ng Interagency Report 6887 - 2003 Edition

Mational Institute of
Standards and Technology
Technology Administration

.5 Department of Commarce

Government Smart Card
Interoperability Specification

Version 2.1

Teresa Schwarzhoff
Jim Dray

John Wack

Eric Dalci

Alan Goldfine
Michaelalorga

July 16, 2003



NIST Interagency Report 6887 - 2003 Edition Government Smart Card
Interoperability Specification

The National Institute of Standards and
Technology

COMPUTER SECURITY




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation's
measurement and standards infrastructure. 1TL develops tests, test methods, reference data, proof concept
implementations, and technical analysis to advance the development and productive use of information
technology. ITL’sresponsihilitiesinclude the development of technical, physical, administrative, and
management standards and guidelines for the cost-effective security and privacy of sensitive unclassified
information in Federal computer systems. This Interagency Report discusses I TL' s research, guidance,
and outreach effortsin computer security, and its collaborative activities with industry, government, and
academic organizations.

Natl. Inst. Stand. Technol. Interagency Report 6887 — 2003 Edition, 247 pages (July 2003)

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept
adequately. Such identification is not intended to imply recommendation or
endorsement by the National Institute of Standards and Technology, nor isit
intended to imply that the entities, materials, or equipment are necessarily the
best available for the purpose. |mplementation of this specification or various
aspects of it may be covered by U.S. and foreign patents.




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Foreword
@ This section isnon-normative and is provided for informational purposes only.

(b) The Government Smart Card Initiative

The Presidential Budget for Fiscal Year 1998 stated: “The Administration wants to adopt ‘ smart card’
technology so that, ultimately, every Federal employee will be able to use one card for a wide range of
purposes, including travel, small purchases, and building access.” The General Services Administration
(GSA) was requested to take the lead in devel oping the Federal business tools of electronic commerce and
smart cards. The Federal Smart Card Implementation Plan was then devel oped, under which GSA
implemented a pilot program to test Government smart cards and related systems. As part of the
implementation plan, GSA formed the Government Smart Card Inter-Agency Advisory Board (GSC-
IAB) to serve as a steering committee for the U.S. Government Smart Card (GSC) program.

In 1999, the National Institute of Standards and Technology (NIST) agreed to lead devel opment of
technical specifications and standards related to the GSC program. NIST represents the GSC programin
industry, government, and formal standards organizations, as appropriate, to promote GSC technology.
NIST is also charged with developing a comprehensive GSC conformance test program.

In May 2000, GSA awarded the Smart Access Common ID Card contracts to five prime contractors to
provide smart card goods and services. Information on the use and applicability of the GSA Contract can
be found at http://www.gsa.gov/smartcard.

The GSC-IAB established the Architecture Working Group (formerly known as the Technical Working
Group), which consists of representatives of the contract awardees and federal agencies. The AWG,
chaired and led by NIST, developed the Government Smart Card I nteroperability Specification (GSC-1S),
version 1.0. This specification defined the Government Smart Card Interoperability Architecture, which
satisfies the core interoperability requirements of the Common Access Smart ID Card contract and the
GSC Program as awhole. The AWG subsequently updated version 1.0 and released 2.0.

(© Change M anagement, Requirements Definition, and I nter pretation of the Specification

The GSC-IAB has the overal responsibility to develop the policy and procedures for handling revisions
of the GSC-1S and any other maintenance. These procedures will be posted on the NIST smart card
program web site (see Section (d)).

As additional language bindings to the Basic Services Interface (see Section 1.3) are devel oped, they will
be added to the GSC-IS.

In the longer term, it is expected that the GSA-IAB will be the governing body for the identification of the
U.S. Government’s requirements. Major releases of the GSC-IS will be determined by the GSC-IAB.
NISTIR 6887 will be submitted for formal standardization to the ANSI approved formal standards setting
body for smart card technology.

The interpretation of the GSC-ISisthe responsibility of the GSC-IAB. Interpretation issues and their
resolutions will be detailed on the NIST program web site (see Section (d)).

(d) Testing for Conformance

NIST is devel oping a comprehensive conformance test program in support of the GSC program. Products
available will be subject to aformal certification process to validate conformance to the requirements of


http://www.gsa.gov/smartcard

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

the GSC-1S. The goal of the conformance testsis to determine whether or not a given Government Smart
Card product conforms with the GSC Specification. Qualified laboratories will perform operational
conformance testing. The GSC-1AB Conformance Committee is chaired by GSA, with representatives

from the federal agencies and GSA contract awardees.

NIST isworking on user guidance for achieving conformance certification for the various elements of the

GSC-IS framework. This guidance will be posted at http://smartcard.nist.gov

()

NIST maintains a publicly accessible web site at http://smartcard.nist.gov. This page contains

NIST Government Smart Card Program Web Site

information on all aspects of the GSC program related to the GSC-IS, including:

General program descriptions and updates

The current version of the GSC-IS

GSC-ISrevision and standardization plans

A list of errataand other changes to the last published version of the GSC-1S

A list of interpretations and clarifications of the GSC-IS, asissued by the GSC-IAB
Details of the GSC-1S interpretation procedures

Details of the GSC-1S conformance-testing program.


http://smartcard.nist.gov/
http://smartcard.nist.gov/
http://smartcard.nist.gov/

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Acknowledgements

The authors would like to acknowledge the efforts of the original Government Smart Card
Interoperability Committee; the Government Smart Card Interagency Advisory Board, composed of
representatives from the public and private sectors; the General Services Administration; the prime
contractors associated with the Smart Access Common ID Card contract; and the NIST smart card team.
Composed of industry and government representatives, the Interoperability Committee devel oped the first
Government Smart Card Interoperability Specification (version 1.0) during the summer of 2000.

The efforts of the GSC Architecture Work Group (formerly known as Technical Working Group) of the
Government Smart Card Interagency Advisory Board are particularly recognized. Chaired by the
National Institute of Standards and Technology, the AWG was responsible for reviewing the original
Government Smart Card Interoperability Specification. The AWG has been amajor contributor to the
development of this new version of the Government Smart Card Interoperability Specification. Special
recognition is extended to the AWG.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table of Contents

O 01 (o Yo 1 Tod o o OO P PP PPPPPTPPPPPPP 1-1
I A - T (o [ T (o R 1-1
1.2 Scope, Limitations, and Applicability of the Specification............cccccoeevviviiiiiienneeen.e. 1-1
1.3 Conforming to the SPeCIfiCAtiON ..........coeiiiiiiiiiiee e 1-2

2. Architectural MOEl.......cooo i 2-3
2.1 OVEIVIBW ..ottt e e e e ettt e e e e e e e e ee b b et eeeeeee s ettt eeeeeeeeessbbaansaeeeeseesnees 2-3
2.2 Basic Services Interface OVEIVIEW.........uuuiiiiiiiiiieiiiie et ee et e e et eeeeeeans 2-4
2.3 Extended Service INterfaces OVEIVIEW ......ccieiiiiieiiiiiiiiii e ee et e e e e e eesrin e e e e e eeens 2-5
2.4 Virtual Card Edge INterface OVEIVIEW ........ciieeeeiieiiiiiieiieeeeeeeeetiee s e e e e e eeevabee e e e e e e eeenes 2-5
2.5 Roles of the BSI and VCEL .......ciiiiiiiiieiii et e e e e eeees 2-5
2.6 GSC-IS Data MOAEl OVEIVIEW........ceeeieeeiiiiiiiieeeeeeeitiiis e s e e e eeeeettaias s e e e e e eeetennnaeeeaseeennes 2-6
2.7 Card Capabilities ContaiNer OVEIVIEW .........cociiuuieeiiiiieeeeeiiieeeeeeee e e e eeeaieeeeeaaannns 2-6
2.8 Service Provider SOftWar€ OVEIVIEW ........uueiieeeeieeeiiiiieiieeeeeeeertiiieeseeeeeeeessinansaeeeeeeenns 2-6
o O (o [ R {=T= o (=] G B Y] £ RS 2-6

3. ACCESS CoNntrol MOdel ....cooeeeieeeeeee 3-1
3.1 Available Access CONIOI RUIES ........ooevuiiiiiiieieeieeice et eeans 3-1
3.2 Determining CONTAINELS........cuuuiiiieeieeeeiiee e e e e et ree e e e e e e e e et e e e e e e e eeeettaaaaeeeaseeennes 3-3
3.3 Establishing a Security CONIEXL........ccevuuuiiiiiieieei e e e e e et e e e e e ee e e e e e e eenes 34

3.3. 1 PIN VErfICAIION. ...ttt ettt e e eees 3-5
3.3.2 External AUtNENTICALION .........iiiiiieiceie e e e e 3-5
3.3.3  SECUIE MESSATING .. ..cuvuneeeertneeeeetaeeeeeetieeeeeeeeeeeeeteeeeeataeesestnaaeeestaaeeesanaaaeees 3-6

4. BasSiC SerVices INtEITACE ... e e e e e e e e e e e aaa 4-1
4.1 OVEIVIEW .ouuieeiieeeeiitee e ettt e e e e e e ettt e e e e e e e e e ee bbb et eeeeeee s sttt aeeeeeeesssbbannsaeaeseeessees 4-1
4.2 Binary Data ENCOAING........couuuuiiiiiieeiiieiiee et e et s e e e e e e e ee bt e e e e e e eeeenes 4-2
4.3 Mandatory Cryptographic AIQOMHTAMS .........uuiiiiiiieie e 4-2
4.4 BSIREIUM COUEBS ..uuuiieeiiiieiitie ettt e e ettt e e e e e e e e e e e et e e e e e e e eeees bbb e eeeaeeeennes 4-3
4.5 Smart Card Utility Provider Module Interface Definition ............ccoeeevvivieeeiiivieeeeeinnnn. 4-4

4.5.1 Pseudo IDL DefiNitiON.........coeiiiiiiieeiiee e 4-4
4.5.2  RUIES ...t 4-5
4.5.3 gSCBSIULIACOUIrECONIEXE() .. eivrreeeiiriieeieee e e e e e e e e eeeaaas 4-7
4.5.4 QgSCBSIULICONNECI() .evvnneeiiiiieeiite et e e e eaans 4-9
4.5.5 gSCBSIULIDISCONNECI() . cevvueiiiiiiiieeiite et e e e e e 4-10
4.5.6 gscBsiUtIIBEQINTIraNSACON() ..vveeeeieeeeiiieiiiiiiieeeeeeeeeeiiiie e e eeeeeeeerre e e e e e e eeanens 4-11
4.5.7 gscBSIULIENATranSaction() ........oeeevevunieeieiiiiieieie e e e e e 4-12
4.5.8 (SCBSIULIGEIVEISION() . ceevveeeiiriieeeete et et e e e e 4-13
4.5.9 gscBsiUtIIGetCardProperti@S() .ue.eeeeeeeeeerrruieiieeeeieeetiiiieieeeeeeeeesiiieseeeeeeeeennns 4-14
4.5.10 gscBSIULIGetCardStatuS().....cuuuuieeeeeriiiiiiiiiiieeeeeeeeeiiiee e e e e e e e eeerae e e e e e e eeanans 4-15
4.5.11 gscBsiUtIIGetEXteNdedErrorTeXt() «.ovuueererrieeeeie e eeeee e, 4-16
4.5.12 gsCBSIUtIIGEIREAAEILISI() .vuueeverenieeiiiii i 4-17
4.5.13 gSCBSIULIPASSINIU() vvvvneieeeiieiiiiiieee ettt e e e eenaeas 4-18
4.5.14 gscBSIUtIIREIEASECONIEXL() .. ceevuneeeiiieeeeee et e 4-19
4.6 Smart Card Generic Container Provider Module Interface Definition..................... 4-20
4.6.1 gSCBSIGCDAtACIEALE() . .ceeiiveeriiiiieeeeeeee et e e et e eeaaaa 4-20
4.6.2 (gSCBSIGCDAtADEIEIE() .. .cevveiiiite e 4-21
4.6.3 gscBsiGcGetContainerProperti@S() ..uu.eeveeuieeeeeieeeeiieeeeeee e 4-22
4.6.4 (gSCBSIGCREAATAGLISI() «.vvvureiiiriiieeiiii et 4-24
4.6.5 (gSCBSIGCREAAVAIUE() .. .ccvveiiiireeeeiete et e e 4-25




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.

6.

4.6.6 gSCBSIGCUPAAEVAIUE() ...evvniiiieiiiiiii et e e e 4-26
4.7 Smart Card Cryptographic Provider Module Interface Definition ...........cccccceeen.... 4-27
4.7.1 gSCBSIGEIChAllENGE() cevniieiiieie e e 4-27
4.7.2 gscBsiSkilnternalAuthenticCate() ........uvvevieeiiiiiiii e 4-28
4.7.3 OSCBSIPKICOMPULIE() ..uiiietiietiiiiee it e et e et e et e e e e s s e s s st s eaa e saaeseans 4-29
4.7.4 QgSCBSIPKIGEtCErtifiCAIB() .ovvniieeniiiiiiiee e e e e eans 4-30
4.7.5 (gSCBSIGEtCryPLtOPIOPEITIES() . .cvuiieniietiieieeeee e e e e e e e e e eans 4-31
Virtual Card EAQe INTEITACE ... et e e e s e e ean e eaas 5-1
5.1 GSC-IS ISO Conformant APDUS .........cooiiiiiieeieee e 5-1
5.1.1 GeneriC File ACCESS APDUS........oiiiiiiie et 5-2
5.1.2 ACCESS CONIOl APDUS .....covniiiiiii e 5-11
5.1.3 Public Key Operations APDUS ......ccuuiiiiiiiieciie ettt e e e eaaeees 5-18
5.2 Mapping Default APDUS to Native APDU SEetS........cceeeiiiieiiiiiiiiiiie e 5-21
5.2.1 The CCC Command and Response TUPIES........ccceeevvvviiieiiiiiiieieieeeeeeiienn, 5-21
5.2.2 Native APDU Mapping and CCC GrammMarl........cccoveevuieirnreiinieienieesnneeeneens 5-21
5.2.3 Detecting Card APDUS .. ... et e e e e e e e ens 5-22
5.2.4 Default Status Code RESPONSES .. ccvuiiiniiiitieieiceeee et e e e e 5-23
5.3 Card Edge Interface for VM CardS..........uuceeiieeiiiiieiiiiiiieee et 5-23
5.3.1 Virtual Machine Card Access Control Rule Configuration..........c.cccovveevnnees 5-24
5.3.2 Virtual Machine Card Edge General Error ConditionsS..........ccoovvvvveveveeennnnns 5-24
5.3.3 Common Virtual Machine Card Edge Interface Methods ............ccccoeveuee.... 5-25
5.3.4 Generic Container Provider Virtual Machine Card Edge Interface............. 5-41
5.3.5 Symmetric Key Provider Virtual Machine Card Edge Interface.................. 5-44
5.3.6 Public Key Provider Virtual Machine Card Edge Interface ........co.cccoevveenn.nn 5-48
Card CapabilitieS CONLAINMET .....uuuiiieeie e e e e e e et e e e et e e e e b e s e e bt e e e eaaaaans 6-1
[T A O ) V7= Y/ = RPN 6-1
6.2 Procedure for ACCESSING the CCC ....ovuiiiiiiiieeeeece e 6-2
6.2.1 General CCC Retrieval SEQUENCE ........coevivviiiiiiiieieeeeee e e s 6-2
6.2.2 Card Capabilities ContaiNer StTUCIUIE .......eurviveeiie i e e e 6-4
[T I O O O i 1= [0 N 6-5
6.3.1 Card Identifier DESCIIPLION .......c.cuvuiiiiete et ee e e e e e s eeees 6-5
6.3.2 Capability Container Version NUMDBET ........oviuiiiiie e 6-6
6.3.3 Capability Grammar Version NUMDET.........ooviuiiiieiiee e 6-6
6.3.4 Applications CardURL STrUCLUIE .......civvniiiiieiieceee e 6-6
(SRR T nd (G111 T 6-6
6.3.6 Reqgistered Daa Model NUMDBET ........iiveiiiiiiie e e 6-6
6.3.7 Access Cntrol RUIES TabI ......veeeiieiie e 6-7
(SRR T OF- 1o 72N d 16 LT 6-7
(SIS I =T (=Tt 110 T 1= Vo [T 6-7
6.3.10 Capability and StatusS TUPIES ....cuu i e 6-8
6.3.11 Capability TUPRIES ... cceeeeiei e e e e e e e e e e e eeees 6-8
6.3.12 PrefiX and SUMIX COOES .....iiveiiiiieie et e e e e e e e e e 6-9
(SIS T RS B LYY od g1 o] (o] S @Yo [y 6-9
(SIS I S ¢= | (U 1T I o[ 6-9
6.3.15 NEXt CCC DESCIIPLION .vuuiieeteieeieie et e et e e s e e e e e e e e aaa s 6-10
6.4 CCC Formal Grammar Definition ...........uuuiiiiiiiiiiiiiiei e 6-10
6.4.1 GrammMar RUIES ...t e e e et e raneees 6-11
6.4.2 Extended FUNCHION COAES .....cociiuuuiiiiiiieieeeee e 6-13

Vi



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

7. Container Selection and DISCOVEIY ....ccuuuuuiiiieeeeieeiiiiiie s e e e e eeeeeitnas e e e e e eeeeran e e e eseeeernnnnnns 7-1
7.1 AID Abstraction: The UnIiVErsal AlD ..........coiiiiiiiiiiiiiieiie et e e e eeans 7-1

7.2 The CCC Universal AID and CCC APPIEL ....neeieiiieeieeieeeeeeeeeeeeeeeee e 7-1

7.3 The Applications CardURL ........coiieeiiiiiiiiiiiiiiee et e e e vttee e s e e e e e e eer b e e e e eeeeeenes 7-1

7.4 Using the Applications CardURL Structure for Container Selection.............cc.......... 7-3

7.5 File System Cards: Selecting CONTAINEIS........cccvviiiiiiiiieeeee et e e e e e eearn e e eeeeens 7-3

7.6 VM Cards: Selecting Containers and APPIELS ......oevveveeiiiiiiieeiiieeeeeeeeeee e 7-3

7.7 Using the Applications CardURL Structure for Identifying Access Control Rules ....7-3

F T B - - WY/ (o o [ OO P PP PPPPPTPPPPPPP 8-1
8.1 Data MOUAEI OVEIVIEW ... .ceeiueeeiiee ettt ettt e et e e e et e e e e et e e e e et eeeeraanas 8-1

8.2 Internal Tag-Length-Value FOrMAL ...........eeiiiiiiiiiiiiiiie et eenns 8-1

8.3 Structure and Length Values for Cards Requiring the File System Card Edge........ 8-2

8.4 Structure and Length Values for Cards Requiring the Virtual Machine Card Edge..8-2
LSt R = T (Y 8-2

vii



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Appendices

O 01 (o Yo 1 Tod o o OO P PP PPPPPTPPPPPPP 1-1
I A - T (o [ T (o R 1-1
1.2 Scope, Limitations, and Applicability of the Specification............cccccoeevviviiiiiienneeen.e. 1-1
1.3 Conforming to the SPeCIfiCAtiON ..........coeiiiiiiiiiiee e 1-2
2. Architectural MOEl.......cooo i 2-3
2.1 OVEIVIBW ..ottt e e e e ettt e e e e e e e e ee b b et eeeeeee s ettt eeeeeeeeessbbaansaeeeeseesnees 2-3
2.2 Basic Services Interface OVEIVIEW.........uuuiiiiiiiiiieiiiie et ee et e e et eeeeeeans 2-4
2.3 Extended Service INterfaces OVEIVIEW ......ccieiiiiieiiiiiiiiii e ee et e e e e e eesrin e e e e e eeens 2-5
2.4 Virtual Card Edge INterface OVEIVIEW ........ciieeeeiieiiiiiieiieeeeeeeeetiee s e e e e e eeevabee e e e e e e eeenes 2-5
2.5 Roles of the BSI and VCEL .......ciiiiiiiiieiii et e e e e eeees 2-5
2.6 GSC-IS Data MOAEl OVEIVIEW........ceeeieeeiiiiiiiieeeeeeeitiiis e s e e e eeeeettaias s e e e e e eeetennnaeeeaseeennes 2-6
2.7 Card Capabilities ContaiNer OVEIVIEW .........cociiuuieeiiiiieeeeeiiieeeeeeee e e e eeeaieeeeeaaannns 2-6
2.8 Service Provider SOftWar€ OVEIVIEW ........uueiieeeeieeeiiiiieiieeeeeeeertiiieeseeeeeeeessinansaeeeeeeenns 2-6
o O (o [ R {=T= o (=] G B Y] £ RS 2-6
3. ACCESS CoNntrol MOdel ....cooeeeieeeeeee 3-1
3.1 Available Access CONIOI RUIES ........ooevuiiiiiiieieeieeice et eeans 3-1
3.2 Determining CONTAINELS........cuuuiiiieeieeeeiiee e e e e et ree e e e e e e e e et e e e e e e e eeeettaaaaeeeaseeennes 3-3
3.3 Establishing a Security CONIEXL........ccevuuuiiiiiieieei e e e e e et e e e e e ee e e e e e e eenes 34
3.3. 1 PIN VErfICAIION. ...ttt ettt e e eees 3-5
3.3.2 External AUtNENTICALION .........iiiiiieiceie e e e e 3-5
3.3.3  SECUIE MESSATING .. ..cuvuneeeertneeeeetaeeeeeetieeeeeeeeeeeeeteeeeeataeesestnaaeeestaaeeesanaaaeees 3-6

4. BasSiC SerVices INtEITACE ... e e e e e e e e e e e aaa 4-1
4.1 OVEIVIEW .ouuieeiieeeeiitee e ettt e e e e e e ettt e e e e e e e e e ee bbb et eeeeeee s sttt aeeeeeeesssbbannsaeaeseeessees 4-1
4.2 Binary Data ENCOAING........couuuuiiiiiieeiiieiiee et e et s e e e e e e e ee bt e e e e e e eeeenes 4-2
4.3 Mandatory Cryptographic AIQOMHTAMS .........uuiiiiiiieie e 4-2
4.4 BSIREIUM COUEBS ..uuuiieeiiiieiitie ettt e e ettt e e e e e e e e e e e et e e e e e e e eeees bbb e eeeaeeeennes 4-3
4.5 Smart Card Utility Provider Module Interface Definition ............ccoeeevvivieeeiiivieeeeeinnnn. 4-4
4.5.1 Pseudo IDL DefiNitiON.........coeiiiiiiieeiiee e 4-4
4.5.2  RUIES ...t 4-5
4.5.3 gSCBSIULIACOUIrECONIEXE() .. eivrreeeiiriieeieee e e e e e e e e eeeaaas 4-7
4.5.4 QgSCBSIULICONNECI() .evvnneeiiiiieeiite et e e e eaans 4-9
4.5.5 gSCBSIULIDISCONNECI() . cevvueiiiiiiiieeiite et e e e e e 4-10
4.5.6 gscBsiUtIIBEQINTIraNSACON() ..vveeeeieeeeiiieiiiiiiieeeeeeeeeeiiiie e e eeeeeeeerre e e e e e e eeanens 4-11
4.5.7 gscBSIULIENATranSaction() ........oeeevevunieeieiiiiieieie e e e e e 4-12
4.5.8 (SCBSIULIGEIVEISION() . ceevveeeiiriieeeete et et e e e e 4-13
4.5.9 gscBsiUtIIGetCardProperti@S() .ue.eeeeeeeeeerrruieiieeeeieeetiiiieieeeeeeeeesiiieseeeeeeeeennns 4-14
4.5.10 gscBSIULIGetCardStatuS().....cuuuuieeeeeriiiiiiiiiiieeeeeeeeeiiiee e e e e e e e eeerae e e e e e e eeanans 4-15
4.5.11 gscBsiUtIIGetEXteNdedErrorTeXt() «.ovuueererrieeeeie e eeeee e, 4-16
4.5.12 gsCBSIUtIIGEIREAAEILISI() .vuueeverenieeiiiii i 4-17
4.5.13 gSCBSIULIPASSINIU() vvvvneieeeiieiiiiiieee ettt e e e eenaeas 4-18
4.5.14 gscBSIUtIIREIEASECONIEXL() .. ceevuneeeiiieeeeee et e 4-19

4.6 Smart Card Generic Container Provider Module Interface Definition..................... 4-20
4.6.1 gSCBSIGCDAtACIEALE() . .ceeiiveeriiiiieeeeeeee et e e et e eeaaaa 4-20
4.6.2 (gSCBSIGCDAtADEIEIE() .. .cevveiiiite e 4-21
4.6.3 gscBsiGcGetContainerProperti@S() ..uu.eeveeuieeeeeieeeeiieeeeeee e 4-22
4.6.4 (gSCBSIGCREAATAGLISI() «.vvvureiiiriiieeiiii et 4-24
4.6.5 (gSCBSIGCREAAVAIUE() .. .ccvveiiiireeeeiete et e e 4-25




5.

6.

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6.6 gSCBSIGCUPAAEVAIUE() ...evvniiiieiiiiiii et e e e 4-26
4.7 Smart Card Cryptographic Provider Module Interface Definition ...........cccccceeen.... 4-27
4.7.1 gSCBSIGEIChAllENGE() cevniieiiieie e e 4-27
4.7.2 gscBsiSkilnternalAuthenticCate() ........uvvevieeiiiiiiii e 4-28
4.7.3 OSCBSIPKICOMPULIE() ..uiiietiietiiiiee it e et e et e et e e e e s s e s s st s eaa e saaeseans 4-29
4.7.4 QgSCBSIPKIGEtCErtifiCAIB() .ovvniieeniiiiiiiee e e e e eans 4-30
4.7.5 (gSCBSIGEtCryPLtOPIOPEITIES() . .cvuiieniietiieieeeee e e e e e e e e e eans 4-31
Virtual Card EAQe INTEITACE ... et e e e s e e ean e eaas 5-1
5.1 GSC-IS ISO Conformant APDUS .........cooiiiiiieeieee e 5-1
5.1.1 GeneriC File ACCESS APDUS........oiiiiiiie et 5-2
5.1.2 ACCESS CONIOl APDUS .....covniiiiiii e 5-11
5.1.3 Public Key Operations APDUS ......ccuuiiiiiiiieciie ettt e e e eaaeees 5-18
5.2 Mapping Default APDUS to Native APDU SEetS........cceeeiiiieiiiiiiiiiiie e 5-21
5.2.1 The CCC Command and Response TUPIES........ccceeevvvviiieiiiiiiieieieeeeeeiienn, 5-21
5.2.2 Native APDU Mapping and CCC GrammMarl........cccoveevuieirnreiinieienieesnneeeneens 5-21
5.2.3 Detecting Card APDUS .. ... et e e e e e e e ens 5-22
5.2.4 Default Status Code RESPONSES .. ccvuiiiniiiitieieiceeee et e e e e 5-23
5.3 Card Edge Interface for VM CardS..........uuceeiieeiiiiieiiiiiiieee et 5-23
5.3.1 Virtual Machine Card Access Control Rule Configuration..........c.cccovveevnnees 5-24
5.3.2 Virtual Machine Card Edge General Error ConditionsS..........ccoovvvvveveveeennnnns 5-24
5.3.3 Common Virtual Machine Card Edge Interface Methods ............ccccoeveuee.... 5-25
5.3.4 Generic Container Provider Virtual Machine Card Edge Interface............. 5-41
5.3.5 Symmetric Key Provider Virtual Machine Card Edge Interface.................. 5-44
5.3.6 Public Key Provider Virtual Machine Card Edge Interface ........co.cccoevveenn.nn 5-48
Card CapabilitieS CONLAINMET .....uuuiiieeie e e e e e e et e e e et e e e e b e s e e bt e e e eaaaaans 6-1
[T A O ) V7= Y/ = RPN 6-1
6.2 Procedure for ACCESSING the CCC ....ovuiiiiiiiieeeeece e 6-2
6.2.1 General CCC Retrieval SEQUENCE ........coevivviiiiiiiieieeeeee e e s 6-2
6.2.2 Card Capabilities ContaiNer StTUCIUIE .......eurviveeiie i e e e 6-4
[T I O O O i 1= [0 N 6-5
6.3.1 Card Identifier DESCIIPLION .......c.cuvuiiiiete et ee e e e e e s eeees 6-5
6.3.2 Capability Container Version NUMDBET ........oviuiiiiie e 6-6
6.3.3 Capability Grammar Version NUMDET.........ooviuiiiieiiee e 6-6
6.3.4 Applications CardURL STrUCLUIE .......civvniiiiieiieceee e 6-6
(SRR T nd (G111 T 6-6
6.3.6 Reqgistered Daa Model NUMDBET ........iiveiiiiiiie e e 6-6
6.3.7 Access Cntrol RUIES TabI ......veeeiieiie e 6-7
(SRR T OF- 1o 72N d 16 LT 6-7
(SIS I =T (=Tt 110 T 1= Vo [T 6-7
6.3.10 Capability and StatusS TUPIES ....cuu i e 6-8
6.3.11 Capability TUPRIES ... cceeeeiei e e e e e e e e e e e eeees 6-8
6.3.12 PrefiX and SUMIX COOES .....iiveiiiiieie et e e e e e e e e e 6-9
(SIS T RS B LYY od g1 o] (o] S @Yo [y 6-9
(SIS I S ¢= | (U 1T I o[ 6-9
6.3.15 NEXt CCC DESCIIPLION .vuuiieeteieeieie et e et e e s e e e e e e e e aaa s 6-10
6.4 CCC Formal Grammar Definition ...........uuuiiiiiiiiiiiiiiei e 6-10
6.4.1 GrammMar RUIES ...t e e e et e raneees 6-11
6.4.2 Extended FUNCHION COAES .....cociiuuuiiiiiiieieeeee e 6-13




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

7. Container Selection and DISCOVEIY ....ccuuuuuiiiieeeeieeiiiiiie s e e e e eeeeeitnas e e e e e eeeeran e e e eseeeernnnnnns 7-1
7.1 AID Abstraction: The UnIiVErsal AlD ..........coiiiiiiiiiiiiiieiie et e e e eeans 7-1

7.2 The CCC Universal AID and CCC APPIEL ....neeieiiieeieeieeeeeeeeeeeeeeeee e 7-1

7.3 The Applications CardURL ........coiieeiiiiiiiiiiiiiiee et e e e vttee e s e e e e e e eer b e e e e eeeeeenes 7-1

7.4 Using the Applications CardURL Structure for Container Selection.............cc.......... 7-3

7.5 File System Cards: Selecting CONTAINEIS........cccvviiiiiiiiieeeee et e e e e e eearn e e eeeeens 7-3

7.6 VM Cards: Selecting Containers and APPIELS ......oevveveeiiiiiiieeiiieeeeeeeeeee e 7-3

7.7 Using the Applications CardURL Structure for Identifying Access Control Rules ....7-3

F T B - - WY/ (o o [ OO P PP PPPPPTPPPPPPP 8-1
8.1 Data MOUAEI OVEIVIEW ... .ceeiueeeiiee ettt ettt e et e e e et e e e e et e e e e et eeeeraanas 8-1

8.2 Internal Tag-Length-Value FOrMAL ...........eeiiiiiiiiiiiiiiie et eenns 8-1

8.3 Structure and Length Values for Cards Requiring the File System Card Edge........ 8-2

8.4 Structure and Length Values for Cards Requiring the Virtual Machine Card Edge..8-2
LSt R = T (Y 8-2




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

List of Appendices

Appendix A— Normative RefErenCeS .......ccooviiiiiiii i A-1
Appendix B— Informative ReferenCes.........oooovviiiiiiii B-1
Appendix C— GSC Data MOGEI.......ccooeiieeei e C-1
Appendix D— DoD Common Access Card (CAC) Data Model ..o, D-1
Appendix E— C Language Binding for BSI SEIVICES.........uuuuiiiiiiiiiiiiiiiiieie e ssiiiieeeee e e e E-1
Appendix F— Java Language Binding for BSI SEIVICES .......ccoovviviiiiiiiee e F-1
Appendix G— Contactless Smart Card REQUIrEMENTS .......cccoeeeiieieeeieeeeieeeeeeeeeeeeeeeee e G-1
APPENAIX H— ACTONYIMS ....eitiieeeiiiittte et e e e e e sttt et e e e e e e s s bbbt et e e e e e e e s s b b beeeeaeeeessannbbbeeeeeeaeesaans H-1

Xi



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Figures and Tables

Figure 2-1: The GSC-IS Architectural MOdel .........ccooiiiiiiii 2-4
Figure 6-1: The Card Capability CONAINET ........cooiiiiiiiiieiie e 6-1
Figure 6-2: Location of the CCC Elementary File in a file system card .............ccceeeeeeeeeeeeeeenn. 6-2
Figure 6-3: Shift Tuple Sequence (SL: shiftlevel) ... 6-14
Figure 8-1: T-Buffer FOIMAL .........cooiiiiiieeeee e 8-2
Figure 8-2: V-BUFfEr FOIMAL .........c.uuiiiiiiieee ettt e e e e e e e e e e 8-2
Table 3-1: BSI ACCESS METNOA TYPES ... e a e 3-2
Table 3-2: BSI Access CONtrol RUIE TYPES....cuuiiiiiiiiiiiiiiiiieee ettt 3-2
Table 3-3: ACRs for Generic Container Provider Module SEerviCes .......ccoeeeveeiieeiieeeieeeieeeiaeeeenns 3-4
Table 3-4: ACRs for Cryptographic Provider Module SEIVICES ......ccoceeieaiiaeaiaaeeaee e 3-4
Table 4-1: BSI RETUIMN COUBS ... e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaeaaeens 4-3
Table 4-2: Description Of SYMDOIS .....cooiiiiiiiiiiiieee e 4-5
Table 4-3: Mapping PSEUAO IDL 0 JAVA. ... cceeiaaeaaaeaaae e e e 4-5
Table 4-4: Mapping PSEUdO IDL 0 C ... 4-6
Table 5-1: GSC-IS APDU Sl ...uuuiiiiiiiiiiiiiiiiieiiee e e ettt e e e st e e e e e e e s ab b e e e e e e e e snanbreees 5-1
Table 5-2: APDU Command and ReSPONSE SIUCLUIE ........eeiiieiieeeieeeiees e eeee e ees e eee e aeaaaa s 5-2
Table 5-3: APDU Command and ReSPONSE SIUCLUIE .......uieiiieieaeeaeee e 5-2
Table 5-4: GeneriC File ACCESS APDUS ... 5-3
Table 5-5: ACCESS CONLIOI APDUS .. ... a e e e 5-11
Table 5-6: Algorithm Identifiers for Authentication APDUS .......ccoooiiiiiiiiiiieeeeeeeeeee 5-12
Table 5-7: Public Key Operations APDUS ..o 5-18
Table 5-8: CARD APDUS VAIUES .......cooiiiitiiiiiie ettt e e e e e e e s enneees 5-22
Table 5-9: GSC-IS Status COUE RESPONSES .. .ccciieeiieeiieeeeee ettt e e e e e aaaaaaaaaaaeens 5-23
Table 5-10: Virtual Machine Card EAge APDUS ......cooiiiiiiiieeee e 5-23
Table 5-11a: SUcCeSSUl CONAILIONS ......couuvviiiiiiiee e eeeees 5-24
Table 5-11b: General Error CONAItIONS ....coeeeeeieeeeeee et e e e e e e e e e aaa e 5-25
Table 5-12: COMMON VM APDUS ... e e e e e 5-25
Table 5-13: ACRSs assigned to the CommOon VM CEl ...ccoooiiiiiiiiii e 5-26
Table 5-14: Applet INfOrmation SEHNG ...ccooeeeeee e 5-33
Table 5-15: ACR TADIE ..oiieiiiieiieeie et e e et e e e e e e e e e e eaaeeeeeeansntannnaeeeeeeeaannes 5-33
Table 5-16: Applet/Object ACR TabIe.......c..uuiiiiiiie et 5-34
Table 5-17: Access Method Provider Table.........cooviiiiiiiiiiiieiiiiiiieeeee e 5-34

Xii



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 5-18: Service APPIEt TADIE.......cooiiiiiiiiiiiee e e 5-36
Table 5-19: Applet/Object ACR table for a Single OBbJject ........ccovvevvieiiii 5-36
Table 5-20: Access Method Provider Table ......cccoooo oo 5-37
Table 5-21: Service APPIEt TADIE......ccooiiiiiiiiiie e e e 5-37
Table 5-22: Generic Container VIV APDUS ......coiiiiiie e 5-41
Table 5-23: Symmetric KEY VIM APDUS .....uiiiiiii i 5-44
=T o) (= A O O O = [ TR 6-5
Table 6-2: Tuple BYte DESCHPLIONS . ...cciiiiitiiiiiieeeeee ittt e e e e s e st ee e e e e e e s s sibbb e e e e e e e e e s aneeeees 6-8
Table 6-3: Parameter and FUNCHON COUBS ... .. aa e e 6-9
TaDIE B-4: StALUS TUPDIES ... e a s e a e e e e e e e e e e e e e e e e e e e e e e e e e aas 6-10
Table 6-5: Standard Status Code RESPONSES .......cvvuvviiiiiiieeeeiiiiiiieeee e e e e e e 6-10
Table 6-6: Default vs. Schlumberger DE APDUL........cccoooiiiiiiii e 6-12
Table 6-7: Tuple Creation SEOUENCE ... cccoei e et e e e e e e e e e e e e e e e aaaaaaens 6-13
Table 6-8: Derived SeleCt DE TUPIE.......co.uuiieiiiieee ettt e e 6-13
Table 6-9: Example of Extended FUNCLION COAE .....cccoeeeiieeieii e 6-14
Table 6-10: DESCHPIOr COUES ...uuuuuuuuuiiia e a e e e e e e e e e e e e e e e e e e s e e e e e e e e e aaeeans 6-15
Table E-1: BSI functions using the discovery method ..., E-2

Xiii



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

Xiv



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

1. Introduction

1.1 Background

A typical configuration for a smart card system consists of a host computer with one or more smart card
readers attached to hardware communications ports. Smart cards can be inserted into the readers, and
software running on the host computer communi cates with these cards using a protocol defined by SO
7816-4 [1SO4] and 7816-8 [1SO8]. The SO standard smart card communications protocol defines
Application Protocol Data Units (APDU) that are exchanged between smart cards and host computers.
This APDU based interface is referred to as the “virtua card edge”’ and the two terms are used
interchangeably.

Client applications have traditionally been designed to communicate with | SO smart cards using the
APDU protocol through low-level software drivers that provide an APDU transport mechanism between
the client application and asmart card. Smart card families can implement the APDU protocol in a
variety of ways, so client applications must have intimate knowledge of the APDU set of the smart card
they are communicating with. Thisis generally accomplished by programming a client application to
work with a specific card, since it would not be practical to design aclient application to accommodate
the different APDU sets of alarge number of smart card families.

The tight coupling between client applications and smart card APDU sets has several drawbacks.
Applications programmers must be thoroughly familiar with smart card technology and the complex
APDU protocol. If the cardsthat an application is hard coded to use become commercially unavailable,
the application must be redesigned to use different cards. Customers also have less freedom to select
different smart card products, since their applications will only work with one or a small number of
similar cards.

This Government Smart Card Interoperability Specification (GSC-IS) provides solutions to a number of
the interoperability challenges associated with smart card technology. The origina version of the GSC-IS
(version 1.0, August 2000) was developed by the GSC Interoperability Committee led by the General
Services Administration (GSA) and the National Institute of Standards and Technology (NIST), in
association with the GSA Smart Access Common Identification Card contract.

1.2 Scope, Limitations, and Applicability of the Specification

The GSC-IS defines an architectural model for interoperable smart card service provider modules,
compatible with both file system cards and virtual machine cards. Smart cards using both the T=0 and
T=1[I1SO3] communications protocols are supported. The GSC-1S includes a Basic Services Interface
(BSI), which addresses interoperability of a core set of smart card services at the interface layer between
client applications and smart card service provider modules. The GSC-1S also defines a mechanism at the
card edge layer for interoperation with smart cards that use awide variety of APDU sets, including both
file system cards and virtual machine cards.

Interoperability is not addressed for the following areas:
m  Smart card initialization
m  Cryptographic key management

m Communications between smart cards and card readers



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

m  Communications between smart card readers and host computer systems.

1.3 Conforming to the Specification

A smart card service provider module implementation that claims conformance to the GSC-I1S must
implement each of the following:

m The Architectural Model, as defined in Chapter 2

m The Access Control Model, as defined in Chapter 3

m TheBasic Services Interface, as defined in Chapter 4

m TheVirtual Card Edge Interface, as defined in Chapter 5
m The Card Capabilities Container, as defined in Chapter 6
m Container Naming, as defined in Chapter 7

m  Support for both of the Container Data Models defined in Chapter 8 and the appropriate
Appendices

m At least onelanguage binding for BSI Services, as defined in the Appendices.

A smart card that claims conformance to the GSC-1S must support each of the following:

m TheArchitectural Model asit relates to smart cards, i.e., as defined in sections 1, 4, 5, and 6 of
Chapter 2

m The Access Control Model, as defined in Chapter 3

m Either thefile system card edge interface or the VM card edge interface, as defined in Chapter 5
m The Card Capabilities Container, as defined in Chapter 6

m Container Naming, as defined in Chapter 7

m Oneof the Container Data Models defined in Chapter 8 and the appropriate Appendix. The
Access Control File and associated SEIWG string defined in Appendix C are mandatory for
contact-type GSC cards, and the SEIWG container defined in Appendix G is mandatory for
contactless GSC cards.

As used in this document, the conformance keywords “shall” and “must” (which are interchangeable)
denote mandatory features of the GSC-1S. The keyword “should” denotes a feature that is recommended
but not mandatory, while the keyword “may” denotes a feature whaose presence or absence does not
preclude conformance.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

2. Architectural Model

2.1 Overview

The GSC-IS providesinteroperability at two levels: the service call level and the card command (APDU)
level. A brief explanation of these interoperability levels follows:

m ServiceCall Level: Thislevel isconcerned with functiona calls required to obtain various
services from the card (e.g., encryption, authentication, digital signatures, etc.). The GSC-I1S
addresses interoperability at thislevel by defining an Applications Programming Interface (API)
called the Basic Services Interface (BSl) that defines acommon high level model for smart card
services. The module that implements the BSI and provides an interoperable set of smart card
servicesto client applicationsis called the Service Provider Module (SPM). These services are
logically divided into three modules that provide utility, secure data storage, and cryptographic
services. Since an SPM generally will be implemented through a combination of hardware and
software, the software component of the SPM isreferred to as the Service Provider Software
(SPS).

m Card Command Level: Thislevel isconcerned with the exact APDUs (1SO4) that are sent to
the card to obtain the required service. The GSC-1S addresses interoperability at thislevel by
defining the API called the Virtual Card Edge Interface (V CEl) that consists of a card-
independent standard set of APDUSs that support the functions defined in the BSI and
implemented by the SPM.

The SPM is a combination of both these levels and it includes:

m  SPS, implementing both BSI and VCEI interfaces
m  Smart card reader driver

m  Smart card reader

m  GSC-IS conformant smart card

Certain data sets need to be available in the card to support the interoperability provided by the BSI and
VCEI. To ensurethat thereis astandard format (or schema) for storing these data sets, and to enable
uniform access and interpretation, the GSC-1S defines Data Models (DM). These Data Models provide
data portability across GSC-1S conformant card implementations, ensuring that a core set of data elements
isavailable on all cards. The storage entities for various categories of data sets are called containers. One
of these containers, the Card Capability Container (CCC), describes the differences between a smart

card' s native APDU set and the standard APDU set defined by the VCEI. An SPS retrieves a smart
card’s CCC and uses it to perform the trandlation between the VCEI and the card’' s native APDU set. The
GSC-IS accommodates any smart card whose APDU set can be mapped to the VCEI viaa CCC
definition.

The components of the GSC-IS architecture are presented in Figure 2-1 and are further described in
Sections 2.2 - 2.8. All abjects below the client application layer are components of the SPM.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Client Application

[ Basic Services I nterface (BSI) Extended Service I nterface(s) (XSI)
# Host
B _ )

Card Reader Driver

/

___ Smart Card

SPM< Card Reader Reader

GSC-IS Compliant Smart Card

B

Figure 2-1: The GSC-IS Architectural Model

J

2.2 Basic Services Interface Overview

All Smart Card Service Provider Modules shall implement the BSI. The BSI islogically organized into
three provider modules:

m Utility Provider Module: Provides utility services for obtaining alist of available card readers,
establishing and terminating logical connections with a smart card, etc.

m Generic Container Provider Module: Provides a unified abstraction of the storage services of
smart cards, presenting applications with a simple interface for managing generic containers of
data elementsin Tag/Length/Vaue format [1SO4].

m Cryptographic Provider Module: Provides fundamental cryptographic services such as random
number generation, authentication, and digital signature generation.

The capahilities of a given SPM depend on the smart card available to the SPM when a client application
reguests a service through aBSlI call. In caseswhere aservice is not available, the BS| call shall return an
error code indicating that the requested serviceis not available. For example, auser may insert a smart
card that does not have public key cryptographic capabilities and then perform an operation that causes a
client application to request adigital signature calculation from the associated SPM. Since the smart card
cannot provide this service, the BSI shall return a“service not available” error code to the client
application.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

2.3 Extended Service Interfaces Overview

Because the BSI is not a complete operational interface, real world SPM implementations may support
additional functionality outside the BSI domain. Because the BSI provides an interoperable interface, it is
unable to address the varying operational requirements. Therefore, real world SPM implementations may
support additional functionality outside the BSI domain. An SPM may therefore include an Extended
Service Interface (X Sl) that provides non-interoperable, but operationally required, functions. Since XSls
are implementation and application specific, they are accommodated by the GSC-IS architectural model
but are not defined in the GSC-IS. Card initialization and cryptographic key management are examples
of functions that must currently be implemented in the XSI domain.

2.4 Virtual Card Edge Interface Overview

SO 7816-4 [1SO4] defines ahierarchical file system structure for smart cards. Smart cards that conform
to SO 7816-4 [1SO4] are therefore known as “file system” cards. The Card Operating System program
of afile system card is usually hard coded into the logic of the smart card integrated circuit during the
manufacturing process and cannot be changed thereafter.

In recent years other smart card architectures have been created that allow developers to load executable
programs onto smart cards after the cards have been manufactured. As one example, JavaCard™ [JAVA]
defines a Java Virtual Machine (VM) specification for smart card processors. Developers can load
compiled Java applets onto a smart card containing the JavaCard™ VM, programmatically changing the
behavior of the card.

A virtual machine card is one that can be extended by loading executable programs after the card has been
manufactured. This Specification uses the term “virtual machine smart card” in the general sense. A
virtual machine smart card can theoretically be programmed to support any communications protocol,
including the APDU based protocols of the SO 7816-4 [ISO4] and 7816-8 [| SO8] standard.

The GSC-IS VCEI defines default sets of interoperable APDU level commands for both virtual machine
and file system smart cards. The SPS of an SPM shall use the information provided by a smart card’s
CCC to map that card’ s native APDU set to the VCEI default set. The VCEI shall consist of:

m A card edge definition for file system cards
m A card edge definition for VM cards, composed of three providers:
— A generic container provider
— A symmetric key (SKI) cryptographic service provider
— A public key infrastructure (PKI) cryptographic service provider.
2.5 Roles of the BSI and VCEI

The service provider modules of the BS| are a higher level abstraction of the card level providers.
Standardization at the VCEI layer establishes interoperability between any GSC conformant SPS and any
GSC conformant smart card. Similarly, standardization at the BSI layer establishes interoperability
between any GSC conformant application and any GSC conformant SPS. Vendor neutrality is assured
because GSC smart cards are interchangeable at the VCEI and GSC SPSs are interchangeable at both the
BSI and VCEI.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

2.6 GSC-IS Data Model Overview

Each GSC-IS conformant smart card shall conform to a GSC-1S Data Model. GSC-IS Data Models
define the set of containers and data elements within each container for cards supporting that Data Model.
The GSC-IS defines two Data Models: the GSC Data Model (Appendix C) (formerly referred to asthe
J.8 Data Model in GSC-1Sv1.0) and the U.S. Department of Defense Common Access Card Data M odel
(Appendix D). The following containers are mandatory in either Data Model:

m CCC for contact and contactless cards and
m  Access control file with SEIWG [SEIW] string for contact cards or
m  SEIWG container and SEIWG [SEIW] string for contactless cards.

The remaining containers and data elements are optional. However, if an implementation requires any of
the containers and data elements defined in the Data M odel s, the containers and data el ements must
conform to the Data Model definitions. Data Model requirements are presented in Chapter 8.

Containers are accessed through the Generic Container Provider Module of the BSI. Accessto the
containers are subject to the Access Control Rules (ACR) defined in Chapter 3.

This document uses the terms “file,” “container,” and “object” synonymously.
2.7 Card Capabilities Container Overview

Each GSC-IS conformant card shall carry a Card Capabilities Container. The CCC is one of the
mandatory containers that must be present in all GSC-1S Data Models. The purpose of the CCC isto
describe the differences between a given card’s APDU set and the APDU set defined by the GSC-IS
Virtual Card Edge Interface. The GSC-1S provides standard mechanisms for retrieving a CCC from a
smart card (Section 6.2). Once the CCC for a particular card is obtained, software on the host computer
(specifically, the SPS) uses this information to transate between the V CEI and the card’ s native APDU
set. Deviations from the card’s Data Model structure are represented in a CCC.

The CCC allows each GSC-IS conformant smart card to carry the information needed by the SPS to
communicate with that card. This general mechanism for dynamically translating APDU sets eliminates
the need to distribute, install, and maintain card specific APDU level drivers on host computer systems.

The rulesfor constructing avalid CCC are defined in Section 6.3. All GSC-1S smart cards shall contain a
CCC that conforms to this specification.

2.8 Service Provider Software Overview

The SPS component of an SPM shall implement the BSI and the VCEI. It isresponsible for retrieving
CCCsfrom cards, using this information to translate between the smart card’ s native APDU set and the
VCEl, and for handling the details of APDU level communications with the card. SPS implementations
work with a particular card reader driver layer that transports APDUSs between the SPS and the smart
card.

2.9 Card Reader Drivers

The GSC-IS does not address interoperability between smart card readers and host computer systems.
Severa specifications already exist in this area, including the Personal Computer Smart Card (PC/SC,



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

[PCSC]) specification and the OpenCard Framework (OCF, [OCF]). The choice of card reader driver
software is influenced to some degree by the operating environment, although PC/SC and OCF have been
ported to various operating systems.

Because card reader driver solutions are available and severa of these have been widely adopted, the
GSC-1S allows devel opers the freedom to choose any card reader driver that provides the reader level
services required by the SPSlayer including:

m Transport of “raw” (unprocessed) APDUs between the SPS layer and the smart card,
m Functionsto provide alist of available readers,
m And to establish and terminate logical connections to cards inserted into readers.

Proprietary card reader drivers can also be used as long as they provide the raw APDU transport and card
reader management functions required by an SPS. Some applications may have unique requirements that
mandate a special purpose card reader. For example, the configuration required by a physical access
control application may not be able to accommodate a PC/SC or OCF card reader driver layer and would
therefore require a custom card reader driver.

The decision not to include a card reader driver layer specification in the GSC-IS has important
consequences. Thisimplies a pair-wise relationship between an SPS and the card reader driver. An SPS
implementation works with a specific card reader driver and is constrained to operate with the card
readers supported by that driver. The degree of interoperability between card readers and host computer
systemsis entirely determined by the card reader driver component.

In cases where an industry standard card reader driver component is chosen, it is possible to take
advantage of existing conformance test programs and select from arange of commercially available,
conformant card readers. If aspecial purpose (proprietary) card reader driver is chosen, these options
may not be available. In some cases proprietary card reader drivers work only with proprietary card
reader designs, and may therefore require development of special purpose conformance test programs.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

2-8



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

3. Access Control Model

The smart card services and containers provided by a SPM are subject to a set of Access Control Rules
(ACR). ACRs are defined for each card service and default container when a GSC-IS conformant smart
card isinitialized. The card level service providers are responsible for enforcing these ACRs and shall
not provide a given service until the client application has fulfilled the applicable access control
requirements. The GSC-1S specifies a discovery mechanism that allows client applications to determine
the ACRs for a specific service provider or container.

It isimportant to note that an SPS acts as a transport and reformatting mechanism for the exchange of
authentication data, such as PINs and cryptograms, between client applications and smart cards. When a
client application and smart card service provider establish a security context, the primary job of the SPS
isto reformat BSI level authentication structures into APDU level VCEI structures and vice versa. The
current GSC-1S model does not include a mechanism for authenticating an SPS, and the SPSis not
responsible for enforcing ACRSs.

3.1 Available Access Control Rules
The ACRs available at the BS| level are as follows:

m Always: The corresponding service can be provided without restrictions.
m Never: The corresponding service can never be provided.

m External Authenticate: The corresponding service can be provided only after aGET
CHALLENGE and subsequent EXTERNAL AUTHENTICATE APDUs.

m PIN Protected: The corresponding serviceis provided if and only if the verification code of the
PIN associated with the service has been provided in the current card session.

m  PIN Always. The corresponding service can be provided only if its associated PIN code has
been verified immediately before each unique service request.

m External Authenticate or PIN: Either one of the two controls gives access to the service. This
allows for a cardholder validation when a PIN pad is available and for an external authentication
when no PIN pad isavailable. Or, this provides an authentication method when the application
cannot be trusted to perform an external authentication and to protect the external authentication

key.

m External Authenticatethen PIN: Thetwo methods must be chained successfully before access
to the serviceis granted. Thisallows the authentication of both the client application and the
user.

m External Authenticate and PIN: The two methods must be chained successfully before access
to the serviceis granted. Order of the methodsis not important.

m PIN then External Authenticate: The PIN presentation is followed by an External
Authentication.

m Secure Channel (GP): The corresponding service can be provided only through a Secure
Channel managed by a Global Platform [GLOB] Secure Messaging layer.

m Update Once: A target object can only be updated once during its lifetime.

31



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

m  Secure Channel (1SO): The corresponding service can be provided through a Secure Channel
managed by an 1SO [ISO4],[1SO8] Secure Messaging layer.

BSI-level ACRs are alogical combination of primitive access methods. The BSI-level access methods
and associated hexadecimal values are summarized in the Table 3-1. Hexadecimal values are assigned to
the unAccessMethodType member of the BS1Authenticator structure defined in Section 4.5.3.

Table 3-1: BSI Access Method Types

Access Method Type | Value | Meaning ‘
BSI_AM_XAUTH 0x02 External Authentication.
BSI1_AM_SECURE_CHANNEL_GP 0x04 Secure Channel (Global Platform)
BSI_AM_PIN 0x06 PIN code is required
BSI1_AM_SECURE_CHANNEL_1SO 0x0B Secure Channel (ISO 7816-4)

The BSI-level ACRs and associated hexadecimal values are summarized in Table 3-2. Hexadecimal
values are returned in the ACRType member of the BSI1Acr structure defined in Section 4.6.3. The
BSIAcr structure is present in the members of the GCacr structure defined in Section 4.6.3 and the
CRYPTOacr strucuture defined in Section 4.7.5.

Table 3-2: BSI Access Control Rule Types

Access Control Rule Logical
Type Access Method List | Relation | value Meaning
(ACRType) be:’,:’/lie”
BSI ACR ALWAYS _ - 0x00 No access control rule is
- - required
BS1_ACR_NEVER — - 0x01 | Operation is never possible
BS1_ACR_XAUTH BSI_AM_XAUTH - 0x02 | External Authentication
The object method can be
BSI1_AM_XAUTH, accessed either after an External
Bg :NACR—XAUTH—OR BSI1_AM_PIN OR 0x03 | Authentication or after a
— successful PIN presentation
BSI1_SECURE_CHANN | BSI_AM_SECURE_ 0x04 ﬁgct;gfm‘):ha””e' (Global
EL_GP CHANNEL_GP
BSI_ACR_PIN_ALWA | BSI_AM_PIN oxos | PIN must be verified immediately
vs — —  ~ — = prior to service request
BSI1_ACR_PIN BSI_AM_PIN - 0x06 | PIN code is required
BS1_AM_XAUTH, External Authentication followed
BSI_ACR_XAUTH_TH BSI_AM_PIN AND 0x07 by a PIN presentation
EN_PIN - =
BSI_ACR_UPDATE_O _ _ 0X08 The target object _can_onl_y b_e
NCE updated once during its lifetime




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Access Control Rule Logical
Type Access Method List | Relation Meaning
(ACRType) be/ivlfﬂie”
BSI_AM_PIN, PIN presentation followed by
BSI_ACR_PIN_THEN BS1_AM_XAUTH AND 0x09 External Authentication
_XAUTH - =
Reserved for
future use B B Ox0A | RFU
BS1_SECURE_CHANN | BSI_AM_SECURE_ — 0x0B | Secure Channel (ISO 7816-4)
EL_1SO CHANNEL_I1SO
PIN presentation AND External
BS1_AM_XAUTH, Authentication in any order are
BS1_ACR_XAUTH_AN BSI AM PIN AND 0x0C required.
D_PIN - =
0x0D-
Reserved for future use — — OXEE RFU

The External Authentication method shall conform with 1SO 7816-4 [1SO4] and 7816-8 [I1SO8]. The
mandated cryptographic algorithm is DES3-ECB [DES], with a double length key-size 16 bytes and a
challenge of 8 bytes. This method is described in Section 3.3.2.

The ACR for the Secure Channel implies cryptographic operations performed at the APDU level. A pass-
through function is provided in the BSI (Section 4.5.13) to alow applications to create a secure channel
and operate inside this channel.

3.2 Determining Containers

Applications can retrieve the ACR that must be fulfilled to access a specific service or container. ACR
retrieval processes are defined for each provider module as follows:

m Utility Service Provider Module: No access control is applied.

m Generic Container Service Provider Module: ACRsfor generic container services are encoded
in the GCacr structure returned by the function gscBsiGcGetContainerProperties().

m Cryptographic Service Provider Module: ACRsfor cryptographic services are encoded in the
CRYPTOacr structure returned by the function gscBsiGetCryptoProperties().

Each of the services associated with a provider module have a different set of allowable ACRs. When a
provider moduleis created (instantiated), the module creator must assign the ACRs for each of the
services provided by the module from the set of supported ACRs, listed in Tables 3-3 and 3-4.

3-3



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 3-3: ACRs for Generic Container Provider Module Services

Service ‘ ACR supported

BSI_ACR_ALWAYS
BSI_ACR_NEVER

gscBsiGceDataCreate() BSI_ACR_PIN
BSI1_ACR_XAUTH
BSI_ACR_ALWAYS

gscBsiGecDataDelete() ool

BS1_ACR_PIN
BS1_ACR_XAUTH
BS1_ACR_ALWAYS
gscBsiGcReadTagList() BS1_ACR_PIN
BS1_ACR_XAUTH
BS1_ACR_ALWAYS
gscBsiGcReadValue() BSI_ACR_PIN
BS1_ACR_XAUTH
BS1_ACR_ALWAYS
BS1_ACR_NEVER
gscBsiGeUpdateValue() BSI_ACR_PIN
BS1_ACR_XAUTH
BS1_ACR_UPDATE_ONCE
gscBsiGeGetContainerProperties() | BSI_ACR_ALWAYS

Table 3-4: ACRs for Cryptographic Provider Module Services

Service ‘ ACR supported

gscBsiGetChallenge() BSI_ACR_ALWAYS
BSI_ACR_ALWAYS
gscBsiSkilnternalAuthenticate() BSI_ACR_PIN
BSI_ACR_XAUTH
BSI_ACR_ALWAYS
BSI_ACR_PIN

gscBsiPkiCompute() BSI_ACR_PIN_ALWAYS
BS1_ACR_XAUTH
BS1_ACR_ALWAYS

gscBsiPkiGetCertificate() BSI_ACR_PIN
BSI_ACR_XAUTH

gscBsiGetCryptoProperties() BSI_ACR_ALWAYS

Note: When using the gscBsiPkiCompute() function for signature operation, it is highly
recommended that the implementation require BS1_ACR_PIN_ALWAYS for access control.

3.3 Establishing a Security Context
Once aclient application has determined the ACR associated with a service or a container, it must
establish a security context with the card. To fulfill the ACR for a container or service, the application

buildsaBS1Authenticator data structure and passesit in acall to the
gscBsiUtilAcquireContext() function.

Establishing a security context involves authentication of the partiesinvolved in the service exchange.
These parties include the user executing the client application, the client application itself, and the smart

3-4



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

card. The GSC-1S ACRs are based on three general authentication mechanisms: PIN Verification,
External Authentication, and Secure Messaging.

The External Authentication method assumes that the authentication key has been formerly distributed to
both parties (client application and smart card) in a secure way.

It isimportant to note that at the smart card level, the privileges are granted sequentially. Prior to
acquiring anew privilege, the client application shall release the previously acquired security context, if
any exists, by calling the BSI’sfunction gscBsiUti IReleaseContext() .

Sections 3.3.1 through 3.3.3 describe typical BSI call sequences that a client application would use for
each of the three authentication mechanisms in order to acquire the context for the desired smart card
service.

3.3.1 PIN Verification

For aPIN Verification known aso as Card Holder Verification (CHV), the client application would make
the following calls:

m Establish alogical connection with the card through a call to the BSI’ s function
gscBsiUtiIConnect().

m Retrievethe ACRsfor adesired card service through a call to either
gscBsiGeGetContainerProperties() or gscBsiGetCryptoProperties(). These
interface methods return the ACRs for all services available from the smart card (Sections 4.6.3
or 4.7.5, respectively). If PIN Verification is required for a particular service (e.g.,
gscBsiGcReadValue() or gscBsiPkiCompute()), the ACR returned in the GCacr or
CRYPTOacr structure for this service must be BS1_ACR_PIN.

m Cal gscBsiUtilAcquireContext() withthe BS1Authenticator structures required to
satisfy the ACR for the desired smart card service. In this example, for PIN verification, the BSI
Authenticator structure shall contain the PIN value in the authvalue field and
accessMethodType set to BS1_ACR_PIN.

m Accessthe desired smart card service through subsequent BSI calls.
m Cal gscBsiUtilReleaseContext() to release the security context.

3.3.2 External Authentication

A typical BSI sequence of callsfor an External Authentication:

m Establishalogical connection with the card through a call to gscBsiUtilConnect().

m Retrievethe ACRsfor adesired card service provider through a call to either
gscBsiGeGetContainerProperties() or gscBsiGetCryptoProperties(). These
interface methods return the ACRs for all services available from the smart card (Section 4.6.3 or
Section 4.7.5 respectively). If External Authentication isrequired for a particular service (e.g.,
gscBsiGcReadValue() or gscBsiPkiCompute()), the ACR returned in the GCacr or
CRYPTOacr structure for this service must be BS1_ACR_XAUTH.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Call gscBsiGetChal lenge() to retrieve arandom challenge from the smart card. The random
challenge is retained by the smart card for use in the subsequent verification step of the External
Authentication protocol. The client application calculates a cryptogram by encrypting the
random challenge using a symmetric External Authentication key. The client application may
need to examine the key 1DOrReference member of the appropriate ACR returned in GCacr or
CRYPTCQacr to determine which External Authentication key it should use to encrypt the random
challenge.

The client application callsthe BSI'sgscBsiUti lAcquireContext() function passing the
cryptogram computed in the previous step.

The smart card decrypts the Authenticator using its External Authentication key, and verifies that
the resulting plaintext value matches the origina random challenge value.

Access the desired smart card service through subsequent BSI calls.

Cdl gscBsiUti IReleaseContext() to release the security context.

3.3.3 Secure Messaging

Secure messaging involves the establishment of a secure channel between the client application and the
smart card at the APDU level. The BSI provides a pass-through call that allows a client application to
establish adirect APDU level secure channel with acard in accordance with the Global Platform [GLOB]
or 1SO 7816-4 [1SO4]



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4. Basic Services Interface

4.1 Overview

An SPM must provideaBSI. Client applications communicate with the SPM through thisinterface. The
SPS component of the SPM is directly responsible for implementing the BSI.

This chapter defines the BSI services, using notation similar to Interface Definition Language (IDL)
which isreferred to as pseudo IDL throughout this document. The set of services consists of 23 functions
grouped into three functional modules as follows:

A Smart Card Utility Provider Module:

m gscBsiUtilAcquireContext()

m gscBsiUtilConnect()

m gscBsiUtilDisconnect()

m gscBsiUtilBeginTransaction()
m gscBsiUtilEndTransaction()

m gscBsiUtilGetVersion()

m gscBsiUtilGetCardProperties()
m gscBsiUtilGetCardStatus()

m gscBsiUtilGetExtendedErrorText()
m gscBsiUtilGetReaderList()

m gscBsiUtilPassthru(Q)

m gscBsiUtilReleaseContext()

A Smart Card Generic Container Provider Module:
m gscBsiGcDataCreate()
m gscBsiGcDatabDelete()
m gscBsiGcGetContainerProperties()
m gscBsiGcReadTagList()
m gscBsiGcReadValue()
m gscBsiGcUpdatevalue()

A Smart Card Cryptographic Provider Module:

m gscBsiGetChallenge()



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

m gscBsiSkilnternalAuthenticate()
m gscBsiPkiCompute()
m gscBsiPkiGetCertificate()

m gscBsiGetCryptoProperties()

All SPM implementations must provide the full set of 23 functions as specified in this chapter. Based on
the capabilities avail able, a given function call may return aBS1_NO_CARDSERVICE or BSI_NO
SPSSERVICE error message in case the SPM does not provide the requested service. This error message
may be returned by any BSI function that maps directly to a card-level operation, as follows:

m gscBsiUtilGetCardProperties()

m gscBsiGcecDataCreate()

m gscBsiGcecDataDelete()

m gscBsiGcGetContainerProperties()
m gscBsiGcReadTagList()

m gscBsiGcReadValue()

m gscBsiGcUpdatevalue()

m gscBsiGetChallenge()

m gscBsiSkilnternalAuthenticate()
m gscBsiPkiCompute()

m gscBsiPkiGetCertificate()

m gscBsiGetCryptoProperties()

Extensionsto the BSI, in the form of an XSl (see Section 2.3), may be present in an implementation to
allow additional functionality. The functionsin an XSl shall not alter the specified behavior or semantics
of the BSI functionsin that implementation.

ACRsfor each provider module are defined in Chapter 3, Table 3-2, Table 3-3, and Table 3-4. Section
4.4 defines BSI return codes and Section 4.5 defines 23 functions of the BSI, using pseudo IDL.

4.2 Binary Data Encoding

BSI functions accept or return binary data, such as cryptograms. However, some of the BSI services may
pass or get some ASCII or ASCII hexadecimal formatted data depending on the usage. In this case, each
of the servicesinvolved must explicitly mention this and which of its parameter(s) is/are impacted.

4.3 Mandatory Cryptographic Algorithms

The following cryptographic algorithms and associated algorithm identifiers are mandatory for all GSC
smart cards. These algorithm ID values are used as parameters at the BS| level.

4-2



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

m Algorithm Identifier “Ox81”: DES3-ECB, with adouble length key-size, 16 bytes.

m  Algorithm Identifier “OxA3": RSA_NO_PAD, the private key computation, Chinese Remainder.

m Algorithm Identifier “0x82": DES3-CBC, with a double length key-size, 16 bytes.

4.4 BSI| Return Codes

Table 4-1 lists al possible errors that BSI functions could return. For each function description
(Sections 4.5.3 to 4.7.5), return codes are listed in order of precedence, except for the successful return

with BSI_OK.

Label

Table 4-1: BSI Return Codes

Return Code

Hexadecimal Value

Meaning

BSI_OK 0x00 Execution completed successfully.
BS1_ACCESS_DENIED 0x01 The applicable ACR was not fulfilled.
BSI1_ACR_NOT_AVAILABLE 0x02 The specified ACR is incorrect.
BSI BAD AID 0x03 The specified Application Identifiers (AID) does
- - not exist.
BSI BAD ALGO ID 0x04 Thg specified cryptographic algorithm is not
- = - available.
BSI1_BAD_AUTH 0x05 Invalid authentication data.
BSI1_BAD_HANDLE 0x06 The specified card handle is not available.
BSI BAD PARAM 0x07 Qne or more of the specified parameters is
- = incorrect.
BS1_BAD_TAG 0x08 Invalid tag information.
BSI CARD ABSENT 0x09 The sm_art card associated with the specified card
- - handle is not present.
BSI CARD REMOVED OXOA The smart card associated with the specified card
- - handle has been removed.
BSI1_NO_SPSSERVICE 0x0B The SPS does not provide the requested service.
BSI 10 ERROR OXOC Error_ _encountered during input/output of the
- - specified data.
- 0x0D RFU
BSI INSUEEICIENT BUEFER OXOE The buffer allocated by the calling application is
- - too small.
BSI NO CARDSERVICE OXOF The smart card assoqiated with the specifieq card
- - handle does not provide the requested service.
BSI NO MORE SPACE 0x10 Therg is insufficient space |n the selected
- - - container to store the specified data.
BS1_PIN_BLOCKED 0x11 The PIN is blocked.
- 0x012 RFU
BSI TAG EXISTS ox13 Th.e tag specified for a cr.eate operation already
- - exists in the target container.
BSI_TIMEOUT ERROR ox14 A connection could not be established with the

smart card before the timeout value expired.




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Return Code
Hexadecimal Value

Meaning

The card reader has performed a successful
authentication exchange with the smart card.

BS1_NO_TEXT_AVAILABLE 0x16 No extended error text is available.

The requested operation has generated an
unspecified error.

BS1_UNKNOWN_READER 0x18 The specified reader does not exist.

The smart card associated with the specified card
handle is under the exclusive transaction of

BSI_TERMINAL_AUTH 0x15

BSI1_UNKNOWN_ERROR 0x17

BS1_SC_LOCKED 0x19 another client application (see blocking mode in
Section 4.5.6)
BS1_NOT_TRANSACTED 0x20 The current transaction has not ended.

4.5 Smart Card Utility Provider Module Interface Definition

Section 4.5.1 presents the pseudo IDL used to define the 23 functions of the BSI services.

4.5.1 Pseudo IDL Definition

Using a modified Backus-Naur notation, a definition for the pseudo IDL is presented as follows:
BSI1_IDL Definition: (BSI _Function_Unit, .)

BS1_Function_Unit:(
Function_Prototype:

(
[Return_Type], // See below for possible values
Function_Name,
[Parameters™*: (
Way: {“IN” | “OUT” | “INOUT},
Parameter_Type, // See below for possible values
Parameter_Name
)
1
)
(Return_Type | Paramater_Type) : Type
Type: “unsigned long”
| “string”
| “boolean”
| “short”
| “sequence” +<Type> // represent a sequence of element of type “Type”
| “GCacr” // structure
| “GCContainerSize” // structure
| “CRYPTOacr” // structure
| “BSIAuthenticator” // structure
| “BS1Acr” // structure

Thetypes GCacr, GCContainerSize, CRYPTOacr and BS1Authenticator are structure. The
definition of a structure is asfollows:

Struct _Definition: (Struct_Definition, .)

4-4



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Struct _Definition: (
“struct” structure_Name “{*
Struct_Parameters*:

(

Parameter_Type, // See above for possible values
Parameter_Name

)
ey

45.2 Rules

A description of the symbolsused isin Table 4-2.

Table 4-2: Description of Symbols

Symbol ‘ Meaning
is composed of
[] optional element
) includes or included in

, separates elements

element repeats unspecified number of times

{} choose one from list

| or, indicates choice of possibilities for element
value

+ element is combined with preceding element

1 remainder of line contains comments

contains a value

* number of elements is zero or several

Tables 4-3 and 4-4 are the pseudo IDL to Java and pseudo IDL to C mappings for the different types
specified above.

Table 4-3: Mapping Pseudo IDL to Java

IDL type Java type

unsigned long int

String byte[] or Java.lang.String (depending on the format : binary,
ASCII or ASCII hex.)

Boolean boolean

octet (unsigned 8 bits type) short

sequence + <Type> <Type>[] or Vector of Type

Gceacr class Gcacr

GCContainerSize class GCContainerSize

CRYPTOacr class CRYPTOacr

BSIAcr Class BSIAcr




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 4-4: Mapping Pseudo IDL to C

IDL type C type

unsigned long

unsigned long

String

unsigned char *

Boolean

boolean

octet (unsigned 8 bits type)

unsigned char

sequence + <Type>

<Type>[] (for byte see below)

sequence<byte> unsigned char *

Gceacr struct Gceacr

Gctag unsigned char
GCContainerSize struct GCContainerSize
CRYPTOacr struct CRYPTOacr
BSIAcr struct BSIAcr

String (with n characters max, null terminated) char[n]




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.3 gscBsiUtilAcquireContext()

Pur pose:

Prototype:

Parameters:

This function shall establish a session with atarget container on the smart card by
submitting the appropriate Authenticator in the BS1Authenticator structure. For
ACRs requiring external authentication (XAUTH), the authvalue field of the
BS1Authenticator structure must contain a cryptogram calculated by encrypting a
random challenge from gscBsiGetChal lenge(). In cases where the card
acceptance device authenticates the smart card, this function returns a
BSI_TERMINAL_AUTH return code and the cryptogram is ignored.

For ACRs that require chained authentication such asBS1_ACR_PIN_AND_XAUTH,
the calling application passes in the required authenticators in multiple
BSIAuthenticator structures. Inthisexample the calling application passes a
PIN and the appropriate External Authentication cryptogram in two
BSIAuthenticator structures. The client application must set the
accessMethodType field of each BS1Authenticator structure to match the type
of authenticator contained in the structure. To satisfy an ACR of
BSI_ACR_PIN_AND_XAUTH, the application would construct a sequence of two
BS1Authenticators: one containing a PIN and one containing an External
Authentication cryptogram. The BS1Authenticator structure containing the PIN
would have an accessMethodType of BS1_AM_PIN, and the BS1Authenticator
structure containing the External Authentication cryptogram would have an
accessMethodType of BS1_AM_XAUTH.

unsigned long gscBsiUtilAcquireContext(

IN unsigned long hCard,

IN string AID,

IN sequence<BSlAuthenticator> strctAuthenticator,

IN unsigned long authNb
R
hCard: Card connection handle from gscBsiUtiIConnect().
AID: Target container AID value. The parameter shall bein

ASCII| hexadecimal format.

strctAuthenticator: A sequence of structures containing the authenticator(s)
specified by the ACR required to access avaluein the
container. Therequired list of authenticatorsis returned
by gscBsiGcGetContainerProperties(). The
calling application is responsible for alocating this
structure.

authNb: Number of authenticator structures contained in
strctAuthenticator.

The BSI1Authenticator structure is defined as follows:

struct BSIAuthenticator {
unsigned long accessMethodType;
unsigned long keylDOrReference;



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

sequence<byte> authValue;
};
Variables associated with the BS1Authenticator structure:

accessMethodType: Access Method Type (see Table 3-1 in Section 3.1).
This function does not support secure channel and will
return aBS1_BAD_PARAM if thisfield is set to one of the
secure channel authentication methods.

keyIDOrReference: Key identifier or reference of the authenticator. Thisis
used to distinguish between multiple authenticators with
the same Access Method Type.

authValue: Authenticator, can be an external authentication

cryptogram or PIN. If the authenticator valueis NULL,
then the SPSisin charge of gathering authentication
information and authenticating to the card.

Return Codes: BS1 _OK
BSI_BAD_HANDLE
BS1_BAD_AID
BS1_ACR_NOT_AVAILABLE
BSI_BAD_AUTH
BSI1_CARD_REMOVED
BSI_PIN_BLOCKED
BS1_UNKNOWN_ERROR
BS1_TERMINAL_AUTH
BS1_BAD_PARAM
BS1_SC_LOCKED

4-8



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.4 gscBsiUtilConnect()

Purpose: Establish alogical connection with the smart card in a specified reader.
BSI_TIMEOUT_ERROR will be returned if a connection cannot be established within a
specified time. The timeout value is implementation dependent.

Prototype: unsigned long gscBsiUtilConnect(
IN string readerName,
OUT unsigned long hCard
)
Parameters: hCard: Card connection handle.
readerName: Name of the reader that the smart card isinserted into. If

thisfieldisaNULL pointer, the SPS shall attempt to
connect to the smart card in the first available reader, as
returned by acall to the BSI’ s function
gscBsiUtilGetReaderList(). Thereader name string
shall be stored as ASCII encoded String. (See Section 4.2)

Return Codes: BS1_OK
BS1_BAD_PARAM
BS1_UNKNOWN_READER
BS1_CARD_ABSENT
BSI_TIMEOUT_ERROR
BSI1_UNKNOWN_ERROR



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

45,5 gscBsiUtilDisconnect()

Purpose: Terminate alogical connection to a smart card.
Prototype: unsigned long gscBsiUtilDisconnect(
IN unsigned long hCard
):
Parameters: hCard: Card connection handle from gscBsiUti IConnect().

Return Codes: BS1_OK
BS1_BAD_HANDLE
BS1_CARD_REMOVED
BS1_UNKNOWN_ERROR

4-10



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.6 gscBsiUtilIBeginTransaction()

Pur pose:

Prototype:

Parameters:

Return Codes:

This function starts an exclusive transaction with the smart card referenced by
hCard. When the transaction starts, all other applications are precluded from
accessing the smart card while the transaction isin progress. Two types of calls can
be made: a blocking transaction call and a non-blocking transaction call, with a
boolean type parameter identifying which modeis called. In the non-blocking mode,
the call will return immediately if another client has an active transaction lock. The
returned error code will be BS1_SC_LOCKED. In the blocking mode, the call will
walit indefinitely for any active transaction locksto be released. A transaction must
be completed by acall to gscBsiUtilEndTransaction().

For single-threaded BSI implementations, it can be assumed that each application
will be associated with a separate process. The same process that starts a transaction
must also complete the transaction. For multi-threaded BS| implementations, it can
be assumed that each application will be associated with a separate thread and/or
process. The same thread that starts a transaction must also compl ete the transaction.

If thisfunction is called by athread that has already called
gscBsiUtilBeginTransaction() but hasnot yet called
gscBsiUtilEndTransaction(), it will return the error BS1_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should
return the error code BS1_NO_SPSSERVICE in response to acall to
gscBsiUtilBeginTransaction().

unsigned long gscBsiUtilBeginTransaction(

IN unsigned long hCard
IN boolean blType
);
hCard: Card communication handle returned from
gscBsiUtilConnect()
bIType: Boolean specifying the type of transaction call (bI1Type
set to “true” in blocking mode. bIType set to “false” in
non-blocking mode).
BS1_OK

BS1_BAD_HANDLE
BS1_UNKNOWN_ERROR
BSI_SC_LOCKED
BSI1_NOT_TRANSACTED
BSI1_NO_SPSSERVICE

4-11



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.7 gscBsiUtiIEndTransaction()

Pur pose:

Prototype:

Parameters:

Return Codes:

This function ends a previously started transaction, allowing other blocked
applications to begin or resume interactions with the card.

If thisfunction is called by athread that has not yet called
gscBsiUtilBeginTransaction(), it will return the error
BSI_NOT_TRANSACTED.

If the SPS does not support transaction locking, it should return the error code
BSI_NO_SPSSERVICE inresponse to acall to gscBsiUti lEndTransaction().

unsigned long gscBsiUtilEndTransaction(

IN unsigned long hCard
R
hCard: Card communication handle returned from
gscBsiUtilConnect().-
BSI_OK

BS1_BAD_HANDLE
BS1_UNKNOWN_ERROR
BSI1_NOT_TRANSACTED
BSI1_NO_SPSSERVICE

4-12



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.8 gscBsiUtilGetVersion()

Purpose: Returns the BSI implementation version.
Prototype: unsigned long gscBsiUtilGetVersion(
INOUT string version
):
Parameters: version: The BSI and SPS version formatted as

“major,minor,revision,build_number”. The valuefor an
SPS conformant with this version of the GSC-ISis
“2,1,0,<build number>". The build number field is
vendor/implementation dependent. The version name
string shall be stored as ASCII encoded String. (See
Section 4.2)

Return Codes: BS1 _OK
BS1_INSUFFICIENT_BUFFER
BSI1_UNKNOWN_ERROR

4-13



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.9 gscBsiUtilGetCardProperties()

Pur pose:

Prototype:

Parameters:

Return Codes:

Retrieves Card Capability Container ID and capability information for the smart card.

unsigned long gscBsiUtilGetCardProperties(
IN unsigned long hCard,
INOUT sequence<byte> CCCUniquelD,
OUT unsigned long cardCapability

)
hCard: Card connection handle from gscBsiUti IConnect().
CCCUniquelD: Buffer for the Card Capability Container ID.
cardCapability: Bit mask value defining the providers supported by the
smart card. The bit masks represent the Generic
Container Data Model, the Symmetric Key Interface,
and the Public Key Interface providers respectively:
#define BSI1_GCCDM 0x00000001
#define BSI1_SKI 0x00000002
#define BSI_PKI 0x00000004
BSI1_OK

BS1_BAD_HANDLE
BS1_CARD_REMOVED
BSI_INSUFFICIENT BUFFER
BSI1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR
BS1_SC_LOCKED

4-14



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.10 gscBsiUtilGetCardStatus()

Purpose: Checks whether a given card handle is associated with asmart card that is inserted
into a powered up reader.

Prototype: unsigned long gscBsiUtilGetCardStatus(
IN unsigned long hCard
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect().

Return Codes: BS1 _OK
BSI_BAD_HANDLE
BS1_CARD_REMOVED
BSI_UNKNOWN_ERROR

4-15



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.11 gscBsiUtilGetExtendedErrorText()

Pur pose:

Prototype:

Parameters:

Return Codes:

When aBSlI function call returns an error, an application can make a subsequent call
gscBsiUti lGetExtendedErrorText to receive additiona error information
from the card reader driver layer, if available. Since the GSC-IS architecture
accommodates different card reader driver layers, the error text information will be
dependent on the card reader driver layer used in a particular implementation. This
function must be called immediately after the error has occurred.

unsigned long gscBsiUtilGetExtendedErrorText(

IN unsigned long hCard,
OUT string errorText
)
hCard: Card connection handle from gscBsiUti IConnect() .
errorText: A fixed length buffer containing an implementation
specific error text string. The text string has a maximum
length of 255 characters. The calling application must
alocate a buffer of 255 bytes. If an extended error text
string is not available, this function returnsa NULL
string and the return code BS1_NO_TEXT_AVAILABLE.
The error text string shall be stored as ASCII encoded
String. (See Section 4.2)
BSI_OK

BS1_BAD_HANDLE
BSI_NO_TEXT_AVAILABLE
BS1_UNKNOWN_ERROR

4-16



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.12 gscBsiUtilGetReaderList()

Purpose: Retrieves thelist of available readers.
Prototype: unsigned long gscBsiUtilGetReaderList(
INOUT sequence<string> readerList
):
Parameters: readerlList: Reader list buffer. Thereader list isreturned as a multi-

string. Thelist of available readers shall be stored as
ASCII encoded String. (See Section 4.2)

Return Codes: BS1 _OK
BSI_INSUFFICIENT_BUFFER
BSI1_UNKNOWN_ERROR

4-17



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.13 gscBsiUtilPassthru()

Pur pose:

Prototype:

Parameters:

Return Codes:

Allows aclient application to send a“raw” 1SO 7816-4 [1SO4] APDU through the
BSI directly to the smart card and receive the APDU-level response.

unsigned long gscBsiUtilPassthru(

IN unsigned long hCard,
IN sequence<byte> cardCommand,
INOUT sequence<byte> cardResponse
)
hCard: Card connection handle from gscBsiUti IConnect().
cardCommand: The APDU to be sent to the smart card. That parameter
must be in ASCII hexadecimal format.
cardResponse: Pre-allocated buffer for the APDU response from the
smart card. The response must include the status bytes
SW1 and SW2 returned by the smart card. If the size of
the buffer is insufficient, the SPS shall return truncated
response data and the return code
BSI_INSUFFICIENT_BUFFER. That parameter must
be in ASCII hexadecimal format.
BSI_OK

BS1_BAD_HANDLE
BS1_BAD_PARAM
BSI_INSUFFICIENT BUFFER
BS1_CARD_REMOVED
BS1_UNKNOWN_ERROR
BSI_SC_LOCKED

4-18



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.5.14 gscBsiUtilIReleaseContext()

Purpose: Terminate a session with the target container on the smart card.
Prototype: unsigned long gscBsiUtilReleaseContext(
IN unsigned long hCard,
IN sequence<byte> AID
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The AID shall be stored as

an ASCII hexadecimal string.

Return Codes: BS1_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BSI1_CARD_REMOVED
BSI1_UNKNOWN_ERROR
BS1_SC_LOCKED

4-19



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6 Smart Card Generic Container Provider Module Interface Definition

4.6.1 gscBsiGcDataCreate()

Purpose:

Prototype:

Parameters:

Return Codes:

Create anew dataitemin {Tag, Length, Vaue} format in the selected container.

unsigned long gscBsiGcDataCreate(

IN unsigned long
IN string
IN octet

);

IN sequence<byte>

hCard:

AlD:

tag:
value:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_PARAM
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BS1_NO_MORE_SPACE
BSI_TAG_EXISTS
BS1_10_ERROR
BS1_UNKNOWN_ERROR
BSI_SC_LOCKED

hCard,
AID,
tag,
value

Card connection handle from gscBsiUti IConnect().

Target container AID value. The parameter shall bein
ASCII hexadecimal format.

Tag of dataitem to store.

Datavaueto store.

4-20



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6.2 gscBsiGcDataDelete()

Purpose: Delete the data item associated with the tag value in the specified container.
Prototype: unsigned long gscBsiGcDataDelete(
IN unsigned long hCard,
IN string AlD,
IN octet tag
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The parameter shall bein

ASCI| hexadecimal format.
tag: Tag of dataitem to delete.

Return Codes: BS1 _OK
BSI_BAD_HANDLE
BSI_BAD_AID
BS1_BAD_TAG
BSI_CARD_REMOVED
BSI1_NO_CARDSERVICE
BSI_SC_LOCKED
BSI_ACCESS_DENIED
BS1_10_ERROR
BSI_UNKNOWN_ERROR

4-21



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6.3 gscBsiGcGetContainerProperties()

Purpose: Retrieves the properties of the specified container.
Prototype: unsigned long gscBsiGcGetContainerProperties(
IN unsigned long hCard,
IN string AlD,
OUT GCacr strctGCacr,
OUT GCContainerSize strctContainerSizes,
OUT string containerVersion
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The parameter shall bein
ASCII hexadecimal format.
strctGCacr: Structure indicating access control conditions for all

struct GCacr {
BSIAcr
BSIAcr
BSI1Acr
BSIAcr
BSIAcr

¥

struct BSIAcr {
unsigned long
unsigned long
unsigned long
unsigned long

¥

strctContainerSizes:

operations. The range of possible values for the
members of this structure is defined in Table 3-2
(Section 3.1). The allowable ACRs for each function are
listed in Table 3-3 (Section 3.2). keyl DOr Ref er ence
contains the key identifier or reference for each access
method contained in the ACR in order of appearance.
aut hNo isthe number of access methods logically
combined inthe ACR. ACRID is RFU and must be
NULL (0x00).

createACR;
deleteACR;
readTagListACR;
readValueACR;
updateValueACR;

ACRType;
keyIDOrReference[MaxNbAM] ;
AuthNb;

ACRID;

For Virtual Machine cards, the size (in bytes) of the
container specified by AID. maxNbDataltems isthe
size of the T-Buffer, and maxvValueStorageSize isthe
size of the V-Buffer. For file system cards than cannot
calculate these values, both fields of this structure will

be set to 0.

struct GCContainerSize {

unsigned long
unsigned long

maxNbDatal tems;
maxValueStorageSize;

4-22



Return Codes:

}

containerVersion:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_CARD_REMOVED
BSI1_SC_LOCKED
BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Version of the container. The format of thisvalueis
application dependent. In cases where the smart card
cannot return a container version, this byte sequence will
be empty.

4-23



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6.4 gscBsiGcReadTagList()

Pur pose:

Prototype:

Parameters:

Return Codes:

Return the list of tags in the selected container.

unsigned long gscBsiGcReadTaglList(

IN unsigned long hCard,
IN string AlD,
INOUT sequence<octet> tagArray
)
hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The parameter shall bein
ASCII hexadecimal format.
tagArray: An array containing the list of tags for the selected
container.
BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID

BS1_CARD_REMOVED
BSI1_SC_LOCKED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI_INSUFFICIENT BUFFER
BS1_UNKNOWN_ERROR

4-24



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6.5 gscBsiGcReadValue()

Purpose: Returns the Value associated with the specified Tag.
Prototype: unsigned long gscBsiGcReadValue(
IN unsigned long hCard,
IN string AlD,
IN octet tag,
INOUT sequence<byte> value
);
Parameters: hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The parameter shall bein
ASCII hexadecimal format.
tag: Tag value of data item to read.
value: Value associated with the specified tag. The client

application must allocate the buffer.

Return Codes: BS1_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_TAG
BSI1_CARD_REMOVED
BSI1_SC_LOCKED
BSI1_NO_CARDSERVICE
BS1_ACCESS_DENIED
BS1_INSUFFICIENT_BUFFER
BS1_10_ERROR
BSI1_UNKNOWN_ERROR

4-25



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.6.6 gscBsiGcUpdateValue()

Pur pose:

Prototype:

Parameters:

Return Codes:

Updates the Value associated with the specified Tag.

unsigned long gscBsiGcUpdateValue(

IN unsigned long
IN string
IN octet

);

hCard:

IN sequence<byte>

AlD:

tag:
value:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_PARAM
BS1_BAD_TAG
BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI1_NO_MORE_SPACE
BSI1_10_ERROR
BS1_UNKNOWN_ERROR

hCard,
AID,
tag,
value

Card connection handle from gscBsiUti IConnect().

Target container AID value. The parameter shall bein
ASCII hexadecimal format.

Tag of dataitem to update.

New Value of the data item.

4-26



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.7 Smart Card Cryptographic Provider Module Interface Definition

4.7.1 gscBsiGetChallenge()

Purpose:

Prototype:

Parameters:

Return Codes:

Retrieves arandomly generated challenge from the smart card as the first step of a
challenge-response authentication protocol between the client application and the
smart card. The client subsequently encrypts the challenge using a symmetric key
and returns the encrypted random challenge to the smart card through a call to
gscBsiUtilAcquireContext() inthe authvalue field of a
BSI1Authenticator structure.

unsigned long gscBsiGetChallenge(

IN unsigned long hCard,
IN string AID,
INOUT sequence<byte> challenge
):
hCard: Card connection handle from gscBsiUti IConnect().
AID: Target container AID value. The parameter shall bein
ASCII hexadecimal format.
challenge: Random challenge returned from the smart card.
BS1_OK
BS1_BAD_HANDLE
BSI_BAD_AID

BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_NO_CARDSERVICE
BSI_INSUFFICIENT BUFFER
BS1_UNKNOWN_ERROR

4-27



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.7.2 gscBsiSkilnternalAuthenticate()

Pur pose:

Prototype:

Parameters:

Return Codes:

Computes a symmetric key cryptogram in response to a challenge. In cases where
the card reader authenticates the smart card, this function does not return a
cryptogram. Inthese casesaBS1_TERMINAL_AUTH will be returned if the card
reader successfully authenticates the smart card. BSI1_ACCESS_DENIED isreturned
if the card reader fails to authenticate the smart card.

unsigned long gscBsiSkilnternalAuthenticate(

IN unsigned long
IN string

IN octet

IN sequence<byte>

hCard,
AID,
algolD,
challenge,

INOUT sequence<byte> cryptogram

)
hCard:

AlD:

algolD:

challenge:

cryptogram:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_PARAM
BS1_BAD_ALGO_ID
BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI1_TERMINAL_AUTH

Card connection handle from gscBsiUti IConnect().

SKI provider module AID value. The parameter shall be
in ASCII hexadecimal format.

| dentifies the cryptographic algorithm that the smart card
must use to encrypt the challenge. All conformant
implementations shall, at a minimum, support DES3-
ECB (Algorithm Identifier Ox81) and DES3-CBC
(Algorithm Identifier 0x82). Implementations may
optionally support other cryptographic algorithms.

Challenge generated by the client application and
submitted to the smart card.

The cryptogram computed by the smart card.

BSI_INSUFFICIENT_BUFFER

BSI1_UNKNOWN_ERROR

4-28



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.7.3 gscBsiPkiCompute()

Purpose: Performs a private key computation on the message digest using the private key
associated with the specified AID.
Prototype: unsigned long gscBsiPkiCompute(
IN unsigned long hCard,
IN string AID,
IN octet algolD,
IN sequence<byte> message,
INOUT sequence<byte> result
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect().
AID: PKI provider module AID value. The parameter shall be
in ASCII hexadecimal format.
algolD: I dentifies the cryptographic algorithm that will be used
to generate the signature. All conformant
implementations shall, at a minimum, support
RSA_NO_PAD (Algorithm Identifier OXA3).
Implementations may optionally support other
agorithms.
message: The message digest to be signed.
result: Buffer containing the signature.

Return Codes: BS1 _OK
BSI_BAD_HANDLE
BSI_BAD_AID
BS1_BAD_PARAM
BS1_BAD_ALGO_ID
BSI_CARD_REMOVED
BSI_SC_LOCKED
BSI_ACCESS_DENIED
BSI_NO_CARDSERVICE
BS1_INSUFFICIENT_BUFFER
BSI_UNKNOWN_ERROR

4-29



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

4.7.4 gscBsiPkiGetCertificate()

Pur pose:

Prototype:

Parameters:

Return Codes:

Reads the certificate from the smart card.

unsigned long gscBsiPkiGetCertificate(

IN unsigned long hCard,
IN string AlD,
INOUT sequence<byte> Certificate
)
hCard: Card connection handle from gscBsiUti IConnect().
AID: PKI provider module AID value. The parameter shall be
in ASCII hexadecimal format.
certificate: Buffer containing the certificate.
BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID

BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI_10_ERROR
BSI_INSUFFICIENT BUFFER
BS1_UNKNOWN_ERROR

4-30



4.7.5 gscBsiGetCryptoProperties()

Pur pose:

Prototype:

Parameters:

Return Codes:

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Retrieves the Access Control Rules associated with the PKI provider module.

unsigned long gscBsiGetCryptoProperties(

IN unsigned long

IN string
OUT CRYPTOacr

);

hCard:

OUT unsigned long

AlD:

strctCRYPTOacr:

struct CRYPTOacr {
BSIAcr
BSIAcr
BSIAcr
BSIAcr
BSI1Acr
BSIAcr
BSIAcr
BSIAcr

};
keylLen:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_CARD_REMOVED
BSI1_SC_LOCKED
BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR

hCard,

AID,
strctCRYPTOacr,
keylLen

Card connection handle from gscBsiUti IConnect().

AID of the PKI provider. The parameter shall bein
ASCII hexadecimal format.

Structure indicating access control conditions for all
operations. The BSI Acr structure is defined in Section
4.6.3. Therange of possible values for the members of
this structure are defined in Table 3-2 (Section 3.1), and
the allowable ACRs for each function in Table 3-4
(Section 3.2). keyl DOr Ref er ence contains the key
identifier or reference for each access method contained
inthe ACR in order of appearance. aut hNb isthe
number of access methods logically combined in the
ACR. ACRID isRFU and must be NULL (0x00) in this
version. Note that ther eadVal ue ACR member maps to
thegscBsi Pki Get Certificate() function.

getChallengeACR;
internalAuthenticateACR;
pkiComputeACR;
createACR;

deleteACR;
readTagListACR;
readValueACR;
updateValueACR;

Length in bits of the private key managed by the PKI
provider.

4-31



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

4-32



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5. Virtual Card Edge Interface

The Virtual Card Edge Interface includes two sets of APDU commands: (1) an SO 7816-4 [ISO4] and
7816-8 [1SO8] conformant GSC-1S APDU set for use in conformant file system cards, and (2) a set of
VM APDUsfor usein VM cards. The card edge also consists of the CCC, which isafile located on each
conformant smart card, and the GSC-I1S APDU mapping mechanism.

The GSC-IS I SO-conformant APDU set can be implemented directly by conformant cards (such asin a
conformant file system card or asaVM card applet). It isexpected that some file system smart cards may
use native APDU instruction sets that will differ from the GSC-IS APDU set. In those cases, an SPS
must modify the ADPU set such that it conforms to the smart card’s native APDU set. Thisis done using
the GSC-IS APDU mapping mechanism described in Section 5.2 and in Chapter 6.

Sections 5.1 through 5.3 describe the GSC-1S APDU set, overview information on the procedures for
mapping this APDU set to smart card-specific APDU sets, and the APDUs for VM cards only. Chapter 6
provides details on the rules and procedures for APDU trand ations according to the CCC grammar.

5.1 GSC-IS ISO Conformant APDUs

Table 5-1 shows the GSC-I1S APDU set for file system and VM cards. The APDUSs are conformant with
SO 7816-4 [1SO4] and 7816-8 [I SO8], however some values have been defined for cryptogram lengths
and cryptographic algorithm identifiers. Additional behavior for the APDUs would be described in a
smart card’s CCC tuples using the descriptor code mechanisms. Support for secure messaging is not
provided in this APDU set; as described in Section 3.3.3, secure messaging is implemented viathe
gscBsiUti IPassthru() mechanism in accordance with the Global Platform [GLOB] or SO 7816-4
[1SO4].

Table 5-1: GSC-IS APDU Set

GSC-IS APDU Set

GET RESPONSE

READ BINARY

SELECT DF

Generic File Access

APDUSs SELECT EF UNDER SELECTED DF

SELECT FILE

SELECT MASTER FILE (Root)

UPDATE BINARY

EXTERNAL AUTHENTICATE

GET CHALLENGE
Access Control APDUs

INTERNAL AUTHENTICATE

VERIFY




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

GSC-IS APDU Set

MANAGE SECURITY ENVIRONMENT

Public Key Operations
APDUs

PERFORM SECURITY OPERATION

The APDUs are divided into three categories: Generic File Access, Access Control, and Public Key
Operations. The ADPU commands and responses are structured as follows:

Table 5-2: APDU Command and Response Structure

Command APDU

CLA INS P1 P2 L¢ Data Field Le

Response APDU

Response Swi SwW2

The terms described in Table 5-3 are used throughout this section.

Table 5-3: APDU Command and Response Structure

CLA Class byte
Data Field String of bytes sent in the data field of the command
FC Function code, used in the CCC grammar to identify the

default APDU that is being mapped (see Chapter 6 for
detailed information)

L¢ Number of bytes present in data field of the command

Le Maximum number of bytes expected in the data field of the
response to the command

INS Instruction byte; ISO 7816 defines a set of common
commands, e.g., ‘B0’ is Read Binary

P1-P2 Instruction parameter 1 and 2

Response String of bytes received in the data field of the response

SW1 Command processing status, i.e., the return code from the
smart card

SW2 Command processing qualifier, supplies further information on
SW1

5.1.1 Generic File Access APDUs

The APDUs in Table 5-4 are used to perform basic file access functions.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 5-4. Generic File Access APDUs

Generic File Access APDUs

Card Function

0x07 | GET RESPONSE | 0x00 | 0xCO | 0x00 | ox00 | - - Le
0x02 | READ BINARY 0x00 | oxBO | OffH | offiL | - - L
0x00
0x01 | SELECT DF 0x00 | OxA4 | 0x01 | or | Ox02 | FilelD 2bytes) | -
0x0C
SELECT EF FILE 0x00
0xOD | UNDER 0x00 | OxA4 | 0x02 | or | Ox02 | FileID (2bytes) | -
SELECTED DF 0x0C
ox00. | 0X00
O0XOC | SELECT FILE 0X00 | OxA4 or | 0x02 | FilelD 2bytes) | -
0x03
0x0C
0x00
oxoE | SELECTMASTER | 00 | oxa4 | 0x03 | or | 0x02 | FileID 2 bytes) | -
FILE (Root)
0x0C
0x03 | UPDATE BINARY | Ox00 | OxD6 | OfffH | OffiL | L. | DatatoUpdate | -




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.1 Get Response APDU

This APDU is used to read smart card results available from the completion of the previously executed
APDU.

Command Message

Function Code 0x07

CLA 0x00

INS 0xCO

P1 0x00

P2 0x00

L¢ Empty

Data Field Empty

Le Number of bytes to read in response

Response Message

Data Field returned in the Response M essage

If theimmediately preceding APDU has indicated that additional data is available, the data field
of animmediately following Get Response APDU will contain this data.

Processing State returned in the Response M essage

SW1 ‘ SW2 ‘ Meaning
61 XX Normal processing, XX still available to read with subsequent Get
Response
62 81 Part of returned data may be corrupted
67 00 Wrong length (incorrect L. field)
6A 86 Incorrect parameters P1-P2
6C XX Wrong length (wrong L. field; XX indicates the exact length)
90 00 Successful execution

5-4



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.2 Read Binary APDU

This APDU is used to read the currently selected transparent file. All access control operations necessary
for reading the file must be completed before using this APDU.

Command Message

Function Code 0x02

CLA 0x00

INS 0xBO

P1 High-order byte of 2-byte offset
P2 Low-order byte of 2-byte offset
L¢ Empty

Data Field Empty

Le Number of bytes to read

Response Message

Data Field returned in the Response M essage

L. number of bytes followed by the two-byte processing state.

Processing State returned in the Response M essage

SW1 ‘ SW2 ‘ Meaning
62 81 Part of returned data may be corrupted
62 82 End of file reached before reading L. bytes
67 00 Wrong length (wrong L. field)
69 81 Command incompatible with file structure
69 82 Security status not satisfied
69 86 Command not allowed (no current EF)
6A 81 Function not supported
6A 82 File not found
6B 00 Wrong parameters (offset outside the EF)
6C XX Wrong length (wrong L field; XX indicates the exact length)
90 00 Successful execution




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.3 SELECT DF APDU

Sets the currently selected dedicated file to a dedicated file contained in the currently selected dedicated
file.

Command Message

Function Code 0x01

CLA 0x00

INS 0xA4

P1 0x01 - Select child DF of current DF

P2 0x00 for response required, 0x0C for no response required
Lc 0x02

Data Field 2-byte File Identifier

Le Number of bytes returned

Response Message

Data Field returned in the Response M essage

If P2 isset to 0x00, dataiis returned as per 1SO 7816-4 [ISO4]. If P2 is set to 0xOC, no datais
returned.

Processing State returned in the Response M essage

Swi SW2 Meaning
62 83 Selected file deactivated
62 84 File control information not formatted according to ISO 7816-4.
6A 81 Function not supported
6A 82 File not found
6A 86 Incorrect parameters P1-P2
6A 87 L. inconsistent with P1-P2
90 00 Successful execution




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.3.1 Select EF Under Selected DF APDU
This APDU selects an Elementary File under the currently selected DF.

Command Message

Function Code 0x0D

CLA 0x00

INS 0xA4

P1 0x02 - Select child EF of current DF

P2 0x00 for response required, 0x0C for no response required
Lc 0x02

Data Field 2-byte File Identifier

Le Number of bytes returned

Response Message
Data Field returned in the Response M essage

If P2is set to 0x00, datais returned as per |SO 7816-4 [ISO4]. If P2isset to OxOC, no datais
returned.

Processing State returned in the Response M essage

Swi ‘ SwW2 ‘ Meaning

62 83 Selected file deactivated

62 84 File (_:ontrol information not formatted according to ISO 7816-4,
Section 5.1.5

6A 81 Function not supported

6A 82 File not found

6A 86 Incorrect parameters P1-P2

6A 87 L¢ inconsistent with P1-P2

90 00 Successful execution




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.4 Select File APDU
This APDU works as described in 1SO 7816-4 [1SO4] to select the master file, a DF, or an EF.

Command Message

Function Code 0x0C

CLA 0x00

INS 0xA4

P1 See below

P2 0x00 for response required, 0x0C for no response required

L¢ Number of bytes in File Identifier, i.e., 2

Data Field File Identifier

Le Empty

P1: 0x00 Explicit selection with Data Field; Data field must contain

avalid File Identifier

0x01 Select child DF of current DF; Data Field must contain
avalid File Identifier

0x02 Select child EF of current DF; Data Field must contain
avalid File Identifier

0x03  Select parent DF of current DF; empty Data Field

Response Message
Data Field returned in the Response M essage

If P2is set to 0x00, datais returned as per SO 7816-4 [ISO4]. If P2 isset to OxOC, no datais
returned.

Processing Statereturned in the Response M essage

Swi ‘ SwW2 ‘ Meaning
62 83 Selected file deactivated
62 84 FCI not formatted according to ISO 7816-4 Section 5.1.5
6A 81 Function not supported
6A 82 File not found
6A 86 Incorrect parameters P1-P2
6A 87 L¢ inconsistent with P1-P2
90 00 Successful execution

5-8



5.1.1.5 Select Master File APDU

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

This APDU selects the Master File or the root of afile system card directory structure.

Command Message

Function Code O0xO0E

CLA 0x00

INS 0xA4

P1 0x03 - Select MF

P2 0x00 for response required, 0x0C for no response required
Lc 0x02

Data Field File Identifier

Le Empty

Response Message

Data Field returned in the Response M essage

If P2is set to 0x00, datais returned as per |SO 7816-4 [ISO4]. If P2isset to OxOC, no datais

returned.

Processing State returned in the Response M essage

Swi ‘ SwW2 ‘ Meaning
62 83 Selected file deactivated
62 84 FCI not formatted according to ISO 7816-4 Section 5.1.5
6A 81 Function not supported
6A 82 File not found
6A 86 Incorrect parameters P1-P2
6A 87 L¢ inconsistent with P1-P2
90 00 Successful execution




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.1.6 Update Binary APDU

This APDU is used to update the currently selected transparent file. All access control operations
necessary for writing to the selected file must be completed before using this APDU.

Command Message

Function Code 0x03

CLA 0x00

INS 0xD6

P1 High-order byte of 2-byte offset

P2 Low-order byte of 2-byte offset

Lc Number of bytes to update

Data Field New data to be used to replace existing data
Le Empty

Response Message
Data Field returned in the Response M essage
Empty.

Processing State returned in the Response M essage

SW1 ‘ SW2 ‘ Meaning
63 CX Successful updating after X retries, X=0 means no counter provided
65 81 Memory failure (unsuccessful updating)
67 00 Wrong length (wrong Lc field)

69 81 Command incompatible with file structure
69 82 Security status not satisfied

69 86 Command not allowed (no current EF)
6A 81 Function not supported

6A 82 File not found

6B 00 Wrong parameters (offset outside the EF)
90 00 Successful execution

5-10



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.2 Access Control APDUs
Table 5-5 shows the Access Control APDU set for file system and VM cards. The Access Control

APDUs assume that the default cryptographic algorithm is DES3-ECB, with a double length key-size, 16
bytes.

Table 5-5: Access Control APDUs

Access Control APDUs

Card Function

EXTERNAL
Ox0A AUTHENTICATE 0x00 0x82 | AlgID | Key# Lc Cryptogram -
0x05 | GET CHALLENGE 0x00 0x84 0x00 0x00 — — Le
INTERNAL
0x09 AUTHENTICATE 0x00 0x88 | AlgID | Key# Lc Challenge Le
0x08 | VERIFY 0x00 | 0x20 | O0x00 | CHV | Le A”thfjr:t';a“o” -

Various smart cards perform external and internal authentication in similar but slightly different ways.
The general methods used by the default GSC-1S APDU set are described below. To change the syntax
and behavior of the default APDUS, the appropriate descriptor codes can be used in conjunction with
command and response code tuplesin the CCC as described in Chapter 6.

External Authentication Method:

1. Theclient application and the smart card share a secret key; the smart card may storethe key in a
key file.

2. The SPSinstructs the smart card to issue an 8-byte challenge viathe GET CHALLENGE APDU;
the smart card returns the challenge to the SPS.

3. Theclient application encrypts the challenge with its secret key to produce a cryptogram.

4. The SPS sends the cryptogram to the smart card and possibly the key number viathe EXTERNAL
AUTHENTICATE APDU.

5. The smart card accesses the specified secret key, its saved copy of the challenge, and computes
the same cryptogram and returns a status code to the SPS.

6. If the status code indicates that the cryptograms match, external authentication is successful.
Internal Authentication Method:
Step 1: PIN authentication

1. Theclient application and the smart card share a PIN; the smart card may storethe PIN in a
PIN file.

2. The SPS sends the PIN and the PIN number to the smart card viathe VERIFY APDU.

5-11



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

The smart card accesses the specified PIN, compares it to the client application’s PIN, and
returns a status code to the SPS.

If the status code indicates that the PINs match, the smart card will permit the internal
authentication to proceed.

Step 2: Internal Authentication

1.

5.

The client application and the smart card share a secret key; the smart card may store the
key in akey file.

The client application computes an 8-byte challenge and sends this to the smart card along
with the key number viathe INTERNAL AUTHENTICATION APDU.

The smart card accesses the specified secret key, the challenge, and computes the same
cryptogram.

The SPS retrieves the cryptogram in the response to the INTERNAL AUTHENT ICATION
APDU.

If the cryptograms match, internal authentication is successful.

Algorithm Identifiers for EXTERNAL and INTERNAL AUTHENTICATE APDUs:

SO 7816-4 [1SO4] does not define algorithm identifiers for EXTERNAL and INTERNAL AUTHENT ICATE,
therefore this specification defines them in Table 5-6. If asmart card does not use the algorithm
identifiers defined in Table 5-6, then the appropriate definitions of the EXTERNAL and INTERNAL
AUTHENTICATE APDUsin the CCC command tuples will be required. If the smart card supports
multiple cryptographic algorithms for this command, then successive tuples can be used to identify al the
possible cryptographic algorithms and their corresponding P1 values.

Table 5-6: Algorithm Identifiers for Authentication APDUs

Algorithm Identifier ‘ Algorithm-Mode ‘ Key Length in Bits
0x00 Triple DES-ECB 128
0x01 Triple DES-CBC 128
0x02 DES-ECB 64
0x03 DES-CBC 64
0x04 RSA 512
0x05 RSA 768
0x06 RSA 1024
0x07 (Reserved for RSA 2048) (2048)
0x08 AES-ECB 128
0x09 AES-CBC 128
0x0A AES-ECB 192
0x0B AES-CBC 192
0x0C AES-ECB 256
0x0D AES-CBC 256

5-12



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Algorithm Identifier ‘ Algorithm-Mode ‘ Key Length in Bits
O0x0E RFU -
OxOF RFU -

NOTE: High nibble of the Algorithm Identifier shall be zero.

5-13



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.2.1 External Authenticate APDU

This APDU is used in conjunction with the GET CHALLENGE APDU to authenticate a client application
to the smart card. GET CHALLENGE would be issued first to cause the smart card to issue arandom
number, i.e., the challenge. The client application would encrypt the challenge and send the resultant
cryptogram to the smart card viathe EXTERNAL AUTHENTICATE APDU. The smart card would then
decrypt it using the same algorithm as the client application and compare it to itsinternally stored copy of
the challenge. If the cryptograms match, the client application is authenticated to the smart card. If the
cryptograms do not match, the challenge is no longer valid.

Command Message

Function Code 0x0A

CLA 0x00

INS 0x82

P1 Algorithm Identifier — see Table 5-6

P2 0x00 for default key, 0x01 to 0x30 for key number
Lc Length of data field

Data Field Cryptogram

Le Empty

Response Message
Data Field returned in the Response M essage
Empty.

Processing State returned in the Response M essage

Swi ‘ SwW2 ‘ Meaning
63 00 No information given (Authentication failed)
63 CX Authentication failed; X indicated number of further allowed retries
67 00 Wrong length (the Lc field is incorrect)
69 83 Authentication method blocked
69 84 Referenced data deactivated
69 85 Conditions of use not satisfied (the command is not allowed in this
context)
6A 86 Incorrect parameters P1-P2
6A 88 Referenced data not found
90 00 Successful execution

5-14



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.2.2 Get Challenge APDU

This APDU is used to cause the smart card to generate a cryptographic challenge, e.g., arandom number,
for use in the subsequent security related procedure such as EXTERNAL AUTHENTICATE. The smart card
saves a copy of the challenge internally until the completion of the security related procedure or an error
occurs.

The challengeisvalid only for the next APDU in the same card session.

Command Message

Function Code 0x05

CLA 0x00

INS 0x84

P1 0x00

P2 0x00

L¢ Empty

Data Field Empty

Le Length in bytes of expected random challenge

Response Message

Data Field returned in the Response M essage

If the APDU result indicates success, L, number of bytes will be available to read from the smart
card, i.e., the 8-byte challenge.

Processing Statereturned in the Response M essage

SW1 ‘ SW2 ‘ Meaning
6A 81 Function not supported
6A 86 Incorrect parameters P1-P2
90 00 Successful execution

5-15



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.2.3 Internal Authenticate APDU

This APDU is used to authenticate the smart card to the client application. An 8-byte challengeis
computed by the client application and then passed to the smart card viathis command. Also passed are a
key number and the cryptographic algorithm the smart card uses when encrypting the challenge. The
smart card takes this information and encrypts the challenge according to the algorithm specified and the
specified key and returns the resultant cryptogram. |If the decrypted cryptogram from the smart card
matches the initial challenge computed by the client application, the smart card is authenticated to the
client application.

Command Message

Function Code 0x09
CLA 0x00
INS 0x88
P1 Algorithm Identifier — see Table 5-6
P2 0x00 for default key, 0x01 to 0x30 for key number
Lc Length of data field
Data Field Challenge
Le Length of expected cryptogram
Response M essage

Data Field returned in the Response M essage
The cryptogram.

Processing State returned in the Response M essage

Swi SW2 Meaning
69 84 Referenced data deactivated
69 85 Conditions of use not satisfied
6A 86 Incorrect parameters P1-P2
6A 88 Reference data not found
90 00 Successful execution

5-16



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.2.4 Verify APDU

This APDU is used to compare authentication data such as a password, key or PIN with corresponding
authentication data on the smart card. The SPS sends the authentication datain this APDU and directs the
smart card to compare it with authentication data on the smart card. The authentication datais passed
unencrypted.

Command Message

Function Code 0x08

CLA 0x00

INS 0x20

P1 0x00

P2 0x00 for default key, 0x01 to 0x30 for key number
Lc Length of data field

Data Field Authentication data (i.e., password or PIN)

Le Empty

Note: If the Lcis0x00 and the Data Field is empty, VERIFY returns the number of tries
remaining on the referenced PIN.

Response Message
Data Field returned in the Response M essage
Empty.

Processing State returned in the Response M essage

SW1 ‘ SW2 ‘ Meaning
63 00 Verification failed
63 CX Verification failed, X indicates the number of further allowed retries
69 83 Authentication method blocked
69 84 Referenced data deactivated
6A 86 Incorrect parameters P1-P2
6A 88 Reference data not found
90 00 Successful execution

5-17



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.3 Public Key Operations APDUs

Table 5-7 shows the public key operations APDUs for file system and VM cards. The default padding
scheme for RSA is assumed to be RSA_NO_PAD. The computation is performed with the private key.

Table 5-7: Public Key Operations APDUs

Public Key Operations APDU

Card Function

MANAGE Key Reference

0x05 | SECURITY 0x00 | O0x22 | Ox41 | OxB6 Lc information -
ENVIRONMENT
PERFORM Message digest

0xOB | SECURITY 0x00 | Ox2A | Ox9E | Ox9A Lc 0 sign Le
OPERATION

5-18



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.3.1 Manage Security Environment APDU

This APDU is used to initiate the computation of adigital signature on a message by setting adigital
signature template to be used by a subsequent PERFORM SECURITY OPERATION APDU.

Command Message

Function Code 0x05

CLA 0x00

INS 0x22

P1 0x41

P2 0xB6

L¢ L. = Message length in bytes
Data Field Key Reference information

Le Empty

Data Field: Key reference information, formatted as per 1SO 7816-8 [1SO8].
Response M essage

Data Field returned in the Response M essage

Empty.

Processing State returned in the Response M essage

Swi ‘ SW2 ‘ Meaning
66 00 The Security Environment cannot be set
67 00 Wrong length (the Lc field incorrect)
6A 80 Invf'ilid or missing tag, length or value in a Control Reference Data
Object (CRDO)
6A 86 Incorrect parameters P1-P2
90 00 Successful execution

5-19



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.1.3.2 Perform Security Operation APDU

This APDU is used to initiate the computation of a digital signature on a message digest. This APDU
responds with the computed signature.

Command Message

Function Code 0x0B
CLA 0x00
INS 0x2A
P1 O0x9E
P2 0x9A
Lc Length in bytes of message digest
Data Field Message digest to sign
Le Length of response
Response M essage

Data Field returned in the Response M essage
The signed message digest.

Processing State returned in the Response M essage

SW1 ‘ SW2 ‘ Meaning

67 00 Wrong length (the Lc field is incorrect)

69 81 Invalid file type

69 85 No preceding MSE-Set or previously specified key file is missing
69 87 Missing Secure Messaging Data Object

69 88 Incorrect Secure Message Data Object

6A 86 Incorrect parameters P1-P2

90 00 Successful execution

6C XX Wrong length (wrong L field; XX indicates the exact length)

5-20



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.2 Mapping Default APDUs to Native APDU Sets

For file system cards that contain a native APDU instruction set that differs from the GSC-IS default set,
the SPS must implement a mapping mechanism to trand ate the default APDUs into the native APDUSsin
accordance with the information obtained from the CCC.

5.2.1 The CCC Command and Response Tuples

The CCC is afile that must be present on each conformant GSC-1S smart card. The CCC includes a set
of tuples, which are 2-byte values that describe the differences in syntax between afile system card’s
native APDU set and the GSC-1S APDU set. Chapter 6 describes the contents of the CCC in more detail.
Besides syntactical differences, the tuples also describe differencesin APDU execution and data format.
The codes used in the tuples to describe these differences are called Descriptor Codes.

As an example, Descriptor Codes can be used to indicate that a smart card’ s native READ BINARY APDU
requires that offsets be on word boundaries as opposed to byte boundaries. Or, asmart card’s native
EXTERNAL AUTHENTICATE APDU may require 4 bytes of a cryptographic challenge whereas the default
APDU requires 8 bytes. A descriptor code can be used to indicate that the SPS must build and send an
APDU using a4-byte cryptographic challenge.

A smart card with a native APDU instruction set identical to the GSC-1S APDU set would still contain a
CCC, however the CCC would contain no tuples (and descriptor codes), since no APDU mapping would
be necessary.

5.2.2 Native APDU Mapping and CCC Grammar

Each conformant SPS for file system cards must implement the trandlation or mapping mechanism to
tranglate the default GSC-I1S APDU set into a smart card’ s native APDU set both in syntax and in
operation. The SPS performs this trandlation according to the rules of a CCC grammar associated with
the set of tupleslocated in the smart card’s CCC, described in more detail in Chapter 6.

The card edge interface for file system cards operates as follows:

1. A smart card vendor creates a CCC and loads it onto a smart card.

2. The SPS has knowledge of the default GSC-1S APDUs and how to trandate them into a
conformant card’ s native APDU set using the CCC grammar.

3. Thesmart card, when ready for use, is inserted into a reader.
4. The SPS's card edge locates and reads the contents of the CCC.

5. The SPS's card edge maps the default APDU set into the card’ s native set using the tuplesin the
CCC and the associated CCC grammar.

6. The SPS, when sending APDUSs to the smart card, then uses the smart card’ s native ADPU set
according to its rules of operation.

5-21



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.2.3 Detecting Card APDUs

The SPS can detect which of the default GSC-IS APDU s are available on a smart card according to the
following rules:

1. If the APDU isdefined in acapability tuple as not implemented (via Descriptor Code OxFE, see
Table 6-10), then the APDU is not available.

2. If the APDU is defined otherwise in one or more capability tuples, the APDU is available as
defined.

3. If the APDU isnot defined in any capability tuple, the APDU is assumed to be available and
operates as described in this specification and in 1SO 7816-4 [ISO4] and 7816-8 [1SO8].

The CCC optionally may contain a six-byte CARD APDUs bit-string for the purposes of informing the
SPS which 1SO 7816-4 [1SO4] and 7816-8 [1SO8] APDUs are available on the smart card. Each bitin
the string, if set to 1, would indicate the presence of a corresponding APDU; a‘0’ would indicate the
corresponding APDU is hot present or is not to be used. The CARD APDUSs string does not override any
command tuples; however, if an APDU is described in command tuples but not in the CARD APDUs
field, the command tuples are to be used. Table 5-8 shows bit positions and corresponding APDUSs.

Table 5-8: CARD APDUs Values

Egsition 7816-4 APDU
0 Reserved, Used for Shift Operation (see Section 6.4.2)
1 Select DF

2 Transparent Read (Binary)

3 Update Binary File

4 RFU

5 Manage Security Environment

6 Get Challenge

7 Get Response

8 Verify (CHV)

9 Internal Authenticate

10 External Authenticate

11 Perform Security Operation

12 Select File

13 Select EF (under current DF)

14 Select MF (root)

15 RFU

5-22



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.2.4 Default Status Code Responses

The default APDUSs return status codes according to 1SO 7816-4 [1SO4]. Non-1SO card-specific status
codes can be mapped into a GSC-IS set of status code responses, shown in Table 5-9. Asdescribed in
Chapter 6, the status codes can be mapped using the CCC grammar and status code tuples.

Table 5-9: GSC-IS Status Code Responses

Status Conditions ‘

0x00 | Successful Completion

0x01 | Successful Completion — Warning 1

0x02 Successful Completion — Warning 2
0x03 Reserved

0x04 Reserved

0x05 | Reserved

0x06 | Reserved

0x07 Reserved

0x08 | Access Condition not Satisfied

0x09 Function not Allowed

Ox0A Inconsistent Parameter

0x0B Data Error

0x0C | Wrong Length

0x0D | Function not compatible with file structure
OxOE | File/Record not Found

OxOF | Function Not Supported

5.3 Card Edge Interface for VM Cards

The Card Edge Interface for VM Cardsis made up of provider modules that provide three classes of
services. generic container management services, symmetric key cryptographic services, and public
(asymmetric) key cryptographic services. Each provider module may provide one or more class of
service. These provider modules are implemented as on-card applets. For virtual machine cards, the
terms “provider” and “applet” are synonymous.

Common interface methods that must be implemented by all providers are described first. The six
APDUslisted in Table 5-12 must be implemented by all providers. The methods unique to each provider
class are described in subsequent sections. Table 5-10 provides a summary of the APDUs implemented
for the virtual machine card edge.

Table 5-10: Virtual Machine Card Edge APDUs

Virtual Machine APDU Set

Common Interface Methods
VM APDUs

SELECT APPLET

‘ SELECT OBJECT

5-23



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Virtual Machine APDU Set

GET PROPERTIES

GET ACR

GET RESPONSE

VERIFY PIN

Generic Container Provider READ BUFFER

VM APDUs

UPDATE BUFFER

GET CHALLENGE

Symmetric Key Provider

VM APDUs EXTERNAL AUTHENTICATE

INTERNAL AUTHENTICATE

READ BUFFER

Public Key Provider VM

APDUS UPDATE BUFFER

PRIVATE SIGN/DECRYPT

5.3.1 Virtual Machine Card Access Control Rule Configuration

Each smart card service provider shall present its services through a set of APDUs implemented and
managed by the provider. The ACRs associated with card level services vary depending on the
application.

ACRs shall be coded as a single byte value (range 0x00 - OxFF) as defined in Table 3-2.

5.3.2 Virtual Machine Card Edge General Error Conditions

Tables 5-11aand 5-11b apply to all virtual machine card edge APDUs:

Table 5-11a: Successful Conditions

Status bytes Meaning
SW1 Sw2
61LL SW2 indicates the number of response bytes available
90 00 Normal ending of the command

5-24



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 5-11b: General Error Conditions

Status bytes ‘ Meaning
SW1 Sw2

62 00 Applet or instance logically deleted
63 CX Authentication failed, X indicates the remaining tries
65 81 Memory failure
67 00 Incorrect parameter Lc
6C XX Wrong length in Le parameter, SW2 indicates the exact length
69 82 Security status not satisfied
69 83 Authentication method blocked (ie. PIN code blocked)
69 85 Conditions of use not satisfied
69 99 Applet select failed
6A 80 Invalid parameters in command Data Field
6A 82 Applet or file not found
6A 84 Insufficient memory space to complete command
6A 86 Incorrect P1 or P2 parameter
6A 88 Referenced data not found
6D 00 Unknown instruction given in the command
6E 00 Wrong class given in the command
6F 00 Technical problem with no diagnostic given

5.3.3 Common Virtual Machine Card Edge Interface Methods

The common virtual machine APDUs are shown in Table 5-12.

Table 5-12: Common VM APDUs

SELECT APPLET 0x00 | OxA4 | 0x04 | 0x00
SELECT OBJECT 0x00 | OxA4 | 0x02 | 0x00 LC File ID -
GET PROPERTIES | 0x00 0x56 P1 0x00 L¢ Requested Tags -

GET ACR 0x80 | 0x4C P1 0x00 Lc AID or Object ID
GET RESPONSE 0x00 | OxCO | 0x00 0x00 - - Le
VERIFY PIN 0x00 0x20 0x00 0x00 Lc PIN -

5.3.3.1 Access Control

A fixed set of Access Control Rules (ACR) are assigned to the Common Virtual Machine Card Edge
Interface APDU commands as defined in Table 5-13:

5-25



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 5-13: ACRs assigned to the Common VM CEl

APDU

Get Properties

ACR
BSI_ACR_ALWAYS

Get ACR

BSI_ACR_ALWAYS

Get Challenge

BSI_ACR_ALWAYS

External Authenticate

BSI_ACR_ALWAYS

Get Response

Verify PIN

BSI_ACR_ALWAYS

5-26




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.2 Select Applet APDU
The command is used to select the instance of an applet using its AID.

Command Message

CLA 0x00
INS 0xA4
P1 0x04
P2 0x00
Lc Length of the applet AID
Data Field Applet AID (between 5 and 16 bytes in length).
Le Empty
Response M essage

Datafield returned in the response message
Empty.
Processing statereturned in the response message

If the applet is not found on the smart card, the ISO 7816-4 [1SO4] status condition: ‘6A82' is
returned (status bytes SW1,SW2=0x6A,0x82). For other status conditions see section General
Error Conditionsin Section 5.3.2.

5-27



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.3 Select Object APDU
The command is used to select a container managed by an applet.

Command Message

CLA 0x00
INS 0xA4
P1 0x02
P2 0x00
Lc Length of the object ID, 2 bytes.
Data Field Object ID.
Le Empty
Response M essage

Datafield returned in the response message
Empty.
Status bytesreturned in the response message

If the object is not found, the SO 7816-4 [ISO4] status condition: ‘6A82’ is returned (status bytes
SW1=0x6A, SW2=0x82). For other status conditions see section General Error Conditionsin
Section 5.3.2.

5-28



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.4 Get Properties APDU

This command is used to retrieve applet instance properties of a currently selected applet.

Command Message

CLA 0x00

INS 0x56

P1 Requested properties information type

P2 0x00

Lc If P1=0x02 then length of list of requested tags, else empty.
Data Field If P1=0x02 then list of requested tags, else empty.

Le Expected applet instance properties length

Reference control parameter P1

The reference control parameter P1 shall be used to indicate the type of requested properties
information. The following P1 values are possible:

0x00: Get a GSC-IS v2.0 compatible properties response message. If this response cannot be
supported by the smart card then an error (0x6A86) shall be returned.

Ox01: Get al the properties.

0x02: Get the properties of the tags provided in list of tagsin the command data field.

Data field sent in the command message

Thisfield is present only when P1is 0x02. In that case, this datafield is composed of thelist of
tags to be requested from the appl et instance (the tag values, 1 byte each, are chained).

Response M essage

Data field returned in the response message when P1 is 0x00

The Datafield returned in the response message contains the values of the following properties:

Applet family (1 byte)

Applet version (4 bytes)

RFU byte

RFU byte

ID/CHV-applet AID length (1 byte)

ID/CHV-applet AID (always 16 bytes padded with O if necessary) — AID of the ID/CHV
applet instance that shall be used for Card Holder Verification (CHV)

5-29



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Key Set Version (1 byte)1

Key Set Id (1 byte) 2

T-Buffer length (2 bytes)

V-Buffer length (2 bytes)

X bytes of applet specific information and RFU to complement to 64 bytes.

Datafield returned in the response message when P1is 0x01 or 0x02

The datafield returned in the response message contains the current value of all the properties
when P1 is 0x01 or the current value of the requested properties when P1 is 0x02. The properties
arereturned in asingle buffer containing alist of TLV s packed end-to-end according to the table
below. The scope of these tags is specific to the properties object and should not be confused
with the GSC and CAC data model tags.

Tag Length Value
Applet Information
0x01 5 Applet Family (1 byte)
Applet version (4 bytes)
0x40 1 Number of objects managed by this instance
0x50 11 First TV-Buffer Object
0x41 2 ObijectID (2 bytes)
Buffer Properties (5 bytes)
Type of Tag Supported (1 byte)
0x42 5 T-Buffer length (2 bytes): LSB, MSB
V-Buffer length (2 bytes): LSB, MSB
(Next TV-Buffer Object...)
0x50 11 Last TV-Buffer Object
0x41 2 ObjectID (2 bytes)
Buffer Properties (5 bytes)
0x42 5 Type of Tag Supported (1 byte)
T-Buffer length (2 bytes): LSB, MSB
V-Buffer length (2 bytes): LSB, MSB
0x51 17 First PKI Object
0x41 2 ObjectID (2 bytes)
Buffer Properties
0x42 5 Type of Tag Supported (1 byte)
T-Buffer length (2 bytes): LSB, MSB
V-Buffer length (2 bytes): LSB, MSB
0x43 4 PKI Properties

Algorithm ID (1 byte)

! Key Set and Key Levels are applicable to v2.0 for backward compatibility.
2 Key Set ID refersto the key number and the Key Level is used to indicate whether the referenced key is part of the READ or

WRITE Key Set.

5-30



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Key Length Bytes / 8 (1024 bits -> 128 bytes-> 0x10) (1 byte)

Private Key Initialized (1 byte)
Public Key Initialized (1 byte)

Processing statereturned in the response message

If the properties retrieval succeeds, SW1 = 0x61 and SW2 = size of next block of data available

to read.

If P1 = 0x00 cannot be supported by the smart card, SW1 = Ox6A and SW2 = 86.

SW1 ‘ SW2 ‘

Meaning
61 LL More data available, OXLL specifying the size of next block to read.
6A 86 P1 or P2 parameter not supported.

For other status conditions see Table 5-11b.

5-31



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.5 Get ACR APDU
This command is used to retrieve Access Control Rule properties.

Command Message

CLA 0x80

INS 0x4C

P1 Reference Control Parameter P1

P2 0x00

Lc If P1=0x00, 0x10, 0x20, or 0x21 then empty. If P1=0x01 then the

length of the ACRID (0x01). If P1=0x11 then the length of the AID
(<=0x10). If P1=0x12 then the length of object ID (0x02)

Data Field If P1 = 0x00, 0x10, 0x20, 0x21 then empty. If P1=0x01 then the
value of the ACRID. If P1=0x11 then the value of the AID. If
P1=0x12 then the value of the object ID.

Le Empty.

Refer ence control parameter P1

The reference control parameter P1 shall be used to indicate the type of requested ACR properties
information. The following P1 values are possible:

0x00: All ACR table entries are to be extracted.
0x01: Only one entry of the ACR tableis extracted based on ACRID.
0x10: All Applet/Object ACR table entries are to be extracted.

0x11: Only the entries of the Applet/Object ACR table for one applet are extracted based on
applet AID.

0x12: Only one entry of the Applet/Object ACR table for an object is extracted based on object
ID.

0x20: The Access Method Provider table is extracted.
0x21: The Service Applet tableis extracted.

Data field sent in the command message

Thisfield is present only when P1is0x11 or 0x12. If P1 equalsOx11, it containsthe AID value
of the applet for which the Applet/Object ACR table isto be extracted. If P1 equals 0x12, it
contains the Object 1D value of the object for which the Applet/Object ACR tableisto be
extracted.

Response M essage

Datafield returned in the response message

The following tables may be retrieved:

5-32



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

m ACRtable: Thistable mapsthe Access Control Rule Type (ACRType) and Access Method
information to the Access Control Rule Identifier (ACRID) for each Access Control Rule.

m  Applet/Object ACR table: This table maps the service (INS code/P1 byte/P2 byte/1% data
byte) to the ACRID for each container.

m  AccessMethod Provider table: This table mapsthe Access Method Provider 1D to the full
AI1D for each Access Method Provider.

m  Service Applet table: Thistable mapsthe Service Applet ID to the full A1D for each
Service Applet.

The data fields returned in the response message may contain all the entries for atable or only the
requested ones depending on the command parameters.

The following entry is always returned and precedes any ACR table, Applet/Object ACR table or
Authentication Method Provider table.

Table 5-14: Applet Information String

0x01 5 Applet Family of Access Control Applet (ACA) (1 byte)

Applet version of ACA (4 bytes)

In addition to the common Applet Information entry the following entries are conditionally
returned depending on the reference control parameter P1.

Data field returned in the response message when P1 is 0x00

The data field returned in the response message contains all the entries of the ACR table.

Table 5-15: ACR Table

Tag Length Value
0xAl 1 Number of ACR entries (unique ACRID)
First ACR entry (structured as follows)
ACRID of ACR entry (1 byte)
ACRType (as defined in Table 3-2) (1 byte)
Number of AccessMethods in this ACR (1 byte)
First AccessMethodProviderID (1 byte)
OxAO * First keylDOrReference (1 byte)
(Next AccessMethod...)
Last AccessMethodProviderID (1 byte)
Last keylDOrReference (1 byte)
O0xAO0 * (Next ACR entry ...)
* Denotes Variable length field

5-33



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Data field returned in the response message when P1 is 0x01
The data field returned in the response message a single entry of the ACR table based on ACRID.

Table 5-16: Applet/Object ACR Table

Tag Length Value
ACR entry corresponding to ACRID sent
ACRID of ACR entry (1 byte)
ACRTYype (as defined in Table 3-2) (1 byte)
Number of AccessMethods in this ACR (1 byte)
OxAO * First AccessMethodProviderID (1 byte)
First keylDOrReference (1 byte)
(Next AccessMethod...)
Last AccessMethodProviderID (1 byte)
Last keylDOrReference (1 byte)
* Denotes Variable length field

Data field returned in the response message when P1is 0x10

The datafield returned in the response message contains all entries of the Applet/Object ACR

table.
Table 5-17: Access Method Provider Table

Tag Length Value
0x81 1 Number of applets managed by this ACA
0x80 Lengthis 2 | Card Applet ACR structured as follows

plus length

of nested Applet ID (1 byte)

TLV fields ] )

0x82 Number of objects managed by this applet (1 byte)

Card Object ACR structured as follows
Card Object ID (2 bytes)
INS1 Code (1 byte)
INS1 Configuration Definition - 0000 0 b,bbg(1 byte)
If bo=1 then P1 byte is present.
If b;=1 then P2 byte is present.
If b,=1 then first data field byte is present.
P1 Value — OPTIONAL (1 byte)
0x82 * P2 Value — OPTIONAL (1 byte)
First Data Byte Value — OPTIONAL (1 byte)
ACRID (1 byte)

INSX ...
0x82 * (Next Card Object ACR...)
0x80 * (Next Card Applet ACR...)

5-34



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

* Denotes Variable length field

Data field returned in the response message when P1isOx11

The data field returned in the response message contains the entries of the Applet/Object ACR
table for asingle applet based on AID.

5-35



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 5-18: Service Applet Table

Ta Length Value
Lengthis 2 | Applet ACR table based on applet AID entered
plus length

0x80 of nested Applet ID (1 byte)
TLV fields

Ox82 Number of objects managed by this applet (1 byte)

Card Object ACR structured as follows
Card Object ID (2 bytes)
INS1 Code (1 byte)
INS1 Configuration Definition - 0000 0 h,b;bg(1 byte)
If bp=1 then P1 byte is present.
If b;=1 then P2 byte is present.
If b,=1 then first data field byte is present.
P1 Value — OPTIONAL (1 byte)
0x82 * P2 Value — OPTIONAL (1 byte)
First Data Byte Value — OPTIONAL (1 byte)
ACRID (1 byte)
(INSx ...)
0x82 * (Next Card Object ACR...)
* Denotes Variable length field

Data field returned in the response message when P1is 0x12

The data field returned in the response message contains the entry of the Applet/Object ACR
table for a single object based on OID.

Table 5-19: Applet/Object ACR table for a Single Object

Tag Length Value
Card Object ACR (structured as follows)
Card Object ID (2 bytes)
INS1 Code (1 byte)
INS1 Configuration Definition - 0000 0 b,b;ibg(1 byte)
If bp=1 then P1 byte is present.

If b;=1 then P2 byte is present.

If by=1 then first data field byte is present.
P1 Value — OPTIONAL (1 byte)

0x82 * P2 Value — OPTIONAL (1 byte)

First Data Byte Value — OPTIONAL (1 byte)
ACRID (1 byte)

(INSx ...)

* Denotes Variable length field

5-36



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Datafield returned in the response message when P1 is 0x20

The data field returned in the response message contains al the entries of the Access Method
Provider table.

Table 5-20: Access Method Provider Table

Tag Length Value
0x91 1 Number of AMP entries

Length AMP entry (structured as follows)
o0 | cludes

structure
0x92
Access Method provider ID (short form) (1 byte)

0x92 * Access Method provider AID
0x90 * (Next AMP entry...)

Datafield returned in the response message when P1 is 0x21

The datafield returned in the response message contains al the entries of the Service Applet
table.

Table 5-21: Service Applet Table

Tag Length Value
0x94 1 Number of Applet entries
0x93 * Applet entry (structured as follows)
Applet ID (short form) (1 byte)
0x92 * Applet AID
0x93 * (Next Applet entry)

* Denotes Variable length field

Processing statereturned in the response message

If propertiesretrieval succeeds, SW1 = 0x61 and SW2 = size of next block of data available to
read.

SW1 ‘ SW2 ‘ Meaning

61 LL More data available, OXLL specifying the size of next block to read.

For other status conditions see Table 5-11b.

5-37



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.6 Get Response APDU

The GET RESPONSE APDU isused to retrieve from the smart card the response message of the
immediately preceding APDU in the case that this APDU has returned a processing state of 61xx
indicating that a response message of xx bytesis available.

Command Message

CLA 0x00

INS 0xCO0

P1 0x00

P2 0x00

L¢ Empty

Data Field Empty

Le Number of bytes to read in response

Response M essage

Datafield returned in the response message

If the APDU result indicates success, L. number of byteswill be available to read from the smart
card.

Processing state returned in the response message

See Table 5-11b.

5-38



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.3.7 Verify PIN APDU

The VERIFY command is used to verify the global PIN code, or to check if the PIN code verification is
required, or to check whether or not the PIN code has been aready verified. The global PIN isaroot
level key.

Command Message

CLA 0x00

INS 0x20

P1 0x00

P2 0x00

Lc OxNN (Effective PIN length, 0x00 indicates no PIN present)
Data Field PIN code to be verified

Le Empty

Note: The maximum effective PIN length is dependent on the card platform.

Data field sent in the command message

If the datalength and the data field sent in the command message are empty (datafield does not
include a PIN code), the command corresponds to a PIN verify check command, and it is used to
determineif the PIN code verification is necessary and whether or not the PIN code has been
aready verified.

If the verification fails, the PIN-tries-remaining flag is decremented, and the PIN-verified flag
value does not change. The PIN-always flag valueis set to 0x00. If the PIN-tries-remaining flag

value is 0x00, the PIN code is considered blocked. If the verification succeeds, the PIN-verified
flag value and the PIN-always flag value are both set to 0x01.

Response M essage

Datafield returned in the response message

The datafield in the response message is always empty.

Processing state returned in the response message

If PIN verification succeeds, SW1=0x90 and SW2=0x00.

If PIN verification fails, the status returned is SW1=0x63, SW2=0xCX where X is number of
remaining PIN tries.

If PIN verify check command is submitted and PIN is aready verified, SW1=0x90 and
SW2=0x00, otherwise SW1 = 0x63, SW2 = 0xCX, where X = number of remaining PIN tries.

5-39



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

SW1 ‘ SW2 ‘ Meaning
90 00 PIN verification succeeds
63 CX PIN not verified and X indicates the remaining tries
69 83 PIN code blocked
6A 88 No PIN code defined

5-40



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.4 Generic Container Provider Virtual Machine Card Edge Interface

Table 5-22 shows the Generic Container Provider VM APDUSs. Asdescribed in Chapter 8, containers
accessed by these APDUs are split into two buffers: a TL buffer containing Tag and associated Length
values, and aV buffer containing the values identified by the corresponding Tags and Lengths.

Table 5-22: Generic Container VM APDUs

Card Function CLA INS P1 P2 L¢ Data Le
Buffer and
READ BUFFER 0x80 0x52 | Off/H | Off/L 0x02 number bytes to -
read
uPDATE BUFFER | 280 | oxsg | offiH | offiL | L Buffer and data -
0x84 to update

5-41



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.4.1 Update Buffer APDU
This command allows updating all or part of a buffer.

Command Message

CLA 0x80

INS 0x58

P1 Reference Control Parameter P1
P2 Reference Control Parameter P2

Lc 1+ Length of data to be updated
Data Field Buffer (1 byte) + data to be updated
Le Empty

Reference control parameter P1/P2

The reference control parameters P1 and P2 shall be used to store the offset from which data are
to be written. Thisoffset is calculated by concatenating the P1 and P2 parameters (P1 = MSB, P2
=LSB).

Data field sent in the command message

Thefirst byte of the data field shall be used to indicate which buffer is to be updated.

The possible values are:

Ox01: T-buffer
0x02: V-buffer

The other bytes correspond to the data to be updated.
Response M essage

Datafield returned in the response message

The datafield in the response message is always empty.

Processing state returned in the response message

Swi ‘ SW2 ‘ Meaning
67 00 Invalid command data length
6A 86 Wrong P1/P2 (Try to update data out of the buffer)
6A 88 No corresponding buffer (invalid Buffer Type)

5-42



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.4.2 Read Buffer APDU
This command allows reading all or part of abuffer.

Command Message

CLA 0x80

INS 0x52

P1 Reference Control Parameter P1

P2 Reference Control Parameter P2

Lc 0x01 + 0x01 = 0x02

Data Field Buffer type (1 byte value) followed by the data length to read (1 byte
value)

Le Empty

Reference control parameter P1/P2

The reference control parameters P1 and P2 shall be used to store the offset from which data are
to beread. Thisoffset is calculated by concatenating the P1 and P2 parameters (P1 = MSB, P2 =
LSB).

Data field sent in the command message

The datafield shall be used to indicate which buffer is to be read.
The possible values are:

0x01: T-buffer
0x02: V-buffer

Response M essage

Datafield returned in the response message

The datafield in the response message corresponds to the data read from the smart card,
according to the P1, P2 parameters (offset indicating from where to read data) or empty if GET
RESPONSE command is required to receive data read from the smart card.

Processing statereturned in the response message

If READ BUFFER command was successful, SW1=0x90 and SW2=0x00, any available datais
returned in the data field of the response message. If command is successful and SW1=0x61,
SW?2 contains bytes remaining to be read from the smart card with subsequent GET RESPONSE

commands.
Swi1 ‘ SwW2 ‘ Meaning
67 00 Invalid command data length
6A 86 Wrong P1/P2 (Try to update data out of the buffer)
6A 88 No corresponding buffer (invalid Buffer Type)

5-43



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.5 Symmetric Key Provider Virtual Machine Card Edge Interface

Table 5-23 shows the Symmetric Key Provider VM APDUSs.

5.35.1

Table 5-23: Symmetric Key VM APDUs

Card Function CLA INS P1 P2 L Data Le
GET CHALLENGE | 0x00 0x84 0x00 0x00 - - Le
EXTERNAL
AUTHENTICATE 0x00 0x82 | AlgID | Key# Lc Cryptogram -
INTERNAL
AUTHENTICATE 0x00 | 0x88 | AlgID | Key # Lc Challenge Le

Get Challenge APDU

The GET CHALLENGE command isthefirst step of the host authentication process and is followed
immediately by the EXTERNAL AUTHENT ICATE command. The computed challengeisvalid only for the
following EXTERNAL AUTHENTICATE APDU.

Command Message

CLA 0x00

INS 0x84

P1 0x00

P2 0x00

Lc Empty

Data Field Empty

Le Challenge length

Response M essage

Datafield returned in the response message

The response message contains the challenge used later for authentication.

Processing state returned in the response message

See Table 5-11b.

Note: The computed challenge must be stored within the appl et instance in order to evaluate the
expected EXTERNAL AUTHENTICATE command. The client application shall encrypt the
challenge received from the smart card using a cryptographic algorithm known by the smart card
and the corresponding shared key. The cryptographic algorithm is DES3-ECB with a 16-byte key.
The encrypted challenge shall then be submitted to the smart card using the EXTERNAL

AUTHENT ICATE command.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.5.2 External Authenticate APDU

ThisEXTERNAL AUTHENTICATE command is asubset of the ISO 7816-4 [1SO4] standard command.
The default cryptographic algorithm is DES3-ECB with double length key size (16 bytes) and an 8-byte
challenge requested from the smart card using the GET CHALLENGE command just before the
authentication command is submitted. This command isintroduced to allow external authentication with
different cryptographic agorithms selected through the P1 parameter and multiple key setsif same datais
updated by different applications that do not desire to share their keys.

Command Message

CLA 0x00

INS 0x82

P1 Algorithm identifier and security level

P2 0x00 for default key, 0x01 to 0x30 for key number

Lc Length of the cryptogram

Data Field Cryptogram

Le Empty

P1: OxAS where A specifies the algorithm identifier using the 4-MSb of P1 and S

defines the secure messaging and command encryption as described in the table
below, using the 4-L Sb of the parameter

Table 5-6 contains the algorithm identifiers.

Meaning of
A (b8-b5) S(b4-bl)
0 0 0 0 o lo 0 0 Default algorithm or No secure
already known messaging expected

Secure messaging
C-MAC (Global
Platform)

Default algorithm or
already known

Command
Default algorithm or | encryption and C-
already known MAC (Global
Platform)

No secure

- |- 1= 1= 10 [0 |0 |0 | Algorithm Identifier -
messaging expected

Secure messaging
- |- |- - 0|0 0 1 | Algorithm Identifier C-MAC (Global
Platform)

Command
encryption and C-
MAC (Global
Platform)

- |- |- |- 0| 0| 1 |1 | Algorithm Identifier

Response M essage

5-45



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Datafield returned in the response message
Empty.
Processing statereturned in the response message:

For specific status conditions see Table 5-11b.

5-46



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.5.3 Internal Authenticate APDU
This command is used to perform a challenge-response authentication.

Command Message

CLA 0x00

INS 0x88

P1 0x00 for the default DES3-ECB or Algorithm ID as defined in the
CCC

P2 0x00 for default key, 0x01 to 0x30 for key number

Lc Length of the subsequent data field

Data Field Authentication related data (e.g. Challenge)

Le OxLL Maximum number of bytes expected in response

Data field sent in the command message

The datafield contains the data to be encrypted by the smart card using the selected key.
Response M essage

Datafield returned in the response message

The datafield in the response message contains the data encrypted. The length of the response
may vary and depends on the configuration of the applet.

Processing statereturned in the response message

See Table 5-11b.

5-47



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

5.3.6 Public Key Provider Virtual Machine Card Edge Interface

The Public Key Provider VM APDU set consists of one APDU, the PRIVATE SIGN/DECRYPT APDU as
detailed in Section 5.3.6.1.

5.3.6.1 Private Sign/Decrypt APDU
This command is used to perform an RSA signature or data decryption.

Command Message

CLA 0x80

INS 0x42

P1 0x00

P2 0x00

Lc Data Field length

Data Field Data to sign or decrypt

Le Expected length of the signature/decryption

Data field sent in the command message
The data field contains the data to be signed using the selected RSA key pair.
The data must be already padded before the message is sent.
Response M essage
Datafield returned in the response message

The datafield in the response message contains the data signed or decrypted. The client
application is responsible for any data padding.

Processing state returned in the response message

See Table 5-11b.

5-48



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

6. Card Capabilities Container
6.1 Overview

To accommodate variations in smart card APDU set implementations, the GSC-1S definesa VCEI and a
general mechanism for mapping a smart card’ s native APDU set to the VCEI. This mechanism is based
on the GSC-1S Card Capability grammar. The differences between a smart card’s APDU set and the
standard APDU set defined by the VCEI are carried on the smart card in the CCC.

Each GSC-IS conformant smart card shall contain a CCC and support a standard procedure for accessing
it as defined in Section 6.2. The contents of a CCC shall conform with the formal card capabilities
grammar defined in this chapter.

Virtual Machine cards can be programmed to directly implement the VCEI APDU set. However, Virtual
Machine cards shall still contain a CCC.

Card-specific data that
describes the difference
between GSC-IS Card
Edge Interface
commands and the card
commands

Card
Capability
Container

’ GSC Data

A

Client

Application

Basic Services Interface (BSI)
Card Edge Interface (CEI)

GSC-Is
compliant
Smart Card

Figure 6-1: The Card Capability Container

Before the card-specific APDU definitions can be used to communicate with the smart card, the CCC
must be read.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

6.2 Procedure for Accessing the CCC

The CCC isdesignated by the Capabilities Application Identifier (A1D: GSC-RID||DB00). The Universal
AID of the smart card CCC shall be 0xA000000116DB00. The CCC shall be the default container of a
CCC applet onaVM card. This container shall be selected by default when the CCC applet is selected.

The CCC isimplemented as a transparent (binary) file on file system cards. The GSC CCC Elementary
File (EF) shall be contained in the Master Directory (FID: “0x3F00") and is designated by the
Capabilities Application Identifier (AID: GSC-RID||DB00) aswell asthe FID: “0xDB00".

I_M_F_I
DF DF @

DF

Figure 6-2: Location of the CCC Elementary File in a file system card
6.2.1 General CCC Retrieval Sequence

The CCC shall be stored under aknown AID on Virtual Machine cards and a known FID under File
system cards. The following CCC retrieval sequence shall be executed after an ATR (Answer-To-Reset)



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

to the smart card. The retrieval sequence is used to determine which card edge interface isimplemented,
virtual machine card edge or File system card edge and then to read the CCC. Oncethe ATRis
successful, the SPS first attemptsto retrieve the CCC using the procedure for Virtual machine cards. If
thisfails, the SPS then attempts to read the CCC using the file system card procedure. If that also fails,
the SPS assumes that the smart card does not contain a CCC and is not GSC-IS conformant.

The procedure for the retrieval of the CCC isasfollows:

1. The SPSsendsaSELECT APPLET APDU to the smart card as shown in the following table:

Length
of AID

0x00 OxA4 | 0x04 | 0x00 AID

2. The CCC applet is selected on aVM card if the smart card returns the status bytes “0x9000” or
“Ox61LL" (“LL” indicates more data available). If not, the SPS then attempts to use the File
system procedure to access the CCC as defined in steps 4-8.

3. A successful applet selection isfollowed by an attempt to read the CCC by sending aREAD
BUFFER APDU command as specified in the Card Edge Interface for VM cards. The READ
BUFFER APDU issent asfollows:

’INS’ Pl’PZ ‘LC

Buffer type +data

0x80 0x52 | P1 P2 0x02 length to read

Note 1 : Reference Control Parameter P1/P2 : See Card Edge interface for VM (Chapter 5,
Section 5-43)

Note 2 : Thefirst buffer to be read is the TL-Buffer (Buffer type = “0x01"), the second buffer to
be read isthe V-Buffer (Buffer type = “0x02).

Note 3: The “datalength to read” is application/vendor specific, but in practice it is advisable to
set it to 64.

If no error status bytes are returned, the smart card will return the data read from the card with
“0x9000" status byte to indicate complete completion or “Ox61LL" toindicate that “LL" bytes
are still available to read. The TL-Buffer and the V-Buffer shall be entirely read.

If an error status byte is returned and the card does not support the READ BUFFER APDU
command, the SPS attempts to use the File system card edge by sending aREAD BINARY APDU
with CLA="0x00" as defined in step 5. If this succeeds, the VM card is using the File system
card edge APDUs. If thisfailsand the smart card does not support READ BINARY either, the
smart card is not GSC-1S compliant.

4. For thefile system card, the SPS sends a sequence of APDUs to the smart card until the CCC is
successfully read. This sequence selects the Master File (MF) using its reserved FID value
“Ox3F00", then the CCC Elementary File (EF) using its reserved FID value “OxDB00”, and then
performs a binary read operation on that CCC Elementary File.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

The SPS sends aSELECT MF APDU command as follows:

CLA ‘ INS ‘ P1 ‘ P2 ‘ Lc ‘ DATA
TEST CLA OxA4 | 0x03 | 0x00 0x02 | Ox3FO00

Note 1: The default TEST CLA values are: 0x00, 0xCO, 0xFO, 0x80, 0xBC, 0x01. The CLA
value “0x00” is SO 7816-4 [1SO4] conformant. The value “0x00" shall be the first to be tested.
(Additional test valuesfor CLA are: 0x90, 0xA0, OxB0O-0xCF.)

5. If thereturned status byte is “ OXx6EQQ”, the tested Class byte is not supported. The SPS loops
back to step 4 and attempts the next CLA value.

6. If thereturned status byteis*“0x9000” or “Ox61LL" (“LL” indicates more data available), then
the command structure and CLA value are correct.

7. Once CLA has been determined, the SPS selects (CCC) EF under MF asfollows:

CLA ‘INS‘ P1 ‘ P2 ‘ Lc ‘ DATA
Determined CLA | OxA4 | 0x02 | 0x00 0x02 0xDB00O

The CCC EF is selected if no error codes are returned.

8. Then to Read a binary file (with no secure messaging), the SPS uses the following READ BINARY
APDU on the selected CCC EF:

CLA ‘INS‘ P1 ‘ P2 ‘Le
Determined CLA 0xBO | Off/H Off/L Le

Note2: P1, P2 and Le are asdefined in Section 5.1.1.2

Note 3: SPS implementations should define atimeout value to avoid an infinite wait for a
response from the smart card. The timeout mechanism and value are application specific, sincein
some cases the card reader driver layer may provide this. The SPSwill return
BSI_TIMEOUT_ERROR in response to agscBsiUti IConnect() if aconnection cannot be
established before the timeout value expires.

6.2.2 Card Capabilities Container Structure

For afile system card, the Card Capability Container shall be an elementary file. The file consists of a
string of SIMPLE Tag-Length-Value (TLV) data objects with no encoding, with the exception of fields
that use structured SIMPLE TLV (“Application CardURL"” and ” Access Control Rule Table” fields).

For aVM card, the Card Capability Container shall be the default container (buffer) managed by the CCC
applet. Theinternal format of that CCC container is defined in Section 8.2.

For both card types, the CCC is configured for ALWAYS READ. However, it is up to each implementer to
define write/modify rules.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 6-1: CCC Fields

Card Capabilities Container FID: 0xDBOO Always Read

Data Element (TLV)

Card Identifier O0xFO Variable

Capability Container version number OxF1 Fixed: 1 byte

Capability Grammar version number OxF2 Fixed: 1 byte

Applications CardURL OxF3 Variable — Multiple Objects
PKCS#15 OxF4 Fixed: 1 byte

Registered Data Model number O0xF5 Fixed: 1 byte

Access Control Rule Table OxF6 Variable — Multiple Objects

CARD APDUs OxF7 Fixed: 6 bytes

Redirection Tag OxFA Variable

Capability Tuples (CTs) OxFB Variable: Collection of 2 byte Tuples
Status Tuples (STs) OxFC Variable: Collection of 3 byte Tuples
Next CCC OxFD Application Card URL, 20 bytes or greater
Optional Issuer Defined Objects Dlse?il:lird Variable

Error Detection Code OXFE LRC

6.3 CCC Fields

Sections 6.3.1 through 6.3.9 describe the CCC fields defined in Table 6-1. The smart card issuer may
include additional TLV aobjects in the Card Capabilities Container for application specific purposes.
These are not needed for interoperability but may be used to facilitate extended applications. They may
be ignored by any implementation without affecting interoperability. Any optiona objects that are not
recognized shall be ignored.

6.3.1 Card Identifier Description
The Card Identifier shall be specified by each issuing organization for each card type. Among other

things, the Card Identifier allows a client application to determine the type of card it is communicating
with. Thisidentifer isdefined by the following ASN.1 sequence:

CarduUniqueldentifier ::= SEQUENCE {
GSC-RID OCTET STRING SI1ZE(5)
ManufacturerlD BIT STRING SIZE(8),
CardType,
CardID STRING
}
cardType ::= CHOICE {
fileSystemCard [O] BIT STRING SIZE(8) : “Ox017,
javaCard [1] BIT STRING SIZE(8) : “0Ox027,
Multos [2] BIT STRING SIZE(8) : “0Ox03”,
JavaCardFS [3] BIT STRING SIZE(8) : “0Ox047,
}

JavaCardFS refersto aJava Card implementing the file system card edge defined in Chapter 5.




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

6.3.2 Capability Container Version Number

The Capability Container Version Number field describes the version of the card capability container.
Thefield is of length one byte; the high order nibble of the byte describes the major version number, and
the low order nibble of the byte describes the minor version number.

CapabilityContainerVersion ::= SEQUENCE {
MajorVersion BIT STRING SIZE(4),
MinorVersion BIT STRING SIZE(4)

}

For instance, for this version of the CCC, the high order nibble would contain the number 2, and the low
order nibble would contain the number 1, to correspond to version 2.1.

6.3.3 Capability Grammar Version Number
The Capability Grammar Version Number field describes the version of the Card Capability Container

grammar. Thefield is of length one byte; the high order nibble of the byte describes the major version
number, and the low order nibble of the byte describes the minor version number.

CapabilityGrammarVersion ::= SEQUENCE {
MajorVersion BIT STRING SI1ZE(4),
MinorVersion BIT STRING SIZE(4)

}

For instance, for this version of the Card Capability Container grammar, the high order nibble would
contain the number 2, and the low order nibble would contain the number 1, to correspond to version 2.1.

6.3.4 Applications CardURL Structure

The Card Capabilities Container may contain multiple instances of ApplicationsCardURL structures,
each denoted by the tag value “0xF3”. They can be assembled into alist of the applications, including
FIDs and paths, Key Identifiers and Access Control Methods, which are supported by the card (see
Section 7.1).

The structure of the ApplicationsCardURL isdenoted { T-L-{T1-L1-V1} ... {Tn-Ln-Vn}} with atag
field followed by alength field encoding a number. If the number is not zero, then the value field of the
constructed data object, called "template" in ISO/IEC 7816, consists of one or more SIMPLE TLV data
objects, each one consisting of atag field, alength field encoding a number and if the number is not zero,
avaluefied.

6.3.5 PKCS#15

The PKCSH#15 fidld, if non-zero, indicates that the smart card conforms to PKCS#15. If thefield is non-
zero, shall indicate the version of PK CS#15.

6.3.6 Registered Daa Model Number

The Registered Data Model Number indicates the registered Data Model in use by the smart card.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

6.3.7 Access Cntrol Rules Table

The Access Control Rules Table allows Access Control Rules to be recorded only oncein the card. The
table definition is either stored directly in the CCC or in the Access Control Applet (ACA) of aVM card
in which case the CCC has areference to the AID of the Access Control Applet.

For additional information on structure format, see Section 6.3.4.

ACRTableOrAlDReference ::= CHOICE {
acrTable [0] ACRTable,
acrTableAlD [1] STRING SIZE(16)

3

ACRTable ::= SEQUENCE {
acrs SEQUENCE OF ACR,
accessMethods SEQUENCE OF AccessMethod,
accessMethodProviders SEQUENCE OF AccessMethodProvider

s

ACR ::= SEQUENCE {
acrliD BIT STRING SIZE(8),
acrType BIT STRING SIZE(8),
accessMethodIDs SEQUENCE OF AccessMethodID

}

AccessMethodID ::=BIT STRING SIZE(8)

AccessMethod ::= SEQUENCE {
accessMethodlID BIT STRING SI1ZE(8),
accessMethodProviderID BIT STRING SI1ZE(8),
keylDOrReference BIT STRING SIZE(8)

3

AccessMethodProvider ::= SEQUENCE {
accessMethodProviderlD BIT STRING SIZE(8),
accessMethodProviderAlD STRING SIZE(16)

3

6.3.8 Card APDUs

The card capability container optionally may contain a 6-byte Card APDUs field for the purposes of
informing the SPS which SO 7816-4 [ISO4] and 7816-8 [ISO8] APDUs are available on the smart card.
Each bit in the string, if set to 1, would indicate the presence of a corresponding APDU. The Card
APDUsfield is described in more detail in Section 5.2.3.

6.3.9 Reirection Tag

In the case an implementer decides that a specific subset of Tags need a particular Security Context and
that a specific access control rule should be enforced, it is possible to create a Container for this set of

Tags.

The Redirection Tag can be used to indicate to the BSI Provider, Data Model Tags are being “redirected”
to the Container.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

The “value” part of the TLV for this redirection Tag can be described as follows:

Redirection_value ::= SEQUENCE {
dedicatedFilelD BIT STRING SI1ZE(16),
Tags

}

Tags := SEQUENCE {
taglD BIT STRING SI1ZE(8),

}

where each “taglD” is aredirected tag.
A DM can have any number of “redirection flags’ to handle Tag level exceptions to the nominal DM.
6.3.10 Capability and Status Tuples

The CCC shall contain asingle Capability Tuple (CT) object, which consists of a collection of two byte
tuples defining the capabilities, formats and procedures supported by the smart card. The VCEI definesa
default set of APDUSs that represent a generic implementation of the ISO 7816 standard. Itisonly
necessary to include CT’ sto indicate a variance between a given smart card’ s capabilities and the default
Set.

The CCC may contain a single Status Tuple (ST) object, consisting of a collection of three byte tuples
that define the possible status codes for each function. It is only necessary to include STsthat differ from
the VCEI’ s status codes and the status codes defined in 1SO 7816-4 [1SO4].

Sections 6.3.11 through 6.3.14 describe the construction of tuplesin more detail.

6.3.11 Capability Tuples

The CCC shall contain a sequence of two-byte elements called tuples. Each tuple comprises a C-byte and
aV-byte as shownin Table 6-2. Each tuple describes one piece of an APDU for a particular command.

For example, one tuple may define the value of the CLA byte for aSELECT FILE APDU, while another
tuple may define the value of P1 for the same command.

Table 6-2: Tuple Byte Descriptions

C - Code Byte V — Value/Descriptor Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
0= Const If C bit 7 = 0 Then V contains a constant value
Parameter Function Code
1= Desc If C bit 7 = 1 Then V contains a Descriptor code

The C-byte of the tupleis the Code Byte. It identifies the particular command and parameter that is being
defined. The V-byteisthe Vaue Byte, which provides either the value to be used for the parameter or a
descriptor code that represents the definition of the parameter, that is, what the parameter isin the APDU.
This could be, for example, the most-significant byte of the offset for aREAD BINARY APDU, or the
CHV level for aVERIFY PIN APDU. Whether the V-byte is a constant value or a descriptor codeis
determined by the 7" bit (most significant bit) of the C-byte. If thishit is 0, the V-byte contains avalue

6-8



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

while, if itis 1, the V-byte contains a descriptor code. Bits 6 through 4 of the C-byte identify the
parameter and bits 3 through O identify the particular command.

The possible values for the codes used in the C and V-bytes are summarized in Table 6-3.

Table 6-3: Parameter and Function Codes

Parameter Function Codes
Codes N

0x00 DATA 0x00 |Reserved, Used for Shift Operation (see Section 6.4.2)
0x01 CLA 0x01 |[Select DF

0x02 INS 0x02 |Transparent Read (Binary)

0x03 P1 0x03 |Update Binary File

0x04 P2 0x04 |RFU

0x05 pP3* 0x05 |Manage Security Environment

0x06 Prefix 0x06 |Get Challenge

0x07 Suffix 0x07 |Get Response

0x08 |Verify (CHV)

0x09 |Internal Authenticate

O0x0A |External Authenticate

0x0B |Perform Security Operation
0x0C |Select File

0x0D |Select EF (under current DF)
OxOE |Select MF (root)

OxOF |RFU

*Note: P3isaLength (Lcor Le)
6.3.12 Prefix and Suffix Codes

Parameter codes 06 (hexadecimal) and 07 represent prefix and suffix commands respectively. These are
commands (function codes) that must execute before or after the specified function code. For example,
on some smart cards, aGET RESPONSE must succeed a cryptographic function, or a VERIFY must
precede aREAD BINARY with secure messaging.

6.3.13 Descriptor Codes

The descriptor codes are used to add processing information for data values or parameters. Parameters
can be described by at most one descriptor code, whereas data values can be described by multiple,
successive descriptor codes. Table 6-10 presents a summary of all descriptor codes.

6.3.14 Status Tuples

The purpose of the Status Tuples isto map a smart card’ s non-standard status response SW1 & SW2 into
acommon set of status conditions for a given function. It isnot mandatory to list any status conditions
that conform to ISO-7816. Status Tuples shall consist of three bytes, labeled S, SW1 and SW2, which
describe the possible status conditions for each function. Multiple sets of SW1 and SW2 may translate



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

into a single Status Condition. Tables 6-4 through 6-6 describe the status tuple construction and status
condition codes.

Table 6-4: Status Tuples

Swi SwW2
Status Condition Function Code

Table 6-5: Standard Status Code Responses

Status Conditions ‘

0x00 | Successful Completion

0x01 | Successful Completion — Warning 1

0x02 Successful Completion — Warning 2
0x03 | Reserved

0x04 | Reserved

0x05 Reserved

0x06 Reserved

0x07 Reserved

0x08 | Access Condition not Satisfied

0x09 Function not Allowed

O0xOA | Inconsistent Parameter

0x0B Data Error

0x0C | Wrong Length

0x0D | Function not compatible with file structure
OxOE | File/Record not Found

OxOF | Function Not Supported

6.3.15 Next CCC Description

Thisfield, if included, is used to point to another CCC container. The valuesin this next CCC container
will override valuesin the current CCC or define new values and fields. The Next CCC field contains an
ApplicationsCardURL structure, with minimum length of 20 bytes.

6.4 CCC Formal Grammar Definition

Using a modified Backus-Naur notation, a definition for the Card Capability Grammar is presented as
follows:

Command_Unit, [Command_Unit,...]
Command_Unit:(
FC: (function_code, [extension]),
Command: (

6-10



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

APDU: (

CLA: (class, [qual=0xFE]),

INS:instruction,

P1: ((p_constant]|<value>),def:{code,...}),
P2:((p_constant]<value>,def:{code,...}),
P3:(length,def:{code,...}), //of data
DATA: (composition:data_type[+data_type(.--)])

),

[Prefix:function_code], //could depend on extension
[Suffix:function_code] //could depend on extension

)

6.4.1 Grammar Rules

A description of the symbols follows:

Symbol

‘ Meaning
is composed of

[]

optional element

0

includes or included in

separates elements

element repeats unspecified number of times

{} choose one from list

<> element value must be given at execution time

| or, indicates choice of possibilities for element value
+ element is combined with preceding element

I

remainder of line contains comments

In general, the word immediately preceding a colon is the name of the element, while the word to the
right of the colon is the name of an element value that may be expected. A description of the el ement
valuesisgiven asfollows:

Element ‘ Meaning

Function_code value from function code table, always required when other elements
are present

Class value for the APDU CLA byte, when entered this is a constant

Instruction value for APDU INS byte, when entered this is a constant

Extension (see discussion about extended function code)

P_constant value for the APDU P1 or P2 byte, when entered this is a constant

Code code for parameter definition, the code must be in the descriptor table

Length length of data element, when entered this is a constant

Data_type code for the composition of the APDU Data field, must be in the
descriptor table

Qual Qualifier for CLA; only possible value is OXFE to indicate command is
not available

6-11



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Note that all elements except function_code are essentially optional in acommand_unit. The square
brackets[ ] are used to emphasi ze that the enclosed optional elements can only be present if the preceding
element is present.

Therulesfor building and APDU definition according to the formal grammar are as follows:

The sequence of tuplesis organized in groups called command units; all tuples pertaining to a
single command unit must be presented in contiguous sequence.

The sequence of tuplesisimportant and must be presented in the order defined by the formal
grammar.

Each command unit consists of arequired function code and optional APDU elements.

When present, the CLA element may have a constant value (and/or one qualifier code equal to
OxFE, which indicates the command is not available on the smart card).

When present, the INS element must have a constant value.

When present, the P1 element may optionally have a constant value and/or one/multiple
definition code.

When present, the P2 element may optionally have a constant value and/or one/multiple
definition code.

When present, the P3 element may have a constant value; P3 always refersto the length of the
DATA eement in the Command APDU or the length of the expected DATA element in the
Response APDU (respectively Lc or Le).

The DATA element may have multiple data type codes; when combined the data type codes
define the composition of the value to be placed in the APDU data field.

As an example of using the Card Capability Grammar, consider the following GSC-1S-default APDU for
a Select Dedicated File command aong with the same command for the Schlumberger [CCPG] card:

Table 6-6: Default vs. Schlumberger DF APDU

Select Dedicated File (DF)

Card Type CLA | INS P1 P2 P3 Data
GSC-IS Default 00 A4 01 00 L (02) | File ID (2 bytes)
Schlumberger Cryptoflex | CO A4 00 00 L (02) | File ID (2 bytes)

The formal grammar definition of the Cryptoflex command is as follows:

FC:01, CLA:CO, INS:A4, P1:00, P2:00, P3:(02,def:15), DATA:21

which trandates into the following tuple sequence:

11C0 21A4 3100 4100 5102 D115 8121



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

The method for creating the tuple sequence is shown in the Table 6-7, where the C-Byte and V-Byte are
built from the parameter, function, and descriptor codes given in the Table 6-3 and Table 6-10.

Table 6-7: Tuple Creation Sequence

Description
S Function, Parm Value/Descriptor
1 0|1 1 Cco Select File, CLA \Y “Co” 11CO
2 0|2 1 A4 Select File, INS \% “A4" 21A4
3 0|3 1 00 Select File, P1 \% “00” 3100
4 0|4 1 00 Select File, P2 \% 00 4100
5 0|5 1 02 Select File, P3 \% “02" 5102
6 1|5 1 15 Select File, P3 D Length D115
7 1|0 1 21 Select File, Data D 2 byte FID 8121

Table 6-7 shows the complete tuple sequence to define the SELECT DF command for the

Cryptoflex| CCPG] card according to the CC Grammar; however, the only differencesin the APDU
between the GSC-1S Default and the Cryptoflex card are the CLA byte and the P1 parameter. Therefore,
only two tuples are necessary since the rest of the APDU is defined by the GSC-ISVCEI. Thetuples
required to define this SELECT DF command for the Cryptoflex card would be:

Table 6-8: Derived Select DF Tuple

# C-Byte V-Byte Description Tuple
S P FC Function, Parameter VID Value/Descriptor

1 0|1 1 Co Select File, CLA \ “Co” 11C0

2 0|3 1 00 Select File, P1 \ “00” 3100

6.4.2 Extended Function Codes

The construction of the Code Byte allows only four bits for the designation of the function code; however,
it may, at times, be necessary to use more than the allocated commands. For example, prefix or suffix
commands that are card specific may be required to fulfill the processing for the GSC-1S command on a
particular smart card.

The reserve function code “0x00” is used to define a shift tuple. Thistupleis used in the sequence of
tuplesto place all following function codes in a shift state defined by the high-order four bits of the shift
key. The function codes are logically or’ ed with the current shift tuple to create an extended function
code. Placing another shift tuple in the tuple stream places function codes in an un-shift or other shift
state. A diagram illustrating the mechanicsis given in Figure 6-3.

6-13



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

N

Shift Tuple | s | oo | Std Tuple| p | FC p

Ext| FC

~_

S Shift Level; FC: Function Code; P:Parameter; Ext.: Extension

Figure 6-3: Shift Tuple Sequence (SL: shift level)

As an example of using the shift tuple, consider the following sequence of tuplesin Table 6-9:

Table 6-9: Example of Extended Function Code

Description

S Function, Parm Value/Descriptor
1 0 7 8 1C Verify, Suffix \% “1C” 7817
2 0 1 0 00 Shiftup 1 \% “00” 1000
3 0 1 7 00 Get Response, CLA \Y “00” 1700
4 0 2 7 Cco Get Response, INS \Y “Co” 27CO0
5 0|5 7 12 Get Response, P3 \% “12" 5712
6 1|5 7 15 Get Response, P3 D 15 D715
7 1|0 7 FD Get Response, Data D FD 87FD
8 11]0 7 38 Get Response, Data D 38 8738
9 11]0 7 2F Get Response, Data D 2F 872F

The first two tuples have function code 08h indicating a VERIFY command, and give the value for the
Data and Suffix parameters. In this case the suffix isaGET RESPONSE with an extended function code.
Thethird tuple is used to set the current shift state. The function codes in the following tuples are
logically or’ ed with the shift tuple key, which is the C-byte of the shift tuple (10" in the previous table)
to create the extended function code 17h (result of 10h logically or’ ed with O7h). This extended function
code is then used to identify a new command that completely specifiesaGET RESPONSE using the
constant value “ 12" for P3. In thisway acard and command-specific length can be specified for the GET
RESPONSE.

6-14



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table 6-10: Descriptor Codes

Code ‘ Meaning Comments
0x00-0xOF |Execute Function Code
ox11 Challenge g;;ﬂeR:r?]gﬂn;;\:g.mber: a designated number of random byte values generated
0x12 Algorithm Identifier
0x13 RFU
0x14 RFU
0x15 Length
0x16 MSB of Offset The most significant byte of the file offset in bytes.
0x17 LSB of Offset The least significant byte of the file offset in bytes.
018 |Key Level othonise, e key 5 t he root level(global msert the byte On00.
0x19 Key Identifier Key number
Ox1A CHV Level
0x1B CHYV Identifier CHV number on smart card
0x1C AID Application Identifier
0x1D EF The File ID of an Elementary File
Ox1E SID The Security Identifier value used by Microsoft Windows.™
Ox1F Parameter is not used
0x20 RFU Reserved for future use
0x21 2 Byte FID The 2-byte File Identifier of the file being accessed.
0x22 Short FID The 5 least significant bits of the 2-byte File Identifier of the file being accessed.
0x23 File Name
0x24 AES-ECB AES algorithm, mode ECB
0x25 AES-CBC AES algorithm, mode CBC
0x26 DES DES algorithm
0x27 DES3_16 Triple DES algorithm
0x28 Plain Text un-encrypted ANSI text
0x29 RFU
Ox2A Pad Data with Os The Data is padded at the end with low values to length of P3
0x2B PIN PIN value
0x2C 2-byte Key File Identifier The 2-byte File Identifier of the file of the key being referenced.
0x2D PIN Type Pin Type
O0x2E RFU
0x2F 8 Byte Random Number
0x30 Length + 6 Length of data plus 6 bytes
0x31 Length + 3 Length of data plus 3 bytes
0x32 Max Buffer Size Maximum buffer size in preceding data bytes
0x33 n (modulus length) Used in the RSA algorithm
0x34 Message Plain text message to be encrypted
0x35 4 Byte Word Length or offset is given in words (one word = 4 bytes)
0x36 Pad Data with FF Data padded at end with high values

6-15




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Code ‘ Meaning ‘ Comments
0x37 tgg?th = SW2 With SW1 || o 16th = low nibble of SW1-SW2 (61nn) from last response
0x38 RFU
0x39 RSA =512 RSA 512 bit algorithm using Chinese Reminder Theorem
O0x3A RSA =768 RSA 768 bit algorithm using Chinese Reminder Theorem
0x3B RSA =1024 RSA 1024 bit algorithm using Chinese Reminder Theorem
0x3C Pad = FF at beginning Padding (FF) put at the beginning for the length of key to be 128 bytes
0x3D ANSI X9.31 Padding
Data padded at the end with low values to the 8-byte boundary (ISO 9797.2
0X3E Pad = 00(8) paragraph 5.1 method 1).
O0x3F Pad = FF(128) Data padded at end with high values to total length of 128 bytes (PKCS#1)
0x40 Pad = FF(Front)
0x41 MD5 Header
Ox42 LSN Key Encoding g%r:ggte?]r:zeigeblsist);itzgi.ﬁcant nibbles of key. For example 8 byte key can be
Ox43 Terminal Random Number gsdlf.ssignated number of random byte values generated on the terminal by the
0x44 Key Level + Key Most significant bit is global/local flag
Ox45 Key File Short ID :’ek;grzrl]igzt. significant bits of the 2-byte File Identifier of the file of the key being
0x46 MSB of Offset in Words The most significant byte of the file offset in 4 byte words.
0x47 LSB of Offset in Words The least significant byte of the file offset in 4 byte words.
0x48 RFU
0x49 Block Length
Ox4A TLV Format
0x4B Operation Mode Cryptographic operation modes
Ox4C LOUD Lengt.h of useful dgta: the number of bytes in the data transmitted, without
counting any padding or added bytes.
0x4D RFU
The cryptogram is generated by encryption of an 8-byte random number with a
Ox4E 8 byte Cryptogram designated key, with DES encryption for an 8-byte key and DES3 encryption for
a 16-byte key.
Ox4F RFU
050 |Length + X Such that Lengih £ 3 + X 18 everty duisile by 8.
OX51 Pad with X OxFF Bytes g:gctrjiziirtcc):&eergigoc.)r written with X OXFF bytes where X is defined in
0X52 Select child DF of current Descriptor.code used to describe va(iation of the ISO Select file command for
DF P1 (Function code “Ox0C") See section 5.1.1.4
0x53 Length + 8 The number of bytes of data to be read or written plus 8.
iS4 | SeletEFofcurent DF | ES6IPIO o0 tsed 6 dscrbe ey of he 190 Selct e command o
OX55 Select parent DF of current Descriptor_code used to describe var_iation of the ISO Select file command for
DF P1 (Function code “Ox0C") See section 5.1.1.4
0X56 TLV Command Data for Insert th_e tag byte 0x81, the length byte representing the n_umber of data bytes
Update Binary to be written to the smart card, and the data bytes to be written.

6-16




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Code ‘ Meaning ‘ Comments
OX57 TLV Response for Update |Interpret as the tag byte 0x99, the length byte 0x02, and two data bytes
Binary representing 1ISO 7816-4 status bytes SW1 and SW2.
0x58 TLV Command Data for Insert the tag byte 0x97, the length byte 0x01, and a byte representing the
Read Binary number of bytes to be read from the smart card.
0x59 TLV Response Data for Interpret as the tag byte 0x81, the length byte representing the number of data
Read Binary byte read from the smart card, and the data bytes read.
Ox5A DES3_16-ECB Triple DES algorithm, 16 bytes key, ECB mode,
0x5B DES3_16-CBC Triple DES algorithm, 16 bytes key, CBC mode,
0x5C DES-ECB DES algorithm, mode ECB
0x5D DES-CBC DES algorithm, mode CBC
Ox5E RSA = 2048 RSA 2048 bit algorithm using Chinese Reminder Theorem
OX5E Key Number << 1 The number of the designated key is shifted 1 bit to the left (equal to multiplying
the key number by 2).
If the designated key is at the current level (local) insert the byte 0x80;
0x60 Key Level Flag otherwise, if the key is at the root level (global) insert the byte 0x00.
The length of the data transmitted plus the number of padding bytes required to
0x61 Length + #Padding fill the designate block size: 64 bytes for an RSA 512-bit key, 96 bytes for an
RSA 768-bit key, and 128 bytes for an RSA 1024-bit key
062 Length of RSA Response The response length is the same as the padded length of data sent to the smart
card in an RSA Compute command.
Interpret as the return data from an RSA Compute command: a digital signature
0x63 RSA Response Data computed for a padded hash sent to the smart card, or a decrypted padded
hash for a digital signature sent to the smart card.
MD5 hash: append to data 18 header bytes:
(0x10,0x04,0x00,0x05,0x05,0x02,0x0D,0xF7,0x86,0x48,0x86,0x2A,0x08,0x06,
0x0C,0x30,0x20,0x30);
SHA-1 hash: append to data 15 header bytes:
(0x14,0x04,0x00,0x05,0x1A,0x02,0x03,0x0E,0x2B,0x05,0x06,0x09,0x30,0x21,
OxB4 Pad Hashed Data 0x30).
(PKCS#1)
For all these hash algorithms, after appending the designated header bytes,
append one 0x00 byte, followed by a variable number of OxFF bytes followed by
two bytes (0x01,0x00); the number of OxFF bytes appended brings the total
number of bytes, data plus padding, to the same length as that of the PKI key
(64 bytes for a 512-bit key, 96 bytes for a 768-bit key, 128 bytes for a 1024-bit
key).
The data bytes (either command data sent to the smart card or response data
OX65 Swab Data Bvtes received from the smart card) are swapped, so that for N bytes, the 1st
P y swapped byte is the Nth data byte, the 2nd swapped byte is the N-1st and so
forth, until the Nth swapped byte is the 1st data byte.
Insert the tag byte 0x84, the length byte 0x01, and a byte representing the key
0x66 TLV Key ID identifier of the key used in the PKI computation.
. Insert the tag byte 0x80, the length byte 0x01, and a byte representing the
0x67 TLV Hash Algorithm ID algorithm used to hash the data being signed: 0x32 for MD5 or 0x12 for SHA-1.
The first byte of the data is a value equal to the length of the PKI key being
0x68 Key Length Padded Hash  |used, followed by the 0x00 byte, followed by the swapped padded hashed data
Data bytes, with padding per descriptor byte 0x65 and swapping per descriptor byte
0x64.
0x69 Key Length + 2 The value is the length of the PKI key being used plus 2.
0x70-0x99 |RFU
0xA0-OxDF |Implementation Dependent

6-17




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Code ‘ Meaning ‘ Comments
OXEO Put Data Bytes Place Data Bytes (En) in data stream output to smart card
OxXE1-OxEF |En N Data Bytes En: Next n bytes are Data Bytes
O0xFO-OXFC |Reserved
O0xFD Interpret Response Following descriptor bytes are used to interpret response
OXFE Command not available Command is not available on smart card
OxFF User Input Required Parameter value must be supplied by use/program

6-18




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Container Selection and Discovery

The GSC-IS architecture isolates client applications from the differences between virtual machine and file
system cards. Virtual machine cards use AID to identify containers and file system cards use File IDs
(FID) to identify files; containers and files fall under the category of “objects.” An applet on avirtual
machine card may manage one or more containers, whereas a directory on afile system may contain one
or morefiles. Client applications must be able to locate the appropriate container or file, regardless of
which applet or directory isrequired. These differences are abstracted by defining
ApplicationsCardURL and Universal AID structures that are common to both virtual machine and file
system cards. In this context the terms “container” and “file” and “object” are synonymous. The term
“container” will be used preferentially throughout this section.

7.1 AID Abstraction: The Universal AID

Client applications use Universal AlDs to select generic containers and cryptographic service modules.
For generic container references, Universal AlDs are constructed by concatenating the RID value with the
File ID of the desired container. For selecting cryptographic service modules, Universal AlDs are
constructed by concatenating the GSC RID value with the File ID of the desired cryptographic key file
(symmetric or asymmetric). For example, the Universal AID of the Card Capabilities Container on a card
that conformsto the GSC-1S Data Model (Appendix C) would be 0xA000000116DB00.

7.2 The CCC Universal AID and CCC Applet

Asone of itsfirst functions, an SPS must read the CCC from the smart card. The retrieval process for the
CCCisdetailed in Chapter 6. For virtual machine cards, the CCC shall be the default container of an
applet whose Universal AID is known by client applications (RID+"DB00"). Therefore, selecting this
applet makes the CCC the default selected object available to read.

7.3 The Applications CardURL

Before accessing a container on asmart card, client applications need a method for identifying the applet
and directory information associated with the container. Therefore, all GSC conformant smart cards shall
provide, in the CCC, an ApplicationsCardURL structure for each container present on the card. The
ApplicationsCardURL structureis used to uniquely reference a container on a smart card by including
itsUniversal AID and its associated applet or directory information. This structure also provides a
mechanism for client applications to determine the ACRs and PIN and key labels associated with the
given container.

ApplicationsCardURL structures are stored in the CCC as outlined in Chapter 6. For VM cards, the
pinlD, AccessKeylnfo, and keyCryptoAlgorithm fields must be present but are not applicable.
The following ASN.1 sequence describes the structure of the ApplicationsCardURL:

ApplicationsCardURL ::= SEQUENCE {
Rid OCTET STRING SI1ZE(5),
CardApplicationType,
ObjectlID BIT STRING SI1ZE(16),
ApplicationlD BIT STRING SI1ZE(16),
AccessProfile,
piniD BIT STRING SI1ZE(8),
AccessKeylInfo,
keyCryptoAlgorithm

}



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

CardApplicationType ::= CHOICE {
genericContainer [0] BIT STRING
ski [11 BIT STRING
pki [2] BIT STRING

}

ObjectlID ::= CHOICE {

-- GSC data model definitions
generalInfo [O] BIT STRING
proPersonal Info [1] BIT STRING
accessControl [2] BIT STRING
login [31 BIT STRING
cardInfo [4]1 BIT STRING
biometrics [51 BIT STRING
digitalSigCert [61 BIT STRING
-— CAC data model definitions
personlnstance [71 BIT STRING
benefitsinfo [81 BIT STRING
otherBenefits 91 BIT STRING
personnel [10] BIT STRING
logininfo [11] BIT STRING
pkiCert [12] BIT STRING
-— Common definitions

SEIWG [13] BIT STRING

}

AccessProfile ::= ACRList

ACRList ::= CHOICE {
GCACRList,

CryptoACRList

}

CryptoACRIist ::= SEQUENCE {
listiD BIT STRING
getChallengeACRID BIT STRING
internalAuthenticateACRID BIT STRING
pkiComputeACRID BIT STRING
readTagListACRID BIT STRING
updatevalueACRID BIT STRING
readvalueACRID BIT STRING
createACRID BIT STRING
deleteACRID BIT STRING

3

GCACRIiIst ::= SEQUENCE {
listiD BIT STRING
readTagListACRID BIT STRING
updatevalueACRID BIT STRING
readvalueACRID BIT STRING
createACRID BIT STRING
deleteACRID BIT STRING

3

AccessKeylInfo ::= SEQUENCE {

7-2

SIZE(8)
SI1ZE(8)
SI1ZE(8)

SIZE(16)
SIZE(16)
SIZE(16)
SI1ZE(16)
SI1ZE(16)
SI1ZE(16)
SIZE(16)

SIZE(16)
SIZE(16)
SI1ZE(16)
SIZE(16)
SIZE(16)
SIZE(16)

SIZE(16)

SIZE(8)

SIZE(8),
SIZE(8),
SIZE(8),
SI1ZE(8),
SI1ZE(8),
SIZE(8),
SIZE(8),
SIZE(8)

SIZE(8)
SIZE(8),
SI1ZE(8),
SIZE(8),
SIZE(8),
SI1ZE(8)

“0x01”,
“0x027,
“0x04”

“0x20007,
“0x21007,
“0x30007,
“0x40007,
“0x50007,
“0x6000”,
“0x70007,

“0x02007,
“0x0202~,
“0x0203”,
“0x0201",
“0x03007,
“Ox02FE”

“0x0007”

“0x01”,

“0x02”,



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

keyFilelD BIT STRING SI1ZE(16),
keyNumber BIT STRING SI1ZE(8),
keyCryptoAlgorithm
3
keyCryptoAlgorithm CHOICE {
DES3-16-ECB [0] BIT STRING SIZE(8) : “0x007,
DES3-16-CBC [1] BIT STRING SIZE(8) : “0Ox01°,
DES-ECB [2] BIT STRING SIZE(8) : “0x027,
DES-CBC [3] BIT STRING SIZE(8) : “0Ox03”,
RSA512 [4] BIT STRING SIZE(8) : “0x04~,
RSA768 [5] BIT STRING SIZE(8) : “0Ox057,
RSA1024 [6] BIT STRING SIZE(8) : “0Ox06”,
RSA2048 [7]1 BIT STRING SIZE(8) : “0x077,
AES128-ECB [8] BIT STRING SIZE(8) : “0Ox087,
AES128-CBC [9] BIT STRING SIZE(8) : “0x097,
AES192-ECB [10] BIT STRING SIZE(8) : “Ox0A~’,
AES192-CBC [11] BIT STRING SIZE(8) : “0Ox0B~”,
AES256-ECB [12] BIT STRING SIZE(8) : “0x0C”,
AES256-CBC [13] BIT STRING SIZE(8) : “0Ox0D”
3

7.4 Using the Applications CardURL Structure for Container Selection

The Universal AlDs associated with each data model are published in the appendices of this specification.
When a client application attemptsto first access a container, it will need to retrieve the
ApplicationsCardURL structure that corresponds to that container’s Universal AID, and use the
information contained therein to access the container. Thisis done differently for file system and VM
smart cards. The RID field contains the registered identifier [1SO5] data model.

7.5 File System Cards: Selecting Containers

TheObjectlID field in the ApplicationsCardURL structure contains the two-byte File ID of the
desired container. In the case of file system cards, the ApplicationlID field will be the two-byte File ID
of either the Master File or the Directory file within the Master File.

7.6 VM Cards: Selecting Containers and Applets

For VM cards, selecting the container is atwo-part process. First, one retrieves the File ID for the desired
container from the Obj ect | Dfield (aswith file system cards). Secondly, one retrieves the AID of the
applet that manages the container; that applet’s AID isfound in the Appl i cat i onl Dfield.

7.7 Using the Applications CardURL Structure for Identifying Access Control Rules

I dentifying the access control rules associated with a specific container is straightforward after the
container’ s associated ApplicationsCardURL structureisretrieved. The value of the AccessProfile
field determines whether the following structure is a generic container ACR list (GCACRl i st) or a
cryptographic service modules ACR list (Cr ypt 0ACRI i st). Note that different access control rules can
be associated with reading tags versus reading values.

7-3



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

7-4



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

8. Data Model

8.1 Data Model Overview

Data Models define a set of containers (files) and associated dataelementsin TLV format. The only
mandatory containers are the CCC and Access Control File or SEIWG file. With the exception of the
CCC and Access Control File, a GSC-1S conformant card may implement all, some, or none of the other
containers associated with a Data Model. However, if the smart card uses any of the data elements
defined in Data Model then it must use the container and TLV format specified by that Data Model for
that element.

The SEIWG [SEIW] string is defined as the minimum interoperability mechanism for card holder
authentication. The SEIWG strings and files are therefore mandatory for both contact and contactless
GSC cards.

This specification defines two Data Models. The GSC Data Model was developed for version 1.0 of the
GSC-IS (see Appendix C). The GSC Data Model is sometimes referred to as the “J.8” Data Model, since
it wasfirst defined in Section J.8 of the Smart Access Common ID Card contract. The second Data
Model was developed for the DoD Common Access Card (CAC) and isreferred to asthe CAC Data

Model (see Appendix D).

Applications can discover which Data Model a given card supports by examining the Registered Data
Model field of the card’s Card Capabilities Container (see Chapter 6). The Registered Data Model field
shall contain a0x01 if the card is using the GSC-1S Data Model defined in Appendix C, or a0x02 if the
card conforms to the CAC Data Model in Appendix D. Error Detection Codes (EDC) are only mandated
for the GSC-1S Data Model.

8.2 Internal Tag-Length-Value Format

All container data elements are stored in SIMPLE-TLV format. Each SIMPLE-TLV data object shall
consist of atag field, alength field and an optiona value field. For VM cards implementing the VM card
edge interface, the SIMPLE-TLV format is split into a T-Buffer and V-Buffer. (See description in Section
8.4)

Thetag field T shal consist of asingle byte encoding only a number from 1 to 254. No class or
construction types are coded. The values “0x00” and “OxFF" are invalid for tag fields. The tag value
OXFE is reserved for the mandatory EDC data object in each container.

The scope of tag valuesis at the container level, so the same tag value could appear in different containers
and have different meanings. Unique tag values are used across al containersin the current GSC-IS Data
Models, although thisis not a mandatory requirement.

The length field shall consist of 1 or 3 consecutive bytes. If the leading byte of the length field isin the
range from ‘00’ to ‘' FE', then the length field shall consist of a single byte encoding an integer L valued
from 0 to 254. If the leading byteisequal to ‘' FF', then the length field continues on the two subsequent
bytesin least significant byte (L SB) - most significant byte (M SB) order, which encode an integer L with
avaue from 0 to 65,535.

If L isnot zero, then the value field V shall consist of L consecutive bytes. If L iszeroorif atagis
omitted from its file/buffer, then the data object must be empty; there is no value field for that tag.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

8.3 Structure and Length Values for Cards Requiring the File System Card Edge

Thefile system card edge requires containers to be implemented as asinglefile, i.e., one file comprises
the container. Thefirst TLV record of the container may optionally contain the length of the occupied
space in the container as follows:

Container Byte O: Tag = OXEE

Container Byte 1: Length = 0x02

Container Byte 2 Least significant byte of length of occupied space
Container Byte 3: Most significant byte of length of occupied space
Container Byte 4: Next tag value

8.4 Structure and Length Values for Cards Requiring the Virtual Machine Card Edge
The virtual machine card edge is designed to interact with containers that are split into two buffers: the T-
Buffer, for storing the tag and associated tag lengths, and the V-Buffer, for storing the values. Thefirst
two bytes of each buffer contain the length of the occupied space in the buffer in LSB-MSB format.

84.1 T-Buffer

The T_Buffer io ranctriintad arncardinn tn tha T \/ farmat (Cortinn Q D)

T-Len Tag1 Len Tag? LenZ
i - e
2 bytes 1 byte 3 bytes
T-Buffer Total Length Ox=FF,Lenl2,LenHZ

Figure 8-1: T-Buffer Format
8.4.1 V-Buffer

The V-Buffer is constructed as follows according to the TLV format:

Len1 bytes
W-Len W1 W2
- i e
2 bytes LenZ bytes

W-Buffer Total Length

Figure 8-2: V-Buffer Format



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Appendix A—Normative References

[DES]

[FIPSI]

[GLOB]
[1S03]

[1S04]
[1S05]

[1S08]
[1S09]

[1444]

National Institute of Standards and Technology, “DES Modes of Operation”, Federal
Information Processing Standards Publication 81, December 1980,
http://csrc.nist.gov/publications/fips

National Institute of Standards and Technology, Federal Information Processing Standard
(FIPS) 140-2: Security Requirements for Cryptographic Modules, Decemeber 3, 2002

Global Platform Specification v2.1, http://www.global platform.org.

ISO/IEC 7816-3 1995(E): Electronic Signals and Transmission Protocols,
http://www.iso.ch.

ISO/IEC 7816-4 1995(E): Interindustry Commands for Interchange

ISO/IEC 7816-5 1994-1996 (Amendment 1): Numbering system and registration
procedure for application identifiers.

ISO/IEC 7816-8 1995(E): Interindustry Commands for a Cryptographic Toolbox

International Organization for Standardization, “Information Processing Systems -- Data
Communication High-Level Data Link Control Procedure--Frame Structure”, 1S 3309,
October 1984, 3rd Edition.

ISO/IEC 14443, Contactless integrated circuit(s) cards — Proximity cards- Parts 1 - 4

A-1


http://csrc.nist.gov/publications/fips

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

A-2



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Appendix B—Informative References

[OCF]

[JAVA]

[CCCa]

[PCSC]

[CCPG]

[SEIW]

The OpenCard Framework, http://www.opencard.org.

Java Card 2.1.1 Platform Documentation,
http://java.sun.com/products/javacard/javacard21.html

GSC-1S CCC Grammar Tutorial, Jackson, Harry, 2001,
http://smartcard.nist.gov/cccgrammartutorial . pdf

Personal Computer/Smart Card Workgroup Specifications,
http://www.pcscworkgroup.com.

Cryptoflex Cards Programmer’ s Guide, www.cryptoflex.com
Physical Access Interoperability Working Group (PAIWG) Technical Implementation

Guidance, Final Draft v1.0, Smart Card Enabled Physical Access Control Systems (dated 2
July 2003).


http://www.pcscworkgroup.com/

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

B-2



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Appendix C—GSC Data Model

The RID for the GSC Data Model is 0xA000000116. The registered Data Model number is 0x01, and the
Data Model version number is OxO1.

Note that the Access Control File and the SEIWG[SEIW] field contained therein are mandatory for this
data model.

File/Buffer Description ‘ FID ‘ Lerhfg;it);]irFBuyTes) Read Access Condition
Capability DB0O Always Read
General Information 2000 | 509 Always Read
Protected Personal Information 2100 19 Verify CHV
Access Control 3000 | 59 Always Read
Login 4000 141 Verify CHV
Card Information 5000 165 Always Read
Biometrics — X.509 Certificate 6000 | 2013 Always Read
PKI — Digital Signature Certificate 7000 | 3017 Verify CHV
General Information File / Buffer EF 2000 Always Read

Data Element (TLV) Tag Type Max. Bytes
First Name 01 Variable 20
Middle Name 02 Variable 20
Last Name 03 Variable 20
Suffix 04 Variable 4
Government Agency 05 Variable 30
Bureau Name 06 Variable 30
Agency Bureau Code 07 Variable
Department Code 08 Variable
Position/Title 09 Variable 30
Building Name 10 Variable 30
Office Address 1 11 Variable 60
Office Address 2 12 Variable 60
Office City 13 Variable 50
Office State 14 Variable 20
Office ZIP 15 Variable 15
Office Country 16 Variable 4
Office Phone 17 Variable 15
Office Extension 18 Variable 4
Office Fax 19 Variable 15
Office Email 1A Variable 60
Office Room Number 1B Variable 6
Non-Government Agency 1C Fixed Text




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

General Information File / Buffer EF 2000 Always Read
Data Element (TLV) Tag Type Max. Bytes
SSN Designator 1D Variable 6
Error Detection Code FE LRC 1
Protected Personal Information File / Buffer EF 2100 Verify CHV
Data Element (TLV) Max. Bytes
Social Security Number 20 Fixed Text 9
Date of Birth 21 Date (YYYYMMDD) 8
Gender 22 Fixed Text 1
Error Detection Code FE LRC 1
Access Control File / Buffer (Note: File mandatory for contact EF 3000 Always Read
cards)
Data Element (TLV) Tag Type Max. Bytes
SEIWG Data (Note: Field mandatory for |30 Fixed 40*
contact cards)
PIN 31 Fixed Numeric 10
Domain (Facility / System ID) 32 Variable
Error Detection Code FE LRC
*The SEIWG data format is defined in [SEIW].
Login Information File / Buffer EF 4000 Verify CHV
Data Element (TLV) ‘ Tag ‘ Type ‘ Max. Bytes
User ID 40 Variable 60
Domain 41 Variable 60
Password 42 Variable 20
Error Detection Code FE LRC 1
Card Information File / Buffer EF 5000 Always Read
Data Element (TLV) ‘ Tag ‘ Type ‘ Max. Bytes
Issuer ID 50 |Variable 32
Issuance Counter 51 Variable 4
Issue Date 52 Date (YYYYMMDD)
Expiration Date 53 Date (YYYYMMDD)
Card Type 54 Variable 32
Demographic Data Load Date 55 Date (YYYYMMDD)
Demographic Data Expiration Date 56 Date (YYYYMMDD)
Card Security Code 57 Fixed Text 32
Card ID AID 58 Variable 32




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Card Information File / Buffer EF 5000 Always Read
Data Element (TLV) ‘ Tag ‘ Max. Bytes
Error Detection Code FE |LRC 1
Biometrics — X.509 Certificate File / Buffer EF6000 Always Read
Data Element (TLV) Max. Bytes
Template 60 Variable 512
Certificate 61 Variable 1500
Error Detection Code FE LRC 1
PKI — Digital Signature Certificates File / Buffer EF 7000 Verify CHV
Data Element (TLV) Max. Bytes
Certificate 70 Variable 3000
Issue Date 71 Date (YYYYMMDD) 8
Expiration Date 72 Date (YYYYMMDD) 8
Error Detection Code FE LRC 1




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

C-4



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Appendix D—DoD Common Access Card (CAC) Data Model

D.1 CAC Data Model Specific

The RID for the dl the files except the CCC in the CAC Data Model is 0xA000000079. The registered
Data Model number is 0x02, and the Data Model version number is 0x01. The CCCRID is
0xA000000116.

The CAC containers are stored in SIMPLE-TLV format as per Chapter 8.

File/Buffer Description Ler|\1/|gat);1ir(n;ynt1es) R%%dngiiﬁ)enss
Capability DB00O Always Read
Person Instance Container 0200 469 PIN or External Auth
Benefits Information Container 0202 19 PIN or External Auth
Other Benefits Container 0203 59 PIN or External Auth
Personnel Container 0201 | 141 PIN or External Auth
Login Information Container 0300 133 PIN or External Auth
PKI Certificate Container 02FE | 2013 PIN Always
SEIWG 0007 | 41 Always Read
Person Instance File/Buffer EF 0200 Always Read

Data Element (TLV) ‘ Tag ‘ Type ‘ Max. Bytes
Person First Name 01 Variable 40
Person Middle Name 02 Variable 40
Person Last Name 03 Variable 52
Person Cadency Name 04 Variable 8
Person Identifier 05 Fixed Text 30
Date of Birth 06 Date (YYYYMMDD) 16
Sex Category Code 07 Fixed Text
Person Identifier Type Code 08 Fixed Text
Blood Type Code 11 Fixed Text 4
DoD EDI Person Identifier 17 Fixed Text 20
Organ Donor 18 Fixed Text 2
Identification Card Issue Date 62 Date (YYYYMMDD) 16
Identification Card Expiration Date 63 Date (YYYYMMDD) 16
Date Demographic Data was Loaded on |65 Date (YYYYMMDD) 16
Chip
Date Demographic Data on Chip Expires |66 Date (YYYYMMDD) 16
Card Instance Identifier 67 Fixed Text 2




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

SEIWG File / Buffer (Note: File Mandatory for Contact Cards) | EF 0007 Always Read
Data Element (TLV) Max. Bytes
SEIWG Data 30 Fixed 40*
Error Detection Code FE LRC 1

*The SEIWG data format is defined in [SEIW].

Benefits Information File / Buffer EF 0202 CHV Verify
Data Element (TLV) Max. Bytes
Exchange Code 12 Fixed Text
Commissary Code 13 Fixed Text
MWR Code 14 Fixed Text
Non-Medical Benefits Association End 1B Date (YYYYMMDD) 16
Date
Direct Care End Date 1C Date (YYYYMMDD) 16
Civilian Health Care Entitlement Type DO Fixed Text 2
Code
Direct Care Benefit Type Code D1 Fixed Text 2
Civilian Health Care End Date D2 Fixed Text 16
Other Benefits File / Buffer EF 0203 Always Read
Data Element (TLV) Max. Bytes
Meal Plan Type Code 1A Fixed Text 4
Personnel File / Buffer EF 0201 Always Read
Data Element (TLV) Max. Bytes
DoD Contractor Function Code 19 Fixed Text 2
US Government Agency/Subagency Code |20 Fixed Text 8
Branch of Service Code 24 Fixed Text 2
Pay Grade Code 25 Fixed Text 4
Rank Code 26 Fixed Text 12
Personnel Category Code 34 Fixed Text
Non-US Government Agency/Subagency |35 Fixed Text 4
Code
Pay Plan Code 36 Fixed Text 4
Personnel Entitlement Condition Code D3 |Fixed Text
Login Information File / Buffer EF 0300 CHV Verify

Data Element (TLV) Max. Bytes

User ID 0x40 |Variable 20




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Domain 0x41 |Variable 20
PasswordInfo 0x43 |Fixed Text
ApplicationName 0x44  |Variable
Error Detection Code OXFE |LRC

PKI Certificate File / Buffer EF 02FE CHV Verify

Data Element (TLV) Max. Bytes

Certificate 0x70 Variable 1100
CertInfo 0x71 Fixed Text 1
MSCUID 0x72 Variable 38
Error Detection Code OXFE LRC 1




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

D-4



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Appendix E—C Language Binding for BSI Services

This appendix defines the C language binding for the BSI services. This set of services consists of 23 C
functions derived from the pseudo IDL specification (Chapter 4). The return codes for the functions are
as defined in Section 4.4. The C binding is grouped into three functional modules as follows:

m A Smart Card Utility Provider Module
m A Smart Card Generic Container Provider Module
m A Smart Card Cryptographic Provider Module

E.l Type Definitions for BSI Functions

The following type definitions are used by multiple BSI functions.

#typedef unsigned long UTILCardHandle
#typedef unsigned char GCtag
E.2 Parameter Format and Buffer Size Discovery Process

Many BSI function calls accept and/or return variable-length string data. The buffers that store the strings
are paired with an integer value representing the number of bytes (the size of the buffer). This number
includes the additional byte for the NULL terminator in the case where actual text is expected (e.g.

Reader Name). Calling applications shall allocate buffers of sufficient size to hold string arguments
returned by the BSI functions. The BSI shall provide a discovery mechanism to allow applicationsto
determine required buffer size for returned data. To determine the required buffer size, the calling
application must typically call the BSI function two times. Thefirst time to get the required buffer size
(discovery call), and the second time to execute the function with the correct buffer size (execution call).
However, only one call ispossibleif the client application is able to estimate the required buffer size. In
that last case, the call is an execution call.

The client application sets the pointer to the buffer that should be allocated for the returned arguments to
NULL. This approach signals to the service that it must determine the buffer size required for the
returned arguments and return this information in the corresponding paired integers. The client
application then allocates buffers of the required size, sets the paired integers accordingly, and calls the
BSI function a second time. The SPS must check the length integer against its previously cached value
and, if the value contained in the length integer is greater than or equal to the required buffer length, it
shall return the appropriate data in the buffers. See Example 1 and 2 in Section E.3 for additional
information.

If an application knows or is able to estimate the required buffer size beforehand, it can shorten the
process by making only one call. To do so, the application allocates buffersit believes to be of sufficient
size to hold the data returned by the BSI function, sets the paired length integers accordingly, and calls the
BSI function. The SPS shall check the length integer against the required value and, if it is greater than or
equal to the required buffer length, it shall return the appropriate datain the buffers. If not, the BSI
function shall return the BS1_INSUFFICIENT_BUFFER error code and the required buffer sizesin the
respective paired length integers. See Example 3 in the Section E.3 for more information.

E.2.1 Variable Length String Data

Ten BSI function calls accept and/or return variable-length string data identified in Table E-1.

E-1



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Table E-1: BSI functions using the discovery method

BSI function Discovery buffer Discovery length
gscBsiUtilGetVersion () *uszVersion *unVersionLen
gscBsiUtil GetCardProperties () *uszCCCUniquel D *unCCCUniquelDLen
gscBsiUtilGetReaderList () *uszReaderL ist *unReaderListLen
gscBsiUtilPassthru () (See Notein *uszCardResponse *unCardResponselen
Section E.3.9)
gscBsiGeReadTagList () *TagArray *unNbTags
gscBsiGeReadValue () *uszValue *unVauelLen
gscBsiGetChallenge () *uszChallenge *unChallengelLen
gscBsi Skilnternal Authenticate () *uszCryptogram *unCryptogramLen
gscBsiPkiCompute () *uszResult *unResultLen
gscBsiPkiGetCertificate () *uszCertificate *unCertificateLen

Each of these functions isinvoked in the discovery mode by passing in a NULL value for the discovery
buffer parameter. With the exception of gscBsiGcReadTagList (), each of these returns (Discovery
call) the size in bytes (including the NULL Terminator) of the buffer needed to store the return variable-
length string data. The lone exception, gscBsiGcReadTagList (), returnsthe number of tagsin the
tag array, so that the size of the array buffer needed is given by “*unNbTags * size of (GCtag)”.

E.3 Discovery Mechanisms Code Samples
Following are three examplesin C illustrating the discovery mechanism.

The three examples make the following assumptions:

Application defined return codes SUCCESS & FAILURE
ERROR_RETURN reports error and returns FAILURE

Parameters AID and AID length are given

PROCESS READ_CERTIFICATE processes the read of the certificate

Example 1

{

// Discovers the correct size for the certificate buffer, allocates memory
and executes.

unsigned char * pCert; //Discovery buffer
unsigned long unCertLen = 0O; //Discovery length

E-2



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

long iRet; //return code (“unsigned long” in the
Spec)

//First call : Discovery call
iRet = gscBsiPkiReadCertificate (hCard, usAlD, unAlDLen, NULL, &unCertLen);

if (iRet != BSI_0K)
ERROR_RETURN (*'gscBsiPkiReadCertificate-discovery call”, iRet);

ifT (unCertLen == 0)
ERROR_RETURN (*'Unexpected BSI_OK with unCertLen == 0", unCertLen);

//Memory allocation of the buffer with the returned length from first call
pCert = (unsigned char *) malloc (unCertLen * sizeof(unsigned char));

if (pCert==NULL)
ERROR_RETURN (*"Unable to allocate memory', unCertLen);
else

//Second call : Execution call
iRet = gscBsiPkiReadCertificate (hCard, usAlD, unAlDLen, pCert, &unCertLen);
if (iRet != BSI_0K)

free (pCert); // avoid memory leak!
ERROR_RETURN (‘'gscBsiPkiReadCertificate-results call', iRet)
}

else
PROCESS_READ_CERTIFICATE{.}
free (pCert); // avoid memory leak!

return (SUCCESS);
}

E-3



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Example 2

{

// Try default buffer first, if buffer is large enough normal execution
occurs, or 1T buffer is too small reacts by discovering the length and

executes.

unsigned char usBuffer [ESTIMATED_CERT_SIZE];

unsigned char * pCert = usBuffer; //Discovery buffer
unsigned long unCertLen = sizeof (usBuffer); //Discovery length
long iRet; //return code (“unsigned long” in the Spec)
//First call : Discovery call, or Execution call if buffer large enough

iRet = gscBsiPkiReadCertificate (hCard, usAlD, unAlDLen, pCert, &unCertlLen);
iT (iRet==BSI_INSUFFICIENT_BUFFER)
{

pCert = (unsigned char *) malloc(unCertLen * sizeof(unsigned char));

iT (pCert==NULL)
ERROR_RETURN (*"Unable to allocate memory", unCertLen);

//Second call : Execution call
iRet = gscBsiPkiReadCertificate (hCard, usAlD, unAlDLen, pCert,
&unCertLen);
ifT (iRet != BSI_0OK)
free (pCert); // avoid memory leak!

}
ifT (iRet != BSI_0OK) // Works for either 1st or 2nd call!

ERROR_RETURN (*'gscBsiPkiReadCertificate', iRet);
PROCESS_READ_CERTIFICATE {..}

if (unCertLen > ESTIMATED_CERT_SIZE)
free (pCert); // avoid memory leak!

return (SUCCESS);

}

E-4



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Example 3

{

// Use a buffer so large that discovery is never necessary.

unsigned char usBuffer [REALLY_BIG_BUFFER];

unsigned char *pCert = usBuffer; //Discovery buffer
unsigned long unCertLen = sizeof (usBuffer); //Discovery length
long iRet; //return code (“unsigned long” in the Spec)

//First call: Execution call
iRet = gscBsiPkiReadCertificate (hCard, usAlD, unAlDLen, pCert, &unCertLen);
ifT (iRet != BSI_0K)

ERROR_RETURN (*'gscBsiPkiReadCertificate', iRet);
PROCESS_READ_CERTIFICATE

return (SUCCESS);

}

E-5



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.4 Smart Card Utility Provider Module Interface Definition

E.4.1 gscBsiUtilAcquireContext()

Purpose:

Prototype:

Parameters:

This function shall establish a session with atarget container on the smart card by
submitting the appropriate Authenticator in the BS1Authenticator structure. For
ACRsrequiring external authentication (XAUTH), the uszAuthValue field of the
BSIAuthenticator structure must contain a cryptogram calculated by encrypting a
random challenge from gscBsiGetChal lenge(). In cases where the card
acceptance device authenticates the smart card, this function returns a
BS1_TERMINAL_AUTH return code and the cryptogram isignored.

For ACRs that require chained authentication such asBS1_ACR_PIN_AND_XAUTH,
the calling application passes in the required authenticators in multiple
BSIAuthenticator structures. Inthisexample the calling application passes a
PIN and the appropriate External Authentication cryptogram in two
BS1Authenticator structures. The client application must set the
unAccessMethodType field of each BS1Authenticator structure to match the
type of authenticator contained in the structure. To satisfy an ACR of
BSI_ACR_PIN_AND_XAUTH, the application would construct a sequence of two
BSIAuthenticators: one containing aPPIN and one containing an External
Authentication cryptogram. The BS1Authenticator structure containing the PIN
would have an unAccessMethodType of BSI_AM_PIN, and the
BSIAuthenticator structure containing the External Authentication cryptogram
would have an unAccessMethodType of BS1_AM_XAUTH.

unsigned long gscBsiUtilAcquireContext(
IN UTILCardHandle hCard,
IN unsigned char * uszAID,
IN unsigned long unAlDLen,
IN BSlAuthenticator *  strctAuthenticator,
IN unsigned long unAuthNb
)
hCard: Card connection handle from gscBsiUti IConnect().
uszAID: Target container AID value. The parameter shall bein

ASCII hexadecimal format.
unAlDLen: AID value length in bytes.

strctAuthenticator: Anarray of structures containing the authenticator(s)
specified by the ACR required to access avalue in the
container. Therequired list of authenticatorsis returned
by gscBsiGcGetContainerProperties(). The
calling application is responsible for alocating this
structure.

unAuthNb: Number of authenticator structures contained in
strctAuthenticator.

E-6



Return Codes:

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

The BSI Authenticator structure is defined as follows.

BS1_AUTHENTICATOR_MAX_LEN and BSI_KEY_LENGTH are implementation-

dependent constants.

struct BSIAuthenticator {

unsigned long
unsigned long
unsigned char

unsigned long

¥

unAccessMethodType;
unKeyIDOrReference;
uszAuthValue
[BS1_AUTHENTICATOR_MAX_LENT];
unAuthValuelen;

V ariables associated with the BS1Authenticator structure:

unAccessMethodType:

unKeyIDOrReference:

uszAuthValue:

unAuthValuelen:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_PARAM

BSI_ACR_NOT_AVAILABLE

BS1_BAD_AUTH
BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_PIN_BLOCKED
BSI1_TERMINAL_AUTH
BS1_UNKNOWN_ERROR

Access Method Type (see Table 3-1 in Section 3.1).

Key identifier or reference of the authenticator. Thisis
used to distinguish between multiple authenticators with
the same Access Method Type.

Authenticator, can be an external authentication
cryptogram or PIN. If the authenticator valueis NULL,
then BSI isin charge of gathering authentication
information and authenticating to the card.

Authenticator value length in bytes.

E-7



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.4.2 gscBsiUtilConnect()

Purpose:

Prototype:

Parameters:

Return Codes:

Establish alogical connection with the card in a specified reader.

unsigned long gscBsiUtilConnect(
IN unsigned char * uszReaderName,
IN unsigned long unReaderNamelLen,
OUT UTILCardHandle * hCard

);
hCard: Card connection handle.

uszReaderName: Name of the reader that the card isinserted into. If thisfield
isaNULL pointer, the SPS shall attempt to connect to the
card in thefirst available reader, asreturned by acall to the
BSI’sfunction gscBsiUtilGetReaderList(). The
reader name string shall be stored as ASCII encoding String.
(See Section 4.2)

unReaderNameLen: Length of the reader name in bytes.

BSI_OK
BS1_BAD_PARAM
BS1_UNKNOWN_READER
BSI_CARD_ABSENT
BSI_TIMEOUT ERROR
BS1_UNKNOWN_ERROR

E-8



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.4.3 gscBsiUtilDisconnect()

Purpose: Terminate alogical connection to a card.
Prototype: unsigned long gscBsiUtilDisconnect(
IN UTILCardHandle hCard
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect().

Return Codes: BS1_OK
BSI_BAD_HANDLE
BS1_CARD_REMOVED
BSI_UNKNOWN_ERROR

E-9



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.4.4 gscBsiUtilBeginTransaction()

Purpose:

Prototype:

Parameters:

Return Codes:

Starts an exclusive transaction with the smart card referenced by hCard. When the
transaction starts, all other applications are precluded from accessing the smart card
while the transaction isin progress. Two types of calls can be made with that
function: a blocking transaction call and a non-blocking transaction call. A boolean
type parameter identify which modeis caled. Inthe non-blocking mode, the call
will return immediately if another client has an active transaction lock. The returned
error code will be BS1_SC_LOCKED. In the blocking mode, the call will wait
indefinitely for any active transaction locks to be released. A transaction must be
completed by acall to gscBsiUti lEndTransaction().

For single-threaded BSI implementations, it can be assumed that each application
will be associated with a separate process. The same process that starts a transaction
must also compl ete the transaction. For multi-threaded BSI implementations, it can
be assumed that each application will be associated with a separate thread and/or
process. The same thread that starts a transaction must also complete the transaction.

If thisfunction is called by athread that has already called
gscBsiUtilBeginTransaction() but has not yet called
gscBsiUtilEndTransaction() it will return the error BSI_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should
return the error code BS1_NO_SPSSERVICE inresponseto acall to
gscBsiUtilBeginTransaction().

unsigned long gscBsiUtilBeginTransaction(

IN unsigned long hCard;
IN boolean blType;
)
hCard: Card communication handle returned from
gscBsiUtilConnect()
biType: Boolean specifying the type of transaction call ( bIType
set to “true” in blocking mode. blType set to “false” in
non-blocking mode).
BS1_OK

BS1_BAD_HANDLE
BS1_UNKNOWN_ERROR
BSI_SC_LOCKED
BSI1_NOT_TRANSACTED
BS1_NO_SPSSERVICE

E-10



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.4.5 gscBsiUtilIEndTransaction()

Purpose:

Prototype:

Parameters:

Return Codes:

Completes a previously started transaction, allowing other applications to resume
interactions with the card.

If thisfunction is called by athread that has not yet called
gscBsiUtilBeginTransaction() it will return the error
BSI_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should
return the error code BS1_NO_SPSSERVICE inresponse to acall to
gscBsiUtilEndTransaction().

unsigned long gscBsiUtilEndTransaction(

IN unsigned long hCard
)
hCard: Card communication handle returned from
gscBsiUtilConnect().-
BSI_OK

BS1_BAD_HANDLE
BS1_UNKNOWN_ERROR
BSI1_NOT_TRANSACTED
BSI1_NO_SPSSERVICE

E-11



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.4.6 gscBsiUtilGetVersion()
Purpose: Returns the BSI implementation version.
Prototype: unsigned long gscBsiUtilGetVersion(
INOUT unsigned char * uszVersion,
INOUT unsigned long * punVersionLen
R
Parameters: uszVersion: The BSI and SPS version formatted as
“major,minor,revision, build_number\0”. The version
text shall be stored as ASCII encoded String. (See
Section 4.2)
punVersionLen: Length of the version string.
Return Codes: BS1 _OK

BS1_BAD_PARAM

BSI_INSUFFICIENT_BUFFER

BS1_UNKNOWN_ERROR

Discovery Mode:

Parameters: uszVersion:
punVersionLen:
Return Codes: BS1 _OK

BS1_BAD_PARAM
BS1_UNKNOWN_ERROR

Set to NULL.

Pointer to value containing the required buffer length to
contain the version string, including a null terminator.

E-12



E.4.7
Purpose:

Prototype:

Parameters:

Return Codes:

Discovery Mode:

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

gscBsiUtilGetCardProperties()

Retrieves ID and capability information for the card.

unsigned long gscBsiUtilGetCardProperties(

Parameters:

IN UTILCardHandle hCard,
INOUT unsigned char *  uszCCCUniquelD,
INOUT unsigned long * punCCCUniquelDLen,

OUT unsigned long *

)
hCard:

uszCCCUniquelD:

punCCCUniquelDLen:

punCardCapability:

BSI_OK
BS1_BAD_HANDLE
BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_BAD_PARAM

punCardCapability

Card connection handle from gscBsiUti IConnect() .

Buffer for the Card Capability Container 1D, represented
in ASCII Hexadecimal.

Length of the CCC Unique ID string (input). Length of
the returned Card Unique ID string including the null
terminator (output).

Bit mask value defining the providers supported by the
card. The bit masks represent the Generic Container
Data Model, the Symmetric Key Interface, and the
Public Key Interface providers respectively:

#define BSI1_GCCDM 0x00000001
#define BSI_SKI 0x00000002
#define BSI_PKI 0x00000004

BSI_INSUFFICIENT_BUFFER

BS1_NO_CARDSERVICE

BS1_UNKNOWN_ERROR

hCard:

uszCCCUniquelD:

punCCCUniquelDLen:

punCardCapability:

Card connection handle from gscBsiUti IConnect() -

Set to NULL.

Pointer to value containing the required buffer length for
the CCC Unique ID string, including a null terminator.

Can be set to NULL, unused in discovery.

E-13



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Return Codes:

BSI_OK
BS1_BAD_HANDLE
BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_BAD_PARAM
BS1_UNKNOWN_ERROR

E-14



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.4.8 gscBsiUtilGetCardStatus()

Purpose: Checks whether a given card handle is associated with a card that isinserted into a
powered up reader.
Prototype: unsigned long gscBsiUtilGetCardStatus(
IN UTILCardHandle hCard
);
Parameters: hCard: Card connection handle from gscBsiUti IConnect().

Return Codes: BS1 _OK
BSI_BAD_HANDLE
BSI1_CARD_REMOVED
BS1_UNKNOWN_ERROR

E-15



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.4.9 gscBsiUtilGetExtendedErrorText()

Purpose:

Prototype:

Parameters:

Return Codes:

When aBSlI function call returns an error, an application can make a subsequent call
to this function to receive additional implementation specific error information, if
available.

unsigned long gscBsiUtilGetExtendedErrorText(
IN UTILCardHandle hCard,

OUT char uszErrorText[255]
)
hCard: Card connection handle gscBsiUti IConnect().
uszErrorText: A fixed length buffer containing an implementation

specific error text string. The text string is null-
terminated, and has a maximum length of 255 characters
including the null terminator. The calling application
must allocate a buffer of 255 bytes. If an extended error
text string is not available, this function returnsa NULL
string and BSI_NO_TEXT_AVAILABLE. Theerror text
shall be stored as ASCII encoding String. (See Section
4.2)

BSI_OK

BS1_BAD_HANDLE
BSI1_NO_TEXT_AVAILABLE
BS1_UNKNOWN_ERROR

E-16



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.4.10 gscBsiUtilGetReaderList()
Purpose: Retrievesthe list of available readers.

Prototype: unsigned long gscBsiUtilGetReaderList(
INOUT unsigned char * uszReaderList,
INOUT unsigned long * punReaderListLen

)

Parameters: uszReaderList: Reader list buffer. Thereader list is returned as a multi-
string, each reader name terminated by a‘\0’. Thelist
itself is terminated by an additional trailing ‘\0’
character.

punReaderListlLen: Reader list length in bytesincluding all terminating ‘\0’
characters.

Return Codes: BS1_OK
BS1_BAD_PARAM
BS1_INSUFFICIENT_BUFFER
BSI1_UNKNOWN_ERROR

Discovery Mode:

Parameters: uszReaderList: Set to NULL.

punReaderListLen: Required buffer length for Reader list in bytesincluding
all terminating ‘\O' characters.

Return Codes: BS1 _OK
BSI1_BAD_PARAM
BSI1_UNKNOWN_ERROR

E-17



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.4.11 gscBsiUtilPassthru()

Purpose:

Prototype:

Parameters:

Return Codes:

Allows aclient application to send a“raw” APDU through the BSI directly to the
card and receive the APDU-level response.

unsigned long gscBsiUtilPassthru(

IN UTILCardHandle hCard,
IN unsigned char * uszCardCommand,
IN unsigned long unCardCommandLen,

INOUT unsigned char * uszCardResponse,
INOUT unsigned long * punCardResponselLen

E

hCard: Card connection handle from gscBsiUti IConnect() .

uszCardCommand: The APDU to be sent to the card. That parameter must
be in ASCII hexadecimal format.

unCardCommandLen: Length of the APDU string to be sent.

uzsCardResponse: Pre-allocated buffer for the APDU response from the

card. The response must include the status bytes SW1
and SW2 returned by the card. If the size of the buffer
isinsufficient, the SPS shall return truncated response
data and the return code
BSI_INSUFFICIENT_BUFFER. That parameter must
bein ASCII hexadecimal format.

punCardResponseLen: Length of the APDU response. If the size of the
uszCardResponse buffer is insufficient, the SPS shall
return the correct sizein this field.

BSI_OK

BS1_BAD_HANDLE
BS1_BAD_PARAM
BSI_INSUFFICIENT BUFFER
BS1_CARD_REMOVED
BSI_SC_LOCKED
BS1_UNKNOWN_ERROR

Discovery Mode (depending on usage):

Note: The discovery mechanism may cause the command APDU to be executed twice depending on the

context of use.

The discovery modeis asfollows:

Parameters:

hCard: Card connection handle from gscBsiUti IConnect().

uszCardCommand: The APDU to be sent to the card.

E-18



Return Codes:

unCardCommandLen:

uzsCardResponse:

punCardResponselLen:

BSI_OK
BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_PARAM
BS1_CARD_REMOVED
BS1_UNKNOWN_ERROR

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

L ength of the APDU string to be sent.

Set to NULL.

Length of the buffer required to contain the APDU
response.

E-19



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.4.12 gscBsiUtilReleaseContext()

Purpose:

Prototype:

Parameters:

Return Codes:

Terminate a session with the target container on the card.

unsigned long gscBsiUtilReleaseContext(

IN UTILCardHandle

hCard,

IN unsigned char * uszAID,

IN unsigned long

)
hCard:

uszAID:

unAlDLen:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_PARAM
BS1_CARD_REMOVED
BS1_SC_LOCKED
BS1_UNKNOWN_ERROR

unAlDLen

Card connection handle from gscBsiUti IConnect() .

Target container AID value. The parameter shall bein
ASCII hexadecimal format.

AID value length in bytes.

E-20



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.5 Smart Card Generic Container Provider Module Interface Definition

E.5.1 gscBsiGcDataCreate()

Purpose:

Prototype:

Parameters:

Return Codes:

Create anew dataitemin {Tag, Length, Vaue} format in the selected container.

unsigned long gscBsiGcDataCreate(
IN UTILCardHandle hCard,
IN unsigned char * uszAID,

IN unsigned long unAlDLen,
IN GCtag ucTag,
IN unsigned char * uszValue,
IN unsigned long unValuelLen
);
hCard: Card connection handle from gscBsiUti IConnect() .
uszAID: Target container AID value. The parameter shall bein
ASCII hexadecimal format.
unAlDLen: AID value length in bytes.
ucTag: Tag of dataitem to store.
uszValue: Data value to store.
unValuelLen: Data value length in bytes.
BS1_OK
BS1_BAD_HANDLE
BS1_BAD_AID

BSI_SC_LOCKED
BS1_BAD_PARAM
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BS1_NO_MORE_SPACE
BSI_TAG_EXISTS
BSI_10_ERROR
BS1_UNKNOWN_ERROR

E-21



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.5.2 gscBsiGcDataDelete()

Purpose:

Prototype:

Parameters:

Return Codes:

Delete the data item associated with the tag value in the specified container.

unsigned long gscBsiGcDataDelete(

IN UTILCardHandle
IN unsigned char *

IN unsigned long
IN GCtag

)
hCard:

uszAID:

unAlDLen:
ucTag:

BSI_OK
BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_BAD_TAG
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BS1_ACCESS_DENIED
BS1_10_ERROR
BS1_UNKNOWN_ERROR

hCard,
uszAID,
unAlDLen,
ucTag

Card connection handle from gscBsiUti IConnect() .

Target container AID value. The parameter shall bein
ASCII hexadecimal format.

AID value length in bytes.

Tag of dataitem to delete.

E-22



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.5.3 gscBsiGcGetContainerProperties()

Purpose:

Prototype:

Parameters:

Retrieves the properties of the specified container.

unsigned long gscBsiG
IN UTILCardHandle
IN unsigned char *
IN unsigned long
OUT Gcacr *
OUT GCContainerSiz
OUT unsigned char

)
hCard:

uszAID:

unAlDLen:

strctGCacr:

struct GCacr {
BSIAcr
BSIAcr
BSI1Acr
BSIAcr
BSIAcr

¥

struct BSIAcr {
unsigned long
unsigned long
unsigned long
unsigned long
}:

strctContainerSizes:

cGetContainerProperties(
hCard,
uszAID,
unAlDLen,
strctGCacr,
e * strctContainerSizes,
* containerVersion

Card connection handle from gscBsiUti IConnect().

Target container AID vaue. The parameter shall bein
ASCII hexadecimal format.

AID value length in bytes.

Structure indicating access control conditions for all
operations. The range of possible values for the
members of this structureis defined in Table 3-2
(Section 3.1). The allowable ACRs for each function are
listed in Table 3-3. unkKeyl DOr Ref er ence contains
the key identifier or reference for each access method
contained in the ACR in order of appearance.

unAut hNb is the number of access methods logically
combined inthe ACR. ACRI Dis RFU and must be
NULL (0x00) in this version.

strctCreateACR;
strctDeleteACR;
strctReadTagListACR;
strctReadValueACR;
strctUpdateValueACR;

UnNACRType;
unKeyIDOrReference;
unAuthNb;

unACRID;

For Virtual Machine cards, the size(in bytes) of the
container specified by uszAID. unMaxNbDataltems
is the size of the T-Buffer, and
unMaxValueStorageSize isthe size of the V-Buffer.
For file system cards that cannot cal culate these values,
both fields of this structure will be set to 0.

E-23



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Return Codes:

struct GCContainerSize {

unsigned long
unsigned long

}

containerVersion:

BSI_OK
BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR

unMaxNbDatal tems;
unMaxValueStorageSize;

Version of the container. The format of thisvalueis
application dependent. 1n cases where the card cannot
return a container version, this string will contain only
the null terminator “\0”.

E-24



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.5.4 gscBsiGcReadTaglList()

Purpose:

Prototype:

Parameters:

Return Codes:

Discovery Mode:

Parameters:

Return Codes:

Return the list of tagsin the selected container.

unsigned long gscBsiGcReadTagList(

IN UTILCardHandle hCard,
IN unsigned char * uszAID,
IN unsigned long unAlDLen,
INOUT Gctag * TagArray,
INOUT unsigned long * punNbTags
)
hCard: Card connection handle from gscBsiUti IConnect() .
uszAID: Target container AID vaue. The parameter shall bein
ASCII hexadecimal format.
unAlDLen: AID value length in bytes.
TagArray: An array containing the list of tags for the selected
container.
punNbTags: Number of tagsin TagArray.
BSI1_OK

BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI_INSUFFICIENT BUFFER
BS1_UNKNOWN_ERROR

hCard: Card connection handle from gscBsiUti IConnect().

uszAID: Target container AID value.

unAlDLen: AID value length in bytes.

TagArray: Set to NULL.

punNbTags: Number of tags which would be contained in aresulting
TagArray.

BSI_OK

BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BS1_ACCESS_DENIED
BS1_UNKNOWN_ERROR

E-25



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.5.5 gscBsiGcReadValue()

Purpose:

Prototype:

Parameters:

Return Codes:

Discovery Mode:

Parameters:

Returns the Va ue associated with the specified Tag.

unsigned long gscBsiGcReadValue(
IN UTILCardHandle hCard,
IN unsigned char * uszAID,
IN unsigned long unAlDLen,
IN GCtag ucTag,

INOUT unsigned char * uszValue,
INOUT unsigned long * punValuelLen

):

hCard: Card connection handle from gscBsiUti IConnect() -

uszAID: Target container AID vaue. The parameter shall bein
ASCII hexadecimal format.

unAlDLen: AID value length in bytes.

ucTag: Tag value of data item to read.

uszValue: Value associated with the specified tag. The caller must
allocate the buffer.

punValuelLen: Size of the buffer allocated by the caller to hold the
returned Value (input). Size of the Value returned
(output).

BSI_OK

BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_BAD_TAG
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI_INSUFFICIENT BUFFER
BSI_10_ERROR
BS1_UNKNOWN_ERROR

hCard: Card connection handle from gscBsiUti IConnect().
uszAID: Target container AID value.
unAlDLen: AID value length in bytes.

E-26



Return Codes:

ucTag:

uszValue:

punValuelen:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_PARAM
BS1_SC_LOCKED
BS1_BAD_TAG
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BS1_ACCESS_DENIED
BSI1_10_ERROR
BS1_UNKNOWN_ERROR

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Tag value of data item to read.

Set to NULL.

Size of the buffer required to hold the returned Value.

E-27



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.5.6 gscBsiGcUpdateValue()
Purpose: Updates the Va ue associated with the specified Tag.

Prototype: unsigned long gscBsiGcUpdateValue(
IN UTILCardHandle hCard,
IN unsigned char * uszAID,

IN unsigned long unAlDLen,
IN GCtag ucTag,
IN unsigned char * uszValue,
IN unsigned long unValuelLen
)
Parameters: hCard: Card connection handle from gscBsiUti IConnect() -
uszAID: Target container AID vaue. The parameter shall bein
ASCII hexadecimal format.
unAlDLen: AID value length in bytes.
ucTag: Tag of dataitem to update.
uszValue: New Value of the dataitem.
unValuelLen: Length in bytes of the new Value.

Return Codes: BS1_OK
BS1_BAD_HANDLE
BSI1_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_BAD_TAG
BS1_CARD_REMOVED
BSI1_NO_CARDSERVICE
BSI_ACCESS_DENIED
BS1_NO_MORE_SPACE
BSI_10_ERROR
BS1_UNKNOWN_ERROR

E-28



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.6 Smart Card Cryptographic Provider Module Interface Definition

E.6.1 gscBsiGetChallenge()

Purpose:

Prototype:

Parameters:

Return Codes:

Discovery Mode:

Parameters:

Retrieves arandomly generated challenge from the card as the first step of a
challenge-response authentication protocol between the client application and the
card. The client subsequently encrypts the challenge using a symmetric key and
returns the encrypted random challenge to the card through acall to
gscBsiUtilAcquireContext() intheuszAuthvalue field of a
BSIAuthenticator structure.

unsigned long gscBsiGetChallenge(
IN UTILCardHandle hCard,
IN unsigned char * uszAID,
IN unsigned long unAlDLen,

INOUT unsigned char * uszChallenge,
INOUT unsigned long * punChal lengelLen

E

hCard: Card connection handle from gscBsiUti IConnect().

uszAID: Target container AID value. The parameter shall bein
ASCII hexadecimal format.

unAlDLen: AID value length in bytes.

uszChallenge: Random challenge returned from the card.

punChallengelLen: Length of random challenge in bytes.

BS1_OK

BS1_BAD_HANDLE
BS1_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_CARD_REMOVED
BSI1_NO_CARDSERVICE
BSI_INSUFFICIENT BUFFER
BS1_UNKNOWN_ERROR

hCard: Card connection handle from gscBsiUti IConnect().
uszAID: Target container AID value.
unAlDLen: AID value length in bytes.

E-29



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Return Codes:

uszChal lenge:

punChal lengelen:

BSI_OK
BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR

Set to NULL.

Length of buffer required to store returned random
challengein bytes.

E-30



E.6.2 gscBsiSkilnternalAuthenticate()

Purpose:

Prototype:

Parameters:

Return Codes:

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Computes a symmetric key cryptogram in response to a challenge. In cases where
the card reader authenticates the card, this function does not return a cryptogram. In
these casesaBS1_TERMINAL_AUTH will be returned if the card reader successfully
authenticatesthe card. BS1_ACCESS_DENIED isreturned if the card reader failsto

authenticate the card.

unsigned long
IN UTILCardHandle
IN unsigned char*
IN unsigned long
IN unsigned char
IN unsigned char*
IN unsigned long

gscBsiSki InternalAuthenticate(
hCard,

uszAID,

unAlDLen,

ucAlgolD,

uszChallenge,

unChallengelLen,

INOUT unsigned char * uszCryptogram,
INOUT unsigned long * punCryptogramlLen

)
hCard:

uszAID:

unAlDLen:

ucAlgolD:

uszChallenge:

unChallengelLen:
uszCryptogram:
punCryptogramLen:

BSI_OK
BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_BAD_ALGO_ID
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI1_TERMINAL_AUTH

Card connection handle from gscBsiUti IConnect().

SK1 provider module AID value. The parameter shall be
in ASCII hexadecimal format.

AID value length in bytes.

I dentifies the cryptographic algorithm that the card must
use to encrypt the challenge. All conformant
implementations shall, at a minimum, support DES3-
ECB (Algorithm Identifier 0x81) and DES3-CBC
(Algorithm Identifier 0x82). Implementations may
optionally support other cryptographic algorithms.

Challenge generated by the client application and
submitted to the card.

Length of the challenge in bytes.
The cryptogram computed by the card.

Length of the cryptogram computed by the card in bytes.

BSI_INSUFFICIENT_BUFFER

E-31



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Discovery Mode:

Parameters:

Return Codes:

BS1_UNKNOWN_ERROR

hCard:

uszAID:

unAlDLen:

ucAlgolD:

uszChallenge:

unChallengeLen:

uszCryptogram:

punCryptogramLen:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BS1_BAD_PARAM
BSI_SC_LOCKED
BSI1_BAD_ALGO_ID
BS1_CARD_REMOVED
BSI1_NO_CARDSERVICE
BS1_ACCESS_DENIED
BSI1_TERMINAL_AUTH
BS1_UNKNOWN_ERROR

Card connection handle from gscBsiUti IConnect().

SKI provider module AID value.

AID value length in bytes.

I dentifies the cryptographic algorithm that the card must
use to encrypt the challenge. All conformant
implementations shall, at a minimum, support DES3-
ECB (Algorithm Identifier 0x81) and DES3-CBC
(Algorithm Identifier 0x82). Implementations may
optionally support other cryptographic algorithms.

Challenge generated by the client application and
submitted to the card.

Length of the challengein bytes.

Set to NULL.

Length of the buffer required to store the cryptogram
computed by the card in bytes.

E-32



E.6.3 gscBsiPkiCompute()

Purpose:

Prototype:

Parameters:

Return Codes:

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Performs a private key computation on the message digest using the private key
associated with the specified AID.

unsigned long gscBsiPkiCompute(

IN UTILCardHandle hCard,

IN unsigned char * uszAID,

IN unsigned long unAlDLen,

IN unsigned char ucAlgolD,

IN unsigned char * uszMessage,
IN unsigned long unMessagelLen,

INOUT unsigned char * uszResult,
INOUT unsigned long * punResultLen

)
hCard:

uszAID:

unAlDLen:

ucAlgolD:

uszMessage:
unMessagelen:
uszResult:
punResultlLen:

BSI_OK
BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_BAD_ALGO_ID
BS1_CARD_REMOVED
BSI1_ACCESS_DENIED
BSI1_NO_CARDSERVICE

Card connection handle from gscBsiUti IConnect().

PKI provider module AID value. The parameter shall be
in ASCII hexadecimal format.

AID value length in bytes.

| dentifies the cryptographic algorithm that will be used
to generate the signature. All conformant
implementations shall, at a minimum, support
RSA_NO_PAD (Algorithm Identifier OXA3).
Implementations may optionally support other
agorithms.

The hash of the message to be signed.

Length of hashed message to be signed, in bytes.

Buffer containing the signature.

Length of the signature buffer in bytes.

BSI1_INSUFFICIENT_BUFFER

BS1_UNKNOWN_ERROR

E-33



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Discovery Mode:

Parameters:

Return Codes:

hCard:

uszAID:

unAlDLen:

ucAlgolD:

uszMessage:

unMessagelLen:

uszResul t:

punResultLen:

BSI_OK
BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_BAD_ALGO_ID
BS1_CARD_REMOVED
BSI1_ACCESS_DENIED
BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR

Card connection handle from gscBsiUti IConnect().

PKI provider module AID value.

AID value length in bytes.

I dentifies the cryptographic algorithm that will be used
to generate the signature. All conformant
implementations shall, at a minimum, support
RSA_NO_PAD (Algorithm Identifier OXA3).
Implementations may optionally support other
algorithms.

The hash of the message to be signed.

Length of hashed message to be signed, in bytes.

Set to NULL.

Length of the required signature buffer in bytes.

E-34



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

E.6.4 gscBsiPkiGetCertificate()

Purpose:

Prototype:

Parameters:

Return Codes:

Discovery Mode:

Parameters:

Return Codes:

Reads the certificate from the card.

unsigned long gscBsiPkiGetCertificate(

IN UTILCardHandle hCard,
IN unsigned char * uszAID,
IN unsigned long unAlDLen,

INOUT unsigned char * uszCertificate,
INOUT unsigned long * punCertificatelLen

):

hCard: Card connection handle from gscBsiUti IConnect().

uszAID: PKI provider module AID value. The parameter shall be
in ASCII hexadecimal format.

unAlDLen: AID value length in bytes.

uszCertificate: Buffer containing the certificate.

punCertificatelLen: Length of the certificate buffer in bytes.

BSI_OK
BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI1_10_ERROR
BSI_INSUFFICIENT BUFFER
BS1_UNKNOWN_ERROR

hCard: Card connection handle from gscBsiUti IConnect().
uszAID: PKI provider module AID value.

unAlDLen: AID value length in bytes.

uszCertificate: Set to NULL.

punCertificatelLen: Length of the required certificate buffer in bytes.

BSI_OK
BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM

E-35



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI_10_ERROR
BS1_UNKNOWN_ERROR

E-36



E.6.5 gscBsiGetCryptoProperties()

Purpose:

Prototype:

Parameters:

Return Codes:

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Retrieves the Access Control Rules and private cryptographic key length managed by

the PK1 provider module.

unsigned long
IN UTILCardHandle
IN unsigned char *
IN unsigned long
OUT CRYPTOacr *
OUT unsigned long

)
hCard:
uszAID:

unAlDLen:
strctCRYPTOacr:

struct CRYPTOacr {
BSI1Acr
BSIAcr
BSIAcr
BSIAcr
BSIAcr
BSI1Acr
BSIAcr
BSIAcr

}:
punKeylLen:

BSI_OK
BS1_BAD_HANDLE
BSI_SC_LOCKED
BS1_BAD_AID
BS1_BAD_PARAM
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR

gscBsiGetCryptoProperties(
hCard,
uszAID,
unAlDLen,
strctCRYPTOacr,
*  punKeyLen

Card connection handle from gscBsiUtiIConnect().

AID of the PKI provider. The parameter shall bein
ASCII hexadecimal format.

Length of the AID of the PKI provider, in bytes.

Structure indicating access control conditions for all
operations. The BSI Acr structureis defined in Section
E.5.3. Therange of possible values for the members of
this structure are defined in Table 3-2 (Section 3.1), and
the allowable ACRs for each function in Table 3-4
(Section 3.2). keyl DOr Ref er ence contains the key
identifier or reference for each access method contained
inthe ACR in order of appearance. Aut hNb isthe
number of access methods logically combined in the
ACR. ACRID isRFU and must be NULL (0x00) in this
version. Note that the strctReadValueACR member
maps to the gscBsi Pki Get Certificate() function.

strctGetChal lengeACR;
strctinternalAuthenticateACR;
strctPkiComputeACR;
strctCreateACR;
strctDeleteACR;
strctReadTagListACR;
strctReadValueACR;
strctUpdateValueACR;

Length of the private key managed by the PKI provider.

E-37



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

E-38



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Appendix F—Java Language Binding for BSI Services

This appendix defines the Java language binding, which comprises a set of classes and interfaces that
provide the basic support for a Javaimplementation of a SPM as defined in the GSC-IS.

Similar to the pseudo IDL specification, the Java trandation is logically grouped into three functional
modules:

m A Smart Card Utility Provider Module
m A Smart Card Generic Container Provider Module
m A Smart Card Cryptographic Provider Module.

This appendix provides the required syntax and semantics of 23 methods that correspond to the 23
functions in Chapter 4. These methods are collectively defined in the public interface
gov.gsc. interfaces.BSI (see Section F.1), and shall be implemented withinapublic class
gov.gsc.classes.GSCBSI.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.1 Interfaces and Classes

Based on the 23 methods described in this appendix (Section F.2 to Section F.4) the interface
gov.gsc. interfaces.BSI isdefined asfollows:

public interface gov.gsc.interfaces.BSI

public abstract void gscBsiUtilAcquireContext(
int hCard,
String AID,
jJava.util_Vector strctAuthenticator
) throws gov.gsc.classes.BSIException;

public abstract int gscBsiUtilConnect(
String readerName
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiUtilDisconnect(
int hCard
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiUtilBeginTransaction(
int hCard
boolean blType

) throws gov.gsc.classes.BSIException;

public abstract void gscBsiUtilEndTransaction(
int hCard

) throws gov.gsc.classes.BSIException;

public abstract String gscBsiUtilGetVersion()
throws gov.gsc.classes.BSIException;

public abstract CardProperties gscBsiUtilGetCardProperties(
int hCard
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiUtilGetCardStatus(
int hCard
) throws gov.gsc.classes.BSIException;

public abstract String gscBsiUtilGetExtendedErrorText(
int hCard
) throws gov.gsc.classes.BSIException;

public abstract java.util.Vector gscBsiUtilGetReaderList()
throws gov.gsc.classes.BSIException;

public abstract byte[] gscBsiUtilPassthru(
int hCard,
byte[] cardCommand
) throws gov.gsc.classes.BSIException;

public abstract void gscBsiUtilReleaseContext(

int hCard,
String AID

F-2



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

) throws gov.gsc.classes.BSIException;

public abstract void gscBsiGcDataCreate(

int hCard,
String AlD,
short tag,
byte[] value

) throws gov.gsc.classes.BSIException;

public abstract void gscBsiGcDataDelete(

int hCard,
String AID,
short tag

) throws gov.gsc.classes.BSIException;

public abstract ContainerProperties gscBsiGcGetContainerProperties(
int hCard,
String AID

) throws gov.gsc.classes.BSIException;

public abstract short[] gscBsiGcReadTagList(
int hCard,
String AID

) throws gov.gsc.classes.BSIException;

public abstract byte[] gscBsiGcReadValue(

int hCard,
String AID,
short tag

) throws gov.gsc.classes.BSIException;

public abstract void gscBsiGcUpdateValue(

int hCard,
String AID,
short tag,
byte[] value

) throws gov.gsc.classes.BSIException;

public abstract byte[] gscBsiGetChallenge(
int hCard,
String AID

) throws gov.gsc.classes.BSIException;

public abstract byte[] gscBsiSkilnternalAuthenticate(

int hCard,
String AID,
short algolD,
byte[] challenge

) throws gov.gsc.classes.BSIException;

public abstract byte[] gscBsiPkiCompute(

int hCard,
String AID,
short algolD,
byte[] message

) throws gov.gsc.classes.BSIException;



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

public abstract byte[] gscBsiPkiGetCertificate(
int hCard,
String AID

) throws gov.gsc.classes.BSIException;

public abstract CryptoProperties gscBsiGetCryptoProperties(
int hCard,

String AID
) throws gov.gsc.classes.BSIException;

}
F.1.1- The SameClass GSCBSI Shall Also Implement The Following Interfaces:

m gov.gsc.interfaces.BSIReturnCodes
m gov.gsc.interfaces.CryptographicAlgolD
m gov.gsc.interfaces.BSIAccessControlRules

m gov.gsc.interfaces.BSICardCapabilities

F.1.1.1 - Theinterfaces are defined as follows:

public interface gov.gsc.interfaces.BSIReturnCodes

{

public static final int BSI_OK = 0x00;
public static final int BSI_ACCESS_DENIED = 0x01;
public static final int BSI_ACR_NOT_AVAILABLE = 0x02;
public static final int BSI_BAD_AID = 0x03;
public static final int BSI_BAD ALGO_ID = 0x04;
public static final int BSI_BAD AUTH = 0x05;
public static final int BS1_BAD_ HANDLE = 0x06;
public static final int BSI_BAD PARAM = 0x07;
public static final int BSI_BAD TAG = 0x08;
public static final int BSI_CARD ABSENT = 0x09;
public static final int BSI_CARD REMOVED = OxO0A;
public static final int BSI_NO_SPSSERVICE = OxO0B;
public static final int BSI_10_ERROR = 0x0C;
public static final int BSI_INSUFFICIENT BUFFER = OxOE;
public static final int BSI_NO_CARDSERVICE = OxOF;
public static final int BSI_NO MORE_SPACE = 0x10;
public static final int BSI_PIN_LOCKED = 0x11;
//Note : 0x12 is RFU

public static final int BSI_TAG_EXISTS = 0x13;
public static final int BSI_TIMEOUT ERROR = 0x14;
public static final int BSI_TERMINAL_AUTH = 0x15;
public static final int BSI_NO _TEXT_AVAILABLE = 0x16;
public static final int BSI_UNKNOWN_ ERROR = 0x17;
public static final int BSI_UNKNOWN_READER = 0x18;
public static final int BSI_SC LOCKED = 0x19;
public static final int BSI_NOT_TRANSACTED = 0x20;

F-4



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

}

public interface gov.gsc.interfaces.CryptographicAlgolD

{
//Mandatory Cryptographic Algorithms (see Section 4.3)
//Cryptographic algorithm computation on the private key,
//Chinese Remainder Theory.
public static final short RSA NO PAD = OxA3;
//DES3-ECB cryptographic algorithm with a double length
//key-size of 16 bytes.
public static final short BSI _DES3 ECB = 0x81;
//DES3-CBC cryptographic algorithm with a double length
//key-size of 16 bytes.
public static final short BSI _DES3 CBC = 0x82;

}

public interface gov.gsc.interfaces.BSIAccessControlRules

{
//BS1 ACR Values as defined in the Table 3-1.
public static final int BSI_ACR_ALWAYS = 0x00;
public static final int BSI_ACR_NEVER = 0x01;
public static final int BSI_ACR_XAUTH = 0x02;
public static final int BSI_ACR_XAUTH OR_PIN = 0x03;
public static final int BSI_SECURE_CHANNEL_GP = 0x04;
public static final int BSI_ACR_PIN_ALWAYS = 0x05;
public static final int BSI_ACR_PIN = 0x06;
public static final int BSI_ACR_XAUTH_THEN_PIN = 0x07;
public static final int BSI_ACR_UPDATE_ ONCE = 0x08;
public static final int BSI_ACR_PIN_THEN_XAUTH = 0x09;
//NOTE: OxOA currently not used
public static final int BSI_SECURE_CHANNEL_ISO = OxO0B;
public static final int BSI_XAUTH_AND PIN = 0xO0C;
//NOTE: RESERVED FOR FUTURE USED 0OxOD-OxFF

}

public interface gov.gsc.interfaces.BSICardCapabilities
public static final int BSI_GCCDM = 0x00000001;
public static final int BSI1_SKI = 0x00000002;
public static final int BSI_PKI = 0x00000004;

F.1.1.2 - All 23 methods throw aBSIException if an error occurred during execution. A
BS1Exception shal be constructed using one of the eligible return code listed for every individual
method.

The classBS1Exception isdefined asfollows:

public class gov.gsc.classes.BSIException
extends java.lang.Exception

//Methods inherited from class java.lang.Throwable

F-5



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

//  FilllnStackTrace, getLocalizedMessage, getMessage,
// printStackTrace, printStackTrace, printStackTrace,
//  toString

//Methods inherited from class java.lang.Object
// clone, equals, finalize, getClass, hashCode,
// notify, notifyAll, wait, wait, wait

//A11 Implemented Interfaces:
// Java.io.Serializable

//FI1ELDS:
protected int errorCode = 0;

//CONSTRUCTORS:

//Constructor specifying the error code value as
//defined in the Table 4-1

public BSIException(int error)

{
super();
errorCode = error;

}

//Constructor specifying the error code value
//and corresponding message as defined in the Table 4-1
public BSIException(int error,

String msQ)

{
super(msg);
errorCode = error;
}
//ACCESSORS:

//Gets error code
//Returns: errorCode
public int getErrorCode()
{ return errorCode; }



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2 Smart Card Utility Provider Module Interface Definition

F.2.1 gscBsiUtilAcquireContext()

Purpose:

Prototype:

Parameters:

This function shall establish a session with atarget container on the smart card by
submitting the appropriate Authenticator in the BS1Authenticator structure. For
ACRsrequiring external authentication (XAUTH), the authvalue field of the
BSIAuthenticator structure must contain a cryptogram calculated by encrypting a
random challenge from gscBsiGetChal lenge(). In cases where the card
acceptance device authenticates the smart card, this function returns a
BS1_TERMINAL_AUTH return code and the cryptogram isignored.

For ACRs that require chained authentication such asBS1_ACR_PIN_AND_XAUTH,
the calling application passes in the required authenticators in multiple
BSIAuthenticator structures. Inthisexample the calling application passes a
PIN and the appropriate External Authentication cryptogram in two
BS1Authenticator structures. The client application must set the
accessMethodType field of each BS1Authenticator structure to match the type
of authenticator contained in the structure. To satisfy an ACR of
BSI_ACR_PIN_AND_XAUTH, the application would construct a sequence of two
BSIAuthenticators: one containing aPPIN and one containing an External
Authentication cryptogram. The BS1Authenticator structure containing the PIN
would have an accessMethodType of BS1_AM_PIN, and the BS1Authenticator
structure containing the External Authentication cryptogram would have an
accessMethodType of BSI_AM_XAUTH.

public abstract void gscBsiUtilAcquireContext(
int hCard,
String AlD,
jJava.util._.Vector strctAuthenticator
) throws gov.gsc.classes.BSIException;

hCard: Card connection handle from gscBsiUtiIConnect().

AID: AID of the target service provider or container. The
AID shall be stored as an ASCII hexadecimal string.

strctAuthenticator: Vector of BS1Authenticator objects containing the
authenticator(s) specified by the ACR required to access
avaluein the container. The required list of
authenticatorsis returned by
gscBsiGeGetContainerProperties(). The
calling application is responsible for constructing this
object.

The BSI1Authenticator classisdefined as follows;

public class gov.gsc.classes.BSIlAuthenticator

//FI1ELDS:
protected int accessMethodType;



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

protected int keylIDOrReference;
protected byte[] authvalue;
//CONSTRUCTORS:
public BSIAuthenticator()
{
accessMethodType = 0;
keylDOrReference = 0;
authvalue = “;
}
public BSIAuthenticator( int amType,
int keyIDOrRef,
byte[] authval )
{

accessMethodType = amType;
keylIDOrReference = keylDOrRef;
authValue = authval;

}

//ACCESSORS:
public int getAccessMethodType()
{ return accessMethodType; }

public void setAccessMethodType(int type)
{ accessMethodType = type; }

public int getKeylDOrReference()
{ return keylDOrReference; }

public void setKeylDOrReferece(int keylDOrRefT)
{ keylIDOrReference = keylIDOrRef; }

public byte[] getAuthValue()
{ return authValue; }

public void setAuthValue(byte[] auth)
{ authValue = auth; }

}

Thefields of the BS1Authenticator class are:

accessMethodType: Access Method Type (see Table 3-1 in Section 3.1).

keyIDOrReference: Key identifier or reference of the authenticator. Thisis
used to distinguish between multiple authenticators with
the same Access Method Type.

authvalue: Authenticator, can be an external authentication

cryptogram or PIN. If the authenticator valueis NULL,
then BSI isin charge of gathering authentication
information and authenticating to the card.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Return codes: BS1 _OK
BSI_BAD_HANDLE
BSI_BAD_AID
BSI_ACR_NOT_AVAILABLE
BSI1_SC_LOCKED
BSI_BAD_AUTH
BSI1_CARD_REMOVED
BSI_PIN_BLOCKED
BSI_TERMINAL_AUTH
BS1_UNKNOWN_ERROR



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2.2 gscBsiUtilConnect()

Purpose:

Prototype:

Parameter:

Return Value:

Return codes:

Establish alogical connection with the card inserted in a specified reader.
BS1_TIMEOUT_ERROR will be returned if a connection cannot be established within a
specified time. The timeout value isimplementation dependent.

public abstract int gscBsiUtilConnect(
String readerName
) throws gov.gsc.classes.BSIException;

readerName: Name of the reader that the card is inserted into. If thisfield
is an empty String, the SPS shall attempt to connect to the
card in thefirst available reader, asreturned by acall to the
BSI’'sfunction gscBsiUtilGetReaderList(). The
Name of the reader shall be stored as ASCII encoding
Strings. (See Section 4.2)

hCard: Card connection handle.

BSI_OK
BS1_UNKNOWN_READER
BSI1_CARD_ABSENT
BSI_TIMEOUT_ERROR
BS1_UNKNOWN_ERROR

F-10



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2.3 gscBsiUtilDisconnect()
Purpose: Terminate alogical connection to a card.

Prototype: public abstract void gscBsiUtilDisconnect(
int hCard
) throws gov.gsc.classes.BSIException;

Parameter: hCard: Card connection handle from gscBsiUtilConnect().

Return codes: BS1_OK
BSI_BAD_HANDLE
BS1_CARD_REMOVED
BSI_UNKNOWN_ERROR

F-11



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2.4 gscBsiUtilBeginTransaction()

Purpose:

Prototype:

Parameters:

Return Code:

Starts an exclusive transaction with the smart card referenced by hCard. When the
transaction starts, all other applications are precluded from accessing the smart card
while the transaction isin progress. Two types of calls can be made with that
function: a blocking transaction call and a non-blocking transaction call. A boolean
type parameter identify which modeis caled. Inthe non-blocking mode, the call
will return immediately if another client has an active transaction lock. The returned
error code will be BS1_SC_LOCKED. In the blocking mode, the call will wait
indefinitely for any active transaction locks to be released. A transaction must be
completed by acall to gscBsiUtilEndTransaction().

For single-threaded BSI implementations, it can be assumed that each application
will be associated with a separate process. The same process that starts a transaction
must also complete the transaction. For multi-threaded BSI implements, it can be
assumed that each application will be associated with a separate thread and/or
process. The same thread that starts a transaction must also complete the transaction.

If thisfunction is called by athread that has already called
gscBsiUtilBeginTransaction() but has not yet called
gscBsiUtilEndTransaction() it will return the error BS1_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should
return the error code BS1_NO_SPSSERVICE in response to acall to
gscBsiUtilBeginTransaction().

public abstract void gscBsiUtilBeginTransaction(
int hCard
boolean blType

) throws gov.gsc.classes.BSIException;

hCard: Card communication handle returned from
gscBsiUtilConnect()

biType: Boolean specifying the type of transaction call ( bIType
set to “true” in blocking mode. bl Type set to “false” in
non blocking mode).

BSI_OK
BS1_BAD_HANDLE
BS1_UNKNOWN_ERROR
BSI1_SC_LOCKED
BSI1_NOT_TRANSACTED
BSI1_NO_SPSSERVICE

F-12



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2.5 gscBsiUtilIEndTransaction()

Purpose:

Prototype:

Parameters:

Return Codes:

Completes a previously started transaction, allowing other applications to resume
interactions with the card.

If thisfunction is called by athread that has not yet called
gscBsiUtilBeginTransaction() it will return the error
BSI_NOT_TRANSACTED.

If the SPS (Service Provider Software) does not support transaction locking, it should
return the error code BS1_NO_SPSSERVICE inresponse to acall to
gscBsiUtilEndTransaction().

public abstract void gscBsiUtilEndTransaction(
int hCard

) throws gov.gsc.classes.BSIException;

hCard: Card communication handle returned from
gscBsiUtilConnect().

BSI_OK
BS1_BAD_HANDLE
BS1_UNKNOWN_ERROR
BSI1_NOT_TRANSACTED
BS1_NO_SPSSERVICE

F-13



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2.6 gscBsiUtilGetVersion()

Purpose:

Prototype:

Return Value:

Return codes:

Returns the BSI implementation version.

public abstract String gscBsiUtilGetVersion(
) throws gov.gsc.classes.BSIException;

version: A String representing the BSI and SPS' s version formatted as
“major,minor,revision,build_number”. The value for an SPS
conformant with this version of the GSC-ISis*“2,1,0,<build
number>". The build number field is vendor/implementation
dependent. The version shall be stored as ASCII encoded
Strings. (See Section 4.2)

BSI_OK
BS1_UNKNOWN_ERROR

F-14



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2.7 gscBsiUtilGetCardProperties()

Purpose:

Prototype:

Parameter:

Return Value:

Return codes;

Retrieves ID and capability information for the card.

public abstract CardProperties gscBsiUtilGetCardProperties(

int hCard

) throws gov.gsc.classes.BSIException;

hCard:

Card connection handle from gscBsiUti IConnect() -

cardProps: A CardProperties object defined as follows:

public class gov.gsc.classes.CardProperties

{

}

//FI1ELDS:

protected int cardCapability;
protected byte[] CCCUniquelD;
//CONSTRUCTORS:

public CardProperties( int capability,
byte[] uniquelD)

{
cardCapability = capability;
CCCUniquelD = uniquelD;

}

//ACCESSORS

public int getCardCapability()
{ return cardCapability; }

public byte[] getCCCUniquelD()
{ return CCCUniquelD; }

public void setCardCapability(int capability)
{ cardCapability = capability; }

public void setCCCUniquelD(byte[] id)
{ CCCUniquelD = id; }

where the fields are described as follows:

CCCUniquelD: String for the Card Capability Container ID.

cardCapability: Bit mask value defining the providers supported by the

BSI_OK

card. The bit masks represent the Generic Container
Data Model, the Generic Container Data Model
Extended, the Symmetric Key Interface, and the Public
Key Interface providers respectively.

BS1_BAD_HANDLE
BS1_CARD_REMOVED
BSI_SC_LOCKED

F-15



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR

F-16



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2.8 gscBsiUtilGetCardStatus()

Purpose: Checks whether a given card' s handle is associated with a card that isinserted into a
powered up reader.
Prototype: public abstract void gscBsiUtilGetCardStatus(
int hCard

) throws gov.gsc.classes.BSIException;
Parameters: hCard: Card connection handle from gscBsiUti IConnect().

Return codes: BS1 _OK
BSI_BAD_HANDLE
BSI1_CARD_REMOVED
BS1_UNKNOWN_ERROR

F-17



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2.9 gscBsiUtilGetExtendedErrorText()

Purpose:

Prototype:

Parameters:

Return Value:

Return Codes:

When aBSI function call throws aBS1Exception, an application can make a
subsequent call to this function to receive additional error information from the card
reader driver layer, if available. Since the GSC-IS architecture accommodates
different card reader driver layers, the error text information will be dependent on the
card reader driver layer used in aparticular implementation. This function must be
called immediately after the error has occurred.

public abstract String gscBsiUtilGetExtendedErrorText(
int hCard
) throws gov.gsc.classes.BSIException;

hCard: Card connection handle gscBsiUti IConnect().

errorText: A String of maximum 255 characters including the null
terminator, containing an implementation specific error text. If
an extended error text string is not available, this function returns
an empty string and BS1_NO_TEXT_AVAILABLE. The error text
shall be stored as ASCII encoding Strings. (See Section 4.2)

BSI_OK

BS1_BAD_HANDLE
BSI_NO_TEXT_AVAILABLE
BS1_UNKNOWN_ERROR

F-18



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2.10 gscBsiUtilGetReaderList()
Purpose: Retrievesthe list of available readers.

Prototype: public abstract java.util_Vector gscBsiUtilGetReaderList()
throws gov.gsc.classes.BSIException;

Return Value: vReaderList:  Vector of Strings containing a list of the available readers. The
Strings shall bein ASCII format.

Return codes: BS1 _OK
BSI_UNKNOWN_ERROR

F-19



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2.11 gscBsiUtilPassthru()

Purpose:

Prototype:

Parameters:

Return Value:

Return codes:

Allows aclient application to send a“raw” APDU through the BSI directly to the
card and receive the APDU-level response.

public abstract byte[] gscBsiUtilPassthru(

int hCard,
byte[] cardCommand

) throws gov.gsc.classes.BSIException;

hCard:

cardCommand:

cardResponse:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_PARAM
BSI_SC_LOCKED
BS1_CARD_REMOVED
BS1_UNKNOWN_ERROR

Card connection handle from gscBsiUti IConnect() .

An array of bytes representing the APDU to be sent to
the card. The parameter must be in ASCII hexadecimal
format.

An array of bytes representing the APDU response from
the card. The parameter must be in ASCII hexadecimal
format. The response must include the status bytes SW1
and SW2 returned by the card.

F-20



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.2.12 gscBsiUtilReleaseContext()

Purpose: Terminate a session with the target container on the card.
Prototype: public abstract void gscBsiUtilReleaseContext(
int hCard,

String AID
) throws gov.gsc.classes.BSIException;

Parameters: hCard: Card connection handle from gscBsiUti IConnect() -

AID: Target container AID value. The AID shall be stored asan
ASCII hexadecimal string.

Return codes: BSI1_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BSI1_SC_LOCKED
BS1_CARD_REMOVED
BS1_UNKNOWN_ERROR

F-21



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.3 Smart Card Generic Container Provider Module Interface Definition

F.3.1 gscBsiGcDataCreate()

Purpose:

Prototype:

Parameters:

Return codes:

Create anew dataitemin {Tag, Length, Vaue} format in the selected container.

public abstract void gscBsiGcDataCreate(

int hCard,
String AID,
short tag,

byte[] value
) throws gov.gsc.classes.BSIException;

hCard: Card connection handle from gscBsiUti IConnect() -

AID: Target container AID value. The AID shall be stored as an
ASCII hexadecimal string.

tag: Tag of dataitem to store.

value: Data valueto store.

BSI_OK

BS1_BAD_HANDLE

BS1_BAD_AID

BS1_BAD_PARAM
BSI_SC_LOCKED
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BSI1_ACCESS_DENIED
BSI1_NO_MORE_SPACE
BSI_TAG_EXISTS
BSI_I10ERROR
BS1_UNKNOWN_ERROR

F-22



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.3.2 gscBsiGcDataDelete()

Purpose: Delete the data item associated with the tag value in the specified container.
Prototype: public abstract void gscBsiGcDataDelete(
int hCard,
String AlD,
short tag
) throws gov.gsc.classes.BSIException;
Parameters: hCard: Card connection handle from gscBsiUtiIConnect().
AID: Target container AID value. The AID shall be stored as an

ASCII hexadecimal string.
tag: Tag of dataitem to delete.

Return codes: BS1 _OK
BSI_BAD_HANDLE
BSI_BAD_AID
BS1_BAD_TAG
BSI_SC_LOCKED
BSI_CARD_REMOVED
BSI1_NO_CARDSERVICE
BSI_ACCESS_DENIED
BS1_10_ERROR
BSI_UNKNOWN_ERROR

F-23



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.3.3 gscBsiGcGetContainerProperties()

Purpose: Retrieves the properties of the specified container.
Prototype: public abstract ContainerProperties
gscBsiGeGetContainerProperties(
int hCard,

String AID
) throws gov.gsc.classes.BSIException;

Parameters: hCard: Card connection handle from gscBsiUtiIConnect().

AID: Target container AID value. The AID shall be stored as an
ASCII hexadecimal string.

Return Value: containerProps: A ContainerProperties object defined asfollows:

public class gov.gsc.classes.ContainerProperties
{
//FI1ELDS:
protected GCacr strctGCacr;
protected GCContainerSize strctContainerSizes;

protected String containerVersion;

//CONSTRUCTORS:

public ContainerProperties()

{
strctGCacr = new GCacr();
strctContainerSizes = new GCContainerSize();
containerVersion = new

byte[[CONTAINER_VERSION_MAXLENGTH];

public ContainerProperties( GCacr acr,
GCContainerSize sizes,
String version)

{
strctGCacr = acr;
strctContainerSizes = sizes;
containerVersion = version;

¥

//ACCESSORS

public GCacr getGCacr()
{ return strctGCacr; }

public GCContainerSize getGCContainerSize()
{ return strctContainerSizes; }
public String getContainerVersion()

{ return containerVersion; }

public void setGCacr(GCacr thisACR)
{ strctGCacr = thisACR; }

F-24



}

NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

public void setGCContainerSize(GCContainerSize thisSize)

strctContainerSizes = thisSize; }

public void setContainerVersion(String thisVersion)

containerVersion = thisVersion; }

where the fields are described as follows;

strctGCacr: Object indicating access control conditions for all

operations. The range of possible valuesfor the instance
variables of this object is defined in Table 3-2 (Section
3.1). Thealowable ACRsfor each function arelisted in
Table 3-3 (Section 3.2). keyl DOr Ref er ence
contains the key identifier or reference for each access
method contained in the ACR in order of appearance.
Aut hNb isthe number of access methods logically
combined inthe ACR. ACRID is RFU and must be
NULL (0x00) in this version.

The class GCacr is defined asfollows:

public class gov.gsc.classes.GCacr

{

//FIELDS:

protected BSIAcr createACR;
protected BSIAcr deleteACR;
protected BSIAcr readTagListACR;
protected BSIAcr readValueACR;
protected BSIAcr updateValueACR;

//CONSTRUCTORS
public GCacr(Q)

{

createACR = new BSIAcr();
deleteACR = new BSIAcr(Q);
readTagListACR = new BSIAcr();
readValueACR = new BSIAcr();
updateValueACR = new BSIAcr();

}
public GCacr(BSIAcr c, BSIAcr d, BSIAcr rt, BSIAcr rv,
BSIAcr u)

{

createACR = c;
deleteACR = d;
readTagListACR = rt;
readvValueACR = rv;
updateValueACR = u;

F-25



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

//ACCESSORS

public void setCreateACR(BSIAcr 1)

{ createACR = 1i; }

public void setDeleteACR(BSIAcr 1)

{  deleteACR =1i; }

public void setReadTagListACR(BSIAcr 1)
{ readTagListACR = i; }

public void setReadValueACR(BSIAcr i)
{ readvValueACR = i; }

public void setUpdateValueACR(BSIAcr 1)
{ updateValueACR = i; }

public BSIAcr getCreateACR()

{ return createACR; }

public BSIAcr getDeleteACR()

{ return deleteACR; }

public BSIAcr getReadTagListACR(Q)

{ return readTagListACR; }

public BSIAcr getReadValueACR(Q)

{ return readValueACR; }

public BSIAcr getUpdateValueACR(Q)

{ return updateValueACR; }

}

The class BSIlAcr isdefined asfollows:

public class gov.gsc.classes.BSIAcr
{
//FIELDS:
protected int ACRType;
protected int[] keylDOrReference;
protected int authNb;
protected int ACRID;

//CONSTRUCTORS
public GCacr()
{
ACRType = O;
keylIDOrReference = new int[MaxNbAM];
authNb = 0;
ACRID = 0;

}
public GCacr(int acrType, int[] keyIDOrRef, int authNum,
int acriD)
{
ACRType = acrType;
keylDOrReference = keylIDOrRef;
authNb = authNum;
ACRID = acrliD;

}

//ACCESSORS

public void setACRType(int 1)

{ ACRType =1i; }

public void setKeylDOrReference(int[] 1)

F-26



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

{ keylDOrReference = i; }
public void setAuthNb(int 1)
{ authNb = 1; }

public void setACRID(int 1)

{ ACRID = 1; }

public int getACRType()

{ return ACRType; }

public int[] getKeylDOrReference()
{ return keylDOrReference; }
public int getAuthNb()

{ return authNb; }

public int getACRID(

{ return ACRID; }

}strctContainerSizes: Object indicating the size (in bytes) of the container
specified by the AID.

public class gov.gsc.classes.GCContainerSize
{
protected int maxNbDataltems;
protected int maxValueStorageSize;

//CONSTRUCTORS
public GCContainerSize ()

maxNbDataltems = 0;
maxValueStorageSize = 0;

public GCContainerSize (int i, int s)
{
maxNbDataltems = 1i;
maxValueStorageSize = s;

}

//ACCESSORS

public void setMaxNbDataltems(int i)

{ maxNbDataltems = i; }

public void setMaxValueStorageSize(int 1)
{ maxValueStorageSize = i; }

public int getMaxNbDataltems()

{ return maxNbDataltems; }

public int getMaxValueStorageSize()

{ return maxValueStorageSize; }

Return codes: BS1 _OK
BSI_BAD_HANDLE
BSI_BAD_AID
BSI1_SC_LOCKED
BSI_CARD_REMOVED
BSI_NO_CARDSERVICE
BSI1_UNKNOWN_ERROR

F-27



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.3.4 gscBsiGcReadTaglList()

Purpose: Return the list of tagsin the selected container.
Prototype: public abstract short[] gscBsiGcReadTagList(
int hCard,

String AID
) throws gov.gsc.classes.BSIException;

Parameters: hCard: Card connection handle from gscBsiUti IConnect() -

AID: Target container AID value. The AID shall be stored as an
ASCII hexadecimal string.

Return Value: tagListArray: An array containing the list of tags for the selected container.
Thetags shall be of the type “short”.

Return codes: BS1_OK
BS1_BAD_HANDLE
BSI1_SC_LOCKED
BS1_BAD_AID
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BS1_ACCESS_DENIED
BSI1_UNKNOWN_ERROR

F-28



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.3.5 gscBsiGcReadValue()

Purpose: Returns the Va ue associated with the specified Tag.
Prototype: public abstract byte[] gscBsiGcecReadValue(
int hCard,
String AlD,
short tag
) throws gov.gsc.classes.BSIException;
Parameters: hCard: Card connection handle from gscBsiUti IConnect() .
AID: Target container AID value. The AID shall be stored as an
ASCII hexadecimal string.
tag: Tag value of data item to read.
Return Value: value: Data Value associated with the specified tag.

Return codes: BS1_OK
BS1_BAD_HANDLE
BSI1_SC_LOCKED
BS1_BAD_AID
BS1_BAD_TAG
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BSI_ACCESS_DENIED
BS1_10_ERROR
BSI1_UNKNOWN_ERROR

F-29



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.3.6 gscBsiGcUpdateValue()

Purpose:

Prototype:

Parameters:

Return codes:

Updates the Va ue associated with the specified Tag.

public abstract void gscBsiGcUpdateValue(

int hCard,
String AlD,
short tag,

byte[] value
) throws gov.gsc.classes.BSIException;

hCard: Card connection handle from gscBsiUti IConnect() .

AID: Target container AID value. The AID shall be stored asan
ASCII hexadecimal string.

tag: Tag of dataitem to update.

value: New Value of the dataitem.

BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_SC_LOCKED
BS1_BAD_PARAM
BS1_BAD_TAG
BSI_CARD_REMOVED
BSI_NO_CARDSERVICE
BSI_ACCESS_DENIED
BS1_NO_MORE_SPACE
BS1_10_ERROR
BSI_UNKNOWN_ERROR

F-30



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.4 Smart Card Cryptographic Provider Module Interface Definition

F.4.1 gscBsiGetChallenge()

Purpose:

Prototype:

Parameters:

Return Value:

Return codes:

Retrieves arandomly generated challenge from the card as the first step of a
challenge-response authentication protocol between the client application and the
card. The client subsequently encrypts the challenge using a symmetric key and
returns the encrypted random challenge to the card through acall to
gscBsiUtilAcquireContext() inthe authvalue instance field of the
BSIAuthenticator object.

public abstract byte[] gscBsiGetChallenge(
Int hCard,
String AID

) throws gov.gsc.classes.BSIException;

hCard: Card connection handle from gscBsiUti IConnect().

AID: Target container AID value. The AID shall be stored as an
ASCII hexadecimal string.

challenge: An array of bytes representing a random challenge returned from
the card.

BSI_OK

BSI_BAD_HANDLE

BSI_BAD_AID

BSI_SC_LOCKED
BS1_CARD_REMOVED
BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR

F-31



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.4.2 gscBsiSkilnternalAuthenticate()

Purpose:

Prototype:

Parameters:

Return Value:

Return codes;

Computes a symmetric key cryptogram in response to a challenge. In cases where
the card reader authenticates the card, this function does not return a cryptogram. In
these casesaBS1_TERMINAL_AUTH will be returned if the card reader successfully
authenticatesthe card. BS1_ACCESS_DENIED isreturned if the card reader failsto
authenticate the card.

public abstract byte[] gscBsiSkilnternalAuthenticate(

int hCard,
String AlD,
short algolD,

byte[] challenge

) throws gov.gsc.classes.BSIException;

hCard:

AlD:

algolD:

challenge:

cryptogram:

BSI_OK
BS1_BAD_HANDLE
BS1_BAD_AID
BSI_SC_LOCKED
BS1_BAD_PARAM

BS1_BAD_ALGO_ID

Card connection handle from gscBsiUti IConnect().

SKI provider module AID value. The AID shall be stored as an
ASCII hexadecimal string.

I dentifies the cryptographic algorithm that the card must use to
encrypt the challenge. All conformant implementations shall, at
aminimum, support the following algorithms: DES3-ECB
(Algorithm Identifier 0x81) and DES3-CBC (Algorithm Identifier
0x82). Implementations may optionally support other
cryptographic algorithms.

Challenge generated by the client application and submitted to
the card.

The cryptogram computed by the card.

BS1_CARD_REMOVED
BSI1_NO_CARDSERVICE
BS1_ACCESS_DENIED
BS1_UNKNOWN_ERROR

F-32



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.4.3 gscBsiPkiCompute()

Purpose:

Prototype:

Parameters:

Return Value:

Return codes;

Performs a private key computation on the message digest using the private key
associated with the specified AID.

public abstract byte[] gscBsiPkiCompute(

int hCard,
String AID,
short algolD,

byte[] message
) throws gov.gsc.classes.BSIException;

hCard: Card connection handle from gscBsiUti IConnect().

AID: PKI provider module AID value. The AID shall be stored asan
ASCII hexadecimal string.

algolD: I dentifies the cryptographic algorithm that will be used to
generate the signature. All conformant implementations shall, at
aminimum, support RSA_NO_PAD (Algorithm Identifier OXA3).
Implementations may optionally support other algorithms.

message: The message digest to be signed.

result: An array of bytes containing the signature.
BSI_OK

BS1_BAD_HANDLE

BS1_BAD_AID

BS1_SC_LOCKED
BS1_BAD_PARAM
BS1_BAD_ALGO_ID
BS1_CARD_REMOVED
BSI1_ACCESS_DENIED
BS1_NO_CARDSERVICE
BS1_UNKNOWN_ERROR

F-33



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.4.4 gscBsiPkiGetCertificate()

Purpose: Reads the certificate from the card.
Prototype: public abstract byte[] gscBsiPkiGetCertificate(
int hCard,

String AID
) throws gov.gsc.classes.BSIException;

Parameters: hCard: Card connection handle from gscBsiUti IConnect().

AID: PKI provider module AID value. The AID shall be stored as an
ASCII hexadecimal string.

Return Value:  certificate: An array of bytes containing the certificate.

Return codes: BS1 _OK
BSI_BAD_HANDLE
BSI_SC_LOCKED
BSI_BAD_AID
BS1_CARD_REMOVED
BSI_NO_CARDSERVICE
BSI_ACCESS_DENIED
BSI_10_ERROR
BSI1_UNKNOWN_ERROR

F-34



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

F.45 gscBsiGetCryptoProperties()
Purpose: Retrieves the Access Control Rules associated with the PKI1 provider module.

Prototype: public abstract CryptoProperties gscBsiGetCryptoProperties(
int hCard,
String AID
) throws gov.gsc.classes.BSIException;

Parameters: hCard: Card connection handle from gscBsiUti IConnect().

AID: AID of the PKI provider. The AID shall be stored as an ASCI|
hexadecimal string.

Return Value: cryptoProps: A CryptoProperties object defined as follows:

public class gov.gsc.classes.CryptoProperties

{
// FIELDS

protected CRYPTOacr strctCRYPTOacr;
protected int keylen;

// CONSTRUCTORS
public CryptoProperties()

{
strctCRYPTOacr = new CRYPTOacr();

keyLen = O;
3

public CryptoProperties( CRYPTOacr acr, int keylen)

{
strctCRYPTOacr = acr;

keyLen = keylen;
}

// ACCESSORS
public CRYPTOacr getCRYPTOacr()
{ return strctCRYPTOacr; }

public int getKeyLen()
{ return keylLen; }

public void setCRYPTOacr(CRYPTOacr thisACR)
{ strctCRYPTOacr = thisACR; }

public void setKeylLen(int keylen)
{ keyLen = keylen; }

strctCRYPTOacr: Object indicating access control conditions for all operations.
TheBSI Acr structureis defined in Section F.3.3. Therange
of possible values for the instance fields of this object are
defined in Table 3-2 (Section 3.1), and the allowable ACRs for
each function in Table 3-4 (Section 3.2).

F-35



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

keyIDOrReference containsthe key identifier or reference
for each access method contained in the ACR in order of
appearance. aut hNb is the number of access methods
logically combined in the ACR. ACRID is RFU and must be
NULL (0x00) inthisversion. Notethat ther eadVal ueACR
member maps to the gscBsi Pki Get Certificate()
function.

public class gov.gsc.classes.CRYPTOacr

{

//FIELDS:

protected BSIAcr getChallengeACR;
protected BSIAcr internalAuthenticateACR;
protected BSIAcr pkiComputeACR;

protected BSIAcr createACR;
protected BSIAcr deleteACR;
protected BSIAcr readTagListACR;
protected BSIAcr readValueACR;
protected BSIAcr updateValueACR;

//CONSTRUCTORS

public CRYPTOacr()

{
getChallengeACR = new BSIAcr();
internalAuthenticateACR = new BSIAcr;
pkiComputeACR = new BSIAcr;
createACR = new BSIAcr();
deleteACR = new BSIAcr();
readTagListACR = new BSIAcr();
readValueACR = new BSIAcr();
updateValueACR = new BSIAcr();

}

public CRYPTOacr(BSIAcr ch, BSIAcr ia, BSIAcr pc, BSlAcr c,
BSIAcr d, BSIAcr rt, BSIAcr rv, BSIAcr u)

{
getChallengeACR = ch;
internalAuthenticateACR = ia;
pkiComputeACR = pc;
createACR = c;
deleteACR = d;
readTagListACR = rt;
readValueACR = rv;
updateValueACR = u;

}

//ACCESSORS

public void setGetChallengeACR(int i)

{ getChallengeACR = i; }

public void setinternalAuthenticateACR(int 1)
{ internalAuthenticateACR = i; }

public void setPkiComputeACR(int i)

F-36



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

{ pkiComputeACR = i; }

public void setCreateACR(BSIAcr 1)

{ createACR = 1i; }

public void setDeleteACR(BSIAcr 1)

{  deleteACR =1i; }

public void setReadTagListACR(BSIAcr 1)
{ readTagListACR = i; }

public void setReadValueACR(BSIAcr i)
{ readvValueACR = i; }

public void setUpdateValueACR(BSIAcr 1)
{ updateValueACR = i; }

public int getGetChallengeACRQ)

{ return getChallengeACR; }

public int getlnternalAuthenticateACR()
{ return internalAuthenticateACR; }
public int getPkiComputeACR()

{ return pkiComputeACR; }

public BSIAcr getCreateACR()

{ return createACR; }

public BSIAcr getDeleteACR(Q)

{ return deleteACR; }

public BSIAcr getReadTagListACR()

{ return readTagListACR; }

public BSIAcr getReadValueACR()

{ return readValueACR; }

public BSIAcr getUpdateValueACR()

{ return updateValueACR; }

}

keyLen: Length of the private key managed by the PKI provider.

Return codes: BS1 _OK
BSI_BAD_HANDLE
BS1_BAD_AID
BSI_SC_LOCKED
BSI1_CARD_REMOVED
BSI1_NO_CARDSERVICE
BSI1_UNKNOWN_ERROR

F-37



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

THISPAGE INTENTIONALLY LEFT BLANK.

F-38



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Appendix G—Contactless Smart Card Requirements

This appendix defines the requirements for GSC contactless smart cards, in accordance with the decisions
of the Government Smart Card Interagency Advisory Board's Physical Access Interoperability Working
Group (PAIWG). Contactless smart cards are often used in physical access control applications, but may
also be used in the same environment as contact type cards. These requirements must therefore satisfy the
following design goals:

GSC contactless cards should provide a minimum interoperability mechanism for cardholder
identification in both physical access control and contact card type environments. This cardholder
identification mechanism should use the same card edge functions (APDUs) and Data M odel s as those
defined for GSC contact cards, to ensure interoperability with middleware designed for GSC contact
cards.

The minimum interoperability mechanism for cardholder identification isto read a Security Equipment
Integration Working Group (SEIWG)[SEIW] string from a fixed location using APDUSs defined in the
GSC virtual card edge interface.

G.1 Card to Reader Interoperability

GSC contactless cards and readers shall conform to 1SO 14443 Parts 1 through 4[1444]. Cryptographic
functionality is not required, but GSC contactless cards that implement cryptography shall use FIPS
approved cryptographic algorithms in FIPS 140-2 [FIPS1] validated modules.

G.2 Contactless Card Edge

GSC contactless cards shall support two 1SO 7816-4 [1SO4] APDUSs required to select the SEIWG
container/file and read the SEIWG string; READ BINARY and SELECT EF.

Note: The return code 0x9000 indicates command success, al other return codes indicate failure.
Additional information on the READ BINARY APDU and SELECT EF APDUSs can be found in Sections
5.1.1.2 and 5.1.1.4, respectively.

The Master File shall be automatically selected when a GSC contactless file system card is powered up.
The applet that manages the SEIWG container shall be automatically selected on a GSC contactless
Virtual Machine card at power up. SELECT MF and SELECT AID APDUs are therefore not required.

GSC contactless cards may optionally support other APDUs. These additional APDUs should be taken
from the GSC file system card edge definitions in Chapter 5, to achieve maximum interoperability with
middleware written for GSC contact cards.

G.3 Data Model Requirements

The SEIWG string is stored in a separate mandatory container/filein TLV format (EF 0007). Thisis
necessary because host applications operating in a physical access control environment must be able to
retrieve SEIWG strings quickly from afixed location, and because no Access Control Rules are imposed
on SEIWG container read operations. For file system cards, thisfile shall be atransparent file.

SEIWG File / Buffer ‘ EF 0007 Always Read




NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Data Element (TLV) ‘ Tag ‘ Type ‘ Max. Bytes
SEIWG Data 30 Fixed 40*
Error Detection Code

FE LRC

1
*The SEIWG dataformat is defined in [SEIW].

Only the FID component is mandated for the SEIWG File/ Buffer. For container based implementations,
the RID component of the AID is not defined by this specification.

All GSC contactless cards shall contain the SEIWG file as defined above aswell asavalid Card
Capability Container (see Chapter 6). Physical access control applications may elect not to read this

container for reasons of efficiency. Thisis possible because GSC contactless cards directly implement a
subset of the GSC virtual card edge interface and therefore require no APDU mapping.



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

Appendix H—Acronyms

ACA Access Control Applet

ACR Access Control Rule

AID Application Identifier

ANSI American National Standards Institute
APDU Application protocol data unit

API Applications Programming Interface
ASN.1 Abstract Syntax Notation One

ATR Answer-to-Reset

b Binary value

BSI Basic Services Interface

CAD Card Accepting Device

CccCcC Card Capability Container

CEl Card Edge Interface

CHV Card Holder Verification

CLA Class Byte of the Command Message
CT Capability Tuple

DES Data Encryption Standard

DES3 Triple Data Encryption Standard

DES3-CBC  Triple Data Encryption Standard in Cipher Block Chaining mode

DES3-ECB  Triple Data Encryption Standard in Electronic Codebook mode

EDC Error Detection Code
FID FilelD

FCI File Control Information
GCA Generic Container Applet

H-1



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

GSC

GSC-IS
h

IEC
INS
SO
LEN or Len
LOUD
LRC
LSB

L SN
MAC
MSB

M SE
OCF
P1(2)
PAIWG
PC/SC
PIN
PKI
PKCS
RFU
RID
SEIWG

SKI

Government Smart Card, as defined in the Smart Access Common ldentification Card
Solicitation

Government Smart Card Interoperability Specification
Hexadecimal value

International Electrotechnical Commission

Instruction Byte of Command M essage associated with the T=0 and T=1 protocol
International Organization for Standardization

Length

Length of useful data

Longitudinal Redundancy Check associated with the T=1 protocol
Less Significant Byte

Least significant nibbles

M essage Authentication Code

Most Significant Byte

Manage security environment command

Open Card Framework

Parameters used in the T=0 and T=1 protocol

Physical Access Interoperability Working Group
Personal Computer/Smart Card

Personal |dentification Number

Public Key Infrastructure

Public Key Cryptography Standards

Reserved for Future Use

Registerd Application Provider Identifier

Security Enterprise Integration Working Group

Symmetric Key Interface



NIST IR 6887 — 2003 EDITION, GSC-IS VERSION 2.1

SPM Service Provider Module

SPS Service Provider Software

ST Status Tuple

SW1(2) Status Word1 (2)

T=0 Character-oriented asynchronous half duplex transmission protocol
T=1 Block-oriented asynchronous half duplex transmission protocol
TLV Tag-Length-Vaue

usz Unsigned Zero-Terminated Character String

VCEI Virtual Card Edge Interface

VM Virtual Machine

VM CEl Virtual Machine Card Edge Interface

XS Extended Service Interface(s)



	Introduction
	Background
	Scope, Limitations, and Applicability of the Specification
	Conforming to the Specification

	Architectural Model
	Overview
	Basic Services Interface Overview
	Extended Service Interfaces Overview
	Virtual Card Edge Interface Overview
	Roles of the BSI and VCEI
	GSC-IS Data Model Overview
	Card Capabilities Container Overview
	Service Provider Software Overview
	Card Reader Drivers

	Access Control Model
	Available Access Control Rules
	Determining Containers
	Establishing a Security Context
	PIN Verification
	External Authentication
	Secure Messaging


	Basic Services Interface
	Overview
	Binary Data Encoding
	Mandatory Cryptographic Algorithms
	BSI Return Codes
	Smart Card Utility Provider Module Interface Definition
	Pseudo IDL Definition
	Rules
	gscBsiUtilAcquireContext()
	gscBsiUtilConnect()
	gscBsiUtilDisconnect()
	gscBsiUtilBeginTransaction()
	gscBsiUtilEndTransaction()
	gscBsiUtilGetVersion()
	gscBsiUtilGetCardProperties()
	gscBsiUtilGetCardStatus()
	gscBsiUtilGetExtendedErrorText()
	gscBsiUtilGetReaderList()
	gscBsiUtilPassthru()
	gscBsiUtilReleaseContext()

	Smart Card Generic Container Provider Module Interface Definition
	gscBsiGcDataCreate()
	gscBsiGcDataDelete()
	gscBsiGcGetContainerProperties()
	gscBsiGcReadTagList()
	gscBsiGcReadValue()
	gscBsiGcUpdateValue()

	Smart Card Cryptographic Provider Module Interface Definition
	gscBsiGetChallenge()
	gscBsiSkiInternalAuthenticate()
	gscBsiPkiCompute()
	gscBsiPkiGetCertificate()
	gscBsiGetCryptoProperties()


	Virtual Card Edge Interface
	GSC-IS ISO Conformant APDUs
	Generic File Access APDUs
	Get Response APDU
	Read Binary APDU
	Select Df APDU
	Select EF Under Selected DF APDU

	Select File APDU
	Select Master File APDU
	Update Binary APDU

	Access Control APDUs
	External Authenticate APDU
	Get Challenge APDU
	Internal Authenticate APDU
	Verify APDU

	Public Key Operations APDUs
	Manage Security Environment APDU
	Perform Security Operation APDU


	Mapping Default APDUs to Native APDU Sets
	The CCC Command and Response Tuples
	Native APDU Mapping and CCC Grammar
	Detecting Card APDUs
	Default Status Code Responses

	Card Edge Interface for VM Cards
	Virtual Machine Card Access Control Rule Configuration
	Virtual Machine Card Edge General Error Conditions
	Common Virtual Machine Card Edge Interface Methods
	Access Control
	Select Applet APDU
	Select Object APDU
	Get Properties APDU
	Get ACR APDU
	Get Response APDU
	Verify PIN APDU

	Generic Container Provider Virtual Machine Card Edge Interface
	Update Buffer APDU
	Read Buffer APDU

	Symmetric Key Provider Virtual Machine Card Edge Interface
	Get Challenge APDU
	External Authenticate APDU
	Internal Authenticate APDU

	Public Key Provider Virtual Machine Card Edge Interface
	Private Sign/Decrypt APDU



	Card Capabilities Container
	Overview
	Procedure for Accessing the CCC
	General CCC Retrieval Sequence
	Card Capabilities Container Structure

	CCC Fields
	Card Identifier Description
	Capability Container Version Number
	Capability Grammar Version Number
	Applications CardURL Structure
	PKCS#15
	Registered Daa Model Number
	Access Cntrol Rules Table
	Card APDUs
	Reirection Tag
	Capability and Status Tuples
	Capability Tuples
	Prefix and Suffix Codes
	Descriptor Codes
	Status Tuples
	Next CCC Description

	CCC Formal Grammar Definition
	Grammar Rules
	Extended Function Codes


	Container Selection and Discovery
	AID Abstraction: The Universal AID
	The CCC Universal AID and CCC Applet
	The Applications CardURL
	Using the Applications CardURL Structure for Container Selection
	File System Cards: Selecting Containers
	VM Cards: Selecting Containers and Applets
	Using the Applications CardURL Structure for Identifying Access Control Rules

	Data Model
	Data Model Overview
	Internal Tag-Length-Value Format
	Structure and Length Values for Cards Requiring the File System Card Edge
	Structure and Length Values for Cards Requiring the Virtual Machine Card Edge
	V-Buffer
	
	
	Normative References
	Informative References
	GSC Data Model
	DoD Common Access Card (CAC) Data Model
	CAC Data Model Specific

	C Language Binding for BSI Services
	Type Definitions for BSI Functions
	Parameter Format and Buffer Size Discovery Process
	Variable Length String Data

	Discovery Mechanisms Code Samples
	Smart Card Utility Provider Module Interface Definition
	gscBsiUtilAcquireContext()
	gscBsiUtilConnect()
	gscBsiUtilDisconnect()
	gscBsiUtilBeginTransaction()
	gscBsiUtilEndTransaction()
	gscBsiUtilGetVersion()
	gscBsiUtilGetCardProperties()
	gscBsiUtilGetCardStatus()
	gscBsiUtilGetExtendedErrorText()
	gscBsiUtilGetReaderList()
	gscBsiUtilPassthru()
	gscBsiUtilReleaseContext()

	Smart Card Generic Container Provider Module Interface Definition
	gscBsiGcDataCreate()
	gscBsiGcDataDelete()
	gscBsiGcGetContainerProperties()
	gscBsiGcReadTagList()
	gscBsiGcReadValue()
	gscBsiGcUpdateValue()

	Smart Card Cryptographic Provider Module Interface Definition
	gscBsiGetChallenge()
	gscBsiSkiInternalAuthenticate()
	gscBsiPkiCompute()
	gscBsiPkiGetCertificate()
	gscBsiGetCryptoProperties()


	Java Language Binding for BSI Services
	Interfaces and Classes
	Smart Card Utility Provider Module Interface Definition
	gscBsiUtilAcquireContext()
	gscBsiUtilConnect()
	gscBsiUtilDisconnect()
	gscBsiUtilBeginTransaction()
	gscBsiUtilEndTransaction()
	gscBsiUtilGetVersion()
	gscBsiUtilGetCardProperties()
	gscBsiUtilGetCardStatus()
	gscBsiUtilGetExtendedErrorText()
	gscBsiUtilGetReaderList()
	gscBsiUtilPassthru()
	gscBsiUtilReleaseContext()

	Smart Card Generic Container Provider Module Interface Definition
	gscBsiGcDataCreate()
	gscBsiGcDataDelete()
	gscBsiGcGetContainerProperties()
	gscBsiGcReadTagList()
	gscBsiGcReadValue()
	gscBsiGcUpdateValue()

	Smart Card Cryptographic Provider Module Interface Definition
	gscBsiGetChallenge()
	gscBsiSkiInternalAuthenticate()
	gscBsiPkiCompute()
	gscBsiPkiGetCertificate()
	gscBsiGetCryptoProperties()


	Contactless Smart Card Requirements
	Card to Reader Interoperability
	Contactless Card Edge
	Data Model Requirements

	Acronyms








