
Optimal Stack Slot Assignment in GCC

Naveen Sharma Sanjiv Kumar Gupta
System Software Group

HCL Technologies Ltd
Noida, India–201301

{naveens, sanjivg}@noida.hcltech.com

Abstract

Several microprocessors, used in digital signal
processing and embedded devices, have lim-
ited displacement (4-6 bit) in “register + off-
set” addressing mode. In some cases, only
auto increment/decrement addressing modes
are available. Hence, while accessing data on
local frame, there are number of explicit in-
structions whose sole purpose is to reach the
desired data. This paper describes the impact
of layout of local variables on performance and
code size for these architectures. It also de-
scribes the techniques for optimal assignments
of stack offsets such that instructions for ad-
dress arithmetic for access of local variables
are minimized. The implementation of the
techniques in GCC is also discussed. Results
indicate an improvement of 2%-7% in code
size and 5-9% improvement in execution tim-
ings for several benchmarks.

1 Introduction

The use of micro-processors in embedded de-
vices has been growing. The complexity of
applications that run on these processors has
increased proportionately. This makes the use
of HLLs such asC/C++ almost inevitable for
writing these applications. Therefore, the com-
piler has to address the special architectural is-
sues normally found on these processors.

One prominent issue is the restrictive ad-
dressing modes in these processors. Many
of the architectures have limited offsets, if a
’reg+offset’ addressing mode is available or
just the auto increment/decrement modes. Ac-
cessing data beyond reachable offset incurs ex-
tra instructions. While this cannot be avoided
in all cases, local frame is one area where
we can improve data layout to subsume the
address arithmetic. This freedom can lead
to subtle benefits both in terms of perfor-
mance and code size. This flexibility is use-
ful regardless of target; the benefits, however,
are most apparenet for processors that have
limited displacement capability (such asSH,

ARM-Thumb, PA-RISC).

GCC currently does not allow to reorder items
in local frame. The document first disccusses
the problems that arise due to this. The solution
strategy and the implementation are discussed
subsequently.

2 Problem Description

The stack allocation scheme in GCC needs im-
provements. In the present scheme, the objects
are allocated on top of current frame when an
allocation is required. AnRTX of the of the
form

(mem:mode (plus (fp) (const_int
offset)))

224 • GCC Developers Summit

is associated with it. A hard offset is thus as-
signed to it at the very beginning. This scheme
results in the following problems.

• Increased code size

• Alignment holes and thus larger runtime
frames.

• Performace degradation due to cache
thrashing for certain applications.

We first explain the impact of frame layout on
code size, taking the example of SH architec-
ture. The SH architecture has a limitation of
four bit offset in the ’offset + register’ address-
ing mode(@(k, rm)) . The 4-bit offset is
zero extended and multiplied by 1, 2 or 4, ac-
cording to the operand size (being a byte, word
or long). Hence a maximum of 64 bytes can
be accessed from a base register using this ad-
dressing mode. In cases where higher offsets
need to be accessed, the compiler adjusts the
registerrm, so that a given reference lies within
desired displacement. Hence if we want to ac-
cess location, say, (72, fp) on SH, the assember
output looks like:

mov fp , r1 !Extra register
add #72, r1 !Addition
mov.l @r1, r2 !Actual Load

Notice the worst case costs involved when
accessing data beyond addressable offsets in
frame.

• The cost to spill the registers for
temporary stack base pointer of ar-
ray/structure/class (spillreg).

• The cost to copy the frame pointer.
(fpcopy).

• The cost to add the offset to temporary
base pointer (regadd).

• The cost to restore the temporary base
pointer after use (regrestore).

For floating point data SH allows pre-
decrement, post-increment and indexed ad-
dressing modes (r0 being the sole legal index
register). Similar problems are imminent there
too.

As another example, consider this piece of
code in which a large array is placed at begin-
ning of the frame.

void func(void)
{

float foo[16];
int l,m,n;
putval(&l,&m,&n);
l=m+n;
func1(l,m,n);

}

GCC produces this code for statementl=m+n
for SH, when we don’t reorder anything on
frame.

mov r14,r1 !frame pointer r14 --> r1
add #68,r1 !reaching "m"
mov.l @r1+,r5 !m --> r5 and reaching "n"
mov.l @r1,r6 !n --> r6
mov r5,r4 !m --> l
add r6,r4 !m+n -->r4 (stored to "l")

Note that frame layout is "foo, l, m, n"; so
offsets assigned to these relative to the frame
pointer are 0, 64, 68 and 72 respectively.

Ideally, if stack was laid out differently with
following layout "l, m, n, foo", GCC generates
the following code.

mov.l @(4,r14),r5 ! m --> r5
mov.l @(8,r14),r5 ! n --> r6
mov r5,r4 ! m --> r4
add r6,r4 ! n+r4 --> r4

GCC Developers Summit 2003 • 225

Notice the benefits by this simple reordering.
First, a decrease in Code Size beacuse nbe-
causef instructions, whose sole purpose is to
reach data in local frame, are reduced. Sec-
ondly Register "r1" in above example remains
free to be utilized elsewhere. Thirdly reduc-
tion in frame size in the general case because
ordered layout will lead to lesser alignment
holes. In cases when a large array on local
frame is unused, we can significant stack space
if we do not allocate it at all. (Array foo in the
above example).

Last, if compiler allows frame object to be
placed flexibly, the cache performance of ap-
plications might also be improved.

We propose two improvements in way GCC al-
locates local objects. The first improvement is
the way the stack slots are represented inter-
nally and secondly the algorithms to assign ac-
tual offsets to address these problems.

3 Approach to the problem

The problem of offset assignments can be
viewed in different ways. We can view
this problem as similar to register allocation.
Drawing analogy from the fact that compiler
generates IL1 code assuming infinite regis-
ters and allocates actual hard registers later,
we can generate IL assuming infinite displace-
ment and later map it to machine dependent
displacement. While this mapping takes place
we try to assign frame items within “fast ac-
cess window” based on the interference graph
of stack slots.[Burlin] describes a technique on
lines of graph coloring. However, the approach
has some implementation problems. Register
allocation has significant differences with off-
set assignment inspite of apparent sin spiteties.
Some obvious differences that need to be taken
care are

1IL:Intermediate language or RTL in case of GCC

• Size of frame items is variable unlike reg-
isters which are of fixed size.

• Spilling has a different meaning than in
traditional allocation.

• Graph coloring usually performs better
for register sets numbering more than 16.
While considering limited displacements,
the algorithm seemed expensive.

These and several others problems are de-
scribed by [Burlin].

The most popular approach for offset assign-
ment is described by [Liao]. This approach is
described for auto increment/decrement modes
and can be adjusted to accomodate limited dis-
placemenaccommodates occurence of adjacent
accesses asoccurrenceto frame layout.

3.1 Solution Strategy

3.1.1 The stack pseudos

It was obvious that current representation of
stack slots had several problems. It made
reshuffling objects in the stack virtually impos-
sible. An rtx of the form

(mem:mode (reg/f/c:Pmode slot))

is taken as the representation of a frame object.
The slot is a stack address(or a stack pseudo).
It is similar to virtual register but with slightly
different semantics. We return a rtx of this
form for each requested stack slot. Note that
the special flag/c is used to tell that this is
stack address pseudo. The register allocator
should not try to allocate any hard reg for this
because it is already a known stack slot.After
register allocation, we sort the allocated stack
slots by size and number of references and con-
vert it to normalfp+offset form.

226 • GCC Developers Summit

3.1.2 The Access Graph

An access graph is derived from a basic block.
It gives the relative benefits of assigining adja-
cent locations for assigningof local variables.
Given a insn sequence, an access sequence
can be defined from it. Given an opera-
tion set(r3 op (r1 r2)) , the access se-
quence is r1, r2, r3. The access sequence for
an ordered set of operations is just a concate-
nated sequence of each individual operation.
The access graph G(V, E) is derived from ac-
cess sequence by adding edges corresponding
to adjacent access between variables. Instead
of an adjacent access, we take the limited off-
set window to add the edges. For each repeated
adjacent access, update the weight associated
with an edge. At the end, we have a possi-
bly disjoint graph, representative of benefits of
placing variables within a same displacement
window.

This access graph can be extended to model the
entire procedure with the help of data flow in-
formation.. The access graphs of basic blocks
have to merge. Let us consider the scenario
shown in Figure 1. Assume that probability
of execution of basic blocks B2 and B3 is p2,
p3 respectively. Further, since B3 is in a loop
let us assume it has frequency of executionf .
Then the following heuristics apply.

1. For access sequences in B3, the weight as-
signed while connecting adjacent variable
accesses is proportional tof .

2. Weights assigned while connecting stack
variable accesses between B1, B2 and B3
is proportional to probabilities p2 and p3.

These heuristics ensure that access graph takes
into account the locality of accesses across en-
tire procedure. From this information, we can
determine placement of variables on the stack
to minimize large displacements.

3.1.3 Use Data Flow Information

Another strategy is to use information built by
flow analysis pass of the compiler. GCC builds
data flow information regarding pseudo regis-
ters. This includes the attribute REG_FREQ
which is the estimated frequency of the refer-
ence of the pseudo. Since stack slots are no
diferent, this information is generated for dif-
ferent can use this information for frame lay-
out by placing most frequently referenced vari-
ables near the frame.We tried the following
heuristics:

1. sort the stack slots by size first

2. place the most frequently referenced vari-
ables together near the frame

3.1.4 Stack Reorganization Pass

A stack reorganization optimization pass is in-
troduced after register allocation and is called
as a subroutine during the reload phase2. This
new pass primarily takes care of stack lay-
out of variables. Stack assignments are made
for pseudo registers based on locality of us-
age.It was observed that stack reorganization
will have little effect before reload because
most of the stack allocations are from within
reload. So next possibility was to place it af-
ter reload pass. But replacing stack pseudos
with their normal form after reload turns out to
be complicated because validation of changed
rtx’s becomes part of stack reorganization, a
task that reload is already doing. So calling
stack reorganization from within reload turns
out out be simpler and reload’s code need not
be repeated.

The algorithm is based on method given by
[Liao]. The algorithm starts with the insn chain

2Post register allocation pass that handles the spills

GCC Developers Summit 2003 • 227

of the function being compiled. The routine
Construct_Access_Graph converts into a graph
G(V, E) where V is number of variable accesses
in a basic block and E is number of edges. An
edge will exist between two variables v1 and
v2 if they are accessed adjacently and the fre-
quency of the adjacent access is recorded in the
edge. Then algorithm uses a greedy approach,
where it tries to add the edges with maximum
weight adjacent to each other in spanning tree
E’. The routine Traverse_And_Assign_Offsets
takes this spanning tree as input and assigns
offsets to variables in stack.

INPUT: The insn chain of the function.
OUTPUT: Offset Assignment on the Stack.

G (V, E)<-- Construct_Access_Graph (L);
/* G is a graph with local variables

(V) as nodes and E is the number of
edges. */

Es: sorted list of edges in descending order
of weight.

/* The weight of an edge between <v1, v2> is
frequency/relative gain of their adjacent
access. */

G’(V’, E’): V’<--V, E’<--NULL;

while (|E’| < |V| -1 && Es != NULL)
{

/* Choose first edge. */
e = Es[1];
/* Remove it from Edge List */
Es = Es - e;

if ((e does not cause a cycle in G’)
&&(e does not cause and node in V’
to have degree > 2)

add e to E’;
else

reject e;
}

/* Now the best disjoint path cover
is available. */

Traverse_And_Assign_Offsets(E’)

3.2 Benchmark Results

The performance improvement by frame re-
ordering depends on the following factors.

1. Size of the local frame.

B1

B2 B3

Figure 1: A sample control flow

2. Number of accesses of variables moved
near the frame.

3. Frame layout heuristics.

In the best cases, the execution perfromace
could go as high as 9%. The results for SH4
processor are shown here. The base version
used for benchmark measurements GCC-3.3.
The compiler options are ’-O2 -ml m4’. A
new option namely-fstack-reorg is in-
troduced to enable stack reorganization. Ta-
ble 1 gives size comparisons of stress1.17 files
with and without stack reorganization. The
Heuristics used are while frame layout are
those of section 3.1.3. It is clear that in most
cases, we have a decrease in code size. Some
benchmarks show slight code size increase due
to noise in reload phase.

The execution results for some benchmarks
are shown in Table 2. Only those benchmark
which have variation in execution timings are
shown. One undesirable side effect, which is
probably the main cause of performance degra-
dation, is the harm done to loop optimizer be-
cause stack addresses are not exposed to it. A
loop optimization pass after reload phase could
possibly fix this problem.

228 • GCC Developers Summit

File size decrease
Name size (stack-reorg) (%)
revolt.o 5956 5508 7.52
l3psy.o 15024 13968 7.03
mission.o 16972 15820 6.79
blocksort.o 4960 4640 6.45
advdomestic.o 8152 7640 6.28
explode.o 7916 7468 5.66
advmilitary.o 14844 14140 4.74
dogmove.o 10436 9956 4.60
lndsub.o 13820 13276 3.94
compress.o 4968 4776 3.86
physics.o 9020 8700 3.55
jidctflt.o 928 896 3.45
navion_gear.o 2040 1976 3.14
mhitm.o 22528 21824 3.13
r_segs.o 4384 4416 -0.73
q_shared.o 7966 8030 -0.80
g_phys.o 7396 7460 -0.87
tonal.o 10832 10928 -0.89
regex.o 24012 24268 -1.07

Table 1: Code Size Comparisons

Input Data Gain
Benchmark Size (%age)
gsm Compression 1.71 MB 8.29
gsm decompression 361 KB 5.60
jpeg(dct int) 3.25 MB -1.04
jpeg (dct float) 3.25 MB -0.38
djpeg(dct int) 328 KB 4.73
djpeg (dct float) 328 KB -2.05
gzip 80 MB 0.01
gunzip 16.2 MB 0.7

Table 2: Execution Timings

4 Acknowledgements

We would like to thank the GCC developer
community for help. Their support is in-
valuable. We specially thank Zack Weinberg,
Toshiyasu Morita, and Joern Rennecke for im-
plementation ideas and comments.

References

[Liao] S.Liao and S.DevdasStorage Assign-
ment to Decrease Code Size, MIT De-
partmenet of EECS, Cambridge MA
(1995).

[Burlin] Johny BurlinOptimizing Stack Frame
Layout for Embedded Systems, Informa-
tion Technology Computing size depart-
ment, Uppsala University, Sweden.

[GCC] GCC Internals Manual
http://gcc.gnu.org

