MP 99B0000087

MITRE PRODUCT

Secure Configuration of the Apache Web
Server

Apache Server Version 1.3.3 on Red Hat Linux
5.1

Rev 1.12 — 24 Apr. 2001

Kenneth Jones
Rosalie McQuaid
Charles Schmidt

Revisions by Trent Pitsenbarger, National Security Agency
W2Kguides@nsa.gov

Sponsor: NSA Contract No.: DAABO07-99-C-C201
Dept. No.: G021 Project No.: 0799N030-WB

© 1999 The MITRE Corporation

MITRE

Center for Integrated Intelligence Systems
Bedford, Massachusetts

MITRE Department Approval:

MITRE Project Approval:

Marion C. Michaud

Department Head

Information Warfare and Secure
Systems Engineering

Julie L. Connolly
Project Leader, 0799N030-WB

Preface

Style Conventions:

Apache module names are given in italics.
Apache directive names are given in bold.
Parameters to Apache directives are given in bold italics.

Configuration files and information returned by the command line are expressed in
courier new font.

Text entered in the command lineisexpressedinbol d couri er new font.
Abstract configuration informationisgivenini tal i ¢ couri er new font.

Words that the authors wish to emphasi ze, but which otherwise have no specific
meanings, are underlined.

The rest of the document iswritten in norma Times New Roman font.

Warnings

Do not attempt to implement any of the settings in this guide without first
testing in a non-operational environment.

This document is only a guide containing recommended security settings. It is not
meant to replace well-structured policy or sound judgment. Furthermore this guide
does not address site-specific configuration issues. Care must be taken when
implementing this guide to address local operational and policy concerns.

SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
EXPRESSLY DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Please keep track of the latest security patches and advisories.

Table of Contents

L1

Purpose

(.2

Scope

1.3

Background

[1L4

Document Organi zation

(P.1 World Wide Web Model

P.1.1 Web Server Component

|

P.1.2 Web Client

P.1.3 Transmission Protocol: HyperText Transfer Protocol

P.1.4 Data Format Specification Component

[P.2 Apache Architecture

D.2.1 Apache File System Layout

L%.Z.Z Component Module Architecture

.2.3 Configuration Mechanisms

P.2.4 Apache Run-Time Modes

P.3 Apache Configuration Roadmap

P.4 Apache Security Services

B.1 General Server Settings
B.1.1 Container Directives
B.1.2 The User and Group Directives 21
B.1.3 Handling Directory Referencesin URLS 22
B.1.4 The Options Directive 23
B.1.5 .htaccess Files 24

B.2 Authentication 25
B.2.1 Modules 25
B.2.2 Default Configuration 27
B.2.3 Background Information 27
B.2.4 Configuration Information 29
B.2.5 Synopsis and Recommendations 36
B.2.6 Additional Topics 36

B.3 Access Control 37
B.3.1 Modules 37
B.3.2 Default Configuration 37
B.3.3 Background Information 38
B.3.4 Configuring Custom Access Control 39
B.3.5 Implementation of Customized Access Controls 41
B.3.6 Synopsis and Recommendations 43

B.4 Auditing 44]

§.4.1 Modules 44
4.2 Default Configuration 45
B.4.3 Background Information 48
B.4.4 Configuration Information 53
B.4.5 Synopsis and Recommendations 54
3.4.6 Additional Topics 55
B.5 Availability 55
B.5.1 Modules 55
B.5.2 Default Configuration 57
B.5.3 Configuration Information 58
B.5.4 Synopsis and Recommendations 59

B.6 Integrity, Confidentiality, and Nonrepudiation 59
B.7 Common Gateway Interface (CGI) and Scripting 60
B.7.1 Modules 60
B.7.2 Default Configuration 60
?.3 Background Information 60
.7.4 Configuration Information 62
B.7.5 Synopsis and Recommendations 63

B.8 Server Side Includes 64
.8.1 Modules 64

.8.2 Default Configuration 64

8.3 Background Information 64
B.8.4 Configuration Information 66
B.8.5 Synopsis and Recommendations 67

B.9 Redirection and Aliasing 67
E.g.l Modules 68
9.2 Default Configuration 68
3.9.3 Background Information 69
B.9.4 Configuration Information 76
B.9.5 Synopsis and Recommendations 79
B.9.6 Additional Topics 80
B.10 Virtual Hosting 80
3.10.1 Modules 80
B.10.2 Default Configuration 80
B.10.3 Background Information 81
B.10.4 Configuration Information 83
B.10.5 Synopsis and Recommendations 84
B.11 Other Security Issues 85
B.11.1 Proxying 85
B.11.2 The mod rewrite module 86

B.11.3 Indexing, Server Status, and Other Ways to Remotely Learn About a Server87

Vi

Section 1
| ntroduction

1.1 Purpose

MITRE has performed a secure configuration analysis of the Apache Web Server on
Linux. Thisinvestigation was initiated to provide an understanding of the security
mechanisms within the Apache Web Server. The Apache Web Server isthe most popular
web server on the Internet; more than 50 percent of the existing web servers use Apache.
Dueto this popularity, MITRE has identified the need to provide secure configuration
guidelines for the Apache Web Server on Linux.

1.2 Scope

This document is intended to detailed descriptions for the configuration of a*secure”
web site using the Apache Web Server. This document assumes no prior knowledge of the
Apache Web Server, and only limited understanding of web serversin general. It does,
however, assume some understanding of the UNIX operating system as implemented on
Linux. Readers should be familiar with file security, file structure, and basic UNIX/Linux
commands.

The Apache Web Server is an extremely powerful and adaptable product. A complete
documentation of all itsfeaturesisout of the scope of this document. Included in this guide
are the features of the web server which have a direct influence on the security of the web
Site, or that are so common, that no reasonabl e trestment of modern web servers could be
expected to exclude them. The Apache security services are described along with examples
that outline possible configurations.

1.3 Background

Due to thisincreased reliance on and widespread use of web technologies, MITRE was
tasked to compl ete a secure configuration guide for the Apache Web Server. Thistask was
completed by establishing atest bed for the Apache Web Server Version 1.3.3; thiswas
installed on Red Hat Linux 5.1. Test configuration files were developed to implement and
test the security services of the web server. Based on the test results, this secure
configuration guideline was developed. The secure configuration guide covers the security
services of authentication, access control, availability, and auditing. It does not cover
nonrepudiation, confidentiality, and integrity due to the fact that standard A pache does not
implement these security services. These services are availablein Apache SSL. This guide
does address other security issues which may be present in web servers including Common
Gateway Interface (CGl), Server Side Includes (SSI), redirection, virtual hosts, and aliasing.

1

1.4 Document Organization

This document consists of three sections pertaining to the Apache Web Server Secure
Configuration Study. Section 2 consists of an overview of the Apache Web Server. This
overview includes a section describing basic web server principles along with the details of
the Apache architecture. Section 3 provides the secure configuration guidelines along with
corresponding configuration issues. The Apache security services, authentication, access
control, availability, and auditing, are described along with the modules and directives used
to implement the security service. Recommended configurations are included for each
security area. Other security relevant issues are also discussed in this section. Section 4
provides a brief summary and recommendations.

Section 2
Apache Overview

The Apache Web Server isthe most popular web server on the Internet; more than
50 percent of the existing web sites use Apache. It was developed by a worldwide group of
volunteers known as the Apache Group that jointly manage the Apache Hypertext Transfer
Protocol (HTTP) Server Project. The Apache Group has worked hard to produce a robust,
highly configurable, and freely-available web server.

Thefirst version of Apache was released in April 1995 (Version 0.6.2) and is currently at
Version 1.3.6. The core contributors of the Apache Group used NCSA httpd 1.3 as the base
for theinitial release of Apache Version 0.6.2. The Apache user community grew rapidly
after the initial release and development, and refinement continued on the Apache HTTP
Server project; Version 0.7x was being designed during May—June, 1995. Although the
initial release was a big hit, the group decided that the server needed a new architecture. This
was designed and implemented in Version 0.8.8, released in August 1995. The new server
architecture consisted of a modular structure, an API for better extensibility, a new forking
process model, and pool-based memory allocation.

This section provides an overview of the Apache Web Server. The overview provides a
section containing basic web server principles along with the complete Apache Web Server
architecture.

2.1 World WideWeb Model

The World Wide Web (WWW) has been described as a distributed heterogeneous
collaborative information system. The WWW mission isto provide easy accessto an
information resource in aformat that is well defined and can be readily displayed. It consists
of amodel made up of web servers, web clients, a transmission protocol, and a format
specification for data. The web server and client are considered software components; the
transmission protocol, and data format specifications are protocol components. These model
components are described in the following sections.

2.1.1 Web Server Component

The aspect of adistributed system of information resources is met by the web server
component. Web servers can be installed on awide variety of computer platforms and
essentially serve as the controller/provider of information resources. It isthe server
component of the WWW model that provides information to a browser (the client) through
the transmission protocol. The browser interprets the data returned from the server and
graphically renders the information; however, there are some text-only browsers that do not
have a graphical capability.

2.1.2 Web Client

The web client provides for the ready display of multimediainformation and is
commonly known as the browser. The web client must be versatile since it has the role of
interpreting the data provided by the web server and displaying it, in the intended form, to the
user. Many web browsers have the capability to execute embedded instructions. These
instructions (e.g., Java Applets, JavaScript, VBScript, and others) can instruct the server to
execute a program residing in local memory/disk space or pass a request to another server
resource. The output of either of these actions can be directed back to the client through the
web server or by the called server resource.

2.1.3 Transmission Protocol: Hyper Text Transfer Protocol

The HTTP isthe request/reply protocol used for communication between the web
browser and the web server. This mechanism to transmit the information from the location
of the resource to the location of the client isunseen. It isaset of rulesthat govern how the
web browser makes requests and the web server responds; these are formatted according to
the specifications of the protocol. HTTP is part of the Advanced Research Projects Agency
ARPANEet family of protocols. Thisfamily includes other request/reply protocols, such as
File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP), and Telnet.

HTTP is encapsulated within a Transmission Control Protocol (TCP) connection. The
request/reply nature of the protocol results in a statel ess protocol; no information from an
earlier request isretained for usein alater request. The general ruleisthat thereisareply
for each request. The reply may be an interim status message that will be followed by a
complete response when the server is able to process and transmit the information requested
by the client. Asthe request for a document is satisfied, the underlying TCP connection is
closed. A new request for adocument (e.g., clicking on a hyperlink) will result in anew TCP
connection.

There are three primary message types for HTTP; the GET request, the HEAD message,
and the POST request. The GET request is used to retrieve information from the web server
identified in the Universal Resource Locator (URL). The HEAD message is similar to the
GET message, the difference is that the server responds with the header information only and
not the body of the document. Robots which build/update search engine databases typically
use this type of message. The POST message is used to post a message or submit form data.

New versions of web servers and web browsers support TCP/HTTP Keep-Alives. They
areafeature of HTTP Version 1.1. Keep-Alive establishes sessions and avoids the overhead
of constantly creating and closing separate TCP connections.

2.1.4 Data Format Specification Component

The final aspect of the WWW model is the data format specification; this describes how
the multimediainformation can be readily displayed at the client. Most commonly, afamily
of special purpose scripting languages, known as markup languages, describes the form and

4

content rules. They allow consistent information display across awide variety of web
browsers. The most familiar of the markup languages is the HyperText Markup Language
(HTML). New dataformat specifications are constantly being added to the WWW model.
The parent set of markup language specifications is the Standard Generalized Markup
Language (SGML).

2.2 Apache Architecture

Apacheis apowerful and widely used web server with a completely modular
architecture. It can be implemented on many widely used computer platforms including most
flavors of , Windows95/NT, and other server operating systems. This, along with its modular
architecture, makes it extremely popular throughout the web. It offers many features and
functions that can be added or removed depending on the needed functionality of the web
server. Some featuresinclude: Server-side image maps, configurable HTTP error reporting,
directory aliasing/fancy indexing, content negotiations, URL rewriting, and resource
management for child processes. These features are implemented through Apache’s modular
architecture described in the following sections.

The Apache architecture provides the configuration of a customized web server. The
Apache architecture can be divided into Apache file system layout, component module
architecture, configuration mechanisms, and run-time modes. Each of the architecture areas
can be customized. These areas are detailed in subsequent sections.

2.2.1 Apache File System L ayout

The Apache file system layout is configured when Apache isinstalled on the server. It
can be installed either in the default mode or in a customized file configuration, using the
default mode all apache files are located under the server root directory. The server root is
specified during the installation process. The default file layout is configured as shown in
Figure 1. The recommended custom file layout is shown in Figure 2.

The default file layout islocated under the server root directory. Within this directory
there are subdirectories created called bin, conf, and logs. Inthe “bin” directory the httpd
executables and the associated utilities are located. The “conf” directory holds the
configuration files and configuration information. The “logs’ directory holds the Apache log
files.

Httpd Configuratio Log files
executable n files
and utilities

Figure 1. Default File Layout

The customized file layout is constructed to conform with UNIX standards. These
standards would use the following format: “/usr” stores the subdirectory for Apache
executable and utilities, “/var” stores the subdirectory for thelog files, “/etc” storesthe
subdirectory for the configuration files, and the “/home” directory stores the subdirectory for

the published material and CGI scripts.

;fégﬂtame Log files Configuration publinshed
and utilities and proxy files material
CGl

Figure 2. Customized File Layout

Each file system layout hasits own advantages. The default layout has all the Apache
filesin one central location; under the server root. This allows the administrator to know
exactly where to ook for any Apachefiles; it isaso helpful if the web server and its content
ismoved to another platform. The customized file layout is standard for UNIX platforms
and would conform with the configuration used for other services on the platform. This has
the advantage of aready having the directory permissions set properly.

2.2.2 Component Module Architecture

The Apache Web Server isimplemented using a modular architecture. The component
module architecture consists of a core component along with avariety of add-in features.
These are implemented through default, standard, and third party modules. A moduleisa
software component that adds specific functionality to Apache. Combining the core module
with other modules allows the user to construct an Apache Web Server that is customized to
a specific site application; thisis shown in Figure 3. The following sections detail the
elements of the Apache component module architecture.

Core Module contains directives that represent: CORE
general configuration performance & resource configuration
standard container virtual host specific _ ——
logging authentication and security
|1 —
Default Modules Standard Modules
containdiredtivescompiled contain directives that
in configfiles by default can be added in using MEalle &AL
configfiles
3rd Party
3rd Party Modules and API Modules

Customized
Apache
Server

Figure 3. Apache Component Module Architecture

M odules and Directives

The module architecture consists of a core module, default modules, standard modules,
and third party modules. Each module is a software component that adds specific
functionality to the web server through the use of directives. They are commands used to
control the behavior of the web server. To use a specific directive, the module containing
that directive must be included in the web server. These modules can be added to or
removed from Apache at compilation by using a configure utility.

The core module contains core directives that control general configuration, performance
and resource configuration, authentication and security, logging, and other features. The core
directiveslisted in Table 1, are dways available. Container directives are directivesthat are
enclosed by container tag “<””>" pairs.

» Thegenera configuration directives address fundamental settings for the server and
for virtual hosts.

» The standard container directives apply a group of other directivesto a particular file,
directory, location, etc.

» Thevirtua host directives are used specifically for creating virtual hosts; some
directiveslisted in the general configuration section also apply to virtual hosts.

» The performance and resource directives are used to control Apache processes,
system resources, and make persistent connections.

» Thelogging directives enable server log information.

* The authentication and security directives define access control and security policies
for the server.

Tablel1l. CoreDirectives

General Standard Virtual Host Performance Logging Authentication
Configuration Container and Resource and Security
AccessConfig <Directory> AccessConfig AddModule ErrorLog AllowOverride
accessFileName <DirectoryMatch> AccessFileName ClearModulelist IdentityCheck ~ AuthName
BindAddress <Files> NameVirtuaHost KeepAlive LockFile AuthType
BS2000Account <FilesMatch> <Virtua Host> KeepAliveTimeout LogLevel require
ContentDigest ServerAlias LimitRequestFidds PidFile Satisfy
CoreDumpDirectory <Limit> ServerPath LimitRequestFields ScoreBoardFil

DefaultType <L ocation> LimitRequestLine

DocumentRoot <L ocationMatch> MaxClients

ErrorDocument MaxKeepAliveRequ

Group M axRequestsPerChi

HostNamel ookups MaxSpareServers

Include MinSpareServers

Listen RLimitCPU

ListenBacklog RLimitMEM

<IfModule> RLimitNPROC

Options ServerType

<IfDefine> StartServers

Port ThreadsPerChild

ResourceConfig SendBufferSize

ServerName TimeOut

ServerAdmin

User

ServerRoot

ServerTokens

The default modules contain directives that are included in the server by default; these
can be removed if desired. The standard and third party modules contain directives that add
functionality to the server. These directives are used in configuration filesthat are read at
runtime. There are many available modules in the default and standard set of Apache
modules. New modules and third modules are constantly being added to thislist. Table 2
lists the default and standard modules for Apache Release 1.3.3. A list of third party
modules available can be found at the Apache web site (url:www.apache.org). Apache also
contains an Application Programming Interface (API) that allows developersto build
modules to provide a specific functionality to the web server. This module architecture and
the ability to add and remove modules allows customization of the Apache web server.

Table 2. Apache Default and Standard Modules

M odule Name

mod_access
Default

mod_actions
Default

mod_alias
Default

mod_asis
Default

mod_auth
Default

mod_auth_anon
Sandard

mod_auth_db
Sandard

mod_auth_dbm
Sandard

mod_autoindex
Default

mod_cern_meta

mod_auth_external
Check thisout if available

mod_cgi
Default

mod_digest
Sandard

mod_dir
Default

mod_env
Sandard

mod_example
Sandard

mod_expires
Sandard

Function
Host-based access control.

Filetype/method-based script execution.

Aliases to map one part of the server’sfile system to
another and url redirection.

Documents can be sent without HTTP headers or asis.
User authentication using text files.

él Ilows anonymous user access to authenticated areas FTP
yle.

User authentication using Berkeley DB files.
User authentication using DBM files.
Provides automatic directory indexing.
Support for HTTP header metafiles.

Support for third party authentication modules.

Provides for execution of CGlI scripts.

Provides for user authentication using MD5 Digest

Authentication.

Provides basic directory handli n?; any request for a
r

directive that does not include atrailing slash character is
redirected.

Passes environments to CGlI scripts.

[llustrates many aspects of the Apache API and
demonstrates callbacks triggered by the server.

Applies Expires setting HT TP header in server response.

10

Module Name

mod_headers
Sandard

mod_imap
Default

mod_include
Default

mod_info
Sandard

mod_isapi
Default

mod_log_agent
Sandard

mod_log_config
Default

mod_log_referer
Sandard

mod_mime
Default

mod_mime_magic
Sandard

Function
Enables the addition of arbitrary HTTP response headers.

Providesfor .map files.

Provides for server-parsed html documents.

Provides comprehensive overview of server configuration.
Provides support for ISAPI Extensions.

Provides for logging of client user agents.

Provides for logging of requests made to the server.
(I;’(r)%\ljlr%gsn {é)(r) Lot gelggr Sfert.he documents which reference

Support for determining the types of files from the filename.

Used to determine the MIME type of afile by looking at a
few bytes of its contents.

mod_mmap_statl C
Sandard

mod_negotiation
Default

mod_proxy
Sandard

mod_rewrite
Default

mod_setenvif
Default

mod_so
Sandard

mod_speling
Sandard

mod_status
Default

Experimental module that maps alist of statically)
configured list of frequently requested but unchanged files.

Provides for content negotiation.
Provides for an HTTP 1.0 caching Proxy server.
Hses arule-based rewriting engine to rewrite requested

RLs.

Provides for the ability to set environment variables based
upon attributes of the request.

Experimental module for loading modules into Apache at
runtime viathe DSO.

Automatically corrects minor typosin URLSs.

Allows a server administrator to check server perfomance.

11

Module Name Function

mod_userdir Provides for user-specific directories.

Default

mod_unique _id Generates unique request identifier for every request.
Default

mod_usertrack User tracking using Cookies.

Default

2.2.3 Configuration M echanisms

Apache uses configuration mechanisms to specify server functionality. These
mechanisms are four configuration files. srm.conf, httpd.conf, access.conf, and mime.type.
These text files contain comments and directives used to specify the behavior of the server.
The Apache source distribution has sample configuration files called srm.conf-dist,
httpd.conf-dist, access.conf-dist. These files can be renamed and edited to use for the site-
specificinstalation. The configuration file httpd.conf is used as the primary configuration
file; specifying to the operation of the server daemon. The configuration file srm.conf isthe
resource configuration file. It configures the server to offer specific resources/documents on
the Apache server. The configuration file access.conf isused to set permissions for files,
directories, and scripts on the web server. Mime.type is not modified for most web server
installations and will not be discussed. Another mechanism, .htaccess, is used to apply
configuration directives on a per directory basis. The configuration files are read into the
system at runtime.

2.2.4 Apache Run-Time Modes

Apache can be configured to run using two different modes; stand-alone and inetd.
These run-time modes are configured by using the core directive “ ServerType” with either
stand-alone or inetd specified in the directive. The ServerType directive is specified in the
httpd.conf configuration file.

Although the functionality of the server isthe same; the performance will vary greatly
depending on the run-time mode. In the stand-alone mode, the web server child process
lives for atime before closing down,; this allows reuse of the processif arequest isreceived
during thistime. Intheinetd mode, the web server process exits as soon asit is finished
servicing arequest. The stand-alone mode is more efficient because it does not have to
launch anew process each time arequest isreceived. These modes are described in more
detail in the following sections.

12

2.2.4.1 Standalone Mode

In the stand-alone mode the server will run as adaemon process. Thisisthe default
setting for the directive “ ServerType stand-alone” used in the http.conf file. Asshownin
Figure 4, the server listens for a connection request on a specific port. When the connection
request is received, the primary server launches a child process to service the request. The
child process will not shut-down immediately. It will continue to service requests until a
specified request threshold has been met.

;

Apache server

) Primary
[Internet ’5

UID: root

g)
S

Child process

UID: set in
httpd.conf

Child process
UID: set in
httpd.conf

Figure4. Stand-Alone Mode

The primary server listens for client requests on a specific port. This port is defined
using the “Port” directive. Typicaly, the HTTP port is80. If the server is not running under
the “root” user context, then a port between 1024 and 32768 must be specified.

When running in the stand-alone mode, the child user ID and the group ID must be
specified using the core directives “User” and “ Group,” respectively. The parent process can
run as root with the child running as a different user/group. For security reasons, the child
process should not be run as “root;” thiswould allow the child to have “root” user privilege.
The default for the user and group ID is the user/group “nobody.” Thisisalow-privileged
user that belongs to alow privileged group. It should be noted that the user/group ID can
only be changed if the primary server processis being run under the “root” user context. If
the primary server isbeing run by user “Jane;” the child processes will have the same
privileges as “ Jane.”

13

2.2.4.2 Inetd Mode

In the inetd mode the web server isrun as an inetd child process. The inetd processisthe
Internet daemon. Thisis specified in the httpd.conf file with the directive “ ServerType
inetd.” The inetd server process listens for connection requests on ports 0 through 1023 as
shown in Figure 5. When connection requests are received, the inetd daemon launches the
one httpd process per request. The httpd process services the request and then exits.

A inetd server
Internet
UID: root
B

Apache server

UID: set in
/etclinetd.conf

Apache server

UID: set in
/etc/inetd.conf

Figure5. Apacheinetd Mode

When running Apache in the inetd mode, the inetd.conf file (an operating system
configuration file) must have arecord added for Apache. This record includes the service
name, socket type, protocol, flags, user ID, and server path. The httpd service must be run as
aparticular user. A specia user should be created to run the httpd service; this user would be
similar to the user “nobody.” This user should have access privileges to the web directives
and thelog file directories. For example, if the user “httpd” is used, the inetd.conf entry
would be:

httpd streamtcp nowait httpd /usr/sbin/httpd —f /etc/httpd/ conf/httpd.conf
An entry must also be made in the /etc/servicesfile. This entry should be:

httpd 80/tcp/ httpd
This describes the httpd service as available on port 80.

For perfomance reasons, the inetd mode should not be used for a high-traffic web
server. The server should be run in the stand-alone mode.

14

2.3 Apache Configuration Roadmap

The Apache architecture provides the configuration of a customized web server and
consists of Apache file system layout, component module architecture, configuration
mechanisms, and run-time modes, as described in previous sections. Each of the architecture
areas can be customized for installation. The Apache environment roadmap, in Figure 6,
shows how the pieces of the Apache architecture combine to produce the customized web

server.
Default Modules

COMPILATION

Apache

Executable
1

srm.conf

tart <)Z| access.conf
Apache e ——

[
Apache EnvironmerE

Figure 6. Apache Environment Roadmap

Standard
Optional
Modules

Core Module

The core, default, and standard modules that comprise the Apache executable are
specified by the configure script. The AddModule statement is used in the configure script to
add modules to the Apache functionality. The configure script runs and creates the Makefile
used to compile the Apache source file. Compilation produces the Apache executable, httpd.
When httpd is started, the configuration files, httpd.conf, srm.conf, access.conf and .htaccess
areread. This produces the customized Apache environment.

2.4 Apache Security Services

This section provides a brief description of the security services provided in the Apache
Web Server. These services have been divided into seven distinct security areas:
authentication, access control, auditing, availability, integrity, confidentiality, and
nonrepudiation. The Apache security services are:

15

Authentication: Authentication provides the mechanism to verify the identity of a client
through the exchange of information. Thisis done when the client sends an authorized
username/password pair to the server. Apache provides the functionality to set up access
control policies based on the authenticated identities of clients.

Access Control: Access control provides the mechanism to grant access to system
resources based on the identity of the user. Apache provides the functionality to set up
host-based access control where the requesting host is either allowed access or not
allowed access to resources on web server.

Auditing: Auditing provides the mechanism which ensures that actions performed by all
users authorized or otherwise, are recorded. Apache auditing provides arecord of the
activities taken on the Apache server. Administrators can determine server usage,
resource usage and service response difficulties. They can also determine if and when
security attacks have been attempted on the server.

Availability: Availability provides the mechanism to ensure that system datais available
to users when required. Apache provides availability within the core module by alowing
the administrator to set configuration variables to maximize performance and availability.

Confidentiality: Confidentiality provides the mechanism to ensure that datais protected
from accidental or purposeful disclosure. This process would include message
encryption to or from the server. This service requires the use of modern cryptographic
protocols, usually SSL. Unfortunately, the standard Apache does not support SSL at this
time but an Apache derivative for SSL version is available commercialy.

Integrity: Integrity provides a mechanism for the protection of system data from
accidental or purposeful alteration in transit; there is an important distinction between
confidentiality and integrity. Thisis usually done through the use of a cryptographic
checksum or other similar procedure. The Apache server does not implement this service
which means that an attacker could tamper with Apache messagesin transit.

Nonrepudiation: Nonrepudiation is the mechanism to assure or prove that the source of
data or message cannot deny authorship. It is not implemented in Apache and may not be
implemented in web servers.

These security services are described in more detail in Section 3. Each serviceis
described along with the modules and directives used to implement the security service.
Recommended configurations are included for each security area.

16

Section 3
Secure Apache Configuration and Configuration I ssues

This section considers each of the security relevant features of the Apache Web Server.
It also describes how to implement them in typical configurations. The first section, Genera
Server Settings, describes directives that provide support to the other areas of functionality.
The subsequent sections describe modules that implement specific security services or areas
of functionality that have a security impact.

3.1 General Server Settings

This section describes directives that are part of the core structure which are used by
other areas of functionality, but do not actually fit into one of the areas of functionality
themselves. These directives are divided into their areas of primary functionality. These are:
container directives, group and user directives, handling directoriesin URLS, and the
Optionsdirective. This section does not present any examples, reasoning that the directives
will be demonstrated in subsequent sections, or the directives are self-explanatory.
Nonsecurity relevant directives will not be discussed.

3.1.1 Container Directives

Container directives are used in the configuration files to specify the resources or actions
to which an enclosed set of directivesisto apply. There are several container directives
(sometimes called “section” directives):

» <Directory>—Specifies afile system directory either explicitly, using awildcard
expression, or using an extended regular expression.

» <DirectoryMatch>—Specifies afile system directory using an extended regular
expression.

» <Files>—Specifies a specific filenamein the file system either explicitly, using a
wildcard expression, or using an extended regular expression.

» <FilesMatch>—Specifies a specific filenamein the file system using an extended
regular expression.

» <L ocation>—Specifiesa URL either explicitly, using awildcard expression, or using
an extended regular expression.

* <LocationM atch>—Specifiesa URL using an extended regular expression.

* <Limit>—Specifies one or more HTTP methods.

¢ <VirtualHost>—Specifiesavirtua host by IP address and, optionally, port. See
Section 3.10 for more on the subject.

17

In al cases, the resources, (directories, files, URLS, or methods) appears immediately
after the name of the directive (separated by a space) but before the closing angle bracket (>).
A container directive is used to begin ablock. The block ends with the same directive
preceded by abackslash (/). For example, a<Directory> block would be closed by
</Directory>. All directives enclosed within the block are applied only to the resource that
was specified in the opening directive. All contained directives, the opening, and closing
markers, should be on separate lines.

It is possible for multiple container directivesto apply to asingle resource. If this
happens, then the order in which the directive blocks are applied becomes important.
Container directive blocks are not applied sequentially; that is, they are not applied in the
order they appear in the configuration file. Directive blocks are applied in the following
order:

<Directory> without regular expressions

.htaccess files (See Section 3.1.5)

<DirectoryM atch> and <Directory> with regular expressions
<Files> and <FilesM atch>

<L ocation> and <L ocationM atch>

o~ DN RE

When two directive blocks apply to the same resource and share the same level in the
above list, the most specific block will be applied later.

If two directive blocks apply to the same resource and contain the same directive, the
directivein the later applied directive block will overwrite the directive in the previously
applied directory block.

Previously applied directive blocks that address a particular resource will be overridden
by similar directive blocks applied later.

Directives regarding a particular resource within a directive block that is applied later
will override al instances of the same directive present in directive blocks that were applied
previously. Thisisnot aways completely intuitive; a specific directivein a“later” block
could override itself and override other directives associated with it, causing those directives
to revert to their default values.

3.1.1.1 <Directory> and <DirectoryM atch> Directives

The <Directory> and <DirectoryM atch> directives cause their directive blocks to apply
to the specified directory, including subdirectories and all contents. The <Directory>
directive allows awildcard expression. All characters match themselves except:

18

e 7?- matches any one character
e * - matches any group of characters
* [] - matches any one of the characters listed between the brackets

If the “Directory” in the container directive isfollowed by a space followed by atilde (~),
the parameter following it, is treated as an extended regular expression (see the nan page on
gr ep for more on the extended regular expression language). The <DirectoryM atch>
directive takes aregular expression to specify itstarget.

In the Linux operating system, multiple paths to a given directory may exist through the
use of links. (Seethe man page on 1n for moreinformation on links.) If a
<Directory>/<DirectoryM atch> directive matches one path, accessing the given directory
by another path, may not cause the container directive block to be applied.

The <Directory>/<DirectoryM atch> directives match the file system path of the
directory in order to determine which resources they cover. This may not necessarily reflect
the URL used to access this resource. Additionally, some directives do not make sense when
applied within this context. These are the directives that are only meant to apply to the server
asawhole, as opposed to specific resources. For example, the Server Name directive would
not belong within a <Dir ectory>/<DirectoryM atch> block since attempting to do so would
imply trying to change the name of the server on adirectory by directory basis.

3.1.1.2 <Files> and <FilesM atch> Dir ectives

The <Files> and <FilesM atch> directives cause their directive blocks to apply to
resources whose filename (excluding path) matches the specified value. Theresult is that
every filein the entire file system whose name matches the val ue within the opening
directive will have the container directive block applied.

Like the <Directory> directive, the <Files> directive allows awildcard expression. |f
the“Files’ in the container directiveis followed by a space followed by atilde (~), the
parameter following it istreated as an extended regular expression. Matching is done against
the file system rather than the URL and the two may differ. The <FilesMatch> directive
takes an extended regular expression to specify its target.

Sinceit is not always desirable for every file of a given namein the entire file system to
receive the same treatment, it is possible for <Files>/<FilesM atch> directives to be placed
within <Directory>/<DirectoryMatch> directives. In this case, the filename matching will
only occur within the context of the specified directories. Aswith
<Directory>/<DirectoryMatch>, not all directives make sense within a
<Files>/<FilesM atch> directive block. All directiveswhich cannot be placed within
<Directory>/<DirectoryM atch> directive blocks cannot be used within a

19

<Files>/<FilesM atch> directive blocks. In addition, these directive blocks cannot contain
the Options directive, aswell as others.

3.1.1.3 <Location> and <L ocationM atch> Directives

The <L ocation> and <L ocationM atch> directives cause their directive blocksto be
applied to all resource requests that match the argument in the opening directive. The
argument is applied against the URL being referenced. The argument should not contain the
protocol or the server name unless the directive is being applied to a proxied resource. (See
Section 3.11.1 for a brief overview of proxying with the Apache server.) For example, in
order to match the request, ht t p: / / www. mi tr e. or g/ sanpl e/ doc. ht ni , the pattern
in the <L ocation>/<L ocationM atch> directive should be“/ sanpl e/ doc. htm . ”

The <L ocation> directive allows awildcard expression. If the“Location” in the
container directiveisfollowed by a space followed by atilde (~), the parameter following it
istreated as an extended regular expression. Unlike the <Directory> and <Files> directives,
<L ocation> directives do not consider the resource’ s location in the file system ; they look
only at the URL. The <L ocationM atch> directive takes an extended regular expression as
its argument.

Dueto the fact that <L ocation>/<L ocationM atch> directives do not involve the file
system there are many directives that would be nonsensical within this context block. In
addition to those directives which cannot be placed within <Dir ector y>/<DirectoryM atch>
directive blocks, <L ocation>/<L ocationM atch> directive blocks cannot contain <Files> or
<FilesM atch> directives, Options directives with parameters involving symbolic links, or
other directives which are focused on the file system .

3.1.1.4 <Limit> Directives

The <Limit> directive is used to control accessto specific HT TP methods on the server.
The HTTP 1.1 specification specifies eight methods; seven have defined functionality. These
are:

* OPTIONS—Requests that the server specify the communication options associated
with a specific URL, resource, or the server.

* GET—Requests that a specified resource be sent to the client. Thisisthe most
common method used.

 HEAD—Identical to the GET method, but only the header information is returned.

* POST—Requests that information sent from the client be processed by the resource at
the specified URL.

* PUT—Requests that the specified resource be replaced with new information. Thisis
similar to an FTP put command.

20

 DELETE—Requests that the server delete the resource specified by a given URL.

TRACE—Requests that the target server simply return the message it receives back
to the client.

e CONNECT—Thisisareserved method, but asof HTTP 1.1, its functionality is
undefined.

The <Limit> directive can take a space separated list of the following parameters:
OPTIONS, GET, POST, PUT, DELETE, and CONNECT. Each parameter corresponds to
the matching HT TP method with the exception of GET which corresponds both to the GET
and HEAD methods. Thereis no parameter to restrict the TRACE method.

The contents of the directive block are applied to any attempts by a client to use this
method. Generally, only access control directives make sense within this container directive
block. The <Limit> directive can stand alone in the configuration file, in which case it
appliesto all requeststo the server, or within other container directive blocksin which case it
only applies to requests of those resources.

3.1.2 The User and Group Directives

As described earlier in the discussion of the Apache runtime architecture (see
Section 2.2.4.1), when the Apache server starts, it forks off several processes which are then
tasked with servicing individual client requests. These child processes have their own user
and group identities that can be used to control the amount of access they haveto thefile
system . These identities are set by the User and Group directives respectively. The
operating system uses the identities in its access control calculations. If the username under
which achild processis running is not allowed to access a given document, that child will
not be allowed to serveit to aclient.

It isimportant that the user and group assigned to the server child processes be permitted
access only to files and directories that it has a need to use. Operating the child process
under a user or group with access to other files or executables opens the possibility that the
server may publish or even alter files of a sensitive nature on the file system .

By default, both User and Group are set to “nobody,” a default user on the Apache
system. Unlike other operating systems, the user “nobody” does not represent a given level
of access but is simply a name and group like any other. However, asit is extremely unlikely
that any files or directories will exist on the server that are specifically granted to “nobody,”
access will usually be prevented to all files and directories except those with world access
permitted.

As other applications sometimes use the “nobody” user and group, Apache administrators
may wish to create a user for the exclusive use of Apache child processes. This user can be
created in the same way as anormal user on the operating system. It important that the new

21

user not be assigned to a preexisting group as this would actually increase the access
provided to the child processes. A new group should be created along with the new user to
ensure the child processis not assigned to a group that already has accessto other files.

Once the new user and group are created and set in the server using the User and Group
directives respectively, the administrator must ensure that all publishable content is readable
by this user and that the user can access all the appropriate directories. Likewise, since CGlI
and other executables run under the name of the server child process, it isimportant that al
files they depend on be accessible by that user. Log files, configuration files, and the like are
accessed by the parent process and do not need to be accessible by the child process user.

3.1.3 Handling Directory Referencesin URLs

Most modern web servers provide the means to handle direct references to directoriesin
the URL. A directory reference occurs when a user requests a directory rather than a specific
file. The server cannot return the entire directory to the client. Directories may or may not
be requested with atrailing backslash (/) character and the server must be able to handle
either condition. This section describes the modules that the Apache server usesto control
this functionality.

The mod_dir module serves two functionsin directory handling. Firgt, it automatically,
without the use of any directives, provides the functionality for trailing-slash redirects. A
trailing-slash redirect is simply an HT TP redirect message (HT TP code 301) sent to any
client that requests a directory without including a backslash (/) at the end of the directory
name. Using this method, the Apache server can always be certain that the only valid path of
adirectory includes the trailing backslash. Thisisimportant with directives such asthe
<L ocation> directive that perform pattern matching on the URL.

The second feature that the mod_dir module providesis the ability to specify a default
index file the server will look for in each directory. Thisfunctionality is provided by the
Directorylndex directive. Thisdirectivetakesalist of file names as parameters. When the
server receives arequest for adirectory, the server checks the directory for one of thefile
names listed after the Dir ectorylndex directive, returning the file that matches the earliest of
its parameters. Index documents normally contain links into the contents of the directory.

When an index file does not exist, the Apache server uses functionality provided by the
mod_autoindex module. This module automatically, without the use of any directives,
enables the server to dynamically create an HTML page listing the contents of the directory.
There are several directivesin the mod_autoindex module that pertain to how this page
appearsto the user. It is possible to turn auto-indexing off using the Options directive, in
which case the server returns a*“ Forbidden” error (HTTP error 403). See Section 3.11.3
regarding the security implications of auto-indexing.

22

Both mod_dir and mod_autoindex are part of the default Apache build and, unless the
administrator wishes to replace their functionality with modules of their own design, it is
recommended that they remain untouched.

3.1.4 The Options Directive

The Options directive is ageneral directive that controls a broad range of capabilities on
the Apache server. It is part of the core module and, therefore, always available. This
directive takes one or more of alist of possible arguments, each argument enabling a
particular capability on the server. Asthe Options directive may be placed within a
container directive block, this control may be applied on a directory basis.

Each argument of Optionsis associated with a specific capability. These are described
below:

* All—Thisargument enables al arguments except MultiViews, which must be
explicitly added. Thisisthe default setting of the Options directive.

» ExecCGl—This argument permits CGI scripts to be executed. See Section 3.7 for
more on CGI scripts.

* FollowSymLinks—This argument allows symbolic links to be followed. Symbolic
links are afeature of UNIX operating systems (including Linux) that allow multiple
paths to a given resource. For more information, consult the man pagesfor thel n
command.

* Includes—This argument allows server side includes to be executed. See
Section 3.8 for more on server side includes.

* IncludesNOEXEC—Same as the Includes argument, but it prevents the use of the
#exec command and use of the #i ncl ude command, if theincluded fileis
executable. See Section 3.8 for more on server side includes.

* Indexes—This argument enables the auto-indexing capability described in
Section 3.1.3. See Section 3.11.3 for more on indexing.

* MultiViews— This argument enables MultiViews. MultiViews is an advanced
feature of the Apache server. If arequested resource is not present, it will check the
given directory for files whose names starts with the name specified in the URL
followed by a dot with any extension. Note that this argument is not enabled by the
All argument and must be added explicitly.

* SymLinkslfOwnerMatch — Thisis aspecial case of the FollowSymLinks argument.
The client will be allowed to follow symbolic links, but only if the link is owned by
the same user ID asthe target file or directory.

23

The Options directive is useful for its ability to block the use of features whose
argumentsit is not given. For example, if auser wishes to prevent CGI scripts from being
executed, they would add an Options directive with an argument list that did not include the
ExecCGI argument.

3.1.5 .htaccess Files

In addition to using container directives (Section 3.1.1), the Apache server can also apply
configuration information to directories based on special files within the directory itself.
Thesefiles are caled .htaccessfiles. The name of thesefilesis set using the
AccessFileName directive in the core module. By default the file nameis“.htaccess.” This
document refersto all such files as .htaccess files regardless of their actual name.

The behavior of .htaccess filesis virtually the same as that of the <Directory> container
directive with two exceptions. The first difference isthat, while multiple directories may be
specified in the parameter of the <Directory> directive, .htaccessfiles only apply to the
directory in which the fileislocated. Aswith the <Directory> directive, the directives
within an .htaccess file will apply to the specified directory and al files and directories
within it.

The second difference between .htaccess files and <Dir ectory> directivesis that, using
the AllowOverride directive, the administrator can specify which directives a .htaccessfile
may contain, or whether the fileis even consulted. AllowOverrideisavalid directivein
<Directory> and <DirectoryM atch> container directives, and administrators are able to use
thisto control the permitted directives in .htaccess files on a directory by directory basis.
The directive may have one or more of the following parameters:

* All-ndicatesthat al directivesthat are valid within the “ .htaccess’ context are
allowed within the specified .htaccessfiles. (No other parameters should be listed.)

» None—Indicates that .htaccess files should not be consulted by the server. Thefiles
will not even beread. (No other parameters should be listed.)

* AuthConfig—Permits the .htaccess file to contain directives relating to
authentication. (See Section 3.2 for more on authentication directives.) These
directivesinclude AuthName, AuthType, require, and all directives contained
within the mod_auth, mod_auth_db, mod_auth_dbm, mod_auth_anon, and
mod_digest modules.

* Filelnfo—Permits the .htaccess file to contain directives controlling document types.
These directives include those in the mod_mime module.

* Indexes—Permits the .htaccess file to contain directives relating to directory
indexing. These directives include those in the mod_autoindex module.

24

» Limit—Permits the .htaccess file to contain directives relating to host based access
control. These directives include order, deny, and allow.

* Options—Permits the .htaccess file to contain directives relating to directory options.
These directives include the Options and XBitHack directives. Administrators
should be wary of providing this parameter as the directives it describes, as it can
grant some powerful capabilities.

When filling out a.htaccess file, one simply lists the directives that one wishes to have
applied. Only specific directives are permitted within .htaccess files. Even though the
<Directory> directive behavesin asimilar way, not all directives that are appropriate within
a<Directory> container will be permitted within a .htaccessfile. The AllowOverride
directive is a notable example that is acceptable in the former but which is disallowed in the
latter. The documentation for individual directives will specify whether the directiveis
allowed in the “directory” and/or the “.htaccess’ contexts. In addition, administrators must
be careful not to place directivesin an .htaccess file that are prohibited by the
AllowOverridedirective. If the .htaccessfile containsillegal directives, when the user
attempts to accessit or any file or directory within it, the Apache server will return a
“Interna Server Error” message (HT TP code 500) to the client that explains that an illegal
directive was in the .htaccess files and lists the offending directive.

One other note is that, unlike the standard three configuration files, the Apache server
does not need to be restarted to implement changes to .htaccess files. Modificationsto
.htaccess files take effect the moment the changes are saved.

3.2 Authentication

Authentication is the procedure by which the server attempts to verify the identity of a
client through the exchange of information. Thisis accomplished when the client sends the
server arecognized username and password pair. The Apache Web Server allows
administrators to set up access control policies based on the authenticated identities of users.
The opposite of authenticated access is anonymous access wherein no authentication
information istransferred. Thisisthe normal behavior of web servers. This section will
offer abrief description of the authentication capabilities of the Apache Web server as well
as the steps to configure the two most common authentication setups: username-password
authentication and anonymous authentication.

3.2.1 Modules

The Apache Web Server Version 1.3.3 contains five modules that relate to authentication.
These modules are:

25

* mod_auth—Provides username authentication capabilities. The usernames and
passwords are stored in a plain text file on the server with the password encrypted
using the UNIX cr ypt function. The client sends the username and password over
the network in uuencoded format.

* mod_auth_db—Provides username authentication capabilities. The usernames and
passwords are stored in a Berkeley-DB database on the server with the password
encrypted using the UNIX cr ypt function. The client sends the username and
password over the network in uuencoded format.

* mod_auth_dbm—Provides username authentication capabilities. The usernames and
passwords are stored in a DBM database on the server with the password encrypted
using the UNIX cr ypt function. The client sends the username and password over
the network in uuencoded format.

* mod_digest—Provides username authentication capabilities. The usernames and
passwords are stored in aplain text file on the server with the password hashed using
the MD5 message digest algorithm. The client sends the username and password
over the network after it is hashed using MD5.

* mod_auth_anon—Provides anonymous authentication capabilities. The client must
enter one of the specified “anonymous’ usernames and be recognized as avalid user
(with some additional control provided by the modules' directives). The client sends
the username, and possibly an e-mail address as a password, over the network in
uuencoded format.

Most of the modules are virtually identical. Specifically, the mod_auth, mod_auth_db
and mod_auth_dbm modules contain the same three directives with only slightly different
names. (l.e., AuthUserFile, AuthDBUserFile, and AuthDBM UserFile.) The functionality
of these three modulesisidentical except in respect to the format of the file in which the
username and password datais stored. This document will use the mod_auth_db module for
its username-password authentication; it is more efficient than straight text filesand is
slightly easier to configure than DBM databases using the tools packaged with Apache. If
the administrator wishes to use one of the other two modules, the directives can be converted
in a straightforward manner and the username-password files rewritten in the appropriate
format. The description of a username-password configuration will include additional
instructions for the use of other modules when necessary.

The mod_digest module implements MD5 message digest authentication. Thistellsthe
client to send the username and password to the server using an MD5 hash. Whilethisis
much more secure against eavesdropping than normal uuencoding, the technique does have
some security problems as described in RFC 2831. Of course in order use digest
authentication, a compatible web browser must be used. At thistime only the latest releases

26

of Internet Explorer (version 5.5) and Netscape Communicator (version 6.0) implement
Digest authentication.

The mod_auth_anon module is used for anonymous authentication. Anonymous
authentication should be distinguished from anonymous access. In the former, the user must
undergo some log-in process, even though it does not attempt to identify the user.
Anonymous access has no log-in process at al. Usually anonymous authentication behaves
similarly to anonymous FTP login wherein the user of the client browser specifies
“anonymous’ (or some other widely recognized username) as their username and then
provides their E-mail addressin the password field. The mod_auth_anon module provides
severa directives which allow the administrator to specify what information needs to be
entered in the log-in panel for an anonymous authentication to succeed. Thisincludesthe
ability to specify the contents of the username field and, in a more limited sense, the contents
of the password field as well.

The mod_auth, mod_auth_db, mod_auth dbm, and mod_auth_anon modules all contain
some variation of “authoritative” directives. This paper will not cover these directives for
reasons that will be explained in Section 3.2.6.

3.2.2 Default Configuration

The mod_auth moduleis part of the default Apache build. However, the default
configuration files contain no authentication directives.

3.2.3 Background Information

This section discusses information that is not a straightforward part of the configuration
process. Thisinformation is deemed necessary for a proper understanding of how
authentication is implemented.

3.2.3.1 Username-Password File Creation

The username-password files contain alist of valid username and password pairs that
may be provided by a client and recognized by the server. They are created using tools
distributed with Apache. (1) To create a plain text username-password file, such as would be
used by the mod_auth module, the ht passwd command would be used. (2) To createa
Berkeley-DB database for the mod_auth_db module, the dbnmmanage utility with the
adduser option would be used. (3) To create a DBM database for the mod_auth_dbm, the
dbmmanage utility with theadduser option would be used. The resulting file then needs
to berenamed so it has a.db extension. (4) Password files for the mod_digest module can be
created using the ht di gest utility. All three of these utilities contain man pages which
describe how to use them.

27

The passwords associated with usernames should not be the same passwords used to
grant access to other services on the system. In all but the mod_digest module, the passwords
are sent over the wirein uuencoded format, which istrivial to decode. This allows anyone
capable of listening to the wire, the capability of |earning the username-password pairs used
to log onto the system. Additionally, the server does not keep track of failed authentication
attempts, allowing an attacker any number of guesses when trying to gain access. For these
reasons, it isimportant that web passwords not be used with other resourcesin order to
localize any possible damage when these passwords are revealed.

3.2.3.2 Username-Password File Security

All implementations of authentication must have a reference to a username-password file.
The security of the username-password filesis very important. With the exception of files
created using the ht di gest utility, which can only be used with the mod_digest module,
the format of the username-password files provide no security. Any user who can read these
fileswill, at the very least, be able to launch an off line dictionary attack to crack the
passwords. For thisreason, it isimportant that accessto the filesis provided only to the
people and applications that need it.

The Apache server reads the username-password files in order to perform authentication.
The Apache server runs under the user and group specified respectively in the User and
Group directivesin its configuration files (see Section 3.1.2). The username-password file
must be readable by this user or group.

The web site administrator is the only other user who needs accessto thesefiles. If the
administrator is the root operator of the Linux host, they will have accessto the file no matter
what the security settings are. In this case, only the Apache server user ID should have
access. If the web server administrator uses a different user ID, it is necessary that the
security settings of the file be set to give them both read and write access to the username-
password files. This should be verified for every username-password file created sinceit is
unlikely that the Linux operating system will create files with these characteristics by default.

Additionally, the location of the username-password filesisimportant. Under no
circumstances should the files be placed in a published directory of the web server since this
will give remote users the ability to download them. Username-password files should be
placed in alocation that both the Apache Web Server and the web server administrator are
able to reach, but that is not part of the servers published path.

3.2.3.3 Group Files

Since an administrator may wish to grant accessto alist of authenticated users, the
Apache server provides the ability to group users together. This alleviates the need to enter
long lists of usernames into the configuration file. Unlike the username-password files,
group files are optional and added only for the convenience of the administrator.

28

The method to create group files depends on the authentication module used. For the
mod_auth_db and mod_auth_dbm modules, the dbmranage utility with theadd optionis
used. For the mod auth dbm module, the created file needs to be renamed with a .db
extension. When using the dbnmanage utility in both cases, the username is given as the
key and a comma separated list of groups (no spaces) is given as the “ password.”

Thereisno utility to create group files for the mod_auth module. However, the format of
the fileis simple enough that it can be easily created using a simple text editor. Each line of
the file should contain the name of the group followed by a colon (no space) followed by a
space separated list of the users who are members of this group. The file should be created
using atext editor which will not add formatting marks to the document. Both emacs and
vi aresuitable for the task.

The mod_digest module does not support group authentication in the current version of
Apache.

The group files, unlike the username-password files, do not contain sensitive information.
However, the same comments made about the security of the username-password files apply
to the group files. Thiswill prevent users from altering the files and changing the security
policy of the web server.

3.2.4 Configuration Information

There are two types of authentication that can be configured. The first is username-
password authentication in which aclient provides a username and secret password to the
server in order to verify the identity of the person using the client browser. Anonymous
authentication allows the user to enter awell-known username and their e-mail address as a
password and be given access to the system. The E-mail address can optionally be recorded
inalog file. The configuration commands for these authentication scenarios is described
below.

3.2.4.1 Username-Password Authentication

This example of username-password authentication uses the mod_auth_db module. To
create configuration entries for the mod_auth and mod_auth_dbm modules, simply
interchange the directives with their corresponding directive in the desired module. If
additional changes are necessary, these will be mentioned as appropriate. The format of the
username-password and group files must be appropriate to the module being used.

Since this example uses mod_auth_db which is not, by default, compiled into the Apache
server, the parameter - - enabl e- nodul e=aut h_db must be given as an argument of the
conf i gur e command. If mod_auth dbmis used, the argument would be - - enabl e-

29

nodul e=aut h_dbm Since the mod_auth module is enabled by default, it does not require
extraargumentsin theconf i gur e command.

<Directory "/usr/local/apache/share/httpd/">
Aut hType Basi c

Aut hNanme " Sanpl e Server™
Aut hDBUser Fil e "/usr/ | ocal / apache/ etc/userfilel”
Aut hDBGr oupFi l e "/usr/ 1 ocal /apache/ etc/ groupfilel”

Aut hDBAut horitative on
require group groupl group?2

</Directory>

Figure7. Configuration File Examplefor mod_auth_db

Figure 7 shows an excerpt from a configuration file. The given directives enable
username-password authentication for the target directory using the mod_auth_db module.
The following describes each line in the above figure:

<Directory /usr/local/apache/ share/ httpd/ >

Specifies the resource that requires authentication. Any of the container directives may
be used for this purpose (see Section 3.1.1).

Aut hType Basi c

Authentication is either “Basic” or “Digest.” “Basic” authentication must be used for all
modules except mod_digest. Thisinformation is passed on to the client and instructs it
on how to format its authentication information.

30

Aut hNane Sanpl e Server

This specifies astring sent to the client. It is provided to the client so they can know the
resource to which they are authenticating. In this case, the client would be prompted with
the string “ Enter username for Sample Server at BATMAN.G021LAB.ORG” where
“BATMAN.G021LAB.ORG” isthe name of the machine running the web server.

Aut hDBUser Fil e /usr/ | ocal / apache/ etc/userfilel

This specifies the path and name of the username-password file. 1t must be readable by
the Apache server user ID. It must also bein the appropriate format. NOTE: If
AuthDBM User File was used, the filename of the database is listed without the .db
extension even though the file itself must have this extension. The DBM library
automatically appends a .db extension to the filename specified in the directive before
looking for thefile.

Aut hDBGr oupFil e /usr/ |l ocal /apache/ etc/ groupfilel

This specifies the path and name of the group file. It must be readable by the Apache
server. It must aso bein the appropriate format. If thereisno group file, this directive
should be omitted. NOTE: If AuthDBM User File was used, the filename of the database
islisted without a .db extension even though the file itself must have this extension. The
DBM library automatically appends a.db extension to the filename specified in the
directive before looking for thefile.

Aut hDBAut horitati ve on

The authoritative directives are used to control the interaction of severa authentication
methods covering asingle resource. Thisisasubject is complicated and, for this reason,
we recommend all resources have only a single authentication method applied to them.
Setting the “authoritative” directive to “on” states that this authentication method has the
final say in terms of which users are recognized.

requi re group groupl group2

This directive specifies the users and/or groups which, once authenticated, are permitted
to access the specified resource. When a user provides arecognized username and
password, he will not be allowed access unless the username or associated group are
listed in therequiredirective. Thefirst parameter is either “user,” “group,” or “valid-
user.” If thefirst parameter is“user,” the subsequent parameters are a space separated
list of the users which will be allowed accessto the resource. If thefirst parameter is
“group,” the subsequent parameters are a space separated list of the groups whose
members will be allowed access. If thefirst parameter is“valid-user” then there will be
no further parameters and any recognized username-password pair will be alowed
access.

31

</Directory>
Thisdirective is used to close off the context block that started this example.

Behavior: Using the example above, the behavior will be asfollows. When a client
attempts to access any resource within the directory “/usr/local/apache/share/httpd/” (or its
sub directories), the server returns an “ Authentication Required” error (error code 401), if it
does not provide a username-password pair, or it provides an invalid username-password
pair. On most browsers, this causes a pandl to pop up on the client browser where the user
can enter their username and password. Thisisreturned to the server. The server first
consults the username-password file (as specified in the “UserFile” directive) to seeif the
username-password pair is recognized. If it isnot recognized, authentication fails.
Otherwise, it consults the requir e directive to see who is allowed access. If thefirst
parameter is “valid-user,” accessisalowed. If thefirst parameter is“user,” and the
username provided by the client matches one of the subsequent require parameters, then
accessisalowed. If thefirst parameter is“group,” then the group file is consulted (as
specified in the “ GroupFile” directive). If the authenticated user belongs to the appropriate
group, then accessis granted. Otherwise, accessis denied.

If accessis granted, then the requested resource is returned to the client. If accessis
denied, the server returns an “ Authentication Required” error (error code 401). Most
browsers will pop up a prompt that informs the client user that authentication failed and give
the user the opportunity to try again.

The directive block in the example would override any directive blocks placed on
previous directories. It would affect all the contents and subdirectories of the specified
directory unless these, in turn, contained their own set of authentication directives. Therules
by which individual authentication directives are overridden by others is complicated; for
safety it isrecommended that every directive of an enclosing block be explicitly overridden
by the contents of any new block. This means that every block which specifies
authentication should include the AuthType, AuthName, and require directives, aswell as
some modul€e’s set of “UserFile,” “Authoritative,” and, if necessary, “ GroupFile” directives.
If the sub block does not use the group file for its access control decision, it is not necessary
to override any “GroupFile” directivesin the parent block.

Authentication directives do not overlap but instead replace each other. That is, if a
parent block will only allow access to an authenticated user X, and a sub block will only
allow access to an authenticated user Y, then accessing the sub block will only require
authenticating as'Y.

3.2.4.2 Anonymous Authentication

The anonymous authentication functionality is provided by the mod_auth_anon module.
This moduleis not part of the default Apache build, it must be enabled by including the

32

parameter - - enabl e- nodul e=aut h_anon intheconf i gur e command when Apache
is being built.

Thefollowing figure is an excerpt from a configuration file which implements
anonymous authentication.

<Directory "/usr/local / apache/ share/ httpd/ ">
Aut hType Basic

Aut hNanme " Sanpl e Server",
Anonynous anonynous guest
Anonynous_Aut horitative on
Anonynmous_LogEmai | on
Anonynous_Mist G veEmai | on
Anonynous_Nolser| D of f
Anonynous_\Veri f yEmai | of f

requi re vali d-user
</ D rectory>

Figure 8. Configuration File Examplefor Anonymous Authentication

The example shown in Figure 8 is described in the following paragraphs.
<Directory /usr/local/apache/ share/httpd/ >
Same as username-password authentication.

Aut hType Basi c

Specifies the type of authentication being performed. Anonymous authentication only
supports the “Basic” type.

Aut hNanme Sanpl e Server

Same as username-password authentication.

33

Anonynous anonynous guest

Specifies the usernames which will indicate anonymous authentication is being
attempted. The usernames are presented in a space separated list after the directive.

Anonynous_Aut horitative on

Specifies that this authentication module makes the final decision for user authentication.

Anonynmous_LogEmai | on

Specifies that the value written into the password field of an authentication attempt is to
be recorded in the error log. Itisan “info” level event, so thelog level must be set
appropriately (see below). If the parameter was “ off” then this information would not be
retained.

Anonynous_Mist G veEmai | on

Specifies that the client must provide avalue in the password field for anonymous
authentication to succeed. If the parameter was set to “off” then the password field could
be left empty.

Anonynous_NoUser | D of f

Specifies that a username must be provided when attempting anonymous authentication.
If the parameter was set to “on” then a blank username field would also indicate an
anonymous authentication attempt.

Anonynous_Veri fyEmai |l off

Specifies that no checks are performed on the contents of the password field beyond
making sure that it is not empty. If the parameter was set to “on” then the server would
check to make sure that the password field contained at least one “ @” and at |east one “.”
since these would be present in any valid E-mail address.

requi re valid-user

Specifies that if an anonymous authentication attempt passes al of the above tests, then
the user isto be given access. Therequire directive must have the “valid-user”
parameter when anonymous authentication is used. It is not possible to specify a*user”
listed after the Anonymous directive.

</Directory>

Closes off the context block which begins this example.

LogLevel info

Specifies that the error log should record events of importance “info” and higher. This
configures the log so that it will record the E-mail address provided by aclient in the
password field. If thelog level were left at ahigher level, then the error log would
consider the events which record the E-mail address to be too minor to record and the
information would be lost. (For more on the L ogL evel directive, see Section 3.4.3.1.)
Note that L ogL evel is part of the core module and is always available.

Behavior: The behavior of the above example is detailed asfollows. This scenario
operates similar to the username-password configuration given above. The only difference
would be that, instead of providing a username and a secret password, the client would
provide either “anonymous’ or “guest” as the username, and then enter their E-mail address
in the password field. Authentication would only fail if a username other than “anonymous”
or “guest” was provided, or if one or more of the username-password fields were left blank in
thelog-in prompt. If the Anonymous_VerifyEmail directive was set to “on,” anonymous
authentication would also fail if the password field did not containa“.” and “@”. Asbefore,
a successful authentication would cause the server to return the requested resource while a
failed authentication would cause the server to send an “ Authentication Required” error
(error code 401).

As described in the username-password authentication example, this authentication block
will effectively override all authentication directives present in a higher level directory.
Likewise, the block will cover al resources in the specified directory and its sub-directories
unless specifically overridden by another block of container directives. The fact that
anonymous authentication and username-password authentication contain few directives
which correspond to each other is not a problem—simply specify al directives of the new
modul e when changing between them.

If the Anonymous_L ogEmail directiveis set to “on,” then every time a client attempts
an anonymous authentication, the server will create an error log event with priority “info”
which includes whether or not the server accepted the authentication attempt and the value of
the password field. Thisincludes alog event with apriority of “info” meansthat, if the log
level (set by the LogL evel directive—see Section 3.4.3.1) is set at apriority above “info” (as
it is by default) then the event will not actually get written to the log file.

The E-mail address returned during anonymous authentication should not be trusted.
Thereisno way to verify that the E-mail address presented is the users actual E-mail address.
Even the Anonymous_VerifyEmail directive only provides the most cursory check of the
fields contents.

35

3.2.5 Synopsis and Recommendations

All modules except mod_digest, transmit password information in a highly insecure
format. For thisreason, the authentication mechanism is of limited use in controlling the
dispersal of the web sites’ contents. Since A pache cannot encrypt content, anyone who could
watch the wire for a username-password pair could also simply read the resources returned
by an authenticated request from avalid client. It isrecommend that the username-password
pairs do not apply to any services other than the web server.

Although Apache does contain the capability to use multiple authentication modules to
control access to a single resource, thistype of configuration should be |eft to experienced
Apache administrators. The mechanics of which module takes precedence over another are
not straightforward and beyond the scope of this paper. Likewise, it isrecommended that,
each block of authentication directives should explicitly contain all authentication directives
contained in the module being used and not just the directives that have different parameters
from a previous block.

Finally, it isimportant to understand that the authentication mechanism does not imply
more security than has been described above. If a user successfully authenticates, this does
not imply that the remainder of the communication session will be protected in any way. The
way the mechanism works isthat it indicates that the client knew a recognized and required
username and password pair (assuming username-password authentication was used). While
this does provide some security, administrators need to be aware that its control of content
distribution, especially given the lack of any confidentiality service, can be overcome using
relatively simple techniques.

3.2.6 Additional Topics

This section describes features of the Apache authentication mechanism that were not
covered in the above description. Generally, these topics were skipped because they were
unnecessary for the implementation of a secure web server. They have been included here to
inform the reader that the additional functionality and options are in fact available should the
reader wish to pursue them.

* Using Multiple Modules to Control Authentication to a Sngle Resource—It is
possible to use instances of any and all the authentication modules with the exception
of mod_digest to control authentication to asingle resource. This can be done if
username-password files already exist in different formats or if an administrator
wishes to implement both username-password and anonymous authentication
simultaneously. The “Authoritative” directives are used to control this behavior.

» Directive Inheritance—It is not strictly necessary to repeat al authentication
directives whenever the authentication policy changes. There are actually cases
where it is more convenient to override asingle directive. However, not all directives

36

can be overridden in the same way. For example, overriding any directive in an
authentication module causes all directives in that module to be overridden. For this
reason, unless the administrator understands the ramifications, this document
recommends complete override of previous directives.

3.3 Access Control

Access control providesthe ability to grant access to system resources based on the
identity of the client. Apache supports the functionality to set up host-based access control
where the requesting host is either allowed access or denied access to particular resources on
aweb server. When arequest is made for a particular resource, Apache checksto seeif the
requestor is allowed access to the requested resource.

3.3.1 Modules

The Apache Web Server version 1.3.3 contains one module that provide access control
functionality:

* mod_access— The mod_access module provides host-based access control. Itis
based upon the client 1P address or hosthame. The directives contained in this
module are: allow, allow from env=, deny, deny from env=, and order.

3.3.2 Default Configuration

By default, the mod_access module is enabled. The default Apache configurations files
contain several active directives from the mod_access module. It aso contains severd
directives that have been commented out, but which can be uncommented for swift
implementation. The directives in the default Apache configuration files are provided below
in Figure 9. Thisexampleisdetailed in the following paragraphs.

<Directory "/honme/ httpd/ htdocs">
Al |l owOverri de None
Order all ow, deny

Al low from al |
</Directory>

Figure 9. Configuration File Example for Access Contral.

<Directory "/hone/ httpd/ htdocs">

37

This directive specifies the resource container that requires access control. Any of the
container directives such as Directory, Location, Files may be used for this purpose. The
container specified is the /nome/httpd/htdocs directory.

Al | owOverri de None

This directive tells the server which directives that have been declared in a.htaccessfile
can override earlier configuration directives. This directive can be set to None, All,
AuthConfig, Filelnfo, Indexes, Limit or Options. In this particular case the None
specifies that no options within this directory block can be overwritten by alocal access
control file. This means that the server does not have to look for an access file for each
request. See section 3.1.5.

Order al | ow, deny

This directive controls the order in which allow and deny directives are evaluated. There
are several ordersthat can be specified; these are: allow,deny, deny,allow, and mutual-
failure. In thiscase the allow,deny specifiesthat the allow directives are evaluated
before the deny directives; theinitial stateisto deny all access.

Allow from al |

This directive affects which hosts can access the specified container. This directive can
specify the hostsin severa different ways, hostname, IP address, and partia 1P, domain-
name addresses. The all specified in this case refersto all hosts; which meansthat all
hosts can access this container.

</Directory>
Thisdirective is used to close off the context block that started this example.

These example statements are contained in the default configuration file for the Apache
server. The default settings allow every host access to the .../htdocs/ container on the server.
It also specifies that there are no .htaccess overides for this container. These statements can
be changed to customize the Apache server access control. The following sections detail the
available options.

3.3.3 Background Information

This section discusses information that is not contained in the default server configuration
files. It isnecessary if customizing the access control mechanism on the server.

3.3.3.1 Access Control Scope

The access control directives Allow, Deny, Order etc. provide access control at a number
of levelswithin the server. These directives can be used within all the resource containers on

38

the server. The standard container include: <Virtual Host>, <Directory>,

<DirectoryM atch>, <Files>, <FilesM atch>, <L ocation>, <L ocationMatch>, and
<Limit>. The Apache server can be configured to have very fine tuned access control
depending upon the use of the directives within specific containers. Access can be
controlled per directory using the <Directory> context, per file using the <File> context, per
URL location using the <L ocation> context and per HTTP request method using the
<Limit> context. The <Limit> context has the narrowest scope of all containers.

3.3.4 Configuring Custom Access Control

The Apache server provides the ability to define custom access control. Thisis
controlled through the directives provided in the mod_access module. Access control can be
set from open to very restrictive depending on the customizations using the mod_access
directives.

3.3.4.1 Allow Directive

The alow directive defines the hosts that are allowed to access a particular container.
The directive syntax is: allow from host where host can be specified using several different
methods; these are detailed below:

o dl - thiswould allow al hosts access to the container; ex: allow from all

» apartia domain name - host names that match or end in a particular string are
allowed access; ex: allow from .mitre.org

o afull IP address - an IP address of a host that is allowed access; ex: allow from
129.83.40.1

o apartial IPaddress- thefirst 1to 3 bytesof an IP address of hosts that are allowed
access, thisis used for subnet restriction; ex: allow from 129.93.40

» anetwork/netmask pair - anetwork a.b.c.d and a netmask w.x.y.z pair of hosts that
are allowed access, this allows fine-grained subnet restriction; ex: allow from
129.83.40.0/255.255.255.0

» anetwork/nnn CIDR specification - a network a.b.c.d address and a netmask that
consists of nnn high order bitsto specify hosts that are allowed access; ex: allow
from 129.83.40.0/24

3.3.4.2 Deny Directive

The deny directive defines the hosts that are not allowed to access a particular container.
The directive syntax is: deny from host where host can be specified using the methods
desribed previoudy for the allow directive:

» dl - thiswould allow al hosts access to the container; ex: allow from all

39

apartial domain name - host names that match or end in a particular string are
allowed access; ex: allow from .mitre.org

afull IP address - an |P address of ahost that is alowed access; ex: allow from
129.83.40.1

apartial 1P address- thefirst 1 to 3 bytes of an IP address of hosts that are alowed
access, thisis used for subnet restriction; ex: allow from 129.93.40

a network/netmask pair - a network a.b.c.d and a netmask w.x.y.z pair of hosts that
are allowed access, this allows fine-grained subnet restriction; ex: allow from
129.83.40.0/255.255.255.0

a network/nnn CIDR specification - a network a.b.c.d address and a netmask that

consists of nnn high order bitsto specify hosts that are allowed access; ex: allow
from 129.83.40.0/24

3.3.4.3 Order Directive

The order directive controls the order that Apache uses to evaluate the allow and the
deny directives. There are three order options that can be used for evaluation. The directive
syntax is. order ordering where ordering is one of the following:

allow,deny —the allow directives are evaluated before the deny directives (theinitia
state is deny); ex: order allow, deny

deny.allow — the deny directives are evaluated before the alow directives (the initial
stateis allow); ex: order deny, allow

mutual-failure — only the hosts that appear on the allow list and do not appear on the
deny list are granted access.

3.3.4.4 Allow From Env Directives

The allow from env directive controls access to the specified container by using
environmental variables. The directive syntax is: allow from env=env where envis an
environmental variable that has been set using these environmental variables are defined
using other directives such as Browser Match. An exampleisasfollows:

40

Browser Match "MSIE 4.01" let _ne_in
<Directory /apache/test>

order deny, al | ow

deny from all

all ow fromenv=let _nme_in
</Directory>

In this case any browser using MSIE 4.01 will be allowed access to the /apache/test
directory.

3.3.4.5 Deny From Env Directives

The deny from env directive controls access to the specified container by using
environmental variables. The directive syntax is: deny from env=env where envisan
environmental variable that has been set using these environmental variables are defined
using other directives such as Browser Match. An exampleisasfollows:

Browser Match "MSIE 4. 01" keep_ne_out
<Directory /apache/test>
order deny, al |l ow
all ow from al |
deny from env=l et _ne_out
</Directory>
| In this case any browser using MSIE 4.01 will be denied access to the /apache/test
irectory.

3.3.5 Implementation of Customized Access Controls
Implementation of customized access controlsis shown in Figure 2 below. A detailed
description of these access control commandsis included below.

The AccessFileName directives designates the .htaccess fil e as the access control file to
look for within each directory. The Browser Match directive is used to set the
environmental variable used for the deny from env= directive.

41

. Thisset of commandsis set for the directory container “/apache/documents’. The
AllowOveride directive gives the “/apache/documents/.htaccess’ file the ability to
override the <Limit> directives set earlier for this directory. The Order directive sets
theinitial state asforbidden , the allow directives are evaluated before the deny
directives. Everyoneis allowed access to this container except browsers using MSIE
4.01; thisis set using the deny from env= and the Browser M atch directives.

. This set of commands is specific to the test.html file contained in the
“/apache/documents’ container. Only the host matching the IP address 10.0.1.4 can
access this particular file.

. Thisset of commands is specific to the importantinfo.html file contained within the
“/apache/documents’ container. Accessto thisfileisdenied to all except those that are
part of the .mitre.org domain. The <Directory> directive closes the context block for the
“/apache/documents’ container.

. This context block refers to the /cgi-bin location. Within this container the <L imit>
directiveis used to enclose a group of access control directives that apply to the HTTP
access method POST. These commands specify that only hosts from .mydomain.com
can use the POST method within the /cgi-bin location.

42

Br owser Mat ch Browser Match “MNMSIE 4. 01"

<Di rectory “/apache/ docunents”>

Al |l owOveride Limt

Order all ow, deny

allow from al |

deny from env=keep_ne_out

<Files "test.htm ">
order all ow, deny
allow from10.0.1. 4
</Fil es>

<Files "inportantinfo.htm">
order deny, allow

deny from al l

allow from.mtre.org
</Files>

</Directory>

<Location /cgi-bin>
<Limt POST>
order deny, al | ow
deny from all
al l ow from mydonmai n. com
</Limt>
g </ Location>

-’

-’
—

keep ne out

Figure 2. Access Control Customizations

3.3.6 Synopsis and Recommendations

Apache access control provides the ability to grant access to specific system resources
based on the identity of the host. When arequest is made for a specific resource, Apache

checksto seeif the requestor is allowed access to the requested resource. As shown
previously, access control can be set from open to very restrictive depending on the

customizations using the mod_access directives. There are several recommendations for
access control settings on the Apache web server. These are:

43

» Usersshould be stopped from overriding system wide settings; thisis done by stopping
users from being able to set up .htaccess files that override security settings configured
for the server. Likewise, default access should be disabled; only permit specific access to
specific locations. Thisis done as follows:

<Directory />
Al | owOverri de None
Opti ons None

Order deny, al | ow
Deny from all
</Directory>

» Theinteractions of <L ocation> and <Directory> directives should be carefully
monitored. A <Directory> might deny access but a <L ocation> directive could
overturn it.

3.4 Auditing

The Apache auditing mechanism alows an administrator to record the activities on the
Apache server. By observing the log files, administrators can determine site traffic,
requested resources, resource retrieval method and whether or not the server experienced
difficulties servicing the request. It can help determine whether a client is attempting to
perform illicit activities on the server and can give some insights as to the nature of an attack
if aviolation occurs. For this reason, the auditing mechanism is of great importance to the
security of the server. This section will discuss the auditing mechanism implemented by
Apache and the methods used to create custom audit files.

3.4.1 Modules

The Apache Web Server Version 1.3.3 contains six modules which relate to recording
usage information. Of these six, two have been deprecated and should not be used. The
modules are:

» core—The main Apache module. This contain directives concerning the error log
which records problems and events experienced by the Apache server independent of
requests made by clients.

» mod_cookies—Deprecated. Do not use.

* mod_log_agent—Useto record information about the nature of a client making a
request.

* mod_log_common—Deprecated. Do not use.

44

* mod_log_config—The primary auditing module, this module allows an administrator
to create audit facilities which will record wide range of information concerning
client requests.

 mod_log referer—Used to record information concerning what resource provided the
link to the resource being requested.

» mod_usertrack—Allows the administrator to track the activities of a client when
accessing the server

The functionality of the two deprecated modules has been replaced and expanded by
other auditing modules (mod_log_config replaces mod |og_common while mod _usertrack
replaces mod_cookies). The deprecated modules should never be used and, henceforth, will
not be mentioned again.

All of the functionality of mod_log_agent and most of the functionality of
mod_log_referer can be duplicated through specialy formulated directivesin the
mod_log_config module. The only differences are minor variations in how the output datais
formatted. For thisreason, both mod log_agent and mod_log_referer will have a brief
explanation. The emphasis of this section is on the mod_log_config module.

The mod_usertrack module tells the Apache server to send identification cookies to
clients making requests for the first time. These cookies will then be sent with every
subsequent request from that client; providing the client is configured to return cookies.
Using the mod_log_config module, these cookies can be recorded and used to track the
patterns of usage on the server.

3.4.2 Default Configuration

By default, the mod_log_config module is enabled. The default Apache configurations
files contain several active directives from both the core and mod_log_config modules. It
also contains several directives that have been commented out, but which can be
uncommented for swift implementation. The pertinent directives in the default Apache
configuration files are provided as an examplein figure 9. Thisexampleisdescribed in
detail in the following paragraphs.

45

ErrorLog /usr/| ocal/ apache/ var/| og/ error _| og
LogLevel warn

LogFormat "% %9 %u % \"%\" %s % \"% Referer}i\"
\"% User-Agent}i\"" conbi ned
<ip of client> <renote | ognane> <usernane> <access tine>
"<first line of request>" <final status> <bytes sent>
"<Referer field>" "<User-Agent field>"

LogFormat "% %9 %u % \"%\" %s %" comon
<ip of client> <renpte | ognane> <user name> <access time>
"<first line of request>" <final status> <bytes sent>

LogFormat "% Referer}i -> %J' referer
<Refer field> -> <URL requested>
LogFormat "% User - agent}i " agent
<User-agent field>
Custoniog /usr/local /apache/var/ | og/access_| og common

Figure9. Configuration File Examplefor Logging

ErrorLog /usr/local /apache/var/l og/error_|og
This line sets the location and name of the server error log.
LogLevel warn

This line sets the error log to report incidents of warn priority or higher. See
Section 3.4.3.1 for more concerning what events each level record.

LogFormat "% % % % \"%\" %s % \"% Referer}i\" \"9% User-Agent}i\"" conbined

Thisline defines alog format and gives it the nickname “combined” for later use.
This format definition would produce an event with the following form and
information:

<ip of client> <renpte | ognane> <username> <access tinme> "<first |ine of

request>" <final status> <bytes sent> "<Referer field>" "<User-Agent
field>"

46

LogFormat "% % % % \"%\" %s %" common

Thisline defines alog format and givesit the nickname “common” for later use.
(Thisformat represents Common Log Format.) Thisformat definition would produce
an event with the following form and information:
<ip of client> <renpte | ognane> <username> <access tinme> "<first |ine of
request>" <final status> <bytes sent>

LogFormat "% Referer}i -> %J' referer

Thisline defines alog format and givesiit the nickname “referer” for later use. (The
resulting format is the same as that provided by the mod_log_referer module.) This
format displays the following fields on each line:

<Refer field> -> <URL requested>

LogFormat "% User-agent}i" agent

Thisline defines alog format and givesit the nickname “agent” for later use. (The
resulting format is virtually the same as that provided by the mod _|og_agent module.)
Thisformat displays the following field on each line:

<User-agent field>
Cust omLog /usr/ | ocal / apache/var/| og/ access_|l og conmon

Thisline creates anew log file with the format associated with the “common”
nickname. The new log fileis named “access log” and islocated in the
/usr/ | ocal / apache/ var/ | og/ directory.

#Cust onLog /usr/| ocal /apache/var/log/referer_log referer

Thisline creates anew log file with the format associated with the “referer”
nickname. The new log fileis named “referer_log” and is located in the
/usr/1ocal / apache/ var/| og/ directory. Thelineiscommented out so, by
default, thislog fileis not created.

#Cust onLog /usr/| ocal / apache/ var /| og/ agent _| og agent

Thisline creates anew log file with the format associated with the “agent” nickname.,
The new log fileis named “agent_log” and islocated in the

/usr/1ocal / apache/ var /| og/ directory. Thelineiscommented out so, by
default, thislog fileis not created.

47

#Cust onLog /usr/| ocal / apache/ var /| og/ access_| og comnbi ned

Thisline creates anew log file with the format associated with the “combined”
nickname. The new log fileis named “access |og” and islocated in the

[usr/ | ocal / apache/ var /| og/ directory. Thelineiscommented out so, by
default, thislog fileis not created.

By default, the Apache server creates two log files. The error log and the access log.
Theerror log, named er r or _| og, is part of the Apache core module and records events on
the server independent of client requests. Itisinitialy set to record events of level warn or
higher. (See Section 3.4.3.1 concerning error log event levels.) The accesslog, named
access_| og, recordsinformation about user requestsin Common Log Format. The
remaining directives are included to ease implementation of additional logs.

3.4.3 Background Information

This section discusses information which is not a straightforward part of the
configuration process. It isnecessary if customizing the auditing mechanism.

34.3.1 TheError Log

The error log is used by the server to record information concerning its own general
functioning. The ErrorLog directiveis part of the core Apache module so it is always
available. In fact, due to the importance of the error log, the Apache server will not start
unlessit can open the error log.

There are eight levels of events which can be written to the error log. The L ogL evel
directive (also in the core module) sets the threshold level below which events will be
ignored. Theerror log levels and afew examples of what situations will raise events are
listed below:

emer g—Emergencies which make the server unusable.

» Errorswhich result from the Apache server not being able to find functions with
which it should have been compiled with.

alert—Situations which require prompt attention.

* Problems implementing the User and/or Group directives controlling the ID under
which child processes run.

» A child process experienced afatal error.

48

crit—Situations of critical importance.

» Failureto create or send data over a socket.

» ThelListen directiveis being used to listen to multiple ports and IPs on a system
which cannot support it.

error—An error has occurred, usually having to do with a client request.

» Invalid configuration parameters were detected.

» Client attempted to authenticate as an unknown user, did not provide the correct
password, or was not a member of the correct group.

» A maformed HTTP message or URL was sent.

» The server was unable to find the appropriate authentication files to perform
authentication of the client.

warn—An unexpected event occurred.
» The Apache PID file was still present when the server is started; this indicates a bad
shutdown last time.
* Apachefailedinitsinitia attemptsto kill achild process gracefully.
notice—A normal action of some significance has occurred.

* The Apache server is starting, restarting, or stopping as requested.
» A child was caught exiting due to a nonstandard signal.

info—Records' events of a purely informative nature.

* Recordsthe password (Email address) of an Anonymous Login.
* Thebuild time and date of a server isrecorded as the server is started.
» A client connection timed out.
debug—Records' eventsindicating simple actions on the server. (Thislevel isprimarily of
use to people writing their own Apache modules.)

Error log entries include the time, level of the event, and a brief description of the
problem. It is possibleto send Apache events to the system to be recorded using the
sysl og mechanism; thisis not recommended because it intermingles Apache events with
those of several other services.

3.4.3.2 Configuring Custom L og Formats

The Apache server mod_log_config module gives the ability to define custom formats for
log information. Events can be set to record a wide range of information by using special
%-codes within the format string.

49

b - bytessent: This code returns the number of bytes of content sent by the server in
response to a client request.

f -filename: This code returns the path and filename of the resource requested by the
client according to the servers operating system.

{ nane} e - environment variable: This code returns the settings of the specified
Apache internal environment variable (not to be confused with environment variables
from the operating system). Thisisuseful for debugging new Apache modules.

h - resolved hostname: This code returns the hostname of the client as resolved
according to the procedure specified using the HostNamelL ookups directive. (See
Section *****) |f HostNameL ookupsis set to off (its default value), then this code
simply returns the |P address of the client. If HostNameL ookupsis set to on or double,
then the server will determine the Internet name of the client machine, using simple or
double reverse DNS resolution respectively, and return that value.

a - remote IP address: This code returns the unresolved | P address of the client
machine.

{nane}i - HTTPfieldinclient request: This code returnsthe contents of the HTTP
field in the client request message whose name matches the name in the braces preceding
thei . The comparison between the name specifier and the field name is not case
sensitive.

| - remotelogname: If the IdentityCheck directiveis set to on, the server will send a
message to thei dent d server on the client machine. If thei dent server isrunning
and responds, it will return a string with the username associated with the client request
which will then be returned by this code. If IdentityCheck is on, but for some reason
thereisnoi dent d response from the client, this code will return unknown. (See
Section ***** regarding | dentityCheck.)

{ nane} n - Apache note: This code returns the value of the named “note” within the
Apache server. Generally, the average administrator will not need to consider notes
unless specifically instructed.

{nane} o - HTTP field in server reply: This code returns the contents of the HTTP
field in the server reply message whose name matches the name in the braces preceding
thei . The comparison between the name specifier and the field name is not case
sensitive.

p - incoming port: Thisreturns value of the port to which the Apache server islistening
as defined by the Port directive.

P - child processID: This code returns the process ID of the child process which
serviced the request. (See Section 3.3.4.1 regarding child processes.)

50

o r -firstlineof client request: This code returnsthefirst line of the HTTP request from
the client. Thisline containsthe HTTP command, the URL to be processed, and the
HTTP version number which the client is using.

e s - HTTP status code of server reply: Thisitem returnsthe HTTP status code of the
server response to the given request.

 t -timeofrequest: Thiscode returnsthe time the request was made. Thetimeisgiven
in Common Log Format, being [day/ nont h/ year : hour : m nut e: second
of f set] . Alternatively, atime format may be placed between braces, just before the
t using the same syntax as that given for the strftime(3) function.

» T-timeto processrequest: This code returns the number of seconds (rounded) the
server took to process the given client request.

e U-remoteuser: Thiscode records the username which the client sent to the server.
Thisvalueis suspect if the returned status code is 401 (Unauthorized).

* U-requested URL: This code returnsthe URL requested by the client.

* v -servername. Thisisthe Internet name of the server processing the given request
according to the Server Name directive setting.

A format can be defined using the L ogFor mat directive. When the format is used in the
creation of alog filethe format string is simply atext string which will be copied, character
for character, to thelog file every time a client makes arequest. The exceptions are text that
begins with a percent (%) character. The Apache server will attempt to convert these to
%-codes and will return an error if it cannot. As such, the percent (%) character cannot be
used in the string except as a percent code. The entire format string should be enclosed in
double quotation marks (). If the administrator wishes the log file output to contain double
guotations marks, they should be preceded by a backslash (\). (l.e., "text \"quoted text\"
text") The backslash will not appear in the output in this case. (l.e., the above string would
read: text “quoted text” text.) The %-codes will be replaced with the appropriate
information from the server when written to the log file.

If the format string contains a %-code for a piece of information which is not available or
cannot be looked up or is just generally unavailable due to an error, the %-code will be
replaced with adash (-) inthelogfile.

3.4.3.3 Themod log_agent, mod_log_referer, and mod_usertrack modules

These three modules will be described in this section; they are very small, smple to
implement, and provide little security benefit over the mod _log_config directives. None of
these modules are part of the default Apache build; to be used they must be enabled in the
conf i gur e command.

51

The mod_log_agent has one directive: AgentLog. This directive specifies the path and
name of alog file. Every time aclient requests a resource, the Apache server checks the
“User-agent” field of the client request. If it exists, the contents are written to the specified
agent log file. No other log information iswritten. The “User-agent” contains information
concerning the requesting client, browser type version, etc. Thisinformation is not
guaranteed accurate. Thereisadifference between the use of this directive and a custom log
with the format string “% User - agent }i .” When the AgentL og directive is used;
nothing iswritten in the log if the client request does not contain a“User-agent” field.
When the custom log is used, it will write adash (-) indicating that the information was
unavailable. This module and directive is not recommended. They provide little security
benefit wise because of the lack of contextual information.

The mod_log_referer hastwo directives. RefererLog and Refererignore. The
Referer L og directives specifies the path and name of areferer log file. When aresourceis
requested, the Apache server checksthe “Referer” field of the client request. If it exists, the
Apache server consults the Refer er I gnor e directive which contains a space separated list of
strings. If any of the strings appear in the contents of the “Referer” field, the valueis
ignored. Otherwise the server will record the contents of the “ Referer” field followed by
requested resource, in the specified log file. The “Referer” field contains the complete URL
of the referer (http://servername/path/resource.html). The difference between using the
Referer L og directive and a custom log with theformat “% Ref erer}i -> 9%J isthat
the RefererLog will write no entry if the “Referer” field does not exist (the client typed the
URL indirectly instead of linking from somewhere) while a custom log would record a
dash (-) followed by the URL being requested. Custom logs do not give the ability to ignore
events. These directives could be to learn what external sites had linked to the web page.
This could be done by defining areferer log and then specifying the local server namein the
Refererignoredirective.

The mod_usertrack module contains two directives. CookieTracking and
CookieExpires. When CookieTracking is given, the parameter on it sends an identity
cookie in the response to every client request which did not include one. If the client isso
configured, it will return this identity cookie with each subsequent request to this server. The
cookie can be extracted and used to log the click-paths of individual clients using the
“94 cooki e} n” %-code. The CookieExpires directive specifies how long a cookie
remainsin effect. This can either be given in seconds, or in a string specifying
years/months/day</etc. If the CookieExpiresdirective is excluded, the cookie will last until
the client browser restarts. Cookies should be checked for expiration date because they only
use 2-digit years. Most browsers recognize lower numbers as being after the year 2000, but
it isinadvisable to make a cookie last very long.

The above directives may appear only once in any servers configuration.

52

3.4.3.4 Defining and Implementing Custom Log Files

The mod_log_config module contains three directives that can be combined to create
custom audit logs. The directives are CustomL og, L ogFormat, and TransferLog. The
module al so includes the Cookiel og directive, but this directive is deprecated and should not
be used. There are several ways this can be done using these directivesto create audit files:

L ogFor mat can describe aformat and Transfer L og can create the file, CustomL og can
define the format and create the file, and L ogFor mat can define a nickname and
CustomL og can create thefile. The latter method is used in the default Apache
configuration files and, although any method could be used in subsequent invocations, this
paper will continue using it.

The mod_log_config directives may each be used any number of timesto define any
number of log file formats and to create any number of audit files.

3.4.3.5 Securing Log Files

All log files created by the Apache server are owned by the root user and are only
writable by the root user and readable by all users. The default Apache installation places
log filesin adirectory all users can enter and browse; but only the root identity can add files
to thisdirectory. For the most part, thisis considered a secure setup; it prevents anyone but
root from changing or replacing log files without first defeating the security of the Linux
operating system. Many administrators find that |etting users read the log filesis more
access than they can allow. Log files can sometimes contain sensitive information including,
server vulnerability alerts, the true paths of resources, or ssmply information about server
usage. For these reasons, many administrators choose to prevent read accessto all but
themselves.

This can be accomplished in several ways. The easiest isto modify the security of the
directory into which the logs are written, making the directory owned by the server
administrator. The administrator has full access to the directory while all other users are
given no access. Since events are logged under the root user identity, the Apache server will
always be able to record events no matter what the security settings are on the directory.

3.4.4 Configuration Information

Thetwo log files defined in the default Apache configuration should be sufficient for
most security purposes. Additional log files are necessary if thereis additional information
of particular interest. This example configuration will define one such scenario.

In the case described below there is arequirement for alog file that records data formats
that the client will accept and the language that text should bein. These pieces of
information are presented in the “ Accept” and “ Accept-language” fields of the client request
respectively. To provide contextual information, the log file will also record the time of the

53

request, the address of the requester, and the status code of the server reply. This
demonstrates the use of the mod_log_config directives.

The mod_log_config module is enabled as part of the default Apache build.

LogFormat "(%: % :%) Format: 9% Accept}i; Language:
% Accept - | anguage}i " accepted

This directive defines the format and gives it the nickname “accepted.” (The events
produced by this format will be discussed below.)

Custoniog "/usr/ | ocal /apache/var/| og/ accepts" accepted

Thisimplements anew log file named “accepts’ in the “/usr/local/apache/var/log”
directory. Thisaudit file usesthe “accepted” format. From this point on, whenever aclient
request is serviced, an event message with the format defined by the “accepted” format will
be written to the “accepts’ log file.

A brief excerpt from the produced log file appears below:

([16/ Aug/ 1999: 08: 58: 07 -0400]: 10.0.1.4 : 200) Format: inmge/gif, inmage/x-xbitmap,
i mage/ j peg, inmge/pjpeg image/ png; Language: en

([16/ Aug/ 1999: 08: 58: 16 -0400]: 10.0.1.2 : 200) Format: inmge/gif, inage/x-xbitmap
i mage/ j peg, inmge/pjpeg, image/png, */*; Language: en

([16/ Aug/ 1999: 08: 58: 17 -0400]: 10.0.1.2 : 200) Format: inmge/gif, inmage/x-xbitmap,
i mage/ j peg, inage/pjpeg i mage/ png; Language: en

([16/ Aug/ 1999: 08: 58: 40 -0400]: 10.0.1.5 : 200) Format: inmge/gif, inmage/x-xbitmap,
i mage/ j peg, inmge/pjpeg, image/png, */*; Language: en

With the exception of the %-codes, all text appearsin thelog file exactly asit doesin the
format string.

3.4.5 Synopsisand Recommendations

The audit files created in the default Apache configuration file should generally be
sufficient for most security needs. Extralog files only need to be implemented when a site
requires some additional piece of information not provided by the default logs.

It isimportant that the administrator monitor the log files regularly in order to detect
possible attempts to violate the security of the system. Automated tools exists which can
detect suspicious patternsin log files and the reader is advised to look into these. The error
log is particularly useful if the administrator notices that the server is not acting as expected.
Often bad configurations or atered resources will cause a descriptive event to be written to
the error log that can then assist the administrator in fixing the problem.

Log files, if left alone, can grow to an unwieldy size. For this reason, administrators will
often empty or replace log files so that they never grow beyond a certain size.
Administrators must be aware that the Apache server keeps an internal counter asto where
the end of the log filesare and if alog fileis altered, this value becomesinvalid. The result
isthat no further events can be written to the file. For thisreason, whenever alog fileis
atered, the Apache server must be restarted so it can acquire the new endpoint of the log file.

3.4.6 Additional Topics

This section describes features of the Apache auditing mechanism that were not covered
in the above description. Generaly, these topics were skipped because they were deemed
unnecessary in the implementation of a basic secure web server. They have been included
here to inform the reader that the additional functionality and options are in fact available
should the reader wish to pursue them.

» Auditing Processes—It is possible, instead of sending audit eventsto afile, to send
them to aprocess. This process can parse the event and then perform some action
based on its content. For example, if a particular user authenticates, the administrator
can be sent an email alerting them.

» Multiple Events Being Logged to One File—It is possible for more than one custom
log to send different events to the samefile. In this case, the events become
interleaved in the file. Generally, doing this adds nothing to the usability of the audit
file

* Logging tothe sysl| og Mechanism—Many services on Linux send their log events
to thesysl og mechanism so they will all be collocated. The Apache server can also
pipe the events which would normally be sent to the error log to the sy sl og
mechanism to be placed with the events from the other services. Administrators may
find this more convenient. However, most beginning administrators are advised to
keep the Apache logs separate to enhance readability.

3.5 Availability

Availability provides the mechanism to ensure that system data is available to users when
required. Apache provides availability within the core module by alowing the administrator
to set configuration variables to maximize performance and availability.

3.5.1 Modules

The directives that impact availability of the web server are part of the core Apache
module; therefore, there are no additional modules required. These directives are:

55

K eepAlive—Controls the persistence of TCP connections. A persistent TCP
connection will allow more than one request per connection. Thisis aboolean
value, on or off.

K eepAliveT imeout—Controls the number of seconds a connection will remain
open waiting for the next request. Must be used in conjunction with KeepAlive.

L istenBacklog—The maximum size for the queue of pending TCP connections.
Anentry for ListenBacklog is not present in any of the three configuration files.

M axClients—Controls the upper limit on the numbers of simultaneous requests
supported. Requests over thislimit will be queued to the ListenBacklog.

M axK eepAliveRequests—Controls the maximum number of cumulative
requests per connection. Must be used in conjunction with KeepAlive.

M axRequestsPer Child—Controls the maximum number of cumulative requests
that a given child process will handle. When the maximum is reached, the
process will die. Helpsto reduce the occurrence of accidental memory leakage.
Cannot be used on Win32 platforms.

M axSpar eSer ver s—Controls the desired maximum number of idle child
processes. As demand on the web server increases child process may be created
according to the next directive, MinSpareServers. If demand decreases and this
maximum number of idle child processes is exceeded, the parent web server
process will kill excess processes until the number is decreased to the maximum.

MinSpar eSer ver s—Controls the desired minimum number of idle child
processes. Asdemand on the web server increases, and the number of idle child
processes falls below this minimum, the parent process will create new child
processes at the rate of one per second until the minimum is reached.

RLimitCPU—Controls the maximum number of seconds of CPU processor time
that can be allocated to a process. Expressed in terms of seconds per process.

RLimitM EM—Controls the maximum memory allocation per process.
Expressed in terms of bytes per process.

RLimitNPROC—Controls the number of processes per user. Impacts CGlI
processes when these processes are run under the web servers Userid. Can cause
a*“cannot fork” error message when the web server process reaches the
RIimitNPROC value.

StartServer s—Controls the number of child processes created at startup of the
web server.

56

* ThreadsPer Child—Appliesto the Win32 environment only. Controlsthe
number of simultaneous threads each child process can support. Equatesto the
StartServersdirective on and Linux platforms.

3.5.2 Default Configuration

The default settings for most of the directives impacting availability are found in the
httpd.conf file. Other directives have default values that are set in the source code. These
directives usually do not have an entry in the default configuration files. However, the
configuration files can be modified to specify a new value for these directives.
ListenBacklog, RLimitCPU, RLimitMEM, and RLimitNPROC are examples of
directives of thistype. The default values for these directives are given in Table 3.

Table 3. Default Availability Directive Values

Directive Default Value
ListenBacklog 511
RLimitCPU Unset, use

operating system
default
RLimitMEM Same as
RLimitCPU
RLimitNPROC Same as
RLimitCPU

The default settings, in the httpd.conf file, for selected directives are given in Table 4.
The units of measure, in parentheses, are given for reference only.

57

Table4. Default Availability Directive Values

Directive Default Value
KeepAlive on
KeepAliveT imeout 15 (seconds)
MaxClients 150 (clients)

MaxK eepAliveRequests | 100 (requests)
M axRequestsPer Child 30 (requests)

MaxSpareServers 10 (servers)
MinSpareServers 5 (servers)
StartServers 5 (servers)

3.5.3 Configuration Information

These directives are used to tune the performance of the web server. Performance tuning
is highly dependent on the unique operating environment of the web server. Itis
inappropriate to make specific recommendations concerning the values for individual
availability directives. Some general guidance is appropriate.

The valuesfor StartServersand MaxClients are probably the most appropriate
directivesto tune. By monitoring the process status on the web server during key periods, it
should be easy to determine an appropriate vaue for both directives.

The value for MinSpar eServer s should be kept relatively low, as close to the default as
possible. It should not be greater than StartServersor it will immediately supercede the
StartServer value. An excess number of idle spare servers will require additional system
resources. Also, the gap between MinSpareServer s and M axSpar eSer ver s should be small
for the same reason. It is not prudent to use the same value for MinSpar eServers and
MaxSpareServers. The resource requirements to start a new child process are higher than
the same requirements to maintain an existing process. The reasonable gap between these
two directives takes advantage of existing processes without burdening the system with
resources dedicated to idle processes. The M axRequestsPer Child directive is probably best
left at the default setting unless memory leakage isimpacting web server performance.

58

3.5.4 Synopsisand Recommendations

The ListenBacklog directive normally does not need to be tuned. However, it can be
increased as atemporary defensive measure against a TCP SY N flooding attack. Increasing
this value will increase the maximum size of the queue and make the web server more
resilient to adenial of service condition.

If Apache Web Server is deployed on aor Linux platform, use M axRequestsper Child to
control memory leakage by have the child process terminate after a reasonable number of
requests.

3.6 Integrity, Confidentiality, and Nonrepudiation

The three services (integrity, confidentiality, and nonrepudiation) are listed here because
they are commonly listed among the seven standard security services. (The other services
being authentication, access control, auditing, and availability, all described earlier.) These
three services are listed under one section because none of them are actually implemented by
the standard release of the Apache Web Server.

Integrity is the procedure by which arecipient of a message can gain confidence that the
message has not been changed in transit. Thisisusually done through the use of a
cryptographic checksum or other ssimilar procedure. Apache contains a ContentDigest
directivein its core module designed to create an MD5 hash of the page so that the recipient
may check itsintegrity. However, the lack of any cryptographic mechanisms means that any
attacker capable of modifying a page's content in transit will also be able to create a new hash
thus preventing the recipient from detecting the modification. As such, it cannot be claimed
that Apache implements integrity. The fact that the Apache server does not implement this
service means that a savvy attacker might be able to replace messages traveling to or from
the server with messages of their own design. Thisis not necessarily easy to do, but the lack
of the integrity check makesit possible. This serviceis not commonly implemented on web
servers.

Confidentiality isthe process by which messages to or from the server are encrypted in
order to prevent an eavesdropper from learning the contents of the transaction. This service
requires the use of modern cryptographic protocols, usually SSL. Unfortunately, the U.S.
government has strict laws concerning the export of products that use cryptography. Asthe
makers of the Apache Group wished that their product be freely distributed throughout the
world, this meant that the server could not include the ability to encrypt data. Theresultis
that any information sent from the server to the client and vice versa can be read by anyone
capable of watching the wire.

There isarelated product named Apache-SSL which does provide the confidentiality
service. Itislegal to use within the United States providing the user has purchased a license

59

for RSA encryption. With some exceptions, it islegal throughout the rest of the world
without restriction. It can be downloaded from sites (none of which are located in the United
States) that are listed on the Apache-SSL homepage: http://www.apache-sdl.org.

Nonrepudiation is the procedure by which one member of atransaction can prove that the
other transaction member performed a given action. It isvirtually never implemented in web
servers and would provide no security advantage in most settings.

3.7 Common Gateway | nterface (CGI) and Scripting

Scripting for the Web falls into two categories. These are client-side scripting and
server-side scripting. Server-side scripting is the focus of this section. The Common
Gateway Interface is one mechanism to pass server-side scripting tasks between the web
server and scripting engines. Since client-side scripting does not happen at the server, it does
not have a security impact on the server. The remainder of this section will focus on server-
side scripting and specific issues with the Apache web server

3.7.1 Modules

The Apache Web Server Version 1.3.3 contains two modules that relate to the CGIl. The
first module, mod_cgi, provide the basic functionality for the web server to processfiles, pass
these files to scripting engines, and return the output to the browser. Mod_cgi is
automatically compiled into the default Apache Web Serve build. The second module,
mod_env, is used to make environment variables available to CGI scripts and Server Side
include commands. Mod_env is not complied into the default Apache Web Server build.

3.7.2 Default Configuration

The default access.conf file defines a<Directory> container directive for CGI scripts.
This default path to this directory is/home/httpd/cgi-bin. The actual path is entirely
dependent on the individual configuration for a specific web server. Within this <Directory>
container directive the Options directiveis set to None.

The default srm.conf file defines an AddHandler and ScriptAlias directive for CGlI
scripting. Both of these directives are commented out.

These conditions mean that the structure is present to support CGI scripting, but it is not
operational.

3.7.3 Background Information

CGil has been the mechanism used, for anumber of years, to pass server-side
programming tasks between the web server and scripting engines.

60

3.7.3.1 Markup and Scripting Languages

There are two basic categories of languages that must be considered with regardsto a
web server. Thefirst category is actually the markup languages that define the content and
form of information provided to the web browser. The second category of languagesisthe
scripting languages.

3.7.3.1.1 Markup Languages

Markup languages are derived from a parent language named SGML. The most familiar
of these languagesisHTML.

Aswith al markup languages, HTML is transmitted to the web browser as ASCI| text;
essentialy, the HTML commands are human readabl e.

3.7.3.1.2 Scripting Languages

Scripting languages are interpreted languages. As such, the instructions are normally
transmitted in one form (in this case ASCII text) and then parsed or read by a process that
interprets these instructions. The parsing means that the process carries out a specific set of
internal instructions to produce the results sought by the scripting language commands.
Interpreted languages require the presence of this computer process, normally called the
interpreter, to accomplish the work.

As with markup languages, the instructions created in these languages are human
readable. Theseinstructions are organized and stored as files and are referred to as source
code. The source code can be transmitted from one computer to another; however, to carry
out the commands prescribed in the source code, the interpreter must be present on the
destination machine. The interpreter can also be referred to as the scripting engine.

Scripting languages are used both on the web browser and the web server to provide
functionality to aweb site that is beyond the capabilities of HTML. When used on the web
browser, it isreferred to as client-side scripting. When used on the server, it isreferred to as
server-side scripting.

3.7.3.2 Client-Side Scripting

In client-side scripting, the programming instructions are passed from the server to the
client unexecuted. These instructions are commonly referred to as source code. When the
source code reaches the client, it is acted upon in some manner.

JavaScript, developed by Netscape, is the most popular client-side scripting language.
Other languages are JScript from Microsoft and PerlScript. Although not an interpreted
language, Java applets can be used in client-side programming. With each of the scripting
languages and Java, the client computer must have the scripting engine or a Java Virtual
Machine (JVM). Most modern browsersinclude aJvVM.

61

Client-side scripting adds functionality to the web browser. These functions include local
processing like an order calculator in a shopping cart application, client-side form
verification, visual effects like mouseover effects, and additional processing of data.

3.7.3.3 Server-Side Scripting

Server-side scripting is processing that occurs on the server. For network efficiency, this
processing should be actions that cannot be performed on the client. Queriesto a backend
database and formatting of that datain HTML is an example of the type of processing that
normally is done from the server.

3.7.4 Configuration Information

CGil scripting can be enabled or supported in any number of directories. If CGI scriptis
explicitly enable for a parent directory, any child directories will inherit this condition. CGlI
scripting can be explicitly enabled or disabled on a per directory basis

3.7.4.1 Enabling CGI Scripting

Enabling CGlI scripting requires mapping a CGl file extension and identifying the
directories where CGI scripts are enabled. This mapping ensures that the server processes
these files as CGI scripts. There are two directives needed to complete this step. Thefirstis
the AddHandler directive. Adding an AddHandler directive to a<Directory> container
directive identifies to Apache Web Server that the server must process files with the mapped
extension. The second directiveisthe Optionsdirective. The Optionsdirectiveisthe
directive that actual enables CGI scripting. Where the Options directive is placed is critical.
If the directiveis placed in the <Directory> container directive for the root directory, CGI
scripting is enabled globally. If theintent isto enable CGI scripting on a directory by
directory basis, the directive may be placed in the appropriate <Directory> container
directivesor in adirectory .htaccessfile. CGI scripting may also be control through virtual
hosts. In this case, the directive would be placed in the <VirtualHost> container directive.
An example using the two directivesto allow CGI scripting in al directories follows.
<Directory> container directives are typical found in the access.conf configuration file.

<Directory />
AddHandl er cgi-script .cgi
Opti ons ExecCd
</Directory>

In the example above, the AddHandler directive, instructs the web server to process all
fileswith the .cgi extension as CGI scripts. The Options directive specifies ExecCGl asthe
option currently supported for this directory. Since the ExecCGI parameter is not preceded
by a“+" symbol, the options are not cumulative; ExecCGl is the only option supported.

62

3.7.4.2 ScriptAlias

ScriptAliasis another directive which influences the processing of CGI scripts. This
directiveis used to specify alogical aliasfor adirectory that supports CGI scripting. The
directory will likely have adifferent physical path then the alias provided in the directive. In
effect, the ScriptAlias directive provides a shortcut to the directory. ScriptAliasisnormally
found in the srm.conf configuration file.

3.7.5 Synopsis and Recommendations

3.7.5.1 Scripting Languages and Security

Scripting languages are more significant to security on both the server and client than
markup languages. The reason is that scripting languages are interpreted or executed in some
forms where markup languages are not. Generally, the concern is that the parent process
executing the script may have wide-ranging permissions. If the script performs some
inappropriate action, the security of the system may be compromised.

Execution of server-side source code can have a significant security impact. A simple
example of this can be shown in aweak implementation of afinger service. Thefinger
command isasimple UNIX utility to provide information about users on local and remote
hosts. The format of afinger command run at the command lineis:

finger [options] <usernane>

When this command is executed, it is done in the context of the current user. This means
that the permissions and authority of the current user is used to determine if the command
can be executed and the information requested is accessible to the current user. In most
cases, the finger command and the data requested are accessible to everyone.

When afinger serviceisimplemented through a web server, the command is executed in
the context of the user that started the web service or a special user account created
specifically for the web service. Thisuser context isnormally privileged. Thisisthefirst
part of the problem.

The next part requires an explanation of how the finger serviceisimplemented. Through
the web, finger works by accepting text input from the user. Normally, thisis atext input
fieldinan HTML form. In thistext field, the user would input the username, in the form of
johndoe or johndoe@acme.com. The web server must execute the finger command using the
inputted information as the username.

The syntax rulesof commands allow multiple commands, delimited by a semicolon, to
be submitted on one line. By appending additional commands to the end of the username
string, a user can have these commands executed in the user context of the web server. If the

63

web server has a privileged user context, these commands can undermine the security of the
system.

To summarize, the risk of CGI scripting isin the content of the actual script. Web server
administrators should take two precautions when dealing with CGI scripting:

» Inspect the code of scripts before allowing them on the system.

* Limit the permissions of the user ID that the scripts execute under.

3.8 Server SideIncludes

The SSI fileisan HTML or text file that contains additional instructions that are
processed by the server before thefileis transmitted to the client.

3.8.1 Modules

The Apache Web Server Version 1.3.3 contains two modules that relate to Server Side
Include files. Thefirst module, mod_include, provides the basic functionality for the web
server to parse files and execute instructions contained within those files. Mod_includeis
automatically compiled into the default Apache Web Serve build. The second module,
mod_env, is used to make environment variables available to CGI scripts and Server Side
Include commands. Mod_env is not complied into the default Apache Web Server build.

3.8.2 Default Configuration

Server Side Includes requires three directives to activate which will be described in detail
in the next section. There are no active AddType or AddHandler directivesin the three
configuration filesfor Apache. These directives are most likely found in the srm.conf file.
In the three <Directory> container directivesin access.conf, the Options directive does not
allow included files. For the cgi-bin directory, the Options directive is set to None, which
explicitly disallows included files.

3.8.3 Background Information

Server Side Includes were devised to give alimited processing ability on the server with
having to resort to a CGlI script or an API. Thislimited ability allows two basic
tasks—execute, a small set of commands, and manipulate a small set of variables. The
following sections describe each of these tasks.

SSI commands are identified in the base document by their unique format. The following
is an example of a SSI command within a conventional HTML file. The format isvery close
toan HTML comment. If SSI parsing is not permitted, any SSI commands will be sent to the
client asis and handled as HTML comments by the browser.

64

<HTM_>

<BCDY>

<l -#include file="footer.htnl" -->

</ BODY>
</ HTM.>

The base document isthe HTML file or script requested by the client. The server does
not parse normal HTML or text files. Thisis done to increase the response speed of web
requests. Supporting SSI requires that the file be identified in some manner so that the server
isaware that it must parse thefile. The customary means to identify documents that must be
parsed isto use adifferent file extension. The conventional SSL file extension is .shtml.

3.8.3.1 SSI Commands
Thereisalist of eight SSI commands that can be used in the SSI statement.

config—Allows the administrator to customize an error message for parsing error and
customi ze the format for displaying file size and date/time values. This command
requires one of three argument values dependent on the purpose.

— errmsg—Used to specify the text of the parsing error message.

— sizefmt—Used to configure the display of date/time values.

— timefmt—Used to configure the display of date/time values.
echo—Prints the contents of an Include or server variable.

exec—Allows the execution of an external binary file or script. This command
requires one of two argument values.

» cmd—Spawns a shell for programs/commands other than CGI scripts.
» cgi—Invokesa CGlI script.

fsize—Prints the size of the named file. The format adheres to the sizefmt parameter
in the config command. This command requires one of two argument values
dependent on whether the path given is physical or logical.

65

— file—Used for a path that is specified from the file system. A “file” pathis
relative. Absolute paths and directory traversing operation (../) may not be
used.

— virtual—Used for apath that is specified asaURL. The path can be absolute
and begin witha*“/” or relative. Absolute paths originate at the ServerRoot.
Relative paths originate from the path of the base document.

» flastmod—Printsthetime. The format adheresto the timefmt parameter in the config
command. include—specifies the path of the file to be incorporated into the base
document. This command requires one of two argument val ues dependent on
whether the path givenisphysical or logical. Executable content can be part of the
included file, if permitted by the parameters to the Options directive.

— file—Used for apath that is specified from the file system. A “file” pathis
relative. Absolute paths and directory traversing operation (../) may not be
used.

— virtual—Used for apath that is specified asaURL. The path can be absolute
and begin witha*“/” or relative. Absolute paths originate at the ServerRoot.
Relative paths originate from the path of the base document.

* printenv—Printsalist of al Include and environment variable and their values.

* sat—Assignsthe value of an Include variable.
3.8.3.2Includeand Server Variables

3.8.4 Configuration Information

3.8.4.1 Enabling SSI on Apache Web Server

There are two steps required to enable SSI on the Apache Web Server. Thefirstisto
verify that the module for SSI, mod_include, is compiled into the Apache executable. This
module is compiled in the default configuration. The list of compiled modules can be
checked withtheht t pd —I command.

The second step isto map an SSI file extension and to identity the directories where SS
isalowed. This mapping ensures that the server parses these filesfor SSI commands. There
are three directives needed to complete this step. Thefirst isthe AddHandler directive.
Adding an AddHandler directiveto a Directory container identifiesto Apache Web Server
that the server must parse files with the mapped extension. The second isthe AddType
directive. The AddType directive definesthe MIME type the web server will use when
formatting responses to requests for files with the mapped extension. The third isthe
Options directive. The Options directive isthe directive that actual enables SSI parsing.

66

Where the Options directive is placed is critical. If the directive is placed in one of the global
configuration files, like access.conf, SSI parsing is enabled globaly. If the intent isto enable
SSI parsing on adirectory by directory basis, the directive may be placed in the appropriate
Directory containers or in the .htaccessfiles. SSI parsing may also be control through virtual
hosts. In this case, the directive would be placed in the <VirtualHost> container directive.
An example using the three directives to allow SSI filesto be placed in all directories
follows:

AddHandl er server-parsed .shtmn
AddType text/htm .shtn

Opti ons +l ncl ude

3.8.4.2 Options Directive Parameters Relevant to SS|

The Options directive has awide range of parameters. Many of these parameters do not
have any impact on SSI parsing. The ExecCGl, Include, and IncludeNOEXEC parameters
have direct impact on SSI parsing. The ExecCGI parameter allows the execution of CGI
scripts. The Include parameter behaves like an on/off switch for SSI parsing. If Includeis
not part of the parameter list, SSI fileswill not be parsed and any enclosed SSI commands
aretreated asHTML comments. The IncludeNOEXEC parameter allows SSI parsing, but if
the included file is executable or has executable content, that file or content is not processed.

3.8.5 Synopsis and Recommendations

SSl isadouble-edged sword. Itisvery useful for minimizing the duplication of content
that appears across a number of web pages, such as headers, footers, and copyright
information. However, the fact that it included files, it can contain executable content make
these files a security risk.

It is prudent to use the IncludeNOEXEC parameter on directories where the web
administrator does not have direct control of the content. It isvery easy for someone to use
an SSI command to incorporate executable content that is harmful.

3.9 Redirection and Aliasing

Redirection and aliasing are processes by which the Apache server receives arequest and
trandatesit into areference to a path other than the one that would appear to be the target.
For example, if a client requests a resource with the path A, if that path isreally an aliasor is
redirected, the actual resource being requested would have path B, which is not necessarily
deducible from A. This section described the modules and directives that alow the Apache
server to implement this functionality.

67

3.9.1 Modules

The Apache Web Server Version 1.3.3 contains three modules that contain functionality
that falls under the general category of aliasing and redirection. The modules are:

» core—The main Apache module. This contains directives concerning the document
root that serves as the base within the file system of al client requests for URLSs.

» mod_alias—The primary source of directivesinvolving aiasing and redirection.

» mod_userdir—A special case of aliasing and redirection; this module implements a
user directory mechanism that will dynamically calculate where to look if the Apache
server receives a URL containing ~<username>.

The mod_alias module contains severa directives al of which implement aliasing or
redirection in some form. The directives differ in how they calculate the URL to be matched
and in how the redirection is presented to the client. There are also special directives for
when the aliased resource is a CGI executable.

The mod_userdir module provides specia functionality that allows individual usersto
have directories that can be easily referenced in URLs. The Apache server checks the URL
to seeif it contains atilde (~) followed by ausername. The path of the requested resource
will by calculated based on the parameter of the User Dir directive. Depending on the format
of this parameter, thiswill either result in asimple aliased lookup or an actual redirect. The
mod_userdir module can aso specify that certain users should not have their directories
calculated in this way.

3.9.2 Default Configuration

Both mod_alias and mod_userdir are part of the default Apache build. The core module
isavailablein all builds of the Apache server. The default Apache configuration contains at
least one directive relating to aliasing or redirection from each of these modulesin the
srm.conf file. The lines from the configuration file are shown below with additional
description:

UserDir public_htm

This directive, from the mod_userdir module, defines how the Apache server will
calculate the location of auser’s publishing directory. In this case, if the Apache server
receives arequest for aresource in adirectory path that contains atilde (~) followed by a
username, the Apache server will look for that resource in the “public_html” folder in that
user’s home directory. For example, if aclient requests
“http://servername/~schmidtc/projects/index.html” then the Apache server will attempt to
return the file “ ~schmidtc/public_html/projects/index.html” where ~schmidtc is resolved by
the Linux operating system to by the home directory of the specified user.

68

Docunent Root "/usr/l ocal /apache/ share/ ht docs"

This directive, part of the core module, is used to specify the base directory in which the
Apache server will search for URLs. Thisdirectory serves as the root directory in URL
specifications. For example, in this case, if aclient requests
“http://servername/directory/file.ntml,” then the Apache server will attempt to return the file
“/usr/local/apache/share/htdocs/directory/file.html”.

Alias /icons/ "/usr/local/apache/share/icons/"

This directive establishes an dlias. It states that any time a client requests aresource in
the directory “icons,” the server should look for that resource in the directory
“/usr/local/apachel/sharelicons.” For example, if the client requests
“http://servername/icons/bullets/redbullet.gif,” the Apache server will attempt to return the
file " /usr/local/apache/share/icons/bullets/redbullet.gif.” This directive should not be used if
the requested resource may be executable, asit will not execute atarget file but will return
the executables contents asif it was anormal file.

#ScriptAlias /cgi-bin/ "/usr/local/apache/share/cgi-bin/"

This directive establishes an dliasto a CGI executable. It statesthat any time aclient
requests an executable file in the directory “cgi-bin” the server should look for that
executable in the directory “/usr/local/apache/share/cgi-bin.” For example, if the client
requests “ http://servername/icons/bullets/script.pl,” the Apache server will attempt to return
the results from executing “/usr/local/apache/share/icons/bullets/script.pl.” Thisdirective
should not be used if the requested resource may be afile, asthiswill result in an error.

3.9.3 Background Information

This section discusses information which is not a straightforward part of the
configuration process, but which is necessary for knowledgeable use of the aliasing and
redirection mechanisms.

3.9.3.1 General Use

There are two general issuesthat all users of aliasing, redirection, and User Dir directives
must be aware of. First, with the exception of the AliasM atch, ScriptAliasM atch, and
RedirectMatch directives, the directives will only be triggered if the string immediately
following the server name in the URL matches the target string. There cannot be any
intermediate characters. For example:

Alias /fake_nane/ "/usr/local/real name/"

The above directive would be matched on the URL
“http://www.server.com/fake_name/...”, but not on the URL

69

“http:/lwww.server.com/stuf/fake_name/...”. Notice that after the string to be matched, there
can be any number of characters extending the path.

The AliasMatch, ScriptAliasMatch, and RedirectM atch directives can match to any
portion of the URL. For thisreason, they must be used with great care to prevent accidental
matching.

The second magjor issue involving aliasing and redirection directivesis the use of trailing
dlashes (/) in the directives’ parameters. These directives behave differently depending on
whether or not the parameter to be matched with the URL and/or the parameter representing
the true path contains atrailing backslash.

Both the aliasing and redirection directives behave in the same way. If thefirst parameter
does not contain atrailing backslash then it will match both URLs with or without atrailing
backslash. If, on the other hand, the first parameter has atrailing backslash, no match will be
performed if the requested URL does not have a backslash after the matching string. For
example:

Alias /fake_nane/ "/usr/local/real nane/"

The above directive would match requests for “ http://www.server.com/fake_name/” and
“http://www.server.com/fake_name/directory/file.ntml”, but will not match arequest for
“http://lwww.server.com/fake_name”.

The second parameter should match the first parameter in that they should both possess
or lack atrailing backslash. If thisis not observed, the actual file or URL requested will
either lack or have an extra backs ash when calcul ated.

Thereis no difference in the behavior of the User Dir directive based on the presence or
absence of atrailing slash.

3.9.3.2 Aliasing vs. Redirection

This paper has been referring to aliasing and redirection asif they are two different
mechanisms, which is, in fact, the case. The primary difference between the two featuresis
how the processis seen from the perspective of the client. Redirection involvesthe server
sending one of anumber of HTTP redirects back to the client. The different types of
redirects inform the client of the status of the original document. The four types of redirect
messages the Apache server can be configured to send are:

» Moved Permanently (HTTP code 301)—Indicates that the resource has been
permanently moved to a new location and the client should update its references. The
message should include the new path of the resource.

* Found (HTTP code 302) —Also known as “Moved Temporarily,” this messages
indicates that the requested resource is temporarily residing in a different location, but

70

that it will returnto itsoriginal path at some time in the future. The message should
include the temporary path of the resource.

* SeeOther (HTTP code 303) —Indicates that the resource has been replaced or
updated with a different resource at the specified location. The message should
include the path of the new resource.

* Gone (HTTP code 410) —The requested resource has been removed from the server
and no forwarding URL has been provided. This message does not provide a new
URL to look up but simply exist to inform the user that the URL was once valid, but
isno longer so.

Most modern browsers, upon reception of aredirect message, will automatically create a
reguest to the provided URL making the entire process transparent to the user. (The obvious
exception to this being the “ Gone” message that does not contain a URL to request.) The
mod_alias module contains directives that can respond to client requests with any HTTP
message, the aforementioned four messages being the most likely in the case of redirection.
Although it is most common to redirect to another HTTP server, if the parameter specifiesa
different protocol that the browser is capable of requesting, this protocol is used. For
example, Redirect " ftp://ftp.domain.com/folder” would be parsed by most modern browsers
and result in arequest to the given server using the ftp protocol.

Aliasing, unlike redirection, takes place entirely on the server. If the Apache server
receives arequest for aURL that isaliased it internally recal culates the path of the requested
resource based on the aliasing directive used and returns the resource with the new path. No
messages are sent to the client during this process. Assuch, aliasing is primarily used to
re-map the URL file structure in much the same way that alink re-maps the file structure in
the operating system. (For more on links, consult the man pages for thel n command.) The
purpose of such are-mapping is generally either to shorten what would otherwise be
inconveniently long URL s or to hide the file system structure from probing using the HTTP
server. The latter is asecurity advantage in, should an attacker gain accessto the file system
, itwill be structured differently then how it appears to be structured when using the HTTP
Server.

If the same URL isthe subject of both an alisaing and aredirection directive, the
redirection directive will always take precedence. Asaresult, the client with receilveaHTTP
redirect message and the aliasing directive will not be considered.

3.9.3.3 Aliasing, Redirection, and Container Directives

Because they affect the path the Apache server will useto look up arequested resource,
the interaction of aliasing and redirection directives with container directives, which are
linked to the path and name of aresource, may seem to be somewhat confusing. Theruleto
remember is that the <L ocation>/<L ocationM atch> directives are matched against the URL

71

while the <Dir ector y>/<DirectoryM atch> and <Files>/<FilesM atch> directives are
matched against the file system . The result is that the former directives are matched against
the alias name that the client requests while the latter directives are matched against the
actual path and file on the file system . For example, consider:

Alias /aliaspath "/usr/l| ocal/apache/ share/ anot her path"

If auser requests “http://servername/aiaspath,” container directives will have the
following behaviors:

* <Location " aliaspath" > will apply all contained directives to the request

» <Location " /usr/local/apache/share/another_path" > will not be considered in this
request
» <Directory " aliaspath" > will not be considered in this request

» <Directory " /usr/local/apache/share/another_path” > will apply all contained
directivesto the request

» <Files"filehtml" > will apply all contained directives to the request only if thisisthe
name of the file requested. (In the above example, only the directory nameis
aliased.)

Following up on the last bullet, the Alias directive may be used to aliasindividual files.
For example, consider:

Alias /aliaspath2/file.htm
"/usr/local / apache/ shar e/ anot her _path2/real file.htm"

In this case, requests for “http://servername/aliaspath2/file.ntml” would cause the server
to return the file “/usr/local/apache/share/another_path2/real_file.html”. (Infact, an dias
with afilename can refer to adirectory and vice versa. Aliasing can simply be viewed as
string replacement when the server looks up the resource.) |If the recent Alias directive were
used, <Files> container directives would behave as follows:

o <Files" file.html|" > would not be considered in this request

* <Files"real_filehtml" > will apply all contained directives to the request

As can be seen in the previous two examples, the <L ocation>/<L ocationM atch>
directives are matched against the alias while both the <Dir ector y>/<Dir ector yM atch> and

<Files>/<FilesM atch> directives are matched against the actual path and name of the
requested resource.

Redirection does not consider any container directives no matter the type. When aclient
requests a target that is the subject of aredirection, the Apache server will immediately send
the redirect message without any further consideration.

72

3.9.3.4 The mod_userdir Module

The User Dir directivein mod_userdir can behave either as an aiasing or redirection call
depending on how it is configured. The calculations by which ausernameinaURL is
trandated is somewhat complicated and allows for virtually any configuration of user publish
directories providing that the publishing directories of all users have the same structure.

If the parameter of the User Dir directive does not contain a colon (which would indicate
aprotocol specification), it behaves as an aliasing directive. Specificaly, it behaves like the
Alias directivein that requests for acgi will return the text of the executable rather than
execute the file and return itsresult. The directory in which the Apache server looks for the
requested resource depends on the format of the directive' s parameter:

e UserDir "directory" —If the parameter is not led with abackslash (/) then it
represents the path under the users home directory. The given path may be of any
depth. In the above example, Apache would look in the “~username/directory/”
directory. Note that, for the purposes of <Directory>/<DirectoryM atch> matching,
the actual path of the users home directory is used rather than the tilde (~)
representation.

* UserDir "/directory” —If the parameter is led with a backslash (/) then the given
path, followed by a directory named after the given username will be checked.
Again, the given path may have any depth. In the above example, Apache would
look in the “/directory/username/” directory.

e UserDir “/directoryl/*/directory2" —If the parameter isled with a backslash (/) and
contains an asterisk (*) then the given path will be checked for the requested resource
where the asterisk is replaced with the requested username. In the above example,
Apache would look in the “/directoryl/username/directory2/” directory.

If the parameter string of User Dir contains a colon, it is assumed that a protocol is being
specified and that the directive is specifying that a redirection be performed. Normally, such
strings would begin “http://,” but any protocol could be used, just as with normal redirection.
Upon reception of arequest for the given users directory, an HTTP 302 (Found) message is
returned to the client with the new URL. The construction of the URL depends on the
parameter of User Dir:

o UserDir " http://www.server.com/directory” —If the parameter does not contain an
asterisk (*) then the users name is appended onto the end of the URL (with a
backslash inserted just beforeit). The URL given in the parameter may have any
depth. In the above example, the client would be redirected to
“http://lwww.server.com/directory/username/”.

e UserDir " http://www.server.com/* /directory" —If the parameter contains an asterisk
(*) then the client is redirected to the URL given in the parameter with the asterisk

73

replaced with the given username. In the above example, the client would be
redirected to “ http://www.server.com/username/directory/”. Notice that the username
in the redirected URL is not led with atilde (~). See the next bullet on how to do
that.

e UserDir " http://www.server.com/~*" —To redirect the client such that the requested
directory will be ~username, simply place atilde (~) in front of the asterisk (*) in the
parameter. In the above example, the client would be redirected to
“http://www.server.com/~username/”.

In al cases, if the user requests a path longer than the username (for example,
“~username/dirl/dir2/file.ntml”) the path after the username is simply appended to the end of
the path being looked up locally or being redirected.

Noticethat in al the above examples, no trailing slash (/) isplaced in UserDir’s
parameter. The Apache server automatically adds thisto all requests. If the configuration
file contains atrailing slash this will result in two trailing slashes which may cause an error.

When used in conjunction with container directives, the User Dir directive behaves
exactly as an aliasing or redirection directive would, depending on how the User Dir directive
isused. If UserDir isused in its aliasing capacity, the <L ocation>/<L ocationM atch>
directives will be compared against the URL (with the ~username), while the
<Directory>/<DirectoryM atch> and <Files>/<FilesM atch> directives will be matched
against the actual path of the resource requested. If UserDir isused in itsredirection
capacity, no container directives will be consulted.

If aUserDir directiveis used along with an aliasing or redirection directive that is set to
match on a specific ~username, the User Dir directive will always take precedence and the
aliasing or redirection directive will not be considered. This occurs no matter whether
User Dir isbeing used in its aliasing or redirection capacity.

In addition to providing how to calculate the target of a user name lookup, the User Dir
directive can be used to define which usernames will be converted. This can be done through
theinclusion of either enabled or disabled as the first parameter of the User Dir directive.
The use of these parameters will have one of three results:

» UserDir disabled prevents any user directories from being transl ated with the
exception of those specifically alowed using the enabled parameter.

* UserDir disabled username username... prevents the listed usernames from being
trandated. The server will attempt to service all other user directory requests.

* UserDir enabled username username... specifically allows the listed usernamesto
be serviced by the Apache server. When used in conjunction with User Dir disabled,
the listed usernames will be the only ones serviced.

74

By default, the Apache server will attempt to translate and service all requests for user
directories.

3.9.3.5 Aliasing and Security

Aliasing, and in thisinstance aliasing refers to the User Dir directive when used in its
aliasing capacity, can be beneficial in anumber of ways. Long paths can be aliased
preventing clients from requesting long and unwieldy URLS. Mnemonic names can be
assigned to resources that would otherwise require the memorization of aless intuitive path.
Additionally, the use of aliasing directives can hide the true structure of the servers' file
system from clients. The latter feature can be a great benefit to security.

Many attacks require a foreknowledge of at least some portion of the server’s directory
tree. Without the use of aliasing directives, the directory tree seen in URLswill be exactly
the same as the directory tree of the server itsalf (minus the path to the server’s publish
directory). By using adliasing directivesthe URL directory tree can be broken up and placed
throughout the servers’ file system, thus foiling mapping attempts.

There is one danger to using aliasing directivesin the form of links. A link isafile that
connectsto adirectory at some other location in the file system . Links are used to alter
paths on the file system in much the same way that aliasing alters the lookup path in the
Apache web server. Asfar asthe user, and Apache, are concerned, the directory the link
connectsto is simply a sub-directory of the directory that contains the link. This occurs
regardless of the target directory’ s original position in the file system . In effect, alink
creates a second path to a directory.

This has two ramifications. First, if alink existsin adirectory that is the target of an
aliasing directive, the client may be able to follow that link wherever it may lead. For
example, if thelink “r oot ” was linked to the directory “/ ” then the Apache server would
attempt to service arequest for aresource in the directory “root” by looking in the/, or root
directory of the file system . Itisunlikely an administrator would wish clients to be granted
this ability.

The second ramification of the use of links relates to alink’s ability to create alternative
paths. The <Directory>/<DirectoryMatch> directives match against the file system path.
However, they are only compared against the path being requested. A link can create a
second, different path. Assuch, asecond set of <Directory>/<DirectoryM atch> directives
would need to be added in order to match this new path. Otherwise, the contained directives
might be applied to requests using one path, but not to requests using another, resulting in an
uneven security policy.

The danger of links can be mitigated in several ways. First, an administrator should
always check for linksin any directory that can be published. Thisis the best method for
detecting unwanted links. In addition, the Options directive can be used to prevent the

75

Apache server from following links. This can be used in cases wherein the administrator
may not be able to control links placed in agiven directory, such as when that directory is
controlled by an individual user. Finally, the administrator should set up an access control
policy such that directories that are not intended for publication can never be accessed. This
should be done for all directories regardless of whether they seem reachabl e through the web
server. Thereisaways the possibility that arogue link may exist connecting a published
directory to the other.

3.9.4 Configuration Information

This section presents examples of the use of the various aliasing and redirection
directives. Examplesinclude abrief description of the intention of the directive and an
explanation of itsarguments. Due to the lack of interaction between the various directives,
each exampleisindependent. The examples do not reflect any unified attempt to make
significant changes to the settings of the server, but were simply contrived to demonstrate the
use of their respective directives. Each example also describes directives that are similar to
the one demonstrated.

3.9.4.1 Aliasing

This example will show the use of the Alias directive. Use of the ScriptAliasdirective
can be easily extrapolated where the target directory contains executables. The displayed
directive smply intercepts requests for the “project_1" directory in what appears to be to root
directory of the server and linksit to the project’ s directory. The other directives enable
clients to access the project directory since, by default, this directory would not allow access.

Alias /project_1 "/honme/schmdtc/project_1/htm"

Asaresult of this directive, whenever the Apache server receives arequest for aresource
whose URL beginswith “/project_1" (after the protocol and server designation) it will look
for thisresource in the file system directory tree under the “/home/schmidtc/project_1/html”
directory.

<Directory "/home/ schm dtc/project_1/htm ">

Specify the directory being referenced in the aias. By default, no accessis allowed to this
directory. In order to allow external usersto accessit, permissions must be enabled.

order all ow, deny
Specify the access control order (see Section *****),
allow fromall

Specify that accessis alowed from all hosts (see Section *****),

76

Opti ons None

Specify that no specia options are permitted. Among other things, this setting prevents
the Apache server from following symbolic links while in this directory and prevents the
execution of CGI and Server Side Includes (see Section 3.1.4).

</Directory>
Close off the above container block.

Behavior: Once the above directives are implemented, the server will attempt to service
all request for resources within the “project_1" directory in the URL by looking in the
“/home/schmidtc/project_1/html” directory. For example, if auser requested
“http://www.server.com/project_1/reports/august.ntml” the server would attempt to find and
service the file “/home/schmidtc/project_1/html/reports/august.html”. The disabling of
symbolic links and executable content using the Options directive enhances security.

Note that, while the order and allow directives allow access to the given file system
directory from the Apache server’s perspective, it must still be the case that the user
“nobody” (or whichever user is specified for the server child processesin the User directive)
must able to reach the directory within the file system . If the access control of directoriesin
the operating system prevented such access, Apache would be unable to serve the directory.

3.9.4.2 Redirection

Redirection isarelatively ssimple feature to implement. Apache provides four directives
to implement thisfeature: Redirect, RedirectMatch, RedirectTemp, and
RedirectPermanent. Of these, RedirectTemp is equivalent to Redirect with afirst
argument of temp while Redir ectPer manent is equivalent to Redirect with afirst argument
of permanent. Thisexample will demonstrate the use of the Redirect directive.

Redi rect permanent /research "http://research. server.conf

When the client sends arequest for aresource in the “/research” directory of the URL,
the server sends a “ Redirect Permanent” message (HTTP code 301) indicating that all
requests for this directory should be directed to “http://research.server.com”.

Redi rect seeother /help files "http://ww.server.com hel p2"

When the client sends arequest for aresourcein the “/help_files’ directory, the server
sends a“ See Other” message (HT TP code 303) indicating that new versions of the requested
filesare located in “ http://www.server.com/hel p2”.

Behavior: In either of the above cases, client requests are met with redirect errors of the
specified type. Most client browsers will parse these errors and transparently request the

77

indicated resource. There arereally no other issues with using this directive sinceit is
processed before container directives or aliases are considered.

3.9.4.3 TheUserDir Directive

The User Dir directive can be useful to site administrators who wish to allow specific
users to be able to publish content that they are able to control themselves. The following
example describes one possible secure configuration for such a mechanism.

UserDi r di sabl ed
Causes al requests for user directories to be denied by default.
UserDir enabl ed schm dtc rntquai d kj ones

Allows the server to look up user directories for the three users listed only. Requests for
any other user’s user directory will not be serviced.

UserDir /hone/user_publishing/*/http

Specify where the user directories are located. In this case, schmidtc’s user directory
would be located in “/home/user_publishing/schmidtc/http”, rmcquaid’ s would bein
“/home/user_publishing/rmquaid/http” and kjones swould bein
“/home/user_publishing/kjones/http”.

<Directory "/home/user_publishing/*/http">

By using the wildcard character in the above specification, this container block appliesto
the “http” directory within each individual users’ publishing directory.

order all ow, deny

Set the order of the access control.
all ow from al |

Allow access to these files from all hosts.
Opti ons None

Specify that no specia options are permitted. Among other things, this setting prevents
the Apache server from following symbolic links while in this directory and prevents the
execution of CGIl and Server Side Includes (see Section 3.1.4).

Al'l onwOverride AuthConfig Limt

Specifies which directives the Apache server will read from .htaccess files, should there
be one present in the requested directory. (See Section 3.1.5 regarding .htaccessfiles.) The
parameters allow users to control authentication and access control to their directories

78

through .htaccess files, but will prevent them from changing other properties of their
directory (such as giving themselves the ability to follow links).

</Directory>
Closes off the container block.

Behavior: The above configuration will cause the server to process requests for
~schmidtc, ~rmguaid, and ~kjones. All other requests for user directories will be met with a
“Not Found” (HTTP code 404) message from the server. For usersthat are allowed, Apache
will calculate the user’ s publishing directory and make arequest there.

The <Directory> container block is used to enable access to the user publishing
directories since, but default, access would not be allowed. In addition to granting access to
all hosts, the block also contains directives that limit the activities that may be taken within
the user directories. Specifically, it prevents Apache from following symbolic links or
executing code and limits the directives that will be read from .htaccessfiles. These
directives are particularly important when dealing with user directories since individual users
are likely to be able to control the content of these directories without administrative
supervision. Assuch, it isimportant to configure Apache such that hostile users will not be
able to violate security from their user directories. By preventing links from being followed,
the administrator is eliminating the possibility that the user might create alink to sensitive
information on the server. Preventing the execution of CGI and Server Side Includes
prevents users from running executables without supervision. Finally, and most importantly,
limiting the directives read from .htaccess files as described allows users to restrict access to
their user directories as they wish, but prevents them from granting themselves more
capabilities than the administrator has specified in the primary Apache configuration files.

3.9.5 Synopsis and Recommendations

Aliasing and redirection directives can be very useful to the functioning of aweb server
in general and its security in particular. Specifically, careful use of aliasing directives can
hide the internal structure of the file system on the web server from mapping attempts while,
at the same time, making it easier to use. The only risk that must be taken into consideration
isthe danger of links within the file system . However, through careful inspection of
published directories, the preventing Apache from following links, and/or denying access to
all directories except those the administrator wishes to be publicly viewed.

The User Dir directiveisaspecial case of aliasing and redirection and simplifies the task
of granting individual users directories from which they can publish content. If the
administrator wishes to use this feature, they should follow the example givenin
Section 3.9.4.3 regarding the secure configuration of the mechanism: allowing user directory
lookups only to specific users and restricting the features of those directories. If the

79

administrator does not wish to use this feature, it should be disabled. This can either be done
by placing asingle User Dir disabled directive in the configuration file, or by disabling the
module when building the Apache server by adding the argument “- - di sabl e-

nodul e=user di r”. Inthelatter case, the administrator will need to remove the default
User Dir public_html directive from the srm.conf configuration file.

The redirection directives, while not providing much additional security, can be very
useful especially in situations where aweb site actually consists of several individual web
servers. Theflexibility of the associated directives allow the administrator complete control
of the type of message returned to the client in the event of a redirection.

Directives that allow regular expressions to be used in aliasing and redirection are
available through the AliasM atch, ScriptAliasM atch, and RedirectMatch directives. Itis
very easy to have unintended matches occur when using these. For thisreason, it is
recommended these directives not be used unless absolutely necessary, and then only with
the utmost care to match only the desired URLSs.

3.9.6 Additional Topics

There are no other topics relating to aliasing and redirection that have not been addressed
in the above section.

3.10 Virtual Hosting

An Apache Web Server can support more than one web site. Thisis done through virtual
web sites or virtual hosts. A virtual web siteis a set of content directories that are managed
and accessed asif it was a separate, unique web server. Virtual web site is a more descriptive
term; however, virtual host is the Apache directive used to implement a virtual web site.

This feature was designed to manage the problem commercial Internet service companies
face when trying to host multiple web sites.

3.10.1 M odules

The <VirtualHost> container directive is part of the core Apache module; therefore,
there are no additional modules required to implement virtual hosts.

3.10.2 Default Configuration

There are no active <VirtualHost> container directivesin the three configuration files
for Apache. The httpd.conf does contain an example of the <VirtualHost> container
directive that is commented out.

80

3.10.3 Background Information

Before virtual hosts were available, the possible solutions were to have a separate
machine for each web site or to have several network interface cards in a single machine.
Each of these interface cards would be bound to a different IP address. Virtual web sites can
be hosted on the same Apache Web Server by uniquely identifying each site using one of
three methods:

* By assigning each site a nonstandard port (e.g., other than port 80) to listen for HTTP
traffic

* By assigning each site a unique Internet Protocol (IP) address

» By providing additional information (e.g., Host Header information) in the header
portion of each HTTP packet which uniquely identifies the virtual web site to which
the packet should be directed

3.10.3.1 Nonstandard Ports

Nonstandard ports are the easiest way to direct HTTP requests to avirtual web site. No
modifications to the DNS database are required. The use of a nonstandard port number
requires that the port number be explicitly included in the URL (e.g.,
http://www.mysite.com:8080)| This technique is well established and provides the meansto
host more than one Web site from asingle IP address. Requiring a port number in the URL
isadrawback for thistechnique. If the port number is not provided, the web server will
assume the default port (port 80) for an HT TP transaction and access the appropriate
directory. The request is directed to the wrong Web site. Another use of this techniqueisto
support special services; one example is secure connections through SSL. The server listens
for incoming requests on a designated port and then directs the request to the service based
on the port information. Some of these port numbers are well-known and others, especially
those for proprietary services, may be lesswell known. By default, secure connections using
SSL are made over port 443.

3.10.3.2 Unique | P Addresses

The next technique involves unique IP addresses. In thistechnique, the DNS name for
each virtual web site (including the default web site) is paired to a unique | P address and
registered with the Domain Naming System (DNS) server. When an HTTP request for that
DNS name is resolved, to the associated | P address, the request will be directed to the correct
Web server through the IP address. The server hosting Apache Web Server must be
configured to respond to each of the associated IP addresses. More significantly, each virtual
web sites must be mapped to a specific IP address.

Virtual web sites using port numbers or unique IP addresses are referred to as |P-based
virtual hosts.

81

http://www.mysite.com:8080)/

3.10.3.3 Host Headers

The final technique is through Host Headers. With Host Headers, asingle |P address can
be used to support multiple virtual web sites. In the past, the HTTP protocol provided only
the IP address of the requested web site and not the DNS name. In the TCP connection
supporting an HTTP file request, the DNS name was resolved to an IP address and only the
IP address was used for the HTTP file request. Even though multiple DNS names for web
sites could be mapped to one IP address on the DNS server, when the HT TP request was sent
to that |P address there was insufficient datain the HT TP packet to pass the request to the
correct virtual Web site. Version 1.1 of the HTTP protocol added support for host headers.

Operationally, the parent web server process must be able to distinguish packets directed
at one virtual host from packets meant for another virtual host. In detail, a Host Header isa
reference, in the header data of the HT TP packet, to the DNS name of the Web site.
Specifically, thelinein the HTTP header will take the form:

HTTP: Host = Wwww.myserver.com|

The browser provides the host header information. The server reads this information and
directs the request to the correct virtual web site. The following requirements must be met
for the host header method to be used:

* The DNS names for these virtual web sites must be registered with the DNS server
that supports the organization.

* Theweb browser must support HTTP 1.1 to pass the DNS name of the virtual Web
siteinthe HTTP header data. New browsers (Internet Explorer 4.0 and Netscape 4.0)
support this feature.

* Theweb server must support this feature; Apache Web Server is compliant.
Virtual web sites using host headers are referred to as named-based virtual hosts.

3.10.3.4 Single ver sus M ultiple Daemons

Each instance of the Apache Web Server is a daemon process. Apache Web Server can
support virtual web sites using a single daemon process or multiple daemon processes. With
a single daemon process, that process must be configured to listen and accept requests for all
of the virtual web sites. With multiple daemon processes, there is more than one daemon
process. The maximum would be one daemon process for each virtual web site.

In most situations, a single daemon process is preferred. If the volume of trafficto a
specific virtual web siteis high, an additional Apache Web Server instance can be started to
distribute the load. Resource limitations must be considered when supporting virtual web
sites. Each Apache Web Server instance will require a set of resources.

82

http://www.myserver.com/

3.10.4 Configuration Information

3.10.4.1 Apache Virtual Host Directive

The <VirtualHost> container directive is the mechanism in the Apache Web Server to
implement virtual web sites. The general form of the container is.

<Vi r t ual Host >
[Stat ement Bl ock]
</ Vi rtual Host >

Within the statement block, the administrator can use most Apache directives to define
the functioning of the virtual web site. Directives within the container apply only to that
virtual web site. The following directives may not be used with the <VirtualHost>
container:

Bi ndAddr ess

Li sten
MaxRequest Per Chi | d
MaxSpar eSer vers
M nSpar eServers
NarmedVi r t ual Host
PidFile

Ser ver Root
Server Type

Start Servers
TypesConfig

The two important directives are Server Name and DocumentRoot. These directives are
needed for each instance of the web server and each virtual web site. The ServerName
directive provides the web site’s DNS name, for example www.mysite.com. The
DocumentRoot directive pointsto the directory that is the root directory of the web site. For
example, if the root directory of www.mysite.com is /www/mysite/htdocs, the file index.html
is accessed with the URL, http://www.mysite.com/.

The opening <VirtualHost> tag contains the | P address or DN'S name of the virtual web
site. Use of the IP address is recommended. Presently, if a DNS nameis used and the DNS

83

lookup fails, the web service will not start. A solution to this problem is anticipated in a
future Apache Web Server release.

With Apache Web Server Version 1.3 or later, any virtual host containers for name-based
virtual host must be preceded by the NameVirtualHost directive. Thisisacore directive
that provides the IP address to resolve any subsequent name-based virtual host containers.
DNS names may be used in the NameVirtualHost directive, but |P addresses are
recommended for the same reason as mentioned earlier. For example:

NameVi rt ual Host 10.0.0.5
<Vi rtual Host 10.0.0. 5>
Server Name www. nysite.com
Docunent Root /www nysi te/ htdocs
</ Vi r t ual Host >
<Vi rtual Host 10.0.0. 5>
Server Name www. yoursite.com
Docunent Root /www your si te/ htdocs
</ Vi rt ual Host >

If there is more than one | P address associated with the Apache Web Server, each IP
address requiresaNameVirtualHost directive. For example:

NanmeVi rt ual Host 10.0.0.5

NameVi r t ual Host 10.0.0.6
<Vi rtual Host 10.0.0. 6>
Server Name www. t heirsite. com
Docunent Root /www// t heirsite/ htdocs
</ Vi r t ual Host >

Port numbers can be specified in the NameVirtualHost directive.

3.10.5 Synopsis and Recommendations

While the primary purpose of virtual hostsisto improve the overall utility of the web
server platform, they can simplify accessto aweb resource for the end user. The

84

requirement to recall long and difficult URLs to access aresourceis aleviated. From the
security perspective, this ease of use helps protect the internal structure of the web server
from unauthorized access. Thisisthe same benefit provided by aliasing described in the next
section.

3.11 Other Security Issues

The Apache server isafull-featured Web Server in every respect. Assuch, it containsa
great many more services than have been described so far. A complete description of al the
features of the Apache Web Server would be a subject of many hundreds of pages. (Trust us
on this.) Fortunately, most of the advanced features the Apache server are not necessarily for
secure functioning of the server, or even particularly necessary for most general purpose web
publishing. The authors of this paper decided the reader would be better served by a concise
description of the features of the Apache Web Server which were both in common use and of
security relevance. Hence, this document does not describe many features of the Apache
server. Readers who wish to become more familiar with the other features of Apache are
recommended to the A pache documentation distributed with the server, or to commercial
books printed on the subject.

The previous disclaimer notwithstanding, the authors felt that a very brief introduction
and description of the major additional features of the Apache server not covered thus far
would be helpful. This section isintended to familiarize the reader with these additional
features and to indicate what security issues are brought into the picture by there use. Thisis
not a configuration guide to these features; it is merely asurvey. If the reader wishesto
implement any of them, the details of the implementation and the specific security
considerations associated with the implementation are left to the reader.

3.11.1 Proxying

In addition to its normal functionality as a Web server, the Apache server also hasthe
capability of performing the functions of a caching proxy server. A proxy serverisa
computer located at the intersection between one’' sinternal intranet and the Internet as a
whole. All connections that internal machine (in the intranet) wishes to make with an
external machine (in the Internet), must be accomplished by connecting to the proxy server
and asking it to make the external connection on behalf of the internal machine. Theidea
behind thisisthat, for al intents and purposes, the internal network has only one computer
exposed to the Internet, and therefore vulnerable to attack. Moreover, all connection requests
from one's network should appear, from the perspective of someone listening to the Internet,
to have come from the proxy server regardless of the original requestor. This possibly
prevents hostile outsiders from gaining any information about the configuration of one's
internal domain.

85

The Apache server is capable of serving as a proxy server when the mod_proxy module is
compiled in when Apacheis built. (The mod_proxy moduleis not part of the default Apache
build.) With it, the Apache server is capable of receiving requests from internal hosts and
forwarding them on to either internal or external servers as appropriate. The mod_proxy
modul e contains alarge number of directives that can be used to control specific aspects of
how the Apache server handles given requests. For example, Apache can control whether to
forward request directly to their target or pass them off to another proxy server, whether
certain target sites should be blocked entirely, and which protocols the Apache server will
handle.

Beyond the standard ability to proxy internal requests to the outside world, the Apache
server can store documents that have been recently requested and serve the local copies the
next time a client requests the resource. This saves the proxy server from needing to
establish a connection to the target host. This, in turn, reduces load on the Apache server
while increasing the speed with which a client’ s request is serviced.

The implementation of a proxy server is a security feature that should be undertaken very
carefully. A well configured proxy server isagreat asset to network security. A poorly
configured proxy server, at best, provides a false sense of security and may even provide
more access to one’ s internal network than would have otherwise been possible. Assuchitis
important that implementation of the mod_proxy module only be done with a complete
understanding of its features and with an eye on ones entire security policy.

3.11.2 Themod rewrite module

The mod_rewrite module is used to dynamically change (rewrite) URLS requested by a
client causing them to request a different resource. Thisisdone entirely on the server
without the knowledge of the client. This functionality is similar to that provided by the
aliasing directives, but is much more powerful. The module allows the administrator to
define conditions and rules using regular expressions that define how a given URL isto be
rewritten. The module will check each URL requested against itslist of conditions and
applies the associated rules of any conditions that are met.

This functionality gives the administrator a huge degree of control over what aclient
sees. For example, if aweb site services both Intranet and Extranet clients, mod_rewrite
could be used to examine the environment variable, REMOTE_ADDR for the IP address of
the client. With thisinformation, the URL could be re-written to one sub-directory for
Intranet requests and a parallel subdirectory for Extranet requests. From the users
perspectives, the URL requested is the same.

The security ramifications of this module are wide ranging. Asaword of caution,
mod_rewrite is avery complex and confusing module. It isbest to refer to the Apache
documentation for reference and examples of how to employ this module.

86

3.11.3 Indexing, Server Status, and Other Waysto Remotely Learn About a Server

There are several ways in which the Apache server can end up publishing information
about its settings and configuration. Thisis not always good from a security standpoint.
This section covers afew of the more obvious ways in which aclient might be able to
discover more information about the server than would be strictly necessary for its own
legitimate purposes, and what the server can do to prevent this.

Thisfirst matter is directory indexing. Directory indexing refersto the dynamically
created index pages to be returned to the client, if the client requests a directory and the
directory does not contain an index file as defined by the Directorylndex directivein
mod_dir (see Section 3.1.3). The formatting of these pagesis controlled by directivesin the
mod_autoindex module, which is part of the default Apache build. Some administrators are
not comfortable with clients being able to learn the entire contents of a directory. For such
circumstances, the administrator can use the Options directive from the Apache core
module. If thedirectiveisused and neither All nor I ndexes are given as parameters, then
requesting adirectory which does not contain an index file will not return an index page and
instead a“Forbidden™ error (403) it will be returned. See Section 3.1.4 for more on the
Optionsdirective.

The second issue is the ability of the Apache server to display server status information
dynamically to administrators. Thisis done so that an administrator may determine the
system load, current connections, recent history statistics, and related information. This may
be done even if the administrator is at a remote machine and cannot actually view the
server’slog files. Unfortunately, unless carefully configured, thisinformation can also be
availableto any client on the Internet. Thisfunctionality is provided by the mod_status
module. The mod_status moduleis part of the default Apache build. The default Apache
configuration files do not contain directives that enable this functionality. Asaresult,
initialy, clientswill still not be able to acquire this information. However, since the module
is part of the Apache build, any users who can create .htaccess files on the server will be able
to create configurations causing server status information to be displayed. If the
administrator is uncomfortable about letting this information be distributed in an
uncontrolled fashion, they should disable the module by adding "- - di sabl e-
nodul e=st at us" asan argument to theconf i gur e command.

Thefina issueisthe ability of the Apache server to display its modules and configuration
directives upon request. Thisfunctionality is provided by the mod_info status. This module
is not part of the default Apache build. When this module is added and directives added to
the configuration files, the server can be requested for the current configuration of the
Apache server. Thisinformation includesalist of all the modules that were part of the build
which created the server, aswell as all the directives used from each of these modules and
any parameters these directives have. Thisinformation displays the security settings, gives

87

away any aliasing and redirection the administrator may have enabled, and provides the
location of all important files on the server. This practically provides aroadmap for anyone
who might wish to perform hostile actions on the server. Administrators should be extremely
wary of enabling this module since, even if its directives are not added to the main
configuration files, users can still enable it inindividual .htaccssfiles. Assuch, the authors
recommend that mod_info never be enabled on any server which stands a chance of being
attacked (i.e., one that is attached to a network).

88

Section 4
Recommendations and Summary

The Apache server is robust and resistant to most exploits. It contains a wide range of
features that allow for a high level of customization. This degree of flexibility makes
becoming an Apache expert along term endeavor. This allows administrators to modify the
version of the Apache server being run to reflect the precise needs of their own system.

The Apache Web Server also contains several features that can be used to make it more
secure. The server can implement access control based on either host identity or user
authentication. It is capable of detailed auditing of events on the server and allows the
auditing mechanism to be customized to meet specific needs of aweb site’' s administrator.
The Apache server aso is capable of ahigh degree of control over how it handles user
requests. This control can be used to ensure accessibility and to conserve server resources as
appropriate. The server is capable of hiding its own internal structure from usersin order to
prevent the internal system from being mapped out by attackers.

Another advantage of the Apache Web Server is that the source codeis available to all
users. Dueto this, the server\version is updated frequently; the server has been updated
seven times since this assessment began a year ago and any serious bugs in the system are
usually found quickly and fixed. The rapidity of new features and patches makes it unlikely
that any security holes would remain a problem for an extended period of time.

During this study no security problems were detected with the Apache Web Server.
However, the server lacks particular features that prevent it from being usable on secure
systems. Specificaly, it lacks encryption, which is necessary to create atruly secure web
server. When the Apache Web Server was being designed, its authors made the decision that
they wished the software to be as widely usable as possible. To avoid the difficulties
associated with export controls, the Apache creators decided that the standard Apache server
would not include encryption. The result of this decision is that secure information cannot be
protected by the Apache Web Server. Users authenticating to the server can have their
usernames and passwords acquired by an attacker under most circumstances. Thereisno
guarantee that the server’s response will not be altered by an attacker before reaching its
intended recipient. Anyone with the ability to listen to the wire will be able to read every
document returned by the server no matter how tightly the server controlsits access.

Programmers have devel oped an extension of the Apache web server called Apache SSL.
Apache SSL, which is distributed from outside the United States, contains confidentiality
mechanisms that allow for encrypted connections between clients and servers. In addition to
protecting client requests and server responses, the added functionality can secure
authentication attempts against eavesdropping and replay. Apache SSL islegal for

89

commercia use within the United States providing one has acquired alicense for RSA
encryption from the RSA Corporation. Apache SSL is based on the standard Apache web
server and, while this project has not looked at Apache SSL, it appears that al functionality
of the original Apache server is present in Apache SSL using the same configuration
directives.

Currently planned for the next fiscal year isatask to extend this year’ s assessment of the
Apache Web Server to include an assessment of the Apache SSL Web Server. It is hoped
that, the latter application will prove as robust and full of features as the original Apache
Web Server, while the addition of encryption technology will make the server appropriate for
use in handling secure documents.

90

Glossary

API
CGl
DNS
FTP
HTMP
HTTP
IP
JVM
SGML
SMTP
SS|
TCP
URL
WwWw

Application Programming Interface
Common Gateway Interface
Domain Naming System

File Transfer Protocol

HyperText Markup Language
Hypertext Transfer Protocol
Internet Protocol

Java Virtual Machine

Standard Generalized Markup Language
Simple Mail Transfer Protocol
Server Side Includes

Transmission Control Protocol
Universal Resource Locator

World Wide Web

91

Changes

Rev 1.1. Revised to include the fact that the latest versions of Internet Explorer and Netscape
Communication support digest authentication. Corrected afew typos which had no effect on
technical content.

Rev 1.11 Added a statement reminding the reader that digest authentication has some
security shortcomings as identified in the RFC.

Rev 1.12 Added afwarnings|page.

93

Distribution List
Internal

G020

D. J. Bodeau
H. W. Neugent
W. R. Gerhart
P. S. Tasker

G021

J. L. Connolly
J. D. Guttman
R. M. McQuaid
M. C. Michaud
J. Picciotto

C. M. Schmidt

External
National Security Agency

9800 Savage Road, STE 6704
Ft. George G. Meade, MD 20755

M. Pittelli, NSA/C43

Please do not delete these paragraphs or the final end-of-section mark in your document.
They are important for correct functioning of the RoboTech template.
RoboTech: Version 1.0b

95

	1.1 Purpose
	1.2 Scope
	1.3 Background
	1.4 Document Organization
	2.1 World Wide Web Model
	2.1.1 Web Server Component
	2.1.2 Web Client
	2.1.3 Transmission Protocol: HyperText Transfer Protocol
	2.1.4 Data Format Specification Component

	2.2 Apache Architecture
	2.2.1 Apache File System Layout
	
	
	Figure 1. Default File Layout
	Figure 2. Customized File Layout

	2.2.2 Component Module Architecture
	
	
	Figure 3. Apache Component Module Architecture
	Table 1. Core Directives
	Table 2. Apache Default and Standard Modules

	2.2.3 Configuration Mechanisms
	2.2.4 Apache Run-Time Modes
	2.2.4.1 Standalone Mode
	
	Figure 4. Stand-Alone Mode

	2.2.4.2 Inetd Mode
	
	Figure 5. Apache inetd Mode

	2.3 Apache Configuration Roadmap
	
	
	
	Figure 6. Apache Environment Roadmap

	2.4 Apache Security Services
	3.1 General Server Settings
	3.1.1 Container Directives
	3.1.1.1 <Directory> and <DirectoryMatch> Directives
	3.1.1.2 <Files> and <FilesMatch> Directives
	3.1.1.3 <Location> and <LocationMatch> Directives
	3.1.1.4 <Limit> Directives

	3.1.2 The User and Group Directives
	3.1.3 Handling Directory References in URLs
	3.1.4 The Options Directive
	3.1.5 .htaccess Files

	3.2 Authentication
	3.2.1 Modules
	3.2.2 Default Configuration
	3.2.3 Background Information
	3.2.3.1 Username-Password File Creation
	3.2.3.2 Username-Password File Security
	3.2.3.3 Group Files

	3.2.4 Configuration Information
	3.2.4.1 Username-Password Authentication
	
	Figure 7. Configuration File Example for mod_auth_db

	3.2.4.2 Anonymous Authentication
	
	Figure 8. Configuration File Example for Anonymous Authentication

	3.2.5 Synopsis and Recommendations
	3.2.6 Additional Topics

	3.3 Access Control
	3.3.1 Modules
	3.3.2 Default Configuration
	3.3.3 Background Information
	3.3.3.1 Access Control Scope

	3.3.4 Configuring Custom Access Control
	3.3.4.1 Allow Directive
	3.3.4.2 Deny Directive
	3.3.4.3 Order Directive
	3.3.4.4 Allow From Env Directives
	3.3.4.5 Deny From Env Directives

	3.3.5 Implementation of Customized Access Controls
	3.3.6 Synopsis and Recommendations

	3.4 Auditing
	3.4.1 Modules
	3.4.2 Default Configuration
	
	
	Figure 9. Configuration File Example for Logging

	3.4.3 Background Information
	3.4.3.1 The Error Log
	3.4.3.2 Configuring Custom Log Formats
	3.4.3.3 The mod_log_agent, mod_log_referer, and mod_usertrack modules
	3.4.3.4 Defining and Implementing Custom Log Files
	3.4.3.5 Securing Log Files

	3.4.4 Configuration Information
	3.4.5 Synopsis and Recommendations
	3.4.6 Additional Topics

	3.5 Availability
	3.5.1 Modules
	3.5.2 Default Configuration
	
	
	
	Table 3. Default Availability Directive Values

	3.5.3 Configuration Information
	3.5.4 Synopsis and Recommendations

	3.6 Integrity, Confidentiality, and Nonrepudiation
	3.7 Common Gateway Interface (CGI) and Scripting
	3.7.1 Modules
	3.7.2 Default Configuration
	3.7.3 Background Information
	3.7.3.1 Markup and Scripting Languages
	3.7.3.1.1 Markup Languages
	3.7.3.1.2 Scripting Languages

	3.7.3.2 Client-Side Scripting
	3.7.3.3 Server-Side Scripting

	3.7.4 Configuration Information
	3.7.4.1 Enabling CGI Scripting
	3.7.4.2 ScriptAlias

	3.7.5 Synopsis and Recommendations
	3.7.5.1 Scripting Languages and Security

	3.8 Server Side Includes
	3.8.1 Modules
	3.8.2 Default Configuration
	3.8.3 Background Information
	3.8.3.1 SSI Commands
	3.8.3.2 Include and Server Variables

	3.8.4 Configuration Information
	3.8.4.1 Enabling SSI on Apache Web Server
	3.8.4.2 Options Directive Parameters Relevant to SSI

	3.8.5 Synopsis and Recommendations

	3.9 Redirection and Aliasing
	3.9.1 Modules
	3.9.2 Default Configuration
	3.9.3 Background Information
	3.9.3.1 General Use
	3.9.3.2 Aliasing vs. Redirection
	3.9.3.3 Aliasing, Redirection, and Container Directives
	3.9.3.4 The mod_userdir Module
	3.9.3.5 Aliasing and Security

	3.9.4 Configuration Information
	3.9.4.1 Aliasing
	3.9.4.2 Redirection
	3.9.4.3 The UserDir Directive

	3.9.5 Synopsis and Recommendations
	3.9.6 Additional Topics

	3.10 Virtual Hosting
	3.10.1 Modules
	3.10.2 Default Configuration
	3.10.3 Background Information
	3.10.3.1 Nonstandard Ports
	3.10.3.2 Unique IP Addresses
	3.10.3.3 Host Headers
	3.10.3.4 Single versus Multiple Daemons

	3.10.4 Configuration Information
	3.10.4.1 Apache Virtual Host Directive

	3.10.5 Synopsis and Recommendations

	3.11 Other Security Issues
	3.11.1 Proxying
	3.11.2 The mod_rewrite module
	3.11.3 Indexing, Server Status, and Other Ways to Remotely Learn About a Server

