
Page 1

 NATIONAL COMPUTER

 SECURITY CENTER

 A GUIDE TO

 UNDERSTANDING

 CONFIGURATION MANAGEMENT

 IN TRUSTED SYSTEMS

 NCSC-TG-006-88
 Library No. S-228,590

Page 2

 FOREWORD

This publication, "A Guide to Understanding Configuration
Management in Trusted Systems", is being issued by the National
Computer Security Center (NCSC) under the authority of and in
accordance with Department of Defense (DoD) Directive 5215.1. The
guidelines described in this document provide a set of good
practices related to configuration management in Automated Data�

Processing (ADP) systems employed for processing classified and
other sensitive information. Recommendations for revision to
this guideline are encouraged and will be reviewed biannually by

�

the National Computer Security Center through a formal review
�

process. Address all proposals for revision through appropriate�

channels to:

 National Computer Security Center
 9800 Savage Road
 Fort George G. Meade, MD 20755-6000

 Attention: Chief, Computer Security Technical Guidelines

Patrick R. Gallagher, Jr. 28 March 1988
Director
National Computer Security Center

Page 3

 ACKNOWLEDGEMENTS

Special recognition is extended to James N. Menendez, National
Computer Security Center (NCSC), as project manager and primary
author of this document.

Special acknowledgement is given to Grant Wagner, NCSC, and Dana
Nell Stigdon, NCSC, for their constant help and guidance in the
production of this document. Additionally, Dana Nell Stigdon,�

was responsible for writing the section on the Ratings
Maintenance Program. Acknowledgement is also given to all those
members of the computer security community who contributed their
time and expertise by actively participating in the review of

�

this document.
�

Page 4

 CONTENTS

FOREWORD .. i

ACKNOWLEDGEMENTS .. ii

CONTENTS .. iii

PREFACE ... v

1. PURPOSE ... 1

2. SCOPE ... 1

3. CONTROL OBJECTIVES 2

4. ORGANIZATION .. 3

5. OVERVIEW OF CONFIGURATION MANAGEMENT PRINCIPLES 4

 5.1 PURPOSE OF CONFIGURATION MANAGEMENT 4

6. MEETING THE CRITERIA REQUIREMENTS 5

 6.1 THE B2 CONFIGURATION MANAGEMENT REQUIREMENTS 5
 6.2 THE B3 CONFIGURATION MANAGEMENT REQUIREMENTS 6
 6.3 THE A1 CONFIGURATION MANAGEMENT REQUIREMENTS 6

7. FUNCTIONS OF CONFIGURATION MANAGEMENT 7

 7.1 CONFIGURATION IDENTIFICATION 7
 7.1.1 Configuration Items 8

 7.2 CONFIGURATION CONTROL 10
 7.3 CONFIGURATION STATUS ACCOUNTING 11
 7.4 CONFIGURATION AUDIT 12

8. THE CONFIGURATION MANAGEMENT PLAN 14

9. IMPLEMENTATION METHODS 16

 9.1 THE BASELINE CONCEPT 16
 9.2 CONFIGURATION MANAGEMENT AT MER, INC. 18
 9.3 THE CONFIGURATION CONTROL BOARD 20

10. OTHER TOPICS .. 23

 10.1 TRUSTED DISTRIBUTION 23
 10.2 FUNCTIONAL TESTING 24
 10.3 CONFIGURATION MANAGEMENT TRAINING 24
 10.4 CONFIGURATION MANAGEMENT SUPERVISION 25

11. RATINGS MAINTENANCE PROGRAM 26

Page 5

12. CONFIGURATION MANAGEMENT SUMMARY 27

APPENDIX A: AUTOMATED TOOLS 29

 A.1 UNIX (1) SCCS 29
 A.2 VAX DEC/CMS .. 30

GLOSSARY .. 32

REFERENCES .. 34

Page 6

 PREFACE

Throughout this guideline there will be recommendations made that
are not included in the Trusted Computer System Evaluation
Criteria (TCSEC) as requirements. Any recommendations that are
not in the TCSEC will be prefaced by the word "should," whereas
all requirements will be prefaced by the word "shall." It should
be noted that a TCSEC rating will only be based upon meeting the

�

TCSEC requirements. Recommendations are made in order to provide
additional ways of increasing assurance. It is hoped that this
will help to avoid any confusion.

Page 7

1. PURPOSE

The Trusted Computer System Evaluation Criteria (TCSEC) is the
standard used for evaluating the effectiveness of security
controls built into ADP systems. The TCSEC is divided into four
divisions: D, C, B, and A, ordered in a hierarchical manner with
the highest division, A, being reserved for systems providing the

�

best available level of assurance. Within divisions C through A
�

are a number of subdivisions known as classes, which are also
ordered in a hierarchical manner to represent different levels of
security in these classes.

For TCSEC classes B2 through A1, the TCSEC requires that all
changes to the Trusted Computing Base (TCB) be controlled by
configuration management. Configuration management of a trusted
system consists of identifying, controlling, accounting for, and
auditing all changes made to the TCB during its development,
maintenance, and design. The primary purpose of this guideline
is to provide guidance to developers of trusted systems on what
configuration management is and how it may be implemented in the
development and life-cycle of a trusted system. This guideline
has also been designed to provide guidance to developers of all
systems on the importance of configuration management and how it
may be implemented.

Examples in this document are not to be construed as the only
implementation that will satisfy the TCSEC requirement. The
examples are merely suggestions of appropriate implementations.
The recommendations in this document are also not to be construed
as supplementary requirements to the TCSEC. The TCSEC is the
only metric against which systems are to be evaluated.

This guideline is part of an on-going program to provide helpful
guidance on TCSEC issues and the features they address.

2. SCOPE

An important security feature of TCSEC classes B2 through A1 is
�

that there be configuration management procedures to manage
�

changes to the Trusted Computing Base (TCB) and all of the
documentation and tests affected by these changes. Additionally,
it is recommended that such plans and procedures exist for
systems not being considered for an evaluation or whose target
evaluation class may be less than B2. The assurance provided by
configuration management is beneficial to all systems. This
guideline will discuss configuration management and its features
as they apply to computer systems and products, with specific
attention being given to those that are being built with the
intention of meeting the requirements of the TCSEC, and to those
systems planning to be re-evaluated under the Ratings Maintenance
Program (RAMP) (see Section 11. RAMP).

�

Except in cases where there is a distinction between the
�

Page 8

configuration management of a trusted system and an untrusted
system, the word "system" shall be used as the object of
configuration management, encompassing both the system and the
TCB. It should be noted that the TCSEC only requires the TCB to
be controlled by configuration management, although it is

�

recommended that the entire system be maintained under
configuration management.

3. CONTROL OBJECTIVES

The TCSEC gives the following as the Assurance Control Objective:

 "Systems that are used to process or handle classified or
 other sensitive information must be designed to guarantee
 correct and accurate interpretation of the security policy
 and must not distort the intent of that policy. Assurance
 must be provided that correct implementation and operation
 of the policy exists throughout the system's life-cycle."[1]

Configuration management maintains control of a system throughout
its life-cycle, ensuring that the system in operation is the
correct system, implementing the correct security policy. The
Assurance Control Objective as it relates to configuration
management leads to the following control objective that may be
applied to configuration management:

 "Computer systems that process and store sensitive or
 classified information depend on the hardware and software
 to protect that information. It follows that the hardware
 and software themselves must be protected against
 unauthorized changes that could cause protection mechanisms
 to malfunction or be bypassed completely. [For this
 reason, changes to trusted computer systems, during their
 entire life-cycle, must be carefully considered and
 controlled to ensure that the integrity of the
 protection mechanism is maintained.] Only in this way can
 confidence be provided that the hardware and software
 interpretation of the security policy is maintained
 accurately and without distortion."[1]

4. ORGANIZATION

This document has been written to provide the reader with an
understanding of what configuration management is and how it may�

be implemented in an ADP system.
�

For developers of trusted systems, this document also relates the
�

TCSEC requirements to the configuration management practices that
meet them. This document has been organized to illustrate the�

connection between practices and requirements through the use of
a numbering convention for the TCSEC requirements. The

Page 9

configuration management requirements have been broken down into
19 separate requirements in Section 6 of this document. The
requirement number(s) will be located in parenthesis following
its appropriate discussion, e.g., (Requirements 2, 15), signifies
that the previous discussion dealt with TCSEC requirements 2 and

�

15 as stated in Section 6.

5. OVERVIEW OF CONFIGURATION MANAGEMENT PRINCIPLES

Configuration management consists of four separate tasks:
identification, control, status accounting, and auditing. For
every change that is made to an automated data processing (ADP)
system, the design and requirements of the changed version of the
system should be identified. The control task of configuration
management is performed by subjecting every change to
documentation, hardware, and software/firmware to review and
approval by an authorized authority. Configuration status
accounting is responsible for recording and reporting on the
configuration of the product throughout the change. Finally,
through the process of a configuration audit, the completed

�

change can be verified to be functionally correct, and for
trusted systems, consistent with the security policy of the

�

system. Configuration management is a sound engineering practice
that provides assurance that the system in operation is the

�

system that is supposed to be in use. The assurance control
objective as it relates to configuration management of trusted
systems is to "guarantee that the trusted portion of the system
works only as intended."[1]

Procedures should be established and documented by a
configuration management plan to ensure that configuration
management is performed in a specified manner. Any deviation
from the configuration management plan could contribute to the
failure of the configuration management of a system entirely, as
well as the trust placed in a trusted system.	

5.1 Purpose of Configuration Management

Configuration management exists because changes to an existing
ADP system are inevitable. The purpose of configuration

�

management is to ensure that these changes take place in an�

identifiable and controlled environment and that they do not
adversely affect any properties of the system, or in the case of
trusted systems, do not adversely affect the implementation of

�

the security policy of the TCB. Configuration management
�

provides assurance that additions, deletions, or changes made to�

the TCB do not compromise the trust of the originally evaluated
�

system. It accomplishes this by providing procedures to ensure
that the TCB and all documentation are updated properly.

�

Page 10

6. MEETING THE CRITERIA REQUIREMENTS

This section lists the TCSEC requirements for configuration
management. Each requirement for each class has been listed
separately and numbered. Each number may be referenced to the
requirement discussions that follow in this document. This
section is designed to serve as a quick reference for TCSEC class
requirements.

6.1 The B2 Configuration Management Requirements

Requirement 1 - "During development and maintenance of the TCB, a
configuration management system shall be in place."[1]

Requirement 2 - The configuration management system shall
maintain "control of changes to the descriptive top-level
specification (DTLS)."[1]

Requirement 3 - The configuration management system shall
maintain control of changes to "other design data."[1]

Requirement 4 - The configuration management system shall
maintain control of changes to "implementation documentation"[1]
(e.g., user's manuals, operating procedures).

Requirement 5 - The configuration management system shall
maintain control of changes to the "source code."[1]

Requirement 6 - The configuration management system shall
maintain control of changes to "the running version of the object
code."[1]

Requirement 7 - The configuration management system shall
maintain control of changes to "test fixtures."[1]

Requirement 8 - The configuration management system shall

maintain control of changes to test "documentation."[1]�

Requirement 9 - "The configuration management system shall assure

a consistent mapping among all documentation and code associated
with the current version of the TCB."[1]	

Requirement 10 - The configuration management system shall

provide tools "for generation of a new version of the TCB from�

the source code."[1]
�

Requirement 11 - The configuration management system shall

provide "tools for comparisons of a newly generated TCB version�

with the previous version in order to ascertain that only the	

intended changes have been made in the code that will actually be
used as the new version of the TCB."[1]�

Page 11

6.2 The B3 Configuration Management Requirements

The requirements for configuration management at TCSEC class B3
are the same as the requirements for TCSEC class B2. Although no
additional requirements have been added, the configuration
management system shall change to reflect changes in the design
documentation requirements at class B3. This means that the
additional documentation required for TCSEC class B3 shall also
be maintained under configuration management.

�

6.3 The A1 Configuration Management Requirements

Requirements 2 through 11 are the same as those described in
Section 6.1 for a class B2 rating. In addition the following
requirements are added for class A1:

Requirement 12 - "During the entire life-cycle, i.e., during the
design, development, and maintenance of the TCB, a configuration
management system shall be in place for all security-relevant
hardware, firmware, and software."[1]

Requirement 13 - The configuration management system shall
maintain control of changes to the TCB hardware.

Requirement 14 - The configuration management system shall
maintain control of changes to the TCB software.

Requirement 15 - The configuration management system shall
maintain control of changes to the TCB firmware.

Requirement 16 - The configuration management system shall
"maintain control of changes to the formal model."[1]

Requirement 17 - The configuration management system shall
maintain control of changes to the "formal top-level
specifications."[1]

Requirement 18 - The tools available for configuration management

shall be "maintained under strict configuration control."[1]

Requirement 19 - "A combination of technical, physical, and

procedural safeguards shall be used to protect from unauthorized�

modification or destruction the master copy or copies of all�

material used to generate the TCB."[1]�

7. FUNCTIONS OF CONFIGURATION MANAGEMENT

7.1 Configuration Identification

Configuration management procedures should enable a person to
"identify the configuration of a system at discrete points in
time for the purpose of systematically controlling changes to the

�

Page 12

configuration and maintaining the integrity and traceability
of this configuration throughout the system life cycle."[4] The
basic function of configuration identification is to identify the

�

components of the design and implementation of a system. When it
concerns trusted systems, this specifically means the design and
implementation of the TCB. This task may be accomplished through
the use of identifiers and baselines (see Section 9.1 The

�

Baseline Concept). By establishing configuration items and
baselines, the configuration of the system and its TCB can be

�

accurately identified throughout the system life-cycle.

At TCSEC class B2, the TCSEC requires that "changes to the
descriptive top-level specification, other design data,
implementation documentation, source code, the running version of
the object code, and test fixtures and documentation"[1] of the

�

TCB be controlled by configuration management (Requirements 2, 3,
4, 5, 6, 7, 8). Configuration identification helps achieve this
control. The TCSEC requires that each change to the TCB shall be
individually identifiable so that a history of the TCB may be
generated at any time. At TCSEC class A1, the requirements are
extended to include that the "formal model...and formal top-level
specifications" of the TCB shall also be maintained under the
configuration management system (Requirements 16, 17).

The following is a sample list of what shall be identified and
maintained under configuration management:

 * the baseline TCB including hardware, software, and firmware

 * any changes to the TCB hardware, software, and firmware
 since the previous baseline

 * design and user documentation

 * software tests including functional and system integrity
 tests

 * tools used for generating current configuration items
 (required at TCSEC class A1 only)

Configuration management procedures should make it possible to
accurately reproduce any past TCB configuration. In the event a
security vulnerability is discovered in a version of the TCB
other than the most current one, analysts will need to be able to
reconstruct the past environment. This reconstruction will be
possible to perform if proper configuration identification has�

been performed throughout the system life-cycle.
�

The TCSEC also requires at class B2 and above, that tools shall
be provided "for generation of a new version of the TCB from the

�

source code" and that there "shall be tools for comparing a newly
generated version with the previous TCB version in order to
ascertain that only the intended changes have been made in the
code that will actually be used as the new version of the TCB"[1]

Page 13

(Requirements 10, 11). These tools are responsible for providing
assurance that no additional changes have been inserted into the
TCB that were not intended by the system designer. Automated
tools are available that make it possible to identify changes to

�

a system online (see APPENDIX A: AUTOMATED TOOLS). Any changes,
or suggested changes to a system should be entered into an online
library. This data can later be used to compare any two versions
of a system. Such online configuration libraries may even
provide the capability for line-by-line comparison of software�

modules and documentation. At Class A1, the tools used to
perform this function shall be "maintained under strict�

configuration control"[1] (Requirement 18). These tools shall
not be changed without having to undergo a strict review process
by an authorized authority.

�

7.1.1 Configuration Items

A configuration item is an uniquely identifiable subset of the
system configuration that represents the smallest portion of the
system to be subject to independent configuration management
change control procedures. Configuration items need to be
individually controlled because any change to a configuration
item may have some effect upon the properties of the system or
the security policy of the TCB.

�

Configuration items as they relate to the TCB, are subsets of the
TCB's hardware, firmware, software, documentation, tests, and at
class A1, development tools. Each module of TCB software for
example, may constitute a separate configuration item.
Configuration items should be assigned unique identifiers (e.g.,
serial numbers, names) to make them easier to identify throughout
the system life-cycle. Proper identification plays a vital role

�

in meeting the TCSEC requirement for class B2 that requires the
configuration management system to "assure a consistent mapping
among all documentation and code associated with the current
version of the TCB"[1] (Requirement 9). Used in conjunction with�

a configuration audit, a consistent labeling system helps tie
documentation to the code it describes. Not only does labeling
each configuration item make them easier to identify, but it also
increases the level of control that may be maintained over the
entire system by making these items more traceable.

Configuration items may be given an identifier through a random
distribution process, but, it is more useful for the
configuration identifier to describe the item it identifies.
Selecting different fields of the configuration identifier to
represent characteristics of the configuration item is one method
of accomplishing this. The United States Social Security number
is a "configuration identifier" we all have that uses such a
system. The different fields of the number identify where we
applied for the Social Security card, hence describing a little
bit about ourselves. As the configuration identifier relates to

�

computer systems, one field should identify the system version

Page 14

the item belongs to, the version of software that it is, or its
�

interface with other configuration items. When using a
numbering scheme like this, a change to a configuration item
should result in the production of a new configuration
identifier. This new identifier should be produced by an
alteration or addition to the existing configuration identifier.
A new version of a software program should not be identified by
the same configuration item number as the original program. By

�

treating the two versions as distinct configuration items, line-
�

by-line comparisons are possible to perform.
�

Identifying configuration items is a task that should be
performed early in the development of the system, and once�

something is designated as a configuration item, the design
of that item should not change without the knowledge and
permission of the party controlling the item. Early�

identification of configuration items increases the level of
control that may be maintained over the item and allows the item
to be traced back through all stages of the system development.

�

In the event that a configuration item is not identified until
late in the development process, accountability for that item in
the early stages of the system development would be non-existent.

�

Configuration items may vary widely in complexity, size, and
type, and it is important to choose configuration items with

�

appropriate granularity. If the items are too large, the data
identifying each one will overwhelm anyone trying to audit the
system. If the items are too small, the amount of total
identification data will overwhelm the system auditors.[2] The
appropriate granularity for configuration items should be
identified by each vendor and documented in the configuration
management plan.

7.2 Configuration Control

"Configuration control involves the systematic evaluation,
coordination, approval, or disapproval of proposed changes to the
design and construction of a configuration item whose
configuration has been formally approved."[5] Configuration
control should begin in the earliest stages of the design and
development of the system and extend over the full life of the
configuration items included in the design and development
stages. Early initiation of configuration control procedures
provides increased accountability for the system by making its�

development more traceable. The traceability function of
configuration control serves a dual purpose. It makes it
possible to evaluate the impact of a change to the system and�

controls the change as it is being made. With configuration
control in place, there is less chance of making undesirable
changes to a system that may later adversely affect the security
of the system.

Initial phases of configuration control are directed towards

Page 15

control of the system configuration as defined primarily in
design documents. For these, the Configuration Management plan
shall specify procedures to ensure that all documentation is
updated properly and presents an accurate description of the�

system and TCB configuration. Often a change to one area of a
system may necessitate a change to another area. It is not
acceptable to only write documentation for new code or newly
modified code, but rather documentation for all parts of the TCB
that were affected by the addition or change shall be updated

�

accordingly. Although documentation may be available, unless it
is kept under configuration management and updated properly it
will be of little, if any use. In the event that the system is
found to be deficient in documentation, efforts should be made to
create new documentation for areas of the system where it is
presently inadequate or non-existent.�

To meet the TCSEC requirements though, configuration control
shall cover a broader area than just documentation, and at Class
B2 shall also maintain control of "design data, source code, the
running version of the object code, and test fixtures"[1] of the
TCB (Requirements 3, 5, 6, 7). A change to any of these shall be
subject to review and approval by an authorized authority.

For TCB configuration items, those items shall not be able to
change without the permission of the controlling party. At
TCSEC class A1, this requirement is strengthened to require
"procedural safeguards"[1] to protect against unauthorized
modification of the materials used in the TCB (Requirement 19).
These procedures should require that not only does the
controlling party need to give permission to have a change
performed, but that the controlling party performs the change on�

the master copy of the TCB that will be released. This ensures
�

against changes being made to the master copy that are different
than the approved changes.

�

The degree of configuration control that is exercised over the
TCB will affect whether or not it meets the TCSEC requirements
for configuration management. The configuration management
requirements in the TCSEC require that a configuration management
system be in place during the "development and maintenance of the
TCB" at Class B2 (Requirement 1), and at Class A1, "during the
entire life-cycle"[1] of the TCB (Requirement 12). A minimal
configuration control system that would not be sufficient in
meeting the TCSEC requirements, may only provide for review after�

a change has been made to the system. A system such as this may
ensure that the change is complete and acceptable and may control
the release of the change, but for the most part, the control

�

exercised is little more than an after-the-fact quality assurance
check. This system is certainly better than having no control
system in place, but it would not meet the TCSEC requirements for
configuration management. What is missing from this system that
would bring it closer to the B2 requirements is control over the	

change as it is being made. The configuration control required
by the TCSEC should provide for constant checking and approval of

�

Page 16

a change from its inception, through implementation and testing,
to release. The level of control exercised over the TCB may

�

exceed that of the rest of the system, but it is recommended that
all parts of the system be under configuration control.

In the case of a change to hardware or software/firmware that
will be used at multiple sites, configuration control is also
responsible for ensuring that each site receives the appropriate
version of the system.

The point behind configuration control of the TCB is that all
changes to the TCB shall be approved, monitored, and evaluated to
provide assurance that the TCB functions properly and that all�

security policies are maintained.

7.3 Configuration Status Accounting

Configuration status accounting is charged with reporting on the
progress of the development in very specific ways. It�

accomplishes this task through the processes of data recording,
data storing, and data reporting. The main objective of
configuration status accounting is to record and report all
information that is of significance to the configuration
management process. What is of significance should be outlined
in the Configuration Management Plan. The establishment of a new
baseline (see Section 9.1 THE BASELINE CONCEPT) or the meeting of

�

a milestone is an example of what should be recorded as
configuration status accounting information. The requirements in
the configuration management plan should be viewed as the minimum

�

and any events that seem relevant to configuration management
should be captured and recorded in that they may prove to be
useful in the future.�

The configuration accounting system may consist of tracing
through documentation manually to find the status of a change or

�

it may consist of a database that can automatically track a
change. As long as the information exists accurately in some
form though, it will serve its purpose. The benefit of an online
status accounting system is that the information may be kept in a
more structured fashion, which would facilitate keeping it up to�

date. Being able to query a database for information concerning
the status of a configuration change or configuration item would

�

also be less cumbersome than sorting through notebook pages.
Finally, the durability of a diskette or hard disk for storage

�

outweighs that of a spiral notebook or folder, provided that it
is properly backed up to avoid data loss in the event of a system
failure.

Whichever system is used, it should be possible to quickly locate
�

all authorized versions of a configuration item, add together all
authorized changes with comments about the reason for the change,
and arrive at either the current status of that configuration
item, or some intermediate status of the requested item. The

Page 17

status of all authorized changes being performed should be
formulated into a System Status Report that will be presented at
a Configuration Control Board meeting (see Section 9.3 THE
CONFIGURATION CONTROL BOARD).

Configuration status accounting "establishes records and reports
which enable proper logistics support, i.e., the supplying of
spares, instruction manuals, training and maintenance facilities,
etc. to be established."[5] The records and reports produced
through configuration status accounting should include a current

�

configuration list, an historical change list, the original
designs, the status of change requests and their implementation,
and should provide the ability to trace all changes.

7.4 Configuration Audit

Configuration auditing involves checking for top to bottom
completeness of the configuration accounting information "to
ascertain that only the [authorized] changes have been made in
the code that will actually be used as the new version of the

�

TCB."[1] (Requirement 11) When a change has been made to a
system, it should be reviewed and audited for its effect on the
rest of the system. This should include reviewing and testing all
software to ensure that the change has been performed correctly.

Configuration auditing is concerned with examining the control
process of the system and ensuring that it actually occurs the�

way it should. Configuration auditing for trusted systems
verifies that after a change has been made to the TCB, the
security features and assurances are maintained. Configuration
audits should be performed periodically to verify the
configuration status accounting information. The configuration
audit minimizes the likelihood that unapproved changes have been
inserted without going unnoticed and that the status accounting
information adequately demonstrates that the configuration
management assurance is valid.�

"A complete audit should include tracing each requirement down
through all functions that implement it to see if that

�

requirement is met."[2] Furthermore, the configuration audit
should also ensure that no additions were made that were not
required. For the audit to provide a useful form of technical
review, it should be predictable and as foolproof as possible,
i.e., there should be specific desired results.

The configuration audit should verify that:

* the architectural design satisfies the requirements

* the detailed design satisfies the architectural design

* the code implements the detailed design

Page 18

* the item/product performs per the requirements

* the configuration documentation and the item/product match

The main emphasis of configuration auditing is on providing the
user with reasonable assurance that the version of a system in�

use is the same version that the user expects to be in use.�

Configuration audits ensure that the configuration control
procedures of the configuration management system are being�

followed. The assurance feature of configuration auditing is
provided through reasonable and consistent accountability�

procedures. All code audits should follow roughly the same�

procedures and perform the same set of checks for every change to�

the system.
�

8. THE CONFIGURATION MANAGEMENT PLAN

Effective configuration management should include a well-thought-
out plan that should be prepared immediately after project
initiation. This plan should describe, in simple, positive
statements, what is to be done to implement configuration
management in the system and TCB. A minimal configuration
management plan may be limited to simply defining how
configuration management will be implemented as it relates to the
identification, control, accounting, and auditing tasks. The
configuration management plan described in the following
paragraphs is an example of a plan that goes into more detail and�

contains documentation on all aspects of configuration
management, such as examples of documents to be used for
configuration management, procedures for any automated tools
available, or a Configuration Control Board roster (see Section
9.3 THE CONFIGURATION CONTROL BOARD). The configuration
management plan should contain documentation that describes how
the configuration management "tasks are to be carried out in

�

sufficient detail that anyone involved with the project can
consult them to determine how each specific development task
relates to CM."[2]

One portion of the configuration management plan should define

the roles played by designers, developers, management, the
�

Configuration Control Board, and all of the personnel involved
with any part of the life-cycle of the system. The	

responsibilities required by all those involved with the system
should be established and documented in the configuration
management plan to ensure that the human element functions�

properly during configuration management. A list of�

Configuration Control Board members, or the titles of the members
should also be included in this section.

Any tools that will be available and used for configuration
�

management should be documented in the configuration management�

plan. At TCSEC class A1, it is required that these tools shall�

Page 19

be "maintained under strict configuration control"[1]
�

(Requirement 18). These tools may include forms used for change
control, conventions for labeling configuration items, software
libraries, as well as any automated tools that may be available
to support the configuration management process. Samples of any

�

documents to be used for reporting should also be contained in
the configuration management plan with a description of each.

�

A section of the Configuration Management Plan should deal with
procedures. Since the main thrust of configuration management�

consists of the following of procedures, there needs to be
thorough documentation on what procedures one should follow

�

during configuration management. The configuration management
plan should provide the procedures to take to ensure that both�

user and design documentation are updated in synchrony with all�

changes to the system. It should include the guidelines for
creating and maintaining functional tests and documentation
throughout the life of the system. The configuration management

�

plan should describe the procedures for how the design and�

implementation of changes are proposed, evaluated, coordinated,
and approved or disapproved. The configuration management plan
should also include the steps to take to ensure that only those
approved changes are actually included and that the changes are
included in all of the necessary areas.

Another portion of the configuration management plan should
define any existing "emergency" procedures, e.g., procedures for
performing a time sensitive change without going through a full�

review process, that may override the standard procedure. These
procedures should define the steps for retroactively implementing�

configuration management after the emergency change has been
completed.

The configuration management plan is a living document and should
remain flexible during design and development phases. Although
the configuration management plan is in place to impose control

�

on a project, it should still be open to additions and changes as
designers and developers see fit. This is not to say that the
configuration management plan is only a guide and need not be
followed, but that modifications should be able to occur. If the
plan is not followed, there is no way it will be able to provide�

the appropriate assurances. In the event that a change is needed
�

to the configuration management plan, the change should be
�

carefully evaluated and approved. In changes to the
configuration management plan of a trusted system this evaluation
shall ensure that the security features and assurances supported
by the plan are still maintained after the change has been

�

implemented.

9. IMPLEMENTATION METHODS

This section discusses implementation methods for configuration

Page 20

management that may be used to meet some of the requirements of
the TCSEC. Section 9.1 discusses the baseline concept as a

�

method of configuration identification. The baseline concept
utilizes the features of configuration management spoken of�

previously, but divides the life-cycle of the system into�

different baselines.

Section 9.2 illustrates how a fictitious company, MER, Inc.,
conducts configuration management. They are attempting to meet
the TCSEC requirements for a B2 system.

�

Section 9.3 discusses the concept of a Configuration Control
Board (CCB) for carrying out configuration control. A CCB is a
body of people responsible for configuration control. This

�

concept is widely used by many computer vendors.

9.1 The Baseline Concept

Baselines are established at pre-selected design points in the
system life-cycle. One baseline may be used to describe a
specific version of a system, or in some configuration management
systems a single baseline may be defined at each of several major
milestones. Baselines should be established at the discretion
of the Configuration Control Board and outlined in the
configuration management plan. In cases where several baselines
are established, each baseline serves as a cutoff point for one
segment of development, while simultaneously acting as the step
off point for another segment. The characteristics common to
all baselines are that the design of the system will be approved
at the point of their establishment and it is believed that any
changes to this design will have some impact on the future
development of the system.

Baseline management is one technique for performing configuration
identification. It identifies the system and TCB design and
development as a series of phases or baselines that are subject
to configuration control. Used in conjunction with configuration

�

items, this is another effective way to identify the system and
its TCB configuration throughout its life-cycle.

"For each different type of baseline, the individual components
to be controlled should be identified, and any changes that

�

update the current configuration should be approved and�

documented. For each intermediate product in the development
[life-cycle] there is only one baseline. The current
configuration can be found by applying all approved changes to
the baseline."[2]

�

In a system defining several baselines for different stages of
development, these baselines or milestones should be established
at the system inception to serve as guides throughout the
development process. Although specific baselines are
established in this case, alternatives may be recommended to

Page 21

promote greater design flexibility or efficiency. The number of�

baselines that may be established for a system will vary
�

depending upon the size and complexity of the system and the
methods supported by the designers and developers. It is
possible to establish multiple baselines existing at the same�

time so long as configuration management practices are applied
�

properly to each baseline. The following example will discuss�

the baseline concept using three common baseline categories:
�

functional, allocated, and product. It should be emphasized that
these are simply basic milestones and baselines should be

�

established depending upon the decisions of the designers and
developers.

The first baseline, the functional baseline, is established at
the system inception. It is derived from the performance and

�

objectives criteria documentation that consists of specifications
defining the system requirements. Once these specifications have
been established, any changes to them should be approved.

�

The requirements produced in the functional baseline may be
divided and subdivided into various configuration items. Once it
has been decided what the configuration items will be, each of
the items should be given a configuration identifier. From the

�

analysis of the system requirements the allocated baseline will
be established. This baseline identifies all of the required

�

functions with a specific configuration item that is responsible
for the function. In this baseline, an individual should be
charged with the responsibility for each configuration item.
All changes affecting specifications defining design requirements
for the system or its configuration items as stated in the
allocated baseline should require approval of the responsible
individual.

The final baseline, the product baseline, should contain that
version of the system that will be turned over for integration
testing. This baseline signifies the end of the development

�

phase and should contain a releasable version of the system.�

The baseline example mention earlier in which one baseline is
established for a single version of a system entails the same
reasoning as the functional, allocated, and product baseline
example. The system established as a baseline in the single
baseline example will need to have an approved design before

�

being placed under configuration control. Prior to the design
�

approval, the system design will have to have undergone some type
of functional review and a process that would allocate these
functions to various configuration items. Although the early
processes of the design will not be as formal in the single�

baseline example as they are when the early tasks are
�

individually defined, the system will still benefit from being
under the control of configuration management as a baseline. The�

main point of establishing any baseline is controlling changes to�

that baseline by requiring any changes to it to have to undergo
�

an established change control process.

Page 22

9.2 Configuration Management at MER, Inc.

MER, Inc., is a manufacturer of computer systems. Their latest
project consists of building a system that will meet the B2�

requirements of the TCSEC. In the past, their configuration
management has only consisted of quality assurance checks, but to
meet the B2 requirements they realize that they will need to have
specific configuration management procedures in place during the
development and maintenance of the system.

The project manager was assigned the task of writing the
configuration management procedures and elected to present them
in a configuration management plan. After doing some research on
what should be contained in the configuration management plan, he
proceeded to write a plan for MER, Inc. The configuration�

management plan that was written listed all of the steps to be
followed when carrying out configuration management for the
system. It described the procedures to be followed by the
development team and described the automated tools that were
going to be used at MER, Inc. for configuration management.
These tools consisted of an online tracking data base to be used
for status accounting, an online data base that contained a
listing of all of the items under configuration control, and
automated libraries used for storing software. Before
development began, all of the development team was responsible
for reading the configuration management plan to ensure that they
were aware of the procedures to be followed for configuration
management.

As the system was developed, the TCB hardware, software, and
firmware were labeled using a configuration item numbering scheme
that had been explained in the configuration management plan. In

�

addition, the documentation and tests accompanying these items
were also given configuration item numbers to assure a consistent	

mapping between TCB code and these items. All of the�

configuration item numbers and a description of the items were
stored in a data base that could be queried at any time to derive
the configuration of the entire system. Software and

�

documentation were stored in a software library where they could
be retrieved and worked on without affecting the master versions.

�

The master copies of all software were stored in a master library
that contained the releasable versions of the software. Both of

�

these libraries are protected by a discretionary access control
�

mechanism to prevent any unauthorized personnel from tampering�

with the software.	

During the development of the system, changes were required. The
�

procedures for performing a change under configuration control�

are described in the configuration management plan. These are
the same procedures that will remain in effect throughout the

�

life-cycle of the system. For each proposed change, a decision
has to be made by management whether or not the change is

�

Page 23

feasible and necessary. MER, Inc. has an online forum for
reviewing suggested changes. This forum makes it possible for
all of the members of the development team to comment on how the
proposed change may affect their work. Management would often�

consult this forum to help arrive at their final decision.

After a decision was made, a programmer was assigned to perform
the change. The programmer would retrieve the most recent

�

version of the software from the software library and proceed to
change it. As the change was being performed, the changes were
entered into the online tracking data base. This made it
possible for members of the development team to query this data�

base to find the current status of the change at any time. After
�

the change had been performed it was tested and documented, and
�

upon successful completion it was forwarded to a reviewer. This�

reviewer was the software manager, who was the only person
authorized to approve a changed version for release. After the
change was approved for release, the changed version was stored
in the master library and a second copy was stored in the
software library. Each change stored in these libraries was
given a new configuration identification number. A tool was
available at MER, Inc. that made it possible to identify changes
made to software. It compared any two versions of the software
and provided a line-by-line listing of the differences between
the two.

�

It was realized at the beginning of the development process that
there would be times when critical changes would need to be

�

performed that would not be able to undergo this review process.�

For these changes, emergency procedures had been listed in the
configuration management plan and a critical fix library was
available to record critical changes that had occurred since a
release.

A control process for changes to the TCB hardware was also
provided for in the configuration management plan. The�

procedures ensured that changes to the TCB hardware were�

traceable and did not violate the security assumptions made by
�

the TCB software. Similar to software changes, all hardware
�

changes were reviewed by the project manager before being
implemented.

After a change is made to the TCB software, MER, Inc. performs a
�

configuration audit to verify the information that exists in the
tracking data base. Whether or not a change is performed, the

�

configuration management plan at MER, Inc. specifies that a
configuration audit be performed at least once a month. This
audit compares the current master version with the status
accounting information to verify that no changes have been
inserted that were not approved.

This configuration management plan encompasses the descriptive
top-level specification (DTLS), implementation documentation,

�

source code, object code, test fixtures, and test documentation,

Page 24

and has been found to satisfy the TCSEC requirements for
configuration management at class B2.

9.3 The Configuration Control Board (CCB)

Configuration control may be performed in different ways. One
method of configuration control that is in use by systems already
evaluated at TCSEC Class B2 and above is to have the control
carried out by a body of qualified individuals known as the
Configuration Control Board (CCB), also known as the
Configuration Change Board. The Board is headed by a
chairperson, who is responsible for scheduling meetings and for
giving the final approval on any proposed changes. The
membership of the CCB may vary in size and composition from
organization to organization, but it should include members from
any or all of the following areas of the system team:

 * Program Management

 * System Engineering

 * Quality Assurance

 * Technical Support

 * Integration and Test

 * System Installation

 * Technical Documentation

 * Hardware and Software/Firmware Acquisition

 * Program Development

 * Security Engineering

 * User Groups

The members of the CCB should interact periodically, either
through formal meetings, electronic forums, or any other

�

available means, to discuss configuration management topics such
as proposed changes, configuration status accounting reports, and
other topics that may be of interest to the different areas of
the system development. These interactions should be held at

�

periodic intervals to keep the entire system team up-to-date with�

all advancements or alterations in the system. The Board serves
to control changes to the system and ensures that only approved

�

changes are implemented into the system. The CCB carries out
this function by considering all proposals for modifications and

�

new acquisitions and by making decisions regarding them.�

An important part of having cross representation in the CCB from
�

Page 25

various groups involved in the system development is to prevent
"unnecessary and contradictory changes to the system while
allowing changes that are responsive to new requirements, changed
functional allocations, and failed tests."[2] All of the members
of the Board should have a chance to voice their opinions on
proposed changes. For example, if system engineering proposes a�

change that will affect security, both sides should be able to
present their case at a CCB meeting. If diversity did not exist�

in the CCB, changes may be performed, and upon implementation may
be found to be incompatible with the rest of the system.

�

The configuration control process begins with the documentation
of a change request. This change request should include
justification for the proposed change, all of the affected items
and documents, and the proposed solution. The change request
should be recorded, either manually or online in order to provide
a way of tracking all proposed changes to the system and to
ensure against duplicate change requests being processed.

When the change request is recorded, it should be distributed for
analysis by the CCB who will review and approve or disapprove the
change request. An analysis of the total impact of the change
will decide whether or not the change should be performed. The
CCB will approve or disapprove the change request depending upon
whether or not the change is viewed as a necessary and feasible
change that will further the design goals of the system. In
situations where trusted systems are involved, the CCB shall also
ensure that the change will not affect the security policy of the
system.

Once a decision has been reached regarding any modifications, the

CCB is responsible for prioritizing the approved modifications to
ensure that those that are most important are developed first.
When prioritizing changes, an effort should be made to have the
changes performed in the most logical order whenever possible.
The CCB is also responsible for assigning an authority to perform
the change and for ensuring that the configuration documentation

�

is updated properly. The person assigned to do the change should
have the proper authorization to modify the system, and in

�

trusted systems processing sensitive information, this
�

authorization shall be required. During the development of any
enhancements and new developments, the CCB continues to exert
control over the system by determining the level of testing
required for all developments.

Upon completion of the change, the CCB is responsible for
�

verifying that the change has been properly incorporated and that�

only the approved change has been incorporated. Tests should be
performed on the modified system or TCB to ensure that they�

function properly after the change is completed. The CCB should
review the test results of any developments and should be the
final voice on release decisions.

The use of a CCB is one way of performing configuration control,

Page 26

but not every vendor may have the desire or resources to
�

establish one. Whatever the preference, there should still be
some way of performing the control processes described
previously.�

10. OTHER TOPICS

10.1 Trusted Distribution

Related to the configuration management requirements for trusted
systems is the TCSEC requirement for trusted distribution at
class A1 which states:

 "A trusted ADP system control and distribution facility
 shall be provided for maintaining the integrity of the
 mapping between the master data describing the current
 version of the TCB and the on-site master copy of the code
 for the current version. Procedures (e.g., site security
 acceptance testing) shall exist for assuring that the TCB
 software, firmware, and hardware updates distributed to a
 customer are exactly as specified by the master
 copies."[1]

Two questions that the trusted distribution process should answer
are: (a) Did the product received come from the organization who
was supposed to have sent it? and (b) Did the recipient receive
exactly what the sender intended?

Configuration management assists trusted distribution by ensuring
that no alterations are made to the TCB from the time of approved

�

modification to the time of release. The additional
configuration management requirement at A1 that supports this is,
"A combination of technical, physical and procedural safeguards
shall be used to protect from unauthorized modification or
destruction the master copy or copies of all material used to
generate the TCB"[1] (Requirement 19). This requirement calls
for strict control over changes made to any versions of the TCB.
The possibility that a change may not be performed as specified,
or that a harmful modification may be inserted into the TCB
should be considered and the authority to perform changes to the
master copy should be restricted. A single master copy authority�

should be made responsible for ensuring that only approved and
acceptable changes are implemented into the master copy.

Configuration status accounting records and auditing reports can
provide accountability for all TCB versions in use. In the event�

of altered copies being distributed or "bogus" copies being
distributed that were not manufactured by the vendor,
configuration management records will be able to assess the
validity and accuracy of all TCB versions. Trusted distribution�

displays the need for configuration control over all changes to
the TCB. Without configuration control there would be no

�

Page 27

accountability for the TCB versions distributed to the customer.

10.2 Functional Testing

"The system developer shall provide to the evaluators a document
that describes the test plan, test procedures that show how the

�

security mechanisms were tested, and results of the security
mechanisms' functional testing."[1] The creation and maintenance
of these functional tests is required to be part of the
configuration management procedures. Test results and any
affected test documentation shall be maintained under
configuration management and updated wherever necessary
(Requirements 7, 8). The tests should be repeatable, and include
sufficient documentation so that any knowledgeable programmer
will be able to figure out how to run them. The test plan for
the system should be described in the functional specification

�

(or other design documentation) for the TCB, along with
descriptions of the test programs. The test plan and programs
should be reviewed and audited along with the programs they test,
although the coding standards need not be as strict as those of
the tested programs.

�

It is not acceptable to only generate tests for code that was
opened or replaced, but all of the portions of the TCB that were
affected by the change should also be tested. The NCSC
evaluators can provide a description of the security functional
tests required to meet the TCSEC testing requirements, including

�

the testing required as stated above for configuration
�

management.

10.3 Configuration Management Training

Each new technical employee should receive training in the
configuration management procedures that a particular
installation follows. Experienced programmers, although they may
be familiar with some form of configuration management, will also

�

require training in any new procedures, i.e., an automated
accounting system, that will be required to be followed.
Training should be conducted either "by holding formal classes or
by setting aside sufficient time for the reading of the company

�

wide configuration standards."[2] New programmers should become	

familiar with the Configuration Management Plan before being
allowed to incorporate any changes into the design baseline. It
should be stressed that a failure to maintain the configuration
management standards resulting from untrained employees, could�

prevent the system from receiving a rating.[2]�

10.4 Configuration Management Supervision

A successful configuration management system requires the
�

following of many procedures. Considering the demands made on

Page 28

the system staff, errors may occur and shortcuts may be sought
�

which will jeopardize the entire configuration management plan.
A review process should be present to ensure that no single
person can create a change to the system and implement it without�

being subject to some type of approval process. Supervisors, who
�

are responsible for the personnel performing the change should be
required to sign an official record that the change is the
correct change.[2]

Proper supervision also provides assurance that whoever performs
the change has the proper authorization to do so. Changes should

�

not be performed by personnel that are not qualified to perform
the change. Also, in systems that process sensitive information,

�

the programmer performing the change shall possess the proper
�

security clearance to perform the change.

Management itself must directly support the configuration
management plan in order for it to work. It should not encourage
cutting configuration management corners under any circumstances,
e.g., due to scheduling or budgeting. Management should be
willing to support the expenditure of money, people, and time to
allow for proper configuration management.

11. RATINGS MAINTENANCE PROGRAM

The Ratings Maintenance Program (RAMP) has been developed by the
NCSC in an effort to keep the Evaluated Products List (EPL)
current. By training vendor personnel to recognize which changes
may adversely affect the implemetation of the security policy of
the system, and to track these changes to the evaluated product

�

through the use of configuration management, RAMP will permit a
�

vendor to maintain the rating of the evaluated product without
having to re-evaluate the new version. Because changes from one
version of an operating system to the next version may affect the�

security features and assurances of that operating system,
configuration management is an integral part of RAMP. For a
system to maintain its rating under this program, the NCSC shall
be assured, through the vendor's configuration management

�

procedures, that the changes made have not adversely affected the�

implementation of the security mechanisms and assurances of the
system.

Each RAMP participant shall develop an NCSC approved Rating
�

Maintenance Plan (RMPlan) which includes a detailed Configuration
�

Management Plan (CMP) to support the rating maintenance process.
�

This requirement applies to all systems participating in RAMP,
regardless of class. For further information about the RAMP
program and about configuration management requirements for RAMP,�

contact:

 National Computer Security Center
 9800 Savage Road

Page 29

 Fort George G. Meade, MD 20755©6000

 Attention: Chief, Requirements and Resources Division

12. CONFIGURATION MANAGEMENT SUMMARY

The assurance provided by configuration management is beneficial
to all systems. It is a requirement for trusted systems for

�

classes B2 and above that a configuration management system "be
in place that maintains control of changes to the descriptive
top-level specification, other design data, implementation

�

documentation, source code, the running version of the object
code, and test fixtures and documentation"[1] (Requirements 1, 2,
3, 4, 5, 6, 7, 8). Although configuration management is a
requirement for trusted systems for classes B2 and above, it
should be in place in all systems regardless of class rating, or
if the system has a rating at all.

Successful configuration management is built around four main
objectives: control, identification, accounting, and auditing.
Through the accomplishment of these objectives, configuration
management is able to maintain control over the TCB and protect
it against "unauthorized changes that could cause protection
mechanisms to malfunction or be bypassed completely."[1] Even
for those aspects of the system which are not security-relevant,
configuration management is still a valuable method of ensuring
that all of the properties of a system are maintained after a

�

change. It is very important to the success of configuration
management that a formal configuration management plan be adhered
to during the life-cycle of the system.

�

A successful configuration management plan should begin with
early and complete definition of configuration management goals,
scope, and procedures. The success of configuration management
is dependent upon accuracy. Changes should be identified and
accounted for accurately, and after the change is completed, the
change, and all affected parts of the system should be thoroughly
documented and tested.

Configuration management provides control and traceability for
all changes made to the system. Changes in progress are able to
be monitored through configuration status accounting information

�

in order to control the change and to evaluate its impact on
other parts of the system.

An important part of having a successful configuration management
�

plan is that the people involved with it must adhere to its�

procedures in order to keep all documentation current and the�

status of changes up-to-date.

With a firm and well documented configuration management plan in
�

place, the occurrence of any unnecessary or duplicate changes�

Page 30

will be reduced greatly and any necessary changes that are
required should be able to be identified with great ease. An
effective configuration management system should be able to show
what was supposed to have been built, what was built, and what is
presently being built.�

Page 31

APPENDIX A: AUTOMATED TOOLS

Automated tools may be used to perform some of the configuration
management functions that previously had to be performed
manually. A data base management system, even with just a
limited query system, may be used to perform the configuration
audit and status accounting functions of configuration
management. The principle behind using automated systems is that
text, both from source code and other documents involved in the

�

development of the system, can be entered into a Master Library
and modified only through the use of the automated system. This
prevents anyone from performing a change without having the�

proper authorization to access the configuration data base. "In�

general, only one program librarian, who should be the project
manager or someone directly responsible to the manager, should
have write access to the Master Library during development."[2]

A number of software developers have created software control
facilities that are currently available to be used for
configuration status accounting. A brief discussion of two of
these systems follows.

�

A.1 UNIX (1) SCCS

"Under the Unix (1) system, the make utility, and the elements
admin, get, prs, and delta, which comprise the Source Code
Control System, provide a basic configuration accounting system.
Initially a directory is created using the mkdir function. At
this point, it is possible to use the owner, group, world

�

protection scheme provided by Unix (1) to protect the directory.�

In addition a list of login identifiers is created which
specifies who may update each element to be processed by SCCS."
[2]

Following directory initiation, each document is entered using
�

the admin -n function. Each entry that is made is referred to as
�

an element. As each update is made to a new element, a new
generation of that element, known as a delta, is created. The
name of each element that is stored in a file by SCCS is preceded�

by "s.". If a file is added to the directory that does not
�

contain this prefix, it is ignored by the SCCS function calls.
When the admin function is called, a number of arguments may be

�

specified that "specify parameters that may affect the file, and
may be changed by a subsequent call to admin. The alogin�

argument is used to create the equivalent of an access control
list by listing the login names of users who can apply the delta
function to the element, thus creating either a new generation
(delta) or variant branch."[2]

(1) UNIX is a registered trademark of AT&T Bell Laboratories

Page 32

The initial release, or initial delta, of each code module is
entered into the SCCS directory through the admin -n function,
thus creating the Master Library. The programmer may update each

�

module in the Master Library by using the get -e function "which
indicates that the module will be edited and then the completed
document will be reentered into the directory using the delta
function. As long as the module being edited was extracted from
the SCCS directory using get -e, it can be returned to the

�

library using delta, and all necessary update information will be
entered with it. The get function can be used to extract a copy
of any document, but after it is edited it cannot be reentered
into the library."[2]

"SCCS provides the capability to specify a software build by the
way it assigns an SCCS Identification Number (SID) to each output
of the delta function."[2] One can get any version of a text or
source code by specifying the appropriate SID. "There are
straightforward rules regarding how to specify the particular SID
desired when get is called. If no SID is specified, the latest
release and level is provided." The SID of the resulting call to
delta is affected by the SID used when get -e is called.[2]

"The function prs allows for configuration accounting, since it
extracts information from the s. files in the SCCS directory and
prints them out for the user. Prs can be used to quickly create�

reports, listing one or two important values such as the last
modified date for many SCCS files, or many values for one or two
file. Larger reports can also be processed and created using an
editor."[2]

A.2 VAX DEC/CMS

"VAX DEC/CMS [7] is also used to track a history of each text
file stored in a CMS directory, but CMS does significantly more
auditing and cross-checking than admin does. For example, if an
editor is used directly to modify a file in a CMS directory, any
further use by CMS of that file generates a warning meassage.
Any files entered into a CMS directory by other than the CMS

�

utility will cause CMS itself to issue a warning message when it�

is invoked for that directory. Otherwise, the process of
configuration accounting is similar to SCCS.

The CMS CREATE LIBRARY function causes a directory to be set up,
and initial logging to start. The project manager enters each
element into the directory by using the CMS CREATE ELEMENT
function. One must RESERVE an element of a library to modify it,
and it can only be put back into the library using the REPLACE
function. If someone else has RESERVEd an element between the
original programmer's RESERVE and REPLACE calls, a warning is
issued to both programmers and the occurrence is logged. To get
a sample copy of the text, such as a program source, the FETCH
function will generate the latest generation or any specified

Page 33

generation of an element, but will not allow an edited copy to be
reinserted into the library. The SHOW function can be used to
audit the information about each element in the library.

Differences between SCCS and DEC/CMS appear concerning software
builds. In Unix (1) a build must be either described in a

�

makefile, or else each element to be used in a build must be
retrieved from the SCCS directory using get, placed in another
directory, and the makefile then may refer to these source files
to create the executable build. In CMS, the process of selecting

�

only a subset of source files, including some which are not the
most current, is automated by the use of class and group
mechanisms. To explain how this works, one must understand the
CMS concepts of generations and variants. Each generation of a
file corresponds to a Unix (1) delta. Generations are normally
numbered in ascending order. CMS also has the capability of
creating a variant development line to any generation by
specifying in the REPLACE function a variant name. For example,
if one RESERVEs generation 3 of an element, then performs a
REPLACE/VARIANT = T, this will create generation 3T1 which may
then be developed separately from generation 3. The first time

�

this is used, the equivalent of an SCCS branch delta is created.
�

Branches themselves can have branches, a capability that SCCS
does not have.

A group can be defined within a CMS directory, using the CMS
CREATE GROUP, and CMS INSERT ELEMENT functions. A group is
composed of all generations, including variant generations, of
all elements inserted into the group. Groups can be included
within other groups. Groups can be defined with a non-empty
intersection so that they have overlapping membership.

The CMS CREATE CLASS function, together with the CMS INSERT
GENERATION function, can be used to specify the exact elements of
a software build, and the DESCRIPTION file can then refer to the
entire class by using the /GENERATION=classname qualifier on
either the source or action line of a dependency rule. The
makefile required by Unix (1) SCCS can be much more complex when�

it is required to describe a software build for intermediate
testing."[2]

�

(1) Unix is a registered trade mark of Bell Laboratories

Page 34

GLOSSARY

Automatic Data Processing (ADP) System - An assembly of computer
hardware, firmware, and software configured for the purpose of
classifying, sorting, calculating, computing, summarizing,
transmitting and receiving, storing, and retrieving data with a

�

minimum of human intervention.[1]

Baseline - A set of critical observations or data used for a
comparison or a control. A baseline indicates a cutoff point in
the design and development of a configuration item beyond which

�

configuration does not evolve without undergoing strict
configuration control policies and procedures.

Configuration Accounting - The recording and reporting of
configuration item descriptions and all departures from the
baseline during design and production.[2]

�

Configuration Audit - An independent review of computer software
for the purpose of assessing compliance with established
requirements, standards, and baselines.[2]

Configuration Control - The process of controlling modifications
to the system's design, hardware, firmware, software, and

�

documentation which provides sufficient assurance the system is
protected against the introduction of improper modification prior�

to, during, and after system implementation.
�

Configuration Control Board (CCB) - An established committee that
is the final authority on all proposed changes to the ADP system.

Configuration Identification - The identifying of the system
configuration throughout the design, development, test, and
production tasks.�

Configuration Item - The smallest component of hardware,
software, firmware, documentation, or any of its discrete
portions, which is tracked by the configuration management�

system.

Configuration Management - The management of changes made to a
system's hardware, software, firmware, documentation, tests, test
fixtures, and test documentation throughout the development and
operational life of the system.

Descriptive Top-Level Specification (DTLS) - A top-level
�

specification that is written in a natural language (e.g.,
English), an informal program design notation, or a combination

�

of the two.[1]

Firmware - Equipments or devices within which computer
�

programming instructions necessary to the performance of the�

device's discrete functions are electrically embedded in such a

Page 35

manner that they cannot be electrically altered during normal
device operations.[3]

Formal Security Policy Model - An accurate and precise
description, in a formal, mathematical language, of the security
policy supported by the system.�

Formal Top-Level Specification - A top-level specification that
is written in a formal mathematical language to allow theorems
showing the correspondence of the system specifications to its
formal requirements to be hypothesized and formally proven.[1]

Granularity - The relative fineness or courseness by which a
mechanism can be adjusted. The phrase "the granularity of a
single user" means the access control mechanism can be adjusted
to include or exclude any single user.[1]

�

Hardware - The electric, electronic, and mechanical equipment
used for processing data.[3]�

Informal Security Policy Model - An accurate and precise
description, in a natural language (e.g., English), of the
security policy supported by the system.

Software - Various programming aids that are frequently supplied
by the manufacturers to facilitate the purchaser's efficient

�

operation of the equipment. Such software items include various
assemblers, generators, subroutine libraries, compilers,
operating systems, and industry application programs.[6]

Tools - The means for achieving an end result. The tools
referred to in this guideline are documentation, procedures, and
the organizational body, i.e., the CCB, which all contribute to

�

achieving the control objective of configuration management.

Trusted Computing Base (TCB) - The totality of protection
mechanisms within a computer system -- including hardware,�

firmware, and software -- the combination of which is responsible
for enforcing a security policy. A TCB consists of one or more
components that together enforce a unified security policy over a
product or system. The ability of a TCB to correctly enforce a�

security policy depends solely on the mechanisms within the TCB
and on the correct input by system administrative personnel of
parameters (e.g., a user's clearance) related to the security�

policy.[1]�

Page 36

REFERENCES

1. National Computer Security Center, DOD Trusted Computer
 System Evaluation Criteria, DOD, DOD 5200.28-STD, 1985.

2. Brown, R. Leonard, "Configuration Management for Development
 of a Secure Computer System", ATR-88(3777-12)-1, The
 Aerospace Corporation, 1987.

3. Subcommittee on Automated Information System Security,
 Working Group #3, "Dictionary of Computer Security
 Terminology", 23 November 1986.

4. Bersoff, Edward H., Henderson, Vilas D., Siegal, Stanley G.,
 Software Configuration Management, Prentice Hall, Inc.,
 1980.

5. Samaras, Thomas T., Czerwinski, Frank L., Fundamentals of
 Configuration Management, Wiley-Interscience, 1971.

6. Sipple, Charles J., Computer Dictionary, Fourth Edition,
 Howard W. Sams & Co., 1985.

7. Digital Equipment Corporation, VAX DEC/CMS Reference Manual,
 AA-L372B-TE, Digital Equipment Corporation, 1984.

Page 37

