#include <ml.hpp>
Public Types | |
| enum | { SQUARED_LOSS = 0, ABSOLUTE_LOSS, HUBER_LOSS = 3, DEVIANCE_LOSS } |
Public Member Functions | |
| virtual float | calc_error (CvMLData *_data, int type, std::vector< float > *resp=0) |
| virtual CV_WRAP void | clear () |
| CvGBTrees (const CvMat *trainData, int tflag, const CvMat *responses, const CvMat *varIdx=0, const CvMat *sampleIdx=0, const CvMat *varType=0, const CvMat *missingDataMask=0, CvGBTreesParams params=CvGBTreesParams()) | |
| CV_WRAP | CvGBTrees (const cv::Mat &trainData, int tflag, const cv::Mat &responses, const cv::Mat &varIdx=cv::Mat(), const cv::Mat &sampleIdx=cv::Mat(), const cv::Mat &varType=cv::Mat(), const cv::Mat &missingDataMask=cv::Mat(), CvGBTreesParams params=CvGBTreesParams()) |
| CV_WRAP | CvGBTrees () |
| virtual CV_WRAP float | predict (const cv::Mat &sample, const cv::Mat &missing=cv::Mat(), const cv::Range &slice=cv::Range::all(), int k=-1) const |
| virtual float | predict (const CvMat *sample, const CvMat *missing=0, CvMat *weakResponses=0, CvSlice slice=CV_WHOLE_SEQ, int k=-1) const |
| virtual void | read (CvFileStorage *fs, CvFileNode *node) |
| virtual CV_WRAP bool | train (const cv::Mat &trainData, int tflag, const cv::Mat &responses, const cv::Mat &varIdx=cv::Mat(), const cv::Mat &sampleIdx=cv::Mat(), const cv::Mat &varType=cv::Mat(), const cv::Mat &missingDataMask=cv::Mat(), CvGBTreesParams params=CvGBTreesParams(), bool update=false) |
| virtual bool | train (CvMLData *data, CvGBTreesParams params=CvGBTreesParams(), bool update=false) |
| virtual bool | train (const CvMat *trainData, int tflag, const CvMat *responses, const CvMat *varIdx=0, const CvMat *sampleIdx=0, const CvMat *varType=0, const CvMat *missingDataMask=0, CvGBTreesParams params=CvGBTreesParams(), bool update=false) |
| virtual void | write (CvFileStorage *fs, const char *name) const |
| virtual | ~CvGBTrees () |
Protected Member Functions | |
| virtual void | change_values (CvDTree *tree, const int k=0) |
| virtual void | do_subsample () |
| virtual void | find_gradient (const int k=0) |
| virtual float | find_optimal_value (const CvMat *_Idx) |
| CvDTreeNode ** | GetLeaves (const CvDTree *dtree, int &len) |
| void | leaves_get (CvDTreeNode **leaves, int &count, CvDTreeNode *node) |
| virtual bool | problem_type () const |
| virtual void | read_params (CvFileStorage *fs, CvFileNode *fnode) |
| virtual void | write_params (CvFileStorage *fs) const |
Protected Attributes | |
| float | base_value |
| int | class_count |
| CvMat * | class_labels |
| CvDTreeTrainData * | data |
| float | delta |
| CvMat * | missing |
| CvMat * | orig_response |
| CvGBTreesParams | params |
| cv::RNG * | rng |
| CvMat * | sample_idx |
| CvMat * | subsample_test |
| CvMat * | subsample_train |
| CvMat * | sum_response |
| CvMat * | sum_response_tmp |
| CvSeq ** | weak |
| CvMat * | weak_eval |
| CV_WRAP CvGBTrees::CvGBTrees | ( | ) |
| CvGBTrees::CvGBTrees | ( | const CvMat * | trainData, |
| int | tflag, | ||
| const CvMat * | responses, | ||
| const CvMat * | varIdx = 0, |
||
| const CvMat * | sampleIdx = 0, |
||
| const CvMat * | varType = 0, |
||
| const CvMat * | missingDataMask = 0, |
||
| CvGBTreesParams | params = CvGBTreesParams() |
||
| ) |
| virtual CvGBTrees::~CvGBTrees | ( | ) | [virtual] |
| CV_WRAP CvGBTrees::CvGBTrees | ( | const cv::Mat & | trainData, |
| int | tflag, | ||
| const cv::Mat & | responses, | ||
| const cv::Mat & | varIdx = cv::Mat(), |
||
| const cv::Mat & | sampleIdx = cv::Mat(), |
||
| const cv::Mat & | varType = cv::Mat(), |
||
| const cv::Mat & | missingDataMask = cv::Mat(), |
||
| CvGBTreesParams | params = CvGBTreesParams() |
||
| ) |
| virtual float CvGBTrees::calc_error | ( | CvMLData * | _data, |
| int | type, | ||
| std::vector< float > * | resp = 0 |
||
| ) | [virtual] |
| virtual void CvGBTrees::change_values | ( | CvDTree * | tree, |
| const int | k = 0 |
||
| ) | [protected, virtual] |
| virtual CV_WRAP void CvGBTrees::clear | ( | ) | [virtual] |
Reimplemented from CvStatModel.
| virtual void CvGBTrees::do_subsample | ( | ) | [protected, virtual] |
| virtual void CvGBTrees::find_gradient | ( | const int | k = 0 ) |
[protected, virtual] |
| virtual float CvGBTrees::find_optimal_value | ( | const CvMat * | _Idx ) | [protected, virtual] |
| CvDTreeNode** CvGBTrees::GetLeaves | ( | const CvDTree * | dtree, |
| int & | len | ||
| ) | [protected] |
| void CvGBTrees::leaves_get | ( | CvDTreeNode ** | leaves, |
| int & | count, | ||
| CvDTreeNode * | node | ||
| ) | [protected] |
| virtual CV_WRAP float CvGBTrees::predict | ( | const cv::Mat & | sample, |
| const cv::Mat & | missing = cv::Mat(), |
||
| const cv::Range & | slice = cv::Range::all(), |
||
| int | k = -1 |
||
| ) | const [virtual] |
| virtual float CvGBTrees::predict | ( | const CvMat * | sample, |
| const CvMat * | missing = 0, |
||
| CvMat * | weakResponses = 0, |
||
| CvSlice | slice = CV_WHOLE_SEQ, |
||
| int | k = -1 |
||
| ) | const [virtual] |
| virtual bool CvGBTrees::problem_type | ( | ) | const [protected, virtual] |
| virtual void CvGBTrees::read | ( | CvFileStorage * | fs, |
| CvFileNode * | node | ||
| ) | [virtual] |
Reimplemented from CvStatModel.
| virtual void CvGBTrees::read_params | ( | CvFileStorage * | fs, |
| CvFileNode * | fnode | ||
| ) | [protected, virtual] |
| virtual bool CvGBTrees::train | ( | const CvMat * | trainData, |
| int | tflag, | ||
| const CvMat * | responses, | ||
| const CvMat * | varIdx = 0, |
||
| const CvMat * | sampleIdx = 0, |
||
| const CvMat * | varType = 0, |
||
| const CvMat * | missingDataMask = 0, |
||
| CvGBTreesParams | params = CvGBTreesParams(), |
||
| bool | update = false |
||
| ) | [virtual] |
| virtual bool CvGBTrees::train | ( | CvMLData * | data, |
| CvGBTreesParams | params = CvGBTreesParams(), |
||
| bool | update = false |
||
| ) | [virtual] |
| virtual CV_WRAP bool CvGBTrees::train | ( | const cv::Mat & | trainData, |
| int | tflag, | ||
| const cv::Mat & | responses, | ||
| const cv::Mat & | varIdx = cv::Mat(), |
||
| const cv::Mat & | sampleIdx = cv::Mat(), |
||
| const cv::Mat & | varType = cv::Mat(), |
||
| const cv::Mat & | missingDataMask = cv::Mat(), |
||
| CvGBTreesParams | params = CvGBTreesParams(), |
||
| bool | update = false |
||
| ) | [virtual] |
| virtual void CvGBTrees::write | ( | CvFileStorage * | fs, |
| const char * | name | ||
| ) | const [virtual] |
Reimplemented from CvStatModel.
| virtual void CvGBTrees::write_params | ( | CvFileStorage * | fs ) | const [protected, virtual] |
float CvGBTrees::base_value [protected] |
int CvGBTrees::class_count [protected] |
CvMat* CvGBTrees::class_labels [protected] |
CvDTreeTrainData* CvGBTrees::data [protected] |
float CvGBTrees::delta [protected] |
CvMat* CvGBTrees::missing [protected] |
CvMat* CvGBTrees::orig_response [protected] |
CvGBTreesParams CvGBTrees::params [protected] |
cv::RNG* CvGBTrees::rng [protected] |
CvMat* CvGBTrees::sample_idx [protected] |
CvMat* CvGBTrees::subsample_test [protected] |
CvMat* CvGBTrees::subsample_train [protected] |
CvMat* CvGBTrees::sum_response [protected] |
CvMat* CvGBTrees::sum_response_tmp [protected] |
CvSeq** CvGBTrees::weak [protected] |
CvMat* CvGBTrees::weak_eval [protected] |
1.7.2