
Statically Typed Trees in GCC

Nathan Sidwell
CodeSourcery, LLC

nathan@codesourcery.com

Zachary Weinberg
CodeSourcery, LLC

zack@codesourcery.com

Abstract

The current abstract syntax tree of GCC uses
a dynamically typed über-union for nearly all
nodes. The desire for a statically typed tree de-
sign has been raised several times over recent
years, but there has been no concerted effort
to implement such a design. We describe the
impacts of the current design, both in imple-
mentation and performance degradation. We
present a design for statically typed trees, along
with case studies of part of the conversion. We
outline a plan for full conversion and discuss
further improvements that this would enable.

1 Current architecture

GCC uses a data structure called atree for
its high-level intermediate representation. The
parser and semantic analyzer for a given pro-
gramming language construct an initial tree
representation of the program to be compiled.
The high-level optimizers work directly on this
tree. After they are done, the “expander” con-
verts the optimized tree to a lower-level repre-
sentation calledRTL for further optimization
and assembly output. We will not be discussing
RTL in this paper, but it is worth mentioning
that many of the same issues also apply.

A tree structure is a directed graph ofnodes.
Each node is a block of memory (a Cstruct)
on the heap; the graph edges are pointers be-
tween these blocks. Tree nodes are dynami-
cally typed. All variables and structure fields

pointing to tree nodes have the typetree ,
which can address any node no matter what
its internal structure is. To access the data car-
ried in a node, one must use the macros defined
in tree.h . These hide the exact representa-
tion and can be configured to carry out consis-
tency checks at runtime (of GCC). We discuss
the in-memory representation and the accessor
macros in more detail below.

Thecodeof a tree node determines its dynamic
type. The generic (language independent) por-
tion of the compiler defines approximately 150
codes. Front ends can define additional codes
if necessary. There are tenclasses(conceptual
categories) of tree codes; each has a tag charac-
ter to identify it. Front ends cannot define new
classes. Presently, the classes are

' c ' , constants
' 1' , unary arithmetic operators
' 2' , binary arithmetic operators
' <' , comparison operators
' r ' , references (e.g. array indexing)
' e' , other expressions (e.g.?:)
' s ' , statements
' d' , declarations
' t ' , types
' x ' , miscellaneous

Here are some example tree nodes, with the in-
formation they carry:

STRING_CST (class “constant”)
A string constant. The node holds a

150 • GCC Developers’ Summit

pointer to a separately-allocated byte ar-
ray, and the length of this array.

PLUS_EXPR(“binary expression”)
An addition operation. The node holds
pointers to tree nodes representing the two
addends.

IF_STMT (“statement”)
An if statement. The node holds point-
ers to tree nodes representing the control-
ling expression, the “then” clause, and the
“else” clause.

VAR_DECL(“declaration”)
A declaration of a variable. The node
is the root of a directed graph of nodes
which collectively describe the properties
of the variable.

INTEGER_TYPE(“type”)
A description of an integer data type,
either intrinsic to the programming lan-
guage or defined on the fly by the pro-
gram being compiled. Again, the node is
the root of a directed graph describing the
properties of the type.

TREE_LIST (“miscellaneous”)
A linked list of other trees. Each node
of the list can point to up to three differ-
ent trees (known as thetype, purpose, and
value); however, usually only one of these
slots is used.

ERROR_MARK(“miscellaneous”)
A placeholder used when an error is en-
countered during compilation. This node
carries no information. The compiler al-
locates only oneERROR_MARKnode per
invocation.

Trees exhibit three levels of polymorphism,
which we will refer to assubstructure, mul-
tipurposing, andoverloading.

1.1 Substructure

The tree type is a pointer to aunion of
struct s. We will call these structs “substruc-
tures.”

union tree_node
{

struct tree_common common;
struct tree_type type;
struct tree_decl decl;
struct tree_list list;
...

};
typedef union tree_node *tree;

All tree nodes include the fields ofstruct
tree_common .1 Most nodes also carry ad-
ditional information stored in one of the other
substructures. The tree code, which is a field
of the common substructure, determines which
substructure is active.

We can therefore categorize tree structures ac-
cording to which substructure is valid. This
categorization is similar, but not identical, to
the categorization into classes. Front ends
can also define new substructures, if necessary.
Unfortunately the mechanism for this is some-
what awkward, since there is no way in C to
augment the contents of a union.

Naturally, accessing the wrong substructure of
a node can have grave consequences. To pre-
vent this, GCC can be configured so that the
accessor macros inspect the tree code and ver-
ify that they have been applied to the proper
kind of tree. These checks are partially ad-hoc
and partially machine-generated. The code is
only known when the compiler is running, so
the checks perforce must occur then. If one
fails, GCC halts translation with the infamous
“internal compiler error” (ICE) message.2

1because all the other substructures includestruct
tree_common as their first member.

2Jeff Law added the checking mechanism in 1998.

GCC Developers’ Summit 2004 • 151

Accessor Used with Content
TYPE_VALUES ENUMERAL_TYPE A list of CONST_DECLs, one for each

enumeration constant.
TYPE_DOMAIN SET_TYPE,

ARRAY_TYPE
An integer type whose range determines
the set of all valid indexes of this type.

TYPE_FIELDS RECORD_TYPE,
UNION_TYPE

A list of FIELD_DECLs, one for each
data member of the type.

TYPE_ARG_TYPES FUNCTION_TYPE,
METHOD_TYPE

A list giving the type of each parameter,
in order, to the function or method.

TYPE_DEBUG_
REPRESENTATION_
TYPE

VECTOR_TYPE The type to use when describing this type
to the debugger. (Most debuggers do not
understand vectors.)

Table 1: Multipurposing of thevalues field of tree_type

1.2 Multipurposing

Some fields of a substructure have different
meanings for different tree codes. When there
is more than one possible meaning, we say that
that field is multipurposed. For instance, a
tree_type structure represents a data type
in the program being compiled. There are
twenty tree codes that use this substructure.
Eight of them assign one of five possible mean-
ings to thevalues field. Table 1 enumerates
the possibilities. The field goes unused in type
nodes with one of the other twelve codes.

A relatively common special case of multipur-
posing is when a field has only one possible
meaning, but only a subset of the tree codes
for that substructure need to use that field. The
others leave it asNULL.

1.3 Overloading

Many of the fields of a tree node are pointers
to other nodes. These, like all pointers to tree
nodes, have the typetree ; as far as the C type
system is concerned, they can point to any tree
node. The operands of anPLUS_EXPRneed
not be expressions; they can be declarations,
constants, types, or anything else.

Of course, not all possibilities can occur within
a valid tree structure. The accessor macros par-
tially validate the targets of pointer fields, and
hand-coded assertions finish the job. When a
field can legitimately point to more than one
kind of node, we say that the field is over-
loaded.

The distinction between overloading and mul-
tipurposing is whether the code of the node
containing the field determines what the field
points to. Thevalues field discussed above
is multipurposed. AnPLUS_EXPR’s operand
fields are overloaded—we do not know, upon
encountering anPLUS_EXPR, whether its op-
erands are expressions, declarations, or con-
stants. (Wedo know that they are in one of
those three categories.)

2 Issues of the status quo

The present architecture has a number of de-
sign issues, which manifest either as runtime
overhead (both space and time) or as increased
burden on the maintainers of the program.
For an obvious example of both, the runtime
checking done by the accessor macros slows
the compiler down 5–15% (depending on in-

152 • GCC Developers’ Summit

put). This is substantial enough that checking
is disabled in release builds, which can mean
that bugs go undetected. It is on by default in
development builds, which means GCC devel-
opers all put up with a slower compiler for the
sake of dynamic type safety. A slow compiler,
hence a slow edit-compile-link-debug cycle, is
a maintenance burden in itself; also, the check-
ing mechanism is complicated and easy to mis-
program (see section 2.2 for an example).

Each of the above varieties of polymorphism
has its own set of issues, which we will dis-
cuss in turn. We will also discuss a number of
related issues that we intend to address at the
same time.

2.1 Substructure overhead

The dynamic type system has a certain level of
intrinsic overhead. In many cases, GCC’s own
source code, not the content of the program be-
ing compiled, completely determines the code
of a tree node. However, we must still maintain
the node header, which is a full word (the code
plus 24 flags). For smaller nodes, this can be a
considerable amount of memory overhead.

In the larger substructures, many of the fields
are only applicable to a few of the tree codes
that use those substructures. This obviously
wastes memory. It is a particularly severe prob-
lem for type and declaration nodes; the content
of a CONST_DECLcould fit into 16 bytes or
so on a 32-bit host, but it occupies 116 bytes
anyway. The other side of this problem is that
adding a new field to a substructure consumes
memory proportional to the total number of
nodes using that substructure, not just the num-
ber of nodes it’s relevant to. People there-
fore avoid adding fields to substructures. In-
stead they add new purposes to existing fields,
which adds to maintenance burden instead. We
could solve this within the existing framework
by defining new substructures, at the cost of

additional complexity in the accessor macros.

While many nodes have fields that are never
used, some nodes do not have enough, which
leads to ancillary data being maintained out-
side the tree structure. This may consume more
memory than would have been required oth-
erwise, and it also makes the program harder
to maintain, since all the necessary informa-
tion is not in one place. Ironically, the decla-
ration structure is also an example of this, with
substantial ancillary data being carried in the
cgraph_node structures.

2.2 Multipurposing and generic accessors

In the past, the accessor macros and the de-
bugging pretty-printer (debug_tree) did not
know anything about multipurposing. One
would use the same accessor macro (TYPE_
VALUES) for all five purposes listed in Ta-
ble 1. This led to confusion about which
tree codes might use a given field. While
considerable work has gone into introducing
more specific accessors, some generic acces-
sors still exist. Furthermore, the set of valid
codes for each accessor may be incorrect. As
we were writing this paper, we discovered that
two of the accessor macros for thevalues
field allowed aVECTOR_TYPE. Obviously the
same field cannot serve two purposes simulta-
neously. Tightening up the checks exposed a
harmless bug inexpr.c and a more serious
bug incp/decl.c .

Accessors for fields with only one use are still
likely to check only that the substructure is cor-
rect, not that the field is relevant to the spe-
cific code. They thus fail to document or en-
force which codes the fieldsare meaningful
for. Generic routines that inspect trees (such
as the debug-info generators) won’t bother to
check for an appropriate code; they’ll rely on
the fields beingNULLwhen they are irrelevant.
This situation can persist unnoticed until some-

GCC Developers’ Summit 2004 • 153

one decides to introduce a second purpose for
one of these fields. In the process that person
will tighten the checking macros, which will
probably cause the generic routines to fail.

2.3 Abusive overloading

Tree overloading sometimes happens naturally.
For instance, the tree the parser builds for a
complex arithmetic expression will consist of
EXPRnodes which may point to otherEXPRs,
to DECLs, or to constants. This is a straightfor-
ward way to represent an abstract syntax tree,
and it rarely causes trouble.

However, since all pointers to trees have the
generic typetree , overloading can poten-
tially happen anywhere. Since this flexibil-
ity is available, it has been used whenever it
was locally convenient, without thought for
global consequences. Indeed, usually there are
none—at the time. Once overloading has been
added to a tree, every routine that examines it
must be prepared for whatever it might find in
the overloaded field. The only way to prove
that a given tree field is not overloaded is to
do a global data flow analysis, which can be
very difficult. Thus, global consequences creep
into the compiler over time, as new routines
are added that inspect trees that might be over-
loaded.

An example of these creeping consequences
is the name field of struct tree_type .
This usually points to aTYPE_DECLnode,
but sometimes it points to anIDENTIFIER_
NODEinstead. When you get which, and what
that means, is not documented anywhere. Rou-
tines that just want to know the printable name
of a type have to use locutions like the follow-
ing:

name = TYPE_NAME (t);

if (TREE_CODE (name)

== TYPE_DECL)
name = DECL_NAME (name);

if (TREE_CODE (name)
!= IDENTIFIER_NODE)

abort ();

A less troublesome, but still unwise, case of
overloading is the C and C++ parsers’ reuse
of expression nodes while parsing declarations.
Normally aCALL_EXPRrepresents a call to a
function; its operands are the function to call,
and a list of actual arguments. But the C and
C++ front ends also use this expression to rep-
resent a function declaration; then its operands
are the function’s name, and a list of formal pa-
rameter declarations. This is convenient for the
parser, but necessitates a complicated conver-
sion routine (grokdeclarator) to generate
the type and declaration structures expected by
the rest of the compiler. These peculiar expres-
sions are intended never to escape the C front
end, so they have not had creeping global con-
sequences. However, from time to time one
does escape and cause an ICE elsewhere in the
compiler.

We can generate a crude estimate of the num-
ber of places that have to take care when in-
specting overloaded trees by counting uses of
the TYPE_P and DECL_P macros. As of
March 15, there were 41 and 80 uses, respec-
tively, of these macros in the maingcc direc-
tory, or about one use every 4000 lines. The
C++ front end had more, 143 and 67 uses re-
spectively, or about one use every 500 lines.
This is due to heavy overloading in the trees
used to represent templates; see section 5.3 for
further discussion.

2.4 Lists of trees

Linked lists are very common within trees.
This data structure is convenient when the size
of the list is not known in advance. However,

154 • GCC Developers’ Summit

struct tree_list {
struct tree_common {

tree chain;
tree type;
enum tree_code code :8;
/* 24 flag bits */

};
tree purpose;
tree value;

};

Substructure ofTREE_LIST

linked lists have notably more overhead than
vectors on several different grounds.

Singly linked lists can be constructed using re-
served fields in the nodes carrying the data,
or using separate “cons cells.” Ignoring mal-
loc overhead, a linked list using reserved fields
in the data nodes consumes exactly the same
amount of memory as a vector of pointers to
those nodes. Either way, there is one extra
pointer for each node. Linked lists built out
of separate cons cells, on the other hand, use
twice as much memory as a vector; two extra
pointers per node. In exchange, a data node can
be on more than one list if separate cons cells
are used. Either way, traversing a linked list is
more likely to cause memory-cache thrashing
than traversing the vector.

All tree nodes have achain field, reserved
for chaining the node into a linked list. How-
ever, this field goes unused in approximately
two-thirds of all nodes (not countingTREE_
LIST ; see more detailed analysis below, in
Section 3.1). Instead, separate lists are built out
of TREE_LIST nodes. This is the “cons cell”
technique, but with far more overhead, because
each node in the list has the ability to point to
three data nodes instead of just one.

In practice, slightly more than half of all lists
use only one data pointer per node, and almost
all the rest use only two. Also, the node header

(as always) consumes a full word; it is fair to
consider that entirely wasted, since lists are al-
ways known from context and the flag bits go
unused. (See section 3.2 for details.) For a list
with only one data pointer per node, this struc-
ture is 60% wasted space; compared to a vector
or an internally chained list, 80%.

Because all the pointers are generic, aTREE_
LIST does not reveal any information about its
contents. Code that processes lists must know
from context what the list contains, or else be
prepared to encounter anything. Context deter-
mines the content in most cases; again, this will
be discussed in detail in section 3.2.

2.5 Language-specific trees

As we mentioned above, language front ends
have the ability to define new tree codes. Of-
ten these codes do not need their own sub-
structures. For instance, all of the language-
specific codes defined by the C front end are
for C-specific operators, which use the generic
“expression” substructure. However, some lan-
guages need their own substructures. The C++
front end defines five such. Since the defini-
tion of the basictree type is in a language-
independent header file, there is no way to
include these substructures in the tree union.
Thus, the accessor macros for those substruc-
tures must include casts to the appropriate type,
which is a minor hassle. Also, the garbage
collector must assume that language-specific
substructures can be encountered anywhere,
which adds both runtime overhead (determin-
ing which substructure is active costs two func-
tion calls per node visited) and source com-
plexity (special annotations to indicate that the
tree union is not exhaustive).

The type anddecl substructures include an
opaque pointer field that front ends can use to
attach their own special data to type and dec-
laration nodes. This mechanism provides a

GCC Developers’ Summit 2004 • 155

clear separation between generic and language-
specific data. It requires no casting, since the
opaque pointer refers to a forward-declared
struct type. Front ends simply provide a
complete declaration. However, it does require
a second memory allocation, which adds over-
head.

Also, the front end might need to multipur-
pose this field—storing different information
depending on what sort of type or declaration it
is—but this is inconvenient, since these struc-
tures arenot trees and cannot use the machin-
ery that exists for tree polymorphism. The C++
and Java front ends solve this problem by du-
plicating much of that machinery. The Ada
front end, instead, pretends that the field points
to a tree, which can then be multipurposed in
the normal fashion. Neither is an ideal solu-
tion.

The substructure for a bare identifier (code
IDENTIFIER_NODE) also provides for front
ends to attach their own data. Because iden-
tifiers are so frequent, this data is appended
to the generic substructure instead of being
separately allocated. This is efficient, but re-
quires front ends to define complex macros to
access their own data, just as they would for
entirely language-specific substructures. Also,
IDENTIFIER_NODEs are used in contexts
where the language-specific data will never
be used (notablyDECL_ASSEMBLER_NAME)
but space is allocated for it anyway.

The tree_common structure carries seven
flag bits specifically for use by front ends, and
several more that have generic names but are
only relevant to front ends. Thetype sub-
structure carries another seven, thedecl sub-
structure eight. These are not overhead as they
occupy space that would otherwise be padding.
However, they are a maintenance burden, be-
cause they are heavily multipurposed. It is of-
ten unclear which front ends use which bits

for what, anddebug_tree prints them with
generic names.

Languages sometimes invent their own multi-
purposings for fields that would otherwise go
unused. The C front end has recycled the
TYPE_VFIELDfield of incompleteRECORD_
TYPE nodes to carry a list ofVAR_DECLs
with the incomplete type, so that it can ad-
just them later if the type is completed. This
is much more efficient than the previous ap-
proach of carrying around a list of all vari-
ables with incomplete types in the transla-
tion unit. However, it directly violates the
language-independent compiler’s assumptions
about what can appear inTYPE_VFIELD.
Several bugs have been traced to this list es-
caping the C front end.

TYPE_VFIELD is available for use in the C
front end becauseRECORD_TYPEs in C never
have vtables. TheRECORD_TYPEcode is
used for object classes as well as “plain old
data” structs, so it has all the fields necessary to
handle both, even though classes never occur in
C. More generally, language-independent trees
carry fields needed to represent the constructs
of all the languages that GCC supports, even
if they are being used to represent a language
that doesn’t have those constructs. This is
memory overhead, no more. . . unless, as with
TYPE_VFIELD, someone gets clever.

2.6 Memory allocation, precompiled headers

GCC uses a garbage-collecting allocator for
all trees. This is convenient, because no one
ever has to worry about the lifetime of these
data structures.3 It also facilitates precompiled
headers (PCH). The current implementation, to
first order, simply serializes to disk all live data
in garbage-collected memory.

3Before the garbage collector was introduced, in
1999, use-after-free bugs appeared about once every two
weeks; now they are unheard of.

156 • GCC Developers’ Summit

When the garbage collector was first intro-
duced, the marking routine for each data struc-
ture had to be written by hand. Now instead
we use special “GTY” annotations in the source
code, and a program calledgengtype which
understands a subset of C’s type grammar. It
scans the source code and generates marking
routines, directed by the annotations. It also
generates slightly different walking routines
which are used for PCH save and restore.

Both these things are great achievements from
a software maintenance standpoint. In the nor-
mal course of affairs, programmers need never
worry about memory lifetime. PCH requires
slightly more attention as one must ensure that
everything that needs serialization is properly
annotated. Thegengtype program is a pow-
erful tool for doing introspection on GCC’s
data structures. We used it for this paper, to
gather statistics on how fields of tree nodes are
used. We discuss below some other ways it
could be helpful.

On the other hand, the garbage collector is not
at all efficient. It allocates memory out of
fixed-size buckets, with pages reserved for al-
locations of a given size, which causes consid-
erable memory fragmentation. The collector
uses a naïve mark-and-sweep algorithm, which
has to scan the entire active memory set on
each collection. This is so slow that GCC con-
tains throttling heuristics that effectively dis-
able all memory reuse for average-size trans-
lation units. The auto-generated marking rou-
tines require that type tags be in the same
block of memory as the unions they disam-
biguate; in some places (notably the C++ front
end’s struct lang_decl) this forces the
creation of a redundant tag.

This paper does not directly address any of
the problems with the garbage collector. How-
ever, we expect our changes will cause trees to
use substantially less memory and have some-

what more predictable lifetimes. In conjunc-
tion with the “zone collector” project, which is
working towards a generational collection al-
gorithm, this should offer substantial perfor-
mance improvements.

3 Measurements

In order to make sensible plans to solve the
problems we have discussed, we need hard
data on how severe they are. Code inspection
can reveal potential problems, but does not tell
us what the actual allocation patterns are, and
there is no way to get a sense of the “big pic-
ture.” Overloading in particular is very hard to
discover by code inspection.

We therefore modified thegengtype pro-
gram to generate instrumentation which would
measure how much overloading appeared in
the trees produced by compilation of a test pro-
gram. We classified each node twice, once by
its tree code and once by its substructure.

For each field that pointed to another tree node,
we recorded what kinds of tree it could point
to, including nothing. When substructures con-
tained arrays, such asstruct tree_exp ,
we considered each element a separate field.
This reveals for instance that the first operand
of a CALL_EXPRis usually anADDR_EXPR,
and the second is always aTREE_LIST. We
instrumented lists specially, recording their av-
erage length and the value distribution of the
entire list, instead of treating each node as a
separate entity.

Using CVS HEAD as of 15 March 2004, we
measured allocations for the compilation of
GCC’s own C and C++ front ends (this exer-
cises only the C compiler) and for a small STL-
based C++ program. Each of these was com-
piled in a single pass, using GCC’s intermodule
mode. All inlining was disabled, and all func-
tion bodies retained, so that each function body

GCC Developers’ Summit 2004 • 157

would be counted exactly once. Measurements
were taken once at the end of compilation, so
transitory tree nodes were not inspected. Un-
fortunately this means we missed some of the
more bizarre things done with trees, such as
the declaration expressions discussed in Sec-
tion 2.3.

The C compiler generated a similar distribution
of tree nodes during compilation of both front
ends, so we present here only data for the C++
front end. Compiling this C program gener-
ated about 1 million instrumented nodes, occu-
pying 75MB of storage. The C++ program was
smaller. Compiling it generated about 150,000
nodes, occupying 9MB.4

3.1 Fields oftree_common

Thetree_common substructure contains two
tree-pointer fields,chain and type , which
are present in every node whether it needs them
or not. The utilization of these fields is laid out
in Tables 2 and 3. (The “proportion” column is
proportion of total GC memory allocation; not
all of this is trees.) It is immediately clear that
memory could be saved just by excluding these
fields from substructures that never use them.

For our C++ test case, removing thechain
pointer from nodes where it isn’t used saves
134KB, or 1.5% of the total memory alloca-
tion. Removing thetype pointer saves 58KB,
or 0.6% of total memory. The numbers are
more impressive for C: removingchain saves
2.3MB, or 3.1% of memory; removingtype
saves 780KB, or 1.0% of memory. If inter-
nal memory fragmentation is reduced by this
change, which is likely as many of the affected
nodes are one word bigger than a power of two,
memory savings could be even bigger.

With more code changes, all of the uses of

4All statistics are for a host architecture with 32-bit
pointers.

the chain field could be eliminated, saving
even more memory.DECLs andBLOCKs are
chained together to indicate the lexical scope of
declarations and these lists could easily be re-
placed with vectors. Furthermore, in the GIM-
PLE representation (which had not yet been
merged when these measurements were taken)
statements are held in sequence with an exter-
nal doubly-linked list, so they do not need in-
ternal chaining either.

3.2 List distribution

TREE_LIST nodes are used for all external
singly-linked lists. If we looked at these nodes
in isolation, all their fields would appear to be
heavily overloaded. However, our instrumenta-
tion captured the context of each list, revealing
that most lists have predictable dynamic types.

The C front end allocated roughly 300,000
list nodes while compiling the C++ front end.
There were seven major contexts, which are
enumerated in Table 4. Of these, only two
have nontrivial amounts of overloading, and
one of those is becauseCONSTRUCTORnodes
are used to initialize both arrays and structures.
It is also apparent that thetype field of these
lists is completely unused, and thepurpose
field is unused in half of the cases. We could
save roughly 5MB (7% of the total allocation)
by converting them all to specialized vectors.

The C++ front end uses a wider variety of lists.
Our C++ test case produced 70,000 tree nodes
in about 30 different uses, which are enumer-
ated in Table 5. Like the C front end, thetype
field is unused in nearly all contexts, and the
purpose field is unused in about half of the
cases. There is quite a bit of overloading, but
in most cases there is one primary usage and a
few outliers. The structures used to represent
templates, however, will require special atten-
tion and is discussed in Section 5.3. If all of
these uses were converted to specialized vec-

158 • GCC Developers’ Summit

tors, we might be able to save about2/3MB of
memory (8% of the total).

We did not instrumentTREE_VECas carefully
asTREE_LIST, but it shows similar proper-
ties. It does not carry three data pointers per
entry, but it does have the full overhead of
a tree_common header, whosechain and
type fields go unused. The entries are, as
usual, declared astree s rather than anything
more specific, but in most cases the entries are
homogeneous within a given class.

3.3 Overloaded fields

Tables 6 and 7 show the distribution of over-
loaded and/or multipurposed fields for the C
and C++ test programs respectively. Multipur-
posed fields are initalics. We only show cross-
class overloading, as we are not proposing to
get rid of within-class overloading. Most over-
loading occurs among one primary class and
a few outliers. Where there are “secondary”
uses, appearing in more than 5% of measured
nodes, that is usually a case of multipurposing.

The primary class is not always what one
expects—in C, both BLOCK.supercontext and
EXPR.operands are 99%DECLs, where one
might expect to find moreBLOCKs andEXPRs
respectively. This reflects the form of the typ-
ical C program. Inner scopes tend not to have
variable declarations, and therefore not to need
BLOCKnodes. Expressions tend to be simple,
hence mostEXPRnodes point directly to vari-
ableDECLs rather than to subexpressions. The
C++ front end does more overloading than C,
but we still observe the same pattern of primary
uses and outliers, except where there is mul-
tipurposing. Expressions appear to be more
complicated in C++ than in C, but still 94% of
EXPRs point directly toDECLs.

TYPE.context and DECL.context are anoma-
lous in having substantial secondary targets

without multipurposing being involved. These
fields point “upward” in the abstract syntax
tree, toward larger lexical structures. Since
TYPEs andDECLs can nest inside each other
(especially in C++), the context fields need to
be able to point to bothTYPEs andDECLs.

4 Redesign

Our primary goal in redesigning trees is to re-
duce runtime overhead and maintenance bur-
dens. As we have discussed, overhead comes
first from wasted memory. The primary causes
of wasted memory are unused fields in various
tree substructures, and overuse of linked lists.

We could address unused fields without intro-
ducing any new static types. We could simply
promote all instances of multipurposed fields
to substructures. Constants are already like
this. Each code in the “constant” class (integer,
real, complex, string, vector) has its own sub-
structure. Structure initializers are exceptional
in that they are not treated as constants, but as
expressions—this should probably be changed.
It would not be hard to extend this to other
structures. We would also want to break up
tree_common , moving its pointers into the
substructures where they are actually used.

Furthermore, we already have aTREE_VEC
node that could replaceTREE_LIST when-
ever the list length is known in advance and
only one pointer per element is needed. For
instance, it would be feasible to do this for
BLOCK_VARS. Where this will not work, we
could invent new lists with only one or two data
pointers per node.

These changes would reduce maintenance bur-
dens only because accessor macros would have
more specific names, and the documentation
would be improved. They would do nothing
at all for the overhead entailed by runtime type
checking. In fact, they might make it worse,

GCC Developers’ Summit 2004 • 159

since many checking macros would become
more specific. For instance,TREE_CHAIN
andTREE_TYPEcurrently do no checking at
all; in the above regime they would be replaced
by several new macros, which would check for
specific substructures.

In order to go any further, we need to make
the static types of trees more specific. That is,
we need to stop usingtree as the type dec-
laration of every pointer to a tree. If we are
to do this, we must decide how specific to be
in our static declarations. Where possible we
will use pointers to specific structures. How-
ever, some degree of overloading is necessary.
We propose to introduce four new types, each
of which covers a subset of the present tree
classes. A pointer with one of these types can
be overloaded freely within that subset, but not
outside. We discuss techniques for removing
cross-class overloading in section 4.3. The re-
placement types are:

TYPE Type nodes: the present't' class. For
instance,INTEGER_TYPE, POINTER_
TYPE, andRECORD_TYPE.

DECL Declaration nodes: the present'd'
class. For instance,FUNCTION_DECL,
VAR_DECL, andTYPE_DECL.

EXPR Expression nodes: the present'1' ,
'2' , 'r' , '<' , and 'e' classes. For
instance,PLUS_EXPR, LE_EXPR, and
ADDR_REF.

CONST Constant nodes: the present'c'
class. For instance,INTEGER_CSTand
STRING_CST.

The 's' class is not included in this mapping
because, with the introduction of GENERIC
and GIMPLE, the language-independent com-
piler no longer makes a strong distinction be-
tween statements and expressions. For in-

stance,COND_EXPRcan be either a?: opera-
tor or anif statement. This does not preclude
a front end from making a strong distinction in
its own data structures, if that is appropriate to
the language it recognizes.

Each of the miscellaneous trees (class'x')
requires individual attention. Some of them
can be replaced with plain Cstruct s that
never participate in overloading. TheBLOCK
node for instance will get this treatment. Other
nodes will be be recategorized into one or more
of the above classes. For instance, we need
equivalents ofERROR_MARKfor each of the
above categories; these shouldnot be unique,
so that they can carry information (such as the
location of the error).

Obviously it will not be possible to continue
using one structure, carrying no static type in-
formation, for all linked lists. However, as
we detail in Section 3.2, most lists point to
data items whose dynamic types are both pre-
dictable and homogeneous. Therefore, with
a moderate amount of effort we can replace
TREE_LIST with specialized list nodes for
each of the classes.

4.1 Type safety

Under the old design, all pointers had the
same static type, so there was never any need
to convert them. Under the new design, we
would like to make the static types of point-
ers as specific as possible. The four classes
above are base types in the C++ sense, and
each substructure is a derived type. We will
need a type-safe and terse way to convert be-
tween base and derived type pointers. Unfortu-
nately the C language does not provide conve-
nient facilities for this sort of operation. Point-
ers to differentstruct s are not assignment-
compatible. There is only one cast operator,
(type) , which does not validate the incom-
ing type at all.

160 • GCC Developers’ Summit

We can simulate the C++ derived-type compat-
ibility rule and dynamic_cast<> operator
in C, with a small amount of extra verbosity
and some GNU extensions. In Figure 1 we il-
lustrate one way to implement the conversion
operations, and the associated structure layout.
Code written to this convention should look al-
most the same as code written to the old con-
vention, but with specific variable types and
occasional explicit conversions. It might be
possible to usegengtype to generate all of
the accessor macros and checking logic from
the substructure definitions, thus eliminating
that source of bugs and tedium.

There would be a_commonstructure for each
of the four major static types. Any fields that
truly are common to all substructures of that
type can be placed there. In the example, we
included two boolean fields which are docu-
mented as relevant to all constants. We have
not yet decided what naming convention use
for the new types; the mixture of struct tags and
all-caps typedefs in figure 1 is only one possi-
bility.

The GNU extensions are only necessary for
type checking. When GCC is built with a com-
piler that does not support them, the macros
can expand to unchecked casts; the compiler
will still work. The compile-time error mes-
sage produced by these macros is suboptimal;
it could be improved with a__builtin_
error primitive. Also, in real life the run-
time checks would call a more specific ICE-
reporting routine thanabort . These details
were omitted from the example for brevity.

Some checking does still occur at runtime. We
expect that the overhead will be substantially
lower in this scheme, but we can still dis-
able runtime checking in release builds for ef-
ficiency.

4.2 Language augmentations

The coding convention shown in Figure 1 de-
liberately does not use unions, unlike the cur-
rent convention. This is because the union
cannot include any language-specific substruc-
tures, and we want to put them on an equal
footing with language-independent substruc-
tures. The checked-cast approach is similar to
what is done now for language-specific sub-
structures, but safer. If the macros are auto-
matically generated, it will also be much less
tedious. Front ends are also free to declare
new polymorphic classes; for instance, a lan-
guage that wants a strong distinction between
statements and expressions can invent aSTMT
class.

We also want to make it easier to add language-
specific data to generic substructures. It is
straightforward for a language to declare an
augmented substructure and accessors, as they
do now for IDENTIFIER_NODE. However,
the garbage collector must be advised to allo-
cate more memory for the augmented structure,
and to walk the complete structure for point-
ers when marking live data. This is done for
IDENTIFIER_NODE with specialGTYmark-
ers and language hooks, which do not scale.
We have not yet decided on a tactic for this
problem.

Finally, we intend to make tree codes more
specific so that languages do not have to incur
overhead for functionality they do not use. For
instance, theRECORD_TYPEcode will apply
only to “plain old data;” we will introduce a
newCLASS_TYPEnode for object classes.

4.3 Adaptor nodes

Section 3.3 outlined instances of cross-class
overloading, that is, cases wheretree point-
ers can refer to more than one of the four static
classes discussed in Section 4. We can elimi-

GCC Developers’ Summit 2004 • 161

nate many of these, but some are legitimate.

We do not want to combine theDECL, EXPR,
and CONSTclasses, but we could introduce
adaptor nodes, which fit into one class and
carry a pointer to another class. They might
or might not carry other information. We al-
ready have the notion of aTYPE_DECL; we
could reuse it as an adaptor for context fields
pointing to aTYPE. Context fields can also
point to BLOCKs; for that, we would need a
newBLOCK_DECLadaptor.

The statistics in tables 6 and 7 show that 94–
99% of expression operands areDECLs, so it
would be most efficient to make that the un-
marked case. We would add anEXPR_DECL
adaptor for subexpressions, and use the exist-
ingCONST_DECLas an adaptor for literal con-
stants. This could facilitate conversion to GIM-
PLE form, where all subexpressions are sepa-
rated from their contexts.

5 Conversion plan

Converting to statically typed trees is a con-
siderable amount of work. It will have to be
done either piecemeal on the mainline, or on
its own dedicated branch. If the work is done
on a branch, it will rapidly become very hard
to merge in changes from the mainline. How-
ever, if the work is done on the mainline, it is
likely to be disruptive to other projects. The
conversion may not be monotonic, and there
are several issues as yet unresolved, for which
experimentation will be necessary. Also, this
project is more work than one person can do
alone. Collaboration by emailing patches back
and forth is tedious, compared to collaboration
by working on the same branch.

On balance, we believe that most of the work
should be done on a branch. However, in order
to avoid severe divergence, the project should
be broken into steps which can be merged back

to mainline when complete. We will partition
these steps into three stages.

The first stage of the process is to promote
all multipurposed fields to substructures. It
may be feasible to do this stage before branch-
ing. It is very simple and low-impact for fields
whose accessor macros are already as specific
as they can get. Fields that have non-specific
accessor macros require more thought, and the
change may be quite large, but still mostly
mechanical. Thechain and type fields of
tree_common will migrate into the substruc-
tures that actually use them. It would be nice
to do the same for the common flag bits, but
that may not be feasible without introducing
unwanted padding.

The tree-ssa branch has introduced a number
of new 'x' nodes that are used in expressions,
such asSSA_NAME. These are not in class
'e' mainly to avoid wasting memory on use-
less fields attached to all expressions. If the
substructure conversion is done properly it will
be possible to put them in class'e' or possi-
bly a new expression subclass.

The second stage is to eliminate as much over-
loading as possible, particularly what we might
describe as “abusive” overloading. We discuss
approaches to some of these in sections 5.1–
5.3. The branch will be merged after each
abuse has been rectified. This stage will have
to occur semi-concurrently with the next one,
because we do not know where all of the prob-
lems are.

The third stage is to peel off the major tree
classes from the über-union, one at a time. The
branch will be merged after each step. Ex-
cept where we encounter unexpected abuses,
the substantial changes in this stage affect only
the implementation of the accessor macros.
However, this is the stage where we change
variable declarations, introduce explicit con-
versions, and rename accessor macros to con-

162 • GCC Developers’ Summit

form to a naming scheme that facilitates auto-
matic generation. This will entail mechanical
changes all over the compiler. We propose to
do this stage in the following order:

Identifiers With the exception of C++ tem-
plate bodies, there are only a few places
where a tree node might or might not be an
identifier, and they are all arguably bugs.
The new C++ parser should make it feasi-
ble to use custom data structures for C++
template bodies, so thatIDENTIFIER_
NODEneed not be an overloading candi-
date at all. In some places, identifiers are
used where unboxed strings would suf-
fice; we will remove all such identifiers in
this step.

ERROR_MARKThere is one error mark node,
which can appear in any context where
the tree is incomplete because the input
program was incorrect. It carries no in-
formation. We mean to replace it with
separateINVALID_TYPE , INVALID_
DECL, INVALID_EXPR, and possibly
INVALID_CST codes. These nodes will
not be unique, and will carry enough in-
formation that later stages of compilation
do not need to be aware of them.

Lists and vectors TREE_LIST must be re-
placed with specialized list nodes that
carry static type information. It is also de-
sirable to use vectors where possible, in-
stead of lists. In this step we will design
a macro API for synthesizing vector and
list types, and the associated runtime API
for building lists, converting lists to vec-
tors, etc. This will allow us to save mem-
ory immediately, by removing the unused
pointers from most lists. In further steps
we will use it to define specialized list and
vector types as needed.

Blocks The lexical binding node,BLOCK, can
only appear within certain nodes and con-

texts, and therefore can be separated out
relatively easily. It contains a list of
DECLs, which will be the first use of spe-
cialized vector types.

Types Of the remaining tree nodes, types are
the most distinct; there is rarely cross-
class overloading between types and other
things. However, we will need to create
specialized lists of types, and we expect
to find abuses in their relationship to dec-
larations.

Constants In this step we will replace over-
loading between declarations and strings
with anonymousCONST_DECLadaptors.
Also, trees which are alwaysINTEGER_
or STRING_CSTnodes will be replaced
with unboxed integers or strings.

Expressions Next, we give expressions a dis-
tinct type, and make their operands always
be DECLnodes. Subexpressions will be
wrapped inEXPR_DECLadaptor nodes.
This is one of the most invasive changes to
be made; however, a suitably clever defi-
nition of TREE_OPERANDshould make
it possible to do it piecemeal.

Declarations At this point the only things left
in the tree union are declarations. We can
replace all remainingtree variables with
DECLvariables, and delete the union en-
tirely.

We will now discuss a few conversion steps in
more detail.

5.1 C declaration parsing

The C and C++ parsers reuse expression nodes
for temporary structures while parsing declara-
tions, as described in section 2.3. This is in-
compatible with static typing. Also, it is in-
efficient; the temporary structure is far larger

GCC Developers’ Summit 2004 • 163

struct binfo {
unsigned int flags;
tree type;
struct binfo *next;
struct binfo *inheritance;
tree offset;
tree vtable;
tree virtuals;
tree vptr_field;
unsigned int num_bases;
struct base {

tree access;
struct binfo *base;

} bases[];
};

CustomBINFO structure

than it needs to be (for instance, lists of identi-
fiers are used in places where flag words would
suffice) and the entire thing is discarded after
processing bygrokdeclarator , producing
lots of garbage.

We plan to replace these expressions with a
custom data structure. It need only contain
fields for the information added at its level (cv-
qualifiers, attributes, array or function parame-
ters), an enumeration of what is being declared
(array, pointer, etc), and a pointer to the struc-
ture for the next level. It would use the poly-
morphism techniques described in Section 4.1,
but static type constraints would ensure that it
never escaped the front end.

We expect this project to have the pleasant side
effect of replacinggrokdeclarator with a
set of simpler functions, none of which is 1200
lines long.

5.2 BINFOs

TheRECORD_TYPEfor each class declared in
a C++ program has a set ofBINFO structures
to represent its base class organization. There
is oneBINFO for each base class, arranged in a

directed acyclic graph which mirrors the class
hierarchy. They carry data such as the loca-
tion of the base sub-object, the class type of
the base, etc.

A BINFO is a TREE_VECwith indexes de-
fined for each piece of information. Informa-
tion about aBINFO’s baseBINFOs is held in
two additionalTREE_VECs, which is unnec-
essary fragmentation. There is a comment in
tree.h suggesting that this be changed:

??? This could probably be done by
just allocating the base types at the end
of this TREE_VEC(instead of using an-
otherTREE_VEC). This would simplify
the calculation of how many basetypes a
given type had.

As with declarator expressions, we mean to re-
place BINFO with a custom structure. The
fields that point toBINFOs are never over-
loaded, so we do not need to make it a tree
substructure. An example structure is shown
above, as it would appear before conversion to
specific static types. Further memory savings
are possible: we can store less information in
the BINFO and more in theRECORD_TYPE
of the base class, where it is not copied for ev-
ery derived class. Thevirtuals field is a
long list, with one entry for every virtual func-
tion in that class. If it can’t be moved to the
RECORD_TYPE, we can at least convert it to a
specialized vector.

5.3 Template arguments and levels

C++ template parameters may be types, ex-
pressions, or nested templates. Presently, the
C++ front end takes advantage of overloading
to put all these things in a single parameter vec-
tor. Many of the uses ofTYPE_PandDECL_P
within the C++ front end are due to this over-
loading. In this context, types are the most

164 • GCC Developers’ Summit

struct inner_vec {
unsigned int num_args;
tree args[];

};
struct outer_vec {

unsigned int num_levels;
struct inner_vec *levels[];

};

Two-dimensional template parameter array

common sort of parameter. We could use C++-
specificEXPR_TYPEandDECL_TYPEadap-
tor nodes. Another option is to use a tagged
array of unions, but then we would have to find
somewhere to put the tags.

It is possible for a template to have more than
one level of template parameters. Such tem-
plates have a vector of parameter vectors, one
for each level. To avoid overhead, templates
with only one level of parameters omit the
outer vector. This is another kind of over-
loading, and it costs quite a bit of complexity
(mostly incp-tree.h ’s macros for manipu-
lating template trees). A specialized two-dim-
ensional array would have substantially less
overhead. One possible structure layout is
shown here.

6 Closing remarks

This paper concentrates mostly on the common
code, and the C and C++ front ends. The Java,
Ada, Fortran and Objective C front ends will no
doubt have specific issues during conversion.
With the possible exception of Ada, we expect
that these will be no more trouble than the C++
front end. We will need support from front end
maintainers to complete the conversion for all
front ends.

We have glossed over the process of defining
specialized list and vector types. By the time
that is necessary, we will have already con-

verted some list usages, giving experience in
the features that are necessary. We expect that
at that time a good approach will be obvious.

7 Acknowledgments

We would like to thank Diego Novillo and
Christian Lavoie for commenting on drafts of
the paper, and Sumana Harihareswara, Michael
Ellsworth, and Julia Bernd for copyeditorial as-
sistance above and beyond the call of duty.

GCC Developers’ Summit 2004 • 165

Tables and figures

In Tables 4–7, upper case indicates nodes with a particular tree structure; lower case indicates
nodes with a particular tree code. An entry with just a dash (—) indicates a field that was never
used.

Utilization
Class Proportion chain type
BLOCK 1.61% 47.78% 0.00%
DECL 26.46% 89.81% 99.30%
EXPR 35.72% 0.00% 100.00%
STMT 14.85% 60.21% 0.00%
IDENTIFIER 1.72% 0.00% 0.00%
CONSTANT 14.75% 0.00% 100.00%
TYPE 4.89% 0.00% 71.42%

Table 2:tree_common utilization by class in C program

Utilization
Class Proportion chain type
BLOCK 3.85% 2.35% 0.00%
DECL 33.60% 60.80% 99.68%
EXPR 19.23% 0.00% 43.45%
STMT 14.46% 38.93% 0.00%
IDENTIFIER 7.26% 0.00% 7.40%
CONSTANT 3.18% 0.00% 100.00%
TYPE 12.80% 0.00% 65.98%

Table 3:tree_common utilization by class in C++ program

Field Null Len Type Purpose Value
call_expr.op[1] 2% 3.5 — — EXPR
record_type.minvala 99% 3.0 — — DECL
function_type.values 0% 3.7 — — TYPE
enumeral_type.values 0% 23.1 — identifier integer_cst
DECL.attributes 91% 1.4 — identifier — b

TYPE.attributes 98% 1.9 — identifier list
constructor.op[0] 0% 9.6 — field_decl 65% EXPR

integer_cst 35%
TYPE.attributes.value 0% 2.1 — — identifier 26%

integer_cst 74%

aC_TYPE_INCOMPLETE_VARS; the C front end has invented its own multipurposing
for this field (see section 2.5).

bThis field is non-NULL for some attributes, none of which are used in the program we
measured.

Table 4: Lists in C program

166 • GCC Developers’ Summit

Field Null Len Type Purpose Value
record_t.pure_virtuals 99% 8.7 — — method_t
record_t.befriending_classes 96% 1.3 — — record_t
record_t.vfields 85% 1.0 — — record_t
record_t.friend_classes 97% 2.3 — — record_t
type_d.initial.value 0% 2.0 — — DECL
var_d.initial 17% 2.3 — — EXPR
nw_expr.operands[0] 77% 1.0 — — EXPR
call_expr.operands[1] 32% 2.4 — — EXPR >99%

identifier <1%
TYPE.attributes.value 0% 1.6 — — integer 82%

identifier 18%
function_t.binfo 73% 1.0 — — null 99%

record_t 1%
method_t.binfo 82% 1.0 — — null >99%

record_t <1%
cast_expr.operands[0] 32% 1.1 — — DECL 55%

EXPR 38%
CONST 7%

namespace_d.initial 57% 1.0 — namespace —
namespace_d.saved_tree 71% 1.0 — namespace —
DECL.attributes 96% 1.4 — identifier —
TYPE.attributes 99% 1.7 — identifier list
type_d.initial 99% 1.3 — identifier list
enumeral_t.values 0% 16.9 — identifier integer
record_t.vcall_indices 85% 5.6 — function_d integer
constructor.operands[0] 0% 8.6 — integer EXPR
record_t.template_info 24% 1.0 — DECL vec
record_t.vbases 98% 1.0 — record_t vec
template_d.arguments 0% 1.0 — int_cst vec
DECL.template_info 63% 1.0 — DECL >99% vec

overload <1%
ctor_initializer.operands[0] 10% 2.1 — DECL 95% list

record_t 5%
record_t.decl_list 50% 19.4 — record_t 99% DECL

null 1%
function_t.values <1% 3.3 — null >99% TYPE

EXPR <1%
method_t.values 0% 3.3 — null 97% TYPE

EXPR 3%
TEMPLATE_PARMS 0% 1.0 — null 74% DECL

TYPE 25%
EXPR 1%

template_d.vindex 96% 3.4 — vec record_t 97%
null 3%

template_d.size 56% 2.0 null 99% vec DECL 99%
record_t 1% vec 1%

namespace_d.vindex 57% 1.0 — null 67% null 67%
namespace 33% namespace 33%

Note: _t is short for_type, _d for _decl.

Table 5: Lists in C++ program

GCC Developers’ Summit 2004 • 167

In Tables 6 and 7,italics indicate a multipurposed field; roman font indicates an overloaded field.

Field Primary Secondary Outlier
BLOCK.supercontext DECL 99% BLOCK 1%
DECL.context DECL 100% TYPE <1%
DECL.initial DECL 79% EXPR 19% TYPE 2%

BLOCK <1%
DECL.result TYPE 86% DECL 14%
EXPR.operands DECL 99% EXPR <1%

IDENTIFIER <1%
LIST <1%
BLOCK <1%

TYPE.context DECL 87% BLOCK 13%
TYPE.name DECL 100% IDENTIFIER <1%
TYPE.values LIST 76% DECL 24% TYPE <1%

Table 6: Multipurposing and overloading in C program

Field Primary Secondary Outlier
BLOCK.supercontext DECL 98% BLOCK 2%
DECL.arguments DECL 79% LIST 14%

INT_CST 7%
DECL.context DECL 98% TYPE 2%
DECL.initial TYPE 54% DECL 16% LIST 1%

BLOCK 12% STRING <1%
INT_CST 11%
EXPR 5%

DECL.befriending_classes LIST 60%
DECL 40%

DECL.result DECL 98% TYPE 2%
DECL.saved_tree EXPR 100% LIST <1%
DECL.size INT_CST 88% LIST 12%
DECL.vindex DECL 54% INT_CST 22% TYPE 4%

LIST 19%
EXPR.operands DECL 94% EXPR 5% LIST <1%

INT_CST <1%
BLOCK <1%
STRING <1%
TYPE <1%

TYPE.context DECL 62% TYPE 38%
TYPE.values LIST 67% DECL 22% IDENTIFIER 1%

TPI 9% EXPR <1%
TYPE <1%

Table 7: Multipurposing and overloading in C++ program

168 • GCC Developers’ Summit

/* If V has type T, return V, else issue an error. */
#define verify_type(T,V) \

(__builtin_choose_expr \
(__builtin_types_compatible_p (typeof(V), T), \

(V), (void) 0))

/* If V has type T or F, return (T)V, else issue an error. */
#define validated_cast(T,F,V) \

(__builtin_choose_expr \
(__builtin_types_compatible_p (typeof(V), T) \

|| __builtin_types_compatible_p (typeof(V), F), \
(T) (V), (void) 0))

/* If V has static type F or T and dynamic type K, return (T)V, else
issue an error. F and T are checked at compile time, K at runtime. */

#define with_dynamic_type(K,T,F,V) \
({ T _v = validated_cast(T,F,V); \

if (_v->common.kind != K) \
abort (); \

_v; })

enum cst_kind { INTEGER_CST, ... };

struct cst_common
{

enum cst_kind kind : 8;
bool warned_overflow : 1;
bool overflow : 1;
/* possibly other flag bits */

};
typedef struct cst_common *CONST;
#define CONST(C) verify_type(CONST, &C->common)

#define CONST_OVERFLOW(C) CONST(C)->overflow
#define CONST_WARNED_OVERFLOW(C) CONST(C)->warned_overflow

struct cst_int
{

struct cst_common common;
unsigned HOST_WIDE_INT low;
HOST_WIDE_INT high;

};
#define CST_INT(C) \

with_dynamic_type(INTEGER_CST, struct cst_int *, CONST, C)

#define CST_INT_LOW(C) CST_INT(C)->low
#define CST_INT_HIGH(C) CST_INT(C)->high

Figure 1: Structure and macro conventions for type safety

