Reference Language | Libraries | Comparison | Changes
Shifts out a byte of data one bit at a time. Starts from either the most (i.e. the leftmost) or least (rightmost) significant bit. Each bit is written in turn to a data pin, after which a clock pin is pulsed to indicate that the bit is available.
This is a software implementation; Arduino (as of 0019) also provides an SPI library that uses the hardware implementation.
shiftOut(dataPin, clockPin, bitOrder, value)
dataPin: the pin on which to output each bit (int)
clockPin: the pin to toggle once the dataPin has been set to the correct value (int)
bitOrder: which order to shift out the bits; either MSBFIRST or LSBFIRST.
(Most Significant Bit First, or, Least Significant Bit First)
value: the data to shift out. (byte)
None
The dataPin and clockPin must already be configured as outputs by a call to pinMode().
shiftOut is currently written to output 1 byte (8 bits) so it requires a two step operation to output values larger than 255.
// Do this for MSBFIRST serial int data = 500; // shift out highbyte shiftOut(dataPin, clock, MSBFIRST, (data >> 8)); // shift out lowbyte shiftOut(data, clock, MSBFIRST, data); // Or do this for LSBFIRST serial data = 500; // shift out lowbyte shiftOut(dataPin, clock, LSBFIRST, data); // shift out highbyte shiftOut(dataPin, clock, LSBFIRST, (data >> 8));
For accompanying circuit, see the tutorial on controlling a 74HC595 shift register.
//**************************************************************//
// Name : shiftOutCode, Hello World //
// Author : Carlyn Maw,Tom Igoe //
// Date : 25 Oct, 2006 //
// Version : 1.0 //
// Notes : Code for using a 74HC595 Shift Register //
// : to count from 0 to 255 //
//****************************************************************
//Pin connected to ST_CP of 74HC595
int latchPin = 8;
//Pin connected to SH_CP of 74HC595
int clockPin = 12;
////Pin connected to DS of 74HC595
int dataPin = 11;
void setup() {
//set pins to output because they are addressed in the main loop
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);
}
void loop() {
//count up routine
for (int j = 0; j < 256; j++) {
//ground latchPin and hold low for as long as you are transmitting
digitalWrite(latchPin, LOW);
shiftOut(dataPin, clockPin, LSBFIRST, j);
//return the latch pin high to signal chip that it
//no longer needs to listen for information
digitalWrite(latchPin, HIGH);
delay(1000);
}
}
Corrections, suggestions, and new documentation should be posted to the Forum.
The text of the Arduino reference is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. Code samples in the reference are released into the public domain.