
MP 99B0000087

MITRE PRODUCT

Secure Configuration of the Apache Web
Server

Apache Server Version 1.3.3 on Red Hat Linux
5.1

Rev 1.12 – 24 Apr. 2001
Kenneth Jones
Rosalie McQuaid
Charles Schmidt

Revisions by Trent Pitsenbarger, National Security Agency
W2Kguides@nsa.gov

Sponsor: NSA Contract No.: DAAB07-99-C-C201
Dept. No.: G021 Project No.: 0799N030-WB

© 1999 The MITRE Corporation

Center for Integrated Intelligence Systems
Bedford, Massachusetts

 ii

MITRE Department Approval:
 Marion C. Michaud

Department Head
Information Warfare and Secure
 Systems Engineering

MITRE Project Approval:
 Julie L. Connolly

Project Leader, 0799N030-WB

iii

Preface

Style Conventions:

• Apache module names are given in italics.
• Apache directive names are given in bold.
• Parameters to Apache directives are given in bold italics.
• Configuration files and information returned by the command line are expressed in

courier new font.

• Text entered in the command line is expressed in bold courier new font.

• Abstract configuration information is given in italic courier new font.

• Words that the authors wish to emphasize, but which otherwise have no specific
meanings, are underlined.

• The rest of the document is written in normal Times New Roman font.

iv

Warnings

! Do not attempt to implement any of the settings in this guide without first
testing in a non-operational environment.

! This document is only a guide containing recommended security settings. It is not
meant to replace well-structured policy or sound judgment. Furthermore this guide
does not address site-specific configuration issues. Care must be taken when
implementing this guide to address local operational and policy concerns.

! SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
EXPRESSLY DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

! Please keep track of the latest security patches and advisories.

v

Table of Contents

1.1 Purpose 1
1.2 Scope 1
1.3 Background 1
1.4 Document Organization 2
2.1 World Wide Web Model 3

2.1.1 Web Server Component 3
2.1.2 Web Client 4
2.1.3 Transmission Protocol: HyperText Transfer Protocol 4
2.1.4 Data Format Specification Component 4

2.2 Apache Architecture 5
2.2.1 Apache File System Layout 5
2.2.2 Component Module Architecture 7
2.2.3 Configuration Mechanisms 12
2.2.4 Apache Run-Time Modes 12

2.3 Apache Configuration Roadmap 15
2.4 Apache Security Services 15
3.1 General Server Settings 17

3.1.1 Container Directives 17
3.1.2 The User and Group Directives 21
3.1.3 Handling Directory References in URLs 22
3.1.4 The Options Directive 23
3.1.5 .htaccess Files 24

3.2 Authentication 25
3.2.1 Modules 25
3.2.2 Default Configuration 27
3.2.3 Background Information 27
3.2.4 Configuration Information 29
3.2.5 Synopsis and Recommendations 36
3.2.6 Additional Topics 36

3.3 Access Control 37
3.3.1 Modules 37
3.3.2 Default Configuration 37
3.3.3 Background Information 38
3.3.4 Configuring Custom Access Control 39
3.3.5 Implementation of Customized Access Controls 41
3.3.6 Synopsis and Recommendations 43

3.4 Auditing 44

vi

3.4.1 Modules 44
3.4.2 Default Configuration 45
3.4.3 Background Information 48
3.4.4 Configuration Information 53
3.4.5 Synopsis and Recommendations 54
3.4.6 Additional Topics 55

3.5 Availability 55
3.5.1 Modules 55
3.5.2 Default Configuration 57
3.5.3 Configuration Information 58
3.5.4 Synopsis and Recommendations 59

3.6 Integrity, Confidentiality, and Nonrepudiation 59
3.7 Common Gateway Interface (CGI) and Scripting 60

3.7.1 Modules 60
3.7.2 Default Configuration 60
3.7.3 Background Information 60
3.7.4 Configuration Information 62
3.7.5 Synopsis and Recommendations 63

3.8 Server Side Includes 64
3.8.1 Modules 64
3.8.2 Default Configuration 64
3.8.3 Background Information 64
3.8.4 Configuration Information 66
3.8.5 Synopsis and Recommendations 67

3.9 Redirection and Aliasing 67
3.9.1 Modules 68
3.9.2 Default Configuration 68
3.9.3 Background Information 69
3.9.4 Configuration Information 76
3.9.5 Synopsis and Recommendations 79
3.9.6 Additional Topics 80

3.10 Virtual Hosting 80
3.10.1 Modules 80
3.10.2 Default Configuration 80
3.10.3 Background Information 81
3.10.4 Configuration Information 83
3.10.5 Synopsis and Recommendations 84

3.11 Other Security Issues 85
3.11.1 Proxying 85
3.11.2 The mod_rewrite module 86
3.11.3 Indexing, Server Status, and Other Ways to Remotely Learn About a Server 87

1

Section 1

Introduction

1.1 Purpose
MITRE has performed a secure configuration analysis of the Apache Web Server on

Linux. This investigation was initiated to provide an understanding of the security
mechanisms within the Apache Web Server. The Apache Web Server is the most popular
web server on the Internet; more than 50 percent of the existing web servers use Apache.
Due to this popularity, MITRE has identified the need to provide secure configuration
guidelines for the Apache Web Server on Linux.

1.2 Scope
This document is intended to detailed descriptions for the configuration of a “secure”

web site using the Apache Web Server. This document assumes no prior knowledge of the
Apache Web Server, and only limited understanding of web servers in general. It does,
however, assume some understanding of the UNIX operating system as implemented on
Linux. Readers should be familiar with file security, file structure, and basic UNIX/Linux
commands.

 The Apache Web Server is an extremely powerful and adaptable product. A complete
documentation of all its features is out of the scope of this document. Included in this guide
are the features of the web server which have a direct influence on the security of the web
site, or that are so common, that no reasonable treatment of modern web servers could be
expected to exclude them. The Apache security services are described along with examples
that outline possible configurations.

1.3 Background
Due to this increased reliance on and widespread use of web technologies, MITRE was

tasked to complete a secure configuration guide for the Apache Web Server. This task was
completed by establishing a test bed for the Apache Web Server Version 1.3.3; this was
installed on Red Hat Linux 5.1. Test configuration files were developed to implement and
test the security services of the web server. Based on the test results, this secure
configuration guideline was developed. The secure configuration guide covers the security
services of authentication, access control, availability, and auditing. It does not cover
nonrepudiation, confidentiality, and integrity due to the fact that standard Apache does not
implement these security services. These services are available in Apache SSL. This guide
does address other security issues which may be present in web servers including Common
Gateway Interface (CGI), Server Side Includes (SSI), redirection, virtual hosts, and aliasing.

2

1.4 Document Organization
This document consists of three sections pertaining to the Apache Web Server Secure

Configuration Study. Section 2 consists of an overview of the Apache Web Server. This
overview includes a section describing basic web server principles along with the details of
the Apache architecture. Section 3 provides the secure configuration guidelines along with
corresponding configuration issues. The Apache security services, authentication, access
control, availability, and auditing, are described along with the modules and directives used
to implement the security service. Recommended configurations are included for each
security area. Other security relevant issues are also discussed in this section. Section 4
provides a brief summary and recommendations.

3

Section 2

Apache Overview

The Apache Web Server is the most popular web server on the Internet; more than
50 percent of the existing web sites use Apache. It was developed by a worldwide group of
volunteers known as the Apache Group that jointly manage the Apache Hypertext Transfer
Protocol (HTTP) Server Project. The Apache Group has worked hard to produce a robust,
highly configurable, and freely-available web server.

The first version of Apache was released in April 1995 (Version 0.6.2) and is currently at
Version 1.3.6. The core contributors of the Apache Group used NCSA httpd 1.3 as the base
for the initial release of Apache Version 0.6.2. The Apache user community grew rapidly
after the initial release and development, and refinement continued on the Apache HTTP
Server project; Version 0.7x was being designed during May—June, 1995. Although the
initial release was a big hit, the group decided that the server needed a new architecture. This
was designed and implemented in Version 0.8.8, released in August 1995. The new server
architecture consisted of a modular structure, an API for better extensibility, a new forking
process model, and pool-based memory allocation.

This section provides an overview of the Apache Web Server. The overview provides a
section containing basic web server principles along with the complete Apache Web Server
architecture.

2.1 World Wide Web Model
The World Wide Web (WWW) has been described as a distributed heterogeneous

collaborative information system. The WWW mission is to provide easy access to an
information resource in a format that is well defined and can be readily displayed. It consists
of a model made up of web servers, web clients, a transmission protocol, and a format
specification for data. The web server and client are considered software components; the
transmission protocol, and data format specifications are protocol components. These model
components are described in the following sections.

2.1.1 Web Server Component
The aspect of a distributed system of information resources is met by the web server

component. Web servers can be installed on a wide variety of computer platforms and
essentially serve as the controller/provider of information resources. It is the server
component of the WWW model that provides information to a browser (the client) through
the transmission protocol. The browser interprets the data returned from the server and
graphically renders the information; however, there are some text-only browsers that do not
have a graphical capability.

4

2.1.2 Web Client
The web client provides for the ready display of multimedia information and is

commonly known as the browser. The web client must be versatile since it has the role of
interpreting the data provided by the web server and displaying it, in the intended form, to the
user. Many web browsers have the capability to execute embedded instructions. These
instructions (e.g., Java Applets, JavaScript, VBScript, and others) can instruct the server to
execute a program residing in local memory/disk space or pass a request to another server
resource. The output of either of these actions can be directed back to the client through the
web server or by the called server resource.

2.1.3 Transmission Protocol: HyperText Transfer Protocol
The HTTP is the request/reply protocol used for communication between the web

browser and the web server. This mechanism to transmit the information from the location
of the resource to the location of the client is unseen. It is a set of rules that govern how the
web browser makes requests and the web server responds; these are formatted according to
the specifications of the protocol. HTTP is part of the Advanced Research Projects Agency
ARPANet family of protocols. This family includes other request/reply protocols, such as
File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP), and Telnet.

HTTP is encapsulated within a Transmission Control Protocol (TCP) connection. The
request/reply nature of the protocol results in a stateless protocol; no information from an
earlier request is retained for use in a later request. The general rule is that there is a reply
for each request. The reply may be an interim status message that will be followed by a
complete response when the server is able to process and transmit the information requested
by the client. As the request for a document is satisfied, the underlying TCP connection is
closed. A new request for a document (e.g., clicking on a hyperlink) will result in a new TCP
connection.

There are three primary message types for HTTP; the GET request, the HEAD message,
and the POST request. The GET request is used to retrieve information from the web server
identified in the Universal Resource Locator (URL). The HEAD message is similar to the
GET message; the difference is that the server responds with the header information only and
not the body of the document. Robots which build/update search engine databases typically
use this type of message. The POST message is used to post a message or submit form data.

New versions of web servers and web browsers support TCP/HTTP Keep-Alives. They
are a feature of HTTP Version 1.1. Keep-Alive establishes sessions and avoids the overhead
of constantly creating and closing separate TCP connections.

2.1.4 Data Format Specification Component
The final aspect of the WWW model is the data format specification; this describes how

the multimedia information can be readily displayed at the client. Most commonly, a family
of special purpose scripting languages, known as markup languages, describes the form and

5

content rules. They allow consistent information display across a wide variety of web
browsers. The most familiar of the markup languages is the HyperText Markup Language
(HTML). New data format specifications are constantly being added to the WWW model.
The parent set of markup language specifications is the Standard Generalized Markup
Language (SGML).

2.2 Apache Architecture
Apache is a powerful and widely used web server with a completely modular

architecture. It can be implemented on many widely used computer platforms including most
flavors of , Windows95/NT, and other server operating systems. This, along with its modular
architecture, makes it extremely popular throughout the web. It offers many features and
functions that can be added or removed depending on the needed functionality of the web
server. Some features include: Server-side image maps, configurable HTTP error reporting,
directory aliasing/fancy indexing, content negotiations, URL rewriting, and resource
management for child processes. These features are implemented through Apache’s modular
architecture described in the following sections.

The Apache architecture provides the configuration of a customized web server. The
Apache architecture can be divided into Apache file system layout, component module
architecture, configuration mechanisms, and run-time modes. Each of the architecture areas
can be customized. These areas are detailed in subsequent sections.

2.2.1 Apache File System Layout
The Apache file system layout is configured when Apache is installed on the server. It

can be installed either in the default mode or in a customized file configuration, using the
default mode all apache files are located under the server root directory. The server root is
specified during the installation process. The default file layout is configured as shown in
Figure 1. The recommended custom file layout is shown in Figure 2.

The default file layout is located under the server root directory. Within this directory
there are subdirectories created called bin, conf, and logs. In the “bin” directory the httpd
executables and the associated utilities are located. The “conf” directory holds the
configuration files and configuration information. The “logs” directory holds the Apache log
files.

6

Apache
Server
Root

/
Root

bin conf logs

Httpd
executable
and utilities

Configuratio
n files

Log files

Figure 1. Default File Layout

The customized file layout is constructed to conform with UNIX standards. These
standards would use the following format: “/usr” stores the subdirectory for Apache
executable and utilities, “/var” stores the subdirectory for the log files, “/etc” stores the
subdirectory for the configuration files, and the “/home” directory stores the subdirectory for
the published material and CGI scripts.

/
Root

/usr /var /etc /home

Httpd
executable
and utilities

Configuration
files

Log files
and proxy

Publinshed
material
CGI

Figure 2. Customized File Layout

7

Each file system layout has its own advantages. The default layout has all the Apache
files in one central location; under the server root. This allows the administrator to know
exactly where to look for any Apache files; it is also helpful if the web server and its content
is moved to another platform. The customized file layout is standard for UNIX platforms
and would conform with the configuration used for other services on the platform. This has
the advantage of already having the directory permissions set properly.

2.2.2 Component Module Architecture
The Apache Web Server is implemented using a modular architecture. The component

module architecture consists of a core component along with a variety of add-in features.
These are implemented through default, standard, and third party modules. A module is a
software component that adds specific functionality to Apache. Combining the core module
with other modules allows the user to construct an Apache Web Server that is customized to
a specific site application; this is shown in Figure 3. The following sections detail the
elements of the Apache component module architecture.

CONFIG
FILES

CORE
FEATURES

Core Module: contains directives that represent:
general configuration performance & resource configuration
standard container virtual host specific
logging authentication and security

MODULES

Default Modules
containdiredtivescompiled

in configfiles by default

3rd Party Modules and API
ADDITONAL
FLEXIBILITY

Standard Modules
contain directives that
can be added in using

configfiles

.

.

.

CORE

Default
Module #1

Standard
Module #1

3rd Party
Modules

Customized
Apache
Server

Figure 3. Apache Component Module Architecture

8

Modules and Directives

The module architecture consists of a core module, default modules, standard modules,
and third party modules. Each module is a software component that adds specific
functionality to the web server through the use of directives. They are commands used to
control the behavior of the web server. To use a specific directive, the module containing
that directive must be included in the web server. These modules can be added to or
removed from Apache at compilation by using a configure utility.

The core module contains core directives that control general configuration, performance
and resource configuration, authentication and security, logging, and other features. The core
directives listed in Table 1, are always available. Container directives are directives that are
enclosed by container tag “<””>” pairs.

• The general configuration directives address fundamental settings for the server and
for virtual hosts.

• The standard container directives apply a group of other directives to a particular file,
directory, location, etc.

• The virtual host directives are used specifically for creating virtual hosts; some
directives listed in the general configuration section also apply to virtual hosts.

• The performance and resource directives are used to control Apache processes,
system resources, and make persistent connections.

• The logging directives enable server log information.

• The authentication and security directives define access control and security policies
for the server.

9

Table 1. Core Directives

General
Configuration

Standard
Container

Virtual Host Performance
and Resource

Logging Authentication
and Security

AccessConfig <Directory> AccessConfig AddModule ErrorLog AllowOverride
accessFileName <DirectoryMatch> AccessFileName ClearModuleList IdentityCheck AuthName
BindAddress <Files> NameVirtualHost KeepAlive LockFile AuthType
BS2000Account <FilesMatch> <VirtualHost> KeepAliveTimeout LogLevel require
ContentDigest ServerAlias LimitRequestFields PidFile Satisfy
CoreDumpDirectory <Limit> ServerPath LimitRequestFieldsi ScoreBoardFil
DefaultType <Location> LimitRequestLine
DocumentRoot <LocationMatch> MaxClients
ErrorDocument MaxKeepAliveRequ
Group MaxRequestsPerChi
HostNameLookups MaxSpareServers
Include MinSpareServers
Listen RLimitCPU
ListenBacklog RLimitMEM
<IfModule> RLimitNPROC
Options ServerType
<IfDefine> StartServers
Port ThreadsPerChild
ResourceConfig SendBufferSize
ServerName TimeOut
ServerAdmin
User
ServerRoot
ServerTokens

The default modules contain directives that are included in the server by default; these
can be removed if desired. The standard and third party modules contain directives that add
functionality to the server. These directives are used in configuration files that are read at
runtime. There are many available modules in the default and standard set of Apache
modules. New modules and third modules are constantly being added to this list. Table 2
lists the default and standard modules for Apache Release 1.3.3. A list of third party
modules available can be found at the Apache web site (url:www.apache.org). Apache also
contains an Application Programming Interface (API) that allows developers to build
modules to provide a specific functionality to the web server. This module architecture and
the ability to add and remove modules allows customization of the Apache web server.

10

Table 2. Apache Default and Standard Modules

Module Name Function
mod_access
Default

Host-based access control.

mod_actions
Default

Filetype/method-based script execution.

mod_alias
Default

Aliases to map one part of the server’s file system to
another and url redirection.

mod_asis
Default

Documents can be sent without HTTP headers or as is.

mod_auth
Default

User authentication using text files.

mod_auth_anon
Standard

Allows anonymous user access to authenticated areas FTP
style.

mod_auth_db
Standard

User authentication using Berkeley DB files.

mod_auth_dbm
Standard

User authentication using DBM files.

mod_autoindex
Default

Provides automatic directory indexing.

mod_cern_meta

Support for HTTP header metafiles.

mod_auth_external
Check this out if available

Support for third party authentication modules.

mod_cgi
Default

Provides for execution of CGI scripts.

mod_digest
Standard

Provides for user authentication using MD5 Digest
Authentication.

mod_dir
Default

Provides basic directory handling; any request for a
directive that does not include a trailing slash character is
redirected.

mod_env
Standard Passes environments to CGI scripts.

mod_example
Standard

Illustrates many aspects of the Apache API and
demonstrates callbacks triggered by the server.

mod_expires
Standard

Applies Expires setting HTTP header in server response.

11

Module Name Function
mod_headers
Standard

Enables the addition of arbitrary HTTP response headers.

mod_imap
Default

Provides for .map files.

mod_include
Default

Provides for server-parsed html documents.

mod_info
Standard

Provides comprehensive overview of server configuration.

mod_isapi
Default

Provides support for ISAPI Extensions.

mod_log_agent
Standard

Provides for logging of client user agents.

mod_log_config
Default

Provides for logging of requests made to the server.

mod_log_referer
Standard

Provides for logging of the documents which reference
documents on the server.

mod_mime
Default

Support for determining the types of files from the filename.

mod_mime_magic
Standard

Used to determine the MIME type of a file by looking at a
few bytes of its contents.

mod_mmap_static
Standard

Experimental module that maps a list of statically
configured list of frequently requested but unchanged files.

mod_negotiation
Default

Provides for content negotiation.

mod_proxy
Standard

Provides for an HTTP 1.0 caching Proxy server.

mod_rewrite
Default

Uses a rule-based rewriting engine to rewrite requested
URLs.

mod_setenvif
Default

Provides for the ability to set environment variables based
upon attributes of the request.

mod_so
Standard

Experimental module for loading modules into Apache at
runtime via the DSO.

mod_speling
Standard

Automatically corrects minor typos in URLs.

mod_status
Default

Allows a server administrator to check server perfomance.

12

Module Name Function
mod_userdir
Default

Provides for user-specific directories.

mod_unique_id
Default

Generates unique request identifier for every request.

mod_usertrack
Default

User tracking using Cookies.

2.2.3 Configuration Mechanisms
Apache uses configuration mechanisms to specify server functionality. These

mechanisms are four configuration files: srm.conf, httpd.conf, access.conf, and mime.type.
These text files contain comments and directives used to specify the behavior of the server.
The Apache source distribution has sample configuration files called srm.conf-dist,
httpd.conf-dist, access.conf-dist. These files can be renamed and edited to use for the site-
specific installation. The configuration file httpd.conf is used as the primary configuration
file; specifying to the operation of the server daemon. The configuration file srm.conf is the
resource configuration file. It configures the server to offer specific resources/documents on
the Apache server. The configuration file access.conf is used to set permissions for files,
directories, and scripts on the web server. Mime.type is not modified for most web server
installations and will not be discussed. Another mechanism, .htaccess, is used to apply
configuration directives on a per directory basis. The configuration files are read into the
system at runtime.

2.2.4 Apache Run-Time Modes
Apache can be configured to run using two different modes; stand-alone and inetd.

These run-time modes are configured by using the core directive “ServerType” with either
stand-alone or inetd specified in the directive. The ServerType directive is specified in the
httpd.conf configuration file.

 Although the functionality of the server is the same; the performance will vary greatly
depending on the run-time mode. In the stand-alone mode, the web server child process
lives for a time before closing down; this allows reuse of the process if a request is received
during this time. In the inetd mode, the web server process exits as soon as it is finished
servicing a request. The stand-alone mode is more efficient because it does not have to
launch a new process each time a request is received. These modes are described in more
detail in the following sections.

13

2.2.4.1 Standalone Mode
In the stand-alone mode the server will run as a daemon process. This is the default

setting for the directive “ServerType stand-alone” used in the http.conf file. As shown in
Figure 4, the server listens for a connection request on a specific port. When the connection
request is received, the primary server launches a child process to service the request. The
child process will not shut-down immediately. It will continue to service requests until a
specified request threshold has been met.

Internet

B

A

Child process

Primary
Apache server

UID: root

UID: set in
httpd.conf

Child process
UID: set in
 httpd.conf

Figure 4. Stand-Alone Mode

The primary server listens for client requests on a specific port. This port is defined
using the “Port” directive. Typically, the HTTP port is 80. If the server is not running under
the “root” user context, then a port between 1024 and 32768 must be specified.

When running in the stand-alone mode, the child user ID and the group ID must be
specified using the core directives “User” and “Group,” respectively. The parent process can
run as root with the child running as a different user/group. For security reasons, the child
process should not be run as “root;” this would allow the child to have “root” user privilege.
The default for the user and group ID is the user/group “nobody.” This is a low-privileged
user that belongs to a low privileged group. It should be noted that the user/group ID can
only be changed if the primary server process is being run under the “root” user context. If
the primary server is being run by user “Jane;” the child processes will have the same
privileges as “Jane.”

14

2.2.4.2 Inetd Mode
In the inetd mode the web server is run as an inetd child process. The inetd process is the

Internet daemon. This is specified in the httpd.conf file with the directive “ServerType
inetd.” The inetd server process listens for connection requests on ports 0 through 1023 as
shown in Figure 5. When connection requests are received, the inetd daemon launches the
one httpd process per request. The httpd process services the request and then exits.

A

B
Internet

inetd server

UID: root

Apache server
UID: set in

 /etc/inetd.conf

Apache server
UID: set in
 /etc/inetd.conf

Figure 5. Apache inetd Mode

When running Apache in the inetd mode, the inetd.conf file (an operating system
configuration file) must have a record added for Apache. This record includes the service
name, socket type, protocol, flags, user ID, and server path. The httpd service must be run as
a particular user. A special user should be created to run the httpd service; this user would be
similar to the user “nobody.” This user should have access privileges to the web directives
and the log file directories. For example, if the user “httpd” is used, the inetd.conf entry
would be:

httpd stream tcp nowait httpd /usr/sbin/httpd –f /etc/httpd/conf/httpd.conf

An entry must also be made in the /etc/services file. This entry should be:

httpd 80/tcp/ httpd

This describes the httpd service as available on port 80.

 For perfomance reasons, the inetd mode should not be used for a high-traffic web
server. The server should be run in the stand-alone mode.

15

2.3 Apache Configuration Roadmap
The Apache architecture provides the configuration of a customized web server and

consists of Apache file system layout, component module architecture, configuration
mechanisms, and run-time modes, as described in previous sections. Each of the architecture
areas can be customized for installation. The Apache environment roadmap, in Figure 6,
shows how the pieces of the Apache architecture combine to produce the customized web
server.

Core Module Default Modules
Standard
Optional
Modules

COMPILATION

Apache
Executable

httpd.conf

Apache Environment

Start
Apache

srm.conf

access.conf

.htaccess

Figure 6. Apache Environment Roadmap

The core, default, and standard modules that comprise the Apache executable are
specified by the configure script. The AddModule statement is used in the configure script to
add modules to the Apache functionality. The configure script runs and creates the Makefile
used to compile the Apache source file. Compilation produces the Apache executable, httpd.
When httpd is started, the configuration files, httpd.conf, srm.conf, access.conf and .htaccess
are read. This produces the customized Apache environment.

2.4 Apache Security Services
This section provides a brief description of the security services provided in the Apache

Web Server. These services have been divided into seven distinct security areas:
authentication, access control, auditing, availability, integrity, confidentiality, and
nonrepudiation. The Apache security services are:

16

Authentication: Authentication provides the mechanism to verify the identity of a client
through the exchange of information. This is done when the client sends an authorized
username/password pair to the server. Apache provides the functionality to set up access
control policies based on the authenticated identities of clients.

Access Control: Access control provides the mechanism to grant access to system
resources based on the identity of the user. Apache provides the functionality to set up
host-based access control where the requesting host is either allowed access or not
allowed access to resources on web server.

Auditing: Auditing provides the mechanism which ensures that actions performed by all
users authorized or otherwise, are recorded. Apache auditing provides a record of the
activities taken on the Apache server. Administrators can determine server usage,
resource usage and service response difficulties. They can also determine if and when
security attacks have been attempted on the server.

Availability: Availability provides the mechanism to ensure that system data is available
to users when required. Apache provides availability within the core module by allowing
the administrator to set configuration variables to maximize performance and availability.

Confidentiality: Confidentiality provides the mechanism to ensure that data is protected
from accidental or purposeful disclosure. This process would include message
encryption to or from the server. This service requires the use of modern cryptographic
protocols, usually SSL. Unfortunately, the standard Apache does not support SSL at this
time but an Apache derivative for SSL version is available commercially.

Integrity: Integrity provides a mechanism for the protection of system data from
accidental or purposeful alteration in transit; there is an important distinction between
confidentiality and integrity. This is usually done through the use of a cryptographic
checksum or other similar procedure. The Apache server does not implement this service
which means that an attacker could tamper with Apache messages in transit.

Nonrepudiation: Nonrepudiation is the mechanism to assure or prove that the source of
data or message cannot deny authorship. It is not implemented in Apache and may not be
implemented in web servers.

These security services are described in more detail in Section 3. Each service is
described along with the modules and directives used to implement the security service.
Recommended configurations are included for each security area.

17

Section 3

Secure Apache Configuration and Configuration Issues

This section considers each of the security relevant features of the Apache Web Server.
It also describes how to implement them in typical configurations. The first section, General
Server Settings, describes directives that provide support to the other areas of functionality.
The subsequent sections describe modules that implement specific security services or areas
of functionality that have a security impact.

3.1 General Server Settings
This section describes directives that are part of the core structure which are used by

other areas of functionality, but do not actually fit into one of the areas of functionality
themselves. These directives are divided into their areas of primary functionality. These are:
container directives, group and user directives, handling directories in URLs, and the
Options directive. This section does not present any examples, reasoning that the directives
will be demonstrated in subsequent sections, or the directives are self-explanatory.
Nonsecurity relevant directives will not be discussed.

3.1.1 Container Directives
Container directives are used in the configuration files to specify the resources or actions

to which an enclosed set of directives is to apply. There are several container directives
(sometimes called “section” directives):

• <Directory>—Specifies a file system directory either explicitly, using a wildcard
expression, or using an extended regular expression.

• <DirectoryMatch>—Specifies a file system directory using an extended regular
expression.

• <Files>—Specifies a specific filename in the file system either explicitly, using a
wildcard expression, or using an extended regular expression.

• <FilesMatch>—Specifies a specific filename in the file system using an extended
regular expression.

• <Location>—Specifies a URL either explicitly, using a wildcard expression, or using
an extended regular expression.

• <LocationMatch>—Specifies a URL using an extended regular expression.
• <Limit>—Specifies one or more HTTP methods.
• <VirtualHost>—Specifies a virtual host by IP address and, optionally, port. See

Section 3.10 for more on the subject.

18

In all cases, the resources, (directories, files, URLs, or methods) appears immediately
after the name of the directive (separated by a space) but before the closing angle bracket (>).
A container directive is used to begin a block. The block ends with the same directive
preceded by a backslash (/). For example, a <Directory> block would be closed by
</Directory>. All directives enclosed within the block are applied only to the resource that
was specified in the opening directive. All contained directives, the opening, and closing
markers, should be on separate lines.

It is possible for multiple container directives to apply to a single resource. If this
happens, then the order in which the directive blocks are applied becomes important.
Container directive blocks are not applied sequentially; that is, they are not applied in the
order they appear in the configuration file. Directive blocks are applied in the following
order:

1. <Directory> without regular expressions
2. .htaccess files (See Section 3.1.5)
3. <DirectoryMatch> and <Directory> with regular expressions
4. <Files> and <FilesMatch>
5. <Location> and <LocationMatch>

When two directive blocks apply to the same resource and share the same level in the
above list, the most specific block will be applied later.

If two directive blocks apply to the same resource and contain the same directive, the
directive in the later applied directive block will overwrite the directive in the previously
applied directory block.

Previously applied directive blocks that address a particular resource will be overridden
by similar directive blocks applied later.

Directives regarding a particular resource within a directive block that is applied later
will override all instances of the same directive present in directive blocks that were applied
previously. This is not always completely intuitive; a specific directive in a “later” block
could override itself and override other directives associated with it, causing those directives
to revert to their default values.

3.1.1.1 <Directory> and <DirectoryMatch> Directives
The <Directory> and <DirectoryMatch> directives cause their directive blocks to apply

to the specified directory, including subdirectories and all contents. The <Directory>
directive allows a wildcard expression. All characters match themselves except:

19

• ? - matches any one character

• * - matches any group of characters

• [] - matches any one of the characters listed between the brackets

If the “Directory” in the container directive is followed by a space followed by a tilde (~),
the parameter following it, is treated as an extended regular expression (see the man page on
grep for more on the extended regular expression language). The <DirectoryMatch>
directive takes a regular expression to specify its target.

In the Linux operating system, multiple paths to a given directory may exist through the
use of links. (See the man page on 1n for more information on links.) If a
<Directory>/<DirectoryMatch> directive matches one path, accessing the given directory
by another path, may not cause the container directive block to be applied.

The <Directory>/<DirectoryMatch> directives match the file system path of the
directory in order to determine which resources they cover. This may not necessarily reflect
the URL used to access this resource. Additionally, some directives do not make sense when
applied within this context. These are the directives that are only meant to apply to the server
as a whole, as opposed to specific resources. For example, the ServerName directive would
not belong within a <Directory>/<DirectoryMatch> block since attempting to do so would
imply trying to change the name of the server on a directory by directory basis.

3.1.1.2 <Files> and <FilesMatch> Directives
The <Files> and <FilesMatch> directives cause their directive blocks to apply to

resources whose filename (excluding path) matches the specified value. The result is that
every file in the entire file system whose name matches the value within the opening
directive will have the container directive block applied.

Like the <Directory> directive, the <Files> directive allows a wildcard expression. If
the “Files” in the container directive is followed by a space followed by a tilde (~), the
parameter following it is treated as an extended regular expression. Matching is done against
the file system rather than the URL and the two may differ. The <FilesMatch> directive
takes an extended regular expression to specify its target.

Since it is not always desirable for every file of a given name in the entire file system to
receive the same treatment, it is possible for <Files>/<FilesMatch> directives to be placed
within <Directory>/<DirectoryMatch> directives. In this case, the filename matching will
only occur within the context of the specified directories. As with
<Directory>/<DirectoryMatch>, not all directives make sense within a
<Files>/<FilesMatch> directive block. All directives which cannot be placed within
<Directory>/<DirectoryMatch> directive blocks cannot be used within a

20

<Files>/<FilesMatch> directive blocks. In addition, these directive blocks cannot contain
the Options directive, as well as others.

3.1.1.3 <Location> and <LocationMatch> Directives
The <Location> and <LocationMatch> directives cause their directive blocks to be

applied to all resource requests that match the argument in the opening directive. The
argument is applied against the URL being referenced. The argument should not contain the
protocol or the server name unless the directive is being applied to a proxied resource. (See
Section 3.11.1 for a brief overview of proxying with the Apache server.) For example, in
order to match the request, http://www.mitre.org/sample/doc.html, the pattern
in the <Location>/<LocationMatch> directive should be “/sample/doc.html.”

The <Location> directive allows a wildcard expression. If the “Location” in the
container directive is followed by a space followed by a tilde (~), the parameter following it
is treated as an extended regular expression. Unlike the <Directory> and <Files> directives,
<Location> directives do not consider the resource’s location in the file system ; they look
only at the URL. The <LocationMatch> directive takes an extended regular expression as
its argument.

Due to the fact that <Location>/<LocationMatch> directives do not involve the file
system there are many directives that would be nonsensical within this context block. In
addition to those directives which cannot be placed within <Directory>/<DirectoryMatch>
directive blocks, <Location>/<LocationMatch> directive blocks cannot contain <Files> or
<FilesMatch> directives, Options directives with parameters involving symbolic links, or
other directives which are focused on the file system .

3.1.1.4 <Limit> Directives
The <Limit> directive is used to control access to specific HTTP methods on the server.

The HTTP 1.1 specification specifies eight methods; seven have defined functionality. These
are:

• OPTIONS—Requests that the server specify the communication options associated
with a specific URL, resource, or the server.

• GET—Requests that a specified resource be sent to the client. This is the most
common method used.

• HEAD—Identical to the GET method, but only the header information is returned.
• POST—Requests that information sent from the client be processed by the resource at

the specified URL.
• PUT—Requests that the specified resource be replaced with new information. This is

similar to an FTP put command.

21

• DELETE—Requests that the server delete the resource specified by a given URL.
• TRACE—Requests that the target server simply return the message it receives back

to the client.
• CONNECT—This is a reserved method, but as of HTTP 1.1, its functionality is

undefined.

The <Limit> directive can take a space separated list of the following parameters:
OPTIONS, GET, POST, PUT, DELETE, and CONNECT. Each parameter corresponds to
the matching HTTP method with the exception of GET which corresponds both to the GET
and HEAD methods. There is no parameter to restrict the TRACE method.

The contents of the directive block are applied to any attempts by a client to use this
method. Generally, only access control directives make sense within this container directive
block. The <Limit> directive can stand alone in the configuration file, in which case it
applies to all requests to the server, or within other container directive blocks in which case it
only applies to requests of those resources.

3.1.2 The User and Group Directives
As described earlier in the discussion of the Apache runtime architecture (see

Section 2.2.4.1), when the Apache server starts, it forks off several processes which are then
tasked with servicing individual client requests. These child processes have their own user
and group identities that can be used to control the amount of access they have to the file
system . These identities are set by the User and Group directives respectively. The
operating system uses the identities in its access control calculations. If the username under
which a child process is running is not allowed to access a given document, that child will
not be allowed to serve it to a client.

It is important that the user and group assigned to the server child processes be permitted
access only to files and directories that it has a need to use. Operating the child process
under a user or group with access to other files or executables opens the possibility that the
server may publish or even alter files of a sensitive nature on the file system .

By default, both User and Group are set to “nobody,” a default user on the Apache
system. Unlike other operating systems, the user “nobody” does not represent a given level
of access but is simply a name and group like any other. However, as it is extremely unlikely
that any files or directories will exist on the server that are specifically granted to “nobody,”
access will usually be prevented to all files and directories except those with world access
permitted.

As other applications sometimes use the “nobody” user and group, Apache administrators
may wish to create a user for the exclusive use of Apache child processes. This user can be
created in the same way as a normal user on the operating system. It important that the new

22

user not be assigned to a preexisting group as this would actually increase the access
provided to the child processes. A new group should be created along with the new user to
ensure the child process is not assigned to a group that already has access to other files.

Once the new user and group are created and set in the server using the User and Group
directives respectively, the administrator must ensure that all publishable content is readable
by this user and that the user can access all the appropriate directories. Likewise, since CGI
and other executables run under the name of the server child process, it is important that all
files they depend on be accessible by that user. Log files, configuration files, and the like are
accessed by the parent process and do not need to be accessible by the child process user.

3.1.3 Handling Directory References in URLs
Most modern web servers provide the means to handle direct references to directories in

the URL. A directory reference occurs when a user requests a directory rather than a specific
file. The server cannot return the entire directory to the client. Directories may or may not
be requested with a trailing backslash (/) character and the server must be able to handle
either condition. This section describes the modules that the Apache server uses to control
this functionality.

The mod_dir module serves two functions in directory handling. First, it automatically,
without the use of any directives, provides the functionality for trailing-slash redirects. A
trailing-slash redirect is simply an HTTP redirect message (HTTP code 301) sent to any
client that requests a directory without including a backslash (/) at the end of the directory
name. Using this method, the Apache server can always be certain that the only valid path of
a directory includes the trailing backslash. This is important with directives such as the
<Location> directive that perform pattern matching on the URL.

The second feature that the mod_dir module provides is the ability to specify a default
index file the server will look for in each directory. This functionality is provided by the
DirectoryIndex directive. This directive takes a list of file names as parameters. When the
server receives a request for a directory, the server checks the directory for one of the file
names listed after the DirectoryIndex directive, returning the file that matches the earliest of
its parameters. Index documents normally contain links into the contents of the directory.

When an index file does not exist, the Apache server uses functionality provided by the
mod_autoindex module. This module automatically, without the use of any directives,
enables the server to dynamically create an HTML page listing the contents of the directory.
There are several directives in the mod_autoindex module that pertain to how this page
appears to the user. It is possible to turn auto-indexing off using the Options directive, in
which case the server returns a “Forbidden” error (HTTP error 403). See Section 3.11.3
regarding the security implications of auto-indexing.

23

Both mod_dir and mod_autoindex are part of the default Apache build and, unless the
administrator wishes to replace their functionality with modules of their own design, it is
recommended that they remain untouched.

3.1.4 The Options Directive
The Options directive is a general directive that controls a broad range of capabilities on

the Apache server. It is part of the core module and, therefore, always available. This
directive takes one or more of a list of possible arguments, each argument enabling a
particular capability on the server. As the Options directive may be placed within a
container directive block, this control may be applied on a directory basis.

Each argument of Options is associated with a specific capability. These are described
below:

• All—This argument enables all arguments except MultiViews, which must be
explicitly added. This is the default setting of the Options directive.

• ExecCGI—This argument permits CGI scripts to be executed. See Section 3.7 for
more on CGI scripts.

• FollowSymLinks—This argument allows symbolic links to be followed. Symbolic
links are a feature of UNIX operating systems (including Linux) that allow multiple
paths to a given resource. For more information, consult the man pages for the ln
command.

• Includes—This argument allows server side includes to be executed. See
Section 3.8 for more on server side includes.

• IncludesNOEXEC—Same as the Includes argument, but it prevents the use of the
#exec command and use of the #include command, if the included file is
executable. See Section 3.8 for more on server side includes.

• Indexes—This argument enables the auto-indexing capability described in
Section 3.1.3. See Section 3.11.3 for more on indexing.

• MultiViews – This argument enables MultiViews. MultiViews is an advanced
feature of the Apache server. If a requested resource is not present, it will check the
given directory for files whose names starts with the name specified in the URL
followed by a dot with any extension. Note that this argument is not enabled by the
All argument and must be added explicitly.

• SymLinksIfOwnerMatch – This is a special case of the FollowSymLinks argument.
The client will be allowed to follow symbolic links, but only if the link is owned by
the same user ID as the target file or directory.

24

The Options directive is useful for its ability to block the use of features whose
arguments it is not given. For example, if a user wishes to prevent CGI scripts from being
executed, they would add an Options directive with an argument list that did not include the
ExecCGI argument.

3.1.5 .htaccess Files
In addition to using container directives (Section 3.1.1), the Apache server can also apply

configuration information to directories based on special files within the directory itself.
These files are called .htaccess files. The name of these files is set using the
AccessFileName directive in the core module. By default the file name is “.htaccess.” This
document refers to all such files as .htaccess files regardless of their actual name.

The behavior of .htaccess files is virtually the same as that of the <Directory> container
directive with two exceptions. The first difference is that, while multiple directories may be
specified in the parameter of the <Directory> directive, .htaccess files only apply to the
directory in which the file is located. As with the <Directory> directive, the directives
within an .htaccess file will apply to the specified directory and all files and directories
within it.

The second difference between .htaccess files and <Directory> directives is that, using
the AllowOverride directive, the administrator can specify which directives a .htaccess file
may contain, or whether the file is even consulted. AllowOverride is a valid directive in
<Directory> and <DirectoryMatch> container directives, and administrators are able to use
this to control the permitted directives in .htaccess files on a directory by directory basis.
The directive may have one or more of the following parameters:

• All—Indicates that all directives that are valid within the “.htaccess” context are
allowed within the specified .htaccess files. (No other parameters should be listed.)

• None—Indicates that .htaccess files should not be consulted by the server. The files
will not even be read. (No other parameters should be listed.)

• AuthConfig—Permits the .htaccess file to contain directives relating to
authentication. (See Section 3.2 for more on authentication directives.) These
directives include AuthName, AuthType, require, and all directives contained
within the mod_auth, mod_auth_db, mod_auth_dbm, mod_auth_anon, and
mod_digest modules.

• FileInfo—Permits the .htaccess file to contain directives controlling document types.
These directives include those in the mod_mime module.

• Indexes—Permits the .htaccess file to contain directives relating to directory
indexing. These directives include those in the mod_autoindex module.

25

• Limit—Permits the .htaccess file to contain directives relating to host based access
control. These directives include order, deny, and allow.

• Options—Permits the .htaccess file to contain directives relating to directory options.
These directives include the Options and XBitHack directives. Administrators
should be wary of providing this parameter as the directives it describes, as it can
grant some powerful capabilities.

When filling out a .htaccess file, one simply lists the directives that one wishes to have
applied. Only specific directives are permitted within .htaccess files. Even though the
<Directory> directive behaves in a similar way, not all directives that are appropriate within
a <Directory> container will be permitted within a .htaccess file. The AllowOverride
directive is a notable example that is acceptable in the former but which is disallowed in the
latter. The documentation for individual directives will specify whether the directive is
allowed in the “directory” and/or the “.htaccess” contexts. In addition, administrators must
be careful not to place directives in an .htaccess file that are prohibited by the
AllowOverride directive. If the .htaccess file contains illegal directives, when the user
attempts to access it or any file or directory within it, the Apache server will return a
“Internal Server Error” message (HTTP code 500) to the client that explains that an illegal
directive was in the .htaccess files and lists the offending directive.

One other note is that, unlike the standard three configuration files, the Apache server
does not need to be restarted to implement changes to .htaccess files. Modifications to
.htaccess files take effect the moment the changes are saved.

3.2 Authentication
Authentication is the procedure by which the server attempts to verify the identity of a

client through the exchange of information. This is accomplished when the client sends the
server a recognized username and password pair. The Apache Web Server allows
administrators to set up access control policies based on the authenticated identities of users.
The opposite of authenticated access is anonymous access wherein no authentication
information is transferred. This is the normal behavior of web servers. This section will
offer a brief description of the authentication capabilities of the Apache Web server as well
as the steps to configure the two most common authentication setups: username-password
authentication and anonymous authentication.

3.2.1 Modules
The Apache Web Server Version 1.3.3 contains five modules that relate to authentication.

These modules are:

26

• mod_auth—Provides username authentication capabilities. The usernames and
passwords are stored in a plain text file on the server with the password encrypted
using the UNIX crypt function. The client sends the username and password over
the network in uuencoded format.

• mod_auth_db—Provides username authentication capabilities. The usernames and
passwords are stored in a Berkeley-DB database on the server with the password
encrypted using the UNIX crypt function. The client sends the username and
password over the network in uuencoded format.

• mod_auth_dbm—Provides username authentication capabilities. The usernames and
passwords are stored in a DBM database on the server with the password encrypted
using the UNIX crypt function. The client sends the username and password over
the network in uuencoded format.

• mod_digest—Provides username authentication capabilities. The usernames and
passwords are stored in a plain text file on the server with the password hashed using
the MD5 message digest algorithm. The client sends the username and password
over the network after it is hashed using MD5.

• mod_auth_anon—Provides anonymous authentication capabilities. The client must
enter one of the specified “anonymous” usernames and be recognized as a valid user
(with some additional control provided by the modules’ directives). The client sends
the username, and possibly an e-mail address as a password, over the network in
uuencoded format.

Most of the modules are virtually identical. Specifically, the mod_auth, mod_auth_db
and mod_auth_dbm modules contain the same three directives with only slightly different
names. (I.e., AuthUserFile, AuthDBUserFile, and AuthDBMUserFile.) The functionality
of these three modules is identical except in respect to the format of the file in which the
username and password data is stored. This document will use the mod_auth_db module for
its username-password authentication; it is more efficient than straight text files and is
slightly easier to configure than DBM databases using the tools packaged with Apache. If
the administrator wishes to use one of the other two modules, the directives can be converted
in a straightforward manner and the username-password files rewritten in the appropriate
format. The description of a username-password configuration will include additional
instructions for the use of other modules when necessary.

The mod_digest module implements MD5 message digest authentication. This tells the
client to send the username and password to the server using an MD5 hash. While this is
much more secure against eavesdropping than normal uuencoding, the technique does have
some security problems as described in RFC 2831. Of course in order use digest
authentication, a compatible web browser must be used. At this time only the latest releases

27

of Internet Explorer (version 5.5) and Netscape Communicator (version 6.0) implement
Digest authentication.

The mod_auth_anon module is used for anonymous authentication. Anonymous
authentication should be distinguished from anonymous access. In the former, the user must
undergo some log-in process, even though it does not attempt to identify the user.
Anonymous access has no log-in process at all. Usually anonymous authentication behaves
similarly to anonymous FTP login wherein the user of the client browser specifies
“anonymous” (or some other widely recognized username) as their username and then
provides their E-mail address in the password field. The mod_auth_anon module provides
several directives which allow the administrator to specify what information needs to be
entered in the log-in panel for an anonymous authentication to succeed. This includes the
ability to specify the contents of the username field and, in a more limited sense, the contents
of the password field as well.

The mod_auth, mod_auth_db, mod_auth_dbm, and mod_auth_anon modules all contain
some variation of “authoritative” directives. This paper will not cover these directives for
reasons that will be explained in Section 3.2.6.

3.2.2 Default Configuration
The mod_auth module is part of the default Apache build. However, the default

configuration files contain no authentication directives.

3.2.3 Background Information
This section discusses information that is not a straightforward part of the configuration

process. This information is deemed necessary for a proper understanding of how
authentication is implemented.

3.2.3.1 Username-Password File Creation
The username-password files contain a list of valid username and password pairs that

may be provided by a client and recognized by the server. They are created using tools
distributed with Apache. (1) To create a plain text username-password file, such as would be
used by the mod_auth module, the htpasswd command would be used. (2) To create a
Berkeley-DB database for the mod_auth_db module, the dbmmanage utility with the
adduser option would be used. (3) To create a DBM database for the mod_auth_dbm, the
dbmmanage utility with the adduser option would be used. The resulting file then needs
to be renamed so it has a .db extension. (4) Password files for the mod_digest module can be
created using the htdigest utility. All three of these utilities contain man pages which
describe how to use them.

28

The passwords associated with usernames should not be the same passwords used to
grant access to other services on the system. In all but the mod_digest module, the passwords
are sent over the wire in uuencoded format, which is trivial to decode. This allows anyone
capable of listening to the wire, the capability of learning the username-password pairs used
to log onto the system. Additionally, the server does not keep track of failed authentication
attempts, allowing an attacker any number of guesses when trying to gain access. For these
reasons, it is important that web passwords not be used with other resources in order to
localize any possible damage when these passwords are revealed.

3.2.3.2 Username-Password File Security
All implementations of authentication must have a reference to a username-password file.

The security of the username-password files is very important. With the exception of files
created using the htdigest utility, which can only be used with the mod_digest module,
the format of the username-password files provide no security. Any user who can read these
files will, at the very least, be able to launch an off line dictionary attack to crack the
passwords. For this reason, it is important that access to the files is provided only to the
people and applications that need it.

The Apache server reads the username-password files in order to perform authentication.
The Apache server runs under the user and group specified respectively in the User and
Group directives in its configuration files (see Section 3.1.2). The username-password file
must be readable by this user or group.

The web site administrator is the only other user who needs access to these files. If the
administrator is the root operator of the Linux host, they will have access to the file no matter
what the security settings are. In this case, only the Apache server user ID should have
access. If the web server administrator uses a different user ID, it is necessary that the
security settings of the file be set to give them both read and write access to the username-
password files. This should be verified for every username-password file created since it is
unlikely that the Linux operating system will create files with these characteristics by default.

Additionally, the location of the username-password files is important. Under no
circumstances should the files be placed in a published directory of the web server since this
will give remote users the ability to download them. Username-password files should be
placed in a location that both the Apache Web Server and the web server administrator are
able to reach, but that is not part of the servers published path.

3.2.3.3 Group Files
Since an administrator may wish to grant access to a list of authenticated users, the

Apache server provides the ability to group users together. This alleviates the need to enter
long lists of usernames into the configuration file. Unlike the username-password files,
group files are optional and added only for the convenience of the administrator.

29

The method to create group files depends on the authentication module used. For the
mod_auth_db and mod_auth_dbm modules, the dbmmanage utility with the add option is
used. For the mod_auth_dbm module, the created file needs to be renamed with a .db
extension. When using the dbmmanage utility in both cases, the username is given as the
key and a comma separated list of groups (no spaces) is given as the “password.”

There is no utility to create group files for the mod_auth module. However, the format of
the file is simple enough that it can be easily created using a simple text editor. Each line of
the file should contain the name of the group followed by a colon (no space) followed by a
space separated list of the users who are members of this group. The file should be created
using a text editor which will not add formatting marks to the document. Both emacs and
vi are suitable for the task.

The mod_digest module does not support group authentication in the current version of
Apache.

The group files, unlike the username-password files, do not contain sensitive information.
However, the same comments made about the security of the username-password files apply
to the group files. This will prevent users from altering the files and changing the security
policy of the web server.

3.2.4 Configuration Information
There are two types of authentication that can be configured. The first is username-

password authentication in which a client provides a username and secret password to the
server in order to verify the identity of the person using the client browser. Anonymous
authentication allows the user to enter a well-known username and their e-mail address as a
password and be given access to the system. The E-mail address can optionally be recorded
in a log file. The configuration commands for these authentication scenarios is described
below.

3.2.4.1 Username-Password Authentication
This example of username-password authentication uses the mod_auth_db module. To

create configuration entries for the mod_auth and mod_auth_dbm modules, simply
interchange the directives with their corresponding directive in the desired module. If
additional changes are necessary, these will be mentioned as appropriate. The format of the
username-password and group files must be appropriate to the module being used.

Since this example uses mod_auth_db which is not, by default, compiled into the Apache
server, the parameter --enable-module=auth_db must be given as an argument of the
configure command. If mod_auth_dbm is used, the argument would be --enable-

30

module=auth_dbm. Since the mod_auth module is enabled by default, it does not require
extra arguments in the configure command.

<Directory "/usr/local/apache/share/httpd/">

AuthType Basic

AuthName "Sample Server"

AuthDBUserFile "/usr/local/apache/etc/userfile1"

AuthDBGroupFile "/usr/local/apache/etc/groupfile1"

AuthDBAuthoritative on

require group group1 group2

</Directory>

Figure 7. Configuration File Example for mod_auth_db

Figure 7 shows an excerpt from a configuration file. The given directives enable
username-password authentication for the target directory using the mod_auth_db module.
The following describes each line in the above figure:

<Directory /usr/local/apache/share/httpd/>

Specifies the resource that requires authentication. Any of the container directives may
be used for this purpose (see Section 3.1.1).

AuthType Basic

Authentication is either “Basic” or “Digest.” “Basic” authentication must be used for all
modules except mod_digest. This information is passed on to the client and instructs it
on how to format its authentication information.

31

AuthName Sample Server

This specifies a string sent to the client. It is provided to the client so they can know the
resource to which they are authenticating. In this case, the client would be prompted with
the string “Enter username for Sample Server at BATMAN.G021LAB.ORG” where
“BATMAN.G021LAB.ORG” is the name of the machine running the web server.

AuthDBUserFile /usr/local/apache/etc/userfile1

This specifies the path and name of the username-password file. It must be readable by
the Apache server user ID. It must also be in the appropriate format. NOTE: If
AuthDBMUserFile was used, the filename of the database is listed without the .db
extension even though the file itself must have this extension. The DBM library
automatically appends a .db extension to the filename specified in the directive before
looking for the file.

AuthDBGroupFile /usr/local/apache/etc/groupfile1

This specifies the path and name of the group file. It must be readable by the Apache
server. It must also be in the appropriate format. If there is no group file, this directive
should be omitted. NOTE: If AuthDBMUserFile was used, the filename of the database
is listed without a .db extension even though the file itself must have this extension. The
DBM library automatically appends a .db extension to the filename specified in the
directive before looking for the file.

AuthDBAuthoritative on

The authoritative directives are used to control the interaction of several authentication
methods covering a single resource. This is a subject is complicated and, for this reason,
we recommend all resources have only a single authentication method applied to them.
Setting the “authoritative” directive to “on” states that this authentication method has the
final say in terms of which users are recognized.

require group group1 group2

This directive specifies the users and/or groups which, once authenticated, are permitted
to access the specified resource. When a user provides a recognized username and
password, he will not be allowed access unless the username or associated group are
listed in the require directive. The first parameter is either “user,” “group,” or “valid-
user.” If the first parameter is “user,” the subsequent parameters are a space separated
list of the users which will be allowed access to the resource. If the first parameter is
“group,” the subsequent parameters are a space separated list of the groups whose
members will be allowed access. If the first parameter is “valid-user” then there will be
no further parameters and any recognized username-password pair will be allowed
access.

32

</Directory>

This directive is used to close off the context block that started this example.

Behavior: Using the example above, the behavior will be as follows. When a client
attempts to access any resource within the directory “/usr/local/apache/share/httpd/” (or its
sub directories), the server returns an “Authentication Required” error (error code 401), if it
does not provide a username-password pair, or it provides an invalid username-password
pair. On most browsers, this causes a panel to pop up on the client browser where the user
can enter their username and password. This is returned to the server. The server first
consults the username-password file (as specified in the “UserFile” directive) to see if the
username-password pair is recognized. If it is not recognized, authentication fails.
Otherwise, it consults the require directive to see who is allowed access. If the first
parameter is “valid-user,” access is allowed. If the first parameter is “user,” and the
username provided by the client matches one of the subsequent require parameters, then
access is allowed. If the first parameter is “group,” then the group file is consulted (as
specified in the “GroupFile” directive). If the authenticated user belongs to the appropriate
group, then access is granted. Otherwise, access is denied.

If access is granted, then the requested resource is returned to the client. If access is
denied, the server returns an “Authentication Required” error (error code 401). Most
browsers will pop up a prompt that informs the client user that authentication failed and give
the user the opportunity to try again.

The directive block in the example would override any directive blocks placed on
previous directories. It would affect all the contents and subdirectories of the specified
directory unless these, in turn, contained their own set of authentication directives. The rules
by which individual authentication directives are overridden by others is complicated; for
safety it is recommended that every directive of an enclosing block be explicitly overridden
by the contents of any new block. This means that every block which specifies
authentication should include the AuthType, AuthName, and require directives, as well as
some module’s set of “UserFile,” “Authoritative,” and, if necessary, “GroupFile” directives.
If the sub block does not use the group file for its access control decision, it is not necessary
to override any “GroupFile” directives in the parent block.

Authentication directives do not overlap but instead replace each other. That is, if a
parent block will only allow access to an authenticated user X, and a sub block will only
allow access to an authenticated user Y, then accessing the sub block will only require
authenticating as Y.

3.2.4.2 Anonymous Authentication
The anonymous authentication functionality is provided by the mod_auth_anon module.

This module is not part of the default Apache build, it must be enabled by including the

33

parameter --enable-module=auth_anon in the configure command when Apache
is being built.

The following figure is an excerpt from a configuration file which implements
anonymous authentication.

<Directory "/usr/local/apache/share/httpd/">
AuthType Basic

AuthName "Sample Server".

Anonymous anonymous guest

Anonymous_Authoritative on

Anonymous_LogEmail on

Anonymous_MustGiveEmail on

Anonymous_NoUserID off

Anonymous_VerifyEmail off

require valid-user

</Directory>

Figure 8. Configuration File Example for Anonymous Authentication

The example shown in Figure 8 is described in the following paragraphs.

<Directory /usr/local/apache/share/httpd/>

Same as username-password authentication.

AuthType Basic

Specifies the type of authentication being performed. Anonymous authentication only
supports the “Basic” type.

AuthName Sample Server

Same as username-password authentication.

34

Anonymous anonymous guest

Specifies the usernames which will indicate anonymous authentication is being
attempted. The usernames are presented in a space separated list after the directive.

Anonymous_Authoritative on

Specifies that this authentication module makes the final decision for user authentication.

Anonymous_LogEmail on

Specifies that the value written into the password field of an authentication attempt is to
be recorded in the error log. It is an “info” level event, so the log level must be set
appropriately (see below). If the parameter was “off” then this information would not be
retained.

Anonymous_MustGiveEmail on

Specifies that the client must provide a value in the password field for anonymous
authentication to succeed. If the parameter was set to “off” then the password field could
be left empty.

Anonymous_NoUserID off

Specifies that a username must be provided when attempting anonymous authentication.
If the parameter was set to “on” then a blank username field would also indicate an
anonymous authentication attempt.

Anonymous_VerifyEmail off

Specifies that no checks are performed on the contents of the password field beyond
making sure that it is not empty. If the parameter was set to “on” then the server would
check to make sure that the password field contained at least one “@” and at least one “.”
since these would be present in any valid E-mail address.

require valid-user

Specifies that if an anonymous authentication attempt passes all of the above tests, then
the user is to be given access. The require directive must have the “valid-user”
parameter when anonymous authentication is used. It is not possible to specify a “user”
listed after the Anonymous directive.

</Directory>

Closes off the context block which begins this example.

35

LogLevel info

Specifies that the error log should record events of importance “info” and higher. This
configures the log so that it will record the E-mail address provided by a client in the
password field. If the log level were left at a higher level, then the error log would
consider the events which record the E-mail address to be too minor to record and the
information would be lost. (For more on the LogLevel directive, see Section 3.4.3.1.)
Note that LogLevel is part of the core module and is always available.

Behavior: The behavior of the above example is detailed as follows. This scenario
operates similar to the username-password configuration given above. The only difference
would be that, instead of providing a username and a secret password, the client would
provide either “anonymous” or “guest” as the username, and then enter their E-mail address
in the password field. Authentication would only fail if a username other than “anonymous”
or “guest” was provided, or if one or more of the username-password fields were left blank in
the log-in prompt. If the Anonymous_VerifyEmail directive was set to “on,” anonymous
authentication would also fail if the password field did not contain a “.” and “@”. As before,
a successful authentication would cause the server to return the requested resource while a
failed authentication would cause the server to send an “Authentication Required” error
(error code 401).

As described in the username-password authentication example, this authentication block
will effectively override all authentication directives present in a higher level directory.
Likewise, the block will cover all resources in the specified directory and its sub-directories
unless specifically overridden by another block of container directives. The fact that
anonymous authentication and username-password authentication contain few directives
which correspond to each other is not a problem—simply specify all directives of the new
module when changing between them.

If the Anonymous_LogEmail directive is set to “on,” then every time a client attempts
an anonymous authentication, the server will create an error log event with priority “info”
which includes whether or not the server accepted the authentication attempt and the value of
the password field. This includes a log event with a priority of “info” means that, if the log
level (set by the LogLevel directive—see Section 3.4.3.1) is set at a priority above “info” (as
it is by default) then the event will not actually get written to the log file.

The E-mail address returned during anonymous authentication should not be trusted.
There is no way to verify that the E-mail address presented is the users actual E-mail address.
Even the Anonymous_VerifyEmail directive only provides the most cursory check of the
fields’ contents.

36

3.2.5 Synopsis and Recommendations
All modules except mod_digest, transmit password information in a highly insecure

format. For this reason, the authentication mechanism is of limited use in controlling the
dispersal of the web sites’ contents. Since Apache cannot encrypt content, anyone who could
watch the wire for a username-password pair could also simply read the resources returned
by an authenticated request from a valid client. It is recommend that the username-password
pairs do not apply to any services other than the web server.

Although Apache does contain the capability to use multiple authentication modules to
control access to a single resource, this type of configuration should be left to experienced
Apache administrators. The mechanics of which module takes precedence over another are
not straightforward and beyond the scope of this paper. Likewise, it is recommended that,
each block of authentication directives should explicitly contain all authentication directives
contained in the module being used and not just the directives that have different parameters
from a previous block.

Finally, it is important to understand that the authentication mechanism does not imply
more security than has been described above. If a user successfully authenticates, this does
not imply that the remainder of the communication session will be protected in any way. The
way the mechanism works is that it indicates that the client knew a recognized and required
username and password pair (assuming username-password authentication was used). While
this does provide some security, administrators need to be aware that its control of content
distribution, especially given the lack of any confidentiality service, can be overcome using
relatively simple techniques.

3.2.6 Additional Topics
This section describes features of the Apache authentication mechanism that were not

covered in the above description. Generally, these topics were skipped because they were
unnecessary for the implementation of a secure web server. They have been included here to
inform the reader that the additional functionality and options are in fact available should the
reader wish to pursue them.

• Using Multiple Modules to Control Authentication to a Single Resource—It is
possible to use instances of any and all the authentication modules with the exception
of mod_digest to control authentication to a single resource. This can be done if
username-password files already exist in different formats or if an administrator
wishes to implement both username-password and anonymous authentication
simultaneously. The “Authoritative” directives are used to control this behavior.

• Directive Inheritance—It is not strictly necessary to repeat all authentication
directives whenever the authentication policy changes. There are actually cases
where it is more convenient to override a single directive. However, not all directives

37

can be overridden in the same way. For example, overriding any directive in an
authentication module causes all directives in that module to be overridden. For this
reason, unless the administrator understands the ramifications, this document
recommends complete override of previous directives.

3.3 Access Control
Access control provides the ability to grant access to system resources based on the

identity of the client. Apache supports the functionality to set up host-based access control
where the requesting host is either allowed access or denied access to particular resources on
a web server. When a request is made for a particular resource, Apache checks to see if the
requestor is allowed access to the requested resource.

3.3.1 Modules
The Apache Web Server version 1.3.3 contains one module that provide access control

functionality:

• mod_access – The mod_access module provides host-based access control. It is
based upon the client IP address or hostname. The directives contained in this
module are: allow, allow from env=, deny, deny from env=, and order.

3.3.2 Default Configuration
By default, the mod_access module is enabled. The default Apache configurations files

contain several active directives from the mod_access module. It also contains several
directives that have been commented out, but which can be uncommented for swift
implementation. The directives in the default Apache configuration files are provided below
in Figure 9. This example is detailed in the following paragraphs.

<Directory "/home/httpd/htdocs">
AllowOverride None
Order allow, deny
Allow from all
</Directory>

Figure 9. Configuration File Example for Access Control.

<Directory "/home/httpd/htdocs">

38

This directive specifies the resource container that requires access control. Any of the
container directives such as Directory, Location, Files may be used for this purpose. The
container specified is the /home/httpd/htdocs directory.

AllowOverride None

This directive tells the server which directives that have been declared in a .htaccess file
can override earlier configuration directives. This directive can be set to None, All,
AuthConfig, FileInfo, Indexes, Limit or Options. In this particular case the None
specifies that no options within this directory block can be overwritten by a local access
control file. This means that the server does not have to look for an access file for each
request. See section 3.1.5.

Order allow,deny

This directive controls the order in which allow and deny directives are evaluated. There
are several orders that can be specified; these are: allow,deny, deny,allow, and mutual-
failure. In this case the allow,deny specifies that the allow directives are evaluated
before the deny directives; the initial state is to deny all access.

Allow from all

This directive affects which hosts can access the specified container. This directive can
specify the hosts in several different ways; hostname, IP address, and partial IP, domain-
name addresses. The all specified in this case refers to all hosts; which means that all
hosts can access this container.

</Directory>

This directive is used to close off the context block that started this example.

These example statements are contained in the default configuration file for the Apache
server. The default settings allow every host access to the …/htdocs/ container on the server.
It also specifies that there are no .htaccess overides for this container. These statements can
be changed to customize the Apache server access control. The following sections detail the
available options.

3.3.3 Background Information
This section discusses information that is not contained in the default server configuration

files. It is necessary if customizing the access control mechanism on the server.

3.3.3.1 Access Control Scope
The access control directives Allow, Deny, Order etc. provide access control at a number

of levels within the server. These directives can be used within all the resource containers on

39

the server. The standard container include: <Virtual Host>, <Directory>,
<DirectoryMatch>, <Files>, <FilesMatch>, <Location>, <LocationMatch>, and
<Limit>. The Apache server can be configured to have very fine tuned access control
depending upon the use of the directives within specific containers. Access can be
controlled per directory using the <Directory> context, per file using the <File> context, per
URL location using the <Location> context and per HTTP request method using the
<Limit> context. The <Limit> context has the narrowest scope of all containers.

3.3.4 Configuring Custom Access Control
The Apache server provides the ability to define custom access control. This is

controlled through the directives provided in the mod_access module. Access control can be
set from open to very restrictive depending on the customizations using the mod_access
directives.

3.3.4.1 Allow Directive
The allow directive defines the hosts that are allowed to access a particular container.

The directive syntax is : allow from host where host can be specified using several different
methods; these are detailed below:

• all - this would allow all hosts access to the container; ex: allow from all
• a partial domain name - host names that match or end in a particular string are

allowed access; ex: allow from .mitre.org
• a full IP address - an IP address of a host that is allowed access; ex: allow from

129.83.40.1
• a partial IP address - the first 1 to 3 bytes of an IP address of hosts that are allowed

access, this is used for subnet restriction; ex: allow from 129.93.40
• a network/netmask pair - a network a.b.c.d and a netmask w.x.y.z pair of hosts that

are allowed access, this allows fine-grained subnet restriction; ex: allow from
129.83.40.0/255.255.255.0

• a network/nnn CIDR specification - a network a.b.c.d address and a netmask that
consists of nnn high order bits to specify hosts that are allowed access; ex: allow
from 129.83.40.0/24

3.3.4.2 Deny Directive
The deny directive defines the hosts that are not allowed to access a particular container.

The directive syntax is: deny from host where host can be specified using the methods
desribed previously for the allow directive:

• all - this would allow all hosts access to the container; ex: allow from all

40

• a partial domain name - host names that match or end in a particular string are
allowed access; ex: allow from .mitre.org

• a full IP address - an IP address of a host that is allowed access; ex: allow from
129.83.40.1

• a partial IP address - the first 1 to 3 bytes of an IP address of hosts that are allowed
access, this is used for subnet restriction; ex: allow from 129.93.40

• a network/netmask pair - a network a.b.c.d and a netmask w.x.y.z pair of hosts that
are allowed access, this allows fine-grained subnet restriction; ex: allow from
129.83.40.0/255.255.255.0

• a network/nnn CIDR specification - a network a.b.c.d address and a netmask that
consists of nnn high order bits to specify hosts that are allowed access; ex: allow
from 129.83.40.0/24

3.3.4.3 Order Directive
The order directive controls the order that Apache uses to evaluate the allow and the

deny directives. There are three order options that can be used for evaluation. The directive
syntax is: order ordering where ordering is one of the following:

• allow,deny – the allow directives are evaluated before the deny directives (the initial
state is deny); ex: order allow, deny

• deny,allow – the deny directives are evaluated before the allow directives (the initial
state is allow); ex: order deny, allow

• mutual-failure – only the hosts that appear on the allow list and do not appear on the
deny list are granted access.

3.3.4.4 Allow From Env Directives
The allow from env directive controls access to the specified container by using

environmental variables. The directive syntax is: allow from env=env where env is an
environmental variable that has been set using these environmental variables are defined
using other directives such as BrowserMatch. An example is as follows:

41

BrowserMatch "MSIE 4.01" let_me_in

<Directory /apache/test>

order deny,allow

deny from all

allow from env=let_me_in

</Directory>

In this case any browser using MSIE 4.01 will be allowed access to the /apache/test
directory.

3.3.4.5 Deny From Env Directives
The deny from env directive controls access to the specified container by using

environmental variables. The directive syntax is: deny from env=env where env is an
environmental variable that has been set using these environmental variables are defined
using other directives such as BrowserMatch. An example is as follows:

BrowserMatch "MSIE 4.01" keep_me_out

<Directory /apache/test>

order deny,allow

allow from all

deny from env=let_me_out

</Directory>

In this case any browser using MSIE 4.01 will be denied access to the /apache/test
directory.

3.3.5 Implementation of Customized Access Controls
Implementation of customized access controls is shown in Figure 2 below. A detailed

description of these access control commands is included below.

The AccessFileName directives designates the .htaccess file as the access control file to
look for within each directory. The BrowserMatch directive is used to set the
environmental variable used for the deny from env= directive.

42

A. This set of commands is set for the directory container “/apache/documents”. The
AllowOveride directive gives the “/apache/documents/.htaccess” file the ability to
override the <Limit> directives set earlier for this directory. The Order directive sets
the initial state as forbidden , the allow directives are evaluated before the deny
directives. Everyone is allowed access to this container except browsers using MSIE
4.01; this is set using the deny from env= and the BrowserMatch directives.

B. This set of commands is specific to the test.html file contained in the
“/apache/documents” container. Only the host matching the IP address 10.0.1.4 can
access this particular file.

C. This set of commands is specific to the importantinfo.html file contained within the
“/apache/documents” container. Access to this file is denied to all except those that are
part of the .mitre.org domain. The <Directory> directive closes the context block for the
“/apache/documents” container.

D. This context block refers to the /cgi-bin location. Within this container the <Limit>
directive is used to enclose a group of access control directives that apply to the HTTP
access method POST. These commands specify that only hosts from .mydomain.com
can use the POST method within the /cgi-bin location.

43

E.

BrowserMatch BrowserMatch “MSIE 4.01” keep me out

<Directory “/apache/documents”>
AllowOveride Limit
Order allow,deny
allow from all
deny from env=keep_me_out

<Files "test.html">
order allow,deny
allow from 10.0.1.4

</Files>

<Files "importantinfo.html">
order deny, allow
deny from all
allow from .mitre.org

</Files>

</Directory>

<Location /cgi-bin>
<Limit POST>
order deny,allow
deny from all
allow from mydomain.com

</Location>

A

B

C

D
</Limit>

Figure 2. Access Control Customizations

3.3.6 Synopsis and Recommendations
Apache access control provides the ability to grant access to specific system resources

based on the identity of the host. When a request is made for a specific resource, Apache
checks to see if the requestor is allowed access to the requested resource. As shown
previously, access control can be set from open to very restrictive depending on the
customizations using the mod_access directives. There are several recommendations for
access control settings on the Apache web server. These are:

44

• Users should be stopped from overriding system wide settings; this is done by stopping
users from being able to set up .htaccess files that override security settings configured
for the server. Likewise, default access should be disabled; only permit specific access to
specific locations. This is done as follows:

<Directory />

AllowOverride None

Options None

Order deny,allow

Deny from all

</Directory>

• The interactions of <Location> and <Directory> directives should be carefully
monitored. A <Directory> might deny access but a <Location> directive could
overturn it.

3.4 Auditing
The Apache auditing mechanism allows an administrator to record the activities on the

Apache server. By observing the log files, administrators can determine site traffic,
requested resources, resource retrieval method and whether or not the server experienced
difficulties servicing the request. It can help determine whether a client is attempting to
perform illicit activities on the server and can give some insights as to the nature of an attack
if a violation occurs. For this reason, the auditing mechanism is of great importance to the
security of the server. This section will discuss the auditing mechanism implemented by
Apache and the methods used to create custom audit files.

3.4.1 Modules
The Apache Web Server Version 1.3.3 contains six modules which relate to recording

usage information. Of these six, two have been deprecated and should not be used. The
modules are:

• core—The main Apache module. This contain directives concerning the error log
which records problems and events experienced by the Apache server independent of
requests made by clients.

• mod_cookies—Deprecated. Do not use.
• mod_log_agent—Use to record information about the nature of a client making a

request.
• mod_log_common—Deprecated. Do not use.

45

• mod_log_config—The primary auditing module, this module allows an administrator
to create audit facilities which will record wide range of information concerning
client requests.

• mod_log_referer—Used to record information concerning what resource provided the
link to the resource being requested.

• mod_usertrack—Allows the administrator to track the activities of a client when
accessing the server

The functionality of the two deprecated modules has been replaced and expanded by
other auditing modules (mod_log_config replaces mod_log_common while mod_usertrack
replaces mod_cookies). The deprecated modules should never be used and, henceforth, will
not be mentioned again.

All of the functionality of mod_log_agent and most of the functionality of
mod_log_referer can be duplicated through specially formulated directives in the
mod_log_config module. The only differences are minor variations in how the output data is
formatted. For this reason, both mod_log_agent and mod_log_referer will have a brief
explanation. The emphasis of this section is on the mod_log_config module.

The mod_usertrack module tells the Apache server to send identification cookies to
clients making requests for the first time. These cookies will then be sent with every
subsequent request from that client; providing the client is configured to return cookies.
Using the mod_log_config module, these cookies can be recorded and used to track the
patterns of usage on the server.

3.4.2 Default Configuration
By default, the mod_log_config module is enabled. The default Apache configurations

files contain several active directives from both the core and mod_log_config modules. It
also contains several directives that have been commented out, but which can be
uncommented for swift implementation. The pertinent directives in the default Apache
configuration files are provided as an example in figure 9. This example is described in
detail in the following paragraphs.

46

ErrorLog /usr/local/apache/var/log/error_log
LogLevel warn

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\"
\"%{User-Agent}i\"" combined

<ip of client> <remote logname> <username> <access time>

"<first line of request>" <final status> <bytes sent>

"<Referer field>" "<User-Agent field>"

LogFormat "%h %l %u %t \"%r\" %>s %b" common
<ip of client> <remote logname> <username> <access time>

"<first line of request>" <final status> <bytes sent>

LogFormat "%{Referer}i -> %U" referer
<Refer field> -> <URL requested>

LogFormat "%{User-agent}i" agent
<User-agent field>

CustomLog /usr/local/apache/var/log/access_log common

Figure 9. Configuration File Example for Logging

ErrorLog /usr/local/apache/var/log/error_log

This line sets the location and name of the server error log.

LogLevel warn

This line sets the error log to report incidents of warn priority or higher. See
Section 3.4.3.1 for more concerning what events each level record.

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

This line defines a log format and gives it the nickname “combined” for later use.
This format definition would produce an event with the following form and
information:
<ip of client> <remote logname> <username> <access time> "<first line of

request>" <final status> <bytes sent> "<Referer field>" "<User-Agent

field>"

47

LogFormat "%h %l %u %t \"%r\" %>s %b" common

This line defines a log format and gives it the nickname “common” for later use.
(This format represents Common Log Format.) This format definition would produce
an event with the following form and information:
<ip of client> <remote logname> <username> <access time> "<first line of

request>" <final status> <bytes sent>

LogFormat "%{Referer}i -> %U" referer

This line defines a log format and gives it the nickname “referer” for later use. (The
resulting format is the same as that provided by the mod_log_referer module.) This
format displays the following fields on each line:
<Refer field> -> <URL requested>

LogFormat "%{User-agent}i" agent

This line defines a log format and gives it the nickname “agent” for later use. (The
resulting format is virtually the same as that provided by the mod_log_agent module.)
This format displays the following field on each line:
<User-agent field>

CustomLog /usr/local/apache/var/log/access_log common

This line creates a new log file with the format associated with the “common”
nickname. The new log file is named “access_log” and is located in the
/usr/local/apache/var/log/ directory.

#CustomLog /usr/local/apache/var/log/referer_log referer

This line creates a new log file with the format associated with the “referer”
nickname. The new log file is named “referer_log” and is located in the
/usr/local/apache/var/log/ directory. The line is commented out so, by
default, this log file is not created.

#CustomLog /usr/local/apache/var/log/agent_log agent

This line creates a new log file with the format associated with the “agent” nickname.
The new log file is named “agent_log” and is located in the
/usr/local/apache/var/log/ directory. The line is commented out so, by
default, this log file is not created.

48

#CustomLog /usr/local/apache/var/log/access_log combined

This line creates a new log file with the format associated with the “combined”
nickname. The new log file is named “access_log” and is located in the
/usr/local/apache/var/log/ directory. The line is commented out so, by
default, this log file is not created.

By default, the Apache server creates two log files: The error log and the access log.
The error log, named error_log, is part of the Apache core module and records events on
the server independent of client requests. It is initially set to record events of level warn or
higher. (See Section 3.4.3.1 concerning error log event levels.) The access log, named
access_log, records information about user requests in Common Log Format. The
remaining directives are included to ease implementation of additional logs.

3.4.3 Background Information
This section discusses information which is not a straightforward part of the

configuration process. It is necessary if customizing the auditing mechanism.

3.4.3.1 The Error Log
The error log is used by the server to record information concerning its own general

functioning. The ErrorLog directive is part of the core Apache module so it is always
available. In fact, due to the importance of the error log, the Apache server will not start
unless it can open the error log.

There are eight levels of events which can be written to the error log. The LogLevel
directive (also in the core module) sets the threshold level below which events will be
ignored. The error log levels and a few examples of what situations will raise events are
listed below:

emerg—Emergencies which make the server unusable.

• Errors which result from the Apache server not being able to find functions with
which it should have been compiled with.

alert—Situations which require prompt attention.

• Problems implementing the User and/or Group directives controlling the ID under
which child processes run.

• A child process experienced a fatal error.

49

crit—Situations of critical importance.

• Failure to create or send data over a socket.
• The Listen directive is being used to listen to multiple ports and IPs on a system

which cannot support it.
error—An error has occurred, usually having to do with a client request.

• Invalid configuration parameters were detected.
• Client attempted to authenticate as an unknown user, did not provide the correct

password, or was not a member of the correct group.
• A malformed HTTP message or URL was sent.
• The server was unable to find the appropriate authentication files to perform

authentication of the client.
warn—An unexpected event occurred.

• The Apache PID file was still present when the server is started; this indicates a bad
shutdown last time.

• Apache failed in its initial attempts to kill a child process gracefully.
notice—A normal action of some significance has occurred.

• The Apache server is starting, restarting, or stopping as requested.
• A child was caught exiting due to a nonstandard signal.

info—Records’ events of a purely informative nature.

• Records the password (Email address) of an Anonymous Login.
• The build time and date of a server is recorded as the server is started.
• A client connection timed out.

debug—Records’ events indicating simple actions on the server. (This level is primarily of
use to people writing their own Apache modules.)

Error log entries include the time, level of the event, and a brief description of the
problem. It is possible to send Apache events to the system to be recorded using the
syslog mechanism; this is not recommended because it intermingles Apache events with
those of several other services.

3.4.3.2 Configuring Custom Log Formats
The Apache server mod_log_config module gives the ability to define custom formats for

log information. Events can be set to record a wide range of information by using special
%-codes within the format string.

50

• b - bytes sent: This code returns the number of bytes of content sent by the server in
response to a client request.

• f - filename: This code returns the path and filename of the resource requested by the
client according to the servers operating system.

• {name}e - environment variable: This code returns the settings of the specified
Apache internal environment variable (not to be confused with environment variables
from the operating system). This is useful for debugging new Apache modules.

• h - resolved hostname: This code returns the hostname of the client as resolved
according to the procedure specified using the HostNameLookups directive. (See
Section *****.) If HostNameLookups is set to off (its default value), then this code
simply returns the IP address of the client. If HostNameLookups is set to on or double,
then the server will determine the Internet name of the client machine, using simple or
double reverse DNS resolution respectively, and return that value.

• a - remote IP address: This code returns the unresolved IP address of the client
machine.

• {name}i - HTTP field in client request: This code returns the contents of the HTTP
field in the client request message whose name matches the name in the braces preceding
the i. The comparison between the name specifier and the field name is not case
sensitive.

• l - remote logname: If the IdentityCheck directive is set to on, the server will send a
message to the identd server on the client machine. If the ident server is running
and responds, it will return a string with the username associated with the client request
which will then be returned by this code. If IdentityCheck is on, but for some reason
there is no identd response from the client, this code will return unknown. (See
Section ***** regarding IdentityCheck.)

• {name}n - Apache note: This code returns the value of the named “note” within the
Apache server. Generally, the average administrator will not need to consider notes
unless specifically instructed.

• {name}o - HTTP field in server reply: This code returns the contents of the HTTP
field in the server reply message whose name matches the name in the braces preceding
the i. The comparison between the name specifier and the field name is not case
sensitive.

• p - incoming port: This returns value of the port to which the Apache server is listening
as defined by the Port directive.

• P - child process ID: This code returns the process ID of the child process which
serviced the request. (See Section 3.3.4.1 regarding child processes.)

51

• r - first line of client request: This code returns the first line of the HTTP request from
the client. This line contains the HTTP command, the URL to be processed, and the
HTTP version number which the client is using.

• s - HTTP status code of server reply: This item returns the HTTP status code of the
server response to the given request.

• t - time of request: This code returns the time the request was made. The time is given
in Common Log Format, being [day/month/year:hour:minute:second
offset]. Alternatively, a time format may be placed between braces, just before the
t using the same syntax as that given for the strftime(3) function.

• T - time to process request: This code returns the number of seconds (rounded) the
server took to process the given client request.

• u - remote user: This code records the username which the client sent to the server.
This value is suspect if the returned status code is 401 (Unauthorized).

• U - requested URL: This code returns the URL requested by the client.
• v - servername: This is the Internet name of the server processing the given request

according to the ServerName directive setting.

A format can be defined using the LogFormat directive. When the format is used in the
creation of a log file the format string is simply a text string which will be copied, character
for character, to the log file every time a client makes a request. The exceptions are text that
begins with a percent (%) character. The Apache server will attempt to convert these to
%-codes and will return an error if it cannot. As such, the percent (%) character cannot be
used in the string except as a percent code. The entire format string should be enclosed in
double quotation marks ("). If the administrator wishes the log file output to contain double
quotations marks, they should be preceded by a backslash (\). (I.e., "text \"quoted text\"
text") The backslash will not appear in the output in this case. (I.e., the above string would
read: text “quoted text” text.) The %-codes will be replaced with the appropriate
information from the server when written to the log file.

If the format string contains a %-code for a piece of information which is not available or
cannot be looked up or is just generally unavailable due to an error, the %-code will be
replaced with a dash (-) in the log file.

3.4.3.3 The mod_log_agent, mod_log_referer, and mod_usertrack modules
These three modules will be described in this section; they are very small, simple to

implement, and provide little security benefit over the mod_log_config directives. None of
these modules are part of the default Apache build; to be used they must be enabled in the
configure command.

52

The mod_log_agent has one directive: AgentLog. This directive specifies the path and
name of a log file. Every time a client requests a resource, the Apache server checks the
“User-agent” field of the client request. If it exists, the contents are written to the specified
agent log file. No other log information is written. The “User-agent” contains information
concerning the requesting client, browser type version, etc. This information is not
guaranteed accurate. There is a difference between the use of this directive and a custom log
with the format string “%{User-agent}i.” When the AgentLog directive is used;
nothing is written in the log if the client request does not contain a “User-agent” field.
When the custom log is used, it will write a dash (-) indicating that the information was
unavailable. This module and directive is not recommended. They provide little security
benefit wise because of the lack of contextual information.

The mod_log_referer has two directives: RefererLog and RefererIgnore. The
RefererLog directives specifies the path and name of a referer log file. When a resource is
requested, the Apache server checks the “Referer” field of the client request. If it exists, the
Apache server consults the RefererIgnore directive which contains a space separated list of
strings. If any of the strings appear in the contents of the “Referer” field, the value is
ignored. Otherwise the server will record the contents of the “Referer” field followed by
requested resource, in the specified log file. The “Referer” field contains the complete URL
of the referer (http://servername/path/resource.html). The difference between using the
RefererLog directive and a custom log with the format “%{Referer}i -> %U” is that
the RefererLog will write no entry if the “Referer” field does not exist (the client typed the
URL in directly instead of linking from somewhere) while a custom log would record a
dash (-) followed by the URL being requested. Custom logs do not give the ability to ignore
events. These directives could be to learn what external sites had linked to the web page.
This could be done by defining a referer log and then specifying the local server name in the
RefererIgnore directive.

The mod_usertrack module contains two directives: CookieTracking and
CookieExpires. When CookieTracking is given, the parameter on it sends an identity
cookie in the response to every client request which did not include one. If the client is so
configured, it will return this identity cookie with each subsequent request to this server. The
cookie can be extracted and used to log the click-paths of individual clients using the
“%{cookie}n” %-code. The CookieExpires directive specifies how long a cookie
remains in effect. This can either be given in seconds, or in a string specifying
years/months/days/etc. If the CookieExpires directive is excluded, the cookie will last until
the client browser restarts. Cookies should be checked for expiration date because they only
use 2-digit years. Most browsers recognize lower numbers as being after the year 2000, but
it is inadvisable to make a cookie last very long.

The above directives may appear only once in any servers configuration.

53

3.4.3.4 Defining and Implementing Custom Log Files
The mod_log_config module contains three directives that can be combined to create

custom audit logs. The directives are CustomLog, LogFormat, and TransferLog. The
module also includes the CookieLog directive, but this directive is deprecated and should not
be used. There are several ways this can be done using these directives to create audit files:
LogFormat can describe a format and TransferLog can create the file, CustomLog can
define the format and create the file, and LogFormat can define a nickname and
CustomLog can create the file. The latter method is used in the default Apache
configuration files and, although any method could be used in subsequent invocations, this
paper will continue using it.

The mod_log_config directives may each be used any number of times to define any
number of log file formats and to create any number of audit files.

3.4.3.5 Securing Log Files
All log files created by the Apache server are owned by the root user and are only

writable by the root user and readable by all users. The default Apache installation places
log files in a directory all users can enter and browse; but only the root identity can add files
to this directory. For the most part, this is considered a secure setup; it prevents anyone but
root from changing or replacing log files without first defeating the security of the Linux
operating system. Many administrators find that letting users read the log files is more
access than they can allow. Log files can sometimes contain sensitive information including,
server vulnerability alerts, the true paths of resources, or simply information about server
usage. For these reasons, many administrators choose to prevent read access to all but
themselves.

This can be accomplished in several ways. The easiest is to modify the security of the
directory into which the logs are written, making the directory owned by the server
administrator. The administrator has full access to the directory while all other users are
given no access. Since events are logged under the root user identity, the Apache server will
always be able to record events no matter what the security settings are on the directory.

3.4.4 Configuration Information
The two log files defined in the default Apache configuration should be sufficient for

most security purposes. Additional log files are necessary if there is additional information
of particular interest. This example configuration will define one such scenario.

In the case described below there is a requirement for a log file that records data formats
that the client will accept and the language that text should be in. These pieces of
information are presented in the “Accept” and “Accept-language” fields of the client request
respectively. To provide contextual information, the log file will also record the time of the

54

request, the address of the requester, and the status code of the server reply. This
demonstrates the use of the mod_log_config directives.

The mod_log_config module is enabled as part of the default Apache build.

LogFormat "(%t: %h :%s) Format: %{Accept}i; Language:
%{Accept-language}i" accepted

This directive defines the format and gives it the nickname “accepted.” (The events
produced by this format will be discussed below.)

CustomLog "/usr/local/apache/var/log/accepts" accepted

This implements a new log file named “accepts” in the “/usr/local/apache/var/log”
directory. This audit file uses the “accepted” format. From this point on, whenever a client
request is serviced, an event message with the format defined by the “accepted” format will
be written to the “accepts” log file.

A brief excerpt from the produced log file appears below:

([16/Aug/1999:08:58:07 -0400]: 10.0.1.4 : 200) Format: image/gif, image/x-xbitmap,

image/jpeg, image/pjpeg image/png; Language: en

([16/Aug/1999:08:58:16 -0400]: 10.0.1.2 : 200) Format: image/gif, image/x-xbitmap,

image/jpeg, image/pjpeg, image/png, */*; Language: en

([16/Aug/1999:08:58:17 -0400]: 10.0.1.2 : 200) Format: image/gif, image/x-xbitmap,

image/jpeg, image/pjpeg image/png; Language: en

([16/Aug/1999:08:58:40 -0400]: 10.0.1.5 : 200) Format: image/gif, image/x-xbitmap,

image/jpeg, image/pjpeg, image/png, */*; Language: en

With the exception of the %-codes, all text appears in the log file exactly as it does in the
format string.

3.4.5 Synopsis and Recommendations
The audit files created in the default Apache configuration file should generally be

sufficient for most security needs. Extra log files only need to be implemented when a site
requires some additional piece of information not provided by the default logs.

It is important that the administrator monitor the log files regularly in order to detect
possible attempts to violate the security of the system. Automated tools exists which can
detect suspicious patterns in log files and the reader is advised to look into these. The error
log is particularly useful if the administrator notices that the server is not acting as expected.
Often bad configurations or altered resources will cause a descriptive event to be written to
the error log that can then assist the administrator in fixing the problem.

55

Log files, if left alone, can grow to an unwieldy size. For this reason, administrators will
often empty or replace log files so that they never grow beyond a certain size.
Administrators must be aware that the Apache server keeps an internal counter as to where
the end of the log files are and if a log file is altered, this value becomes invalid. The result
is that no further events can be written to the file. For this reason, whenever a log file is
altered, the Apache server must be restarted so it can acquire the new endpoint of the log file.

3.4.6 Additional Topics
This section describes features of the Apache auditing mechanism that were not covered

in the above description. Generally, these topics were skipped because they were deemed
unnecessary in the implementation of a basic secure web server. They have been included
here to inform the reader that the additional functionality and options are in fact available
should the reader wish to pursue them.

• Auditing Processes—It is possible, instead of sending audit events to a file, to send
them to a process. This process can parse the event and then perform some action
based on its content. For example, if a particular user authenticates, the administrator
can be sent an email alerting them.

• Multiple Events Being Logged to One File—It is possible for more than one custom
log to send different events to the same file. In this case, the events become
interleaved in the file. Generally, doing this adds nothing to the usability of the audit
file.

• Logging to the syslog Mechanism—Many services on Linux send their log events
to the syslog mechanism so they will all be collocated. The Apache server can also
pipe the events which would normally be sent to the error log to the syslog
mechanism to be placed with the events from the other services. Administrators may
find this more convenient. However, most beginning administrators are advised to
keep the Apache logs separate to enhance readability.

3.5 Availability
Availability provides the mechanism to ensure that system data is available to users when

required. Apache provides availability within the core module by allowing the administrator
to set configuration variables to maximize performance and availability.

3.5.1 Modules
The directives that impact availability of the web server are part of the core Apache

module; therefore, there are no additional modules required. These directives are:

56

• KeepAlive—Controls the persistence of TCP connections. A persistent TCP
connection will allow more than one request per connection. This is a boolean
value, on or off.

• KeepAliveTimeout—Controls the number of seconds a connection will remain
open waiting for the next request. Must be used in conjunction with KeepAlive.

• ListenBacklog—The maximum size for the queue of pending TCP connections.
An entry for ListenBacklog is not present in any of the three configuration files.

• MaxClients—Controls the upper limit on the numbers of simultaneous requests
supported. Requests over this limit will be queued to the ListenBacklog.

• MaxKeepAliveRequests—Controls the maximum number of cumulative
requests per connection. Must be used in conjunction with KeepAlive.

• MaxRequestsPerChild—Controls the maximum number of cumulative requests
that a given child process will handle. When the maximum is reached, the
process will die. Helps to reduce the occurrence of accidental memory leakage.
Cannot be used on Win32 platforms.

• MaxSpareServers—Controls the desired maximum number of idle child
processes. As demand on the web server increases child process may be created
according to the next directive, MinSpareServers. If demand decreases and this
maximum number of idle child processes is exceeded, the parent web server
process will kill excess processes until the number is decreased to the maximum.

• MinSpareServers—Controls the desired minimum number of idle child
processes. As demand on the web server increases, and the number of idle child
processes falls below this minimum, the parent process will create new child
processes at the rate of one per second until the minimum is reached.

• RLimitCPU—Controls the maximum number of seconds of CPU processor time
that can be allocated to a process. Expressed in terms of seconds per process.

• RLimitMEM—Controls the maximum memory allocation per process.
Expressed in terms of bytes per process.

• RLimitNPROC—Controls the number of processes per user. Impacts CGI
processes when these processes are run under the web servers Userid. Can cause
a “cannot fork” error message when the web server process reaches the
RlimitNPROC value.

• StartServers—Controls the number of child processes created at startup of the
web server.

57

• ThreadsPerChild—Applies to the Win32 environment only. Controls the
number of simultaneous threads each child process can support. Equates to the
StartServers directive on and Linux platforms.

3.5.2 Default Configuration
The default settings for most of the directives impacting availability are found in the

httpd.conf file. Other directives have default values that are set in the source code. These
directives usually do not have an entry in the default configuration files. However, the
configuration files can be modified to specify a new value for these directives.
ListenBacklog, RLimitCPU, RLimitMEM, and RLimitNPROC are examples of
directives of this type. The default values for these directives are given in Table 3.

Table 3. Default Availability Directive Values

Directive Default Value

ListenBacklog 511

RLimitCPU Unset, use
operating system
default

RLimitMEM Same as
RLimitCPU

RLimitNPROC Same as
RLimitCPU

The default settings, in the httpd.conf file, for selected directives are given in Table 4.
The units of measure, in parentheses, are given for reference only.

58

Table 4. Default Availability Directive Values

Directive Default Value

KeepAlive on

KeepAliveTimeout 15 (seconds)

MaxClients 150 (clients)

MaxKeepAliveRequests 100 (requests)

MaxRequestsPerChild 30 (requests)

MaxSpareServers 10 (servers)

MinSpareServers 5 (servers)

StartServers 5 (servers)

3.5.3 Configuration Information
These directives are used to tune the performance of the web server. Performance tuning

is highly dependent on the unique operating environment of the web server. It is
inappropriate to make specific recommendations concerning the values for individual
availability directives. Some general guidance is appropriate.

The values for StartServers and MaxClients are probably the most appropriate
directives to tune. By monitoring the process status on the web server during key periods, it
should be easy to determine an appropriate value for both directives.

The value for MinSpareServers should be kept relatively low, as close to the default as
possible. It should not be greater than StartServers or it will immediately supercede the
StartServer value. An excess number of idle spare servers will require additional system
resources. Also, the gap between MinSpareServers and MaxSpareServers should be small
for the same reason. It is not prudent to use the same value for MinSpareServers and
MaxSpareServers. The resource requirements to start a new child process are higher than
the same requirements to maintain an existing process. The reasonable gap between these
two directives takes advantage of existing processes without burdening the system with
resources dedicated to idle processes. The MaxRequestsPerChild directive is probably best
left at the default setting unless memory leakage is impacting web server performance.

59

3.5.4 Synopsis and Recommendations
The ListenBacklog directive normally does not need to be tuned. However, it can be

increased as a temporary defensive measure against a TCP SYN flooding attack. Increasing
this value will increase the maximum size of the queue and make the web server more
resilient to a denial of service condition.

If Apache Web Server is deployed on a or Linux platform, use MaxRequestsperChild to
control memory leakage by have the child process terminate after a reasonable number of
requests.

3.6 Integrity, Confidentiality, and Nonrepudiation
The three services (integrity, confidentiality, and nonrepudiation) are listed here because

they are commonly listed among the seven standard security services. (The other services
being authentication, access control, auditing, and availability, all described earlier.) These
three services are listed under one section because none of them are actually implemented by
the standard release of the Apache Web Server.

Integrity is the procedure by which a recipient of a message can gain confidence that the
message has not been changed in transit. This is usually done through the use of a
cryptographic checksum or other similar procedure. Apache contains a ContentDigest
directive in its core module designed to create an MD5 hash of the page so that the recipient
may check its integrity. However, the lack of any cryptographic mechanisms means that any
attacker capable of modifying a page's content in transit will also be able to create a new hash
thus preventing the recipient from detecting the modification. As such, it cannot be claimed
that Apache implements integrity. The fact that the Apache server does not implement this
service means that a savvy attacker might be able to replace messages traveling to or from
the server with messages of their own design. This is not necessarily easy to do, but the lack
of the integrity check makes it possible. This service is not commonly implemented on web
servers.

Confidentiality is the process by which messages to or from the server are encrypted in
order to prevent an eavesdropper from learning the contents of the transaction. This service
requires the use of modern cryptographic protocols, usually SSL. Unfortunately, the U.S.
government has strict laws concerning the export of products that use cryptography. As the
makers of the Apache Group wished that their product be freely distributed throughout the
world, this meant that the server could not include the ability to encrypt data. The result is
that any information sent from the server to the client and vice versa can be read by anyone
capable of watching the wire.

There is a related product named Apache-SSL which does provide the confidentiality
service. It is legal to use within the United States providing the user has purchased a license

60

for RSA encryption. With some exceptions, it is legal throughout the rest of the world
without restriction. It can be downloaded from sites (none of which are located in the United
States) that are listed on the Apache-SSL homepage: http://www.apache-ssl.org.

Nonrepudiation is the procedure by which one member of a transaction can prove that the
other transaction member performed a given action. It is virtually never implemented in web
servers and would provide no security advantage in most settings.

3.7 Common Gateway Interface (CGI) and Scripting
Scripting for the Web falls into two categories. These are client-side scripting and

server-side scripting. Server-side scripting is the focus of this section. The Common
Gateway Interface is one mechanism to pass server-side scripting tasks between the web
server and scripting engines. Since client-side scripting does not happen at the server, it does
not have a security impact on the server. The remainder of this section will focus on server-
side scripting and specific issues with the Apache web server

3.7.1 Modules
The Apache Web Server Version 1.3.3 contains two modules that relate to the CGI. The

first module, mod_cgi, provide the basic functionality for the web server to process files, pass
these files to scripting engines, and return the output to the browser. Mod_cgi is
automatically compiled into the default Apache Web Serve build. The second module,
mod_env, is used to make environment variables available to CGI scripts and Server Side
include commands. Mod_env is not complied into the default Apache Web Server build.

3.7.2 Default Configuration
The default access.conf file defines a <Directory> container directive for CGI scripts.

This default path to this directory is /home/httpd/cgi-bin. The actual path is entirely
dependent on the individual configuration for a specific web server. Within this <Directory>
container directive the Options directive is set to None.

The default srm.conf file defines an AddHandler and ScriptAlias directive for CGI
scripting. Both of these directives are commented out.

These conditions mean that the structure is present to support CGI scripting, but it is not
operational.

3.7.3 Background Information
CGI has been the mechanism used, for a number of years, to pass server-side

programming tasks between the web server and scripting engines.

61

3.7.3.1 Markup and Scripting Languages
There are two basic categories of languages that must be considered with regards to a

web server. The first category is actually the markup languages that define the content and
form of information provided to the web browser. The second category of languages is the
scripting languages.

3.7.3.1.1 Markup Languages

Markup languages are derived from a parent language named SGML. The most familiar
of these languages is HTML.

As with all markup languages, HTML is transmitted to the web browser as ASCII text;
essentially, the HTML commands are human readable.

3.7.3.1.2 Scripting Languages

Scripting languages are interpreted languages. As such, the instructions are normally
transmitted in one form (in this case ASCII text) and then parsed or read by a process that
interprets these instructions. The parsing means that the process carries out a specific set of
internal instructions to produce the results sought by the scripting language commands.
Interpreted languages require the presence of this computer process, normally called the
interpreter, to accomplish the work.

As with markup languages, the instructions created in these languages are human
readable. These instructions are organized and stored as files and are referred to as source
code. The source code can be transmitted from one computer to another; however, to carry
out the commands prescribed in the source code, the interpreter must be present on the
destination machine. The interpreter can also be referred to as the scripting engine.

Scripting languages are used both on the web browser and the web server to provide
functionality to a web site that is beyond the capabilities of HTML. When used on the web
browser, it is referred to as client-side scripting. When used on the server, it is referred to as
server-side scripting.

3.7.3.2 Client-Side Scripting
In client-side scripting, the programming instructions are passed from the server to the

client unexecuted. These instructions are commonly referred to as source code. When the
source code reaches the client, it is acted upon in some manner.

JavaScript, developed by Netscape, is the most popular client-side scripting language.
Other languages are JScript from Microsoft and PerlScript. Although not an interpreted
language, Java applets can be used in client-side programming. With each of the scripting
languages and Java, the client computer must have the scripting engine or a Java Virtual
Machine (JVM). Most modern browsers include a JVM.

62

Client-side scripting adds functionality to the web browser. These functions include local
processing like an order calculator in a shopping cart application, client-side form
verification, visual effects like mouseover effects, and additional processing of data.

3.7.3.3 Server-Side Scripting
Server-side scripting is processing that occurs on the server. For network efficiency, this

processing should be actions that cannot be performed on the client. Queries to a backend
database and formatting of that data in HTML is an example of the type of processing that
normally is done from the server.

3.7.4 Configuration Information
CGI scripting can be enabled or supported in any number of directories. If CGI script is

explicitly enable for a parent directory, any child directories will inherit this condition. CGI
scripting can be explicitly enabled or disabled on a per directory basis

3.7.4.1 Enabling CGI Scripting
Enabling CGI scripting requires mapping a CGI file extension and identifying the

directories where CGI scripts are enabled. This mapping ensures that the server processes
these files as CGI scripts. There are two directives needed to complete this step. The first is
the AddHandler directive. Adding an AddHandler directive to a <Directory> container
directive identifies to Apache Web Server that the server must process files with the mapped
extension. The second directive is the Options directive. The Options directive is the
directive that actual enables CGI scripting. Where the Options directive is placed is critical.
If the directive is placed in the <Directory> container directive for the root directory, CGI
scripting is enabled globally. If the intent is to enable CGI scripting on a directory by
directory basis, the directive may be placed in the appropriate <Directory> container
directives or in a directory .htaccess file. CGI scripting may also be control through virtual
hosts. In this case, the directive would be placed in the <VirtualHost> container directive.
An example using the two directives to allow CGI scripting in all directories follows.
<Directory> container directives are typical found in the access.conf configuration file.

<Directory />

AddHandler cgi-script .cgi

Options ExecCGI

 </Directory>

In the example above, the AddHandler directive, instructs the web server to process all
files with the .cgi extension as CGI scripts. The Options directive specifies ExecCGI as the
option currently supported for this directory. Since the ExecCGI parameter is not preceded
by a “+” symbol, the options are not cumulative; ExecCGI is the only option supported.

63

3.7.4.2 ScriptAlias
ScriptAlias is another directive which influences the processing of CGI scripts. This

directive is used to specify a logical alias for a directory that supports CGI scripting. The
directory will likely have a different physical path then the alias provided in the directive. In
effect, the ScriptAlias directive provides a shortcut to the directory. ScriptAlias is normally
found in the srm.conf configuration file.

3.7.5 Synopsis and Recommendations
3.7.5.1 Scripting Languages and Security
Scripting languages are more significant to security on both the server and client than

markup languages. The reason is that scripting languages are interpreted or executed in some
forms where markup languages are not. Generally, the concern is that the parent process
executing the script may have wide-ranging permissions. If the script performs some
inappropriate action, the security of the system may be compromised.

Execution of server-side source code can have a significant security impact. A simple
example of this can be shown in a weak implementation of a finger service. The finger
command is a simple UNIX utility to provide information about users on local and remote
hosts. The format of a finger command run at the command line is:

 finger [options] <username>

When this command is executed, it is done in the context of the current user. This means
that the permissions and authority of the current user is used to determine if the command
can be executed and the information requested is accessible to the current user. In most
cases, the finger command and the data requested are accessible to everyone.

When a finger service is implemented through a web server, the command is executed in
the context of the user that started the web service or a special user account created
specifically for the web service. This user context is normally privileged. This is the first
part of the problem.

The next part requires an explanation of how the finger service is implemented. Through
the web, finger works by accepting text input from the user. Normally, this is a text input
field in an HTML form. In this text field, the user would input the username, in the form of
johndoe or johndoe@acme.com. The web server must execute the finger command using the
inputted information as the username.

The syntax rules of commands allow multiple commands, delimited by a semicolon, to
be submitted on one line. By appending additional commands to the end of the username
string, a user can have these commands executed in the user context of the web server. If the

64

web server has a privileged user context, these commands can undermine the security of the
system.

To summarize, the risk of CGI scripting is in the content of the actual script. Web server
administrators should take two precautions when dealing with CGI scripting:

• Inspect the code of scripts before allowing them on the system.

• Limit the permissions of the user ID that the scripts execute under.

3.8 Server Side Includes
The SSI file is an HTML or text file that contains additional instructions that are

processed by the server before the file is transmitted to the client.

3.8.1 Modules
The Apache Web Server Version 1.3.3 contains two modules that relate to Server Side

Include files. The first module, mod_include, provides the basic functionality for the web
server to parse files and execute instructions contained within those files. Mod_include is
automatically compiled into the default Apache Web Serve build. The second module,
mod_env, is used to make environment variables available to CGI scripts and Server Side
Include commands. Mod_env is not complied into the default Apache Web Server build.

3.8.2 Default Configuration
Server Side Includes requires three directives to activate which will be described in detail

in the next section. There are no active AddType or AddHandler directives in the three
configuration files for Apache. These directives are most likely found in the srm.conf file.
In the three <Directory> container directives in access.conf, the Options directive does not
allow included files. For the cgi-bin directory, the Options directive is set to None, which
explicitly disallows included files.

3.8.3 Background Information
Server Side Includes were devised to give a limited processing ability on the server with

having to resort to a CGI script or an API. This limited ability allows two basic
tasks—execute, a small set of commands, and manipulate a small set of variables. The
following sections describe each of these tasks.

SSI commands are identified in the base document by their unique format. The following
is an example of a SSI command within a conventional HTML file. The format is very close
to an HTML comment. If SSI parsing is not permitted, any SSI commands will be sent to the
client as is and handled as HTML comments by the browser.

65

<HTML>

…

<BODY>

…

<!-#include file="footer.htm" -->

</BODY>

</HTML>

The base document is the HTML file or script requested by the client. The server does
not parse normal HTML or text files. This is done to increase the response speed of web
requests. Supporting SSI requires that the file be identified in some manner so that the server
is aware that it must parse the file. The customary means to identify documents that must be
parsed is to use a different file extension. The conventional SSL file extension is .shtml.

3.8.3.1 SSI Commands
There is a list of eight SSI commands that can be used in the SSI statement.

• config—Allows the administrator to customize an error message for parsing error and
customize the format for displaying file size and date/time values. This command
requires one of three argument values dependent on the purpose.

– errmsg—Used to specify the text of the parsing error message.

– sizefmt—Used to configure the display of date/time values.

– timefmt—Used to configure the display of date/time values.

• echo—Prints the contents of an Include or server variable.

• exec—Allows the execution of an external binary file or script. This command
requires one of two argument values.

• cmd—Spawns a shell for programs/commands other than CGI scripts.

• cgi—Invokes a CGI script.

• fsize—Prints the size of the named file. The format adheres to the sizefmt parameter
in the config command. This command requires one of two argument values
dependent on whether the path given is physical or logical.

66

– file—Used for a path that is specified from the file system. A “file” path is
relative. Absolute paths and directory traversing operation (../) may not be
used.

– virtual—Used for a path that is specified as a URL. The path can be absolute
and begin with a “/” or relative. Absolute paths originate at the ServerRoot.
Relative paths originate from the path of the base document.

• flastmod—Prints the time. The format adheres to the timefmt parameter in the config
command. include—specifies the path of the file to be incorporated into the base
document. This command requires one of two argument values dependent on
whether the path given is physical or logical. Executable content can be part of the
included file, if permitted by the parameters to the Options directive.

– file—Used for a path that is specified from the file system. A “file” path is
relative. Absolute paths and directory traversing operation (../) may not be
used.

– virtual—Used for a path that is specified as a URL. The path can be absolute
and begin with a “/” or relative. Absolute paths originate at the ServerRoot.
Relative paths originate from the path of the base document.

• printenv—Prints a list of all Include and environment variable and their values.

• set—Assigns the value of an Include variable.

3.8.3.2 Include and Server Variables

3.8.4 Configuration Information
3.8.4.1 Enabling SSI on Apache Web Server
There are two steps required to enable SSI on the Apache Web Server. The first is to

verify that the module for SSI, mod_include, is compiled into the Apache executable. This
module is compiled in the default configuration. The list of compiled modules can be
checked with the httpd –l command.

The second step is to map an SSI file extension and to identity the directories where SSI
is allowed. This mapping ensures that the server parses these files for SSI commands. There
are three directives needed to complete this step. The first is the AddHandler directive.
Adding an AddHandler directive to a Directory container identifies to Apache Web Server
that the server must parse files with the mapped extension. The second is the AddType
directive. The AddType directive defines the MIME type the web server will use when
formatting responses to requests for files with the mapped extension. The third is the
Options directive. The Options directive is the directive that actual enables SSI parsing.

67

Where the Options directive is placed is critical. If the directive is placed in one of the global
configuration files, like access.conf, SSI parsing is enabled globally. If the intent is to enable
SSI parsing on a directory by directory basis, the directive may be placed in the appropriate
Directory containers or in the .htaccess files. SSI parsing may also be control through virtual
hosts. In this case, the directive would be placed in the <VirtualHost> container directive.
An example using the three directives to allow SSI files to be placed in all directories
follows:

 AddHandler server-parsed .shtml

AddType text/html .shtml

Options +Include

3.8.4.2 Options Directive Parameters Relevant to SSI
The Options directive has a wide range of parameters. Many of these parameters do not

have any impact on SSI parsing. The ExecCGI, Include, and IncludeNOEXEC parameters
have direct impact on SSI parsing. The ExecCGI parameter allows the execution of CGI
scripts. The Include parameter behaves like an on/off switch for SSI parsing. If Include is
not part of the parameter list, SSI files will not be parsed and any enclosed SSI commands
are treated as HTML comments. The IncludeNOEXEC parameter allows SSI parsing, but if
the included file is executable or has executable content, that file or content is not processed.

3.8.5 Synopsis and Recommendations
SSI is a double-edged sword. It is very useful for minimizing the duplication of content

that appears across a number of web pages, such as headers, footers, and copyright
information. However, the fact that it included files, it can contain executable content make
these files a security risk.

It is prudent to use the IncludeNOEXEC parameter on directories where the web
administrator does not have direct control of the content. It is very easy for someone to use
an SSI command to incorporate executable content that is harmful.

3.9 Redirection and Aliasing
Redirection and aliasing are processes by which the Apache server receives a request and

translates it into a reference to a path other than the one that would appear to be the target.
For example, if a client requests a resource with the path A, if that path is really an alias or is
redirected, the actual resource being requested would have path B, which is not necessarily
deducible from A. This section described the modules and directives that allow the Apache
server to implement this functionality.

68

3.9.1 Modules
The Apache Web Server Version 1.3.3 contains three modules that contain functionality

that falls under the general category of aliasing and redirection. The modules are:

• core—The main Apache module. This contains directives concerning the document
root that serves as the base within the file system of all client requests for URLs.

• mod_alias—The primary source of directives involving aliasing and redirection.
• mod_userdir—A special case of aliasing and redirection; this module implements a

user directory mechanism that will dynamically calculate where to look if the Apache
server receives a URL containing ~<username>.

The mod_alias module contains several directives all of which implement aliasing or
redirection in some form. The directives differ in how they calculate the URL to be matched
and in how the redirection is presented to the client. There are also special directives for
when the aliased resource is a CGI executable.

The mod_userdir module provides special functionality that allows individual users to
have directories that can be easily referenced in URLs. The Apache server checks the URL
to see if it contains a tilde (~) followed by a username. The path of the requested resource
will by calculated based on the parameter of the UserDir directive. Depending on the format
of this parameter, this will either result in a simple aliased lookup or an actual redirect. The
mod_userdir module can also specify that certain users should not have their directories
calculated in this way.

3.9.2 Default Configuration
Both mod_alias and mod_userdir are part of the default Apache build. The core module

is available in all builds of the Apache server. The default Apache configuration contains at
least one directive relating to aliasing or redirection from each of these modules in the
srm.conf file. The lines from the configuration file are shown below with additional
description:

UserDir public_html

This directive, from the mod_userdir module, defines how the Apache server will
calculate the location of a user’s publishing directory. In this case, if the Apache server
receives a request for a resource in a directory path that contains a tilde (~) followed by a
username, the Apache server will look for that resource in the “public_html” folder in that
user’s home directory. For example, if a client requests
“http://servername/~schmidtc/projects/index.html” then the Apache server will attempt to
return the file “~schmidtc/public_html/projects/index.html” where ~schmidtc is resolved by
the Linux operating system to by the home directory of the specified user.

69

DocumentRoot "/usr/local/apache/share/htdocs"

This directive, part of the core module, is used to specify the base directory in which the
Apache server will search for URLs. This directory serves as the root directory in URL
specifications. For example, in this case, if a client requests
“http://servername/directory/file.html,” then the Apache server will attempt to return the file
“/usr/local/apache/share/htdocs/directory/file.html”.

Alias /icons/ "/usr/local/apache/share/icons/"

This directive establishes an alias. It states that any time a client requests a resource in
the directory “icons,” the server should look for that resource in the directory
“/usr/local/apache/share/icons.” For example, if the client requests
“http://servername/icons/bullets/redbullet.gif,” the Apache server will attempt to return the
file “/usr/local/apache/share/icons/bullets/redbullet.gif.” This directive should not be used if
the requested resource may be executable, as it will not execute a target file but will return
the executables’ contents as if it was a normal file.

#ScriptAlias /cgi-bin/ "/usr/local/apache/share/cgi-bin/"

This directive establishes an alias to a CGI executable. It states that any time a client
requests an executable file in the directory “cgi-bin” the server should look for that
executable in the directory “/usr/local/apache/share/cgi-bin.” For example, if the client
requests “http://servername/icons/bullets/script.pl,” the Apache server will attempt to return
the results from executing “/usr/local/apache/share/icons/bullets/script.pl.” This directive
should not be used if the requested resource may be a file, as this will result in an error.

3.9.3 Background Information
This section discusses information which is not a straightforward part of the

configuration process, but which is necessary for knowledgeable use of the aliasing and
redirection mechanisms.

3.9.3.1 General Use
There are two general issues that all users of aliasing, redirection, and UserDir directives

must be aware of. First, with the exception of the AliasMatch, ScriptAliasMatch, and
RedirectMatch directives, the directives will only be triggered if the string immediately
following the server name in the URL matches the target string. There cannot be any
intermediate characters. For example:

Alias /fake_name/ "/usr/local/real_name/"

The above directive would be matched on the URL
“http://www.server.com/fake_name/…”, but not on the URL

70

“http://www.server.com/stuf/fake_name/…”. Notice that after the string to be matched, there
can be any number of characters extending the path.

The AliasMatch, ScriptAliasMatch, and RedirectMatch directives can match to any
portion of the URL. For this reason, they must be used with great care to prevent accidental
matching.

The second major issue involving aliasing and redirection directives is the use of trailing
slashes (/) in the directives’ parameters. These directives behave differently depending on
whether or not the parameter to be matched with the URL and/or the parameter representing
the true path contains a trailing backslash.

Both the aliasing and redirection directives behave in the same way. If the first parameter
does not contain a trailing backslash then it will match both URLs with or without a trailing
backslash. If, on the other hand, the first parameter has a trailing backslash, no match will be
performed if the requested URL does not have a backslash after the matching string. For
example:

Alias /fake_name/ "/usr/local/real_name/"

The above directive would match requests for “http://www.server.com/fake_name/” and
“http://www.server.com/fake_name/directory/file.html”, but will not match a request for
“http://www.server.com/fake_name”.

The second parameter should match the first parameter in that they should both possess
or lack a trailing backslash. If this is not observed, the actual file or URL requested will
either lack or have an extra backslash when calculated.

There is no difference in the behavior of the UserDir directive based on the presence or
absence of a trailing slash.

3.9.3.2 Aliasing vs. Redirection
This paper has been referring to aliasing and redirection as if they are two different

mechanisms, which is, in fact, the case. The primary difference between the two features is
how the process is seen from the perspective of the client. Redirection involves the server
sending one of a number of HTTP redirects back to the client. The different types of
redirects inform the client of the status of the original document. The four types of redirect
messages the Apache server can be configured to send are:

• Moved Permanently (HTTP code 301)—Indicates that the resource has been
permanently moved to a new location and the client should update its references. The
message should include the new path of the resource.

• Found (HTTP code 302) —Also known as “Moved Temporarily,” this messages
indicates that the requested resource is temporarily residing in a different location, but

71

that it will return to its original path at some time in the future. The message should
include the temporary path of the resource.

• See Other (HTTP code 303) —Indicates that the resource has been replaced or
updated with a different resource at the specified location. The message should
include the path of the new resource.

• Gone (HTTP code 410) —The requested resource has been removed from the server
and no forwarding URL has been provided. This message does not provide a new
URL to look up but simply exist to inform the user that the URL was once valid, but
is no longer so.

Most modern browsers, upon reception of a redirect message, will automatically create a
request to the provided URL making the entire process transparent to the user. (The obvious
exception to this being the “Gone” message that does not contain a URL to request.) The
mod_alias module contains directives that can respond to client requests with any HTTP
message, the aforementioned four messages being the most likely in the case of redirection.
Although it is most common to redirect to another HTTP server, if the parameter specifies a
different protocol that the browser is capable of requesting, this protocol is used. For
example, Redirect "ftp://ftp.domain.com/folder" would be parsed by most modern browsers
and result in a request to the given server using the ftp protocol.

Aliasing, unlike redirection, takes place entirely on the server. If the Apache server
receives a request for a URL that is aliased it internally recalculates the path of the requested
resource based on the aliasing directive used and returns the resource with the new path. No
messages are sent to the client during this process. As such, aliasing is primarily used to
re-map the URL file structure in much the same way that a link re-maps the file structure in
the operating system. (For more on links, consult the man pages for the ln command.) The
purpose of such a re-mapping is generally either to shorten what would otherwise be
inconveniently long URLs or to hide the file system structure from probing using the HTTP
server. The latter is a security advantage in, should an attacker gain access to the file system
, it will be structured differently then how it appears to be structured when using the HTTP
server.

If the same URL is the subject of both an alisaing and a redirection directive, the
redirection directive will always take precedence. As a result, the client with receive a HTTP
redirect message and the aliasing directive will not be considered.

3.9.3.3 Aliasing, Redirection, and Container Directives
Because they affect the path the Apache server will use to look up a requested resource,

the interaction of aliasing and redirection directives with container directives, which are
linked to the path and name of a resource, may seem to be somewhat confusing. The rule to
remember is that the <Location>/<LocationMatch> directives are matched against the URL

72

while the <Directory>/<DirectoryMatch> and <Files>/<FilesMatch> directives are
matched against the file system . The result is that the former directives are matched against
the alias name that the client requests while the latter directives are matched against the
actual path and file on the file system . For example, consider:

Alias /aliaspath "/usr/local/apache/share/another_path"

If a user requests “http://servername/aliaspath,” container directives will have the
following behaviors:

• <Location "aliaspath"> will apply all contained directives to the request
• <Location "/usr/local/apache/share/another_path"> will not be considered in this

request
• <Directory "aliaspath"> will not be considered in this request
• <Directory "/usr/local/apache/share/another_path"> will apply all contained

directives to the request
• <Files "file.html"> will apply all contained directives to the request only if this is the

name of the file requested. (In the above example, only the directory name is
aliased.)

Following up on the last bullet, the Alias directive may be used to alias individual files.
For example, consider:

Alias /aliaspath2/file.html
"/usr/local/apache/share/another_path2/real_file.html"

In this case, requests for “http://servername/aliaspath2/file.html” would cause the server
to return the file “/usr/local/apache/share/another_path2/real_file.html”. (In fact, an alias
with a filename can refer to a directory and vice versa. Aliasing can simply be viewed as
string replacement when the server looks up the resource.) If the recent Alias directive were
used, <Files> container directives would behave as follows:

• <Files "file.html"> would not be considered in this request
• <Files "real_file.html"> will apply all contained directives to the request

As can be seen in the previous two examples, the <Location>/<LocationMatch>
directives are matched against the alias while both the <Directory>/<DirectoryMatch> and
<Files>/<FilesMatch> directives are matched against the actual path and name of the
requested resource.

Redirection does not consider any container directives no matter the type. When a client
requests a target that is the subject of a redirection, the Apache server will immediately send
the redirect message without any further consideration.

73

3.9.3.4 The mod_userdir Module
The UserDir directive in mod_userdir can behave either as an aliasing or redirection call

depending on how it is configured. The calculations by which a username in a URL is
translated is somewhat complicated and allows for virtually any configuration of user publish
directories providing that the publishing directories of all users have the same structure.

If the parameter of the UserDir directive does not contain a colon (which would indicate
a protocol specification), it behaves as an aliasing directive. Specifically, it behaves like the
Alias directive in that requests for a cgi will return the text of the executable rather than
execute the file and return its result. The directory in which the Apache server looks for the
requested resource depends on the format of the directive’s parameter:

• UserDir "directory"—If the parameter is not led with a backslash (/) then it
represents the path under the users home directory. The given path may be of any
depth. In the above example, Apache would look in the “~username/directory/”
directory. Note that, for the purposes of <Directory>/<DirectoryMatch> matching,
the actual path of the users home directory is used rather than the tilde (~)
representation.

• UserDir "/directory"—If the parameter is led with a backslash (/) then the given
path, followed by a directory named after the given username will be checked.
Again, the given path may have any depth. In the above example, Apache would
look in the “/directory/username/” directory.

• UserDir “/directory1/*/directory2"—If the parameter is led with a backslash (/) and
contains an asterisk (*) then the given path will be checked for the requested resource
where the asterisk is replaced with the requested username. In the above example,
Apache would look in the “/directory1/username/directory2/” directory.

 If the parameter string of UserDir contains a colon, it is assumed that a protocol is being
specified and that the directive is specifying that a redirection be performed. Normally, such
strings would begin “http://,” but any protocol could be used, just as with normal redirection.
Upon reception of a request for the given users directory, an HTTP 302 (Found) message is
returned to the client with the new URL. The construction of the URL depends on the
parameter of UserDir:

• UserDir "http://www.server.com/directory"—If the parameter does not contain an
asterisk (*) then the users name is appended onto the end of the URL (with a
backslash inserted just before it). The URL given in the parameter may have any
depth. In the above example, the client would be redirected to
“http://www.server.com/directory/username/”.

• UserDir "http://www.server.com/*/directory"—If the parameter contains an asterisk
(*) then the client is redirected to the URL given in the parameter with the asterisk

74

replaced with the given username. In the above example, the client would be
redirected to “http://www.server.com/username/directory/”. Notice that the username
in the redirected URL is not led with a tilde (~). See the next bullet on how to do
that.

• UserDir "http://www.server.com/~*"—To redirect the client such that the requested
directory will be ~username, simply place a tilde (~) in front of the asterisk (*) in the
parameter. In the above example, the client would be redirected to
“http://www.server.com/~username/”.

In all cases, if the user requests a path longer than the username (for example,
“~username/dir1/dir2/file.html”) the path after the username is simply appended to the end of
the path being looked up locally or being redirected.

Notice that in all the above examples, no trailing slash (/) is placed in UserDir’s
parameter. The Apache server automatically adds this to all requests. If the configuration
file contains a trailing slash this will result in two trailing slashes which may cause an error.

When used in conjunction with container directives, the UserDir directive behaves
exactly as an aliasing or redirection directive would, depending on how the UserDir directive
is used. If UserDir is used in its aliasing capacity, the <Location>/<LocationMatch>
directives will be compared against the URL (with the ~username), while the
<Directory>/<DirectoryMatch> and <Files>/<FilesMatch> directives will be matched
against the actual path of the resource requested. If UserDir is used in its redirection
capacity, no container directives will be consulted.

If a UserDir directive is used along with an aliasing or redirection directive that is set to
match on a specific ~username, the UserDir directive will always take precedence and the
aliasing or redirection directive will not be considered. This occurs no matter whether
UserDir is being used in its aliasing or redirection capacity.

In addition to providing how to calculate the target of a user name lookup, the UserDir
directive can be used to define which usernames will be converted. This can be done through
the inclusion of either enabled or disabled as the first parameter of the UserDir directive.
The use of these parameters will have one of three results:

• UserDir disabled prevents any user directories from being translated with the
exception of those specifically allowed using the enabled parameter.

• UserDir disabled username username… prevents the listed usernames from being
translated. The server will attempt to service all other user directory requests.

• UserDir enabled username username… specifically allows the listed usernames to
be serviced by the Apache server. When used in conjunction with UserDir disabled,
the listed usernames will be the only ones serviced.

75

By default, the Apache server will attempt to translate and service all requests for user
directories.

3.9.3.5 Aliasing and Security
Aliasing, and in this instance aliasing refers to the UserDir directive when used in its

aliasing capacity, can be beneficial in a number of ways. Long paths can be aliased
preventing clients from requesting long and unwieldy URLs. Mnemonic names can be
assigned to resources that would otherwise require the memorization of a less intuitive path.
Additionally, the use of aliasing directives can hide the true structure of the servers’ file
system from clients. The latter feature can be a great benefit to security.

Many attacks require a foreknowledge of at least some portion of the server’s directory
tree. Without the use of aliasing directives, the directory tree seen in URLs will be exactly
the same as the directory tree of the server itself (minus the path to the server’s publish
directory). By using aliasing directives the URL directory tree can be broken up and placed
throughout the servers’ file system , thus foiling mapping attempts.

There is one danger to using aliasing directives in the form of links. A link is a file that
connects to a directory at some other location in the file system . Links are used to alter
paths on the file system in much the same way that aliasing alters the lookup path in the
Apache web server. As far as the user, and Apache, are concerned, the directory the link
connects to is simply a sub-directory of the directory that contains the link. This occurs
regardless of the target directory’s original position in the file system . In effect, a link
creates a second path to a directory.

This has two ramifications. First, if a link exists in a directory that is the target of an
aliasing directive, the client may be able to follow that link wherever it may lead. For
example, if the link “root” was linked to the directory “/” then the Apache server would
attempt to service a request for a resource in the directory “root” by looking in the /, or root
directory of the file system . It is unlikely an administrator would wish clients to be granted
this ability.

The second ramification of the use of links relates to a link’s ability to create alternative
paths. The <Directory>/<DirectoryMatch> directives match against the file system path.
However, they are only compared against the path being requested. A link can create a
second, different path. As such, a second set of <Directory>/<DirectoryMatch> directives
would need to be added in order to match this new path. Otherwise, the contained directives
might be applied to requests using one path, but not to requests using another, resulting in an
uneven security policy.

The danger of links can be mitigated in several ways. First, an administrator should
always check for links in any directory that can be published. This is the best method for
detecting unwanted links. In addition, the Options directive can be used to prevent the

76

Apache server from following links. This can be used in cases wherein the administrator
may not be able to control links placed in a given directory, such as when that directory is
controlled by an individual user. Finally, the administrator should set up an access control
policy such that directories that are not intended for publication can never be accessed. This
should be done for all directories regardless of whether they seem reachable through the web
server. There is always the possibility that a rogue link may exist connecting a published
directory to the other.

3.9.4 Configuration Information
This section presents examples of the use of the various aliasing and redirection

directives. Examples include a brief description of the intention of the directive and an
explanation of its arguments. Due to the lack of interaction between the various directives,
each example is independent. The examples do not reflect any unified attempt to make
significant changes to the settings of the server, but were simply contrived to demonstrate the
use of their respective directives. Each example also describes directives that are similar to
the one demonstrated.

3.9.4.1 Aliasing
This example will show the use of the Alias directive. Use of the ScriptAlias directive

can be easily extrapolated where the target directory contains executables. The displayed
directive simply intercepts requests for the “project_1” directory in what appears to be to root
directory of the server and links it to the project’s directory. The other directives enable
clients to access the project directory since, by default, this directory would not allow access.

Alias /project_1 "/home/schmidtc/project_1/html"

As a result of this directive, whenever the Apache server receives a request for a resource
whose URL begins with “/project_1” (after the protocol and server designation) it will look
for this resource in the file system directory tree under the “/home/schmidtc/project_1/html”
directory.

<Directory "/home/schmidtc/project_1/html">

Specify the directory being referenced in the alias. By default, no access is allowed to this
directory. In order to allow external users to access it, permissions must be enabled.

order allow,deny

Specify the access control order (see Section *****).

allow from all

Specify that access is allowed from all hosts (see Section *****).

77

Options None

Specify that no special options are permitted. Among other things, this setting prevents
the Apache server from following symbolic links while in this directory and prevents the
execution of CGI and Server Side Includes (see Section 3.1.4).

</Directory>

Close off the above container block.

Behavior: Once the above directives are implemented, the server will attempt to service
all request for resources within the “project_1” directory in the URL by looking in the
“/home/schmidtc/project_1/html” directory. For example, if a user requested
“http://www.server.com/project_1/reports/august.html” the server would attempt to find and
service the file “/home/schmidtc/project_1/html/reports/august.html”. The disabling of
symbolic links and executable content using the Options directive enhances security.

Note that, while the order and allow directives allow access to the given file system
directory from the Apache server’s perspective, it must still be the case that the user
“nobody” (or whichever user is specified for the server child processes in the User directive)
must able to reach the directory within the file system . If the access control of directories in
the operating system prevented such access, Apache would be unable to serve the directory.

3.9.4.2 Redirection
Redirection is a relatively simple feature to implement. Apache provides four directives

to implement this feature: Redirect, RedirectMatch, RedirectTemp, and
RedirectPermanent. Of these, RedirectTemp is equivalent to Redirect with a first
argument of temp while RedirectPermanent is equivalent to Redirect with a first argument
of permanent. This example will demonstrate the use of the Redirect directive.

Redirect permanent /research "http://research.server.com"

When the client sends a request for a resource in the “/research” directory of the URL,
the server sends a “Redirect Permanent” message (HTTP code 301) indicating that all
requests for this directory should be directed to “http://research.server.com”.

Redirect seeother /help_files "http://www.server.com/help2"

When the client sends a request for a resource in the “/help_files” directory, the server
sends a “See Other” message (HTTP code 303) indicating that new versions of the requested
files are located in “http://www.server.com/help2”.

Behavior: In either of the above cases, client requests are met with redirect errors of the
specified type. Most client browsers will parse these errors and transparently request the

78

indicated resource. There are really no other issues with using this directive since it is
processed before container directives or aliases are considered.

3.9.4.3 The UserDir Directive
The UserDir directive can be useful to site administrators who wish to allow specific

users to be able to publish content that they are able to control themselves. The following
example describes one possible secure configuration for such a mechanism.

UserDir disabled

Causes all requests for user directories to be denied by default.

UserDir enabled schmidtc rmcquaid kjones

Allows the server to look up user directories for the three users listed only. Requests for
any other user’s user directory will not be serviced.

UserDir /home/user_publishing/*/http

Specify where the user directories are located. In this case, schmidtc’s user directory
would be located in “/home/user_publishing/schmidtc/http”, rmcquaid’s would be in
“/home/user_publishing/rmquaid/http” and kjones’s would be in
“/home/user_publishing/kjones/http”.

<Directory "/home/user_publishing/*/http">

By using the wildcard character in the above specification, this container block applies to
the “http” directory within each individual users’ publishing directory.

order allow,deny

Set the order of the access control.

allow from all

Allow access to these files from all hosts.

Options None

Specify that no special options are permitted. Among other things, this setting prevents
the Apache server from following symbolic links while in this directory and prevents the
execution of CGI and Server Side Includes (see Section 3.1.4).

AllowOverride AuthConfig Limit

Specifies which directives the Apache server will read from .htaccess files, should there
be one present in the requested directory. (See Section 3.1.5 regarding .htaccess files.) The
parameters allow users to control authentication and access control to their directories

79

through .htaccess files, but will prevent them from changing other properties of their
directory (such as giving themselves the ability to follow links).

</Directory>

Closes off the container block.

Behavior: The above configuration will cause the server to process requests for
~schmidtc, ~rmquaid, and ~kjones. All other requests for user directories will be met with a
“Not Found” (HTTP code 404) message from the server. For users that are allowed, Apache
will calculate the user’s publishing directory and make a request there.

The <Directory> container block is used to enable access to the user publishing
directories since, but default, access would not be allowed. In addition to granting access to
all hosts, the block also contains directives that limit the activities that may be taken within
the user directories. Specifically, it prevents Apache from following symbolic links or
executing code and limits the directives that will be read from .htaccess files. These
directives are particularly important when dealing with user directories since individual users
are likely to be able to control the content of these directories without administrative
supervision. As such, it is important to configure Apache such that hostile users will not be
able to violate security from their user directories. By preventing links from being followed,
the administrator is eliminating the possibility that the user might create a link to sensitive
information on the server. Preventing the execution of CGI and Server Side Includes
prevents users from running executables without supervision. Finally, and most importantly,
limiting the directives read from .htaccess files as described allows users to restrict access to
their user directories as they wish, but prevents them from granting themselves more
capabilities than the administrator has specified in the primary Apache configuration files.

3.9.5 Synopsis and Recommendations
Aliasing and redirection directives can be very useful to the functioning of a web server

in general and its security in particular. Specifically, careful use of aliasing directives can
hide the internal structure of the file system on the web server from mapping attempts while,
at the same time, making it easier to use. The only risk that must be taken into consideration
is the danger of links within the file system . However, through careful inspection of
published directories, the preventing Apache from following links, and/or denying access to
all directories except those the administrator wishes to be publicly viewed.

The UserDir directive is a special case of aliasing and redirection and simplifies the task
of granting individual users directories from which they can publish content. If the
administrator wishes to use this feature, they should follow the example given in
Section 3.9.4.3 regarding the secure configuration of the mechanism: allowing user directory
lookups only to specific users and restricting the features of those directories. If the

80

administrator does not wish to use this feature, it should be disabled. This can either be done
by placing a single UserDir disabled directive in the configuration file, or by disabling the
module when building the Apache server by adding the argument “--disable-
module=userdir”. In the latter case, the administrator will need to remove the default
UserDir public_html directive from the srm.conf configuration file.

The redirection directives, while not providing much additional security, can be very
useful especially in situations where a web site actually consists of several individual web
servers. The flexibility of the associated directives allow the administrator complete control
of the type of message returned to the client in the event of a redirection.

Directives that allow regular expressions to be used in aliasing and redirection are
available through the AliasMatch, ScriptAliasMatch, and RedirectMatch directives. It is
very easy to have unintended matches occur when using these. For this reason, it is
recommended these directives not be used unless absolutely necessary, and then only with
the utmost care to match only the desired URLs.

3.9.6 Additional Topics
There are no other topics relating to aliasing and redirection that have not been addressed

in the above section.

3.10 Virtual Hosting
An Apache Web Server can support more than one web site. This is done through virtual

web sites or virtual hosts. A virtual web site is a set of content directories that are managed
and accessed as if it was a separate, unique web server. Virtual web site is a more descriptive
term; however, virtual host is the Apache directive used to implement a virtual web site.
This feature was designed to manage the problem commercial Internet service companies
face when trying to host multiple web sites.

3.10.1 Modules
The <VirtualHost> container directive is part of the core Apache module; therefore,

there are no additional modules required to implement virtual hosts.

3.10.2 Default Configuration
There are no active <VirtualHost> container directives in the three configuration files

for Apache. The httpd.conf does contain an example of the <VirtualHost> container
directive that is commented out.

81

3.10.3 Background Information
Before virtual hosts were available, the possible solutions were to have a separate

machine for each web site or to have several network interface cards in a single machine.
Each of these interface cards would be bound to a different IP address. Virtual web sites can
be hosted on the same Apache Web Server by uniquely identifying each site using one of
three methods:

• By assigning each site a nonstandard port (e.g., other than port 80) to listen for HTTP
traffic

• By assigning each site a unique Internet Protocol (IP) address

• By providing additional information (e.g., Host Header information) in the header
portion of each HTTP packet which uniquely identifies the virtual web site to which
the packet should be directed

3.10.3.1 Nonstandard Ports
Nonstandard ports are the easiest way to direct HTTP requests to a virtual web site. No

modifications to the DNS database are required. The use of a nonstandard port number
requires that the port number be explicitly included in the URL (e.g.,
http://www.mysite.com:8080). This technique is well established and provides the means to
host more than one Web site from a single IP address. Requiring a port number in the URL
is a drawback for this technique. If the port number is not provided, the web server will
assume the default port (port 80) for an HTTP transaction and access the appropriate
directory. The request is directed to the wrong Web site. Another use of this technique is to
support special services; one example is secure connections through SSL. The server listens
for incoming requests on a designated port and then directs the request to the service based
on the port information. Some of these port numbers are well-known and others, especially
those for proprietary services, may be less well known. By default, secure connections using
SSL are made over port 443.

3.10.3.2 Unique IP Addresses
The next technique involves unique IP addresses. In this technique, the DNS name for

each virtual web site (including the default web site) is paired to a unique IP address and
registered with the Domain Naming System (DNS) server. When an HTTP request for that
DNS name is resolved, to the associated IP address, the request will be directed to the correct
Web server through the IP address. The server hosting Apache Web Server must be
configured to respond to each of the associated IP addresses. More significantly, each virtual
web sites must be mapped to a specific IP address.

Virtual web sites using port numbers or unique IP addresses are referred to as IP-based
virtual hosts.

http://www.mysite.com:8080)/

82

3.10.3.3 Host Headers
The final technique is through Host Headers. With Host Headers, a single IP address can

be used to support multiple virtual web sites. In the past, the HTTP protocol provided only
the IP address of the requested web site and not the DNS name. In the TCP connection
supporting an HTTP file request, the DNS name was resolved to an IP address and only the
IP address was used for the HTTP file request. Even though multiple DNS names for web
sites could be mapped to one IP address on the DNS server, when the HTTP request was sent
to that IP address there was insufficient data in the HTTP packet to pass the request to the
correct virtual Web site. Version 1.1 of the HTTP protocol added support for host headers.

Operationally, the parent web server process must be able to distinguish packets directed
at one virtual host from packets meant for another virtual host. In detail, a Host Header is a
reference, in the header data of the HTTP packet, to the DNS name of the Web site.
Specifically, the line in the HTTP header will take the form:

 HTTP: Host = www.myserver.com

The browser provides the host header information. The server reads this information and
directs the request to the correct virtual web site. The following requirements must be met
for the host header method to be used:

• The DNS names for these virtual web sites must be registered with the DNS server
that supports the organization.

• The web browser must support HTTP 1.1 to pass the DNS name of the virtual Web
site in the HTTP header data. New browsers (Internet Explorer 4.0 and Netscape 4.0)
support this feature.

• The web server must support this feature; Apache Web Server is compliant.

Virtual web sites using host headers are referred to as named-based virtual hosts.

3.10.3.4 Single versus Multiple Daemons
Each instance of the Apache Web Server is a daemon process. Apache Web Server can

support virtual web sites using a single daemon process or multiple daemon processes. With
a single daemon process, that process must be configured to listen and accept requests for all
of the virtual web sites. With multiple daemon processes, there is more than one daemon
process. The maximum would be one daemon process for each virtual web site.

In most situations, a single daemon process is preferred. If the volume of traffic to a
specific virtual web site is high, an additional Apache Web Server instance can be started to
distribute the load. Resource limitations must be considered when supporting virtual web
sites. Each Apache Web Server instance will require a set of resources.

http://www.myserver.com/

83

3.10.4 Configuration Information
3.10.4.1 Apache Virtual Host Directive
The <VirtualHost> container directive is the mechanism in the Apache Web Server to

implement virtual web sites. The general form of the container is:

 <VirtualHost>

[Statement Block]

</VirtualHost>

Within the statement block, the administrator can use most Apache directives to define
the functioning of the virtual web site. Directives within the container apply only to that
virtual web site. The following directives may not be used with the <VirtualHost>
container:

 BindAddress

Listen

MaxRequestPerChild

MaxSpareServers

MinSpareServers

NamedVirtualHost

PidFile

ServerRoot

ServerType

StartServers

TypesConfig

The two important directives are ServerName and DocumentRoot. These directives are
needed for each instance of the web server and each virtual web site. The ServerName
directive provides the web site’s DNS name, for example www.mysite.com. The
DocumentRoot directive points to the directory that is the root directory of the web site. For
example, if the root directory of www.mysite.com is /www/mysite/htdocs, the file index.html
is accessed with the URL, http://www.mysite.com/.

The opening <VirtualHost> tag contains the IP address or DNS name of the virtual web
site. Use of the IP address is recommended. Presently, if a DNS name is used and the DNS

84

lookup fails, the web service will not start. A solution to this problem is anticipated in a
future Apache Web Server release.

With Apache Web Server Version 1.3 or later, any virtual host containers for name-based
virtual host must be preceded by the NameVirtualHost directive. This is a core directive
that provides the IP address to resolve any subsequent name-based virtual host containers.
DNS names may be used in the NameVirtualHost directive, but IP addresses are
recommended for the same reason as mentioned earlier. For example:

 NameVirtualHost 10.0.0.5

<VirtualHost 10.0.0.5>

ServerName www.mysite.com

DocumentRoot /www/mysite/htdocs

</VirtualHost>

<VirtualHost 10.0.0.5>

ServerName www.yoursite.com

DocumentRoot /www/yoursite/htdocs

</VirtualHost>

If there is more than one IP address associated with the Apache Web Server, each IP
address requires a NameVirtualHost directive. For example:

 NameVirtualHost 10.0.0.5

…

NameVirtualHost 10.0.0.6

<VirtualHost 10.0.0.6>

ServerName www.theirsite.com

DocumentRoot /www/theirsite/htdocs

</VirtualHost>

Port numbers can be specified in the NameVirtualHost directive.

3.10.5 Synopsis and Recommendations
While the primary purpose of virtual hosts is to improve the overall utility of the web

server platform, they can simplify access to a web resource for the end user. The

85

requirement to recall long and difficult URLs to access a resource is alleviated. From the
security perspective, this ease of use helps protect the internal structure of the web server
from unauthorized access. This is the same benefit provided by aliasing described in the next
section.

3.11 Other Security Issues
The Apache server is a full-featured Web Server in every respect. As such, it contains a

great many more services than have been described so far. A complete description of all the
features of the Apache Web Server would be a subject of many hundreds of pages. (Trust us
on this.) Fortunately, most of the advanced features the Apache server are not necessarily for
secure functioning of the server, or even particularly necessary for most general purpose web
publishing. The authors of this paper decided the reader would be better served by a concise
description of the features of the Apache Web Server which were both in common use and of
security relevance. Hence, this document does not describe many features of the Apache
server. Readers who wish to become more familiar with the other features of Apache are
recommended to the Apache documentation distributed with the server, or to commercial
books printed on the subject.

The previous disclaimer notwithstanding, the authors felt that a very brief introduction
and description of the major additional features of the Apache server not covered thus far
would be helpful. This section is intended to familiarize the reader with these additional
features and to indicate what security issues are brought into the picture by there use. This is
not a configuration guide to these features; it is merely a survey. If the reader wishes to
implement any of them, the details of the implementation and the specific security
considerations associated with the implementation are left to the reader.

3.11.1 Proxying
In addition to its normal functionality as a Web server, the Apache server also has the

capability of performing the functions of a caching proxy server. A proxy server is a
computer located at the intersection between one’s internal intranet and the Internet as a
whole. All connections that internal machine (in the intranet) wishes to make with an
external machine (in the Internet), must be accomplished by connecting to the proxy server
and asking it to make the external connection on behalf of the internal machine. The idea
behind this is that, for all intents and purposes, the internal network has only one computer
exposed to the Internet, and therefore vulnerable to attack. Moreover, all connection requests
from one’s network should appear, from the perspective of someone listening to the Internet,
to have come from the proxy server regardless of the original requestor. This possibly
prevents hostile outsiders from gaining any information about the configuration of one’s
internal domain.

86

The Apache server is capable of serving as a proxy server when the mod_proxy module is
compiled in when Apache is built. (The mod_proxy module is not part of the default Apache
build.) With it, the Apache server is capable of receiving requests from internal hosts and
forwarding them on to either internal or external servers as appropriate. The mod_proxy
module contains a large number of directives that can be used to control specific aspects of
how the Apache server handles given requests. For example, Apache can control whether to
forward request directly to their target or pass them off to another proxy server, whether
certain target sites should be blocked entirely, and which protocols the Apache server will
handle.

Beyond the standard ability to proxy internal requests to the outside world, the Apache
server can store documents that have been recently requested and serve the local copies the
next time a client requests the resource. This saves the proxy server from needing to
establish a connection to the target host. This, in turn, reduces load on the Apache server
while increasing the speed with which a client’s request is serviced.

The implementation of a proxy server is a security feature that should be undertaken very
carefully. A well configured proxy server is a great asset to network security. A poorly
configured proxy server, at best, provides a false sense of security and may even provide
more access to one’s internal network than would have otherwise been possible. As such it is
important that implementation of the mod_proxy module only be done with a complete
understanding of its features and with an eye on ones entire security policy.

3.11.2 The mod_rewrite module
The mod_rewrite module is used to dynamically change (rewrite) URLs’ requested by a

client causing them to request a different resource. This is done entirely on the server
without the knowledge of the client. This functionality is similar to that provided by the
aliasing directives, but is much more powerful. The module allows the administrator to
define conditions and rules using regular expressions that define how a given URL is to be
rewritten. The module will check each URL requested against its list of conditions and
applies the associated rules of any conditions that are met.

This functionality gives the administrator a huge degree of control over what a client
sees. For example, if a web site services both Intranet and Extranet clients, mod_rewrite
could be used to examine the environment variable, REMOTE_ADDR for the IP address of
the client. With this information, the URL could be re-written to one sub-directory for
Intranet requests and a parallel subdirectory for Extranet requests. From the users’
perspectives, the URL requested is the same.

The security ramifications of this module are wide ranging. As a word of caution,
mod_rewrite is a very complex and confusing module. It is best to refer to the Apache
documentation for reference and examples of how to employ this module.

87

3.11.3 Indexing, Server Status, and Other Ways to Remotely Learn About a Server
There are several ways in which the Apache server can end up publishing information

about its settings and configuration. This is not always good from a security standpoint.
This section covers a few of the more obvious ways in which a client might be able to
discover more information about the server than would be strictly necessary for its own
legitimate purposes, and what the server can do to prevent this.

This first matter is directory indexing. Directory indexing refers to the dynamically
created index pages to be returned to the client, if the client requests a directory and the
directory does not contain an index file as defined by the DirectoryIndex directive in
mod_dir (see Section 3.1.3). The formatting of these pages is controlled by directives in the
mod_autoindex module, which is part of the default Apache build. Some administrators are
not comfortable with clients being able to learn the entire contents of a directory. For such
circumstances, the administrator can use the Options directive from the Apache core
module. If the directive is used and neither All nor Indexes are given as parameters, then
requesting a directory which does not contain an index file will not return an index page and
instead a “Forbidden” error (403) it will be returned. See Section 3.1.4 for more on the
Options directive.

The second issue is the ability of the Apache server to display server status information
dynamically to administrators. This is done so that an administrator may determine the
system load, current connections, recent history statistics, and related information. This may
be done even if the administrator is at a remote machine and cannot actually view the
server’s log files. Unfortunately, unless carefully configured, this information can also be
available to any client on the Internet. This functionality is provided by the mod_status
module. The mod_status module is part of the default Apache build. The default Apache
configuration files do not contain directives that enable this functionality. As a result,
initially, clients will still not be able to acquire this information. However, since the module
is part of the Apache build, any users who can create .htaccess files on the server will be able
to create configurations causing server status information to be displayed. If the
administrator is uncomfortable about letting this information be distributed in an
uncontrolled fashion, they should disable the module by adding "--disable-
module=status" as an argument to the configure command.

The final issue is the ability of the Apache server to display its modules and configuration
directives upon request. This functionality is provided by the mod_info status. This module
is not part of the default Apache build. When this module is added and directives added to
the configuration files, the server can be requested for the current configuration of the
Apache server. This information includes a list of all the modules that were part of the build
which created the server, as well as all the directives used from each of these modules and
any parameters these directives have. This information displays the security settings, gives

88

away any aliasing and redirection the administrator may have enabled, and provides the
location of all important files on the server. This practically provides a roadmap for anyone
who might wish to perform hostile actions on the server. Administrators should be extremely
wary of enabling this module since, even if its directives are not added to the main
configuration files, users can still enable it in individual .htaccss files. As such, the authors
recommend that mod_info never be enabled on any server which stands a chance of being
attacked (i.e., one that is attached to a network).

89

Section 4

Recommendations and Summary

The Apache server is robust and resistant to most exploits. It contains a wide range of
features that allow for a high level of customization. This degree of flexibility makes
becoming an Apache expert a long term endeavor. This allows administrators to modify the
version of the Apache server being run to reflect the precise needs of their own system.

The Apache Web Server also contains several features that can be used to make it more
secure. The server can implement access control based on either host identity or user
authentication. It is capable of detailed auditing of events on the server and allows the
auditing mechanism to be customized to meet specific needs of a web site’s administrator.
The Apache server also is capable of a high degree of control over how it handles user
requests. This control can be used to ensure accessibility and to conserve server resources as
appropriate. The server is capable of hiding its own internal structure from users in order to
prevent the internal system from being mapped out by attackers.

Another advantage of the Apache Web Server is that the source code is available to all
users. Due to this, the server\version is updated frequently; the server has been updated
seven times since this assessment began a year ago and any serious bugs in the system are
usually found quickly and fixed. The rapidity of new features and patches makes it unlikely
that any security holes would remain a problem for an extended period of time.

During this study no security problems were detected with the Apache Web Server.
However, the server lacks particular features that prevent it from being usable on secure
systems. Specifically, it lacks encryption, which is necessary to create a truly secure web
server. When the Apache Web Server was being designed, its authors made the decision that
they wished the software to be as widely usable as possible. To avoid the difficulties
associated with export controls, the Apache creators decided that the standard Apache server
would not include encryption. The result of this decision is that secure information cannot be
protected by the Apache Web Server. Users authenticating to the server can have their
usernames and passwords acquired by an attacker under most circumstances. There is no
guarantee that the server’s response will not be altered by an attacker before reaching its
intended recipient. Anyone with the ability to listen to the wire will be able to read every
document returned by the server no matter how tightly the server controls its access.

Programmers have developed an extension of the Apache web server called Apache SSL.
Apache SSL, which is distributed from outside the United States, contains confidentiality
mechanisms that allow for encrypted connections between clients and servers. In addition to
protecting client requests and server responses, the added functionality can secure
authentication attempts against eavesdropping and replay. Apache SSL is legal for

90

commercial use within the United States providing one has acquired a license for RSA
encryption from the RSA Corporation. Apache SSL is based on the standard Apache web
server and, while this project has not looked at Apache SSL, it appears that all functionality
of the original Apache server is present in Apache SSL using the same configuration
directives.

Currently planned for the next fiscal year is a task to extend this year’s assessment of the
Apache Web Server to include an assessment of the Apache SSL Web Server. It is hoped
that, the latter application will prove as robust and full of features as the original Apache
Web Server, while the addition of encryption technology will make the server appropriate for
use in handling secure documents.

91

Glossary

API Application Programming Interface

CGI Common Gateway Interface

DNS Domain Naming System

FTP File Transfer Protocol

HTMP HyperText Markup Language

HTTP Hypertext Transfer Protocol

IP Internet Protocol

JVM Java Virtual Machine

SGML Standard Generalized Markup Language

SMTP Simple Mail Transfer Protocol

SSI Server Side Includes

TCP Transmission Control Protocol

URL Universal Resource Locator

WWW World Wide Web

93

Changes

Rev 1.1. Revised to include the fact that the latest versions of Internet Explorer and Netscape
Communication support digest authentication. Corrected a few typos which had no effect on
technical content.

Rev 1.11 Added a statement reminding the reader that digest authentication has some
security shortcomings as identified in the RFC.

Rev 1.12 Added a warnings page.

94

Distribution List
Internal

G020

D. J. Bodeau
H. W. Neugent
W. R. Gerhart
P. S. Tasker

G021

J. L. Connolly
J. D. Guttman
R. M. McQuaid
M. C. Michaud
J. Picciotto
C. M. Schmidt

External

National Security Agency
9800 Savage Road, STE 6704
Ft. George G. Meade, MD 20755

M. Pittelli, NSA/C43

95

Please do not delete these paragraphs or the final end-of-section mark in your document.
They are important for correct functioning of the RoboTech template.
RoboTech: Version 1.0b

	1.1 Purpose
	1.2 Scope
	1.3 Background
	1.4 Document Organization
	2.1 World Wide Web Model
	2.1.1 Web Server Component
	2.1.2 Web Client
	2.1.3 Transmission Protocol: HyperText Transfer Protocol
	2.1.4 Data Format Specification Component

	2.2 Apache Architecture
	2.2.1 Apache File System Layout
	
	
	Figure 1. Default File Layout
	Figure 2. Customized File Layout

	2.2.2 Component Module Architecture
	
	
	Figure 3. Apache Component Module Architecture
	Table 1. Core Directives
	Table 2. Apache Default and Standard Modules

	2.2.3 Configuration Mechanisms
	2.2.4 Apache Run-Time Modes
	2.2.4.1 Standalone Mode
	
	Figure 4. Stand-Alone Mode

	2.2.4.2 Inetd Mode
	
	Figure 5. Apache inetd Mode

	2.3 Apache Configuration Roadmap
	
	
	
	Figure 6. Apache Environment Roadmap

	2.4 Apache Security Services
	3.1 General Server Settings
	3.1.1 Container Directives
	3.1.1.1 <Directory> and <DirectoryMatch> Directives
	3.1.1.2 <Files> and <FilesMatch> Directives
	3.1.1.3 <Location> and <LocationMatch> Directives
	3.1.1.4 <Limit> Directives

	3.1.2 The User and Group Directives
	3.1.3 Handling Directory References in URLs
	3.1.4 The Options Directive
	3.1.5 .htaccess Files

	3.2 Authentication
	3.2.1 Modules
	3.2.2 Default Configuration
	3.2.3 Background Information
	3.2.3.1 Username-Password File Creation
	3.2.3.2 Username-Password File Security
	3.2.3.3 Group Files

	3.2.4 Configuration Information
	3.2.4.1 Username-Password Authentication
	
	Figure 7. Configuration File Example for mod_auth_db

	3.2.4.2 Anonymous Authentication
	
	Figure 8. Configuration File Example for Anonymous Authentication

	3.2.5 Synopsis and Recommendations
	3.2.6 Additional Topics

	3.3 Access Control
	3.3.1 Modules
	3.3.2 Default Configuration
	3.3.3 Background Information
	3.3.3.1 Access Control Scope

	3.3.4 Configuring Custom Access Control
	3.3.4.1 Allow Directive
	3.3.4.2 Deny Directive
	3.3.4.3 Order Directive
	3.3.4.4 Allow From Env Directives
	3.3.4.5 Deny From Env Directives

	3.3.5 Implementation of Customized Access Controls
	3.3.6 Synopsis and Recommendations

	3.4 Auditing
	3.4.1 Modules
	3.4.2 Default Configuration
	
	
	Figure 9. Configuration File Example for Logging

	3.4.3 Background Information
	3.4.3.1 The Error Log
	3.4.3.2 Configuring Custom Log Formats
	3.4.3.3 The mod_log_agent, mod_log_referer, and mod_usertrack modules
	3.4.3.4 Defining and Implementing Custom Log Files
	3.4.3.5 Securing Log Files

	3.4.4 Configuration Information
	3.4.5 Synopsis and Recommendations
	3.4.6 Additional Topics

	3.5 Availability
	3.5.1 Modules
	3.5.2 Default Configuration
	
	
	
	Table 3. Default Availability Directive Values

	3.5.3 Configuration Information
	3.5.4 Synopsis and Recommendations

	3.6 Integrity, Confidentiality, and Nonrepudiation
	3.7 Common Gateway Interface (CGI) and Scripting
	3.7.1 Modules
	3.7.2 Default Configuration
	3.7.3 Background Information
	3.7.3.1 Markup and Scripting Languages
	3.7.3.1.1 Markup Languages
	3.7.3.1.2 Scripting Languages

	3.7.3.2 Client-Side Scripting
	3.7.3.3 Server-Side Scripting

	3.7.4 Configuration Information
	3.7.4.1 Enabling CGI Scripting
	3.7.4.2 ScriptAlias

	3.7.5 Synopsis and Recommendations
	3.7.5.1 Scripting Languages and Security

	3.8 Server Side Includes
	3.8.1 Modules
	3.8.2 Default Configuration
	3.8.3 Background Information
	3.8.3.1 SSI Commands
	3.8.3.2 Include and Server Variables

	3.8.4 Configuration Information
	3.8.4.1 Enabling SSI on Apache Web Server
	3.8.4.2 Options Directive Parameters Relevant to SSI

	3.8.5 Synopsis and Recommendations

	3.9 Redirection and Aliasing
	3.9.1 Modules
	3.9.2 Default Configuration
	3.9.3 Background Information
	3.9.3.1 General Use
	3.9.3.2 Aliasing vs. Redirection
	3.9.3.3 Aliasing, Redirection, and Container Directives
	3.9.3.4 The mod_userdir Module
	3.9.3.5 Aliasing and Security

	3.9.4 Configuration Information
	3.9.4.1 Aliasing
	3.9.4.2 Redirection
	3.9.4.3 The UserDir Directive

	3.9.5 Synopsis and Recommendations
	3.9.6 Additional Topics

	3.10 Virtual Hosting
	3.10.1 Modules
	3.10.2 Default Configuration
	3.10.3 Background Information
	3.10.3.1 Nonstandard Ports
	3.10.3.2 Unique IP Addresses
	3.10.3.3 Host Headers
	3.10.3.4 Single versus Multiple Daemons

	3.10.4 Configuration Information
	3.10.4.1 Apache Virtual Host Directive

	3.10.5 Synopsis and Recommendations

	3.11 Other Security Issues
	3.11.1 Proxying
	3.11.2 The mod_rewrite module
	3.11.3 Indexing, Server Status, and Other Ways to Remotely Learn About a Server

