NCSC TECHNICAL REPORT - 005
\olume 5/5
Library No. S-243,039

FOREWARD

This report is the fifth of five companion documents toTtusted Database Management System
interpretation of the Trusted Computer System Evaluation Crit€éha. companion documents
address topics that are important to the design and development of secure database management
systems, and are written for database vendors, system designers, evaluators, and researchers. This

report addresses discretionary access control issues in high assurance secure database management
systems.

Keith F. Brewster May 1996
Acting Chief, Partnerships and Processes

ACKNOWLEDGMENTS

The National Computer Security Center extends special recognition to the authors of this document.
The initial version was written by Vinti Doshi, Sushil Jajodia, and LouAnna Notargiacomo of the
MITRE Corporation. The final version was written by Gary Smith, Doug Landoll, Bill Wilson, and
David Wichers of Arca Systems, Inc.

The documents in this series were produced under the guidance of Shawn P. O’Brien of the National
Security Agency, LouAnna Notargiacomo and Barbara Blaustein of the MITRE Corporation, and
David Wichers of Arca Systems, Inc.

We wish to thank the members of the information security community who enthusiastically gave
of their time and technical expertise in reviewing these documents and in providing valuable
comments and suggestions.

TABLE OF CONTENTS

SECTION PAGE
1.0 INTRODUCTION . . . oot e e e

1.1 BACKGROUND AND PURPOSE e
1.2 SCOPE. . . e

1.3 INTRODUCTION TO HIGH ASSURANCE DAC
1.4 AUDIENCES OF THIS DOCUMENT e
1.5 ORGANIZATION OF THE DOCUMENT oo e

2.0 BACKGROUND . ..ot e e e e

2.1 TCSEC REQUIREMENTS e
2.1.1 Requirements for Class C1lthrough B1
2.1.2 Requirements for Class B2 through Al

2.2 OPERATING SYSTEM DAC MECHANISMS e
2.2.1 Owner/Group/Other
2.2.2 Capabilities
2.2.3 AcCess Control LisStS.ot

2.3 RELATIONAL TERMINOLOGY e
3.0 CURRENT PRACTICE FORDBMS DAC e

3.1 SQLANDDAC . . . e
3.1.1 SQLDAC Privileges.
3.1.2 Assigning SQL DAC Privileges
3.1.3 Use of VIEWS t0 ReStNCt ACCESS . . . vttt it e e et e e

3.2 THE TYPICAL SQL ENGINE e e e e

3.3 TYPICAL DBMS ENFORCEMENT OF DAC e e e

4.0 HIGH ASSURANCE DAC ISSUES

4.1 EFFECTIVENESS OF DAC POLICIES. e e
4.1. Propagation of Access Rights
4.1.2 Trojan HOISES oot e

4.2 DBMS DAC POLICIESo e
4.2.1 Complexity of View Mechanism
4.2.2 Disjointvs. Overlapping Objects
4.2.3 DBMS Functionality and the Safety Problem

4.3 BALANCED ASSURANCEo e

5.0 APPROACHES TO IMPLEMENTING HIGH ASSURANCEDAC

5.1 ACCESS CONTROL LISTS . . .o e e
5.2 HIGH ASSURANCE GRANT/REVOKE. e
5.3 SEAVIEW . . i maaaa

5.4 ASD VIEWS . .. e

5.5 RESTRICTED VIEWS

5.6 U-, P-, AND QVIEW S, . .. e e e
5.6.1 Uninterpreted DAC VIEWS (UVIEWS)ottt ittt e et
5.6.2 Interpreted Assured Primitive Views (PVIEWS) i e
5.6.3 Interpreted Qualified VIEWS (QVIEWS) oo oottt

6.0 SUMMARY . . .o
REFERENCES

LIST OF FIGURES

FIGURE PAGE
3.1: THE TYPICAL DBMS e
3.2: THE TYPICALDBMS TCB.o e e
5.1: GENERAL SEAVIEW APPROACH e
5.2: PROPOSED ASD_VIEWS TCB.o e
5.3: ASSURED “CORRECT” ARCHITECTURE.
5.4 UVIEWS TCB. . .o e
0.5 PVIEWS TCB . .
5.6: QVIEWS TCB . . .

LIST OF TABLES
TABLE PAGE

3.1 SUMMARY OF SQL DAC CAPABILITIES.

SECTION 1
INTRODUCTION

This document is the fifth volume in the series of companion documentsTau#ted Database
Management System Interpretation of the Trusted Computer System Evaluation [JiReBa;

DoD 85]. This document examines discretionary access control (DAC) issues in high assurance
secure database management systems and summarizes the research to date in this area.

11 BACKGROUND AND PURPOSE

In 1991 the National Computer Security Center publishedTthsted Database Management
System InterpretatioirDI) of the Trusted Computer System Evaluation Crit§fi&SEC). The

TDI, however, does not address many topics that are important to the design and development of
secure database management systems (DBMSs). These topics (such as inference, aggregation, and
database integrity) are being addressed by ongoing research and development. Since specific
technigues in these topic areas had not yet gained broad acceptance, the topics were considered
inappropriate for inclusion in the TDI.

The TDI is being supplemented by a series of companion documents to address these issues specific
to secure DBMSs. Each companion document focuses on one topic by describing the problem,
discussing the issues, and summarizing the research that has been done to date. The intent of the
series is to make it clear to DBMS vendors, system designers, evaluators, and researchers what the
issues are, the current approaches, their pros and cons, how they relate to a TCSEC/TDI evaluation,
and what specific areas require additional research. Although some guidance may be presented,
nothing contained within these documents should be interpreted as criteria.

These documents assume the reader understands basic DBMS concepts and relational database
terminology. A security background sufficient to use the TDI and TCSEC is also assumed; however,
fundamentals are discussed whenever a common understanding is important to the discussion.

1.2 SCOPE

This document addresses DAC issues in high assurance secure DBMSs. It is the fifth of five volumes
in the series of TDI companion documents, which includes the following documents:

» Inference and Aggregation Issues in Secure Database Management $ydererce 96]

» Entity and Referential Integrity Issues in Multilevel Secure Database Management Systems
[Entity 96]

» Polyinstantiation Issues in Multilevel Secure Database Management SyBtd#yn36]
* Auditing Issues in Secure Database Management Sypeichs 96]

» Discretionary Access Control Issues in High Assurance Secure Database Management
Systems

This series of documents uses terminology from the relational model to provide a common basis
for understanding the concepts presented. For most of the topics covered in this series the concepts
presented should apply to most database modeling paradigms, depending on the specifics of each
model.

1.3 INTRODUCTION TO HIGH ASSURANCE DAC

DBMSs are large, complex software packages which provide an enterprise with significant
capabilities to manage data. Most commercial DBMSs are based on the relational model [Codd
70]. The Structured Query Language (SQL) is the standard interface language for relational DBMSs
and contains the functionality to specify application-dependent access controls (in particular, DAC)
to database objects using the GRANT or REVOKE statements. SQL also provides the capability
to control access to data througéws A view is a derived relation, normally a subset of a database,
that is specified with a view definition written in SQL or another data description language.

High Assurance systems are defined as those that meet the TCSEC requirements for class B2 and
above. The TCSEC specifies both functionality and assurance requirements for each evaluation
class. Although additional DAC functionality is added at B3, the difficult problem standing in the
way of DBMSs intended to meet higher level TCSEC requirements is the need to meet the TCSEC
assurance requirements. In addition to failing to meet the B3 TCB minimality and simplicity
requirements, if the entire SQL engine is included within the TCB boundary, it is improbable that
such an architecture would meet the additional B3 system architecture requirements of layering,
abstraction, and data hiding. Such structuring would likely add considerable execution overhead to
the product.

While there is not an explicit minimality requirement at B2, it would still be very difficult to
incorporate a mechanism as large and complex as a SQL engine in the TCB while meeting B2
requirements. Most commercial DBMS architectures do not exhibit the internal structure and
discipline necessary to meet the interpreted B2 modularity requirement. Furthermore, the B2 System
Architecture requirement calls for “effective use of available hardware to separate those elements
that are protection-critical from those that are not...” and requires that “...TCB modules shall be
designed such that the principle of least privilege is enforced....” Also, the Design Documentation
requirements include a description of how the “TCB implements the reference monitor concept...
and is structured to enforce least privilege.” While recognizing that there are important distinctions
between the B2 and B3 requirements, size and complexity of TCB mechanism is a major issue for
both. (These TCSEC requirements are discussed in more detail in Section 2.1.)

Based on this background information, the DBMS high assurance DAC problem can be succinctly
stated as:

* In most current DBMS software architectures the entire SQL engine is inside the TCB
boundary since it contains the DAC enforcement mechanism.

» The SQL engine is typically too large and complex to meet the B2 and B3 assurance
requirements.

Although the DBMS high assurance problem can be simply stated, there are many complex issues
involved with providing acceptable solutions (both technically and from the user’s perspective).

These issues and research efforts to design high assurance DBMS DAC mechanisms are discussed
in depth in the remaining sections.

1.4 AUDIENCES OF THIS DOCUMENT

This document is targeted at four primary audiences: the security research community, database
application developers/system integrators, trusted product vendors, and product evaluators. In
general, this document is intended to present a basis for understanding and discussion of the issues
and techniques in obtaining high assurance DAC in DBMSs. Each of the specific audiences should
expect to get the following from this document:

Researcher

This document describes the basic issues associated with high assurance DAC in DBMSs. Important

research contributions are discussed as various topics are covered. By presenting current theory and
debate, this discussion will help the research community understand the scope of the issue and

highlight current alternatives.

Database Application eloper/System Intgator

This document highlights the difficulties of defining DAC policies within a DBMS. It describes the
different issues of implementing DAC through (potentially overlapping) views. It also discusses
the tradeoff between richness of policy and the degree of assurance which can be obtained for a
mechanism enforcing the policy.

Trusted Product &dor

This document describes the conflict between the degree of richness in DBMS DAC mechanisms
and the attainable level of assurance. It then discusses approaches to implement high assurance
DBMS DAC mechanisms and the benefits and drawbacks of these approaches. This document will
provide a framework for understanding specific requirement interpretations as they are developed
by the National Computer Security Center.

Evaluator

This document presents an understanding of high assurance DAC issues to assist the evaluation of
DBMS enforcement of high assurance DAC.

1.5 ORGANIZATION OF THE DOCUMENT
The organization of the remainder of this document is as follows:

» Section 2 provides background by summarizing the TCSEC requirements for DAC in high
assurance DBMSs, defining terminology, and describing DAC policies and mechanisms.

» Section 3 describes current practice for enforcing DAC in DBMSs with particular emphasis
on DAC controls incorporated in SQL.

» Section 4 discusses critical issues associated with high assurance DAC including
effectiveness of DAC, implications of using views for DAC, and the concept of balanced
assurance.

» Section 5 presents approaches to providing high assurance DAC. This section addresses
use of ACLs on database objects, gives an approach to implementing GRANT/REVOKE
with high assurance, describes SeaView as an example of a balanced assurance approach,
and discusses three approaches for providing at least limited view-based DAC with high
assurance.

» Section 6 contains a summary.

SECTION 2
BACKGROUND

This section provides background requirements and terminology that forms the basis for the
discussion of current database practice in Section 3, issues in Section 4, and the description of
research efforts in Section 5. Section 2.1 presents the TCSEC feature and assurance requirements
for DAC. Section 2.2 briefly describes typical OS DAC mechanisms. Basic relational database
terminology is presented in Section 2.3.

2.1 TCSEC REQUIREMENTS

The TCSEC describes requirements for a secure operating system, with DAC as one of these
requirements. The TDI extends these requirements to DBMSs. A formal definition of DAC as given
in the TCSEC is as follows:

“A means of restricting access to objects based on the identity of subjects and/or groups to
which they belong. The controls are discretionary in the sense that a subject with a certain
access permission is capable of passing that permission (perhaps indirectly) on to any other
subject (unless constrained by mandatory access control).”

DAC mechanisms control a user’s access based on the USER-ID, the access type, and the specific
object being accessédlhe access type refers to the operation allowed to be performed on the
particular object. Examples of different access types against database objects include SELECT,
APPEND, and DELETE.

Security mechanisms can be implemented with varying degrees of assurance. The assurance of a
mechanism is proportional to the effort needed to subvert the mechanism. Low-assurance
mechanisms, are not analyzed as thoroughly nor implemented as carefully as high-assurance
mechanisms and may be easier to subvert. The DAC requirements can be broadly categorized into
two assurance areas, low and high assurance, which correspond to the DAC and associated assurance
requirements stated in the TCSEC for class CI through BI (discussed in Section 2.1.1) and classes
B2 through Al (discussed in Section 2.1.2), respectively. The TDI states that the DAC requirements
for a DBMS apply as stated in the TCSEC to every TCB whose policy includes access control of
subjects to named objects.

2.1.1 Requirements for Class C1 through B1

The DAC requirements for classes CI, C2, and Bl define the minimum basic DAC requirements.
The TCSEC states that for these classes, access control between named users and named objects
should be defined and managed by the TCB. The TCSEC also states that the enforcement mechanism
shall allow users to specify and control sharing of the named objects by named individuals or defined
groups or both. Although the TCSEC does not formally define a named object, in this document a
named objeds referred to as any identifiable object that can be shared among users and the named

1. In a system enforcing both DAC and mandatory access control (MAC), the user must only be allowed access to an
object when that access is permitted by both the MAC and DAC policies.

object need not uniquely identify information accessed through it. This definition of a named object
is derived from the 1988 draft of the TDI [TDI 88].

For class C2 and above, the access controls must be capable of including or excluding access to the
granularity of a single user. There is also a requirement for controls to limit the propagation of
access rights. The question of how to limit propagation of access rights and how to provide a
mechanism to revoke access rights is discussed further in Sections 2.3 and 3.1.2.

2.1.2 Requirements for Class B2 through Al

The DAC requirements for classes B2, B3, and A1l build upon those of the lower TCSEC classes
with the following additions at B3:

» The discretionary access controls “shall be capable of specifying, for each named object, a
list of named individuals and a list of groups of named individuals with their respective
modes of access to that object.

» ... “for each named object, it shall be possible to specify a list of named individuals and a
list of groups of named individuals for which no access to the object is to be given.”

» The TCSEC gives access control lists (ACLs) as the only example of a mechanism to satisfy
these requirements at B3 as opposed to lower levels where self/group/public controls are
included as an additional example mechanism.

Note that the TCSEC B3 requirements mention ACLs as an example (“e.g.,”). The specific
mechanism for satisfying the requirement for DAC granularity to lists of single individuals or groups

is implementation dependent. The additional DAC requirements imposed at the B3 level are
relatively easy to satisfy given an SQL or equivalent implementation of the DAC policy. The
difficulty in developing (and evaluating) high assurance DAC systems comes not from the B3 DAC
requirements, but from the assurance requirements, namely system architecture, and design
specification and verification requirements at the B2, B3, and Al levels.

The additional assurance requirements affecting the implementation of the DAC mechanism at B2
are listed below:

* The TCB is based on a clearly defined and documented formal security policy model that
requires DAC to be extended to all subjects and objects in the system.

* The TCB is internally structured into well-defined largely independent modules.

 The TCB makes effective use of available hardware to separate those elements that are
protection-critical from those that are not.

« The TCB modules are designed such that the principle of least privilege is enforced.
At the B3 level, the requirements are modified to add:

e The TCB is designed and structured to use a complete, conceptually simple protection
mechanism with precisely defined semantics.

» The protection mechanism plays a central role in enforcing the internal structuring of the
TCB and the system.

» The TCB incorporates significant use of layering, abstraction, and data hiding.

* The TCB complexity is minimized, excluding from the TCB those modules that are not
protection-critical.

Class Al additionally requires formal verification and documentation of the security policy model
and top level design to assure that the discretionary access controls employed in the system are
always invoked as part of the mediation for granting access.

2.2 OPERATING SYSTEM DAC MECHANISMS

Operating System (OS) DAC policies define protection on OS objects (e.g., files, directories). These
policies may be implemented within an operating system in several ways. The operating system
DAC mechanisms below are presented to allow comparison between them and DAC mechanisms
employed in DBMSs. Note that it is possible for a DBMS to rely on these traditional OS DAC
mechanisms to some degree (e.g., on the entire database, view definitions, tables) but not completely.
Given the expected large set of users of a generic database, the DBMS itself must provide protection
for fine granularity objects such as specific fields or values within a field in order to provide any
reasonable level of performance.

2.2.1 Owner/Group/Other

A very common OS DAC mechanism is that of protection bits. Each operating system object has
attached to it a set of bits for specifying access modes for different classes of users. The most
common implementation includes the classes of owner, group, and all other users. The first set of
bits specifies the read, write, and execute permissions for the owner of the file. The second set of
bits specifies the read, write, and execute permissions for all users in the object’s group. The last
set of bits specifies the read, write, and execute permissions for all other users on the system. Because
the protection bits are associated with the object, it is straightforward to determine which users have
discretionary permission to access an object and to revoke those access rights when desired.
Furthermore, propagation of access rights is directly controlled by controlling which user(s) can
modify the protection bits.

The permission bits mechanism meets the requirement for allowing users to specify and control
sharing of objects by named individuals or defined groups of individuals through the use of the
group permission bits. For controlled sharing by named individuals, the group consists of just the
named individual with which the object owner wishes to share.

At B3, the DAC requirements are strengthened to include controlled sharing of objects by named
individualsand defined groups of individuals through the system capability to specify the respective
modes of access or no access to named objects. The permission bits mechanism is limited to
specifying a single set of access permissions to an object by a single group. As stated before, this
group can specify a single individual and/or a defined group of individuals. However, this
mechanism can give only a single set of access permissions to that group. Therefore, this mechanism
is unable to specify the controlled sharing to individaald defined groups of individuals at the

same time and is unable to meet the B3 DAC requirements.
2.2.2 Capabilities

The capability mechanism associates an object access list (capability list) with each operating
system subject. This access list specifies each object the subject has access to and the set of access
modes to these objects allowed for the associated subject. Because capability lists are associated
with subjects, it may be difficult to determine which subjects possess access rights to a particular
object at any given time. This can complicate revocation of access rights. Typically, a user may
grant access to other users by providing a copy of the required capability. As a result, propagation
of access rights is more complicated to control. The capability mechanism provides an efficient
means of enforcing access control at runtime (e.g., It would be useful in DBMSs to be able to search
the user/subject profile to see if the subject has a right to a given view of a specific table). However,
this approach does require numerous entries per user for typical OSs and has difficulty with
establishing who has access to individual files. This approach appears to be capable of satisfying
the B3 DAC requirements.

2.2.3 Access Control Lists

Access Control Lists (ACLs) are similar to capabilities, except that a subject access list is associated
with each object. The access control list contains entries specifying the access permissions (and
exclusions) for individual users or groups to the associated object. This mechanism is used in many
operating systems and currently in all operating systems evaluated at B3 and higher. Because ACLs
are associated with objects, revocation of access rights and control of propagation of access rights
are easier than for capabilities. Of the three mechanisms described in this section, ACLs are
considered to be the most flexible and are the predominant DAC mechanism used in current high
assurance OSs.

2.3 RELATIONAL TERMINOLOGY

A database system is a collection of interrelated dataattadaseand a set of programs to access
that data, theatabase management system (DBMBg database contains information about one
particular enterprise. The primary goal of a DBMS is to provide an environment that is both
convenient and efficient to use in retrieving information from and storing information into the
database.

In arelational DBMS the data and the relationship among the data are represented by a collection
of tables, each calledralation. A column in a relation is called aitribute. A row of a relation
represents a relationship among a set of values and is caligle.&ach data value in a row under
acolumnis known as a&ementEach relation in a relational database can be conveniently described
by itsrelation schemarhe schema corresponding to a relation defines the name of the relation and
the names and data type information of all attributes that are contained in the relation.

2. Some operating systems have allowed applications to apply capabilities as a means of enforcing fine grained access
control with application-specific mode interpretation to the objects they implemented and made available.

3. In order to specify a list of individuals and groups with their respective modes of access to an object, the operating
system must search the capability lists of each individual or group for entries containing access to that object.

A view,which serves an important role in relational databasesyirtual relation that is derived
from other relations. The other relations can be either actual stored relations (sometimbasalled
relations to distinguish them from other view relations) or other view relations.

Views are desirable for two reasons. Sometimes it is not necessary for the users to have access to
the actual stored relations. An organization’s security policy may require that certain data be hidden
from a user or that only aggregate data be given to some users. Apart from security, certain
applications may require the creation of smaller, more specific sets of relations, better matched to
a specific users’ needs. Views can easily meet both requirements.

A view is specified by aiew definitionthat is written in SQL or some other data description
language. SQL is a standard query language for relational DBMSs which is also used to query and
update the data managed by the DBMS [Date 89].

SECTION 3
CURRENT PRACTICE FOR DBMS DAC

This section describes current practice for providing DAC in DBMSs. It begins by describing the
discretionary access controls defined within the SQL Standard [ANSI 92]. It then describes the
internal structure of the typical SQL engine and concludes by describing how the SQL engine
typically provides the DAC capabilities defined in SQL. This information provides a basis from
which to compare the approaches for achieving high assurance DAC as described in Section 5.

3.1 SQL AND DAC

The SQL standard, which is used by most commercial DBMSs, includes specific requirements for
enforcing DAC. There are three basic aspects to consider in SQL DAC:

1. What privilege types and access granularity may be specified,

2. How the DAC privileges are assigned, and

3. The use of views to further restrict access to underlying views or base tables.
These three aspects of SQL DAC are described in the following sections.
3.1.1 SQL DAC Privileges

In DBMSs, SQL is used to enforce DAC over database users’ (or groups of users) access to database
objects. These objects can be object definitions (e.g., database, table, or view definitions) or object
contents (e.g., table or view contents). User access to these objects is defined in terms of privileges.

For object definitions, the following privileges are defined:

Create: User is allowed to create additional objects of the appropriate type (e.g., create
database, create table within specific database)

Drop: User may delete specified object

Alter: User may modify the definition of the specified object

For object contents, the following privileges are defined:

Insert: User may create additional rows in the specified object
Delete: User may delete rows from the specified object

Select: User may retrieve values from the specified object
Update: User may modify the data within the specified object

References: User may specify a foreign key reference from the specified object schema to
the foreign key of another object

Index: User may create an index on the specified object

For stored procedures, or stored program units the following privilege is defined:
Execute: User may invoke the specified object

These privileges are used to define a user’s allowed mode of access to the associated object as a
whole. Whenever a user performs aquery (e.g., SELECT, INSERT, UPDATE, DELETE), the DBMS
ensures that the user has the appropriate permissions to access all the objects referenced by the query.

3.1.2 Assigning SQL DAC Privileges

Given the privileges defined above, there must be a mechanism for assigning these privileges to
users or groups of users and then revoking them when it is determined that the users or groups
should no longer have them. This is accomplished through the use of the SQL GRANT and
REVOKE statements. A particular concern is propagation of accessrightgiether a user given

some privilege can then pass on those rights to other users. This is controlled through an option in
the GRANT statement.

The user who creates a table in the database automatically becomes the owner of the table, and is
therefore authorized to perform any operation on the table. By default, no other user can refer to
the table unless the owner grants specific privileges to that user. The GRANT statement can be used
to grant a privilege on a DBMS object to one or more users, groups, or roles. When the clause WITH
GRANT OPTION is present in the statement, the users receiving the stated privileges have the
additional authority to extend these privileges in turn to other users. The general SQL syntax for
the GRANT command [ANSI 92] is as follows:

GRANT <privileges>ON <object>
TO <users>
[WITH GRANT OPTION]

The REVOKE command can be used to remove specific privileges from users that have previously
been granted privileges. The CASCADE clause, if specified, recursively revokes privileges from
users who have received the privilege from a user whose privilege has been removed. That is, the
privileges are taken away from not only those users that are specified in the REVOKE statement,
but also those users who were granted the privileges by the users specified in the REVOKE statement.
The cascading of revocations will continue through the chain of users who were directly or indirectly
granted the revoked privilege. The SQL syntax for REVOKE is similar to GRANT:

REVOKE <privileges>ON <object>]
FROM <users>
[CASCADE]

These two commands enable the defined privileges to be managed by the owners of the objects in
the database.

3.1.3 Use of VIEWS to Restrict Access

In addition to using the privileges described above to provide specific types of access to entire
objects, there is also a mechanism within SQL to provide access to only certain portions of the
contents of objects, or certain aggregate information about the contents of thé hjsds. done

through the use of views.

Views are basically canned (stored) queries. When a user creates a view, the SQL engine insures
that the creator of the view has permission to access all the views or base tables referenced by the
view before the view is stored in the database. Now the user can use this view to access the underlying
data in the specified way. Note that this access checking is normallpdignehen the view is

created, not when the view is used to access the underlying tables. This, in and of itself, does not
provide any additional form of access control, since the user who created the view can access the
underlying tables directly. However, what the user can now do is GRANT other users access to the

view they created. This has the effect that these other users now have access to the information
presented by the view, which they might not otherwise be able to access.

Views can restrict access in a number of ways:
» to specific columns, using SELECT or UPDATE,
» to specific rows, using the WHERE clause,

» to aggregates of the information accessed by the view, using the various aggregate functions
supported by SQL (e.g., SUM, AVE, MIN, MAX).

For example, consider the following base table:
EMPLOYEE(EMP#, NAME, DEPT, SALARY)

This table contains, for each employee, his or her employee number, name, department name, and
salary. Access may be granted to this entire table through a VIEW as follows:

CREATE VIEW V-EMP
AS SELECT*
FROM EMPLOYEE

The “*” is a wild card that represents all columns within the table. A finer granularity of access
control may be specified by restricting the user’s access to certain columns of the EMPLOYEE
table as follows:

CREATE VIEW V-EMP-LIST
AS SELECT EMP#, NAME, DEPT
FROM EMPLOYEE

A user’s access may be further restricted to specific rows within the EMPLOYEE table. For example,
a user’'s access may be restricted to only those employees within the accounting department with
the following view:

CREATE VIEW V-EMP-ACCT
AS SELECT EMP#, NAME, DEPT

4. When comparing access controls applied at the granularity of an object with access controlled at the granularity of
subsets of the objects contents, we will frequently refer to the entire object as a container.

FROM EMPLOYEE
WHERE DEPT = ACCOUNTING

A user’s access may also be restricted to only aggregate information about the rows within the
EMPLOYEE table. For example, rather than giving a user access to specific employee salary
information, the user may be presented with only average salary information for each department
with the following view:

CREATE VIEW V-DEPT-AVERAGE
AS SELECT DEPT, AVG(SALARY)
FROM EMPLOYEE
GROUP BY DEPT

Using this ability to create views, and then assigning specific privileges for accessing these views,
rather than granting direct access to the underlying views or base tables, a very rich set of DAC
controls can be specified for a database.

Given the privileges described in Section 3.1.1 and the use of views to further restrict access to base
tables, the DAC restrictions to database objects can be summarized as follows:

Object Privilege Granularity
Object Definition * Create N/A
Ex: ¢ Database * Drop
» Table * Alter
* View
Object Content * Insert Container
Ex: « Table Delete * Column
* View * Select * Row
* Update » Aggregate
» References Functions
* Index
Stored Procedure » Execute N/A

Table 3.1: Summary of SQL DAC Capabilities

3.2 THE TYPICAL SQL ENGINE

As was stated at the end of Section 1.3, current DBMS architectures typically place the entire SQL
engine inside the TCB since it is used to enforce DAC. Due to the size of the typical SQL engine,
such an architecture will make it extremely difficult to meet the B2 or B3 assurance requirements.
The approaches described in Section 5 describe how various parts of the SQL engine can be excluded
from the TCB in order to achieve higher assurance in the resulting DAC mechanism. As background
for the discussion in Section 5, this section describes the typical components of an SQL DBMS
Engine and how these components normally support the enforcement of DAC.

The design of a SQL engine in practice is heavily influenced by the need to provide good
performance. However, regardless of the actual design of the software, one can think in terms of
certain functions the SQL engine must perform. We will use the components described below to
provide a common framework for considering alternative security architectures. A SQL engine
normally includes the following primary components:

» Parser (Accepts queries submitted to the DBMS, determines whether a submitted query is
syntactically correct and translates the query into a form used by other DBMS components)

* Optimizer (Creates an execution plan which attempts to minimize the number of tuples that
must be fetched in order to satisfy a given query)

» Executor (Executes the execution plan and returns results)
In addition, the following smaller components deal specifically with DAC control:

» Access rights checker (Determines whether permissions allow the requested operations to
take place)

e Access rights grantor / revoker (Supports the GRANT/REVOKE commands)

Some form of interface is also provided to permit a user to submit requests to the SQL engine.
However, this interface is typically outside of the SQL engine. An evaluation interpretation has
determined that it is not required to use a Trusted Path for modifying or viewing DAC privileges,
so0 even this aspect of the user interface can reside outside theTh@Rngine itself is responsible

for fielding user requests (e.g., SELECT, INSERT, UPDATE, DELETE) while the user interface is
responsible for presenting this information to the user and facilitating generation of new requests
of the SQL engine. These components are depicted in Figure 3.1.

The Parser, Optimizer, and Executor tend to be very large, complex pieces of software, the inclusion
of which will typically prevent a TCB from meeting the B2 or B3 assurance requirements. On the
other hand, when the components directly doing the maintenance and checking of access rights can
be cleanly separated from other components, they are typically simpler and more suitable for
inclusion in a high assurance TCB. One should note that this separation is likely to come at the cost
of some performance degradation.

5. Interpretation C1-CI-01-86.

User Interface

Access Rights
Grant / Revoke | sQL
Parser Optimizer Executor Engine
Access Rights
Checker

Figure 3.1: The Typical DBMS
3.3 TYPICAL DBMS ENFORCEMENT OF DAC

Given the SQL DAC capabilities described in Section 3.1 and the SQL Engine components identified
in Section 3.2, this section describes how the typical DBMS enforces the SQL DAC capabilities.
We first talk about access rights management, and then enforcement of access controls.

Access rights are managed through the use of the GRANT/REVOKE SQL commands. Since most
DBMSs store access rights (privileges) in tables, the typical DBMS will use the SQL engine itself

to help process any GRANT/REVOKE requests. This is similar to the fact that metadata (the data
that defines the database, and its tables and views) is also stored in tables and accessed using the
same functions provided for accessing the data stored in the database. This is done normally for
convenience since the functions already exist, not out of necessity. However, this causes the bulk
of the SQL engine to be part of the TCB in order to support access rights management.

Depending on the DBMS, the access rights checker can perform access control checks during
various stages of a query. Typically, checks are done just after parse time to ensure that the user has
the correct permissions to access the referenced database objects using the given commands.
Checking can also be done after optimization time, or during each fetch. This access check is similar
to the type of access check that would be done whenever a user requests access to a file in an OS.
The DBMS must ensure that the user has the correct permission to access the object (e.g., SELECT
access to the table, CREATE TABLE access to the database, etc.).

If the DAC policy is based solely on access permissions for named objects such as tables, the TCB
could, in principle, include only the mechanism required to implement the GRANT/REVOKE
commands and enforce access rights checking on the named objects. This would require separating
out this functionality from the rest of the SQL Engine. The reason then for including the entire SQL
Engine in the TCB is the convenience of using it to store and retrieve access rights data stored in
tables, the performance advantages of an integrated SQL Engine, and the desire to reuse an existing
SQL Engine without major modification. This results in the TCB as depicted in Figure 3.2.

Access Rights
Grant / Revoke | Entire
Parser Optimizer Executor SQL

Access Rights Engine
Checker

Figure 3.2: The Typical DBMS TCB

Organizations may well want to enforce a policy in which access rights depend on the contents of
the database. This can be done by providing DBMS access controls based on views. However, to
correctly enforce such a policy one must trust that the views are correctly interpreted. To provide
a DBMS mechanism to enforce such a policy, one must trust that queries are correctly evaluated.
View based DAC is discussed in detail in Section 4.2.

Now that we understand how DAC is typically done, we consider a few specific examples from
evaluated DBMSs to see how they vary from implementation to implementation.

Trusted Oracle

The enforcement of DAC in Trusted Oracle7 is identical to that in Oracle7. Trusted Oracle7 only
makes claims to the fact that they protect access to the contents of objects (e.g., base tables, views).
This means that they protect access to view definitions, to ensure that only authorized users can
access the view, but they make no claims about correctly interpreting the view, or that the filtering
capability of views is even part of their DAC policy. This has been deemed acceptable for satisfying
the TCSEC DAC requirements that all named objects be protected by DAC.

Informix-OnLine/Secure

Informix-OnLine/Secure’s DAC enforcement is similar to that provided by Trusted Oracle?7. They
protect the contents of objects but do not make any claims as to the correctness of view
interpretations, nor do they include the filtering capability of views in their DAC policy.

Achieving High Assurance BC

As neither of these DBMSs was targeted above the Bl level, they were not required to meet the
architecture and minimality assurance requirements that higher assurance levels require. For those
DBMSs that are targeted at these higher levels, the challenge is to determine ways to exclude parts
of the SQL engine from the TCB while still providing adequate DAC functionality. Various
approaches to achieving this goal are described in the Section 5.

SECTION 4
HIGH ASSURANCE DAC ISSUES

This section discusses several significant issues related to DAC policies and implementing high
assurance DAC in DBMSs. Section 4.1 addresses weaknesses of DAC policies even when the DAC
mechanism is correctly implemented. Section 4.2 discusses issues introduced by using views as a
mechanism for enforcing DAC. Section 4.3 considers the issue of balanced assurance.

41 EFFECTIVENESS OF DAC POLICIES

DAC policies in information systems regulate the management, protection, and distribution of
sensitive information based on a decision of the information owner. DAC policies can be used to
implement organizational need-to-know policies in which access to information is controlled based
on the information owner’s determination that a userehesgquirement to access the sensitive
information in order to perform official tasks or services. Operating systems enforce DAC policies
on operating system objects (e.g., files). DBMSs enforce DAC policies on DBMS objects (e.qg.,
tuples, data elements) which are more granular (and may be stored in files). DBMSs also enforce
DAC policies based on the content of the object (content-dependent DAC) or based on the context
of the object (context-dependent DAC).

For example, a DAC policy defining access control on employee information may be implemented

in an operating system by restricting a user’s access to the employee file. A DBMS, however, may
implement this same policy to a finer granularity. The DBMS may limit access to only selected
attributes (e.g., all attributes but salary). The DBMS may also enforce a content-dependent policy
based on data stored in the object (e.g., Joe has access to employee records for the engineering
department) or a context-dependent policy based on the implicit relationships within the object
(e.g., Joe has access to employee records for employees he supervises and those below him in the
chain of command). Content and context dependent access control is described in more detail in
Section 4.2.

In considering high assurance DAC, it is important to be clear about different aspects of assurance.
The TCSEC considers the system access control policy and its model as being integral to the overall
assurance that can be provided by an implementation of a trusted system. Other trusted system
criteria, particularly the European Information Technology Security Evaluation Criteria (ITSEC)
[ITSEC 91], consideeffectiveness assuranas well ascorrectness assuran@spects of policy

and its implementation. The ITSEC defiredtectivenesas how well security is provided in the
context of its actual or proposed operational use, wbileectnesss how accurately a component
reflects its security requirements. It is noteworthy that the ITSEC'’s division between effectiveness
and correctness places many implementation considerations for TCSEC B2+ requifergents

TCB minimality, structure, modularity, information handling, etc.) into the categagrodctness

rather thareffectivenesdt is also noteworthy that ITSEC effectiveness requirements bring together
policy and implementation considerations as part of the architectural abstraction. This appears to
be sound reasoning, as it entertains the question, under effectiveness assurance, of whether there
existsany possible implementation of the policy that would enforce the security objectives of the
enterprise; while correctness assurance issues pertain directly to the properties of one specific

implementation. With this context, one can consider more precisely how to interpret the term high
assurance DAC in light of known limitations of DAC for controlling access to information.

It is well-known that discretionary access controls have fundamental limitations [NCSC 87]. These
limitations are effectiveness issues. That is, no matter how much assurance is provided that the
policy is correctly implemented (i.e., correctness assurance), the issues discussed below will apply
as long as the policy permits propagation of access rights or replication or modification of persistent
objects. This section discusses some of these limitations. The rest of this document then focuses
on correctness assurance with the assumption that the chosen system DAC policy is sufficient to
enforce important policy requirements of the using organization (i.e., effectiveness assurance
requirements are fulfilled).

4.1.1 Propagation of Access Rights

MAC access rights are determined based on security attributes of subjects and objects, and these
MAC security attributes are not changeable by standard users. Unlike MAC, in DAC the
determination of who has access rights to an object and how (or whether) these rights may be given
to others can be made by the owner of an object. Each object has an owner (the creator of the object),
and the owner may decide to grant accesses to other users. Many different implementations of the
discretionary access control policy exist, each giving various forms of access control on objects to
the object owner. In many systems, the owner can decide to extend the authority to other users.
Hence, access permissions can propagate through direct and indirect grant of permissions. Given
this type of policy, one must consider whether or not it is decidable if there is a reachable state in
which some subject may possess a particular access to an object (i.e., “the safety p?oﬁlamé’).

users can grant access rights to others under the DAC policy, safety has been shown to be undecidable
by Harrison, Ruzzo, and Uliman [Harrison 76] for many access matrix models. A summary of the
current status of the safety problem is found in [Sandhu 89].

Researchers have suggested new mechanisms designed to solve the problems with DAC. These
efforts include:

» Propa@ted Access ControPAC). Graubart proposed PAC lists (PACLs) as a mechanism
for enforcing the ORiginator CONtrolled (ORCON) security policy [Graubart 89]. PAC
shares some of the characteristics of both MAC and DAC.

* OwnerRetained Access ContrdDRAC). McCollum proposes the ORAC mechanism to
enforce identity-based access controls [McCollum 90]. With ORAC, ACLs propagate to
new objects. The resulting ACL on the new object is the intersection of the ACLs on all
objects from which the new object was created.

6.In the terminology of Harrison, Ruzzo, Ullman, a configuration of a protection system is “safe” with respect to a
particular access right if there is no sequence of the commands permitted by the system which can add the right to a
cell in the protection matrix where it was not found in the initial configuration. The safety problem refers to
determination of whether a given configuration is safe for a particular right. [Sandhu 89] provides the following
description in current terminology of the safety problem. “In its most basic form, the safety question [HRU] for access
control asks: Is there a reachable state in which a particular subject possesses a particular privilege for a specific
object?”

» Typed Access MatriXTAM). Sandhu suggests a new access matrix model, the TAM, which
introduces strong typing into the Harrison, Ruzzo, and Ullman model [Sandhu 92].

» Generalized Framerk for Access Control GFAC). Abrams proposed GFAC as a
framework to go beyond the traditional thinking of MAC and DAC and formulate a unified
general access control policy [Abrams 91].

4.1.2 Trojan Horses

Trojan horses pose the most serious threat in systems that enforce only a DAC policy. The Trojan
horse problem arises from the difference between a user’s intentions and the user’s privileges. Any
program executed on behalf of the user executes with that user’s privilege, but may not match the
user’s intentions. This program may violate the user’s intentions through its use of the DAC
mechanisms in several ways.

One way for a Trojan horse to violate the user’s intentions is through direct manipulation of the
object’s privileges. For example, suppose it is known that Tom uses a DBMS application supplied
to him by Dick (or some other malicious user). Dick could have embedded a small piece of code
(i.e., the Trojan horse) into the application. When Tom executes the application, it is given Tom’s
DAC privileges. Assume that Tom has GRANT with the WITH GRANT OPTION access to the
Employee relation. In this case, if Tom executes the application with a Trojan horse, the Trojan
horse code will now have the ability to GRANT other user’s access privileges to the original
Employee relation. This example illustrates the risk that is taken when giving GRANT with the
WITH GRANT OPTION access to any object. While this risk cannot be prevented, it can be detected
through careful auditing and audit analysis.

Another way for a Trojan horse to violate the user’s intentions is through copying the information
into another object and then grant additional access to the copied file. This time assume Tom does
not have GRANT with the WITH GRANT OPTION access to the Employee relation, only READ
access. Because the application with the Trojan horse is executing with Tom'’s privileges, the Trojan
horse can read the EMPLOYEE relation and write a copy into another relation cal@0Rhe
OF-EMPLOYERhat gives Dick read access. The copying takes place without Tom’s knowledge
and Dick now has read access.

Additional restrictions may be placed on Tom’s access to the EMPLOYEE relation in an attempt
to limit the Trojan horse effectiveness. However, as long as Tom retains access to the EMPLOYEE
file and the ability to share information with other users (i.e., as long as the system remains useful),
the DAC mechanisms will remain vulnerable to Trojan horse attacks. For example, if Tom was
restricted from copying the EMPLOYEE relation, the Trojan horse could relay the information
within the EMPLOYEE relation to Dick via a mail message. MAC was specifically designed to
prohibit embedded Trojan horses from leaking information from objects at higher security levels
to objects at lower security levels.

4.2 DBMS DAC POLICIES

Given the variety of SQL DAC privileges and the expressive power of views, a wide variety of DAC
policies can be enforced in a DBMS. Enforcing these policies with high assurance has a number of
implications which are discussed in the subsections below.

DBMS DAC policies are generally divided into the following four categofies:
» Content Independent DAC
» Content Dependent DAC
» Context Independent DAC
» Context Dependent DAC

Content Independent DAC refers to the ability to control access to an object regardless of the contents
of the object (i.e., only by name). This includes all the privileges that might be granted to the object
(e.g., insert, select, update, delete) as well as the ability to select on particular columns of a table,
as long as aggregate functions are not used. Given this, the query results are independent of the
values of specific attributes contained within a table. This type of DAC can be provided in standard
SQL.

Content Dependent DAC refers to the ability to control access to an object based on the contents
of the object. This includes using the WHERE clause to check for particular values or relationships
between values, as well as aggregate functions used in a SELECT statement. Using content
dependent DAC, query results will depend on the values of the various attributes contained within
a table. This type of DAC can be provided in standard SQL through views.

Context Independent DAC refers to DAC that is not affected by the context of the request. Context
can include: time, date, day of week, terminal id, previous tuples accessed, etc. This type of DAC
can be provided in standard SQL.

Context Dependent DAC refers to DAC that takes into consideration the context of the request.
Depending on the type of context being considered, a highly sophisticated mechanism might be
needed to keep track of this information. For example, if the previous tuples accessed are considered
part of the context, then some type of history mechanism must keep track of this information.
However, other types of context, such as time, date, day of week, or terminal ID should be easy to
provide. The specific context that can be considered is dependent on the features provided by the
DBMS.

Although enforcement of content dependent DAC is not required for TCSEC evaluation,
organizations may well want to enforce a policy in which access rights depend on the contents of
the database. This can be done by providing DBMS access controls based on views. However, to
correctly enforce a view-based DAC policy, one must trust that the views are correctly interpreted.
This raises several issues with respect to enforcing view-based DAC with high assurance.

4.2.1 Complexity of View Mechanism

One important issue is the complexity involved in correctly interpreting views. A view is computed
based on the contents of the underlying database. This might appear to be similar to interpreting an
operating system object defined by bits that are part of the contents of a disk. However, there are
obvious differences here:

7.For more discussion on content and context based access controls see [Marks 94].

(a) the view is computed from objects that are directly accessible by users, whereas (with
proper encapsulation) neither the operating system objects used to store the database nor
the disk sectors used to store the files should be;

(b) views are user defined as opposed to being defined by the system; and

(c) the computation of view instances is typically much more complex than the other
instances.

If the DAC policy is based on restricting user access only to data accessible through specific views,
it is necessary to show that the “right” data is returned as the result of executing a view. To believe
the correct data is returned, one must trust the mechanism computing the view. Because of the
complexity of this mechanism for general views, it will be hard to achieve high assurance for a
general view-based DAC mechanism.

Complexity of the mechanism required to enforce the system DAC policy is a central issue for high
assurance DAC. As noted in Section 2.1.2, the TCSEC introduces several assurance requirements
at B2 which constrain the potential system architectures which may be used. If a large complex
mechanism such as a SQL compiler must be included in the TCB these requirements can be
extremely difficult to meet. The introduction of additional assurance requirements at B3 makes it
virtually impossible for such a complex mechanism to meet these requirements.

For enforcement of DAC controls on tables or databases, the complexity of DAC enforcement will
be similar to DAC enforcement in an OS. However, if views are used for access control, a much
more complex mechanism may be required. The most difficult problem encountered with views is
the size of the TCB. It tends to be very large if the view mechanism is implemented the same way
in high assurance DBMSs as in untrusted DBMSs because almost the entire DBMS needs to reside
in the TCB. All the components of the DBMS involved in computing the view need to be considered
as a part of the TCB responsible for enforcing DAC. For this TCB, there must be sufficient assurance
that the correct data values were returned to the user in concert with the discretionary constraints
defined in the view.

To overcome this difficulty, researchers have suggested various approaches for defining high
assurance DAC. Most of these approaches revolve around simplifying the view mechanism. These
approaches place restrictions on the types of views that can be generated in order to simplify the
TCB. These approaches are discussed in Section 5.

4.2.2 Disjoint vs. Overlapping Objects

Another issue associated with enforcing DAC through views is the fact that views can overlap. Base
tables are disjoint by definition. Views are not onlgot disjoint in general, but it can be
mathematically hard to determine by inspection if their instances do or do not intersect. Further, a
pair of view instances may be disjoint at tigend they may intersect (or fully coincide) at time.t

However, it is clear that &tchtime (at a very low level of abstraction in the DBMS engine) it is
possible to compare individual attributes in individual tuples of a base table. This is because the
low-level engine is capable of identifying each attribute of a tuple in terms of its data type (extracted
from the schema) and from implementation detail about its displacement and extent from the base

address of the tuple.

Thus, if a view is defined on a single table and includes the primary key, it is possible for the DAC
enforcement layer of the TCB to evaluate projections of expressions oRRtablbe form

R.attr; <relOp> R.attr;

that correspond to view WHERE clause expressions extracted from the definition dfofiidiae
form

V.attr; <relOp> V.atty

where<relOp> is any of the standard comparison operaferg.,< < =# > > [0 [0 =). This
enforcement can be performed directly from the schema and from definitions of the view that could
be accessible in a canonical form to the DBMS TCB in an association with named users. The DAC
view instantiation mechanism would not need to rely on or be based on the SQL compiler or any
of its supporting mechanisms. Indeed, even were the query to be modified by the untrusted parser,
compiler, optimizer, or SQL engine, the test could still be applied to ensure that the only data
extracted would be data to which the user possessed a valid SELECT, DELETE, UPDATE, or
INSERT right.

4.2.3 DBMS Functionality and the Safety Problem

The complexity of view based DAC policies can also make it difficult to determine what data a user
can access since the data may be accessed directly or through a view. Access through views is
preferred in many real applications over granting users direct access to the base relations. Access
through views is a means of ensuring that the conditions of access or update to the database are
controlled in ways that relate to the content of the ‘relevant’ and ‘important’ elements and
relationships within the database. These elements and relationships are determined by a person
assigned administrative duties over all or a portion of the database. Consequently, it is expected that
users will, in general, be able to query or update data through a view that they cannot access directly
in the base relations — indeed, SELECT or UPDATE access to the base tables may be explicitly
prohibited to these users. As a result, databases present even more complexities than operating
systems for determining which users can ultimately gain access to particular data.

In some cases, analysis may show that an individual user is on an exclusionary list for selecting on
a specific base relation, while the user has select access to one or more views that permit select and
update on a subset of a base relation or set of base relations. Since different named views may
overlap, access to several named views may together result in the user being able to select or update
on theentirerelation. The above view properties hold independent of the means by which views
and their interpretation/enforcement have been implemented in the DBMS architecture.

This complexity gives richness to the meaning of DAC and its relationship to a provable ‘safety’
property. In a container-based system, presence of an ACL is taken to mean that a user may obtain
directaccess to a container object if the (userlD, mode) pair appears on the container object’s ACL.

However, the introduction of content-based addressing characteristics of a DBMS leads to the
possibility of an individual user having numerous means of addressing sSadfedsjatabase. If

each of these means is achieved through views available to a user, then to claim that a user cannot
directly view a given subset of a table is to claim that the user does not have access to any view
whose defining WHERE clause identifies all or parSoit is a difficult problem to determine
whether this is the case. Hence, the strongest claim one could make about safety for DBMS access
is probably of the form: a user may SELECT (or UPDATE) a pofioha base relation if the user

is authorized to some set of vieWlsvhose WHERE predicate evaluates to a set that inchhialed

the user has SELECT (or UPDATE) rightsMorhis property probably does not have an only-if
counterpart.

Note that this characterization\6findSis not very useful, and the restriction is not very satisfying.

This property is independent of layering or modularity. It is much closer to trying to say something
about a dynamically extensible TCB, since each database administrator may add a new view to the
system at any time, and this new view immediately changes the access properties of the set of users
who have access to the new view. It is a mathematically hard problem to identify the range of each
view, even though the domain and the selection predicate are both well-defined.

4.3 BALANCED ASSURANCE

The original notion of balanced assurance was introduced by the SeaView project [Lunt 88]
extending ideas in [Schaefer 84] and [Shockley 88]. It provided “a methodology for achieving a
high level (Class Al) of assurance for a system as a whole by applying high assurance techniques
to the part of the system enforcing the MAC policy while requiring assurance measures equivalent
to C2 for those parts of the TCB enforcing non-mandatory access control policy.” [Irvine 92]

Many proponents of balanced assurance have based their argument on the basic fact that any
implementation in which the DAC enforcement mecharnissfully constrained by the underlying

MAC enforcement mechanism cannot, by its very nature, violate the MAC policy and lead to a
compromise of the MAC policy’s safety properties. This argument can readily be shown to be sound
relative toall of the system’s lattice-based confinement and non-interference properties: if the DAC
enforcement mechanism is fully constrained by an adequate MAC enforcement mechanism, neither
overt nor covert channels can be exercised by the DAC component in a B2 or higher security
architecture.

It is clear that an ineffective policy can be implemented soundly (correctly and in a form that can

be assessed by a certifier or evaluator). It is also clear that an effective policy can be implemented
unsoundly (with errors, poor structure, no information hiding, unsound coding discipline, etc.).
Many balanced assurance advocates have taken the position that, because of the lack of a DAC
safety property as described in Section 4.1, no correctness assurance requirements beyond those of
C2 should be levied on the portion of a TCB that enforces DAC.

There are actually two distinct aspects that are embodied in these descriptions of balanced assurance:
giving a class rating to the composed system TCB and providing the appropriate level of assurance
for each TCB subset.

The first aspect is that a TCB composed of a Class A1 TCB enforcing a MAC policy and a Class
C2 TCB (in particular a DBMS) should be considered a Class Al system TCB. In essence, this is
a naming issue. What does one call a C2 DBMS on an Al operating system? Given that the SeaView

project was required to produce an Al DBMS, the project team proposed calling the composed TCB
Al. The TDI did not embrace balanced assurance, concluding for hierarchical composition of TCB
subsets that the composed TCB could not receive a rating [Tinto 92]. Note that this is different than
partitioned composition used for networks where the composed TCB does receive a rating.

The second aspectis that regardless of the TCSEC Class associated with the system TCB, the degree
of (correctness) assurance needed for trusted components should be proportionate to the security
risks the component poses [Sterne 94]. In particular, one needs high assurance for a TCB that
enforces a MAC policy, but may not need a similar level of assurance for other TCB subsets that
enforce a more restrictive policy. The TDI fully supports this aspect of balanced assurance. Although
this document concentrates on how to provide high correctness assurance for DAC mechanisms for
those environments where such assurance is required, there are many environments where it is
sufficient to provide a lower degree of assurance to a DAC mechanism which is constrained by a
more highly assured underlying MAC mechanism. SeaView is described in the next section as an
example of an approach based on balanced assurance.

SECTION 5
APPROACHES TO IMPLEMENTING HIGH ASSURANCE DAC

A number of different approaches can be used to implement DAC in a high assurance DBMS,
reflecting divergent perspectives on the degree of high assurance and the meaning and uses of DAC
within a multilevel secure (MLS) environment. Each perspective has its strengths and weaknesses,
and the correct choice of approach depends on the requirements of specific applications. This section
describes the various approaches suggested by different researchers for implementing DAC in high-
assurance DBMSs.

This section first provides a brief description of using ACLs on database objects including their use

in a prototype DBMS. It then presents a method for providing a high assurance rights management
mechanism (i.e., GRANT/REVOKE) in Section 5.2. The remainder of this section addresses
enforcement of these rights. Section 5.3 describes the SeaView approach that is based on balance
assurance. Section 5.4 discusses the ASD Views research effort from TRW. Section 5.5 describes
another approach suggested by Wilson of TRW for restricting views in order to achieve higher
assurance. Section 5.6 describes a framework for reasoning about different DAC mechanisms
including details opviews, qviewsgnduviewsand a discussion of which of these mechanisms can

be implemented with high assurance.

5.1 ACCESS CONTROL LISTS

The most direct approach in implementing DAC in a DBMS is to use an Access Control List (ACL)
(or equivalent) mechanism to enforce access to DBMS objects. In theory, this approach can be
implemented at any level of granularity (i.e., database, table, view, row, column, or element) within
the DBMS. However, complexity and performance considerations dictate a limit to the applicability
of the ACL mechanism.

At the database-level granularity, an ACL is associated with the entire database. The ACL contains

a list of all the subjects that are allowed to access the database together with the types of access
rights (e.g., create session, create table) of these subjects to the database. The entire database can
easily be stored in one or more operating system (OS) files, and then the OS DAC mechanism could
be used directly to restrict accesses to the database. This removes the need for a separate DAC
mechanism for the DBMS. Applying DAC only at the database-level, however, is restrictive and
loses most of the flexibility of discretionary access controls.

For table-level DAC, an ACL is associated with each relation of the database, giving the names of
the users or groups allowed access to the table. Access rights that are appropriate to the table level
include basic data manipulation functions (e.g., select, insert), the definition or modification of
active data functions (e.qg., triggers and stored procedures), view definition functions, and functions
that allow the modification of the relation definition (e.g., create index, drop index). To be granted
table-level DAC, users normally must first be granted access at the database level. Like database-
level DAC, table-level DAC is easy to implement. Though table-level DAC is more flexible as
compared to database-level DAC, it is still restrictive to only provide DAC for the database as a
whole and for tables.

ACLs can also be associated with each view. Such an ACL specifies the users allowed to use the
view. A view can restrict the information that a user is allowed to access. Access rights that are
appropriate at the view-level include those appropriate at the table-level (e.g., select, insert, stored
procedures, create index). The power of the SQL language in specifying view-definitions makes
view-level DAC an excellent level of granularity for controlling access to DBMS objects. (Note
that using ACLs only constrains access to the view definition. This does not imply anything about
the correctness of the view interpretation.)

At least one commercial DBMS vendor implements an ACL mechanism in addition to SQL to
provide access control to DBMS objects. Trusted Rubix controls access to databases, tables, and
views via an ACL mechanism. Database ACLs support browse, modify, lookup, and grant privileges.
Trusted Rubix tables and views support delete, insert, and grant privileges for whole tables and
reference, select, and update privileges for columns.

The ACL mechanism could, in theory, be applied to DBMS objects of finer granularity. However,
these implementations become difficult to manage and require large storage overhead and are
therefore less commercially viable.

ACL mechanisms which protect database objects are of similar complexity to ACL mechanisms
found in operating systems. One additional complexity is the use of GRANT/REVOKE to alter
DAC privileges. The next section shows how GRANT/REVOKE can be handled with a simple
mechanism suitable for a high assurance implementation. Since ACL mechanisms have been
implemented in high assurance operating systems, this type of mechanism can be used to provide
high assurance DAC for DBMSs. As noted above, however, the DAC policy implemented by using
ACLs on view definitions does not of itself control the actual data content provided by executing a
view. While content control is not required for evaluation, it may be required for enforcing the
security policies of some organizations. How to provide this type of content control through views

is discussed in Sections 5.4-5.6.

5.2 HIGH ASSURANCE GRANT/REVOKE

As indicated in Section 3, the typical DBMS stores access rights in tables and uses the SQL engine
to access these tables. The use of the SQL engine is mostly a convenience, rather than a requirement.
Since the SQL engine already exists, it is a natural mechanism to provide access to the data stored
in the access rights tables. This then avoids the need to develop separate code for managing these
tables. This is fine for providing the required functionality, but flies in the face of the assurance
requirements because an SQL engine is large and complex. Typical implementations lack the
structure required to separate out a subset of the SQL engine which is sufficient to support GRANT/
REVOKE. Thus, the first step in providing high assurance GRANT/REVOKE is to develop a
separate mechanism for storing and manipulating the access rights stored in the database.

To provide high assurance, the mechanism must be as simple as possible. System R used the
following algorithm to enforce GRANT/REVOKE along with storing all the access rights in a single
table [Griffiths 76; Fagin 78]. This algorithm is simple enough that it should be relatively
straightforward to implement in a separate high assurance mechanism that is independent of the
SQL engine. The algorithm works as follows:

Users may grant access only if they are the owner of an object or have been granted access with
grant option. Users may only grant privileges that they hold. All grants must list explicit modes that
are being passed and the system time stamps all grants and records the id of the grantor. This
culminates in the following attributes being recorded for each grant: subject to whom granted,
privilege being granted, table to which authorization refers, timestamp, userid of grantor, and with/
without grant option. These attributes are respectively represented by the following symbols: s, p,
t, ts, g, go.

Users who grant may also revoke. In System R, revocation was automatically recursive or cascading.
The result of user g revoking p on table t from user s is defined to be the same as if all the
authorizations for p on t granted by g to s had never been granted. Revocation was performed as
follows: suppose user g revokes privilege p from user s. If there is no authorization for the privilege
on the table granted by g to s, then the revoke is ignored. Otherwise, every authorization for privilege
p on table t granted by g to s is deleted. If at least one of the deleted authorizations was with the
with grant option, then the authorizations granted by s may also need to be revoked. Let ts be the
minimum timestamp of S’s remaining authorizations for privilege p on table t with the with grant
option (if none still appears, then let ts = infinity). Then, each grant by s of privilege p on table t
with a timestamp smaller than ts is deleted from the authorization table. This procedure is repeated
for each user from which any authorization is revoked.

Given that this algorithm is fairly simple, it should be relatively straightforward to implement a
small high assurance mechanism which implements this algorithm and then directly accesses the
access rights table. Since access is only being performed to a single table, and no complex searches
need to be performed in order to determine where an entry in the table lies, the update mechanism
should be simple as well. If this or a similar approach is used, then the GRANT/REVOKE aspect

of the DAC mechanism can easily be implemented with high assurance.

5.3 SEAVIEW

The SeaView project developed research results in many areas of MLS DBMS policy design and
implementation. Of particular interest for DAC is the approach SeaView took to implementing DAC

in a high assurance MLS DBMS. SeaView relies on the underlying operating system TCB to enforce
MAC as depicted in Figure 5.1. Data of different levels is stored in operating system containers of
the appropriate level by decomposing multilevel relations into multiple single level relations.
SeaView can then provide a DBMS instance at the level of a subject wishing to access the database,
and this DBMS instance can run without the privilege to override the operating system MAC
controls.

The DBMS is untrusted with respect to MAC. The assurance that the MAC policy is correctly
enforced is exactly the assurance one has in the operating system TCB. This approach would
typically utilize a high assurance operating system as the platform for the DBMS. Since the DBMS
cannot cause a violation of the MAC policy, the SeaView developers argued that less assurance was
required for the trusted portions of the DBMS. Those trusted portions of the DBMS include the
mechanism enforcing DAC controls to data within the database. This approach does not provide
high (correctness) assurance DAC. However, it does provide DAC within a system for which there
is a high degree of assurance that the MAC policy is correctly enforced. This is precisely the balanced
assurance approach. While the SeaView architecture could be used in conjunction with a high

assurance DAC mechanism, one of its main advantages is the ability to provide high assurance
MAC with the use of a lower assurance single level DBMS.

Low Assurance DBMS
(enforces DAC)
(constrained by MAC)

High Assurance OS
(enforces MAC)

OS Objects Stored at various MAC levels

8) C S TS

Figure 5.1: General SeaView Approach

The SeaView architecture implements the extensible TCB concepts proposed by Schaefer and
5chell. Shockley and Schell refined these concepts and introduced tHegaBrsubsealong with

what they calledncremental evaluatiofor hierarchical subsets [Shockley 88]. Much of the TDI

is based on this Shockley and Shell paper.

5.4 ASD VIEWS

The ASD_Views project was a conceptual design for a high assurance MLS DBMS with views as
the object for MAC and DAC [Garvey 88]. To limit the size of the TCB, this approach restricts the
generality permitted in the definitions of secure views to a fraction of the full power of the relational
calculus, thus minimizing the code needed to ensure the correct execution of secure views. To restrict
the size of the query language available to define a secure view, views can be defined to use a subset
of the relational algebra. Views can only be defined by the System Security Officer (SSO) using a
trusted path. Users can only access data through views. Whether and how a user can access a
particular view is determined by the access list for the view. The SSO can add or delete permissions
for a user or a group via GRANT and REVOKE commands. Permission to grant or revoke access
cannot be given to any user other than the SSO. Specific permissions to a view can be explicitly
denied via a “deny” command. In the event there is a conflict in permissions between permission
granted or denied via user name and permission granted or denied via group membership, the
permissions explicitly associated with the individual take precedence. It is worth noting that
although the functionality available in the view definition in ASD_Views is restricted, the flexibility

is still greater than in a DBMS that allows only rows or columns in a relation as security objects.
The view definition for ASD_Views only allows a set of rows or columns from a single underlying
base table to be specified through simple selection and projection operations. Joins, aggregate
functions, and arithmetic expressions are not allowed.

The user or application program interacts with an untrusted SQL processor which provides a full
SQL interface built on top of the secure views processing done in the TCB. The code for processing
the query resides outside the TCB. The query processor decomposes the query into requests to read
rows from secure views defined by the TCB. Thus, all query processing is done over the secure
views implemented within the TCB. This would result in the following TCB:

L Outside
Parser Optimizer Executor TCB
Access Rights
Secure Views Grant / Revoke Inside
Processor TCB
Access Rights
Checker

Figure 5.2: Proposed ASD_Views TCB
55 RESTRICTED VIEWS

Wilson, also of TRW, proposed an approach that would provide the full generality of SQL by
assuring the DBMS is trusted to be correct, i.e., to execute queries correctly [Wilson 88]. This
approach partitions the DBMS into a “non-malicious” part that searches the database and a trusted
part that verifies that the data found satisfies the user’s query. The trusted part is an SQL interpreter
with the remainder of the code being untrusted. This approach promises that every tuple returned
to the user satisfies the search criteria because a post-check is performed on the tuples returned to
ensure that they meet the search criteria. The code in the TCB establishes the search criteria and
checks the results against the criteria. If it can be proved that the returned results meet the criteria,
then the rest of the code can be placed outside the TCB. This results checking code must be non-
bypassable, thus ensuring that if the other code makes a mistake, unauthorized data will not be
returned to the user.

This implementation approach, shown in Figure 5.3, is as follows: a trusted process receives queries
from the user terminal or application process. It expands the query to include definitions of any
views being accessed, and passes the expanded query both to an unmalicious database searcher and
to a relatively small, trusted query interpreter. The unmalicious searcher searches for the tuples in
the database that satisfy the expanded query. The purpose of this code is to find the tuples as fast
as possible. It also performs query compilation and optimization, index management, and other
functions involved in searching for tuples. It passes the tuples to the trusted interpreter, which verifies
that they indeed satisfy the expanded query. Although the trusted interpreter might be relatively
slow, performance should not be greatly affected because the interpreter normally works on only a

fraction of the tuples that would have to be accessed by the database searcher.

This approach is similar to the Integrity Lock approach for MLS DBMSs [Knode 89]. The basic
idea is to let the complex SQL engine perform its search and retrieval functions as effectively and
efficiently as possible outside the TCB and then verify that the correct results are returned to the
user based on the search criteria. This approach then has the same potential flaws as the integrity
lock approach in that the untrusted SQL engine could signal whatever information it desires to the
user. Wilson discusses some ways to control this covert channel [Wilson 88]. However, because of
the channel, it is unlikely that this approach would suffice for a high assurance DBMS using views
as the object for MAC. However, a hybrid using this approach for view-based DAC together with
traditional enforcement of MAC on labeled objects such as tuples may be possible.

Receive query, return answer

TRUSTED
sSQL

Find Interpreter:

the data Verify Concurrency
fast the data Manager,
UNTRUSTED satisfies etc.

the query UNTRUSTED

TRUSTED

Protect database from modification
TRUSTED

Figure 5.3: Assured “Correct” Architecture
56 U-, P-, AND QVIEWS

This section describes Schaefer’'s approach to defining three degrees of assured DAC policy
[Schaefer 94]. These are Uninterpreted DAC Viewsevs), Interpreted Assured Primitive Views
(pviews), and Interpreted Qualified Viewsr/iews). Each of these is described below.

5.6.1 Uninterpreted DAC Views (views)

The Uninterpreted DAC View&iviews)approach can be used to provide high assurance DAC to
named objects, specifically: the database, metadata, base tables, view definitions, and stored
programs. This is done through the use of ACLs associated with each of these objects. High
assurance can be provided in this case at the same level of assurance that can be provided by an OS
using ACLs. The entire SQL engine can be excluded from the TCB as it is not needed to enforce
the access control policy to these objects. The SQL engine can request access to these objects on a
user’s behalf in a manner similar to applications running on an operating system. This is shown in

Figure 5.4. More information on implementation approacheas/ewss available in [Schaefer 94].

However, as the name implies, the security policy associatedvigivsdoes not make any claims

as to the correct interpretation of views. Thus, this approach provides a high degree of assurance
that only authorized users will be able to access a view definition, but it makes no claims that, once
accessed, the view will be interpreted correctly by the SQL engine. This method treats view
definitions as just another object to be protected, rather than the stored program that it represents.

I Outside
Parser Optimizer Executor TCB
Access Rights
. Grant / Revoke .
Real Object . Inside
Fetch /Store for Real Objects TCB
Access Rights
Checker
for Real Objects

Figure 5.4: uviews TCB

The policy described here is the same basic approach that has been used by both Oracle and Informix
in their evaluated products. They both protect all objects as containers of information, but they do
not make any assurance claims as to the correct interpretation of defined views. The approach they
have taken is capable of achieving high assurance, but they have not yet done so since they were
both targeted (and are currently evaluated) at B1. This approach is exactly the same as the ACL
approach described in Section 5.1.

5.6.2 Interpreted Assured Primitive Views pviews

The Interpreted Assured Primitive Viesviews)approach extendsviewsto include the virtual

objects formed from Primitive View Definitions and their manipulation. The primitive view is a
simplification of the standard SQL view abstraction. Each ngovexlvis defined to relate to
precisely one base tabgiewsare built from the base table by selecting a subset of the tuples and
“projecting out” some of the attributes. The determination of whether or not to include a particular
tuple is based on comparisons of the values of an attribute with other attributes or a scalar value.
In a notation borrowed from Query By Example [Zloof 77] with modified semantics to fit the needs,
apviewdefinition can be expressed as shown below:

Key A1 Az A3 An

+ tr;e il‘j e |Etries tre,

whereg O {A;} O Scalar Constants amdis a standard comparison operator. Fiedicates
whether the attribute value will be included in the exported tuple instance, if -, atijbiste
“projected out’(i.e., not selected) and replaced by a standard default valu¢ ferg.,null). A +

indicates the attribute is to be included. The rule then for deterring whether a given tuple will be
included in thepviewinstantiation is:

If every instance of a non vacuous expression e, is satisfied for the tuple, then the tuple is
included in the view and for each attributeif +, attributeA, is included in the exported tuple
instance, if -, attribute, is replaced by a standard default valuexfan the exported tuple instance.

Thepviewinstantiation can thereby be expressed as:

Key a a, as .. lay

where eacla- represents the value @for its default value as derived from the application of the
pviewdefinition.

It is possible that algebraic expressions in terms oAtlaad constants would be practical, but this

begins to make the checker fairly complex. The exported tuple instance is passed out of the TCB
boundary and presented to the untrusted SQL engine for subsequent compiler-dependent processing.
As shown in Figure 5.5 only the simpfaiiewsnterpretation needs to be done in the TCB. Schaefer
provides a more detailed discussionpmrewsimplementation [Schaefer 94].

Qutside

Parser Optimizer Executor TCB

Access Rights
Grfant / Revoke Inside
or pviews TCB

pviews
Interpreter

Access Rights
Checker

for pviews

Figure 5.5: pviews TCB
5.6.3 Interpreted Qualified Views(qviews)

The Interpreted Qualified Viewgviews)approach extengs/iewsby generalizing the set of virtual

objects which are used for access control to all those that can be generated using standard SQL.
Given the expressive power of SQL (or an equivalent query langgagsysare thereby of far

greater potential complexity than gogiews.In this approach, the claims made for the DAC
mechanism are much greater thiarewswhere no claim is made of correct interpretation of views

and greater thapviewswhere the claim of correct interpretation is made only for a restricted set

of views. Because of the complexity required to generate this broader family of views,
implementations of this policy can only be done with low assurance.

The gviewsapproach is functionally identical to togiewsapproach. The only distinction is that
gviewsmakes a claim as to the correctness of view interpretations, wisdoes not, which is

purely an assurance issue. Although the ovgvadwapproach can be done only with low assurance,
certain aspects of the mechanism can be achieved with high assurance. The correctness of the DAC
checks on DBMS objects can be assured to the same level as is DAC to traditional operating system
named objects. A view definition V can be implemented to a high degree of assurance to ensure
that the creator of V possesses the appropriate mode of access to each real named object referenced
in V.

The correctness requirements for showingdhawsare enforced as part of the DAC policy would
require showing thajviewinstantiations are produced correctly from their view definitions. High
assurance can be achieved for the clasgvidw instantiations that are identical foview
instantiationgi.e.,when they correspond fully to disjomittual objects). However, the far greater
complexity of the general mechanism would necessitate including the SQL compiler, optimizer,
and engine completely within the TCB boundary as shown in Figure 5.6. It is presently beyond the
state of the art to argue formally or through deep code analysis for the correctness of a mechanism

of this size. In addition to the correctness of these mechanisms, additional assurance requirements
for modularity, least privilege, TCB minimality, and information hiding would make it unfeasible

to satisfy the TCSEC's security architecture correctness assurance requirements for B2, B3 and Al.
For those reasongyiewsare still considered to be a low assurance DAC policy.

Parser Optimizer Executor
Access Rights Access Rights
Checker Grant / Revoke

Figure 5.6: qviews TCB

Outside

TCB

Inside
TCB

SECTION 6
SUMMARY

This document has addressed the critical problems associated with providing high assurance DAC
for DBMSs and discussed potential solutions to some of these problems. The difficult problem for
DBMSs meeting higher level TCSEC requirements is the need to meet the assurance requirements.
This is made even more difficult when it is desired to enforce a DAC policy with flexibility of
content dependent access control. In general, the flexibility of the DAC policy chosen is inversely
related to the degree of assurance which can be provided in the correct implementation of a
mechanism enforcing the policy.

In order to put the discussion of DAC into context we have considered how effective DAC policies
are even when their correct implementation is highly assured. In particular, the safety problem and
Trojan horse problems mean that even a correctly implemented DAC mechanism cannot guarantee
that a user cannot obtain data which the user was not supposed to be able to see. Given these
characteristics of standard DAC policies one must consider the issue of balanced assurance. That
is, one must ask for a given environment whether it is necessary to have the same degree of
correctness assurance for both the MAC and DAC enforcement mechanisms.

While the Sea View work is presented as an example of a high assurance system utilizing a balanced
assurance approach, the document focuses primarily on how one can implement DAC policies with

a high assurance mechanism. For DAC controls on databases or tables the complexity is similar to
operating system DAC mechanisms. As the document shows, even the complexity introduced by
the WITH GRANT and CASCADE options in the GRANT/REVOKE commands can be handled
with a high assurance mechanism. However, when access based on content is controlled, as is done
with views, the complexity of the DAC enforcement mechanism can become too great to implement
with a high assurance mechanism. The various approaches discussed in Section 5 show how at least
some degree of view-based access control can be implemented with high assurance. It should be
noted that for evaluation against the TCSEC, a DBMS is not required to include view interpretation

in its DAC policy.

While work to date has provided a good framework for considering high assurance DAC issues and
approaches to providing high assurance DAC, work on implementing useful high assurance DBMSs
in the future will provide the experience needed to determine the effectiveness of these approaches
and evolve new approaches. Furthermore, the use of these high assurance DBMSs in working
environments will provide the insights needed to effectively tradeoff the flexibility of DAC
mechanisms with the degree of correctness assurance required.

[Abrams 91]

[ANSI 92]

[Audit 96]

[Codd 70]

[Date 89]

[Denning 87]

[DoD 85]

[Entity 96]

[Fagin 78]

[Garvey 88]

[Graubart 89]

[Griffiths 76]

[Harrison 76] Harrison, M. H., Ruzzo, W. L., Ullman, J. D., “Protection in Operating Systems,

REFERENCES

Abrams, M. D., Heaney, J. E., King, O., LaPadula, L. J., Lazear, M. B., Olson, I.
M., “Generalized Framework for Access Control: Towards Prototyping the
ORGCON Policy,” Proceedings of the 14th National Computer Security
ConferenceWashington, DC, 1-4 October 1991.

Database Language SQAmerican National Standard X3.135-1992, American
National Standards Institute, 1992.

National Computer Security CenteAuditing Issues in Secure Database
Management Systemi$CSC Technical Report-005, Volume 4/5, May 1996.

Codd, E. F., “A Relational Model of Data for Large Shared Data Banks,’
Communications of the ACMune, 1970, pp. 377-387.

Date, C. JA Guide to the SQL Standahd Edition, Addison-Wesley, 1989.

Denning, D. E., Lunt, T. F,, Schell, R. R., Heckman, M., Shockley, W. R., “A
Multilevel Relational Data Model,Proceedings of the IEEE Symposium on
Security and PrivacyApril 1987, pp. 220-234.

Department of DefenseDepartment of Defense Trusted Computer System
Evaluation Criteria,DOD 5200.28-STD, December 1985.

National Computer Security Centémtity and Referential Integrity Issues in
Multilevel Secure Database Management SystBiGSC Technical Report- 005,
Volume 2/5, May 1996.

Fagin, R., “On an Authorization MechanisiACM Transactions on Database
Systems3(3), 1978.

Garvey, C. and Wu, A., “ASD-View$toceedings of the 1988 IEEE Symposium
on Security and Privacypril, 1988.

Graubart, Richard, “On the Need for a Third Form of Access CoRtamé¢edings
of the 12th National Computer Security Confereri8altimore, MD, 10-13
October 1989.

Griffiths, P. G., Wade, B., “An Authorization Mechanism for a Relational Database
System,”ACM Transactions on Database Systems, 1@&j6.

Communications of the ACNI9(8), 1976.

[Inference 96] National Computer Security Centeference and Aggregation Issues in Secure

Database Management SysteM€SC Technical Report-005, Volume 1/5, May
1996.

[Irvine 92]

[ITSEC 91]

[Knode 89]

[Lunt 88]

[Marks 94]

Irvine, C. E., Schell, R. R., Thompson, M. F., “Using TNI Concepts for the Near
Term Use of High Assurance Database Management Systemmesgedings of the
Fourth Rome Laboratory Multilevel Database Security Workshgsearch
Directions in Database Security W, June 1993.

Commission of the European Communitiegprmation Technology Security
Evaluation Criteria, Provisional Harmonized CriteriaQffice for Official
Publications of the European Communities, Luxemborg, June 1991.

Knode, R. B., and Hunt R. A., “Making Databases Secure with TRUDATA
Technology,” Proceedings of the Fourth Aerospace Computer Security
Applications Conferenc&ecember, 1989.

Lunt, T. F,, Schell, R. R., Schockley, W. R., Heckman, M., and Warré& Near-
Term Design for the SeaView Multilevel Database Systéhgteedings of the
1988 IEEE Symposium on Security and Privapy,234-244, April 1988.

Marks, D. G., Binns, L. J., Sell, P. J.and Campbell, J., “Security Considerations of
Content and Context Based Access ControRrbceedings of the Tenth
International Information Security Conference, IFIP SEC 9y 1994.

[McCollum 90] McCollum, C. J., Messing, J. R., and Notargiacomo, L., “Beyond the Pale of MAC

[NCSC 87]

[Poly 96]

[Sandhu 89]

[Sandhu 92]

[Schaefer 84]

[Schaefer 94]

and DAC - Defining New Forms of Access Contrdtfoceedings of the 1990
Symposium on Security and Priva®gkland, CA, 1990.

National Computer Security Center (NCS®), Guide to Understanding
Discretionary Access Control in Trusted SysteNGSC-TG-003, 30 September
1987.

National Computer Security Centealyinstantiation Issues in Multilevel Secure
Database Management Systei€SC Technical Report-005, Volume 3/5, May
1996.

Sandhu, Ravi S., “Current Status of the Safety Problem in Access Ciittiol,”
CIPHER,pp. 37-46, Fall 1989.

Sandhu, Ravi S., “The Typed Access Matrix MoBed¢eedings of the 1992 IEEE
Computer Society Symposium on Research in Security and P@adgnd, CA,
4-6 May 1992.

Schaefer, M., Schell, R., “Toward an Understanding of Extensible Architectures
for Evaluated Trusted Computer System ProduBt®teedings of the 1984 IEEE
Symposium on Security and PrivabgD Computer Security Center. May 1994,
pp. 41-49.

Schaefer, M., Smith, G., Halme, L., LandollABsured DAC for Trusted RDBMSs
Final Report, ATR 94020, Arca Systems, Columbia, MD, September 1994.
(Portions to be reprinted in IFIP 1995).

[Shockley 88]

[Sterne 94]

[TDI 88]

[TDI 91]

[Tinto 92]

[Wilson 88]

[Zloof 77]

Schockley, W., Schell, R., “TCB Subsets for Incremental EvaluRiacgedings
of the Third Aerospace Computer Security Conferddeeember, 1987, pp. 131-
139.

Sterne, D. F., Benson, G. S., “Redrawing the Security Perimeter of a Trusted
System,Proceedings of the 1994 IEEE Computer Security Foundations Workshop,
June 1994,

National Computer Security Centefrusted Database Management System
Interpretation of the Trusted Computer System Evaluation Criteria (DRAFT),
1988.

National Computer Security Centefrusted Database Management System
Interpretation of the Trusted Computer System Evaluation CritdG&C-TG021,
April 1991.

Tinto, Mario, The Design and Evaluation of INFOSEC Systems: The Computer
Security Contribution to the Composition Discussi@nfechnical Report 32-92,
NSA, June 1992.

Wilson, Jackson, “Views as the Security Objects in a Multilevel Secure Database
Management System®&foceedings of the IEEE Symposium on Security and
Privacy,Oakland, CA, April 1988.

Zloof, M. M. “Query by Example: a Data Base Languag8M Systems
Journal16:4, 1977, pp. 324-343.

REPORT DOCUMENTATION PAGE o e

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspact of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and
Reports, 1215 Jeflerson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 205083.

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1996 Final

4. TITLE AND SUBTITLE . 5. FUNDING NUMBERS
Discretionary Access Control Issues in High Assurance Secure Database

Management Systems

6. AUTHOR(S)

7. PERFomélNG ORGANIZATION NAME(S) AND ADDRESS(ES) 8. Rpgsg%anmégemmﬂon
National Security Agency :

Attn: V21, Partnerships and Processes sﬁiifgfgmcal Report - 005
Fort George G. Meade, MD 20755-6000 ')

8 Library No. $-243,039
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for Public Release

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

This report is the fifth of five companion documents to the Trusted Database Management System
Interpretation of the Trusted Computer System Evaluation Criteria. The companion documents address topics
that are important to the design and development of secure database management systems, and are written for
database vendors, system designers, evaluators, and researchers. This report addresses discretionary access
control issues in high assurance secure database management systems.

14. SUBJECT TERMS] 15. NUMBER OF PAGES

Discretionary access control; High Assurance Secure Database Management 44

Systems 6. PRICE CODE

17. SECURITY CLASSIFCATION 18. SECURITY CLASSIIFICATION [19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

Exception to SF 298 approved by GSA/IRMS 7/92 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std. Z39-18

NOD <o

