
Techniques for Trusted Software Engineering

Premkumar T. Devanbu

Dept of Computer Science,

University of California,

Davis, CA 95616 USA

+1-530-752-7324

devanbu@cs.ucdavis.edu

Philip W-L Fong

School of Computing Science

Simon Fraser University

Burnaby, Canada V5A 1S6

+1-604-291-4277

pwfong@cs.sfu.ca

Stuart G. Stubblebine

AT&T Laboratories { Research

180 Park Ave,

Florham Park, NJ07932, USA

+1-973-360-8354

stubblebine@research.att.com

ABSTRACT

How do we decide if it is safe to run a given piece of
software on our machine? Software used to arrive in
shrink-wrapped packages from known vendors. But in-
creasingly, software of unknown provenance arrives over
the internet as applets or agents. Running such soft-
ware risks serious harm to the hosting machine. Risks
include serious damage to the system and loss of private
information. Decisions about hosting such software are
preferably made with good knowledge of the software
product itself, and of the software process used to build
it. We use the term Trusted Software Engineering to
describe tools and techniques for constructing safe soft-
ware artifacts in a manner designed to inspire trust in
potential hosts. Existing approaches have considered is-
sues such as schedule, cost and e�ciency; we argue that
the traditionally software engineering issues of con�g-
uration management and intellectual property protec-
tion are also of vital concern. Existing approaches (e.g.,
Java) to this problem have used static type checking,
run-time environments, formal proofs and/or crypto-
graphic signatures; we propose the use of trusted hard-
ware in combination with a key management infras-
tructure as an additional, complementary technique for
trusted software engineering, which o�ers some attrac-
tive features

KEYWORDS

Safety, security, mobile code, cryptography, analysis,
veri�cation.

1 INTRODUCTION

Installing new software on a machine is risky. Poor qual-
ity or malicious software can do serious harm. The tra-
ditional defense has been to install only high-quality
software products from well-known vendors.

This method is not always applicable: companies such
as AT&T provide world-wide web (WWW) hosting ser-
vices. Web content (web pages, and associated software
such as common gateway interface, or CGIs) is hosted
on fast, reliable servers on behalf of other companies or
individuals. Since CGIs are ordinary applications, they

Note: This paper appears in the Proceedings of ICSE 98

can damage the hosting company's ability to provide
non-stop service. Thus, hosting companies need ways of
developing con�dence that the CGIs have certain safety
properties (e.g., they don't delete �les, write to operat-
ing system tables, use up too much CPU time/Memory,
etc.). The traditional model also breaks down in the
context of technologies such as Java[15, 17], particu-
larly with applets and mobile code. The simple act of
browsing a web page can cause software to be installed
and run on a hosting machine.

When o�ered software of unknown provenance to be in-
stalled and run on a hosting machine, the host's (H)
decision would best be based on reliable evidence con-
cerning:

1. The software process: how was the software built?
what were the design, development and testing
practices used?

2. The software product: What are the properties of
the software itself?

We use the term trusted software engineering to describe
tools and techniques that can be used to construct safe1

software that inspires trust in hosts. Engineering con-
cerns such as cost, e�ciency, delay, etc., are of vital im-
portance; in addition, the vendor (V) can be expected
to be deeply concerned about disclosure of valuable in-
tellectual property.

In an earlier paper[11] we explored techniques for the
process side of trusted software engineering: the con-
cern there was to �nd ways in which V could convince
(quickly, and at low cost) a host (H) that V 's testing
practices were rigorous, without disclosing too much in-
formation. In this paper, we turn to the product side
of trusted software engineering; how can V convince H
that a software product has certain desired safety prop-
erties?

The outline of this paper is as follows: we begin with
a description of the design parameters of concern to

1We deliberately refrain from de�ning safety in this paper.

Di�erent hosts may have di�erent safety policies; for generality,

our approach remains agnostic on the precise nature of safety.

However, we discuss speci�c possible applications.

1

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Security
Environment

µ, π

Vendor (V) Host (H)

µ µ

Figure 1: General architecture for mobile code safety

trusted software engineering; we then use these param-
eters to analyze existing approaches to this problem.
After describing trusted hardware systems, we explore
the role they could play in trusted software engineering.
The paper concludes after a description of implemen-
tation considerations and possible di�culties with this
approach. An outline of the ideas discussed in this paper
were presented earlier in a position paper [10]. In this
paper, we describe full details including a key manage-
ment infrastructure, details of our approaches to dealing
with resource limitation, and describe an implementa-
tion for Java [15] bytecode veri�cation.

2 APPROACHES TO SAFETY

In this section, we describe some existing approaches to
safety and trust in software. Figure 1 represents cur-
rent approaches to safety. There is a vendor, V , who
produces a piece of code (perhaps mobile code) �. This
� gets shipped to a host H, along with another artifact
�, which may be claims about properties of � and/or
proofs of such claims, and/or a cryptographic digest of
the software. The host H, upon receipt of � and �, may
conduct an analysis of � and �, to evaluate the claims
(if any) that V made about �, and to determine if �
can be trusted to run safely on H's machine. After such
analysis, H may elect to run �, (often) within some run-
time environment. The safety analysis process, and the
run-time environment are together represented as an en-
closing \brick wall" denoted as a safety environment in
�gure 1.

When considering such approaches, which enable hosts
H systematically develop con�dence in the safety of sys-
tem � built by V (and then run �), there are several im-
portant criteria to be considered, from the perspective
of both V and H:

1. Cost: how much additional skilled personnel time
and/or process interval is involved?

2. Performance: what is the run-time overhead?

3. Disclosure: how much intellectual property disclo-
sure is involved?

4. Con�guration Management: when the inevitable
weaknesses are discovered in the software infras-
tructure that enforces security and safety, how easy
is it to distribute upgrades? Likewise, can one
protect customers using \outdated" client software
with known security vulnerabilities?

5. Security: what is the nature of the security guar-
antee provided? Is it formally proven, informally
established (perhaps by a social review process) or
is there no guarantee? (more risky)?

We will argue that cost, performance, and security con-
siderations have been of paramount consideration in
current approaches to this problem; we will further ar-
gue that the traditionally software engineering concerns
of con�guration management and disclosure are also vi-
tal. We suggest a complementary approach to address
these issues.

It is di�cult or impossible to optimize all these crite-
ria simultaneously. Thus, one way to achieve perfect,
formal security is to ask the vendor to provide fully an-
notated source code. H then creates a complete proof
based on the annotated source, then compiles the source
code, and allows it to run. This gains formal assurance
at great cost, while also demanding high disclosure of
the vendor. Another approach is for H could run the
software on a \sandbox" simulator which analyzes and
predicts the e�ect of each step before allowing it to ex-
ecute. This approach o�ers high security, low personnel
cost and low disclosure but at high run-time cost; also
this approach requires every H (there may be millions)
to upgrade the simulator if it is found to have a security
hole. Finally, the trivial approach of letting any pro-
gram run o�ers no security, but maximizes everything
else. The challenge for trusted software engineering is to
construct a design with a right combination of features
for a given application. Our goal in this paper is to
describe a new technique, involving trusted hardware
and key management, that can lead to better trusted
software engineering solutions for some applications.

We describe and evaluate current approaches to estab-
lishing the safety of software products, two of which
have their roots in the WWW. These are: Java,
ActiveX[1, 13] and Proof Carrying Code (PCC)[19].
Each approach makes di�erent tradeo�; we now discuss
them in detail.

2.1 JAVA

Java is a strongly-typed, object-oriented language[15],
which in combination with a well de�ned run-time
environment[16] provides a safe environment for host-
ing mobile code. Java source language programs are
compiled into Java bytecodes, an equivalent binary rep-
resentation, which are interpreted by the Java Virtual
Machine (JVM). WWW Browsers such as NetscapeTM

include a JVM that can execute Java bytecode programs
(applets) embedded in web pages; accessing such web
pages causes the JVM in the browser to execute the
applets. Applets are downloaded and executed in an
\almost" transparent manner; safety of applets is thus
a critical aspect of Java.

Type safety is at the heart of the Java safety model. Be-
fore running, every Java applet is typechecked statically;
if a program passes this typecheck, there is a reasonable
belief (as yet formally unveri�ed, although e�orts are
underway) that there will be no type confusion, i.e., it
is impossible for a variable to change its type at run-
time. Avoiding type confusion is critical(for details, see
[17]). Java source language programs are type checked
by the Java compiler prior to being compiled into byte-
code applets. Since browsers execute applets received
from untrusted web servers, the associated JVMs have
to recheck the applets for type safety prior to execut-
ing them. This fairly complex process, called byte code
veri�cation, adds to the overhead of executing an ap-
plet. To allow for this process, Java bytecodes must
have enough information to allow type checking2. Fur-
thermore the byte code veri�cation process is embedded
(via the JVM) in web browsers; when faults or weak-
nesses are discovered in the bytecode veri�cation pro-
cess, every web user has to download a new copy of the
browser. Many of the millions of web users are unlikely
to upgrade their browsers, thus leaving themselves vul-
nerable to hostile acts by malicious applets.

With reference to �gure 1: mobile code � consists of
Java bytecodes. The vendor makes no claims about �,
i.e., there is no �|however, the desired property is type
safety, which is checked by the byte code veri�er. The
safety environment at the host's site consists of the byte
code veri�er and the Java virtual machine, with the as-
sociated security managers. According to our �ve crite-
ria (Section 2 above): the Java model has (1) no addi-
tional programmer cost; (2) a signi�cant run-time over-
head for bytecode veri�cation, and for the \sand box"
(3) signi�cant disclosure (the source code of the applet)
and (4) a substantial upgrade problem. The security
guarantee (5) provided here is \somewhat" formal; the
procedures are described in great detail in documents
subject to rigorous public review; e�orts are underway
to put them on a formal basis. Since upgrade decisions
for the host-side software are made locally, the control
of the security policy is distributed. This can lead to
vulnerabilities.

2.2 ACTIVEX

The ActiveX model is similar to Java: application code
embedded in web pages is downloaded and executed

2In fact, it has been demonstrated that Java source codes can

be reconstructed from byte codes.

when the pages are visited. However, the embedded
applications are in the form of binaries, which are ex-
ecuted on the \bare" machine. This lets embedded
applications from web pages run with the same privi-
leges as regular applications The ActiveX model calls
for checking that the embedded application is signed by
a \known and trusted" party. The security and safety
of the application is left unspeci�ed. This is potentially
risky. To quote the Princeton Safe Internet Program-
ming group[13]:

\ActiveX security relies entirely on human
judgment. ActiveX programs come with digi-
tal signatures from the author of the program
and anybody else who chooses to endorse the
program."

With reference to �gure 1: mobile code � here is just
the ActiveX binary; � is the cryptographic signature on
� by a trusted agent. The safety environment is just the
checking of the signature � against �. According to our
criteria, this approach (1) involves very little additional
programmer work (2) involves very little run-time over-
head, (3) involves no disclosure beyond the binary and
(4) will probably not need upgrades, since the signature
checking software is simple, well-understood and quite
stable. However, since the approach o�ers no explicit
guarantees of security (5) besides the wisdom and good
intentions of the party which signed the embedded ap-
plication, it is fraught with risk. There is another impor-
tant limitation; although there are a considerable num-
ber of software vendors, few of these vendors may have
brand name recognition among consumers, and thus en-
joy broad acceptance in this trust model. However, in
general, consumers would su�er from being limited to
using code signed by large, well-known vendors.

2.3 PROOF CARRYING CODE

A powerful approach to establishing safety (or other)
properties of programs is through formal veri�cation.
Formal veri�cation typically involves 3 steps: �rst, an-
notate several program points with invariant assertions
(typically at the start of loops) that hold when those
points are exercised. Second, use a veri�cation condi-
tion generator uses the assertions and the semantics of
the program to generate a veri�cation condition. Fi-
nally, produce a proof (usually by hand) that establishes
that the veri�cation condition is true given some initial
conditions. Usually, the veri�cation condition relates to
the desired safety property. Clearly, it would be im-
practical for a host H to formally prove safety for all
received programs.

Necula[19] has proposed an elegant approach to code
safety using formal veri�cation. His work relies on the
fact that proof checking is much simpler and faster than
proof creation. In his framework, code vendors enhance
binary programs with invariant assertions and package

them together with a safety proof. This entire bun-
dle is a proof carrying code (PCC). Upon reception,
the host H processes the assertions and the instructions
in the binary to yield a veri�cation condition. When
the enclosed proof of the veri�cation condition has been
checked by H, the program can be run at binary speeds!

With reference to �gure 1: mobile code � consists of
the (annotated) binary, and � is the proof. The safety
environment consists of the veri�cation condition gen-
erator, and the proof checker. According to our �ve cri-
teria: this approach can be expected to involve a large
amount (1) of programmer time, since proofs must typ-
ically be created by hand3. Run-time overhead (2) is
signi�cant: for a (roughly) 1 Kbyte program, the proof
checking takes about 2 ms for published examples [19].
However, in general, proofs could be very long, which
would result in increased checking time (and transmis-
sion time). Finally, depending on the particular proof, a
lot (3) can be disclosed: the invariant assertions and the
proof may reveal a lot about the program. For example,
to establish type-safe pointer generation, the memory
layout of all data structures must be disclosed. Since
each host H has a copy of the veri�cation condition gen-
erator and the proof checker, it will be necessary to do a
large number of upgrades (4) should it be determined to
be faulty. The greatest strength of this approach (5) is
that it provides a precise, unforgeable, irrefutable for-
mal characterization of the safety of the mobile code.
The host side proof checker is con�gured locally; so the
security environment administration is distributed.

2.4 ANALYSIS

The approaches discussed in this section all attempt to
achieve trusted software engineering in di�erent ways.
Each approach leads to a particular level of cost, per-
formance, disclosure, release management, and security.
Each approach also makes a choice in a design space
whose dimensions are the currently available technical
options (such as public key cryptography, strong typing,
run-time checks, and formal proofs and proof checking).
In this paper, we advocate other technologies for this
design space: trusted hardware, and con�guration man-
agement by key management.

3 A COMPLEMENTARY ARCHITECTURE

We propose the use of trusted hardware (T H), in con-
junction with centralized con�guration management as
an additional technique for trusted software engineer-
ing. In particular, we propose that con�guration man-
agement be handled by the distribution of key creden-
tials (revocations and certi�cates) within a public key
system. We assume some basic knowledge of cryptogra-

3However, Necula is at work on compilers that can generate

proofs of certain kinds of properties

New Keys

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������

TH Device

Key CertificatesTool Updates

π & σ(µ,π)
Trusted

Tool

µ

Manager
Key

Manager
Release

Centralized Configuration Manager

µ

Vendor Host

µ

Figure 2: An alternate architecture for mobile code
safety

phy: readers unfamiliar with cryptographic terminology
are referred to the Appendix(page 10) for details.

The proposed architecture is shown in Figure 2. There
are two major changes from Figure 1. First, part of the
safety environment is moved from the H's machine to
the V 's machine; this removal is represented as a \thin-
ner wall" at the host's machine. At the vendor's site,
this piece of H's safety environment is ensconced as a
trusted tool (shown as a \slice of brick wall") inside a
trusted hardware device (described below). Software
(�) produced by V is processed by the trusted tool,
resulting in some analysis results (�). The software
and the analysis results together are cryptographically
signed (�(�; �)) by a key embedded in the trusted hard-
ware device.

Now, �; � and �(�; �) are shipped to the host H,
and used by the (diminished) safety environment on
H's machine. The H can use the signature in lieu of
certain computations that it would otherwise have to
perform (details are given below). We also posit (be-
low the dotted line) a con�guration management sys-
tem, which serves two logical functions: 1) updating
the trusted software tool that runs at the vendor's site
within the trusted hardware device, and the associated
private keys, 2) updating certi�cates for the keys used
at the host's site for signature veri�cation.

3.1 TRUSTED HARDWARE

Several manufacturers o�er physically secure co-
processors in PCMCIA [5, 2] and PCI [3] form factors.
These devices contain a CPU, volatile and non-volatile
memory, built-in cryptographic[18] facilities (symmet-
ric & public key algorithms, random number genera-
tion, etc), private keys, and certi�cates. The programs

and non-volatile data contained in such T H devices are
physically protected: attempts to access or modify them
will render the device non-functional. Physical security
is a critical requirement in the intended application of
such devices (highly security-critical �nancial and de-
fense uses) and is regulated by national and interna-
tional standards [6]. Since these are general purpose
machines, one can conduct arbitrary computations on
them, and generate outputs signed with a secret private
key. This allows for software tools, embedded in T H

devices, to be run by an untrusted V a manner that
can inspire trust in a skeptical H, based on a signature.
Of course, this trust is subject to cryptanalytic assump-
tions such as the di�culty of forging signatures, and the
evolving technology of physical security.

The crucial observation is that T H devices, in conjunc-
tion with a centralized, trusted con�guration manage-
ment system, can support trusted, distributed enactment
of software engineering processes, while o�ering cost,
performance, disclosure, upgrade management and se-
curity advantages. Trusted tools in T H devices can
be distributed to untrusted developers; software created
(and signed) by this device can be con�gured and hosted
as if the tools were run locally. Since computations re-
lated to security and optimization can be safely per-
formed remotely, cost and performance bene�ts can be
obtained. A simple cryptographic signature can carry
the weight of a lot of information; so V may not need to
disclose as much. Additionally, con�guration manage-
ment could be simpli�ed, since there are typically far
fewer vendors than hosts; from the hosts' point of view,
release upgrade is done by key management.

3.2 SOFTWARE CONFIGURATION USING

KEY MANAGEMENT TECHNIQUES

Key management is used in concert with T H devices
to a) take defective (or outdated) T H devices out of
service, b) provide �xes for host-side security software
with known weaknesses and c) ameliorate the risk of
compromise of hardware devices. In this section, we
discuss a) and b); c) is discussed later (Section 6.1).
In the discussion in the section below, we assume that
some veri�cation software, which would normally be run
by the host H, is now running at the vendor's site within
a T H device. For brevity, we also assume a centralized
simple con�guration manager, denoted !.

We now discuss a), the revocation of faulty versions of
T H devices. As an example, assume that some code
C has been successfully veri�ed by a T H device with
tool T1 (with private key K�1

1), which attests to this
fact with a signature �

K
�1

1

(C;D). D describes the ver-

i�cation or analysis performed, and other details such
as the version of the analysis software, and the vendor's
id. C;D and �

K
�1

1

(C;D) are sent to a host H. The

public key K1 (for K�1

1) is introduced to H via a cer-
ti�cate Cert!(K1) from the con�guration manager !.
H (assumed to know K! already) extracts the key K1

from the certi�cate, checks the signature �
K
�1

1

(C;D)

against C, allows C to run if D satisfy the policy for
executing such code. These certi�cates do not have to
be distributed with the code C in it; they could be dis-
tributed independently, using push technologies such as
a Marimba [4] channel.

Now, suppose, that a software bug is discovered in the
current version of the veri�er software. Rather than dis-
tributing new versions of the software to every host, the
! e�ectively revokes the validity of the current version of
the veri�er software by assuming that hosts authenticate
software subject to recent-secure authentication policies
[20]. That is, if the hosts require recent statements con-
cerning the authenticity of software con�gurations and
T H, then we can assure bounded delays for fail-safe
revocation of vulnerable con�gurations. For such vul-
nerable con�gurations, ! stops issuing timestamped cer-
ti�cates attesting to the validity of veri�cation software
indicated in D. Consequently, distributed entities are
unable to obtain fresh statements vouching for the va-
lidity of the veri�er software. This has the e�ect of hosts
being unable to satisfy their recency policy on checking
the authenticity of veri�cation software indicated in D.
Consequently, the host treats the signed code as sus-
pect. This general approach for using a trusted-third
party revocation service and recent-secure authentica-
tion is �rst described in [20].

The vendor in possession of the T H device is then
alerted to obtain a new version T2. In �gure 2 the release
of T2 would be handled by the con�guration manager.
Recon�guring T H for new software consists of the T H
authenticating a new software upgrade from the con�g-
uration manager using a public key of the con�guration
manager stored on the card. Note, this procedure does
not require encrypted messages. Hence, the vendor has
some assurance that details concerning testing are not
leaked. Future signatures prescribe the use of the new
veri�cation software in D.

We now turn to b), �xing old versions of host-side soft-
ware with new T H devices. Assume as before that T1
is the current version of the software veri�er in a T H
device. Also assume some host-side security software
H1, which is found to have a weakness. The current
approach is to require all hosts to download a new ver-
sion, H2, which plugs the security hole. With T H de-
vices, another approach is possible in some cases: a new
(branch) version of the T H, T1:1 is issued, which plugs
the security hole in H1. All hosts running H1 are told
to accept only software processed by T1:1 veri�ers. This
is accomplished by revoking and issuing the appropriate
certi�cates associated with the current valid version of

the veri�cation software indicated in D.

The functionality at the host side remains identical; this
reduces or simpli�es the host's side administration. This
approach both saves time for the hosts and provides ad-
ditional security by centralizing the con�guration man-
agement of the security infrastructure. However, this
may not be a perfect solution; plugging the host's secu-
rity \hole" may require very strong veri�cation which
may reduce functionality.

Other con�guration management strategies can be used
in conjunction with more complex host-side safety re-
quirements. In combination with a
exible trust policy
management infrastructure [9], this approach o�ers a
high degree of
exibility. In the most general case, one
can envision a situation where the host H speci�es a set
of safety requirements, and describes the con�guration
(version information) of his safety environment. With
this knowledge, the centralized con�guration manage-
ment system can automatically distribute certi�cates to
H; these certi�cates ensure that the right combination
of host-side and vendor-side safety environment software
is in e�ect, for the speci�c safety policy required by H.

We now discuss the application of our approach to Java
and PCC.

3.3 JAVA AND T H

First, consider Java. The bytecode veri�er is ensconced
in a T H, and made available to Java developers. When
a developer is �nished developing an applet (using con-
ventional tools on H), she submits the bytecode for the
applet to T H. The built-in bytecode veri�er in the T H
veri�es it, and if the veri�cation is successful, the T H
outputs 1) a signature �, using a private key KT H, spe-
ci�c to that T H. KT H is extracted from C. A receiving
browser can believe that the applet's bytecode has been
veri�ed (because of �) by a trusted bytecode veri�er.
There are some complications here; an applet may be
composed of several distinct class (.class) or archive
(.jar) �les. Our approach calls for each of these �les to
be veri�ed and signed separately. Our approach to the
resulting complications are described in Section 5.

Now, suppose a
aw is discovered in the bytecode veri-
�cation algorithm, or the implementation in the version
r installed in T H devices. The con�guration manager
! of the T H issues a new revision of the software r0,
and arranges to upgrade all holders of T H devices with
the new software. Simultaneously, ! sends out certi�-
cates, revoking the keys of T H devices with r versions,
and issuing new keys for devices with r0 versions. Ad-
ditionally, if a fault is discovered in the Java (host-side)
run-time environment, which could be �xed by a mod-
i�ed byte code veri�er, a similar strategy could be un-
dertaken.

This approach o�ers clear improvements for two of the
�ve criteria, in the case of Java: upgrades and security.
There are also performance advantages in some cases.
First, in the case of Java, there is no additional work
for the programmer, apart from submitting the byte-
codes to the T H for veri�cation. Second, the receiv-
ing browser doesn't have to typecheck the bytecodes;
this could speed the applet, thus improving the user
experience of the web page. Third, resource limited
computers with embedded JVMs will not have the re-
sources to run bytecode veri�ers and would bene�t from
our approach. Finally, for the browser user, security

aws in the bytecode veri�er such as one discovered re-
cently by the Kimera researchers [21] no longer necessi-
tate downloading an entire new version of the browser:
release management becomes a matter of key manage-
ment! Rather than the vast number of web users up-
dating their browsers, we can have a far more manage-
able number of updates for the applet developers. Fur-
thermore, by automating the key management on the
browser side (using push or pull technologies) we can
make it transparent to the browser users; this will in-
crease security for users unaware of security
aws. By
the same token, certain weaknesses in the Java virtual
machine itself, such as one that allowed the creation
of rogue classloaders ([17], pp 77-82) can be �xed by
distributing more restrictive versions of the bytecode
veri�er to vendors, and doing the appropriate key man-
agement on the host side.

Since Java bytecodes are essentially source code [22],
applets contain all the information available in source
code. One defense is to use bytecode obfuscators; our
approach is compatible this defense. In addition, Java
bytecode recompilers [23] (which produce \fat", multi-
platform binaries that contain binary code in addition to
or instead of bytecodes) can also be accommodated. In
this case, the T H device is provided the original byte-
codes, the compiled binary, and a \proof" (consisting
of the sequence of meaning-preserving rewrites used to
produce the \fat" binary") that the binary corresponds
to the bytecodes. The T H device checks the bytecodes
for type correctness, and then ensures the sequence of
rewrites provided in the \proof" are known to be mean-
ing preserving, and that executed correctly, they pro-
duce the given \fat" binary. The result can then be
signed as equivalent to statically typechecked Java byte-
code. The vendor only need disclose the binary and the
signature; the Java bytecode can be protected. This ap-
proach provides both disclosure and performance bene-
�ts; Without bytecode veri�cation or compilation, the
host can run at binary speeds.

3.4 PCC AND T H

If the code vendor is creating PCC, the T H approach
o�ers even greater bene�ts. In this case, we embed a

veri�cation condition generator, and a proof checker in
the T H device. The scenario is as follows: V creates the
binary, the invariant assertions, and the safety proof,
and submits the lot (as a PCC) to the T H device at his
site. The T H analyzes the binary and assertions, regen-
erates the veri�cation condition, and checks the proof.
If the proof checks out, the T H outputs a signature sign-
ing (just) the binary, and the veri�cation condition. V
now makes a package consisting of the (unannotated) bi-
nary, the veri�cation condition, and the signature. The
H, upon receiving this signed package, checks the signa-
ture against the binary and the veri�cation condition.
This gives him con�dence that a trusted party in the
T H has checked the proof of the veri�cation condition.
As long as the veri�ed condition subsumes his safety
policy, H can boldly run the binary.

This approach o�ers signi�cant advantages on perfor-
mance, disclosure, and upgrades. Since the proof is
checked at the producer's site, there is no run-time over-
head at theH's site. Secondly, the only thing that leaves
the producer's site is a signature; the assertions and the
proof do not have to be disclosed. Finally, con�guration
management is handled automatically via key manage-
ment.

4 Implementation: Trusted, Resource Limited

Computing

Price, compatibility, heat dissipation di�culties and
physical security considerations force extremely tight
engineering constraints on the design of T H devices,
specially in the PCMCIA format. The computing re-
sources available, particularly memory, on these cards
is limited. As technology evolves, resources in T H de-
vices will probably always be several orders of magni-
tude below what is available on a current conventional
computer. On the other hand, T H devices are always
used along with an (untrusted) conventional machine.
For this reason, it is natural that trusted software engi-
neering tools not run purely on the T H, but as a dis-
tributed computation involving the hosting computer.
However, the hosting machine P is under the control
of an untrusted party, and any supporting computa-
tions performed by P are subject to tampering. To deal
with this, we have adopted the following posture. The
T H uses the P as a potentially unlimited computing
resource, but always retains a small amount of trusted
memory to serve as a \digest" of the operations dele-
gated to P . This digest is used to check the validity
of the results returned by P . If tampering by P is de-
tected, T H will simply halt the computation and ter-
minate. Thus, we place large data structures such as
stacks, queues, and tables in P , and check operations
using a small amount of memory in T H.

This approach draws upon memory-checking techniques

developed in the theory community [8]; however, those
approaches use very strong information theoretic con-
siderations, which allow the P unlimited computing
power to mount an attack on T H. In particular P can
completely simulate T H. Because of these restrictive
assumptions, their approaches lead to unattractive im-
plementations. In our case, T H spends at most a poly-
nomial amount of time on the size of the input, and
has access to secrets (keys) unknown to P . Addition-
ally, the adversary, P , enjoys at most constant speedup
factor over T H. Under these conditions, P cannot sim-
ulate T H. More e�cient implementations of memory-
checking protocols are possible, which o�er acceptably
low probabilities of memory compromise.

A full discussion of this approach and the security of
the approach is presented in [12]; we have developed
schemes for handling implementations of stacks, queues,
and associative arrays implemented as binary trees. For
brevity, we only present our implementation of stacks.
In Figure 3, the stack is shown just after the push of an
item N . There is always a signature of the stack main-
tained in the T H device. Prior to executing the push,
the signature � of the stack is in the T H device; when
an item N needs to be pushed on to the stack, T H com-
putes a new signature �0 as shown in the �gure. Then
the new item N and the old signature � are given to
the P stack implementation, with a request to execute
a push. The signature �0 is retained in the T H device's
memory as defense against tampering by P . Thus, when
a pop command is issued, P is expected return the top
item N , and signature of the rest of stack, �. Then the
original signature �0 is recomputed as shown in the �g-
ure and checked against the value stored in T H. It is
infeasible for P to spoof T H by forging the values of N
or � so long as T H retains �0. Thus the stack invariants
are preserved. The approach described here uses only a
constant number of bits in the T H device, irrespective of
the size of the stack; existing methods use a logarithmic
number of bits, which is exactly the information theo-
retic bound [8]. For our application, with limited adver-
saries, this is adequate. If information-theoretic security
are desired, our security could be increased by using a
counter in the T H device, and inserting signed counts
into the stack. Our implementation is also simpler; each
stack operation executes in constant time, whereas [8]
requires O(log(stack�size)) operations (amortized) for
each stack push and pop.

5 IMPLEMENTATION: JAVA BYTECODE

CERTIFICATION

To demonstrate our approach, we are implementing a
Java byte code veri�er suitable for embedding in a T H
device. Our approach has necessitated a redesign of the
Java bytecode veri�er. A preliminary implementation
of our bytecode veri�er can be tested by email (send

σ= signature(stack)

NStack
Bottom

σ σ’ = signature(append(,N))

Figure 3: A resource-limited, \secure" implementation
of stacks

a \help" message to genserver@research.att.com).
Upon receipt of Java byte codes, it will verify it, and
send the results back by email. This version is under
continuous re�nement. Our approach of verifying and
signing each class �le separately creates some special im-
plementation issues, which we now discuss. Recall that
in Java, each class �le contains the implementation of
one Java class.

The veri�cation process, as described in [16] comprises
several passes. The �rst 2 passes ensure that the class
�le is laid out correctly. The magic number, symbol ta-
ble entries, instruction sizes and arguments etc. are all
checked. All branch statements are examined for tar-
get validity. The third pass actually does typechecking.
Since bytecodes are not structured programs, this in-
volves control- and data-
ow analysis. The �nal phase
includes checks on subroutine invocations and is con-
ducted at run-time. Currently, the bytecode veri�cation
process is tightly integrated with the JVM; veri�cation
is interleaved with loading, linking and execution. This
is necessary: in general, the typesafety of a Java class
�le can only be established within a global linking con-
text. The typesafety of a statement like a = b within a
class �le (where a and b are instances of other, di�erent
classes) can be established only by loading the corre-
sponding class �les. Our approach calls for each class
�le to be veri�ed and signed separately. Therefore we
cannot process a class �le per se and certify it typesafe
with a signature. From each class �le C, we create a list
of obligations, and commitments. The obligations list
the compatibility relationships that must hold between
other classes referred to by C; commitments list the re-
lationships between the C class and other classes that
are guaranteed by the bytecodes in C. We then sign C

together with the commitments and obligations induced
by C; the signature certi�es both that C has been veri-
�ed, and the correctness of the linking information. Full

details are omitted due to space constraints, and can be
found in [14]. A suitably modi�ed JVM can make use
of this signed information, avoid veri�cation, and speed
up the linking process. This part of the work is still
ongoing.

As in [21], we have adopted a \cleanroom" approach to
our implementation of the veri�er. There is no available
formal description of the bytecode veri�er; so we have
tried to align our implementation closely with the de-
scription given in the JVM book [16]. For each part of
the JVM description, there is an allied, clearly identities
portion of the source code in our implementation. As in
the clean room approach, we use statistical testing, with
millions of test cases generated by random mutations of
legal applets [21]. Testing is underway; after compre-
hensive testing, embedding in a suitable T H device will
be undertaken.

6 ANALYSIS AND CONCLUSION

In this section, we discuss the problem of physical se-
curity compromise, and other approaches to the prob-
lem of trusted tools. We also explore the criteria under
which this approach is applicable. We conclude with a
brief discussion of our future plans.

6.1 HARDWARE COMPROMISE

The security of physical devices and the technology to
circumvent protection mechanisms is continually evolv-
ing. T H devices have been compromised [7]. PCMCIA
cards and PCI cards (which contain batteries, and can
erase secret memory when intrusion is detected) are less
vulnerable to attack than smart cards. However, as time
evolves, devices once thought secure may become vul-
nerable. Our goal is to develop an integrated framework
that a) allows reasonable recovery from compromise. b)
discourages attempts to tamper and c) combines phys-
ical integrity of the T H devices with vendor's identity
as a basis for trust.

Recovering from Compromise If a particular T H
is suspected to be compromised, of if tampering is sus-
pected (see following section) its key can be revoked.
Also, if the compromise per se is undetected, but an
unsafe program is discovered to have been signed by a
particular T H device, the key for that device can be
revoked.

Discouraging Tampering In general, it is more dif-
�cult to physically compromise a T H device while it
is in operation. To this end, we advocate that a V be
required to install his T H device permanently in a net-
worked machine. After installation (until the T H de-
vice is taken out of service) it will be challenged with
the current time at random intervals by an authenti-
cated server. It shall respond with its signature (using

its private key) on the challenge data. The mean period-
icity can be adjusted to discourage attempts to remove
the T H device and penetrate it o�-line. This is a kind
of periodic inspection (similar to ones used in arms con-
trol surveillance regimens [7]) by electronic means. If
challenges are unanswered, the key associated with that
T H device could be revoked via the con�guration man-
ager (Figure 2), and the vendor V may be required to
produce the T H for inspection.

Involving the Vendor To tightly \bind" the vendor V
with a speci�c T H device, the software in the T H device
could include information about the vendor's identity.
Veri�ed software is packaged along with the vendor's
identity and signed with the T H device's key. The sig-
nature establishes that V owns the T H device, and is
responsible for its integrity. If V loses the device, or
it ceases to function, he is responsible for notifying the
con�guration manager (See �gure 2), which can revoke
the device key. If software signed by a certain device T H
is known to be unsafe, this ownership signature provides
evidence of ownership of the device. The owner of the
device can be called upon to make the device available
for inspection.

Upon receipt of this signature, the host H only has to
decide whether she trusts that V can be relied upon to
not compromise the device T H. Notice that the role of
V 's identity is quite circumscribed (as compared to Ac-
tiveX) in this usage: here, it only means that V owns,
and takes responsibility for the integrity of a particular
T H device. The problem here is that known vendors
enjoy an advantage; (though perhaps not as signi�cant
as with ActiveX) they are under less suspicion of tam-
pering.

6.2 OTHER APPROACHES TO TRUSTED

TOOLS

An alternative approach to trusted hardware is multi-
party computation. The idea here is that several mis-
trusting entities can run the analysis/veri�cation and
certify the results. This approach �ts tightly into the
framework we proposed with an important exception:
the code is disclosed to the veri�cation entities. In the
case of byte code veri�cation in Java, this is not a prob-
lem, since bytecodes are source code [22].

The con�guration management technique illustrated in
�gure 2 would be fully applicable. Keys for old buggy
versions of veri�ers could be revoked. Likewise, weak-
nesses in in legacy versions of the browsers could be
\plugged" by deploying stricter bytecode veri�ers, and
doing the appropriate key management.

6.3 APPLICABILITY

T H devices can o�er advantages for performance, con-
�guration management, and disclosure. Performance
advantages are obtained by \pre-computing" informa-
tion in a trusted manner at the vendor's site. Con�gu-
ration management advantages may also obtain. How-
ever, the unique advantage of T H devices is most vivid
in the case where disclosure is a vital concern. The
vendor's private information (needed for veri�cation) is
kept at the vendor's site; the only information leaving
the site is a signature.

6.4 CONCLUSION

We have discussed some novel techniques for trusted
software engineering: trusted tools in trusted hard-
ware, and con�guration management by key manage-
ment. We described our progress on implementation
work. It is important to emphasize that trusted hard-
ware and key management are only tools in the arsenal
for trusted software engineering. The proper deploy-
ment of the arsenal must be tailored to suit the needs
of the particular application.

REFERENCES

[1] ActiveX Consortium. http:/www.activex.org.

[2] Chrysalis, Inc. http:/www.chrysalis-its.com.

[3] IBM PCI Secure Co-processor. http:/www.ibm-
.com/Security/cryptocards.

[4] Marimba Inc. http:/www.marimba.com.

[5] Spyrus Product Guide, Spyrus, Inc. (See also:
http://www.spyrus.com).

[6] Fips140-1 security requirements for cryptographic
modules. Technical report,
NIST, 1994. http://csrc.ncsl.nist.gov/fips-
/fips1401.htm.

[7] R. Anderson and M. Kuhn. Tamper resistance { a
cautionary note. In Second Usenix Electronic Com-
merce Workshop. USENIX Association, November
1996.

[8] M. Blum, W. Evans, P. Gemmell, S. Kannan, and
M. Noar. Checking the correctness of memories. Al-
gorithmica, 12(2/3):225{244, 1994. Originally ap-
peared in FOCS 91.

[9] Y. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick,
and M. Strauss. Referee: Trust management for
web applications. In Proceedings of the Sixth Inter-
national World-Wide Web Conference, pages 227{
238, 1997.

[10] P. Devanbu and S. Stubblebine. Automated soft-
ware veri�cation with trusted hardware. In Twelfth
International Conference on Automated Software
Engineering, November 1997.

[11] P. Devanbu and S. G. Stubblebine. Cryptographic
veri�cation of test coverage claims. In Proceed-
ings of The Fifth ACM/SIGSOFT Symposium on
the foundations of software engineering, Zurich,
Switzerland, September 1997.

[12] P. Devanbu and S. G. Stubblebine. Stack and queue
integrity on hostile platforms. In Proceedings of
IEEE Symposium on Security and Privacy, Oak-
land, California, May 1998.

[13] E. Felten. Princeton safe internet program-
ming java/activex faq, 1997. http://www.CS-
.Princeton.EDU/sip/java-vs-activex.html.

[14] P. W. Fong. Modular veri�cation of dynamically-
loaded mobile code. Working Paper, August 97.

[15] J. Gosling, B. Joy, and G. Steele. The JavaTM

language speci�cation. Addison Wesley, Reading,
Mass., USA, 1996.

[16] T. Lindholm and F. Yellin. The JavaTM Virtual
Machine speci�cation. Addison Wesley, Reading,
Mass., USA, 1996.

[17] G. McGraw and E. Felten. Java Security: Hostile
Applets, Holes & Antidotes. John Wiley & Sons,
1997.

[18] A. J. Menezes, P. C. van Oorschot, Scott, and
A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

[19] G. Necula. Proof-carrying code. In Proceedings of
POPL 97. ACM SIGPLAN, 1997.

[20] S. G. Stubblebine. Recent-secure authentication:
Enforcing revocation in distributed systems. In
IEEE Computer Society Symposium on Security
and Privacy, Oakland, California, May 1995.

[21] The Kimera Project. http://kimera.cs.wash-
ington.edu.

[22] H.-P. V. Vliet. Mocha java bytecode decom-
piler, 1996. http://web.inter.nl.net/users-
/H.P.van.Vliet/mocha.htm.

[23] F. Yellin. The java native code api http://java.-
sun.com/docs/jit interface.html, 1996.

Appendix|Terminology Some terminology is
presented here for convenience. We assume asymmet-
ric (public-key) cryptography with public/private key

pairs: e.g., K�1

P
is a private key for the individual P

and KP is the corresponding public key.

Signatures Given a datum �, �
K
�1

P

(�) is a value rep-

resenting the signature of � by P , which can be veri�ed
using KP . Note that �

K
�1

P

(�) is usually just an en-

crypted hash value of �. It is infeasible for P to �nd
�+ 6= � such that �

K
�1

P

(�+) = �
K
�1

P

(�). It is also infea-

sible to produce the signature �
K
�1

P

(�) from � (veri�able

against � and KP) without knowledge of K
�1

P
. We ad-

vocate the use of such signatures by trusted agents to
attest proven properties of software.

Certi�cates Given a public key K� for an individ-
ual �, and a certifying agent ! with public key K!,
the signature �

K
�1
!

((K�; �)) is taken as a (feasibly) un-
forgeable assertion by ! that K� is the public key of �.
This is called a certi�cate, denoted here by Cert!(K�)
and is used in security infrastructures as an introduc-
tion of � by ! to anyone who knows K!. A trusted
certificate authority with well-known public key can
be used as a repository of keys and a source of intro-
ductions. By composing certi�cates, chains of introduc-
tions are possible. A similar mechanism can be used for
a key revocation, which is just a signed message from an
authority indicating that a public key is no longer valid.
We use certi�cates and revocations to introduce and re-
voke trusted software veri�ers. In general, a certi�cate
is a kind of credential from an authority. Thus, an au-
thority ! may generate a credential signed with K�1

!

for a trustworthy software tool � of the form \K� is the
private key for � ; I also believe that software signed by
� can be trusted to not delete �les not in /tmp". With
this credential, an agent H can verify software signed
by � and then perhaps allow the software to run, writes
to /tmp are acceptable.

Key Management Given a set of certi�cate author-
ities, and a set of other participants, it is possible to
set up a policy by which keys are introduced and re-
voked by certi�cates. We advocate use of such policies
for con�guration management.

