Alias Analysis for Intermediate Code

Sanjiv K. Gupta Naveen Sharma

System Software Group
HCL Technologies, Noida, India — 201 301
{sanjivg,naveens}@noida.hcltech.com

Abstract mine aliasing between two memory references
if they (i) use distinct offsets from the same

Most existing alias analysis techniques are for_rBeq[lster;l or (||)_|ort1_e of :_hem p(l)lnt_s t?t sta]:ckl.
mulated in terms of high-level language con- ut such compiie ime alias analysis often fails

structs and are unable to cope with pOinteIIO determine aliasing between computed point-

arithmetic. For machines that do not have ’basglr.S and safely assume that these pointers may
+ offset’ addressing mode, pointer arithmetic2''@s-

is necessary to compute a pointer to the desiregl, jjjystrate the computed pointers and aliasing

address. Most state of the art compilers such ASroblem with them, let us consider the follow-
GCC lack the mechanism to determine aliasingng piece of code:

between such computed pointers. Few other

existing alias analysis techniques described for

executable code can handle pointer arithmeti¥oid foo (double *in)
but require large memory when applied to in-{

termediate languages such as RTL. In this pa- IN[4] += in[3];
per, we describe a method of disambiguating}

the computed pointers within a procedure at the

intermediate code level. The method is Simi-E5r machines that have 'base + offset’ address-
lar to the techniques described for executabkﬁqg for double , GCC generates RTL like
code but requires significantly less amount of ’ ’

memory. We have experimented our method

with the GCC RTL and it reduces the code size’172 = [r170, 32]

of array manipulating benchmarks by approxi-r173 = [r170, 24]

mately 4-7% for the machines that do not have174 = r172 + rl73

'base + offset’ addressing mode. [r170, 32] = r174

1 Introduction in such cases the GCC can successfully deter-

mine that the memory referendes70, 32]

. L . _and[r170, 24] do not alias as they use dis-
Various optimization passes like CSE and in+jnct offsets from the same base register.
struction scheduling rely on alias analysis to

determine the aliasing between two memoryOn machines that do not have ’base + off-
references. Compile time alias analysis inset’ addressing mode fdouble , the compiler
compilers such as GCC can successfully detemwill need to compute the pointers to load and

72 ¢ GCC Developers Summit

store locations. In these cases, the generatetdl A Program Point
RTL will look like,

A program point refers to a point between two

r170 = r160 + 32 instructions[Muchnick]. A program poimtbe-
1171 = r160 + 24 tween instructionsl andI2 is denoted ap(I1,
(172 = [r170] I2),Wherellimmediatgly preced|s.andl2im-
173 = [r171] mediately followsp. Since compilers always
1174 = r172 + ri73 keep a chain of instructions available all the
[r170] = ri74 time, the preceding instructiod is all which

is required to identify a program poipt

Any solution that attempts to disambiguate two
computed pointers should be able to tell the

safe, GCC simply assumes that these computdlPSsible address values represented by each
pointers alias with each other. The problemPOiNter pseudo at each program point. For ex-
with GCC is that it does not have any mech-2Mple, for the pointer pseudos andr2 at
anism to keep track of what address arithmeti@Ven Program pointpl andp2, the solution

have been performed to obtain the compute(ﬁnUSt be able to tell the possible address values
pointersr170 andri7l . represented byl atpl, andr2 atp2

GCC fails to determine aliasing between th
computed pointers170 andrl7l. To be

There are algorithms available to keep track ob.2 mod-k Residues Set
address arithmetic (see [Debray98]); but they

work well only with the executable code since -, compactly storing an address value we
the executable programs have small number of ,\gjger only some fixed number, sayof the
registers (i.e. only hard registers). Time andg, ey hits of the value. This means an abstract

space requirements of such algorithms increasgddress valueal is represented by its mod-k
when we try to use them for intermediate code,oqiqueval mod k (k = 2m). The set of all

such as RTL as there may be large numbegyqiract address values can then be represented
of pseudo registers present in the mtermedlatBy the mod-k residues sét= (0, 1,2, ..., k —

code. This paper describes an alias analysis a}y Since(x mod k) # ((x +6) mod k) ¥ 0 <
gorithm that can be used with the intermediate5 < k , the representation can distinguish be-

code to keep track of the address arithmetic efy oo addresses involving distinct “small” dis-
ficiently. The algorlthm is influenced from the placements (i.e. less thark) from a base reg-
mod-k residue technique for executable codggia

described in [Debray98].

The choice of the valué& is critical for effi-
ciency of the technique. The valledeter-
mines the size of mod-k residues set; the choice
should be made in such a way that it makes
The mod-k residue algorithm maps eachstoring and manipulating mod-k residues sets
pseudo with a set of possible address values &w cost operations. Often, the natural word
each program point. Let us first define somesize of the host machine is a good choice. This
basic terms that are required to discuss the alway we can store a mod-k residue set as a bit
gorithm. The term pseudo means a pseudo regrector in a single machine word. Operations
ister in entire discussion. such as adding a constantto each member

2 Terminology

GCC Developers Summit 2003 « 73

of the set can be simply obtained by rotatingpseudal173 at program poinp(12, 13) will be
the bit-vector byc bits. For example, the mod- {NONE, (5)}

k residues set (4, 12) can be represented by a _ _)
machine word whosé'” and12t" bits are ON Further we define two special address descrip-

and rest of the bits are OFF. tors, an address descriptpANY, (all)} alias
with everything and the address descriptor

In our implementation experiment with GCC {NONE, (nothing)}alias with nothing.

on host machine x86, we choose the valu& of

as sizeof(int) so that a mod-k residues set ca . .

be stored efficiently in an integer. % Effect of Ind|V|du§1I InStrUCtlon_S
on Address Descriptors: Keeping

2.3 Address Descriptors track of Address Arithmetic

The mod-k residues sets by themselves are nqthe operations performed by an instruction
adequate for cases where we are not able tgodifies certain pseudos; the algorithm defines
predict the actual value of a pseuda@t a pro- these operations for address descriptors and ap-
gram point. To deal with this problem we ex- plies them to modify address descriptors corre-
tend mod-k residues set to ‘Address Descripsponding to those pseudos. In this section we
tors’. An address descriptor is a pdlr Z}, define assignment, addition, and multiplication
where | is an instruction andZ is @ mod-k operations for address descriptors as they are

residues set. Given an address descrip{o) the most frequent operations occurring in ad-
={l, Z} for a pseudo , the instruction is the dress arithmetic.

defining instruction of , andZ denotes the set
of mod-k residues relative to whatever value is3.1 Assignment Instructions
computed by instructioh

Consider an assignment instructibrhaving

The address descriptor of a pseudds com-)
the following form,

puted by analyzing its defining instruction as
per the rules described in section 3. If we can-
not say anything about the value of a pseudd: dest = src

r while analyzing its defining instructioln we

associate the address descriftp(0)} with r. ~ Wheredest is a pseudo andrc could be a
A constantc yields an address descriptor PSeudo or some integer constant.

{NONE, (c mod k)} The address descriptor dést pseudo is eval-

For example consider the following instruc- uated as following:

tions: . .

a) If src is a pseudo and has a valid address de-
11: 1172 = [r170] scriptor, the addre;s descriptorsoé becomes
12: 1173 = & the address descriptor dést .
13: b) If src is a pseudo that does not have a

. valid address descriptor, the address descriptor
The address descriptor of pseud@2 at pro- ¢ jest becomegl,(0)}.

gram pointp(11, 12) will be {I1, (0)} as we can
not say anything about the value df72 af- c¢) If src is a constant integer, address de-
ter instructionll. The address descriptor for scriptor ofdest will be as{NONE, (c mod k)}

74 + GCC Developers Summit

3.2 Addition Instructions scriptor ofdest after this instruction is taken
to be{l, (0)}.
Consider an addition instructionhaving the

. Though semantics for other operations on ad-
following form.

dress descriptors can be defined but above inte-
gral operations suffice in most cases to handle

I dest = srcl + src2 the pointer arithmetic. The address descriptor
of the destination pseudo of an unhandled-
wheredest andsrcl are pseudos anstc2 instructiort | is taken agl,(0)}.

can be a pseudo or an integer constant.
Let {I1, Z1} and {12, Z2} be the address de- .

scriptors ofsrcl andsrc2 respectively. The 4 The Algorithm

address descriptor of pseudest is then eval-

uated as following: The algorithm maps each pseudo with its pos-
sible values (i.e. an address descriptor) at each
program point. Since storing an address de-
scriptor for each pseudo at each program point
will require excessive memory, we compute the
address descriptors of pseudos defined in a ba-

b) Otherwise, we can not say anything abousic block and store them only at the end of

the result of this operation. So the address defhe basic block. Using this saved information,
scriptor ofdest after this instruction is taken ~the address descriptor of a pseudo at a particu-
to be{l, (0)}. lar program point within a basic block can be

obtained by recomputing the address descrip-
tors of the basic block upto that program point.

This recomputing does not take much time as
basic blocks happen to be small in most cases.

a) If 11 = NONE, the address descriptor of
dest becomeql2, Z} (the situation wherd2

= NONE is symmetric). HereZ = {((x +
y) mod k) ¥ x e Z1,y e Z2}.

3.3 Multiplication Instructions

Consider a multiplication instructioh having

the following form, _ _
4.1 Computing Address Descriptors

I: dest = srcl * src2 _ _ _ _
The instructions in a basic block are analyzed

h q q gt as described in section 3 to compute the ad-
w er%deSt an SrdC1 are pseudos a c2 dress descriptors of pseudos defined in that ba-
Ean |1eZa1 psijulzo g ‘En wtegg; conztanl;sic block. The input address descriptors of the

et,{ , 21} and{12, 72} be the address de- pasic block are determined as described in the
scriptors ofsrcl andsrc2 respectively. The g oo tion 4.2, The address descriptors com-
addre_ss descriptor dest is then evaluated as puted in the basic block are then saved at the
following: end of that basic block. This saved list of ad-
a) If 11 = NONE, the address descriptor of dress descriptors at the end of a basic block is

dest becomeg12, Z} (the situation wherd2 calledOUT_LISTof that basic block.

= NONE is symZmetric)Z HereZ = {((= * Storing the address descriptors for all pseudos
y)mod k) VzeZl,yeZ2}. defined in a basic block in th@UT_LISTwill

b) Otherwise, we can not say anything about tjnstruction for which the corresponding address de-
the result of this operation. So the address descriptor operation is not defined

require very large memory (intermediate code
may contain large number of pseudos). Since
most of the defined pseudos are local to a ba-
sic block, they do not contribute to the input
of their successors. To reduce the memory re-
guirements, address descriptors for such pseu-
dos need not be saved in tJT_LIST The

BBO

GCC Developers Summit 2003 * 75

At the end of BBO,
A(r100) = {10, (0)}

BB

12: r101 =r100+ 24

At the end of BB2,
A(r101) = {10, (24)}

At the end of BB1,
A(r101) = {10, (8)}

algorithm first identifies all those pseudos that

are being used across basic blocks. We call

such pseudos as “shared pseudos”. The address g3
descriptors for “shared pseudos” only aresaved | ..
at the end of all basic blocks. This saves lot
of memory since there exists usually a small
number of “shared pseudos” in intermediate
code. If a procedure witN basic blocks havR
shared pseudos, the memory required for stor-
ing the address descriptors would RBI(k+w)
bits, wherew is the machine word size in bits.

At the beginning of BB3,
A(r101) = {10, (8)} union {10, (24)}
= {10, (8, 24)}

i At the end of BB3,

A(r102) = {10, (12, 28)}

Notation: A(r) denotes the address descriptor of register 't'

4.2 Propagating Address Descriptors across

Basic Blocke Figure 1: Merging of address descriptors

. . 4.3 Building the Fixed alias analysis Informa-
CFG is used to propagate these descriptors tjon

across basic blocks. Anionoperation is used

to “merge” éhe information ?OT]'ng along the \itiple iterations over the CFG are done till
Incoming edges at vertices in the CFG. Anin-yo aq4ress descriptors of all “shared regis-

put list of address descriptors (we call this aMNars” in a procedure become constant, or in
IN_LIS'I) for a basic block is_formed by doing other words till theOUT_LISTsof all basic
the union of OUT_LISTs of its predecessors. 014 hecome constant. Each iteration com-
Thus if the address descriptors for a pseudo utes theOUT LISTof each basic block us-
being prqpagated along two incoming edges a519 the IN_LIST of the basic block as input.
a vertex n the CFG arfil, Z_l} and{l2, 22}, The OUT_LISTcomputed during the iteration
the r_esultlng address descriptor for pseuds isuniored (as described in subsection 4.2) with
obtained as, the savedOUT _LISTof the previous iteration
and the resultis saved as the cur@hiT_LIST

of the basic block. Another iteration over
CFG is required only if any of th®UT_LISTs
For example, as shown in Figure 1, consider &hange in the current iteration. The required
basic blockBB3 having two predecessoBB1 information for performing alias analysis is
andBB2. If the address descriptors of a pseuddouilt once we have reached this stage where all
rl01l in the OUT_LISTsof BB1 andBB2 are the OUT_LISTsare fixed. This way we have
{10, (8)} and{I0, (24)}, the address descriptor gathered for all “shared pseudos”, all the pos-
of r101 intheIN_LISTof BB3 will be {IO, (8, sible results of operations performed on them
24)}. by all execution paths.

{I,, ' Z1 union 11=12=1.

{ANY, (all)}if I1 # I2.

72} if

76 ¢ GCC Developers Summit

We can describe this in the following pseu-
docode,

do {
out_lists_changed = false;
for each BB in the CFG {
prepare an IN_LIST of BB
by doing union of the
OUT_LISTS of
predecessors of BB;
evaluate OUT_LIST _OF _THIS PASS
using IN_LIST as input;
NEW_OUT_LIST = do union of
OUT_LIST_OF_THIS_PASS
with the SAVED OUT_LIST.
list_changed = false;
if (NEW_OUT_LIST is not
equal to SAVED_OUT_LIST) {
SAVED_OUT_LIST = NEW_OUT_LIST;
list changed = true;
}
out_lists_changed =
out_lists_changed | list_changed;
}

} while (out_lists_changed);

computed pointers can be determined in fol-
lowing steps.

Step 1. Given two computed pointerd and
r2 , we retrieve the program poingsl andp2
whererl andr2 are dereferenced.

To retrieve the program points for these point-
ers a hash table is built at the start of the al-
gorithm. For every pointer, this hash table
records the instruction in which the pointer is
contained. For a pointer, the instruction re-
treived from the hash table gives the preceding
instruction of the program point.

Step 2. Find the basic blocks for the program
pointsplandp2 say they ar&B1 andBB2.

Step 3. Compute thelN_LISTsof BB1 and
BB2 by doing the union of save@UT _LISTs
of their predecessors.

Step 4.Recompute the address descriptfdts
(Z1)} and{I2, (Z2)} of the two pointersl and

To reduce the number of iterations required? &t the desired program poird andp2 by

over CFG, we identify loop counters suchras

r + const and populate their address de-
scriptor in a single pass itself. For example
given a loop counter in RTL below,

0

r+ 2

The address descriptor of pseudois cal-
culated in the first pass itself agNONE,
(0,2,4,6,8,10,12,14)ffor mod-16 alias analy-
sis).

5 Reasoning about alias relation-
ship

Once the required alias information is gen-

traversing within their basic blockBB1 and
BB2.

Step 5. Address descriptorfll, (Z1)} at in-
struction pointpl, and{12, (Z2)} at instruction
point p2 denote disjoint addresses if both the
following conditions are satisfied.

pir=12="r.
i) Z1 intersection Z2 = NULL

Condition (i) ensures that both the program
pointspl andp2 see the same value computed
by instructionl. Condition (ii) then ensures that
relative to this value, the pointet referred at
plis disjoint from the pointer2 referred at

p2.

erated, the aliasing relationship between two

GCC Developers Summit 2003 « 77

6 Example o Y
10: r158 =r4
11: r159 =0
Let us describe the entire algorithm with the b 1160 =2

OUT_LIST(BBO) =
A(158) = {10, (0)}
A(159) = {NONE, (0)}
A(160) = {NONE, (2)}

help of the following example function in C,

void foo (double * a)
IN_LIST(BB1) = OUT_LIST(BBO) =

{ A(158) = ({10, (0)}
. . . A(1591) = {NONE, (0)}
Int L] A(60) = {NONE, (2)}
r160 =r160 + 4
OUT_LIST(BBI) =
- 0: A(158) = {10, (0)}
I = ’ A(159) = {NONE, (0)}
j - 2 A(160) = {NONE, (6)}
IN_LIST(BB2) = OUT_LIST(BBO) union
if (1 ORS00
| (a)_ A(159) = [NbNE,)}
] =} + 4, e =r1519ALI§)0)={NON L (2,6)}
rl62 =r158 +r161
. . . r163 =r159 + r160
afil] = afi + JJ; 1164 = 1163 * 8
rl65 =r158 +r164
} r166 = [r165]
[r162] =r166
. EXIT
Figure 2 shows the CFG and RTL generated for
SH4 alongwith the address descriptors com- Al 2 adiress desriptor of registr
. . . OUT_LIST(BB) = OUT_LIST of basic block BB
puted by the algorithm. To determine the alias- IN_LIST(BB) = IN_LIST of busic block BB

ing relationship between the computed point-

ersrl65 andrl62 in basic block BB2, their

address descriptors are recomputed using tl‘E_ . : :
IN_LISTof BB2. Applying the rules of Sec- igure 2: address descriptor based alias analy-
tion 3 on BB2 gives the recomputed addres$'®

descriptors of162 andr165 as{l1, (0)} and

{11, (16)}. These address descriptors do nodistinguish between the displacements in the
alias since they follow the rules described inrange{0 < § < k}. For example, ifk=32
step5 of Section 5. then the algorithm will not be able to differenti-
ate between the computed pointers&or9]

and &in[13] . Increasing the value df im-
proves the precision of results obtained but

_ _ _ may also increase the execution time of algo-
The algorithm is not capable of keeping trackjthm.

of contents of memory. Information about a
register is lost if it is saved to memory and
then subsequently restored at a later point3 Experimentation and Results
Also if a register can have different defining

instructions at different predecessors of a CFG _ _ _)
vertex, the information is lost while merging W& experimented by implementing this algo-
them using theinionoperator. rithm in GCC. Since the compiler was running

on an i686 machine, we chose the value of k as
The precision of results obtained also depend82. We built the cross compiler for ia64-elf tar-
on the value ofk. The algorithm can only getand obtained the data about generated code

7 Drawbacks

78 ¢ GCC Developers Summit

size. Table 1 given below compares the gener-
ated code size for ia64-elf for some of stress-
1.17 files with -O2 option. We also observed
that our implementation increases the compila-
tion time for programs by about 20%.

file size of| size of| %code
name text text size
section | section | decrease
(before) | (after
dcté4.0 | 9808 9568 2.44
Ipc.o 36824 33256 9.68
mdct.o 5936 5488 7.54
polyobj.o| 14840 14360 3.23
layer3.0 | 54760 54344 0.75
tif lzw.o | 24320 24256 0.32
quadrics.p 22000 21840 0.73

Table 1: code size comparison for ia64-elf

9 Acknowledgments

We would like to thank people at
gcc@gcc.gnu.org for their invaluable support.
We specially thank to Richard Henderson,
Diego Novillo, Saumya K. Debray, Daniel
Berlin and David Edelsohn for their ideas.

References

[Debray98] S. Debray, R. Muth, and M. Weip-
pert, Alias Analysis of Executable Code
In The 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Program-
ming Languages, pages 12-24, Orlando,
Florida (1998)

[Muchnick] Steven S. Muchnick Advanced
Compiler Design and Implementation
Morgan Kaufmann Inc., Reading, page
303, USA (1997)

[GCC] GCC source codehttp://gcc.
gnu.org

