
Alias Analysis for Intermediate Code

Sanjiv K. Gupta Naveen Sharma
System Software Group

HCL Technologies, Noida, India – 201 301
{sanjivg,naveens}@noida.hcltech.com

Abstract

Most existing alias analysis techniques are for-
mulated in terms of high-level language con-
structs and are unable to cope with pointer
arithmetic. For machines that do not have ’base
+ offset’ addressing mode, pointer arithmetic
is necessary to compute a pointer to the desired
address. Most state of the art compilers such as
GCC lack the mechanism to determine aliasing
between such computed pointers. Few other
existing alias analysis techniques described for
executable code can handle pointer arithmetic
but require large memory when applied to in-
termediate languages such as RTL. In this pa-
per, we describe a method of disambiguating
the computed pointers within a procedure at the
intermediate code level. The method is simi-
lar to the techniques described for executable
code but requires significantly less amount of
memory. We have experimented our method
with the GCC RTL and it reduces the code size
of array manipulating benchmarks by approxi-
mately 4-7% for the machines that do not have
’base + offset’ addressing mode.

1 Introduction

Various optimization passes like CSE and in-
struction scheduling rely on alias analysis to
determine the aliasing between two memory
references. Compile time alias analysis in
compilers such as GCC can successfully deter-

mine aliasing between two memory references
if they (i) use distinct offsets from the same
register; or (ii) one of them points to stack.
But such compile time alias analysis often fails
to determine aliasing between computed point-
ers and safely assume that these pointers may
alias.

To illustrate the computed pointers and aliasing
problem with them, let us consider the follow-
ing piece of code:

void foo (double *in)
{

in[4] += in[3];
}

For machines that have ’base + offset’ address-
ing for double , GCC generates RTL like,

r172 = [r170, 32]
r173 = [r170, 24]
r174 = r172 + r173
[r170, 32] = r174

in such cases the GCC can successfully deter-
mine that the memory references[r170, 32]

and[r170, 24] do not alias as they use dis-
tinct offsets from the same base register.

On machines that do not have ’base + off-
set’ addressing mode fordouble , the compiler
will need to compute the pointers to load and

72 • GCC Developers Summit

store locations. In these cases, the generated
RTL will look like,

r170 = r160 + 32
r171 = r160 + 24
r172 = [r170]
r173 = [r171]
r174 = r172 + r173
[r170] = r174

GCC fails to determine aliasing between the
computed pointersr170 and r171 . To be
safe, GCC simply assumes that these computed
pointers alias with each other. The problem
with GCC is that it does not have any mech-
anism to keep track of what address arithmetic
have been performed to obtain the computed
pointersr170 andr171 .

There are algorithms available to keep track of
address arithmetic (see [Debray98]); but they
work well only with the executable code since
the executable programs have small number of
registers (i.e. only hard registers). Time and
space requirements of such algorithms increase
when we try to use them for intermediate code
such as RTL as there may be large number
of pseudo registers present in the intermediate
code. This paper describes an alias analysis al-
gorithm that can be used with the intermediate
code to keep track of the address arithmetic ef-
ficiently. The algorithm is influenced from the
mod-k residue technique for executable code
described in [Debray98].

2 Terminology

The mod-k residue algorithm maps each
pseudo with a set of possible address values at
each program point. Let us first define some
basic terms that are required to discuss the al-
gorithm. The term pseudo means a pseudo reg-
ister in entire discussion.

2.1 A Program Point

A program point refers to a point between two
instructions[Muchnick]. A program pointp be-
tween instructionsI1 andI2 is denoted asp(I1,
I2), whereI1 immediately precedsp andI2 im-
mediately followsp. Since compilers always
keep a chain of instructions available all the
time, the preceding instructionI1 is all which
is required to identify a program pointp.

Any solution that attempts to disambiguate two
computed pointers should be able to tell the
possible address values represented by each
pointer pseudo at each program point. For ex-
ample, for the pointer pseudosr1 and r2 at
given program pointsp1 andp2, the solution
must be able to tell the possible address values
represented byr1 atp1, andr2 atp2.

2.2 mod-k Residues Set

For compactly storing an address value we
consider only some fixed number, saym, of the
lower bits of the value. This means an abstract
address valueval is represented by its mod-k
residueval mod k. (k = 2m). The set of all
abstract address values can then be represented
by the mod-k residues setZ = (0, 1, 2,, k−
1). Since(x mod k) 6= ((x + δ) mod k) ∀ 0 <
δ < k , the representation can distinguish be-
tween addresses involving distinct “small” dis-
placementsδ (i.e. less thank) from a base reg-
ister.

The choice of the valuek is critical for effi-
ciency of the technique. The valuek deter-
mines the size of mod-k residues set; the choice
should be made in such a way that it makes
storing and manipulating mod-k residues sets
low cost operations. Often, the natural word
size of the host machine is a good choice. This
way we can store a mod-k residue set as a bit
vector in a single machine word. Operations
such as adding a constantc to each member

GCC Developers Summit 2003 • 73

of the set can be simply obtained by rotating
the bit-vector byc bits. For example, the mod-
k residues set (4, 12) can be represented by a
machine word whose4th and12th bits are ON
and rest of the bits are OFF.

In our implementation experiment with GCC
on host machine x86, we choose the value ofk
as sizeof(int) so that a mod-k residues set can
be stored efficiently in an integer.

2.3 Address Descriptors

The mod-k residues sets by themselves are not
adequate for cases where we are not able to
predict the actual value of a pseudor at a pro-
gram point. To deal with this problem we ex-
tend mod-k residues set to ‘Address Descrip-
tors’. An address descriptor is a pair{I, Z} ,
where I is an instruction andZ is a mod-k
residues set. Given an address descriptorA(r)
= {I, Z} for a pseudor , the instructionI is the
defining instruction ofr , andZ denotes the set
of mod-k residues relative to whatever value is
computed by instructionI.

The address descriptor of a pseudor is com-
puted by analyzing its defining instruction as
per the rules described in section 3. If we can-
not say anything about the value of a pseudo
r while analyzing its defining instructionI, we
associate the address descriptor{I, (0)} with r .
A constant c yields an address descriptor
{NONE, (c mod k)}.

For example consider the following instruc-
tions:

I1: r172 = [r170]
I2: r173 = 5
I3:

The address descriptor of pseudor172 at pro-
gram pointp(I1, I2) will be {I1, (0)} as we can
not say anything about the value ofr172 af-
ter instructionI1. The address descriptor for

pseudor173 at program pointp(I2, I3) will be
{NONE, (5)}.

Further we define two special address descrip-
tors, an address descriptor{ANY, (all)} alias
with everything and the address descriptor
{NONE, (nothing)}alias with nothing.

3 Effect of Individual Instructions
on Address Descriptors: Keeping
track of Address Arithmetic

The operations performed by an instruction
modifies certain pseudos; the algorithm defines
these operations for address descriptors and ap-
plies them to modify address descriptors corre-
sponding to those pseudos. In this section we
define assignment, addition, and multiplication
operations for address descriptors as they are
the most frequent operations occurring in ad-
dress arithmetic.

3.1 Assignment Instructions

Consider an assignment instructionI having
the following form,

I: dest = src

wheredest is a pseudo andsrc could be a
pseudo or some integer constant.

The address descriptor ofdest pseudo is eval-
uated as following:

a) If src is a pseudo and has a valid address de-
scriptor, the address descriptor ofsrc becomes
the address descriptor ofdest .

b) If src is a pseudo that does not have a
valid address descriptor, the address descriptor
of dest becomes{I,(0)} .

c) If src is a constant integerc, address de-
scriptor ofdest will be as{NONE, (c mod k)}.

74 • GCC Developers Summit

3.2 Addition Instructions

Consider an addition instructionI having the
following form.

I: dest = src1 + src2

wheredest andsrc1 are pseudos andsrc2

can be a pseudo or an integer constant.
Let {I1, Z1} and {I2, Z2} be the address de-
scriptors ofsrc1 andsrc2 respectively. The
address descriptor of pseudodest is then eval-
uated as following:

a) If I1 = NONE, the address descriptor of
dest becomes{I2, Z} (the situation whereI2
= NONE is symmetric). HereZ = {((x +
y) mod k) ∀ x ε Z1, y ε Z2}.

b) Otherwise, we can not say anything about
the result of this operation. So the address de-
scriptor ofdest after this instructionI is taken
to be{I, (0)} .

3.3 Multiplication Instructions

Consider a multiplication instructionI having
the following form,

I: dest = src1 * src2

wheredest andsrc1 are pseudos andsrc2

can be a pseudo or an integer constant.
Let {I1, Z1} and {I2, Z2} be the address de-
scriptors ofsrc1 andsrc2 respectively. The
address descriptor ofdest is then evaluated as
following:

a) If I1 = NONE, the address descriptor of
dest becomes{I2, Z} (the situation whereI2
= NONE is symmetric). HereZ = {((x ∗
y) mod k) ∀ x ε Z1, y ε Z2}.

b) Otherwise, we can not say anything about
the result of this operation. So the address de-

scriptor ofdest after this instructionI is taken
to be{I, (0)} .

Though semantics for other operations on ad-
dress descriptors can be defined but above inte-
gral operations suffice in most cases to handle
the pointer arithmetic. The address descriptor
of the destination pseudor of an unhandled-
instruction1 I is taken as{I,(0)} .

4 The Algorithm

The algorithm maps each pseudo with its pos-
sible values (i.e. an address descriptor) at each
program point. Since storing an address de-
scriptor for each pseudo at each program point
will require excessive memory, we compute the
address descriptors of pseudos defined in a ba-
sic block and store them only at the end of
the basic block. Using this saved information,
the address descriptor of a pseudo at a particu-
lar program point within a basic block can be
obtained by recomputing the address descrip-
tors of the basic block upto that program point.
This recomputing does not take much time as
basic blocks happen to be small in most cases.

4.1 Computing Address Descriptors

The instructions in a basic block are analyzed
as described in section 3 to compute the ad-
dress descriptors of pseudos defined in that ba-
sic block. The input address descriptors of the
basic block are determined as described in the
subsection 4.2. The address descriptors com-
puted in the basic block are then saved at the
end of that basic block. This saved list of ad-
dress descriptors at the end of a basic block is
calledOUT_LISTof that basic block.

Storing the address descriptors for all pseudos
defined in a basic block in theOUT_LISTwill

1instruction for which the corresponding address de-
scriptor operation is not defined

GCC Developers Summit 2003 • 75

require very large memory (intermediate code
may contain large number of pseudos). Since
most of the defined pseudos are local to a ba-
sic block, they do not contribute to the input
of their successors. To reduce the memory re-
quirements, address descriptors for such pseu-
dos need not be saved in theOUT_LIST. The
algorithm first identifies all those pseudos that
are being used across basic blocks. We call
such pseudos as “shared pseudos”. The address
descriptors for “shared pseudos” only are saved
at the end of all basic blocks. This saves lot
of memory since there exists usually a small
number of “shared pseudos” in intermediate
code. If a procedure withN basic blocks haveR
shared pseudos, the memory required for stor-
ing the address descriptors would beRN(k+w)
bits, wherew is the machine word size in bits.

4.2 Propagating Address Descriptors across
Basic Blocks

CFG is used to propagate these descriptors
across basic blocks. Aunionoperation is used
to “merge” the information coming along the
incoming edges at vertices in the CFG. An in-
put list of address descriptors (we call this an
IN_LIST) for a basic block is formed by doing
the union of OUT_LISTs of its predecessors.
Thus if the address descriptors for a pseudor

being propagated along two incoming edges at
a vertex in the CFG are{I1, Z1} and{I2, Z2},
the resulting address descriptor for pseudor is
obtained as,

{I, Z1 union Z2} if I1=I2=I .
{ANY, (all)} if I1 6= I2.

For example, as shown in Figure 1, consider a
basic blockBB3 having two predecessorsBB1

andBB2. If the address descriptors of a pseudo
r101 in the OUT_LISTsof BB1 and BB2 are
{I0, (8)} and{I0, (24)}, the address descriptor
of r101 in the IN_LISTof BB3 will be {I0, (8,
24)}.

Figure 1: Merging of address descriptors

4.3 Building the Fixed alias analysis Informa-
tion

Multiple iterations over the CFG are done till
the address descriptors of all “shared regis-
ters” in a procedure become constant, or in
other words till theOUT_LISTsof all basic
blocks become constant. Each iteration com-
putes theOUT_LISTof each basic block us-
ing the IN_LIST of the basic block as input.
The OUT_LISTcomputed during the iteration
is unioned (as described in subsection 4.2) with
the savedOUT_LISTof the previous iteration
and the result is saved as the currentOUT_LIST
of the basic block. Another iteration over
CFG is required only if any of theOUT_LISTs
change in the current iteration. The required
information for performing alias analysis is
built once we have reached this stage where all
the OUT_LISTsare fixed. This way we have
gathered for all “shared pseudos”, all the pos-
sible results of operations performed on them
by all execution paths.

76 • GCC Developers Summit

We can describe this in the following pseu-
docode,

do {
out_lists_changed = false;
for each BB in the CFG {

prepare an IN_LIST of BB
by doing union of the
OUT_LISTS of
predecessors of BB;

evaluate OUT_LIST_OF_THIS_PASS
using IN_LIST as input;

NEW_OUT_LIST = do union of
OUT_LIST_OF_THIS_PASS
with the SAVED_OUT_LIST.

list_changed = false;
if (NEW_OUT_LIST is not

equal to SAVED_OUT_LIST) {
SAVED_OUT_LIST = NEW_OUT_LIST;
list_changed = true;

}
out_lists_changed =

out_lists_changed | list_changed;
}

} while (out_lists_changed);

To reduce the number of iterations required
over CFG, we identify loop counters such asr

= r + const and populate their address de-
scriptor in a single pass itself. For example,
given a loop counterr in RTL below,

I1: r = 0
...
I7: r = r + 2

The address descriptor of pseudor is cal-
culated in the first pass itself as{NONE,
(0,2,4,6,8,10,12,14)}(for mod-16 alias analy-
sis).

5 Reasoning about alias relation-
ship

Once the required alias information is gen-
erated, the aliasing relationship between two

computed pointers can be determined in fol-
lowing steps.

Step 1. Given two computed pointersr1 and
r2 , we retrieve the program pointsp1 andp2
wherer1 andr2 are dereferenced.

To retrieve the program points for these point-
ers a hash table is built at the start of the al-
gorithm. For every pointer, this hash table
records the instruction in which the pointer is
contained. For a pointer, the instruction re-
treived from the hash table gives the preceding
instruction of the program point.

Step 2. Find the basic blocks for the program
pointsp1andp2; say they areBB1 andBB2.

Step 3. Compute theIN_LISTsof BB1 and
BB2 by doing the union of savedOUT_LISTs
of their predecessors.

Step 4.Recompute the address descriptors{I1,
(Z1)} and{I2, (Z2)} of the two pointersr1 and
r2 at the desired program pointsp1 andp2 by
traversing within their basic blocksBB1 and
BB2.

Step 5. Address descriptors{I1, (Z1)} at in-
struction pointp1, and{I2, (Z2)} at instruction
point p2 denote disjoint addresses if both the
following conditions are satisfied.

i) I1 = I2 = ’I’ .

ii) Z1 intersection Z2 = NULL

Condition (i) ensures that both the program
pointsp1 andp2 see the same value computed
by instructionI. Condition (ii) then ensures that
relative to this value, the pointerr1 referred at
p1 is disjoint from the pointerr2 referred at
p2.

GCC Developers Summit 2003 • 77

6 Example

Let us describe the entire algorithm with the
help of the following example function in C,

void foo (double * a)
{

int i, j;

i = 0;
j = 2;

if (! a)
j = j + 4;

a[i] = a[i + j];
}

Figure 2 shows the CFG and RTL generated for
SH4 alongwith the address descriptors com-
puted by the algorithm. To determine the alias-
ing relationship between the computed point-
ers r165 and r162 in basic block BB2, their
address descriptors are recomputed using the
IN_LISTof BB2. Applying the rules of Sec-
tion 3 on BB2 gives the recomputed address
descriptors ofr162 andr165 as{I1, (0)} and
{I1, (16)}. These address descriptors do not
alias since they follow the rules described in
step5 of Section 5.

7 Drawbacks

The algorithm is not capable of keeping track
of contents of memory. Information about a
register is lost if it is saved to memory and
then subsequently restored at a later point.
Also if a register can have different defining
instructions at different predecessors of a CFG
vertex, the information is lost while merging
them using theunionoperator.

The precision of results obtained also depends
on the value ofk. The algorithm can only

Figure 2: address descriptor based alias analy-
sis

distinguish between the displacements in the
range{0 < δ < k}. For example, ifk=32
then the algorithm will not be able to differenti-
ate between the computed pointers for&in[9]

and &in[13] . Increasing the value ofk im-
proves the precision of results obtained but
may also increase the execution time of algo-
rithm.

8 Experimentation and Results

We experimented by implementing this algo-
rithm in GCC. Since the compiler was running
on an i686 machine, we chose the value of k as
32. We built the cross compiler for ia64-elf tar-
get and obtained the data about generated code

78 • GCC Developers Summit

size. Table 1 given below compares the gener-
ated code size for ia64-elf for some of stress-
1.17 files with -O2 option. We also observed
that our implementation increases the compila-
tion time for programs by about 20%.

file
name

size of
.text
section
(before)

size of
.text
section
(after

%code
size
decrease

dct64.o 9808 9568 2.44
lpc.o 36824 33256 9.68
mdct.o 5936 5488 7.54
polyobj.o 14840 14360 3.23
layer3.o 54760 54344 0.75
tif_lzw.o 24320 24256 0.32
quadrics.o22000 21840 0.73

Table 1: code size comparison for ia64-elf

9 Acknowledgments

We would like to thank people at
gcc@gcc.gnu.org for their invaluable support.
We specially thank to Richard Henderson,
Diego Novillo, Saumya K. Debray, Daniel
Berlin and David Edelsohn for their ideas.

References

[Debray98] S. Debray, R. Muth, and M. Weip-
pert, Alias Analysis of Executable Code,
In The 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Program-
ming Languages, pages 12-24, Orlando,
Florida (1998)

[Muchnick] Steven S. Muchnick,Advanced
Compiler Design and Implementation,
Morgan Kaufmann Inc., Reading, page
303, USA (1997)

[GCC] GCC source code,http://gcc.
gnu.org

