| Sets as characteristic functions |
Require Bool.
Implicit Arguments On.
Section defs.
Variable A : Set.
Variable eqA : A -> A -> Prop.
Hypothesis eqA_dec : (x,y:A){(eqA x y)}+{~(eqA x y)}.
Inductive uniset : Set :=
Charac : (A->bool) -> uniset.
Definition charac : uniset -> A -> bool :=
[s:uniset][a:A]Case s of [f:A->bool](f a) end.
Definition Emptyset := (Charac [a:A]false).
Definition Fullset := (Charac [a:A]true).
Definition Singleton := [a:A](Charac [a':A]
Case (eqA_dec a a') of
[h:(eqA a a')] true
[h: ~(eqA a a')] false end).
Definition In : uniset -> A -> Prop :=
[s:uniset][a:A](charac s a)=true.
Hints Unfold In.
| uniset inclusion |
Definition incl := [s1,s2:uniset]
(a:A)(leb (charac s1 a) (charac s2 a)).
Hints Unfold incl.
| uniset equality |
Definition seq := [s1,s2:uniset]
(a:A)(charac s1 a) = (charac s2 a).
Hints Unfold seq.
Lemma leb_refl : (b:bool)(leb b b).
Proof.
Induction b; Simpl; Auto.
Qed.
Hints Resolve leb_refl.
Lemma incl_left : (s1,s2:uniset)(seq s1 s2)->(incl s1 s2).
Proof.
Unfold incl; Intros s1 s2 E a; Elim (E a); Auto.
Qed.
Lemma incl_right : (s1,s2:uniset)(seq s1 s2)->(incl s2 s1).
Proof.
Unfold incl; Intros s1 s2 E a; Elim (E a); Auto.
Qed.
Lemma seq_refl : (x:uniset)(seq x x).
Proof.
Induction x; Unfold seq; Auto.
Qed.
Hints Resolve seq_refl.
Lemma seq_trans : (x,y,z:uniset)(seq x y)->(seq y z)->(seq x z).
Proof.
Unfold seq.
Induction x; Induction y; Induction z; Simpl; Intros.
Rewrite H; Auto.
Qed.
Lemma seq_sym : (x,y:uniset)(seq x y)->(seq y x).
Proof.
Unfold seq.
Induction x; Induction y; Simpl; Auto.
Qed.
| uniset union |
Definition union := [m1,m2:uniset]
(Charac [a:A](orb (charac m1 a)(charac m2 a))).
Lemma union_empty_left :
(x:uniset)(seq x (union Emptyset x)).
Proof.
Unfold seq; Unfold union; Simpl; Auto.
Qed.
Hints Resolve union_empty_left.
Lemma union_empty_right :
(x:uniset)(seq x (union x Emptyset)).
Proof.
Unfold seq; Unfold union; Simpl.
Intros x a; Rewrite (orb_b_false (charac x a)); Auto.
Qed.
Hints Resolve union_empty_right.
Lemma union_comm : (x,y:uniset)(seq (union x y) (union y x)).
Proof.
Unfold seq; Unfold charac; Unfold union.
Induction x; Induction y; Auto with bool.
Qed.
Hints Resolve union_comm.
Lemma union_ass :
(x,y,z:uniset)(seq (union (union x y) z) (union x (union y z))).
Proof.
Unfold seq; Unfold union; Unfold charac.
Induction x; Induction y; Induction z; Auto with bool.
Qed.
Hints Resolve union_ass.
Lemma seq_left : (x,y,z:uniset)(seq x y)->(seq (union x z) (union y z)).
Proof.
Unfold seq; Unfold union; Unfold charac.
Induction x; Induction y; Induction z.
Intros; Elim H; Auto.
Qed.
Hints Resolve seq_left.
Lemma seq_right : (x,y,z:uniset)(seq x y)->(seq (union z x) (union z y)).
Proof.
Unfold seq; Unfold union; Unfold charac.
Induction x; Induction y; Induction z.
Intros; Elim H; Auto.
Qed.
Hints Resolve seq_right.
All the proofs that follow duplicate Multiset_of_A
|
Here we should make uniset an abstract datatype, by hiding Charac, union, charac; all further properties are proved abstractly
|
Require Permut.
Lemma union_rotate :
(x,y,z:uniset)(seq (union x (union y z)) (union z (union x y))).
Proof.
Intros; Apply (op_rotate uniset union seq); Auto.
Exact seq_trans.
Qed.
Lemma seq_congr : (x,y,z,t:uniset)(seq x y)->(seq z t)->
(seq (union x z) (union y t)).
Proof.
Intros; Apply (cong_congr uniset union seq); Auto.
Exact seq_trans.
Qed.
Lemma union_perm_left :
(x,y,z:uniset)(seq (union x (union y z)) (union y (union x z))).
Proof.
Intros; Apply (perm_left uniset union seq); Auto.
Exact seq_trans.
Qed.
Lemma uniset_twist1 : (x,y,z,t:uniset)
(seq (union x (union (union y z) t)) (union (union y (union x t)) z)).
Proof.
Intros; Apply (twist uniset union seq); Auto.
Exact seq_trans.
Qed.
Lemma uniset_twist2 : (x,y,z,t:uniset)
(seq (union x (union (union y z) t)) (union (union y (union x z)) t)).
Proof.
Intros; Apply seq_trans with (union (union x (union y z)) t).
Apply seq_sym; Apply union_ass.
Apply seq_left; Apply union_perm_left.
Qed.
| specific for treesort |
Lemma treesort_twist1 : (x,y,z,t,u:uniset) (seq u (union y z)) ->
(seq (union x (union u t)) (union (union y (union x t)) z)).
Proof.
Intros; Apply seq_trans with (union x (union (union y z) t)).
Apply seq_right; Apply seq_left; Trivial.
Apply uniset_twist1.
Qed.
Lemma treesort_twist2 : (x,y,z,t,u:uniset) (seq u (union y z)) ->
(seq (union x (union u t)) (union (union y (union x z)) t)).
Proof.
Intros; Apply seq_trans with (union x (union (union y z) t)).
Apply seq_right; Apply seq_left; Trivial.
Apply uniset_twist2.
Qed.
End defs.
Implicit Arguments Off.