
Speci�cation of EPOC: E�cient Probabilistic Public-Key

Encryption

1 Introduction

This document describes a novel public-key encryption scheme, EPOC (E�cient Probabilistic
Public-Key Encryption), which has three versions: EPOC-1, EPOC-2 and EPOC-3. EPOC-1 is
a public-key encryption system that uses a one-way trapdoor function and a random function
(hash function). EPOC-2 and EPOC-3 are public-key encryption systems that use a one-way
trapdoor function, two random functions (hash functions) and a symmetric-key encryption (e.g.,
one-time padding and block-ciphers). We can use any secure hash function and symmetric-key
encryption for EPOC. In our sample program and test data, we use an output-length variant
hash function based on SHA-1 (see Section 10) for hash function, and the one-time-pad for
symmetric-key encryption.

The encryption scheme described in this contribution is obtained by combining four results:
one [32] is on the trapdoor function technique, and the others [16, 17, 30, 31] on conversion
techniques using random functions.

2 Design Policy

One of the most important properties of public-key encryption is provable security. The strongest
security notion in public-key encryption is that of non-malleability or semantical security against
adaptive chosen-ciphertext attacks. Bellare, Desai, Pointcheval and Rogaway [4] show that
semantical security against adaptive chosen-ciphertext attacks (IND-CCA2) is equivalent to (or
su�cient for) the strongest security notion (NM-CCA2).

A promising way to construct a practical public-key encryption scheme semantically secure
against adaptive chosen-ciphertext attacks (IND-CCA2) is to convert a primitive trap-door one-
way function (such as RSA or ElGamal) by using random functions. Here, an ideally random
function, the \random oracle", is assumed when proving the security, and the random function
is replaced by a practical random-like function such as a one-way hash function (e.g., SHA-1 and
MD5, etc.) when realizing it in practice. This approach was initiated by Bellare and Rogaway,
and is called the random oracle model [5, 6].

Although security in the random oracle model cannot be guaranteed formally when a practi-
cal random-like function is used in place of the random oracle, this paradigm often yields much

1



more e�cient schemes than those in the standard model and gives an informal security guarantee
of the schemes.

Two typical primitives of the trap-door one-way function are deterministic one-way permu-
tation (e.g. RSA function) and probabilistic one-way function (e.g., ElGamal and Okamoto-
Uchiyama functions).

Bellare and Rogaway presented a generic and e�cient way to convert a trap-door one-way
permutation to an IND-CCA2 secure scheme in the random oracle model. (The scheme created
in this way from the RSA function is often called OAEP.) However, their method cannot be
applied to probabilistic trap-door one-way functions such as ElGamal.

Recently the authors, Fujisaki and Okamoto [16, 17], and Okamoto and Pointcheval [30,
31] realized three generic and e�cient measures to convert a probabilistic trap-door one-way
function to an IND-CCA2 secure scheme in the random oracle model. One is conversion from
a semantically secure (IND-CPA) trap-door one-way function to an IND-CCA2 secure scheme
[16]. Another is from a trap-door one-way (OW-CPA) function and a symmetric-key encryption
(including one-time padding) to an IND-CCA2 secure scheme [17]. The other is from a gap-
trap-door one-way (OW-CPA) function and a symmetric-key encryption (including one-time
padding) to an IND-CCA2 secure scheme [30, 31]. The latter two conversions can guarantee
the total security of the public-key encryption system in combination with a symmetric-key
encryption scheme.

EPOC has several outstanding properties as follows:

1. EPOC-1 is semantically secure or non-malleable against chosen ciphertext attacks (IND-
CCA2 or NM-CCA2) in the random oracle model under the p-subgroup assumption, which
is comparable to the quadratic residue and higher degree residue assumptions.

2. EPOC-2 with one-time padding (EPOC-2-OTP) is semantically secure or non-malleable
against chosen ciphertext attacks (IND-CCA2 or NM-CCA2) in the random oracle model
under the factoring assumption (or one-way assumption of the OU encryption function).

3. EPOC-2 with symmetric encryption (EPOC-2-SymE) is semantically secure or non-malleable
against chosen ciphertext attacks (IND-CCA2 or NM-CCA2) in the random oracle model
under the factoring assumption (or one-way assumption of the OU encryption function),
if the underlying symmetric encryption is secure against passive attacks.

4. EPOC-3 with one-time padding (EPOC-3-OTP) is semantically secure or non-malleable
against chosen ciphertext attacks (IND-CCA2 or NM-CCA2) in the random oracle model
under the gap-factoring assumption (or gap-one-way assumption of the OU encryption
function).

5. EPOC-3 with symmetric encryption (EPOC-3-SymE) is semantically secure or non-malleable
against chosen ciphertext attacks (IND-CCA2 or NM-CCA2) in the random oracle model
under the gap-factoring assumption (or gap-one-way assumption of the OU encryption
function), if the underlying symmetric encryption is secure against passive attacks.

6. The trapdoor technique with EPOC is fundamentally di�erent from any other previous
scheme including RSA-Rabin and Di�e-Hellman-ElGamal.

2



7. If the parameters are appropriately chosen, the encryption and decryption speeds of EPOC
are comparable to those of elliptic curve cryptosystems.

Compared with OAEP (RSA) with small e (e.g.,232 + 1), although the encryption speed
of EPOC is slower than that of OAEP, the decryption speed is faster than that of OAEP.

3 Notations

EPOC is speci�ed by triplet (G; E ;D), where G is the key generation operation, E the encryption
operation, and D the decryption operation.

We have three versions of EPOC: EPOC-1, EPOC-2 and EPOC-3. EPOC-1 is designed
for key-distribution and EPOC-2 and EPOC-3 are designed for both usages: the combination
of key-distribution and encrypted data transfer, as well as distribution of a longer key under
limited public-key size.

In this speci�cation, we use following notations.

� a := b: the value of b is substituted to a, or a is de�ned as b.

� Z: the set of integers.

� Z=nZ := f0; 1; : : : ; n� 1g.

� Let A, B be sets. AnB := fx j x 2 A ^ x 62 Bg.

� (Z=nZ)� := f1; 2; : : : ; n� 1gnfx j gcd(x; n) 6= 1g.

� f0; 1g� is the set of �nite strings. f0; 1g� is also denoted by B.

� f0; 1gi is the set of i bit length bit strings. f0; 1gi is also denoted by Bi.

� Let a 2 Z. Bi[a] denotes a bit string (ai�1; ai�2; : : : ; a0) 2 Bi such that

a = a0 + 2a1 + 22a2 + � � � 2i�1ai�1

.

� Let a := (ai�1; ai�2; : : : ; a0) 2 Bi. I[a] denotes an integer b 2 Z such that

b = a0 + 2a1 + 22a2 + � � � 2i�1ai�1

.

� If a 2 Bi, jaj := i.

� a � b (mod n) means a � b is divided by n. a := b mod n denotes a 2 Z=nZ and a � b
(mod n).

� Let a 2 B and b 2 B. ajjb denotes the concatenation of a and b. For example,
(0; 1; 0; 0)jj(1; 1; 0) = (0; 1; 0; 0; 1; 1; 0).

� Let X 2 B. [X ]mLen denotes the most mLen signi�cant bits of X.

� Let a 2 Bi and b 2 Bi. a� b means the bit-wise exclusive-or operation. (i.e., a� b 2 Bi.)

3



4 Primitive Encryption Function

EPOC employs the OU (Okamoto-Uchiyama) encryption function as a primitive encryption
function. The OU function is as follows:

4.1 Key Generation: G

The input and output of G are as follows:

[Input ] Security parameter k(= pLen) 2 Z, which is a positive integer.

[Output ] A pair of public-key, (n; g; h; pLen; rLen) 2 Z5, and secret-key, (p; gp) 2 Z2.

The operation of G, on input k, is as follows:

� Choose two primes p, q (2k�1 � p; q � 2k � 1), and compute n := p2q.

� Choose g 2 (Z=nZ)� randomly such that the order of gp := gp�1 mod p2 is p.

� Choose h0 from (Z=nZ)� randomly and independently from g. Compute h := hn0 mod n.

� Set pLen := k.

Note: gp is a supplementary parameter that improves the e�ciency of decryption, since gp can
be calculated from p and g. h can be gn mod n.

4.2 Encryption: E

The input and output of E are as follows:

[Input ] Plaintext m 2 f0; 1gpLen�1 along with public-key (n; g; h; pLen; rLen) 2 Z5.

[Output ] Ciphertext C 2 Z.

The operation of E , on input M and (n; g; h; pLen; rLen) is as follows:

� Select r 2 f0; 1grLen uniformly.

� Compute C:
C := gI[m]hI[r] mod n

.

4.3 Decryption: D

The input and output of D are as follows:

[Input ] Ciphertext C 2 Z along with public-key (n; g; h; pLen; rLen) 2 Z5 and secret-key
(p; gp) 2 Z2.

[Output ] Plaintext m 2 f0; 1gpLen�1 or null string.

4



The operation of D, on input C along with (n; g; h; pLen; rLen), (p; gp), and (p; gp), is as
follows:

� Compute Cp := Cp�1 mod p2, and m0 :=
L(Cp)
L(gp)

mod p, where L(x) := x�1
p
.

� Check whether the following equations hold or not:

m0 � 2pLen � 1:

� If it holds, output BpLen�1[m
0] as decrypted plaintext. Otherwise, output null string.

5 Auxiliary Functions

In this section, we show auxiliary functions we use in this speci�cation.

� (k bit) pseudo-random number generator.

� (k bit) prime number generator.

� Hash function.

� Symmetric encryption algorithm SymE.

� Primitive integer arithmetic algorithm.

6 Speci�cation of EPOC-1

6.1 Key Generation: G

The input and output of G are as follows:

[Input ] Security parameter k(= pLen) 2 Z, which is a positive integer.

[Output ] A pair of public-key, (n; g; h;HID; pLen;mLen; hLen; rLen) 2 Z8, and secret-key,
(p; gp) 2 Z2.

The operation of G, on input k, is as follows:

� Choose two primes p, q (2k�1 � p; q � 2k � 1), and compute n := p2q.

� Choose g 2 (Z=nZ)� randomly such that the order of gp := gp�1 mod p2 is p.

� Choose h0 from (Z=nZ)� randomly and independently from g. Compute h := hn0 mod n.

� Set pLen := k. Set mLen and rLen such that mLen+ rLen � pLen� 1.

� Select a (hash) function H : f0; 1gmLen+rLen �! f0; 1ghLen, and HID is its identi�er.

Note: gp is a supplementary parameter that improves the e�ciency of decryption, since gp can
be calculated from p and g. h can be gn mod n. H can be �xed by the system and shared by
many users.

5



6.2 Encryption: E

The input and output of E are as follows:

[Input ] PlaintextM 2 f0; 1gmLen along with public-key (n; g; h;HID; pLen; mLen; hLen; rLen) 2
Z8.

[Output ] Ciphertext C 2 Z.

The operation of E , on input M and (n; g; h;HID; pLen;mLen; hLen; rLen) is as follows:

� Select R 2 f0; 1grLen uniformly, and compute r := H(M jjR).

� Compute C:
C := gI[M jjR]hI[r] mod n

.

6.3 Decryption: D

The input and output of D are as follows:

[Input ] Ciphertext C 2 Z along with public-key (n; g; h;HID; pLen;mLen; hLen; rLen) 2 Z8

and secret-key (p; gp) 2 Z2.

[Output ] Plaintext M 2 f0; 1gmLen or null string.

The operation of D, on input C along with (n; g; h;HID; pLen;mLen; hLen; rLen), (p; gp),
and (p; gp), is as follows:

� Compute Cp := Cp�1 mod p2, and X :=
L(Cp)
L(gp)

mod p, where L(x) := x�1
p
.

� Check whether the following equations hold or not:

X � 2mLen+rLen � 1; and

C = gXhI[H(X)] mod n:

� If it holds, output [BmLen+rLen[X ]]mLen as decrypted plaintext. Otherwise, output null
string.

7 Speci�cation of EPOC-2

7.1 Key Generation: G

The input and output of G are as follows:

[Input ] Security parameter k(= pLen) 2 Z.

[Output ] A pair of public-key, (n; g; h;HID;GID; SEID; pLen; hLen; gLen; rLen) 2 Z10

and secret-key, (p; gp) 2 Z2.

6



The operation of G, on input k, is as follows:

� Choose two primes p, q (2k�1 � p; q � 2k � 1) and compute n = p2q.

� Choose g 2 (Z=nZ)� randomly such that the order of gp := gp�1 mod p2 is p.

� Choose h0 from (Z=nZ)� randomly and independently from g. Compute h := hn0 mod n.

� Set pLen := k. Set rLen such that rLen � pLen� 1.

� Select (hash) functionsH: f0; 1gmLen+rLen �! f0; 1ghLen, andG: f0; 1grLen �! f0; 1ggLen,
and the identi�ers of H and G are HID and GID respectively.

� Let SymE = (SymEnc; SymDec) be a pair of symmetric-key encryption and decryption
algorithms with symmetric-key K, where the length of K is gLen. The identi�er of SymE
is SEID. Let SEID = 1 denotes that SymE is the one-time-pad.

Encryption algorithm SymEnc takes key K and plaintext X, and returns ciphertext
SymEnc(K;X). Decryption algorithm SymDec takes key K and ciphertext Y , and re-
turns plaintext SymDec(K;Y ). Here we assume that for any keyK, function SymEnc(K; �)
is one-to-one and onto.

Note: gp is a supplementary parameter that improves the e�ciency of decryption, since gp can
be calculated from p and g. h can be gn mod n. H and G can be �xed by the system and shared
by many users.

7.2 Encryption: E

The input and output of E are as follows:

[Input ] Plaintext M 2 f0; 1gmLen along with public-key (n; g; h;HID;GID, SEID; pLen;
hLen; gLen; rLen) 2 Z10.

[Output ] Ciphertext C = (C1; C2) 2 Z� f0; 1gmLen.

The operation of E , on input M , (n; g; h;HID;GID; SEID; pLen; hLen; gLen; rLen) is as
follows:

� Select R 2 f0; 1grLen uniformly, and compute G(R) and r := H(M jjR).

� Compute H(M jjR).

�
C1 := gI[R]hI[r] mod n;

C2 := SymEnc(G(R);M)

Remark: A typical way to realize SymE is one-time padding.
That is, SymEnc(K;X) := K�X, and SymDec(K;Y ) := K�Y , where � denotes the bit-wise
exclusive-or operation.

When mLen is longer than gLen, we use an appropriate symmetric encryption (block cipher
or stream cipher) rather than one-time padding.

7



7.3 Decryption: D

The input and output of D are as follows:

[Input ] Ciphertext C = (C1; C2) 2 Z� f0; 1gmLen along with public-key (n; g; h;HID;GID;
SEID; pLen; hLen; gLen; rLen) 2 Z10 secret-key (p; gp) 2 Z2.

[Output ] Plaintext M 2 f0; 1gmLen or null string.

The operation of D, on input C = (C1; C2) along with (n; g; h;HID;GID; SEID; pLen;
hLen; gLen; rLen), and (p; gp) is as follows:

� Compute Cp := C1
p�1 mod p2, and R0 :=

L(Cp)
L(gp)

mod p, where L(x) := x�1
p
.

� Compute M 0 := SymDec(G(R0); C2).

� Check whether the following equations hold or not:

R0 � 2rLen � 1;

C1 = gR
0

hI[r0] mod n;

where r0 := H(M 0jjBrLen[R
0]).

� If they hold, output M 0 as decrypted plaintext. Otherwise, output null string.

8 Speci�cation of EPOC-3

8.1 Key Generation: G

The input and output of G are as follows:

[Input ] Security parameter k(= pLen) 2 Z.

[Output ] A pair of public-key, (n; g; h;HID;GID; SEID; pLen; hLen; gLen;RLen; rLen) 2
Z11 and secret-key, (p; gp) 2 Z2.

The operation of G, on input k, is as follows:

� Choose two primes p, q (2k�1 � p; q � 2k � 1) and compute n = p2q.

� Choose g 2 (Z=nZ)� randomly such that the order of gp := gp�1 mod p2 is p.

� Choose h0 from (Z=nZ)� randomly and independently from g. Compute h := hn0 mod n.

� Set pLen := k. Set RLen such that RLen � pLen� 1.

� Select (hash) functions H : f0; 1g3k+kLen+RLen+mLen �! f0; 1ghLen, and G: f0; 1gRLen

�! f0; 1ggLen and the identi�ers of H and G are HID and GID respectively.

8



� Let SymE = (SymEnc; SymDec) be a pair of symmetric-key encryption and decryption
algorithms with symmetric-key K, where the length of K is gLen. The identi�er of SymE
is SEID. Let SEID = 1 denotes that SymE is the one-time-pad.

Encryption algorithm SymEnc takes key K and plaintext X, and returns ciphertext
SymEnc(K;X). Decryption algorithm SymDec takes key K and ciphertext Y , and re-
turns plaintext SymDec(K;Y ). Here we assume that for any keyK, function SymEnc(K; �)
is one-to-one and onto.

Note: gp is a supplementary parameter that improves the e�ciency of decryption, since gp can
be calculated from p and g. h can be gn mod n. H and G can be �xed by the system and shared
by many users.

8.2 Encryption: E

The input and output of E are as follows:

[Input ] Plaintext M 2 f0; 1gmLen along with public-key (n; g; h;HID;GID, SEID; pLen;
hLen; gLen; RLen; rLen) 2 Z11.

[Output ] Ciphertext C = (C1; C2; C3) 2 Z� f0; 1gmLen � f0; 1ghLen.

The operation of E , on inputM , (n; g; h;HID;GID; SEID; pLen; hLen; gLen;RLen; rLen)
is as follows:

� Select r 2 f0; 1grLen and R 2 f0; 1gRLen uniformly, and compute G(R).

� Compute
C1 := gI[R]hI[r] mod n;

C2 := SymEnc(G(R);M);

C3 := H(B3�pLen[C1]jjC2jjRjjM):

Remark: A typical way to realize SymE is one-time padding.
That is, SymEnc(K;X) := K�X, and SymDec(K;Y ) := K�Y , where � denotes the bit-wise
exclusive-or operation.

When mLen is longer than gLen, we use an appropriate symmetric encryption (block cipher
or stream cipher) rather than one-time padding.

8.3 Decryption: D

The input and output of D are as follows:

[Input ] Ciphertext C = (C1; C2; C3) 2 Z � f0; 1gmLen � f0; 1ghLen along with public-key
(n; g; h;HID;GID, SEID; pLen; hLen; gLen;RLen; rLen) 2 Z11 secret-key (p; gp) 2 Z2.

[Output ] Plaintext M 2 f0; 1gmLen or null string.

9



The operation of D, on input C = (C1; C2) along with (n; g; h;HID;GID, SEID; pLen;
hLen; gLen;RLen; rLen) and (p; gp) is as follows:

� Compute Cp := C1
p�1 mod p2, and R0 :=

L(Cp)
L(gp)

mod p, where L(x) := x�1
p
.

� Compute M 0 := SymDec(G(R0); C2).

� Check whether the following equations hold or not:

R0 � 2rLen � 1;

C3 = H(B3�pLen[C1]jjC2jjBrLen[R
0]jjM 0):

� If they hold, output M 0 as decrypted plaintext. Otherwise, output null string.

8.4 Session Like Method for EPOC-3 Encryption

We can use EPOC-3 as following session like method.

� Sender chooses uniform randomly r 2 f0; 1grLen and R 2 f0; 1gRLen.

� Sender computes C1 := gI[R]hI[r] mod n and K := G(R), and sends C1.

� Receiver decrypts R from C1, and computes K := G(R). [key sending phase �nished]

� For each plaintext Mi （i = 1; 2; : : : ;）, Sender computes C2;i := SymEnc(K;Mi) and
C3;i := H(B3�pLen[C1]jjC2;ijjRjjMi), and sends (C2;i; C3;i).

� Receiver decrypts Mi by using K, and checks C3;i = H(B3�pLen[C1]jjC2;ijjRjjMi). [cipher
communication phase �nished]

9 Recommended Parameters

For EPOC-1/2/3, the security parameter, k, should be greater than 320 (i.e., the size of n should
be greater than 960), and hLen should be at least 128.

Here we will show two typical cases of parameters employed in our self-evaluation document:
Type-A and Type-B of security parameters for EPOC-1/2/3. EPOC with Type-A parameters
are provably secure in the strongest sense (IND-CCA2) under \weaker" assumptions, while
EPOC with Type-B parameters are provably secure in the strongest sense (IND-CCA2) under
\stronger" assumptions. EPOC with Type-B parameters enjoy better performance than EPOC
with Type-A parameters.

The length of modulus n for the both types is 1152 bits.

� [Type A parameters] For EPOC-1, the message length (mLen) is 128 bits, random
string length (rLen) is 80 bits and the hashed value length of h (hLen) is 832 bits.

For EPOC-2 with one-time pad, rLen = 128 and the hashed value lengths of h and g
(hLen and gLen) are 832 and 128, respectively.

10



As for EPOC-3 with one-time pad, the random string lengths (rLen and RLen) are 832
and 128 bits respectively, and the hashed value lengths of h and g (gLen and hLen) are
128.

� [Type B parameters] For EPOC-1, the message length (mLen) is 128 bits, random
string length (rLen) is 80 bits and the hashed value length of h (hLen) is 208 bits. For
EPOC-2 with one-time padding (OTP), rLen = 128 and the hashed value lengths of h and
g (hLen and gLen) are 128. As for EPOC-3 with one-time padding (OTP), the random
string lengths (rLen and RLen) are 128 bits, and the hashed value lengths of h and g
(gLen and hLen) are 128.

10 Hash Function

We can use any random-like one-way functions H and G for EPOC. (As mentioned in subsection
2, EPOC can be proven to be secure if H and G are ideal random functions, while no formal
security is guaranteed if they are practical random-like one-way functions.) In this subsection
we will show a typical construction of function H with hLen > 160 out of SHA (NIST Secure
Hash Algorithm), which was suggested by Bellare and Rogaway [6].

We denote by SHA�(x) the 160-bit result of SHA applied to x, except that the 160-bit
\starting value" in the algorithm description is taken to be ABCDE = �. Let SHAl

�(x) denote
the �rst l-bits of SHA�(x). Fix the notation < i > for i encoded as a binary 32-bit word. We
de�ne the function H as:

H(x) := SHA80
� (< 0 > jjx)jjSHA80

� (< 1 > jjx)jj � � � jjSHALl
� (< l > jjx);

where l = b3k80c, and Ll = hLen� 80l.

References

[1] Abdalla, M., Bellare, M. and Rogaway, P.: DHES: An Encryption Scheme Based on the
Di�e-Hellman Problem, Submission to IEEE P1363a (1998, August)

[2] Adleman, L.M. and McCurley, K.S.: Open Problems in Number Theoretic Complexity,II
(open problems: C7, O7a and O7b), Proc. of ANTS-I, LNCS 877, Springer-Verlag, pp.291-
322 (1995).

[3] Ajtai, M. and Dwork, C.: A Public-Key Cryptosystem with Worst-Case/Average-Case
Equivalence, Proc. of STOC'97, pp. 284-293 (1997).

[4] Bellare, M., Desai, A., Pointcheval, D., and Rogaway, P.: Relations Among Notions of
Security for Public-Key Encryption Schemes, Proc. of Crypto'98, LNCS 1462, Springer-
Verlag, pp. 26{45 (1998).

[5] Bellare, M. and Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
E�cient Protocols, Proc. of the First ACM Conference on Computer and Communications
Security, pp.62{73 (1993).

11



[6] Bellare, M. and Rogaway, P. : Optimal Asymmetric Encryption, Proc. of Eurocrypt'94,
LNCS 950, Springer-Verlag pp.92-111 (1995).

[7] Boneh, D., Durfee, G. and Howgrave-Graham, N.: Factoring N = prq for Large r, Proc. of
Crypto'99, LNCS 1666, Springer-Verlag, pp.326-337 (1999)

[8] Chao, J., Matsuda, N. and Tsujii, S.: E�cient construction of secure hyperelliptic discrete
logarithm problems, Proc. of ICICS'97, LNCS 1334, Springer-Verlag, pp.292-301 (1997).

[9] Chor, B. and Rivest, R.L.: A knapsack type public key cryptosystem based on arithmetic
in �nite �elds, Proc. of Crypto'84, LNCS 196, Springer-Verlag, pp.54-65 (1985).

[10] Cohen, J. and Fischer.: A Robust and Veri�able Cryptographically Secure Election Scheme,
FOCS, pp.372-382 (1985).

[11] Cryptography Using Compaq MultiPrime Technology in a Parallel Processing Environment,
Enterprise Security Solutions, Electronic Commerce Technical Brief, Compaq Computer
Corporation, http://www6.compaq.com/solutions/security/ (2000)

[12] Dolev, D., Dwork, C. and Naor, M.: Non-Malleable Cryptography, Proc. of STOC, pp.542{
552 (1991).

[13] Demytko, N.: A New Elliptic Curve Based Analogue of RSA, Proc. of Eurocrypt'93, LNCS
765, Springer-Verlag, pp.40-49 (1994).

[14] Di�e, W. and Hellman, M.: New Directions in Cryptography, IEEE Trans. on Information
Theory, IT-22, 6, pp.644{654 (1976).

[15] ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms, IEEE Trans. on Information Theory, IT-31, 4, pp.469{472 (1985).

[16] Fujisaki, E. and Okamoto, T.: How to Enhance the Security of Public-Key Encryption at
Minimum Cost, Proc. of PKC'99, LNCS 1560, Springer-Verlag, pp.53{68 (1999).

[17] Fujisaki, E. and Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption
Schemes, Proc. of Crypto'99, LNCS 1666, Springer-Verlag, pp.535{554 (1999).

[18] Goldwasser, S. and Micali, S.: Probabilistic Encryption, JCSS, 28, 2, pp.270-299 (1984).

[19] IEEE P1363 Draft (D9), http://grouper.ieee.org/groups/1363/P1363/draft.html (1999).

[20] Joye, M., Quisquater, J.J., and Yung, M.: On the Power of Misbehaving Adversaries and
Security Analysis of EPOC, Manuscript (February 2000).

[21] Koblitz, N.: Elliptic Curve Cryptosystems, Math. Comp., 48, 177, pp.203{209 (1987).

[22] Koyama, K. , Maurer, U. M. , Okamoto, T. and Vanstone, S. A.,: New Public-key Schemes
based on Elliptic Curves over the Ring Zn, Proc. of Crypto'91, LNCS 576, Springer-Verlag,
pp.252-266 (1992).

12



[23] Kurosawa, K., Ito, T. and Takeuchi, M.: Public Key Cryptosystem using a Reciprocal
Number with the same Intractability as Factoring a Large Number, Cryptologia, 12, 4,
pp.225-233 (1988).

[24] Loxton, J.H., Khoo, D.S.P., Bird, G.J. and Seberry, J.: A Cubic RSA Code Equivalent to
Factorization, Journal of Cryptology, 5, 2, pp.139-150 (1992).

[25] Matsumoto, T. and Imai, H.: Public Quadratic Polynomial-Tuples for E�cient Signature-
Veri�cation and Message-Encryption, Proc. of Eurocrypt'88, LNCS 330, Springer-Verlag,
pp.419-453 (1988).

[26] McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding Theory, DSN
progress report 42-44, Jet Propulsion Laboratories, Pasadena (1978).

[27] Merkle, R.C. and Hellman, M.E.: Hiding Information and Signatures in Trapdoor Knap-
sacks, IEEE Trans. on Inform. Theory, 24, pp.525-530 (1978).

[28] Miller, V.S.: Use of Elliptic Curves in Cryptography, Proc. of Crypto'85, LNCS 218,
Springer-Verlag, pp.417-426 (1985).

[29] Naccache, D. and Stern, J.: A New Public-Key Cryptosystem, Proc. of Eurocrypt'97, LNCS
1233, Springer-Verlag, pp.27-436 (1997).

[30] Okamoto, T. and Pointcheval, D.: BEST: A Generic Coversion to Achieve Chosen-
Ciphertext Security, manuscript (2000).

[31] Okamoto, T. and Pointcheval, D.: The Gap Problems: A New Class of Problems for the
Security of Cryptographic Schemes, manuscript (2000).

[32] Okamoto, T. and Uchiyama, S.: A New Public-Key Cryptosystem as Secure as Factoring,
Proc. of Eurocrypt'98, LNCS 1403, Springer-Verlag, pp. 308{318(1998).

[33] Patarin, J. and Goubin, L.: Trapdoor one-way permutations and multivariate polynomials,
Proc. of ICICS'97, LNCS 1334, Springer-Verlag, pp.356-368 (1997).

[34] Patarin, J. and Goubin, L.: Asymmetric cryptography with S-Boxes, Proc. of ICICS'97,
LNCS 1334, Springer-Verlag, pp.369-380 (1997).

[35] Peralta, R.: Bleichenbacher's improvement for factoring numbers of the form N = PQ2

(private communication) (1997).

[36] Peralta, R. and Okamoto, E.: Faster Factoring of Integers of a Special Form, IEICE Trans.
Fundamentals, E79-A, 4, pp.489-493 (1996).

[37] Pollard, J.L.: Manuscript (1997).

[38] Rabin, M.O.: Digital Signatures and Public-Key Encryptions as Intractable as Factoriza-
tion, MIT, Technical Report, MIT/LCS/TR-212 (1979).

13



[39] Rivest, R., Shamir, A. and Adleman,L.: A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems, Communications of the ACM, Vol.21, No.2, pp.120-126 (1978).

[40] R. D. Silverman: A Cost-Based Security Analysis of Symmetric and Asymmetric
Key Lengths", RSA Laboratories, CryptoBytes, Bulletins, Number 13 (April 2000),
http://www.rsasecurity.com/rsalabs/bulletins/bulletin13.html/.

[41] Smith, P. and Lennon, M.: LUC: A New Public Key System, Proc. of IFIP/SEC'93, pp.
103-117, North-Holland (1993).

[42] Williams, H.C.: A Modi�cation of the RSA Public Key Encryption Procedure, IEEE Trans.
on Inform. Theory, IT-26, 6, pp.726-729 (1980).

[43] Williams, H.C.: Some Public-Key Crypto-Functions as Intractable as Factorization, Proc.
of Crypto'84, LNCS 196, Springer-Verlag, pp.66-70 (1985).

14


