
A Maintenance Programmer’s View of GCC

Zachary Weinberg
CodeSourcery, LLC

zack@codesourcery.com

Abstract

GCC is considered more difficult to modify or
debug than other programs of similar size. This
paper will investigate the reasons for this diffi-
culty, from the point of view of a maintenance
programmer: someone producing a small patch
to fix a bug or implement a feature, without
causing new problems for unrelated use. Be-
cause the development tree’s head is expected
to be functional at all times, such incremental
changes are normal—even regular contributors
are in the maintenance programmer’s shoes.

1 Introduction

Who is a maintenance programmer? Anyone
working to implement a specific feature, or fix
a specific bug, without introducing new prob-
lems at the same time. Anyone with limited
time to investigate the situation and become fa-
miliar with the code.

Maintenance programmers are faced with both
technical and procedural hurdles. GCC has a
complex task to accomplish, but even so GCC
is far more complicated than it needs to be,
which makes it harder to modify the code than
it should be. Further, once one does success-
fully make a change, it is hard to get it accepted
to the official source tree. The procedural re-
quirements are stringent for good reason, but
still discourage people from contributing, and
cause patches that were 90% correct to be re-
jected.

GCC’s development process requires everyone
to work incrementally and make minimally in-
vasive changes. Although not a formal require-
ment, it is a consequence of the no-regressions
policy for check-ins, coupled with the extreme
complexity of the source code. A simple
change might turn out to have ramifications ev-
erywhere. A few individuals know the com-
piler inside out; they can pull off hugely inva-
sive changes without breaking anything. Most
of us are not that good, so we must take small
steps, testing carefully as we go. Furthermore,
even regular contributors often have difficulty
getting their patches approved. And, of course,
we all have lots of demands on our attention, so
there is never enough time to work out the per-
fect design. Therefore, making life easier for a
maintenance programmer who might have just
one patch to contribute will make regular con-
tributors’ lives easier as well.

2 Technical Hurdles

Let’s take a moment and look at the GCC
source tree from 10,000 feet up. Table 1 breaks
down the code by category. There are about 1.6
million lines in total, ignoring comments. Just
over half of this is C; there are also substantial
bodies of Ada, Java, and C++. Machine de-
scription files are written in a domain-specific,
Lisp-like language, which accounts for ten per-
cent of the total.

By nature, any program of this size is going
to be nontrivial to work with. Furthermore, a



258 • GCC Developers Summit

By category By language
Core compiler 250,000 C 861,000 53%
Back ends 410,000 Ada 298,000 18%

biggest 40,000 (rs6000) MD 170,000 10%
smallest 2,200 (fr30) Java 127,000 8%
median 6,500 (v850) C++ 105,000 6%

Front ends 480,000 Other 78,000 5%
biggest 221,000 (ada)
smallest 2,500 (treelang)
median 59,000 (java)

Runtime libraries 458,000
biggest 274,000 (java)
smallest 8,200 (objc)
median 11,000 (f77)

Total 1,639,000
Physical source line counts, generated using SLOCCount [1]. MD = machine description.

Table 1: GCC 3.3 source code breakdown

compiler is necessarily more complicated than
the average program of similar size, since it
contains many algorithms and techniques that
require arcane theoretical knowledge to under-
stand. SSA (static single assignment) form, for
instance, takes a good chapter of exposition to
explain. GCC is necessarily more complicated
than the average compiler, since it supports so
many input languages and target architectures
in its official distribution alone. Many other
compilers support only one or two targets.

Even so, GCC’s code could be much simpler
and easier to maintain. This can be put down to
three primary causes: incomplete transitions,
functional duplication, and inadequate modu-
larity.

2.1 Incomplete transitions

Incomplete transitions occur whenever anyone
invents a new, better way to do something, but
does not update every last bit of code that used
to do it the old way. They might run out of
time; they might not have the necessary ex-
pertise; they might just not be able to find it.

Whatever the reason, an old API cannot be re-
moved from the compiler until there are no re-
maining uses. An incomplete transition thus
means that for an extended period there are two
or more ways to do something. One is pre-
ferred, but it may not be obvious which. Some-
one writing new code that needs to do whatever
it is, might pick the obsolete technique, further
delaying the day when the old API can be re-
moved.

Incomplete transitions are most common in the
API for writing architecture back ends. For ex-
ample, there are two ways to write a machine-
specific peephole optimization. Both do pat-
tern matching on the stream of RTL insns con-
stituting the intermediate representation of a
function. The old way (define_peephole )
overrides the normal mechanism for writing
out assembly language, substituting its own
text. No further optimization can happen to the
result. The new way (define_peephole2 )
replaces the matched insns with new ones,
which can then be optimized further. For in-
stance, the second instruction scheduling pass
sees the result of new peephole optimizations.



GCC Developers Summit 2003 • 259

The new construct was created in 1999, but of
the 37 back ends present in GCC 3.3, only six
use it exclusively. Fifteen still usedefine_
peephole exclusively, and six more have
both. (Ten have no peepholes at all.) Now,
peephole optimization is a relatively minor part
of a back end. The majority of the archi-
tectures that use either variety define fewer
than ten. In terms of code generation, using
define_peephole2 is most beneficial for
architectures that use instruction scheduling.
The maintainers of any given architecture have
no real incentive to update it to the newer style.
>From a maintenance programmer’s point of
view, this situation is very bad. The presence
of two functionally-equivalent mechanisms for
the same basic operation adds complexity and
increases the likelihood that something will be
broken accidentally.

Peephole optimizations of either variety
rarely cause trouble, because the machine-
independent code that applies them is small
and robust, so it is unlikely to be broken by
an unrelated change. However, consider the
cc0 mechanism, which is the older of two
possible ways to represent condition codes in
a machine description. There are 805 lines
of code in the core compiler that are used
only by cc0 architectures, and 79 lines of
code used only by non-cc0 architectures,
scattered through 28 files in 121 individual
#if blocks. This is not a lot of code compared
to the total size of the compiler, but it is all
in critical places, affecting most of the major
optimization passes. Testing on a non-cc0
architecture will not reveal brokenness in the
code used exclusively bycc0 architectures, or
vice versa. The only widely-used architecture
that still uses this mechanism1 is the m68k, and
m68k environments are all slow enough that
no one wants to test them. It is not surprising,

1If (cc0) appears only indefine_expand forms
that generate no RTL, that machine description does not
use thecc0 mechanism.

then, that allcc0 architectures were broken
for some time last year.

When someone discovers that a target they
wanted to test is broken for some other rea-
son, their usual response is not to bother test-
ing that target anymore. This of course means
that nothing stops the target from accumulat-
ing faults. By the time someone comes along
who wants it to work, it may be easier to start
from scratch than to fix all the faults. This is
especially true for OS-specific configurations,
which break more easily than architectures and
require relatively little effort to rewrite from
scratch, especially if they are similar enough to
the generic Unix that GCC takes for its default.

Recent experience [2] suggests that even CPU
ports can age to the point where starting over
might be easier. The MIPS back end had
not been kept up to date for several years;
it was overhauled starting in late 2002, with
most of the work done by Richard Sandiford
and Eric Christopher. This took six months
start to finish, with approximately eight thou-
sand lines of code changed, which is compa-
rable to the effort required to write a minimal
back end from scratch. Of course, the MIPS
back end is not minimal; starting from scratch
might have meant abandoning many of the sub-
architectures and operating systems that it cur-
rently supports.

A primary driver for the overhaul was the de-
sire to avoid use of the macro instructions pro-
vided by the MIPS assembler. This can also be
seen as a transition, but not of an API; rather,
the preferred style for machine descriptions has
changed. When the MIPS port was originally
written, the macro instructions were a conve-
nient way to simplify the compiler’s job. Now
they are seen as a hindrance to quality code
generation, requiring awkward workarounds in
the compiler.



260 • GCC Developers Summit

2.2 Functional duplication

Functional duplication occurs when two com-
ponents both implement some capability that
could be shared. A long-standing case exists in
the RTL simplification code. When Jeff Law
createdsimplify-rtx.c in 1999, he in-
cluded a comment which gives the flavor of the
problem:

Right now GCC has three (yes, three)
major bodies of RTL simplification
code that need to be unified.

1. fold_rtx in cse.c . This code
uses various CSE specific infor-
mation to aid in RTL simplifica-
tion.

2. combine_simplify_rtx in
combine.c . Similar to fold_
rtx , except that it uses combine
specific information to aid in RTL
simplification.

3. The routines in this file.

. . . It’s totally silly that when we add
a simplification that it needs to be
added to 4 places (3 for RTL simpli-
fication and 1 for tree simplification).

It is worth pointing out that at 8,790 lines of
code,combine.c is the second longest file
in the core compiler. Much of this bulk is
combine_simplify_rtx and its subrou-
tines.

Functional duplication is less likely to cause
breakage than incomplete transitions. Contin-
uing with this example, all the RTL simplifiers
are exercised by the normal testing procedure,
so it is unlikely that one of them will remain
broken for an extended period. However, the
answer to the question “Why did this bad opti-
mization happen, when I can see that the code

in file A is correct?” may well be “because
that transformation is duplicated in file B, only
with bugs.” Furthermore, this duplication in-
vites people to update one set of simplifiers and
not another, which means that whether or not
an RTL construct gets simplified depends on
which optimizer pass encounters it. And, of
course, it causes the compiler’s runtime image
to be bigger than necessary, which contributes
to compiler-speed problems by wasting space
in the instruction cache.

Law’s comment hints at a deeper cause of func-
tional duplication, namely, that we have two
different intermediate representations (trees
and RTL). In the past, almost all of the com-
piler dealt exclusively with RTL so this was
not a cause for concern. We now do some op-
timizations at the tree level, and lots more are
planned. It would be useful to share code be-
tween tree optimizers and RTL optimizers as
much as possible. This has already been done
for the control-flow graph, on thetree-ssa
branch. If the data structure holding an expres-
sion to be simplified could be made opaque
to the code computing the simplification, the
same could be done for the algebraic simplifi-
cation library.

Functional duplication also occurs when a
module exists that logically should be respon-
sible for some task, but is not presently capa-
ble of it. Instead of fixing the existing mod-
ule so that it is capable, often people choose
to build something new from scratch, which
is easier in the short term. A good example
here is the language-independent tree-to-RTL
converter (stmt.c , expr.c , etc.) It is one
of the oldest parts of the compiler. It still re-
flects design decisions made when C was the
only supported language, and the tree represen-
tation was used for only one source statement
at a time. When front ends started being rewrit-
ten for whole-function tree representations, no
one wanted to update the converter to match.



GCC Developers Summit 2003 • 261

Instead, each front end that now uses whole-
function trees contains duplicated tree-walking
logic, so that it can continue to feed the tree-to-
RTL converter one statement at a time.

This duplication not only causes the problems
described above, but also hinders conversion
of other front ends to whole-function process-
ing, because they would have to duplicate this
code again. Nor is there agreement on the
form of whole-function trees. The maintainers
of the C language family developed one such
representation; independently, the Java main-
tainers developed another, incompatible rep-
resentation. This prevented the tree inliner
developed for C from being used for Java.
Rather than copy the file over, it has been heav-
ily #ifdef ed, which may or may not be an
improvement. (The people working on the
tree-ssa branch have a major goal of devel-
oping a proper, language-independent, whole-
function tree representation.)

When a transition is finally completed, or du-
plicate code finally collapsed together, it may
still leave vestiges behind. The garbage col-
lector was completed in late 1999, but most of
the obstack allocation scheme that it obsoleted
stuck around until late 2000. We are still find-
ing traces of it now, in the second quarter of
2003.

Everyone likes deleting code, so why do ves-
tiges stick around? People usually find vesti-
gial code when working on something else. To
delete it, they would need to stop whatever they
were doing at the time, construct a fresh CVS
checkout, delete the vestige, do a full test cycle
to make sure nothing broke, then submit the
patch and wait for approval. All this time, they
would not be working on whatever they origi-
nally planned to work on. We will come back
to time consumed by procedures later.

Another reason is, it is hard to distinguish code
that is left over from code that was never com-

pleted, or that was written in anticipation of a
use that never materialized. One can usually
figure it out from mailing list traffic or CVS
logs, but only with practice. However, no mat-
ter what its intended function is or was, code
that is not being used now should be deleted;
even if a future use was planned, it is likely
never to happen.2 If someone does have a use
for a body of unused code in the immediate fu-
ture, they will undoubtedly say so when its re-
moval is proposed.

2.3 Inadequate modularity

Unfortunately, much code that has no appar-
ent function will cause something to break if
it is taken out. This is the problem of inad-
equate modularity. GCC is composed of a lot
of logical modules, but the boundaries between
these modules are ill-defined and poorly docu-
mented. Any given behavior has a good chance
of being required by some other module. For
instance, the C compiler reads the first line
of its input much earlier than would be natu-
ral. This is because some of the debugging-
information generators want to know what the
name of the primary source file is, when their
initialization hook runs. These two things may
sound like they have nothing to do with each
other. But if the C compiler is handed already-
preprocessed input, the primary source file is
not the file on the command line. It is the file
named by the# marker on the first line of the
file on the command line. Therefore, in order
to initialize the debug-info generator properly,
that first line has to be read. [3]

The interface between language front ends and
the core compiler is especially prone to this
sort of problem. This stems mostly from
the ad-hoc way in which the front-end in-
terface has evolved. It has never been doc-
umented, yet there are seven different lan-

2This is the YAGNI (You Aren’t Gonna Need It)
principle.



262 • GCC Developers Summit

guages using it in the current source tree, plus
a few more maintained separately. As lan-
guages were added, their developers gener-
ally tweaked the tree specification around as
they saw fit, without much coordination. It
was originally intended to cover the needs
of GNU extended C only, and still reflects
that in some aspects. For instance, the Java
front end has interesting kludges in it to
cope with the allegedly language-independent
builtins.def , which is full of C-specific
notions likeva_list . Or, consider the way
each back end specifies its platform’s funda-
mental data types: the*_TYPE and*_TYPE_
SIZE macros. These macros map directly
onto the fundamental data types of C; if this
is a poor match to the language being imple-
mented, one is in trouble. To be fair, most mod-
ern platforms define their most basic ABI in a
similar fashion, so one might be in trouble any-
way.

The interface between the core compiler and
a target-specific back end is also very fuzzy.
The most basic parts are in the machine de-
scription, which is pretty well defined and doc-
umented, but there are lots of little details han-
dled by defining macros, which are then visi-
ble to the entire compiler, including the front
ends. A naive count finds close to five thou-
sand different macro names defined by header
files in GCC 3.3’sconfig directory. Some of
these are internal to one architecture, and some
of the headers are not used during the compiler
build itself, but there is no easy way to tell them
apart. Since the macros are visible to every part
of the compiler, every part of the compiler can
use them, and does. A target must define al-
most all of the macros used by the core com-
piler, which leads to massive duplication.

There is ongoing work to convert all of these
macros to data members or function pointers in
a global object calledtargetm , which forces
a more structured approach. The people do-

ing the conversion are taking the opportunity to
clean up the interfaces and create sensible de-
faults. Thus there is hope that this problem will
dwindle as time goes by. However, the conver-
sion project could drag on for years, becoming
another of the incomplete transitions that were
discussed above. GCC 3.3 has about seventy
members of thetargetm structure; a com-
plete job will require about five hundred, but
most targets will not need to override the de-
faults for most of them.

The core compilers is not free of modular-
ity problems, either. The RTL optimizers are
structured as a pipeline of passes, and what
each pass does to the code is reflected in the
insn chain. On its face that is a modular de-
sign. However, there are undocumented lim-
itations to what each optimization pass can
handle, which impose constraints on earlier
passes. For instance, the first local CSE pass is
a waste of time at this point, because the GCSE
pass is more powerful. . . except that GCSE is
not prepared to deal with certain high-level
constructs that local CSE eliminates, such as
addressof . This is doubly unfortunate, be-
cause GCSE could do a better job than CSE of
handling the high level RTL, if it only knew
how. [4]

2.4 Style

We should not neglect aesthetic concerns.
Anything that makes code harder to under-
stand, hides bugs from developers. Anything
that makes code harder to restructure, hin-
ders developers from resolving the more se-
rious problems discussed above. GCC’s pri-
mary failing in this domain is by virtue of sheer
size. Particularly in the older parts of the com-
piler, it is common to find a single function so
large and convoluted that a human reader can-
not remember all its details. Some may have
grown by accretion:expand_expr for ex-
ample may have been much smaller when there



GCC Developers Summit 2003 • 263

were fewer kinds of tree to be considered, or
when fewer optimizations were attempted at
that time. Others are perhaps stylistically in-
spired by the “Pastel” compiler that predated
GCC 1, which was in a language that sup-
ported nested functions; very large outer func-
tions would have been more natural in that lan-
guage. [5] These functions often maintain state
in local variables of an outer block; perform-
ing the “obvious” refactor of pulling the inner
blocks out to their own functions can cause
mysterious failures, since the outer variables
are no longer visible.

Gigantic controlling expressions inif state-
ments are also common. Here the problem is
notational. Such expressions often turn out to
be performing pattern matching on RTL, in the
most straightforward fashion possible in C. If it
were possible to write these expressions in the
language used for machine descriptions they
would be far more readable.

The macros, idioms, and style constraints
which permitted us to build GCC with com-
pilers that predate the 1990 C standard should
also be seen as an issue of aesthetics. We al-
ready enjoy the benefits of most of standard C’s
features, such as prototyped functions. How-
ever, eliminating all these idioms (as we can
now do) will make it easier to read the code,
and this is not a trivial thing. Just the removal
of the macros that cloak the differences be-
tween traditional and standard C with regard to
variable-length argument lists should be a great
step forward.

3 Procedural hurdles

Once again, let’s take a moment and look from
10,000 feet up, this time at the process for
contributing a patch to GCC. For this purpose
we shall postulate a contributor named Alice,
who has a copyright assignment on file, but has

not yet been granted write-after-approval priv-
ileges, and proposes to fix a bug which appears
in the GNATS database.

The first step is to get a copy of the develop-
ment tree (i.e. CVS HEAD). Then the bug
must be reproduced and fixed. The potential
difficulties with that were covered above.

Next, Alice must carry out a full bootstrap and
test cycle. This is not very hard once you know
how. Typical first-time gotchas include con-
figuring in the wrong place or with the wrong
sort of pathname, and tripping over a Make-
file bug; having the wrong version of GNAT
installed, so the Ada front end cannot be built;3

having the wrong version of autoconf installed,
so the configure scripts are broken; and finally,
having a broken DejaGNU installation, so the
test suite reports thousands of spurious failures.
Once all these issues are resolved, Alice gets
to sit back and wait for at least two hours. De-
pending on how slow her computer is, it might
be more like a full day. There is also the possi-
bility that the test cycle will fail because some-
one else checked in a patch which broke the
compiler.

Assuming that went fine, the patch is now to be
submitted for review. Alice may be ignored for
weeks on end, depending on how busy the of-
ficial maintainer of that component is, whether
she has submitted patches before, and how im-
portant the bug seems to be. Once someone
does get around to responding, there is a good
chance that the patch will be torn to shreds and
sent back for revision, repeatedly. Alice might
get frustrated and give up. If she persists, the
patch will eventually get approved. Now (since
she lacks write privileges) the person who ap-
proved it is responsible for committing it and
closing the entry in the GNATS database. If
Alice keeps submitting good patches, she will

3This is not currently a requirement, but Alice is be-
ing thorough.



264 • GCC Developers Summit

be granted write-after-approval privilege. She
can then do these last steps herself.

It is not terribly useful to speculate about the
ultimate causes of the procedural hurdles that
can be seen in this description. Instead, we will
categorize them by nature, as slow or tedious
tasks; problems coping with tools; and human
error.

3.1 Slow or tedious tasks

One of the most important procedural hurdles
is the sheer amount of time it takes to develop
a patch and get it committed to CVS. Alice
had to wait for review, but let’s defer that is-
sue for later. Even people with global write
privileges are expected to carry out a full boot-
strap and test cycle on at least one target, in-
cluding all languages, before installation. This
takes two hours on a 2GHz P4 with 512MB
of real RAM, running Linux 2.4. A slower
CPU, less memory, or a less efficient operat-
ing system will all cause it to be dramatically
slower. The author is personally aware of an
environment in active use which is centered
around UltraSPARC 5 machines running So-
laris 2.5.1. On this platform a cross-compiler
build, C and C++ only, takes six hours; an all-
language bootstrap would take even longer.

On a sufficiently efficient operating system,
the bottleneck for a bootstrap is CPU time ex-
pended by the compiler itself. This parallelizes
well; on a multiprocessor system,make -j N
will reliably divide the time for bootstrap by
N , up to some limit. Experimentation is usu-
ally required to find the best value to use. How-
ever, using parallel make can expose missing-
dependency bugs in the Makefile. Since the
header dependency lists are maintained by
hand, it is easy for these bugs to creep in. Some
makefiles have not been written with parallel
make in mind; for instance, at the time of writ-
ing, make gnatlib_and_tools does not

work at all in parallel mode. Also, DejaGNU
has no ability to run tests in parallel, so the en-
tire test suite must be run serially.

Bootstrap time accounts for the majority of
time spent waiting for a computer to do some-
thing. However, CVS operations should not
be neglected in this regard. On a higher-end
ADSL connection (1.5Mbps down/384Kbps
up) acvs update on the mainline takes fif-
teen seconds—if it has nothing to do, and there
are no modified files. If it has updates to down-
load, or potentially modified files that have to
be checked (by sending the full text of the file
to the server for comparison) it can take sub-
stantially longer. Branches are also slower; on
the 3.3 release branch, an update with nothing
to do and no modified files takes a minute and
a half. Recursive commit and diff operations
take a similar amount of time.

Once a patch is fully tested, the contribu-
tor must write an explanation of the changes
made, for thegcc-patches mailing list,
and a ChangeLog entry. Working out long
ChangeLog entries can be tedious. To some ex-
tent it can be automated; for example, a simple
perl script can extract the names of all the files
and functions touched by a patch and format
them in ChangeLog style, leaving one to write
the “what was done to each” comment, but that
part can still be tedious for a long change. This
text has to be copied from the message into all
of the relevant ChangeLog files, and into the
CVS commit log; it is easy to make a mistake
along the way.

All of this places a lower bound on the time it
takes to develop or revise a patch. Even the
most trivial changes have to go through this
process, because theycouldhave broken some-
thing. The time it took to design and imple-
ment the change itself is neglected here. That
time cannot be said to have been wasted, except
insofar as it may have been harder than neces-



GCC Developers Summit 2003 • 265

sary to make a change, which was discussed
above. Of course, the lower bound is only met
if the patch works the first time. If the patch
causes a regression in some part of the testsuite
that must be fixed, then the bootstrap must be
repeated.

And the lower bound is only met if the contrib-
utor can commit his or her own patches without
approval. Otherwise, there will be some time
spent waiting for the patch to be reviewed. It
is not uncommon to get no response at all to a
patch, or even to repeated inquiries. This is not
because anyone hates the patch or its contrib-
utor. Most often patches are ignored because
everyone with the authority and the experience
to review the patch is just too busy that week.
A lot of GCC’s code is listed as maintained
by one of the people with global write priv-
ileges, or else has no listed maintainer at all.
Either way, the set of people who can approve
a change to that component is limited to those
with global privileges, all of whom are busy. A
related problem is that people who do not have
authority to approve patches often refrain from
commenting on them, even though their opin-
ions are still valued.4

Another contributing factor is that some
patches are too hard to review. This happens
when a patch tries to do too much at once, or
when the person who wrote it did not explain
its motivation well enough. What seems sim-
ple and obvious for the person who was just
immersed in the relevant area, may not be ob-
vious at all to anyone else. Splitting patches
into minimal changes and explaining them well
are both learned skills. At present, we expect
people to pick them up by osmosis, but not ev-
eryone can learn like that.

Sometimes a patch is not quite right, and some-
times a patch addresses an issue that clearly
needs addressing but does not do it in the way

4This is a variant of the “bikeshed effect.” [7]

that the reviewers would like. When this hap-
pens, the reviewers will send the patch back
for revisions. Sometimes they send it back so
many times that the contributor gives up hope
that it will ever be accepted. Then the patch,
which might not have been perfect, but was an
improvement over the status quo, gets aban-
doned.

It does happen that patches are ignored inten-
tionally, in order to reject them without hav-
ing to offer feedback. In most cases, this hap-
pens because everyone who could review the
patch feels that they cannot have a productive
discussion with the person who submitted it.
That might be the submitter’s fault—there is
just no working with some people—but it is
much more likely to be a failure of the com-
munity. Fortunately this is rare.

3.2 Coping with tools

The tools which give people the most trouble
on a day-to-day basis are DejaGNU and the
autoconf family. To begin with the most
straightforward issue, the GCC testsuite al-
ways produces a handful of “unexpected fail-
ure” (FAIL ) results when run. These failures
are not unexpected in the standard sense of
the word. They do not change often. People
who build the compiler on a daily basis and/or
follow the gcc-testresults mailing list
will know which unexpected failures are cur-
rently normal for a given environment. They
are only unexpected in the sense that DejaGNU
has not been advised to turn them into “ex-
pected failure” (XFAIL ) results. Regular con-
tributors are used to this. However, someone
who does not build the compiler on a daily ba-
sis, or follow the test-results list, will not know
whether a given unexpected failure is normal
or not. If they are running the testsuite to make
sure the compiler works, not having made any
changes, they may believe there is something
wrong with their environment, or a bug that is



266 • GCC Developers Summit

not already known. If they have made changes,
they will not know whether or not their changes
caused the unexpected failures. The only way
they can be sure, in this latter case, is to do
two complete test cycles from the same base-
line code, one without the desired patch and
one with. This doubles both the testing time
and the disk space requirements, since it is nec-
essary to keep both trees around for compari-
son.

Failures are not marked expected mainly be-
cause it is too awkward. At the least, it in-
volves adding special tags to files in the test-
suite. For test cases in thec-torture frame-
work it involves creating special files contain-
ing snippets of Tcl code. What the tags or snip-
pets should be is mostly undocumented. Peo-
ple usually do it by copy-and-paste from an-
other test case. Further, DejaGNU’s ability to
describe the situations under which a failure is
expected is quite limited. For instance, there
is no way to specify that a test will fail if the
necessary locale definitions are not installed, or
that a test may sometimes (depending on sys-
tem load) take so long to run that it times out.

There is also a general assumption that ex-
pected test failures are not going to be fixed
anytime soon, whereas unexpected failures
have someone looking at them right now. This
discourages people from marking tests ex-
pected to fail, because they might be fixed soon
and then the marking would have to be undone.
Yet tests continue to fail “unexpectedly” for
months on end.

If one does not have access to a hosted sys-
tem for an architecture, one can still test some
patches that affect it by building a cross com-
piler to a simulator target. The GDB source
tree includes simulators for many popular ar-
chitectures. It is easy to construct a com-
bined tree including gcc, binutils, the simu-
lator, and a minimal C runtime, in which to

test the cross compiler. However, DejaGNU
is prone to glitches when used with a simulator
target. One common problem is complete fail-
ure to findstdio.h or crt1.o . One sus-
pected cause of this is invokingconfigure
by relative instead of absolute pathname.

Autoconf, automake, and libtool have all un-
dergone backward-incompatible revisions in
the past few years. One must have exactly the
right version of each installed in order to re-
generate GCC’sconfigure scripts or Make-
files. For instance, all of the configure scripts
presently require autoconf 2.13, which is the
oldest version in common use. It is old enough
that it is left out of the default installation of
some newer operating systems, such as Red
Hat 8.0. Use of a newer version might cause
visible errors when the script is regenerated or
run, or more insidiously it might just cause
a small handful of features to be misidenti-
fied. Since GCC’s Makefiles will automat-
ically attempt to regenerate configure scripts
that are older than the parentconfigure.
in , a user may discover that the first build
from a fresh working copy succeeds, but all
subsequent builds mysteriously fail. Using the
contrib/gcc_update script can prevent
this problem, but it will not help someone who
has modified the configure script.

It is harder to get in trouble just by having the
wrong version of automake or libtool installed,
because these tools are only run on specific
user request. But one may still be stuck with
no way to regenerate files under their control.
The author has resorted to updating a generated
Makefile.in by hand on several occasions.

3.3 Human error

From time to time someone checks in a patch
which renders the tree unbuildable. Normally
it worked just fine for the person who tested
it, but breaks in a different environment. The



GCC Developers Summit 2003 • 267

problem may be target-specific, or involve only
a language which is not supported by the
tester’s platform. Or perhaps the patch that was
tested is different from what checked in, some-
how. Whatever the cause, when this happens,
everyone who did acvs update just before
starting their bootstrap cycle gets to wonder
whether it was their changes that broke the tree.

A few years ago, a CVS checkout taken at a
random point in time had a 34% chance of be-
ing unbuildable. [6] This is directly attributable
to the two-year lapse between the 2.95.0 and
3.0.0 releases. During that time, latent bugs
were continually introduced, until any given
checkin had a good chance of triggering one.
There was no concerted effort to flush these
bugs out until the situation became dire enough
to hinder day-to-day work. Since the institu-
tion of the three-stage development process, in
mid-2001, unbuildable CVS checkouts happen
only rarely, since the tree is regularly stabi-
lized.

The automated testers operated by Geoff Keat-
ing, Phil Edwards, and others have also been
instrumental in reducing the incidence of un-
buildable source trees. A failure report from
one of these testers can be trusted to indicate a
genuine problem—no risk of a quirky environ-
ment causing issues—and conveniently lists all
of the changes that could have been the proxi-
mate cause. They also make people aware of
bugs immediately, rather than several weeks
down the road when they no longer remember
the details of their changes. Unfortunately, at
present only a few platforms are monitored in
this fashion.

Nowadays, build failures are usually addressed
immediately, but testsuite regressions tend to
linger for weeks on end. The author believes
this is largely a matter of perception. Test
cases are often contrived rather than reflective
of real code, and the failure may seem unim-

portant. For instance, at the time of writing,
half of the unexpected failures in the C testsuite
for GCC 3.3 were caused by incorrect warn-
ing messages. Nonetheless, a general habit of
ignoring persistent unexpected failures is not
good practice.

4 Conclusion

Contributors to GCC face both technical and
procedural challenges. These can be narrowed
down to a short list of causes: incomplete tran-
sitions, functional duplication, and inadequate
modularity; slow or tedious tasks, coping with
tools, and human errors. Some of these prob-
lems are easy to address immediately, while
others will require long-term, concerted effort.
This paper limits itself to discussion of the
problems. However, we are confident that so-
lutions can be found.

5 Acknowledgements

This paper is largely based on my personal
experience fixing bugs in older versions of
GCC for a CodeSourcery client. I am also in-
debted to Neil Booth, Eric Christopher, and
Richard Henderson for sharing their experi-
ences. Michael Ellsworth, Kristen Hrycyk,
David Johnson, Mark Mitchell, Jeffrey Old-
ham, and Nathan Sidwell were kind enough to
comment on drafts.

Inspiration crystallized around the following
IRC exchange between Phil Edwards and my-
self:

<pme> Every time I readSnow Crash, I
wonder what a GCC “room” in the
metaverse would look like.

<zwol> Take an H.R. Giger painting, you
know, with the perverse and in-



268 • GCC Developers Summit

sanely complicated biomechanical
constructs.
Now, instead of being all shiny and
new, make it old and rusty and over-
grown with weeds. Slimy weeds.

A Snow Crash-esque view of GCC’s code
wasn’t really what Phil meant, but I would still
like to thank him for sparking my imagination.

References

[1] David Wheeler, “SLOCCount, a tool for
counting physical Source Lines of
Code.”http://www.dwheeler.
com/sloccount/

[2] Eric Christopher, personal
communication.

[3] Neil Booth, personal communication.

[4] Richard Henderson, personal
communication.

[5] Richard Stallman, “The GNU Project.”
http://www.gnu.org/gnu/
thegnuproject.html

[6] Jeffrey Oldham, “March gcc 3.0 and 3.1
Bootstraps Fail 34% of Time.” Email
message dated 30 March 2001.
http://gcc.gnu.org/ml/gcc/
2001-03/msg01319.html

[7] Poul-Henning Kamp, “A bike shed (any
color will do) on greener grass.” Email
message dated 2 October 1999, as
quoted in the FreeBSD FAQ.
http://www.freebsd.org/doc/
en_US.ISO8859-1/books/faq/
misc.html#BIKESHED-PAINTING


