Privman: A Library for Partitioning Applications

ABSTRACT

Writing secure, trusted software for Unix platforms is difficult. This is proven by the high number of vulnerabilities and the frequency with which they continue to be discovered. There are a number of approaches to enabling more secure development, but it is apparent that the current set of solutions are neither achieving acceptance nor having sufficient impact. In this paper, we introduce a library to address a particularly difficult problem in secure code development: partitioning processes to isolate privileges in trusted code.

The Privman library, introduced here, simplifies the splitting of a process. This allows necessary privileges to be managed in one trusted process, while less security-specific functionality can reside in another. The process splitting techniques are employed in an ad hoc manner in a few secure applications like OpenSSH. The primary benefit of the Privman library is a systematic, reusable framework for developing partitioned applications. We demonstrate the feasibility of the approach in three example systems: thttpd, WU-FTPD, and xinetd.

INTRODUCTION

According to SANS list of critical security vulnerabilities [SAN02], around 40% of the top vulnerabilities are caused by basic programming errors like buffer overflows. Despite a vast collection of knowledge on writing secure software, programmers are still making the same mistakes today as 10 years ago, and the same types of services tend to cause most of the problems.

There are a number of reasons for the lack of progress developing secure software. The methodologies for developing secure software are not used, as general application developers write most software. Additionally, the existing body of knowledge commonly available to developers consists of a list of missteps, not positive guidelines [KIE02a]. Even when the developers know of the issues, security concerns are often dropped in the rush to functionality.

Finally, the secure operating system features that would allow secure software to be written more easily have not achieved widespread deployment for a number of different reasons [COW98], including deployment costs and more general networking/interoperability issues.

Makers of operating system distributions are not yet using compiler technologies that can defend against common buffer overflows [COW98a]. The widespread use of techniques like those in StackGuard would protect against common buffer overflows. But even the strongest compiler techniques are useless against application design errors.

Secure programming practices have significant value, but most developers are not security experts and therefore cannot take full advantage of those practices. This trend will not change. Therefore, we seek to lower the barriers of entry for writing secure system software.

Our contribution towards this goal involves facilitating a specific technique for writing secure software: partitioning applications between security-specific (trusted) code and non-security-specific (untrusted) code.

PROBLEM: PARTITIONING APPLICATIONS

Software is, by its very nature, extremely sensitive to mistakes [BRO75]. In trusted software, a single mistake compromises the entire system. An important defensive programming technique is to encapsulate the security-sensitive components within small, simple components. These components can then be more easily verified.

This pattern [KIE02b] of separation provides additional assurance when requests for privileged operation have to be validated by the secure component. By separating the security sensitive components of the application in a different process from the bug-prone components, mistakes in the majority of the application will not and cannot result in total compromise of the entire system.

The most common example of this pattern of enforced separation is the kernel/user-space split of the major operating systems, but this is also the pattern of any trusted computing base (TCB). This split can be applied to user-space software by splitting the software among processes [VIE98].

On Unix and Unix-like systems, many exercises of privilege fundamentally look like file accesses. For example, validating a users authentication fundamentally requires read access to the /etc/passwd and /etc/shadow files. Unix-like systems validate file-access privilege upon open(2) only and therefore consider file descriptors to be effectively access-tokens.

The standard POSIX APIs allows file descriptors to be passed between processes via Unix domain sockets (pipes)
. This API therefore allows software to pass privilege tokens between processes. Many useful privileged operations can therefore be proxied merely by passing file descriptors between processes.

Several projects have used this POSIX capability to split their process in a one-off and ad-hoc way, including recent versions of the ubiquitous OpenSSH project [PRO02]. Several other projects have done other forms of process compartmentalization, including qmail [NEL02] and postfix [BLU01].

Traditionally, it has been very difficult to retrofit this design to existing applications. Instead, almost all such applications have been written from the ground up around this design.

The Privman library seeks to overcome this limitation by allowing existing applications to be easily adapted. The Privman library provides a systematic and reusable approach to enabling development of a partitioned application.

CONSTRAINTS

For our approach to be adopted, it must fit into the “real-world” of application development. This simple desire to see our work used places several constraints upon any solution.

· The system must exist in an easy-to-use form. That is, a library.

· The library must be portable between Unix-like systems.

· The library cannot rely upon custom kernel changes.

· The library cannot rely upon custom system libraries.

· The library API should be in terms of existing, well-understood APIs.

The barriers to changing a piece of the core infrastructure of a distribution (like the compiler or the fundamental nature of the security policy of the kernel) are high. In contrast, the barriers to a change local to a specific daemon or collections of daemons are fairly low. (A minimal install of Red Hat Linux version 7.2 includes around 70 packages of libraries, most of which are only used for one or two different pieces of software) We expect, therefore, that a well-designed library may be able to lure developers of system software.

SOLUTION: THE PRIVMAN LIBRARY

We present a library, called Privman, that simplifies the task of partitioning applications for a particular class of applications, traditional Unix-style daemons.

The Privman library makes implementing privilege separation much easier, by providing libc-equivalent functions for many operations that traditionally need privilege. In addition to the file access methods, the Privman library also currently supports PAM authentication, bind(), and daemon(). The required work to support chroot() and setuid() is ongoing, and some of the issues we encountered are detailed below.

USAGE OF THE LIBRARY

The library has a very basic API at its core. The process starts by calling "priv_init()", and then calls "priv_<foo>()" when it wants to perform privileged operation "foo()". For example, a variant of cat that uses the library to read otherwise unreadable files might look like the following (Privman specific parts in bold):

int main(int argc, char *argv[])

{

int i;

char buf[4096];

priv_init("mycat");

for (i=1; i < argc; ++i) {

/* Privileged use of "fopen" */

FILE *f = priv_fopen(argv[1], "r");

if (f == NULL)

exit(-1);

while ((n = fread(buf, sizeof(*buf),

sizeof(buf), f)) > 0 {

fwrite(buf, n, sizeof(*buf), stdout);

}

fclose(f);

}

exit(0);

}

Similarly, a stripped down program that authenticated a user might look like:

struct pam_conv conv = {

misc_conv,

NULL

};

int main(int argc, char *argv[])

{

pam_handle_t *pamh = NULL;

const char *user = argv[1];

priv_init("check_user");

if (priv_pam_start("login", user, &conv, &pamh)

!= PAM_SUCCESS)

goto failed;

if (priv_pam_authenticate(pamh, 0)

!= PAM_SUCCESS)

goto failed;

if (priv_pam_acct_mgmt(pamh, 0)

!= PAM_SUCCESS)

goto failed;

fprintf("user %s authenticated %s\n", user);

return EXIT_SUCCESS:

failed:

fprintf("failed to authenticate %s\n", user);

return EXIT_FAILURE:

}

As shown here, not all requests handled by the library are file requests. The Privman libraries can manage any request that can be proxied (in the case of PAM, by invoking input functions in the context of the unprivileged process).

Every Privman managed application has a config file, which in the cat case might look like:

open_ro {

/etc/passwd

Anything under /var

/var/*

}

or in the "check_user" case might look like:

simple app. Only needs access to PAM.

auth true

The proper configuration file is critical to successfully partitioning a process. Obviously, if the privilege manager automatically responds to any request, then Privman would only provide an illusion of security. Shell code would simply need to be re-written to invoke the privilege manager instead of directly attacking the system. Instead, Privman relies on the configuration file to specify tight constraints on the allowable actions of a client.

This has the extra benefit of expressing the security policy openly, instead of leaving the security policy buried in the code.

The config file should be written tightly enough to allow the process its privileged operations but nothing else, i.e., the configuration file should express least privilege. For example, the following is the configuration for a simple daemon.

echo daemon. The app is allowed to bind to a low port: 7

and to write to a log file

bind echo

open_ao {

/var/log/myecho.log

}

fork true

OPEN ISSUES

The work, as originally proposed, involved a single Privman server per system. The single server would be contacted by all managed clients, and it would perform privileged operations on behalf of nearly the entire system.

This design would allow programs to start execution without having any real pre-existing privilege outside of an ability to authenticate themselves with the privilege manager. Unfortunately, on stock Unix systems there is no practical way to verify the identity of a process
.

Without that verification, this design would invite identity attacks, where an attacker would attempt to spoof the identity of a permitted privileged process. Rather than try to solve this authentication problem, we decided to leverage the pre-existing source of privilege: the fact that a process is already running in a privileged state.

The Privman managed process starts main() with heightened traditional (root) permissions. The priv_init() call then divides the process into two separate processes: an unprivileged child that runs the original program, and a parent that becomes the Privman server.

From the perspective of the original process, after the priv_init() call the process is no longer running as a privileged process and is instead running as the “nobody” user
. Any privileged operations must be proxied and validated by the Privman server.

By splitting a process like this, we simplified the design of the Privman server, hopefully decreasing the probability of serious coding flaws.

Our approach has significant drawbacks when compared to traditional Mandatory Access Control-style secure systems. For example, we are unable to handle any concept of revocation. We are unable to handle permissions at granularity smaller than file access (or other mediated call). In addition, not all security decisions on a Unix-style system are put in terms of files or file descriptors

In particular, there are a small number of calls that change the security context of the current process. One obvious example is chroot(), but the list also includes limit() and the very important setuid() family. Much of the software in question may need to make these changes to its security context, but our basic design makes accommodating this software difficult.

Obviously, other projects that use this type of process split have hit similar issues. We chose to model our solution on the OpenSSH solution [PRO02].

In the OpenSSH solution, the client process packages up state and sends it back to the parent. The parent then creates a second child process with the desired security context and state and allows the child to continue execution in that context.

The problems of packaging up and managing state are non-trivial when attempting to retrofit the Privman library to preexisting applications. The OpenSSH project chose to define a new malloc() in terms of a shared memory segment to help automate the process. The Privman library currently exports a message-passing API, but we are examining the feasibility of the OpenSSH approach.

FEASIBILITY

For a best-case example for conversion, we converted the thttpd server to use the Privman libraries. thttpd is a simple, small, portable, fast and secure HTTP server. The version we used, 2.20c, consists of around 2800 lines of C code. The conversion process changed 26 of them, or less than 1% of the code base.

thttpd is essentially a best-case scenario. The server does no complex credentials management, and the preexisting uid management mapped well into the Privman usage pattern. Only four library calls needed to be supported: open(), fopen(), bind(), and daemon(). The Privman version actually gets simpler in some respects, as the uid management can be handled by Privman and moved out of the daemon.

In contrast, converting a standard BSD ftp server is closer to the worst case. The standard FTP server does significant work before it changes the uid of the server. As a result, the process has built up significant state that must be managed.

The OpenSSH project managed the state for OpenSSH by defining a new malloc(). Their new malloc() allocated memory from a section of memory that could be shared between processes. Then, when the client decided to change user id, that state could be easily propagated to a new client process. We believe that a similar approach will allow us to successfully manage the state of the BSD ftp server, and expect to adopt that solution into Privman in the near future.

Privman as it currently exists works best when the server will not need to change the security context of the current process after a brief initialization stage. Many servers that require root access fit this requirement, including named (BIND), and httpd. Unfortunately, the servers most in need of Privman’s functionality are frequently those that harder to adapt to the library, as it currently stands.

CONCLUSION

We have presented an overview of the Privman library. The Privman library enables applications to easily take advantage of process partitioning, which will help applications become robust against certain types of programming errors.

Applications that use the Privman library can express the required security policy at a fine level of granularity. Consequently, Privman managed applications can approximate least-privilege in a way not common on Unix-style systems.

Certain types of applications, primarily simple Unix servers, are easy to convert to using the Privman library. Other classes of applications, primarily those that need to change their security policy during normal execution, are less easily handled. We believe ongoing work will help the Privman library be suitable for this class of application as well.

The initial release of the Privman libraries can be found at http://opensource.nai.com.

BIBLIOGRAPHY

[BLU01]
Blum, Richard. Postfix. Sams Publishing, 2001.

[BRO75]
Brooks, Frederick. The Mythical Man Month. Addison-Wesley, 1975.

[COW98a]
Cowan, Crispin, Calton Pu, Dave Maier, Heather Hinton, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. “Stack Guard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks”. USENIX Security, January 1998.

[COW98b]
Cowan, Crispin, Calton Pu, and Heather Hinton. “Death, Taxes, and Imperfect Software: Surviving the Inevitable”. New Security Paradigms Workshop, September 1998.

[COW00]
Cowan, Crispin, Heather Hinton, Calton Pu, and Jonathan Walpole. “The Cracker Patch Choice, An Analysis of Post Hoc Security Techniques”. NISSC, October 2000.

[KIE02a]
Kienzle, Darrell, and Matthew Elder. “Security Patterns for Web Development”. http://patterns.nailabs.com, June 2002.

[KIE02b]
Kienzle, Darrell, Matthew Elder, David Tyree, Jim Edwards-Hewitt. “Partitioned Application”. Security Patterns Repository Version 1.0, http://patterns.nailabs.com, June 2002.

[NEL02]
Nelson, Russell. “The qmail home page”. http://www.qmail.org/top.html, June 2002.

[PRO02]
Provos, Niels. “Privilege Separated OpenSSH”. http://www.citi.umich.edu/u/provos/ssh/privsep.html, 2002.

[SAN02]
System Administration, Networking and Security (SANS) Institute. “The Twenty Most Critical Internet Security Vulnerabilities (Updates)”. as of May 2, 2002, http://www.sans.org/top20.htm, May 2002..

[VIE02]
Viega, John, and Gary McGraw. Building Secure Software. Addison-Wesley, 2002.

� As an object of type SCM_RIGHTS passed as part of a msg_control structure via the sendmsg() API.

� That is, verify that a given process was actually spawned by a specific binary whose identity can be verified.

� This is, of course, configurable by the program's configuration file.

