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Appendix

OCAC: an Optimal Conversion for Asymmetric
Cryptosystems

Tatsuaki Okamoto David Pointcheval

3
Five years after the optimal asymmetric encryption padding (OAEP) which
makes chosen-ciphertext secure encryption scheme from any trapdoor one-way
permutation (but whose unique application is RSA), this paper presents OCAC,
an optimal conversion which applies to any weakly secure cryptosystem: the
overload is negligible, since it just consists, as with OAEP, of two hashings for
both encryption and decryption. Furthermore, advantages of OCAC beyond

OAEP are numerous:

1. 1t is more general than OAEP, since it can apply to any partially trap-
door one-way function (RSA and modular square, but also Diffie-Hellman,

Higher Residues, etc);

2. it is possible to integrate symmetric encryption (block and stream ciphers)

to reach very high speed rates;

3. it also provides a key distribution with session key encryption which achieves

chosen-ciphertext security with an only semantically secure symmetric scheme.

Therefore, OCAC could become a new alternative to OAEP, and even reach
security relative to factorization.

In addition, in order to clarify the security requirement of the underlying
asymmetric encryption, this paper introduces a novel class of computational
problems, the gap problems, which is considered to be dual to the class of the
decision problems. We show the relationship among inverting problems (e.g.,
computational-DH problem), decision problems (e.g., decision-DH problem), and

gap problems (e.g., gap-DH problem).

1 Introduction

For a long time many conversions from a weakly secure encryption into a chosen-

ciphertext secure cryptosystem have been attempted, with variable success. Such a

13



goal is of greatest interest since many one-way encryption schemes are known, with
variable efficiency and various properties, whereas chosen-ciphertext secure schemes

are very rare.

1.1 Chosen-Ciphertext Secure Cryptosystems

Until few years ago, the description of a cryptosystem, together with some heuris-
tic arguments for security, were enough to convince and to make a scheme to be
widely adopted. Formal semantic security [15] and further non-malleability [11] were
just seen as theoretical properties. However, after multiple cryptanalyses of interna-
tional standards [5, 8, 7], provable security has been realized to be important and
even became a basic requirement for any new cryptographic protocol. Therefore, for
the last two years, many cryptosystems have been proposed. Some furthermore in-
troduced new problems [17, 21, 18, 23, 26], other are intricate constructions, over
old schemes, to reach chosen-ciphertext security (from El Gamal [33, 32, 9, 1, 20],
Okamoto-Uchiyama [22], D-RSA [25] or Paillier [24]), with specific security proofs.

Indeed, it is easy to describe a one-way cryptosystem from any trapdoor problem.
Furthermore, such trapdoor problems are not so rare (Diffie-Hellman [10], factoriza-
tion, RSA [29], elliptic curves, McEliece [16], etc). A very nice result would be a generic
and efficient conversion from any such trapdoor problem into a chosen-ciphertext se-

cure encryption scheme.

1.2 Related Work

In 1994, Bellare and Rogaway [3] suggested such a conversion, the so-called OAEP
(Optimal Asymmetric Encryption Padding). However, its application domain was
restricted to trapdoor permutations, which is a very rare object (RSA seems to be
the only one application). Nevertheless, it provided the most efficient RSA-variant,
the OAEP-RSA scheme, provably chosen-ciphertext secure, and became the new RSA
standard — PKCS #1 [30].

At PKC "99, Fujisaki and Okamoto [13] proposed another conversion with further
improvements [14, 27]. Tt therefore seemed that the expected goal was reached: a
generic conversion from any one-way cryptosystem into a chosen-ciphertext secure

encryption scheme. However, the resulting scheme is not optimal, from the compu-
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tational point of view. Namely, the decryption phase is more heavy than one could
expect, since it requires a re-encryption.

As a consequence, with those conversions, one cannot expect to obtain a scheme
with an easy decryption phase (unless both encryption and decryption are easy, which
is very unlikely). However, decryption is usually implemented on a smart card, hence

efficient decryption process is a challenge with a practical impact.

1.3 Achievement: a New and Optimal Conversion

The present work provides a new conversion which is optimal in both the encryption
and decryption phases. Indeed, the encryption needs an evaluation of the one-way
function, and the decryption just makes one call to the inverting function. Further
light computations are to be done, but just an XOR and two hashings. Moreover,
many interesting features appear with integration of symmetric encryption schemes.

The aim of the new conversion is very natural: it roughly first encrypts a session
key using the asymmetric scheme, and then encrypts the plaintext with any symmetric
encryption scheme, which is semantically-secure under simple passive attacks (possibly
the one-time pad), using the session key as secret key. Of course this simple and
actually used scheme does not reach chosen-ciphertext security, but just making the

session key more impredictable and adding a checksum, it can be made so:

C = gmR) (1)
K = G(R) (2)
Ealm) = ClEX(m)|[H(C, R,m), 3)

where G and H are any hash functions.

Moreover, if one uses a semantically secure symmetric encryption scheme against
basic passive attacks (no known-plaintext attacks), the last part of the ciphertext,
which is very fast since it only makes calls to a hash function and to a symmetric
encryption, can be used more than once, with many messages. This makes a highly
secure use of a session key, with symmetric encryption €™ which initially just meets

a very weak security property:

C = &R
K = G(R)
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E(my) = ClIEX(my)||H(C,R,m;) fori=1,....

1.4 Outline of the Paper

We first review, in Section 2, the security notions about encryption schemes (both
symmetric and asymmetric) required in the rest of the paper, with namely the seman-
tic security. Then, in the next section (Section 3), we describe a new attack scenario,
we call the Plaintext-Checking Attack. In Section 4, we develop a novel class of prob-
lems, the Gap-Problems. Then in Section 5, we describe our new Optimal Conversion
together with the security proofs, relative to the above gap-problems. The next section
(Section 6) presents some interesting applications of this conversion. Then comes the

conclusion.

2 Security Notions for Encryption Schemes

2.1 Asymmetric Encryption Schemes

In this part, we formally define public-key encryption schemes, together with the

security notions.

Definition 2.1 (Asymmetric Encryption Schemes) An asymmelric encryption

scheme, on a message space M, consists of 3 algorithms (K3Y™ gasym Dasymy.

e the key generation algorithm K™ (1%) outputs a random pair of secret-public

keys (sk, pk), relatively to the security parameter k;

asym
pk

plaintext m € M (using the random coins r € Q);

e the encryption algorithm £ (m;r) outputs a ciphertext ¢ corresponding to the

e the decryption algorithm DY'™(¢) outpuls the plaintext m associated to the ci-
phertext c.
Remark:

asym

As written above, Epk

(m;r) denotes the encryption of a message m € M using the
random coins r € . When the random coins are useless in the discussion, we simply

note ESEym(m).
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The basic security notion required from an encryption scheme is the one-wayness,

which roughly means that, from the ciphertext, one cannot recover the whole plaintext.

Definition 2.2 (One-Way) An asymmelric encryplion scheme is said o be one-way
of no polynomaal-time attacker can recover the whole plaintext from a given ciphertext
with non-negligible probability. More formally, an asymmetric encryption scheme s
said (t,e)-INV if for any adversary A with running time bounded by t, its inverting
probability is less than e:

Succ™ = Pr[(sk, pk) — K£*¥™(1%),m hid My g, A(E;Eym(m; r)) =m] < e.

A by now more and more required property is the semantic security [15] also known
as indistinguishability of encryptions or polynomial security since it is the computa-

tional version of perfect security [31].

Definition 2.3 (Semantic Security) An asymmelric encryplion scheme is said to
be semantically secure if no polynomial-time attacker can learn any bit of information
about the plaintext from the ciphertext, excepted the length. More formally, an asym-
metric encryption scheme is said (t,e,£)-IND if for any adversary A = (Aq, A2) with

running time bounded by t,

(sk, pk) «— Kaym(1%)
Ad™ =2 Pr | (mg,my,5) — Ai(pk), P As(es) =b| -1 <e,

p £ {0,1},r & Q,c — ESEym(mb; 7)
where mqo and mq are both {-bit long.

Both notions are denoted INV and IND respectively in the following.

Another security notion has been defined, called non-malleability [11]. Tt roughly
means that it is impossible to derive, from a given ciphertext, a new ciphertext such
that the plaintexts are meaningfully related. But we won’t detail it since this notion
has been proven equivalent to semantic security against parallel attacks [4].

Indeed, the adversary considered above may obtain, in some situations, more infor-
mations that just the public key. With just the public key, we say that she plays a
chosen—plaintert attack since she can encrypt any plaintext of her choice, thanks to
the public key. It is denoted CPA. But she may, for some time, access a decryption
oracle. She then plays a chosen—ciphertext atlack, which is either non-adaptive [19]
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if this access is limited in time, or adaptive [28] if this access is unlimited, and the
adversary can therefore ask any query of her choice to the decryption oracle, but of
course she 1s restricted not to use it on the challenge ciphertext.

It has already been proven [2] that under this latter attack, the adaptive chosen-
ciphertext attacks, denoted CCA, the semantic security and the non-malleability no-
tions are equivalent, and 1s the strongest security notion that one could expect. We

therefore call this security level in this scenario the chosen—ciphertext security.

2.2 Symmetric Encryption Schemes
In this part, we briefly focus on symmetric encryption schemes.

Definition 2.4 (Symmetric Encryption Schemes) A symmetric encryption scheme,

on a message space M, consists of 3 algorithms (K™, EY™ DY™M):

e the key generation algorithm K¥™(1*) outputs a random key k, relatively to the

security parameter k;

e the encryption algorithm £Y"(m) oulpuls a ciphertext ¢ corresponding to the

plaintext m € M, in a deterministic way;

e the decryption algorithm D™ (c) gives back the plaintext m associated to the

ciphertext c.

As for asymmetric encryption, impossibility for any adversary to get back the whole
plaintext just given the ciphertext is the basic requirement. However, we directly

consider semantic security.

Definition 2.5 (Semantic Security) A symmelric encryption scheme is said {o be
semantically secure if no polynomial-time attacker can learn any bit of information
about the plaintext from the ciphertext, excepted the length. More formally, a sym-
metric encryption scheme is said (t,e,£)-IND if for any adversary A = (A1, A2) with

running time bounded by t,

sk «— KYM(1%)
Advi™ =2 x Pr (mg, my, s) — Ai(k), s Aa(e,s) =bl —1<e,
b {01}, = £ (m)

where mqo and mq are both {-bit long.
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In the basic scenario, the adversary just sees some ciphertexts, but nothing else. How-
ever, many stronger scenarios can also be considered. The first which seemed natural
for public-key cryptosystems are the known/chosen-plaintext attacks, where the adver-
sary sees some plaintext-ciphertext pairs with the plaintext possibly chosen by herself.
These attacks are not trivial in the symmetric encryption setting, since the adversary
is unable to encrypt herself.

The stronger scenario considers the adaptive chosen-plaintext/ciphertext attacks,
where the adversary has access to both an encryption and a decryption oracle.

However, just the security against the basic no-plaintext/ciphertext attacks (a.k.a.
passive attacks) is enough in our application. Therefore, one can remark that it is a
very weak requirement. Indeed, if one considers AES candidates, cryptanalysts even
fail in breaking efficiently semantic security using adaptive chosen plaintext/ciphertext
attacks: with respect to pseudo-random permutations, semantic security is equivalent
to say that the family (£™)k is (¢,¢)-indistinguishable from the uniform distribu-
tion on all the permutations over {0,1}¢ after just one query (cf. universal hash

functions [6])!

Remark:

One should remark that the one-time pad provides a perfect semantically secure
symmetric encryption: if K%™(1*) outputs k-bit long secret key, then for any ¢ it is

(t,0, k)-semantically secure.

3 The Plaintext-Checking Attacks

We have recalled above all the classical security notions together with the classical
scenarios of attacks in the asymmetric setting. A new kind of attacks (parallel attacks)
has been recently defined [4], which have no real practical meaning, but the goal was
just to deal with non-malleability. In this paper, we define a new one, where the
adversary can check whether a message-ciphertext pair (m,¢) is valid: the Plaintext-

Checking Attack.

Definition 3.1 (Plaintext-Checking Attack) The attacker has access to a Plaintext-
Checking Oracle which takes as input a plaintext m and a ciphertext ¢ and outputs 1

or 0 whether ¢ encrypts m or not.
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It is clear that such an oracle is less powerful than a decryption oracle. This scenario
will be denoted by PCA, and will be always assumed to be fully adaptive: the attacker
has always access to this oracle without any restriction: she can even include the
challenge ciphertext in the query. Therefore, it is clear that semantic security under
this attack cannot be reached. But we don’t mind, since we just require a scheme to

be one-way in this scenario. It is a very weak notion.

Remark:

One can remark that any deterministic INV-CPA asymmetric encryption scheme is
clearly still INV-PCA. Namely, any trapdoor one-way permutation provides a INV-
PCA-secure encryption scheme (e.g. RSA [29]).

4 Gap Problems

The attacking problem under the above-mentioned Plaintext-Checking Attack can
be characterized by a novel class of computational problems, the gap problems.
We first define the gap problems as well as the related inverting and decision prob-

lems. Then we give some examples.

4.1 Definitions
Let f:{0,1}* x {0,1}* + {0,1} be any binary relation. The two classical problems
are the following:

e the inverting problem of f is, given z, to compute any y such as f(z,y) = 1if it

exists, or to answer Fail.

e the decision problem (type 1) of f is, given a pair (#,y), to decide whether
f(z,y) =1 or not.

e the decision problem (type 2) of f is, given z, to decide whether there exists
some y such that f(xz,y) = 1 or not.

In this section, we define the gap problems.

Definition 4.1 (Gap Problem) The gap problem (type 1 or 2) of f is to solve the
inverting problem of f with the help of the oracle of f’s decision problem (type I or 2,
respectively).
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Let us also define some notations:

e a problem X is tractable if it can be solved with non-negligible probability by

some probabilistic polynomial time Turing machine.

e a problem X is strongly tractable if it can be solved with overwhelming proba-

bility by some probabilistic polynomial time Turing machine.
Therefore, we have the negation:
e a problem X is intractable if it is not tractable
e a problem X is weakly intractable if it is not strongly tractable.

Finally, to compare the difficulty of problems, we use the notion of polynomial reduc-

tions:

e a problem X is reducible to problem Y if there exists a probabilistic polynomial
time oracle Turing machine AY (with oracle of problem Y') to compute X with

non-negligible probability.

e a problem X is strongly reducible to problem Y if there exists a probabilistic
polynomial time oracle Turing machine AY (with oracle of problem Y) to com-

pute X with overwhelming probability.
We can easily obtain the following proposition,
Proposition 4.2 Letl f be any binary relation.

o Ifthe gap problem of f is tractable (resp. strongly tractable), the inverting prob-
lem of f is reducible (resp. strongly reducible) to the decision problem of f.

o Let us assume that all the defined problems, based on f, are uniformly easy or
difficult. If the deciston problem of f is strongly tractable, the inverting problem
of f is reducible to the gap problem of f.

Proof:

The first claim directly comes from the definition of the gap problem. Let us consider
the second claim, with a probabilistic polynomial time Turing machine A that solves

the decision problem of f, with overwhelming probability. Let us also assume that
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we have a probabilistic polynomial time oracle Turing machine B” that solves the
inverting problem of f with the help of a decision oracle D. Since A solves the
decision problem with overwhelming probability, it perfectly simulates the DD oracle,
after polynomially many queries, with non-negligible probability. In these cases, the

machine B can invert. [QED] q

This proposition implies a duality between the gap and decision problems. In other
words, the reasonability (or weakness) of the intractability assumptions of the gap and
decision problems of f are comparable, unless one of them is shown to be tractable.

4.2 The Random Self-Reducible Problems

Definition 4.3 A problem is said random self-reducible if any instance can be trans-
formed in an other uniformly distributed instance whose solution helps in solving the

mitial tnstance.

Such problems are clearly uniformly easy or difficult Problems. Furthermore, the weak

intractability is equivalent to the classical intractability.

Corollary 4.4 Let f be any random self-reducible binary relation.

o Ifthe gap problem of f is tractable, the inverting problem of f is reducible to the

decision problem of f.

o If the decision problem of f is tractable, the inverting problem of f is reducible
to the gap problem of f.

Remark:

Almost all the classical problems used in cryptography are random self-reducible.

4.3 Examples of Gap Problems

Let us review some of these classical problems, with their gap variations.

Definition 4.5 (The Diffie-Hellman Problems) Let us consider any group G of

order q together with a generator g. We define three problems as follows:
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e The Inverting Diffie-Hellman Problem (a.k.a. the Computational Diffie-Hellman
problem): given a pair (g%, g"), find the element C = 2.

e The Decision Diffie-Hellman Problem: given a triple (g%, ¢°, g°), decide whether

¢ = abmod ¢ or not.

e The Gap Diffie-Hellman Problem: given a pair (g%, ¢"), find the element C = ¢
with the help of a Decision Diffie-Hellman Oracle (which answers whether a given

triple is correct or not).

Note that these decision and gap problems are of type 1, where

def

f((A,B),C) = (logg ct log, A x log, B mod q) ,

which i1s a priori not a polynomially computable function.

Definition 4.6 (The Gap-DH Assumption) For any probabilistic polynomial or-
acle Turing machine which has access to a Decision-DH oracle, the probability of, given

(g%, 9%), finding C = g* is negligible.

Since no polynomial time reduction (even a probabilistic one) is known from the
Computational-DH to the Decision-DH problems, the Gap-DH assumption seems as
reasonable as the Decision-DH assumption due to the duality of these problems (Propo-
sition 4.2). Note that, as for most of the problems in use in cryptography, the Inverting
Problem is stronger than the Gap Problem (and the Decision Problem either). There-
fore, the tractability of the Gap-DH problem would lead to an equivalence between
Computational-DH and Decision-DH (they would be reducible to each other), which

is very unlikely.

Definition 4.7 (The Rabin Problems) Letl us consider n = pq. We define three

problems as follows:

e The Inverting Rabin Problem (a.k.a. the Factoring Problem): given a pair (n,y),

find z = y/? mod n if x exisls.

e The Decision Rabin Problem (a.k.a the Quadratic Residuosity Problem): given

a pair (n,y), decide whether x exists or not.
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e The Gap Rabin Problem: given a pair (n,y), find x = y'/2 mod n if x ewxists,
with the help of a Decision Rabin Oracle.

Note that these decision and gap problems are of type 2, where

fly, o) = (y = 2% mod n) :

which i1s a polynomially computable function.
Since no polynomial time reduction is known from the Factorization to the Quadratic-
Residuosity problem, the Gap-Rabin assumption seems as reasonable as the Quadratic-

Residuosity assumption.

Definition 4.8 (The RSA Problems) Letus considern = pq and e relatively prime
with w(n). We define three problems as follows:

e The Inverting RSA Problem: given a triple (n,e,y), find & = y'/¢ mod n.

e The Decision RSA Problem: given a quadruple (n,e,y, ), decide whether x =

y'/¢ mod n.

e The Gap RSA Problem: given a triple (n,e,y), find x = y'/¢ mod n with the
help of a Decision RSA Oracle.

Note that these decision and gap problems are of type 1, where

fly,2) € (y < +° mod n) :
which is a polynomially computable function. Therefore, it 1s a really different situ-
ation from the Diffie-Hellman problems. They are both type 1 problems, but in the
current RSA situation, the function f is polynomially computable. Thus the Decision-
problem is clearly strongly tractable (and even more than that since one can always
answer correctly). As a consequence, the Gap and Inverting-RSA problems are equiv-

alent.

Definition 4.9 (The Okamoto-Uchiyama Problems) Let us consider n = p?q,
g € ZF such that gg_l mod p? is of order p, and h = ¢ mod n. We define three

problems as follows:
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e The Inverting-OU Problem (a.k.a. the Factoring Problem): given a quadruple
(n,9,h,y), find x € Z such that y = g"h" mod n.

e The Decision-OU Problem (a.k.a. the High-Residuosity Problem): given a tuple

(n,g,h,y,x), decide whether y = ¢”h" mod n for some v, or not.

e The Gap-OU Problem (thus called the Gap-High-Residuosity Problem): given a
quadruple (n,g,h,y), find © € Zy such that y = g”h” mod n with the help of a
Decision-OU Oracle.

Note that these decision and gap problems are of type 1, where f is a first order

function:
Fly,x) def (Elr,y Zz g°h” mod n) ,

which i1s a priori not a polynomially computable function.

Definition 4.10 (The Gap-High-Residuosity Assumption) For any probabilis-
tic polynomial oracle Turing machine, which has access to a High-Residuosity Oracle,

the probability of success in factoring is negligible.

Since no polynomial time reduction from Factorization to the High-Residuosity
problem, the Gap-High Residuosity assumption seems as reasonable as the High-

Residuosity assumption.

5 Description of the Conversion

5.1 The Basic Conversion

Let us consider (K2¥m gasym pasym) - any INV-PCA-secure asymmetric encryption
scheme, as well as two given hash functions G and H which output k;-bit strings and

ko-bit strings respectively. Then, the new scheme (K, £,D) works as follows:

e Key generation algorithm K(1%): it simply runs £2Y™(1%) to get a pair of keys
(sk, pk), and outputs it.

e Encryption algorithm & (m; R,r): it gets ¢1 = ESEym(R; 7), then it computes the
session key K = G(R), ca = K @ m as well as ¢ = H(c1, R, m). The ciphertext

consists of the triple C' = (¢q, ¢, 3).
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e Decryption algorithm D (C): from C = (1, ¢2, ¢3), it first extracts R from ¢; by
decrypting it: R = D™ (¢1). It can therefore recover the session key K = G(R)
and m = K & ca which is output only if ez = H(eq, R, m). Otherwise, it outputs

“Reject”.

The overload is minimal. Indeed, if we consider the encryption phase, it just adds
the computation of two hash values and an XOR. Concerning the decryption phase,
which had been made heavy in previous conversions [13, 14, 27] with a re-encryption
to check the validity, we also just add the computation of two hash values and an

XOR, as in the encryption process.

5.2 The Hybrid Conversion

As it as already been done with some previous conversions [13, 14, 22, 25, 27], the
“one-time pad” encryption can be generalized to any symmetric encryption scheme
which is not perfectly secure, but semantically secure against passive attacks.

Let us consider two encryption schemes, (2™ ga5¥ym Dasym) ig 5 INV-PCA-secure
asymmetric scheme and (K™, Y™ DY™) ig a IND-secure symmetric scheme which
uses k1-bit long keys, as well as two hash functions G and H which output k;-bit
numbers and ks-bit numbers respectively. Then, the new scheme (lChyb,Ehyb,Dhyb)

works as follows:

e Key generation algorithm K"P(1%): it simply runs Y™(1%) to get a pair of
keys (sk, pk), and outputs it.

e Encryption algorithm Egli'b(m; R,7): it gets ¢1 = E(R;7) and a random session
key K = G(R). Then it computes ¢y = EZ™(m) as well as the checking part
ez = H(e1, R, m). The ciphertext consists of C' = (e, ¢2, ¢3).

e Decryption algorithm D:ﬁ'b(C): from C' = (cy1, ¢, c3), it first extracts R from

¢1 by decrypting it: R = D3 (¢1). It can therefore recover the session key
K = G(R) as well as the plaintext m = D" (c2) which is output only if ¢z =
H(ey, R,m). Otherwise, it outputs “Reject”.

The overload is similar to the previous, but then, the plaintext can be longer. Such
an hybrid transformation cannot be just considered as folklore since the OAEP conver-

sion (which furthermore requires a trapdoor permutation) does not allow symmetric
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encryption integration. Furthermore, the required property for the symmetric encryp-
tion is very weak. Indeed, as it will be seen during the security analysis in next section,
it 1s just required that the symmetric encryption scheme is semantic security in the

basic scenario (no plaintext/ciphertext attacks).

5.3 Chosen-Ciphertext Security

Theorem 5.1 Let us assume that
o the asymmelric encryption scheme (JC3Y™ £3YM DP3yM) 45 INV-PCA-secure’
e and the symmelric encryption scheme (KM EYM DY™) is IND-secure,

then the conversion (WP NP DhY®) s IND-CCA in the random oracle model.

More precisely, one can claim the following exact security result.

Theorem 5.2 Let us consider a CCA—adversary A against the “semantic security”

of the conversion (KM NP DWYLY " between (-bit messages, within a time bounded by
t, with advantage ¢, after qp, qa and qg queries to the decryption oracle, and the hash

functions G and H respectively. Then for any 0 < v < e, there either exist

e an adversary B against the (t,0)-INV-PCA-security of the asymmetric encryp-
tion scheme (K3YM £3YM DAYM) qfter less than (9g + qmr) - (qp + 1) queries to
the Plaintext-Checking Oracle, where

E—V QD
2 2k

gp:

e or an adversary B against the (t,v,£)-IND-security of symmetric encryption

scheme (KY™M, g™ Dsym),

Proof:

More than semantically secure under chosen-ciphertext attacks, this converted scheme
can be proven “plaintext—aware” [3, 2], which implies chosen-ciphertext security. To
prove above Theorems, we first assume that the symmetric encryption scheme (XY™, €™ DsYm)

is (¢, v, £)-IND—secure, for some probability 0 < v < e.

3In other words, “If the type 1 Gap problem is intractable (where f(y,) =1 iff D*¥"(y) = x)”
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Semantic Security. The semantic security of this scheme intuitively comes from
the fact that for any adversary, in order to have any information about the encrypted
message m, she at least has to have asked (e1, R, %) to H (which is called “event 1”7 and
denoted by E;) or R to G (which is called “event 2” and denoted by Es). Therefore,
for a given ¢; = ESEym(R;r), R is in the list of queries asked to G or H. Then, for
any candidate R, one asks to the Plaintext Checking Oracle whether ¢; encrypts R or

asym

ok on the ciphertext ¢;, which

not. The accepted one is output as the inversion of &
breaks the INV-PCA.

More precisely, let us consider A = (4, A3), an adversary against the semantic
security of the converted scheme, using an adaptive chosen-ciphertext attack. Within
a time bound ¢, she asks ¢p queries to the decryption oracle and ¢g and ¢z queries
to the hash functions G and H respectively, and distinguishes the right plaintext with
an advantage greater than . Actually, in the random oracle model, because of the
randomness of G and H, if neither event 1 nor event 2 happen, she gets co = £X™ (my),

for a totally random key K and then cannot gain any advantage greater than v, since

the running time is bounded by ¢ and messages are ¢-bit long. Then,

Pr[Ay (€5 (my; ), 5) = b| ~(EL V E2)] < 5 +

v
5 .

N | =

However,

< PAL(ER (ma; 1), 5) = 1]

N | —
[T

= ];;]I'[Az =bA _|(E1 \% Ez)] + ];;]I'[Az =bA (El \% Ez)]
= ];ZI‘[AQ = | _|(E1 vV Ez)] X ];;]I’[_'(El vV Ez)] + ];ZI'[AQ =bA (E1 vV Ez)]

IN

1 v
3 + 3 +}Zr[E1 V Ey].

This leads to Pr[Ey V E2] > (e — v)/2. If E; or E; occurred, an R will be accepted and
returned after at most (¢g + qzr) queries to the Plaintext Checking Oracle.

Plaintext—Extractor. Since we are in an adaptive chosen-ciphertext scenario, we
have to simulate the decryption oracle, or to provide a plaintext-extractor. When the
adversary asks a query (c1, ca, c3), the simulator looks for the triples (m, R, K) in the
table of the query/answer’s previously got from the hash functions G and H, using
¢1, which one both led to ¢ and e¢3. For any correct one, it asks to the Plaintext-

Checking Oracle whether ¢; encrypts the given R (therefore globally at most ¢z). In
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the positive case, it has found a triple (m, R, K) such that, K = G(R) and for some ¢,
e = ESEym(R; ), e = EX™(m) and ¢z = H(cq, R, m). The corresponding plaintext is
therefore m.

Some decryptions may be incorrect, but only refusing a valid ciphertext: a ciphertext
is refused if the query R has not been directly asked to G by the attacker, or (¢1, R, m)

not asked to H. This may happen in two situations:

e the attacker has guessed the right value for H(eq, R, m) without having asked
for it, but only with probability 1/2Fz;

e the c3 has been given directly by the encryption oracle, which means that it is a
part of the challenge ciphertext. Because of ¢;, R and m in the triple H-input,
the decryption oracle query would either be exactly the challenge ciphertext,

which is not allowed to the attacker, or a non-valid ciphertext.

Using this plaintext-extractor, we obtain,

e—v  qp
2 k2’

Pr[(E; V E2) A no incorrect decryption] >

in which cases one solves the Inverting-problem, simply using the Decision-problem

oracle to check which element, in the list of queries asked to G and H, is the solution.

[QED] T

6 Some Examples

We now apply this conversion to many classical encryption schemes which are clearly
INV-PCA under some well defined assumptions.
6.1 The RSA Encryption Scheme
6.1.1 Description of the Original Scheme.

In 1978, Rivest—Shamir—Adleman [29] defined the first asymmetric encryption based

on the RSA—assumption. It works as follows:

e The user chooses two large primes p and ¢ and publishes the product n = pq
together with any exponent e, relatively prime to ¢(n). He keeps p and ¢ secret,

or the invert exponent d = e~! mod ¢(n).
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e To encrypt a message m € 77, one just has to compute ¢ = m® mod n.

e The recipient can recover the message thanks to d, m = ¢? mod n.

The one-wayness of this scheme relies on the RSA assumption. Since this scheme is

deterministic, it is still one-way, even against CPA| relative to the RSA assumption.

6.1.2 The Converted Scheme: OCAC—RSA.

Let us consider two hash functions G and H which output k;-bit numbers and k--
bit numbers respectively, and any semantically secure symmetric encryption scheme

(]Csym’ gsym’ stym).

e Key generation algorithm K(1%): it chooses two large primes p and ¢ greater
than 2%, computes the product n = pg. A key pair is composed by a random

exponent e, relatively prime to ¢(n) and its inverse d = e~ mod ¢(n).

e Encryption algorithm &. ,(m; R): with R € ZF, it gets ¢y = R° mod n, then
it computes K = G(R) and ¢o = £Y™(m) as well as ¢3 = H(c1, R,m). The

ciphertext consists of the triple C' = (e, ¢2, ¢3).

e Decryption algorithm Dg,(c1,ca, ¢3), it first extracts R = ¢{ mod n. Then it
recovers K = G(R) and m = DP™(cz) which is output if and only if ¢35 =

H(ey, R,m). Otherwise, it outputs “Reject”.

Theorem 6.1 The OCAC-RSA encryption scheme s IND-CCA in the random ora-
cle model, under the RSA assumption (and the semantic security of the symmetric

encryption scheme under the basic passive attack).

This becomes the best alternative to OAEP-RSA [3, 30], since £%Y™ can simply be
the “one-time pad” but also any semantically secure encryption scheme to provide
high-speed rates.

6.2 The El Gamal Encryption Scheme
6.2.1 Description of the Original Scheme.
In 1985, El Gamal [12] defined an asymmetric encryption scheme based on the

Diffie-Hellman key distribution problem [10]. Tt works as follows:
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e An authority chooses and publishes an Abelian group G of order ¢, denoted
multiplicatively but 1t could be an elliptic curve, together with a generator g.

Each user chooses a secret key  in Z7 and publishes y = ¢”.

e Toencrypt a message m, one has to choose a random element k in Zj and sends

the pair (r = ¢* mod p,s = m x y*) as the ciphertext.

e The recipient can recover the message from a pair (r,s) since m = s/r”, where

x 1s his secret key.

To reach semantic security, this scheme requires m to be encoded by an element in the
group G. Whereas the one-wayness of this scheme anyway relies on the Computational

Diffie-Hellman problem.

Lemma 6.2 The El Gamal encryption scheme s INV-PCA under the Gap-DH As-

sumption.

Proof:

This lemma is clear since a Plaintext-Checking Oracle, for a given public key y = ¢
and a ciphertext (r = g* s = m x y*), simply checks whether the triple (y = g%, r =
g*,s/m) is a DH-triple. It is exactly a Decision Diffie-Hellman Oracle. [QED] 9

6.2.2 The Converted Scheme: OCAC—E]l Gamal.

Let us consider two hash functions G and H which output ki-bit numbers and k»-

bit numbers respectively, and any semantically secure symmetric encryption scheme

(]Csym’ 8sym’ rDsym).

e Key generation algorithm lC(lk): it chooses a large prime ¢, greater than 2%, a
subgroup G of order ¢ of an Abelian group G’ and a generator g of G. A key pair

is composed by a random element z in Zj and y = g”.

e Encryption algorithm &, (m; R,r): with R € G’ and r € Z,, it gets ¢; = ¢" and
¢f = RXxy" in G, then it computes K = G(R) and ¢z = X" (m) as well as

e = H(eq, ¢y, R,m). The ciphertext consists of the tuple C' = (¢, ¢, ¢a, ¢3).
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e Decryption algorithm Dy(cy, €], ¢a, ¢3), it first extracts R = ¢} /¢f. Then it recov-
ers K = G(R) and m = D" (¢co) which is output if and only if ¢c3 = H(eq, ¢, R, m).

Otherwise, it outputs “Reject”.

Theorem 6.3 The OCAC-El Gamal encryption scheme s IND-CCA in the random
oracle model, under the Gap-DH assumption (and the semantic security of the sym-

metric encryption scheme under the basic passive attack).

6.3 The Okamoto-Uchiyama Encryption Scheme
6.3.1 Description of the Original Scheme.

Last year, Okamoto—Uchiyama [21] defined an asymmetric encryption based on a

trapdoor discrete logarithm. It works as follows:

e Each user chooses two large primes p and ¢ and computes n = p?¢q. He also
chooses an element g € 7% such that gg_l mod p? is of order p and computes
h = ¢" mod n. The modulus n, and the elements ¢ and h are made public while

p and ¢ are kept secret.

e To encrypt a message m, smaller than p, one has to choose a random element

r € Z, and sends ¢ = ¢ h"” mod n as the ciphertext.

e The recipient can recover the message m from ¢ since m = L(¢,)/L(g,) mod p,

where L(z) = (z — 1)/p mod p for any z = 1 mod p, and ¢, = ¢?~! mod p.

The semantic security of this scheme relies on the p-subgroup assumption (a.k.a. p-
residuosity or more generally high-residuosity), while the one-wayness relies on the
factorization of the modulus n. The INV-PCA relies on the gap problem (Gap-High-
Residuosity).

However, since the encryption process is public, the bound p is unknown. A public
bound has to be defined, for example n'/4 which is clearly smaller than p, or 2F where

28 < p, g < 28+

Lemma 6.4 The Okamoto-Uchiyama encryption scheme is INV-PCA under the Gap-
High-Residuosity Assumption.
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Proof:

This lemma is clear since a Plaintext-Checking Oracle 1s exactly a high-residuosity

oracle. [QED] q

6.3.2 The Converted Scheme: OCAC—Okamoto-Uchiyama

Let us consider two hash functions G and H which output ki-bit numbers and k»-

bit numbers respectively, and any semantically secure symmetric encryption scheme

(]Csym’ gsym’ stym).

e Key generation algorithm KC(1%): it chooses two large primes p and ¢ greater than

2% as well as g as described above. It then computes n = p®¢ and h = ¢” mod n.

e Encryption algorithm &, ; »(m; R,r): with B < 2% and » < 23% it gets ¢; =
g®h" mod n, then it computes K = G(R) and ¢z = E"(m) as well as ¢z =

H{(eq, R,m). The ciphertext consists of the triple C = (¢q, ¢, €3).

e Decryption algorithm D, (cy, ¢o, c3), it first extracts R = L(c1,)/L(gp). Then it
recovers K = G(R) and m = D™ (c2) which is output if and only if R < 2% and
ez = H(e1, R, m). Otherwise, it outputs “Reject”.

Theorem 6.5 The OCAC-Okamoto-Uchiyama encryption scheme is IND-CCA in the
random oracle model, under the Gap-High-Residuosity assumption (and the semantic

security of the symmetric encryption scheme under the basic passive attack).

7 Conclusion

This paper presented OCAC, an optimal conversion which applies to any weakly
secure cryptosystem: the overload is as negligible as OAEP, and advantages of OCAC
beyond OAEP are numerous. Therefore, OCAC provides an optimal solution to real-
ize a provably secure (in the strongest security sense) asymmetric or hybrid encryp-
tion schemes based on any practical asymmetric encryption primitive such as RSA,
El Gamal, or Elliptic-Curve El Gamal. In addition, this paper introduced a novel class
of computational problems, the gap problems, which is considered to be dual to the

class of the decision problems.
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