
Self Evaluation of PSEC: Provably Secure Elliptic

Curve Encryption Scheme

Abstract

This document evaluates the security and performance of a public-key
cryptosystem, PSEC (Provably Secure Elliptic Curve Encryption Scheme),
which has three versions: PSEC-1, PSEC-2 and PSEC-3.

1 Security

1.1 Summary

1. If the elliptic curve decision Di�e-Hellman (EC-DDH) assumption (see the
next section) is true, PSEC-1 is secure in the strongest sense under the
random oracle model. Here, security in the strongest sense means to be
semantically secure or non-malleable against adaptive chosen-ciphertext
attacks (IND-CCA2 or NM-CCA2).

2. If the elliptic curve Di�e-Hellman (EC-DH) assumption is true, PSEC-
2 with one-time padding (PSEC-2-OTP) is secure in the strongest sense
under the random oracle model.

3. If the elliptic curve Di�e-Hellman (EC-DH) assumption is true and the
underlying symmetric-key encryption is secure against passive attacks,
PSEC-2 with the symmetric-key encryption (PSEC-2-SymE) is secure in
the strongest sense under the random oracle model.

The advantage of this scheme is that security in the strongest sense is guar-
anteed for the total system that integrates the asymmetric and symmet-
ric encryption schemes. Therefore, even if the underlying symmetric-key
encryption is secure only against passive attacks and not against active
attacks, PSEC-2, overall, guarantees security against active attacks.

An additional property of PSEC-2 is authentication without using MAC
function. That is, the recipient can con�rm whether the decrypted mes-
sage is the same as the one the originator sent.
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4. If the elliptic curve gap Di�e-Hellman (EC-Gap-DH) assumption is true,
PSEC-3 with one-time padding (PSEC-3-OTP) is secure in the strongest
sense under the random oracle model.

5. If the elliptic curve gap Di�e-Hellman (EC-Gap-DH) assumption is true
and the underlying symmetric-key encryption is secure against passive
attacks, PSEC-3 with the symmetric-key encryption (PSEC-3-SymE) is
secure in the strongest sense under the random oracle model.

PSEC-3 has the same additional merits as those of PSEC-2.

1.2 Comparison with Other Schemes

This section compares the security of PSEC-1/2/3 with other encryption schemes
such as OAEP-RSA, ACE and EC-ElGamal. Table 1 summarizes the compari-
son of security.

Table 1: Comparison of Security

Scheme Provably Secure? Number-theoretical Functional
(IND-CCA2?) assumption assumption

PSEC-1 Yes EC-PDDH Truly random
PSEC-2(OTP) Yes EC-DH Truly random
PSEC-3(OTP) Yes EC-GDH Truly random

EC-Cramer-Shoup Yes EC-DDH UOWHF
OAEP-RSA Yes RSA Truly random
PKCS#1 Ver.1 No � �

DDH denotes the decision Di�e-Hellman, and EC-DH, EC-PDDH and EC-
GDH denote the elliptic curve versions of Di�e-Hellman, partial decision Di�e-
Hellman and Gap-Di�e-Hellman assumptions. (OTP) denotes a scheme which
employs the one-time-pad as symmetric encryption.

1.3 Theoretical Results

This section shows our results on the security of PSEC-1, PSEC-2 and PSEC-3.
They are easily obtained from the results presented in [6, 7, 10, 11].

De�nition 1.1 (EC-PDDH assumption) Let G be the key generator of PSEC-
1, and (q; a; b; p; P ) be a part of the public-key. Let s, t and u be uniformly
selected in Z=pZ. Q := sP , R := tP , V := stP , and W := uP . Let b 2 f0; 1g
be uniformly selected, and X := V if b = 0, and X := W if b = 1.

The elliptic curve partial decision Di�e-Hellman (EC-PDDH) problem is
intractable, if for any (uniform/ non-uniform) probabilistic polynomial time ma-
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chine Adv, for any constant c, for su�ciently large k(= pLen),

Pr[Adv(q; a; b; p; P;Q;R;X) = b] < 1=2 + 1=kc:

The probability is taken over the coin ips of G and Adv.
The assumption that the elliptic curve partial decision Di�e-Hellman prob-

lem is intractable is called the elliptic curve partial decision Di�e-Hellman
(PDDH) assumption.

De�nition 1.2 (EC-DDH Assumption) Let G be the setup algorithm of PSEC{
3, and (q; a; b; p; P ) be a part of the common parameters. Let r, s and t be uni-
formly selected in Z=pZ, and set R := r �P , S := s �P , T := t�P and U := rs �P .
Let b be a random coin. If b = 0, set v  xT , otherwise set v  xU .

The Elliptic Curve Decision Di�e-Hellman (EC{DDH) problem is intractable,
if for any probabilistic polynomial time machine A, for any constant c, for suf-
�ciently large k (= pLen),

Pr[A(q; a; b; p; P;R; S; v) = b] < 1=2 + 1=kc:

The probability is taken over the coin ips of G and A as well as the random
choice of r, s, t and b.

The assumption that the Elliptic Curve Decision Di�e-Hellman problem
is intractable is called the Elliptic Curve Decision Di�e-Hellman (EC-DDH)
assumption.

De�nition 1.3 (EC-DH Assumption) Let G be a key generator of PSEC-2,
and (q; a; b; p; P ) is a part of the public-key. Let s and t be uniformly selected in
Z=pZ. Q := sP , R := tP , and V := stP .

The elliptic curve Di�e-Hellman (EC-DH) problem is intractable, if for any
(uniform/non-uniform) probabilistic polynomial time machine Adv, for any con-
stant c, for su�ciently large k(= pLen),

Pr[Adv(q; a; b; p; P;Q;R) = V ] < 1=kc:

The probability is taken over the coin ips of G and Adv.
The assumption that the elliptic curve Di�e-Hellman problem is intractable

is called the elliptic curve Di�e-Hellman (EC-DH) assumption.

De�nition 1.4 (EC-GDH Assumption) The Elliptic Curve Gap Di�e-Hellman
(EC-GDH) problem is intractable, if the EC{DH problem is still intractable
even for an adversary who has access to an oracle that perfectly answers the
EC-DDH problem.

The assumption that the Elliptic Curve Gap Di�e-Hellman problem is in-
tractable is called the Elliptic Curve Gap Di�e-Hellman (EC-GDH) assump-
tion.

De�nition 1.5 (SPA(SymE)) LetAdv be an adversary that runs in two stages.
In the �rst stage, Adv endeavors to come up with a pair of equal-length mes-
sages, m0 and m1, along with some state information s, where jm0j = jm1j �
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(gLen)a (a: constant). In the second stage, Adv is given a ciphertext y :=
SymEnc(key;mb), where key 2 f0; 1ggLen and b 2 f0; 1g are randomly and
uniformly chosen.

SymE is secure against passive attacks (SPA), if for any (uniform/non-
uniform) probabilistic polynomial time machine Adv, for any constant c, for
su�ciently large gLen,

Pr[Adv(gLen;m0;m1; s; y) = b] < 1=2 + 1=(gLen)c:

The probability is taken over the coin ips of (key; b) and Adv.

Theorem 1.6 (PSEC-1) Let rLen � c0pLen (c0: constant) and hLen =
pLen� 1. PSEC-1 is semantically secure against adaptive chosen-ciphertext at-
tacks (IND-CCA2) or non-malleable against adaptive chosen-ciphertext attacks
(NM-CCA2) in the random oracle model, provided that the EC-DDH assumption
is true.

Theorem 1.7 (PSEC-2-OTP) Let SymE for PSEC-2 be the one-time padding.
Let rLen = qLen � 1, and hLen = pLen � 1. PSEC-2 is semantically se-
cure against adaptive chosen-ciphertext attacks (IND-CCA2) or non-malleable
against adaptive chosen-ciphertext attacks (NM-CCA2) in the random oracle
model, provided that the EC-DH assumption is true.

Theorem 1.8 (PSEC-2-SymE) Let rLen = qLen � 1, and hLen = pLen �
1. PSEC-2 is semantically secure against adaptive chosen-ciphertext attacks
(IND-CCA2) or non-malleable against adaptive chosen-ciphertext attacks (NM-
CCA2) in the random oracle model, provided that the EC-DH assumption is true
and that the underlying SymE is secure against passive attacks (IND-PAS).

Theorem 1.9 (PSEC-3-OTP) Let SymE be the one-time pad, and thus mLen =
kLen. Let hLen = pLen=a for some constant a. PSEC-3-OTP is chosen-
ciphertext secure in the random oracle model, provided that the EC-GDH as-
sumption holds.

Theorem 1.10 (PSEC-3-SymE) Let hLen = pLen=a for some constant a.
PSEC-3-SymE is chosen-ciphertext secure in the random oracle model, provided
that the EC-GDH assumption holds and that the underlying SymE is secure
against passive attacks, for suitable kLen and mLen.

Remark: We can also give the concrete e�ciency analysis of the reduction for
proving the security, and show that our reduction is e�cient [6, 7].

2 Performance as Implementated

2.1 Performance in Hardware

� Process:
Cell base.
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� Design environment:
Verilog-XL + DesignCompiler

� Resource:
About 25.6KG(@ 2NAND areal equality) + Memory(13312bit)
Structure: [Random logic+Multiplier�2+Adder] + [Memory(13312bit)]

� Speed:
Evaluation speed in 30MHz clock. (Measured by simulator)

PSEC-1
Encryption 45 ms
Decryption 45 ms

PSEC-2
Encryption 45 ms
Decryption 45 ms

PSEC-3
Encryption 45 ms
Decryption 23 ms

(Assuming key length = 160 bit.)

2.2 Performance in Software

� Platform:
CPU: Pentium with MMX 266MHz
OS: Turbo Linux version 4.0

� Language:
C Language (gcc version 2.91.60)
gnu mp (gmp version 3.0.1) for large integer calculation

� Memory size(Code size):

PSEC-1
Encryption 63.34 Kbytes
Decryption 63.18 Kbytes

PSEC-2
Encryption 65.61 Kbytes
Decryption 65.97 Kbytes

PSEC-3

Encryption 65.69 Kbytes
Decryption 65.89 Kbytes

� Memory size(Work size):

PSEC-1
Encryption 1032 Kbytes
Decryption 1028 Kbytes

PSEC-2
Encryption 988 Kbytes
Decryption 1068 Kbytes

PSEC-3

Encryption 1056 Kbytes
Decryption 780 Kbytes

� Process speed:
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PSEC-1
Encryption 76.4 ms
Decryption 70.6 ms

PSEC-2
Encryption 77.1 ms
Decryption 72.0 ms

PSEC-3

Encryption 77.3 ms
Decryption 35.8 ms

(Assuming key length = 160 bit.)

� Data size:
pLen 160 bits
qLen 160 bits
hLen 160 bits
gLen 160 bits
Size of plaintext 128 bits
Size of public key �le 176 bytes
Size of secret key �le 48 bytes
Size of ciphertext �le 89 bytes(PSEC-1) / 105 bytes(PSEC-2) / 125 bytes(PSEC-3)

� Optimize level:
We use compile option \gcc -O3."

This evaluation is a result of executing sample program in http://www.nttmcl.com/sec.

We can accelerate elliptic curve scalar multiplication by using window
method or some other techniques. In this evaluation, we only used simple
binary method.

Then, we can implement more faster program than the sample code.

3 Comparison of Computational E�ciency with

Other Schemes

This section compares the e�ciency of PSEC with those of other encryption
schemes, EC-ElGamal and EC-Cramer-Shoup.

To compare the schemes under the equal conditions, we assume that the
plaintext size is 128 bits for all schemes, since public-key encryption schemes
are usually employed for key distribution of a symmetric-key encryption (128
key is the most typical key size of symmetric-key encryptions).

We then assume the following parameter sizes for PSEC-1/2/3. The �eld
size (qLen) and the size of the order of the base point (pLen) are 160 bits.
For PSEC-1, random string length (rLen) is 32 bits, and hashed value length
(hLen) is 160 bits. As for PSEC-2-OTP, random string length (rLen) is 160
bits, hashed value lengths (gLen and hLen) are 128 bits and 160 bits. PSEC-
3-OTP assumes that hashed value lengths (gLen and hLen) are 128 bits.

The parameter sizes for EC-ElGamal and EL-Cramer-Shoup are assumed to
be the same as those of PSEC.
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In our estimation, we assume standard (extended) binary methods for all
schemes. We ignore the minor terms such as the complexities of hash function
evaluations and exclusive-or operations.

For estimating the lengths of keys and ciphertexts, we ignore the lengths
of the common parameters among users such as elliptic curve parameters, and
other minor terms such as parameter size information.

The following table summarizes the comparison of e�ciency.

Table 2: Comparison of E�ciency

Scheme Encryption Decryption Key Length Ciphertext
(#M(160)) (#M(160)) (jqj) (bits) Length(bits)

PSEC-1 480 480 160 320
PSEC-2(OTP) 480 480 160 448
PSEC-3(OTP) 480 240 160 576

EC-ElGamal 480 240 160 320
EC-Cramer-Shoup 1000 520 480 608

Here, #A(160) denotes the number of executions of the elliptic curve addi-
tion over a �nite �eld with 160 bit size.
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Appendix

OCAC: an Optimal Conversion for Asymmetric
Cryptosystems

Tatsuaki Okamoto David Pointcheval

Abstract

Five years after the optimal asymmetric encryption padding (OAEP)
which makes chosen-ciphertext secure encryption scheme from any trap-
door one-way permutation (but whose unique application is RSA), this
paper presents OCAC, an optimal conversion which applies to any weakly
secure cryptosystem: the overload is negligible, since it just consists, as
with OAEP, of two hashings for both encryption and decryption. Fur-
thermore, advantages of OCAC beyond OAEP are numerous:

1. it is more general than OAEP, since it can apply to any partially
trapdoor one-way function (RSA andmodular square, but also Di�e-
Hellman, Higher Residues, etc);

2. it is possible to integrate symmetric encryption (block and stream
ciphers) to reach very high speed rates;

3. it also provides a key distribution with session key encryption which
achieves chosen-ciphertext security with an only semantically secure
symmetric scheme.

Therefore, OCAC could become a new alternative to OAEP, and even
reach security relative to factorization.

In addition, in order to clarify the security requirement of the un-
derlying asymmetric encryption, this paper introduces a novel class of
computational problems, the gap problems, which is considered to be dual
to the class of the decision problems. We show the relationship among
inverting problems (e.g., computational-DH problem), decision problems
(e.g., decision-DH problem), and gap problems (e.g., gap-DH problem).

1 Introduction

For a long time many conversions from a weakly secure encryption into a chosen-
ciphertext secure cryptosystem have been attempted, with variable success.
Such a goal is of greatest interest since many one-way encryption schemes
are known, with variable e�ciency and various properties, whereas chosen-
ciphertext secure schemes are very rare.

1.1 Chosen-Ciphertext Secure Cryptosystems

Until few years ago, the description of a cryptosystem, together with some
heuristic arguments for security, were enough to convince and to make a scheme
to be widely adopted. Formal semantic security [15] and further non-malleability [11]
were just seen as theoretical properties. However, after multiple cryptanalyses
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of international standards [5, 8, 7], provable security has been realized to be
important and even became a basic requirement for any new cryptographic
protocol. Therefore, for the last two years, many cryptosystems have been pro-
posed. Some furthermore introduced new problems [17, 21, 18, 23, 26], other
are intricate constructions, over old schemes, to reach chosen-ciphertext secu-
rity (from El Gamal [33, 32, 9, 1, 20], Okamoto-Uchiyama [22], D-RSA [25] or
Paillier [24]), with speci�c security proofs.

Indeed, it is easy to describe a one-way cryptosystem from any trapdoor
problem. Furthermore, such trapdoor problems are not so rare (Di�e-Hellman [10],
factorization, RSA [29], elliptic curves, McEliece [16], etc). A very nice result
would be a generic and e�cient conversion from any such trapdoor problem
into a chosen-ciphertext secure encryption scheme.

1.2 Related Work

In 1994, Bellare and Rogaway [3] suggested such a conversion, the so-called
OAEP (Optimal Asymmetric Encryption Padding). However, its application
domain was restricted to trapdoor permutations, which is a very rare object
(RSA seems to be the only one application). Nevertheless, it provided the
most e�cient RSA-variant, the OAEP-RSA scheme, provably chosen-ciphertext
secure, and became the new RSA standard { PKCS #1 [30].

At PKC '99, Fujisaki and Okamoto [13] proposed another conversion with
further improvements [14, 27]. It therefore seemed that the expected goal was
reached: a generic conversion from any one-way cryptosystem into a chosen-
ciphertext secure encryption scheme. However, the resulting scheme is not op-
timal, from the computational point of view. Namely, the decryption phase is
more heavy than one could expect, since it requires a re-encryption.

As a consequence, with those conversions, one cannot expect to obtain a
scheme with an easy decryption phase (unless both encryption and decryption
are easy, which is very unlikely). However, decryption is usually implemented
on a smart card, hence e�cient decryption process is a challenge with a practical
impact.

1.3 Achievement: a New and Optimal Conversion

The present work provides a new conversion which is optimal in both the en-
cryption and decryption phases. Indeed, the encryption needs an evaluation of
the one-way function, and the decryption just makes one call to the inverting
function. Further light computations are to be done, but just an XOR and
two hashings. Moreover, many interesting features appear with integration of
symmetric encryption schemes.

The aim of the new conversion is very natural: it roughly �rst encrypts a
session key using the asymmetric scheme, and then encrypts the plaintext with
any symmetric encryption scheme, which is semantically-secure under simple
passive attacks (possibly the one-time pad), using the session key as secret
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key. Of course this simple and actually used scheme does not reach chosen-
ciphertext security, but just making the session key more impredictable and
adding a checksum, it can be made so:

C = Easympk (R) (1)

K = G(R) (2)

Epk(m) = CjjE symK (m)jjH(C;R;m); (3)

where G and H are any hash functions.
Moreover, if one uses a semantically secure symmetric encryption scheme

against basic passive attacks (no known-plaintext attacks), the last part of the
ciphertext, which is very fast since it only makes calls to a hash function and
to a symmetric encryption, can be used more than once, with many messages.
This makes a highly secure use of a session key, with symmetric encryption E sym

which initially just meets a very weak security property:

C = Easympk (R)

K = G(R)

Epk(mi) = CjjE symK (mi)jjH(C;R;mi) for i = 1; : : : :

1.4 Outline of the Paper

We �rst review, in Section 2, the security notions about encryption schemes
(both symmetric and asymmetric) required in the rest of the paper, with namely
the semantic security. Then, in the next section (Section 3), we describe a new
attack scenario, we call the Plaintext-Checking Attack. In Section 4, we develop
a novel class of problems, the Gap-Problems. Then in Section 5, we describe
our new Optimal Conversion together with the security proofs, relative to the
above gap-problems. The next section (Section 6) presents some interesting
applications of this conversion. Then comes the conclusion.

2 Security Notions for Encryption Schemes

2.1 Asymmetric Encryption Schemes

In this part, we formally de�ne public-key encryption schemes, together with
the security notions.

De�nition 2.1 (Asymmetric Encryption Schemes) An asymmetric encryp-
tion scheme, on a message spaceM, consists of 3 algorithms (Kasym; Easym;Dasym):

� the key generation algorithm Kasym(1k) outputs a random pair of secret-
public keys (sk; pk), relatively to the security parameter k;

� the encryption algorithm Easympk (m; r) outputs a ciphertext c corresponding
to the plaintext m 2 M (using the random coins r 2 
);
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� the decryption algorithm Dasym
sk (c) outputs the plaintext m associated to the

ciphertext c.

Remark:

As written above, Easympk (m; r) denotes the encryption of a message m 2 M
using the random coins r 2 
. When the random coins are useless in the
discussion, we simply note Easympk (m).

The basic security notion required from an encryption scheme is the one-
wayness, which roughly means that, from the ciphertext, one cannot recover the
whole plaintext.

De�nition 2.2 (One-Way) An asymmetric encryption scheme is said to be
one-way if no polynomial-time attacker can recover the whole plaintext from a
given ciphertext with non-negligible probability. More formally, an asymmetric
encryption scheme is said (t; ")-INV if for any adversary A with running time
bounded by t, its inverting probability is less than ":

Succinv = Pr[(sk; pk) Kasym(1k);m
R
 M; r

R
 
 : A(Easympk (m; r)) = m] < ":

A by now more and more required property is the semantic security [15]
also known as indistinguishability of encryptions or polynomial security since it
is the computational version of perfect security [31].

De�nition 2.3 (Semantic Security) An asymmetric encryption scheme is
said to be semantically secure if no polynomial-time attacker can learn any
bit of information about the plaintext from the ciphertext, excepted the length.
More formally, an asymmetric encryption scheme is said (t; "; `)-IND if for any
adversary A = (A1;A2) with running time bounded by t,

Adv
ind = 2 � Pr

2
4

(sk; pk) Kasym(1k)
(m0;m1; s) A1(pk);

b
R
 f0; 1g; r

R
 
; c E asympk (mb; r)

: A2(c; s) = b

3
5� 1 < ";

where m0 and m1 are both `-bit long.

Both notions are denoted INV and IND respectively in the following.
Another security notion has been de�ned, called non-malleability [11]. It

roughly means that it is impossible to derive, from a given ciphertext, a new
ciphertext such that the plaintexts are meaningfully related. But we won't
detail it since this notion has been proven equivalent to semantic security against
parallel attacks [4].

Indeed, the adversary considered above may obtain, in some situations, more
informations that just the public key. With just the public key, we say that she
plays a chosen{plaintext attack since she can encrypt any plaintext of her choice,
thanks to the public key. It is denoted CPA. But she may, for some time, access
a decryption oracle. She then plays a chosen{ciphertext attack, which is either
non-adaptive [19] if this access is limited in time, or adaptive [28] if this access
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is unlimited, and the adversary can therefore ask any query of her choice to the
decryption oracle, but of course she is restricted not to use it on the challenge
ciphertext.

It has already been proven [2] that under this latter attack, the adaptive
chosen-ciphertext attacks, denoted CCA, the semantic security and the non-
malleability notions are equivalent, and is the strongest security notion that one
could expect. We therefore call this security level in this scenario the chosen{
ciphertext security.

2.2 Symmetric Encryption Schemes

In this part, we briey focus on symmetric encryption schemes.

De�nition 2.4 (Symmetric Encryption Schemes) A symmetric encryption
scheme, on a message spaceM, consists of 3 algorithms (Ksym;E sym;Dsym):

� the key generation algorithm Ksym(1k) outputs a random key k, relatively
to the security parameter k;

� the encryption algorithm E symk (m) outputs a ciphertext c corresponding to
the plaintext m 2 M, in a deterministic way;

� the decryption algorithm Dsym
k (c) gives back the plaintext m associated to

the ciphertext c.

As for asymmetric encryption, impossibility for any adversary to get back
the whole plaintext just given the ciphertext is the basic requirement. However,
we directly consider semantic security.

De�nition 2.5 (Semantic Security) A symmetric encryption scheme is said
to be semantically secure if no polynomial-time attacker can learn any bit of in-
formation about the plaintext from the ciphertext, excepted the length. More
formally, a symmetric encryption scheme is said (t; "; `)-IND if for any adver-
sary A = (A1; A2) with running time bounded by t,

Advind = 2� Pr

2
4

sk Ksym(1k)
(m0;m1; s) A1(k);

b
R
 f0;1g; c E symk (mb)

: A2(c; s) = b

3
5� 1 < ";

where m0 and m1 are both `-bit long.

In the basic scenario, the adversary just sees some ciphertexts, but nothing
else. However, many stronger scenarios can also be considered. The �rst which
seemed natural for public-key cryptosystems are the known/chosen-plaintext
attacks, where the adversary sees some plaintext-ciphertext pairs with the plain-
text possibly chosen by herself. These attacks are not trivial in the symmetric
encryption setting, since the adversary is unable to encrypt herself.

The stronger scenario considers the adaptive chosen-plaintext/ciphertext at-
tacks, where the adversary has access to both an encryption and a decryption
oracle.
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However, just the security against the basic no-plaintext/ciphertext attacks
(a.k.a. passive attacks) is enough in our application. Therefore, one can re-
mark that it is a very weak requirement. Indeed, if one considers AES can-
didates, cryptanalysts even fail in breaking e�ciently semantic security using
adaptive chosen plaintext/ciphertext attacks: with respect to pseudo-random
permutations, semantic security is equivalent to say that the family (Esymk )k is
(t; ")-indistinguishable from the uniform distribution on all the permutations
over f0; 1g`, after just one query (cf. universal hash functions [6])!

Remark:

One should remark that the one-time pad provides a perfect semantically
secure symmetric encryption: if Ksym(1k) outputs k-bit long secret key, then for
any t it is (t;0; k)-semantically secure.

3 The Plaintext-Checking Attacks

We have recalled above all the classical security notions together with the clas-
sical scenarios of attacks in the asymmetric setting. A new kind of attacks
(parallel attacks) has been recently de�ned [4], which have no real practical
meaning, but the goal was just to deal with non-malleability. In this paper, we
de�ne a new one, where the adversary can check whether a message-ciphertext
pair (m; c) is valid: the Plaintext-Checking Attack.

De�nition 3.1 (Plaintext-Checking Attack) The attacker has access to a
Plaintext-Checking Oracle which takes as input a plaintext m and a ciphertext
c and outputs 1 or 0 whether c encrypts m or not.

It is clear that such an oracle is less powerful than a decryption oracle. This
scenario will be denoted by PCA, and will be always assumed to be fully adap-
tive: the attacker has always access to this oracle without any restriction: she
can even include the challenge ciphertext in the query. Therefore, it is clear
that semantic security under this attack cannot be reached. But we don't mind,
since we just require a scheme to be one-way in this scenario. It is a very weak
notion.

Remark:

One can remark that any deterministic INV-CPA asymmetric encryption
scheme is clearly still INV-PCA. Namely, any trapdoor one-way permutation
provides a INV-PCA-secure encryption scheme (e.g. RSA [29]).

4 Gap Problems

The attacking problem under the above-mentioned Plaintext-Checking Attack
can be characterized by a novel class of computational problems, the gap prob-
lems.
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We �rst de�ne the gap problems as well as the related inverting and decision
problems. Then we give some examples.

4.1 De�nitions

Let f : f0; 1g� � f0; 1g� 7! f0; 1g be any binary relation. The two classical
problems are the following:

� the inverting problem of f is, given x, to compute any y such as f(x; y) = 1
if it exists, or to answer Fail.

� the decision problem (type 1) of f is, given a pair (x; y), to decide whether
f (x; y) = 1 or not.

� the decision problem (type 2) of f is, given x, to decide whether there
exists some y such that f(x; y) = 1 or not.

In this section, we de�ne the gap problems.

De�nition 4.1 (Gap Problem) The gap problem (type 1 or 2) of f is to solve
the inverting problem of f with the help of the oracle of f 's decision problem
(type 1 or 2, respectively).

Let us also de�ne some notations:

� a problem X is tractable if it can be solved with non-negligible probability
by some probabilistic polynomial time Turing machine.

� a problem X is strongly tractable if it can be solved with overwhelming
probability by some probabilistic polynomial time Turing machine.

Therefore, we have the negation:

� a problem X is intractable if it is not tractable

� a problem X is weakly intractable if it is not strongly tractable.

Finally, to compare the di�culty of problems, we use the notion of polynomial
reductions:

� a problem X is reducible to problem Y if there exists a probabilistic poly-
nomial time oracle Turing machine AY (with oracle of problem Y ) to
compute X with non-negligible probability.

� a problem X is strongly reducible to problem Y if there exists a probabilis-
tic polynomial time oracle Turing machine AY (with oracle of problem Y )
to compute X with overwhelming probability.

We can easily obtain the following proposition,

Proposition 4.2 Let f be any binary relation.
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� If the gap problem of f is tractable (resp. strongly tractable), the inverting
problem of f is reducible (resp. strongly reducible) to the decision problem
of f .

� Let us assume that all the de�ned problems, based on f , are uniformly easy
or di�cult. If the decision problem of f is strongly tractable, the inverting
problem of f is reducible to the gap problem of f .

Proof:

The �rst claim directly comes from the de�nition of the gap problem. Let us
consider the second claim, with a probabilistic polynomial time Turing machine
A that solves the decision problem of f , with overwhelming probability. Let us
also assume that we have a probabilistic polynomial time oracle Turing machine
BD that solves the inverting problem of f with the help of a decision oracle D.
Since A solves the decision problem with overwhelming probability, it perfectly
simulates the D oracle, after polynomially many queries, with non-negligible
probability. In these cases, the machine B can invert. [QED] {

This proposition implies a duality between the gap and decision problems. In
other words, the reasonability (or weakness) of the intractability assumptions
of the gap and decision problems of f are comparable, unless one of them is
shown to be tractable.

4.2 The Random Self-Reducible Problems

De�nition 4.3 A problem is said random self-reducible if any instance can be
transformed in an other uniformly distributed instance whose solution helps in
solving the initial instance.

Such problems are clearly uniformly easy or di�cult Problems. Furthermore,
the weak intractability is equivalent to the classical intractability.

Corollary 4.4 Let f be any random self-reducible binary relation.

� If the gap problem of f is tractable, the inverting problem of f is reducible
to the decision problem of f .

� If the decision problem of f is tractable, the inverting problem of f is
reducible to the gap problem of f .

Remark:

Almost all the classical problems used in cryptography are random self-
reducible.
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4.3 Examples of Gap Problems

Let us review some of these classical problems, with their gap variations.

De�nition 4.5 (The Di�e-Hellman Problems) Let us consider any group
G of order q together with a generator g. We de�ne three problems as follows:

� The Inverting Di�e-Hellman Problem (a.k.a. the Computational Di�e-
Hellman problem): given a pair (ga; gb), �nd the element C = gab.

� The Decision Di�e-Hellman Problem: given a triple (ga; gb; gc), decide
whether c = ab mod q or not.

� The Gap Di�e-Hellman Problem: given a pair (ga; gb), �nd the element
C = gab with the help of a Decision Di�e-Hellman Oracle (which answers
whether a given triple is correct or not).

Note that these decision and gap problems are of type 1, where

f ((A;B); C)
def
=
�
logg C

?
= logg A� logg B mod q

�
;

which is a priori not a polynomially computable function.

De�nition 4.6 (The Gap-DH Assumption) For any probabilistic polyno-
mial oracle Turing machine which has access to a Decision-DH oracle, the prob-
ability of, given (ga; gb), �nding C = gab is negligible.

Since no polynomial time reduction (even a probabilistic one) is known from
the Computational-DH to the Decision-DH problems, the Gap-DH assumption
seems as reasonable as the Decision-DH assumption due to the duality of these
problems (Proposition 4.2). Note that, as for most of the problems in use in
cryptography, the Inverting Problem is stronger than the Gap Problem (and
the Decision Problem either). Therefore, the tractability of the Gap-DH prob-
lem would lead to an equivalence between Computational-DH and Decision-DH
(they would be reducible to each other), which is very unlikely.

De�nition 4.7 (The Rabin Problems) Let us consider n = pq. We de�ne
three problems as follows:

� The Inverting Rabin Problem (a.k.a. the Factoring Problem): given a pair
(n; y), �nd x = y1=2 mod n if x exists.

� The Decision Rabin Problem (a.k.a the Quadratic Residuosity Problem):
given a pair (n; y), decide whether x exists or not.

� The Gap Rabin Problem: given a pair (n; y), �nd x = y1=2 mod n if x
exists, with the help of a Decision Rabin Oracle.
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Note that these decision and gap problems are of type 2, where

f(y; x)
def
=
�
y

?
= x2 mod n

�
;

which is a polynomially computable function.
Since no polynomial time reduction is known from the Factorization to the

Quadratic-Residuosity problem, the Gap-Rabin assumption seems as reasonable
as the Quadratic-Residuosity assumption.

De�nition 4.8 (The RSA Problems) Let us consider n = pq and e rela-
tively prime with '(n). We de�ne three problems as follows:

� The Inverting RSA Problem: given a triple (n; e; y), �nd x = y1=e mod n.

� The Decision RSA Problem: given a quadruple (n; e; y; x), decide whether
x = y1=e mod n.

� The Gap RSA Problem: given a triple (n; e; y), �nd x = y1=e mod n with
the help of a Decision RSA Oracle.

Note that these decision and gap problems are of type 1, where

f (y; x)
def
=
�
y

?
= xe mod n

�
;

which is a polynomially computable function. Therefore, it is a really di�erent
situation from the Di�e-Hellman problems. They are both type 1 problems,
but in the current RSA situation, the function f is polynomially computable.
Thus the Decision-problem is clearly strongly tractable (and even more than
that since one can always answer correctly). As a consequence, the Gap and
Inverting-RSA problems are equivalent.

De�nition 4.9 (The Okamoto-Uchiyama Problems) Let us consider n =
p2q, g 2 Z?n such that gp�1

p mod p2 is of order p, and h = gn mod n. We de�ne
three problems as follows:

� The Inverting-OU Problem (a.k.a. the Factoring Problem): given a quadru-
ple (n; g; h; y), �nd x 2 Z?p such that y = gxhr mod n.

� The Decision-OU Problem (a.k.a. the High-Residuosity Problem): given
a tuple (n; g; h; y; x), decide whether y = gxhr mod n for some r, or not.

� The Gap-OU Problem (thus called the Gap-High-Residuosity Problem):
given a quadruple (n; g; h; y), �nd x 2 Z?p such that y = gxhr mod n with
the help of a Decision-OU Oracle.

Note that these decision and gap problems are of type 1, where f is a �rst order
function:

f (y; x)
def
=
�
9r; y

?
= gxhr mod n

�
;

which is a priori not a polynomially computable function.
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De�nition 4.10 (The Gap-High-Residuosity Assumption) For any prob-
abilistic polynomial oracle Turing machine, which has access to a High-Residu-
osity Oracle, the probability of success in factoring is negligible.

Since no polynomial time reduction from Factorization to the High-Residu-
osity problem, the Gap-High Residuosity assumption seems as reasonable as the
High-Residuosity assumption.

5 Description of the Conversion

5.1 The Basic Conversion

Let us consider (Kasym; Easym;Dasym), any INV-PCA{secure asymmetric encryp-
tion scheme, as well as two given hash functions G and H which output k1-bit
strings and k2-bit strings respectively. Then, the new scheme (K; E ;D) works
as follows:

� Key generation algorithm K(1k): it simply runs Kasym(1k) to get a pair of
keys (sk; pk), and outputs it.

� Encryption algorithm Epk(m;R; r): it gets c1 = E
asym
pk (R; r), then it com-

putes the session key K = G(R), c2 = K �m as well as c3 = H(c1; R;m).
The ciphertext consists of the triple C = (c1; c2; c3).

� Decryption algorithmDsk(C): from C = (c1; c2; c3), it �rst extractsR from
c1 by decrypting it: R = Dasym

sk (c1). It can therefore recover the session
key K = G(R) and m = K � c2 which is output only if c3 = H(c1; R;m).
Otherwise, it outputs \Reject".

The overload is minimal. Indeed, if we consider the encryption phase, it
just adds the computation of two hash values and an XOR. Concerning the
decryption phase, which had been made heavy in previous conversions [13, 14,
27] with a re-encryption to check the validity, we also just add the computation
of two hash values and an XOR, as in the encryption process.

5.2 The Hybrid Conversion

As it as already been done with some previous conversions [13, 14, 22, 25, 27],
the \one-time pad" encryption can be generalized to any symmetric encryption
scheme which is not perfectly secure, but semantically secure against passive
attacks.

Let us consider two encryption schemes, (Kasym; Easym;Dasym) is a INV-PCA{
secure asymmetric scheme and (Ksym; E sym;Dsym) is a IND{secure symmetric
scheme which uses k1-bit long keys, as well as two hash functions G and H
which output k1-bit numbers and k2-bit numbers respectively. Then, the new
scheme (Khyb; Ehyb;Dhyb) works as follows:
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� Key generation algorithm Khyb(1k): it simply runs Kasym(1k) to get a pair
of keys (sk; pk), and outputs it.

� Encryption algorithm Ehybpk (m;R;r): it gets c1 = Epk(R; r) and a random

session key K = G(R). Then it computes c2 = E symK (m) as well as the
checking part c3 = H(c1; R;m). The ciphertext consists of C = (c1; c2; c3).

� Decryption algorithm Dhyb
sk (C): from C = (c1; c2; c3), it �rst extracts R

from c1 by decrypting it: R = Dasym
sk (c1). It can therefore recover the

session key K = G(R) as well as the plaintext m = Dsym
K (c2) which is

output only if c3 = H(c1; R;m). Otherwise, it outputs \Reject".

The overload is similar to the previous, but then, the plaintext can be longer.
Such an hybrid transformation cannot be just considered as folklore since the
OAEP conversion (which furthermore requires a trapdoor permutation) does not
allow symmetric encryption integration. Furthermore, the required property for
the symmetric encryption is very weak. Indeed, as it will be seen during the
security analysis in next section, it is just required that the symmetric encryp-
tion scheme is semantic security in the basic scenario (no plaintext/ciphertext
attacks).

5.3 Chosen-Ciphertext Security

Theorem 5.1 Let us assume that

� the asymmetric encryption scheme (Kasym; Easym;Dasym) is INV-PCA{secure1

� and the symmetric encryption scheme (Ksym; E sym;Dsym) is IND-secure,

then the conversion (Khyb; Ehyb;Dhyb) is IND-CCA in the random oracle model.

More precisely, one can claim the following exact security result.

Theorem 5.2 Let us consider a CCA{adversary Acca against the \semantic
security" of the conversion (Khyb; Ehyb;Dhyb), between `-bit messages, within
a time bounded by t, with advantage ", after qD, qG and qH queries to the
decryption oracle, and the hash functions G and H respectively. Then for any
0 < � < ", there either exist

� an adversary Bpca against the (t; ')-INV-PCA-security of the asymmetric
encryption scheme (Kasym;E asym;Dasym), after less than (gG+qH) �(qD+1)
queries to the Plaintext-Checking Oracle, where

' =
"� �

2
�

qD
2k2

� or an adversary B against the (t; �; `)-IND{security of symmetric encryp-
tion scheme (Ksym; E sym;Dsym).

1In other words, \If the type 1 Gap problem is intractable (where f(y; x) = 1 i� Dasym(y) =
x)"
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Proof:

More than semantically secure under chosen-ciphertext attacks, this con-
verted scheme can be proven \plaintext{aware" [3, 2], which implies chosen-
ciphertext security. To prove above Theorems, we �rst assume that the symmet-
ric encryption scheme (Ksym; E sym;Dsym) is (t; �; `)-IND{secure, for some proba-
bility 0 < � < ".

Semantic Security. The semantic security of this scheme intuitively comes
from the fact that for any adversary, in order to have any information about
the encrypted message m, she at least has to have asked (c1; R; ?) to H (which
is called \event 1" and denoted by E1) or R to G (which is called \event 2"
and denoted by E2). Therefore, for a given c1 = E

asym
pk (R; r), R is in the list of

queries asked to G or H. Then, for any candidate ~R, one asks to the Plaintext
Checking Oracle whether c1 encrypts ~R or not. The accepted one is output as
the inversion of Easympk on the ciphertext c1, which breaks the INV-PCA.

More precisely, let us consider A = (A1; A2), an adversary against the se-
mantic security of the converted scheme, using an adaptive chosen-ciphertext
attack. Within a time bound t, she asks qD queries to the decryption oracle and
qG and qH queries to the hash functions G and H respectively, and distinguishes
the right plaintext with an advantage greater than ". Actually, in the random
oracle model, because of the randomness of G and H, if neither event 1 nor
event 2 happen, she gets c2 = E

sym
K (mb), for a totally random key K and then

cannot gain any advantage greater than �, since the running time is bounded
by t and messages are `-bit long. Then,

Pr
b
[A2(E

hyb
pk (mb; r); s) = b j :(E1 _ E2)] �

1

2
+
�

2
:

However,

1

2
+
"

2
� Pr

b
[A2(E

hyb
pk (mb; r); s) = b]

= Pr
b
[A2 = b ^ :(E1 _ E2)] + Pr

b
[A2 = b ^ (E1 _ E2)]

= Pr
b
[A2 = b j :(E1 _ E2)]� Pr

b
[:(E1 _ E2)] + Pr

b
[A2 = b ^ (E1 _ E2)]

�
1

2
+
�

2
+ Pr

b
[E1 _ E2]:

This leads to Pr[E1 _ E2] � ("� �)=2. If E1 or E2 occurred, an ~R will be accepted
and returned after at most (qG+ qH) queries to the Plaintext Checking Oracle.

Plaintext{Extractor. Since we are in an adaptive chosen-ciphertext sce-
nario, we have to simulate the decryption oracle, or to provide a plaintext-
extractor. When the adversary asks a query (c1; c2; c3), the simulator looks for
the triples (m;R;K) in the table of the query/answer's previously got from the
hash functions G and H, using c1, which one both led to c2 and c3. For any cor-
rect one, it asks to the Plaintext-Checking Oracle whether c1 encrypts the given
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R (therefore globally at most qH). In the positive case, it has found a triple
(m;R;K) such that, K = G(R) and for some r0, c1 = E

asym
pk (R; r0), c2 = E

sym
K (m)

and c3 = H(c1; R;m). The corresponding plaintext is therefore m.
Some decryptions may be incorrect, but only refusing a valid ciphertext: a

ciphertext is refused if the query R has not been directly asked to G by the
attacker, or (c1; R;m) not asked to H . This may happen in two situations:

� the attacker has guessed the right value for H(c1; R;m) without having
asked for it, but only with probability 1=2k2 ;

� the c3 has been given directly by the encryption oracle, which means that
it is a part of the challenge ciphertext. Because of c1, R and m in the
triple H-input, the decryption oracle query would either be exactly the
challenge ciphertext, which is not allowed to the attacker, or a non-valid
ciphertext.

Using this plaintext-extractor, we obtain,

Pr[(E1 _ E2) ^ no incorrect decryption] �
"� �

2
�

qD
2k2

;

in which cases one solves the Inverting-problem, simply using the Decision-
problem oracle to check which element, in the list of queries asked to G and H ,
is the solution. [QED] {

6 Some Examples

We now apply this conversion to many classical encryption schemes which are
clearly INV-PCA under some well de�ned assumptions.

6.1 The RSA Encryption Scheme

6.1.1 Description of the Original Scheme.

In 1978, Rivest{Shamir{Adleman [29] de�ned the �rst asymmetric encryption
based on the RSA{assumption. It works as follows:

� The user chooses two large primes p and q and publishes the product
n = pq together with any exponent e, relatively prime to '(n). He keeps
p and q secret, or the invert exponent d = e�1 mod '(n).

� To encrypt a message m 2 Z?n, one just has to compute c = me mod n.

� The recipient can recover the message thanks to d, m = cd mod n.

The one-wayness of this scheme relies on the RSA assumption. Since this
scheme is deterministic, it is still one-way, even against CPA, relative to the
RSA assumption.
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6.1.2 The Converted Scheme: OCAC{RSA.

Let us consider two hash functions G and H which output k1-bit numbers and
k2-bit numbers respectively, and any semantically secure symmetric encryption
scheme (Ksym; E sym;Dsym).

� Key generation algorithm K(1k): it chooses two large primes p and q
greater than 2k, computes the product n = pq. A key pair is composed
by a random exponent e, relatively prime to '(n) and its inverse d =
e�1 mod '(n).

� Encryption algorithm Ee;n(m;R): with R 2 Z?n, it gets c1 = Re mod n,
then it computesK = G(R) and c2 = E

sym
K (m) as well as c3 = H(c1; R;m).

The ciphertext consists of the triple C = (c1; c2; c3).

� Decryption algorithm Dd;n(c1; c2; c3), it �rst extracts R = cd1 mod n. Then
it recovers K = G(R) and m = Dsym

K (c2) which is output if and only if
c3 = H(c1; R;m). Otherwise, it outputs \Reject".

Theorem 6.1 The OCAC{RSA encryption scheme is IND-CCA in the random
oracle model, under the RSA assumption (and the semantic security of the sym-
metric encryption scheme under the basic passive attack).

This becomes the best alternative to OAEP{RSA [3, 30], since E sym can sim-
ply be the \one-time pad" but also any semantically secure encryption scheme
to provide high-speed rates.

6.2 The El Gamal Encryption Scheme

6.2.1 Description of the Original Scheme.

In 1985, El Gamal [12] de�ned an asymmetric encryption scheme based on the
Di�e-Hellman key distribution problem [10]. It works as follows:

� An authority chooses and publishes an Abelian group G of order q, denoted
multiplicatively but it could be an elliptic curve, together with a generator
g. Each user chooses a secret key x in Z?q and publishes y = gx.

� To encrypt a message m, one has to choose a random element k in Z?q and

sends the pair (r = gk mod p; s = m � yk) as the ciphertext.

� The recipient can recover the message from a pair (r; s) since m = s=rx,
where x is his secret key.

To reach semantic security, this scheme requires m to be encoded by an element
in the group G. Whereas the one-wayness of this scheme anyway relies on the
Computational Di�e-Hellman problem.

Lemma 6.2 The El Gamal encryption scheme is INV-PCA under the Gap-DH
Assumption.
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Proof:

This lemma is clear since a Plaintext-Checking Oracle, for a given public key
y = gx and a ciphertext (r = gk; s = m � yk), simply checks whether the triple
(y = gx; r = gk; s=m) is a DH-triple. It is exactly a Decision Di�e-Hellman
Oracle. [QED] {

6.2.2 The Converted Scheme: OCAC{El Gamal.

Let us consider two hash functions G and H which output k1-bit numbers and
k2-bit numbers respectively, and any semantically secure symmetric encryption
scheme (Ksym; E sym;Dsym).

� Key generation algorithm K(1k): it chooses a large prime q, greater than
2k, a subgroup G of order q of an Abelian group G0 and a generator g of
G. A key pair is composed by a random element x in Z?q and y = gx.

� Encryption algorithm Ey(m;R;r): with R 2 G0 and r 2 Zq, it gets c1 = gr

and c01 = R � yr in G0, then it computes K = G(R) and c2 = E symK (m)
as well as c3 = H(c1; c

0

1; R;m). The ciphertext consists of the tuple C =
(c1; c

0

1; c2; c3).

� Decryption algorithm Dx(c1; c
0

1; c2; c3), it �rst extracts R = c01=c
x
1 . Then

it recovers K = G(R) and m = Dsym
K (c2) which is output if and only if

c3 = H(c1; c01; R;m). Otherwise, it outputs \Reject".

Theorem 6.3 The OCAC{El Gamal encryption scheme is IND-CCA in the ran-
dom oracle model, under the Gap-DH assumption (and the semantic security of
the symmetric encryption scheme under the basic passive attack).

6.3 The Okamoto-Uchiyama Encryption Scheme

6.3.1 Description of the Original Scheme.

Last year, Okamoto{Uchiyama [21] de�ned an asymmetric encryption based on
a trapdoor discrete logarithm. It works as follows:

� Each user chooses two large primes p and q and computes n = p2q. He
also chooses an element g 2 Z?n such that gp�1

p mod p2 is of order p and
computes h = gn mod n. The modulus n, and the elements g and h are
made public while p and q are kept secret.

� To encrypt a message m, smaller than p, one has to choose a random
element r 2 Zn and sends c = gmhr mod n as the ciphertext.

� The recipient can recover the messagem from c sincem = L(cp)=L(gp) mod
p, where L(x) = (x�1)=p mod p for any x = 1 mod p, and cp = cp�1 mod
p2.
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The semantic security of this scheme relies on the p-subgroup assumption (a.k.a.
p-residuosity or more generally high-residuosity), while the one-wayness relies
on the factorization of the modulus n. The INV-PCA relies on the gap problem
(Gap-High-Residuosity).

However, since the encryption process is public, the bound p is unknown. A
public bound has to be de�ned, for example n1=4 which is clearly smaller than
p, or 2k where 2k < p; q < 2k+1.

Lemma 6.4 The Okamoto-Uchiyama encryption scheme is INV-PCA under the
Gap-High-Residuosity Assumption.

Proof:

This lemma is clear since a Plaintext-Checking Oracle is exactly a high-
residuosity oracle. [QED] {

6.3.2 The Converted Scheme: OCAC{Okamoto-Uchiyama

Let us consider two hash functions G and H which output k1-bit numbers and
k2-bit numbers respectively, and any semantically secure symmetric encryption
scheme (Ksym; E sym;Dsym).

� Key generation algorithm K(1k): it chooses two large primes p and q
greater than 2k, as well as g as described above. It then computes n = p2q
and h = gn mod n.

� Encryption algorithm En;g;h(m;R;r): with R < 2k and r < 23k, it gets
c1 = gRhr mod n, then it computes K = G(R) and c2 = E

sym
K (m) as well

as c3 = H(c1; R;m). The ciphertext consists of the triple C = (c1; c2; c3).

� Decryption algorithm Dp(c1; c2; c3), it �rst extracts R = L(c1p)=L(gp).
Then it recovers K = G(R) and m = Dsym

K (c2) which is output if and only
if R < 2k and c3 = H(c1; R;m). Otherwise, it outputs \Reject".

Theorem 6.5 The OCAC{Okamoto-Uchiyama encryption scheme is IND-CCA
in the random oracle model, under the Gap-High-Residuosity assumption (and
the semantic security of the symmetric encryption scheme under the basic pas-
sive attack).

7 Conclusion

This paper presented OCAC, an optimal conversion which applies to any weakly
secure cryptosystem: the overload is as negligible as OAEP, and advantages of
OCAC beyond OAEP are numerous. Therefore, OCAC provides an optimal
solution to realize a provably secure (in the strongest security sense) asymmetric
or hybrid encryption schemes based on any practical asymmetric encryption
primitive such as RSA, El Gamal, or Elliptic-Curve El Gamal. In addition, this
paper introduced a novel class of computational problems, the gap problems,
which is considered to be dual to the class of the decision problems.
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