••••••••• ~ •••••••••••••
tap •
tm ••••••••••••••••••••••••••
tss • ••••••••••••••••••••••••
tty •••••••••••••••••••••••••
tyPe ••••••••••••••••••••••••
unount ••••••••••••••••••••••
\lll ••••••••••••••••••••••••••

wc ••••••••••••••••••••••••••
who •
wr ite •••••••••••••••••••••••

II. SYSTEM CALLS

break
cemt
chdir
chmod
chown
close
creat

•
••••••••••••••••••••••••

•
• •••••••••••••••••••••••
• ••••••••••••••••••••••
•
•

ex ec ••••••••••••••••••••••••
e:K it ••••••••••••••••••••••••
fork ••••••••••••••••••••••••
f st at •••••••••••••••••••••••
getuid ••••••••••••••••••••••
gtty ••••••••••••••••••••••••
hog •
ilgins ••••••••••••••••••••••
intr -....
link ••••••••••••••••••••••••
kill ••••••••••••••••••••••••
makdir ••••••••••••••••••••••
mdate •••••••••••••••••••••••
InOunt •••••••••••••••••••••••
op~ ••••••••••••••••••••••••
quit ••••••••••••••••••••••••
read. ••••••••••••••••••••••••
rele ••••••••••••••••••••••••
seek ••••••••••••••••••••••••
setuid ••••••••••••••••••••••
sl eep •••••••••••••••••••••••
stat ••••••••••••••••••••••••
stime •••••••••••••••••••••••
stty ••••••••••••••••••••••••

remove (delete) directory
format text for printing
repair damaged file system
command interpreter
sort ASCII file
get file status
remove symbols, relocation bits
set typewriter modes
become super-user
sum file
connect-time accounting
manipulateDECtape
get time information
communicate with MH-TSS (GCOS)
find name of terminal
print file page-by-page
dismount removable file system
find undefined symbols
get (English) word count
who is on the system
write to another user

set program break
catch EMT traps
change working directory
change mode of file
change owner of file
close open file
create file
execute program file
terminate execution
create new process
status of open file
get user ID
get typewr iter roode
set low-priority status
catch illegal instruction trap
catch or inhibit interrupts
link to file
destroy process
create directory
set date modified of file
mount file system
open file
catch or inhibit qUits
read file
release processor
move read or write pOinter
set user ID
delay execution
"get file status
set system time
set mode of typewr iter

- vii -

sync
tell
time

•
•
•

"umount ••••••••••••••••••••••
\llll ink ••••••••••••••••••••••
wait •
wr it e •••••••••••••••••••••••

III.

at an
atof
atoi

SUBROUTINES

• •••••••••••••••••••••••
•
•

con st .; ••••••••••••••••••••••
ct ime •••••••••••••••••••••••
exp •••••••••••••••••••••••••
fptrap ••••••••••••••••••••••
ftoa ••••••••••••••••••••••••
gert s •••••••••••••••••••••••
getc ••••••••••••••••••••••••
hypot •••••••••••••••••••••••
itoa ••••••••••••••••••••••••
log •••••••••••••••••••••••••
mesg ••••••••••••••••••••••••
nlist •••••••••••••••••••••••
pt ime •••••••••••••••••••••••
putc ••••••••••••••••••••••••
qsort •••••••••••••••••••••••
salloc ••••••••••••••••••••••
sin •••••••••••••••••••••••••
sqrt ••••••••••••••••••••••••
switch ••••••••••••••••••••••

IV. SPECIAL FILES

dnO
dpO
Ipr
mem
mtO
ppt
rfO
rkO

•
•
•••••••••••••••••••••••••
•
•
~
• ••••••••••••••••••••••••
•••••••••••••••••••••••••

rpO •••••••••••••••••••••••••
tapO •
"tty ••••••• ~ •••••••••••••••••
ttyO ••••••••••••••••••••••••

V. FILE FORMATS

a. out •••••••••••••••••••••••
archive •••••••••••••••••••••
core ••••••••••••••••••••••••

assure synchronization
find read or write pointer
get time of year
dismount file system
remove (delete) file
wait for process
write file

arctangent
convert ASCII to floating
convert ASCII to integer
floating-point constants
convert time to ASCII
exponential function
floating-point simulator
convert floating to ASCII
communicate with GCOS
get character
compute hypotenuse
convert inte;Jer to ASCII
logarithm base e
print string on typewriter
read name list
print time
write character or word
quicker sort
storage allocator
sine, cosine
square root
transfer depending on value

801 ACU
201 Dataphone
line printer
core memory
magtape
punched paper tape
RF disk
RK disk
RP disk
DECtape
consol e typewr iter
renote typewriter

assembler and loader output
archi ve f il e
core image file

viii

directory •••••••••••••••••••
f il e s yst em •••••••••••••••••
ident •••••••••••••••••••••••
passwd ••••••••••••••••••••••
tap •••••••••••••••••••••••••
uids ••••••••••••••••••••••••
utmp ••••••••••••••••••••••••
wtmp ••••••••••••••••••••••••

VI. USER MAINT AINED PROGRAMS

basic •••••••••••••••••••••••
bc· ••••••••••••••••••••••••••
bj ••••••••••••••••••••••••••
cal •••••••••••••••• · •••••••••
chash •••••••••••••••••••••••
cr ef ••••••••••••••••••••••••
das
dli
dpt
moo
ptx
trng
ttt

VII.

• ••••••••••••••••••••••••
•
• •••••••••••••••••••••••••
• ••••••••••••••••••••••••
•
• •••••••••••••••••••••••••
•

MISCELLANEOUS

ascii •••••••••••••••••••••••
bproc •••••••••••••••••••••••
getty •••••••••••••••••••••••
glob ••••••••••••••••••••••••
init ••••••••••••••••••••••••
kbd •••••••••••••••••••••••••
login •••••••••••••••••••••••
msh •••••••••••••••••••••••••
tabs ••••••••••••••••••••••••

directory format
fi~e system format
GCOS ident cards
password file
DECt ape format
map names to user ID's
logged-in user information
accounting files

DEC supplied BASIC
compile B program
the game of black jack
print calendar
prepare symbol table
cross-reference table
disassembl er
load DEC binary paper tapes
read DEC ASCII paper tapes
the game of MOO
permuted index
compile tm;l program
the game of tic-tac-toe

map of ASCII
boot procedure
adapt to typewriter
argument e~ander
initializer process
map of TTY 37 keyboard
how to log onto system
mini Shell
set tab stops on typewriter

- ix -

chmod (I): change
wtmp(V):

acct(I): get connect-time
t acct (I): conn ect-t ime

dnO (IV): 80 1
getty(V II) :

salloc(III): storage
mail(I): send mail to

write(I): write to
ar(I):

archive(V) :

atan(III):
glob(VII) :

echo (I): pr int command

sort (I): sort
dpt(VI): read DEC

atof (III): convert
atoi (III): convert

ascii(VII): map of
ctime(III): convert time to

convert floating to
itoa(III): convert int a:Jer to

a.out(V) :
as (I):

sync(II):

bc(VI): compile
log{III): logarithm

base I) :

basic(VI): DEC supplied

sue I):
dl i(VI): load DEC

remove symbols, relocation

bj(VI): the qame of
bproc(VII):

br eak(II): set program
istat(I): file status

INDEX

: (I): pI ace label'
a.out(V): assernbl er and loader output
access mode of files
account ing files
accounting
accounting
acct(I): get connect-time accounting
ACU
adapt to typewriter
allocator
another user
another user
archive (combine) files
archive file
archlve(V}: archive file
arctangent
argument expander
arguments
ar(I): archive (combine) files
ASCII file
ASCII paper tapes
ASCII to floating
ASCII to integer
ascii(VII): map of ASCII
ASCII
ASCII
ASCII ••• ftoa(III):
ASCII
asCI): assembler
assembler and loader output
assembl er
assure synchronization
atan(III): arctangent
atof(III): convert ASCII to floating
atoi(III): convert ASCII to int eger
B program
base e
bas(I): BASIC dialect
BASIC dialect
bas1c(VI): DEC supplied BASIC
BASIC
bc(VI): compile B program
become super-user
binary paper tapes
bits ••• strip(I):
bj(VI): the game of black jack
black jack
boot procedure
bproc(VII): boot procedure
break (II): set program br eak
break.
by i-number

- x -

cC(I): compile
dc(I): desk

cal(VI): print

ident (V): Gces ident
cemt(II):

ilgins(II):
intr(II):
quite II):

chmod (I):
chmod(II):

chown(I):
chown(II}:
chdir (I):

chdir(II):
putC(III): write

getc(III): get

check(I):

close(II):

C program
calculator
calendar
cal(VI): print calendar
cards
catch EMT traps
catch illegal instruction trap
catch or inhibit interrupts
catch or inhibit quits
cat(I): conc~tenate (or print) files
cc(I): compile C program'
cemt(II): catch EMT traps
change access mode of files
change mode of file
change owner of files
change owner of file
change working directory
change working directory
character or word
character
chash(VI): prepare symbol table
chdir(I): change working directory
chdir(II): change working directory
check consistency of file system
check(I): check consistency of file system
chmod(I): change access mode of files
chmod(II): change mode of file
chown(I): change owner of files
chown(II): change owner of file
close open file
close(II): close open file
cmp(I): compare file contents

-are I): archive·· (combine) files
echo(I): print command arguments

sh(I): command interpreter
exit(I): end command. sequence

goto(I): command transfer
if(I): conditional command

gert s(III) communicate with Gces
tss(I) communicate with MH-TSS (GCes)
cmp(I) compare file contents
bc(VI) compile B program
cC(I) compile C program
fcC I) compile Fortran program

tmg(VI} compile tmgl program
hypot{ III): compute hypotenuse

cat(I): concatenate (or print) files
if(I): conditional command

acct(I): get connect-time accounting
tacct(I}: connect-time accounting

check(I): check consistency of file system
tty(IV}: con sol e typewr iter

const(III): floating-point constants
con st(III): floating-point constant s

Is (I): list cont ent s of directory
cmp(I): compare file contents

- xi -

atof(III):
atoi(III):
ftoa(III):
i toa(III):

ctime(III):
cp(I) :

core(V) :
mem(IV):

sine III): Sine,
wC(I): get (English) word

makdir(II) :
mkdir(I):

create II):
fork(II):

cref(VI):

dpd(I): spawn data-phone
salve I): repair

dpd(I): spawn
dpO (IV): 201
date(I): get

mdate(II): set

date(I): get date and time of

db(I): symbolic
dpt(VI): read
dli(VI): load

basic(VI) :
tape V):

raw(I): rewind
tap(I): manipulate

tapO (IV):
sleep(II):

rndir(I): remove
dsw(I):

rm(I): remove
unlink(II): remove
mesg(I): permit or

switch(III): transfer
dc(I):

kill (II):
mount (I): mount

bas(I): BASIC
directory(V) :
ds(I): verify

chdir(I): change working
chdir(II): change working

convert ASCII to floating
convert ASCII to integer
convert floating to ASCII
convert integer to ASCII
convert time to ASCII
copy file
core image file
core memory
core(V): core image file
cosine
count
cp(I): copy file
create directory
create directory
create file
create new process
create II): create fi·le
cref(VI): cross-reference table
cross-reference table
ctime(III): convert time to ASCII
daemon
damaged file system
das(VI): disassembler
data-phone daemon
Dataphone
date and time of day
date modified of file
date(I): get date and time of day
day
db(I): symbolic debugger
dC(I): desk calculator
debugger
DEC ASCII paper tapes
DEC binary paper tapes
DEC supplied BASIC
DECtape format
DECtape
DECtape
DECtape
delay execution
(delete) directory
delete files interactively
(delete) file
(delete) file
deny messages
depending on value
desk calculator
destroy process
detachable file system
df(I): find free disk space
dialect
directory format
directory hierarchy
directory(V): directory format
directory
directory

- xii -

Is (I): list contents of
makdir(II): create

mkdir(I): create
rmdir(I): remove (delete)

das(VI) :
df(I): find free

du (I): "f ind
rfO (IV): RF
rkO(IV): RK
rpO (IV): RP
umount (II) :

umount(I):

ode I): octal

ld(I): link
ed(I): text

fed(I): form-letter
cemt(lI): catch

exit(I):
wc(I): get

exec(II):
exit(II): terminate

sleep(II): delay

glob(VII): argument

exp(III):
log(III): logarithm base

cmp(I): compare
opr(I): print

type(I): pr int
ov(I): page overl ay

istat{ I):
state I): get

state II): get
file system{ V):

check consistency of
mount (I): mount detachabl e

mount (II): rcount
salv(I): repair damaged

umount (I): dismount removabl e
umount (II): dismount

directory
directory
directory
directory
disassembler
disk space
disk usage
disk
disk
disk
dismount file system
dismount removable file system
dli(VI): load DEC binary paper tapes
dnO (IV): 80 1 ACU
dpd("I): spawn data-phon e daemon
dpt(VI): read DEC ASCII paper tapes
dpO(IV): 201 Dataphone
dS(I): verify directory hierarchy
dSw(I): delete f lIes interactively
du(I): find disk usage
dump of file
echo(I): print command arguments
ed(l): text editor
editor (loader)
editor
editor
EM!' traps
end command sequence
(English) word count
exec(II): execute program file
execute program file
execution
execution
exit(I): end command sequence"
exit(II): terminate execution
expander
exp(III): exponential function
exponential function
e
fcC I): compile Fortran program
fed(I): form-letter editor
file contents
file off-line
file page-by-page .
file print
file status by i-number
file status
file status
file system format
file system(V): file system format
file system ••• check(I):
file system
file system
file system
file system
file system

- xiii -

find (I): find
pre I): pr int

dsw(I): delete
mt(I): save/restore

ar(I): archive (combine)
concatenate (or print)
change access mode of

chown(I): change owner of
wtmp(V) : account ing
archive(V): archive

chIIOd (II): change mode of
chown(II): change owner of

close(II): close open
cor e(V): cor e image

cp(I): copy
creat(II): create

exec(II): execute program
fstat(II): status of open

link(II): link to
In(I): link to

set date modified of
mv(I): move or rename
od(I): octal dump of

·open(II): open
passwd(V): password

read(II): read
rm(I): renove (delete)

sort(I): sort ASCII
sum(I): sUm

unlink(II): remove (delete)
write(II): write

due I):
find(I):

df(I):
tty(I):

tell(II):
un(I) :

ftoa(III).: convert
const(III) :

fptrap(IJ;I):
atof (II I): convert ASC II to

form(I): generate
fed(I):

nroff (I):
roff(I):

directory(V): directory
file system(V): file system

tape V): DEct ape

fcC I): compile

df(I): find

file with given name
file with headings
files interactively
files on magtape
files
files ••• cat(I):
files ••• chmod(I):
files
files
file
file
file
file
file
file
file
file
file
file
fi1e
file ••• mdate(II):
file
file
file
file
file
file
file
file
file
file
find disk usage
find file with given name
find free disk space
find name of terminal
find read or write pOinter
find undefined symbols
find(I): find file with given name
floating to ASCII
floating-point constants
fl.oating-point simu1 ator
floating
fork(II): create new process
form letter
form-letter editor
format text for printing
format text for printing
format
format
format
forme I): generate form letter
Fortran program
fptrap(III): floating-point simulator
-free disk space
fstat(II): status of open file
ftoa(III): convert floating to ASCII

- xiv -

exp (III): exponent ial
bj (VI): the

moo (V I): th e
ttt (VI): the

ident(V) :
gerts(III): communicate with

communicate with MH-TSS
forme I):

getc(III):
acct(I):
date(I):

wc(I):
stat(I):

state II):
tm(I):

time(II):
gtty(II):

getuid(II) :

find(I): find file with

pr (I): pr int file with
ds(I): verify directory

login(VII):
hypot(III): compute

istat(I): file status by
uid s (V): map names to' user

ident (V) : GeOS

getuid(II): get user
setuid(II): set user

ilgins(II): catch
core{V): core

ptx(VI): permuted
. tm(I)·: get time

utmp(V): logged-in user
intr(II): catch or
quit(II): catch or

init(VII):

ilgins(II): catch illegal
itoa(III): convert

atoi(III): convert ASCII to
dSw(I): delete files

she I): command
intr(II): catch or inhibit

function
game of black jack
game of MOO
game of tic-tac-toe
Gces ident cards
Gces
(GCOS) ••• t s s (I) :
generate form letter
gerts(III): communicate with Gces
get character
get conn ect-time account ing
get date and time of day
get (English) word count
get file status
get file status
get time information
get time of year
get typewriter mode
get user ID
getc(I'II): get character
getty(VII): adapt to·typewriter
getuid(II): get user ID
given name .
glob(VII): argument expander
goto(I): command transfer
gtty(II): get typewriter mode
headings
hierarchy
hog(II): set low-priority status
how to log onto system
hypotenuse
hypot(III): compute hypotenuse
i-number
ID's
ident cards
ident(V): GCeS ident cards
ID
ID
if(I): conditional command
ilgins(II): catch illegal instruction
illegal instruction trap
image file
index

. information
information
inhibit interrupts
inhibit quits
initializer process
init(VII): initializer process
instruction trap
integer to ASCII
integer
interactively
interpreter
interru~ts
intr(II): catch or inhibit interrupts

- xv -

trap

bj (VI): the game of bl ack

kbd(VII): map of TTY 37

: (I): pI ace

form(I): generate form
Ipr(IV):

Id (I) :
link(II):

In (I) :

Is (I) :
nlist(III): read name

dli(VI) :
a.out(V): assembler and

ld(I): link editor
login(I):

login(VII): how to
loge III):
utmp(V):

hog (II): set

istat(I): file status by i-number
itoa(III): convert inta:Jer to ASCII
jack
kbd(VII): map of TTY 37 keyboard
keyboard
kill(II): destroy process
label
ld(I): link editor (loader)
letter
line print er
link editor (loader)
link to file
link to f11e
link(II): link to file
list contents of directory
list
In(~): link to f1le
load DEC binary paper tapes
loader output
(loader)
log on to system
log onto system
logarithm base e
logged-in user information
10g(III): logarithm base e
10gin(I): log on to system
10gin(VII): how to log onto system
low-priority status
Ipr(IV): line printer
Is(I): list contents of directory

m6(I): macroprocessor
mt(I): save/restore files on magtape

mtO (IV): .. magtape
mail(I): send mail to another user

tape I) :
man(I): run off

uids(V) :
ascii(VII):

kbd(VII) :

mem(IV): core

mesg(I): permit or deny
tss(I): communicate with

msh(VII) :

chmod (I): change access
chmod(II): change

stty(II): set
stty(I): set typewriter

gtty(II): get typewr iter

mail(I): send mail to another user
makdir(II): create directory
man(I): run off manual section
manipulate DEctape
manual section
map names to user ID's
map of ASCII
map of TTY 37 keyboard
mdate(II): set date modified of file
mem(IV): core memory
memory
mesg(I): permit or deny messages
mesg(III): pr int str ing on typewr iter
messages
MH-TSS (GCOS)
mini Shell
mkdir(I): create directory
mode of files
mode of file
mode of typewr iter
modes
mode

- xvi :-

mdate(II): set date

moo (VI): the game of
mount (I):

mount (II) :

mv(I):
seek(II) :

nlist(III): read
tty(I): find
nm(I): print.
uids(V): map

find (I): find file with given
fork(II): create

man(I): run
opr(I): print file

login(VII): how to log
close(II): 'close

fstat(II): status of
open(II):

cat(I): concatenate
assembler and loader

'ov(I): page

chown(I): change
chown (II): change

ov(I):
type(I): print file

dli(VI): load DEC binary
dpt(VI): read DEC ASCII

ppt(IV): punched

passwd(V) :
mesg(I):
ptx(VI) :

: (I) :
seek(II): move read or write
tell(II): find read or write

chash(VI) :

cal (VI) :
echo(I):

modified of file
moo (V I): the game of MOO
MOO
mount detachable file system
mount file system
mount(I): mount detachable file system
mount (II): mount file system
move or rename file
move read or write pOinter
msh(VII): mini Shell
mt(I): save/restore files on magtape
mtO (IV): magtape
mv(I): move or rename file
m6(I): macroprocessor
name list
name of. terminal
namelist
names to user m's
name
new process
nlist(III): read name list
nm(I): print namelist
nroff(I): format text for printing
octal dump of file
od(I): octal dump of file
off manual section
off-line
onto system
open file
open file
open file
open(II): open file
opr(I): print file off-line
(or print) files.
output ••• a.out (V):
overlay file print
ov(I): page overl ay file pr int
owner of files
owner of file
page overlay file print
page-by-page
paper tapes
paper tapes
paper tape
passwd(V): password file
password file'
permit or deny messages
permuted index
place label
pointer
pointer
ppt(IV): punched paper tape
prepare symbol table
pr(I): print file with headings
print calendar
print command arguments

- xvii -

opr (I):
type(I):

pr (I) :
cat(I): concatenate (or

nm(I):
mesg(III): .

pt1me(III):
lpr(IV): line

nroff(I): format text for
roff(I): format text for
ov(I): page overl ay file

bproc (V II): boot
rele(II): release

fork(II): create new
init(VII): initializer

kill(II): destroy
wait(II): wait for

break(II): set
exec (II): execute
bc(VI): compile B

cc(I): compile C
fC(I): compile Fortran
tnq(VI): compile tmgl

ppt(IV):

qsort (III):

quit(II): catch or inhibit
dpt(VI):

read(II) :
nlist(III) :

seek(II): nove
tell(II): find

rele(II):

strip(I): renove symbols,
ttyO(IV):

umount (I): dismount
rmdir(I):

rm(I):
unlink(II) :

stripe I):
mv(I): move or

salve I):

raw(I):
rfO (IV):

rkO(IV):

print file off-line
print file page-by-page
print file with headings
print) files
print namelist
print string on typewriter
print time
printer
printing
print ing
print
procedure
processor
process
process
process
process
program break
program file
program
program
program
program
ptime(III): print time

'ptx(VI): permuted index
punched paper tape
putC(III): write character or word
qsort(III): quicker sort
quicker sort
quit(II): catch or inhibit quits
quits
read DEC ASCII paper tapes
read file
read name list
read or write pointer
read or write pointer
read(II): read file
release processor
rele(II): release processor
relocation bits
remote typewriter
renovabl e file system
remove (delete) directory
remove (delete) file
remove (delete) file
remove symbols, relocation bits
rename file
repair damaged file system
rew(I): rewind DECtape
rewind DEctape
RF dis~
rfO (IV): RF disk
RK disk
rkO(IV): RK diSK
rmdir(I): remove (delete) directory
rm(I): remove (delete) file

- xviii -

sqrt(III): square
rpO (IV):

man (I):

mt(I):
man(I): run off manual

mail (I):
exit(I): end command

mdate(II):
hog(II):

stty(II):
break(II):
stime(II):
tabs (VII):

stty(I):
setuid(II):

msh(VII): mini

fptrap(III): floating-point
sin(III):

sort (I):

qsort (III): quicker
df(I): find free disk

dpd (I) :

sqrt (III):

istat(I): file
fstat(II):

hog(II): set low-priority
stat(I): get file

stat(II): get ~ile

tabs (VII): set tab
salloc(III):

mesg (III): pr int

sum(I):

sue I): become
basic(VI): DEC

chash(VI): prepare
db (I) :

roff(I): format text for printing
root
RP disk
rp 0 (IV): RP disk
run off manual section
sal'loc(III): storage allocator
salv(I): repair damaged file system
save/restore files on magtape
section
seek(II): move read or· write pointer
send mail to another user
sequence
set date modified of file
set low-priority status
set mode of typewriter
set program break
set system time
set tab stops on typewriter
set typewr iter modes
set user ID
setuid(II): set user ID
Shell
sh(I): command interpreter
simulator
Sine, cosine
sin(III): Sine, cosine
sleep(II): delay execution
sort ASCII file
sort(I): sort ASCII file
sort
space
spawn data-phone daemon
sqrt(III): square root
square root
stat(I): get file status
stat(II): get file status
status by i-number
status of open file
status·
status
status
stime(II): set system time
stops on typewriter
storage allocator
string on typewriter
strip(I): remove symbols, relocation bits
sttY(I): set typewriter modes
stty(II): set mode of typewriter
su(I): beoome super-user
sum file
sum(I): sum file
super-user
supplied BASIC
switch(III): transfer depending on value
symbol table
symbolic debugger

- xix -

str ip(I): 'remove
unCI): find undefined

sync(II): assure

file systern(V): file
stime(II): set

file
check consistency of file

login(l): log on to
10gin(VIl): how to log onto

mount detachable file
mount(Il): mount file

salv(I): repair damaged file
dismount removable file

urnount(Il): dismount file
who(l):, who is on the

tabs(Vll): set
chash(VI): prepare symbol
cref(VI): cross-reference

load DEC binary paper
dpt(VI): read DEC ASCII paper

ppt(IV): punched paper

tty(I): find name of
exit(II):

ed(I) :
nroff (I): format
roff (I): format

ttt (VI): the game of
tm(I): get

date(I): get date and
time(II): get

ctime(III):, convert

ptime(III): pr int
stime(II): se~ system

tmg(VI): compile

switch(III):
goto (I): command

cemt(II): catch EMT
catch illegal instruction

kbd (VII): map of

stty(I): set

symbols, relocation bits
symbols
synchronization
sync(II): assure synchronization
syst em format
system time
system(v): file system format
system ••• check(I):
system
system
system ••• mount(I):
system
system
system ••• umount (I):
system
system
tab stops on typewriter
table
table
tabs(VII): set tab stops on typewriter
tacct(I): connect-time account ing
tapes ••• d11(VI) :
tapes
tape
tap(I): manipulate DECtape
tape V): DEct ape format
tapO (IV): DEct ape
tell(Il): find read or write pointer
terminal
terminate execution
text editor
text for printing
text for printing
tic-tac-toe
time information
time of day
time of year
time to ASCII
time(II): get time of year
time
time
tmgl program
tmg(VI): compile tmgl program
tm(I): get time information
transfer depending on value
transfer
traps
trap ••• ilqins(II):
tSS(I): communicate with MH-TSS (GCOS)
ttt·(VI) : the game of tic-tac-toe
TTY 37 keyboard
tty(I): find name of terminal
tty(IV): con sal e typewr iter
ttyO(IV): remote typewr iter
type(I): print file page-by-page
typewriter modes

- xx -

gtty(II): get
getty(VII): adapt to

mesg(III): print string on
stty(II): set mod e' of

tabs(V II): set tab stops on
tty(IV): con sol e
ttyO(IV): remote

un(I): find

due I): find disk
uids(V): map names to

getuid(II): get
setu1d(II): set

utmp(V): logged-in
mail(I): send mail to another

write(I): wr ite to another

transfer depending on
ds (I):

waite II):

who (I):

gerts(III): communicate
find (I): find file
pre I): print file

tSS(I): communicate
we(I): get (English)

putc{ III): write character or
chdir{ I}: change

chdir{ II): change"
putc{ III):
wr ite(II):

seek(II): move read or
tell(II): find read or

write(I):

t ime(II): get time of
dnO(IV):
dpO (IV):

kbd(VII): map of TTY

typewr iter mode
typewriter
typewriter
typewriter
typewriter
typewriter
typewriter
uids(V): map names to user ID's
umount(I): dismount removable file system
umount(II): dismount file system
undefined symbols
unCI): find undefined symbols
unlink(II): remove (delete) file
usage
user ID's
user ID
user ID
user information
user
user
utmp(V): logged-in user information
value ••• switch(III):
verify directory hierarchy
wait for process
wait{II): wait for ~rocess
wc(I): get (English) word count
who is on the system
who(I): who is on the system
'with GeOS
with given name
with headings
with MH-TSS (GCOS)

-- word count
word
working directory
working ,.directory
write character or word
write file
write pOinter
write pOinter
write to another user
write(I): write to another user
write(II): write file
wtmp(V): account ing f i1 es
year
801 ACU
201 Dataphone
37 keyboard

- xxi -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST ICS

BUGS

OWNER

(I)

place a label

.1 [label]

~ does nothing. Its only function is to place a
label for the goto command. ~ is a command so
the Shell doesn't have to be fixed to ignore
lines with: 's.

goto(I)

dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST ICS

BUGS

OWNER

ACCT (I)

acct -- login accounting

~ [wtmp]

~ produces a printout giving connect time and
total number of connects for each user who has
logged in during the life of the current wtmp
file. A total is also produced. If no wtmp file
is given, /tmp/wtmp is used.

/tmp/wtmp

init(VII), tacct(I), login(I), wtmp(V).

"cannot open ·wtmp·" if argument is unreadable.

dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DEseR IPT ION

FILES

SEE ALSO

DIAGNOSTICS

AR (I)

ar -- archive

~ key afile name1 •••

~ maintains groups of files combined into a sin
gle archive file. Its main use is to create and
update library files as used by the loader. It
can be used, though, for any similar purpose.

ke}! is one character from the set drtux, option
ally concatenated with~. afile is the archive
file. The names are constituent files in the
archive file. The meanings of the ~!Y characters
are:

d means delete the named files from the archive
file.

r means replace the named files in the archive
file. If the archive file does not exist, ~ will
create it. If the named files are not in the
archive file, they are appended.

~ prints a table of contents of the archive file.
If no names are given, all files in the archive
are tabled. If names are given, only those files
are tabled.

~ is similar to ~ except that only those files
that have been modified are replaced. If no
names are given, all files in the archive that
have been modified will be replaced by the modi
fied version.

~ will extract the named files. If no names are
given, all files in the archive are extracted.
In neither case does ~ alter the archive file.

~ means verbose. Under the verbose option, ~~
gives a file-by-file description of the making of
a new archive file from the old archive and the
constituent files. The following abbreviations
are used:

.£ copy
~ append
.9 delete
~ replace
~ extract

/tmp/vtm? temporary

Id(I), archive(v)

H " " " "Bad usage, afile --HnoS in archive format ~
cannot open temp file, name -- cannot open ,

- 1 -

3/15/72

BOOS

OWNER

AR (I)

" " " " name -- phase error, name -- cannot create A
"no archive file", "cannot create archive file
"name -- not found".

option ~ should be implemented as a table with
more information.

There should be a way to specify the placement of
a new file in an archive. Currently, it is
placed at the end.

ken, dmr

- 2 -

6/15/72

NAME

SYNOPSIS

DESCRIPTION

AS (I)

as -- assembl er

M [= J name 1 •••

~s assembl es the concatenation of name1 , •••• as
1S based on the DEC-provided assembler PAL-11R
[1J, although it was coded locally. Therefore,
only the differences will be recorded.

If the optional first argument = is used, all
undefined symbols in the assembly are treated as
global.

Character changes are:

for use
@ *
$

/

In M, the character ";" is a logical new line;
several operations may appear on one line if
separated by ";". Several new expression opera
tors have been provided:

\>
\<
*
\/
%
!
1J

right shift (logical)
left shift
multiplication
division
remainder (no longer means "register")
one's complement
parentheses for grouping
result has value of left, type of right

For ~x~ele location 0 (relocatable) can be writ
ten 0 • ; another way to denote register 2 is
"2"rO" •

All of the preceding operators are binary; if a
left"oeerand i~ missing, it is taken to be O.
The ! operator adds its left operand to the
one's complement of its right operand.

There is a conditional assembly operation code
different from that of PAL-11R (whose condition
als are not provided):

• if expression
• • •
• end if

If the expression evaluat~s tg non-zero A the.s~c
tion of code between the .if and the Aend=f
is assembled; otherwise it is ignored. .if s
may be nested.

- 1 -

6/15/72 AS (I)

Temporary labels like those introduced by Knuth
[2] may be employed. A temporary label is de
fined as follows:

n:

~he!e n is a digit 0 ••• 9. S~b~ls of the form
nf refer to the first label n: following the

use of the s~b~l; those of ~h~-form "nb" refer
to the last n: • The same n may be used many
times. Labels of this form are less taxing both
on the imagination of the programmer and on the
symbol table space of the assembler.

The P AL-11 R opcodes ". word", ". eot" and ". end"
are redundant and are omitted.

The symbols

rO ••• r5
frO ••• fr 5 (floating-point registers)
sp
pc
ac
mq
div
mul
Ish
ash
nor
csw
• •

are ered~fined with appropriate va~ues. Th~ s~
bol csw refers to the console sW1tches. ••
is the relocation constant and is added to each
relocatable reference. On a PDP-11 with reloca
tion hardware, its value is 0; on most systems
without protection, its value is 40000(8).

The new opcode "sys" is used to specify system
calls. N~es for system calls are predefined.
See section (II).

The opcod es "bes" (branch on error set) and "bec"
(branch on error clear) are defined to test the
error status bit set on' return from system calls.

Strings of characters may be assembled in a way
," " . more convenient than PAL-11 s .ascii operat10n

(which is, therefore, omitted). Stf.ings ar~ ..
included between the string quotes (and >

(here is a string)

Escape sequences exist to enter non graphic and

- 2 -

6/15/72 AS (I)

other difficult characters. These sequences are
also effective in single and double character
constant s introduced by single (') and doubl e (II)
quotes respectively.

use for
\n newline (012)
\0 NULL (000)
\> >
\t TAB (011)
\a ACK (006)
\r CR (015)
\p ESC (033)
\ \ \ (134)

~ provides a primitive segmentation facility.
There are three segments: text, data and bss.
The text segment is ordinarily used for code.
The data segment is provided for initialized but
variable data. The bss segment cannot be ini
tialized, but symbols may be defined to lie
within this segment. In the future, it is ex
pected that the text segment will be write
protected and sharable. Assembly begins in the
text segment. The pseudo-operations

.text

.data

.bss

cause the assembler to switch to the text, data,
or bss segment respectively. Segmentation is
useful at present for two reasons: Non-
initializ ed tabl es and variables, if placed in
the bss segment, occupy no space in the output
file. Also, alternative use of the text and data
segments provides a primitive dual location
counter feature.

In the output file, all text-segment information
comes first, followed by all data-segment infor
mation, and finally bss information. Within each
segment, information appears in the order writ
ten.

Note: since nothing explicit can be assembled
into the bss segment, the usual appearance of
this segment is in the following style:

.bss
var1 :
tab1:
• • •

.=.+2

.=.+100.

That is, space is reserved but nothing explicit
is placed in it.

- 3 -

6/15/72 AS (I)

As is evident from the example, it is legal to
assign to the location counter ".". It is also
permissible in segments other than" .bss". The
restriction is made, however, that the value so
assigned must be defined in the first pass and it
must be a value associated with the same segment
as • •

The pseudo-op

.comm symbol, expression

makes ,symbol an undefined global symbol, and'
places the value of the expression in the value
field of the symbol's definition. Thus the above
decl aration is equivalent to

.globl symbol
symbol = expression symbol

The treatment of such a symbol by the loader
Id(I) is as follows: If another routine in the
same load defines the symbol to'be an ordinary
text, data, bss, or absolute symbol, that defini
tion takes precedence and the symbol acts like a
normal undefined external. If however no other
routine defines the symbol, the loader defines it
as an external bss-segment symbol and reserves n
bytes after its location, where n is the value of
the expression in the .comm operation. Thus
II • comrn x, 100" eff ectively declares x to be a com
mon region 100 bytes long. Note: all such de
clarations for the same symbol in various
routines should request the same amount of space.

The binarr outp~t of the assembler is placed on
the file a.out in the current directory. a.out
also contains the symbol table from the assembly
and relocation bits. The output of the assembl er
is executable immediately if the assembly was
error-free and if there were no unresolved exter
nal references. The link editor ld may be used
to combine several assembly outputs and resolve
global symbol s.

The assembler does not produce a listing of the
source program. This is not a serious drawbacK;
the debugger £B discussed below is sufficiently
powerful to render a printed octal translation of
the source unnecessary.

On the last pages of this section is a list of
all the assembler's built-in symbols. In the
case of instructions, the addressing modes are as
follows:

- 4 -

6/15/72

FILES

SEE AL~O

D IAGNOST ICS

BUGS

OWNER

source, destination
general register

AS (I)

src, dst
r
fsrc,fdst
fr

floating source, destination
floating register

exp expression

The names of certain 11/45 opcodes are different
from those in the 11/45 manual; some were changed
to avoid conflict with EAE register names, others
to draw analogies with existing 11/20 instruc
tions.

/etc/as2
/tmp/atm1?
/tmp/atm2?
/tmp/atm3?
a.out

pass 2 of the assembler
temporary
temporary
temporary
object

Id(I), nm(I), sh(I), unCI), db(I), a.out(V),
fptrap(III), [1J PAL-11R Assembler; DEC-11-ASDB
D, [2J Knuth, The ~ 2£ computer Programming,
Vol. Ij Fundamental Algorithms.

When an input file cannot be read, its name fol
lowed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur,
a single-character diagnostic is typed out to
gether with the line number and the file name in
which it occurred. Errors in pass 1 cause can
cellation of pass 2. The possible errors are:

)
J
<
*
•

parentheses error
parentheses error
String not terminated properly
Indirection ("*") used illegally - " .. III egal assignment to •

A error in ~ddress
B Branch instruction is odd or too remote
E error in Expre·ssion
F error in local ("I" or "b") type symbol
G Garbage (unknown) character
I End of file inside an If
M Multiply defined symbol-as label
o Qdd-- word qua~tkty assembled at odd address
p ~hase error-- • different in pass 1 and·2
R Relocation error
U]ndefined symbol
X synt a! error

Symbol table overflow is not checked.

If "." is moved backwards by an odd number of
bytes, relocation bits are corrupted.

dmr

- 5 -

6/15/72

Special variabl es:

•
• •

Register:

rO
r1
r2
r3
r4
r5
sp
pc
frO
fr1
fr2
fr3
fr4
frS

Eae & switches:

esw
div
ae
mq
rnul
se
sr
nor
Ish
ash

Syst ern call s:

exit
fork
read
write
open
close
wait
ereat
link
unlink
exec
ehdir
time
makdir
ehrnod
ehown
break
stat
seek

- 6 -

tell
mount
urnount
setuid
getuid
stime
quit
intr
fstat
eernt
rndate
stty
gtty
ilgins
hog

AS (I)

Do ubI e operand:

mov
movb
ernp
cmpb
bit
bitb
bie
bieb
bis
bisb
add
sub

Branch:

br
bne
beq
bge
bIt
bgt
ble
bpI
bmi
bhi
bIos
bve
bvs
bhis
bec
bee
blo
bes
bes

"
"
"
"
•• ..

(= bee)

(= bes)

6/15/72

Singl e operand:

clr dst
clrb "

" com
" comb ..

inc .,
incb
dec

..
decb

If ..
neg ..
negb ..
adc
adcb

..
sbc

..
sbcb

.. ..
ror ..
rorb
rol

..
rolb "

•• asr
asrb

..
asl

..
aslb

..
jrnp

..
swab

..
tst src
tstb src

Miscell an eous :

jsr r,dst
rts r
sys exp -. (= trap)

Fl ag-sett ing:

clc
clv
clz
cln
sec
sev
sez
sen

Floating point ops:

cfcc
setf
setd
seti
setl
clrf
negf
absf

fdst
fdst
fdst

- 7 -

AS (I)

tstf fsrc
movf fsrc,fr (= ldf)
movf fr,fdst (= stf)
movif src,fr (= Ideif)
movfi fr,dst (= stcfi)
movof fsrc,fr (= Idcdf)
movfo fr,fdst (= stefd)
addf fsrc,fr
subf fsrc,fr
mulf fscr,fr
divf fsrc,fr
cmpf fsrc,fr
modf fsrc,fr

11/45 operations

als src,r (= ash)
alsc src,r (= ashc)
mpy src,r (= mul)
dvd src,r (= div)
xor src,r
sxt dst
mark exp
sob r,exp

Specials

.byte
• even
• if
• endif
.globl
.text
.data
.bss
• carom

3/15/72

NAME

SYNOPSIS

DESCRIPTION

BAS (I)

bas -- basic

~ [file]

bas is a dialect of basic [1]. If a file argu
m€nt is provided, the file is used for input
before the console is read.

~ accepts lines of the form:

statement
integer statement

Int eg er numb er ed st at ement s (known as i nt ern al
statements) are stored for later execution. They
are stored in sorted ascending order. Non
numbered statements are immediately executed.
The result of an immediate expression statement
(that does not have '=' as its highest operator)
is printed.

statements have the following syntax: (expr is
short for expression)

expr
The expression is executed for its side
effects (assignment or function call) or
for printing as described above.

~
Return to system level.

for name = exprexpr statement
~ name - expr expr

•••
next
The for statement repetitively executes a
statement (first form) or a group of state
ments (second form) under control of a
named variable. The variable takes on the
value of the first expression, then is
incremented by one on each loop, not to
exceed the value of the second expression.

goto expr
The expression is evaluated, truncated to
an integer and execution goes to the
corresponding integer numbered statment.
If executed from immediate mode, the inter
nal statements are compiled first.

j! expr, statement
The statement is executed if the expression
evaluates to non-zero.

list [expr [expr]]

- 1 -

3/15/72 BAS (I)

~ is used to print out the stored inter
nal statements. If no arguments are given,
all internal statements are printed. If
one argument is given, only that internal
statement is listed. If two arguments are
given, all internal statements inclusively
between the arguments are printed.

print expr
The expression is evaluated and printed.

return expr
The expression is evaluated and the result
is passed back as the value of a function
call.

~
The int ernal statements are compiled. The
symbol table is re-initialized. The random
number generator is re-set. Control is
passed to the lowest numbered internal
statement.

Expressions have the following syntax:

name
A name is used to specify a variable.
Names are composed of a letter ('a' - 'z')
followed by letters and digits. The first
four characters of a name are Significant.

number
A number is used to repres··ent a constant
value. A number is composed of digits, at
most one decimal pOint ('.:) and possibly a
scale factor of the form ~.digits or ~
digits.

1 expr 1
Parentheses are used to alter normal order
of evaluation.

expr op expr
COmmon functions of two arguments are ab
breviated by the two arguments separated by
an operator denoting the function. A com
plete list of operators is given below.

expr i [expr La. expr •••]] 1
Functions of an arbitrary number of argu
ments can be called by an'expression fol
lowed by the arguments in parentheses
separated by commas. The expression evalu
ates t.o the line number of the entry of the
function in the internally stored state-·
ments. This causes the internal statements

- 2 -

3/15/72 BAS (I)

to be compiled. If the expression evalu
ates negative, a builtin function is
called. The list of builtin functions
appears below.

name 1 expr ~ expr •••] 1
~rays are not yet implemented.

The following is the list of operators:

=

& I

= is the assignment operator. The left
operand must be a name or an array element.
The result is the right operand. Assign
ment binds right to left, all other opera
tors bind left to right.

& (logical and) has result zero if either
of its arguments are zero. It has result
one if both its arguments are non-zero. 1
(logical or) has result zero if both of its
arguments are zero. It has result one if
either of its arguments are non-zero.

< <= > >= == <>

+ -

* /

The relational operators « less than, <=
less than or equal, > greater than, >=
greater than or equal, == equal to, <> not
equal to) return one if their arguments are
in the specified relation. They return
zero otherwise. Relational operators at
the same level extend as follows: a>b>c is
the same as a>b&b>c.

Add and subtract.

MUltiply and divide.

Exponen~ iation.

The following is a list of builtin functions:

arg

exp

log

Arg(i) is the value of the ith actual
parameter on the current level of function
call.

Exp(x) is the exponential function of x.

Log(x) is the logarithm base e of x.

- 3 -

3/15/72

FILES

SEE ALSO

D IAGNOST ICS

BUGS

OWNER

sin

cos

atn

rnd

BAS (I)

Sin(x) is the sine of x (radians).

aos(x) is the cosine of x (radians).

Atn(x) is the arctangent of x. (Not imple
mented.)

Rnd() is a uniformly distributed random
number between zero and one.

expr

int

Expr () is the only form of program input.
A line is read from the input and evaluated
as an expression. The resultant value is
returned.

Int(x) returns x truncated to an integer.

/tmp/btm? temporary

[1J DEC-11-AJPB-D

Syntax errors cause the incorrect line to be
typed with an underscore where the parse failed.
All other diagnostics are self explanatory.

Mrays [] are not yet implemented. In general,
program Sizes, recursion, etc are not checked,
and cause trouble.

ken

- 4 -

3/1 5/72

NAME

SYNOPSIS

DESCRIPTION

FILES

~EE ALSO

DIAGNOSTICS

BUGS

OWNER

CAT (I)

cat -- concatenate and print

~ file1 •••

cat reads each file in sequence and writes it on
the standard output stream. Thus:

is about the easiest way to print a file. Also:

~ file1 file2)file3

is about the easiest way to concatenate files.

If no input file is given ~ reads from the
standard input file.

pr(I), cp(I)

none; if a file cannot be found it is ignored.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCR IPT ION

FILES

SEE ALSO

D IAGNOST ICS

BUGS

OWNER

CC (I)

cc -- C compiler

.££ [.=.£] sfile1...!£ ••• ofile
1

•••

££ is the UNIX C compiler. It accepts three
types of arguments:

" .. Arguments whose names end with .c are assumed
to be C source programs; they are compiled, and
the object program is left on the file sfile

1
.o

(i.e. the file whose name is that of the source
with ".0" substituted for ".c").

Other arguments (except for" -c") are assumed to
be either loader flag arguments, or C-compatible
object programs, typically produced by an earlier
££ run, or perhaps libraries of C-compatible
routines. These programs, together with the
results of any compilations specified, are loaded
(in the order given) to produce an executable
program with name a,out.

The •• -c" argument suppresses the loading phase,
as does any syntax error in any of the routines
being compiled.

file.c
a.out
c.tmp
/sys/c/nc
/usr /1 ib/crtO.o
/usr/lib/libc.a
/usr/lib/liba,a

input file
loaded output
temporary (deleted)
compiler
runt !me st artoff
builtin functions, etc.
system library

C reference manual (in p~eparation), bc(VI)

Diagnostics are intended to be self-explanatory.

dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCR IPT ION

FILES

SEE ALSO

D lAGNOST lCS

BUGS

OWN~

CHDIR (I)

chdir -- change working directory

chd ir directory

directory becomes the new working directory.

Because a new process is created to execute each
command, chdir would be ineffective if it were
written as a normal command. It is therefore
recognized and executed by the Shell.

she I)

" " Bad directory if the directory cannot be
changed to.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DES CR IPT ION

FILES

SEE ALSO

D IAGNOST ICS

BOOS

OWNER

CHECK (I)

check -- file system consistency check

check [filesystem [blockno1 •••]]

check will examine a file system, build a bit map
of used blocks, and compare this bit map against
the bit map maintained on the file system. If
the file system is not specified, a check of all
of the normally mounted file systems is per
formed. output includes the number of files on
the file system, the number of these that are
'large', the number of used blocks, and the
number of free blocks.

/dev/rf?, /dev /rk?, /dev/rp?

find(I), ds(I)

Diagnostics are produced for blocks misSing,
duplicated, and bad block addresses. Diagnostics
are also produced for block numbers passed as
parameters. In each case, the block number,
i-number, and block class (1 = inode, ~ indirect,
f free) is printed.

The checking process is two pass in nature. If
checking is done on an active file system, ex
traneous diagnostics may occur.

The swap space on the RF file system is not ac
counted for and will therefore show up as 'miss
ing' •

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST les

BUGS

OWNER

CHMOD (I)

chmod -- change mode

chmod octal file 1 •••

The octal mode replaces the mode of each of the
files. The mode is constructed from the OR of
the following modes:

01 write for non-owner
02 read for non-owner
04 write for owner
10 read for owner
20 executabl e
40 set-UlD

only the owner of a file may change its mode.

stat(I), ls(I)

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPI' ION

FILES

SEE ALSO

D IAGNOST ICS

BUGS

OWNER

CHOWN (I)

chown -- change owner

chown owner file1 •••

owner becomes the new owner of the files. The
owner may be either a decimal UID or a name found
in /etc/uids.

Only the owner of a file is allowed to change the
owner. It 1s illegal to change the owner of a
file with the set-user-ID mode.

/etc/uids

state I)

"Who?" if owner cannot be found, "file?" if file
cannot be found.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST ICS

BUGS

OWNER

eMP (I)

cmp -- compare two files

cmp file1 file2

The two files are compared for identical con
tents. Discrepancies are noted by giving the
offset and the differing words.

Messages are given for inability to open either
argument, premature EOF on either argument, and
incorrect usage.

If the two files differ in length by one byte,
the extra byte 'does not enter into the compari
son.

dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST ICS

BUGS

OWNER

CP (I)

cp -- copy

.£R f ile1 file2

The first file is opened for reading, the second
created mode 17. Then the first is copied into
the second.

cat(I), pr(I)

Error returns are checked at every system call,
and appropriate diagnostics are produced.

The second file srould be created in the mode of
the first.

A directory convent ion as used in .mY should be
adopt'ed for £.12.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILE~

SEE ALSO

DIAGNOSTICS

BOOS

OWNER

date -- print and set the date

date [mmddhhmm]

DATE (I)

If no argument is given, the current date is
printed to the second. If an argument is given,
the curr ent date is set. mm is the month number;
dd is the day number in the month; hh is the hour
number (24 hour system); mm is the minute number.
For example:

date 10080045

sets the date to oct 8, 12:45 AM.

"?" if the argument is syntactically incorrect.

dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

DB (I)

db -- debug

db [core [namelist]] [=]

Unlike many debugging packages (including DEC's
ODT, on which 9B is loosely based) g~ is not
loaded as part of the core image which it is used
to examine; instead it examines files. Typical
ly, the file will be either a core image produced
after a fault or the binary output of the assem
bler. Core is the file being debugged; if omit-

.. -ow-
ted core is assumed. namelist is a file con-
taining a symbol table. If it is omitted, the
symbol table is obtained from the file being
debugged, or if not there from a.out. If no
appropriate name list file can be found, db can
still be used but some of its symbolic facilities
become unavailable.

For the meaning of the optional third argument,
see the last paragraph below.

The format for most SE requests is an address
followed by a one character command.

Addresses are expressions built up as follows:

1. A name has the value assigned to it when
the input file was assembled. It may be
relocatable or not depending on the use of
the name during the assembly.

2. An octal number is an absolute quantity
with the appropriate value.

3. An octal number immediately followed by
is a relocatable quantity with the ap
propriate value.

.. " r

4. The symbol "." indicates the current
pointer of db. The current pOinter is set
by many db requests.

".. "" 5. Expressions separated by + or (blank)
are expressions with value equal to the sum
of the components.. At most one of the com
ponents may be relocatable.

.. ..
6. Expressions separated by - form an ex-

pression with value equal to the difference
to the components. If the right component
is relocatable, the left component must be
relocatable.

7. Expressions are evaluated left to right.

- 1 -

3/15/72

Names for registers are built in:

rO ••• rS
sp
pc
ac
mq

DB (I)

These may be examined. Their values are deduced
from the contents of the stack in a core image
file. They are meaningless in a file that is not
a core image.

If no address is given for a command, the current
address (also specified by".") is assumed. In

" " general, • pOints to the last word or byte
printed by db.

There are db commands for examining locations
interpreted as octal numbers, machine instruc
tions, ASCII characters, and addresses. For
numbers and characters, either bytes or words may
be examined. The following commands are used to
examine the specified file.

/

\

"

,

The addressed word is printed in octal.

The addressed byte 1s printed in octal.

The addressed word 1s printed as two ASCII
characters.

The addressed byte 1s printed as an ASCII
character.

-.

The addressed word is multiplied by 2, then
printed in octal (used with B programs,
whose addresses are word addresses).

? The addressed word is interpreted as a
machine instruction and a symbolic form of
the instruction, including symbolic ad
dresses, is printed. Often, the result
will appear exactly as it was written in
the source program.

& The addressed word 1s interpreted as a sym
bolic address and is printed as the name of
the symbol whose value is closest to the
addressed word, possibly followed by a
signed offset.

<nl> (1. e., the character "new line") This
command advances the current location
counter "." and prints the resulting loca
tion in the mode last specified by one of

- 2

3/15/72

"

%

DB (I)

the above requests.

" n This character decrements • and prin.ts
the resulting location in the mode last
selected one of the above requests. It is
a converse to <nl>.

Exit.

It is illegal for the word-oriented commands to
have odd addresses. The incrementina and decre-

n " ~ menting of • done by the <nl> and requests is
by one or two depending on whether the last com
mand was word or byte oriented. '

The address portion of any of the above commands
may be followed by a comma and then by an expres
sion. In this case that number of sequential
words or b~t~s specified by the expression is
printed. • is advanced so that it pOints at
the last thing printed.

There are two commands to interpret the value of
expressions.

= When preceded by an expression, the value
of the expression is typed in octal. When
not preceded by an expression, the value of
n " • is indicated. This command does not
change th,e value of n.".

: An attempt is made to print the given ex
pression as a symbolic address. If the
expression is relocatable, that symbol is
found whose value is nearest that of the
expression, and the symbol is typed, fol
lowed by a sign and the appropriate offset.
If the value of the expression is absolute,
a symbol with exactly the indicated value
is sought and printed if found; if no
matching symbol is discovered, the octal
value of the expression is given.

The following command may be used to patch the
file being debugged.

This command must be preceded by an expres
sion. The value of the expression is
stored at the location addressed by the

" n current value of •• The opcodes do not
appear in the symbol table, so the user
must assemble them by hand.

The following command is used after a fault has
caused a core image file to be produced.

- 3 -

3/15/72 DB (I)

FILES

$ causes the fault type and the contents of
the general registers and several other
registers to be printed both in octal and
symbolic format. The values are as they
were at the time of the fault.

I2l2 should not be used to e,xamine special files,
for example disks and tapes, since it reads one
byte at a time. Use od(I) instead.

For some purposes, it is important to know how
addresses typed by the user correspond with loca
tions in the file being debugged. The mapping
algorithm employed by db is non-trivial for two
reasons: First, in an a.out file, there is a
20(8) byte header which will not appear when the
file is loaded into core for execution. There
fore, apparent location 0 should correspond with
actual file offset 20. Second, some systems

" " cause a squashed core image to be written. In
such a core image, addresses in the stack must be
mapped according to the degree of squashing which
has been employed. Db obeys the following rules:

If exactly one argument is given, and if it ap
pears to be an a.out file, the 20-byte header is
skipped during addressing, i.e., 20 is added to
all addresses typed. As'a consequence, the
header can be examined beginning at location -20.

If exactly one argument is given and if the file
does not appear to be an a.out file, no mapping
is done.

If zero or two arguments are given, the mapping
appropriate to a core image file is employed.
This means that locations above the program break
and below the stack effectively do not exist (and
are not, in fact, recorded in the core file).
Locations above the user's stack pOinter are
mapped, in looking at the core file, to the place
where they are really stored. The per-process
data kept by the system, which is stored in the
last 512(10) bytes of the core f1le, can be ad
dressed at apparent locations 160000-160777.

If one wants to examine a f1le which has an asso
ciated name list, but is not a core image f1le,
the last argument "-" can be used (actually the
only purpose of the last argument 1s to make the
number of arguments not equal to two). This
feature is used most frequently in examining the
memory file /dev/mem.

- 4 -

3/15/72

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

DB (I)

asCI), core(V), a.out(V), od(I)

"File not found" if the first argument cannot be
read; otherwise ?

...... " The request always decrements
in byte mode.

dmr

- 5 -

.. ..
• by 2, even

3/15/72

NAME

SYNOPSIS

DESCRIPTION

DC (I)

dc -- desk calculator

dc

dc is an arbitrary precision integer arithmetic
pack~ge. The overall structure of dc is a stack
ing (reverse Polish) calculator. The following
constructions are recognized by the calculator:

number
The value of the number is pushed on the
stack. If the number starts with a zero, it
is taken to be octal, otherwise it is decimal.

+=~L~

sx

lx

d

f

x

1

r

The top two values on the stack are added (±),
subtracted (=), multiplied (~), divided (L),
or remaindered (%). The two entries are
poppped off of the stack, the result is pushed
on the stack in their place.

The top of the stack is popped and stored into
a register named x, where x may be any charac
ter.

The value in register x 1s pushed on the
stack. The register x is not altered.

The top value on the stack is pushed on the
stack. Thus the top value is duplicated.

The top value on the stack is printed in de
cimal. The top value remains unchanged.

All values on the stack are popped off and
printed in decimal.

exits the program

treats the top element of the stack as a char
acter string and executes it as a string of de
commands

interprets the rest of the line as a UNIX com
mand.

All values on the stack are popped.

- 1 -

3/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

DC (I)

nk
A sc~le factor of 10n is set for all subse
quent multiplication and division.

new-line
space

ignored.

An examnle to calculate the monthly, weekly and
hourly rates for a ~10,OOO/year salary.

10000
100*
dsa
12/
la52/
d10*
375/
f

(now in cents)
(non-destructive store)
(pennies per month)
(pennies oer week)
(deci-pennies per week)
(pennies per hour)
(print all results)

(3) 512
(2) 19230
(1) 83333

(x) ? for unrecognized character x.
(x) ? for not enough elements on the stack to do
what was asked.
"Out of space" when the free list is exhausted.

f is not implemented
% is not implemented

rhm

- 2 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D lAGNOST lCS

BUGS

OWNER

DF (I)

df -- disk free

M [. filesystem]

~ prints out the number of free blocks available
on a file system. If the file system is unspeci
fied, the free space on all of the normally
mounted file systems is printed.

/dev/rf?, /dev/rk?, /dev/rp?

check (I)

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST lCS

BUGS

DPD (I)

dpd -- spawn data phone daemon

letc/dpd

dpd is the 201 data phone daemon. It is designed
to submit jobs to the Honeywell 6070 computer via
the gerts interface.

dpd uses t he directory lusr /dpd. The file lock
in that directory is used to prevent two daemons
from becoming active. After the daemon has suc
cessfully set the lock, it forks and the main
path exits, thus spawning the daemon. lusr/dpd
is scanned for any file b8:Jinning with.,9f. Each
such file is submitted as a job. Each line of a
job file must begin with a key character to
specify what to do with the remainder of the line

§ directs dpd to generate a unique snumb card.
This card is generated by incrementing the
first ward of the file lusr/dpd/snumb and con
verting that to decimal concatenated with the
station 10.

b specifies that the remainder of the line is
to be sent as a literal.

B specifies that the rest of the line is a
file name. That file is to be sent as binary
cards.

! is the same as ~ except the file is prepend
ed with a form feed.

U specifies that the rest of the line is a
file name. After the job has been transmit
ted, the file is unlinked.

Any error encountered will cause the daemon to
drop the call, wait up to 20 minutes and start
over. This means that an improperly constructed
~ file may cause the same job to be submitted
every 20 minutes.

While waiting, the daemon checks to see that the
lock file still exists. If the lock is gone, the
~on will exit. ----

/dev/dnO, /dev/dpO~ /usr/dpd/*

opr(l)

- 1 -

3/15/72 DPD (I)

OWNER ken

- 2 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST ICS

BOOS

OWNER

DS (I)

ds -- directory consistency check

.9!. [output]

ds will walk the directory tree from the root
keeping a list of every file encountered. The
second pass will read the i-list and compare the
number of links there with the actual number
found. All discrepancies are noted.

If an argument is given, a complete printout of
file names by i-number is output on the argument.

/, /dev/rkO, /tmp/dstmp

check (I)

inconsistent i-numbers

the root is noted as inconsistent due to the fact
that L exists in no directory. (Its i-number is
41 •)

~ should take an alternate file system argument.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

DSW (I)

dsw delete interactively

~ [directory]

For each file in the given director~ ~"." if not
specified) ~ types its name. If y is typed,

It " the file is deleted; if x, ~ exits; if any-
thing else, the file is not removed.

rm(I)

" " The name dsw is a carryover from the ancient
past. Its etymology is amusing but the name is
nonetheless ill-advised.

dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILE~

SEE ALSO

D IAGNOST I CS

BOOS

OWNER

DU (I)

du summarize disk usage

du [~J [.=l!] [n arne •••]

du gives the number of blocks contained in all
files and (recursively) directories within each
specified directory or file~. If ~ is
missing, ~ is used.

The optional argument .=2 causes only the grand
total to be given. The optional argument .=.s
causes an entry to be generated for each file.
Absence of either causes an entry to be generated
for each directory only.

A file which has two links to it is only counted
once.

•

Non-directories given as arguments (not under -a
option) are not listed.

Removable file systems do not work correctly
since i-numbers may be repeated while the
corresponding files are distinct. Du should
maintain an i-number list per root directory
encountered.

dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

ECHO (I)

echo -- echo arguments

~ [arg1 •••]

~ writes all its arguments in order as a line
on the standard output file. It is mainly useful
for producing diagnostics in command files.

doug

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

ED (I)

ed editor

ed [name]

ed is the standard text editor.

If the optional argument is given, ed simulates
an ~ command on the named file; that is to say,
the file is read into ed's buffer so that it can
be edited.

ed operates on a copy of any file it is editing;
changes made in the copy have no effect on the
file until an explicit write (~) command is
given. The copy of the text being edited resides
in a temporary file called the buffer. There is
only one buffer.

Commands to ed have a simple and regular
structure: zero or more addresses followed by a
single character command, possibly followed by
parameters to the command. These addresses
specify one or more lines in the buffer. Every
command which requires addresses has default
addresses, so that the addresses can often be
omitted.

In general only one command may appear on a line.
Certain commands allow the input of text. This
text is placed in the appropriate place in the
buffer. While ed is accepting text, it is said
to be in input mode. In this mode, no commands
are recognized; all input is merely collected.
Input mode 1s left by typing a period (.) alone
at the beginning of a line.

ed supports a limited form of regular expression
notation. A regular expression is an expression
which specifies a set of strings of characters.
A member of this set of strings is said to be
matche9 by the regular expression. The regular
expressio~s allowed by ed are constructed as
follows:

1. An ordinary character (not one of those
discussed below) is a regular expression
and matches that character.

2. A circumflex (-) at the beginning of a reg
ular expression matches the null character
at the beginning of a line.

3. A currency symbol ($) at the end of a regu
lar expression matches the null character
at the end of a line.

- 1 -

6/12/72 ED (I)

4. A period (.) matches any character but a
new-line character.

5. A regular expression followed by an aster
isk (*) matches any number of adjacent
occurrences (including zero) of the regular
expression it follows.

6. A string of characters enclosed in square
brackets ([]) matches any character in the
string but no others. If, however, the
first character of the string is a circum
flex (~) the regular expression matches any
character but new-line and the characters
in the string.

7. The concatenation of regular expressions is
a regular expression which matches the con
catenation of the strings matched by the
components of the regular expression.

8. The null regular expression standing alone
is equivalent to the last regular expres
sion encountered.

Regular expressions are used in addresses to
specify lines and in one command (s, see below)
to specify a portion of a line which is to be
replaced.

If it is desired to use one of the regular ex
pression metacharacters as·an ordinary character,
that character may be preceded by "\". This also
applies to the character boundin~ the regular
expression (often "j") and to "\ itself.

Addresses are constructed as follows. To under
stand addressing in ed it is necessary to know
that at any time there is a current line. Gen
erally speaking, the current line~s~ last
line affected by a command; however, the exact
effect on the current line by each command is
discussed under the description of the command.

1. The character
line.

" " • addresses the current

2. The character ,,~" addresses the line im
mediately before the current line.

" " 3. The character $ addresses the last line
of the buffer.

4. A decimal number n addresses the Bth line
of the buffer.

- 2 -

6/12/72 ED (I)

6. A regular expression enclosed in slashes
"/" addresses the first line found by
searching toward the end of the buffer and
stopping at the first line containing a
string matching the regular expression. If
necessary the search wraps around to the
beginning of the buffer.

5. A regular expression enclosed in queries
" " ? addresses the first line found by
searching toward the beginning of the
buffer and stopping at the first line found
containing a string matching the regular
expression. If necessary the search wraps
around to the end of the buffer.

" " 7. An address !ollowed by a plus sign + or a
minus sign - followed by a decimal number
specifies that address plus (resp. minus)
the indicated number of lines. The plus
sign may be omitted.

8. "'x" addresses the line assoc~a1;ed (marked)
with the mark name character x which must
be a printable character. Lines may be
marked with the "k" command described
below.

Commands may require zero, one, or two addresses.
Commands which require no addresses regard the
presence of an address as an error. Commands
which accept one or two addresses assume default
addresses when insufficient are given. If more
addresses are qiven than such a command reqUires,
the last one or two (depending on what is accept
ed) are used.

Addresses are separated from each other typically
by a comma (,). They may also be separated by a
semicolon (;). In this case the current line "."
is set to the the previous address before the
next address is interpreted. This feature can be
used to determine the starting line for forward
and backward searches ("/", If?"). The second
address of any two-address sequence must
correspond to a line following the line
corresponding to the first address.

In the following list of !9 commands, the default
addresses are shown in parentheses. The
parentheses are not part of the address, but are
used to show that the given addresses are the
default.

As mentioned, it is generally illegal for more
than one command to appear on a line. However,

- 3 -

6/12/72 ED (I)

any command may be suffixed by "p" (for "print").
In that case, the current line is printed after
the command is complete.

(•) a
<text>
•

The ~ppend command reads the given text and
" " appends it after the addressed line. •

is left on the last line input, if there
were anYA otherwise at the addressed line.
Address 0" is legal for this command; text
is placed at the beginning of the buffer.

(.,.)c
<text>
•

The £hange command deletes the addressed
lines, then accepts input text which re-

" " places these lines. • is left at the
last line input; if there were none, it is
left at the first line not changed.

(.,.)d
The gelete command deletes the addressed
lines from the buffer. The line originally
after the last line deleted becomes the
current line; if the lines deleted were
originally at the end, the new last line
becomes the current line.

e filename
The edit command causes the entire contents
of the buffer to be deleted, !nd then the
named file to be read in. is set to
the last line of the buffer. The number of
characters read is typed. "filename" is
remembered for possible use as a default
file name in a subsequent ~ or ~ command.

f filename
The !ilename command print! the cur!ently
rememb~red file name. If filename is
given, the currently remembered file name .. " is changed to filename.

(1,$)g/regular expression/command list
In the global command, the first step is to
mark every line which matches the given
regular expression. Then for every such
line, the given command list is executed
with "." initially set to that line. A
single command or the first of multiple
commands appears on the same line with the
global command. All lines of a multi-line
list except the last line must be ended

- 4 -

6/12/72 ED (I)

with "\". _a, i, and _c commands and associ-- " " ated input are permitted; the • terminat-
ing input mode may be omitted if it would
be on the last line of the command list.
The (global) commands, g and y, are not
permitted in the command list.

(•) i
<text>
•

This command inserts the given text before
-~. " .. the addressed line. • is left at the

last line input; if there were none, at the
addressed line. This command differs from
the ~ command only in the placement of the
text.

(.)kx
The marlS command associates or marks the
addressed ~i~e with ~he single c~~. acter
mark name x. The ten most rec~ mark
names are remembered. The current mark
names may be printed with the E command.

(.,.)1
The list command prints the addressed lines
in an unambiguous way. Non-printing char-

'acters are o~er-struck as follows:
char ,Erints
bs ~
tab ~

ret ~
SI %
so e

All characters preceded by a prefix (ESC)
character are printed over-struck with A

without the prefix. Long lines are folded
with the sequence \newline.

(.,.)mA

n

The ~ove command will reposition the ad
dressed lines after the line addressed by
"A". The line originally after the last
line moved becomes the current line; if th"e
lines moved were originally at the end, the
new last line becomes the current line.

The marknames command will print the
current mark names.

(.,.)p
The :erint command prints the addressed
lines. "." is left at the last line print
ed. The ~ command may be placed on the
same line a,fter any command.

- 5 -

6/12/72 ED (I)

The guit command causes ed to exit. No
automatic write of a file is done.

($)r filename
The read command reads in the given file
after the addressed line. If no file name
is given, the remembered file name, if any,
is used (see £ and! commands). The remem
bered file name is not changed unless
"filename" is the very first file name men-

.. " tioned. Address 0 is legal for ~ and
causes the file to be read at the beginning
of the buffer. If the read is successful,
the number of characters read is typed. " .. • is left at the last line read in from
the file.

(.,.)s/regular expression/replacement/ or,
(.,.)s/regular expression/replacement/g

The ~ubstitute command searches each ad
dressed line for an occurrence of the
specified regular expression. on each line
in which a match is. found, all matched
strings are replaced by the replacement
specified, if the global replacement indi
cator "g" appears after the command. If
the global indicator does not appear, only
the first occurrence of the matched string
is replaced. It is an error for the sub
stitution to fail on all addressed lines.
Any character other than space or new-line
may be used instead of "/" to delimit the
;e~ular expression and the replacement.

• is left at the last line substituted.

The ampersand n&_. appearing in the replace
ment is replaced by the regular expression
that was matched. The special meaning of
" " & in this context may be suppressed by
preceding it by "\".

(1,$)v/regular expression/command list
This command is the same as the global com
mand except that the command list is exe
cuted with "." initially set to every line
~cept those matching the regular expres
sion

(1,$)w filename
The write command writes the addressed
lines onto the given file. If the file
does not exist, it is created mode 17
(readable and writeable by everyone). The
remembered file name is not changed unless
"filename" is the very fIrSt file name

- 6 -

6/12/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

mentioned. If no file name is given,
remembered file name, ~f any, is used
~ and! commands). • is unchanged.
the command is successful, the number
characters written is typed.

($)=

ED (I)

the
(see
If

of

The line number of the addressed line is " .. typed. • is unchanged by this command.

!UNIX command
" " The remainder of the line after the is

sent to UNIX to be interpreted as a com-
" " mand. • is unchanged.

(• + 1) <newline>
An address alone on a line causes that line
to be printed. A blank line alone is
equivalent to ".+1p"; it is useful for
stepping through text.

If an interru~t signal (ASCII DEL) is sent, ed
will print a ?" and return to its command level.

If invoked with the command name :'-', (see init)"
ed will si'ln"on with the message Editing system
and print * as the command level prompt charac
ter.

Ed has size limitations on the maximum number of
lines that can be edited, and on the maximum
number of characters in a line, in a global's
command list, and in a remembered file name.
These limitations vary with the physical core
size of the PDP11 computer on which ed is being
used. The range of limiting sizes for the above
mentioned items is; 1300 - 4000 lines per file,
256 - 512 characters per line, 63 - 256 charac
ters per global command list, and 64 characters
per file name.

/tmp/etm?
/etc/msh

temporary
" " to implement the ! command.

.. ..
? for any error

ken, dmr, jfo

- 7 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST ICS

BUGS

OWNER

EXIT(I)

exit terminate command file

exit performs a ~ to the end of its standard
input file. Thus, if it is invoked inSide a file
of commands, upon return from exit the shell will
discover an end-of-file and terminate.

if(I), goto(I), sh(I)

dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

Fe (I)

fc -- fortran compiler

fc [.=£] sfile1..&! ••• of il e1 •••

fc is the UNIX Fortran compiler. It accepts
three types of arguments:

" " Arguments whose names end with .f are assumed
to be Fortran source 'programs; they are compiled,
and the object program 'is left on the file
sfile1 .0 (i.e. the file whose name is that of
the source with ".0" substituted for ••• f

n
).

other arguments (except for "_e") are assumed to
be either loader flags, or object programs, typi
cally produced by an earl ier fc run, or perhaps

,libraries of Fortran-compatible routines. These
programs, together with the results of any compi
lations specified, are loaded (in the order
given) to produce an executable program with name
a.out.

The "-e" argument suppresses the loading phase,
as does any syntax error in any of the routines
being compiled.

The following is a list of differences between fc
and ANSI standard Fortran (also see the BUGS
section) :

1. Arbitrary combination of types is allowed in
expressions. Not all combinations are expect
ed to be supported at runtime. All of the
normal conversions involving integer, real,
double precision and complex are allowed.

2. The 'standard' implicit statement is recog
nized.

3. The types doublecomplex, 10gical*1, integer*2
and real*8 (doubleprecision) are supported.

4. ~ as the first character of a line Signals a
continuation card.

5 • .£ as the first character of a line signals a
comment.

6. All keywords are recognized in lower case.

7. The notion of 'column 7' is not implemented.

8. G-format input is free form;- leading blanks
are ignored, the first blank after the start
of the number terminates the field.

- 1 -

3/15/72

FILES

SEE ALSO

D IAGNOST Ies

Fe (I)

9. A comma in any numeric or logical input field
terminates the field.

10. There is no carriage control on output.

In I/O statements, only unit numbers 0-19 are
supported. Unit number nn corresponds to file
"fort.!y};" (e.g. unit 9 is file" fort09"). For
input, the file must exist; for output, it will
be created.

file.f
a.out
f. tmp [123J
/usr /fort/fc [1234J
/usr /1 ib/frO.o
/usr/lib/filib.a
/usr /lib/libf. a
/usr /1 ib/liba.a

ANSI standard

input file
loaded o·utput
temporary (deleted)
compilation phases
runt ime st art off
interpreter library
built in functions, etc.
system library

Cbmpile-time diagnostics are given by number. If
the source code is available, it is printed with
an underline at the current character pointer.
Errors possible are:

1 statement too long
2 syntax error in type statement
3 redeclaration
4 missing { in array declarator
5 syntax error in dimension statement
6 inappropr iate or gr atui tous arr ay de-

clarator
7 syntax error in subscript bound
8 illegal character
9 common variable is a parameter or already

in common
10 common synt ax error
11 subroutine/blockdata/function not first

statement
12 subroutine/function syntax error
13 block data syntax error
14 redeclaration in external
15 external syntax error
16 implicit syntax error
17 subscript on non-array
18 incorrect subscript count
19 subscript out of range
20 subscript syntax error
23 equivalence inconsistency
24 equivalence syntax error
25 separate common blocks equivalenced
26 common block illegally extended by

equivalence
27 common inconsistency created by

- 2 -

3/15/72

29
30
31
33

equivalence
() imbalance in expression
expression syntax error
illegal variable in equivalence
non array/function used with
subscripts/arguments
goto syntax error
illegal return

Fe (I)

35
37
38 continue, return, stop, call, end, or

pause syntax err,or
39
40
41
42
43
50
51
52
53
54
55
56
99
101

assign synt ax error
if synt ax error
I/O syntax error
do or I/O iteration error
do end missing
illegal statement in block data
multiply defined labels
und·ef ined label
dimension mismatch
expression syntax error
end of statement in hollerith constant
arr ay too 1 arge
~ table overflow
unrecognized statement

Runtime diagnostics:

1 invalid log argument
2 bad arg count to amod
3 bad arg count to atan2
4 excessive argument to cabs
5 exp too large in cexp
6 bad arg count to cmplx
7 bad arg count to dim
8 excessive argument to exp
9 bad arg count to idim
10 bad arg count to isign
11 bad arg count to mod
12 bad arg count to sign
13 illegal argument to sqrt
14 aSSigned/computed goto out of range
15 subscript out of range

100 illegal I/O unit number
101 inconsistent use of I/O unit
102 cannot create output file
103 cannot open input file
104 EOF on input file
105 illegal character in format
106 format does not begin with (
107 no conversion in format but non-empty

list '
108 excessive parenthesis depth in format
109 ill egal format specif ication
110 illegal character in input field
111 end of format in hollerith specification

- 3 -

3/15/72

BUGS

OWNPR

FC (I)

999 unimplemented input conversion

The following is a list of those features not yet
impl ement ed:

loading of common (a BLOCK DATA program must be
written to allocate common).

arithmetic statement functions

data statements

backspace, endfile, rewind runtime

binary I/O

no scale factors on input

dmr, ken

- 4 -

6/15/72

NAME

SYNOPSIS

DESCRIPTION

FED (I)

fed -- edit associ~tive memory for form letter

fed

fed is used to edit a form letter associative
memory file, form.m, which consists of named
strings. Commands consist of single letters fol
lowed by a list of string names separated by a
single space and ending with a new line. The
conventions of the Shell with respect to '*' and
'?' hold for all comm~nds but e and m where
literal string names are expected. The commands
are:

e name1 •••

edit writes the string whose name is name 1 onto a temporary file and executes the sys
tem editor ed. On exit from the system edi
tor the temporary file is copied back into
the associative memory. Each argument is
operated on separately. The sequence of
commands to add the string from 'file' to
memory with name 'newname' is as follows:

e newname
0 (printed by ed)
r file
w
q (get out of ed)
q (get out of fe)

To dump ~ string onto a file:

e name
200 (printed by ed)
w filename
q (get out of ed)
q (get out of fe)

d [narne1 •••]

deletes a string and its name from the
memory. When called with no arguments d
operates in a verbose mode typing each
string name and deleting only if a 'y' is
typed. .~ 'q' response returns to command
level. Any other response does nothing.

m name 1 name2 •••

(move) changes the name of name 1 to name2 and removes previous string name if one
exists. Several pairs of argume6ts may be

- 1 -

6/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

FED (I)

given.

n [name 1 •••]

(names) lists the string names in the
memory. If called with the optional argu
ments, it just lists those requested.

p narne 1 •••

Erints the contents of the strings with
names given by the arguments.

q (guit) returns to the system.

checks the associative memory file for con
sistency. The optional arguments do the
following:

p causes any unaccounted for string to be
printed

f fixes broken memories by adding
unaccounted-for headers to free storage
and removing references to released
headers from associative memory.

/tmp/ftmp? temoorary
form.m associative memory

form (I), ed (I), s h (I)

'?' unknown comm~nd
'Cannot open temo. file'-- cannot create a tem
porary file for ed command
'name not in memory.' if string 'name' is not in
the associative memory and is used as an argument
for g or ~.

rhm,llc

- 2 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST Ies

BOOS

OWNER

FIND (I)

find find file with given name

!in9. name or. number •••

find searches the entire file system hierarchy
and gives the path names of all files with the
specif ied names or (decimal), i-numbers.

L

dmr

- 1 -

6/15/72

NAME

SYNOPSIS

DESCRIPTION

FORM (I)

form form letter generator

form proto arg1 •••

form gene~ates a form'l';etter from a prototype
letter, an associative memory, arguments and in a
special case, the current date.

If form is invoked with the EfQ!2 argument 'x',
the associative memory is searched for an entry
with name 'x' and the contents filed under that
name are used as the prototype. If the search
fails, the message "[x]:" is" typed on the console
and whatever text is tyPed in from the conso1~,
terminated by two new lines, is used as the pro
totype.

If the prototype argument is missing, '{~tter}'
is assumed.

BaSically, form is a copy process from the proto
type to the outout file. If an element of the
form [nJ (where n is a digit from 1 to 9) is
encountered, the-nth argument arg is inserted in
its place, and that argument is t'Ren rescanned. "-,
If [0] is encountered, the current date is in
serted. If the desired argument has not been
given, a message of the form ee[n]:" is typed.
The response tyPed in then is used for that argu
ment.

If an element of the form [nam~] or {name} is
encountered, the name is looked UP in the associ
ative memory. If it is found, the contents of
the memory under this' na~., ... replaces the original
element (again rescanned)~. If the name is not
found, a message of the form" [name] : ee is typed.
The r~sponse typed in is used for that element.
The resQonse is entered in the memory under the
name if the name is enclosed in []. The response
is not entered in the memory but is remembered
for the duration of the letter if the name is
enclosed in {}.

In both of the above cases, the response is typed
in by entering arbitrary text terminated by two
new lines. Only the first of the two new lines
is passed with the text.

If one of the special characters [{]}\ is preced
ed by a \, it los~s its special character.

If a filE named "forma" already exists in the
users directory, "formb" is used as the output
file and so forth to "formz".

- 1 -

6/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

FORM (I)

" " The file form.m is created if none exists.
Because form.m is ooerated on by the disc a1lo
cater, it should only be changed by using fed,
the form letter editor, or form.

form.m
form?

associative memory
outout file (read only)

fed(l), tyee(l), roff(l)

"cannot ooen output file" "cannot open memory
file" when the appropriate files cannot be locat
ed or created.

An unba1~nced] or } acts as an end of file but
may add a few strange entries to the associative
memory.

rhm,llc

- 2 -

3/15/72

NAME

SYNOPSIS

DESCR IPT ION

FILES

SEE ALSO

D IAGNOST I CS

BUGS

OWNER

GOTO (I)

goto command transfer

goto label

goto is only allowed when the Shell is taking
commands from a file. The file is searched (from
the beginning) for a line bejinning with":" fol
lowed by one or more spaces followed by the
label. If such a line is found, the goto command
returns. Since the read painter in the command
file paints to the line after the label, the
effect is to cause the Shell to transfer to the
labelled line.
.. ..

: is a do-nothing command that only serves to
place a label.

sh(I), : (I)

" " goto error , if the input file is a typewriter;
"label not found".

dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

IF (I)

if conditional command

if expr command [arg1 •••]

~ evaluates the expression expr, and if its
value is~, executes the given conmand with
the given arguments.

The following primitives are used to construct
the expr:

.=!: file
true if the file exists and is readable •

.=!'! f il e
true if the file exists and is writable

.=£ file
true if the file either exists and is
writable, or does not exist and is
creatable.

s1 .::. s2
true if the strings ~ and ~ are equal.

s1 ! = s2
true if the strings ~·and ~ are not
equal.

These primaries may be combined with the follow
ing operators:

1
unary negation operator

binary ~ operator

binary.2~ operator

1. expr 1
parent heses for grouping.

=s has higher precedence than~. Notice that
all the operators and flags are separate argu
ments to if and hence must be surrounded by
spaces.

sh(I)

" " if error , if the expression has the wrong
" " synt ax; command not found.

- 1 -

3/15/72 IF (I)

BUGS " " -c always indicates the file is creatable. even
if it isn't.

OWNER drnr

- 2 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D lAGNOST les

BUGS

OWNER

ISTAT (I)

1stat get 1node status

1st at 1numb er 1 •••

istat gives information about one or more i-nodes
on the file system /dev/rkO.

The information is basically in the same for as
that for stat(I). All information is self
explanatory except the mode. The mode is a
seven-character string whose characters mean the
following:

1 a: i-node is allocated
u: i-node is free (no file)

2 s: file is small (small er than 4096 bytes)
1: file is large

3 d: file is a directory
x: file is executable
u: set user ID on execution
-: none of the above

4 r: owner can read
-: owner cannot read

5 w: owner can write
-: owner cannot write

6 r: non-owner can read
-: non-owner cannot read

7 w: non-owner can write
-: no n-owner cannot write

The owner is almost always given in symbolic
form; however if he cannot be found in
"/etc/uids" a number is given.

If the number of arguments to ~ is not exactly
1 a header is generated identifying the fields of
the status information.

/etc/uids, /dev/rkO

stat(I) IS(I) (-1 option)

"name?" for any error.

istat should take an optional alternate filesys
tern argument.

dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPT ION

LD (I)

ld link editor

.!9. [-us aol] n ame1 •••

jg combines several object programs int.o one;
resol ves ext ernal references; and searches li
braries. In the simplest case the names of
several object programs are given, and ld com
bines them, producing an object module which can
be either executed or become the input for a
further ld run. In the latter case, the ,. -r"
option must be given to preserve the relocation
bits.

The argument routines are concatenated in the
order specified. The entry pOint of the output
is the beginning of the first routine.

If any argument is a library, it is searched
exactly once. Only those routines defining an
unr esol ved external reference are loaded. If a
routine from a library references another routine
in the library, the referenced routine must ap
pear after the referencing routine in the li
brary. Thus the order of libraries is important.

jS understands several"flag arguments which are
written preceded by a -:

" " -s squash the output, that is, remove the
symbol table and relocation bits to save
space (but imp.air the usefulness of the
debugger). This information can also be
removed by strip.

-u take the following argument as a symbol and
enter it as undefined in the symbol table.
This is useful for loading wholly from a
library, since initially the symbol table
is empty and an unresolved reference is
needed to force the loading of the first
routine.

-1 This option is an abbreviation for a li
br ary name. "-1" alone stands for
"/usr/lib/liba.a", which is the standard
system library for assembly language pro
grams • "-Ix" stands for" /usr/lib/libx.a"
where x is any character. There are li
braries for Fortran (x="f"lt C (x="c"),
Explor (x="e") and B (x="b).

-x Do not preserve local (non-.globl) symbols
in the output symbol table; only enter
external symbols. This option saves some
space in the output file.

- 1 -

3/15/72

FILES

SEE ALSO

D IAGNOST les

BUGS

OWNER

LD (I)

-r generate relocation bits in the output file
so that it can be the subject of another Id
run.

The output of Id is left on a,out. This file is
executable only if no errors occurred during the
load,

/usr/lib/lib?a libraries
a,out output file

as (I), ar (I)

"file not found"-- bad argument

"bad format" -- bad argument

"relocation error" -- bad argument (relocation
bi ts corrupt ed)

" " multiply defined -- same symbol defined twice in
same load

".un" -- stand s for "undefined symbol"

"symbol not found"-- loader bug

" , .., can t nove output file -- can t move temp:::>rary
to a ,out file

"no relocation bits"-- and input file lacks relo
cation information

" -. " too many symbols -- too many references to
external symbols in a given routine

" " premature EOF

"can't create l.out" -- cannot make temporary file

" " multiple entry point -- more than one entry
point specified (not possible yet).

Instructions in the data segment are not relocat
ed properly.

dmr

- 2 -

3/15/72

NAME

SYNOPSIS

DESCIi IPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

LN (I)

In make a link

.!n name1 [name2]

1n creates a link to an existing file-name. If
name2 is given, the link has that name; ot~erwise
it is placed in the current directory and its
name is the last component of name1 •

It is forbidden to link to a directory or to link
across file systems.

rm(I)

There is nothing particularly wrong wi~h In, but
links don't work right with respect to the backup
system: one copy is backed up for each link, and
(more serious) in case of a file system reload
both copies are restored and the information that
a link was involved is lost.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESeRIPI' ION

FILES

SEE ALSO

D IAGNOST Ies

BOOS

OWNER

LOGIN (I)

login sign onto UNIX

login [username [password]]

The login command is used when a user initially
signs onto UNIX, or it may be used at any time-to
change from one user to another. The latter case
is the one summarized above and described here.
See login (VII) for how to dial up initially.

If login is invoked without an argument, it will
ask for a user name, and, if appropriate, a pass
word. Echoing is turned off (if possible) during
the typing of the password, so it will not appear
on the written record of the session.

After a successful login, accounting files are
updated and the user is informed of the existence
of mailbox and message-of-the-day files.

Login is recognized by the Shell and executed
directly (without forking).

/tmp/utmp
/tmp/wtmp
mailbox
/etc/motd

accounting
accounting
mail
message-of-the-day

login(VII), init(VII), getty(VII), mail(I)

"login incorrect·', if the name or the password is
bad. "No Shell," , "cannot open password file,"
" " no directory: consult a UNIX programming coun-
cilor.

dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST res

BUGS

OWNm

LS (I)

Is list contents of directory

Is [-ltasd] name1 •••

Is lists the contents of one or nore directories
under control of several options:

1 list in long format, giving i-number, mode,
owner, size in bytes, and time of last
modification for each file. (see stat for
format of the mode) ----

t sort by time modified (latest first) instead
of by name, as is normal

a list ~l! entries; usually thos~.beginning
with • are suppressed

s give size in blocks for each eh~ry

d if argument is a directory, list only its
name, not its contents (mostly used with
"-1" to get status on directory)

.. .. .
If no argument is given, • is 11sted. If an
argument is not a directory, its name is given.

/etc/uids to get user ID's for Is ~

state I)
..

name nonexistent; name unreadable; ..
unstatabl e.

..
name

dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

MAIL (I)

mail send mail to another user

mail [letter person •••]

mail without an argument searches for a file
called mailbox, prints it if present, and asks if

.. " it should be saved. If the answer is y, the
mail is renamed~, otherwise it is deleted.
The answer to the above question may be supplied
in the letter argument.

When followed by the names of a letter and one or
more people, the letter is appended to each
person's mailbox. Each letter is preceded by the
sender's name and a postmark.

A person is either the name of an entry in the
directory lisr, in which case the mail is sent to
/usr/person mailbox, or the path name of a direc
tory, in which case mailbox in that directory is
used.

When a user logs in he is informed of the pres
ence of mail.

/etc/uids
mailbox
mbox

login (I)

to map uids
input mail
saved mail

.. ..
Who are you? if the user cannot be identifed

for some reason (a bug). .. Cannot s end to us er"
if mailbox cannot be opened.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D lAGNOST les

BUGS

OWNER

MAN (I)

man -- run off section of UNIX manual

~ title [section]

~ is a shell command file that will locate and
run off a particular section of this manual.
Title is the the desired part of the manual.
Section is the section number of the manual. (In
Arabic, not Roman numerals.) If section is miss
ing, 1 is assumed. For example,

man man

would reproduce this page.

/sys/man/man?/*

sh(I), roff (I)

"File not found",

ken

" .. Usage ••

- 1 -

3/15/72

NAME

SYNOPSIS

DESCR IPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

MESG (I)

mesg permit or deny messages

mesg [!1] [y.]

mesg n forbids messages via write by revoking
non-user write permission on the user's typewrit
er. mesg y reinstates permission. mesg with no
argument reverses the current permission. In all
cases the previous state is reported.

/dev/tty?

write(I)

"?" if the standard input file is not a typewrit
er

dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST Ies

BUGS

OWNER

MKD IR (I)

mkdir make a directory

mkdir dirname •••

mkdir creates specified directories in mode 17.

The stand ard entries
tomatically.

rmdir(I)

"dirname ?"

ken, dmr

- 1 -

" " • and " •• " are made au-

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST Ies

BUGS

OWNER

MOUNT (I)

mount mount file system

fetc/mount special dir

mount announces to the system that a removable
file system has been mounted on the device
corresponding to special file special. Directory
dir (which must exist already) becomes the name
of the root of the newly mounted file system.

umount (I)

" " ? , if the special file is already in use, can-
not be read, or if dir does not exist.

Should be usabl e only by the super-user.

It is possilbe to mount the same file system pack
twice. This is a very efficient way to destroy a
pack.

ken, dmr

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

MT (I)

mt manipulate magtape

.ID.1:. [key] [name •••]

~ saves and restores selected portions of the
file system hierarchy on magtape. Its actions
are controlled by the key argument. The key is a
string of characters containing at most one func
tion lett er and possibly one or nore fUnction
modifiers. other arguments to the command are
file or directory names specifying which files
are to be dumped, restored, ortabl ed.

The function portion of the key is specified by
one of the following letters:

r The indicated files and directories, to
gether with all subdirectories, are dumped
onto the tape. The old contents of the
tape are lost.

x extracts the named files from the tape to
the file system. The owner, mode, and
date-modified are restored to what they
were when the file was dumped. If no file
argument is given, the entire contents of
the tape are extracted.

t lists the names of all files stored on the
tape which are the same as or are hierarch
ically below the file arguments. If no
file'argument is given, the entire contents
of the tape are tabled.

1 is the same as ~ except that an expanded
listing is produced giving all the avail
able information about the listed files.

The following characters may be used in addition
to the letter which selects the function desired.

0, ••• , 7 This modifier selects the drive on " .. which the tape is mounted. 0 is the
default.

v Normally.,!!!j: does its work silently. The y.
(verbose) option causes it to type the name
of each file it treats preceded by a letter
to indicate what is happening.

a file is being added
x file 1s being extracted

The y. option can be used with ~ and ~ only.

f causes new entries copied on tape to be

- 1 -

6/12/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

MT (I)

'fake' in that only the entries, not the
data associated with the entries are updat
ed. Such fake entries cannot be extracted.
Usable only with ~.

w causes ~ to pause before treating each
.file, type the indicative letter and the
file name (as with ~l ~nd awai~ th~ user's
response. Response y means yes, so the
file is treated. Null response means "no",
and the file does not tak~ eart in ~hatexer
is being done. Response x means exit;
the ~ command terminates immediately. In
the ~ function, files previously asked
about have been extracted already. With.!,
no change has been made to the tape.

m make (create) directories during an ~ if
necessary.

i ignore tape errors. It is suggested that
this option be used with caution to read
damaged tapes.

/dev/mt?

tap(I), tap(v)

Tape open error
Tape read error
Tape write error
Directory checksum
Directory overflow
Tape overflow --
Phase error (a file has changed after it was
selected for dumping but before it was dumped)

The.m option does not work correctly. The.!
option is not yet implemented.

ken

- 2 -

3/15/72

NAME

SYNOPSIS

DESCR IPI' ION

FILES

SEE ALSO

D IAGNOST lCS

BOOS

OWNER

MV (l)

mv move or rename a file

.mY name1 name2

.!92 changes the name of name1 by linking to it
under the name name2 and then unlinking name1 •
If the new name is a directory, the file is moved
to that directory under its old name. Direc
tories may only be moved within the same parent
directory (just renamed).

Since lID! is implemented by combinations of ~
and unlink, it cannot be used to move between
f il e s yst ems •

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

~6 (I)

m6 -- general purpose macro processor

m6 [.=9 arg1] [arg2 [arg3]]

m6 takes input from file arg2 (or standard input
if arg2 is missing) and places output on file
arg3 (or standard output). A working file of
definitions, "m.def", is initialized from file
arg1 if th~t is supplied. M6 differs from the
standard [1] in these respects:

Itrace:, Isource: and lend: are not defined.

Imeta,arg1,arg2: transfers the role of metachar
acter arg1 to character arg2. If two metacharac
ters become identical thereby, the outcome of
further processing is not guaranteed. For exam
ple, to make []{} play the roles of 1:<> type

\Imeta, <\#>, [:
[meta, < : > ,] :
[meta,[substr,«»,1,1;,{]
[meta,[substr,{{»,2,1;,}]

Ide1,arg1: deletes the definition of macro arg1.

Isave: and Irest: save and restor"e the definition
table together with the current metacharacters on
file ,!!!.def.

#def,arg1,arg2,arg3: works as in the standard
with the extension that an integer may be sup
plied to arg3 to cause the new macro to perform
the action of a specified builtin before its
replacement text is evaluated. Thus all bu1t1ns
except Idef: can be retrieved even after dele
tion. Codes for arg3 are:

o - no function
1,2,3,4,5,6 - gt,eq,ge,lt,ne,le
7,8 - seq,sne
9,10,11,12,13 - add,sub,mpy,div,exp
20 - if
21,22 - def,copy
23 - meta
24 - size
25 - substr
26,27 - go,gobk
28 - del
29 - dn1
30,31 - save,rest

m.def--working file of definitions
/sys/1ang/mdir/m6a--m6 processor proper (/bin/m6
is only an initializer)
/sys/1ang/rndir/m6b--defau1t initia1fzation for

- 1 -

3/15/72

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

M6 (I)

m.def

[1] M6 reference

"err" -- a bug, an unknown builtin or a bad de
finition table
"oprd"--can't open input or ·initial definitions .. ", ..""
o~wr --can t o~en output ovc -- overflow of

nested calls
" " ova overflow of nested arguments
"ovd" overflow of definitions
"rdd" -- can't read definition table
"wrd" -- can't write definition table, either on
Isave: or on garbage collection

Characters in internal tables are stored one per
word. They really should be packed to improve
capacity. For want of space (and because of
unpacked formats) no file arguments have been
provided to Isave: or #rest: Again to save space,
garbage collection makes calls on Isave: and
#rest: and so overwrites m.def.

doug

- 2 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

NM (I)

nm print name list

.!lm [name]

nm prints the symbol table from the output file
of an assembler or loader run. Each symbol name
is preceded by its value iblanks if undefined)
and one of the letters flU (undefined)" A" (abso
lute) "T" (text s§!gment symbol), "D" (data seg
ment symbol), or "B" (bss segment symbol). Glo
bal symbols have their first character under
lined. The output is sorted alphabetically.

If no file is given, the symbols in a,out are
listed,

a.out

as (I), ld (I)

dmr, ken

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

ROFF (I)

nroff format text

nroff [±number1] [=number2] [-stop] name1 •••

nroff formats text according to control lines
embedded in the text in files name1 , ••• in a
manner similar to roff(I). nroff permits wider
page layout fl exibili ty that roff; examples in
clude arbitrary format and length for page head
ings and footings, page shaping, some footnote
capability, and double column output (with the
aid of a postprocessor, ov(I». Encountering a
nonexistent file terminates printing. The op
tional argument "±number1" causes printing to
begin at the first page numbered numb er 1 ; the

" " . optional argument =number2 stops pr1nting after
She pa.ca e nut\lbef.ed number2. The optional argument
-stop or ~ causes printing to stop before

each page including the first to allow paper
manipulation; printing is resumed upon receipt of
an interrupt signal. An interrupt signal re
ceived during printing terminates all printing.
Incoming interconsole messages are turned off
during printing, and the original message accep
tance state is restored upon termination.

nroff· is described in a separate publication [1].

/etc/suftab
rtm?

suffix hyphenation tables
temporary

[1] (see J. F. ossanna)

none

jfo

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST Ies

BUGS

OWNER

aD (I)

cd octal dump

Q£ name [origin]

ad dumps a file in octal, eight words per line
with the origin of the line on the left. If an
octal origin is given it is truncated to 0 mod 16
and dumping starts from there, otherwise from O.
Printing continues until an end-of'-file condition
or until halted by sending an interrupt signal.

Since od does not seek, but reads to the desired
start ing point, od (rather than db) should be
used, to dump special files.

db(I)

.,?"

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CPR (I)

opr -- off line print

opr file1 •••

opr will arrange to have the 201 data phone dae
mon submit a job to the Honeywell 6070 to print
the file arguments. Normally, each file is
printed in the state it is found when the data
phone daemon reads it. If a particular file
argument is preceded by ± then opr will make a
copy for the daemon to print. If the file argu
ment is preceded by = then opr will unlink the
file.

/usr/dpd/*
/etc/ident
/etc/dpd

dpd(I), ident (V)

spool area
personal ident cards
daemon

Since all but the ± option in opr is implemented
with links, one cannot use these options for
files not in /usr.

opr should recognize ± and = alone and apply them
to all subsequent arguments.

ken

- 1 -

6/12/72

NAME

SYNOPSIS

DESCR IPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

ov(I)

ov -- overl ay pages

.QY filename

~ is a postprocessor for producing double column
formatted text when using nroff(I). QY assumes
that the named file contains an even number of 66
line pages and literally overlays successive
pairs of pages.

none

nroff (I)

none

other page lengths should be permitted.

jfo

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

PR (I)

pr print file

.EI. [.=.!£m] name1 •••

.E£ produces a printed listing of one or more
files. The output is separated into pages headed
by the name of the file, a date, and the page
number.

The optional flag =l causes each page to contain
78 lines instead of the standard 66 to accommo
date legal siz e paper.

The optional flag-s =£ (curr ent date) and =ID
(modified date) specify which date will head all
sUbsequent files. =m is default.

Interconsole messages via write(I) are forbidden
dur ing a .J2!:.

/dev/tty? to suspend messages.

cat(I), cp(I), mesg(I)

-- (files not found are ignored)

none

ken, drnr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

REW (I)

rew rewind tape

~ [digit]

~ rewinds DECtape drives. The digit 'is the
logical tape number, and should range from 0 to
7. A missing digit indicates drive O.

/dev/tap?

"?" if there is no tape mounted o'n the indicated
drive or if the file cannot be opened.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST Ies

BUGS

OWNER

RM (I)

rm -- remove (unlink) files

~ removes the entries for one or more files from
a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a
file requires write permission in its directory,
but neither read nor write permission on the file
itself.

Directories cannot be removed by~; cf. rmdir.

none

rmdir(I)

If the file cannot be removed or does not exist,
the name of the file followed by a question mark
is typed.

£m probably should ask whether a read-only file
is really to be removed.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

RMDIR (I)

rmdir remove directory

rmdir dir 1 •••

rmdir removes (deletes) directories. The direc
tory must be empt~ (except for the standard en
tr ies "." and ".. , which rmdir itself removes).
Write permission is required in the directory in
which the directory appears.

none

"dir?" is printed ·if directory dir cannot be
found, is not a directory, or is not removable.

"dir -- directory not empty" is printed if dir
"" " .. has entries other than • or •••

ken, dmr

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST I CS

BUGS

OWNFR

ROFF (I)

roff format text

roff [±number1] [=number2] [-stop] name1 • • •

~ formats text according to control lines
embedded in the text in files name1 , ••••
Encountering a nonexistent file terminates print
ing. The optional argument "±nurnber1" causes
printing to begin at the first ~age numb!;red
nwnber1; the optional argument =number2 stops
printing after the page numbered number2. The

" " "" optional argument -stop or ~ causes printing
to stop before each page including the first to
allow paper manipulation; printing is resumed
upon receipt of an interrupt signal. An inter
rupt signal received during printing terminates
all printing. Incoming interconsole messages are
turned off during printing, and the original mes
sage acceptance state is restored upon termina
tion.

roff is described in a separate publication [1].

/etc/suftab
/tmp/rtm?

suffix hyphenation tables
temporary

[1] (See J. F. ossanna)

none

jfo

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

F~ES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

SALV (I)

salv -- file system salvage

/etc/salv

~ will reconstruct the file system /dev/rkO to
a consistent state. This is the first step in
putting things together after a bad crash. Salv
performs the following functions:

A valid free list is constructed.

All bad pointers in the file system are
zeroed.

All duplicate pOinters to the same block are
resolved by changing one of the pointers to
point at a new block containing a copy of the
data.

After a salv, a warm boot must be performed in
stantly to effect the change made. (Because the
salv works on the disk copy of the file system
super-block, and the core copy is unaffected.)

After a salv, files may be safely created and
removed without causing more trouble. However,
it is more likely than not that directories are
corrupt ed as well, so a ~ should be performed.

/dev/rkO

check (I), ds(I)

The file system to be salvaged should be an argu
ment.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

SH (I)

sh shell (command interpreter)

sh [name [arg 1 ••• [argg]]]

.!b is the standard command interpreter. It is
the program which reads and arranges the execu
tion of the command lines typed by most users.
It may itself be called as a command to interpret
files of commands. Before discussing the argu
ments to the shell used as a command, the struc
ture of command lines themselves will be given.

Command 1 in es

Command lines are sequences of commands separated
by command delimiters. Each command is a se
quence of non-blank command arguments separated
by blanks. The first argument specifies the name
of a command to be executed. Except for certain
types of special arguments discussed below, the
arguments other than the command name are simply
passed to the invoked command.

If the first argument is the name of an execut
able file, it is invoked; otherwise the string
"/bin/" is prepended to the argument. (In this
way the standard commands, which reside in
" /bin" , ar e found.) If the "/bin" file exists,
but is not executable, it is used by the shell as
a command file'. That is to say it is executed, as
input as though it were typed from the console.
If all attempts fail, a diagnostic is printed.

The remaining non-special arguments are simply
passed to the command without further interpreta
tion by the shell.

Command delimiters

There are three command delimiters: the new-
"" nd"" "" line, ;, a &. The semicolon ; specifies

sequential execution of the commands so
separated; that is,

coma; comb

causes the execution fir!t"of command~, then
of~. The ampersand & causes simultaneous
execution:

coma & comb

causes ~ to be call ed, followed immediately by
~ without waiting for £2m2 to finish. Thus
coma and ~ execute simultaneously. As a spe
cial case,

- 1 -

3/15/72 SH (I)

coma &

causes £QmS to be executed and the shell immedi
ately to request another command without waiting
for £QmS.

Termination Reporting

If a command (not followed by "&") terminates
abnormally, a message is printed. (All termina
tions other than exit and interrupt are con
sidered abnormal.) The following is a list of the
abnormal termination messages:

BUs error
Trace trap
Illegal instruction
lOT trap
Power fail trap
EMT trap
Bad system call
Quit '
Error

If a core image' is produced, " -- Core dumped" is
appended to the appropriate message.

Redirection £! ~/Q

Three character sequences cause the immediately
following string to be interpreted as a special
argument to the shell itself, not passed to the
command. .

An argument of the form" <arg" causes the file
arg to be used as the standard input file of the
given oommand.

An argument of the form ">arg" causes file" arg"
to be used as the standard output file for the
given oommand. "Arg" is created if it did riot
exist, and in any case is truncated at the
outset.

An argument of the form "»arg" causes file" arg"
to be used as the standard output for the given
command. If "arg" did not eXist, it is created;
if it did exist, the command output is appended
to the file.

Generation of argument lists

If an:f argument contains any of the characters
"?", *" or ' [', it is treated specially as fol
lows. The current directory is searched for
files which match the given argument.

- 2 -

3/15/72 SH (I)

The character "*" in an argument matches any
string of characters in a file name (including
the null str ing) •

The character
a file name.

" " ? matches any single character in

" [" "J" Each must be paired with a matching • The
char act er s between "C' and "J" specify a c lass of
characters. It matches any single character in a
file name which is in the class. An ordinary
character in the brackets specifies that charac
ter to be in the class. A pair of characters
separated by .. -" specifies each character lexi
cally greater than or equal to the first and less
than or equal to the second member of the pair is
to be included in the class. If the first member
of the pair lexically exceeds the second, the
second member is the sole character specified.

other characters match only the same character in
the file name.

For example, "*" matches all file names; I'?"
"[] " matches all one-character file names; ab *.s
"" .." matches all file names beginning with a or b

and end ing with " • s"; "? [z i-mJ" matches all two-
" " character file names ending with z or the

" " " .. letters i through m •

.. " "" If the argument with * or ? also contains a
"I", a slightly different procedure is used:
instead of the current directory, the directory
used is the one obtained by taking the argument

"I" ".." " up to the I ast before a * or ? The
matching process matches the remainder of the
argument after this "I" against the files in the
derived directory. For example: "/usr/dmr/a*.s"
matches all files in directory "/usr/dmr" which
begin with" a" and end with" .s" •

In any event, a list of names is obtained which
match the argument. This list is sorted into
alphabetical order, and the resulting sequence of
ar~ents replaces the Single argument containing

.. n " [n w. " . the *, ,or? The same process ~s car-
ried out for each argument (the resulting lists
are ~ merged) and finally the command is called
with the resulting list of arguments.

For example: directory lusr/dmr contains the
files a1.s, a2.s, ••• , a9.s. From any directory,
the command

as lusr/dmr/a?s

- 3 -

3/15/72 SH (I)

calls.s.2. with arguments /usr/dmr/a1.s,
/usr/dmr/a2.s, ••• /usr/dmr/a9.s in that order.

Quoting

The character "\" causes the immediately follow
ing character to lose any special meaning it may
have to the shell; in this way "(", ">", and
other characters meaningful to the shell may be
passed as part of arguments. A special case of
this feature allows the continuation of commands
onto more than one line: a new-line preceded by
"\" is translated into a blank.

Sequences of characters enclosed in doubl e (") or
Single (') quotes are also taken literally.

Arqument passing

When the shell is invoked as a command, it has
additional string processing capabilities. Re
call that the form in which the shell is invoked
is

s h [n arne [arg 1 ••• [arg 9]]]

The name is the name of a file which will be read
and Interpreted. If not given, this subinstance
of the shell will continue to read the standard
input file.

In the file, character sequences of the form
" " $n , where.n is a digit 0, ••• , 9, are replaced
by the nth arguwenS to the invocation of the
shell (arg). $0 is replaced by name.

n ----

~.Qf~

An end-of-file in the shell's input causes it to
exit. A side effect of this fact meanS that the
way to log out from UNIX is to type an end of
file.

special commands

Two commands are treated specially by the shell.

" " Chdir is done without spawning a new process by
executing the .!X! clrlir primitive.

"Login" is done by executing /bin/login without
creating a new process.

These peculiarities are inexorably imposed upon
the shell by the basic structure of the UNIX pro
cess control system. It is a rewarding exercise

- 4 -

3/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

SH (I)

to work out why.

Command file errors

Any shell-detected error in a file of commands
causes that shell to cease executing that file.

/ etc/glob, which int erpr ets "*", "?", and "[".

" ," The UNIX Time-shar1ng System , which gives the
theory of operation of the shell.

" " Input not found , when a command file is speci-
fied which cannot be read;
" " Arg count , if ~he number of arguments to th~ "
chdir pseudo-command is not exactly 1, or if * ,
"?", or "[" is used inappropriately;
"Bad directory", if the directory given in
"chdir" cannot be Switched to;
" , " Try aga1n , if no new process can be created to
execute the s~ecif ied command;
"", imbalance, if single or double quotes are
not matched,
"Input file, if an argument after "(" cannot be
read-"' "., "" "" output file, 1f an argument after > or »
cannot be written (or created);
" " No command , if the specified command cannot be
executed.
" " No match , if no arguments are generated for a
command which cont ains "*", "?", or "[It.
Termination messages described above.

If any argument contains a quoted "*", "?", or
" [" , then all instances of these characters must
be quoted. This is because sh calls the gloe
routine whenever an unquo ted-w'* " • "'?", or [is
noticed; the fact that other instances of these
characters occurred quoted is not noticed by
glob.

dmr, ken

- 5 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOST ICS

BOOS

OWNER

SORT (I)

sort -- sort a file

!£!t input output

!£!t will sort the input file and write the sort
ed file on the output file. The sort is line
by-line in increasing ASCII collating sequence •

. Space required is 6*number-of-lines in bytes.

/tmp/stm?

Sort does not put a maximum on the size of file
that it sorts •. Thus a bus error will occur if
too large an input file is supplied.

The input is copied to a temporary file. Thus
the maximum file that can be sorted is the max
imum non-special file (currently 64K bytes.)

dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST lCS

OWNER

STAT (I)

stat get file status

~ name1 •••

~ gives several kinds of information about one
or more files:

i-number
access mode
number of links
owner
siz e in bytes
date and time of last modification
name (useful when several files are ,named)

All information is self-explanatory except the
mode. The mode is a six-character string whose
characters mean the following:

1 s: file is small (smaller than 4096 bytes)
1: file is large

2 d: file is'a directory
x: file is executable
u: set user ID on execution
-: none of the above

3 r: owner can read
-: owner cannot read

4 w: owner can write
-: owner cannot write

5 r: non-owner can read
-: non-owner cannot read

6 w: non-owner can write
-: non-owner cannot write

The'owner is almost always given in symbolic
form; however if he cannot be found in
.. / etc/uids'" a number is given.

If the number of .arguments to ~ is not exactly
1 a header is generated identifying the fields of
the status information.

/etc/uids

istat(I), lS(I) (-1 option)

" " name? for any error.

dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST ICS

BUGS

OWNER

STR IF (I)

strip remove symbols and relocation bits

str ip name 1 •••

strip removes the symbol table and relocation
bits ordinarily attached to the output of the
assembler and loader. This is useful to save
space aft er a program has been debugged.

The effect of strip is"the same as use of the ~
opt ion of ld.

/tmp/stm? temporary file

ld (I), as (I)

Diagnostics are given for: non-existent argument;
inability to create temporary file;
improper format (not an object file);
inability to re-read temporary file.

dmr

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BOOS

OWNER

STTY (I)

stty -- set teletype options

stty option1 •••

stty will set certain I/O options on the current
output teletype. The option strings are selected
from the following set:

~
-even
odd
-odd
~
-canon
~
canon
cr
-nl
nl
-cr
echo
full
-=half
half
-echo
-full
lcase
-ucase
ucase
-lcase
space
~
~
-space
delay
-delay
ebcdic
-corres
corres
-ebcdic

allow even parity.
disallow even parity.
allow odd parity
disallow odd parity
raw input (no erase/kill)

"
negate raw mode (erase/kill)

"
allow (and echo) cr for If.

"
negate cr node.

"
echo back every character typed.

"
"

do not echo characters as typed.
"
"

map uppeF, case to lower case

do not map case
"

map tabs into spaces
If

do not map tabs ..
calculate cr and tab delays.
no cr/tab de.lays
ebcdic ball conversion (2741 only) ..
correspondence ball conversion (2741 only)

"

standard output.

stty(II)

'-Bad options"

jfo

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST res

BUGS

OWNER

SU (I)

su become privileged user

~ password

su allows one to become the super-user, who has
all sorts of marvelous powers. In order for su
to do its magic, the user must pass as an argu
ment a password. If the password is correct, su
will execute the shell with the UID set to that
of the super-user. To restore normal UID
privileges, type an end-of-file to the super-us"er
shell.

sh(I)

" " Sorry if password is wrong

dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST Ies

BUGS

OWNER

SUM (I)

sum sum file

lllY!l name1 •••

sum sums the contents of one or more files. A
separate sum is printed for each file specified,
along with the number of whole or partial 512-
word blocks read.

In practice, ~ is often used to verify that all
of a special file can be read without error.

none

" " " " oprd if the file cannot opened; ? if if an
error is discovered during the read.

none

ken

- 1 -

6/12/72

NAME

SYNOPSIS

D ESCR IPT ION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

TACCT (I)

tacct -- login accounting by date

tacct [wtmp]

tacct will produce a printout giving daily con
nect time and total number of connects for all
transactions found in the wtmp file. If no wtmp
file is given, /tmp/wtmpls used.

/tmp/wtmp

init(VII), acct(I), login(I), wtmp(V)

" ,," cannot open wtmp

acct(I) and tacct(I) should be cornpined

drnr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCR IPTION

TAP (I)

tap manipulate DECtape

tap [k ey] [n arne •••]

tap saves and restores selected portions of the
file system hierarchy on DEctape. Its actions
are controlled by the key argument. The key is a
string of characters containing at most one func
tion lett er and possibly one or I'OC>re function
modifiers. Other arguments to the command are
file or directory names specifying which files
are to be dumped, restored, or tabled.

The function portion of the key is specified by
one of the following letters:

r The indicated files and directories, to
gether with all subdirectories, are dumped
onto the tape. If files with the same
names already exist, th~ are replaced
(hence the "r"). "same" is determined by

"/ " string comparison, so • abc can never be
the same as "/usr/dmr/abc" even if
"/usr /dmr" is the current directory. If no
file argument is given, .'.n is the default.

u updates the tape. .!:! is the same as 1:, but
a file is replaced only if its modification
date is later than the date stored on the
tape; that is to say, if it has changed
since it was dumped. ~ is the default com
mand if none is given.

d deletes the named files and directories
from the tape. At least one file argument
must be given.

x extracts the named files from the tape to
the file system. The owner, mode, and
date-modified are restored to what they
were when the file was dumped. If no file
argument is given, the entire contents of
the tape are extracted.

t lists the names of all files stored on the
tape which are the same as or are hierarch
ically below the file arguments. If no
file argument is given, the entire contents
of the tape are tabled.

I is the same as ~ except that an expanded
listing is produced giving all the avail
able information about the listed files.

The following characters may be used in addition
to the letter which selects the function desired.

- 1 -

3/15/72

FILES

SEE ALSO

DIAGNOSTICS

TAP (I)

0, ••• , 7 This modifier selects the drive on
which the tape is mounted. "0" is the
def ault.

v Normally tap does its work silently. The v
(verbose) option causes it to type the name
of each file it treats preceded by a letter
to indicate what is happening.

r file is being replaced
a file is being added (not there before)
x file is being extracted
d file is being deleted

The ~ option can be used with £, y, d, and
~ only.

c means a fresh dump is being created; the
tape directory will be zeroed before begin
ning. Usabl e only with .r and.!:!.

f causes new entries copied on tape to be
'fake' in that only the entries, not the
data associated with the entries are updat
ed. Such fake entries c'annot be extracted.
Usabl e only wi th 1: and .B.

w causes tap to pause before treating each
file, type the indicative letter and the
file name (as with ~J ~nd awai~ th~ user's
response. Response y means yes, so the
file is treated. NUll response means "no",
and the file does not tak~ ~art in ~ha~e~er
is being done. Response x means ex~t;
the tap command terminates immediately. In
the ~ function, f.iles previously asked
about have been extracted already • With 1:,
B, and g no change has been made to the
tape.

m make (create) directories during an ~ if
necessary.

i ignore tape errors. It is suggested that
this option be used with caution to read
damaged tapes.

/dev/tap?

mt(I)

Tape open error
Tape read error
Tape write error
Directory checksum
Dir ectory overf low

- 2 -.

3/15/72

BUGS

OWNER

TAP (I)

Tape overflow
Phase error (a f 11 e has changed after 1 twas
selected for dumping but before 1t was dumped)

The.ill option does not work correctly. The i
option is not yet implemented.

ken

- 3 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D lAGNOST les

BUGS

TM (I)

tm provide time information

~ [command arg1 .••••]

tm is used to provide timing information. When
used without an argument, output like the follow
ing is given:

tim 371:51:09 2:00.8
ovh 20:00:33 17.0
swp 13:43:20 4.6
dsk 27: 14: 35 4.5
idl 533:08:03 1 : 33.3
usr 24: 53: 50 1 .2
der 0, 54 0, 0

The first column of numbers gives totals in the
named categories since' the last time the system
was cold-booted; the second column gives the
changes since the last time ~ was invoked. The
~ row is total real time (hours:minutes:
seconds); unlike the other times, its origin is
the creation date of .En's temporary file. ovh is
time spent executing in the system; swp is time
waiting for swap I/O; dsk is time spent waiting
for file system disk I/O; idl is idle time; ~
is user execution time; ~ is RF disk error
count (left number) and RK disk error count
(right number).

tm can be invoked with arguments which are as
sumed to constitute a command to be timed. In
this case the output is as follows:

tim 2.7
ovh 0.3
swp 0.5
dsk 1.8
idl 0.0
usr 0.0

The given times represent th'e nunber of seconds
spent in each category during execution of the
command.

/tmp/ttmp, /dev/rfO (for absolute times) contains
the information used to calculate the differen
tial times.

file system'(v}

"?" if the command cannot be executed; "can't
" " creat temp file if trouble with ttmp; cant read

" super-block if times cannot be read from system.

(1) when invoked with a command argument,

- 1 -

3/15/72

OWNER

TM (I)

everything going on at the moment is counted, not
just the command itself. (2) Two users dOing tm
simultaneously interfere with each other's useof
the temporary file.

ken, dmr

- 2 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

TSS (I)

tss -- interface to Honeywell TSS

tss will c~ll the Honevwe11 6070 on the 201 data
phone. It will then go into direct access with
TSS. Output generated by TS~ is typed on the
standard output and input requested by TSS is
reAd from the standard input with UNIX typing
conventions.

An interrupt signal (ASCII DEL) is transmitted as
a "break" to TSS.

Input lines beginning with 1 are interpreted as
UNIX commands. Input lines beginning with - are
interpreted as commands to the interface routine.

-<file insert input from named UNIX file

-)fi1e deliver tss output to named UNIX file

p pop the output file

q disconnect from tss (quit)

r file receive from HIS routine CSR/DACCOPY

s file send file to HIS routine CSR/DACCOPV

Ascii files may be most efficiently transmitted
using the HIS routine CSR/DACCOPY in this
fashion. Underlined text comes from TSS.
AFTname is the 6070 file to be dealt with.

SYSTEM? CSR/nACCOPY (s) AFTname
Send Encoded File -s file

SYSTEM? CSR/DACCOPY (r) AFTname
ReceIVe Encoded File -r file

/dev/dnO, /dev/dpO

DONE when communication is broken.

When diagnostic problems occur, tss exits rather
abruptly.

csr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

tty

tty

get tty name

TTY (I)

tty gives .. the Dame of the user's typewr iter in
the form ttyn for n a digit. The actual path
name is then "/dev/ttyn".

" " not a tty if the standard input file is not a
typewr iter.

dmr, ken

- 1 -

6/12/72

NAME

SYNOPSIS

DEseR IPI' ION

FILES

SEE ALSO

D IAGNOST Ies

BUGS

OWNER

TYPE (I)

type type on single sheet paper

~ name1 •••

~ copys its input files to the standard out
put. Aft er every 66 lines, type stops and reads
the standard input for a new line character be
fore continuing. This allows time for insertion
of single sheet paper.

dmr

- 1 -

3/15/72

NAME

SYNOPSIS

D ESCR IPT ION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

UMOUNT (I)

umount dismount file system

/etc/umount special

umount announces to the system that the removable
file system previously mounted on special file
special is to be removed.

only the super-user may issue this command.

mount (I)

This command is not, in fact, restricted to the
super-user.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

UN (I)

un undefined symbols

.1!ll [name]

Bn prints a list of undefined symbols from an
assembly or loader run. If the file argument is
not specified, a.out is the default. Names are
listed alphabetically except that non-global sym
bols come first. Undefined global symbols (un
resolved external references) have their first
character underlined.

a.out

as (I), ld (I)

"?" if the file cannot be found.

dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST ICS

BUGS

OWNER

we (I)

wc get (English) word count

~ provides a count of the words, text lines, and
roff control lines for each argument file.

A text line is a sequence of characters not be
ginning with"." and ended by a new-li!]-e,t A roff
control line is a line beginning with • • A
word is a sequence of characters bounded by the
beginning of a line, by the end of a line, or by
a blank or a tab.

roff(I)

none; arguments not found are ignored.

jfo

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

WHO (I)

who who is on the system

!tllQ [who-f ile]

~, ·without an argument, lists the name, type
writer channel, and login time for each current
UNIX user.

Without an argument, who examines the /tmp/utmp
file to obtain its information. If a file is
given, that file is examined. Typically the
given file will be /tmp/wtmp, which contains a
record of all the logins since it was created.
Then ~ will list all logins and logouts since
the creation of the wtmp file. ,
/tmp/utmp

login(I), init(VII)

"?" if a named file cannot be read.

dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

D IAGNOST ICS

BUGS

OWNER

WRITE (I)

write write to another user

write user

write copies lines from 'your typewriter to that
of another user. When first called, write sends
the message

message from yourname •••

The recipient of the message should write back at
this point. Communication continues until an end
of file is read from the typewriter or an inter
rupt is sent. At that point write writes "EOT"
on the other terminal.

Permission to write may be denied or granted by
use of the mesg command. At the outset writing
is allowed. Certain commands, in particular.~
and ~, disallow messages in ord~r to prevent
messy output.

" " If the character ! is, found at the beginning of
a line, write calls the mini-shell msh to execute
the rest of the line as a command.

The following protocol' is suggested for using
write:' When you first write to another user, wait
for him to write back before starting to send.
Each party should end each messa~e with a dis
tinctive signal ("(0)" for "over is convention
al) that the other may reply. ., (00)" (for "over
and out~) is suggested when conversation is about
to be terminated.

/tmp/utmp
/etc/msh

to find user
to execute !

mesg(I), msh(VII)

"user not logged· in"; "permission denied".

dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

BREAK (II)

break set program break

sys break; addr / break = 17.

B~ sets the system's idea of the highest loca
tion used by the program to addr. Locations
greater than ~ and below the stack pointer are
not swapped and are thus liable to unexpected
modification.

An argument of 0 is taken to mean 8K words. If
the argument is higher than the stack pointer the
entire user core area is swapped.

When a program begins execution via ~ the
break is set at the highest location defined by
the program and data storage areas. Ordinarily,
therefore, only programs with growing data areas
need to use break.

exec(II)

none; strange addresses cause the break to be set
to include all of core.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CEMT (II)

cemt catch emt traps

sys cemt; arg / cemt = 29.

This call allows one to catch traps resulting
from the ~ instruction. Arg is a location
within the program; ~ traps are sent to that
location. The normal effect of emt traps may be
restored by giving an ~~g equal to O.

Prior to the use of this call, the result of an
emt instruction is a simulated rts instruction.
The operand field is interprete~s a register,
and an rts instruction is simulated for that
register-{after verifying that various registers
have appropriate values). This feature is useful
for debugging, since the most dangerous program
bugs usually involve an ~~ with bad data on the
stack or in a register.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CHDIR (II)

chdir change working directory

sys chdir; dirname / chd1r = 12.

dirname is address of the pathname of a directo
ry, terminated by a 0 byte. chdir causes this
directory to become the current working directo
ry.

chdir(I)

The error bit (c-bit) is set if the given name is
not that of a directory.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CHMOD (II)

chmod change mode of file

sys chmod; name; mode / chmod = 15.

The file whose name is given as the null
terminated string pOinted to by ~ has its mode
changed to mode. Modes are constructed by 2£ing
together some combination of the following:

01 write, non-owner
02 read, non-owner
04 write, owner
10 read, owner
20 executable
40 set user ID on execution

Only the owner of a file (or the super-user) may
change the mode.

chmod(I)

Error bit (c-bit) set if name cannot be found or
if current user is neither the owner of the file
nor the super-user.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CHOWN (II)

chown change owner of file

sys chown; name; owner / chown = 16.

The file whose name is given by the null
terminated string pointed to by ~ has its own
er changed to owner. Only the present owner of a
file (or the super-user) may donate the file to
another user. Also, one may not change the owner
of a file with the set-user-ID bit on, otherwise
one could create Trojan Horses able to misuse
other's files.

chown(I), uids(V)

The error bit (c-bit) is set on illegal owner
changes.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

close close a file

(file descriptor in rO)
sys close / close = 6.

CLOSE (II)

Given a file descriptor such as returned from an
open or creat call, close closes the associated
file. A close of all files is automatic on exit,
but since processes are limited to 10 simultane
ously open files, close is necessary to programs
which deal with many files.

creat(II), open(II)

The error bit (c-bit) is set for an unknown file
descriptor.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CREAT (II)

creat create a new file

sys creat; name; mode
(file descriptor in rO)

/ creat = 8.

creat creates a new file or prepares to rewrite
an existing file called ~; ~ is the address
of a null-terminated string. If the file did not
exist, it is given mode mode; if it did exist,
its mode and owner remain unchanged but it is
truncated to 0 length.

The file is also opened for writing, and its file
descriptor is returned in rOe

The mode given is arbitrary; it need not allow
writing. This feature is used by programs which
deal with temporary files of fixed names. The
creation is done with a mode that forbids writ
ing. Then if a second instance of the program
attempts a creat, an error is returned and the
program knows that the name is unusable for the
moment.

If the last link to an open file is. removed, the
file is not destroyed until the file is closed.

write{II), close(II)

The error bit (c-bit) may be set if: a needed
directory is not readable; the file does not
exist and the directory in which it is to be
created is not writable; the file does exist and
is unwritable; the file is a directory.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

exec execute a file

sys exec; name; args / exec = 11.
• • •

name: < ••• \0)
• • •

args: arg1; arg2; ••• ; 0
arg1: < ••• \0)

• ••

EXEC (II)

DESCRIPTION ~ overlays the calling process with the named
file, then transfers to the beginning of the core
image of the file. The first argument to ~~ is
a pOinter to the name of the file to be executed.
The second is the address of a list of pOinters
to arguments to be passed to the file. Conven
tionally, the first argument is the name of the
file. Each pointer addresses a string terminated
by a null byte.

There can be no return from the file; the calling
core image is lost.

The program break is set from the executed file;
see the format of a.out.

Once the called file starts execution, the argu
ments are passed as follows. The stack pointer
pOints to the number of arguments. Just above
this number is a list of pointers to the argument
strings.

sp-) nargs
arg1
•••
argn

arg1: (arg1\0)
• • •

argn: (argn\O)

The arguments are placed as high as possible in
core: just below 60000(8).

Files remain open across ~ calls. However,
the illegal instruction, ~, quit, and interrupt
trap specifications are reset to the standard
values. (See ilgins, cemt, quit, int~.)

Each user has a real user ID and an effective
user ID (The rear-ID identifies the person using
the system; the effective ID determines his ac
cess privileges.) ~ changes the effective user
ID to the owner of the executed file if the file
has the "set-user-ID" mode. The real user ID is
not affected.

- 1 -

3/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

EXEC (II)

fork(II)

If the file cannot be read or if it is not exe
cutable, a return from ~ constitutes the diag
nostic. The error bit (c-bit) is set.

ken, dmr

- 2 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

EXIT (II)

exit terminate process

(status in rO)
sys exit / exit = 1

~ is the normal means of terminating a pro
cess. All files are closed and the parent pro
cess is notified if it is executing a ~21S. The
low byte of rO is available as status to the
parent process.

This call can never return.

wait(II)

ken t dmr

- 1 -

3/15/72,

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

fork spawn new process

sys fork / fork = 2.
(new process return)
(old process return)

FORK (II)

~ork is the only way new processes are created.
The new process's core image is a copy of that of
the caller of ~ork; the only distinction is the
return location and the fact that rO in the old
process contains the process ID of the new pro
cess. This process ID is used by ~.

wait(II), exec(II)

The error bit (c-bit) is set in the -old process
if a new process could not be created because of
lack of process space.

See wait(II) for a subtle bug in process destruc
tion.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

FSTAT (II)

fstat get status of open file

(file descriptor in rO)
sys fstat; buf / fstat = 28.

This call is identical to stat, except that it
operates on open files instead of files given by
name. It is most often used to get the status of
the standard input and output f~les, whose names
are unknown.

stat(II)

The error bit (c-bit) is set if the file descrip
tor is unknown.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

getuid get user identification

sys getuid / getuid = 24.
(user IO inrO)

GETUID (II)

getu1d returns the real user IO of the current
process. The real user ID identifies the person
who is logged in, in contradistinction to the
effective user IO, which determines his access
permission at each moment. It is thus useful to

" " programs which operate using the set user ID
mode, to find out who invoked them.

/etc/u1ds can be used to map the user ID number
into a name.

setuid(II)

ken, dmr

- 1 -

3/15/72 GTTY (II)

NAME gtty get typewriter status

SYNOPSIS (file descriptor in rO)
sys gttYl arg / gtty = 32 •
• • •

arg: .=.+6

DESCRIPTION ~ stores in the three words addressed by ~~
the status of the typewriter whose file descrip
tor is given in rOe The format is the same as
that passed by stty.

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

stty(II)

Error bit (c-bit) is set if the file descriptor
does not refer to a typewriter.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

HOG (II)

hog -- set program in low priority

sys hog / hog = 34.

The currently executing process is set into the
lowest priority execution queue. Background jobs
that execute a very long time should do this. A
higher priority will be reinstituted as soon as
the process is dismissed for any reason other
than quantum overflow.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

ILGINS (II)

ilgins catch illegal instruction trap

sys ilgins; arg / ilgins = 33.

ilgins allows a program to catch illegal instruc
tion traps. If arg is zero, the normal instruc
tion trap handling is done: the process is ter
minated and a core image is produced. If ~~ is
a location within the program, control is passed
to arg·when the trap occurs.

This call is used to implement the floating point
Simulator, which catches and interprets 11/45
floating point instructions.

fptrap(III)

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

INTR (II)

intr set interrupt handling

sys intr; arg / intr = 27.

When arq is 0, interrupts (ASCII DELETE) are
ignored. When arg is 1, interrupts cause their
normal result, that is, force an~. When arg
is a location within the program, control is
transferred to that location when an interrupt
occurs.

After an interrupt is caught, it is possible to
resume execution by means of an ~ti instruction;
however, great care must be exercised, since all
I/O is terminated abruptly upon an interrupt. In
particular, reads of the typewriter tend to re
turn with 0 characters read, thus simulating an
end of file.

quit(II)

It should be easier to resume after an interrupt,
but I don't know how to make it work.

ken, dmr

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

kill -- destroy process

(process number in rO)
sys kill/kill = 37.; not in assembler

KILL (II)

~ill destroys a process, given its process
number. The process leaves a core image.

This call is restricted to the super-user, and is
intended only to kill an otherwise unstoppable
process.

c-bit set if user is not the super-user, or if
process does not exist.

kill has been known to be ineffective.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

LINK (II)

link -- link to a file

sys link; name1 ; name2 / link = 9.

A link to ~1 is created; the link has name
~2. Either name may be an arbitrary path
name.

link(I), unlink(II)

The error bit (c-bit) is set when ~1 cannot be
found; when ~2 already exists; when the direc
tory of ~2 cannot be written; when an attempt
is made to lInk to a directory by a user other
than the super-user.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

MAKDIR (II)

makdir make a directory

sys makdir; name; mode / makdir = 14.

makdir creates an empty directory whose name is
the null-terminated string pOinted to by n~.
The mode"o~ the 9ir~ctory is mod~. The special
entries • and •• are not present.

makdir can only be invoked by the super-user.

mkdir(I)

Error bit (c-bit) is set if the directory already
exists or if the user is not the super-user. '

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

MDATE (II)

mdate set modified date on file

(time to AC-MQ)
sys mdate; file / mdate = 30.

File is the address of a null-terminated string
giving the name of a file. The modified time of
the file is set to the time given in the AC-MQ
registers.

This call is allowed only to the super-user or to
the owner of the file.

Error bit is set if the user is not the super
user or if the file cannot be found.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

MOUNT (II)

mount mount file system

sys mount; special; name / mount = 21.

mount announces to the system that a removable
file system has been mounted on special file
'special; from now o~, references to file n~
will refer to the root file on the newly mounted
file system. Special and ~ are pointers to
null-terminated strings containing the appropri
ate path names.

Name must exist already. If it had useful con
tents, they are inaccessible while the file sys
tem is mounted.

Almost always, ~ should be a directory so that
an entire file system, not just one file, may
exist on the removable device.

mount(I), umount(II)

Error bit (c-bit) set if ~pecial is inaccessible
or dir does not exist.

At most two removable devices can be mounted at a
time. The use of this call should be restricted
to the super-user.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

OPEN (II)

open open for reading or writing

sys open; name; mode / open = 5.
(descriptor in rO)

0yen opens the file ~ for reading (if ~
o or writing (if mode is non-zero). nsrn~ is
address of a string of ASCII characters
representing a path name, terminated by a null
character.

The file descriptor should be saved for subse
quent calls to read (or write) and close.

is
the

In both the read and write case the file pOinter
is set to the beginning of the file.

If the last link to an open file is removed, the
file is not destroyed until it is closed.

creat(II), read(II), write(II), close(II)

The error bit (c-bit) is set if the file does not
exist, if one of the necessary directories does
not exist or is unreadable, or if the file is not
readable.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

QUIT (II)

quit turn off quit signal

sys quit; flag / quit = 26.

When ~lag is 0, this call disables quit signals
from the typewriter (ASCII FS). When flag is 1 t

quits are re-enabled,. and cause execution to
cease and a core image to be produced. When ~lag
is an address 1n the program, a quit causes con
trol to be sent to that address.

Quits should be turned off only with due con
sideration.

intr{II)

ken, drnr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOS.TIC S

BUGS

OWNER

read read from file

(file descriptor in rO)
sys read; buffer; nchars / read = 3.
(nread in rO)

READ (II)

A file descriptor is a word returned from a suc
cessful open call.

Buf~.~ is the location of nchars contiguous bytes
into which the input will be placed. It is not
guaranteed that all nchars bytes will be read,
however; for example if the file refers to a
typewriter at most one line will be returned. In
any event the number of characters read is re
turned in rOe

If rO returns with value 0, then end-af-file has
been reached.

open(II)

As mentioned, rO is 0 on return when the end of
the file has been reached. If the read was
otherwise unsuccessful the error bit (c-bit) is
set. Many conditions, all rare, can generate an
error: physical I/O errors, bad buffer address,
preposterous nchars, file descriptor not that af
an input file.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

RELE (II)

rele release processor

sys rele / rele = 0; not in assembler

This call causes the process to be swapped out
immediately if another process wants to run. Its
main reason for being is internal to the system,
namely to implement timer-runout swaps. However,
it can be used beneficially by programs which
wish to loop for some reason without consuming
more processor time than necessary.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

SEEK (II)

seek move read/write pOinter

(file descriptor in rO)
sys seek; offset; ptrname / seek = 19.

The file descriptor refers to a file open for
reading or writing. The read (or write) pOinter
for the file is set as follows:

if 12trname is 0, the pOinter is set to offset.

if ptrnaItJe is 1, the pOinter is set to its
current location plus offset.

if ptrname is 2, the pOinter is set to the
size of th~ file plus offset.

tell(II)

The error bit (c-bit) is set for an undefined
file descriptor.

A file can conceptually be as large as 2**20
bytes. Clearly only 2**16 bytes can be addressed
by~. The problem is most acute on the tape
files and RK and RF. Something is going to be
done about this.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

SETUID (II)

setuid set process ID

(process ID in rO)
sys setuid / setuid = 23.

The user ID of the current process is set to the
argument in rOe Both the effective and the real
user ID are set. This call is only permitted to
the super-user or if rO is the real user ID.

getuid(II)

Error bit (c-bit) is set if the current user ID
is not that of the super-user.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

SLEEP (II)

sleep -- stop execution for interval

(60ths of a second in rO)
sys sleep / sleep = 35.; not in assembler

The current process is suspended from execution
for the number of 60ths of a second specified by
the contents of register O.

Due to the implementation, the sleep interval is
only accurate to 256 60ths of a second (4.26
sec). Even then, the process is placed on a low
priority queue and must be scheduled.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

STAT (II)

stat get file status

sys stat; name; buf / stat = 18.

~ pOints to a null-terminated string naming a
file; buf is the address of a 34(10) byte buffer
into which information is placed concerning the
file. It is unnecessary to have any permissions
at all with respect to the file, but all direc
tories leading to the file must be readable.

After ~, buf has the following format:

buf, +1
+2,+3
+4
+5
+6,+7
+8,+9
•••

i-number
flags (see below)
number of links
user ID of own'er
size in bytes
first indirect block or contents block

+22,+23 eighth indirect block or contents block.
+24,+25,+26,+27 creation time
+28,+29,+30,+31 modification time
+32,+33 unused

The flags are as follows:

100000
040000
020000
010000
000040
000020
000010
000004
000002
000001

used (always on)
directory
file has been modified (always on)
large file
set user ID
executable
read, owner
write, owner
read, non-owner
write, non-owner

stat(I), fstat(II)

Error bit (c-bit) is set if the file cannot be
found.

The format is going to change someday.

ken, dmr·

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

STIME (II)

stime set time

(time in AC-MQ)
sys stime / stime = 25.

stime sets the system's idea of the time and
date. Only the super-user may use this call.

date(I), time(II)

Error bit (c-bit) set if user is not the super
user.

ken, dmr

- 1 -

6/12/72 STTY (II)

NAME stty set mode of typewriter

SYNOPSIS (file descriptor in rO)
sys stty; arg / stty = 31.
• • •

arg: dcrsr; dcpsr; mode

DESCRIPTION stty sets mode bits for a typewriter whose file
descriptor is passed in rOe First, the ·system
delays until the typewriter is quiescent. Then,
the argument dcrsr is placed into the typewri
ter's receiver control and status register, and
dcpsr is placed in the transmitter control and
status register. The DC-11 manual must be con
sulted for the format of these words. For the
purpose of this call, the most important role of
these arguments is to adjust to the speed of the
typewriter.

The mode arguments contains several bits which
determine the system's treatment of the
typewriter:

200 even parity allowed on input (e. g. for m37s)
100 odd parity allowed on input
040 raw mode: wake up on all characters
020 map CR into LF; echo LF or CR as LF-CR
010 echo (full duplex)
004 ~ap upper case to lower on input (e. g. M33)
002 echo and print tabs as spaces
001 inhibit all function delays (e. g. CRTs)

Characters with the wrong parity, as determined
by bits 200 and 100, are ignored.

In raw mode, every character is passed back im
mediately to the program. No erase or kill pro
cessing is done; the end-of-file character (EOT),
the interrupt character (DELETE) and the quit
character CFS) are not treated specially.

Mode 020 causes input carriage returns to be
turned into new-lines; input of either CR or LF
causes LF-CR both to be echoed (used for GE Ter
miNet 300's and other terminals without the new
line function).

Additional bits in the high order byte of the
mode argument are used to indicate that the ter
minal 1s an IBM 2741 and to specify 2741 modes.
These mode bits are:

400
1000

2000

terminal is an IBM 2741
the 2741 has the transmit interrupt feature
(currently ignored)
use correspondence code conversion on output

- 1 -

6/12/72 STTY (II)

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

4000 use correspondence code conversion on input
(currently ignored)

Normal input and output code conversion for 2741s
is EBCDIC (e. g. 963 ball and corresponding key
board). The presence of the transmit interrupt
feature permits the system to do read-ahead while
no output is in progress. In 2741 mode, the low
order bits 331 are ignored.

stty(I), gtty(II)

The error bit (c-bit) is set if the file descrip
tor does not refer to a typewriter.

This call should be used with care. It is all
too easy to turn off your typewriter.

ken, dmr

- 2 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

SYNC (II)

sync -- update super-block

sys sync / sync = 36.; not in assembler

sync causes the super blocK for all file systems
to be written out. It is only necessary on sys
tems in which this writing may be delayed for a
long time, i.e., those which incorporate hardware
protection facilities.

It should be used by programs which examine a
file system, for example check, df, tm, etc.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

tell get file pOinter

(file descriptor in rO)
sys tell; offset; ptrname / tell = 20.
(value returned in rO)

TELL (II)

The file descriptor refers to an open file. The
value returned in rO is one of:

if ptrname is 0, the value returned 1s offset;

if ptrname is 1, the value is the current
pOinter plus offset;

if ptrname is 2, the value returned is the
number of bytes in the file plus offset.

seek(II)

The error bit (c-bit) 1s set if the file descrip
tor is unknown.

Tell doesn't work. Complain if you need it.

k.en, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

time get time of year

sys time / time = 13.
(time AC-MQ)

TIME (II)

~ returns the time since 00:00:00, Jan. 1,
1971, measured in sixtieths of a second. The
high order word is in the AC register and the low
order is in the MQ.

date(I), stime(II)

The chronological-minded user will note that
2**32 sixtieths of a second is only about 2.5
years.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

UMOUNT (II)

umount -- dismount file system

sys umount; special / umount = 22.

umount announces to the system that special file
special is no longer to contain a removable file
system. The file associated with the special
file reverts to its ordinary interpretation (see
mount) •

The user must take care that all activity on the
file system has· ceased.

umount(I), mount(II)

Error bit (c-bit) set if no file system was
mounted on the special file.

Use of this call should be restricted to the
super-user.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

UNLINK (II)

unlink remove directory entry

sys unlink; name / unlink = 10.

Name pOints to a null-terminated string. ynlink
removes the entry for the file pointed to by ~
from its directory. If this entry was the last
link to the file, the contents of the file are
freed and the file is destroyed. If, however,
the file was open in any process, the actual des
truction is delayed until it is closed, even
though the directory entry has disappeared.

rm(I), rmdir(I), link(II)

The error bit (c-bit) is set to indicate that the
file does not exist or that its directory cannot
be written. Write permission is not required on
the file itself. It is also illegal to unlink a
directory (except for the super-user).

Probably write permission should be required to
remove the last link to a file, but this gets in
other problems (namely, one can donate an un
deletable file to someone else).

If the system crashes while a file is waiting to
be deleted because it is open, the space is lost.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

wait wait for process to die

sys wait / wait = 7.
(process ID in rO)
(termination status/user status in MQ)

WAIT (II)

~ causes its caller to delay until one of its
child processes terminates. If any child has
already died, return is -immediate; if there "are
no children, return is immediate with the error
bit set. In the case of several children several
~s are needed to learn of all the deaths.

If the error bit is not set on return, the MQ
high byte contains the low byte of the child pro
cess rO when it terminated. The MQ low byte con
tains the termination status of the process from
the following list:

o exit
1 bus error
2 trace trap
3 illegal instruction
4 lOT trap
5 power fail trap
6 EMT trap
7 bad system call
8 quit
9 interrupt
10 kill (see kill(II»
+16 core image produced

exit(II), fork(II)

error bit (c-bit) on if no children not previous
ly waited for.

A child which dies but is never waited for is not
really gone in that it still consumes disk swap
and system table space. This can make it impos
sible to create new processes. The bug can be

" " noticed when several & separators are given to
the shell not followed by a command without an
ampersand. Ordinarily things clean themselves up
when an ordinary command is typed, but it is pos
sible to get into a situation in which no com
mands are accepted, so no ~s are done; the
system is then hung.

The fix, probably, is to have a new kind of fork
which creates a process for which no ~ is
necessary (or possible); also to limit the number
of active or inactive descendants allowed to a
process.

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

write write on file

(file descriptor in rO)
sys write; buffer; nchars / write = 4.
(number written in rO)

WRITE (II)

A file descriptor is a word returned from a suc
cessful open or creat call.

buffer is the address of nchars contiguous bytes
which are written on the output file. The number
of characters actually written is returned in rOe
It should be regarded as an error if this is not
the same as requested.

For disk and tape files, writes which are multi
ples of 512 characters long and begin on a
512-byte boundary are more efficient than any
others.

creat(II), open(II)

The error bit (c-bit) is set on an error: bad
descriptor, buffer address, or count. physical
I/O errors;

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

AT AN , ATAN2 (III)

atan arc tangent function

jsr rS, atan [2]

The atan entry returns the arc tangent of frO in
frO. The-range is 'zero to p1/2. The atan2 entry
returns the arc tangent of frO/fr1 in frO. The
range is -pi to pi. The floating point simula
tion should be active in either floating or dou
ble mode, but in single precision integer mode.

kept in /usr/llb/llba.a

fptrap(III)

rhm, dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

ATOF (III)

atof ascii to floating

j sr r5,atof; subr

at of will convert an ascii stream to a floating
number returned in frO. The subroutine ~ubr is
called on r5 for each character of the ascii
stream. subl: should return the character in rD.
The first character not used in the conversion is
left in rO. The floating point Simulation should
be active in either floating or double mode, but
in single preCision integer mode.

kept in /usr/lib/liba.a

fptrap(III)

The subroutine subr should not disturb any regis
ters.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

ATOI (III)

atoi ascii to integer

jsr rS,atoi; subr

atoi will convert an ascii stream to a binary
number returned in mq. The subroutine ~ubr is
called on rS for each character of the ascii
stream. subr should return the character in rOe
The first character not used in the conversion is
left in rOe

kept in /usr/lib/liba.a

The subroutine subr should not disturb any regis
ters.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CONST (III)

const -- floating point constants

The following floating point constants are
correctly represented in double precision.

one 1.0
pi2 0.5*3.1415 •••

kept in /usr/lib/liba.a

fptrap(III)

rhm, dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CTIME (III)

ctime convert date and time to ASCII

(move time to AC-MQ)
mov $buffer,rO
Jsr pc,ctime

The buffer is 15 characters long. The time has
the format

Oct 9 17:32:24

The input time is in the AC and MQ registers in
the form returned by ~ ~.

kept in /usr/lib/liba.a

ptime(III), time(II)

dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

EXP (III)

exp exponential function

jsr rS,exp

The exponential of frO is returned in frO. The
floating point simulation should be active in
either floating or double mode, but in single
precision integer mode.

kept in /usr/lib/liba.a

fptrap(III)

The c-bit is set if the result is not represent
able.

rhm, dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FPTRAP (III)

fptrap PDP-11/45 floating point simulator

.globl fptrap
sys ilgins; fptrap

fptrap is a package which picks up instructions
which are illegal for the PDP-11/20, and if they
correspond to 11/45 floating point instructions,
simulates their operation. The following in
structions are supported:

cfcc
setf
seti
setd
setl
clrf
tstf
absf
negf
mulf
modf
addf
movf
movf
subf
cmpf
divf
movfi
movif
movfo
movof

fdst
fsrc
fdst
fdst
fsrc,fr
fsrc,fr
fsrc,fr
fsrc,fr
fr,fdst
fsrc,fr
fsrc,fr
fsrc,fr
fr,dst
src,fr
fr,fdst
fsrc,fr

(=ldf)
(=stf)

(=stcfi)
(=ldcif)
(=stcxy)
(:=ldcyx)

Here src and dst" stand for source and destina
tion, fsrc and fdst for floating source and des
tination, and fr for floating register. Notice
that the names of several of the opcodes have
changed. The only strange instruction is movf,
which turns into stf if its source operand is a
floating register, and into Idf if not.

The simulator sets the floating condition codes
on both ldf and stf. The 11/45 hardware does not
set the fcc on stf.

Short and long format for both floating point
numbers and integers is supported. Truncation
mode is always in effect. Traps for overflow and
other arithmetic errors are not supported. Ille
gal instructions or addresses cause a simulated
trap so that a core image is produced.

The condition code bits are maintained correctly.

For floating-point source operands, immediate
mode «pc)+) is not supported, since the

- 1 -

3/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

FPTRAP (III)

PDP-11/45 handbook is not clear on what to do
about it.

After an arithmetic error the result is generally
meaningless.

The arithmetic is always done in double
precision, so exact but unrounded results are to
be expected in single-precision mode. Double
precision results are probably less correct than
the hardware will be.

The lower parts of the floating registers become
meaningless during single-precision operations.

kept in /usr/lib/liba.a

PDP-11/45 handbook, i1gins(II)

trap, c-bit, v-bit

s"ee above

ken, dmr

- 2 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

FTOA (III)

ftoa floating to ascii conversion

j sr r5,ftoa; subr

ftoa will convert the floating point number in
frO into ascii in the form [-]d.dddddddd~[-]dd*.
The floating pOint simulator should be active in
either floating or double mode, but in single
integer mode. For each character generated by
ftoa, the subroutine ~ is called on 'register
r5 with the character in rOe

kept in /usr/lib/liba.a

fptrap(III)

The subroutine subr should not disturb any regis
ters.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CONNECT, GERTS (III)

connect, gerts -- Gerts communication over 201

jsr r5,connect
(error return)/
• • •

jsr r5,gerts; fc; oc; ibuf; obuf
(error return)
• • •

The GECOS GERTS interface is so bad that a
description here is inappropriate. Anyone need
ing to use this interface should contact the own
er.

/dev/dnO, /dev/dpO
kept in /usr/lib/liba.a

dn(IV), dp(IV), HIS documentation

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

getw, getc, fopen

mov
j sr

$filename,rO
r 5, fopen ; iobuf

jsr r5,getc; iobuf
(character in rO)

jsr r5,getw; iobuf
(word in rO)

GETC, GETW, FOPEN (III)

buffered input

These routines are used to provide a buffered
input facility. iobuf is the address of a
518(10) byte buffer area whose contents are main
tained by these routines. Its format is:

ioptr: • =. +2
.=.+2
.=.+2
.=.+512.

/ file descriptor
/ characters left in buffer
/ ptr to next character
/ the buffer

fopen may be called initially to open the file.
On return, the error bit (c-bit) is set if the
open failed. If fopen is never called, get will
read from the standard input file.

getc returns the next byte from the file in rOe
The error bit is set on end of file or a read
error.

getw returns the next word in rOe gete and getw
may be used alternately; there are no odd/even
problems.

iobuf must be provided by the user; it must be on
a word boundary.

kept in /usr/lib/liba.a

open(II), read(II), putc(III)

c-blt set on EOF or error

dmr

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

hypot -- calculate hypotenuse

(A in frO)
(B in frO)
jsr rS,hypot

HYPOT (III)

The square root of frO*frO + fr1*fr1 is returned
in frO. The calculation is done in such a way
that overflow will not occur unless the answer is
not representable in floating point.

The floating point simulator should be active in
either single or double mode.

kept in /usr/lib/liba.a

fptrap(III)

The c-bit is set if the result cannot be
represented.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

ITOA (III)

itoa integer to ascii conversion

jsr r5,itoa; subr

itoa will convert the number in rO into ascii
decimal possibly preceded by a - sign. For each
character generated by itoa, the subroutine subr
is called on register r5 with the character in
rD.

kept in /usr/lib/liba.a

The subroutine subr should not disturb any regis
ters.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

LOG (III)

log logarithm base e

j sr r5,10g

The logarithm base e of frO is returned in frO.
The floating point simulation should be active in
either floating or double mode, but in s1.ng1e
precision integer mode.

kept in /usr/lib/liba.a

fptrap

The error bit (c-bit) is set if the input argu
ment is less than or equal to zero.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

mesg

jsr

MESG (III)

write message on typewriter

rS,mesg; <Now is the time\O); .even

mesg writes the string immediately following its
call onto the standard output file. The string
is terminated by a 0 byte.

kept in /usr/llb/liba.a

ken, dmr

- 1 -

6/12/72 NLIST (III)

NAME nlist -- get entries from name list

SYNOPSIS jsr rS,nlist; file; list
• • •

file: <file name\O)
list:

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

<name1xxx); type1; value1
<name2xxx>; type2; value2
• • • o

nlist will examine the name list in an assembler
output file and selectively extract a list of
values. The file name is a standard UNIX path
name. The name list consists of a list of 8-
character names (null padded) each followed by
two words. The list is terminated with a zero.
Each name is looked up in the name list of the
file. If the name is found, the type and value
of the name are placed in the two words following
the name. If the name is not found, the type
entry is set to -1.

This subroutine is useful for examining the sys
tem name list kept in the file /sys/sys/unix. In
this way programs can obtain system 'magic'
numbers that are up to date.

kept in /usr/lib/liba.a

a.out(V)

All type entries are set to -1 if the file cannot
be found or if it is not a valid namelist.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

PTIME (III)

ptime print date and time

(move time to ac-mq)
mov file,rO
jsr pc,ptime

ptime prints the date and time in the form

Oct 9 17:20:33

on the file whose file descriptor is in rO. The
string is 15 characters long. The time to be
printed is placed in the AC and MQ registers in
the form returned by ~ ~.

kept in /usr/lib/liba.a

time(II), ctime(III) (used to do the conversion)

see ctime

dmr, ken

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

PUTC, PUTW, FCREAT, FLUSH (III)

putc, putw, fcreat, flush buffered output

mov
jsr

$filename,rO
r5,fcreat; iobuf

(get byte in rO)
jsr r5,putc; iobuf

(get 'word in rO)
jsr r5,putw; iobuf

jsr r5,flush; iobuf

fcreat creates the given file (mode 17) and sets
up the buffer iobuf (size 518(10) bytes); putc
and putw write a byte or word respectively onto
the file; flush forces the contents of the buffer
to be wr.itten, but does not close the file. The
format of the buffer is:

iobuf: .=.+2
.=.+2
.=.+2
.=.+512.

/ file descriptor
/ characters unused in buffer
/ ptr to next free character
/ buffer

fcreat sets the error bit (c-bit) if the file
creation failed; none of the other routines re
turn error information.

Before terminating, a program should call ~lush
to force out the last of the output.

The user must supply iobuf, which should begin on
a word boundary.

kept in /usr/lib/liba.a

creat(II), write(II), getc(III)

error bit possible on fcreat call

dmr

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPT ION

FILES

SEE ALSO

D IAGNOST Ies

BUGS

OWNER

qsort -- quicker sort

(base of data in r1)
(end of data in r2)
(element width in r3)
jsr pc ,qsort

QSORT (III)

gsort is an implementation of the quicker sort
algorithm. It is designed to sort equal length
byte strings. Registers r1 and r2 delimit the
region of core containing the array of byte
str ings to be sorted: r1 pOints to the start of
the first string, r2 to the first location above
the last string. Register r3 contains the length
of each string. r2-r1 should be a multiple of
r3. On return, rO, r1, r2, r3, r4, AC and MQ are
destroyed.

The user should be able to supply his own compar
ison routine.

ken

- 1 -

6/15/72

NAME

SYNOPSIS

SALLOe (III)

salloc -- strinq manipulation routines

(qet size in rO)
jsr pc,allocate

(qet source pointer in rO,
destination pOinter in r1)
jsr pc,copy

jsr pc,wc

(all followinq instructions assume r1 contains pointer)

jsr pc,release

(qet character in rO)
jsr pc~putchar

jsr pc,lookchar
(character in rO)

jsr pc,qetchar
(character in rO)

(qet character in rO)
jsr pc,alterchar

(qet position in rO)
jsr pc,aeekchar

jar pc,backs~ace
(char acter in rO)

(qet word in rO)
jar pc,putword

jsr pc,lookword
(word in rO)

jar pc,qetword
(word in rO,)

(qet word in rO)
jar pc,alterword

-jar pc,backword
(word in rO)

jsr pc,length
(lenqth in rO)

jar pc, position
(position in rO)

jsr pc,rewind

- 1 -

6/15/72

DESCRIPTION

jsr

jsr

jsr

pc,create

pc,fsfile

pc,zero

SALLOe (III)

This package is a complete set of routines for
dealing with almost arbitrary length strings of
words and bytes. The strings are stored on a
disk file, so the sum of their lengths can be
considerably larger than the available core.

For each string there is a header of four words,
namely a write pOinter, a read pOinter and
pOinters to the beginning and end of the block
containing the string. Initially the read and
write ~ointers point to thebeqinning of the
string. All routines that refer to a string
require the header address in r1. unless the
string is destroyed by the call, upon return r1
will pOint to the same string, although the
string may have grown to the extent that it had
to be be moved.

allocate obtains a string of the requested size
and returns a pointer to its header in r1.

release releases a strinq back to free storage.

putchar and putword write a byte or word respec
tively into the string and advance the write
pOinter.

lOOkCha; and lookword read a byte or word respec
tively from the string but do not advance the
read pointer.

getchar and getword read a byte or word respec
tively from the string and advance the read
pointer~

alterch" and alterword write a byte or word
respectively into the string where the read
pOinter is pointing and advance the read pointer.

backspace and backword read the last byte or word
written and decrement the write pointer.

All write operations will automatically get a
larger block if the current block is exceeded.
All read operations return with the error bit set
if attempting to read beyond the write pointer.

seekchar moves the read pointer to the offset
specified in rOe

- 2 -

6/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

SALLOC (III)

length returns the current lenqth of the strtnq
(beqinninq pOinter to write pointer) in rOe

position returns the current offset of the read
pointer in rOe

rewind moves the read pOinter to the current
position of the write pOinter.

create returns the read and write pointers to the
beginninq of the strinq.

fsfile moves the write pointer to the current
positiori of the read pointer.

~. zeros the whole strinq and sets the write
pOinter to the beqinninq of the strinq.

~ copies the str1nq whose header pointer is in
rO to the strinq whose header pOinter is in r1.
Care should be taken in usinq the copy instruc
tion since r1 will be chanqed if the contents of
the source strinq is biqqer than the destination
strinq~

wc forces the contents of the internal buffers
and the header blocks to be written on disc.

The allocator proper is in /usr/l.lc/alloc/alloca.

The archive /usr/llc/alloc/allocb contains the
individual routines discussed above.

alloc~d is the temporary file used to contain the
strinqs.

" " error in copy if a disk write error occurs dur-
1nq the execution 0' the copy instruction.
error in allocator if· any routine is called

" with a bad header pointer. Cannot open output
file" if file alloc.d cannot be created or

ed , " " • open • Out of space if there s no available
block of the requested size or no headers avail
able fo~ a new block.

llc,rhm

- 3 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

SIN, COS (III)

sin, cos -- sine cosine

Jsr rS,sin (cos)

The sine (cosine) of frO (radians) is returned in
frO. The floating point simulation should be
active in either floating or double mode, but in
single precision integer mode. All floating
registers are used.

kept in /usr/lib/liba.a

fptrap(III)

Size of the argument should be cheeked to make
sure the result is meaningful.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

SQRT (III)

sqrt square root function

j sr r5,sqrt

The square root of frO is returned in frO. The
floating point simulation should be active in
either floating or double mode, but in single
precision integer mode.

kept in /usr/lib/liba.a

fptrap(III)

The c-blt is set on negative arguments.

rhm, dmr, ken

- 1 -

3/15/72 SWITCH (III)

NAME switch switch on value

SYNOPSIS (switch value in rO)
jsr r5,switch; swtab
(not-found return)
• • •

swtab: va11; lab1;

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

• • •
valn; labn
•• ; 0

switch compares the value of rO against each of
the val ; if a match is found, control is
transfe!red to the corresponding lab. (after pop
ping the stack once). If no match has been found
by the time a null labi occurs, switch returns.

kept in /usr/lib/liba.a

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

DNO (IV)

dnO -- dn-11 ACU interface

2nQ is a write-only file. Bytes written on dnO
must be ASCII digits. Each digit corresponds to
a digit of a telephone number to be called. The
entire telephone number must be presented in a
single write system call. The call must complete
with the last digit.

found in /dev

dpO(IV), write(II)

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

DP (IV)

dpO -- dp-11 201 data-phone interface

dpO is a 201 data-phone interface file. ~ead and
write calls to g£Q are limited to a maximum of
400 bytes. Each write call is sent as a single
record. Seven bits from each byte are written
along with an eighth odd parity bit. The sync
must be user supplied. Each read call return~
characters received from a single record. Seven
bits are returned unaltered; the eighth bit is
set if the byte was not received in odd parity.
A 20 second time out is set and a zero byte
record is returned if nothing is received in that
time.

found in /dev

dnO(IV), gerts(III)

The go file is GECOS oriented. It should be more
flexible.

ken, dmr

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

LPR (IV)

/dev/lpr -- line printer

The line p'rinter special file is the UNIX inter
face to a DEC LP-11 line printer. This file may
only be opened (or creat'ed) for writing. Any
thing written on this file is printed on the line
printer. The following special cases for the
printer are handled:

On opening and on closing, the paper is slewed
to the top of the next page.

For the 64 character ,printer (LP11-FA), all
lower case letters are converted to upper
case.

Tabs are converted to align on every eighth
column.

New lines and form feeds are ignored when the
printer is at the top of a page. This is done
so that 2I and roff output may be directed to
the printer and sync on page boundaries even
with automatic page slew.

Carriage return and back space can cause mul
tiple printing on a single line to allow for
overstruck graphics.

found in /dev

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

MEM (IV)

mem core memory

~ maps the core memory of the computer into a
file. It may be used, for example, to examine,
and even to patch the system using the debugger.

~ is a byte-oriented file; its bytes are num
bered 0 to 65,535.

found in /dev

If a location not corresponding to implemented
memory is read or written, the system will incur
a bus-error trap and, in panic, will reboot it
self.

ken, dmr

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

MTO (IV)

mtC -- magtape

msQ is the DEC TU10/TM11 magtape. When opened
for reading or writing, the magtape is rewound.
A tape consists of a series of 256 word records
terminated by an end-of-file. Reading less than
256 words (512 bytes) causes the rest of a record
to be ignored. Writing less than a record causes
null padding to 512 bytes. When the magtape is
closed after writing, an end-of-file is written.

Seek has no effect on the magtape. The magtape
can only be opened once at any instant.

found in /dev

mt(I)

Seek should work on the magtape. Also, a provi
sion of having the tape open for reading and
writing should exist. A multi-file and multi
reel facility should be incorporated.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

PPT (IV)

ppt punched paper tape

~ refers to the paper tape reader or punch,
depending on whether it is read or written.

When ~ is opened for writing, a 100-character
leader is punched. Thereafter each byte written
is punched on the tape. No editing of the char
acters is performed. When the file is closed, a
100-character trailer is punched.

When ~ is opened for reading, the process waits
until tape is placed in the reader and the reader
is on-line. Then requests to read cause the
characters read to be passed back to the program,
again without any editing. This means that
several null characters will usually appear at
the beginning of the file; they correspond to the
tape leader. Likewise several nulls are likely
to appear at the end. End-of-file is generated
when the tape runs,out.

Seek calls for this file are meaningless and are
effectively ignored (however, the read/write
pOinters are maintained and an arbitrary sequence
of reads or writes intermixed with seeks will
give apparently correct results when checked with
tell).

found in !dev

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

RFO (IV)

rfO RF11-RS11 fixed-head disk file

This file refers to the entire RF disk. It may
be either read or written, although writing is
inherently very dangerous, since a file system
resides there.

The disk contains 1024 256-word blocks, numbered
o to 1023. Like the other block-structured dev
ices (tape, RK disk) this file is addressed in
blocks, not bytes. This has two consequences:
~ calls refer to block numbers, not byte
numbers; and sequential reading or writing always
advance the read or write pointer by at least one
block. Thus successive reads of 10 characters
from this file actually read the first 10 charac
ters from successive blocks.

found in /dev

tapO(IV), rkO(IV)

The' fact that this device is addressed in terms
of blocks, not bytes, is extremely unfortunate.
It is due entirely to the fact that read and
write pOinters (and consequently the arguments to
~ and tell) are single-precision numbers.
This really has to be changed but unfortunately
the repercussions are serious.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

rkO RK03 (or RK05) disk

rkO refers to the entire RK03
sequentially-addressed file.
are numbered 0 to 4871. Like
tape files, its addressing is
Consult the rfO(IV) section.

found in /dev

rfO(IV), tapO(IV)

See rfO(IV)

ken, dmr

- 1 -

RKO (IV)

disk as a single
Its 256-word blocks
the RF disk and the
block-oriented.

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

RPO (IV)

rpO RP11/RP02 disk

rpO refers to the entire RP02 disk as a single
sequentially-addressed file. Its 256-word blocks
are numbered 0 to 40599. Like the RF disk and
the tape files, its addressing is block-oriented.
Consult the rfO(IV) section.

found in /dev

rfO(IV), tapO(IV)

See rfO(IV)
Due to a hardware bug, block 40599 on the RP can
not be accessed.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

TAPO ••• TAP? (IV)

tapO ••• tap7

These files refer to DECtape drives 0 to 7.
Since the logical drive number can be manually
set, all eight files exist even though at present
there are fewer physical drives.

The 256-word blocks on a standard DECtape are
numbered 0 to 577. However, the system makes no
assumption about this number; a block can be read
or written if it exists on" the tape and not oth
erwise. An error is returned if a transaction is
attempted for a block which does not exist.

Like the RK and RF special files, addressing on
the tape files is block-oriented. See the RFO
section.

found in /dev

/dev/rfO, /dev/rkO

see /dev/rfO

ken, dmr

- 1 -

'3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

TTY (IV)

tty console typewriter

tty (as distinct from ttyO, ••• , ~) refers to
the console typewriter hard-wired to the PDP-11.

Generally, the disciplines involved in dealing
with tty are similar to those for ~tyO ••• and
the appropriate section should be consulted. The
following differences are salient:

The system calls stty and ~ do not apply to
this device. It cannot be placed in raw mode; on
input, upper case letters are always mapped into
lower case letters; a carriage return is echoed
when a line-feed is typed.

The quit character is not FS (as with ~tyO •••)
" " but is generated by the key labelled alt mode.

By appropriate console switch settings, it is
possible to cause UNIX to come up as a single
user system with I/O on this device.

found in /dev

ttyO{IV), init{VII)

ken, dmr

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

TTYO (IV)

ttyO ••• tty7 communications interfaces

These files refer to DC11 asynchronous communica
tions interfaces. At the moment there are eight
of them, but the number is subject to change.

When one of these files is opened, it causes the
process to wait until a connection is esta
blished. (In practice, however, user's programs
seldom open these files; they are op,ened by in it , -and become a user s standard input and output
file.) The very first typewriter file open in a
process becomes the control ~ypewriter for that
process. The control typewriter plays a special
role in handling quit or interrupt signals, as
discussed below. The control typewriter is in
herited by a child process during a ~.

A terminal associated with one of these files
ordinarily operates in full-duplex mode. Charac
ters may be typed at any time, even while output
is occurring, and are only lost when the system's
character input buffers become completely choked,
which is rare,' or when the user has accumulated
the maximum allowed number of input characters
which have not yet .been read by some program.
Currently this limit is 150 characters. When

" " this is happening the character # is echoed for
every lost input character.

When first opened, the standard interface mode
assumed includes: ASCII characters; .150 baud;.
even parity accepted; 10 bits/character (.one stop
bit); and newline action. character. The system
delays transmission after sending certain func
tion characters; delays for horizontal tab, new
line, and form feed are calculated for the Tele
type Model 37; the delay for carriage return is
calculated for the GE TermiNet 300. Most of
these operating states can be changed by using
the system call stty(II). In particular the fol
lowing hardware states are program settable in
dependently for input and output (see DC11
manual): 110, 134.5, 150,300, 600, or 1200 baud;
one or two stop bits on output; and 5, 6, 7, or 8
bits/character. In addition, the following
software modes can be invoked: acceptance of even
parity, odd parity, or both; a raw mode in which
all characters may be read one at a time; a car
riage return (CR) mode in which CR is mapped into
newline on input and either CR or line feed (LF)
cause echoing of the sequence LF-CR; mapping of
upper case letters into lower case; suppression
of echoing; suppression of delays after function

- 1 -

6/12/72 TTYO (IV)

characters; the echoing of input tabs as spaces;
and setting the system to handle IBM 2741s. See
getty(VII) for the way that terminal speed and
type are detected.

Normally, typewriter input is processed in units
of lines. This means that a program attempting
to read will be suspended until an entire line
has been typed. Also, no matter how many charac
ters are requested in the read call, at most one
line will be returned. It is not however neces
sary to read a whole line at once; any number of
characters may be requested in a read, even one,
without losing information.

During input, erase and kill erocessing is nor
mally done. The character "I erases the last
character typed, except that it will not erase
beyond the beginning of a line or an EOF. The ., ..
character @ kills the entire line up to the
point wher,e it was typed, but not beyond an EOF.
Both these characters operate on a keystroke
basis independently of any backsp~cing of. £abbing
that may have been done. Either @ or I may
be entered literally by preceding it by "~"l the
erase or kill character remains, but the \.
disappears.

It is possible to use raw mode in which the pro
gram reading is wakened on each character. The
progr'am waits only until at least one character
has been typed. In raw mode, no erase or kill
processing is done; and the EOT, quit and inter
rupt characters are not treated specially.

The ASCII EaT character may be used to generate
an end of file from a typewriter. When an EaT is
received, all the characters waiting to be read
are immediately passed to the program, without
waiting for a new-line. Thus if there are no
characters waiting, which is to say the EOT oc
curred at the beginning of a line, zero charac
ters will be passed back, and this is the stan
dard'end-of-file Signal.

When the carrier Signal from the qataset drops
(usually because the user has hung up his termi
nal) any read returns with an end-of-file indica
tion. Thus programs which read a typewriter and
test for end-of-file on their input can terminate
appropriately when hung up on.

Two characters have a special meaning when typed.
The ASCII DEL character (sometimes called "rub
out") is the interrupt signal~ When this charac
ter is received from a given typewriter, a search

2 -

6/12/72 TTYO (IV)

is made for all processes which have this type
writer as their control typewriter, and which
have not informed the system that they wish to
ignore interrupts. If there is more than one
such process, one of these is selected, for prac
tical pUl';'poses at random. If interrupts aren't
being ignored, the process is either forced to
exit or a trap is simulated to an agreed-upon
location in.the process. See intr(II).

The ASCII .character FS is the ~ signal. Its
treatment is identical to the interrupt signal
except that unless the receiving process has made
other arrangements it will not only be terminated
but a core image file will be generated. See
quit(II).

Output is prosaic compared to input. When one or·
more characters are written, they are actually
transmitted to the terminal as soon as
previously-written characters have finished typ
ing. Input characters are echoed by putting them
in the output queue as they arrive •. When a pro
gram produces characters more rapidly than they
can be typed, it will be suspended when its out
put queue exceeds some limit. When the queue has
drained down to some threshold the program is
resumed. Even parity is always generated on out
put. The EOT character is not transmitted to
prevent terminals which respond to it from being
hung up.

The system will handle IBM 2741 terminals. See
getty(VII) for the way that 2741s are detected.
In 2741 mode, the hardware state is: 134.5 baud;
one output stop bit; and 7 bits/character. Be
cause the 2741 is inherently half-duplex, input
is not echoed. Proper function delays are pro
vided. For 2741s without a feature known as
"transmit interrupt" it is not possible to col
lect input ahead of the time that a program reads
the typewriter, because once the keyboard has
been -enabled there is no way to send further out
put to the 2741. It is currently assumed that
the feature is absent; thus the keyboard is un
locked' only when some program reads. The inter
rupt Signal (n~rmally AS~II DEL) is simulated
when the 2741 attention key is pushed to gen
erate either a 2741 style EOT or a break. It is
not possible' to generate anything corresponding
to the end-of-file EOT or the quit signal.
Currently IBM EBCDIC is default for input and
output; correspondence code output is settable
(see stty(I»). The full ASCII character set is
not available: "[", "]", "{ft, "}", "_If, are miss-
ing on input and are printed as blank on output;

- 3 -

6/12/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

TTYO (IV)

"¢" is used for "\"; "~n for "_A; "." fer"both
.. , .. and"""on output; and "t" maps into ' on
input. Similar mappings occur with correspon
dence code output.

found in /dev

tty(I), getty(VII)

The primarily Model 37 oriented delays may not be
appropriate for all other ASCII terminals.

ken, dmr, jfo

- 4 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

A.OUT (V)

a.out assembler and link editot output

a.out is the output file of the a¢sembler ~§ and
the link editor 19. In both ·cas~ls. ~.out is exe
cutable provided there were no e,rrors and no
unresolved external references. "

This file has four sections: a header, the pro
gram and data text, a symbol table, and reloca
tion bits (in that order). The last two may be . " " empty 1f the program was loaded with the -s
option of Id or if the symbols and relocation
have been removed by strip."

The header always contains 8 words:

1 a '"br • +20'" 1nstru,ction (407 (8))
2 The size of the program text segment
3 The size of the initialized data segment
4 The size of the uninitialized (bss) segment
5 The size of the symbol table
6 The entry location (always 0 at present)
7 The stack size required (0 at present)
8 A flag indicating relocation bits have been

suppressed

The sizes of each segment are in bytes but are
even. The size of the header is not included in
any of the other sizes.

When a file produced by the assembler or loader
is loaded into core for execution, three logical
segments are 'set up: the text segment, the data
segment, and the uninitialized segment, in that
order. The text segment begins at the lowest
location in the core image; the header is not
loaded. The data segment begins immediately
after the-· 'text . segment, and the bss segment im
mediately after the data 'segment. The bss seg
ment is/ initialized by 0' s. In the future the
text segment will be write-protected and shared.

The start of the text segment iri the file is
20(8); the start of the data segment is 20+S
(the size of the text) the start of therelo~a
tion information is 20+S

t
+Sd ; the start of the

symbol table is 20+2(St+Sd) if the r~location
information is present, 20+St +Sd if not.

The symbol table consists of 6-word entries. The
first four contain the ASCII name of the symbol,
null-padded. The next word is a flag indicating
the type of symbol. The following values are
possible:

- 1 -

3/15/72 A.OUT (V)

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol
04 bss segment symbol.
40 undefined external (.globl) symbol
41 absolute external symbol
42 text segment external symbol
43 data segment external symbol
44 bss segment external symbol

Values other than those given above may occur if
the user has defined some of his own instruc
tions.

The last word of a symbol table entry contains
the value of the symbol.

If the symbol's type is undefined external, and
the value field is non-zero, the symbol is inter
preted by the loader Id as the name of a common
region whose size is indicated by the value of
the symbol.

If a.out contains no unresolved global refer
ences, the text portions are exactly as they will
appear in core when the file is executed. If the
value of a word in the text portion involves a
reference to an undefined global, the word is
replaced by the offset to be added to the
symbol "s value when it becomes defined.

If relocation information is present, it amounts
to one word per word of program text or initial
ized data. There is no relocation information if

" " the suppress relocation flag in the header is
on.

Bits 3-1 of a relocation word indicate the seg
ment referred to by the text or data word associ
ated with the relocation word:

00 indicates the reference is absolute
02 indicates the reference is to the text seg-

ment
04 indicates the reference is to the data seg-

ment
06 indicates the reference is to the bss seg-

ment
10 indicates the reference is to an undefined

external symbol.

Bit 0 of the relocation word indicates if on that
the reference is relative to the pc (e.g. WClr
x"); if gff A the re~erence is to the actual sym
bol (e.g., clr *$x).

- 2 -

3/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

A.OUT (V)

The remainder of the relocation word (bits 15-4)
contains a symbol number in the case of external
references, and is unused otherwise. The first
symbol is numbered 0, the second 1, etc.

dmr

- 3 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

ARCHIVE (V)

archive (library) file format

The archive command ar is used to combine several
files into one. Its-Use has three benefits: when
files are combined, the file space consumed by
the breakage at the end of each file (256 bytes
on the average) is saved; directories are smaller
and less confusing: archive files of object pro
grams may be searched as libraries by the loader
ld.

A file produced by ar has a "magic number" at the
start, followed by the constituent files, each
preceded by a file header. The magic number is
-147(10), or 177555(8) (it was chosen to be un
likely to occur anywhere else). The header of
each file is 16 bytes long:

0-7
file name, null padded on the right

8-11
Modification time of the file

12
User ID of file owner

13
file mode

14-15
file size

If the file is an odd number of bytes long, it is
padded with a null byte, but the size in the
header is correct.

Notice there is no proviSion for empty areas in
an archive file.

!,!, ld

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

CORE (V)

format of core image

Three conditions cause UNIX to write out the core
image of an executing program: the program gen
erates an unexpected trap (by a bus error or
illegal instruction); th~ user sends a "quit"
signal (which has not been turned off by the
T;)rogram); a trap is simulated by the floating "
point simulator. The core image is called core
and is written in the current working directory
(provided it can be; normal access controls ap
ply) •

The size and structure of the core image file
depend to some extent on which system is in
volved. In general there .1s a S12-byte area at
the end which contains the system's per-process
data for that process. The remainder represents
the actual contents of the user's core area when
the core image was written. In the current sys
tem, this area is variable in size in that only
the locations from user 0 to the program break,
plus the stack, is dumped.

When any trao which is not an I/O interrupt oc
curs, all the useful registers are stored on the
stack. After all the registers have been stored,
the contents of ~ are placed in the first cell
of the user area; this cell is called u.sp.
Therefore, within the core image DroDer, there is
an area which contains the following registers in
the following order (increasing addresses):

(u.sp)-)sc
mq
ac
r5
r4
r3
r2
r1
rO
pc (at time of fault)
processor status (at time of fault)

The last two are stored by the hardware. It fol
lows that the contents of so at the time of the
fault were (u.sp) plus 22(10).

The actual location of this data depends on- which
system is being used. In the current system,
which has relocation and protection hardware, the
staCK discussed above is the system stack, and is
kept in the per-user area; in older systems,

-- 1 -

3/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CORE (V)

there is only one stack, and it is located in the
user's core area.

In general the debugger db(I) should be used to
deal with core images.

ken, dmr

- 2 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

DIRECTORY (V)

format of directories

A directory behaves exactly like an ordinary
file, save that no user may write into a directo
ry. The fact that a file is a directory is indi
cated by a bit in the flag word of its i-node
entry.

Directory entries are 10 bytes long. The first
word is the i-node of the file re?resented by the
entry, if non-zero; if zero, the entry is empty.

Bytes 2-9 ,represent the (8-character) file name,
null padded on the right. These bytes are not
necessarily cleared for empty slots.

By convention, the"f!rst t~o ~ntries in each
directory are for • and ••• The first is an
entry for the directory itself. The second is

" " for the parent directory. The meaning of •• is
modified for the root directory of the master
file system and for the root directories of re
movable file systems. In the first case, there
is no parent, and in the second, the system does
not permit off-device references without a mount

" " system call. Therefore in both cases •• has
" " the same meaning as ••

file system format

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILE SYSTEM (V)

format of file system

Every file system storage volume (e.g. RF disk,
RK disk, DECtape reel) has a common format for
certain vital information.

Every such volume is divided into a certain
number of 256 word (512 byte) blocks. Blocks 0
and 1 are collectively known as the super-block
for the device; they define its extent and con
tain an i-node ma~ and a free-storage map. The
first word contains the number of bytes in the
free-storage map; it is always even. It is fol
lowed by the map. There is one eit for each
block on the device; the bit is 1 if the block
is free. Thus if the number of free-map bytes is
n, the blocks on the device are numbered 0
through 8n-1. The free-map count is followed by
the free map itself. The bit for block k of the
device is in byte ~/8 of the map; it is offset
k(mod 8) bits from the right. Notice that bits
exist for the superblock and the i-list, even
though they are never allocated or freed.

After the free map is a word containing the byte
count for the i-node map. It too is always even.
I-numbers below 41(10) are reserved for special
files, and are never allocated; the first bit in
the i-node free map refers to i-number 41.
Therefore the byte-number in the i-node map for
i-node i is (i-41)/8. It is offset (i-41) (mod
§)"bits-from theriqht; unlike the free map, a
o bit indicates an available i-node.

I-numbers begin at 1, and the storage for i-nodes
begins at block 2. Also, i-nodes are 32 bytes
long, so 16 of them fit into a block. Therefore,
i-node i is located in block (i+31)/16 of the
file system, and begins 32·«1+31)(mod 16)) bytes
from its start.

There is always one file system which is always
mounted; in standard UNIX it resides on the RF
disk. This device is also used for swapping.
The swap areas are at the high addresses on the
device. It would be convenient if these ad
dresses did not appear in the .free list, but in
fact this is not so. Therefore a certain number
of blocks at the top of the device appear in the
free map, are not marked free, yet do not appear
within any file. These are the blocks that show
up "missing" in a check of the RF disk.

Again on the primary file system device, there

- 1 -

3/15/72 FILE SYSTEM (v)

are several pieces of information following that
previously discus·sed. They contain basically the
information tyPed by the tm command; namely, the
times spent since a cold boot in various ca
tegories, and a count of I/O errors. In particu
lar, there are two words with the calendar time
(measured since 00:00 Jan 1, 1971); two words
with the time spent executing in the system; two
words with the time spent waiting for I/O on the
RF and RK disks; two words with the time spent
executing in a user's core; one byte with the
count of errors on the RF disk; and one byte with
the count of errors on the RK disk. All the
times are measured in sixtieths of a second.

I-node 41(10) is reserved for the root directory
of the file system. No i-numbers other than this
one and those from 1 to 40 (which represent spe
cial files) have a built-in meaning.·· Each i-node
represents one file. The format of an i-node is
as follows, where the left column represents the
offset from the beginning of the i-node:

0-1 flags (see below)
2 number of links
3 user ID of owner
4-5 size in bytes
6-7 first indirect block or contents block
• • •
20-21
22-25
26-29
30-31

eighth indirect block or contents block
creation time
modification time

unused

The flags are as follows:

100000
040000
020000
010000
000040
000020
000010
000004
000002
000001

i-node is allocated
directory
file has been modified (always on)
large file
set user ID on execution
executable
read, owner
write, owner
read, non-owner
write, non-owner

The allocated bit (flag 100000) is believed even
if the i-node map says the i-node is free; thus
corruption of the map may cause i-nodes to become
unallocatable, but will not cause active nodes to
be reused.

Byte number n of a file is accessed as follows: n
r~s divided by 512 to find its logical block
numbe~ (say b) in the file. If the file is small

- 2 -

3/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

FILE SYSTEM (V)

(flag 010000 is 0), then B must be less than 8,
and the physical block number corresponding to b
is the Bth entry in the address portion of the
i-node.

If the file is large, E is divided by 256 to
yield a number which must be less than 8 (or the
file is too large for UNIX to handle). The
corresoonding slot in the i-node address portion
gives the physical block number of an indirect
block. The residue mod 256 of b is multiplied by
two (to give a byte offset in the indirect block)
and the word found there is the physical address
of the block corresponding to E.
If block E in a file exists, it is not necessary
that all blocks less than b exist. A zero block
number either in the address words of the i-node
or in an indirect block indicates that the
corresponding block has never been allocated.
Such a missing block reads as if it contained all
zero words.

format of directories

Two blocks are not enough to handle the i- and
free-storage maps for an RP02 disk pack, which
contains around 10 million words.

- 3 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

IDENT (V)

ident -- IDENT card file

ident is a file used to generate GECOS eIDENT
cards by the off-line print program opr(I).
There is one entry per line in the following
style:

05:m1234,m789,name

which causes the following $IDENT card to be
generated:

IDENT

kept in /etc/ident.

opr(I)

ken, dmr

- 1 -

m1234,m789,name

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

PASSWD (V)

passwd password file

passwd contains for each user the following
information:

name (login name)
password
numerical user ID
default working directory
program to use as Shell

This is an ASCII file. Each field within each
user's entry is separated from the next by a
colon. Each user is separated from the next by a
new-line. If the password field is null, no
password is demanded; if the Shell field is null,
the Shell itself is used.

This file, naturally, is inaccessible to anyone
but the super-user.

This file resides in directory /etc.

/etc/init

super-user

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

TAP (V)

tap -- DEC/mag tape formats

The DECtape command tap and the magtape command
mt dump and extract files to and from their
respective tape media. The format of these tapes
are the same.

BlocK zero of the tape is not used. It is avail
able as a boot program to be used in a stand
alone enviornment. This has proved valuable for
DEC diagnostic programs.

Blocks 1 thru 24 contain a directory of the tape.
There are 192 entries in the directory; 8 entries
per block; 64 bytes per entry. Each entry has
the following format:

path name
mode
uid
size
time modified
tape address
unused
check sum

32 bytes
1 byte
1 byte
2 bytes
4 bytes
2 bytes
20 bytes
2 bytes

The path name entry is the path name of the file
when put on the tape. If the pathname starts
with a zero word, the entry is empty •. It is at
most 32 bytes long and ends in a null byte.
Mode, uid, size and time modified are the same as
described under inodes (see file system (V)) The
tape address is the tape block number of the
start of the contents of the file. Every file
starts on a block boundary. The file occupies
(size+511)/512 blocks of continuous tape. The
cheCksum entry has a value such that the sum of
the 32 words of the directory is zero.

Blocks 25 on are available for file storage.

A fake entry (see mt(I), tap(I)) has a size of
zero.

filesystem(V), mt(I), tap(I)

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

UIDS (V)

/etc/uids map user names to user IDs

This file allows programs to map user names into
user numbers and vice versa. Anyone can read it.
It resides in directory /etc, and should be up
dated along with the password file when a user is
added or deleted.

The format is an ASCI! name, followed by a colon,
followed by a decimal ASCII user ID number.

dmr, ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

UTMP (V)

/tmp/utmp -- user information

This file allows one to discover information
about who is currently using UNIX. The file is
binary; each entry is 16(10) bytes long. The
first eight bytes contain a user's login name or
are null if the table slot is unused. The low
order byte of the next word contains the last
character of a typewriter name (currently, '0' to
'5' for /dev/ttyO to /dev/tty5). The next two
words contain the user's login time. The last
word is unused.

This file resides in directory /tmp.

/etc/init, which maintains the file.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

WTMP (V)

/tmp/wtmp -- user login history

This file records all logins and logouts. Its
format is exactly like utmp(V) except that a null
user name indicates a logout on the associated
tyPewriter, and the tyPewriter name 'x' indicates
that UNIX was rebooted at that point.

Wtrnp is maintained by login(I) and init(VII).
Neither of these programs creates the file, so if
it is removed record-keeping is turned off.

init(VII), login(I), tacct(I), acct(I)

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

basic -- DEC supplied BASIC

basic [file]

BASIC (VI)

Basic is the standard BASIC VOOO distributed as a
stand alone program. The optional file argument
is read before the console. See DEC-11-AJPB-D
manual.

Since bas is smaller and faster, Basic is not
maintained on line.

bas

See manual

GOR

dmr

- 1 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

BC (VI)

bc -- B interpreter

bc [.::£] sf ile1.!l2 ••• of 11e1 •••

bc is the UNIX B interpreter. It accepts three
types of arguments:

" " Arguments whose names end with .b are assumed
to be B source programs; they are compiled, and
the object program is left on the file sfile

1
.0

(i.e. the file whose name is that of the source
with ".0" substituted for ".b").

Other arguments (except for "-c") are assumed to
be either loader flag arguments, or B-compatible
object programs, typically produced by an earlier
bc run, or perhaps libraries of B-compatible
routines. These programs, together with the
results of any compilations specified, are loaded
(in the order given) to produce an executable
program with name a.out.

The "_en argument suppresses the loading phase,
as does any syntax error in any of the routines
being compiled.

The language itself is described in [1].

The future if B is uncertain. The language has
been totally eclipsed by the newer, more power
ful, more compact, and faster language C.

file.b
a.out
b. tmp1
b.tmp2
/usr/lang/bdir/b[ca]
/usr/lang/bdir/brt[12]
/usr/11b/l1bb.a
/usr/1ang/bdir/bil1b.a

input f1le
loaded output
temporary (deleted)
temporary (deleted)
translator
runtime initialization
builtin functions, etc.
interpreter library

[1] K. Thompson; MM-72-1211-1; Users# Reference
to B.
e(l)

see [1].

Certain external initializations are illegal.
(In particular: strings and addresses of exter
nals.)

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

bj -- the game of black jack

/usr/games/bj

BJ (VI)

Black jack is a serious attempt at simulating the
dealer in the game of black jack (or twenty-one)
as might be found in Reno.

The following rules apply:

The bet is $2 every hand.

A player 'natural' (black jack) pays $3. A
dealer natural loses $2. Both dealer and
player naturals is a 'push' (no money ex
change) •

If the dealer has an ace up, the player is
allowed to make an 'insurance' bet against the
chance of a dealer natural. If this bet is
not taken, play resumes as normal. If the bet
is taken, it is a side bet where the player
wins $2 if the dealer has a natural and loses
$1 if the dealer does not.

If the player is dealt two cards of the same
value, he is allowed to 'double'. He is al
lowed to play two hands, each with one of
these cards. (The bet is doubled also; $2 on
each hand.)

If a dealt hand has a total of ten or eleven,
the player may 'double down'. He may double
the bet ($2 to $4) and receive exactly one
more card on that hand.

Under normal play, the player may 'hit' (draw
a card) as long as his total is not over
twenty-one. If the player 'busts' (goes over
twenty-one), the dealer wins the bet.

When the player 'stands' (decides not to hit),
the dealer hits until he attains a total of
seventeen or more. If the dealer busts, the
player wins the bet.

If both player and dealer stand, the one with
the largest total wins. A tie is a push.

The machine deals and keeps score. The following
questions will be asked at appropriate times.
Each question is answered by y followed by a new
line for 'yes', or just new line for 'no'.

? means 'do you want a hit?'
Insureance?

- 1 -

3/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

BJ (VI)

Double down?

Every time the deck is shuffled, the dealer so
states and the ' action'. (total bet) and ' stand
ing' (total won or loss) is printed. To exit,
hit the interrupt key (DEL) and the action and
standing will be printed.

ken

- 2 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CAL (VI)

cal -- print calendar

/usr/ken/cal year

Cal will print a calendar for the given year.
The year can be between 0 (really 1 Be) and 9999.
For years when several calendars were in vogue in
different countries, the calendar of England (and
therefore her colonies) is printed.

P.S. try cal of 1752.

ken

- 1 -

6/13/1972

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

CHASH (VI)

chash precompile a hash table for cref

chash fi1e1 fi1e2

CHASH takes symbols (character sequences; one per
line) from fi1e1 and compiles a hash table for
the use of~. The table is written on file2.

A subroutine suitable for searching such a hash
table is available from the author.

cref

There can only be 199 symbpls; they may total
only 600 characters of text.

lem

- 1 -

6/14/1972

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

CREF (VI)

cref make cross reference listing

cref [=!2!] name1 •••

CREF makes a cross reference listing of files in
assembler format (see AS(I». The files named as
arguments in the command line are searched for
symbols (defined as a succession of alphabetics,
numerics, '.', or '_', beginning with an alpha-
b ti " , ') e c, ., or _ •

The output report is in four columns:

(1)
symbol

(2)
file

(3)
see
below

(4)
text as it appears in file

The third column contains the line number in the
file by default; the =! option will cause the
most recent name symbol to appear there instead.

CREF uses either an ~gnore file or an only file.
If the -i option is given, it will take the next
file name to be an ignore file; if the ::2 option
is given, the next file name will be taken as an
only file. Either }7nore or only files must be
made by chash (q.v.. If an ignore file is
given, all the symbols in the file will be ig
nored in columns (1) and (3) of the output. If
an only file is given, only symbols appearing in
the file will appear in column (1), but column
(3) will still contain the most recent name en
countered. Only one of the options -i or =2 may
be used. The default setting is -i; all symbols
predefined in the assembler are ignored, except
system call names, which are collected.

Files t.O, t.1, t.2, t.3 are created (i.e.
DESTROYED) in the working directory of anyone
using cref. This nuisance will be repaired soon.
The output is left in file s.out in the working
directory.

/usr/lem/s.tab is the default ignore file.

chash(VI); asCI)

"line too long" -- input line)131 characters

"symbol too long" -- symbol)20 characters

"too many symbols" --)10 symbols in line

" " cannot open t.? -- bug; see author

- 1 -

6/14/1972

BUGS

OWNER

CREF (VI)

" " , cannot fork; examine t.out can t start sort
process; intermediate results are on files-
t.O, t.1,t.2,t.3. These may be sorted in
dependently and the results concatenated by
the user.

" " .cannot sort -- odd response from sort; examine
intermediate results, as above.

" " impossible situation -- system bug

" " cannot open file -- one of the input names
cannot be opened for reading.

The destruction of unsuspecting users' files
should soon be fixed. A limitation that may
eventually go away is the .restriction to assem
bler language format. There should be options for
FORTRAN, English, etc., lexical analysis.

File names longer than eight characters cause
misalignment in the output if tabs are set at
every eigth column.

lem

- 2 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

DAS (VI)

das -- disassembler

A PDP-11 disassembler exists. Contact the owner
for more information.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

dli -- load DEC binary paper tapes

dli output [input]

DLI (VI)

dli will load a DEC binary paper tape into the
output file. The binary format paper tape is
read from the input file (/dev/ppt is default.)

/dev/ppt

" checksum"

dmr

-- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

dpt -- read DEC ASCII paper tape

dpt output [input]

DPT (VI)

dpt reads the input file (/dev/ppt default) as
suming the format is a DEC generated ASCII paper
tape of an assembly language program. The output
is a UNIX ASCII assembly program.

/dev/ppt

Almost always a hand pass is required to get a
correct output.

ken, dmr

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

moo -- a game

/usr/garnes/moo

MOO (VI)

m2Q is a guessing game imported from England.

ken

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

ptx -- permuted index

ptx1 input temp1
~ temp1 temp2
ptx2 temp2 output

PTX (VI)

ptx'generates a permuted index from file input on
file output. It is in two pieces: the first does
the permutation, generating one line for each
keyword in an input line. The keyword is rotated
to the front. The permuted file must then be
sorted. ptx2 then rotates each line around the
middle of the page.

input should be edited to remove useless lines.
The follow1na words are suppressed: "a", "and".
" " " " " " " " " " " " " " " " as, is, for, of t on, or, the, to,
" " up •

The index for this manual was generated using
ptx.

sort

dmr

- 1 -

3/28/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

TMG (VI)

tmg -- compiler compiler

tmg name

tmg produces a translator for the language whose
syntactic and translation rules are described in
file name~. The new translator appears in a.out
and may be used thus:

a.out input [output]

Except in rare cases input must be a randomly
addressable file. If no output file is speci
fied, the standard output file is assumed.

The tmg language is described in (Reference).

/etc/tmg -- the compiler-compiler
/etc/tmga,/etc/tmgb,/etc/tmgc -- libraries
/etc/tmgO.s -- global definitions

??? -- illegal input, offending line follows
fatal error codes, appear in tmg and a.out:
ad address out of bounds
so stack overflow
ga address out of bounds while generating
ko too much parse wi'thout output
to symbol table overflow
gn getnam on symbol not in table
co character string overflow

doug

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

TTT (VI)

ttt -- tic-tac-toe

/usr/games/ttt

ttt is the X's and O's game popular in 1st grade.
This is a learning program that never makes the
same mistake twice.

ttt.k -- old mistakes

ken

- 1 -

6/12/72 ASCII (VII)

NAME ascii map of ASCII character set

SYNOPSIS ~ /usr!pub!ascii

DESCRIPTION ascii is a map of the ASCII character set, to be
printed ~s needed. It contains:

1000 nullOO1 soh 1002 stx 003 etx 1004 ' eot 005 enq 1006 ack 007 bel
1010 bs 1011 ht 1012 nl 013 vt 1014 np' 015 cr 1016 so 017 si
1020 dlel021 dc1 '022 dc2 023 dc3'024 dc4 025 nak 1 026 syn 027 etb
1030 can'031 ern 032 sub 033 esc 034 fs 035 gs 1036 rs 037 us
1040 041 ! 042 " 043 # 044 $ 045 % 1046 & 047

,
sp

1050 (051) 052 * 053 + 054 055 056 • 057 / ,
1'060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
1070 8 071 9 072 : 073 . 074 < 075 = 076 > 077 ? ,
1100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G

110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 0
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 135] 136

....
137

140
,

1141 a 142 b 143 c 144 d 145 e 146 f 147 g
150 h 1151 i 152 j ,153 k 154 1 155 m 156 n 157 0
160 P 1161 q 162 r 1163 s 164 t 165 U 166 v 167 w
170 x 1171 172 1173 { 174 175 } 176 - 177 del y z

FILES found in /usr/pub

SEE ALSO

DIAGNOSTICS

BUGS

OWNFR jfo

- 1 -

3/15/72

NAME

SYNOPSIS

DESCRIPTION

173000:

173040:

BOOT PROCEDURES (VII)

bos, maki, rom, vcboot, msys, et al

On the RF disk, the highest 16K words are
reserved for stand-alone programs. These 16K
words are allocated as follows:

bos (1K)
warm UNIX (7K)
Cold UNIX (8K)

The UNIX read only memory (ROM) is rome cut with
2 programs of 16 words eaqh. The first (address
173000) reads bos from the RF disk into core
location 15400o-and transfers to 154000. The
other ROM program (address 173040) reads a
DEctape sitting in the end-zone on drive 0 into
core location 0 and transfers to O. This latter
operation is compatible with part of DEC's stan
dard ROM. The. disassembled code for the UNIX ROM
follows:

mov $177472,rO 12700;177472
mov $3,-(rO) 12740 ;3
mov $140000,-(rO) 12740; 140000
mov $15400·0, -(rO) 12740; 154000
IOOV $-2000,-(rO) 12740;176000
mov $5,-(rO) 12740; 5
tstb (rO) 105710
bge .-2 2376
jmp *$154000 137; 154000

mov $177350,rO 1 2700 ; 1 77350
clr -(rO) 5040
mov rO ,-(rO) 10040
IOOV $3,-(rO) 12740;3
tstb (rO) 105710
bge .-2 2376
tst *$177350 5737;177350
bne • 1377
movb $5,(rO) 112710;5
tstb (rO) 105710
bge .-2 2376
clr pc 5007

The program ~(Bootstrap Operating system)
examines the consol e switchs and executes one of
several internal programs depending on the set
ting. The following settings are currently
recognized: .

??? Will read Warm UNIX from the RF into core
location 0 and transfer to 600.

1 Will read Cold UNIX from the RF into core

- 1 -

3/15/72

10

20

40

o

77500

BOOT PROCEDURES (VII)

location 0 and transfer to 600.

Will dump all of memory from core loca
tion 0 onto DECtape drive 7 and then
halt.

Will read 256 words from RKO into core 0
and transfer to zero. This is the pro
cedure to boot DOS from an RK.

This is the same as 10 above, but instead
of halting, UNIX warm is loaded.

Will load a standard UNIX binary paper
tape into core location 0 and transfer to
o.

Will load the standard DEC absol ute and
binary loaders and transfer to 77500.

Thus we come to the UNIX warm boot procedure: put
173000 into the switches, push load address and
then push start. The alternate switch setting of
173030 that will load warm UNIX is used as a sig
nal to bring up a single user system for special
purposes. See init(VII). For systems without a
rom, UNIX (both warm and cold) have a copy of the
disk boot program at location 602. This is prob
ably a better warm boot procedure because the
program at 602 also attempts to complete out
stand ing I/O.

cold boots can be accomplished with the Cold UNIX
program, but they're not. Thus the Cold UNIX
slot on the RF may have any program desired.
This slot is, however, used during a cold boot.
Mount the UNIX INIT DECtape on drive 0 positioned
in the end-zone. Put 173040 into the switches.
Push load address.' Put 1 into the swi tches.
Push start." This reads a program called vcboot
from the tape into core location 0 and transfers
to it. vcboot then reads 16K words from the
DECt ape (blocks 1-32) and copies the data to the
highest 16K words of the RF. Thus this initial
izes the read-only part of the RF. vcboot then
reads in bos and executes it. bos then reads in
Cold UNIXand exec'utes that. Cold UNIX halts for
a last chance before it completely initializes
the RF file system. Push continue, and Cold UNIX
will initialize the RF". It then sets into execu
tion a user program that reads the DECtape for
initialization files starting from block 33.
When this is done, the program executes /etc/init
which should have been on the tape.

The INIT tape is made by the program maki running

- 2 -

3/15/72

FILES

SEE ALSO

D IAGNOST Ies

BUGS

OWNER

BOOT PROCEDURES (VII)

under UNIX. maxi writes vcboot on block 0 of
/dev/tar;7. It then copies the RF 16K words
(USIng ~/rfO) onto blocks 1 thru 32. It has
internally a list of files to be copied from
block 33 on. This list follows:

/etc/init
/bin/chmod
/bin/date
/bin/login
/bin/ls
/bin/mkdir
/etc/mount
/bin/sh
/bin/tap

Thus this is the set of programs available after
a cold boot. init and ~ are mandatory. For
multi-user UNIX, getty and login are also neces
sary. mkdir is necessary due to a bug in tap.
tap and mount are useful to bring in new files.
As soon as possible, date should be done. That
leaves Is and chmod as frosting.

The last link in this incestuous daisy chain is
the program msys.

msys char file

will copy the file file onto the RF read only
slot specified by the characacter char. Char is
taken from the following set:

b bos
E Warm UNIX
1 Cold UNIX

Due to their rarity of use, maki and msys are
maintained off line and must be reassembled be
fore used.

/dev/rfO, /dev/tap?

init(VII), tap(I), sh(I), mkdir(I)

This section is very configuration dependent.
ThUS, it does not describe the boot procedure for
anyone machine.

ken

- 3 -

6/12/72

NAME

SYNOPSIS

DESCRIPTION

GETTY (VII)

getty -- set typewriter mode and get user's name

getty is invoked by init (VII) immediately after
a typewriter is opened following a dial-in. The
user's login name is read and the login(I) com
mand is called with this name as an argument.
While reading this name getty attempts to adapt
the system to the speed and type of terminal
being used.

getty initially sets the speed of the interface
to 150 baud, specifies that raw mode is to be
used (break on every character), that echo is to
be suppressed, and either parity allowed. It
types the "login:" message (which includes the
characters which put the 37 Teletype terminal
into full-duplex and unlOCk its keyboard). Then
the user's name is read, a character at a time.
If a null character is received, it is assumed to

" " be the result of the user pushing the break
("interrupt") key. The speed is then changed to
300 baud and the "login:" is typed again, this
time with the appropriate sequence which puts a
GE TermiNet 300 into full-duplex. This sequence
is acceptable to other 300 baud terminals also.
If a subsequent null character is received, the
speed is changed again. The general approach is
to cycle through a set of speeds in response to
null characters caused by breaks. The sequence
at this install~tion is 150, 300, and 134.5 baud.

Detection of IBM 2741s is accomplished while the
speed is set to 150 baud. The user sends a 2741
style "eot" character by pushing the attention
key or by typing return; at 150 baud, this char
acter looks lik! th~ ascii "-" (1748). Upon"
receipt of the eot, the sy~tem is set to
operate 2741s and a ~ogin: message is typed.

The user's name is terminated by a new-line or
carriage-return character. The latter results in
the system being set to to treat carriage returns
appropriately (see stty(II».

The user's name is scanned to see if it contains
any lower-case alphabetic characters; if not, the
system is told to map any future upper-case char
acters into the corresponding lower-case charac
ters. Thus UNIX is usable from upper-case-only
terminals.

Finally, login is called with the user's name as
argument.

- 1 -

6/12/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

GETTY (VII)

jete/getty

init(VII), login(I), stty(II)

dmr, ken, j fo

- 2 -

6/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

GLOB (VII)

glob generate command arguments

glob is used to expand arguments to the shell
containing "*", '[', or A?". It is passed the
argument list containing the metacharacters; glob
expands,the list and calls the command itself.

found in /etc/glob

sh(I)

" " " " " " No match, No command, No directory

If any of '*', '[', or '?' occurs both quoted and
unquoted in the original command line, even the
quoted metacharacters are expanded.

glob gives the "No match" diagnostic only if no
arguments at all result. This is never the case
if there is any argument without a metacharacter.

dmr

- 1 -

6/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

INIT (VII)

init process control initialization

init is invoked inside UNIX as the last step in
~boot procedure. Generally its role is to
create a process for each typewriter on which a
user may log in.

First, in!! checks to see if the console switches
contain 173030. (This number is likely to vary
between systems.) If so, the console typewriter
tty is opened for reading and writing and the
shell is invoked immediately. This feature is
used to bring up a test system, or one which does
not contain DC-11 communications interfaces.
When the system is brought up in this way, the
getty and login routines mentioned below and
described elsewhere are not needed.

otherwise, in!! does some housekeeping: the mode
of each DECtape file is changed to 17 (in case
the system crashed during a tap command); direc
tory /usr is mounted on the RKO disk; directory
/sys is mounted on the RK1 disk. Also a data
phone daemon is spawned to restart any jobs being
sent.

Then in!! forks several times to create a process
for each typewriter mentioned in an internal
table. Each of these processes opens the ap
propriate typewriter for reading and writing.
These channels thus receive file descriptors 0
and 1, the standard input and output. Opening
the typewriter will usually involve a delay,
since the oren is not completed until someone is
dialled in and carrier established) on the chan
nel. Then the process executes the program
letc/getty (q.v.). ~ will read the user's
name and invoke login (q.v.) to log in the user
and execute the Shell.

Ultimately the shell will terminate because of an
end-of-file either typed explicitly or generated
as a result of hanging up. The main path of
in!! , which has been waiting for such an event,
wakes up and removes the appropriate entry from
the file utmp, which records current users, and
makes an entry in wtmp, which maintains a history
of logins and logou'ts. Then the appropriate
typewriter is reopened, and getty reinvoked.

kept in /etc/init; uses /dev/tap, /dev/tty,
/dev/tty?, /tmp/utmp, /tmp/wtmp

login(I), login(VII), getty(VII), sh(I), dpd(I)

- 1 -

6/15/72

DIAGNOSTICS

BUGS

OWNER

none possible

none possible

ken, dmr

- 2 -

INIT (VII)

6/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

KBD (VII)

kbd keyboard map

cat /usr/pub/kbd

kbd contains a map to the keyboard for model 37
Teletype terminals with the extended character
set feature. If ~ is printed on such a termi
nal, the following will appear:

<[1234567890-]A\)qwertyuiop@ asdfghjkl;: zxcvbnm, ./

<V1234567890-~bJY) v • • , . / , .
<{I"#$%&'() =-}-) QWERTYUIOP, ASDFGHJKL+* ZXCVBNM,. ?

< I"#$%&'() =~ > ~~ALe<1cp't"en ae8~rWnpA+* n~wt~n~,.?

jfo

- 1 -

6/15/72

NAME

SYNOPSIS

DESCRIPTION

LOGIN, LOGOUT (VII)

logging in and logging out

UNIX must be called from an appropriate terminal.
UNIX supports ASCII terminals typified by the
Teletype M37, the GE Terminet 300, the Memorex
1240, and various graphical terminals on the one
hand, and IBM 2741-type terminals on the other.

Not all installations support all these termi
nals. Often the M33/35 Teletype is supported
instead of the 2741. Depending on the hardware
installed, most terminals operating at 110,
134.5, 150, or 300 baud can be accommodated.

To use UNIX, it is also necessary to have a valid
UNIX user ID and (if desired) password. These
may be obtained, together with the telephone
number, from the system administrators.

The same telephone number se~ves terminals
operating at all the standard speeds. The dis
cussion below applies when the standard speeds of
134.5 (2741's) 150 (TTY 37's) and 300 (Terminet
300's) are available.

When a connection is established via a 150-baud
terminal (e.g. TTY 37) UNIX types out "login:";
you respond with your user name, and, if request
ed, with a password. (The printer is turned off
while you type the password.) If the login was
successful, the "@" character is typed by the
Shell to indicate login is complete and commands
may be issued. A message of the day may be typed
if there are any announcements. Also, if there
is a file called "mailbox", you are notified that
someone has sent you mail. (See the mail com
mand.)

From a 300-baud terminal, the procedure is
slightly different. Such terminals often have a
full-duplex switch, which should be turned on (or
conversely, half-duplex should be turned off).
When a connection with UNIX ,is established, a few
~arbage characters are typed (these are the
login:" message at the wrong speed). You should

" " depress the break key; this is a speed-
independent signal to UNIX that a '300-baud termi
nal is in use. It will type "login:" (at the
correct speed this time) and from then on the
procedure is the same as described above.

From a 2741, no message will appear. After the
telephone connection is established, press the
"ATTN" button. UNIX should type "login:" as

- 1 -

6/15/72

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

LOGIN, LOGOUT (VII)

described above. If the greeting does not appear
after a few seconds, hang up and try again; some
thing has gone wrong. If a password is required,
the printer cannot be turned off, so it will
appear on the paper when you type it.

For more information, consult getty(VII), which
discusses the login sequence in more detail, and
ttyO(IV), which discusses typewriter I/O.

Logging out is simple by comparison (in fact,
sometimes too simple). Simply generate an end
of-file at Shell level by using the EOT
character; the "login:" message will appear again
to indicate that you may log in again.

It is also possible to log out simply by hanging
up the terminal; this simulates an end-of-file on
the typewriter.

/etc/motd may contain a message-of-the-day.

init(VII), getty(VII), ttyO(IV)

Hanging up on programs which never read the type
writer or which ignore end-of-files 1s very
dangerous; in the worst cases, the programs can
only be halted by restarting the system.

ken, dmr

- 2 -

6/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

MSH (VII)

msh mini-shell

msh is a heav~ly simplified version of the Shell.
It reads one line from the standard input file,
interprets it as a command, and calls the com
mand.

The mini-shell supports few of the advanced
features of the Shell; none of the following
characters is special:

> < $ \ ; &

"" "[" " " However, *, ,and? are recognized and
glob is called. The main use of msh is to pro
vide a command-executing facility for various
'interactive sub-systems.

found in /etc/msh

sh, glob

ken, dmr

- 1 -

6/15/72

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

OWNER

TABS (VII)

tabs tab stop set

cat /usr/pub/tabs

When prin,ted on a suitable terminal, this file
will set tab stops at columns 8, 16, 24, 32, ••••
Suitable terminals include the Teletype model 37
and the GE TermiNet 300.

These tabs stop settings are desirable because
UNIX assumes them in calculating delays.

ken

- 1 -

	00_001
	00_002
	00_003
	00_004
	00_005
	00_006
	00_007
	00_008
	00_009
	00_010
	00_011
	00_012
	00_013
	00_014
	00_015
	00_016
	00_017
	00_018
	00_019
	00_020
	00_021
	01_01-01
	01_02-01
	01_03-01
	01_03-02
	01_04-01
	01_04-02
	01_04-03
	01_04-04
	01_04-05
	01_04-06
	01_04-07
	01_05-01
	01_05-02
	01_05-03
	01_05-04
	01_06-01
	01_07-01
	01_08-01
	01_09-01
	01_10-01
	01_11-01
	01_12-01
	01_13-01
	01_14-01
	01_15-01
	01_15-02
	01_15-03
	01_15-04
	01_15-05
	01_16-01
	01_16-02
	01_17-01
	01_18-01
	01_18-02
	01_19-01
	01_20-01
	01_21-01
	01_22-01
	01_23-01
	01_23-02
	01_23-03
	01_23-04
	01_23-05
	01_23-06
	01_23-07
	01_24-01
	01_25-01
	01_25-02
	01_25-03
	01_25-04
	01_26-01
	01_26-02
	01_27-01
	01_28-01
	01_28-02
	01_29-01
	01_30-01
	01_30-02
	01_31-01
	01_32-01
	01_32-02
	01_33-01
	01_34-01
	01_35-01
	01_36-01
	01_37-01
	01_38-01
	01_39-01
	01_40-01
	01_41-01
	01_41-02
	01_42-01
	01_43-01
	01_43-02
	01_44-01
	01_45-01
	01_46-01
	01_47-01
	01_48-01
	01_49-01
	01_50-01
	01_51-01
	01_52-01
	01_53-01
	01_54-01
	01_55-01
	01_55-02
	01_55-03
	01_55-04
	01_55-05
	01_56-01
	01_57-01
	01_58-01
	01_59-01
	01_60-01
	01_61-01
	01_62-01
	01_63-01
	01_63-02
	01_63-03
	01_64-01
	01_64-02
	01_65-01
	01_66-01
	01_67-01
	01_68-01
	01_69-01
	01_70-01
	01_71-01
	01_72-01
	02_01-01
	02_02-01
	02_03-01
	02_04-01
	02_05-01
	02_06-01
	02_07-01
	02_08-01
	02_08-02
	02_09-01
	02_10-01
	02_11-01
	02_12-01
	02_13-01
	02_14-01
	02_15-01
	02_16-01
	02_17-01
	02_18-01
	02_19-01
	02_20-01
	02_21-01
	02_22-01
	02_23-01
	02_24-01
	02_25-01
	02_26-01
	02_27-01
	02_28-01
	02_29-01
	02_30-01
	02_31-01
	02_31-02
	02_32-01
	02_33-01
	02_34-01
	02_35-01
	02_36-01
	02_37-01
	02_38-01
	03_01-01
	03_02-01
	03_03-01
	03_04-01
	03_05-01
	03_06-01
	03_07-01
	03_07-02
	03_08-01
	03_09-01
	03_10-01
	03_11-01
	03_12-01
	03_13-01
	03_14-01
	03_15-01
	03_16-01
	03_17-01
	03_18-01
	03_19-01
	03_19-02
	03_19-03
	03_20-01
	03_21-01
	03_22-01
	04_01-01
	04_02-01
	04_03-01
	04_04-01
	04_05-01
	04_06-01
	04_07-01
	04_08-01
	04_09-01
	04_10-01
	04_11-01
	04_12-01
	04_12-02
	04_12-03
	04_12-04
	05_01-01
	05_01-02
	05_01-03
	05_02-01
	05_03-01
	05_03-02
	05_04-01
	05_05-01
	05_05-02
	05_05-03
	05_06-01
	05_07-01
	05_08-01
	05_09-01
	05_10-01
	05_11-01
	06_01-01
	06_02-01
	06_03-01
	06_03-02
	06_04-01
	06_05-01
	06_06-01
	06_06-02
	06_07-01
	06_08-01
	06_09-01
	06_10-01
	06_11-01
	06_12-01
	06_13-01
	07_01-01
	07_02-01
	07_02-02
	07_02-03
	07_03-01
	07_03-02
	07_04-01
	07_05-01
	07_05-02
	07_06-01
	07_07-01
	07_07-02
	07_08-01
	07_09-01

