
Page 1

NCSC-TG-023
VERSION-1

NATIONAL COMPUTER SECURITY CENTER

A GUIDE TO

UNDERSTANDING

SECURITY TESTING

AND

TEST DOCUMENTATION

IN

TRUSTED SYSTEMS

July 1993

 Approved for Public Release:

 Distribution Unlimited.

Page 2

NCSC-TG-023
Library No. S-232.561

 Version-1

FOREWORD

The National Computer Security Center is issuing A Guide to Understanding
Security Testing and Test Documentation in Trusted Systems as part of the
"Rainbow Series" of documents our Technical Guidelines Program produces. In
the Rainbow Series, we discuss in detail the features of the Department of
Defense Trusted Computer System Evaluation Criteria (DoD 5200.28-STD) and
provide guidance for meeting each requirement. The National Computer
Security Center, through its Trusted Product Evaluation Program, evaluates the
security features of commercially produced computer systems. Together, these
programs ensure that users are capable of protecting their important data with
trusted computer systems.

The specific guidelines in this document provide a set of good practices
related to security testing and the development of test documentation. This
technical guideline has been written to help the vendor and evaluator
community understand what deliverables are required for test documentation, as
well as the level of detail required of security testing at all classes in the
Trusted Computer System Evaluation Criteria.

As the Director, National Computer Security Center, Invite your suggestions
for revision to this technical guideline. We plan to review this document as
the need arises.

National Computer Security Center
Attention: Chief, Standard, Criteria and Guidelines Division
9800 Savage Road
Fort George G. Meade, MD 20755-6000

Patrick R. Gallagher, Jr. January, 1994
Director
National Computer Security Center

Page 3

ACKNOWLEDGMENTS

Special recognition and acknowledgment for his contributions to this
document are extended to Virgil D. Gligor, University of Maryland, as
primary author of this document.

Special thanks are extended to those who enthusiastically gave of their time
and technical expertise in reviewing this guideline and providing valuable
comments and suggestions. The assistance of C. Sekar Chandersekaran, IBM and
Charles Bonneau, Honeywell Federal Systems, in the preparation of the examples
presented in this guideline is gratefully acknowledged.

Special recognition is extended to MAJ James P. Gordon, U.S. Army, and Leon
Neufeld as National Computer Security Center project managers for this
guideline.

Page 4

TABLE OF CONTENTS

FOREWORD i
ACKNOWLEDGMENTS iii

l. INTRODUCTION 1
1.1 PURPOSE 1
1.2 SCOPE 1
1.3 CONTROL OBJECTIVES 2

2. SECURITY TESTING OVERVIEW 3
2.1 OBJECTIVES 3
2.2 PURPOSE 3
2.3 PROCESS 4
2.3.1 System Analysis 4
2.3.2 Functional Testing 4
2.3.3 Security Testing 5
2.4 SUPPORTING DOCUMENTATION 5
2.5 TEST TEAM COMPOSITION 6
2.6 TEST SITE 7

3. SECURITY TESTING - APPROACHES, DOCUMENTATION, AND EXAMPLES 8
3.1 TESTING PHILOSOPHY 8
3.2 TEST AUTOMATION 9
3.3 TESTING APPROACHES 11
3.3.1 Monolithic (Black-Box) Testing 11
3.3.2 Functional-Synthesis (White-Box) Testing 13
3.3.3 Gray-Box Testing 15
3.4 RELATIONSHIP WITH THE TCSEC SECURITY TESTING REQUIREMENTS 18
3.5 SECURITY TEST DOCUMENTATION 21
3.5.1 Overview 21
3.5.2 Test Plan 22
3.5.2.1 Test Conditions 22
3.5.2.2 Test Data 24
3.5.2.3 Coverage Analysis 25
3.5.3 Test Procedures 27
3.5.4 Test Programs 27
3.5.5 Test Log 28
3.5.6 Test Report 28
3.6 SECURITY TESTING OF PROCESSORS' HARDWARE/FIRMWARE

PROTECTION MECHANISMS 28
3.6.1 The Need for Hardware/Firmware Security Testing 29
3.6.2 Explicit TCSEC Requirements for Hardware Security Testing 30
3.6.3 Hardware Security Testing vs. System Integrity Testing 31
3.6.4 Goals, Philosophy, and Approaches to Hardware Security Testing 31
3.6.5 Test Conditions, Data, and Coverage Analysis for Hardware

Security Testing 32
3.6.5.1 Test Conditions for Isolation and Noncircumventability

Testing 32
3.6.5.2 Text Conditions for Policy-Relevant Processor Instructions 33
3.6.5.3 Tests Conditions for Generic Security Flaws 33
3.6.6 Relationship between Hardware/Firmware Security Testing and

Page 5

the TCSEC Requirements 34
3.7 TEST PLAN EXAMPLES 36
3.7.1 Example of a Test Plan for "Access" 37
3.7.1.1 Test Conditions for Mandatory Access Control of "Access" 38
3.7.1.2 Test Data for MAC Tests 38
3.7.1.3 Coverage Analysis 39
3.7.2 Example of a Test Plan for "Open" 43
3.7.2.1 Test Conditions for "Open" 43
3.7.2.2 Test Data for the Access Graph Dependency Condition 44
3.7.2.3 Coverage Analysis 46
3.7.3 Examples of a Test Plan for "Read" 46
3.7.3.1 Test Conditions for "Read" 47
3.7.3.2 Test Data for the Access-Check Dependency Condition 47
3.7.3.3 Coverage Analysis 51
3.7.4 Examples of Kernel Isolation Test Plans 51
3.7.4.1 Test Conditions 51
3.7.4.2 Test Data 51
3.7.4.3 Coverage Analysis 53
3.7.5 Examples of Reduction of Cyclic Test Dependencies 54
3.7.6 Example of Test Plans for Hardware/Firmware Security Testing 57
3.7.6.1 Test Conditions for the Ring Crossing Mechanism 58
3.7.6.2 Test Data 58
3.7.6.3 Coverage Analysis 60
3.7.7 Relationship with the TCSEC Requirements 62

4. COVERT CHANNEL TESTING 66
4.1 COVERT CHANNEL TEST PLANS 66
4.2 AN EXAMPLE OF A COVERT CHANNEL TEST PLAN 67
4.2.1 Test Plan for the Upgraded Directory Channel 67
4.2.1.1 Test Condition 68
4.2.1.2 Test Data 68
4.2.1.3 Coverage Analysis 70
4.2.2 Test Programs 70
4.2.3 Test Results 70
4.3 RELATIONSHIP WITH THE TCSEC REQUIREMENTS 70

5. DOCUMENTATION OF SPECIFICATION-TO-CODE CORRESPONDENCE 72

APPENDIX 73
1 Specification-to-Code Correspondence 73
2 Informal Methods for Specification-to-Code Correspondence 74
3 An Example of Specification-to-Code Correspondence 76

GLOSSARY 83

REFERENCES 90

Page 6

1. INTRODUCTION

The National Computer Security Center (NCSC) encourages the widespread
availability of trusted computer systems. In support of this goal the
Department of Defense Trusted Computer System Evaluation Criteria (TCSEC)
was created as a metric against which computer systems could be evaluated. The
NCSC published the TCSEC on 15 August 1983 as CSC-STD-001-83. In December
1985, the Department of Defense (DoD) adopted it, with a few changes, as a DoD
Standard, DoD 5200.28-STD. [13] DoD Directive 5200.28, "Security
Requirements for Automatic Data Processing (ADP) Systems," requires that the
TCSEC be used throughout the DoD. The NCSC uses the TCSEC as a standard for
evaluating the effectiveness of security controls built into ADP systems.
The TCSEC is divided into four divisions: D, C, B, and A. These divisions
are ordered in a hierarchical manner with the highest division (A) being
reserved for systems providing the best available level of assurance. Within
divisions C and B there are a number of subdivisions known as classes. In
turn, these classes are also ordered in a hierarchical manner to represent
different levels of security.

1.1 PURPOSE

Security testing is a requirement for TCSEC classes C1 though A1. This testing
determines that security features for a system are implemented as designed and
that they are adequate for the specified level of trust. The TCSEC also
requires test documentation to support the security testing of the security
features of a system. The TCSEC evaluation process includes security testing
and evaluation of test documentation of a system by an NCSC evaluation team. A
Guide to Understanding Security Testing and Test Documentation for Trusted
Systems will assist the operating system developers and vendors in the
development of computer security testing and testing procedures. This
guideline gives system developers and vendors suggestions and recommendations
on how to develop testing and testing documentation that will be found
acceptable by an NCSC Evaluation Team.

1.2 SCOPE

TCSEC classes C1 through A1 assurance is gained through security testing and
the accompanying test documentation of the ADP system. Security testing and
test documentation ensures that the security features of the system are
implemented as designed and are adequate for an application environment.
This guideline discusses the development of security testing and test
documentation for system developers and vendors to prepare them for the
evaluation process by the NCSC. This guideline addresses, in detail, various
test methods and their applicability to security and accountability policy
testing. The Trusted Computing Base (TCB) isolation, noncircumventability
testing, processor testing, and covert channel testing methods are examples.

This document provides an in-depth guide to security testing. This includes
the definitions, writing and documentation of the test plans for security
and a brief discussion of the mapping between the formal top-level
specification (FTLS) of a TCB and the TCB implementation specifications.
This document also provides a standard format for test plans and test result
presentation. Extensive documentation of security testing and specification-
to-code correspondence arise both during a system evaluation and, more

Page 7

significantly, during a system life cycle. This guideline addresses evaluation
testing, not life-cycle testing. This document complements the security
testing guideline that appears in Section 10 of the TCSEC.

The scope and approach of this document is to assist the vendor in security
testing and in particular functional testing. The vendor is responsible for
functional testing, not penetration testing. If necessary, penetration testing
is conducted by an NCSC evaluation team. The team collectively identifies
penetration vulnerabilities of a system and rates them relative to ease of
attack and difficulty of developing a hierarchy penetration scenario.
Penetration testing is then conducted according to this hierarchy, with the
most critical and easily executed attacks attempted first [17].

This guideline emphasizes the testing of systems to meet the requirements of
the TCSEC. A Guide to Understanding Security Testing and Test Documentation
for Trusted Systems does not address the testing of networks, subsystems, or
new versions of evaluated computer system products. It only addresses the
requirements of the TCSEC.

Information in this guideline derived from the requirements of the TCSEC is
prefaced by the word "shall." Recommendations that are derived from commonly
accepted good practices are prefaced by the word "should." The guidance
contained herein is intended to be used when conducting and documenting
security functional testing of an operating system. The recommendations in
this document are not to be construed as supplementary requirements to the
TCSEC. The TCSEC is the only metric against which systems are to be evaluated.

Throughout this guideline there are examples, illustrations, or citations of
test plan formats that have been used in commercial product development. The
use of these examples, illustrations, and citations is not meant to imply that
they contain the only acceptable test plan formats. The selection of these
examples is based solely on their availability in computer security
literature. Examples in this document are not to be construed as the only
implementations that will satisfy the TCSEC requirements. The examples are
suggestions of appropriate implementations.

1.3 CONTROL OBJECTIVES

The TCSEC and DoD 5200.28-M [14] provide the control objectives for security
testing and documentation. Specifically these documents state the following:

"Component's Designated Approving Authorities, or their designees for this
purpose . . . will assure:. . .

"4. Maintenance of documentation on operating systems (O/S) and all
modifications thereto, and its retention for a sufficient period of time to
enable tracing of security-related defects to their point of origin or
inclusion in the system.

"5. Supervision, monitoring, and testing, as appropriate, of changes in an
approved ADP System that could affect the security features of the system,
so that a secure system is maintained.

"6. Proper disposition and correction of security deficiencies in all approved

Page 8

ADP Systems, and the effective use and disposition of system housekeeping or
audit records, records of security violations or security-related system
malfunctions, and records of tests of the security features of an ADP System.

"7. Conduct of competent system Security Testing and Evaluation (ST&E), timely
review of system ST&E reports, and correction of deficiencies needed to
support conditional or final approval or disapproval of an ADP system for
the processing of classified information.

"8. Establishment, where appropriate, of a central ST&E coordination point for
the maintenance of records of selected techniques, procedures, standards,
and tests used in testing and evaluation of security features of ADP systems
which may be suitable for validation and use by other Department of Defense
components."

Section 5 of the TCSEC gives the following as the Assurance Control Objective:

"The third basic control objective is concerned with guaranteeing or providing
confidence that the security policy has been implemented correctly and that
the protection critical elements of the system do, indeed, accurately
mediate and enforce the intent of that policy. By extension, assurance must
include a guarantee that the trusted portion of the system works only as
intended. To accomplish these objectives, two types of assurance are needed.
They are life-cycle assurance and operational assurance.

"Life-cycle assurance refers to steps taken by an organization to ensure
that the system is designed, developed, and maintained using formalized and
rigorous controls and standards. Computer systems that process and store
sensitive or classified information depend on the hardware and software to
protect that information. It follows that the hardware and software themselves
must be protected against unauthorized changes that could cause protection
mechanisms to malfunction or be bypassed completely. For this reason,
trusted computer systems must be carefully evaluated and tested during the
design and development phases and reevaluated whenever changes are made that
could affect the integrity of the protection mechanisms. Only in this way
can confidence be provided that the hardware and software interpretation of
the security policy is maintained accurately and without distortion." [13]

2. SECURITY TESTING OVERVIEW

This section provides the objectives, purpose, and a brief overview of
vendor and NCSC security testing. Test team composition, test site location,
testing process, and system documentation are also discussed.

2.1 OBJECTIVES

The objectives of security testing are to uncover all design and
implementation flaws that enable a user external to the TCB to violate
security and accountability policy, isolation, and noncircumventability.

2.2 PURPOSE

Security testing involves determining (1) a system security mechanism adequacy
for completeness and correctness and (2) the degree of consistency between

Page 9

system documentation and actual implementation. This is accomplished through a
variety of assurance methods such as analysis of system design
documentation, inspection of test documentation, and independent execution of
functional testing and penetration testing.

2.3 PROCESS

A qualified NCSC team of experts is responsible for independently evaluating
commercial products to determine if they satisfy TCSEC requirements. The
NCSC is also responsible for maintaining a listing of evaluated products on
the NCSC Evaluated Products List (EPL). To accomplish this mission, the NCSC
Trusted Product Evaluation Program has been established to assist vendors in
developing, testing, and evaluating trusted products for the EPL. Security
testing is an integral part of the evaluation process as described in the
Trusted Product Evaluations-A Guide For Vendors. [18]

2.3.1 System Analysis

System analysis is used by the NCSC evaluation team to obtain a complete and
in-depth understanding of the security mechanisms and operations of a vendor's
product prior to conducting security testing. A vendor makes available to an
NCSC team any information and training to support the NCSC team members in
their understanding of the system to be tested. The NCSC team will become
intimately familiar with a vendor's system under evaluation and will analyze
the product design and implementation, relative to the TCSEC.

System candidates for TCSEC ratings B2 through A1 are subject to
verification and covert channel analyses. Evaluation of these systems begins
with the selection of a test configuration, evaluation of vendor security
testing documentation, and preparation of an NCSC functional test plan.

2.3.2 Functional Testing

Initial functional testing is conducted by the vendor and results are
presented to the NCSC team. The vendor should conduct extensive functional
testing of its product during development, field testing, or both. Vendor
testing should be conducted by procedures defined in a test plan. Significant
events during testing should be placed in a test log. As testing proceeds
sequentially through each test case, the vendor team should identify flaws and
deficiencies that will need to be corrected. When a hardware or software
change is made, the test procedure that uncovered the problem should then be
repeated to validate that the problem has been corrected. Care should be taken
to verify that the change does not affect any previously tested procedure.
These procedures also should be repeated when there is concern that flaws or
deficiencies exist. When the vendor team has corrected all functional problems
and the team has analyzed and retested all corrections, a test report should
be written and made a part of the report for review by the NCSC test team
prior to NCSC security testing.

The NCSC team is responsible for testing vendor test plans and reviewing
vendor test documentation. The NCSC team will review the vendor's functional
test plan to ensure it sufficiently covers each identified security
mechanism and explanation in sufficient depth to provide reasonable
assurance that the security features are implemented as designed and are

Page 10

adequate for an application environment. The NCSC team conducts its own
functional testing and, if appropriate, penetration testing after a vendor's
functional testing has been completed.

A vendor's product must be free of design and implementation changes, and
the documentation to support security testing must be completed before NCSC
team functional testing. Functional security testing is conducted on C1
through A1 class systems and penetration testing on B2, B3, and A1 class
systems. The NCSC team may choose to repeat any of the functional tests
performed by the vendor and/or execute its own functional test. During testing
by the NCSC team, the team informs the vendor of any test problems and
provides the vendor with an opportunity to correct implementation flaws. If
the system satisfies the functional test requirements, B2 and above candidates
undergo penetration testing. During penetration testing the NCSC team
collectively identifies penetration vulnerabilities in the system and rates
them relative to ease of attack and difficulty in developing a penetration
hierarchy. Penetration testing is then conducted according to this hierarchy
with the most critical and most easily executed attacks attempted first
[17]. The vendor is given limited opportunity to correct any problems
identified [17]. When opportunity to correct implementation flaws has been
provided and corrections have been retested, the NCSC team documents the
test results. The test results are input which support a final rating, the
publication of the Final Report and the EPL entry.

2.3.3 Security Testing

Security testing is primarily the responsibility of the NCSC evaluation
team. It is important to note, however, that vendors shall perform security
testing on a product to be evaluated using NCSC test methods and procedures.
The reason for vendor security testing is two-fold: First, any TCB changes
required as a result of design analysis or formal evaluation by the NCSC
team will require that the vendor (and subsequently the evaluation team)
retest the TCB to ensure that its security properties are unaffected and the
required changes fixed the test problems. Second, any new system release
that affects the TCB must undergo either a reevaluation by the NCSC or a
rating-maintenance evaluation by the vendor itself. If a rating maintenance is
required, which is expected to be the case for the preponderant number of
TCB changes, the security testing responsibility, including all the
documentation evidence, becomes a vendor's responsibility-not just that of the
NCSC evaluation team.

Furthermore, it is important to note that the system configuration provided to
the evaluation team for security testing should be the same as that used by
the vendor itself. This ensures that consistent test results are obtained.
It also allows the evaluation team to examine the vendor test suite and to
focus on areas deemed to be insufficiently tested. Identifying these areas
will help speed the security testing of a product significantly. (An important
implication of reusing the vendor's test suite is that security testing should
yield repeatable results.)

When the evaluation team completes the security testing, the test results
are shown to the vendor. If any TCB changes are required, the vendor shall
correct or remove those flaws before TCB retesting by the NCSC team is
performed.

Page 11

2.4 SUPPORTING DOCUMENTATION

Vendor system documentation requirements will vary, and depending on the TCSEC
class a candidate system will be evaluated for, it can consist of the
following:

Security Features User's Guide. It describes the protection mechanisms
provided by the TCB, guidelines on their use, and how they interact with one
another. This may be used to identify the protection mechanisms that need to
be covered by test procedures and test cases.

Trusted Facility Manual. It describes the operation and administration of
security features of the system and presents cautions about functions and
privileges that should be controlled when running a secure facility. This
may identify additional functions that need to be tested.

Design Documentation. It describes the philosophy of protection, TCB
interfaces, security policy model, system architecture, TCB protection
mechanisms, top level specifications, verification plan, hardware and software
architecture, system configuration and administration, system programming
guidelines, system library routines, programming languages, and other topics.

Covert Channel Analysis Documentation. It describes the determination and
maximum bandwidth of each identified channel.

System Integrity Documentation. It describes the hardware and software
features used to validate periodically the correct operation of the on-site
hardware and firmware elements of the TCB.

Trusted Recovery Documentation. It describes procedures and mechanisms
assuring that after an ADP system failure or other discontinuity, recovery
is obtained without a protection compromise. Information describing procedures
and mechanisms may also be found in the Trusted Facility Manual.

Test Documentation. It describes the test plan, test logs, test reports,
test procedures, and test results and shows how the security mechanisms were
functionally tested, covert channel bandwidth, and mapping between the FTLS
and the TCB source code. Test documentation is used to document plans,
tests, and results in support of validating and verifying the security testing
effort.

2.5 TEST TEAM COMPOSITION

A vendor test team should be formed to conduct security testing. It is
desirable for a vendor to provide as many members from its security testing
team as possible to support the NCSC during its security testing. The reason
for this is to maintain continuity and to minimize the need for retraining
throughout the evaluation process. The size, education, and skills of the test
team will vary depending on the size of the system and the class for which
it is being evaluated. (See Chapter 10 of the TCSEC, "A Guideline on
Security Testing.")

A vendor security testing team should be comprised of a team leader and two or

Page 12

more additional members depending on the evaluated class. In selecting
personnel for the test team, it is important to assign individuals who have
the ability to understand the hardware and software architecture of the
system, as well as an appropriate level of experience in system testing.
Engineers and scientists with backgrounds in electrical engineering,
computer science and software engineering are ideal candidates for
functional security testing. Prior experience with penetration techniques is
important for penetration testing. A mathematics or logic background can be
valuable in formal specifications involved in A1 system evaluation.

The NCSC test team is formed using the guidance of Chapter 10, in the TCSEC,
"A Guideline on Security Testing." This chapter specifies test team
composition, qualifications and parameters. Vendors may find these
requirements useful recommendations for their teams.

2.6 TEST SITE

The location of a test site is a vendor responsibility. The vendor is to
provide the test site. The evaluator's functional test site may be located
at the same site at which the vendor conducted his functional testing.
Proper hardware and software must be available for testing the configuration
as well as appropriate documentation, personnel, and other resources which
have a significant impact on the location of the test site.

3. SECURITY TESTING-APPROACHES, DOCUMENTATION, AND EXAMPLES

3.1 TESTING PHILOSOPHY

Operating systems that support multiple users require security mechanisms
and policies that guard against unauthorized disclosure and modification of
critical user data. The TCB is the principal operating system component that
implements security mechanisms and policies that must itself be protected
[13]. TCB protection is provided by a reference monitor mechanism whose data
structures and code are isolated, noncircumventable, and small enough to be
verifiable. The reference monitor ensures that the entire TCB is isolated
and noncircumventable.

Although TCBs for different operating systems may contain different data
structures and programs, they all share the isolation, noncircumventability,
and verifiability properties that distinguish them from the rest of the
operating system components. These properties imply that the security
functional testing of an operating system TCB may require different methods
from those commonly used in software testing for all security classes of the
TCSEC.

Security testing should be done for TCBs that are configured and installed
in a specific system and operate in a normal mode (as opposed to maintenance
or test mode). Tests should be done using user-level programs that cannot read
or write internal TCB data structures or programs. New data structures and
programs should also not be added to a TCB for security testing purposes,
and special TCB entry points that are unavailable to user programs should
not be used. If a TCB is tested in the maintenance mode using programs that
cannot be run at the user level, the security tests would be meaningless
because assurance cannot be gained that the TCB performs user-level access

Page 13

control correctly. If user-level test programs could read, write or add
internal TCB data structures and programs, as would be required by traditional
instrumentation testing techniques, the TCB would lose its isolation
properties. If user-level test programs could use special TCB entry points not
normally available to users, the TCB would become circumventable in the normal
mode of operation.

Security testing of operating system TCBs in the normal mode of operation
using user-level test programs (which do not rely on breaching isolation and
noncircumventability) should address the following problems of TCB
verifiability through security testing: (1) Coverage Analysis, (2) Reduction
of Cyclic Test Dependencies, (3) Test Environment Independence, and (4)
Repeatability of Security Testing.

(1) Coverage Analysis. Security testing requires that precise, extensive
test coverage be obtained during TCB testing. Test coverage analysis should be
based on coverage of test conditions derived from the Descriptive Top-Level
Specification (DTLS)/Formal Top-Level Specification (FTLS), the security and
accountability model conditions, the TCB isolation and noncircumventability
properties, and the individual TCB-primitive implementation. Without
covering such test conditions, it would be impossible to claim reasonably that
the tests cover specific security checks in a demonstrable way. Whenever
both DTLS and FTLS and security and accountability models are unavailable or
are not required, test conditions should be derived from documented protection
philosophy and resource isolation requirements [13]. It would be impossible to
reasonably claim that the implementation of a specific security check in a TCB
primitive is correct without individual TCB-primitive coverage. In these
checks a TCB primitive may deal differently with different parameters. In
normal-mode testing, however, using user-level programs makes it difficult to
guarantee significant coverage of TCB-primitive implementation while
eliminating redundant tests that appear when multiple TCB primitives share the
same security checks (a common occurrence in TCB kernels).

The role of coverage analysis in the generation of test plans is discussed
in Section 3.5.2, and illustrated in Sections 3.7.1.3-3.7.3.3.

(2) Reduction of Cyclic Test Dependencies. Comprehensive security testing
suggests that cyclic test dependencies be reduced to a minimum or eliminated
whenever possible. A cyclic test dependency exists between a test program
for TCB primitive A and TCB primitive B if the test program for TCB
primitive A invokes TCB primitive B, and the test program for TCB primitive B
invokes TCB primitive A. The existence of cyclic test dependencies casts
doubts on the level of assurance obtained by TCB tests. Cyclic test
dependencies cause circular arguments and assumptions about test coverage and,
consequently, the interpretation of the test results may be flawed. For
example, the test program for TCB primitive A, which depends on the correct
behavior of TCB primitive B, may not discover flaws in TCB primitive A because
such flaws may be masked by the behavior of B, and vice versa. Thus, both
the assumptions (1) that the TCB primitive B works correctly, which must be
made in the test program for TCB primitive A, and (2) that TCB primitive A
works correctly, which must be made in the test program for TCB primitive B,
are incorrect. The elimination of cyclic test dependencies could be obtained
only if the TCB is instrumented with additional code and data structures an
impossibility if TCB isolation and noncircumventability are to be maintained

Page 14

in normal mode of operation.

An example of cyclic test dependencies, and of their removal, is provided in
Section 3.7.5.

(3) Test Environment Independence. To minimize test program and test
environment dependencies the following should be reinitialized for different
TCB-primitive tests: user accounts, user groups, test objects, access
privileges, and user security levels. Test environment initialization may
require that the number of different test objects to be created and logins
to be executed become very large. Therefore, in practice, complete TCB testing
cannot be carried out manually. Testing should be automated whenever possible.
Security test automation is discussed in Section 3.2.

(4) Repeatability of Security Testing. TCB verifiability through security
testing requires that the results of each TCB-primitive test be repeatable.
Without test repeatability it would be impossible to evaluate developers'
TCB test suites independently of the TCB developers. Independent TCB testing
may yield different outcomes from those expected if testing is not repeatable.
Test repeatability by evaluation teams requires that test plans and procedures
be documented in an accurate manner.

3.2 TEST AUTOMATION

The automation of the test procedures is one of the most important practical
objectives of security testing. This objective is important for at least three
reasons. First, the procedures for test environment initialization include a
large number of repetitive steps that do not require operator intervention,
and therefore, the manual performance of these steps may introduce avoidable
errors in the test procedures. Second, the test procedures must be carried out
repeatedly once for every system generation (e.g., system build) to ensure
that security errors have not been introduced during system maintenance.
Repeated manual performance of the entire test suite may become a time
consuming, error-prone activity. Third, availability of automated test
suites enables evaluators to verify both the quality and extent of a
vendor's test suite on an installed system in an expeditious manner. This
significantly reduces the time required to evaluate that vendor's test suite.

The automation of most test procedures depends to a certain extent on the
nature of the TCB interface under test. For example, for most TCB-primitive
tests that require the same type of login, file system and directory
initialization, it is possible to automate the tests by grouping test
procedures in one or several user-level processes that are initiated by a
single test-operator login. However, some TCB interfaces, such as the login
and password change interfaces, must be tested from a user and administrator
terminal. Similarly, the testing of the TCB interface primitives of B2 to Al
systems available to users only through trusted-path invocation requires
terminal interaction with the test operator. Whenever security testing
requires terminal interaction, test automation becomes a challenging
objective.

Different approaches to test automation are possible. First, test designers
may want to separate test procedures requiring terminal interaction (which are
not usually automated), from those that do not require terminal interaction

Page 15

(which are readily amenable to automation). In this approach, the minimization
of the number of test procedures that require terminal interaction is
recommended.

Second, when test procedures requiring human-operator interaction cannot be
avoided, test designers may want to connect a workstation to a terminal line
and simulate the terminal activity of a human test operator on the
workstation. This enables the complete automation of the test environment
initialization and execution procedures, but not necessarily of the result
identification and analysis procedure. This approach has been used in the
testing of the Secure XenixTM TCB. The commands issued by the test
workstation that simulates the human-operator commands are illustrated in
the appendix of reference [9].

Third, the expected outcome of each test should be represented in the same
format as that assumed by the output of the TCB under test and should be
placed in files of the workstation simulating a human test operator. The
comparison between the outcome files and the test result files (transferred to
the workstation upon test completion) can be performed using simple tools
for file comparisons available in most current operating systems. The
formatting of the outcome files in a way that allows their direct comparison
with the test program output is a complex process. In practice, the order of
the outcomes is determined only at the time the test programs are written, and
sometimes only at execution time. Automated analysis of test results is
seldomly done for this reason. To aid analysis of test results by human
operators, the test result outputs can label and time-stamp each test.
Intervention by a human test operator is also necessary in any case of
mismatches between obtained test results and expected outcomes.

An approach to automating security testing using Prolog is presented in
reference [20].

3.3 TESTING APPROACHES

All approaches to security functional testing require the following four major
steps: (1) the development of test plans (i.e., test conditions, test data
including test outcomes, and test coverage analysis) and execution for each
TCB primitive, (2) the definition of test procedures, (3) the development of
test programs, and (4) the analysis of the test results. These steps are not
independent of each other in all methods. Depending upon how these steps are
performed in the context of security testing, three approaches can be
identified: the monolithic (black-box) testing approach, the functional-
synthesis (white-box) testing approach, and a combination of the two
approaches called the gray-box testing approach.

In all approaches, the functions to be tested are the security-relevant
functions of each TCB primitive that are visible to the TCB interface. The
definition of these security functions is given by:

Classes C1 and C2. System documentation defining a system protection
philosophy, mechanisms, and system interface operations (e.g., system calls).

Class B1. Informal interpretation of the (informal) security model and the
system documentation.

Page 16

Classes b2 and B3. Descriptive Top-Level Specifications (DTLSs) of the TCB and
by the interpretation of the security model that is supposed to be implemented
by the TCB functions.

Class A1. Formal Top-Level Specifications (FTLSs) of the TCB and by the
interpretation of the security model that is supposed to be implemented by the
TCB functions.

Thus, a definition of the correct security function exists for each TCB
primitive of a system designed for a given security class. In TCB testing,
major distinctions between the approaches discussed in the previous section
appear in the areas of test plan generation (i.e., test condition, test
data, and test coverage analysis). Further distinctions appear in the
ability to eliminate redundant TCB-primitive tests without loss of coverage.
This is important for TCB testing because a large number of access checks
and access check sequences performed by TCB kernels are shared between
different kernel primitives.

3.3.1 Monolithic (Black-Box) Testing

The application of the monolithic testing approach to TCBs and to trusted
processes is outlined in reference [2]. The salient features of this
approach to TCB testing are the following: (1) the test condition selection is
based on the TCSEC requirements and include discretionary and mandatory
security, object reuse, labeling, accountability, and TCB isolation; (2) the
test conditions for each TCB primitive should be generated from the chosen
interpretation of each security function and primitive as defined above (for
each security class). Very seldom is the relationship between the model
interpretation and the generated test conditions, data, and programs shown
explicitly (3 and 4]. Without such a relationship, it is difficult to argue
coherently that all relevant security features of the given system are
covered.

The test data selection must ensure test environment independence for
unrelated tests or groups of tests (e.g., discretionary vs. mandatory
tests). Environment independence requires, for example, that the subjects,
objects, and access privileges used in unrelated tests or groups of tests must
differ in all other tests or group of tests.

The test coverage analysis, which usually determines the extent of the testing
for any TCB primitive, is used to delimit the number of test sets and
programs. In the monolithic approach, the test data is usually chosen by
boundary-value analysis. The test data places the test program directly above,
or below, the extremes of a set of equivalent inputs and outputs. For example,
a boundary is tested in the case of the "read" TCB call to a file by showing
that (1) whenever a user has the read privilege for that file, the read TCB
call succeeds; and (2) whenever the read privilege for that file is revoked,
or whenever the file does not exist, the read TCB call fails. Similarly, a
boundary is tested in the case of TCB-call parameter validation by showing
that a TCB call with parameters passed by reference (1) succeeds whenever
the reference points to an object in the caller's address space, and (2) fails
whenever the reference points to an object in another address space (e.g.,
kernel space or other user spaces).

Page 17

To test an individual boundary condition, all other related boundary
conditions must be satisfied. For example, in the case of the "read" primitive
above, the test call must not try to read beyond the limit of a file since the
success/failure of not reading/reading beyond this limit represents a
different, albeit related, boundary condition. The number of individual
boundary tests for N related boundary conditions is of the order 2N (since
both successes and failures must be tested for each of the N conditions). Some
examples of boundary-value analysis are provided in [2] for security
testing, and in [5] and [6] for security-unrelated functional testing.

The monolithic testing approach has a number of practical advantages. It can
always be used by both implementors and users (evaluators) of TCBs. No
specific knowledge of implementation details is required because there is no
requirement to break the TCB (e.g., kernel) isolation or to circumvent the TCB
protection mechanism (to read, modify, or add to TCB code). Consequently, no
special tools for performing monolithic testing are required. This is
particularly useful in processor hardware testing when only descriptions of
hardware/firmware implemented instructions, but no internal hardware/
firmware design documents, are available.

The disadvantages of the monolithic approach are apparent. First, it is
difficult to provide a precise coverage assessment for a set of TCB-
primitive tests, even though the test selection may cover the entire set of
security features of the system. However, no coverage technique other than
boundary-value analysis can be more adequate without TCB code analysis.
Second, the elimination of redundant TCB-primitive tests without loss of
coverage is possible only to a limited extent; i.e., in the case of access-
check dependencies (discussed below) among TCB-primitive specifications.
Third, in the context of TCB testing, the monolithic approach cannot cope with
the problem of cyclic dependencies among test programs. Fourth, lack of TC
code analysis precludes the possibility of distinguishing between design and
implementation code errors in all but a few special cases. Also, it
precludes the discovery of spurious code within the TCB-a necessary
condition for Trojan Horse analysis.

In spite of these disadvantages, monolithic functional testing can be
applied successfully to TCB primitives that implement simple security checks
and share few of these checks (i.e., few or no redundant tests would exist).
For example, many trusted processes have these characteristics, and thus
this approach is adequate.

3.3.2 Functional-Synthesis (White-Box) Testing

Functional-synthesis-based testing requires the test of both functions
implemented by each program (e.g., program of a TCB primitive) as a whole
and functions implemented by internal parts of the program. The internal
program parts correspond to the functional ideas used in building the program.
Different forms of testing procedures are used depending upon different
kinds of functional synthesis (e.g., control, algebraic, conditional, and
iterative synthesis described in [1] and [7]). As pointed out in [9], only the
control synthesis approach to functional testing is suitable for security
testing.

Page 18

In control synthesis, functions are represented as sequences of other
functions. Each function in a sequence transforms an input state into an
output state, which may be the input to another function. Thus, a control
synthesis graph is developed during program development and integration with
nodes representing data states and arcs representing state transition
functions. The data states are defined by the variables used in the program
and represent the input to the state transition functions. The assignment of
program functions, procedures, and subroutines to the state transition
functions of the graph is usually left to the individual programmer's
judgment. Examples of how the control synthesis graphs are built during the
program development and integration phase are given in [1] and [7].

The suitability of the control synthesis approach to TCB testing becomes
apparent when one identifies the nodes of the control synthesis graph with the
access checks within the TCB and the arcs with data states and outcomes of
previous access checks. This representation, which is the dual of the
traditional control synthesis graphs [9], produces a kernel access-check graph
(ACG). This representation is useful because in TCB testing the primary
access-check concerns are those of (1) missing checks within a sequence of
required checks, (2) wrong sequences of checks, and (3) faulty or incomplete
access checks. (Many of the security problems identified in the Multics kernel
design project existed because of these broad categories of inadequate
access checks [8].) It is more suitable than the traditional control-synthesis
graph because major portions of a TCB, namely the kernel, have comparatively
few distinct access checks (and access-check sequences) and a large number
of object types and access privileges that have the same access-check
sequences for different TCB primitives [9]. (However, this approach is less
advantageous in trusted process testing because trusted processes-unlike
kernels-have many different access checks and few shared access sequences.)
These objects cause the same data flow between access check functions and,
therefore, are combined as graph arcs.

The above representation of the control synthesis graph has the advantage of
allowing the reduction of the graph to the subset of kernel functions that are
relevant to security testing. In contrast, a traditional graph would include
(1) a large number of other functions (and, therefore, graph arcs), and (2)
a large number of data states (and, therefore, graph nodes). This would be
both inadequate and unnecessary. It would be inadequate because the presence
of a large number of security-irrelevant functions (e.g., functions
unrelated to security or accountability checks or to protection mechanisms)
would obscure the role of the security-relevant ones, making test coverage
analysis a complex and difficult task. It would be unnecessary because not
only could security-irrelevant functions be eliminated from the graph but also
the flows of different object types into the same access check function
could be combined, making most object type-based security tests unnecessary.

Any TCB-primitive program can be synthesized at the time of TCB
implementations as a graph of access-checking functions and data flow arcs.
Many of the TCB-primitive programs share both arcs and nodes of the TCB graph.
To build an access-check graph, one must identify all access-check
functions, their inputs and outputs, and their sequencing. A typical input
to an access-check function consists of an object identifier, object type
and required access privileges. The output consists of the input to the next
function (as defined above) and, in most cases, the outcome of the function

Page 19

check. The sequencing information for access-check functions consists of (1)
the ordering of these functions, and (2) the number of arc traversals for each
arc. An example of this is the sequencing of some access check functions
that depend on the object types.

Test condition selection in the control-synthesis approach can be performed so
that all the above access check concerns are satisfied. For example, test
conditions must identify missing discretionary, mandatory, object reuse,
privilege-call, and parameter validation checks (or parts of those checks). It
also must identify access checks that are out of order, and faulty or
incomplete checks, such as being able to truncate a file for which the
modify privilege does not exist. The test conditions must also be based on the
security model interpretation to the same extent as that in the monolithic
approach.

The test coverage in this approach also refers to the delimitation of the test
data and programs for each TCB primitive. Because many of the access-check
functions, and sequences of functions, are common to many of the kernel
primitives (but not necessarily to trusted-process primitives), the
synthesized kernel (TCB) graph is fairly small. Despite this the coverage
analysis cannot rely on individual arc testing for covering the graph. The
reason is that arc testing does not force the testing of access checks that
correspond to combinations of arcs and thus it does not force coverage of all
relevant sequences of security tests. Newer test coverage techniques for
control synthesis graphs, such as data-flow testing [9, 10, and 11] provide
coverage of arc combinations and thus are more appropriate than those using
individual arc testing.

The properties of the functional-synthesis approach to TCB testing appear to
be orthogonal to those of monolithic testing. Consider the disadvantages of
functional-synthesis testing. It is not as readily usable as monolithic
testing because of the lack of detailed knowledge of system internals. Also,
it helps remove very few redundant tests whenever few access check sequences
are shared by TCB primitives (as is the case with most trusted-process
primitives).

Functional-synthesis-based testing, however, has a number of fundamental
advantages. First, the coverage based on knowledge of internal program
structure (i.e., code structure of a kernel primitive) can be more extensive
than in the monolithic approach [1 and 7]. A fairly precise assessment of
coverage can be made, and most of the redundant tests can be identified.
Second, one can distinguish between TCB-primitive program failures and TCB-
primitive design failures, something nearly impossible with monolithic
testing. Third, this approach can help remove cyclic test dependencies. By
removing all, or a large number of redundant tests, one removes most cyclic
test dependencies (example of Section 3.7.5).

TCB code analysis becomes necessary whenever a graph synthesis is done after a
TCB is built. Such analysis helps identify spurious control paths and code
within a TCB-a necessary condition for Trojan Horse discovery. (In such a
case, a better term for this approach would be functional-analysis-based
testing.)

3.3.3 Gray-Box Testing

Page 20

Two of the principal goals of security testing have been (1) the elimination
of redundant tests through systematic test-condition selection and coverage
analysis, and (2) the elimination of cyclic dependencies between the test
programs. Other goals, such as test repeatability, which is also considered
important, can be attained through the same means as those used for the
other methods.

The elimination of redundant TCB-primitive tests is a worthwhile goal for
the obvious reason that it reduces the amount of testing effort without loss
of coverage. This allows one to determine a smaller nucleus of tests that must
be carried out extensively. The overall TCB assurance may increase due to
the judicious distribution of the test effort. The elimination of cyclic
dependencies among the TCB-primitive test programs is also a necessary goal
because it helps establish a rigorous test order without making circular
assumptions of the behavior of the TCB primitives. Added assurance is
therefore gained.

To achieve the above goals, the gray-box testing approach combines
monolithic testing with functional-synthesis-based testing in the test
selection and coverage areas. This combination relies on the elimination of
redundant tests through access-check dependency analysis afforded by
monolithic testing. It also relies on the synthesis of the access-check
graph from the TCB code as suggested by functional-synthesis-based testing
(used for further elimination of redundant tests). The combination of these
two testing methods generates a TCB-primitive test order that requires
increasingly fewer test conditions and data without loss of coverage.

A significant number of test conditions and associated tests can be eliminated
by the use of the access-check graph of TCB kernels. Recall that each kernel
primitive may have a different access-check graph in principle. In practice,
however, substantial parts of the graphs overlap. Consequently, if one of
the graph paths is tested with sufficient coverage for a kernel primitive,
then test conditions generated for a different kernel primitive whose graph
overlaps with the first need only include the access checks specific to the
latter kernel primitive. This is true because by the definition of the access-
check graph, the commonality of paths means that the same access checks are
performed in the same sequence, on the same types of objects and privileges,
and with the same outcomes (e.g., success and failure returns). The specific
access checks of a kernel primitive, however, must also show that the untested
subpath(s) that has not been tested, of that kernel primitive, joins the
tested path.

(A subset of the access-check and access-graph dependencies for the access,
open, read, write, fcntl, ioctl, opensem, waltsem and slgsem primitives of
UnixTM-like kernels are illustrated in Figures 1 and 2, pages 23 and 24. The
use of these dependencies in the development of test plans, especially in
coverage analysis, is illustrated in Sections 3.7.2.3 and 3.7.3.3; namely,
in the test plans for access, open, and read. Note that the arcs shown in
Figure 2, page 24 include neither complete flow-of-control information nor
complete sets of object types, access-checks per call, and call outcome.)

3.4 RELATIONSHIP WITH THE TCSEC SECURITY TESTING REQUIREMENTS

Page 21

The TCSEC security testing requirements and guidelines (i.e., Part 1 and
Section 10 of the TCSEC) help define different approaches for security
testing. They are particularly useful for test condition generation and test
coverage. This section reviews these requirements in light of security testing
approaches defined in Section 3.3.

Security Class C1

Test Condition Generation

"The security mechanisms of the ADP system shall be tested and found to work
as claimed in the system documentation." [TCSEC Part I, Section 2.1]

For this class of systems, the test conditions should be generated from the
system documentation which includes the Security Features User's Guide (SFUG),
the Trusted Facility Manual (TFM), the system reference manual describing each
TCB primitive, and the design documentation defining the protection philosophy
and its TCB implementation. Both the SFUG and the manual pages, for example,
illustrate how the identification and authentication mechanisms work and
whether a particular TCB primitive contains relevant security and
accountability mechanisms. The Discretionary Access Control (DAC) and the
identification and authentication conditions enforced by each primitive (if
any) are used to define the test conditions of the test plans.

Test Coverage

"Testing shall be done to assure that there are no obvious ways for an
unauthorized user to bypass or otherwise defeat the security protection
mechanisms of the TCB." [TCSEC, Part I, Section 2.1]

"The team shall independently design and implement at least five system-
specific tests in an attempt to circumvent the security mechanisms of the
system." [TCSEC, Part II, Section 10]

The above TCSEC requirements and guidelines define the scope of security
testing for this security class. Since each TCB primitive may include
security-relevant mechanisms, security testing shall include at least five
test conditions for each primitive. Furthermore, because source code
analysis is neither required nor suggested for class C1 systems, monolithic
functional testing (i.e., a black-box approach) with boundary-value coverage
represents an adequate testing approach for this class. Boundary-value
coverage of each test condition requires that at least two calls of each TCB
primitive be made, one for the positive and one for the negative outcome of
the condition. Such coverage may also require more than two calls per
condition. Whenever a TCB primitive refers to multiple types of objects,
each condition is repeated for each relevant type of object for both its
positive and negative outcomes. A large number of test calls may be
necessary for each TCB primitive because each test condition may in fact
have multiple related conditions which should be tested independently of
each other.

Security Class C2

Page 22

Test Condition Generation

"Testing shall also include a search for obvious flaws that would allow
violation of resource isolation, or that would permit unauthorized access to
the audit and authentication data." [TCSEC, Part I, Section 2.2]

These added requirements refer only to new sources of test conditions, but not
to a new testing approach nor to new coverage methods. The following new
sources of test conditions should be considered:

(1) Resource isolation conditions. These test conditions refer to all TCB
primitives that implement specific system resources (e.g., object types or
system services). Test conditions for TCB primitives implementing services may
differ from those for TCB primitives implementing different types of
objects. Thus, new conditions may need to be generated for TCB services. The
mere repetition of test conditions defined for other TCB primitives may not be
adequate for some services.

(2) Conditions for protection of audit and authentication data. Because both
audit and authentication mechanisms and data are protected by the TCB, the
test conditions for the protection of these mechanisms and their data are
similar to those which show that the TCB protection mechanisms are tamperproof
and noncircumventable. For example, these conditions show that neither
privileged TCB primitives nor audit and user authentication files are
accessible to regular users.

Test Coverage

Although class C1 test coverage already suggests that each test condition be
covered for each type of object, coverage of resource-specific test conditions
also requires that each test condition be covered for each type of service
(whenever the test condition is relevant to a service). For example, the
test conditions which show that direct access to a shared printer is denied to
a user shall be repeated for a shared tape drive with appropriate modification
of test data (i.e., test environments set up, test parameters and outcomes-
namely, the test plan structure discussed in Section 3.5).

Security Class B1

Test Condition Generation

The objectives of security testing ". . . shall be: to uncover all design
and implementation flaws that would permit a subject external to the TCB to
read, change, or delete data normally denied under the mandatory or
discretionary security policy enforced by the TCB; as well as to ensure that
no subject (without authorization to do so) is able to cause the TCB to
enter a state such that it is unable to respond to communications initiated by
other users." [TCSEC, Part I, Section 3.1]

The security testing requirements of class B1 are more extensive than those of
both classes C1 and C2, both in test condition generation and in coverage
analysis. The source of test conditions referring to users' access to data
includes the mandatory and discretionary policies implemented by the TCB.
These policies are defined by an (informal) policy model whose

Page 23

interpretation within the TCB allows the derivation of test conditions for
each TCB primitive. Although not explicitly stated in the TCSEC, it is
generally expected that all relevant test conditions for classes C1 and C2
also would be used for a class B1 system.

Test Coverage

"All discovered flaws shall be removed or neutralized and the TCB retested
to demonstrate that they have been eliminated and that new flaws have not been
introduced." [TCSEC, Part I, Section 3.1]

"The team shall independently design and implement at least fifteen system
specific tests in an attempt to circumvent the security mechanisms of the
system." [TCSEC, Part II, Section 10]

Although the coverage analysis is still boundary-value analysis, security
testing for class B1 systems suggests that at least fifteen test conditions be
generated for each TCB primitive that contains security-relevant mechanisms to
cover both mandatory and discretionary policy. In practice, however, a
substantially higher number of test conditions is generated from
interpretations of the (informal) security model. The removal or the
neutralization of found errors and the retesting of the TCB requires no
additional types of coverage analysis.

Security Class B2

Test Condition Generation

"Testing shall demonstrate that the TCB implementation is consistent with
the descriptive top-level specification." [TCSEC, Part I, Section 3.2]

The above requirement implies that both the test conditions and coverage
analysis of class B2 systems are more extensive than those of class B1. In
class B2 systems every access control and accountability mechanism
documented in the DTLS (which must be complete as well as accurate) represents
a source of test conditions. In principle the same types of test conditions
would be generated for class B2 systems as for class B1 systems, because (1)
in both classes the test conditions could be generated from interpretations of
the security policy model (informal at B1 and formal at B2), and (2) in
class B2 the DTLS includes precisely the interpretation of the security policy
model. In practice this is not the case however, because security policy
models do not model a substantial number of mechanisms that are, nevertheless,
included in the DTLS of class B2 systems. (Recall that class B1 systems do not
require a DTLS of the TCB interface.) The number and type of test conditions
can therefore be substantially higher in a class B2 system than those in a
class B1 system because the DTLS for each TCB primitive may contain additional
types of mechanisms, such as those for trusted facility management.

Test Coverage

It is not unusual to have a few individual test conditions for at least some
of the TCB primitives. As suggested in the gray-box approach defined in the
previous section, repeating these conditions for many of the TCB primitives to
achieve uniform coverage can be both impractical and unnecessary. Particularly

Page 24

this is true when these primitives refer to the same object types and
services. It is for this reason and because source-code analysis is required
in class B2 systems to satisfy other requirements that the use of the gray-box
testing approach is recommended for the parts of the TCB in which primitives
share a substantial portion of their code. Note that the DTLS of any system
does not necessarily provide any test conditions for demonstrating the
tamperproofness and noncircumventability of the TCB. Such conditions should be
generated separately.

Security Class 83

Test Condition Generation

The only difference between classes B2 and B3 requirements of security testing
reflects the need to discover virtually all security policy flaws before the
evaluation team conducts its security testing exercise. Thus, no additional
test condition requirements appear for class B3 testing. Note that the DTLS
does not necessarily provide any test conditions for demonstrating the TCB
is tamperproof and noncircumventable as with class B2 systems. Such conditions
should be generated separately.

Test Coverage

"No design flaws and no more than a few correctable implementation flaws may
be found during testing and there shall be reasonable confidence that few
remain." [TCSEC, Part I, Section 3.3]

The above requirement suggests that a higher degree of confidence in
coverage analysis is required for class B3 systems than for class B2
systems. It is for this reason that it is recommended the gray-box testing
approach be used extensively for the entire TCB kernel, and data-flow coverage
be used for all independent primitives of the kernel (namely, the gray-box
method in Section 3.3 above).

Security Class A1

The only differences between security testing requirements of classes B3 and
A1 are (1) the test conditions shall be derived from the FTLS, and (2) the
coverage analysis should include at least twenty-five test conditions for each
TCB primitive implementing security functions. Neither requirement suggests
that a different testing method than that recommended for class B3 systems
is required.

3.5 SECURITY TEST DOCUMENTATION

This section discusses the structure of typical test plans, test logs, test
programs, test procedures, and test reports. The description of the test
procedures necessary to run the tests and to examine the test results is
also addressed. The documentation structures presented are meant to provide
the system developers with examples of good test documentation.

3.5.1 Overview

The work plan for system testing should describe how security testing will

Page 25

be conducted and should contain the following information:

· Test-system configuration for both hardware and software.
· Summary test requirements.
· Procedures for executing test cases.
· Step-by-step procedures for each test case.
· Expected results for each test step.
· Procedures for correcting flaws uncovered during testing.
· Expected audit information generated by each test case (if any).

See Section 3.7.7, "Relationship with the TCSEC Requirements."

3.5.2 Test Plan

Analysis and testing of mechanisms, assurances and/or documentation to support
the TCSEC security testing requirements are accomplished through test plans.
The test plans should be sufficiently complete to cover each identified
security mechanism and should be conducted with sufficient depth to provide
reasonable assurance that any bugs not found lie within the acceptable risk
threshold for the class of the system being evaluated. A test plan consists of
test conditions, test data, and coverage analysis.

3.5.2.1 Test Conditions

A test condition is a statement of a security-relevant constraint that must be
satisfied by a TCB primitive. Test conditions should be derived from the
system's DTLS/FTLS, from the interpretation of the security and accountability
models (if any), from TCB isolation and noncircumventability properties, and
from the specifications and implementation of the individual TCB primitive
under test. If neither DTLS/FTLS nor models are required, then test conditions
should be derived from the informal policy statements, protection philosophy
and resource isolation requirements.

(1) Generation of Model or Policy-Relevant Test Conditions

This step suggests that a matrix of TCB primitives and the security model(s)
or requirement components be built. Each entry in the matrix identifies the
security relevance of each primitive (if any) in a security model or
requirement area and the relevant test conditions. For example, in the
mandatory access control area of security policy, one should test the proper
object labeling by the TCB, the "compatibility" property of the user created
objects, and the TCB implemented authorization rules for subject access to
objects. One should also test that the security-level relationships are
properly maintained by the TCB and that the mandatory access works
independently of, and in conjunction with, the discretionary access control
mechanism. In the discretionary access control area, one may include tests for
proper user/group identifier selection, proper user inclusion/exclusion,
selective access distribution/revocation using the access control list (ACL)
mechanism, and access review.

Test conditions derived from TCB isolation and noncircumventability properties
include conditions that verify (1) that TCB data structures are inaccessible
to user level programs, (2) that transfer of control to the TCB can take place
only at specified entry points, which cannot be bypassed by user-level

Page 26

programs, (3) that privileged entry points into the TCB cannot be used by user
level programs, and (4) that parameters passed by reference to the TCB are
validated.

Test conditions derived from accountability policy include conditions that
verify that user identification and authentication mechanisms operate
properly. For example, they include conditions that verify that only
sufficiently complex passwords can be chosen by any user, that the password
aging mechanism forces reuse at stated intervals, and so on. Other
conditions of identification and authentication, such as those that verify
that the user login level is dominated by the user's maximum security level,
should also be included. Furthermore, conditions that verify that the user
commands included in the trusted path mechanism are unavailable to the user
program interface of the TCB should be used. Accountability test conditions
that verify the correct operation of the audit mechanisms should also be
generated and used in security testing.

The security relevance of a TCB primitive can only be determined from the
security policy, accountability, and TCB isolation and noncircumventability
requirements for classes B1 to A1, or from protection philosophy and
resource isolation requirements for classes C1 and C2. Some TCB primitives are
security irrelevant. For example, TCB primitives that never allow the flow of
information across the boundaries of an accessible object are always
security irrelevant and need not be tested with respect to the security or
accountability policies. The limitation of information flow to user-accessible
objects by the TCB primitives implementation, however, needs to be tested by
TCB-primitive-specific tests. A general example of security-irrelevant TCB
primitives is provided by those primitives which merely retrieve the status of
user-owned processes at the security level of the user.

(2) Generation of TCB-Primitive-Specific Test Conditions

The selection of test conditions used in security testing should be TCB-
primitive-specific. This helps remove redundant test conditions and, at the
same time, helps ensure that significant test coverage is obtained. For
example, the analysis of TCB-primitive specifications to determine their
access-check dependencies is required whenever the removal of redundant TCB-
primitive tests is considered important. This analysis can be applied to all
testing approaches. The specification of a TCB primitive A is access-check
dependent on the specification of a TCB primitive B if a subset of the
access checks needed in TCB primitive A are performed in TCB primitive B,
and if a TCB call to primitive B always precedes a TCB call to primitive A
(i.e., a call to TCB primitive A fails if the call to TCB primitive B has
not been done or has not completed with a successful outcome). In case of such
dependencies, it is sufficient to test TCB primitive B first and then to
test only the access checks of TCB primitive A that are not performed in TCB
primitive B. Of course, the existence of the access-check dependency must be
verified through testing.

As an example of access-check dependency, consider the fork and the exit
primitives of the Secure XenixTM kernel. The exit primitive always
terminates a process and sends a return code to the parent process. The
mandatory access check that needs to be tested in exit is that the child's
process security level equals that of the parent's process. However, the

Page 27

specifications of the exit primitive are access-check dependent on the
specifications of the fork primitive (1) because an exit call succeeds only
after a successfully completed fork call is done by some parent process, and
(2) because the access check, that the child's process level always equals
that of the parent's process level, is already performed during the fork call.
In this case, no additional mandatory access test is needed for exit beyond
that performed for fork. Similarly, the sigsem and the waitsem primitives of
some UnixTM based kernels are access-check dependent on the opensem primitive,
and no additional mandatory or discretionary access checks are necessary.

However, in the case of the read and the write primitives of UnixTM kernels,
the specifications of which are also access-check dependent on both the
mandatory and the discretionary checks of the open primitive, additional tests
are necessary beyond those done for open. In the case of the read primitive
one needs to test that files could only be read if they have been opened for
reading, and that reading beyond the end of a file is impossible after one
tests the dependency of read on the specification of open. Additional tests
are also needed for other primitives such as fcntl and loctl; their
specifications are both mandatory and discretionary access-check dependent
on the open primitives for files and devices. Note that in all of the above
examples a large number of test conditions and associated tests are eliminated
by using the notion of access check dependency of specifications because, in
general, less test conditions are generated for access check dependency
testing than for the security testing of the primitive itself.

The following examples are given in references [3] and [4]: (1) of the
generation of such constraints from security models, (2) of the predicates,
variables, and object types used in constraint definition, and (3) of the
use of such constraints in test conditions for processor instructions (rather
than for TCB primitives).

See Section 3.7.7, "Relationship with the TCSEC Requirements."

3.5.2.2 Test Data

"Test data" is defined as the set of specific objects and variables that
must be used to demonstrate that a test condition is satisfied by a TCB
primitive. The test data consist of the definition of the initialization
data for the test environment, the test parameters for each TCB primitive, and
the expected test outcomes. Test data generation is as important as test
condition generation because it ensures that test conditions are exercised
with appropriate coverage in the test programs, and that test environment
independence is established whenever it is needed.

To understand the importance of test data generation consider the following
example. Suppose that all mandatory tests must ensure that the "hierarchy"
requirement of the mandatory policy interpretation must be tested for each TCB
primitive. (Expansion on this subject, i.e., the nondecreasing security
level requirement for the directory hierarchy can be found in [12].) What
directory hierarchy should one set up for testing this requirement and at
the same time argue that all possible directory hierarchies are covered for
all tests? A simple analysis of this case shows that there are two different
forms of upgraded directory creation that constitute an independent basis
for all directory hierarchies (i.e., all hierarchies can be constructed by the

Page 28

operations used for one or the other of the two forms, or by combinations of
these operations). The first form is illustrated in Figure 3a representing the
case whereby each upgraded directory at a different level is upgraded from a
single lower level (e.g., system low). The second form is illustrated in
Figure 3b and represents the case whereby each directory at a certain level is
upgraded from an immediately lower level. A similar example can be constructed
to show that combinations of security level definitions used for mandatory
policy testing cover all security level relationships.

Test data for TCB primitives should include several items such as the TCB
primitive input data, TCB primitive return result and success/failure code,
object hierarchy definition, security level used for each process/object,
access privileges used, user identifiers, object types, and so on. This
selection needs to be made on a test-by-test basis and on a primitive-by-
primitive basis. Whenever environment independence is required, a different
set of data is defined [2]. It is very helpful that the naming scheme used for
each data object helps identify the test that used that item. Different test
environments can be easily identified in this way. Note that the test data
selection should ensure both coverage of model-relevant test conditions and
coverage of the individual TCB primitives. This will be illustrated in an
example in the next section.

See Section 3.7.7, "Relationship with the TCSEC Requirements."

3.5.2.3 Coverage Analysis

Test coverage analysis is performed in conjunction with the test selection
phase of our approach. Two classes of coverage analysis should be performed:
model- or policy-dependent coverage and individual TCB primitive coverage.

(1) Model- or Policy-Dependent Coverage

In this class, one should demonstrate that the selected test conditions and
data cover the interpretation of the security and accountability model and
noncircumventability properties in all areas identified by the matrix
mentioned above. This is a comparatively simple task because model coverage
considerations drive the test condition and data selection. This kind of
coverage includes object type, object hierarchy, subject identification,
access privilege, subject/object security level, authorization check coverage,
and so on. Model dependent coverage analysis relies, in general, on boundary-
value analysis.

(2) Individual TCB-Primitives Coverage

This kind of coverage includes boundary value analysis, data flow analysis
of individual access-check graphs of TCB primitives, and coverage of
dependencies. The examples of reference [2] illustrate boundary-value
analysis. Other forms of TCB-primitive coverage will be discussed in Section
3.7 of this guideline. For example, graph coverage analysis represents the
determination that the test conditions and data exercise all the data flows
for each TCB-primitive graph. This includes not only the traversal of all
the graph access checks (i.e., nodes) but also of all the graph's arcs and arc
sequences required for each TCB primitive. (The example for access primitive
of UnixTM kernels included in Section 3.7 explains this form of coverage. Data

Page 29

flow coverage is also presented in [10] and [11] for security-unrelated test
examples.)

Coverage analysis is both a qualitative and quantitative assessment of the
extent to which the test shows TCB-primitive compliance with the (1) design
documentation, (2) resource isolation, (3) audit and authentication data
protection, (4) security policy and accountability model conditions, (5) DTLS/
FTLS, as well as with those of the TCB isolation and noncircumventability
properties. To achieve significant coverage, all security-relevant
conditions derived from a TCB model and properties and DTLS/FTLS should be
covered by a test, and each TCB-primitive test should cover the implementation
of its TCB primitive. For example, each TCB- primitive test should be
performed for all independent object types operated upon by that TCB primitive
and should test all independent security exceptions for each type of object.

See Section 3.7.7, "Relationship with the TCSEC Requirements."

3.5.3 Test Procedures

A key step in any test system is the generation of the test procedures
(which are also known as "test scripts"). The major function of the test
procedure is to ensure that an independent test operator or user is able to
carry out the test and to obtain the same results as the test implementor. The
procedure for each test should be explained in sufficient detail to enable
repeatable testing. The test procedure should contain the following items to
accomplish this:

(1) Environment Initialization Procedure. This procedure defines the login
sequences and parameters, the commands for object and subject cleanup
operations at all levels involved in the test, the choice of object names, the
commands and parameters for object creation and initialization at the required
levels, the required order of command execution, the initialization at the
required levels, the initialization of different subject identifiers and
access privileges (for the initialized objects) at all required levels, and
the specification of the test program and command names and parameters used in
the current test.

(2) Test Execution Procedure. The test procedure includes a description of the
test execution from a terminal including the list of user commands, their
input, and the expected terminal, printer, or file output.

(3) Result Identification Procedure. The test procedure should also identify
the results file for a given test, or the criteria the test operator must
use to find the results of each individual test in the test output file. The
meaning of the results should also be provided.

See Section 3.7.7, "Relationship with the TCSEC Requirements."

Note: A system in which testing is fully automated eliminates the need for
separate test procedure documentation. In such cases, the environment
initialization procedures and the test execution procedures should be
documented in the test data section of the test plans. Automated test operator
programs include the built-in knowledge otherwise contained in test
procedures.

Page 30

3.5.4 Test Programs

Another key step of any test system is the generation of the test programs.
The test programs for each TCB primitive consist of the Iogin sequence,
password, and requested security level. The security profile of the test
operator and of the possible workstation needs to be defined a priori by the
system security administrators to allow logins and environment
initialization at levels required in the test plan. After login, a test
program invokes several trusted processes (e.g., "mkdir," "rmdir," in some
UnixYM systems) with predetermined parameters in the test plan and procedure
to initialize the test environment. A nucleus of trusted processes,
necessary for the environment set up, are tested independently of a TCB
primitive under test whenever possible and are assumed to be correct.

After the test environment is initialized, the test program (which may require
multiple logins at different levels) issues multiple invocations to the TCB
primitive under test and to other TCB primitives needed for the current
test. The output of each primitive issued by the test programs is collected in
a result file associated with each separate test and analyzed. The analysis of
the test results that are collected in the results file is performed by the
test operator. This analysis is a comparison between the results file and
the expected outcome file defined by the test plan prior to the test run.
Whenever the test operator detects a discrepancy between the two files he
records a test error.

3.5.5 Test Log

A test log should be maintained by each team member during security testing.
It is to capture useful information to be included later in the test report.
The test log should contain:

· Information on any noteworthy observations.
· Modifications to the test steps.
· Documentation errors.
· Other useful data recorded during the testing procedure test

 results.

3.5.6 Test Report

The test report is to present the results of the security testing in a
manner that effectively supports the conclusions reached from the security
testing process and provides a basis for NCSC test team security testing.
The test report should contain:

· Information on the configuration of the tested system.
· A chronology of the security testing effort.
· The results of functional testing including a discussion of each

 flaw uncovered.
· The results of penetration testing covering the results of

 successful penetrations.
· Discussion of the corrections that were implemented and of any

 retesting that was performed.

Page 31

A sample test report format is provided in Section 3.7.

3.6 SECURITY TESTING OF PROCESSORS' HARDWARE/FIRMWARE PROTECTION MECHANISMS

The processors of a computer system include the Central Processing Units
(CPU), Input/Output (I/O) processors, and application-oriented co-processors
such as numerical co-processors and signal-analysis co-processors. These
processors may include mechanisms capabilities, access privileges, processor-
status registers, and memory areas representing TCB internal objects such as
process control blocks, descriptor, and page tables. The effects of the
processor protection mechanisms become visible to the system users through the
execution of processor instructions and I/O commands that produce
transformations of processor and memory registers. Transformations produced by
every instruction or I/O command are checked by the processors protection
mechanisms and are allowed only if they conform with the specifications
defined by the processor reference manuals for that instruction. For few
processors these transformations are specified formally and for less
processors a formal (or informal) model of the protection mechanisms is given
[3 and 4].

3.6.1 The Need for Hardware/Firmware Security Testing

Protection mechanisms of systems processors provide the basic support for
TCB isolation, noncircumventability, and process address space separation.
In general, processor mechanisms for the isolation of the TCB include those
that (1) help separate the TCB address space and privileges from those of
the user, (2) help enforce the transfer of control from the user address space
to the TCB address space at specific entry points, and (3) help verify the
validity of the user-level parameters passed to the TCB during primitive
invocation. Processor mechanisms that support TCB noncircumventability include
those that (1) check each object reference against a specific set of
privileges, and (2) ensure that privileged instructions which can circumvent
some of the protection mechanisms are inaccessible to the user. Protection
mechanisms that help separate process address spaces include those using
base and relocation registers, paging, segmentation, and combinations thereof.

The primary reason for testing the security function of a system's
processors is that flaws in the design and implementation of processor-
supported protection mechanisms become visible at the user level through the
instruction set. This makes the entire system vulnerable because users can
issue carefully constructed sequences of instructions that would compromise
TCB and user security.

(User visibility of protection flaws in processor designs is particularly
difficult to deny. Attempts to force programmers to use only high-level
languages, such as PL1, Pascal, Algol, etc., which would obscure the processor
instruction set, are counterproductive because arbitrary addressing patterns
and instruction sequences still can be constructed through seemingly valid
programs (i.e., programs that compile correctly). In addition, exclusive
reliance on language compilers and on other subsystems for the purpose of
obscuring protection flaws and denying users the ability to produce
arbitrary addressing patterns is unjustifiable. One reason is that compiler
verification is a particularly difficult task; another is that reliance on
compilers and on other subsystems implies reliance on the diverse skills and

Page 32

interests of system programmers. Alternatively, hardware-based attempts to
detect instruction sequence patterns that lead to protection violations
would only result in severe performance degradation.)

The additional reason for testing the security function of a system's
processor is that, in general, a system's TCB uses at least some of the
processor's mechanisms to implement its security policy. Flawed protection
mechanisms may become unusable by the TCB and, in some cases, the TCB may
not be able to neutralize those flaws (e.g., make them invisible to the user).
It should be noted that the security testing of the processor protection
mechanisms is the most basic life-cycle evidence available in the context of
TCSEC evaluations to support the claim that a system's reference notion is
verifiable.

3.6.2 Explicit TCSEC Requirements for Hardware Security Testing

The TCSEC imposes very few explicit requirements for the security testing of a
system's hardware and firmware protection mechanisms. Few interpretations
can be derived from these requirements as a consequence. Recommendations for
processor test plan generation and documentation, however, will be made in
this guideline in addition to explicit TCSEC requirements. These
recommendations are based on analogous TCB testing recommendations made
herein.

Specific Requirements for Classes C1 and C2

The following requirements are included for security classes C1 and C2:

"The security mechanisms of the ADP system shall be tested and found to work
as claimed in the system documentation."

The security mechanisms of the ADP system clearly include the processor-
supported protection mechanisms that are used by the TCB and those that are
visible to the users through the processor's instruction set. In principle
it could be argued that the TCB security testing implicitly tests at least
some processor mechanisms used by the TCB; therefore, no additional hardware
testing is required for these mechanisms. All processor protection
mechanisms that are visible to the user through the instruction set shall be
tested separately regardless of their use by a tested TCB. In practice, nearly
all processor protection mechanisms are visible to users through the
instruction set. An exception is provided by some of the I/O processor
mechanisms in systems where users cannot execute I/O commands either
directly or indirectly.

Specific Requirements for Classes B1 to B3

In addition to the above requirements of classes C1 and C2, the TCSEC includes
the following specific hardware security testing guidelines in Section 10 "A
Guideline on Security Testing":

"The [evaluation] team shall have ̀ hands-on' involvement in an independent run
of the test package used by the system developer to test security-relevant
hardware and software.

Page 33

The explicit inclusion of this requirement in the division B (i.e., classes B1
to B3) of the TCSEC guideline on security testing implies that the scope and
coverage of the security-relevant hardware testing and test documentation
should be consistent with those of the TCB security testing for this division.
Thus, the security testing of the processor s protection mechanisms for
division B systems should be more extensive that for division C (i.e., C1
and C2) systems.

Specific Requirement for Class A1

In addition to the requirements for divisions C and B, the TCSEC includes
the following explicit requirements for hardware and/or firmware testing:

"Testing shall demonstrate that the TCB implementation is consistent with
the formal top-level specifications." [Security Testing requirement] and

"The DTLS and FTLS shall include those components of the TCB that are
implemented as hardware and/or firmware if their properties are visible at the
TCB interface." [Design Specification and Verification requirement]

The above requirements suggest that all processor protection mechanisms that
are visible at the TCB interface should be tested. The scope and coverage of
the security-relevant testing and test documentation should also be consistent
with those of TCB security-relevant testing and test documentation for this
division.

3.6.3 Hardware Security Testing vs. System Integrity Testing

Hardware security testing and system integrity testing differ in at least
three fundamental ways. First, the scope of system integrity testing and
that of hardware security testing is different. System integrity testing
refers to the functional testing of the hardware/firmware components of a
system including components that do not necessarily have a specific security
function (i.e., do not include any protection mechanisms). Such components
include the memory boards, busses, displays, adaptors for special devices,
etc. Hardware security testing, in contrast, refers to hardware and firmware
components that include protection mechanisms (e.g., CPU's and I/O
processors). Failures of system components that do not include protection
mechanisms may also affect system security just as they would affect
reliability and system performance. Failures of components that include
protection mechanisms can affect system security adversely. A direct
consequence of the distinction between the scope of system integrity and
hardware security testing is that security testing requirements vary with
the security class of a system, whereas system integrity testing requirements
do not.

Second, the time and frequency of system integrity and security testing are
different. System integrity testing is performed periodically at the
installation site of the equipment. System security testing is performed in
most cases at component design and integration time. Seldom are hardware
security test suites performed at the installation site.

Third, the responsibility for system integrity testing and hardware security
testing is different. System integrity testing is performed by site

Page 34

administrators and vendor customer or field engineers. Hardware security
testing is performed almost exclusively by manufacturers, vendors, and system
evaluators.

3.6.4 Goals, Philosophy, and Approaches to Hardware Security Testing

Hardware security testing has the same general goals and philosophy as those
of general TCB security testing. Hardware security testing should be performed
for processors that operate in normal mode (as opposed to maintenance or
test mode). Special probes, instrumentation, and special reserved op-codes
in the instruction set should be unnecessary. Coverage analysis for each
tested instruction should be included in each test plan. Cyclic test
dependencies should be minimized, and testing should be repeatable and
automated whenever possible.

In principle, all the approaches to security testing presented in Section
3.3 are applicable to hardware security testing. In practice, however, all
security testing approaches reported to date have relied on the monolithic
testing approach. This is the case because hardware security testing is
performed on an instruction basis (often only descriptions of the hardware/
firmware-implemented, but no internal hardware/firmware design details, are
available to the test designers). The generation of test conditions is,
consequently, based on instruction and processor documentation (e.g., on
reference manuals). Models of the processor protection mechanisms and top-
level specifications of each processor instruction are seldom available
despite their demonstrable usefulness [3 and 4] and mandatory use [13, class
A1] in security testing. Coverage analysis is restricted in practice to
boundary-value coverage for similar reasons.

3.6.5 Test Conditions, Data, and Coverage Analysis for Hardware Security
Testing

Lack of DTLS and protection-model requirements for processors' hardware/
firmware in the TCSEC between classes C1 and B3 makes the generation of test
conditions for processor security testing a challenging task (i.e., class A1
requires that FTLS be produced for the user-visible hardware functions and
thus these FTLS represent a source of test conditions). The generation of test
data is somewhat less challenging because this activity is related to a
specific coverage analysis method, namely boundary-value coverage, which
implies that the test designer should produce test data for both positive
and negative outcomes of any condition.

Lack of DTLS and of protection-model requirements for processors' hardware and
firmware makes it important to identify various classes of security test
conditions for processors that illustrate potential sources of test
conditions. We partition these classes of test conditions into the following
categories: (l) processor tests that help detect violations of TCB isolation
and noncircumventability, (2) processor tests that help detect violations of
policy, and (3) processor tests that help detect other generic flaws (e.g.,
integrity and denial of service flaws).

3.6.5.1 Test Conditions for Isolation and Noncircumventability Testing

(1) There are tests which detect flaws in instructions that violate the

Page 35

separation of user and TCB (privileged) domain:

Included in this class are tests that detect flaws in bounds checking CPU
and I/O processors, top- and bottom-of-the-stack frame checking, dangling
references, etc. [4]. Tests within this class should include the checking of
all addressing modes of the hardware/firmware. This includes single and
multiple-level indirect addressing [3 and 4], and direct addressing with no
operands (i.e., stack addressing), with a single operand and with multiple
operands. Tests which demonstrate that all the TCB processor, memory, and I/
O registers are inaccessible to users who execute nonprivileged instructions
should also be included here.

This class also includes tests that detect instructions that do not perform or
perform improper access privilege checks. An example of this is the lack of
improper access privilege checking during multilevel indirections through
memory by a single instruction. Proper page-or segment-presence bit checks
as well as the proper invalidation of descriptors within caches during process
switches should also be tested. All tests should ensure that all privilege
checking is performed in all addressing modes. Tests which check whether a
user can execute privileged instructions are also included here. Examples of
such tests (and lack thereof) can be found in [3, 4, 22, and 23].

(2) There are tests that detect flaws in instructions that violate the control
of transfer between domains:

Included in this class are tests that detect flaws that allow anarchic entries
to the TCB domain (i.e., transfers to TCB arbitrary entry points and at
arbitrary times), modification and/or circumvention of entry points, and
returns to the TCB which do not result from TCB calls. Tests show that the
local address space of a domain or ring is switched properly upon domain entry
or return (e.g., in a ring-based system, such as SCOMP, Intel 80286-80386,
each ring stack segment is selected properly upon a ring crossing).

(3) There are tests that detect flaws in instructions that perform
parameters validation checks:

Included in this class are tests that detect improper checks of descriptor
privileges, descriptor length, or domain/ring of a descriptor (e.g., Verify
Read (VERR), Verify Write (VERW), Adjust Requested Privilege Level (ARPL),
Load Access Rights (LAR), Load Segment Length (LSL) in the Intel 80286-80386
architecture [24], Argument Addressing Mode (AAM) in Honeywell SCOMP, [22
and 23], etc.).

3.6.5.2 Text Conditions for Policy-Relevant Processor Instructions

Included in this class are tests that detect flaws that allow user-visible
processor instructions to allocate/deallocate objects in memory containing
residual parts of previous objects and tests that detect flaws that would
allow user-visible instructions to transfer access privileges in a way that is
inconsistent with the security policy (e.g., capability copying that would
bypass copying restriction, etc.).

This class also includes tests that detect flaws that allow a user to
execute nonprivileged instructions that circumvent the audit mechanism by

Page 36

resetting system clocks and by disabling system interrupts which record
auditable events. (Note that the flaws that would allow users to access audit
data in an unauthorized way are already included in Section 3.6.5.1 because
audit data is part of the TCB.)

3.6.5.3 Tests Conditions for Generic-Security Flaws

Included in this class are tests that detect flaws in reporting protection
violations during the execution of an instruction. For example, the raising of
the wrong interrupt (trap) flag during a (properly) detected access
privilege violation may lead to the interrupt (trap) handling routine to
violate (unknowingly) the security policy. Insufficient interrupt/trap data
left for interrupt/trap handling may similarly lead to induced violations of
security policy by user domains.

Also included in this class are tests that detect flaws in hardware/firmware
which appear only during the concurrent activity of several hardware
components. For example, systems which use paged segments may allow concurrent
access to different pages of the same segment both by I/O and CPU
processors. The concurrent checking of segment privileges by the CPU and I/O
processors should be tested in this case (in addition to individual CPU and I/
O tests for correct privilege checks [3]).

The TCSEC requirements in the area of security testing state that security
testing and analysis must discover all flaws that would permit a user external
to the TCB to cause the TCB to enter a state such that it is unable to respond
to communications initiated by other users. At the hardware/firmware level
there are several classes of flaws (and corresponding tests) that could
cause (detect) violations of this TCSEC requirement. The following classes
of flaws are examples in this area. (Other examples of such classes may be
found in future architectures due to the possible migration of operating
system functions to hardware/firmware.)

(1) There are tests that detect addressing flaws that place the processors
in an "infinite loop" upon executing a single instruction:

Included in these flaws are those that appear in processors that allow
multilevel indirect addressing by one instruction. For example, a user can
create a self-referential chain of indirect addresses and then execute a
single instruction that performs multilevel indirections using that chain.
Inadequate checking mechanisms may cause the processor to enter an "infinite
loop" that cannot be stopped by operating system checks. Lack of tests and
adequate specifications in this area are also explained in [3].

(2) There are tests that detect flaws in resource quota mechanisms:

Included in these flaws are those that occur due to insufficient checking in
hardware/firmware instructions that allocate/deallocate objects in system
memory. Examples of such flaws include those that allow user-visible
instructions to allocate/deal locate objects in TCB space. Although no
unauthorized access to TCB information takes place, TCB space may be exhausted
rapidly. Therefore, instructions which allow users to circumvent or modify
resource quotas (if any) placed by the operating system must be discovered
by careful testing.

Page 37

(3) There are tests that detect flaws in the control of object deallocation:

Included in these flaws are those that enable a user to execute instructions
that deallocate objects in different user or TCB domains in an authorized way.

Although such flaws may not cause unauthorized discovery/modification of
information, they may result in denial of user communication.

3.6.6 Relationship Between Hardware/Firmware SecurIty Testing and the TCSEC
Requirements

In this section we review test condition and coverage analysis approaches
for hardware/firmware testing. The security testing requirements for hardware/
firmware are partitioned into three groups: (1) requirements for classes C1
and C2, (2) requirements for classes B1 to B3, and (3) requirements for
class A1. For hardware/firmware security testing, the TCSEC does not allow the
derivation of specific test-condition and coverage-analysis requirements for
individual classes below class A1. The dearth of explicit general hardware/
firmware requirements in the TCSEC rules out class-specific interpretation
of hardware/firmware security testing requirements below class A1.

Security Classes C1 and C2

Test Conditions

For security classes C1 and C2, test conditions are generated from manual page
descriptions of each processor instruction, and from the description of the
protection mechanisms found in the processor's reference manuals. The test
conditions generated for these classes include those which help establish
the noncircumventability and the isolation (i.e., tamperproofness) of the TCB.
These test conditions refer to the following processor-supported protection
mechanisms:

(1) Access authorization mechanisms for memory-bound checking, stack-bound
checking, and access-privilege checking during direct or indirect
addressing; and checking the user's inability to execute processor-
privileged instructions and access processor-privileged registers from
unprivileged states of the processor.

(2) Mechanisms for authorized transfer of control to the TCB domain, including
those checking the user's inability to transfer control to arbitrary entry
points, and those checking the correct change of local address spaces (e.g.,
stack frames), etc.

(3) Mechanisms and instructions for parameter validation (if any).

Other test condition areas, which should be considered for testing the
processor support of TCB noncircumventability and isolation, may be relevant
for specific processors.

Test Coverage

The security testing guidelines of the TCSEC require that at least five

Page 38

specific tests be conducted for class C systems in an attempt to circumvent
the security mechanisms of the system. This suggests that at least five test
conditions should be included for each of the three test areas defined above.
Each test condition should be covered by boundary-value coverage to test all
positive and negative outcomes of each condition.

Security Classes B1 to B3

Test Conditions

For security classes B1 to B3, the test conditions for hardware/firmware
security testing are generated using the same processor documentation as
that for classes C1 and C2. Additional class-specific documentation is not
required (e.g., DTLS is not required to include hardware/firmware TCB
components that are visible at the TCB interface-unlike class A1).

The test conditions generated for classes B1 to B3 include all those that
are generated for classes C1 and C2. In addition, new test conditions should
be generated for the following:

(1) Processor instructions that can affect security policy (e.g., instructions
that can allocate/deallocate memory-if any), and instructions that allow users
to transfer privileges between different protection domains, etc.

(2) Generic security-relevant mechanisms (e.g., mechanisms for reporting
protection violations correctly) and mechanisms that do not invalidate
address-translation buffers correctly during process switches, etc.

(3) Mechanisms that control the deallocation of various processor-supported
objects, and those that control the setting of resource quotas (if any), etc.

The only test conditions that are specific to the B1 to B3 security classes
are those for hardware/firmware mechanisms, the malfunctions of which may
allow a user to place the TCB in a state in which it is unable to respond to
communication initiated by users.

Test Coverage

The security testing guidelines of the TCSEC require that at least fifteen
specific tests should be conducted for class B systems in an attempt to
circumvent the security mechanisms of the system. This suggests that at
least fifteen test conditions should be included for each of the three test
areas defined above (and for the three areas included in classes C1 through
C2). Each test condition should be covered by boundary-value coverage to
test all the positive and negative outcomes of each condition.

Security Class A1

The only difference between the hardware/firmware test requirements of classes
B1 to B3 and those of class A1 are (1) the processor test conditions derived
for classes B1 to B3 (which should also be included here) are augmented by the
test conditions derived from DTLS and FTLS, and (2) the test coverage should
include at least twenty-five test conditions for each test area (included in
classes B1 to B3).

Page 39

3.7 TEST PLAN EXAMPLES

In this section we present five test plan examples that have been used in
security testing. An additional example is provided to illustrate the notion
of cyclic test dependencies and suggest means for their removal. The first
example contains a subset of the test plans for the access kernel primitive in
Secure XenixTM. Here we explain the format of test conditions and of test data
necessary for test conditions and focus on the notion of data flow analysis
that might be presented in the coverage section of test plans.

The second example contains a subset of the test plans for the open kernel
primitive of Secure XenixTM. Here we explain the use of the access-check
generated or TCB kernels to eliminate redundant tests without loss of
coverage. In particular, we discuss the impact on test coverage of the
dependency of the open kernel primitive on the access kernel primitive. For
example, during the testing of the access primitive, the subpath starting at
the "obj__access" check that includes the "mand__access" and "discr__access"
functions is tested (Figure 2, page 24). Then the open primitive, which shares
that subpath of the graph with the access primitive, need only be tested (1)
for the access check that is not shared with the access primitive, and (2)
to demonstrate that the data flow of open joins that of access. This can be
done with only a few test conditions, thereby reducing the test obligation
without loss of coverage.

The third example of this section explains a security test plan for the read
kernel primitive of Secure XenixTM systems. The specifications of the read
primitive are access-check dependent on those of open. This means that a
nonempty subset of the access checks necessary for read is done in open and,
therefore, need not be tested again for read. To obtain the same coverage
for read as that for open, or for access, one only needs to test (1) the
existence of the access-check dependency of read on open, and (2) the
remaining access checks specific to read (not performed in open). Since the
testing of the access-check dependency requires only a few test conditions,
the number of test conditions for read is reduced significantly without loss
of coverage. The subset of the test plans required for read that are
illustrated here is a subset of the test plans required for dependency
verification. in contrast with the first two examples, which contain only
mandatory access control (MAC) test conditions, this example includes some DAC
test conditions.

The fourth example presents a subset of the test plans for the kernel and
TCB isolation properties of Secure XenixTM. These test plans are derived
from a set of kernel isolation and noncircumventability requirements for
Secure XenixTM and are important for at least three reasons. First, no
formal model exists for these requirements for any system to date. This is
true despite the fundamental and obvious importance of isolation and
noncircumventability requirements in demonstrating the soundness of the
reference monitor implementation in a secure system (at any and all security
classes above B2). Second, test plans for these requirements cannot be
generated from DTLS or FTLS of a secure system at any level (i.e., B2 to
A1). This is because these requirements are not necessarily specified in top-
level specifications. This is true because isolation and
noncircumventability properties include low-level dependencies on processor

Page 40

architecture details that do not correspond to the level of abstraction of TCB
top-level specifications. Isolation and noncircumventability properties also
cannot be verified formally using the current methodologies assumed by the
tools sanctioned by the NCSC at this time (see the Appendix for the
justification of unmapped kernel isolation code in the SCOMP specification-to-
code correspondence example). Third, the kernel isolation and
noncircumventability properties of a system depend to a large degree on the
underlying processor architecture and on the support the architecture provides
for kernel implementation. These test plan examples would therefore
necessarily assume a given processor architecture. (An example of test or
verification conditions for such processor mechanisms is provided by Millen in
reference. [19])

In spite of the inherent architectural dependency of kernel isolation
properties, we have selected a few examples of test plans that assume a very
simple architecture and therefore can be generalized to other secure
systems. The processor architecture, which is assumed by most
implementations of the machine-dependent code of UnixTM systems, includes only
the following: (1) a two-state processor (i.e., distinguished privileged
mode versus unprivileged mode), (2) the ability to separate kernel address
space (e.g., registers and memory) from user space within the same process,
which could ensure that the kernel space cannot be read or written from user-
space code, and (3) the ability to restrict transfers of control to specific
entry points into the kernel. Other facilities are not assumed, such as
special instructions that help the kernel and TCB primitive validate
parameters and special gate mechanisms that help distinguish between
privileged and nonprivileged kernel invocations.

Of necessity, the test plan examples for the above-mentioned kernel primitives
and isolation examples are incomplete because it would be impractical to
include complete test plans for these kernel primitives here.

The fifth example presents two test plans used for the processors of the
Honeywell SCOMP system [22 and 23]. The first plan includes three test
conditions for the ring crossing mechanism of the SCOMP processor and their
associated test data and coverage analysis. The second plan presents a test
condition for which test programs cannot be generated in the normal mode of
processor operation, illustrating the need for design analysis.

The last example of this section illustrates the notion of cyclic test
dependencies that appear among test programs. It also shows how the use of the
access-graph and access-check dependencies in defining test plans
(especially coverage analysis) helps eliminate cyclic test dependencies.

3.7.1 Example of a Test Plan for "Access"

The access kernel primitive of Secure XenixTM has two arguments, path and
amode. The first argument represents the name of an object whose access
privileges are checked by the primitive, whereas the second argument
represents the privileges to be checked. The following types of objects can be
referenced by the path names provided to access:

Files, Directories, Devices, Named Pipes, Xenix Semaphores, Xenix Shared
Data Segments.

Page 41

The following types of privileges and combinations thereof are checked by
access:

Read, Write, Execute (and object's existence).

3.7.1.1 Test Conditions for Mandatory Access Control of "Access"

The following test conditions are derived from the interpretation of the
mandatory access control model [12].

(1) Whenever the type of object named by path is one of the set {File,
Directory, Device}, then the access call succeeds when executed by a process
that wants to check the existence of amode = Read, Execute privileges, or
the existence of the object, if process clearance dominates the object
classification; otherwise, the access call fails.

(2) Whenever the type of object named by path is one of the set {Named Pipe,
Xenix Semaphore, Xenix Shared Data Segment}, then the access call succeeds
when executed by a process that wants to check the existence of amode = Read
privilege, or the existence of the object, if process clearance equals the
object classification; otherwise, the access call fails.

(3) Whenever the type of object named by path is one of the set {File,
Directory, Device, Named Pipe, Xenix Semaphore, Xenix Shared Data Segment},
then the access call succeeds when executed by a process that wants to check
the existence of amode = Write privilege, or the existence of the object, if
process clearance equals the object classification; otherwise, the access call
fails.

3.7.1.2 Test Data for MAC Tests

Environment Initialization

A subset of all clearances and category sets supported in the system is
defined in such a way as to allow all relationships between security levels to
be tested (e.g., level dominance, incompatibility, equality). For example, the
chosen levels are UNCLASSIFIED/Null/, UNCLASSIFIED/B/, CONFIDENTIAL/A, B/,
SECRET/Null/, SECRET/All/, TOP SECRET/A/, and TOP SECRET/A, B/. The security
profile of the test operator is defined to allow the test operator to login at
all of the above levels.

A subset of all directory hierarchies supported in the system is defined in
such a way as to allow all relationships between objects of the hierarchy to
be tested (e.g., child and parent directories-see the discussion in Section
3.5.2.2). Three directories, denoted as directory 1, 3, and 6, are created
from the "home" directory at levels UNCLASSIFIED/A, B/, SECRET/A/, and TOP
SECRET/A, B/. Two directories, denoted as directory 4 and 5, are created
from the SECRET/A/ directory 3 at levels SECRET /All/ and TOP SECRET /A/. An
additional CONFIDENTIAL /A, B/ directory, denoted as directory 2, is created
from the UNCLASSIFIED/A, B/ directory.

The test operator logs in at each of the above security levels and creates a
file in each directory. The discretionary access privileges are set on every

Page 42

file and directory to allow all discretionary checks performed by the TCB to
succeed. The directory hierarchy is thus created, and the definitions of the
security levels for each file and directory is shown in Figure 4.

Test Documents

The test operator logs in at each of the above security levels and invokes the
access call with the following parameters:

path: Every file pathname defined in the hierarchy.

amode: All access privileges individually and in combination.

Outcomes

Tables 1 and 2 show the expected outcomes of access indicating the correct
implementation of mandatory access checks. Note that in Tables 1 and 2 "Fail
l" errors should provide no information about the nature of the failure.
This is the case because these failures are returned whenever the invoker of
access is at a lower level than that of the object being accessed. In
particular, "Fail 1" should not indicate the existence or nonexistence of
files at levels that are higher than, or incompatible with, the login level.
Discovery of an object's existence or nonexistence at a higher level than that
of the accessor's would provide a covert storage channel. In contrast, "Fail
2" errors allow the invoker of access to discover the existence of the file,
because his security level dominates that of the file. No covert channel
provided by the object's existence is possible in this case.

3.7.1.3 Coverage Analysis

Model-Dependent MAC Coverage

The test conditions provided above cover all MAC checks for the access
primitive. The test data of this plan, however, cover the test conditions only
partially. For example, condition (2) is not covered at all because the object
types included in the test data are only files. Conditions (1) and (3) are
only partially covered for the same reason. Environment reinitialization is
necessary to allow the testing of access with all other types of objects.

The above test data also provide partial coverage because they do not
include the hierarchies shown in Figures 3a and 3b, page 35. Re-execution of
the above tests with the hierarchies shown in Figures 3a and 3b would
guarantee sufficient coverage of the MAC model hierarchy. The test
parameters and outcomes will generally differ if the additional tests
suggested here are carried out.

Call-Specific MAC Coverage

Let us consider the coverage of individual arc paths and of combinations of
arc paths as required by data flow coverage of the access primitive. The
question as to whether the graph of the access primitive shown in Figure 2,
page 24, is covered adequately or redundantly by the above test conditions and
data arises naturally. The following three cases of coverage illustrate
primitive-specific coverage analysis for test condition (1) and test data of

Page 43

Figure 4, page 55, and Table 1, page 57.

Case 1. A Single Arc Path

The test operator logs in at level UNCLASSIFIED/A, l3/ and invokes access with
read as a parameter on the file/home/directoryl/directory2/file2 at level
CONFIDENTIAL/A, B/. As shown in Figure 4 and Table 1, access is at the level
of the invoking program (i.e., UNCLASSIFIED/A, B/) and, therefore, the call to
it will fail.

This test provides a single arc path coverage, namely that of arc path
access - > "namei" - > "obj__access" - > "mand__access," shown in Figure 2.
Here "mand__access" returns "failure" when it tries to resolve the file path
name. Note that the file path name component "file2" cannot be read from
directory "directory\2" because the mandatory check fails. Note that mandatory
checks on the level of the file itself are also not performed here. The
mandatory check failure is caused earlier by path name resolution and returned
to "namei."

Case 2. A Combination of Arc Paths

The test program logs in at level TOP SECRET/A/ and invokes access with Read
as a parameter on the file /home/directory3/file3 at level SECRET/A/. Access
is at the level TOP SECRET/A/ (Figure 4 and Table 1), therefore, the call to
it will succeed.

This test provides multiple arc path coverage. The first arc path is the
same as in Case 1 above. The "mand__access" check passes, however, and control
is returned all the way up to access; see Figure 2. The second arc path is
"access" - > "obj__access" - > "mand access." The mandatory check in
"mand__access" is performed directly on the file and not on its parent
directory as in Case 1. This check succeeds. The success result returns to
"obj__access" which initiates a third arc path traversal to "discr__access."
The discretionary check passes (as set up in the environment definition) and
success is returned to "obj__access" and access.

Case 3. A Different Combination of Arc Paths

The test program logs in at level SECRET/A/ and invokes access with Read as
a parameter on the directory /home/directory3/directory5 at level TOP SECRET/
A/. As shown in Figure 4 and Table 1, access is at the level SECRET/A/. The
call to it will fail.

Although this test appears to provide the same coverage as that of Case 1,
in fact it does not. The first arc path is the same as that in Case 1 above,
except that the "mand__access" check on the path name of the target object
(which terminates with name "directory5" in directory/home/directory3)
succeeds and control is returned all the way up to access (see Figure 2,
page 24). The second arc path is then "access" -> "obj__access" ->
"mand__access." The check in cmand__access" is performed directly on the
directory /home/directory3/directory5 and, unlike the check in Case 2, it
fails. This "failure" is returned to "obj__access" which reports it to access.
Coverage analysis based on a specific model interpretation in a given TCB
primitive would require that the Case 1 test be repeated with a directory

Page 44

replacing the file "file2." However, this new Case 1 test would become
indistinguishable from that of Case 3 in coverage analysis based on abstract
models, and thus Case 3 would not necessarily be tested.

3.7.2 Example of a Test Plan for "Open"

The kernel primitive open has as arguments a path, oflag, and mode. The only
relevant object types named by path for open are the following:

Files, Directories, Devices, and Named Pipes.

The oflag parameter denotes different access privileges and combinations
thereof. It also contains other flags such as "o__excl," "o__creat," and
"o__trunc" that specify object locking, default creation, or truncation
conditions. The mode argument of the open primitive is relevant only when
the object does not exist and the "o__creat" flag is used.

3.7.2.1 Test Conditions for "Open"

Test Condition for Access-Graph Dependency

Verify that the open kernel primitive shares the access primitive subgraph
that includes the object__access checks.

Examples of Test Conditions Specific to "Open"

(1) Verify that if the object specified by the path argument does not exist,
the object is created with the access privileges specified by the mode
argument whenever the "o__creat" flag is on, with the owner's user ID and
the specified group ID, and with the invoker process' security level.

(2) Verify that if the object specified by the path argument exists, the
open kernel primitive succeeds whenever the requested privilege specified by
the "o__flags" is granted to the person with access. Verify that, in this
case, the mode argument also has no effect on the existing privileges of the
object.

(3) Verify that the open kernel primitive always fails when it is invoked:

· With the "write" access privilege for a Directory.
· On a nonexisting device.
· On Xenix Semaphores and Xenix Shared Data Segments.

3.7.2.2 Test Data for the Access-Graph Dependency Condition

Environment Initialization Parameters

A subset of all clearances and category sets defined in the tests of access is
chosen in such a way as to allow all relationships between security levels
to be tested (e.g., level dominance, incompatibility, equality). The chosen
levels are UNCLASSIFIED/Null/, SECRET/All/, and TOP SECRET/A/. The subset of
the directory hierarchy defined in the tests of access that contains the
objects at the above chosen levels is selected for this test. The definition
of the security levels and discretionary access privileges and the creation

Page 45

and initialization of the object hierarchy are performed in a similar way to
that used in the test of access. The security profile of the test operator
is defined to allow him to login at all of the above levels.

The test operator logs in at each of the chosen security levels and invokes
the open primitive with the following parameters:

path: path names of the three files defined in the hierarchy.

o__flags: o__read, o__write, individually, and in the following combinations:

o__read| o|__excl, o__read|o__trunc, o__read|o__excl|o__trunc,

o__write| o__excl, o__write|o__trunc, o__write|o__excl|o__trunc,

For example, the test operator will use the following login, security level,
files, and "o__flag" parameters:

Case 1

The test program logs in at level SECRET/All/ and invokes open on file /home/
directory3/directory5/file5 at level TOP SECRET/A/ with o__read__only as the
call option. Open is at the level of the invoking program as shown in Table 3,
therefore, the call fails.

Case 2

The test program logs in at level SECRET/All/ and invokes open on file /home/
file0 at level UNCLASSIFIED/Null/ with o__read__only as the call option.
Open is at the level of the test program as shown in Table 3, therefore, the
call succeeds.

(Note that the above failure and success of the open invocations occur for the
same reasons as those explained in Cases 1 and 2 of the Coverage Analysis area
of the access test plan in Section 3.2.4.1.)

Case 3

The test program logs in at level SECRET/All/ and invokes open on file /home/
directory3/directory4/file4 at level SECRET/All/ with "o__read__only" as the
call option. Open is at the level of the test program as shown in Table 4,
therefore, the call succeeds.

Tables 3 and 4 show the expected outcome of open indicating the consistency of
these outcomes with those of access. Note that, as in the outcomes of
access, "Fail 1,' errors in Tables 3 and 4 provide no information about the
nature of the failure, which otherwise might indicate the existence or
nonexistence of files at levels that are higher than, or incompatible with,
the login level. In contrast, "Fail 2" errors allow the invoker of open to
discover the existence of the file, because the user security level
dominates that of the file.

3.7.2.3 Coverage Analysis

Page 46

Model-Dependent MAC Coverage

The testing of the access graph dependency of open on access provides the same
model-dependent MAC coverage for open as that provided for access. That is,
after access is fully tested using data flow coverage, the same coverage is
obtained for open. Access-graph dependency testing confirms that the access
subgraph shared by the two primitives, which includes the "obj__access"
function, enforces the MAC policy. Since all object types relevant to open are
included among those of access, and since all access modes of open are
included among those of access (the "exclusive" and "truncation" modes
introducing no additional modes independent of read and write), the only
additional model dependent MAC tests necessary for open are those which
confirm the access-graph dependency of open on access for the remaining
types of objects (i.e., Directories, Devices, and Named Pipes).

Call-Specific MAC Coverage

Additional primitive-specific test data are necessary to demonstrate that
MAC policy is discovered by the test plans. Test data, for example, must be
provided for test conditions (2) and (3) above.

3.7.3 Examples of a Test Plan for "Read"

The kernel primitive read used the file descriptor fildes to identify the
target object of the read action. The file descriptor is obtained from the
kernel primitives open, creat, dup, fcntl, and pipe. Since the primitives
dup and pipe are not access-control-relevant, and since fcntl is tested
elsewhere, the only primitives and object types relevant to read are the
following:

open, creat Files, Directories, Devices, and Named Pipes.

The read primitive uses fildes as one of its parameters, which is obtained
from either open or creat. Thus, read can be called only after either of these
two calls have been performed successfully. This establishes the access-
check dependency condition-the only test condition that will be included in
the test plan.

3.7.3.1 Test Conditions for "Read"

For each object type in the set {Files, Directories, Devices, Named Pipes},
verify the following:

(1) That read fails, if neither open nor creat call has been performed
before the read call.

(2) That read fails, if neither open nor creat call returned "success"
before the read call.

(3) That read succeeds whenever an open call including the read privilege
has been successfully performed (creat has no read option).

3.7.3.2 Test Data for the Access-Check Dependency Condition

Page 47

Environment lnitialization for Condition (1)

The test operator logs in as uid1.gid1 at a given security level, such as
UNCLASSlFlED/Null/, and attempts to read a file without calling open or
creat first. An account for the test operator must exist. Note that the
initialization of the discretionary privileges is irrelevant only for the
first condition. Figure 5a illustrates the initialized environment.

Test Parameters for Condition (1)

After environment initialization, or program calls read with the parameters,
illdes = 3, . . . 20. Note that descriptors 0, 1, 2 are already opened for
the standard input, output, and error files and therefore cannot be used here.
Note that fildes 20 is also an invalid file descriptor but is included here to
test that the read call fails when the file descriptor is out of range
(i.e., a read specific test).

Outcomes for Condition (1) Tests

Table 5a shows the expected outcomes of the condition (1) test. "S"/ "F"
denotes a success/failure result.

Environment lnitialization for Condition (2)

A file (denoted as file2) is created in the test operator's "home" directory
with "read-only" discretionary access privilege initialized for the test
operator. Testing consists of a logon as uid1.gid1 at security level
UNCLASSIFIED/NULL/ followed by two attempts to call open and creat in such a
way that these calls fail. These calls will be followed by two attempts to
call read with the fildes presumed to be returned by the calls to open and
creat. Figure 5b summarizes the initialization needed for the required test.

Parameters for Condition (2) Tests

After environment initialization, the test operator or program performs the
following actions using the underlined parameters:

· Open a nonexisting file (file1) using the open call with
"o__read__only" flag (open fails because file1 does not exist). Then call read
with the fildes returned by the open call.

· Create a file (denoted as file2) with any arbitrary mode using the
creat call (creat fails because file2 already exists and it has "read-only"
privileges for the test operator). Then the test operator or program calls
read with the fildes returned by the creat call.

Outcomes for Condition (2) Tests

Testing demonstrates that read will fail in both cases because both open and
creat returned "failure" earlier. Table 5b shows the expected outcomes.

Environment lnitialization for Condition (3)

Two files (denoted as file1 and file2) are created in the user's "home"

Page 48

directory with "read-only" and "write-only" discretionary access privileges
respectively, defined for the test operator. The file security levels are
defined in such a way that all mandatory access checks succeed on both files.
Testing requires a logon as uid1.gid1 at the security level UNCLASSIFlED/NULL/
followed by two calls to open and one to creat. Figure 5c describes the data
needed for the required tests.

Test Parameters for Condition (3) Test

After environment initialization, the test operator or program performs the
following actions with the following parameters:

· Open file 1 using the open call with "o__ read__only" flag (open
succeeds and returns a valid fildes), then call read with the fildes
returned by the open call.

· Open file2 using the open call with "o__read__only" flag (open
succeeds and returns a valid fildes), then call read with the fildes
returned by the open call.

· Create a file (denoted as file3) in the test operator's "home"
directory with all the discretionary access modes permitted using the creat
call (creat succeeds and returns a valid fildes), then call read with the
fildes returned by the creat call.

Outcomes for Condition (3) Tests

Testing demonstrates that read succeeds when the file descriptors from creat
and open include the read privilege; otherwise, read fails. Since open
succeeds before calling the read kernel primitive, read also succeeds only
when an open call was performed with the read option flag; otherwise, read
fails. Although creat succeeds, read still fails because creat always opens an
object for write only, and thus read actions are not permitted. Table 5c shows
the expected outcomes.

3.7.3.3 Coverage Analysis

Model-Dependent Coverage

The testing of the access-check dependency of read on open and creat
provides the same model-dependent coverage for read as that provided for
open and creat. (Only a subset of this coverage is explained in Section
3.7.2.3.) The testing of the access-check dependency confirms that the read
primitive cannot succeed unless the access checks that it requires have
already been done in open and creat. Since all object types relevant to read
are included among those of open, and since the read access privilege is
covered in open, the only additional model-dependent tests necessary for
read are those performed by hardware (e.g., read authorization checks) and
those that confirm the access-check dependency of read on open and creat for
the remaining types of objects (i.e., Directories, Devices, Named Pipes).

Call-Specific Coverage

Additional primitive-specific tests may be necessary for read depending upon

Page 49

its implementation. For example, if the object-limit check performed by read
is in any way different from those of other primitives, it would need to be
tested separately. Other conditions referring to object locking may also be
included in these primitive-specific tests.

3.7.4 Examples of Kernel Isolation Test Plans

The test conditions presented in the following example refer to the transfer
of control from a user-level program to the kernel of Secure XenixTM. Such
transfers should take place only to entry points determined by the system
design.

The kernel code and data segments of Secure XenixTM are placed in ring
(i.e., privilege level 0) whereas user-level code and data segments are placed
in ring 3. User-level programs, therefore, cannot access kernel programs and
data directly without transferring control to kernel programs first (this
property is assured by the processor security testing). The transfer of
control from user-level programs to the kernel can only take place in the
following three ways:

· Through calls to a gate in the Global Descriptor Table (GDT),
which is located in kernel address space, via segment selector number 144.

· Through software interrupts controlled by gate as in the Interrupt
Descriptor Table (IDT) located in kernel address space.

· Through traps, which occur as the result of exceptional conditions
and which either cause the kernel to terminate the user process execution
immediately or cause the kernel to receive signals which eventually
terminate the user process execution.

The test plans shown below illustrate that the above cases of transfer of
control are the only ways to transfer control to the kernel.

3.7.4.1 Test Conditions

(1) Call Gate. This tests that application programs cannot successfully access
any GDT descriptor except that provided by the segment selector number 144.

(2) Software interrupts. These test that whenever an application program
uses the interrupt-generating instructions "INT n" and "INTO," with n = / =
3,FO-FB, a general protection trap will occur. For n = 3, the calling
process will receive a SIGTRAP signal (a trap signal) and for N = FO-FB,
will cause the instructions following "INT n" to be interpreted as 80287
instructions. (Note: The 80287 is the arithmetic co-processor.)

(3) Traps. These verify that the occurrence of traps will only affect the
trap-generating process. (Note: This condition cannot be tested by user-
level test programs because the traps cause the termination of the process
running the test program. This condition can therefore only be verified by
review of the source code files containing machine dependent code, i.e., mdep/
trap.c and mdep/machdep.asm in Secure XenixTM.)

(4) Call validity. This tests that whenever a user-level program invokes the

Page 50

kernel with an invalid kernel number, the call will fail.

3.7.4.2 Test Data

Environment Initialization for Conditions (1), (2) and (4)

Compile the test program using "cc -M2es -i" flags. These compilation flags
refer to the small memory model for C programs, with far pointers allowed
and with separate instructions and data segments. The code segment selector
number for the program code will be Ox3F. The data segment selector number
will be 0x47. For each test condition, the program forks a child process to
perform each test as described below.

Test Parameters

The following sequences describe the steps of the test programs and the test
parameters for each condition:

(1) Loop with an index value from 0x8 to 0x190 incrementing the index value by
8. Access a memory location whose segment selector number is provided by the
index value.

(2) Loop with an index value from 0 to OxEF incrementing the index value by I.
Execute instruction "INT n" in the loop, where the value of n is provided by
the index value.

(3) No test condition or parameters are necessary (namely, the Note of test
condition (3) above).

(4) Invoke the kernel gate with the following INVALID kernel call numbers:

· 0x41 (outside of "sysent," the main kernel call table).

· 0x2228 (outside of "cxenix," the XenixTM system call table).

· 0x1740 (outside of "csecurity," the security system call table).

Then invoke the kernel with VALID kernel call numbers representing a user-
visible kernel call and a privileged kernel call.

Outcomes for the Test Conditions (1), (2), and (4) Above

(1) The process running the test program will receive a SIGSEGV signal (a
segment violation signal) for each access call except when the gate selector
number is 0x90.

(2) The following is true for the process running the test for the software
interrupts:

· Will receive a SIGSEGV signal for each index value except for n
= 3.

· Will receive a SIGTRAP signal when n = 3.

Page 51

· Will not receive any signal when n = 0xF0 - 0xFB, because these
index values represent valid entries for the 80287 arithmetic co-processor.

(3) No outcomes, since no tests are performed.

(4) Error EINVAL (i.e., invalid entry) will be received for all INVALID kernel
call numbers (i.e., numbers outside the entry ranges of the main kernel call
table, the XenixTM system call table, and the security system call table).
No error will be received for the kernel call using the valid kernel call
number (i.e., for any number within the table entry range). An error will be
received for the invocation of any privileged kernel call (primitive).

3.7.4.3 Coverage Analysis

The coverage of the above test conditions is based on boundary-value analysis.
The test data place each test program above (i.e., successful outcome) and
below (i.e., unsuccessful outcome) each boundary condition. The test data
and outcomes represent the following degrees of condition coverage:

(1) All kernel-call gate selection cases are covered.

(2) All software interrupt selection cases are covered.

(3) Not applicable (namely, the Note of condition (3) above).

(4) All the boundary conditions are covered. For complete coverage of each
boundary condition, all privileged kernel calls should be invoked, and all
relevant out-of-range call numbers should be tested. (Such tests are
unnecessary because the range tests in kernel code use the table ranges as
defined constants.)

3.7.5 Examples of Reduction of Cyclic Test Dependencies

Consider the structure of typical test programs such as those for the open,
read, write, close, and fcntl TCB primitive of UnixTM to illustrate cyclic
test dependencies and their removal. The test program for each TCB primitive
is denoted by tn where n is the first character of the function name.

The test program for open, to, opens an object, for instance a file, writes on
it a predetermined string of characters and closes the file. Then, it opens
the file again and reads the file contents to ensure that the correct file has
been opened. Thus, to must invoke the TCB primitive write, close, read in
addition to open. The same sequence of TCB primitives is used for tr and tw to
confirm that the read and write TCB primitives use the correct file. Note
that, even if a single file is created in the test environment, the file
system contains other system files that may be inadvertently read by the
kernel. Thus, the use of a predetermined string of characters is still
necessary to identify the file being written or read.

The test program for close, tc, has a similar structure to that of to. After
tc opens an object (for instance a file) and writes on it a predetermined
string of characters, tc reads the string and closes the file. Then tc opens
the file again and reads the string. Tc must read the predetermined string of
characters both before closing the file and after reopening the file to ensure

Page 52

that the correct file was closed. Even though close is a security-model-
irrelevant TCB primitive, it must still be tested here since the test programs
to, tr,, and tw rely on it.

The TCB primitives open, read, and write are among the first to be tested
because most other test programs depend on them. If no access-graph or access-
check dependencies are used, to, tr , tw and to depend on each other as
shown in Figure 6a. Note that the fcntl TCB primitive could have been used
instead of read in tc. However, this would not have decreased the total number
of cyclic test dependencies because the removed cyclic dependency between tc
and tr would have to be replaced by the cyclic dependency between tc and
tfctl.

The structure of the above test programs is not unique. Some of the cyclic
test dependencies presented above, therefore, may not appear in other test
programs. Other cyclic test dependencies similar to the ones shown above,
however, will still appear. The reason for this is that kernel isolation and
noncircumventability cause a test program for some TCB primitives to rely on
other TCB primitives, and vice versa, whenever the TCB primitives are tested
monolithically.

The use of the access-check graph for testing open eliminates the need to
invoke the TCB primitives read, write, and close in to, and makes to dependent
only on ta, the test program for access. For example, since the access-check
graph shows that both open and access use the same function for the resolution
file names [i.e., namei()], the read and write primitives are unnecessary
for file identification because the file name resolution has already been
tested by ta. Figure 6b shows the remaining cyclic dependencies between the
test programs after all cyclic dependencies of to are removed.

The use of the access-check dependencies between TCB primitives also helps
remove cyclic dependencies between test programs. For example, in tests for
read and write, only the open TCB primitive needs to be used to test the
existence of the dependency in addition to those necessary to set up the
test environment (e.g., creat). Figure 6c shows the remaining dependencies
between the test programs ta, tr , tw, to, and tfcntl. Note that since test
programs to, tr , and tw do not use the TCB primitive close, and since close
is security-model-irrelevant, the testing of close need not be performed at
all. Note that the remaining test dependencies are generally not always
identical to the ones shown in Figure 1, page 23. More dependencies than those
shown in Figure 1 will remain after the new test method is applied.

The example of the remaining test dependencies shown in Figure 6c does not
imply that the test program for access, ta, invokes only access. Ta must
also invoke TCB primitives needed to set up the test environment; therefore,
it depends on the test programs for creat (tcr), ACL__control, and on those of
trusted processes login and mkdir. Also, tcr depends on the primitive access
because primitive creat shares a subgraph with access, Figure 2, page 24;
therefore, the test program for creat (tcr) depends on the test program for
access. A cyclic test dependency therefore exists between ta and tcr (not
shown in Figure 6c).

To eliminate all such cyclic test dependencies, a small routine with limited
functionality, which is verified independently, could be added to the kernel

Page 53

to read out all the created test environments. The actions of the test
programs that set up the test environments could then be verified
independently. Judicious use of such a limited function read routine and of
the new test method could lead to the elimination of all cyclic test
dependencies. The addition of such a routine to the TCB, which could be done
only in maintenance mode, would defeat our goal of test repeatability.

3.7.6 Example of Test Plans for Hardware/Firmware Security Testing

In the SCOMP documentation of processor security testing, the test
conditions are identified by the "verify" clauses. The test data are
identified by the "verification" and the associated "test and verification"
(T&V) software description. The coverage analysis is identified by the
"conclusion" associated with each test and source of the "notes" of the T&V
software description.

The complete understanding of the test plans presented below requires some
knowledge of ring mechanisms. A good description of the SCOMP ring mechanism
can be found in (24]. In the example presented below, the following
abbreviations have been used:

· Ring numbers are represented by the contents of registers Ro-R3
such that R0 < = R1 < = R2 , = R3, and 0 < Ri < = 3.

· Reff = max(Rcurr, Rcaller) is the effective ring of the
accessor, where Rcurr is the current ring of execution and Rcaller is the ring
of the caller program.

· The offset is the entry point into the segment f the called
program. (offset = O)

· Rfrom.,(Rto) is the ring from (to) which control is transferred
with Rto = < Rfrom calls and Rto > = Rfrom. for returns.

· The T register contains the segment number of the stack segment
associated with the current ring.

3.7.6.1 Test Conditions for the Ring Crossing Mechanism

(1) Test that the ring-call mechanism changes the ring numbers such that R
to < = Rfrom) transfers to entry point zero (offset = O) of the called-
program segment and requires that the execute bit is turned on in the
descriptor for the called-program segment.

(2) Test that the ring-return mechanism changes the ring numbers such that Rto
> = Rfrom.

(3) Test that each ring is associated with a different per-ring stack
segment after the ring call/return is made.

3.7.6.2 Test Date

(1) Environment Initialization

Page 54

The following sections of the T&V software descriptions T200 and T1100 contain
the environment initialization used by the test programs which invoke the
SCOMP call (LNJR) and return (RETN) instructions.

Test and Verification Software Description

T200 TCALL (Test CAll and Return Instructions):

A. Execute return and call instructions between two rings to test a single
ring change.

B. Test multilevel ring change. Change rings from ring 0 to ring 3 (one ring
at a time), return to ring 0 in reverse order.

C. Test transfer of T register data on ring changes.

ALGORITHM: TEST NUMBER:

Put known values in T registers

Return to ring 3 (TCALL3) 200

Call to ring 0 (TCALL) 201

Return to ring 1 (TCALL1) 202

Return to ring 2 (TCALL2) 203

Return to ring 3 (TCALL3A) 204

Check T register 205

Call to ring 2 (TCALL2) 206

Check T register 207

Call to ring 1 (TCALL1) 208

Check T register 209

Call to ring 1 (TCALL) 20A

Check T register 20B

Notes:

1. Halt on failures, identify the test failed.

2. For call, set R <= Reff < = R3, offset = 0, and execute permission is "on."

3. Negative tests are not required, these are tested under Trap Handling
(namely, T1100 below).

4. Identify controlling descriptors for each test.

Page 55

5. Inputs identify supporting code and data locations and controlling
descriptors.

6. Separate blocks are shown in the structure chart since the process is
spread across three rings.

Outside Services Required: None.

Test and Verification Software Description

T1100 TRING (Test Ring Traps)

Execute call using descriptors with the following trap conditions:

A. Reff > R3, segment offset 0 (use page offset 0), execute
permission off.

B. Execute return with Rto < Reff.

ALGORlTHM: TEST NUMBER:

Change to ring 1

Call - Eoff 1100

Call - Offset NEO 1101

Call - Reff GT R3(0) 1102

Return - Reff GT Rto 1103

ALGORlTHM: TEST NUMBER:

Change to ring 2

Call - Reff GT R3(0) 1104

Call - Reff GT R3(1) 1105

Return - R,eff GT Rto(0) 1106

Return - R,eff GT Rto, (1) 1107

Change to ring 3

Call - Reff GT R3(0) 1108

Call - Reff GT R3(1) 1109

Call - Reff GT R3(2) 110A

Return - Reff GT Tto (1) 110B

Page 56

Return - Reff GT Tto,(I) 110C

Return - Reff GT Tto (2) 110D

Change to ring 0 via seg 4

Notes:

1. Halt on failure; identify test failed.

2. Identify controlling descriptors for each test.

3. Provide trap handler that verifies 5PM hardware trap functions and recovers
from the trap. Correct functioning should render the expected trap
transparent.

4. All of the tests are executed in ring 3.

Outside Services Required: S1 - Trap Handler (TH14)

(2) Test Parameters

The test programs require no input for these test conditions. The outputs of
the test program represent the test outcomes defined below.

(3) Test Outcomes

Outcomes for Test Condition (1)

· Success: R1 < = Reff <=R3 and offset =0 and E privilege = OFF;
(namely, test numbers 201, 206, 208, and 20A).

· Failure: R3> = Reff or offset 0, or E privilege = OFF; (namely,
test numbers 1102, 1104-1105, 1108-1110A, or 1101, or 1100).

Outcomes for Test Condition (2)

· Success: R1 Reff (namely, test numbers 200, 202, 203, and 204).

· Failure: Rto < Reff (namely, test numbers 1103,1106,1107,110B-
110D).

Outcomes for Test Condition (3)

· Success: T registers contain the stack segment number placed in
there in T200. This outcome is obtained for test numbers 205, 207, 209, and
20B.

· Failure: This outcome is not expected.

3.7.6.3 Coverage Analysis

The test conditions (1)-(3) above have been derived from descriptions of the
SCOMP processor and of the Security Protection Module (SPM). The SCOMP FTLS of

Page 57

the user-visible hardware functions were either incomplete or unavailable at
the time of processor security testing and, therefore, could not be fully used
for the generation of test conditions [3]. Since a formal model of the
protection mechanisms of the SCOMP processor was unavailable, the
documentation of the SCOMP processor and SPM were the only available sources
of test conditions.

The test coverage analysis for the conditions (1)-(3) above is based on
boundary value coverage. Note that test condition (1) includes three related
subconditions, namely (offset = 0) and (E privilege = ON). Furthermore,
subcondition (Ro <=Reff<) requires at least three calls (i.e., R3 to R1, m
R3 to R1, R3 to R2) be made and that each be combined with subconditions
(offset = 0) and E privilege = ON). Though subcondition R3 > Reff requires
that six calls be made (i.e., for Reff > R3 = 0, Reff > R3 =), 1, Reff> R3
= 0, 1, 2), these subconditions cannot be combined with subconditions
(offset 0) and E privilege = OFF) because all these related subconditions
return failure. Test condition (2) similarly requires that multiple calls be
made. It should be noted that for test condition (3) the boundary-value
coverage can only cover the success subcondition in normal mode. The lack of a
current stack segment number in the T register after a call or a return
could only happen due to processor or SPM failures.

Several test conditions may be desired for processor security testing for
which test programs cannot be built in the normal mode of operation. The
example of this is provided by the invalidation of current process
descriptions in the processor cache before dispatching the next process. (A
complete test of the invalidation function for descriptions in the cache can
be performed in privileged mode or in ring 0 as outlined in the conclusions
below.)

Test Conditions for Descriptor Invalidation

Test that the descriptors contained in the cache are invalidated prior to
the dispatch function.

Test Data

A test to insure invalidation of SPM descriptors after dispatch is not in
the test software.

Verification by Analysis

The invalidation function of dispatch involves resetting of all SPM cache
validity bits for direct memory descriptors used by the CPU. This requires
invalidation of 256 and 64 cache locations in the Virtual Memory Interface
Unit (VMIU) and Descriptor Store boards, respectively. Analysis has
confirmed the proper implementation of this function.

Conclusions

A test to verify the dispatch invalidation function could be implemented by
using two descriptor structures, each mapping CPU memory references to
different areas of memory. By checking usage (U and M bits) of each direct
memory descriptor and the actual access to different locations in memory,

Page 58

the invalidation of previously stored descriptors in the SPM cache could be
determined. The VMIU portion of the test would use a page descriptor structure
(256 page located within 16 contiguous segments) with checks provided for each
page of memory. The descriptor store board portion of the test would be
constructed in a similar manner except 64 direct segment descriptors would
be used.

3.7.7 Relationship with the TCSEC Requirements

In this section we present the documentation requirements for test plan and
procedures stated by the TCSEC and additional recommendations derived from
those requirements. Responsibility for documenting test plans and procedures
belongs both to evaluators and to vendors because security testing evidence is
produced by both for different purposes. It should be noted that the
evaluator's test documentation and programs will not fulfill the vendor
responsibility for providing test documentation and test programs. Wherever
appropriate, this section differentiates exclusive evaluator responsibility
from that of the vendors. Citations of specific evaluator responsibility
provided by the TCSEC are omitted here because they are explained in detail in
Section 10 of reference [13].

The introductory section of the test documentation should generally identify
the product to be evaluated and give a high-level description of the system
being tested, the types of applications for which it is designed, and the
evaluated product class for which it is being tested.

PURPOSE AND SCOPE OF SECURITY TESTING BY EVALUATORS

A section should state the objectives of security testing conducted by the
vendor and describe the role that this testing plays in supporting the
Technical Evaluation Phase by the NCSC. It should state the purpose of the
test plan and how it will be used. It should also define the intended scope of
the effort in terms of both hours of effort and elapsed time, as well as the
technical scope of the effort.

ROLES AND RESPONSIBILITIES OF SYSTEM EVALUATORS

A section should describe how the test team is organized and identify the team
leader and all members by name and organization, qualifications, and
experience. Its purpose is two fold. First, it should clearly delineate team
members' responsibilities and relationships. Second, it should provide
sufficient background information on the team's prior functional testing
experience to substantiate that the team is qualified to conduct the tests. It
should describe the level of previous experience that each team member has
with the system being evaluated, whether all team members have completed an
internals course for the system, how well the team understands the flaw
hypothesis penetration testing methodology and vulnerability reporting
process, and other relevant qualifications. This section should specifically
address test team education, skill, and experience.

A section should also identify any responsibilities for coordination, review
and approval of the test plan, and procedures and reports that lie with
personnel outside the test team.

Page 59

SYSTEM CONFIGURATION

A section should specify the hardware and software configuration used for
testing to include the location of the test site. This configuration should be
within the configuration range recommended by the vendor for approval by the
NCSC during the Vendor Assistance Phase. The vendor will be required to
identify and recommend a test configuration to the NCSC early in the
evaluation process. The vendor's recommendation will be considered by the NCSC
test team in selecting the "official" test configuration.

Hardware Configuration

A subsection should identify the CPU, amount of random access memory (RAM), I/
O controllers, disk drives, communications processors, terminals, printers,
and any other hardware devices included in the test configuration by
specifying the vendor's model number and quantity of each configuration
item. Each peripheral should be given a unique identifier that associates it
with a specific controller port. Communications parameter settings should be
specified where appropriate. It should be possible to duplicate the test
configuration exactly from the information provided.

Software Configuration

A subsection should identify the version of the vendor's operating system
included in the test configuration, as well as each specific TCB software
component that is not part of the operating system. It should include
sufficient information to generate the system from the TCB test software
library along with the vendor's distribution tapes. It is very useful to
include a summary of device driver file names and the file system directory
structures along with a description of their general contents.

SECURITY TEST PROCEDURES (TO BE FOLLOWED BY BOTH VENDORS AND EVALUATORS)

The TCSEC states the following test documentation requirement:

Class C1 to A1. "The system developers shall provide to the evaluators a
document that describes the test plan, test procedures that show how the
security mechanisms were tested and the results of the security mechanisms'
functional testing."

A section should provide both an overview of the security testing effort and
detailed procedures for each of the security test plans. Security testing will
include detailed procedures for executing any test plan that is needed to
provide significant coverage of all protection mechanisms. This portion of the
test plan must be detailed; it will require the test team to generate the test
plans for each TCB primitive.

Review and Evaluation of Test Documentation for Each TCB Primitive

A subsection will present an evaluation of the method of TCB primitive testing
used by the vendor's development team, the completeness of the coverage
provided by the vendor's tests for the TCB primitive, and any shortfalls
that will need to be covered by the security testing team. This evaluation
should include a discussion of the extent to which the vendor's tests used

Page 60

black-box (which does not necessarily assume any knowledge of system code or
other internals) or gray-box coverage (which assume knowledge of system code
and other internals). Black-box test coverage is best suited for C1 to B1
class systems. Gray-box coverage of a system's security protection with
respect to the requirements in the TCSEC is best suited for B2 to A1 class
systems. In terms of TCB-primitive coverage, this subsection should identify
any relevant interfaces or mechanisms that the vendor has previously failed to
test, as well as how thoroughly the vendor has previously tested each
interface or mechanism with respect to each TCSEC requirement.

Test Plans

Test Conditions

This section identifies the test conditions to be covered. It should include
explanation of the rationale behind the selection and the order in which the
tests are executed. It is recommended that the detailed test procedures for
each test condition be compiled in annexes in a format that enables the test
personnel to mark steps completed to ensure that procedures are performed
correctly.

These test conditions should be derived from interpretations of the following:

· Protection philosophy and resource isolation constraints (for
classes C1 and C2).

· Informal security models (class B1).

· DTLS and formal security models (classes B2 and B3), FTLS (class
A1).

· Accountability requirements (all classes).

Test Data

The test data should include the definition of the following:

· Environment initialization.

· Test parameters.

· Test outcomes.

Coverage Analysis

The coverage analysis section of a test plan should justify the developer's
choice of test conditions and data, and should delimit the usefulness of the
test with respect to security of the system.

Test Procedure Format

Whenever security testing is not automated extensively, the developer's test
documentation should include test scripts. These should contain:

Page 61

· A description of the environment initialization procedure.

· A description of the execution test procedure.

· A description of the result identification procedure.

Procedure for Correcting Flaws Uncovered During Testing

A subsection should describe the procedure for handling the identification and
correction of flaws uncovered during the course of functional testing. It
should specify how this information was provided to the vendor's test team,
how much time was allocated to correct the flaw, and how testing again was
conducted to verify that flaws have been corrected.

An Example Test Report Format

The TCSEC includes the following requirements for reporting the test results:

Classes C1 to A1. "The system developer shall provide to the evaluators a
document that describes [the] results of the security mechanisms' functional
testing."

A section should identify the vendor of the evaluated product and give a high-
level description of the system that was tested, the types of applications for
which it is designed, and the class for which it is being evaluated.

Test System Configuration

A section should provide a general description of the test system
configuration. It need not be as detailed as the test plan, but should give
enough detail to identify the hardware and software context for the test
results.

Test Chronology

A section should provide a brief chronology of the security testing effort. It
should indicate when testing began, where it was conducted, when each
milestone was completed, and when testing was completed.

Results of Security Testing

A section should discuss each flaw uncovered in the system during security
testing. It should describe any action taken to correct the flaw as well as
the results of retesting. It may be useful to define a "level of
criticality" for classifying the flaws in order to distinguish major
problems that might impact the final rating from minor discrepancies or
those for which a work-around was found.

List of Uncorrected Flaws

A section should identify any problems that were uncovered during testing that
were not corrected to the test team's satisfaction.

4. COVERT CHANNEL TESTING

Page 62

Covert channel testing is required in order to demonstrate that the covert
channel handling method chosen by system designers is implemented as intended.
These methods include prevention and bandwidth limitation. Testing is also
useful to confirm that the potential covert channels discovered in the
system are in fact real channels. Testing is also useful when the handling
method for covert channels uses variable bandwidth-reduction parameters (e.g.,
delays) that can be set by system administrators (e.g., by auditors).
Testing can ensure that these mechanisms reduce the channel bandwidths to
the correct limits intended by system administrators.

Bandwidth estimation methods that are necessary for the handling of covert
channels may be based on engineering estimation rather than on actual
measurements. Bandwidth estimations provide upper bounds for covert channels
before any handling methods are employed. In contrast, covert channel
testing always requires that actual measurements be performed to determine the
covert channels' bandwidths after the chosen handling method. Similarly,
whenever covert channels are prevented (i.e., eliminated), testing of actual
code of the implemented system is required.

4.1 COVERT CHANNEL TEST PLANS

The test plans used for covert channel testing have the same structure as
those used for security functional testing. That is, for testing each covert
channel a test condition and the test data should be written, and coverage
analysis should be performed for that channel.

The test conditions for channels differ depending on the choice of the
covert channel handling method. Test conditions would state that no
information leakage is possible through the previously extant channel for
covert channels that are eliminated. For covert channels handled by bandwidth
limitation, the condition would state that the measured bandwidth of the
respective channel is below the predicted limit chosen for the channel. If the
test is used to measure the bandwidth after nonzero delay values are used, the
predicted bandwidth limit is the target bandwidth chosen or provided by the
default values of the added delays. If the test is used to measure the
bandwidth before nonzero delays are used, the predicted bandwidth is the
estimated maximum bandwidth of each channel.

The test data for each channel consists of the test environment definition,
the test parameters used, and the outcomes of the test. The test environment
definition consists of a description of the actual covert channel scenario
defining how the sender and recipient processes leak information. This
definition may include a description of the synchronization methods used by
the sender and receiver, the creation and the initialization of the objects
(if any) used by the sender/receiver to leak information, the initialization
and resetting of the covert channel variable, etc. If channels are
aggregated serially or in parallel, and if specific encodings are used, the
aggregation and encoding methods should be defined. (Note that neither channel
aggregation nor special bit encodings need to be used in testing as these
are neither required nor recommended by either [13] or its covert channel
guidelines.)

It should be noted that in many cases of resource exhaustion channels, the

Page 63

test program need not actually leak any string of bits. This is acceptable
only in cases when the exhaustion of one of these resources deteriorates
system performance to such an extent that no information could possibly be
transmitted within 1 second. In such cases, it is sufficient to measure the
elapsed time from the beginning of the covert channel primitive invocation
until the resource exhaustion error is returned to test the upper bound of the
achievable bandwidth.

The test parameters consist of the values set to run the measurements and
include the number of bits leaked for each channel, the distribution of 0's
and 1's chosen for the test, the representation of 0's and 1's (e.g., using
the states of the covert channel variable or system objects), the delay values
chosen for testing, the number of objects used and their types and privileges,
etc.

The test outcomes specify the expected results of the test. As with test
conditions, the test outcomes are similar for all channels. For each
channel, they define the target limit of the actual, measured channel
bandwidth.

Coverage analysis for covert channel testing requires the demonstration that
the placement of delays and randomization points in code covers all
information flow paths. Credible assurance of correct handling of covert
channels cannot be provided without such analysis.

To understand the complexity of covert channel testing and the need for
covering all information flow paths, consider a generic example of covert
channels provided by a single variable. Assume that the variable can be viewed
(altered) by V (A) primitive calls of the TCB. These primitives can create
up to V x A covert channels. Testing would have to ensure that, if the
covert channel handling method is based on placement of bandwidth reduction
delays, the placement of those delays limits bandwidth of all these covert
channels to a specified value. In a system that has N variables (or
attributes) that create covert storage channels, sum__{i =N} (VixAi)
test programs would have to be generated to assure correct placement of
delays. For a UnixTM-like system, this would require approximately 3,000
test plans and programs for covert channel testing, many of which would be
redundant. This would clearly be impractical.

The assurance that covert channel tests cover all possible flows in the TCB
can be provided by (1) a test of a single instance of covert channel usage,
which would test that the channel is eliminated or delayed, and by (2) an
analysis that shows that all other instances of the same channel are either
eliminated or have their bandwidth reduced by correct placement of delays.
This assurance allows the elimination of all redundant covert channel tests
without loss of coverage.

4.2 AN EXAMPLE OF A COVERT CHANNEL TEST PLAN

In this section we present an example of a test plan for a covert storage
channel. This channel, called the Upgraded Directory Channel, has been
described in references [15] and [16]; therefore, it will not be described
here in detail. Measurements and engineering estimations, which predict the
bandwidth of this channel in Secure XenixTM running on a 6 megahertz

Page 64

personal computer AT, have been reported in reference [16]. Other types of
engineering estimations which can determine the maximum bandwidths of noise
less covert channels have been presented in reference [21].

See Section 4.3, "Relationship with the TCSEC Requirements," which contains an
example of a covert channel test plan.

4.2.1 Test Plan for the Upgraded Directory Channel

System Version: PS/2 Model 80.

Covert Channel Type: MAC conflict channel [19].

Variable Name: direct - > d__ino.

4.2.1.1 Test Condition

The test condition for the "upgraded directory channel" is:

The measured bandwidth is lower than the predicted bandwidth after delay is
added.

4.2.1.2 Test Data

Environment Initialization

The test operator logs in at a security level called "Low" and initializes a
receiver process. Then the operator logs in at a level called "High" and
initializes a sender process. Level High must dominate level Low. The receiver
process creates an upgraded directory at level High and the sender process,
which is at the same level as that of that directory, signals to the
receiver process a 1 or a 0 by either creating or not creating an object in
that directory. The receiver process may detect 0s and 1s by trying to
remove the upgraded directory. Success or failure of the removal operation
signals 0s or 1s because a directory can only be removed when there is no
object in that directory [15].

Note: Both the sender and the receiver use four directories to amortize the
synchronization and environment set up delay for every bit over four bits
(i.e., four-bit serial aggregation). This covert channel scenario is shown
in Figure 7.

Parameters

Number of Bits leaked: 8.

Distribution of information used by the test program: 01100011, which
represents character "c."

Object Type: directory.

Number of objects used: 4 directories (serial four-bit aggregation).

Measurements: The rmdir (nonempty directory) elapsed time is 3020 ms.

Page 65

(delayed). The rmdlr (empty directory) elapsed time is 180 ms. The rmdir
(average) elapsed time is 1600 ms.

Outcome: The measured bandwidth is less than the predicted bandwidth of
0.566 bit/sec (with delay). If delay is removed, the predicted bandwidth is
2.8 bits/sec.

4.2.1.3 Coverage Analysis

The trusted process rmdir is the only primitive that reads variables in this
covert channel.

4.2.2 Test Programs

The test programs are included in files up/dirs.c and dirr.c (not shown here).

4.2.3 Test Results

The measured bandwidth is 0.5 bit/sec. The reason the test results for the "no
delay" case are not included here is that this delay is built into the
system configuration. The auditor cannot turn off or set the delay.

4.3 RELATIONSHIP WITH THE TCSEC REQUIREMENTS

The TCSEC states the following requirement for the documentation of covert
channel testing:

Classes B2 to A1. "The system developers shall provide to the evaluators a
document that ... shall include the results of testing the effectiveness of
the methods used to reduce covert channel bandwidths."

To satisfy this requirement the testing of the covert channel bandwidth must
be performed. The following format is recommended for the documentation of
covert channel test plans.

(1) Test Conditions

These conditions should be derived from covert channel handling methods and
should include:

· Elimination of covert channel conditions (whenever appropriate).

· Bandwidth limitation conditions based on measurements or
engineering estimations.

· Covert channel audit conditions (where appropriate).

(2) Test Data

Test data should include:

· Environment initialization data and/or a brief scenario of
covert channel use;

Page 66

· Test parameter definition.

· Test outcome (a blocked channel, an eliminated channel, or
measured bandwidth below the predicted value).

(3) Coverage Analysis

This analysis should contain an explanation of why the test covers all modes
of covert information leakage through an individual channel, through a channel
variable, or through a class of channels.

5. DOCUMENTATION OF SPECIFICATION-TO-CODE CORRESPONDENCE

The correspondence of the formal specification and source code is also a
test documentation requirement of the TCSEC. The test documentation
requirements of the TCSEC state:

Class A1. "The results of the mapping between the formal top-level
specification and the TCB source code shall be given."

This A1-exclusive requirement is only peripherally related to security
testing. We have only included it as an appendix for the interested reader.
The detailed set of FTLS-to-code correspondence requirements is provided by
A Guideline to Formal Verification Systems (NCSC-TG-014).

Page 67

APPENDIX

Specification-to-Code Correspondence

1. Overview

The requirements of the FTLS-to-code correspondence stated in Section 5 define
the scope of the mapping process. The mapping may be informal but it must:

· Show the consistency of the TCB implementation code and FTLS.

· Include all elements of the FTLS in the correspondence.

· Describe code not specified in the FTLS (if any) excluded from the
mapping.

Although the mapping may be informal, it is instructive to review its
theoretical underpinnings. These underpinnings are summarized in Sections 1-
4 of reference [25] and in Sections III and IV of reference [26].

Consider two specifications of a finite state machine M denoted by Mf and
Mc. The specification Mf is the FTLS of M, and Mc is the implementation
specification (i.e., code) of M. A common thread of all formal verification
methods is the requirement to demonstrate that any state of the machine
specification Mc represents a state of another, more abstract, machine
specification Mf . Alternate methods exist that attempt to formally
establish this representation.

The first method is based on defining a function phi with an application to
a state Sc of Mc that yields the "corresponding" state of Mf. The function F
defines the mapping between the two machine specifications. This mapping
expresses properties of the correspondence between Mc and Mf. For example,
if the property of Mc is to mimic Mf step by step, the mapping function F
should be defined in such a way that the i-th state of Mf corresponds to the
i-th step of Mc. If the notions of a secure state and state transition are
defined in Mf, and if all state transitions of Mf leave it in a secure state,
the property of the function F is defined in such a way that all mapped states
of Mc are secure and all state transitions of Mc leave it in a secure state.
In general, the mapping function F should capture the specific property, or
properties, desired for the mapping.

The first mapping method, called "refinement mapping" in reference [25], is
applicable to large classes of problems of establishing code-to-
specification correspondence, including correspondence of concurrent program
code. In many cases, however, the refinement mapping cannot be found.
Reference [25] shows that in a very large class of mapping cases it is
possible to augment the implementation specification of Mc (i.e., the code)
with extra state components (called the "history" or "prophecy" variables)
in a way that makes it possible to produce refinement mapping.

The second method is based on defining a function G whose application to an
assertion Af defined on a state of Mf yields an assertion Ac about the state
of Mc. This alternate mapping should also capture similar properties of Mf and

Page 68

Mc as those defined above. These two notions of mapping defined by F and G are
inverses of each other, as argued in reference (16], in the sense that:

For any assertion Af about the states of Mf and any state Sc of Mc, Af is true
of state F(Sc) of Mf if and only if assertion G(Af) is true of state Sc.

Examples of how the two mapping definitions are applied to system
specifications and design are provided in [26]. A further example, which
uses similar methods for the generation of correct implementation code from
abstract specifications, is given in [27]. In both references, the mappings
are defined on types, variables, constants, operators (e.g., logic operators),
and state transformations. The common characteristics of all formal mappings
are (1) the mapping definition, (2) the identification and justification of
unmapped specifications (if any), (3) the specification of the properties that
should be preserved by the mappings, and (4) the proofs that these
properties are preserved by the defined mappings.

2. Informal Methods for Specification-to-Code Correspondence

Informal methods for FTLS-to-code correspondence attempt, to a significant
degree, to follow the steps prescribed by formal methods. Two informal
exercises of FTLS-to-code correspondence are presented briefly in references
[28 and 29], one based on FTLS written in SPECIAL and the other in Ina Jo.
Analysis of both exercises, one of which was carried out on the SCOMP kernel
[28], reveals the following common characteristics.

2.1 Mapping Definition

The mapping units of both FTLS and code are identified and labeled explicitly.
For example, each "processing module" is identified both in FTLS and code.
This identification is aided by:

· Intermediate English language specification or program design
language specifications, and/or

· Naming conventions common to FTLS and code (if common
conventions are used). Processing modules are represented by the "transform"
sections of Ina Jo and by the module V, O, and OV functions of SPECIAL.

Alternatively, the mapping units may consist of individual statements of
FTLS and implementation code.

Correspondences are established between similarly labeled mapping units.
This is particularly important for the units that have user visible
interfaces. Correspondences include:

· Data structures used by processing modules (namely variables,
constants, and types of the FTLS) are mapped in their correspondent structures
of code.

· Effects of processing modules and operators (e.g., logic
operators) that are mapped to the corresponding code functions, procedures,
statements and operators.

Page 69

In addition, whenever the effects sections of a processing module identify
exceptions separately, the correspondence of FTLS exceptions and code
exceptions should also be included explicitly.

2.2 Unmapped Specifications

The process of establishing the FTLS-to-code correspondence may reveal that
the FTLS has no corresponding code or has incomplete code specifications. This
situation is explicitly excluded by the TCSEC requirements, because all
elements of the FTLS must have corresponding code. More often, significant
portions of the implementation specifications (i.e., code) remain unmapped.
Mismatches between FTLS and implementation specification may occur for many
different reasons, which include:

· FTLS and code are written in languages with very different
semantics. This is the case whenever FTLS are written in nonprocedural
languages and code is written in a procedural language. In this case, the
correspondence between the assertions of the nonprocedural language and the
functions, procedures, and control statements of the procedural language are
difficult to establish. Some unmapped implementation code may represent
implementation language detail which is not mapped explicitly to FTLS and
which does not affect adversely the properties preserved by the mapping
(discussed below).

· The domain or range of an FTLS function may be incorrectly
identified during code development. In this case the mapping process should be
able to identify the cause of the FTLS and implementation code mismatch.

· A significant part of the TCB code is not visible at the user
interface and thus, has no correspondent FTLS. This code, which includes
internal daemons, such as daemons for page/segment replacement, daemons that
take system snapshots, and so on, is nevertheless important from a security
point of view because it may introduce information flows between TCB
primitives in unexpected ways. The effect of such code on the mapping, or lack
thereof, should be carefully analyzed and documented.

· Unmapped TCB implementation code includes code which ensures the
noncircumventability and isolation of the reference monitor and has no
specific relevance to the security (i.e., secrecy) policy supported. For
example, TCB implementation code which validates the parameters passed by
reference to the TCB is policy independent and may cause no covert channel
flows (because all relevant flows caused by these checks are internal to the
process invoking the TCB).

· Unmapped TCB implementation code may include accountability
relevant code (e.g., audit code), debugging aids, and performance monitoring
code, as well as other code which is irrelevant to the security supported. The
presence of such code within the TCB may introduce information flows within
the TCB primitives and may introduce additional covert channels. The effect of
such unmapped code on the mapping should be analyzed and documented.

· The TCB may contain implementation code that is relevant to the
security policy supported by the system but irrelevant to the properties
that could be verified using the FTLS. For example, the correctness of some of

Page 70

the discretionary access control policies may not be easily verified with
the currently available tools. Therefore, the complete mapping of code
implementing such policies to the corresponding FTLS may have limited value.
However, the information flows generated by such code should be analyzed and
documented.

2.3 Properties Preserved by the Mapping

A key characteristic of any FTLS-to-code mapping is the specification of the
security property of the FTLS that should be included in implementation
code. Such security properties include specifications of MAC and DAC policy
components, object reuse components, and accountability components, all of
which are user visible at the TCB interface. These properties should also
include specifications of equivalence between information flows created by
FTLS and those created by implementation functions, procedures, variables
and mapped code. Other safety properties and liveness properties may also be
included. For each mapped module, the properties preserved by that module
should be documented.

It must be noted that current emphasis of practical work on FTLS-to-code
mapping is exclusively focused on the maintenance of (1) mandatory access
control properties of FTLS in implementation code, and (2) the equivalence
between covert channel flows of the FTLS and those of the implementation code.

2.4 Correlation Arguments

The documentation of each correspondence between mapping units should
include a convincing argument that the desired properties are implemented by
code despite unmapped specifications or code (if any). Lack of such
documentation would cast doubts on the validity of the mapping and on the
usefulness of demonstrating formally such properties of FTLS. For example,
little use is made of the soundness of information flows of FTLS whenever flow
equivalence between FTLS primitives and variables and those of
implementation code is not established.

3. An Example of Specification-to-Code Correspondence

The module whose FTLS mapping to implementation code is illustrated in this
section is "get__segment__access" system call of the Honeywell's Secure
Communication Processor (SCOMP). The FTLS is written in SPECIAL, the
language supported by the Hierarchical Development Methodology (HDM) developed
at SRI International, and the implementation code is written in UCLA Pascal.
The system call "get__segment__access" returns the access privileges of the
invoking process (e.g., user process) for a uniquely identified segment. The
effect of this call is similar to that of the access system call of UnixTM
when applied to files, namely Tables 1 and 2, page 58. Figure 8 below shows
the FTLS of "get__segment__access" and Figures 9a; 9b, parts 1 and 2; and 9c
show its implementation code. Note that Figure 9a identifies the "def.h" file,
namely the file of included header definitions of the module, Figure 9b, parts
1 and 2, contain the actual code of the module (i.e., in the ".p" file), and
Figure 9c contains the code of implementation function "get__segment__info,"
which is invoked by the code of "get__seg__access."

3.1 Mapping Definition

Page 71

Mapping Units

The mapping units for both the FTLS and the implementation code of SCOMP are
the individual language statements. To establish the mapping each statement of
the implementation code is labeled unambiguously (i.e., using the code or data
file name and the statement line number). Statement level labeling of data
definitions (i.e., "def.h" files) and code (i.e., ".p" files) is shown in
Figures 9a; 9b, parts 1 and 2; and 9c.

Correspondence of Labeled Units

The statement level mapping of FTLS to code is established in SCOMP by
adding to each SPECIAL statement of the "get__segment__access" module the
corresponding individual (or group of) UCLA Pascal statement(s). Figure 8
shows this.

LEGEND

^ = pointer to

!= = not equal

~ = negation

User Visible Effects, Exceptions, and Data Structures

The only user visible effect of this VFUN (i.e., state returning function)
is mapped to the language statements "segment.p 931-939" as part of the
nondiscretionary access check performed to determine whether the calling
process has MAC access to the segment passed as a parameter. Whenever this
check is passed (in "segment.p 931"), the accesses of the caller process to
the segment are returned through "seg__access__p" parameter. Note that the
UCLA Pascal function "non__discretionary__access__allowed(...)" is mapped to
the SPECIAL function "valid__flow(...)." The former calls the UCLA Pascal
version of the latter (neither shown here). In addition, the function
"non__discretionary__access__allowed(...)" also performs checks to determine
whether the invoking process has special system privileges that would allow it
to bypass the MAC checks of "valid__flow(...)." Since the properties of
interest to the FTLS verification do not include the effects of the system
privileges, only the SPECIAL function corresponding to "valid__flow(...)" is
used in the VFUN "get__segment__access" (namely, comment in the FTLS). Note
that the derived SPECIAL function "get__object__access" corresponds to the
UCLA Pascal function "get__segment__info," defined in "segment.p 945-978"
and invoked in "segment.p 914-917," and that both are invisible at the TCB
interface when used in the corresponding modules "get__segment__access" and
"get__seg__access."

The two visible exceptions of the VFUN, namely "invalid__segment__name" and
"segment__does__not__exist," are mapped to the exceptions with the same name
of the UCLA Pascal code found in statements "segment.p 908, 911, 922, and
938."

Page 72

The only visible data structures are the parameters exchanged by the caller
process and the VFUN module. The mapping of these parameters is shown in the
header file at lines "def.h 370 and 372."

3.2 Unmapped Implementation Code

The following lines of UCLA Pascal code have no correspondent SPECIAL code:

· segment.p 888-898-Implementation language detail (i.e.,
declarations of function parameters and internal system data structures).

· segment.p 901-904 (and 954-957)-Conditional compilation of
debugging code}.

· segment.p 905-906 and 940-942-Implementation code of the reference
monitor mechanism (i.e., code that validates parameters passed by reference
that helps maintain noncircumventability and isolation properties).

· segment.p 912-913, 920-921, 924-930-Implementation details
referring to internal data structures that remain invisible to the user
interface. Note the use of locking code, which ensures that internal sequences
of kernel actions cannot be interrupted.

· segment.p 900, 943-Implementation language detail (i.e., control
statements).

3.3 List of Properties Preserved by the Mapping

The properties preserved by the mapping are:

· Mandatory Access Control to objects of type p segment.

· Equivalence of information flows visible at the TCB interface.

3.4 Justification for the Maintained Properties and for Unmapped Code

MAC Properties of Segments

In both the SPECIAL FTLS and UCLA Pascal code versions of
"get__segment__access," control returns suCcessfully to the invoking process
only if the "valid__flow" and the "non disCretionary__access__allowed"
checks pass. As explained above, these checks are equivalent from an
unprivileged user's point of view. Furthermore, in both the FTLS and code
versions, the unsuccessful returns are caused by the same sets of exception
checks, namely (1) wrong object type, segment is not in the required file
system partition (consistency checks); and (2) unmounted segment, failed MAC
check, and inexistent segment (MAC relevant checks). The two additional
exception checks present in the implementation code are not MAC specific
checks. Instead, they are checks of the reference monitor mechanism (e.g.,
parameter validation), and thus irrelevant for MAC property verification.

Equivalence of Information Flows

Page 73

The only visible flows of information through the interface of the
"get__segment__access" module are those provided by the successful and the
unsuccessful returns. These returns take place in identical FTLS and code
conditions (namely, the mapping definition documented above and Figures 8; 9a;
9b, parts 1 and 2; and 9c). The additional exception returns of the
implementation code to the invoker (i.e., the parameter validation exceptions)
cannot introduce flows between different processes. Therefore, the equivalence
of the FTLS (SPECIAL) flows and the implementation code (UCLA Pascal) flows is
preserved.

Justification for Unmapped Code

The unmapped code cannot affect the mapping properties that must be
preserved for the following reasons:

· The syntax of the parameter declarations and of the control
statements are property irrelevant language details.

· The debugging code is not compiled in the TCB in the normal mode
of operation.

· The code implementing the reference monitor checks is not specific
to either of the above properties (although the functional correctness of
these checks is required for secure system operation, such proof of
correctness is not required for A1 systems currently).

· The code which implements internal kernel actions in a manner that
cannot be interrupted is not visible at the TCB interface (although its
functional correctness is required in secure systems, it is not always
demonstrable using currently approved tools for A1 systems).

Page 74

GLOSSARY

Access

A specific type of interaction between a subject and an object that results in
the flow of information from one to the other.

Administrative User

A user assigned to supervise all or a portion of an ADP system.

Audit

To conduct the independent review and examination of system records and
activities.

Audit Trail

A set of records that collectively provides documentary evidence of processing
used to aid in tracing from original transactions forward to related records
and reports and/or backwards from records and reports to their component
source transactions.

Auditor

An authorized individual, or role, with administrative duties, which include
selecting the events to be audited on the system, setting up the audit flags
which enable the recording of those events, and analyzing the trail of audit
events.

Authenticate

To establish the validity of a claimed identity.

Authenticated User

A user who has accessed an ADP system with a valid identifier and
authentication combination.

Bandwidth

A characteristic of a communication channel that is the amount of
information that can be passed through it in a given amount of time, usually
expressed in bits per second.

Bell-LaPadula Model

A formal state transition model of computer security rules. In this formal
model, the entities in a computer system are divided into abstract sets of
subjects and objects. The notion of a secure state is defined and it is proven
that each state transition preserves by moving from secure state to secure
state, thus inductively proving that the system is secure. A system state is
defined to be "secure" if the only permitted access modes of subjects to

Page 75

objects are in accordance with a specific security policy. In order to
determine whether or not a specific access mode is allowed, the clearance of a
subject is compared to the classification of the object and a determination is
made as to whether the subject is authorized for the specific access mode. The
clearance/classification scheme is expressed in terms of a lattice. (Also
see Lattice).

Channel

An information transfer path within a system. May also refer to the
mechanism by which the path is effected.

Covert Channel

A communication channel that allows a process to transfer information in a
manner that violates the system's security policy. (Also see Covert Storage
Channel and Covert Timing Channel.)

Covert Storage Channel

A covert channel that involves the direct or indirect writing of a storage
location by one process and the direct or indirect reading of the storage
location by another process. Covert storage channels typically involve a
finite resource (e.g., sectors on a disk) that is shared by two subjects at
different security levels.

Covert Timing Channel

A covert channel in which one process signals information to another by
modulating its own use of system resources (e.g., CPU time) in such a way that
this manipulation affects the real response time observed by the second
process.

Coverage Analysis

Qualitative or quantitative assessment of the extent to which the test
conditions and data show compliance with required properties, e.g., security
model and TCB primitive properties, etc. (Also see Test Condition and Test
Data.)

Data integrity

The state that exists when computerized data are the same as those that are in
the source documents and have not been exposed to accidental or malicious
alteration or destruction.

Descriptive Top-Level Specification (DTLS)

A top level specification that is written in a natural language (e.g.,
English), an informal program design notation, or a combination of the two.

Discretionary Access Control (DAC)

A means of restricting access to objects based on the identity of subjects

Page 76

and/or groups to which they belong or on the possession of a ticket
authorizing access to those objects. The controls are discretionary in the
sense that a subject with a certain access permission is capable of passing
that permission (perhaps indirectly) onto any other subject.

Dominate

Security level S1 is said to be the dominate security level if the
hierarchical classification of S1 is greater than or equal to that of S2 and
the nonhierarchical categories of S1 include all those of S2 as a subset.

Exploitable Channel

Any channel that is usable or detectable by subjects external to the Trusted
Computing Base.

Flaw

An error of commission, omission, or oversight in a system that allows
protection mechanisms to be bypassed.

Flaw Hypothesis Methodology

A system analysis and penetration technique where specifications and
documentation for the system are analyzed and then flaws in the system are
hypothesized. The list of hypothesized flaws is prioritized on the basis of
the estimated probability that a flaw actually exists and, assuming a flaw
does exist, on the ease of exploiting it and on the extent of control or
compromise it would provide. The prioritized list is used to direct the actual
testing of the system.

Formal Proof

A complete and convincing mathematical argument, presenting the full logical
justification for each proof step and for the truth of a theorem or set of
theorems. The formal verification process uses formal proofs to show the truth
of certain properties of formal specification and for showing that computer
programs satisfy their specifications.

Formal Security Policy Model

A mathematically precise statement of a security policy. To be adequately
precise, such a model must represent the initial state of a system, the way in
which the system progresses from one state to another, and a definition of a
"secure" state of the system. To be acceptable as a basis for a TCB, the model
must be supported by a formal proof that if the initial state of the system
satisfies the definition of a "secure" state and if all assumptions required
by the model hold, then all future states of the system will be secure. Some
formal modeling techniques include state transition models, temporal logic
models, denotational semantics models, and algebraic specification models.

Formal Top-Level Specification (FTLS)

A Top Level Specification that is written in a formal mathematical language to

Page 77

allow theorems showing the correspondence of the system specification to its
formal requirements to be hypothesized and formally proven.

Formal Verification

The process of using formal proofs to demonstrate the consistency (design
verification) between a formal specification of a system and a formal security
policy model or (implementation verification) between the formal specification
and its program implementation.

Functional Testing

The portion of security testing in which the advertised features of a system
are tested for correct operation.

Lattice

A partially ordered set for which every pair of elements has a greatest
lower bound and a least upper bound.

Least Privilege

This principle requires that each subject in a system be granted the most
restrictive set of privileges (or lowest clearance) needed for the performance
of authorized tasks. The application of this principle limits the damage
that can result from accident, error, or unauthorized use.

Mandatory Access Control (MAC)

A means of restricting access to objects based on the sensitivity (as
represented by a label) of the information contained in the objects and the
formal authorization (i.e., clearance) of subjects to access information of
such sensitivity.

Multilevel Device

A device that is used in a manner that permits it to simultaneously process
data of two or more security levels without risk of compromise. To
accomplish this, sensitivity labels are normally stored on the same physical
medium and in the same form readable by machines or humans as the data being
processed.

Object

A passive entity that contains or receives information. Access to an object
potentially implies access to the information it contains. Examples of objects
are records, blocks, pages, segments, files, directories, directory trees, and
programs, as well as bits, bytes, words, fields, processors, video displays,
keyboards, clocks, printers, and network nodes, etc.

Process

A program in execution. It is completely characterized by a single current
execution point (represented by the machine state) and address space.

Page 78

Protection Critical Portions of the TCB

Those portions of the TCB, the normal function of which is to deal with the
control of access between subjects and objects.

Read

A fundamental operation that results only in the flow of information from an
object to a subject. Read Access (Privilege) Permission to read information.

Security Level

The combination of a hierarchical classification and a set of
nonhierarchical categories that represents the sensitivity of information.

Security Policy

The set of laws, rules, and practices that regulate how an organization
manages, protects, and distributes sensitive information.

Security Policy Model

An informal presentation of a formal security policy model.

Security Relevant Event

Any event that attempts to change the security state of the system, e.g.,
change discretionary access controls, change the security level of the
subject, or change a user's password, etc. Also, any event that attempts to
violate the security policy of the system, e.g., too many attempts to login,
attempts to violate the mandatory access control limits of a device, or
attempts to downgrade a file, etc.

Security Testing

A process used to determine that the security features of a system are
implemented as designed and that they are adequate for a proposed
application environment.

Single Level Device

A device that is used to process data of a single security level at any one
time. Since the device need not be trusted to separate data of different
security levels, sensitivity labels do not have to be stored with the data
being processed.

Subject

An active entity, generally in the form of a person, process, or device that
causes information to flow among objects or changes the system state.
Technically, a process/domain pair.

Subject Security Level

Page 79

A subject's security level is equal to the security level of the objects to
which it has both read and write access. A subject's security level must
always be dominated by the clearance of the user the subject is associated
with.

TCB-primitive

An operation implemented by the TCB whose interface specifications (i.e.,
names, parameters, effects, exceptions, access control checks, errors, and
calling conventions) are provided by system reference manuals or DTLS/FTLS
as required.

Test Condition

A statement defining a constraint that must be satisfied by the program
under test.

Test Data

The set of specific objects and variables that must be used to demonstrate
that a program produces a set of given outcomes.

Test Plan

A document or a section of a document which describes the test conditions,
data, and coverage of a particular test or group of tests. (Also see Test
Condition, Test Data, and Coverage Analysis.)

Test Procedure (Script)

A set of steps necessary to carry out one or a group of tests. These include
steps for test environment initialization, test execution, and result
analysis. The test procedures are carried out by test operators.

Test Program

A program which implements the test conditions when initialized with the
test data and which collects the results produced by the program being tested.
Top Level Specification (TLS) is a nonprocedural description of system
behavior at the most abstract level. Typically a functional specification that
omits all implementation details.

Trusted Computer System

A system that employs sufficient hardware and software integrity measures to
allow its use for simultaneously processing a range of sensitive or classified
information.

Trusted Computing Base (TCB)

The totality of protection mechanisms within a computer system-including
hardware, firmware, and software-the combination of which is responsible for
enforcing a security policy. It creates a basic protection environment and

Page 80

provides additional user services required for a trusted computer system.
The ability of a trusted computing base to correctly enforce a security policy
depends solely on the mechanisms within the TCB and on the correct input by
system administrative personnel of parameters (e.g., a user's clearance)
related to the security policy.

Trusted Path

A mechanism by which a person at a terminal can communicate directly with
the Trusted Computing Base. This mechanism can only be activated by the person
or the Trusted Computing Base and cannot be imitated by those untrusted. Any
person who interacts directly with a computer system.

Verification

The process of comparing two levels of system specification for proper
correspondence (e.g., security policy model with top level specification,
TLS with source code, or source code with object code). This process may or
may not be automated.

Write

A fundamental operation that results only in the flow of information from a
subject to an object.

Write Access (Privilege)

Permission to write to an object.

Page 81

REFERENCES

1. Howden, W.E., "The Theory and Practice of Functional Testing," IEEE
Software, September 1985, pp. 18-23.

2. Haley, C.J. and Mayer, F.L., "Issues on the Development of Security Related
Functional Tests," Proceedings of the Eighth National Computer Security
Conference, National Bureau of Standards, Gaithersburg, Maryland, September
1985.

3. Gligor, V.D., "An Analysis of the Hardware Verification of the Honeywell
SCOMP," Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
California, April 1985.

4. Gligor, V.D., "The Verification of the Protection Mechanisms of High
Level Language Machines," International Journal of Computer and Information
Sciences, Vol. 12, No. 4, August 1983, pp. 211-246.

5. Petschenik, N., "Practical Priorities in System Testing," IEEE Software,
September 1985, pp. 1-23.

6. Myers, G.J., The Art of Software Testing, John Wiley and Sons, New York,
1979.

7. Howden, W.E., "Functional Program Testing," IEEE Transactions on Software
Engineering, Vol. SE-6, No. 3, May 1980, pp. 162-169.

8. Clark, D., "Ancillary Reports: Kernel Design Project," M.I.T. Laboratory
Computer Science, Cambridge, Massachusetts, Technical Memo 87, June 1977.

9. Gligor, V.D.; Chandersekaran, C.; Jiang, W.D.; Johri, A.; Luckenbaugh, G.L.
and Reich, L.E., "A New Security Testing Method and Its Application to the
Secure Xenix Kernel," IEEE Transactions on Software Engineering, Vol. SE13,
No. 2, February 1987, pp. 169-183.

10. Laski, J.W. and Korel, B., "A Data Flow Oriented Program Testing
Strategy," IEEE Transactions on Software Engineering, Vol. SE-9, No. 3, May
1983, pp. 347-354.

11. Rapps, S. and Weyuker, E.J., "Data Flow Analysis Techniques for Test
Data Selection," Proceedings of the Sixth International Conference on Software
Engineering, 1982, pp. 272-278.

12. Luckenbaugh, G.L.; Gligor, V.D.; Dotterer, L.J.; Chandersekaran, C.S.
and Vasudevan, N., "Interpretation of the Bell-LaPadula Model in Secure
Xenix," Proceedings of the Ninth National Computer Security Conference,
Gaithersburg, Maryland, September 1986.

13. Department of Defense Trusted Computer System Evaluation Criteria, DoD
5200.28-STD, December 1985 (supersedes CSC-STD-001 -83, dtd 15 Aug 83),
Library No. 5225,711.

14. Department of Defense-ADP Security Manual-Techniques and Procedures for

Page 82

Implementing, Deactivating, Testing, and Evaluating Secure Resource Sharing
ADP Systems, DoD 5200.28-M, revised June 1979.

15. Gligor, V.D.; Chandersekasan, C.S.; Jiang, W.D.; Johri, A.; Luckenbaugh,
G.L. and Vasuderan, N., "Design and Implementation of Secure Xenix," IEEE
Transactions on Software Engineering, Vol. SE-13, No. 2, February 1987, pp.
208-221.

16. Tsai, C.R. and Gligor, V.D., "A Bandwidth Computation Model for Covert
Storage Channels and its Applications," Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, California, April 1988.

17. Aerospace Report No. TOR-0086 (6777-25)1, "Trusted Computer System
Evaluation Management Plan," 1 October 1985.

18. National Computer Security Center, Trusted Product Evaluations-A Guide For
Vendors, NCSC-TG-002, Version-1, 22 June 1990.

19. Millen, J.K., "Kernel Isolation for the PDP-11/70," Proceedings of the
IEEE Symposium on Security and Privacy, Oakland, California, 1982.

20. Cugini, J.A.; Lo, S.P.; Hedit, M.S.; Tsai, C.R.; Gligor, V.D.; Auditham,
R. and Wei, F.J., "Security Testing of AIX System Calls using Prolog,"
Proceedings of the Usenix Conference, Baltimore, Maryland, June 1989.

21. Millen, J.K., "Finite-State Noiseless Covert Channels," Proceedings of the
Computer Security Foundation Workshop II, Franconia, New Hampshire, June 1989.
(IEEE Catalog Number 89TH02550)

22. Carnall, J.J. and Wright, A. F., "Secure Communication Processor
Hardware Verification Report," Technical Report, Honeywell Inc., Program
Code No. 7P10, prepared for Contract No. HAVELEX N00039-77-C-0245.

23. Honeywell, Inc., "Secure Communication Processor-Test and Verification
Software Description," Technical Report, Rev. 3, April 1980, Program Code
No. 7P10, prepared for Contract No. NAVELEX N00039-77-C-0245.

24. Vickers-Benzel, T., "Overview of the SCOMP Architecture and Security
Mechanisms," The MITRE Corporation, Technical Report, MTR-9071, September
1983.

25. Abadi, M. and Lamport, L., "The Existence of Refinement Mappings,"
Research Report 29, Systems Research Center, Digital Equipment Corporation,
August 1988.

26. Berry, D.M., "Towards a Formal Basis for the Formal Development Method and
the Ina Jo Specification Language," IEEE Transactions on Software Engineering,
VoL. SE-13, No. 2, February 1987, pp. 184-201.

27. Yu, C.F. and Gligor, V.D., "A Formal Specification and Verification Method
for the Prevention of Denial of Service in ADATM Services," Institute for
Defense Analyses, Paper No. P-2120, July 1988.

28. Vickers-Benzel, T., "Analysis of a Kernel Verification," Proceedings of

Page 83

the IEEE Symposium on Security and Privacy, Oakland, California, April 1984.

29. Solomon, J., "Specification-to-Code Correlation," Proceedings of the
lEEE Symposium on Security and Privacy, Oakland, California, April 1982.

