
Report # C4-072R-99
Date: 20 Dec 1999
Version 1.1

Microsoft Office 97 Executable
Content Security Risks and

Countermeasures

Rhonda Breon, C43
Ken Katano, C42

UNCLASSIFIED

Author(s):

Architectures and Applications Division
of the

Systems and Network Attack Center
(SNAC)

Released By:
Curt Dukes, Chief C43

National Security Agency
ATTN: C43

9800 Savage Rd. STE 6704
Ft. Meade, MD 20755-6704

W2KGuides@nsa.gov

Microsoft Office 97 Executable Content December 20, 1999
Security Risks and Countermeasures

UNCLASSIFIED

Microsoft Office 97 Executable Content
Security Risks and Countermeasures

ABSTRACT

 Office 97 is a popular software package of office applications
developed by Microsoft that includes Word, Excel, Access,
PowerPoint, and Outlook. Each of these applications includes a
programming language for customization of their features.

 This paper provides an analysis of each application, including
techniques for embedding executable content or mobile code
within each application. Each analysis summarizes the execut-
able content threat, provides examples of embedding executable
content within each application, and outlines possible counter-
measures to protect the user against executable content attacks.

Microsoft Office 97 Executable Content December 20, 1999
Security Risks and Countermeasures

UNCLASSIFIED

Table of Contents

1.0 Background ..1

2.0 Description ...3
2.1 Word .. 3

2.1.1 Overview .. 3
2.1.2 Threat Potential... 4

2.1.2.1Dissemination.. 4
2.1.2.2Invocation..4
2.1.2.3Capabilities.. 5
2.1.2.4Ease of Use.. 5

2.1.3 Example(s) ..5
2.1.4 Countermeasures .. 6
2.1.5 Summary of Word .. 7

2.2 Excel .. 8
2.2.1 Overview .. 8
2.2.2 Threat Potential... 10
2.2.3 Examples .. 11
2.2.4 Countermeasures .. 13
2.2.5 Summary of Excel .. 14

2.3 Access .. 14
2.3.1 Overview .. 14
2.3.2 Threat Potential... 14
2.3.3 Examples .. 15
2.3.4 Countermeasures .. 15
2.3.5 Summary of Access .. 18

2.4 PowerPoint 18
2.4.1 Overview .. 18
2.4.2 Threat Potential... 18

2.4.2.1UserForms ... 20
2.4.2.2Templates .. 21
2.4.2.3Add-Ins.. 21
2.4.2.4Hyperlinks ... 22
2.4.2.5ActiveX Controls/Objects ... 23
2.4.2.6Running Programs & Macros from Action Buttons.. 24
2.4.2.7Pack and Go Technology.. 25

2.4.3 Examples .. 25
2.4.4 Countermeasures .. 28
2.4.5 Summary of PowerPoint... 28

2.5 Outlook 98 ... 29
2.5.1 Overview .. 29
2.5.2 Threat Potential... 29
2.5.3 Examples .. 31
2.5.4 Countermeasures .. 33
2.5.5 Summary of Outlook .. 35

3.0 Conclusions..35

4.0 Appendix A: Macros within a PowerPoint UserForm...38

5.0 Appendix B: Recommended Outlook Security Settings..40

6.0 References..43

UNCLASSIFIED

Microsoft Office 97 Executable Content
Security Risks and Countermeasures (U)

Executable Content Technology Team
Systems and Network Attack Center

National Security Agency

1.0 Background
The Microsoft Office 97 suite includes five separate office applications: Word provides word
processing capability, Excel is a spreadsheet application, Access is a database package, Pow-
erPoint facilitates the creation of slide shows or presentations, and Outlook is a mail/group-
ware application. Office 97 runs on Microsoft Windows 95, Windows 98, and Windows NT
3.51 with Service Pack 5 and later versions. Each application features customization capabil-
ity to satisfy the user’s specialized requirements. This customization includes the ability to
embed programming instructions within the applications to perform many useful activities.
For example, the user can create a button within an Outlook email message that automatically
sends responses to a survey back to the sender. However, this customization capability can
also be used to perform malicious activities, such as deleting the user’s data. Consequently,
this paper focuses on the threat potential of embedded code and countermeasures to decrease
the threat.

For customization, each Office application includes a development environment. As part of
the development environment, the Visual Basic for Applications (VBA) programming lan-
guage is included in Word, Excel, Access, and PowerPoint. VBA is Microsoft’s standard
extension language, which is derived from Visual Basic, but designed to execute embedded
within other software. VBA is an interpreted programming language complete with features
that allow for a multitude of activities, including application control and customization, file
manipulation, and system service calls. Visual Basic Scripting Edition (VBScript) is the pro-
gramming language provided with Outlook. This language only offers a subset of VBA’s
functionality in that statements that provide file I/O or system service calls were deliberately
left out of the core instruction set to make it a “safer” language. However, VBScript in con-
junction with the OLE (Object Linking and Embedding) model allows not only for application
control and customization, but also the manipulation of objects within Microsoft Object
Libraries. Consequently, VBScript within Outlook may be used to manipulate such things as

Microsoft Office 97 Executable Content December 20, 1999 2
Security Risks and Countermeasures

UNCLASSIFIED

Outlook mail messages, Word documents, or File objects, thus significantly increasing the
application’s threat potential.

In addition, each of the Office applications supports ActiveX controls. ActiveX controls are
separate binary executable programs which can be written in various programming languages
to perform a wide range of activities. All of the Office applications allow the user to insert
built-in or customized controls. These controls can then be manipulated by using the included
programming language (VBA or VBScript) to write functions or subroutines that respond to a
pre-determined set of events. For example, the standard Command Button control responds to
several events such as clicking on the button. This type of customization is subject to the secu-
rity mechanisms in each product. Furthermore, these applications all support HTML format,
often known as the language of the Internet. Each application can be converted from its native
format to HTML using the Save as HTML option. It is then also possible to include ActiveX
controls within the HTML and to script them using a scripting language such as VBScript or
Javascript. This type of scripting is then subject to the security mechanisms present in the
browser. In addition, it is also possible in Word, Excel, Access, and PowerPoint to insert
ActiveX controls as objects. Once again, the security mechanisms vary somewhat depending
on the application. In Word, Excel, and PowerPoint, the user will not be warned via the stan-
dard macro checker upon opening the container (i.e. document, workbook, or presentation).
Rather, a separate dialog about the dangers of OLE is presented to the user with the option to
continue if the control is activated.

Using these customization features within the Office 97 applications, an attacker may embed
code which allows a wide range of attacks, including exfiltration (i.e. copying data and send-
ing it to another destination), modification, or deletion of the victim’s data as well as insertion
of programs containing viruses that can be proliferated to other user’s machines. Such embed-
ded code executes with the permissions of the victim and often without the victim’s knowl-
edge. This concept of delivering code to another user in a format that appears to be passive
data, such as a Word document, will be called executable content or mobile code throughout
this paper.

The remainder of this document provides a brief overview, the executable content threat,
examples, and possible countermeasures for each of the Office 97 applications. There is a sep-
arate section for each application which was structured so that individual sections could be
read independently without loss of information. These sections were also researched and writ-
ten by different authors with different writing styles. Consequently, there are variations in the
techniques emphasized as well as presentation of the information. It should also be noted that
Outlook 97 is currently packaged with Office 97. However, Outlook 98 has been available
since the Fall of 1998 and will be emphasized in this paper.

Microsoft Office 97 Executable Content December 20, 1999 3
Security Risks and Countermeasures

UNCLASSIFIED

2.0 Description

2.1 Word

2.1.1 Overview

Microsoft Word is the word processing component of the Microsoft Office suite of programs.
The widespread availability and ease of use of Microsoft Word has made it a popular target
for executable content attacks. There are three main forms of executable content in Microsoft
Word. They include VBA macros, ActiveX controls, and scripting with the HTML format.

The primary vehicle for delivery of executable content is VBA. VBA is meant to allow the
user to automate complex tasks. However, VBA provides far more capability than required
for a simple application extension language. VBA programs are referred to as macros. In
Office 97, a macro runs in the host application’s process space. This means that Word (or
some other Office application) must be running in order to execute a macro. This also means
that the macro is limited to the privilege level of the Office user. In a Windows 95/98 environ-
ment this affords no protection, but in a Windows NT environment, a user may be restricted
from accessing some files or system resources.

In order to run a macro, the document containing the macro must be opened. A macro may be
invoked in five ways:

• A macro can be invoked from the Tools menu via the Macro GUI.

• A macro can be triggered by a button in a toolbar.

• A macro can be assigned to a keyboard shortcut sequence. (e.g. Control-M)

• A macro can override a built-in menu selection. For example, a user could define a custom
File.Close function which replaces the built-in File.Close function.

• Some macros will execute automatically upon certain events. A macro1 given the name
Document_Open, Document_Close, or Document_New will run when the user opens,
closes, or creates a new document respectively. There are also automated macros from
older versions of Word that are still supported in Office 97. These are AutoOpen, Auto-
Close, AutoNew, and AutoExit. These seven macros are dangerous, in that they automati-
cally execute with minimal user intervention. Most macro viruses use this method of
invocation.

The second vehicle for executable content in Word documents is ActiveX. While ActiveX
controls are primarily associated with HTML (web) pages, they can also be embedded directly
into an Office document.

An ActiveX control is a binary object. This means that it has been compiled to run on a spe-
cific hardware platform, in a specific operating environment. Thus a control built for an Intel

1. Technically, these three items are not macros, but “document objects”. Macros can be (and by default are)
stored in the primary template (usually Normal.dot). Document Objects can only be stored as part of the doc-
ument.

Microsoft Office 97 Executable Content December 20, 1999 4
Security Risks and Countermeasures

UNCLASSIFIED

x86 compatible system running Windows will not run on a DEC Alpha system running Win-
dows. Because it is a binary object, it presents the same danger as running any other unknown
or untrusted executable object.

An ActiveX control is typically a button or other GUI object, along with its associated func-
tionality. Such controls are usually invoked by mouse-driven actions, e.g. clicks and double
clicks. Microsoft distributes a number of such controls, packaged with popular applications
such as Office 97, Internet Explorer, and Outlook.

The third vehicle for executable content is via HTML documents (aka web pages). Thanks to
OLE automation, Word 97 has a built-in, fully functional version of Internet Explorer. Thus,
if a web page is opened with Word, it is subject to all the executable content concerns that
Internet Explorer is subject to, including scripting attacks (VBScript and JavaScript), Java
Applets, and ActiveX attacks.

2.1.2 Threat Potential

2.1.2.1 Dissemination

Macros are stored as source code, either within the document itself, or within the document’s
template. In Word, a template is a special document which may contain configuration and
customization data for Word documents. Every Word document inherits its properties from at
least one template. The default template is the “Normal.dot” template common to every Word
environment.

Word macros are spread by disseminating infected Word documents or Word documents
associated with infected Word templates. Documents are most commonly shared via email
attachments or by shared physical media (floppy disks or shared network drives), but they can
also be shared via HTTP. A Word document can be the target of a hyperlink on a web page;
activating such a link in Internet Explorer will automatically launch the Word program and
open the document.

Word templates need not be co-located with its documents. Word provides the facility to
access templates across both local networks and the Internet. Furthermore, the built- in Macro
Checker (see Figure 2.1.a) will not detect macros contained in a template, no matter where it
is located, unless the latest Microsoft patches for Word have been installed.

The code for an ActiveX control is not carried within a document. Instead, a reference number
called a CLSID is embedded into the document. The operating system uses this number to
locate and run the actual code for the control. If the control is currently installed on the sys-
tem, it will run automatically. Pre-installed controls are a concern; there are several known
vulnerabilities associated with controls distributed by Microsoft (see section 2.1.3).

2.1.2.2 Invocation

A malicious macro must be invoked to cause its damage. Typically, macro viruses are
attached to the Open event and thus will execute automatically when the document is opened.
If an event is not used as the trigger, the user must be tricked into invoking the macro. This
could be done by attaching the code to a frequently used keystroke combination or menu com-
mand.

Microsoft Office 97 Executable Content December 20, 1999 5
Security Risks and Countermeasures

UNCLASSIFIED

ActiveX controls are typically used within web pages, but references to controls can also be
embedded into Office documents. It is not necessary for the user to explicitly invoke a control;
any malicious action can be built into the initialization code, which executes as the control is
instantiated. Consequently, it is possible to automatically invoke a control with malicious
code when the containing document is opened.

2.1.2.3 Capabilities

The power of VBA running in a Word macro is immense. A Word macro runs with the privi-
leges of the current user. This is essentially the only restriction on the capability of a macro.
VBA has File I/O and can invoke WinAPI system calls; therefore, a macro can read or modify
any file, and has the capability of exfiltrating information through a variety of means.

ActiveX has even more capability than Word macros. VBA programs cannot directly access
the Windows system kernel, but a native executable such as an ActiveX control can. In addi-
tion, ActiveX controls can be developed using a variety of programming languages with an
extensive range of capabilities, including file manipulation, access to configuration settings,
and execution of external programs. Once again, the primary restriction is that the control will
only have the privileges of the current user.

2.1.2.4 Ease of Use

Word macros are very easy to create. Word comes with a sophisticated built-in programming
environment for creating macros. As VBA is an interpreted language, macros are stored as
source code, thus existing macros are easy to duplicate and modify.

In contrast, ActiveX controls generally require some expertise to create. In addition, they are
transmitted in binary object code, so they are very difficult to modify.

2.1.3 Example(s)

The first well known example of a Word Macro Virus was the Concept virus. This macro was
allegedly written at Microsoft as a proof-of-concept demonstration. It escaped when infected
documents were accidentally released on CDs produced by Microsoft. Originally, this was a
benign virus - it simply copied itself into other Word documents on the system. Malicious
variants have been discovered.

The most infamous outbreak is the Melissa virus. This virus was delivered as a macro within
an email attachment. This macro was insidious because it used the victims’ address book to
mail itself to other victims. These secondary victims were then likely to open the attachment
and activate the macro, because the mail message originated from a known (and presumably
trusted) acquaintance. Because this virus could actively mail itself, as well as passively wait
for the user to share infected documents, this virus spread very quickly, to the point of disrupt-
ing some mail servers.

There are two important points to remember about the Melissa virus. First, it could have easily
been prevented by the built-in macro checker. Every victim affected either actively enabled
the macros, or had previously turned off the macro checker. Second, because a macro exe-
cutes with the privileges of the Word user, there is nothing to prevent the outgoing mail mes-

Microsoft Office 97 Executable Content December 20, 1999 6
Security Risks and Countermeasures

UNCLASSIFIED

sages from “forging” a signature of the current victim. Thus, a digital signature alone does not
guarantee the safety of the contents.

Currently, there are no widely known examples of ActiveX attacks embedded in Word docu-
ments. There are no technological barriers to the creation of malicious controls; it is just a
matter of time before such an outbreak occurs.

Today, the primary danger of ActiveX is not that a malicious control could infect a system,
but that a commercially distributed control could be abused. A recent example is the “script-
let.typelib” control, which was distributed with Internet Explorer version 5. Abuse of this con-
trol could lead to the creation of files and the execution of arbitrary code. Microsoft has issued
a patch to correct this particular vulnerability, but unpatched systems remain vulnerable, and
there is no reason to believe that future controls will be bug free.

2.1.4 Countermeasures

There are several countermeasures to executable content attacks in Word. These generally
work equally well against Macros and ActiveX attacks.

• Use a Word Viewer. There are a number of programs (including one available from
Microsoft) which will open a Word document without activating any of the advanced fea-
tures. There are two downsides to this approach. First, the advanced features are not avail-
able with a viewer. Second, documents cannot be edited since viewers are read-only tools.

• Take heed of Word’s built-in macro checker as shown in Figure 2.1.a. After macro viruses
became widespread, Microsoft developed a macro detection capability for Word. With
this activated, if a document contains any “macros or customizations”, the warning dialog
box will appear. The document can then be opened with macros enabled or disabled, or
the process can be aborted. There are some drawbacks to this approach. First, there can be
false-positive alerts. If a document had macros which were subsequently removed, the
document will still generate a warning. A macro warning dialog is also generated for non-
macro related “customizations” - for instance alterations to the toolbars, or the addition of
ActiveX controls. (The standard macro dialog is not triggered if the ActiveX control is
inserted as an object. In this case, ActiveX controls which respond to activation cause a
warning about the dangers of OLE if the user attempts to activate the control.) Second,
when a document is opened with macros disabled, it is opened as a read-only document; it
cannot be edited1. If the macro checker is disabled, it should be re-enabled (Tools-
>Options; General tab, Macro virus protection box).

• Use third party protection software. Many popular virus checking applications will scan
Word documents for the presence of known macro viruses. While this approach has been
moderately successful for “normal” viruses, it will be less successful against macro
viruses, because macro viruses are more easily modified. Relatively few commercial
products offer protection from ActiveX controls, and most of these are web browser ori-

1. In fact, if changes are made to the document, it can be saved under a new name, but the original will remain
intact.

Microsoft Office 97 Executable Content December 20, 1999 7
Security Risks and Countermeasures

UNCLASSIFIED

ented. It is unclear whether these security products could offer protection from controls
embedded in Word documents.

• Don’t use Word at all. While this obviously eliminates the threat of Office based attacks,
there are two problems. First, it is often impractical to refuse to accept Word documents.
They are pervasive, and often the only format in which the desired information is avail-
able. Second, other word processing packages are not necessarily safer than Word. In gen-
eral, this is not a viable option.

• Only open digitally signed Word documents received from trusted individuals via trusted
paths. This is Microsoft’s preferred security solution. While this can guarantee the source
of the document, it does not guarantee that the trusted source was free of infection when
the document was sent.

• If an ActiveX control or a hyperlink is encountered within a Word document saved in
HTML format, the Word program will apply the security criteria from Internet Explorer
before running the control or executing the link. Therefore, it is important to properly con-
figure Internet Explorer, even if using a different product (i.e. Netscape Navigator) for
web browsing. This typically translates to enforcing the High security setting for all secu-
rity zones, or customizing the settings to limit ActiveX as much as possible by either turn-
ing them off or forcing the user to respond to warning prompts.

• In addition, it is critically important to have the latest version of Office, Windows, and
Internet Explorer, and to install all security patches from Microsoft. The patches and ser-
vice packs released by Microsoft will correct serious flaws contained in earlier versions of
the software.

2.1.5 Summary of Word

Macro viruses pose a serious threat to Microsoft Office users. The best defense is to be alert to
the danger, and to trust no document that was externally created.

ActiveX is powerful as an attack vehicle. Avoid running ActiveX controls from untrusted
sources. Since it is difficult to detect embedded ActiveX controls, the best protection is to con-
figure Internet Explorer to disable all ActiveX capability.

Figure 2.1.a: Word’s Macro Checker Warning dialog

Microsoft Office 97 Executable Content December 20, 1999 8
Security Risks and Countermeasures

UNCLASSIFIED

2.2 Excel

2.2.1 Overview

Microsoft Excel is the spreadsheet component of Microsoft Office. It is capable of all the
mainstream spreadsheet functions including organizing data in tabular formats, performing
calculations ranging from simple to extremely complex, and providing intermediate as well as
final results. It allows the user to organize, sort, format, and print data as well as:

1. save the spreadsheet as an HTML document for incorporation into a website.

2. create and embed hyperlinks within spreadsheets to invoke a web browser and jump to a
website, file, or FTP location with a single click.

3. create Web forms, powerful tools which help with gathering input from other Microsoft
Excel users visiting a Web site.

4. facilitate user-programmed added functionality, which can be distributed outside the appli-
cation.

5. create stored templates to pre-format spreadsheets for specified tasks.

The basic layout of the product is best illustrated in the following diagram:

The Sheet tabs, as shown in the lower left corner of Figure 2.2.a, determine the sheet which is
currently viewed in an Excel workbook. Each sheet is initially identical, and any number of
sheets may exist in one workbook. Each sheet is broken into columns and rows. Each intersec-
tion of a column and row is called a cell. Data is generally entered in a cell.

Figure 2.2.a: Excel Worksheet

Microsoft Office 97 Executable Content December 20, 1999 9
Security Risks and Countermeasures

UNCLASSIFIED

Excel was the first product to support VBA. Excel also supports its own object library for con-
trolling Excel’s elements, such as Worksheets and Cells. In addition, Excel includes its own
simple formula language and support for ActiveX controls.

Excel’s Object Library contains routines and properties for manipulating and accessing
Excel’s functionality. In Excel, an object represents an element of the application, such as a
worksheet, a cell, a chart, a form, or a report. For example, using the delete method of the
Worksheet object, an entire worksheet can be deleted through code. In addition, Excel can
take advantage of other installed Microsoft object libraries, including those that come in other
Office 97 applications. The sharing of these libraries allow programmers a great deal of capa-
bility. For example, VBA code within an Excel worksheet may be used to open a Word docu-
ment, modify its contents, and mail it to another user using Outlook.

Excel formula language includes functions that can be accessed within worksheets to perform
tasks for the user. These functions may be used to manipulate values for cells within work-
sheets directly or they may be called from VBA macros. For the most part, this formula lan-
guage offers little threat potential since it is primarily used to calculate values for individual
cells. However, a vulnerability was found in the Internet community that used the Call state-
ment which will be discussed further in the threat section.

As is the case with all of the Office products, ActiveX controls may be included with Excel
applications. ActiveX controls are separately compiled programs which may be embedded
into an Excel application and controlled via scripts that respond to a set of events. Some con-
trols, such as user interface elements available in forms and worksheets, are built-in. But cus-
tomized controls may also be included.

Microsoft Excel macros containing VBA and ActiveX controls can be invoked using one of
several methods:

• using the TOOLS menu in the open application
• clicking on a custom button attached to the toolbar
• using a custom keyboard sequence
• using hidden re-direction of a standard toolbar selection
• clicking on a hotspot (text, image, ... that activates code) within a spreadsheet
• clicking on a button within a web form
• opening a template containing a macro
• inserting a macro within a workbook event

Microsoft Office 97 Executable Content December 20, 1999 10
Security Risks and Countermeasures

UNCLASSIFIED

Workbook events correspond to the following actions:

Any of the above events can trigger a macro and its underlying VBA code. The remainder of
this section will describe the threat potential of this capability, examples, and possible coun-
termeasures to protect the user from attacks.

2.2.2 Threat Potential

Microsoft Excel macros, written in VBA, have access to almost all other Microsoft Office
capabilities, including access to the machine's file system. VBA also includes a SHELL com-
mand, which will execute outside executables within Excel's memory space on the computer.
The possibilities for exploitation of such a powerful tool are only limited by the hacker's
imagination.

In an attempt to invoke a level of security,
Microsoft incorporated a macro checker
for workbook files to warn users of
enclosed macros before they're opened.
When enabled, the macro checker dis-
plays the warning box, as shown in Fig-
ure 2.2.c, when a workbook containing a
macro is opened. If the user clicks Enable
Macros, the workbook is opened, and the
macros are enabled. If the macro is trig-
gered by an event, like the opening of the
workbook, malicious code can be initiated. Also note the checkbox on the warning dialog. If
unchecked, the macro checker is not invoked and is not enabled again until the user explicitly
re-enables it (Tools->Options menu; General Tab; Macro virus protection box). The defi-
ciency in this system is demonstrated by the recent proliferation of an Excel virus named

Figure 2.2.b: Workbook Events

Figure 2.2.c: Macro Warning Dialog

Microsoft Office 97 Executable Content December 20, 1999 11
Security Risks and Countermeasures

UNCLASSIFIED

Papa, which could not be distributed unless users ignored the warning and enabled the mac-
ros.

Microsoft also allows a programmer to create and incorporate custom added functionality to
Excel in the form of compiled VBA. This is what Microsoft calls an Excel "Add-In". Excel
Add-Ins are created by writing and testing the VBA code in the VBA editing environment,
compiling the code, and then saving it as an Add-In. These Add-Ins are then moved to a start-
up directory on the machine and enabled from within Excel. Once enabled, they are opened
every time Excel is started, and can therefore be activated based on user actions. Since an
Add-In is an extension to Excel, the loading of an Add-In does not pass through the macro
checker. Microsoft does not require Add-Ins to be registered like other external components,
so a malicious Add-In can be loaded on a machine using the name of an established, benign
component. This fools the Excel application into loading the malicious Add-In and enabling
it.

The formula language, used primarily within Excel to calculate values for cells, also has threat
potential as demonstrated by an alert sent to the Internet community in the spring of 1999. The
Call function can be used within macros or as a worksheet function to call procedures from
dynamic link libraries (DLLs) which are external to a worksheet. If the Call function is used
as a worksheet function, then the user is not warned. (If the Call is invoked from a macro, then
the user is warned via the standard macro checker.) Consequently, potentially malicious dlls
could be invoked without the user’s knowledge. This vulnerability was patched by Microsoft
in Office 97, Service Release 2 (SR-2), by disabling the Call function.

The ActiveX technology provides additional attack capability as it does in all of the Offfice 97
applications. Customized controls are of particular concern since they are binary executables
that run with the user’s access rights to the machine’s resources, and have vast capabilities.
ActiveX controls can either be inserted directly into an Excel spreadsheet, or a reference to an
ActiveX control can be added to a worksheet in HTML format. If they are added directly to a
worksheet, VBA macros may be written to control them. These macros are flagged by the
macro checker as long as it is enabled. If the ActiveX control is added to the HTML, then
Internet Explorer is automatically triggered when the control is encountered, and the security
settings of Internet Explorer apply. It is therefore important to securely configure Internet
Explorer.

2.2.3 Examples

The following example demonstrates an Excel VBA macro which posts the familiar "Hello
World" message dialog to the user. Since the Workbook_Open event is used, the macro exe-
cutes each time the default workbook is opened:

Private Sub Workbook_Open ()
MsgBox ("Hello World")

End Sub

A more complicated example of VBA's capabilities is shown in Figure 2.2.d. When invoked,
this macro will setup the headers across a page with the numbers from 1 to 10, and number
each of the first 20 rows. This code demonstrates the use of Excel's Object Library which
includes methods and properties for manipulating Excel objects. For example, the

Microsoft Office 97 Executable Content December 20, 1999 12
Security Risks and Countermeasures

UNCLASSIFIED

Range("A1").Select statement selects a set of cells with the Range object and defines that area
when it calls the Select method.

To demonstrate VBA's capability to use Object Libraries from other Office applications, the
example shown in Figure 2.2.e opens an instance of Microsoft Word, locates the default docu-
ment directory in the machine's registry, and opens the first document it finds. After the macro

Figure 2.2.d: Example 2 using Excel’s Object Library

Figure 2.2.e: Example 3 Using Office’s Object Libraries

Microsoft Office 97 Executable Content December 20, 1999 13
Security Risks and Countermeasures

UNCLASSIFIED

runs, there will be TWO files: the original with a false extension of "eji", and a new file with
the original name and extension. Windows marks the file with the type "Microsoft Word Doc-
ument", showing no indication that this is not the original document.

Although the effects of the above macro are minimal, and easily reversible, it could have eas-
ily deleted the file instead of changing the extension, or it could have copied the contents back
to Excel and mailed them to any destination. It could have also accomplished these tasks
while looping through all the Microsoft Word, Excel, and/or PowerPoint documents. All of
this could be accomplished invisibly and automatically.

These examples were developed for illustration purposes, but there are quite a few known
viruses aimed specifically at Excel. The first known Excel macro virus was named Laroux.A,
which appeared in July 1996. Laroux.A was not destructive, but was self-replicating, and easy
to detect. More recently, in March 1999, X97M/PAPA, a virus that uses the Microsoft Outlook
mail program for distribution of infected Excel spreadsheets, was discovered.

2.2.4 Countermeasures

Preventing executable content attacks in Excel would require eliminating the execution of
embedded code. This would significantly reduce customization capability in Excel. There are,
however, several ways to reduce the security risk posed by executable content attacks.

• Ensure the Microsoft macro warning mechanism is enabled, and that users are instructed
to disable macros on documents coming from unconfirmed sites. This can be done by
ensuring that the Macro virus protection option under the Tools->Options; General tab is
checked.

• Set the attributes of the directory where Excel Add-Ins are stored to "READ ONLY". This
will prevent an advanced user from creating and installing his own Add-Ins, but would
also prevent unidentified Add-Ins from being installed.

• Set the attributes of the PERSONAL.XLS file to read-only. This file is the target of many
macros including Laroux.A, Laroux.B, and Laroux.C.

• Install all security patches from Microsoft to protect against known attacks.

• Properly configure Internet Explorer, even if using a different product (i.e. Netscape Nav-
igator) for web browsing. This typically translates to enforcing the High security setting
for all security zones, or customizing the settings to limit ActiveX as much as possible by
either turning them off or forcing the user to respond to warning prompts.

• Use third party protection software. Many popular virus checking applications will scan
Excel spreadsheets for the presence of known macro viruses. While this approach has
been moderately successful for known viruses, it will be less successful against macro
viruses, because macro viruses are more easily modified.

2.2.5 Summary of Excel

Like the other Microsoft Office products, Excel presents a mobile code threat. History has
proven that users routinely ignore the macro checker, causing their own misfortune. Commer-
cial virus checkers have not proven efficient at detecting malicious mobile code. Instead of

Microsoft Office 97 Executable Content December 20, 1999 14
Security Risks and Countermeasures

UNCLASSIFIED

being proactive and searching for code that looks anything like a virus and then warning the
user, the most popular virus checkers are reactive, issuing specific checks for specific macros
after those macros have a chance to spread out and do their damage. To help secure Excel
against executable content attacks, it is important that users implement the countermeasures
outlined in the previous section.

2.3 Access

2.3.1 Overview

Microsoft Access is a database package which provides users with the ability to design, popu-
late and query databases within a standard, Microsoft Windows environment. Of concern
from an executable content perspective are the programming languages available. Access
allows three programming languages:

1. Structure Query Language (SQL, pronounced “sequel”).
2. Access Macro Language
3. Visual Basic for Applications (VBA for Access).

SQL and Access macros were designed primarily to manipulate database records, and do not
have the more general-purpose capabilities of VBA (as we shall see later). SQL and Access
macros have been around for some time, and pre-date VBA. For this reason, they do not fit
readily into an object-oriented model. However, SQL and macro commands can be issued
from a VBA program, using the DoCmd object. Thus, virtually any command which can be
issued in Microsoft Access can be done from within a VBA program.

2.3.2 Threat Potential

Since VBA for Access is an extension of the Basic programming language, it includes com-
mands which go far beyond, and are unrelated to, database queries and updates. Some of these
commands are problematic for security reasons, such as those that provide unrestricted file I/
O, including deletion of files and creation of new files containing binary data. To make mat-
ters worse, VBA has introduced a shell command which allows execution of arbitrary exe-
cutables. For example, a malicious VBA program could contain a call to format the user’s
hard disk.

The security vulnerabilities of VBA for Access pose more than just a hypothetical threat.
Actual viruses have been written using Access macros, and have been described on the inter-
net. There are three known Access macro viruses, which all operate in the same way--they
search for database files (files ending in “.mdb”) and infect them. They are called “AccessIV”
(strains A and B) and “TOX:”

• AccessIV strain A is the first known Access Virus. It runs only in Access97, and is written
in VBA. It infects only .mdb files in the current directory.

• AccessIV strain B is a newer, “improved” version, which searches in all directories. It is
written in the earlier macro language for MS Access 2, so as to infect a wider “gene pool”
of databases. AccessIV is also known by the name “JETDB.”

Microsoft Office 97 Executable Content December 20, 1999 15
Security Risks and Countermeasures

UNCLASSIFIED

• TOX does the same as AccessIV strain B, except that it tries to conceal its presence by
making itself a “hidden file” and removing an Access pull-down menu that allows the user
to display such files. Unlike both of the AccessIV strains, the user cannot prevent the auto-
matic loading of the virus by holding down a “bypass” key during startup.

Commercial countermeasures along with an internally developed countermeasure are pre-
sented in the Access Countermeasures section.

2.3.3 Examples

Example 1: Issuing a SQL query from a VBA program:

The following example illustrates issuing a SQL command for manipulating an Access data-
base from a VBA program.

DoCmd.RunSQL(“DELETE * FROM StudentPersonal IN college.mdb;”)

This command deletes all records (*) from the table “StudentPersonal” in the Microsoft data-
base file “college.mdb”. When this command is executed, the user is prompted to confirm
whether he really wishes to delete these records. If someone wished to maliciously delete all
of these records without a user’s knowledge, he could first issue the following VBA com-
mand, which turns off the Access option to confirm deletes:

SetOption “Confirm Action Queries”, False

Example 2: Issuing an Access macro action from a VBA program:

To delete a database macro called “zed” from a VBA program, we can use the DeleteOb-
ject macro action:

DoCmd.DeleteObject acMacro, “zed”

A third example illustrates an internally developed countermeasure which is presented in the
next section.

2.3.4 Countermeasures

Access does not provide the macro checker to warn the user about embedded VBA macros.
This is a serious limitation that hopefully will be remedied in Office 2000.

TouchStone Software of Huntington Beach, California, sells an anti-virus software product
called PC-CILLIN which supposedly detects and cleans the AccessIV virus. The Data Fel-
lows product F-SECURE can detect and clean both AccessIV and TOX. However, products
that look for signatures associated with specific viruses are always one step behind the virus
creators. A more comprehensive approach would be to scan a database for a macro called
“autoexec.” Since Access automatically executes any macro having this name, virus authors
“boot” their viruses by invoking them from an autoexec macro. The VBA for Access module
shown in Figure 2.3.a, “inoculates” a specified database by replacing the autoexec macro with
a harmless macro. After inoculation, the user can load the suspect database into Access and
examine it. The original autoexec macro is renamed “suspect,” and can safely be browsed,
along with any VBA modules present.

Microsoft Office 97 Executable Content December 20, 1999 16
Security Risks and Countermeasures

UNCLASSIFIED

The macro called “harmless” contains only a single macro action, which displays a message
box informing the user that the database has been inoculated. This is arbitrary, and can be
replaced with any other desired action, or no action at all.

Microsoft Office 97 Executable Content December 20, 1999 17
Security Risks and Countermeasures

UNCLASSIFIED

Option Compare Database
Option Explicit

Function inoculate()

 ‘ This VBA function inoculates a specified Access database
 ‘ which may potentially contain a virus (such as the
 ‘ known viruses “AccessIV” and “TOX”.) When this
 ‘ function is invoked, it alters the specified database
 ‘ by replacing its “autoexec” macro (if present) with
 ‘ another, harmless macro. The original “autoexec” is
 ‘ copied into a macro called “suspect”, where it can
 ‘ be examined without automatic execution.

 Dim dbname As String
 On Error GoTo leave

 ‘ prompt the user for the name of the database
 dbname = InputBox(“Database to inoculate?”)

 ‘ if no database name given, just exit
 If dbname = ““ Then
 Exit Function
 End If

 ‘ if database name does not contain “.mdb”, then append it
 If InStr(dbname, “.mdb”) = 0
 dbname = dbname & “.mdb”
 End If

 ‘ if the specified database does not exist,
 ‘ display an error message and exit
 If Dir(dbname) = ““ Then
 MsgBox “Database “““ & dbname & “““ not found.”, 16
 GoTo leave
 End If

 ‘ copy the autoexec macro to the current database temporarily
 DoCmd.TransferDatabase acImport, “Microsoft Access”, _
 dbname, acMacro, “autoexec”, “temp”

 ‘ replace the old autoexec with a harmless macro
 DoCmd.TransferDatabase acExport, “Microsoft Access”, _
 dbname, acMacro, “harmless”, “autoexec”

 ‘ place the saved autoexec into the macro “suspect”
 DoCmd.TransferDatabase, acExport, “Microsoft Access”, _
 dbname, acMacro, “temp”, “suspect”

 ‘ delete our temporary copy of the old autoexec
 DoCmd.DeleteObject acMacro, “temp”

 ‘ let the user know that the innoculation is complete
 MsgBox “Database “““ & dbname & “““ inoculated.”, 64

leave:
End Function

Figure 2.3.a: VBA Inoculate Macro

Microsoft Office 97 Executable Content December 20, 1999 18
Security Risks and Countermeasures

UNCLASSIFIED

2.3.5 Summary of Access

Although malicious code within Microsoft Access databases has been limited so far to rela-
tively harmless viruses (which do nothing except copy their code into other databases), the
VBA language allows for severe system compromises. Thus, the viruses have been fairly
benign only because the hackers had no interest in causing destruction. This can change at any
time. Furthermore, the ease of use of VBA makes it possible for even unsophisticated pro-
grammers to write malicious code. Thus, it is recommended that the inoculation module listed
above be run against any Access database obtained from an untrusted source.

Possible future research might include:

• Writing firewall or desktop filters to scan and/or inoculate incoming MS Access databases

• Defining a subset of VBA that might be more secure (for example, would it be feasible to
restrict I/O to files other than databases?) The shell command that executes arbitrary
binary files might also be disabled.

2.4 PowerPoint

2.4.1 Overview

PowerPoint 97 is Microsoft’s multimedia presentation application within the Office 97 suite
of applications. It allows users to create on-screen, automated slide shows which may include
not only textual information, but also images, charts, animation, and sound.

As is the case with most of the Office 97 applications, PowerPoint also uses the VBA pro-
gramming language for customization purposes. PowerPoint’s VBA offers not only the fea-
tures of the Visual Basic programming language, but also extensions to access PowerPoint’s
specialized features. These extensions are included with PowerPoint’s Object Library which
includes objects, methods, and properties for manipulation of PowerPoint’s elements. In addi-
tion, Microsoft’s Object Linking and Embedding (OLE) technology provides a means for inte-
grating solutions across other Microsoft applications, including Excel, Word, Access, and
Outlook.

Due to the high capability of the VBA language which is included in PowerPoint and the abil-
ity to integrate other applications within a PowerPoint presentation, the threat potential from
embedded executable content is significant. The following sections describe the various meth-
ods for executing programs from PowerPoint, their threat potential, and possible countermea-
sures.

2.4.2 Threat Potential

The threat potential from embedded executable code within PowerPoint presentations is sig-
nificant due to the following reasons:

• The programming language included within the product, VBA, contains many capabilities
that can threaten users’ resources.

Microsoft Office 97 Executable Content December 20, 1999 19
Security Risks and Countermeasures

UNCLASSIFIED

• The executable code can be triggered based on user or system interaction without the
user’s knowledge.

• Presentations or variants thereof (such as Add-Ins or Templates) can be delivered to
another user via e-mail or other shared media. In addition, PowerPoint presentations may
be shared via the web by selecting a hyperlink on a web page.

VBA is a full-featured programming language which includes file interaction capability,
manipulation of registry settings, and the insertion and execution of external programs. Con-
sequently, a VBA program may perform such malicious activities as deleting, modifying, or
extracting a user’s files; changing a a user’s security posture by changing key values within
the registry; inserting and executing an external, malicious program. In addition, the Power-
Point Object Library provides methods and properties for manipulating PowerPoint presenta-
tions. This may include the extraction, deletion, or modification of entire presentations,
selected slides, or elements from a single slide. It is also likely that an attacker would have
other Microsoft libraries available as well, since users typically install all of Office 97. Conse-
quently, the object libraries for Word, Excel, Access, and Outlook are likely to provide addi-
tional attack avenues. For example, a macro written in PowerPoint could use Outlook’s object
model to deliver important Word documents to an attacker.

There are several macro activation techniques available within PowerPoint:

•Menu bar
The Tools->Macro->Macros menu option brings up a dialog which then lets the user
choose to run a specified macro. This option is useful for testing purposes.

•Customized Toolbar
Customized toolbars and buttons can be used to invoke macros. (The Tools->Customize;
Toolbars tab is used to create a new toolbar. Customized toolbar buttons are added by
choosing Commands tab and Macros from the Categories window. A macro can then be
selected from the Commands window and dragged to the toolbar.) Customized toolbars
are available whenever the user activates PowerPoint.

•Object Created on a Slide or Master
Objects created on a slide or master can also be used to invoke macros during a presenta-
tion. Such objects may include images, Action Buttons, textual data, and ActiveX con-
trols. To assign a macro to any object, the user can use the Actions Settings dialog (Slide
Show->Action Settings). The user is given the choice of having the macros execute when
the object is clicked or when the mouse is dragged over. When activated, a macro can be
set to run by choosing the Run Macro radio button and selecting a macro from the pull-
down list.

•Auto_Open Event of a PowerPoint Add-In
PowerPoint differs from most of the other Office 97 applications in that it does not support
attaching macros to the New, Open, or Close events on the document. So, a macro cannot
be set to execute based on the opening of a presentation. However, macros in PowerPoint
Add-Ins can be set to execute automatically on the Auto_Open event. Consequently, mac-
ros can be set to execute automatically when the associated Add-In is opened. For more
information on this technique, see section 2.4.2.3.

Microsoft Office 97 Executable Content December 20, 1999 20
Security Risks and Countermeasures

UNCLASSIFIED

There are several methods for including executable programs within PowerPoint applications.
These methods include embedding programs within UserForms, Templates, Add-Ins, Hyper-
links, ActiveX controls, and Action Buttons. Presentations may also be viewed as web pages
by using a browser, such as Internet Explorer (IE). In addition, PowerPoint presentations may
be packaged with a viewer to give to other users. Consequently, this Pack and Go technology
was also researched for security concerns. The threat potential for each method of embedding
programs and invocation techniques will be described in the following sections.

2.4.2.1 UserForms

UserForms are custom-designed dialog boxes
used to retrieve information from the user. User-
Forms can contain several different types of com-
ponents or controls to interface with the user,
including buttons, textboxes, listboxes, radio but-
tons, and checkboxes. Event-driven macros may
be attached to both the form itself and the various
controls. The macros are set to execute based on
actions taken by the user. For example, Figure
2.4.a shows a UserForm with two controls: a list-
box for listing favorite dogs and a command but-
ton, entitled Exit, for closing the form. When the user clicks on the command button, a
customized macro written in VBA may be designed to execute. Another macro could execute
based on another event, such as the mouse moving over the listbox.

However, the UserForm’s macros are not automatically launched when the user opens the
slide show. Rather, the UserForm must be attached to some type of triggering mechanism such
as a Toolbar button or Action Setting. Toolbar buttons can be added to the standard Power-
Point toolbar. They are useful for activating code while creating slides (Slide mode). Action
Settings include two choices for triggering an action: mouse click on the object or mouse
dragged over the object. In response to one of these actions, the designer can run a VBA
macro developed within PowerPoint. This macro can then present a UserForm to the user
using the Show command which initiates the form and any macros associated with the form’s
Initialize event. Additional macros can then be associated with user interface controls on the
form, such as the listbox or Exit button as shown in Figure 2.4.a.

Since UserForms can contain VBA macros, the threat capability is high if these macros are
executed. Two factors limit the threat potential of UserForms. First, macros within UserForms
are flagged by the macro checker when the containing presentation is opened, assuming the
checker has not been disabled by the user. Although the user is still given the option to exe-
cute these programs, he is warned that they may be harmful as shown in Figure 2.4.b. Second,
VBA code embedded within UserForms cannot be executed immediately upon the opening of
the containing presentation. Rather, the user must go through a series of steps, including open-
ing the presentation, enabling the macros, and either activating the appropriate Action Setting
or a customized toolbar option. Consequently, there are several actions required by the user in
order for embedded macros to execute. For a detailed example of how to attach and run mac-
ros in a UserForm, see Appendix A.

Fig 2.4.a: UserForm to Retrieve Data From User

Microsoft Office 97 Executable Content December 20, 1999 21
Security Risks and Countermeasures

UNCLASSIFIED

2.4.2.2 Templates

Templates provide a reusable format or model for PowerPoint presentations. Templates may
provide a few or many standard features, including background, color scheme, graphical ele-
ments, or placeholders for such items as titles, bulleted lists, or charts. Office 97 prepackages
several different templates with the PowerPoint application, but it is also possible for the
developer to customize their own templates. These templates may include not only the ele-
ments mentioned, but also code.

To create a template, the developer can use the Save As command from the File menu. To
save as a template in PowerPoint, the file must be saved as a .pot file and the file must be
stored in the Microsoft Office Templates folder. Code can then be added to a template using
the Visual Basic Editor (Tools->Macro->Visual Basic Editor).

The macro checker successfully warns the user about macros within templates, regardless of
how the templates are opened, as long as the checker is enabled. In other words, the template
with embedded macros can be opened as a template, as a presentation using the template, or
through Internet Explorer. All cases trigger the warning dialog to the user as shown as in Fig-
ure 2.4.b. However, the user can easily disable the macro checker by unchecking the check-
box entitled, Always ask before opening documents with macros. It is therefore very important
to educate users on the importance of maintaining secure configuration settings to protect
against executable content attacks.

2.4.2.3 Add-Ins

One of the most dangerous vehicles for executable code in PowerPoint is Add-Ins. Add-Ins
are reusable packages typically used to deliver a functional graphical user interface. Add-Ins
are created by using the Save As command from the File menu and choosing the .ppa file type.
Like templates, Add-Ins may include VBA code. Unlike templates or presentations, that code
may be triggered when the user opens the Add-In by using the Auto_Open event. Once Add-
Ins are saved, the user can no longer modify or even view the code. Add-Ins must be loaded
before they can execute. This can be done from the Tools->Add-Ins menu or programmati-
cally for a session using the AutoLoad or Loaded properties of the AddIn object.

Once an Add-In is loaded, code triggered by the Auto_Open event is executed automatically
when PowerPoint is started. This code executes without warning to the user every time the
user opens PowerPoint. Add-Ins may also be shared with other users, for example, as e-mail
attachments. When the user opens the attachment, the attachment’s file extension signifies

Figure 2.4.b: Macro Warning Dialog

Microsoft Office 97 Executable Content December 20, 1999 22
Security Risks and Countermeasures

UNCLASSIFIED

that the PowerPoint application should be started. PowerPoint then issues a warning, as shown
in Figure 2.4.b, that the Add-In contains macros which may be harmful to the user’s system,
assuming that the user has not turned off their macro checker. If the user enables the macros,
then the embedded VBA code may threaten the user’s data every time PowerPoint is opened
without further warning to the user. Therefore, it is very important that users avoid loading or
accepting Add-Ins from untrusted sources.

2.4.2.4 Hyperlinks

Hyperlinks allow movement from one location to another when selected within a presentation.
For example, hyperlinks may be used to display and execute standard Internet content, allow
the execution of another program on the user’s machine, or allow movement between Office
applications, such as Word and Excel. Hyperlinks to URLs are also maintained if the user
converts the presentation to HTML (File->Save as HTML). These HTML files may then be
shared over the Internet and viewed using a browser such as Internet Explorer. Warnings to
the user about active content within the referenced location vary from non-existent to exten-
sive depending on the application activated when the hyperlink is selected and the user’s con-
figuration settings.

Any text or visual object can by a hyperlink, including Action Buttons, clip art, and charts.
There are two basic methods for adding hyperlinks to a presentation which include inserting
the hyperlink into a presentation or applying Actions Settings. To implement the first method,
the hyperlink must be associated with an object by creating an object and then selecting it. The
user then chooses the Insert->Hyperlink menu option (or the appropriate toolbar button or key
sequence). The user must then enter a URL or file location as shown in Figure 2.4.c. The
hyperlink is activated, along with associated code, when the user clicks on the object while
viewing the presentation in Slide Show mode. The second method for including hyperlinks in

Figure 2.4.c: Inserting Hyperlink Into Presentation

Microsoft Office 97 Executable Content December 20, 1999 23
Security Risks and Countermeasures

UNCLASSIFIED

a presentation is to use Action Settings. Action Settings may be applied to textual information
as well as a visual object such as an image or Action Button. Action Buttons are buttons added
to presentations to perform some service, such as proceeding to the next or previous slide,
playing a sound, starting an application, or linking to a web page on the Internet. They are eas-
ily inserted onto a slide or the master (Slide Show->Action Buttons).

The Action Settings dialog then offers sev-
eral options for Action Buttons or any
other selected object or text. To insert a
hyperlink, the developer must choose the
Hyperlink to: radio button as shown in
Figure 2.4.d. The developer is then pre-
sented with another list of choices for the
hyperlink including transferring control to
another slide, PowerPoint presentation,
application, or URL. In each case, the
developer may choose between two events
to activate the hyperlink: mouse click on
or mouse drag over the associated graphic.

Since hyperlinks may reference executable
code, they pose a security risk. When a
user opens a PowerPoint presentation con-
taining hyperlinks using the Internet
Explorer browser, they are not warned
about possible malicious content by Pow-
erPoint. Warnings to the user are depen-
dent on the link’s security mechanisms.
For example, hyperlinks to files associated
with executables (.exe files) cause a warn-

ing dialog to the user when activated. Hyperlinks to html files invoke the user’s browser
which then invokes its own security dialogs based on the browser’s security configuration set-
tings. Hyperlinks to other Office applications are dependent upon the security mechanisms in
that application. For example, hyperlinks to Word documents containing macros are flagged
to the user based on Word’s security features.

2.4.2.5 ActiveX Controls/Objects

ActiveX controls, as well as other types of objects, including bitmap images, Word docu-
ments, or Excel spreadsheets, may also be inserted into a PowerPoint presentation (Insert-
>Object). For example, the user can create an image that takes up an entire slide and set up a
hyperlink to a Word document with embedded macros. If the user clicks on the image, the
Word application fires and the embedded macros execute. The security mechanisms in this
scenario are dependent upon the Word application.

The user may also choose to activate an object action by choosing the Object action radio but-
ton within the Action Settings dialog. The user is then offered a pull-down menu of choices.
Available actions vary depending on the object, and the user may or may not be warned about

Figure 2.4.d: Action Settings

Microsoft Office 97 Executable Content December 20, 1999 24
Security Risks and Countermeasures

UNCLASSIFIED

the execution. In one scenario, the user is warned for the Activate action as follows: You are
about to activate an OLE object that may contain viruses or be otherwise harmful to your
computer. The user is then given the choice to enable or disable the execution.

Customized ActiveX controls may also be added using the Insert->Object menu option and
choosing the Create from file radio button. Although users are not warned that their presenta-
tion contains ActiveX controls when the presentation is opened, they do receive the warning,
as shown above, about the dangers of activating OLE objects if they attempt to activate the
embedded controls.

Standard ActiveX controls for the user interface are available from within PowerPoint and
may be controlled by attaching VBA code. These controls may be added to the UserForm or
directly to a PowerPoint document or master. (To add controls to the UserForm, refer to sec-
tion 2.4.2.1. To add controls directly to the document, choose View->Toolbars->Control Tool-
box.) The Control Toolbox offers controls similar to those available with the Controls offered
within UserForms. Controls are added by dragging and dropping them to the document. Code
may be attached to a control by double-clicking on the control and adding appropriate VBA
statements to chosen events. If ActiveX controls are added using the Control Toolbox, the user
is warned about macros when they open the containing presentation. In this case, the mere
presence of the control is enough to activate the warning; actual macros may or may not exist.

Since the Office applications support the HTML format, references to ActiveX controls may
also be added to a presentation which has been converted to HTML. The secure configuration
of Internet Explorer is then essential as this browser is typically used to view HTML files. The
High setting is recommended for all security zones, or customized settings that disable
ActiveX.

ActiveX controls are especially dangerous, since they are separate executables with high
capability. It is therefore very important to not activate ActiveX controls from untrusted
sources. When VBA code is associated with objects that are inserted into a presentation, the
user will see a warning dialog as shown in Figure 2.4.b.

2.4.2.6 Running Programs & Macros from Action Buttons

Action Buttons, as briefly described in section 2.4.2.4, are buttons that can be added to a pre-
sentation to provide some service. The service may be activated by using the Action Settings
dialog as shown in Figure 2.4.d. The options include: None, Hyperlink to, Run program, Run
macro, Object action, and Play sound. The None and Play sound options require no further
discussion. The Hyperlink to setting was discussed in section 2.4.2.4 and the Object action
setting was discussed in section 2.4.2.5. However, it is worthwhile to provide more discussion
on the Run program and Run macro settings.

The designer may choose to run an external executable program in response to clicking or
dragging the mouse over an Action Button by choosing the Run program radio button. For
example, the Action Button may execute a Calculator program when activated. The security
warnings to the user vary depending on the Service Releases installed on the machine. For
example, PowerPoint 97 with no Service Releases did not issue a warning to the user about
the dangers of running executable code. However, PowerPoint 97 with Service Release 2a

Microsoft Office 97 Executable Content December 20, 1999 25
Security Risks and Countermeasures

UNCLASSIFIED

provided a warning dialog with the user option to enable or disable the macros when the user
activated the Action Button.

VBA Macros may be constructed within the PowerPoint presentation (by choosing Tools-
>Macro->Visual Basic Editor). These macros may then be attached to an Action Button and
run by choosing the Run macro: radio button. The user will not receive any type of warning
when selecting the Action Button. However, when the PowerPoint presentation containing the
macro is first opened, the user will see a warning dialog as shown in Figure 2.4.b. Once again,
the user can choose to enable or disable the macros.

This capability with Action Buttons provides methods for running malicious executable pro-
grams and thus increases the threat potential. The good news is that the user will be con-
fronted with a warning dialog on activation of Action Buttons linked to executable programs
if the latest patches from Microsoft have been installed. Users should be aware of the security
risks when running executables from Action Buttons without the latest releases installed as
the user will not be warned of possible malicious code. In addition, macros attached to Action
Buttons are flagged when the user opens the presentation as long as the macro checker
remains enabled.

It should be noted that there is also at least one method for running an executable program that
takes advantage of a vulnerability in Word. For example, a button’s action may be set to run a
Microsoft Word application. The Word application may contain embedded VBA macros
which trigger upon the opening of the document. If the embedded macros are actually within
the Word template for the document, then the user will not be warned about macros within the
template unless the relevant patch from Microsoft is installed (SR-2 fixes this vulnerability).
If the user wants to share this PowerPoint presentation with other users, perhaps by sending it
in an e-mail message as an attachment, then the user can share not only the presentation and
linked Word document, but also the executable code. By choosing to use the URL option
under Hyperlinks, the user may choose to use the http protocol to reference the Word docu-
ment.

2.4.2.7 Pack and Go Technology

PowerPoint comes with a Pack and Go wizard which is used to package PowerPoint presenta-
tions for other users (File->Pack and Go... menu option). If they don’t have PowerPoint avail-
able, the package can include a PowerPoint Viewer. This technology was tested to see if
macros could also be included in the packaged presentations and the security features
included within the Viewer.

The Viewer is not capable of executing macros within PowerPoint presentations. However,
the Pack and Go technology still is a security concern since the Viewer is an executable pro-
gram (Ppview32.exe) that could be modified to include malicious instructions using reverse
engineering techniques. Consequently, it is a security risk to accept Pack and Go presenta-
tions from untrusted sources.

2.4.3 Examples

Example 1: Simple PowerPoint VBA Macro Using Action Button

Microsoft Office 97 Executable Content December 20, 1999 26
Security Risks and Countermeasures

UNCLASSIFIED

The example shown in Fig-
ure 2.4.e demonstrates a
simple VBA macro written
within the PowerPoint
development environment.
This example displays a
message to the user when
they click on the Action
Button (shown to the left of
the code) while in Slide
view. Action Settings are
used to call the macro
named testMacro whenever
the button is clicked by the
user.

Example 2: VBA Program using PowerPoint and Outlook Object Model

This example demonstrates several concepts, including macro activation mechanisms, use of
the PowerPoint object model, and use of other Office object models such as Outlook. First,
macros within PowerPoint may be initially executed using several methods as described in
section 2.4.2. This particular example uses a toolbar button (not shown) attached to the macro
called testOLE. When testOLE is activated, it executes its one instruction which shows the
form pictured at the upper left of Figure 2.4.f. The form provides a GUI which includes a label
and a listbox. Showing the form then triggers the UserForm_Initialize event which activates
the code shown in the bottom portion of the diagram. This routine’s sole purpose is to fill the
listbox with shows currently playing in Las Vegas. If the user clicks on a show, then the
ListBox1_Click macro is executed which uses Outlook to create and send an e-mail message
informing the recipient of the show that was selected. The form is then hidden from the user.
The user only sees the list of shows within the user interface. If the user never selects a show,
then the macros associated with the click event are never executed. Otherwise, mail is sent
without the user’s knowledge.

Figure 2.4.e: Example 1 - Macro attached to Action Button

Microsoft Office 97 Executable Content December 20, 1999 27
Security Risks and Countermeasures

UNCLASSIFIED

Figure 2.4.f: Example 2- VBA Macro using PowerPoint and Outlook Object Models

Example 3: Simple Attack Example

An example of a simple attack takes advantage of the Action Button vulnerability discussed in
section 2.4.2.6. This vulnerability involves using Action Buttons to run executable programs
within a PowerPoint presentation without any type of warning to the user. The vulnerability
was discovered by the Internet community and has been patched by Microsoft. However,
many users don’t bother to install patches; consequently, there are probably many desktops
running the vulnerable version of PowerPoint 97.

To exploit the vulnerability, a developer creates a new presentation or modifies an existing
one. An Action Button may be added to the master or a document by choosing Slide Show-
>Action Buttons. The developer may then pick from the choice of icons presented and draw
the icon onto the document. In response to the Action Settings dialog, the developer may
choose the Run program: radio box and enter their malicious executable in the textbox fol-
lowed by selecting the OK button. The attacker should have this program execute both when
the user clicks on the button as well as when the mouse is dragged over the button. The devel-
oper can improve covertness by enlarging the button to fill the slide master and changing the
color to transparent. Text may then be added to the button or on the page behind the button to
appear as if textual information is residing within a frame. Now the user will execute the pro-
gram whenever they pass over the presentation slides with the mouse without even realizing
that they are executing code, assuming the latest patches have not been installed.

Microsoft Office 97 Executable Content December 20, 1999 28
Security Risks and Countermeasures

UNCLASSIFIED

2.4.4 Countermeasures

The macro checker is the fundamental security feature within PowerPoint that protects against
executable content attacks. Unfortunately, the user may easily disable this feature through the
user interface. It is imperative that the macro checker remain enabled. This can be verified by
choosing Tools->Options; General tab; Macro virus protection checkbox.

Add-Ins may contain dangerous macros which execute without warning to the user. Unlike
presentations or templates, these macros may trigger when the Add-In is opened. However,
these Add-Ins must be loaded in order for them to execute. Add-Ins with embedded macros
may be easily shared by e-mailing them as attachments to mail messages. When opened by the
recipient, a macro warning from PowerPoint will fire if PowerPoint is installed and the macro
checker is enabled. However, once the Add-In is loaded, the macros will execute whenever
PowerPoint is opened without additional warnings to the user. The only countermeasure is to
prevent initial loading of Add-Ins through macros by keeping the macro checker enabled and
disabling macros from untrusted sources.

It is imperative that users install all security-related patches to secure their systems against
known attacks. For example, programs may be run from Action settings without warning to
the user if the latest patches to PowerPoint have not been installed on the user’s system.

The PowerPoint Viewer may be packed with presentations and delivered to another user eas-
ily by using the Pack and Go Wizard that comes with PowerPoint. This Viewer is made avail-
able so that a user does not have to have the full PowerPoint application installed in order to
run another person’s presentation. However, the Viewer is an executable program which
could be modified by an attacker to include malicious code. Consequently, users should be
careful about accepting Pack and Go presentations from untrusted sources.

HTML support within PowerPoint offers threat potential from various types of executable
content, including ActiveX controls. It is imperative that the Internet Explorer browser be
securely configured to limit this threat potential. Typically, this means setting the security
level to High for all security zones or customizing the settings to limit ActiveX and other exe-
cutable content capability.

Third party products offer virus scanning capability. These products provide some protection
against known viruses. However, macros within PowerPoint presentations are easily modified
so that typical virus scanners will not catch them. Consequently, third party products offer a
very limited solution at this time.

2.4.5 Summary of PowerPoint

PowerPoint 97 has attack potential due to its ability to include executable content in the form
of VBA macros, ActiveX controls, hyperlinks, external executables, and other types of script-
ing available with the HTML format. It is important that the user implement the countermea-
sures as outlined above to help protect their systems against executable content attacks.

PowerPoint 2000 was released by Microsoft in June of 1999. This latest release requires
investigation of new executable content vulnerabilities since it promises to be a widely-used
product.

Microsoft Office 97 Executable Content December 20, 1999 29
Security Risks and Countermeasures

UNCLASSIFIED

2.5 Outlook 98

2.5.1 Overview

Outlook is Microsoft’s primary email client; however, it also offers other services such as cal-
endaring and scheduling. Consequently, it is often described as a collaboration tool or group-
ware product since it facilitates the sharing of information among a group of people.

Although Outlook 97 is still packaged with Office 97, this section will concentrate on the
more recent version, Outlook 98. Many of the executable content features in Outlook 98 are
also available in Outlook 97 with the most major exception being HTML capability. In Out-
look 98, the user may choose their mail format to be HTML, thus providing the capability of
mailing web pages. This feature is not in Outlook 97. However, the other features which will
be discussed, such as embedded macros within form events, are available in both versions. In
addition, this research is based on the Outlook client configured with the Microsoft Exchange
server, since this is the most popular configuration option.

Outlook includes the Visual Basic Scripting Edition (VBScript) version 3.0 programming lan-
guage. VBScript offers a subset of VBA’s capabilities to make it a “safer” language. For
example, file access features have been stripped out of VBScript. VBScript is an interpreted
language from Microsoft which relies on a host application, such as Outlook, in order to exe-
cute. It cannot run stand-alone. The core language remains the same regardless of the host
application; however, various internal and external mechanisms may be available to the
VBScript program depending on the host features as well as those of the environment. For
example, Outlook 98 includes several methods and properties which may be called using the
VBScript language. These methods and properties may be used to manipulate various Outlook
items such as e-mail messages. In addition, VBScript may have access to other objects in the
environment such as ActiveX controls or Object Linking and Embedding (OLE) controls. For
example, VBScript may be used from within Outlook to manipulate Word documents on the
user’s platform using the Word Object model.

2.5.2 Threat Potential

The core VBScript language offers limited attack potential in that it offers no file or network
access features or commands for launching a program. However, the Outlook host application
and outside environment provide substantial attack capability. The Outlook host includes
methods and properties to manipulate Outlook mail messages. Additional capabilities include
the manipulation of the current user’s environment. For example, VBScript can be used to
activate ActiveX controls or manipulate other Microsoft objects available on the platform,
such as Microsoft Word documents.

The possible types of compromises include using the Outlook object model to steal mail mes-
sages from a target or send messages on behalf of another user by masquerading as that user.
The highly-publicized Melissa virus used a Word file attachment to call methods within the
Outlook object model that accessed the user’s Outlook address book. People listed in the
address book were then programmatically mailed copies of the virus which many of these
users then propagated on to people in their address book. This virus essentially shut down the
mail system for several major companies.

Microsoft Office 97 Executable Content December 20, 1999 30
Security Risks and Countermeasures

UNCLASSIFIED

Other types of possible compromises involve manipulating other objects available from
within the user’s environment. Embedded VBScript in an Outlook document may call meth-
ods from other Microsoft object models, such as other Office 97 applications or activate an
ActiveX control. For example, VBScript may be embedded in an Outlook mail message that
modifies the user’s Word documents.

There is also more than one method for embedding script within Outlook mail messages. The
method used impacts the security/countermeasures that are available. One method is to embed
VBScript within form events. Outlook uses the concept of a form which contains the layout
rules for the content. It also uses the concept of events, which are triggering mechanisms that
correlate to user actions. If script is attached to an event, then that script executes when the
associated trigger is activated. Outlook forms respond to a whole list of events including the
opening, saving, and closing of a form. For example, a user may enter VBScript within the
Item_Open event of a form. The user may then mail an Outlook email message and the
embedded form to another user. When the recipient opens the mail message, the associated
form will open thus executing the attached script. Since the script could be malicious, this is
viewed as a security concern. Consequently, Microsoft added a security mechanism in the
form of a dialog box that warns the user that the message contains embedded script which
could be malicious.

Another method for including script within an Outlook mail message is to embed it within the
HTML content of the message. This is a new feature in Outlook 98 which permits a user to
send web pages to another user. To enable this feature, the user must set their mail format to
HTML. Within the HTML, various types of scripting may be embedded, including VBScript,
Javascript, and links to Java applets. Given the various programming languages that may be
used to embed code within the HTML format of an Outlook mail message, the attacker has a
wide range of capabilities at his disposal. The security mechanisms provided by Microsoft to
prevent compromise from possible malicious script in this context includes High, Medium,
Low, and Custom settings for different security zones. The High setting provides the most
security while the Low (and sometimes Custom) security settings provide the least. The secu-
rity mechanisms will be described in more detail in the Countermeasures section.

Outlook mail messages also can include file attachments. These attachments may include any
type of executable content and are typically launched when the attachment is opened. The
types of compromise are dependent on the users’s Outlook security settings, the file extension
used in the file attachment name, and the application used to open the file attachment.
Microsoft provides a user-configurable security setting within its Attachment Security dialog.
By default, this setting is High which means that the user is presented with a warning dialog
for most file attachments. However, the user may also set the security setting to None which
disables the warning mechanism. There are exceptions to this general security feature. File
attachments associated with other Office 97 products, including Word, Excel, Access, and
PowerPoint, do not trigger the attachment security mechanisms regardless of the setting. Also,
the user may disable the security mechanism for certain file types through the Outlook 98 user
interface so that any future user on that machine does not receive warnings for any file attach-
ments with the given extension. Although this may be disabled using the interface, to re-
enable it requires changing a value in the registry. However, the security mechanisms for file
types that usually indicate executable code, such as files ending in .exe, cannot be disabled in

Microsoft Office 97 Executable Content December 20, 1999 31
Security Risks and Countermeasures

UNCLASSIFIED

this manner. The application associated with the file extension of the attachment may provide
additional security mechanisms. For example, Word provides its own warning dialogs to the
user. If malicious executable content is embedded within a file attachment and the security
mechanisms are thwarted, the code may perform many different types of activities, including
the deletion, modification, or exfiltration of the user’s data.

Microsoft recently released a patch which improves these features. Reference the document
E-mail Security in the Wake of Recent Malicious Code Incidents available at http://
www.nsa.gov for more details.

2.5.3 Examples

Example 1: Simple VBScript Macro in a Form

Example 1 demonstrates script within an Outlook form event called Item_Open. Script
attached to the Item_Open event executes when the containing item, such as a mail message,
is opened. This script presents a warning dialog box about the dangers of macros when the
user opens the document using this form.

Example 2: VBScript within Form that uses Object Libraries

Example 2 demonstrates how to create a new mail message and send it to a user using
VBScript code within a form. This code uses methods and properties from the Outlook Object
library to create a new mail item, provide values for the Subject, To, and Body fields, and send
the new mail message to the user specified in the To property. Once again, the script is embed-
ded in an Outlook form using the Item_Open event as the triggering mechanism.

Figure 2.5.a: Example 1 - VBScript with Outlook Form Event

Microsoft Office 97 Executable Content December 20, 1999 32
Security Risks and Countermeasures

UNCLASSIFIED

Example 3: VBScript Within HTML

Example 3 shows VBScript embedded within an HTML file. The file may then be inserted as
part of the Outlook 98 mail message body (by using the Insert->File, selecting the HTML file
from the file browser, and selecting the Text only option). This script is the same as that used
in Example 2; however, the security mechanisms are different. This script will not invoke the
warning mechanism used with forms. Rather, the security mechanism that may be triggered
are based on the High, Medium, Low, or Custom settings associated with the various security
zones found using either the Outlook Security interface (Tools->Options; Security tab) or
Internet Explorer.

Figure 2.5.b: Example 2 - VBScript Using Outlook Classes Within Form Event

Figure 2.5.c: Example 3 - VBScript within HTML file

Microsoft Office 97 Executable Content December 20, 1999 33
Security Risks and Countermeasures

UNCLASSIFIED

2.5.4 Countermeasures

As described briefly in the Outlook Threat Potential section, Outlook 98 has several security
mechanisms to protect against the execution of embedded code within forms, web pages, and
file attachments. Since executable content may perform malicious activities on behalf of the
user, such as exfiltration, deletion, or modification of the user’s data, it is important to use the
security mechanisms provided and to be aware of the possible dangers.

To protect the user from possibly malicious script embedded in an Outlook form, the user is
warned with a dialog box as shown in Figure 2.5.d below:

Unfortunately, Outlook does not distinguish between malicious and non-malicious content.
Rather, the warning dialog is presented to the user whenever script is present. Consequently,
users may get into the habit of consistently enabling the script. The security mechanism is not
enabled if the script is embedded within a “trusted” form. A form becomes trusted when it is
published to the Organizational Forms Library or a Public Folder. The permission to publish
in these two areas must be granted by a Microsoft Exchange administrator. This is assuming
the Outlook client is using the Microsoft Exchange server.

Figure 2.5.d: Dialog Warning Outlook Users of Macros Within Form

Microsoft Office 97 Executable Content December 20, 1999 34
Security Risks and Countermeasures

UNCLASSIFIED

If script is embedded into a mailed web
page using Outlook, the security is pro-
vided through the security zone settings
(Tools->Options menu option/Security
tab). Two security zones are available
from the Zones pulldown menu: Inter-
net zone (default) and Restricted sites
zone. All e-mail will use the security
settings associated with the zone
selected. To achieve protection from
active content, it is recommended that
the user select Restricted sites for the e-
mail zone and disable all options that
provide active content such as ActiveX
controls, Java applets, and scripting.
(Actual recommended settings are
shown in Appendix B.) While disabling
active content for some users will prove
too limiting, most users just require tex-
tual information within their e-mail
messages. It should also be noted that
these settings are the same as those in Internet Explorer and other Microsoft applications that
implement security zones. In fact, changing the settings using the Outlook user interface will
also change the settings in these other applications and vice versa.

File attachment security is controlled through several mechanisms. The main mechanism is
shown in Figure 2.5.f. The attachment security, by default, is set to High. With this setting, the
user is warned about possible malicious content within file attachments for most file attach-
ment types. However, as discussed in the Outlook Threat Potential section, there are excep-
tions. Documents created with other Office 97 products do not trigger the security dialog.
Rather, Microsoft depends on the application used to open the file attachment to provide the
security. Also, a user may disable the dialog for certain file types. Once disabled, it is disabled
for the entire machine and it may only be re-enabled by resetting the proper value in the regis-
try. The security dialog for file attachments that are flagged as executables by their file exten-
sion, such as .exe files, cannot be disabled through the user interface using this mechanism.
However, if the Attachment Security is set to None, the user will not be warned about possibly
malicious content regardless of the file type. It is therefore very important that the user retain
the High Attachment security level and that this security not be disabled for any individual file
type. It is equally important that the user be aware of the possible consequences associated
with opening file attachments. File attachments may contain many and varied forms of mali-
cious content which can wreak havoc on a user’s system. Users should be aware of this threat
and heed the warning dialogs; otherwise, the security mechanisms fail. Please note that
Microsoft recently released a patch which improves the file attachment security features. Ref-
erence the document E-mail Security in the Wake of Recent Malicious Code Incidents avail-
able at http://www.nsa.gov for more details.

Figure 2.5.e: Security Zones for Outlook Mail

Microsoft Office 97 Executable Content December 20, 1999 35
Security Risks and Countermeasures

UNCLASSIFIED

2.5.5 Summary of Outlook

The Outlook client provides several vehicles for sending executable content to other users
including forms, HTML web pages, and file attachments. The threat potential is high since
Microsoft’s object models support methods and properties for manipulating a user’s Outlook
mail as well as other objects available within the user’s environment. In addition, the ability to
embed content within the HTML of a web page expands the threat potential since the capabil-
ities of other languages besides VBScript may be used, such as Java applets and Javascript.
File attachments allow even more forms of executable content. To decrease the threat, it is
important that the user maintain secure configuration settings. This includes using the
Restricted sites security zone with active content disabled and maintaining the High Attach-
ment Security setting as shown in Figure 2.5.f. In addition, the user should be extremely care-
ful if choosing to enable script embedded in mail messages or in file attachments since even
mail messages that appear to come from trusted sources may not be safe.

Future work should include a re-evaluation of Outlook 2000 as this product includes the more
powerful VBA language, rather than VBScript, for customization.

3.0 Conclusions
The Office 97 applications pose considerable security risk to their users due to the customiza-
tion capability within each application. This customization capability includes the option to

Figure 2.5.f: Attachment Security Dialog

Microsoft Office 97 Executable Content December 20, 1999 36
Security Risks and Countermeasures

UNCLASSIFIED

embed VBA/VBScript code, ActiveX controls, and hyperlinks to other locations. The follow-
ing table summarizes the capabilities of each application.

* Although PowerPoint presentations do not support Auto events, PowerPoint Add-Ins do support them.

VBA, used within Word, Excel, Access, and PowerPoint, is an especially powerful program-
ming language with instructions that can perform many different types of attacks, including:

• stealing another user’s information by sending files back to an attacker as email messages.
• modification of a user’s security settings by changing the registry.
• inserting and executing malicious programs.

Although VBScript’s attack capability is much more limited, Outlook can use methods and
properties available in the Office 97 Object Libraries to perform malicious activities such as
the stealing of a user’s email messages or sending email while masquerading as another user.

The main security feature implemented within the Office 97 applications is the macro
checker. However, the macro checker can be easily disabled by the user through the User
Interface provided within each application (except Outlook). Even when enabled (the default),
users frequently ignore the warning dialogs about macros as demonstrated by the Melissa
virus. Consequently, it is imperative that users are educated about the dangers of executable
content so that the current security mechanisms are taken seriously.

Since each of the applications support ActiveX controls, hyperlinks to URLs, and HTML, it is
also important to securely configure Internet Explorer. Typically, this translates to implement-
ing the High setting for each security zone or customizing the settings such that ActiveX con-
trols and other types of scripting are disabled.

It is also extremely important that users incorporate the latest security patches from Microsoft.
Otherwise, the user’s system is vulnerable to known attacks, frequently publicized over the
Internet.

Feature Word Excel Access
PowerPoin
t Outlook 98

VBA Programming Language Yes Yes Yes Yes No

VBScript Programming Language No No No No Yes

Macro Checker Yes Yes No Yes Yes

Disable Macro Checker Using GUI Yes Yes N/A Yes No

Enable Macro Checker Using GUI Yes Yes N/A Yes No

Supports ActiveX Controls/OLE Yes Yes Yes Yes Yes

Supports Hyperlinks to URLs Yes Yes Yes Yes Yes

Supports HTML Format Yes Yes Yes Yes Yes

Supports Auto Events Yes Yes Yes No* No

Supports Templates Yes Yes No Yes No

Supports Add-Ins No Yes Yes Yes No

Supports Forms Yes Yes Yes Yes Yes

Microsoft Office 97 Executable Content December 20, 1999 37
Security Risks and Countermeasures

UNCLASSIFIED

Commercial virus scanners also offer some protection against Office 97 macros. The main
problem with most scanners is that they only protect against known viruses.

Future work should include a thorough analysis of Office 2000 as it promises to be a widely-
used product by customers and hackers. It is especially important to research Outlook 2000 as
this application now includes the more powerful VBA programming language rather than
VBScript and offers an easy mechanism for deploying attacks to other users. In addition, com-
mercial security products have entered the market which proclaim to identify certain types of
executable content, such as ActiveX controls. These products require investigation to deter-
mine if they provide possible countermeasure solutions to the threat of mobile code.

Microsoft Office 97 Executable Content December 20, 1999 38
Security Risks and Countermeasures

UNCLASSIFIED

4.0 Appendix A: Macros within a PowerPoint UserForm
Within PowerPoint, UserForms may be customized to include various user interface controls,
such as buttons, text boxes, and checkboxes. Macros may be attached to either the form itself
or the controls. The following gives an example of implementing a UserForm with controls
and macros.

1. Open a PowerPoint presentation

2. Create a new slide (Insert->New Slide...)

3. Choose an AutoLayout for this slide. The example shown below used bullets at the left and
an image at the right of the slide.

4. Create an image (Insert->Picture->From File...) - This example used Amconfus.wmf.

5. To create a new macro, choose Tools->Macro->Visual Basic Editor

6. Choose Insert->Module

7. Enter desired VBA code within the programming window. For example,

Sub testForm()
MsgBox (“In testForm”)
UserForm1.Show

End Sub

8. Then create a new UserForm by choosing Insert->UserForm

9. A UserForm called UserForm1 pops up along with a Controls toolbox. Controls may be
added to the form by clicking on the desired control and then clicking on the form. The
example uses label, command button, and listbox controls.

10.VBA Code may be added to these controls by double-clicking on the control. There is typ-
ically a series of possible events for each control.

11.Testing of this code may be done by choosing Run->Run Sub/UserForm

12.It is important to note that the UserForm will not be displayed to the user unless the Show
property is used in the testForm subroutine.

13.Now attach Action Settings to the image in your PowerPoint presentation. This is done by
selecting the image and choosing Slide Show->Action Settings...

14.Choose the “Run macro” radio box and insert the name of the macro that will start this
chain of events called testForm. The user can set this macro to run when the user clicks on
the macro and/or when the user drags the mouse over the image by choosing the appropri-
ate tab.

15.Save the presentation by choosing File->Save

16.Macros within the PowerPoint presentation slide below will execute when the user clicks
or drags the mouse over the image on the right. This causes the testForm macro to run since
it is attached to this Action Setting. The testForm macro shows a message box and then
shows the UserForm with the listbox and button controls.

17.To test the macros, run the slide show by choosing View->Slide Show

Microsoft Office 97 Executable Content December 20, 1999 39
Security Risks and Countermeasures

UNCLASSIFIED

Microsoft Office 97 Executable Content December 20, 1999 40
Security Risks and Countermeasures

UNCLASSIFIED

5.0 Appendix B:Recommended Outlook Security Settings
The following is an excerpt from a technical report entitled, “Guide to the Secure Configura-
tion and Administration of Microsoft Exchange”, written by Trent Pitsenbarger of the NSA. It
provides recommendations for the secure configuration of the Outlook 98 client using Internet
Explorer 5 (IE 5).

Security Zones

Outlook 98 can take advantage of Internet Explorer security zones to protect against malicious
code (ActiveX controls, Java, or scripts) embedded into the body of messages. Internet
Explorer includes a capability to restrict the execution of such code based upon four zones.
Before jumping into how Outlook 98 uses these settings, a quick review of their use in Inter-
net Explorer is in order.

 Local Intranet zone: This zone contains addresses that are typically behind the organiza-
tion’s firewall or proxy server. The default security level for the Local Intranet zone is
“medium”.

 Trusted Sites zone: This zone contains sites that are trusted -- sites that are believed not to
contain files that could corrupt the computer or its data. The default security level for
the Trusted Sites zone is “low”.

 Restricted Sites zone: This zone contains sites that are not trusted -- that is, sites that may
contain content that, if downloaded or ran, could damage the computer or its data.
The default security level for the Restricted Sites zone is “high”.

 Internet zone: By default, this zone contains anything that is not on the computer or an
intranet, or assigned to any other zone. The default security level for the Internet zone
is “medium”.

For each zone, one of four levels of restrictions can be enabled:

 High: Do not execute
 Medium: Warn before executing
 Low: Run without warning
 Custom: Establish custom settings

Outlook 98 utilizes these zones in that you can select which of two zones -- the Internet zone
or the Restricted zone -- Outlook messages fall into. The settings for the selected zone are then
applied by Outlook to all messages.

It is recommended to:

• Use the Restricted zone. To set the zone, select Tools/Options and the “Security” tab.
Select “Restricted sites” from the zone drop-down box.

• Set the settings for the Restricted zone as recommended below by selecting “Zone Set-
tings” and clicking on “Custom Level”. Note that changes made here will also apply to the
Restricted zone when web surfing with Internet Explorer. These recommendations apply

Microsoft Office 97 Executable Content December 20, 1999 41
Security Risks and Countermeasures

UNCLASSIFIED

specifically to Internet Explorer 5.0; the options available under Internet Explorer 4.0 are
similar but do not include all of the settings.

o Download signed ActiveX controls - DISABLE

o Download unsigned ActiveX controls - DISABLE

o Initialize and script ActiveX controls not marked as safe - DISABLE

o Run ActiveX controls and plug-ins - DISABLE

o Script ActiveX controls marked safe for scripting - DISABLE

o Allow cookies that are stored on your computer - DISABLE

o Allow per-session cookies (not stored) - DISABLE

o File download - DISABLE

o Font download - DISABLE

o Java permissions - HIGH SAFETY

o Access data sources across domains - DISABLE

o Drag and drop or copy and paste files - DISABLE

o Installation of desktop items - DISABLE

o Launching programs within an IFRAME – DISABLE

o Navigate sub-frames across different domains - DISABLE

o Software channel permissions - HIGH SAFETY

o Submit nonencrypted form data - DISABLE

o User data persistence – DISABLE

o Active Scripting - DISABLE

o Allow paste operations via script - DISABLE

o Scripting of Java Applets - DISABLE

o Logon - Anonymous logon

Note that following these recommendations will disable many advanced features; however,
for the vast majority of e-mail users there will be no operational impact. This is because most
e-mail messages are simple text messages with attachments. The features that are disabled
deal primarily with script and controls embedded within the body of the message which is not
typically done.

Note once again that these settings are shared with the Internet Explorer browser and web
pages typically DO incorporate the kinds of features which are disabled via these settings.
While this could represent an operational impact, keep in mind that the Restricted zone is
intended to include those sites that are not trusted - one should restrict what those sites can do
and in fact these recommended settings are only slightly more restrictive than the default set-

Microsoft Office 97 Executable Content December 20, 1999 42
Security Risks and Countermeasures

UNCLASSIFIED

tings for this zone. Also note that descriptions of these settings simply are not provided by
Microsoft or documented in any known public documentation. As a consequence, we are
investigating the settings further and may make some modifications to our recommendations
as our efforts mature.

Using these settings will counter known attacks that use active content contained within the
body of e-mail messages such as the BubbleBoy virus.

Microsoft Office 97 Executable Content December 20, 1999 43
Security Risks and Countermeasures

UNCLASSIFIED

6.0 References

[1] Brophy, Keith & Koets, Timothy, Teach Yourself VBScript in 21 Days, Sams.net Pub-
lishing, Indianapolis, IN, 1996.

[2] Building Applications with Microsoft Outlook 98, Microsoft Press, Redmond, Wash-
ington, 1998.

[3] Cassel, Paul, Sams’ Teach Yourself Access 97 in 14 Days, Sams Publishing, 1996.

[4] Executable Content: Definition, Taxonomy, and Examples. C4 Executable Content
Team, National Security Agency, 1996.

[5] Jaskolka, Karen and Gilbert, Mike, Microsoft Office 97 Programming with VBA for
Dummies, IDG Books, 1997.

[6] Lomax, Paul, VB & VBA in a Nutshell, O’Reilly & Associates Inc., 1998.

[7] Microsoft Office 97 Visual Basic Programmer’s Guide, Microsoft Press, Redmond,
Washington, 1997.

[8] Mr. Bunny’s Guide to ActiveX, Carlton Egremont III, Addison Wesley Longman,
1998.

[9] Network Associates webpage: http://www.nai.com.

[10] O’Brien, Timothy, et al. Microsoft Access 97 Developer’s Handbook, Microsoft Press,
1997.

[11] Solomon, Christine, Microsoft Office 97 Developer’s Handbook, Microsoft Press,
Redmond, Washington, 1997.

[12] Stevenson, Nancy, et al., Using Microsoft PowerPoint 97, Que Corporation, Indianap-
olis, IN, 1997.

[13] VB & VBA in a Nutshell, Paul Lomax, O’Reilly & Associates Inc., 1998.

[14] Vermaat, Shelly Cashman, Microsoft Office 97 Advanced Concepts and Techniques,
Course Technology, Cambridge, MA, 1998.

[15] Wells, Eric and Harshbarger, Steve, Microsoft Excel 97 Developer’s Handbook, Micro
Modeling Associates, Microsoft Press, Redmond, Washington, 1997.

Microsoft Office 97 Executable Content December 20, 1999 44
Security Risks and Countermeasures

UNCLASSIFIED

7.0 Changes
Version 1.01. Added the w2k@dewnet.ncsc.mil address to the cover page.

Version 1.1
•Deleted references to a tool that is no longer supported.
•Updated the recommended settings in Appendix A.
•Added a reference to the document E-mail Security in the Wake of Recent Malicious
Code Incidents which is available at http://www.nsa.gov

