| kronecker-methods {Matrix} | R Documentation |
Computes Kronecker products for objects inheriting from
"Matrix".
In order to preserver sparseness, we treat 0 * NA as 0,
not as NA as usually in R (and as used for the
base function kronecker).
signature(X = "Matrix", Y = "ANY") .......
signature(X = "ANY", Y = "Matrix") .......
signature(X = "diagonalMatrix", Y = "ANY") .......
signature(X = "sparseMatrix", Y = "ANY") .......
signature(X = "TsparseMatrix", Y = "TsparseMatrix") .......
signature(X = "dgTMatrix", Y = "dgTMatrix") .......
signature(X = "dtTMatrix", Y = "dtTMatrix") .......
(t1 <- spMatrix(5,4, x= c(3,2,-7,11), i= 1:4, j=4:1)) # 5 x 4
(t2 <- kronecker(Diagonal(3, 2:4), t1)) # 15 x 12
## should also work with special-cased logical matrices
l3 <- upper.tri(matrix(,3,3))
M <- Matrix(l3)
(N <- as(M, "nsparseMatrix"))
N2 <- as(N, "generalMatrix")
MM <- kronecker(M,M)
NN <- kronecker(N,N)
NN2 <- kronecker(N2,N2)
stopifnot(identical(NN,MM),
is(NN, "triangularMatrix"))