Trait std::ops::Div 1.0.0
[−]
[src]
#[lang = "div"]pub trait Div<RHS = Self> { type Output; fn div(self, rhs: RHS) -> Self::Output; }
The division operator /.
Examples
Implementing a Dividable rational number struct:
use std::ops::Div; // The uniqueness of rational numbers in lowest terms is a consequence of // the fundamental theorem of arithmetic. #[derive(Eq)] #[derive(PartialEq, Debug)] struct Rational { nominator: usize, denominator: usize, } impl Rational { fn new(nominator: usize, denominator: usize) -> Self { if denominator == 0 { panic!("Zero is an invalid denominator!"); } // Reduce to lowest terms by dividing by the greatest common // divisor. let gcd = gcd(nominator, denominator); Rational { nominator: nominator / gcd, denominator: denominator / gcd, } } } impl Div for Rational { // The division of rational numbers is a closed operation. type Output = Self; fn div(self, rhs: Self) -> Self { if rhs.nominator == 0 { panic!("Cannot divide by zero-valued `Rational`!"); } let nominator = self.nominator * rhs.denominator; let denominator = self.denominator * rhs.nominator; Rational::new(nominator, denominator) } } // Euclid's two-thousand-year-old algorithm for finding the greatest common // divisor. fn gcd(x: usize, y: usize) -> usize { let mut x = x; let mut y = y; while y != 0 { let t = y; y = x % y; x = t; } x } fn main() { assert_eq!(Rational::new(1, 2), Rational::new(2, 4)); assert_eq!(Rational::new(1, 2) / Rational::new(3, 4), Rational::new(2, 3)); }Run
Note that RHS = Self by default, but this is not mandatory. Here is an
implementation which enables division of vectors by scalars, as is done in
linear algebra.
use std::ops::Div; struct Scalar {value: f32}; #[derive(Debug)] struct Vector {value: Vec<f32>}; impl Div<Scalar> for Vector { type Output = Vector; fn div(self, rhs: Scalar) -> Vector { Vector {value: self.value.iter().map(|v| v / rhs.value).collect()} } } impl PartialEq<Vector> for Vector { fn eq(&self, other: &Self) -> bool { self.value == other.value } } let scalar = Scalar{value: 2f32}; let vector = Vector{value: vec![2f32, 4f32, 6f32]}; assert_eq!(vector / scalar, Vector{value: vec![1f32, 2f32, 3f32]});Run
Associated Types
type Output
The resulting type after applying the / operator
Required Methods
Implementors
impl<'a, 'b> Div<&'a isize> for &'b isizeimpl Div<i32> for i32impl<'a> Div<&'a isize> for isizeimpl<'a, 'b> Div<&'a f32> for &'b f32impl<'a> Div<&'a f32> for f32impl<'a> Div<&'a Wrapping<u128>> for Wrapping<u128>impl Div<i64> for i64impl<'a> Div<Wrapping<u128>> for &'a Wrapping<u128>impl Div<i8> for i8impl<'a> Div<&'a i64> for i64impl<'a, 'b> Div<&'a Wrapping<u8>> for &'b Wrapping<u8>impl<'a> Div<Wrapping<u8>> for &'a Wrapping<u8>impl<'a, 'b> Div<&'a i16> for &'b i16impl Div<u64> for u64impl<'a> Div<&'a i8> for i8impl<'a> Div<&'a u32> for u32impl Div<f64> for f64impl<'a> Div<i8> for &'a i8impl Div<isize> for isizeimpl<'a> Div<u64> for &'a u64impl<'a> Div<&'a i32> for i32impl Div<u32> for u32impl<'a, 'b> Div<&'a Wrapping<i16>> for &'b Wrapping<i16>impl<'a> Div<f32> for &'a f32impl<'a> Div<Wrapping<u32>> for &'a Wrapping<u32>impl<'a, 'b> Div<&'a u32> for &'b u32impl<'a, 'b> Div<&'a Wrapping<i8>> for &'b Wrapping<i8>impl<'a> Div<f64> for &'a f64impl<'a> Div<&'a Wrapping<i64>> for Wrapping<i64>impl Div<usize> for usizeimpl Div<Wrapping<u16>> for Wrapping<u16>impl<'a> Div<Wrapping<usize>> for &'a Wrapping<usize>impl<'a> Div<i32> for &'a i32impl<'a> Div<&'a u128> for u128impl Div<Wrapping<i16>> for Wrapping<i16>impl<'a, 'b> Div<&'a i128> for &'b i128impl<'a> Div<&'a u8> for u8impl<'a> Div<Wrapping<i8>> for &'a Wrapping<i8>impl<'a> Div<i128> for &'a i128impl<'a> Div<&'a Wrapping<i16>> for Wrapping<i16>impl<'a> Div<&'a Wrapping<i32>> for Wrapping<i32>impl Div<Wrapping<u128>> for Wrapping<u128>impl Div<Wrapping<i64>> for Wrapping<i64>impl Div<Wrapping<u8>> for Wrapping<u8>impl<'a> Div<&'a f64> for f64impl Div<f32> for f32impl<'a> Div<&'a Wrapping<isize>> for Wrapping<isize>impl<'a> Div<Wrapping<i64>> for &'a Wrapping<i64>impl<'a> Div<&'a Wrapping<i128>> for Wrapping<i128>impl<'a, 'b> Div<&'a i8> for &'b i8impl<'a> Div<&'a Wrapping<u64>> for Wrapping<u64>impl<'a> Div<Wrapping<i16>> for &'a Wrapping<i16>impl<'a, 'b> Div<&'a Wrapping<u32>> for &'b Wrapping<u32>impl<'a> Div<u32> for &'a u32impl<'a> Div<&'a i128> for i128impl<'a> Div<&'a Wrapping<usize>> for Wrapping<usize>impl Div<Wrapping<isize>> for Wrapping<isize>impl<'a> Div<&'a i16> for i16impl<'a> Div<Wrapping<u64>> for &'a Wrapping<u64>impl Div<i128> for i128impl<'a, 'b> Div<&'a Wrapping<i32>> for &'b Wrapping<i32>impl Div<u128> for u128impl<'a> Div<&'a Wrapping<i8>> for Wrapping<i8>impl Div<u8> for u8impl<'a> Div<&'a u16> for u16impl<'a> Div<&'a Wrapping<u32>> for Wrapping<u32>impl<'a, 'b> Div<&'a Wrapping<isize>> for &'b Wrapping<isize>impl<'a, 'b> Div<&'a Wrapping<u128>> for &'b Wrapping<u128>impl<'a, 'b> Div<&'a u16> for &'b u16impl<'a, 'b> Div<&'a Wrapping<i64>> for &'b Wrapping<i64>impl Div<i16> for i16impl<'a, 'b> Div<&'a u8> for &'b u8impl<'a> Div<Wrapping<i128>> for &'a Wrapping<i128>impl<'a> Div<u128> for &'a u128impl<'a, 'b> Div<&'a u128> for &'b u128impl<'a, 'b> Div<&'a Wrapping<u16>> for &'b Wrapping<u16>impl<'a, 'b> Div<&'a Wrapping<u64>> for &'b Wrapping<u64>impl<'a, 'b> Div<&'a i64> for &'b i64impl Div<u16> for u16impl<'a> Div<isize> for &'a isizeimpl Div<Wrapping<i8>> for Wrapping<i8>impl<'a> Div<&'a u64> for u64impl<'a, 'b> Div<&'a f64> for &'b f64impl Div<Wrapping<usize>> for Wrapping<usize>impl Div<Wrapping<u64>> for Wrapping<u64>impl Div<Wrapping<i32>> for Wrapping<i32>impl<'a> Div<Wrapping<u16>> for &'a Wrapping<u16>impl Div<Wrapping<i128>> for Wrapping<i128>impl<'a> Div<&'a Wrapping<u8>> for Wrapping<u8>impl<'a> Div<&'a usize> for usizeimpl Div<Wrapping<u32>> for Wrapping<u32>impl<'a, 'b> Div<&'a u64> for &'b u64impl<'a> Div<u8> for &'a u8impl<'a, 'b> Div<&'a Wrapping<i128>> for &'b Wrapping<i128>impl<'a> Div<&'a Wrapping<u16>> for Wrapping<u16>impl<'a> Div<Wrapping<i32>> for &'a Wrapping<i32>impl<'a> Div<i16> for &'a i16impl<'a, 'b> Div<&'a usize> for &'b usizeimpl<'a, 'b> Div<&'a i32> for &'b i32impl<'a> Div<usize> for &'a usizeimpl<'a, 'b> Div<&'a Wrapping<usize>> for &'b Wrapping<usize>impl<'a> Div<u16> for &'a u16impl<'a> Div<i64> for &'a i64impl<'a> Div<Wrapping<isize>> for &'a Wrapping<isize>impl Div<u32> for Duration