
Self Evaluation of EPOC: E�cient Probabilistic Public-Key

Encryption

Abstract

This document evaluates the security and performance of a public-key cryptosystem,
EPOC (E�cient Probabilistic Public-Key Encryption), which has three versions: EPOC-1,
EPOC-2 and EPOC-3.

1 Security

1.1 Summary

1. EPOC-1 is semantically secure or non-malleable against chosen ciphertext attacks (IND-
CCA2 or NM-CCA2) in the random oracle model under the p-subgroup assumption, which
is comparable to the quadratic residue and higher degree residue assumptions.

2. EPOC-2 with one-time padding (EPOC-2-OTP) is semantically secure or non-malleable
against chosen ciphertext attacks (IND-CCA2 or NM-CCA2) in the random oracle model
under the factoring assumption (or one-way assumption of the OU encryption function).

3. EPOC-2 with symmetric encryption (EPOC-2-SymE) is semantically secure or non-malleable
against chosen ciphertext attacks (IND-CCA2 or NM-CCA2) in the random oracle model
under the factoring assumption (or one-way assumption of the OU encryption function),
if the underlying symmetric encryption is secure against passive attacks.

The advantage of this scheme is that security in the strongest sense is guaranteed for the
total system that integrates the asymmetric and symmetric encryption schemes. Therefore,
even if the underlying symmetric-key encryption is secure only against passive attacks and
not against active attacks, EPOC-2, overall, guarantees security against active attacks.

An additional property of EPOC-2 is authentication without using MAC function. That
is, the recipient can con�rm whether the decrypted message is the same as the one the
originator sent.

4. EPOC-3 with one-time padding (EPOC-3-OTP) is semantically secure or non-malleable
against chosen ciphertext attacks (IND-CCA2 or NM-CCA2) in the random oracle model
under the gap-factoring assumption (or gap-one-way assumption of the OU encryption
function).
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5. EPOC-3 with symmetric encryption (EPOC-3-SymE) is semantically secure or non-malleable
against chosen ciphertext attacks (IND-CCA2 or NM-CCA2) in the random oracle model
under the gap-factoring assumption (or gap-one-way assumption of the OU encryption
function), if the underlying symmetric encryption is secure against passive attacks.

EPOC-3 has the same additional merits as those of EPOC-2.

1.2 Comparison with Other Schemes

This section compares the security of EPOC-1/2/3 with other encryption schemes such as OAEP-
RSA and ACE. Table 1 summarizes the comparison of security.

Table 1: Comparison of Security

Scheme Provable Security Number-theoretical Functional
assumption assumption

EPOC-1 IND-CCA2 p-subgroup Truly random

EPOC-2-OTP IND-CCA2 Factoring or Truly random
One-way of OU

EPOC-2-SymE IND-CCA2 Factoring or Truly random & SPA(SymE)
One-way of OU

EPOC-3-OTP IND-CCA2 Gap-Factoring or Truly random
Gap-One-way of OU

EPOC-3-SymE IND-CCA2 Gap-Factoring or Truly random & SPA(SymE)
Gap-One-way of OU

OAEP-RSA IND-CCA2 RSA Truly random

ACE IND-CCA2 DDH CI(SHA-1) & PR(MARS)

SPA(SymE) denotes the security against passive attacks for the underlying symmetric-key
encryption. OU denotes the Okamoto-Uchiyama function, DDH denotes the decision Di�e-
Hellman, CI(SHA-1) denotes the second preimage collision intractable assumption for SHA-1
and PR(MARS) denotes the sum/counter mode pseudo-randomness assumption for MARS.

1.3 Theoretical Results

This section shows our results on the security of EPOC-1, EPOC-2 and EPOC-3. They are
easily obtained from the results presented in [15, 9, 10, 13, 14].

De�nition 1.1 (p-Subgroup Assumption) Let G be a key generator of EPOC-1, and (n; g; h;
pLen; hLen) is the public-key. Let b 2 f0; 1g and rf0; 1ghLen be randomly and uniformly chosen.
C := gbhr mod n.

The p-subgroup problem is intractable if for any (uniform/non-uniform) probabilistic poly-
nomial time machine Adv, for any constant c, for su�ciently large k(= pLen),

Pr[Adv(k; hLen; n; g; h;C) = b] < 1=2 + 1=kc:

2



The probability is taken over the coin 
ips of G and Adv.
The assumption that the p-subgroup problem is intractable is called the p-subgroup assump-

tion.

De�nition 1.2 (Factoring Assumption) Let G0 be an instance generator such that G0(k)!
n, n = p2q, jpj = jqj = k, (p; q : primes). Here, the distribution of n is the same as that of n
with EPOC-2 and EPOC-3. The factoring problem is, given (n; k), to �nd (p; q).

The factoring problem is intractable, if for any (uniform/non-uniform) probabilistic polyno-
mial time machine A, for any constant c, for su�ciently large k,

Pr[A(k; n) = (p; q)] < 1=kc:

The probability is taken over the coin 
ips of G0 and A.
The assumption that the factoring problem is intractable is called the factoring assumption.

De�nition 1.3 (High-Residuosity Assumption) Let K be the key generator algorithm of
EPOC-3, and (n; g; h; pLen; rLen) be a part of the public-key. Let b 2 f0; 1g and r 2 f0; 1grLen

be randomly and uniformly chosen. Set C := gbhr mod n.
The High-Residuosity (HR) problem (a.k.a. the p-subgroup problem in that speci�c situa-

tion) is intractable if for any probabilistic polynomial time machine A, for any constant c, for
su�ciently large k (= pLen),

Pr[A(n; g; h; pLen; rLen; C) = b] < 1=2 + 1=kc:

The probability is taken over the coin 
ips of K and A, as well as the random choice of b and r.
The assumption that the High-Residuosity problem is intractable is called the High-Residuosity

assumption.

De�nition 1.4 (Gap-Factoring Assumption) Let K be the key generator algorithm of EPOC-
3, and (n; g; h; pLen; rLen) be a part of the public-key.

The Gap-Factoring (GF) problem is intractable, if for any probabilistic polynomial time
machine AHR, with a full access to an oracle that perfectly answers the HR problem, for any
constant c, for su�ciently large k (= pLen),

Pr[AHR(n; g; h; pLen; rLen) = (p; q)] < 1=kc:

The probability is taken over the coin 
ips of K and A.
The assumption that the gap-factoring problem is intractable is called the gap-factoring

assumption.

De�nition 1.5 (Secure against Passive Attacks (SPA) for SymE) Let Adv be an adver-
sary that runs in two stages. In the �rst stage, Adv endeavors to come up with a pair of equal-
length messages, X0 and X1, along with some state information s, where jX0j = jX1j � (gLen)a

(a: constant). In the second stage, Adv is given a ciphertext Y := SymEnc(K;Xb), where key
K 2 f0; 1ggLen and b 2 f0; 1g are randomly and uniformly chosen.
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SymE is secure against passive attacks (SPA), if for any (uniform/non-uniform) probabilistic
polynomial time machine Adv, for any constant c, for su�ciently large gLen,

Pr[Adv(gLen;X0;X1; s; Y ) = b] < 1=2 + 1=(gLen)c:

The probability is taken over the coin 
ips of (K; b) and Adv.

Theorem 1.6 (EPOC-1) EPOC-1 is semantically secure against adaptive chosen-ciphertext
attacks (IND-CCA2) or non-malleable against adaptive chosen-ciphertext attacks (NM-CCA2)
in the random oracle model, provided that the p-subgroup assumption is true.

Theorem 1.7 (EPOC-2-OTP) Let SymE for EPOC-2 be one-time padding. Let rLen =
pLen� 1, and hLen = (2+ c0)pLen (c0 > 0: constant). EPOC-2 is semantically secure against
adaptive chosen-ciphertext attacks (IND-CCA2) or non-malleable against adaptive chosen-ciphertext
attacks (NM-CCA2) in the random oracle model, provided that the factoring assumption for
n = p2q is true.

Theorem 1.8 (EPOC-3-SymE) Let rLen = pLen � 1, and hLen = (2 + c0)pLen (c0 > 0:
constant). EPOC-2 is semantically secure against adaptive chosen-ciphertext attacks (IND-
CCA2) or non-malleable against adaptive chosen-ciphertext attacks (NM-CCA2) in the random
oracle model, provided that the factoring assumption for n = p2q is true and that the underlying
SymE is secure against passive attacks (IND-PAS).

Theorem 1.9 (EPOC-3-OTP) Let SymE be the one-time pad, and thus mLen = kLen. Let
hLen = pLen=a for some constant a. OTP|EPOC{3 is chosen-ciphertext secure in the random
oracle model, provided that the GHR assumption holds.

Theorem 1.10 (EPOC-3-SymE) Let hLen = pLen=a for some constant a. EPOC{3 is
chosen-ciphertext secure in the random oracle model, provided that the GHR assumption holds
and that the underlying SymE is secure against passive attacks, for suitable kLen and mLen.

Remark 1: We can also give the concrete analysis of the reduction cost for proving the security,
and show that our reduction is tight [9, 10]: for example, the ability to break IND-CCA2 security
of EPOC-2 (with one-time padding) with a certain amount of computational resources implies
the ability to factor n with almost the same computational resources.
Remark 2: To prove the security (in the sense of IND-CCA2 or NM-CCA2) of EPOC-1 and
EPOC2, it is necessary in decryption to check whether X < 2mLen+rLen for EPOC-1 and
R0 < 2rLen for EPOC-2. If this check is omitted, an active attack is possible (i.e., IND-CCA2,
especially plaintext awareness does not hold) [12].

1.4 On the Intractability of Factoring n = p
2
q

Although it is not known whether n = p2q is more tractable to factor than n = pq, some special
algorithms to factor n = p2q have been studied [16, 17, 18, 1]. However, such techniques are
speci�c on the elliptic curve factoring method (ECM), and the fastest algorithm for factoring
both n = pq and n = p2q is the number �eld sieve (NFS) method, whose running time depends
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only on the composite size, jnj. (Even these algorithms based on the ECM [16, 17, 18] are just
several times faster than the traditional ECM.)

Recently Boneh et.al. presented an algorithm for factoring n = prq with large r, using
the LLL algorithm (lattice reduction) [6]. Their algorithm, however, is only e�ective for the
case where r is large (at least (log p)1=2). If r is constant (or small), the running time of their
algorithm is exponential in jnj. Hence, as for n = p2q, their algorithm is less e�cient than the
ECM and NFS methods.

Therefore, currently the size of n = p2q can be the same as n = pq if n is su�ciently large
(e.g., jnj is at least 1024). Actually, according to the evaluation equations in [8], the ECM
method for n = p2q (i.e., the sizes of primes of n are 1/3 of jnj) with 1024 bits is less e�cient
than the NFS method for n (both for n = p2q and n = pq) with 1024 bits.

2 Performance as Implementated

2.1 Performance in Hardware

� Process:

Cell base.

� Design environment:
Verilog-XL + DesignCompiler

� Resource:
About 25.6KG(@ 2NAND areal equality) + Memory(13312bit)
Structure: [Random logic+Multiplier�2+Adder] + [Memory(13312bit)]

� Speed:
Evaluation speed in 30MHz clock. (Measured by simulator)

EPOC-1

Encryption 640 ms
Decryption 960 ms

EPOC-2

Encryption 640 ms
Decryption 960 ms

EPOC-3

Encryption 640 ms
Decryption 320 ms

(Assuming key length = 1152 bit.)

2.2 Performance in Software

� Platform:
CPU: Pentium with MMX 266MHz
OS: Turbo Linux version 4.0

� Language:

C Language (gcc version 2.91.60)
gnu mp (gmp version 3.0.1) for large integer calculation
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� Memory size(Code size):

EPOC-1

Encryption 44.81 Kbytes
Decryption 45.35 Kbytes

EPOC-2

Encryption 49.37 Kbytes
Decryption 50.96 Kbytes

EPOC-3

Encryption 50.84 Kbytes
Decryption 51.89 Kbytes

� Memory size(Work size):

EPOC-1

Encryption 488 Kbytes
Decryption 484 Kbytes

EPOC-2

Encryption 472 Kbytes
Decryption 488 Kbytes

EPOC-3

Encryption 472 Kbytes
Decryption 488 Kbytes

� Process speed:

EPOC-1

Encryption 60.0 ms
Decryption 86.9 ms

EPOC-2

Encryption 53.3 ms
Decryption 73.7 ms

EPOC-3

Encryption 52.8 ms
Decryption 27.3 ms

(Assuming key length = 1152 bit.)

� Data size:
Size of n 1152 bits
hLen 160 bits
gLen 160 bits
Size of plaintext 128 bits
Size of public key �le 694 bytes
Size of secret key �le 304 bytes
Size of ciphertext �le 291 bytes(EPOC-1) / 307 bytes(EPOC-2) / 332 bytes(EPOC-3)

� Optimize level:

We use compile option \gcc -O3."

This evaluation is a result of executing sample program in http://www.nttmcl.com/sec.

In this implementation, we compute gRhr by gR and hr. We can accelerate it by directly
computing gRhr.

We can also accelerate modular multiplication of mod n or mod p2 by using Chinese
Reminder Theorem. We don't use the fast computing algorithm.

Then, we can implement more faster program than the sample code.

3 Comparison of Computational E�ciency with Other Scheme

This section compares the e�ciency of EPOC with that of other encryption scheme, OAEP-RSA.
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3.1 Parameters

To compare the schemes under the equal conditions, we assume that the plaintext size is 128 bits
for all schemes, since public-key encryption schemes are usually employed for key distribution of
a symmetric-key encryption (128 key is the most typical key size of symmetric-key encryptions).

We assume that the size of n for OAEP-RSA is 1152 bits and e = 232 + 1, and we set the
parameters of the schemes with the same level of security of OAEP-RSA with 1152 bit modulus,
n.

Based on our estimation of the complexity of the two factoring algorithms, ECM and GNFS,
we assume that 1152 bit n(= pq) for OAEP-RSA, and 1152 bit n(= p2q) for EPOC have almost
the same level of security.

We have two types (Types-A and -B) of security parameters for EPOC-1/2/3. EPOC with
Type-A parameters are provably secure in the strongest sense (IND-CCA2) under \weaker"
assumptions, while EPOC with Type-B parameters are provably secure in the strongest sense
(IND-CCA2) under \stronger" assumptions. EPOC with Type-B parameters enjoy better per-
formance than EPOC with Type-A parameters.

� [Type A parameters] For EPOC-1, the message length (mLen) is 128 bits, random
string length (rLen) is 80 bits and the hashed value length of h (hLen) is 832 bits.

For EPOC-2 with one-time pad, rLen = 128 and the hashed value lengths of h and g

(hLen and gLen) are 832 and 128, respectively.

As for EPOC-3 with one-time pad, the random string lengths (rLen and RLen) are 832
and 128 bits respectively, and the hashed value lengths of h and g (gLen and hLen) are
128.

� [Type B parameters] For EPOC-1, the message length (mLen) is 128 bits, random
string length (rLen) is 80 bits and the hashed value length of h (hLen) is 208 bits. For
EPOC-2 with one-time padding (OTP), rLen = 128 and the hashed value lengths of h and
g (hLen and gLen) are 128. As for EPOC-3 with one-time padding (OTP), the random
string lengths (rLen and RLen) are 128 bits, and the hashed value lengths of h and g

(gLen and hLen) are 128.

3.2 Evaluation of E�ciency

In our estimation, we assume standard (extended) binary methods for all schemes, and the
Chinese Remainder Theorem techniques for the decryption of EPOC and OAEP-RSA. We ig-
nore the minor terms such as the complexities of hash function evaluations and exclusive-or
operations.

The computational complexities are normalized by the required number of modular multi-
plications over 1152 bit modulus, #M(1152).

For estimating the lengths of keys and ciphertexts, we ignore the lengths of the common
parameters among users such as elliptic curve parameters, and other minor terms such as pa-
rameter size information.

The following tables (with Type-A and -B parameters) summarize the comparison of e�-
ciency.
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Table 2: Comparison of E�ciency (Type-A Parameter)

Scheme Encryption Decryption Key Length Ciphertext
(#M(1152)) (#M(1152)) (jnj) (bits) Length(bits)

EPOC-1 1300 786 1152 1152

EPOC-2(OTP) 1280 775 1152 1280

EPOC-3(OTP) 1280 64 1152 1408

OAEP-RSA 33 432 1152 1152

Table 3: Comparison of E�ciency (Type-B Parameter)

Scheme Encryption Decryption Key Length Ciphertext
(#M(1152)) (#M(1152)) (bits) Length(bits)

EPOC-1 364 266 1152 1152

EPOC-2(OTP) 224 188 1152 1280

EPOC-3(OTP) 224 64 1152 1408

OAEP-RSA 33 432 1152 1152
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Appendix

OCAC: an Optimal Conversion for Asymmetric Cryptosystems

Tatsuaki Okamoto David Pointcheval

Abstract

Five years after the optimal asymmetric encryption padding (OAEP) whichmakes chosen-
ciphertext secure encryption scheme from any trapdoor one-way permutation (but whose
unique application is RSA), this paper presents OCAC, an optimal conversion which applies
to any weakly secure cryptosystem: the overload is negligible, since it just consists, as with
OAEP, of two hashings for both encryption and decryption. Furthermore, advantages of
OCAC beyond OAEP are numerous:

1. it is more general than OAEP, since it can apply to any partially trapdoor one-way
function (RSA and modular square, but also Di�e-Hellman, Higher Residues, etc);

2. it is possible to integrate symmetric encryption (block and stream ciphers) to reach
very high speed rates;

3. it also provides a key distribution with session key encryption which achieves chosen-
ciphertext security with an only semantically secure symmetric scheme.

Therefore, OCAC could become a new alternative to OAEP, and even reach security relative
to factorization.

In addition, in order to clarify the security requirement of the underlying asymmetric
encryption, this paper introduces a novel class of computational problems, the gap problems,
which is considered to be dual to the class of the decision problems. We show the relation-
ship among inverting problems (e.g., computational-DH problem), decision problems (e.g.,
decision-DH problem), and gap problems (e.g., gap-DH problem).

1 Introduction

For a long time many conversions from a weakly secure encryption into a chosen-ciphertext
secure cryptosystem have been attempted, with variable success. Such a goal is of greatest
interest since many one-way encryption schemes are known, with variable e�ciency and various
properties, whereas chosen-ciphertext secure schemes are very rare.

1.1 Chosen-Ciphertext Secure Cryptosystems

Until few years ago, the description of a cryptosystem, together with some heuristic arguments
for security, were enough to convince and to make a scheme to be widely adopted. Formal
semantic security [15] and further non-malleability [11] were just seen as theoretical properties.
However, after multiple cryptanalyses of international standards [5, 8, 7], provable security has
been realized to be important and even became a basic requirement for any new cryptographic
protocol. Therefore, for the last two years, many cryptosystems have been proposed. Some
furthermore introduced new problems [17, 21, 18, 23, 26], other are intricate constructions, over
old schemes, to reach chosen-ciphertext security (from El Gamal [33, 32, 9, 1, 20], Okamoto-
Uchiyama [22], D-RSA [25] or Paillier [24]), with speci�c security proofs.
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Indeed, it is easy to describe a one-way cryptosystem from any trapdoor problem. Fur-
thermore, such trapdoor problems are not so rare (Di�e-Hellman [10], factorization, RSA [29],
elliptic curves, McEliece [16], etc). A very nice result would be a generic and e�cient conversion
from any such trapdoor problem into a chosen-ciphertext secure encryption scheme.

1.2 Related Work

In 1994, Bellare and Rogaway [3] suggested such a conversion, the so-called OAEP (Optimal
Asymmetric Encryption Padding). However, its application domain was restricted to trapdoor
permutations, which is a very rare object (RSA seems to be the only one application). Never-
theless, it provided the most e�cient RSA-variant, the OAEP-RSA scheme, provably chosen-
ciphertext secure, and became the new RSA standard { PKCS #1 [30].

At PKC '99, Fujisaki and Okamoto [13] proposed another conversion with further improve-
ments [14, 27]. It therefore seemed that the expected goal was reached: a generic conversion
from any one-way cryptosystem into a chosen-ciphertext secure encryption scheme. However, the
resulting scheme is not optimal, from the computational point of view. Namely, the decryption
phase is more heavy than one could expect, since it requires a re-encryption.

As a consequence, with those conversions, one cannot expect to obtain a scheme with an
easy decryption phase (unless both encryption and decryption are easy, which is very unlikely).
However, decryption is usually implemented on a smart card, hence e�cient decryption process
is a challenge with a practical impact.

1.3 Achievement: a New and Optimal Conversion

The present work provides a new conversion which is optimal in both the encryption and de-
cryption phases. Indeed, the encryption needs an evaluation of the one-way function, and the
decryption just makes one call to the inverting function. Further light computations are to be
done, but just an XOR and two hashings. Moreover, many interesting features appear with
integration of symmetric encryption schemes.

The aim of the new conversion is very natural: it roughly �rst encrypts a session key using
the asymmetric scheme, and then encrypts the plaintext with any symmetric encryption scheme,
which is semantically-secure under simple passive attacks (possibly the one-time pad), using the
session key as secret key. Of course this simple and actually used scheme does not reach chosen-
ciphertext security, but just making the session key more impredictable and adding a checksum,
it can be made so:

C = E
asym
pk (R) (1)

K = G(R) (2)

Epk(m) = CjjEsymK (m)jjH(C;R;m); (3)

where G and H are any hash functions.
Moreover, if one uses a semantically secure symmetric encryption scheme against basic pas-

sive attacks (no known-plaintext attacks), the last part of the ciphertext, which is very fast since
it only makes calls to a hash function and to a symmetric encryption, can be used more than
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once, with many messages. This makes a highly secure use of a session key, with symmetric
encryption Esym which initially just meets a very weak security property:

C = Easympk (R)

K = G(R)

Epk(mi) = C jjEsymK (mi)jjH(C;R;mi) for i = 1; : : : :

1.4 Outline of the Paper

We �rst review, in Section 2, the security notions about encryption schemes (both symmetric
and asymmetric) required in the rest of the paper, with namely the semantic security. Then, in
the next section (Section 3), we describe a new attack scenario, we call the Plaintext-Checking
Attack. In Section 4, we develop a novel class of problems, the Gap-Problems. Then in Section 5,
we describe our new Optimal Conversion together with the security proofs, relative to the
above gap-problems. The next section (Section 6) presents some interesting applications of this
conversion. Then comes the conclusion.

2 Security Notions for Encryption Schemes

2.1 Asymmetric Encryption Schemes

In this part, we formally de�ne public-key encryption schemes, together with the security notions.

De�nition 2.1 (Asymmetric Encryption Schemes) An asymmetric encryption scheme, on
a message spaceM, consists of 3 algorithms (Kasym;Easym;Dasym):

� the key generation algorithm Kasym(1k) outputs a random pair of secret-public keys (sk;pk),
relatively to the security parameter k;

� the encryption algorithm Easympk (m; r) outputs a ciphertext c corresponding to the plaintext
m 2 M (using the random coins r 2 
);

� the decryption algorithm Dasym
sk (c) outputs the plaintext m associated to the ciphertext c.

Remark:

As written above, Easympk (m; r) denotes the encryption of a message m 2 M using the random

coins r 2 
. When the random coins are useless in the discussion, we simply note Easympk (m).

The basic security notion required from an encryption scheme is the one-wayness, which
roughly means that, from the ciphertext, one cannot recover the whole plaintext.

De�nition 2.2 (One-Way) An asymmetric encryption scheme is said to be one-way if no
polynomial-time attacker can recover the whole plaintext from a given ciphertext with non-
negligible probability. More formally, an asymmetric encryption scheme is said (t; ")-INV if
for any adversary A with running time bounded by t, its inverting probability is less than ":

Succinv = Pr[(sk; pk) Kasym(1k);m
R
 M; r

R
 
 : A(Easympk (m; r)) = m] < ":
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A by now more and more required property is the semantic security [15] also known as
indistinguishability of encryptions or polynomial security since it is the computational version
of perfect security [31].

De�nition 2.3 (Semantic Security) An asymmetric encryption scheme is said to be seman-
tically secure if no polynomial-time attacker can learn any bit of information about the plaintext
from the ciphertext, excepted the length. More formally, an asymmetric encryption scheme is
said (t; "; `)-IND if for any adversary A = (A1; A2) with running time bounded by t,

Advind = 2 � Pr

2
64
(sk; pk) Kasym(1k)
(m0; m1; s) A1(pk);

b
R
 f0; 1g; r

R
 
; c Easympk (mb; r)

: A2(c; s) = b

3
75� 1 < ";

where m0 and m1 are both `-bit long.

Both notions are denoted INV and IND respectively in the following.
Another security notion has been de�ned, called non-malleability [11]. It roughly means that

it is impossible to derive, from a given ciphertext, a new ciphertext such that the plaintexts are
meaningfully related. But we won't detail it since this notion has been proven equivalent to
semantic security against parallel attacks [4].

Indeed, the adversary considered above may obtain, in some situations, more informations
that just the public key. With just the public key, we say that she plays a chosen{plaintext
attack since she can encrypt any plaintext of her choice, thanks to the public key. It is denoted
CPA. But she may, for some time, access a decryption oracle. She then plays a chosen{ciphertext
attack, which is either non-adaptive [19] if this access is limited in time, or adaptive [28] if this
access is unlimited, and the adversary can therefore ask any query of her choice to the decryption
oracle, but of course she is restricted not to use it on the challenge ciphertext.

It has already been proven [2] that under this latter attack, the adaptive chosen-ciphertext
attacks, denoted CCA, the semantic security and the non-malleability notions are equivalent,
and is the strongest security notion that one could expect. We therefore call this security level
in this scenario the chosen{ciphertext security.

2.2 Symmetric Encryption Schemes

In this part, we brie
y focus on symmetric encryption schemes.

De�nition 2.4 (Symmetric Encryption Schemes) A symmetric encryption scheme, on a
message spaceM, consists of 3 algorithms (Ksym; Esym;Dsym):

� the key generation algorithm Ksym(1k) outputs a random key k, relatively to the security
parameter k;

� the encryption algorithm E symk (m) outputs a ciphertext c corresponding to the plaintext
m 2 M, in a deterministic way;

� the decryption algorithm Dsym
k (c) gives back the plaintext m associated to the ciphertext c.
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As for asymmetric encryption, impossibility for any adversary to get back the whole plaintext
just given the ciphertext is the basic requirement. However, we directly consider semantic
security.

De�nition 2.5 (Semantic Security) A symmetric encryption scheme is said to be semanti-
cally secure if no polynomial-time attacker can learn any bit of information about the plaintext
from the ciphertext, excepted the length. More formally, a symmetric encryption scheme is said
(t; "; `)-IND if for any adversary A = (A1; A2) with running time bounded by t,

Advind = 2� Pr

2
64

sk Ksym(1k)
(m0;m1; s) A1(k);

b
R
 f0; 1g; c E symk (mb)

: A2(c; s) = b

3
75� 1 < ";

where m0 and m1 are both `-bit long.

In the basic scenario, the adversary just sees some ciphertexts, but nothing else. However,
many stronger scenarios can also be considered. The �rst which seemed natural for public-key
cryptosystems are the known/chosen-plaintext attacks, where the adversary sees some plaintext-
ciphertext pairs with the plaintext possibly chosen by herself. These attacks are not trivial in
the symmetric encryption setting, since the adversary is unable to encrypt herself.

The stronger scenario considers the adaptive chosen-plaintext/ciphertext attacks, where the
adversary has access to both an encryption and a decryption oracle.

However, just the security against the basic no-plaintext/ciphertext attacks (a.k.a. pas-
sive attacks) is enough in our application. Therefore, one can remark that it is a very weak
requirement. Indeed, if one considers AES candidates, cryptanalysts even fail in breaking ef-
�ciently semantic security using adaptive chosen plaintext/ciphertext attacks: with respect to
pseudo-random permutations, semantic security is equivalent to say that the family (Esymk )k is
(t; ")-indistinguishable from the uniform distribution on all the permutations over f0; 1g`, after
just one query (cf. universal hash functions [6])!

Remark:

One should remark that the one-time pad provides a perfect semantically secure symmetric
encryption: if Ksym(1k) outputs k-bit long secret key, then for any t it is (t; 0; k)-semantically
secure.

3 The Plaintext-Checking Attacks

We have recalled above all the classical security notions together with the classical scenarios of
attacks in the asymmetric setting. A new kind of attacks (parallel attacks) has been recently
de�ned [4], which have no real practical meaning, but the goal was just to deal with non-
malleability. In this paper, we de�ne a new one, where the adversary can check whether a
message-ciphertext pair (m; c) is valid: the Plaintext-Checking Attack.

De�nition 3.1 (Plaintext-Checking Attack) The attacker has access to a Plaintext-Checking
Oracle which takes as input a plaintext m and a ciphertext c and outputs 1 or 0 whether c en-
crypts m or not.

14



It is clear that such an oracle is less powerful than a decryption oracle. This scenario will be
denoted by PCA, and will be always assumed to be fully adaptive: the attacker has always access
to this oracle without any restriction: she can even include the challenge ciphertext in the query.
Therefore, it is clear that semantic security under this attack cannot be reached. But we don't
mind, since we just require a scheme to be one-way in this scenario. It is a very weak notion.

Remark:

One can remark that any deterministic INV-CPA asymmetric encryption scheme is clearly still
INV-PCA. Namely, any trapdoor one-way permutation provides a INV-PCA-secure encryption
scheme (e.g. RSA [29]).

4 Gap Problems

The attacking problem under the above-mentioned Plaintext-Checking Attack can be character-
ized by a novel class of computational problems, the gap problems.

We �rst de�ne the gap problems as well as the related inverting and decision problems. Then
we give some examples.

4.1 De�nitions

Let f : f0; 1g� � f0; 1g� 7! f0; 1g be any binary relation. The two classical problems are the
following:

� the inverting problem of f is, given x, to compute any y such as f(x; y) = 1 if it exists, or
to answer Fail.

� the decision problem (type 1) of f is, given a pair (x; y), to decide whether f(x; y) = 1 or
not.

� the decision problem (type 2) of f is, given x, to decide whether there exists some y such
that f(x; y) = 1 or not.

In this section, we de�ne the gap problems.

De�nition 4.1 (Gap Problem) The gap problem (type 1 or 2) of f is to solve the inverting
problem of f with the help of the oracle of f 's decision problem (type 1 or 2, respectively).

Let us also de�ne some notations:

� a problem X is tractable if it can be solved with non-negligible probability by some prob-
abilistic polynomial time Turing machine.

� a problem X is strongly tractable if it can be solved with overwhelming probability by
some probabilistic polynomial time Turing machine.

Therefore, we have the negation:

� a problem X is intractable if it is not tractable
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� a problem X is weakly intractable if it is not strongly tractable.

Finally, to compare the di�culty of problems, we use the notion of polynomial reductions:

� a problem X is reducible to problem Y if there exists a probabilistic polynomial time
oracle Turing machine AY (with oracle of problem Y ) to compute X with non-negligible
probability.

� a problem X is strongly reducible to problem Y if there exists a probabilistic polynomial
time oracle Turing machine AY (with oracle of problem Y ) to compute X with overwhelm-
ing probability.

We can easily obtain the following proposition,

Proposition 4.2 Let f be any binary relation.

� If the gap problem of f is tractable (resp. strongly tractable), the inverting problem of f
is reducible (resp. strongly reducible) to the decision problem of f .

� Let us assume that all the de�ned problems, based on f , are uniformly easy or di�cult.
If the decision problem of f is strongly tractable, the inverting problem of f is reducible
to the gap problem of f .

Proof:

The �rst claim directly comes from the de�nition of the gap problem. Let us consider the
second claim, with a probabilistic polynomial time Turing machine A that solves the decision
problem of f , with overwhelming probability. Let us also assume that we have a probabilistic
polynomial time oracle Turing machine BD that solves the inverting problem of f with the
help of a decision oracle D. Since A solves the decision problem with overwhelming probabil-
ity, it perfectly simulates the D oracle, after polynomially many queries, with non-negligible
probability. In these cases, the machine B can invert. [QED] {

This proposition implies a duality between the gap and decision problems. In other words,
the reasonability (or weakness) of the intractability assumptions of the gap and decision problems
of f are comparable, unless one of them is shown to be tractable.

4.2 The Random Self-Reducible Problems

De�nition 4.3 A problem is said random self-reducible if any instance can be transformed in
an other uniformly distributed instance whose solution helps in solving the initial instance.

Such problems are clearly uniformly easy or di�cult Problems. Furthermore, the weak in-
tractability is equivalent to the classical intractability.

Corollary 4.4 Let f be any random self-reducible binary relation.

� If the gap problem of f is tractable, the inverting problem of f is reducible to the decision
problem of f .
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� If the decision problem of f is tractable, the inverting problem of f is reducible to the gap
problem of f .

Remark:

Almost all the classical problems used in cryptography are random self-reducible.

4.3 Examples of Gap Problems

Let us review some of these classical problems, with their gap variations.

De�nition 4.5 (The Di�e-Hellman Problems) Let us consider any group G of order q to-
gether with a generator g. We de�ne three problems as follows:

� The Inverting Di�e-Hellman Problem (a.k.a. the Computational Di�e-Hellman problem):
given a pair (ga; gb), �nd the element C = gab.

� The Decision Di�e-Hellman Problem: given a triple (ga; gb; gc), decide whether c = ab mod
q or not.

� The Gap Di�e-Hellman Problem: given a pair (ga; gb), �nd the element C = gab with the
help of a Decision Di�e-Hellman Oracle (which answers whether a given triple is correct
or not).

Note that these decision and gap problems are of type 1, where

f((A;B); C)
def
=
�
logg C

?
= logg A� logg B mod q

�
;

which is a priori not a polynomially computable function.

De�nition 4.6 (The Gap-DH Assumption) For any probabilistic polynomial oracle Turing
machine which has access to a Decision-DH oracle, the probability of, given (ga; gb), �nding
C = gab is negligible.

Since no polynomial time reduction (even a probabilistic one) is known from the Computational-
DH to the Decision-DH problems, the Gap-DH assumption seems as reasonable as the Decision-
DH assumption due to the duality of these problems (Proposition 4.2). Note that, as for most of
the problems in use in cryptography, the Inverting Problem is stronger than the Gap Problem
(and the Decision Problem either). Therefore, the tractability of the Gap-DH problem would
lead to an equivalence between Computational-DH and Decision-DH (they would be reducible
to each other), which is very unlikely.

De�nition 4.7 (The Rabin Problems) Let us consider n = pq. We de�ne three problems
as follows:

� The Inverting Rabin Problem (a.k.a. the Factoring Problem): given a pair (n; y), �nd
x = y1=2 mod n if x exists.
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� The Decision Rabin Problem (a.k.a the Quadratic Residuosity Problem): given a pair
(n; y), decide whether x exists or not.

� The Gap Rabin Problem: given a pair (n; y), �nd x = y1=2 mod n if x exists, with the help
of a Decision Rabin Oracle.

Note that these decision and gap problems are of type 2, where

f(y; x)
def
=
�
y

?
= x2 mod n

�
;

which is a polynomially computable function.
Since no polynomial time reduction is known from the Factorization to the Quadratic-

Residuosity problem, the Gap-Rabin assumption seems as reasonable as the Quadratic-Residuosity
assumption.

De�nition 4.8 (The RSA Problems) Let us consider n = pq and e relatively prime with
'(n). We de�ne three problems as follows:

� The Inverting RSA Problem: given a triple (n; e; y), �nd x = y1=e mod n.

� The Decision RSA Problem: given a quadruple (n; e; y; x), decide whether x = y1=e mod n.

� The Gap RSA Problem: given a triple (n; e; y), �nd x = y1=e mod n with the help of a
Decision RSA Oracle.

Note that these decision and gap problems are of type 1, where

f(y; x)
def
=
�
y

?
= xe mod n

�
;

which is a polynomially computable function. Therefore, it is a really di�erent situation from the
Di�e-Hellman problems. They are both type 1 problems, but in the current RSA situation, the
function f is polynomially computable. Thus the Decision-problem is clearly strongly tractable
(and even more than that since one can always answer correctly). As a consequence, the Gap
and Inverting-RSA problems are equivalent.

De�nition 4.9 (The Okamoto-Uchiyama Problems) Let us consider n = p2q, g 2 Z
?
n

such that gp�1p mod p2 is of order p, and h = gn mod n. We de�ne three problems as follows:

� The Inverting-OU Problem (a.k.a. the Factoring Problem): given a quadruple (n; g; h; y),
�nd x 2 Z?p such that y = gxhr mod n.

� The Decision-OU Problem (a.k.a. the High-Residuosity Problem): given a tuple (n; g; h; y; x),
decide whether y = gxhr mod n for some r, or not.

� The Gap-OU Problem (thus called the Gap-High-Residuosity Problem): given a quadruple
(n; g; h; y), �nd x 2 Z?p such that y = gxhr mod n with the help of a Decision-OU Oracle.
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Note that these decision and gap problems are of type 1, where f is a �rst order function:

f(y; x)
def
=
�
9r; y

?
= gxhr mod n

�
;

which is a priori not a polynomially computable function.

De�nition 4.10 (The Gap-High-Residuosity Assumption) For any probabilistic polyno-
mial oracle Turing machine, which has access to a High-Residuosity Oracle, the probability of
success in factoring is negligible.

Since no polynomial time reduction from Factorization to the High-Residuosity problem, the
Gap-High Residuosity assumption seems as reasonable as the High-Residuosity assumption.

5 Description of the Conversion

5.1 The Basic Conversion

Let us consider (Kasym; Easym;Dasym), any INV-PCA{secure asymmetric encryption scheme, as
well as two given hash functions G and H which output k1-bit strings and k2-bit strings respec-
tively. Then, the new scheme (K;E ;D) works as follows:

� Key generation algorithm K(1k): it simply runs Kasym(1k) to get a pair of keys (sk; pk),
and outputs it.

� Encryption algorithm Epk(m;R; r): it gets c1 = E
asym
pk (R; r), then it computes the session

key K = G(R), c2 = K � m as well as c3 = H(c1;R;m). The ciphertext consists of the
triple C = (c1; c2; c3).

� Decryption algorithm Dsk(C): from C = (c1; c2; c3), it �rst extracts R from c1 by decrypt-
ing it: R = Dasym

sk (c1). It can therefore recover the session key K = G(R) and m = K � c2
which is output only if c3 = H(c1; R;m). Otherwise, it outputs \Reject".

The overload is minimal. Indeed, if we consider the encryption phase, it just adds the
computation of two hash values and an XOR. Concerning the decryption phase, which had been
made heavy in previous conversions [13, 14, 27] with a re-encryption to check the validity, we
also just add the computation of two hash values and an XOR, as in the encryption process.

5.2 The Hybrid Conversion

As it as already been done with some previous conversions [13, 14, 22, 25, 27], the \one-time
pad" encryption can be generalized to any symmetric encryption scheme which is not perfectly
secure, but semantically secure against passive attacks.

Let us consider two encryption schemes, (Kasym; Easym;Dasym) is a INV-PCA{secure asym-
metric scheme and (Ksym; E sym;Dsym) is a IND{secure symmetric scheme which uses k1-bit long
keys, as well as two hash functions G and H which output k1-bit numbers and k2-bit numbers
respectively. Then, the new scheme (Khyb;Ehyb;Dhyb) works as follows:
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� Key generation algorithm Khyb(1k): it simply runs Kasym(1k) to get a pair of keys (sk; pk),
and outputs it.

� Encryption algorithm Ehyb
pk

(m;R; r): it gets c1 = Epk(R; r) and a random session key

K = G(R). Then it computes c2 = E
sym
K (m) as well as the checking part c3 = H(c1;R;m).

The ciphertext consists of C = (c1; c2; c3).

� Decryption algorithm Dhyb
sk (C): from C = (c1; c2; c3), it �rst extracts R from c1 by de-

crypting it: R = Dasym
sk (c1). It can therefore recover the session key K = G(R) as well

as the plaintext m = Dsym
K (c2) which is output only if c3 = H(c1;R;m). Otherwise, it

outputs \Reject".

The overload is similar to the previous, but then, the plaintext can be longer. Such an
hybrid transformation cannot be just considered as folklore since the OAEP conversion (which
furthermore requires a trapdoor permutation) does not allow symmetric encryption integration.
Furthermore, the required property for the symmetric encryption is very weak. Indeed, as it
will be seen during the security analysis in next section, it is just required that the symmetric
encryption scheme is semantic security in the basic scenario (no plaintext/ciphertext attacks).

5.3 Chosen-Ciphertext Security

Theorem 5.1 Let us assume that

� the asymmetric encryption scheme (Kasym; Easym;Dasym) is INV-PCA{secure1

� and the symmetric encryption scheme (Ksym;E sym;Dsym) is IND-secure,

then the conversion (Khyb;Ehyb;Dhyb) is IND-CCA in the random oracle model.

More precisely, one can claim the following exact security result.

Theorem 5.2 Let us consider a CCA{adversary Acca against the \semantic security" of the
conversion (Khyb; Ehyb;Dhyb), between `-bit messages, within a time bounded by t, with advan-
tage ", after qD, qG and qH queries to the decryption oracle, and the hash functions G and H
respectively. Then for any 0 < � < ", there either exist

� an adversary Bpca against the (t; ')-INV-PCA-security of the asymmetric encryption scheme
(Kasym; Easym;Dasym), after less than (gG+ qH) � (qD+1) queries to the Plaintext-Checking
Oracle, where

' =
" � �

2
�
qD
2k2

� or an adversary B against the (t; �; `)-IND{security of symmetric encryption scheme (Ksym; Esym;Dsym).

Proof:

More than semantically secure under chosen-ciphertext attacks, this converted scheme can
be proven \plaintext{aware" [3, 2], which implies chosen-ciphertext security. To prove above
Theorems, we �rst assume that the symmetric encryption scheme (Ksym; E sym;Dsym) is (t; �; `)-
IND{secure, for some probability 0 < � < ".

1In other words, \If the type 1 Gap problem is intractable (where f(y; x) = 1 i� Dasym(y) = x)"
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Semantic Security. The semantic security of this scheme intuitively comes from the fact that
for any adversary, in order to have any information about the encrypted message m, she at least
has to have asked (c1; R; ?) to H (which is called \event 1" and denoted by E1) or R to G (which
is called \event 2" and denoted by E2). Therefore, for a given c1 = E

asym
pk

(R; r), R is in the list

of queries asked to G or H . Then, for any candidate ~R, one asks to the Plaintext Checking
Oracle whether c1 encrypts ~R or not. The accepted one is output as the inversion of E

asym
pk on

the ciphertext c1, which breaks the INV-PCA.
More precisely, let us consider A = (A1; A2), an adversary against the semantic security of

the converted scheme, using an adaptive chosen-ciphertext attack. Within a time bound t, she
asks qD queries to the decryption oracle and qG and qH queries to the hash functions G and H
respectively, and distinguishes the right plaintext with an advantage greater than ". Actually,
in the random oracle model, because of the randomness of G and H , if neither event 1 nor
event 2 happen, she gets c2 = E

sym
K (mb), for a totally random key K and then cannot gain any

advantage greater than �, since the running time is bounded by t and messages are `-bit long.
Then,

Pr
b
[A2(E

hyb
pk (mb; r); s) = b j :(E1 _ E2)] �

1

2
+
�

2
:

However,

1

2
+
"

2
� Pr

b
[A2(E

hyb
pk (mb; r); s) = b]

= Pr
b
[A2 = b ^ :(E1 _ E2)] + Pr

b
[A2 = b ^ (E1 _ E2)]

= Pr
b
[A2 = b j :(E1 _ E2)]� Pr

b
[:(E1 _ E2)] + Pr

b
[A2 = b ^ (E1 _ E2)]

�
1

2
+
�

2
+ Pr

b
[E1 _ E2]:

This leads to Pr[E1 _ E2] � ("� �)=2. If E1 or E2 occurred, an ~R will be accepted and returned
after at most (qG + qH) queries to the Plaintext Checking Oracle.

Plaintext{Extractor. Since we are in an adaptive chosen-ciphertext scenario, we have to
simulate the decryption oracle, or to provide a plaintext-extractor. When the adversary asks a
query (c1; c2; c3), the simulator looks for the triples (m;R;K) in the table of the query/answer's
previously got from the hash functions G and H, using c1, which one both led to c2 and c3.
For any correct one, it asks to the Plaintext-Checking Oracle whether c1 encrypts the given
R (therefore globally at most qH). In the positive case, it has found a triple (m;R;K) such
that, K = G(R) and for some r0, c1 = E

asym
pk (R; r0), c2 = E

sym
K (m) and c3 = H(c1;R;m). The

corresponding plaintext is therefore m.
Some decryptions may be incorrect, but only refusing a valid ciphertext: a ciphertext is

refused if the query R has not been directly asked to G by the attacker, or (c1;R;m) not asked
to H. This may happen in two situations:

� the attacker has guessed the right value for H(c1; R;m) without having asked for it, but
only with probability 1=2k2;
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� the c3 has been given directly by the encryption oracle, which means that it is a part of
the challenge ciphertext. Because of c1, R and m in the triple H-input, the decryption
oracle query would either be exactly the challenge ciphertext, which is not allowed to the
attacker, or a non-valid ciphertext.

Using this plaintext-extractor, we obtain,

Pr[(E1 _ E2) ^ no incorrect decryption] �
"� �

2
�

qD
2k2

;

in which cases one solves the Inverting-problem, simply using the Decision-problem oracle to
check which element, in the list of queries asked to G and H , is the solution. [QED] {

6 Some Examples

We now apply this conversion to many classical encryption schemes which are clearly INV-PCA
under some well de�ned assumptions.

6.1 The RSA Encryption Scheme

6.1.1 Description of the Original Scheme.

In 1978, Rivest{Shamir{Adleman [29] de�ned the �rst asymmetric encryption based on the
RSA{assumption. It works as follows:

� The user chooses two large primes p and q and publishes the product n = pq together with
any exponent e, relatively prime to '(n). He keeps p and q secret, or the invert exponent
d = e�1 mod '(n).

� To encrypt a message m 2 Z?n, one just has to compute c = me mod n.

� The recipient can recover the message thanks to d, m = cd mod n.

The one-wayness of this scheme relies on the RSA assumption. Since this scheme is deterministic,
it is still one-way, even against CPA, relative to the RSA assumption.

6.1.2 The Converted Scheme: OCAC{RSA.

Let us consider two hash functions G and H which output k1-bit numbers and k2-bit numbers
respectively, and any semantically secure symmetric encryption scheme (Ksym; E sym;Dsym).

� Key generation algorithm K(1k): it chooses two large primes p and q greater than 2k,
computes the product n = pq. A key pair is composed by a random exponent e, relatively
prime to '(n) and its inverse d = e�1 mod '(n).

� Encryption algorithm Ee;n(m;R): with R 2 Z?n, it gets c1 = Re mod n, then it computes
K = G(R) and c2 = E

sym
K (m) as well as c3 = H(c1; R;m). The ciphertext consists of the

triple C = (c1; c2; c3).
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� Decryption algorithm Dd;n(c1; c2; c3), it �rst extracts R = cd1 mod n. Then it recovers
K = G(R) and m = Dsym

K (c2) which is output if and only if c3 = H(c1;R;m). Otherwise,
it outputs \Reject".

Theorem 6.1 The OCAC{RSA encryption scheme is IND-CCA in the random oracle model,
under the RSA assumption (and the semantic security of the symmetric encryption scheme
under the basic passive attack).

This becomes the best alternative to OAEP{RSA [3, 30], since E sym can simply be the
\one-time pad" but also any semantically secure encryption scheme to provide high-speed rates.

6.2 The El Gamal Encryption Scheme

6.2.1 Description of the Original Scheme.

In 1985, El Gamal [12] de�ned an asymmetric encryption scheme based on the Di�e-Hellman
key distribution problem [10]. It works as follows:

� An authority chooses and publishes an Abelian group G of order q, denoted multiplicatively
but it could be an elliptic curve, together with a generator g. Each user chooses a secret
key x in Z?q and publishes y = gx.

� To encrypt a message m, one has to choose a random element k in Z?q and sends the pair

(r = gk mod p; s = m� yk) as the ciphertext.

� The recipient can recover the message from a pair (r; s) since m = s=rx, where x is his
secret key.

To reach semantic security, this scheme requires m to be encoded by an element in the group
G. Whereas the one-wayness of this scheme anyway relies on the Computational Di�e-Hellman
problem.

Lemma 6.2 The El Gamal encryption scheme is INV-PCA under the Gap-DH Assumption.

Proof:

This lemma is clear since a Plaintext-Checking Oracle, for a given public key y = gx and
a ciphertext (r = gk; s = m � yk), simply checks whether the triple (y = gx; r = gk; s=m) is a
DH-triple. It is exactly a Decision Di�e-Hellman Oracle. [QED] {

6.2.2 The Converted Scheme: OCAC{El Gamal.

Let us consider two hash functions G and H which output k1-bit numbers and k2-bit numbers
respectively, and any semantically secure symmetric encryption scheme (Ksym; E sym;Dsym).

� Key generation algorithm K(1k): it chooses a large prime q, greater than 2k, a subgroup
G of order q of an Abelian group G0 and a generator g of G. A key pair is composed by a
random element x in Z?q and y = gx.
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� Encryption algorithm Ey(m;R; r): with R 2 G0 and r 2 Zq, it gets c1 = gr and c01 = R�yr

in G0, then it computes K = G(R) and c2 = E
sym
K (m) as well as c3 = H(c1; c

0

1;R;m). The
ciphertext consists of the tuple C = (c1; c01; c2; c3).

� Decryption algorithm Dx(c1; c
0

1; c2; c3), it �rst extracts R = c01=c
x
1 . Then it recovers K =

G(R) and m = Dsym
K (c2) which is output if and only if c3 = H(c1; c

0

1; R;m). Otherwise, it
outputs \Reject".

Theorem 6.3 The OCAC{El Gamal encryption scheme is IND-CCA in the random oracle
model, under the Gap-DH assumption (and the semantic security of the symmetric encryption
scheme under the basic passive attack).

6.3 The Okamoto-Uchiyama Encryption Scheme

6.3.1 Description of the Original Scheme.

Last year, Okamoto{Uchiyama [21] de�ned an asymmetric encryption based on a trapdoor
discrete logarithm. It works as follows:

� Each user chooses two large primes p and q and computes n = p2q. He also chooses an
element g 2 Z?n such that gp�1p mod p2 is of order p and computes h = gn mod n. The
modulus n, and the elements g and h are made public while p and q are kept secret.

� To encrypt a message m, smaller than p, one has to choose a random element r 2 Zn and
sends c = gmhr mod n as the ciphertext.

� The recipient can recover the message m from c since m = L(cp)=L(gp) mod p, where
L(x) = (x� 1)=p mod p for any x = 1 mod p, and cp = cp�1 mod p2.

The semantic security of this scheme relies on the p-subgroup assumption (a.k.a. p-residuosity
or more generally high-residuosity), while the one-wayness relies on the factorization of the
modulus n. The INV-PCA relies on the gap problem (Gap-High-Residuosity).

However, since the encryption process is public, the bound p is unknown. A public bound
has to be de�ned, for example n1=4 which is clearly smaller than p, or 2k where 2k < p; q < 2k+1.

Lemma 6.4 The Okamoto-Uchiyama encryption scheme is INV-PCA under the Gap-High-Residuosity
Assumption.

Proof:

This lemma is clear since a Plaintext-Checking Oracle is exactly a high-residuosity oracle.
[QED] {

6.3.2 The Converted Scheme: OCAC{Okamoto-Uchiyama

Let us consider two hash functions G and H which output k1-bit numbers and k2-bit numbers
respectively, and any semantically secure symmetric encryption scheme (Ksym; E sym;Dsym).
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� Key generation algorithm K(1k): it chooses two large primes p and q greater than 2k, as
well as g as described above. It then computes n = p2q and h = gn mod n.

� Encryption algorithm En;g;h(m;R; r): with R < 2k and r < 23k, it gets c1 = gRhr mod n,
then it computes K = G(R) and c2 = E

sym
K (m) as well as c3 = H(c1; R;m). The ciphertext

consists of the triple C = (c1; c2; c3).

� Decryption algorithm Dp(c1; c2; c3), it �rst extracts R = L(c1p)=L(gp). Then it recovers
K = G(R) and m = Dsym

K (c2) which is output if and only if R < 2k and c3 = H(c1;R;m).
Otherwise, it outputs \Reject".

Theorem 6.5 The OCAC{Okamoto-Uchiyama encryption scheme is IND-CCA in the random
oracle model, under the Gap-High-Residuosity assumption (and the semantic security of the
symmetric encryption scheme under the basic passive attack).

7 Conclusion

This paper presented OCAC, an optimal conversion which applies to any weakly secure cryp-
tosystem: the overload is as negligible as OAEP, and advantages of OCAC beyond OAEP are
numerous. Therefore, OCAC provides an optimal solution to realize a provably secure (in the
strongest security sense) asymmetric or hybrid encryption schemes based on any practical asym-
metric encryption primitive such as RSA, El Gamal, or Elliptic-Curve El Gamal. In addition,
this paper introduced a novel class of computational problems, the gap problems, which is con-
sidered to be dual to the class of the decision problems.
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